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Abstract

Cancer is a hard problem. It is hard for the patients, for the doctors and nurses,
and for the researchers working on understanding the disease and finding better
treatments for it. The challenges faced by a pathologist diagnosing the disease
for a patient is not necessarily the same as the ones faced by cell biologists
working on experimental treatments and understanding the fundamentals of
cancer. In this thesis we work on different challenges faced by both of the above
teams.

This thesis first presents methods to improve the analysis of the flow cy-
tometry data used frequently in the diagnosis process, specifically for the two
subtypes of non-Hodgkin Lymphoma which are our focus: Follicular Lymphoma
and Diffuse Large B Cell Lymphoma. With a combination of concepts from graph
theory, dynamic programming, and machine learning, we present methods to
improve the diagnosis process and the analysis of the abovementioned data.
The interpretability of the method helps a pathologist to better understand a
patient’s disease, which itself improves their choices for a treatment.

In the second part, we focus on the analysis of DNA-methylation and gene
expression data, both of which presenting the challenge of being very high dimen-
sional yet with a few number of samples comparatively. We present an ensemble
model which adapts to different patterns seen in each given data, in order to
adapt to noise and batch effects. At the same time, the interpretability of our
model helps a pathologist to better find and tune the treatment for the patient:
a step further towards personalized medicine.
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Zusammenfassung

Krebs ist ein schweres Problem. Es ist schwer für die Patienten, für die Ärzte und
Krankenschwestern und für die Forscher, die daran arbeiten, die Krankheit zu
verstehen und eine bessere Behandlung dafür zu finden. Die Herausforderungen,
mit denen ein Pathologe konfrontiert ist, um die Krankheit eines Patienten zu
diagnostizieren, müssen nicht die gleichen sein, mit denen Zellbiologen konfron-
tiert sind, die an experimentellen Behandlungen arbeiten und die Grundlagen
von Krebs verstehen. In dieser Arbeit beschäftigen wir uns mit verschiedenen
Herausforderungen, denen sich beide oben genannten Teams stellen.

In dieser Arbeit werden zunächst Methoden vorgestellt, um die Analyse der
im Diagnoseverfahren häufig verwendeten Durchflusszytometriedaten zu ver-
bessern, insbesondere für die beiden Subtypen des Non-Hodgkin-Lymphoms,
auf die wir uns konzentrieren: das follikuläre Lymphom und das diffuse großzel-
lige B-Zell-Lymphom. Mit einer Kombination von Konzepten aus Graphentheo-
rie, dynamischer Programmierung und künstliche Intelligenz präsentieren wir
Methoden zur Verbesserung des Diagnoseprozesses und der Analyse der oben
genannten Daten. Die Interpretierbarkeit der Methode hilft einem Pathologen,
die Apatientenkrankheit besser zu verstehen, was wiederum seine Wahlmöglich-
keiten für eine Behandlung verbessert.

Im zweiten Teil konzentrieren wir uns auf die Analyse von DNA-Methylierungs-
und Genexpressionsdaten, die beide die Herausforderung darstellen, sehr hochdi-
mensional zu sein, jedoch mit nur wenigen Proben im Vergleich. Wir präsentieren
ein Zusammenstellungsmodell, das sich an unterschiedliche Muster anpasst, die
in den jeweiligen Daten zu sehen sind, um sich an Rauschen und Batch-Effekte
anzupassen. Gleichzeitig hilft die Interpretierbarkeit unseres Modells einem Pa-
thologen, die Behandlung für den Patienten besser zu finden und abzustimmen:
ein Schritt weiter in Richtung personalisierter Medizin.
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“Growth for the sake of growth is the ideology of
the cancer cell.”

- Edward Abbey

1
Introduction

Cancer has been with the human species throughout our 4000 years of history.
Although our understanding of cancer has changed drastically over time, its
treatment remains a challenge and for some cancer subtypes we have not been
able to find an effective treatment yet. The immense frustration of dealing with
cancer not only affects the patients, but also the doctors, pathologists, and oncol-
ogists treating those patients. Siddhartha Mukherjee in his book “The Emperor
of All Maladies” explains the feeling with these words [94, prologue]:

...

There were seven such cancer fellows at this hospital. On paper, we
seemed like a formidable force: graduates of five medical schools
and four teaching hospitals, sixty-six years of medical and scientific
training, and twelve postgraduate degrees among us. But none of
those years or degrees could possibly have prepared us for this train-
ing program. Medical school, internship, and residency had been
physically and emotionally grueling, but the first months of the fel-
lowship flicked away those memories as if all of that had been child’s
play, the kindergarten of medical training.

...

The stories of my patients consumed me, and the decisions that I
made haunted me. Was it worthwhile continuing yet another round
of chemotherapy on a sixty-six-year-old pharmacist with lung cancer
who had failed all other drugs? Was it better to try a tested and potent
combination of drugs on a twenty-six-year-old woman with Hodgkin’s
disease and risk losing her fertility, or to choose a more experimental

1



2 CHAPTER 1. INTRODUCTION

combination that might spare it? Should a Spanish-speaking mother
of three with colon cancer be enrolled in a new clinical trial when she
can barely read the formal and inscrutable language of the consent
forms?

I can better put this thesis in context by giving my personal perspective on
cancer research and diagnosis. I spent over a year as a researcher at British
Columbia’s Cancer Research Center (BCCRC) in Vancouver, Canada, which also
admitted patients for diagnosis and treatment. As a result, I worked closely with
oncologists who were diagnosing patients as well as cell biologists researching
the fundamentals of cancer and new treatments for it. Their experiences and
the challenges they were facing had a great impact on me and to a large extent
shaped my research over the next few years. Then, once I moved to the Bioinfor-
matics Lab at the Max Planck Institute for Informatics in Saarbrücken, Germany,
the Lab and my supervisors had a very strong background in machine learning
and as a result I was better equipped with the required statistics and machine
learning skills to tackle the computational problems explained here. Here is a
list of some of the challenges I saw people facing at BCCRC:

• Some patients enter the clinic carrying cancer type A, which is mild and
does not require an aggressive treatment. Therefore they are given the
appropriate treatment while their condition is monitored over time. How-
ever, the disease in some of these patients develops into another type, let’s
say type B, which is more aggressive and sometimes requires a stronger or
a different treatment. Considering the fact that like many other diseases,
cancer can be defeated best while in its earliest stages, the prognosis for
these patients would be better, if we knew their disease would develop
into type B earlier.

• Similar to the above issue, out of the many patients who go in remission,
i.e they seem free of cancer after the course of the treatment, some relapse
with a cancer which is significantly more resistant to usual treatments com-
pared to when they were originally diagnosed. This sometimes happens
when a very small number of cells from the original cancer are or become
resistant to the drugs and survive the treatment, but go undetected for a
while in the tests and scans. It may take months for those cell populations
to grow large enough to be detected again. Now the question is, looking
back at the data of these patients, could we have detected those cells, or
something about the original cancer cells, predicting the relapse earlier
during the treatment or even at the time of the original diagnosis?

• At BCCRC, cancer cell biologists also research cancer by looking at the
effects of different drugs and drug combinations targeting different genes.
Some of my cell biologist friends, often taking recommendations from
their supervisors, would choose a few genes and spend years investigating
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the role of those genes in the development of a particular type of cancer.
Of course they would do their best to choose the most relevant set of
genes, but the task of choosing a few genes out of over 22k genes on
the human genome is rather challenging and does not always lead to
successful treatments and positive results. There is also a bias towards the
genes which have been discovered earlier and have been studied more in
depth. If the cancer happens to be related to one of the less studied genes,
it will usually stay under the radar for while.

All of the abovementioned issues involve decisions that are hard to make,
and it does not help that we lack a deep understanding of cancer. The battle
against cancer has many fronts, including prevention, diagnosis, and treatment,
all of which benefit from advancements in understanding the disease. As part
of the process, cancer researchers try to understand the disease in the lab, and
once their findings are confirmed, accepted by the community, and pass the legal
requirements, they are used by pathologists and oncologists in clinics. However,
the diagnosis itself is also complex, challenging, and in many cases not a defini-
tive one. This is why sometimes doctors do not agree on the exact diagnosis,
and a counsel of experts is required for a better and more reliable diagnosis and
a treatment which hopefully results in a better prognosis.

To better understand the challenge, we need to realize that cancer is a col-
lection of extremely smart and complicated diseases. Although they share many
common characteristics, the same treatment does not result in a similar prog-
nosis in different patients. For example, two patients may come in with two
physically very similar malignant tumors in their breasts. However, one of the
patient’s tumor grows in response to estrogen, while the other one shows no
reaction to estrogen. In this case, a treatment which blocks estrogen receptors
is very effective for the first patient (ER+), while being completely ineffective
in the second patient who has an ER- subtype of breast cancer.

At the core of it, it comes down to the fact that in normal cells there are
processes and checks put in place which define when and if the cell should divide
or die at a certain time or under certain conditions. Some of those mechanisms
act like an automated self destruct switch which is triggered if something goes
wrong in the cell. However, our cells are under constant stress from the external
factors which damage them, UV being one example, and sometimes the damage
to the cell affects those mentioned mechanisms and disables them. This may
lead the cell to divide uncontrollably and become cancerous. Another difference
between normal cells and cancerous ones, is that normal cells are capable of
repairing most of the mutations happening on their DNA as a result of either
external stress or during cell division, whereas those processes themselves are
often damaged in a cancerous cell. As a result, the rate of mutation in cancerous
cells is higher by a few orders of magnitude compared to a normal healthy
cell. The high rate of cell division in combination with hypermutation, makes
cancerous cells very adaptive to their environment, as well as against the drugs
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attacking them.
Cancer treatments are methods and substances which ideally target only

the cancerous cells and kill them, or stop their growth and cell division. In a
sense, they are poison, but ideally only to cancer. However, cancer cells are
derived from our own cells, and therefore it is not always easy to distinguish
them from normal cells. The bigger the difference between the cancer cells and
our normal healthy cells, the easier it is to target them; but unfortunately not
all cancer subtypes are easily distinguishable from healthy cells for the purpose
of treatment.

The efforts in this thesis are divided into two sections. In the first part, i.e.
Chapter 3, we tackle some of the issues faced by clinicians while analyzing flow
cytometry data. A flow cytometer, i.e. the instrument producing the data, is
capable of measuring a dozen or so different characteristics of individual cells in
a given sample, which in our case are all from biopsies or blood samples taken
from patients. This type of single cell measurement data enables us to detect
and sort different cell populations and cell types within a single given sample.
Chapter 3 explains the methods we designed and implemented to analyze flow
cytometry to accomplish the following goals:

• Automated analysis of the data: manual analysis of flow cytometry data
involves looking at 2D projections of the data along two selected features
at a time, and potentially filtering a part of the data before moving on
to a different projection. This way at each step a sub-population, i.e. a
subset of the cells, is selected for further analysis. Presence or absence of
a cell population, or its predominance compared to other cell populations,
can be indicative of a certain type of cancer. The methods we developed
can automate this process and help clinicians to quickly find a certain cell
population within a given sample.

• Novel cell population discovery: our method analyzes the relationship be-
tween all the cell populations it finds with the target cancer subtypes, and
reports the cell populations which seem to be informative or predictive in
differentiating two subtypes. Discovering new predictive cell populations
can help the diagnosis process, as well as potentially a better choice of
treatment for each patient.

• Quality assurance: in clinics, oncologists sometimes go through a QA pro-
cess in which they randomly look at a limited number of past patients and
retrospectively check the quality of the original diagnosis. However, due
to limited available resources, they can only go through a small number
of cases. We develop a method to report cases where there is a higher
probability that the diagnosis could be improved, hoping that retrospec-
tive investigation of those cases could generally improve the diagnostic
process.
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• Visualization: one important aspect of analyzing cell populations is that
they are related to one another, in the sense that some cell populations are
a subset of others. When a tool reports some cell populations as important
or relevant, it is also essential to report and visualize which characteristics
of those cell groups are more important in defining and detecting them, so
that they can also be best detected with the manual process. Another rea-
son to visualize the data the way we do, is that it helps a cancer researcher
to better understand why or how those cell populations are relevant.

• Enabling similar tests using cheaper machines: one important benefit of
visualizing the cell populations the way we do, is that it shows alternative
ways that a cell population can be isolated from the other cells using fewer
measurements per cell. As a result, the same cell population can then be
filtered using a smaller number or a cheaper variation of chemical reagents
used in flow cytometry. Consequently, a pathologist in a place where there
is harder or no access to more expensive cytometers and reagents, can
benefit from the findings of a research institute with significantly more
budget at their disposal.

The second part of the thesis, described in Chapter 4, focuses on some types
of data that are not yet available as a routine test in clinics, but are essential
to our deeper understanding of cancer. These data are measurements from the
whole human genome, and our focus is on gene expression profiles and a mod-
ification on the DNA, called methylation, i.e. a methyl component is attached
a Cytosine(C) or an Adenine(A) base on the DNA. A gene expression profile
measures the activity of all 22k+ genes in a given sample, and a usual DNA
methylation profile measures the methylation level of about 450k sites on hu-
man DNA. DNA methylation levels can change due to environmental factors
and during cell differentiation and aging; there is also evidence that they are
sometimes heritable. These data, as well as others such as DNA, RNA, and pro-
tein sequence data have been increasingly used by biologists and computational
biologists to better understand cell biology in many fields, including cancer re-
search. These data and methods have been so essential to our understanding
of cancer that the classification of some cancer types now depend on them. In
some cases, molecular and chemical analysis of cancer has shown us that two
different classes of cancer are indeed the same disease, only in different stages.
Lymphoma and leukemia are two good examples which used to be considered
two different cancers, and now together they form the lymphoid neoplasms group,
since on the molecular level they have a lot in common.

Although there have been magnificent advancements in the field from the
computational perspective, the computational problems are still considered very
hard problems. The curse of dimensionality on top of the low number of samples
compared to the number of dimensions in the data all result in a hard computa-
tional problem as explained in detail in Chapter 2. Also, the fact that the data
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is often affected by noise and batch effects doesn’t help the case either, covered
in more detail in Chapter 4. Another challenging factor is that cancer, and even
a single cancer tumor, is heterogeneous and different cases show very different
genetic profiles. Historically this has lead to further classification of cancer and,
at times changing the classification and merging some classes altogether as men-
tioned above. As a result, ideally when a patient is prescribed a treatment, that
treatment is fine tuned and adapted as much as possible to tackle the patient’s
specific disease. This fine tuning, which covers the spectrum from choosing the
best combination of drugs to designing and manufacturing a drug specific to
that patient and that patient alone, is called personalized medicine. With a fo-
cus on adaptive and interpretable models, Chapter 4 addresses the following
challenges:

• Per-patient significant gene/genome region discovery: the models we have
developed are adaptive, i.e. for a given data from a single patient, the
model can give some information about the potential underlying cause of
the disease for that specific patient. The provided information would give
clues to practitioners to better find a treatment for the patient.

• Per-disease significant gene/genome region discovery: in order to help cancer
researchers studying cancer and cancer treatments, we design computa-
tional methods capable of reporting a list of promising genes that are
influential in determining the cancer subtypes. The reported set of genes
can then be a starting point for cell biologists to increase the probability
of finding a new treatment.

• Interpretability, per-patient, per-disease: our models investigate genes in
networks and take their relationships between one another which can be
seen from the data into account. Interpreting and visualizing the models
to show the significance of each gene as well as their relationships helps
pathologists and cancer cell biologists to better trust the methods and
understand how the model works.

In the following chapters, some of the basics required to follow the later
sections, including some related concepts in machine learning, graph theory,
and biology are covered in Chapter 2. In Chapter 3 we focus on flow cytometry
data and explain the design and implementation of a few pieces which together
make an end to end pipeline to analyze such data, and apply that to some specific
lymphoma subtypes. Then we continue in Chapter 4 with the analysis of mostly
DNA methylation data and design some adaptable and interpretable models
with an eye towards personalized medicine.



2
Background

This chapter covers the very basics of some of the concepts required to follow the
work in later chapters. These concepts are divided into three sections: Section 2.1
machine learning, Section 2.2 graph theory, and Section 2.3 cell biology. This
chapter by far does not exhaustively covers explained concepts, and the reader
is strongly recommended to study the subjects using the references and text
books cited throughout the chapter. In particular, The Elements of Statistical
Learning [63], Pattern Recognition and Machine Learning [17], and Introduction
to Graph Theory [155] cover machine learning and graph theory respectively;
and the biology and cancer background is best covered by Molecular Biology of
the Cell [7] and Postgraduate Haematology [65].

2.1 Machine Learning

Machine learning techniques are used to extract information from data, or make
some predictions about the data. We can recognize two groups of learning prob-
lems: supervised and unsupervised learning. Unsupervised learning, deals with
data sets which are in the form of a set of data points, and no desired output is
given. Clustering is the most studied unsupervised learning problem which is
the task of grouping similar data together in certain clusters [63, Ch. 14] [97,
Ch. 1].

Supervised learning deals with data sets that are in the form of a set of input
and outputs, and the task at hand is to predict the output using the input [63, Ch.
2], [97, Ch. 1]. Classification and regression are supervised learning problems.

Classification is the problem of putting data into different classes [63, Ch. 1].
During the training phase, the matrix Xsamples× f eatures is given as the input and

7



8 CHAPTER 2. BACKGROUND

ysamples as the desired output. The vector y has values from a discrete set. If the
set has only two distinct values, the problem is called a binary classification. On
the other hand, if the output is a continues variable, then it is called a regression
problem [63, Ch. 1].

Logistic regression [152, 34], Support Vector Machines (SVM) [148, 20], and
decision trees [63, Ch. 9] are examples of classification methods, and Linear re-
gression [63, Ch. 3], Gaussian processes [119], and kernel based regression [128,
Ch. 9] are some well established regression methods.

2.1.1 Empirical Risk Minimization

As mentioned above, supervised learning deals with predicting an output yi ∈ Y
given an input x i ∈ X . The task is to find a function f (.) which best predicts
the output, given any possible input. Because in practice we have access to a
limited given data set, the best we can do is to find a function that best predicts
the output given any input in the data set.

We can formulate finding the best function f (.), as finding a function that
has the minimum loss over the data. Therefore we need a loss function defined
as L(x , y, f (x)), with x being the input, y the desired output, and f (x) the
predicted output. The loss value has to be in [0,∞), and L(x , y, y) = 0 [128,
p. 62]. The empirical risk function is then defined as [128, p. 67]:

Remp[ f ] :=
1
m

m
∑

i=1

L(x i , yi , f (x i)) (2.1)

Now let F be the function space available to choose f (.) from it. The best
function is one which minimizes the risk function [128, p. 67]:

argmin
f ∈F

Remp[ f ] = arg min
f ∈F

1
m

m
∑

i=1

L(x i , yi , f (x i)) (2.2)

But there is a problem with the above formulation if the function space F
is rich enough to fit to the given data too well. Imagine a function that returns
yi for each x i in the training set, and 0 otherwise. This function clearly has
a minimum loss of 0, but does not generalize on unseen data. This is called
overfitting in machine learning. One way to fix this issue is to regularize the
loss function in some way, and give preference to functions f (.) with lower com-
plexity, or smoother functions. This is referred to as regularized empirical risk
minimization [128, Ch. 4.1], or structural risk minimization [147, Ch. 4.1]. As-
sume Ω( f ) is a penalty assigned to function f (.); then the regularized empirical
risk is formulated as:
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Remp[ f ] :=
1
m

m
∑

i=1

L(x i , yi , f (x i)) +λΩ( f ) (2.3)

Parameter λ is the regularization term and we estimate it, among other
model parameters, using cross validation.

For instance, in the case of a linear model, assume a model minimizes a
loss function E(X , Y ), where X is the input matrix and Y is the output vector or
matrix, defined as:

E(X , Y ) =‖ Y − Xβ ‖2 (2.4)

The optimization algorithm finds a β that minimizes the loss function in
Formula 2.4. As explained above, having enough number of features, the opti-
mization algorithm might find a β that gives a perfect loss, i.e. 0. But in noisy
environments the resulting β is probably not the real β of the underlying model
producing the data. The vector β might also have some extreme values that are
likely not desired. Penalizing the size of β as shown in Formula 2.6 will address
the abovementioned concern. The size of a vector in this context is represented
by its l1 or l2 norm as defined in Formula 2.5. The l1-regularization is an appro-
priate tool when the intention is to reduce the number of features a model takes
into account for prediction as well as its complexity [105], since it favors more
absolute zeros in the β vector, and hence is also used as a feature selection tool.

‖ β ‖p:=

� n
∑

i=1

| βi |p
�1/p

(2.5)

E(X , Y ) +α ‖ β ‖2=‖ Y − Xβ ‖2 +α ‖ β ‖2
or

E(X , Y ) +α ‖ β ‖1=‖ Y − Xβ ‖2 +α ‖ β ‖1 (2.6)

2.1.2 Cross Validation

Cross validation is a technique used in method selection and performance es-
timation. In cross validation we divide the given training data into k folds, set
aside one of those k folds, train the model on k−1 remaining sections, and test
the performance of the model on the set aside part of the data. Then repeat this
process for all k folds to assess the overall performance of the method. A special
case of k-fold cross validation is leave-one-out in which k = n, the number of
samples. Leave-one-out cross validation is computationally intensive for rela-
tively large number of samples. A popular k is 10, which is shown to have lower
variance than leave-one-out method, and it has a low bias [63, Ch. 7].
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There are also some variations to the simple k-fold cross validation scheme.
One way is to repeat the k-fold system multiple times with a random shuffle
of the data before each k-fold test, and calculate the estimated error using the
repeated test. Another variation is to randomly partition the data into train and
test partitions several times and use these sets to estimate the performance of
the method.

The latter two variations are shown to give better estimates of the true error
of the method compared to leave one out and a single 10-fold scheme [75, 39].
Because repeating a k-fold scheme can be computationally intensive depending
on the method being tested, we sometimes use a repeated random partitioning
of the data in our work. In some even more computationally intensive cases, we
have limited our analysis to a single k-fold scheme to select methods.

2.1.3 Feature Selection

Feature selection is the task of selecting features most relevant and predictive to
the problem at hand from the given set of features. It becomes particularly a hard
task when the number of features in the data is of a higher magnitude compared
to the number of given samples. Table 2.1 shows an example number of samples
vs. number of features in a typical data in this study. One of the challenges
when dealing with such a large number of features is that if there are enough
number of features, even if they have a probability distribution independent of
the outcome, some of them might falsely seem correlated with the outcome due
to the relatively small sample size. Another obstacle comes from the fact that
our features are not independent and they function in complex networks. As a
result, features should be considered in groups, which is a combinatorial and
intractable problem.

Sample Data
Sample Count Gene Expression Data

Feature Count
450K Methylation Chip Data
Feature Count

500 ≈ 20,000 ≈ 450,000

Table 2.1: An example number of samples and features in our usual data

We have used correlation [108], mutual information [130], and l1-regularized
methods [105] as techniques to select features.

2.1.4 Support Vector Machines

Support vector machines (SVM) can be used both for regression and classifica-
tion tasks [20, 134]. As a binary classifier, SVM finds an optimal hyperplane to
separate data points in the feature space by maximizing the hyperplane’s margin
to the nearest points on both sides of it. Therefore given a test data point, its
side with regard to the hyperplane determines its class. As a regressor, a support
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vector regressor (SVR) fits a tube with radius ε to the data with an ε-insensitive
loss function [147] which penalizes for the data points outside the tube. In this
work we use SVMs as a binary classifier.

Formally speaking, given a data-set D of n data points:

D = (xi , yi)|xi ∈ Rp, yi ∈ −1,1n
i=1 (2.7)

where xi is a real vector of length p, and yi is either 1 or−1. A p-dimensional
hyperplane, characterized by its normal vector w and its intercept b, is the set
of points x that fit in Formula 2.8.

w.x− b = 0 (2.8)

Now consider two hyperplanes on both sides of the abovementioned hyper-
plane as formulated bellow:

w.x− b = 1

w.x− b = −1 (2.9)

The distance between each of these hyperplanes and the one in the middle
is 1
‖w‖ . Therefore the distance between the two of them is 2

‖w‖ . For now we
assume the data is linearly separable in its feature space, i.e. there exists a
hyperplane that perfectly separates the data into two classes without error. Such
a hyperplane satisfies the following constraint:

yi(w.xi − b)≥ 1 for all 1≤ i ≤ n (2.10)

An optimal hyperplane is one such that it maximizes the margin; hence
formulated as Formula 2.11. An illustration of the optimal solution is presented
in Fig. 2.1.

arg max
(w,b)

1
‖w‖2

s.t.

yi(w.xi − b)≥ 1 for all 1≤ i ≤ n (2.11)

However, for an easier optimization and mathematical convenience, the
above optimization problem is usually formulated as Formula 2.12 which has
the same solution as w and b [147, Ch. 5], [128, Ch. 7].
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Figure 2.1: Illustration of the optimal hyperplane in a support vector machine
model, for a 2-dimensional data.

arg min
(w,b)

1
2
‖w‖22

s.t.

yi(w.xi − b)≥ 1 for all 1≤ i ≤ n (2.12)

which can be written as Formula 2.13 after introducing Karush-Kuhn-Tucker
(KKT) multipliers [78] [147, Ch. 5].

argmin
w,b

max
α

¨

1
2
‖w‖22 −

n
∑

i=1

αi[yi(w · xi − b)− 1]

«

s.t.

αi ≥ 0 for 1≤ i ≤ n

(2.13)

Multipliers αi will be 0 for each xi that does not lie on either of the marginal
hyperplanes. For example in Figure 2.1, αi is non-zero for only three of the data
points; the ones that are exactly on either of the marginal lines. The correspond-
ing xi for which αi is non-zero are called support vectors.

It can be shown that Formula 2.14 is a dual of the optimization problem
defined in Formula 2.13 [128, p. 14] [147, Ch. 5].
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argmax
α

(

n
∑

i=1

αi −
1
2

∑

i, j

αiα j yi y jx
T
i x j

)

s.t.

αi ≥ 0 for 1≤ i ≤ n
n
∑

i=1

αi yi = 0 (2.14)

Now assume the following notations and definitions:

φ(x) := x

〈xi ,x j〉 := xT
i x j

k(xi ,x j) := 〈φ(xi),φ(x j)〉 (2.15)

Putting function k in Formula 2.14, the SVM’s optimization problem can be
written as:

arg max
α

(

n
∑

i=1

αi −
1
2

∑

i, j

αiα j yi y jk(xi ,x j)

)

s.t.

αi ≥ 0 for 1≤ i ≤ n
n
∑

i=1

αi yi = 0 (2.16)

The identity function used in Formula 2.15 is not the only option. We can
transform the data into another feature space using a different φ(.), and then
use dot-product in that space. This is useful for cases that the data is not linearly
separable in its original feature space, but linearly separable using a non-linear
transformation.

Using Mercer’s theorem [91] and its corollary Mercer’s condition, it can be
shown that any function k satisfying the following condition can be used as a
kernel in Formula 2.16 [128, Ch. 2.2].

∀D,∀ci , c j ∈ R :
n
∑

i=1

n
∑

j=1

k(xi ,x j)cic j ≥ 0 (2.17)

This means to solve the SVM optimization, we only need the kernel matrix
K, which has k(xi ,x j) as its values. For many kernels, this matrix can be cal-
culated directly without transforming the data into the alternate representing
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feature space. This also means that we can use kernels which have an infinite
dimensional representing feature space. This technique is sometimes called the
kernel trick. Arguably, other than dot-product, the most famous kernel function
k satisfying the above condition is the Gaussian kernel, also known as the radial
basis function (RBF) kernel [128, Ch. 2]:

k(xi,xj) = exp

�

−
||xi − xj||2

2σ2

�

σ ∈ R (2.18)

This is an example of a kernel with an infinite dimensional representing
kernel space [135]. Many implementations use a different formulation which
uses a different parametrization, using γ= 1

2σ2 :

k(xi,xj) = exp
�

−γ||xi − xj||2
�

γ ∈ R+ (2.19)

Regularization of Support Vector Machines

In real-world applications data-sets are often not linearly separable, i.e. no hy-
perplane can perfectly separate the two classes of the data-set. To handle such
cases, Formula 2.12 can be modified as Formula 2.20 with the introduction of
ξi called slack variables [32],[128, Ch. 7.5]. This allows some of the data points
to be within the margin area or to be on the wrong side of the hyperplane. This
formulation is also referred to as a soft margin hyperplane.

arg min
(w,b)

1
2
‖w‖22 + C

n
∑

i=1

ξi

s.t.

yi(w.xi − b)≥ 1− ξi for all 1≤ i ≤ n (2.20)

A formula similar to Formula 2.3 can be derived from Formula 2.20 as shown
in Formula 2.21 [63, Ch. 12] [62].

arg min
(w,b)

n
∑

i=1

[1− yi(wx i − b)] +
λ

2
‖w‖22 (2.21)

Note that parameter C in Formula 2.20 corresponds to 1
λ in Formula 2.21.

The corresponding penalty function of Formula 2.3 in Formula 2.21 is the
l2-norm of the vector w. Similar to methods such as lasso [63, Ch. 3] this
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penalty function can be replaced with the l1-norm of the vector w shown in
Formula 2.22 [164].

arg min
(w,b)

n
∑

i=1

[1− yi(wx i − b)] +
λ

2
‖w‖21 (2.22)

It is important to note that the algorithm to solve the above optimization
problem does not involve the kernel trick [164], which means we cannot use
similarity measures that require transforming data into spaces we cannot com-
pute, such as the RBF kernel. In order to use the l1-norm regularized SVM with
such kernels, an approximation of the feature space can be used to transform the
data first, and then apply the above optimization problem on the transformed
data [117].

2.1.5 Gaussian Processes

Given a regression or a classification problem, one approach is to find the most
likely function among the functions we consider reasonable for our problem.
For instance, a linear regression assumes the underlying function explaining
the data to be linear, and then tries to find one which is most probable to be
the real underlying function for the given data. Another example are support
vector machines for a classification problem, which try to find the best separating
hyperplane, i.e. a linear function, and assume that function explains the data
the best.

An alternative approach is to consider all available functions at the same
time, and assign a probability to each function according to how well they ex-
plain the data. To illustrate the idea better, assume we have a family of functions
as our prior (Figure 2.2(a)), and then we observe a few values from the under-
lying function. If the data is noiseless, only those functions passing all of our
observations can be considered (Figure 2.2(b)). Considering all those functions,
we can calculate a posterior mean and variance for each unobserved value as
shown in Figure 2.2(c) [119].

Gaussian processes are particularly useful if not only the mean of the predic-
tion is of interest, but also an estimate of the variance of the posterior probability
distribution is important, which is the case for us as explained in section 4.2.

To formulate the above intuition, consider a regression problem, with some
observed inputs x i and corresponding outputs yi. The goal is usually to find
the best function f from a given family of functions such as linear functions,
for which yi = f (x i). Alternatively, we could infer a distribution over functions
given the data, i.e. p( f |X,y), and give predictions for a new input x∗ as shown
in formula 2.23 [97].

2Image by Cdipaolo96 (https://en.wikipedia.org/wiki/Gaussian_process) licensed
under CC BY-SA 4.0.
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Figure 2.2: (a) Samples from prior family of functions, (b) samples from posterior
family of functions, and (c) predicted mean and variance of the posterior2.

p(y∗|x∗,X,y) =

∫

p(y∗| f ,x∗)p( f |X,y)d f (2.23)

Fortunately, it turns out given a finite input dataset, predicting the mean and
variance of the output given a new input can be done without having to compute
the above integral. To explain, here we follow the path in Pattern Recognition
and Machine Learning, Bishop [17]. Similar to SVMs, consider φ(x) to be the
transformation function for input x, and the following linear model:

y(x) =wTφ(x) (2.24)

Now assume a Gaussian distribution over the weight vector w as Formula 2.25,
in which α is the inverse variance of the distribution.

p(w) =N (w|0,α−1I) (2.25)

Any sample taken from the above distribution represents a function in For-
mula 2.24, hence the above distribution defines a distribution over linear func-
tions. Now we are interested in evaluating the function on training data x{1...N},
i.e. function values y(x{1...N}) denoted by the vector y, written as:

y=Φw

Φnk =φk(xn) (2.26)

The probability distribution of y is Gaussian since it is a linear combination
of elements of w, which are Gaussian distributed. Hence we have:
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E[y] = ΦE[w] = 0

cov[y] = E[yyT ] = ΦE[wwT ]ΦT = α−1ΦΦT = K

Kmn = k(xn,xm) = α
−1φ(xn)

Tφ(xm) (2.27)

Similar to SVMs, k(x,x′) is called the kernel function. In general, a Gaussian
process is a distribution over functions y(x) such that the join distribution of
y(x1...N ) is Gaussian for any input set x1...N . Since the joint distribution can
be specified using the second order statistics, i.e. the mean and the covariance
of the distribution, a Gaussian process is completely specified given the two
statistics. In many applications we do not have a prior knowledge about the
mean of y(x) and by symmetry we assume it to be 0. Therefore specification of
the covariance function would be the only requirement, which itself is given by
the kernel function:

E[y(xn)y(xm)] = k(xn,xm) (2.28)

The kernel function defined in Formula 2.27 specifies a Gaussian process
defined by a linear regression. Two other commonly used kernel functions are
Gaussian kernel defined in Formula 2.18 and exponential kernels defined as:

k(xn,xm) = ex p(−θ |x − x ′|) (2.29)

Now given a new test data xN+1, we calculate the kernel matrix and partition
it as shown in Formula 2.30.

KN+1 =

�

KN k
kT c

�

(2.30)

Then, as shown in Bishop, 2006 [17, Ch. 6.4], the predicted mean and vari-
ance for the input would be:

m(xN+1) = kT K−1
N y

σ2(xN+1) = c − kT K−1
N k (2.31)

2.1.6 Boosting and Ensemble Methods

For a given prediction problem the idea of boosting is to find an optimal com-
bination of classifiers, also called “weak learners”, in such a way that a com-
bination of their outputs improves the prediction accuracy. This combination
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can be majority voting, average, or a weighted average of the outputs of the
weak learners [36]. There are many methods of finding the optimal combina-
tion of such weak learners, two of which are stochastic gradient boosting [52]
and AdaBoost [51]. Stochastic gradient boosting tries to estimate the gradients
of the loss function and train each individual weak learner in a way that best
improves the loss function. AdaBoost tries to identify samples among given data
samples that are harder to classify, and gives them more weight in the process
of training individual weak learners. One way of improving AdaBoost is to take
into account the confidences of predictions given by weak learners if possible
and use estimated confidences in the voting process [127].

2.2 Shortest Path Algortihms for Graphs

A graph G is a set of vertices (also called nodes) V , and a set of edges E =
�

(vi , v j)|vi , v j ∈ V
	

that connect vertices in V . A graph can be directed or undi-
rected. In directed graphs, edges have direction, i.e. edge (s, t) is different than
the edge (t, s). In other words, the following list shows the possible sets of edges
regarding vertices s and t in a directed graph:

E = {}
E = {(s, t)}
E = {(t, s)}
E = {(s, t), (t, s)} (2.32)

In an undirected graph however, edges (s, t) and (t, s) are identical, and can
in fact be represented as a set {s, t} instead of an ordered pair.

Graphs can also be weighted or not. If a graph G is weighted, then there is a
weight assigned to each edge of the graph. We use ws,t to note the weight of the
edge (s, t). In undirected graphs, ws,t is always the same as wt,s. Sometimes the
weight of an edge is referred to as the length of an edge and noted as ls,t depend-
ing on the context in the literature. A sequence of n nodes (v1, v2, . . . , vn) ∈ V n

defines a path p of length n if for every consecutive nodes vi and vi+1, (vi , vi+1)
is an edge in the graph. The weight or the length of a given path is the sum
over the corresponding weights/lengths of its edges. An undirected graph G is
connected if there is at least one path between every given two vertices on the
graph.

2.2.1 The Shortest Path Problem

The shortest path problem is to find a path between two vertices s and t such that
the total weight of the path is the minimum among all possible paths between
the two nodes. In unweighted graphs, the weight of each edge is considered to
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be 1. Figure 2.3 highlights the shortest path between vertices A and F on the
given weighted directed graph.

Figure 2.3: A given weighted directed graph and the highlighted shortest path
between vertices A and F .

Some prominent algorithms to solve the shortest path problem are Dijk-
stra’s [37], Bellman-Ford [11], and Floyd-Warshall [47] algorithms. Dijkstra’s
algorithm applies to the single-source shortest path problem on graphs with non-
negative weight values with time complexity O(|E|+ |V | log |V |) [50], whereas
Bellman-Ford algorithm works on graphs with also negative weights having time
complexity O(|V ||E|). Floyd-Warshall algorithm, on the other hand, solves the
all pairs shortest path problem, i.e. it finds shortest paths between all pairs of
vertices, on graphs with negative and non-negative weight values and its time
complexity is O(|V |3). The big O notation defines an asymptotically upper bound
of a function up to a constant factor. Formula 2.33 formally defines the notation
[31].

f (x) = O(g(x)) ⇐⇒ ∃k > 0∃n0∀n> n0| f (n)| ≤ k|g(n)| (2.33)

2.2.2 The k Shortest Paths Problem

The k shortest paths problem is to find the k paths from s to t with minimum
weight among all distinct possible paths from s to t. Whether or not loops in the
paths are allowed results in two different definitions of this problem.For the case
when the goal is to find k best shortest paths from a single source to all other
nodes, Jin Y. Yen published an algorithm of the time complexity O(k|V |(|E| +
|V | log |V |)) in 1971 for the loopless setting which still has the best available
time complexity [160]. It is possible to achieve better worst case time complexity
if we allow loops in the paths. In 1998 Eppstein came up with an algorithm with
O(|E| + |V | log |V | + |V |k) time complexity, and O(|E| + |V | log |V | + k) if the
problem is reduced to the single source single destination case [43]. There has
been improvements to Eppstein’s algorithm, but the worst case time complexity
has not been improved.

In our case, the graph is a directed acyclic graph (DAG), i.e. there are no
directed loops in the graph. Therefore despite we require paths to be loopless,
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Eppstein’s algorithm is sufficient and gives desirable paths. Intuitively, the algo-
rithm starts with the shortest path between s and t, and in each iteration it finds
the next shortest path by modifying a part of the previous path. This is achieved
by storing a tree of all shortest paths to the destination t, then calculating the
cost of jumping from one shortest path to another one using edges that are not
a part of that tree (called sidetracks), and at the end picking the sidetrack edges
with the least costs. Here we give an overview of the algorithm and postpone
our use case in detail to Chapter 3.

First we need to introduce some concepts and notations, and for the sake
of easier reference to the original work, we keep the notation as the work done
by Eppstein. Assume the problem is to find the k shortest paths from s to t on a
connected directed graph G. Then consider the following:

• T : a single destination shortest path tree with destination t, i.e. T includes
all vertices of G and a shortest path from each node to t.

• d(vi , v j): the weight of a shortest path from vi to v j , or in other words the
distance between the two vertices.

• head(e), tail(e): if e is (vi , v j), head and tail of e are vi and v j respectively.

• l(e): weight or length of edge e.

• δ(e): intuitively the cost of including e in a shortest path to t, defined as:

δ(e) = l(e) + d(head(e), t)− d(tail(e), t) (2.34)

If the edge e is not a part of T , it is a sidetrack and the cost of including it in
a path to t is non-negative [43, Lemma 1].

A key point to understanding the algorithm is the way paths are represented.
A path p from s to t can be represented by the list of sidetrack edges it includes.
If the path p includes only one sidetrack edge (vi , v j), it means the path is the
shortest path from s to vi , then the edge (vi , v j), and then the shortest path from
v j to t. The set sidet racks(p) includes all edges in p that are not in the shortest
path tree T , i.e. they are in G − T . The graph G − T is defined as the graph G
excluding edges that are present in the graph T .

To calculate the length of the path p we have [43, Lemma 2]:

l(p) = d(s, t) +
∑

e∈sidet racks(p)

δ(e) (2.35)

Given a path p, let S = sidet racks(p) be the sequence of edges of p that
are in G − T . We also define path(S) as the function calculating the path p
from a given S. Next, we define pre f i x(S) to be the sequence of edges in S
except the last one. Therefore pre f i x(S) can define a path as pre f path(p) :=
path(pre f i x(S)).
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Next we have: if the path p is from s to t in G and has a nonempty sidet racks(p),
then l(p)≥ l(pre f path(p)) [43, Lemma 3]. Please note that sidet racks(p) has
to be nonempty or else pre f i x(S) and hence pre f path(p) is undefined. As a
corollary of Lemma 2 and 3 we can construct a natural tree of paths which is
also a heap style tree. It is a tree in a way that each node is a path p, and it
has all possible paths p′ for which pre f path(p′) = path(p). It is also a heap
style tree in a way that the length of a parent node is less than or equal to all
its children.

To overcome this challenge each path p, roughly speaking, is replaced by a
heap of the edges that have tails on the path from head(lasted ge(p)) to t and
ordered by δ(e). Then using two intermediate directed acyclic graphs D(G) [43,
Lemma 4] and P(G) [43, Lemma 5], a heap H(G) [43, Lemma 6] is constructed
with the following properties:

• H(G) is a 4-heap;

• There is a bijection mapping between nodes in H(G) and s− t paths in G;

• The length of an s− t path in G is d(s, t) plus the weight of the correspond-
ing node in H(G).

Finding k smallest nodes in a min-heap costs O(k log k), which can be further
improved by Frederickson’s technique [49], and hence the time complexity of
the Eppstein’s algorithm [43, Lemma 7].

Although Eppstein’s algorithm has the best know worst-case time complexity,
it can be shown that in practice we can achieve faster running times by construct-
ing some parts of the algorithm’s intermediate structures as they’re needed. In
2003 Víctor M. Jiménez and Andrés Marzal published the modified version of
the algorithm and a more detailed explanation of Eppstein’s algorithm [71].

2.3 Cell Biology

In order to understand cancer, we need some basics of cellular molecular bi-
ology, most importantly the central dogma of molecular biology which shows
how information is transferred and transformed inside cells. The central dogma
deals with three types of molecules: Deoxyribonucleic acid (DNA), Ribonucleic
acid (RNA), and protein. The flow of information between these three types of
molecules is depicted in Figure 2.4.

Although most of the explanations in this section apply to all cellular organ-
isms, for the sake of simplicity we focus on multicellular eukariotic organisms,
i.e. we assume cells have a nucleus and organisms have organs. In this section
we cover a minimal background required to explain and understand the basics
of the biology of cancer. For an extensive explanation of these topics refer to
"Molecular Biology of the Cell, alberts, et al."[7].
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Figure 2.4: Flow of information in biological cells. Blue arrows show the usual
flow, and the red arrows show the flow in some special cases.

2.3.1 Deoxyribonucleic acid (DNA)

DNA molecules are polymers, mostly made of four different unit types called
nucleotides: pyrimidines (thymine (T), cytosine (C)) and purines (adenine (A)
and guanine (G)). DNA is usually in the form of a double stranded helix, and the
two strands complement each other, i.e. T complements A and C complements
G (Figure 2.5).

Figure 2.5: DNA double helix and base pairs3.

DNA is the genetic code that is carried on from cell to cell, and generation

3Image by Zephyris (https://en.wikipedia.org/wiki/DNA) licensed under CC BY-SA 3.0
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to generation. All the cells in an organism have the same genetic material. In
computational biology we usually think of DNAs as long strings with T, C, G, A
as characters. But it is important to remember that for each given string, there
is a complement attached to it.

2.3.2 Ribonucleic acid (RNA)

RNA molecules are polymers like DNA, but they carry uracil (U) instead of
thymine (T). They are much shorted polymers compared to usual DNAs. There
are different types of RNAs with different functions and messenger RNAs (mRNA)
are the ones we are interested in, in the context of the central dogma. We can
think of RNAs as strings of U, C, G, A [7, Ch. 6].

mRNAs are constructed in a process called transcription by reading a part of
a strand of the DNA and constructing its complement nucleotide by nucleotide,
except whenever whenever a thymine (T) is required, instead a uracil (U) is used.
This process is shown by a dark blue arrow from DNA to RNA in Figure 2.4 [7,
Ch. 6]. The term gene expression refers to the rate at which genes are transcribed
and mRNAs are synthesized from them. In other terms, a more active gene has
a higher gene expression level.

2.3.3 Protein

Proteins are polymers made of amino acids. There are 20 different amino acids
in humans. Proteins form and perform most of structures and functions in cells.
Enzymes and cell membrane, a.k.a. cytoskeleton [7, Ch. 16], are two examples
of molecules and structures mostly made of proteins.

A process called translation, translates mRNA strands into protein strands.
In this process, a ribosome complex gets attached to the start codon near the
beginning of the mRNA (usually AUG), and then the mRNA strand is decoded
codon by codon by tRNAs. In the decoding process, the mRNA molecule is
processed three nucleotides at a time, each 3 encoding and representing a specific
amino acid. A tRNA is a small RNA molecule which can attach to one codon
on one side, and has an amino acid attached to its the other side. This process
is continued until a stop codon (UAA, UAG, or UGA) is reached. Figure 2.6
illustrates a simplified version of this process. Translation is shown as a dark
blue arrow from RNA to protein in Figure 2.4.

2.3.4 Pathways

Cellular processes involve collaboration of several molecules (RNAs and proteins
included) in the form of a long chain of reactions. A chain of reactions with a
specific goal is called a pathway. Among other things, pathways can result in
production of a molecule, a change in the cell, activating or deactivating a gene,
or to make the cell move. A graphical representation of a pathway has molecules
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Figure 2.6: A ribosome translating an mRNA with the help of tRNAs.

as nodes and reactions and dependencies as edges. Figure 2.7 shows a graphical
representation of the apoptosis pathway which results in programmed cell death,
whose significance is explained shortly [19, 93, 80, 158, 106]. As you can see,
the same proteins and RNAs are used in different reactions, and reactions are
interdependent, i.e. the product of a reaction is a prerequisite of another reaction.
It is also important to note that pathways are not mutually exclusive. The same
proteins and other molecules may be used in several pathways.

Figure 2.7: Apoptosis (programmed cell death) pathway in homo sapiens.4

4http://www.wikipathways.org/index.php/Pathway:WP254
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2.3.5 Cell Reproduction

A new cell is created only when another cell duplicates, which itself is the result
of a delicately ordered set of events and stages. The set of events ending with
a cell division is called the cell cycle [7, Ch. 17]. Figure 2.8 illustrates the cell
cycle, giving each phase approximately the time it takes the phase to complete
in proportion to the whole cycle.

Figure 2.8: Cell cycle: I: interphase, M: mitosis, G0: resting, G1: gap 1, S: DNA
Synthesis, G2: gap 2.6

During the S phase (S for DNA Synthesis) a complete copy of the cell’s DNA is
produced. During the M phase, first the nucleus is devided into two, i.e. mitosis,
then the whole cell divides into two cells, i.e. cytokinesis). For a cell which has an
approximately a 24 hour cycle, the M phase takes only one hour. G1 and G2 are
gaps between the S and the M phase. During the G2 phase, some processes make
sure that the DNA is replicated properly and completely, and the cell is prepared
to enter the M phase. During G1 phase, the cell grows, and it only enters the
S phase if the environment and conditions are favourable. G1 may take a long
time, and it can also enter the G0 state, or resting state. A cell may stay in G0 for
years or even indefinitely until cell death. Human nerve cells, for instance, enter
this state early in the body’s development and they never duplicate. The switch
between different phases are controlled by the cell’s cell cycle control system
which takes into account the cell’s environment using the signals received from
the surroundings, and the internal cell conditions using some feedbacks received
from the cell’s development in different stages.

6Image by Zephyris (https://en.wikipedia.org/wiki/DNA) licensed under CC BY-SA 3.0
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2.3.6 Cell Death

Programmed cell death is as important as cell division and reproduction to a
healthy tissue. An organism or a tissue can only maintain its size if cells die with
the same rate as they divide, otherwise the tissue will keep growing uncontrol-
lably. It is also critical for the cells to die in an orchestrated way during fetus
development for limbs and tissues to take their desired form. A third case for
programmed cell death is when cells are damaged or infected, to make sure they
are removed before threatening the organism’s health [7, Ch. 18].

In most cases this programmed cell death occurs from within the cell via
apoptosis, i.e. through a set of processes and pathways which result in the cell
to shrink and die and then to be eaten by other responsible cells. If the cell is
large, it will be dismantled into membrane enclosed pieces. The membrane is
also altered to give other cells the signal to eat them quickly. Apoptosis ensures
that the contents of the cell are not spilled over other cells and that the remains
are digested quickly.

In contrast to apoptosis, cells which die as a result of a physical trauma
or lack of blood supply usually go through cell necrosis resulting in the swell
and burst of the cell triggering an inflammatory response. As we will discuss in
Section 2.3.9, damages to pathways related to apoptosis play a role in cancer.

2.3.7 Epigenetics

As stated in An operational definition of epigenetics [15]: “An epigenetic trait is
a stably heritable phenotype resulting from changes in a chromosome without
alterations in the DNA sequence”. Two of the most studied such alterations are
histone modification and methylation/demethylation of the cytosine in a CG
sequence, which is usually referred to as DNA-methylation. Figure 2.9 illustrates
epigenetic alterations on the DNA sequence.

If a methyl component is attached to a DNA nucleotide, that nucleotide is
called methylated. In vertebrate cells, except stem cells, methylation happens
mostly on a cytosine in a CG sequence, on both sides of the DNA strand. During
cell division this property is usually kept and inherited by the offspring cells. A
methylated upstream of a gene can suppress that gene’s expression. In human
and mice cells, it is shown that DNA methylation can inhibit the activity of an
entire chromosome [7, Ch. 7].

Histones are proteins acting as cylinders around which a DNA molecule
winds and therefore is packed. As a result of this condensation, a DNA fiber of
the length 180mm and 30nm is compressed into a 12µm long and 700nm thick
molecule [120]. Histones have a tail which can be altered, e.g. methylation or
acetylation of some of the amino acids, and some of these alterations are passed
to the progenies of the cell, and hence are epigenetic markers [145, 15, 92].

7Image available at https://commonfund.nih.gov/epigenomics/figure
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EPIGENETIC MECHANISMS
are affected by these factors and processes: 

Development •  (in utero, childhood)
Environmental chemicals• 
Drugs/Pharmaceuticals• 

Aging• 
Diet• 

CHROMOSOME

CHROMATIN

DNA

HISTONE TAIL

HISTONE TAIL

DNA accessible, gene active

DNA inaccessible, gene inactive
Histones are proteins around which 
DNA can wind for compaction and 
gene regulation.

HISTONE

GENE

EPIGENETIC
FACTOR

METHYL GROUP

DNA methylation
Methyl group (an epigenetic factor found 
in some dietary sources) can tag DNA 
and activate or repress genes. 

Histone modification
The binding of epigenetic factors to histone “tails” 
alters the extent to which DNA is wrapped around 
histones and the availability of genes in the DNA 
to be activated. 

HEALTH ENDPOINTS
Cancer• 
Autoimmune disease• 
Mental disorders• 
Diabetes• 

Figure 2.9: Epigenetic alteration mechanisms on the DNA sequence7.

Presence, absence, or alterations of histones near a gene can activate, deactivate,
or regulate the expression of that gene [145].

2.3.8 Innate and Adaptive Immune System

Multicellular organisms use a mechanism called innate immune response to de-
fend themselves against pathogens, through some physical barriers such as the
sweat on the skin or saliva in the mouth, as well as biochemically responding to
common patterns presented by pathogens called pathogen-associated molecular
patterns (PAMPs) using receptors called pattern recognition receptors (PRRs) [7,
Ch. 24]. These PRRs detect different categories of PAMPs, triggering an inflam-
matory response, which in turn in animals, proceeds with the engulfment of the
pathogen by a phagocytic cell. Phagocytes, macrophages, natural killer cells (NK
cells), and dendritic cells are among cell types comprising the innate immune
system.

Dendritic cells, present in vertebrates, are a crucial component connecting
the innate immune system to the adaptive immune system. They detect a large
variety of PAMPs by expressing an exhaustive variety of PRRs on their surface.
Once a dendritic cell detects a pathogen or one of its products, it engulfs it
through phagocytosis, through which it also becomes an activated dendritic cell.
These activated cells then travel to a nearby lymphoid organ such as a lymph
node to activate T-cells (discussed bellow) and present the invading pathogen
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to them.
At some point during the evolution, vertebrates developed an adaptive im-

mune system, in theory capable of detecting and remembering any foreign
pathogen. The core of this system are the T and B lymphocytes, commonly
referred to as T and B cells. They are called T and B lymphocytes because they
mature in the Bone marrow and the Thymus respectively. Through their de-
velopment, these cells undergo an inheritable somatic hyper-mutation process
resulting in the expression of virtually all possible receptors and antibodies. This
process, however, sometimes produces some lymphocytes detecting the organ-
ism’s own cells. Therefore a separate process called immunological self-tolerance
ensures lymphocytes detecting one’s own cells are either destroyed or deacti-
vated. A failure to do so causes an allergy or an autoimmune disease [7, Ch.
24].

Both B and T cells differentiate from hematopoietic stem cells residing in
bone marrow. A product of this differentiation are lymphoid progenitor cells,
some of which stay in the bone marrow and develop to become B cells, and
some others move to the thymus and become thymocytes and then T cells [7,
Ch. 24]. The differentiation does not end at this stage, and these two types of
cells will further develop into more specific cells such as effector B/T cells, naïve
B/T cells, and memory B/T cells.

In simple terms, the adaptive immune response can be seen as two main pro-
cesses. A foreign pathogen may trigger either of these two or both processes: anti-
body response and T cell mediated immune response. The antibody response in-
volves B cells producing specific antibodies which bind to the targeted pathogen,
disabling them from binding to the organism’s own cells and also marking them
for destruction. These antibodies circulate in blood and other body fluids reach-
ing and detecting pathogens in the whole organism. T cell mediated immune re-
sponse, on the other hand, works by T cells detecting some cell surface proteins
called MHC proteins. These proteins are encoded in major histocompatibility
complex and are expressed in most cells of vertebrates. These MHC proteins can
carry some fragments of the products of a pathogen from inside the cell to its
surface. When dendritic cells present these pieces to T cells in a lymph gland,
the T cells detecting those proteins are activated. These activated cells divide
and differentiate into memory T cells and effector T cells. The effector T cells
travel to the site of the infection and locally detect the infected cells, marking
them for destruction [7, Ch. 24].

2.3.9 Cancer

Thinking of an organism as a society of cells helps to better understand and
explain cancer. In a healthy and functional organism, cells collaborate, do not
invade each other’s space, and sacrifice themselves through programmed cell
death to control their own population. A group of cells reproducing abnormally
and faster than the usual rate leads to a neoplasm. If these cells are not invasive
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to the neighboring cells ,the formed tumor is called benign. On the other hand,
if the cells start reproducing as wells as invading the surrounding tissue, it then
is called a malignant tumor, or cancer [7, Ch. 20].

A malfunction in a pathway related to the cell cycle can cause cells to repro-
duce uncontrollably and/or not die according to the plan. These malfunctions
can be caused by over or under expression of a gene resulting in excess or lack of
a protein or an RNA in a pathway. A mutation in the upstream of a gene, e.g. the
promoter region of the gene, or certain epigenetic changes such as methylation of
the upstream region of a gene can lead to under expression or completely disable
the expression of that gene. On the other hand, demethylation of the promoter
region might enhance the expression of the gene and disrupt the related path-
ways. It can also be the case that a mutation on a specific gene renders a protein
dysfunctional, hence a malfunction in the pathways to which it belongs [44].

Even without the presence of mutation inducing agents, mutations naturally
occur on the DNA during cell division, most of which are corrected due to DNA
repair mechanisms present in the cell. Out of the mutations which remain on the
DNA, only a few can lead to a malignant cell. There is also strong evidence that
some cancer causing mutations need to be present on both chromosomes for it
to cause cancer, unless that mutation already exists on one of the chromosomes,
inherited from one of the parents; in which case, only one mutation on the right
position is enough to activate/deactivate that corresponding gene [94].

Cancer cells also go though some morphological changes which are visible
under a microscope. These cells have a larger nucleus and a smaller cytoplasm,
therefore a larger nucleus/cytoplasm ratio, and both nucleus and the cell have
irregular shapes. Investigation of these characteristics play a role in cancer di-
agnosis [8]. Figure 2.10 depicts some of the differences between normal and
cancer cells.

Since cancer cells are evolved from the cells of the organism itself, they are
not detected by the immune system as enemies. These cancerous cells also know
all the internal protocols of the organism. For instance, as soon as a cancerous
cell grows into a tumor-like mass, it needs more blood supply. Therefore it sends
signals triggering new veins to develop to support the tumor with the food
and oxygen it needs. The cancerous cells may then enter the blood stream of
lymphatic vessels, land on another part of the body, and form a secondary tumor,
i.e. metastasis [7, Ch. 20].

2.3.10 Lymphoid Neoplasms and Lymphoma

Like other diseases, cancer had traditionally been categorized according to the
symptoms and the organ in which it appears. With the advancements in medicine,
we could detect metastasis and therefore classify the disease according to the
organ from which it originates. This classification, however, is far from perfect.
Depending on the underlying genetic cause of the cancer, it can practically be
considered different diseases although happening on the same organ. For in-
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Figure 2.10: Some morphological differences between normal and cancer cells.

stance, breast cancer was considered one disease for thousands of years, until
it was discovered that tumor cells with estrogen receptors on their surface as
inhibitors, i.e. ER+ breast cancer tumors, are a different disease than the ones
not having estrogen as an inhibitor. This discovery resulted in subclassification of
cancer into ER+ and ER- tumors improving diagnosis, treatment, and prognosis
specially for patients with ER+ tumors [94].

When it comes to the cancers of the immune system, a few factors make
the classification of the disease even more complicated. One is the location of
the cancer, which can be any place along the development path of our immune
system, bone marrow, thymus, blood stream, and lymph nodes included. For this
reason, cancers of the immune system used to be put in two main classes: (1) if
the disease appears only in blood stream and does not form a mass: leukemia (2)
if it forms a mass mainly where lymph nodes are located: lymphoma [140, 161].
However, our better understanding of the immune system and these diseases
proved traditional classification of these diseases inefficient at best, and as a
result, WHO classification of these malignancies now puts them all together
under the category of lymphoid neoplasms [101, 140]. For example, Chronic
lymphocytic leukemia and small lymphocytic lymphoma are now considered
two different stages of the same disease affecting mature B cells. Generally
speaking, lymphoma are neoplasms of the immune system resulting in a solid
tumor [161, Ch. 1].

As mentioned in Section 2.3.8, B and T cells both undergo somatic hyper-
mutation. B cells, for example, once activated by an antigen, undergo a somatic
mutation phase with a rate at least 100,000 times higher than the normal rate of
mutation across the genome [90]. Although the hypermutation phase is highly
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regulated, sometimes errors happen which can lead to a possible malignancy.
The first level of lymphoma classification creates two main categories: Hodgkin

and non-Hodgkin lymphoma (NHL). The disease is considered Hodgkin lym-
phoma if Reed-Sternberg cells are present in the biopsy. These cells are large
lymphocytes usually derived from B cells and can have more than one nucleus,
as shown in Figure 2.11 [136].

Figure 2.11: Reed-Sternberg cells in a sea of normal lymphocytes, indicative of
Hodgkin lymphoma.

Like Hodgkin lymphoma, the classification of non-Hodgkin cases also started
by focusing on morphological features of the cancer cells. However, through im-
proved understanding of the disease, immunologic, genetic, and clinical criteria
are now also considered to better distinguish between cancer subtypes [65, Ch.
33]. For instance, in the case of anaplastic large T cell lymphoma (ALCL), there
are treatments if an anaplastic lymphoma kinase (ALK) translocation (t[2,5])
is present in the neoplasm, leading to a much better prognosis. As a result, a
classification of ALCL now includes ALK+ and ALK− subtypes [90, Ch. 29]. Our
focus in this work is on two major types of mature B cell neoplasms, namely
Follicular Lymphoma (FL) and Diffuse Large B Cell Lymphomas (DLBCL).

DLBCL is a high grade aggressive NHL and the most common among NHL
cases. FL on the other hand, is the most common low grade NHL and is only
second to DLBCL in terms of the number of NHL cases. Both FL and DLBCL are
heterogeneous diseases and have several subtypes of their own. FL is defined
as a neoplasm of B cells in germinal centers, comprising different proportions
of small centrocytes and large centroblasts with a follicular growth pattern, as
shown in Figure 2.12 [65, Ch. 31]. Its cases are divided into three main grades,
and the third grade divided into 3a and 3b. Except FL-3b, the other cases progress
slowly and all have a similar prognosis outcome. Grade 3b, on the other hand,
is more aggressive and is clinically closer to DLBCL [65, Ch. 33].
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Figure 2.12: Follicular lymphoma. (a) The tumour grows in a follicular pattern
with expanded germinal centres without macrophages. The tumour cells are
positive for CD10 (b) and BCL-2 (c).9

DLBCL is a neoplasm of B cells with the commonality of having a diffuse
growth pattern. It includes a very diverse set of subtypes. There are also classes of
neoplasms categorized between DLBCL and other types of lymphoid neoplasms
such as Hodgkin lymphoma or Burkitt lymphoma. Although in many cases it is
not clear what the background of the occurring DLBCL is, in some rather rare
cases it can be a transformation from other diseases such as FL [65, Ch. 31, 33].

Since many lymphoid neoplasms are heterogeneous diseases each with a
different underlying genetic cause, accurate classification of each case using
gene expression profiling (GEP) or next generation sequencing (NGS) enables
oncologists and pathologists to target specific genes, inhibiting or activating
them, in order to activate apoptosis or inhibit cell growth as a method of treat-
ment. However, since it is not feasible to use GEP or NGS for all patients due
to their complexity and costs, immunophenotyping is often used as a proxy to
diagnose each patient’s subtype. In this work, Chapter 3 deals with immunophe-

9Image and caption taken from Postgraduate Haematology, p. 582 [65, Ch. 31].
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notype data, and then Chapter 4 explores analysis of genetic and epigenetics
data retrieved from biopsies of cancer patients.
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3
Flow Cytometry Analysis

As mentioned in the introduction (Chapter 1), as a part of this work we touch on
the data and problems available and related to clinics. For this purpose, we tackle
some problems using flow cytometry data which is available on a daily basis for
immunophenotyping and diagnosis purposes. This chapter first introduces flow
cytometry, and then our contributions related to flow cytometry data. It is also
worth mentioning that Section 3.2.2 and 3.2.3 are previously published articles
both well received and cited by the community. Since both these articles are the
result of equal contribution of 2 and 3 authors (including me), it is important
to note that I do not claim the credit for the whole work and I will outline my
personal contribution to these works at the end of this chapter. However, due
to space journal limitations not all required background were included in them
and therefore some of the required background are included in Chapter 2 and
some here in this chapter.

3.1 Flow Cytometry

Flow cytometry is a technology that allows measurement of biomarkers inside
and outside cells on a single cell basis [69]. The technology can also sort and
separate certain cells according to a given criterion [53, 69].

Cell preparation in flow cytometry involves suspension of the cells in a liquid
containing biomarker reagents. These biomarkers are antibodies which usually
attach to proteins on the surface of cells’ surface. Some markers can penetrate
the cell’s membrane and attach to a protein inside the cell, and hence are called
intracellular markers which tend to be more expensive than surface markers
and often result in cell death, therefore they are not as commonly used as sur-

35
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face markers. Reagents are marked antibodies that can be detected by the laser
beams in the flow cytometer machine (FCM) [132]. The antibodies are usually
marked with a fluorescent label. Each fluorescent marker has a corresponding
peak excitation and emission wavelength which can be detected using lasers or
lamps available on the flow cytometer machine. The combination of markers has
to be chosen such that their corresponding wavelengths have minimal overlap;
otherwise they cannot be distinguished from one another due to interference
between them.

Figure 3.1: Fluorescence of a green flurochrome (e.g. FITC) is primarily detected
by detector A. However as the emission spectrum is relatively broad some of the
fluorescence is detected also by detectors B and C. This is called fluorescence
spillover and needs to be corrected for otherwise it could compromise detection
of other fluorochromes by their appropriate detectors1.

In a flow cytometer cells flow in a liquid stream one by one, where lamps or
laser beams in conjunction with sensors measure the intensity of reflected light
from the cells. These measured values can be in linear or logarithmic space [132].
The measured values depend on the light intensity projected onto cells which can
be tuned by changing the voltage of the lasers or lamps. Different wavelengths
correspond to different markers, but they might overlap. When the tail of the
emission spectrum of a marker overlaps with the main part of the emission
spectrum of another marker, it is called spillover as shown in Fig. 3.1 [123].

Compensating for spillover requires a spillover matrix (SM). SPi, j shows the
percentage that marker i spills over marker j. The compensation matrix (C M)
is then the calculated as the inverse of the spill over matrix. Let S be the true
signal value, and O be the observed value. Then we have1:

C M = SM−1

S = O× C M (3.1)

This operation is often called compensation. It is clear from Formula 3.1 that
this is a linear operation, which means we need to transform the data onto a
linear space if required. The measured fluorescent intensities almost exponen-
tially correspond to the number of existing fluorescent markers on or inside

1http://bioinformin.net/cytometry/compensation.php
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Marker Cell types
CD2 T cell, natural killer (NK) cell
CD3 T cell
CD4 T helper cell, monocyte, macrophage, dendritic cell
CD5 T cell
CD7 Thymocite, mature T cell
CD8 Thymocite, cytotoxic T cell, natural killer cell, dendritic cell
CD19 B cell
CD20 B cell
CD27 T cell
CD28 naive T cell
CD33 myeloid
CCR5 T cell
CCR7 several lymphoid tissues

Table 3.1: Some common markers and cells expressing those proteins. CD: cluster
of differentiation, CCR: C-C chemokine receptor.

the cell. Therefor a proper transformation of the raw data is essential in order
to have the data in a linear space. Logarithmic, log-linear hybrid transforma-
tion Logicle [107], and hyperbolic arcsine are some commonly used transforma-
tions [102]. Some studies have compared different transformation techniques
and reported their advantages and disadvantages [46, 114].

In practice data are produced through time and also maybe in different labs.
This means different reagent batches are used, and flow cytometry machines
are not necessarily calibrated alike, which also affects compensation matrices.
Therefore normalization is a crucial step to make samples comparable [60].

Different cell types express different proteins on their surface and inside
them. As a result, we can use flow cytometry to detect and sort different cell
types. Table 3.1 lists some of the usual markers used to identify different immune
cells, which are relevant to the rest of this chapter. Neither the list of proteins
nor the list of cells expressing them is complete. For a more exhaustive list the
reader is referred to Janeways’s Immunobiology book [96].

There are two other measurements taken by a flow cytometer machine,
namely Forward Scatter (FS) and Side Scatter (SS), indicating volume and mor-
phological complexity of cells respectively. And the end, if we assume 20,000
cells are passed through the FCM, stained with 8 markers, including FS and SS,
the resulting data will be a 20, 000×10 matrix, each of those 10 columns being
a dimension of the data.
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3.2 High Dimensional Analysis and Visualization

Manual analysis of flow cytometry data involves gating. Researchers use density
or scatter plots of one or two selected dimensions of flow cytometry data in order
to visualize and also select some areas on those plots to further investigate cells
within the selected area. Visualization and further gating of those selected cells
is commonly a next step to the analysis, i.e. plotting only those selected cells
using two other dimensions for further gating.

Manual gating of cells across several samples is a labor intensive and time
consuming process. Not being able to analyze the data in its original higher
dimensional space is another disadvantage of manual flow cytometry data anal-
ysis.

The rest of this chapter first explains how we extract features from flow
cytometry data using flowType [2]. Then we show how RchyOtimyx uses the
outcome of flowType to summarize and visualize gating strategies [4]. Then an
improvement to both functionality and performance of both packages, as well
as a pipeline using both methods are presented.

3.2.1 Cell Population Identification: flowType

Assume there is a threshold corresponding to each marker/dimension for a given
flow cytometry data. For a given marker M and the threshold t, cells are divided
into two groups regarding the threshold as shown in Formula 3.2.

M− := {ci|M(ci)< t}
M+ := {ci|M(ci)≥ t} (3.2)

M(ci) is the observed value of marker M for cell ci . Identifying a cell popula-
tion, some markers might be irrelevant. If a marker does not play a role defining
a population, we call it neutral. Therefore regarding each marker, there are 3
possible populations, i.e. positive, negative, neutral. Figure 3.2 shows all pos-
sible populations considering only two markers2. Note that a cell population
identified by more than one marker is the intersection of the two corresponding
sets of cells. As a result, given k markers, there are 3k possible cell populations
to identify, given the above assumptions.

The flowType method3 iterates through all possible combinations of cell
populations and reports cell count and/or Mean Fluorescence Intensity (MFI)
of each dimension for each cell population. Given m markers, there are 3m

possible combinations, and flowType reports all of them. Some possible further
analysis using these reported cell counts and/or MFIs are explored in the original
publication [2].

2Credit: Figure 1-A of [2]
3https://www.bioconductor.org/packages/release/bioc/html/flowType.html
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Figure 3.2: Population identification

3.2.2 Hierarchical Analysis of Cell Populations: RchyOptimyx

Recent advances in FCM instrumentation and reagents have enabled high-dimensional
analyses to identify large numbers of cell populations with potentially signifi-
cant correlations to an external outcome. However, studies often fail to char-
acterize the complex relationships between the markers involved in the iden-
tification of these cell populations. Revealing this information can provide ad-
ditional insight into the biological characteristics of the populations identified.
The choice of markers for new panels has been a source of ongoing debate,
including efforts such as the Human ImmunoPhenotyping Consortium (HIPC),
the Federation of Clinical Immunology Societies Federation of Clinical Immunol-
ogy Societies (FOCiS) sponsored Flow Immunophenotyping Technical Meetings
(FITMaN), and the Optimized Multicolor Immunophenotyping Panels (OMIPs)
articles [86, 125, 87, 28, 153, 16, 48, 95, 42, 166, 81, 111]. Understanding the
relationships between the markers involved in identification of the target cell
population and the characteristics of that cell population (e.g., its correlation
with a clinical outcome) is fundamental to the design of effective marker panels.
For example, one could use a high-dimensional flow or mass cytometry assay to
measure a large list of candidate markers. However, this can result in parsing the
cells into (e.g., clinically) redundant subsets [12]. Excluding these redundancies
(e.g., markers less important for prediction of a clinical outcome) will result in
a panel of the most clinically relevant markers.

High dimensional FCM data is usually analyzed using a laborious sequen-
tial manual analysis procedure in which a series of thresholds or 2-dimensional
polygons (or gates) are applied to histograms or scatter plots of markers (e.g.,
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[109, 55]). However, manual gates provide little insight into the relative impor-
tance of each gate to the final results. For example, consider a six color assay
with markers named 1 to 6. If the expression of each marker is considered to be
on, off, or does not matter (e.g., markers named 1, 2, and 3 in phenotype 1+2−,
respectively), a total of 36 = 729 cell populations can be distinguished based on
these markers. A given immunophenotype involving all six of these markers (e.g.,
1+2−3+4−5+6−) can have 26 = 64 parent populations (e.g., 1+, 1+2−). Quanti-
fying the relationship between the cell population of interest and these parent
populations is fundamental to our understanding of the importance of the mark-
ers for different gating strategies. The order in which the gates are applied to the
data is not important, as long as all of the gates are used (i.e., sequential gating
is commutative). However, to decrease the size of the marker panel, the relative
importance of the gates should be determined. For example, the measurement
of the phenotype mentioned above using only five colors requires the determina-
tion of the importance of each marker to identify and remove the least important
one (i.e., the identification of the parent population with five markers that is
most similar to the original phenotype). This is further complicated by the fact
that some cell populations can be identified using more than one combination
of markers and gating strategy; therefore, each marker can be used in different
positions in the gating hierarchy and can have different priorities, depending on
the choice of the gating strategy. For example, the 3+ gate is involved in both
1+2−3+ and 3+4−5+, both parents of the 1+2−3+4−5+6− phenotype described
above. However, depending on the amount of redundancy between marker 3
and others, this marker can have different levels of importance for these two
parent populations.

Another use–case for measuring the importance of the markers is the inves-
tigation of a large number of closely related phenotypes (e.g., those identified
by bioinformatics pipelines) by identifying their common parent populations.
Several computational tools have been developed for automated identification
of cell populations (e.g., [84, 45, 113, 24, 100, 163, 115, 138, 5, 13, 116]) and
recent studies have used these tools to identify novel cell populations that corre-
late with clinical outcomes (e.g., [2, 162, 33, 124, 10]). In addition, the results of
the FlowCAP-II project4 have shown that several algorithms can accurately and
reproducibly identify cell populations correlated with external outcomes. How-
ever, these algorithms provide limited information regarding the importance
of the markers involved in defining the cell populations [2, 25]. This situation
is even more complicated than sequential manual gating, since most of these
bioinformatics pipelines work based on multivariate classifiers, and as a result,
more than one cell population can be responsible for the final predictions. There-
fore, markers can have different relative importance in defining the multiple cell
populations within the multivariate model. Quantifying the markers for each
phenotype involved in the multivariate model can provide additional insight

4http://flowcap.flowsite.org/summit2011.html



3.2. HIGH DIMENSIONAL ANALYSIS AND VISUALIZATION 41

into the differences between closely related cell populations. For example, if two
phenotypes 1+2−3+4−5+ and 1+2−3+4−6+ are identified as correlates of a dis-
ease, and if markers 5 and 6 (which are the only differences between them) are
the least important markers for the former and latter phenotypes respectively,
then these two phenotypes are likely to correspond to the same cell population
(as far as the correlation with the disease is concerned). However, if markers 5
and 6 are the most important for the phenotypes, these can correspond to two
biologically different cell populations.

To address these problems, we developed RchyOptimyx, a computational
tool that uses dynamic programming and optimization techniques from graph
theory to construct a cellular hierarchy, providing the best gating strategies to
identify target populations to a desired level of purity or correlation with a
clinical outcome, using the simplest possible combination of markers.

Materials and Methods

Our methodology builds on the flowType pipeline[2]. flowType comprehen-
sively identifies cell populations defined by all possible gating strategies (hi-
erarchies) in the data set using a partitioning strategy (e.g., clustering algorithm
like flowMeans [2]) and scores them by a statistical test (e.g., the log rank test
for difference in survival distributions). Given the list of all cell populations and
their scores, RchyOptimyx uses a dynamic programming approach to find the
best cellular hierarchy within a reasonable time for interactive data analysis (e.g.
less than 2 minutes for 30 color data), as well as a number of best suboptimal
hierarchies, to enable mining of the space of best gating strategies and purities
for a given target cell population.

Terms and Definitions

Let M be the set of m markers of interest (e.g., M= {KI–67, C D28, C D45RO}),
a single marker phenotype be a phenotype having only one marker (e.g., C D28+),
a phenotype P be a set of single marker phenotypes (e.g., P = KI–67+C D28−),
and M (not to be mistaken with M) be a phenotype of size m that involves all
of the markers (e.g. M = KI–67+C D28−C D45RO−). The power set of M , P(M),
is of size 2m and contains every possible subset of M . The scoring function S(.)
assigns a score to each member of P(M), such that higher values are assigned
to more important phenotypes (e.g., those with a stronger correlation with a
clinical outcome).

Given an arbitrary M , the directed acyclic graph (DAG) GM has m+1 levels
from 0 to m, each level i including every member of P(M) of size i. Node s is
connected to node t with a directed edge (s, t) if and only if |t|= |s|+1 and the
two associated sets of s and t differ only in one single phenotype marker (i.e.,
t is an immediate parent of s). Let the weight of edge (s, t) be −S(t) (so that
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paths with maximum score can be found by searching for paths with minimum
total weight).

The node with 0 markers is the root (or source) node, and the node with
the complete set of markers is the sink node. A path from source to sink is
called a hierarchy path, or simply a hierarchy. An example of graph GM for
M = KI–67+C D4−CCR5+C D127− is illustrated in Supplementary Figure 3.3.
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The graph GM has |P(M)|= 2m nodes, one node for each parent phenotype
of the phenotype of interest. The number of edges is equal to the number of
markers (m), times the number of edges that have the specified marker. Each
marker appears in 2m−1 nodes, therefore the number of edges is m× 2m−1.

A scoring function is needed to find the best hierarchy. This function should
give a higher rank to hierarchies that go through more important parent popu-
lations earlier (i.e., those that achieve a higher clinical significance with fewer
markers). Because each node of the hierarchy is a phenotype, and each pheno-
type has a given score value S(.), we use the total score function T (.) - the sum
of all negated phenotype scores in the hierarchy - as the scoring function:

T (H) =
∑

(s,t)∈EH

W (s, t)

=
∑

(s,t)∈EH

−S(t)

=
∑

t∈VH\v0

−S(t)

(3.3)

where H is the given hierarchy, EH is the set of edges of hierarchy H, VH is the set
of vertices of same hierarchy, and v0 is the first node in the hierarchy. Applying
this function to GM , the best hierarchy is the minimum weighted path in GM . We
note that, in principle, more complex functions can be used to compute the total
score of a given hierarchy; for example, in applications in which phenotypes with
fewer markers are more important than the other phenotypes, an exponential
function can be used to increase the weight of the earlier phenotypes in the
hierarchy.

Dynamic Programming to Identify the Best Hierarchy

For cell populations characterized by m markers, finding the best hierarchy by
searching through all possible hierarchies would require time O(m!), which is
impractical for even moderately large m. To make this problem tractable using
dynamic programming, we define best total score function T ∗(.), which computes
the score of the best hierarchy leading to the given phenotype. T ∗(.) is defined
recursively as follows:

T ∗(Pk) =

�

−S(Pk) if k = 1
min{T ∗(Pk \ Pk

i )− S(Pk)|i = 1, . . . , k} otherwise
, (3.4)

where Pk is a cell population defined by k single marker phenotypes, and Pk \
Pk

i is Pk with the i th single marker phenotype removed. For example, if P3 =
KI–67+C D28−C D45RO+, then P3 \ P3

1 = C D28−C D45RO+. In other words,
there is an edge from Pk \ Pk

i to Pk in GM where, Pk is a subset of M . Also note
that −S(Pk) is the weight of the edge (Pk, Pk \ Pk

i ) in GM .
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Using dynamic programming, we calculate the value of T ∗(.), iterating from
level 0 to m on GM . Calculating each node’s score requires a number of constant
time operations equal to the number of edges entering the node. Therefore, the
total number of operations is proportional to total number of edges (m× 2m−1),
and the overall time complexity of our programming procedure for determining
T ∗(.) values for all phenotypes in the graph is O(m× 2m−1). An illustration of
the dynamic programming space for three dimensional space, i.e. having three
markers, as well as two paths in that space is shown in Figure 3.4.

All T−Cells

CD127+

CD4+CD127+

CD4+CCR5−CD127+

CD127

CD4

CD4+

CD4+CCR5+

CD4+CCR5+CD127+

CCR5

CD127

CD4

CCR5

Figure 3.4: Dynamic programming algorithm for two cell populations defined by
3 markers. The best path for each of the cell population is shown in red and blue
respectively. As an example, the red path ends at CD4+CCR5+CD127+. Three
markers are available to be added. First, CD4 is added (changes from does not
matter to positive). Then two options will be available for the next step (CD127
and CCR5). After selection of CCR5, only one option will be left for the final step
(CD127). Therefore for three markers, 3·(3−1)

2 = 6 comparisons were required.
Left: A hierarchy for the two paths. The label of an edge is the name of the single
marker phenotype that is the difference between its head set (s) and its tail set
(t). Right: the dynamic programming space for the 3 markers. Black spheres
mark the nodes in the dynamic programing space used by the two paths. The
colors of the nodes on the left match that of the square tori on the right and
correspond to the relative score of each cell population.
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Search for Near-Optimal Hierarchies

The hierarchy selected by the dynamic programming algorithm is the best gat-
ing strategy for a given cell population. However, we would also like to identify
alternate gating strategies with slightly less desirable scores. To find these near-
optimal paths, we reformulate the problem as identification of a desired num-
ber of minimum weight paths: In GM , the minimum weight path from source
to sink is the best hierarchy (identical to the one generated by dynamic pro-
gramming). To generate additional, sub-optimal hierarchies, a list of the next
minimum weight paths must also be generated. These paths can be identified
using the method by Eppstein [43]. As noted in the original article, elaborating
the details of this algorithm is complicated and requires substantial background
in algorithm design, which is well beyond the scope of this work. Briefly, this
method uses the minimum spanning tree of GM and computes a heap structure
for each node; it then merges the heaps in an efficient way to construct a 4-heap
data structure. Using this 4-heap and a given arbitrary number l (the number
of desired paths), it generates l-minimum weight paths in time O(e+ v + l) for
a DAG with e edges and v nodes (see Theorem 4 of [43] for details).

Hence, the time complexity of our algorithm can be calculated based on the
number of edges and nodes using the time complexity of the l-minimum weight
paths method:

O(e+ v + l) = O(m× 2m−1 + 2m + l)

= O(m× 2m−1 + 2× 2m−1 + l)

= O((m+ 2)× 2m−1 + l).

(3.5)

For example, the number of operations with our approach on a dataset with
m = 10 markers would be ≈ 104 compared to ≈ 3 × 106 for the exhaustive
search approach. Our method therefore takes ≈ 0.23 CPU seconds vs ≈ 69 CPU
seconds for exhaustive search, run under 64 bit Linux (version 3.3) on 2.93GHz
Intel Xeon CPU with sufficient memory (proportional to 2M ). For a phenotype
involving m = 20 markers, these numbers increase to ≈ 1.2 CPU seconds vs
≈ 1011 CPU seconds (more than 4000 years), respectively. Even for a phenotype
involving m= 30 markers measured by a CyTOF assay (mass spectrometry-flow
cytometry hybrid device [103, 13, 27]), RchyOptimyx remains feasible, with a
runtime of≈ 102 CPU seconds, while the brute-force method would take≈ 1022

CPU seconds. The final output of RchyOptimyx is the corresponding subgraph of
GM that includes all calculated paths (i.e., the optimized hierarchy, e.g., Fig. 3.5).

Datasets

We validated RchyOptimyx on two high-dimensional datasets, produced by mass
and polychromatic flow cytometry.

Mass cytometry analysis of bone marrow cells from normal donors In this
dataset, 31 parameters were measured for mononuclear cells from a healthy
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All T−cells

CCR5+ KI−67+

KI−67+CD127−KI−67+CCR5+

KI−67+CCR5+CD127−KI−67+CD4−CCR5+

KI−67+CD4−CCR5+CD127−

CCR5+KI−67+
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Figure 3.5: An optimized cellular hierarchy for prediction of HIV’s clinical out-
come using KI67+CD4−CCR5+CD127− T-cells. The color of the nodes shows the
significance of the correlation with clinical outcome (p-value of the logrank test
for the Cox proportional hazards model) and the width of each edge (arrow)
shows the amount of change in this variable between the respective nodes.

human bone marrow (see [13] for details). We used the results of three assays
on samples subject to ex vivo stimulation by IL7 (measured by pSTAT5), BCR
(measured by pBLNK), and LPS (measured by p-p38) as well as an unstimulated
control. 13 surface markers were included in the analysis: CD3, CD45, CD45RA,
CD19, CD11b, CD4, CD8, CD20, CD34, CD33, CD123, CD38, and CD90. Singlets
were gated manually, as described in the original publication.

Polychromatic flow cytometry analysis of HIV+ patients This dataset consists of
13 color PFC assays of 466 HIV+ subjects enrolled in the Infectious Disease Clin-
ical Research Program’s HIV Natural History Study. Basic demographic charac-
teristics of this dataset are described elsewhere [154]. Cryopreserved peripheral
blood mononuclear cells stored within 18 months of the date of seroconversion
were analyzed using PFC as described by Ganesan et al. [54]. The cohort in-
cluded 135 death/AIDS events, as defined by 1993 guidelines [23]. The date of
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the last follow-up or initiation of highly active anti-retroviral therapy (HAART)
was considered a censoring event. CD14 and V-amine dye were used to exclude
monocytes and dead cells, respectively, CD3 was used to gate T-cells. Using the
staining panel and flowType, we enumerated various subsets of naive and mem-
ory T-cells, defined by CD4, CD8, CD45RO, CD27, CD28, CD57, CCR5, CCR7,
CD127, and KI-67. Using a log rank test with Bonferroni’s multiple test correc-
tion, we scored each subset (cell population) in terms of its correlation with HIV
progression [2].

Results

Designing a Panel to Detect a Population Expressing an Intracellular Marker
using Surface Markers

In this use–case, our goal was to identify cell populations that are affected by dif-
ferent stimulations in the mass cytometry dataset. We used flowType to identify
a list of populations that had a high overlap with either the IL3+, BCR+, or LPS+

populations (determined manually - see Fig. 3.6). For each cell population, this
value was calculated as the difference in its intersection with the IL3+, BCR+,
or LPS+ compartments between the stimulated and unstimulated sample. For
example, for a given cell population CP, the overlap with IL3+ was defined as:

OverlapI L3+(C P) =
�

# IL3+cel ls in C P
# cel ls in C P

�

st im
−
�

# IL3+cel ls in C P
# cel ls in C P

�

unst im
(3.6)

Figure 3.6: All immunophenotypes ordered by their overlap with the cell pop-
ulation of interest. The red dashed lines indicate the cutoffs used for selecting
the immunophenotypes with “high overlap”.

The immunophenotypes with a high overlap, as identified by flowType, are
listed in Tables 1, 2, and 3. These immunophenotypes were analyzed using
RchyOptimyx (e.g., Fig. 3.7 for BCR) and then merged into a single graph, shown
in Fig. 3.7. This graph suggests that T-cells (CD3+) followed by cytotoxic T-cells
(CD3+CD4+) are the main parent populations that are affected by IL7 stimulation
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(panel A). As expected, BCR stimulation affected B-cells (CD19+CD20+CD3−),
and LPS stimulation increased the proportion of CD19−CD33+CD3− cells (Panels
B and C, respectively). These results are generally consistent with those reported
in the original study (Figure 2 and panel C of Figure 3 of [13]).
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Figure 3.7: Three optimized hierarchies for identification of cell populations with
maximum response to IL7, BCR, and LPS measured by pSTAT5, pBLNK, and p-
p38, respectively. The colour of the nodes and the thickness of the edges shows
the proportion and change in proportion of cells expressing the intracellular
marker of interest, respectively.

Simplifying Gating Strategies

Here we use RchyOptimyx to demonstrate an example of the use case of estab-
lishing a simpler combination of markers that can be used to identify a target
population at a desired level of purity. For analysis of the PFC dataset, Gane-
san et al. used a strict, but potentially redundant definition for naive T-cells, of
CD28+CD45RO−CD57−CCR5−CD27+CCR7+, within the CD3+CD14− compart-
ment [54]. The purity of a given parent cell population (CP) of this target was
defined as its mean purity for the strictly-defined naive T-cells:

Puri t y(C P) =

∑

All Samples
# C D28+C D45RO−C D57−CCR5−C D27+CCR7+ cel ls

# cel ls in C P

# Samples
(3.7)
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Figure 3.8 shows the results of analysis with RchyOptimyx where a combina-
tion of only three markers (CD45RO−CCR5−CCR7+) identified the strict naive T
cell population to 95% purity (within the CD3+CD14− compartment). The range
of available purities, and determination of an appropriate cutoff is experiment
dependent (e.g., on the range of available markers or biological question being
researched) and this result is only provided as an example of the utility.

All T−cells

CCR7+ CCR5−

CCR5−CCR7+ CD45RO−CCR5−

CD45RO−CCR5−CCR7+

CD45RO−CCR5−CD27+CCR7+

CD45RO−CD57−CCR5−CD27+CCR7+

CD28+CD45RO−CD57−CCR5−CD27+CCR7+

CCR7+CCR5−

CCR5− CCR7+ CD45RO−

CD45RO− CCR7+

CD27+

CD57−

CD28+
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Figure 3.8: An optimized cellular hierarchy for identifying naive T-cells. The color
of the nodes and the thickness of the edges shows the purity and change in purity
of the original naive phenotype within the given cell population, respectively.

Characterization of a Large Number of Immunophenotypes

Here we use RchyOptimyx to demonstrate an example of the use-case of sum-
marizing a large list of immunophenotypes of interest (as identified by a bioin-
formatics pipeline) into a single hierarchy using their most important common
parent populations.

In a previous study of the PFC dataset, we identified 101 immunopheno-
types (Table 4) in HIV+ patients that had a statistically significant correlation
with HIV’s progression [2]. The score of each population was calculated as
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−log10(p) where p was the p-value of the logrank test before adjustment for
multiple testing (higher values represent a stronger correlation with the clinical
outcome). The 101 immunophenotypes were analyzed using RchyOptimyx and
the resulting hierarchies were merged into a single graph (Figure 3.9). This
graph indicated three groups of immunophenotypes that were significantly cor-
related with HIV’s outcome (left, center, and right branches). The left branch
consisted of KI-67+CD4−CCR5+CD127− T-cells. These cells were thought to be
statistical significant mainly because they are long-lived (CD127−) T-cells with
high proliferation (KI-67+). RchyOptimyx showed that the significance of this
population is related to the KI-67+CCR5+ compartment and not CD127− (Fig-
ure 3.9, the left branch) as the CD127 marker is not needed to achieve the
approximately the same score. This is in agreement with the results of two
recent studies [58, 70]. The terminal node of the center branch consisted of
seven markers (CD45RO−CD8+CD57+CCR5−CD27+CCR7−CD127−). RchyOp-
timyx revealed that its most important parent population is CD8+CCR7−CD127−,
with a weaker correlation with the clinical outcome. Finally, the right branch
(CD28−CD45RO+CD4−CD57− CD27−CD127−) suggests several parent popula-
tions with minimal overlap and strong correlation with the clinical outcome (e.g.,
CD28−CD4−CD57−CD127− and CD45RO+ CD4−CD127−).
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Discussion

Sequential analysis of the markers involved in manual or automated identifica-
tion of cell populations is fundamental to our understanding of the characteristics
of the cell population. In sequential gating, the order in which the gates have
been applied does not affect the final results. However, ordering the gates by
their relative importance has two use-cases: 1) identifying a cell population of
interest, using the smallest possible panel of markers; 2) summarizing a long
list of closely related (and perhaps overlapping) immunophenotypes by identify-
ing their most important common parent populations. However, increasing the
number of markers quickly renders this approach infeasible (e.g., Fig. 3.10 for
only six markers).
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Figure 3.10: A complete cellular hierarchy for identifying naive T-cells. The
colour of the nodes and the thickness of the edges have been removed to facilitate
visualization of the complex graph.

To address this challenge, we developed RchyOptimyx, a computational
tool that automatically characterizes the complex findings of high-dimensional
exploratory FCM studies. RchyOptimyx sorts all parent populations of an im-
munophenotype of interest into hierarchies, and selects those hierarchies that are



54 CHAPTER 3. FLOW CYTOMETRY ANALYSIS

better able to maintain the characteristics of the immunophenotype of interest
(e.g., correlation with a clinical outcome). This reveals the best order in which
markers can be excluded from an immunophenotype. RchyOptimyx uses dy-
namic programming and efficient tools from graph theory to make the problem
tractable using the computing resources readily available in most laboratories.

Since most cells can be described using more than one combination of mark-
ers, there usually are several alternative cellular hierarchies associated with every
population. RchyOptimyx finds all these “paths” and merges them into a single
hierarchy, starting from “all cells”, or any arbitrary point in a hierarchy, and finish-
ing at the terminal population of interest. This reveals the relationships between
different gating strategies and how they differ, and also facilitates the reproduc-
tion of high–dimensional exploratory studies using low–color instruments. The
ability to suggest multiple panels is particularly important when designing new
panels, because the choice of markers depends on a large number of external
parameters including, but not limited to, reagents available through vendors,
potential spectral overlaps, the instruments available, and budget limitations.

Another important use-case for RchyOptimyx is in the interpretation of the
findings of bioinformatics pipelines. While these pipelines have recently been
very successful in identifying cell populations correlated with clinical outcomes,
their findings cannot be easily understood for two reasons: 1) they usually rely
on high-dimensional clustering of the data and therefore cannot propose gating
strategies for reproduction of their results; 2) their predictive power often relies
on a large list of immunophenotypes. Some of these immunophenotypes are
closely related (e.g., refer to close or overlapping cell populations) while oth-
ers are not. RchyOptimyx addresses the first problem by suggesting optimized
gating hierarchies for identification of these cell populations to a desired level
of purity or correlation with clinical outcome. The latter problem is addressed
by summarizing closely related immunophenotypes using their most important
common parents.

In evaluating RchyOptimyx, we combined its functionality with the auto-
mated gating functionality provided by flowMeans and flowType. However, Rchy-
Optimyx can be built upon the results of any cell population identification
method, including manual analysis, provided all intermediate cell populations
(i.e., each layer, removing one marker at a time) from the cell population of
interest up to the desired start of the hierarchy are provided to the method.

We evaluated RchyOptimyx for three use-cases, using a small but high-dimensional
mass cytometry dataset and a clinical dataset of high-dimensional conventional
FCM assays of 466 patients, previously analyzed by both manual and automated
analysis. First, we constructed cellular hierarchies for identification of cells that
were produced in response to different stimulations. This use-case represents
the problem of designing panels of surface markers (primarily for sorting) for
cells that can only be defined using their intra-cellular signature (possibly after
proper stimulation). For example, plasmacytoid dendritic cell (PDC)s are known
to express the toll-like receptor 9 (TLR9) in response to stimulation using CpG
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[77]. A large number of surface candidates were recently proposed for PDCs
[88, 141, 129, 22]. An interesting direction to extend this work would be to
measure all these markers in a single panel, subject to CpG stimulation (using
appropriate controls) to design a panel of surface markers for PDCs. In this case,
TLR9 could be used as the external variable for optimization.

Second, we demonstrated that RchyOptimyx can be used to simplify existing
gating strategies, using as an example the identification of naive T-cells previ-
ously defined using a complex panel of six markers to a 95% purity using only
three. This proof-of-concept use-case is relevant when a subset of markers needs
to be selected for reproduction of the results using fewer colors. For certain bio-
logical use–cases, purity of higher than 95% can be required. For such use–cases,
a larger number of markers for exclusion of non-naive T-cells should be included
in the panel.

Third, we showed that RchyOptimyx, together with a complex bioinformat-
ics pipeline, can analyze a large high-dimensional clinical dataset, to reveal
correlates of a clinical outcome, hidden from previous manual and automated
analysis of the same dataset. In addition, RchyOptimyx suggests the best gat-
ing strategies and marker panels for reproduction of these results in low-color
settings. By identifying the best cellular hierarchies, RchyOptimyx allows the
user to make an informed decision about the trade-off between the number of
markers and the significance of the correlation with the clinical outcome. This
feature is particularly important in hypothesis generating studies that need to
be further validated using large clinical studies.

For the third example, it is important to note that the correct measure for
the amount of correlation with a clinical outcome is an effect size (such as the
root squared error of the estimated proportional hazard). However, such effect
size does not provide any information about the significance of the correlation.
As RchyOptimyx is intended to be a decision support tool, and in this case the
decision is the degree to which a cell population can be generalized while main-
taining the statistical significance of the correlation, we decided that the p-values
of the log-rank tests were more appropriate for optimization of the hierarchies.
To support this decision, we empirically investigated the differences between
the p-values and effect sizes of the Cox proportional hazard models (Fig. 3.11)
and concluded that these values are highly correlated (which is not surprising
considering the large size of our cohort). It should be noted that as RchyOptimyx
allows the user to choose which measure to provide, they can make this decision
as appropriate for their specific data.

The concept of computationally extracting cellular hierarchies from FCM
data has previously been introduced by the SPADE algorithm [13, 116]. SPADE
generates a large number of multidimensional clusters and then connects them
to each other using the distance between their mean/median fluorescence inten-
sities. These are then manually annotated by biologists with domain knowledge.
This makes SPADE useful for identification and visualization of a large num-
ber of clusters, particularly when expression of markers change gradually (e.g.,
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Figure 3.11: The correlation between the effect sizes and p-values of the log
rank tests for the Cox proportional hazards models for each immunophenotype.
The Pearson correlation coefficient was determined as 0.997, indicating a highly
significant correlation with a p-value < 2.2× 10−16.

cell-cycle analysis and some intracellular studies). However, the hierarchies gen-
erated by SPADE are logically and conceptually different from those generated
by RchyOptimyx and have different use-cases. For example, the results of the
mass cytometry dataset presented here are very close to results previously ob-
tained from SPADE analysis. However, SPADE required manual annotation of the
results by a human expert, using different plots demonstrating the expression of
different surface markers and the intra–cellular marker of interest (Figure 2 and
panel C of Figure 3 of [13]). More complicated relationships that involve several
markers cannot be easily identified by these manual annotations. In addition,
SPADE is limited in that the relationships between cell populations is exclusively
defined using the multidimensional distances between them. However, two cell
populations that are close to each other in the multidimensional space can be far
in terms of specific markers (which can be the most important ones). The cellular
hierarchies generated by RchyOptimyx are based on parent-child relationships,
guided by an external variable (cell populations that have common parents with
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similar patterns of correlation with a clinical outcome or intracellular response to
stimulation are grouped together). This enables RchyOptimyx to automatically
annotate a large number of cell populations identified by other methods (e.g.,
manual gating or SPADE) in terms of the importance of the markers involved
and summarize them in a single hierarchy.

There are several directions in which this work can be extended. RchyOp-
timyx provides no information about the robustness of the hierarchies. Boot-
strapping strategies could be used to produce confidence intervals for the tree
structure and increase generalizability to previously unseen data [139]. Also,
our current implementation of RchyOptimyx assumes that every marker can
be partitioned into a positive and negative population. While the underlying
theory does support additional (e.g., dim, bright, or low) populations, parts of
the software package would need to be modified to accommodate these cases.

Availability

The RchyOptimyx R package (including source code, documentation, and ex-
amples) is freely available under an open source license (Artistic 2.0) and can
be obtained from Bioconductor. The raw data and meta-data used in this study
is publicly available through FlowRepository.org (under experiment ID FR-FCM-
ZZZK) and through Cytobank.org (under experiment ID 6033) for the PFC and
CyTOF datasets, respectively.

3.2.3 flowType/RchyOptimyx pipeline

Flow cytometry has undergone a “chromatic explosion” over the past decade
and can now measure 17 markers at once for each of hundreds of thousands
of individual cells [29]. Since then, mass cytometry has enabled measurement
of 30–45 markers per cell [14], while single-cell multiplexed RT-qPCR can mea-
sure 50–96 mRNAs per cell [157]. The growth in high-throughput single-cell
data continues to outpace development of corresponding bioinformatics tech-
niques [29]. To answer this challenge, we previously developed flowType [2]
and RchyOptimyx [4]. flowType uses partitioning of cells, either manually or by
clustering, into positive or negative for each marker to enumerate all cell types
in a sample, e.g. [3]. RchyOptimyx measures the importance of these cell types
by correlating their abundance to external outcomes, such as disease state or
patient survival, and distills the identified phenotypes to their simplest possible
form. These packages have been used to identify several novel cell populations
correlated with HIV outcome [2]. More recently, this pipeline has been used
to evaluate standardised immunological panels [151], to optimise lymphoma
diagnosis [35], and to analyse a range of other clinical data (unpublished).

However, the higher dimensionality of data produced by mass cytometry
generates up to 345 ≈ 1021 possible cell types, with an even greater number (up
to 396 ≈ 1045) for single-cell qPCR; these magnitudes are beyond the capabilities
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Figure 3.12: An optimized cellular hierarchy for identifying naive T-cells. The
colour of the nodes and the thickness of the edges shows the purity and change
in purity of the original naive phenotype within the given cell population, re-
spectively. This is similar to Figure 6 in the main text except the color of the
border of the nodes shows the cell proportion of the cell population.

of flowType and RchyOptimyx. Furthermore, flowType and RchyOptimyx have
thus far only treated cells as being either positive or negative for a marker. In
practice, many biomarkers can have a range of expression levels such as “dim”
and “bright”. In this application note, we detail architectural improvements to
flowType and RchyOptimyx to overcome these limitations.
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Figure 3.13: A cellular hierarchy for identifying KI-67+ T-cells using surface
markers. The colour of the nodes and the thickness of the edges shows the
proportion and change in proportion of KI-67+ T-cells, respectively. This is similar
to Figure 7 in the main text except the color of the border of the nodes shows
the cell proportion of the cell population.

Approach

Our primary challenge was to enable flowType to generate a number of cell types
tractable on most common workstations (e.g. those with 4–12GB of RAM). We
hereafter denote the original flowType implementation as flowType-BF (brute
force), and the new version as flowType-DP (dynamic programming). Whereas
flowType-BF completely enumerates all cell types over all [1, ..., m] markers, we
opted in flowType-DP to use a breadth-first strategy of enumerating all cell types
defined over a subset of k ≤ m markers.

We provide a memory use estimation function, to assist users in finding a k
that fits within the limits of their hardware. To improve computation time, in
flowType-DP we implemented a dynamic programming approach, which exploits
the fact that cell types can be arranged into a hierarchy, and membership of any
given cell type over n markers is equal to the intersection of one of its parent
types (over n − 1 markers) with a single-marker cell type. flowType-DP first
enumerates all cell types involving only 1 marker by simple partitioning and
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then iterates over 2, ..., k markers, computing all cell types for each level n by
set intersections between corresponding cell types in levels n− 1 and 1.

For example, membership of the cell type CD45++CD117+CD34− is com-
puted as follows:

{CD45++CD117+CD34−}
={CD45++CD117+} ∩ {CD34−}
={CD45++} ∩ {CD117+} ∩ {CD34−} (3.8)

To allow partitioning into levels other than positive and negative, we used a
string representation for cell types. The string has one integer character for every
marker, denoting the partition, or zero if the marker is not used. Values 1, ..., n de-
note partitions 1 to n. For example, if the set of markers were {CD3, CD45, CD13,
CD117, CD34} the cell type CD45++CD117+CD34− would be represented by
03021. RchyOptimyx uses a dynamic programing algorithm for efficiently con-
structing k-shortest paths [43]. We modified RchyOptimyx’ graph construction
component to be able to handle more than one partition per marker. Algorithm 1
illustrates the method in pseudocode.

Algorithm 1 flowTypeDP
1: function F L O WTY P E(X , thresholds, max_depth)
2: markers← C O L U M NNA M E S(X )
3: n_rows← L E N(X )
4: root← O N E S(n_rows)
5: counts← lastLevel← D I C T()
6: counts[""]← n_rows
7: lastLevel[""]← root
8: for all i ∈ 1...max_depth do
9: currentLevel← D I C T()

10: for all phenotype, population ∈ currentLevel.items() do
11: for all marker /∈ phenotype do
12: populations ← G E T PO P U L AT I O N S(phenotype, population,

marker)
13: currentLevel.add(populations)
14: end for
15: end for
16: counts.add(P O P U L AT I O NCO U N T S(currentLevel))
17: lastLevel← currentLevel
18: end for
19: return counts
20: end function

In the above algorithm, line 12 calculates all the populations for adding a
marker to the cell population of a phenotype with all the possibilities with dif-
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ferent given thresholds as shown in Formula 3.8. Line 16 calculates the number
of cells in those populations and adds them to the output counts.

Results and Discussion

We evaluated flowType-DP against flowType-BF on a 10-marker dataset available
from Flow Repository (ID FR-FCM-ZZZK) [2]. flowType-DP showed a substantial
speedup over flowType-BF, which increases exponentially with the number of
cells and markers. For example, at 106 cells and 10 markers, flowType-DP is
14 times faster (see Fig. 3.14a and b). Comparison on larger datasets was not
possible, due to the limitations of flowType-BF.

Figure 3.14: a-b. Run time comparison of flowType-DP to flowType-BF in
terms of number of cells (a) and number of markers (b). c-d. Possible thresh-
olds for marker combinations using flowType-DP for typical mass cytometry
data (c) and polychromatic flow cytometry data (d). e-f. Three/four-partition
flowType-generated, RchyOptimyx-visualized cell type hierarchy on a bone
marrow sample from a patient with AML. Cell population identification strategy
used for SSC and CD45, with the CD34-enriched subset highlighted (e). Rchy-
Optimyx analysis showing CD34 enrichment (f).

We also computed the limits for k on a hypothetical machine with 12GB
of RAM for samples representative of mass cytometry (Fig. 3.14c) and poly-
chromatic flow cytometry (Fig. 3.14d), both of which would be intractable for
flowType-BF. flowType and RchyOptimyx are now able, within the memory of a
common workstation (12GB), to analyze 34-marker data.

Finally, to demonstrate the importance of several partitions per marker, we
applied flowType and RchyOptimyx to an acute myeloid leukemia sample from
Flow Repository (ID FR-FCM-ZZYA) (Fig. 3.14e-f). CD34 is a stem-cell marker
typically expressed on AML blast cells. These blasts are also known to have dimly
positive CD45 expression and low SSC [150]. By partitioning CD45 and SSC into
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four and three partitions, and naively running flowType and RchyOptimyx to
search for CD34-enriched cell types, we were able to find that the SSClowCD45dim

cell type had a high proportion of CD34+ cells, as expected. This would not have
been possible with only two partitions for each of CD45 and SSC.

3.3 Lymphoma Diagnosis Quality Checking

Pathologists follow certain processes to diagnose cancer cases which can be
imperfect and subjective. Also, since cancer is a heterogeneous disease and the
cells from different parts of the same tumor might show different characteristics,
the diagnosis may be inaccurate or unrepresentative of the whole tumor. As a
result, pathologists do not always agree on the diagnosis, and in some cases
a consortium of doctors is required to get a more reliable diagnosis. In order
to improve this process, hospitals go through routine quality checking on the
past diagnoses looking for potential mistakes in the hindsight. However, due to
limited amount or resources, this process can be done only for a small fraction
of all the patients. Here we develop a pipeline to assert candidate cases to be
checked in this QC process. We also interpret our models to propose potential
reasons for these cases being tagged.

3.3.1 Introduction

We have designed and developed two methods flowType and RchyOptimyx in
this chapter. The flowType method extracts cell populations as features from
flow cytometry data, and then, a method such as ROC-AUC scores those features.
Finally RchyOptimyx summarizes and visualizes important cell populations of
the data.

Here our goal is to extend the method and create a framework for diagnosis
quality checking purposes, i.e. to report samples that might be misdiagnosed or
require further investigation. For this, we first classify the given samples into two
groups according to their diagnosed label; then for each sample, we train our
model using all samples except the selected one, and check how much our model
agrees with the given diagnosis label. This scheme is also known as leave one out
cross validation (Section 2.1.2). At the end, taking into account the confidence
of our model for each prediction, we report the difference between the given
labels and our predicted labels, and samples with the most difference between
their predicted label and given label are candidates for further investigation by
the pathologist/oncologist.
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3.3.2 Materials and Methods

Flow Cytometry Data

Our data includes samples from Diffuse large B-cell lymphoma (DLBCL) and
Follicular Lymphoma (FL) patients. Table 3.2 shows a summary of the cohort.

Diagnosis Label Count
FL 49

DLBCL 22
Sum 71

Table 3.2: Number of samples belonging to each diagnosis label

The samples the cohort were analyzed using three sets of 8 markers in three
different tubes using an 8-color capable flow cytometry machine. We include
forward and side scatter values to the analysis, and treat them as biomarkers.
Therefore each tube gives us a 10 dimensional vector for each patient. Table 3.3
presents markers on each tube.

Tube Markers

Tube 1
FS, SS, polyKappa, polyLambda, CD5, CD10,
CD11c, CD20, CD3, CD19

Tube 2
FS, SS, FMC-7, CD103, CD5, CD38, CD23,
CD25, CD19, CD3

Tube 3
FS, SS, CD57, CD7, CD5, CD2, CD56, CD8,
CD3, CD4

Table 3.3: Combination of markers in three tubes. Markers essential to differen-
tiate main cell types (i.e. CD3 and CD 5) are present in all tubes.

Cell Population Identification and Preprocessing

In this phase, we first identify cell populations on a single marker level using
k-means clustering method. Then we use flowType to identify cell populations
using all marker combinations, and after filtering out very rare cell populations,
we construct a matrix in which each row corresponds to a sample and each
column corresponds to a cell population. At the end we normalize each column
of the constructed data matrix.

We assume each marker divides cells into two populations, positive and
negative. For each marker, a k-means clustering method with k = 2 automatically
clusters cells into two groups. The group with a higher value of the corresponding
marker is our positive, and the other group is our negative population with
regard to the marker. A threshold right in the middle of the two groups with
the same euclidean distance from the two cluster centers, determines the two
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corresponding populations. For example, if C D4 is the marker, then C D4− and
C D4+ represent cells bellow and above the threshold respectively.

Then flowType counts the number of cells for each possible population con-
sidering determined thresholds. As the next step, we normalize these cell counts
dividing them by total cell count to derive proportion of cells in each area. Hav-
ing M markers, we detect 3M cell populations (section 3.2.1), and put them
in a matrix, having one row per sample and 3M columns corresponding to the
cell populations. At the end we normalize each column of the resulting matrix
by estimating each column’s mean (µi) and standard deviation (σi), and then
transform its values (x) according to Formula 3.9:

x t :=
x −µi

σi
(3.9)

For the purpose of diagnosis, we are interested mostly in cell populations that
on average have more than only a few cells per sample. Therefore we discard
cell populations which have a median value less than 0.05% of total cell count.
We performed this preprocessing for each tube leading to three matrices.

Sample Classification

We compare classification performance of several methods, which include sup-
port vector machines in three variants (section 2.1.4), gradient boosting classi-
fier [52], and a method which performed well in a previous benchmark compe-
tition (FlowCAP), hereafter referred to as team215 [3].

In order to assess the performance of the above methods, we perform a leave
one out cross validation on the data. This strategy leaves one sample out at a
time, trains the model on the rest of the data, and then records the output of
the trained model on the sample which was left out. Having N samples, this
process is repeated N times. These recorded values are used to measure the
overall performance of methods and to find samples which are valued for further
investigations, as explained later.

Except for method team21, we need to find the appropriate hyperparame-
ters for the other models. These are the parameters which we have to define
before starting the training process. For each method, we find the best set of
hyperparameters using a 10-fold cross validation; hence a nested cross vali-
dation scheme. Table 3.4 lists the search space of these parameters for their
corresponding method.

As shown in Table 3.5, Gradient Boosting Classifier, l1-SVM-linear, and l2-
SVM-linear all have comparable performances. Among these three methods, we
choose l2-SVM-linear for the next steps for two reasons: proper handling of
imbalanced data, and interpretability of its coefficient vector as features’ impor-
tance. We choose l2-SVM-linear over l1-SVM-linear because l1 penalized SVM

5http://www.ehu.eus/biologiacomputacional/team21_vilar
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Method Parameter Range

max used features 5, 10,15
Gradient Boosting Classifier max tree depth 1, 2,3

estimator count 5,20, 50,100, 200

C 2−10:10

l2-SVM kernels rbf, linear
gamma (rbf kernel only) 2−10:10

l1-SVM linear kernel C 2−10:10

l2-SVM linear kernel C 2−10:10

Table 3.4: Hyperparameter variables of each method and their corresponding
tested value range.

Method ROC AUC
team21 0.5

Gradient Boosting Classifier 0.84
l2-SVM 0.76

l1-SVM linear kernel 0.84
l2-SVM linear kernel 0.83

Table 3.5: Method Performances - SVM: Support Vector Machine, {l1, l2}-SVM-
linear: SVMs with a linear kernel which are penalized using an l1 or an l2 term
respectively.

tends to be very sparse, meaning that it chooses only a few features as predic-
tors. This results in usually choosing features that correspond to fewer cells and
ignoring more abondant cell populations.

Now we compute the difference between the output of the l2-SVM-linear
method, and the desired output, i.e. −1 and 1. Note that the models’ outputs are
real values, and the sign of the output determines the predicted class. Since the
SVM’s output shows the distance of the input from its decision boundaries, and
the further away the input sample from the boundary, the more confident the
model is in its decision, the output can be interpreted as the model’s confidence.
But there is a catch: these values are computed using different models, and
different scaling factors in these models means that the calculated real values
cannot be directly compared between models. To fix this issue, we normalize
decision values using the mean and variance of the outputs of the models on
their corresponding training data. Now we can use the real values not only to
find samples that are simply misclassified, but also to sort them according to the
models’ confidence. As a result, a good candidate sample to be investigated is
one which is misclassified and that the model is confident in its classification.
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Handling Tubes

Oncologists usually design the combination of markers in each tube such that
each tube focuses on a different category of cell types or disease cubclasses.
Therefore we treat tubes separately and train our models on each tube. Then
we take the average output of the models on each tube and take the resulting
value as the final prediction for the given sample.

Table 3.6 shows a few entries of the resulting table. The first three entries
show an example of samples our method has misclassified, and the last two
entries are two samples for which our method agrees with their corresponding
reported diagnosis. Figure 3.15 shows the distribution of the average normalized
prediction values for the two classes.

Sample ID Diagnosis Target Value Average Normalized Predicted Value
F09-0939 FL3 1 -0.81
F09-1578 FL12 1 -0.72
F09-0628 DLBCL -1 0.50
F09-0578 FL12 1 1.65
F09-1471 DLBCL -1 1.73

Table 3.6: A sample of prediction values compared to target values. The target
value is −1 for DLBCL samples and 1 for FL samples. Average prediction value
shows the average output of l2-SVM-linear method over three tubes.
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Figure 3.15: Distribution of average normalized prediction values for the two
classes (DLBCL and FL).
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Interpretation and Visualization

A support vector machine with a linear kernel, uses a linear combination of
input features to classify samples. Because we transformed and normalized input
features before training our models, it is possible to directly interpret feature
weights assigned by the model as importance of features.

Using a leave-one-out cross-validation scheme over n samples, means we
have n different trained models for each tube, given a specific method. Therefore
for every tube, we have n different feature weights. We take the absolute value
of the average feature weights over these n models as our final feature score.
RchyOptimyx then uses these feature scores to visualize features with higher
scores. Figure 3.16 shows the result of this analysis on the cohort.

Now we present a post-analysis of our method for individual samples as
mentioned before. Our goal is to give insight about why our models have mis-
classified an individual sample. An oncologist/pathologist can use this part of
the analysis as a hint for further investigation on the patient’s data.

As already mentioned, we follow a leave one out cross validation scheme.
This means we train a model for each sample x i , using all samples but x i . Let this
model be referred to as Mi . Then we use the weight vector of Mi as an indicator
of feature significance. Now let the set Fi,k be the set of k features with largest
absolute values in the weight vector of Mi . Then for each feature f j in Fi,k:

• Let PDLBC L, f j
:= {Pf j ,s|s ∈ DLBC L}

• Let PF L, f j
:= {Pf j ,s|s ∈ F L}

where Pf j ,s is the cell count of the corresponding feature f j for sample s,
and DLBC L and F L represent DLBCL diagnosed and FL diagnosed samples
respectively. Then we draw the density plots corresponding to the two sets
PDLBC L, f j

and PDLBC L, f j
over each other, and a vertical line indicating f j of Mi .

Figure 3.17 shows an example result of this analysis.
Whenever there is a misclassification, it means there are features for which,

the given sample lays where the opposite class has higher density. For a given
misclassified sample x i, and its corresponding set Fi,k, we draw the explained
plots, and also their corresponding scatter plot of the cell population, which is
similar to the result of a manual gating. Manual gating is a technique in flow-
cytometry analysis to identify certain cell populations. It is an iterative process,
and at each step the data is plotted using two chosen markers (a 2-D projection
of the data), and the cells in a manually chosen area are selected for the next
step. This process is often used by oncologists to identify certain cell populations
and hence a specific diagnosis. To give the oncologists a familiar representation
of our detected cell populations, we provide a scatter plot of them as well.

Such a process results in plots shown in Figures 3.18 and 3.19. Figure 3.18
shows the analysis for three cell populations of an FL diagnosed sample. The
three cell populations include:
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Figure 3.16: RchyOptimyx analysis shows important features classifying the two
subtypes according to this cohort, as well as contribution of each marker to the
estimated importance.

• SS+pol y Lambda+C D20−C D3+

• C D103+C D5+C D38−C D23+C D19+

• FS+C D7−C D5+C D2+C D3+C D4+

As shown on the left side of these plots, for all the three cell populations,
the cell counts of the corresponding cell populations is more evidence for the
sample being a DLBCL sample rather than an FL sample based on our models.
The corresponding cells are shown on the right side of the density plots. Simi-
larly, Figure 3.19 shows the analysis for a DLBCL diagnosed sample, and three
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Figure 3.17: Sample density analysis: the X axis shows the cell count, and Y
axis shows the density of samples with the corresponding cell count. Yellow and
blue density plots represent FL and DLBCL samples respectively. The vertical
line shows the cell count of the sample under study, and its color represents its
diagnosed class, i.e. FL in this case.

cell populations contributing to our model labeling it as FL. These three cell
populations are:

• SS+pol y Lambda−C D5−C D11c+C D20−

• SS+F MC − 7+C D103+C D38−C D25+C D19−

• SS−C D57+C D7−C D5+C D8+

It is important to note that these cell populations are not the only factor in
misclassification, but rather important contributors to it.

3.3.3 Summary

In this work we developed an interpretable method to classify flow cytometry
samples, which can be used to enhance the internal quality assurance process
of cancer hospitals and clinics. Although we further analyzed only misclassified
samples, if the resources available to a QA team allow, they can continue to
samples which are classified correctly, but with a lower confidence score. One
can of course investigate the effectiveness of methods other than an l2-SVM
with a linear kernel, as long as they can interpret the method and get values
resembling importance of features from it. Also, as mentioned before, we divide
cells into two groups according to each biomarker. We also showed in this chapter
that this is not a constraint and cells can be divided into more than two groups
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Figure 3.18: Density and scatter plots of the selected immunophenotypes for
the sample F09-0939. The left column shows the kernel densities of observed
number of cells of the corresponding immunophenotype in FL vs. DLBCL, and
the number of cells of that same immunophenotype for the given sample. The
right column shows the scatter plots of those selected cell populations.
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Figure 3.19: Density and scatter plots of the selected immunophenotypes for
the sample F09-0628. The left column shows the kernel densities of observed
number of cells of the corresponding immunophenotype in FL vs. DLBCL, and
the number of cells of that same immunophenotype for the given sample. The
right column shows the scatter plots of those selected cell populations.
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if necessary. This might be important in some special cases where a certain
biomarker usually divides into more than two groups.

3.4 Contribution

Since I co-first authored the articles presented in sections 3.2.2 [4] and 3.2.3 [104],
they are included in this chapter with minor modifications from the original ar-
ticle, as a whole. However, for the purpose of this thesis, it is only fair for me to
take credit only for the parts I was directly and heavily involved with.

In Section 3.2.2 my main contribution was to model the problem on graphs
and solve it using a multiple k-shortest paths algorithm. I also took an existing
implementation of the algorithm and wrote an R wrapper for it after fixing some
pre-existing issues of that implementation. This resulted in two packages, one
in CRAN and one Bioconductor.

My contribution in Section 3.2.3 was to solve the problem using a dynamic
algorithm, and its initial implementation in C++. The implementation then
replaced the old implementation in the flowType Bioconductor repository.



“All models are wrong; some models are useful.”

- George Box

4
Adaptive Learning

In contrast to Chapter 3 where we focused on data readily available in clinics,
in this chapter we focus on more experimental data and hypotheses relevant
to them. Specifically, in terms of data, we mostly use DNA methylation data
(Section 2.3.7) and we partly explore the idea that not only DNA mutations are
a factor in cancer, but epigenetic markers such as methyl components are also
predictive of cancer, suggesting a potential causal relationship between epige-
netic markers and cancer. Another main hypothesis we follow in this chapter is
whether and how to design methods which adapt to every given sample. We call
such methods adaptive, in the sense that they adapt to each given new input.

Like the methods introduced in the previous chapter, we do our best to in-
terpret our methods to give biological insight to the biologists and pathologists.
In this chapter we first discuss some common issues with regard to cancer and
cancer data, showing the need for adaptive solutions in diagnostics. Then we
present an extended version of a previously published article in Section 4.2 [67].
Finally we present an idea initially designed and developed with my collabora-
tion, and then was continued more concretely by other members of the team
after me (Section 4.3).

4.1 Challenges in Cancer Data

In this chapter we try to tackle some challenges which tend to occur while an-
alyzing cancer data. Before we start with the methods, here we explain those
challenges, which include noise, batch effects, and cancer (tumor) heterogeneity.
The first two (noise and batch effects) are not specific to cancer and are chal-
lenges related to the nature of the data and the way the data is collected. In

73
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this context, by cancer data we mean the data generated in labs using experi-
ments on biopsies from cancer patients. These experiments include but are not
limited to gene expression profiling such as microarrays [156], DNA and RNA
sequencing data, epigenomics data such as methylation profiles, etc.

Noise in the data is due to two main different sources. One is the fact that the
data is generated through a biochemical process and factors such as impurity or
room temperature may affect the results [118]. Another important factor is that
biochemical processes are stochastic in nature which leads to potentially getting
different results running the same experiment on the same sample twice [73,
72].

Batch effects, on the other hand, are the result of the experiment being run
under different setups [112]. This includes the chemical reagents used in exper-
iments. A lab, for instance, may order a binding agent with a higher sensitivity
once the old batch is running out. Or different labs may be using markers manu-
factured by different providers. Machine calibration is another common factor for
slightly different measured values. Although these effects are consistent within
a batch, a dataset usually includes data from different batches, affecting the
accuracy and at times the validity of the analysis. For instance, two different
labs may be providing the data for two different subclasses of a disease, each
providing the data for one subclass; and the method perfectly classifying the
two subclasses while in reality only detecting an effect in the data which is due
to batch effects.

Another major challenge stems from the heterogeneity of cancer and cancer
tumors [89]. Cancer cells are prone to a much higher rate of mutation than
healthy cells and as a result, the cells in a single tumor may have varying gene
expression profiles. This means taking two separate biopsies from the same
tumor may result in different gene expression profiles which then may affect
the analysis. However, since cancer can start from one single cell, the cells of a
tumor tend to share the same genetic background driving the cancer and many
methods, including ours, try to detect those factors.

Taking the above challenges into account, our goal is to come up with meth-
ods detecting these issues based on the observed information in a single given
sample data. We propose two approaches, both of which try to adapt them-
selves differently to each given data point. We exploit the fact that our input
features have genetic background and that genes and proteins work in complex
networks, hence are dependent and correlated random variables. We extract pat-
terns which occur between the input features by looking at the training dataset,
and use those expected patterns to identify the features of a given new sample
data whose values are less affected by the abovementioned factors, and rely
mostly on those features to give an output prediction.

In the remaining of this chapter, we first investigate a pre-existing kernel
based method which takes into account a protein-protein interaction network
as an auxiliary input. Unfortunately our conclusion is that the method cannot
achieve its promise on real data. Then we continue with proposing two other
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methods in Sections 4.2 and 4.3. Section 4.2 is an extended version of our
existing published article [67].

4.2 RatBoost

Over the past few decades, biology has transformed into a high throughput re-
search field, both in terms of the number of different measurement techniques as
well as the amount of variables measured by each technique (e.g., from Sanger
sequencing to deep sequencing), and is more and more targeted to individual
cells [131]. This has led to an unprecedented growth of biological information.
Consequently, techniques that can help researchers find important insights into
the data are becoming increasingly important. Predicting survival of cancer pa-
tients based on measurements from microarray experiments has been a field
of great interest, but there is often very little overlap between the important
genes or biomarkers identified by different studies [41]. Several reasons have
been suggested to explain these findings (e.g., heterogeneity of cancer samples
or insufficient sample size). Attempts have been made to incorporate additional
information from other sources, such as protein-protein interaction (PPI) net-
works, to make the predictions more robust [30]. One of the latest approaches
integrates network and expression data by introducing a network-induced clas-
sification kernel (NICK) [82]. Although this method exhibits state-of-the-art
performance, the way it penalizes genes that are connected to not-predictive
genes can result in selection of isolated features as important features for predic-
tion. We observed this bias of the method towards isolated nodes on additional
experiments on synthesized data as shown in Section 4.2. Another issue is that
in PPI networks, genes or proteins, which have been known to researchers longer
and are well-known, are studied more and therefore have more edges connected
to them; whereas less well-known genes and proteins are in sparser areas of
the network. This bias might further affect the judgment of methods like NICK
that use a PPI network as an input. Consequently, we rely on the fact that such
networks exist between genes and proteins, but we do not take them as an input.
If there is a dependency between input features, which is the case in many bio-
logical settings, our method can benefit from this effect. Otherwise, it is reduced
to a standard ensemble method. Furthermore, a central assumption underlying
many methods is that all data are drawn from the same unknown underlying dis-
tribution. This may not be the case, especially for heterogeneous cancer samples,
and in particular not for all measured genes.

In this work, we introduce a method that is aware of this potential bias
and utilizes an estimate of the differences during the generation of the final
prediction method. For this, we introduce a set of sparse classifiers based on
l1-SVMs [21], where each set of features used by one classifier is disjoint from
the selected feature set of any other classifier. Furthermore, for each feature
chosen by one of the classifiers, we introduce a regression model that uses ad-
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ditional features and is based on Gaussian process regression. These regression
models are then used to estimate how predictable the features of each classifier
are for each test sample. This information can then be used to find a confidence
weighting of the classifiers, i.e. up-weighting classifiers with high confidence and
down-weighting classifiers with lower confidence, for each test sample. Schapire
and Singer show that incorporating confidences of classifiers can improve the
performance of an ensemble method [127]. However, in their setting, confi-
dences of classifiers are estimated using the training data and are thus fixed
for all test samples, whereas in our setting, we estimate confidences of individ-
ual classifiers per given test sample. Another related work includes mixture of
experts, in which the model trains a set of neural networks and uses a gating
network to set the weights of the networks [66]. One issue with their method
is that neural networks with lower performance will not be optimized as much
as networks with better performance on training data since the gate module
down-weights the error propagated back to them. Also training of the gating
network is interconnected with the neural network experts and afftects training
of those modules. Our method, in contrast, trains each module independently us-
ing all training samples, and their reliability does not affect how they are trained.
Bayesian hierarchical mixtures of experts takes a more similar approach, but the
method is complex, and it has a high time complexity to train the architecture
of the hierarchy [18].

We show that this method exhibits state-of-the-art performance for different
cancer types, with gene expression or methylation datasets as the input. Since
the weighting of the classifiers is customized for each test sample, the estimated
confidences can offer insights into the specific characteristics of each individual’s
cancer. To facilitate interpretation of the model, we then create a visualization
of the important genes found through this analysis for each test sample. Addi-
tionally, we show how the important genes of the training set can be found using
our learning method and cross validation.

Our idea might resemble ensemble feature selection, which involves aggre-
gating multiple feature scores from several scoring mechanisms. These scor-
ing mechanisms vary from being several different methods, to being the same
method applied to different parts of the data such as a random cross validation
scheme [126]. This idea has been studied further by other researchers and they
introduced two different methods to aggregate scores from different models.
They use an ensemble of support vector machines which on its own has been
used to select features in a given dataset in other works [59]. Although we use
an ensemble of support vector machines, our goal is not to give a ranking to
features of the dataset, rather to find multiple parsimonious gene sets that are
predictive of the outcome on their own, and use all of them in parallel to predict
the outcome.

Similar to this approach, in another work, iRDA uses a different approach
and can report multiple parsimonious gene sets [79]. One significant difference
between iRDA and our work is that we have an embedded prediction approach
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using these sets, which iRDA lacks. Furthermore, gene sets are somehow ordered
in iRDA according to their "strength", and within each set, redundant genes are
removed. In our model redundant genes can be included in two different ways.
One is within different individual learners. For example, if genes g1 and g2 are
both strong but redundant, individual learner 1 might include g1, and individual
learner 2 might include g2. Also, if there are more redundant or related genes in
the gene pool, they will be used to estimate how reliable g1 and g2 are. Therefore
instead of dismissing them, we exploit the fact that they exist.

Related to sorting genes and testing for significance of a reported gene set,
Gene Set Enrichment Analysis (GSEA) and its modifications are a commonly used
tool [133, 137]. GSEA based methods rank genes depending on how much they
relate to the outcome. The choice of relationship is rather free and can vary from
Pearson correlation to mutual information. Then for a given gene set, a p-value is
calculated by estimating how often a random gene set appears before the given
set on the list. There have been several modifications and improvements to the
method [98, 38]. Although it is true that GSEA is used to assess the relevance or
importance of a given set to the outcome, we need to remember that a particular
gene set might consist of genes that are not necessarily important on their own,
but are predictive once considered together. Our method does not consider genes
individually whereas GSEA does to sort the genes in the first place. Therefore
we believe GSEA based methods are not suitable to assess how well our method
performs.

Analysis of NICK

Lavi, et al. modified the standard SVM formulation (Formula 2.12) as shown in
Formula 4.1 [82]. This formulation adds a penalty function to penalize weight
differences if their corresponding features are connected in the given graph. The
intuition behind the idea is that if features are connected in the network, their
weight should be somehow similar.

min
w,w0

(

1
2
‖w‖2 +

1
2
β
∑

( j,k)∈E

(w j −wk)
2

)

s.t.:

∀i ∈ {1, · · · , n} : (wxi +w0)yi ≥ 1 (4.1)

In the above formulation, E is the set of edges of the given network. They
also show how to derive the dual of the above optimization problem as shown
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in Formula 4.2:

max
α

(

n
∑

i=1

αi −
1
2

n
∑

i=1

n
∑

j=1

αiα j yi y j(x
T
i L)(LT x j)

)

LLT = (I+ βB)−1

s.t.:

∀i ∈ {1, · · · , n} :
n
∑

i=1

αi yi = 0

∀i ∈ {1, · · · , n} : αi ≥ 0

Laplacian matrix:

B= D−A (4.2)

In Formula 4.2, D is a diagonal matrix having degrees of nodes on its main
diagonal, A is the adjacency matrix, and B is called the graph Laplacian matrix.
The benefit of the above formulation is that the input vectors can be transformed
using the matrix L, which itself comes from the Cholesky decomposition of the
matrix (I+βB)−1. The parameter β in both Formulea 4.1 and 4.2 sets how much
we penalize weight differences for connected vertices.

After training the model on the data using the above formulation, we can
calculate back the vector w using Formula 4.3. We use the vector w to investigate
which nodes and pairs of nodes are given a relatively high value compared to
other features.

w= (I+ βB)−1
n
∑

i=1

αi yixi (4.3)

We then use calculated feature weights in the vector w of both normal and
modified SVM (NICK) to show which feature pairs are selected as important in
the model, as shown step by step bellow. Please note that NICK transforms the
data using the matrix L, and then solves a normal SVM on the transformed data,
and therefore in the following whenever we refer to transformed data, it refers
to the NICK method.

1. Solve SVM problem for original and transformed data.

2. Calculate w for both models.

3. Compute for each pair of nodes, for each model:

Score(i, j) =
|wi|+ |w j|

2
× e−max(dG(i, j),1) (4.4)
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4. Report pairs with highest scores for both trained models.

In order to evaluate the method, we need to synthesize some data because
in the real data it is not clear which features are the true discriminating features.
For this purpose, we randomly generate a graph, and assign nodes to three
different classes. Nodes in this graph represent genes/features in the dataset.
Each feature is a random variable sampled from a Gaussian distribution. If
the node is independent of the target class, it gets its value from a Gaussian
distribution regardless of the target class. If the feature is selected as a signal
node, then it takes its value from two different Gaussian distributions that differ
in their mean, depending on the target class of the sample. Some of these signal
features are connected only to random features, and some are connected to
other signal nodes. We call connected signal features a pathway. The generated
graph and an example of selected feature nodes are shown in Figure 4.1.

Figure 4.1: Blue: random gene, Orange: Signal node being a member of a path-
way of signal nodes, Yellow: A lonely signal node

To generate our synthesized dataset, for each data point, and each feature
of that data point, we first assign a class to that data point, and according to the
assigned class, we sample from the corresponding distribution, according to the
following functions:

• Signal nodes (genes): f (n) =

�

N(−µ, 1) if n is in class 1
N(µ, 1) if n is in class 2

• Random nodes (non-signal genes): f (n) = N(0,1)

We perform three experiments. Each experiment uses the same graph struc-
ture, but has a different set of signal nodes. First we put pathway nodes on the
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boundaries of the graph, then we move one pathway deep into the graph struc-
ture, and in the last experiment all pathway nodes are inside the graph structure.
These three scenarios are shown in Figures 4.2, 4.3, and 4.4 respectively.

Figure 4.2(b, c) presents node pairs with highest assigned scores as calcu-
lated in Formula 4.4, comparing normal SVM and NICK. Orange and yellow
colored cells are pathway and lonely signal nodes in the graph accordingly. This
experiment shows that NICK discovers signal gene pairs more effectively than a
normal SVM, using the graph structure.

Figure 4.3 shows the experiment, in which one of the pathways is located
inside the network. As illustrated in Figure 4.3(b, c), NICK mostly chooses the
pathway nodes located on the boundaries of the network.

Figure 4.4 illustrates the fact that non-signal features down-weight and pe-
nalize signal features when connected to them. In this example, a normal SVM
detects more signal nodes than NICK does.

We used the network provided in [9] for NICK to classify Van ’t Veer data
[146]. As expected, we realize that NICK prefers nodes outside the network to
the nodes that are deep into the given network. This is shown in Figure 4.5,
comparing preferred nodes in a normal SVM and NICK. The first column is the
gene ID, and the second is its corresponding degree in the given graph.

These experiments all together, show how such a modification in SVM opti-
mization problem gives a bias towards genes that are not hubs. This is problem-
atic considering many of those hubs in the network are partially, if not mostly,
hubs due to the fact that they were discovered earlier and have been investigated
the most. Therefore those are the most well-known genes, which in many cases
happen to be biologically most relevant genes. A method such as NICK tends to
penalized them because they are connected to many genes that are irrelevant to
the disease in study. This experiment is our motivation to use the fact that such
a biological network exists, but not to use it directly in our method.

4.2.1 Methods

Materials

Data Sources: In this article, our method is applied to two different data types:
gene expression data and DNA methylation data, which we retrieved from The
Cancer Genome Atlas (TCGA) [142]. TCGA is a joint effort of the National Can-
cer Institute and the National Human Genome Research Institute to advance the
understanding of the molecular basis of cancer. They provide access to the dif-
ferent measurements from cancer samples that have been analyzed to external
researchers. Samples are categorized according to diagnosed cancer from which
we use the following groups:

• Acute Myeloid Leukemia (LAML) [144]: At the time of writing, the dataset
includes 200 samples. 194 samples contain methylation data and we use
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(a) Corresponding network

Original

X196 X196 X53 X53
X233 X233 X39 X39
X88 X88 X196 X133

X116 X116 X127 X127
X197 X197 X127 X148
X148 X148 X150 X150
X148 X273 X116 X133
X160 X160 X96 X96
X95 X95 X273 X273
X88 X115 X40 X40
X53 X8 X53 X164

X195 X195 X56 X56
(b) Discovered nodes (no NICK)

Transformed

X196 X196 X233 X233
X196 X133 X133 X133
X133 X116 X116 X116
X95 X95 X240 X240
X39 X39 X240 X243
X59 X59 X106 X106

X243 X243 X106 X168
X114 X114 X168 X168
X243 X150 X56 X56
X39 X47 X298 X298

X150 X150 X247 X247
X125 X125 X83 X83

(c) Discovered nodes (NICK)

AUC (Original): 60.6
AUC (Transformed): 62.4
wc p-value (paired): 5.669e-09

(d) Performance measures

Figure 4.2: An easy example: here all signal pathways are on the border of the
network.
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(a) Corresponding network

Original

X190 X190 X104 X104
X233 X233 X190 X272
X277 X277 X88 X88
X190 X127 X165 X165
X272 X272 X272 X22
X106 X106 X165 X96
X150 X150 X250 X250
X88 X215 X22 X22
X51 X51 X28 X28
X73 X73 X35 X35
X162 X162 X113 X113
X112 X112 X277 X102

(b) Discovered nodes (no NICK)

Transformed

X233 X233 X190 X190
X112 X112 X240 X240
X190 X272 X240 X243
X86 X86 X243 X243
X243 X150 X190 X127
X150 X150 X272 X272
X246 X246 X298 X298
X106 X106 X125 X125
X35 X35 X125 X82
X247 X247 X272 X69
X272 X22 X82 X82
X100 X100 X257 X257

(c) Discovered nodes (NICK)

AUC (Original): 60.1
AUC (Transformed): 61.5
wc p-value (paired): 1.383e-06

(d) Performance measures

Figure 4.3: A medium example: here some signal pathways are on the border
of the network.
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(a) Corresponding network

Original

X190 X190 X101 X101
X233 X233 X190 X272
X88 X88 X297 X297

X190 X127 X93 X93
X26 X26 X138 X138

X272 X272 X272 X22
X101 X41 X123 X123
X22 X22 X101 X198

X146 X146 X228 X228
X278 X278 X72 X72
X88 X115 X96 X96

X148 X148 X112 X112
(b) Discovered nodes (no NICK)

Transformed

X233 X233 X190 X190
X112 X112 X190 X272
X86 X86 X190 X127

X272 X272 X272 X205
X205 X205 X146 X146
X146 X68 X68 X68
X298 X298 X272 X22
X90 X90 X127 X127

X100 X100 X272 X69
X297 X297 X72 X72
X127 X148 X155 X155
X247 X247 X196 X196

(c) Discovered nodes (NICK)

AUC (Original): 60.2
AUC (Transformed): 62.5
wc p-value (paired): 8.151e-13

(d) Performance measures

Figure 4.4: A hard example: here none of the signal pathways are on the border
of the network.
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Original

Node Degree
85453 12
6605 98
56886 26
10640 16
8817 152
56894 28
5733 150
57758 8
7532 86
51 172

7566 16
3267 56
89953 4
5713 126
5193 32
5365 70
10874 132
5982 172
92140 20
332 328

(a) Discovered nodes (no
NICK)

NICK

Node Degree
9917 0

84279 0
197370 0
51143 0
58475 0
55585 0
25949 0
54892 0
126695 0
57168 0
10456 0
148223 0
9742 0

253558 0
342527 0
10175 0
83930 0
57035 0
145482 0
57465 0

(b) Discovered nodes
(NICK)

Figure 4.5: Comparison of selected nodes on Van ’t Veer data [146] using NICK
and a normal SVM.

the part of the data measured by JHU-USC HumanMethylation450 arrays.
173 samples contain mRNA data measured by HG-U133 arrays. In this
article the methylation data is referred to as TCGA-LAML. Among available
characteristics of samples, “risk group” and “vital status” are chosen as
target classes. These labels show the aggressiveness of the disease. In
our analysis, regarding risk group, {favorable} and {intermediate/normal,
poor} samples form our two group, and in the analysis of vital status,
{alive} and {dead} samples form our two groups of samples.

• Breast invasive carcinoma (BRCA) [143]: This dataset includes 993 samples
with clinical data, and we use the methylation data component measured
by JHU-USC HumanMethylation450 arrays. Only very few samples in this
dataset are indicated as having metastasized (8 samples). Hence the data
are analyzed according to “tumor size”, “affected nearby lymph nodes”,
“stage”, and “estrogen receptor”. Estrogen receptor was shown to be an
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important factor in prognosis [76], and along with other factors directly
affects the decision for therapy [57, 99]. For tumor size {T1, T2} samples
are one category and {T3, T4} the other category; in order to analyze
affected nearby lymph nodes, {N0} is compared to {N1, N2, N3}; stage
is analyzed as having {stage I, stage II} vs. {stage III} samples. Estrogen
receptor status of samples is either positive or negative, and they form our
two classes.

Data Preprocessing: To prepare gene expression data for analysis, microar-
ray probes are mapped to their respective gene. If there are multiple probes for
a gene, the median reported gene expression value of those probes is adopted
as the gene expression for that gene.

Preparing the methylation data, we use the nearby gene for each methylation
site available for each sample and each methylation site. The median beta value
of methylation sites mapped to each gene is taken as the methylation value of
the corresponding gene. In this process only methylation sites located on the
promoter region of a gene are considered and others are discarded.

Learning a Mixture of Disjoint Classifiers

When dealing with cancer, we need to consider the fact that tumors of the same
type of cancer can be very different in nature and they are usually classified
as different cancer subtypes. In fact, even one single tumor can be very hetero-
geneous [64]. This means that the malignancies causing the cancer to happen
are genetically different between subtypes, or even within subtypes, and it is
possible to have multiple underlying cellular processes causing a particular can-
cer. Also it is important to note that the nature of our given data is such that
the input features are properties measured from genes, e.g. gene expression or
methylation values, and these variables are correlated and statistically depen-
dent on each other. Our method tries to exploit these properties of the problem
to infer an interpretable model with state-of-the-art performance.
Our method can be characterized by the following key parts:

Training phase:

• Fit several individual classifiers to the data, in such a way that the features
of the data they use are disjoint sets.

Prediction phase:

• Calculate the prediction confidence of each individual classifier by:

– Estimating the reliability of input features of the classifier;

– Estimating the confidence of the output based on the decision values.
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• Calculate a weighted prediction label based on the individual classifier
confidences.

Properties of the Individual Classifiers: A wide variety of classifiers can
be used within our framework. One requirement is that the classifier is regular-
ized (i.e., the stronger the regularization, the less complex the model gets and
consequently the less features are used). The classifier is also required to report
the probability of its calculated output, or to give a decision value according
to which it chooses the predicted class. We use an L1 regularized SVM for this
purpose with a linear kernel [21]. The L1 regularization makes the SVM sparse,
i.e. using only a few input features, and the linear kernel allows us to infer which
features are used in the decision function of the SVM after it is fit to the data.

Training the Individual Classifiers: The model starts with no individual
classifier and an empty set of excluded features. In each step, the excluded set
of features is removed from the data, then a classifier is fit to the data. Next the
features used by the most recent trained classifier are added to the excluded set.
In the case of a linear kernel SVM, this is achieved by finding features with a
non-zero coefficient in the model. This way the features being used by classifiers
are disjoint and might represent different underlying causes of groups into which
samples are to be classified.

Combining Classifiers by Estimating Confidences of Individual Predic-
tors: Given a set of classifiers, the question is how to combine them to come up
with a joint prediction value for each test sample for which we want to predict
the output label. The intuition behind combining the classifiers is to put more
weight on classifiers that use features whose behavior is similar to the training
data. This is motivated by the fact that some parts of the test data might be-
have very differently to the training data, meaning that a classifier using these
features should have lower performance than a classifier using features that
are distributed similarly to the training data. Therefore we need to evaluate
the reliability of the input features of each individual classifier. In scenarios like
gene expression or methylation analysis, we usually have many input features.
Furthermore, many features are correlated and statistically dependent. The idea
of our new method is to build separate prediction models for each feature of
each classifier. These prediction models can then be used to obtain a confidence
for the feature in a given test sample. These confidences can then be combined
for each classifier to give a weighting of the classifiers for the given test sample.
To evaluate an observed feature f , we try to choose a few statistically dependent
features, and fit a model to predict f . To find these features, first the estimated
maximal information coefficient (MIC) of all other features with feature f is
calculated [121]. Then, features having MIC value within the top 5% or the 5
features with highest MIC with f (if the top 5% features consist of less than
5 features), are selected as predictors of f . Given a test sample, the closer the
predicted value of f is to the observed value, the more reliable it is. To quantify
this, we need to not only know the predicted value of the feature, but also a
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confidence interval for that prediction. This can be achieved using Gaussian pro-
cesses, which give the mean and variance of the posterior probability under the
condition of observed values for selected features. A weighted average of these
values gives us the overall reliability of the features of an individual classifier. A
schematic view of the trained classifier is shown in Fig. 4.6.

Figure 4.6: Schematic view of the method

In addition to the confidence in the classifier estimated by looking at the
confidences of its individual features, we also account for the confidence that
the classifier has in the prediction label of the test sample. If the method sup-
plies such a confidence value (e.g., Gaussian processes), we can directly use it.
Otherwise, we estimate it using the decision value. In our setting, the linear SVM
gives a decision value whose sign defines the predicted class. Using these values
we estimate a confidence for each individual classifier. Several approaches exist
for deriving a confidence from the decision values [83]. Whether these or other
additional methods could lead to further improvements of our method, will be
topic of further study.

More formally speaking, define X to be the set of input samples, Xs to be
the input vector of sample s, ys and ŷs to be respectively the original label and
predicted output of sample s, ∆ to be the set of individual classifiers, li to be an
individual classifier, Φli the set of input features of classifier li, li(Xs) to be the
label predicted by classifier li for sample Xs, and f to be a feature, Xs, f to be
the observed value of feature f in sample Xs, |wli ( f )| to be the absolute value
of the weight of feature f in the decision function of classifier li, and g f to be
the Gaussian process predicting feature f using feature set Φ f . Also µg f (Xs) and
σg f (Xs) are the mean and standard deviation of the posterior probability given by
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Gaussian process g f under the condition of observing values of features in Φ f ,
and µli and σli are respectively the expected mean and standard deviation of
the decision value of classifier li . Here F is the cumulative distribution function
of a standard normal distribution.

The training phase of the model is shown in Fig. 4.7, in which, N is the
number of individual learners to be included in the model, Φl is the union over
all Φli and X−Φl

is the input X after discarding all features of the set Φl . TOP is
the function which selects the maximum of the top 5 and top 5% features f ′ of
all features ordered by MIC with feature f .
Now given a test sample Xs, the estimated confidence of a feature f is:

c f (Xs) := 2 · F

�

−

�

�

�

�

�

Xs, f −µg f (Xs)

σg f (Xs)

�

�

�

�

�

�

(4.5)

Then the overall feature reliability or confidence of a classifier li is estimated as:

c1
li
(Xs) :=

∑

f ∈Φli
c f (Xs) ·

�

�wli ( f )
�

�

∑

f ∈Φli

�

�wli ( f )
�

�

(4.6)

Also the estimated output confidence of the classifier li is:

c2
li
(Xs) := 1− 2 · F

�

−
�

�

�

�

li(Xs)−µli

σli

�

�

�

�

�

(4.7)

and the final confidence of the classifier li is then:

cli (Xs) := c1
li
(Xs) · c2

li
(Xs) (4.8)

Finally, the predicted class ŷs is calculated as the sign of a weighted vote among
individual classifiers:

ŷs := sign

�
∑

li∈∆ cli (Xs) · li(Xs)
∑

li∈∆ cli (Xs)

�

(4.9)

Visualization of Model Predictions

The interpretation of the model can be understood on two different ways. First
we assume for a given training dataset, the model is trained and a new test
sample is given. For the given test sample it is possible to visualize the reliability
of each used feature in individual classifiers, as well as the overall confidence
of each individual classifier. Used features can be superimposed onto a PPI net-
work as well as their reliability and the confidence of their respective individual
classifier.
Gene expression and methylation level measurements from cancer samples are
usually very noisy. Furthermore, cancers are usually very heterogeneous. Ad-
ditionally, there might be different subgroups for each interesting group (e.g.,
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Φl ← {}

i ← 0

i < N

li ← L1-SVM(X−Φl
, y)

Φl ← Φl ∪ Φli

i ← i + 1

f ∈ Φli

Φ f ← TOP {( f ′,MIC ( f , f ′))}

g f ← GP(XΦ f
, f )

for

for

while

do

do

ΦlX y

X Φli

Figure 4.7: UML activity diagram of the training process
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cancer stage), for which the importance of the features also differs. To get a
global picture of the important features, we therefore evaluate how often certain
features are selected by the classifiers using 100 random train test partitionings
with 80% of the data for training and 20% of the data for testing. To visualize
high confidence relationships between features, we create a graph which has a
node for every chosen feature in any of the 100 train partitions in any of the
individual classifiers. The weight of an edge (s, t) is defined as the number of
times the respective features have occurred together in an individual classifier.
Then, all edges with low weights are discarded. In order to find a threshold to
prune edges according to their weights, a Gaussian kernel density estimate is fit
to the weights of the edges, and the threshold is chosen at the 90th percentile.
Nodes that have an appearance frequency higher than the threshold are labeled
by their gene names and edges having a higher weight than the threshold are
kept in the graph.

For illustration purposes, choosing the regularization parameter is done in
a way to maximize the number of genes selected with high confidence, as well
as minimizing the number of genes pruned out in the process. It is important
to remember that considering the results of the method under different regular-
ization parameters is essential to make sure the selected genes possess a high
confidence and are also stable regardless of sampling of the training dataset.

Implementation Details

To compare the performance of our method with other methods, the implemen-
tations present in Python scikit-learn(0.14) package are taken. In the case of
stochastic gradient boosting, the representing class is GradientBoostingClassifier,
the number of classifiers is set to 100, and to make it sparse and prevent over-
fitting, the maximum number of features for splits in trees is set to 5, and the
maximum number of layers is set to 2. For AdaBoost, AdaBoostClassifier is used,
which is an implementation of AdaBoost-SAMME [165], with weak learner set
to DecisionTreeClassifier with maximum depth set to 2, and the number of weak
classifiers set to 100. Parameters of the two boosting algorithms are chosen by
a grid search on their parameter space over all the datasets and selecting the
parameter sets which give a robust and stable result over all experiments.

As an SVM, ν-SVM with ν= 0.25 is used, once with a linear kernel, and once
with an RBF kernel; γ parameter of the RBF kernel is set to (num of features)−1.
The ν parameter is set to the maximum value for which the optimization func-
tion is solvable with libsvm for all analyzed datasets [26]. Smaller values cause
the SVM to overfit to the data and not generalize well. The Gaussian process’s
correlation function is a squared-exponential, and MIC is estimated using minepy
package [6].

The PPI network used in our analysis is from the Human Protein Reference
Database (HPRD) [110]. Almost all edges and relationships between proteins
that are added to this database are manually extracted from literature by biolo-
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Figure 4.8: Visualization of one model A sample model for TCGA-LAML gene
expression data (a) individual classifiers and their selected features; higher con-
fidence of a node is shown by a darker color, (b) selected genes plotted over the
PPI network; green and yellow show low and high confidence respectively, and
the thickness of the border of the node shows the respective confidence of the
individual classifier to which it belongs.

gists, hence it has a lower rate of edges included in the database for which there
is no evidence in the literature.

4.2.2 Results and discussion

Interpretability of Predictions

Here we present the results of running the method on the TCGA-LAML gene
expression dataset.

Visualization of Features Important for a Particular Test Sample: Having
a model trained on the data, and given a test sample, it is possible to infer and
visualize which individual classifier(s) is (are) influencing the prediction most.
To this end, individual learners as well as the features they use are visualized
as in Fig. 4.8(a). In this figure, nodes with labels starting with “L_” represent
individual classifiers, and other nodes are labeled with their respective gene
name. The color of the node shows its confidence compared to other nodes;
the darker the node, the higher the confidence. In the case of a gene, it is the
confidence or reliability of the feature (c f ), and in the case of an individual
classifier, it is the overall estimated confidence (cli ). Edges show which classifier
is using which genes in its decision function. The shape of a node represents the
individual classifier they belong to.

To get a better overview of the individual features that were chosen by the
classifiers for the particular test sample, we visualized the corresponding genes
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on a graph containing information about the PPI network in Fig. 4.8(b). We
extracted the PPI information from HPRD as explained before. This way, it is
possible to find over- or under-regulated pathways that might be responsible
for the label (e.g., cancer stage) of the test sample. Since PPI networks can be
quite dense, we removed parts of the induced network. For this purpose we
computed each shortest path between all pairs of selected features. Then, the
minimum spanning tree of that section was plotted, after removing branches
with no selected feature.

Most of the features chosen by any of the classifiers (colored nodes) are
not connected to any other chosen feature. It is known that there is in many
cases a correlation between expression value of the genes whose corresponding
proteins interact [68]. Therefore, a regularized model will only choose a subset
of the correlated features. This explains the observation that features selected by
a single model can be distant from each other on a PPI network; but if multiple
disjoint sparse models are fit to the data, their selected features might happen
to be close to each other on the PPI network (e.g., node TPT1 and node EEF1A1
in Fig. 4.8(b)).

It is worth noting that these plots are the result of analyzing one single given
test sample. Therefore in practice, these interpretations can be used for each
patient and if useful, influence the treatment that the oncologist prescribe for
the patient.

Visualization of Important Global Features: As explained in Section 4.2.1,
a graph is created from model structures of all 100 random training partitions,
and then it is pruned to keep only high confidence nodes and edges. The density
estimation of the graph edge weights and the pruned graph are plotted in Fig. 4.9
where the nodes with labels are the ones that are not pruned. The nodes in this
figure that do not have any label, are the ones with frequency lower than the
corresponding threshold. Among the features considered to be important were
features that had previously been linked to leukemia such as SH3KBP1 [1].

What was more intriguing to see was that four out of the seven important
features of the TCGA-LAML gene expression dataset contained ribosomal pro-
teins when using the risk group label, i.e. RPL37A, RPS20, RPS3A, and RPL23A.
For a long time ribosomes were just considered machines that perform an un-
biased translation of genes from mRNA to amino acid sequences, but this view
has recently been challenged [159]. One new hypothesis is that the ribosome
introduces an additional regulatory layer. Therefore, it could very well be that
mutations in ribosomal proteins can lead to a misregulation of expression levels
of important genes and ultimately to the development of cancer (in this case
leukemia). One of the ribosomal proteins we found was RPL23A. It has been
shown that loss of RPL23A can impede growth and lead to morphological abnor-
malities in Arabidopsis Thaliana [159]. Therefore, a mutation in RPL23A might
also have severe effects in humans. A missense mutation in RPL23A was recently
found in patients having Diamond-Blackfan anemia, which is an inherited form
of pure red cell aplasia (related to leukemia) [56]. Note that the model for LAML
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Figure 4.9: (a) Determine pruning threshold Threshold is determined by find-
ing the point after which, 90% of the area under the curve is observed from
left to right. The horizontal axis shows the observed frequency or weight of the
edges. (b) Important Global Features High confidence nodes and edges of the
graph generated from the model on TCGA-LAML gene expression data. Darker
color represents higher rate of being selected by a classifier.

has low performance for the regularization value chosen. Nevertheless, the fea-
tures shown here are also the ones with the highest confidence for models learnt
with less regularization (with several other additional features). The models
with less regularization show similar performance to the other methods shown
in Fig. 4.10

Performance comparison

The performance of the method was compared with that of two ensemble meth-
ods, AdaBoost and stochastic gradient boosting, as well as an SVM with linear
kernel, and an SVM with an RBF kernel. We also included our implementation
of the NICK method [82]. We randomly partitioned the data into training and
test sets with 80% of the data for training and 20% of the data for testing. To
compare the performance of the different methods, Area Under the receiver
operating characteristic Curve (AUC) [40] was calculated on the test set over
the decision values returned by the methods on the individual samples. The
process was repeated 100 times to reduce random effects. As seen in Fig. 4.10,
overall performances of all methods are comparable. In some cases a single SVM
works better, in some other cases ensemble algorithms give a better performance.
However, in most cases an improvement in performance is observed by adding
individual learners to the model, with the greatest gains due to the first few indi-
vidual learners added to the model. In two cases, TCGA-LAML/Vital status and
TCGA-LAML/Risk Group, our reported performance measures are significantly
lower than other methods. This, however, comes from the fact that we have en-
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forced extreme sparsity measures. The performance of the method increases and
reaches the other methods’ performance levels if this constraint is relaxed, as
reported in supplementary 1. We enforced those sparsity measures for all mod-
els to avoid over-fitting. Optimizing the sparsity constraint via cross-validation
would have been computationally expensive, which is why we preferred to be
conservative. Had we optimized the sparsity constraint, we would have still
been able to find the significant features while having similar performance as
the other methods.
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4.2.3 Conclusions

Machine learning has become more and more popular in many real world sce-
narios for making sense of large collections of facts. Differences between the
data used for training the method and new data for which the label should be
predicted can limit the performance of prediction methods on those data. In this
work we introduced a method that estimates these potential partial biases and
incorporates them into the prediction function. We applied it to gene expres-
sion and DNA methylation measurements from cancer patients. Our method has
state-of-the-art performance on many different prediction tasks. Furthermore,
we show how to make sense of the predictions. Visualizing the important genes
can lead to new biological insights, as shown for the TCGA-LAML dataset with
the risk group label. Instead of mapping the genes to PPI networks, one could
also think of mapping them to signaling pathways [74].

Recently, a study showed that most published signatures are not significantly
more associated with cancer outcome than random signatures [149]. One of the
reasons for this finding is that the data comes from slightly different underlying
hidden data distributions. Since our new method estimates this bias and corrects
for it by up-weighting the classifiers that have higher confidence, we expect that
it should be less susceptible to such differences in the data.

In this work we designed and developed a method that besides being a
predictive model, it can be used for two different purposes. It can be used as
an exploratory method to reveal potential features used in future studies; and
it can be used to different underlying causes of the same disease and with its
interpretability help oncologists to choose the treatment accordingly.

We would like to point out that the applicability of our method is not limited
to cancer outcome prediction, and it can apply to many more scenarios. The
method assumes that the data has enough features to select from, and that there
are related features to those selected ones that can be used to estimate their
reliability. These are conditions that almost all biological data satisfy, hence the
method can be applied to them.

The method also works as a skeleton whose components can be easily sub-
stituted. For example, by changing the classifier used in individual learners to a
multi-class classifier, the method would work on multi-class problems. For the
sake of simplicity and without loss of generality we performed the evaluations
only on binary classification problems. Also, due to the structure of our model,
one possible approach would be to use a method such as iRDA and use those
gene sets as features of individual learners. Whether this approach leads to bet-
ter results or not requires further research. Also, the combination of maximal
information coefficient and Gaussian processes is not the only feasible option,
and they can be replaced with other faster methods if the time complexity of
the method is of any concern. Some of these alternatives are already available
on the github repository of the method.
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4.2.4 Enhancements and Parameter Selection

In order to withdraw the hassle of parameter setting from our method, we utilize
a nested cross-validation scheme to automatically search for and find best pa-
rameters for a given dataset. A nested cross-validation scheme tests the method
with different parameters several times, and therefore the method must be fast
enough for the process to be feasible. For this purpose, we modify and enhance
the method.

Before we fix the computational bottleneck, we need to review our method’s
modules and their parameters. On the highest level, we have the number of
weak learners. We use nested cross-validation at this level, to select the best
number of weak learners for the given dataset. The next parameter on a lower
level, is the complexity of each weak learner and correspondingly their number
of selected features. At this stage, we choose the best parameter again using
another nested cross-validation. The main parameter on the lowest level is the
complexity of our feature confidence estimators. This is where we have the most
computationally intensive task, i.e. computing MICs.

The reason we compute all these MICs in the original RatBoost approach
(see Fig. 4.7) is that Gaussian Processes in their normal setting, having as many
features as we have, overfit to the data, and therefore a pre-selected small subset
of features is what we feed to each Gaussian Process to prevent this overfitting.
Although another way of reducing the complexity of a GP is to use a covariance
function such as squared exponential with the automatic relevance determina-
tion (ARD) covariance function [119], the increased running time caused by the
covariance function made it impractical for it to be used in our setting.

Now consider the following as a module: given a feature fi, compute all
relevant MICs, select features according to them, and feed them to a GP. We can
replace it with the following: using a nested cross-validation scheme, find the
best parameters of a fast method to predict fi using other features. We use a C-
SVM regression model with a linear kernel and the parameter C is set according
to a nested cross-validation scheme. Please note that C-SVM is not a Bayesian
method and therefore does not give a posterior distribution, which is indicated
with a mean and a variance as the output. Therefore we need to also change
the way the confidence is calculated for each feature from the one shown in
Formula 4.5, to the following Formula:

c f (Xs) := 2 · F
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!

(4.10)

where m f is the C-SVM trained to predict f , and µer rmf
and σer rmf

are

the expected mean and standard deviation of the residual error of model m f
predicting f . The latter two values are estimated using a cross-validation on the
training set.

We tested the above modified method on a Sequence-based Gene Expression
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(EXP-S) Lymphoma dataset1 [122], separating Diffuse Large B-cell Lymphoma
(DLBCL) samples from Follicular Lymphoma (FL) samples. This dataset is here-
after referred to as ICGC-Lymphoma. Table 4.1 shows dataset’s sample counts
and Table 4.2 shows the resulting performance measures in terms of average
precision recall score for the same dataset.

Diffuse large B-cell lymphoma 39
Follicular lymphoma 40

Total Count 79

Table 4.1: ICGC-Lymphoma in numbers.

Method Name APRS (mean ±2× std)
RatBoost 0.953± 0.087

Gradient Boosting Classifier 0.944± 0.152
Adaboost 0.886± 0.21

SVM 0.867± 0.212

Table 4.2: Average Precision Recall Scores (APRS) for ICGC-Lymphoma dataset.
Estimated confidence intervals come from a 50 stratified shuffle split with 80%
and 20% of the dataset as train and test sets respectively.

The result of the above changes is available in the same repository on github2.
As shown in Table 4.2, our method not only outperforms the other tested

methods, but also shows a smaller variance in performance, indicating that it per-
forms well on such a problem with a higher confidence. We also showed that our
proposed changes improve the computational complexity of the method enough
that it is feasible to run a nested cross-validation on all critical hyperparameters
of our method. It is also worth noting that the changes do not interfere with the
interpretability of the method and one can interpret the model the same way as
explained in Section 4.2.

4.3 Raccoon

In Section 4.2 we developed the idea of an ensemble method, taking into account
properties of a new given sample to assign confidences to each individual learner
while calculating the final output of the model. In this section we take the idea
further and train a model for each given new input. This means that unlike usual
supervised methods, a part of training happens for every given new sample. In
order to explain the method, we divide the steps into prepare and fit-predict.

During prepare phase, we only learn the relationships between the input
features. This information is then used to identify features of a given sample

1https://icgc.org/icgc/cgp/64/345/53049
2https://github.com/adrinjalali/Network-Classifier
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which are more reliable than others. Then, given a new sample during the fit-
predict phase, a model is trained on the training data, using only the identified
“reliable” features. At the end, the putput of that model is considered as the
output of this method for the given input. We use code name Raccoon for this
method.

4.3.1 Prepare

In this step we only learn the relationships between the features of the training
data. Since it would be computationally infeasible to learn the relationships
between all the features, we first select a pool of candidate features which have
the potential of being used later in the fit-predict step. Once members of this
candidate features pool are selected, we try to find a pattern between other
features of the training data and each selected feature the same way we did in
Section 4.2, i.e. we try to predict each chosen feature using all other features
available in the data. Algorithm 2 depicts a pseudocode of this step.

Algorithm 2 Prepare
1: function PR E PA R E(X , y)
2: Φ← F E AT U R E S _O F(X )
3: Φl ← S E L E C T _C A N D I D AT E Sk1

(X , y)
4: M← {}
5: for all f ∈ Φl do
6: Φ f ← T O Pk2

({( f ′, MIC( f , f ′)| f ′ ∈ Φ \ f })
7: g f ← G P(XΦ f

, f )
8: M←M∪ {g f }
9: end for

10: return M,Φl
11: end function

In the above pseudocode, the “SELECT_CANDIDATES” function returns a
subset of all given features which are at least remotely related to the outcome y .
It is basically a loose feature selection step which is free to choose also less than
perfect features. We include a larger than usual feature set for two reasons:

1. The data is noisy and therefore some of the selected features are selected
because they show a relationship with the outcome, whereas in reality
they are not related.

2. Only a subset of these features are used for the prediction given a new
sample, hence it is not critical to select a minimal set of “best” features.

Our implementation uses maximal information coefficient (MIC) of each
feature with y to sort them, and take the best k1 (hyperparameter) features
forming the set Φl . Then for each feature f in Φl , a Gaussian Process model is
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trained to predict f using other features, similar to what we did in Section 4.2.
Note that not all features are used to predict each selected feature. Similar to
RatBoost, MIC is used here to select only k2 (hyperparameter) best features as
the input to each Gaussian Process. This to prevent the GPs from overfitting to
the data.

4.3.2 Fit-Predict

This step happens for each given new test sample. For each given sample x , a
confidence level is calculated for each f ∈ Φl according to Formula 4.5, and then
a few features with the highest confidence are selected for the next step. The
number of selected features is another hyperparameter. Φx being the candidate
features selected for this particular test sample x , a model is trained on the
original training data (X , y), using only features in Φx . The output of this model
given the input x is our prediction for x . The type of model used here can be
set by the user, and the user controls the hyperparameters of the given model.
This model can of course run a grid search on its hyperparameters given XΦx

,
looking for the best parameter set for a given set of features. Algorithm 3 shows
a pseudocode of this step.

Algorithm 3 Fit-Predict
1: function F I T _PR E D I C T(X , y, x ,Φl ,M, M)
2: Φx ← T O Pk3

({( f , CO N F I D E N C E(M f , x , f ) )| f ∈ Φl})
3: Mx ← F I T(M , XΦx

, y)
4: return P R E D I C T(Mx , xΦx

)
5: end function

Line 2 in Algorithm 3 uses the Formula 4.5 to calculate feature confidences
using the models which were prepared in Algorithm 2 and select the best k3
(hyperparameter) features. Line 3 trains the model M on the given data (XΦx

, y ,
using only the selected features Φx . As an example, M can be a C-SVM classifier
which automatically searches for the best C using a grid search on (XΦx

, y). And
at last, the final prediction is calculated in line 4 using only the selected features
of the given sample x .

4.3.3 Discussion and Future Work

This method puts a heavy focus on selecting features specific to a given input x ,
and trains a separate model for each input. This means training these models
should be preferably fast, otherwise it takes a very long time for the method to
give an output for all samples in a dataset. Further analysis and experiments
are required to understand the conditions under which, this method performs
better than traditional models.
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There are some potential paths which can be taken for further experiments.
As explained above, the purpose of the prepare phase is to learn the relationships
between the input features. Amid high computational costs, we choose a limited
number of features for this step using a given dataset. However, once the candi-
date features are selected, the patterns predictive of those features using the rest
of the input could potentially be learned using other datasets. For instance, if
our input features are average methylation levels on and around each gene, we
could try predicting these values using other datasets, including healthy tissue
datasets, as long as the datasets are conceptually compatible, e.g. they are taken
from the same tissue type.

A minor modification worth exploring is to replace the M IC → GP pipeline
(lines 6-7 Algorithm 2) with a C-SVM the same way it was done in Section 4.2.4,
reducing the computational complexity of the method and enabling nested cross-
validation schemes for easier parameter search.

Another computationally intensive operation in our method is MIC, which is
used in lines 3 and 6 of Algorithm 2 for the purpose of selecting features. This
operation can be replaced by faster schemes such as an l1 − SV M with a linear
kernel, a LASSO model, or the randomized dependence coefficient (RDC) [85].

Interpreting Raccoon for each given sample x can be done in a similar fashion
to RatBoost, and in two different levels. First we need to check which features
are selected in Φx , and then see how those features are used by the model Mx . A
combination of the confidences calculated for each f ∈ Φx , and the importance
of those features reported by Mx would give an idea of why the given sample is
classified to the class it has. Please note that the interpretability of the method
depends to some extend on the interpretability of the model M , which is a factor
to be considered when choosing M .

We hope the fact that the above method is very flexible, adaptive, and in-
terpretable proves it a step further towards personalized medicine while at the
same time helping cell biologists study cancer with better clues derived from
the data. An implementation of the method is available on github3.

4.4 Conclusion

In this chapter we identified some of the challenges related to analyzing cancer
data such as noise, batch effects, and cancer (tumor) heterogeneity. We then
showed how we exploit the fact that input features are dependent random vari-
ables to gain insight about each given new sample.

The methods we introduced are adaptive and interpretable methods which
not only have the potential of counteracting batch effects and noise, but are also
a step further towards truly personalized medicine. The latter is a result of inter-
pretability of our methods for each given sample, i.e. a different interpretation
of the model per patient.

3https://github.com/adrinjalali/Network-Classifier/tree/master/Raccoon
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5
Conclusion

In chapter 3 we covered a flow cytometry data analysis pipeline and its appli-
cation on two types of non-Hodgkin lymphoma, i.e. Follicular Lymphoma and
Diffuse Large B Cell Lymphoma. We showed how the pipeline can extract novel
insights from the data as well as effectively automate a laborious workflow. We
showed how flowType can extract features which can be used to train a model to
classify subtypes. However, we did not consider the relationships between those
features, i.e. cell populations, while training the model. One approach would be
to design a kernel which takes into account those relationships and therefore
implicitly reduces the dimensionality of the input data.

In chapter 4 we focused mostly on the analysis of DNA methylation data
using adaptive and interpretable models. Although we put a heavy focus on the
models, our experiments showed that the preprocessing step can also play a
crucial role in the stability and performance of those models. In the case of DNA
methylation data, for instance, a step to aggregate methylation levels over genes
made the models more stable, faster, and better performing. Our observations
support the need to put more focus on the preprocessing steps, and to document
them in a more informative way. This would also greatly help towards improved
reproducibility of publications in the field.

5.1 Future Work

This thesis is an effort towards a better understanding of cancer, as well as an
improved diagnostic process. However, there are a few aspects which need to
be done before these methods can best be employed in clinics:

• Incorporating multiple data sources: The approaches we took in this thesis

103
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all incorporate a single input type at a time. Of course as mentioned in
previous chapters, not all data sources are available for all patients or at
the time of diagnosis. However, the same way that a pathologist would use
different test results as accumulating evidence for a potential diagnosis or
to support a treatment, a model should also be able to do the same and
gain or loose confidence in a specific diagnosis as more data comes in for
a single patient.

• Adaptive to missing data sources: Incorporating increasing evidence also
means that models should be able to cope with missing data and missing
data sources. Our models in Chapter 4 are efforts towards handling noisy
or missing data in a single data source, but similar approaches can be taken
to have an ensemble of models each working on a specific data source.

• Models confidences: From a pure mathematical and machine learning per-
spective, we sometimes tend to focus too much on a classifier’s perfor-
mance and forget about the value of reporting and estimating a model’s
confidence in the output for a specific input. In a sense, we put our con-
fidence into a model based on its overall performance/confidence on a
dataset, whereas in practice, it is crucial to know how confident a model is
on its output for a given input. Bayesian models are useful for this purpose
in the sense that the posterior probability’s variance (for a Gaussian pos-
terior for instance) can easily be interpreted as how confident the model
is. However, it is also possible to calculate a proxy for model’s confidence
for non-Bayesian models as shown in Chapter 4. The analogy from the
real world is that when you go to a doctor, independent of how “good” an
individual doctor is, you’d always appreciate if they would tell you that
they are not confident in their diagnosis, and that you should probably get
a second opinion. In exactly the same way, if a model’s confidence for a
specific sample is not high enough, we can always rely more on a human
doctor, or another model, or a model based on a different type of data.

• Interpretability, reasoning: Similar to people preferring a doctor who can
tell them the reason behind a diagnosis, a pathologist can put more trust
in a model which can report why a certain output is asserted by the model.
Especially with all the noise, batch effects, small sample issues, etc., it
is important that a doctor can validate a model’s reasoning, and decide
whether it is a valid conclusion or an artifact of one the abovementioned
issues.

• Real world issues such as batches, noise, etc.: One of the reasons that a
model’s confidence and interpretability are important, is that the data in
the real world is noisy and has batch effects, in contrast to the data cleaned
and trimmed to include only nice and clean data, and the interpretability
is a way to detect if a model may be malfunctioning due to those effects.
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However, those effects are real and happen too frequently for a bioinfor-
matician to ignore. A model would ideally be able to automatically handle
those effects seen in the data.

• Reproduce, deploy, test: Instead of looking at each publication which tries
to deliver a better or different classifier for cancer diagnosis as an isolated
effort, we can look at the communal work as an effort to improve and
diversify the set of pieces of software we have, all of which can differentiate
between a given set of cancer types. With this perspective, we can apply
some of the concepts which are usually applied to software, in particular
continuous integration, i.e. to continuously build, deploy, and test new
models. This would also make the works more “reproducible”, which is
essential in an era where we have a reproducibility crisis in medical science.
Having a place where these models are deployed would also help a larger
community to test them in real life and see how they perform and for
the developers of these models to get feedback and continuously improve
them. It would also be easier to observe and work on some of the real life
issues such as batch effects or differences between labs when the models
are exposed and tested by a wider community.

• Counsel of doctors→ counsel of models: One main benefit of having models
developed by different groups is that we can also use a set of them for
a given problem/data, the same way that we would sometimes desire a
group of doctors to work on a patient’s case instead of an individual doctor.
One immediate use-case for such a system is to trigger/request a second
opinion if the wisdom of the set disagrees with the diagnosis made by an
individual doctor.

5.2 Contributions

Sections 3.2.2 [4] and 3.2.3 [104] are extended versions of articles which I co-
first authored. In section 3.2.2 I mapped the problem into a graph and solved it
using k-shortest paths, and I implemented the solution. In section 3.2.3 I solved
the problem using a dynamic programming solution and implemented it.

Section 4.2 is the extended version of an article [67] which I first authored,
and section 4.3 is a work I started which was then continued in [61].

5.3 Closing Remarks

Finally, I would take the fact that many companies these days offer machine
learning powered cancer diagnostics services as an evidence for how far we
have moved forward in our understanding of cancer and our abilities to auto-
matically diagnose patients given certain data. However neither adaptive, nor
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interpretable models are prevalent in the community and both doctors as well
as the patients would better take advantage of and trust the models if they could
see how they work and why they do what they do. This thesis is a contribution
towards this goal and I hope it helps the community to build on top of or use
some of the work done here.
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Table 1: The phenotypes with a high overlap with the BCR(pBLNK)+ compart-
ment as identified by flowType. The table includes the cell proportion of these
immunophenotypes (second column) and the differences in the cell proportion
of BCR(pBLNK)+ cells in the stimulated and unstimulated assays (third column).

Phenotype Name Cell Proportion BCR+(st im−unst im)

CD19+CD4-CD8-CD34+CD20+CD123+CD38-CD3- 0.001 0.160
CD19+CD4-CD34+CD20+CD123+CD38-CD3- 0.001 0.160
CD19+CD4-CD34+CD20+CD123+CD3- 0.001 0.155

Table 2: The phenotypes with a high overlap with the IL7(pSTAT5)+ compart-
ment as identified by flowType. The table includes the cell proportion of these
immunophenotypes (second column) and differences in the cell proportion of
IL7(pSTAT5)+ cells in the stimulated and unstimulated assays (third column).

Phenotype Name Cell Proportion IL7+(st im−unst im)

CD19-CD4+CD8+CD20+CD33+CD38-CD3+ 0.008 0.364
CD19-CD4+CD8+CD20+CD33+CD3+ 0.008 0.366
CD19-CD4+CD8+CD34+CD33+CD38-CD3+ 0.008 0.366
CD19-CD4+CD8+CD34+CD33+CD3+ 0.008 0.368
CD19-CD4+CD8+CD34+CD20+CD33+CD38-CD3+ 0.006 0.399
CD19-CD4+CD8+CD34+CD20+CD33+CD3+ 0.006 0.402
CD4+CD8+CD20+CD33+CD38-CD3+ 0.011 0.365
CD4+CD8+CD20+CD33+CD3+ 0.011 0.371
CD4+CD8+CD34+CD33+CD38-CD3+ 0.011 0.366
CD4+CD8+CD34+CD33+CD3+ 0.011 0.371
CD4+CD8+CD34+CD20+CD33+CD38-CD3+ 0.008 0.399
CD4+CD8+CD34+CD20+CD33+CD3+ 0.009 0.405
CD19+CD4+CD8+CD20+CD33+CD38-CD3+ 0.003 0.364
CD19+CD4+CD8+CD20+CD33+CD3+ 0.003 0.378
CD19+CD4+CD8+CD34+CD33+CD38-CD3+ 0.003 0.359
CD19+CD4+CD8+CD34+CD33+CD3+ 0.003 0.372
CD19+CD4+CD8+CD34+CD20+CD33+CD38-CD3+ 0.002 0.397
CD19+CD4+CD8+CD34+CD20+CD33+CD3+ 0.002 0.409
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Table 3: The phenotypes with a high overlap with the LPS(p-p38)+ compart-
ment as identified by flowType. The table includes the cell proportion of these
immunophenotypes (second column) and differences in the cell proportion of
LPS(p-p38)+ cells in the stimulated and unstimulated assays (third column).

Phenotype Name Cell Proportion LPS+(st im−unst im)

CD19-CD4-CD8-CD34-CD20-CD33+CD123-CD38-CD3- 0.008 0.474
CD19-CD4-CD8-CD34-CD20-CD33+CD123-CD3- 0.008 0.473
CD19-CD4-CD8-CD34-CD20-CD33+CD38-CD3- 0.009 0.466
CD19-CD4-CD8-CD34-CD20-CD33+CD3- 0.009 0.465
CD19-CD4-CD8-CD34-CD33+CD123-CD38-CD3- 0.022 0.460
CD19-CD4-CD8-CD34-CD33+CD123-CD3- 0.022 0.459
CD19-CD4-CD8-CD34-CD33+CD38-CD3- 0.022 0.452
CD19-CD4-CD8-CD34-CD33+CD3- 0.022 0.451
CD19-CD4-CD8-CD34-CD20+CD33+CD123-CD38-CD3- 0.013 0.450
CD19-CD4-CD8-CD34-CD20+CD33+CD123-CD3- 0.013 0.449
CD19-CD4-CD8-CD20-CD33+CD123-CD38-CD3- 0.023 0.453
CD19-CD4-CD8-CD20-CD33+CD123-CD3- 0.023 0.452
CD19-CD4-CD34-CD20-CD33+CD123-CD38-CD3- 0.011 0.456
CD19-CD4-CD34-CD20-CD33+CD123-CD3- 0.011 0.455
CD19-CD8-CD34-CD20-CD33+CD123-CD38-CD3- 0.012 0.462
CD19-CD8-CD34-CD20-CD33+CD123-CD3- 0.012 0.461
CD19-CD8-CD34-CD20-CD33+CD38-CD3- 0.012 0.454
CD19-CD8-CD34-CD20-CD33+CD3- 0.012 0.454
CD4-CD8-CD34-CD20-CD33+CD123-CD38-CD3- 0.011 0.462
CD4-CD8-CD34-CD20-CD33+CD123-CD3- 0.011 0.461
CD4-CD8-CD34-CD20-CD33+CD38-CD3- 0.011 0.454
CD4-CD8-CD34-CD20-CD33+CD3- 0.011 0.454
CD8-CD34-CD20-CD33+CD123-CD38-CD3- 0.015 0.450
CD8-CD34-CD20-CD33+CD123-CD3- 0.015 0.449
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