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Abstract (English)

Home Automation Systems (HASs) are becoming increasingly popular in newly built
as well as existing properties. While offering increased living comfort, resource sav-
ing features and other commodities, most current commercial systems do not protect
sufficiently against passive attacks. In this thesis we investigate privacy aspects of
Home Automation Systems. We analyse the threats of eavesdropping and traffic
analysis attacks, demonstrating the risks of virtually undetectable privacy viola-
tions. By taking aspects of criminal and data protection law into account, we give
an interdisciplinary overview of privacy risks and challenges in the context of HASs.
We present the first framework to formally model privacy guarantees of Home Auto-
mation Systems and apply it to two different dummy traffic generation schemes. In
a qualitative and quantitative study of these two algorithms, we show how provable
privacy protection can be achieved and how privacy and energy efficiency are inter-
dependent. This allows manufacturers to design and build secure Home Automation
Systems which protect the users’ privacy and which can be arbitrarily tuned to strike
a compromise between privacy protection and energy efficiency.
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Abstract (Deutsch)

Hausautomationssysteme (HAS) gewinnen sowohl im Bereich der Neubauten als
auch bei Bestandsimmobilien stetig an Beliebtheit. Während sie den Wohnkom-
fort erhöhen, Einsparpotential für Strom und Wasser sowie weitere Vorzüge bieten,
schützen aktuelle Systeme nicht ausreichend vor passiven Angriffen. In dieser Arbeit
untersuchen wir Aspekte des Datenschutzes von Hausautomationssystemen. Wir be-
trachten die Gefahr des Abfangens von Daten sowie der Verkehrsanalyse und zeigen
die Risiken auf, welche sich durch praktisch unsichtbare Angriffe für Nutzende er-
geben. Die Betrachtung straf- und datenschutzrechtlicher Aspekte ermöglicht einen
interdisziplinären Überblick über Datenschutzrisiken im Kontext von HAS. Wir stel-
len das erste Rahmenwerk zur formellen Modellierung von Datenschutzgarantien in
Hausautomationssystemen vor und demonstrieren die Anwendung an zwei konkreten
Verfahren zur Generierung von Dummy-Verkehr. In einer qualitativen und quanti-
tativen Studie der zwei Algorithmen zeigen wir, wie Datenschutzgarantien erreicht
werden können und wie sie mit der Energieeffizienz von HAS zusammenhängen. Dies
erlaubt Herstellern die Konzeption und Umsetzung von Hausautomationssystemen,
welche die Privatsphäre der Nutzenden schützen und die eine freie Parametrisierung
ermöglichen, um einen Kompromiss zwischen Datenschutz und Energieeffizienz zu
erreichen.
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Chapter 1
Introduction

In recent years, consumer electronics have picked up a new trend: Home Automation
Systems (HASs) promise a variety of benefits. According to a market prognosis by
the portal Statista [Blu20], the global Smart Home market is expected to grow by
16% per year in terms of revenue between 2019 and 2025.

As part of the “Smart Home”, HASs relieve the inhabitants of everyday tasks: the
comfort of living is increased by automating heating, ventilation and other controls;
savings on energy and resource consumption due to intelligent power management;
increased safety and security due to permanent observation capabilities and fully
automated notification features. More and more real estate properties come with
pre-installed Smart Home Systems and for those that do not, easily installable hard-
ware is available in many electronics stores.

1.1 Home Automation Systems

A Home Automation System usually consists of several interconnected devices, each
performing a specific tasks. Notable examples include, but are not limited to:

• A base station which controls other devices and usually performs scheduling
and management functions. It keeps track of automation rules (such as “unlock
the front door at 8:001”) and sends commands to the other devices.

1Times and dates in this thesis are written in ISO 8601 format (YYYY-MM-DD and
HH:MM[:SS]), but with leading zeroes and the separation character T between date and time
omitted for readability.
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1.1. Home Automation Systems

• Heating actuators which can adjust the room temperature either according to
automation rules or they can be remotely controlled by the user (e.g. via a
smartphone app).

• Electronic door locks which exchange mechanical keys for wireless ones or
remote controls and can also be automated to unlock or lock doors at specific
times.

• Temperature, humidity and air pressure sensors whose data can either be
consulted by the user directly or used for automation rules (such as “turn
off the heating when the outside temperature is > 20°C”).

• Motion detectors which can be used for both comfort (e.g. turning on the
lights when a person enters the room) and security (e.g. sounding an alarm
when a person enters the room at night).

Home Automation Systems are produced by a variety of manufacturers and are
based on disparate technologies. Sophisticated systems are often referred to as
“Building Automation Systems” due to the fact that they are commonly found in
public and company buildings. Communication is usually performed over wires, as
devices are rarely added or repositioned during the building’s life cycle. Cheaper
and more consumer-oriented Home Automation Systems are often wireless to allow
for an easy installation, extension and removal. They can be deployed in rented
properties and transferred to other places with little effort.

It is uncommon for different Home Automation Systems to be interoperable. Some
products are based on existing communication standards such as IEEE 802.11 [WiFi]
or ZigBee [Zig], while others use dedicated or proprietary Home and Building Auto-
mation protocols such as KNX [KNX] or BACnet [BAC].

1.1.1 Topology

Most Home Automation Systems usually employ either of two possible network
topologies: the star or the mesh topology. Examples of both are depicted in figure
1.1.

In a star network, a central node serves as the coordinator and all communication
between two nodes at the “beams” of the star is relayed via the coordinator. Mostly
used in wireless Home Automation Systems, the coordinator is commonly realised
as a “Base Station”. This device serves the user interface for configuration and
schedules automation tasks (e.g. by sending commands to actuators at programmed
times), but provides no immediate actuating or sensing functionality itself. Fur-
thermore, (especially in the wireless case) Base Stations are mains-operated and do
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Figure 1.1: Common network topologies in Home Automation Systems.

not suffer from the negative impact of communication on battery lifetime. Another
benefit is that communication can happen whenever the Base Station is in range.
Individual nodes do not have to be in range of each other.

In wired systems, a star topology is not generally ideal. In order to be able to connect
new devices more easily, a mesh topology can be used. Nodes in a mesh network can
communicate directly and without the need of a central coordinator. This, however,
does not mean that there cannot be a Base Station–links not involving the Base
Station are merely possible. For example, a new device can be installed by drawing
a cable to the nearest existing device, instead of drawing one all the way from
the Base Station. In addition to this, nodes can relay other nodes’ communication
in order to compensate for signal attenuation (both in the wired and the wireless
case) and increase the overall range of the system. While this setup can decrease
communication overhead (if nodes are communicating directly and without a relay)
and latency, it can also have a negative impact on the runtime of battery-powered
devices and increase the complexity of the system. If message relaying is enabled
for all devices, nodes have to store routing information. If it is disabled, a node has
to be in range of every other node it is supposed to communicate with.

Bus networks can be considered a third topology, or they can be viewed as a special
case of mesh networks where the network graph is fully connected. The latter is
done herein. In bus networks, the bus (usually a cable) connects all devices and
thus transports all communication. A popular example of a bus network is the
KNX standard [KNX], which is widely used in Home and Building Automation
Systems alike.

Star and mesh networks are not the only possible topologies for Home Automa-
tion Systems. A combination of both (e.g. two separate mesh networks which are
connected by a single Base Station) is just as possible as hierarchical or other ones.
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1.1.2 Summary

In summary, a Home Automation System can be defined as a network of intercon-
nected nodes, performing household-related tasks (such as the examples given in
Section 1.1) and communicating over a shared bus which is accessible to all devices
in range. While technically, a Home Automation System can be set up using a
unicast transmission medium, the vast majority of available products uses broad-
cast media such as bus systems (e.g. KNX) or wireless transmissions. We therefore
incorporate broadcast transmissions into our definition. Note that this does not
mean that all nodes can decrypt, let alone process all communication packets: The
aforementioned topologies can all be realized using broadcast communication.

1.2 Problem Description

Naturally, Home Automation Systems are tied to the users’ lives and process inform-
ation about the inhabitants’ private space. However, as most IoT devices, HASs have
been developed with a strong focus on usability, energy efficiency and low cost. Se-
curity and privacy only play a minor role in the conception and development of
Smart Home hardware.

This thesis aims to investigate privacy leaks in Home Automation Systems. As the
operational area of a HAS is the user’s most personal space, it is of paramount
importance that the system does not negatively influence the user’s privacy. There
are different possible threats connected to the deployment of Home Automation
Systems which need to be addressed thoroughly to ensure privacy.

1.2.1 Unauthorised Access

The most obvious threat to privacy which can be introduced by a Home Automation
System is that of unauthorized access. If it is possible for an attacker to trick the
system into providing access to the house or flat, the privacy as well as the property
and health of the user are in danger.

Although there are cases of implementation errors which allow unauthorized persons
to obtain access credentials or directly control appliances2, this problem is mainly in
the area of engineering and less an open research question. As detailed later in this
work, there are established protocols and approaches to offer secure authentication
and access control, preventing or significantly hampering unauthorized access. It is

2https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-8868, last accessed 2021-03-
23.
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therefore not covered in detail within this thesis. Striking a compromise between
usable and secure systems is a separate area of research [Die+18; GL14], which must
also be considered when developing systems. Usable security is however outside the
scope of this thesis. Instead, we focus on usable privacy by considering usability
issues while developing approaches for privacy enhancements.

1.2.2 Privacy Violation by Manufacturers or Service Providers

System manufacturers as well as providers of premium services (e.g. logging, analysis
and provision of suggestions for energy consumption) by their very nature have access
to the devices or to the data collected by a Home Automation System. This enables
them to mount almost arbitrary attacks on the user, from the unsolicited collection
of data to the installation of backdoors. It is virtually impossible to prevent this
completely, short of not using the services or systems at all.

On one hand, laws and regulations – as detailed in Section 2.4 – can penalize offend-
ing behaviour and act as a deterrent. On the other hand, open standards, audits
and open source systems can help establish trust in manufacturers and providers.
For the provision of services, privacy-preserving protocols for data aggregation and
analysis can be applied. Ultimately, however, this issue remains mostly a question
of trust and supervision, so it is not exhaustively discussed herein.

1.2.3 Privacy Violation by Unauthorised Third Parties

Apart from manufacturers and service providers, independent third parties can also
try to invade the users’ privacy. Most available Home Automation Systems use some
sort of broadcast medium for communication. Wired systems often use a bus, while
in wireless systems the air is a broadcast medium per se. Consequently, if an attacker
is able to obtain access to the medium, they are able to intercept all communication
between the devices. In wireless systems, obtaining access is as easy as planting an
antenna within reception range. For wired systems, it is not necessarily much more
complicated, as we explain in Section 2.3.

To illustrate the problem, we consider a scenario where the majority of people living
in a neighbourhood (or building) uses Home Automation Systems. An attacker who
passively observes the communication of the systems can learn various information
about the inhabitants, depending on the nature of the data. If, for example, lights
and doors are automated (or at least supervised by the systems) and the communic-
ation is unencrypted, the attacker is able to learn how the inhabitants move through
their houses or flats. If the communication is encrypted, the amount of communica-
tion might still tell them whether the inhabitants are at home and interacting with
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the system. This information can then be used to plan a burglary when few or no
neighbours are at home.

The main question being discussed in this thesis is

How can we formally describe and measure privacy leakage in encrypted
HAS communication?

and the follow-up question

How can this privacy leakage be reliably prevented?

A significant problem with these questions is the lack of formalization in the field of
Home Automation Privacy. One major goal of this thesis is therefore to establish
such notions which can then in turn be used to design and evaluate new approaches.

In the remainder of this thesis, we start by exploring existing deficiencies in Home
Automation Systems. We perform a quantitative analysis of existing HAS installa-
tions in Chapter 2 and show how attackers can leverage shortcomings in the design
and implementation in order to learn sensitive information about its users. We also
elaborate on the legal situation and analyse whether the current legal frameworks
sufficiently protect the users from malicious actors. With the knowledge of possible
attacks, we formalize notions of privacy and privacy violations in Home Automa-
tion Systems in Chapter 3 before developing approaches that aim to prevent these
violations in Chapter 4.

1.3 Related Research

Passive attacks on communication are not entirely new and in different areas of re-
search, various approaches have been developed to deal with this threat. However,
the area of Home Automation Systems features a particular set of characteristics
which make the direct application of these solutions to the problem at hand im-
possible. In this Section we address related research areas and projects which aim
to solve similar problems. We compare these areas to our scenario and highlight the
main differences which need to be considered when trying to transfer approaches
into the HAS setting.
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1.3.1 Smart Home Privacy

Little research has focused on the particular properties and distinct problems in
Home Automation Systems with respect to privacy.

Mundt et al. present attacks on wired HAS communication using commercially
available and cheap hardware. [MDG14] They deduct a similar analysis to the one
presented in Section 2.1, albeit at smaller scale. In their work they demonstrate
that wired systems are as susceptible to passive attacks as wireless ones and that an
attacker can capture all traffic that is being exchanged by devices on the commu-
nication bus.

Copos et al. perform similar experiments to the ones presented in Section 2.2 on
encrypted IEEE 802.11 (WiFi) traffic. [Cop+16] They analyse IEEE 802.11i (WPA)
decrypted traffic from Nest thermostats and Nest smoke detectors, identifying re-
cognisable traffic patterns (in terms of timing and amount of exchanged data) in
transport-layer encrypted (TLS) and unencrypted (HTTP, NTP) connections to on-
line services. By training on these patterns, they are able to classify traffic based
on metadata such as IP addresses and packet sizes with high accuracy. While not
explicitly testing against WPA-encrypted traffic, the authors argue that attackers
can deduce information including presence and absence by performing the attack
on MAC addresses and packet sizes alone, which are still accessible. Similar to our
work, Copos et al. assume that the adversary places a wireless listening device in
the vicinity of the victim’s house or flat.

Both mentioned works complement our results presented in this thesis and help
illustrate the extent of the problem at hand.

Apthorpe et al. perform HAS traffic analysis using a setup comparable to our
experiments. [Apt+19] They monitor encrypted WiFi traffic of popular HA devices
and identify interactions based on spikes in the traffic rate. Similar to our findings,
Apthorpe et al. model user interaction as a stochastic process. Their work however
differs from ours in several ways, including the following:

1. Their analysis is based on traffic from single devices whereas our analysis uses
the output of a complete HAS system including interactions of different devices
with each other. As we detail in Chapter 3, complex HASs with lots of indi-
vidual devices can be more resilient to passive attacks, as the traffic approaches
a constant “noise” and individual actions can no longer be recognized.

2. Their evaluation focuses on traffic overhead. As we show in Section 4.3.2,
traffic overhead and energy overhead are related, but not proportional. Our
evaluation takes this into account and provides an estimation of the energy
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consumption overhead of dummy traffic in HASs.

3. The limitation regarding “long user activities” does not apply to our approach,
because the differential-privacy-based model uses a more general notion of
traffic patterns induced by user interaction. In fact, our findings apply to any
system regardless of how user interaction is distributed.

Despite the differences, some ideas from Apthorpe et al.’s STP algorithm can be
applied to our approach. Partitioning time into short intervals which are then viewed
as constant-rate traffic sequences (either empty or padded to maximum rate) makes
it harder for an adversary to identify traffic patterns belonging to individual devices.
Furthermore, it reduces the temporal dimension from a continuous to a discrete one
which simplifies the calculation of privacy guarantees.

Other researchers have focused on orthogonal aspects of security, for example:

• Abstract and societal risks of Home Automation Systems or IoT devices in
general [JBC16; Kaa+17; Wei+15]

• Confidentiality of information and access controls [BDK01]

• Security, privacy and access control of the gateway between the HAS and the
internet [Jun+12; Chi+19]

• Risks of privacy violations against inhabitants by the Home or Building Auto-
mation System operator [Mey+16]

1.3.2 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) share many aspects with HASs. Devices are
usually far less powerful than an average PC and communication is costly in terms
of power consumption. Research on privacy in WSNs thus focuses on minimal
communication overhead and low computational effort—points which are just as
important in HASs. However, most WSN topologies rely on multi-hop routing for
the delivery of messages. In contrast, devices in HASs usually communicate with
each other directly. Moreover, research on privacy in WSNs mainly focuses on
location privacy—i.e. hiding the origin of a message. [Mat+08; CP03; CWC13] Few
researchers have looked into the issue of hiding the existence of traffic in general.

Yang et al. propose a scheme employing dummy traffic generation, which can be
applied to systems not using multi-hop routing. [Yan+08] However, they require
all nodes in the network to generate traffic constantly and delay the transmission of
real messages if necessary to not introduce anomalies into the traffic patterns. While
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there are devices in HASs which generate traffic at a constant rate (e.g. temperat-
ure and humidity sensors), most devices only become active once an event occurs.
Modifying their behaviour to fit the scheme would significantly impair their battery
lifetime and diminish the acceptance of this technology by consumers. Furthermore,
messages in HASs cannot always be delayed for a (humanly) perceptible amount
of time. Systems which only react to user interactions with a significant delay will
most likely not be economically successful in practice. We highlight this particular
matter in Section 4.3.

The authors propose a scheme for random generation of dummy traffic as well.
[Sha+08] The approach offers the possibility to balance event notification delay and
source location privacy (which in their scenario corresponds to event unobservability
for the attacker), requiring much less overall traffic. In HASs however, delays are
to be avoided whenever possible and the balance needs to be found between event
unobservability and energy consumption (which is related to the amount of dummy
traffic generated) rather than message delays. Furthermore, the behaviour of the
inhabitants is unforeseeable. This means that an exponential distribution of message
intervals might not be the optimal choice as opposed to other distributions. Ideally,
the approach should be independent of a specific random distribution function and
adapt to the actual behaviour.

In Low-Power Wide Area Networks (LPWANs), Leu et al. have formalized inform-
ation leakage and cover traffic. [Leu+18] Their work significantly overlaps with
our findings, but targets a different scenario. The system and attacker model are
quite similar: Essentially, both models try to capture the confidence of an attacker
guessing the genuine events in a captured traffic sample. However, we establish a
dedicated model that offers verifiable privacy goals which match intuitive, desir-
able properties of a HAS. We then base our further work on this model to offer
quantifiable privacy guarantees for HAS manufacturers.

1.3.3 MIX networks

The idea of using dummy traffic to hide communication in networks has been around
for a long time. [PPW91] The first approaches use constant-rate dummy traffic. We
evaluate this approach for HASs in Section 4.3 and prove that it is infeasible in some
scenarios where the idle power consumption of the system is relatively low. More
recently, there has been significant research on traffic analysis in low-latency MIX
networks. [Lev+04]

Systems such as Tor [DMS04] or Loopix [Pio+17] provide anonymity for their users.
Similar to their attacker models, we have to assume a global adversary in HASs.
We demonstrate in Section 2.1 that using readily available hardware it is easy to
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capture any and all traffic from a single HAS.

Contrary to MIX networks, routing in HASs is often not performed at all and mes-
sages are being broadcast (most systems are either wireless or use a bus network).
Furthermore, the attacker’s goal is fundamentally different in HASs: The adversary
tries to identify user interaction or the absence thereof, i.e. the existence and/or
pattern of genuine communication. In models for MIX networks, the adversary’s
goal is usually to link the sender and receiver or to estimate the average sending or
receiving behaviour of users. In Chapter 3, we therefore develop and use metrics
that are more suitable for the HAS scenario.

Previous research has shown limits of dummy traffic generation in MIX networks.
[OTP14; Das+18] However, HASs exhibit incompatible differences: Das et al. ex-
plicitly exclude protocols where information is contained in the absence of messages.
[Das+18] Oya et al. assume an attacker who tries to estimate the generic sender
or receiver profile of users in contrast to examining specific, fixed timing patterns.
[OTP14] Furthermore, our model is agnostic to sender behaviour, notably to changes
in the genuine message rate.

Despite the differences, some approaches from MIX networks like Constant-Rate
Dummy Traffic [PPW91] can be adapted and applied. Shmatikov and Wang have
developed an approach which uses adaptive padding to offer privacy at a lower com-
munication overhead. [SW06] The scheme presented in Section 4.4 is similar, but
does not build on pre-sampled traffic patterns and is tailored towards the character-
istics HASs.

Loopix [Pio+17] also offers a property called Sender online unobservability which
corresponds to our goal of hiding the existence of user interaction. It does so by
having the users send data through the MIX network back to themselves. In HASs,
we cannot leverage this route of partially trusted MIXes, as the system does not
route messages at all. However, our approach builds on some of the same principles:
Inter-message timings are modelled as random variable. This allows for an intuitive
and well manageable model.

1.3.4 Website Fingerprinting

A large body of literature is available on the topic of website traffic fingerprinting
and recognition. [Cai+12; Pan+11; Kir+08] The general idea is that web browsers
exhibit a unique traffic pattern when accessing a single website. These patterns
can be learned and later recognized to match users to websites even if the traffic is
encrypted and possibly routed through a MIX network.

Some ideas from this field can be adapted and used in HAS settings as well. For
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example, traffic fingerprinting algorithms could be used to recognize known commu-
nication patterns between particular pairs of devices. However, in our particular use
case the attacker has little to no a priori information about the system, the devices
or the inhabitants. The attacks presented in Section 2.2 leak information about the
users without requiring large amounts of sample data and our model in Chapter 3 is
abstract. In general, the models of website fingerprinting and HAS traffic analysis
differ in several regards:

1. In website fingerprinting attacks, the initiator of the communication is known
and the attacker tries to match the counterpart against a set of known and
publicly reachable entities. In our scenario, only the HAS to which the com-
municating parties belong is known. The attacker tries to determine whether
some particular category of communication (e.g. genuine user interaction) is
happening.

2. Countermeasures against website fingerprinting attacks generally aim to be
applied at the user’s node and possibly at nodes along the way to the web
server. Unrelated third parties and the website itself are to be protected from
negative side-effects of the countermeasure. In HASs, all nodes are under the
user’s control. Except for regulatory thresholds, no third parties are involved
and have to be considered.

3. In computer networks, a large traffic overhead degrades the performance of the
system. In HASs, this directly affects battery lifetime and can lead to system
unresponsiveness if regulatory thresholds for communication bandwidth are
exceeded.

4. Routing or at least direction information is available in computer networks
[Pan+11]. In broadcast HASs where the destination of a packet is sent unen-
crypted, only this information is available to an observer. If the destination
address is encrypted as well by a mechanism such as SlyFy [Gre+08], no rout-
ing or direction information is available at all.

1.3.5 Differential Privacy

Definitions of Differential Privacy are used to model problems very similar to the
one at hand. They are used for the development of techniques which provide unob-
servability of events or user data. As we show in Chapter 3 however, the two models
are not quite compatible.

Approaches from the field of Differential Privacy are tailored to specific computations
on input data. The definition of the original work [Dwo06] states that a randomized
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function K gives ε-Differential Privacy if for all data sets D1 and D2 differing on
at most one element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ eε · Pr[K(D2) ∈ S] (1.1)

This already indicates that ε-Differential Privacy is a property of a specific function
K. However, we cannot know in advance which computations an attacker will
perform on captured HAS traffic to learn information about the user. Thus, a
solution to the problem of traffic analysis in HASs must be independent of K or at
least apply to a wide range of different possible computations K.

As an example, Dwork et. al. have developed an approach to continuously monitor
an event source and count its events with the counter guaranteeing ε-Differential
Privacy even when its internal state is visible to the attacker at some point in
time. [Dwo+10] However, they describe a concrete implementation of the counting
function which satisfies the requirements. The guarantees do not necessarily apply
to other functions.

Closely related to Differential Privacy is the area of Private Information Retrieval.
[TDG16] Our model presented in Chapter 3 takes ideas from this field and applies
them to a communication network.

In his dissertation [Cop17], Copos defines a model for capturing side channel inform-
ation in arbitrary systems. Contrary to the first intuition, the approach is effectively
very similar Toledo’s idea [TDG16] and tries to capture the same question: What
is the probability of the (hidden) system performing a particular sequence of steps,
given some adversary-observed output? Or, reversed: What is the probability of
observing a particular output given a system that performs a particular set of oper-
ations?

1.3.6 Steganography and Covert Channels

The goal of steganography is to hide the very existence of data. At first glance, this
makes it an ideal mechanism for hiding communication in HASs. However, stegano-
graphy requires some cover data (also called a carrier) to embed the actual data in.
[Kes04] Since there usually is no such cover data available in HAS communication,
many steganography approaches cannot be applied to this setting.

Hiding the traffic among noise of a wireless channel has been investigated by Bash et.
al. [Bas+15] They prove that a passive adversary is unable to decode transmissions
if the sender abides by certain rules (i.e. limiting their transmission power and using
suitable spread spectrum techniques). The application of their approach to HASs
faces three issues:
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1. The authors highlight fundamental limits of this approach. It is unclear (and
a driving force behind this work) whether approaches on higher layers of the
network stack can either exceed these limitations or achieve the same results
at lower (manufacturing or communication) costs.

2. The approach was developed for wireless networks. While in theory one could
apply the same techniques in a wired network, it would likely require the
introduction of artificial noise generators (due to the much lower amount of
“natural” noise) and would require transceivers to be more complex.

3. Due to the fact that the approach works on the physical network layer, it
needs to be incorporated in the transceivers of appliances. Depending on the
spread spectrum technique used, this implies changes to the hardware and/or
firmware. Solutions on higher layers might be easier to implement for HAS
manufacturers, because they only require changes to the software written by
them.

1.4 Outline

This thesis is structured as follows.

In Chapter 2 we investigate the problem of privacy in Home Automation Systems
from a practical perspective. We demonstrate the first published passive attacks
on the communication of a complete HAS and illustrate that adversaries can form
highly detailed behavioural profiles by listening to unencrypted traffic. We show that
information such as sleep cycles, heating and ventilation habits can leak to interested
parties. We then proceed to analyze how well the application of encryption can
protect against this kind of attacks. We expose that passive attackers can still deduce
information about user presence by applying statistical tests to traffic metadata.
Lastly we delve into the legal situation regarding privacy in HASs. We highlight
the past and current situation regarding both criminal and data protection law.
Furthermore, we sketch shortcomings of current legal frameworks and how legislators
aim to define boundaries for permitted usage of communication equipment.

In Chapter 3 we present a formal model to describe, quantify and work on pri-
vacy in Home Automation Systems. We show how notions of privacy can be used
to quantify information leakage and how protection mechanisms can be evaluated
against a universal model. To the best of our knowledge this is the first general
model which can be applied to any network topology, communication protocol and
privacy-enhancing technology in the context of HASs, all while capturing the sys-
tem as a whole. Our model is uniquely suited for the application in this particular
setting and intuitive properties of protection mechanisms can be easily formulated
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using the notions established here. We demonstrate the application of the model by
taking two exemplary cases—no dummy traffic and Constant-Rate Dummy Traffic
(CRDT)—and evaluating them against the notions of our model.

Chapter 4 focuses on finding a compromise between privacy and energy-efficiency
for battery-powered and bandwidth-limited HASs. We investigate the effect of
Constant-Rate Dummy traffic on data rates and power consumption using dif-
ferent models. As the first quantitative study in this area, we show the rela-
tion between traffic volume and energy consumption when applying Constant-Rate
Dummy Traffic in a Home Automation System. Contrary to the first intuition,
we demonstrate that in certain settings, CRDT is a suitable and feasible method
to provide optimal privacy at moderate cost. For scenarios where the power con-
sumption of CRDT cannot be satisfied, we present an algorithm which offers certain
privacy guarantees while providing arbitrary tuning capabilities. This allows man-
ufacturers and users to strike a compromise between privacy and energy efficiency.

The thesis is complemented by a conclusion in Chapter 5, which highlights the results
of our findings and indicates possibilities for continued research.
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Chapter 2
Attacks on Current Commercial
Systems

In this chapter we investigate attacks on the privacy of Home Automation System
users. The goal of this chapter is to develop an understanding of how the privacy of
the inhabitants can be violated by a passive adversary monitoring the HAS traffic.
This understanding is necessary to develop a formal model and to come up with
approaches that guarantee privacy-preserving interaction with such systems.

While more recently, manufacturers have started to encrypt Home Automation Sys-
tem communication or based their system on standards which offer this feature, this
has not always been the case and is still neglected by some. We start by analysing
the privacy leakage in unencrypted systems and then proceed to investigate the use
of encryption, showing that this does not fully protect the users’ privacy. Afterwards
we take a look at how the legal situation has developed up to now.

The following analyses focus on data from different Home Automation System. One
part of the data stems from two HomeMatic installations – a commercially avail-
able mid-budget HAS that offers a wide variety of applications. These properties
(availability, affordability and range of use cases) make it an ideal setup for our in-
vestigations. The system may gain a high popularity due to the first two properties
and the results are representative for HASs due to the third one. Details on the
setups are elaborated on in Sections 2.1.2 and 2.1.4. Another part of the data was
taken from a series of news articles. The system was assembled by the tenants them-
selves, using various devices from different manufacturers and building on an IEEE
802.11 (Wi-Fi) network. It serves as a suitable example for a different architecture
and demonstrates that the findings are not unique to HomeMatic systems. Details
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on the data are found in Section 2.2.

2.1 Unencrypted Communication

Research Question: What information can a passive attacker learn about the user
of a Home Automation System if communication is unencrypted?

Even without a detailed analysis, it is obvious that unencrypted HAS communica-
tion can leak private information to eavesdroppers. However, in order to show the
extent of this privacy violation, we performed a study using two distinct real-world
installations of Home Automation Systems. The study was initiated as part of a
Master’s Thesis [Hel13] which lays the groundwork for this work and the results
have been published [Möl+14]. They are presented in the following.

The goal of the study is to estimate the level of detail that can be learned about
a victim’s habits and accommodation situation from the traffic data of their HAS.
Specifically we investigate whether an attacker can identify recurring habits such as
regular times of going to sleep and waking up, going to and coming from work as
well as heating and ventilation behaviour.

2.1.1 Attacker Model and Attack Methodology

For the analysis we assume the role of an attacker with a limited, but realistic set
of abilities:

• The attacker is global and thus able to capture all messages which are trans-
mitted by the system. It is possible to achieve this by using cheap and readily
available hardware.

• The attacker knows the geographical location of the victim’s property. Since
the attacker will usually place a receiving device in the vicinity of the Home
Automation System, they know the location. This is not a necessary assump-
tion for the complete attack, but the knowledge of the location was used to
find out even more about the victim’s habits.

After getting consent from the participants (cf. Section 2.4.2), we placed a capturing
device (using a CC1101 USB Lite (CUL) stick) in the vicinity of two properties which
had HomeMatic Home Automation Systems installed. We captured the traffic of the
systems over a period of several weeks and subsequently analysed it using different
methods described hereafter.
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Figure 2.1: Communication Graph of a HomeMatic Home Automation System.
The abbreviations for device types are listed in Table 2.1.

2.1.2 Analysis Procedure

First, the different devices making up the HAS have to be identified. Using the
addressing information from the captured packets as a start and applying regular
expressions as well as plausibility checks to the message packet contents lead to a
mostly error-free identification of all devices in use. The plausibility checks (e.g.
temperatures in Germany are unlikely to reach values below −20°C or above 50°C)
in particular help solve ambiguities in the message payloads. Slight manual adjust-
ments based on plausibility of communication links (e.g. a remote control is more
likely to communicate with a lock than with a thermometer) further improve the
classification.

After identifying the individual devices, communication graphs similar to those in
Figure 1.1 can be generated to visualise the relationships between them. One ex-
ample of such a graph is shown in Figure 2.1.

Message contents can be interpreted depending on the sender’s and receiver’s device
types. For example, messages from a thermometer to the base station contain nu-
meric values (i.e. the temperature) and messages from the base station or a remote
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Abbr. Device
3S Tri-state Sensor
Bc Broadcast Address
F Remote Control
KF KeyMatic Remote Control
KS KeyMatic Lock
R Smoke Detector
S/D Switch / Dimmer
ST Heating Actuator / Thermostat
T/L Temperature / Humidity Sensor
Z Central Unit

Table 2.1: Abbreviations for the different devices.

control to a lock contain a desired binary state (locked or unlocked). Using these
interpretations, we are able to identify correlations between events which indicate
user habits and automation rules.

Table 2.1 shows the abbreviations used for devices in the following summary of the
results.

After plotting the general communication links between devices, we project the
messages to and from a single device in relation to the time onto a 2-dimensional
graph. We call this step the Manual Examination of Message Graphs. This graph
type helps identify temporal structures and periodic events.

In addition to the manual identification of correlated events, we perform an auto-
mated correlation analysis using a sliding window approach. We define an event as
a 4-tuple of sender address, receiver address, message type and message content. For
each event e, we examined other events e∗ that occured in a time frame after e. We
then pair e with each of these other events e∗ and for each pair (e, e∗) calculate the
number of occurences over the whole observation time. 3 parameters allow filtering
out events: The minimum total number of occurences of the event e, the minimum
chance of e being followed by e∗ and the length of the time frame in which e∗ has
to follow e in order to be counted.

With a similar approach we filter out programmed automation rules. We assume
that automated events occur at a fixed time which differs only marginally. For each
event we collect all occurences over the observation period. We then strip the date so
only the time of day remains. As a last step, we sort the occurences in chronological
order. The sorted list allows for an easy identification of events that often occured
at similar times during a day.
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2.1.3 Analysis Results: System 1

The Home Automation System was installed in a single home. We recorded 45,679
messages over a period of 3,111,908 s (36.02 days). The individual message time-
stamps were saved with a precision of 1 second. During the data capture, the
listening device experienced two outages during which no message was captured.
These appear as gaps larger than 4000 s in the data. These gaps are ignored, i.e.
the time during which no message was captured is removed from the data, for the
remainder of this thesis. Subtracting these gaps from the overall timespan leaves it
at 3,066,575 s (35.49 days).

Only a few devices cannot be identified with acceptable certainty. As we found out
after a debriefing with the owner, this was the case for the smoke detectors that only
send heartbeat messages to the central unit as well as one of the tri-state sensors
which did not report any state changes during the observation period.

The analysis follows the aforementioned procedure. We first identify the installed
devices and infer information about the accommodation situation from the system
architecture. We then proceed to examine individual device’s and device groups’
communication patterns in order to identify habits and automation rules.

Communication Overview

Figure 2.1 provides a graphical overview of the communication. Expectedly, the
central unit Z 1.1 communicates with most sensors and actuators so it can be
easily identified. The graph also allows us to identify which components are directly
paired with each other and do not exclusively communicate over the central unit.
This information might be useful, for example for later active attacks against the
system, and might also be an indicator for manual interaction.

Manual Examination of Message Graphs

Figure 2.2 shows the temperature status messages of two temperature/humidity
sensors T/L 1.1 and T/L 1.2. The obvious, significant difference in the temperature
ranges leads to the conclusion that T/L 1.1 is located outside the house whereas
T/L 1.2 is located on the inside. We confirmed this by comparing the recorded
values with weather reports from the area.

Values of the in-house sensor T/L 1.2 consistently lie in the range between 20°C and
25°C. The not perfectly regular rise and fall suggests that the heating is controlled
manually and indicates a user habit. Furthermore we deduce from the low outside
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Figure 2.2: Temperature values of T/L 1.1 and T/L 1.2 over the course of 6 weeks
(upper) and temperature values of T/L 1.2 over the course of 7 days (lower).

temperature and the slow temperature drop inside that the room is rarely ventilated
by widely opening the windows for at least 10 minutes.

The tri-state sensors1 can be coarsely divided into two groups. The first group
consists of two sensors, 3S 1.2 and 3S 1.4. Both send only very few messages with
usually the same content. No conclusions can be drawn about their role. The second
group consists of the remaining tri-state sensors whose traffic mainly consists of open
and close state announcements.

Examining the protocol data for 3S 1.3 and 3S 1.6 which is visualised in Figure 2.3,
reveals that they frequently switch the state. The open state is never held for more
than 1.5 minutes and usually lies in the order of seconds, suggesting that the sensors
are placed on doors rather than windows. The activity over longer time spans shows
gaps during the nights and early mornings.

1The family of tri-state sensors includes different devices: Window sensors that distinguish
between open, closed and tilted and door sensors which only distinguish between open and
closed. Technically, they are the same kind of device.
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Figure 2.3: Sensor values of 3S 1.3 and 3S 1.6 over the course of 10 days. Since
they are attached to doors, they only report two distinct states instead of three, as
the name suggests.

Since tri-state sensors notify about state changes usually caused by user interaction,
these gaps are good indicators for the inhabitants’ sleep cycles. 3S 1.6 changes its
state to closed some time before the gaps, which supports the assumption that it
is installed on the front door. This is a major discovery for an attacker, because
they can tell when the first inhabitant leaves the property in the morning. If there
is only one inhabitant, this knowledge is already enough to plan a burglary during
the user’s absence.

Similar to the tri-state sensors, the switches and dimmers can be divided into two
groups. S/D 1.2, S/D 1.6 and S/D 1.8 exhibited very little activity over the obser-
vation period. S/D 1.3 and S/D 1.4 regularly alternate between on and off states.
The activities of S/D 1.4 —shown in Figure 2.4—reveal a strong regularity in the
afternoon between 16:30 and 17:00 when the actuactor is switched on and at 1:00
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Figure 2.4: Data sent to and from switches/dimmers S/D 1.3 and S/D 1.4.

when it is switched off again. Each day the former action is performed 1.5 minutes
earlier than the day before. This is a very strong indicator for an automation rule
which compensates for the sunset times. This assumption is supported by the fact
that the respective commands come directly from the base station rather than a
remote control.

Regarding S/D 1.3, we found regular activity on weekdays between 1:00 and 2:00
as well as between 8:30 and 9:30. The slight variations support the conclusion that
this indicates a user habit rather than an automation rule. The payloads of the
recorded packets revealed that on weekday mornings, the base station would send
timer commands to the switch between 8:00 and 9:15. These commands would turn
the switch on for an hour after which it would turn itself off again. We attributed
this behaviour to either a habit of the user after waking up or to an alarm function
actually waking the user by e.g. turning on the lights.

Another regularity is the absence of activity of S/D 1.3 between 13:00 and 17:30.
The fact that this coincides with a lack of activity of S/D 1.7 (12:00 to 18:30) lead
us to the conclusion that the user is absent (e.g. at work) during this time of day.

Correlation Analysis

During the correlation analysis we tested different possible parameter values. Since
we have no prior knowledge about the systems, the only viable approach is to manu-
ally determine suitable threshold values.

The results of the correlation analysis largely support the previous findings which
could already be observed in the graphical analysis. However, we can make some
additional findings.

In 72.5% of all cases where sensor 3S 1.6 was turned on, it would be turned off
again within 10 seconds. A similar behaviour was observed for sensor 3S 1.4, which
was closed within the 10-second interval in 58% of all cases. In accordance with our

22



Chapter 2. Attacks on Current Commercial Systems

reasoning above, we conclude that the sensors are installed on doors rather than
windows.

When selectively analysing the behaviour of 3S 1.3 and 3S 1.5, we found them to
act very much alike. In most cases the state open did not hold for longer than
90 seconds. In the case of 3S 1.3, this was especially interesting when considering
the timer commands sent to it by the base station in the mornings. The commands
would turn on the switch for 300 seconds, but in 96% of these cases, the switch would
be manually turned off within the first 90 seconds after reception. This supports
our theory that the switch is part of an alarm function.

Filtering Automated Events

In order to filter out automated events, we initially started the analysis with very
strict parameters: The minimum number of occurrences of an event were set to
120, the maximum overall deviation of events possibly originating from the same
automation rule was set to 60 seconds and the maximum deviation of two consecutive
events from the same rule was set to 30 seconds. The only event to match at
first was a command from the base station which turns off S/D 1.4 at precisely
1:00, confirming our assumptions. We then proceeded to loosen the parameters to
search for other rules. The command coming from the base station and turning on
S/D 1.4 in the afternoon between 16:25 and 17:10 came out next. Although the
maximum distance between the different occurrences is 38 minutes, we concluded
that this event indicates the presence of an automation rule. The distance between
two consecutive occurrences is about 90 seconds and each event occurred later than
the one on the day before. Rather than a user habit, we attributed this regularity
to an automation rule that incorporates sunset times.

2.1.4 Analysis Results: System 2

The second installation was split up in two parts which are interconnected via a
VPN. One part was the user’s private flat and the other part was his office. For
this reason, we performed the data collection in two parts. We first installed the
sniffer at the office, then moved it to the user’s home. During these two periods we
recorded 33,708 packets over a timespan of 720,112 s (8.33 days) and 999 packets
over a timespan of 1,161,565 s (13.44 days), respectively. Similar to System 1, the
message timestamps were measured with a precision of 1 s. The total number of
distinct devices is 20.
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Figure 2.5: Directed communication graph for the second installation. The abbre-
viations are again those from Table 2.1

Communication Overview

Figure 2.5 shows the communication graph for the second installation. It can easily
be seen that there is no single center of communication as opposed to the first system.
Many devices are paired directly with each other and only 6 of 19 available peripheral
devices communicate with Z 2.1. Furthermore, neither the remote control F 2.1
nor any of the three switches paired with it communicate with Z 2.1. Thus, we can
almost certainly rule out any automation rules for these devices, which gives us more
insight into the habits of the inhabitants. Nevertheless, the segmentation of this
installation and the VPN connection between the segments make it difficult to derive
information about the physical presence of the inhabitants from the automated
events alone. The KeyMatic remote controls KF 2.1 and KF 2.2 are paired with
many actuators in addition to the KeyMatic door locks and both remote controls
are paired with both door locks.

Manual Examination of Message Graphs

The temperature values given by the sensors T/L 2.1 (shown in Figure 2.6), T/L 2.2
and T/L 2.3 as well as the corresponding actuators ST 2.1, ST 2.2 and ST 2.3
are strong indicators for an automated heating concept. Over the weekends, the
temperatures drop gradually and then rise again sharply at the start of the week.
The different temperature and humidity curves and the temperature differences of
up to 10°C between the sensors lead us to the assumption that they are installed in
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Figure 2.6: Temperature and Humidity Values from Sensor T/L 2.1.

2-3 different rooms.

When examining the activity of the remote control F 2.1 we find events only in
the first part of the observation period. This means that the user only uses the
remote control within the office itself and does not control any devices at home.
The observed activity is thus a very reliable indicator of when the user is definitely
present at the office and thus, not at home.

Keymatic Door Lock System

The most interesting data for the second installation came from the automatic door
lock system. Every day at about 9:15 as well as between 20:00 and 22:00 the door
locks report their status to the central unit Z 2.1. We observe that there are always
two messages shortly after one another, first 3S 2.1 sends the state open and after
a maximum of 60 seconds the state close. Correlating the states of 3S 2.1 and
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Figure 2.7: Sensor data from 3S 2.1 correlated with commands received and states
reported by KS 2.2.

KS 2.2 as shown in Figure 2.7, we conclude that 3S 2.1 is installed on the same
door as KS 2.2. Due to this combination, the presence of the inhabitant can be
easily predicted. Usually there is nobody at home between 9:30 and 20:30, except
for Mondays, where the time of absence lies between 13:00 and 21:00 (assuming the
user lives alone).

Correlation Analysis

Our correlation analysis found strong correlations between the thermostats and the
heating actuators as well as between the remote control F 2.1 and the actuators
S/D 2.1, S/D 2.5 and S/D 2.6. The thermostats show a consecutive acknowledge-
ment of the heating actuators’ new positions in 98.8% of all cases. The switch and
dimmmer actuators even send their status as a reaction to a previous command from
the remote control in 100% of all cases.
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We see similar clear results for the reactions of the Keymatic door lock systems
and the switches/dimmers S/D 2.2, S/D 2.3 and S/D 2.4 to the Keymatic remote
controls KF 2.1 and KF 2.2, where we recorded a reaction in 90% of all cases. In
addition to what we already knew, the correlation analysis reveals that the tri-state
sensor 3S 2.1 seems to have a relation to KS 2.2, since over 60% of all status changes
of KS 2.2 result in a status change of 3S 2.1.

Filtering Automated Events

To filter automated events we used the same approach as for the first system. We
generally found the results to support our findings from the manual analysis.

Using the automatic filtering method we can confirm our assumption that the un-
locking command sent from the base station Z 2.1 to KS 2.2 at 8:30 in the morning
does belong to an automation rule. The same holds for the command that locks
KS 2.2 again at 22:30.

Furthermore we found that the the heating actuators are automatically turned off at
night. They regularly receive a Pos.: 0% command from the temperature/humidity
sensors.

2.1.5 Confirmation of Results

After our experiments, we interviewed both system owners and discussed our find-
ings with them. We were able to confirm our conclusions about the locations and
purposes of the different devices. The owners also confirmed our assumptions about
automation rules and user habits.

2.1.6 Conclusion of the Analysis

As can be seen from the results of our analysis, unencrypted communication in
Home Automation Systems poses a significant threat to the privacy of the users.
In general, these systems leak a large amount of information to any observer keen
enough to look for it. No prior knowledge about the installation or the victim is
necessary to perform this kind of attack. Criminals can indeed resort to a form
of wardriving, where they move around populated areas carrying a receiver and
searching for systems using a supported protocol.

As we show later on, even encrypted systems do not protect the user’s privacy
appropriately. Knowledge gained from the analysis of traffic of an unencrypted
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system such as common communication links and communication patterns can be
used to partly remove the confidentiality that encryption is supposed to offer.

While we performed many tasks and checks manually during our experiments, most
of them can be automated with the knowledge from our findings. Our parameters
for finding automated events proved useful, as long as the automation rules did not
change times themselves. Possible communication links, the usual frequencies with
which the different devices send status messages and the number of messages being
exchanged for each action of one device can be used to program heuristics which can
then in turn identify devices in a system even if packet payloads are encrypted.

In conclusion, the analyses have demonstrated which habits and automation rules
can definitely be extracted from unencrypted HAS traffic. While it may be possible
to extract even more details, the goal of this section was to gain insights into the
danger of passive attacks and to understand how these attacks can be performed.
This knowledge is used later to derive a model for attacks on privacy in HASs.

2.2 Encrypted Communication

The most obvious countermeasure to the passive attacks detailed in the previous
sections is the encryption of all traffic. However, as sketched in Section 1.2.3, even
metadata can disclose sensitive information to an attacker. In order to quantify this
leakage, we perform a second study on a dataset overlapping with that of Section
2.1. We assume the same attacker model with two slight modifications:

As a restriction, the attacker is only able to observe message timestamps, i.e. they
are unable to see packet contents, lengths or metadata which allows the identification
of individual devices (e.g. addressing information). This is a strong limitation of
the attacker’s abilities, but serves an important purpose: We aim to show that
even with this highly limited visibility, passive adversaries are still able to infer
presence information about the HAS users. As detailed in Section 3.1, the detail of
information assumed to be visible to the attacker can be varied without invalidating
our findings and the established model. While the first part of this chapter aims to
show how much attackers can learn when given a high amount of detail, this section
deals with the privacy violations that are possible even when the information is
highly limited.

As a second modification to the attacker mode, we assume that the adversary has
captured all communication packets during one hour of HAS operation and knows
whether the inhabitants were at home during this time. System 1 provided us with
the necessary information for their dataset. For System 2, we could not obtain the
necessary data. We therefore used a different dataset (denoted as System 3) which
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we obtained from a series of news articles2.

The question we are trying to answer by this study is:

Research Question: If an attacker has captured traffic from a user’s HAS over
a given time frame and knows whether the user was present at that time, can the
attacker infer the user’s state (presence/absence) during a second timeframe from
that (second) timeframe’s metadata?

To answer this question, we assume the role of an attacker and collect pairs of traffic
samples. For one sample we look up the user state and for the other sample we try
to infer it from traffic metadata. We then compare the guessed state to the actual
state of the second sample.

A base for the following study was built and used to obtain first results. These
have been published.[MS16] After publication, we have re-run the simulations with
slightly different parameters, resulting in a higher number of samples and, con-
sequently, a longer computation time. The idea behind this reiteration is to rein-
force the results from the first run, leveraging access to new computational equip-
ment. The different parameter choice—the step size for sampling message groups
was decreased—is elaborated in the following section.

2.2.1 Attack Methodology

As specified in the attacker model, we only use message timestamps for the analysis.
Using the captured communication packets from two different time frames of one
hour each, we try to find similarities in the statistical distribution of inter-message
intervals (the time difference between two subsequent messages).

As a first step, we annotate each message with the user state: Present and Absent
are chosen based on the available data. A third state, Asleep is introduced to handle
the fact that during the night, users are usually asleep and thus the activity of the
system is reduced. Since we do not know the exact sleeping times and habits of the
users, we annotate all samples between 22:00 and 08:00 with the state Asleep and
exclude them from further analysis. We only investigate messages whose state is
either Present or Absent.

Analysing each system by itself, we construct intervals of 1 hour each during which
the user state did not change. The intervals overlap and are sampled in steps of 1

2https://www.spiegel.de/netzwelt/gadgets/sensorenresidenz-was-ein-smart-home-

ueber-seine-bewohner-verraet-a-1065421.html, accessed 2021-03-23. The data is
no longer available from the articles, but is archived on a separate page: https:

//opendatacity.github.io/sensorenresidenz/, accessed 2021-03-23
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minute. This accounts for the fact that the attacker might start their capture at
any point in time. We have performed the experiment with larger step sizes and
different interval lengths and have obtained similar results. The results are compared
in Sections 2.2.2 and 2.2.3.

The first iteration of the simulation [MS16] was run using intervals that were sampled
in steps of 1 hour–a compromise between sample data size and simulation runtime.
Furthermore, similar samples (intervals with the same message inter-arrival times)
were only considered once. Leveraging new equipment with higher computational
power, we have decreased the step size to one minute and have modified the simula-
tion to treat every sample separately, no matter if a similar one has been encountered
before. As a result, the number of samples is roughly 60 times as high as during the
first iteration and the number of pairs consequently is about 3600 times as high.

By using overlapping intervals, we also account for the fact that actual attackers
are able to arbitrarily choose the time of their attack. Overlapping message groups
thus include more possible attack settings for the given data and the confidence of
our conclusions is thus higher. Given that the results from the larger step size do
not differ significantly from those with a smaller one, we conclude that experiments
with smaller step size are unlikely to reveal new information. Due to the quadratic
increase in computation time and storage requirements, we have refrained from
further decreasing the step size.

For each interval, we gather the messages sent during this time into a Message
Group. Each Message Group is thus identifiable by its system and the timestamp of
the start of the capture period. Also, as per the construction of intervals described
above, each group has a fixed user state.

For System 1, we obtain 19,056 Message Groups, 10,836 with state Present and
8220 with state Absent. For System 3, we obtain 23,696 Message Groups, 15,122
with state Present and 8574 with state Absent.

For all combinations of 2 different Message Groups (only considering those with
states Present and Absent)—181,556,040 in total for System 1 and 280,738,360 for
System 2—we perform 3 statistical tests described hereafter. We then visualize the
results in box plots, both overall per system and individually for each combination
of user states. In a second step, we test different thresholds for all tests and plot the
true and false positive rates in ROC diagrams.

In order to compare the samples, we use the Kolmogorow-Smirnow Two-Sample
Test [Kol33], the Chi-Square Test of Independence [Pea92] and the “Message Counts
Test”. The former two are well-known and thoroughly tested approaches to compare
samples from random distributions. The third test was developed specifically to
complement the other two tests by using a robust and intuitive metric.
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These statistical tests tackle the null hypothesis that the two samples have the same
underlying distribution function. We assume that the traffic patterns of the HAS
follow an unknown random distribution and that traffic samples of intervals with
the same user state follow the same distribution with similar parameters. Instead of
rejecting the null hypothesis with a certain confidence at a threshold (which in turn
depends on the desired confidence), we analyse the computed test statistics and try
to determine suitable thresholds ourselves. The reason behind this is twofold: On the
one hand, we do not have any a priori knowledge about the underlying distribution
functions. In fact, we cannot even be sure that the traffic can be modelled using a
random distribution at all. On the other hand, we want to determine whether the
difference in the distributions between two samples with different user states is high
enough to allow a distinction based on the calculated test statistics. If this is the
case, we can subsequently calculate thresholds and resulting confidence values for
HASs.

The Kolmogorow-Smirnow Test

The Kolmogorow-Smirnow Test for homogeneity [Kol33] is based on the empirical
cumulative distribution functions of the two input samples. Informally speaking, it
measures the maximum vertical distance between the two curves. Formally, given
two samples X = [x1, x2, . . . , xn] and Y = [y1, y2, . . . , ym] with respective empirical
cumulative distribution functions FX and FY , it computes the value

D = sup
a
|FX(a)− FY (a)| (2.1)

Due to the test statistic being the difference between two distribution functions, D
takes values within [0, 1]. A value of 1 shows that all values in one sample lie below a
certain threshold while all values in the other sample lie above this same threshold.
The test statistic is 0 if the cumulative distribution functions match exactly.

If the test statistic D is high, the null hypothesis is rejected.

We use the SciPy3 implementation of the KS 2-sample test from SciPy version 0.19.1
and apply it to the inter-message time intervals. In addition to the KS statistic D
(sometimes referred to as dmax or Da,b in literature), the implementation computes
a p-value as a function of D and the sample sizes. This accounts for the fact that
large samples with the same underlying distribution are expected to show fewer
differences than smaller samples (as per the law of large numbers). We examine
both the value of D and the p-value.

3http://www.scipy.org, accessed 2021-03-23
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The Chi-Square Test

Pearson’s Chi-Square Test [Pea92] follows a similar approach as the KS test, but
calculates the sum of squared differences between the actually measured frequencies
and the expected ones. The test can be performed in two scenarios: One possibility
is to test measured frequencies against a (suspected) random distribution function.
The other possibility is to test two samples of measured frequencies against each
other.

In the two-sample form used here, the expected frequencies are estimated by taking
the average frequencies of the two samples. Formally, the test expects categories
and respective frequencies as inputs. Given two samples x, y and m categories,
these frequencies can be written as X = [x1, x2, . . . xm] and Y = [y1, y2, . . . , ym],
where xi is the number of elements in sample x which fall into the i-th category.
Using the intermediate definitions

n = nx + ny =
m∑
i=1

xi +
m∑
i=1

yi (2.2)

∀z ∈ {x, y} : Ez,i =
nz × (xi + yi)

n
(2.3)

the test statistic is then defined as

χ2 =

n∑
i=1

(xi − Ex,i)2

(Ex,i)
+

n∑
i=1

(yi − Ey,i)2

Ey,i
(2.4)

There is no intuitive interpretation of the test statistic. It can take values between
0 and max(|x|, |y|), where x and y are the two samples. More generally, the value is
within [0,+∞[.

If the value of χ2 is high, the null hypothesis (“The two samples have the same
underlying distribution function.”) is rejected. Due to the dependency on the input
samples, there is no standardized threshold for rejecting the null hypothesis. Sensible
values have to be found separately for every application scenario.

For the Chi-Square Test, we use a custom implementation. Similar to the Kolmo-
gorow-Smirnow Test, it is applied to the inter-message time intervals.

As the test expects the two samples to be categorized into bins, we need to do this
before calculating the actual test statistic. Literature suggests choosing bin sizes so
that no bin contains less than 5 elements for any sample [FY63]. Thus, we adaptively
choose bins of varying size. The lower bound for the first bin is the lowest value in
any of the two input samples. The upper bound for a bin (which is also the lower
bound for the next bin) is chosen as the smallest number which results in at least
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Sample A: 1 1 1 2 2 3 3 3 4 4 4 4 5 6 6 6 6 7 7 8 8
Sample B: 1 1 1 1 2 2 2 3 3 3 4 5 6 6 6 6 6 7 7 7 7

Figure 2.8: Example of the approach used for binning using a minimum bin size
of 5. The bounds are chosen so that at least 5 elements of each sample fall into one
bin.

5 elements of each sample falling into this bin. We thus guarantee that at least 5
values are in each bin for each sample. An example for the binning approach is
depicted in Figure 2.8. For the Chi-Square Test we calculate and examine the test
statistic.

The Message Counts Test

Our own “Message Counts Test” is a custom test developed for this particular use
case. One is added to the number of messages in each sample so that neither number
is zero. Then, the higher number is divided by the lower and one is subtracted,
resulting in a value within [0,max(|x|+1, |y|+1)], where x and y are the two samples.
More generally, it is within [0,+∞[. Higher values indicate larger differences in
the amounts of messages, just as higher results in the other tests indicate different
distributions. The idea behind it is that if the sheer amount of activity in the system
is very different to that during the reference time frame, the user state is likely to
be different. For example, if the reference capture was taken while Alice is present
and the capture in question shows significantly lower activity, Alice is likely to be
absent.

Formally, given two samples X = [x1, x2, . . . , xn] and Y = [y1, y2, . . . , ym], the test
statistic is defined as

C =
max(n,m) + 1

min(n,m) + 1
− 1 (2.5)

Note that this definition differs slightly from the publication [MS16] in order to also
work for cases where one sample is empty—i.e. contains at most one message and
thus no inter-arrival times.

Similar to the Chi-Square test, we calculate and examine the test statistic.
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2.2.2 Test Suitability in the General Case

At first, we plot all test results by system and test and only distinguish between the
two cases whether the samples have different user states. This section gives a general
and quick overview over the suitability of the tests for our purposes. If the plots of
the two cases differ significantly, the test results carry a high amount of information
and if they are largely the same, the information immediately available from the test
result is limited. The plots are visualized in Figures 2.9 and 2.10. The box plots do
not show any immediately obvious peculiarities. For both systems and all tests, the
boxes overlap and thus suggest that the tests cannot be used as a universal oracle
telling an attacker whether the 2 compared samples have been taken with the same
user state. However, the plots do not always fully overlap. We discuss this in the
following sections.

Interestingly, both the Message Counts Test for System 1 and the Chi-Square Test for
System 3 show counter-intuitive results. The test statistic produces higher maximum
values for samples with the same user state than for samples with different user
states. Intuitively, the test statistics should be smaller for same-state samples, as
they are assumed to follow a similar distribution.

System 1

For System 1, the Chi-Square Test values are broadly spread. Comparing samples
with the same user state yields values from 0 to 79.64, samples from different states
lead to values from 0 to 79.45. This suggests that in general, the Chi-Square Test is
unsuitable for determining whether two samples have the same or a different state if
the state of both samples is unknown. Intuitively, the test statistic would have lower
values for same-state samples, as the samples’ underlying distribution functions are
expected to be similar or the same. The arithmetic mean, median and quartiles
support this assumption, but the maximum values prove that it is not generally the
case.

The Kolmogorow-Smirnow Test statistic D yields values in the full range [0, 1] for
samples with the same state. For samples with different states, however, the min-
imum value is 0.02, which suggests that there may be a lower bound.

The Kolmogorow-Smirnow Test p-values provide similar information. For the same
state, the values range from 1.42× 10−14 to 1. For different states they range from
0 to 1. The null hypothesis (“The two samples originate from the same distribution
[=the same state].”) is rejected for p-values lower than a threshold. The lower
minimum value for different states shows that there might be a bound.
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Figure 2.9: General Test Results for System 1. The boxes extend from the first to
the third quartile. The whiskers extend up to 1.5× IQR past the boxes, where IQR
is the interquartile range. If IQR = 0 (not the case here), the whiskers extend up to
the minimum and maximum values. Red lines mark the medians while red squares
mark the arithmetic means. Blue plus signs show outliers beyond the whiskers. Due
to the large number of samples and outliers, the plus signs seem to merge into lines
and some boxes seem to disappear.
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Figure 2.10: General Test Results for System 3. The plot parameters are the same
as for Figure 2.9.
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The Message Counts Test provides the least useful results. The values are in fact
misleading: While they range from 0 to 59.5 for samples with the same state and
the minimum is the same for different states, the maximum value in the latter case
is only 39.5. This shows that while the user state does not change, the number of
messages being generated in a given time frame can differ significantly.

System 3

The results for System 3 offer much less information than those for System 1. The
Chi-Square Test values range from 0 to 116.59 for samples with the same state and
from 0 to 77.06 for samples with different states. As shown in Figure 2.10, 75% (the
lower three quartiles) of the tests with different states had the result 0. These values
are misleading if interpreted in the same way as those of System 1. Intuitively, the
values should be higher for different states (and they are on average for System 1).
We conclude that either the test’s usefulness depends on the type of the HAS or
that the previous results were not representative.

The Kolmogorow-Smirnow Test statistic D yields values in the full range [0, 1] for
samples with the same state. Similar to System 1, the minimum value for samples
with different states is slightly higher at 0.03. This supports the theory of a threshold
indicating different user states in compared samples.

The Kolmogorow-Smirnow Test p-values are inconclusive: They range from 0 to 1
for both cases.

The Message Counts Test surprisingly yields the exact same minimum and maximum
values for both cases: The results range from 0 to 146, whether the two samples
have the same user state or not.

2.2.3 Test Suitability Per State Pair

In the next step we take a closer look at the different combinations of user states.
Our hypothesis is that the tests may give useful results for certain combinations of
states and less useful results for others. This section deals with the performance of
the tests for a given pair of user states. Figures 2.11 and 2.12 summarize the results
for both systems.
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Figure 2.11: Per state pair test results for System 1. The plot parameters are the
same as for Figure 2.9. The combination Present-Absent does not appear due to
the symmetry of all tests: T (a, b) = T (b, a).
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Figure 2.12: Per state pair test results for System 3. The plot parameters are the
same as for Figure 2.9. The combination Present-Absent does not appear due to
the symmetry of all tests: T (a, b) = T (b, a).
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System 1

The detailed view on the combinations of states provides new insights: 3 of the 4
test statistics exhibit thresholds for specific combinations of user states. This is most
prominent for the Message Counts Test. If both samples have the state Absent,
the values do not go above 0.77. This means that if an attacker obtains a sample
known to have the state Absent, and gets higher value when comparing it to a
second (unknown) sample, they can be sure that the user was present during the
time frame of the second sample. However, this is only the case for 1.52 % of the
tested Absent-Present sample pairs.

Additionally, given a Present source sample, the attacker can be certain that a
second sample has the state Present as well if the test statistic is above a certain
threshold.

Deductions about a second Absent sample cannot be made with absolute certainty
using the Chi-Square or Message Counts Test, regardless of the first sample’s state.
However, the Kolmogorow-Smirnow test statistic D suggests that there is a lower
bound to the comparison of samples with different states. This allows for certain
identification of Absent samples.

System 3

Compared to System 1, the boxplot of the Chi-Square Test for System 3 exhibits
larger differences between the state pairs. If one of the samples has the state Absent,
92.10 % of the tests evaluate to 0. Similarly to the Message Counts Test for System 1,
the plots show that there is a threshold above which the attacker can be sure that the
user is Present if their first (known) sample has the state Absent. This threshold
is at 24.78 and 0.17 % of the Absent-Present pairs reach a higher value. Similar
to System 1, some conclusions can be drawn given a Present source sample as well,
but an Absent second sample can never be identified with absolute certainty.

The Kolmogorow-Smirnow Test exhibits a lower bound for different-state comparis-
ons similar to System 1

The Message Counts Test confirms the observation from the Chi-Square Test and
yields another threshold. The threshold value is 50.51 and 1.37 % (1,778,053 out
of 129,656,028) of the tests with different states result in higher values. Surpris-
ingly, though, none of these 1,778,053 Message Group pairs give a result above the
threshold for the Chi-Square Test. In fact, some pairs even evaluate to 0 in the
Chi-Square Test. This proves that a combination of different tests with the same
input data can provide significantly more information than one test alone.
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2.2.4 The Effect of Different Thresholds on Classification Rates

As shown in the previous section, some tests exhibit maximum values for certain
state combinations, and knowing such values may enable an attacker to infer the
user’s state at a given time with absolute confidence. Below these, however, state-
ments about presence and absence are more difficult to make. In this section we
examine the effect of different chosen threshold values on the classification rates.

We compute True and False Positive Rates TPR and FPR for all possible threshold
levels using the data from the tests previously conducted. In our case, the rates are
defined as follows:

If s(a) is the state of a sample a, T (a, b) is the test result of the pair (a, b), t is the
threshold value below which sample pairs are classified as having the same state and
Na,b(cond) is the number of sample pairs a, b which satisfy a condition cond, then

TPR =
Na,b(s(a) = s(b) ∧ T (a, b) < t)

Na,b(s(a) = s(b))
(2.6)

FPR =
Na,b(s(a) 6= s(b) ∧ T (a, b) < t)

Na,b(s(a) 6= s(b))
(2.7)

TPR is the number of correctly classified same-state pairs divided by the total
number of same-state pairs and FPR is the number of different-state-pairs which
were incorrectly classified as having the same state divided by the total number of
different-state pairs. TPR is a measure for how well the test can identify samples
with the same state as the source and FPR is a measure for how often the test
falsely reports two samples for having the same state.

In order to visualise the rates, we plot ROC (Receiver Operating Characteristics)
curves and calculate the AUC (Area Under Curve) for all of them. ROC curves
illustrate how fast the test performance drops (i.e. how fast the False Positive Rate
increases) when raising the threshold to get a higher True Positive Rate. The AUC
is a numerical measure for this quality: In the ideal case (the test has a TPR of 1.0
and a FPR of 0.0) the value is 1 and in the worst case (the test does not perform
better than randomly guessing), the value is 0.5. Values below 0.5 are similar to
values above, since the test result interpretation can be inverted to invert the ROC
curve (i.e. values above the threshold are interpreted as indicators for a same-state
pair).

The ROC curves are depicted in Figures 2.13 through 2.16 for System 1 and Fig-
ures 2.17 through 2.20 for System 3. Some tests (most notably the Chi-Square Test
for System 3) yield high values for both rates with the lowest possible threshold,
which is why the curves do not start at the origin [0, 0]. To calculate the AUC for
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these cases, we use the line of no-discrimination—the values obtained by randomly
guessing—up to the FPR of the lowest threshold (the X coordinate). From there
on, we proceed with the regular estimation and calculate the area below the straight
line between two subsequent data points.

Most curves do not exhibit large deviations from the mean line. For System 1, both
the Chi-Square Test and the two Kolmogorow-Smirnow Tests yield an AUC between
0.52 and 0.57. Only the Message Counts Test performs slightly better, the AUC is
0.525 for a source sample with state Present and 0.688 for an Absent source
sample (shown in Figure 2.16).

Overall, the results for System 1 suggest that statistical tests are only of limited use
in deducing user states from inter-message intervals.

System 3 mostly confirms this observation, although the performance of the different
tests varies drastically.

The Chi-Square Test performs badly: For a Present source sample, the minimum
obtainable False Positive Rate is 91.6 % at a True Positive Rate of 61.3 % (the
threshold value in this case is 0). For an Absent source sample, the minimum False
Positive Rate is consequently the same, but the minimum True Positive Rate is
98.0%. The Kolmogorow-Smirnow Test and the Message Counts Test perform much
better. Their AUC values are relatively high and significant True Positive Rates can
be obtained while keeping the False Positive Rates below 50%.

From the analysis of the ROC curves we draw two conclusions. Firstly some tests ex-
hibit a significant deviation from the line of no-discrimination. Combining multiple
tests could further improve the results and yield more information. Secondly we
can confirm our previous observation that extreme threshold values lead to absolute
certainty in the classification.

2.2.5 Feasibility of Detection in Practice

The statistical tests do not yield clear results in all cases we examined. However,
upper or lower bounds can be determined in some cases, which then allow an attacker
to make statements with absolute confidence. The requirements for these thresholds
to be useful for the attacker are not hard to meet: They need a source sample
which—when tested in conjunction with samples of a different state—yields values
above or below the thresholds.

To verify the practicability of this attack we divide our traffic data into a training
set and a test set. For training, we use the first 70% of our data (13,338 Message
Groups from System 1, 16,586 Message Groups from System 3).
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Figure 2.13: ROC curves for the Chi-Square Test on System 1. Blue points show
the actual values, dotted red lines of no-discrimination show linear ascension from
[0, 0] to [1, 1]—the values obtained by randomly guessing.
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Figure 2.14: ROC curves for the Kolmogorow-Smirnow Test statistic D on Sys-
tem 1. The plot parameters are the same as for Figure 2.13.
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Figure 2.15: ROC curves for the Kolmogorow-Smirnow Test p-value on System 1.
The plot parameters are the same as for Figure 2.13.
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Figure 2.16: ROC curves for the Message Counts Test on System 1. The plot
parameters are the same as for Figure 2.13.
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Figure 2.17: ROC curves for the Chi-Square Test on System 3. The plot paramet-
ers are the same as for Figure 2.13. As noted in Section 2.2.2, the test produces
counter-intuitive results for a Present source sample.
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Figure 2.18: ROC curves for the Kolmogorow-Smirnow Test statistic D on Sys-
tem 3. The plot parameters are the same as for Figure 2.13.
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Figure 2.19: ROC curves for the Kolmogorow-Smirnow Test p-value on System 3.
The plot parameters are the same as for Figure 2.13.
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Figure 2.20: ROC curves for the Message Counts Test on System 3. The plot
parameters are the same as for Figure 2.13.
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We perform all aforementioned tests on the training data and calculate thresholds
for Message Group pairs with the same state. Using these thresholds, we choose one
Message Group for every system and state where the amount of correct classifications
among the training data is maximized—i.e. the Group with the highest TPR among
the training data. We then check each of these Groups against the test data and
calculate True and False Positive Rates using the thresholds calculated from the
training data before.

For System 1 using an Absent source sample, we reach a TPR of 5.70 % and a
FPR of 0.65 %. This suggests that the attack is not useful in practice. No Present
source sample reaches a TPR above 0. For System 3, the best Absent source sample
achieves a TPR of 19.02 % while the FPR is at a low 0.32 %. Similar to System 1,
no suitable Present source sample exists. The tests do not yield thresholds which
allow for an unanimous classification.

This particular attack is not likely to be encountered in reality: An attacker would
have to manually observe the user’s home for several hours or even days, annotating
the captured traffic with the user states for every one-hour sample. However, the
experiment shows that under the right circumstances, unanimous classification is
possible. The experiment supports the theory that system-wide thresholds exist
which allow for a classification of states with absolute certainty. The follow-up
question is whether such thresholds exist for a manufacturer or production series.
This could not be confirmed due to a lack of sample data.

2.2.6 Classification Using Machine Learning

As shown in the previous sections, the combination of different tests can significantly
improve the results when trying to determine the user state of an unknown sample.
In order to take a further step past the individual sample selection and evaluation
from the previous section, we use the calculated test statistics as input for machine
learning classifiers. This section extends beyond the scope of the previous publication
[MS16]. The results have not been published as they do not provide significant new
insights to the problem.

The previous tests can only output individual values or thresholds and thus provide
a binary classification. Machine learning algorithms aim to improve this by being
able to model non-binary and possibly non-linear classifications. They are therefore
suited for improving the results gained by applying the statistical tests.

We use the Linear Support Vector Classification as well as the Linear Classifier
based on Support Vector Machines (SVM) using Stochastic Gradient Descent (SGD)
training from the scikit-learn library [Ped+11] with their default parameters.
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Both are applicable to this problem class and are suited for the amount of data
available.

Both classifiers are trained on the same input. Again, we use the first 70% of our
data as training data. Each training sample consists of a set of features as well as
the target class. As features we use a numerical representation of the user state of
the first sample as well as all 4 test statistics from the aforementioned tests (Chi-
Square Test statistic, Kolmogorow-Smirnow Test statistic D, Kolmogorow-Smirnow
Test p-value, Message Counts Test statistic). The target is the user state of the
second sample. This setup corresponds to our scenario where the attacker wants to
learn the user state of an unknown sample based on the comparison with a known
sample.

After training the classifiers, they are applied to the test data. Due to the fact
that both classifiers work with distances of points to hyperplanes, they can output
a confidence value for each tested sample. Based on these, we generate ROC curves
which are depicted in Figures 2.21 and 2.22.

For the data from System 1, both classifiers fail to provide significant improvements
over the individual test classifications from Section 2.2.4. They only slightly deviate
from the line of no-discrimination and the AUC values are below 0.55. They do,
however, allow for a finer tuning than the individual tests alone as the curves do not
exhibit larger gaps.

For the data from System 3, both classifiers provide reasonable error rates with
AUCs just short of 0.7, but fall behind the individual tests in several spots. Most
notably, both classifiers fail to reach the extremely high TPR of the Chi-Square Test
and Message Counts Test. Furthermore, even the classifiers exhibit larger gaps—a
significant difference to the results for System 1. It is unclear why the classifiers
fail to reach similar error rates as individual tests even though they combine all
test statistics. One possible explanation is that the different test might provide
contradicting results for two samples and thus combining them results in higher
error rates than using only one test. However, detailed research into the classifiers
and their applicability is beyond the scope of this thesis.

The difference between the machine learning classifier performance for the two ana-
lysed systems may be attributed to the traffic patterns. The individual tests already
perform differently on the two systems. This indicates that samples with the same
user state in System 3 are more coherent in terms of inter-arrival times than in
System 1.

The machine learning approach to the deduction of user presence is not immediately
applicable to the real world. An adversary needs to have a trained classifier which
they can then use on the captured known and unknown samples. Whether a single
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Figure 2.21: ROC curves for linear classifiers on System 1. The plot parameters
are the same as for Figure 2.13. The classifiers do not perform well for this System 1
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Figure 2.22: ROC curves for linear classifiers on System 3. The plot parameters
are the same as for Figure 2.13. Both classifiers provide reasonable results for this
System.
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(trained) classifier can be used for different HASs is unclear. The results however
show that a classifier can be applied to the same HAS it was trained on and in some
cases provide predictions with reasonable confidence.

2.2.7 Conclusion of Statistical Tests

In this section we have performed an analysis of inter-message intervals in Home
Automation using statistical goodness of fit tests as well as machine learning tech-
niques. We have used sample data from two real world installations to measure the
ability of an attacker in deducing user states. In particular, we tried to answer the
question:

Research Question: If an attacker has captured 1 hour of traffic from a user’s
HAS and knows whether the user was present at that time, can the attacker deduce
the user’s state by capturing another hour of traffic?

Comparing and combining various tests, we were able to identify conditions under
which the question above could be confidently answered with yes.

The Chi-Square Test provides little information with regard to the question. How-
ever, the Message Counts Test and, in some cases, the Kolmogorow-Smirnow Test
reveal identifiable discrepancies between samples with different states. A combina-
tion of all three tests allow an attacker to mount a practical attack on the system and
infer the user state by passively listening after obtaining a suitable source sample.

Machine learning classifiers do not perform better than simple combinations of in-
dividual statistical tests. However, they may in some cases offer more possibilities
for parameter tuning.

We note that the demonstrated results show the minimum of what attackers are able
to learn about HAS users. Using other tests not shown here, even more information
might leak from the system. However, the information shown to be leaked by our
attack is already sensitive and can pose a danger to the HAS user. Further research
into attack vectors is thus outside the scope of this thesis.

2.2.8 Using Encryption

From the attacks on both unencrypted and (virtually) encrypted communication,
we can draw two fundamental conclusions:

1. Encryption alone does not prevent information leakage to passive
adversaries.
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We have shown that using statistical tests, an eavesdropper is able to deduce
user presence or absence using little to no a priori information.

2. Encryption does make attacks on the user’s privacy significantly
harder.
The results of the statistical tests show that in some cases, information does
leak from the system to the attacker. However, no test and no combination
of tests was able to provide the desired information with absolute certainty in
all cases. It is clearly visible that the attacks on unencrypted traffic are—if at
all—not as easy to perform on a system using encryption.

The consequences of these conclusions are simple: On the one hand, encryption
shall be used by all Home Automation Systems to decrease the leak of information.
Due to the fact that encryption algorithms and hardware is readily available, it is
possible to include it in a HAS with little impact on the user in terms of pricing,
battery lifetime and user friendliness. On the other hand, the need for obfuscation
techniques still exists. We therefore continue to model traffic analysis and develop
an approach for dummy traffic generation in the following chapters.

2.3 Wired Systems

The analyses from the previous sections focused on wireless Home Automation Sys-
tems. Due to the broadcast nature of radio transmissions, these systems are espe-
cially susceptible to eavesdropping attacks. At first glance, wired systems are safe
from sniffing and traffic analysis.

However, Mundt et al. have proven this assumption to be false. [MDG14] Data
transmissions in wired systems can be intercepted almost as easily as in wireless
systems. Instead of placing an antenna in the vicinity of the system, the authors
used the coil of a computer loudspeaker to capture data transmission from a cable
by means of magnetic induction. This way they were able to intercept packets from
a KNX cable which was located about 10cm into a wall. The monetary cost of the
attack is below 200€.

The experiment shows that wired systems are just as susceptible to eavesdropping
and traffic analysis attacks as wireless HASs. The monetary costs are about the
same and the effort to install a listening device are comparable.

In conclusion, the attacks sketched in the sections above are possible for both wire-
less and wired systems. Consequently, countermeasures have to be applied in both
settings. While the situation at hand is similar, different properties of wired and
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wireless HASs might lead to different countermeasures being useful in one case but
infeasible in the other. In Chapter 4 show which properties affect the applicability
and usefulness of individual countermeasures and how the differences can be lever-
aged to implement the most effective and efficient countermeasure for each scenario.

2.4 Legal Situation

The research area of privacy and data protection encompasses not only the technical
side with its products and problems, but also the legal situation with its own set of
issues. Technical measures and legal frameworks are intertwined and both have to
be taken into account when developing approaches for the protection of privacy. On
the one hand, the law serves to protect people’s privacy (or, more generally, their
human rights, which include the right to self-determination both in the real and the
digital world) by deterring adversaries from violations. On the other hand, technical
solutions can to some extent prevent adversaries from violating the users’ privacy
even if they are willing to break the law.

In this section, we summarize the evolution of the legal situation with regard to both
criminal and data protection law. We sketch changes that have been made to keep
up to date with technical advancements and to further secure people’s privacy. We
also highlight problem areas which have either not been dealt with yet legislatively
or have appeared as a side effect of the changes made to the legal frameworks.

While we focus on German4 criminal law in connection with EU regulations and
German as well as EU data protection law, problems similar to the ones highlighted
here might appear in other legal frameworks as well. Law usually “chases” techno-
logical advancements in the sense that legal changes affecting certain technology are
generally made after this technology has been invented. Due to this discrepancy,
it is common for legal frameworks to not cover all problematic aspects of current
technology. The issues covered in this section illustrate this and the legal reforms
show how legislators can (and do) cope with advancing technology.

2.4.1 Criminal Law

Research Question: Does criminal law successfully capture the attacks described
here? Or are amendments to the law necessary in order to provide legal protection
for users?

4Within the context of this thesis we use the English terminology and recite translated versions
of German laws. These translations are not official, so in doubt we refer the reader to the original
German texts.
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Digital attacks on Home Automation Systems invade the users’ privacy at home. In
contrast, many legal frameworks aim to protect people’s homes as safe spaces not
only in terms of privacy. For example, both the German Constitution (“Grundge-
setz”, Article 13) and the U.S. Bill of Rights (the first ten amendments to the
Constitution, specifically the fourth amendment) explicitly state that homes are to
be protected from unlawful searches.

The following remarks summarize basic aspects of digital attacks on Home Automa-
tion Systems with regard to the German Criminal Code (“Strafgesetzbuch”). They
are consolidated from different publications [MV16; KM16; Möl+18] which focus on
different aspects of the legal situation regarding Home Automation Systems.

Problems of the Past

As an enforceable law and punishable offense, the German Criminal Code sanctions
illegal trespassing in Section 123. However, the prevailing interpretation in legal
literature is that this requires the offender to physically enter a spatially delimited
area. [Fis16, § 123, Recital 15] Gaining access to or capturing traffic from a Home
Automation System thus does not qualify as trespassing according to German crim-
inal law.

Another offense that comes into mind when considering illegal interception of com-
munication traffic is that of theft. The classical definition of theft from Section 242
of the German Criminal Code however also fails to capture this, as it requires a
chattel—a movable, physical object—to be taken (as per the definition in Section 90
of the German Civil Code). [Vog16] The same holds for damaging or destruction of
property as penalised by Section 303 of the German Criminal Code.

While in German civil law, analogies can be used as a tool to cope with missing
legal coverage, this is not possible in criminal law. The German criminal law is
fundamentally influenced by the principle of legal certainty, which is derived from
Article 103, Section 2 of the German Constitution in connection with Section 1 of
the German Criminal Code. This principle effectively forbids the use of analogies in
criminal law. [Fis16, § 1, Recital 2]

Legal Reforms

In order to close these loopholes, the German legislator started to adapt the legal
frameworks to the digital age. In 1986, Section 202a (Data Espionage), Section 263a
(Computer Fraud), Section 303a (Data Tampering) and Section 303b of the German
Criminal Code were introduced and have formed the basis of the so-called “Computer

58



Chapter 2. Attacks on Current Commercial Systems

Criminal Law” (“Computerstrafrecht”). As described in [Möl+18], some laws have
been passed or modified to implement European Guidelines—more specifically the
Convention of Cybercrime of the Council of Europe, which is also known as the
Budapest Convention. The Budapest Convention has been opened for signature
in 2001 and has since been signed and/or ratified by over 50—European and non-
European—countries. It is thus of dogmatic importance for questions regarding
computer-related crime and has ramifications on a global scale rather than a national
one. This is especially true in the following two areas.

• Prosecution: Attacks involving computers (“Cyber Attacks”) often reach
across borders. National solo efforts regarding the combat, solution and sanc-
tioning of these acts are rarely promising. Instead, a coordinated concept
supported by as many countries as possible is necessary.

• Technical and Legal Terms: One part of this coordinated concept is a
collection of common terms describing specific topics or problem areas. This
will be further addressed later in this section.

Along the implementation of the Budapest Convention, Section 202a of the German
Criminal Code has been updated and Section 303b of the German Criminal Code has
been extended to include Denial-of-Service attacks. Additionally, Section 202b (Data
Interception) and Section 202c (Preparation of Data Interception) of the German
Criminal Code have been introduced. Section 238, which has been passed in 2007 as
well, also features a telecommunication-specific alternative (Paragraph 1, Number 2)
and thus targets digital crime.

As mentioned above, the Budapest Convention aims to establish a collection of com-
mon terms for specific topics related to digital crime. One unsolved issue is however
the definition of metadata (called “traffic data” in the Budapest Convention). In
Article 2 d), it states that

“traffic data” means any computer data relating to a communication
by means of a computer system, generated by a computer system that
formed a part in the chain of communication, indicating the communic-
ation’s origin, destination, route, time, date, size, duration, or type of
underlying service.

Article 33 governs mutual judicial assistance regarding traffic data and Article 34
governs mutual judicial assistance regarding content data.

However, neither the Budapest Convention nor the German Criminal Code clearly
state whether content and traffic data (or data and metadata) are to be handled
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equally in a legal sense. For example, if an attacker observes and saves metadata
of a communication between two people (e.g. the date, time and length of the
communication), this does not qualify as Data Interception according to German
law. Problems related to the distinction between content and metadata have been
encountered in various legal areas and are a topic of current research as well as
legislative discussion.[KM16]

Criminal Law and Data Protection

The development of the German criminal law as well as the globally important
Budapest Convention reveal a central idea: Criminal law can be considered part of
a comprehensive data protection concept which aims to optimise both technical and
legal aspects. For this reason, criminal law is and needs to be adapted to current
and future developments in technology.

2.4.2 Data Protection Law

Research Question: Is Home Automation System communication protected by
data protection law? If yes, which implications does this have for users and pro-
viders?

Concerning the connection between Home Automation Systems and data protection
law, the main issue is whether the law affects the handling (or interception) of data
from a Home Automation System by a third party. There are multiple possible
scenarios where this question is relevant:

• A provider (possibly, but not necessarily the manufacturer of the HAS) might
offer additional services to the user. For this to work, the system needs to
submit data to the provider who in turn sends information to the user or
directly controls the system to optimise performance and/or efficiency.

• A researcher might want to capture traffic from wireless HASs in order to
develop approaches for dummy traffic generation. In order to save time and
effort, the capturing shall be performed in secret and without consent.

The following discussion is based on a publication [MS15] which has been written
before the Regulation (EU) 2016/679 (General Data Protection Regulation, GDPR)
was passed. However, large parts of the definitions and principles of the GDPR have
been heavily influenced by the former German Data Protection Law (Bundesdatens-
chutzgesetz, BDSG) and overlap significantly.
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Effective since May 2018, the GDPR now governs the collection and use of personal
data in the European Union. It supersedes previous national law such as the Federal
Data Protection Act, which is replaced by a new version complying with the GDPR’s
principles.

Consequently, little research and judicature exists to judge practical ramifications
on data gathering and data protection with regard to Home Automation Systems.
For this reason, the GDPR is only briefly touched in the context of this thesis. A
detailed analysis of the exact changes introduced by the GDPR is outside the scope
of this work.

Personal Data

The GDPR only applies to personal data. According to Article 4, Number 1, the
term personal data “means any information relating to an identified or identifiable
natural person (‘data subject’); an identifiable natural person is one who can be
identified, directly or indirectly, in particular by reference to an identifier such as a
name, an identification number, location data, an online identifier or to one or more
factors specific to the physical, physiological, genetic, mental, economic, cultural or
social identity of that natural person”.5

The term personal data refers to data about a single person as opposed to data
about a group of persons. [Gol18, Art. 4, Recital 8] Data such as the temperature
within a property or times at which persons enter it first and foremost relate to all
persons living or residing in this flat. However, many properties are inhabited by
single persons. The Federal Statistical Office of Germany estimates that about 40%
of all households in Germany consist of a single person. [Sta13] Furthermore, data
about a household consisting of multiple persons can still leak information about
individuals: If, for example, data shows that nobody is at home at a given time,
this tells something about each individual inhabitant. A HAS with cloud support
can thus leak information about the registered owners to the service provider (or
adversaries with access to this data). Occasional visits by other people do not fully
break the link between the data and the habits of the HAS owner. They merely
increase the error rates for the deduction of information. This question has been
the topic of discussion in related fields as well: Researchers as well as practitioners
regard IP addresses as personal data[VM16] even though the connection can be used
by multiple persons.

Other than referring to an individual person, the data also has to refer to that
person’s personal matters. This is to be interpreted in a broad sense. [Gol18, Art. 4,

5In German law, a natural person is a human being (as opposed to a legal person, which is either
a human being or a legal body such as a company or association).
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Recital 6] Article 4, Number 1 explicitly lists location data and data pertaining to
the cultural or social identity as examples. Data which can be used to deduce
information about e.g. the presence of the inhabitants falls under this definition.

The last requirement of the legal definition is that the affected person has to be
specific or determinable. Since customers generally register with the provider of
cloud-based HAS services or the manufacturer for additional warranty and support,
this requirement is often satisfied. A passive adversary can usually also link the data
to a specific person as they know where the data was captured, i.e. they can link
the data to a physical address which in turn can be linked to the person/s living
there.

As a preliminary conclusion, data from a HAS must usually be considered to be
personal data with respect to the GDPR. The only cases where this does not hold
are if a provider or adversary gains access to data but does not have any information
about the user.

Special Categories of Personal Data

EU data protection law includes dedicated rules for the handling of special categories
of personal data. According to Article 9, Paragraph 1 of the GDPR, these special
categories comprise a person’s racial or ethnic origin, political opinions, religious or
philosophical convictions, union membership, health or sex life. At first glance, HAS
data is barely related to any of these categories. Only in rare cases can a third party
deduce information about e.g. the religious convictions from data about presence
and absence: If a user is regularly absent from 20 minutes before until 20 minutes
after the weekly mass, they are likely religious. Prolonged presence can also indicate
sickness. However, an interpretation broad enough to take all these side cases into
account would lead to infeasible legal implications. Almost any data may in some
way be loosely related to these categories, making the distinction between “regular”
and special categories of personal data obsolete. Researchers thus suggest tying
the distinction to the actual intention of the party using the data.[Gol18, Art. 9,
Recital 13] Albeit not being an optimal solution (the classification of data can change
at runtime, depending on the intentions of the involved parties), this is considered
to be closer to the idea behind the regulation than other readings.

In conclusion, data from HAS usually does not qualify as belonging to these special
categories.
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2.5 (Desired) Security Goals

So far we have highlighted shortcomings and privacy leaks in existing Home Automa-
tion Systems. In order to systematically develop improvements, we need to establish
security goals which are to be fulfilled by a secure and privacy-preserving HAS. For
the definition and interpretation of these security goals, we refer to the terminology
established by Pfitzmann and Hansen [PH10] in addition to the three basic security
goals established by Voydock and Kent [VK83].

If an attacker learns information about the activities or habits of a HAS user, the
privacy of the latter is violated. To keep this information private, the adversary
must not be able to determine how and when the user interacts with the system.
This means that a privacy-preserving HAS must offer

• confidentiality of the communication contents and

• unobservability of the interaction.

In this section we describe what these security goals mean and how they can be
achieved in general. We then present existing security mechanisms to achieve parts of
these goals. In the following chapters we describe an approach to solve the remaining
issue of preventing leakage of information by traffic analysis.

2.5.1 Confidentiality

The “prevention of [the] release of message contents” [VK83], commonly dubbed as
confidentiality, means that an outside observer is unable to learn the contents of the
communication between two parties. Achieving confidentiality of message contents
is an effective step in ensuring unlinkability (see below) of individual messages. If
an attacker does not know the contents of a message, they can only try to link
it to another message, a sender or a user by using metadata such as size or tim-
ing. Consequently, ensuring confidentiality and preventing information leakage from
metadata can be used to offer unlinkability.

Confidentiality of message contents is usually achieved by applying encryption. It
can also be indirectly achieved by using steganography: By offering unobservab-
ility of the contents [PK01], the attacker is unable to find the information and
subsequently cannot learn the contents. However, steganography requires a carrier
medium and requires a larger communication overhead in our scenario than encryp-
tion. We therefore focus on using encryption in the context of this work.
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2.5.2 Unlinkability

In order to effectively hide user behaviour from passive adversaries, messages ex-
changed between devices in the HAS have to be unlinkable. An observer must not
be able to link one message to another in order to prevent the identification of
patterns, leading to the disclosure of activity.

Encryption is an obvious first measure to ensure unlinkability. However, there are
side channels which may still leak information about the contents or origin of a
message even if it is encrypted. The timing may exhibit patterns, e.g. a door lock
may require a challenge-response protocol with three messages in quick succession
while a window sensor will only send a single message on status changes. Addressing
information may enable the adversary to link messages to the same destination
device.

An ideal HAS provides perfect unlinkability for messages. While it is possible to
achieve, it comes with serious downsides and is generally infeasible for regular use.
As we show in Chapter 4, however, it is possible to achieve unlinkability to a cer-
tain degree: An attacker can only link messages with limited confidence and the
conclusions drawn from this may be false.

2.5.3 Authenticity

While not directly affecting the unlinkability of messages within a HAS, authenticity
is an important building block for privacy-preserving Home Automation Systems
nevertheless. Sender authenticity ensures that an attacker is unable to impersonate
genuine devices and thus cannot intrude the system to actively extract information.
Establishing encryption keys by using an authenticated key exchange mechanism
ensures confidentiality of the transmitted data. We therefore briefly describe some
ideas on how to offer authenticity in a Home Automation network.

2.6 Existing Security Mechanisms

Some of the aforementioned security goals—or parts thereof—can already be achieved
using available schemes and mechanisms. In order to refine the goals and limits of
this thesis, we consider these existing technologies and describe how they can be
applied to strengthen the security of Home Automation System against both active
and passive attacks. However, this section is not merely a summary of previous and
existing research. Many of the measures have not yet been implemented at all in
consumer Home Automation Systems or have been implemented only in few.
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It is entirely possible that more effective or more efficient solutions than the ones
described hereafter exist. Nevertheless, this thesis does not aim towards improving
the existing approaches. Its purpose is to analyse yet unsolved research problems
and to provide scientific—rather than purely engineered—approaches and solutions.
The goal of this section is to draw the line between scientific research problems and
engineering problems.

2.6.1 Pseudonymous Device Addresses

In order to provide unlinkability of individual transmissions, it is necessary to strip
them of any identifying information. This also includes addressing information such
as persistent, unique device addresses or identifiers.

The most straightforward approach to remove identifying information is to encrypt
the addressing information along with the message payload and broadcast the mes-
sage to all devices in range. While this hides addresses from a passive observer, it
also increases the computational effort for a given device to decide whether it is the
intended receiver of a message. Depending on whether this increase is significant
and depending on the ratio of received messages (the number of messages intended
for a device divided by the total number of messages received by this device), it
makes sense to slightly modify the approach.

Greenstein et al. have developed an approach to solve this problem and to completely
remove all visible identifiers from IEEE 802.11 packets, leaving only the size and the
timing. [Gre+08] The mechanism can be adapted for different link layer protocols.
It does not introduce significant performance or traffic volume overhead, so the
effect on power consumption is assumed to be negligible. Possible limitations of
the approach are beyond the scope of this thesis. For this work, the confidentiality
guarantees by SlyFi are sufficient to satisfy the assumptions of our model.

2.6.2 Key Distribution

Encrypted communication relies on the distribution of cryptographic keys. Network
nodes which are supposed to communicate with each other via an encrypted channel
usually agree on a symmetric key. Depending on the use case, the symmetric key can
be derived from the nodes’ asymmetric public keys via the Diffie-Hellman Protocol
[DH76]. Depending on the network topology and the communication scheme, the
problem is usually called Key Distribution or Device Pairing.

A multitude of different approaches exist for the distribution of cryptographic keys
in networks. They range from simple pre-shared keys where the common key has to
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be entered into each node over public key infrastructures where a central authority
certifies public keys for authorised devices to completely decentralised protocols
using reputation-based trust models.

For use in a HAS, not all approaches are similarly feasible. For example, entering a
pre-shared key into each device can be cumbersome if new nodes are added or the
key needs to be changed on a regular basis. Furthermore, including an interface for
manual key entry into a Home Automation device might require more space and
cost than a manufacturer or customer is willing to accept. A relatively complex
public key infrastructure or a reputation-based system on the other hand are harder
to implement and usually requires more interaction to include a new device.

Some approaches have found widespread acceptance and have been implemented in
popular software.

Bluetooth Secure Simple Pairing features different association models (pairing mech-
anisms) which provide different levels of protection against an active attacker present
during the connection setup. The so-called Just Works model requires the user to
take a “leap of faith” and perform the pairing without any authentication of the
devices. This method is also often found in use-cases of the software OpenSSH6,
if the user has no second channel to verify the target’s public key during the first
connection. If combined with a communication channel which only offers a limited
transmission range, the assumption that no adversary is in range during the initial
setup can be realistic for the majority of uses. An example of a suitable protocol
for this is NFC [SSP].

IEEE 802.11 (commonly known as Wi-Fi) networks often use a pre-shared key to
secure the communication. [WiFi] This key must be entered into each device in
order for it to join the network.

Researchers have also proposed key distribution and exchange schemes specifically
targeting low-cost embedded systems with limited sensors and input options.

Jun et al. have proposed a pairing mechanism which leverages the ability of a
human to detect light and sound interference. [Han+14] Their goal is to remove
the possibility of an active attacker inserting data into the key exchange. While
originally developed for pairing smartphones with cars, the approach can be adapted
to pair HAS devices. For the transfer via light signals, directed beams can be used
within the user’s home. For an active attack to be successful, the attacker would then
have to place their transmitter either within the property or next to a window while
directing it at the target device. This attempt can be easily spotted and requires
tedious work for every single HAS installation. The transfer via sound signals can
be applied as-is. A house or apartment is usually even safer from sound penetration

6https://www.openssh.com
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than a car, so the attack is more difficult to launch and exhibits a higher risk of
detection.

In conclusion, many approaches exist to exchange encryption keys between devices
of a Home Automation System. The question which approach is the most suitable
strongly depends on the communication protocol (e.g. Wi-Fi or ZigBee) and the
physical characteristics of the devices (the amount and type of sensors or input
options available). Choosing one or multiple mechanisms requires an analysis of
feasibility, cost and usability. Since this is outside the scope of this thesis, we do not
further compare the approaches.

2.7 Chapter Conclusion

In this chapter we have highlighted significant problems of privacy in Home Automa-
tion Systems. We have shown that systems without encryption allow adversaries to
learn highly sensitive details about the inhabitants. We have proceeded to demon-
strate that applying encryption alone does not protect the users completely from
passive attacks. Traffic analysis using statistical tests can leak presence and pos-
sibly other information to outside observers.

In the second part of this chapter we have given an overview of the past and present
legal situation regarding HAS data. We have highlighted problems in the legal
frameworks and attempts of legislators to catch up with rapidly evolving technology.
As we have exposed, laws alone cannot protect the privacy of HAS users. We
therefore constitute that technical solutions must be found in order to protect against
the attacks described here.
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Chapter 3
A Privacy Model for Home Automation
Systems

In order to systematically develop approaches for privacy in Home Automation Sys-
tems, we need to formalize the results from the previous chapter in terms of a
model. This model can then be used to formally describe desired properties of
privacy-preserving HASs and new approaches can be evaluated against it.

Research Question: How can communication and traffic analysis attacks in HASs
be modelled in order to develop and compare countermeasures?

In this chapter we define such a formal model which can be used to develop and
implement a secure and privacy-preserving Home Automation System. We first
list assumptions that we make about the setting and identify problems which are
either already solved or fall into other research areas. Based on the assumptions
we model different aspects of Home Automation Systems so that manufacturers or
system architects can formally verify the effectiveness and efficiency of their security
measures.

3.1 Assumptions

The following list of assumptions has been published together with an initial version
of the model. [Möl+18] In a later publication [Möl20], we have further detailed
the assumptions and have slightly amended the definitions to correctly account for
continuous timestamps.
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3.1.1 Network Topology and Forwarding

As described in Section 1.1.1, there are different possible network topologies a HAS
can be built upon. Most systems form mesh networks where devices can com-
municate directly with each other. Some systems also use a star topology, where
communication either takes place between a peripheral device and the base station
or is relayed via the latter.

We assume that the network graph is a clique with respect to intended commu-
nication. This means that no forwarding is necessary for nodes to communicate.
The reason behind this assumption is that forwarding introduces a set of problems,
but also opportunities which are already well understood. Results from research on
Wireless Sensor Networks can be used to hide both the sender and the receiver of a
data packet from an outside observer, leaking no information. The problem of in-
formation leakage from the path of messages through the network is best considered
separately.

Furthermore, star topology networks or other forwarding architectures can easily be
fit into our model: Disconnecting the transfer to and from the base station yields
two transmissions which can be viewed as separate packets.

Temporal links between messages can appear even in networks without forwarding.
For example, a user might have programmed their (mesh-network) HAS to switch on
the light and turn on the heating whenever a door is opened. Thus, transmissions
in close succession can happen in both mesh and star topology networks. Their
commonness depends on the automation rules and user habits in addition to the
network topology.

3.1.2 Encryption and Padding

We assume that the HAS uses strong encryption and padding for all links between
two communicating nodes. Among other properties (which are not relevant for
our model), these measures provide confidentiality of message contents and prevent
classification of messages based on their contents. While side cases such as the
initial key exchange between two devices are non-trivial—especially if the HAS is to
be used by users with little to no technical experience—the encryption itself is not
considered to be a research problem in this work. There are numerous approaches
to provide confidentiality of message contents in systems with low computational
power and limited power supply. [Ban+15, p. 1–2] We stress that messages must
be re-encrypted in case forwarding does happen in order to prevent the adversary
from being able to match the incoming and outgoing message. If decrypted message
contents shall not be available at intermediate nodes, layered encryption can be used
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without invalidating our model.

Padding messages to a uniform length is a compromise. While fixing some or all
packets to the same length inevitably increases the communication volume and thus
negatively affects battery life, there is no alternative to achieve indistinguishability.
If the communication overhead is too high, graduated approaches can be investigated
such as the division of traffic into a fixed number of classes and padding messages
within one class to the same length. This sacrifices some amount of privacy, as
an attacker is able to distinguish between the different classes. Another possibility
is to pad messages to random lengths. This way the attacker can only identify
message classes with a certain confidence. For these approaches to be effective,
a detailed analysis taking the distribution of messages from the different classes
into consideration has to be performed. This however only divides the problem
into achieving indistinguishability within each class. The approach developed in
the context of this thesis is more general and can be adapted to handle messages
of different lengths. For the sake of understanding, we therefore do not consider
variably padded packets within this work.

Last, we assume that message headers such as the intended receiver are either en-
crypted together with the message payload or are otherwise hidden from outside
observers. This can be achieved by a mechanism such as SlyFy [Gre+08]. While
this is a strong assumption and certainly not true for all available HAS products,
we keep it for the sake of simplicity.

In the Section 3.2 we dive deeper into the assumptions on encryption and padding
and examine the effects on our evaluation should they not hold.

Effectively, these assumptions guarantee that message payloads do not leak inform-
ation to an observer.

3.1.3 Attacker’s Mode of Operation

The attacker in our scenario is passive. Their goal is to learn information about the
HAS’s user by passively capturing traffic and analysing it. No active attacks such
as traffic injection, node compromise or denial of service are launched.

This assumption is based on the feasibility of the attack. Traffic injection does not
lead to a reaction by the system if encryption and authentication are correctly imple-
mented. Thus, the attacker does not gain anything from using it. Node compromise
requires either the presence of vulnerabilities in the nodes’ software or physical inter-
vention by the attacker. While the former cannot be accounted for in a theoretical
approach, the latter significantly increases the effort the attacker has to expend. A
large-scale attack on multiple properties at the same time becomes even more costly
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and the attack would be less rewarding than personal observation. While denial
of service attacks (e.g. by sending junk data on the communication channel using
a strong transmitter) are possible, they offer no benefit for the attacker. Either
the system will not react at all (providing no information for the attacker) or it
will queue unsent messages (both dummy and genuine) to be transmitted after the
attacks ends.

Furthermore, active attacks can be observable by the victim and countermeasures
can be applied (e.g. searching for the attacker’s transmitter).

3.1.4 Attacker’s Reception

We assume that the attacker has perfect reception as well as an accurate clock. This
means that they are able to capture all traffic being transmitted by any node in the
HAS. They do not suffer from reception errors and can save the time at which a
message was captured. Using available low-cost hardware, these properties are easy
to fulfil. Both experiments on real-world installations of HASs [Möl+14; MDG14]
have proven this. While reception errors cannot be fully eliminated, their rate in
the experiments was low enough to have no significant impact on the feasibility of
attacks.

3.1.5 Wireless Device Fingerprinting

We assume that the attacker does not (or is not able to) launch triangulation or
device fingerprinting attacks. While these are possible for static transceivers (and
most HAS devices usually do not move) in wireless settings, they require a consid-
erable amount of effort from the attacker. [Bag+14] Furthermore, countermeasures
to device fingerprinting are a separate area of research. While they complement the
results of our work, they are not investigated in this thesis.

3.1.6 Attacker’s Awareness and Knowledge

We assume that the attacker is aware of the presence of any countermeasures. They
also know the underlying ideas (e.g. algorithms) of these countermeasures, but do
not know runtime information of the system (e.g. the internal state of PRNGs).
Assuming the attacker does not know the algorithms could be easily invalidated by
anyone acquiring the same HAS and reverse engineering the algorithms.

We make no assumptions about the a priori information available to the attacker.
Instead, privacy goals are modelled with respect to a given set of tasks that the user
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might perform. This allows the model to be applied to a wide variety of systems
and scenarios. Reasonable a priori information can differ vastly depending on the
setting, so any assumption only reduces the utility of the model. By stating privacy
goals with regard to certain a priori information (in the form of tasks), we can
develop viable approaches for a given use case and extend them whenever there are
new findings without having to change the underlying model.

3.1.7 Transmission Errors

Especially in wireless networks the possibility of transmission or reception errors in
non-negligible. However, we argue that the existence of transmission and reception
errors as well as the subsequent retransmission of packets does not necessarily leak
information about the identity, position or behaviour of HAS devices.

If the approach described in Section 2.6.1 is implemented, each message to the same
destination device carries completely new addresses which are unlinkable to those
before. Furthermore, devices use sliding windows when determining whether to
accept a message to a given address. This means that if a packet is not acknowledged
and has to be retransmitted, the retransmission can be sent to a different address
and will still be received by the intended target. Furthermore, the payload of the
packet will usually include a sequence number to thwart replay attacks (among other
uses such as measuring link quality). Having this sequence number at the beginning
of the packet payload and using a suitable encryption algorithm as well as mode of
operation (such as AES in cipher block chaining mode) ensures that the encrypted
payload is different for every message. This means that if message payloads appear
random and uncorrelated to outside observers before the retransmission, the payload
of the retransmission itself will also appear random and uncorrelated to the other
messages. For an outside observer, the retransmission then looks like any other
regular message and leaks no information.

3.2 Effects of Relaxations

It might be infeasible to pad all messages to the exact same length. While the
heartbeat message of a smoke detector only requires a single bit of information
to be transmitted, the measurements of a weather sensor can be several bytes long.
Also, parts of the communication (such as addressing information or certain message
types) might not be encrypted . Furthermore, the assumptions about the attacker
might not always hold to their full extent in practice.

We therefore explicitly note the possibility of extending the attributes of a message
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beyond our model. For our analysis, we model messages as relative timestamps. One
can however annotate each timestamp with a message length, a receiver address, a
wireless channel ID or any other information visible to a passive adversary. Instead of
scalar message timestamps, messages can then be modeled as vectors whose elements
carry the information visible to an adversary.

The principles of our model and analysis still apply and only the numbers will
differ in practice, as it is still possible to calculate probabilities of encountering
certain message sequences. For the sake of readability, this thesis assumes that only
timestamps are visible and thus we model messages as scalar timestamps.

3.3 Dummy Traffic

Apart from encryption and pseudonyms, an effective and efficient way to generate
dummy traffic is essential to a secure, privacy-preserving communication scheme
for Home Automation networks. There are two main requirements for the dummy
traffic generation algorithm: On the one hand, it has to effectively hide the regular
(benign) network communication. On the other hand, it has to be energy-efficient as
not to put excessive load on the relatively weak power supplies found in HA devices.

The idea of generating dummy traffic in order to hide genuine traffic is not new
per se. As early as 1978 researchers working on security and end-to-end encryption
determine that side-channel attacks on message timings can be hindered by apply-
ing dummy traffic. [PSK78] However, they also point out the limitations of this
approach. Chaum [Cha81] also includes dummy messages in his original design of
MIX networks to hide traffic from unauthorized observers.

Current anonymity overlay networks like Tor however do not use dummy traffic and
explicitly exclude a global adversary from their threat model. [DMS04] A funda-
mental problem and one of the most important differences to Home Automation
Systems is the source of participants: Anonymous computer networks are designed
for everyone to be able to join and participate. This enables adversaries to mount
active attacks by modifying other participants’ traffic. Such tagging attacks are hard
to counter and have been acknowledged by the designers. [DMS04]

In contrast to WANs or overlay networks for the internet, Home Automation Systems
have the advantage of being closed systems with regard to the users and the control
over participating devices. All participants are devices installed by the owner (unless
other security measures fail and the attacker gains access to a node). Outsiders
cannot join the network arbitrarily. However, the size of these systems also enable
an attacker to monitor the whole network at once. The threat model must thus
consider a global passive adversary.
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3.3.1 Knowing When To Stop

The main difficulty of developing a low-latency dummy traffic generation scheme
is evaluating the effectiveness of an approach. Given a generation scheme or a
generated pattern, we want to know the chances of an attacker learning anything
useful about the victim.

The intuitive and desirable method would be to quantify the amount of available
information which is useful to an attacker, comparing a genuine traffic pattern to
one augmented by dummy traffic. This, however, is problematic: While the char-
acteristic properties of the traffic pattern (message timestamps and inter-message
intervals) present an upper bound for the amount of information available, it is
impossible to generalize how much of this information is useful to an attacker.

For example, one attacker might only be interested in learning whether the victim
is present at a given time, which could be indicated by the overall system activity.
Another attacker might want to know when the victim enters the living room, for
which different information is necessary. The other way around, two traffic patterns
with the exact same characteristics, i.e. messages of the same length at the same
times, might appear for different reasons. Increased activity during the day can
indicate that a person is at home or that there are more environmental events
(lighting conditions, rain etc.) which the system reacts to.

A priori information plays another key role in modelling the general attacker. Since
any findings about the victim are based on some kind of a priori knowledge, we would
have to quantify this as well. The conclusion that a person is at home during the
day is based on the fact that an increase of the system activity by a certain amount
indicates presence. Deducing that a person leaves the house at 09:00 instead of
entering it requires knowledge about the person’s job or daily routine beforehand.
Formalizing the infinite number of possible scenarios is an unachievable prerequisite
for this approach to work.

A viable alternative, however, is to exclude fixed a priori information from the
general model and instead include it as a parameter. This way, general analyses can
be done on the model and concrete implementations can be evaluated with regard
to fixed parameters—i.e. sets of a priori information. Furthermore, keeping the
model general prevents it from failing to capture new attacks. If we were to only
model the currently known extent of information leakage, the model would have
to be revised as soon as new attacks are developed. Thus, we keep the model as
general as possible and include all implementation- and use-case-specific properties
as parameters which can be tuned for concrete evaluations.
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3.3.2 System Model

The following definitions and parts of the overall model have been published.
[Möl+18]

The HAS performs communication by sending packets which are observable by the
adversary. Due to encryption, padding and the unavailability of device identification
attacks, the attacker cannot learn the contents of packets. The only information
available to the attacker is thus the timestamp of a message. Hence, we model the
traffic output of the HAS as a set of message timestamps (or fingerprints) F .

F can further be divided into multiple (possibly empty) subsets:

F = R ∪ E ∪D (3.1)

where

• R is a set of “regular” messages. They are of no particular interest to the
attacker other than ruling them out as candidates for other sets. In a real
system, this set can comprise automation rules or reactions to environmental
events (e.g. temperature changes).

• E is a set of “interesting” events. They can be results of direct user interaction
(e.g. pressing a light switch) or anything else that is of particular interest to
the attacker. If the attacker successfully identifies an event as belonging to I,
they learn e.g. that the user was at home at a given time.

• D is a set of dummy traffic messages. Their only purpose is to make it more
difficult for the attacker to identify events.

We argue that these subsets are enough to model passive attacks on HASs. Events
from other use cases than the ones mentioned above can be considered as belonging
to either group without leaking information. For example, events from remote user
interaction (e.g. using an internet gateway) can be treated the same way as events
in R as they can appear at random points in time and (unless the adversary can
distinguish them from other events in R) leak no information about user presence.

Any of the subsets can be empty. If the HAS consists of a single actuator with a
remote control (i.e. no automation rules), then R = ∅. If it consists of a single
temperature sensor periodically sending data to a base station, then E = ∅.

We assume that the subsets of F are disjoint, i.e. R ∩ E = R ∩D = E ∩D = ∅. If
the system supports simultaneous message transmission on different channels, the
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timestamps can be annotated with the channel the respective message was trans-
mitted on. This also accounts for the case where the attacker is able to observe
both messages. However, we assume that the channel on which a message was
transmitted does not leak information to the attacker. If the system does not sup-
port multiple concurrent channels, there can be no two messages with the same
timestamp. Avoiding message collisions or ensuring that they do not leak informa-
tion to the attacker (e.g. by including collisions in dummy traffic) is considered to
be feasible and therefore not covered in this thesis.

3.3.3 Attacker Model

As previously stated, the attacker is global and passive, and cannot break the en-
cryption of packets. For a given capture interval [x, y] (x and y are timestamps), they
observe the output of the HAS F x,y ⊆ F containing all messages with timestamps
in [x, y]. Formally if t(m) denotes the timestamp of message m,

F x,y = {m ∈ F |t(m) ≥ x ∧ t(m) ≤ y} (3.2)

This rule reflects the assumptions that the attacker has perfect reception, but cannot
tell different messages apart based on their contents. We define all possible subsets
F x,y ⊆ F satisfying

x ≥ min
m∈F

(t(m))∧

y ≤ max
m∈F

(t(m))∧

x ≤ y

(i.e. all contiguous subsets) as the Subsequence Set S(F ). S(F ) thus contains all
possible traffic captures an attacker can observe over any time frame.

Note that when modelling a HAS, message timestamps may follow a random distri-
bution. Consequently, S(F ) is not necessarily a set of message sequences (or sets of
concrete timestamps). In this case, F x,y could be modelled as a random distribu-
tion and S(F ) would consequently be a set of random distributions—one for every
possible capture interval.

3.3.4 Privacy Goals

The goal of the attacker is to learn information about the user by analysing the
captured traffic. The goal of the system is to make the traffic patterns look the
same regardless of how the user interacts with the system; thus keep the attacker
from learning anything.
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Toledo et al. have presented a model for information leakage in Private Information
Retrieval settings. [TDG16] While the topic may not seem close to that of Home
Automation System Privacy at first sight, we can apply their definitions to our model
to express the attacker’s and the system’s goals.

In their scenario, users issue queries to database servers, some of which are corrupted
and pass their observations to the adversary. The adversary then provides one user
with two possible queries, of which the user randomly chooses and executes one
using the database servers. The rest of the users—all of which are honest—executes
different, attacker-provided queries. The adversary tries to identify which query the
user chose based on the information provided by the corrupted database servers and
communication metadata.

We do not consider the whole model for Private Information Retrieval, as the ma-
jority of it is not applicable to our setting. In particular, we do not have equivalents
for [corrupted] databases/servers. We instead focus on the user (Ut in the PIR
model) and the adversary (A), which directly correlate with our user and adversary.
Furthermore, our Subsequence Set S(F ) relates to the adversarial observation space
(Ω): For a given capture time frame [x, y], the observation space Ωx,y is the corres-
ponding distribution F x,y ∈ S(F ). An observation (O) is then a sample from this
random distribution

The queries (Qi, Qj) from the PIR model can be transferred to the HAS scenario
almost immediately. The attacker provides the user with two tasks Ti, Tj (e.g. “Open
the front door at 9:00.” or “Perform any interaction between 9:00 and 9:15.”) of
which the user randomly chooses one to execute. The attacker then captures the
HAS’s traffic (by obtaining a sample from the random distribution F x,y) and tries
to identify which of the two actions the user performed. Obviously, it only makes
sense to look at a capture interval where traffic may be affected by the tasks.

We can thus formulate a notion of privacy in Home Automation Systems using the
definition from Toledo et al. [TDG16] Since our concept does not revolve around
information retrieval, but instead focuses on privacy against traffic analysis, we give
the properties slightly different names. Note that the definition is also similar to that
of ε-differential privacy by Dwork et al. [Dwo06] Aside from the constant leakage δ,
the idea behind the definition is the same: The ratio of probabilities of two events
being the source behind an observation is bound by an exponential term eε.

Definition 1. A Home Automation System provides (ε-δ)-private communication
if there are constants ε ≥ 0 and δ < 1, such that for any possible adversary-provided
tasks Ti, Tj and for all possible adversarial observations O (being a particular random
sample of the distribution F x,y ∈ S(F )) we have that

Pr(O|Ti) ≤ eε · Pr(O|Tj) + δ
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This definition assumes that timestamps are discrete. If they are considered to be
continuous and the elements F x,y ∈ S(F ) are thus density functions, we modify the
definitions as follows: The conditions must hold not for all adversarial observations
O but for all adversarial observations O and all sets of adversarial observations O.
In place of the probability Pr(O|T ) from the discrete case we use the probability
Pr(O ∈ O|T ). The definition of (ε-δ)-private communication then reads as follows:

Definition 2. A HAS provides (ε-δ)-private communication if there are constants
ε ≥ 0 and 0 ≤ δ < 1, such that for any possible adversary-provided tasks Ti, Tj, for
all possible adversarial observations O and for all sets of adversarial observations O
we have that

Pr(O ∈ O|Ti) ≤ eε · Pr(O ∈ O|Tj) + δ

As in the original work [TDG16], if δ = 0 we call the stronger property ε-private com-
munication. Note that in contrast to the definition of (ε-δ)-private PIR, we require
δ < 1. This only affects some cases where a particular observation is certain for one
task and impossible for another. As systems where δ > 0 already leak information
to the adversary and are thus not desirable in practice, this additional constraint
prevents the definition from being overly broad (i.e. (ε-δ)-private communication
with δ = 1 cannot be called (ε-δ)-private communication).

3.3.5 In Practice

In practice, the property of (ε-δ)-private communication is hard to achieve. If the
tasks can be arbitrary, the attacker may choose them in a way so that they produce
highly recognizable traffic patterns. For example, the tasks “Press the light switch
for 10 times in 2 seconds.” produces a very distinct traffic pattern which is unlikely
to be observed if the task “Do not interact with the system for 10 minutes.” is
executed.

In order to account for this, we define a slightly weaker property for communication
in Home Automation Systems.

Definition 3. A Home Automation System provides (ε-δ)- indistinguishability for
a set of tasks T if there are non-negative constants ε and δ, such that for all tasks
Ti, Tj ∈ T and for all possible adversarial observations O (being a particular random
sample of the distribution F x,y ∈ S(F )) we have that

Pr(O|Ti) ≤ eε · Pr(O|Tj) + δ

As with the definition of (ε-δ)-private communication, (ε-δ)- indistinguishability can
be defined for continuous timestamps by using the probabilities Pr(o ∈ O|T ). If
δ = 0, we call the stronger property ε- indistinguishability.
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The difference between this definition and that of (ε-δ)-private communication is
that (ε-δ)- indistinguishability is only defined for a limited set of tasks T. This
way, we account for the fact that some tasks are theoretically possible, but unlikely
to be encountered in practice. For example, a system might be able to provide
unobservability of the user pressing a light switch twice within an interval of 10
minutes by generating dummy traffic and making sure that there are always at
least two packets in every 10-minute interval. While this does not fulfill the goal
of (ε-δ)-private communication, it covers much of the everyday activity and might
be preferable to a system which offers full (ε-δ)-private communication at a higher
energy consumption.

When considering real-world attack scenarios like the detection of user presence (cf.
Section 2.2), the tasks provided by the attacker follow a particular pattern. Instead
of choosing two unrelated tasks, the attacker wants to extract a certain piece of
binary information from the captured data (such as “Did the user interact with the
system?”). In this case, the tasks Ti and Tj from the definition are complementary:
Tj = T̄i (i.e. if Ti is “Interact with the system.”, then Tj = T̄i is “Do not interact
with the system.”). Due to this being an important special case of (ε-δ)- indistin-
guishability, we define the separate property of (ε-δ)-unobservability.

First, we define complementary tasks. A task T is a set of possible outputs T =
O1, O2, . . . , On. Given the set of all possible tasks Tall =

⋃
T the complementary

task T is defined as T := Tall\T . This means that the complementary task is the set
of all outputs that are never generated by performing T but are possibly generated
by other tasks.

Definition 4. A Home Automation System provides (ε-δ)-unobservability of a set
of tasks T if it holds that

∀T ∈ T : T̄ ∈ T

and the system provides (ε-δ)- indistinguishability for T.

Similar to the previous definitions, if δ = 0 we call the stronger property ε-unob-
servability.

These definitions fully capture our system and attacker model as well as the at-
tacks shown in real-world experiments [Möl+14; MS16; MDG14]. Building on an
existing model of user behaviour, they can be used to prove privacy guarantees of a
Home Automation System’s dummy traffic generation scheme. The different levels
of guarantees can be leveraged to prove a dummy traffic generator’s suitability for
any given scenario.
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3.3.6 Examples

For trivial approaches it is easy to see whether they fulfil the privacy goals formulated
in Secion 3.3.4.

No Dummy Traffic

In Section 2.2 have analysed a system which does not produce dummy traffic at
all. We have shown that the system does not offer ε-unobservability for the tasks
“Interact with the system during a one-hour period.” and “Do not interact with the
system for one hour.” if the attacker knows certain thresholds beforehand or can
determine them based on other a priori knowledge.

In our experiment, the attacker was able to determine conditions which, if met by
the adversarial observation O, would reliably indicate user activity or inactivity. If
the predicates P (O) and A(O) denote these conditions, then

∀O : P (O)⇒

Pr(O|“Interact with the system”) > 0 ∧ Pr(O|“Do not interact”) = 0

∀O : A(O)⇒

Pr(O|“Interact with the system”) = 0 ∧ Pr(O|“Do not interact”) > 0

As there is no constant ε satisfying x ≤ eε · 0 with x > 0, the system does not offer
ε-unobservability. Consequently, the system also does not offer ε- indistinguishability
for these tasks and in general, does not offer ε-private communication.

In our experiment, the probability of obtaining an adversarial observation meeting
the condition if the user performed the given task was less than 1. Thus, it may be
that the system offers (ε-δ)-unobservability.

Constant-Rate (Dummy) Traffic

As a contrast, we analyse the concept of Constant Rate (Dummy) Traffic (CRDT).
We assume that the system is generating dummy traffic whenever there are no
genuine messages to send and that it does not generate dummy traffic when there
is a genuine message to be transmitted. Furthermore, time is divided into slots of
fixed length. At the end of every timeslot, either a genuine or a dummy message is
transmitted. Genuine messages are delayed until the end of the next free timeslot.
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The technical details of implementing such a system are outside the scope of this
thesis.

Formally, if S is the set containing the ending time of each timeslot and messages
in R and E are delayed so that they only occur at the end of a timeslot (R ⊆ S,
E ⊆ S), then dummy traffic is generated by the system so that D = S \ (R ∪ E).

By construction, the output of the system F = R ∪E ∪D = S is exactly the same,
no matter how the timestamps of genuine messages in R and E are distributed.
Thus, for any interval [x, y] the adversarial observation will be O = S ∩ [x, y], which
is stochastically independent of the distributions of R and E. Consequently, for
any task T to be executed by the user, it holds that Pr(O|T ) = Pr(O) = 1. In
conclusion, a system using constant-rate traffic provides (ε-δ)-private communication
with ε = δ = 0 (or (0-0)-private communication).

In practice, using CRDT may pose a problem. In order to keep the delay for user
interaction reasonably low, the overall traffic rate must be very high (determined
by the largest tolerable delay). However, this can lead to the system violating regu-
latory thresholds about wireless transmissions or draining the battery of connected
devices. In wired systems, this is generally not an issue. In a wireless setting, other
approaches which minimize the generated amount of traffic have to be evaluated.
This—along with a comprehensive analysis of the practicability of CRDT—is done
in Chapter 4. The chapter also features the proof that systems not using CRDT
and not delaying genuine messages cannot offer (ε-δ)-private communication.

3.4 Chapter Conclusion

In this chapter, we have formalized notions for privacy and privacy guarantees in
Home Automation Systems. The model we established is agnostic to user behaviour
and can thus be employed to any HAS and any user. The privacy guarantees capture
intuitive and desirable properties of privacy-preserving HASs and allow for formal
proofs given concrete approaches or systems. Given that the occurence of patterns
can be measured in real systems, the guarantees can also be verified using actual
communication data.

The main goal of establishing the model is to enable researchers to develop ap-
proaches for privacy-preserving HASs and compare them quantitatively. The pri-
vacy parameters ε and δ can be compared to the energy consumption and thus form
clear and unambiguous metrics. Parametrized approaches can be tuned to the de-
sired values of ε and δ or to a given energy consumption and give the respective
other value as a result.
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Chapter 4
Privacy-Preserving Communication

In this chapter we build on the previously established model and develop an ap-
proach suitable for concealing activity in Home Automation Systems. The main
contributions of this chapter have been published. [Möl20] In particular, they are
as follows:

1. We provide a quantitative evaluation of dummy traffic generation in HASs with
respect to the traffic volume as well as energy consumption overhead. While
many related works evaluate the traffic overhead, little is known about the
impact on energy efficiency. This is especially important in HASs where most
devices are battery powered. We show that traffic overhead is not proportional
to an increase in power consumption and highlight how this can be leveraged
to achieve privacy at moderate cost in terms of energy consumption.

2. Given the heavy impact of Constant-Rate Dummy Traffic (CRDT) on power
consumption, we propose a new dummy traffic generation scheme. By relaxing
the targeted privacy goals, we propose a stochastic dummy traffic generation
mechanism which allows for easy tuning of privacy versus traffic overhead. We
call this scheme Naive Exponential Dummies (NED).

3. We formalize inherent shortcomings of zero-latency dummy traffic generation
schemes as well as NED in particular and discuss the important breakpoints
in energy efficiency and privacy.

4. We compare the performance of Constant-Rate Dummy Traffic and our sto-
chastic NED scheme using data from real-world HAS installations which in-
clude authentic user interactions. We evaluate both approaches with respect
to traffic overhead and energy efficiency.
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4.1 Modelling Activity

The security goals formulated in Chapter 3 are based on probabilities of traffic
patterns occurring in the HAS’s output. Calculating these for a given setup can be
approached either using a stochastic model of genuine traffic or empirically using
previously sampled data.

Establishing a comprehensive stochastic model of genuine traffic in general requires a
large, representative body of traffic data from HASs. However, a general stochastic
model has the disadvantage of discriminating users whose systems are considered
outliers of this model. Their privacy may be violated even though the same measures
are applied as in other systems. Therefore, we employ an approach which works on
a single system without the need for a general stochastic model. The probabilities
and privacy guarantees can be calculated using sampled data from that system alone
and dummy traffic can be generated accordingly to provide maximum privacy given
the particular distribution of the HAS.

4.2 Data Sets

For the quantitative part of this chapter we use the same data set as in Chapter 2.
However, we split the data of Candidate 2 into two subsets to account for the
different setups in the two locations where the system is used. We designate these
as Systems 2.1 (office) and 2.2 (home), respectively.

To provide a meaningful benchmark and to prove the usability of our method, we
have chosen systems which cover typical use cases and setups. Systems 1, 2.2 and
3 are installed in homes and are used by the inhabitants during their daily routine.
System 2.1 however provides insights into the performance in extreme situations,
as the communication follows a condensed, regular pattern in contrast to the more
distributed patterns in Systems 1 and 3. System 2.2 is installed in an office with
little to no activity on weekends and an evenly distributed pattern during working
hours. All systems are built using commercially available hardware. While we argue
that the evaluation demonstrates the applicability of our approach, we stress our
consideration from Section 4.1 that HAS usage patterns can differ widely and that
the performance for a given HAS can only be reliably computed by using that HAS’s
own data. Edge cases will likely exhibit different results than those presented in the
following sections, but the method for obtaining these results can be applied without
modifications.
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System 1

System 1’s data sample consists of 45,679 messages which were recorded over a
timespan of 3,066,575 s (35.49 days, the compensation for receiver outages is incor-
porated). The individual message timestamps were saved with a precision of 1 s.

The minimum interval between two subsequent messages is 0 seconds. Due to the
precision of the timestamps, this merely indicates that multiple messages were trans-
mitted within the same 1-second interval. The maximum interval between two sub-
sequent messages is 3668 s, which means that during a time frame of one hour, no
action was performed and thus no message was transmitted. The mean time in-
terval between subsequent messages is 67.14 s; the median is 64 s and the standard
deviation is 49.67 s.

System 2.1

The first part of the data sample of System 2 exhibits a data rate more than 3
times as high as that of System 1: 33,708 packets were recorded over a timespan of
720,112 s (8.33 days). Similar to System 1, the message timestamps were measured
with a precision of 1 s.

Also similar to System 1, the minimum inter-arrival time between two subsequent
messages is 0 seconds. The maximum inter-arrival time, however, is only 153 s. The
mean is 21.36 s, the median is 14 s and the standard deviation is 27.49 s. The fact
that these values are significantly lower than those for System 1 hint at a more
intense usage.

System 2.2

The second part of the data sample of System 2 shows extreme values. Only 999
packets belong to this data set, being captured over a timespan of 1,161,565 s (13.44
days). There are significant gaps in the sequence of message timestamps, which
can be explained if we assume that the owner lives alone and is in the office during
the day. The minimum inter-arrival time between two subsequent messages is again
0 s, but the maximum is 61,645 s. While at first glance this suggests that outages
occurred to the listening device during the capture phase, this is not the case: In
fact, a total of 20 gaps are longer than 8 hours.

This is reflected by the statistics: The mean interval is 1163.89 s, although the
median is 0 s. This means that at least 50 % of all messages are sent within a
single second after their predecessor. The reason for this large spread—the standard
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deviation is 5875.77 s—might be attributed to intense usage during user presence.
The user is absent during the day, but interacts with the system frequently in the
morning and evening, generating transmissions in rapid succession.

System 3

A total of 40,336 messages were captured over a duration of 3,259,153.87 s (∼ 38
days). This places the overall transmission rate close to that of System 1. The
minimum inter-arrival time is the same as for the other systems: 0 s. The largest
gap between two subsequent messages is 25,050 s, but the mean interarrival time
is 80.80 s. Consequently, the standard deviation is 469.68 s and thus the second
highest. Interestingly, the median is 0 s, which indicates that similar to System 2.2,
a large part of the communication happens in heavily concentrated bursts.

4.3 Constant-Rate Dummy Traffic (CRDT)

In order to establish a baseline against which we can evaluate new approaches, we
first investigate the energy efficiency of Constant-Rate Dummy Traffic.

Research Question: Is Constant-Rate Dummy Traffic feasible to implement in
low-latency, wireless, battery-powered Home Automation Systems?

CRDT offers (ε-δ)-private communication (cf. Chapter 3). To achieve Constant-
Rate Traffic throughout the HAS, two steps are necessary: First, genuine traffic has
to be shaped to achieve a fixed maximum traffic rate. Then, times of inactivity must
be padded with dummy traffic to achieve the same traffic rate. Our evaluation is
based on exactly this mechanism. We assume an ideal CRDT scheme where during
each timeslot, a dummy message is sent if and only if there is no genuine message
to be transmitted.

The only variable in CRDT is the rate at which traffic is generated or permitted.
A lower bound for this rate can be estimated by taking an exemplary use case:
The user presses a switch and expects the light to turn on (or some other action to
happen). The maximum acceptable value for this response time sets the minimum
rate at which traffic must be permitted and generated. This value cannot necessarily
be used directly, though. Due to the fact that multiple transmission requests may
arise within a single timeslot, the actual reaction to the user’s input may be delayed
for more than a single period. Therefore, the rate has to be adjusted depending on
the user and system behaviour.
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Research in usability engineering suggests that a response time of 0.1 s is acceptable
in most cases and a response time of more than 1 s is not acceptable.[Mil68; Nie93;
BEN12] To have a conservative estimate, we assume a maximum delay of 1 s for
any message. While delays of more than 1 s might be acceptable for devices such as
thermostats or temperature sensors, splitting these from the rest of the system has
no effect on the resulting minimum data rates.

4.3.1 Applying CRDT to the sample data

Figure 4.1 illustrates the delays of genuine messages given the aforementioned bound-
ary conditions (max. 1 s delay).1

System 1

The minimum transmission rate which delays genuine messages for at most 1 s is
4 P s−1. 2263 messages (4.95 %) have to be delayed in order to reach this rate. The
mean delay is 0.01 s and the median is 0 s. This means that at least 50 % of all
genuine messages are not delayed at all. This is not surprising: The precision of the
recorded timestamps is 1 s, so messages in this example do not have to be delayed by
default to match the ending times of 1-second timeslots. Furthermore, the median
of the (unmodified) inter-arrival times is 64 s. This means that 50 % of the genuine
messages are sent at least 64 s after the previous message and thus only have to be
delayed if the previous message has been delayed for more than 64 s.

As a second step, we fill the empty timeslots with dummy packets to reach a fixed
transmission rate of 4 P s−1. In order to achieve this, a total of 12,220,618 dummy
messages have to be generated, increasing the overall traffic by a factor of 267.53.

System 2.1

The higher overall traffic rate of System 2.1 also affects the transmission rate for
CRDT: In order to delay genuine messages for at most 1 s, 7 P s−1 have to be sent.
Accordingly, 8794 genuine messages (26.09 %) have to be delayed. The median delay
is again 0 s—the same as for System 1. The mean and standard deviation are 0.04 s
and 0.07 s, respectively—slightly higher than for System 1.

Due to the significantly higher transmission rate of genuine packets, less dummy
messages have to be generated. The total number is 5,007,070—a 148.54-fold in-

1Within this thesis, the number of packets is denoted by the letter P.
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Figure 4.1: Boxplots of transmission delays when limiting the data rate for a
maximum delay of 1 s. The boxes extend from the first to the third quartile. The
whiskers extend to the furthest sample point within 1.5∗IQR of the box where IQR is
the interquartile range. Outliers are marked with blue plus signs. The red bars mark
the median and the red squares mark the arithmetic means. Note that for System 1,
the box seems to disappear because more than three quartiles are at 0 s. For System
2, the whisker disappears because there is no sample point within 1.5 ∗ IQR of the
box.

crease. However, the relation is not proportional: Even though the genuine message
rate is 3 times that of System 1, the number of dummy packets to be generated is
only 50 % lower.

System 2.2

The bursty usage pattern of System 2.2 strongly affects the fixed transmission rate:
In order to not delay genuine messages for more than 1 s, at least 5 P s−1 have to be
sent. Despite this high rate, 59.46 % (594 packets) of all genuine traffic is delayed
by an average of 0.21 s. The median is 0.20 s and the standard deviation is 0.22 s.
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Due to the high transmission rate and the large gaps between genuine messages, the
amount of dummy traffic to be generated is extremely high. A total of 5,806,822
dummy packets are required, leading to a 5812.63 times higher traffic volume.

System 3

System 3 is distinct from the other setups in that the message timestamps were
captured with a higher precision. Among other things, this means that messages
often have to be delayed for less than a second in order to match the ending time of
a 1-second timeslots.

The minimum transmission rate for a delay of at most 1 s is 18 P s−1 and thus more
than twice as high as that of System 2.1. The number of delayed messages shows that
System 3 exhibits part of System 2.2’s properties: Despite a high transmission rate,
more than half of the messages (20,935 messages or 51.90 %) have to be delayed.
However, the delays themselves are quite small. The mean and median are only
0.06 s and the standard deviation is 0.04 s.

The traffic increase factor is 1453.40 and thus between System 2.2 and the others.
The total number of dummy packets is 58,624,417.

4.3.2 Evaluation of CRDT

After the application of CRDT, we measure its effect on the power consumption of
HASs by applying different models to the resulting data. The constraint of having a
maximum delay of 1 s for genuine messages results in different data rates: 4 P s−1 for
System 1, 7 P s−1 for System 2.1, 5 P s−1 for System 2.2 and 18 P s−1 for System 3.
Table 4.1 contains the detailed results. The results of applying the different models
are explained in the following sections.

4.3.3 Traffic Overhead and System Responsiveness

All Systems exhibit bursts of traffic. This becomes very obvious in System 2.2, which
has the lowest traffic rate before introducing CRDT. However, the usage scenario
of the system explains the traffic pattern: The HAS is almost exclusively used in
the morning and evening. However, many interactions are user-initiated and thus
require quick feedback. The data rate thus has to be high enough to guarantee the
upper bound of 1 s during the bursts. However, the high rate has to be kept during
the whole day, effectively introducing a traffic overhead which is orders of magnitude
larger than the amount of genuine messages.
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System 1 2.1 2.2 3

Unmodified Data

Timespan (days) 35.49 8.33 13.44 37.72

Messages 45,679 33,708 999 40,336

Inter-Arrival Times

Minimum 0 s 0 s 0 s 0 s

Maximum 3668 s 153 s 61,645 s 25,050 s

Mean 67.14 s 21.36 s 1163.89 s 80.80 s

Median 64 s 14 s 0 s 0 s

Standard Deviation 49.67 s 27.49 s 5875.77 s 469.68 s

After applying CRDT

Data Rate (P s−1) 4 7 5 18
Genuine Messages
Delayed 4.95 % 26.09 % 59.46 % 51.90 %
Traffic Increase
(Factor) 267.53 148.54 5812.63 1453.40

802.11 PC Card [FN01] (20 B, 11 Mbit s−1)

Idle 52.26 MJ 8.54 MJ 6.03 MJ 4.69 MJ
Increase by CRDT
(Factor) 4.55× 10−4 6.11× 10−4 1.29× 10−3 5.71× 10−3

EYES nodes [vDL03]

Unmodified 29.68 kJ 4.81 kJ 3.37 kJ 4.05 kJ
Increase by CRDT
(Factor) 0.31 0.83 1.36 1.14

Mica2dot [Wan+05] (20 B, 0.5 % Duty Cycle for Receivers, 0 % for Senders)

Unmodified System 2600.36 J 634.89 J 383.55 J 5179.13 J
Increase by CRDT
(Factor) 5.33 9.13 17.52 14.12

Telos [PSC05] (20 B, 0.5 % Duty Cycle for Receivers, 0 % for Senders)

Unmodified System 1473.50 J 272.22 J 191.37 J 2395.58 J
Increase by CRDT
(Factor) 0.44 0.98 1.02 2.28

HomeMatic

Unmodified System 37.93 kJ 6.69 kJ 4.29 kJ 52.21 kJ
Increase by CRDT
(Factor) 2.31 5.37 8.68 10.12

Table 4.1: Effects of enforcing Constant-Rate Dummy Traffic in the sample install-
ations under different energy consumption models. Numbers larger than 10−2 are
rounded to two digits after the decimal point. The increase (both traffic and energy
consumption) is given as a factor. A factor of 0 means no increase in traffic or en-
ergy consumption, whereas a 1 means that the original value doubled. Note that for
System 3 using the 802.11 PC Card, a different idle power consumption was used.
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In System 2.1, several heating actuators are installed and could be subjected to
a different maximum message delay. However, we recall from Section 2.1.4 that a
remote control is also part of the installation and this direct user interaction requires
a low response time. This remote control is responsible for the required data rate of
7 P s−1, removing any effect from a separate handling of heating actuators.

Decreasing the rate is no option: If we fix the rate to 1 packet/s, genuine messages
are delayed for up to 59 s (in System 3), while the traffic still increases by a factor
of almost 80 in the same system. The other systems perform similarly.

When taking the calculated data rates for CRDT, the mean delay for genuine mes-
sages is 0.2 s for System 2.2 and lower than 0.1 s for all other systems.

This demonstrates two intuitive properties of CRDT: On the one hand, the limitation
of the transmission rate can lead to significant delays in regular traffic, negatively
affecting responsiveness and thus usability. On the other hand, the introduction
of dummy packets leads to an increase in overall traffic by a factor of at least 20.
While the impact of each part can be lessened by adjusting the transmission rate,
this immediately worsens the impact of the other. Increasing the transmission rate
improves the responsiveness, but negatively affects the power consumption.

As a preliminary conclusion, we see that CRDT introduces a significant traffic over-
head if the system responsiveness is not to visibly deteriorate. While this confirms
the first intuition, its actual impact on energy consumption is not necessarily as
strong.

4.3.4 Energy Consumption

It is widely perceived that in terms of required energy, communication is more
expensive than e.g. computations. Wander et al. have stated that “the power
required to transmit 1 bit is equivalent to roughly 2090 clock cycles of execution
on the microcontroller” [Wan+05]. By this principle, many protocols for Wireless
Sensor Networks (WSNs) have been developed, minimizing communication as far as
possible. However, the cost of communication in Home Automation Systems has not
been analysed thoroughly yet. It is unclear whether e.g. the idle power consumption
of the devices outweighs the sporadic bursts of communication so that there is little
need for further optimizations of the traffic volume. Naturally, manufacturers try to
optimize their systems’ battery lifetimes and thus put effort in minimize the power
consumption. However, they usually do not publish specifications or information on
the focus of their research.

In order to estimate the increase in power consumption by CRDT, we apply five dif-
ferent models to our data. Feeney et al. have conducted measurements on regular
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802.11 PC cards, which can be installed in laptops. [FN01] Van Dam et al. have
implemented a power-saving MAC protocol for WSNs and evaluated its performance
on EYES nodes – battery-powered devices using an energy efficient microcontrol-
ler and a wireless transceiver. [vDL03] Wander et al. have evaluated the power
consumption of public-key cryptographic protocols using the Mica2dot platform.
[Wan+05] The Mica2dot platform uses the same transceiver as HomeMatic devices,
which were used in two of our three analysed systems. Polastre et al. have de-
veloped a custom wireless node called Telos and compared its power consumption
to others, including the Mica2dot. [PSC05] Due to the age of these models, we have
performed our own measurements on HomeMatic hardware for the fifth model. The
goal of this was to find out whether the energy consumption of wireless transceiver
devices significantly changed in recent years or whether the existing models allow
for a sensible approximation of (modern) HAS power consumption.

Table 4.1 shows the results of the evaluation. The following sections summarise
these results and draw conclusions from them.

The five models lead to significantly different numbers for the total energy con-
sumption, which can partly be explained by taking a closer look. Feeney et al.’s
measurements were performed on laptop hardware. While laptops are built with
energy efficiency in mind, the batteries are usually much larger than in HAS devices
and the communication behaviour is significantly different. The other models use
different kinds of hardware which were developed with particular use cases in mind.

802.11 PC Card, Feeney et al.

For the method presented by Feeney et al., we use the numbers of the 11 Mbit s−1

WaveLAN PC Card as it has a lower power consumption than the 2 Mbit s−1 model.
For the calculations we use a packet size of 20 B – the same size used by van Dam
et al. – for comparability. We also calculated the energy consumption using a
packet size of 2048 B, but the conclusion is similar. With a packet size of 2048 B,
the maximum increase when using CRDT is by a factor of 0.07 (or 7 %) and thus
acceptable for most scenarios.

Feeney et al. did not take into account the time it takes to send a certain amount
of data. They merely calculated the idle power consumption and then the addi-
tional energy consumption required to send a packet of a certain size. Thus, we
can multiply the total sample time of each system by the idle power consumption.
HomeMatic components as found in Systems 1 and 2 can communicate directly and
without the need for a base station. We therefore use the “ad hoc” idle power con-
sumption for these two systems. The exact setup of System 3 is unknown, but the
publications suggest that an Wi-Fi (IEEE 802.11) network is used. We therefore use
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the “BSS” mode idle power consumption for this setup.

In contrast to the other models, Feeney et al. have specifically considered the case
that transmissions are received by all nodes within range of the transmitter, but
only some of those are the intended receivers. The other nodes need to discard these
packets after examining the addressing data—a process which requires a certain
amount of energy. Feeney et al. have measured this energy and we have used the
value for calculating the energy consumption of CRDT. It does however not play a
significant role in the result, as the idle power consumption massively outweighs any
other factor.

According to the study, the transmission of broadcast messages has a lower energy
consumption than the transmission of point-to-point messages. We therefore use the
broadcast energy consumption for our calculations. For the calculations it does not
matter which device is sending which packet. However, when one device is sending
data, at least one other device is receiving it and the remaining (non-receiving)
devices need to discard the packet. This model is the only one with precise data
available on the energy required to discard a packet.

The results of the application of this model are decisive: The energy consumed during
idle phases is orders of magnitude higher than the energy consumption of message
transmissions – both genuine and dummy. Thus, the negative effect of CRDT is
likely unobservable. If a Home Automation System is therefore implemented using
similar hardware, CRDT can be implemented with a negligible impairment of battery
lifetime and system responsiveness.

EYES Nodes, Van Dam et al.

Van Dam et al. have developed and implemented a power-saving MAC protocol
using so-called EYES nodes. The published data on power consumption is brief,
but can be used to get a rough estimate of the energy consumption of a Home Auto-
mation System. Based on the graphs in the paper, we estimate that the maximum
transmission rate of EYES nodes using the T-MAC protocol is about 58 P s−1. Since
the relation between transmission rate and power consumption does not appear to
be linear, we interpolated the missing data using a second-degree polynomial based
on the power consumption of 1 P s−1, 10 P s−1 and 58.17 P s−1.

We then calculated the original transmission rates for every device in the evaluated
systems during each 1 s-timeslot. Here we assume that all transmissions originating
from a single sender and being sent during the same timeslot are targeted towards
the same receiver. Furthermore, we assume that no two devices transmit data to the
same receiver during the same timeslot. While this might not be entirely accurate, we

93



4.3. Constant-Rate Dummy Traffic (CRDT)

assume the error introduced by this to be negligible. This assumption is supported
by the results of the other models.

Applying the consumption values from the model to this data results in an estimate
of the energy consumed by the original system. We then introduce dummy traffic
into the system at the given rates. While doing so, we distribute the dummy traffic
evenly among all idle nodes, so that each node only sends at most one dummy packet
during each 1 s-timeslot. This minimises the overall energy consumption and results
in a more conservative estimate on the impact of CRDT.

The resulting total energy consumption of the systems is less than 0.06 % of that of
Feeney’s model. However, due to the smaller idle power consumption, the impact of
transmissions on the total consumption is much higher. The energy consumption of
the system is increased by at least 31 % (System 1) and up to 136 % (System 2.2).
The large discrepancy between the different systems in this model can be explained
by examining their usage patterns. While System 1 exhibits activity throughout the
day from interaction and automation rules, System 2.2 almost solely handles bursts
of interactions after long periods of inactivity.

The relative difference between the different systems is similar to the one in Feeney
et al.’s model. System 3 being an outlier can be explained by the different model
variation used previously in the first calculation.

If hardware similar to EYES nodes is is used to implement a Home Automation
System, it becomes necessary to develop alternative approaches to CRDT in order
to protect the users’ privacy.

Mica2dot, Wander et al.

In order to measure the energy efficiency of different public-key cryptographic proto-
cols, Wander et al. have performed measurements using the Mica2dot platform. The
platform uses the same CC1100 transceiver as HomeMatic devices which make up 3
of our 4 analysed systems. When applying this data to our scenario, we make several
assumptions: We assume the packet length is 20 bytes – similar to the other models.
Furthermore, we have to use different power consumptions for active and inactive
microcontrollers. Therefore, we differentiate between two categories of devices:

Senders (e.g. light switches) only initiate communication themselves. They react to
events such as the pressing of a button and then begin communicating with other
devices. The processors of Senders can therefore lie dormant for most of the time and
only wake up when there is an event to be processed. This matches our observations
during our own measurements which are described in Section 4.3.4.
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Receivers (e.g. door locks or thermostats) react to messages from other devices.
They therefore have to wake up periodically to check if there is a transmission to
be processed and reacted upon. This mechanism is called radio duty cycling2 Its
exact parametrisation depends on the communication protocol and design decisions
of the manufacturer. In our experiments we found out that HomeMatic Receivers
wake up approximately once every 350 ms. Their processors are active about 0.5 %
of the time. We apply this duty cycle to our calculations.

To calculate the energy consumption in the CRDT scenario, we assume that all
dummy traffic is transmitted by Receiver nodes. This leads to a more conservative
estimate than assuming Senders transmit all dummy traffic: Receivers exhibit a
0.5 % duty cycle anyway, so the transmissions of dummy packets pose a smaller
impact on power consumption. In theory, the radio duty cycle could be combined
with the carrier sense period before sending a packet. Sender devices, on the other
hand, would have to wake up in order to be able to send packets.

Calculating intermediate results for the use of CRDT reveals that the transmissions
force the Receivers to spend more than 0.5 % of the time in active mode. Trans-
mitting 4 packets of 20 B each at a speed of 12.8 kbit s−1 takes about 0.05 s. This
means that even if the dummy traffic generation is evenly distributed among all
9 Receivers and the genuine messages transmitted by Senders are subtracted, the
Receivers have to spend more than 0.5 % of the total time transmitting data. This
is to be expected, as packet transmissions have to take longer than one duty cycle
by design, in order to give the receiving node a chance to detect the transmission.
In practice, other tasks such as reading sensor values further increase the processing
time of Receiver nodes.

The impact of CRDT on the energy consumption according to Wander et al.’s model
is enormous: For System 1, the energy consumption is five times that of an unmod-
ified system. For System 2.2, it the factor is as high as 17. Increasing the length
of the packets further increases the impact of CRDT. A packet size of 200 B leads
to an increase factor of at least 45. In conclusion, CRDT is infeasible for systems
using similar hardware.

Telos, Polastre et al.

Polastre et al. have developed a new type of wireless node and compared it to
previous hardware such as the Mica2dot platform. Their goal was to create a more
energy-efficient device. In order to apply the model to our data, we made similar
assumptions as for the other models. We assumed a packet size of 20 B and –

2In fact, the CC1100 transceiver uses a technique called Wake on Radio, where only the radio
chip employs duty cycles while the CPU sleeps. [Tex09]
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similarly to the application of Wander et al.’s Mica2dot model – split the devices
into Senders and Receivers.

The results match the goals the Telos project: The energy consumption less than
half of the consumption of the Mica2dot nodes. The effect of CRDT on the overall
energy consumption is also lower. However, the overall energy consumption when
using CRDT is still 44 % to 228 % higher than the original energy consumption of
the systems. This supports our thesis that CRDT is not feasible for use in specialised
HASs.

The results also suggest that Telos is a viable technology for use in HASs in general.
Among our evaluation, it exhibits the lowest energy consumption both before and
after applying CRDT across all four tested systems.

HomeMatic Hardware

To check the models against hardware of an existing HAS, we performed our own
measurements on HomeMatic hardware. The test setup is described below Fig-
ures 4.2 and 4.3. We were able to confirm the most important aspects of power con-
sumption by measuring and comparing the data with the other models. We could
confirm our classification of devices as Senders and Receivers. Senders lie dormant
most of the time with an idle power consumption of around 0.4 mW. Sending a
(genuine) packet requires about 17.22 mJ of energy, including sensing the carrier
before transmitting and listening for replies or collisions after the transmission. The
energy consumption of a pressed switch where the different states are highlighted is
supplied in Figure 4.2. Receivers, on the other hand, periodically wake up to listen
for incoming transmissions. The duty cycle is 0.5 % and each spike requires about
80.79 µJ of energy in addition to the idle power consumption. The measurement for
a door lock actuator without any activity on the carrier is illustrated in Figure 4.3

According to our measurements, the HAS systems consumed energy in the order
of several kJ (over the full duration of 8 to 38 days) for communication. This is a
reasonable amount for a battery-powered system: A single alkaline AA battery can
supply around 10 kJ of energy.

The impact of CRDT on the overall energy consumption is significant. In a “busy”
setting such as System 1, the energy consumption is more than tripled. This shows
that the idle power consumption is relatively low in comparison to the power con-
sumption of data transmissions. In a system handling bursts and long spans of
inactivity such as System 2.2, the increase is nearly tenfold. This discrepancy again
shows that CRDT performs worse in settings with sporadic transmissions. While
the impact on System 3 is the highest, this value has to be interpreted with care:
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Figure 4.2: Measurement of the voltage dropping across a 2 Ω shunt resistor con-
nected in series to a HomeMatic light switch which was pressed. Y and X axis scales
(major ticks) are given below the graph: X axis ticks are in intervals of 20 ms (minor
ticks) and 100 ms (major ticks); Y axis ticks are in intervals of 4 mV (minor ticks)
and 20 mV (major ticks). Measured properties of the curve are displayed on the
right side: maximum voltage (“High”) and minimum voltage (“Low”). The differ-
ent states of the hardware are clearly identifiable. The switch is usually powered by
two AAA batteries. For the measurement we used a laboratory power supply serving
3 V.

The system is not built from HomeMatic components and therefore actual values
might differ from the model. The discrepancy between busy systems and those

4.3.5 Conclusion of CRDT

From the analysis of CRDT power consumption we can draw two conclusions. The
impact of CRDT on the power consumption strongly depends on the hardware
used. On the one hand, there are systems where CRDT places a negligible strain on
batteries and is therefore well suited to guarantee privacy. This is a strong contrast
to the first intuition, which is that CRDT introduces too much traffic overhead
to be feasible. On the other hand, many specialized systems with low idle power
consumption are heavily impacted by CRDT. For those systems, different approaches
need to be developed and implemented.

Additionally, regulatory thresholds need to be obeyed when increasing the trans-
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Figure 4.3: Measurement of the voltage dropping across a 2 Ω shunt resistor con-
nected in series to a HomeMatic door lock actuator. Y and X axis scales (major
ticks) are given below the graphs, similar to Figure 4.2. Measured properties of the
curves are displayed on the right side: maximum voltage (“High”), minimum voltage
(“Low”), pulse frequency (“Freq”) and duty cycle (“+Duty”). No traffic was sent
or received during the measurement and the lock was not turned. The lock is usu-
ally powered by two AA batteries which were swapped for a laboratory power supply
serving 3 V for the experiment. In the left picture a single pulse is measured in de-
tail. In the right picture the duty cycle is illustrated. Note that due to limitations
of the measuring equipment, the spikes in the right picture appear to be of different
height. However, the pulses all follow the same shape as the one in the left picture.
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mission frequency. This imposes an upper limit on the packet rate which depends
on the technologies used and can lead to observable delays and, consequently, a
degradation in usability.

A possible alternative to achieving (ε-δ)-private communication with CRDT is to
try and achieve (ε-δ)- indistinguishability or (ε-δ)-unobservability. For this, the HAS
designer first has to choose a set of tasks T for which the definitions in Section 3.3.4
will hold. The following section deals with one such approach.

4.4 Naive Exponential Dummies (NED)

Research Question: Is it possible to provide privacy guarantees at a lower power
consumption overhead than CRDT?

The power consumption of systems using CRDT has made it clear that low latency
and constant-rate traffic are incompatible for most (optimised) HASs. We there-
fore relax our requirements on the privacy goals and present an approach using a
probabilistic generation of dummy traffic. This approach introduces significantly
less traffic overhead while introducing no latency to user interaction and offering
(ε-δ)-unobservability for certain interactions. We call this approach Naive Exponen-
tial Dummies (NED).

The approach works as follows: Genuine traffic is untouched by the system and is
transmitted without delays. After every message (genuine or dummy), the system
generates a random duration d from an exponential distribution with rate λ. If no
genuine message is transmitted after this time d, a dummy message is generated
and transmitted. If a genuine message does appear before, a new number is sampled
from the same distribution.

The choice of the random distribution is arbitrary. For this work we chose the
exponential distribution as it is generally used to model the time between subsequent
events of a Poisson point process and because it offers provable and reasonable
privacy as shown later in this section. However, we stress that no stochastic model for
user interaction exists and that this choice does not constitute an effort to substitute
one. Furthermore, we explicitly acknowledge the possibility of other distributions
providing better results.

In reality, a system cannot choose the transmission time of a message with arbitrary
precision (it is limited by the maximum transmission rate and other physical prop-
erties) and the precision with which the adversary can determine the timestamp of
a captured message is also limited by the equipment. Therefore, a discrete model
is more suitable than a continuous one. To convert the continuous exponential dis-
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tribution into a discrete one, the system rounds down the drawn number to the
nearest possible transmission time. Alternatively, it can draw a number directly
from a geometric distribution with success (sending) probability p = 1− e−λ.

Note that the algorithm does not necessarily exclude 0 as a possible outcome. In
practice, systems may limit the number of messages transmitted in the same timeslot
or may disallow simultaneous messages altogether. In these cases, the value 0 can
be interpreted as the next possible transmission time rather than the current time.

If the timestamps are to be modelled as continuous or if the timestamp precision
is too high to provide meaningful results, they can be transformed into a discrete
model nevertheless. By using Apthorpe et al.’s approach [Apt+19], genuine traffic
can be shaped into following a fixed maximum transmission rate without visibly
affecting system responsiveness, similar to the functioning of CRDT.

In this section we focus on the discrete model as it captures the properties of real
systems better than the continuous one. However, since the goals are also defined
for continuous models, similar analyses can be performed for those cases or for
approaches which require an underlying continuous model. We assume that for
the sending probability p of the geometric distribution, it holds that 0 < p < 1.
Furthermore we assume a geometric distribution with the possible outcomes N =
{0, 1, 2, 3, . . .}3. As mentioned before, a result of 0 can be interpreted as the next
possible transmission slot rather than the same.

We can immediately deduce an important property of NED:

Theorem 1. Running the algorithm on n different nodes simultaneously with send-
ing probability 1− n

√
1− p leads to the same distribution of inter-arrival times (time

between subsequent messages) for dummy traffic as running it on one node with
sending probability p.

Proof. Let X1, . . . , Xn be stochastically independent random variables following geo-
metrical distributions with success probabilities p1, . . . , pn and describing the inter-
arrival times on n different nodes. Let X = min{X1, . . . , Xn} be the combined
random variable describing the overall inter-arrival times.

Then, since the geometric distribution is memoryless,

3For the theoretical analysis in this thesis we define the natural numbers to include 0.
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Pr(X = k)

= Pr(X ≥ k) · Pr(X = k|X ≥ k)

= Pr(X ≥ k) · (1− Pr(X > k|X ≥ k))

= Pr(X ≥ k) · (1− Pr(X1 > k ∧ . . . ∧Xn > k|X ≥ k))

= Pr(X ≥ k) · (1−
n∏
i=1

Pr(Xi > k|Xi ≥ k))

= Pr(X ≥ k) · (1−
n∏
i=1

(1− pi))

= Pr(X1 ≥ k ∧ . . . ∧Xn ≥ k) · (1−
n∏
i=1

(1− pi))

=

n∏
i=1

(Pr(Xi ≥ k)) · (1−
n∏
i=1

(1− pi))

=

n∏
i=1

(1− pi)k · (1−
n∏
i=1

(1− pi))

=

(
n∏
i=1

(1− pi)

)k
· (1−

n∏
i=1

(1− pi))

Therefore, X follows a geometric distribution with sending probability 1−
n∏
i=1

(1−pi).

If ∀pi : pi = 1 − n
√

1− p, then X follows a geometric distribution with sending

probability 1−
n∏
i=1

(1− (1− n
√

1− p)) = p

While this property is not groundbreaking, it serves an important purpose for prac-
tical system design: For NED, the sending probability p is the only parameter that
needs to be synchronized between devices. Aside from this, the nodes can take de-
cisions about the generation of dummy traffic locally and do not need to coordinate
every transmission.

The sending probability p (or mean time between dummy messages λ) can be adjus-
ted to reach a balance between privacy and energy efficiency. For p = 0, no dummy
messages are generated so there is no impact on power consumption and none on
privacy. For p = 1 NED generates CRDT at the maximum possible rate. Since the
two corner cases have already been analysed, we excluded them in our assumptions
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and focus on the impact of 0 < p < 1 on privacy guarantees and energy efficiency in
the following sections.

4.4.1 Privacy Guarantees of NED

In this section we analyse NED with respect to its privacy guarantees. Note that
while NED uses a geometric distribution for the generation of dummy traffic, no
assumption is made about the distribution of genuine user interaction. The proofs
in this section hold for any distribution of genuine events.

ε-δ-private Communication

As a first step, we prove that NED and, more generally, any approach which neither
uses CRDT nor delays genuine messages cannot offer ε-private communication.

Theorem 2. NED and any approach which neither uses CRDT nor delays genuine
messages does not provide ε-private communication.

Proof. Let S be the set of all possible genuine message timestamps. For each element
s ∈ S, we define a task Ts = “interact with the system in any way that invokes a
message with timestamp s”. Such a task must exist because genuine messages are
not delayed. We also define a complementary task Ts = “interact with the system
in any way so that no genuine message is generated at timestamp s”.

Let x ∈ S be a time at which a dummy packet is not necessarily generated (i.e. the
probability of generating a dummy packet at x is less than 1). Such a time must
exist since the dummy traffic generation scheme is not CRDT. Let Ox = ∅ now be
an empty observation covering only the instant at time x. Then Pr(Ox|Tx) = 0
because executing Tx by definition invokes a message with timestamp x. However,
Pr(Ox|Tx) > 0 because executing Tx does not invoke a genuine message at time
x. The latter probability is not necessarily 1, because the dummy traffic generation
scheme may generate a dummy packet at time x.

There is no constant ε > 0 which satisfies 0 < Pr(Ox|Tx) ≤ eε · Pr(Ox|Tx) = 0.
Consequently, the system does not offer ε-private communication.

For a continuous model, the same holds. Let Ox = O|x /∈ O be the set of all possible
adversarial observations where no message appears at time x. Then by the same
reason as above, Pr(O ∈ Ox|Tx) = 0 and Pr(O ∈ Ox|Tx) > 0. Therefore, the
system does not offer ε-private communication in the continuous model.
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The proof formally describes an intuitive but important property of NED and other
latency-free approaches: If the attacker captures no messages within a certain time
frame, they know that no task was executed that would have invoked a packet
within this time frame. It also shows that in order to provide ε-private communica-
tion, any approach has to introduce artificial delays to genuine traffic, affecting the
responsiveness of the HAS.

This is especially important if messages are not padded to a uniform length. If the
goal is to provide ε-privacy for all classes of messages that an adversary is able to
distinguish, then CRDT has to be applied to each. For our test data, this would
introduce an overhead larger than padding all messages to the maximum length.

For the discrete version of NED specifically we can also prove that it does not offer
(ε-δ)-private communication. The proof follows the idea that it is possible to generate
arbitrarily improbable adversarial observations (e.g. long chains of messages) so
that any constant δ will eventually be surpassed. Intuitively, this corresponds to a
scenario where a user continuously presses a light switch over and over again.

Theorem 3. NED does not provide (ε-δ)-private communication under a discrete
time model.

Proof. For all natural numbers n ∈ N we define a task Tn =“interact with the sys-
tem in a way so that n consecutive messages are generated” and a corresponding
observation On = [0, n] ∩ N comprising n consecutive messages and covering a dur-
ation of exactly n. By construction, it holds that ∀n ∈ N : Pr(On|Tn) = 1 We also
define a task T0 =“interact with the system in a way so that no genuine messages
are generated”. For this task it holds that ∀n ∈ N : Pr(On|T0) = pn · (1− p)n where
p is the sending probability of NED (note that the factor (1−p)n describes the event
that not more than one message is generated in each timeslot).

Assuming that NED does offer (ε-δ)-private communications, there must be two
constants ε > 0, δ < 1 so that for all tasks Ti, Tj and for all observations O it holds
that Pr(O|Ti) ≤ eε · Pr(O|Tj) + δ.

For m :=
⌈
logp

(
1−δ
eε

)⌉
it then holds that Pr(Om|Tm) = 1 by the construction above.

Due to the privacy guarantee, it holds that

1 = Pr(Om|Tm) ≤ eε · Pr(Om|T0) + δ = eε · pm · (1− p)m + δ

Due to the construction of m and since 0 < p < 1, it further holds that
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eε · pm · (1− p)m + δ ≤ eε · 1− δ
eε

+ δ = 1

However, since 0 < p < 1, we can come up with another sample Om+1 for which it
holds that

eε · Pr(Om+1|T0) + δ

=eε · pm+1 · (1− p)m+1 + δ < eε · pm · (1− p)m + δ

And since eε · pm + ·(1− p)m + δ = Pr(Om|T0) as shown above, it holds that

Pr(Om|Tm) > eε · Pr(Om+1|T0) + δ

This violates the condition of (ε-δ)-private communication.

This proof illustrates another intuitive property of NED: If the user invokes a se-
quence of messages that is unlikely to be generated from dummy traffic, then the
attacker has a high confidence in identifying this interaction.

ε-indistinguishability

If a system does not equalise message sequences with regard to the number of mes-
sages and their inter-arrival times, approaches like NED that are not bounded cannot
offer ε- indistinguishability for tasks invoking different message sequences. The the-
orem and its proof can be visualised using the following example: Suppose that
pressing a light switch makes the system transmit 3 consecutive messages and that
opening a door makes it transmit 4 messages. If the system now uses NED for the
generation of dummy traffic, it is possible that after pressing a light switch, still
only 3 messages are transmitted within the observed time frame. If an attacker
captures this output, they can be certain that the light switch was pressed rather
than the door being opened. Since ε- indistinguishability requires one of the tasks to
be performed, this information is leaked to the attacker.

For the proof, we assume that performing a task T invokes a message sequence S =
{s1, s2, . . . , sn} where si is a random variable following a (usually, but not necessarily
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bounded) probability distribution and describing the time difference between the i-
th message and the point at which the task was performed. Note that using slightly
different models (e.g. si describing the inter-arrival time between messages i and
i− 1) requires minor adaptions, but does not invalidate the proof.

Theorem 4. Let TA, TB be two tasks and let A = {a1, a2, . . . , am}, B = {b1, b2, . . . ,
bn} be the message sequences invoked by performing TA or TB, respectively.

If the tasks do not fully overlap, or formally if

∃i ∈ [1,m]∀x ∈ N :

Pr(ai = x) > 0⇒ ∀j ∈ [1, n] : Pr(bj = x) = 0

then NED (or any other unbounded probabilistic approach) does not provide ε- indis-
tinguishability for the set {TA, TB}.

Proof. Let i be such that ∀x ∈ N : (Pr(ai = x) > 0⇒ ∀j ∈ [1, n] : Pr(bj = x) = 0)
(cf. the precondition). Let Q ⊆ N be the set for which ∀q ∈ Q : Pr(ai = q) > 0,
therefore ∀q ∈ Q, j ∈ [1, n] : Pr(bj = q) = 0.

Then for all observations O where Pr(O|TB) > 0 and O ∩ Q = ∅ it holds that
Pr(O|TA) = 0. Such observations must exist because elements from Q are not
generated by performing TB and if the dummy traffic generation algorithm is NED
or another unbounded probabilistic scheme, then there are observations O with
O ∩Q = ∅ which may occur when performing TB.

Consequently, there is no constant ε ≥ 0 which satisfies 0 < Pr(O|TB) ≤ eε ·
Pr(O|TA) = 0. The system therefore does not offer ε- indistinguishability for the set
{TA, TB}.

We can conclude that for strict ε- indistinguishability, the message sequences invoked
by the tasks have to be modified so that no possible sequence of one tasks is im-
possible for another. In practice, this may be achieved by equalising the length of
message sequences, e.g. by ensuring that after every user interaction, a fixed num-
ber of messages is transmitted in the same fixed or equally distributed intervals.
Apthorpe et al. follow this idea in their approach named STP. [Apt+19]

However, it is not always necessary for a HAS to offer (ε-δ)-private communication or
(ε-δ)- indistinguishability. If the user wants to e.g. only guarantee that an attacker
is unable to find out whether they are at home, it might be sufficient to provide
(ε-δ)-unobservability for a set (or sets) comprising “normal” tasks which involve the
user directly, such as opening doors and pressing switches (a reasonable number of
times).
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ε-δ-unobservability

As a last step we analyse NED with regard to (ε-δ)-unobservability. We show that
NED achieves this goal and calculate the values of ε and δ for a given scenario. For
the proof we assume the following case: As in the previous section, performing a
given task T invokes a number of messages S = {s1, s2, . . . , sn} where each si is a
random variable following any probability distribution and describing the timing of
message i relative to the task’s execution time. S matches the set E of interesting
events or messages from Chapter 3; we use a different letter here to avoid confusion
with the constant e.

Theorem 5. Let T be a task invoking a sequence of messages S = {s1, s2, . . . , sn}
and let T be the complementary task invoking no genuine message. Then NED offers
(ε-δ)-unobservability of {T, T}.

Proof. Let O be any adversarial observation of duration l. We distinguish between
the following (possibly overlapping) cases:

1. Pr(O|T ) > 0 Then O will unconditionally include a number m subject to
0 ≤ m ≤ n of genuine messages generated by executing T and a number d =
|O∩D| ≥ 0 of dummy messages. An upper bound for this probability Pr(O|T )
can be computed by calculating the probability of observing exactly the same
d dummy messages in an observation of length l which already includes the m
genuine messages:

Pr(O|T ) ≤ pd · (1− p)l

Then, the probability of observing the same pattern with no genuine messages
is

Pr(O|T ) = pm · pd · (1− p)l

If we insert these two terms into the equation for (ε-δ)-unobservability, we get

Pr(O|T ) ≤ pd · (1− p)l

≤eε · Pr(O|T ) + δ

=eε · pm · pd · (1− p)l + δ

We see that for ε = − ln(pm) > 0 (since 0 < p < 1 and therefore pm < e) and
δ = 0 the two sides become the same, satisfying the condition. Since m ≤ n,
the value ε = − ln(pn) is a lower bound.
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For the opposite direction (Pr(O|T ) ≤ eε · Pr(O|T ) + δ), we need a lower
bound for the probability Pr(O|T ). Since the probability of any timestamp
being yielded by NED is larger than 0, the probability of observing any message
cannot be lower than the probability of this message being a dummy generated
by NED. This value is the sending probability p. Therefore, a lower bound is
Pr(O|T ) ≥ pm+d · (1− p)l. Inserting this into the equation we get

Pr(O|T ) = pm · pd · (1− p)l

= pm+d · (1− p)l ≤ Pr(O|T )

≤ eε · Pr(O|T ) + δ

We immediately see that the condition is satisfied for ε = δ = 0.

2. Pr(O|T ) = 0 Then the equation Pr(O|T ) ≤ eε · Pr(O|T ) + δ is satisfied for
any value of ε > 0 and δ < 1.

As for the opposite direction, it is obvious that Pr(O|T ) > 0 since NED can
yield any set of timestamps. The maximum possible value of this probability
is therefore an upper bound for the constant δ. This maximum is trivial to
compute: Since Pr(O|T ) = 0, O must not have a packet over a period where
T would generate one. An upper bound for observing this “silence” is 1 − p.
Hence, we get that δ ≤ 1− p.

4.5 Evaluating NED

In order to evaluate NED against real HAS data, we implemented the algorithm
and ran it against our evaluation data. During the implementation we made the
following design decisions:

• The algorithm generates samples from an exponential distribution and rounds
the result down to the nearest possible transmission time.

• Since our sample data contains messages with the same timestamp due to
limitations of the capturing hardware, we allowed 0 as a possible result for the
next dummy message.

The sample data of each system was used as a single trace of genuine traffic. The
generated dummy traffic was added on top of the genuine messages similar to how
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NED could be implemented in practice. As stated in Section 4.4, we placed no
assumption on the distribution of genuine traffic. Instead, we used the realistic
sample data as-is.

For each system, we generated dummy traffic using six different values for the mean
inter-arrival time λ of the exponential distribution. We also performed an analysis
using no dummy traffic. We generated up to 1000 observations from the result-
ing system output, making sure that at least 40 of them included user interaction.
The duration of these observations was set to 10 s. We performed the evaluation
with longer samples as well, but reached the same conclusion. For each sample, we
counted the number of times it occurred in the system output including dummy
messages. The occurrences were split between those where the same kind of user in-
teraction happened as in the sample and those where different or no user interaction
was recorded. We ran the complete simulation multiple times to see if the calculated
values are stable. Since NED can generate extreme traffic patterns (no or very high
dummy traffic), it is possible to see high variations in the results, although with a
low probability. The results below are the average of 55 runs; the values did not
differ significantly.

Using this data we estimate values for ε and δ by counting occurences of individual
observations and applying the formula from Definition 4. We also estimate the effect
on the energy consumption according to the HomeMatic model from Section 4.3.4.
The results are summarised in Table 4.2.

NED offers significant privacy improvements for moderate increases of overall traffic.
For higher values of λ, the traffic overhead increases quickly and so do the pri-
vacy guarantees. When NED is configured to send approximately one packet every
second, the parameter ε approaches 0 in all four systems. The constant privacy
leakage δ also becomes diminishingly small. However, the energy consumption is
merely doubled for the first two systems. For System 3, the increase is only 50 %.

Even low values of λ alread provide significant improvements over non-anonymised
systems: When transmitting one dummy every 10 seconds, the constant leakage δ
is below 0.5 in all systems, while the increase in energy consumption is below 20 %
for all four systems and below 10 % for three of them.

A suitable compromise between privacy and energy consumption seems to be around
λ = 0.5. ε drops to at most half the value it has in the unmodified systems. Due to
it being in the exponent when comparing probabilities, the factor eε drops by more
than 97 %. Furthermore, the constant leakage δ drops below 0.01 in all systems,
which means that the chance of an attacker being able to learn a definitive piece of
information is close to zero. The increase in energy consumption is between 6 and
50 % for all systems except System 2.2.
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System 1 2.1 2.2 3
No dummy traffic

TI 0.00 0.00 0.00 0.00
ε 8.77 7.62 7.83 7.63
δ 0.87 0.70 0.99 1.00

λ = 0.001 (∼1 P every 20 min)
TI 0.07 0.02 1.16 0.08
ε 8.57 7.73 7.87 7.63
δ 0.86 0.70 0.99 0.99
ECI 6.05× 10−4 7.23× 10−4 1.73× 10−3 5.57× 10−4

λ = 0.01 (∼1 P every 100 s)
TI 0.67 0.22 11.73 0.80
ε 7.20 7.76 7.97 7.67
δ 0.79 0.64 0.90 0.91
ECI 5.79× 10−3 7.95× 10−3 0.02 5.57× 10−3

λ = 1/60 (∼1 P every minute)
TI 1.13 0.36 19.39 1.35
ε 7.08 7.25 8.19 7.65
δ 0.74 0.60 0.85 0.85
ECI 0.01 0.01 0.03 0.01

λ = 0.1 (∼1 P every 10 s)
TI 7.07 2.25 122.33 8.08
ε 5.27 6.74 6.92 7.50
δ 0.32 0.26 0.37 0.37
ECI 0.06 0.08 0.18 0.06

λ = 0.5 (∼1 P every 2 s)
TI 43.55 13.84 754.83 40.40
ε 3.91 <10−10 <10−10 3.97
δ 5.93× 10−3 4.78× 10−3 7.11× 10−3 6.71× 10−3

ECI 0.38 0.50 1.13 0.28
λ = 1 (∼1 P every second)

TI 115.39 36.69 1995.63 80.85
ε <10−10 <10−10 <10−10 <10−10

δ 5.56× 10−5 1.46× 10−3 8.55× 10−4 7.50× 10−9

ECI 1.00 1.33 2.98 0.56
CRDT (for reference, rates from Sec. 4.3.2)

TI 267.53 148.54 5812.63 1453.40
ε 0 0 0 0
δ 0 0 0 0
ECI 2.31 5.37 8.68 10.12

Table 4.2: Results for using NED in Home Automation Systems. TI stands
for traffic increase and ECI means Energy Consumption Increase according to the
HomeMatic model. Both are given as a factor, where a value 0 means no increase
and a value of 1 means that the original value doubled. TI and ECI for CRDT
is supplied for comparison. Since CRDT offers (0-0)-private communication, the
values for ε and δ are 0.
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4.5.1 Behaviour of ε and δ over Time

We have investigated how ε and δ develop over different stretches of time. First
we consider a simple theoretic case: A user performs an interaction at the same
time every day. The interaction invokes a chain s of n consecutive messages. The
probability of observing s at this time each day is 1. The probability of observing n
consecutive dummies in absence of the interaction is pn. The probability of observing
a sample of length n with at least one gap in the absence of interaction is 1 −
pn. Thus, for one day the privacy parameters are δ = 1 − pn and ε = −n · ln p
((ε-δ)-unobservability).

When monitoring the system for multiple days (or task execution periods), however,
the adversary observes the same pattern at the same time. Thus, after k days of
monitoring, the probability of observing the same pattern of n consecutive dummy
messages at the same time each day is pnk and the probability of observing anything
else than this pattern (i.e. at least one gap) is 1− pnk. This means that the privacy
parameter ε = −nk · ln p linearly rises with k while δ = 1− pnk converges to 1. As
an example, for λ = 0.5 ⇒ p ≈ 0.39, n = 4, ε starts at ε ≈ 3.73 for k = 1 and rises
to ε ≈ 26.12 for k = 7. δ starts at δ ≈ 0.61 and decreases to δ ≈ 0.03 for k = 7.

We have also tried to extract the behavior of ε and δ over time from the sample data.
However, we observe that tasks are not as regular as in our theoretical example:
With λ = 0.1, the parameter ε for System 3 starts at 2.97 for a timeframe of 6
hours and rises to 9.45 when taking a week’s traffic data. For the full dataset it
then decreases back to 7.50. This can be explained when examining the parameter
calculation: For a given interaction in a short timeframe, a particular sample is
unique. When observing longer stretches of time however, the same interaction can
invoke different observations (as message delays might slightly differ), resulting in
different samples. For example, pressing a light switch twice does not necessarily
generate packet sequences with the exact same inter-arrival times.

Furthermore, short timeframes result in a high variance of the privacy parameters
due to the limited data. In order to properly analyze real behavior of ε and δ over
time, larger data sets are needed. The theoretical and practical values have been
plotted in Figure 4.4, although the explanatory power of this graph is limited due
to the aforementioned constraints.

4.6 Chapter Conclusion

In this chapter we have achieved two major goals of this thesis: We have analysed
the impact of Constant-Rate Dummy Traffic on both the responsiveness and en-
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Figure 4.4: Simulated and measured development of ε and δ over time ((ε-δ)-un-
observability). The scale for ε is logarithmic for increased readability. Values are
calculated for λ = 0.5 and real values are estimated from the data of System 3. Note
that the real values are subject to limited data and to variations in message sequences
for individual interactions.

ergy efficiency of Home Automation Systems. As we have shown, CRDT can be
implemented with acceptable impact on responsiveness and thus user experience.
Depending on the hardware used, the approach can offer perfect (ε-δ)-private com-
munication at moderate cost in terms of power consumption. We have also identified
cases where CRDT is infeasible to implement and have introduced Naive Exponen-
tial Dummies as a robust alternative. We have formally analysed NED with regard
to the security guarantees and have shown its limits as well as its strengths. In the
last part of this chapter we have simulated NED on realistic HAS data and were able
to show that it can offer reasonable guarantees at moderate cost in terms of energy
efficiency. NED therefore poses a strong first step towards practical energy-efficient
dummy traffic generation for Home Automation Systems.
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In this thesis we have investigated the problem of privacy in Home Automation
Systems. As a first step, we have tried to answer the question:

What information can a passive attacker learn about the user of a Home Automation
System if communication is unencrypted?

We have shown that current, commercially available systems are vulnerable to pass-
ive attacks. For this we have performed the first extensive analysis of 3 HomeMatic
installations, capturing traffic over the course of several weeks and identifying device
classes, automation rules and user habits. We have demonstrated that without en-
cryption, these systems leak detailed information about everyday activities to any
outside observer and that these eavesdropping attacks are possible using cheap,
readily available hardware. [Möl+14]

We have then demonstrated that encryption alone does not fully protect the users’
privacy. By applying statistical tests to timing metadata of two different Home
Automation Systems we could prove that presence information can still be leaked
even if the adversaries do not have access to the contents of data packets. The
question we tried to answer was:

If an attacker has captured 1 hour of traffic from a user’s HAS and knows whether the
user was present at that time, can the attacker deduce the user’s state by capturing
another hour of traffic?

We were able to identify cases in which user presence could be deduced with absolute
certainty, though it is unclear whether these results are generalizable to all systems
and users. [MS16] Machine learning algorithms can slightly improve the prediction
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accuracy, but so far do not significantly enhance an attacker’s capabilities beyond
individual statistical tests.

We have also inspected the legal situation with respect to both criminal and data
protection law. We have asked ourselves:

Is Home Automation System communication protected by data protection law? If
yes, which implications does this have for users and providers?

and

Does criminal law successfully capture the attacks described here? Or are amend-
ments to the law necessary in order to provide legal protection for users?

Regarding data protection law, we have shown that HASs generally process person-
ally identifiable information and that providers must therefore take precautions to
protect this data from unlawful access. [MS15] We have highlighted shortcomings of
past and present legislations and have shown that while options for criminal prosec-
ution exist, legislation cannot replace technical countermeasures. This is especially
true as the law can only follow known developments in computer science and only
marginally regulate future developments. [MV16] However, we have also found that
there are international attempts to unify data protection and computer-related crim-
inal law in order to facilitate privacy protection and prosecution of attacks. [Möl+18]

As a consequence of these findings, we have investigated methods for modelling
passive attacks on (encrypted) Home Automation System communication in order
to answer the question

How can communication and traffic analysis attacks in HASs be modelled in order
to develop and compare countermeasures?

Based on existing and well-established approaches from the field of Differential Pri-
vacy and Private Information Retrieval, we have constructed a general model for
passive attacks on (encrypted) Home Automation System communication. We have
formalized the notion of privacy in HASs and have defined several privacy goals which
can be guaranteed by suitable traffic shaping schemes. Our model is agnostic to com-
munication protocols, other countermeasures such as header encryption, and user
behaviour. It allows the development and comparison of communication algorithms
with respect to information leakage. To the best of our knowledge this is the first
model established for the particular case of Home Automation Systems, where the
mere existence of communication can already disclose sensitive data. [Möl+18]

Finally, we have analyzed the applicability of the model and the performance of two
countermeasures. In the first step we have asked ourselves:
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Is Constant-Rate Dummy Traffic feasible to implement in low-latency, wireless,
battery-powered Home Automation Systems?

We have demonstrated the applicability of the model by performing a quantitative
analysis of Constant-Rate Dummy Traffic. We have shown that contrary to the first
intuition, constant-rate communication can offer perfect privacy at moderate cost in
terms of power consumption, depending on the hardware used. We have also iden-
tified settings which make CRDT infeasible due to a significant power consumption
overhead. [Möl20] As a second step, we have therefore tried to answer the question:

Is it possible to provide privacy guarantees at a lower power consumption overhead
than CRDT?

For cases where CRDT is infeasible, we have proposed the randomized dummy traffic
generation algorithm NED. NED offers parametrization to strike an arbitrary balance
between power consumption and unobservability of genuine communication. We have
proven the privacy guarantees which NED can offer and have demonstrated that it
can provide reasonable privacy at a lower power consumption overhead than CRDT.
[Möl20]

5.1 Outlook

The contributions of this thesis constitute a strong base for further research into
privacy in Home Automation Systems. While the proposed NED algorithm offers
a way to tune privacy against power consumption, it is unlikely to offer optimal
efficiency for a given set of privacy parameters. Further research in this area could
provide helpful insights into common user behaviour in order to further reduce the
power consumption overhead.

5.1.1 Learning the Underlying Distribution

It is clear that an optimal approach cannot be based on fixed parameters concerning
the distribution of messages over time. In any HAS there will be longer periods of
increased or decreased activity. For example, the owner of a newly installed HAS
might be excited to try out many features, but might gradually interact less with the
system. Different setups may also exhibit different distributions: As the number of
installed devices increases, so does the expected number of messages in a given time
frame. An algorithm which does not adapt to the environment is likely to either lose
efficiency over time or degrade in performance with respect to the privacy goals.
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NED can be readjusted and its performance can be continuously monitored by the
system itself, as it can distinguish between dummy and genuine messages and there-
fore sample the values of the privacy parameters. However, this requires interaction
of the user. Future approaches can adjust the dummy traffic generation based on the
sampled parameters and reliably generate sequences which closely resemble genuine
user interaction.

Large-scale sampling of user interaction and behaviour can be used to build accurate
and general models of traffic distribution in order to tailor more efficient dummy
traffic generation schemes.

5.1.2 Introducing Delays

NED is a latency-free algorithm. It does not delay genuine messages. However,
as mentioned in Section 4.3, small delays are acceptable for most functionality and
larger delays might be feasible for certain device classes such as thermostats. Shaping
the traffic by introducing delays might simplify the construction of algorithms which
provide stronger privacy guarantees than NED without significantly increasing (or
possibly while decreasing) the power consumption overhead.

5.1.3 Application

We have demonstrated that privacy guarantees can be met by Home Automation
Systems and that they can be tuned to reach a balance between privacy and energy
efficiency. At the time of writing, no system is known to implement this mechanism.
However, we hope that the results of this thesis will be transferred into practice to
help improve and protect the privacy of Home Automation System users.
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