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A B S T R A C T

Photorealistic and semantically controllable digital models of human faces are im-
portant for a wide range of applications such as movies, virtual reality, and casual
photography. Traditional approaches require expensive setups which capture the
person from multiple cameras under different illumination conditions. Recent ap-
proaches have also explored digitizing faces under less constrained settings, even
from a single image of the person. These approaches rely on priors, commonly known
as 3D morphable models (3DMMs), which are learned from datasets of 3D scans.
This thesis pushes the state of the art in high-quality 3D reconstruction of faces from
monocular images. A model-based face autoencoder architecture is introduced which
integrates convolutional neural networks, 3DMMs, and differentiable rendering for
self-supervised training on large image datasets. This architecture is extended to
enable the refinement of a pretrained 3DMM just from a dataset of monocular images,
allowing for higher-quality reconstructions. In addition, this thesis demonstrates the
learning of the identity components of a 3DMM directly from videos without using
any 3D data. Since videos are more readily available, this model can generalize better
compared to the models learned from limited 3D scans.

This thesis also presents methods for the photorealistic editing of portrait images.
In contrast to traditional approaches, the presented methods do not rely on any
supervised training. Self-supervised editing is achieved by integrating the semantically
meaningful 3DMM-based monocular reconstructions with a pretrained and fixed
generative adversarial network.

While this thesis presents several ideas which enable self-supervised learning for
the reconstruction and synthesis of faces, several open challenges remain. These
challenges, as well as an outlook for future work are also discussed.
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Z U S A M M E N FA S S U N G

Fotorealistische und semantisch steuerbare digitale Modelle von menschlichen Gesich-
tern sind wichtig für eine Vielzahl von Anwendungen wie Filme, virtuelle Realität und
Gelegenheitsfotografie. Traditionelle Ansätze erfordern teure Setups, die die Person
mit mehreren Kameras unter verschiedenen Beleuchtungsbedingungen aufnehmen.
Neuere Ansätze haben auch die Digitalisierung von Gesichtern unter weniger strengen
Bedingungen untersucht, selbst von einem einzigen Bild der Person. Diese Ansätze
stützen sich auf Vorannahmen, sogenannte 3D morphable models (3DMMs), die aus einer
Reihe von 3D-Scans gelernt werden. Diese Dissertation bringt den Stand der Forschung
auf dem Gebiet der hochwertigen 3D-Rekonstruktion von Gesichtern aus Einzelaufnah-
men voran. Es wird eine modellbasierte Gesichts-Autoencoder-Architektur entwickelt,
die neuronale Netze, 3DMMs und differenzierbares Rendern für selbstüberwachtes
Training auf großen Bilddatensätzen verbindet. Diese Architektur wird erweitert, um
die Verfeinerung eines vortrainierten 3DMMs lediglich anhand eines Datensatzes von
monokularen Bildern zu ermöglichen, wodurch qualitativ hochwertigere Rekonstruk-
tionen erzielt werden können. Darüber hinaus demonstriert diese Dissertation das
Lernen der Identitätskomponenten eines 3DMM anhand von Videos ohne den Einsatz
von 3D-Daten. Da Videos leichter verfügbar sind, kann dieses Modell im Vergleich zu
jenen Modellen, die aus begrenzten 3D-Scans gelernt wurden, besser generalisieren.

In dieser Dissertation werden auch Methoden für die fotorealistische Bearbeitung
von Porträtbildern vorgestellt. Im Gegensatz zu traditionellen Ansätzen sind die
vorgestellten Methoden nicht auf ein überwachtes Training angewiesen. Die selbst-
überwachte Bearbeitung wird durch die Verknüpfung der semantisch aussagekräftigen
3DMM-basierten Einzelbildrekonstruktionen mit einem vortrainierten und unverän-
derlichen generativen adversariellen Netzwerk erreicht.

Während diese Dissertation mehrere Ideen entwickelt, die selbstüberwachtes Lernen
für die Rekonstruktion und Synthetisierung von Gesichtern ermöglichen, verbleiben
mehrere ungelöste Herausforderungen. Diese Herausforderungen, sowie ein Ausblick
auf mögliche zukünftige Forschungsarbeiten werden ebenfalls erörtert.
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high-quality reconstuction of the geometry and reflectance of
the face. This digital face is then rigged such that it can be ani-
mated. Finally, the animated digital face is rendered to create
the final result. This process leads to very high quality output,
but is not suitable for casual users because of the capture setup,
and manual effort required in the different steps. Figure taken
from Alexander et al. (2009). . . . . . . . . . . . . . . . . . . . . 2

Figure 1.2 Top row shows visualizations of the monocular reconstructions
corresponding to the images in the bottom row. 3DMM re-
constructions are not photorealistic due to the approximations
made in the image formation process. StyleRig (Tewari et al.,
2020b) allows for control over the head pose, facial expres-
sions, and scene illumination in a portrait image synthesized
by StyleGAN (Karras et al., 2019a), by integrating 3DMM-based
reconstruction with the latent space of StyleGAN. . . . . . . . . 3

Figure 2.1 3D morphable models represent the 3D geometry and appear-
ance of faces using separate models for the identity geometry
(left), expressions (middle), and appearance (right). The BFM
2019 model (Gerig et al., 2018) is visualized here. Figure taken
from Egger et al. (2020). . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.2 This thesis proposes a self-supervised training loop where a
dataset of images or videos is used to train a convolutional neu-
ral network for 3D reconstruction. A differentiable physically-
based renderer transforms the 3D reconstructions into synthetic
images which can be used for defining self-supervised loss
functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 2.3 The rendering equation computes the outgoing radiance at
a point by modeling how incoming light interacts with the
surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.4 Generative Adversarial Networks (GANs) consist of a generator
and a discriminator. Random samples from a prior distribu-
tion are given as input to the generator. The discriminator is
trained to classify synthesized images from real images. A min-
imax optimization enables the generator to synthesize realistic
images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.5 Progressive growing of the generator and discriminator net-
works allows for the synthesis of high-resolution images. Figure
taken from Karras et al. (2018). . . . . . . . . . . . . . . . . . . . 12
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1
I N T R O D U C T I O N

Digitizing human faces has a wide range of applications in movies, video games,
and virtual reality. Faces of real actors are used to reenact virtual characters in
movies and games. Digital avatars of actors have been used in movies, even after they
are deceased! (Alexander, 2019; Itzkoff, 2016) Virtual reality applications allow us to
interact with a person virtually from our viewpoint which changes as we move around.
Such applications require reconstructing the face of a person, including detailed 3D
geometry and reflectance properties, which describe the appearance of the face under
different lighting conditions and viewpoints. For many of these applications, this
reconstruction should be controllable by artists or users. For example, reanimating
a face requires preserving the identity-specific geometry and only editing of the
expressions. After reconstruction and editing, the digitized face can be rendered to
create new imagery suitable for the application, see Figure 1.1.

Recovering detailed 3D properties of a person’s face traditionally requires expensive
capture setups with multiple cameras and lights (Alexander et al., 2009; Beeler et
al., 2010). Additionally, manual interventions by artists are required for building
controllable rigs suitable for editing (Lewis et al., 2014b). This pipeline is cumbersome,
expensive, and not suitable for casual users. Thus, a lot of recent work has explored
less-constrained settings, such as reconstruction of 3D faces from just a monocular
image or video (Egger et al., 2020; Zollhöfer et al., 2018). However, there is still a
large gap in quality, which prevents their usage in many applications which rely
on photorealistic rendering. This thesis proposes several methods which improve
the state of the art in high-quality reconstruction and controllable synthesis of faces.
All methods presented in this thesis rely only on very few observations of a face
in in-the-wild images, without constraints over the lighting and camera poses in the
scenes.

1.1 monocular reconstruction

Monocular 3D reconstruction, i.e., 3D reconstruction of geometry and appearance from
a single image is an ill-posed problem due to depth ambiguities, as well as reflectance-
shading ambiguities. There are infinitely many 3D points along the camera ray which
can project perfectly to a 2D point in an image. This leads to depth ambiguity, as multi-
view triangulation cannot be used to obtain the correct face shape in the monocular
setting. In addition, the observed colors in the image can be explained by infinitely
many combinations of reflectance and illumination (Egger, 2017). The common strategy
for constraining the monocular face reconstruction problem is to first capture a training
dataset of 3D scans in order to learn a low dimensional representation of 3D faces,
referred to as 3D Morphable Models (3DMMs). Constraining the solution to lie within
the space of these models allows for plausible monocular 3D reconstruction of the
geometry and reflectance of the face. In addition, these models capture the significant
modes of deformation along semantically disentangled components such as identity and

1



2 introduction

Figure 1.1: Traditional pipeline for creating a digital 3D face model. The person is first captured
using multiple cameras and light sources in different expressions. This data is processed to
compute a high-quality reconstuction of the geometry and reflectance of the face. This digital
face is then rigged such that it can be animated. Finally, the animated digital face is rendered
to create the final result. This process leads to very high quality output, but is not suitable for
casual users because of the capture setup, and manual effort required in the different steps.
Figure taken from Alexander et al. (2009).

expression geometry, and diffuse reflectance. For many applications, it is important
for the reconstruction to be parameterized in terms of these semantic meaningful
components. For example, facial reenactment primarily depends on the expression
component, while facial recognition mainly depends on the identity component.

While the use of 3D Morphable Models has seen wide success with many different
monocular reconstruction methods in the literature (Zollhöfer et al., 2018), several
limitations exist. Since 3D scanners are not ubiquitous, most models are learned from
a low quantity of scans. In addition, it is even difficult for commercial scanners to
reconstruct some features such as hair or beards. This limits the quality of general-
ization of these models, and thus also of the monocular 3D reconstruction methods
which use these models. The goal of this thesis is to move towards learning a face
morphable model from just images and videos, using as little 3D data as possible.
Since monocular images and videos are widely available online, this would allow
for learning models which generalize better in-the-wild. One of the main technical
contributions of this thesis is the integration of analytically-differentiable 3D ren-
dering and morphable models with convolutional neural networks. This allows for
self-supervised learning-based methods without the need for 3D supervision. This
new architecture, called model-based face autoencoder (MoFA) is a key component
required for learning morphable models from images and videos. The integration
of a morphable model in the learning loop also allows for learning the model itself
from in-the-wild data. This leads to models which better generalize, compared to the
models learned from limited 3D data.

1.2 controllable synthesis

While rendering a perfect 3D reconstruction of the face should lead to photorealistic
results in theory, in practice, this is a very challenging task, see Figure 1.2. This is
primarily because most monocular reconstruction methods make several (incorrect)
assumptions about the image formation process. The appearance of a human face is
the result of complex interactions between the incoming light and the skin, which can
be described using the rendering equation (Kajiya, 1986). This leads to several complex
effects such as subsurface scattering and specularities. Inverting the rendering equation
is infeasible, especially in the monocular setting with very limited constraints. Thus,
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Figure 1.2: Top row shows visualizations of the monocular reconstructions corresponding
to the images in the bottom row. 3DMM reconstructions are not photorealistic due to the
approximations made in the image formation process. StyleRig (Tewari et al., 2020b) allows
for control over the head pose, facial expressions, and scene illumination in a portrait image
synthesized by StyleGAN (Karras et al., 2019a), by integrating 3DMM-based reconstruction
with the latent space of StyleGAN.

most methods work with a simplified version of the equation, only accounting for
the diffuse effects, ignoring specularities and other higher-order effects. In addition,
constraining the reconstructions to lie within the low-dimensional 3D Morphable
Model space of most existing models does not allow for the reconstruction of the
high-frequency details (Figure 1.2). Due to these limitations, rendering monocular 3D
reconstructions does not lead to photorealistic results. Finally, most 3D reconstuction
methods are limited to reconstructing the frontal face region, ignoring areas such as
hair, neck and ears. Synthesizing complete portrait images, including hair, ears, neck,
and even upper torso is important for many synthesis applications.

Neural rendering (Tewari et al., 2020c) is an emerging field which provides ways
to synthesize photorealistic images and videos from lower-quality reconstructions.
The idea is to learn a rendering function, parameterized using a neural network.
Semantically meaningful parameters are provided as input to this network. For syn-
thesis of portrait images, these could be the parameters of the 3D Morphable Model,
in addition to the scene parameters such as the viewpoint and scene illumination.
Neural rendering allows for learning the details missing from the 3D reconstructions
directly using the neural network filters, without explicitly modeling the rendering
equation. Several portrait editing methods with promising results have been demon-
strated in the literature (Kim et al., 2018a; Tewari et al., 2020c; Thies et al., 2019). Such
approaches require training data of images/videos of people observed under different
poses, expressions and lighting conditions. Since such large-scale datasets at high
quality are not readily available, most methods limit themselves to be person- and
scene-specific, only being able to synthesize portrait images of a single person in a
single environment.

Another goal of this thesis is to provide solutions for neural rendering with fewer
restrictions on the training data. A portrait editing method is developed where
the training dataset only includes a single image per-identity. This is realized by
integrating semantically meaningful 3DMM-based monocular reconstructions with
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a pretrained and fixed generative adversarial network (Figure 1.2). This also allows
for a generalizable neural rendering method, where the identity at test time does not
need to be present in the training dataset.

1.3 structure and contributions

This thesis is divided into eight chapters. Chapters 4, 5, 6, 7 and 8 include the main
technical contributions and their evaluations.

• Chapter 2 introduces relevant technical background, such as the image formation
details used in the later chapters.

• Chapter 3 discusses the relevant previous work.

• Chapter 4 (published as Tewari et al. (2020d, 2017)) introduces a new type of
architecture for monocular 3D face reconstruction called model-based face au-
toencoder (MoFA). This architecture joins forces of state-of-the-art CNN-based
regression approaches and 3D morphable models via a deep integration of the
two on an architectural level. Unlike previously used CNN-based decoders, the
proposed convolutional autoencoder deeply integrates an expert-designed de-
coder. This decoder layer implements a new generative analytically-differentiable
image formation model on the basis of a detailed parametric 3D face model.
Model-based autoencoders are trained on large 2D datasets without requiring
any corresponding 3D supervision.

• Chapter 5 (published as Tewari et al. (2018)) presents an approach that jointly
learns (i) a regressor for face shape, expression, reflectance and illumination on
the basis of (ii) a concurrently learned parametric face model. The multi-level face
model combines the advantage of 3D Morphable Models for regularization with
the out-of-space generalization of a learned corrective space. End-to-end training
is performed on in-the-wild images without dense ground truth annotations.

• Chapter 6 (published as Tewari et al. (2019)) proposes multi-frame video-based
self-supervised training of a deep network that (i) learns a face identity model
both in shape and appearance while (ii) jointly learning to reconstruct 3D faces.
The face model is learned using only corpora of in-the-wild video clips collected
from the internet. This virtually endless source of training data enables learning
of a highly general 3D face model. In order to achieve this, a novel multi-frame
consistency loss is proposed that ensures consistent shape and appearance across
multiple frames of a subject’s face, thus minimizing depth ambiguity. At test
time an arbitrary number of frames can be used, so that both monocular as well
as multi-frame reconstruction can be performed.

• Chapter 7 (published as Tewari et al. (2020b)) presents a method to provide a
face rig-like control over a pretrained and fixed generative adversarial network,
namely StyleGAN, via a 3D Morphable Model. A new rigging network, RigNet
is trained between the 3DMM’s semantic parameters and StyleGAN’s input.
The network is trained in a self-supervised manner in face images, without the
need for manual annotations. At test time, our method generates portrait images
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with the photorealism of StyleGAN and provides explicit control over the 3D
semantic parameters of the face.

• Chapter 8 (published as Tewari et al. (2020a)) presents the first approach for
embedding real portrait images in the latent space of StyleGAN (Karras et al.,
2019a), which allows for intuitive editing of the head pose, facial expression, and
scene illumination in the image. Semantic editing in parameter space is achieved
based on StyleRig, a pretrained neural network that maps the control space of a
3D morphable face model to the latent space of the GAN. A novel hierarchical
non-linear optimization problem is solved to obtain the embedding. An identity
preservation energy term allows spatially coherent edits while maintaining facial
integrity. The approach runs at interactive frame rates and thus allows the user
to explore the space of possible edits.

• Chapter 9 discusses important insights as well as opportunities for future work.
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2
B A C K G R O U N D

This chapter introduces the relevant technical background for the thesis. This thesis
studies 3D morphable models and their applications in 3D reconstruction and image
synthesis. Sec. 2.1 presents an overview of these models. The technical contributions
of the thesis rely on a physically-based differentiable renderer, discussed in Sec. 2.2.
Generative adversarial networks are also discussed in Sec. 2.3, as they are an important
component in Chapters 7 and 8 for controllable synthesis.

2.1 3d morphable models

Figure 2.1: 3D morphable models represent the 3D geometry and appearance of faces using
separate models for the identity geometry (left), expressions (middle), and appearance (right).
The BFM 2019 model (Gerig et al., 2018) is visualized here. Figure taken from Egger et al.
(2020).

3D morphable models (3DMMs) are generative models of the geometry and ap-
pearance of faces in 3D. These models are commonly used as priors for the undercon-
strained problem of monocular 3D reconstruction (Zollhöfer et al., 2018). The 3DMMs
used in this thesis are defined using a template mesh with N vertices, and consist of
semantically disentangled identity geometry, expression, and diffuse skin reflectance
components, see Fig. 2.1. The expression component is also commonly referred to
as a blendshape model (Lewis et al., 2014a). The parameters of a 3DMM include the
facial expression parameters δ ∈ RNe , identity shape parameters α ∈ RNs , and skin
reflectance parameters β ∈ RNr , where Ne, Ns, and Nr define the size of the models.
This thesis studies linear models, i.e., each component of the model can be represented
using a matrix. Thus, a 3DMM consists of an expression model Ee ∈ R3N×Ne , an
identity shape model Es ∈ R3N×Ns , and a skin reflectance model Er ∈ R3N×Nr . It also
includes an average face shape As ∈ R3N , and an average face reflectance Ae ∈ R3N .
Given a 3DMM and its parameters, the face geometry and reflectance can be computed
as:

V = As + Esα+ Eeδ , (2.1)

R = Ar + Erβ . (2.2)

7
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Here, the x-, y-, z- coordinates of all vertices are stacked in the vector V ∈ R3N .
Similarly, the r-, g-, b- reflectance values of all vertices are stacked in the vector
R ∈ R3N .

Most existing 3DMMs are learned from datasets of 3D scans. The captured scans
are first brought into dense correspondences. Principal component analysis of these
processed scans is commonly used to learn the different components of the model.
Unlike existing approaches, this thesis will introduce methods to learn 3DMMs directly
from 2D data such as videos and images. This allows for better generalization of the
models, compared to models learned only from 3D data.

2.2 differentiable rendering

The thesis tackles the task of inverse rendering, where physical 3D parameters such
as geometry, reflectance, and light are inferred from 2D image observations. A differ-
entiable renderer is a crucial component for this task. This renderer describes how
light interacts with the objects in a scene and how the scene is projected onto the
image plane. It is easy to define a loss function for 3D face reconstruction using this
renderer: we want the estimated 3D reconstruction to match the input image after
the rendering process, see Fig. 2.2. Since this renderer is differentiable, the gradients
from this loss function can be used for training. Throughout the thesis, 3D faces are
represented as triangle meshes described using vertices, and triangles connecting
these vertices. The albedo is represented per-vertex. The terms reflectance and albedo
are used interchangeably.

Figure 2.2: This thesis proposes a self-supervised training loop where a dataset of images or
videos is used to train a convolutional neural network for 3D reconstruction. A differentiable
physically-based renderer transforms the 3D reconstructions into synthetic images which can
be used for defining self-supervised loss functions.

2.2.1 Light Transport

Light transport describes how the light in the scene interacts with the surface of the
objects in order to obtain the final appearance. It is formulated using the rendering
equation (Kajiya, 1986):

Lo(p, ωo) = Le(p, ωo) + Lr(p, ωo), (2.3)
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where Lo(p, ωo) is the outgoing radiance at point p on the surface in direction ωo.
Le(p, ωo) is the light emitted by the point p and Lr(p, ωo) is the outgoing radiance
due to the interaction of the surface with incoming light. We are interested in rendering
human faces which do not emit any light, with Le(p, ωo) = 0 for all p and ωo. The
reflected component can be described as

Lr(p, ωo) =
∫

Ω
fr(p, ωi, ωo) L(p, ωi) A(n, ωi) d ωi. (2.4)

L(p, ωi) is the incoming light at p in direction ωi, and A(n, ωi) = max(ωi · n, 0),
where n is the normal at point p, see Fig. 2.3. The reflectance of the surface fr(p, ωi, ωo)

describes how the surface interacts with the incoming light. The integration is per-
formed over the sphere of directions Ω. The rendering equation does not consider
subsurface scattering effects, which play an important role in the appearance of skin.
While it is possible to extend the equation in order to consider these effects (Jensen
et al., 2001), the solution become intractable in our setting.

Figure 2.3: The render-
ing equation computes
the outgoing radiance
at a point by modeling
how incoming light in-
teracts with the surface.

The rendering equation in Eq. 2.4, even without subsurface
scattering cannot be trivially solved and does not have any
closed form solution in the general case. Ray-tracing tech-
niques (Pharr et al., 2016) are commonly used where camera
rays are bounced around in the scene recursively to compute
the outgoing radiance at a point. This thesis uses a differen-
tiable renderer which is integrated with convolutional neural
networks during training. Ray-tracing is computationally ex-
pensive and impractical in such settings. Thus, we simplify the
rendering equation in the following paragraphs.

lambertian assumption First, we assume that the sur-
face of the face is lambertian, i.e., the light reflected at any
point does not depend on the outgoing direction. We can then
approximate fr(p, ωi, ωo) as a constant diffuse albedo ap for
each point:

Lr(p) = ap

∫
Ω

L(p, ω) A(n, ω) d ω. (2.5)

The incoming light direction is denoted with ω here.

distant light assumption The following chapters also solve for the scene
lighting using image observations. This is a very challenging task in the general
setting which requires several simplifications. The scene is approximated with only
distant illumination where L(p, ω) is independent of ω:

Lr(p) = ap

∫
Ω

L(ω) A(n, ω) d ω. (2.6)

While this does not allow us to capture inter-reflection and cast shadows, this is a
crucial step required to solve the rendering equation in closed form.

spherical harmonics projection Since the surface is assumed to be diffuse,
the distant lighting can be approximated using spherical harmonics. Spherical har-
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monics (SH) are orthonormal basis functions, the analog of Fourier transform on the
spherical domain. Any spherical function f (ω) can be projected onto the SH bases as

fi =
∫

Ω
f (ω)yi(ω)dω. (2.7)

Here, fi is the i-th SH coefficient and yi(ω) is the i-th SH basis function. The indices are
linearized, with i = l2 + l + m, where l is the index of the SH band, and m is the index
within the band, where −l ≤ m ≤ l. The original signal can then be approximated
with n SH bands as

f̃ (ω) =
n2

∑
i=1
fiyi(ω). (2.8)

Numerical integration is used for projecting general functions but a closed form
solution exists for the transfer function A(n, ωi). Let Li and A(n)i denote the SH
projections of the incoming light and the transfer functions. Spherical harmonics
allow for an easy way to compute product integrals using a dot product of the SH
coefficients:

Lr(p) = ap

∫
Ω

L̃(ω) Ã(n, ω) d ω = ap

n2

∑
i=1
LiA(n)i. (2.9)

The radiance of diffuse surfaces can be represented with high accuracy using only 3

bands of SH coefficients. Lr(p) can be analytically computed as

Lr(p) = ap

(
c4L0 + 2c2(L3 x +L1 y +L2 z) + c1L8 (x2 − y2)

+c3L6 z2 − c5L6 + 2c1(L4 xy +L7 xz +L5 yz
)

,
(2.10)

where c1 = 0.42903, c2 = 0.511664, c3 = 0.743125, c4 = 0.886227, c5 = 0.247708, and
n = (x, y, z). Please refer to Ramamoorthi and Hanrahan (2001b) for the details. Since
this thesis is interested in the inverse problem of estimating the incident light from
images, we do not need to use the original light representation L(ω). Instead, we
only estimate the SH coefficients L. This allows us to skip the expensive numerical
integration step required to project an environment map onto the SH bases.

2.2.2 Camera Model and Projection

Given the geometry and albedo of the face, and the scene illumination, we can now
compute the outgoing radiance of each point on the surface. We now need to transform
the scene to an image in the renderer.

pinhole camera Several camera models exist in the computer graphics literature.
This thesis uses a pinhole camera. While this model ignores several effects of real
cameras such as lens distortions, it offers a good balance between simplicity and
correctness. The camera is described using its intrinsics, i.e., focal length and principal
point. For a 3D point v = (x, y, z), its corresponding image coordinates p = (u, v) can
be computed as

u = fx
x
z
+ cx, v = fy

x
z
+ cy. (2.11)
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The focal length and principal points of the camera are represented using ( fx, fy) and
(cx, cy). This thesis works with in-the-wild images, where the camera intrinsics are
not known. Estimating the intrinsics along with the other scene parameters just using
image observations is very challenging, due to the ambiguities between the geometry
and intrinsics. Thus, all cameras in the world are assumed to have the same intrinsics.
The 3D reconstructions obtained can thus only be correct up to the errors due to this
assumption.

point-based rendering Since our scenes are diffuse and the outgoing radiance
of every point can be computed analytically, rasterization is the most suitable rendering
technique because of its speed. If the renderer had to accommodate more complex
global illumination effects, ray-tracing would be the more suitable method. The
rasterization process first projects each triangle of the mesh onto the image plane. Each
pixel is then colored with the corresponding projected triangle. The meshes used in
this thesis are very dense with around 60, 000 vertices. The image observations are low
resolution (240 × 240 pixels) in most cases. In this setting, the rendering process can
be further simplified by considering the mesh as a point cloud and ignoring the mesh
connectivity during rendering. Here, each vertex is projected to the corresponding
point on the image. The points inside the mesh triangles are not considered for
rendering. Note that this is used only for the differentiable renderer in the learning
process. Rasterization with triangles is used for all mesh visualizations.

visibility The visibility of each vertex needs to be considered during rendering,
such that occluded vertices are not rendered. Rasterization relies on techniques like z-
buffering for this computation where the depth of each candidate triangle is compared
for a pixel. Since this thesis deals with the frontal face region which is rather convex,
visibility can be approximated using backface culling. If a vertex has normals facing
towards the camera (front-facing), it is considered visible. While this offers a fast
approximation for visibility, it is not always accurate. A front-facing vertex that is
occluded by another surface in the scene would be considered visible by this technique.

2.2.3 Gradients

The only computation in the renderer which is not differentiable is the visibility
component. The gradients at a pixel are only passed to the visible vertex, and not
through the visibility computation. More details on the computation of gradients
can be found in Sec. 4.4. The renderer is implemented on the GPU in a data-parallel
manner and integrated with the deep-learning frameworks of Caffe (Jia et al., 2014)
and Tensorflow (Abadi et al., 2015).

2.3 generative neural networks

In contrast to physically-based rendering, machine learning offers a different way
of synthesizing images. The machine learning methods learn the distribution of
real images from large datasets and use this learned distribution to sample realistic
images. Most methods do not need any 3D assets such as geometry, light, etc. for
synthesis. Several types of generative models have been proposed, such as variational
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Figure 2.4: Generative Adversarial Networks (GANs) consist of a generator and a discriminator.
Random samples from a prior distribution are given as input to the generator. The discrim-
inator is trained to classify synthesized images from real images. A minimax optimization
enables the generator to synthesize realistic images.

Figure 2.5: Progressive growing of the generator and discriminator networks allows for the
synthesis of high-resolution images. Figure taken from Karras et al. (2018).

autoencoders (Doersch, 2016), autoregressive models (Oord et al., 2016), normalizing
flow-based models (Kingma and Dhariwal, 2018) and adversarial models (Goodfellow
et al., 2014). Here, we will look at the background of generative adversarial networks,
which are used in Chapters 7 and 8.

2.3.1 Generative Adversarial Networks

A generative adversarial network consists of two sub-networks, a generator G and
a discriminator D, see Fig. 2.4. The input to the generator is a latent noise vector
z sampled from a prior distribution pz(z). The discriminator learns to distinguish
between samples x from the real unknown distribution pd(x) and samples synthesized
from the generator. A minimax optimization problem is designed with value function
V(G, D):

min
G

max
D

V(G, D) = Ex∼pd(x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z)))]. (2.12)
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Figure 2.6: The StyleGAN architecture uses a mapping network to non-linearly transform the
input latent vector. The transformed vector is broadcasted to each convolutional layer. Figure
taken from Karras et al. (2019a).

While this original formulation was widely used, several improvements for more
stable training have been introduced such as least squares GAN (Mao et al., 2017)
and Wasserstein GAN (Arjovsky et al., 2017). Please see Mescheder et al. (2018) for a
detailed discussion on the loss functions.

Orthogonal to the loss functions and regularizers, the network architecture of the
generator and discriminator also play an important role. The original formulation
of Goodfellow et al. (2014) used MLPs for these networks. Radford et al. (2015)
introduced deep convolutional networks which led to higher quality and more stable
training. Progressive growing of the networks was proposed by Karras et al. (2018) for
synthesizing high-resolution images, see Fig. 2.5. Here, the network is learned in a
coarse-to-fine manner, starting with very low resolutions. New layers are added for
synthesizing higher resolution images. StyleGAN (Karras et al., 2019a,b) also uses this
progressive growing strategy, but changes the nature of the input latent vector, see
Fig. 2.6. While traditional generator architectures use the latent vector as input only to
the first layer, StyleGAN broadcasts this latent vector at different resolutions. After
training, the inputs to the different resolutions can be independently modified, leading
to independent control over different scales of features in the image. For example, the
latent vectors for the lower resolution layers change the global information like head
pose, expressions, and background, while the latent vectors for the higher resolutions
change the fine appearance and other high-frequency details. However, semantic
components such as head pose or expressions cannot be independently controlled. A
mapping network is also introduced in StyleGAN, which first transforms the randomly
sampled latent vector non-linearly into a new latent space. The transformed latent
space is more disentangled and leads to higher quality synthesis. Since generative
models learn from data, these networks need to be trained on high-quality and high-
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resolution images. When the goal is to synthesize portrait images, CelebA-HQ (Karras
et al., 2018) and FFHQ (Karras et al., 2019a) are the commonly used image datasets.

While StyleGAN can randomly sample realistic portrait images, it does not offer
semantic control akin to the computer graphics rendering pipeline. Chapters 7 and 8

present methods for semantic control over a pretrained and fixed StyleGAN network.
This is done by building connections between the image synthesis pipelines in machine
learning and computer graphics.



3
R E L AT E D W O R K

This chapter discusses the existing works for 3D reconstruction and controllable
synthesis of faces. 3D morphable models learned from 3D scans are discussed first,
followed by monocular 3D reconstruction, and joint reconstruction and model learning
approaches. Deep generative models and portrait editing methods are also discussed in
detail. A deeper discussion on these methods can be found in the recent state-of-the-art
reports (Egger et al., 2020; Tewari et al., 2020c).

3.1 parametric face models from 3d scans

Active Appearance Models (AAMs) use a linear model for jointly capturing shape and
texture variation (Cootes et al., 2001). Matching an AAM to an image is a registration
problem, usually tackled via energy optimization. A closely related approach to
AAMs is the 3D morphable model of faces (3DMM), introduced in Chapter 2, which
represent 3D deformations in a low-dimensional subspace and are often built from
scanner data (Blanz and Vetter, 1999; Bogo et al., 2014; Li et al., 2017). The most
widely used face model is the one by Blanz and Vetter (1999), which is an affine
parametric model of face geometry and texture that is learned from high-quality
scans. Similar models, which also include facial animations, are presented in Blanz
et al. (2003) and Gerig et al. (2018). Recently, Booth et al. (2016) created a Large-scale
Facial Model (LSFM) from around 10,000 facial scans, which represents a richer shape
distribution. Multilinear models generalize statistical models by capturing a set of
mutually orthogonal variation modes (for example, global and local deformations) via
a tensor decomposition (Bolkart and Wuhrer, 2015, 2016; Cao et al., 2013; Vlasic et al.,
2005). However, unstructured subspaces or even tensor generalizations are incapable
of modeling localized deformations from limited data. In this respect, Neumann et al.
(2013) and Bernard et al. (2016) devised methods for computing sparse localized
deformation components directly from mesh data. Lüthi et al. (2018) proposed the
so-called Gaussian Process morphable models (GPMMs), which are modeled with
arbitrary non-linear kernels, to handle strong non-linear shape deformations. Ranjan
et al. (2018) built a non-linear model using a deep mesh autoencoder with fast
spectral convolution kernels. Garrido et al. (2016b) trained radial basis function
networks to learn a corrective 3D lip model from multiview data. Li et al. (2017)
built a hybrid model that combines a linear shape space with articulated motions
and semantic blendshapes. Although 3DMMs are highly efficient priors, they limit
face reconstruction to a restricted low-dimensional subspace, for example, beards or
characteristic noses cannot be reconstructed. The largest 3D scan datasets are still
much smaller compared to image and video datasets. In this thesis, we take the first
steps towards building morphable models directly from 2D data, which allows for
better generalization.

15
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3.2 optimization-based 3dmm reconstruction

Many approaches for reconstruction from a single image (Garrido et al., 2016a; Romd-
hani and Vetter, 2005) and from image collections (Roth et al., 2016) are based on
energy optimization. Here, the estimate in each iteration is rendered and compared to
the input image(s). Such analysis-by-synthesis optimization is a widely studied prob-
lem. The discussion here is structured based on the modality of the input (monocular
vs. multi-view).

3.2.1 Monocular Reconstruction

3DMMs have been widely used for monocular reconstruction using analysis-based-
synthesis optimization (Blanz and Vetter, 1999; Paysan et al., 2009; Romdhani and
Vetter, 2005). Many approaches require the computation of the 3D face silhouette
in order to constrain it with the image silhouette. While most approaches use an
incorrect fixed silhouette, some approaches allow the 3D silhouette to slide over a
predefined path (for example, isolines) (Cao et al., 2014; Zhu et al., 2015) or iterate
over a fixed vertex set to find 3D contour correspondences (Fried et al., 2016). Garrido
et al. (2016a) obtained high-quality 3D face rigs from monocular RGB video based
on a multi-layer model. Even real-time facial reconstruction and reenactment has
been demonstrated (Huber et al., 2016; Thies et al., 2016b). Face tracking methods
only reconstruct the per-frame expressions, pose, and/or illumination. The identity
components are computed in a precomputation step. While real-time face tracking is in
general feasible, optimization-based complete face reconstruction is computationally
expensive and not feasible at real-time rates. Moreover, optimization-based approaches
are sensitive to initialization, thus requiring 2D landmark detection (Jin and Tan, 2016;
Wang et al., 2014). Chapter 4 of this thesis will introduce a combination of learning-
and optimization-based approaches, which allows for addressing these limitations.

3.2.2 Muti-Image Reconstruction

Face reconstruction is also possible by fitting a template model to photo collections.
Kemelmacher-Shlizerman and Seitz (2011) reconstructed an average shape and appear-
ance model from a person-specific photo-collection via low-rank matrix factorization.
Suwajanakorn et al. (2014) used this model to track detailed facial motion from uncon-
strained videos. Kemelmacher-Shlizerman (2013) built a 3DMM from a large photo
collection of people, grouped into a fixed set of semantic labels. Liang et al. (2016)
also leveraged multi-view person-specific photo-collections to reconstruct the full
head. In a different line of research, Thies et al. (2015) fit a coarse parametric model
to user-selected views to recover personalized face shape and albedo. Roth et al.
(2016) personalized an existing morphable model to an image collection by using a
coarse-to-fine photometric stereo formulation. Note that most of these methods do not
learn a general face model, for example, a shape basis that spans the range of facial
shapes of an entire population, but instead, they obtain a single person-specific 3D
face instance. Besides, these methods require curated photo collections. This thesis,
on the contrary, builds a 3DMM representation that generalizes across multiple face
identities and imposes weaker assumptions on the training data.
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Similar to photo-collections, multi-frame reconstruction techniques exploit either
temporal information or multiple views to better estimate 3D geometry. Shi et al.
(2014) globally fit a multilinear model to 3D landmarks at multiple keyframes and
enforced temporal consistency of in-between frames via interpolation. Garrido et al.
(2016a) obtained a person-specific facial shape by averaging per-frame estimates of
a parametric face model. Ichim et al. (2015) employed a multi-view bundle adjust-
ment approach to reconstruct facial shape and refine expressions using actor-specific
sequences. Piotraschke and Blanz (2016) combined region-wise reconstructions of
a 3DMM from many images using a normal distance function. Garg et al. (2013)
proposed a model-free approach that globally optimizes for dense 3D geometry in a
non-rigid structure from motion framework. Beyond faces, Tulsiani et al. (2017) trained
a CNN to predict single-view 3D shape (represented as voxels) using multi-view ray
consistency. Chapter 6 of this thesis will introduce a simple and intuitive approach to
obtain higher-quality reconstructions using multiple images of a person.

3.3 shape-from shading

Recovering fine-scale surface structure is a long-standing and well-researched problem
in computer vision. Refinement techniques for general surfaces (Delaunoy and Prados,
2011; Li et al., 2016; Tylecek and Sara, 2010; Vu et al., 2012; Wu et al., 2011) are
normally based on multi-view imagery. A variety of techniques exist in the context
of facial detail estimation. Data-driven approaches (Cao et al., 2015; Huynh et al.,
2018; Richardson et al., 2017) learn a mapping from the input image to the fine-scale
geometric structure. While these approaches are in general fast, the recovered detail
does not necessarily match the input. Some approaches produce details directly based
on intensity variation (Beeler et al., 2010, 2011; Sela et al., 2017). While the obtained
results look visually plausible, they are not physically accurate. Optimization-based
refinement techniques (Garrido et al., 2013, 2016a; Shi et al., 2014) try to invert
physical image formation models. Although the recovered detail in general matches
the input, these approaches are computationally quite expensive, normally requiring
several minutes to process a single frame. Chapter 4 of this thesis will leverage the
data-parallel power of modern graphics cards to accelerate optimization-based mesh
refinement.

3.4 learning-based reconstruction

Learning-based approaches regress 3D face geometry from a single image by learning
an image-to-parameter or image-to-geometry mapping (Kim et al., 2018b; Olszewski
et al., 2016; Richardson et al., 2017; Sela et al., 2017; Tewari et al., 2018, 2017; Tuan Tran
et al., 2017). Supervised methods require ground truth face geometry (Laine et al.,
2017; Tuan Tran et al., 2017). Since expensive multi-view capture setups are required
to acquire such ground truth, some methods use a morphable model from which
synthetic training images are generated (Dou et al., 2017; Kim et al., 2018b; Richardson
et al., 2016, 2017; Sela et al., 2017). Some approaches use a mixture of synthetic and
real supervised data (Klaudiny et al., 2017; McDonagh et al., 2016). Jackson et al. (2017)
trained a CNN that directly regresses a volumetric 3D face representation from a single
image. Trigeorgis et al. (2017) used a CNN to estimate surface normals from a given
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input image. However, synthetic renderings usually lack realistic features, which has
a negative impact on the reconstruction accuracy. Recently, some approaches allow for
training networks on real images without 3D supervision, using analysis-by-synthesis
loss functions. This was first introduced in Tewari et al. (2017), presented in Chapter 4

of this thesis. Deng et al. (2019) added a face recognition loss for higher quality
reconstructions. Genova et al. (2018) demonstrated high-quality reconstructions of the
identity components using unsupervised cycle-consistent and recognition losses.

3.5 learning parametric face models from 2d data

Some approaches try to learn or refine 3D morphable models directly from 2D data.
Personalized face models are extracted from monocular video by first refining an
existing parametric model in a coarse-to-fine manner (for example, as in Roth et al.
(2016)) and then learning a mapping from coarse semantic deformations to finer
non-semantic detail layers (Bouaziz et al., 2013; Garrido et al., 2016a; Hsieh et al.,
2015; Ichim et al., 2015). A number of works have been proposed for in-the-wild
general 3DMM learning (Bas and Smith, 2018; Booth et al., 2017; Sengupta et al., 2018;
Tran and Liu, 2018b). Most approaches here initialize the model with an existing
3DMM (Lin et al., 2020; Tran et al., 2019; Tran and Liu, 2018b). Some methods learn a
general corrective space on top of an exiting 3DMM (Chaudhuri et al., 2020; Tewari
et al., 2018). Tewari et al. (2018), presented in Chapter 5 of this thesis, was the first
approach to obtain high-quality generalized corrective models. Tewari et al. (2019),
presented in Chapter 6, was the first method for learning the identity components of
a 3DMM from scratch. Learning without a good initial model is a more challenging
task due to the ambiguities in the monocular setting. Thus, the approach in Chapter 6

uses multiple frames of a video to constrain the reconstructions. This model still uses
a pre-trained expression model. B R et al. (2021b) proposed a method for learning all
components of a 3DMM from videos, only using a single face scan.

3.6 deep generative models

Generative adversarial networks (GANs), introduced in Chapter 2, are networks that
learn the manifold of real images in a training dataset. These networks consist of two
main blocks: a generator and a discriminator (Goodfellow et al., 2014). The generator
takes a random noise vector from a prior distribution as an input to produce an
image. The discriminator tries to distinguish between the real and synthesized images.
These networks are trained adversarially with complementary objectives. Karras et
al. (2018) showed that such a network can generate high-resolution photorealistic
images of human faces. To achieve this, they employed a progressive strategy of
slowly increasing the size of the generator and the discriminator by adding more
layers during training. This enables a more stable training, and in turn, helps learn
high-resolution images of faces. StyleGAN (Karras et al., 2019a) can synthesize highly
photorealistic images while allowing for more control over the output, compared
to Karras et al. (2018). However, StyleGAN still suffers from a clear entanglement
of semantically different attributes. Therefore, it does not provide an interpretable
control over the image synthesis process. Exploring the latent space of GANs for
image editing has been recently explored in Jahanian et al. (2019). They can only
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achieve simple transformations, such as zoom and 2D translations, as they need
ground truth images for each transformation during training. For faces, concurrent
efforts have been made in controlling images synthesized by GANs (Abdal et al., 2019;
Shen et al., 2020), but they lack explicit rig-like 3D control of the generative model.
Chapter 7 will present an approach for such rig-like control by a combination of a
3DMM (Paysan et al., 2009) and StyleGAN (Karras et al., 2019a). Isola et al. (2017)
used conditional GANs to produce image-to-image translations. Here, the input is
a conditional image from a source domain, which is translated to the target domain
by the generator. Their approach, however, requires paired training data between
the source and target domains. CycleGAN (Zhu et al., 2017) and UNIT (Liu et al.,
2017) learn to perform image-to-image translation with unpaired data using cycle-
consistency losses. GAUGAN (Park et al., 2019) shows interactive semantic image
synthesis based on spatially adaptive normalization. The remarkable quality achieved
by GANs has inspired the development of several neural rendering applications
for faces (Egger et al., 2020; Tewari et al., 2020c; Zollhöfer et al., 2018) and others
objects (Chan et al., 2019; Martin-Brualla et al., 2018; Yu and Smith, 2019).

3.6.1 Person-specific Video Editing Techniques

There has been a lot of research on person-specific techniques that require a large
training corpus of the target person as input (Bansal et al., 2018; Kim et al., 2019; Kim
et al., 2018a; Thies et al., 2016a, 2019; Wiles et al., 2018). These approaches can be
classified into model-based (Kim et al., 2019; Kim et al., 2018a; Thies et al., 2016a, 2019)
and image-based (Bansal et al., 2018) techniques. Model-based techniques employ
a parametric face model to represent the head pose, facial expression, and incident
scene illumination. The semantic parameter space spanned by the model can be used
to either perform intuitive edits or transfer parameters from a source to a target
video. On the other end of the spectrum are image-based techniques that can transfer
parameters but do not provide intuitive semantic control.

model-based video editing techniques Facial reenactment approaches (Thies
et al., 2016a, 2019) change the facial expressions in a target video to the expressions in a
driving source video. These approaches achieve impressive results but require a video
of the target person as input and do not enable editing of the head pose and incident
illumination. Kim et al. (2018a) proposed the first full head reenactment approach that
is able to edit the head pose as well as the facial expression. A conditional deep gener-
ative model is leveraged as a neural rendering engine. While these approaches (Kim
et al., 2018a; Thies et al., 2016a, 2019) produce exciting results, they do not preserve
the speaking style of the target. Kim et al. (2019) proposed an approach for editing the
expressions of a target subject while maintaining his/her speaking style. This is made
possible by a novel style translation network that learns a cycle-consistent mapping
in blendshape space. In contrast to the approach presented in Chapter 8, all these
techniques require a long video of the target as input and cannot edit a single image
of an arbitrary person.

image-based video editing techniques Image-based techniques enable con-
trol of a target face through a driving video. The approach of Bansal et al. (2018)
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allows them to modify the target video while maintaining the speaking style. A novel
recycle loss is defined in the spatio-temporal video domain. This approach obtains
high-quality results for expressions and pose transfer. In contrast to the approach
presented in Chapter 8, image-based approaches do not provide intuitive control via a
set of semantic control parameters and have to be trained in a person-specific manner.
Thus, they cannot be employed to edit a single given image.

3.6.2 Few-shot Editing Techniques

Few-shot editing techniques (Wang et al., 2019b; Wiles et al., 2018; Zakharov et al.,
2019) require only a small set of images of the target person as input. Given multiple
frames showing a target person, X2Face (Wiles et al., 2018) drives a frontalized face
embedding by a regressed warp field that is estimated by an encoder-decoder network.
The approach can also drive faces based on audio. Wang et al. (2019b) presented a
few-shot video editing approach and demonstrated the reenactment of a target face
via a source video. A novel network weight generation module is proposed that is
based on an attention mechanism. To animate faces, the network is trained to transfer
image sketches to photo-realistic face images. The network is trained on a large multi-
identity training corpus and can be applied to new unseen still images. Zakharov
et al. (2019) presented a few-shot technique for animating faces. Their solution has
three components: 1) a generator network that translates landmark positions to photo-
realistic images, 2) an embedding network that learns an intermediate representation
for conditioning the generator, and 3) a discriminator. The network is trained on a
large corpus of face images across multiple identities and generalizes to new identities
at test time. Impressive results are shown in animating images, including legacy
photos and even paintings. The learned models of few-shot techniques (Wang et al.,
2019b; Wiles et al., 2018; Zakharov et al., 2019) can be improved by fine-tuning on
a few example images of the target person, such as images taken from different
viewpoints or at different time instances. While these methods can also be used in
the single-shot setting where only a single image of the target person is available, a
detailed discussion of methods that operate in such a setting follows next.

3.6.3 Single-shot Editing Techniques

Several works (Averbuch-Elor et al., 2017; Geng et al., 2018; Nagano et al., 2018)
exist for controlling the expression and head pose in an image without any other
image/video of the person in the image. Nagano et al. (2018) presented paGAN,
an approach for creating personalized avatars from just a single image of a person.
However, the work does not synthesize photo-realistic hair. The approach of Averbuch-
Elor et al. (2017) brings portrait images to life by animating their expression and
pose. The target image is animated through a 2D warp computed from the source
video’s movement. The mouth interior is copied from the source and blended into the
warped target image. The approach of Geng et al. (2018) employs deep generative
models to synthesize more realistic facial details and a higher quality mouth interior.
First, a dense spatial motion field is used to warp the target image. Afterward, the
first network corrects the warped target image and synthesizes important skin detail.
Finally, the second network synthesizes the mouth interior, including realistic teeth.
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Siarohin et al. (2019) proposed a method for animating a single image based on a
driving sequence. The method uses a neural network to compute a dense warping
field by detecting keypoints in both the target image and the driving frames. Based
on this information, a second network produces high-quality output frames. Since
keypoint extraction is also learned during training, the method is applicable for any
input category, particularly for face and full-body images. While these methods can
only be controlled via a driving video, the approach presented in Chapter 8 enables
intuitive editing of the head pose, facial expression, and incident illumination in a
portrait image through intuitive parametric control.

3.6.4 Portrait Relighting

The discussion above focussed on editing the expressions and pose of the person.
Editing the appearance of the image by relighting them is also important for casual
photography applications. Relighting approaches modify the incident illumination on
the face (Meka et al., 2019; Peers et al., 2007; Shu et al., 2017a; Sun et al., 2019; Zhou
et al., 2019). Earlier works (Peers et al., 2007; Shu et al., 2017a) require an exemplar
portrait image that has been taken under the target illumination conditions. More
recent techniques use deep generative models (Meka et al., 2019; Sun et al., 2019; Zhou
et al., 2019) and could relight images based on an environment map. Zhou et al. (2019)
trained a relighting technique based on a large corpus of synthetic images. Relighting
is performed in the luminance channel, which simplifies the learning task. Sun et al.
(2019) used light stage data to train their relighting approach. At test time, the network
produces high-quality relighting results, even for in-the-wild images. While training
with light stage data leads to high-quality results, their scarcity and careful recording
protocol can limit their adaptation. Meka et al. (2019) showed that the 4D reflectance
field can be estimated from two color gradient images captured in a light stage. This
allows for capturing relightable videos.

3.6.5 Image Editing using SyleGAN

Several recent methods have been proposed to edit images generated with StyleGAN.
Most approaches linearly change the StyleGAN latent codes for editing (Härkönen
et al., 2020; Shen et al., 2020; Tewari et al., 2020b). Non-linear editing has been
shown in Abdal et al. (2020b). Image2StyleGAN (Abdal et al., 2019, 2020a) is a
popular approach for embedding real images into the StyleGAN latent space with
very high fidelity. InterFaceGAN (Shen et al., 2020) and StyleFlow (Abdal et al., 2020b)
demonstrated editing of real images using these embeddings. Very recently, Zhu et al.
(2020) introduced a domain-guided embedding method that allows for higher-quality
editing, compared to Image2StyleGAN. However, they did not demonstrate results at
the highest resolution for StyleGAN.
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Figure 4.1: This chapter presents a model-based deep convolutional face autoencoder which
enables unsupervised learning of semantic pose, shape, expression, reflectance and lighting
parameters. The trained encoder predicts these parameters from a single monocular image, all
at once.

This chapter presents a novel model-based deep convolutional autoencoder that ad-
dresses the highly challenging problem of reconstructing a 3D human face from a
single in-the-wild color image (published as Tewari et al. (2020d, 2017)), see Fig. 4.1. To
this end, a convolutional encoder network is combined with an expert-designed gener-
ative model that serves as decoder. The core innovation is the differentiable parametric
decoder that encapsulates image formation analytically based on a generative model.
The decoder takes as input a code vector with exactly defined semantic meaning that
encodes detailed face pose, shape, expression, skin reflectance and scene illumination.
Due to this new way of combining CNN-based with model-based face reconstruction,
the CNN-based encoder learns to extract semantically meaningful parameters from
a single monocular input image. For the first time, a CNN encoder and an expert-
designed generative model can be trained end-to-end in an unsupervised manner,
which renders training on very large (unlabeled) real world datasets feasible. The
obtained reconstructions compare favorably to current state-of-the-art approaches in
terms of quality and richness of representation. This chapter also presents a stochastic
vertex sampling technique for faster training of our networks, and moreover, analysis-
by-synthesis and shape-from-shading refinement approaches to achieve higher-fidelity
reconstructions.

4.1 introduction

Detailed, dense 3D reconstruction of the human face from image data is a longstanding
problem in computer vision and computer graphics. Previous approaches have tackled
this challenging problem using calibrated multi-view data or uncalibrated photo
collections (Kemelmacher-Shlizerman and Seitz, 2011; Roth et al., 2016). Robust and
detailed three-dimensional face reconstruction from a single arbitrary in-the-wild
image, for example, downloaded from the Internet, is still an open research problem
due to the high degree of variability of uncalibrated photos in terms of resolution
and employed imaging device. In addition, in unconstrained photos, faces show a
high variability in global pose, facial expression, and are captured under diverse and
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difficult lighting. Detailed 3D face reconstruction is the foundation for a broad scope
of applications, which range from robust face recognition, over emotion estimation,
to complex image manipulation tasks. In many applications, faces should ideally
be reconstructed in terms of meaningful low-dimensional model parameters, which
facilitates interpretation and manipulation of reconstructions (Thies et al., 2016b).

Recent monocular reconstruction methods broadly fall into two categories: Genera-
tive and regression-based. Generative approaches fit a parametric face model to image
and video data, for example, Blanz et al. (2003), Blanz and Vetter (1999), and Fried et al.
(2016), by optimizing the alignment between the projected model and the image (Gar-
rido et al., 2016a; Kemelmacher-Shlizerman et al., 2010; Suwajanakorn et al., 2014, 2015;
Thies et al., 2016b). State-of-the-art generative approaches capture very detailed and
complete 3D face models on the basis of semantically meaningful low-dimensional
parameterizations (Garrido et al., 2016a; Thies et al., 2016b). Unfortunately, the fitting
energies are usually highly non-convex. Good results thus require an initialization
close to the global optimum, which is only possible with some level of control during
image capture or additional input data, for example, detected landmarks.

Only recently, the first regression-based approaches for dense 3D face reconstruction
based on deep convolutional neural networks were proposed. Richardson et al. (2016)
use iterative regression to obtain a high quality estimate of pose, shape and expression,
and finer scale surface detail (Richardson et al., 2017) of a face model. The expression-
invariant regression approach of Tuan Tran et al. (2017) obtains high-quality estimates
of shape and skin reflectance. Based on an image-to-image translation network, Sela et
al. (2017) obtain the facial geometry from a single image by translating the input image
to a depth map. Unfortunately, these approaches can only be trained in a supervised
fashion on corpora of densely annotated facial images whose creation poses a major
obstacle in practice. In particular, the creation of a training corpus of photo-realistic
synthetic facial images that include facial hair, parts of the upper body and a consistent
background is challenging. While the refinement network of Richardson et al. (2017)
can be trained in an unsupervised manner, their coarse shape regression network
requires synthetic ground truth data for training. Also, the quality and richness of
representation (e.g., illumination and colored reflectance in addition to geometry) of
these methods does not match the best generative ones. However, trained networks
are efficient to evaluate and can be trained to achieve remarkable robustness under
difficult real world conditions.

This chapter contributes a new type of model-based face autoencoder (MoFA) that
joins forces of state-of-the-art generative and CNN-based regression approaches for
dense 3D face reconstruction via a deep integration of the two on an architectural
level. The network architecture is inspired by recent progress on deep convolutional
autoencoders, which, in their original form, couple a CNN encoder and a CNN
decoder through a code-layer of reduced dimensionality (Hinton and Salakhutdinov,
2006; Masci et al., 2011; Zhao et al., 2016). Unlike previously used CNN-based decoders,
the proposed convolutional autoencoder deeply integrates an expert-designed decoder.
This layer implements, in closed form, an analytically-differentiable image formation
model on the basis of a detailed parametric 3D face model (Blanz and Vetter, 1999).
Some previous fully CNN-based autoencoders tried to disentangle (Grant et al., 2016;
Kulkarni et al., 2015), but could not fully guarantee the semantic meaning of code
layer parameters. In the new network, exact semantic meaning of the code vector,
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Figure 4.2: The proposed deep model-based face autoencoder enables unsupervised end-
to-end learning of semantic parameters, such as pose, shape, expression, skin reflectance
and illumination. An optional landmark-based surrogate loss enables faster convergence and
improved reconstruction results, see Sec. 4.5. Both scenarios require no supervision of the
semantic parameters during training.

i.e., the input to the decoder, is ensured by design. Moreover, the proposed decoder is
compact and does not need training of enormous sets of unintuitive CNN weights.

Unlike previous CNN regression-based approaches for face reconstruction, a single
forward pass of the network estimates a much more complete face model, including
pose, shape, expression, skin reflectance, and illumination, at a high quality. The
new network architecture allows, for the first time, combined end-to-end training of
a sophisticated model-based (generative) decoder and a CNN encoder, with error
backpropagation through all layers. It also allows, for the first time, unsupervised
training of a network that reconstructs dense and semantically meaningful faces on
unlabeled in-the-wild images via a dense photometric training loss. In consequence,
the network generalizes better to real world data compared to networks trained on
synthetic face data (Richardson et al., 2016, 2017). This chapter further introduces a
stochastic vertex sampling strategy to train the networks faster. Since learning-based
approaches have limited capacity, they have to trade-off the quality of individual
reconstructions in order to work on a diverse range of images. Therefore, optimization-
based techniques that can be added as refinement steps to further improve the quality
of the results are also explored. The focus is on a fast data-parallel implementation of
these two additional steps.

4.2 overview

The proposed novel deep convolutional model-based face autoencoder enables un-
supervised end-to-end learning of a network which estimates meaningful semantic
face and rendering parameters, see Fig. 4.2. To this end, convolutional encoders are
combined with an expert-designed differentiable model-based decoder that analyti-
cally implements image formation. The decoder generates a realistic synthetic image
of a face and enforces semantic meaning by design. Rendering is based on an image
formation model that enforces full semantic meaning via a parametric face prior, see
Chapter 2 for details. More specifically, pose, shape, expression, skin reflectance and
illumination are independently parameterized. The synthesized image is compared
to the input image using a robust photometric loss Eloss that includes statistical regu-
larization of the face. In combination, this enables unsupervised end-to-end training
of our networks. 2D facial landmark locations can be optionally provided to add a
surrogate loss for faster convergence and improved reconstructions, see Sec. 4.5. Note,
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both scenarios require no supervision of the semantic parameters. After training, the
encoder part of the network enables regression of a dense face model and illumination
from a single monocular image, without requiring any other input, such as landmarks.

4.3 semantic code vector

The semantic code vector x ∈ R257 parameterizes the facial expression δ ∈ R64, shape
α ∈ R80, skin reflectance β ∈ R80, camera rotation T ∈ SO(3) and translation t ∈ R3,
and the scene illumination γ ∈ R27 in a unified manner:

x = (α, δ, β︸ ︷︷ ︸
face

, T, t, γ︸ ︷︷ ︸
scene

) . (4.1)

In the following, the parameters that are associated with the employed face model are
described. The parameters that govern image formation are described in Sec. 4.4.

The face is represented as a manifold triangle mesh with N = 24k vertices V =

{vi ∈ R3|1 ≤ i ≤ N}. The associated vertex normals N = {ni ∈ R3|1 ≤ i ≤ N}
are computed using a local one-ring neighborhood. The spatial embedding V is
parameterized by an affine face model:

V = V̂(α, δ) = As + Esα+ Eeδ . (4.2)

Note that, by abuse of notation, here the point-set V is represented as a 3N-dimensional
vector. Here, the average face shape As has been computed based on 200 (100 male,
100 female) high-quality face scans (Blanz and Vetter, 1999). The linear PCA bases Es ∈
R3N×80 and Ee ∈ R3N×64 encode the modes with the highest shape and expression
variation, respectively. The expression basis is obtained by applying PCA to the
combined set of blendshapes of Alexander et al. (2009) and Cao et al. (2013), which
have been re-targeted to the face topology of Blanz and Vetter (1999) using deformation
transfer (Sumner and Popović, 2004). The PCA basis covers more than 99% of the
variance of the original blendshapes.

In addition to facial geometry, per-vertex skin reflectance is parameterized as
R = {ri ∈ R3|1 ≤ i ≤ N} based on an affine parametric model:

R = R̂(β) = Ar + Erβ . (4.3)

Here, the average skin reflectance Ar has been computed based on Blanz and Vetter
(1999) and the orthogonal PCA basis Er ∈ R3N×80 captures the modes of highest
variation. Note, all basis vectors are already scaled with the appropriate standard
deviations σ•k such that ET

•E• = diag(· · · , [σ•k ]
2, · · · ).

4.4 parametric model-based decoder

Given a scene description in the form of a semantic code vector x, the parametric
decoder generates a realistic synthetic image of the corresponding face. Since the
image formation model is fully analytical and differentiable, an efficient backward
pass is implemented that inverts image formation via standard backpropagation. This
enables unsupervised end-to-end training of the network. The image formation model
employed is described in the following.



4.5 loss layer 27

perspective camera Realistic facial imagery are rendered using a pinhole cam-
era model under a full perspective projection Π : R3 → R2 that maps camera space
coordinates onto screen space coordinates. The position and orientation of the camera
in world space is given by a rigid transformation, which we parameterize based
on a rotation T ∈ SO(3) and a global translation t ∈ R3. Hence, the functions
ΦT,t(v) = T−1(v − t) and Π ◦ ΦT,t(v) transform an arbitrary point v from world
space into camera space and further into screen space, respectively.

illumination model Scene illumination is represented using Spherical Har-
monics (SH) (Müller, 1966). Here, distant low-frequency illumination and a purely
Lambertian surface reflectance are assumed. Thus, the radiance is evaluated at vertex
vi with surface normal ni and skin reflectance ri as follows:

C(ri, ni,γ) = ri ·
B2

∑
b=1
γbHb(ni) . (4.4)

The Hb : R3 → R are SH basis functions and the B2 = 9 coefficients γb ∈ R3 (B = 3
bands) parameterize colored illumination using the red, green and blue channel.
Please refer to Chapter 2 for details.

image formation Realistic images of the face are rendered using the presented
camera and illumination model. To this end, in the forward pass F , the screen space
position ui(x) and the associated pixel color ci(x) is computed for each vi:

Fi(x) = [ui(x), ci(x)]T ∈ R5 , (4.5)

ui(x) = Π ◦ΦT,t
(
V̂i(α, δ)

)
,

ci(x) = C
(
R̂i(β), Tni(α, δ),γ

)
.

Here, Tni transforms the world space normals into camera space and γ models
illumination in camera space.

backpropagation To enable training, a backward pass is implemented that
inverts image formation:

Bi(x) =
dFi(x)

d(α, δ, β, T, t, γ)
∈ R5×257 . (4.6)

This requires the computation of the gradients of the image formation model (see
Eq. (4.5)) with respect to the face and scene parameters. For high efficiency during
training, the gradients are evaluated in a data-parallel manner, see Sec. 4.5.

4.5 loss layer

A robust dense photometric loss function is employed that enables efficient end-
to-end training of our networks. The loss is inspired by recent optimization-based
approaches (Garrido et al., 2016a; Thies et al., 2016b) and combines three terms:

Eloss(x) = wlandEland(x) + wphotoEphoto(x)︸ ︷︷ ︸
data term

+wregEreg(x)︸ ︷︷ ︸
regularizer

. (4.7)
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Here, the loss enforces sparse landmark alignment Eland, dense photometric alignment
Ephoto and statistical plausibility Ereg of the modeled faces. Note, Eland is optional
and implements a surrogate loss that can be used to speed up convergence, see
Sec. 4.7. The binary weight wland ∈ {0, 1} toggles this constraint. The constant weights
wphoto = 1.92 and wreg = 2.9× 10−5 are empirically determined.

dense photometric alignment loss The goal of the encoder is to predict
model parameters that lead to a synthetic face image that matches the provided
monocular input image. To this end, a loss enforcing dense photometric alignment is
employed, similar to Thies et al. (2016b), on a per-vertex level using a robust `2,1-norm:

Ephoto(x) =
1
|V| ∑i∈V

∥∥∥I(ui(x)
)
− ci(x)

∥∥∥
2

. (4.8)

Here, I is an image of the training corpus and for occlusion awareness, all visible
vertices are iterated over, approximate as the set of front-facing vertices V .

sparse landmark alignment In addition to dense photometric alignment, an
optional surrogate loss is proposed based on the detected facial landmarks Saragih
et al. (2011). A subset of 46 landmarks (out of 66) is used, see Fig. 4.2. Given the subset
L = {(sj, cj, k j)}46

j=1 of detected 2D landmarks sj ∈ R2, with confidence cj ∈ [0, 1] (1
confident) and corresponding model vertex index k j ∈ {1, ..., N}, projected 3D vertices
are enforced to be close to the 2D detections:

Eland(x) =
46

∑
j=1

cj ·
∥∥∥uk j(x)− sj

∥∥∥2

2
. (4.9)

Please note, this surrogate loss is optional. The networks can be trained fully unsuper-
vised without supplying these sparse constraints. After training, landmarks are never
required.

statistical regularization During training, the optimization problem is
further constrained using statistical regularization (Blanz and Vetter, 1999) on the
model parameters:

Ereg(x) =
80

∑
k=1
α2

k + wβ

80

∑
k=1
β2

k + wδ

64

∑
k=1
δ2

k . (4.10)

This constraint enforces plausible facial shape α, expression δ and skin reflectance β
by preferring values close to the average (the basis of the linear face model is already
scaled by the standard deviations). The parameters wβ = 1.7× 10−3 and wδ = 0.8
balance the importance of the terms. Note, pose (T, t) and illumination γ are not
regularized.

backpropagation The gradient of the robust loss is passed backward to the
model-based decoder and is combined with Bi(x) using the chain rule. This enables
training via stochastic gradient descent during backpropagation,
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Figure 4.3: Quantitative evaluation of stochastic sampling on real data. Even drastic sampling
of ≈ 2% of vertices only marginally reduces the quality of the reconstruction results.

data-parallel gpu implementation Eq. (4.8) is implemented in an iteratively
reweighted fashion as follows:

Ephoto(x) =
1
N ∑

i∈V

1
Ci

∥∥∥I(ui(x)
)
− ci(x)

∥∥∥2

2
, (4.11)

where Ci = ‖I(ui(xold))− ci(xold)‖2. Here, xold is the estimate for the code vector
in the current iteration. Moreover, since the computation of the number of visible
vertices |V| is expensive (since it would require an additional pass over the vertices),
here it is approximated with N. The loss function can now be represented as a sum
of squares of individual residuals, i.e., Eloss(x) = FT(x)F(x), where F : R257 → RM

is a vector-valued function such that F(x) contains all the M = |V|+46+80+80+64
residuals of the energy (Eq. 4.7). For obtaining high performance, the computation
of F is parallelized to exploit the data-parallel computing power of modern graphics
cards, i.e., all elements of the vector F are computed fully in parallel (each entry
by a dedicated thread). In the forward pass, Eloss = FTF is computed using block
reductions. The local dot product in each block is computed using shared memory
and thread synchronization. Results from different blocks are added on the CPU. In
the backward pass, the gradients of Eloss can be calculated as

dEloss(x)
dx

= 2JT(x)F(x) , (4.12)

where J(x) ∈ RM×257 is the Jacobian of F at x. J is computed similarly to F by using
one thread per entry of the matrix. The dense matrix-vector multiplication can be
interpreted as computing a dot product for each element of x, which is done similarly
to the forward pass. The updated mesh (geometry and albedo) for the next forward-
backward pass is computed based on a matrix-vector multiplication and we use one
thread per entry of the output vector.

4.6 stochastic sampling

Since MoFA depends on several parameters (the weighting of the individual energy
terms, the relative learning rates for different output parameters, and other network
hyper-parameters), finding a good configuration is a repetitive task that requires
several (user-guided) iterations. The bottleneck of this procedure is the relatively long
training time of the network. In order to speed-up this process, we make use of a new
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Figure 4.4: Qualitative comparison of MoFA with and without stochastic sampling. The
stochastic sampling of vertices lets us train networks much faster with comparable results to
networks trained using all vertices.
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stochastic sampling strategy. The basic idea is to randomly sample a small subset of
vertices for each input image and then merely backpropagate the error for this small
set. To be more specific, the energy Ephoto in (4.7) os defined for a subset of sampled
vertices S ⊆ V. Let S ⊆ S be the subset of visible vertices. The loss is then defined as
the sum of model-vertex-specific energy terms Ei

photo, i.e.,

Ephoto =
1
|S| ∑i∈S

Ei
photo , (4.13)

where

Ei
photo := ‖I

(
ui(x)

)
− ci(x)‖2. (4.14)

This energy is implemented similarly as in Eq. 4.11. Using this sampling strategy for
training can be interpreted as stochastic gradient descent not only over the set of
images in the training set, but also over the face vertices. Note that since the semanti-
cally defined code vector has global influence, i.e., each vertex of the reconstruction
influences all parameters of the network through Ei

photo, this is a valid sampling
strategy.

evaluation of the stochastic sampling The sampling strategy is quanti-
tatively evaluated in Fig. 4.3 for different numbers of samples used while training.
As can be seen, sampling fewer vertices only marginally reduces the quality of the
results, while enabling us to train the networks much faster (time taken to train the
network with 500, 2000, 5000 and all the vertex samples are 4, 5.2, 7.7 and 23.7 hours,
respectively, using a GeForce TitanX graphics card). Qualitative results are shown in
Fig. 4.4, where it can be seen that the resulting rendered images have similar visual
quality.

4.7 results of mofa

In this section unsupervised learning of the model-based autoencoder, and the im-
provement in accuracy due to a surrogate loss are demonstrated in-the-wild. Encoders
based on AlexNet (Krizhevsky et al., 2012) and VGG-Face (Parkhi et al., 2015) are
tested, where the last fully connected layer is modified to output the 257 model
parameters. The reported results have been obtained using AlexNet (Krizhevsky et al.,
2012) as encoder. Note that the surrogate loss is not employed and all the vertices of
the mesh are used (i.e., no stochastic sampling) unless stated otherwise. After training,
the encoder regresses pose, shape, expression, skin reflectance and illumination at
once from a single image, see Fig. 4.5. An image corpus (see Fig. 4.6) is used for train-
ing, which is a combination of four datasets: CelebA (Liu et al., 2015), LFW (Huang
et al., 2007), Facewarehouse (Cao et al., 2013), and 300-VW (Chrysos et al., 2015; Shen
et al., 2015; Tzimiropoulos, 2015). The corpus is automatically annotated using facial
landmark detection (see Sec. 4.5) and cropped to a bounding box using Haar Cascade
Face Detection (Bradski, 2000). Frames with bad detections are pruned. The crops are
scaled to a resolution of 240× 240 pixels. In total, 147k images are collected, which
are randomized and split into 142k for training and 5k for evaluation. The network is
trained using the Caffe (Jia et al., 2014) deep learning framework. For efficiency, the
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Figure 4.5: The proposed approach enables the regression of high quality pose, shape, ex-
pression, skin reflectance and illumination from just a single monocular image (images from
CelebA (Liu et al., 2015)).

Figure 4.6: Sample images of the real world training corpus.
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Figure 4.7: Comparison to Richardson et al. (2016, 2017) on 300-VW (Chrysos et al., 2015; Shen
et al., 2015; Tzimiropoulos, 2015) (left) and LFW (Huang et al., 2007) (right). MoFA obtains
higher reconstruction quality and provides estimates of colored reflectance and illumination.
Note, in Richardson et al. (2016, 2017) the grayscale reflectance is not regressed but obtained
via optimization. MoFA on the other hand regresses all parameters (including reflectance) at
once.

Figure 4.8: Comparison to Tuan Tran et al. (2017) on LFW (Huang et al., 2007). MoFA obtains
visually similar quality. Here, the full face model is shown, but training only uses the frontal
part (cf. Fig 4.2, right).
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model-based decoder and the robust photometric loss are implemented in a single
CUDA (NVIDIA, 2008) layer. The networks are trained using AdaDelta with 200k batch
iterations (batch size of 5). The base learning rate is 0.1 for all parameters, except for
the Z-translation that was set to 0.0005. At test time, regressing all parameters using a
TitanX Pascal graphics card is fast and takes only 4ms (AlexNet) or 14ms (VGG-Face).
Training takes 13 hours (AlexNet) or 20 hours (VGG-Face). The encoder is initialized
based on the provided pre-trained weights. All weights in the last fully connected
layer are initialized to zero. This guarantees that the initial prediction is the average
face placed in the middle of the screen and lit by ambient light, which is a good
initialization. Note, the ambient coefficients of our renderer have an offset of 0.7 to
guarantee that the scene is initially lit. Next, the method is compared to the state-of-
the-art optimization- and learning-based monocular reconstruction approaches, and
all its components are evaluated.

comparison to Richardson et al . (2016 , 2017) The approach is compared
to the CNN-based iterative regressor of Richardson et al. (2016, 2017). The results
are compared qualitatively (Fig. 4.7) and quantitatively (Fig. 4.16) to their coarse
regression network. Note, the refinement layer of Richardson et al. (2017) is orthog-
onal to the proposed approach. Unlike Richardson et al. (2016, 2017), the proposed
network is trained completely unsupervised on real images, while they use a synthetic
training corpus that lacks realistic features. In contrast to Richardson et al. (2016,
2017), the method also regresses colored skin reflectance and illumination, which is
critical for many applications, for example, relighting. Note, the grayscale reflectance
of Richardson et al. (2016, 2017) is not regressed, but obtained via optimization.

comparison to Tuan Tran et al . (2017) Fig. 4.8 qualitatively compares to the
CNN-based identity regression approach of Tuan Tran et al. (2017). The reconstructions
of the proposed method are of visually similar quality; however, with additional high
quality estimates of the facial expression and illumination. A face verification test on
LFW if also performed. The proposed approach obtains an accuracy of 77%, which is
higher than the monocular 3DMM baseline (Romdhani and Vetter, 2005) (75%). Tuan
Tran et al. (2017) report an accuracy of 92%. The proposed approach is not designed
for this scenario, since it is trained unsupervised on in-the-wild images. Tuan Tran
et al. (2017) require more supervision (photo collection) to train their network.

comparison to Thies et al . (2016b) MoFA is compared qualitatively (Fig. 4.9)
and quantitatively (Fig. 4.16) to the state-of-the-art optimization-based monocular
reconstruction approach of Thies et al. (2016b). MoFA obtains similar or even higher
quality, while being orders of magnitude faster (4ms vs. ≈ 500ms). Note, while Thies
et al. (2016b) tracks at real-time frame rates after identity estimation, it requires half
a second to fit all parameters starting from the average model. While MoFA only
requires face detection at test time, Thies et al. (2016b) require detected landmarks.

comparison to Garrido et al . (2016a) MoFA is compared to our own
implementation (no detail refinement and shape correctives, photometric + landmark
+ regularization terms, 50 Gauss-Newton steps) of the high quality off-line monocular
reconstruction approach of Garrido et al. (2016a), which requires landmarks as input.
MoFA obtains comparable quality, while requiring no landmarks, see Fig. 4.10 and
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Figure 4.9: Comparison to the monocular reconstruction approach of Thies et al. (2016b)
on CelebA (Liu et al., 2015). MoFA obtains similar or higher quality, while being orders of
magnitude faster (4ms vs. ≈ 500ms).

Figure 4.10: Comparison to our implementation of the high quality offline monocular recon-
struction approach of Garrido et al. (2016a). MoFA obtains similar quality without requiring
landmarks as input. Without landmarks, Garrido et al. (2016a) often gets stuck in a local
minimum.
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Figure 4.11: Comparison to Jackson et al. (2017). MoFA obtains higher quality reconstructions
while also estimating the reflectance and incident scene illumination.

Figure 4.12: Different encoders are evaluated in combination with our model-based decoder.
Overall, VGG-Face (Parkhi et al., 2015) leads to slightly better results than AlexNet (Krizhevsky
et al., 2012), though the results are comparable.

Fig. 4.16. Without sparse constraints as input, optimization-based approaches often
get stuck in a local minimum.

MoFA is also compared to the monocular CNN-based approach of Jackson et al.
(2017) (Fig. 4.11). It obtains qualitatively better alignments and higher quality results.

evaluation of different encoders The impact of different encoders is
also evaluated. VGG-Face (Parkhi et al., 2015) leads to slightly better results than
AlexNet (Krizhevsky et al., 2012), see Fig. 4.12. On average, VGG-Face (Parkhi et al.,
2015) has a slightly lower landmark (4.9 pixels vs. 5.3 pixels) and photometric error
(0.073 vs. 0.075, color distance in RGB space, each channel in [0, 1]), see Fig. 4.13.

quantitative evaluation of unsupervised training Unsupervised train-
ing decreases the dense photometric and landmark error (on a validation set of 5k real
images), even when landmark alignment is not part of the loss function, see Fig. 4.13.
The landmark error is computed based on 46 detected landmarks (Saragih et al., 2011).
Training with our surrogate loss improves landmark alignment (AlexNet: 3.7 pixels
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Figure 4.13: Quantitative evaluation of MoFA on real data: Both landmark and photometric
errors are decreased during unsupervised training, even though landmark alignment is not
part of the loss function.

Figure 4.14: Evaluation of the influence of the proposed surrogate task. The surrogate task
leads to improved reconstruction quality and increases robustness to occlusions and strong
expressions.
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Figure 4.15: Quantitative evaluation of MoFA on synthetic ground truth data: Training de-
creases the geometric, photometric and landmark errors.

Table 4.1: Quantitative evaluation on real data. Average Hausdorff distance to the ground
truth for different approaches.

Geometry Photometric Landmark

Ours (MoFA w/o surrog.) 1.9mm 0.065 5.0px

Ours (MoFA w/ surrog.) 1.7mm 0.068 3.2px

Garrido et al. (2016a) 1.4mm 0.052 2.6px

vs. 5.3 pixels, VGG-Face: 3.4 pixels vs. 4.9) and leads to a similar photometric error
(AlexNet: 0.078 vs. 0.075, VGG-Face: 0.078 vs. 0.073, color distance in RGB space, each
channel in [0, 1]). The influence of our landmark-based surrogate loss is also evaluated
qualitatively, see Fig. 4.14. Training with landmarks helps to improve robustness to
occlusions and the quality of the predicted expressions. Note that both scenarios do
not require landmarks at test time.

quantitative evaluation A ground truth evaluation is performed based on 5k
rendered images with known parameters. The model-based autoencoder (AlexNet,
unsupervised) is trained on a corpus of 100k synthetic images with background
augmentation (cf. Fig. 4.15). The geometric error is measured as the point-to-point
3D distance (including the estimated rotation, translation and isotropic scale are
compensated for) between the estimate and the ground truth mesh. This error drops
from 21.6mm to 4.5mm. The photometric error in RGB space also decreases (0.33 to
0.05) and so does the landmark error (31.6 pixels to 3.9 pixels). Overall, we obtain
good fits. A quantitative comparison is also performed for 9 identities (180 images)
on Facewarehouse, see Table 4.1 and Fig. 4.16. MoFA obtains low errors and on par
with optimization-based techniques in terms of Hausdorff distance, but it is much
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Table 4.2: Geometric error on 180 meshes of the FaceWarehouse (Cao et al., 2013) dataset.
Surface-to-surface error (including sliding) based on a precomputed dense correspondence
map between the employed test set and our mesh topology.

Ours Others

MoFA

(surrogate)
Opt

Tewari et al. (2018)

(Fine)

Tewari et al. (2018)

(Coarse)
Kim et al. (2018b)

Garrido et al. (2016a)

(Coarse)

Mean 2.19 mm 1.87 mm 1.84 mm 2.03 mm 2.11 mm 1.59 mm

SD 0.54 mm 0.42 mm 0.38 mm 0.52 mm 0.46 mm 0.30 mm

Time 4 ms 110 ms 4 ms 4 ms 4 ms > 1 min

Figure 4.16: Quantitative evaluation on Facewarehouse (Cao et al., 2013): MoFA obtains a low
error that is comparable to optimization-based approaches. For this test, the network is trained
using the intrinsics of the Kinect.
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Figure 4.17: MoFA gives results of higher quality than convolutional autoencoders. In addition,
it provides access to dense geometry, reflectance, and illumination.

Figure 4.18: The model-based decoder provides higher fidelity than a learned convolutional
decoder in terms of image quality.

faster (4ms vs. a few minutes) and requires no landmarks at test time. The Hausdorff
distance error metric does not penalize misalignments in the tangent plane (surface
sliding). To also quantitatively evaluate the reconstructions in terms of surface drift, a
dense correspondence map between the employed test set and the mesh topology of
MoFA is precomputed using a non-rigid registration approach. The correspondences
are computed based on two almost neutral meshes with a slightly open mouth (to
not erroneously bring the upper lip of one topology into correspondence with the
lower lip of the other mesh). Based on this fixed set of correspondences, additional
evaluation of the surface-to-surface error (including surface sliding) is performed
on the same test set, see Table. 4.2. The results are comparable to the very recent
coarse-level results of Tewari et al. (2018) (presented in Chapter 5) and Kim et al.
(2018b). Our refined results, see Sec. 4.8, outperform these two other state-of-the-art
learning-based techniques on the coarse level. The results of Garrido et al. (2016a) are
still slightly better, but our approach runs orders of magnitude faster.

comparison to autoencoders and learned decoders The model-based
decoder is compared with a convolutional autoencoder in Fig. 4.17. The autoencoder
uses four 3× 3 convolution layers (64, 96, 128, 256 channels), a fully connected layer
(257 outputs, same as the number of model parameters), and four 4× 4 deconvolution
layers (128, 96, 64, 3 channels). The model-based approach obtains sharper reconstruc-
tion results and provides fine granular semantic parameters, allowing access to dense
geometry, reflectance and illumination, see Fig. 4.17 (middle). Explicit disentangle-
ment (Grant et al., 2016; Kulkarni et al., 2015) of a convolutional autoencoder requires
labeled ground truth data. It is also compared to image formation based on a trained
decoder. To this end, the decoder is trained (similar parameters as above) based on
synthetic imagery generated by the parametric model to learn the parameter-to-image
mapping. The model-based decoder obtains renderings of higher fidelity compared to
the learned decoder, see Fig. 4.18.
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Figure 4.19: Qualitative comparison between MoFA and MoFA with analysis-by-synthesis
optimization (Opt) without the landmark term. Opt improves the MoFA estimates while
Garrido et al. (2016a), which starts from a neutral initialization (second column), often ends up
in local minima in the absence of landmarks. Opt, when starting from a neutral initialization
also fails to estimate plausible reconstructions.

4.8 optimization-based refinement

Similar to other data-driven techniques, neural networks have a limited capacity and
might not generalize well to inputs outside the span of the employed training corpus.
Finding the right balance between under- and over-fitting is a highly challenging
problem on its own. Under-fitting leads to a loss of reconstruction quality and over-
smoothed results, while over-fitting leads to bad generalization to unseen images. On
the other hand, standard optimization-based approaches (without the guidance of dis-
criminative detected landmarks) often get stuck in a bad local minimum, which leads
to low reconstruction quality, as shown in Fig. 4.19. In this section, the combination
of a coarse discriminative estimate with an optimization-based analysis-by-synthesis
approach and a shading-based surface refinement step is demonstrated to significantly
improve the quality of the obtained reconstructions. First, a local minimization of
the energy Eloss is described in Eq. (4.7) based on the Gauss-Newton method, which
leads to an improved reconstruction that remains within the span of the employed
model (Sec. 4.3). Moreover, in order to explain fine-scale details on a wrinkle-level,
(local) optimization of a modified energy function over per-vertex displacements
is performed. These displacements are able to represent faces that are outside the
(restricted) model-subspace.

4.8.1 Analysis-by-synthesis Optimization

Since the trained network has limited capacity, it has to trade-off the quality of
individual reconstructions in order to work on a diverse range of images. Running an
analysis-by-synthesis optimizer on the output of MoFA can significantly improve the
results. The optimizer minimizes the energy Eloss in (4.7) as used to train the network.

Starting from the MoFA output as initialization, Gauss-Newton optimization is
run. Since the Gauss-Newton method requires the energy to be represented as a
sum of squares, the photometric term in (4.8) is implemented as explained in (4.11).
Additionally, the optimizer is implemented in a data-parallel fashion on the GPU, as
explained next.
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Figure 4.20: Comparison between Opt and the approach by Booth et al. (2017), which learns an
in-the-wild texture model from images to improve the reconstruction of geometry. Opt obtains
similar or better quality results only using the reflectance model of Blanz and Vetter (1999).

data-parallel gpu implementation The face reconstruction energy is in a
general non-linear least-squares form:

x∗ = argmin
x

Eloss(x), where (4.15)

Eloss(x)=∑
i

(
Fi(x)

)2 . (4.16)

Thus, the (local) optimum x∗ is obtained using the Gauss-Newton algorithm. In
each iteration step, the problem is linearized based on Taylor expansion to solve the
resulting normal equations:

JTJffi = JTF . (4.17)

J and F are the same as defined in Sec. 4.5 and are computed in the same manner. ffi is
the optimal update of the parameters. A data-parallel implementation (nVidia, 2012)
of dense matrix-matrix and matrix-vector multiplication is used to compute the system
matrix JTJ and right hand side JTF of Eq. (4.17), respectively. Afterwards, the resulting
small linear system is copied to the CPU and solved via Cholesky factorization to
compute the optimal update δ. This process is iterated for 5 Gauss-Newton steps. The
runtime to obtain the final reconstructions (network inference + optimizer) is 110 ms
for one image, orders of magnitude faster compared to a few mins per image for
Garrido et al. (2016a).

results The combination of the discriminative approach with this analysis-by-
synthesis fitting strategy (henceforth referred to as “Opt”) leads to higher quality
results, as shown in Figs. 4.19, 4.21, 4.22 and Table 4.2. Purely optimization-based
approaches are highly sensitive to the initialization and often fall into local minima in
the absence of the landmark alignment term. The parameter regression result of MoFA
provides a good initialization that can reliably be refined by the local optimizer such
that good reconstructions can be obtained even without landmarks, cf. Fig. 4.19. Note,
all results obtained with the optimizer other than Fig. 4.19 use the MoFA network with
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Figure 4.21: MoFA with analysis-by-synthesis optimization allows for high-quality geometry
and appearance reconstructions.

Figure 4.22: Qualitative comparison of MoFA with and without refinement. While MoFA
provides good reconstructions, the analysis-by-synthesis optimization (Opt) significantly im-
proves reconstruction quality. Shading-based-refinement (Refine) further adds high-frequency
details on the surface, leading to high-fidelity reconstructions.

the surrogate loss and the landmark alignment term for higher quality results. The
weights used for the optimizer are wphoto = 0.44, wreg = 0.01, wβ = 0.11, wδ = 0.01.
Using only 5 Gauss-Newton iterations leads to significant improvements over MoFA.
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Figure 4.23: Comparison of our method with shading-based surface refinement (Refine),
Richardson et al. (2017) and Sela et al. (2017). Richardson et al. (2017) only estimate the refined
depth maps while Sela et al. (2017), need an expensive non-rigid template alignment step to
compute the final reconstructions. The proposed approach obtain similar or higher quality
reconstructions by directly optimizing for the surface details on the mesh.

Table 4.2 provides quantitative results comparing various methods, where it can be
seen that Opt is able to reduce the MoFA reconstruction error further. Although Opt is
not able to outperform the results achieved by Garrido et al. (2016a), note that Garrido
et al. (2016a) runs for 50 iterations (with the landmark alignment term, starting from a
neutral face), thus requiring significantly more time. The Opt approach is compared
with the optimization-based approach of Booth et al. (2017) (Fig. 4.20) where the
proposed approach obtains comparable or better results. It also provides individual
estimates for the reflectance and illumination channels while Booth et al. (2017) only
estimates the combined texture.

4.9 shading-based surface refinement

The results presented so far are limited to the subspace spanned by the underlying
low-dimensional affine model (Sec. 4.3). This limits the ability of the method to
capture fine-scale wrinkle-level details. Hence, the output of Opt is further refined
by allowing the mesh to go outside of this restricted low-dimensional deformation
space. Consider the vertex positions of the low-dimensional coarse reconstruction
as VC = {vC

i ∈ R3|1 ≤ i ≤ N}. Out-of-subspace deformations are modeled using
per-vertex displacements D = {di ∈ R3|1 ≤ i ≤ N}, such that the final vertex
positions VF = {vF

i = vC
i + di|1 ≤ i ≤ N} align well to the input image I . The

optimal displacements are determined as

D∗ = argmin
D

Eref(D) , (4.18)
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Figure 4.24: Comparison between the proposed method with shading-based surface refinement
(Refine), Garrido et al. (2016a) and Shi et al. (2014). Refine obtains similar results, while being
significantly faster.

where

Eref(D) = Ephoto(D)+wgradEgrad(D)︸ ︷︷ ︸
data term

+wregEreg(D)︸ ︷︷ ︸
regularizer

. (4.19)

dense photometric alignment Similar to (4.8), a dense photometric alignment
term is used

Ephoto(D) =
1
|V| ∑i∈V

∥∥∥I(ui(D)
)
− ci(D)

∥∥∥
2

, (4.20)

where V is the set of visible vertices (vertex visibility is approximated by the set of
front-facing vertices), and ui(D) and ci(D) are the screen space position and color of
vertex i, respectively. They are computed analogously to Eq. (4.5). The photometric
term is implemented in an iteratively reweighted fashion, as in Eq. (4.11).

gradient alignment term High-frequency shading details are also considered,
similarly as proposed in Wu et al. (2011). More precisely, a gradient alignment term
tries to match the color gradients between the input and a synthetic rendering of the
model, as follows:

Egrad(D)=

1
|V| ∑i∈V ∑

j∈Ni

∥∥∥(ci(D)−cj(D))−(I(ui(D))−I(uj(D)))
∥∥∥2

2
, (4.21)

where Ni is the one-ring neighborhood of vertex i. Finite differences efficiently ap-
proximate image gradients based on mesh gradients.
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regularization term Additionally, a Laplacian regularizer is used on the
displacements, as follows:

Ereg(D)=
1
N ∑

i∈V

∥∥∥ ∑
j∈Ni

(
di − dj

)∥∥∥2

2
. (4.22)

Note that Eq. (4.22) enforces smoothness of the reconstructions and stability of the
optimizer.

mesh topology Both MoFA and the analysis-by-synthesis optimization use the
topology of Blanz and Vetter (1999), as described in Sec. 4.8. In order to ensure numer-
ical stability for shading-based refinement, one has to take care of near-degenerate
mesh faces in the topology of Blanz and Vetter (1999). To this end, the neutral face VT1

N
is remeshed from the topology T1 of Blanz and Vetter (1999) to a face VT2

N represented
by a more uniform topology T2. The transformation of vertices of topology T1 to
vertices of topology T2 can be represented by the linear map L : VT1

N → VT2
N . After

analysis-by-synthesis optimization (Sec. 4.8), the results from topology T1 are trans-
ferred to the topology T2 using L, and then optimized over per-vertex displacements
using the topology T2.

optimization Since the number of unknowns is much larger than for the problem
in Sec. 4.8.1, gradient descent is used to optimize for the displacements. Similarly
as before, |V| is approximated in the individual energy terms using N. The weights
used in the energy term are wgrad = 1.0, wreg = 133.3. The optimization runs for 250

iterations with a step-size of 0.008, which is sufficient to achieve convergence.

data-parallel gpu implementation The per-vertex displacement optimiza-
tion is also implemented in a data-parallel fashion on the GPU. Since the Jacobian
matrix here is much bigger and sparse, the approach from Sec. 4.8.1 is not used.
Instead, to compute the gradients, one dedicated thread is launched for each element
of F, where thread i computes d(Fi)

2

dD . The gradients for each variable coming from
different threads are integrated using global memory atomics. Using this optimized
parallel implementation results in a processing time of 450 ms for one image. Thus,
the overall time to obtain a high-quality reconstruction including fine-scale details is
450 + 110 = 560 ms.

results The refinement approach is initialized with the results from Opt. The
proposed approach with refinement ("Refine") recovers high-frequency geometry
details from images (Fig. 4.22). Comparisons to two high-quality face reconstruction
approaches (Richardson et al., 2017; Sela et al., 2017) are shown in Figs. 4.23 and 4.24.
Refine obtains details directly on the mesh in contrast to Richardson et al. (2017) that
obtain only refined depth maps. Sela et al. (2017) reconstruct details on the mesh but
at the cost of an expensive non-rigid template alignment step. The proposed approach
obtains similar or higher quality while directly optimizing for the details on the mesh
topology. The reflectance and illumination channels are additionally estimated. Similar
results are obtained compared to Garrido et al. (2016a) and Shi et al. (2014). However,
both Garrido et al. (2016a) and Shi et al. (2014) are orders of magnitude slower.
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Figure 4.25: Limitations: Facial hair and occlusions are challenging to handle.

4.10 limitations

This chapter demonstrated compelling monocular reconstructions using a novel model-
based autoencoder that is trained in an unsupervised manner. Similar to other re-
gression approaches, implausible reconstructions are possible with MoFA when the
regressed parameters are outside the span of the training data. This can be alleviated
by enlarging the training corpus, which is easy to achieve in our unsupervised setting.
Since a face model is employed, MoFA reconstructions are limited to the modeled
subspace. Similar to optimization-based approaches, strong occlusions, for example,
by facial hair or external objects, cause our approach to fail, see Fig. 4.25. Even with
the refinement strategies, the proposed approach can fail in such cases. Unsupervised
occlusion-aware training is an interesting open research problem. Similar to related
approaches, strong head rotations are challenging. Since the background is not mod-
eled, our reconstructions can slightly shrink. Shrinking is discussed and addressed in
Schönborn et al. (2015).

4.11 conclusion

This chapter presented a deep convolutional model-based face autoencoder that can
be trained in an unsupervised manner and learns meaningful semantic parameters.
Semantic meaning in the code vector is enforced by a parametric model that encodes
variation along with the pose, shape, expression, skin reflectance and illumination
dimensions. The model-based decoder is fully differentiable and allows end-to-end
learning of our network. This chapter additionally showed a stochastic vertex sampling
strategy in the loss function for faster training, and analysis-by-synthesis optimization
and shape-from-shading refinement methods for high-fidelity reconstruction.

The concepts introduced in this chapter will be used throughout the thesis. The
integration of CNNs with physically-based rendering is an important concept for
self-supervised learning. While the morphable model was pretrained and fixed in
this chapter, the next chapter will introduce a method for refining this model in the
self-supervised loop. This will bring us a step closer to learning morphable models
entirely from 2D data.
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S E L F - S U P E RV I S E D M U LT I - L E V E L FA C E M O D E L L E A R N I N G F O R
M O N O C U L A R R E C O N S T R U C T I O N

Figure 5.1: This chapter presentes a monocular reconstruction approach which estimates
high-quality facial geometry, skin reflectance (including facial hair) and incident illumination
at over 250 Hz. A trainable multi-level face representation is learned jointly with the feed
forward inverse rendering network. End-to-end training is based on a self-supervised loss that
requires no dense ground truth.

The reconstruction of dense 3D models of face geometry and appearance from a single
image is highly challenging and ill-posed. To constrain the problem, the previous
chapter relied on strong parametric face models learned from 3D scans. However, prior
models restrict generalization of the true diversity in facial geometry, skin reflectance
and illumination. To alleviate this problem, this chapter (published as Tewari et al.
(2018)) presents the first approach that jointly learns 1) a regressor for face shape,
expression, reflectance and illumination on the basis of 2) a concurrently learned
parametric face model. The multi-level face model combines the advantage of 3D
Morphable Models for regularization with the out-of-space generalization of a learned
corrective space, see Fig. 5.1. The network is trained end-to-end on in-the-wild images
without dense annotations by fusing a convolutional encoder with a differentiable
expert-designed renderer and a self-supervised training loss, both defined at multiple
detail levels. The proposed approach compares favorably to the state-of-the-art in
terms of reconstruction quality, better generalizes to real world faces, and runs at
over 250 Hz.

5.1 introduction

Monocular face reconstruction has drawn an incredible amount of attention in com-
puter vision and graphics in the last decades. The goal is to estimate a high-quality
personalized model of a human face from just a single photograph. Such a model
ideally comprises several interpretable semantic dimensions, for example, 3D facial
shape and expressions as well as surface reflectance properties. Research in this area
is motivated by the increasing availability of face images, for example, captured by
webcams at home, as well as a wide range of important applications across several
fields, such as facial motion capture, content creation for games and movies, virtual
and augmented reality, and communication.

The reconstruction of faces from a single photograph is a highly challenging and ill-
posed inverse problem, since the image formation process convolves multiple complex
physical dimensions (geometry, reflectance, and illumination) into a single color mea-

49



50 face model refinement

Figure 5.2: The proposed approach regresses a low-dimensional latent face representation at
over 250 Hz. The feed forward CNN is jointly learned with a multi-level face model that goes
beyond the low-dimensional subspace of current 3DMMs. Trainable layers are shown in blue
and expert-designed layers in gray. Training is based on differentiable image formation in
combination with a self-supervision loss (orange).

surement per pixel. To deal with this ill-posedness, researchers have made additional
prior assumptions, such as constraining faces to lie in a low-dimensional subspace, for
example, 3D Morphable Models (3DMM) (Blanz and Vetter, 1999) learned from scan
databases of limited size. Many state-of-the-art optimization-based (Blanz et al., 2003,
2004; Garrido et al., 2016a; Saito et al., 2016; Thies et al., 2016b) and learning-based face
reconstruction approaches (Cao et al., 2015; Richardson et al., 2016, 2017; Tewari et al.,
2017; Tuan Tran et al., 2017) heavily rely on such priors. While these algorithms yield
impressive results, they do not generalize well beyond the restricted low-dimensional
subspace of the underlying model. Consequently, the reconstructed 3D face may lack
important facial details, contain incorrect facial features and not align well to an
image. For example, beards have shown to drastically deteriorate the reconstruction
quality of algorithms that are trained on pure synthetic data (Richardson et al., 2016,
2017; Sela et al., 2017) or employ a 3DMM for regularization (Blanz and Vetter, 1999;
Garrido et al., 2016a; Tewari et al., 2017; Thies et al., 2016b; Tuan Tran et al., 2017).
Some approaches try to prevent these failures via heuristics, for example, a separate
segmentation method to disambiguate disjunct skin and hair regions (Saito et al.,
2016). Recent methods refine a fitted prior by adding fine-scale details, either based
on shape-from-shading (Garrido et al., 2016a; Richardson et al., 2016) or pre-learned
regressors (Cao et al., 2015; Richardson et al., 2017). However, these approaches rely
on slow optimization or require a high-quality annotated training corpus. Besides,
they do not build an improved subspace of medium-scale shape, reflectance, and ex-
pression, which is critical for generalization. Very recently, Sela et al. (2017) predicted
a per-pixel depth map to deform and fill holes of a limited geometry subspace learned
during training. While the results are impressive, the non-rigid registration runs
offline. Furthermore, their method captures face geometry only and fails if the faces
differ drastically from the training corpus, for example, in terms of skin reflectance,
and facial hair. Ideally, one would like to build better priors that explain a rich variety
of real-world faces with meaningful and interpretable parameters. Learning such
models in the traditional way requires large amounts of densely labeled real world
data, which is practically infeasible.

This chapter presents an entirely new end-to-end trainable method that jointly learns
1) an efficient regressor to estimate high-quality identity geometry, face expression, and
colored skin reflectance, alongside 2) the parameterization of an improved multi-level
face model that better generalizes and explains real world face diversity. The method
can be trained end-to-end on sparsely labeled in-the-wild images and reconstructs
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face and illumination from monocular RGB input at over 250 Hz. The approach takes
advantage of a 3DMM for regularization and a learned corrective space for out-of-
space generalization. To make end-to-end training on in-the-wild images feasible,
a hybrid convolutional auto-encoder is proposed that combines a CNN encoder
with a differentiable expert-designed rendering layer and a self-supervision loss, both
defined at multiple levels of details. In addition, a novel contour constraint is proposed
that generates a better face alignment. Unlike Chapter 4, the proposed auto-encoder
learns an improved multi-level model that goes beyond a predefined low-dimensional
parametric face prior. Experimental evaluations show that the proposed approach is
more robust, generalizes better, and estimates geometry, reflectance, and lighting at
higher quality.

5.2 method overview

The proposed face reconstruction approach estimates high-quality geometry, skin
reflectance and incident illumination from a single image. A regressor is trained for
parameters of a multi-level parametric face model, which is also trained concurrently,
see Fig. 5.2.

parameter regression At test time (Fig. 5.2, left), a low-dimensional, yet ex-
pressive and discriminative, latent space face representation is computed in under
4ms using a feed forward CNN, for example, AlexNet (Krizhevsky et al., 2012) or
VGG-Face (Parkhi et al., 2015). The latent space is based on a novel multi-level face
model (Sec. 5.3) that combines a coarse-scale 3DMM with trainable per-vertex ge-
ometry and skin reflectance correctives. This enables the approach to go beyond the
restricted low-dimensional geometry and skin reflectance subspaces, commonly used
by 3DMM-based methods for face fitting.

self-supervised training The feed forward network is jointly trained (Fig. 5.2,
right) with the corrective space based on a novel CNN architecture that does not rely
on a densely annotated training corpus of ground-truth geometry, skin reflectance and
illumination. To this end, the multi-level model is combined with an expert-designed
image formation layer (Sec. 5.4) to obtain a differentiable computer graphics module.
To enable the joint estimation of the multi-level face model, this module renders both
the coarse 3DMM model and the medium-scale model that includes the correctives.
For training, self-supervised loss functions (Sec. 5.5) are employed to enable efficient
end-to-end training of our architecture on a large corpus of in-the-wild face images
without the need for densely annotated ground truth. The approach is evaluated
qualitatively and quantitatively, and compared to state-of-the-art optimization- and
learning-based face reconstruction techniques (see Sec. 5.6).

5.3 trainable multi-level face model

At the core of the proposed approach is a novel multi-level face model that param-
eterizes facial geometry and skin reflectance. The model is based on a manifold
template mesh with N ∼ 30k vertices and per-vertex skin reflectance. The x-, y- and
z-coordinates of all vertices vi ∈ V are stacked in a geometry vector vf ∈ R3N . Sim-



52 face model refinement

ilarly, a vector of per-vertex skin reflectance is obtained as rf ∈ R3N . Geometry and
reflectance are parameterized as follows:

vf(xg) = vb(α) +Fg(δg|Θg) ∈ R3N(geometry), (5.1)

rf(xr) = rb(β) +Fr(δr|Θr) ∈ R3N(reflectance), (5.2)

where xg = (α, δg, Θg) and xr = (β, δr, Θr) are the geometry and reflectance param-
eters, respectively. At the base level is an affine face model that parameterizes the
(coarse) facial geometry vb and (coarse) skin reflectance rb via a low-dimensional
set of parameters (α,β). In addition, correctives are employed to add medium-scale
geometry Fg and reflectance Fr deformations, parameterized by (δg, Θg) and (δr, Θr),
respectively. A detailed explanation will follow in Sec. 5.3.2. A combination of the base
level model with the corrective model yields the final level model, parameterizing vf

and rf. In the following, the different levels of the multi-level face model are described.

5.3.1 Static Parametric Base Model

The parametric face model employed on the base level expresses the space of plausible
facial geometry and reflectance via two individual affine models:

vb(α) = ag +
ms+me

∑
k=1

αkbg
k (geometry) , (5.3)

rb(β) = ar +
mr

∑
k=1
βkbr

k (reflectance) . (5.4)

Here, ag ∈ R3N is the average facial geometry and ar ∈ R3N the corresponding average
reflectance. The subspace of reflectance variations is spanned by the vectors {br

k}
mr
k=1,

created using PCA from a dataset of 200 high-quality face scans (100 male, 100 female)
of Caucasians (Blanz and Vetter, 1999). The geometry subspace is split into ms and
me modes, representing shape and expression variations, respectively. The vectors
spanning the subspace of shape variations {bg

k}
ms
k=1 are constructed from the same

data as the reflectance space (Blanz and Vetter, 1999). The subspace of expression
variations is spanned by the vectors {bg

k}
ms+me
k=ms+1. These vectors were created using

PCA of a subset of blendshapes from the datasets of Alexander et al. (2009) and Cao
et al. (2013). Note that these blendshapes have been transferred to the used topology
using deformation transfer (Sumner and Popović, 2004). The basis captures 99% of
the variance of the used blendshapes. The approach uses ms = mr = 80 shape and
reflectance vectors, and me = 64 expression vectors. The associated standard deviations
σg and σr have been computed assuming a normally distributed population. The
model parameters (α,β) ∈ R80+64 ×R80 constitute a low-dimensional encoding of a
particular face. Even though such a parametric model provides a powerful prior, its
low dimensionality is a severe weakness as it can only represent coarse-scale geometry.

5.3.2 Trainable Shape and Reflectance Corrections

Having only a coarse-scale face representation is one of the major shortcomings of
many optimization- and learning-based reconstruction techniques, such as Blanz et al.
(2003), Blanz and Vetter (1999), Tewari et al. (2017), and Thies et al. (2016b). Due to its
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low dimensionality, the base model described in Sec. 5.3.1 has a limited expressivity
for modeling the facial shape and reflectance at high accuracy. A particular problem
is skin albedo variation, since the employed model has an ethnic bias and lacks
facial hair, for example, beards. The purpose of this work is to improve upon this by
learning a trainable corrective model that can represent these out-of-space variations.
Unlike other approaches that use a fixed pre-defined corrective basis Garrido et al.
(2016a), both the generative model for correctives and the best corrective parameters
are learned. Furthermore, no ground truth annotations are required for geometry, skin
reflectance and incident illumination.

The corrective model is based on (potentially non-linear) mappings F• : RC → R3N

that map the C-dimensional corrective parameter space onto per-vertex corrections
in shape or reflectance. The mapping F•(δ•|Θ•) is a function of δ• ∈ RC that is
parameterized by Θ•. The motivation for disambiguating between δ• and Θ• is that
during training both δ• and Θ• are learned, while at test time Θ• is kept fixed and
the corrective parameters δ• are directly regressed using the feed forward network.
In the affine/linear case, one can interpret Θ• as a basis that spans a subspace of the
variations, and δ• is the coefficient vector that reconstructs a given sample using the
basis. However, in general F• is not assumed to be affine/linear. The key difference
to the base level is that the correction level does not use a fixed pre-trained basis but
learns a generative model, along with the coefficients, directly from the training data.

5.4 differentiable image formation model

To train the novel multi-level face reconstruction approach end-to-end, a differentiable
image formation model is required.

full perspective camera The position and rotation of the virtual camera is
parameterized based on a rigid transformation Φ(v) = Rv + t, which maps a model
space 3D point v onto camera space v̂ = Φ(v). Here, R ∈ SO(3) is the camera rotation
and t ∈ R3 is the translation vector. To render virtual images of the scene, a full
perspective camera model is used to project the camera space point v̂ into a 2D
point p = Π(v̂) ∈ R2. The camera model contains the intrinsics and performs the
perspective division.

illumination model Distant lighting is assumed and the incoming radiance
is approximated using spherical harmonics (SH) basis functions Hb : R3 → R. The
incoming radiance is assumed to only depend on the surface normal n:

B̃(r, n,γ) = r�
B2

∑
b=1
γbHb(n) . (5.5)

Here, � denotes the Hadamard product, r is the surface reflectance and B is the
number of spherical harmonics bands. γb ∈ R3 are coefficients to control the illu-
mination. Since the incident radiance is sufficiently smooth, an average error below
1% (Ramamoorthi and Hanrahan, 2001a) can be achieved with only B = 3 bands
independent of the illumination. This leads to ml = B2 = 9 variables per color channel.
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image formation The differentiable image formation layer takes as input the
per-vertex shape and reflectance in model space. This can be the model of the base
level vb and rb or of the final level vf and rf that include the learned correctives. Let
v`

i ∈ R3 and r`i ∈ R3 denote the position and the reflectance of the i-th vertex for the
base level (` = b) and the final level (` = f). The rendering layer takes this information
and forms a point-based rendering of the scene, as follows. First, it maps the points
onto camera space, i.e., v̂`

i = Φ(v`
i ), and then computes the projected pixel positions

of all vertices as
u`

i (x) = Π(v̂`
i ) .

The shaded colors c`i at these pixel locations are computed based on the illumination
model described before:

c`i (x) = B̃(r`i , n̂`
i ,γ) ,

where n̂`
i are the associated camera space normals to v̂`

i . The image formation model
is differentiable, which enables end-to-end training using back propagation. The free
variables that the regressor learns to predict are: The model parameters (α,β, δg, δr),
the camera parameters R, t and the illumination parameters γ. In addition, the
corrective shape and reflectance bases Θg, Θr are learned during training. This leads
to the following vector of unknowns:

x = (α,β, δg, δr, R, t,γ, Θg, Θr) ∈ R257+2C+|Θg|+|Θr | .

5.5 self-supervised learning

The face regression network is trained using a novel self-supervision loss that enables
fitting the base model and learning per-vertex correctives end-to-end. The loss function
consists of a data fitting and regularization term:

Etotal(x) = Edata(x) + wregEreg(x) , (5.6)

where Edata penalizes misalignments of the model to the input image and Ereg encodes
prior assumptions about faces at the coarse and medium scale. Here, wreg is a trade-off
factor that controls the amount of regularization. The data fitting term is based on
sparse and dense alignment constraints:

Edata(x) = Esparse(x) + wphotoEphoto(x) . (5.7)

The regularization term represents prior assumptions on the base and corrective
model:

Ereg(x) = Estd(x)+Esmo+Eref(x)+Eglo(x)+Esta(x) . (5.8)

In the following, the individual terms are explained in detail.

5.5.1 Data Terms

multi-level dense photometric loss A dense multi-level photometric loss
function is employed that measures the misalignment of the coarse and fine fit to the
input. Let V̄ be the set of all visible vertices. The photometric term is then defined as:

Ephoto(x) = ∑
`∈{b,f}

1
N ∑

i∈V̄

∥∥∥I(u`
i (x)

)
− c`i (x)

∥∥∥
2

. (5.9)
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Figure 5.3: Fixed and sliding feature points are treated differetly. This leads to better contour
alignment. Note how the outer contour depends on the rigid head pose (left). The skin mask
(right) is employed in the global reflectance constancy constraint.

Here, u`
i (x) is the screen space position, c`i (x) is the shaded color of the i-th vertex,

and I is the current image during training. For robustness, the `2,1-norm is employed,
which measures the color distance using the `2-norm, while the summation over all
pixel-wise `2-norms encourages sparsity as it corresponds to the `1-norm. Visibility is
computed using backface culling, as explained in Chapter 2. This is an approximation,
but works well, since faces are almost convex.

sparse feature points Faces contain many salient feature points. This is ex-
ploited by using a weak supervision in the form of automatically detected 66 facial
landmarks f ∈ F ⊂ R2 (Saragih et al., 2011) and associated confidence cf ∈ [0, 1] (1
confident). The set of facial landmarks falls in two categories: Fixed and sliding feature
points. Fixed feature points, for example, eyes and nose, are associated with a fixed
vertex on the template model, whereas sliding feature points, for example, the face
contour, change their position on the template based on the rigid pose, see Fig. 5.3.
This is explicitly modeled as follows:

Esparse(x) =
1
|F | ∑

f∈F
cf ·
∥∥f− ub

kf
(x)
∥∥2

2 . (5.10)

Here, kf is the index of the target vertex. For fixed feature points, the index of the
corresponding mesh vertex is hard-coded. The indexes for sliding feature points are
computed via an alternation scheme: In each step of stochastic gradient descent, mesh
vertex that is closest to the 3D line is computed, defined by the camera center and
the back-projection of the detected 2D feature point. Based on the squared Euclidean
distance kf is set to the index of the closest vertex.

5.5.2 Regularization Terms

statistical regularization Statistical regularization is enforced on the 3DMM
model parameters of the base level to ensure plausible reconstructions. Based on the
assumption that the model parameters follow a zero-mean Gaussian distribution,
Tikhonov regularization is employed:

Estd(x) =
ms+me

∑
k=1

(
αk

(σg)k

)2
+ wrstd

mr

∑
k=1

(
βk

(σr)k

)2
. (5.11)
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This is a common constraint (Blanz and Vetter, 1999; Garrido et al., 2016a; Tewari et al.,
2017; Thies et al., 2016b) that prevents the degeneration of the facial geometry and
face reflectance in the ill-posed monocular reconstruction scenario.

corrective smoothness Local smoothness is also imposed by adding Laplacian
regularization on the vertex displacements for the set of all vertices V :

Esmo(x)=
wsmo

N ∑
i∈V

∥∥∥ 1
|Ni| ∑

j∈Ni

(
(Fg(x))i−(Fg(x))j

)∥∥∥2

2
. (5.12)

Here, (Fg(x))i = (Fg(δg|Θg))i denotes the correction for the i-th vertex given the
parameter x, and Ni is the 1-ring neighborhood of the i-th vertex.

local reflectance sparsity In spirit of recent intrinsic decomposition ap-
proaches (Bonneel et al., 2014; Meka et al., 2016), sparsity is enforced to further
regularize the reflectance of the full reconstruction:

Eref(x) = wref
1
N ∑

i∈V
∑

j∈Ni

wi,j ·
∥∥∥rf

i(x)− rf
j(x)

∥∥∥p

2
. (5.13)

Here, wi,j = exp
(
−α · ||I(uf

i(x
old))− I(uf

j(x
old))||2

)
are constant weights that mea-

sure the chromaticity similarity between the colors in the input, where xold are the
parameters estimated in the previous iteration. Pixels with the same chromaticity are
assumed to be more likely to have the same reflectance. The term ‖·‖p

2 enforces sparsity
on the combined reflectance estimate. The hyperparameters are fixed as α = 50 and
p = 0.9 in all the experiments.

global reflectance constancy Skin reflectance constancy is enforced over a
fixed set of vertices that covers only the skin region, see Fig. 5.3 (right):

Eglo(x) = wglo
1
|M| ∑

i∈M
∑
j∈Gi

∥∥∥rf
i(x)− rf

j(x)
∥∥∥2

2
. (5.14)

Here,M is the per-vertex skin mask and Gi stores 6 random samples of vertex indexes
of the mask region. The idea is to enforce the whole skin region to have the same
reflectance. For efficiency, reflectance similarity between random pairs of vertices in
the skin region is used. Note that regions that may have facial hair were not included
in the mask. In combination, local and global reflectance constancy efficiently removes
shading from the reflectance channel.

stabilization It is ensured that the corrected geometry stays close to the base
reconstruction by enforcing small vertex displacements:

Esta(x) = wsta
1
N ∑

i∈V

∥∥∥(Fg(x))i

∥∥∥2

2
. (5.15)

5.5.3 Training Details

Training the face regressor and the corrective space jointly is challenging. Thus, for
robust training, the network up to the base level is pretrained for 200k iterations
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with a learning rate of 0.01. The weights w• are empirically determined and fixed
for all the experiments. For training the base level, the following weights are used:
wphoto = 1.9, wreg = 0.00003, wrstd = 0.002, wsmo = 0.0, wref = 0.0, wglo = 0.0 and
wsta = 0.0. Afterwards, the complete network is finetuned for 190k iterations end-to-
end with a learning rate of 0.001 for the base level network, 0.005 for the geometry
correctives network and 0.01 for the reflectance correctives network. For finetuning, the
loss is instantiated based on the following weights: wphoto = 0.2, wreg = 0.003, wrstd =

0.002, wsmo = 3.2 · 104, wref = 13, wglo = 80, wsta = 0.08. The method uses 500 correc-
tives for both geometry and reflectance. Please note, the illumination estimate for
rendering the base and final model is not shared between the two levels, but indepen-
dently regressed. This is due to the fact that a different illumination estimate might be
optimal for the coarse and final reconstruction due to the shape and skin reflectance
correctives. During finetuning, all weights associated with the correctives receive a
higher learning rate (×100) than the pretrained layers. This two stage strategy enables
robust and efficient training of the architecture.

5.6 results

This section demonstrates joint end-to-end self-supervised training of the feed forward
encoder and the novel multi-level face representation based on in-the-wild images
without the need for densely annotated ground truth. The proposed approach re-
gresses pose, shape, expression, reflectance and illumination at high-quality with
over 250 Hz, see Fig. 5.4. A modified version of AlexNet (Krizhevsky et al., 2012) that
outputs the parameters of the face model is used as the feed-forward encoder. Note
that other feed forward architectures could be used. The approach is implemented
using Caffe (Jia et al., 2014). Training is based on AdaDelta with a batch size of 5. The
network is pretrained up to the base level for 200k iterations with a learning rate of
0.01. Afterwards, the complete network is finetuned for 190k iterations with a learning
rate of 0.001 for the base level, 0.005 for the geometry and 0.01 for the reflectance
correctives. All components of the network are implemented in CUDA (NVIDIA,
2008) for efficient training, which takes 16 hours. The same weights w• are used in all
experiments. In the following, the size, C of the corrective parameters are fixed to 500

for both geometry and reflectance. Different corrective spaces (linear and non-linear)
are tested, see Fig. 5.6. A linear corrective basis gave the best results, which is used
for all following experiments. The approach is trained on a corpus of in-the-wild
face images, without densely annotated ground truth. Training is performed on a
combination of four different datasets: CelebA (Liu et al., 2015), LFW (Huang et al.,
2007), FaceWarehouse (Cao et al., 2013), and 300-VW (Chrysos et al., 2015; Shen
et al., 2015; Tzimiropoulos, 2015). Sparse landmark annotations are obtained auto-
matically (Saragih et al., 2011) and images are cropped to a tight face bounding box
of 240× 240 pixels using Haar Cascade Face Detection (Bradski, 2000). Images with
bad detections are automatically removed based on landmark confidence. In total,
144k images are used, which are split into a training (142k images) and validation (2k
images) set.

The final output (‘final’) is compared to the base low-dimensional 3DMM recon-
struction (‘base’) obtained from the pretrained network to illustrate that the multi-level
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Figure 5.4: The proposed approach allows for high-quality reconstruction of facial geometry,
reflectance and incident illumination from just a single monocular color image. Note the
reconstructed facial hair, for example, the beard, reconstructed make-up, and the eye lid
closure, which are outside of the space of the used 3DMM.
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Figure 5.5: Jointly learning a multi-level model improves the geometry and reflectance com-
pared to the 3DMM. Note the better aligning nose, lips and the reconstructed facial hair.

Figure 5.6: Comparison of linear and non-linear corrective spaces.

model recovers higher quality geometry and reflectance (Fig. 5.5). In the following,
more results are shown, and the approach is compare to the state of the art.

5.6.1 Comparisons to the State of the Art

optimization-based techniques The method is compared to the optimization-
based high-quality reconstruction method of Garrido et al. (2016a), see Fig. 5.7. The
proposed approach obtains similar geometry quality but better captures the person’s
characteristics due to the learned corrective space. Since the approach jointly learns
a corrective reflectance space, it can leave the restricted subspace of the underlying
3DMM and thus produces more realistic appearance. Note, unlike Garrido et al.
(2016a), the proposed approach does not require landmarks at test time and runs
orders of magnitude faster (4ms vs. 120s per image). See Fig. 5.8 for comparisons
with the approach of Booth et al. (2017). The proposed approach jointly learns a better
shape and reflectance model, while their approach only builds an ‘in-the-wild’ texture
model that contains shading. In contrast to the proposed approach, Booth et al. is
based on optimization and requires initialization or landmarks.

learning-based techniques This paragraph provides comparisons to the
high-quality learning-based reconstruction approaches of Tewari et al. (2017), the
method presented in Chapter 4 (Fig. 5.9), Richardson et al. (2016, 2017) (Fig. 5.10)
and Sela et al. (2017) (Fig. 5.10). These approaches obtain impressive results within
the span of the used synthetic training corpus or the employed 3DMM model, but
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Figure 5.7: Comparison to Garrido et al. (2016a). The approach presented achieves higher
quality reconstructions, since the jointly learned model generalizes better than a corrective
space based on manifold harmonics.

Figure 5.8: In contrast to the texture model of Booth et al. (2017) that contains shading, the
proposed approach yields a reflectance model.

suffer from out-of-subspace shape and reflectance variations, for example, people with
beards. The proposed approach is not only robust to facial hair and make-up, but also
automatically learns to reconstruct such variations based on the jointly learned model.
Reconstruction requires 4 ms, while Sela et al. (2017) requires slow off-line non-rigid
registration to obtain a hole free reconstruction from the predicted depth map. In
addition, a reconstruction of colored reflectance and illumination is jointly obtained.
Due to the model learning, the proposed approach is able to leave the low-dimensional
space of the 3DMM, which leads to a more realistic reconstruction of facial appearance
and geometry.

5.6.2 Quantitative Results

Quantitative evaluations are also performed. For geometry, the FaceWarehouse (Cao
et al., 2013) dataset is used, and 180 meshes (9 identities, 20 expressions each) are
reconstructed. Various approaches are compared using the metric introduced in Chap-
ter 4, after alignment (rigid transform plus isotropic scaling) to the provided ground
truth. The proposed approach outperforms the learning-based techniques of Tewari
et al. (2017) and Kim et al. (2018b), see Tab. 5.1. The results are close to the high-quality
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Figure 5.9: Comparison to Tewari et al. (2017), the method presented in Chapter 4. Higher
quality (without surface shrinkage) is achieved due to the jointly trained model.

Figure 5.10: Comparison to Richardson et al. (2016, 2017) and Sela et al. (2017). They obtain
impressive results within the span of the synthetic training corpus, but do not handle out-
of-subspace variations, for example, beards. The proposed approach is robust to hair and
make-up, since the model is jointly learned.

optimization approach of Garrido et al. (2016a), while being orders of magnitude
faster (4ms vs. 120sec) and not requiring feature detection at test time, see Fig. 5.11

(top). Cao et al. (2013) contains mainly ‘clean’ faces without make-up or beards, since
this causes problems even for high-quality offline 3D reconstruction approaches. The
primary interest is in robustly handling the harder in-the-wild scenario, in which
the proposed approach significantly outperforms previous approaches, see Figs. 5.7,
5.9, and 5.10. The approach is also evaluated on a video sequence (300 frames) with
challenging expressions and a characteristic face, which is outside the span of the
3DMM. The ground truth has been obtained by Valgaerts et al. (2012). The results
can be found in Tab. 5.2 and in Fig. 5.11 (bottom), where it can be seen that the
proposed method outperforms other learning- and optimization-based approaches
(Garrido et al., 2016a; Tewari et al., 2017). The photometric fitting error of the proposed
approach is evaluated on the validation set, see Fig. 5.12. The final results (mean: 0.072,
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Table 5.1: Geometric error on FaceWarehouse (Cao et al., 2013). The proposed approach
outperforms the deep learning techniques of Tewari et al. (2017) and Kim et al. (2018b). It
comes close to the high-quality approach of Garrido et al. (2016a), while being orders of
magnitude faster and not requiring feature detection.

Ours Others

Learning Learning Optimization

Fine Coarse Tewari et al. (2017) Kim et al. (2018b) Garrido et al. (2016a)

Mean 1.84mm 2.03 mm 2.19 mm 2.11 mm 1.59mm

SD 0.38mm 0.52 mm 0.54 mm 0.46 mm 0.30mm

Time 4ms 4ms 4ms 4ms 120 s

Figure 5.11: Higher quality is obtained compared to the previous learning-based approaches
on the FaceWarehouse (Cao et al., 2013) and Volker (Valgaerts et al., 2012) datasets.

SD: 0.020) have significantly lower error (distance in RGB space, channels in [0, 1])
than the base level (mean: 0.092, SD: 0.025) due to the learned corrective basis.

5.7 limitations

This chapter presented high-quality monocular reconstruction at over 250Hz, even
in the presence of facial hair, or for challenging faces. Still, the approach has a few
limitations, which can be addressed in future work: External occlusion, for example, by
glasses, are baked into our correctives, see Fig. 5.13. Resolving this would require

Table 5.2: On the Volker sequence, the proposed approach outperforms the results of Garrido
et al. (2016a), even if their fixed shape correctives are employed.

Ours Others

Learning Learning Optimization Garrido et al. (2016a)

Fine Coarse Tewari et al. (2017) Medium Coarse

Mean 1.77mm 2.16 mm 2.94 mm 1.97 mm 1.96 mm

SD 0.29mm 0.29 mm 0.28 mm 0.41 mm 0.35 mm
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Figure 5.12: Euclidean photometric error in RGB space, each channel in [0, 1]. Final results
significantly improve the fitting quality.

Figure 5.13: External occluders are baked into the correctives.

a semantic segmentation of the training corpus. The consistent reconstruction of
occluded face regions is not guaranteed. Low-dimensionality of the corrective space is
enforced for robust model learning. Thus, fine-scale surface detail can not be recovered.
This as an orthogonal research direction, which has already produced impressive
results (Richardson et al., 2016, 2017; Sela et al., 2017).

5.8 conclusion

This chapter presented the first approach that jointly learns a face model and a param-
eter regressor for face shape, expression, appearance and illumination. It combines the
advantages of 3DMM regularization with the out-of-space generalization of a learned
corrective space. This overcomes the disadvantages of current approaches that rely
on strong priors, increases generalization and robustness, and leads to high quality
reconstructions at over 250Hz. While this work focused on face reconstruction, the
approach is not restricted to faces only as it can be generalized to further object classes.
As such, this was a first important step towards building 3D models from in-the-wild
images. The next chapter will take a step forward in this direction in order to learn
the identity components of the morphable model entirely from 2D images, without
the coarse 3DMM.





6
F M L : FA C E M O D E L L E A R N I N G F R O M V I D E O S

Figure 6.1: This chapter proposes multi-frame self-supervised training of a deep network
based on in-the-wild video data for jointly learning a face model and 3D face reconstruction.
The proposed approach successfully disentangles facial shape, appearance, expression, and
scene illumination.

Chapter 4 presented a method to reconstruct 3D faces from images using morphable
model priors. Chapter 5 allowed for refinement of the morphable model for higher
quality reconstructions. This chapter, published as Tewari et al. (2019), takes this
idea further and learns the face identity variations from 2D data without using any
existing morphable model, see Fig. 6.1. The face model is learned using only corpora
of in-the-wild video clips collected from the Internet. This virtually endless source of
training data enables learning of a highly general 3D face model. In order to achieve
this, a novel multi-frame consistency loss is proposed that ensures consistent shape
and appearance across multiple frames of a subject’s face, thus minimizing depth
ambiguity. At test time an arbitrary number of frames can be used, so that both
monocular as well as multi-frame reconstruction can be performed.

6.1 introduction

The reconstruction of faces from visual data has a wide range of applications in
vision and graphics, including face tracking, emotion recognition, and interactive
image/video editing tasks relevant in multimedia. Facial images and videos are
ubiquitous, as smart devices as well as consumer and professional cameras provide a
continuous and virtually endless source thereof. When such data is captured without
controlled scene location, lighting, or intrusive equipment (for example, egocentric
cameras or markers on actors), one speaks of “in-the-wild” images. Usually in-the-
wild data is of low resolution, noisy, or contains motion and focal blur, making the
reconstruction problem much harder than in a controlled setup. 3D face reconstruction
from in-the-wild monocular 2D image and video data (Zollhöfer et al., 2018) deals with
disentangling facial shape identity (neutral geometry), skin appearance (or albedo)
and expression, as well as estimating the scene lighting and camera parameters.
Some of these attributes, for example, albedo and lighting, are not easily separable in
monocular images. Besides, poor scene lighting, depth ambiguity, and occlusions due
to facial hair, sunglasses and large head rotations complicates 3D face reconstruction.

In order to tackle the difficult monocular 3D face reconstruction problem, most ex-
isting methods rely on the availability of strong prior models that serve as regularizers
for an otherwise ill-posed problem (Blanz et al., 2003; Ekman and Rosenberg, 1997;

65
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Vlasic et al., 2005). Although such approaches achieve impressive facial shape and
albedo reconstruction, they introduce an inherent bias due to the used face model.
For instance, the 3D Morphable Model (3DMM) by Blanz et al. (2003) is based on a
comparably small set of 3D laser scans of Caucasian actors, thus limiting generaliza-
tion to general real-world identities and ethnicities. With the rise of CNN-based deep
learning, various techniques have been proposed, which in addition to 3D reconstruc-
tion also perform face model learning from monocular images (Shu et al., 2017b; Tran
and Liu, 2018a,b). Chapter 5 also presented such a method. However, these methods
heavily rely on a pre-existing 3DMM to resolve the inherent depth ambiguities of
the monocular reconstruction setting. Another line of work, where 3DMM-like face
models are not required, are based on photo-collections (Kemelmacher-Shlizerman,
2013; Liang et al., 2016; Suwajanakorn et al., 2014). However, these methods need a
very large number (≈100) of facial images of the same subject, and thus they impose
strong demands on the training corpus.

This chapter introduces an approach that learns a comprehensive face identity
model using clips crawled from in-the-wild Internet videos (Chung et al., 2018). This
face identity model comprises two components: One component to represent the
geometry of the facial identity (modulo expressions), and another to represent the
facial appearance in terms of the albedo. As there are only weak requirements on
the training data (described later in Sec. 6.2.1), the proposed approach can employ a
virtually endless amount of community data and thus obtain a model with better gen-
eralization; laser scanning a similarly large group of people for model building would
be practically impossible. Unlike most previous approaches, the proposed method
does not require a pre-existing shape identity and albedo model as initialization, but
instead learns their variations from scratch. As such, the methodology is applicable
in scenarios when no existing model is available, or if it is difficult to create such a
model from 3D scans (for example, faces of babies).

From a technical point of view, one of the main contributions is a novel multi-frame
consistency loss, which ensures that the face identity and albedo reconstruction is
consistent across frames of the same subject. This way depth ambiguities present in
many monocular approaches can be resolved to obtain a more accurate and robust
model of facial geometry and albedo. Moreover, by imposing orthogonality between
the learned face identity model and an existing blendshape expression model, the
approach automatically disentangles facial expressions from identity-based geometry
variations, without resorting to a large set of hand-crafted priors. In summary, the
approach is based on the following technical contributions:

1. A deep neural network that learns a facial shape and appearance space from
a big dataset of unconstrained images that contains multiple images of each
subject, for example, multi-view sequences, or even monocular videos.

2. Explicit blendshape and identity separation by a projection onto the blendshapes’
nullspace that enables a multi-frame consistency loss.

3. A novel multi-frame identity consistency loss based on a Siamese network (Vinyals
et al., 2016), with the ability to handle monocular and multi-frame reconstruction.
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Figure 6.2: Pipeline overview. Given multi-frame input that shows a person under different
facial expression, head pose, and illumination, the proposed approach first estimates these
parameters per frame. In addition, it jointly obtains the shared identity parameters that control
facial shape and appearance, while at the same time learning a graph-based geometry and a
per-vertex appearance model. A differentiable mesh deformation layer is used in combination
with a differentiable face renderer to implement a model-based face autoencoder.

6.2 face model learning

The face model learning approach solves two tasks: it jointly learns (i) a parametric
face geometry and appearance model, and (ii) an estimator for facial shape, expression,
albedo, rigid pose and incident illumination parameters. An overview of the approach
is shown in Fig. 6.2.

training : The network is trained in a self-supervised fashion based on a training
set of multi-frame images, i.e., multiple images of the same person sampled from
a video clip, see Section 6.2.1. The network jointly learns an appearance and shape
identity model (Section 6.2.2). It also estimates per-frame parameters for the rigid
head pose, illumination, and expression parameters, as well as shape and appearance
identity parameters that are shared among all frames. The network is trained using a
differentiable renderer that incorporates a per-vertex appearance model and a graph-
based shape deformation model (Section 6.2.3). A set of training losses are proposed
that account for geometry smoothness, photo-consistency, sparse feature alignment
and appearance sparsity, see Section 6.2.4.

testing : At test time, the network jointly reconstructs shape, expression, albedo,
pose and illumination from an arbitrary number of face images of the same person.
Hence, the same trained network is usable both for monocular and multi-frame face
reconstruction.

6.2.1 Dataset

The approach is trained using the VoxCeleb2 multi-frame video dataset (Chung et
al., 2018). This dataset contains over 140k videos of over 6000 celebrities crawled
from Youtube. A total of N = 404k multi-frame images F1, . . . ,FN are sampled
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from this dataset. The `-th multi-frame image F` = {F[ f ]
` }M

f=1 comprises M = 4

frames F[1]
` , . . . , F[M]

` of the same person ` extracted from the same video clip to avoid
unwanted variations, for example, due to aging or accessories. The same person
can appear multiple times in the dataset. Several sequential steps are performed to
obtain these images. First, the face region is cropped based on automatically detected
facial landmarks (Saragih et al., 2011). Afterwards, the pipeline discards images whose
cropped region is smaller than a threshold (i.e., 200 pixels) and that have low landmark
detection confidence, as provided by the landmark tracker (Saragih et al., 2011). The
remaining crops are re-scaled to 240×240 pixels. When sampling the M (possibly
non-consequent) frames in F`, sufficient diversity in head pose is ensured based
on the head orientation obtained by the landmark tracker. The multi-frame dataset
F1, . . . ,FN is split into a training (383k images) and test set (21k images).

6.2.2 Graph-based Face Representation

A multi-level face representation is proposed that is based on both a coarse shape
deformation graph and a high-resolution surface mesh, where each vertex has a color
value that encodes the facial appearance. This representation enables the approach to
learn a face model of geometry and appearance based on multi-frame consistency. In
the following, the components are explained in detail.

Figure 6.3: Neutral face shape and appear-
ance (left), and the coarse deformation
graph of the face mesh (right).

learnable graph-based identity model :
Rather than learning the identity model on
the high-resolution mesh V with |V| = 60k
vertices, this task is simplified by consider-
ing a lower-dimensional parametrization in-
spired by deformation graphs (Sumner et
al., 2007). The (coarse) deformation graph
G is obtained by downsampling the mesh to
|G| = 521 nodes, see Fig. 6.3. The network
now learns a deformation of G that is then
transferred to the mesh V via linear blend
skinning Jacobson et al., 2014. The vector
g ∈ R3|G| of the |G| stacked node positions of
the 3D graph is defined as

g = ḡ + Θsα , (6.1)

where ḡ ∈ R3|G| denotes the mean graph node positions. ḡ is obtained by down-
sampling a face mesh with slightly open mouth (to avoid connecting the upper and
lower lips). The columns of the learnable matrix Θs ∈ R3|G|×g span the g-dimensional
(g = 500) graph deformation subspace, and α ∈ Rg represents the graph deformation
parameters.

The vertex positions v ∈ R3|V| of the high-resolution mesh V that encode the shape
identity are then given as

v(Θs,α) = v̄ + SΘsα . (6.2)
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Here, v̄ ∈ R3|V| is fixed to the neutral mean face shape as defined in the 3DMM (Blanz
and Vetter, 1999). The skinning matrix S ∈ R3|V|×3|G| is obtained based on the mean
shape v̄ and mean graph nodes ḡ.

To sum up, the identity model is represented by a deformation graph G, where the
deformation parameter α is regressed by the network while learning the deformation
subspace basis Θs. This ill-posed learning problem is regularized by exploiting multi-
frame consistency.

blendshape expression model : A linear blendshape model is used for captur-
ing the expressions. This model combines the facial expression models from Alexander
et al. (2009) and Cao et al. (2013). The blendshape model is fixed, i.e. not learned.
The expression deformations are directly applied to the high-res mesh. The vertex
positions of the high-res mesh that account for shape identity as well as the facial
expression are given by

v(Θs,α, δ) = v̄ + S ·OCL(Θs)α+ Bδ , (6.3)

where B ∈ R3|V|×b is the fixed blendshape basis, δ ∈ Rb is the vector of b = 80
blendshape parameters, and OCL is explained next.

separating shape and expression : The approach ensures a separation of
shape identity from facial expressions by imposing orthogonality between the learned
shape identity basis and the fixed blendshape basis. To this end, the blendshape basis
B ∈ R3|V|×b is first represented with respect to the deformation graph domain by
solving B = SBG for the graph-domain blendshape basis BG ∈ R3|G|×bG in a least-
squares sense. Here, bG = 80 is fixed. Then, the columns of BG are orthogonalized. The
Orthogonal Complement Layer (OCL) is proposed to ensure that the learned OCL(Θs)

fulfills the orthogonality constraint BT
G OCL(Θs) = 0. This layer is defined in terms of

the projection of Θs onto the orthogonal complement B⊥G of BG , i.e.,

OCL(Θs) = projB⊥G (Θs) = Θs − projBG (Θs) (6.4)

= Θs − BG(BT
GBG)−1BT

GΘs . (6.5)

The desired property BT
G OCL(Θs) = 0 follows directly.

learnable per-vertex appearance model : The facial appearance is encoded
in the 3|V|-dimensional vector

r(β) = r̄ + Θaβ (6.6)

that stacks all |V| per-vertex diffuse reflectance colors represented as RGB triplets.
The mean facial appearance r̄ ∈ R3|V| and the appearance basis Θa ∈ R3|V|×|β| are
learnable, while the facial appearance parameters β are regressed. Note that the mean
appearance r̄ is initialized to a constant skin tone and the reflectance is defined directly
on the high-res mesh V .

6.2.3 Differentiable Image Formation

To enable end-to-end self-supervised training, a differentiable image formation model
is employed that maps 3D model space coordinates v ∈ R3 onto 2D screen space
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coordinates u ∈ R2. The mapping is implemented as u = Π(Φ(v)), where Φ and
Π denote the rigid head pose and camera projection, respectively. A differentiable
illumination model is employed that transforms illumination parameters γ as well as
per-vertex appearance ri and normal ni into shaded per-vertex color ci(ri, ni,γ).

camera model : Without loss of generality, it is assumed that the camera space
corresponds to world space. The head pose is modeled via a rigid mapping Φ(v) =
Rv + t, defined by the global rotation R ∈ SO(3) and the translation t ∈ R3. After
mapping a vertex from model space v onto camera space v̂ = Φ(v), the full perspective
camera model Π : R3 → R2 projects the points v̂ into screen space u = Π(v̂) ∈ R2.

illumination model : Under the assumption of distant smooth illumination and
purely Lambertian surface properties, Spherical Harmonics (SH) (Ramamoorthi and
Hanrahan, 2001a) is employed to represent the incident radiance at a vertex vi with
normal ni and appearance ri as

ci(ri, ni,γ) = ri ·
B2

∑
b=1
γb · Hb(ni) . (6.7)

The illumination parameters γ ∈ R27 stack B2 = 9 weights per color channel. Each
γb ∈ R3 controls the illumination w.r.t. the red, green and blue channel.

6.2.4 Multi-frame Consistent Face Model Learning

A novel network is proposed for consistent multi-frame face model learning. It consists
of M Siamese towers that simultaneously process M frames of the multi-frame image
in different streams, see Fig. 6.2. Each tower consists of an encoder that estimates
frame-specific parameters and identity feature maps. Note that the jointly learned
geometric identity Θs and appearance model (Θa, r̄), which are common to all faces,
are shared across streams.

regressed parameters : The network is trained in a self-supervised manner
based on the multi-frame images {F`}N

`=1. For each frame F[ f ]
` , ∀ f = 1 : M of the

multi-frame image F`, the frame-specific parameters regressed by a Siamese tower
(see Parameter Estimation in Fig. 6.2) are stacked in a vector p[ f ]=(R[ f ], t[ f ],γ [ f ], δ[ f ])

that parametrizes rigid pose, illumination and expression. The frame-independent
person-specific identity parameters p̂=(α,β) for the multi-frame image F` are pooled
from all the towers. All regressed frame-independent and frame-specific parameters
of F` are denoted as p=(p̂, p[1], . . . , p[M]).

per-frame parameter estimation network : A convolutional network is
employed to extract low-level features. A series of convolutions, ReLU, and fully
connected layers are then applied to regress the per-frame parameters p[ f ].

multi-frame identity estimation network : As explained in Section 6.2.1,
each frame of the multi-frame input exhibits the same face identity under different
head poses and expression. This information is exploited and a single identity esti-
mation network (see Fig. 6.2) is used to impose the estimation of common identity
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parameters p̂ (shape α, appearance β) for all M frames. This way, a hard constraint
on p̂ is modeled by design. More precisely, given the frame-specific low-level features
obtained by the Siamese networks two additional convolution layers are applied to
extract medium-level features. The resulting M medium-level feature maps are fused
into a single multi-frame feature map via average pooling. Note that the average pool-
ing operation allows us to handle a variable number of inputs. As such, monocular or
multi-view reconstruction can be performed at test time, as demonstrated in Sec. 6.3.
This pooled feature map is then fed to an identity parameter estimation network that
is based on convolution layers, ReLU, and fully connected layers.

6.2.5 Loss Functions

Let x = (p, Θ) denote the regressed parameters p as well as the learnable network
weights Θ = (Θs, Θa, r̄). Note, x is fully learned during training, whereas the network
infers only p at test time. Here, p is parameterized by the trainable weights of the
network. To measure the reconstruction quality during mini-batch gradient descent,
the following loss function is employed:

L(x) = λpho·Lpho(x) + λlan·Llan(x)+ (6.8)

λsmo·Lsmo(x) + λspa·Lspa(x) + λble·Lble(x) , (6.9)

which is based on two data terms (6.8) and three regularization terms (6.9). The
weights λ• are determined empirically and kept fixed in all experiments as λpho =

1.6/|V̄ |, λlan = 4.7, λsmo = 0.001, λspa = 1e−7, λble = 1e−8.

multi-frame photometric consistency : One of the key contributions of
this chapter is to enforce multi-frame consistency of the shared identity parameters
p̂. This can be thought of as solving model-based non-rigid structure-from-motion
(NRSfM) on each of the multi-frame inputs during training. This is done by imposing
the following photometric consistency loss with respect to the frame F[ f ]:

Lpho(x) =
M

∑
f=1

|V̂ |

∑
i=1

∣∣∣∣F[ f ](ui(p[ f ], p̂))− ci(p[ f ], p̂)
∣∣∣∣2

2 .

Here, with abuse of notation, ui is used to denote the projection of the i-th vertex
into screen space, ci is its rendered color, and V̂ is the set of all visible vertices, as
determined by back-face culling in the forward pass. Note that the identity related
parameters p̂ are shared across all frames in F . This enables a better disentanglement
of illumination and appearance, since only the illumination and head pose are allowed
to change across the frames.

multi-frame landmark consistency : To better constrain the problem, a
sparse 2D landmark alignment is also employed. This is based on a set of 66 automati-
cally detected 2D feature points s[ f ]

i ∈ R2 (Saragih et al., 2011) in each frame F[ f ]. Each

feature point s[ f ]
i comes with a confidence c[ f ]

i . The following loss is used:

Llan(x) =
M

∑
f=1

66

∑
i=1

c[ f ]
i ·

∣∣∣∣s[ f ]
i − usi(p

[ f ], p̂)
∣∣∣∣2

2 .
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Here, usi ∈ R2 is the 2D position of the i-th mesh feature point in screen space. Sliding
correspondences are used, akin to Chapter 5. Note, the position of the mesh landmarks
depends both on the predicted per-frame parameters p[ f ] and the shared identity
parameters p̂.

geometry smoothness on graph-level : A linearized membrane energy (Botsch
and Sorkine, 2008) is employed to define a first-order geometric smoothness prior on
the displacements ti(p̂) = gi(p̂)− ḡi of the deformation graph nodes

Lsmo(x) =
|G|

∑
i=1

∑
j∈Ni

∣∣∣∣ti(p̂)− tj(p̂)
∣∣∣∣2

2 , (6.10)

where Ni is the set of nodes that have a skinned vertex in common with the i-th
node. Note, the graph parameterizes the geometric identity, i.e., it only depends on
the shared identity parameters p̂. This term enforces smooth deformations of the
parametric shape and leads to higher quality reconstruction results.

appearance sparsity : In the learned face model, skin appearance is parameter-
ized on a per-vertex basis. To further constrain the underlying intrinsic decomposition
problem, a local per-vertex spatial reflectance sparsity prior is employed as in Bonneel
et al. (2014) and Meka et al. (2016), defined as follows

Lspa(x) =
|V|

∑
i=1

∑
j∈Ni

wij ·
∣∣∣∣ri(p̂)− rj(p̂)

∣∣∣∣p
2 . (6.11)

The per-edge weights wij model the similarity of neighboring vertices in terms of
chroma and are defined as

wij = exp
{[
− η · ||hi(p̂old)− hj(p̂old)||2

]}
.

Here, hi is the chroma of ci and p̂old denotes the parameters predicted in the last
forward pass. Hyperparameters are fixed as η = 80 and p = 0.9.

expression regularization : To prevent over-fitting and enable a better learn-
ing of the identity basis, the magnitude of the expression parameters δ is regularized:

Lble(x) =
M

∑
f=1

|δ[ f ]|

∑
u=1

(δ[ f ]
u

σδu

)2
. (6.12)

Here, δ[ f ]
u is the u-th expression parameter of frame f , and σδu is the corresponding

standard deviation computed based on Principal Component Analysis (PCA).

6.3 results

Fig. 6.4 shows qualitative results reconstructing geometry, reflectance and scene il-
lumination from monocular images. As the model is trained on a large corpus of
multi-frame images, it generalizes well to different ethnicities, even in the presence
of facial hair and makeup. The networks are implemented and trained in Tensor-
Flow (Abadi et al., 2015). The expression model is first pretrained and then the full
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Figure 6.4: The proposed approach produces high-quality monocular reconstructions of facial
geometry, reflectance and illumination by learning an optimal model from in-the-wild data.
This enables reconstruction of facial hair and makeup.

Figure 6.5: Monocular vs. multi-frame reconstruction. For clarity, all results are shown with
a frontal pose and neutral expression. Multi-frame reconstruction improves consistency and
quality especially in regions which are occluded in one of the images.
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Figure 6.6: Comparison to Tewari et al. (2018), the method presented in Chapter 5. Multi-frame
based training improves illumination estimation. The proposed approach also outperforms
that of Tewari et al. (2018) under large poses.

network is trained end-to-end. After convergence, the network is fine-tuned using
a larger learning rate for reflectance. This training strategy improves the capture of
facial hair, makeup and eyelids, and thus the model’s generalization. The method can
also be applied to multi-frame reconstruction at test time. Fig. 6.5 shows that feeding
two images simultaneously improves the consistency and quality of the obtained 3D
reconstructions when compared to the monocular case. Please note that the approach
can successfully separate identity and reflectance due to the novel Orthogonal Comple-
ment Layer (OCL). For the experiments shown in the following sections, the network
is trained on M = 4 multi-frame images and only one input image is used at test time,
unless stated otherwise. The networks take around 30 hours to train. Inference takes
only 5.2 ms on a Titan Xp.

6.3.1 Comparisons to Monocular Approaches

State-of-the-art monocular reconstruction approaches that rely on an existing face
model (Tewari et al., 2017) (presented in Chapter 4), or synthetically generated
data (Richardson et al., 2017; Sela et al., 2017) during training do not generalize
well to faces outside the span of the model. As such, they can not handle facial hair,
makeup, and unmodeled expressions, see Fig. 6.7. Since the models in this chapter are
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Figure 6.7: Comparison to Richardson et al. (2017), Sela et al. (2017), and Tewari et al. (2017).
These approaches are constrained by the (synthetic) training corpus and/or underlying 3D
face model. The optimal learned model of this chapter produces more accurate results, since it
is learned from a large corpus of real images.

Table 6.1: Geometric reconstruction error on the BU-3DFE dataset (Yin et al., 2006). The
proposed approach produces higher quality results than the current state of the art. The
approach of Tewari et al. (2017) does not generalize to the ±45 degree head poses contained
in this dataset.

Ours
Tewari et al. (2018)

Fine

Tewari et al. (2018)

Coarse
Tewari et al. (2017)

Train M = 1 M = 2 M = 4 M = 2 M = 4

Test M = 1 M = 1 M = 1 M = 2 M = 2

Mean 1.92 mm 1.86 mm 1.79 mm 1.85 mm 1.78mm 1.83 mm 1.81 mm 3.22 mm

SD 0.48 mm 0.47 mm 0.45 mm 0.50 mm 0.45 mm 0.39 mm 0.47 mm 0.77 mm

Table 6.2: Geometric error on FaceWarehouse (Cao et al., 2013). The proposed approach
competes with Tewari et al. (2018) and Tewari et al. (2020d), and outperforms Tewari et al.
(2017) and Kim et al. (2018b). Note, in contrast to these approaches, the proposed approach
does not require a precomputed face model during training, but learns it from scratch. It
comes close to the off-line high-quality approach of Garrido et al. (2016a), while being orders
of magnitude faster and not requiring feature detection.

Ours Others

Learning Learning Optimization Hybrid

Tewari et al. (2018)

Fine

Tewari et al. (2018)

Coarse
Tewari et al. (2017) Kim et al. (2018b) Garrido et al. (2016a) Tewari et al. (2020d)

Mean 2.01mm 1.84 mm 2.03 mm 2.19 mm 2.11 mm 1.59mm 1.87 mm

SD 0.41 mm 0.38 mm 0.52 mm 0.54 mm 0.46 mm 0.30 mm 0.42 mm

Time 5.2 ms 4ms 4ms 4ms 4ms 120 s 110 ms
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Figure 6.8: In contrast to Tran and Liu (2018a), the proposed approach estimates better
geometry and separates reflectance from illumination. Note, the approach of Tran and Liu,
2018a does not disentangle reflectance and shading.
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Figure 6.9: In contrast to the texture model of Booth et al. (2017) that contains shading, the
proposed approach estimates a reflectance model.

trained on in-the-wild videos, these variations are captured leading to better general-
ization in such challenging cases. The approach is also compared to the refinement
based approaches of Tewari et al. (2018) (presented in Chapter 5, and Tran and Liu
(2018a). Tran and Liu (2018a) (see Fig 6.8) refine a 3DMM (Blanz and Vetter, 1999)
based on in-the-wild data. The proposed approach produces better geometry without
requiring a 3DMM and, contrary to Tran and Liu (2018a), it also separates albedo
from illumination. The approach of Tewari et al. (2018), presented in Chapter 5 (see
Fig 6.6), requires a 3DMM (Blanz and Vetter, 1999) as input and only learns shape
and reflectance correctives. Since they learn from monocular data, their correctives are
prone to artifacts, especially when occlusions or extreme head poses exist. In contrast,
the proposed approach learns a complete model from scratch based on multi-frame
supervision, thus improving robustness and reconstruction quality. Comparisons to
Booth et al., 2017 can be seen in Fig. 6.9. Booth et al., 2017 only learn a texture model.
In contrast, the proposed approach learns a model that separates albedo from illumi-
nation. Besides, their method needs a 3DMM (Blanz and Vetter, 1999) as initialization,
while the proposed approach starts from a single constantly colored mesh and learns
all variation modes (geometry and reflectance) from scratch.

6.3.2 Quantitative Results

The reconstructions are quantitatively evaluated on a subset of the BU-3DFE dataset (Yin
et al., 2006), see Tab. 6.1. This dataset contains images and corresponding ground
truth geometry of multiple people performing a variety of expressions. It includes
two different viewpoints. The importance of multi-frame training is evaluated in the
case of monocular reconstruction using per-vertex root mean squared error based
on a pre-computed dense correspondence map. The lowest error is achieved with
multi-view supervision during training, in comparison to monocular input data. Multi-
view supervision can better resolve depth ambiguity and thus learn a more accurate
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model. In addition, the multi-view supervision also leads to a better disentanglement
of reflectance and shading. The advantage of multi-frame input at test time is also
evaluated. When both images corresponding to a shape are given, consistently better
results are obtained. Further, the estimates are better than the state-of-the-art approach
of Tewari et al. (2018), presented in Chapter 5. Since Tewari et al. (2018) refine an
existing 3DMM only using monocular images during training, it cannot resolve depth
ambiguity well. Thus, it does not improve the performance compared to their coarse
model on the ±45 degree poses of BU-3DFE (Yin et al., 2006). Similar to previous
work, monocular reconstruction is evaluated on 180 meshes of FaceWarehouse (Cao
et al., 2013), see Tab. 6.2. The approach performs similar to the 3DMM-based state
of the art. Note that a precomputed 3DMM is not used, but a model is learned from
scratch during training, unlike all other approaches in this comparison. For this test,
a model learned starting from an Asian mean face is employed, as FaceWarehouse
mainly contains Asians.

6.4 limitations

Figure 6.10: Limitations of the proposed approach. From top to bottom: Extreme illumination
conditions, severe occlusions by accessories, and thick facial hair.

The proposed approach still has a few limitations that can be addressed in follow-up
work, see Fig. 6.10. Overall, the approach can deal with large head poses quite well.
Still, reconstructing extreme poses is a hard task in itself that challenges all face
reconstruction techniques. Occlusions, for example, by accessories or thick facial hair
might adversely impact the reconstruction quality of our approach. Facial hair, such
as beards are modeled in the reflectance channel, and thus are not reconstructed
in a physically correct manner. Even though the multi-frame supervision approach
can obtain quite clean reflectance estimates that are free of shading, there is still a
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remaining global scale ambiguity between illumination and reflectance. As such, the
global skin tone can not be reliably disentangled from the general ambient brightness
of the illumination. Strong and colorful directional illumination outside the norm
might also harm the estimation of 3D faces. Specular reflections and cast shadows are
currently not modeled by the differentiable renderer, and thus they might be baked
into the reflectance channel. Non-standard facial shapes challenge the approach.

6.5 conclusion & discussion

This chapter proposed a self-supervised approach for joint multi-frame learning of a
face model and a 3D face reconstruction network. The model is learned from scratch
based on a large corpus of in-the-wild video clips without available ground truth.
This chapter showed for the first time that 2D data could be used to learn morphable
models. While the approach required the use of an expression model, recent work (B R
et al., 2021b) has shown that all modes of the morphable model can be learned from
videos and images.

The methods presented in Chapters. 4- 6 show entirely new ways of reconstructing
3D faces from images, and jointly learning 3D morphable models from images and
videos. However, there are several limitations of these approaches. They do not explain
the full head, hair and torso, and in addition cannot capture the high-frequency details
due to their low dimensionality. Several approximations are made in the methods,
for example, faces are assumed to be diffuse which is not sufficient for photorealistic
rendering. However, these methods do offer very meaningful semantic control over the
reconstructions. We can independently change the identity, expressions, albedo, and
illumination in the scene. In the next chapter, we will demonstrate how to methodically
integrate the rendering and reconstruction concepts from the first three chapters with
generative adversarial networks (GANs). GANs can synthesize very high quality
portrait images, including hair, torso, and with complex global illumination effects
such as sub-surface scattering. However, they cannot be semantically controlled. The
integration of the reconstruction and rendering pipeline presented in these chapters
with GANs will result in a method which can synthesize photorealistic images with
semantic control.
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Figure 7.1: StyleRig allows for a face rig-like control over StyleGAN generated portrait images,
by translating semantic edits on 3D face meshes to the input space of StyleGAN.

StyleGAN (Karras et al., 2019a) generates photorealistic portrait images of faces with
eyes, teeth, hair and context (neck, shoulders, background), but lacks a rig-like control.
The face rig of a character is its 3D representation which includes semantic control,
such as head pose, expressions, and scene illumination. Three-dimensional morphable
face models (3DMMs) (Egger et al., 2020) on the other hand offer control over the
semantic parameters, but lack photorealism when rendered and only model the face
interior, not other parts of a portrait image (hair, mouth interior, background). This
chapter (published as Tewari et al. (2020b)) presents the first method to provide
a face rig-like control over a pretrained and fixed StyleGAN via a 3DMM. A new
rigging network, RigNet is trained between the 3DMM’s semantic parameters and
StyleGAN’s input. The network is trained in a self-supervised manner, without the
need for manual annotations. At test time, the method generates portrait images with
the photorealism of StyleGAN and provides explicit control over the 3D semantic
parameters of the face, see Fig. 7.1.

7.1 introduction

Photorealistic synthesis of portrait face images finds many applications in several fields
including special effects, extended reality, virtual worlds, and next-generation commu-
nication. During the content creation process for such applications, artist control over
the face rig’s semantic parameters, such as geometric identity, expressions, reflectance,
or scene illumination is desired. The computer vision and graphics communities have
a rich history of modeling face rigs (Li et al., 2017; Richardson et al., 2017; Sanyal
et al., 2019; Tewari et al., 2019). These models provide artist-friendly control (often
called a face rig), while navigating the various parameters of a morphable face model
(3DMM) (Blanz et al., 2003; Blanz and Vetter, 1999). Such methods are often limited
by the lack of training data, and more importantly, lack of photorealism in the final
rendering.
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Through 3D face scanning techniques high-quality face geometry datasets can be
obtained (Booth et al., 2016; Li et al., 2017). However, models derived from these
datasets are bound by the diversity of faces scanned and may limit the generalization
over the rich set of human faces’ semantic parameterization. Further, deep learning-
based models trained on in-the-wild data (Tewari et al., 2019, 2018; Tran et al., 2019)
also often rely on data-driven priors and other forms of regularization obtained from
scan-based datasets. With respect to photorealism, perceptual losses recently showed
an improvement of face modeling quality (Deng et al., 2019; Tran et al., 2019) over
existing methods. However, they still do not engender photorealistic face renders.
Mouth interiors, hair, or eyes, let alone image background are often not modeled by
such approaches. Generative Adversarial Networks (GANs) (Goodfellow et al., 2014)
have lately achieved photorealism (Isola et al., 2017; Karras et al., 2018), especially
for faces. Karras et al. (2018) show that through a progressive growth of a GAN’s
generator and discriminator, one can better stabilize and speed up training. When
trained on the CelebA-HQ (Karras et al., 2018) dataset, this yields a remarkable level
of photorealism for faces. Their approach also shows how photorealistic face images of
non-existent people can be sampled from the learned GAN distribution. Building on
Karras et al. (2018), StyleGAN (Karras et al., 2019a) uses ideas from the style transfer
literature (Gatys et al., 2016; Selim et al., 2016) and proposes an architecture capable
of disentangling various face attributes. Promising results of control over various
attributes, including coarse (hair, geometry), medium (expressions, facial hair) and
fine (color distribution, freckles) attributes were shown. However, these controllable
attributes are not semantically well defined, and contain several similar yet entangled
semantic attributes. For example, both coarse and medium level attributes contain face
identity information. In addition, the coarse levels contain several entangled attributes
such as face identity and head pose.

This chapter presents a novel solution to rig StyleGAN using a semantic parameter
space for faces. The presented approach brings the best of both worlds: the controllable
parametric nature of existing morphable face models (Sanyal et al., 2019; Tewari et al.,
2019), and the high photorealism of generative face models (Karras et al., 2018, 2019a).
A fixed and pretrained StyleGAN is employed without the need for more data for
training. The focus is to provide computer graphics style rig-like control over the vari-
ous semantic parameters. The novel training procedure is based on a self-supervised
two-way cycle consistency loss that is empowered by the combination of a face re-
construction network with a differentiable renderer. This allows for measuring the
photometric rerendering error in the image domain and leads to high quality results.
The chapter demonstrates compelling results of the method, including interactive
control of StyleGAN generated imagery as well as image synthesis conditioned on
well-defined semantic parameters.

7.2 overview

StyleGAN (Karras et al., 2019a) can be seen as a function that maps a latent code
w ∈ Rl to a realistic portrait image Iw = StyleGAN(w) ∈ R3×w×h of a human
face. While the generated images are of very high quality and at a high resolution
(w = h = 1024), there is no semantic control over the generated output, such as the
head pose, expression, or illumination. StyleRig allows us to obtain a rig-like control
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over StyleGAN-generated facial imagery in terms of semantic and interpretable
control parameters (Sec. 7.7). The following sections explain the semantic control space
(Sec. 7.3), training data (Sec. 7.4), network architecture (Sec. 7.5) and loss function
(Sec. 7.6).

7.3 semantic rig parameters

The proposed approach uses a parametric face model to achieve an explicit rig-like
control of StyleGAN-generated imagery based on a set of semantic control parameters.
The control parameters are a subset of p = (α,β, δ,γ, R, t) ∈ R f , which describes
the facial shape α ∈ R80, skin reflectance β ∈ R80, facial expression δ ∈ R64, scene
illumination γ ∈ R27, head rotation R ∈ SO(3), and translation t ∈ R3, with the
dimensionality of p being f = 257. The control space for the facial shape α and
skin reflectance β is defined using two low-dimensional affine models that have been
computed via Principal Component Analysis (PCA) based on 200 (100 male, 100
female) scans of human faces (Blanz and Vetter, 1999). The output of this model is
represented by a triangle mesh with 53k vertices and per-vertex color information.
The control space for the expression δ is given in terms of an additional affine model
that captures the expression dependent displacement of the vertices. This model is
obtained by applying PCA to a set of blendshapes (Alexander et al., 2009; Cao et al.,
2013) which have been transferred to the topology of the shape and reflectance models.
The affine models for shape, appearance, and expression cover more than 99% of the
variance in the original datasets. Illumination γ is modeled based on three bands of
spherical harmonics per color channel leading to an additional 27 parameters.

7.4 training corpus

Besides the parametric face model, the proposed approach requires a set of face
images Iw and their corresponding latent codes w as training data. To this end,
N = 200k latent codes w ∈ Rl are sampled and the corresponding photorealistic
face images Iw = StyleGAN(w) are generated using a pretrained StyleGAN network.
The l = 18× 512 dimensional W+ latent space is used, which has been shown to
be more disentangled than the W space (Abdal et al., 2019; Karras et al., 2019a).
Here, 18 latent vectors of size 512 are used at different resolutions. Each training
sample is generated by combining up to 5 separately sampled latent vectors, similar
to the mixing regularizer in Karras et al. (2019a). This allows the networks to reason
independently about the latent vectors at different resolutions. Given these (w, Iw)

pairs, the approach can be trained in a self-supervised manner without requiring any
additional image data or manual annotations.

7.5 network architecture

Given a latent code w ∈ Rl that corresponds to an image Iw, and a vector p ∈ R f of
semantic control parameters, the goal is to learn a function that outputs a modified
latent code ŵ = RigNet(w, p). The modified latent code ŵ should map to a modified
face image Iŵ = StyleGAN(ŵ) that obeys the control parameters p. One example
would be changing the rotation of the face in an image such that it matches a given
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Figure 7.2: StyleRig enables a rig-like control over StyleGAN-generated facial imagery based
on a learned rigger network (RigNet). To this end, a self-supervised training approach is
employed based on a differentiable face reconstruction (DFR) and a neural face renderer
(StyleGAN). The DFR and StyleGAN networks are pretrained and their weights are fixed, only
RigNet is trainable. The consistency and edit losses are defined in the image domain using a
differentiable renderer.

Figure 7.3: Differentiable Face Reconstruction. Visualized are (image, reconstruction) pairs.
The network, however, only gets the latent vector corresponding to the images as input.

target rotation, while maintaining the facial identity, expression, and scene illumination
(see Sec. 7.7 for examples). Separate RigNet networks are trained for the different
modes of control i.e., pose, expressions and illumination. RigNet is implemented
based on a linear two-layer perceptron (MLP). This chapter proposes a self-supervised
training of RigNet based on two-way cycle consistency losses and a differentiable face
reconstruction (DFR) network. Fig. 7.2 shows an overview of the architecture. The
network combines several components that fulfill specific tasks.

differentiable face reconstruction One key component is a pretrained
differentiable face reconstruction (DFR) network. This parameter regressor is a function
F : Rl → R f that maps a latent code w to a vector of semantic control parameters
pw = F (w). In practice, F is modeled using a three layer MLP with ELU activations
after every intermediate layer, and is trained in a self-supervised manner. This requires
a differentiable render layer R : R f → R3×w×h that takes a face parameter vector p as
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Figure 7.4: Change of latent vectors at different resolutions. Coarse vectors are responsible for
rotation (left), medium for expressions (middle), medium and fine for illumination (right).

input, converts it into a 3D mesh and generates a synthetic rendering Sw = R(pw) of
the face1. F is then trained using a rerendering loss:

Lrender(Iw, p) = Lphoto(Iw, p) + λlandLland(Iw, p) . (7.1)

The first term is a dense photometric alignment loss:

Lphoto(Iw, p) =
∥∥M� (Iw −R

(
p)
))∥∥2

2 .

Here, M is a binary mask with all pixels where the face mesh is rendered set to 1 and
� is element-wise multiplication. A sparse landmark loss is also used

Lland(Iw, p) =
∥∥LIw − LM

∥∥2
2 ,

where LIw ∈ R66×2 are 66 automatically computed landmarks (Saragih et al., 2011)
on the image Iw, and LM are the corresponding landmark positions on the rendered
reconstructed face. The landmark vertices on the mesh are manually annoted before
training. λland is a fixed weight used to balance the loss terms. In addition, statistical
regularization is also employed on the parameters of the face model, as done in MoFA
(Chapter 4. After training, the weights of F are fixed. Fig. 7.3 shows some results of
the reconstructions obtained by DFR.

rignet encoder The encoder takes the latent vector w as input and linearly
transforms it into a lower dimensional vector l of size 18× 32. Each sub-vector wi
of w of size 512 is independently transformed into a sub-vector li of size 32, for all
i ∈ {0, . . . , 17}.

rignet decoder The decoder tranforms l and the input control parameters p into
the output ŵ. Similar to the encoder, independent linear decoders are used for each li.
Each layer first concatenates li and p, and transforms it into di, for all i ∈ {0, . . . , 17}.
The final output is computed as ŵ = d + w.

7.6 self-supervised training

The goal is to train RigNet such that a subset of parameters can be injected into a
given latent code w. For example, one might want to inject a new head pose, while

1 Point-based rendering of the mesh vertices is used.
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maintaining the facial identity, expression, and illumination in the original image
synthesized from w. The following loss function is employed for training:

Ltotal = Lrec + Ledit + Lconsist . (7.2)

It consists of a reconstruction loss Lrec, an editing loss Ledit, and a consistency loss
Lconsist. Since there is no ground truth for the desired modifications (the training cor-
pus only contains one image per person), self-supervision is employed based on cycle-
consistent editing and consistency losses. Ltotal is optimized based on AdaDelta (Zeiler,
2012) with a learning rate of 0.01. In the following, more details are provided.

reconstruction loss RigNet is designed such that it reproduces the latent
codes in the training corpus. Formally, the goal is to ensure RigNet(w,F (w)) = w.
This is enforced with the following `2-loss:

Lrec =
∥∥RigNet(w,F (w))−w

∥∥2
2 .

This constraint anchors the learned mapping at the right location in the latent space.
Without this constraint, learning the mapping is underconstrained, which leads to a
degradation in the image quality (see Sec. 7.7). Since F is pretrained and not updated,
the semantics of the control space are enforced.

cycle-consistent per-pixel editing loss Given two latent codes, w and v
with corresponding images Iw and Iv, the semantic parameters of v are transferred
to w during training. First, the target parameter vector pv = F (v) is extracted using
the differentiable face reconstruction network. Next, a subset of the parameters of pv

(the ones which will be modified) is injected into the latent code w to yield a new
latent code ŵ = RigNet(w, pv), so that Iŵ = StyleGAN(ŵ) (ideally) corresponds to
the image Iw, modified according to the subset of the parameters of pv. For example,
ŵ might retain the facial identity, expression and scene illumination of w, but should
perform the head rotation specified in pv.

Since there is no access to the ground truth for such a modification, i.e., the image
Iŵ is unknown, supervision based on a cycle-consistent editing loss is employed. The
editing loss enforces that the latent code ŵ contains the modified parameters. This is
enforced by mapping from the latent to the parameter space p̂ = F (ŵ). The regressed
parameters p̂ should have the same rotation as pv. This could be directly measured in
the parameter space but this has been shown to not be very effective (Tewari et al.,
2017).

Instead, a rerendering loss is employed similar to the one used for differentiable
face reconstruction. The original target parameter vector pv is taken and its rotation
parameters are replaced with the regressed rotation from p̂, resulting in pedit. This can
now be compared to Iv using the rerendering loss (see Eq. 7.1):

Ledit = Lrender(Iv, pedit) .

No regularization terms are used here. Such a loss function ensures that the rotation
component of pedit aligns with Iv, which is the desired output. The component of pv

which is replaced from p̂ depends on the property being changed. It could either be
the pose, expression, or illumination parameters.
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cycle-consistent per-pixel consistency loss In addition to the editing
loss, consistency of the parameters that should not be changed by the performed edit
operation is enforced. The regressed parameters p̂ should have the same unmodified
parameters as pw. Similarly as above, this is imposed in terms of a rerendering loss.
The original parameter vector pw is taken and all parameters that should not be
modified by the regressed ones are replaced from p̂, resulting in pconsist. In the case of
modifying rotation values, the parameters that should not be changed are expression,
illumination as well as identity parameters (shape and skin reflectance). This leads to
the loss function:

Lconsist = Lrender(Iw, pconsist) .

siamese training Since there are two sampled latent codes w and v during
training, the same operations are also performed in a reverse order, i.e., in addition to
injecting pv into w, pw is also injected into v. To this end, a Siamese network is used
with two towers that have shared weights. This results in a two-way cycle consistency
loss.

Figure 7.5: Mixing between source and target images generated by StyleGAN. For StyleGAN,
the latent vectors of the source samples (rows) are copied to the target vectors (columns).
StyleRig allows us to mix semantically meaningful parameters, i.e., head pose, expressions
and scene illumination. These parameters can be copied over from the source to target images.

7.7 results

At test time, StyleRig allows control over the pose, expression, and illumination
parameters of StyleGAN generated images. The efficacy of the approach is demon-
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strated with three applications: Style Mixing (7.7.2), Interactive Rig Control (7.7.3) and
Conditional Image Generation (7.7.4).

7.7.1 Training Details

The hyperparameters are empirically determined as λland = 17.5 for pose editing,
λland = 100.0 for expression editing and λland = 7.8 for illumination editing networks.
The same hyperparameters are used for both the editing and consistency losses. For
networks with simultaneous control, the loss functions for the different parameters
are weighed differently. Rotation losses are weighted by 1.0, expression by 1000.0 and
illumination by 0.001. As before, the weights for both the editing and the consistency
losses are equal.

7.7.2 Style Mixing

Karras et al. (2019a) show StyleGAN vectors at different scales that correspond to
different styles. To demonstrate style mixing, latent vectors at certain resolutions are
copied from a source to a target image, and new images are generated. As shown in
Fig. 7.5, coarse styles contain information about the pose as well as identity, medium
styles include information about expressions, hair structure, and illumination, while
fine styles include the color scheme of the source. The proposed approach allows
for a similar application of mixing, but with significantly more complete control
over the semantic parameters. To generate images with a target identity, the source
parameters of the face rig are transferred to the target latent, resulting in images with
different head poses, expressions and illumination. This rig-like control is not possible
via the mixing strategy of Karras et al. (2019a) which entangles multiple semantic
dimensions in the mixed results. Fig. 7.4 analyzes how the latent vectors of StyleGAN
are transformed by StyleRig. The figure shows the average change and variance (the
change is measured as `2 distance) of StyleGAN latent vectors at all resolutions,
computed over 2500 mixing results. As expected, coarse latent code vectors are mainly
responsible for rotation. Expression is controlled both by coarse and medium level
latent codes. The light direction is mostly controlled by the medium resolution vectors.
However, the fine latent vector also plays an important role in the control of the global
color scheme of the images. Rather than having to specify which vectors need to
change and by how much, StyleRig recovers this mapping in a self-supervised manner.
Fig. 7.5 shows that the approach can also preserve scene context like background, hair
styles and accessories better.

7.7.3 Interactive Rig Control

Since the parameters of the 3DMM can also be controlled independently, StyleRig
allows for explicit semantic control of StyleGAN generated images. A user interface
is developed where a user can interact with a face mesh by interactively changing
its pose, expression, and scene illumination parameters. These updated parameters
are then fed into RigNet to generate new images at interactive frame rates (∼ 5 fps).
Fig. 7.1 shows the results for various controls over StyleGAN images: pose, expression,
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Figure 7.6: Distribution of face model parameters in the training data. x-axis shows the face
model parameters for rotation, expression and illumination from left-right. y-axis shows the
mean and variance of the parameters computed over 20k training samples.

and illumination edits. The control rig carries out the edits in a smooth interactive
manner.

analysis of stylerig The interactive editor allows for easy inspection of the
trained networks. While the network does a good job at most controls, some expressiv-
ity of the 3D parametric face model is lost. That is, RigNet cannot transfer all modes of
parametric control to similar changes in the StyleGAN generated images. For example,
in-plane rotation of the face mesh is ignored. Similarly, many expressions of the face
mesh do not translate well into the resultant generated images. These problems can be
attributed to the bias in the images StyleGAN has been trained on. To analyze these
modes, the distribution of face model parameters in the training data, generated from
StyleGAN, is visualized in Fig. 7.6. In-plane rotations (rotation around the Z-axis) are
not present in the data, due to the preprocessing pipeline of StyleGAN. In addition,
most generated images consist of either neutral or smiling/laughing faces. These
expressions can be captured using up to three blendshapes. Even though the face rig
contains 64 vectors, the proposed method cannot control them well because of the
biases in the distribution of the training data. Similarly, the lighting conditions are
also limited in the dataset. There are larger variations in the global color and azimuth
dimensions, as compared to the other dimensions. The proposed approach provides
an intuitive and interactive user interface which allows us to inspect not only StyleRig,
but also the biases present in StyleGAN.

7.7.4 Conditional Image Generation

Explicit and implicit control of a pretrained generative model allows us to turn it into a
conditional one. The pose, expression, or illumination inputs to RigNet can be simply
fixed in order to generate images which correspond to the specified parameters, see
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Figure 7.7: Explicit control over the 3D parameters allows us to turn StyleGAN into a condi-
tional generative model.

Fig. 7.7. This is a straightforward way to convert an unconditional generative model
into a conditional model, and can produce high-resolution photorealistic results. It
is also very efficient, as it takes less than 24 hours to train StyleRig, while training
a conditional generative model from scratch should take at least as much time as
StyleGAN, which takes more than 41 days to train (both numbers are for an Nvidia
Volta GPU).

7.7.5 Comparisons to Baseline Approaches

In the following, StyleRig is compared with several baseline approaches.

“steering” the latent vector Inspired by Jahanian et al. (2019), a network
architecture is designed which tries to steer the StyleGAN latent vector based on the
change in parameters. This network architecture does not use the latent vector w as
an input, and thus does not require an encoder. The inputs to the network are the
delta in the face model parameters, with the output being the delta in the latent vector.
In the settings of StyleRig, such an architecture does not lead to desirable results with
the network not being able to deform the geometry of the faces, see Fig. 7.8. Thus, the
semantic deltas in latent space should also be conditional on the the latent vectors, in
addition to the target parameters.

different loss functions As explained in Eq. 4.7, the loss function consists
of three terms. For the first baseline, the reconstruction loss is switched off. This can
lead to the output latent vectors drifting from the space of StyleGAN latent codes,
thus resulting in non-face images. Next, the consistency loss is switched off. This loss
term enforces the consistency of all face model parameters, other than the one being
changed. Without this term, changing one dimension, for example the illumination,
also changes others such as the head pose. The final model ensures the desired edits
with consistent identity and scene information. Note that switching off the editing
loss is not a good baseline, as it would not add any control over the generator.
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Figure 7.8: Baseline comparisons. The full approach obtains the highest quality results.
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Figure 7.9: RigNet can also control pose, expression, and illumination parameters simultane-
ously. These parameters are transferred from source to target images, while the identity in the
target images is preserved.

7.7.6 Simultaneous Parameter Control

In addition to controlling different parameters independently, they can also be con-
trolled simultaneously. To this end, RigNet is trained such that it receives target pose,
expression, and illumination parameters as input. For every (w, v) training code vector
pair, three training samples are sampled. Here, one out of the three parameters (pose,
expression or illumination) is changed in each sample. The loss function defined in
Eq. 4.7 is used for each such sample. Thus, RigNet learns to edit each dimension of
the control space independently, while also being able to combine the edits using the
same network. Fig. 7.9 shows mixing results where pose, expression and illumination
parameters are transferred from the source to target images.

7.8 limitations

While this chapter demonstrated high-quality semantic control of StyleGAN-generated
facial imagery, the approach is still subject to a few limitations that can be addressed
in follow-up work. In the analysis sections, the chapter already discussed that StyleRig
is not able to exploit the full expressivity of the parametric face model, see Fig. 7.10.
This provides a nice insight into the inner workings of StlyeGAN and allows us to
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Figure 7.10: Limitations: Transformations not present in the training data cannot be produced.
Thus, the proposed method cannot handle in-plane rotation and asymmetrical expressions.

introspect the biases it learned. In the future, this might lead the ways to designing
better generative models. The approach is also limited by the quality of the employed
differentiable face reconstruction network. Currently, this model does not allow us to
reconstruct fine-scale details, thus we cannot explicitly control them. Finally, there is
no explicit constraint that tries to preserve parts of the scene that are not explained
by the parameteric face model, for example, the background or hair style. Therefore,
these parts cannot be controlled and might change when editing the parameters.

7.9 conclusion

This chapter proposed StyleRig, a novel approach that provides a face rig-like con-
trol over a pretrained and fixed StyleGAN network. The network is trained in a
self-supervised manner and does not require any additional images or manual anno-
tations. At test time, the method generates images of faces with the photorealism of
StyleGAN, while providing explicit control over a set of semantic control parameters.
The combination of computer graphics control with deep generative models enables
many exciting editing applications, and provides insights into the inner workings of
the generative model.

While this method can only edit images synthesized by StyleGAN, an image editing
application would require editing an existing image. This is not trivial with the
proposed method as existing real images will have to be projected onto the latent
space of StyleGAN. The next chapter will present a method which can faithfully
project real images onto the StyleGAN latent space, ensuring good reconstruction and
editing of the image.
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Figure 8.1: This chapter proposes an approach for embedding portrait images in the latent
space of StyleGAN (Karras et al., 2019a) (visualized as “Projection“) which allows for intuitive
photo-real semantic editing of the head pose, facial expression, and scene illumination using
StyleRig (Tewari et al., 2020b), presented in Chapter 7. Our optimization-based approach
allows us to achieve higher quality editing results compared to the existing embedding
method Image2StyleGAN (Abdal et al., 2019). Image from Shen et al. (2016).

Editing of portrait images is a very popular and important research topic with a large
variety of applications. For ease of use, control should be provided via a semantically
meaningful parameterization that is akin to computer animation controls. The vast
majority of existing techniques do not provide such intuitive and fine-grained control,
or only enable coarse editing of a single isolated control parameter. The method pre-
sented in the previous chapter allows for high-quality semantically controlled editing,
however only on synthetically created StyleGAN images. This chapter, published as
Tewari et al. (2020a), presents the first approach for embedding real portrait images
in the latent space of StyleGAN, which allows for intuitive editing of the head pose,
facial expression, and scene illumination in the image, see Fig. 8.1. Semantic editing
in parameter space is achieved based on StyleRig, a pretrained neural network that
maps the control space of a 3D morphable face model to the latent space of the GAN
(Chapter 7). A novel hierarchical non-linear optimization problem is designed to obtain
the embedding. An identity preservation energy term allows spatially coherent edits
while maintaining facial integrity. The presented approach (PIE) runs at interactive
frame rates and thus allows the user to explore the space of possible edits.

8.1 introduction

Portrait images, showing mainly the face and upper body of people, are among the
most common and important photographic depictions. We look at them to emotion-
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ally connect with friends and family, we use them to best present ourselves in job
applications and on social media, they remind us of memorable events with friends,
and photographs of faces are omnipresent in advertising. Nowadays, tools to compu-
tationally edit and post-process photographs are widely available and heavily used.
Professional and hobby photographers use them to bring out the best of portrait and
social media photos, as well as of professional imagery used in advertising. Photos
are often post-processed with the purpose to change the mood and lighting, to create
a specific artistic look and feel, or to correct image defects or composition errors that
only become apparent after the photo has been taken. Today, commercial software1 or
recent research software (Gatys et al., 2016; Luan et al., 2017) offers a variety of ways
to edit the color or tonal characteristics of photos. Some tools even enable the change
of visual style of photos to match certain color schemes (Luan et al., 2017; Shih et al.,
2014), or to match a desired painterly and non-photo-realistic style (Gatys et al., 2016;
Selim et al., 2016). In many cases, however, edits to a portrait are needed that require
more complex and high-level modifications, for example, modifying head posture,
smile or scene illumination after the capture. Enabling such edits from a single pho-
tograph is an extremely challenging and underconstrained problem. This is because
editing methods need to compute reliable estimates of 3D geometry of the person and
lighting in the scene. Moreover, they need to photo-realistically synthesize modified
images of the person and background in a perspectively correct parallax-respecting
manner, while inpainting disoccluding regions.

For ease of use, editing methods should use semantically meaningful parameteriza-
tions, which for the rest of the paper means the following: Head pose, face expression
and scene lighting should be expressed as clearly disentangled and intuitive variables
akin to computer animation controls, such as coordinates and angles, blendshape
weights, or environment map parameterizations. Existing methods to edit human
portrait imagery at best achieve parts of these goals. Some model-based methods to
realistically edit human expression (Thies et al., 2016a, 2019) and head pose (Kim et al.,
2018a) fundamentally require video input and do not work on single images. Other
editing approaches are image-based and cannot be controlled by intuitive parametric
controls (Averbuch-Elor et al., 2017; Geng et al., 2018; Siarohin et al., 2019; Wang
et al., 2019b; Zakharov et al., 2019), only enable editing of a single semantic parameter
dimension, for example, scene illumination (Meka et al., 2019; Sun et al., 2019; Zhou
et al., 2019), or do not photo-realistically synthesize some important features such as
hair (Nagano et al., 2018).

Recently, generative adversarial neural networks, such as StyleGAN (Karras et al.,
2019a), were trained on community face image collections to learn a manifold of face
images. They can be sampled to generate impressive photo-realistic face portraits, even
of people not existing in reality. However, their learned parameterization entangles
important face attributes (most notably identity, head pose, facial expression, and
illumination), which thus cannot be independently and meaningfully controlled in the
output. As a first step towards semantically meaningful editing, StyleRig (Tewari et al.,
2020b), the method presented in Chapter 7, described a neural network that maps
the parameters of a 3D morphable face model (3DMM) (Blanz and Vetter, 1999) to a
pretrained StyleGAN for face images. However, while the results show disentangled

1 For example: www.adobe.com/Photoshop

www.adobe.com/Photoshop
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control of face images synthesized by a GAN, they do not allow for editing real
portrait photos.

On the other hand, some approaches have tried to embed real images in the
StyleGAN latent space. Abdal et al. (2019, 2020a) demonstrate high-quality embedding
results, which are used to perform edits such as style or expression transfer between
two images, latent space interpolation for morphing, or image inpainting. However,
when these embeddings are used to edit the input images using StyleRig (Tewari
et al., 2020b), the visual quality is not preserved and the results often have artifacts.
High-quality parametric control of expression, pose or illumination on real images
has not yet been shown to be feasible.

This chapter therefore present the first method for embedding real portrait images
in the StyleGAN latent space which allows for photo-realistic editing that combines
all the following features: It enables photo-real semantic editing of all these properties
— head pose, facial expression, and scene illumination, given only a single in-the-wild
portrait photo as input, see Fig. 8.1. Edits are coherent in the entire scene and not
limited to certain face areas. Edits maintain perspectively correct parallax, photo-real
occlusions and disocclusions, and illumination on the entire person, without warping
artifacts in the unmodeled scene parts, such as hair. The embedding is estimated
based on a novel non-linear optimization problem formulation. Semantic editing in
parameter space is then achieved based on the pretrained neural network of StyleRig,
presented in the previous chapter, which maps the control space of a 3D morphable
face model to the latent space of StyleGAN. These semantic edits are accessible
through a simple user interface similar to established face animation control. This
chapter makes the following contributions:

• This chapter proposes a hierarchical optimization approach that embeds a
portrait image in the latent space of StyleGAN while ensuring high-fidelity as
well as editability.

• Moreover, in addition to editability of the head pose, facial expression and scene
illumination, this chapter proposes an energy function that enforces preservation
of the facial identity.

8.2 rigging stylegan-generated images

StyleGAN (Karras et al., 2019a) can synthesize human faces at an unprecedented level
of photorealism. However, their edits are defined in terms of three main facial levels
(coarse, medium and fine), with no semantic meaning attached to them. As already
covered in Chapter 7, StyleRig (Tewari et al., 2020b) attaches a semantic control for
a StyleGAN embedding, allowing edits for head pose, illumination and expressions.
The control is defined through a 3D Morphable Face Model (3DMM) (Blanz and Vetter,
1999). We recap StyleRig in the next section.

8.2.1 StyleRig in more detail

Faces are represented by a 3DMM model with m = 257 parameters

θ = (φ, ρ, α, δ, β, γ) ∈ R257 . (8.1)
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Here, (φ, ρ) ∈ R6 are the rotation and translation parameters of the head pose, where
rotation is defined using Euler angles. The vector α ∈ R80 represents the geometry
of the facial identity, while β ∈ R64 are the expression parameters. Skin reflectance is
defined by δ ∈ R80 and the scene illumination by γ ∈ R27. The basis vectors of the
geometry and reflectance models are learned from 200 facial 3D scans (Blanz and
Vetter, 1999). The expression model is learned from FaceWarehouse (Cao et al., 2013)
and the Digital Emily project (Alexander et al., 2009). Principal Components Analysis
(PCA) is used to compress the original over-complete blendshapes to a subspace of
64 parameters. Faces are assumed to be Lambertian, where illumination is modeled
using second-order spherical harmonics (SH) (Ramamoorthi and Hanrahan, 2001b).

StyleRig (Tewari et al., 2020b) allows one to semantically edit synthetic StyleGAN
images. To this end, StyleRig trains a neural network, called RigNet, which can be
understood as a function rignet(·, ·) that maps a pair of StyleGAN code v and subset
of 3DMM parameters θτ to a new StyleGAN code v̂, i.e. v̂ = rignet(v, θτ). In practice,
the 3DMM parameters are first transformed before being used in the network. With
that, Iv̂ shows the face of Iv modified according to θτ (i.e. with edited head pose, scene
lighting, or facial expression), where Iv is the StyleGAN image generated using the
latent code v. Thus, editing a synthetic image Iv amounts to modifying the component
τ in the parameter θ, and then obtaining the edited image as Iv̂ = I(rignet(v, θτ)).
Multiple RigNet models are trained, each to deal with just one mode of control (pose,
expression, lighting). Although RigNet allows for editing of facial images, it has the
major shortcoming that only synthetic images can be manipulated, rather than real
images. This is in contrast to the method presented in this chapter, where semantic
editing of real images can be performed. Different from the original RigNet design
where a differentiable face reconstruction network regresses the 3DMM parameters
from a StyleGAN code, we use a model-based face autoencoder (Tewari et al., 2017)
which takes an image as an input. This change is necessary, as we initially do not have
the StyleGAN code for the real image we want to edit.

8.3 semantic editing of real images

The key of the approach for semantic editing of real images is to embed the given
image in the StyleGAN latent space (Karras et al., 2019a), where we pay particular
attention to finding a latent encoding that is suitable for editing the image. This is crucial,
since the parameter space of the StyleGAN architecture is generally under-constrained.
For example, it has been shown that a StyleGAN trained for human faces is able to
synthesize images that show completely different content with high fidelity, such as
images of cat faces (Abdal et al., 2019) The goal is to compute embeddings which can
be edited using 3DMM parameters using StyleRig.

problem statement The image that we want to make editable will be referred to
as as I (without any subscripts or arguments), which we assume to be a given input.
Moreover, the StyleGAN code that will make image I editable will be referred to as
w, which is the desired output of our approach. As such, an energy function E(w)

will be introduced, which is minimized by solving a numerical optimization problem.
This energy function accounts for the high fidelity of the synthesized image based
on w (explained in Sec. 8.3.1), for editing-suitability (described in Sec. 8.3.2), as well
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Figure 8.2: Given a portrait input image, a StyleGAN embedding is optimized for which
allows to faithfully reproduce the image (synthesis and facial recognition terms), editing the
image based on semantic parameters such as head pose, expressions and scene illumination
(edit and invariance terms), as well as preserving the facial identity during editing (facial
recognition term). A novel hierarchical non-linear optimization strategy is used to compute
the result. StyleGAN generated images (image with edit parameters) are used to extract the
edit parameters during optimization. At “test time”, i.e. for performing portrait image editing,
the image with edit parameters is not needed. Note that the identity term is not visualized
here. Images from Shih et al. (2014).

as for consistent face identity before and after the edit (Sec. 8.3.3). The approach is
based on non-linear optimization techniques, and does not perform any learning of
network weights, which in turn means that any ground truth data of edited facial
images is not required. Several existing neural networks are used to define the energy
term, where all networks are pretrained and remain fixed throughout the optimization.
Some technical notations will be introduced now, which will allow for an additional
layer of abstraction and thereby facilitate a more comprehensive description of the
main concepts.

notation Throughout this paper w will be exclusively used to refer to the (un-
known) desired StyleGAN embedding, and v (potentially with subscripts) will be used
to refer to general StyleGAN embeddings. Note that the StyleGAN embeddings w and
v can have two different forms, where each form has a different dimensionality, which
we will describe in detail in Sec. 8.3.4. StyleGAN can be understood as a function
stylegan(·) that maps a given latent code to a portrait image. To simplify notation,
function notation I(v) := stylegan(v) is used in order to emphasize that the StyleGAN
embedding v is used to generate the image I(v). Analogously, I(·) is overloaded, so
that it can also take a 3DMM parameter θ as input. As such, I(θ) refers to an image
rendered using the face model that is parameterized by θ (Sec. 8.2.1), where differen-
tiable rendering is employed (Tewari et al., 2017). Note that this rendered image is
only defined on foreground face pixels as opposed to StyleGAN images.

The variable τ ∈ {φ, , γ} is used to indicate the user-defined facial semantic variable
that is to be edited, which in our case can be the head pose φ, facial expression β,
or illumination γ. Similarly, the complement notation τ ⊂ {φ, ρ, α, δ, β, γ} is used
to indicate all other variables, i.e., the ones that shall not be modified. With that,
the notation θτ (or θτ) is used to refer to the extraction of the τ-component (or τ-
components) of θ. Since facial editing is implemented by modifying the τ-component
of the 3DMM parameter θ, θ′ = [θτ

1 , θτ
2 ] is used to indicate that the respective τ-
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Table 8.1: Summary of notation.

Symbol Meaning

w StyleGAN embedding that we want to find

v other StyleGAN embedding(s)

θ 3DMM parameter

τ component that is to be edited (τ ∈ {φ, β, γ})
I input image that we want to edit

I(v) StyleGAN-synthesized image

I(θ) image of 3DMM rendering

θτ extraction of τ-component of θ

[θτ
1 , θτ

2 ] combine τ-components in θ1 with τ-component in θ2

θ(v), θv 3D reconstruction of 3DMM parameters from I(v)

θ(I′), θI′ 3D reconstruction of 3DMM parameters from I′

component of θ1 is replaced by the corresponding component in θ2. For example, for
τ = β,

θ1 = (φ1, ρ1, α1, δ1, 1, γ1) , and (8.2)

θ2 = (φ2, ρ2, α2, δ2, 2, γ2) , we have (8.3)

[θτ
1 , θτ

2 ] = (φ1, ρ1, α1, δ1, 2, γ1) . (8.4)

Moreover, the notation θ(v) is used to extract the 3DMM parameters from the
StyleGAN embedding v. In order to compute this, the embedding v is first used to
synthesize the image I(v) (using StyleGAN), followed by performing a 3D reconstruc-
tion based on the pretrained Model-based Face Autoencoder (MoFA) network (Tewari
et al., 2017), presented in Chapter 4. Hence, for MoFA(·) being the function that
performs 3D reconstruction for a given image by estimating the 3DMM parameters,
we define

θ(v) = MoFA(I(v)) . (8.5)

For any image I′, the short-hand notation θ(I′) = MoFA(I′) is used. Similarly as
above, θτ(v) and θτ(I′) are used to extract only the τ-component from the 3DMM
parameters. Whenever arguments of θ(·) or I(·) are fixed, i.e., the arguments are not a
variable, the short-hand notations θv = θ(v), θI′ = θ(I′), or Iv = I(v) are used. The
most important parts of the notations are summarized in Table 8.1.

objective function The optimization problem solves for w by minimizing the
energy function

E(w) = Esyn(w) + Eid(w) + Eedit(w) + Einv(w) + Erecog(w) . (8.6)

Esyn is a synthesis term enforcing the StyleGAN-synthesized image I(w) to be close
to I (Sec. 8.3.1). Eid, Eedit, Einv are face modification terms (Sec. 8.3.2) enforcing edits
to take place on the modified facial semantics while at the same time ensuring
unmodified facial semantics to remain un-edited. Erecog(w) is a face recognition term
that will be introduced in Sec. 8.3.3. A conceptual illustration of the energy function
and the overall pipeline is shown in Fig. 8.2. Next, we will discuss each term in more
detail.
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8.3.1 High-Fidelity Image Synthesis

Similarly to Image2StyleGAN (Abdal et al., 2019), the following energy term is used
that accounts for the StyleGAN-synthesized image I(w) being close to I:

Esyn(w) = λ`2‖I− I(w)‖2
2 + λp‖Φ(I)−Φ(I(w)‖2

2 . (8.7)

The first term in the energy Esyn penalizes the discrepancy between I and the synthe-
sized image in terms of the (squared) `2-norm, whereas the second term penalizes
discrepancies based on the perceptual loss (Johnson et al., 2016). The perceptual loss is
estimated on images downsampled by a factor of 4, based on `2-losses over VGG-16

layers conv1_1, conv1_2, conv3_2 and conv4_2 (Simonyan and Zisserman, 2015). The
notation Φ(·) refers to the function that downsamples a given input image and extracts
features. The scalars λ`2 and λp are the relative weights of both terms.

In principle, the energy Esyn in (8.7) could be minimized in order to obtain the
StyleGAN code w, as done in Abdal et al. (2019), and editing operations could
be performed on w. A so-obtained code vector w allows the use of StyleGAN to
obtain a highly accurate synthetic version of the input face, which is even capable of
reconstructing backgrounds with high accuracy. However, such a w is sub-optimal for
performing semantic face editing, as we later demonstrate in Fig. 8.6.

8.3.2 Face Image Editing

The synthesis term is augmented with an editing energy that is based on the StyleRig
framework (Tewari et al., 2020b), which allows for obtaining more accurate semantic
editing while preserving the non-edited attributes. Here, the StyleGAN embedding
w that is to be determined should have the following three properties in order to be
suitable for semantic editing:

identity property The identity property is phrased in terms of the `2-norm of
the difference of StyleGAN embeddings and is given by

Eid(w) = λid‖w− rignet(w, θτ(w))‖2
2 . (8.8)

As such, whenever the RigNet is used to modify w with θτ(w), i.e., a component of
the 3DMM parameter extracted from w, the embedding w should not be modified.

edit property In order to get around the obstacle of defining a suitable metric for
3DMM parameter vectors, whose components may be of significantly different scale,
and the relative relevance of the individual components is not easily determined, we
phrase the edit property in image space, as in StyleRig (Tewari et al., 2020b). As such,
a facial edit is implicitly specified in image space via the StyleGAN embedding v,
where the τ-component of the respective 3DMM parameters of v, i.e. θτ

v , specifies the
edit operation. The image-space version of the edit property reads

∀ v : Iv = I([θτ
v , θτ(rignet(w, θτ

v))]) . (8.9)

Note that this true equality cannot hold in practice, since the two images are from
different domains (real image and a mesh rendering). We are interested in minim-
imzing the difference between these terms. This equation is best fulfilled whenever
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the τ-component of the edited 3DMM parameters θτ(rignet(w, θτ
v)) is equal to θτ

v , i.e.
the edit has been successfully applied. Since computationally we cannot evaluate all
choices of v, we sample StyleGAN embeddings v as done in Chapter 7, and then
use the expected value as loss. For integrating this property into the optimization
framework, a combination of a photometric term and a landmark term is used, which
is defined as

`(I′, θ) = λph‖I′ − I(θ)‖2
, + λlm‖LI′ −L(θ)‖2

F . (8.10)

The norm ‖ · ‖, computes the `2-norm of all foreground pixels (the facial part of the
image), whereas ‖ · ‖F is the Frobenius norm. The matrix of 2D facial landmarks
(based on Saragih et al. (2011)) extracted from the image I is denoted by LI′ ∈ R66×2,
and L(θ) ∈ R66×2 refers to the corresponding landmarks of the 3DMM after they have
been projected onto the image plane. With that, the edit property energy reads

Eedit(w) = λe Ev[`(Iv, [θτ
v , θτ(rignet(w, θτ

v))])] . (8.11)

invariance property Similarly as the edit property, the invariance property is
also phrased in image space as

∀ v : I = I([θτ(rignet(w, θτ
v)), θτ

I ]) . (8.12)

While the edit property imposes that the τ-component of the edited 3DMM parameter
θτ(rignet(w, θτ

v)) is modified as desired, the invariance property takes care of all τ. It
is fulfilled whenever it holds that θτ(rignet(w, θτ

v)) = θτ
I , i.e. the components τ that

are not to be edited are maintained from the input image I.
Analogously to the edit property, the respective energy is based on the combination

of a photometric term and a landmark term as implemented by `(·), so that

Einv(w) = λinv Ev[`(I, [θτ(rignet(w, θτ
v)), θτ

I ])] . (8.13)

8.3.3 Face Recognition Consistency

In addition to the synthesis and editing terms, two face recognition consistency terms
are incorporated to preserve the facial integrity while editing. On the one hand,
it is desirable that the synthesized image I(w) is recognized to depict the same
person as shown in the given input image I. On the other hand, the edited image,
stylegan(rignet(w, θτ

v)) should also depict the same person as shown in the input I.
In order to do so, VGG-Face (Parkhi et al., 2015) is used to extract face recognition

features, where the notation Ψ(·) is used to refer to the function that extracts such
features from a given input image. The recognition loss is defined as

`recog(I′, v) = ‖Ψ(I′)−Ψ(I(v))‖2
F , (8.14)

which is then used to phrase the recognition energy term as

Erecog(w) = λrw `recog(I, w) + λrŵ Ev[`recog(I, rignet(w, θτ
v))] . (8.15)
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Figure 8.3: Pose Editing. The proposed approach can handle a large variety of head pose
modifications including out-of-plane rotations in a realistic manner. Image2StyleGAN (Abdal
et al., 2019) embeddings often lead to artifacts when edited using StyleRig. Images from Shen
et al. (2016).

Figure 8.4: Illumination Editing. The proposed approach can realistically relight portrait
images. Each edited image corresponds to changing a different Spherical Harmonics coefficient,
while all other coefficients are kept fixed. The environment maps are visualized in the inset.
Image2StyleGAN (Abdal et al., 2019) embeddings often lead to artifacts when edited using
StyleRig. Images from Shen et al. (2016).
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Figure 8.5: Expression Editing. The proposed approach can also be used to edit the facial
expressions in a portrait image in a realistic manner. We obtain more plausible results,
compared to Image2StyleGAN (Abdal et al., 2019) embeddings. Images from Shen et al. (2016)
and Shih et al. (2014).
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8.3.4 Optimization

The energy function E(·) in (8.6) depends on a range of highly non-linear functions,
such as stylegan(·), MoFA(·), Φ(·) and Ψ(·), which are implemented in terms of
(pretrained) neural networks. The energy minimization is implemented within Ten-
sorFlow (Abadi et al., 2015) using ADADELTA optimization (Zeiler, 2012). In each
iteration a different v is stochastically sampled. The optimization uses a hierarchical
approach described next.

hierarchical optimization StyleGAN is based on a hierarchy of latent spaces,
where a stage-one embedding Z with |Z| = 512 is randomly sampled first. This
is then fed into a mapping network that produces W as output, where |W| = 512.
Subsequently, W is extended to W+, where |W+| = 18× 512, and used as input to 18
network layers. It has been shown that W+ is the most expressive space for fitting to
real images (Abdal et al., 2019). However, a direct optimization over this space leads
to lower-quality editing results with severe artifacts. This is because the optimized
variable can be far from the prior distribution of StyleGAN. To address this, the
proposed approach first optimizes for the embedding in the W-space, meaning that in
the first stage of the optimization the variable w is understood as an embedding in the
W-space. Optimization in W-space is run for 2000 iterations. The result is then trans-
ferred to W+-space and the variable w is initialized respectively. The optimization is
continued in the W+-space for another 1000 iterations. Optimizing in this hierarchical
way allows for representing the coarse version of the image in the W-space, which
is less expressive and thereby closer to the prior distribution. Finetuning on the W+

space then allows for fittting the fine-scale details, while preserving editing quality.

8.4 results

In the following, high-quality results of the method are demonstrated, its different
components are analyzed, and the method is compared to several state-of-the-art
approaches for portrait image editing. The proposed approach will be referred to as
PIE, an abbreviation of Portrait Image Embedding.

implementation details The following empirically determined weights are
used for the energy terms: λ`2 = 10−6, λp = 10−6, λid = 1.0, λph = 0.001, λlm = 0.2,
λe = 10.0, λinv = 10.0, λrw = 0.1, λrŵ = 0.1. A starting step size of 50 is used
when optimizing over embeddings in W space, and 10 in W+ space. The step size is
then exponentially decayed by a factor of 0.1 every 2000 steps. Optimization takes
approximately 10 minutes for 3000 iterations per image on an NVIDIA V100 GPU.
Once the embedding is obtained, the portrait image can be edited at an interactive
speed.

feedback A simple feedback loop allows for more accurate editing results. The
parameters used as input to RigNet are updated in order to correct for the editing
inaccuracies in the output. Given target 3DMM parameters θ, the embedding for the
edited image, rignet(w, θτ) are obtained. The 3DMM parameters from the edited em-
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Figure 8.6: Ablative analysis of the different loss functions. Modification refers to the edit,
invariance and identity terms simultaneously. The left block shows results for editing the head
pose and the right block shows results for editing scene illumination. All losses are required
to obtain high-fidelity edits. Images from Shen et al. (2016).

Figure 8.7: Ablative analysis with and without hierarchical optimization. The left block shows
the results for pose editing and the right block for illumination editing. Without the hierarchical
optimization, the obtained embedding cannot be easily edited and artifacts appear in the
modified images. Images from Shen et al. (2016).

bedding, θest = θ(rignet(w, θτ)) are computed. The final embedding is then computed
as rignet(w, θτ

new) with θnew = θ + (θ − θest).

8.4.1 High-Fidelity Semantic Editing

The approach is evaluated on a large variety of portrait images taken from Shen et al.
(2016) and Shih et al. (2014). The images are preprocessed as in StyleGAN (Karras
et al., 2019a). Figs. 8.3, 8.4, 8.5 show results of controlling the head pose, scene
illumination, and facial expressions, respectively. The projections onto the StyleGAN
space are detailed, preserving the facial identity. The approach also produces photo-
realistic edits. Fig. 8.3 shows that the approach can handle a large variety of head
pose modifications, including out-of-plane rotations. It also automatically inpaints
uncovered background regions in a photo-realistic manner. Fig. 8.4 demonstrates
the relighting results. The approach can handle complex light material interactions,
resulting in high photo-realism. The relighting effects are not restricted to just the face
region, with hair and even eyes being relit. The approach also allows for editing facial
expressions, see Fig. 8.5.
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Table 8.2: Different settings are quantitatively compared using several metrics for pose editing.
All numbers are averaged over more than 2500 pose editing results. The quality of the fit
is measured by comparing them to the input image using PSNR and SSIM metrics. Editing
error is measured as the angular difference between the desired and achieved face poses.
Recognition error measures the value of the facial recognition error for the edited images.
There is usually a trade-off between the quality and accuracy of editing, as lower recognition
errors correspond to higher editing errors. We also compare to Image2StyleGAN (Abdal et al.,
2019) embeddings using these metrics. While it achieves the highest quality fitting, the editing
results do not preserve the facial identity well.

synthesis
synthesis +

recognition

synthesis +

modification
all terms (PIE) all terms (direct opt.) Image2StyleGAN

PSNR (dB) ↑ / SSIM ↑ 30.15 / 0.70 29.84 / 0.69 30.15 / 0.70 29.96 / 0.70 29.76 / 0.69 31.21 / 0.75

Editing Error (rad) ↓ 0.06 0.11 0.036 0.08 0.037 0.07

Recognition Error ↓ 95.76 43.64 90.10 42.82 51.65 275.40

8.4.2 Ablation Studies

Here, we evaluate the importance of the different proposed loss functions, and also
evaluate the hierarchical optimization strategy.

loss functions Fig. 8.6 shows qualitative ablative analysis for the different loss
functions. We group the edit, invariance and identity terms as modification terms.
Adding face recognition consistency without the modification terms lead to incorrect
editing in some cases. Adding the modification terms without face recognition con-
sistency leads to the method being able to accurately change the specified semantic
property, but the identity of the person in the image is not preserved. Using all terms
together leads to results with photorealistic edits with preservation of identity. We do
not evaluate the importance of the individual components of the modification terms,
as it was already evaluated in Tewari et al. (2020b).

hierarchical optimization Hierarchical optimization is an important com-
ponent of PIE. Fig. 8.7 shows results with and without this component. Without
hierarchical optimization, the method directly optimizes for w ∈W+. While this leads
to high-quality fits, the obtained embedding can be far from the training distribution of
StyleRig. Thus, the quality of edits is poor. For example in Fig. 8.7 (top), the StyleGAN
network interprets the ears as background, which leads to undesirable distortions.
With hierarchical optimization, the results do not suffer from artifacts.

quantitative analysis We also analyze the effect of different design choices
quantitatively, see Tab. 8.2. We look at three properties, the quality of recostruction
(measured using PSNR and SSIM between the projected image and the input), the
accuracy of edits (measured as the angular distance between the desired and estimated
head poses), and idenity preservation under edits (measured using the second term in
Eq. 8.15) during editing. The numbers reported are averaged over more than 2500 pose
editing results. We can see that removing the recognition term changes the identity
of the face during editing, and removing the modification loss increases the editing
and recognition error. Hierarchical optimization also leads to better facial identity
preservation, compared to direct optimization. This is expected, since the results with
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Figure 8.8: Comparison of head pose editing for self-reenactment (first two rows) and cross-
identity reenactment (last two rows). We compare the approach to Wiles et al. (2018), Wang
et al. (2019c), Siarohin et al. (2019) and Geng et al. (2018). The pose from the reference images
is transferred to the input. The approach obtains higher quality head pose editing results,
specially in the case of cross-identity transfer. All approaches other than ours are incapable of
disentangled edits, i.e., they cannot transfer the pose without also changing the expressions.
The implementation of Geng et al. (2018) does not handle cross-identity reenactment. Note
that while the three competing approaches require a reference image in order to generate the
results, we allow for explicit control over the pose parameters. Image from Shen et al. (2016).

direct optimization often have artifacts. Note that the artifacts outside of the face region
(hair, ears) would not increase the recognition errors significantly. The recognition
term introduces a clear trade-off between the quality of identity preservation under
edits and the accuracy of edits. The modification terms allow for slight improvements
in both identity preservation as well as the accuracy of the edits.

8.4.3 Comparison to the State of the Art

8.4.3.1 Image2StyleGAN

Image2StyleGAN (Abdal et al., 2019) also projects real images to the StyleGAN latent
space, and is thus a closely related approach. The source code of Image2StyleGAN
was kindly provided by the authors. We show editing results using Image2StyleGAN
embeddings in Figs. 8.1, 8.3, 8.4 and 8.5. Since these embeddings are optimized only
using the synthesis terms and without using hierarchical optimization, the results
are often implausible, as is most evident when editing the head pose and scene
illumination. However, Image2StyleGAN projections are more detailed than ours. We
also quantitatively compare to Image2StyleGAN in Tab. 8.2. Image2StyleGAN obtains
the highest quality projections in terms of PSNR and SSIM. When combined with
StyleRig, it also leads to low editing errors. However, the recognition errors are very
high due to the artifacts in the results, as shown in the qualitative results.

8.4.3.2 Other Aproaches

We also compare PIE to a number of related techniques, X2Face (Wiles et al., 2018),
Geng et al. (2018) and Siarohin et al. (2019). We compare the relighting capabilities of
PIE to the single-image relighting approach of Zhou et al. (2019). The source codes
of these techniques are publicly available. For Geng et al. (2018), we estimated the
landmarks using the dlib tracker (King, 2009) as suggested by the authors. We also
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Figure 8.9: Comparison of the relighting results of PIE with Zhou et al. (2019). The illumination
in the reference image is transferred to the input. The results of PIE are more natural and
achieve more accurate relighting. While PIE can edit colored illumination while Zhou et al.
(2019) can only edit monochrome light. In addition, we can also edit the head pose and facial
expressions, while Zhou et al. (2019) is trained only for relighting. Images from Shih et al.
(2014).

trained the few shot video-to-video translation method of Wang et al. (2019b) for por-
trait image editing. We trained on 700 videos from the FaceForensics dataset (Rossler
et al., 2019). Landmarks were extracted using the dlib tracker as recommended by the
authors. The approaches of Geng et al. (2018), Wiles et al. (2018) , Wang et al. (2019b)
and Siarohin et al. (2019) are trained on a video corpus. In contrast, PIE does not use
any direct supervision of the edited images. We compare to these methods in two
different settings, self-reenactment and cross-identity reenactment.

self-reenactment For self-reenactment, we capture several images of a person
in different poses. We pick the first image and use the other images of the person as
reference to edit the head pose. We captured 9 people in different poses, resulting in
31 images in the test set. Fig. 8.8 shows some qualitative results. Geng et al. (2018)
use a warp-guided algorithm. While this enables expression changes and in-plane
head motion, out-of-plane motion cannot be handled as shown in Fig. 8.8. We also
compare to X2Face (Wiles et al., 2018), which samples a learned embedded face in
order to synthesize portrait images with different poses and expressions. As such, it
shares its limitations with Geng et al. (2018) and produces artifacts for strong pose
changes. All approaches do not share the same cropping method, which makes it
difficult to quantitatively evaluate the results. In addition, translation of the head
during capture can lead to different illumination conditions. Thus, instead of directly
computing errors in the image space, we first detect 66 facial landmarks (Saragih et al.,
2009) on all results, as well as the reference images. We then compute the landmark
alignment error, which is the averaged `2-distance between the landmarks after 2D
Procrustes alignment (including scale). The implementation of Geng et al. (2018) often
fails to generate such large pose edits, so we do not consider this approach in the
quantitative evaluation. Due to artifacts, the landmark detector fails on 29% images for
the approach of Wiles et al. (2018) and on 23% for Wang et al. (2019b). All the results
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Table 8.3: Evaluation of pose edits: We measure landmark alignment errors for same-subject
reenactment on 31 images, and facial recognition distances for cross-subject reenactment on 49

images. Existing landmark detection (Saragih et al., 2009) and facial recognition (King, 2009)
often fail on images from competing methods, implying higher realism of PIE.

Landmark Alignment

(number of images)

Recognition

(number of images)

Wiles et al. (2018) 10.9 (22) 0.52 (42)

Wang et al. (2019b) 28.19 (24) 0.49 (45)

Siarohin et al. (2019) 11.97 (31) 0.51 (46)

Ours 20.12 (31) 0.40 (49)

of PIE, as well as those of Siarohin et al. (2019) pass through the detector. This can
be considered as a pseudo-metric of realism, since the landmark detector is trained
on real portrait images, implying that the results are better than those of Wiles et al.
(2018) and Wang et al. (2019b), and on par with Siarohin et al. (2019). Table 8.3 shows
the errors for different methods. The low errors for Wiles et al. (2018) are possibly
due to the landmark detector failing in challenging cases. We obtain only slightly
worse results compared to Siarohin et al. (2019), even though PIE does not have access
to ground truth during training. Siarohin et al. (2019) train on videos allowing for
supervised learning. In addition, their edits are at a lower resolution of 256× 256,
compared to the image resolutions of 1024× 1024 used in this chapter.

cross-identity reenactment We also compare to others in cross-identity
reenactment, which is closer to the setting of this chapter of semantically disentangled
editing. Here, the image being edited and the reference image have different identities.
Fig. 8.8 shows some qualitative results. The implementation of Geng et al. (2018) does
not support this setting. Wiles et al. (2018) and Wang et al. (2019b) result in similar
artifacts as discussed before. Unlike other approaches, Siarohin et al. (2019) uses two
driving images in order to edit the input image, where they use the deformations
between the two images as input. In the case of self-reenactment, we provide the
input image as the first driving image. We do the same here, which leads to the two
driving images with different identities. This significantly alters the facial identity in
the output image. We also quantitatively evaluate the extent of identity preservation
for different methods using a facial recognition tool (King, 2009), see Table. 8.3. All
methods other than ours do not support semantically disentangled editing. As can
be seen in Fig. 8.8 (bottom), other methods simultaneously change the expressions in
addition to the head pose.

interactive user interface While all existing approaches need a driving im-
age(s) for editing, we allow for explicit editing, using intuitive controls. An interactive
user interface to edit images is developed. The user can change the head pose using a
trackball mouse interface. Spherical harmonic coefficients and blendshape coefficients
are changed using keyboard controls. All editing results run at around 5fps on a
TITAN X Pascal GPU.

relighting We compare the relighting results of PIE to the single-image relighting
approach of Zhou et al. (2019), see Fig. 8.9. PIE allows for colored illumination changes,
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Figure 8.10: PIE also allows for sequential editing. We optimize for the StyleGAN embedding
using the pose RigNet. We can then use the edited pose results with the RigNets for other
semantic components for sequential editing. Images from Shen et al. (2016).

as shown in Fig. 8.4. PIE produces higher-quality and more realistic output images.
PIE is also quantitatively compared to the relighting quality of these approaches in an
illumination transfer setting, where the illumination in a reference image is transferred
to a given input image. Since we do not have ground truth data available, the results
are compared using a network which predicts the illumination from the reference and
the relighted results. A model-based face autoencoder (Tewari et al., 2017), trained
on the VoxCeleb dataset (Chung et al., 2018) is used. This network predicts a 27
dimensional spherical harmonics coefficients. The predictions are compared using
a scale-invariant `2-loss. PIE obtains higher quality (0.34), compared to Zhou et al.
(2019) (0.36). The numbers are averaged over 100 relighting results. While the method
of Zhou et al. (2019) is only trained for relighting, PIE allows us to also edit the head
pose and facial expressions.

8.4.4 Generality of the embeddings

sequential editing PIE also allows for sequential editing of the different se-
mantic parameters, see Fig. 8.10. Here, the embedding is optimized using the pose
RigNet network. After editing the pose, the new embedding can be used as input
to the illumination and expression RigNets. Since all three versions of RigNet were
trained on the same training data, this still produces plausible results.
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Figure 8.11: The embeddings of PIE obtain similar quality editing results with the InterFace-
GAN (Shen et al., 2020) editing approach. Similar improvements over Image2StyleGAN (Abdal
et al., 2019) embeddings can be noticed. Images from Shen et al. (2016).

other stylegan editing methods PIE obtains a StyleGAN embedding which
can be edited using StyleRig. In order to test the generality of these embeddings,
we attempt to edit them using InterFaceGAN (Shen et al., 2020), see Fig. 8.11. The
improvements over Image2StyleGAN generalize to InterFaceGAN editings. PIE better
preserves the facial identity and produce fewer artifacts. The editing results with
InterFaceGAN are of a similar quality to those obtained using StyleRig. However,
InterFaceGAN cannot change the scene illumination.

8.5 limitations

Even though we have demonstrated a large variety of compelling portrait image
editing results, there is still room for further improvement of our approach: (1) At the
moment, our approach has a limited expressivity, i.e., it does not allow the artifact-free
exploration of the whole parameter space of the underlying 3D morphable face model.
For example, we cannot change the in-plane rotation of the face or arbitrarily change
the lighting conditions. The main limiting factor is the training corpus (FFHQ (Karras
et al., 2019a)) that has been used to pretrain the StyleGAN-generator, since it does
not contain such variations. Due to the same reason, our approach is also not yet
suitable for video-based facial reenactment, since the variety of facial expressions in the
training corpus is severely limited. This problem could be alleviated by pretraining the
generator on a larger and less biased training corpus that covers all dimensions well. (2)
Our method only allows for independent control over the semantic parameters, which
is important for editing applications. While sequential control is possible, simultaneous
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Figure 8.12: Limitations: Large edits can lead to artifacts. High-frequency texture on the fore-
ground or background is difficult to fit. Our method also cannot handle cluttered backgrounds
or occlusions. Images from Shen et al. (2016).

Figure 8.13: Scatterplot of the editing (left) and recognition errors (right), with respect to the
magnitude of the desired pose edits for over 2500 pose editing results. Larger edits lead to
both higher editing and recognition errors.
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control is a more challenging problem. (3) Our approach does not provide explicit
control over the synthesized background. At the moment, the background changes
during the edits and does not remain static as it should, since the network has learned
correlations between the face and the background. This could potentially be alleviated
by learning an explicit foreground-background segmentation and having a consistency
loss on the static background region. (4) In challenging cases with large deformations,
cluttered backgrounds or occlusions and high-frequency textures, our method can
fail to faithfully fit to the input image and preserve editing properties at the same
time, see Fig. 8.12. In addition, 3D face reconstruction also often fails under occlusions
which would lead to incorrect data for our approach. (5) Larger edits generally
correspond to worse results, and can often lead to artifacts, as shown in Fig. 8.12. This
can also be seen in Fig. 8.13, where larger pose edits correlate with higher editing
and facial recognition errors. (6) Similar to StyleGAN, our approach also sometimes
shows droplet-like artifacts. This could be alleviated by switching to a higher quality
generator architecture, such as StyleGAN2 (Karras et al., 2019b), which has been shown
to solve this problem. (7) While we show results for people of different ethnicities,
genders and ages, we did not extensively study the biases present in the method.
Some of the components used, such as the 3DMM are known to have racial biases,
see Chapter 5. (8) Our results are not guaranteed to be temporally consistent. The
results could be made more temporally consistent by employing a temporal network
architecture and space-time versions of our losses. Nevertheless, our approach, already
now, enables the intuitive editing of portrait images at interactive frame rates.

8.6 conclusion

This chapter presented the first approach for embedding portrait photos in the latent
space of StyleGAN, which allows for intuitive editing of the head pose, facial expres-
sion, and scene illumination. To this end, a hierarchical optimization scheme was
devised that embeds a real portrait image in the latent space of a generative adversarial
network, while ensuring the editability of the recovered latent code. Semantic editing
is achieved by mapping the control space of a 3D morphable face model to the latent
space of the generator. In addition, a novel identity preservation loss enables to better
preserve the facial identity.

This approach is a first step towards intuitive and interactive editing of portrait im-
ages using a semantic control space akin to computer animation controls. In addition,
the approach provides more insights into the inner workings of GANs, since it allows
the intuitive and interactive exploration of the space of face images. This can shed
light on the biases the model has learned from the employed training corpus. The
methods presented in Chapters 7 and 8 bring the two different domains of 2D and 3D
face models together, thus opening the road towards even more interesting edits.



9
C O N C L U S I O N

This thesis proposed several methods for self-supervised 3D face reconstruction and
controllable synthesis of portrait images. Chapter 4 demonstrated self-supervised
monocular 3D reconstruction using a pretrained 3DMM prior. Chapter 5 proposed
a method for the refinement of the pretrained 3DMM using a dataset of monocular
images. This direction was extended in Chapter 6, where the identity components
of the 3DMM were learned entirely from videos, without using any 3D supervision.
Chapter 7 built connections between the self-supervised 3D reconstruction pipeline
and a high-quality neural generative model (StyleGAN), allowing for semantic control
of StyleGAN generated images. Finally, Chapter 8 presented a method for building an
intuitive and interactive image editing system that can process existing real images.
All methods proposed in this thesis did not use supervised training. The methods
instead relied on different priors, such as a 3DMM for reconstruction, and StyleGAN
for synthesis.

9.1 insights and outlook

self-supervised learning This thesis took steps towards learning a 3D mor-
phable model from in-the-wild 2D data. While the identity components of the model
could be learned entirely from 2D data, all methods relied on an existing 3D expres-
sion model. The recent work of B R et al. (2021b) has shown the possibility of learning
all components of the model from 2D data. Only a template face mesh is used as a
prior. Learning from in-the-wild data makes lifelong learning (Parisi et al., 2019) a
possibility. Developing methods that can continually learn from the virtually endless
stream of images and videos is an interesting direction for future work.

Learning from in-the-wild data comes with some limitations. In the absence of
the correct camera parameters, all camera intrinsics and extrinsics are assumed to
be identical. In addition, in-the-wild data is often of low quality with noise, motion
blur and compression artifacts. These effects are not modeled in the learning process,
which results in lower quality 3D reconstructions. Disentangling the different 3D
components from in-the-wild data is also challenging, as shown in this thesis. While
the methods presented in the thesis learn disentangled models, this disentanglement is
not perfect. For example, facial hair is often learned only in the appearance component,
and illumination and albedo are not disentangled perfectly. While these limitations
can be avoided by training on high-quality datasets where all capture parameters
are known, and the face is captured under multiple light conditions with multiple
cameras, such datasets can be expensive to acquire and not readily available at a large
scale. Thus, it is important to develop methods that can better disentangle the different
components without using large supervised datasets.

Chapter 8 enabled intuitive 3D editing of portrait images at photorealistic quality.
The method does not use any supervised data and only relies on a single image
of the person. While this demonstrates high-quality editing under very constrained

115



116 conclusion

settings, this also leaves some room for improvements. For example, the structure of
the teeth has to be hallucinated if the input image has a face with its mouth closed.
A better balance between accuracy and generalization could be achieved by using
more images of the person in different scene conditions. In addition, as mentioned
in Chapter 7, the StyleGAN prior limits the expressivity of the face. Learning more
expressive generative models is an important problem for future work.

This thesis used a variety of in-the-wild data during training, such as images and
video datasets. However, other related data such as the speech or transcript of the video
were not used. Such multi-modal data could be used to build more accurate and better
disentangled models, as well as interesting applications such as text-to-video (Fried
et al., 2019) and speech-to-video (Thies et al., 2020) synthesis.

learning higher-quality models This thesis only models the surface of the
face, without the skull. Extending the methods proposed in this thesis to also consider
the skull of the person would allow for anatomically constrained deformations (Wu
et al., 2016), as well as applications in digital forensics (Gietzen et al., 2019; Ubelaker,
2015).

Identity and expressions are modeled as independent components, and person-
specific expressions are not captured. High-frequency wrinkles are also person-
specific (Cao et al., 2015; Garrido et al., 2016a); thus, methods developed in this
thesis cannot directly be used for modeling them. While Chapter 4 presented a
method for reconstructing high-frequency details, a generative model of face wrinkles
is an open problem. Learning face dynamics by building temporal generative models
is also an open problem, important for video editing tasks.

Most existing 3DMMs only focus on the diffuse albedo of the face. The recent
model of Smith et al. (2020) also includes the specular component. However, skin
appearance also includes higher-order light transport effects. Priors over higher quality
skin appearance are necessary for photorealistic reconstructions. First steps have been
taken by B R et al. (2021a), where a neural representation of skin appearance is
developed, along with a method for its reconstruction from monocular images. This
approach requires a light stage dataset for training, which is expensive to capture
and not publicly available. Learning high quality appearance models from in-the-wild
data is still an open problem.

Most 3DMMs only model the frontal face region, and not the full head. Hair is
especially challenging due to its complex geometry and appearance. A fixed mesh
template might be insufficient for capturing hair due to its large deformations. First
steps have been taken by Yenamandra et al. (2021) for building template-free implicit
morphable models of full heads including hair. However, high-quality parameteric
models of hair geometry and appearance are still an open problem.

It is not clear what representation is ideal for learning morphable models. This
thesis relied on a mesh-based representation. However, other representations could
be better suited for this task. Recent volumetric representations (Lombardi et al.,
2019; Mildenhall et al., 2020) could be ideal for representing hair. Exploring these
representations for higher-quality and more complete models is an important direction
for future work.

Learning 3D morphable models directly from 2D data would also allow for modeling
different classes of objects, where 3D scans are difficult to capture, such as animals.
The methods in this thesis relied on components such as face keypoint detectors.
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Building such detectors for other deformable object classes would allow for extending
the applicability of these methods. Alternatively, developing new methods which do
not require such annotations would make them more widely applicable.

differentiable rendering Differentiable rendering is a crucial component
which enables self-supervised learning, see Fig. 2.2. The differentiable renderer used
in this thesis allowed for learning high-quality geometry and appearance models of
human faces without the use of supervised training datasets. However, the approx-
imations made in the image formation process (explained in Chapter 2) can limit
the reconstruction quality. For example, the monocular reconstruction methods can
struggle in the presence of cast shadows, since the differentiable renderer only models
direct illumination. Renderers which can model higher-order light transport effects
will allow for more accurate reconstructions, as well as finer control over them. Ray
tracing-based differentiable renderers (Li et al., 2018; Nimier-David et al., 2019) can
model complex light transport effects, but are significantly more computationally
expensive compared to the renderer used in this thesis. Developing efficient differ-
entiable renderers which account for global illumination would be important for 3D
reconstruction tasks.

9.2 social implications

The biases present in the proposed methods have not been studied extensively. Chap-
ter 5 demonstrated that the baseline 3D morphable model (Blanz and Vetter, 1999)
learned from 3D scans has racial biases. One reason is that the diversity of races in the
training dataset was limited. While the method presented in the same chapter reduces
this bias by using larger-scale datasets, the extent of the remaining bias is unclear.
Racial and gender biases have been demonstrated for face recognition (Phillips et al.,
2003) and gender classification (Buolamwini and Gebru, 2018) problems. It would
be important to inspect the biases present in the methods proposed in this thesis,
and develop methods to mitigate them. Training 3D models from 2D data is a good
direction, as it removes the need for very diverse and large 3D datasets, which can be
very difficult to capture.

Editing of portrait images has applications in casual photography and content
creation. However, these editing methods could also be misused to misrepresent
people in images, for example, by changing their expressions. Detection of synthesized
images is thus an important problem. Several such methods exist, including active
methods which modify the imaging pipeline (Blythe and Fridrich, 2004; Korus and
Memon, 2019; Yan and Pun, 2017), as well as automatic passive methods (Cozzolino
et al., 2018; Fox et al., 2020; Rossler et al., 2019; Wang et al., 2019a, 2020). The work
of Wang et al. (2020) showed that images generated by StyleGAN can be correctly
distinguished from real images with high accuracy. Since the methods developed
in Chapters 7 and 8 rely on StyleGAN for synthesis, their results can also likely be
distinguished from real images. Further analysis is required to compute the precise
detection rates for these methods.
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Self-supervised learning is an exciting and promising problem, as it allows for
utilizing virtually unlimited images and videos available online for training. The
ideas presented in this thesis will hopefully inspire follow-up work on self-supervised
learning of photorealistic and semantically controllable models of the different objects
around us.
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Masci, Jonathan, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber (2011). “Stacked
Convolutional Auto-encoders for Hierarchical Feature Extraction.” In: International
Conference on Artificial Neural Networks.

McDonagh, Steven, Martin Klaudiny, Derek Bradley, Thabo Beeler, Iain Matthews,
and Kenny Mitchell (2016). “Synthetic Prior Design for Real-Time Face Tracking.”
In: 3DV 00, pp. 639–648.

Meka, Abhimitra, Christian Haene, Rohit Pandey, Michael Zollhoefer, Sean Fanello,
Graham Fyffe, Adarsh Kowdle, Xueming Yu, Jay Busch, Jason Dourgarian, Peter
Denny, Sofien Bouaziz, Peter Lincoln, Matt Whalen, Geoff Harvey, Jonathan Tay-
lor, Shahram Izadi, Andrea Tagliasacchi, Paul Debevec, Christian Theobalt, Julien
Valentin, and Christoph Rhemann (July 2019). “Deep Reflectance Fields - High-



126 bibliography

Quality Facial Reflectance Field Inference From Color Gradient Illumination.” In:
vol. 38. 4. doi: 10.1145/3306346.3323027. url: http://gvv.mpi-inf.mpg.de/
projects/DeepReflectanceFields/.

Meka, Abhimitra, Michael Zollhöfer, Christian Richardt, and Christian Theobalt (2016).
“Live Intrinsic Video.” In: ACM Transactions on Graphics (Proceedings SIGGRAPH)
35.4.

Mescheder, Lars, Andreas Geiger, and Sebastian Nowozin (2018). “Which training
methods for GANs do actually converge?” In: arXiv preprint arXiv:1801.04406.

Mildenhall, Ben, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng (2020). “NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis.” In: ECCV.

Müller, Claus (1966). Spherical harmonics. Springer.
NVIDIA (2008). NVIDIA CUDA Programming Guide 2.0.
Nagano, Koki, Jaewoo Seo, Jun Xing, Lingyu Wei, Zimo Li, Shunsuke Saito, Aviral

Agarwal, Jens Fursund, and Hao Li (Dec. 2018). “paGAN: real-time avatars using
dynamic textures.” In: pp. 1–12. doi: 10.1145/3272127.3275075.

Neumann, Thomas, Kiran Varanasi, Stephan Wenger, Markus Wacker, Marcus Magnor,
and Christian Theobalt (2013). “Sparse Localized Deformation Components.” In:
ACM Trans. Graph. 32.6, 179:1–179:10.

Nimier-David, Merlin, Delio Vicini, Tizian Zeltner, and Wenzel Jakob (2019). “Mitsuba
2: A retargetable forward and inverse renderer.” In: ACM Transactions on Graphics
(TOG) 38.6, pp. 1–17.

Olszewski, Kyle, Joseph J. Lim, Shunsuke Saito, and Hao Li (2016). “High-Fidelity
Facial and Speech Animation for VR HMDs.” In: ACM Transactions on Graphics
(Proceedings SIGGRAPH Asia 2016) 35.6.

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu (2016). “Pixel
recurrent neural networks.” In: arXiv preprint arXiv:1601.06759.

Parisi, German I, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter
(2019). “Continual lifelong learning with neural networks: A review.” In: Neural
Networks 113, pp. 54–71.

Park, Taesung, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu (2019). “Semantic
Image Synthesis with Spatially-Adaptive Normalization.” In: CVPR.

Parkhi, O. M., A. Vedaldi, and A. Zisserman (2015). “Deep Face Recognition.” In:
British Machine Vision Conference.

A 3D Face Model for Pose and Illumination Invariant Face Recognition (2009). IEEE. Genova,
Italy.

Peers, Pieter, Naoki Tamura, Wojciech Matusik, and Paul Debevec (July 2007). “Post-
production Facial Performance Relighting Using Reflectance Transfer.” In: ACM
Trans. Graph. 26.3.

Pharr, Matt, Wenzel Jakob, and Greg Humphreys (2016). Physically based rendering:
From theory to implementation. Morgan Kaufmann.

Phillips, P J, Patrick J Grother, Ross J Micheals, D M Blackburn, Elham Tabassi, and
Mike Bone (2003). Face recognition vendor test 2002: Evaluation report. Tech. rep.

Piotraschke, Marcel and Volker Blanz (2016). “Automated 3D Face Reconstruction
from Multiple Images Using Quality Measures.” In: CVPR. IEEE Computer Society,
pp. 3418–3427.

https://doi.org/10.1145/3306346.3323027
http://gvv.mpi-inf.mpg.de/projects/DeepReflectanceFields/
http://gvv.mpi-inf.mpg.de/projects/DeepReflectanceFields/
https://doi.org/10.1145/3272127.3275075


bibliography 127

Radford, Alec, Luke Metz, and Soumith Chintala (2015). “Unsupervised representation
learning with deep convolutional generative adversarial networks.” In: arXiv preprint
arXiv:1511.06434.

Ramamoorthi, Ravi and Pat Hanrahan (2001a). “A signal-processing framework for
inverse rendering.” In: Proc. SIGGRAPH. ACM, pp. 117–128.

– (2001b). “An efficient representation for irradiance environment maps.” In: Pro-
ceedings of the 28th annual conference on Computer graphics and interactive techniques,
pp. 497–500.

Ranjan, Anurag, Timo Bolkart, Soubhik Sanyal, and Michael J. Black (2018). “Generat-
ing 3D Faces Using Convolutional Mesh Autoencoders.” In: ECCV ’18. Vol. 11207.
Lecture Notes in Computer Science. Springer, pp. 725–741.

Richardson, Elad, Matan Sela, and Ron Kimmel (2016). “3D Face Reconstruction by
Learning from Synthetic Data.” In: 3DV.

Richardson, Elad, Matan Sela, Roy Or-El, and Ron Kimmel (July 2017). “Learning
Detailed Face Reconstruction From a Single Image.” In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Romdhani, Sami and Thomas Vetter (2005). “Estimating 3D Shape and Texture Using
Pixel Intensity, Edges, Specular Highlights, Texture Constraints and a Prior.” In:
CVPR. Washington, DC, USA: IEEE Computer Society, pp. 986–993.

Rossler, Andreas, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies,
and Matthias Nießner (2019). “Faceforensics++: Learning to detect manipulated
facial images.” In: Proceedings of the IEEE International Conference on Computer Vision,
pp. 1–11.

Roth, Joseph, Yiying Tong, and Xiaoming Liu (Dec. 2016). “Adaptive 3D Face Recon-
struction from Unconstrained Photo Collections.” In:

Saito, Shunsuke, Tianye Li, and Hao Li (2016). “Real-Time Facial Segmentation and
Performance Capture from RGB Input.” In: Proceedings of the European Conference on
Computer Vision (ECCV).

Sanyal, Soubhik, Timo Bolkart, Haiwen Feng, and Michael Black (2019). “Learning to
Regress 3D Face Shape and Expression from an Image without 3D Supervision.” In:
CVPR, pp. 7763–7772.

Saragih, Jason M., Simon Lucey, and Jeffrey F. Cohn (2009). “Face Alignment through
Subspace Constrained Mean-Shifts.” In: Proc. ICCV, pp. 1034–1041.

– (2011). “Deformable Model Fitting by Regularized Landmark Mean-Shift.” In: IJCV
91.2.

Schönborn, Sandro, Bernhard Egger, Andreas Forster, and Thomas Vetter (July 2015).
“Background Modeling for Generative Image Models.” In: Comput. Vis. Image Underst.
136.C, pp. 117–127.

Sela, Matan, Elad Richardson, and Ron Kimmel (2017). “Unrestricted Facial Geometry
Reconstruction Using Image-to-Image Translation.” In: ICCV.

Selim, Ahmed, Mohamed Elgharib, and Linda Doyle (2016). “Painting Style Transfer
for Head Portraits using Convolutional Neural Networks.” In: ACM Trans. on Graph.
(Proceedings of SIGGRAPH), 129:1–129:18.

Sengupta, Soumyadip, Angjoo Kanazawa, Carlos D. Castillo, and David W. Jacobs
(2018). “SfSNet: Learning Shape, Refectance and Illuminance of Faces in the Wild.”
In: Computer Vision and Pattern Regognition (CVPR).



128 bibliography

Shen, Jie, Stefanos Zafeiriou, Grigoris G. Chrysos, Jean Kossaifi, Georgios Tzimiropou-
los, and Maja Pantic (Dec. 2015). “The First Facial Landmark Tracking In-the-Wild
Challenge: Benchmark and Results.” In: ICCVW.

Shen, Xiaoyong, Xin Tao, Hongyun Gao, Chao Zhou, and Jiaya Jia (2016). “Deep
automatic portrait matting.” In: European conference on computer vision. Springer,
pp. 92–107.

Shen, Yujun, Jinjin Gu, Xiaoou Tang, and Bolei Zhou (2020). “Interpreting the Latent
Space of GANs for Semantic Face Editing.” In: CVPR.

Shi, Fuhao, Hsiang-Tao Wu, Xin Tong, and Jinxiang Chai (2014). “Automatic Acquisi-
tion of High-fidelity Facial Performances Using Monocular Videos.” In: ACM Trans.
Graph. 33.6, 222:1–222:13.

Shih, YiChang, Sylvain Paris, Connelly Barnes, William T. Freeman, and Frédo Durand
(July 2014). “Style Transfer for Headshot Portraits.” In: ACM Trans. Graph. 33.4.
issn: 0730-0301. doi: 10.1145/2601097.2601137. url: https://doi.org/10.1145/
2601097.2601137.

Shu, Zhixin, Sunil Hadap, Eli Shechtman, Kalyan Sunkavalli, Sylvain Paris, and
Dimitris Samaras (July 2017a). “Portrait Lighting Transfer Using a Mass Transport
Approach.” In: ACM Trans. Graph 36.4.

Shu, Zhixin, Ersin Yumer, Sunil Hadap, Kalyan Sunkavalli, Eli Shechtman, and Dimitris
Samaras (2017b). “Neural Face Editing with Intrinsic Image Disentangling.” In:
CVPR.

Siarohin, Aliaksandr, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, and Nicu
Sebe (Dec. 2019). “First Order Motion Model for Image Animation.” In: Conference
on Neural Information Processing Systems (NeurIPS).

Simonyan, Karen and Andrew Zisserman (2015). “Very Deep Convolutional Net-
works for Large-Scale Image Recognition.” In: International Conference on Learning
Representations.

Smith, William AP, Alassane Seck, Hannah Dee, Bernard Tiddeman, Joshua B Tenen-
baum, and Bernhard Egger (2020). “A morphable face albedo model.” In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5011–5020.
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