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Abstract

For safety-critical real-time embedded systems, the worst-case execution time (WCET) analysis—
determining an upper bound on the possible execution times of a program—is an important part
of the system verification. Multi-core processors share resources (e.g. buses and caches) between
multiple processor cores and, thus, complicate the WCET analysis as the execution times of a
program executed on one processor core significantly depend on the programs executed in parallel
on the concurrent cores. We refer to this phenomenon as shared-resource interference.
This thesis proposes a novel way of modeling shared-resource interference during WCET

analysis. It enables an efficient analysis—as it only considers one processor core at a time—and it
is sound for hardware platforms exhibiting timing anomalies. Moreover, this thesis demonstrates
how to realize a timing-compositional verification on top of the proposed modeling scheme. In
this way, this thesis closes the gap between modern hardware platforms, which exhibit timing
anomalies, and existing schedulability analyses, which rely on timing compositionality. In addition,
this thesis proposes a novel method for calculating an upper bound on the amount of interference
that a given processor core can generate in any time interval of at most a given length. Our
experiments demonstrate that the novel method is more precise than existing methods.
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Zusammenfassung

Die Analyse der maximalen Ausführungszeit (Worst-Case-Execution-Time-Analyse, WCET-
Analyse) ist für eingebettete Echtzeit-Computer-Systeme in sicherheitskritischen Anwendungs-
bereichen unerlässlich. Mehrkernprozessoren erschweren die WCET-Analyse, da einige ihrer
Hardware-Komponenten von mehreren Prozessorkernen gemeinsam genutzt werden und die Aus-
führungszeit eines Programmes somit vom Verhalten mehrerer Kerne abhängt. Wir bezeichnen
dies als Interferenz durch gemeinsam genutzte Komponenten.
Die vorliegende Arbeit schlägt eine neuartige Modellierung dieser Interferenz während der

WCET-Analyse vor. Der vorgestellte Ansatz ist effizient und führt auch für Computer-Systeme
mit Zeitanomalien zu korrekten Ergebnissen. Darüber hinaus zeigt diese Arbeit, wie ein zeitkom-
positionales Verfahren auf Basis der vorgestellten Modellierung umgesetzt werden kann. Auf diese
Weise schließt diese Arbeit die Lücke zwischen modernen Mikroarchitekturen, die Zeitanomalien
aufweisen, und den existierenden Planbarkeitsanalysen, die sich alle auf die Kompositionalität
des Zeitverhaltens verlassen. Außerdem stellt die vorliegende Arbeit ein neues Verfahren zur
Berechnung einer oberen Schranke der Menge an Interferenz vor, die ein bestimmter Prozessor-
kern in einem beliebigen Zeitintervall einer gegebenen Länge höchstens erzeugen kann. Unsere
Experimente zeigen, dass das vorgestellte Berechnungsverfahren präziser ist als die existierenden
Verfahren.
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Extended Abstract

Safety-critical real-time embedded systems—as e.g. found in the automotive domain—have to
fulfill strict timing requirements. As a consequence, the timing verification is an important part
of the overall verification of these systems. The timing verification usually consists of two steps.
First, a worst-case execution time (WCET) analysis determines an upper bound on the possible
execution times per program. Subsequently, a schedulability analysis uses the resulting set of
WCET bounds in order to determine whether the set of programs is guaranteed to be schedulable
in a way that the timing requirements are fulfilled. This thesis focuses on WCET analysis.

Multi-core processors share resources (e.g. buses and caches) between multiple processor cores
in order to reduce the price, weight, and energy consumption of computer systems. To exploit
these advantages, multi-core processors are increasingly used in safety-critical embedded systems.
However, the resource sharing complicates the WCET analysis as the execution times of a program
executed on one processor core significantly depend on the programs executed in parallel on
the concurrent cores. We refer to this phenomenon as shared-resource interference. A detailed
consideration of this interference during WCET analysis is intractable as it would correspond to
the enumeration of all interleavings of access requests to the shared resources. Thus, most existing
approaches resort to a more modular analysis—at the cost of a reduced precision. Additionally, all
of these modular analyses (often only implicitly) rely on the principle of timing compositionality.
However, it has so far been unclear how to safely apply such timing-compositional analyses to
programs executed on hardware platforms exhibiting timing anomalies. Recent results indicate
that even simple micro-architectures—previously believed to be anomaly-free—exhibit timing
anomalies.

This thesis proposes a novel way of modeling shared-resource interference during WCET
analysis. It enables a modular analysis—as it only considers one processor core at a time—and it
is sound for hardware platforms exhibiting timing anomalies. Moreover, this thesis demonstrates
how to realize a timing-compositional verification on top of the proposed modeling scheme. In
this way, this thesis closes the gap between modern hardware platforms, which exhibit timing
anomalies, and existing schedulability analyses, which rely on timing compositionality.

Most modular approaches to the timing verification of systems with multi-core processors
rely on the calculation of values on arrival curves. In this context, a value on an arrival curve
upper-bounds the amount of interference that a processor core can generate in any time interval
of at most a given length. Existing methods for calculating values on arrival curves pessimistically
assume that the overall amount of interference that an execution run of a considered program
generates can be distributed across the execution run in an arbitrary manner. In this thesis, we
propose a more fine-grained calculation method that takes into account which part of a program
can generate which amount of interference. The implementation of this calculation method is
based on a novel variant of implicit path enumeration that argues about all possible subpaths
through the considered programs. Our experiments demonstrate that the novel method is on
average about five percent more precise than existing methods.

vii



Last but not least, this thesis makes conceptual contributions to the formal derivation of WCET
analyses. The novel principle of property lifting enables the use of properties of the concrete
system under analysis for the detection of infeasible abstract traces at the level of approximation
on which WCET analyses operate. We demonstrate the application of property lifting during the
formal derivation of our WCET analysis for multi-core processors with shared buses. Moreover, it
can be used for the formal derivation of a wide range of existing approaches which use additional
constraints in order to prune infeasible abstract traces during the calculation of a WCET bound.
These existing approaches were previously derived mostly based on intuition.
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Ausführliche Zusammenfassung

Eingebettete Echtzeit-Computer-Systeme für sicherheitskritische Anwendungsbereiche – wie
zum Beispiel den Einsatz in Automobilen – müssen bezüglich ihres Zeitverhaltens strenge An-
forderungen erfüllen. Folglich ist die Verifizierung des Zeitverhaltens ein wichtiger Teil der
Verifizierung dieser Systeme. Die Verifizierung des Zeitverhaltens wird üblicherweise in zwei
Einzelschritte unterteilt. Zunächst bestimmt eine Analyse der maximalen Ausführungszeit (Worst-
Case-Execution-Time-Analyse, WCET-Analyse) pro Programm eine obere Schranke der möglichen
Ausführungszeiten. Anschließend nutzt eine Planbarkeitsanalyse die resultierende Menge an
Zeitschranken um festzustellen, ob in Zusammenhang mit dem verwendeten Ablaufplanungsal-
gorithmus in jedem Fall alle Anforderungen hinsichtlich des Zeitverhaltens erfüllt werden. Die
vorliegende Arbeit befasst sich hauptsächlich mit der WCET-Analyse.

In Mehrkernprozessoren werden einige Hardware-Komponenten (z.B. Übertragungswege oder
Zwischenspeicher) von mehreren Prozessorkernen gemeinsam genutzt um den Preis, das Gewicht
und den Stromverbrauch der Prozessoren zu senken. Wegen dieser Vorteile werden Mehrkernprozes-
soren auch immer häufiger in eingebetteten Echtzeit-Computer-Systemen für sicherheitskritische
Anwendungen eingesetzt. Die gemeinsam genutzten Komponenten erschweren jedoch die WCET-
Analyse, da durch sie die Ausführungszeit eines auf einem Kern ausgeführten Programmes von den
gleichzeitig auf den anderen Kernen ausgeführten Programmen abhängt. Wir bezeichnen dies als
Interferenz durch gemeinsam genutzte Komponenten. Eine genaue Betrachtung dieser Interferenz
während der WCET-Analyse ist gleichbedeutend mit der Aufzählung aller möglichen Reihenfolgen
an Zugriffen auf die gemeinsam genutzten Komponenten durch die verschiedenen Prozessorkerne
und hat sich als zu aufwändig erwiesen. Daher setzen die meisten existierenden Verfahren zur Ver-
ifizierung des Zeitverhaltens von Mehrkernprozessoren auf ein modulareres Vorgehen, das jedoch
zu einer verringerten Präzision führt. Zusätzlich verlassen sich all diese modularen Verfahren
(oft sogar nur implizit) auf eine Kompositionalität des Zeitverhaltens. Bisher ist jedoch nicht
bekannt, wie solche zeitkompositionalen Verfahren zur Verifizierung von Computer-Systemen mit
Zeitanomalien genutzt werden können ohne dabei möglicherweise die tatsächliche Ausführungszeit
eines Programmes zu unterschätzen. Aktuelle Forschungsergebnisse legen nahe, dass sogar relativ
einfache Mikroarchitekturen, die in diesem Zusammenhang bisher als unproblematisch galten,
Zeitanomalien aufweisen können.

Die vorliegende Arbeit schlägt eine neuartige Modellierung der Interferenz während der WCET-
Analyse für Mehrkernprozessoren vor. Der vorgestellte Ansatz erlaubt ein modulares Vorgehen,
da jeweils nur das Ausführungsverhalten eines Prozessorkernes gleichzeitig betrachtet wird, und
führt auch für Computer-Systeme mit Zeitanomalien zu korrekten Ergebnissen. Darüber hinaus
zeigt diese Arbeit, wie ein zeitkompositionales Verfahren auf Basis der vorgestellten Modellierung
umgesetzt werden kann. Auf diese Weise schließt diese Arbeit die Lücke zwischen modernen
Mikroarchitekturen, die Zeitanomalien aufweisen, und den existierenden Planbarkeitsanalysen,
die sich alle auf die Kompositionalität des Zeitverhaltens verlassen.

Die meisten modularen Verfahren zur Verifizierung des Zeitverhaltens von Computer-Systemen
mit Mehrkernprozessoren berechnen zudem obere Schranken der möglichen Anzahlen an Zugriffen
auf die gemeinsam genutzten Komponenten in Abhängigkeit von der Länge des jeweils betrachteten
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Zeitintervalles. Bisher geht die Berechnung solcher Schranken pessimistisch davon aus, dass die
Gesamtzahl an Zugriffen einer Programmausführung beliebig über die Programmausführung
verteilt werden kann. In der vorliegenden Arbeit stellen wir eine feinkörnigere Berechnung
vor, die berücksichtigt, welcher Teil eines Programmes welche Menge an Zugriffen auf die
gemeinsam genutzten Komponenten macht. Die vorgestellte Berechnung ist implementiert durch
eine neuartige Variante der impliziten Pfadaufzählung, die über alle teilweisen Pfade durch
die betrachteten Programme argumentiert. Unsere Experimente zeigen, dass das vorgestellte
Berechnungsverfahren im Schnitt um etwa fünf Prozent präziser ist als die existierenden Verfahren.

Außerdem leistet die vorliegende Arbeit einen konzeptionellen Beitrag zur formalen Herleitung
von WCET-Analysen. Das neuartige Prinzip des Property-Lifting erlaubt die Verwendung
von Eigenschaften eines konkreten Computer-Systems zur Identifizierung von nicht tatsächlich
möglichen Ausführungsverhalten auf der Abstraktionsebene, auf der WCET-Analysen argu-
mentieren. Wir veranschaulichen die Verwendung des Property-Lifting im Zuge der formalen
Herleitung unserer WCET-Analyse für Mehrkernprozessoren mit gemeinsam genutzten Übertra-
gungswegen. Darüber hinaus kann Property-Lifting zur formalen Herleitung einer breiten Palette
an existierenden WCET-Analysen verwendet werden, die zusätzliche Ungleichungen verwenden
um die Präzision der berechneten Zeitschranken zu erhöhen. Diese existierenden WCET-Analysen
wurden bisher nicht auf formale Weise hergeleitet, sondern lediglich basierend auf Beispielen und
Intuitionen.
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Résumé détaillé

Les systèmes temps-réel critiques – comme ceux utilisés par exemple dans le domaine automobile
– doivent satisfaire des exigences strictes au regard de leur réponses temporelles. En conséquence,
la vérification de la réponse temporelle est une partie importante de la vérification de ces
systèmes. Habituellement, cette vérification se compose de deux étapes. D’abord, une analyse de
temps d’exécution dans le pire des cas (analyse WCET, worst-case execution time) détermine
une borne supérieure pour les temps d’exécution de chaque programme. Ensuite, une analyse
d’ordonnancement utilise les bornes WCET pour prouver l’ordonnançabilité de l’ensemble des
programmes. Cette thèse de doctorat se concentre sur l’analyse WCET.
Les processeurs multi-cœurs partagent certaines ressources (par exemple des mémoires cache

ou des bus) entre plusieurs cœurs pour réduire le prix, le poids et la consommation d’énergie des
systèmes. Pour profiter de ces avantages, on incorpore de plus en plus des processeurs multi-cœurs
aux systèmes temps-réel critiques. Cependant, le partage de ressources complique l’analyse
WCET, car le temps d’exécution d’un programme dépend du comportement de plusieurs cœurs.
Ce phénomène est appelé interférence due au partage de ressources. Une considération détaillée
de cet interférence pendant l’analyse WCET est en pratique trop exigeante, parce qu’elle est
équivalente à une énumération exhaustive de toutes les séquences possibles dans lesquelles les
cœurs différents peuvent avoir accès aux ressources partagées. Ainsi, la plupart des approches
existantes recourent à une analyse plus modulaire – au prix d’une précision réduite. De plus, toutes
ces approches modulaires comptent (souvent seulement implicitement) sur la compositionalité
de la réponse temporelle. Jusqu’à présent, l’emploi de ces approches compositionnelles en temps
d’une manière fiable dans les systèmes qui comportent des anomalies temporelles n’était pas
évident. Les derniers résultats de recherche indiquent que même des micro-architectures simples –
précédemment supposées être sans anomalies – peuvent comporter des anomalies temporelles.

Cette thèse de doctorat propose une nouvelle manière de modeler l’interférence pendant l’analyse
WCET. La manière proposée permet une analyse modulaire – parce qu’elle considère seulement
un cœur à la fois – et est correcte pour les systèmes qui comportent des anomalies temporelles.
De plus, cette thèse démontre comment réaliser une vérification compositionnelle en temps sur
la base de la nouvelle manière de modeler l’interférence. Cette thèse comble donc l’écart entre
les micro-architectures modernes, qui comportent des anomalies temporelles, et les analyses
d’ordonnancement, qui comptent sur la compositionalité de la réponse temporelle.
La plupart des approches modulaires pour vérifier la réponse temporelle des systèmes avec

processeurs multi-cœurs calculent des bornes supérieures sur le nombre de fois un cœur peut
avoir accès aux ressources partagées pendant une durée donnée. Jusqu’à présent, le calcul des
bornes suppose pessimistement que le nombre d’accès aux ressources partagées par un programme
puisse être distribué de manière arbitraire à l’exécution du programme. Dans cette thèse, nous
proposons un calcul plus précis qui prend en compte le nombre d’accès aux ressources partagées
par chacune des parties d’un programme. Le calcul proposé utilise une nouvelle variante de
l’énumération implicite de chemins dans les programmes considérés. Nos expériences démontrent
que le calcul nouveau donne des bornes qui sont en moyenne inférieurs d’environ cinq pour cent.
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Enfin et surtout, cette thèse apporte une contribution conceptuelle à la dérivation formelle des
analyses WCET. Un principe nouveau, nommé property lifting, permet l’utilisation des propriétés
du système concret sous analyse pour la détection des comportements infaisables au niveau
d’approximation sur lequel les analyses WCET fonctionnent. Nous démontrons l’application
du property lifting pendant la dérivation formelle de nos analyses WCET pour systèmes avec
processeurs multi-cœurs et bus partagés. Ce nouveau principe peut être également utilisé pour la
dérivation formelle d’un large éventail d’approches existantes: Celles qui emploient des contraintes
additionnelles pour omettre des comportements infaisables pendant le calcul d’une borne WCET.
C’est une propriété intéressante dans la mesure où la plupart des approches existantes n’ont été
dérivées que sur la base de l’intuition.
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Ausfihrlich Sesammenfassung

Engebettete Echtzeid-Computer-Systeme fir sichahätskritische Aanwennungsbereiche – wie zum
Beischpill de Ensatz in Automobilen – missen bezichlich ihrem Zeidverhallen strenge Aan-
forderungen erfillen. Dòòfor is de Verifizierung von em Zeidverhallen en wichtijer Dääl von da
Verifizierung von de Systemen. De Verifizierung von em Zeidverhallen gefft normaalaweis in
zwo Änzelschritte unnadäält. Daerscht bestimmt en Analys von da maximalen Ausfihrungszeid
(Worst-Case-Execution-Time-Analys, WCET-Analys) pro Programm en owere Schrank von de
michlijen Ausfihrungszeiden. Aanschließend nutzt en Planbarkäätsanalys de resultierend Meng
von Zeidschranken um feschdseschdellen, ob in Sesammenhang mit em verwennten Ablaafpla-
nungsalgorithmus off jeden Fall all Aanforderungen hinsichtlich em Zeidverhallen erfillt genn. De
voorlijend Aawend befasst sich hauftsächlich mit da WCET-Analys.

In Mehrkeerenprozessoren genn änije Hardware-Komponenten (z.B. Iwwatrarungsweje oda
Zwischenspeicha) von mehreren Prozessorkeeren sesammen genutzt um de Preis, et Gewicht un de
Stromverbrauch von de Prozessoren se senken. Wejen disen Vordäälen genn Mehrkeerenprozessoren
ach imma effta in engebetteten Echtzeid-Computer-Systemen fir sichahätskritische Aanwennungen
engesetzt. De sesammen genutzten Komponenten machen de WCET-Analys awa vill schwierijer,
weil wejen denen de Ausfihrungszeid von enem off äänem Keeren ausgefihrten Programm von
de gleichzeidich off de anneren Keeren ausgefihrten Programmen abhängt. Mir bezeichnen dat
als Interferenz wejen sesammen genutzten Komponenten. En genaue Betrachtung von disa
Interferenz während da WCET-Analys wär et selwe wie de Offzehlung alla michlijen Reijenfoljen
von Zougriffen off de sesammen genutzten Komponenten von de verschiedenen Prozessorkeeren
un hat sich als se offwännig erwies. Dòòfor setzen de määschden existierenden Verfahren fir de
Verifizierung von em Zeidverhallen von Mehrkeerenprozessoren off en modulareret Vorgehen, dat
awwa zu ena niddrijeren Präzision fihrt. Zousätzlich verlòssen sich all dise modularen Verfahren
(määschdens sogar nur implizit) off en Kompositionalität von em Zeidverhallen. Bisher is awwa
net bekannt, wie solch zeidkompositionale Verfahren fir de Verifizierung von Computer-Systemen
mit Zeidanomalien genutzt genn kinnen ohne dabei michlijerweis de tatsächlich Ausfihrungszeid
von enem Programm se unnaschätzen. Aktuell Forschungsergebnisse lejen nah, dass sogar relativ
enfache Mikroarchitekturen, die in disem Sesammenhang bisher als unproblematisch gegolt han,
Zeidanomalien offweisen kinnen.

De voorlijend Aawend schläät en nauartije Modellierung von da Interferenz während da WCET-
Analys fir Mehrkeerenprozessoren vor. Da vorgestellte Aansatz ermichlijt en modularet Vorgehen,
weil jeweils nur et Ausfihrungsverhallen von äänem Prozessorkeeren gleichzeidich betracht gefft, un
fihrt ach fir Computer-Systeme mit Zeidanomalien zu korrekten Ergebnissen. Dòriwwa hinaus zeit
dise Aawend, wie en zeidkompositionalet Verfahren off Basis von da vorgestellten Modellierung
umgesetzt genn kann. Off dise Weis schläät dise Aawend en Breck zwischen modernen Mikroar-
chitekturen, die Zeidanomalien offweisen kinnen, un de existierenden Planbarkäätsanalysen, die
sich all off de Kompositionalität von em Zeidverhallen verlòssen.
De määschden modularen Verfahren fir de Verifizierung von em Zeidverhallen von Computer-

Systemen mit Mehrkeerenprozessoren berechnen außerdem owere Schranken von de michlijen
Anzahlen von Zougriffen off de sesammen genutzten Komponenten in Abhängigkät von da Läng
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von em jeweils betrachteten Zeidintervall. Bisher geht de Berechnung von solchen Schranken
pessimistisch davon aus, dass de Gesamtzahl an Zougriffen ener Programmausfihrung beliewig
iwwa de Programmausfihrung verdäält genn kann. In da voorlijenden Aawend stellen ma en
feinkörnijere Berechnung vor, die droff offpasst, welcha Dääl von enem Programm welche Meng
an Zougriffen off de sesammen genutzten Komponenten macht. De vorgestellte Berechnung
is implementiert durch en nauartije Variant von da impliziten Pfadoffzehlung, die iwwa all
teilweisen Pfade durch de betrachteten Programme argumentiert. Uusa Experimente zeijen, dass
de vorgestellte Berechnung im Schnitt ungefähr fünf Prozent genauer is als de existierenden
Aansätz.

Außerdem leischt de voorlijend Aawend en konzeptionellen Beitrach zu da formalen Herleitung
von WCET-Analysen. Et nauartije Prinzip Property-Lifting ermichlijt de Verwennung von Eijen-
schaften von enem konkreten Computer-System fir de Identifizierung von net tatsächlich michlijen
Ausfihrungsverhallen off da Abschtraktionsewene, off der WCET-Analysen argumentieren. Mir
veraanschaulichen de Verwennung von em Property-Lifting im Zure von da formalen Herleitung
von uusra WCET-Analys fir Mehrkeerenprozessoren mit sesammen genutzten Iwwatrarungswejen.
Dòriwwa hinaus kann Property-Lifting fir de formale Herleitung von ena brääden Palett an
existierenden WCET-Analysen verwennt genn, die zousätzliche Ungleichungen verwennen fir
de Präzision von da berechneten Zeidschrank se erhejen. Dise existierenden WCET-Analysen
sinn bisher nett off formale Weis hergeleit genn, sonnern ledichlich basierend off Beischpillen un
Intuitionen.
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Chapter 1

Introduction

Welcome to the jungle. We got fun and games.
We got everything you want. Honey, we know the names.
We are the people that can find whatever you may need.
If you got the money, honey, we got your disease.

(Welcome to the Jungle, Guns N’ Roses, 1987)

1.1. Timing Verification

Timing-critical computer systems must deliver the results of their computations in a timely
manner. Safety-critical embedded systems—as e.g. found in the automotive, aeronautics, and
industrial automation domains—are often timing-critical in the sense that a deadline miss would
have catastrophic consequences. Thus, it is of utmost importance to guarantee that these systems
cannot miss their deadlines. The task of providing such guarantees is referred to as timing
verification.

The timing verification of a computer system is typically realized as a two-step approach.
First, a worst-case execution time (WCET) analysis is performed per program executed on the
considered system. It determines an upper bound on the possible execution times—a so-called
WCET bound—per program under analysis. Subsequently, a schedulability analysis uses the
WCET bounds of all programs to verify that—in combination with the processor scheduling
strategy used—no program will miss its deadline.

1.2. Worst-Case Execution Time Analysis

The WCET of a program depends on the micro-architecture of the hardware platform it is
executed on. The exact determination of the WCET is in general undecidable as it would solve
the halting problem. Thus, WCET analysis typically resorts to the determination of an upper
bound on the possible execution times that occur when executing a particular program on a
particular hardware platform. Such an upper bound is referred to as WCET bound. Note that a
WCET analysis may fail to calculate a (finite) WCET bound for a particular program executed
on a particular hardware platform (either because there is no upper bound on the execution
times—i.e. the exact WCET is not defined—or because the analysis is not precise enough to
calculate a finite WCET bound).
There are different paradigms of WCET analysis. Measurement-based WCET analysis tries

to derive a WCET bound based on a limited set of execution-time measurements. For realistic
hardware platforms, however, it is unclear whether the actual worst case was observed during a
sequence of measurements. To compensate for a potential underestimation, a safety margin is
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Chapter 1. Introduction

typically added to the observed worst case. It, however, remains completely unclear how to safely
determine such a margin for a given hardware platform. Thus, so far, this paradigm of WCET
analysis does not provide the high degree of confidence desirable for the timing verification of
safety-critical systems.
Static WCET analysis, in contrast, computes invariants about all possible concrete traces of the

program under analysis when executed on the considered hardware platform. As a consequence,
it results in safe WCET bounds. This thesis considers the derivation and implementation of static
WCET analyses.

The complexity of modern hardware designs renders an explicit consideration of all concrete
traces of a program at the level of the micro-architecture infeasible in terms of analysis runtime
and memory consumption. Thus, static WCET analysis typically approximates the concrete traces
of the system under analysis by the abstract traces of an abstract model. This approximation has
to be sound in the sense that a WCET bound calculated on the abstract model must upper-bound
every possible execution time of the program under analysis on the concrete system.

There is also the relatively new paradigm of probabilistic WCET analysis. It aims at determining
a probability distribution of WCET bounds for a program executed on a particular hardware
platform. There are static and measurement-based variants of probabilistic WCET analysis. A
detailed discussion of probabilistic approaches, however, exceeds the scope of this thesis. In the
following, we only consider static non-probabilistic WCET analysis.

1.3. Multi-Core Processors

Multi-core processors share common resources (like e.g. caches and buses) between multiple
processor cores. Thus, the manufacturers of safety-critical embedded systems plan to use multi-
core processors as execution platforms instead of multiple single-core processors in order to reduce
the overall cost, weight, and energy consumption. This is further encouraged by an inevitable
trend in the embedded-processor market to mostly produce multi-core processors in the future.
From a timing-verification point of view, however, multi-core processors are significantly

more challenging than single-core processors: the concrete traces that a program executed on
a particular processor core exhibits at the micro-architectural level depend on the programs
simultaneously executed on the concurrent cores [Abel et al., 2013]. This phenomenon is typically
referred to as shared-resource interference. An exact consideration of all such interference effects
would require the enumeration of all interleavings of access requests by the different cores to the
shared resources—which is intractable for hardware platforms of realistic complexity. Thus, the
main additional challenge in designing a WCET analysis for multi-core processors is to consider
the shared-resource interference at an appropriate level of approximation.

In order to avoid the complexity of considering all interleavings of access requests, most existing
approaches to WCET analysis for multi-core processors are processor-core-modular in the sense
that they only consider one processor core at a time. First, a cumulative characterization of the
shared-resource demand is determined per core. Subsequently, a WCET bound for a processor
core is determined based on the cumulative demand characterizations of the concurrent cores.
This effectively reduces the complexity at the cost of less precise WCET bounds.

Additionally, all existing processor-core-modular approaches rely on the principle of timing
compositionality [Hahn et al., 2013] in the following way: they start from a WCET bound
assuming the absence of shared-resource interference and subsequently add a fixed penalty per
unit of concurrent interference. It, however, remains an open problem how to determine a safe
interference penalty for a hardware platform that exhibits timing anomalies [Lundqvist and
Stenstrom, 1999]. Our group has recently shown that shared-resource interference can trigger
timing anomalies already on hardware platforms with surprisingly simple processor core pipelines,
which were previously believed to be anomaly-free [Hahn et al., 2016a]. Thus, it is unclear how
to safely apply the existing analyses to the majority of real-world hardware platforms.
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1.4. Contributions of this Thesis

The set of all concrete traces that a particular program exhibits when executed on a particular
hardware platform is in most cases too large for an explicit consideration. Thus, WCET analysis
typically operates on an abstract model of the concrete system under analysis. An abstract
trace of the abstract model can describe multiple concrete traces of the concrete system. The
abstract model is sound with respect to the concrete system if its abstract traces describe all
concrete traces of the concrete system. The abstract model is chosen in a way that its number of
abstract traces is significantly lower than the number of concrete traces of the concrete system.
Intuitively, the abstract model approximates away some of the details of the concrete system.
In this way, the complexity of WCET analysis (in terms of runtime and memory consumption)
is reduced to a manageable level. Relying on approximation by an abstract model, however,
typically comes at the price of a reduced precision compared to directly considering the concrete
system. In particular, the abstract model might feature abstract traces that do not describe any
concrete traces of the concrete system. Such abstract traces are referred to as infeasible abstract
traces. Literature proposes to use properties of the concrete system (as e.g. flow facts or cache
persistence) in order to prune some of the infeasible abstract traces of the abstract model and,
thus, to potentially improve the precision of the WCET bound calculated based on the remaining
abstract traces of the abstract model. The use of system properties for the detection of infeasible
abstract traces, however, has so far mostly been based on intuition. We close this (widely ignored)
gap with our work: we present a criterion for safely lifting properties of the concrete system to
the abstract model. As a consequence of this criterion, any abstract trace of the abstract model
for which a lifted system property does not hold is guaranteed to be infeasible. Moreover, in this
thesis, we formalize the concrete traces of a state-based system as well as the abstract models for
the three common levels of approximation typically used in WCET analysis: micro-architectural
analysis, paths through a graph, and implicit path enumeration. The resulting formal framework
is used during the derivation of a WCET analysis for lifting system properties up the hierarchy of
abstract models. The lifted versions of the system properties are used during the derived analysis
for pruning infeasible abstract traces.
In addition, this thesis makes contributions in the area of WCET analysis for multi-core

processors with shared buses. In particular, we propose an abstract model that models shared-
bus interference by non-determinism and, thus, safely accounts for the effect that a unit of
interference can have on the pipeline of the interfered processor core. This way of modeling is
processor-core-modular and—at the same time—supports hardware platforms exhibiting timing
anomalies. We derive co-runner-insensitive and co-runner-sensitive WCET analyses by lifting
properties of bus arbitration policies to the proposed abstract model. A naive implementation of
the non-determinism, however, leads to a significant increase of the analysis runtime compared to
an analysis completely ignoring the interference. In the implementation part of this thesis, we
present simple implementation tricks that avoid most of this runtime overhead.
Moreover, this thesis contributes to the field of timing compositionality. It describes a novel

decomposition of the execution time into an interference-dependent part (assuming a statically
configured penalty per unit of interference) and a base component (accounting for the execution
time not covered by the interference-dependent part). We present the calculation of an upper
bound on the base components of all concrete traces. It is referred to as compositional base bound.
A compositional base bound can safely be used in all existing approaches to timing verification
that rely on timing compositionality—even for hardware platforms that exhibit timing anomalies.
Thus, the novel concept of compositional base bounds closes the gap between modern hardware
platforms, which typically exhibit timing anomalies, and existing schedulability analyses, which
(often only implicitly) rely on timing compositionality. The calculation of a compositional base
bound relies on an analysis that safely models all possible interference effects on the considered
pipeline (as e.g. the proposed way of modeling the shared-bus interference by non-determinism).
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Last but not least, this thesis discusses the calculation of values on arrival curves. A value on
an arrival curve upper-bounds the amount of interference that a processor core can generate in
any time interval of at most a given length. Values on arrival curves are used as interference
bounds in many processor-core-modular approaches to co-runner-sensitive timing verification for
multi-core processors. This thesis presents a novel method for calculating values on arrival curves.
The experimental evaluation demonstrates that the values calculated by the novel method are
more precise than those calculated by existing methods.
Note that some of the results and contributions of this thesis have already been presented at

workshops and conferences [Jacobs, 2013; Jacobs et al., 2015, 2016; Hahn et al., 2016a].

1.5. Structure of this Thesis
In Chapter 2, we sketch the state of the art in timing verification for multi-core processors
by discussing the existing work in this field. Chapter 3 provides a more detailed overview of
the main contributions that this thesis makes. Chapter 4 introduces the principle of property
lifting. In Chapter 5, we formalize abstract models for the three levels of approximation of
WCET analysis. Based on the formalized hierarchy of abstract models and the principle of
property lifting, Chapter 6 demonstrates the calculation of event bounds for programs. A WCET
bound is a special case of such an event bound. In Chapter 7, we present WCET analyses for
multi-core processors with shared buses. These analyses model the shared-bus interference by
non-determinism. Chapter 8 demonstrates the calculation of compositional base bounds. In
Chapter 9, we present implementation tricks that keep the analysis-runtime overhead of modeling
shared-bus interference by non-determinism at a manageable level. Chapter 10 demonstrates
the calculation of values on arrival curves for characterizing the bus accesses of a processor core.
Finally, Chapter 11 concludes the thesis.

6



Chapter 2

State of the Art in Timing Verification for Multi-Core Processors

I’m alive, but I am broken
I’m alive, but I’m ashamed

(Into the Wild, Johnossi, 2013)

This chapter sketches the state of the art in timing verification for multi-core processors by dis-
cussing the existing work in this field. The existing work related to the various other contributions
that this thesis makes is discussed ad hoc in the respective chapters.

2.1. Partitioning of Shared Resources
Resources shared between multiple processor cores are often partitioned in order to reduce or
completely eliminate the interference between the cores. Such a partitioning is typically static in
the sense that it does not change during the execution of the system.
A static partitioning of all shared resources of a system can be used to establish temporal

isolation [Bui et al., 2011; Perret et al., 2016] between the processor cores. Temporal isolation
means that there is no shared-resource interference between the processor cores—i.e. the execution
time of a program executed on one core does not depend on the programs executed at the
same time on the concurrent cores. Consequently, temporal isolation enables the precise timing
verification of a processor core without having to consider the programs executed on the concurrent
cores. Note that temporal isolation has been a key concept during the design of a precision-timed
(PRET, [Edwards and Lee, 2007]) multi-threaded processor [Liu et al., 2012].

Static partitioning schemes of shared resources have a significant impact on the (average-case
as well as worst-case) performance of a system as they control which processor core has access to
which share of a resource. As a consequence, there are various approaches trying to optimize the
worst-case performance by choosing these schemes in a beneficial way [Rosen et al., 2007; Liu
et al., 2010, 2011; John and Jacobs, 2014; Gan and Gu, 2015].
The exact way in which a shared resource is partitioned depends on whether it is a space

resource or a bandwidth resource. Thus, in the following, each of these types of resources is
discussed individually.

2.1.1. Space Resources
For space resources as caches and buffers, it is common to partition the space of the resource. For
single-core processors, it has e.g. been proposed to partition the cache space and to assign each
partition to a subset of the programs executed on the processor in order to reduce the interference
the programs have on each other via the cache [Busquets-Mataix et al., 1997].
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In a similar way, for multi-core processors, it has been proposed to statically partition the
space of a shared cache and to assign each partition to a dedicated core [Suhendra and Mitra,
2008; Guan et al., 2009; Ungerer et al., 2010; Liu et al., 2010]. Intuitively, this enables the safe
use of single-core cache analysis techniques.

There are hardware platforms which support to optionally only partition a part of the available
cache space for dedicated access, while the remainder is shared between the cores in a dynamic
fashion [Zang and Gordon-Ross, 2016]. There are, however, also hardware platforms which do
not have hardware support for cache partitioning. For such platforms, cache partitioning can
optionally also be realized in software [Plazar et al., 2009].

2.1.2. Bandwidth Resources

For bandwidth resources as buses and interconnects, it is common to partition the time and to
assign each resulting time slot to a dedicated processor core. This is referred to as time-division
multiple access (TDMA). In recent years, there have been various approaches to timing verification
that support TDMA bus arbitration [Lv et al., 2010; Schranzhofer et al., 2010a, 2011; Kelter
et al., 2011; Chattopadhyay et al., 2012; Kelter et al., 2014; Altmeyer et al., 2015; Rihani et al.,
2015].

Note that there are hardware platforms which support to optionally only configure some of the
available time slots for dedicated access, while the remainder is shared between the cores in a
dynamic fashion [Schranzhofer et al., 2011].

Modern processors—even in the embedded domain—are typically designed for a good average-
case performance. Thus, they typically only support event-driven bus arbitration policies. As
a consequence, approaches to timing verification relying on TDMA bus arbitration are only of
limited use for modern multi-core processors.

2.2. Unpartitioned Shared Resources

For unpartitioned shared resources, it is in some cases possible to bound the amount of interference
experienced by one processor core independently of the programs executed on the concurrent
cores. This is also referred to as Murphy approach [Abel et al., 2013; Hahn et al., 2016a] as it
implicitly assumes the concurrent cores to execute programs that maximize the interference on
the core under analysis. For shared caches, it is always sound to pessimistically assume that each
access might miss or hit the shared cache [Yan and Zhang, 2008]. For some shared-bus arbitration
protocols (e.g. Round-Robin), the interference can be bounded independently of the programs
on the concurrent cores [Jacobs et al., 2015]. For other shared-bus arbitration protocols (e.g.
priority-based, which may exhibit starvation), this is not possible.

The Murphy approach is considered [Paolieri et al., 2009] as the preferred approach to timing
verification for hard real-time threads executed on the multi-core architecture developed in the
MERASA project [Ungerer et al., 2010].

The Murphy approach has been shown to lead to significant overestimation of the interfer-
ence [Yan and Zhang, 2008; Nowotsch, 2014; Jacobs et al., 2015]. Thus, most existing approaches
take into account the resource access behavior of the concurrent cores. There are roughly two
classes of approaches, which differ in the degree of detail at which the interference between the
programs on the different cores is modeled.
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2.2.1. Enumeration of Interleavings of Access Requests

The enumeration of all interleavings of access requests to the shared resources enables the precise
bounding of the impact of shared-resource interference on the execution time of a program. This
way of modeling shared-resource interference is also referred to as fully integrated [Hahn et al.,
2016a].

Kelter and Marwedel present a micro-architectural analysis that explores all interleavings of
access requests [Kelter and Marwedel, 2014]. For a multi-core processor with a shared bus and
an event-driven bus arbitration, their analysis is on average 130 times slower than an existing
analysis considering TDMA bus arbitration [Chattopadhyay et al., 2012]. This dramatic increase
in analysis runtime is observed although they assume that the programs executed on the different
processor cores start perfectly synchronized. In his dissertation [Kelter, 2015], Kelter also evaluates
an analysis that models shared-cache interference in the same way. For a dual-core scenario, he
reports an average analysis runtime of 1,489.9 seconds per benchmark, compared to 2 seconds for
an existing, less precise approach [Li et al., 2009]. He does not present experiments considering
the combined modeling of a shared bus and a shared cache. In our opinion, this way of modeling
shared-resource interference cannot scale to real-world scenarios.

The use of timed model checking [Bengtsson et al., 1995] for the enumeration of all interleavings
of access requests to the shared resources has also been proposed [Lv et al., 2010; Gustavsson
et al., 2010; Giannopoulou et al., 2012; Lampka et al., 2014]. However, it suffers from similar
scalability problems as the approach by Kelter and Marwedel. Ironically, the authors of one
of these papers claim that their approach “scales well and can handle real-life programs” [Lv
et al., 2010] in combination with a shared bus and a first-come-first-serve bus arbitration. This
claim is not supported at all by the corresponding experiments in the paper, which only consider
a dual-core platform. Two of these papers [Giannopoulou et al., 2012; Lampka et al., 2014]
can be seen as the more integrated counterparts of an earlier processor-core-modular algebraic
method [Schranzhofer et al., 2011]. Surprisingly, however, the approaches in both papers are not
compared to the earlier algebraic method or any other existing approach—neither in terms of
runtime nor in terms of precision.

Zhang and Yan present an ILP-based approach that models shared-cache interference by arguing
about all processor cores in an integrated fashion [Zhang and Yan, 2009]. They only conduct
experiments for a dual-core processor with a direct-mapped shared cache. Their approach is
based on an earlier ILP-based approach to cache modeling [Li et al., 1996], which is known for its
high computational complexity [Lv et al., 2016]. Thus we are confident, that their approach does
not scale to realistic multi-core platforms.
Although this line of work does not seem to scale to real-world scenarios, it can serve—in

combination with toy scenarios—as a benchmark for evaluating the precision of more scalable
approaches.

2.2.2. Processor-Core-Modular Timing Verification

In order to overcome the seemingly inherent scalability problems of modeling shared-resource
interference in a fully integrated way, most existing approaches resort to more modular timing
verification techniques [Schliecker et al., 2008; Yan and Zhang, 2008; Negrean et al., 2009; Li et al.,
2009; Schliecker et al., 2009; Hardy et al., 2009; Andersson et al., 2010; Schliecker and Ernst,
2010; Schranzhofer et al., 2010b; Chattopadhyay et al., 2010; Pellizzoni et al., 2010; Schranzhofer
et al., 2011; Dasari et al., 2011; Dasari and Nélis, 2012; Nowotsch and Paulitsch, 2013; Nowotsch
et al., 2014; Nowotsch, 2014; Nagar and Srikant, 2014; Altmeyer et al., 2015; Nagar and Srikant,
2016; Huang et al., 2016; Wegener, 2017]. These approaches are processor-core-modular in the
sense that they only consider one processor core at a time. A cumulative characterization of the
shared-resource access behavior is determined per processor core. The actual timing verification
of a particular processor core relies on the access characterizations of the concurrent processor
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cores. The improved scalability of the processor-core-modular approaches comes at the cost of a
reduced precision [Kelter and Marwedel, 2014]. Thus, processor-core-modular approaches might
not be able to verify some of the timing properties that can be verified with fully integrated
approaches.

Note that all aforementioned processor-core-modular approaches additionally rely on the prin-
ciple of timing compositionality [Hahn et al., 2013]. They typically start from a WCET bound
assuming the absence of shared-resource interference and subsequently add a fixed penalty penR
per unit of concurrent interference on shared resource R. The determination of safe interfer-
ence penalties for the different shared resources of a hardware platform that exhibits timing
anomalies [Lundqvist and Stenstrom, 1999], however, remains an open problem. Our group
has recently shown that shared-resource interference can trigger timing anomalies already on
hardware platforms with surprisingly simple processor core pipelines [Hahn et al., 2016a], which
were previously believed to be anomaly-free. Thus, it is unclear how to safely apply the existing
analyses to the majority of real-world hardware platforms.

2.2.3. Relevance of this Thesis
This thesis proposes to model the shared-bus interference by non-determinism and, thus, to
safely account for the effect that a unit of interference can have on the pipeline of the interfered
processor core. This way of modeling enables a processor-core-modular consideration and—at
the same time—supports hardware platforms exhibiting timing anomalies. Based on this way
of modeling, we present a co-runner-insensitive WCET analysis (corresponding to the Murphy
approach) and a co-runner-sensitive WCET analysis (considering the bus access behavior of the
programs on the concurrent processor cores).

Moreover, this thesis describes a novel decomposition of the execution time into an interference-
dependent part (assuming a statically configured penalty per unit of interference) and a base
component (accounting for the execution time not covered by the interference-dependent part).
We present the calculation of an upper bound on the base components of all concrete traces. It is
referred to as compositional base bound. A compositional base bound can safely be used in all
existing approaches to timing verification that rely on timing compositionality—even for hardware
platforms that exhibit timing anomalies. Thus, this novel concept makes the aforementioned
processor-core-modular approaches applicable to a significantly increased range of hardware
platforms. The calculation of a compositional base bound relies on an analysis that safely
accounts for all possible interference effects on the considered pipeline (as e.g. the proposed way
of modeling the shared-bus interference by non-determinism).
Note that—to the best of our knowledge—we are first to recognize the common level of

modularity that we refer to as processor-core-modularity. The term processor-core-modularity is
inspired by thread-modularity, which refers to verification techniques for multi-threaded software
that only consider one thread at a time and characterize the write behavior with respect to the
shared variables in a cumulative way per thread [Flanagan and Qadeer, 2003; Henzinger et al.,
2003; Malkis et al., 2007; Gotsman et al., 2007; Miné, 2011, 2014; Monat and Miné, 2017].
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Chapter 3

Contributions

There is a war between us
I wanna give you something
There is a force that drives us

(The War between Us, Tiger Lou, 2004)

This chapter provides a brief overview of the contributions that this thesis makes with respect to
the state of the art. For more details, we refer to the following chapters.
Note that some of the results and contributions of this thesis have already been presented at

workshops and conferences [Jacobs, 2013; Jacobs et al., 2015, 2016; Hahn et al., 2016a].

3.1. Property Lifting
In this thesis, we present the principle of property lifting. It uses properties of a concrete system
under analysis to prune infeasible abstract traces from an abstract model of the concrete system.
The formal details of property lifting are presented in Chapter 4. In the following, we use a
sequence of figures to intuitively explain how property lifting works.

We start by taking into account the set Traces of concrete traces of the concrete system under
analysis. In the context of timing verification, a concrete trace is typically a sequence of hardware
states that corresponds to an execution of the program under analysis on the concrete system.
Each concrete trace has an execution time. The worst-case execution time (WCET) is the maximal
execution time over all concrete traces. Analogously, the best-case execution time (BCET) is the
minimal execution time over all concrete traces.

Traces

execution time

0

WCET

BCET

For modern hardware platforms, the set of all concrete traces is typically too large to explicitly
consider each concrete trace separately. Thus, we need an abstract model approximating away
some of the details of the concrete system. The abstract model consists of a set T̂races of abstract
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traces and a description function γtrace. Each abstract trace t̂ describes a set of concrete traces.
However, since this way of approximation is not necessarily precise, an abstract trace t̂ might
also describe spurious traces (i.e. traces that are not contained in the set Traces of the concrete
system).

Traces

T̂races

γtrace

t̂ ∈

In order to provide a sound abstract model of the concrete system, each concrete trace has to
be described by an abstract trace of T̂ races.

Traces

T̂races

γtrace

Each abstract trace has an upper bound and a lower bound on the execution times of the
concrete and spurious traces that it describes.

Traces

execution time

0

UBtime(t̂)

LBtime(t̂)

γtrace

t̂
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A WCET bound is obtained by choosing the maximum upper time bound over all abstract
traces. Analogously, a BCET bound is obtained by choosing the minimum lower time bound over
all abstract traces.

Traces

T̂races
γtrace

execution time

0

WCET Bound

BCET Bound

Remember that we only require that each concrete trace has to be described by at least one
abstract trace of the abstract model. Thus, the abstract model might as well feature abstract
traces that do not describe any concrete trace. We call them infeasible abstract traces.

Traces

γtrace

t̂

Unfortunately, the WCET bound might be dominated by infeasible abstract traces. Thus, we
have a vital interest in pruning infeasible abstract traces in order to improve the precision of the
WCET bound.

Traces

T̂races \ {t̂}
γtrace

execution time

0

WCET Bound without t̂
WCET Bound

γtrace

t̂

Recall that we use an abstract model in order to not have to argue explicitly about all concrete
traces. Thus, it is no option to check the feasibility of an abstract trace by explicitly considering
what it describes.
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Instead, we propose to use system properties for the detection of infeasible abstract traces. A
system property P of a considered concrete system is a Boolean predicate that holds for each
concrete trace of the concrete system. However, it might also hold for some of the spurious traces
described by an abstract model of the concrete system.

Traces

P

A system property P is not of direct use for the detection of infeasible abstract traces as it is so
far only defined on the sets of concrete and spurious traces. Thus, we define a lifted version P̂ of
the system property as a Boolean predicate on abstract traces. The lifted property P̂ has to fulfill
a soundness criterion with respect to the system property P : if an abstract trace t̂ describes
something for which the system property P holds, the lifted property P̂ also has to hold for t̂.

P

γtrace

t̂

⇒ P̂ (t̂)

Note that—for an efficient implementation—it is mandatory that the lifted property P̂ can be
evaluated without having to explicitly consider the traces described by the respective abstract
trace.

Now, assume that the lifted property P̂ does not hold for a particular abstract trace t̂. As a
consequence of the soundness criterion, t̂ can only describe traces for which property P does not
hold. It follows from P being a system property that t̂ cannot describe any concrete traces of the
concrete system. Thus, t̂ is infeasible and can safely be pruned.

Traces

P

γtrace

t̂

¬P̂ (t̂)⇒

This gives an intuition that property lifting is indeed sound. We present a more formal
soundness argument in Chapter 4.
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However, note that property lifting is not necessarily complete. This means that it does not
necessarily detect all infeasible abstract traces. As an example, consider the following system
property P , which cannot be used to detect the infeasibility of abstract trace t̂. Any safely lifted
version P̂ of P will fail to detect t̂ as infeasible.

Traces

P

γtrace

t̂

In this thesis, we lift properties of shared-bus arbitration protocols (cf. Chapter 7) to a hierarchy
of abstract models corresponding to the levels of approximation used in WCET analysis (cf.
Chapter 5). Note, however, that property lifting is a very general principle, which does not make
any assumptions about the structure of the concrete traces or the abstract traces. Thus, its
application is not limited to timing verification. In principle, it can as well be applied to a wide
range of verification techniques relying on approximation (as e.g. predicate abstraction [Graf and
Saïdi, 1997] or shape analysis via three-valued logic [Sagiv et al., 2002]). A detailed discussion of
such applications of property lifting, however, is beyond the scope of this thesis. In Section 4.2.5,
we argue that an iterative variant of property lifting (cf. Section 4.2) can as well be used
for the derivation of thread-modular verification techniques [Flanagan and Qadeer, 2003] for
multi-threaded software.

3.2. Formalization of the Levels of Approximation
The typical WCET analysis workflow (i.e. a micro-architectural analysis and a subsequent implicit
path enumeration) can be seen as operating on three levels of approximation.

1. At the level of approximation of micro-architectural analysis, there are sequences of abstract
states [Thesing, 2004].

2. At the level of approximation of paths through a graph, there are the paths through a
directed, weighted graph [Matthies, 2006; Stein, 2010].

3. At the level of approximation of implicit path enumeration, there are so-called implicit
paths. An implicit path approximates away the order of the edges along a path and only
counts how often an edge occurs [Li and Malik, 1995; Puschner and Schedl, 1997; Theiling,
2002; Stein, 2010].

In Chapter 5, we formalize an abstract model for each of these three levels of approximation.
Figure 3.1 shows a schematic overview of the resulting hierarchy of abstract models. Each abstract
model is formally shown to describe all traces of the underlying level.

Due to each abstract model in the hierarchy safely describing all traces of the level below, we
can use the principle of property lifting in order to lift system properties up the hierarchy. In
this way, we can use the lifted system properties in order to safely detect and prune infeasible
abstract traces of the abstract models at the different levels of approximation.
The idea of using additional knowledge about a concrete system in order to prune infeasible

abstract traces from an abstract model of the concrete system is not new. There are various
approaches that add additional linear constraints to an implicit path enumeration based on ILP
in order to improve the precision of the resulting WCET bounds [Li et al., 1995, 1996; Engblom
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Implicit Path Enumeration Infeas
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Paths through a Graph Infeas Spurious
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Figure 3.1.: Schematic overview of the hierarchy of abstract models:
Each feasible abstract trace describes some feasible traces of the level below.
An infeasible abstract trace does not describe any feasible trace of the level below.

and Ermedahl, 2000; Stein, 2010; Cullmann, 2013]. The derivation of these approaches, however,
was mostly based on intuition. Consequently, there are so far no formal soundness proofs for
most of these approaches.

Thus, our work closes a gap that has been widely ignored: Our framework enables a formally
sound derivation of the constraints that are added to an implicit path enumeration in order to
improve the analysis precision. We are confident that the aforementioned existing approaches can
be formalized as instances of our framework and proved sound in this way.

For a more detailed discussion on the relevance of this formal hierarchy and the existing work
related to it, we refer to Section 5.5.

3.3. Calculation of General Event Bounds
A system event is an entity that happens during some of the clock cycles of the execution of a
hardware platform. Thus, a system event is precisely defined by the set of cycle transitions of
the hardware during which it happens. System events are e.g. cache misses, cycles blocked at a
shared bus, and writes to a particular memory location. Note that the cycle tick event happens
during any clock cycle of the hardware platform.
A WCET bound of a particular program must never be exceeded by the number of cycle tick

events during any execution run of the program on the system under analysis. We can generalize
this requirement to a whole class of upper event bounds by replacing the cycle tick event by
arbitrary other system events.

In Chapter 6, we present the calculation of such general event bounds based on the hierarchy of
abstract models and a set of lifted system properties. Moreover, we formally prove the soundness
of the resulting bounds.
Existing approaches to the calculation of WCET bounds typically only consider paths from

the start to the end of the program under analysis. For the calculation of general event bounds,
this results in safe bounds for programs that are guaranteed to terminate (cf. Section 6.4.7).
This approach, however, is not necessarily sound for the calculation of general event bounds for
programs that can diverge.

Consider Figure 3.2 for two counter-examples. It depicts the control flow graphs of two example
programs that shall be able to diverge. For simplicity, we assume that every execution of a
particular basic block of one of the programs exhibits the constant number of occurrences of
event E1 annotated to the basic block. Moreover, each basic block shall be reached by at least
one execution run of the respective program.
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Program Start
BB1: 2× E1

BB2: 1× E1

Program End

BB3: 2× E1

BB4: 0× E1

BB5: 0× E1

(a)

Program Start
BB1: 2× E1

BB2: 1× E1

Program End

BB3: 2× E1

BB4: 0× E1

BB5: 0× E1

(b)

Figure 3.2.: Control flow graphs of two example programs that can diverge. For simplicity, the
execution of each basic block is assumed to exhibit a constant number of occurrences
of event E1.

For the example program in Figure 3.2a, the consideration of all paths from the program start
to the program end results in a bound value of three with respect to the number of occurrences
of event E1. This bound value is not sound as there are four occurrences of event E1 on a path
from the program start to the loop.

Now, consider the example program in Figure 3.2b. The only difference to the example program
in Figure 3.2a is that—according to the control flow graph—the program end is also reachable
from within the loop. For this variant of the example program, the set of all paths from the
program start to the program end results in a bound value of five with respect to the number of
occurrences of event E1. This bound value is sound as there cannot be more than five occurrences
of event E1 during an execution of the example program.

Finally, assume we additionally know that the example program in Figure 3.2b cannot reach the
program end once it entered the loop. This might e.g. be based on the results of a sophisticated
flow analysis which finds out that the execution of basic block BB4 is always succeeded by the
execution of basic block BB5. Consequently, we use this knowledge as system property in order
to prune all paths that reach the program end from within the loop. The remaining set of paths
from the program start to the program end results in a bound value of three with respect to
the number of occurrences of event E1. Again, this bound value is not sound as there are four
occurrences of event E1 on a path from the program start to the loop. This means that—in
combination with property lifting—the reachability of the program end from every basic block of
the control flow graph is not sufficient for a safe calculation of a general event bound based on
the paths from the program start to the program end.
We propose to overcome these soundness issues by exploiting the graph theory concept of

feedback node sets [Karp, 1972]. A feedback node set of a graph is a subset of its nodes chosen in
a way that every cycle in the graph contains a node of the subset. Once we determined a feedback
node set of the graph, we calculate an event bound based on all paths from the programs start to
either the program end or one of the feedback nodes. In Section 6.4.3, we formally prove that
this approach is sound for arbitrary programs—independent of their termination behavior.

Intuitively, this means that we simply add a valid set of feedback nodes of the graph to its set
of end nodes. For the example programs in Figure 3.2, it is e.g. sufficient to add basic block BB4

to the set of end nodes of the graph. The consideration of all paths from the program start to
either the program end or BB4 results in a bound value of four, which is sound with respect to
the number of occurrences of event E1.
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Program Start
BB1: 2 clock cycles

BB2: 7 clock cycles
Program End

BB3: 4 clock cycles

BB4: 5 clock cycles

BB5: 3 clock cycles

Figure 3.3.: Control flow graph of another example programs that can diverge. For simplicity, the
execution of each basic block is assumed to take a constant amount of clock cycles.

Our feedback node set approach never calculates a defined event bound value that is unsound
with respect to the concrete program. The classical approach of only considering paths from the
program start to the program end, in contrast, must be combined with a termination analysis in
order to provide the same guarantee.

Even in combination with a termination analysis, the classical approach cannot guarantee any
defined bound value if the termination analysis cannot prove the termination of the program. The
feedback node set approach, in contrast, can calculate defined event bound values for programs
that can diverge. This is also demonstrated by the example program in Figure 3.2a. The feedback
node set approach succeeds to calculate a defined bound value of four. The combination of
the classical approach and a termination analysis, in contrast, has to pessimistically assume an
unbounded number of event occurrences.

Note that the classical approach suffers from similar soundness problems during the calculation
of lower event bounds—although there are no such soundness problems for the special case of
BCET bounds (cf. equation (6.32)). In Chapter 6, we prove the soundness of the feedback node
set approach for the calculation of upper and lower event bounds.
Further note that the classical approach suffers from similar soundness problems during the

calculation of WCET bounds at the level of approximation of paths through a graph. However,
for the special case of WCET bounds, the soundness is guaranteed to be reestablished at the level
of approximation of implicit path enumeration in case the implicit path enumeration is based
solely on linear constraints (i.e. no additional features of modern solvers like SOS constraints or
indicator constraints are used). We would like to demonstrate this with the example in Figure 3.3.
It depicts the control flow graphs of an example program that shall be able to diverge. For
simplicity, we assume that every execution of a particular basic block of the program takes a
constant amount of clock cycles. Moreover, each basic block shall be reached by at least one
execution run of the concrete program. Assume that we additionally know that the example
program cannot reach the program end once it executes BB3. This flow fact is expressed as a
linear constraint during implicit path enumeration as follows.

timesTakenBB3 + timesTakenBB2 ≤ 1

If we perform a calculation of a WCET bound at the level of approximation of paths through a
graph by only considering paths from the program start to the program end and only considering
paths in which basic blocks BB3 and BB2 do not both occur, we obtain a bound value of nine
clock cycles, which is not sound for a program that can diverge. At the level of approximation
of implicit path enumeration, however, the objective is unbounded in case the implicit path
enumeration is based solely on linear constraints. The reason for this is that, in implicit path
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enumeration based solely on linear constraints, any unbounded loop in the graph can hold itself
within an implicit path without necessarily having to be connected to any of the remaining nodes
and edges of the implicit path. In Figure 3.3, we color the nodes and edges that belong to the
implicit paths leading to an unbounded objective. In Section 6.5.2, we argue that such implicit
paths always exist for a diverging program in case the implicit path enumeration is based solely
on linear constraints.

3.4. Modeling Shared-Resource Interference by
Non-Determinism

The micro-architectural analysis of a given program for a given hardware platform typically
assumes the absence of shared-resource interference. The resulting time bounds are used by
subsequent analyses [Schliecker et al., 2008; Yan and Zhang, 2008; Negrean et al., 2009; Li
et al., 2009; Schliecker et al., 2009; Hardy et al., 2009; Andersson et al., 2010; Schliecker and
Ernst, 2010; Schranzhofer et al., 2010b; Chattopadhyay et al., 2010; Pellizzoni et al., 2010;
Schranzhofer et al., 2011; Dasari et al., 2011; Dasari and Nélis, 2012; Nowotsch and Paulitsch,
2013; Nowotsch et al., 2014; Nowotsch, 2014; Nagar and Srikant, 2014; Altmeyer et al., 2015; Nagar
and Srikant, 2016; Huang et al., 2016; Wegener, 2017] which add a fixed temporal penalty per unit
of concurrent interference (e.g. per cycle of being blocked at a shared bus). The determination
of such safe penalties for hardware platforms exhibiting timing anomalies, however, remains an
open problem [Hahn et al., 2016a].

There are approaches [Gustavsson et al., 2010; Kelter and Marwedel, 2014] that take into account
the shared-resource interference during micro-architectural analysis. In general (i.e. without
necessarily relying on a partitioning of the shared resources, cf. Section 2.1), however, these
approaches rely on an enumeration of all interleavings of access requests by the different processor
cores. Experimental results indicate that this enumeration suffers from a very high computational
complexity [Kelter, 2015]. Thus, such a fully integrated analysis of the shared-resource interference
is not expected to scale to real-world scenarios (cf. Section 2.2.1).
In this thesis, we propose to model shared-resource interference by non-determinism during

micro-architectural analysis. In contrast to a fully integrated consideration of the shared-resource
interference, the proposed approach only explicitly argues about the program execution on a
single processor core. The single considered processor-core pipeline is argued about in a similar
way as in single-core WCET analysis [Thesing, 2004]. The access behavior of the considered
processor core with respect to the shared resources, however, is pessimistically overapproximated
by non-deterministic case splits. Figure 3.4 demonstrates this principle for a system with a shared
bus and a fixed access latency of two clock cycles, which every granted bus access takes. The
non-determinism pessimistically assumes that every requested bus access might be blocked for an
arbitrary number of clock cycles before it is granted. Section 7.2 describes this non-deterministic
overapproximation of the shared-bus interference in a more detailed way.

In Section 7.8, we briefly sketch how this non-deterministic overapproximation of the shared-bus
interference can be extended to additionally support further sources of interference (as e.g. shared
caches and/or DRAM refreshes). Such further sources of interference, however, are not in the
focus of this thesis. Thus, the analysis derivations and case studies presented in this thesis assume
that a shared bus is the only source of interference with respect to the considered processor core.

Note that the non-deterministic overapproximation of the shared-bus interference as presented
so far (cf. Figure 3.4) is still relatively useless for WCET analysis. It pessimistically assumes
an unbounded amount of blocked cycles per bus access. Thus, in order to obtain finite WCET
bounds, we exploit system properties which upper-bound the number of blocked cycles. Lifted
versions (cf. Section 3.1) of these system properties are used for the safe detection of infeasible
abstract traces. For the derivation of co-runner-insensitive WCET analyses, we only use system
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RequestedCi

GrantedCi

RequestedCi

BlockedCi GrantedCi

GrantedCi

CompletedCi

BlockedCi

Figure 3.4.: Diagram representation of the non-determinism pessimistically modeling the access
behavior with respect to a shared bus and a fixed access latency of two clock cycles.

properties which bound the number of blocked cycles independently of the programs executed on
the concurrent cores (cf. Section 7.4). The derived co-runner-insensitive analyses only take into
account the program and the processor core for which a WCET bound is calculated. For the
derivation of co-runner-sensitive WCET analyses, we additionally use system properties which
bound the number of blocked cycles in dependence of the access behavior of the concurrent cores
(cf. Section 7.5). The derived co-runner-sensitive analyses are processor-core-modular and, thus,
avoid the enumeration of all interleavings of access requests by the different processor cores.

To the best of our knowledge, the presented modeling scheme for shared-resource interference
is the first one supporting systems with timing anomalies and at the same time not resorting to a
fully integrated analysis. Thus, this modeling scheme is an important step toward the timing
verification of hard real-time systems with real-world multi-core processors.

The presented modeling scheme avoids the computational complexity of a fully integrated
analysis. Yet, unsurprisingly, it is computationally more complex than simply assuming the
absence of interference. In Chapter 9, we demonstrate how simple implementation tricks can help
keeping the overhead in terms of analysis runtime manageable.

3.5. Compositional Base Bounds
Timing-compositional [Hahn et al., 2013] analyses typically start from a basic time bound and
add a fixed penalty per unit of interference. The following equation represents a simple timing-
compositional analysis that calculates an upper bound on the execution times of a program in
dependence on the number of cycles the execution is blocked at the shared bus.

Time = Base+NumberBlockedCycles · Penalty

Classically, the bound Base is calculated by single-core WCET analysis techniques (i.e. assuming
the absence of interference). For hardware platforms exhibiting timing anomalies [Lundqvist
and Stenstrom, 1999], however, the determination of a safe penalty per unit of interference is an
open problem [Hahn et al., 2016a]. Intuitively, the challenge is that—in the presence of timing
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anomalies—a cycle of being blocked at the shared bus might prolong the overall execution time
by more than a single clock cycle. As a consequence, so far, the analyses relying on timing
compositionality are not applicable to hardware platforms exhibiting timing anomalies.

In order to overcome this limitation, we propose to calculate Base on top of a low-level analysis
that safely models the shared-bus access behavior of the considered processor core (cf. Section 3.4).
Our calculation procedures assume a (manually determined) penalty per unit of interference. In
this way, we are able to calculate a bound Base that fulfills the following intuitive soundness
statement :

Any concrete trace that is blocked at the shared bus for at most x cycles has an
execution time of at most (Base+ x · Penalty) clock cycles.

A bound Base that fulfills this soundness statement with respect to a given penalty is referred
to as compositional base bound. In Chapter 8, we formalize the concept of compositional base
bounds and present procedures for their calculation. In this way, we close the gap between
high-level timing analyses (as e.g. schedulability analyses) that (implicitly or explicitly) rely on
timing compositionality and modern hardware platforms that typically exhibit timing anomalies.

3.6. Calculation of Values on Arrival Curves
Processor-core-modular approaches (cf. Section 2.2.2) to the timing verification of systems with
multi-core processors rely on a cumulative approximation of the shared-resource access behavior
per processor core. Such a cumulative approximation usually consists in calculating values on an
arrival curve. A value α(l) on an arrival curve α upper-bounds the number of occurrences of an
interference-generating event E on a given processor core in any time interval of at most l clock
cycles. Such an interference-generating event might e.g. be a granted access to the shared bus by
the given processor core.

The calculation of values on arrival curves is typically performed at the granularity of program
runs. This means that the calculation pessimistically assumes the maximal amount of occurrences
of event E any execution run of a given program prog generates to be distributable across the
execution run in an arbitrary fashion. This principle is demonstrated by Figure 3.5 for a scenario
in which the processor core under consideration repeatedly executes a single program prog. Each
execution run of program prog is assumed to take the best-case execution time BCETprog and
to produce the maximal amount MaxE,prog of event occurrences. The number of occurrences
of event E in a time interval of length l is maximized if the first execution run spanned by the
interval generates all interference events at the end of the program and all subsequent execution
runs generate all interference events at the beginning of the program.
The calculation of arrival curve values at the granularity of program runs assumes that the

amount of event occurrences generated by an execution run can be distributed across the execution
run in an arbitrary fashion. For most real-world programs, however, the occurrences of interference-
generating events are more or less distributed across the whole execution run. Thus, a calculation
at the granularity of program runs is inherently pessimistic for most real-world programs. As an
example, consider a time interval of a length l that does not exceed 2 ·MaxE,prog. According to
the pessimistic assumptions of the calculation at program granularity, such an interval can be
completely filled up with occurrences of event E (i.e. α(l) = l, cf. Figure 3.6).

Another precision problem of the calculation of arrival curve values at the granularity of program
runs stems from the pessimistic assumption that every execution run of a considered program
only takes the BCET of the program and—at the same time—is able to generate the maximal
amount of event occurrences that an execution run can generate. For most real-world programs,
however, execution runs that take longer are typically also able to generate a higher amount of
event occurrences. As an example, consider a program prog such that BCETprog ≤ MaxE,prog.
According to the pessimistic assumptions of the calculation at program granularity, for this
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prog prog prog prog

l

BCETprogMaxE,prog

Figure 3.5.: The calculation of arrival curve values at the granularity of program runs pessimisti-
cally assumes that the maximal amount of interference an execution run of a program
generates can be distributed across the execution run in an arbitrary way. Under
this assumption, the amount of interference that can be generated in a time interval
of length l is maximized if the first execution run spanned by the interval generates
all interference events at the end of the program and all subsequent execution runs
generate all interference events at the beginning of the program.

prog prog prog prog

l

MaxE,prog

Figure 3.6.: The calculation of arrival curve values at the granularity of program runs is particularly
pessimistic for time intervals of a length l that does not exceed 2·MaxE,prog. According
to the assumed (and typically infeasible) worst-case distribution of events, such
intervals can be completely filled up with event occurrences.

example, a time interval of any length l can be completely filled up with occurrences of event E
(i.e. ∀l ∈ N : α(l) = l). Note that, for a program with a wide range of possible executions
times (i.e. WCETprog is significantly greater than BCETprog), it is not unrealistic to assume
BCETprog ≤ MaxE,prog.

Finally, we would like to point out that the calculation of arrival curve values at the granularity
of program runs inherently relies on the existence of an upper bound MaxE,prog on the number of
event occurrences per execution run of each program prog executed on the considered processor
core. For programs that can diverge, however, such a bound does typically not exist. Thus, as
soon as the considered processor core executes a program that can diverge, a calculation at the
granularity of program runs is not applicable. Instead, it is pessimistically assumed that any
time interval can be completely filled up with event occurrences (i.e. α(l) = l). This precision
problem might e.g. arise for scenarios in which only some of the processor cores of a system
execute timing-critical programs.

In order to overcome these precision problems of the calculation of arrival curve values at the
granularity of program runs, in Section 10.2, we present the calculation of arrival curve values at
finer granularities. The calculation is based on graphs that are similar to those typically used
for the calculation of a WCET bound. These graphs are e.g. at the granularity of basic blocks
or at the granularity of clock cycles. In contrast to the calculation of a WCET bound, however,
the calculation of an arrival curve value also has to consider execution sequences on a processor
core that span across multiple program execution runs. This is achieved by additional graph
edges that connect the end nodes of a program with the start nodes of all programs executed
on the same processor core. In addition, the calculation of an arrival curve value also has to
consider execution sequences that start at an arbitrary point of an execution run and end at an
arbitrary point of an execution run. To this end, our calculation argues about all subpaths of the
underlying graph representation. In order to efficiently argue about these subpaths, we exploit
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the principle of implicit path enumeration—resulting in an implicit subpath enumeration. An
experimental evaluation shows that the presented calculation results in a significantly improved
precision compared to a calculation at the granularity of program runs.

The calculation of arrival curve values via implicit subpath enumeration, however, suffers from
a high computational complexity. Thus, it is unlikely to scale to scenarios in which multiple
real-world programs are executed per processor core. In Section 10.4, we sketch a more modular
calculation of arrival curve values. It performs the computationally complex implicit subpath
enumerations on a per-program level. The actual curve value calculation uses the resulting
per-program compositional base bounds in a compact ILP formulation. We expect that, in this
way, the modular calculation provides a precision close to the curve value calculation via implicit
subpath enumeration while significantly improving on its scalability.

23





Part II.

Design of WCET Analyses

25





Chapter 4

Property Lifting

I will lift you up my friend
You have to learn to breathe again

(Monsters in the Ballroom, In Flames, 2014)

4.1. The Principle of Property Lifting

The (potentially only partial) verification of a complex computer system typically requires some
degree of approximation by an abstract model of the concrete system in order to make verification
tractable in terms of runtime and memory consumption. Approximation, however, typically
results in a loss of precision. As a consequence, an imprecise abstract model of a concrete system
may prohibit the proof of a verification goal that holds for the concrete system. Property lifting
provides a mechanism to improve the precision of an abstract model by pruning some of its
members that are guaranteed to describe no concrete traces of the concrete system.
This section presents the principle of property lifting at a formal level. For a less formal

introduction to property lifting, we refer to Section 3.1.

4.1.1. Approximation by Abstract Traces

The term system refers to any formal or physical system that exhibits observable behavior. Formal
systems include but are not limited to state machines and term rewrite systems. In the context of
WCET analysis, we use the term system to refer to the combination of a hardware platform and
the software executed on it. The considered concrete system may exhibit different concrete traces
depending on its initial state, external input parameters and the environment. Let Traces be the
set of all concrete traces of the system. Its superset Universe additionally contains the spurious
traces that might be described by imprecisely approximating the concrete system. Spurious traces
can, for example, be sequences of concrete system states that cannot be observed during any
execution of the concrete system.

Universe ⊇ Traces (4.1)

Complex systems usually exhibit too many concrete traces to allow for an exhaustive consider-
ation of all of them. The set Traces is simply too large. Therefore, it is mandatory to introduce
some kind of approximation. The goal is to not have to argue separately about each concrete
trace.
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We propose the approximation by a set T̂races of abstract traces. The function γtrace maps
abstract traces to subsets of concrete and spurious traces. Note that P(Universe) denotes the
power set of the union of concrete and spurious traces.

γtrace : T̂races→ P(Universe) (4.2)

We consider the tuple (T̂races, γtrace) as an abstract model of the concrete system if and only if
it overapproximates the set Traces of concrete traces.⋃

t̂∈T̂races

γtrace(t̂) ⊇ Traces (4.3)

The principles presented in this chapter are applicable to any abstract model (providing the
aforementioned overapproximation). Thus, for now, we do not make any assumptions about the
structure of abstract traces or the exact definition of γtrace. In Chapter 5, we formally define one
abstract model for each of the three levels of approximation typically used in WCET analysis.

4.1.2. Infeasible Abstract Traces

Approximation typically introduces imprecision. This manifests in abstract traces describing
subsets of the concrete and spurious traces. As a consequence, there may be abstract traces that
do not describe any concrete trace (i.e. they only describe spurious traces or nothing at all). We
call them infeasible abstract traces.

Înfeas = {t̂ ∈ T̂races | γtrace(t̂) ∩ Traces = ∅} (4.4)

Correspondingly, we refer to T̂races \ Înfeas as the set of feasible abstract traces. In fact, it
follows from (4.4) that the set of feasible abstract traces is an overapproximation of Traces.⋃

t̂∈T̂races\Înfeas

γtrace(t̂) ⊇ Traces (4.5)

Intuitively, any subset of T̂races containing all its feasible abstract traces also provides an
overapproximation of Traces.

T̂races ⊇ T̂races′ ⊇ T̂races \ Înfeas ⇒
⋃

t̂∈T̂races′

γtrace(t̂) ⊇ Traces (4.6)

As a consequence, we can safely prune an arbitrarily chosen set of infeasible abstract traces in
an abstract model. Pruning infeasible abstract traces can improve the precision of the abstract
model, e.g. by pruning abstract traces that assume an overly high amount of execution time
during WCET analysis.
We propose the approximation by abstract traces in order to not have to explicitly consider

the set Traces. The definition of infeasible abstract traces, however, is also based on Traces.
Therefore, we cannot directly use this definition to detect infeasible abstract traces. The following
subsection describes how we can use properties of the system under consideration to safely detect
infeasible abstract traces.
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4.1.3. System Properties
We assume properties to be Boolean predicates on concrete and spurious traces. System properties
of a concrete system are properties that hold for each concrete trace of the concrete system. The
existence of a bound on the shared-resource interference may for example be a system property.
Let Prop be a set of properties of the system under consideration.

Prop = {P1, . . . , Pp} (4.7)
∀t ∈ Traces : ∀Pk ∈ Prop : Pk(t) (4.8)

We would like to use these system properties to detect (some of the) infeasible abstract traces.
However, so far, they only argue about concrete and spurious traces. Therefore, we need to
lift them to abstract traces. This means, we need to find P̂k such that the following soundness
criterion holds.

∀t̂ ∈ T̂races : [∃t ∈ γtrace(t̂) : Pk(t) ]⇒ P̂k(t̂) (4.C1)

The intuition behind soundness criterion (4.C1) gets more clear as soon as we take a look at
what it means that P̂k does not hold for an abstract trace t̂ ∈ T̂races.

¬P̂k(t̂)

⇒
(4.C1)

∀t ∈ γtrace(t̂) : ¬Pk(t)

⇒
(4.8)

γtrace(t̂) ∩ Traces = ∅

⇔
(4.4)

t̂ ∈ Înfeas

(4.9)

So if a lifted system property does not hold for an abstract trace, this means that the abstract
trace is infeasible. From now on, the lifted version of any system property Pk shall be identified
by P̂k.

4.1.4. Pruning Infeasible Abstract Traces

We define a compound property P̂ for abstract traces to be the conjunction over the lifted versions
of the considered system properties.

∀t̂ ∈ T̂races :

P̂ (t̂)⇔ ∀Pk ∈ Prop : P̂k(t̂)
(4.10)

An abstract trace t̂ for which P̂ does not hold is infeasible.

¬P̂ (t̂)

⇔
(4.10)

∃Pk ∈ Prop : ¬P̂k(t̂)

⇒
(4.9)

t̂ ∈ Înfeas

(4.11)

Thus, we use P̂ to define an alternative set ̂LessTraces of abstract traces based on T̂races.

̂LessTraces = {t̂ | t̂ ∈ T̂races ∧ P̂ (t̂)} (4.12)

29



Chapter 4. Property Lifting

̂LessTraces is the subset of abstract traces in T̂races that is not detected as infeasible by any of
the P̂k. Thus, it is an overapproximation of the feasible abstract traces.

̂LessTraces ⊇ T̂races \ Înfeas (4.13)

According to equations (4.6), (4.12), and (4.13), ( ̂LessTraces, γtrace) overapproximates Traces
and, thus, also is an abstract model of the concrete system.⋃

t̂∈ ̂LessTraces

γtrace(t̂) ⊇ Traces (4.14)

( ̂LessTraces, γtrace) can improve the precision, as the set ̂LessTraces potentially prunes some of
the infeasible abstract traces still included in T̂races. In that context, (T̂races, γtrace) is referred
to as baseline abstract model as it is the starting point for further improvements of precision.
This concludes the description of the concept of property lifting. Intuitively, the main idea is

to start from a pessimistic abstract model as baseline. Lifted versions of system properties are
used to detect some infeasible abstract traces of the baseline abstract model. Pruning them may
result in a more precise abstract model.

4.1.5. Related Work
In the context of timing verification for multi-core processors, there are multiple ap-
proaches [Schranzhofer et al., 2011; Giannopoulou et al., 2012; Chattopadhyay et al., 2012;
Kelter and Marwedel, 2014] that do not only support a single hardware platform but whole
classes of micro-architectures. Each of these approaches is parametric in one or more aspects of
the supported hardware platform (e.g. processor core pipeline [Chattopadhyay et al., 2012] or bus
arbitration [Schranzhofer et al., 2011; Giannopoulou et al., 2012; Kelter and Marwedel, 2014]). As
discussed in Chapter 2, none of these approaches is applicable to current multi-core processors.
The property lifting framework, in contrast, is the first generic framework for the formal

derivation of timing analyses for multi-core processors. It is not restricted to a particular
analysis paradigm. This thesis presents its instantiation based on a state-of-the-art WCET
analysis [Thesing, 2004; Stein, 2010]. In principle, it could as well be used for the derivation of
e.g. timed automata [Alur and Dill, 1990; Giannopoulou et al., 2012]. Although property lifting
was introduced in the context of timing verification [Jacobs, 2013], its application is not limited
to this field of research. In principle, it can as well be applied to a wide range of verification
techniques relying on approximation (as e.g. predicate abstraction [Graf and Saïdi, 1997] or shape
analysis via three-valued logic [Sagiv et al., 2002]). A detailed discussion of such applications of
property lifting, however, is beyond the scope of this thesis.

The theory of abstract interpretation [Cousot and Cousot, 1977] enables the creation of sound
abstract models of the semantics of computer programs by the construction of fixed points of
equation systems on ordered domains. The principle of property lifting, in contrast, relies on
the existence of a (potentially imprecise) baseline abstract model as starting point. The abstract
traces of the baseline abstract model do not have to belong to an ordered domain as no fixed point
is constructed. Instead, property lifting provides a mechanism for safely using system properties
of the concrete system to detect infeasible abstract traces of the baseline abstract model. In this
thesis, the fixed point of an abstract-interpretation-based micro-architectural analysis [Thesing,
2004] is used as baseline abstract model for the property lifting framework (cf. Section 5.2).

The key principle of property lifting is the usage of knowledge about a concrete system in order
to improve the precision of an abstract model of the concrete system by pruning abstract traces
that do not describe any concrete trace. This principle is also employed in a recent ILP-based
approach to bound the blocking experienced by a task due to spin locks in a shared resource
setting [Wieder and Brandenburg, 2013]. The simple baseline model makes rather pessimistic
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assumptions about the blocking. More detailed knowledge about the possible sources of blocking
and feasible combinations of them can be formulated as additional constraints in order to improve
the blocking bound.

The idea of starting from an imprecise model and subsequently improving its precision is
common to abstraction refinement [Clarke et al., 2000] as applied to model checking. Abstraction
refinement aims at successively specifying the model at an increasingly fine granularity in order to
verify properties that cannot be verified at the initial granularity. The property lifting framework,
in contrast, operates on an abstract model at a given fixed granularity. It improves the precision
by pruning abstract traces that do not describe any concrete trace.

4.2. Cooperation between Multiple Abstract Models

In order to verify the correct operation of a complex system, it is common to consider multiple
abstract models that focus on different aspects of the concrete system’s operation (e.g. on different
hardware components of the system). Such a compositional consideration avoids the complexity of
modeling the interactions between the different aspects of the concrete system in detail. However,
it typically results in a loss of precision.

In the context of WCET analysis for multi-core processors, each abstract model typically
only considers the operation of one processor core in detail. This avoids the complexity of an
exhaustive enumeration of all possible interleavings of accesses to the shared resources by the
different processor cores. As a further consequence, this typically results in a loss of precision for
platforms that do not provide temporal isolation between their processor cores.

Most existing approaches to WCET analysis for multi-core processors further decompose the
execution time into non-interfered execution (e.g. assuming every access request to a shared bus
is granted immediately by the arbiter) and direct interference effects (e.g. the number of cycles
blocked at a shared bus). As pointed out in Chapter 2, such a decomposition is not sound for
hardware platforms that exhibit timing anomalies as it ignores potential indirect interference
effects.

Approaches to timing verification that rely on a decomposition of the execution time are referred
to as timing-compositional [Hahn et al., 2013]. Note that the formalism derived in this section
is not primarily designed to be applicable in the context of timing compositionality. Instead, it
is closely related to the principles behind thread-modular analyses and verification techniques.
Thus, in the remainder of this section, the term compositionality does not necessarily coincide
with the term timing compositionality.

In the following, we formally define a compositional consideration by multiple abstract models
that focus on different parts of the concrete system. In the model of one part of the system,
it is often desirable to incorporate (mostly cumulative) information about other parts of the
system, e.g. high-level information about the resource access behavior of concurrent processor
cores. The property lifting framework supports this exchange of information between multiple
abstract models by leveraging system properties that interrelate the operation of different parts
of the system. To this end, first, we define a compound abstract model based on a set of
abstract models. System properties interrelating the operation of multiple parts of the system
are lifted to the compound abstract model in order to prune infeasible compound abstract traces.
Finally, we present iterative algorithms that safely overapproximate the results of this compound
consideration without actually having to explicitly consider the compound abstract model. This
provides a trade-off between the precision of the compound abstract model and the efficiency of
using its component abstract models in isolation.
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4.2.1. A Compound Abstract Model
Let Models be a set of abstract models of the concrete system under consideration.

Models = {M1, . . . ,Mm} (4.15)

∀Ma ∈ Models :Ma = ( ̂TracesMa , γMa
trace) (4.16)

The different abstract models focus on different aspects of the concrete system. In the context
of WCET analysis for multi-core processors, each abstract model might, e.g., focus on a different
processor core.
Based on the abstract-trace sets of previous abstract models, we can define a set T̂races of

compound abstract traces.

T̂races = ̂TracesM1 × . . .× ̂TracesMm (4.17)

We use projection functions πMa
trace to access the components of compound abstract traces.

∀(t̂M1 , . . . , t̂Mm) ∈ ̂TracesM1 × . . .× ̂TracesMm :

∀Ma ∈ Models : πMa
trace((t̂

M1 , . . . , t̂Mm)) = t̂Ma

(4.18)

The mapping of a compound abstract trace to concrete and spurious traces can be defined as
the intersection of what its component abstract traces describe. Intuitively, a compound abstract
trace only describes the traces that all of its components describe.

γtrace(t̂) =
⋂

Ma∈Models

γMa
trace(π

Ma
trace(t̂)) (4.19)

It follows from equations (4.17) and (4.19) that the tuple (T̂races, γtrace) provides an overap-
proximation of Traces and, thus, is a (compound) abstract model of the concrete system under
consideration. Hence, we can apply property lifting to it as demonstrated in Section 4.1. Lifted
properties can detect infeasible compound abstract traces and, thus, result in a reduced set

̂LessTraces.
In order to visualize this concept, Figure 4.1 presents an example of a compound abstract

model. It is based on the two abstract models A and W arguing about three respectively four
abstract traces. Thus, the compound abstract model argues about twelve compound abstract
traces. Subsequently, we lift the two system properties P1 and P2 to the compound abstract
model. For our simple example, it does not matter which statements these system properties
make about the traces for which they hold. The lifted version of each property shall hold for five
of the compound abstract traces. The set ̂LessTraces only contains the three compound abstract
traces for which the lifted versions of both system properties hold.
However, the cross product in the definition of T̂races already gives a hint that T̂races might

become quite large. Thus, we expect the compound consideration of multiple abstract models to
be computationally too complex for most real-world scenarios.

4.2.2. Projections of the Compound Results
We introduced the compound abstract model in order to profit in one abstract model from
knowledge about other abstract models and, thus, to detect more infeasible abstract traces
per abstract model. As a consequence, in most cases, it would be sufficient to know for each

Ma ∈ Models which members of ̂TracesMa are contained in a compound abstract trace of
̂LessTraces. Those subsets can be obtained by projecting the members of ̂LessTraces to their
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Models = {A,W}

T̂racesA = {t̂a, t̂b, t̂c} ̂TracesW = {t̂w, t̂x, t̂y, t̂z}

T̂races = T̂racesA × ̂TracesW cf. (4.17)

Prop = {P1, P2}

{t̂ ∈ T̂races | P̂1(t̂)} = {(t̂a, t̂w), (t̂a, t̂x), (t̂a, t̂y), (t̂b, t̂x), (t̂c, t̂y)}

{t̂ ∈ T̂races | P̂2(t̂)} = {(t̂a, t̂w), (t̂a, t̂x), (t̂b, t̂x), (t̂b, t̂y), (t̂c, t̂z)}

∀t̂ ∈ T̂races : P̂ (t̂)⇔ P̂1(t̂) ∧ P̂2(t̂) cf. (4.10)

̂LessTraces = {(t̂a, t̂w), (t̂a, t̂x), (t̂b, t̂x)} cf. (4.12)

Figure 4.1.: Example of a compound abstract model based on the two abstract models A and W .

respective components. We define the projections in a general way on arbitrary subsets ̂SomeTraces
of T̂races.

∀Ma ∈ Models : πMa( ̂SomeTraces) = {πMa
trace(t̂) | t̂ ∈ ̂SomeTraces} (4.20)

Each projection πMa( ̂SomeTraces) is a subset of the set of abstract traces of the corresponding
abstract model.

∀ ̂SomeTraces ⊆ T̂races : ∀Ma ∈ Models : πMa( ̂SomeTraces) ⊆ ̂TracesMa (4.21)

Note that ̂SomeTraces is a subset of the cross product over its projections.

∀ ̂SomeTraces ⊆ T̂races : ̂SomeTraces ⊆ πM1( ̂SomeTraces)× . . .× πMm( ̂SomeTraces) (4.22)

Furthermore, note that the projection functions πMa are monotone.

∀ ̂SomeTraces, ̂OtherTraces ⊆ T̂races : ∀Ma ∈ Models :

[ ̂SomeTraces ⊆ ̂OtherTraces ]⇒ [πMa( ̂SomeTraces) ⊆ πMa( ̂OtherTraces) ]
(4.23)

Each projection πMa( ̂LessTraces) is a superset of the feasible abstract traces of the corresponding
̂TracesMa . Consult page 247 for a formal proof of this statement.

∀Ma ∈ Models : πMa( ̂LessTraces) ⊇ ̂TracesMa \ ̂InfeasMa (4.24)

Thus, according to equations (4.6), (4.21) and (4.24), each tuple (πMa( ̂LessTraces), γMa
trace)

provides an overapproximation of Traces and, thus, is an abstract model of the concrete system.

∀Ma ∈ Models :
⋃

t̂Ma∈πMa ( ̂LessTraces)

γMa
trace(t̂

Ma) ⊇ Traces (4.25)

The projections of the set ̂LessTraces to the abstract models A and W for the example of Fig-
ure 4.1 are presented in Figure 4.2. The tuples (πA( ̂LessTraces), γAtrace) and (πW ( ̂LessTraces), γWtrace)
are abstract models of the concrete system considered in this example.
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πA( ̂LessTraces) = {t̂a, t̂b} πW ( ̂LessTraces) = {t̂w, t̂x} cf. (4.20)

Figure 4.2.: Projections of the set ̂LessTraces to the abstract models A and W for the example
presented in Figure 4.1.

However, in most cases we will not be able to precisely obtain the projections πMa( ̂LessTraces)
without explicitly computing the set ̂LessTraces before. We expect the computation of the set

̂LessTraces to be computationally too expensive. Therefore, we are interested in overapproxima-
tions of its projections that can be computed more efficiently.

4.2.3. Overapproximating the Projections by Starting from a Maximally
Pessimistic Initialization

We present an iterative approach that overapproximates each projection πMa( ̂LessTraces) by a

corresponding approximation variable ̂ApproxMa . In the following, we use
#             »

Approx as a shorthand
for the vector of all approximation variables. In the same way, we use

#                     »

ApproxMa
as a shorthand

for the vector of all approximation variables except ̂ApproxMa .

#             »

Approx ≡ ( ̂ApproxM1 , . . . , ̂ApproxMm) (4.26)

∀Ma ∈ Models :
#                     »

ApproxMa
≡ ( ̂ApproxM1 , . . . , ̂ApproxMa−1 , ̂ApproxMa+1 , . . . , ̂ApproxMm) (4.27)

The set ̂TracesMa is a safe overapproximation of the projection πMa( ̂LessTraces). Thus, we use
̂TracesMa as a safe but maximally pessimistic initialization of approximation variable ̂ApproxMa .

∀Ma ∈ Models : ̂ApproxMa ← ̂TracesMa (4.28)

Subsequently, the value of each approximation variable ̂ApproxMa is updated by an update
function FMa . The updated value depends on the contents of all other approximation variables.

∀Ma ∈ Models : ̂ApproxMa ← FMa(
#                     »

ApproxMa
) (4.29)

The goal of an update is to prune abstract traces of an approximation variable while preserving
the overapproximation of the corresponding projection. Intuitively, an abstract trace is a member
of a projection πMa( ̂LessTraces) if and only if it is a part of a compound abstract trace for which
P̂ holds. Thus, an update must not prune an abstract trace of an approximation variable if the
abstract trace fulfills P̂ in combination with members of the other approximation variables. It is
essential that the update functions guarantee this.
In order to visualize this concept, we resume the example presented in Figures 4.1 and 4.2.

Figure 4.3 demonstrates the iterative overapproximation of the projections πA( ̂LessTraces)
and πW ( ̂LessTraces) from a pessimistic initialization. Note that the update functions pro-
vide the aforementioned guarantee. Their formal derivation, however, will be explained later.
For this example, we assume that the approximation variables are updated simultaneously in
every iteration. The table in Figure 4.3 shows the contents of the approximation variables after
the initialization as well as after every iteration. The initialization is maximally pessimistic (cf.
equation (4.28)). The approximation variables reach a fixed point after the second iteration.
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Update functions:

FA( ̂ApproxW ) = {t̂A ∈ T̂racesA | [∃t̂W ∈ ̂ApproxW : P̂1((t̂A, t̂W ))] ∧

∃t̂W ∈ ̂ApproxW : P̂2((t̂A, t̂W ))}

FW ( ̂ApproxA) = {t̂W ∈ ̂TracesW | [∃t̂A ∈ ̂ApproxA : P̂1((t̂A, t̂W ))] ∧

∃t̂A ∈ ̂ApproxA : P̂2((t̂A, t̂W ))}

Simultaneous update per iteration:

( ̂ApproxA, ̂ApproxW )← (FA( ̂ApproxW ), FW ( ̂ApproxA))

Course of iteration:

iteration ̂ApproxA ̂ApproxW

init {t̂a, t̂b, t̂c} {t̂w, t̂x, t̂y, t̂z}
1 {t̂a, t̂b, t̂c} {t̂w, t̂x, t̂y}
2 {t̂a, t̂b} {t̂w, t̂x, t̂y}
3 {t̂a, t̂b} {t̂w, t̂x, t̂y}

Figure 4.3.: Iterative overapproximation of the projections πA( ̂LessTraces) and πW ( ̂LessTraces)
presented in Figure 4.2. The iteration starts from a pessimistic initialization.

Their contents at the fixed point provide an overapproximation of the projections of ̂LessTraces

(cf. Figure 4.2). Note, however, that the content of ̂ApproxW at the fixed point is not precise with
respect to πW ( ̂LessTraces).
The decision whether a particular abstract trace should be kept in the updated content of a

particular approximation variable depends on the abstract trace as well as on the contents of the
other approximation variables. Thus, we write the update functions in a generic form and factor
out this decision to a Boolean predicate P̃Ma .

∀Ma ∈ Models : FMa(
#                     »

ApproxMa
) = {t̂Ma ∈ ̂TracesMa | P̃Ma(t̂Ma ,

#                     »

ApproxMa
)} (4.30)

We mentioned before that an update function FMa must not prune an abstract trace if there
is a combination with abstract traces of the other approximation variables that fulfills P̂ . Now,
we formally define this requirement on P̃Ma as soundness criterion (4.C2).

∀Ma ∈ Models : ∀t̂Ma ∈ ̂TracesMa : ∀ #                     »

ApproxMa
:

[∃(t̂M1 , . . . , t̂Ma−1 , t̂Ma+1 , . . . , t̂Mm) ∈ χ( #                     »

ApproxMa
) :

P̂ (t̂M1 , . . . , t̂Ma−1 , t̂Ma , t̂Ma+1 , . . . , t̂Mm)]

⇒ P̃Ma(t̂Ma ,
#                     »

ApproxMa
)

(4.C2)

Note that χ(
#                     »

ApproxMa
) is a shorthand for the cross product over all approximation variables

in
#                     »

ApproxMa
.

∀Ma ∈ Models :

χ(
#                     »

ApproxMa
) ≡ ̂ApproxM1 × . . .× ̂ApproxMa−1 × ̂ApproxMa+1 × . . .× ̂ApproxMm

(4.31)
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Generic form of FA:

FA( ̂ApproxW ) = {t̂A ∈ T̂racesA | P̃A(t̂A, ̂ApproxW )}

Formal derivation of P̃A via a chain of implications:

[∃t̂W ∈ ̂ApproxW : P̂ (t̂A, t̂W )]

⇔[∃t̂W ∈ ̂ApproxW : P̂1(t̂A, t̂W ) ∧ P̂2(t̂A, t̂W )]

⇒
[
[∃t̂W ∈ ̂ApproxW : P̂1(t̂A, t̂W )] ∧ ∃t̂W ∈ ̂ApproxW : P̂2(t̂A, t̂W )

]
⇔:P̃A(t̂A, ̂ApproxW )

Figure 4.4.: Formal evidence that the update function FA presented in Figure 4.3 respects
soundness criterion (4.C2). The reasoning for update function FW is similar.

As a consequence of criterion (4.C2), each approximation variable is guaranteed to be an
overapproximation of the corresponding projection after arbitrary sequences of updates of the
approximation variables. This statement is captured by hypothesis (4.H1). For a detailed proof
of this hypothesis, we refer to page 247.

∀Ma ∈ Models : ̂ApproxMa ⊇ πMa( ̂LessTraces) (4.H1)

It follows from hypothesis (4.H1) and equations (4.24) and (4.6) that—at any point within the

course of iteration—each tuple ( ̂ApproxMa , γMa
trace) is an overapproximation of Traces and, thus,

an abstract model of the concrete system.

∀Ma ∈ Models :
⋃

t̂Ma∈ ̂ApproxMa

γMa
trace(t̂

Ma) ⊇ Traces (4.32)

Note that the soundness of this iterative approach does not necessarily rely on a simultaneous
update of all approximation variables. Any other update strategy is also applicable.
At this point, we would like to resume the example of Figure 4.3. Figure 4.4 provides formal

evidence that the update function FA of this example indeed respects soundness criterion (4.C2).
The soundness argument for update function FW is similar and, thus, omitted.

The soundness of the transfer functions is guaranteed by criterion (4.C2). In addition, however,
we also require the update functions FMa to be monotone. This requirement is formalized as
monotonicity criterion (4.C3) on the Boolean predicates P̃Ma .

∀Ma ∈ Models : ∀t̂Ma ∈ ̂TracesMa : ∀ #                     »

ApproxMa
,

#                     »

Approx′
Ma

:
#                     »

Approx′
Ma
⊆pairwise

#                     »

ApproxMa

⇒ [P̃Ma(t̂Ma ,
#                     »

Approx′
Ma

)⇒ P̃Ma(t̂Ma ,
#                     »

ApproxMa
)]

(4.C3)

Note that the example predicate P̃A derived in Figure 4.4 trivially fulfills criterion (4.C3). This
holds in the same way for the corresponding predicate P̃W implicitly used in the update function
FW presented in Figure 4.3.
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In combination with the maximally pessimistic initialization (cf. equation (4.28)), crite-
rion (4.C3) guarantees that the updates of the approximation variables are monotonically
decreasing. This is expressed by hypothesis (4.H2). For a formal proof of this hypothesis,
we refer to page 248.

∀Ma ∈ Models : FMa(
#                     »

ApproxMa
) ⊆ ̂ApproxMa (4.H2)

As a consequence, the presented iterative approach is guaranteed to reach a fixed point after
a finite sequence of updates of the approximation variables if each approximation variable is

initialized to a finite set of abstract traces (i.e. ∀Ma ∈ Models : ∃n ∈ N : n =

∣∣∣∣ ̂TracesMa

∣∣∣∣) and
a fair update strategy is applied (i.e. no approximation variable is permanently excluded from
updates).

The presented iterative approach reaches a fixed point as soon as the following equation system
is fulfilled.

∀Ma ∈ Models : ̂ApproxMa = FMa(
#                     »

ApproxMa
) (4.33)

Any fixed point reached by our iteration starting from a maximally pessimistic initialization is
guaranteed to coincide with the (unique) greatest fixed point of equation system (4.33). For a
formal proof of this statement, we refer to page 249. As a consequence, the strategy according to
which the approximation variables are updated (e.g. simultaneous update, cf. Figure 4.3) has no
impact on the precision of a resulting fixed point.

In Chapter 7, we demonstrate how to instantiate this iterative approach for the calculation of co-
runner-sensitive WCET bounds for multi-core processors with shared buses and event-driven bus
arbitration. In this scenario, a compound consideration of the operation of all processor cores (i.e.
an enumeration of all interleavings of accesses to the bus by the different processor cores) does not
scale. Thus, we instantiate the presented iterative approach to safely overapproximate the results
of a compound consideration. The instance relies on a property of work-conserving bus arbitration
protocols: a processor core can only be blocked if a concurrent core is granted access. The abstract
model of processor core Ci for which we want to calculate a WCET bound is pessimistically
initialized to a set of abstract traces not making any assumption about the amount of shared-
resource interference experienced by the concurrent processor cores (i.e. it can be arbitrarily high).
The abstract model of each concurrent processor core Cj is pessimistically initialized to a set of
abstract traces that might have an arbitrarily high execution time. Subsequently, the abstract
trace sets of the different abstract models are updated in the following way:

• As a consequence of the work-conserving bus arbitration, core Ci must not be blocked for
more cycles at the shared bus than the concurrent cores are granted access cycles.

• For each concurrent processor core Cj , we only have to consider the abstract traces describing
traces that can happen during a program run on core Ci. Thus, we safely prune all abstract
traces in the model of core Cj with a lower time bound exceeding the current WCET bound
for core Ci.

This approach is safe. However, if there is not also a (most likely very pessimistic) upper bound
on the number of blocked cycles that is independent of the programs executed on the concurrent
processor cores, the initialization of the approach will already be a fixed point: If a program can
be blocked arbitrarily long at the shared bus, we cannot upper bound its execution time. And
while a program is executed for arbitrarily long, the concurrent cores can produce an unbounded
amount of bus access cycles. This means a fixed point is reached.
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Course of iteration:

iteration ̂ApproxA ̂ApproxW

init {t̂a} {t̂w}
1 {t̂a} {t̂w, t̂x}
2 {t̂a, t̂b} {t̂w, t̂x}
3 {t̂a, t̂b} {t̂w, t̂x, t̂y}
4 {t̂a, t̂b} {t̂w, t̂x, t̂y}

Figure 4.5.: Iterative overapproximation of the projections πA( ̂LessTraces) and πW ( ̂LessTraces)
presented in Figure 4.2. The iteration starts from an optimistic initialization. We
apply the same update functions as in Figure 4.3 and a simultaneous update.

For some bus arbitration protocols (e.g. Round-Robin), the number of blocked cycles can also
be bounded independently of the programs on the concurrent cores. However, if this is not the
case, the presented iterative approach is mostly useless: for a priority-based bus arbitration, e.g.,
the number of blocked cycles can only be bounded independently of the concurrent cores for the
core with the highest priority.

In order to overcome this problem and to potentially also improve the precision for other
scenarios, we consider a potentially optimistic initialization in the next subsection.

4.2.4. Overapproximating the Projections by Starting from a Potentially
Optimistic Initialization

Recall that every fixed point that our iterative approach can reach from a maximally pessimistic
initialization provides an overapproximation of the projections of ̂LessTraces and coincides with
the greatest fixed point of equation system (4.33). This raises the question whether any fixed point
of equation system (4.33) provides an overapproximation of the projections of ̂LessTraces. To
answer this question, reconsider the example of Figure 4.3. This time, however, we optimistically
initialize both approximation variables with the empty set. This results in an instantaneous fixed
point as each of the update functions returns an empty set if its parameter is the empty set.
Clearly, this fixed point does not provide an overapproximation of the projections of ̂LessTraces
(cf. Figure 4.2). Thus, in general, not every fixed point of equation system (4.33) does provide an
overapproximation of the projections.

Next, we consider the example of Figure 4.3 with a different optimistic initialization as shown in
Figure 4.5. This time, every approximation variable is only initialized with a single abstract trace.
We apply the same update functions and simultaneous update strategy as in Figure 4.3. For
this optimistic initialization, a fixed point is reached after three iterations. The contents of the
approximation variables at the fixed point do provide an overapproximation of the projections of

̂LessTraces (cf. Figure 4.2). This indicates that the choice of the initialization determines whether
a fixed point reached from the initialization is a sound overapproximation of the projections.
Intuitively, the update functions must be able to generate every member of every projection by
a finite sequence of updates starting from the initialization in order to guarantee soundness. A
formal soundness criterion will be presented later.
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First, we formalize the setup of an overapproximation starting from a potentially optimistic

initialization. We use ÎnitMa to refer to the initialization value of an approximation variable
̂ApproxMa . Thus, the choice of the vector

#    »

Init determines the overall initialization.

#    »

Init ≡ (ÎnitM1 , . . . , ̂InitMm) (4.34)

∀Ma ∈ Models :
#            »

InitMa
≡ (ÎnitM1 , . . . , ̂InitMa−1 , ̂InitMa+1 , . . . , ̂InitMm) (4.35)

These initialization values are used instead of the maximally pessimistic initialization (cf.
equation (4.28)).

∀Ma ∈ Models : ̂ApproxMa ← ÎnitMa (4.36)

Since we start from a potentially optimistic initialization, the idea is to add abstract traces to
the approximation variables until a fixed point is reached. Thus, we shall choose the initialization
in a way that any update function applied directly to the initialization does not reduce the
abstract traces compared to the initialization.

∀Ma ∈ Models : FMa(
#            »

InitMa
) ⊇ ÎnitMa (4.C4)

In combination with monotonicity criterion (4.C3), this guarantees that the updates of the
approximation variables are monotonically increasing. This is expressed by hypothesis (4.H3).
A formal proof of this hypothesis is analogous to the proof that the maximally pessimistic
initialization makes the updates monotonically decreasing (cf. page 248) and, thus, omitted.

∀Ma ∈ Models : FMa(
#                     »

ApproxMa
) ⊇ ̂ApproxMa (4.H3)

Any fixed point reached by our iteration starting from the chosen initialization is guaranteed
to coincide with the (unique) least fixed point of the following equation system (4.37). Note that
the initialization is incorporated in this equation system. For a formal proof of this statement, we
refer to page 250. As a consequence, the strategy according to which the approximation variables
are updated has no impact on the precision of a resulting fixed point.

∀Ma ∈ Models : ̂ApproxMa = ÎnitMa ∪ FMa(
#                     »

ApproxMa
) (4.37)

A simultaneous update of some of the approximation variables is characterized by the non-
empty subset of abstract models for which the variables are updated. The set Update contains all
resulting possibilities to update one or more approximation variables simultaneously.

Update = {upd ⊆ Models | upd 6= ∅} (4.38)

When an update is applied to a vector of approximation variables, it determines for which
models the corresponding update functions are evaluated.

apply(
#             »

Approx, (upd)) = (V̂alM1 , . . . , V̂alMm)

with ∀Ma ∈ Models : V̂alMa =

{
FMa(

#                     »

ApproxMa
) , if Ma ∈ upd

̂ApproxMa , else

(4.39)

The definition of the set UpdateSequ of all possible (potentially empty) sequences of updates
follows quite naturally.

UpdateSequ = {()} ∪
⋃

n∈N≥1

Updaten (4.40)
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An empty sequence of updates applied to a vector of approximation variables has no effect.

apply(
#             »

Approx, ()) =
#             »

Approx (4.41)

The effect of applying a sequence of two or more updates to a vector of approximation variables
is defined recursively.

apply(
#             »

Approx, (upd1, upd2, . . .)) = apply(apply(
#             »

Approx, (upd1)), (upd2, . . .)) (4.42)

The aforementioned proof on page 250 also demonstrates that any sequence of updates applied
to the initialization is guaranteed to not exceed the least fixed point of equation system (4.37).

∀updSequ ∈ UpdateSequ : apply(
#    »

Init, updSequ) ⊆pairwise
#                        »

lfpequ.(4.37) (4.43)

Finally, we formalize a sufficient soundness criterion with respect to the initialization. It
states that every abstract trace of every projection of ̂LessTraces shall be creatable by applying a
sequence of updates to the initialization.

∀Ma ∈ Models : ∀t̂Ma ∈ πMa( ̂LessTraces) :

∃updSequ ∈ UpdateSequ : t̂Ma ∈ πMa(χ(apply(
#    »

Init, updSequ)))
(4.C5)

It follows from statement (4.43) and criterion (4.C5) that every component of the least fixed
point of equation system (4.37) is an overapproximation of the corresponding projection of

̂LessTraces.

∀Ma ∈ Models : πMa( ̂LessTraces) ⊆ ̂lfpMa

equ.(4.37) (4.44)

Thus, any fixed point reached by the presented iterative approach—starting from an initialization
fulfilling criteria (4.C4) and (4.C5)—is guaranteed to be an overapproximation of the projections
of ̂LessTraces.

Note that it is easy to manually verify that the optimistic example initialization of Figure 4.5
fulfills criterion (4.C5) as e.g. the update sequence ({W}, {A}) applied to the initialization is able
to create all members of the projections of ̂LessTraces. For more realistic scenarios, one typically
needs an inductive proof that a given initialization fulfills criterion (4.C5).
Note that the iterative approach starting from a potentially optimistic initialization—as pre-

sented in this subsection—only guarantees an overapproximation of the projections of ̂LessTraces
as soon as a fixed point is reached. The iterative approach starting from a maximally pessimistic
initialization, in contrast, is an anytime algorithm. The latter might be helpful in case the
precision of the approximation variables is already good enough (i.e. sufficient to prove the overall
verification goal) after relatively few updates of the approximation variables. Thus, it depends on
the actual use case which style of initialization is preferred.

4.2.5. Related Work
There is a worst-case response time analysis for multi-core processors with shared instruction
caches [Liang et al., 2012] that is an instance of the overapproximation algorithm starting from
a maximally pessimistic initialization as presented in Section 4.2.3. Initially, it calculates the
WCET bounds assuming that each task can experience interference from all tasks executed on
the concurrent processor cores. Subsequently, the algorithm calculates a lifetime interval per
task based on a task dependence graph and the current WCET bounds of all tasks. The lifetime
intervals are used to consider less potentially interfering concurrent tasks in the recalculation of
the WCET bounds. These steps are repeated until the greatest fixed point is reached.
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The verification of correctness properties of multi-threaded software (as e.g. mutual exclusion)
is challenging as the precise consideration of all possible interleaving of accesses to the shared
variables is in most cases practically intractable. This complexity can be significantly reduced by
applying thread-modular verification techniques [Flanagan and Qadeer, 2003; Henzinger et al.,
2003; Malkis et al., 2007; Gotsman et al., 2007; Miné, 2011, 2014; Monat and Miné, 2017]. The
key idea of thread-modularity is to only consider the operation of one thread at a time—under
a cumulative approximation of the possible interference that other threads can cause via the
shared variables. Initially, it is assumed that no thread causes any interference. Subsequently,
the interference created by a thread is recalculated under the assumption of the interference
created by the other threads. This is repeated until a fixed point is reached. We believe that
such thread-modular verification techniques can be derived in a structured and comprehensible
way as instances of our iterative approach starting from a potentially optimistic initialization
as presented in Section 4.2.4. It is, however, beyond the scope of this thesis to instantiate our
iterative approach for thread-modular verification.
Note that the concept of thread-modularity is only a special case of using multiple abstract

models that focus on different aspects of the concrete system. Thus, we believe that the presented
iterative approaches can be used as foundation for the derivation of a wider range of compositional
verification methods. In Chapter 7, we demonstrate their instantiation for the calculation of
co-runner-sensitive WCET bounds for multi-core processors with shared buses and event-driven
bus arbitration. The resulting instances of our iterative approaches can be seen as processor-core-
modular techniques as they use one abstract model per processor core without resorting to an
integrated consideration of the corresponding compound abstract model.
Further note that thread-modular model checking [Flanagan and Qadeer, 2003] has been

shown [Malkis et al., 2006] to be an instance of abstract interpretation [Cousot and Cousot, 1977].
As noted before, we are confident that thread-modular model checking is also an instance of our
iterative approach starting from a potentially optimistic initialization as presented in Section 4.2.4.
It is, however, an open question whether there is a relation between our iterative approach and
abstract interpretation. An interesting analogy between both approaches is that the least fixed
point is only sound if a sufficient initialization is incorporated in the equation system. In abstract
interpretation, this initialization typically has to provide a safe overapproximation of the program
states at the start respectively the end of the program. In our approach, the initialization has to
fulfill criteria (4.C4) and (4.C5) and is incorporated in equation system (4.37).
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Chapter 5

A Hierarchy of Abstract Models

Sie ist ein Model und sie sieht gut aus.

(Das Model, Kraftwerk, 1978)

The worst-case execution time (WCET) of a program depends on its concrete traces at the
micro-architectural level of the hardware platform it is executed on. This chapter defines the
concrete traces of a state-based system and the corresponding system events in a generic way.
Subsequently, it introduces a hierarchy of abstract models in order to consider the system’s
operation at a reduced degree of detail. Later chapters will make use of these ingredients in order
to define the WCET of a program as well as algorithms that upper-bound its execution time.

5.1. Concrete Traces of a Concrete System
In this section, we specify a state-based system in a generic way. At each observable instant,
the system has a state contained in a fixed set S of possible system states. When the system is
started, it is in a state from a set of initial system states.

Sinit ⊆ S (5.1)

The state of the system changes per cycle tick following the relation Cycle. If and only if this
relation holds for a pair of states (s1, s2), a cycle transition from s1 to s2 is possible.

Cycle ⊆ S × S (5.2)

We specify the set of all finite sequences of subsequent system states that are possible according
to relation Cycle as follows.

Sequences = {t : N≤n → S | n ∈ N ∧ ∀x ∈ N<n : (t(x), t(x+ 1)) ∈ Cycle} (5.3)

We specify the set Traces of concrete traces as all members of Sequences starting from an
initial system state. Intuitively, the set Traces contains all finite prefixes of all possible system
executions.

Traces = {t ∈ Sequences | t(0) ∈ Sinit} (5.4)

We introduce the shorthand function len to obtain the length of a member of Sequences.

∀n ∈ N : ∀t ∈ Sequences ∩ (N≤n → S) : len(t) = n (5.5)
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Events might occur during cycle transitions of the system. We define events in a way that it
can be uniquely determined by the source and the target state of a cycle transition if the event
happens. Thus, each event is uniquely described by the set of all cycle transitions in which it
occurs. As a consequence, the set of all possible events can be defined as the power set of the
relation Cycle.

Events = P(Cycle) (5.6)

As a consequence, Cycle is an example for an event of the system. It is the most general event
as it happens during every cycle transition.

Cycle ∈ Events (5.7)

Events that typically happen in the micro-architecture of a computer are e.g. cache misses or
cycles blocked due to a DRAM refresh. In the context of WCET analysis for multi-core processors
with shared buses, we are in particular interested in the events that a processor core Ci is blocked
at the shared bus by the arbiter or granted access to it (BlockedCi , GrantedCi , cf. Chapter 7).
For now, we only consider generic events E.

E ∈ Events (5.8)

Moreover, we use E as a shorthand to check whether event E happens at the cycle transition
at a particular position of a member of Sequences.

E :
⋃

t∈Sequences

({t} × N<len(t))→ {0, 1} (5.9)

E(t, x) ≡ (t(x), t(x+ 1)) ∈ E (5.10)

5.2. Approximation by Sequences of Abstract States
For modern computer systems, the set of possible system states is typically enormous. Thus,
an explicit consideration of all possible concrete traces is practically infeasible. The state of
the art in WCET analysis typically mitigates this problem by arguing about a fixed set Ŝ of
abstract states. Each abstract state describes a subset of the system states. This is expressed by
a description function γ, which maps abstract states to sets of system states.

γ : Ŝ → P(S) (5.11)

We select a subset of the abstract states as initial abstract states. It is chosen in a way that it
describes all initial states of the concrete system under analysis.

Ŝinit ⊆ Ŝ (5.12)⋃
ŝi∈Ŝinit

γ(ŝi) ⊇ Sinit (5.13)

The abstract state changes per cycle tick following the relation Ĉycle. If and only if this relation
holds for a pair of abstract states (ŝ1, ŝ2), a cycle transition from ŝ1 to ŝ2 is possible.

Ĉycle ⊆ Ŝ × Ŝ (5.14)

The relation Ĉycle shall describe at least all cycle transitions that are possible for concrete
system states according to the relation Cycle.

∀ŝ1 ∈ Ŝ :
⋃
{γ(ŝ2) | (ŝ1, ŝ2) ∈ Ĉycle} ⊇

⋃
s1∈γ(ŝ1)

{s2 | (s1, s2) ∈ Cycle} (5.15)
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x:

t̂(x):

û(x):

0

v

1

v

2

v

3

v

4

v

5

v

Ĉycle

Ĉycle

Ĉycle

Ĉycle

Ĉycle

Figure 5.1.: Example for a (t̂, û) ∈ ̂Sequences with len((t̂, û)) = 5.

An abstract state ŝ1 is called at least as precise as (v) an abstract state ŝ2 if and only if the
set of system states that ŝ1 describes does not exceed the set that ŝ2 describes.

v ⊆ Ŝ × Ŝ (5.16)
ŝ1 v ŝ2 ⇔ γ(ŝ1) ⊆ γ(ŝ2) (5.17)

In order to enable an efficient implementation of the analysis, it is common to replace several
similar abstract states by one abstract state that is at most as precise as each of the original
abstract states. This process is typically referred to as joining. Similarly, one can replace a single
abstract state ŝ1 by a less precise abstract state ŝ2 (ŝ1 v ŝ2 and ŝ1 6= ŝ2), which results in a
widening.

Consider the following set ̂Sequences of all finite sequences of abstract states that can be created
making use of v and Ĉycle in all possible ways. Intuitively, each abstract state (t̂(x)) is replaced
by an abstract state that can be less precise (û(x)) before the next abstract cycle transition. This
principle is illustrated in Figure 5.1.

̂Sequences = {(t̂, û) ∈ (N≤n → Ŝ)2 | n ∈ N ∧
(∀x ∈ N≤n : t̂(x) v û(x)) ∧
∀x ∈ N<n : (û(x), t̂(x+ 1)) ∈ Ĉycle }

(5.18)

We introduce the shorthand function len to obtain the length of a member of ̂Sequences.

∀n ∈ N : ∀(t̂, û) ∈ ̂Sequences ∩ (N≤n → Ŝ)2 : len((t̂, û)) = n (5.19)

A realistic analysis implementation, however, will in most cases not make use of all possible
ways in which an abstract state can be replaced by a (possibly different) abstract state according
to v. Thus, realistic analyses typically provide a subset of the members of ̂Sequences.

T̂races ⊆ ̂Sequences (5.20)

Any subset T̂races of ̂Sequences that fulfills the following two criteria is guaranteed to safely
overapproximates the concrete traces. The first criterion states that every initial abstract state in
Ŝinit must be the start abstract state of a prefix of length zero in T̂races.

∀ŝi ∈ Ŝinit : ∃(t̂, û) ∈ T̂races : len((t̂, û)) = 0 ∧ t̂(0) = ŝi (5.C1)
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According to the second criterion, T̂races shall accumulate longer and longer prefixes by
extending the existing prefixes by one cycle tick respectively. In this process, it must not forget
any successor abstract state as dictated by Ĉycle.

∀(t̂1, û1) ∈ T̂races :

∀(û1(len((t̂1, û1))), ŝc) ∈ Ĉycle :

∃(t̂2, û2) ∈ T̂races :

len((t̂2, û2)) = 1 + len((t̂1, û1)) ∧
(∀x ∈ N≤len((t̂1,û1))

: t̂2(x) = t̂1(x) ∧ û2(x) = û1(x)) ∧

t̂2(len((t̂2, û2))) = ŝc

(5.C2)

Intuitively, these criteria are fulfilled by an abstract-interpretation-based program analysis
that operates on a power-set-like domain of abstract states and uses a transfer function based
on the relation Ĉycle [Thesing, 2004]: it starts from a sound set of initial abstract states, may
or may not make use of joining, but must never forget any successor abstract state according
to relation Ĉycle. Thus, the result of a state-of-the-art micro-architectural analysis [Thesing,
2004] implicitly provides a set T̂races of prefixes that fulfills the two aforementioned criteria.
For now, our formalism of prefixes of sequences of abstract states allows us to argue about the
soundness of micro-architectural analysis without having to argue explicitly about program-
analysis-specific particularities as e.g. control-flow graphs, context-sensitivity, fixed-points, or
iteration. In Chapter 6, we will discuss and formalize some of these aspects. For a more in-depth
discussion of these aspects, however, we refer to existing work [Cousot and Cousot, 1977; Nielson
et al., 1999; Mauborgne and Rival, 2005].
We say that an abstract cycle transition (ŝ1, ŝ2) ∈ Ĉycle describes a concrete cycle transition

(s1, s2) ∈ Cycle if and only if s1 ∈ γ(ŝ1) and s2 ∈ γ(ŝ2). Thus, an abstract cycle transition
potentially describes multiple concrete cycle transitions. An abstract trace from T̂races is a
sequence of abstract cycle transitions (cf. equations (5.18) and (5.20)). Thus, each member of
T̂races potentially describes multiple sequences of concrete cycle transitions.

Some of the sequences of concrete cycle transitions that a member of T̂races describes correspond
to actual concrete traces from set Traces. The following relation TraceDescrTrace captures that
a member of T̂races describes a concrete trace from set Traces.

TraceDescrTrace ⊆ T̂races× Traces (5.21)

((t̂, û), t) ∈ TraceDescrTrace

⇔ len((t̂, û)) = len(t) ∧ t(0) ∈ γ(û(0)) ∧ ∀x ∈ N≥1 ∩ N≤len(t) : t(x) ∈ γ(t̂(x))
(5.22)

It follows that a set T̂races fulfilling criteria (5.C1) and (5.C2) describes each member of Traces.
For a detailed proof of this statement, we refer to page 252.

∀t ∈ Traces : ∃(t̂, û) ∈ T̂races : ((t̂, û), t) ∈ TraceDescrTrace (5.23)

A member of T̂races, however, can also describe sequences of concrete cycle transitions that
do not correspond to concrete traces from set Traces. This is the case if the source state of the
first concrete cycle transition in a sequence is not an initial state of the concrete system (i.e. not
∈ Sinit). Moreover, it is the case if the target state of a concrete cycle transition in a sequence
does not coincide with the source state of the subsequent transition in the sequence. We call such
sequences of concrete cycle transitions spurious as they cannot happen during any execution of
the concrete system.
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Traces:
a b c

,
x y z

T̂races:
â b̂ ĉ

γ: â 7→ {a, x}, b̂ 7→ {b, y}, ĉ 7→ {c, z}

Spurious:
a by z

,
x yb c

Figure 5.2.: Example for spurious sequences of cycle transitions

Figure 5.2 shows a sequence of abstract states that describes spurious sequences of concrete
cycle transitions for a simple system with only two concrete traces. The figure only contains
complete sequences of length three for both system and abstract system states. The shorter
prefixes have been omitted for simplicity. Furthermore, we assume the relation v to coincide
with the identity relation. Thus, we do not explicitly represent joining/widening in this figure (i.e.
∀(t̂, û) ∈ T̂races : ∀n ∈ N≤len(t̂) : t̂(n) = û(n)). The abstract cycle transition (â, b̂) in Figure 5.2
describes the concrete cycle transitions (a, b) and (x, y). In the same way, (̂b, ĉ) describes (b, c)
and (y, z). As a consequence, the two possible concrete traces from Traces are soundly described
by the single sequence of abstract states in T̂races. The sequence of abstract states, however,
also describes two spurious sequences of concrete cycle transitions. They cannot appear on the
concrete system since the target state of one cycle transition does not coincide with the source
state of the next transition (e.g. b 6= y).
We formally define the set of all spurious sequences of concrete cycle transitions as follows.

Spurious = {(t, u) ∈ (N<n → S)× ((N≥1 ∩ N≤n)→ S)

| n ∈ N ∧ [∀x ∈ N<n : (t(x), u(x+ 1)) ∈ Cycle]
∧ [t(0) 6∈ Sinit ∨ ∃x ∈ (N≥1 ∩ N<n) : t(x) 6= u(x)]}

(5.24)

The length of a spurious sequence of cycle transitions is defined analogously to the length of
concrete traces or sequences of abstract states.

∀n ∈ N : ∀(t, u) ∈ (Spurious ∩ ((N<n → S)× ((N≥1 ∩ N≤n)→ S))) : len((t, u)) = n (5.25)

We use E as a shorthand to check whether event E happens at a particular position in a
spurious sequence of cycle transitions of Spurious.

E :
⋃

(t,u)∈Spurious

({(t, u)} × N<len((t,u)))→ {0, 1} (5.26)

E((t, u), x) ≡ (t(x), u(x+ 1)) ∈ E (5.27)

The set T̂races can also describe some spurious traces (i.e. traces which do not belong to
the concrete traces). We formally define the description of such spurious traces by the relation
TraceDescrSpurious.

TraceDescrSpurious ⊆ T̂races× Spurious (5.28)

((t̂, û), (t, u)) ∈ TraceDescrSpurious

⇔ len((t̂, û)) = len((t, u))
∧ [∀x ∈ N<len(t) : t(x) ∈ γ(û(x))]
∧ ∀x ∈ (N≥1 ∩ N≤len(t)) : u(x) ∈ γ(t̂(x))

(5.29)
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Finally, we define the function γtrace that maps a sequence of abstract states from T̂races to
the concrete traces and/or spurious sequences of cycle transitions that it describes.

γtrace : T̂races→ P(Traces ∪ Spurious) (5.30)

γtrace((t̂, û)) = {t ∈ Traces | ((t̂, û), t) ∈ TraceDescrTrace} ∪
{(t, u) ∈ Spurious | ((t̂, û), (t, u)) ∈ TraceDescrSpurious}

(5.31)

It follows from equations (5.22), (5.29), and (5.31) that any prefix of a sequence of abstract
states can only describe prefixes of concrete and/or spurious traces that have the same length as
the describing prefix.

∀t̂ ∈ T̂races : ∀t ∈ γtrace(t̂) : len(t̂) = len(t) (5.32)

Note that—according to statement (5.23)—(T̂races, γtrace) is an overapproximation of Traces.⋃
t̂∈T̂races

γtrace(t̂) ⊇ Traces (5.33)

Thus, (T̂races, γtrace) is an abstract model of Traces as defined in Chapter 4. As a consequence,
we can apply property lifting to it.

The system properties that we are going to consider argue about the events occurring in the
concrete traces. Consequently, the lifted versions of these system properties will also have to
argue about events based on the knowledge that the abstract model offers. To this end, we
introduce a concept of events on cycle transitions of abstract states. It is defined analogous to
the events on cycle transitions of system states.

Êvents = P(Ĉycle) (5.34)

Ê ∈ Êvents (5.35)

We use Ê as a shorthand to check whether event Ê happens at the cycle transition at a
particular position in a sequence of abstract states of ̂Sequences.

Ê :
⋃

(t̂,û)∈ ̂Sequences

({(t̂, û)} × N<len((t̂,û)))→ {0, 1} (5.36)

Ê((t̂, û), x) ≡ (û(x), t̂(x+ 1)) ∈ Ê (5.37)

However, the events on cycle transitions of abstract states must be related to the corresponding
events on cycle transitions of system states. A cycle transition on abstract states might not
always have precise knowledge about whether a particular event happens in all cycle transitions
of system states that it describes. Thus, we introduce the concept of event bounds. Each event
E on cycle transitions of system states shall be bounded from above by a may-event ÊUB on
cycle transitions of abstract states. Intuitively, as soon as an abstract cycle transition describes
a transition on system states for which an event E appears, the corresponding may-event ÊUB

must appear for the abstract cycle transition.

∀(ŝ1, ŝ2) ∈ Ĉycle : E ∩ (γ(ŝ1)× γ(ŝ2)) 6= ∅ ⇒ (ŝ1, ŝ2) ∈ ÊUB (5.38)

Analogously, each event E on cycle transitions of system states shall be bounded from below
by a must-event ÊLB on cycle transitions of abstract states. Intuitively, as soon as an abstract
cycle transition describes a transition on system states for which an event E does not appear, the
corresponding must-event ÊLB must not appear for the abstract cycle transition.

∀(ŝ1, ŝ2) ∈ Ĉycle : (Cycle \ E) ∩ (γ(ŝ1)× γ(ŝ2)) 6= ∅ ⇒ (ŝ1, ŝ2) 6∈ ÊLB (5.39)
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As the event Cycle appears—by definition—for every cycle transition on system states, it is
safe to assume that the corresponding must-event appears for every cycle transition on abstract
states.

ĈycleLB = Ĉycle = ̂CycleUB (5.40)

Moreover, note that it is safe for every event E to assume that the corresponding may-event
ÊUB coincides with Ĉycle and the corresponding must-event ÊLB coincides with ∅. Intuitively,
this means that the event E may always occur according to the event bounds, but the event
bounds can never guarantee that it occurs.

We can use the event bounds to argue about the events at an arbitrary position of a concrete or
spurious trace described by a sequence of abstract states. For a detailed proof of this statement,
we refer to page 254.

∀t̂ ∈ T̂races : ∀t ∈ γtrace(t̂) : ∀x ∈ N<len(t̂) :

ÊLB(t̂, x) ≤ E(t, x) ≤ ÊUB(t̂, x)
(5.41)

It follows that we can bound the number of times an event E happens during a subset of all
positions of a concrete or spurious trace described by a sequence of abstract states.

∀t̂ ∈ T̂races : ∀t ∈ γtrace(t̂) : ∀X ⊆ N<len(t̂) :∑
x∈X

ÊLB(t̂, x) ≤
∑
x∈X

E(t, x) ≤
∑
x∈X

ÊUB(t̂, x)
(5.42)

We exploit the event bounds when lifting system properties to the approximation level of
sequences of abstract states. Concrete properties are Boolean predicates on concrete and spurious
traces (i.e. Pk : Traces ∪ Spurious → {0, 1}). In the same way, properties on sequences of
abstract states are logical formulae that map sequences of abstract states to truth values (i.e.
P̂k : T̂races → {0, 1}). Based on the results of Chapter 4, we know that a lifted version P̂k
of a system property Pk can safely be used to detect infeasible abstract traces if it fulfills
criterion (4.C1):

∀t̂ ∈ T̂races : [∃t ∈ γtrace(t̂) : Pk(t) ]⇒ P̂k(t̂)

For simple system properties, a lifted version satisfying criterion (4.C1) can easily be obtained
based on intuition. This is demonstrated by the example property Pxmpl and its lifted version in
Figure 5.3. Essentially, property Pxmpl states that a trace t must not exhibit more occurrences
of event E1 than of event E2. We can safely lift this property to a sequence of abstract states
t̂ by replacing the left-hand side of the original inequation by a lower bound on the number of
occurrences of event E1 in t̂. In the same way, the right-hand side of the original inequation is
replaced by an upper bound on the number of occurrences of event E2 in t̂. Thus, if t̂ describes
only a single trace in which the number of occurrences of event E1 does not exceed the number
of occurrences of event E2, the lifted property P̂xmpl is guaranteed to hold for t̂. If, in contrast,
P̂xmpl does not hold for a sequence t̂, we know that t̂ can only describe traces in which the number
of occurrences of event E1 exceeds the number of occurrences of event E2. If we moreover know
that Pxmpl is a system property, t̂ cannot describe any concrete traces of the concrete system and,
thus, is infeasible.

Real-world system properties are typically more complex than the simple example in Figure 5.3.
To avoid the cumbersome task of manually lifting every considered system property to sequences
of abstract states in a way that fulfills criterion (4.C1), we provide a set of generic lifting rules
that can be applied in a more or less mechanical way. Table 5.1 contains the lifting rules in the
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Pxmpl(t)⇔
∑

x∈N<len(t)

E1(t, x) ≤
∑

x∈N<len(t)

E2(t, x)

P̂xmpl(t̂)⇔
∑

x∈N<len(t̂)

ÊLB
1 (t̂, x) ≤

∑
x∈N<len(t̂)

ÊUB
2 (t̂, x)

Figure 5.3.: Example for a simple system property Pxmpl and a lifted version of it that fulfills
criterion (4.C1)

form of a function lift for the most common logical constructs of the properties we consider. The
logical constructs of properties are listed in the first column. The second column shows how to
safely lift them to sequences of abstract states based on safely lifted versions of their children.
The lifting rules make use of an auxiliary function flip that recursively flips the event bounds in
a property on sequences of abstract states. It is defined in Table 5.2. For a formal proof of the
soundness of the lifting rules, we refer to page 255.
We conclude this section by showing how the example property of Figure 5.3 is lifted to

sequences of abstract states by applying the rules of Table 5.1 and Table 5.2:

lift(Pxmpl(t))

⇔
Figure 5.3

lift(
∑
x∈N<len(t)

E1(t, x) ≤
∑
x∈N<len(t)

E2(t, x))

⇔
(LR7)

∑
x∈N<len(t)

flip(lift(E1(t, x))) ≤
∑
x∈N<len(t)

lift(E2(t, x))

⇔
(LR1)

∑
x∈N<len(t)

flip(ÊUB
1 (t̂, x)) ≤

∑
x∈N<len(t)

ÊUB
2 (t̂, x)

⇔
(LR9)

∑
x∈N<len(t)

ÊLB
1 (t̂, x) ≤

∑
x∈N<len(t)

ÊUB
2 (t̂, x)

⇔
(5.32)

∑
x∈N<len(t̂)

ÊLB
1 (t̂, x) ≤

∑
x∈N<len(t̂)

ÊUB
2 (t̂, x)

⇔
Figure 5.3

P̂xmpl(t̂)
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P (t, #»x ) lift(P (t, #»x ))

E(t, xi) ÊUB(t̂, xi) (LR1)

[ P1(t,
#»x ) ∧ P2(t,

#»x ) ] [ lift(P1(t,
#»x )) ∧ lift(P2(t,

#»x )) ] (LR2)

[ P1(t,
#»x ) ∨ P2(t,

#»x ) ] [ lift(P1(t,
#»x )) ∨ lift(P2(t,

#»x )) ] (LR3)

[ ∀x ∈ X : P1(t,
#»x , x) ] [ ∀x ∈ X : lift(P1(t,

#»x , x)) ] (LR4)

[ ∃x ∈ X : P1(t,
#»x , x) ] [ ∃x ∈ X : lift(P1(t,

#»x , x)) ] (LR5)

¬P1(t,
#»x ) ¬flip(lift(P1(t,

#»x ))) (LR6)

[ a1 ·
∑
x∈X

P1(t,
#»x , x) + b1

. a2 ·
∑
y∈Y

P2(t,
#»x , y) + b2 ]

[ a1 ·
∑
x∈X

flip(lift(P1(t,
#»x , x)))+ b1

. a2 ·
∑
y∈Y

lift(P2(t,
#»x , y))+ b2 ]

(LR7)

[ P1(t,
#»x , x)⇒ P2(t,

#»x , x) ] [ flip(lift(P1(t,
#»x , x)))

⇒ lift(P2(t,
#»x , x)) ]

(LR8)

E ∈ Events X,Y ⊆ N x, y fresh variables w.r.t. #»x

a1, a2 ∈ R≥0 b1, b2 ∈ R . ∈ {<,≤}

Table 5.1.: Rules for lifting properties from concrete traces to sequences of abstract states. The
auxiliary function flip used in the lifting rules is defined in Table 5.2.
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P̂ (t̂, #»x ) flip(P̂ (t̂, #»x ))

ÊUB(t̂, xi) ÊLB(t̂, xi) (LR9)

ÊLB(t̂, xi) ÊUB(t̂, xi) (LR10)

[ P̂1(t̂,
#»x ) ∧ P̂2(t̂,

#»x ) ] [ flip(P̂1(t̂,
#»x )) ∧ flip(P̂2(t̂,

#»x )) ] (LR11)

[ P̂1(t̂,
#»x ) ∨ P̂2(t̂,

#»x ) ] [ flip(P̂1(t̂,
#»x )) ∨ flip(P̂2(t̂,

#»x )) ] (LR12)

[ ∀x ∈ X : P̂1(t̂,
#»x , x) ] [ ∀x ∈ X : flip(P̂1(t̂,

#»x , x)) ] (LR13)

[ ∃x ∈ X : P̂1(t̂,
#»x , x) ] [ ∃x ∈ X : flip(P̂1(t̂,

#»x , x)) ] (LR14)

¬P̂1(t̂,
#»x ) ¬flip(P̂1(t̂,

#»x )) (LR15)

[ a1 ·
∑
x∈X

P̂1(t̂,
#»x , x) + b1

. a2 ·
∑
y∈Y

P̂2(t̂,
#»x , y) + b2 ]

[ a1 ·
∑
x∈X

flip(P̂1(t̂,
#»x , x))+ b1

. a2 ·
∑
y∈Y

flip(P̂2(t̂,
#»x , y))+ b2 ]

(LR16)

[ P̂1(t̂,
#»x , x)⇒ P̂2(t̂,

#»x , x) ] [ flip(P̂1(t̂,
#»x , x))⇒ flip(P̂2(t̂,

#»x , x)) ] (LR17)

flip(P̂1(t̂,
#»x , x)) P̂1(t̂,

#»x , x) (LR18)

E ∈ Events X,Y ⊆ N x, y fresh variables w.r.t. #»x

a1, a2 ∈ R≥0 b1, b2 ∈ R . ∈ {<,≤}

Table 5.2.: Auxiliary function flip used when lifting properties from concrete traces to sequences
of abstract states. It recursively flips the directions of the event bounds in a property
on sequences of abstract states.
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5.3. Approximation by Paths through a Graph

There are also typically too many different sequences of abstract states to exhaustively account for
all of them. As a next level of approximation, the sequences of abstract states are approximated
by paths through a graph. A graph is typically defined on a set of nodes. A subset of the nodes
is chosen as start nodes.

Nodesstart ⊆ Nodes (5.43)

Similarly, a subset of the nodes is chosen as end nodes.

Nodesend ⊆ Nodes (5.44)

The edges are defined as a subset of all possible pairs of nodes. As a consequence, we obtain a
directed graph.

Edges ⊆ Nodes×Nodes (5.45)

A path between any pair of nodes is referred to as subpath.

̂SubPaths = {p̂ : N≤n → Nodes | n ∈ N ∧ ∀x ∈ N<n : (p̂(x), p̂(x+ 1)) ∈ Edges} (5.46)

We define the length of a subpath as the number of edges it consists of.

∀n ∈ N : ∀p̂ ∈ ̂SubPaths ∩ (N≤n → Nodes) : len(p̂) = n (5.47)

The subpaths that begin with a start node are referred to as relaxed paths.

̂RelPaths = {p̂ ∈ ̂SubPaths | p̂(0) ∈ Nodesstart} (5.48)

The actual paths through the graph are those relaxed paths that additionally end in an end
node. They are given by the set P̂aths.

P̂aths = {p̂ ∈ ̂RelPaths | p̂(len(p̂)) ∈ Nodesend} (5.49)

Note that, in general, not every node in the graph is guaranteed to reach one of the end nodes.
Thus, there can be relaxed paths that are not a prefix of one of the members of P̂aths.

For now, our focus is on the paths from a start node to an end node. However, the notions of
subpaths and relaxed paths are required in Chapter 6 of this thesis. Thus, we define most of the
following formal machinery directly on subpaths in order to reuse it later.

In order to argue about the graph in a convenient way, we define the sets of predecessors and
successors per graph node.

pred, succ : Nodes→ P(Nodes) (5.50)
pred(node) = {node′ ∈ Nodes | (node′,node) ∈ Edges} (5.51)
succ(node) = {node′ ∈ Nodes | (node,node′) ∈ Edges} (5.52)

Moreover, we define the sets of in-edges and out-edges per graph node.

inEdges, outEdges : Nodes→ P(Edges) (5.53)
inEdges(node) = {(nodesrc,nodetrgt) ∈ Edges | nodetrgt = node} (5.54)
outEdges(node) = {(nodesrc,nodetrgt) ∈ Edges | nodesrc = node} (5.55)
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ÊUB
1

ÊLB
2

ÊUB
1

ÊLB
2

ÊUB
1

ÊLB
2 ÊLB

2

ÊUB
1 ÊUB

1 ÊUB
1

(a) Two sequences of abstract cycle transitions.

ŵELB
2 = 1

ŵEUB
1 = 2

ŵELB
2 = 1

ŵEUB
1 = 3

(b) A path describing the sequences.

Figure 5.4.: Example of a path that describes sequences of abstract cycle transitions.

We define the set of start edges as the out-edges of the start nodes.

Edgesstart =
⋃

nodestart∈Nodesstart

outEdges(nodestart) (5.56)

Analogously, we define the set of end edges as the in-edges of the end nodes.

Edgesend =
⋃

nodeend∈Nodesend

inEdges(nodeend) (5.57)

In a weighted graph, an edge weight ŵ is a function that maps the edges to weight values.

Ŵeights = (Edges→ N) (5.58)

ŵ ∈ Ŵeights (5.59)

Moreover, we use ŵ as a shorthand to the value of the function ŵ for an edge at a particular
position of a path.

ŵ :
⋃

p̂∈ ̂SubPaths

({p̂} × N<len(p̂))→ N (5.60)

ŵ(p̂, x) ≡ ŵ((p̂(x), p̂(x+ 1))) (5.61)

For each event E, there shall be two corresponding edge weights.

ŵEUB, ŵELB ∈ Ŵeights (5.62)

An edge describes a sequence of abstract cycle transitions if, for all events E, the sum over

the may events ÊUB along the sequence is upper-bounded by the weight ŵEUB of the edge and

the sum over the must events ÊLB along the sequence is lower-bounded by the weight ŵELB

of the edge. Thus, edg ∈ Edges describes sequences of abstract cycle transitions in which the

event E occurs at most ŵEUB(edg) times and at least ŵELB(edg) times. A path consisting of x
edges describes a sequence of abstract cycle transitions if we can split up the sequence into x
sub-sequences in such a way that each sub-sequence is described by the corresponding edge in
the path.

Figure 5.4 demonstrates this principle. Figure 5.4a shows two sequences of four abstract cycle
transitions respectively. Figure 5.4b shows a path. Each sequence of Figure 5.4a can be split—as
indicated by the dashed line—into two sub-sequences in a way that the first sub-sequence is
described by the first edge of the path and the second sub-sequence is described by the second
edge of the path. Thus, each sequence is described by the path.
In order to model the different ways in which a sequence of abstract cycle transitions can be

split into a given number of sub-sequences, we introduce the formal concept of a partitioning. A
partitioning from the set Partitionings(v, w) splits the range of the first w natural numbers (0 to
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part ∈ Partitionings(4, 7)

part(0) = 2 part(1) = 0 part(2) = 3 part(3) = 2

{0, 1} {} {2, 3, 4} {5, 6}

from(part, 0) = 0 from(part, 1) = 2 from(part, 2) = 2 from(part, 3) = 5

to(part, 0) = 1 to(part, 1) = 1 to(part, 2) = 4 to(part, 3) = 6

Figure 5.5.: Example for a partitioning that groups the first 7 natural numbers into 4 partitions
of subsequent numbers

w − 1) into v partitions of subsequent numbers (partition 0 to partition v − 1). A partitioning is
encoded as a function part that assigns each partition its respective size.

Partitionings : N× N→ P({part : N<n → N | n ∈ N}) (5.63)

Partitionings(v, w) = {part : N<v → N |
∑
x∈N<v

part(x) = w} (5.64)

Figure 5.5 shows an example for a partitioning that groups the first 7 natural numbers into 4
partitions of subsequent numbers. Partition 0 is assigned a size of two. Thus, it contains the first
two natural numbers ({0, 1}). Partition 1, in contrast, is assigned a size of zero. Consequently, it
is empty ({}). The contents of the remaining partitions are defined analogously.
In order to easily argue about the content of partition x in a partitioning part, we use the

helper functions from and to. Partition x contains all natural numbers that are not smaller than
from(part, x) and do not exceed to(part, x). The helper functions from and to are formally defined
by the following equations.

from, to :
⋃
a∈N

⋃
b∈N

⋃
part∈Partitionings(a,b)

({part} × N<a)→ N (5.65)

from(part, x) =
∑
y∈N<x

part(y) (5.66)

to(part, x) = from(part, x) + part(x)− 1 (5.67)

We formally define that a path describes a particular sequence of abstract states if and only
if there is a partitioning of the corresponding sequence of abstract cycle transitions such that
the event bounds per partition x are safely bounded from above and below by the corresponding
weights of the edge at position x of the path. This is expressed by relation PathDescrTrace.

PathDescrTrace ⊆ ̂SubPaths× T̂races (5.68)

(p̂, t̂) ∈ PathDescrTrace

⇔∃part ∈ Partitionings(len(p̂), len(t̂)) :
∀E ∈ Events :
∀x ∈ N<len(p̂) :∑

from(part,x)≤i≤to(part,x)

ÊUB(t̂, i) ≤ ŵEUB(p̂, x) ∧

∑
from(part,x)≤i≤to(part,x)

ÊLB(t̂, i) ≥ ŵELB(p̂, x)

(5.69)
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s1
e

̂wCycleUB(e) = ̂wCycleLB(e) = 1

∀E ∈ Events \ {Cycle} : ŵEUB(e) = 1 ∧ ŵELB(e) = 0

Figure 5.6.: Example for a trivial graph that soundly approximates essentially any system.

E2

E1 E1

E2

E1 E1 E1

Figure 5.7.: Example for a spurious sequence of events described by the path of Figure 5.4b. It
is spurious with respect to the sequences of abstract cycle transitions presented in
Figure 5.4a (i.e. not safely bounded by one of them).

We require the following criterion to hold for the graphs that we consider.

∀t̂ ∈ T̂races : ∃p̂ ∈ P̂aths : (p̂, t̂) ∈ PathDescrTrace (5.C3)

Criterion (5.C3) implies that the paths through the graph describe all sequences of abstract
states.

T̂races = {t̂ ∈ T̂races | p̂ ∈ P̂aths ∧ (p̂, t̂) ∈ PathDescrTrace} (5.70)

As an example, consider the graph in Figure 5.6. It only consists of a single node and a single
edge forming a self-loop. The edge corresponds to a single cycle transition of the system. All
events except the event Cycle are modeled in a very pessimistic way: at each instant, an event
might or might not occur. Intuitively, the graph soundly describes the concrete traces of essentially
every possible system. However, since it lost all information about the events happening, it will
hardly be of any use during validation of a system’s operation.

Note that an edge approximates the sequences of abstract cycle transitions in a cumulative way.
It e.g. approximates away the order in which the respective may- and must-events of the described
sequences occur. As a consequence, a path through a graph can describe more than only the
sequences of abstract states contained in T̂races. It can additionally describe spurious sequences
of events that are not covered by the sequences of abstract states it describes. Figure 5.7 presents
an example of a sequence of events described by the path of Figure 5.4b. The sequence is spurious
with respect to the sequences of abstract cycle transitions presented in Figure 5.4a as it is not
safely bounded by one of them. The spurious sequence e.g. features five occurrences of event E1

while each sequence of Figure 5.4a allows at most three.
In the following, we formally define the sequences of events that are spurious with respect to

T̂races. None of them is safely bounded by the may- and must-events of a member of T̂races.

̂SpuriousTraces = {ŝt : N<n → P(Events)
| n ∈ N ∧

∀t̂ ∈ T̂races :

[len(t̂) = n]⇒
[∃x ∈ N<n : ∃E ∈ Events :

(E ∈ ŝt(x) ∧ ¬ÊUB(t̂, x))∨

(E 6∈ ŝt(x) ∧ ÊLB(t̂, x))]}

(5.71)
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5.3. Approximation by Paths through a Graph

The length of a member of ̂SpuriousTraces is defined analogously to the length of a sequence
of abstract states.

∀n ∈ N : ∀ŝt ∈ ( ̂SpuriousTraces ∩ (N<n → P(Events))) : len(ŝt) = n (5.72)

We also define the event bounds for the members of ̂SpuriousTraces in a way that they provide
the same interface as the event bounds for sequences of abstract states.

ÊUB, ÊLB :
⋃

ŝt∈ ̂SpuriousTraces

({ŝt} × N<len(ŝt))→ {0, 1} (5.73)

ÊUB(ŝt, x) ≡ ÊLB(ŝt, x) ≡ E ∈ ŝt(x) (5.74)

In this way, we can use the properties on sequences of abstract states also for the members of
̂SpuriousTraces.

Moreover, this allows us to specify the description relation PathDescrSpuriousTrace from paths
to members of ̂SpuriousTraces analogously to the relation PathDescrTrace.

PathDescrSpuriousTrace ⊆ ̂SubPaths× ̂SpuriousTraces (5.75)

(p̂, ŝt) ∈ PathDescrSpuriousTrace

⇔∃part ∈ Partitionings(len(p̂), len(ŝt)) :
∀E ∈ Events :
∀x ∈ N<len(p̂) :∑

from(part,x)≤i≤to(part,x)

ÊUB(ŝt, i) ≤ ŵEUB(p̂, x) ∧

∑
from(part,x)≤i≤to(part,x)

ÊLB(ŝt, i) ≥ ŵELB(p̂, x)

(5.76)

Finally, we define the function γpath that maps paths from ̂SubPaths to the members of T̂races
and/or ̂SpuriousTraces that it describes.

γpath : ̂SubPaths→ P(T̂races ∪ ̂SpuriousTraces) (5.77)

γpath(p̂) = {t̂ ∈ T̂races | (p̂, t̂) ∈ PathDescrTrace} ∪

{ŝt ∈ ̂SpuriousTraces | (p̂, ŝt) ∈ PathDescrSpuriousTrace}
(5.78)

Note that—according to statement (5.70)—(P̂aths, γpath) is an overapproximation of T̂races.⋃
p̂∈P̂aths

γpath(p̂) ⊇ T̂races (5.79)

Consequently, (P̂aths, γpath) is also an overapproximation of the subset of T̂races for which all
the lifted system properties hold.⋃

p̂∈P̂aths

γpath(p̂) ⊇ {t̂ ∈ T̂races | ∀Pk ∈ Prop : P̂k(t̂)} (5.80)

We know from Section 5.2 that this subset of T̂races provides an overapproximation of the
set Traces of concrete traces. At the same time, however, we can see this subset as a system
on its own for which the system properties P̂k hold. Thus, we can once more apply property
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P̂ (t̂) lift(P̂ (t̂))

∀z ∈ N≤len(t̂) :

a1 ·
∑
x∈N<z

ÊLB
1 (t̂, x) + b1

. a2 ·
∑
x∈N<z

ÊUB
2 (t̂, x) + b2

∀z ∈ N≤len(p̂) :

a1 ·
∑
x∈N<z

ŵELB
1 (p̂, x) + b1

. a2 ·
∑
x∈N<z

ŵEUB
2 (p̂, x) + b2

(LR19)

E1, E2 ∈ Events a1, a2 ∈ R≥0 b1, b2 ∈ R . ∈ {<,≤}

Table 5.3.: Rule for lifting a common type of property from sequences of abstract states to paths.

lifting to further lift the properties P̂k to the approximation level of the paths through the graph.
The properties lifted to the paths are annotated with the superscript path in order to easily
distinguish them from the properties lifted to sequences of abstract states. Consequently, we
rephrase soundness criterion (4.C1) in the following way for this step of further lifting an already
lifted property.

∀p̂ ∈ ̂SubPaths : [∃t̂ ∈ γpath(p̂) : P̂k(t̂) ]⇒ P̂ path
k (p̂) (5.C4)

Lifting system properties from sequences of abstract states to paths is—to the best of our
knowledge—not as straight forward as lifting system properties from concrete traces to sequences
of abstract states. Intuitively, the lifting is more challenging as a graph edge approximates away
the order of the event bounds of the different sub-sequences of abstract states. It is an open
question whether there is a set of lifting rules that is similarly generic as the rules presented in
the previous section. The answer to this open question, however, is beyond the scope of this
thesis. Nonetheless, Table 5.3 provides a single lifting rule from sequences of abstract states to
paths. A soundness proof of this lifting rule can be found on page 262.

5.4. Approximation by Implicit Path Enumeration

The previous section formalizes the approximation by paths through a graph. Depending on the
size of the graph representation, it may be practically infeasible to explicitly argue about each
path induced by the graph. As a potential remedy, it is common to abstract away from the order
in which the edges appear in a path through the graph. This approach is referred to as implicit
path enumeration (technique)—or short IPET—and has been successfully used in WCET analysis
for a long time [Li and Malik, 1995; Stein, 2010]. In this section, we formalize implicit path
enumeration as another level of approximation in our formal framework. Moreover, we show how
system properties lifted to paths can be further lifted to this level of approximation in a safe way.
The implicit path enumeration—in its general form that we discuss here—only argues about

the number of times each edge occurs in a potential path and which edges start and end such a
potential path. For our formal definition, we exploit some observations about the paths:

• an edge can only be the start edge of a path if it is contained in the path

• an edge can only be the end edge of a path if it is contained in the path

• in general, a path p̂ may be empty (i.e. it contains no edge at all, len(p̂) = 0)

• a non-empty path has exactly one start edge and exactly one end edge
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5.4. Approximation by Implicit Path Enumeration

• a non-empty path starts from a start edge

• a non-empty path ends in an end edge

• if the sets of start nodes and end nodes of the graph are disjoint, there cannot be an empty
path through the graph (i.e. all paths must have a start edge)

• the number of times an out-edge of a particular node is taken in a path must coincide with
the number of times an in-edge of the node is taken
– exception: one out-edge more if the path starts in an out-edge of the node
– exception: one in-edge more if the path ends in an in-edge of the node

This leads to the following formal definition of the set of abstract traces that we consider in
implicit path enumeration. We informally refer to the members of this set as implicit paths.

̂Implicit ={(timesTaken, isStart, isEnd) ∈ (Edges→ N)× (Edges→ {0, 1})2 |
[ ∀e ∈ Edges : isStart(e) ≤ timesTaken(e) ] ∧
[ ∀e ∈ Edges : isEnd(e) ≤ timesTaken(e) ] ∧∑
e∈Edges

isStart(e) ≤ 1 ∧

∑
e∈Edges

isEnd(e) ≤ 1 ∧

∑
e∈Edges

isStart(e) =
∑

e∈Edges

isEnd(e) ∧

∑
e∈(Edges\Edgesstart)

isStart(e) = 0 ∧

∑
e∈(Edges\Edgesend)

isEnd(e) = 0 ∧

[ Nodesstart ∩Nodesend = ∅ ⇒
∑

e∈Edges

isStart(e) = 1 ] ∧

[ ∀node ∈ Nodes :∑
ein∈inEdges(node)

[timesTaken(ein)− isEnd(ein)]

=
∑

eout∈outEdges(node)

[timesTaken(eout)− isStart(eout)] ]

}

(5.81)

Intuitively, an implicit path describes an actual path if its function timesTaken returns for
every edge the number of times the edge is contained in the actual path and its functions isStart
and isEnd only return 1 for the first respectively last edge in the actual path. This is formally
expressed by the relation ImplicitDescrPath.

ImplicitDescrPath ⊆ ̂Implicit× P̂aths (5.82)

((timesTaken, isStart, isEnd), p̂) ∈ ImplicitDescrPath
⇔∀e ∈ Edges :

timesTaken(e) =
∣∣{x ∈ N<len(p̂) | (p̂(x), p̂(x+ 1)) = e}

∣∣ ∧
isStart(e) =

∣∣{x ∈ N<len(p̂) | x = 0 ∧ (p̂(x), p̂(x+ 1)) = e}
∣∣ ∧

isEnd(e) =
∣∣{x ∈ N<len(p̂) | x = len(p̂)− 1 ∧ (p̂(x), p̂(x+ 1)) = e}

∣∣
(5.83)
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It follows that—with respect to this description relation—the set ̂Implicit describes all paths
contained in the set P̂aths. For a detailed proof of this statement, we refer to page 268.

P̂aths = {p̂ ∈ P̂aths | î ∈ ̂Implicit ∧ (̂i, p̂) ∈ ImplicitDescrPath} (5.84)

An implicit path, however, might also describe sequences of edges that do not correspond to
actual paths in the graph. We refer to them as spurious paths and define them as follows.

̂SpuriousPaths = {p̂ : N<n → Edges | n ∈ N>0 ∧
[ (¬∃nd ∈ Nodesstart : p̂(0) ∈ outEdges(nd)) ∨
(¬∃nd ∈ Nodesend : p̂(n− 1) ∈ inEdges(nd)) ∨
∃x ∈ N<n−1 :

∃(nd1,nd2), (nd3,nd4) ∈ Edges :
(nd1,nd2) = p̂(x) ∧ (nd3,nd4) = p̂(x+ 1) ∧ nd2 6= nd3 ]}

(5.85)

We define the length of a spurious path as the number of edges it consists of.

∀n ∈ N : ∀p̂ ∈ ̂SpuriousPaths ∩ (N<n → Edges) : len(p̂) = n (5.86)

For each edge weight ŵ ∈ Ŵeights, we use ŵ as a shorthand to the value of the function ŵ for
an edge at a particular position of a spurious path.

ŵ :
⋃

p̂∈ ̂SpuriousPaths

({p̂} × N<len(p̂))→ N (5.87)

ŵ(p̂, x) ≡ ŵ(p̂(x)) (5.88)

The description relation between implicit paths and spurious paths is formally defined in the
following way.

ImplicitDescrSpuriousPath ⊆ ̂Implicit× ̂SpuriousPaths (5.89)

((timesTaken, isStart, isEnd), p̂) ∈ ImplicitDescrSpuriousPath
⇔∀e ∈ Edges :

timesTaken(e) =
∣∣{x ∈ N<len(p̂) | p̂(x) = e}

∣∣ ∧
isStart(e) =

∣∣{x ∈ N<len(p̂) | x = 0 ∧ p̂(x) = e}
∣∣ ∧

isEnd(e) =
∣∣{x ∈ N<len(p̂) | x = len(p̂)− 1 ∧ p̂(x) = e}

∣∣
(5.90)

Finally, we define the function γimpli that maps implicit paths from ̂Implicit to the members of
P̂aths and/or ̂SpuriousPaths that it describes.

γimpli : ̂Implicit→ P(P̂aths ∪ ̂SpuriousPaths) (5.91)

γimpli(̂i) = {p̂ ∈ P̂aths | (̂i, p̂) ∈ ImplicitDescrPath} ∪

{p̂ ∈ ̂SpuriousPaths | (̂i, p̂) ∈ ImplicitDescrSpuriousPath}
(5.92)

Note that—according to statement (5.84)—( ̂Implicit, γimpli) is an overapproximation of P̂aths.⋃
î∈ ̂Implicit

γimpli(̂i) ⊇ P̂aths (5.93)
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Consequently, ( ̂Implicit, γimpli) is also an overapproximation of the subset of P̂aths for which
all the lifted system properties hold.⋃

î∈ ̂Implicit

γimpli(̂i) ⊇ {p̂ ∈ P̂aths | ∀Pk ∈ Prop : P̂ path
k (p̂)} (5.94)

Thus, we can once more apply property lifting to further lift the properties P̂ path
k to the

approximation level of the implicit path enumeration. The properties lifted to the implicit path
enumeration are annotated with the superscript impli. Consequently, we rephrase soundness
criterion (4.C1) in the following way for this step of further lifting an already lifted property.

∀̂i ∈ ̂Implicit : [∃p̂ ∈ γimpli(̂i) : P̂
path
k (p̂) ]⇒ P̂ impli

k (̂i) (5.C5)

Note that there are implicit paths which do not describe any actual path through the graph
(i.e. only spurious paths). A smart choice of the lifted properties used during implicit path
enumeration, however, guarantees that such implicit paths are pruned [Puschner and Schedl,
1997]. We made similar observations while conducting experiments with our analysis prototype.

In order to effectively lift properties from paths to implicit paths, we need to argue about
the sums over different edge weights along paths described by an implicit path. Intuitively, an
implicit path has exact knowledge about the number of times each graph edge is contained in all
paths described by it. Thus, we can exactly specify the sum over all occurrences of a particular
edge weight along a described path.

∀ŵ ∈ Ŵeights : ∀̂i ∈ ̂Implicit : ∀p̂ ∈ γimpli(̂i) :∑
e∈Edges

timesTaken(e) · ŵ(e) =
∑

x∈N<len(p̂)

ŵ(p̂, x) (5.95)

Moreover, it has exact knowledge about the first edge and the last edge of all paths described
by it.

∀ŵ ∈ Ŵeights : ∀̂i ∈ ̂Implicit : ∀p̂ ∈ γimpli(̂i) :∑
e∈Edges

isStart(e) · ŵ(e) =
∑

x∈(N<len(p̂)∩{0})

ŵ(p̂, x) (5.96)

∀ŵ ∈ Ŵeights : ∀̂i ∈ ̂Implicit : ∀p̂ ∈ γimpli(̂i) :∑
e∈Edges

isEnd(e) · ŵ(e) =
∑

x∈(N<len(p̂)∩{len(p̂)−1})

ŵ(p̂, x) (5.97)

The formal proofs of these statements can be found from page 275 onwards.
Table 5.4 presents a rule for lifting a common type of system property from paths to implicit

paths. For a formal proof that the rule fulfills criterion (5.C5), we refer to page 276.
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P̂ path(p̂) lift(P̂ path(p̂))

∀z ∈ N≤len(p̂) :
a1 ·

∑
x∈N<z

ŵ1(p̂, x) + b1

. a2 ·
∑
x∈N<z

ŵ2(p̂, x) + b2

a1 ·
∑

e∈Edges

timesTaken(e) · ŵ1(e) + b1

. a2 ·
∑

e∈Edges

timesTaken(e) · ŵ2(e) + b2

(LR20)

ŵ1, ŵ2 ∈ Ŵeights a1, a2 ∈ R≥0 b1, b2 ∈ R . ∈ {<,≤}

Table 5.4.: Rule for lifting a common type of property from paths to implicit paths.

5.5. Relevance and Related Work

This chapter formally defines the concrete traces of a state-based system in a generic way. The
concrete traces determine which events occur during the execution of the system. Based on this,
we introduce a hierarchy of abstract models that argue about the concrete traces—and, thus,
also about the system events—at a reduced degree of detail. Each higher level of approximation
is formally shown to be an abstract model—as defined in Chapter 4—of the underlying level.
Thus, each higher level of approximation describes at least the traces of its underlying level. A
schematic overview of the hierarchy of abstract models is shown in Figure 5.8.
The typical WCET analysis workflow (i.e. a micro-architectural analysis and a subsequent

implicit path enumeration) can be seen as operating on the three levels of approximation that we
formalized:

1. A micro-architectural analysis [Thesing, 2004] operates on an approximation by sequences
of abstract states. The sequences are implicitly given by the fixed point of an abstract
interpretation [Cousot and Cousot, 1977].

2. In a post-processing step, the results of a micro-architectural analysis are represented as a
directed, weighted graph [Matthies, 2006; Stein, 2010]. The length of a (finite) longest path
(w.r.t. the edge weight upper bounding the number of clock cycles) through the graph is a
WCET bound [Matthies, 2006].

3. Finally, an implicit path enumeration is performed in order to safely approximate the length
of a longest path (w.r.t. the edge weight upper bounding the number of clock cycles) through
the graph [Li and Malik, 1995; Puschner and Schedl, 1997; Theiling, 2002; Stein, 2010].

Approximation is typically applied in order to gain efficiency when verifying the correct
operation of a concrete system. Intuitively, an abstract model typically features significantly
fewer abstract traces than the number of concrete traces because each abstract trace potentially
describes multiple concrete traces.
The typical drawback of the use of approximation is a reduced precision. As a consequence,

a verification goal (e.g. that the WCET of a program does not exceed a deadline) might be
impossible to show based on a given abstract model (i.e. the WCET bound obtained from the
abstract model exceeds the deadline) although it holds for the concrete system (i.e. the actual
WCET would not have exceeded the deadline, but its exact calculation is not tractable with
current techniques).

The loss in precision stems from an abstract model typically describing more than the concrete
traces of the concrete system. The abstract model of each of the three levels of approximation
shown in Figure 5.8 describes spurious traces that do not belong to the traces of the level below.
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Figure 5.8.: Schematic overview of the hierarchy of abstract models:
Each feasible abstract trace describes some feasible traces of the level below.
An infeasible abstract trace does not describe any feasible trace of the level below.

At each level of approximation, there is a subset of so-called infeasible abstract traces which
only describe spurious and/or infeasible traces of the underlying level (cf. parts labeled with
Infeas in Figure 5.8). Infeasible abstract traces can safely be pruned. Thus, it is desirable to
efficiently detect infeasible abstract traces. It is clearly not efficient to explicitly consider the
actually described traces for each abstract trace in order to decide if it is infeasible. The principle
of property lifting allows us to efficiently detect some of the infeasible abstract traces. Note that,
in general, we cannot expect to detect all infeasible abstract traces with the help of lifted system
properties: their use is sound but not necessarily complete (cf. example at the end of Section 3.1).

The idea of using additional knowledge about a concrete system in order to improve an abstract
model of the concrete system is not entirely new. In WCET analysis, it is common to encode
such knowledge as additional constraints in an implicit path enumeration based on integer linear
programming (ILP). Early publications about implicit path enumeration [Li and Malik, 1995]
already propose to encode loop bounds in this way. Later publications [Engblom and Ermedahl,
2000; Raymond, 2014] propose to encode more general flow facts as linear constraints in order to
exclude a wider range of infeasible paths from the calculation of the WCET bound. Moreover, it
has been proposed to encode bounds on the numbers of cache hits and misses as ILP constraints
in order to reduce the WCET bound [Li et al., 1995, 1996]. Similarly, knowledge about the
persistence of a particular cache block in a particular region of a program is also encoded as
ILP constraints [Stein, 2010; Cullmann, 2013]. The principle of cache persistence has later
been generalized to a path-sensitive cache analysis [Nagar and Srikant, 2015], which uses ILP
constraints to encode that certain cache misses can only occur if particular paths triggering
them are executed. It has also been proposed to use ILP constraints for bounding the number
of write-backs in a cache [Blaß et al., 2017]. Stein recognizes in his dissertation [Stein, 2010]
that the inclusion of cache-persistence constraints is a special case of a more general class of
cumulative constraints that can improve the precision of a WCET bound. The formalism used in
his dissertation, however, is not strong enough to argue about the soundness of incorporating
such additional constraints. To the best of our knowledge, we are first to formalize the three
common levels of approximation used in WCET analysis in a unified framework and to provide
general criteria for soundly lifting arbitrary properties of the concrete system up the hierarchy of
abstract models. Thus, the aforementioned approaches can be seen as special instances of the
more general framework of property lifting.
Note that the concept of an infeasible abstract trace is a generalization of the concept of an

infeasible path as it is classically used in literature. The term infeasible path classically refers
to a sequence of basic blocks that is possible while traversing a control-flow graph (CFG) of a
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particular program, but not when actually executing the program [Hedley and Hennell, 1985].
Intuitively, the same is covered by the term infeasible abstract trace as defined by us: an abstract
trace is infeasible if it only describes traces corresponding to sequences of basic blocks that are
not possible during an actual execution of the program. Moreover, however, an abstract trace
is also infeasible if it e.g. only describes traces that experience an amount of shared-resource
interference that is higher than possible on the concrete system. The system properties used for
the detection of infeasible paths classically only argue about which basic blocks are executed
how often (and potentially in which order they are executed). The property lifting framework,
in contrast, supports the lifting of properties that argue about arbitrary system events. The
inclusion of cache constraints in implicit path enumeration [Li et al., 1995, 1996; Stein, 2010;
Cullmann, 2013; Nagar and Srikant, 2015; Blaß et al., 2017] is an example for instances of our
framework that go beyond the detection of infeasible paths in the classical sense. Be aware that
an infeasible abstract trace in an approximation by paths through a graph (cf. Section 5.3) is
intuitively also referred to as an infeasible path.
Implicit path enumeration has been successfully used for the verification of timing-critical

systems for a long time [Li and Malik, 1995; Puschner and Schedl, 1997; Theiling, 2002; Stein,
2010]. The soundness arguments of the early variants [Li and Malik, 1995; Puschner and Schedl,
1997], however, are mostly based on intuition. Later publications [Theiling, 2002; Stein, 2010] do
not argue about the soundness at all. In the same way, the inclusion of additional constraints has
also mostly been based on intuition [Li et al., 1995, 1996; Engblom and Ermedahl, 2000; Stein,
2010; Cullmann, 2013; Nagar and Srikant, 2015; Blaß et al., 2017]. The only studies going beyond
intuition are limited to system properties arguing about the control flow (i.e. flow facts) [Blazy
et al., 2013; Maroneze et al., 2014; Raymond, 2014; Mussot and Sotin, 2015]. We close this gap
with our work: From page 268 onwards, we formally prove that the baseline abstract model of
implicit path enumeration argues about all paths through the graph of the underlying level of
approximation. Moreover, we provide formal criteria for safely lifting arbitrary system properties
to the level of approximation of implicit path enumeration (4.C1, 5.C4, 5.C5).
Further note that we formalized a very general form of implicit path enumeration that is

independent of the implementing technology. In particular, it does not necessarily have to be
implemented as ILP problem. We might for example use lifted system properties that cannot
be expressed as a set of linear constraints. As a consequence, we do not take into account the
problems that might arise due to numerical instabilities [Higham, 2002] in the actual implementing
technology. Moreover, according to our view, the loop bounds are not a part of the baseline
abstract model of implicit path enumeration. They are later incorporated as part of the set
of lifted system properties in order to detect infeasible implicit paths. The original version of
implicit path enumeration [Li and Malik, 1995], in contrast, was presented as an ILP formulation
that already included the loop-bounding constraints.
Finally, note that—so far—we only presented the hierarchy of abstract models that WCET

analysis typically operates on. The following chapter will explain how this hierarchy is used to
bound—from above or from below—the number of times that a particular event might occur
during any execution run of a particular program. The calculation of a WCET bound can be
seen as a special case of such a bound calculation.
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Chapter 6

Calculation of Event Bounds

We have approximately 35 seconds. . .
or less

(T-800, Terminator Genisys, 2015)

The worst-case execution time (WCET) of a program is specified by means of micro-architectural
events. Intuitively, it is the maximal amount of clock cycle events spent for executing the program
between a program start event and the subsequent program end event. The WCET of a program
is only defined if the program is guaranteed to not diverge—which is undecidable in general due
to the halting problem.

The WCET is a special case of a more general class of exact event bounds that can be specified
over the execution runs of a program. One can e.g. specify the maximal amount of write accesses
to a particular memory range during any execution run of a considered program analogously by
replacing the event Cycle by a correspondingly restricted event. Similarly, one can specify the
minimal amount of occurrences of a particular event during any execution run of a considered
program. In general, it depends on the termination of a program whether these actual maxima
and minima are defined, i.e. whether there are finite maximal and minimal values.

In this chapter, we formally specify the maximal and minimal amount of occurrences of a
particular event during any execution run of a considered program. Subsequently, we show
how to safely bound these extremal values—the maximum from above and the minimum from
below—with the help of the hierarchy of abstract models defined in Chapter 5.

WCET analysis typically only considers all paths from the program start to the program end.
For the calculation of general event bounds (i.e. the considered event does no coincide with the
clock cycle event), this approach is sound for programs that are guaranteed to terminate. For
programs that can diverge, in contrast, the classical approach of only considering paths from
the program start to the program end can lead to an underestimation (overestimation) of the
actual maximum (minimum). Section 3.3 demonstrates these soundness issues at an intuitive
level. In this chapter, we formalize the calculation of event bounds. Moreover, we present a
slight extension of the classical approach of only considering paths from the program start to the
program end. Our extended event bound calculation workflow relies on the notion of feedback
node sets [Karp, 1972]. It is shown to also be sound for the calculation of general event bounds
for programs that can diverge.
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6.1. Program Execution Runs

Let InstrMemAddr be the space of available addresses in the physical instruction memory of the
system. Each system state s shall be uniquely mapped to the address of the instruction that will
be executed during the next clock cycle starting from s on processor core Ci. This mapping is
given by the function instrAddr.

instrAddr : S × Cores→ InstrMemAddr (6.1)

For processors that only process one instruction at a time per processor core, the mapping is
canonical. Modern processor cores, however, typically perform a pipelined execution in order
to exploit instruction-level parallelism [Hennessy and Patterson, 2011]. Thus, instrAddr has to
logically assign each system state to only one of the instructions that are in the pipeline of the
considered processor core. In this respect, we follow the convention used in the dissertation of
Stephan Thesing [Thesing, 2004]. It assigns each system state to the first instruction in the
pipeline that will leave the pipeline again. In combination with in-order execution, it is straight
forward to identify this particular instruction in the pipeline (cf. example on page 109 of Thesing’s
dissertation). Implementations of out-of-order execution typically rely on an in-order retirement
of the instructions [Hennessy and Patterson, 2011] and, thus, also support an easy determination
of the instruction that will leave the pipeline next.

We define an event that occurs if and only if a particular instruction is executed on a particular
processor core during a cycle transition according to function instrAddr.

∀ins ∈ InstrMemAddr : ∀Ci ∈ Cores :
Executesins,Ci

= {(s1, s2) ∈ Cycle | ins = instrAddr(s1, Ci)}
(6.2)

We say that an instruction retires on processor core Ci during a cycle transition if an instance
of this instruction completes its execution during the cycle transition on core Ci. The exact
definition of this event depends on the implementation details of the micro-architecture and, thus,
is omitted.

∀ins ∈ InstrMemAddr : ∀Ci ∈ Cores :
Retiresins,Ci

⊆ Cycle
(6.3)

Note that, even with in-order retirement, multiple instructions may retire during the same cycle
transition. Thus, an instruction may retire during a cycle transition although it was not officially
considered as executed (i.e. it does not necessarily have to hold that Retiresins,Ci

⊆ Executesins,Ci
).

According to our view, a program is an identifier that is assigned to certain sub-sequences of
the concrete traces occurring when considering the global operation of the hardware platform as
a system. There is a set Programs of all program identifiers of the considered system.

prog ∈ Programs (6.4)

In our simple program model, each program is assigned to the subset of the memory addresses
that correspond to its program instructions. This assignment is performed by the function allInstr
in such a way that the address space is partitioned into the sets of instructions of the different
programs.

allInstr : Programs→ P(InstrMemAddr) (6.5)⋃̇
prog∈Programs

allInstr(prog) = InstrMemAddr (6.6)
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A particular program is executed on a particular processor core during a cycle transition if and
only if one of its instructions is executed on the core in question during the cycle transition.

∀prog ∈ Programs : ∀Ci ∈ Cores :

Executesprog,Ci
=

⋃
ins∈allInstr(prog)

Executesins,Ci
(6.7)

Moreover, each program is assigned a set of start instructions and a set of end instructions
from its program instructions.

startInstr : Programs→ P(InstrMemAddr) (6.8)
∀prog ∈ Programs : startInstr(prog) ⊆ allInstr(prog) (6.9)

endInstr : Programs→ P(InstrMemAddr) (6.10)
∀prog ∈ Programs : endInstr(prog) ⊆ allInstr(prog) (6.11)

A program start of a particular program is an event that occurs when the state of the system
switches from a different instruction to a start instruction of the considered program during a
cycle transition. A program start event also occurs when a program start instruction retires
although it is not officially considered as executed. Note that a program start event is specific to
a particular processor core.

∀prog ∈ Programs : ∀Ci ∈ Cores :
Startprog,Ci

= {(s1, s2) ∈ Cycle | [instrAddr(s2, Ci) ∈ startInstr(prog)
∧ instrAddr(s2, Ci) 6= instrAddr(s1, Ci)]
∨ [∃ins ∈ startInstr(prog) :

(s1, s2) 6∈ Executesins,Ci
∧ (s1, s2) ∈ Retiresins,Ci

]}

(6.12)

A program end event is defined similarly. In contrast to a program start event, however, it
only occurs when an end instruction of the considered program retires.

∀prog ∈ Programs : ∀Ci ∈ Cores :
Endprog,Ci

= {(s1, s2) ∈ Retiresins,Ci
| ins ∈ endInstr(prog)}

(6.13)

Let Traces be the set of global concrete traces of the hardware system as defined in equation (5.4).
It is defined based on the set Sinit of initial system states and the cycle transition relation Cycle.
From the set of global concrete traces, we can extract the set of initial states of program execution
runs of a particular program. A target state of a cycle transition during which a corresponding
program start event occurs is an initial state of a program execution run. Moreover, an initial
state of the global system is also an initial state of a program execution run if it is assigned to
the execution of a start instruction of the corresponding program.

∀prog ∈ Programs : ∀Ci ∈ Cores :
InitStatesprog,Ci

= {t(x+ 1) | t ∈ Traces ∧ x ∈ N<len(t)
∧ Startprog,Ci

(t, x)}
∪ {s ∈ Sinit | instrAddr(s, Ci) ∈ startInstr(prog)}

(6.14)

Based on these initial program states, we define the set of program execution runs of a particular
program when executed on a particular processor core. Analogous to Traces, we define it as the
set of all possible prefixes. An execution run prefix is a finite sequence of system states that
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begins in an initial program state. A program end event may only occur during the last cycle
transition of an execution run prefix.

∀prog ∈ Programs : ∀Ci ∈ Cores :
ExecRunsprog,Ci = {t ∈ Sequences | t(0) ∈ InitStatesprog,Ci

∧ [∀x ∈ N<len(t)−1 : ¬Endprog,Ci(t, x)]}
(6.15)

Note that these execution run prefixes are by definition a subset of the general set Sequences
(cf. equation (5.3)) of state sequences possible according to relation Cycle. Thus, the length of an
execution run prefix as well as the shorthand to argue about the events at a particular position
of an execution run prefix are defined by equations (5.5), (5.9), and (5.10). Also note that we
already use the length and this shorthand in equation (6.15).
The program execution run prefixes of a program prog executed on processor core Ci can be

seen as a system on its own. Thus, we also might know a set Propprog,Ci
of system properties for

this system. In this context, we can also refer to it as the set of program properties.

∀prog ∈ Programs : ∀Ci ∈ Cores :
∀t ∈ ExecRunsprog,Ci

: ∀Pk ∈ Propprog,Ci
: Pk(t)

(6.16)

Instruction set architectures (ISAs) typically provide instructions or sequences of instructions
that drain the pipeline of a processor core (e.g. sync or isync on PowerPC [Diefendorff et al.,
1994; Diefendorff and Silha, 1994]). In order to be able to analyze programs independently of
each other, we rely on the software convention that the pipeline is drained at the end of each
program execution run and whenever the control is passed on from one program to another. As a
consequence, two instructions of different programs never retire at the same time on the same
core.

∀Ci ∈ Cores : ∀prog1 ∈ Programs : ∀prog2 ∈ Programs \ {prog1} :

(
⋃

ins∈allInstr(prog1)

Retiresins,Ci
) ∩ (

⋃
ins∈allInstr(prog2)

Retiresins,Ci
) = ∅ (6.17)

As a further consequence of this software convention, a start instruction and an end instruction
of the same program never retire at the same time on the same core.

∀Ci ∈ Cores : ∀prog ∈ Programs :

(
⋃

ins∈startInstr(prog)

Retiresins,Ci
) ∩ (

⋃
ins∈endInstr(prog)

Retiresins,Ci
) = ∅ (6.18)

Note that the program execution model presented in this section naturally supports that some
of the programs serve as task schedulers. Thus, we can realize dynamic task scheduling in this
program execution model. The only restriction is that it does not support multiple active instances
of the same program on the same processor core at the same time (as it does not keep track of
which cycle transition belongs to which instance of a program—this is a design choice to keep
things simple, a corresponding extension is possible but beyond the scope of this thesis). As a
simple workaround, however, we can support up to x active instances of a particular program
on the same processor core at the same time by creating x dedicated copies of the program in
memory. Thus, we are confident that our program execution model is general enough for a wide
range of real-time applications.
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6.2. Exact Event Bounds

We define a shorthand event to argue about the situation that a particular event happens during
the execution of a particular program on a particular processor core.

∀prog ∈ Programs : ∀Ci ∈ Cores : ∀t ∈ Sequences : ∀E ∈ Events :
Eventprog,Ci,E = Executesprog,Ci

∩ E
(6.19)

The number of occurrences of a particular event E during the execution of program prog on
core Ci within a sequence of system states is defined as follows.

∀prog ∈ Programs : ∀Ci ∈ Cores : ∀t ∈ Sequences : ∀E ∈ Events :

numEvOccur(prog, Ci, t, E) =
∣∣{x ∈ N<len(t) | Eventprog,Ci,E(t, x)}

∣∣ (6.20)

We accordingly specify the maximal number of occurrences of a particular event E during any
execution run of a particular program prog on core Ci.

∀prog ∈ Programs : ∀Ci ∈ Cores : ∀E ∈ Events :
Maximumprog,Ci,E = max

t∈ExecRunsprog,Ci

numEvOccur(prog, Ci, t, E) (6.21)

The value of Maximumprog,Ci,E is undefined if ExecRunsprog,Ci
= ∅ (i.e. program prog is never

executed on core Ci). Moreover, it is undefined if the maximal number of event occurrences over
all execution runs cannot be bounded from above.

The WCET of a particular program when executed on a particular processor core can be seen
as such a maximum. Essentially, for the WCET, we consider each cycle transition during which
the considered program is executed. Thus, we choose to maximize the event Cycle.

∀prog ∈ Programs : ∀Ci ∈ Cores :
WCETprog,Ci = Maximumprog,Ci,Cycle

(6.22)

In principle, we could specify Minimumprog,Ci,E analogously to Maximumprog,Ci,E . However,
recall that the set ExecRunsprog,Ci

contains all finite prefixes of the possible execution runs of
program prog on core Ci. In particular, if the set is not empty, it also contains prefixes of length
zero. Thus, such a specification of Minimumprog,Ci,E would have a value of zero whenever it
has a defined value. A lower bound value of zero, however, is maximally pessimistic and, thus,
essentially useless in most cases. Therefore, we need a specification of Minimumprog,Ci,E that is
not based on all members of ExecRunsprog,Ci

.
To this end, we further distinguish the members of ExecRunsprog,Ci . Some of its members are

terminated program execution runs. This means that they end on a program end event.

∀prog ∈ Programs : ∀Ci ∈ Cores :

ExecRunstermprog,Ci
= {t ∈ ExecRunsprog,Ci

| len(t) ≥ 1 ∧ Endprog,Ci
(t, len(t)− 1)}

(6.23)

For the remainder of this thesis, we assume that the concrete system has at least one successor
state for every possible system state. Intuitively, this means that the system must not get stuck.

∀s ∈ S : ∃s′ ∈ S : (s, s′) ∈ Cycle (6.24)

Note that this does not restrict the generality of our model. We might still have a system state
that logically correspond to a system termination if its set of successors according to Cycle only
contains itself.
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The relation PrefixOf captures that a sequences of system states is a prefix of another sequence
of system states.

PrefixOf = {(t1, t2) ∈ Sequences× Sequences | len(t1) ≤ len(t2)
∧ ∀x ∈ N≤len(t1) : t1(x) = t2(x)}

(6.25)

A prefix of a particular sequence of system states is also a strict prefix of the sequence if and
only if it is shorter than the sequence.

StrictPrefixOf = {(t1, t2) ∈ PrefixOf | len(t1) < len(t2)} (6.26)

Intuitively, the strict prefixes of the terminated execution runs do not have to be considered
in the specification of Minimumprog,Ci,E as they would only introduce unnecessary pessimism.
However, in general, ExecRunsprog,Ci

can contain more than only terminated execution runs and
their prefixes. Programs that do not terminate in all situation may allow for execution run
prefixes from which no program end event can be reached. We refer to them as diverging execution
run prefixes. As every system state is guaranteed to have a successor (cf. equation (6.24)), we
can safely calculate the diverging execution run prefixes by removing the terminated execution
runs and all of their prefixes from ExecRunsprog,Ci

.

∀prog ∈ Programs : ∀Ci ∈ Cores :

ExecRunsdivergprog,Ci
= ExecRunsprog,Ci

\
⋃

t∈ExecRunstermprog,Ci

{t′ | (t′, t) ∈ PrefixOf} (6.27)

For the specification of Minimumprog,Ci,E , we only need to take into account those diverging
execution run prefixes that end on event E during the execution of program prog on core Ci
and allow to be continued arbitrarily long without a further occurrence of event E during the
execution of program prog on core Ci.

∀prog ∈ Programs : ∀Ci ∈ Cores : ∀E ∈ Events :

ExecRunsdiverg,endprog,Ci,E
= {t ∈ ExecRunsdivergprog,Ci

|
[len(t) = 0 ∨ (len(t) > 0 ∧ Eventprog,Ci,E(t, len(t)− 1))] ∧

∀n ∈ N : ∃t′ ∈ ExecRunsdivergprog,Ci
:

(t, t′) ∈ PrefixOf ∧
len(t′) = len(t) + n ∧
∀x ∈ N≥len(t) ∩ N<len(t′) :
¬Eventprog,Ci,E(t

′, x)}

(6.28)

Finally, we specify Minimumprog,Ci,E based on this subset of diverging execution run prefixes
and the set of terminated execution runs. We refer to this combined subset of the execution run
prefixes as minimum-relevant execution run prefixes.

∀prog ∈ Programs : ∀Ci ∈ Cores : ∀E ∈ Events :

ExecRunsmin-relev
prog,Ci,E = ExecRunstermprog,Ci

∪ ExecRunsdiverg,endprog,Ci,E

(6.29)

∀prog ∈ Programs : ∀Ci ∈ Cores : ∀E ∈ Events :
Minimumprog,Ci,E = min

t∈ExecRunsmin-relev
prog,Ci,E

numEvOccur(prog, Ci, t, E) (6.30)

The value of Minimumprog,Ci,E is undefined if ExecRunsprog,Ci
= ∅ (i.e. program prog is never

executed on core Ci). Moreover, it is undefined if the minimal number of event occurrences over
all execution runs cannot be exactly bounded from below (i.e. the program is guaranteed to
diverge and to produce an unbounded amount of event occurrences).
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The best-case execution time (BCET) of a particular program when executed on a particular
processor core can be seen as such a minimum. We obtain it by choosing Cycle as the minimized
event.

∀prog ∈ Programs : ∀Ci ∈ Cores :
BCETprog,Ci

= Minimumprog,Ci,Cycle
(6.31)

Note that—due to the definition of ExecRunsprog,Ci (cf. equations (6.15) and (5.3))—the BCET
is special in the sense that ExecRunsdiverg,endprog,Ci,Cycle is guaranteed to coincide with the empty set.
Thus, we can simplify the definition of the BCET in a way that no diverging execution run
prefixes are involved.

∀prog ∈ Programs : ∀Ci ∈ Cores :
BCETprog,Ci

= min
t∈ExecRunstermprog,Ci

numEvOccur(prog, Ci, t,Cycle) (6.32)

This implies that, for the calculation of a BCET bound as a special case, it is safe to only take
into account the terminated execution runs—even for programs that can diverge.

6.3. Event Bounds Based on Sequences of Abstract States

Section 5.2 introduced the approximation by sequences of abstract states. Moreover, it provided
formal evidence that this way of approximation soundly overapproximates the global concrete
traces of the system.

In this section, we use sequences of abstract states in order to soundly approximate the exact
event bounds for program runs presented in the previous section. Recall that (T̂races, γtrace) is
an abstract model of the set Traces of global concrete traces of the system. Now, we analogously
design ( ̂ExecRunsprog,Ci

, γtrace,prog,Ci
) as an abstract model of ExecRunsprog,Ci

.
To this end, first, we choose a set of initial abstract states of a program execution run per

combination of program and processor core. This set has to describe the initial system states of
any actual program execution run.

∀prog ∈ Programs : ∀Ci ∈ Cores :

̂InitStatesprog,Ci ⊆ Ŝ
(6.33)

∀prog ∈ Programs : ∀Ci ∈ Cores :⋃
ŝi∈ ̂InitStatesprog,Ci

γ(ŝi) ⊇ InitStatesprog,Ci
(6.34)

Next, we choose a set ̂Tracesprog,Ci
per program prog and core Ci.

∀prog ∈ Programs : ∀Ci ∈ Cores :

̂Tracesprog,Ci ⊆ ̂Sequences
(6.35)

These sets have to fulfill the following two criteria. Note that these criteria are analogous to
criteria (5.C1) and (5.C2). We just replaced T̂races by ̂Tracesprog,Ci

and Ŝinit by ̂InitStatesprog,Ci
.

Moreover, we added the universal quantifiers for all programs and all cores.

∀prog ∈ Programs : ∀Ci ∈ Cores :

∀ŝi ∈ ̂InitStatesprog,Ci
: ∃(t̂, û) ∈ ̂Tracesprog,Ci

: len((t̂, û)) = 0 ∧ t̂(0) = ŝi
(6.C1)
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∀prog ∈ Programs : ∀Ci ∈ Cores :

∀(t̂1, û1) ∈ ̂Tracesprog,Ci :

∀(û1(len((t̂1, û1))), ŝc) ∈ Ĉycle :

∃(t̂2, û2) ∈ ̂Tracesprog,Ci :

len((t̂2, û2)) = 1 + len((t̂1, û1)) ∧
(∀x ∈ N≤len((t̂1,û1))

: t̂2(x) = t̂1(x) ∧ û2(x) = û1(x)) ∧

t̂2(len((t̂2, û2))) = ŝc

(6.C2)

Based on ̂Tracesprog,Ci , we define the set ̂ExecRunsprog,Ci of abstract program execution run
prefixes of a particular program when executed on a particular processor core. However, we only
consider those members of ̂Tracesprog,Ci

for which a guaranteed program end event (must-event,
cf. equation (5.39)) does not occur before the last abstract cycle transition.

∀prog ∈ Programs : ∀Ci ∈ Cores :

̂ExecRunsprog,Ci
= {t̂ ∈ ̂Tracesprog,Ci

| ∀x ∈ N<len(t̂)−1 : ¬ ̂EndLBprog,Ci
(t̂, x)}

(6.36)

Note that these prefixes are by definition a subset of the general set ̂Sequences (cf. equa-
tion (5.18)) of abstract state sequences possible according to relation Ĉycle. Thus, the length of
a prefix as well as the shorthand to argue about the abstract events at a particular position of
a prefix are defined by equations (5.19), (5.36), and (5.37). Also note that we already use the
length and this shorthand in equation (6.36).
Next, we define the set Spuriousprog,Ci

, which contains the spurious constructs that are not
contained in ExecRunsprog,Ci

. Its definition is analog to the definition of Spurious (equation (5.24))
in Section 5.2. The only difference is that, this time, we replace Sinit by InitStatesprog,Ci

.

∀prog ∈ Programs : ∀Ci ∈ Cores :
Spuriousprog,Ci

= {(t, u) ∈ (N<n → S)× ((N≥1 ∩ N≤n)→ S)

| n ∈ N ∧ [∀x ∈ N<n : (t(x), u(x+ 1)) ∈ Cycle]
∧ [t(0) 6∈ InitStatesprog,Ci

∨ ∃x ∈ (N≥1 ∩ N<n) : t(x) 6= u(x)]}

(6.37)

Since Spuriousprog,Ci
is defined analogously to Spurious, the length of its members and the

shorthand to argue about the events at a particular position its members are also defined
analogously (cf. equations (5.25), (5.26), and (5.27)) and, thus, not explicitly defined here.
The number of occurrences of a particular event E during the execution of program prog on

core Ci within a member of Spuriousprog,Ci
is defined as follows.

∀prog ∈ Programs : ∀Ci ∈ Cores : ∀t ∈ Spuriousprog,Ci
: ∀E ∈ Events :

numEvOccur(prog, Ci, t, E) =
∣∣{x ∈ N<len(t) | Eventprog,Ci,E(t, x)}

∣∣ (6.38)

Finally, we define the mapping from members of ̂Tracesprog,Ci
to actual and spurious execution

run prefixes. Its definition is analog to the definition of γtrace (cf. equation (5.31)).

∀prog ∈ Programs : ∀Ci ∈ Cores :

γtrace,prog,Ci
∈ ( ̂Tracesprog,Ci

→ P(Sequences ∪ Spuriousprog,Ci
))

(6.39)
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∀prog ∈ Programs : ∀Ci ∈ Cores :

γtrace,prog,Ci
((t̂, û)) = {t ∈ Sequences | t(0) ∈ InitStatesprog,Ci

∧ len((t̂, û)) = len(t)

∧ ∀x ∈ N≤len(t) : t(x) ∈ γ(t̂(x))} ∪
{(t, u) ∈ Spuriousprog,Ci

| len((t̂, û)) = len((t, u))

∧ [∀x ∈ N<len(t) : t(x) ∈ γ(û(x))]
∧ ∀x ∈ (N≥1 ∩ N≤len(t)) : u(x) ∈ γ(t̂(x))}

(6.40)

It follows that ( ̂ExecRunsprog,Ci
, γtrace,prog,Ci

) is an abstract model of ExecRunsprog,Ci
as it

provides an overapproximation of this set. For a detailed proof of this statement, we refer to
page 277.

∀prog ∈ Programs : ∀Ci ∈ Cores :⋃
t̂∈ ̂ExecRunsprog,Ci

γtrace,prog,Ci
(t̂) ⊇ ExecRunsprog,Ci

(6.41)

The program properties from set Propprog,Ci
can be safely lifted to the sequences of abstract

states contained in ̂ExecRunsprog,Ci by applying the lifting rules presented in Section 5.2. Let P̂k
be the lifted version of program property Pk that is obtained by applying the aforementioned
lifting rules. We can safely use the lifted versions of the program properties in order to detect
infeasible members of ̂ExecRunsprog,Ci

.

∀prog ∈ Programs : ∀Ci ∈ Cores :

̂LessExecRunsprog,Ci
= {t̂ ∈ ̂ExecRunsprog,Ci

| ∀Pk ∈ Propprog,Ci
: P̂k(t̂)}

(6.42)

As a consequence, ( ̂LessExecRunsprog,Ci , γtrace,prog,Ci) is also an abstract model of the ac-
tual execution run prefixes. The proof of this statement is a slight extension of the proof of
statement (6.41). Thus, we only present a brief proof sketch on page 279.

∀prog ∈ Programs : ∀Ci ∈ Cores :⋃
t̂∈ ̂LessExecRunsprog,Ci

γtrace,prog,Ci(t̂) ⊇ ExecRunsprog,Ci
(6.43)

Analogously to numEvOccur, we can bound the number of occurrences of a particular event E
during the execution of program prog on core Ci within any member of ̂Sequences from above
(UB) and from below (LB).

∀prog ∈ Programs : ∀Ci ∈ Cores : ∀t̂ ∈ ̂Sequences : ∀E ∈ Events :
∀BD ∈ {UB,LB} :

̂numEvOccur(prog, Ci, t̂, E,BD) =

∣∣∣∣{x ∈ N<len(t̂) |
̂EventBDprog,Ci,E(t̂, x)}

∣∣∣∣
(6.44)

We use ̂numEvOccur to specify an upper bound ̂Maximumprog,Ci,E on the number of event
occurrences based on ̂LessExecRunsprog,Ci .

∀prog ∈ Programs : ∀Ci ∈ Cores : ∀E ∈ Events :

̂Maximumprog,Ci,E = max
t̂∈ ̂LessExecRunsprog,Ci

̂numEvOccur(prog, Ci, t̂, E,UB) (6.45)
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In case ̂Maximumprog,Ci,E has a defined value (i.e. ∈ N), this value is guaranteed to be an upper
bound on the possible numbers of event occurrences in any execution run of the actual system.
For a formal proof of this statement, we refer to page 279.

∀prog ∈ Programs : ∀Ci ∈ Cores : ∀E ∈ Events :

̂Maximumprog,Ci,E ∈ N⇒

∀t ∈ ExecRunsprog,Ci
: numEvOccur(prog, Ci, t, E) ≤ ̂Maximumprog,Ci,E

(6.46)

Next, we set up the machinery that is needed to specify a corresponding lower bound
̂Minimumprog,Ci,E on the number of event occurrences. Similarly to the specification of the

exact lower bound Minimumprog,Ci,E , this requires to define particular subsets of ̂ExecRunsprog,Ci .
First, we define a subset of ̂ExecRunsprog,Ci that describes all terminated program execution runs.

∀prog ∈ Programs : ∀Ci ∈ Cores :

̂ExecRunstermprog,Ci
= {t̂ ∈ ̂ExecRunsprog,Ci

| len(t̂) ≥ 1 ∧ ̂EndUBprog,Ci
(t̂, len(t̂)− 1)}

(6.47)

The (optionally strict) prefix relation between sequences of abstract states is defined analogously
to the corresponding relation between sequences of system states.

̂PrefixOf = {((t̂1, û1), (t̂2, û2)) ∈ ̂Sequences× ̂Sequences | len((t̂1, û1)) ≤ len((t̂2, û2))

∧ ∀x ∈ N≤len((t̂1,û1))
: t̂1(x) = t̂2(x) ∧ û1(x) = û2(x)}

(6.48)

̂StrictPrefixOf = {(t̂1, t̂2) ∈ ̂PrefixOf | len(t̂1) < len(t̂2)} (6.49)

In the following, we define a set of sequences of abstract states that overapproximates
ExecRunsdiverg,endprog,Ci,E

.

∀prog ∈ Programs : ∀Ci ∈ Cores : ∀E ∈ Events :

̂ExecRunsdiverg,endprog,Ci,E
= {t̂ ∈ ̂ExecRunsprog,Ci

|

[len(t̂) = 0 ∨ (len(t̂) > 0 ∧ ̂EventUBprog,Ci,E(t̂, len(t̂)− 1))] ∧

∀n ∈ N : ∃t̂′ ∈ ̂ExecRunsprog,Ci :

(t̂, t̂′) ∈ ̂PrefixOf ∧

len(t̂′) = len(t̂) + n ∧
∀x ∈ N≥len(t̂) ∩ N<len(t̂′) :

¬ ̂EventLBprog,Ci,E(t̂
′, x)}

(6.50)

Based on these ingredients, we define the following set of sequences of abstract states.

∀prog ∈ Programs : ∀Ci ∈ Cores : ∀E ∈ Events :

̂ExecRunsmin-relev
prog,Ci,E = ̂ExecRunstermprog,Ci

∪ ̂ExecRunsdiverg,endprog,Ci,E

(6.51)

It overapproximates the minimum-relevant execution run prefixes. For a formal proof of this
statement, we refer to page 280.

∀prog ∈ Programs : ∀Ci ∈ Cores :⋃
t̂∈ ̂ExecRunsmin-relev

prog,Ci,E

γtrace,prog,Ci
(t̂) ⊇ ExecRunsmin-relev

prog,Ci,E
(6.52)
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We can safely use lifted versions of the program properties from set Propprog,Ci
in order to

detect infeasible members of ̂ExecRunsmin-relev
prog,Ci,E .

∀prog ∈ Programs : ∀Ci ∈ Cores :

̂LessExecRunsmin-relev
prog,Ci,E = {t̂ ∈ ̂ExecRunsmin-relev

prog,Ci,E | ∀Pk ∈ Propprog,Ci
: P̂k(t̂)}

(6.53)

Thus, ̂LessExecRunsmin-relev
prog,Ci,E also overapproximates the minimum-relevant execution run pre-

fixes. The formal proof of this statement can be performed by a slight extension to the proof of
statement (6.52). Thus, we only sketch it on page 284.

∀prog ∈ Programs : ∀Ci ∈ Cores :⋃
t̂∈ ̂LessExecRunsmin-relev

prog,Ci,E

γtrace,prog,Ci
(t̂) ⊇ ExecRunsmin-relev

prog,Ci,E
(6.54)

Finally, we define ̂Minimumprog,Ci,E based on this set of sequences of abstract states.

∀prog ∈ Programs : ∀Ci ∈ Cores : ∀E ∈ Events :

̂Minimumprog,Ci,E = min
t̂∈ ̂LessExecRunsmin-relev

prog,Ci,E

̂numEvOccur(prog, Ci, t̂, E,LB) (6.55)

In case ̂Minimumprog,Ci,E has a defined value (i.e. ∈ N), this value is guaranteed to be a lower
bound on the possible numbers of event occurrences in any execution run of the actual system.
The formal proof of this statement is very similar to the proof of statement (6.46) on page 279
and, thus, omitted.

∀prog ∈ Programs : ∀Ci ∈ Cores : ∀E ∈ Events :

̂Minimumprog,Ci,E ∈ N⇒

∀t ∈ ExecRunsmin-relev
prog,Ci,E : numEvOccur(prog, Ci, t, E) ≥ ̂Minimumprog,Ci,E

(6.56)

6.4. Event Bounds Based on Paths through a Graph

In this section, we present a detailed graph representation of the results of a micro-architectural
analysis. Subsequently, we define a subsumption relation for graphs. It is defined in a way that
any graph subsuming the detailed graph can soundly be used for the calculation of event bounds.
Based on this, we specify a generic family of graphs that subsume the detailed graph. Last but
not least, we present soundness criteria for graph transformations.

Before we start with the actual content of this section, we introduce some notational conventions.
In Section 5.3, we only argue about a single graph. The current chapter, however, argues about
different graphs. In order to tell them apart, the constituents of each graph GA are annotated
with a corresponding superscript.

GA = (NodesA,NodesAstart,Nodes
A
end,Edges

A) (6.57)
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The relations between these constituents per graph shall be as defined in Section 5.3. The

corresponding sets ̂SubPathsA, ̂RelPathsA, and P̂athsA shall also be defined correspondingly.
Moreover, we need a prefix relation on the subpaths per graph GA. It shall be defined similar to
the prefix relations on sequences of abstract states and system states.

̂PrefixOfApath = {(p̂1, p̂2) ∈ ̂SubPathsA × ̂SubPathsA | len(p̂1) ≤ len(p̂2)

∧ ∀x ∈ N≤len(p̂1) : p̂1(x) = p̂2(x)}
(6.58)

̂StrictPrefixOfApath = {(p̂1, p̂2) ∈ ̂PrefixOfApath | len(p̂1) < len(p̂2)} (6.59)

In contrast to Section 5.3, now, we have different sets ̂Tracesprog,Ci
of sequences of abstract

states depending on the program prog and the core Ci. Thus, we have different functions to
map graph paths to sequences of abstract states per graph GA, program prog, and core Ci. The
definitions of these functions shall be analogous to the definition presented in Section 5.3.

γApath,prog,Ci
: ̂RelPathsA → P( ̂Tracesprog,Ci ∪ ̂SpuriousTracesprog,Ci

) (6.60)

Finally, note that—starting from this section—we omit the explicit universal quantifiers for
programs prog and processor cores Ci for the sake of a better readability. Thus, you can assume
all the following statements to implicitly hold for all programs and cores.

6.4.1. Control Flow and Control Flow Graphs
The control flow of an assembly-level program typically refers to the order in which the assembly
instructions of the program are executed during a program run. In the micro-architecture of
modern processors, however, there is typically more than one instruction processed at a time by
a processor core. In this subsection, we formally define the connection between a concrete trace
of a program’s execution and the corresponding control flow.
We define a control flow as a sequence of instruction memory addresses. It is modeled as a

finite, potentially empty list of instruction memory addresses.

InstrMemAddrList =
⋃
n∈N

(N<n → InstrMemAddr) (6.61)

The length of such a list is naturally given by its number of entries.

∀n ∈ N : ∀list ∈ InstrMemAddrList ∩ (N<n → InstrMemAddr) : len(list) = n (6.62)

Moreover, we define a few helper functions on the lists. Every non-empty list has an element
at its front position and an element at its back position.

∀list ∈
⋃

n∈N>0

(N<n → InstrMemAddr) : front(list) = list(0) (6.63)

∀list ∈
⋃

n∈N>0

(N<n → InstrMemAddr) : back(list) = list(len(list)− 1) (6.64)

We define a function popFront that creates a new list by removing the first element of an
existing non-empty list.

∀list ∈
⋃

n∈N>0

(N<n → InstrMemAddr) : len(popFront(list)) = len(list)− 1 (6.65)

∀list ∈
⋃

n∈N>0

(N<n → InstrMemAddr) : ∀x ∈ N<len(list)−1 :

popFront(list)(x) = list(x+ 1)

(6.66)
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In case we are only interested in whether a particular address is contained in a list, it is
convenient to transform the list to a set.

∀list ∈ InstrMemAddrList :
toSet(list) = {ins ∈ InstrMemAddr | ∃x ∈ N<len(list) : list(x) = ins}

(6.67)

We are able to create a new list by applying a filter criterion to an existing list.

filter : InstrMemAddrList× (InstrMemAddr→ {0, 1})→ InstrMemAddrList (6.68)

len(filter(list, crit)) =
∣∣{x ∈ N<len(list) | crit(list(x))}

∣∣ (6.69)

filter(list, crit)(x) = list(min{y ∈ N<len(list) |
∑
z∈N≤y

crit(list(z)) = x+ 1}) (6.70)

A list of these lists is defined analogously.

InstrMemAddrListList =
⋃
n∈N

(N<n → InstrMemAddrList) (6.71)

∀n ∈ N : ∀list ∈ InstrMemAddrListList ∩ (N<n → InstrMemAddrList) : len(list) = n (6.72)

We concatenate the members of a list of lists in the following way.

concat : InstrMemAddrListList→ InstrMemAddrList (6.73)

len(concat(list)) =
∑

x∈N<len(list)

len(list(x)) (6.74)

concat(list)(x) = list(y)(z)

with y = min{y′ ∈ N<len(list) |
∑

y′′∈N≤y′

len(list(y′′)) ≥ x+ 1}

and z = x+ 1−
∑

y′′∈N<y

len(list(y′′))

(6.75)

We extract the control flow of a particular processor core from a concrete trace by considering
which instructions retire in which order on the core. This results in the actual control flow as
instructions are typically retired in order (cf. Section 6.1) and misspeculated instruction executions
are not retired at all. However, due to performance-enhancing pipeline features as out-of-order
execution, it is possible that multiple instructions retire during the same cycle transition of the
system. Intuitively, this means that the execution of one instruction can be completely overlapped
by the execution of its predecessor instruction.

Our current event-based notion of retirement is not able to determine which instruction retires
earlier in the sense of control flow when multiple instructions retire during the same cycle
transition. Thus, we additionally provide a detailed order between multiple instructions that
retire during the same cycle transition. Note that the actual hardware also tracks this order as
it has to prohibit out-of-order retirement. The order is given by a function retiresCi

that maps
every cycle transition to a list of instruction memory addresses that retire in list order on core Ci
during the transition.

∀Ci ∈ Cores : retiresCi
∈ (Cycle→ InstrMemAddrList) (6.76)

It is compatible to the event view on retirement (i.e. it retires the same instruction memory
addresses per cycle transition).

∀Ci ∈ Cores : ∀(s1, s2) ∈ Cycle :
toSet(retiresCi

((s1, s2))) = {ins ∈ InstrMemAddr | (s1, s2) ∈ Retiresins,Ci
}

(6.77)
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With this machinery in place, we can extract the control flow of a processor core from a
sequence of system states. To this end, we map each cycle transition of the sequence to its list
of instructions retired on the core. If the last cycle transition of the sequence does not retire
any instructions, we assign it to the next instruction that will retire on the core. Finally, we
concatenate these lists in the order of their appearance in the sequence of system states in order
to obtain the control flow of the core corresponding to the sequence.

toContrFlowCi
: Sequences→ InstrMemAddrList (6.78)

toContrFlowCi(t) = concat(

λx ∈ N<len(t).

 retiresCi
((t(x), t(x+ 1))) , if x < len(t)− 1 ∨

len(retiresCi
((t(x), t(x+ 1)))) > 0

λy ∈ {0}.instrAddr(t(len(t)− 1)) , else

)

(6.79)

We can apply a filter to reduce the extracted control to only the instructions belonging to a
particular program prog.

toContrFlowprog,Ci
: Sequences→ InstrMemAddrList (6.80)

toContrFlowprog,Ci(t) = filter(toContrFlowCi(t), λins.ins ∈ allInstr(prog)) (6.81)

The set of all possible control flows of a particular program when executed on a particular
processor core is defined based on the execution run prefixes of the program on the core. This
relies on the assumption that only a single instance of each program may be active at a time per
processor core (cf. last paragraph of Section 6.1). Otherwise, this set might also contain control
flows that are only possible by multiple overlapping instances of the same program on the same
core.

ContrFlowsprog,Ci = {toContrFlowprog,Ci(t) | t ∈ ExecRunsprog,Ci} (6.82)

For the instructions of a program, there shall be a partitioning into basic blocks per core. Each
basic block is a sequence of instruction memory addresses.

BasicBlocksprog,Ci
∈ P(InstrMemAddrList) (6.83)⋃̇

bb∈BasicBlocksprog,Ci

toSet(bb) = allInstr(prog) (6.84)

Moreover, no basic block shall be empty or containing duplicates.

∀bb ∈ BasicBlocksprog,Ci
: len(bb) > 0 (6.85)

∀bb ∈ BasicBlocksprog,Ci
: len(bb) = |toSet(bb)| (6.86)

Whenever an instruction of a basic block appears at a particular position within a control flow
of program prog on core Ci, the neighboring positions in the flow shall also be occupied by the
corresponding other instructions in the basic block.

∀bb ∈ BasicBlocksprog,Ci
:

∀bbPos ∈ N<len(bb) :
∀flow ∈ ContrFlowsprog,Ci

:

∀flowPos ∈ {x ∈ N<len(flow) | flow(x) = bb(bbPos)} :
∀flowPos′ ∈ {x ∈ N<len(flow) | flowPos− bbPos ≤ x < flowPos− bbPos+ len(bb)} :
flow(flowPos′) = bb(flowPos′ − (flowPos− bbPos))

(6.87)
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Finally, each start instruction of the program shall occupy the front position of a basic block
and each end instruction shall occupy the back position of a basic block.

∀ins ∈ startInstr(prog) : ∃bb ∈ BasicBlocksprog,Ci : ins = front(bb) (6.88)
∀ins ∈ endInstr(prog) : ∃bb ∈ BasicBlocksprog,Ci

: ins = back(bb) (6.89)

A control flow graph (CFG) Gcfg,prog,Ci is a graph that uses such a set of basic blocks as nodes.

Nodescfg,prog,Ci = BasicBlocksprog,Ci (6.90)

Moreover, the edges and start nodes of Gcfg,prog,Ci are chosen in a way that its relaxed paths
safely overapproximate every control flow that program prog can produce on core Ci.

∀flow ∈ ContrFlowsprog,Ci
: ∃p̂ ∈ ̂RelPathscfg,prog,Ci :

len(flow) ≤ len(concat(p̂)) ∧
∀x ∈ N<len(flow) : flow(x) = concat(p̂)(x)

(6.91)

Control flow graphs are the typical program representation in most compilers1. The instructions
in a basic block are usually mapped to consecutive addresses in program memory. Moreover,
compilers typically make sure that at most the last instruction in a basic block can manipulate
the program counter.
Static WCET analysis is typically performed on a control flow graph of the program under

analysis [Thesing, 2004; Ballabriga et al., 2010; Puaut and Hardy, 2014]. In case the program
under analysis is only available in binary form, a control flow graph has to be reconstructed from
the binary file [Theiling, 2000; Kästner and Wilhelm, 2002]. The prototype implementation of
our analysis tool, in contrast, is integrated into the back-end of a compiler infrastructure [Jacobs
et al., 2015] and, thus, can reuse the control flow graph still available at the end of the compilation
process.

Next, we present a detailed graph representation of the results of a micro-architectural analysis
and map its nodes to the basic blocks of a control flow graph of the program under analysis.

6.4.2. A Detailed Graph Representation
Intuitively, a micro-architectural analysis is performed by propagating abstract states through the
basic blocks of a control flow graph of the program under analysis until a fixed point is reached.
It starts from a set of initial abstract states that safely overapproximates the possible system
states at program start.

In this section, we represent the fixed point of such a micro-architectural analysis as a detailed
graph Gdetail,prog,Ci at the granularity of cycle transitions. We mostly see this detailed graph as
a conceptual construction which is later used in the soundness argument for bound calculations
on more coarse graph representations. But in principle, such a detailed graph representation can
be constructed in a canonical way from the results of a micro-architectural analysis.

Every node of the detailed graph shall be mapped to an abstract state by the following function.

toState : Nodesdetail,prog,Ci → Ŝ (6.92)

For this detailed graph representation, we require two additional assumptions about the
transition system on abstract states with respect to the processor core Ci under analysis.

∀ŝ ∈ Ŝ : ∀s1, s2 ∈ γ(ŝ) : instrAddr(s1, Ci) = instrAddr(s2, Ci) (6.93)

∀(ŝ1, ŝ2) ∈ Ĉycle : ∀(s1, s2), (s′1, s′2) ∈ Cycle ∩ (γ(ŝ1)× γ(ŝ1)) :
retiresCi

((s1, s2)) = retiresCi
((s′1, s

′
2))

(6.94)

1https://gcc.gnu.org, http://llvm.org
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Intuitively, they mean that the abstract states exactly model the instructions in the pipeline
of the considered processor core [Thesing, 2004]. As a consequence, we can directly reuse the
functions instrAddr and retiresCi for abstract states respectively cycle transitions between them.

∀ŝ ∈ Ŝ : ∀s ∈ γ(ŝ) : instrAddr(s, Ci) = instrAddr(ŝ, Ci) (6.95)

∀(ŝ1, ŝ2) ∈ Ĉycle : ∀(s1, s2) ∈ Cycle ∩ (γ(ŝ1)× γ(ŝ1)) :
retiresCi((s1, s2)) = retiresCi((ŝ1, ŝ2))

(6.96)

We continue the specification of the detailed graph by splitting the nodes of the graph into two
disjoint partitions.

Nodesdetail,prog,Ci = T detail,prog,Ci ∪̇ Udetail,prog,Ci (6.97)

This is inspired by the sequences of abstract states, which consist of two components (t̂ and
û). Similarly to the principle depicted in Figure 5.1, an edge of the graph must not connect two
nodes of the same partition.

Edgesdetail,prog,Ci ⊆ (T detail,prog,Ci × Udetail,prog,Ci) ∪ (Udetail,prog,Ci × T detail,prog,Ci) (6.98)

In the same way, a node of partition U must be mapped to an abstract state that describes at
least all system states that the abstract states of its predecessor nodes describe. This corresponds
to a joining/widening operation. Thus, we refer to all edges from partition T to partition U as
joining/widening edges. If no actual joining/widening is applied at a joining/widening edge, its
target node is mapped to the same abstract states as its source node.

Edgesdetail,prog,Ci

jn/wdn = Edgesdetail,prog,Ci ∩ (T detail,prog,Ci × Udetail,prog,Ci) (6.99)

∀(nd1,nd2) ∈ Edgesdetail,prog,Ci

jn/wdn :

toState(nd1) v toState(nd2)
(6.100)

Moreover, no node in partition T shall have more than one successor node. Intuitively, it makes
no sense to apply multiple different joining/widening operations to the same originating abstract
state.

∀nd ∈ T detail,prog,Ci : |outEdges(nd1)| ≤ 1 (6.101)

In addition to an abstract state, each node of the graph is also mapped to a (potentially empty)
list of basic block end instructions of the considered program that retired on the considered core
during the most recent cycle transition. Intuitively, this mapping is later used to assign each
node to a particular basic block.

rtrdprog,Ci
: Nodesdetail,prog,Ci → InstrMemAddrList (6.102)

We obtain the set of basic block end instructions of a program on a particular core by selecting
the last instruction of each basic block.

BBEndInstrprog,Ci = {back(bb) | bb ∈ BasicBlocksprog,Ci} (6.103)

An edge from partition U to partition T is referred to as cycle transition edge if its source
node is mapped to an empty list of retired basic block end instructions. For a cycle transition
edge, we require that the abstract state of the target node is the result of a cycle transition of the
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abstract state of the source node. Moreover, the target node remembers the list of basic block
end instructions that retired during this cycle transition.

Edgesdetail,prog,Ci

cycl-trns = {(nd1,nd2) ∈ Edgesdetail,prog,Ci ∩ (Udetail,prog,Ci × T detail,prog,Ci) |
len(rtrdprog,Ci

(nd1)) = 0}
(6.104)

∀(nd1,nd2) ∈ Edgesdetail,prog,Ci

cycl-trns :

(toState(nd1), toState(nd2)) ∈ Ĉycle ∧
rtrdprog,Ci(nd2) = filter(retiresCi((toState(nd1), toState(nd2))),

λins.ins ∈ BBEndInstrprog,Ci)

(6.105)

For a joining/widening edge, we remove the first element from a non-empty list of retired
basic block end instructions. This corresponds to passing on the control from one basic block to
another.

∀(nd1,nd2) ∈ Edgesdetail,prog,Ci

jn/wdn :

[len(rtrdprog,Ci
(nd1)) = 0⇒ len(rtrdprog,Ci

(nd2)) = 0] ∧
[len(rtrdprog,Ci

(nd1)) > 0⇒ rtrdprog,Ci
(nd2) = popFront(rtrdprog,Ci

(nd1))]

(6.106)

Edges from partition U to partition T with the source node being mapped to a non-empty list
of retired basic block end instructions are referred to as zero cycle transition edges. They are not
covered by equation (6.105). They correspond to the rare special case that the execution of a
basic block is fully overlapped by the execution of one of its predecessor basic blocks. Intuitively,
the basic block at the front of the list of the source node has been executed within zero processor
cycles. Thus, the target node of a zero cycle transition edge is mapped to the same abstract state
and the same list of retired basic block end instructions as the source node.

Edgesdetail,prog,Ci

zero-cycl-trns = {(nd1,nd2) ∈ Edgesdetail,prog,Ci ∩ (Udetail,prog,Ci × T detail,prog,Ci) |
len(rtrdprog,Ci(nd1)) > 0}

(6.107)

∀(nd1,nd2) ∈ Edgesdetail,prog,Ci

zero-cycl-trns :

toState(nd2) = toState(nd1) ∧ rtrdprog,Ci(nd2) = rtrdprog,Ci(nd1)
(6.108)

Figure 6.1 shows a part of a detailed graph. For convenience, the graphical representation of a
node (nda to ndh) contains the abstract state and the list of retired basic block end instructions
assigned to the node. The figure shows the two possible cases for an edge from a node of partition
U ( ) to a node of partition T ( ). Either it is a cycle transition edge (cf. equation (6.104)).
In the figure, this is e.g. the case for the edges (nde,ndf ) and (ndg,ndh). Or it is a zero cycle
transition edge because the execution of a basic block (here bb2) is fully overlapped by the
execution of one of its predecessor basic blocks (cf. equation (6.107)). In the figure, this is the
case for the edge (ndb,ndc). All edges from a node of partition T ( ) to a node of partition U ( )
are joining/widening edges (cf. equation (6.99)). In the figure, this is e.g. the case for the edges
(nda,ndb), (ndd,nde), and (ndf ,ndg).

We say that a node of the detailed graph is an out-node of a particular basic block if the
corresponding end instruction is in front position of the node’s list of retired basic block end
instructions and all successor nodes have a shorter list of retired basic block end instructions.
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nda
ŝ1
[back(bb1), back(bb2)]

ndb
ŝ1
[back(bb2)]

ndc
ŝ1
[back(bb2)]

ndd
ŝ2
[back(bb1)]

nde
ŝ3
[]

ndf
ŝ4
[]

ndg
ŝ4
[]

ndh
ŝ5
[back(bb2)]

Legend:
node of partition T
node of partition U
cycle transition edge
(cf. equation (6.104))
zero cycle transition edge
(cf. equation (6.107))
joining/widening edge
(cf. equation (6.99))

bb1

bb2

Figure 6.1.: A part of a detailed graph.

Intuitively, this means that the control was passed on from the basic block in question to one of
its successors. In the example of Figure 6.1, nodes nda and ndd are out-nodes of basic block bb1.

∀bb ∈ BasicBlocksprog,Ci
:

Nodesdetail,prog,Ci

bb,out = {nd ∈ Nodesdetail,prog,Ci |
[∀nd′ ∈ succ(nd) : len(rtrdprog,Ci(nd)) > len(rtrdprog,Ci(nd

′))] ∧
front(rtrdprog,Ci(nd)) = back(bb)}

(6.109)

Based on this, each non-start node of the detailed graph is mapped to a basic block in such a
way that it can reach one of the basic block’s out nodes without traversing another out node of a
(potentially different) basic block. Intuitively, this provides a partitioning of the non-start nodes
of the detailed graph. In Figure 6.1, we represent this mapping by the dotted boxes corresponding
to the basic blocks.

∀bb ∈ BasicBlocksprog,Ci
:

Nodesdetail,prog,Ci

bb = {nd ∈ Nodesdetail,prog,Ci \Nodesdetail,prog,Ci
start |

∃p̂ ∈ ̂SubPathsdetail,prog,Ci :

p̂(0) = nd ∧ p̂(len(p̂)) ∈ Nodesdetail,prog,Ci

bb,out ∧
∀x ∈ N<len(p̂) : ¬∃bb′ ∈ BasicBlocksprog,Ci :

p̂(x) ∈ Nodesdetail,prog,Ci

bb′,out }

(6.110)
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An in-node of a basic block is one of its nodes that has a predecessor which either is a start
node of the graph or an out-node of a (potentially different) basic block.

∀bb ∈ BasicBlocksprog,Ci :

Nodesdetail,prog,Ci

bb,in = {nd ∈ Nodesdetail,prog,Ci

bb | ∃nd′ ∈ pred(nd) :

nd′ ∈ Nodesdetail,prog,Ci
start ∨

∃bb′ ∈ BasicBlocksprog,Ci
:

nd′ ∈ Nodesdetail,prog,Ci

bb′,out }

(6.111)

Intuitively, the in-nodes of all basic blocks form the actual fixed point of the micro-architectural
analysis. The remaining nodes of the basic blocks are obtained by once more propagating the
in-nodes through their respective basic blocks (as already done during the fixed point iteration).
Additionally, the following assumptions shall hold for the start nodes of the detailed graph.

∀nd ∈ Nodesdetail,prog,Ci
start : len(rtrdprog,Ci

(nd)) = 0 (6.112)

Nodesdetail,prog,Ci
start ⊆ T detail,prog,Ci (6.113)

This implies that all in-nodes of the basic blocks belong to partition U and all out-nodes of
the basic blocks and the start nodes of the graph belong to partition T . Consequently, all edges
from start nodes of the graph or out-nodes of a basic block to in-nodes of a basic block are
joining/widening edges. As a result, each (optionally zero) cycle transition edge can be mapped to
the unique basic block that is assigned to its source and target node. Note that these observations
can also be made for the small part of a detailed graph shown in Figure 6.1.

As the graph is the result of a fixed point iteration starting from the start nodes of the graph, it
additionally fulfills the following four criteria. The first criterion states that each initial abstract
state of the program is assigned to a start node of the detailed graph. Intuitively, this means
that every initial abstract state of the program is considered during the fixed point iteration.

∀ŝi ∈ ̂InitStatesprog,Ci
: ∃nd ∈ Nodesdetail,prog,Ci

start : ŝi = toState(nd) (6.C3)

The second criterion states that any node in partition U that is a starting point for cycle
transition edges (cf. equation (6.104)) must have a set of successor nodes that soundly covers all
abstract states that can result from a cycle transition of the own abstract state. Intuitively, this
means that no result of a cycle transition on abstract states is ever forgotten during the fixed
point iteration.

∀nd ∈ Udetail,prog,Ci :

len(rtrdprog,Ci
(nd)) = 0⇒

[∀ŝ′ ∈ Ŝ :

(toState(nd), ŝ′) ∈ Ĉycle⇒
∃nd′ ∈ succ(nd) : ŝ′ = toState(nd′)]

(6.C4)

The third criterion states that any node in partition U that is a starting point for zero cycle
transition edges (cf. equation (6.107)) also has a successor node. If the execution of a basic block
was fully overlapped by the execution of one of its predecessor basic blocks it is important to
still pipe the corresponding abstract state through the basic block with a zero cycle transition
edge in order to make sure that it is considered in an in-node of one of the successor basic blocks.
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Intuitively, this guarantees that we do not lose any abstract states during the fixed point iteration
due to a basic block being fully overlapped by one of its predecessor basic blocks.

∀nd ∈ Udetail,prog,Ci :

len(rtrdprog,Ci
(nd)) > 0⇒

|succ(nd)| = 1

(6.C5)

The fourth criterion states that any node in partition T that has no program end instruction
at the front of its retired basic block end instructions list must have a successor node (i.e. an
outgoing joining/widening edge, cf. equation (6.99)). Intuitively, this means that the successors
of any initial abstract state of the program and any result of an abstract cycle transition must be
considered during the fixed point iteration. However, if a node has only incoming cycle transition
edges that terminated the program it is not required to further follow its successors.

∀nd ∈ T detail,prog,Ci :

[len(rtrdprog,Ci
(nd)) = 0 ∨ front(rtrdprog,Ci

(nd)) 6∈ endInstr(prog)]⇒
|succ(nd)| > 0

(6.C6)

The end nodes of the detailed graph are defined as those nodes of partition T that have a
program end instruction at the front of their retired basic block end instructions list.

Nodesdetail,prog,Ci

end = {nd ∈ T detail,prog,Ci | len(rtrdprog,Ci
(nd)) > 0 ∧

front(rtrdprog,Ci
(nd)) ∈ endInstr(prog)}

(6.114)

It follows from our assumptions that each end node is an out-node of a basic block.

Nodesdetail,prog,Ci

end ⊆
⋃

bb∈BasicBlocksprog,Ci

Nodesdetail,prog,Ci

bb,out (6.115)

For cycle transition edges, the event bounding edge weights are identical to the corresponding
event bounds of the underlying cycle transitions.

∀(nd1,nd2) ∈ Edgesdetail,prog,Ci

cycl-trns : ∀E ∈ Events : ∀BD ∈ {UB,LB}

ŵEBD((nd1,nd2)) =
∣∣∣{(toState(nd1), toState(nd2))} ∩ ÊBD

∣∣∣ (6.116)

For all other edges, the event bounding edge weights are zero.

∀edg ∈ (Edgesdetail,prog,Ci \ Edgesdetail,prog,Ci

cycl-trns ) : ∀E ∈ Events : ∀BD ∈ {UB,LB}

ŵEBD(edg) = 0
(6.117)

It follows from the specification of the detailed graph that its set of relaxed paths provides
an overapproximation of ̂ExecRunsprog,Ci and its set of paths provides an overapproximation of

̂ExecRunstermprog,Ci
. For a formal proof of both statements, we refer to page 284.⋃

p̂∈ ̂RelPathsdetail,prog,Ci

γdetail,prog,Ci

path,prog,Ci
(p̂) ⊇ ̂ExecRunsprog,Ci (6.118)

⋃
p̂∈ ̂Pathsdetail,prog,Ci

γdetail,prog,Ci

path,prog,Ci
(p̂) ⊇ ̂ExecRunstermprog,Ci

(6.119)
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Intuitively, this means that it is safe to calculate event bounds based on the detailed graph.
Matthies exploits this in his diploma thesis [Matthies, 2006] in order to calculate event bounds
by applying efficient longest path algorithms to a detailed graph. Infeasible paths in the graph
can safely be detected by applying system properties that have been lifted to paths through a
graph (cf. Section 5.3). It is, however, unclear how to incorporate the lifted versions of cumulative
system properties (as e.g. cache persistence properties) into the longest path algorithms without
losing their efficiency. The work by Matthies [Matthies, 2006] is limited to loop bounding system
properties. Thus, later approaches [Stein, 2010; Cullmann, 2013] resort to an implicit path
enumeration (cf. Section 5.4) via ILP as it offers a greater flexibility by being able to encode
lifted versions of cumulative system properties as sets of integer linear constraints.
Note that the detailed graph is constructed at cycle granularity (i.e. each edge corresponds

to at most one cycle transition on abstract states). Thus, it is intuitively possible to safely use
properties lifted to sequences of abstract states in order to detect infeasible paths. The properties
lifted to sequences of abstract states might be less pessimistic than the versions that are further
lifted to paths through a graph. In this thesis, however, we do not use system properties lifted to
sequences of abstract states in order to prune infeasible paths of the detailed graph. Nonetheless,
we provide a formal soundness proof for this approach on page 287.

In our prototype implementation, we do not explicitly construct the detailed graph represen-
tation. It is only implicitly given by the results of a micro-architectural analysis. Instead, we
directly construct less fine-grained graphs (i.e. not at cycle granularity, cf. Section 6.4.4) from the
results of a micro-architectural analysis. As long as these graphs subsume the detailed graph, they
can be safely used to calculate event bounds. The following subsection defines the corresponding
subsumption relation between graphs and points out its implications for the calculation of event
bounds.

6.4.3. Calculating Safe Event Bounds on a Graph

In this subsection, we present the calculation of safe event bounds on any graph that subsumes
the detailed graph. Intuitively, a graph subsumes the detailed graph if it describes at least all
sequences of abstract states described by the detailed graph. The formal definition of graph
subsumption, however, is a bit more sophisticated.

We formally define the graph subsumption relation between two (potentially but not necessarily
different) graphs GA and GB . To this end, we first define what subsumption between subpaths
means. For this definition, we reuse the formal concept of partitionings as introduced in Section 5.3.
A subpath p̂B subsumes a subpath p̂A (p̂B �path p̂A) if there is a partitioning of the edges along
p̂A such that every partition is safely bounded by an edge of p̂B. This principle is very similar
to the description relation between subpaths of a graph and sequences of abstract states (cf.
equation (5.69)).

∀p̂A ∈ ̂SubPathsA : ∀p̂B ∈ ̂SubPathsB :

p̂B �path p̂A
⇔ ∃part ∈ Partitionings(len(p̂B), len(p̂A)) :

∀E ∈ Events :
∀x ∈ N<len(p̂B) :∑

from(part,x)≤i≤to(part,x)

ŵEUB(p̂A, i) ≤ ŵEUB(p̂B , x) ∧

∑
from(part,x)≤i≤to(part,x)

ŵELB(p̂A, i) ≥ ŵELB(p̂B , x)

(6.120)
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As a consequence of p̂B subsuming p̂A, p̂B describes all the sequences of abstract states that
p̂A describes. For a formal proof of this statement, we refer to page 288.

p̂B �path p̂A ⇒ γBpath,prog,Ci
(p̂B) ⊇ γApath,prog,Ci

(p̂A) (6.121)

We say that a graph GB subsumes a (potentially but not necessarily different) graph GA

(GB � GA) if the following four criteria are fulfilled. The first criterion states that every path
through GA has to be subsumed by a path through GB .

∀p̂A ∈ P̂athsA : ∃p̂B ∈ P̂athsB : p̂B �path p̂A (6.C7)

For the remaining three criteria, we require that there exists a relation `path between the relaxed
paths of GB and GA such that all three criteria hold. The statement p̂B `path p̂A intuitively
means that p̂B represents p̂A.

∃ `path⊆ ̂RelPathsB × ̂RelPathsA : (6.C8) ∧ (6.C9) ∧ (6.C10) (6.122)

The second criterion states that a relaxed path of graph GB shall only represent a relaxed path
of graph GA if it also subsumes it.

∀p̂A ∈ ̂RelPathsA : ∀p̂B ∈ ̂RelPathsB : p̂B `path p̂A ⇒ p̂B �path p̂A (6.C8)

The third criterion states that any relaxed path of graph GA with a length of zero shall be
represented by a relaxed path of graph GB with a length of zero.

∀p̂A ∈ ̂RelPathsA :

len(p̂A) = 0⇒

∃p̂B ∈ ̂RelPathsB : len(p̂B) = 0 ∧ p̂B `path p̂A

(6.C9)

The fourth and final criterion states that there shall be a natural number n such that for every
relaxed path p̂A of GA that is represented by a relaxed path p̂B of GB and for every possible
extension p̂A

′ of p̂A by at least n nodes, there shall be another strict extension of p̂A that is also
a prefix of p̂A

′ and represented by a strict extension of p̂B .

∃n ∈ N :

∀p̂A, p̂A′ ∈ ̂RelPathsA : ∀p̂B ∈ ̂RelPathsB :

p̂B `path p̂A ∧ (p̂A, p̂A
′
) ∈ ̂PrefixOfApath ∧ len(p̂A

′
) ≥ len(p̂A) + n⇒

∃p̂extA ∈
̂RelPathsA : ∃p̂extB ∈

̂RelPathsB :

(p̂A, p̂extA ) ∈ ̂StrictPrefixOfApath ∧

(p̂extA , p̂A
′
) ∈ ̂PrefixOfApath∧

(p̂B , p̂extB ) ∈ ̂StrictPrefixOfBpath∧

p̂extB `path p̂extA

(6.C10)

A feedback node set [Karp, 1972] of a graph is a subset of its nodes that is chosen in a way that
each cycle of the graph contains at least one node of the subset. Let FeedbackB denote a valid
choice of feedback nodes for graph GB . Note that, in contrast to the classical feedback node set
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problem considered by Karp, we do not require the feedback node set to be minimal or to at most
contain a given number of nodes. For our approach, any valid set of feedback nodes will work.

FeedbackB ⊆ NodesB (6.123)

∀p̂ ∈ ̂SubPathsB :

[∃x1, x2 ∈ N≤len(p̂) : x1 6= x2 ∧ p̂(x1) = p̂(x2)]⇒
∃x ∈ N≤len(p̂) : p̂(x) ∈ FeedbackB

(6.124)

The set ̂FeedPathsB contains the relaxed paths of graph GB that end in an end node of the
graph or in a member of FeedbackB .

̂FeedPathsB = {p̂ ∈ ̂RelPathsB | p̂(len(p̂)) ∈ NodesBend ∪ FeedbackB} (6.125)

̂LessFeedPathsBprog,Ci
denotes the subset of these relaxed paths for which the program properties

in Propprog,Ci
lifted to paths through a graph hold.

̂LessFeedPathsBprog,Ci
= {p̂ ∈ ̂FeedPathsB | ∀Pk ∈ Propprog,Ci

: P̂ path
k (p̂)} (6.126)

Based on ̂LessFeedPathsBprog,Ci
, we specify upper and lower event bounds.

∀E ∈ Events :

̂MaximumB,path
prog,Ci,E

= max
p̂∈ ̂LessFeedPathsBprog,Ci

∑
x∈N<len(p̂)

̂wEventUBprog,Ci,E(p̂, x)
(6.127)

∀E ∈ Events :

̂MinimumB,path
prog,Ci,E

= min
p̂∈ ̂LessFeedPathsBprog,Ci

∑
x∈N<len(p̂)

̂wEventLBprog,Ci,E(p̂, x)
(6.128)

If graph GB subsumes the detailed graph and one of the event bounds based on it has a defined
value, this value is guaranteed to safely bound the actual number of event occurrences of the
concrete system. This is formally expressed by the two following statements. For a formal proof
of these soundness statements, we refer to page 289.

∀E ∈ Events :

[GB � Gdetail,prog,Ci ∧ ̂MaximumB,path
prog,Ci,E

∈ N]⇒

∀t ∈ ExecRunsprog,Ci
: numEvOccur(prog, Ci, t, E) ≤ ̂MaximumB,path

prog,Ci,E

(6.129)

∀E ∈ Events :

[GB � Gdetail,prog,Ci ∧ ̂MinimumB,path
prog,Ci,E

∈ N]⇒

∀t ∈ ExecRunsmin-relev
prog,Ci,E : numEvOccur(prog, Ci, t, E) ≥ ̂MinimumB,path

prog,Ci,E

(6.130)

We only consider graphs GB that contain a finite number of nodes.

∃n ∈ N :
∣∣∣NodesB∣∣∣ = n (6.131)
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Thus, the value of ̂MinimumB,path
prog,Ci,E

is always defined for a program prog that is actually

executed on core Ci (i.e. ExecRunsprog,Ci 6= ∅). The value of ̂MaximumB,path
prog,Ci,E

, in contrast, can
be undefined if the number of occurrences of event E cannot be upper-bounded at all or if graph
GB and the lifted versions of the properties in Propprog,Ci

are not sufficient to prove an upper
bound.

In addition to the terminated program execution runs, the exact lower boundsMinimumprog,Ci,E

only argue about those diverging execution run prefixes that might be continued indefinitely
without producing another event E (cf. ExecRunsmin-relev

prog,Ci,E as defined in equation (6.29)). Thus,

the lower bounds ̂MinimumB,path
prog,Ci,E

might be overly pessimistic in some cases as FeedbackB might
also contain some feedback nodes that only belong to cycles cyc in the graph that are guaranteed

to produce further events E (i.e. {edg ∈ cyc | ̂wEventLBprog,Ci,E(edg) > 0} 6= ∅).

To overcome this problem, we specify a variant ̂MinimumB,path′
prog,Ci,E

of a lower event bound on
the graph GB . It makes use of a more particular set FeedbackBE of feedback nodes, which is needed
per event E for which a potentially more precise lower event bound is desired. FeedbackBE only
has to contain one node per cycle of graph GB that does not guarantee any further events E.

∀E ∈ Events : FeedbackBE ⊆ NodesB (6.132)

∀E ∈ Events : ∀p̂ ∈ ̂SubPathsB :

[(∀x ∈ N<len(p̂) : ̂wEventLBprog,Ci,E(p̂, x) = 0) ∧
(∃x1, x2 ∈ N≤len(p̂) : x1 6= x2 ∧ p̂(x1) = p̂(x2))]⇒
∃x ∈ N≤len(p̂) : p̂(x) ∈ FeedbackBE

(6.133)

The specification of ̂MinimumB,path′
prog,Ci,E

is analogous to the specification of ̂MinimumB,path
prog,Ci,E

.
Thus, we only present the corresponding formulae without further explanation.

∀E ∈ Events :

̂FeedPathsBE = {p̂ ∈ ̂RelPathsB | p̂(len(p̂)) ∈ NodesBend ∪ FeedbackBE}
(6.134)

∀E ∈ Events :

̂LessFeedPathsBprog,Ci,E = {p̂ ∈ ̂FeedPathsBE | ∀Pk ∈ Propprog,Ci
: P̂ path

k (p̂)}
(6.135)

∀E ∈ Events :

̂MinimumB,path′
prog,Ci,E

= min
p̂∈ ̂LessFeedPathsBprog,Ci,E

∑
x∈N<len(p̂)

̂wEventLBprog,Ci,E(p̂, x)
(6.136)

̂MinimumB,path′
prog,Ci,E

provides the same soundness guarantee as ̂MinimumB,path
prog,Ci,E

. For a formal
proof of this soundness statement, we refer to page 297.

∀E ∈ Events :

[GB � Gdetail,prog,Ci ∧ ̂MinimumB,path′
prog,Ci,E

∈ N]⇒

∀t ∈ ExecRunsmin-relev
prog,Ci,E : numEvOccur(prog, Ci, t, E) ≥ ̂MinimumB,path′

prog,Ci,E

(6.137)

In contrast to ̂MinimumB,path
prog,Ci,E

, the value of ̂MinimumB,path′
prog,Ci,E

might be undefined even for a
program prog that is actually executed on core Ci (i.e. ExecRunsprog,Ci

6= ∅). This means that it
is guaranteed that the program diverges and that it never stops producing occurrences of the
event E under any circumstance.
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The downside of the potentially increased precision of ̂MinimumB,path′
prog,Ci,E

is that the correspond-
ing set of feedback nodes of the graph has to be determined independently per event E for which
a lower event bound is desired. Note that it is not possible to further improve the precision of
the upper event bounds in a similar way.
The respective feedback nodes that the relaxed paths considered in this subsection might

additionally end in can also be seen as additional nodes that we insert into the set of end nodes
of a graph. In this way, we consider again all paths from the start nodes to the end nodes of a
graph and, as a consequence, can directly apply implicit path enumeration. Thus, intuitively,
this chapter demonstrates that—in general—a set of feedback nodes of the graph added to the
end nodes of the graph is sufficient in order to calculate sound event bounds based on all paths
through the graph. In Section 6.4.7, we argue that this consideration of the feedback nodes is not
necessary in case the program under analysis is guaranteed to terminate.
Criteria (6.C7), (6.C8), (6.C9), and (6.C10) imply that the graph subsumption relation is

reflexive (i.e. every graph subsumes itself). Thus, in particular, the detailed graph subsumes itself.
In this subsection, we have shown that any graph subsuming the detailed graph can safely be used
for the calculation of event bounds. As a consequence, the technique presented in this subsection
(i.e. adding the feedback nodes to the graph’s set of end nodes and subsequently calculating the
event bounds) can—in principle—also be directly applied to the detailed graph.

In order to make the analysis tractable (in terms of analysis runtime and memory consumption),
however, it is common to consider graphs that are less fine-grained than the detailed graph. Thus,
the next subsection presents more coarse graphs which subsume the detailed graph.

6.4.4. Graphs at the Granularity of Basic Blocks

The detailed graph is constructed at cycle granularity. This means that no edge describes
a sequence of more than one abstract cycles transition. In this subsection, we present the
construction of graphs at basic-block granularity based on the detailed graph. Basic-block
granularity means that no edge argues about more than one basic block execution. The resulting
graphs are typically significantly more coarse than the detailed graph. Our construction implies
that the resulting graphs subsume the detailed graph. Thus, each resulting graph is suitable for a
calculation of event bounds based on the feedback node set approach as presented in Section 6.4.3.
Note that the graph construction presented in this section is only conceptually based on the

detailed graph representation. Thus, the detailed graph does not have to be explicitly constructed.
For an implementation of the presented graph construction, it is sufficient if the detailed graph is
implicitly given in the form of the results of the micro-architectural analysis. Nonetheless, for a
concise description, we specify the graph construction based on the helper machinery introduced
while defining the detailed graph representation (cf. Section 6.4.2).

An edge of a graph at basic-block granularity typically subsumes multiple subpaths within
a basic block of the detailed graph. In order to argue about this in a concise way, we formally
define the sets of subpaths within each basic block of the detailed graph. A subpath of the detailed
graph is considered to be within a particular basic block if all nodes on the subpath belong to
the basic block and at most the last node on the subpath is an out-node of the basic block.

∀bb ∈ BasicBlocksprog,Ci :

̂SubPathsdetail,prog,Ci

bb = {p̂ ∈ ̂SubPathsdetail,prog,Ci |

[∀x ∈ N≤len(p̂) : p̂(x) ∈ Nodesdetail,prog,Ci

bb ] ∧

[∀x ∈ N<len(p̂) : p̂(x) 6∈ Nodesdetail,prog,Ci

bb,out ]}

(6.138)
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Figure 6.2.: Detailed graph of a simple example program. The edge weights upper-bound the
number of processor cycles and lower-bound the number of cycles blocked at
the shared bus.

Before beginning the construction of graphs at basic-block granularity, we state two assumptions
about the detailed graph. First, the detailed graph is assumed to be of finite size.

∃n ∈ N :
∣∣∣Nodesdetail,prog,Ci

∣∣∣ = n (6.139)

Additionally, we assume that there are no subpaths of unbounded length within any basic block
of the detailed graph.

∀bb ∈ BasicBlocksprog,Ci
:

∃n ∈ N :

∀p̂ ∈ ̂SubPathsdetail,prog,Ci

bb : len(p̂) ≤ n

(6.140)

Note that, in particular, the second assumption does not necessarily hold for systems with an
unfair bus arbitration policy (e.g. priority-based bus arbitration). We refer to the implementation
part of this thesis for a discussion on how to also support such systems (cf. Section 9.2).
Figure 6.2 depicts the detailed graph of a simple example program. We use it as a running

example throughout this subsection in order to explain the principles of our construction of
graphs at basic-block granularity. For simplicity, the example program only consists of two basic
blocks. For the same reason, we also omitted the start nodes of the detailed graph as well as
joining/widening edges (cf. Section 6.4.2) within the basic blocks.

We consider the example of Figure 6.2 in the context of WCET analysis. Thus, we would like
to obtain an upper bound on the overall number of processor cycles it takes to execute basic
block bb1 followed by basic block bb2. This bound is referred to as WCET bound in the following.
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Figure 6.3.: Three graphs at basic-block granularity. Each subsumes the detailed graph of
Figure 6.2. Their degrees of detail differ significantly.

Note that every edge of the graph is annotated with an upper bound on the number of processor

cycles ( ̂wCycleUB, colored in blue). Finding a WCET bound corresponds to finding a path from
an in-node of basic block bb1 (i.e. node a or i) to an out-node of basic block bb2 (i.e. node h or o)
such that the sum over the blue numbers along the path is maximized. In this way, we obtain a
WCET bound of six processor cycles.

Moreover, the edges of the graph are annotated with lower bounds on the numbers of cycles

blocked at the shared bus ( ̂wBlockedLB, colored in red). Note that the path from node a to node
h which dominates the WCET bound only argues about concrete traces which are blocked for at
least two cycles at the shared bus. If we additionally know that the concrete system cannot suffer
from blocked cycles at the shared bus (e.g. because the concurrent processor cores do not access
the shared bus), we can safely exclude all paths which guarantee a positive number of blocked
cycles. Thus, assuming the absence of bus blocking, we obtain a WCET bound of three processor
cycles.

Figure 6.3 presents three graphs at basic block granularity. Each of them subsumes the detailed
graph of Figure 6.2. The degrees of detail of the three graphs differ significantly.
The most simple version (Figure 6.3a) of a graph at basic block granularity represents each

basic block by one edge. Node ai of this graph represents the in-nodes a and i of bb1 in the
detailed graph. In the same way, node ek of this graph represents the out-nodes e and k of bb1 in
the detailed graph. The weights of the edge between nodes ai and ek are chosen in a way that it
subsumes each path from an in-node to an out-node of bb1 in the detailed graph. Thus, this edge
describes every possible sub sequence of a concrete trace corresponding to the execution of basic
block bb1. The same principle holds for basic block bb2 and the edge between nodes fl and ho.

The principle of representing every basic block by a single edge has been widely used in WCET
analysis [Li and Malik, 1995; Engblom and Ermedahl, 2000]. However, it can lead to a significant
loss of precision. For our simple example, it leads to a WCET bound of seven processor cycles
(instead of six obtained by the detailed graph). Moreover, assuming the absence of bus blocking
does not allow us to further reduce the WCET bound.
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The detailed graph is aware that the worst cases of both basic blocks (four cycles for bb1 and
three cycles for bb2) can never happen within the same concrete trace. The graph in Figure 6.3a,
in contrast, has only a single pair of in-node and out-node per basic block. Thus, it pessimistically
assumes that the worst cases of both basic blocks can happen within the same concrete trace,
which leads to an increased WCET bound. We can overcome this problem by distinguishing the
in- and out-nodes of the basic blocks in the same way as in the detailed graph. Thus, we end up
in one edge per connected pair of in- and out-node per basic block. This principle is referred to as
full node-sensitivity at basic block boundaries. The corresponding graph is depicted in Figure 6.3b.
It results in a WCET bound of six processor cycles, which is as precise as in the detailed graph.
However, this graph still cannot provide an improved WCET bound by assuming the absence of
bus blocking.

We can effectively use the knowledge about the absence of bus blocking to improve the WCET
bound if each possible amount of blocked cycles within a basic block is represented by its own edge.
This principle is referred to as full edge-weight-sensitivity of the blocked cycles. A corresponding
graph is depicted in Figure 6.3c. Assuming the absence of bus blocking, it results in a WCET
bound of four processor cycles. The additional dummy nodes in Figure 6.3c (i.e. those that are
not labeled) are needed because our graph formalism does not allow multiple directed edges with
the same source node and target node.

Note that the principles presented in Figure 6.3b and Figure 6.3c can also be combined. For our
simple example, this would result in WCET bounds as precise as those obtained by the detailed
graph. Due to the simplicity of our example, however, the resulting graph would not be much
smaller than the detailed graph. For larger detailed graphs, the combination of both principles
typically still leads to a significant reduction in graph size compared to the detailed graph.

Further note that the principles presented in Figure 6.3b and Figure 6.3c are only the extreme
cases of two orthogonal axes of sensitivity in the construction of graphs at basic-block granularity.
Figure 6.3a combines the opposite extreme cases of these axes: node-insensitivity at basic block
boundaries and edge-weight-insensitivity of the blocked cycles. In the following, we formally
define these two axes of sensitivity, together with a third one.

Node-Sensitivity at Basic Block Boundaries We formalize a particular node-sensitivity at
basic block boundaries as a set of subsets of the nodes of the detailed graph. This set of subsets
has to be chosen in a way that it covers the in-nodes and out-nodes of all basic blocks as well
as the start nodes of the detailed graph. This is reflected in the following definition of the set
NodeSensdetail,prog,Ci

bndr of all possible node-sensitivities at basic block boundaries.

NodeSensdetail,prog,Ci

bndr = {Subsets ⊆ P(Nodesdetail,prog,Ci) |⋃
Subsets ⊇

⋃
bb∈BasicBlocksprog,Ci

Nodesdetail,prog,Ci

bb,in ∧

⋃
Subsets ⊇

⋃
bb∈BasicBlocksprog,Ci

Nodesdetail,prog,Ci

bb,out ∧

⋃
Subsets ⊇ Nodesdetail,prog,Ci

start }

(6.141)

The node sensitivity nodeSensbndr ∈ NodeSensdetail,prog,Ci

bndr specifies which in-nodes (out-nodes)
of a basic block of the detailed graph are represented by a common in-node (out-node) of that
basic block in the constructed graph Gconstr. During the construction of Gconstr, each non-
empty intersection of a member of nodeSensbndr with the set of in-nodes (out-nodes) of a basic
block of the detailed graph corresponds to an in-node (out-node) of that basic block in Gconstr.
Analogously, each non-empty intersection of a member of nodeSensbndr with the set of start nodes
of the detailed graph corresponds to a start node of Gconstr. This principle is demonstrated by
Algorithm 6.1.
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Algorithm 6.1 : Determination of in-, out-, and start nodes of the constructed graph

Data : nodeSensbndr ∈ NodeSensdetail,prog,Ci

bndr , constituents of Gdetail,prog,Ci

Result : in-, out-, and start nodes of Gconstr

begin
for bb ∈ BasicBlocksprog,Ci

do
Nodesconstrbb,in ←− ∅
for subset ∈ nodeSensbndr do

temp←− subset ∩Nodesdetail,prog,Ci

bb,in
if temp 6= ∅ then

Nodesconstrbb,in ←− Nodesconstrbb,in ∪ {temp}

Nodesconstrbb,out ←− ∅
for subset ∈ nodeSensbndr do

temp←− subset ∩Nodesdetail,prog,Ci

bb,out
if temp 6= ∅ then

Nodesconstrbb,out ←− Nodesconstrbb,out ∪ {temp}

Nodesconstrstart ←− ∅
for subset ∈ nodeSensbndr do

temp←− subset ∩Nodesdetail,prog,Ci
start

if temp 6= ∅ then
Nodesconstrstart ←− Nodesconstrstart ∪ {temp}

As an example, consider the extreme case of node-insensitivity at basic block boundaries.
Intuitively, this means that each basic block of the constructed graph Gconstr only has a single in-
node and a single out-node (cf. Figures 6.3a and 6.3c). Classical approaches to WCET analysis [Li
and Malik, 1995; Engblom and Ermedahl, 2000] typically assumed node-insensitivity at basic
block boundaries. In our formalization of node-sensitivity at basic block boundaries, this can be
expressed by a set containing the set of all nodes of the detailed graph.

{Nodesdetail,prog,Ci} ∈ NodeSensdetail,prog,Ci

bndr (6.142)

The opposite extreme case is full node-sensitivity at basic block boundaries. Intuitively, this
means that each of the in- and out-nodes of the detailed graph has a dedicated representative in
the constructed graph Gconstr (cf. Figure 6.3b). It is used to improve the precision of WCET
bounds for processors with complex pipelines at the cost of increased graphs/analysis time. In
literature, it is also referred to as prediction-file-based approach [Cullmann, 2013; Maksoud and
Reineke, 2014; Maksoud, 2015] respectively state-sensitive graph [Jacobs et al., 2015]. In our
formalization of node-sensitivity at basic block boundaries, this can be expressed by partitioning
the set of all nodes of the detailed graph into subsets of size one.

{X ⊆ Nodesdetail,prog,Ci | |X| = 1} ∈ NodeSensdetail,prog,Ci

bndr (6.143)

Note that—between these extreme cases—there are various other degrees of node-sensitivity
at basic block boundaries. The context-sensitivity at basic block boundaries is a prominent
example [Theiling et al., 2000; Theiling, 2002]. It features one in-node (out-node) per basic block
and analysis context. Thus, each in-node (out-node) of the constructed graph represents all
in-nodes (out-nodes) of the detailed graph belonging to a particular basic block and analysis
context.
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Node-Sensitivity inside of Basic Blocks For certain analysis approaches, it is desired that some
of the inner nodes of the basic blocks in the detailed graph are also represented by nodes in the
constructed graph. This is e.g. useful for a cache-analysis via implicit path enumeration [Li et al.,
1995, 1996]. In the future, this may also be useful for approaches which try to distribute a budget
of shared-bus interference between the shared-bus accesses of a program in a way that the WCET
bound is maximized. Existing approaches to this distribution [Nagar and Srikant, 2014, 2016]
inherently rely on hardware platforms without timing anomalies [Lundqvist and Stenstrom, 1999]
and, thus, are not even applicable to relatively simple real-world hardware platforms [Hahn et al.,
2016a].

Intuitively, an increased node-sensitivity inside of basic blocks means that we select some of
the inner nodes of a basic block in the detailed graph to be represented by a common node in the
constructed graph. We can formally describe a particular node-sensitivity inside of basic blocks
as a set of subsets of the nodes of the detailed graph. This is reflected in the following definition
of the set NodeSensdetail,prog,Ci

insd of all possible node-sensitivities inside of basic blocks.

NodeSensdetail,prog,Ci

insd = {Subsets ⊆ P(Nodesdetail,prog,Ci)} (6.144)

The node sensitivity nodeSensinsd ∈ NodeSensdetail,prog,Ci

insd specifies which inner nodes of a basic
block of the detailed graph are represented by a common inner node of that basic block in the
constructed graph Gconstr. During the construction of Gconstr, each non-empty intersection of
a member of nodeSensinsd with the set of inner nodes of a basic block of the detailed graph
corresponds to an inner node of that basic block in Gconstr. This principle is demonstrated by
Algorithm 6.2.

Algorithm 6.2 : Determination of the inner nodes of the basic blocks for the constructed
graph

Data : nodeSensinsd ∈ NodeSensdetail,prog,Ci

insd , constituents of Gdetail,prog,Ci

Result : inner nodes of the basic blocks of Gconstr

begin
for bb ∈ BasicBlocksprog,Ci

do
Nodesconstrbb,inner ←− ∅
for subset ∈ nodeSensinsd do

temp←− subset ∩ [Nodesdetail,prog,Ci

bb \ (Nodesdetail,prog,Ci

bb,in ∪Nodesdetail,prog,Ci

bb,out )]

if temp 6= ∅ then
Nodesconstrbb,inner ←− Nodesconstrbb,inner ∪ {temp}

As an example, consider the extreme case of node-insensitivity inside of basic blocks. Intuitively,
this means that no basic block of the constructed graph Gconstr has inner nodes representing inner
nodes of the basic block in the detailed graph (cf. Figures 6.3a, 6.3b, and 6.3c). Note that the
dummy nodes in Figure 6.3c are only needed to increase the edge-weight-sensitivity and, thus, do
not represent any inner nodes of the detailed graph of Figure 6.2. Classical approaches to WCET
analysis [Li and Malik, 1995; Engblom and Ermedahl, 2000] typically assumed node-insensitivity
inside of basic blocks. In our formalization of node-sensitivity inside of basic blocks, this can be
expressed by an empty set (i.e. none of the inner nodes of the detailed graph is represented by an
inner node of the constructed graph).

∅ ∈ NodeSensdetail,prog,Ci

insd (6.145)
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The opposite extreme case is full node-sensitivity inside of basic blocks. Intuitively, this means
that each inner node of the detailed graph has a dedicated representative in the constructed graph
Gconstr. In our formalization of node-sensitivity inside of basic blocks, this can be expressed by
partitioning the set of all nodes of the detailed graph into subsets of size one.

{X ⊆ Nodesdetail,prog,Ci | |X| = 1} ∈ NodeSensdetail,prog,Ci

insd (6.146)

Note that—between these extreme cases—there are various other degrees of node-sensitivity
inside of basic blocks. The cache analysis based on implicit path enumeration [Li et al., 1995, 1996]
e.g. introduces additional nodes representing the nodes of the detailed graph at which accesses to
the cache are initiated. Subsequently, it checks the following property: for each path through the
resulting graph there is a corresponding path through the cache state transition graph rectifying
the respective numbers of cache hits and misses for the different memory blocks accessed along
the former path. In order to check this property during implicit path enumeration, the cache
state transition graph is modeled by additional integer variables. This approach, however, turned
out to not scale to caches and programs of realistic size.

Further note that the combined extreme case of full node-sensitivity at basic block boundaries
and inside of basic blocks leads to a constructed graph that has a dedicated representative node
for every node of the detailed graph. Thus, the constructed graph is isomorphic to the detailed
graph. (Independently of the chosen edge-weight-sensitivity, no dummy nodes will be needed in
this case.)

Edge-Weight-Sensitivity Intuitively, an edge-weight-sensitivity uses the edge weights in order to
decide which subpaths of the detailed graph are represented by a common edge of the constructed

graph. We specify this sensitivity for a particular event-bounding edge weight (e.g. ̂wBlockedLB,
cf. Figure 6.2) by a covering of the natural numbers. A covering of the natural numbers is a set
of subsets of the natural numbers chosen in a way that each natural number is a member of at
least one of the subsets. The set CoveringsN formalizes the space of all possible coverings of the
natural numbers.

CoveringsN = {cov ⊆ P(N) |
⋃

cov ⊇ N} (6.147)

We bind a covering of the natural numbers to a particular system event and to a particular
bound direction (i.e. upper or lower bound) by an event bound sensitivity tuple. The space of all
such tuples is defined as follows.

EventBoundSensTuples = Events× {UB,LB} × CoveringsN (6.148)

Intuitively, we can combine different weight sensitivities for different pairs of system event
and bound direction. Thus, an edge-weight-sensitivity is a set of event bound sensitivity tuples.
However, it must be guaranteed that the same pair of system event and bound direction is not
assigned multiple different coverings. The resulting space of possible edge weight sensitivities is
defined as follows.

EdgeWeightSens = {Tuples ⊆ EventBoundSensTuples |
¬∃(E1,BD1, cov1), (E2,BD2, cov2) ∈ Tuples :

E1 = E2 ∧ BD1 = BD2 ∧ cov1 6= cov2}
(6.149)

Considering a particular edge-weight-sensitivity edgeWeightSens ∈ EdgeWeightSens, we finally
define the edges, event-bounding edge weights, and potentially necessary dummy nodes of the
constructed graph Gconstr. Essentially, for every pair of nodes in the constructed graph, the set of
all subpaths between the represented nodes in the detailed graph is transformed into potentially
multiple sets of subpaths in a way that respects the given edge-weight-sensitivity. Subsequently,
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every resulting subset is represented by a dedicated edge in the constructed graph. In case this
would result in multiple edges with identical source and target nodes, dummy nodes have to be
introduced. Algorithm 6.3 presents the details of this procedure.
As an example, consider the extreme case of edge-weight-insensitivity (cf. Figures 6.3a and

6.3b). Classical approaches to WCET analysis [Li and Malik, 1995; Engblom and Ermedahl,
2000] are typically edge-weight-insensitive. In our formalization of edge-weight-sensitivity, this
can be expressed by an empty set (i.e. no event bound sensitivity tuple is specified).

∅ ∈ EdgeWeightSens (6.150)

Furthermore, consider the case of full edge-weight-sensitivity for a particular event-bounding
edge weight. Figure 6.3c shows full edge-weight-sensitivity for the lower bound on the number of
blocked cycles. In our formalization of edge-weight-sensitivity, this particular sensitivity can be
expressed by the following set containing a single event bound sensitivity tuple.

{(Blocked,LB, {X ⊆ N | |X| = 1})} ∈ EdgeWeightSens (6.151)

A practical example for the importance of a sufficient edge-weight-sensitivity is the consideration
of cache-persistence constraints [Stein, 2010; Cullmann, 2013]. Intuitively, such constraints state
that a particular path can be excluded if it only describes concrete traces which assume more than
one cache miss for a memory block at a point of the program where this block is persistent (i.e. it
cannot miss the cache more than once). In order to effectively use these constraints, however, we
must represent the cases of cache hit and cache miss of a persistent memory block by different
edges in the graph. Previous work on cache persistence was mostly focused on the detection of
persistent memory blocks. It did not discuss the details of the graph construction. We argue
that the edge-weight-sensitivity has a significant impact on the effectiveness of cache-persistence
constraints and, thus, is worthwhile discussing.

In the same way, a sufficient edge-weight-sensitivity is of utmost importance for the effectiveness
of constraints that upper-bound the number of cycles blocked at a shared bus. For example,
consider the difference between the WCET bounds obtained from the graphs in Figures 6.3a
and 6.3c under the additional constraint that there must be no blocked cycles. Thus, the edge-
weight-sensitivity is an important parameter in our case study on multi-core processors with
shared buses.
Note that we formalized a relatively simple space of possible edge-weight-sensitivities. There

are more complex forms of edge-weight-sensitivity that exceed this space, e.g. different degrees
of sensitivity for a particular event-bounding edge weight depending on the considered pair of
nodes in the constructed graph or the value of a different event-bounding edge weight. Note
that different spaces of edge-weight-sensitivities can be supported by adapting the second loop of
Algorithm 6.3. A detailed discussion of this, however, is beyond the scope of this thesis.

A Parametric Graph at Basic-Block Granularity Finally, we define the end nodes of the con-
structed graph Gconstr as all nodes that represent an end node of the detailed graph Gdetail,prog,Ci .

Nodesconstrend = {nd ∈ Nodesconstr | nd 6∈ DummyNodes ∧ ∃nd′ ∈ Nodesdetail,prog,Ci

end : nd′ ∈ nd}
(6.152)

Note that the presented construction of graph Gconstr is still of conceptual nature—in particular
because Algorithm 6.3 iterates over the set Events of all possible events of the concrete system
(cf. equation (5.6)). An actual implementation would only consider the pairs of events and
bound directions which are actually used during the bound calculation or in the lifted properties.
Nonetheless, assuming a finite set Events, the presented construction of graph Gconstr is guaranteed
to terminate. This can be proved with the help of assumptions (6.139) and (6.140). However, be
aware that the presented pseudo-code algorithms mostly serve as a specification and, thus, are by
no means optimized with respect to runtime.
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Algorithm 6.3 : Determination of the edges, event-bounding edge weights, and dummy
nodes for the constructed graph
Data : edgeWeightSens ∈ EdgeWeightSens, constituents of Gdetail,prog,Ci , nodes of Gconstr

Result : edges, edge weights, and dummy nodes of Gconstr

begin
Nodesconstr ←− Nodesconstrstart ∪

⋃
bb∈BasicBlocksprog,Ci

(Nodesconstrbb,in ∪Nodes
constr
bb,inner∪Nodes

constr
bb,out)

DummyNodes←− ∅
for (nd1,nd2) ∈ Nodesconstr ×Nodesconstr do

subpaths←− {p̂ ∈ ̂SubPathsdetail,prog,Ci | p̂(0) ∈ nd1 ∧ p̂(len(p̂)) ∈ nd2 ∧
∀x ∈ N>0 ∩ N<len(p̂) : ¬∃nd ∈ Nodesconstr : p̂(x) ∈ nd}

setsOfSubpaths←− {subpaths}
for (E,BD, cov) ∈ edgeWeightSens do

setsOfSubpaths′ ←− ∅
for set ∈ setsOfSubpaths do

for covMember ∈ cov do

set′ ←− {p̂ ∈ set |
∑

x∈N<len(p̂)

ŵEBD(p̂, x) ∈ covMember}

if set′ 6= ∅ then
setsOfSubpaths′ ←− setsOfSubpaths′ ∪ {set′}

setsOfSubpaths←− setsOfSubpaths′

firstEdge←− 1
for set ∈ setsOfSubpaths do

if firstEdge = 1 then
targetNd←− nd2
firstEdge←− 0

else
targetNd←− fresh dummy node
DummyNodes←− DummyNodes ∪ {targetNd}

Edgesconstr ←− Edgesconstr ∪ {(nd1, targetNd)}
for E ∈ Events do

ŵEUB((nd1, targetNd))←− max
p̂∈set

∑
x∈N<len(p̂)

ŵEUB(p̂, x)

ŵELB((nd1, targetNd))←− min
p̂∈set

∑
x∈N<len(p̂)

ŵELB(p̂, x)

if targetNd 6= nd2 then
Edgesconstr ←− Edgesconstr ∪ {(targetNd,nd2)}
for E ∈ Events do

ŵEUB((targetNd,nd2))←− 0

ŵELB((targetNd,nd2))←− 0

Nodesconstr ←− Nodesconstr ∪DummyNodes
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Results of Micro-
Architectural Analysis
(i.e. Detailed Graph)

Graph

Graph

Event Bound

Graph Construction
(cf. Section 6.4.4)

Add Feedback Node
Set to End Nodes
(cf. Section 6.4.3)

Bound Calculation
(cf. Section 6.4.3)

Figure 6.4.: A workflow for the calculation of event bounds.

The exact form of graph Gconstr depends on the detailed graph Gdetail,prog,Ci as well as the
chosen values along the three aforementioned axes of sensitivity. Thus, from now on, we choose a
name for this graph that reflects all the parameters it depends on.

Gprog,Ci,nodeSensbndr,nodeSensinsd,edgeWeightSens := Gconstr (6.153)

The parametric graph subsumes the detailed graph for all possible choices of sensitivity. A
brief proof sketch for this statement is presented on page 297.

∀nodeSensbndr ∈ NodeSensdetail,prog,Ci

bndr :

∀nodeSensinsd ∈ NodeSensdetail,prog,Ci

insd :

∀edgeWeightSens ∈ EdgeWeightSens :

Gprog,Ci,nodeSensbndr,nodeSensinsd,edgeWeightSens � Gdetail,prog,Ci

(6.154)

In Figure 6.4, we propose a workflow for the calculation of event bounds. It starts from
the results of the micro-architectural analysis, which correspond to the detailed graph. As a
first step, a graph at the granularity of basic blocks is constructed based on the results of the
micro-architectural analysis. The construction follows the principles presented in this subsection.
The resulting graph subsumes the detailed graph (cf. equation (6.154)). Thus, according to
Section 6.4.3, it is safe to add a feedback node set of the graph to its end nodes and, finally,
calculate the event bound based on all paths through the graph. The bound calculation uses
lifted system properties in order to prune infeasible paths through the graph.

In the experiments presented in the implementation part of this thesis, we construct graphs at
basic-block granularity that are instances of the parametric graph presented in this subsection.
Note, however, that our actual implementations of graph construction algorithms differ from the
parametric construction proposed by Algorithms 6.1 to 6.3. We have a specialized implementation
for the construction of graphs that are insensitive with respect to all three proposed axes of
sensitivity. Moreover, we have a specialized implementation that is fully node-sensitive at basic
block boundaries, node-insensitive inside of basic blocks, and parametric in the edge-weight-
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sensitivity. These specialized construction algorithms were implemented before the parametric
graph construction had been specified. Thus, it is an open task to implement a graph construction
that supports all combinations of sensitivity parameters that the parametric graph supports.

To the best of our knowledge, this subsection contains the first detailed and formally structured
discussion on different degrees of detail of graphs to be used in WCET analysis. We pointed
out that the degree of detail of a graph (as e.g. determined by the axes of sensitivity that we
propose) can have a significant impact on the resulting WCET bound. Overly detailed graphs,
however, tend to be prohibitive in terms of runtime and memory consumption needed for the
bound calculation (e.g. during implicit path enumeration). Thus, the degree of detail at which
graphs are constructed can be used to find a trade-off between analysis precision and analysis
efficiency.

6.4.5. ISA-Level Control Flow Properties

In this subsection, we briefly sketch how to safely use control flow properties of the program
under analysis in order to detect infeasible abstract traces at the level of approximation of paths
through a graph. Intuitively, a control flow property only argues about which basic blocks are
executed how often (and potentially also in which order). A loop bound is a typical example for
a control flow property.

In Section 6.4.1, we defined the set ContrFlowsprog,Ci
of all possible control flows of a program

prog when executed on processor core Ci. Each control flow in ContrFlowsprog,Ci
might contain

arbitrary instructions of program prog. Intuitively, however, a control flow is already uniquely
determined by the sequence of basic blocks it corresponds to (cf. equation (6.87)). A sequence
of basic blocks, again, can be represented as a corresponding sequence of basic block start
instructions. Thus, we can reduce any member of ContrFlowsprog,Ci

to its basic block start
instructions without losing any information about the logical control flow.

ContrFlowsBBprog,Ci
= {filter(flow, λins.ins ∈ BBStartsprog,Ci

) | flow ∈ ContrFlowsprog,Ci
}

(6.155)

BBStartsprog,Ci
= {front(bb) | bb ∈ BasicBlocksprog,Ci

} (6.156)

Note that the sets ContrFlowsprog,Ci
and ContrFlowsBBprog,Ci

are not yet completely independent
of the micro-architecture. Consider, e.g., the case that—on a given hardware platform—the
execution of a particular instruction ins and its successor instruction is always completely
overlapped by a preceding instruction. This can happen due to pipelining. In this situation, there
is no flow ∈ ContrFlowsprog,Ci

such that back(flow) = ins. A similar pathological scenario exists
for ContrFlowsBBprog,Ci

in case the execution of a particular basic block and its successor basic
block are always completely overlapped by a preceding basic block.

We can make both sets of control flows independent of the micro-architecture by additionally
considering all prefixes of all members they already contain. In the following, we formally define
this for set ContrFlowsBBprog,Ci

.

ContrFlowsBB,prefixesprog,Ci
=

⋃
flow∈ContrFlowsBBprog,Ci

prefixes(flow) (6.157)

prefixes : InstrMemAddrList→ P(InstrMemAddrList) (6.158)

prefixes(list) = {list′ ∈ InstrMemAddrList
| len(list′) ≤ len(list) ∧ ∀x ∈ N<len(list′) : list′(x) = list(x)}

(6.159)
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The resulting set ContrFlowsBB,prefixesprog,Ci
contains all control flow prefixes that are possible

according to the semantics of the program at the level of the instruction set architecture (ISA)—
under the assumption that the micro-architecture (i.e. Cycle) correctly implements the ISA. It is
a subset of all arbitrary sequences of basic block start instructions.

ContrFlowsBB,prefixesprog,Ci
⊆ ArbitrFlowsBB,prefixesprog,Ci

(6.160)

ArbitrFlowsBB,prefixesprog,Ci
= {flow ∈ InstrMemAddrList

| ∀x ∈ N<len(flow) : flow(x) ∈ BBStartsprog,Ci
}

(6.161)

We can specify Boolean predicates Pk on the members of ArbitrFlowsBB,prefixesprog,Ci
. Any such

predicate that holds for each member of ContrFlowsBB,prefixesprog,Ci
is called an ISA-level control flow

property. Let PropBB,prefixesprog,Ci
be a set of ISA-Level control flow properties.

PropBB,prefixesprog,Ci
= {P1, . . . , Pp} (6.162)

∀flow ∈ ContrFlowsBB,prefixesprog,Ci
: ∀Pk ∈ PropBB,prefixesprog,Ci

: Pk(flow) (6.163)

Such control flow properties are often specified manually (e.g. by annotating the source code
of the program with pragmas [Falk et al., 2016]). It is, however, also possible to automatically
determine them by arguing about the semantics of the program at the level of the ISA or a
high-level programming language [Ermedahl and Gustafsson, 1997; Healy et al., 1998; Stein
and Martin, 2007; Ruiz and Cassé, 2015]. Control flow properties can be specified in different
annotation languages [Kirner et al., 2011; Bonenfant et al., 2012], which differ in expressiveness.
Control flow properties are typically used during WCET analysis to prune infeasible implicit
paths [Li and Malik, 1995; Engblom and Ermedahl, 2000; Raymond, 2014].
In this subsection, we demonstrate how to safely use lifted versions of ISA-level control flow

properties to detect infeasible relaxed paths of a graph. As a starting point, we define a control
flow pseudo event CFins per basic block start instruction ins. In the same way as the regular
system events, each control flow pseudo event shall have a pair of event-bounding edge weights.

CFEventsBBprog,Ci
= {CFins | ins ∈ BBStartsprog,Ci} (6.164)

∀CFins ∈ CFEventsBBprog,Ci
: ∃ŵCFUBins , ŵCF

LB
ins ∈ Ŵeights (6.165)

In the detailed graph (cf. Section 6.4.2), the event bounding edge weights ŵCFUBins and ŵCFLBins
shall have the value one for an edge edg in case edg is an out-edge of an in-node of the basic block
of which ins is the start instruction. Otherwise, they shall have the value zero.

∀CFins ∈ CFEventsBBprog,Ci
: ∀BD ∈ {UB,LB} : ∀edg ∈ Edgesdetail,prog,Ci :

ŵCFBDins (edg) =
∣∣∣{bb ∈ BasicBlocksprog,Ci | ins = front(bb) ∧

∃ndin ∈ Nodesdetail,prog,Ci

bb,in : edg ∈ outEdges(ndin)}
∣∣∣

(6.166)

In the subsumption relations (i.e. path subsumption and graph subsumption, cf. Section 6.4.3)
and during the construction of graphs (cf. Section 6.4.4), we shall treat the event-bounding edge
weights of the control flow pseudo events in the same way as those of the regular system events.
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We use the event-bounding edge weights of the control flow pseudo events to map each relaxed
path of a graph GA to the subset of ArbitrFlowsBB,prefixesprog,Ci

that it describes.

γAcf,prog,Ci
: ̂RelPathsA → P(ArbitrFlowsBB,prefixesprog,Ci

) (6.167)

γAcf,prog,Ci
(p̂A) = {flow ∈ ArbitrFlowsBB,prefixesprog,Ci

|

∃part ∈ Partitionings(len(p̂A), len(flow)) :

∀CFins ∈ CFEventsBBprog,Ci
: ∀x ∈ N

<len(p̂A)
:

ŵCFLBins(p̂, x)
≤ |{i ∈ N | from(part, x) ≤ i ≤ to(part, x) ∧ ins = flow(i)}|

≤ ŵCFUBins (p̂, x)}

(6.168)

Subsequently, we slightly extend the definition of relation PathDescrTrace (cf. equation (5.69))
with a conjunction in a way that a subpath can only describe those sequences of abstract states
whose control flow reduced to basic block start instructions is an extension of one of the flows
described by the path according to γAcf,prog,Ci

. Note that the soundness statements made in the
previous subsections still hold after this extension.

It follows that a path which is infeasible with respect to ContrFlowsBB,prefixesprog,Ci
is also infeasible

with respect to ExecRunsprog,Ci
.

γAcf,prog,Ci
(p̂A) ∩ ContrFlowsBB,prefixesprog,Ci

= ∅

⇒[
⋃

t̂∈γA
path,prog,Ci

(p̂A)∩ ̂Tracesprog,Ci

γtrace,prog,Ci
(t̂)] ∩ ExecRunsprog,Ci

= ∅ (6.169)

As a consequence, paths which are infeasible with respect to ContrFlowsBB,prefixesprog,Ci
can safely

be pruned during the calculation of event bounds. In order to detect such infeasible paths, we
lift control flow properties Pk ∈ PropBB,prefixesprog,Ci

to the level of approximation of paths through a
graph. The lifted versions shall respect the following soundness criterion.

∀p̂A ∈ ̂SubPathsA : [∃flow ∈ γAcf,prog,Ci
(p̂A) : Pk(flow) ]⇒ P̂ path

k (p̂A) (6.C11)

The lifted versions of ISA-level control flow properties are used for the detection of infeasible
paths in the same way as the lifted version of regular system properties. Moreover, they are also
lifted to the level of approximation of implicit path enumeration in the same way by applying the
criterion respectively the lifting rule presented in Section 5.4.
This concludes the technical contribution of this subsection. We continue by discussing the

related work. Vincent Mussot and Pascal Sotin propose to represent a control flow property as an
automaton which generates the language of possible control flows that fulfill the property [Mussot
and Sotin, 2015]. They obtain the graph on which the event bound is calculated by performing
an automata product between the CFG and the automata representing the different control flow
properties. Their approach is an instance of our framework as the automata product corresponds
to the application of lifted versions of the control flow properties. It is, however, unclear how to
adapt the approach to graphs that do not coincide with the CFG (e.g. for the sake of precision,
cf. Section 6.4.4).
Criterion (6.C11), in contrast, does not make any assumptions about the degree of detail of

the considered graph. In particular, it is applicable to graphs that are not at the granularity of
basic blocks (i.e. an edge can argue about more than one basic block execution). Such graphs can
e.g. be the result of graph transformations that aim at compressing a graph in order to reduce
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Results of Micro-
Architectural Analysis
(i.e. Detailed Graph)

Graph

Graph

Event Bound

Graph Construction
(cf. Section 6.4.4)

Add Feedback Node
Set to End Nodes
(cf. Section 6.4.3)

Graph Transformation
(6.C12) or (6.C13)

Bound Calculation
(cf. Section 6.4.3)

Figure 6.5.: An extended workflow for the calculation of event bounds. It additionally incorporates
graph transformations before the actual bound calculation.

the runtime and/or memory consumption of a subsequent implicit path enumeration. Ingmar
Stein presents such graph compression techniques in his dissertation [Stein, 2010]. He, however,
does not describe how to safely apply control flow properties to detect infeasible paths through
the compressed graphs. We close this gap with the presented formal criterion.

Be aware that the technical contribution of this subsection is only a brief sketch (due to time
and space restrictions). A more detailed formal presentation and a full soundness proof exceed
the scope of this thesis.

6.4.6. Toward Graph Transformations

Der Graf ist nicht das, was er mal war.
Ja, der Graf wirkt heut’ seltsam und bizarr.

(Der Graf, Die Ärzte, 1998)

In Section 6.4.3, we propose to determine a set of feedback nodes for a graph GB and to add
it to its set of end nodes. It is safe to calculate an event bound based on all paths through the

resulting graph GB′ (i.e. based on P̂athsB′) in case GB subsumes the detailed graph. Figure 6.4
sketches this workflow.

In this subsection, we extend this workflow by additionally incorporating graph transformations
after the set of feedback nodes has been added to the end nodes. Graph transformations are e.g.
used to compress a graph and, thus, make a subsequent implicit path enumeration more efficient.
A correspondingly extended sketch of the workflow is depicted in Figure 6.5.
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We can define a simple soundness criterion for graph transformations based on the notion of
path subsumption (cf. equation (6.120)). Intuitively, a graph transformation is sound if every
path through the original graph GC is subsumed by a path through the transformed graph GC′.

∀p̂ ∈ P̂athsC : ∃p̂′ ∈ P̂athsC′ : p̂′ �path p̂ (6.C12)

According to statement (6.121), any path which subsumes a feasible path has to be feasible
itself. It follows from the proofs of statements (6.129), (6.130), and (6.137) that the event bounds
calculated based on the transformed graph are also sound with respect to the concrete traces.
We omit the formal details for the sake of readability.

Note that the event bounds calculated based on a graph resulting from a graph transformation
guaranteeing criterion (6.C12) might—in some cases—be strictly more precise than those calcu-
lated based on the graph before the transformation. For most practical cases, however, we can
expect the lifted properties to be monotone with respect to path subsumption, i.e.:

[p̂′ �path p̂]⇒ [P̂ path
k (p̂)⇒ P̂ path

k (p̂′)] (6.170)

In case this monotonicity is given, a graph transformation guaranteeing criterion (6.C12) cannot
improve the precision of the resulting event bounds.
Another simple soundness criterion for graph transformations is based on the pruning of

provably infeasible nodes and edges. A node respectively an edge of a graph is considered infeasible
if and only if every path through the graph containing it is infeasible. Intuitively, a graph
transformation is sound if it creates a subgraph GC′ of the original graph GC such that every
path through GC not detected as infeasible by the lifted properties is also a path through GC′.

GC′ ⊆pairwise G
C ∧ P̂athsC′ ⊇ {p̂ ∈ P̂athsC | ∀Pk ∈ Propprog,Ci

: P̂ path
k (p̂)} (6.C13)

A transformation guaranteeing criterion (6.C13) leaves the event bounds (calculated directly on

P̂athsC′) unchanged (compared to calculating them directly on P̂athsC) as it only prunes nodes
and edges that only belong to paths that would be pruned anyway during the bound calculation
(cf. equations (6.127) and (6.128)).

The dissertation of Ingmar Stein [Stein, 2010] presents graph transformations that compress a
graph with the goal of reducing the runtime and memory consumption of a subsequent implicit
path enumeration. Intuitively, these transformations fulfill the criteria that we present. His
formalism, however, only argues about a single type of edge weight per graph—which is maximized
respectively minimized to calculate an event bound. The safe incorporation of system properties
for the detection of infeasible paths through the graph is only vaguely discussed. Stein only
briefly mentions that parts of the graph on which cache persistence constraints argue shall not
be compressed. It is e.g. not clear how to safely incorporate control flow properties (typically
arguing about which basic blocks are executed) in case the edges in a graph are compressed
across basic block boundaries (i.e. the compressed graph is no longer at basic block granularity).
Thus, we believe that the soundness of Stein’s approach relies on implicit assumptions that are
not documented in his dissertation. We close this gap by the principle of property lifting and the
presented formal soundness criteria for graph transformations.
Note that graph transformation can also be applied to improve the precision of event bounds

obtained by a subsequent implicit path enumeration [Mussot et al., 2016]. The key idea is to unfold
a graph (which trivially fulfills criterion (6.C12)) in order to be able to express system properties
in implicit path enumeration that could not have been expressed (or only very imprecisely) in
an implicit path enumeration on the original graph. Intuitively, this makes some subpaths of
the graph more explicit and, thus, the subsequent implicit path enumeration de facto a bit less
implicit. For a practical example based on control flow properties, we refer to a paper by Pascal
Raymond [Raymond, 2014]. Mussot et al. exploit this principle by calculating the automata
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Results of Micro-
Architectural Analysis
(i.e. Detailed Graph)

Graph

Event Bound

Graph Construction
(cf. Section 6.4.4)

Graph Transformation
(6.C12) or (6.C13)

Bound Calculation
(cf. Section 6.4.3)

Figure 6.6.: Simplified workflow for the calculation of event bounds. It no longer adds a set of
feedback nodes to the end nodes of the graph. It can safely be applied in case the
program under analysis is guaranteed to terminate.

product between the CFG and automata representing different control flow properties [Mussot and
Sotin, 2015]. In this way, they unfold (criterion (6.C12)) the CFG and prune (criterion (6.C13))
parts of the resulting graph which are provably not included in a feasible path.

6.4.7. Simplification under Guaranteed Termination

According to the soundness proof (on page 289) for the event bounds presented in Section 6.4.3,
we only incorporate a set of feedback nodes during the event bound calculation to also be sound
with respect to the concrete traces which are not a prefix of a terminated program execution run.
If the program under analysis, however, is guaranteed to terminate, there are no concrete traces
which are not a prefix of a terminated run.

max
t∈ExecRunsprog,Ci

len(t) ∈ N⇒ ExecRunsdivergprog,Ci
= ∅ (6.171)

As a consequence, the event bound calculation for programs that are guaranteed to terminate
only has to take into account all paths through the graph (i.e. from a start node to an end node).
Adding a set of feedback nodes to the end nodes of the graph is not needed in this case. The
correspondingly simplified workflow for the calculation of event bounds for programs that are
guaranteed to terminate is depicted in Figure 6.6. Note that this simplified workflow coincides
with the classical approach of only arguing about all paths from the start to the end of a program
(cf. e.g. [Li and Malik, 1995]).

6.5. Event Bounds Based on Implicit Path Enumeration

6.5.1. The General Case

In the following, we assume that GB is a graph which can safely be used for the calculation of
bounds for event E according to our workflow (cf. Figure 6.5, Figure 6.6). For a bound calculation
based on implicit path enumeration, we only consider the implicit paths through GB for which
all lifted properties hold.

̂LessImplicitB = {̂i ∈ ̂ImplicitB | ∀Pk ∈ Propprog,Ci
∪ PropBB,prefixesprog,Ci

: P̂ impli
k (̂i)} (6.172)
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Based on ̂LessImplicitB, we specify upper and lower bounds for event E. Let tt denote the
timesTaken-component of an implicit path in the following.

̂MaximumB,impli
prog,Ci,E

= max
(tt,∗,∗)∈ ̂LessImplicitB

∑
edg∈EdgesB

tt(edg) · ̂wEventUBprog,Ci,E(edg) (6.173)

̂MinimumB,impli
prog,Ci,E

= min
(tt,∗,∗)∈ ̂LessImplicitB

∑
edg∈EdgesB

tt(edg) · ̂wEventLBprog,Ci,E(edg) (6.174)

The soundness of these event bounds is a consequence of the soundness of the corresponding
bounds calculated on paths through the graph, the soundness of implicit path enumeration,
and the soundness of property lifting. Thus, the actual bound calculation in our proposed
workflow (cf. Figure 6.5, Figure 6.6) can safely be replaced by a calculation based on implicit
path enumeration.
Implicit path enumeration inherently approximates away the order in which the edges of a

path occur (cf. equation (5.81)). As a consequence, properties arguing about the order of events
cannot be expressed in implicit path enumeration.

Implicit path enumeration is typically encoded as integer linear program [Li and Malik, 1995].
Such an encoding only supports sets of lifted properties that can be represented as a conjunction
of linear constraints. Thus, an ILP encoding further reduces the expressiveness of implicit path
enumeration. Pascal Raymond aims at exploring these inherent limits [Raymond, 2014]. He
explains how to express control flow properties as precisely as possible for ILP-based implicit
path enumeration.
There are also approaches which circumvent these inherent limits of expressiveness at the

cost of an increased runtime and/or memory consumption. The first paper about implicit
path enumeration [Li and Malik, 1995] already proposes to convert a property set containing
disjunctions to a disjunctive normal form. Subsequently, each disjoint property set is used in a
separate implicit path enumeration and the actual event bound is obtained by taking the maximum
(respectively minimum) over the separate event bounds. It has also been proposed [Mussot and
Sotin, 2015] to use graph transformations (cf. Section 6.4.6) to hard-wire certain properties into
the structure of the graph. Finally, modern ILP solvers2 also have native support for quadratic
constraints and further logical operators (like disjunction and implication).

6.5.2. The Special Case of WCET Bounds
The calculation of WCET bounds at the level of approximation of paths through a graph by only
considering paths from the program start to the program end is not sound for programs that
can diverge. A corresponding counter example is given at the end of Section 3.3. If we cannot
guarantee the termination of the considered program, however, the calculation of a WCET bound
based on all paths through a graph is provably sound in case we have added a feedback node set
of the graph to its set of end nodes (cf. Figure 6.5).
Surprisingly, at the level of approximation of implicit path enumeration, a corresponding

unsoundness of only considering paths from the program start to the program end does not exist
in case the implicit path enumeration solely relies on linear constraints (i.e. no additional features
of modern solvers like SOS constraints or indicator constraints are used). Intuitively, as soon
as there is an unbounded loop in the graph representation, the objective of the implicit path
enumeration calculating the WCET bound is guaranteed to be unbounded in case the implicit
path enumeration solely relies on linear constraints.
As a consequence, for the calculation of a WCET bound via implicit path enumeration, it is

not necessary to add a feedback node set of the graph to its set of end nodes in case the implicit
path enumeration solely relies on linear constraints. Thus, if the implicit path enumeration is
2http://www.gurobi.com, https://www.ibm.com/software/commerce/optimization/cplex-optimizer

105



Chapter 6. Calculation of Event Bounds
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Implicit Path Enumeration,
Only Linear Constraints

Figure 6.7.: Simplified workflow for the calculation of WCET bounds. It no longer adds a set of
feedback nodes to the end nodes of the graph. It can safely be applied in case the
WCET bound is calculated via implicit path enumeration solely relying on linear
constraints.

guaranteed to only use linear constraints, we can use the simplified WCET bound calculation
workflow depicted in Figure 6.7. Note that this simplified workflow coincides with the classical
approach of only arguing about all paths from the start to the end of a program (cf. e.g. [Li and
Malik, 1995]).

A practical example of how implicit path enumeration effectively repairs the potential unsound-
ness is presented at the end of Section 3.3.
In this section, we would like to sketch a proof construction demonstrating that an implicit

path enumeration solely relying on linear constraints is guaranteed to never calculate a finite
WCET bound for a program that can diverge. For our proof construction, we assume that there
is a program that can diverge. Now, we choose one of its concrete traces that can be extended
indefinitely without ever reaching the program end. As we assume a finite set of possible concrete
system states, there must be an extension of the chosen concrete trace in which one of the concrete
system states occurs at least twice. Thus, we have a loop formed of concrete system states and
the transitions between these states. Due to the soundness of the micro-architectural analysis
and the graph construction, there must be a loop in the constructed graph which describes the
concrete loop. Moreover, due to the soundness of property lifting, there cannot be an absolute
or relative loop bound for the loop in the graph representation because this would mean that
there were no feasible paths from the start node of the graph representation that take the loop
indefinitely often. However, there have to be such feasible paths as they describe the concrete
traces taking the concrete loop indefinitely often. As an intermediate result, we have a graph
representation with a loop that has no absolute or relative loop bound. Thus, if we have no
absolute or relative loop bound, the only way to avoid that the loop of the graph representation
holds itself in an implicit path (without having to be connected to the remainder of the implicit
path) would be a constraint of the following form.

timesTakenedgeouter = 0⇒ timesTakenedgeloop = 0

To the best of our knowledge, such an implication constraint can only be implemented solely
based on linear constraints if the variable on the right-hand side of the implication has a limited
value range (Big-M approach). As there cannot be a loop bound, however, no edge in the loop of
the graph representation can have such a limited value range. As a result: By solely relying on
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linear constraints, we cannot avoid that the unbounded loop in the graph representation holds
itself (and, thus, can be executed indefinitely often) during implicit path enumeration. Hence,
the maximized objective is necessarily unbounded.

This short proof sketch shows that the soundness of implicit path enumeration for the calculation
of WCET bounds for programs that are not guaranteed to terminate is mostly due to a limited
expressiveness of the linear constraints. We are able to show that the incorporation of implication-
like constraints (if no in-edge of the loop is taken, no edge inside of the loop must be taken,
implemented via SOS constraints or indicator constraints) can lead to a finite WCET bound for a
program that can diverge if no feedback node set was added to the end node of the graph before
the implicit path enumeration: For the example at the end of Section 3.3, such a (soundly lifted)
implication-like constraint could look as follows.

timesTakenBB3 = 0⇒ timesTakenBB4 = 0

We used Gurobi to verify that this actually leads to a finite WCET bound for the example
program which diverges. Thus, relying on all the types of constraints that modern ILP solvers
have to offer, a WCET bound calculated via implicit path enumeration is not guaranteed to be
sound if only paths from the start to the end of the program are considered. Solely relying on
linear constraints during implicit path enumeration, however, seems to be sound (as sketched
above). In case it should be necessary to rely on advanced solver features for an improved
precision or performance, we recommend resorting to the feedback node set approach instead.
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Chapter 7

Multi-Core Processors with Shared Buses

But there’s a huge interference,
They’re saying “You shouldn’t hear it.”

(Renegade, Jay-Z & Eminem, 2001)

Multi-core processors share common resources (like e.g. caches and buses) between multiple
processor cores. In this way, they provide a trade-off between the computation capacity of
multi-processor systems and the low cost, weight, and energy consumption of single-processor
systems.

From a timing-verification point of view, however, multi-core processors are significantly more
challenging than single-core processors: the execution time of a program executed on a particular
processor core depends on the programs simultaneously executed on the concurrent cores [Abel
et al., 2013]. This phenomenon is typically referred to as shared-resource interference. For a
detailed discussion of the existing work in the area of timing verification for multi-core processors,
we refer to Chapter 2.

In this chapter, we propose to model shared-bus interference by non-determinism and, thus,
to safely account for the effect that a unit of interference can have on the pipeline of the
interfered processor core. This way of modeling is processor-core-modular and supports hardware
platforms exhibiting timing anomalies. Based on it, we demonstrate the calculation of co-runner-
insensitive WCET bounds—following the Murphy approach—and co-runner-sensitive WCET
bounds—relying on a cumulative approximation of the shared-resource access behavior of the
concurrent cores.

For this thesis, we assume the following schematic system design for multi-core processors with
shared buses.

7.1. Schematic System Design

We consider a multi-core processor with at least two processor cores. Let Cores denote its set of
processor cores.

Cores = {C1, C2, . . .} (7.1)
|Cores| ≥ 2 (7.2)

The multi-core processor shall have one shared bus that connects all cores to the memory. This
schematic design is sketched in Figure 7.1.
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C1 C2 . . .

Memory

Shared Bus

Figure 7.1.: Schematic system design of a multi-core processor with a shared bus.

Note that this design is relatively general as it does not make any assumptions about the shared
memory. The memory could be a simple SRAM that takes a constant amount of clock cycles per
data access—independently of the access history. However, the memory could as well consist of a
cache and a DRAM—which can lead to further interference between the processor cores.

Further note that more complex system designs with respect to the interconnect (e.g. featuring a
hierarchical combination of multiple buses or a network-on-chip) could be modeled with techniques
similar to those presented in this thesis. For simplicity, however, we assume that a single bus is
the only bandwidth resource leading to interference between the cores.
In this thesis, we focus on safely modeling shared-bus interference. As a consequence, the

experiments presented in the implementation part of this thesis assume a simple SRAM as shared
memory. Note, however, that our proposed way of modeling the shared-bus interference can also
be reused in analyses that additionally account for other sources of interference (cf. Section 7.8).

For the rest of this thesis, we rely on the following notational conventions with respect to the
processor cores.

• Ci refers to the processor core for which we calculate a WCET bound

• Cj refers to one of the concurrent processor cores of Ci, i.e. Cj ∈ Cores \ {Ci}

• Ck is used if we argue about all processor cores (including Ci)

Finally, for the sake of simplicity, we assume that there is no preemptive scheduling used on
the processor cores of the system under analysis. In this way, we can safely omit some formal
machinery (in particular the shorthand events Eventprog,Ci,E , cf. equation (6.19)) in order to
focus on the essential aspects with respect to the consideration of the shared-resource interference.

7.2. A Baseline Abstract Model
In order to safely model the bus access behavior of processor core Ci, first, we take a look at what
a bus access of core Ci on the concrete system means in terms of system events. Every bus access
of core Ci begins with a corresponding access request of Ci. For every bus access, there is only a
single occurrence of the corresponding system event RequestedCi

at the first cycle of the access.

RequestedCi
∈ Events (7.3)

The event RequestedCi
means that—starting from (including) its occurrence—the bus arbiter

is aware of the request by core Ci. The arbiter may choose to immediately grant access to core
Ci, or to block access of core Ci for an arbitrary (potentially infinite) amount of clock cycles.

BlockedCi
,GrantedCi

∈ Events (7.4)
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(a) Completed access that is first blocked for three clock cycles and
subsequently granted for four clock cycles.
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(b) Access that is blocked indefinitely.

Figure 7.2.: Two examples of bus accesses of processor core Ci on a concrete system.

Once an access has been granted, however, it cannot be blocked again. Intuitively, a granted
bus access cannot be interrupted or canceled in favor of an access of a different processor core.

Core Ci might complete an access that has been granted for at least one clock cycle. There can
be at most one access completion per access of core Ci. A completion marks the end of an access.

CompletedCi
∈ Events (7.5)

Figure 7.2a shows a completed access that is first blocked for three clock cycles and subsequently
granted for four clock cycles. Note, however, that an access might never complete. It could as well
be blocked indefinitely (cf. Figure 7.2b, e.g. under non-fair bus arbitration) or granted indefinitely
(e.g. because behind the considered bus there is another bus with non-fair arbitration).

We say that processor core Ci has a pending bus access at a certain instant if it is either blocked
at the bus or granted access to it.

PendingCi
= GrantedCi

∪̇BlockedCi
(7.6)

Note that corresponding bus access events also exist per concurrent processor core Cj . For the
sake of simplicity, however, these events are not explicitly specified.

In general, it depends on the programs on the concurrent cores for how long an access is blocked,
for how long it is granted, and whether it completes. As discussed in Chapter 2, however, a fully
integrated analysis of the programs on all processor cores does not scale to real-world systems.
Thus, we specify a processor-core-modular baseline analysis which models the bus access behavior
in a very pessimistic way. It will serve as starting point for the derivation of more precise analyses.

Our baseline abstract model is an extension of the current state of the art in micro-architectural
modeling for single-core processors [Thesing, 2004]. In the same way as Thesing, we model
the content of the different pipeline stages exactly and use a less precise modeling scheme for
the local caches of core Ci. Moreover, however, we model the bus access behavior of core Ci
by distinguishing all sequences of bus access events (cf. Figure 7.2) that may arise for core
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RequestedCi

GrantedCi

CompletedCi

RequestedCi

GrantedCi

RequestedCi

BlockedCi GrantedCi

GrantedCi
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GrantedCi

CompletedCi

GrantedCi

BlockedCi

Figure 7.3.: Diagram representation of the non-determinism that we use for pessimistically mod-
eling the bus access behavior of core Ci.

Ci—independently of the programs on the concurrent cores or the details about the resource
sharing. This leads to a significant increase of the non-determinism during micro-architectural
analysis.

The diagram in Figure 7.3 represents this additional non-determinism. Intuitively, a pending
bus access that has not yet been granted can be blocked for one more cycle, or granted. If a
pending bus access is granted an access cycle, this access cycle can either complete the access, or
require at least one more granted access cycle until completion. Note that the micro-architectural
analysis also tracks the impact that the respective non-deterministic decisions have on the state
of the processor core (i.e. on the contents of the processor core’s pipeline stages).

The resulting baseline abstract model is referred to as ̂ExecRunsCi

prog,Ci
. It models the concrete

traces of program prog when executed on processor core Ci by only considering the operation
of core Ci. It is sound as it covers all possible cases—independently of many details about the
concrete system as e.g. the number of concurrent processor cores, their micro-architectural details,

the programs they execute, or further details about the resource sharing. Thus, ̂ExecRunsCi

prog,Ci

is processor-core-modular as it does not make any assumptions about the concurrent processor
cores. Moreover, it is sound with respect to a whole family of concrete systems, whose members
e.g. only differ in the overall number of processor cores, the bus arbitration policy, or the size of
the shared cache.

However, ̂ExecRunsCi

prog,Ci
is so far useless for WCET analysis: any bus access could be delayed

indefinitely without ever being completed (cf. Figure 7.3). As a consequence, we have to combine
̂ExecRunsCi

prog,Ci
with lifted versions of system properties that effectively upper-bound the bus

access delay and, thus, enable the determination of finite WCET bounds. We demonstrate this in
Section 7.4 and Section 7.5.
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Note that, during micro-architectural analysis, we model the bus access events of processor
core Ci exactly. As a consequence, the corresponding sets of may-events and must-events coincide
for each of these events. Intuitively, we know precisely for each transition between abstract states
which of the bus access events occurred, and which did not.

∀Ebus ∈ {RequestedCi
,BlockedCi

,GrantedCi
,CompletedCi

} : ÊUB
bus = ÊLB

bus (7.7)

Moreover, we provide helper notation to argue about the different accesses of a concrete trace
in a convenient way. To this end, we identify each bus access in a concrete trace with the
position at which the corresponding access request occurs. Note that this is sufficient since our
software convention which prevents multiple program runs from overlapping (cf. end of Section 6.1)
guarantees that a program run on core Ci cannot begin while an earlier requested access of core
Ci is still pending.

∀t ∈ ExecRunsprog,Ci
:

getAccessesCi
(t) = {x ∈ N<len(t) | RequestedCi

(t, x)}
(7.8)

Each bus access is assigned the clock cycles during which it is pending.

∀t ∈ ExecRunsprog,Ci
: ∀acc ∈ getAccessesCi

(t)

getPendingCi
(t, acc) = {x ∈ N≥acc ∩ N<len(t) | PendingCi

(t, x) ∧
¬∃y ∈ N>acc ∩ N≤x : RequestedCi

(t, y)}
(7.9)

Similarly, each bus access is assigned the clock cycles during which it is blocked, granted,
respectively at which it completes.

∀t ∈ ExecRunsprog,Ci
: ∀acc ∈ getAccessesCi

(t)

getBlockedCi
(t, acc) = {x ∈ getPendingCi

(t, acc) | BlockedCi
(t, x)} ∧

getGrantedCi
(t, acc) = {x ∈ getPendingCi

(t, acc) | GrantedCi
(t, x)} ∧

getCompletedCi
(t, acc) = {x ∈ getPendingCi

(t, acc) | CompletedCi
(t, x)}

(7.10)

Since we model the bus access events of the considered processor core exactly in our baseline
abstract model (cf. equation (7.7)), the same helper notation can also be specified exactly for
sequences of abstract states. Thus, in the following, we use this helper notation on sequences of
abstract states as well.

The experiments presented in the implementation part of this thesis assume a simple SRAM as
shared memory (cf. Section 7.1). As a consequence, there is a fixed latency LAT which every
granted bus access takes until completion. The exact value of this latency is typically determined
by the characteristics of the SRAM hardware component.

∃LAT ∈ N≥1 :

∀t ∈ ExecRunsprog,Ci : ∀acc ∈ getAccessesCi
(t)∣∣getGrantedCi

(t, acc)
∣∣ ≤ LAT ∧∣∣getGrantedCi

(t, acc)
∣∣ < LAT⇒ getCompletedCi

(t, acc) = ∅

(7.11)

A fixed latency LAT can be exploited to reduce the degree of non-determinism in modeling the
bus access behavior. The diagram in Figure 7.4 is a correspondingly simplified version of the
diagram in Figure 7.3—assuming LAT = 2.

Analogous helper functions can also be specified for the access behavior of the concurrent cores
Cj . Note, however, that we still consider execution runs of program prog on core Ci (as this is
what we calculate a WCET bound for). This means that a program run on core Ci can begin
while an earlier requested access of core Cj is still pending. Consequently, such an access cannot
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RequestedCi

GrantedCi

RequestedCi

BlockedCi GrantedCi

GrantedCi

CompletedCi

BlockedCi

Figure 7.4.: The degree of non-determinism for modeling the bus access behavior can be reduced
if every granted bus access takes a fixed latency until completion. In this figure, this
is demonstrated for a fixed latency of two clock cycles.

be identified by the position of its request since this position would be before the start of the
program run. Instead, such an access is identified by the front position of the program run.

∀t ∈ ExecRunsprog,Ci
: ∀Cj ∈ Cores \ {Ci} :

getAccessesCj
(t) = {x ∈ N<len(t) | RequestedCj

(t, x)} ∪
{x ∈ N≤0 ∩ N<len(t) | PendingCj

(t, x)}
(7.12)

7.3. Running Example: Round-Robin Bus Arbitration

In case multiple processor cores have pending bus accesses that have not yet been granted, a
bus arbitration policy has to determine which of them is granted access to the bus first. If the
decisions made by an arbitration policy depend on the bus access history, the arbitration policy is
called event-driven. Time-division multiple access (TDMA) bus arbitration is not event-driven as
the bus access history has no impact on its arbitration decisions. For a more detailed classification
of the existing bus arbitration policies, we refer to a survey on shared-resource interference [Abel
et al., 2013]. In this thesis, we solely consider event-driven bus arbitration protocols. Nonetheless,
the principles presented in this thesis could as well be used to derive analyses for systems with
TDMA bus arbitration or hybrid variants (i.e. mixing event-driven and TDMA schemes).
Round-Robin is a popular event-driven bus arbitration policy (cf. Appendix F of [Hennessy

and Patterson, 2011]). The Round-Robin policy relies on a fixed total order among the processor
cores. In case bus access has not been granted to any processor core during the preceding clock
cycle, the arbitration decision for the current clock cycle selects the first processor core with a
pending bus access according to the total order. In case bus access has been granted to processor
core Ck during the preceding clock cycle, the arbitration decision for the current clock cycle
selects the next processor core with a pending bus access following Ck according to the total
order. If there are no cores with a pending bus access following Ck in the total order, the
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arbitration decision selects the first processor core with a pending bus access according to the
total order. For a detailed formal specification of the Round-Robin arbitration policy, we refer to
a textbook [Kovalev et al., 2014].
Round-Robin bus arbitration will serve as a running example during the remainder of this

thesis. Now, we present two key properties of it, which will be used during the derivation of
our WCET analyses (cf. Section 7.4 and Section 7.5). Note that existing approaches to timing
verification for multi-core processors with a Round-Robin bus arbitration (e.g. [Pellizzoni et al.,
2010; Altmeyer et al., 2015]) are also implicitly based on these properties.

For Round-Robin bus arbitration, there is a local upper bound on the number of blocked cycles
per bus access. Intuitively, the worst thing that can happen for a processor core is that each
concurrent core is granted a full access first. This is expressed by the following property Prr.

Prr(t)⇔∀Ck ∈ Cores : ∀acc ∈ getAccessesCk
(t) :∣∣getBlockedCk

(t, acc)
∣∣ ≤ (|Cores| − 1) · LAT

(7.13)

Moreover, Round-Robin bus arbitration is a work-conserving arbitration policy. This means
that a bus access of a processor core can only be blocked at a particular instant if another core is
granted access at the same instant. This is expressed by the following property Pwc.

Pwc(t)⇔[∀Ck ∈ Cores : ∀x ∈ N<len(t) :
BlockedCk

(t, x)⇒ ∃Cj ∈ Cores \ {Ck} : GrantedCj
(t, x)]

(7.14)

Note that all properties of Round-Robin bus arbitration that this thesis relies on also hold for
the Least-Recently-Granted policy, which is age-based (cf. Appendix F of [Hennessy and Patterson,
2011]). Thus, we can safely reuse the analyses relying on these properties for systems with
Least-Recently-Granted bus arbitration. The Least-Recently-Granted policy grants access to the
core that has waited the longest amount of time since its last granted access [Satpathy et al.,
2012]. If there are multiple cores that have not yet been granted access to the bus since system
start, an arbitration decision among them shall be implementation-defined (e.g. following a fixed
total order among the cores).
Further note that the term Round-Robin is also used by some authors to refer to the special

case of TDMA arbitration in which the bus schedule period is partitioned into |Cores| time slots
of equal size and each core is assigned exactly one time slot [Hong et al., 2010]. In this thesis, in
contrast, we only use the term Round-Robin to refer to the event-driven bus arbitration policy
described above.

7.4. A Co-Runner-Insensitive Analysis

In this section, we derive a co-runner-insensitive WCET analysis for program prog executed
on processor core Ci. This means that the analysis does not make any assumptions about the
programs executed on the concurrent cores. Thus, this corresponds to the Murphy approach (cf.
Section 2.2) of implicitly assuming maximally interfering programs on the concurrent cores.

We start the derivation from the baseline abstract model ̂ExecRunsCi

prog,Ci
presented in Sec-

tion 7.2. We use a lifted version of system property Prr for the detection of infeasible abstract
traces. Intuitively, property Prr is co-runner-insensitive as it upper-bounds the number of blocked
cycles experienced by core Ci independently of the programs on the concurrent cores. Property Prr

115



Chapter 7. Multi-Core Processors with Shared Buses

is formally lifted to ̂ExecRunsCi

prog,Ci
in the following way—fulfilling the soundness criterion (4.C1)

for lifted properties.

[∃t ∈ γtrace(t̂Ci) : Prr(t)]

⇒
(7.13)

[∃t ∈ γtrace(t̂Ci) : ∀acc ∈ getAccessesCi
(t) :

∣∣getBlockedCi
(t, acc)

∣∣ ≤ (|Cores| − 1) · LAT]

⇔
(7.7)

[∀acc ∈ getAccessesCi
(t̂Ci) :

∣∣∣getBlockedCi
(t̂Ci , acc)

∣∣∣ ≤ (|Cores| − 1) · LAT]

⇔: P̂Ci
rr (t̂Ci)

(7.15)

We use the lifted property P̂Ci
rr for the detection of infeasible abstract traces during micro-

architectural analysis. Intuitively, during the non-deterministic modeling of the bus access
behavior (cf. Figure 7.3), we only have to consider those successors that do not exceed the
access-local upper bound on the number of blocked cycles. Due to the soundness of property

lifting, the resulting abstract model ̂ExecRunsCi′
prog,Ci

is also sound with respect to the concrete
traces corresponding to the program execution.

̂ExecRunsCi′
prog,Ci

= {t̂Ci ∈ ̂ExecRunsCi

prog,Ci
| P̂Ci

rr (t̂Ci)} (7.16)

Thus, we can use it again as a baseline abstract model for the calculation of a WCET bound as
presented in Chapter 6. In particular, we can use the lifted versions of further program properties
from set Propprog,Ci

(cf. equation (6.16)) in order to improve the precision of the obtained WCET
bound.

̂ExecRunsCi′′
prog,Ci

= {t̂Ci ∈ ̂ExecRunsCi′
prog,Ci

| ∀Pk ∈ Propprog,Ci
: P̂Ci

k (t̂Ci)} (7.17)

The lifted property P̂Ci
rr enables the calculation of finite WCET bounds for programs that are

guaranteed to terminate. Moreover, it guarantees the termination of our implementation of the
micro-architectural analysis as it does no longer consider an infinite amount of abstract successor
states during the modeling of the bus access behavior (cf. Section 7.2). As a consequence, it also
guarantees that assumptions (6.139) and (6.140) hold for the detailed graph, which represents
the results of the micro-architectural analysis.
A co-runner-insensitive analysis implicitly considers maximally interfering programs on the

concurrent processor cores. This, however, can be very pessimistic with respect to the programs
actually executed on the concurrent cores. Thus, we also present co-runner-sensitive WCET
analyses.

7.5. Co-Runner-Sensitive Analyses
One Abstract Model per Processor Core In this section, we derive co-runner-sensitive WCET
analyses for a program prog executed on processor core Ci. Thus, in addition to the abstract model

̂ExecRunsCi′′
prog,Ci

(cf. Section 7.4), it also considers a corresponding abstract model ̂ExecRunsCj ′′
prog,Ci

per concurrent processor core Cj—modeling the operation of core Cj while core Ci executes
program prog.
Note that each abstract model only has precise knowledge about the events which occur on

the core that it models explicitly. Abstract model ̂ExecRunsCi′′
prog,Ci

has e.g. no knowledge about
when a concurrent core Cj is granted access to the bus. Thus, it pessimistically assumes that
core Cj might be granted access at any instant (i.e. the corresponding may-event always occurs).
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However, it can never be sure that core Cj is granted access at a particular instant (i.e. the
corresponding must-event never occurs).

∀t̂Ci ∈ ̂ExecRunsCi′′
prog,Ci

: ∀x ∈ N
<len(t̂Ci )

: ∀Cj ∈ Cores \ {Ci} :

̂GrantedUBCj
(t̂Ci , x) ∧ ¬ ̂GrantedLBCj

(t̂Ci , x)

(7.18)

In the same way, the abstract model ̂ExecRunsCj ′′
prog,Ci

of a concurrent core Cj has no knowledge
about when the execution of program prog on core Ci starts respectively ends.

∀Cj ∈ Cores \ {Ci} : ∀t̂Cj ∈ ̂ExecRunsCj ′′
prog,Ci

: ∀x ∈ N
<len(t̂Cj )

:

̂StartUBprog,Ci
(t̂Cj , x) ∧ ¬ ̂StartLBprog,Ci

(t̂Cj , x) ∧
̂EndUBprog,Ci

(t̂Cj , x) ∧ ¬ ̂EndLBprog,Ci
(t̂Cj , x)

(7.19)

A Compound Abstract Model We exploit this complementary information in the different
abstract models by combining them to a compound abstract model (cf. Section 4.2.1). A compound
abstract trace has one component abstract trace per processor core.

Ĉmpnd = ̂ExecRunsC1′′
prog,Ci

× ̂ExecRunsC2′′
prog,Ci

× . . . (7.20)

A compound abstract trace only describes those concrete traces that all of its component
abstract traces describe.

∀t̂ ∈ Ĉmpnd : γtrace,prog,Ci
(t̂) =

⋂
Ck∈Cores

γCk

trace,prog,Ci
(πCk

trace(t̂)) (7.21)

As a consequence of each component abstract trace only describing concrete traces of its own
length (cf. equation (5.32)), all compound abstract traces with components of different lengths
are guaranteed to be infeasible. Thus, the subset of all compound abstract traces in which all
components have the same length also forms an abstract model of the concrete traces.

Ĉmpnd′ = {t̂ ∈ Ĉmpnd | ∃n ∈ N : ∀Ck ∈ Cores : len(πCk
trace(t̂)) = n} (7.22)

The length of a compound abstract trace in Ĉmpnd′ shall be defined as the common length of
all its component abstract traces.

∀t̂ ∈ Ĉmpnd′ : ∀Ck ∈ Cores : len(πCk
trace(t̂)) = len(t̂) (7.23)

A may-event (must-event) at a particular position of a compound abstract trace in Ĉmpnd′ is
defined as the most precise may-event (must-event) at this position over all component abstract
traces.

∀t̂ ∈ Ĉmpnd′ : ∀x ∈ N<len(t̂) : ∀E ∈ Events :

ÊUB(t̂, x) = min
Ck∈Cores

ÊUB(πCk
trace(t̂), x) ∧

ÊLB(t̂, x) = max
Ck∈Cores

ÊLB(πCk
trace(t̂), x)

(7.24)

This means that compound abstract traces from Ĉmpnd′ provide the same interface to lifted
properties as their component abstract traces. As a consequence, we can reuse the lifting rules of
Section 5.2 for lifting system properties to the compound abstract model (Ĉmpnd′, γtrace,prog,Ci).
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The compound abstract model (Ĉmpnd′, γtrace,prog,Ci
) argues about all processor cores. Thus,

we can effectively use lifted versions of system properties interrelating the operation of the different
cores for the detection of infeasible compound abstract traces. For an abstract model only arguing
about one core, in contrast, such lifted system properties are essentially useless since the model
does not argue about the other cores and, thus, has to make maximally pessimistic assumptions
about their operation.
The work-conserving property (cf. equation (7.14)) is an example for a system property that

interrelates the operation of the different processor cores. It can safely be lifted to the abstract
model given by the compound abstract traces—resulting in the following lifted property P̂wc.

P̂wc(t̂)⇔ ∀x ∈ N≤len(t̂) :
∑
y∈N<x

̂BlockedLBCi
(t̂, y) ≤

∑
Cj∈Cores\{Ci}

∑
y∈N<x

̂GrantedUBCj
(t̂, y) (7.25)

Intuitively, this states that the number of cycles during which core Ci is guaranteed to be
blocked at the shared bus is upper-bounded by the number of cycles during which a concurrent
core may be granted access to the bus. For a formal proof that the lifted version P̂wc fulfills
soundness criterion (4.C1) with respect to the system property Pwc, we refer to page 298.
Thus, the lifted property P̂wc can safely be used for the detection of infeasible compound

abstract traces. The remaining set ̂Cmpnd′′ provides a sound overapproximation of the concrete
traces.

̂Cmpnd′′ = {t̂ ∈ Ĉmpnd′ | P̂wc(t̂)} (7.26)

Iterative Overapproximation Starting from a Pessimistic Initialization However, the cross
product in the definition of the set of compound abstract traces (cf. equation (7.20)) indicates
that this compound consideration is prohibitive in terms of analysis runtime and/or memory
consumption. Thus, we resort to a processor-core-modular overapproximation of ̂Cmpnd′′ following
the iterative approach presented in Section 4.2.3.

The iterative overapproximation uses one approximation variable per component abstract model

and initializes it pessimistically. Recall that ̂ExecRunsCk′′
prog,Ci

is the abstract trace set modeling
only core Ck (cf. Section 7.4).

∀Ck ∈ Cores : ̂ApproxCk ← ̂ExecRunsCk′′
prog,Ci

(7.27)

Subsequently, the approximation variables are updated in the following way.

∀Cj ∈ Cores \ {Ci} :
̂ApproxCj ← {t̂Cj ∈ ̂ExecRunsCj ′′

prog,Ci
|∑

x∈N
<len(t̂Cj )

ĈycleLB(t̂Cj , x) ≤ max
t̂Ci∈ ̂ApproxCi

∑
x∈N

<len(t̂Ci )

̂CycleUB(t̂Ci , x)}
(7.28)

̂ApproxCi ← {t̂Ci ∈ ̂ExecRunsCi′′
prog,Ci

|∑
x∈N

<len(t̂Ci )

̂BlockedLBCi
(t̂Ci , x) ≤

∑
Cj∈Cores\{Ci}

max
t̂Cj∈ ̂ApproxCj

∑
x∈N

<len(t̂Cj )

̂GrantedUBCj
(t̂Cj , x)}

(7.29)

The intuitive meaning of these updates gets more clear if we factor out the maxima and
present the result as an iterative algorithm. This is demonstrated in Algorithm 7.1. First, it
calculates a WCET bound for program prog executed on core Ci based on the current value of
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̂ApproxCi . Subsequently, for each concurrent processor core Cj , it calculates an upper bound
on the number of granted access cycles that processor core Cj can produce in any interval not
longer than WCETUB

prog,Ci
clock cycles. This can be seen as the calculation of a value on an

arrival curve for core Cj . Finally, the approximation variable of core Ci is updated in order to
not consider any abstract traces that are guaranteed to be blocked longer than the sum over the
arrival curve values of the concurrent cores. This sequence of steps is repeated by the main loop
of the iterative algorithm. Note that actual implementations of the iterative algorithm feature
additional machinery for the detection of a fixed point [Jacobs et al., 2015]. For the sake of
readability, such machinery is omitted in Algorithm 7.1.

Algorithm 7.1 : Iterative WCET analysis following equations (7.28) and (7.29). It
relies on a maximally pessimistic initialization (cf. equation (7.27)) of the approximation
variables.
begin

repeat

WCETUB
prog,Ci

←− max
t̂Ci∈ ̂ApproxCi

∑
x∈N

<len(t̂Ci )

̂CycleUB(t̂Ci , x)

for Cj ∈ Cores \ {Ci} do
̂ApproxCj ←− {t̂Cj ∈ ̂ExecRunsCj ′′

prog,Ci
|∑

x∈N
<len(t̂Cj )

ĈycleLB(t̂Cj , x) ≤WCETUB
prog,Ci

}

GrantUBCj
←− max

t̂Cj∈ ̂ApproxCj

∑
x∈N

<len(t̂Cj )

̂GrantedUBCj
(t̂Cj , x)

̂ApproxCi ←− {t̂Ci ∈ ̂ExecRunsCi′′
prog,Ci

|∑
x∈N

<len(t̂Ci )

̂BlockedLBCi
(t̂Ci , x) ≤

∑
Cj∈Cores\{Ci}

GrantUBCj
}

until . . .

On page 299, we prove that the underlying formal setup (i.e. equations (7.27), (7.28), and (7.29))
fulfills all criteria required by Section 4.2.3. As a consequence, the resulting analysis approach is
safe and monotone. It is an anytime algorithm. Thus, any WCET bound it calculates is sound
(i.e. it is safe to choose an arbitrary termination condition for the main loop of Algorithm 7.1).
Due to the monotonicity and the maximally pessimistic initialization, recalculations of the WCET
bound can never lead to less precise values than earlier calculations. The algorithm should be
stopped at latest when it reaches a fixed point as this means that continuing it would not lead to
further improvements of the precision anyway.

Our Actual Implementation In this section, we derived an iterative WCET analysis based on
one abstract model at the level of approximation of sequences of abstract states per processor core.
Our actual implementation [Jacobs et al., 2015], which is also evaluated in the implementation
part of this thesis, does not directly perform the bound calculations at the level of approximation
of sequences of abstract states. Instead, it performs them at the higher level of approximation of
implicit path enumeration (cf. Section 5.4). The additional constraints on the abstract traces—in
the updates (cf. equations (7.28) and (7.29)) of the approximation variables—are lifted to the
level of approximation of implicit path enumeration. Thus, the contents of the approximation
variables are never explicitly considered in our implementation of the iterative approach.
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For the calculations of the WCET bound WCETUB
prog,Ci

in the implementation of the iterative
approach, we can directly reuse the techniques presented in Chapter 6. Intuitively, we precisely
model the execution of program prog on processor core Ci and—based on the results—calculate
an upper bound on the execution times.

For the calculations of the arrival curve values GrantUBCj
, in contrast, the techniques of Chapter 6

are not directly applicable. Intuitively, we need to calculate an upper bound on the number of
granted bus access cycles that core Cj can perform while core Ci executes program prog. Thus,
we might have to consider sequences of more than only a single program execution run on core
Cj . The techniques of Chapter 6, however, calculate an upper bound on the number of bus access
cycles granted to core Cj during any program execution run of a particular program executed on
core Cj . Thus, in Chapter 10, we present multiple techniques for the calculation of arrival curve
values for core Cj—differing in precision and computational complexity. Note that the contents
of Chapter 10 are presented at a less formal level. A similarly formal derivation as in Chapter 6
would—in principle—have been possible, but is omitted due to time and space constraints.

Iterative Overapproximation Starting from an Optimistic Initialization When defining the
iterative overapproximation approach starting from a pessimistic initialization, we also experi-
mented with using the same approach in combination with an obvious optimistic initialization.
However, it turned out that this combination does not fulfill all criteria required by Section 4.2.4.
From page 302 onward, we present a counter example demonstrating the unsoundness and discuss
an additional but typically undesired assumption under which such an approach is sound.

In order to overcome the soundness problems of our first attempt with an optimistic initial-
ization, we propose a slight variant of this first attempt. The variant initializes and updates
the approximation variable of core Ci in a slightly different way than in our first attempt. The
initialization of the approximation variables shall be optimistically chosen as follows. Note that the
optimistic initialization of the approximation variable of core Ci permits one guaranteed blocked
cycle per abstract trace—but only at the respective tail position (i.e. at position len(t̂Ci)− 1).

̂ApproxCi ← {t̂Ci ∈ ̂ExecRunsCi′′
prog,Ci

|
∑

x∈N
<len(t̂Ci )−1

̂BlockedLBCi
(t̂Ci , x) ≤ 0} (7.30)

∀Cj ∈ Cores \ {Ci} : ̂ApproxCj ← {t̂Cj ∈ ̂ExecRunsCj ′′
prog,Ci

|
∑

x∈N
<len(t̂Cj )

ĈycleLB(t̂Cj , x) ≤ 0}

(7.31)

Analogously, the update of the approximation variable of core Ci only upper-bounds the
number of guaranteed blocked cycles at all non-tail positions. Note that the updates of all other
approximation variables are identical to the corresponding updates of the approach starting from
a pessimistic initialization (cf. equation (7.28)).

̂ApproxCi ← {t̂Ci ∈ ̂ExecRunsCi′′
prog,Ci

|∑
x∈N

<len(t̂Ci )−1

̂BlockedLBCi
(t̂Ci , x) ≤

∑
Cj∈Cores\{Ci}

max
t̂Cj∈ ̂ApproxCj

∑
x∈N

<len(t̂Cj )

̂GrantedUBCj
(t̂Cj , x)}

(7.32)
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For the moment, the following additional assumption shall hold. It states that the set
̂ExecRunsCi′′

prog,Ci
shall contain all prefixes of each of its members. Intuitively, this means that we

must not use lifted properties that detect the infeasibility of a given abstract trace but do not
detect the infeasibility of one of its extensions.

∀t̂Ci ∈ ̂ExecRunsCi′′
prog,Ci

:

len(t̂Ci) ≥ 1

⇒ ∃t̂Ci′ ∈ ̂ExecRunsCi′′
prog,Ci

:

(t̂Ci′, t̂Ci) ∈ ̂PrefixOf ∧

len(t̂Ci′) = len(t̂Ci)− 1

(7.33)

Under assumption (7.33), the formal setup of the proposed approach (i.e. equations (7.30),
(7.31), (7.28), and (7.32)) is guaranteed to fulfill all criteria required by Section 4.2.4. For a
formal proof of this, we refer to page 305. Algorithm 7.2 corresponds to the fixed point iteration
of this proposed approach.

Algorithm 7.2 : Iterative WCET analysis following equations (7.28) and (7.32). It relies
on an optimistic initialization following equations (7.30) and (7.31).
begin

repeat

WCETUB
prog,Ci

←− max
t̂Ci∈ ̂ApproxCi

∑
x∈N

<len(t̂Ci )

̂CycleUB(t̂Ci , x)

for Cj ∈ Cores \ {Ci} do
̂ApproxCj ←− {t̂Cj ∈ ̂ExecRunsCj ′′

prog,Ci
|∑

x∈N
<len(t̂Cj )

ĈycleLB(t̂Cj , x) ≤WCETUB
prog,Ci

}

GrantUBCj
←− max

t̂Cj∈ ̂ApproxCj

∑
x∈N

<len(t̂Cj )

̂GrantedUBCj
(t̂Cj , x)

̂ApproxCi ←− {t̂Ci ∈ ̂ExecRunsCi′′
prog,Ci

|∑
x∈N

<len(t̂Ci )−1

̂BlockedLBCi
(t̂Ci , x) ≤

∑
Cj∈Cores\{Ci}

GrantUBCj
}

until fixed point reached

Even if assumption (7.33) does not hold for all members of ̂ExecRunsCi′′
prog,Ci

, it holds by

definition for all feasible members of ̂ExecRunsCi′′
prog,Ci

, i.e. any prefix of a feasible sequence is
again feasible and lifted properties never prune feasible stuff. Thus, intuitively, the fixed point is
guaranteed to safely overapproximate all feasible members of the projections of the compound
consideration. A formal proof of this, however, exceeds the scope of this thesis. As the feasible
members of a projection safely overapproximate the concrete traces, the fixed point does so as well.
Thus, the WCET bound at the fixed point is sound with respect to the concrete system—even if
assumption (7.33) does not hold.
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Note that, for the considered system with Round-Robin bus arbitration, Algorithm 7.2 is
guaranteed to reach a fixed point after a finite number of iterations. There are essentially two
cases that can happen:

• If the co-runner-insensitive WCET bound is already undefined, Algorithm 7.2 also imme-
diately reaches an undefined value for the WCET bound because shared-bus interference
cannot be the reason for the undefined WCET bound anyway (due to property Prr). Thus,
independently of the calculated arrival curve values, the WCET bound won’t improve in
the next iteration and a fixed point will be reached.

• If the co-runner-insensitive WCET bound has a defined value, Algorithm 7.2 will at latest
terminate when the WCET bound reaches this finite value. Due to monotonicity, only a
finite number of iterations will be needed for this.

For arbitrary systems with work-conserving bus arbitration, however, Algorithm 7.2 might
diverge. Thus, if we cannot guarantee its termination for a particular system, we should extend
Algorithm 7.2 by additional machinery that stops the iteration as soon as the goal of the overall
timing verification cannot be shown anymore (e.g. as soon as the current WCET bound already
exceeds the corresponding deadline).

Implementing the Approach Starting from an Optimistic Initialization Due to time con-
straints, we have not implemented the approach starting from an optimistic initialization.
Nonetheless, we sketch a possible implementation and some of its implications.
In our actual implementation of the micro-architectural analysis, we directly use the lifted

property P̂Ci
rr for the pruning of infeasible abstract successor states (cf. equation (7.16)). In the

same way, we also use some of the lifted versions P̂Ci

k of other system properties (cf. equation (7.17))

directly during micro-architectural analysis. Some lifted properties P̂Ci

k (typically the cumulative
ones), however, are not used during micro-architectural analysis. Instead, they are further lifted
to the higher levels of approximation. Thus, the results of the micro-architectural analysis of

core Ci (
̂ExecRunsCi,µArch

prog,Ci
) are between the two sets that we considered during the derivation of

our co-runner-insensitive analysis (cf. Section 7.4) with respect to the subset relation.

̂ExecRunsCi′
prog,Ci

⊇ ̂ExecRunsCi,µArch
prog,Ci

⊇ ̂ExecRunsCi′′
prog,Ci

(7.34)

̂ExecRunsCi′′
prog,Ci

=
(7.17)
(7.34)

{t̂Ci ∈ ̂ExecRunsCi,µArch
prog,Ci

| ∀Pk ∈ Propprog,Ci
: P̂Ci

k (t̂Ci)} (7.35)

Let GB be a graph obtained from ̂ExecRunsCi,µArch
prog,Ci

by applying the graph construction
proposed in Section 6.4.4 and optionally also a sequence of subsequent graph transformations (cf.
Section 6.4.6). Let Prefixes denote the set of prefixes of paths through GB for which the lifted
versions of all system properties hold.

Prefixes = {p̂ ∈ ̂RelPathsB | ∀Pk ∈ Propprog,Ci
: P̂ path

k (t̂Ci)} (7.36)

Based on these prefixes, we can provide a drop-in replacement for the WCET bound calculations
in Algorithm 7.2. To this end, we initialize the approximation variable of core Ci to the path
prefixes in which at most the last edge may guarantee blocked cycles.

̂ApproxCi ← {p̂ ∈ Prefixes |
∑

x∈N<len(p̂)−1

̂wBlockedLBCi
(p̂, x) ≤ 0} (7.37)
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Analogously, the update of the approximation variable of core Ci in Algorithm 7.2 is replaced
by a corresponding update of the path prefixes.

̂ApproxCi ← {p̂ ∈ Prefixes |
∑

x∈N<len(p̂)−1

̂wBlockedLBCi
(p̂, x) ≤

∑
Cj∈Cores\{Ci}

GrantUBCj
} (7.38)

Finally, the actual WCET bound calculation is also replaced by a corresponding calculation on
path prefixes.

WCETUB
prog,Ci

←− max
p̂∈ ̂ApproxCi

∑
x∈N

<len(̂̂p)
̂wCycleUB(p̂, x) (7.39)

Intuitively, the value of the WCET bound at the fixed point is sound with respect to the
concrete system. A formal soundness proof, however, is omitted due to space and time constraints.
Note that, in order to guarantee the soundness, we have to argue about all path prefixes of

graph GB (cf. equation (7.36)). As implicit path enumeration, however, only argues about all
paths from the start to the end of a graph (cf. Section 5.4), we perform it on a graph GB′ which
is obtained from GB by reinterpreting all nodes as end nodes.
In the same way as for the iterative approach starting from a pessimistic initialization, the

calculation of values on arrival curves shall be based on the techniques presented in Chapter 10.

Reusing the Fixed Point Obtained from an Optimistic Initialization as Pessimistic Initializa-
tion The fixed point of Algorithm 7.2 is sound with respect to the concrete system. Thus, we
can safely reuse this fixed point as pessimistic initialization for Algorithm 7.1. In this way, we
can potentially improve the precision of the WCET bound once Algorithm 7.2 has reached a
fixed point.

Bounding the Blocked Cycles More Precisely under Round-Robin Bus Arbitration So far,
we only exploit a property of Round-Robin bus arbitration that bounds the overall amount of
cycles that a shared-bus access of a processor core can be blocked (Prr, cf. equation (7.13)). The
co-runner-sensitive analyses, in contrast, only relies on the fact that the bus arbitration policy is
work-conserving (Pwc, cf. equation (7.14)). As a consequence, in Algorithm 7.1 and Algorithm 7.2,
the arrival curve values of the concurrent processor cores are simply added up in order to obtain
an upper bound on the number of blocked cycles.

. . . ≤
∑

Cj∈Cores\{Ci}

GrantUBCj

We can improve the precision of the co-runner-sensitive analyses by making them aware of an
even stronger property than Pwc. Intuitively, each requested bus access of core Ci can at most
be blocked for LAT cycles due to a particular concurrent processor core Cj . Still, the overall
amount of cycles that the program execution on core Ci is blocked due to core Cj must not exceed
the overall amount of cycles core Cj is granted access to the bus. This results in the following
additional property of Round-Robin bus arbitration.

Prr′(t)⇔∀x ∈ N≤len(t) :∑
y∈N<x

BlockedCi
(t, y) ≤

∑
Cj∈Cores\{Ci}

min[
∑
y∈N<x

GrantedCj
(t, y),

∑
y∈N<x

RequestedCi
(t, y) · LAT ]

(7.40)
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Relying on this property, we can improve the upper bound on the number of blocked cycles
used in Algorithm 7.1 and Algorithm 7.2 as follows.

. . . ≤
∑

Cj∈Cores\{Ci}

min[GrantUBCj
,

∑
x∈N

<len(t̂Ci )

̂RequestedUBCi
(t̂Ci , x) · LAT ]

Since one operand of the minimum expression depends on the abstract trace t̂Ci , we cannot
statically evaluate its value before the update of the approximation variable. In case the
implementing technology at a higher level of approximation (e.g. an ILP-based implicit path
enumeration) does not directly support minimum expressions in linear constraints, we can simulate
the minimum expressions by additional integer variables and linear constraints as follows.

. . . ≤
∑

Cj∈Cores\{Ci}

BlockedByCj
∧

∀Cj ∈ Cores \ {Ci} :
BlockedByCj

≤ GrantUBCj
∧

BlockedByCj
≤

∑
x∈N

<len(t̂Ci )

̂RequestedUBCi
(t̂Ci , x) · LAT

Alternatively, we can upper bound the operand of the minimum expression which depends on
the abstract trace t̂Ci by the corresponding maximum over all possible abstract traces. In this
way, the minimum expression can be statically evaluated before the update of the approximation
variable. This effectively reduces the complexity of every WCET bound calculation.

MaxBlockedPerConcCore = max
t̂Ci∈ ̂ExecRunsCi′′

prog,Ci

∑
x∈N

<len(t̂Ci )

̂RequestedUBCi
(t̂Ci , x) · LAT

. . . ≤
∑

Cj∈Cores\{Ci}

min[GrantUBCj
,MaxBlockedPerConcCore ]

In the actual implementation of Algorithm 7.1, we choose this last variant of statically calculating
MaxBlockedPerConcCore only once [Jacobs et al., 2015]. Note, however, that this variant can
potentially be less precise than the variant presented before in case the abstract traces maximizing
the number of access requests do not coincide with the abstract traces maximizing the execution
time.
Further note that the presented methods for bounding the number of blocked cycles more

precisely under Round-Robin bus arbitration could be formally derived in a similar way as the
vanilla versions of Algorithm 7.1 and Algorithm 7.2. Such a formal derivation, however, is omitted
due to space and time constraints.

7.6. Quantifying Shared-Bus Interference of a Concurrent
Core: Granted Access Cycles vs. Granted Accesses

The co-runner-sensitive WCET analyses presented in Section 7.5 quantify the shared-bus inter-
ference generated by the concurrent processor cores at the granularity of granted access cycles.
The iterative approaches calculate an upper bound on the number of granted access cycles per
concurrent core. During the subsequent recalculation of the WCET bound, the approaches only
consider abstract traces whose number of blocked cycles does not exceed the sum of the upper
bounds on the granted access cycles of the concurrent cores. Intuitively, the WCET bound
calculation distributes the assumed budget of concurrently granted access cycles among the
accesses of the core under analysis in a way that the WCET bound is maximized.
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Potential Imprecision of the Presented Co-Runner-Sensitive Analyses On the concrete sys-
tem, however, the granted access cycles of the concurrent processor cores cannot be distributed
among all accesses of the core under analysis in a completely free manner. The granted cycles of
a particular access of a concurrent processor core can only block a single access of the core under
analysis. As a consequence, quantifying the concurrent shared-bus interference at the granularity
of granted access cycles (cf. Section 7.5) might lead to imprecision as the worst-case considered
at the abstract model might be infeasible with respect to the concrete traces.

In this section, we propose to avoid such imprecision by alternatively quantifying the shared-bus
interference generated by a concurrent processor core at the granularity of granted accesses.
Due to space and time constraints, however, we only sketch the application of this alternative
granularity and omit the corresponding formal derivation. Nonetheless, we try to provide an
intuitive soundness argument by beginning the presentation with the two key properties that this
alternative approach relies on.

The first key property states that any access of processor core Ci can at most be blocked for
LAT cycles per concurrent access that is granted while the access of core Ci is pending.

PAccGranu1
(t)

⇔∀accCi
∈ getAccessesCi

(t) :∣∣getBlockedCi
(t, accCi

)
∣∣ ≤ LAT ·

∣∣∣{accCj
∈ getAccessesCj

(t) | Cj ∈ Cores \ {Ci} ∧

getPendingCi
(t, accCi

) ∩ getGrantedCj
(t, accCj

) 6= ∅}
∣∣∣

The second key property states that, for any access of a concurrent core Cj , there is at most
one access of core Ci pending while the access of core Cj is granted.

PAccGranu2(t)

⇔∀Cj ∈ Cores \ {Ci} : ∀accCj ∈ getAccessesCj
(t) :∣∣∣{accCi ∈ getAccessesCi

(t) | getPendingCi
(t, accCi) ∩ getGrantedCj

(t, accCj ) 6= ∅}
∣∣∣ ≤ 1

The intuitive consequence of these properties is that every granted access of a concurrent core
Cj can block at most one access of core Ci and at most for LAT cycles.

Co-Runner-Sensitive Analyses Quantifying Shared-Bus Interference at the Granularity of
Granted Accesses We can exploit this for the design of co-runner-sensitive analyses similar to
those presented in Section 7.5. This time, however, we distribute the budget of granted accesses
of the concurrent cores Cj among the accesses of core Ci in a way that the WCET bound is
maximized.
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Intuitively, the budget distribution works as follows.

• If an access of core Ci is not blocked at all, it does not consume any granted accesses from
the budget.

• If an access of core Ci is blocked between 1 and LAT cycles, it consumes 1 granted access
from the budget.

• If an access of core Ci is blocked between LAT+1 and 2 ·LAT cycles, it consumes 2 granted
accesses from the budget.

• . . .

• More general: if an access of core Ci is blocked between (x − 1) · LAT + 1 and x · LAT
cycles, it consumes x granted accesses from the budget.

In order to express this in an efficient way during our non-deterministic modeling of the
shared-bus interference (cf. Section 7.2), we introduce the pseudo-event ConcGrantAccCi

. It
occurs if and only if core Ci is blocked at the shared bus and the number of blocked cycles since
the corresponding access request equals to 1 modulo LAT.

ConcGrantAccCi
(t, x)⇔BlockedCi

(t, x) ∧∑
y∈N≤x∩N≥max{z∈N≤x|RequestedCi

(t,z)}

BlockedCi(t, y) ≡ 1 mod LAT

More practically spoken, this means that the pseudo-event occurs whenever an access of core Ci
is blocked for the 1st, (LAT+ 1)th, (2 · LAT+ 1)th, . . . time. Intuitively, the pseudo-event means:
starting from the current blocked cycle, another granted access of a concurrent processor core
is consumed. For a concrete value of LAT, we could blow up the diagram representation of the
non-determinism (cf. Figure 7.3) accordingly in order to also describe the new pseudo-event in
the diagram. For the sake of readability, we do not present such a blown-up diagram in this
section. In our actual implementation of this non-determinism, we efficiently model the number
of blocked cycles since the corresponding access request by a counter variable.

In the co-runner-sensitive analyses presented in Section 7.5 (Algorithm 7.1 and Algorithm 7.2),
we change a few details in order to switch from granted access cycles to granted accesses. In the
adapted versions of both algorithms, now, we calculate an upper bound on the number of granted
accesses instead of an upper bound on the number of granted access cycles.

GrantUBCj
←− max

t̂Cj∈ ̂ApproxCj

∣∣∣{accCj
∈ getAccessesCj

(t̂Cj ) | getGrantedCj
(t̂Cj , accCj

) 6= ∅}
∣∣∣

In case it is too complicated to argue about the number of granted accesses at a higher level
of approximation (e.g. during implicit path enumeration), we can safely upper-bound the above
value by maximizing the number of requested accesses and subsequently adding one. Note that
the author was initially not aware of this and has to thank Sebastian Hahn for pointing it out.

GrantUBCj
←− 1 + max

t̂Cj∈ ̂ApproxCj

∑
x∈N

<len(t̂Cj )

̂RequestedUBCj
(t̂Cj , x)

In the adapted version of Algorithm 7.1, we use these upper bounds to constraint the number
of occurrences of pseudo-event ConcGrantAccCi

that can happen in an abstract trace.∑
x∈N

<len(t̂Ci )

̂ConcGrantAccLBCi
(t̂Ci , x) ≤

∑
Cj∈Cores\{Ci}

GrantUBCj
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In the adapted version of Algorithm 7.2, we only constraint the number of occurrences of
pseudo-event ConcGrantAccCi

that can happen at all non-tail positions of an abstract traces.∑
x∈N

<len(t̂Ci )−1

̂ConcGrantAccLBCi
(t̂Ci , x) ≤

∑
Cj∈Cores\{Ci}

GrantUBCj

Moreover, the optimistic initialization of Algorithm 7.2 is adapted accordingly.

̂ApproxCi ← {t̂Ci ∈ ̂ExecRunsCi′′
prog,Ci

|
∑

x∈N
<len(t̂Ci )−1

̂ConcGrantAccLBCi
(t̂Ci , x) ≤ 0}

Note that we expect the soundness of the adapted version of Algorithm 7.2 to additionally rely
on the following slight variant of property PAccGranu1

. This is, however, only an educated guess
based on our experiences with the soundness proof of the original version of Algorithm 7.2. A
formal soundness proof of the adapted version of Algorithm 7.2 exceeds the scope of this thesis.

⇔P ∗AccGranu1
(t)

∀accCi
∈ getAccessesCi

(t) :

∀x ∈ getBlockedCi
(t, accCi

) :∣∣N≥accCi
∩ N≤x

∣∣ ≤ LAT ·
∣∣∣{accCj ∈ getAccessesCj

(t) | Cj ∈ Cores \ {Ci} ∧

N≥accCi
∩ N≤x ∩ getGrantedCj

(t, accCj ) 6= ∅}
∣∣∣

Further note that the co-runner-sensitive analyses quantifying the interference generated by the
concurrent cores at the granularity of granted accesses—as just sketched—do not exploit that the
bus is arbitrated following the Round-Robin policy. Thus, they can also be applied to systems with
other work-conserving bus arbitration policies. In a similar way as for the analyses quantifying the
interference at the granularity of granted access cycles, we can improve the analysis precision by
additionally taking into account that—under Round-Robin bus arbitration—each access of core
Ci can at most be blocked by one granted access per concurrent processor core. The necessary
changes to the analyses are analogous to those discussed at the end of Section 7.5 and, thus, not
further discussed in this section.

Orthogonality of the Granularities with Respect to Precision Next, we demonstrate that none
of both granularities dominates the other with respect to precision. To this end, consider the
example graph of Figure 7.5. The graph represents the results of a micro-architectural analysis of
a simple example program and is used for the calculation of a co-runner-sensitive WCET bound.
The concrete system for which the analysis was performed shall feature a dual-core processor
and a shared bus with Round-Robin arbitration and a granted-access latency LAT of two cycles.
The program performs two accesses to the shared bus of which each one can be blocked for up to
LAT (i.e. two) cycles according to the Round-Robin policy.

In a first interference scenario, assume that the concurrent processor core can be granted
up to two access cycles. Nonetheless, the concurrent processor core shall be granted at most
one access (i.e. the two granted access cycles must belong to the same access). In case we use
the number of granted access cycles of the concurrent core to bound the number of blocked
cycles on the core under analysis, we end up with a WCET bound of eight cycles (along the
path a → b → d → e → g → h → j → k → m). In case we use the number of granted
accesses of the concurrent core to bound the number of consumed concurrent accesses of the
core under analysis, we end up with a WCET bound of seven cycles (e.g. along the path
a→ b→ c→ d→ e→ g → l → m). Thus, in this interference scenario, it is more beneficial in
terms of precision to use the number of granted accesses for quantifying the interference generated
by the concurrent core.
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Figure 7.5.: Detailed graph of a simple example program. The edge weights upper-bound the
number of processor cycles, lower-bound the number of cycles blocked at the
shared bus, and lower-bound the number of concurrently granted bus accesses
consumed.

In a second interference scenario, assume that the concurrent processor core can be granted up
to three access cycles. Thus, the concurrent processor core can be granted up to two accesses
(because a single granted access with LAT = 2 cannot result in three granted access cycles). In
case we use the number of granted access cycles of the concurrent core to bound the number
of blocked cycles on the core under analysis, we end up with a WCET bound of nine cycles
(e.g. along the path a → b → c → d → e → g → h → j → k → m). In case we use the
number of granted accesses of the concurrent core to bound the number of consumed concurrent
accesses of the core under analysis, we end up with a WCET bound of ten cycles (along the path
a→ b→ c→ d→ e→ g → h→ i→ j → k → m). Thus, in this interference scenario, it is more
beneficial in terms of precision to use the number of granted access cycles for quantifying the
interference generated by the concurrent core.
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This shows that none of both granularities dominates the other with respect to precision. As a
consequence, one could think of combined iterative algorithms that rely on both granularities
and, thus, calculate two arrival curve values per concurrent core and iteration. Such combined
algorithms are a straight-forward extension of the iterative algorithms already presented or
sketched. Thus, we do not further discuss them here.

Converting Interference Bounds from One Granularity to the Other As discussed before, one
would need to calculate arrival curve values at both granularities in order to fully exploit the
orthogonality of the granularities with respect to precision. If we can—for whatever reason—only
calculate arrival curve values at one of the granularities, we can convert a value to the respective
other granularity and potentially still profit to some degree from the orthogonality of both
granularities.
The safe conversion from the granularity of granted accesses to the granularity of granted

access cycles is performed as follows. Let x upper-bound the number of accesses that core
Cj can be granted during any time interval of at most W cycles (and, thus, x ≤ W ). Then,
toAccCycles(W,x) upper-bounds the number of access cycles that core Cj can be granted during
any time interval of at most W cycles. The conversion pessimistically assumes that any granted
access is granted for LAT cycles. Moreover, it exploits that any time interval of at most W cycles
can at most contain W granted access cycles.

toAccCycles(W,x) = min(W,x · LAT) (7.41)

Note that the number of access cycles obtained from this conversion is guaranteed to not lead
to an improvement of precision compared to the use of the initial number x of accesses unless
W < x · LAT. Thus, we expect that the application of this conversion does in most cases not
lead to an improved precision.

The safe conversion from the granularity of granted access cycles to the granularity of granted
accesses is performed as follows. Let x upper-bound the number of access cycles that core Cj can
be granted during any time interval of at most W cycles (and, thus, x ≤W ). Then, toAccesses(x)
upper-bounds the number of accesses that core Cj can be granted during any time interval of
at most W cycles. The conversion upper-bounds to how many different granted accesses the x
granted access cycles can at most belong.

toAccesses(x) = min(x,

⌈
x− 1

LAT

⌉
+ 1) (7.42)

The effectiveness of this conversion can be demonstrated with a simple example graph similar
to the graph of Figure 7.5. The considered hardware platform shall also be the same as for
the examples presented in combination with Figure 7.5. This time, however, the pattern which
is repeated twice in Figure 7.5 is repeated five times. Thus, the resulting graph stands for a
program which performs five bus accesses. Now, assume that the concurrent core is granted at
most five access cycles. If we directly use these five access cycles to upper-bound the number
of blocked cycles of the program execution, we obtain a WCET bound of twenty cycles. If we,
however, convert the five access cycles into three granted accesses (following equation (7.42)) and
use this to upper-bound the number of concurrently granted accesses consumed by the program
execution, we obtain a WCET bound of nineteen cycles. Due to space restrictions, we do not
further visualize this example.
Note that we do not formally prove the correctness of the presented conversion rules.

Use of the Granularities in Literature Fully integrated WCET analyses model the shared-bus
interference (more or less) exactly by enumerating (an overapproximation of) all interleavings
of accesses to the bus performed by the different processor cores [Lv et al., 2010; Gustavsson
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et al., 2010; Kelter and Marwedel, 2014; Giannopoulou et al., 2012; Lampka et al., 2014]. These
approaches are not processor-core-modular and, thus, do not rely on cumulative approximations
of the interference generated by the concurrent processor cores. Hence, we cannot classify these
approaches at all in terms of the granularity at which they quantify the amount of shared-
bus interference generated by a concurrent core. As discussed before (cf. Section 2.2.1), these
approaches are unlikely to scale to real-world scenarios due to their enormous computational
complexity.
Most existing approaches to timing verification for multi-core processors with shared buses

avoid this complexity by taking a processor-core-modular view [Schliecker et al., 2008; Negrean
et al., 2009; Andersson et al., 2010; Schliecker and Ernst, 2010; Pellizzoni et al., 2010; Schranzhofer
et al., 2011; Dasari et al., 2011; Dasari and Nélis, 2012; Nowotsch and Paulitsch, 2013; Nowotsch
et al., 2014; Altmeyer et al., 2015]. All of these processor-core-modular approaches quantify the
shared-bus interference generated by the concurrent processor cores at the granularity of granted
accesses.

To the best of our knowledge, we are first to point out the potential impact that the granularity
at which the shared-bus interference generated by a concurrent core is quantified can have on
the precision of WCET analysis. In particular, we presented co-runner-sensitive WCET analyses
quantifying the interference generated by a concurrent core at the granularity of granted access
cycles (cf. Section 7.5) and at the granularity of granted accesses (cf. this section). Subsequently,
we demonstrated that—in general—none of both granularities dominates the other with respect
to precision.

Due to space and time constraints, in the remainder of this thesis, we only consider co-runner-
sensitive WCET analyses quantifying the interference generated by a concurrent core at the
granularity of granted access cycles (cf. Section 7.5). Thus, in particular, we do not conduct an
experimental case study on the impact that both granularities (or a combination of them) can
have on the precision of WCET analysis.

7.7. Toward Priority-Based Bus Arbitration

Priority-based bus arbitration protocols base their arbitration decisions on priorities that are
assigned to the different requests competing for access. In case multiple accesses are pending, the
bus is granted to the core requesting access with the highest priority. As for all bus arbitration
protocols we consider, once an access is granted, it stays granted until completion (cf. Figure 7.3).
Note that priority-based bus arbitration is also work-conserving as it only blocks a processor in
case another core is granted access to the bus.

There is a whole class of priority-based bus arbitration protocols. Its members differ in whether
priorities are assigned to the processor cores, the programs, or potentially even to particular
accesses. Moreover, they differ in whether the priorities are chosen statically (i.e. fixed-priority)
or may change during the execution of the system. For the sake of simplicity, in this thesis, we
only consider a priority-based bus arbitration protocol that uses a statically assigned, unique
priority per processor core. This particular variant has also been referred to as processor-priority
in literature [Altmeyer et al., 2015]. In the following, we also use this term.
Note that, for systems with processor-priority arbitration, programs executed on a processor

core which is not assigned the highest priority might suffer from starvation. This means that a
pending access of the core is never granted because there is continuously a pending access of a
core with a higher priority. As a consequence, there are no finite co-runner-insensitive WCET
bounds for programs executed on a processor core which is not assigned the highest priority.
Thus, in such scenarios, a co-runner-sensitive analysis is mandatory for the determination of

finite WCET bounds. To this end, we can safely reuse the co-runner-sensitive WCET analyses
presented in Section 7.5 since they only rely on a work-conserving bus arbitration (which the
processor-priority arbitration happens to be). Note, however, that a co-runner-sensitive analysis
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starting from a maximally pessimistic initialization will also in most cases not lead to a finite
WCET bound: The first WCET bound calculated starting from a pessimistic initialization is
co-runner-insensitive and, thus, undefined for at least all programs executed on a core which is
not assigned the highest priority. In an arbitrarily long interval of time (i.e. the interval length is
not upper-bounded by a finite value), the concurrent cores can in nearly all cases produce an
arbitrarily high amount of granted access cycles. Hence, a recalculation of the WCET bound
again results in an undefined value, which corresponds to a fixed point of the iterative analysis.
As a consequence, a co-runner-sensitive WCET analysis can in most cases only calculate a finite
WCET bound if it starts from an optimistic initialization.

Further note that a co-runner-sensitive WCET analysis starting from an optimistic initialization
can in general diverge (e.g. if the program under analysis suffers from starvation on the concrete
system). In order to avoid the divergence of the co-runner-sensitive analysis, the iterative
algorithm shall be stopped as soon as the overall goal of the timing verification can no longer be
proven (e.g. as soon as a deadline is exceeded).

Finally, note that the co-runner-sensitive WCET analyses solely relying on a work-conserving
bus arbitration (as presented in Section 7.5) can result in overly pessimistic analysis results if
applied to a system with a processor-priority bus arbitration: They upper-bound the number
of cycles during which the core under analysis is blocked by the overall amount of access cycles
granted to the concurrent cores. On a system with processor-priority arbitration, however, an
access of the core under analysis can at most be blocked by one core of lower priority (i.e. an
access of lower priority has already been granted before the access request of the core under
analysis has been issued). This is expressed by the following system property.

Pproc-prio(t)⇔∀x ∈ N≤len(t) :∑
y∈N<x

BlockedCi(t, y) ≤
∑

Cj∈HigherThanCi

∑
y∈N<x

GrantedCj (t, y) +

min[
∑

Cj∈LowerThanCi

∑
y∈N<x

GrantedCj (t, y),∑
y∈N<x

RequestedCi
(t, y) · (LAT− 1) ]

(7.43)

It is beyond the scope of this thesis to describe the use of this additional system property
in co-runner-sensitive WCET analyses. The necessary changes with respect to the original
co-runner-sensitive analyses (only relying on a work-conserving bus arbitration), however, are very
similar to those for bounding the number of blocked cycles more precisely under Round-Robin
arbitration (cf. the end of Section 7.5).
Due to time and space constraints, this thesis does not present any experimental results for

systems with priority-based bus arbitration. It is the goal of this section to point out some of
the particularities of priority-based bus arbitration protocols with respect to WCET analysis.
Moreover, it is the goal of this section to give the reader an idea of the generality of our formal
concepts (i.e. analyses for systems with priority-based bus arbitration can be derived in a similar
way as the analyses for systems with Round-Robin arbitration). This concludes the brief discussion
of priority-based bus arbitration protocols.

7.8. Consideration of Further Shared Resources

So far, we assumed a fixed latency LAT which every granted bus access takes until completion.
This assumption holds in case the memory shared between the processor cores is a simple SRAM.
It allows us to significantly decrease the degree of non-determinism during the modeling of the
shared-bus interference (cf. the diagram in Figure 7.4 for a latency LAT of two clock cycles).
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Figure 7.6.: Diagram representation of the non-determinism for modeling the shared-resource
access behavior of a system with a shared-bus, a simple SRAM, and a shared cache
between the bus and the SRAM. In case of a hit in the shared cache, the latency for
a granted bus access shall be two clock cycles. In case of a cache miss, it shall be
four clock cycles.

In a more realistic scenario, however, there is a shared cache between the shared bus and the
shared memory. As a consequence, there is no longer one fixed latency which every granted bus
access takes until completion. Instead, the actual latency of a particular granted bus access
depends on whether the corresponding shared-cache access is a hit or a miss. Note that this is
still safely covered by the very general modeling scheme presented in Figure 7.3 as it considers
arbitrary latencies (≥ 1) per granted bus access.

In combination with a shared cache, there are typically two possible latencies which a granted
bus access can take until completion—one for the case of a shared-cache hit and one for the case
of a shared-cache miss.

∃LAThit,LATmiss ∈ N≥1 :

LAThit < LATmiss ∧
∀t ∈ ExecRunsprog,Ci

: ∀acc ∈ getAccessesCi
(t)∣∣getGrantedCi

(t, acc)
∣∣ ≤ LATmiss ∧∣∣getGrantedCi

(t, acc)
∣∣ 6∈ {LAThit,LATmiss} ⇒ getCompletedCi

(t, acc) = ∅

(7.44)

Consequently, we can create a non-determinism diagram that only features those two latencies.
Figure 7.6 presents such a diagram for a cache-hit latency of two cycles and a cache-miss latency
of four cycles. It safely models all possible cases for a concrete system with these latencies as it
pessimistically assumes that every access might miss or hit the shared cache. These relatively
short example latencies have primarily been chosen to keep the diagram small.

For such a system with two different bus-access latencies, there is no longer a single bus-access
latency LAT. Many of the presented system properties bounding the shared-bus interference
(e.g. Prr, Prr′ , and PAccGranu1), however, argue about the latency LAT. For a system additionally
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containing a shared cache, corresponding system properties hold—pessimistically arguing about
the cache-miss latency LATmiss instead of LAT. Thus, we can safely reuse the presented analyses
bounding the shared-bus interference for such a system by replacing LAT by LATmiss.
While it is in principle sound to pessimistically assume that every access might miss or hit

the shared cache, it results in a significant amount of overestimation with respect to the actual
WCET [Yan and Zhang, 2008]. The precision can be improved by incorporating system properties
that bound the amount of shared-cache interference that a processor core experiences. Existing
approaches to WCET analysis for systems with shared caches [Yan and Zhang, 2008; Zhang and
Yan, 2009; Li et al., 2009; Nagar and Srikant, 2014] implicitly rely on such system properties. A
discussion of these system properties, however, is beyond the scope of this thesis.
The non-deterministic modeling scheme presented in Figure 7.6 makes the resulting WCET

analyses applicable to systems exhibiting timing anomalies. Most existing approaches to WCET
analysis for systems with shared caches [Yan and Zhang, 2008; Zhang and Yan, 2009; Li et al.,
2009; Nagar and Srikant, 2014], in contrast, rely on timing compositionality [Hahn et al., 2013]
and, thus, are not directly applicable to systems exhibiting timing anomalies. Thus, a combination
of the modeling scheme that we propose and the system properties that the existing approaches
implicitly rely on leads to WCET analyses safely modeling a significantly wider range of hardware
platforms than the existing approaches. The derivation, implementation, and evaluation of
such WCET analyses for systems with shared caches, however, exceed the scope of this thesis.
Nonetheless, the principles presented in this thesis provide a good starting point for future work.
Note that a similar approach can also be chosen for modeling the overall interference in case

there are other sources of interference influencing the overall latency of a granted bus access. This
could e.g. be a second-level bus in a bus hierarchy, a DRAM performing regular refreshes, or a
combination of multiple sources of interference (like a shared bus in front of a shared cache in
front of a DRAM). The conceptual process of coming up with such non-deterministic modeling
schemes is roughly described by three steps.

1. All sources of interference behind the shared bus are safely modeled by the scheme presented
in Figure 7.3 as it considers arbitrary latencies (≥ 1) per granted bus access.

2. Additional knowledge is used to only enumerate latencies that are actually possible on the
concrete system. In the resulting non-deterministic diagram (cf. Figure 7.6), the edges are
labeled with system events (e.g. the longer latency is only possible in combination with a
cache-miss event).

3. We use system properties to bound the amount of latency-inducing system events. We
might e.g. know that the access behavior of the concurrent cores can never lead to more
than a given number of misses at the shared cache for the core under analysis. Lifted
versions of these system properties are used for the detection of infeasible abstract traces.

7.9. Discussion

The main advantage of incorporating the shared-resource interference already during WCET
analysis is that we can subsequently use standard schedulability analyses that are not aware of
the shared resources at all. However, the consideration of the interference during WCET analysis
can also be a disadvantage in terms of precision. Consider the example in Figure 7.7: Programs
prog1 and prog2 are executed on core C1 and program prog3 is executed on core C2 of a dual-core
processor. The scheduling shall be non-preemptive. There shall be one tiny program location
in prog3 (red dot) that is only executed once during its relatively long program execution run
and that is the hot-spot in terms of interference generation on core C2. The programs on core
C1, in contrast, are relatively short-running. Each of the programs on core C1 can be interfered
by the hot-spot on core C2 during a run of the concrete system, which significantly increases
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C2 :

C1 : prog1 prog2 prog1 prog2 prog1 prog2

prog3 prog3
time :

0

Figure 7.7.: Example for a cyclic scheduling in which at most one program on core C1 can
experience the maximal interference by core C2 during a scheduling round. The red
dot marks the hot-spot on core C2 with respect to the interference it creates.

its execution time. However, if one of the programs is interfered by the hot-spot, the other is
guaranteed to not be interfered by it during the same scheduling round of core C1. If we account
for the interference already during WCET analysis, each of the WCET bounds for programs
prog1 and prog2 has to account for the interference generated by the hot-spot. Thus, a subsequent
schedulability analysis which is not aware of the interference at all has to implicitly account twice
for the interference generated by the hot-spot per scheduling round. This is clearly infeasible as
the per-program worst cases exclude each other within the same scheduling round.
In order to overcome this potential pessimism, modern schedulability analyses are aware

of shared-resource interference [Altmeyer et al., 2015]. They calculate the maximal amount of
concurrent interference that a sequence of programs can experience. For the example in Figure 7.7,
this could mean that the schedulability analysis finds out that three scheduling rounds on core
C1 can cumulatively only be interfered twice by the hot-spot of core C2—instead of the six times
implicitly assumed by a standard schedulability analysis relying on co-runner-sensitive WCET
bounds.

Note, however, that essentially all existing schedulability analyses rely on timing composition-
ality [Hahn et al., 2013]. Thus, they are not directly applicable [Hahn et al., 2016a] to hardware
platforms exhibiting timing anomalies [Lundqvist and Stenstrom, 1999]. In the next chapter,
we bridge this gap by demonstrating the use of the techniques presented in this chapter for the
calculation of bounds that can safely be used in analyses relying on timing compositionality. In
this way, we enable the use of interference-aware schedulability analyses [Altmeyer et al., 2015]
for the timing verification of systems exhibiting timing anomalies.
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Many WCET analyses and essentially all schedulability analyses rely on timing compositional-
ity [Hahn et al., 2013]. Intuitively, these analyses start from a basic timing bound that assumes
the absence of interference and subsequently add a fixed timing penalty per unit of interference.
In a multi-core setting, the basic timing bound classically assumes the absence of shared-resource
interference and, thus, is calculated using single-core WCET analysis techniques.

The determination of a safe timing penalty per unit of interference, however, remains an open
problem [Hahn et al., 2016a] for hardware platforms exhibiting timing anomalies [Lundqvist and
Stenstrom, 1999]. Due to timing anomalies, a clock cycle of being blocked at a shared bus may
e.g. increase the overall execution time of the considered program by more than just one clock
cycle. These timing anomalies have already been observed for surprisingly simple processor-core
pipelines only featuring in-order execution [Hahn et al., 2016a]. They can be avoided by adapting
the hardware design in a way that the processor-core pipeline is stalled whenever interference
occurs [Hahn et al., 2016a]. Such changes to the hardware design, however, are expected to have
a negative impact on the average-case performance of the system. Moreover, in most real-world
scenarios, the design of the hardware platform must not be altered at all.

Consequently, it is so far unclear how to safely apply the verification approaches relying on timing
compositionality to the majority of real-world hardware platforms exhibiting timing anomalies.
We bridge this (widely ignored) gap by the calculation of compositional base bounds. Classically,
the basic bounds for a timing-compositional analysis have been determined by single-core WCET
analysis techniques which assume the absence of shared-resource interference. Compositional
base bounds, in contrast, are calculated on top of safe techniques for modeling shared-resource
interference (cf. Chapter 7). As a consequence, however, their calculation is computationally more
complex than a corresponding WCET analysis which assumes the absence of shared-resource
interference.
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In this chapter, we formalize the concept of compositional base bounds. Based on the principles
of Chapter 7, we present two approaches to their calculation. Moreover, we discuss some of their
applications.

8.1. The Concept of Compositional Base Bounds

A timing-compositional analysis typically tries to upper-bound the execution time of a program
prog for a core Ci by starting from a basic bound and subsequently adding a fixed penalty per
event that increases the execution time. In a more general scenario, we can as well upper-bound
the number of occurrences of an arbitrary event Ebnd. Thus, timing compositionality corresponds
to the special case of Ebnd = Cycle.

Ebnd ∈ Events (8.1)

While upper-bounding event Ebnd, we add a fixed penalty pen per occurrence of event E. In
general, we take into account different events E—each with a dedicated penalty from R≥0. This
is reflected by the set PenEv of pairs of penalty and event.

PenEv ⊆ R≥0 × Events (8.2)

We say that R ∈ R is a compositional base bound with respect to Ebnd and PenEv if—for any
concrete program execution run—the number of occurrences of event Ebnd is upper-bounded (≤)
by R plus the numbers of occurrences of the events E from PenEv multiplied with their respective
penalties.

CompBaseBoundsprog,Ci
(Ebnd,≤,PenEv) =

{R ∈ R | ∀t ∈ ExecRunsprog,Ci :

numEvOccur(prog, Ci, t, Ebnd) ≤

R+
∑

(pen,E)∈PenEv

pen · numEvOccur(prog, Ci, t, E)}

(8.3)

Consider the example of R ∈ CompBaseBoundsprog,Ci
(Cycle,≤, {(pen1, E1)}). Its intuitive

meaning is that every program execution run with at most x occurrences of event E1 cannot
have an execution time greater than R+ pen1 · x. Thus, we can safely use R as base bound in a
timing-compositional analysis that accounts for every occurrence of event E1 by adding a penalty
of pen1 clock cycles.

Note, however, that—for particular choices of Ebnd and PenEv—the set of compositional base
bounds may be empty. Consider, e.g., a multi-core processor with a shared bus, priority-based
bus arbitration, and a program prog that suffers from starvation on core Ci. For this concrete
scenario, the set CompBaseBoundsprog,Ci

(Cycle,≤, {(0.5,BlockedCi)}) is empty, as there can be
an unbounded amount of blocked cycles (cf. Section 7.7) and—as soon as the pipeline is converged
during an access to the shared bus (cf. Section 9.2)—each of them contributes a full clock cycle to
the execution time. Thus, there is no compositional base bound unless we consider a penalty of
at least one clock cycle per cycle blocked at the shared bus. On the other hand, for any program
which has a finite WCET, there is even a compositional base bound under a penalty of zero clock
cycles per cycle blocked at the shared bus.
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So far, we only defined compositional base bounds for upper-bounding the number of occurrences
of event Ebnd. Analogously, we can define compositional base bounds such that the number of
occurrences of event Ebnd is lower-bounded (≥) by R plus the numbers of occurrences of the
events E from PenEv multiplied with their respective penalties.

CompBaseBoundsprog,Ci
(Ebnd,≥,PenEv) =

{R ∈ R | ∀t ∈ ExecRunsmin-relev
prog,Ci,E :

numEvOccur(prog, Ci, t, Ebnd) ≥

R+
∑

(pen,E)∈PenEv

pen · numEvOccur(prog, Ci, t, E)}

(8.4)

An upper-bounding compositional base bound is more precise than another one if it is smaller.
Analogously, a lower-bounding compositional base bound is more precise than another one if it is
greater.

This concludes the formal definition of compositional base bounds with respect to the concrete
traces. In order to efficiently calculate compositional base bounds, we resort to the higher levels
of approximation described in the previous chapters. In the following sections, we present two
calculation procedures.

8.2. Calculation by Subtraction of Edge Weights
In this section, we present a calculation procedure for compositional base bounds that operates
on a graph GB as used for the calculation of event bounds using implicit path enumeration (cf.
Section 6.5). The calculation procedure also relies on implicit path enumeration.
According to the above definitions, compositional base bounds have to bound the following

difference—either from above (cf. equation (8.3)) or from below (cf. equation (8.4)).

numEvOccur(prog, Ci, t, Ebnd)−
∑

(pen,E)∈PenEv

pen · numEvOccur(prog, Ci, t, E)

The procedure calculates the corresponding difference per graph edge. Subsequently, these
differences are used as edge weights in an implicit path enumeration. For the calculation of
upper-bounding compositional base bounds, it uses upper-bounding edge weights for event Ebnd
and lower-bounding edge weights for the events E from PenEv.

̂MaximumB,impli
prog,Ci,Ebnd,PenEv = max

(tt,∗,∗)∈ ̂LessImplicitB

∑
edg∈EdgesB

tt(edg) ·

[ ̂wEventUBprog,Ci,Ebnd
(edg)

−
∑

(pen,E)∈PenEv

pen · ̂wEventLBprog,Ci,E(edg)]

(8.5)

Analogously, for the calculation of lower-bounding compositional base bounds, it uses lower-
bounding edge weights for event Ebnd and upper-bounding edge weights for the events E from
PenEv.

̂MinimumB,impli
prog,Ci,Ebnd,PenEv = min

(tt,∗,∗)∈ ̂LessImplicitB

∑
edg∈EdgesB

tt(edg) ·

[ ̂wEventLBprog,Ci,Ebnd
(edg)

−
∑

(pen,E)∈PenEv

pen · ̂wEventUBprog,Ci,E(edg)]

(8.6)
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Whenever the procedure results in a defined value, this value is guaranteed to be a compositional
base bound. This is reflected by the following two statements. For a proof sketch for these
statements, we refer to page 313.

̂MaximumB,impli
prog,Ci,Ebnd,PenEv ∈ R

⇒ ̂MaximumB,impli
prog,Ci,Ebnd,PenEv ∈ CompBaseBoundsprog,Ci

(Ebnd,≤,PenEv)
(8.7)

̂MinimumB,impli
prog,Ci,Ebnd,PenEv ∈ R

⇒ ̂MinimumB,impli
prog,Ci,Ebnd,PenEv ∈ CompBaseBoundsprog,Ci

(Ebnd,≥,PenEv)
(8.8)

The implicit path enumeration used in this calculation procedure is typically realized by
integer linear programming (ILP). A performance-optimized implementation of the procedure
would statically evaluate the difference per graph edge during the construction of the integer
linear program. It is, however, as well possible to explicitly perform the subtraction during
the ILP-solving step. To this end, one introduces an additional integer variable var(pen,E) per
(pen, E) ∈ PenEv. For the calculation of upper-bounding compositional base bounds, additional
constraints encode that the value of var(pen,E) must never be smaller than the sum over the
corresponding lower-bounding edge weights along the implicit path.

∀(pen, E) ∈ PenEv :
∑

edg∈EdgesB
tt(edg) · ̂wEventLBprog,Ci,E(edg) ≤ var(pen,E) (8.9)

The actual calculation of an upper-bounding compositional base bounds is then performed as
follows.

max
(tt,∗,∗)∈ ̂LessImplicitB

∀(pen,E)∈PenEv:var(pen,E)∈Z

[
∑

edg∈EdgesB
tt(edg) · ̂wEventUBprog,Ci,Ebnd

(edg)

−
∑

(pen,E)∈PenEv

pen · var(pen,E)]

(8.10)

A corresponding implementation of the calculation of lower-bounding compositional base
bounds is obtained by switching the bound directions in equations (8.9) and (8.10), replacing the
≤ in equation (8.9) by ≥, and replacing the maximum in equation (8.10) by a minimum.

In a recent research paper [Hahn et al., 2016a], we have presented this style of implementation
for the calculation of upper-bounding compositional base bounds. On page 314, we formally
argue that it is indeed an implementation of the calculation procedure presented in this section
(cf. equations (8.5) and (8.6)) as it is guaranteed to provide the same results.

A performance comparison between this alternative style of implementation and an implemen-
tation that already evaluates the subtractions while formulating the implicit path enumeration is
beyond the scope of this thesis.

The precision of the compositional base bound calculated by the presented procedure depends
on the graph representation on which the calculation operates. In particular, the choice of the
edge-weight-sensitivity (cf. Section 6.4.4) of the graph with respect to the events in PenEv is
important. A case study on the actual impact of the edge-weight-sensitivity, however, is beyond
the scope of this thesis. In our first experiments with the calculation of compositional base
bounds [Hahn et al., 2016a], we aimed for the best precision possible by relying on a full edge-
weight-sensitivity for the events in PenEv. A full edge-weight-sensitivity, however, significantly
increases the graph size and, thus, also the runtime of the graph construction (cf. Section 6.4.4)
and the implicit path enumeration (cf. Section 6.5). Thus, the presented calculation procedure
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might suffer from scalability issues when aiming for the best precision possible. In order to
improve the scalability, in the next section, we present a calculation procedure that performs the
subtraction already during the initial graph construction. In this way, a good precision of the
resulting compositional base bound does not depend on the edge-weight-sensitivity for the events
in PenEv.

8.3. Calculation by Subtraction during Graph Construction
In this section, we demonstrate the calculation of compositional base bounds by performing a
subtraction already during the initial graph construction from the results of the micro-architectural
analysis. To this end, we slightly extend Algorithm 6.3, which is responsible for the creation of
the edges and edge weights during the graph construction presented in Section 6.4.4.
The code snippet in Algorithm 8.1 shows the extended part of Algorithm 6.3. The added

lines are highlighted. The extension of Algorithm 8.1 adds edge weights for the dummy event
Eventprog,Ci,Cmp. In contrast to the edge weights for the actual events (cf. equations (5.58)
and (5.62)), the added edge weights can be negative and/or non-integer. The shorthand to access
these weights along the positions of a path shall exist in the same way as for the edge weights of
the actual events (cf. equations (5.60) and (5.61)).

̂wEventUBprog,Ci,Cmp,
̂wEventLBprog,Ci,Cmp : Edges→ R (8.11)

The values assigned to these new edge weights bound the difference between the number of
occurrences of event Ebnd and the sum over the numbers of occurrences of the events E from
PenEv multiplied with their respective penalties (cf. Algorithm 8.1).

For the actual calculation of compositional base bounds, we reuse the machinery for the
calculation of event bounds via implicit path enumeration from Section 6.5 (cf. equations (6.173)
and (6.174)). We use this machinery for the calculation of bounds for the dummy event Cmp. In
case this calculation results in a defined value, this value is a compositional base bound. This is
expressed by the following two statements. A formal proof of these statement is omitted due to
time and space constraints.

̂MaximumB,impli
prog,Ci,Cmp ∈ R

⇒ ̂MaximumB,impli
prog,Ci,Cmp ∈ CompBaseBoundsprog,Ci

(Ebnd,≤,PenEv)
(8.12)

̂MinimumB,impli
prog,Ci,Cmp ∈ R

⇒ ̂MinimumB,impli
prog,Ci,Cmp ∈ CompBaseBoundsprog,Ci

(Ebnd,≥,PenEv)
(8.13)

This concludes the presentation of calculation procedures for compositional base bounds. In
the following sections, we discuss applications of compositional base bounds.

8.4. Using Compositional Base Bounds in Existing
Schedulability Analyses

Compositional base bounds effectively bridge the gap between existing schedulability analyses
relying on timing compositionality and modern hardware platforms exhibiting timing anomalies.

Note, however, that schedulability analyses aware of shared-resource interference typically start
from the optimistic assumption that there is no interference [Schliecker et al., 2008; Altmeyer et al.,
2015]. Subsequently, they calculate values on arrival curves for the concurrent cores and add more
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Algorithm 8.1 : Code snippet showing the extended part of Algorithm 6.3, which enables
the calculation of compositional base bounds. It adds edge weights for the dummy event
Cmp. The added lines are highlighted.
· · ·
for E ∈ Events do

ŵEUB((nd1, targetNd))←− max
p̂∈set

∑
x∈N<len(p̂)

ŵEUB(p̂, x);

ŵELB((nd1, targetNd))←− min
p̂∈set

∑
x∈N<len(p̂)

ŵELB(p̂, x);

̂wEventUBprog,Ci,Cmp((nd1, targetNd))←− max
p̂∈set

∑
x∈N<len(p̂)

[ ̂wEventUBprog,Ci,Ebnd
(p̂, x)

−
∑

(pen,E)∈PenEv pen ·
̂wEventLBprog,Ci,E(p̂, x)];

̂wEventLBprog,Ci,Cmp((nd1, targetNd))←− min
p̂∈set

∑
x∈N<len(p̂)

[ ̂wEventLBprog,Ci,Ebnd
(p̂, x)

−
∑

(pen,E)∈PenEv pen ·
̂wEventUBprog,Ci,E(p̂, x)];

if targetNd 6= nd2 then
Edgesconstr ←− Edgesconstr ∪ {(targetNd,nd2)};
for E ∈ Events do

ŵEUB((targetNd,nd2))←− 0;

ŵELB((targetNd,nd2))←− 0;

̂wEventUBprog,Ci,Cmp((targetNd,nd2))←− 0;
̂wEventLBprog,Ci,Cmp((targetNd,nd2))←− 0;

· · ·

and more interference. As discussed in Section 7.5, such an approach does not necessarily lead to
a fixed point which is sound with respect to the concrete traces (i.e. assumption (A.140) does in
general not necessarily hold for the abstract models on which the compositional base bounds are
calculated). Thus, the soundness of the compositional base bounds does not necessarily imply
the soundness of the overall timing verification for these approaches.

In order to still enable the sound use of compositional base bounds in combination with these
schedulability analyses, we propose a special flavor of compositional base bounds. Analogously to
the adapted version of our co-runner-sensitive analysis starting from an optimistic initialization
(cf. equations (7.30) and (7.32)), we only argue about the events E from PenEv that happen
at a non-tail position. We only present the upper-bounding version of this special flavor of
compositional base bounds.

CompBaseBounds′prog,Ci
(Ebnd,≤,PenEv) =

{R ∈ R | ∀t ∈ ExecRunsprog,Ci
:

numEvOccur(prog, Ci, t, Ebnd) ≤

R+
∑

(pen,E)∈PenEv

pen · numEvOccur′(prog, Ci, t, E)}

(8.14)

numEvOccur′(prog, Ci, t, E) =
∣∣{x ∈ N<len(t)−1 | Eventprog,Ci,E(t, x)}

∣∣ (8.15)
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We slightly adapt the presented calculation procedures in order to result in this flavor of
compositional base bounds. The calculation procedure of Section 8.2 is adapted as follows. For a
safe result, every node of the underlying graph representation has to be marked as an end node
(i.e. we are interested in all path prefixes of the original graph).

̂MaximumB,impli′
prog,Ci,Ebnd,PenEv = max

(tt,∗,isEnd)∈ ̂LessImplicitB

∑
edg∈EdgesB

[tt(edg) · ̂wEventUBprog,Ci,Ebnd
(edg)

− tt(edg) ·
∑

(pen,E)∈PenEv

pen · ̂wEventLBprog,Ci,E(edg)

+ isEnd(edg) ·
∑

(pen,E)∈PenEv

pen · ̂wEventLBprog,Ci,E(edg)]

(8.16)

The calculation procedure of Section 8.3, in contrast, is adapted as follows. The graph
construction stays as described by Algorithm 8.1. This time, however, we use the edge weight

̂wEventUBprog,Ci,Ebnd
instead of ̂wEventUBprog,Ci,Cmp for the last edge on the path. This variant also

relies on every node of the underlying graph to be marked as an end node.

̂MaximumB,impli′
prog,Ci,Cmp,Ebnd

= max
(tt,∗,isEnd)∈ ̂LessImplicitB

∑
edg∈EdgesB

[tt(edg) · ̂wEventUBprog,Ci,Cmp(edg)

− isEnd(edg) · ̂wEventUBprog,Ci,Cmp(edg)

+ isEnd(edg) · ̂wEventUBprog,Ci,Ebnd
(edg)]

(8.17)

A formal soundness proof of these adapted calculation procedures is beyond the scope of this
thesis. In the same way, it exceeds the scope of this thesis to formally argue about the soundness
of using the special flavor of compositional base bounds in schedulability analyses starting from
an optimistic initialization and calculating values on arrival curves.
When we began to work out the idea of compositional base bounds, we only planned to use

penalties which coincide with the direct effect that a unit of interference has on the timing (e.g.
one cycle per cycle blocked at the shared bus or LAT cycles per concurrently granted access).
Soon after, Jan Reineke pointed out that we can as well use other penalties—as long as they
result in a defined compositional base bound. In general, it depends on the actual amount of
concurrent interference which penalties—in combination with the corresponding compositional
base bound—will lead to the best precision when used during an interference-aware schedulability
analysis. This is demonstrated in the example of Figure 8.1. R1 (R2) is a compositional base
bound that upper-bounds the number of occurrences of event Ebnd by assuming a penalty of
pen1 (pen2) per occurrence of event E. In case there are less than x occurrences of event E, R1

provides a more precise upper bound in combination with penalty pen1. In case there are more
than x occurrences of event E, R2 provides a more precise upper bound in combination with
penalty pen2.
Future schedulability analyses might exploit this by supporting multiple base bounds—each

one with a dedicated set of penalties. Thus, such schedulability analyses would always calculate
multiple time bounds and subsequently use the most precise one. A detailed discussion of such
schedulability analyses, however, is beyond the scope of this thesis.
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R1

R2

x E

Ebnd

R1 ∈ CompBaseBounds′prog,Ci
(Ebnd,≤, {(pen1, E)})

Ebnd = R1 + pen1 · E
R2 ∈ CompBaseBounds′prog,Ci

(Ebnd,≤, {(pen2, E)})
Ebnd = R2 + pen2 · E

pen1 > pen2

Figure 8.1.: Example in which it depends on the actual number of occurrences of event E which
penalty and corresponding compositional base bound lead to a more precise upper
bound on the number of occurrences of event Ebnd.

8.5. Sketch: Replacing Constraints by Compositionality for
Path Analysis

During implicit path enumeration, lifted versions of system properties are typically used to improve
the precision of the calculated WCET bound [Li and Malik, 1995; Engblom and Ermedahl, 2000;
Stein, 2010; Cullmann, 2013; Raymond, 2014; Nagar and Srikant, 2015; Blaß et al., 2017]. The
soundness of this approach is a direct consequence of the lifted versions fulfilling the soundness
criteria for lifting properties up the hierarchy of abstract models presented in Chapter 5.
The linear constraints encoding the lifted properties, however, typically increase the runtime

of implicit path enumeration. In this section, we sketch how to replace linear constraints by
compositionality. We expect the sketched approach to provide a trade-off between the precision
of incorporating a set of linear constraints during implicit path enumeration and the efficiency of
not incorporating it. An experimental evaluation of the sketched approach, however, is beyond
the scope of this thesis.
We sketch our approach for the well-known property of cache persistence [Cullmann, 2013].

Intuitively, it states that—per execution of a certain scope of the program under analysis—there
may at most be one cache miss for a memory address that has been classified as persistent in the
scope. This can be expressed by linear constraints in the following way for a set of persistent
addresses and corresponding scopes.

∀(addr, scope) ∈ AddrPersistentInScope :∑
edg∈EdgesB

tt(edg) · ̂wEventLBprog,Ci,Missaddr,scope(edg)

≤
∑

edg∈EdgesB
tt(edg) · ̂wEventUBprog,Ci,Enterscope(edg)

(8.18)

In order to improve the precision, these constraints are added to an implicit path enumeration
calculating a WCET bound.

max
(tt,∗,∗)∈ ̂LessImplicitB

∑
edg∈EdgesB

tt(edg) · ̂wEventUBprog,Ci,Cycle(edg) (8.19)
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We learned from our industry partner1 that the additional cache persistence constraints often
lead to a dramatic increase of the runtime of implicit path enumeration. Thus, for real-world
scenarios, the determination of persistent cache accesses and the generation of the corresponding
persistence constraints are often omitted in order to keep the complexity of implicit path
enumeration at a manageable level.

We aim at avoiding the additional complexity of cache persistence constraints and, yet, profiting—
to some degree—from cache persistence information. To this end, we propose to use the graph
construction presented in Section 8.3 as it would also be used for the calculation of a compositional
base bound from the following set.

CompBaseBoundsprog,Ci
(Cycle,≤, {(penmiss,Missaddr,scope)

| (addr, scope) ∈ AddrPersistentInScope})

Based on the resulting graph, we propose the following implicit path enumeration for the
calculation of a WCET bound.

max
(tt,∗,∗)∈ ̂LessImplicitB

∑
edg∈EdgesB

tt(edg) · [ ̂wEventUBprog,Ci,Cmp(edg) +∑
(addr,scope)∈AddrPersistentInScope

penmiss ·
̂wEventUBprog,Ci,Enterscope(edg)]

(8.20)

The sketched approach adds a cache miss penalty per time the scope of a persistent cache access
is entered. A resulting WCET bound is sound with respect to the concrete traces. Intuitively, the
soundness is a consequence of the soundness of the compositional base bound that is a part of the
calculated WCET bound. A formal soundness proof, however, exceeds the scope of this thesis.
Note that the value of the square bracket can be evaluated statically while generating the

formulation of the implicit path enumeration. Thus, we expect the proposed approach to have
a similar runtime as the WCET bound calculation which does not take into account any cache
persistence information (i.e. following equation (8.19), but not adding the persistence constraints
of equation (8.18)).

We expect the proposed approach to often result in a WCET bound that is more precise than
the WCET bound calculated without taking into account any cache persistence information. In
some cases, however, it might result in a less precise WCET bound. If it is strictly required
to not be less precise than a WCET analysis not taking into account any cache persistence
information, we recommend to calculate both WCET bounds (i.e. following equation (8.19)
and following equation (8.20)) and to subsequently choose the more precise one. An optimized
implementation of this might calculate the minimum of both WCET bounds during a single
implicit path enumeration.
Sebastian Hahn conducted first experiments in order to evaluate the computational efficiency

and precision of the sketched approach. These experiments reveal that the classical approach
of relying on persistence constraints (i.e. following equations (8.19) and (8.18)) only leads to a
significant increase of the computational complexity compared to not taking into account any
cache persistence information (i.e. following equation (8.19), but not adding the persistence
constraints of equation (8.18)) for the most complex hardware platform that we consider (i.e.
out-of-order execution with unblocked stores) in combination with the most complex benchmarks
that we consider. Thus, we expect that the sketched approach is more relevant for real-world
analysis scenarios with hardware platforms and benchmarks that are significantly more complex
than what we consider. Moreover, these first experiments indicate that, in order to achieve a
reasonable precision, it will be necessary to consider an individual penalty per pair of memory
1https://www.absint.com
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address and persistence scope. Intuitively, this is caused by the maximal time difference between
a cache hit and a persistent cache miss of the same memory block differing significantly for
different pairs of memory address and persistence scope due to different constellations in the
processor pipeline. A more detailed discussion of these first experiments and their preliminary
results, however, exceeds the scope of this thesis.
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Chapter 9

Evaluation of the Co-Runner-Insensitive WCET Analysis

Es gibt viel zu verlieren, du kannst nur gewinnen.
Genug ist zu wenig, oder es wird so wie es war.
Stillstand ist der Tod, geh voran, bleibt alles anders.
Der erste Stein fehlt in der Mauer.
Der Durchbruch ist nah.

(Bleibt alles anders, Herbert Grönemeyer, 1998)

In this chapter, we evaluate the presented co-runner-insensitive WCET analysis for multi-core
processors with shared buses (cf. Section 7.4). We demonstrate that a naive implementation of
the analysis leads to a significant increase in analysis runtime compared to an analysis assuming
the absence of shared-bus interference (on average around seven times as long for a relatively
simple processor core). In order to reduce this overhead, we present two key implementation
tricks.
We evaluate the different implementations of our WCET analysis for a quad-core processor

with a shared bus and a Round-Robin bus arbitration policy. There is no shared cache on the
considered hardware platform. The shared bus connects the processor cores to an SRAM memory.
We assume a fixed latency of 13 clock cycles per granted access to the shared bus (ten cycles for
the first word of a four-word cache line, one cycle for every following word). Figure 9.1 sketches
the schematic design of the considered hardware platform.

In our experiments, we consider different processor core configurations. We consider processor
cores with five-stage in-order pipelines as well as cores with out-of-order pipelines (Tomasulo,
four functional units) similar to those described in [Hennessy and Patterson, 2011]. Furthermore,

C1 C2 C3 C4

SRAM Memory

Shared Bus:
Round-Robin,
LAT = 13

Figure 9.1.: Schematic system design of the considered hardware platform: a quad-core processor
with a shared bus, round-robin bus arbitration, and an SRAM memory. We assume
a fixed latency of 13 clock cycles per granted bus access.
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In-Order Pipeline Out-of-Order Pipeline

Local Instruction Scratchpad Conf iois Conf ooois

Local Instruction Cache Conf ioic Conf oooic

Table 9.1.: The processor core configurations that we consider in our experiments.

we also distinguish two scenarios with respect to the local instruction memories of the processor
cores. First, we assume a local instruction scratchpad per core that is large enough to be statically
initialized with all programs executed on the core. Secondly, we consider a local instruction cache
of size 1KiB that is connected to the shared bus. Table 9.1 lists the four resulting processor core
configurations. All configurations assume a local data cache of size 1KiB that is connected to the
shared bus.

In our experiments, we calculate WCET bounds for a subset of the programs of the TACLeBench
suite [Falk et al., 2016]. Note that we had to exclude some of the benchmarks of the TACLeBench
suite from the experiments because the prototype implementation of our analysis tool LLVMTA [Ja-
cobs et al., 2015; Hahn et al., 2016a] does not yet support them (e.g. due to the use of recursion
in these benchmarks). Moreover, we calculate WCET bounds for programs generated from
models developed in the SCADE Suite R©1—including the examples delivered with the SCADE
Suite. Table 9.2 lists the 47 benchmarks that we consider in our experiments. In terms of
size, the benchmarks range from around 100 to around 13000 lines of code. We assume that
these programs are scheduled non-preemptively as our analysis does not take into account any
preemption costs [Altmeyer, 2013].

The evaluated calculation of co-runner-insensitive WCET bounds is performed on graphs that
are fully node-sensitivity at basic block boundaries, node-insensitive inside of basic blocks, and
edge-weight-insensitive (cf. Section 6.4.4).
We conduct all experiments on a quad-core Intel R© CoreTM i7 processor clocked at 2.4 GHz

and provided 16 GiB of main memory.

9.1. A Naive Implementation

A naive implementation of the micro-architectural analysis explores all sequences of abstract
states that are possible for an access to the shared bus according to our non-deterministic
overapproximation of the shared-bus interference (cf. Chapter 7). This is demonstrated for a
single bus access in Figure 9.2. For simplicity, the example assumes a dual-core processor with
a granted-access latency of three clock cycles and Round-Robin bus arbitration. Thus, every
access to the shared bus can be blocked (B) for up to three cycles (cf. equation (7.13)) before it
is granted (G) for three cycles.
We experimentally evaluate the analysis runtime and memory consumption of the presented

naive implementation during the calculation of co-runner-insensitive WCET bounds. The programs
under analysis (cf. Table 9.2) are assumed to be executed on the quad-core processor sketched in
Figure 9.1 with the processor core configuration Conf iois from Table 9.1.

The diagram in Figure 9.3 shows the analysis runtime per benchmark normalized to the corre-
sponding runtime of a single-core analysis (i.e. assuming the absence of shared-bus interference).
The analysis runtime is between 2.21 times (for benchmark binarysearch) and 12.65 times (for
benchmark flight_control) as high as for a single-core analysis. On average, the analysis takes
6.92 times as long as a single-core analysis. The average factor of 6.92 has been calculated as the
geometric mean of the per-benchmark factors. The overall experiment (i.e. the analysis of all
considered programs) has a runtime of 17 minutes and 19.95 seconds (compared to one minute
and 57 seconds for a corresponding experiment assuming the absence of shared-bus interference).

1http://www.esterel-technologies.com/products/scade-suite
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Benchmark Suite Lines of Code
cruise_control scadetests 1225
digital_stopwatch scadetests 874
es_lift scadetests 1120
flight_control scadetests 3739
pilot scadetests 1587
roboDog scadetests 1792
trolleybus scadetests 3920
lift taclebench/app 565
powerwindow taclebench/app 2277
binarysearch taclebench/kernel 156
bsort taclebench/kernel 131
complex_updates taclebench/kernel 135
countnegative taclebench/kernel 140
fft taclebench/kernel 651
filterbank taclebench/kernel 170
fir2dim taclebench/kernel 198
iir taclebench/kernel 163
insertsort taclebench/kernel 139
jfdctint taclebench/kernel 318
lms taclebench/kernel 180
ludcmp taclebench/kernel 179
matrix1 taclebench/kernel 169
md5 taclebench/kernel 625
minver taclebench/kernel 266
pm taclebench/kernel 2061
prime taclebench/kernel 140
sha taclebench/kernel 2349
st taclebench/kernel 226
adpcm_dec taclebench/sequential 712
adpcm_enc taclebench/sequential 751
audiobeam taclebench/sequential 7010
cjpeg_transupp taclebench/sequential 1469
cjpeg_wrbmp taclebench/sequential 1775
dijkstra taclebench/sequential 311
epic taclebench/sequential 1207
g723_enc taclebench/sequential 878
gsm_dec taclebench/sequential 1734
gsm_encode taclebench/sequential 3168
h264_dec taclebench/sequential 1433
huff_dec taclebench/sequential 383
mpeg2 taclebench/sequential 13212
ndes taclebench/sequential 374
petrinet taclebench/sequential 979
rijndael_dec taclebench/sequential 3281
rijndael_enc taclebench/sequential 3117
statemate taclebench/sequential 1278
susan taclebench/sequential 10237

Table 9.2.: The 47 benchmarks that we consider in our experiments. They are generated from
models developed in the SCADE Suite R© or taken from the TACLeBench suite.
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Legend:

≡ beginning/end of bus access

≡ intermediate abstract state

B ≡ BlockedCi

G ≡ GrantedCi

Figure 9.2.: In a naive implementation, for every bus access, the micro-architectural analysis
explores all sequences of abstract states that are possible according to the non-
deterministic overapproximation of the shared-bus interference. For simplicity, this
example assumes a dual-core processor with a granted-access latency of three clock
cycles and Round-Robin bus arbitration. Thus, every access to the shared bus can
be blocked (B) for up to three cycles (cf. equation (7.13)) before it is granted (G)
for three cycles.

Analogously, the diagram in Figure 9.4 shows the analysis memory consumption per benchmark
normalized to the corresponding memory consumption of a single-core analysis (i.e. assuming
the absence of shared-bus interference). The memory consumption increases by up to 15 percent
(for benchmark susan) compared to a single-core analysis. For benchmark filterbank, it even
decreases by three percent. On average, the analysis consumes four percent more memory than
an analysis assuming the absence of shared-bus interference.

While the naive implementation only consumes slightly (up to 15 percent) more memory
than a single-core analysis, its increase in analysis runtime compared to a single-core analysis
is significant (up to 12.65 times as long, on average 6.92 times as long). We expect the average
increase in analysis runtime of the naive implementation to be even higher for more complex
processor core configurations. An experimental evaluation of the naive implementation for more
complex processor core configurations, however, is omitted due to space and time constraints.

Note that, in an earlier publication [Jacobs et al., 2015], we have reported a significantly higher
increase in analysis runtime (on average 38.84 times as long) and also a significant increase in
memory consumption (on average 3.62 times as much) for the naive implementation (quad-core,
Conf iois ) compared to a single-core analysis. The improved factors in this thesis are the result of
many engineering improvements in the analysis framework that our implementation prototype
uses. A detailed discussion of these engineering improvements, however, is beyond the scope of
this thesis.
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cruise_control
digital_stopwatch

es_lift
flight_control

pilot
roboDog

trolleybus
lift

powerwindow
binarysearch

bsort
complex_updates

countnegative
fft

filterbank
fir2dim

iir
insertsort

jfdctint
lms

ludcmp
matrix1

md5
minver

pm
prime

sha
st

adpcm_dec
adpcm_enc
audiobeam

cjpeg_transupp
cjpeg_wrbmp

dijkstra
epic

g723_enc
gsm_dec

gsm_encode
h264_dec
huff_dec

mpeg2
ndes

petrinet
rijndael_dec
rijndael_enc

statemate
susan

—average—
—overall—

5.10 (0.3s → 1.53s)
9.51 (0.47s → 4.47s)

7.93 (0.29s → 2.3s)
12.65 (0.98s → 12.4s)

7.81 (0.36s → 2.81s)
6.56 (0.62s → 4.07s)

8.93 (1.45s → 12.95s)
6.12 (0.34s → 2.08s)

10.99 (1.31s → 14.4s)
2.21 (0.14s → 0.31s)

3.06 (0.16s → 0.49s)
3.21 (0.14s → 0.45s)

2.81 (0.16s → 0.45s)
8.15 (0.33s → 2.69s)

6.90 (0.4s → 2.76s)
7.05 (0.42s → 2.96s)

2.29 (0.14s → 0.32s)
4.71 (0.17s → 0.8s)

7.08 (0.24s → 1.7s)
4.68 (0.19s → 0.89s)

8.37 (0.49s → 4.1s)
4.33 (0.18s → 0.78s)

9.18 (1.47s → 13.5s)
9.62 (0.66s → 6.35s)

6.53 (1.32s → 8.62s)
4.69 (0.26s → 1.22s)

10.17 (0.54s → 5.49s)
6.28 (0.39s → 2.45s)

8.87 (0.46s → 4.08s)
7.85 (0.41s → 3.22s)

8.39 (1.01s → 8.47s)
9.26 (15.45s → 2m 23.12s)

5.77 (0.35s → 2.02s)
6.88 (0.26s → 1.79s)
7.23 (21.17s → 2m 32.98s)

6.55 (0.62s → 4.06s)
9.07 (1.3s → 11.79s)

7.55 (1.89s → 14.27s)
6.04 (9.58s → 57.85s)

6.76 (0.67s → 4.53s)
9.33 (26.48s → 4m 7s)

10.07 (0.54s → 5.44s)
7.53 (0.6s → 4.52s)

12.30 (1.16s → 14.27s)
12.13 (1.24s → 15.04s)

10.33 (0.93s → 9.61s)
11.74 (18.96s → 3m 42.55s)

6.92
8.89 (1m 57s → 17m 19.95s)

Figure 9.3.: Co-runner-insensitive WCET analysis (naive Implementation) for a quad-core pro-
cessor with core configuration Conf iois : analysis runtime per benchmark normalized
to the corresponding runtime of an analysis assuming the absence of shared-bus
interference.
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audiobeam
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epic
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gsm_dec

gsm_encode
h264_dec
huff_dec

mpeg2
ndes

petrinet
rijndael_dec
rijndael_enc

statemate
susan

—average—

1.10 (43.54 MiB → 47.88 MiB)
1.01 (49.95 MiB → 50.57 MiB)

1.12 (44 MiB → 49.12 MiB)
1.03 (60.86 MiB → 62.53 MiB)
1.03 (47.74 MiB → 49.13 MiB)

1.10 (51.33 MiB → 56.48 MiB)
1.05 (74.41 MiB → 78.16 MiB)

1.02 (44.36 MiB → 45.38 MiB)
1.05 (66.77 MiB → 70.43 MiB)

1.02 (43.14 MiB → 44.03 MiB)
1.03 (43.34 MiB → 44.51 MiB)

1.02 (40.36 MiB → 41.25 MiB)
1.07 (43.53 MiB → 46.39 MiB)

1.02 (47.11 MiB → 48.11 MiB)
0.97 (49.49 MiB → 47.91 MiB)

1.03 (48.21 MiB → 49.7 MiB)
1.02 (40.38 MiB → 41.22 MiB)
1.02 (40.49 MiB → 41.35 MiB)
1.03 (42.54 MiB → 43.63 MiB)
1.03 (44.38 MiB → 45.53 MiB)

1.08 (47.49 MiB → 51.21 MiB)
1.05 (42.89 MiB → 45.03 MiB)

1.07 (65.35 MiB → 69.67 MiB)
1.04 (49.57 MiB → 51.46 MiB)

0.99 (63.42 MiB → 62.71 MiB)
0.98 (46.98 MiB → 46.03 MiB)

1.02 (50.2 MiB → 51.39 MiB)
1.03 (46.63 MiB → 47.84 MiB)

1.01 (48.62 MiB → 49.34 MiB)
1.01 (48.82 MiB → 49.5 MiB)

1.06 (57.93 MiB → 61.22 MiB)
1.05 (298.68 MiB → 313.46 MiB)

1.03 (48.61 MiB → 50.24 MiB)
1.02 (45.74 MiB → 46.77 MiB)

1.10 (376.18 MiB → 413.95 MiB)
1.01 (54.32 MiB → 54.74 MiB)

1.03 (67.92 MiB → 70.13 MiB)
1.06 (80.44 MiB → 85.57 MiB)

1.07 (115.34 MiB → 123.87 MiB)
1.04 (51.89 MiB → 54.07 MiB)

1.12 (509.26 MiB → 571.85 MiB)
1.04 (49.46 MiB → 51.57 MiB)

1.01 (56.06 MiB → 56.43 MiB)
1.09 (64.19 MiB → 69.82 MiB)
1.08 (63.97 MiB → 69.34 MiB)

1.00 (61.88 MiB → 62.12 MiB)
1.15 (371.7 MiB → 428.39 MiB)

1.04

Figure 9.4.: Co-runner-insensitive WCET analysis (naive Implementation) for a quad-core proces-
sor with core configuration Conf iois : analysis memory consumption per benchmark
normalized to the corresponding memory consumption of an analysis assuming the
absence of shared-bus interference.
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Instead, in the following two sections, we present two key implementation tricks that go beyond
the naive implementation evaluated in this section. They significantly reduce the analysis runtime
and, thus, make it more likely that the approach we propose scales to larger programs executed
on real-world multi-core processors.

9.2. Fast-Forwarding of Converged Chains

The pipeline state of a processor core which performs an access to the shared bus often converges
after a few pending access cycles. We call a pipeline state converged during an access to the
shared bus if it is guaranteed to not change before the access completes. For an in-order pipeline,
for example, this convergence means that the pipeline stages preceding the memory-requesting
stage are filled up and the stages succeeding it have run empty. Note, however, that the pace at
which a pipeline converges while accessing the shared bus inherently depends on the details of
the pipeline implementation in hardware. Intuitively, pipelines with out-of-order execution are
typically more successful in hiding pending bus-access cycles and, thus, typically converge later
than in-order pipelines.

As our abstract model at the level of approximation of sequences of abstract states only argues
about the operation of one processor core (cf. Section 7.2), the corresponding abstract state
of the pipeline considered during micro-architectural analysis also often converges after a few
pending access cycles. As an example for a converged abstract state, consider abstract state ŝ3 in
Figure 9.2. The converged abstract state is guaranteed to not change before the access completes.
After completion of the access (i.e. after the third granted access cycle), the abstract state of the
pipeline changes to ŝ4.
In particular, as soon as an abstract state is converged during an access to the shared bus,

further cycles of being blocked at the shared bus will not change it. As a consequence, the
successors of a converged abstract state resulting from further blocked cycles do not have to be
explicitly explored anymore during micro-architectural analysis. Instead, each further cycle of
being blocked at the shared bus adds one cycle to the execution time in a timing-compositional
manner [Hahn et al., 2013]. This implementation trick is referred to as fast-forwarding of converged
chains [Jacobs et al., 2015]. It is sketched in Figure 9.5 for the example access of Figure 9.2. It
avoids the explicit consideration of sequences of blocked cycles during which the abstract state
does not change. In this way, the complexity of the micro-architectural is reduced as less case
splits are performed.

Note that the fast-forwarding of converged chains is an optimization that does not change the
WCET bound compared to the naive implementation (cf. Section 9.1). A formal proof of this
statement, however, is beyond the scope of this thesis. We have experimentally validated this
statement for our prototype implementation by showing that the optimization has not changed
the WCET bounds for the benchmarks that we consider.

Our implementation of fast-forwarding, however, does not (yet) immediately detect the conver-
gence of an abstract state based on its content. Instead, it marks an abstract state as converged
if it is the result of a pending and non-completing bus access cycle transition and its predecessor
state is identical to it. This means that our implementation detects the convergence of an abstract
state one cycle transition after it has converged. Thus, our implementation does not (yet) exploit
the full potential of fast-forwarding of converged chains.

The figures in this chapter only depict the fast-forwarding of cycles blocked at the shared bus.
Our implementation, however, also uses fast-forwarding for not having to explicitly consider long
chains of granted access cycles during which the abstract state does not change as it is converged.
Thus, the fast-forwarding of converged chains can also reduce the complexity of single-core WCET
analysis. In this context, one of our students has shown that a timing-compositional treatment of
the caches during WCET analysis does not significantly reduce the analysis runtime compared
to a cache modeling scheme that is integrated with the pipeline modeling and making use of
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Figure 9.5.: We call an abstract state (here ŝ3) converged during an access to the shared bus
if it is guaranteed to not change before the access completes. Thus, the successors
of a converged abstract state resulting from further blocked cycles do not have to
be explicitly explored anymore during micro-architectural analysis. Instead, each
further blocked cycle adds one cycle to the execution time in a timing-compositional
manner. This optimization is referred to as fast-forwarding of converged chains.

fast-forwarding of converged chains [Faymonville, 2015]. A detailed discussion of the benefits of
fast-forwarding of converged chains during single-core WCET analysis, however, is beyond the
scope of this thesis.

In order to experimentally evaluate the effectiveness of the fast-forwarding of converged chains,
we use an implementation featuring this optimization for the calculation of co-runner-insensitive
WCET bounds. The programs under analysis (cf. Table 9.2) are assumed to be executed on the
quad-core processor sketched in Figure 9.1 with the processor core configuration Conf iois from
Table 9.1.

The diagram in Figure 9.6 shows the analysis runtime per benchmark normalized to the corre-
sponding runtime of a single-core analysis (i.e. assuming the absence of shared-bus interference).
The increase in analysis runtime is between 13 percent (for benchmark bsort) and 178 percent
(for benchmark ludcmp). On average, the analysis takes 47 percent longer than an analysis
assuming the absence of shared-bus interference. The corresponding average factor of 1.47 has
been calculated as the geometric mean of the per-benchmark factors. The overall experiment
(i.e. the analysis of all considered programs) has a runtime of three minutes and 5.16 seconds
(compared to one minute and 57 seconds for a corresponding experiment assuming the absence of
shared-bus interference).

Analogously, the diagram in Figure 9.7 shows the analysis memory consumption per benchmark
normalized to the corresponding memory consumption of a single-core analysis (i.e. assuming
the absence of shared-bus interference). The memory consumption increases by up to 15 percent
(for benchmark susan) compared to a single-core analysis. For some of the benchmarks, e.g. for
benchmark prime, the memory consumption even slightly decreases compared to a single-core
analysis. On average, the analysis consumes three percent more memory than an analysis assuming
the absence of shared-bus interference.
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Figure 9.6.: Co-runner-insensitive WCET analysis (with fast-forwarding of converged chains) for a
quad-core processor with core configuration Conf iois : analysis runtime per benchmark
normalized to the corresponding runtime of an analysis assuming the absence of
shared-bus interference.
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Figure 9.7.: Co-runner-insensitive WCET analysis (with fast-forwarding of converged chains) for
a quad-core processor with core configuration Conf iois : analysis memory consumption
per benchmark normalized to the corresponding memory consumption of an analysis
assuming the absence of shared-bus interference.
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The results of this experiment demonstrate the effectiveness of fast-forwarding of converged
chains as the average increase in analysis runtime compared to a single-core analysis is reduced
to 47 percent. The naive implementation (cf. Section 9.1), in contrast, results in an average
increase factor of 6.92 (i.e. an average increase of 592 percent, cf. Figure 9.3). Thus, the fast-
forwarding avoids most of the runtime overhead that the naive implementation suffers from. Note
that the already relatively low average increase in memory consumption achieved by the naive
implementation (four percent, cf. Figure 9.4) is only slightly reduced by the fast-forwarding of
converged chains (three percent).

9.3. Additionally Delaying the Case Splits

For a processor core, it does typically not matter whether an access to the shared bus is blocked for
one cycle or granted for one cycle without completing. The processor core is typically only aware
of a pending access cycle that does not complete the access. Thus, from a timing perspective, it
does not matter whether the blocked cycles happen at the beginning or at the end of an access to
the shared bus.
As a consequence, it is safe to delay the case splits and to perform them at the end of each

access. This principle is sketched in Figure 9.8a for the example access of Figure 9.2. After the
access has been granted for three cycles, it can be blocked for up to three cycles. In the sketch of
Figure 9.8a, we use E-transitions to express that the access is not blocked for one more cycle and
has already completed during the preceding cycle transition.

We benefit from delayed case splits if we combine them with fast-forwarding of converged chains.
Delaying the case splits to the end of the access may increase the length of the converged chains
of blocked cycles. This means that the micro-architectural analysis may be able to fast-forward
more blocked cycles than without the delayed case splits and, thus, be more efficient. This
advantage is demonstrated in Figure 9.8b for the example access of Figure 9.2: The combination
of delayed case splits and fast-forwarding of converged chains avoids three case splits. Fast-
forwarding without delayed case splits, in contrast, only avoids one case split (cf. Figure 9.5). Thus,
delaying the case splits can be seen as a technique that supports the fast-forwarding of converged
chains. Consequently, we only experimentally evaluate delayed case splits in combination with
fast-forwarding.
Note that delaying the case splits is an optimization that does not change the WCET bound

compared to the naive implementation (cf. Section 9.1). A formal proof of this statement, however,
is beyond the scope of this thesis.

Further note that our actual implementation does not exactly delay the case splits as presented
in Figure 9.8b. Instead, due to technical reasons, it delays the case splits in a way that the last
granted access cycle stays at the end of the access. The combination of this variant of delaying
the case splits and fast-forwarding is sketched in Figure 9.9 for the example access of Figure 9.2.
As a consequence, in general, our implementation does not exploit the full potential of delaying
the case splits (i.e. for some accesses, it might lead to an additional case split compared to the
maximally consequent implementation presented in Figure 9.8b).

In order to experimentally evaluate the combination of delayed case splits and fast-forwarding
of converged chains, we use an implementation featuring both optimizations for the calculation of
co-runner-insensitive WCET bounds. The programs under analysis (cf. Table 9.2) are assumed to
be executed on the quad-core processor sketched in Figure 9.1 with the processor core configuration
Conf iois from Table 9.1.

The diagram in Figure 9.10 shows the analysis runtime per benchmark normalized to the corre-
sponding runtime of a single-core analysis (i.e. assuming the absence of shared-bus interference).
The increase in analysis runtime is between zero percent (e.g. for benchmark iir) and 20 percent
(for benchmark minver). On average, the analysis takes seven percent longer than an analysis
assuming the absence of shared-bus interference. The corresponding average factor of 1.07 has
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Figure 9.8.: From a timing perspective, it does not matter whether blocked cycles happen at the
beginning or at the end of a bus access. Thus, it is safe to delay the case splits to the
end of an access (cf. Figure 9.8a). As a consequence, the micro-architectural analysis
might be able to fast-forward a greater number of blocked cycles than without delayed
case splits: In Figure 9.8b, this avoids three case splits compared to only one case
split in Figure 9.5.
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Figure 9.9.: Due to technical reasons, we implemented the combination of delayed case splits and
fast-forwarding of converged chains as shown in this figure. Thus, in general, our
implementation does not exploit the full potential of delaying the case splits.
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been calculated as the geometric mean of the per-benchmark factors. The overall experiment (i.e.
the analysis of all considered programs) has a runtime of two minutes and 7.64 seconds (compared
to one minute and 57 seconds for a corresponding experiment assuming the absence of shared-bus
interference).

Analogously, the diagram in Figure 9.11 shows the analysis memory consumption per benchmark
normalized to the corresponding memory consumption of a single-core analysis (i.e. assuming
the absence of shared-bus interference). The memory consumption increases by up to 21 percent
(e.g. for benchmark epic) compared to a single-core analysis. For benchmark jfdctint, it even
decreases by three percent. On average, the analysis consumes five percent more memory than
an analysis assuming the absence of shared-bus interference.
The results of this experiment demonstrate the effectiveness of the combination of delayed

case splits and fast-forwarding of converged chains as the average increase in analysis runtime
compared to a single-core analysis is further reduced to seven percent. Thus, for the considered
processor core configuration, the analysis only takes slightly longer than a single-core analysis.
The fast-forwarding of converged chains alone still results in an average increase of 47 percent
(cf. Figure 9.6). Note that the average increase in memory consumption of the combination of
delayed case splits and fast-forwarding (five percent) is slightly higher than for fast-forwarding
(three percent, cf. Figure 9.7).

We conduct the same experiment for the other processor core configurations listed in Table 9.1
(i.e. for configurations Conf ooois , Conf ioic , and Conf oooic ). For the detailed diagrams representing
the per-benchmark increase in runtime and memory consumption of the analysis compared to
a single-core analysis, we refer to pages 318 to 323 in Appendix B. Table 9.3 lists the average
increase factors for runtime and memory consumption per processor core configuration. The
average increase factors for processor core configurations featuring an instruction scratchpad
(Conf iois and Conf ooois ) are smaller than the average increase factors for the configurations featuring
an instruction cache (Conf ioic and Conf oooic ). We think the reason is that, in combination with an
instruction scratchpad, the majority of all memory accesses (namely the instruction accesses) is
served locally by the scratchpad. Thus, only relatively few memory accesses (namely the data
accesses that are not classified as cache hits) experience shared-bus interference. Hence, the
relative impact of modeling the shared-bus interference on the runtime and memory consumption
of the analysis is relatively small. The average increase factors for the configurations featuring an
instruction cache (Conf ioic and Conf oooic ), in contrast, are higher because the instruction accesses
of the cores with these configurations can experience shared-bus interference as well. Note, in
particular, that the highest increase factors are observed for the processor core configuration
featuring out-of-order execution and an instruction cache. Intuitively, complex processor core
features (in our case out-of-order execution and instruction caches) interact in order to hide as
much memory latency as possible. Consequently, the state of the processor core pipeline typically
converges later for more complex processor cores. As the presented optimizations exploit the
convergence of the processor core pipeline, they are less effective for more complex processor cores
and, thus, the overhead in terms of analysis runtime and memory consumption increases with the
complexity of the processor cores (cf. Table 9.3). This is in line with recent results [Hahn et al.,
2016b] showing an even higher overhead for processor cores additionally featuring a store buffer.
The consideration of processor core configurations featuring a store buffer, however, is beyond
the scope of this thesis.
We also conduct the same series of experiments for the octa-core processor sketched in Fig-

ure 9.12. For the detailed diagrams representing the per-benchmark increase in runtime and
memory consumption of the analysis compared to a single-core analysis, we refer to pages 324
to 331 in Appendix B. Table 9.4 lists the average increase factors for runtime and memory
consumption per processor core configuration. Note that these average increase factors are almost
identical to those of the quad-core processor (cf. Table 9.3). Thus, the co-runner-insensitive
WCET analysis for the considered octa-core processors is essentially not more complex than the
corresponding analysis for the considered quad-core processors. Intuitively, for all considered
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Figure 9.10.: Co-runner-insensitive WCET analysis (with fast-forwarding of converged chains
and delayed case splits) for a quad-core processor with core configuration Conf iois :
analysis runtime per benchmark normalized to the corresponding runtime of an
analysis assuming the absence of shared-bus interference.
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Figure 9.11.: Co-runner-insensitive WCET analysis (with fast-forwarding of converged chains
and delayed case splits) for a quad-core processor with core configuration Conf iois :
analysis memory consumption per benchmark normalized to the corresponding
memory consumption of an analysis assuming the absence of shared-bus interference.
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Average Increase in
Runtime Memory Consumption

Conf iois 1.07 1.05
Conf ooois 1.10 1.06

Conf ioic 1.13 1.10
Conf oooic 1.15 1.12

Table 9.3.: Average increase factors for runtime and memory consumption per processor core
configuration for the co-runner-insensitive WCET analysis (with fast-forwarding of
converged chains and delayed case splits) for a quad-core processor.

C1 C2 C3 C4 C5 C6 C7 C8

SRAM Memory

Shared Bus:
Round-Robin,
LAT = 13

Figure 9.12.: We additionally evaluate the impact of the number of processor cores. To this end,
we consider an octa-core processor with a shared bus, round-robin bus arbitration,
and an SRAM memory. We assume a fixed latency of 13 clock cycles per granted
bus access.

processor core configurations and all accesses to the shared bus, the state of the pipeline already
converges for a quad-core processor. As a consequence, thanks to the presented optimizations,
all additional blocked cycles that occur on an octa-core processor are fast-forwarded and do not
further increase the runtime or the memory consumption of the analysis. This means that the
presented implementation of our analysis is scalable in the sense that—once the state of the
pipeline converges for every access to the shared bus—increasing the number of processor cores
does not further increase the analysis complexity.

Note that the processor cores used in real-world multi-core processors are typically significantly
more complex than the processor core configurations that we consider (cf. Table 9.1). The
implementation of our analysis approach for a real-world multi-core processor, however, is beyond
the scope of this thesis. We expect that our industry partner2 will investigate to which real-world

2https://www.absint.com

Average Increase in
Runtime Memory Consumption

Conf iois 1.07 1.05
Conf ooois 1.10 1.06

Conf ioic 1.12 1.11
Conf oooic 1.14 1.12

Table 9.4.: Average increase factors for runtime and memory consumption per processor core
configuration for the co-runner-insensitive WCET analysis (with fast-forwarding of
converged chains and delayed case splits) for an octa-core processor.
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multi-core platforms our analysis approach is applicable in terms of analysis complexity. In
particular, such an investigation will have to answer the following questions per multi-core
platform.

• For a given number of processor cores, is the average increase in analysis runtime and
memory consumption compared to a single-core analysis still considered manageable?

• What is the smallest number of processor cores starting from which we can add more cores
to the system without further increasing the analysis runtime and memory consumption for
most programs?

Relating the Presented Implementation Tricks to an Assumption that Timing-Compositional
Analyses Typically Rely on For a hardware platform on which the pipeline state of the processor
core is guaranteed to converge within the granted access latency for every bus access, additional
cycles of being blocked at the shared bus are guaranteed to not trigger any timing anomalies. In
a recent paper [Wegener, 2017], the author argues that the pipeline state of the processor core
typically converges within the granted access latency for every bus access. In the remainder of
this thesis, we refer to hardware platforms for which this is guaranteed as fulfilling Wegener’s
assumption. For any hardware platform which fulfills Wegener’s assumption, it is safe to perform
a single-core WCET analysis (i.e. assuming the absence of shared-bus interference) and to subse-
quently add an upper bound on the possible numbers of blocked cycles in a timing-compositional
way. However, in general, it remains completely unclear how to prove Wegener’s assumption for a
given hardware platform [Wegener, 2017].

Our analysis approach (i.e. modeling shared-bus interference by non-determinism, cf. Chapter 7),
in contrast, is sound for arbitrary hardware platforms and, thus, its soundness does not inherently
rely on Wegener’s assumption. Nevertheless, the optimized implementation of our approach also
profits from Wegener’s assumption. If the pipeline state of the processor core is guaranteed to
converge within the granted access latency for every bus access, an implementation that exploits
the full potential of delaying the case splits and fast-forwarding of converged chains will always
fast-forward all blocked cycles and, thus, essentially not be more complex than an analysis ignoring
the shared-bus interference. Note, however, that—as described above—our implementation does
not exploit the full potential of the presented implementation tricks. Nonetheless, we are confident
that our implementation is not significantly more complex than an analysis ignoring the shared-bus
interference in case the pipeline state of the processor core converges within the granted access
latency for most of the bus accesses (i.e. Wegener’s assumption holds for most of the bus accesses).
As a consequence, if our implementation is significantly more complex than an analysis ignoring
the shared-bus interference, this strongly indicates that Wegener’s assumption does not hold
for the considered hardware platform and, thus, the combination of a single-core analysis and
a timing-compositional post-processing is not suitable for the timing verification of safety- or
mission-critical applications executed on the considered hardware platform.

We only recommend the combination of a single-core analysis and a timing-compositional post-
processing for the timing verification of a safety- or mission-critical application if the hardware
platform on which the application is executed does not feature timing anomalies which are
triggered by shared-bus interference (i.e. by cycles blocked at the shared bus). To the best of our
knowledge, there are currently only two approaches that guarantee the absence of this particular
type of timing anomaly. The first approach relies on proving that Wegener’s assumption holds
for the considered hardware platform. As mentioned before, it is still unclear how to conduct
such a proof for a given hardware platform. The second approach relies on a custom hardware
modification which stalls the pipeline of the processor core under analysis on every cycle of being
blocked at the shared bus [Hahn et al., 2016a]. In case the absence of this particular type of
timing anomaly is not guaranteed (i.e. none of the aforementioned two approaches is applicable),
we recommend modeling the shared-bus interference by non-determinism (cf. Chapter 7) and
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making use of the implementation tricks presented in this chapter (i.e. fast-forwarding and delayed
case splits). Either this approach is not significantly more complex than a single-core analysis,
or a significant increase in complexity is a strong indication that Wegener’s assumption does
anyway not hold for the considered hardware platform. Nonetheless, for the timing verification of
less critical applications, it may provide a sufficient degree of confidence to rely on Wegener’s
assumption without proving that it holds.

9.4. Implementing Implicit Path Enumeration without
Binary Variables

Classically, implicit path enumeration has been described as a pure flow problem (i.e. one integer
variable per edge and in-flow equals out-flow per node) [Li and Malik, 1995; Puschner and Schedl,
1997]. The variant of implicit path enumeration that we formalize in Section 5.4, in contrast,
features additional binary variables describing which edge starts respectively ends the implicit
path.
The implicit path enumerations calculating the WCET bounds for all experiments in this

chapter (naive implementation, fast-forwarding, and fast-forwarding with delayed case splits) have
been implemented without binary variables. In this section, we argue that the implementation
without binary variables is a safe overapproximation (i.e. an abstract model) of the implicit path
enumeration formalized in Section 5.4.
In the following, let GX be the graph on which the implicit path enumeration with binary

variables (cf. Section 5.4) operates.

GX = (NodesX,NodesXstart,Nodes
X
end,Edges

X) (9.1)

Implicit path enumeration without binary variables, in contrast, shall operate on graph GY ,
which is a slightly modified version of graph GX .

GY = (NodesY,NodesYstart,Nodes
Y
end,Edges

Y) (9.2)

In addition to the nodes of GX , graph GY shall contain a fresh dummy node dm.

NodesY = NodesX ∪ {dm} (9.3)

The dummy node dm shall be the only start node and the only end node of graph GY .

NodesYstart = {dm} (9.4)

NodesYend = {dm} (9.5)

In addition to the edges of GX , graph GY shall have an outgoing edge from dm to every start
node of GX and an incoming edge to dm from every end node of GX .

EdgesY = EdgesX ∪ {(dm,nd) | nd ∈ NodesXstart} ∪ {(nd, dm) | nd ∈ NodesXend} (9.6)

The weights of the edges of graph GX shall be reused in graph GY . All additional edges of
graph GY shall have zero-valued weights.

∀e ∈ EdgesY \ EdgesX : ∀E ∈ Events : ŵEUB(e) = 0 ∧ ŵELB(e) = 0 (9.7)
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Based on graph GY , we specify an implicit path enumeration that does not rely on binary
variables. It only keeps track of how often each edge is contained in a considered implicit path.

̂Implicit′ ={timesTaken : EdgesY → N |∑
e∈EdgesYstart

timesTaken(e) = 1 ∧

[ ∀node ∈ NodesY :∑
ein∈inEdges(node)

timesTaken(ein) =
∑

eout∈outEdges(node)

timesTaken(eout) ]

}

(9.8)

The function γ′impli maps an implicit path without binary variables to a set of implicit paths
with binary variables.

γ′impli :
̂Implicit′ → P( ̂Implicit) (9.9)

γ′impli(timesTakenY ) = {(timesTakenX , ∗, ∗) ∈ ̂Implicit |
∀e ∈ EdgesX : timesTakenX(e) = timesTakenY (e)}

(9.10)

Intuitively, ( ̂Implicit′, γ′impli) is an overapproximation of ̂Implicit. A formal proof of this
statement is omitted due to time and space constraints.⋃

î′∈ ̂Implicit′

γ′impli(î
′) ⊇ ̂Implicit (9.11)

Consequently, ( ̂Implicit′, γ′impli) is also an overapproximation of the subset of ̂Implicit for which
all the lifted system properties hold.⋃

î′∈ ̂Implicit′

γ′impli(î
′) ⊇ {̂i ∈ ̂Implicit | ∀Pk ∈ Prop : P̂ impli

k (̂i)} (9.12)

Thus, we can once more apply property lifting to further lift the properties P̂ impli
k to the level

of implicit path enumeration without binary variables. The properties lifted to implicit path
enumeration without binary variables are annotated with the superscript impli′. Consequently,
we rephrase soundness criterion (4.C1) in the following way for this step of further lifting an
already lifted property.

∀î′ ∈ ̂Implicit′ : [ ∃̂i ∈ γ′impli(î
′) : P̂ impli

k (̂i) ]⇒ P̂ impli′
k (î′) (9.C1)

Intuitively, if the definition of a property P̂ impli
k does syntactically not contain any of the

functions isStart and isEnd, the property can safely be reused at the level of implicit path
enumeration without binary variables as it is guaranteed to fulfill the lifting criterion (9.C1).
Note that a formal proof of this statement is beyond the scope of this thesis. We refer to such a
safe reuse of a property as trivial lifting.

P̂ impli
k does syntactically not contain any of the functions isStart and isEnd

⇒ ∀î′ ∈ ̂Implicit′ : [ ∃̂i ∈ γ′impli(î
′) : P̂ impli

k (̂i) ]⇔ P̂ impli
k (î′)

(9.13)

165



Chapter 9. Evaluation of the Co-Runner-Insensitive WCET Analysis

The majority of control flow properties typically taken into account during implicit path
enumeration (as e.g. loop-bounding properties) only argue about which edge of the graph is taken
how often. Thus, such properties can be trivially lifted to an implicit path enumeration without
binary variables. More involved system properties (as e.g. the property upper-bounding the
number of blocked cycles in a co-runner-sensitive analysis starting from an optimistic initialization,
cf. equations (7.37) and (7.38)), however, also argue about which edge starts respectively ends
the currently considered graph path. For such properties, it may be necessary to explicitly lift
them from implicit path enumeration with binary variables to implicit path enumeration without
binary variables in a way that criterion (9.C1) is fulfilled.

In addition to lifting the system properties, for a safe bound calculation, we have to make sure
that the objective of the implicit path enumeration without binary variables safely approximates
the objective of the implicit path enumeration with binary variables. To this end, we rely on
additional criteria for safely lifting the objective from implicit path enumeration with binary
variables to implicit path enumeration without binary variables. In case the objective is maximized,
the objective value per implicit path without binary variables has to be at least as high as the
objective value of every implicit path with binary variables that it describes.

∀î′ ∈ ̂Implicit′ : ∀̂i ∈ γ′impli(î
′) : Ôbj′(î′) ≥ Ôbj(̂i) (9.C2)

In case the objective is minimized, the objective value per implicit path without binary variables
must not exceed the objective value of any implicit path with binary variables that it describes.

∀î′ ∈ ̂Implicit′ : ∀̂i ∈ γ′impli(î
′) : Ôbj′(î′) ≤ Ôbj(̂i) (9.C3)

Intuitively, if the definition of the objective Ôbj does syntactically not contain any of the
functions isStart and isEnd, the objective Ôbj can safely be reused at the level of implicit path
enumeration without binary variables as it is guaranteed to fulfill the lifting criterion (9.C2)
respectively (9.C3). Note that a formal proof of this statement is beyond the scope of this thesis.
As above, we refer to such a safe reuse of an objective as trivial lifting.

Ôbj does syntactically not contain any of the functions isStart and isEnd

⇒ ∀î′ ∈ ̂Implicit′ : ∀̂i ∈ γ′impli(î
′) : Ôbj(î′) = Ôbj(̂i)

(9.14)

Classically, the objective used in implicit path enumeration only argues about which edge of the
graph is taken how often (cf. equations (6.173) and (6.174)) [Li and Malik, 1995; Puschner and
Schedl, 1997]. More involved applications of implicit path enumeration (as e.g. the calculation of
compositional base bounds for schedulability analyses starting from an optimistic initialization,
cf. equations (8.16) and (8.17)), however, also argue about which edge starts respectively ends
the considered implicit path. For such applications, it may be necessary to explicitly lift the
objective from implicit path enumeration with binary variables to implicit path enumeration
without binary variables in a way that criterion (9.C2) respectively criterion (9.C3) is fulfilled.

In case every lifted property and the objective used at the level of implicit path enumeration
with binary variables can be trivially lifted to the level of implicit path enumeration without binary
variables, the whole implicit path enumeration can trivially be lifted to an implementation without
binary variables. Such a trivial lifting of the whole implicit path enumeration is guaranteed to
result in the same bound as the original implicit path enumeration with binary variables. Note
that a formal proof of this statement is beyond the scope of this thesis. In general, however, an
implementation without binary variables can result in less precise bounds than an implementation
with binary variables. An example demonstrating such loss of precision is omitted due to time
and space constraints.

The implicit path enumerations for all experiments in this chapter can be trivially lifted to an
implementation without binary variables. Thus, all experiments presented in this chapter rely on
an implicit path enumeration without binary variables. A comparison of analysis runtime and
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Quad-Core Octa-Core

Conf iois 3.13 5.95
Conf ooois 3.19 6.10

Conf ioic 3.36 6.50
Conf oooic 3.47 6.75

Table 9.5.: Average increase factors of the co-runner-insensitive WCET bounds compared to
WCET bounds calculated by a single-core analysis.

memory consumption between implementations with and without binary variables is beyond the
scope of this chapter. Note, however, that the following chapter compares both flavors of implicit
path enumeration with respect to their runtime and memory consumption during the calculation
of values on arrival curves (cf. Section 10.2.3 and Section 10.2.4).

9.5. Co-Runner-Insensitive WCET Bounds

So far, we only discussed the runtime and memory consumption of different implementation
variants of the proposed co-runner-insensitive WCET analysis. In this section, we take a closer
look at the co-runner-insensitive WCET bounds. Note that the different implementation variants
presented in this chapter (naive, fast-forwarding, and fast-forwarding with delayed splits) do
not differ with respect to the WCET bounds they calculate. Thus, the results presented in this
section hold for all three implementation variants.

We consider the co-runner-insensitive WCET bounds for the case in which the programs under
analysis (cf. Table 9.2) are executed on the quad-core processor sketched in Figure 9.1 with
the processor core configuration Conf iois from Table 9.1. The diagram in Figure 9.13 shows the
WCET bounds per benchmark normalized to the corresponding WCET bounds calculated by
a single-core analysis (i.e. assuming the absence of shared-bus interference). The co-runner-
insensitive WCET bounds are between 1.65 times (for benchmark prime) and 3.68 times (for
benchmark insertsort) as high as the corresponding single-core WCET bounds. On average
(geometric mean), they are 3.13 times as high as the single-core WCET bounds. The variance of
the per-benchmark factors is due to the different densities of accesses to the shared bus on the
worst-case paths of the benchmarks.

For the corresponding diagrams of the other processor core configurations and of all processor
core configurations in combination with an octa-core processor, we refer to pages 332 to 338
in Appendix B. Table 9.5 lists the average increase factors of the co-runner-insensitive WCET
bounds compared to single-core WCET bounds for all considered processor core configurations in
combination with a quad-core and an octa-core processor.
The average increase factors for processors with out-of-order execution are always slightly

higher than for the corresponding processors with in-order execution. The reason for this is
that, in the single-core analysis, out-of-order execution can often hide significantly more granted
bus-access cycles than in-order execution while, in the multi-core case, both out-of-order and
in-order execution can typically not hide many additional blocked cycles because the pipeline
already converges within the granted access cycles for most accesses (i.e. Wegener’s assumption
holds for most accesses). Thus, for some benchmarks, the single-core bound for out-of-order
execution is significantly smaller than the single-core bound for in-order execution while the
multi-core bounds for both pipeline types roughly suffer from the same amount of additional
cycles due to shared-bus interference. As a consequence, for these benchmarks, the increase
factor from single-core bound to multi-core bound is significantly higher in combination with
out-of-order execution.
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—average—

3.17 (49855cyc → 157807cyc)
2.50 (340465cyc → 849727cyc)

3.55 (41935cyc → 148717cyc)
3.67 (537475cyc → 1973377cyc)

3.40 (141295cyc → 480907cyc)
3.24 (89785cyc → 291337cyc)

3.01 (356509cyc → 1071328cyc)
3.06 (3049193cyc → 9334901cyc)

3.55 (11133579cyc → 39559080cyc)
3.11 (351cyc → 1092cyc)

3.43 (951091cyc → 3264025cyc)
3.67 (3185cyc → 11687cyc)

2.73 (18447cyc → 50271cyc)
3.49 (494470027cyc → 1725219547cyc)

3.19 (19162940cyc → 61147454cyc)
3.05 (15790cyc → 48121cyc)

3.27 (739cyc → 2416cyc)
3.68 (10824cyc → 39879cyc)

3.34 (6820cyc → 22810cyc)
3.23 (559446cyc → 1808265cyc)
3.23 (25021cyc → 80869cyc)

3.50 (64446cyc → 225243cyc)
3.31 (100732456cyc → 332961973cyc)
3.30 (14378cyc → 47408cyc)

3.08 (33030682cyc → 101632423cyc)
1.65 (32307cyc → 53211cyc)

3.46 (10267999cyc → 35549047cyc)
2.45 (246646cyc → 603301cyc)

3.39 (9955cyc → 33706cyc)
3.25 (11889cyc → 38604cyc)
3.21 (1427964cyc → 4583883cyc)

3.16 (86754514cyc → 273960859cyc)
3.28 (396952cyc → 1301752cyc)
3.31 (21491856372cyc → 71034388749cyc)

2.87 (1331473231cyc → 3827602282cyc)
2.80 (2612868cyc → 7325667cyc)
2.76 (15419173cyc → 42523744cyc)
2.84 (842873cyc → 2397686cyc)

1.71 (2160537cyc → 3695772cyc)
3.41 (2313243cyc → 7893909cyc)

3.13 (40616988405cyc → 127041833847cyc)
3.49 (280535cyc → 978596cyc)

3.25 (6295cyc → 20452cyc)
3.55 (849599795cyc → 3011934671cyc)

3.47 (17367383cyc → 60313598cyc)
3.56 (472632cyc → 1682568cyc)

3.12 (177483484cyc → 554605021cyc)
3.13

Figure 9.13.: Co-runner-insensitive WCET analysis for a quad-core processor with core config-
uration Conf iois : WCET bounds per benchmark normalized to the corresponding
WCET bounds of an analysis assuming the absence of shared-bus interference.
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The average increase factors for processors with instruction caches are also always slightly
higher than for the corresponding processors with instruction scratchpads. This is due to the
greater number of bus accesses in the instruction cache setting compared to an instruction
scratchpad: every miss in the instruction cache results in an additional bus access that does not
exist for the scratchpad setting. Thus, the single-core bound for the instruction-cache setting is
slightly greater than the single-core bound for the scratchpad setting (additional granted cycles
of the instruction-cache misses) while the multi-core bound for the instruction-cache setting is
significantly greater than the multi-core bound for the scratchpad setting (additional blocked
cycles of the instruction-cache misses). As a consequence, the relative increase factors from a
single-core bound to a multi-core bound are higher for the instruction-cache setting.

For all settings considered in Table 9.5, the average increase factors of the co-runner-insensitive
WCET bounds compared to single-core WCET bounds are relatively close to the number of
processor cores in the system. This is due to the co-runner-insensitive analysis implicitly assuming
maximally interfering programs on the concurrent processor cores (i.e. every bus access takes up
to number-of-cores times as long as without interference, cf. equation (7.13)). As the execution
time of the considered programs is often dominated by memory accesses, the increase of the
co-runner-insensitive WCET bounds compared to the single-core WCET bounds is relatively close
to the number of processor cores. In earlier experiments with compiler optimizations disabled
for the programs under analysis, the average increase factors were even closer to the number of
processor cores as the execution time of most non-optimized programs is completely dominated by
memory accesses. Note that all experiments presented in this thesis are conducted for programs
that are compiled with compiler optimizations enabled.
On most concrete systems (i.e. in most actual settings of co-running programs), however, it

cannot happen that every access to the shared bus is blocked for the theoretical maximum of
cycles that is possible on the hardware platform (cf. equation (7.13)). As a consequence, the
co-runner-insensitive WCET bounds are typically very imprecise. With respect to precision, a
co-runner-sensitive consideration—taking into account the bus access behavior of the programs
executed in parallel—is more desirable. An exact consideration of the shared-bus interference,
however, would require the enumeration of all interleavings of accesses to the shared bus by
the different processor cores and, thus, suffer from an unmanageable computational complexity
(cf. Section 2.2.1). In order to avoid this complexity, most existing approaches to the timing
verification of multi-core processors are processor-core-modular in the sense that they only consider
one processor core at a time (cf. Section 2.2.2). This processor-core-modular consideration of
the shared-bus interference happens either during a co-runner-sensitive WCET analysis [Jacobs
et al., 2015] (cf. Section 7.5) or during schedulability analysis [Altmeyer et al., 2015]. Most
existing processor-core-modular approaches rely on the calculation of values on arrival curves.
So does also our co-runner-sensitive WCET analysis presented in Section 7.5. In the context of
shared-bus interference, a value on an arrival curve is an upper bound on the numbers of accesses
(respectively access cycles) that a given processor core can be granted within any time interval of
at most a given length. In the next chapter, we discuss the calculation of values on arrival curves.
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Chapter 10

Calculation of Values on Arrival Curves

Yet, the presented approach lacks formalisms for critical aspects to ensure safeness (i.e., the resulting
arrival curve should not be underapproximated) and tightness (i.e., the level of overapproximation
due to the model should be minimal).

(A recent paper published by Oehlert et al. at ECRTS 2018 referring to a contribution of our existing
work [Jacobs et al., 2015], which it essentially copies without making major additional contributions.
Ironically, their paper does not feature formal proofs with respect to soundness or tightness. In this
context, we consider such a statement as poor scientific practice and, thus, do not further discuss the

paper in this thesis.)

Co-runner-insensitive WCET analyses assume that the program under analysis experiences
the maximum amount of shared-resource interference that is possible on the considered hardware
platform. This means that co-runner-insensitive analyses implicitly assume maximally interfering
programs to be executed on the concurrent processor cores. For most real-world systems with
multi-core processors, however, the actual co-running programs are not able to generate this
maximum amount of interference. As a consequence, co-runner-insensitive WCET bounds tend
to be very imprecise for most real-world scenarios.
This inherent imprecision can be avoided by a co-runner-sensitive consideration—taking into

account the access behavior of the co-running programs with respect to the shared resources. An
enumeration of all interleavings of accesses to the shared bus by the different processor cores,
however, suffers from an unmanageable computational complexity (cf. Section 2.2.1). In order
to avoid this complexity, most co-runner-sensitive approaches are processor-core-modular in the
sense that they only consider one processor core at a time (cf. Section 2.2.2). There are two
categories of processor-core-modular approaches:
• Co-runner-sensitive WCET analysis

• Interference-aware schedulability analysis

The co-runner-sensitive WCET analyses [Jacobs et al., 2015] (cf. Section 7.5) perform the
processor-core-modular consideration of the shared-resource interference already during the
calculation of the WCET bound. The main advantage of this approach is that it can be combined
with standard schedulability analyses that are not aware of shared-resource interference. However,
the separate consideration of the shared-resource interference per interfered program may lead to
the consideration of an infeasible overall amount of interference across multiple program runs (cf.
Section 7.9).
Interference-aware schedulability analyses [Schliecker and Ernst, 2010; Altmeyer et al., 2015],

in contrast, consider the overall amount of shared-resource interference that a scheduled sequence
of programs can experience. All of these interference-aware schedulability analyses rely on the
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C2 :

C1 : prog1

prog2
time :

0

prog1

prog3 prog2

prog1

Figure 10.1.: Scenario in which the scheduler guarantees that every execution run of the considered
program can overlap with at most one program execution run per concurrent
processor core. It enables a simple calculation of an upper bound on the amount
of interference that a program suffers from. However, such restricted scheduling
scenarios can result in a poor utilization of the processing resources.

C2 :

C1 : prog1

prog2
time :

0

prog1

prog3

prog1

prog2 prog3 prog2 prog3 prog2

Figure 10.2.: Less restricted scheduling scenario: the amount of interference that a program
execution run experiences depends on its execution time.

principle of timing compositionality [Hahn et al., 2013]. The use of compositional base bounds
(cf. Chapter 8) makes these schedulability analyses applicable to hardware platforms exhibiting
timing anomalies [Lundqvist and Stenstrom, 1999].
To the best of our knowledge, all existing processor-core-modular approaches to timing verifi-

cation rely on upper bounds on the amount of interference that a particular processor core can
generate. The amount of shared-bus interference is quantified as number of granted bus-access
cycles and/or number of granted bus accesses (cf. Section 7.6). The amount of shared-cache
interference is quantified as number of accesses to the shared cache [Nagar, 2016].

In case the scheduler guarantees that every execution run of the considered program can overlap
with at most one program execution run per concurrent processor core (as e.g. implicitly assumed
in [Nagar, 2016]), the interference bound per concurrent processor core can be calculated by the
same method that is used for the calculation of a WCET bound (cf. Chapter 6). Figure 10.1
sketches such a restricted scheduling scenarios. Program prog1 is executed on processor core C1

while programs prog2 and prog3 are executed on processor core C2. The scheduler guarantees that
each program execution run on one of the cores can only overlap with one program execution
run on the other core. Thus, an execution run of program prog1 can at most experience the
amount of interference that is generated by one execution run of program prog2 or program prog3.
An upper bound on the amount of interference that a program generates during one execution
run can be calculated with the techniques presented in Chapter 6. Figure 10.1, however, also
demonstrates that such restricted scheduling scenarios can result in a poor utilization of the
processing resources.

In a less restricted scheduling scenario, the amount of interference that a program execution run
experiences depends on its execution time. This is demonstrated by the example in Figure 10.2.
Since program prog1 is relatively long-running, one of its execution runs can overlap with up
to four program execution runs on core C2. An execution run of the relatively short-running
programs prog2 or prog3, in contrast, only overlaps with a relatively small portion of up to two
execution runs of program prog1. Thus, the amount of interference that an execution run of
program prog2 or prog3 experiences is likely significantly smaller than the amount of interference
that a complete execution run of program prog1 generates.
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In fact, there is a circular dependency between the amount of interference that a program
execution run experiences and its execution time. As explained before, the execution time
determines how much interference the concurrent processor cores are able to generate. At the
same time, however, the experienced amount of interference increases the execution time.

Following this circular dependency, most processor-core-modular approaches to timing verifica-
tion are iterative. We briefly describe this iterative nature for the case of a co-runner-sensitive
WCET analysis (cf. Section 7.5). The principle behind most interference-aware schedulability
analyses is similar [Schliecker and Ernst, 2010; Altmeyer et al., 2015]. Co-runner-sensitive WCET
analysis typically starts by calculating an initial WCET bound under the optimistic assumption
that the analyzed program does not experience any shared-resource interference. Subsequently,
it calculates an upper bound on the amount of interference that the concurrent processor cores
can generate in any time interval as long as the initial WCET bound. The resulting interference
bound is used during the calculation of an updated WCET bound. The updated WCET bound
is again used to calculate an updated bound on the amount of concurrent interference. This
procedure is repeated until a fixed point is reached.
A function that maps a given length to an upper bound on the number of occurrences of a

particular event that can happen on a system in any time interval of the given length is referred
to as arrival curve [Boudec and Thiran, 2001]. Thus, the calculation of an upper bound on the
number of occurrences of an interference-generating event of a processor core Cj that can happen
in any time interval of a given length corresponds to the calculation of a value on an arrival curve.
Such an interference-generating event can e.g. be the event that core Cj is granted access to a
shared bus for one cycle.

The aforementioned iterative, processor-core-modular approaches to timing verification inher-
ently rely on the calculation of values on arrival curves. In this chapter, we discuss different
methods for calculating a value αE(l) on an arrival curve αE . Essentially all existing methods
calculate curve values at the granularity of program runs (cf. Section 10.1). We present a method
that calculates curve values at finer granularities and, thus, results in more precise curve values
(cf. Section 10.2).

In our experiments, we calculate values on arrival curves for programs executed on a quad-core
processor with a shared bus and a Round-Robin bus arbitration policy (cf. Figure 9.1). The
considered processor cores shall feature an out-of-order pipeline, a local instruction cache of
size 1KiB, and a local data cache of size 1KiB (i.e. processor core configuration Conf oooic from
Table 9.1).

In order to keep the software setup of the system under analysis simple, we assume that the
considered processor core Cj repeatedly executes a single program in a non-preemptive fashion.
Each discussed approach to the calculation of curve values is evaluated by calculating multiple
arrival curve values αE(l) for each benchmark listed in Table 9.2. For each benchmark, we
calculate arrival curve values αE(l) for each interval length l ∈ {104, 105, 106, 107, 108, 109}. In
our experiments, we assume that E is the event occurring when the considered core Cj is granted
access to the shared bus for one cycle (GrantedCj

, cf. Section 7.5). Note that all arrival curve
values for a given benchmark and a given calculation method are calculated by the same instance
of our prototype implementation. Thus, in particular, computationally complex preparation
steps—as, e.g., the micro-architectural analysis and the graph construction—are only performed
once per pair of benchmark and calculation method.
We conduct all experiments on a quad-core Intel R© CoreTM i7 processor clocked at 2.4 GHz

and provided 16 GiB of main memory.
For the remainder of this chapter, we rely on the following naming conventions. The program

progCi
shall be the program which is executed on core Ci and for which we calculate a co-

runner-sensitive WCET bound. The program progCj
shall be the program which is executed

on a concurrent core Cj of core Ci and for which we calculate arrival curve values during the
co-runner-sensitive WCET analysis.
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1 2 3 4execution run number:

BCETLB
progCj

,Cj

MaxUB
progCj

,Cj ,E

Figure 10.3.: Pathological worst-case scenario for calculating a value at a position l of an arrival
curve. In the first considered execution run of progCj

, all occurrences of event E
(marked in gray) are assumed to happen at the end. In all subsequent execution
runs, all occurrences of event E are assumed to happen at the beginning.

In the following sections, we discuss the different methods for calculating a value αE(l) on an
arrival curve αE .

10.1. Calculation at the Granularity of Program Runs

In this section, we discuss the calculation of values on arrival curves at the granularity of
program runs. The resulting arrival curve is referred to as αprog-granE . Intuitively, this calculation
pessimistically assumes that the occurrences of event E that an execution run of program progCj

generates can be distributed across the execution run in an arbitrary manner. For simplicity, we
only present this calculation in the context of the scenario that we consider in our experiments
(i.e. non-preemptive scheduling, one program per processor core).

The presented calculation of values on arrival curves relies on existing event bounds that are
sound with respect to every execution run of progCj

on core Cj (cf. Chapter 6). MaxUBprogCj
,Cj ,E

shall be an upper bound on the number of occurrences of event E that can happen in any
execution run of progCj

on core Cj . BCETLB
progCj

,Cj
shall be a BCET bound for progCj

on core Cj .

MaxUBprogCj
,Cj ,E ≥ MaximumprogCj

,Cj ,E (10.1)

BCETLB
progCj

,Cj
≤ BCETprogCj

,Cj (10.2)

The value at position l of arrival curve αprog-granE is calculated as the minimum of three bound
values (cf. equation (10.3)). The three bound values are orthogonal in the sense that, for each
of the bound values, there is an interval length l for which the bound value is more precise (i.e.
strictly smaller) than the other two bound values.

αprog-granE (l) = min
(
αprog-gran1,E (l), αprog-gran2,E (l), αprog-gran3,E (l)

)
(10.3)

The calculation of the three bound values relies on a pathological worst-case scenario in which
every execution run of progCj

takes BCETLB
progCj

,Cj
clock cycles and produces MaxUBprogCj

,Cj ,E

occurrences of event E. Moreover, it is pessimistically assumed that, in the first execution run of
progCj

which is spanned by the considered time interval of length l, all occurrences of event E
happen at the end of the execution run. In each subsequent execution run of progCj

, all occurrences
of event E shall happen at the beginning of the execution run. This pathological worst-case
scenario is presented in Figure 10.3. Note that the time interval of length l is guaranteed to span
the maximal number of occurrences of event E in this pathological scenario if it is aligned in a
way that it begins with the events at the end of the first program run. This is demonstrated in
Figure 10.4.
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l

exceed(l)

Figure 10.4.: In the pathological worst-case scenario, a time interval of length l spans the maximal
number of occurrences of event E if it is aligned in a way that it begins with the
events at the end of the first program run.

l

exceed(l)

αprog-gran1,E (l):

αprog-gran2,E (l):

Figure 10.5.: In case the considered time interval only spans some of the event occurrences of an
execution run, bound value αprog-gran1,E (l) is unnecessarily pessimistic.

The first bound value αprog-gran1,E (l) always accounts for at least the MaxUBprogCj
,Cj ,E occurrences

of event E at the end of the first execution run. The helper function exceed(l) defines the length
of the part of the considered time interval which does not overlap with the first execution run.

exceed(l) = max
(
0, l −MaxUBprogCj

,Cj ,E

)
(10.4)

Bound value αprog-gran1,E (l) accounts for the number of occurrences of event E that happen after
the first execution run by pessimistically assuming that every started execution run contributes
MaxUBprogCj

,Cj ,E event occurrences.

αprog-gran1,E (l) = MaxUBprogCj
,Cj ,E +

 exceed(l)
BCETLB

progCj
,Cj

 ·MaxUBprogCj
,Cj ,E (10.5)

Note that bound value αprog-gran1,E (l) is unnecessarily pessimistic in case the aligned time interval
only spans some of the event occurrences of an execution run. This is demonstrated in Figure 10.5.
Bound value αprog-gran1,E (l) pessimistically assumes that all event occurrences of the third execution
run are spanned by the time interval—which is not the case.
In order to avoid this pessimism, bound value αprog-gran2,E (l) accounts for the number of occur-

rences of event E that happen after the first execution run by assuming that every fully covered
execution run contributes MaxUBprogCj

,Cj ,E event occurrences and every clock cycle of the remainder
can contribute one event occurrence.

αprog-gran2,E (l) = MaxUBprogCj
,Cj ,E +

 exceed(l)
BCETLB

progCj
,Cj

 ·MaxUBprogCj
,Cj ,E

+
(
exceed(l) mod BCETLB

progCj
,Cj

) (10.6)
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l

αprog-gran1,E (l):

αprog-gran2,E (l):

αprog-gran3,E (l):

Figure 10.6.: In case the length of the considered time interval is smaller than MaxUBprogCj
,Cj ,E ,

bound values αprog-gran1,E (l) and αprog-gran2,E (l) are unnecessarily pessimistic.

Consequently, bound value αprog-gran2,E (l) is more precise than bound value αprog-gran1,E (l) for the
example in Figure 10.5. Note, however, that bound value αprog-gran1,E (l) is more precise than bound
value αprog-gran2,E (l) for the example in Figure 10.4. This demonstrates that both bound values are
orthogonal in the sense that none of them is for all cases at least as precise as the other.
Finally, bound value αprog-gran3,E (l) exploits that there can be at most l occurrences of event E

in any time interval of at most l clock cycles.

αprog-gran3,E (l) = l (10.7)

Bound value αprog-gran3,E (l) is more precise than the previous two bound values in case the interval
length l is strictly smaller than MaxUBprogCj

,Cj ,E . This is demonstrated in Figure 10.6. On the

other hand, bound value αprog-gran3,E (l) is less precise than the previous two bound values for the
examples in Figure 10.4 and Figure 10.5. Thus, all three bound values are orthogonal with respect
to their precision.
Based on this intuitive consideration, we are confident that the calculated arrival curve value

αE(l) (i.e. the minimum of the three presented bound values) is sound with respect to the concrete
traces. Moreover, we are confident that it is the most precise arrival curve value that can be
calculated based on BCETLB

progCj
,Cj

and MaxUBprogCj
,Cj ,E for the scenario that we consider. Formal

proofs of these statements, however, are beyond the scope of this thesis.
In a more general execution scenario with preemptive scheduling, the calculation of values on

arrival curves at the granularity of program runs does not rely on BCET bounds as multiple
execution runs might be active at the same time on the same processor core. Instead, the
calculation relies on upper bounds on the number of started execution runs in any time interval
of a given length [Schliecker and Ernst, 2010]. Such upper bounds are typically calculated based
on a minimum inter-arrival time of the considered program [Altmeyer et al., 2015]. Due to time
and space constraints, however, we do not further discuss the calculation of values on arrival
curves for such a more general scenario.
In an experiment, we evaluate the calculation of arrival curve values at the granularity of

program runs for the interval lengths in {104, 105, 106, 107, 108, 109}. The overall experiment takes
one hour, 31 minutes, and 53.91 seconds—which is not significantly longer than the calculation
of a co-runner-insensitive WCET bound per benchmark for the same hardware platform (cf.
Figure B.5 in Appendix B). The additional experiment runtime of around 16 minutes is due
to the curve value calculation requiring two event bounds per benchmark (BCETLB

progCj
,Cj

and

MaxUBprogCj
,Cj ,E). The co-runner-insensitive WCET analysis, in contrast, only calculates a single

event bound (namely the WCET bound) per benchmark. Thus, the amount of implicit path
enumerations is doubled for the calculation of arrival curve values at the granularity of program
runs. Due to its purely algebraic nature, the actual curve value calculation (cf. equation (10.3))
barely contributes to the experiment runtime.

176



10.1. Calculation at the Granularity of Program Runs

Table 10.1 lists the resulting arrival curve values normalized to the respective interval lengths.
The table demonstrates that the calculation at the granularity of program runs suffers from a
poor precision. For each considered benchmark, every calculated arrival curve value is identical
to the corresponding interval length. In the following, we describe—at an intuitive level—three
fundamental drawbacks with respect to the precision of the presented calculation method.
The first drawback is the pessimistic assumption that any execution run of the considered

program can take a minimal amount of clock cycles (namely BCETLB
progCj

,Cj
) and—at the same

time—can generate a maximal amount of occurrences of event E (namely MaxUBprogCj
,Cj ,E). For

most real-world programs, however, the number of occurrences of the events that we consider (e.g.
granted access cycles at the shared bus) is typically higher for longer execution runs. Thus, an
execution run that only takes the BCET of the considered program is typically not able to generate
the maximal amount of event occurrences (e.g. because there is no path through the control flow of
the program that takes the minimal amount of clock cycles and—at the same time—generates the
maximal number of occurrences of event E). As an extreme case, consider the case of the event
bound MaxUBprogCj

,Cj ,E being at least as high as the BCET bound BCETLB
progCj

,Cj
. In this case, the

calculation results in αE(l) = l for each interval length l. Intuitively, the resulting identity arrival
curve is of no use during co-runner-sensitive timing analysis as the analysis has to pessimistically
assume that an interference-generating event can happen during every clock cycle. Thus, any
obtained co-runner-sensitive WCET bound coincides with the corresponding co-runner-insensitive
WCET bound. Note that, for programs with a wide range of possible execution times (i.e. there
is a large gap between the BCET and the WCET), it is not unlikely that the exact upper bound
on the number of event occurrences per program run (MaximumprogCj

,Cj ,E) is greater than the

BCET (BCETprogCj
,Cj ) and, thus, also MaxUBprogCj

,Cj ,E is greater than BCETLB
progCj

,Cj
according

to equations (10.1) and (10.2).
But even if we assume the hypothetical case that program progCj

only has a single concrete
trace which takes BCET-many clock cycles and generates the maximal amount of occurrences of
event E, the presented calculation method for values on arrival curves is still potentially overly
pessimistic for relatively small interval lengths. Due to the considered pathological worst-case
distribution of event occurrences (cf. Figure 10.3), the calculation cannot lead to a better result
than αE(l) = l in case l ≤ 2 ·MaxUBprogCj

,Cj ,E . However, we suppose that, for most real-world
programs, the occurrences of interference-generating events cannot be distributed across the
execution runs as assumed by the pathological worst-case scenario. This pessimism is particularly
problematic during co-runner-sensitive WCET analysis in case one of the interference-generating
programs on the concurrent processor cores has a significantly longer execution time than the
program for which a WCET bound is calculated. This is demonstrated in Figure 10.7. The
co-runner-insensitive WCET bound of the program executed on core C1 is smaller than twice the
amount of interference an execution run of the program on core C2 can generate. Thus, for any
interval length l considered during co-runner-sensitive analysis, the corresponding arrival curve
value αE(l) is equal to l. As a consequence, the co-runner-sensitive analysis has to pessimistically
assume that core C2 generates enough interference to delay the program on core C1 up to its
co-runner-insensitive WCET bound.
The third drawback of the calculation of arrival curve values at the granularity of program

runs is that this calculation inherently relies on the existence of a per-execution-run event bound
MaxUBprogCj

,Cj ,E . For most diverging programs, however, there is no such per-execution-run event
bound. Thus, in a scenario in which there are only strict timing requirements for the programs
on some of the processor cores and there is a diverging program on one of the other processor
cores, a co-runner-sensitive analysis calculating arrival curve values at the granularity of program
runs is useless as it has to pessimistically assume that a time interval of any length can be filled
up with occurrences of interference-generating events.
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104 105 106 107 108 109

cruise_control 1.000 1.000 1.000 1.000 1.000 1.000
digital_stopwatch 1.000 1.000 1.000 1.000 1.000 1.000

es_lift 1.000 1.000 1.000 1.000 1.000 1.000
flight_control 1.000 1.000 1.000 1.000 1.000 1.000

pilot 1.000 1.000 1.000 1.000 1.000 1.000
roboDog 1.000 1.000 1.000 1.000 1.000 1.000

trolleybus 1.000 1.000 1.000 1.000 1.000 1.000
lift 1.000 1.000 1.000 1.000 1.000 1.000

powerwindow 1.000 1.000 1.000 1.000 1.000 1.000
binarysearch 1.000 1.000 1.000 1.000 1.000 1.000

bsort 1.000 1.000 1.000 1.000 1.000 1.000
complex_updates 1.000 1.000 1.000 1.000 1.000 1.000

countnegative 1.000 1.000 1.000 1.000 1.000 1.000
fft 1.000 1.000 1.000 1.000 1.000 1.000

filterbank 1.000 1.000 1.000 1.000 1.000 1.000
fir2dim 1.000 1.000 1.000 1.000 1.000 1.000

iir 1.000 1.000 1.000 1.000 1.000 1.000
insertsort 1.000 1.000 1.000 1.000 1.000 1.000

jfdctint 1.000 1.000 1.000 1.000 1.000 1.000
lms 1.000 1.000 1.000 1.000 1.000 1.000

ludcmp 1.000 1.000 1.000 1.000 1.000 1.000
matrix1 1.000 1.000 1.000 1.000 1.000 1.000

md5 1.000 1.000 1.000 1.000 1.000 1.000
minver 1.000 1.000 1.000 1.000 1.000 1.000

pm 1.000 1.000 1.000 1.000 1.000 1.000
prime 1.000 1.000 1.000 1.000 1.000 1.000

sha 1.000 1.000 1.000 1.000 1.000 1.000
st 1.000 1.000 1.000 1.000 1.000 1.000

adpcm_dec 1.000 1.000 1.000 1.000 1.000 1.000
adpcm_enc 1.000 1.000 1.000 1.000 1.000 1.000
audiobeam 1.000 1.000 1.000 1.000 1.000 1.000

cjpeg_transupp 1.000 1.000 1.000 1.000 1.000 1.000
cjpeg_wrbmp 1.000 1.000 1.000 1.000 1.000 1.000

dijkstra 1.000 1.000 1.000 1.000 1.000 1.000
epic 1.000 1.000 1.000 1.000 1.000 1.000

g723_enc 1.000 1.000 1.000 1.000 1.000 1.000
gsm_dec 1.000 1.000 1.000 1.000 1.000 1.000

gsm_encode 1.000 1.000 1.000 1.000 1.000 1.000
h264_dec 1.000 1.000 1.000 1.000 1.000 1.000
huff_dec 1.000 1.000 1.000 1.000 1.000 1.000

mpeg2 1.000 1.000 1.000 1.000 1.000 1.000
ndes 1.000 1.000 1.000 1.000 1.000 1.000

petrinet 1.000 1.000 1.000 1.000 1.000 1.000
rijndael_dec 1.000 1.000 1.000 1.000 1.000 1.000
rijndael_enc 1.000 1.000 1.000 1.000 1.000 1.000

statemate 1.000 1.000 1.000 1.000 1.000 1.000
susan 1.000 1.000 1.000 1.000 1.000 1.000

—average— 1.000 1.000 1.000 1.000 1.000 1.000
1.000

Table 10.1.: Arrival curve values calculated at the granularity of program runs for the interval
lengths in {104, 105, 106, 107, 108, 109}. The presented values are normalized to the
respective interval lengths.
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C1:

co-runner-insensitive WCET bound

C2:

Figure 10.7.: In this example, the co-runner-insensitive WCET bound of the program on core C1

is smaller than twice the amount of interference an execution run of the program on
core C2 can generate. Due to the pathological distribution of the interference on
core C2 that is assumed by the curve value calculation (cf. Figure 10.3), a co-runner-
sensitive analysis calculating arrival curve values at the granularity of program runs
cannot result in a WCET bound that is more precise than the co-runner-insensitive
one.

In order to overcome the described drawbacks, in the next section, we present the calculation
of arrival curve values at significantly finer granularities (e.g. at the granularity of basic blocks,
cf. Section 6.4.4).

10.2. Calculation at Finer Granularities

To the best of our knowledge, the calculation of arrival curve values at granularities finer than
program granularity has so far only been proposed for an execution model in which each program
is a sequence of subprograms—so called superblocks [Pellizzoni et al., 2010]. For each superblock,
there are upper and lower bounds on the execution times of the superblock as well as an upper
bound on the numbers of occurrences of interference events during the execution of the superblock.
This superblock model is universal in the sense that every program can naturally be represented
by a single superblock, which is the program itself. If a program is represented by a single
superblock, the event bounds for this superblock can be obtained as presented in Chapter 6. If
every program is represented by a single superblock, however, the corresponding calculation of
arrival curve values effectively also only operates at the granularity of program runs and, thus,
suffers from the fundamental drawbacks described in Section 10.1. On the other hand, it is so
far completely unclear how to represent a general program (featuring non-trivial control flow,
cf. Section 6.4.1) by a fine-grained sequence of superblocks. This means that the calculation of
arrival curve values at granularities significantly finer than program granularity is so far limited
to relatively restricted classes of programs (e.g. single-path programs [Puschner, 2003]).

In this section, we present a calculation of arrival curve values that is—in principle—applicable
to arbitrary programs. It argues about all subpaths of a fine-grained graph representation. The
presented calculation can e.g. be applied to graphs at the granularity of cycle transitions (cf.
Section 6.4.2) or to graphs at the granularity of basic blocks (cf. Section 6.4.4). In order to
efficiently argue about all subpaths of the considered graph, the presented calculation resorts
to implicit path enumeration (cf. Section 6.5). For the sake of readability, we split up the
presentation of the proposed calculation into multiple subsections focusing on different aspects of
the calculation.

10.2.1. Calculation Based on the Subpaths of a Graph

The presented calculation of arrival curve values is based on a graph GC as it is used for the
calculation of per-execution-run event bounds in Section 6.4. As we base the presented calculation
on all subpaths anyway, it is not necessary to add a set of feedback nodes of the graph to its end
nodes.
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GC

NodesCstart NodesCend

dm

Figure 10.8.: The time interval that is considered during the calculation of an arrival curve
value may span across multiple execution runs of the analyzed program. Thus, the
presented calculation is based on a graph GD in which a new execution run starts
once an execution run ends. To this end, graph GD introduces a fresh dummy
node dm which has zero-weighted outgoing edges to all start nodes of GC and
zero-weighted incoming edges from all end nodes of GC .

In contrast to the calculation of per-execution-run event bounds, the time interval of length l
that is considered during the calculation of an arrival curve value αE(l) may span across multiple
execution runs of the analyzed program. Thus, the calculation is based on a modified version GD
of graph GC in which a new execution run starts once an execution run ends. To this end,
graph GD introduces a fresh dummy node dm which has zero-weighted outgoing edges to all
start nodes of GC and zero-weighted incoming edges from all end nodes of GC . This principle is
depicted in Figure 10.8. The fresh dummy node dm shall be the single start node and the single
end node of graph GD. Note that this graph transformation is equivalent to the transformation
that is formalized in Section 9.4.

The actual calculation of arrival curve value αE(l) is based on all subpaths of graph GD. In case
the original graph GC is at the granularity of cycle transitions (cf. Section 6.4.2), the calculation is
completely straight forward. It considers all subpaths of graph GD for which the sum of the lower
bounds on the number of clock cycles along the subpath does not exceed the interval length l. In
the following, this inequation is referred to as window constraint. The resulting set of considered

subpaths is referred to as ̂SubPathsD≤l.

WindowConstr(p̂, l)⇔
∑

x∈N<len(p̂)

̂wCycleLB(p̂, x) ≤ l (10.8)

̂SubPathsD≤l =
{
p̂ ∈ ̂SubPathsD

∣∣∣ WindowConstr(p̂, l)
}

(10.9)

An arrival curve value Boundsubp1,E (l) is obtained by maximizing the sum of the upper bounds
on the number of occurrences of event E along the subpath over all considered subpaths.

Objsubp1,E (p̂) =
∑

x∈N<len(p̂)

ŵEUB(p̂, x) (10.10)

Boundsubp1,E (l) = max
p̂∈ ̂SubPathsD≤l

Objsubp1,E (p̂) (10.11)

In case the original graph GC is not at the granularity of cycle transitions (i.e. there is an
edge that argues about a sequence of multiple cycle transitions, e.g. about a sequence of cycle
transitions through a basic block, cf. Section 6.4.4), the window constraint has to be slightly
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adapted. In a similar way as in Section 10.1, we assume a pathological worst-case scenario (cf.
Figure 10.3): For the first edge of a considered subpath, all occurrences of event E shall happen
at the end of the edge. For all subsequent edges of a considered subpath, all occurrences of event
E shall happen in the beginning of the edge. Note that the time interval of length l is guaranteed
to span the maximal number of occurrences of event E in this pathological scenario if it is aligned
in a way that it begins with the events at the end of the first edge (cf. Figure 10.4). We only
consider subpaths for which a time interval of length l aligned in such a way fully covers all edges
of the subpath except the first and the last edge. This is reflected by the following alternative
definition of the window constraint.

WindowConstr(p̂, l)⇔
∑

x∈{0}∩N<len(p̂)−1

ŵEUB(p̂, x) +
∑

x∈N>0∩N<len(p̂)−1

̂wCycleLB(p̂, x) ≤ l

(10.12)

The arrival curve value Boundsubp1,E (l) is also sound in case the original graph GC is not at
the granularity of cycle transitions. In this case, however, it is not necessarily the most precise
arrival curve value that we can calculate based on subpaths of the graph. The following objective
function Objsubp2,E (p̂, l) is orthogonal to Objsubp1,E (p̂) in the sense that, for certain subpaths p̂, it
results in strictly more precise values. Intuitively, Objsubp2,E (p̂, l) omits the upper bound on the
number of occurrences of event E for the last edge in the subpath. Instead, it adds the amount by
which the interval length l exceeds the left-hand side of the window constraint. The idea behind
this alternative objective function is very similar to the idea behind curve value αprog-gran2,E (l)
presented in Section 10.1.

Objsubp2,E (p̂, l) =
∑

x∈N<len(p̂)−1

ŵEUB(p̂, x)

+ l −
∑

x∈{0}∩N<len(p̂)−1

ŵEUB(p̂, x)−
∑

x∈N>0∩N<len(p̂)−1

̂wCycleLB(p̂, x)

=
∑

x∈N>0∩N<len(p̂)−1

ŵEUB(p̂, x) + l −
∑

x∈N>0∩N<len(p̂)−1

̂wCycleLB(p̂, x)

(10.13)

Note that, for any subpath p̂ with len(p̂) ∈ {0, 1} and any interval length l, the value of the
alternative objective function is guaranteed to coincide with the interval length l. Thus, there
is no sense in calculating an arrival curve value Boundsubp2,E (l) directly based on the alternative
objective function Objsubp2,E (p̂, l) as such a curve value would always coincide with the interval
length l. Instead, we calculate a combined arrival curve value Boundsubpcomb,E(l) by taking the
minimum of both objective values for each subpath.

Boundsubpcomb,E(l) = max
p̂∈ ̂SubPathsD≤l

min
{
Objsubp1,E (p̂), Objsubp2,E (p̂, l)

}
(10.14)

We expect that the explicit enumeration of the members of ̂SubPathsD≤l leads to an intractably
high computational complexity. Thus, we do not experimentally evaluate the calculation of arrival
curve values based on this set. Instead, in Section 10.2.3 and Section 10.2.4, we demonstrate and

evaluate an implicit enumeration of the members of ̂SubPathsD≤l.
So far, we only described the calculation of values on upper-bounding arrival curves (i.e.

upper-bounding the number of occurrences of event E within any time interval of at most l cycle
transitions). Analogously, one can use the subpaths of a graph for the calculation of values on
lower-bounding arrival curves (i.e. lower-bounding the number of occurrences of event E within
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any time interval of at least l cycle transitions). Such lower-bounding arrival curves are also
referred to as service curves in the context of the network calculus [Boudec and Thiran, 2001].
Moreover, one can generalize this principle to the calculation of values on arrival curves that bound
the number of occurrences of one event in dependence on the number of occurrences of another
event, e.g. upper-bounding (lower-bounding) the number of cache misses within any sequence of at
most (least) l cache accesses. A detailed discussion of the calculation of values on lower-bounding
and/or generalized arrival curves, however, is beyond the scope of this thesis. Nonetheless, note
that slight variants of the implicit enumeration of subpaths presented in Section 10.2.3 and
Section 10.2.4 are applicable to these calculation scenarios as well.

10.2.2. Using Lifted System Properties to Detect Infeasible Subpaths

As for the calculation of per-execution-run event bounds (cf. Section 6.4.3), we can use lifted
versions of system properties in order to improve the precision of the calculated arrival curve
values. In this context, the lifted system properties are used to prune subpaths of the graph that
are guaranteed to not describe any concrete traces.

̂LessSubPathsD≤l =
{
p̂ ∈ ̂SubPathsD≤l

∣∣∣ ∀Pk ∈ PropprogCi
,Ci

: P̂ path
k (p̂)

}
(10.15)

Recall, however, that the overall goal of co-runner-sensitive WCET analysis (cf. Section 7.5) is
to calculate a WCET bound for program progCi

executed on core Ci. Thus, the corresponding
set ExecRunsprogCi

,Ci contains all concrete traces that are exhibited during an execution run of
program progCi

on core Ci. Consequently, for the calculation of arrival curve values during this
co-runner-sensitive analysis, we use the set PropprogCi

,Ci
of system properties that hold during

every execution run of program progCi
on core Ci.

The arrival curve values calculated in our co-runner-sensitive analysis bound the number of
occurrences of events which are determined by the operation of the programs executed on the
concurrent cores Cj of core Ci (i.e. Cj 6= Ci, cf. Algorithm 7.1 and Algorithm 7.2). Thus, a
calculation of a value on an arrival curve overapproximates the events that occur on core Cj while
core Ci executes a run of program progCi

. In particular, this means that the considered program
execution sequences of core Cj could start in the middle of a program execution run and end in
the middle of a (possibly different) program execution run.
Classically, WCET analysis only uses system properties that are valid for a single execution

run of a program on the modeled processor core or a prefix of such an execution run (i.e. those
system properties of set PropprogCi

,Ci
that argue about the events occurring on core Ci for which

a WCET bound is calculated). The calculation of values on arrival curves, in contrast, relies on
system properties that are valid even if the concrete trace starts or ends at an arbitrary program
location on the modeled processor core Cj ( 6= Ci).

We demonstrate this difference for the case of the well-known control flow property of a relative
loop bound [Li and Malik, 1995]. Figure 10.9 shows an excerpt of an example program. The
excerpt is chosen in a way that it only contains the basic blocks of a loop (bb1 and bb2) as well as
the single predecessor basic block of the loop (bb0). In this thesis, we only consider reducible
loops, which have a unique loop header (here bb1). For simplicity, the body of our example loop
also only consists of a single basic block (bb2). For the example loop, there shall be a relative
upper loop bound loopUB1 . This means that, every time the loop is entered (i.e. the loop header
is entered from outside of the loop, in this case from bb0), the loop body (here bb2) may at most
be executed loopUB1 times.

If we perform a WCET analysis of the example program (i.e. the example program is executed
on core Ci for which we calculate a WCET bound), we consider all control flow paths from
the start of the program. As the program cannot start from inside of the loop, the loop can
only be entered via basic block bb0. Consequently, in any control flow path from the program
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loop1

bb0

bb1

bb2

Figure 10.9.: Excerpt of an example program. It shows the basic blocks of a loop (bb1 and bb2)
as well as the single predecessor basic block of the loop (bb0).

start, the number of executions of the loop body may at most be loopUB1 times as high as the
number of executions of basic block bb0. This relative upper loop bound is reflected by the
following control flow property (cf. Section 6.4.5), which is typically used during the calculation
of per-execution-run event bounds (cf. Chapter 6).

PloopUB1
(flow)⇔

∣∣∣∣{ x ∈ N<len(flow)

∣∣∣ flow(x) = front(bb2)
}∣∣∣∣

≤ loopUB1 ·
∣∣∣∣{ x ∈ N<len(flow)

∣∣∣ flow(x) = front(bb0)
}∣∣∣∣ (10.16)

This control flow property can be lifted to the level of approximation of paths through a graph
as follows. The lifted version fulfills the soundness criterion presented in Section 6.4.5. A formal
proof of this, however, is omitted due to time and space constraints.

P̂ path
loopUB1

(p̂)⇔
∑

x∈N<len(p̂)

̂wCFLBfront(bb2)(p̂, x) ≤ loopUB1 ·
∑

x∈N<len(p̂)

̂wCFUBfront(bb0)(p̂, x) (10.17)

If, in contrast, the example program is executed on core Cj for which we calculate arrival curve
values, we also have to consider concrete traces for which the operation of core Cj starts inside of
the example loop (i.e. in basic block bb1 or bb2). Such concrete traces may perform up to loopUB1

more executions of the loop body than loopUB1 times the number of executions of basic block bb0.
This is reflected by the following control flow property, which can be used during the calculation
of values on arrival curves.

PloopUB1
(flow)⇔

∣∣∣∣{ x ∈ N<len(flow)

∣∣∣ flow(x) = front(bb2)
}∣∣∣∣

≤ loopUB1 ·
(∣∣∣∣{ x ∈ N<len(flow)

∣∣∣ flow(x) = front(bb0)
}∣∣∣∣+ 1

) (10.18)

This control flow property can be lifted to the level of approximation of subpaths of a graph as
follows.

P̂ path
loopUB1

(p̂)⇔
∑

x∈N<len(p̂)

̂wCFLBfront(bb2)(p̂, x) ≤ loopUB1 ·
( ∑

x∈N<len(p̂)

̂wCFUBfront(bb0)(p̂, x) + 1

)
(10.19)
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Note that it is overly pessimistic to always account for the additional loopUB1 loop iterations as
proposed by equation (10.18). Instead, it suffices to account for the additional loop iterations
only in case the considered control flow starts inside of the loop. This is reflected by the following
improved version of the control flow property of equation (10.18).

PloopUB1
(flow)⇔

∣∣∣∣{ x ∈ N<len(flow)

∣∣∣ flow(x) = front(bb2)
}∣∣∣∣

≤ loopUB1 ·

(∣∣∣∣{ x ∈ N<len(flow)

∣∣∣ flow(x) = front(bb0)
}∣∣∣∣

+

∣∣∣∣{ x ∈ N<len(flow) ∩ {0}
∣∣∣ flow(x) ∈ {front(bb1), front(bb2) }∣∣∣∣

) (10.20)

This improved version of the control flow property can be lifted to the level of approximation
of subpaths of a graph as follows.

P̂ path
loopUB1

(p̂)⇔
∑

x∈N<len(p̂)

̂wCFLBfront(bb2)(p̂, x) ≤ loopUB1 ·

( ∑
x∈N<len(p̂)

̂wCFUBfront(bb0)(p̂, x)

+

∣∣∣∣{ x ∈ N<len(p̂) ∩ {0}
∣∣∣ (p̂(x), p̂(x+ 1)) ∈ insideEdgesD(loop1)

}∣∣∣∣
) (10.21)

The set insideEdgesD(loop1) is a subset of EdgesD that has to contain every start edge of every
subpath of graph GD that describes a control flow in which a basic block of the loop is at the
front position. A more detailed discussion of this criterion is beyond the scope of this thesis. A
formalization of this criterion would require a formalization of control flows that can span across
multiple execution runs (we presented a similar formalization of the control flows of an execution
run in Section 6.4.1 and Section 6.4.5). Such a formalization is omitted due to time and space
constraints.

Note that, in case multiple instances of the same loop can be nested due to recursion, the
corresponding loop bound property for the calculation of arrival curve values has to also take
into account an upper bound on the number of nested instances of the loop. Intuitively, in such a
case, the considered subpath could start in the first iteration of the innermost loop instance and
every outer instance could also be in its first iteration. The benchmarks that we consider during
our experiments (cf. Table 10.10), however, do not make use of recursion.

Further note that, in a similar way as for the loop bound properties, cache persistence properties
also differ between the calculation of per-execution-run event bounds and the calculation of arrival
curve values. For any prefix of a single execution run, the number of cache misses of a persistent
memory block is upper-bounded by the number of times the corresponding persistence scope
is entered. During the calculation of arrival curve values, however, we also have to take into
account control flow on the considered core which starts in the middle of a persistence scope. Our
experiments, however, do not take into account cache persistence.
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10.2.3. Implicit Enumeration of the Subpaths
As a preparation for the implicit enumeration of the subpaths of graph GD, we derive graph GF ,
which marks all nodes of graph GD as start nodes and end nodes. Note that we skipped the
letter E in this naming scheme, as it already stands for the event E.

GF = (NodesF ,NodesFstart,Nodes
F
end,Edges

F ) (10.22)

NodesF = NodesD (10.23)

NodesFstart = NodesD (10.24)

NodesFend = NodesD (10.25)

EdgesF = EdgesD (10.26)

Consequently, the set of paths through graph GF coincides with the set of subpaths of graph GD.

P̂athsF = ̂SubPathsD (10.27)

Thus, an implicit enumeration of the paths through graph GF corresponds to an implicit
enumeration of the subpaths of graph GD. We exploit this in order to implicitly enumerate the

members of ̂SubPathsD≤l. In case the original graph GC is at the granularity of cycle transitions
(cf. equation (10.9)), the implicit enumeration is performed as follows.

WindowConstr((tt, is, ie), l)⇔
∑

edg∈EdgesF
tt(edg) · ̂wCycleLB(edg) ≤ l (10.28)

̂ImplicitF≤l =
{
(tt, is, ie) ∈ ̂ImplicitF

∣∣∣ WindowConstr((tt, is, ie), l)
}

(10.29)

In case the original graph GC is not at the granularity of cycle transitions (cf. equation (10.12)),
the window constraint has to be slightly adapted.

WindowConstr((tt, is, ie), l)⇔
∑

edg∈EdgesF
[tt(edg)− is(edg)− ie(edg)] · ̂wCycleLB(edg)

+
∑

edg∈EdgesF
is(edg) · ŵEUB(edg) ≤ l

(10.30)

As a next step, we use lifted versions of system properties in order to prune infeasible implicit

paths from the set ̂ImplicitF≤l.

̂LessImplicitF≤l =
{
(tt, is, ie) ∈ ̂ImplicitF≤l

∣∣∣ ∀Pk ∈ PropprogCi
,Ci

: P̂ impli
k ((tt, is, ie))

}
(10.31)

The improved version of the relative-loop-bound system property on subpaths of the graph (cf.
equation (10.21)) is lifted to the level of approximation of the implicit enumeration of subpaths
as follows.

P̂ impli
loopUB1

((tt, is, ie))⇔
∑

edg∈EdgesF
tt(edg) · ̂wCFLBfront(bb2)(edg)

≤ loopUB1 ·
( ∑
edg∈EdgesF

tt(edg) · ̂wCFUBfront(bb0)(edg)

+
∑

edg∈insideEdgesD(loop1)

is(edg)
) (10.32)
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The arrival curve value Boundsubp1,E (l) (cf. equation (10.11)) is safely overapproximated based
on the implicit enumeration as follows.

Objimpli
1,E ((tt, is, ie)) =

∑
edg∈EdgesF

tt(edg) · ŵEUB(edg) (10.33)

Boundimpli
1,E (l) = max

(tt,is,ie)∈ ̂LessImplicitF≤l

Objimpli
1,E ((tt, is, ie)) (10.34)

The combined arrival curve value Boundsubpcomb,E(l) (cf. equation (10.14)) is safely overapproxi-
mated based on the implicit enumeration as follows.

Objimpli
2,E ((tt, is, ie), l) =

∑
edg∈EdgesF

[tt(edg)− is(edg)− ie(edg)] · ŵEUB(edg)

+ l −
∑

edg∈EdgesF
[tt(edg)− is(edg)− ie(edg)] · ̂wCycleLB(edg)

(10.35)

Boundimpli
comb,E(l) = max

(tt,is,ie)∈ ̂LessImplicitF≤l

min
{
Objimpli

1,E ((tt, is, ie)), Objimpli
2,E ((tt, is, ie), l)

}
(10.36)

As the ILP solver that we use1 does not directly support combining two objectives with a
minimum operation, we simulate the minimum by an auxiliary variable obj that is upper-bounded
by each argument of the minimum operation.

Boundimpli
comb,E(l) = max

(tt,is,ie,obj)∈ ̂LessImplicitF≤l
×N

obj (10.37)

obj ≤ Objimpli
1,E ((tt, is, ie)) (10.38)

obj ≤ Objimpli
2,E ((tt, is, ie), l) (10.39)

In case one of the calculated arrival curve values exceeds the length l of the considered time
interval, it is reset to l (i.e. within any time interval of l clock cycles, there cannot be more than l
occurrences of event E).

Boundimpli
1,E (l)←− min

{
l, Boundimpli

1,E (l)
}

(10.40)

Boundimpli
comb,E(l)←− min

{
l, Boundimpli

comb,E(l)
}

(10.41)

Note that some equations of the presented calculations rely on the information whether a
given edge is the start edge or the end edge of the current subpath (i.e. they argue about the
components is and ie of the implicit subpath). Thus, it is not possible to trivially lift these
calculations to an implicit enumeration without binary variables (cf. Section 9.4). For a formal
sketch on how to safely lift these calculations to an implicit enumeration without binary variables,
we refer to Section 10.2.4. In this subsection, we conduct an experimental evaluation of the
implicit enumeration with binary variables.
In our experiments, we perform the implicit enumeration of subpaths on graphs that are

fully node-sensitive at basic block boundaries, node-insensitive inside of basic blocks, and fully
edge-weight-sensitive with respect to the upper bound on the number of occurrences of event
E (cf. Section 6.4.4). As the implicit enumeration of subpaths tends to be significantly more
complex than the calculation of per-execution-run event bounds (cf. Chapter 6), we enforce a time

1http://www.gurobi.com/products/gurobi-optimizer
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limit of ten minutes per calculation of an arrival curve value. In case the ILP solver performing
the implicit enumeration is not finished after this time limit, we use the best upper bound that
the solver has calculated so far.

We evaluate the calculation of arrival curve values by implicit subpath enumeration for the
interval lengths in {104, 105, 106, 107, 108, 109}. We start with an experimental evaluation of
the implicit subpath enumeration calculating Boundimpli

1,E (l). The experiment takes 13 hours, 14
minutes, and 50.43 seconds. On average, the calculation of arrival curve values for a benchmark
takes 7.65 times as long as the corresponding calculations at the granularity of program runs
(cf. Figure B.22 on page 339 of Appendix B). The memory consumption compared to the
corresponding calculations at the granularity of program runs increases by an average factor of
4.30 (cf. Figure B.23 on page 340 of Appendix B). Table 10.2 lists the resulting arrival curve
values normalized to the respective interval lengths. For each benchmark, there are six normalized
curve values in Table 10.2. Starting from an interval length of 105, the normalized curve values
of a benchmark typically tend toward a constant factor less than one (representing the worst-case
event density of the benchmark). Intuitively, as soon as the interval length exceeds the length of
the hottest path through the benchmark, the hottest path is likely to be executed repeatedly
until the interval length is filled up. The benchmarks epic, mpeg2, and susan are exceptions:
some of their curve value calculations hit the time limit of ten minutes before there is an upper
bound on the curve value that is more precise than the interval length. On average, the calculated
curve values are 0.891 times as high as the corresponding interval lengths. The average factor of
0.891 is calculated as the geometric mean of all normalized arrival curve values. This average
factor corresponds to an average reduction of 10.9 percent compared to the calculation at the
granularity of program runs (cf. Table 10.1). Note that the arrival curve value Boundimpli

1,E (l) is
up to 41.8 percent reduced compared to the calculation at the granularity of program runs (e.g.
for benchmark st in combination with interval length 107, cf. Table 10.1).

The experimental evaluation of the implicit subpath enumeration calculating Boundimpli
comb,E(l)

takes 15 hours, 32 minutes, and 37.34 seconds. On average, the calculation of arrival curve values
for a benchmark takes 9.98 times as long as the corresponding calculations at the granularity of
program runs (cf. Figure B.24 on page 341 of Appendix B). The memory consumption compared
to the corresponding calculations at the granularity of program runs increases by an average
factor of 4.35 (cf. Figure B.25 on page 342 of Appendix B). This means that, in terms of runtime
and memory consumption, the implicit subpath enumeration calculating Boundimpli

comb,E(l) is more
demanding than the implicit subpath enumeration calculating Boundimpli

1,E (l) (cf. Figure B.22 on
page 339 and Figure B.23 on page 340 of Appendix B).

Table 10.3 lists the calculated arrival curve values Boundimpli
comb,E(l) normalized to the respective

interval lengths l. On average, the calculated curve values are 0.893 times as high as the
corresponding interval lengths. Thus, the increased computational complexity and memory
consumption of the implicit subpath enumeration calculating Boundimpli

comb,E(l) compared to the
implicit subpath enumeration calculating Boundimpli

1,E (l) is not justified by an improved precision
(cf. Table 10.2).

Note that the normalized curve values for Boundimpli
comb,E(l) are at best slightly more precise than

the normalized curve values for Boundimpli
1,E (l) (up to 0.001 as e.g. for benchmark petrinet in

combination with interval length 104). The potential precision improvement of Boundimpli
comb,E(l)

compared to Boundimpli
1,E (l) is limited to a more precise bounding of the number of occurrences of

event E for the start edge and the end edge of the considered implicit subpaths. We follow that,
for reasonable interval lengths (i.e. l ≥ 104) and graphs at the granularity of basic blocks, the
precision improvement normalized to the respective interval length is negligible.
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104 105 106 107 108 109

cruise_control 0.927 0.924 0.923 0.923 0.923 0.923
digital_stopwatch 0.951 0.942 0.941 0.941 0.941 0.941

es_lift 0.959 0.957 0.957 0.957 0.957 0.957
flight_control 0.955 0.915 0.909 0.908 0.908 0.908

pilot 0.858 0.848 0.848 0.847 0.847 0.847
roboDog 0.952 0.950 0.949 0.949 0.949 0.949

trolleybus 0.966 0.962 0.961 0.961 0.961 0.961
lift 0.827 0.812 0.810 0.810 0.810 0.810

powerwindow 0.942 0.937 0.937 0.933 0.927 0.927
binarysearch 0.922 0.920 0.920 0.920 0.920 0.920

bsort 0.912 0.911 0.910 0.910 0.910 0.910
complex_updates 0.868 0.866 0.866 0.866 0.866 0.866

countnegative 0.832 0.829 0.829 0.829 0.829 0.829
fft 0.899 0.896 0.858 0.853 0.852 0.852

filterbank 0.840 0.786 0.778 0.774 0.773 0.773
fir2dim 0.837 0.800 0.797 0.797 0.797 0.797

iir 0.879 0.877 0.876 0.876 0.876 0.876
insertsort 0.860 0.853 0.852 0.852 0.852 0.852

jfdctint 0.836 0.822 0.821 0.820 0.820 0.820
lms 0.871 0.867 0.866 0.866 0.866 0.866

ludcmp 0.952 0.950 0.950 0.950 0.950 0.950
matrix1 0.796 0.791 0.791 0.791 0.791 0.791

md5 0.900 0.888 0.887 0.887 0.887 0.887
minver 0.880 0.872 0.871 0.870 0.870 0.870

pm 0.938 0.917 0.906 0.904 0.904 0.904
prime 0.906 0.903 0.903 0.903 0.903 0.903

sha 0.901 0.851 0.845 0.845 0.845 0.845
st 0.669 0.624 0.587 0.582 0.582 0.582

adpcm_dec 0.861 0.852 0.851 0.851 0.851 0.851
adpcm_enc 0.853 0.841 0.840 0.840 0.840 0.840
audiobeam 0.934 0.931 0.930 0.930 0.930 0.930

cjpeg_transupp 0.946 0.943 0.942 0.942 0.942 0.942
cjpeg_wrbmp 0.910 0.908 0.908 0.908 0.908 0.908

dijkstra 0.922 0.919 0.918 0.918 0.918 0.918
epic 1.000 1.000 1.000 1.000 1.000 0.947

g723_enc 0.940 0.937 0.936 0.936 0.936 0.936
gsm_dec 0.941 0.936 0.935 0.935 0.935 0.935

gsm_encode 0.858 0.796 0.782 0.779 0.778 0.778
h264_dec 0.929 0.913 0.911 0.911 0.911 0.911
huff_dec 0.906 0.904 0.904 0.904 0.904 0.904

mpeg2 1.000 1.000 1.000 1.000 1.000 1.000
ndes 0.961 0.893 0.884 0.883 0.883 0.883

petrinet 0.934 0.931 0.930 0.930 0.930 0.930
rijndael_dec 0.987 0.981 0.980 0.980 0.980 0.980
rijndael_enc 0.988 0.979 0.978 0.978 0.978 0.978

statemate 0.947 0.941 0.941 0.941 0.941 0.941
susan 1.000 1.000 1.000 1.000 1.000 1.000

—average— 0.905 0.892 0.889 0.888 0.888 0.887
0.891

Table 10.2.: Arrival curve values calculated by implicit subpath enumeration (Boundimpli
1,E (l))

for the interval lengths in {104, 105, 106, 107, 108, 109}. The presented values are
normalized to the respective interval lengths.
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104 105 106 107 108 109

cruise_control 0.927 0.924 0.923 0.923 0.923 0.923
digital_stopwatch 0.951 0.942 0.941 0.941 0.941 0.941

es_lift 0.959 0.957 0.957 0.957 0.957 0.957
flight_control 0.955 0.915 0.909 0.908 0.908 0.908

pilot 0.858 0.848 0.848 0.847 0.847 0.847
roboDog 0.952 0.950 0.949 0.949 0.949 0.949

trolleybus 0.966 0.962 0.961 0.961 0.961 0.961
lift 0.827 0.812 0.810 0.810 0.810 0.810

powerwindow 0.941 0.937 0.937 0.933 0.927 0.927
binarysearch 0.921 0.920 0.920 0.920 0.920 0.920

bsort 0.912 0.911 0.910 0.910 0.910 0.910
complex_updates 0.868 0.866 0.866 0.866 0.866 0.866

countnegative 0.832 0.829 0.829 0.829 0.829 0.829
fft 0.899 0.896 0.857 0.853 0.852 0.852

filterbank 0.840 0.786 0.778 0.774 0.773 0.773
fir2dim 0.837 0.800 0.797 0.797 0.797 0.797

iir 0.878 0.877 0.876 0.876 0.876 0.876
insertsort 0.860 0.853 0.852 0.852 0.852 0.852

jfdctint 0.836 0.822 0.821 0.820 0.820 0.820
lms 0.870 0.867 0.866 0.866 0.866 0.866

ludcmp 0.951 0.950 0.950 0.950 0.950 0.950
matrix1 0.796 0.791 0.791 0.791 0.791 0.791

md5 0.900 0.888 0.887 0.887 0.887 0.887
minver 0.880 0.871 0.871 0.870 0.870 0.870

pm 1.000 0.917 0.906 1.000 1.000 1.000
prime 0.906 0.903 0.903 0.903 0.903 0.903

sha 0.901 0.851 0.845 0.845 0.845 0.845
st 0.669 0.624 0.587 0.582 0.582 0.582

adpcm_dec 0.860 0.852 0.851 0.851 0.851 0.851
adpcm_enc 0.853 0.841 0.840 0.840 0.840 0.840
audiobeam 0.933 0.931 0.930 0.930 0.930 0.930

cjpeg_transupp 0.946 0.943 0.942 0.942 0.942 1.000
cjpeg_wrbmp 0.910 0.908 0.908 0.908 0.908 0.908

dijkstra 0.921 0.919 0.918 0.918 0.918 0.918
epic 1.000 1.000 1.000 1.000 1.000 1.000

g723_enc 0.939 0.937 0.936 0.936 0.936 0.936
gsm_dec 0.940 0.936 0.935 0.935 0.935 0.935

gsm_encode 0.862 0.796 0.782 0.779 0.778 0.778
h264_dec 0.929 0.913 0.911 0.911 0.911 0.911
huff_dec 0.905 0.904 0.904 0.904 0.904 0.904

mpeg2 1.000 1.000 1.000 1.000 1.000 1.000
ndes 0.961 0.893 0.884 0.883 0.883 0.883

petrinet 0.933 0.930 0.930 0.930 0.930 0.930
rijndael_dec 0.990 0.981 0.980 0.980 0.980 0.980
rijndael_enc 0.989 0.979 0.978 0.978 0.978 0.978

statemate 0.947 0.941 0.941 0.941 0.941 0.941
susan 1.000 1.000 1.000 1.000 1.000 1.000

—average— 0.906 0.892 0.889 0.890 0.890 0.891
0.893

Table 10.3.: Arrival curve values calculated by implicit subpath enumeration (Boundimpli
comb,E(l))

for the interval lengths in {104, 105, 106, 107, 108, 109}. The presented values are
normalized to the respective interval lengths.
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Further note that, in some cases, the normalized curve values for Boundimpli
comb,E(l) are greater

(i.e. less precise) than the normalized curve values for Boundimpli
1,E (l) (up to 0.096 as e.g. for

benchmark pm in combination with interval length 109). Based solely on the formal specifications
of Boundimpli

1,E (l) and Boundimpli
comb,E(l) (cf. equations (10.34) and (10.36)), this reduction of precision

cannot be explained. The potential reduction of precision in our experiments is due to the enforced
time limit of ten minutes per implicit subpath enumeration: Since the computational complexity of
calculating Boundimpli

comb,E(l) is significantly higher than the computational complexity of calculating
Boundimpli

1,E (l), the best upper bound on Boundimpli
comb,E(l) that is reached after ten minutes is in

some cases greater than the best upper bound on Boundimpli
1,E (l) that is reached after ten minutes.

We conclude that the precision of Boundimpli
1,E (l) and Boundimpli

comb,E(l) is significantly higher than
the precision of curve values calculated at the granularity of program runs. The precision of
Boundimpli

comb,E(l) is on a par with the precision of Boundimpli
1,E (l). The computational complexity and

memory consumption of calculating Boundimpli
comb,E(l), however, are significantly higher than the

computational complexity and memory consumption of calculating Boundimpli
1,E (l). Consequently,

in the remainder of this chapter, implicit subpath enumeration with binary variables is only used
for the calculation of Boundimpli

1,E (l).

In the next subsection, we experimentally evaluate whether an overapproximation of Boundimpli
1,E (l)

at the level of implicit subpath enumeration without binary variables (cf. Section 9.4) is beneficial
in terms of computational complexity and/or memory consumption.

10.2.4. Implicit Subpath Enumeration without Binary Variables

The implicit subpath enumeration without binary variables is performed on a graph GG that
is obtained from graph GF as described in Section 9.4. In case the original graph GC is at the
granularity of cycle transitions (cf. equation (10.9)), the implicit enumeration without binary

variables considers the following set ̂ImplicitG′≤l, which is a trivial overapproximation of ̂ImplicitF≤l
(cf. equation (10.29)).

WindowConstr(tt, l)⇔
∑

edg∈EdgesG
tt(edg) · ̂wCycleLB(edg) ≤ l (10.42)

̂ImplicitG′≤l =
{
tt ∈ ̂ImplicitG′

∣∣∣ WindowConstr(tt, l)
}

(10.43)

In case the original graph GC is not at the granularity of cycle transitions (cf. equation (10.12)),
the implicit enumeration without binary variables considers the following adapted window

constraint. The resulting set ̂ImplicitG′≤l is still an overapproximation of ̂ImplicitF≤l, but no longer
a trivial one. A soundness proof of this statement is omitted due to time and space constraints.

WindowConstr(tt, l)⇔
∑

edg∈EdgesG
tt(edg) · ̂wCycleLB(edg)

−
∑

(∗,nd)∈EdgesGstart

tt((∗,nd))

·
[

max
edg∈outEdges(nd)

( ̂wCycleLB(edg)− ŵEUB(edg)
)]

−
∑

(nd,∗)∈EdgesGend

tt((nd, ∗)) ·
[

max
edg∈inEdges(nd)

̂wCycleLB(edg)
]
≤ l

(10.44)
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As a next step, we use lifted versions of system properties in order to prune infeasible implicit

paths from the set ̂ImplicitG′≤l.

̂LessImplicitG′≤l =
{
tt ∈ ̂ImplicitG′≤l

∣∣∣ ∀Pk ∈ PropprogCi
,Ci

: P̂ impli′
k (tt)

}
(10.45)

The improved version of the relative-loop-bound system property on implicit subpaths with
binary variables (cf. equation (10.32)) can be lifted to the level of approximation of implicit
subpaths without binary variables as follows.

P̂ impli′
loopUB1

(tt)⇔
∑

edg∈EdgesG
tt(edg) · ̂wCFLBfront(bb2)(edg)

≤ loopUB1 ·
( ∑
edg∈EdgesG

tt(edg) · ̂wCFUBfront(bb0)(edg)

+
∑

edg∈{(∗,nd)∈EdgesGstart|outEdges(nd)∩insideEdgesD(loop1)6=∅}

tt(edg)
) (10.46)

The arrival curve value Boundimpli
1,E (l) (cf. equation (10.34)) is trivially overapproximated based

on the implicit enumeration without binary variables as follows.

Objimpli′
1,E (tt) =

∑
edg∈EdgesG

tt(edg) · ŵEUB(edg) (10.47)

Boundimpli′
1,E (l) = max

tt∈ ̂LessImplicitG′≤l

Objimpli′
1,E (tt) (10.48)

The combined arrival curve value Boundimpli
comb,E(l) (cf. equation (10.36)) is safely overapproxi-

mated based on the implicit enumeration without binary variables as follows.

Objimpli′
2,E (tt, l) =

∑
edg∈EdgesG

tt(edg) ·
[
ŵEUB(edg)− ̂wCycleLB(edg)

]
+

∑
(∗,nd)∈EdgesGstart

tt((∗,nd))

·
[

max
edg∈outEdges(nd)

( ̂wCycleLB(edg)− ŵEUB(edg)
)]

+
∑

(nd,∗)∈EdgesGend

tt((nd, ∗))

·
[

max
edg∈inEdges(nd)

( ̂wCycleLB(edg)− ŵEUB(edg)
)]

+ l

(10.49)

Boundimpli′
comb,E(l) = max

tt∈ ̂LessImplicitG′≤l

min
{
Objimpli′

1,E (tt), Objimpli′
2,E (tt, l)

}
(10.50)
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Chapter 10. Calculation of Values on Arrival Curves

As the ILP solver that we use2 does not directly support combining two objectives with a
minimum operation, we simulate the minimum by an auxiliary variable obj that is upper-bounded
by each argument of the minimum operation.

Boundimpli′
comb,E(l) = max

(tt,obj)∈ ̂LessImplicitG′≤l
×N

obj (10.51)

obj ≤ Objimpli′
1,E (tt) (10.52)

obj ≤ Objimpli′
2,E (tt, l) (10.53)

In case one of the calculated arrival curve values exceeds the length l of the considered time
interval, it is reset to l (i.e. within any time interval of l clock cycles, there cannot be more than l
occurrences of event E).

Boundimpli′
1,E (l)←− min

{
l, Boundimpli′

1,E (l)
}

(10.54)

Boundimpli′
comb,E(l)←− min

{
l, Boundimpli′

comb,E(l)
}

(10.55)

In our experiments, we perform the implicit subpath enumeration without binary variables
on graphs that are fully node-sensitive at basic block boundaries, node-insensitive inside of
basic blocks, and fully edge-weight-sensitive with respect to the upper bound on the number of
occurrences of event E (cf. Section 6.4.4). In the same way as in Section 10.2.3, we enforce a time
limit of ten minutes per calculation of an arrival curve value. In case the ILP solver performing
the implicit enumeration is not finished after this time limit, we use the best upper bound that
the solver has calculated so far.

Table 10.4 lists the resulting arrival curve values normalized to the respective interval lengths.
The normalized curve values for Boundimpli′

1,E (l) are up to 0.053 greater (for benchmark st in
combination with interval length 104) and up to 0.053 smaller (e.g. for benchmark epic in
combination with interval length 107) than the normalized curve values for Boundimpli

1,E (l) (cf.
Table 10.2). The normalized curve values for Boundimpli′

1,E (l) have an average value (geometric
mean) of 0.893. This means that the precision of Boundimpli′

1,E (l) is on average almost on a par
with the precision of Boundimpli

1,E (l) (0.891, cf. Table 10.2).
The overall experiment for Boundimpli′

1,E (l) takes 13 hours, five minutes, and 37.3 seconds (cf.
Figure B.26 on page 343 of Appendix B) and, thus, around as long as the corresponding experiment
for Boundimpli

1,E (l) (cf. Figure B.22 on page 339 of Appendix B). Nonetheless, the average runtime
increase of 8.82 compared to a curve value calculation at the granularity of program runs is
slightly higher than the corresponding factor of 7.65 for implicit subpath enumeration with
binary variables. The average increase in memory consumption of 3.04 (cf. Figure B.27 on
page 344 of Appendix B), in contrast, is lower than the average increase in memory consumption
for implicit subpath enumeration with binary variables (4.30, cf. Figure B.23 on page 340 of
Appendix B). Taking a closer look at the non-normalized runtime and memory consumption of
the experiments with Boundimpli

1,E (l) and Boundimpli′
1,E (l), we see that it significantly depends on

the actual benchmark whether implicit subpath enumeration with or without binary variables is
more beneficial in terms of computational complexity or memory consumption. Thus, based on
these experimental results, we cannot recommend one of both approaches to implicit subpath
enumeration over the other.

For simplicity and due to time and space constraints, in the remainder of this chapter, we only
resort to implicit subpath enumeration with binary variables. Note, however, that all further
principles introduced in the remainder of this chapter could as well be realized using implicit
subpath enumeration without binary variables.
2http://www.gurobi.com/products/gurobi-optimizer
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104 105 106 107 108 109

cruise_control 0.932 0.924 0.923 0.923 0.923 0.923
digital_stopwatch 0.966 0.944 0.942 0.941 0.941 0.941

es_lift 0.964 0.958 0.957 0.957 0.957 0.957
flight_control 0.955 0.936 0.911 0.909 0.908 0.908

pilot 0.877 0.851 0.849 0.849 0.848 0.847
roboDog 0.958 0.950 0.950 0.949 0.949 0.949

trolleybus 0.976 0.963 0.961 0.961 0.961 0.961
lift 0.842 0.814 0.810 0.810 0.810 0.810

powerwindow 0.947 0.938 0.937 0.937 0.928 0.927
binarysearch 0.922 0.920 0.920 0.920 0.920 0.920

bsort 0.912 0.911 0.910 0.910 0.910 0.910
complex_updates 0.870 0.866 0.866 0.866 0.866 0.866

countnegative 0.835 0.830 0.829 0.829 0.829 0.829
fft 0.906 0.897 0.886 0.857 0.853 0.852

filterbank 0.846 0.808 0.785 0.776 0.774 0.773
fir2dim 0.844 0.811 0.799 0.798 0.797 0.797

iir 0.880 0.877 0.876 0.876 0.876 0.876
insertsort 0.865 0.854 0.852 0.852 0.852 0.852

jfdctint 0.870 0.825 0.821 0.820 0.820 0.820
lms 0.881 0.868 0.866 0.866 0.866 0.866

ludcmp 0.954 0.950 0.950 0.950 0.950 0.950
matrix1 0.799 0.792 0.791 0.791 0.791 0.791

md5 0.901 0.888 0.887 0.887 0.887 0.887
minver 0.912 0.878 0.873 0.872 0.871 0.871

pm 0.942 0.936 0.918 0.906 0.904 0.904
prime 0.907 0.903 0.903 0.903 0.903 0.903

sha 0.918 0.865 0.847 0.845 0.845 0.845
st 0.722 0.634 0.604 0.583 0.582 0.582

adpcm_dec 0.881 0.855 0.851 0.851 0.851 0.851
adpcm_enc 0.861 0.845 0.842 0.842 0.841 0.840
audiobeam 0.935 0.931 0.931 0.930 0.930 0.930

cjpeg_transupp 0.951 0.943 0.942 0.942 0.942 0.942
cjpeg_wrbmp 0.913 0.908 0.908 0.908 0.908 0.908

dijkstra 0.925 0.919 0.919 0.918 0.918 0.918
epic 0.958 0.949 0.947 0.947 0.947 1.000

g723_enc 0.940 0.937 0.936 0.936 0.936 0.936
gsm_dec 0.945 0.936 0.935 0.935 0.935 0.935

gsm_encode 0.886 0.796 0.785 0.779 0.778 0.778
h264_dec 0.941 0.914 0.912 0.911 0.911 0.911
huff_dec 0.906 0.904 0.904 0.904 0.904 0.904

mpeg2 0.973 0.958 0.951 0.950 1.000 1.000
ndes 0.965 0.958 0.891 0.884 0.883 0.883

petrinet 0.939 0.931 0.930 0.930 0.930 0.930
rijndael_dec 1.000 0.984 0.981 0.980 0.980 0.980
rijndael_enc 1.000 0.983 0.978 0.978 0.978 0.978

statemate 0.959 0.943 0.941 0.941 0.941 0.941
susan 1.000 1.000 1.000 1.000 1.000 1.000

—average— 0.913 0.895 0.889 0.886 0.887 0.888
0.893

Table 10.4.: Arrival curve values calculated by implicit subpath enumeration without binary
variables (Boundimpli′

1,E (l)) for the interval lengths in {104, 105, 106, 107, 108, 109}. The
presented values are normalized to the respective interval lengths.
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Chapter 10. Calculation of Values on Arrival Curves

Finally, we point out that the normalized curve values obtained from implicit subpath enu-
meration (with or without binary variables) are still relatively high. On average, almost 90
percent of a considered interval length can be filled up with bus access cycles (cf. Table 10.2 and
Table 10.4). In Section 10.5, we demonstrate that a co-runner-sensitive WCET analysis relying on
such high arrival curve values is typically not able to calculate more precise WCET bounds than
a co-runner-insensitive WCET analysis. In order to reduce the relative amount of shared-bus
interference that a processor core can generate, in Section 10.3, we propose to enforce minimum
inter-start times during program scheduling.

10.2.5. Supporting Multiple Programs on the Same Processor Core

In this thesis, for simplicity, we only evaluate the calculation of values on arrival curves for a
scenario in which every processor core executes a single program in a non-preemptive fashion.
Nonetheless, the presented technique (i.e. the implicit enumeration of subpaths of a graph
representation) also naturally applies to a scenario in which every processor core executes multiple
programs in a non-preemptive fashion. In Figure 10.8, we demonstrate the construction of graph
GD by adding a dummy node dm to graph GC and connecting the dummy node to the start nodes
and end nodes of graph GC . In the more general case of multiple programs progCj

being executed
on the same processor core Cj , we have one graph GC,progCj per program progCj

executed on
the considered processor core. In this more general case, we obtain graph GD by connecting
all graphs GC,progCj via the dummy node dm. Thus, the dummy node dm has zero-weighted
outgoing edges to every start node of every graph GC,progCj and zero-weighted incoming edges
from every end node of every graph GC,progCj . This principle is demonstrated in Figure 10.10 for
a scenario in which the programs prog1 and prog2 are executed on the considered processor core.

Additionally, it is possible to hard-wire limited knowledge about the program schedule directly
into graph GD. Such limited knowledge might e.g. be a static order in which the programs are
executed. Or it might only be known that a given program is never executed twice in sequence
without executing a different program in between. Figure 10.11 demonstrates the incorporation
of such knowledge for the example in Figure 10.10. In this case, there shall be a static program
order in which the programs prog1 and prog2 take turns at executing. In Figure 10.11, graph
GD expresses this knowledge by making use of two dummy nodes. Conceptually, the graph in
Figure 10.11 can be seen as the result of applying a sequence of two graph transformations (cf.
Section 6.4.6) to the graph in Figure 10.10. First, the graph is blown up (cf. equation (6.C12))
by creating specialized dummy nodes representing the case that prog1 just terminated (dm1) and
the case that prog2 just terminated (dm2). Subsequently, infeasible edges (cf. equation (6.C13))
of the blown-up graph are removed, e.g. the outgoing edges of dummy node dm1 targeting a start
node of graph GC,prog1 .
Note, however, that we expect the computational complexity of this approach to be unman-

ageable when dealing with multiple real-world programs executed on the same processor core.
Moreover, even if the computational complexity is still bearable, we expect this approach to not
be well-suited for a scenario with continuous development: In case only one of the programs
of a processor core changes during development, the very costly calculations of arrival curve
values (incorporating all programs of the core) have to be redone from scratch during the timing
verification. To overcome these drawbacks, Section 10.4 sketches a more modular calculation
of arrival curve values: The computationally complex aspects are calculated at a per-program
level and the actual calculation of arrival curve values only uses the results of the per-program
calculations. Yet, the sketched approach takes into account which part of a program can produce
which amount of event occurrences and, thus, avoids the pessimism of a calculation at the
granularity of program runs (cf. Section 10.1).

194



10.2. Calculation at Finer Granularities

GC,prog1

NodesC,prog1start NodesC,prog1end

GC,prog2

NodesC,prog2startNodesC,prog2end

dm

Figure 10.10.: In a scenario in which multiple programs are executed on the considered processor
core, the calculation of arrival curve values is performed on a graph GD that is
obtained by connecting the graphs of all executed programs. To this end, graph GD
introduces a fresh dummy node dm which has zero-weighted outgoing edges to all
start nodes of every per-program graph and zero-weighted incoming edges from all
end nodes of every per-program graph.

10.2.6. Toward Preemptive Scheduling

Note that, in a setting with preemptive scheduling, preemption effects must be accounted for as
they can change the operation of preempted programs (in particular the temporal distribution of
event occurrences). Researchers have studied the safe modeling of the impact that preemptions
have on the contents of caches [Altmeyer, 2013]. However, it is unclear how to safely and
efficiently model the impact of preemptions on the operation of other components (e.g. pipelines)
of real-world processors.

Even under the hypothetical assumption that there was a micro-architectural analysis that
safely takes into account all possible preemption effects for a given real-world hardware platform,
the presented calculation of arrival curve values based on subpaths of a graph would also have to
be adapted in order to be sound for systems with preemptive scheduling. So far, the presented
calculation inherently assumes that a context switch in the middle of an execution run is not
possible (cf. Figure 10.8 and Figure 10.10). We expect that an adaption of the calculation for
systems with preemptive scheduling would necessarily lead to the introduction of many additional
graph edges accounting for the possible context switches. A more detailed sketch of such an
adaption, however, exceeds the scope of this thesis.
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GC,prog1

NodesC,prog1start NodesC,prog1end

GC,prog2

NodesC,prog2startNodesC,prog2end

dm1dm2

Figure 10.11.: Limited scheduling knowledge can optionally be hard-wired into graph GD in order
to improve the precision of the calculated arrival curve values. This is demonstrated
for the example in Figure 10.10: The additional knowledge that both programs
take turns at executing can be expressed in the graph by using two dummy nodes.

10.3. Enforcing Minimum inter-Start Times of Programs to
Adjust the Amount of Generated Interference

In order to potentially reduce the number of occurrences of event E that a processor core can
generate in a time interval of a given length, we would like to configure the minimum amount of
time that an execution run of a program has to take. To this end, the non-preemptive program
scheduler of the concrete system shall enforce a minimum inter-start time MISTprog per program
prog. This means that the scheduler shall guarantee that, when an execution run of prog on a
given core starts, a potential subsequent execution run of any program on the same core has to
start at least MISTprog clock cycles later. The following equation formalizes this requirement.

∀prog1, prog2 ∈ Programs : ∀Ci, Cj ∈ Cores :
∀t ∈ ExecRunsprog1,Ci

:

∀x ∈ N<len(t) :
Startprog2,Cj

(t, x)

⇒ ∀y ∈ N>x ∩ N<x+MISTprog2
∩ N<len(t) :

¬∃prog3 ∈ Programs : Startprog3,Cj (t, y)

(10.56)

The minimum inter-start times of the programs executed on a processor core can be used
to adjust the density of occurrences of an event E that is generated by the programs executed
on a considered core. In the context of preemptive scheduling, the assumption of a minimum
inter-release time per task [Altmeyer et al., 2015] respectively an arrival curve for releases per
task [Schliecker and Ernst, 2010] has an analogous impact on the density of event occurrences.
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To the best of our knowledge, the impact of incorporating such density-adjusting assumptions
compared to pessimistically assuming a fully utilized system (i.e. assuming that the scheduler
permanently executes programs on the considered core) has so far not yet been evaluated.

In this section, we demonstrate how to take into account the minimum inter-start times during
the calculation of arrival curve values in order to potentially improve the precision of the calculated
values. To this end, we extend the calculation methods presented in Section 10.1 and Section 10.2.

Note that a minimum inter-start time of a program that does not exceed the BCET of the
program has no effect on the concrete traces of the concrete system (i.e. any execution run is at
least as long as the minimum inter-start time anyway). Further note that, in case the minimum
inter-start time of a program exceeds the WCET bound considered for the program during
schedulability analysis, the minimum inter-start time of the program has to additionally be taken
into account during schedulability analysis (e.g. by pessimistically using the minimum inter-start
time instead of the WCET bound).

We expect that it is in general very challenging to individually choose the minimum inter-start
times of all programs in a way that all timing requirements of the system are fulfilled. A more
detailed discussion of the corresponding optimization problem, however, is beyond the scope of
this thesis. Instead, in order to keep the setup of the experiments in this section simple, we
choose a fixed minimum inter-start time per program. It shall be defined by a WCET bound
assuming the absence of interference plus 50 percent of the additional execution time that the
co-runner-insensitive WCET bound assumes. We refer to this as a relative minimum inter-start
time of 0.5 (relMIST0.5).

MISTprogCj
= WCETUB,0-interfer

progCj
,Cj

+ 0.5 · (WCETUB,insens
progCj

,Cj
−WCETUB,0-interfer

progCj
,Cj

) (10.57)

10.3.1. Incorporation during Calculation at the Granularity of Program
Runs

The calculation of arrival curve values at the granularity of program runs (cf. Section 10.1)
is extended to take into account the minimum inter-start time by replacing all occurrences of
the BCET bound BCETLB

progCj
,Cj

by the maximum of the BCET bound BCETLB
progCj

,Cj
and

the minimum inter-start time MISTprogCj
. Thus, the extension fully preserves the simple and

algebraic nature of the presented calculation at the granularity of program runs.
The experimental evaluation of the calculation of arrival curve values at the granularity of

program runs incorporating a minimum inter-start time is conducted in the same way as the
experiments of the preceding sections. Table 10.5 lists the resulting arrival curve values normalized
to the respective interval lengths. The normalized curve values have an average value (geometric
mean) of 0.594. This means that, on average, around sixty percent of a time interval can be filled
up with bus access cycles. This result demonstrates that enforcing a minimum inter-start time
can effectively reduce the amount of shared-bus interference that a processor core can generate
according to our processor-core-modular modeling scheme as, without enforcing a minimum
inter-start time, we are at best able to obtain an average value of 0.891 (cf. Table 10.2).
The overall experiment takes one hour, 36 minutes, and 34.69 seconds (cf. Figure B.28 on

page 345 of Appendix B). This is relatively close to the overall runtime of the experiment
calculating arrival curve values at the granularity of program runs without enforcing a minimum
inter-start time (one hour, 31 minutes, and 53.91 seconds), which is expected as the incorporation
of the minimum inter-start time preserves the simple and algebraic nature of the calculation at the
granularity of program runs. In the same way, the memory consumption also only slightly increases
compared to a calculation at the granularity of program runs without enforcing a minimum
inter-start time (average increase factor of 1.01, cf. Figure B.29 on page 346 of Appendix B).
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104 105 106 107 108 109

cruise_control 1.000 1.000 0.452 0.369 0.362 0.361
digital_stopwatch 1.000 1.000 0.797 0.374 0.343 0.338

es_lift 1.000 1.000 0.413 0.372 0.364 0.364
flight_control 1.000 1.000 1.000 0.412 0.364 0.356

pilot 1.000 1.000 0.461 0.363 0.351 0.350
roboDog 1.000 1.000 0.494 0.387 0.373 0.372

trolleybus 1.000 1.000 0.934 0.417 0.364 0.360
lift 1.000 1.000 1.000 0.672 0.370 0.350

powerwindow 1.000 1.000 1.000 1.000 0.464 0.377
binarysearch 0.405 0.366 0.362 0.361 0.361 0.361

bsort 1.000 1.000 1.000 0.429 0.357 0.352
complex_updates 0.554 0.388 0.363 0.360 0.360 0.359

countnegative 1.000 0.486 0.388 0.369 0.368 0.368
fft 1.000 1.000 1.000 1.000 1.000 0.758

filterbank 1.000 1.000 1.000 1.000 0.442 0.336
fir2dim 1.000 0.511 0.358 0.349 0.348 0.347

iir 0.429 0.372 0.368 0.368 0.368 0.368
insertsort 1.000 0.443 0.367 0.356 0.355 0.355

jfdctint 1.000 0.387 0.348 0.342 0.342 0.342
lms 1.000 1.000 0.937 0.375 0.342 0.338

ludcmp 1.000 0.603 0.362 0.350 0.348 0.348
matrix1 1.000 1.000 0.413 0.353 0.348 0.347

md5 1.000 1.000 1.000 1.000 1.000 0.440
minver 1.000 0.512 0.359 0.347 0.346 0.346

pm 1.000 1.000 1.000 1.000 0.534 0.348
prime 1.000 0.441 0.264 0.248 0.247 0.247

sha 1.000 1.000 1.000 1.000 0.467 0.359
st 1.000 1.000 0.511 0.323 0.306 0.304

adpcm_dec 1.000 0.447 0.365 0.355 0.355 0.354
adpcm_enc 1.000 0.488 0.366 0.355 0.354 0.354
audiobeam 1.000 1.000 1.000 0.487 0.363 0.350

cjpeg_transupp 1.000 1.000 1.000 1.000 1.000 0.413
cjpeg_wrbmp 1.000 1.000 0.613 0.337 0.309 0.307

dijkstra 1.000 1.000 1.000 1.000 1.000 1.000
epic 1.000 1.000 1.000 1.000 1.000 1.000

g723_enc 1.000 1.000 1.000 0.537 0.376 0.348
gsm_dec 1.000 1.000 1.000 1.000 0.419 0.335

gsm_encode 1.000 1.000 1.000 0.390 0.347 0.342
h264_dec 1.000 1.000 1.000 0.366 0.281 0.271
huff_dec 1.000 1.000 1.000 0.535 0.382 0.356

mpeg2 1.000 1.000 1.000 1.000 1.000 1.000
ndes 1.000 1.000 0.544 0.381 0.351 0.349

petrinet 1.000 0.474 0.377 0.367 0.366 0.366
rijndael_dec 1.000 1.000 1.000 1.000 1.000 1.000
rijndael_enc 1.000 1.000 1.000 1.000 0.614 0.394

statemate 1.000 1.000 1.000 0.412 0.372 0.368
susan 1.000 1.000 1.000 1.000 1.000 0.611

—average— 0.951 0.802 0.659 0.509 0.435 0.393
0.594

Table 10.5.: Arrival curve values calculated at the granularity of program runs for the interval
lengths in {104, 105, 106, 107, 108, 109} assuming a relative minimum inter-start time
of 0.5. The presented values are normalized to the respective interval lengths.
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In the following sections, we demonstrate that an incorporation of the minimum inter-start
time during implicit subpath enumeration (cf. Section 10.2) further decreases the average of the
normalized arrival curve values (i.e. below 0.594, cf. Table 10.5).

10.3.2. Incorporation during Implicit Subpath Enumeration
In this section, we present a system property arguing about the minimum inter-start time
MISTprogCj

of a program progCj
. The presented system property is lifted to the level of ap-

proximation of implicit subpath enumeration in order to prune infeasible abstract traces during
the calculation of arrival curve values for core Cj . Recall that, for simplicity, we assume an
experimental setup in which every core Cj repeatedly executes a single program progCj

.
The system property that we exploit argues about the interval of positions of a concrete

trace starting from including the first occurrence of event StartprogCj
,Cj

up to excluding the last
occurrence of event StartprogCj

,Cj . This interval is referred to as maximum between-starts interval
of concrete trace t (MBSI(t)). Note that, in case concrete trace t has less than two occurrence of
event StartprogCj

,Cj
, the interval MBSI(t) is empty.

MBSI(t) = {x ∈ N<len(t) |[∃lte ∈ N≤x : StartprogCj
,Cj

(t, lte)] ∧

[∃gt ∈ N>x ∩ N<len(t) : StartprogCj
,Cj (t, gt)]}

(10.58)

The minimum inter-start time MISTprogCj
(cf. equation (10.56)) guarantees a minimal distance

between subsequent occurrences of event StartprogCj
,Cj . This is exploited by system property

PMISTprogCj
,Cj

in order to provide a lower bound on the number of cycle transition at the positions
of concrete trace t that are spanned by interval MBSI(t).

PMISTprogCj
,Cj

(t)⇔
∑

x∈MBSI(t)

StartprogCj
,Cj

(t, x) ·MISTprogCj
≤

∑
x∈MBSI(t)

Cycle(t, x) (10.59)

The system property PMISTprogCj
,Cj is lifted to the level of approximation of subpaths through

a graph as follows.

̂MBSIpath(p̂) = {x ∈ N<len(p̂) |[∃lte ∈ N≤x : ̂wStartLBprogCj
,Cj

(p̂, lte) > 0] ∧

[∃gt ∈ N>x ∩ N<len(p̂) : ̂wStartLBprogCj
,Cj

(p̂, gt) > 0]}
(10.60)

̂P path
MISTprogCj

,Cj
(p̂)⇔

∑
x∈ ̂MBSIpath(p̂)

̂wStartLBprogCj
,Cj

(p̂, x) ·MISTprogCj

≤
∑

x∈ ̂MBSIpath(p̂)

̂wCycleUB(p̂, x)
(10.61)

Due to time and space constraints, we omit a formal proof that the lifted property ̂P path
MISTprogCj

,Cj

fulfills the soundness criteria for lifting system properties to the levels of approximation of sequences
of abstract states and subpaths through a graph. Note, however, that such a proof would have
to take into account that we only perform the calculation of arrival curve values on graphs at
the granularity of basic blocks (cf. Section 6.4.4). In particular, we do not apply any graph
transformations that merge chains of edges spanning across multiple basic block executions (cf.

Section 6.4.6). If this was the case, the lifted property ̂P path
MISTprogCj

,Cj
would have to be chosen

in a more pessimistic way: in case ̂MBSIpath(p̂) 6= ∅, the left-hand side of the inequation would
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GC

NodesCstart NodesCend

dm

Figure 10.12.: For systems on which the program scheduler enforces minimum inter-start times,
there can be filled-in clock cycles between subsequent program execution runs.
Graph GD (cf. Figure 10.8), from which the graphs used during implicit subpath
enumeration are derived, reflects this by adding a self-edge to the dummy node
dm. The self-edge corresponds to a single clock cycle and, thus, is referred to as
idle cycle. The edge weights of the idle cycle assume that exactly one clock cycle
is spent and no occurrence of event E happens.

have to consider the sum of all but the smallest element of the interval ̂MBSIpath(p̂) and the
right-hand side of the inequation would have to consider the sum of all elements of the interval
̂MBSIpath(p̂) ∪ {max( ̂MBSIpath(p̂)) + 1}. A more detailed discussion, however, exceeds the scope

of this thesis.
For systems on which the program scheduler does not enforce minimum inter-start times, the

implicit subpath enumeration is performed on graphs derived from a graph GD which assumes
that a new execution run of a program starts as soon as an execution run of a (potentially different)
program ends (cf. Figure 10.8 and Figure 10.10). For systems on which the program scheduler
enforces minimum inter-start times, however, this is not sound as potentially filled-in clock cycles
between two subsequent execution runs are not covered. To overcome this unsoundness, we add
a self-edge to the dummy node dm of graph GD. This is demonstrated in Figure 10.12. The
self-edge corresponds to a single clock cycle between two subsequent execution runs and, thus, is
referred to as idle cycle. The edge weights of the idle cycle reflect this by assuming that exactly
one clock cycle is spent and no occurrence of event E happens.

idleCycle = (dm, dm) (10.62)

̂wCycleLB(idleCycle) = ̂wCycleUB(idleCycle) = 1 (10.63)

ŵELB(idleCycle) = ŵEUB(idleCycle) = 0 (10.64)

The property ̂P path
MISTprogCj

,Cj
on subpaths of the graph (cf. equation (10.61)) is lifted to the

level of approximation of the implicit enumeration of subpaths as follows.

̂P impli
MISTprogCj

,Cj
((tt, is, ie))⇔[−1 +

∑
edg∈EdgesF

tt(edg) · ̂wStartLBprogCj
,Cj

(edg)] ·MISTprogCj

≤
∑

edg∈EdgesF
tt(edg) · ̂wCycleUB(edg)

(10.65)
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Note that the lifted property ̂P impli
MISTprogCj

,Cj
as presented in equation (10.65) is overly pessimistic

compared to the property ̂P path
MISTprogCj

,Cj
. This pessimism is due to the implicit (sub)path

enumeration inherently approximating away the order of the edges in the described (sub)paths

(cf. Section 5.4). The left-hand side of the inequation of property ̂P path
MISTprogCj

,Cj
is still modeled

precisely by the left-hand side of the inequation of property ̂P impli
MISTprogCj

,Cj
: the number of program

start events in the interval ̂MBSIpath(p̂) of any described subpath p̂ is safely and precisely bounded
by subtracting one from the lower bound on the number of occurrences of program start events

along the implicit path. The right-hand side of the inequation of property ̂P path
MISTprogCj

,Cj
, however,

is only imprecisely modeled by the right-hand side of the inequation of property ̂P impli
MISTprogCj

,Cj
:

as the order of the edges is approximated away in the implicit subpath, it is not clear how often an

edge of a described subpath p̂ is taken within the interval ̂MBSIpath(p̂) and, thus, every occurrence
of an edge in the implicit path is pessimistically assumed to describe a subpath position in the

interval ̂MBSIpath(p̂). In Section 10.3.3, we demonstrate how to overcome this pessimism by
simultaneously performing two implicit (sub)path enumerations.

Further note that the lifted property ̂P impli
MISTprogCj

,Cj
as presented in equation (10.65) is trivially

lifted to the level of approximation of implicit subpath enumeration without binary variables (cf.
Section 10.2.4) as it does not rely on which edge starts respectively ends the implicit path (cf.
Section 9.4).

Finally, note that the lifted property ̂P impli
MISTprogCj

,Cj
argues about an upper bound on the number

of clock cycles (i.e. ̂wCycleUB). The constraint encoding the interval length (cf. equation (10.29)
respectively equation (10.44)), in contrast, argues about a lower bound on the number of clock

cycles (i.e. ̂wCycleLB). In order to not let this consideration of different bound directions in
different constraints lead to a reduced precision, one would typically resort to a full edge-weight-
sensitivity of the lower bound on the number of clock cycles during graph construction (cf.
Section 6.4.4) so that, for each edge of the resulting graph, the lower bound on the number of
clock cycles and the upper bound on the number of clock cycles coincides. However, we expect
that this additional increase of the edge-weight-sensitivity would lead to a blow-up of the resulting
graph that would render the implicit subpath enumeration unmanageable with respect to its
computational complexity. In order to not suffer from the graph blow-up and to still enjoy
the precision of a full edge-weight-sensitivity of the lower bound on the number of clock cycles,
we perform the implicit subpath enumeration on a graph that is edge-weight-insensitive with
respect to the lower bound on the number of clock cycles and we replace the occurrences of
̂wCycleUB in equation (10.65) by ̂wCycleLB. Intuitively, this is sound because the idle cycle (cf.

Figure 10.12) enumerates all possible numbers of clock cycles and, thus, covers the same cases as
a full edge-weight-sensitivity of the lower bound on the number of clock cycles. A more detailed
discussion of this implementation trick and a formal soundness proof, however, exceed the scope
of this thesis.

We experimentally evaluate the presented calculation method in combination with an implicit
subpath enumeration with binary variables (Boundimpli

1,E (l), cf. Section 10.2.3) for the interval
lengths in {104, 105, 106, 107, 108, 109}. The implicit enumeration of subpaths is performed on
graphs that are fully node-sensitive at basic block boundaries, node-insensitive inside of basic
blocks, and fully edge-weight-sensitive with respect to the upper bound on the number of
occurrences of event E (cf. Section 6.4.4). As in the previous experiments with implicit subpath
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enumeration, we enforce a time limit of ten minutes per calculation of an arrival curve value. In
case the ILP solver performing the implicit enumeration is not finished after this time limit, we
use the best upper bound that the solver has calculated so far.

Table 10.6 lists the resulting arrival curve values normalized to the respective interval lengths. On
average (geometric mean), the calculated curve values are 0.582 times as high as the corresponding
interval lengths, which is only slightly better than for the curve value calculation at program
granularity incorporating the minimum inter-start time (0.594, cf. Table 10.5). This corresponds
to an average improvement of two percent compared to the curve value calculation at program
granularity (0.582/0.594 = 0.98).

Note, however, that the average improvement of precision of an implicit subpath enumeration
compared to a calculation at the granularity of program runs is more significant for smaller interval
lengths. For an interval length of 104, e.g., the average factor is 0.868 compared to 0.951 for a
calculation at the granularity of program runs. This corresponds to an average improvement of
8.7 percent compared to the curve value calculation at program granularity (0.868/0.951 = 0.913).
This advantage of implicit subpath enumeration for small interval lengths can be explained by
taking a closer look at the main source of imprecision that arises for the calculation at program
granularity in the context of the current experiment. One of the major sources of imprecision of
a calculation at program granularity is that the maximal amount of interference an execution run
of a given program might create can typically not coincide with the execution run only taking
the BCET of the program (cf. discussion at the end of Section 10.1). In combination with a
relative minimum inter-start time of 0.5, this source of imprecision does no longer exist as each
execution run is forced to effectively at least take an amount of time that is larger than the WCET
bound assuming the absence of interference (cf. equation (10.57)). Thus, the major remaining
source of imprecision is the pathological worst-case distribution of event occurrences that has to
be considered during a calculation at program granularity (cf. Figure 10.3 on page 174). The
imprecision stemming from this worst-case distribution, however, is typically relatively small
compared to the interval length for interval lengths that are significantly larger than the minimum
inter-start time of the program under consideration (cf. Figure 10.7 on page 179). This means
that, for interval lengths that are significantly larger than the minimum inter-start time of the
program under consideration, the relative gain in precision achieved by performing an implicit
subpath enumeration is negligible.

The experiment takes 14 hours, 58 minutes, and 37.16 seconds. On average, the calculation of
arrival curve values for a benchmark takes 10.82 times as long as the corresponding calculations
at the granularity of program runs without minimum inter-start time (cf. Figure B.30 on page 347
of Appendix B). The memory consumption compared to the corresponding calculations at the
granularity of program runs without minimum inter-start time increases by an average factor of
4.86 (cf. Figure B.31 on page 348 of Appendix B).

Note that the computational complexity and the memory consumption of implicit subpath
enumeration are significantly increased by additionally incorporating a minimum inter-start
time (cf. experimental results reported in Section 10.2.3). In Section 10.4, we sketch a more
modular calculation method for values on arrival curves. We expect that the incorporation of
minimum inter-start times in this modular calculation method does not significantly increase the
computational complexity or the memory consumption.

In the following section, we explore a more precise approach to incorporate minimum inter-start
times during implicit subpath enumeration.

10.3.3. More Precise Incorporation during Implicit Subpath Enumeration

As mentioned in Section 10.3.2, the level of approximation of implicit subpath enumeration does

not directly permit a precise lifting of the property ̂P path
MISTprogCj

,Cj
. Intuitively, the problem is that

the implicit subpath enumeration approximates away the order of edges in a described subpath p̂
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104 105 106 107 108 109

cruise_control 0.927 0.923 0.453 0.369 0.362 0.361
digital_stopwatch 0.951 0.942 0.772 0.401 0.343 0.338

es_lift 0.959 0.957 0.482 0.372 0.365 0.364
flight_control 0.955 0.915 0.909 0.457 0.364 0.357

pilot 0.858 0.848 0.580 0.377 0.352 0.350
roboDog 0.952 0.950 0.663 0.395 0.374 0.372

trolleybus 0.966 0.962 0.921 0.422 0.364 0.360
lift 0.827 0.812 0.810 0.806 0.403 0.350

powerwindow 0.941 0.937 0.937 0.933 0.604 0.377
binarysearch 0.421 0.366 0.362 0.361 0.361 0.361

bsort 0.842 0.837 0.836 0.429 0.364 0.352
complex_updates 0.832 0.388 0.363 0.360 0.360 0.359

countnegative 0.832 0.648 0.389 0.371 0.368 0.368
fft 0.899 0.896 0.859 0.812 0.774 0.758

filterbank 0.840 0.786 0.778 0.727 0.538 0.349
fir2dim 0.837 0.511 0.370 0.349 0.348 0.347

iir 0.466 0.379 0.369 0.368 0.368 0.368
insertsort 0.857 0.510 0.367 0.356 0.355 0.355

jfdctint 0.829 0.442 0.348 0.343 0.342 0.342
lms 0.871 0.867 0.774 0.422 0.347 0.338

ludcmp 0.874 0.603 0.382 0.352 0.348 0.348
matrix1 0.796 0.791 0.416 0.353 0.348 0.347

md5 0.898 0.869 0.866 0.865 0.860 0.529
minver 0.880 0.512 0.371 0.348 0.346 0.346

pm 0.938 0.917 0.884 0.838 0.752 1.000
prime 0.823 0.441 0.264 0.250 0.247 0.247

sha 0.901 0.851 0.845 0.828 0.492 0.367
st 0.669 0.624 0.511 0.323 0.306 0.304

adpcm_dec 0.858 0.539 0.368 0.356 0.355 0.354
adpcm_enc 0.851 0.545 0.372 0.356 0.354 0.354
audiobeam 0.934 0.931 0.930 0.599 0.376 0.351

cjpeg_transupp 0.911 0.849 0.842 0.842 0.831 0.476
cjpeg_wrbmp 0.771 0.734 0.705 0.368 0.312 0.307

dijkstra 0.907 0.902 0.902 0.902 0.894 0.892
epic 1.000 1.000 0.947 1.000 1.000 1.000

g723_enc 0.940 0.937 0.850 0.779 0.376 0.349
gsm_dec 0.918 0.803 0.783 0.714 0.524 0.335

gsm_encode 0.858 0.796 0.782 0.449 0.354 0.342
h264_dec 0.927 0.908 0.900 0.887 0.365 0.279
huff_dec 0.900 0.892 0.879 0.764 0.382 0.359

mpeg2 1.000 1.000 1.000 1.000 1.000 1.000
ndes 0.961 0.877 0.817 0.381 0.354 0.349

petrinet 0.933 0.474 0.379 0.368 0.367 0.366
rijndael_dec 0.988 0.981 0.980 0.980 0.980 0.980
rijndael_enc 0.988 0.979 0.978 0.978 0.614 0.409

statemate 0.947 0.941 0.941 0.481 0.378 0.368
susan 1.000 1.000 1.000 1.000 1.000 1.000

—average— 0.868 0.748 0.637 0.520 0.443 0.410
0.582

Table 10.6.: Arrival curve values calculated by implicit subpath enumeration for the interval
lengths in {104, 105, 106, 107, 108, 109} assuming a relative minimum inter-start time
of 0.5. The presented values are normalized to the respective interval lengths.
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and, thus, it is not clear how often an edge of subpath p̂ is taken within the interval ̂MBSIpath(p̂).
In this subsection, we demonstrate how to overcome this inherent lack of expressiveness by
simultaneously performing two implicit (sub)path enumerations.
To this end, we start by taking a closer look at the part of a concrete trace t about which

the concrete system property PMISTprogCj
,Cj

argues. The helper function MBSIcut returns a set
containing the cut-out sub sequence of concrete trace t featuring all positions of the interval
MBSI(t). In case the interval MBSI(t) is empty, the helper function returns a set of sequences
that only contain a single initial state of the program.

MBSIcut(t) ={t′ ∈ Sequences | MBSI(t) 6= ∅ ∧ len(t′) = |MBSI(t)| ∧
∀x ∈ N≤len(t′) : t′(x) = t(min(MBSI(t)) + x)} ∪

{t′ ∈ Sequences | MBSI(t) = ∅ ∧ len(t′) = |MBSI(t)| ∧
t′(0) ∈ InitStatesprogCj

,Cj}

(10.66)

We use the helper function MBSIcut to define the set containing the cut-out sub sequences of
all concrete traces. Intuitively, each member of this set corresponds to a sequence of zero or more
complete execution runs of program progCj

on core Cj including potentially filled-in cycles after
each complete run due to the enforcing of the minimum inter-start time.

ExecRunsMultprogCj
,Cj

=
⋃

t∈ExecRunsprogCi
,Ci

MBSIcut(t) (10.67)

The set ExecRunsMultprogCj
,Cj is safely overapproximated by the set ̂ImplicitMultD considered

during a slight variant of an implicit path enumeration (cf. equation (5.81) in Section 5.4) based
on graph GD (cf. Figure 10.12). Note that the main difference to the original implicit path

enumeration (set ̂ImplicitD, cf. equation (5.81)) is that, this time, we also consider multiple
consecutive complete program execution runs instead of only up to one.

̂ImplicitMultD ={(timesTaken, isStart, isEnd) ∈ (Edges→ N)× (Edges→ {0, 1})2 |
[ ∀e ∈ EdgesD : isStart(e) ≤ timesTaken(e) ] ∧
[ ∀e ∈ EdgesD : isEnd(e) ≤ timesTaken(e) ] ∧∑
e∈EdgesD

isStart(e) =
∑

e∈Edges

isEnd(e) ∧

∑
e∈(EdgesD\EdgesDstart)

isStart(e) = 0 ∧

∑
e∈(EdgesD\EdgesDend)

isEnd(e) = 0 ∧

[ NodesDstart ∩NodesDend = ∅ ⇒
∑

e∈EdgesD
isStart(e) ≥ 1 ] ∧

[ ∀node ∈ NodesD :∑
ein∈inEdges(node)

[timesTaken(ein)− isEnd(ein)]

=
∑

eout∈outEdges(node)

[timesTaken(eout)− isStart(eout)] ]

}

(10.68)
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There shall be a set PropMultprogCj
,Cj

of system properties that hold for every member of set
ExecRunsMultprogCj

,Cj
.

∀t ∈ ExecRunsMultprogCj
,Cj

: ∀Pk ∈ PropMultprogCj
,Cj

: Pk(t) (10.69)

As an example, consider the system property PMISTprogCj
,Cj ,Mult ∈ PropMultprogCj

,Cj
. It is a

direct consequence of the system property PMISTprogCj
,Cj

on concrete traces and the definition of
the set ExecRunsMultprogCj

,Cj .

PMISTprogCj
,Cj ,Mult(t)⇔

∑
x∈N<len(t)

StartprogCj
,Cj (t, x) ·MISTprogCj

≤
∑

x∈N<len(t)

Cycle(t, x)

(10.70)

The system property PMISTprogCj
,Cj ,Mult is lifted to the level of approximation of implicit path

enumeration as follows.

̂P impli′
MISTprogCj

,Cj ,Mult((tt, is, ie))⇔
∑

edg∈EdgesD
tt(edg) · ̂wStartLBprogCj

,Cj
(edg) ·MISTprogCj

≤
∑

edg∈EdgesD
tt(edg) · ̂wCycleUB(edg)

(10.71)

In a similar way as described in Section 10.3.2, in our implementation, we replace the occurrences

of ̂wCycleUB in equation (10.71) by ̂wCycleLB in order to achieve a reasonable precision on a
graph GD that is edge-weight-insensitive with respect to the lower bound on the number of clock
cycles.

Note that some classical control flow properties that are typically exploited during the calculation
of per-execution-run event bounds—as e.g. the classical relative loop bound properties [Li and
Malik, 1995] (cf. equation (10.16))—are also contained in PropMultprogCj

,Cj
.

Lifted versions of the properties in PropMultprogCj
,Cj

are used for pruning infeasible members

of ̂ImplicitMultD.

̂LessImplicitMultD = {(tt, is, ie) ∈ ̂ImplicitMultD | ∀Pk ∈ PropMultprogCj
,Cj

: P̂ impli
k ((tt, is, ie))}

(10.72)

The actual calculation of values on arrival curves is performed on the cross product of
̂LessImplicitF≤l (cf. Section 10.2.3) and ̂LessImplicitMultD. This means that the enumeration

simultaneously considers two implicit (sub)paths.

((tt, is, ie), (tt′, is′, ie′)) ∈ ̂LessImplicitF≤l ×
̂LessImplicitMultD (10.73)

As described in Section 10.2.3, the objective functions for the curve value calculations only

argue about the component (tt, is, ie) from set ̂LessImplicitF≤l. In order to anyway potentially
result in more precise curve values due to the simultaneous enumeration and the more precisely
lifted MIST property on component (tt′, is′, ie′), we add constraints relating both components.
First, we require that the implicit subpath (tt′, is′, ie′) is completely contained in the implicit
subpath (tt, is, ie). Thus, no edge of graph GD shall be taken by implicit subpath (tt′, is′, ie′)
more often than by implicit subpath (tt, is, ie).

∀edg ∈ EdgesD : tt′(edg) ≤ tt(edg) (10.74)
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Additionally, we require the sum of the guaranteed occurrences of the program start event in
implicit subpath (tt′, is′, ie′) to be one smaller than the sum of the guaranteed occurrences of the
program start event in implicit subpath (tt, is, ie). The only exception is that the sum of the
guaranteed occurrences of the program start event in implicit subpath (tt′, is′, ie′) shall be zero
in case the sum of the guaranteed occurrences of the program start event in implicit subpath
(tt, is, ie) is zero. Note that this constraint is inspired by a corresponding relation between the
numbers of occurrences of the program start event in MBSIcut(t) and t at the level of concrete
traces. ∑

edg∈EdgesD
tt′(edg) · ̂wStartLBprogCj

,Cj
(edg)

= max

−1 + ∑
edg∈EdgesD

tt(edg) · ̂wStartLBprogCj
,Cj

(edg), 0

 (10.75)

The maximum operation in constraint (10.75) is typically not directly supported by ILP solvers.
Thus, we reformulate the constraint in the following way by making use of a binary helper variable
containsProgStart. The helper variable shall be one if and only if the sum of the guaranteed
occurrences of the program start event in implicit subpath tt is greater than zero.∑

edg∈EdgesD
tt′(edg) · ̂wStartLBprogCj

,Cj
(edg)

= −containsProgStart+
∑

edg∈EdgesD
tt(edg) · ̂wStartLBprogCj

,Cj
(edg)

(10.76)

containsProgStart⇔
∑

edg∈EdgesD
tt(edg) · ̂wStartLBprogCj

,Cj
(edg) > 0 (10.77)

The equivalence requirement of equation (10.77) is also typically not directly supported by ILP
solvers. Thus, we simulate the equivalence requirement by the following two inequations. The
interval length l is used as a Big M in the second inequation.

containsProgStart ≤
∑

edg∈EdgesD
tt(edg) · ̂wStartLBprogCj

,Cj
(edg) (10.78)

containsProgStart · l ≥
∑

edg∈EdgesD
tt(edg) · ̂wStartLBprogCj

,Cj
(edg) (10.79)

Note that we only formally derived the simultaneous consideration of multiple implicit paths for
implicit path enumeration with binary variables (cf. Section 5.4). A corresponding derivation for
implicit path enumeration without binary variables (cf. Section 9.4) can be performed analogously.
Further note that the general idea of simultaneously considering multiple implicit paths and

relating them is not new. ILP-based approaches to cache modeling [Li et al., 1995, 1996]
simultaneously consider an implicit path through the control flow graph and an implicit path
through the graph of concrete cache states of the program under analysis. Due to the huge size
of the graph of concrete cache states for real-world programs executed on realistic hardware
platforms, however, these approaches suffer from a high computational complexity [Lv et al.,
2016].

We experimentally evaluate the presented calculation method in combination with an implicit
subpath enumeration with binary variables (Boundimpli

1,E (l), cf. Section 10.2.3) for the interval
lengths in {104, 105, 106, 107, 108, 109}. The implicit enumeration of subpaths is performed on
graphs that are fully node-sensitive at basic block boundaries, node-insensitive inside of basic
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blocks, and fully edge-weight-sensitive with respect to the upper bound on the number of
occurrences of event E (cf. Section 6.4.4). As in the previous experiments with implicit subpath
enumeration, we enforce a time limit of ten minutes per calculation of an arrival curve value. In
case the ILP solver performing the implicit enumeration is not finished after this time limit, we
use the best upper bound that the solver has calculated so far.

Table 10.7 lists the resulting arrival curve values normalized to the respective interval lengths. On
average (geometric mean), the calculated curve values are 0.569 times as high as the corresponding
interval lengths, which is slightly better than the implicit subpath enumeration incorporating a
minimum inter-start time as presented in Section 10.3.2 (0.582, cf. Table 10.6). This corresponds
to an average improvement of 4.2 percent compared to the curve value calculation at program
granularity (0.569/0.594 = 0.958, cf. Table 10.5). The simple incorporation of the minimum
inter-start time presented in Section 10.3.2 only results in an average improvement of two percent.
Thus, the detailed modeling of the minimum inter-start time by a simultaneous consideration of
two implicit paths can effectively increase the precision of the calculated arrival curve values.
The experiment takes 16 hours, 32 minutes, and 5.37 seconds. On average, the calculation of

arrival curve values for a benchmark takes 16.21 times as long as the corresponding calculations
at the granularity of program runs without minimum inter-start time (cf. Figure B.32 on page 349
of Appendix B). The memory consumption compared to the corresponding calculations at the
granularity of program runs without minimum inter-start time increases by an average factor
of 5.53 (cf. Figure B.33 on page 350 of Appendix B). These results demonstrate that the more
precise modeling of the minimum inter-start time during implicit subpath enumeration comes at
the cost of an increased computational complexity and memory consumption (cf. Section 10.3.2
for the corresponding experiment results for the less precise modeling of the minimum inter-start
time during implicit subpath enumeration).

Comparing the normalized curve values of Table 10.7 with the corresponding normalized curve
values presented in Section 10.3.1 (Table 10.5 on page 198), we see that the curve values calculated
by implicit subpath enumeration are in some cases significantly greater than the curve values
calculated at the granularity of program runs—although they are on average smaller. This is e.g.
the case for benchmark susan in combination with interval length 109. We think that these less
precise results for implicit subpath enumeration are due to the high computational complexity of
implicit subpath enumeration and the corresponding time limit of ten minutes that we enforce
per calculation of an arrival curve value. Intuitively, after ten minutes, the implicit subpath
enumeration has not yet determined an upper bound on the arrival curve value that is more
precise than an arrival curve value calculated at the granularity of program runs. In order to
further increase the precision of the calculated arrival curve values, in the following section, we
explore combinations of implicit subpath enumeration and a calculation at the granularity of
program runs.

10.3.4. Combining a Curve Value Calculation at the Granularity of
Program Runs with Implicit Subpath Enumeration

As a starting point, we combine a curve value calculation at the granularity of program runs with
implicit subpath enumeration by calculating curve values via both methods and subsequently
taking the minimum of the resulting curve values. This means that, for an experimental
evaluation, we perform the curve value calculations presented in Section 10.3.1 and Section 10.3.3.
Note, however, that the micro-architectural analysis is only performed once per benchmark.
Subsequently, we select the minimum of the two resulting curve values.

Table 10.8 lists the resulting arrival curve values normalized to the respective interval lengths. On
average (geometric mean), the calculated curve values are 0.563 times as high as the corresponding
interval lengths, which is slightly better than the implicit subpath enumeration presented in
Section 10.3.3 (0.569, cf. Table 10.7). This corresponds to an average improvement of 5.2
percent compared to the curve value calculation at program granularity (0.563/0.594 = 0.948,

207



Chapter 10. Calculation of Values on Arrival Curves

104 105 106 107 108 109

cruise_control 0.927 0.923 0.451 0.369 0.362 0.361
digital_stopwatch 0.951 0.942 0.772 0.369 0.342 0.338

es_lift 0.959 0.957 0.413 0.372 0.364 0.364
flight_control 0.955 0.915 0.909 0.404 0.363 0.356

pilot 0.858 0.848 0.435 0.363 0.351 0.350
roboDog 0.952 0.950 0.498 0.386 0.373 0.372

trolleybus 0.966 0.962 0.921 0.411 0.364 0.359
lift 0.827 0.812 0.810 0.672 0.370 0.350

powerwindow 0.941 0.937 0.937 0.933 0.453 0.377
binarysearch 0.399 0.366 0.362 0.361 0.361 0.361

bsort 0.842 0.837 0.836 0.429 0.357 0.352
complex_updates 0.555 0.388 0.362 0.360 0.360 0.359

countnegative 0.832 0.486 0.383 0.369 0.368 0.368
fft 0.899 0.896 0.857 0.812 0.774 0.758

filterbank 0.840 0.786 0.778 0.727 0.403 0.336
fir2dim 0.837 0.471 0.358 0.349 0.347 0.347

iir 0.419 0.372 0.368 0.368 0.368 0.368
insertsort 0.857 0.423 0.366 0.356 0.355 0.355

jfdctint 0.829 0.387 0.348 0.342 0.342 0.342
lms 0.871 0.867 0.774 0.375 0.342 0.338

ludcmp 0.874 0.535 0.362 0.350 0.348 0.348
matrix1 0.796 0.791 0.392 0.352 0.348 0.347

md5 0.898 0.869 0.866 0.865 0.860 0.443
minver 0.880 0.476 0.359 0.347 0.346 0.346

pm 0.938 1.000 1.000 1.000 1.000 0.358
prime 0.823 0.441 0.264 0.248 0.247 0.247

sha 0.901 0.851 0.845 0.828 0.443 0.358
st 0.669 0.624 0.429 0.318 0.305 0.304

adpcm_dec 0.858 0.438 0.368 0.356 0.354 0.354
adpcm_enc 0.851 0.503 0.370 0.355 0.354 0.354
audiobeam 0.934 0.931 0.930 0.496 0.364 0.350

cjpeg_transupp 0.911 0.849 0.842 0.842 1.000 1.000
cjpeg_wrbmp 0.771 0.734 0.613 0.337 0.309 0.307

dijkstra 0.907 0.902 0.902 0.902 0.894 0.892
epic 1.000 1.000 1.000 1.000 1.000 1.000

g723_enc 0.940 0.937 0.850 0.538 0.374 0.347
gsm_dec 0.918 0.803 0.783 0.714 0.419 0.329

gsm_encode 0.858 0.796 0.782 0.386 0.348 0.342
h264_dec 0.927 0.909 0.900 0.869 0.334 0.276
huff_dec 0.900 0.892 0.879 0.509 0.382 0.356

mpeg2 1.000 1.000 1.000 1.000 1.000 1.000
ndes 0.961 0.877 0.545 0.379 0.351 0.349

petrinet 0.933 0.474 0.375 0.367 0.366 0.366
rijndael_dec 0.987 0.981 0.980 0.980 0.980 0.980
rijndael_enc 0.985 0.979 0.978 0.978 0.614 0.393

statemate 0.947 0.941 0.941 0.412 0.372 0.368
susan 1.000 1.000 1.000 1.000 1.000 1.000

—average— 0.857 0.731 0.617 0.500 0.436 0.404
0.569

Table 10.7.: Arrival curve values calculated by implicit subpath enumeration for the interval
lengths in {104, 105, 106, 107, 108, 109} incorporating a relative minimum inter-start
time of 0.5 in a more precise way. The presented values are normalized to the
respective interval lengths.
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cf. Table 10.5). Implicit subpath enumeration results in an average improvement of at most 4.2
percent (cf. Section 10.3.3). Thus, combinations of implicit subpath enumeration and a calculation
at the granularity of program runs can further increase the precision of the calculated curve
values.

The experiment takes 16 hours, 41 minutes, and 2.54 seconds (which is around as long as the
experiment in Section 10.3.3). On average, the calculation of arrival curve values for a benchmark
takes 16.31 times as long as the corresponding calculations at the granularity of program runs
without minimum inter-start time (cf. Figure B.34 on page 351 of Appendix B). The memory
consumption compared to the corresponding calculations at the granularity of program runs
without minimum inter-start time increases by an average factor of 5.60 (cf. Figure B.35 on
page 352 of Appendix B).

As a next step, we would like to find out whether the implicit subpath enumeration presented
in Section 10.3.3 can be further improved by upper-bounding its objective with a curve value
αprog-granE (l) calculated as presented in Section 10.3.1. This means that, first, we perform a curve
value calculation at the granularity of program runs. The resulting curve value is subsequently
incorporated during the generation of the implicit subpath enumeration. To this end, we adapt
the objective of implicit subpath enumeration by introducing a helper variable occurrencesE .

Boundpg,impli
1,E (l) = max

((tt,is,ie),(tt′,is′,ie′),occurrencesE)∈ ̂LessImplicitF≤l
× ̂LessImplicitD×N

occurrencesE

(10.80)

The helper variable is upper-bounded by the curve value αprog-granE (l) and by the objective that
is used during the calculation of the original curve value Boundimpli

1,E (l) (cf. equation (10.34)).

occurrencesE ≤ αprog-granE (l) (10.81)

occurrencesE ≤
∑

edg∈EdgesF
tt(edg) · ŵEUB(edg) (10.82)

Table 10.9 lists the resulting arrival curve values normalized to the respective interval lengths.
The normalized curve values are as precise as those listed in Table 10.8. Thus, in terms of
precision, the incorporation of the additional upper bound in the implicit subpath enumeration
does not pay off.

The experiment takes 17 hours, 33 minutes, and 0.16 seconds, which is almost one hour longer
than the previous experiment. Thus, the overall computational complexity of the experiment is
slightly increased compared to the previous experiment. On average, the calculation of arrival
curve values for a benchmark takes 15.68 times as long as the corresponding calculations at the
granularity of program runs without minimum inter-start time (cf. Figure B.36 on page 353 of
Appendix B). The memory consumption compared to the corresponding calculations at the
granularity of program runs without minimum inter-start time increases by an average factor
of 5.50 (cf. Figure B.37 on page 354 of Appendix B). Note that these average increase factors
are slightly reduced compared to the previous experiment. We follow that the computational
complexity compared to the previous experiment is only increased for some of the benchmarks.
These benchmarks, however, seem to dominate the overall runtime of the experiment.

This concludes the section presenting two possible approaches to combining a curve value
calculation at the granularity of program runs with implicit subpath enumeration. In terms of
precision, both approaches are equivalent. With respect to calculation runtime and memory
consumption, it depends on the considered benchmark which of both approaches is more beneficial.
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104 105 106 107 108 109

cruise_control 0.927 0.923 0.451 0.369 0.362 0.361
digital_stopwatch 0.951 0.942 0.772 0.369 0.342 0.338

es_lift 0.959 0.957 0.413 0.372 0.364 0.364
flight_control 0.955 0.915 0.909 0.404 0.363 0.356

pilot 0.858 0.848 0.435 0.363 0.351 0.350
roboDog 0.952 0.950 0.494 0.386 0.373 0.372

trolleybus 0.966 0.962 0.921 0.411 0.364 0.359
lift 0.827 0.812 0.810 0.672 0.370 0.350

powerwindow 0.941 0.937 0.937 0.933 0.453 0.377
binarysearch 0.399 0.366 0.362 0.361 0.361 0.361

bsort 0.842 0.837 0.836 0.429 0.357 0.352
complex_updates 0.554 0.388 0.362 0.360 0.360 0.359

countnegative 0.832 0.486 0.383 0.369 0.368 0.368
fft 0.899 0.896 0.857 0.812 0.774 0.758

filterbank 0.840 0.786 0.778 0.727 0.403 0.336
fir2dim 0.837 0.471 0.358 0.349 0.347 0.347

iir 0.419 0.372 0.368 0.368 0.368 0.368
insertsort 0.857 0.423 0.366 0.356 0.355 0.355

jfdctint 0.829 0.387 0.348 0.342 0.342 0.342
lms 0.871 0.867 0.774 0.375 0.342 0.338

ludcmp 0.874 0.535 0.362 0.350 0.348 0.348
matrix1 0.796 0.791 0.392 0.352 0.348 0.347

md5 0.898 0.869 0.866 0.865 0.860 0.440
minver 0.880 0.476 0.359 0.347 0.346 0.346

pm 0.938 1.000 1.000 1.000 0.534 0.348
prime 0.823 0.441 0.264 0.248 0.247 0.247

sha 0.901 0.851 0.845 0.828 0.443 0.358
st 0.669 0.624 0.429 0.318 0.305 0.304

adpcm_dec 0.858 0.438 0.365 0.355 0.354 0.354
adpcm_enc 0.851 0.488 0.366 0.355 0.354 0.354
audiobeam 0.934 0.931 0.930 0.487 0.363 0.350

cjpeg_transupp 0.911 0.849 0.842 1.000 1.000 0.413
cjpeg_wrbmp 0.771 0.734 0.613 0.337 0.309 0.307

dijkstra 0.907 0.902 0.902 0.902 0.894 0.892
epic 1.000 1.000 1.000 1.000 1.000 1.000

g723_enc 0.940 0.937 0.850 0.537 0.374 0.347
gsm_dec 0.918 0.803 0.783 0.714 0.419 0.329

gsm_encode 0.858 0.796 0.782 0.386 0.347 0.342
h264_dec 0.927 0.909 0.900 0.366 0.281 0.271
huff_dec 0.900 0.892 0.879 0.509 0.382 0.356

mpeg2 1.000 1.000 1.000 1.000 1.000 1.000
ndes 0.961 0.877 0.544 0.379 0.351 0.349

petrinet 0.933 0.474 0.375 0.367 0.366 0.366
rijndael_dec 0.987 0.981 0.980 0.980 0.980 0.980
rijndael_enc 0.985 0.979 0.978 0.978 0.614 0.393

statemate 0.947 0.941 0.941 0.412 0.372 0.368
susan 1.000 1.000 1.000 1.000 1.000 0.611

—average— 0.857 0.730 0.616 0.493 0.428 0.392
0.563

Table 10.8.: Arrival curve values calculated for the interval lengths in {104, 105, 106, 107, 108, 109}
by taking the minimum of the curve values calculated by the approaches presented
in Section 10.3.1 and Section 10.3.3. The presented values are normalized to the
respective interval lengths.
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104 105 106 107 108 109

cruise_control 0.927 0.923 0.451 0.369 0.362 0.361
digital_stopwatch 0.951 0.942 0.772 0.369 0.342 0.338

es_lift 0.959 0.957 0.413 0.372 0.364 0.364
flight_control 0.955 0.915 0.909 0.404 0.363 0.356

pilot 0.858 0.848 0.435 0.363 0.351 0.350
roboDog 0.952 0.950 0.494 0.386 0.373 0.372

trolleybus 0.966 0.962 0.921 0.411 0.364 0.359
lift 0.827 0.812 0.810 0.672 0.370 0.350

powerwindow 0.941 0.937 0.937 0.933 0.464 0.377
binarysearch 0.399 0.366 0.362 0.361 0.361 0.361

bsort 0.842 0.837 0.836 0.429 0.357 0.352
complex_updates 0.554 0.388 0.362 0.360 0.360 0.359

countnegative 0.832 0.486 0.383 0.369 0.368 0.368
fft 0.899 0.896 0.857 0.812 0.774 0.758

filterbank 0.840 0.786 0.778 0.727 0.403 0.336
fir2dim 0.838 0.471 0.358 0.349 0.347 0.347

iir 0.419 0.372 0.368 0.368 0.368 0.368
insertsort 0.857 0.423 0.366 0.356 0.355 0.355

jfdctint 0.829 0.387 0.348 0.342 0.342 0.342
lms 0.871 0.867 0.774 0.375 0.342 0.338

ludcmp 0.874 0.535 0.362 0.350 0.348 0.348
matrix1 0.796 0.791 0.392 0.352 0.348 0.347

md5 0.897 0.869 0.866 0.865 0.860 0.440
minver 0.880 0.476 0.359 0.347 0.346 0.346

pm 1.000 1.000 1.000 1.000 0.534 0.348
prime 0.823 0.441 0.264 0.248 0.247 0.247

sha 0.901 0.851 0.845 0.828 0.443 0.358
st 0.669 0.624 0.429 0.318 0.305 0.304

adpcm_dec 0.858 0.438 0.365 0.355 0.355 0.354
adpcm_enc 0.851 0.488 0.366 0.355 0.354 0.354
audiobeam 0.934 0.931 0.930 0.487 0.363 0.350

cjpeg_transupp 0.911 0.849 0.842 0.842 1.000 0.413
cjpeg_wrbmp 0.771 0.734 0.613 0.337 0.309 0.307

dijkstra 0.907 0.902 0.902 0.902 0.894 0.892
epic 1.000 1.000 1.000 1.000 1.000 1.000

g723_enc 0.940 0.937 0.850 0.537 0.374 0.347
gsm_dec 0.918 0.803 0.783 0.714 0.419 0.329

gsm_encode 0.858 0.796 0.782 0.386 0.347 0.342
h264_dec 0.927 0.909 0.900 0.366 0.281 0.271
huff_dec 0.900 0.892 0.879 0.509 0.382 0.356

mpeg2 1.000 1.000 1.000 1.000 1.000 1.000
ndes 0.961 0.877 0.544 0.379 0.351 0.349

petrinet 0.933 0.474 0.375 0.367 0.366 0.366
rijndael_dec 0.990 0.981 0.980 0.980 0.980 0.980
rijndael_enc 0.986 0.979 0.978 0.978 0.614 0.393

statemate 0.947 0.941 0.941 0.412 0.372 0.368
susan 1.000 1.000 1.000 1.000 1.000 0.611

—average— 0.858 0.730 0.616 0.491 0.429 0.392
0.563

Table 10.9.: Arrival curve values calculated for the interval lengths in {104, 105, 106, 107, 108, 109}
by incorporating the curve value calculated by the approach presented in Section 10.3.1
as upper bound during the calculation presented in Section 10.3.3. The presented
values are normalized to the respective interval lengths.
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10.4. Sketch: A Program-Modular and Precise Calculation
Method

We expect the computational complexity of a calculation of arrival curve values directly based on
implicit subpath enumeration (cf. Section 10.2) to be unmanageable when dealing with multiple
real-world programs executed on the same processor core (cf. Section 10.2.5). Moreover, even if
the computational complexity is still bearable, the joint consideration of multiple programs on the
same core during implicit subpath enumeration is inappropriate for a scenario with continuous
development: In case only one of the programs of a processor core changes during development,
the very costly calculations of arrival curve values (incorporating all programs of the core) have
to be redone from scratch during the timing verification.

To overcome these drawbacks, this section sketches a more modular calculation of arrival curve
values: The computationally complex aspects are calculated at a per-program level and the actual
calculation of arrival curve values only uses the results of the per-program calculations. Yet, the
sketched approach takes into account which part of a program can produce which amount of
event occurrences and, thus, avoids the pessimism of a calculation at the granularity of program
runs (cf. Section 10.1).

For the sake of readability, the sketch of the program-modular calculation method is structured
into multiple subsections.

10.4.1. Paths through a Scheduling Graph

During a time interval of length l, the processor core that is considered during the calculation of
arrival curve values can potentially execute different sequences of program execution runs. The
possible sequences of program execution runs inherently depend on the non-preemptive scheduling
strategy that is applied. In this subsection, we demonstrate how to safely overapproximate the
possible sequences of program execution runs by the paths through a scheduling graph. Intuitively,
a scheduling graph describes different sequences of program start events of the programs executed
on a processor core Cj .

We start by introducing a generic scheduling graph that safely overapproximate the possible
sequences of program execution runs in combination with any non-preemptive scheduling strategy.
Each program progCj

that is executed on the considered processor core Cj is represented in
the generic scheduling graph by a directed edge (ndsc,progCj

,ndtg,progCj
) with a dedicated source

node ndsc,progCj
and a dedicated target node ndtg,progCj

. The edge representing a program progCj

shall describe exactly one occurrence of program start event StartprogCj
,Cj

and no occurrences of
the start events of the other programs executed on core Cj .

∀progCj
∈ ProgramsCj

:

∀edgprogCj
∈ {(ndsc,progCj

,ndtg,progCj
)} :

̂wStartUBprogCj
,Cj

(edgprogCj
) = ̂wStartLBprogCj

,Cj
(edgprogCj

) = 1

∀prog′Cj
∈ ProgramsCj

\ {progCj
} :

̂wStartUBprog′Cj
,Cj

(edgprogCj
) = ̂wStartLBprog′Cj

,Cj
(edgprogCj

) = 0

(10.83)
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dm̂wStartUB/LBprog1,Cj
= 1

̂wStartUB/LBprog2,Cj
= 1

̂wStartUB/LBprog3,Cj
= 1

Figure 10.13.: Generic scheduling graph for a scenario in which the considered processor core Cj
only executes the example programs prog1, prog2, and prog3 (i.e. ProgramsCj

=
{prog1, prog2, prog3}). The figure only explicitly presents edge weights for program
start events in case they have a non-zero value. Start nodes of the graph are
colored in blue and end nodes are colored in red.

Additionally, the generic scheduling graph shall feature a single dummy node dm that has an
outgoing edge to every program-specific source node ndsc,progCj

and an incoming edge from every
program-specific target node ndtg,progCj

. The incoming and outgoing edges of dummy node dm
shall not describe any occurrences of a start event of a program executed on core Cj .

∀edgdm ∈ {(dm,ndsc,progCj
), (ndtg,progCj

, dm) | progCj
∈ ProgramsCj

} :

∀progCj
∈ ProgramsCj

:

̂wStartUBprogCj
,Cj

(edgdm) =
̂wStartLBprogCj

,Cj
(edgdm) = 0

(10.84)

The set of start nodes of the generic scheduling graph shall be defined as the set of all program-
specific source nodes. Analogously, the set of end nodes of the generic scheduling graph shall
be defined as the set of all program-specific target nodes. Consequently, the generic scheduling
graph Ggs shall be formally defined as follows.

Ggs = (Nodesgs,Nodesgsstart,Nodes
gs
end,Edges

gs) (10.85)
Nodesgs = {dm,ndsc,progCj

,ndtg,progCj
| progCj

∈ ProgramsCj
} (10.86)

Nodesgsstart = {ndsc,progCj
| progCj

∈ ProgramsCj
} (10.87)

Nodesgsend = {ndtg,progCj
| progCj

∈ ProgramsCj
} (10.88)

Edgesgs = {(ndsc,progCj
,ndtg,progCj

), (dm,ndsc,progCj
), (ndtg,progCj

, dm)

| progCj
∈ ProgramsCj

}
(10.89)

This principle is depicted in Figure 10.13 for a scenario in which the considered proces-
sor core Cj only executes the example programs prog1, prog2, and prog3 (i.e. ProgramsCj

=
{prog1, prog2, prog3}). For the sake of readability, Figure 10.13 only explicitly presents edge
weights for program start events in case they have a non-zero value.

Note that the idea behind the generic scheduling graph is very similar to directly considering
multiple programs on the same processor core during implicit subpath enumeration (cf. Sec-
tion 10.2.5). The graph on which the implicit subpath enumeration is performed features one
relatively fine-grained sub graph per program executed on the considered processor core (cf.
Figure 10.10). The generic scheduling graph, in contrast, only features one edge per program
executed on the considered processor core (cf. Figure 10.13).
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̂wStartUB/LBprog1,Cj
= 1

̂wStartUB/LBprog2,Cj
= 1

̂wStartUB/LBprog3,Cj
= 1

Figure 10.14.: Specialized scheduling graph for a scenario in which the considered processor core
Cj executes the example programs prog1, prog2, and prog3 in a cyclic fashion. The
figure only explicitly presents edge weights for program start events in case they
have a non-zero value. Start nodes of the graph are colored in blue and end nodes
are colored in red.

The generic scheduling graph inherently assumes that the scheduler might execute the programs
in any order. Most real-world scheduling scenarios for hard real-time embedded systems, however,
are far more restricted. Thus, in such scenarios, there is typically more knowledge about the
possible orders in which the programs can be executed. Such knowledge is expressed as a set of
scheduling properties (i.e. system properties that argue about the amount or possible orders of
occurrences of program start events in concrete traces).

The concept of graph transformations (cf. Section 6.4.6) can be used to blow up (cf. equa-
tion (6.C12)) the generic scheduling graph and to subsequently prune nodes and/or edges of
the blown-up graph that are infeasible (cf. equation (6.C13)) according to lifted versions of the
scheduling properties. As an example, consider a scheduling scenario in which the programs prog1,
prog2, and prog3 are executed by the scheduler only in the given order and in a cyclic manner
(i.e. after prog3, prog1 is executed again). For this example scenario, the corresponding generic
scheduling graph (cf. Figure 10.13) provides a very pessimistic overapproximation of the possible
sequences of program execution runs as it describes many sequences of program execution runs
that are actually infeasible with respect to the concrete traces. The specialized scheduling graph
in Figure 10.14, in contrast, provides a precise overapproximation of the possible sequences of
program execution runs. The specialized scheduling graph can be seen as the result of applying
three graph transformations to the generic scheduling graph: First, a transformation blows up the
graph by creating a specialized variant dm1 (dm2, dm3) of the dummy node dm representing the
case that prog1 (prog2, prog3) was just executed (cf. equation (6.C12)). Subsequently, infeasible
edges are pruned (e.g. the edges from dm1 to ndsc,prog1 and ndsc,prog3 , cf. equation (6.C13)).
Finally, a transformation removes chains of edges along which all edge weights for the program
start events are zero (cf. equation (6.C12)).

The following subsections demonstrate the use of a scheduling graph in a modular method for
calculating arrival curve values. Intuitively, the precision of the calculated arrival curve values
is often increased if the modular calculation is based on a graph that models the scheduling
behavior of the considered processor core in a precise manner. In order to support this intuition
with a practical example, reconsider a scenario in which the programs prog1, prog2, and prog3 are
scheduled in a non-preemptive way on processor core Cj . Further assume that the occurrences of
event E in program prog1 are significantly more dense than in the other two programs. Thus,
a calculation of an arrival curve value for event E based on the generic scheduling graph (cf.
Figure 10.13) would necessarily be dominated by a path through the graph that only describes
execution runs of program prog1. In case the programs executed on processor core Cj are
scheduled in a cyclic manner, however, this dominating path through the generic scheduling graph
is infeasible with respect to the concrete traces. Consequently, the arrival curve value calculated
based on the generic scheduling graph is overly pessimistic and a calculation based on a more
specialized scheduling graph (cf. Figure 10.14) is advisable.
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Note that, for simplicity, the calculation of arrival curve values that we base on scheduling
graphs (cf. Section 10.4.3 and Section 10.4.4) only uses bounds on event Startprog,Cj

to express
that program prog is executed on core Cj . For the calculation of sound arrival curve values
to be used in a co-runner-sensitive WCET analysis for program progCi

executed on core Ci,
however, we also have to take into account execution runs of programs prog on core Cj that
start before program progCi

starts on core Ci but still overlap with the execution run of program
progCi

on core Ci. Thus, to be formally correct, the scheduling properties lifted to the level of
paths through the scheduling graph must hold for all members of the following alternative set
ExecRunsschedprogCi

,Ci
of concrete traces—instead of only for all members of ExecRunsprogCi

,Ci . The
definition of relation SuffixOf that we use to define the set shall be analogous to the definition of
relation PrefixOf (cf. equation (6.25) on page 70).

ExecRunsschedprogCi
,Ci

=
{
t ∈ Sequences |

∃t′ ∈ ExecRunsprogCi
,Ci

:

(t′, t) ∈ SuffixOf ∧∑
x∈N≤len(t)−len(t′)

∑
prog∈ProgramsCj

Startprog,Cj (t, x)

≤ max{
∑

x∈N<len(t′′)

∑
prog∈ProgramsCj

Endprog,Cj
(t′′, x) |

t′′ ∈ Sequences ∧ (t′′, t′) ∈ PrefixOf ∧∑
x∈N<len(t′′)−1

∑
prog∈ProgramsCj

Startprog,Cj
(t′′, x) = 0}

}

(10.90)

Consequently, the set PropschedprogCi
,Ci

of scheduling properties that we lift to paths through the
scheduling graph shall fulfill the following assumption.

∀Pk ∈ PropschedprogCi
,Ci

: ∀t ∈ ExecRunsschedprogCi
,Ci

: Pk(t) (10.91)

The following subsections argue about a scheduling graph Gsched which coincides with the
generic scheduling graph Ggs or has been derived from the generic scheduling graph Ggs by
applying a sequence of graph transformations (cf. Section 6.4.6).

10.4.2. Implicit Scheduling Path Enumeration

The modular calculation of arrival curve values that we present in the following subsections
does not depend on the order in which the program execution runs appear in a path through
the scheduling graph Gsched. Thus, we apply the principle of implicit path enumeration (cf.
Section 5.4) and, consequently, only consider implicit paths through the scheduling graph Gsched.
We refer to this approach as implicit scheduling path enumeration. It argues about the set

̂Implicitsched through the scheduling graph Gsched.
At the level of approximation of implicit scheduling path enumeration, we can optionally also

use lifted versions of scheduling properties in order to prune infeasible implicit scheduling paths.
The curve value calculation presented in the following subsection argues about the potentially

reduced set ̂LessImplicitsched.

̂LessImplicitsched = {(tt, is, ie) ∈ ̂Implicitsched | ∀Pk ∈ PropschedprogCi
,Ci

: P̂ impli
k ((tt, is, ie))} (10.92)
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For some scheduling properties (as e.g. a property guaranteeing the cyclic nature of a scheduling),
it is straight forward to hard-wire a lifted version of the property into a specialized scheduling
graph (cf. Figure 10.14). For other scheduling properties, it is not practical to hard-wire a lifted
version into the scheduling graph. As an example, consider a scheduling property stating that
the number of times program prog1 is executed must not exceed five plus three times the number
of executions of program prog2 plus two times the number of executions of program prog3. It
is not completely straight forward to hard-wire a lifted version of the example property into a
specialized scheduling graph in a way that the graph precisely models the example property. In
contrast, it is straight forward to precisely lift the example property to the level of approximation
of implicit scheduling path enumeration as follows.

P̂ impli
xmpl ((tt, is, ie))⇔

∑
edg∈Edgessched

tt(edg) · ̂wStartLBprog1,Cj
(edg)

≤ 5 +
∑

edg∈Edgessched
tt(edg) ·

(
3 · ̂wStartUBprog2,Cj

(edg)

+ 2 · ̂wStartUBprog3,Cj
(edg)

)
(10.93)

For simplicity, the following subsections are based on an implicit scheduling path enumeration
with binary variables. We expect that it is straight forward to come up with a variant of the
presented calculation method that is based on an implicit scheduling path enumeration without
binary variables (cf. Section 9.4). A more detailed discussion of such a variant, however, is beyond
the scope of this thesis.

10.4.3. Curve Values Calculated at the Granularity of Program Runs
In this subsection, we demonstrate how to use implicit scheduling path enumeration for the
calculation of arrival curve values at the granularity of program runs. To this end, we extend
the implicit scheduling path enumeration by additional variables and constraints. As a starting
point, we introduce an additional variable Runsprog per program prog representing the number of
execution runs of prog on core Cj that is spanned by the considered implicit scheduling path.

∀prog ∈ ProgramsCj
: Runsprog ∈ N (10.94)

The number of execution runs of program prog is bounded from above and from below by the
sums of the corresponding event-bounding edge weights for the program start event along the
implicit scheduling path.

∀prog ∈ ProgramsCj
:∑

edg∈Edgessched
tt(edg) · ̂wStartLBprog,Cj

(edg)

≤ Runsprog

≤
∑

edg∈Edgessched
tt(edg) · ̂wStartUBprog,Cj

(edg)

(10.95)

Each considered execution run of program prog shall belong to exactly one of four possible
categories of execution runs. In case an implicit scheduling path only describes one execution
run of a single program, this execution run is considered as a singleton execution run. In case
there are at least two execution runs of (potentially but not necessarily different) programs along
the implicit scheduling path, there shall be exactly one start execution run (executed first along
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prog1

time interval of length l

(a) Singleton Execution Run

prog2 prog3 prog4

time interval of length l

(b) Start Execution Run, Pass-Through Execution Run, and End Execution Run

Figure 10.15.: The four possible categories of execution runs considered during the calculation
of arrival curve values. In case the considered time interval of length l only
spans one execution run of a single program, this execution run is considered as a
singleton execution run. In case the considered time interval spans at least two
program execution runs, there is exactly one start execution run (executed first
during the time interval), exactly one end execution run (executed last during the
time interval), and an optional number of pass-through execution runs (executed
in-between).

the implicit scheduling path), exactly one end execution run (executed last along the implicit
scheduling path), and an optional number of pass-through execution runs (executed after the
start run and before the end run).

∀prog ∈ ProgramsCj
:

Runsprog = SingletonRunprog + StartRunprog + EndRunprog
+ PassThroughRunsprog

(10.96)

∀prog ∈ ProgramsCj
: SingletonRunprog ∈ {0, 1} (10.97)

∀prog ∈ ProgramsCj
: StartRunprog ∈ {0, 1} (10.98)

∀prog ∈ ProgramsCj
: EndRunprog ∈ {0, 1} (10.99)

∀prog ∈ ProgramsCj
: PassThroughRunsprog ∈ N (10.100)

The four possible categories of execution runs that are considered during the calculation of
arrival curve values are depicted in Figure 10.15. Note that a time interval of length l that spans
a sequence of execution runs described by an implicit scheduling path does not necessarily fully
cover the first and the last execution run in the sequence. Thus, only the time spent during the
execution of the spanned pass-through runs is guaranteed to be fully covered by the interval of
length l.
In the following, we present some consistency constraints on the occurrences of the different

categories of execution runs. To begin with, we require that an execution run of program prog is
considered as a singleton execution run if and only if program prog performs a single execution
run and all other programs perform no execution run at all along the implicit scheduling path.

∀prog ∈ ProgramsCj
:

SingletonRunprog ⇔
[
Runsprog = 1

∧ ∀prog′ ∈ ProgramsCj
\ {prog} : Runsprog′ = 0

] (10.101)
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Note that the equivalence in equation (10.101) cannot directly be expressed in an ILP formula-
tion. Thus, we simulate it by the following set of linear constraints making use of the two binary
helper variables helper1 and helper2. For a formal sketch arguing that this set of linear constraints
precisely simulates the equivalence in equation (10.101), we refer to page 315.

∀prog ∈ ProgramsCj
:

(1− SingletonRunprog) · l ≥
∑

prog′∈ProgramsCj
\{prog}

Runsprog′ (10.102)

helper1 · l ≥
∑

prog∈ProgramsCj

Runsprog (10.103)

∑
prog∈ProgramsCj

Runsprog + helper2 · 2 ≥ 2 (10.104)

1 +
∑

prog∈ProgramsCj

SingletonRunprog ≥ helper1 + helper2 (10.105)

It follows from the equivalence in equation (10.101) that there can be at most one singleton
execution run over all programs executed on core Cj . We exploit this to express that every
implicit scheduling path shall have exactly one start execution run and exactly one end execution
run in case it has no singleton execution run. Analogously, every implicit scheduling path shall
have no start execution run and no end execution run in case it has a singleton execution run.

∑
prog∈ProgramsCj

StartRunprog

=
∑

prog∈ProgramsCj

EndRunprog

= 1−
∑

prog∈ProgramsCj

SingletonRunprog

(10.106)

Moreover, we require that a program prog may only have a singleton execution run or a start
execution run in case the implicit scheduling path begins with an edge that permits the occurrence
of a start event of program prog. Analogously, a program prog may only have a singleton execution
run or an end execution run in case the implicit scheduling path ends with an edge that permits
the occurrence of a start event of program prog.

∀prog ∈ ProgramsCj
:

SingletonRunprog + StartRunprog ≤
∑

edg∈Edgessched
is(edg) · ̂wStartUBprog,Cj

(edg) (10.107)

∀prog ∈ ProgramsCj
:

SingletonRunprog + EndRunprog ≤
∑

edg∈Edgessched
ie(edg) · ̂wStartUBprog,Cj

(edg) (10.108)
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Next, we distribute time in clock cycles across the different categories of execution runs of the
different programs. To this end, we introduce one time variable per program and category of
execution run. The sum of the time variables of all programs shall coincide with the interval
length l.

∀prog ∈ ProgramsCj
: SingletonTimeprog ∈ N (10.109)

∀prog ∈ ProgramsCj
: StartTimeprog ∈ N (10.110)

∀prog ∈ ProgramsCj
: EndTimeprog ∈ N (10.111)

∀prog ∈ ProgramsCj
: PassThroughTimeprog ∈ N (10.112)∑

prog∈ProgramsCj

[
SingletonTimeprog + StartTimeprog

+ EndTimeprog + PassThroughTimeprog
]
= l

(10.113)

The time that any program spends within an execution run of any category shall range from
one clock cycle to the interval length l. Note that a program shall not spend any time within an
execution run of a particular category if it is not supposed to perform an execution run of this
category according to the current implicit scheduling path.

∀prog ∈ ProgramsCj
:

SingletonRunprog · 1 ≤ SingletonTimeprog ≤ SingletonRunprog · l
(10.114)

∀prog ∈ ProgramsCj
:

StartRunprog · 1 ≤ StartTimeprog ≤ StartRunprog · l
(10.115)

∀prog ∈ ProgramsCj
:

EndRunprog · 1 ≤ EndTimeprog ≤ EndRunprog · l
(10.116)

∀prog ∈ ProgramsCj
:

PassThroughRunsprog · 1 ≤ PassThroughTimeprog ≤ min(PassThroughRunsprog · l, l)
(10.117)

In case there is a BCET bound for a program prog available, we can use it as an additional
lower bound for the amount of time that program prog has to spend in any pass-through execution
run. Intuitively, any pass-through execution run of program prog is executed from the program
start to the program end of prog (cf. Figure 10.15b). Thus, any pass-through execution run of
program prog takes at least the BCET of program prog, which is safely under-approximated by a
BCET bound.

PassThroughRunsprog · BCET
LB
prog,Cj

≤ PassThroughTimeprog (10.118)

Analogously, in case there is a minimum inter-start time enforced for a program prog, we can
use it as an additional lower bound for the amount of time that program prog has to spend in
any pass-through execution run. Intuitively, any pass-through execution run of program prog is
executed from the program start to the program end of prog and also accounts for potentially
added clock cycles after the execution run due to the enforcement of the minimum inter-start time.
Thus, any pass-through execution run of program prog takes at least the minimum inter-start
time of program prog.

PassThroughRunsprog ·MISTprog ≤ PassThroughTimeprog (10.119)
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Next, we distribute occurrences of event E across the different categories of execution runs of
the different programs. To this end, we introduce one event counter variable per program and
category of execution run.

∀prog ∈ ProgramsCj
: SingletonOccsprog,E ∈ N (10.120)

∀prog ∈ ProgramsCj
: StartOccsprog,E ∈ N (10.121)

∀prog ∈ ProgramsCj
: EndOccsprog,E ∈ N (10.122)

∀prog ∈ ProgramsCj
: PassThroughOccsprog,E ∈ N (10.123)

In our event model, any clock cycle can at most produce one occurrence of any event E (cf.
equation (5.6)). This is reflected by the following constraints that bound the number of event
occurrences in an execution run by the amount of clock cycles spent in the execution run.

∀prog ∈ ProgramsCj
: SingletonOccsprog,E ≤ SingletonTimeprog · 1 (10.124)

∀prog ∈ ProgramsCj
: StartOccsprog,E ≤ StartTimeprog · 1 (10.125)

∀prog ∈ ProgramsCj
: EndOccsprog,E ≤ EndTimeprog · 1 (10.126)

∀prog ∈ ProgramsCj
: PassThroughOccsprog,E ≤ PassThroughTimeprog · 1 (10.127)

For a given event E, we might be able to provide significantly more precise upper bounds on
the number of event occurrences. We demonstrate this for the example of event CompletedCj

,
which occurs when a bus access of core Cj completes (cf. Section 7.2). The share of interval length
l that is spent during the execution of a singleton run or a start run of program prog does not
necessarily have to begin at the program start of prog (cf. Figure 10.15). Consequently, one clock
cycle spent in such an execution run may already exhibit an occurrence of event CompletedCj

.
Any further occurrence of event CompletedCj

, however, requires at least LAT more clock cycles as
any bus access takes at least the latency LAT until completion. This is reflected by the following
constraints bounding the number of occurrences of event CompletedCj

in singleton and start
execution runs.

∀prog ∈ ProgramsCj
:

SingletonOccsprog,CompletedCj
≤ LAT− 1

LAT
+ SingletonTimeprog ·

1

LAT
(10.128)

∀prog ∈ ProgramsCj
:

StartOccsprog,CompletedCj
≤ LAT− 1

LAT
+ StartTimeprog ·

1

LAT
(10.129)

The amount of time that is spent in an end execution run or a pass-through execution run of
program prog, in contrast, is guaranteed to begin at the program start of prog (cf. Figure 10.15).
Moreover, we enforce a software convention that guarantees that the pipeline of every processor
core is drained whenever a program executed on the core reaches its program end (cf. end of
Section 6.1). Thus, bus accesses of core Cj never span across multiple execution runs on core Cj .
As a consequence, from the program start of an end execution run or a pass-through execution
run of program prog, it takes at least LAT clock cycles until the first bus access completes. This
is reflected by the following more precise constraints bounding the number of occurrences of event
CompletedCj

in end and pass-through execution runs.

∀prog ∈ ProgramsCj
:

EndOccsprog,CompletedCj
≤ EndTimeprog ·

1

LAT
(10.130)

∀prog ∈ ProgramsCj
:

PassThroughOccsprog,CompletedCj
≤ PassThroughTimeprog ·

1

LAT
(10.131)
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In case there is a per-execution-run event bound MaxUBprog,Cj ,E for a program prog available (cf.
Chapter 6), we can use it as an additional upper bound for the number of occurrences of event E
in any execution run of program prog.

SingletonOccsprog,E ≤ SingletonRunprog ·MaxUBprog,Cj ,E (10.132)

StartOccsprog,E ≤ StartRunprog ·MaxUBprog,Cj ,E (10.133)

EndOccsprog,E ≤ EndRunprog ·MaxUBprog,Cj ,E (10.134)

PassThroughOccsprog,E ≤ PassThroughRunsprog ·MaxUBprog,Cj ,E (10.135)

Finally, we calculate an arrival curve value upper-bounding the number of occurrences of event
E in any time interval of l clock cycles by maximizing the following objective.

max
∑

prog∈ProgramsCj

[
SingletonOccsprog,E + StartOccsprog,E

+ EndOccsprog,E + PassThroughOccsprog,E
] (10.136)

Note that this calculation of an arrival curve value operates at the granularity of program
runs (cf. Section 10.1) as it inherently assumes that the maximal amount of MaxUBprog,Cj ,E event
occurrences that an execution run of program prog generates can be distributed across the
execution run in an arbitrary fashion. In the following subsection, we present an extension of
this calculation that operates at a finer granularity by additionally incorporating compositional
base bounds (cf. Chapter 8) for program prog that are calculated based on an implicit subpath
enumeration (cf. Section 10.2) of a graph representation of program prog.

10.4.4. Beyond the Granularity of Program Runs

In this subsection, we demonstrate how to additionally bound the number of occurrences of event
E in the execution runs of a program prog in a more fine-grained way than at the granularity of
program runs. To this end, we calculate a compositional base bound for program prog bounding
the number of occurrences of event E in any execution run of prog under the assumption that every
clock cycle spent in the execution run contributes a given and fixed amount of pen (∈ R≥0 ∩R≤1)
occurrences of event E.
As a starting point, each of the following calculations of compositional base bounds relies on

a graph GC,prog as used for the optimized calculation of per-execution-run compositional base
bounds for program prog executed on core Cj (CompBaseBoundsprog,Cj

(E,≤, {(pen,Cycle)}), cf.
Section 8.3).

In the following, we present four calculations of compositional base bounds. The compositional
base bounds resulting from the first calculation are valid for all categories of execution runs. The
other three calculations result in potentially more precise compositional base bounds for start
execution runs, end execution runs, respectively pass-through execution runs.

A Compositional Base Bound Valid for All Categories of Execution Runs The first calculation
of compositional base bounds results in bounds that are valid for all categories of execution runs.
In particular, the resulting bounds have to be valid for singleton execution runs, in which the
time interval considered during the calculation of arrival curve values may begin at an arbitrary
point and end at an arbitrary later point of an execution run of program prog on core Cj (cf.
Figure 10.15a). This means that the bound calculation has to argue about all possible sub-traces
of concrete traces occurring when program prog is executed on core Cj .

ExecRunssubprog,Cj
= {t ∈ Sequences | ∃t′ ∈ ExecRunsprog,Cj

: (t, t′) ∈ SuffixOf} (10.137)
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Consequently, the first bound calculation argues about all subpaths of graph GC,prog. To this
end, it operates on a graph GC,prog,sub that is obtained from graph GC,prog by marking each node
as start node and as end node.

NodesC,prog,sub = NodesC,prog (10.138)

NodesC,prog,substart = NodesC,prog (10.139)

NodesC,prog,subend = NodesC,prog (10.140)

EdgesC,prog,sub = EdgesC,prog (10.141)

We assume that there is a set Propsubprog,Cj
of system properties that hold for all concrete traces of

set ExecRunssubprog,Cj
. Note that this set also contains the special flavor of loop-bounding properties

for the calculation of arrival curve values that we use in Section 10.2 (cf. equation (10.20)).

∀Pk ∈ Propsubprog,Cj
: ∀t ∈ ExecRunssubprog,Cj

: Pk(t) (10.142)

Lifted versions of the system properties in set Propsubprog,Cj
are used for pruning infeasible implicit

paths through graph GC,prog,sub.

̂LessImplicitC,prog,sub = {(tt, is, ie) ∈ ̂ImplicitC,prog,sub

| ∀Pk ∈ Propsubprog,Cj
: P̂ impli

k ((tt, is, ie))}
(10.143)

The actual calculation of a compositional base bound is performed on the remaining set of
implicit paths as follows. Note, however, that a discussion of the soundness of this calculation is
omitted due to time and space constraints.

CompBasesubprog,Cj ,E,pen = max
(tt,is,ie)∈ ̂LessImplicitC,prog,sub

∑
edg∈EdgesC,prog,sub

[tt(edg) · ̂wEventUBprog,Cj ,Cmp(edg)

− is(edg) · ̂wEventUBprog,Cj ,Cmp(edg)

+ is(edg) · (1− pen) · ̂wEventUBprog,Cj ,E(edg)

− ie(edg) · ̂wEventUBprog,Cj ,Cmp(edg)

+ ie(edg) · ̂wEventUBprog,Cj ,E(edg)]

(10.144)

In case graph GC,prog is at the granularity of cycle transitions (cf. Section 6.4.2), it is safe to
simplify the calculation of the compositional base bound as follows.

CompBasesubprog,Cj ,E,pen = max
(tt,is,ie)∈ ̂LessImplicitC,prog,sub

∑
edg∈EdgesC,prog,sub

tt(edg) · ̂wEventUBprog,Cj ,Cmp(edg)

(10.145)

222



10.4. Sketch: A Program-Modular and Precise Calculation Method

SingletonTimeprog

SingletonOccsprog,E

x

MaxUBprog,Cj ,E

SingletonOccsprog,E = SingletonTimeprog · 1
SingletonOccsprog,E = SingletonRunprog ·MaxUBprog,Cj ,E

Figure 10.16.: The number of occurrences of event E in a singleton execution run of program
prog (SingletonOccsprog,E) as a function of the number of clock cycles spent in the
singleton execution run during the time interval of length l (SingletonTimeprog)
for the case that a singleton execution run of program prog takes place (i.e.
SingletonRunprog = 1). The value of SingletonOccsprog,E calculated in Sec-
tion 10.4.3 is only bounded by two linear functions.

In case this compositional base bound has a defined value, the value is used in the following
constraints that we add to the calculation of arrival curve values presented in Section 10.4.3.

SingletonOccsprog,E ≤ SingletonRunprog · CompBasesubprog,Cj ,E,pen

+ SingletonTimeprog · pen
(10.146)

StartOccsprog,E ≤ StartRunprog · CompBasesubprog,Cj ,E,pen

+ StartTimeprog · pen
(10.147)

EndOccsprog,E ≤ EndRunprog · CompBasesubprog,Cj ,E,pen

+ EndTimeprog · pen
(10.148)

PassThroughOccsprog,E ≤ PassThroughRunsprog · CompBasesubprog,Cj ,E,pen

+ PassThroughTimeprog · pen
(10.149)

In the following, we provide an intuition for the potential gain in precision due to the additional
constraints featuring the compositional base bound. To this end, we consider the number
of occurrences of event E in a singleton execution run of program prog (SingletonOccsprog,E)
as a function of the number of clock cycles spent in the singleton execution run during the
time interval of length l (SingletonTimeprog) for the case that a singleton execution run of
program prog takes place (i.e. SingletonRunprog = 1). Figure 10.16 depicts the situation without
constraint (10.146) as presented in Section 10.4.3. The red line has a slope of one and corresponds
to constraint (10.124). The blue line has a slope of zero and corresponds to constraint (10.132).
In case the value of SingletonTimeprog is smaller than x, the red line results in a more precise
value for SingletonOccsprog,E . In case the value of SingletonTimeprog is greater than x, the blue
line results in a more precise value for SingletonOccsprog,E .
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SingletonTimeprog

SingletonOccsprog,E

x1 x2

MaxUBprog,Cj ,E

CompBasesubprog,Cj ,E,pen

SingletonOccsprog,E = SingletonRunprog · CompBasesubprog,Cj ,E,pen
+SingletonTimeprog · pen

Figure 10.17.: The incorporation of an additional linear constraint improves the precision for
values of SingletonTimeprog between x1 and x2.

Figure 10.17 demonstrates the potential gain in precision by additionally incorporating con-
straint (10.146). The figure assumes that the slope pen is greater than zero and smaller than one.
For a value of SingletonTimeprog that is between x1 and x2, the additional constraint results in a
more precise value of SingletonOccsprog,E .

A Compositional Base Bound Valid for Start Execution Runs and Pass-Through Execution
Runs The second calculation of compositional base bounds results in bounds that are valid for
start execution runs and pass-through execution runs. In particular, the resulting bounds have to
be valid for start execution runs, in which the time interval considered during the calculation
of arrival curve values may begin at an arbitrary point of an execution run of program prog on
core Cj (cf. Figure 10.15b). This means that the bound calculation has to argue about all possible
suffixes of terminated concrete traces occurring when program prog is executed on core Cj .

ExecRunssuffprog,Cj
= {t ∈ Sequences | ∃t′ ∈ ExecRunstermprog,Cj

: (t, t′) ∈ SuffixOf} (10.150)

Consequently, the second bound calculation argues about all suffixes of paths through graphGC,prog.
To this end, it operates on a graph GC,prog,suff that is obtained from graph GC,prog by marking
each node as start node.

NodesC,prog,suff = NodesC,prog (10.151)

NodesC,prog,suffstart = NodesC,prog (10.152)

NodesC,prog,suffend = NodesC,progend (10.153)

EdgesC,prog,suff = EdgesC,prog (10.154)

We assume that there is a set Propsuffprog,Cj
of system properties that hold for all concrete traces of

set ExecRunssuffprog,Cj
. Note that this set also contains the special flavor of loop-bounding properties

for the calculation of arrival curve values that we use in Section 10.2 (cf. equation (10.20)).

∀Pk ∈ Propsuffprog,Cj
: ∀t ∈ ExecRunssuffprog,Cj

: Pk(t) (10.155)
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Lifted versions of the system properties in set Propsuffprog,Cj
are used for pruning infeasible implicit

paths through graph GC,prog,suff.

̂LessImplicitC,prog,suff = {(tt, is, ie) ∈ ̂ImplicitC,prog,suff

| ∀Pk ∈ Propsuffprog,Cj
: P̂ impli

k ((tt, is, ie))}
(10.156)

The actual calculation of a compositional base bound is performed on the remaining set of
implicit paths as follows. Note, however, that a discussion of the soundness of this calculation is
omitted due to time and space constraints.

CompBasesuffprog,Cj ,E,pen = max
(tt,is,ie)∈ ̂LessImplicitC,prog,suff

∑
edg∈EdgesC,prog,suff

[tt(edg) · ̂wEventUBprog,Cj ,Cmp(edg)

− is(edg) · ̂wEventUBprog,Cj ,Cmp(edg)

+ is(edg) · (1− pen) · ̂wEventUBprog,Cj ,E(edg)]

(10.157)

In case graph GC,prog is at the granularity of cycle transitions (cf. Section 6.4.2), it is safe to
simplify the calculation of the compositional base bound as follows.

CompBasesuffprog,Cj ,E,pen = max
(tt,is,ie)∈ ̂LessImplicitC,prog,suff

∑
edg∈EdgesC,prog,suff

tt(edg) · ̂wEventUBprog,Cj ,Cmp(edg)

(10.158)

In case this compositional base bound has a defined value, the value is used in the following
constraints that we add to the calculation of arrival curve values presented in Section 10.4.3.

StartOccsprog,E ≤ StartRunprog · CompBasesuffprog,Cj ,E,pen

+ StartTimeprog · pen
(10.159)

PassThroughOccsprog,E ≤ PassThroughRunsprog · CompBasesuffprog,Cj ,E,pen

+ PassThroughTimeprog · pen
(10.160)

A Compositional Base Bound Valid for End Execution Runs and Pass-Through Execution
Runs The third calculation of compositional base bounds results in bounds that are valid for
end execution runs and pass-through execution runs. In particular, the resulting bounds have to
be valid for end execution runs, in which the time interval considered during the calculation of
arrival curve values may end at an arbitrary point of an execution run of program prog on core Cj
(cf. Figure 10.15b). This means that the bound calculation has to argue about all possible prefixes
of concrete traces occurring when program prog is executed on core Cj . Note that this set of
prefixes is referred to as ExecRunsprog,Cj

(cf. corresponding definition on page 68).
Consequently, the third bound calculation argues about all prefixes of paths through graph

GC,prog. To this end, it operates on a graph GC,prog,pre that is obtained from graph GC,prog by
marking each node as end node.

NodesC,prog,pre = NodesC,prog (10.161)

NodesC,prog,prestart = NodesC,progstart (10.162)

NodesC,prog,preend = NodesC,prog (10.163)

EdgesC,prog,pre = EdgesC,prog (10.164)
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Recall that there is a set Propprog,Cj
of system properties that hold for all concrete traces of

set ExecRunsprog,Cj
. Note that this set also contains the classical loop-bounding properties used

for the calculation of per-execution-run event bounds (cf. equation (10.16)).
Lifted versions of the system properties in set Propprog,Cj

are used for pruning infeasible implicit
paths through graph GC,prog,pre.

̂LessImplicitC,prog,pre = {(tt, is, ie) ∈ ̂ImplicitC,prog,pre

| ∀Pk ∈ Propprog,Cj
: P̂ impli

k ((tt, is, ie))}
(10.165)

The actual calculation of a compositional base bound is performed on the remaining set of
implicit paths as follows. Note, however, that a discussion of the soundness of this calculation is
omitted due to time and space constraints.

CompBasepreprog,Cj ,E,pen = max
(tt,is,ie)∈ ̂LessImplicitC,prog,pre

∑
edg∈EdgesC,prog,pre

[tt(edg) · ̂wEventUBprog,Cj ,Cmp(edg)

− ie(edg) · ̂wEventUBprog,Cj ,Cmp(edg)

+ ie(edg) · ̂wEventUBprog,Cj ,E(edg)]

(10.166)

In case graph GC,prog is at the granularity of cycle transitions (cf. Section 6.4.2), it is safe to
simplify the calculation of the compositional base bound as follows.

CompBasepreprog,Cj ,E,pen = max
(tt,is,ie)∈ ̂LessImplicitC,prog,pre

∑
edg∈EdgesC,prog,pre

tt(edg) · ̂wEventUBprog,Cj ,Cmp(edg)

(10.167)

In case this compositional base bound has a defined value, the value is used in the following
constraints that we add to the calculation of arrival curve values presented in Section 10.4.3.

EndOccsprog,E ≤ EndRunprog · CompBasepreprog,Cj ,E,pen

+ EndTimeprog · pen
(10.168)

PassThroughOccsprog,E ≤ PassThroughRunsprog · CompBasepreprog,Cj ,E,pen

+ PassThroughTimeprog · pen
(10.169)

A Compositional Base Bound Valid for Pass-Through Execution Runs The fourth calculation
of compositional base bounds results in bounds that are valid for pass-through execution runs.
This means that the bound calculation has to argue about all possible terminated concrete traces
occurring when program prog is executed on core Cj . Note that this set of concrete traces is
referred to as ExecRunstermprog,Cj

(cf. corresponding definition on page 69). Consequently, the fourth
bound calculation argues about all paths through graph GC,prog.

We assume that there is a set Proptermprog,Cj
of system properties that hold for all concrete traces

of set ExecRunstermprog,Cj
. Note that this set also contains the classical loop-bounding properties

used for the calculation of per-execution-run event bounds (cf. equation (10.16)).

∀Pk ∈ Proptermprog,Cj
: ∀t ∈ ExecRunstermprog,Cj

: Pk(t) (10.170)
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Lifted versions of the system properties in set Proptermprog,Cj
are used for pruning infeasible implicit

paths through graph GC,prog.

̂LessImplicitC,prog = {(tt, is, ie) ∈ ̂ImplicitC,prog

| ∀Pk ∈ Proptermprog,Cj
: P̂ impli

k ((tt, is, ie))}
(10.171)

The actual calculation of a compositional base bound is performed on the remaining set of
implicit paths as follows. Note, however, that a discussion of the soundness of this calculation is
omitted due to time and space constraints.

CompBasetermprog,Cj ,E,pen = max
(tt,is,ie)∈ ̂LessImplicitC,prog

∑
edg∈EdgesC,prog

tt(edg) · ̂wEventUBprog,Cj ,Cmp(edg)

(10.172)

In case this compositional base bound has a defined value, the value is used in the following
constraint that we add to the calculation of arrival curve values presented in Section 10.4.3.

PassThroughOccsprog,E ≤ PassThroughRunsprog · CompBasetermprog,Cj ,E,pen

+ PassThroughTimeprog · pen
(10.173)

Relative Comparison of the Expected Computational Complexities of the Four Calculations of
Compositional Base Bounds The calculation of compositional base bound CompBasesubprog,Cj ,E,pen

argues about all subpaths of graph GC,prog. Thus, this calculation is considered as an implicit
subpath enumeration (cf. Section 10.2.3). Analogously, the calculation of compositional base
bound CompBasesuffprog,Cj ,E,pen is considered as an implicit suffix path enumeration and the calcu-
lation of compositional base bound CompBasepreprog,Cj ,E,pen is considered as an implicit prefix path
enumeration. The calculation of compositional base bound CompBasetermprog,Cj ,E,pen argues about
all paths through graph GC,prog and, thus, is considered as a classical implicit path enumeration.

The experiments in Section 10.2 indicate that the computational complexity of implicit subpath
enumeration is significantly higher than the computational complexity of classical implicit
path enumeration. This is due to the set of implicit paths considered during implicit subpath
enumeration typically being significantly larger than the set of implicit paths considered during
classical implicit path enumeration. Note that, in particular, implicit subpath enumeration
considers each implicit path that is considered during classical implicit path enumeration.
Consequently, we expect that the computational complexity of the calculation of composi-

tional base bound CompBasesubprog,Cj ,E,pen is significantly higher than the computational com-
plexity of the calculation of compositional base bound CompBasetermprog,Cj ,E,pen. Correspondingly,
we expect the computational complexities of the calculations of CompBasesuffprog,Cj ,E,pen and
CompBasepreprog,Cj ,E,pen to be in between the computational complexities of aforementioned calcu-
lations. The expected computational complexities of the four calculations and the corresponding
subset relations between the considered sets of implicit paths are sketched in Figure 10.18.

10.4.5. Advantages of the Sketched Program-Modular Calculation
Method

In this subsection, we discuss the advantages of the sketched program-modular calculation method
for values on arrival curves compared to the non-modular calculation method presented in
Section 10.2.
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Figure 10.18.: The subset relation between the sets of implicit paths considered during the different
calculations of compositional base bounds provides an intuition of the expected
computational complexities of the different calculations.

The first advantage is a direct consequence of the program modularity: the computationally
most complex calculations of the program-modular method (i.e. implicit subpath enumeration and
implicit suffix/prefix path enumeration) are performed on a per-program level. The non-modular
method presented in Section 10.2, in contrast, performs an implicit enumeration of the subpaths
of a graph that argues about all programs executed on the considered processor core Cj (cf.
Figure 10.10). Consequently, we expect the computational complexity of the non-modular method
to increase in a disproportionately high manner when increasing the number of programs executed
on the considered processor core Cj . Thus, the non-modular method presented in Section 10.2 is
unlikely to scale to scenarios in which multiple real-world programs are executed on the considered
processor core Cj . The sketched program-modular method is more scalable as its computational
complexity increases by design more or less linearly with the number of programs executed on
the considered processor core Cj (i.e. the per-execution-run event bounds and compositional base
bounds are calculated per program).

In addition, the sketched program-modular method is beneficial for a scenario with continuous
development. In case only one of the programs executed on core Cj is changed in the course of
development, the non-modular curve value calculations of Section 10.2 have to be performed from
scratch. For the program-modular method, in contrast, the computationally complex calculations
of per-execution-run event bounds and compositional base bounds only have to be redone for the
changed programs.
Another advantage of the sketched program-modular method is that all computationally

complex calculations of per-execution-run event bounds and compositional base bounds are
performed statically before the timing verification (e.g. before the co-runner-sensitive WCET
analysis). Thus, the complexity of these calculations is independent of the actual number of
arrival curve values calculated during the timing verification. For the non-modular method
presented in Section 10.2, in contrast, the computationally complex implicit subpath enumeration
is performed during every calculation of an arrival curve value. Consequently, we expect that the
sketched program-modular method is particularly beneficial for timing verification scenarios in
which every processor core executes multiple programs and, thus, the timing verification is likely
to require a relatively high number of arrival curve value calculations.

Further note that the non-modular method presented in Section 10.2 must be performed on a
graph with a significantly increased edge-weight-sensitivity in order to obtain reasonably precise
arrival curve values (cf. Section 6.4.4). Intuitively, if an execution of a basic block takes more
clock cycles, it typically also can generate a higher amount of interference events (e.g. a certain
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amount of shared-bus access cycles might only be possible during the execution of a basic block
in case a certain number of misses in the local cache happen and, thus, the execution of the
basic block at least takes a certain amount of clock cycles). An edge-weight-insensitive graph
with edge weights lower-bounding the number of clock cycles and upper-bounding the number
of occurrences of interference event E (cf. Section 10.2) implicitly assumes that every execution
of a considered basic block takes the minimal amount of time and, at the same time, generates
the maximal amount of occurrences of interference event E. As a consequence, performing the
non-modular method presented in Section 10.2 on an edge-weight-insensitive graph typically leads
to a poor precision of the calculated arrival curve value. To avoid this source of imprecision,
the experiments in Section 10.2, Section 10.3, and Section 10.5 rely on a graph that is fully
edge-weight-sensitive in the upper bound on the number of occurrences of interference event E.
The precision of the sketched program-modular method, in contrast, does not depend on the
edge-weight-sensitivity of the graphs based on which the compositional base bounds are calculated
as a subtraction (incorporating the upper bound on the number of occurrences of event E and
the lower bound on the number of clock cycles) is already performed during the construction of
the graphs (cf. Section 8.3). Thus, we expect that—even in a scenario with only a single program
executed per processor core—the computational complexity of the sketched program-modular
method is significantly lower than the computational complexity of the non-modular method
presented in Section 10.2.
Last but not least, we would like to point out that a precise incorporation of a minimum

inter-start time significantly increases the computational complexity of the non-modular method
presented in Section 10.2 (cf. Section 10.3.3). For the sketched program-modular method,
in contrast, a minimum inter-start time is precisely incorporated by only a single additional
constraint (cf. equation (10.119)). Thus, we expect that the precise incorporation of minimum
inter-start times does not significantly increase the computational complexity of the sketched
program-modular method.

10.5. Evaluation in the Context of a Co-Runner-Sensitive
WCET Analysis

In this section, we experimentally evaluate the presented methods for calculating arrival curve
values in the context of our co-runner-sensitive WCET analysis (cf. Section 7.5). All presented
methods can as well be applied in combination with interference-aware schedulability analyses.
An experimental evaluation of their application in the context of interference-aware schedulability
analyses, however, is beyond the scope of this thesis.

In our experiments, we calculate co-runner-sensitive WCET bounds for programs executed on a
quad-core processor with a shared bus and a Round-Robin bus arbitration policy (cf. Figure 9.1).
The considered processor cores shall feature an out-of-order pipeline, a local instruction cache of
size 1KiB, and a local data cache of size 1KiB (i.e. processor core configuration Conf oooic from
Table 9.1).

In order to keep the software setup of the system under analysis simple, we assume that every
processor core repeatedly executes a single program in a non-preemptive fashion. To this end, we
permute the overall list of benchmarks from Table 9.2 and, subsequently, partition it into groups
of four benchmarks. Table 10.10 lists the resulting twelve groups of benchmarks. Each group
stands for a setting of four co-running benchmarks. Note that, in order to have exactly four
benchmarks in each group, one of the benchmarks (cjpeg_wrbmp) has been used to fill up the last
group and, thus, is a member of two groups. For this particular benchmark, we only calculate a
co-runner-sensitive WCET bound for the co-runner scenario of the first group it is a member of.
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Groups of Co-Running Benchmarks

cjpeg_wrbmp sha
g723_enc pilot
dijkstra roboDog
digital_stopwatch fir2dim

powerwindow lift
minver ndes
mpeg2 cruise_control
jfdctint huff_dec

audiobeam iir
lms prime
trolleybus adpcm_enc
countnegative flight_control

h264_dec petrinet
matrix1 pm
rijndael_enc ludcmp
md5 es_lift

gsm_dec epic
statemate filterbank
gsm_encode complex_updates
fft adpcm_dec

binarysearch cjpeg_transupp
susan st
rijndael_dec bsort
insertsort cjpeg_wrbmp

Table 10.10.: Groups of co-running benchmarks: each benchmark is executed in a scenario in
which the other three benchmarks in its group are executed on the concurrent
processor cores.

Note that we have not yet implemented the iterative, co-runner-sensitive WCET analysis
starting from an optimistic initialization (cf. Algorithm 7.2) in our analysis prototype. Thus, we
evaluate the calculation of values on arrival curves in combination with an iterative approach to
co-runner-sensitive WCET analysis starting from a pessimistic initialization (cf. Algorithm 7.1).
It starts from a co-runner-insensitive WCET bound and performs iterative updates of the WCET
bound and the values on arrival curves until a fixed point is reached. The shared-bus interference is
quantified at the granularity of granted access cycles only (cf. Section 7.6). The (re)calculations of
the WCET bound are performed on graphs that are fully node-sensitive at basic block boundaries,
node-insensitive inside of basic blocks, and fully edge-weight-sensitive with respect to the lower
bound on the number of blocked cycles (cf. Section 6.4.4).
In this section, we conduct seven experiments. Each experiment performs a processor-core-

modular, co-runner-sensitive WCET analysis (cf. Algorithm 7.1) per considered benchmark (cf.
Table 10.10). The seven experiments differ in the method that is used for calculating values on
arrival curves. Table 10.11 lists the seven different methods respectively variants of methods that
we consider. The first experiment relies on implicit subpath enumeration with binary variables
(cf. Section 10.2.3) for calculating values on arrival curves. It assumes a scheduler which does
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ISPET Implicit subpath enumeration with binary variables (cf. Section 10.2.3),
no minimum inter-start times enforced.

progGran0.5 Calculation at the granularity of program runs (cf. Section 10.3.1),
assuming a relative minimum inter-start time of 0.5.

combined0.5 Combination of a calculation at the granularity of program runs and
implicit subpath enumeration with binary variables (first approach
presented in Section 10.3.4), assuming a relative minimum inter-start
time of 0.5.

progGran0.9 Calculation at the granularity of program runs (cf. Section 10.3.1),
assuming a relative minimum inter-start time of 0.9.

combined0.9 Combination of a calculation at the granularity of program runs and
implicit subpath enumeration with binary variables (first approach
presented in Section 10.3.4), assuming a relative minimum inter-start
time of 0.9.

progGran0.95 Calculation at the granularity of program runs (cf. Section 10.3.1),
assuming a relative minimum inter-start time of 0.95.

combined0.95 Combination of a calculation at the granularity of program runs and
implicit subpath enumeration with binary variables (first approach
presented in Section 10.3.4), assuming a relative minimum inter-start
time of 0.95.

Table 10.11.: The seven different methods respectively variants of methods that we use to calculate
values on arrival curves during our co-runner-sensitive experiments.

not enforce minimum inter-start times of the programs. The second experiment performs a
curve value calculation at the granularity of program runs (cf. Section 10.3.1) and assumes a
relative minimum inter-start time of 0.5 (cf. equation (10.57)). The third experiment combines a
curve value calculation at the granularity of program runs with implicit subpath enumeration
as described at the beginning of Section 10.3.4. It also assumes a relative minimum inter-start
time of 0.5. Finally, the two experiments assuming a relative minimum inter-start time of 0.5
are analogously repeated for a relative minimum inter-start time of 0.9 and a relative minimum
inter-start time of 0.95 as defined by the following equations.

MISTprogCj
= WCETUB,0-interfer

progCj
,Cj

+ 0.9 · (WCETUB,insens
progCj

,Cj
−WCETUB,0-interfer

progCj
,Cj

) (10.174)

MISTprogCj
= WCETUB,0-interfer

progCj
,Cj

+ 0.95 · (WCETUB,insens
progCj

,Cj
−WCETUB,0-interfer

progCj
,Cj

) (10.175)

We conduct all experiments on a quad-core Intel R© CoreTM i7 processor clocked at 2.4 GHz
and provided 16 GiB of main memory. The co-runner-sensitive WCET analysis is implemented
by four analysis threads—one analysis thread per processor core of the system under analysis.
The main analysis thread calculates WCET bounds for the considered benchmark. The three
further analysis threads calculate arrival curve values for the three concurrent processor cores.

For detailed figures presenting the analysis runtime, memory consumption, and WCET bound
per benchmark and experiment, we refer to Appendix B (pages 355 to 375). Note that, for the
sake of comparison, the values presented there are normalized to the corresponding values of a
co-runner-insensitive WCET analysis (cf. Section 7.4).

In this section, we provide tables that cumulatively summarize some of the experiment results.
As a starting point, Table 10.12 shows the overall runtime of each of the seven experiments and—
for the sake of comparison—also the overall runtime of the corresponding co-runner-insensitive
experiment (cf. Figure B.5). The table demonstrates that each co-runner-sensitive experiment
takes significantly longer than the co-runner-insensitive experiment (at least more than four times
as long). This is expected as the co-runner-sensitive experiments consider the operation of all four
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Overall Experiment Runtime
co-runner-insensitive 1h 16m 5.09s

ISPET 12h 16m 25.35s
progGran0.5 5h 42m 20.6s
combined0.5 16h 10m 58.55s
progGran0.9 6h 17m 49.78s
combined0.9 1d 3h 45m 2.02s
progGran0.95 7h 23m 9.9s
combined0.95 1d 12h 42m 22.2s

Table 10.12.: Overall runtime of the conducted co-runner-sensitive experiments and the corre-
sponding co-runner-insensitive experiment.

processor cores while the co-runner-insensitive experiment only considers the operation of a single
processor core. In addition, the table shows that the co-runner-sensitive experiments relying
on implicit subpath enumeration for calculating values on arrival curves (ISPET, combined0.5,
combined0.9, and combined0.95) take significantly longer than the co-runner-sensitive experiments
which only calculate arrival curve values at the granularity of program runs. This is also expected as
the computational complexity of calculating arrival curve values via implicit subpath enumeration
is significantly higher than the computational complexity of a curve value calculation at the
granularity of program runs (cf. Section 10.1 to Section 10.3). Finally, Table 10.12 demonstrates
that increasing the relative minimum inter-start time also increases the experiment runtime. This
is expected, too, as increasing the relative (and, thus, also the absolute) minimum inter-start
time potentially results in co-runner-sensitive WCET bounds that are smaller. Consequently, the
iterative analysis approach (starting from a co-runner-insensitive WCET bound) typically needs
a higher number of iterations until a fixed point is reached.
Next, we investigate whether the co-runner-sensitive experiments are able to decrease the

WCET bounds compared to the co-runner-insensitive experiment. There are twelve out of 47
benchmarks for which one of the co-runner-sensitive experiments calculates a WCET bound
that is smaller than the corresponding co-runner-insensitive WCET bound. Table 10.13 lists
the WCET bounds calculated by the seven co-runner-sensitive experiments for each of these
twelve benchmarks. Note that each presented WCET bound is normalized to the corresponding
co-runner-insensitive WCET bound.
Table 10.13 shows that the co-runner-sensitive experiments assuming a relative minimum

inter-start time of at least 0.9 are able to improve the WCET bounds of some benchmarks (i.e.
they provide a normalized value smaller than one for these benchmarks). For the experiments
assuming a relative minimum inter-start time of 0.9, there are eight out of 47 benchmarks (i.e.
17 percent of the benchmarks) for which the calculated co-runner-sensitive WCET bound is (by
up to 16.2 percent) smaller than the corresponding co-runner-insensitive WCET bound. For the
experiments assuming a relative minimum inter-start time of 0.95, there are twelve out of 47
benchmarks (i.e. 25.5 percent of the benchmarks) for which the calculated co-runner-sensitive
WCET bound is (by up to 22 percent) smaller than the corresponding co-runner-insensitive
WCET bound.

These results are a bit disappointing as we need to enforce relatively high minimum inter-start
times (i.e. the scheduler makes sure that every program execution run is delayed up to 95 percent
of the interference that is considered by the co-runner-insensitive analysis) in order to reduce the
WCET bound compared to a co-runner-insensitive WCET bound for only around a quarter of the
benchmarks. Note, however, that the setup considered during the co-runner-sensitive experiments
is simplified in the sense that every processor core repeatedly executes a single program over
and over again. In this context, the enforcement of a minimum inter-start time can be seen as
a very simple way to adjust the utilization of a processor core (and, thus, also the amount of
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flight_control 1.000 1.000 1.000 0.838 0.838 0.780 0.780
powerwindow 1.000 1.000 1.000 0.961 0.961 0.929 0.929

fft 1.000 1.000 1.000 0.999 0.999 0.971 0.960
md5 1.000 1.000 1.000 0.932 0.932 0.907 0.907
sha 1.000 1.000 1.000 1.000 1.000 0.979 0.979

cjpeg_transupp 1.000 1.000 1.000 0.884 0.884 0.823 0.821
dijkstra 1.000 1.000 1.000 0.936 0.936 0.865 0.865
g723_enc 1.000 1.000 1.000 1.000 1.000 0.995 0.995

mpeg2 1.000 1.000 1.000 1.000 1.000 0.998 0.998
rijndael_dec 1.000 1.000 1.000 0.995 0.995 0.961 0.961
rijndael_enc 1.000 1.000 1.000 0.938 0.938 0.910 0.910

susan 1.000 1.000 1.000 1.000 1.000 0.975 0.975

Table 10.13.: WCET bounds calculated by the co-runner-sensitive experiments normalized to
the corresponding co-runner-insensitive WCET bounds. There are twelve out of 47
benchmarks for which a co-runner-sensitive experiment calculates a WCET bound
that is smaller than the corresponding co-runner-insensitive WCET bound.

shared-resource interference that the core contributes). Thus, for more significant results, we
recommend to experimentally evaluate the different methods for calculating arrival curve values
in the context of a real-world interference-aware schedulability analysis. Such an experimental
evaluation, however, is beyond the scope of this thesis.

A closer consideration might also lead to the insight that all processor-core-modular co-runner-
sensitive approaches to timing verification are by design hardly more precise than co-runner-
insensitive approaches to timing verification. Recall that processor-core-modular approaches
inherently sacrifice a certain amount of precision in order to avoid the enumeration of all possible
interleavings of shared-resource access requests by the different processor cores (cf. Section 2.2.2).
The principle behind processor-core-modular approaches to timing verification is very similar
to the principle behind thread-modular schemes used in the verification of multi-threaded
software [Flanagan and Qadeer, 2003; Henzinger et al., 2003; Malkis et al., 2007; Gotsman et al.,
2007; Miné, 2011, 2014; Monat and Miné, 2017]. It is, however, known that thread-modular
verification techniques only work well for multi-threaded software in which the operation of the
threads is loosely coupled (i.e. they only make very limited use of shared variables for inter-thread
communication) [Flanagan and Qadeer, 2003]. The operation of the different processor cores in a
multi-core processor, in contrast, is closely coupled by the resource sharing. Thus, it would not
be surprising if the inherent imprecision of processor-core-modular co-runner-sensitive approaches
to timing verification was so high that these approaches are hardly more precise than co-runner-
insensitive approaches. To the best of our knowledge, it remains an open question how precise
processor-core-modular co-runner-sensitive approaches to timing verification can at best be (i.e.
which degree of precision loss is inherent to the processor-core-modular scheme).

We would also like to point out that, so far, there is a clear point in using processor-core-
modular co-runner-sensitive approaches to timing verification: there are scenarios in which a
co-runner-insensitive timing verification is not possible. This is e.g. the case for systems with
multi-core processors, shared buses, and priority-based bus arbitration due to the possibility of
starvation (cf. Section 7.7). In such scenarios, a co-runner-sensitive approach is mandatory. To the
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best of our knowledge, so far, processor-core-modular approaches are the only co-runner-sensitive
approaches to timing verification known to scale to real-world software and hardware platforms
(cf. Section 2.2).

Coming back to the results presented in Table 10.13, we also see that the experiments making
use of implicit subpath enumeration for the calculation of arrival curve values (combined0.5,
combined0.9, combined0.95) hardly result in more precise WCET bounds than the corresponding
experiments only resorting to a calculation at the granularity of program runs (progGran0.5,
progGran0.9, progGran0.95). For the experiments assuming a relative minimum inter-start time of
0.5 or 0.9, there is no difference at all between the co-runner-sensitive WCET bounds calculated
with and without implicit subpath enumeration. For the experiments assuming a relative
minimum inter-start time of 0.95, there are only two benchmarks for which the incorporation of
implicit subpath enumeration slightly decreases the co-runner-sensitive WCET bounds by up to
1.13 percent (for benchmark fft: 0.960/0.971 = 0.9887 = 1− 0.0113).

In Section 10.3.4, we observe an average reduction of 5.2 percent for the arrival curve values
calculated by additionally incorporating implicit subpath enumeration. This improvement of
precision during the calculation of arrival curve values, however, does not seem to lead to a
significantly improved precision of the co-runner-sensitive WCET analysis. Note, however, that
the results reported in Section 10.3.4 assume a relative minimum inter-start time of 0.5. In
addition, we would like to point out that it heavily depends on the considered benchmark and the
considered interval lengths how much precision can be gained during the calculation of arrival
curve values by additionally incorporating implicit subpath enumeration. For more significant
and reliable results on the potential precision gain by additionally incorporating implicit subpath
enumeration during co-runner-sensitive timing verification, we recommend to experimentally
evaluate the different methods for calculating arrival curve values in the context of a real-world
interference-aware schedulability analysis. As mentioned before, such an experimental evaluation
is beyond the scope of this thesis.
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Chapter 11

Conclusion

The end is near, the end is coming.

(Day of the Rapture, Plague Cycle, 2017)

The main technical contributions of this thesis are listed in Chapter 3. In the current chapter,
in contrast, we point out in which sense the overall formal framework described throughout this
thesis helps to complete the big picture in the area of research on WCET analysis. Moreover, we
discuss what the experimental results presented in this thesis mean for the future of research on
WCET analysis for systems with multi-core processors.

11.1. Relevance of Our Formal Framework
The property lifting framework (cf. Chapter 4) can be seen as a toolbox for the derivation of
analysis and verification approaches. In Chapter 5 and Chapter 6, we demonstrate the application
of property lifting during the formal derivation of the well-known calculation of WCET bounds
based on abstract interpretation [Cousot and Cousot, 1977] and implicit path enumeration [Li and
Malik, 1995; Puschner and Schedl, 1997; Stein, 2010]. The soundness of the underlying abstract
interpretation [Thesing, 2004] is assumed as a starting point for the formal derivation. Thus,
the overall soundness argument is based on abstract interpretation and property lifting. In this
context, the property lifting framework can be seen as complementing the abstract interpretation
framework rather than replacing it.
Chapter 5 and Chapter 6 also show that it is very time-consuming and tedious to instantiate

the property lifting framework for the three levels of approximation used during the calculation
of WCET bounds. We argue, however, that the result of this instantiation can be seen as an
extended toolbox which is already prepared for the specific needs during the derivation of WCET
analyses and similar analyses calculating event bounds. Hence, we expect that this extended
toolbox can mostly be reused for the derivation of future WCET analyses.
In Chapter 7, we demonstrate how to use this extended toolbox to formally derive WCET

analyses for multi-core processors with shared buses. The derivation of the co-runner-insensitive
WCET analysis features a full soundness proof. For some of the presented co-runner-sensitive
WCET analyses, however, we omit the soundness proofs due to time and space constraints. In
Chapter 8, we use the extended toolbox to specify approaches to the calculation of compositional
base bounds. We conclude that the application of our extended toolbox can also be of use in
scenarios in which there is no need for a full soundness proof: The extended toolbox structures
the derivation of analyses by its unified lifting workflow (even if the lifting steps are not proven).
In addition, the underlying algebra provides a clean and concise specification of the assumed
system properties and the resulting bound calculations.
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co-runner-
insensitive

processor-core-
modular

fully
integrated

precision, computational complexity

co-runner-sensitive approaches

Figure 11.1.: Precision and Computational Complexity of the Three Known Classes of Approaches
to Timing Verification for Systems with Multi-Core Processors and Unpartitioned
Shared Resources

11.2. Computational Complexity of WCET Analysis for
Multi-Core Processors

In Chapter 2, we survey a wide range of approaches to timing verification for systems with
multi-core processors. For systems with unpartitioned shared resources, we identify three classes
of existing approaches (cf. Section 2.2): co-runner-insensitive (i.e. Murphy) approaches, processor-
core-modular approaches, and fully integrated approaches. The processor-core-modular and fully
integrated approaches are so far the only known co-runner-sensitive approaches. The three classes
of approaches differ in precision and computational complexity—with a higher precision typically
implying a higher computational complexity (cf. Figure 11.1).

We would like to point out that the formal derivation of WCET analyses for multi-core processors
presented in Chapter 7 also quite naturally explains the expected computational complexity. The
co-runner-insensitive analysis (cf. Section 7.4) is based on a single abstract model that only
considers the operation of one processor core in detail and does not make any assumptions about
the programs executed on the concurrent cores. Thus, it has a relatively low computational
complexity. The processor-core-modular analyses, in contrast, feature one such abstract model per
processor core (cf. Section 7.5). The iterative processor-core-modular algorithms only exchange
cumulative information (in our case WCET bounds and arrival curve values) between the abstract
models of the different processor cores (cf. Algorithm 7.1 and Algorithm 7.2). Our experiments in
Section 10.5 show that the co-runner-sensitive processor-core-modular experiments take between
four and 29 times as long as the corresponding co-runner-insensitive experiment for a quad-core
processor (depending on the configured minimum inter-start time and the complexity of the
applied calculation of arrival curve values, cf. Table 10.12). Intuitively, the complexity of the
micro-architectural analysis adds up for the different processor cores. Thus, the computational
complexity of the micro-architectural analysis during a processor-core-modular consideration
is expected to scale more or less linearly in the number of processor cores. The results of
our experiments, however, only show a very limited gain in precision for the processor-core-
modular analyses compared to the co-runner-insensitive analysis (cf. Table 10.13). Finally, a fully
integrated analysis operates on the cross product of the abstract models of all processor cores
(cf. equation (7.20)) modulo pruned compound abstract traces (cf. equation (7.26)). Thus, the
computational complexity of fully integrated analyses is expected to scale close to exponentially
in the number of processor cores. We have not implemented or evaluated a fully integrated
analysis, but existing experiment results [Kelter, 2015] and the lack of such results [Giannopoulou
et al., 2012; Lampka et al., 2014] strongly indicate a poor scalability (cf. Section 2.2.1). In a
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nutshell, we think that the formal derivation of WCET analyses for multi-core processors presented
in Chapter 7 makes an important contribution to understanding the inherent computational
complexity of different approaches to WCET analysis for multi-core processors.

11.3. Results of the Processor-Core-Modular Experiments

The precision of the experimental results presented in Section 10.5 is disappointing: In our
experiments, the co-runner-sensitive processor-core-modular analysis is hardly more precise than
the co-runner-insensitive analysis. There are scenarios of certain co-running benchmarks for which
the processor-core-modular analysis is more precise than the co-runner-insensitive analysis [Jacobs
et al., 2015], for most scenarios of co-running benchmarks in our experiments, however, this does
not seem to be the case.

These disappointing experimental results raise the question how it is possible that we are the
first researchers to report that processor-core-modular timing verification barely improves the
precision compared to co-runner-insensitive timing verification. Processor-core-modular timing
verification has been the de facto standard for scalable co-runner-sensitive timing verification
for roughly a decade (cf. Section 2.2.2)—although the common level of modularity of all these
approaches has not been recognized until now. To the best of our knowledge, all existing processor-
core-modular approaches rely on cumulative approximations at best as precise as ours. This leads
to a number of follow-up questions:

• Have the proposed processor-core-modular approaches been compared to co-runner-insensitive
approaches with respect to analysis precision?

• Were the proposed processor-core-modular approaches experimentally evaluated for an
over-provisioned hardware platform?

• Were there other irregularities in the considered experimental setups that effectively made
the comparison to the results of a co-runner-insensitive approach unfair?

Answering some of these questions, however, is particularly challenging as the details of the
considered experiment setups are typically not available and researchers are usually not very
cooperative when it comes to putting in doubt their published research results. On the other
hand, it is as well possible that there is a conceptual problem in our evaluation methodology.

Note that we are not yet fully confident in the universality of the presented experiment results:
Due to time and space constraints, we only evaluated a more or less synthetic scenario in which
every processor core repeatedly executes a single program. Consequently, future experiments
would have to consider more complex scenarios of processor-core-modular interference-aware
schedulability analyses. Moreover, we only evaluated scenarios with a multi-core processor with a
shared bus. Thus, it is not clear whether the additional consideration of (potentially multi-level)
shared caches would lead to similarly disappointing results with respect to analysis precision.
Additionally, we would like to point out that the cumulative approximation used in our processor-
core-modular analysis (WCET bounds and arrival curve values) is fairly simple. It remains an
open question whether there are sophisticated cumulative approximations leading to more precise
analysis results.

However, be aware that there are hardware platforms for which a co-runner-insensitive timing
verification is not possible (cf. Section 7.7). For such hardware platforms, a co-runner-sensitive
timing verification is mandatory and processor-core-modular approaches are currently the only
known co-runner-sensitive approaches for which a scaling to real-world scenarios is not completely
out of reach.
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11.4. Future of WCET Analysis for Multi-Core Processors

Co-runner-insensitive approaches to WCET analysis for multi-core processors are inherently
pessimistic as they do not take into account the operation of the programs executed on the
concurrent processor cores. As a consequence, their use will likely have to be compensated by a
significant over-provisioning of the hardware platform executing the application under analysis.
Such an over-provisioning increases the price, the weight, and the energy consumption of the
hardware platform. Hence, such an over-provisioning is unsustainable and might easily outweigh
the advantages of using a multi-core platform compared to using multiple dedicated single-core
systems.
The other extreme approach to WCET analysis for multi-core processors with unpartitioned

shared resources is a fully integrated approach (cf. Figure 11.1), which is very unlikely to scale
to real-world scenarios (cf. Section 2.2.1). Thus, it is not surprising that many researchers rely
on processor-core-modular timing verification as a compromise between aforementioned extreme
approaches (cf. Section 2.2.2).
The experimental results presented in Section 10.5, however, indicate that there are at least

certain execution scenarios in which processor-core-modular approaches are almost equally
pessimistic as co-runner-insensitive approaches. In our opinion, a significant amount of the
pessimism in processor-core-modular approaches is due to the loose coupling of the abstract
models of the different processor cores, which only exchange accumulated information (in our case
WCET bounds and arrival curve values). On the other hand, this loose coupling is what makes
processor-core-modular approaches significantly more scalable than fully integrated approaches.
Thus, we believe that a significant amount of the pessimism in processor-core-modular approaches
is inherent to the processor-core-modularity.
Based on the presented experimental results, we do not believe that processor-core-modular

timing verification alone can lead to significantly more precise results than co-runner-insensitive
timing verification. Instead, for systems with unpartitioned shared resources, we recommend to
combine processor-core-modular approaches with traffic shaping of the accesses to the shared
resources [Georgiadis et al., 1996; Davis and Navet, 2012; Oehlert et al., 2019]. In this way,
the pessimism of the processor-core-modularity might be alleviated without having to resort
to static resource schedules, which potentially require expensive offline optimizations for good
results [Rosen et al., 2007; John and Jacobs, 2014]. In this context, traffic shaping (i.e. making
sure at runtime that a certain arrival curve is never exceeded by the shared-resource access
behavior of a processor core) can be seen as a more dynamic and indirect way of partitioning the
shared resources.

11.5. Related Work in Our Group

This thesis and the thesis of Sebastian Hahn [Hahn, 2018] have been created in close cooperation.
The contributions of both theses can be seen as complementary in the sense that they focus
on different aspects with respect to the state of the art in WCET analysis. This thesis focuses
on the principle of property lifting and its instantiation for WCET analysis—in general as
well as for multi-core processors. The thesis of Sebastian Hahn, in contrast, focuses on timing
compositionality and analysis approaches and hardware designs particularly appropriate for a
timing-compositional consideration. Both theses assume—as most work in the area of static
WCET analysis—that the full specification of the considered micro-architecture is known. We
are aware of the fact that this assumption is currently not realistic for commercial hardware
platforms. We are, however, confident that a derivation of reliable verification techniques for
safety- and/or mission-critical application scenarios is not possible without this assumption. In
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order to partially close this gap, our group tries to automatically and safely determine certain
hardware parameters (as e.g. the size and latency of caches) for a given micro-architecture based
on an incomplete hardware specification [Abel and Reineke, 2013, 2019].
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But time flows like a river. . .
and history repeats. . .

(Secret of Mana, Square, 1993)
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Appendix A

Additional Proofs

So zerbricht man sich den Kopf
Und es kommt oft vor dass es heißt
Für alle die es wissen wollen
Hier ist der Beweis

(Hier ist der Beweis, Tocotronic, 2002)

This appendix chapter contains the lengthy proofs of this thesis.

Proof of Statement (4.24).

πMa( ̂LessTraces)

⊇
(4.13)
(4.23)

πMa(T̂races \ Înfeas)

=
(4.4)

πMa( {t̂ ∈ T̂races | γtrace(t̂) ∩ Traces 6= ∅} )

=
(4.20)

{πMa
trace(t̂) | t̂ ∈ T̂races ∧ γtrace(t̂) ∩ Traces 6= ∅}

=
(4.17)
(4.18)

{t̂Ma | (t̂M1 , . . . , t̂Ma , . . . , t̂Mm) ∈ ̂TracesM1 × . . .× ̂TracesMm

∧γtrace(t̂M1 , . . . , t̂Ma , . . . , t̂Mm) ∩ Traces 6= ∅}

=
(4.19)
(4.18)

{t̂Ma | (t̂M1 , . . . , t̂Ma , . . . , t̂Mm) ∈ ̂TracesM1 × . . .× ̂TracesMm

∧
⋂
Mb∈Models γ

Mb
trace(t̂

Mb) ∩ Traces 6= ∅}

=
(4.3)

{t̂Ma ∈ ̂TracesMa | γMa
trace(t̂

Ma) ∩ Traces 6= ∅}

=
(4.4)

̂TracesMa \ ̂InfeasMa

Proof of Hypothesis (4.H1). The following auxiliary statement is a direct consequence of
equations (4.28) and (4.30).

∀Ma ∈ Models : ̂ApproxMa ⊆ ̂TracesMa (A.1)

As a consequence of (4.21), the claim in (4.H1) trivially holds for the initial values of the
approximation variables as specified in (4.28). For the general case, however, we assume the
hypothesis (4.H1) to hold after a given sequence of approximation variable updates. In an
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inductive way, we can use this assumption to show that the hypothesis is preserved by an
additional simultaneous update of an arbitrarily chosen set of the approximation variables. For
the details of this induction step, please refer to (A.2) and (A.3). The inequation chain (A.2)
shows that all sets contained in it are in fact equal.

πMa( ̂LessTraces)

=
(4.20)

{πMa
trace(t̂) | t̂ ∈ ̂LessTraces}

=
(4.12)

{πMa
trace(t̂) | t̂ ∈ ̂LessTraces ∧ P̂ (t̂)}

⊆
(4.22)

{πMa
trace(t̂) | t̂ ∈ πM1( ̂LessTraces)× . . .× πMm( ̂LessTraces) ∧ P̂ (t̂)}

⊆
(4.H1)

{πMa
trace(t̂) | t̂ ∈

̂ApproxM1 × . . .× ̂ApproxMm ∧ P̂ (t̂)}

⊆
(A.1)

{πMa
trace(t̂) | t̂ ∈

̂TracesM1 × . . .× ̂TracesMm ∧ P̂ (t̂)}

=
(4.17)

{πMa
trace(t̂) | t̂ ∈ T̂races ∧ P̂ (t̂)}

=
(4.12)

{πMa
trace(t̂) | t̂ ∈ ̂LessTraces}

(A.2)

This information is used in (A.3) to show that FMa(
#                     »

ApproxMa
) is guaranteed to be a superset

of the projections πMa( ̂LessTraces).

πMa( ̂LessTraces)

=
(A.2)

{πMa
trace(t̂) | t̂ ∈

̂ApproxM1 × . . .× ̂ApproxMm ∧ P̂ (t̂)}

=
(4.18)

{t̂Ma | (t̂M1 , . . . , t̂Ma , . . . , t̂Mm) ∈ ̂ApproxM1 × . . .× ̂ApproxMm

∧P̂ (t̂M1 , . . . , t̂Ma , . . . , t̂Mm)}

⊆
(4.C2)

{t̂Ma ∈ ̂ApproxMa | P̃Ma(t̂Ma ,
#                     »

ApproxMa
)}

⊆
(A.1)

{t̂Ma ∈ ̂TracesMa | P̃Ma(t̂Ma ,
#                     »

ApproxMa
)}

=
(4.30)

FMa(
#                     »

ApproxMa
)

(A.3)

According to the equation system given by (4.29), each approximation variable ̂ApproxMa is
updated to the value FMa(FMa(

#                     »

ApproxMa
)). This proves that the simultaneous update of an

arbitrarily chosen set of approximation variables is guaranteed to preserve the hypothesis given
by (4.H1).

Proof of Hypothesis (4.H2). According to (4.28) and (4.29), hypothesis (4.H2) trivially holds
for the approximation variables directly after their initialization.
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For the inductive step, assume that hypothesis (4.H2) holds for a given vector of approximation

variables ̂ApproxMa . Let the updated value of an approximation variable ̂ApproxMa after the
simultaneous update of an arbitrarily chosen set of approximation variables be denoted by

̂Approx′Ma . Thus, the following statement holds.

∀Ma ∈ Models : ̂Approx′Ma ∈ { ̂ApproxMa , FMa(
#                     »

ApproxMa
)} (A.4)

It follows from (4.H2) and (A.4) that each ̂Approx′Ma is a subset of the corresponding ̂ApproxMa .

∀Ma ∈ Models : ̂Approx′Ma ⊆ ̂ApproxMa (A.5)

Equation (A.6) shows that FMa(
#                     »

Approx′
Ma

) is a subset of FMa(
#                     »

ApproxMa
).

FMa(
#                     »

Approx′
Ma

)

=
(4.30)

{t̂Ma ∈ ̂TracesMa | P̃Ma(t̂Ma ,
#                     »

Approx′
Ma

)}

⊆
(4.C3)
(A.5)

{t̂Ma ∈ ̂TracesMa | P̃Ma(t̂Ma ,
#                     »

ApproxMa
)}

=
(4.30)

FMa(
#                     »

ApproxMa
)

(A.6)

Based on these results, it is straightforward to show that hypothesis (4.H2) also holds for the

updated value ̂Approx′Ma of an approximation variable, which concludes the inductive proof.

̂Approx′Ma

=
(A.4)

{
̂ApproxMa

FMa(
#                     »

ApproxMa
)

⊇
(4.H2)

FMa(
#                     »

ApproxMa
)

⊇
(A.6)

FMa(
#                     »

Approx′
Ma

)

(A.7)

Proof that any fixed point reached by our iteration starting from a maximally pessimistic initial-
ization is guaranteed to coincide with the (unique) greatest fixed point of equation system (4.33).
Note that, during this proof, we rely on the syntactical convention that for any vector

#         »

Some with
a dedicated position per abstract model Ma there are corresponding vectors

#                »

SomeMa
in which

the element for Ma has been removed.

#         »

Some = ( ̂SomeM1 , . . . , ̂SomeMm)

⇒∀Ma ∈ Models :
#                »

SomeMa
= ( ̂SomeM1 , . . . , ̂SomeMa−1 , ̂SomeMa+1 , . . . , ̂SomeMm)

(A.8)

By design (cf. equations (4.28), (4.29), and (4.30)), each approximation variable can be seen as
a member of a power set domain.

∀Ma ∈ Models : ̂ApproxMa ∈ P( ̂TracesMa) (A.9)
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Moreover, we know that each power set domain forms a complete lattice in combination with
the relation ⊆.

∀Ma ∈ Models : (P( ̂TracesMa),⊆) is a complete lattice (A.10)

Thus, the cross product over these power set domains also forms a complete lattice in combi-
nation with the pairwise extension of ⊆ (cf. e.g. Appendix A.2 of [Nielson et al., 1999]). In the
following, we use D1 to refer to this cross product.

D1 := P( ̂TracesM1)× . . .× P( ̂TracesMm) (A.11)
(D1,⊆pairwise) is a complete lattice (A.12)

The simultaneous update of all approximation variables can be defined as a function F on D1.
Note that—by design—the set of fixed points of equation system (4.33) coincides with the set of
all fixed points of function F .

F : D1 → D1 (A.13)

F (
#             »

Approx) = (FM1(
#                    »

ApproxM1
), . . . , FMm(

#                      »

ApproxMm
)) (A.14)

The monotonicity of the update functions FMa (cf. criterion (4.C3)) implies the monotonicity
of function F .

∀ #             »

Approx,
#               »

Approx′ ∈ D1 :
#               »

Approx′ ⊆pairwise
#             »

Approx⇒ F (
#               »

Approx′) ⊆pairwise F (
#             »

Approx) (A.15)

It follows from this monotonicity and (D1,⊆pairwise) being a complete lattice that F (respectively
equation system (4.33)) has a unique greatest fixed point [Tarski, 1955]. This greatest fixed point
shall be referred to as

#       »

GFP.

#       »

GFP = (ĜFPM1 , . . . , ĜFPMm) (A.16)

Note that the maximally pessimistic initialization of our iterative approach is a member of D1

and by construction greater than or equal to the greatest fixed point.

#       »

GFP ⊆pairwise (
̂TracesM1 , . . . , ̂TracesMm) (A.17)

Moreover, we know due to the monotonicity of the update functions FMa that whenever a
vector of approximation variables is greater than or equal to the greatest fixed point, the update
of an approximation variable cannot let its value jump below the corresponding component of
the greatest fixed point.

#       »

GFP ⊆pairwise
#             »

Approx

⇒∀Ma ∈ Models : ĜFPMa = FMa(
#               »

GFPMa
) ⊆ FMa(

#                     »

ApproxMa
)

(A.18)

As a consequence, starting from a maximally pessimistic initialization, after any sequence of
updates of the approximation variables every variable is guaranteed to be a superset of or equal
to the corresponding component of the greatest fixed point. This implies that any fixed point
reached by our iterative approach starting from a maximally pessimistic initialization has to
coincide with the greatest fixed point of equation system (4.33).

Proof that any fixed point reached by the approach in Section 4.2.4 is guaranteed to coincide with
the (unique) least fixed point of equation system (4.37) and that no sequence of updates applied
to the initialization can exceed this fixed point. Note that, during this proof, we rely on the
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syntactical convention that for any vector
#         »

Some with a dedicated position per abstract model
Ma there are corresponding vectors

#                »

SomeMa
in which the element for Ma has been removed.

#         »

Some = ( ̂SomeM1 , . . . , ̂SomeMm)

⇒∀Ma ∈ Models :
#                »

SomeMa
= ( ̂SomeM1 , . . . , ̂SomeMa−1 , ̂SomeMa+1 , . . . , ̂SomeMm)

(A.19)

By design (cf. equations (4.36), (4.29), (4.30), and (4.H3)), each approximation variable
̂ApproxMa can be seen as a member of domain D̂omMa . D̂omMa contains the members of

P( ̂TracesMa) that are a superset of or equal to ÎnitMa .

D̂omMa = {set | ÎnitMa ⊆ set ⊆ ̂TracesMa} (A.20)

∀Ma ∈ Models : ̂ApproxMa ∈ D̂omMa (A.21)

In the same way as P( ̂TracesMa), the domain D̂omMa forms a complete lattice in combination
with the relation ⊆.

∀Ma ∈ Models : (D̂omMa ,⊆) is a complete lattice (A.22)

Thus, the cross product over the domains D̂omMa also forms a complete lattice in combination
with the pairwise extension of ⊆ (cf. e.g. Appendix A.2 of [Nielson et al., 1999]). In the following,
we use D2 to refer to this cross product.

D2 := D̂omM1 × . . .× D̂omMm (A.23)
(D2,⊆pairwise) is a complete lattice (A.24)

The simultaneous update of all approximation variables can be defined as a function F on D2.

F : D2 → D2 (A.25)

F (
#             »

Approx) = (FM1(
#                    »

ApproxM1
), . . . , FMm(

#                      »

ApproxMm
)) (A.26)

The monotonicity of the update functions FMa (cf. criterion (4.C3)) implies the monotonicity
of function F .

∀ #             »

Approx,
#               »

Approx′ ∈ D2 :
#               »

Approx′ ⊆pairwise
#             »

Approx⇒ F (
#               »

Approx′) ⊆pairwise F (
#             »

Approx) (A.27)

It follows from this monotonicity and (D2,⊆pairwise) being a complete lattice that F has a
unique least fixed point [Tarski, 1955]. This least fixed point shall be referred to as

#      »

LFP.

#      »

LFP = (L̂FPM1 , . . . , ̂LFPMm) (A.28)

Note that the initialization of our iterative approach is a member of D2 and by construction
smaller than or equal to this least fixed point.

#    »

Init ⊆pairwise
#      »

LFP (A.29)

Moreover, we know due to the monotonicity of the update functions FMa that whenever a
vector of approximation variables is smaller than or equal to the least fixed point, the update of
an approximation variable cannot let its value jump above the corresponding component of the
least fixed point.

#             »

Approx ⊆pairwise
#      »

LFP

⇒∀Ma ∈ Models : FMa(
#                     »

ApproxMa
) ⊆ FMa(

#              »

LFPMa
) = L̂FPMa

(A.30)
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As a consequence, starting from the initialization, after any sequence of updates of the
approximation variables every variable is guaranteed to be a subset of or equal to the corresponding
component of the least fixed point of F . This implies that any fixed point reached by our iterative
approach starting from the initialization has to coincide with the least fixed point of F .

Now, we are left to show that the least fixed point of F coincides with the least fixed point of
equation system (4.37). We show this in two steps.

First we know that the initialization is by design smaller than or equal to every member of D2.

∀ #             »

Approx ∈ D2 :
#    »

Init ⊆pairwise
#             »

Approx (A.31)

Thus, the least fixed point of F is identical the least fixed point of the following function F ′ on
D2.

F ′ : D2 → D2 (A.32)

F ′(
#             »

Approx) = (ÎnitM1 ∪ FM1(
#                    »

ApproxM1
), . . . , ̂InitMm ∪ FMm(

#                      »

ApproxMm
)) (A.33)

The function F ′′ extends F ′ to D1 ⊇ D2. Note that D1 is defined in equation (A.11). Further
note that the least fixed point of F ′′ is by design the least fixed point of equation system (4.37).

F ′′ : D1 → D1 (A.34)

F ′′(
#             »

Approx) = (ÎnitM1 ∪ FM1(
#                    »

ApproxM1
), . . . , ̂InitMm ∪ FMm(

#                      »

ApproxMm
)) (A.35)

Finally, note that every member of D1 \ D2 is in at least one component smaller than the
initialization. Thus, no member of D1 \D2 can be a fixed point of F ′′. Consequently, the least
fixed point of F ′′ (i.e. of equation system (4.37)) coincides with the least fixed point of F ′ and,
thus, also with the least fixed point of F .

Proof of Statement (5.23). We prove statement (5.23) by induction. Consider the following
induction hypothesis for n ∈ N.

{t ∈ Traces | len(t) = n} ⊆ {t | ((t̂, û), t) ∈ TraceDescrTrace ∧ len((t̂, û)) = n} (A.36)

We start the induction by proving that hypothesis (A.36) holds for n = 0.

{t ∈ Traces | len(t) = 0}

=
(5.4)
(5.5)

{t ∈ Traces | len(t) = 0 ∧ t(0) ∈ Sinit}

⊆
(5.13)

{t ∈ Traces | len(t) = 0 ∧ t(0) ∈ γ(ŝi) ∧ ŝi ∈ Ŝinit}

⊆
(5.C1)

{t ∈ Traces | len(t) = 0 ∧ t(0) ∈ γ(t̂(0)) ∧ len((t̂, û)) = 0 ∧ (t̂, û) ∈ T̂races}

⊆
(5.17)
(5.18)

{t ∈ Traces | len(t) = 0 ∧ t(0) ∈ γ(û(0)) ∧ len((t̂, û)) = 0 ∧ (t̂, û) ∈ T̂races}

=
(5.21)
(5.22)

{t | ((t̂, û), t) ∈ TraceDescrTrace ∧ len((t̂, û)) = 0}

(A.37)
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Subsequently, we show that hypothesis (A.36) holds for n+ 1 if it holds for n.

{t ∈ Traces | len(t) = n+ 1}

=
(5.4)

{t ∈ Traces | len(t) = n+ 1 ∧ (t(n), t(n+ 1)) ∈ Cycle

∧ t′ ∈ Traces ∧ len(t′) = n

∧ ∀x ∈ N≤n : t(x) = t′(x)}

⊆
(A.36)

{t ∈ Traces | len(t) = n+ 1 ∧ (t(n), t(n+ 1)) ∈ Cycle

∧ ((t̂′, û′), t′) ∈ TraceDescrTrace ∧ len((t̂′, û′)) = n

∧ ∀x ∈ N≤n : t(x) = t′(x)}

=
(5.21)
(5.22)

{t ∈ Traces | len(t) = n+ 1 ∧ (t(n), t(n+ 1)) ∈ Cycle

∧ (t̂′, û′) ∈ T̂races ∧ len((t̂′, û′)) = n

∧ t(0) ∈ γ(û′(0)) ∧ ∀x ∈ N≥1 ∩ N≤n : t(x) ∈ γ(t̂′(x))}

=
(5.20)
(5.18)
(5.17)

{t ∈ Traces | len(t) = n+ 1 ∧ (t(n), t(n+ 1)) ∈ Cycle

∧ (t̂′, û′) ∈ T̂races ∧ len((t̂′, û′)) = n

∧ [t(0) ∈ γ(û′(0)) ∧ ∀x ∈ N≥1 ∩ N≤n : t(x) ∈ γ(t̂′(x))]
∧ t(n) ∈ γ(û′(n))}

=
(5.15)

{t ∈ Traces | len(t) = n+ 1 ∧ (t(n), t(n+ 1)) ∈ Cycle

∧ (t̂′, û′) ∈ T̂races ∧ len((t̂′, û′)) = n

∧ [t(0) ∈ γ(û′(0)) ∧ ∀x ∈ N≥1 ∩ N≤n : t(x) ∈ γ(t̂′(x))]
∧ t(n) ∈ γ(û′(n))
∧ (û′(n), ŝ) ∈ Ĉycle

∧ t(n+ 1) ∈ γ(ŝ)}

=
(5.C2)

{t ∈ Traces | len(t) = n+ 1 ∧ (t(n), t(n+ 1)) ∈ Cycle

∧ (t̂, û) ∈ T̂races ∧ len((t̂, û)) = n+ 1

∧ [t(0) ∈ γ(û(0)) ∧ ∀x ∈ N≥1 ∩ N≤n+1 : t(x) ∈ γ(t̂(x))]
∧ t(n) ∈ γ(û(n))}

=
(5.21)
(5.22)
(5.4)
(5.17)
(5.18)

{t | ((t̂, û), t) ∈ TraceDescrTrace ∧ len((t̂, û)) = n+ 1}

(A.38)

We inductively follow that hypothesis (A.36) holds for all n ∈ N. Thus, the following holds as
well.

Traces ⊆ {t | ((t̂, û), t) ∈ TraceDescrTrace} (A.39)

As a consequence, statement (5.23) holds.
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Appendix A. Additional Proofs

Proof of Statement (5.41). We have to show the following statement.

∀(t̂, û) ∈ T̂races : ∀t ∈ γtrace((t̂, û)) : ∀x ∈ N<len((t̂,û)) :

ÊLB((t̂, û), x) ≤ E(t, x) ≤ ÊUB((t̂, û), x)

Note that we replaced t̂ by (t̂, û) compared to the original statement (5.41). This was done
as this proof needs to access the different components of a member of T̂races while this is not
necessary in the original statement.
We start by proving the following auxiliary statement.

∀(t̂, û) ∈ T̂races : ∀t ∈ γtrace((t̂, û)) : ∀x ∈ N<len((t̂,û)) :

E(t, x)⇒ ÊUB((t̂, û), x)
(A.40)

Case: t ∈ Traces:

E(t, x)

⇔
(5.10)

x<len((t̂,û))
(5.32)

(t(x), t(x+ 1)) ∈ E

⇒
(5.22)

[x > 0 ∧ E ∩ (γ(t̂(x))× γ(t̂(x+ 1))) 6= ∅] ∨

[x = 0 ∧ E ∩ (γ(û(x))× γ(t̂(x+ 1))) 6= ∅]

⇒
(5.20)
(5.18)
(5.17)

E ∩ (γ(û(x))× γ(t̂(x+ 1))) 6= ∅

⇒
(5.38)

(û(x), t̂(x+ 1)) ∈ ÊUB

⇔
(5.37)

ÊUB((t̂, û), x)

Case: t = (t′, u′) ∈ Spurious:

E((t′, u′), x)

⇔
(5.27)

x<len((t̂,û))
(5.32)

(t′(x), u′(x+ 1)) ∈ E

⇒
(5.29)

E ∩ (γ(û(x))× γ(t̂(x+ 1))) 6= ∅

⇒
(5.38)

(û(x), t̂(x+ 1)) ∈ ÊUB

⇔
(5.37)

ÊUB((t̂, û), x)

This concludes the proof of auxiliary statement (A.40).
Next, we prove a similar auxiliary statement for must-events.

∀(t̂, û) ∈ T̂races : ∀t ∈ γtrace((t̂, û)) : ∀x ∈ N<len((t̂,û)) :

¬E(t, x)⇒ ¬ÊLB((t̂, û), x)
(A.41)
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Case: t ∈ Traces:

¬E(t, x)

⇔
(5.10)

x<len((t̂,û))
(5.32)

(t(x), t(x+ 1)) 6∈ E

⇒
(5.22)

[x > 0 ∧ (Cycle \ E) ∩ (γ(t̂(x))× γ(t̂(x+ 1))) 6= ∅] ∨

[x = 0 ∧ (Cycle \ E) ∩ (γ(û(x))× γ(t̂(x+ 1))) 6= ∅]

⇒
(5.20)
(5.18)
(5.17)

(Cycle \ E) ∩ (γ(û(x))× γ(t̂(x+ 1))) 6= ∅

⇒
(5.39)

(û(x), t̂(x+ 1)) 6∈ ÊLB

⇔
(5.37)

¬ÊLB((t̂, û), x)

Case: t = (t′, u′) ∈ Spurious:

¬E((t′, u′), x)

⇔
(5.27)

x<len((t̂,û))
(5.32)

(t′(x), u′(x+ 1)) 6∈ E

⇒
(5.29)

(Cycle \ E) ∩ (γ(û(x))× γ(t̂(x+ 1))) 6= ∅

⇒
(5.39)

(û(x), t̂(x+ 1)) 6∈ ÊLB

⇔
(5.37)

¬ÊLB((t̂, û), x)

This concludes the proof of auxiliary statement (A.41).
Statements (A.40) and (A.41) together imply the statement we originally wanted to prove.

ÊLB((t̂, û), x) ≤
(A.41)

E(t, x) ≤
(A.40)

ÊUB((t̂, û), x)

Proof of the Soundness of the Lifting Rules in Table 5.1. We prove the soundness of the property
lifting rules by structural induction on the different logical constructs that may appear in the
system properties we consider. In particular, we prove the two following hypotheses for each of
the logical constructs. When doing so, we rely on both hypotheses holding for the sub-properties
that the logical constructs are build of.

[∃t ∈ γtrace(t̂) : P (t, #»x )]⇒ lift(P (t, #»x )) (A.H1)

[∃t ∈ γtrace(t̂) : ¬P (t, #»x )]⇒ ¬flip(lift(P (t, #»x ))) (A.H2)

Hypothesis (A.H1) is the actual soundness hypothesis. For top-level properties—which do
not argue about free variables (i.e. vector #»x does not exist)—it is identical to the soundness
criterion (4.C1) for lifted properties. The additional hypothesis (A.H2) is required to show
hypothesis (A.H1) for some of the logical constructs.
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Now, we present the induction step for each of the first seven lifting rules in Table 5.1. The last
lifting rule—for logical implication—can be derived as a combination of the other lifting rules
and, thus, is omitted in the induction proof. We present its derivation in the end.

1. P (t, #»x )⇔ E(t, xi)

[∃t ∈ γtrace(t̂) : P (t, #»x )]

⇔ [∃t ∈ γtrace(t̂) : E(t, xi)]

⇒
(5.41)

ÊUB(t̂, xi)

⇔
(LR1)

lift(E(t, xi))

⇔ lift(P (t, #»x ))

[∃t ∈ γtrace(t̂) : ¬P (t, #»x )]

⇔ [∃t ∈ γtrace(t̂) : ¬E(t, xi)]

⇒
(5.41)

¬ÊLB(t̂, xi)

⇔
(LR9)

¬flip(ÊUB(t̂, xi))

⇔
(LR1)

¬flip(lift(E(t, xi)))

⇔ ¬flip(lift(P (t, #»x )))

2. P (t, #»x )⇔ [P1(t,
#»x ) ∧ P2(t,

#»x )]

[∃t ∈ γtrace(t̂) : P (t, #»x )]

⇔ [∃t ∈ γtrace(t̂) : P1(t,
#»x ) ∧ P2(t,

#»x )]

⇒ [(∃t ∈ γtrace(t̂) : P1(t,
#»x )) ∧ (∃t ∈ γtrace(t̂) : P2(t,

#»x ))]

⇒
(A.H1)

[lift(P1(t,
#»x )) ∧ lift(P2(t,

#»x ))]

⇔
(LR2)

lift([P1(t,
#»x ) ∧ P2(t,

#»x )])

⇔ lift(P (t, #»x ))
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[∃t ∈ γtrace(t̂) : ¬P (t, #»x )]

⇔ [∃t ∈ γtrace(t̂) : ¬(P1(t,
#»x ) ∧ P2(t,

#»x ))]

⇔ [∃t ∈ γtrace(t̂) : ¬P1(t,
#»x ) ∨ ¬P2(t,

#»x )]

⇔ [(∃t ∈ γtrace(t̂) : ¬P1(t,
#»x )) ∨ (∃t ∈ γtrace(t̂) : ¬P2(t,

#»x ))]

⇒
(A.H2)

[¬flip(lift(P1(t,
#»x ))) ∨ ¬flip(lift(P2(t,

#»x )))]

⇔ ¬[flip(lift(P1(t,
#»x ))) ∧ flip(lift(P2(t,

#»x )))]

⇔
(LR11)

¬flip([lift(P1(t,
#»x )) ∧ lift(P2(t,

#»x ))])

⇔
(LR2)

¬flip(lift([P1(t,
#»x ) ∧ P2(t,

#»x )]))

⇔ ¬flip(lift(P (t, #»x )))

3. P (t, #»x )⇔ [P1(t,
#»x ) ∨ P2(t,

#»x )]

[∃t ∈ γtrace(t̂) : P (t, #»x )]

⇔ [∃t ∈ γtrace(t̂) : P1(t,
#»x ) ∨ P2(t,

#»x )]

⇔ [(∃t ∈ γtrace(t̂) : P1(t,
#»x )) ∨ (∃t ∈ γtrace(t̂) : P2(t,

#»x ))]

⇒
(A.H1)

[lift(P1(t,
#»x )) ∨ lift(P2(t,

#»x ))]

⇔
(LR3)

lift([P1(t,
#»x ) ∨ P2(t,

#»x )])

⇔ lift(P (t, #»x ))
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[∃t ∈ γtrace(t̂) : ¬P (t, #»x )]

⇔ [∃t ∈ γtrace(t̂) : ¬(P1(t,
#»x ) ∨ P2(t,

#»x ))]

⇔ [∃t ∈ γtrace(t̂) : ¬P1(t,
#»x ) ∧ ¬P2(t,

#»x )]

⇒ [(∃t ∈ γtrace(t̂) : ¬P1(t,
#»x )) ∧ (∃t ∈ γtrace(t̂) : ¬P2(t,

#»x ))]

⇒
(A.H2)

[¬flip(lift(P1(t,
#»x ))) ∧ ¬flip(lift(P2(t,

#»x )))]

⇔ ¬[flip(lift(P1(t,
#»x ))) ∨ flip(lift(P2(t,

#»x )))]

⇔
(LR12)

¬flip([lift(P1(t,
#»x )) ∨ lift(P2(t,

#»x ))])

⇔
(LR3)

¬flip(lift([P1(t,
#»x ) ∨ P2(t,

#»x )]))

⇔ ¬flip(lift(P (t, #»x )))

4. P (t, #»x )⇔ [ ∀x ∈ X : P1(t,
#»x , x) ]

[∃t ∈ γtrace(t̂) : P (t, #»x )]

⇔ [∃t ∈ γtrace(t̂) : ∀x ∈ X : P1(t,
#»x , x)]

⇒ [∀x ∈ X : ∃t ∈ γtrace(t̂) : P1(t,
#»x , x)]

⇒
(A.H1)

[∀x ∈ X : lift(P1(t,
#»x , x))]

⇔
(LR4)

lift([∀x ∈ X : P1(t,
#»x , x)])

⇔ lift(P (t, #»x ))
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[∃t ∈ γtrace(t̂) : ¬P (t, #»x )]

⇔ [∃t ∈ γtrace(t̂) : ¬∀x ∈ X : P1(t,
#»x , x)]

⇔ [∃t ∈ γtrace(t̂) : ∃x ∈ X : ¬P1(t,
#»x , x)]

⇔ [∃x ∈ X : ∃t ∈ γtrace(t̂) : ¬P1(t,
#»x , x)]

⇒
(A.H2)

[∃x ∈ X : ¬flip(lift(P1(t,
#»x , x)))]

⇔ ¬[∀x ∈ X : flip(lift(P1(t,
#»x , x)))]

⇔
(LR13)

¬flip([∀x ∈ X : lift(P1(t,
#»x , x))])

⇔
(LR4)

¬flip(lift([∀x ∈ X : P1(t,
#»x , x)]))

⇔ ¬flip(lift(P (t, #»x )))

5. P (t, #»x )⇔ [ ∃x ∈ X : P1(t,
#»x , x) ]

[∃t ∈ γtrace(t̂) : P (t, #»x )]

⇔ [∃t ∈ γtrace(t̂) : ∃x ∈ X : P1(t,
#»x , x)]

⇔ [∃x ∈ X : ∃t ∈ γtrace(t̂) : P1(t,
#»x , x)]

⇒
(A.H1)

[∃x ∈ X : lift(P1(t,
#»x , x))]

⇔
(LR5)

lift([∃x ∈ X : P1(t,
#»x , x)])

⇔ lift(P (t, #»x ))

259



Appendix A. Additional Proofs

[∃t ∈ γtrace(t̂) : ¬P (t, #»x )]

⇔ [∃t ∈ γtrace(t̂) : ¬∃x ∈ X : P1(t,
#»x , x)]

⇔ [∃t ∈ γtrace(t̂) : ∀x ∈ X : ¬P1(t,
#»x , x)]

⇒ [∀x ∈ X : ∃t ∈ γtrace(t̂) : ¬P1(t,
#»x , x)]

⇒
(A.H2)

[∀x ∈ X : ¬flip(lift(P1(t,
#»x , x)))]

⇔ ¬[∃x ∈ X : flip(lift(P1(t,
#»x , x)))]

⇔
(LR14)

¬flip([∃x ∈ X : lift(P1(t,
#»x , x))])

⇔
(LR5)

¬flip(lift([∃x ∈ X : P1(t,
#»x , x)]))

⇔ ¬flip(lift(P (t, #»x )))

6. P (t, #»x )⇔ ¬P1(t,
#»x )

[∃t ∈ γtrace(t̂) : P (t, #»x )]

⇔ [∃t ∈ γtrace(t̂) : ¬P1(t,
#»x )]

⇒
(A.H2)

¬flip(lift(P1(t,
#»x )))

⇔
(LR6)

lift(¬P1(t,
#»x ))

⇔ lift(P (t, #»x ))

[∃t ∈ γtrace(t̂) : ¬P (t, #»x )]

⇔ [∃t ∈ γtrace(t̂) : ¬¬P1(t,
#»x )]

⇔ [∃t ∈ γtrace(t̂) : P1(t,
#»x )]

⇒
(A.H1)

lift(P1(t,
#»x ))

⇔
(LR18)

flip(flip(lift(P1(t,
#»x ))))

⇔ ¬¬flip(flip(lift(P1(t,
#»x ))))

⇔
(LR15)

¬flip(¬flip(lift(P1(t,
#»x ))))

⇔
(LR6)

¬flip(lift(¬P1(t,
#»x )))

⇔ ¬flip(lift(P (t, #»x )))
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7. P (t, #»x )⇔ [ a1 ·
∑
x∈X

P1(t,
#»x , x) + b1 . a2 ·

∑
y∈Y

P2(t,
#»x , y) + b2 ]

In order to prove the hypotheses for the case of a generic inequation, we derive two auxiliary
statements from the hypotheses. Hypothesis (A.H1) implies that the value of a lifted
property for a sequence of abstract states is always at least as high as the value of the
corresponding concrete property for any described trace.

∀t ∈ γtrace(t̂) : P (t, #»x ) ≤ lift(P (t, #»x )) (A.42)

Similarly, hypothesis (A.H2) implies that the value of the flipped version of a lifted property
for a sequence of abstract states does never exceed the value of the corresponding concrete
property for any described trace.

∀t ∈ γtrace(t̂) : P (t, #»x ) ≥ flip(lift(P (t, #»x ))) (A.43)

Now, we prove the hypotheses also for the generic inequation.

[∃t ∈ γtrace(t̂) : P (t, #»x )]

⇔ [∃t ∈ γtrace(t̂) : a1 ·
∑
x∈X

P1(t,
#»x , x) + b1 . a2 ·

∑
y∈Y

P2(t,
#»x , y) + b2]

⇒
(A.42)
(A.43)
a1≥0
a2≥0∑
monotone

[a1 ·
∑
x∈X

flip(lift(P1(t,
#»x , x)))+ b1 . a2 ·

∑
y∈Y

lift(P2(t,
#»x , y))+ b2]

⇔
(LR7)

lift([a1 ·
∑
x∈X

P1(t,
#»x , x) + b1 . a2 ·

∑
y∈Y

P2(t,
#»x , y) + b2])

⇔ lift(P (t, #»x ))
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[∃t ∈ γtrace(t̂) : ¬P (t, #»x )]

⇔ [∃t ∈ γtrace(t̂) : ¬(a1 ·
∑
x∈X

P1(t,
#»x , x) + b1 . a2 ·

∑
y∈Y

P2(t,
#»x , y) + b2)]

⇔ [∃t ∈ γtrace(t̂) : a1 ·
∑
x∈X

P1(t,
#»x , x) + b1 6. a2 ·

∑
y∈Y

P2(t,
#»x , y) + b2]

⇒
(A.42)
(A.43)
a1≥0
a2≥0∑
monotone

[a1 ·
∑
x∈X

lift(P1(t,
#»x , x))+ b1 6. a2 ·

∑
y∈Y

flip(lift(P2(t,
#»x , y)))+ b2]

⇔ ¬[a1 ·
∑
x∈X

lift(P1(t,
#»x , x))+ b1 . a2 ·

∑
y∈Y

flip(lift(P2(t,
#»x , y)))+ b2]

⇔
(LR18)

¬flip(flip([a1 ·
∑
x∈X

lift(P1(t,
#»x , x))+ b1 . a2 ·

∑
y∈Y

flip(lift(P2(t,
#»x , y)))+ b2]))

⇔
(LR16)

¬flip([a1 ·
∑
x∈X

flip(lift(P1(t,
#»x , x)))+ b1

. a2 ·
∑
y∈Y

flip(flip(lift(P2(t,
#»x , y))))+ b2])

⇔
(LR18)

¬flip([a1 ·
∑
x∈X

flip(lift(P1(t,
#»x , x)))+ b1 . a2 ·

∑
y∈Y

lift(P2(t,
#»x , y))+ b2])

⇔
(LR7)

¬flip(lift([a1 ·
∑
x∈X

P1(t,
#»x , x) + b1 . a2 ·

∑
y∈Y

P2(t,
#»x , y) + b2]))

⇔ ¬flip(lift(P (t, #»x )))

This concludes the inductive proof of the first seven lifting rules in Table 5.1. Finally, the last
lifting rule in Table 5.1 is derived by applying the other rules:

lift([P1(t,
#»x , x)⇒ P2(t,

#»x , x)])

⇔ lift([¬P1(t,
#»x , x) ∨ P2(t,

#»x , x)])

⇔
(LR3)

[lift(¬P1(t,
#»x , x)) ∨ lift(P2(t,

#»x , x))]

⇔
(LR6)

[¬flip(lift(P1(t,
#»x , x))) ∨ lift(P2(t,

#»x , x))]

⇔ [flip(lift(P1(t,
#»x , x)))⇒ lift(P2(t,

#»x , x))]

Soundness of the Lifting Rules in Table 5.3. This proof has to show that the lifting rules in
Table 5.3 fulfill criterion (5.C4). We do not prove this directly as we do not want to argue
about the edges and nodes of graphs in our proof. Instead we argue about helper sets that
overapproximate the paths through arbitrary graphs and the things described by these paths.
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First, we define a helper set ĥPaths. Essentially, it is an overapproximation of the paths that
might result from arbitrary graphs. As such, we do no longer define it with respect to the nodes
and edges of an actual graph.

ĥPaths = {p̂ : N<n × Events× {UB,LB} → N | n ∈ N} (A.44)

We provide the same helper functions that are already available for paths.

∀n ∈ N : ∀p̂ ∈ ĥPaths ∩ (N<n × Events× {UB,LB} → N) : len(p̂) = n (A.45)

ŵEUB, ŵELB :
⋃

p̂∈ĥPaths

({p̂} × N<len(p̂))→ N (A.46)

ŵEUB(p̂, x) ≡ p̂(x,E,UB) (A.47)

ŵELB(p̂, x) ≡ p̂(x,E,LB) (A.48)

Since, in the definition of set ĥPaths, there are no further restrictions on the members of the
set, any subpath of our actual graph has a corresponding member in set ĥPaths.

∀p̂ ∈ ̂SubPaths : ∃p̂′ ∈ ĥPaths :

len(p̂′) = len(p̂) ∧
∀x ∈ N<len(p̂) :

ŵEUB(p̂′, x) = ŵEUB(p̂, x) ∧

ŵELB(p̂′, x) = ŵELB(p̂, x)

(A.49)

The properties that we specify on paths only argue about the length of a path and the event-
bounding weights at the different positions of a path. As a consequence, any of these properties
evaluated on a particular path evaluates to the same truth value as when evaluated on the
corresponding member of set ĥPaths.
Analogously, we define a helper set ̂hTraces.

̂hTraces = {t̂ : N<n × Events× {UB,LB} → N | n ∈ N} (A.50)

For its members, we define the same helper functions that are available for the members of
T̂races and ̂SpuriousTraces.

∀n ∈ N : ∀t̂ ∈ ̂hTraces ∩ (N<n × Events× {UB,LB} → N) : len(t̂) = n (A.51)

ÊUB, ÊLB :
⋃

t̂∈ ̂hTraces

({t̂} × N<len(t̂))→ N (A.52)

ÊUB(t̂, x) ≡ t̂(x,E,UB) (A.53)

ÊLB(t̂, x) ≡ t̂(x,E,LB) (A.54)
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Since, in the definition of set ̂hTraces, there are no further restrictions on the members of the
set, any of T̂races or ̂SpuriousTraces has a corresponding member in set ̂hTraces.

∀t̂ ∈ T̂races ∪ ̂SpuriousTraces : ∃t̂′ ∈ ̂hTraces :

len(t̂′) = len(t̂) ∧
∀x ∈ N<len(t̂) :

ÊUB(t̂′, x) = ÊUB(t̂, x) ∧

ÊLB(t̂′, x) = ÊLB(t̂, x)

(A.55)

The properties that we specify on members of T̂races or ̂SpuriousTraces only argue about their
length and/or event bounds. As a consequence, any of these properties evaluated on a particular
member of T̂races or ̂SpuriousTraces evaluates to the same truth value as when evaluated on the
corresponding member of set ̂hTraces.

Next, we connect the members of ĥPaths and ̂hTraces by a description relation that is defined
analogously to the relations PathDescrTrace and PathDescrSpuriousTrace introduced earlier.

hPathDescrHTrace ⊆ ĥPaths× ̂hTraces (A.56)

(p̂, t̂) ∈ hPathDescrHTrace

⇔∃part ∈ Partitionings(len(p̂), len(t̂)) :
∀E ∈ Events :
∀x ∈ N<len(p̂) :∑

from(part,x)≤i≤to(part,x)

ÊUB(t̂, i) ≤ ŵEUB(p̂, x) ∧

∑
from(part,x)≤i≤to(part,x)

ÊLB(t̂, i) ≥ ŵELB(p̂, x)

(A.57)

From equations (A.49), (A.55), and their consequences on the kinds of properties we consider
we follow an additional auxiliary statement about the relation just defined.

∃p̂ ∈ ̂SubPaths : ∃t̂ ∈ γpath(p̂) : P̂A(t̂) ∧ P̂B(p̂)

⇒∃p̂ ∈ ĥPaths : ∃t̂ ∈ ̂hTraces : (p̂, t̂) ∈ hPathDescrHTrace ∧ P̂A(t̂) ∧ P̂B(p̂)
(A.58)

Finally, we take a look at an implication of criterion (5.C4) not holding.

¬(5.C4)

⇔
(5.C4)

¬[∀p̂ ∈ ̂SubPaths : [∃t̂ ∈ γpath(p̂) : P̂k(t̂) ]⇒ P̂ path
k (p̂)]

⇔ ∃p̂ ∈ ̂SubPaths : [∃t̂ ∈ γpath(p̂) : P̂k(t̂) ] ∧ ¬P̂ path
k (p̂)

⇔ ∃p̂ ∈ ̂SubPaths : ∃t̂ ∈ γpath(p̂) : P̂k(t̂) ∧ ¬P̂ path
k (p̂)

⇒
(A.58)

∃p̂ ∈ ĥPaths : ∃t̂ ∈ ̂hTraces : (p̂, t̂) ∈ hPathDescrHTrace ∧ P̂k(t̂) ∧ ¬P̂ path
k (p̂)
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By contraposition, we obtain the following, slightly stronger criterion that implies crite-
rion (5.C4).

¬∃p̂ ∈ ĥPaths : ∃t̂ ∈ ̂hTraces : (p̂, t̂) ∈ hPathDescrHTrace ∧ P̂k(t̂) ∧ ¬P̂ path
k (p̂)

⇒ (5.C4)
(A.59)

Thus, we are left to show that there are no pair (p̂, t̂) in the cross product of our helper sets
such that the following statement is fulfilled.

(p̂, t̂) ∈ hPathDescrHTrace ∧ P̂k(t̂) ∧ ¬P̂ path
k (p̂)

For some properties we might be able to automatically show the unsatisfiability of a corre-
sponding SMT (satisfyability modulo theory) problem. Unfortunately, our experiments showed
that a current version of the Z3 SMT solver is not able to show the unsatisfiability of the SMT
problem formulations for the lifting rules in Table 5.3 within a runtime of one day. Nonetheless,
this might be an attractive option for proving the soundness of future lifting rules provided that
either the properties involved in them are very simple or the SMT community can significantly
advance the state of the art in SMT solving.

For now, we resort to a manual proof of the left-hand side of the implication in equation (A.59).
To this end, we present the left-hand side as a further implication in an equivalent way.

[∀p̂ ∈ ĥPaths : ∀t̂ ∈ ̂hTraces : (p̂, t̂) ∈ hPathDescrHTrace ∧ P̂k(t̂)⇒ P̂ path
k (p̂)]

⇒ (5.C4)

Thus, we are left to show that for every pair (p̂, t̂) in the cross product of our helper sets the
following implication is fulfilled.

(p̂, t̂) ∈ hPathDescrHTrace ∧ P̂k(t̂)⇒ P̂ path
k (p̂)

Now, we prove that this implication holds for each lifting rule in Table 5.3.
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1. P̂k(t̂)⇔ ∀z ∈ N≤len(t̂) : a1 ·
∑
x∈N<z

ÊLB
1 (t̂, x) + b1 . a2 ·

∑
x∈N<z

ÊUB
2 (t̂, x) + b2

(p̂, t̂) ∈ hPathDescrHTrace ∧ P̂k(t̂)

⇔ (p̂, t̂) ∈ hPathDescrHTrace ∧

∀z ∈ N≤len(t̂) : a1 ·
∑
x∈N<z

ÊLB
1 (t̂, x) + b1 . a2 ·

∑
x∈N<z

ÊUB
2 (t̂, x) + b2

⇔
(A.57)

[∃part ∈ Partitionings(len(p̂), len(t̂)) :

∀E ∈ Events :

∀x ∈ N<len(p̂) :∑
from(part,x)≤i≤to(part,x)

ÊUB(t̂, i) ≤ ŵEUB(p̂, x) ∧

∑
from(part,x)≤i≤to(part,x)

ÊLB(t̂, i) ≥ ŵELB(p̂, x)

] ∧

∀z ∈ N≤len(t̂) : a1 ·
∑
x∈N<z

ÊLB
1 (t̂, x) + b1 . a2 ·

∑
x∈N<z

ÊUB
2 (t̂, x) + b2
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⇒ [∃part ∈ Partitionings(len(p̂), len(t̂)) :

∀x ∈ N<len(p̂) :∑
from(part,x)≤i≤to(part,x)

ÊUB
2 (t̂, i) ≤ ŵEUB

2 (p̂, x) ∧

∑
from(part,x)≤i≤to(part,x)

ÊLB
1 (t̂, i) ≥ ŵELB

1 (p̂, x)

] ∧

∀z ∈ N≤len(t̂) : a1 ·
∑
x∈N<z

ÊLB
1 (t̂, x) + b1 . a2 ·

∑
x∈N<z

ÊUB
2 (t̂, x) + b2

⇒ [∃part ∈ Partitionings(len(p̂), len(t̂)) :

∀x ∈ N<len(p̂) :∑
0≤i≤to(part,x)

ÊUB
2 (t̂, i) ≤

∑
0≤y≤x

ŵEUB
2 (p̂, y) ∧

∑
0≤i≤to(part,x)

ÊLB
1 (t̂, i) ≥

∑
0≤y≤x

ŵELB
1 (p̂, y)

] ∧

∀z ∈ N≤len(t̂) : a1 ·
∑
x∈N<z

ÊLB
1 (t̂, x) + b1 . a2 ·

∑
x∈N<z

ÊUB
2 (t̂, x) + b2

⇒
a1≥0
a2≥0∑
monotone

[∃part ∈ Partitionings(len(p̂), len(t̂)) :

∀x ∈ N<len(p̂) :

a2 ·
∑

0≤i≤to(part,x)

ÊUB
2 (t̂, i) + b2 ≤ a2 ·

∑
0≤y≤x

ŵEUB
2 (p̂, y) + b2 ∧

a1 ·
∑

0≤i≤to(part,x)

ÊLB
1 (t̂, i) + b1 ≥ a1 ·

∑
0≤y≤x

ŵELB
1 (p̂, y) + b1

] ∧

∀z ∈ N≤len(t̂) : a1 ·
∑
x∈N<z

ÊLB
1 (t̂, x) + b1 . a2 ·

∑
x∈N<z

ÊUB
2 (t̂, x) + b2

⇒
.∈{<,≤}

∀z ∈ N≤len(p̂) : a1 ·
∑
x∈N<z

ŵELB
1 (p̂, x) + b1 . a2 ·

∑
x∈N<z

ŵEUB
2 (p̂, x) + b2

⇔
(LR19)

lift(P̂k(t̂))

This concludes the proof of the lifting rules in Table 5.3.
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Proof of Statement 5.84. Essentially, we have to show the following:

∀p̂ ∈ P̂aths : ∃̂i ∈ ̂Implicit : (̂i, p̂) ∈ ImplicitDescrPath (A.60)

Using the definition of ̂Implicit (equation (5.81)), we can expand this to the following equivalent
statement.

∀p̂ ∈ P̂aths :

∃(timesTaken, isStart, isEnd) ∈ (Edges→ N)× (Edges→ {0, 1})2 :

[ ∀e ∈ Edges : isStart(e) ≤ timesTaken(e) ] ∧
[ ∀e ∈ Edges : isEnd(e) ≤ timesTaken(e) ] ∧∑
e∈Edges

isStart(e) ≤ 1 ∧

∑
e∈Edges

isEnd(e) ≤ 1 ∧

∑
e∈Edges

isStart(e) =
∑

e∈Edges

isEnd(e) ∧

∑
e∈(Edges\Edgesstart)

isStart(e) = 0 ∧

∑
e∈(Edges\Edgesend)

isEnd(e) = 0 ∧

[ Nodesstart ∩Nodesend = ∅ ⇒
∑

e∈Edges

isStart(e) = 1 ] ∧

[ ∀node ∈ Nodes :∑
ein∈inEdges(node)

[timesTaken(ein)− isEnd(ein)]

=
∑

eout∈outEdges(node)

[timesTaken(eout)− isStart(eout)] ] ∧

((timesTaken, isStart, isEnd), p̂) ∈ ImplicitDescrPath

(A.61)
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Expanding also the definition of ImplicitDescrPath (equation (5.83)), we obtain an equivalent
statement with three additional equations exactly defining the values of the functions timesTaken,
isStart, and isEnd.

∀p̂ ∈ P̂aths :

∃(timesTaken, isStart, isEnd) ∈ (Edges→ N)× (Edges→ {0, 1})2 :

[ ∀e ∈ Edges : isStart(e) ≤ timesTaken(e) ] ∧
[ ∀e ∈ Edges : isEnd(e) ≤ timesTaken(e) ] ∧∑
e∈Edges

isStart(e) ≤ 1 ∧

∑
e∈Edges

isEnd(e) ≤ 1 ∧

∑
e∈Edges

isStart(e) =
∑

e∈Edges

isEnd(e) ∧

∑
e∈(Edges\Edgesstart)

isStart(e) = 0 ∧

∑
e∈(Edges\Edgesend)

isEnd(e) = 0 ∧

[ Nodesstart ∩Nodesend = ∅ ⇒
∑

e∈Edges

isStart(e) = 1 ] ∧

[ ∀node ∈ Nodes :∑
ein∈inEdges(node)

[timesTaken(ein)− isEnd(ein)]

=
∑

eout∈outEdges(node)

[timesTaken(eout)− isStart(eout)] ] ∧

∀e ∈ Edges :

timesTaken(e) =
∣∣{x ∈ N<len(p̂) | (p̂(x), p̂(x+ 1)) = e}

∣∣ ∧
isStart(e) =

∣∣{x ∈ N<len(p̂) | x = 0 ∧ (p̂(x), p̂(x+ 1)) = e}
∣∣ ∧

isEnd(e) =
∣∣{x ∈ N<len(p̂) | x = len(p̂)− 1 ∧ (p̂(x), p̂(x+ 1)) = e}

∣∣

(A.62)
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For each p̂ ∈ P̂aths, there is one unique way to choose the three functions such that the three
additional equations hold. As a consequence, we obtain an equivalent statement by removing the
existential quantifier and the three equations and replacing all applications of the three functions
by the corresponding right-hand sides of the removed equations.

∀p̂ ∈ P̂aths :

[ ∀e ∈ Edges :
∣∣{x ∈ N<len(p̂) | x = 0 ∧ (p̂(x), p̂(x+ 1)) = e}

∣∣
≤
∣∣{x ∈ N<len(p̂) | (p̂(x), p̂(x+ 1)) = e}

∣∣ ] ∧
[ ∀e ∈ Edges :

∣∣{x ∈ N<len(p̂) | x = len(p̂)− 1 ∧ (p̂(x), p̂(x+ 1)) = e}
∣∣

≤
∣∣{x ∈ N<len(p̂) | (p̂(x), p̂(x+ 1)) = e}

∣∣ ] ∧
[
∑

e∈Edges

∣∣{x ∈ N<len(p̂) | x = 0 ∧ (p̂(x), p̂(x+ 1)) = e}
∣∣ ≤ 1 ] ∧

[
∑

e∈Edges

∣∣{x ∈ N<len(p̂) | x = len(p̂)− 1 ∧ (p̂(x), p̂(x+ 1)) = e}
∣∣ ≤ 1 ] ∧

[
∑

e∈Edges

∣∣{x ∈ N<len(p̂) | x = 0 ∧ (p̂(x), p̂(x+ 1)) = e}
∣∣

=
∑

e∈Edges

∣∣{x ∈ N<len(p̂) | x = len(p̂)− 1 ∧ (p̂(x), p̂(x+ 1)) = e}
∣∣ ] ∧

[
∑

e∈(Edges\Edgesstart)

∣∣{x ∈ N<len(p̂) | x = 0 ∧ (p̂(x), p̂(x+ 1)) = e}
∣∣ = 0 ] ∧

[
∑

e∈(Edges\Edgesend)

∣∣{x ∈ N<len(p̂) | x = len(p̂)− 1 ∧ (p̂(x), p̂(x+ 1)) = e}
∣∣ = 0 ] ∧

[ Nodesstart ∩Nodesend = ∅

⇒
∑

e∈Edges

∣∣{x ∈ N<len(p̂) | x = 0 ∧ (p̂(x), p̂(x+ 1)) = e}
∣∣ = 1 ] ∧

[ ∀node ∈ Nodes :∑
ein∈inEdges(node)

[
∣∣{x ∈ N<len(p̂) | (p̂(x), p̂(x+ 1)) = ein}

∣∣
−
∣∣{x ∈ N<len(p̂) | x = len(p̂)− 1 ∧ (p̂(x), p̂(x+ 1)) = ein}

∣∣]
=

∑
eout∈outEdges(node)

[
∣∣{x ∈ N<len(p̂) | (p̂(x), p̂(x+ 1)) = eout}

∣∣
−
∣∣{x ∈ N<len(p̂) | x = 0 ∧ (p̂(x), p̂(x+ 1)) = eout}

∣∣] ]

(A.63)

Thus, we end up at a conjunction over nine statements that have to hold for each p̂ ∈ P̂aths.
Now, we simply prove for each of these statements separately that it holds for each p̂ ∈ P̂aths.
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1. statement:

[ ∀e ∈ Edges :
∣∣{x ∈ N<len(p̂) | x = 0 ∧ (p̂(x), p̂(x+ 1)) = e}

∣∣
≤
∣∣{x ∈ N<len(p̂) | (p̂(x), p̂(x+ 1)) = e}

∣∣ ]
⇔ [ ∀e ∈ Edges : 1 ]

⇔ 1

2. statement:

[ ∀e ∈ Edges :
∣∣{x ∈ N<len(p̂) | x = len(p̂)− 1 ∧ (p̂(x), p̂(x+ 1)) = e}

∣∣
≤
∣∣{x ∈ N<len(p̂) | (p̂(x), p̂(x+ 1)) = e}

∣∣ ]
⇔ [ ∀e ∈ Edges : 1 ]

⇔ 1

3. statement:

∑
e∈Edges

∣∣{x ∈ N<len(p̂) | x = 0 ∧ (p̂(x), p̂(x+ 1)) = e}
∣∣ ≤ 1

⇔min(1, len(p̂)) ≤ 1

⇔ 1

4. statement:

∑
e∈Edges

∣∣{x ∈ N<len(p̂) | x = len(p̂)− 1 ∧ (p̂(x), p̂(x+ 1)) = e}
∣∣ ≤ 1

⇔min(1, len(p̂)) ≤ 1

⇔ 1
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5. statement:

∑
e∈Edges

∣∣{x ∈ N<len(p̂) | x = 0 ∧ (p̂(x), p̂(x+ 1)) = e}
∣∣

=
∑

e∈Edges

∣∣{x ∈ N<len(p̂) | x = len(p̂)− 1 ∧ (p̂(x), p̂(x+ 1)) = e}
∣∣

⇔


0 = 0 , if len(p̂) = 0

1 = 1 , else

⇔ 1

6. statement:

∑
e∈(Edges\Edgesstart)

∣∣{x ∈ N<len(p̂) | x = 0 ∧ (p̂(x), p̂(x+ 1)) = e}
∣∣ = 0

⇔


∑

e∈(Edges\Edgesstart)

|{}| = 0 , if len(p̂) = 0

∑
e∈(Edges\Edgesstart)

∣∣{x ∈ N<len(p̂) | x = 0 ∧ (p̂(0), p̂(1)) = e}
∣∣ = 0 , else

⇔
(5.49)
(5.56)



∑
e∈(Edges\Edgesstart)

|{}| = 0 , if len(p̂) = 0

∑
e∈(Edges\Edgesstart)

∣∣{x ∈ N<len(p̂) | x = 0 ∧ , else

(p̂(0), p̂(1)) = e ∧ e ∈ Edgesstart}| = 0

⇔


∑

e∈(Edges\Edgesstart)

|{}| = 0 , if len(p̂) = 0

∑
e∈(Edges\Edgesstart)

|{}| = 0 , else

⇔ 1
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7. statement:

∑
e∈(Edges\Edgesend)

∣∣{x ∈ N<len(p̂) | x = len(p̂)− 1 ∧ (p̂(x), p̂(x+ 1)) = e}
∣∣ = 0

⇔



∑
e∈(Edges\Edgesend)

|{}| = 0 , if len(p̂) = 0

∑
e∈(Edges\Edgesend)

∣∣{x ∈ N<len(p̂) | x = len(p̂)− 1 ∧ , else

(p̂(len(p̂)− 1), p̂(len(p̂))) = e}| = 0

⇔
(5.49)
(5.57)



∑
e∈(Edges\Edgesend)

|{}| = 0 , if len(p̂) = 0

∑
e∈(Edges\Edgesend)

∣∣{x ∈ N<len(p̂) | x = len(p̂)− 1 ∧ , else

(p̂(len(p̂)− 1), p̂(len(p̂))) = e ∧
e ∈ Edgesend}| = 0

⇔


∑

e∈(Edges\Edgesend)

|{}| = 0 , if len(p̂) = 0

∑
e∈(Edges\Edgesend)

|{}| = 0 , else

⇔ 1

8. statement:

Nodesstart ∩Nodesend = ∅

⇒ len(p̂) ≥ 1

⇒
∑

e∈Edges

∣∣{x ∈ N<len(p̂) | x = 0 ∧ (p̂(x), p̂(x+ 1)) = e}
∣∣ = 1
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9. statement:

For the case of len(p̂) = 0, the statement trivially holds as all sets in it coincide with the
empty set. Thus, we only consider the case of len(p̂) 6= 0 here:

∀node ∈ Nodes :∑
ein∈inEdges(node)

[
∣∣{x ∈ N<len(p̂) | (p̂(x), p̂(x+ 1)) = ein}

∣∣
−
∣∣{x ∈ N<len(p̂) | x = len(p̂)− 1 ∧ (p̂(x), p̂(x+ 1)) = ein}

∣∣]
=

∑
eout∈outEdges(node)

[
∣∣{x ∈ N<len(p̂) | (p̂(x), p̂(x+ 1)) = eout}

∣∣
−
∣∣{x ∈ N<len(p̂) | x = 0 ∧ (p̂(x), p̂(x+ 1)) = eout}

∣∣]
⇔ ∀node ∈ Nodes :∑

ein∈inEdges(node)

∣∣{x ∈ N<len(p̂) | (p̂(x), p̂(x+ 1)) = ein}
∣∣

−
∑

ein∈inEdges(node)

∣∣{x ∈ N<len(p̂) | x = len(p̂)− 1 ∧ (p̂(x), p̂(x+ 1)) = ein}
∣∣

=
∑

eout∈outEdges(node)

∣∣{x ∈ N<len(p̂) | (p̂(x), p̂(x+ 1)) = eout}
∣∣

−
∑

eout∈outEdges(node)

∣∣{x ∈ N<len(p̂) | x = 0 ∧ (p̂(x), p̂(x+ 1)) = eout}
∣∣

⇔
(5.54)
(5.55)

∀node ∈ Nodes :

∣∣{x ∈ N≤len(p̂) | 0 < x ∧ p̂(x) = node}
∣∣

−
∣∣{x ∈ N≤len(p̂) | x = len(p̂) ∧ p̂(x) = node}

∣∣
=
∣∣{x ∈ N<len(p̂) | p̂(x) = node}

∣∣
−
∣∣{x ∈ N<len(p̂) | x = 0 ∧ p̂(x) = node}

∣∣
⇔ ∀node ∈ Nodes :∣∣{x ∈ N≤len(p̂) | 0 < x ∧ p̂(x) = node}

∣∣+ ∣∣{x ∈ N<len(p̂) | x = 0 ∧ p̂(x) = node}
∣∣

=
∣∣{x ∈ N<len(p̂) | p̂(x) = node}

∣∣+ ∣∣{x ∈ N≤len(p̂) | x = len(p̂) ∧ p̂(x) = node}
∣∣

⇔ ∀node ∈ Nodes :∣∣{x ∈ N≤len(p̂) | p̂(x) = node}
∣∣ = ∣∣{x ∈ N≤len(p̂) | p̂(x) = node}

∣∣
⇔ 1
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Proof of Statement 5.95.

∑
e∈Edges

timesTaken(e) · ŵ(e)

=
(5.92)
(5.83)
(5.90)


∑

e∈Edges

∣∣{x ∈ N<len(p̂) | (p̂(x), p̂(x+ 1)) = e}
∣∣ · ŵ(e) , if p̂ ∈ P̂aths

∑
e∈Edges

∣∣{x ∈ N<len(p̂) | p̂(x) = e}
∣∣ · ŵ(e) , else

=


∑

x∈N<len(p̂)

ŵ((p̂(x), p̂(x+ 1))) , if p̂ ∈ P̂aths

∑
x∈N<len(p̂)

ŵ(p̂(x)) , else

=
(5.61)
(5.88)

∑
x∈N<len(p̂)

ŵ(p̂, x)

Proof of Statement 5.96.

∑
e∈Edges

isStart(e) · ŵ(e)

=
(5.92)
(5.83)
(5.90)


∑

e∈Edges

∣∣{x ∈ N<len(p̂) | x = 0 ∧ (p̂(x), p̂(x+ 1)) = e}
∣∣ · ŵ(e) , if p̂ ∈ P̂aths

∑
e∈Edges

∣∣{x ∈ N<len(p̂) | x = 0 ∧ p̂(x) = e}
∣∣ · ŵ(e) , else

=



∑
x∈(N<len(p̂)∩{0})

ŵ((p̂(x), p̂(x+ 1))) , if p̂ ∈ P̂aths

∑
x∈(N<len(p̂)∩{0})

ŵ(p̂(x)) , else

=
(5.61)
(5.88)

∑
x∈(N<len(p̂)∩{0})

ŵ(p̂, x)
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Proof of Statement 5.97.

∑
e∈Edges

isEnd(e) · ŵ(e)

=
(5.92)
(5.83)
(5.90)


∑

e∈Edges

∣∣{x ∈ N<len(p̂) | x = len(p̂)− 1 ∧ (p̂(x), p̂(x+ 1)) = e}
∣∣ · ŵ(e) , if p̂ ∈ P̂aths

∑
e∈Edges

∣∣{x ∈ N<len(p̂) | x = len(p̂)− 1 ∧ p̂(x) = e}
∣∣ · ŵ(e) , else

=



∑
x∈(N<len(p̂)∩{len(p̂)−1})

ŵ((p̂(x), p̂(x+ 1))) , if p̂ ∈ P̂aths

∑
x∈(N<len(p̂)∩{len(p̂)−1})

ŵ(p̂(x)) , else

=
(5.61)
(5.88)

∑
x∈(N<len(p̂)∩{len(p̂)−1})

ŵ(p̂, x)

Soundness of the Lifting Rules in Table 5.4. We show for each lifting rule that it fulfills
criterion (5.C5).
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1. P̂ path(p̂)⇔ ∀z ∈ N≤len(p̂) : a1 ·
∑
x∈N<z

ŵ1(p̂, x) + b1 . a2 ·
∑
x∈N<z

ŵ2(p̂, x) + b2

[ ∃p̂ ∈ γimpli((timesTaken, isStart, isEnd)) : P̂ path(p̂) ]

⇔ [ ∃p̂ ∈ γimpli((timesTaken, isStart, isEnd)) :

∀z ∈ N≤len(p̂) :

a1 ·
∑
x∈N<z

ŵ1(p̂, x) + b1 . a2 ·
∑
x∈N<z

ŵ2(p̂, x) + b2 ]

⇒ [ ∃p̂ ∈ γimpli((timesTaken, isStart, isEnd)) :

∀z ∈ (N≤len(p̂) ∩ {len(p̂)}) :

a1 ·
∑
x∈N<z

ŵ1(p̂, x) + b1 . a2 ·
∑
x∈N<z

ŵ2(p̂, x) + b2 ]

⇔ [ ∃p̂ ∈ γimpli((timesTaken, isStart, isEnd)) :

a1 ·
∑

x∈N<len(p̂)

ŵ1(p̂, x) + b1 . a2 ·
∑

x∈N<len(p̂)

ŵ2(p̂, x) + b2 ]

⇔
(5.95)

[ ∃p̂ ∈ γimpli((timesTaken, isStart, isEnd)) :

a1 ·
∑

e∈Edges

timesTaken(e) · ŵ1(e) + b1

. a2 ·
∑

e∈Edges

timesTaken(e) · ŵ2(e) + b2 ]

⇒ [ a1 ·
∑

e∈Edges

timesTaken(e) · ŵ1(e) + b1

. a2 ·
∑

e∈Edges

timesTaken(e) · ŵ2(e) + b2 ]

⇔
(LR20)

lift(∀z ∈ N≤len(p̂) : a1 ·
∑
x∈N<z

ŵ1(p̂, x) + b1 . a2 ·
∑
x∈N<z

ŵ2(p̂, x) + b2)

⇔ lift(P̂ path(p̂))

Proof of Statement 6.41. Note that, during this proof, we do not explicitly write down the
universal quantifiers for prog and Ci. Think of all the statements made during this proof to hold
for all possible prog and Ci.
We mostly base this proof on the insights of Section 5.2. To this end, we start by relating

ExecRunsprog,Ci
and ̂ExecRunsprog,Ci

to further sets that are directly covered by the statements
of Section 5.2.
ExecRunsprog,Ci is by definition (cf. equation (6.15)) a subset of the sequences of system states

that start in an initial program state. We refer to this set as Tracesprog,Ci .

ExecRunsprog,Ci ⊆ Tracesprog,Ci = {t ∈ Sequences | t(0) ∈ InitStatesprog,Ci} (A.64)
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Moreover, ̂ExecRunsprog,Ci
is by definition (cf. equation (6.36)) a subset of ̂Tracesprog,Ci

.

̂ExecRunsprog,Ci ⊆ ̂Tracesprog,Ci (A.65)

We can interpret Tracesprog,Ci
as a set of concrete traces that has been defined analogously to

Traces (cf. equation (5.4)). It only uses a different set of initial states (InitStatesprog,Ci instead
of Sinit). In the same way, ̂Tracesprog,Ci has been defined analogously to T̂races. Moreover,
γtrace,prog,Ci is defined analogously to γtrace. Thus, as a consequence of the insights of Section 5.2
and equation (6.34), ( ̂Tracesprog,Ci , γtrace,prog,Ci) is an abstract model of Tracesprog,Ci .⋃

t̂∈ ̂Tracesprog,Ci

γtrace,prog,Ci
(t̂) ⊇ Tracesprog,Ci

(A.66)

Due to equation (A.64), it is also an abstract model of ExecRunsprog,Ci
.⋃

t̂∈ ̂Tracesprog,Ci

γtrace,prog,Ci
(t̂) ⊇ ExecRunsprog,Ci

(A.67)

Every member of ExecRunsprog,Ci
by definition (cf. equation (6.15)) fulfills the following helper

property Phelp.

Phelp(t)⇔ ∀x ∈ N<len(t)−1 : ¬Endprog,Ci
(t, x) (A.68)

∀t ∈ ExecRunsprog,Ci
: Phelp(t) (A.69)

Thus, we can easily lift Phelp to ( ̂Tracesprog,Ci
, γtrace,prog,Ci

) by applying the lifting rules of
Section 5.2.

P̂help(t̂)

⇔ lift(Phelp(t))

⇔
(A.68)

lift(∀x ∈ N<len(t)−1 : ¬Endprog,Ci
(t, x))

⇔
(LR4)
(5.32)

∀x ∈ N<len(t̂)−1 : lift(¬Endprog,Ci
(t, x))

⇔
(LR6)

∀x ∈ N<len(t̂)−1 : ¬flip(lift(Endprog,Ci(t, x)))

⇔
(LR1)
(LR9)

∀x ∈ N<len(t̂)−1 : ¬ ̂EndLBprog,Ci
(t̂, x)

It follows that P̂help holds for each member of ̂ExecRunsprog,Ci
by definition.

̂ExecRunsprog,Ci
= {t̂ ∈ ̂Tracesprog,Ci

| P̂help(t̂)} (A.70)

Thus, statement (6.41) follows directly from the soundness of property lifting.⋃
t̂∈ ̂ExecRunsprog,Ci

γtrace,prog,Ci(t̂) ⊇ ExecRunsprog,Ci
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Proof Sketch for Statement 6.43. This proof is a slight extension of the proof of statement (6.41)
that has been presented on page 277. Thus, we only present the needed addition in this proof
sketch.

The essential idea is to not only lift the helper property Phelp to ( ̂Tracesprog,Ci , γtrace,prog,Ci), but
also the Pk ∈ Propprog,Ci

since they are also guaranteed to hold for each member of ExecRunsprog,Ci

(cf. equation (6.16)). In addition to P̂help, we also use the lifted versions of these properties to
prune infeasible members of ̂Tracesprog,Ci

. This results in the set ̂LessExecRunsprog,Ci
.

{t̂ ∈ ̂Tracesprog,Ci | P̂help(t̂) ∧ ∀Pk ∈ Propprog,Ci
: P̂k(t̂)}

=
(A.70)

{t̂ ∈ ̂ExecRunsprog,Ci
| ∀Pk ∈ Propprog,Ci

: P̂k(t̂)}

=
(6.42)

̂LessExecRunsprog,Ci

Due to the soundness of property lifting, we follow that statement (6.43) holds.⋃
t̂∈ ̂LessExecRunsprog,Ci

γtrace,prog,Ci
(t̂) ⊇ ExecRunsprog,Ci

Proof of Statement 6.46. We begin this proof with the following auxiliary statement.

∀prog ∈ Programs : ∀Ci ∈ Cores : ∀E ∈ Events :

∀t̂ ∈ ̂Tracesprog,Ci : ∀t ∈ γtrace,prog,Ci(t̂) :

numEvOccur(prog, Ci, t, E) ≤ ̂numEvOccur(prog, Ci, t̂, E,UB)

(A.71)

It can be shown in the following way for all t̂ ∈ ̂Tracesprog,Ci
and all t ∈ γtrace,prog,Ci

(t̂).

numEvOccur(prog, Ci, t, E)

=
(6.20)
(6.38)

∣∣{x ∈ N<len(t) | Eventprog,Ci,E(t, x)}
∣∣

=
(5.32)

∣∣∣{x ∈ N<len(t̂) | Eventprog,Ci,E(t, x)}
∣∣∣

≤
(5.41)

∣∣∣∣{x ∈ N<len(t̂) |
̂EventUBprog,Ci,E(t̂, x)}

∣∣∣∣
=

(6.44)
̂numEvOccur(prog, Ci, t̂, E,UB)

Subsequently, we can prove statement (6.46) as follows.

̂Maximumprog,Ci,E ∈ N

⇒
(6.45)

∀t̂ ∈ ̂LessExecRunsprog,Ci
: ̂numEvOccur(prog, Ci, t̂, E,UB) ≤ ̂Maximumprog,Ci,E

⇒
(6.43)
(A.71)

∀t ∈ ExecRunsprog,Ci
: numEvOccur(prog, Ci, t, E) ≤ ̂Maximumprog,Ci,E
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Proof of Statement 6.52. In order to prove statement (6.52), we prove several auxiliary statements.

The first auxiliary statement states that ̂ExecRunstermprog,Ci
provides an overapproximation of

ExecRunstermprog,Ci
.

∀prog ∈ Programs : ∀Ci ∈ Cores :⋃
t̂∈ ̂ExecRunstermprog,Ci

γtrace,prog,Ci(t̂) ⊇ ExecRunstermprog,Ci
(A.72)

It is proved in the following way.

ExecRunstermprog,Ci

=
(6.23)

{t ∈ ExecRunsprog,Ci
| len(t) ≥ 1 ∧ Endprog,Ci

(t, len(t)− 1)}

⊆
(6.41)
(5.32)
(LR1)

⋃
{γtrace,prog,Ci

(t̂) | t̂ ∈ ̂ExecRunsprog,Ci
∧ len(t̂) ≥ 1 ∧ ̂EndUBprog,Ci

(t̂, len(t̂)− 1)}

=
(6.47)

⋃
t̂∈ ̂ExecRunstermprog,Ci

γtrace,prog,Ci(t̂)

The next auxiliary statement states that ̂ExecRunsdiverg,endprog,Ci,E
provides an overapproximation of

ExecRunsdiverg,endprog,Ci,E
.

∀prog ∈ Programs : ∀Ci ∈ Cores :⋃
t̂∈ ̂ExecRunsdiverg,endprog,Ci,E

γtrace,prog,Ci
(t̂) ⊇ ExecRunsdiverg,endprog,Ci,E

(A.73)

In order to prove it, we introduce an additional auxiliary statement.

∀prog ∈ Programs : ∀Ci ∈ Cores :

∀t̂ ∈ ̂ExecRunsprog,Ci
: ∀t, t′ ∈ ExecRunsprog,Ci

:

[ t ∈ γtrace,prog,Ci
(t̂) ∧ (t, t′) ∈ PrefixOf ]

⇒ ∃t̂′ ∈ ̂ExecRunsprog,Ci
:

t′ ∈ γtrace,prog,Ci
(t̂′) ∧ (t̂, t̂′) ∈ ̂PrefixOf

(A.74)
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It is proved in the following way.

(t̂, û) ∈ ̂ExecRunsprog,Ci
∧ t, t′ ∈ ExecRunsprog,Ci

∧ t ∈ γtrace,prog,Ci
((t̂, û)) ∧

(t, t′) ∈ PrefixOf

⇔
(6.25)

(t̂, û) ∈ ̂ExecRunsprog,Ci ∧ t, t′ ∈ ExecRunsprog,Ci ∧ t ∈ γtrace,prog,Ci((t̂, û)) ∧

len(t) ≤ len(t′) ∧ ∀x ∈ N≤len(t) : t(x) = t′(x)

⇔
(5.3)
(6.15)

(t̂, û) ∈ ̂ExecRunsprog,Ci
∧ t, t′ ∈ ExecRunsprog,Ci

∧ t ∈ γtrace,prog,Ci
((t̂, û)) ∧

len(t) ≤ len(t′) ∧ [∀x ∈ N≤len(t) : t(x) = t′(x)] ∧

[∀x ∈ N<len(t′) : Cycle(t′, x)] ∧

[∀x ∈ N<len(t′)−1 : ¬Endprog,Ci
(t′, x)]

⇒
(6.40)
(5.18)
(5.17)

(t̂, û) ∈ ̂ExecRunsprog,Ci ∧ t, t′ ∈ ExecRunsprog,Ci ∧

len(t) ≤ len(t′) ∧ [∀x ∈ N≤len(t) : t(x) = t′(x)] ∧

[∀x ∈ N<len(t′) : Cycle(t′, x)] ∧

[∀x ∈ N<len(t′)−1 : ¬Endprog,Ci(t
′, x)] ∧

len((t̂, û)) = len(t) ∧ [∀x ∈ N≤len(t) : t(x) ∈ γ(t̂(x))] ∧

t(len(t)) ∈ γ(û(len(t)))

⇒
(6.C2)
(5.15)

(t̂, û) ∈ ̂ExecRunsprog,Ci ∧ t, t′ ∈ ExecRunsprog,Ci ∧

[∀x ∈ N<len(t′)−1 : ¬Endprog,Ci
(t′, x)] ∧

[∃(t̂′, û′) ∈ ̂Tracesprog,Ci :

t′ ∈ γtrace,prog,Ci
((t̂′, û′)) ∧ len((t̂, û)) ≤ len((t̂′, û′)) ∧

∀x ∈ N≤len((t̂,û)) : t̂′(x) = t̂(x) ∧ û′(x) = û(x)]

⇔
(6.48)

(t̂, û) ∈ ̂ExecRunsprog,Ci ∧ t, t′ ∈ ExecRunsprog,Ci ∧

[∀x ∈ N<len(t′)−1 : ¬Endprog,Ci(t
′, x)] ∧

[∃(t̂′, û′) ∈ ̂Tracesprog,Ci
:

t′ ∈ γtrace,prog,Ci
((t̂′, û′)) ∧ ((t̂, û), (t̂′, û′)) ∈ ̂PrefixOf]
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⇒
(5.39)

∃(t̂′, û′) ∈ ̂Tracesprog,Ci :

t′ ∈ γtrace,prog,Ci
((t̂′, û′)) ∧ ((t̂, û), (t̂′, û′)) ∈ ̂PrefixOf ∧

∀x ∈ N<len(t̂′)−1 : ¬ ̂EndLBprog,Ci
((t̂′, û′), x)

⇔
(6.36)

∃(t̂′, û′) ∈ ̂ExecRunsprog,Ci :

t′ ∈ γtrace,prog,Ci((t̂
′, û′)) ∧ ((t̂, û), (t̂′, û′)) ∈ ̂PrefixOf

We already know that ( ̂ExecRunsprog,Ci
, γtrace,prog,Ci

) is an abstract model of ExecRunsdiverg,endprog,Ci,E
.

⋃
t̂∈ ̂ExecRunsprog,Ci

γtrace,prog,Ci
(t̂) ⊇

(6.41)
ExecRunsprog,Ci

⊇
(6.28)
(6.27)

ExecRunsdiverg,endprog,Ci,E

Criterion (4.C1) is fulfilled as the restrictions in the definition of ExecRunsdiverg,endprog,Ci,E
imply the

restrictions in the definition of ̂ExecRunsdiverg,endprog,Ci,E
. We use auxiliary statement (A.74) in order to

prove this. Let t̂ ∈ ̂ExecRunsprog,Ci in the following chain of implications.

∃t ∈ γtrace,prog,Ci
(t̂) :

t ∈ ExecRunsdiverg,endprog,Ci,E

⇒
(6.28)
(6.27)

∃t ∈ γtrace,prog,Ci(t̂) :

t ∈ ExecRunsprog,Ci
∧

[len(t) = 0 ∨ (len(t) > 0 ∧ Eventprog,Ci,E(t, len(t)− 1))] ∧

[∀n ∈ N : ∃t′ ∈ ExecRunsdivergprog,Ci
:

(t, t′) ∈ PrefixOf ∧

len(t′) = len(t) + n ∧

∀x ∈ N≥len(t) ∩ N<len(t′) :

¬Eventprog,Ci,E(t
′, x)]
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⇒
(5.32)
(LR1)

∃t ∈ γtrace,prog,Ci(t̂) :

t ∈ ExecRunsprog,Ci
∧

[len(t̂) = 0 ∨ (len(t̂) > 0 ∧ ̂EventUBprog,Ci,E(t̂, len(t̂)− 1))] ∧

[∀n ∈ N : ∃t′ ∈ ExecRunsdivergprog,Ci
:

(t, t′) ∈ PrefixOf ∧

len(t′) = len(t) + n ∧

∀x ∈ N≥len(t) ∩ N<len(t′) :

¬Eventprog,Ci,E(t
′, x)]

⇔
(A.74)

∃t ∈ γtrace,prog,Ci(t̂) :

t ∈ ExecRunsprog,Ci ∧

[len(t̂) = 0 ∨ (len(t̂) > 0 ∧ ̂EventUBprog,Ci,E(t̂, len(t̂)− 1))] ∧

[∀n ∈ N : ∃t′ ∈ ExecRunsdivergprog,Ci
:

(t, t′) ∈ PrefixOf ∧

[∃t̂′ ∈ ̂ExecRunsprog,Ci
:

t′ ∈ γtrace,prog,Ci
(t̂′) ∧ (t̂, t̂′) ∈ ̂PrefixOf] ∧

len(t′) = len(t) + n ∧

∀x ∈ N≥len(t) ∩ N<len(t′) :

¬Eventprog,Ci,E(t
′, x)]

⇒
(5.32)
(5.39)

[len(t̂) = 0 ∨ (len(t̂) > 0 ∧ ̂EventUBprog,Ci,E(t̂, len(t̂)− 1))] ∧

[∀n ∈ N : ∃t̂′ ∈ ̂ExecRunsprog,Ci
:

(t̂, t̂′) ∈ ̂PrefixOf ∧

len(t̂′) = len(t̂) + n ∧

∀x ∈ N≥len(t̂) ∩ N<len(t̂′) :

¬ ̂EventLBprog,Ci,E(t̂
′, x)]

⇔
(6.50)

t̂ ∈ ̂ExecRunsdiverg,endprog,Ci,E
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As a consequence of the soundness of using properties lifted according to this criterion for pruning
infeasible abstract traces from an abstract model (cf. equation (4.9)), auxiliary statement (A.73)
holds.

Finally, statement (6.52) is a direct consequence of the auxiliary statements (A.72) and (A.73).

⋃
t̂∈ ̂ExecRunsmin-relev

prog,Ci,E

γtrace,prog,Ci(t̂)

=
(6.51)

[
⋃

t̂∈ ̂ExecRunstermprog,Ci

γtrace,prog,Ci
(t̂)] ∪ [

⋃
t̂∈ ̂ExecRunsdiverg,endprog,Ci,E

γtrace,prog,Ci
(t̂)]

⊇
(A.72)
(A.73)

ExecRunstermprog,Ci
∪ ExecRunsdiverg,endprog,Ci,E

=
(6.29)

ExecRunsmin-relev
prog,Ci,E

Proof Sketch for Statement 6.54. The formal proof of statement (6.54) can be performed by a
slight extension to the proof of statement (6.52) as presented on page 280.
We know that the right-hand sides of the set inequations of auxiliary statements (A.72)

and (A.73) are subsets of ExecRunsprog,Ci
. As a consequence of statement (6.16), each member

of these subsets fulfills all the properties in Propprog,Ci
.

We exploit this in two auxiliary statements that are almost identical to (A.72) and (A.73).

The only difference is that—this time—they only argue about those members of ̂ExecRunstermprog,Ci

respectively ̂ExecRunsdiverg,endprog,Ci,E
that fulfill the lifted versions of all properties in Propprog,Ci

. The
proofs of these new auxiliary statements are performed analogously to the proofs of the original
auxiliary statements. However, this time, we add the properties of Propprog,Ci

to the knowledge
about the concrete traces. We lift them by the known lifting rules.

Finally, the union over the aforementioned subsets of ̂ExecRunstermprog,Ci
and ̂ExecRunsdiverg,endprog,Ci,E

results in ̂LessExecRunsprog,Ci . As a consequence of the new auxiliary statements, it overapproxi-
mates ExecRunsprog,Ci .

Proof of Statements 6.118 and 6.119. We begin this proof by introducing a projection function

pj that operates on the members of ̂RelPathsdetail,prog,Ci . It takes the sequence of nodes that
makes up a relaxed path and removes all source and target nodes of zero cycle transition edges
from it. We omit a formal definition of the function pj. Its principle is shown in the following
figure. The white nodes in the figure belong to partition T , the shaded nodes to partition U . The
edges are categorized as joining/widening (jw), cycle transition (ct), and zero cycle transition
(zct) edges.

nda ndb ndc ndd nde ndf ndgjw ct jw zct jw ct

p̂(0) p̂(1) p̂(2) p̂(3) p̂(4) p̂(5) p̂(6)

pj(p̂)(0) pj(p̂)(1) pj(p̂)(2) pj(p̂)(3) pj(p̂)(4)

Note that the projected sequences of nodes might not correspond to a relaxed path of the
graph. However, the projected sequences also still alternate between nodes of partition T and U .
Furthermore, note that this projection might remove a number of nodes that is not a multiple of
two in case the original relaxed path ends on a source node of a zero cycle transition edge.
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Based on this, we define a mapping from relaxed paths of the detailed graph to sequences of
abstract states. It is given by the function map, which is defined as follows.

map : ̂RelPathsdetail,prog,Ci → ̂Sequences (A.75)

len(map(p̂)) =
⌊
len(pj(p̂))

2

⌋
(A.76)

map(p̂) = (t̂, û), with

{
∀x ∈ N≤ len(pj(p̂))

2
: t̂(x) = toState(pj(p̂)(2 · x))

∀x ∈ N
<

len(pj(p̂))
2

: û(x) = toState(pj(p̂)(2 · x+ 1))
(A.77)

Note that due to the structural constraints of the detailed graph—which are similar to those
on members of ̂Sequences—it is always guaranteed that there is a member of ̂Sequences to which
a relaxed path of the detailed graph can be mapped.
For relaxed paths p̂ with an odd len(pj(p̂)), there is only one possible choice for map(p̂) =

(t̂, û) ∈ ̂Sequences. For relaxed paths p̂ with an even len(pj(p̂)), however, the mapping rules we
provided so far do not make a statement about the last position of û. Thus, only the general
structural constraints for members of ̂Sequences are required. This can be observed for the relaxed
path p̂ of the example figure above, which has an even len(p̂). It is mapped to a (t̂, û) in the
following way.

len((t̂, û)) = 2

t̂(0) = toState(nda)
û(0) = toState(ndb)

t̂(1) = toState(ndc)
û(1) = toState(ndf )

t̂(2) = toState(ndg)

û(2) w t̂(2)

In order to avoid conceptual problems, we additionally require the following from the mapping
function map.

∀p̂ ∈ ̂RelPathsdetail,prog,Ci :

[len(pj(p̂)) ≡ 0 mod 2 ∧ (t̂, û) = map(p̂)]⇒

[ [∃p̂′ ∈ ̂RelPathsdetail,prog,Ci :

len(pj(p̂′)) = len(pj(p̂)) + 1 ∧ (t̂′, û′) = map(p̂′) ∧(
∀x ∈ N≤len((t̂,û)) : t̂

′(x) = t̂(x)
)
∧(

∀x ∈ N<len((t̂,û)) : û
′(x) = û(x)

)
]⇒

∃p̂′ ∈ ̂RelPathsdetail,prog,Ci : len(pj(p̂′)) = len(pj(p̂)) + 1 ∧map(p̂′) = (t̂, û)]

(A.78)

Note that it is still guaranteed that there is a member of ̂Sequences to which a relaxed path of
the detailed graph can be mapped. Moreover, note that it does not matter for our construction
which choice the function map exactly makes. Any choice that fulfills the equations above is fine.

Now, we define the set M̂apped of all sequences of abstract states to which the members of
̂RelPathsdetail,prog,Ci are mapped.

M̂apped = {map(p̂) | p̂ ∈ ̂RelPathsdetail,prog,Ci} (A.79)
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As a consequence of criterion (6.C3), the following statement holds.

∀ŝi ∈ ̂InitStatesprog,Ci
: ∃(t̂, û) ∈ M̂apped : len((t̂, û)) = 0 ∧ t̂(0) = ŝi (A.80)

Moreover, as a consequence of criteria (6.C4), (6.C5), and (6.C6) and equation (A.78), the
following statement holds.

∀(t̂1, û1) ∈ M̂apped :

[∀x ∈ N<len(t̂) : ¬
̂EndLBprog,Ci

(t̂, x)]⇒

∀(û1(len((t̂1, û1))), ŝc) ∈ Ĉycle :

∃(t̂2, û2) ∈ M̂apped :

len((t̂2, û2)) = 1 + len((t̂1, û1)) ∧
(∀x ∈ N≤len((t̂1,û1))

: t̂2(x) = t̂1(x) ∧ û2(x) = û1(x)) ∧

t̂2(len((t̂2, û2))) = ŝc

(A.81)

Next, we chose a superset Ŝuper of M̂apped in such a way that is fulfills statement (A.83),
which is slightly stronger than statement (A.81).

M̂apped ⊆ Ŝuper ⊆ ̂Sequences (A.82)

∀(t̂1, û1) ∈ Ŝuper :

∀(û1(len((t̂1, û1))), ŝc) ∈ Ĉycle :

∃(t̂2, û2) ∈ Ŝuper :

len((t̂2, û2)) = 1 + len((t̂1, û1)) ∧
(∀x ∈ N≤len((t̂1,û1))

: t̂2(x) = t̂1(x) ∧ û2(x) = û1(x)) ∧

t̂2(len((t̂2, û2))) = ŝc

(A.83)

Since Ŝuper is a superset of M̂apped, it automatically also fulfills statement (A.80).

∀ŝi ∈ ̂InitStatesprog,Ci
: ∃(t̂, û) ∈ Ŝuper : len((t̂, û)) = 0 ∧ t̂(0) = ŝi (A.84)

As a consequence of equations (A.84) and (A.83), the set Ŝuper fulfills all required criteria of
̂Tracesprog,Ci

, which are (6.C1) and (6.C2). Remember that ̂Tracesprog,Ci
has not been defined

in Section 6.3. It just has to be a subset of ̂Sequences which fulfills criteria (6.C1) and (6.C2).
Thus, we simply define ̂Tracesprog,Ci

to be identical to Ŝuper.

̂Tracesprog,Ci
:= Ŝuper (A.85)

This implies that ̂ExecRunsprog,Ci
is a subset of M̂apped.

̂ExecRunsprog,Ci
⊆

(A.85)
(6.36)
(A.81)

M̂apped (A.86)

It follows from equations (A.85), (A.82), and (6.60) and the choice of the edge weights in the
detailed graph that every relaxed path of the detailed graph always describes the sequence of
abstract states that it is mapped to by the function map.

∀p̂ ∈ ̂RelPathsdetail,prog,Ci : map(p̂) ∈ γdetail,prog,Ci

path,prog,Ci
(p̂) (A.87)

286



Statement (6.118) is a direct consequence of this.⋃
p̂∈ ̂RelPathsdetail,prog,Ci

γdetail,prog,Ci

path,prog,Ci
(p̂) ⊇

(A.87)
(A.79)

M̂apped ⊇
(A.86)

̂ExecRunsprog,Ci

Next, we define a subset of M̂apped that only contains those members which potentially end
the program during their last cycle transition.

̂Mappedterm = {t̂ ∈ M̂apped | len(t̂) ≥ 1 ∧ ̂EndUBprog,Ci
(t̂, len(t̂)− 1)} (A.88)

It follows that this subset is a superset of ̂ExecRunstermprog,Ci
.

̂Mappedterm

=
(A.88)

{t̂ ∈ M̂apped | len(t̂) ≥ 1 ∧ ̂EndUBprog,Ci
(t̂, len(t̂)− 1)}

⊇
(A.86)

{t̂ ∈ ̂ExecRunsprog,Ci
| len(t̂) ≥ 1 ∧ ̂EndUBprog,Ci

(t̂, len(t̂)− 1)}

=
(6.47)

̂ExecRunstermprog,Ci

(A.89)

As a consequences of equations (6.114), (6.77), and (6.13), for every member of ̂Mappedterm,
there is a path through the detailed graph which is mapped to it.

∀t̂ ∈ ̂Mappedterm : ∃p̂ ∈ ̂Pathsdetail,prog,Ci : t̂ = map(p̂) (A.90)

Finally, statement (6.119) puts it all together.⋃
p̂∈ ̂Pathsdetail,prog,Ci

γdetail,prog,Ci

path,prog,Ci
(p̂) ⊇

(A.87)
(A.90)

̂Mappedterm ⊇
(A.89)

̂ExecRunstermprog,Ci

Proof of the Soundness of Using Properties Lifted to Sequences of Abstract States in Order to
Safely Detect Infeasible Paths in a Detailed Graph. This proof reuses the machinery developed
during the previous proof. The main idea is to only consider those paths p̂ for which all of the
system properties lifted to sequences of abstract states hold for map(p̂). For the set of relaxed
paths of the detailed graph, the soundness argument is provided as follows.⋃

{γdetail,prog,Ci

path,prog,Ci
(p̂) | p̂ ∈ ̂RelPathsdetail,prog,Ci ∧ ∀Pk ∈ Propprog,Ci

: P̂k(map(p̂))}

⊇
(A.87)
(A.79)

{t̂ ∈ M̂apped | ∀Pk ∈ Propprog,Ci
: P̂k(t̂)}

⊇
(A.86)

{t̂ ∈ ̂ExecRunsprog,Ci
| ∀Pk ∈ Propprog,Ci

: P̂k(t̂)}

For the paths through the detailed graph, the soundness argument is provided as follows.⋃
{γdetail,prog,Ci

path,prog,Ci
(p̂) | p̂ ∈ ̂Pathsdetail,prog,Ci ∧ ∀Pk ∈ Propprog,Ci

: P̂k(map(p̂))}

⊇
(A.87)
(A.90)

{t̂ ∈ ̂Mappedterm | ∀Pk ∈ Propprog,Ci
: P̂k(t̂)}

⊇
(A.89)

{t̂ ∈ ̂ExecRunstermprog,Ci
| ∀Pk ∈ Propprog,Ci

: P̂k(t̂)}
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Note that—in an actual implementation—one does not really have to implement a function
map. The same effect is achieved by altering the properties on sequences of abstract states in the
following way:

• Replace len(t̂) by the number of cycle transition edges passed along p̂ increased by one.

• Instead of ÊUB(t̂, x), use the upper-bounding edge weight for E of the x-th cycle transition
edge along p̂.

• Instead of ÊLB(t̂, x), use the lower-bounding edge weight for E of the x-th cycle transition
edge along p̂.

Proof of Statement 6.121. Formally, we proceed by proving the following statement, which
directly implies statement (6.121).

∀t̂ ∈ ̂Tracesprog,Ci ∪ ̂SpuriousTracesprog,Ci
:

[p̂B �path p̂A ∧ t̂ ∈ γApath,prog,Ci
(p̂A)]⇒ t̂ ∈ γBpath,prog,Ci

(p̂B)
(A.91)

First, we take a look at an implication of t̂ ∈ γApath,prog,Ci
(p̂A).

t̂ ∈ γApath,prog,Ci
(p̂A)

⇒
(5.78)
(5.69)
(5.76)

∃partinner ∈ Partitionings(len(p̂A), len(t̂)) :

∀E ∈ Events :
∀x ∈ N<len(p̂A) :∑

from(partinner,x)≤i≤to(partinner,x)

ÊUB(t̂, i) ≤ ŵEUB(p̂A, x) ∧

∑
from(partinner,x)≤i≤to(partinner,x)

ÊLB(t̂, i) ≥ ŵELB(p̂A, x)

(A.92)

Then, we take a look at an implication of p̂B �path p̂A.

p̂B �path p̂A
⇒

(6.120)
∃partouter ∈ Partitionings(len(p̂B), len(p̂A)) :

∀E ∈ Events :
∀x ∈ N<len(p̂B) :∑

from(partouter,x)≤i≤to(partouter,x)

ŵEUB(p̂A, i) ≤ ŵEUB(p̂B , x) ∧

∑
from(partouter,x)≤i≤to(partouter,x)

ŵELB(p̂A, i) ≥ ŵELB(p̂B , x)

(A.93)

Next, we combine the existing partinner and partouter to a partcomb in the following way.

partcomb ∈ Partitionings(len(p̂B), len(t̂)) (A.94)

∀x ∈ N<len(p̂B) :

partcomb(x) =
∑

from(partouter,x)≤i≤to(partouter,x)

partinner(i) (A.95)
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From these equations, we follow another statement that directly implies what we initially
wanted to show.

⇒
(A.92)
(A.93)
(A.95)

∀E ∈ Events :

∀x ∈ N<len(p̂B) :∑
from(partcomb,x)≤i≤to(partcomb,x)

ÊUB(t̂, i) ≤ ŵEUB(p̂B , x) ∧

∑
from(partcomb,x)≤i≤to(partcomb,x)

ÊLB(t̂, i) ≥ ŵELB(p̂B , x)

⇒
(5.78)
(5.69)
(5.76)
(A.94)

t̂ ∈ γBpath,prog,Ci
(p̂B)

Proof of Statements 6.129 and 6.130. In this proof, we show the following two statements, which
directly imply statements (6.129) and (6.130).

∀E ∈ Events :

GB � Gdetail,prog,Ci ⇒

∀t ∈ ExecRunsprog,Ci : ∃p̂ ∈
̂LessFeedPathsBprog,Ci

:

numEvOccur(prog, Ci, t, E) ≤
∑

x∈N<len(p̂)

̂wEventUBprog,Ci,E(p̂, x)

(A.96)

∀E ∈ Events :

GB � Gdetail,prog,Ci ⇒

∀t ∈ ExecRunsmin-relev
prog,Ci,E : ∃p̂ ∈ ̂LessFeedPathsBprog,Ci

:

numEvOccur(prog, Ci, t, E) ≥
∑

x∈N<len(p̂)

̂wEventLBprog,Ci,E(p̂, x)

(A.97)

We start this proof by considering the terminated execution runs. They are overapproximated
by the set ̂ExecRunstermprog,Ci

.

ExecRunstermprog,Ci

⊆
(6.41)
(5.32)
(LR1)

⋃
{γtrace,prog,Ci

(t̂) | t̂ ∈ ̂ExecRunstermprog,Ci
} (A.98)

̂ExecRunstermprog,Ci
is again overapproximated by the paths through graph GB which subsumes

the detailed graph.

̂ExecRunstermprog,Ci

⊆
(6.119)

⋃
{γdetail,prog,Ci

path,prog,Ci
(p̂) | p̂ ∈ ̂Pathsdetail,prog,Ci}

⊆
(6.C7)
(6.121)

⋃
{γBpath,prog,Ci

(p̂) | p̂ ∈ P̂athsB}

(A.99)
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Due to the soundness of property lifting, we can enrich both statements with lifted properties.

ExecRunstermprog,Ci

⊆
(A.98)

⋃
{γtrace,prog,Ci

(t̂) | t̂ ∈ ̂ExecRunstermprog,Ci
∧ ∀Pk ∈ Propprog,Ci

: P̂k(t̂)}
(A.100)

{t̂ ∈ ̂ExecRunstermprog,Ci
| ∀Pk ∈ Propprog,Ci

: P̂k(t̂)}

⊆
(A.99)

⋃
{γBpath,prog,Ci

(p̂) | p̂ ∈ P̂athsB ∧ ∀Pk ∈ Propprog,Ci
: P̂ path

k (p̂)} (A.101)

Note that the paths through graph GB that fulfill the lifted versions of all system properties

are a subset of ̂LessFeedPathsBprog,Ci
.

{p̂ ∈ P̂athsB | ∀Pk ∈ Propprog,Ci
: P̂ path

k (p̂)} ⊆ ̂LessFeedPathsBprog,Ci
(A.102)

Moreover, we know that the number of event occurrences in each of the prefixes of a terminated
execution run is upper-bounded by the number of event occurrences in one of the terminated
execution runs.

∀E ∈ Events :

∀t′ ∈
⋃

t∈ExecRunstermprog,Ci

{t′ | (t′, t) ∈ PrefixOf} : ∃t ∈ ExecRunstermprog,Ci
:

numEvOccur(prog, Ci, t′, E) ≤ numEvOccur(prog, Ci, t, E)

(A.103)

Statements (A.100), (A.101), (5.42), (5.69), (A.102), and (A.103) imply that the following two
statements hold.

∀E ∈ Events :

GB � Gdetail,prog,Ci ⇒

∀t ∈
⋃

t′∈ExecRunstermprog,Ci

{t | (t, t′) ∈ PrefixOf} : ∃p̂ ∈ ̂LessFeedPathsBprog,Ci
:

numEvOccur(prog, Ci, t, E) ≤
∑

x∈N<len(p̂)

̂wEventUBprog,Ci,E(p̂, x)

(A.104)

∀E ∈ Events :

GB � Gdetail,prog,Ci ⇒

∀t ∈ ExecRunstermprog,Ci
: ∃p̂ ∈ ̂LessFeedPathsBprog,Ci

:

numEvOccur(prog, Ci, t, E) ≥
∑

x∈N<len(p̂)

̂wEventLBprog,Ci,E(p̂, x)

(A.105)
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Thus, we already showed a significant part of statements (A.96) and (A.97). In order to fully
prove these statements, according to equations (6.27) and (6.29), we are only left to show the
following two statements.

∀E ∈ Events :

GB � Gdetail,prog,Ci ⇒

∀t ∈ ExecRunsdivergprog,Ci
: ∃p̂ ∈ ̂LessFeedPathsBprog,Ci

:

numEvOccur(prog, Ci, t, E) ≤
∑

x∈N<len(p̂)

̂wEventUBprog,Ci,E(p̂, x)

(A.106)

∀E ∈ Events :

GB � Gdetail,prog,Ci ⇒

∀t ∈ ExecRunsdiverg,endprog,Ci,E
: ∃p̂ ∈ ̂LessFeedPathsBprog,Ci

:

numEvOccur(prog, Ci, t, E) ≥
∑

x∈N<len(p̂)

̂wEventLBprog,Ci,E(p̂, x)

(A.107)

This means that the remainder of this proof only has to consider the set ExecRunsdivergprog,Ci
of

diverging execution run prefixes as the two statements only argue about concrete traces contained
in this set. As a consequence, the remainder of this proof only considers abstract traces of
the respective abstract models that are feasible with respect to ExecRunsdivergprog,Ci

. A sequence

of abstract states in ̂ExecRunsprog,Ci
is feasible with respect to ExecRunsdivergprog,Ci

if and only if it
describes at least one prefix of a member of ExecRunsdivergprog,Ci

.

prefixes(ExecRunsdivergprog,Ci
) = {t | ∃t′ ∈ ExecRunsdivergprog,Ci

: (t, t′) ∈ PrefixOf} (A.108)

feas( ̂ExecRunsprog,Ci) = {t̂ ∈ ̂ExecRunsprog,Ci |

γtrace,prog,Ci(t̂) ∩ prefixes(ExecRunsdivergprog,Ci
) 6= ∅}

(A.109)

It follows from equation (6.41) that these feasible sequences of abstract states provide an
overapproximation of ExecRunsdivergprog,Ci

.

∀prog ∈ Programs : ∀Ci ∈ Cores :⋃
t̂∈feas( ̂ExecRunsprog,Ci

)

γtrace,prog,Ci
(t̂) ⊇ ExecRunsdivergprog,Ci

(A.110)

Analogously, a relaxed path of the detailed graph is feasible with respect to ExecRunsdivergprog,Ci
if

and only if it is mapped to a member of feas( ̂ExecRunsprog,Ci). The mapping function map is
borrowed from the proof of statements (6.118) and (6.119) as found on page 284.

feas( ̂RelPathsdetail,prog,Ci) = {p̂ ∈ ̂RelPathsdetail,prog,Ci |

map(p̂) ∈ feas( ̂ExecRunsprog,Ci
)}

(A.111)
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It follows that these feasible relaxed paths of the detailed graph provide an overapproximation
of feas( ̂ExecRunsprog,Ci). ⋃

p̂∈feas( ̂RelPathsdetail,prog,Ci )

γdetail,prog,Ci

path,prog,Ci
(p̂)

⊇
(A.87)

⋃
p̂∈feas( ̂RelPathsdetail,prog,Ci )

map(p̂)

⊇
(A.86)

feas( ̂ExecRunsprog,Ci
)

(A.112)

Next, we present three small lemmas about the feasible relaxed paths of the detailed graph.
We do not provide formal proofs of these lemmas as these proofs are tedious and lengthy. Thus,
we resort to a short intuition per lemma.

The first lemma states that every prefix of a feasible relaxed path of the detailed graph is also
feasible. Intuitively, if a relaxed path is mapped to a sequence abstract states that describes
members of ExecRunsdivergprog,Ci

, any prefix of the relaxed path is mapped to a (potentially shorter)
sequence that also describes members of ExecRunsdivergprog,Ci

.

∀p̂ ∈ feas( ̂RelPathsdetail,prog,Ci) : ∀p̂′ ∈ ̂RelPathsdetail,prog,Ci :

(p̂′, p̂) ∈ ̂PrefixOfdetail,prog,Ci

path ⇒

p̂′ ∈ feas( ̂RelPathsdetail,prog,Ci)

(A.113)

The second lemma states that every feasible relaxed path of the detailed graph has a strict
extension that is also feasible. Intuitively, any member of ExecRunsdivergprog,Ci

can be extended
arbitrary long without reaching the program end (cf. equations (6.24) and (6.27)). Thus, any
feasible relaxed path of the detailed graph can also be extended arbitrary long without becoming
infeasible with respect to ExecRunsdivergprog,Ci

.

∀p̂ ∈ feas( ̂RelPathsdetail,prog,Ci) : ∃p̂′ ∈ feas( ̂RelPathsdetail,prog,Ci) :

(p̂, p̂′) ∈ ̂PrefixOfdetail,prog,Ci

path ∧ len(p̂′) = len(p̂) + 1
(A.114)

The third lemma states that a relaxed path of the detailed graph has arbitrary long feasible
extensions that do not guarantee further occurrences of event E if it is mapped to a sequence
of abstract states that describes a member of ExecRunsdiverg,endprog,Ci,E

. Intuitively, any member of
ExecRunsdiverg,endprog,Ci,E

can be extended arbitrary long without further occurrences of event E (cf.
equation (6.28)). Thus, the same can be observed for the feasible relaxed paths of the detailed
graph that are mapped to a sequence which describes a member of ExecRunsdiverg,endprog,Ci,E

.

∀E ∈ Events :

∀p̂ ∈ feas( ̂RelPathsdetail,prog,Ci) :

[∃t ∈ ExecRunsdiverg,endprog,Ci,E
: t ∈ γtrace,prog,Ci(map(p̂))]⇒

∀n ∈ N : ∃p̂′ ∈ feas( ̂RelPathsdetail,prog,Ci) :

(p̂, p̂′) ∈ ̂PrefixOfdetail,prog,Ci

path ∧
len(p̂′) = len(p̂) + n ∧

∀x ∈ N≥len(p̂) ∩ N<len(p̂′) : ̂wEventLBprog,Ci,E(p̂
′, x) = 0

(A.115)
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Next, we take a closer look at graph GB which subsumes the detailed graph. A relaxed
path of GB is feasible with respect to ExecRunsdivergprog,Ci

if and only if it describes members of

feas( ̂ExecRunsprog,Ci
).

feas( ̂RelPathsB) = {p̂ ∈ ̂RelPathsB | γBpath,prog,Ci
(p̂) ∩ feas( ̂ExecRunsprog,Ci

) 6= ∅} (A.116)

In the following, we present the four key statements of this proof. They create a connection
between the feasible relaxed paths of GB and those of the detailed graph. The subsumption
relation between GB and the detailed graph is sufficient to prove the four key statements. However,
we do not present full formal proofs of the four key statements. Instead, we briefly sketch a
sufficient induction hypothesis per key statement.
The first key statement points out that, for every feasible relaxed path of the detailed graph,

there is a feasible extension which is represented by a feasible relaxed path of GB .

∀p̂ ∈ feas( ̂RelPathsdetail,prog,Ci) :

∃p̂′ ∈ feas( ̂RelPathsdetail,prog,Ci) :

(p̂, p̂′) ∈ ̂PrefixOfdetail,prog,Ci

path ∧

∃p̂B ∈ feas( ̂RelPathsB) : p̂B `path p̂′

(A.117)

The proof of this key statement argues about the set PrefExt(p̂) of all feasible prefixes and
extensions of a given feasible relaxed path p̂ of the detailed graph.

PrefExt(p̂) = {p̂′ ∈ feas( ̂RelPathsdetail,prog,Ci) | {(p̂′, p̂), (p̂, p̂′)} ∩ ̂PrefixOfdetail,prog,Ci

path 6= ∅}

In the inductive part of the proof, we prove the following hypothesis IH1 for all i ∈ N. The
first key statement follows from IH1(len(p̂)).

IH1(i)

⇔∃p̂′ ∈ PrefExt(p̂) :

len(p̂′) ≥ i ∧ ∃p̂B ∈ ̂RelPathsB : p̂B `path p̂′

The second key statement is a slight variant of the first key statement. It states that, for
every feasible relaxed path p̂ of the detailed graph which has arbitrary long feasible extensions
that do not guarantee further occurrences of event E, there is a feasible extension of p̂ which is
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represented by a feasible relaxed path p̂B of GB and which has arbitrary long feasible extensions
that do not guarantee more occurrences of event E than p̂ does.

∀E ∈ Events :

∀p̂ ∈ feas( ̂RelPathsdetail,prog,Ci) :

[∀n ∈ N : ∃p̂′ ∈ feas( ̂RelPathsdetail,prog,Ci) :

(p̂, p̂′) ∈ ̂PrefixOfdetail,prog,Ci

path ∧
len(p̂′) = len(p̂) + n ∧

∀x ∈ N≥len(p̂) ∩ N<len(p̂′) : ̂wEventLBprog,Ci,E(p̂
′, x) = 0] ⇒

∃p̂′ ∈ feas( ̂RelPathsdetail,prog,Ci) :

(p̂, p̂′) ∈ ̂PrefixOfdetail,prog,Ci

path ∧

[∃p̂B ∈ feas( ̂RelPathsB) : p̂B `path p̂′] ∧

∀n ∈ N : ∃p̂′′ ∈ feas( ̂RelPathsdetail,prog,Ci) :

(p̂′, p̂′′) ∈ ̂PrefixOfdetail,prog,Ci

path ∧
len(p̂′′) = len(p̂′) + n ∧

∀x ∈ N≥len(p̂) ∩ N<len(p̂′′) : ̂wEventLBprog,Ci,E(p̂
′′, x) = 0

(A.118)

The proof of the second key statement is very similar to that of the first key statement. It
argues about the set PrefExt(p̂, E). It contains all feasible prefixes of a given feasible relaxed path
p̂ of the detailed graph. Moreover, it contains those feasible extensions of p̂ which again have
arbitrary long feasible extensions that do not guarantee more occurrences of event E than p̂ does.

PrefExt(p̂, E) = {p̂′ ∈ feas( ̂RelPathsdetail,prog,Ci) | (p̂′, p̂) ∈ ̂PrefixOfdetail,prog,Ci

path ∨

[(p̂, p̂′) ∈ ̂PrefixOfdetail,prog,Ci

path ∧

∀n ∈ N : ∃p̂′′ ∈ feas( ̂RelPathsdetail,prog,Ci) :

(p̂′, p̂′′) ∈ ̂PrefixOfdetail,prog,Ci

path ∧
len(p̂′′) = len(p̂′) + n ∧

∀x ∈ N≥len(p̂) ∩ N<len(p̂′′) : ̂wEventLBprog,Ci,E(p̂
′′, x) = 0]}

In the inductive part of the proof, we prove the following hypothesis IH2 for all i ∈ N. The
second key statement follows from IH2(len(p̂)).

IH2(i)

⇔∃p̂′ ∈ PrefExt(p̂, E) :

len(p̂′) ≥ i ∧ ∃p̂B ∈ ̂RelPathsB : p̂B `path p̂′
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The third key statement points out that every feasible relaxed path of graph GB which
represents a feasible relaxed path of the detailed graph has arbitrary long feasible extensions.

∀p̂ ∈ feas( ̂RelPathsdetail,prog,Ci) : ∀p̂B ∈ feas( ̂RelPathsB) :
p̂B `path p̂ ⇒

∀n ∈ N : ∃p̂B ′ ∈ feas( ̂RelPathsB) :

(p̂B , p̂B
′
) ∈ ̂PrefixOfBpath ∧

len(p̂B
′
) = len(p̂B) + n

(A.119)

This key statement is a direct consequence of the following hypothesis IH3 holding for all i ∈ N.

IH3(i)

⇔∃p̂′ ∈ feas( ̂RelPathsdetail,prog,Ci) :

(p̂, p̂′) ∈ ̂PrefixOfdetail,prog,Ci

path ∧

∃p̂B ′ ∈ ̂RelPathsB :

(p̂B , p̂B
′
) ∈ ̂PrefixOfBpath ∧

len(p̂B
′
) ≥ len(p̂B) + i ∧

p̂B
′ `path p̂′

The fourth key statement is a slight variant of the third key statement. It states that, for every
feasible relaxed path p̂ of the detailed graph which is represented by a feasible relaxed path p̂B of
GB and which has arbitrary long feasible extensions that do not guarantee further occurrences of
event E, there are arbitrary long extensions of p̂B that also do not guarantee more occurrences of
event E than p̂ does.

∀E ∈ Events :

∀p̂ ∈ feas( ̂RelPathsdetail,prog,Ci) : ∀p̂B ∈ feas( ̂RelPathsB) :
[p̂B `path p̂ ∧

∀n ∈ N : ∃p̂′ ∈ feas( ̂RelPathsdetail,prog,Ci) :

(p̂, p̂′) ∈ ̂PrefixOfdetail,prog,Ci

path ∧
len(p̂′) = len(p̂) + n ∧

∀x ∈ N≥len(p̂) ∩ N<len(p̂′) : ̂wEventLBprog,Ci,E(p̂
′, x) = 0] ⇒

∀n ∈ N : ∃p̂B ′ ∈ feas( ̂RelPathsB) :

(p̂B , p̂B
′
) ∈ ̂PrefixOfBpath ∧

len(p̂B
′
) = len(p̂B) + n ∧∑

x∈N<len(p̂)

̂wEventLBprog,Ci,E(p̂, x) ≥
∑

x∈N<len(p̂B
′)

̂wEventLBprog,Ci,E(p̂B
′
, x)

(A.120)
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This key statement is a direct consequence of the following hypothesis IH4 holding for all i ∈ N.

IH4(i)

⇔∃p̂′ ∈ PrefExt(p̂, E) :

(p̂, p̂′) ∈ ̂PrefixOfdetail,prog,Ci

path ∧

∃p̂B ′ ∈ ̂RelPathsB :

(p̂B , p̂B
′
) ∈ ̂PrefixOfBpath ∧

len(p̂B
′
) ≥ len(p̂B) + i ∧

p̂B
′ `path p̂′

Now we use the four key statements in order to prove what is actually left to show. It follows
from equations (A.110), (A.112), (A.117), (A.119), (6.124), and (6.131) that, for every member t
of ExecRunsdivergprog,Ci

, there is a feasible relaxed path p̂B of GB which upper-bounds the number of
event occurrences in t and which ends in a node of FeedbackB .

∀E ∈ Events :

∀t ∈ ExecRunsdivergprog,Ci
: ∃p̂ ∈ feas( ̂RelPathsB) :

numEvOccur(prog, Ci, t, E) ≤
∑

x∈N<len(p̂)

̂wEventUBprog,Ci,E(p̂, x) ∧

p̂(len(p̂)) ∈ FeedbackB

(A.121)

Analogously, it follows from equations (A.110), (A.112), (A.118), (A.120), (A.115), (6.124),
and (6.131) that, for every member t of ExecRunsdiverg,endprog,Ci,E

, there is a feasible relaxed path p̂B
of GB which lower-bounds the number of event occurrences in t and which ends in a node of
FeedbackB .

∀E ∈ Events :

∀t ∈ ExecRunsdiverg,endprog,Ci,E
: ∃p̂ ∈ feas( ̂RelPathsB) :

numEvOccur(prog, Ci, t, E) ≥
∑

x∈N<len(p̂)

̂wEventLBprog,Ci,E(p̂, x) ∧

p̂(len(p̂)) ∈ FeedbackB

(A.122)

Moreover, due to the soundness of property lifting, the set of feasible relaxed paths of GB

which end in a node of FeedbackB is a subset of ̂LessFeedPathsBprog,Ci
.

{p̂ ∈ feas( ̂RelPathsB) | p̂(len(p̂)) ∈ FeedbackB} ⊆
(6.125)
(6.126)

̂LessFeedPathsBprog,Ci
(A.123)

Finally, statement (A.106) is a consequence of statements (A.121) and (A.123). In the same
way, statement (A.107) is a consequence of statements (A.122) and (A.123).
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Proof of Statement 6.137. In this proof, we show that the following statement holds, which
directly implies statement (6.137).

∀E ∈ Events :

GB � Gdetail,prog,Ci ⇒

∀t ∈ ExecRunsmin-relev
prog,Ci,E : ∃p̂ ∈ ̂LessFeedPathsBprog,Ci,E :

numEvOccur(prog, Ci, t, E) ≥
∑

x∈N<len(p̂)

̂wEventLBprog,Ci,E(p̂, x)

(A.124)

Most of this proof is identical to the previous proof of statement (6.130). Thus, we only present
the differences. In addition to what has already been done in the previous proof, we only have to
prove the following statement.

∀E ∈ Events :

GB � Gdetail,prog,Ci ⇒

∀t ∈ ExecRunsdiverg,endprog,Ci,E
: ∃p̂ ∈ ̂LessFeedPathsBprog,Ci,E :

numEvOccur(prog, Ci, t, E) ≥
∑

x∈N<len(p̂)

̂wEventLBprog,Ci,E(p̂, x)

(A.125)

It follows from equations (A.110), (A.112), (A.118), (A.120), (A.115), (6.133), (6.131), and the
subsumption of the detailed graph by GB that, for every member t of ExecRunsdiverg,endprog,Ci,E

, there is
a feasible relaxed path p̂B of GB which lower-bounds the number of event occurrences in t and
which ends in a node of FeedbackBE .

∀E ∈ Events :

∀t ∈ ExecRunsdiverg,endprog,Ci,E
: ∃p̂ ∈ feas( ̂RelPathsB) :

numEvOccur(prog, Ci, t, E) ≥
∑

x∈N<len(p̂)

̂wEventLBprog,Ci,E(p̂, x) ∧

p̂(len(p̂)) ∈ FeedbackBE

(A.126)

Moreover, due to the soundness of property lifting, the set of feasible relaxed paths of GB

which end in a node of FeedbackBE is a subset of ̂LessFeedPathsBprog,Ci,E .

{p̂ ∈ feas( ̂RelPathsB) | p̂(len(p̂)) ∈ FeedbackBE} ⊆
(6.134)
(6.135)

̂LessFeedPathsBprog,Ci,E (A.127)

Finally, statements (A.126) and (A.127) imply statement (A.125).

Proof Sketch for Statement 6.154. In order to prove that the constructed graph subsumes the
detailed graph (i.e. Gconstr � Gdetail,prog,Ci), we have to show that criteria (6.C7) to (6.C10) hold.
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For this proof, we define the representation relation `path in the following way. Remember
that, so far, we only required the existence of this relation (about which criteria (6.C8) to (6.C10)
argue).

∀p̂A ∈ ̂SubPathsdetail,prog,Ci : ∀p̂B ∈ ̂SubPathsconstr :
p̂B `path p̂A

⇔ ∃part ∈ Partitionings(len(p̂B), len(p̂A)) :
[∀x ∈ N<len(p̂B) :

p̂A(from(part, x)) ∈ p̂B(x)] ∧
p̂A(len(p̂A)) ∈ p̂B(len(p̂B)) ∧
∀E ∈ Events :
∀x ∈ N<len(p̂B) :∑

from(part,x)≤i≤to(part,x)

ŵEUB(p̂A, i) ≤ ŵEUB(p̂B , x) ∧

∑
from(part,x)≤i≤to(part,x)

ŵELB(p̂A, i) ≥ ŵELB(p̂B , x)

(A.128)

According to equation (6.120), relation `path implies path subsumption (�path). Thus, crite-
rion (6.C8) holds.
It follows from `path and Algorithms 6.1 to 6.3 that every path from a start node to an end

node of the detailed graph is represented by a path from a start node to an end node of the
constructed graph. Since path representation implies path subsumption (criterion (6.C8)), every
path from a start node to an end node of the detailed graph is subsumed by a path from a start
node to an end node of the constructed graph. Thus, criterion (6.C7) holds.
Next, it follows from `path and the definition of the start nodes of the constructed graph in

Algorithm 6.1 that criterion (6.C9) holds.
Finally, we show criterion (6.C10) by using `path, equation (6.140), and Algorithms 6.1 to 6.3.

Proof that Property Pwc Can Safely Be Lifted to P̂wc. System property Pwc implies a slightly
relaxed property Pwc′ . In the following, let Ci be the particular processor core for which want to
calculate a WCET bound.

Pwc(t)

⇔
(7.14)

[∀Ck ∈ Cores : ∀x ∈ N<len(t) :

BlockedCk
(t, x)⇒ ∃Cj ∈ Cores \ {Ck} : GrantedCj

(t, x)]

⇒ [∀x ∈ N≤len(t) :
∑
y∈N<x

BlockedCi(t, y) ≤
∑

Cj∈Cores\{Ci}

∑
y∈N<x

GrantedCj (t, y)]

⇔: Pwc′(t)

(A.129)
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The relaxed property Pwc′ is already relatively close to the lifted version P̂wc. However, the
nested

∑
symbols in property Pwc′ are not directly supported by our lifting rules (cf. Table 5.1).

Thus, instead, we directly prove that soundness criterion (4.C1) is fulfilled.

[∃t ∈ γtrace,prog,Ci
(t̂) : Pwc(t)]

⇒
(A.129)

[∃t ∈ γtrace,prog,Ci(t̂) : Pwc′(t)]

⇔
(A.129)

[∃t ∈ γtrace,prog,Ci(t̂) :

∀x ∈ N≤len(t) :
∑
y∈N<x

BlockedCi(t, y) ≤
∑

Cj∈Cores\{Ci}

∑
y∈N<x

GrantedCj (t, y)]

⇒
(5.32)
(5.41)
(7.21)
(7.24)

∀x ∈ N≤len(t̂) :
∑
y∈N<x

̂BlockedLBCi
(t̂, y) ≤

∑
Cj∈Cores\{Ci}

∑
y∈N<x

̂GrantedUBCj
(t̂, y)

⇔
(7.25)

P̂wc(t̂)

Proof that the Formal Setup of Equations 7.27, 7.28, and 7.29 Fulfills All Criteria Required by
Section 4.2.3. The formal setup of equations (7.27), (7.28), and (7.29) corresponds to the setup
presented in Section 4.2.3. However, the updates of the approximation variables (equations (7.28),
and (7.29)) are presented in a less modular fashion than in Section 4.2.3. Thus, first, we modularize
the notation of the updates of the approximation variables accordingly.

∀Ck ∈ Cores : ̂ApproxCk ← FCk(
#                    »

ApproxCk
) (A.130)

∀Ck ∈ Cores : FCk(
#                    »

ApproxCk
) = {t̂Ck ∈ ̂ExecRunsCk′′

prog,Ci
| P̃Ck(t̂Ck ,

#                    »

ApproxCk
)} (A.131)

P̃Ci(t̂Ci ,
#                   »

ApproxCi
)

⇔
∑

x∈N
<len(t̂Ci )

̂BlockedLBCi
(t̂Ci , x)

≤
∑

Cj∈Cores\{Ci}

max
t̂Cj∈ ̂ApproxCj

∑
x∈N

<len(t̂Cj )

̂GrantedUBCj
(t̂Cj , x)

(A.132)

∀Cj ∈ Cores \ {Ci} :

P̃Cj (t̂Cj ,
#                   »

ApproxCj
)

⇔
∑

x∈N
<len(t̂Cj )

ĈycleLB(t̂Cj , x) ≤ max
t̂Ci∈ ̂ApproxCi

∑
x∈N

<len(t̂Ci )

̂CycleUB(t̂Ci , x)
(A.133)

According to equations (7.22) and (7.26), the following property P̂ holds for all members of set
̂Cmpnd′′, which we plan to overapproximate iteratively.

P̂ (t̂)⇔ P̂wc(t̂) ∧ ∃n ∈ N : ∀Ck ∈ Cores : len(πCk
trace(t̂)) = n (A.134)

∀t̂ ∈ ̂Cmpnd′′ : P̂ (t̂) (A.135)
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With this information in place, we can show that the P̃Ck fulfill soundness criterion (4.C2)
with respect to P̂ . This means we have to show the following statement.

∀Ck ∈ Cores : ∀t̂Ck ∈ ̂ExecRunsCk′′
prog,Ci

: ∀ #                    »

ApproxCk
:

[∃(t̂C1 , . . . , t̂Ck−1 , t̂Ck+1 , . . . , ̂tC|Cores|) ∈ χ( #                    »

ApproxCk
) :

P̂ (t̂C1 , . . . , t̂Ck−1 , t̂Ck , t̂Ck+1 , . . . , ̂tC|Cores|)]

⇒ P̃Ck(t̂Ck ,
#                    »

ApproxCk
)

(A.136)

We prove statement (A.136) in two steps. First, we prove the part of it which argues about
core Ci.

∀t̂Ci ∈ ̂ExecRunsCi′′
prog,Ci

: ∀ #                   »

ApproxCi
:

[∃(t̂C1 , . . . , t̂Ci−1 , t̂Ci+1 , . . . , ̂tC|Cores|) ∈ χ( #                   »

ApproxCi
) :

P̂ (t̂C1 , . . . , t̂Ci−1 , t̂Ci , t̂Ci+1 , . . . , ̂tC|Cores|)]

⇔
(A.134)
(4.18)

[∃(t̂C1 , . . . , t̂Ci−1 , t̂Ci+1 , . . . , ̂tC|Cores|) ∈ χ( #                   »

ApproxCi
) :

P̂wc(t̂C1 , . . . , t̂Ci−1 , t̂Ci , t̂Ci+1 , . . . , ̂tC|Cores|) ∧

∃n ∈ N : ∀Ck ∈ Cores : len(t̂Ck) = n]

⇒
(7.24)
(7.25)

[∃(t̂C1 , . . . , t̂Ci−1 , t̂Ci+1 , . . . , ̂tC|Cores|) ∈ χ( #                   »

ApproxCi
) :

∑
x∈N

<len(t̂Ci )

̂BlockedLBCi
(t̂Ci , x) ≤

∑
Cj∈Cores\{Ci}

∑
x∈N

<len(t̂Cj )

̂GrantedUBCj
(t̂Cj , x) ∧

∃n ∈ N : ∀Ck ∈ Cores : len(t̂Ck) = n]

⇒ [∃(t̂C1 , . . . , t̂Ci−1 , t̂Ci+1 , . . . , ̂tC|Cores|) ∈ χ( #                   »

ApproxCi
) :∑

x∈N
<len(t̂Ci )

̂BlockedLBCi
(t̂Ci , x) ≤

∑
Cj∈Cores\{Ci}

∑
x∈N

<len(t̂Cj )

̂GrantedUBCj
(t̂Cj , x)]

⇔
∑

x∈N
<len(t̂Ci )

̂BlockedLBCi
(t̂Ci , x)

≤
∑

Cj∈Cores\{Ci}

max
t̂Cj∈ ̂ApproxCj

∑
x∈N

<len(t̂Cj )

̂GrantedUBCj
(t̂Cj , x)

⇔
(A.132)

P̃Ci(t̂Ci ,
#                   »

ApproxCi
)
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Next, we prove the part of statement (A.136) which argues about the concurrent cores of
core Ci.

∀Cj ∈ Cores \ {Ci} : ∀t̂Cj ∈ ̂ExecRunsCj ′′
prog,Ci

: ∀ #                   »

ApproxCj
:

[∃(t̂C1 , . . . , t̂Cj−1 , t̂Cj+1 , . . . , ̂tC|Cores|) ∈ χ( #                   »

ApproxCj
) :

P̂ (t̂C1 , . . . , t̂Cj−1 , t̂Cj , t̂Cj+1 , . . . , ̂tC|Cores|)]

⇔
(A.134)
(4.18)

[∃(t̂C1 , . . . , t̂Cj−1 , t̂Cj+1 , . . . , ̂tC|Cores|) ∈ χ( #                   »

ApproxCj
) :

P̂wc(t̂C1 , . . . , t̂Cj−1 , t̂Cj , t̂Cj+1 , . . . , ̂tC|Cores|) ∧

∃n ∈ N : ∀Ck ∈ Cores : len(t̂Ck) = n]

⇒ [∃(t̂C1 , . . . , t̂Cj−1 , t̂Cj+1 , . . . , ̂tC|Cores|) ∈ χ( #                   »

ApproxCj
) :

∃n ∈ N : ∀Ck ∈ Cores : len(t̂Ck) = n]

⇒ [∃(t̂C1 , . . . , t̂Cj−1 , t̂Cj+1 , . . . , ̂tC|Cores|) ∈ χ( #                   »

ApproxCj
) :

len(t̂Cj ) = len(t̂Ci)]

⇒ [∃(t̂C1 , . . . , t̂Cj−1 , t̂Cj+1 , . . . , ̂tC|Cores|) ∈ χ( #                   »

ApproxCj
) :

len(t̂Cj ) ≤ len(t̂Ci)]

⇔ len(t̂Cj ) ≤ max
t̂Ci∈ ̂ApproxCi

len(t̂Ci)

⇔
(5.40)

∑
x∈N

<len(t̂Cj )

ĈycleLB(t̂Cj , x) ≤ max
t̂Ci∈ ̂ApproxCi

∑
x∈N

<len(t̂Ci )

̂CycleUB(t̂Ci , x)

⇔
(A.133)

P̃Cj (t̂Cj ,
#                   »

ApproxCj
)

This concludes the proof of statement (A.136). As a consequence of statement (A.136),
soundness criterion (4.C2) is fulfilled.

Moreover, we can show that the P̃Ck fulfill monotonicity criterion (4.C3). This means we have
to show the following statement.

∀Ck ∈ Cores : ∀t̂Ck ∈ ̂ExecRunsCk′′
prog,Ci

: ∀ #                    »

ApproxCk
,

#                    »

Approx′
Ck

:
#                    »

Approx′
Ck
⊆pairwise

#                    »

ApproxCk

⇒ [P̃Ck(t̂Ck ,
#                    »

Approx′
Ck

)⇒ P̃Ck(t̂Ck ,
#                    »

ApproxCk
)]

(A.137)
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We prove statement (A.137) in two steps, too. First, we prove the part of it which argues
about core Ci.

∀t̂Ci ∈ ̂ExecRunsCi′′
prog,Ci

: ∀ #                   »

ApproxCi
,

#                   »

Approx′
Ci

:

#                   »

Approx′
Ci
⊆pairwise

#                   »

ApproxCi

⇔ [∀Cj ∈ Cores \ {Ci} : ̂Approx′Cj ⊆ ̂ApproxCj ]

⇒ [∀Cj ∈ Cores \ {Ci} :

max
t̂Cj∈ ̂Approx′Cj

∑
x∈N

<len(t̂Cj )

̂GrantedUBCj
(t̂Cj , x)

≤ max
t̂Cj∈ ̂ApproxCj

∑
x∈N

<len(t̂Cj )

̂GrantedUBCj
(t̂Cj , x)]

⇒
(A.132)

[P̃Ci(t̂Ci ,
#                   »

Approx′
Ci
)⇒ P̃Ci(t̂Ci ,

#                   »

ApproxCi
)]

Next, we prove the part of statement (A.137) which argues about the concurrent cores of
core Ci.

∀Cj ∈ Cores \ {Ci} : ∀t̂Cj ∈ ̂ExecRunsCj ′′
prog,Ci

: ∀ #                   »

ApproxCj
,

#                   »

Approx′
Cj

:

#                   »

Approx′
Cj
⊆pairwise

#                   »

ApproxCj

⇔ [∀Ck ∈ Cores \ {Cj} : ̂Approx′Ck ⊆ ̂ApproxCk ]

⇒
Ci 6=Cj

̂Approx′Ci ⊆ ̂ApproxCi ]

⇒ [ max
t̂Ci∈ ̂Approx′Ci

∑
x∈N

<len(t̂Ci )

̂CycleUB(t̂Ci , x)

≤ max
t̂Ci∈ ̂ApproxCi

∑
x∈N

<len(t̂Ci )

̂CycleUB(t̂Ci , x)]

⇒
Ci 6=Cj

(A.133)

[P̃Cj (t̂Cj ,
#                   »

Approx′
Cj
)⇒ P̃Cj (t̂Cj ,

#                   »

ApproxCj
)]

This concludes the proof of statement (A.137). As a consequence of statement (A.137),
monotonicity criterion (4.C3) is fulfilled. Thus, all criteria required by Section 4.2.3 are fulfilled.

Counter Example Demonstrating that, in General, the First Iterative Overapproximation Approach
Presented in Section 7.5 Is Not Sound in Combination with an Obvious Optimistic Initialization.
The first iterative approach presented in Section 7.5 starts from a maximally pessimistic
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initialization—following Section 4.2.3. During the derivation of the approach, we also experimented
with the following optimistic initialization—following Section 4.2.4.

̂ApproxCi ← {t̂Ci ∈ ̂ExecRunsCi′′
prog,Ci

|
∑

x∈N
<len(t̂Ci )

̂BlockedLBCi
(t̂Ci , x) ≤ 0} (A.138)

∀Cj ∈ Cores \ {Ci} : ̂ApproxCj ← {t̂Cj ∈ ̂ExecRunsCj ′′
prog,Ci

|
∑

x∈N
<len(t̂Cj )

ĈycleLB(t̂Cj , x) ≤ 0}

(A.139)

It initializes the approximation variable of core Ci to only those members of ̂ExecRunsCi′′
prog,Ci

that do not guarantee any blocked cycles at the shared bus. The approximation variable of a

concurrent core Cj , in contrast, is initialized to the members of ̂ExecRunsCj ′′
prog,Ci

of length zero.
Note that this style of initialization is very similar to the updates of the approximation variables
(cf. equations (7.28), and (7.29))—with the exception that the maximum-calculations based on
other approximation variables are replaced by optimistically assuming their respective values to
be zero.

Following this optimistic initialization, Algorithm 7.1 starts by assuming that the program on
core Ci is not blocked at all at the shared bus. In an iterative manner, it allows more and more
blocked cycles in dependence on the arrival curve values of the concurrent processor cores.
Unfortunately, in general, the resulting formal setup (i.e. equations (A.138), (A.139), (7.28),

and (7.29)) does not fulfill all criteria required by Section 4.2.4. Figure A.1 provides a minimal
counter-example demonstrating that a fixed point reached from this optimistic initialization
can be unsound with respect to the concrete traces. For the counter-example, we consider a
very simple dual-core processor without instruction pipelining. The processor shall feature a
shared bus. Access requests by the processor cores (C1 and C2) shall be arbitrated according
to the Round-Robin policy. The particular flavor of the Round-Robin policy implemented on
the hardware platform shall prefer core C1 during arbitration in case both cores have not yet
been granted access to the bus since system start. The considered example program requests
a single time unit of granted access to the bus. The program terminates while performing this
granted access. Both processor cores shall execute this program immediately after system start.
Afterwards, they shall not execute any other programs requesting access to the shared bus. As a
consequence of the bus arbitration, on the concrete system, core C1 is granted ( ) access to the
bus first. Thus, core C2 is blocked ( ) for one time unit before being granted access to the bus.
This means that the example program has a worst-case execution time of two time units when
executed on core C2. Note that Figure A.1 only presents the full program execution runs—for the
concrete system as well as for the level of approximation based on sequences of abstract states.
For the sake of readability, the respective prefixes are omitted.
At the level of approximation, we choose a setup for the calculation of a WCET bound for

the example program executed on core C2. First, we consider a case in which the optimistic
initialization leads to a fixed point which safely overapproximates the concrete traces. The
abstract trace set of each core also contains one infeasible abstract trace and all its prefixes.
These infeasible abstract traces assume that core C2 is granted access first, which cannot happen
on the concrete system. According to the optimistic initialization, the approximation variable of
core C1 initially only contains prefixes of length zero (denoted by ε, cf. equation (A.139)). The
approximation variable of core C2 initially contains prefixes of length zero and an abstract trace
of length one (cf. equation (A.138)). In the following, we present a fixed point iteration (following
equations (7.28), and (7.29)) based on this initialization. For the sake of simplicity, it assumes a
simultaneous update of both approximation variables.
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Operation of the Concrete System:
C1:
C2:

Abstract Models with Infeasible Abstract Traces:
C1: ,
C2: ,

Abstract Models without Infeasible Abstract Traces:
C1:
C2:

Figure A.1.: Counter-example demonstrating the potential unsoundness of a fixed point reached
from the optimistic initialization (cf. equations (A.138) and (A.139)).

iteration ̂ApproxC1 ̂ApproxC2

init {ε} {ε, }
1 {ε, , } {ε, }
2 {ε, , } {ε, , , }
3 {ε, , , } {ε, , , }
4 {ε, , , } {ε, , , }

The resulting fixed point safely overapproximates the concrete traces and, thus, results in a
safe WCET bound of two time units for the example program executed on core C2.
Next, we only take into account the feasible abstract traces and their prefixes. This means

that the approximation variable of core C2 initially also only contains prefixes of length zero (cf.
equation (A.138)). As a consequence, the initialization is already a fixed point.

iteration ̂ApproxC1 ̂ApproxC2

init {ε} {ε}
1 {ε} {ε}

The obtained fixed point, however, results in a WCET bound of zero time units for the example
program executed on core C2, which is unsound with respect to the concrete traces. This concludes
the counter-example demonstrating the potential unsoundness of a fixed point reached from the
proposed optimistic initialization.
Thus, in general, the formal setup of equations (A.138), (A.139), (7.28), and (7.29) does not

fulfill all criteria required by Section 4.2.4. The intuitive problem is that a particular sequence of
abstract states of length x which is blocked for the yth time at its last position can only be added

to ̂ApproxCi if there is already a member of ̂ApproxCi which has a length of at least x and is
blocked less than y times. In order to avoid this problem, we can rely on the following additional
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assumption about the set ̂ExecRunsCi′′
prog,Ci

, from which the members of ̂ApproxCi are drawn (cf.
equations (A.138) and (7.29)).

∀t̂Ci ∈ ̂ExecRunsCi′′
prog,Ci

:

[len(t̂Ci) ≥ 1 ∧ ̂BlockedLBCi
(t̂Ci , len(t̂Ci)− 1)]

⇒ ∃t̂Ci′ ∈ ̂ExecRunsCi′′
prog,Ci

:

len(t̂Ci′) ≥ len(t̂Ci) ∧∑
x∈N

<len(
̂

tCi′)

̂BlockedLBCi
(t̂Ci′, x) <

∑
x∈N

<len(t̂Ci )

̂BlockedLBCi
(t̂Ci , x)

(A.140)

Under the additional assumption (A.140), we can prove that the formal setup of equa-
tions (A.138), (A.139), (7.28), and (7.29) is guaranteed to fulfill all criteria required by Sec-
tion 4.2.4. A formal proof, however, is omitted due to space and time constraints.

While our pessimistic baseline model of the shared-bus interference (i.e. ̂ExecRunsCi

prog,Ci
, cf.

Section 7.2) intuitively fulfills assumption (A.140), the pruning of provably infeasible members
of the baseline model may invalidate this assumption (cf. previous counter-example). Thus, in
order to safely guarantee assumption (A.140), we would have to prove that the overall set of

lifted system properties used in the definition of ̂ExecRunsCi′′
prog,Ci

(cf. equations (7.16) and (7.17))
does not invalidate assumption (A.140). It is, however, unclear how to conduct such a proof.
Moreover, it is not in the spirit of property lifting to additionally check whether the overall set
of lifted properties fulfills a non-trivial consistency criterion with respect to the set of abstract
traces.

Proof that under Assumption 7.33 the Formal Setup of Equations 7.30, 7.31, 7.28, and 7.32
Fulfills All Criteria Required by Section 4.2.4. The formal setup of equations (7.30), (7.31),
(7.28), and (7.32) corresponds to the setup presented in Section 4.2.4. The updates of the
approximation variables of the concurrent cores Cj of Ci (equation (7.28)) shall be specified in the
modularized notation presented in the previous proof (equations (A.130), (A.131), and (A.133)).
The correspondingly modularized notation for the update of the approximation variable of core
Ci id completed by the following predicate.

P̃Ci(t̂Ci ,
#                   »

ApproxCi
)

⇔
∑

x∈N
<len(t̂Ci )−1

̂BlockedLBCi
(t̂Ci , x)

≤
∑

Cj∈Cores\{Ci}

max
t̂Cj∈ ̂ApproxCj

∑
x∈N

<len(t̂Cj )

̂GrantedUBCj
(t̂Cj , x)

(A.141)
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In the previous proof, we have already shown that the P̃Cj fulfill monotonicity criterion (4.C3)
for all Cj 6= Ci. Now, we prove the same for the P̃Ci just specified.

∀t̂Ci ∈ ̂ExecRunsCi′′
prog,Ci

: ∀ #                   »

ApproxCi
,

#                   »

Approx′
Ci

:

#                   »

Approx′
Ci
⊆pairwise

#                   »

ApproxCi

⇔ [∀Cj ∈ Cores \ {Ci} : ̂Approx′Cj ⊆ ̂ApproxCj ]

⇒ [∀Cj ∈ Cores \ {Ci} :

max
t̂Cj∈ ̂Approx′Cj

∑
x∈N

<len(t̂Cj )

̂GrantedUBCj
(t̂Cj , x)

≤ max
t̂Cj∈ ̂ApproxCj

∑
x∈N

<len(t̂Cj )

̂GrantedUBCj
(t̂Cj , x)]

⇒
(A.141)

[P̃Ci(t̂Ci ,
#                   »

Approx′
Ci
)⇒ P̃Ci(t̂Ci ,

#                   »

ApproxCi
)]

The optimistic initialization (equations (7.30) and (7.31)) corresponds to the following initial-
ization values.

ÎnitCi = {t̂Ci ∈ ̂ExecRunsCi′′
prog,Ci

|
∑

x∈N
<len(t̂Ci )−1

̂BlockedLBCi
(t̂Ci , x) ≤ 0} (A.142)

∀Cj ∈ Cores \ {Ci} : ÎnitCj = {t̂Cj ∈ ̂ExecRunsCj ′′
prog,Ci

|
∑

x∈N
<len(t̂Cj )

ĈycleLB(t̂Cj , x) ≤ 0}

(A.143)

Note that we assume program prog to be actually executed on core Ci (i.e. ExecRunsprog,Ci
6= ∅).

As a consequence, ̂ExecRunsCi′′
prog,Ci

and the ̂ExecRunsCj ′′
prog,Ci

for Cj 6= Ci must also not be empty.
It follows that each of the above initialization values must at least contain a prefix of length zero
and, thus, cannot be empty.

∀Ck ∈ Cores : ÎnitCk 6= ∅ (A.144)

With this information in place, we can show that the update functions FCk fulfill criterion (4.C4).
This means we have to show the following statement.

∀Ck ∈ Cores : FCk(
#          »

InitCk
) ⊇ ÎnitCk (A.145)
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The part of statement (A.145) which argues about core Ci is proven as follows.

FCi(
#          »

InitCi
)

=
(A.131)

{t̂Ci ∈ ̂ExecRunsCi′′
prog,Ci

| P̃Ci(t̂Ci ,
#          »

InitCi
)}

=
(A.141)

{t̂Ci ∈ ̂ExecRunsCi′′
prog,Ci

|
∑

x∈N
<len(t̂Ci )−1

̂BlockedLBCi
(t̂Ci , x)

≤
∑

Cj∈Cores\{Ci}

max
t̂Cj∈ÎnitCj

∑
x∈N

<len(t̂Cj )

̂GrantedUBCj
(t̂Cj , x)}

=
(A.143)
(A.144)

{t̂Ci ∈ ̂ExecRunsCi′′
prog,Ci

|
∑

x∈N
<len(t̂Ci )−1

̂BlockedLBCi
(t̂Ci , x) ≤ 0}

=
(A.142)

ÎnitCi

The part of statement (A.145) which argues about the concurrent cores of core Ci is proven as
follows.

∀Cj ∈ Cores \ {Ci} :

FCj (
#          »

InitCj
)

=
(A.131)

{t̂Cj ∈ ̂ExecRunsCj ′′
prog,Ci

| P̃Cj (t̂Cj ,
#          »

InitCj
)}

=
(A.133)

{t̂Cj ∈ ̂ExecRunsCj ′′
prog,Ci

|
∑

x∈N
<len(t̂Cj )

ĈycleLB(t̂Cj , x)

≤ max
t̂Ci∈ÎnitCi

∑
x∈N

<len(t̂Ci )

̂CycleUB(t̂Ci , x)}

⊇
(A.142)
(A.144)

{t̂Cj ∈ ̂ExecRunsCj ′′
prog,Ci

|
∑

x∈N
<len(t̂Cj )

ĈycleLB(t̂Cj , x) ≤ 0}

=
(A.143)

ÎnitCj

Next, we prove that—under assumption (7.33)—the formal setup of equations (7.30), (7.31),
(7.28), and (7.32) fulfills soundness criterion (4.C5). This means that we prove the following
statement.

∀Ck ∈ Cores : ∀t̂Ck ∈ πCk( ̂Cmpnd′′) :

∃updSequ ∈ UpdateSequ : t̂Ck ∈ πCk(χ(apply(
#    »

Init, updSequ)))
(A.146)

To this end, first, we prove the part of statement (A.146) which argues about core Ci.

∀t̂Ci ∈ πCi( ̂Cmpnd′′) :

∃updSequ ∈ UpdateSequ : t̂Ci ∈ πCi(χ(apply(
#    »

Init, updSequ)))
(A.147)
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As a preparation for the inductive proof of statement (A.147), we define one subset of ̂Cmpnd′′

per natural number n as follows.

∀n ∈ N : ̂Cmpnd′′n = {(. . . , t̂Ci , . . .) ∈ ̂Cmpnd′′ |
∑

x∈N
<len(t̂Ci )−1

̂BlockedLBCi
(t̂Ci , x) ≤ n} (A.148)

Note that the union over the sets ̂Cmpnd′′n for all natural number n results again in the set
̂Cmpnd′′.

̂Cmpnd′′ =
⋂
n∈N

̂Cmpnd′′n (A.149)

Thus, an inductive proof that the following hypothesis IH(n) holds for all natural numbers n is
at the same time a proof of statement (A.147).

IH(n)

⇔∀t̂Ci ∈ πCi( ̂Cmpnd′′n) :

∃updSequ ∈ UpdateSequ : t̂Ci ∈ πCi(χ(apply(
#    »

Init, updSequ)))

(A.150)

For the induction start (i.e. IH(0)), we begin by proving that the set πCi( ̂Cmpnd′′0) is contained

in ÎnitCi .

πCi( ̂Cmpnd′′0)

=
(A.148)

πCi({(. . . , t̂Ci , . . .) ∈ ̂Cmpnd′′ |
∑

x∈N
<len(t̂Ci )−1

̂BlockedLBCi
(t̂Ci , x) ≤ 0})

=
(7.26)
(7.22)
(7.20)

πCi({(. . . , t̂Ci , . . .) ∈ ̂ExecRunsC1′′
prog,Ci

× ̂ExecRunsC2′′
prog,Ci

× . . . |

[∃m ∈ N : ∀Ck ∈ Cores : len(t̂Ck) = m] ∧ P̂wc((. . . , t̂Ci , . . .)) ∧∑
x∈N

<len(t̂Ci )−1

̂BlockedLBCi
(t̂Ci , x) ≤ 0})

⊆
(4.20)
(4.18)

{t̂Ci ∈ ̂ExecRunsCi′′
prog,Ci

|
∑

x∈N
<len(t̂Ci )−1

̂BlockedLBCi
(t̂Ci , x) ≤ 0}

=
(A.142)

ÎnitCi

(A.151)
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The induction start (i.e. IH(0)) is a direct consequence of statement (A.151).

πCi( ̂Cmpnd′′0) ⊆
(A.151)

ÎnitCi

⇔
(4.31)
(4.20)
(4.18)

πCi( ̂Cmpnd′′0) ⊆ πCi(χ(
#    »

Init))

⇔ [∀t̂Ci ∈ πCi( ̂Cmpnd′′0) : t̂Ci ∈ πCi(χ(
#    »

Init))]

⇔
(4.41)

[∀t̂Ci ∈ πCi( ̂Cmpnd′′0) :

t̂Ci ∈ πCi(χ(apply(
#    »

Init, ())))]

⇒
(4.40)

[∀t̂Ci ∈ πCi( ̂Cmpnd′′0) :

∃updSequ ∈ UpdateSequ : t̂Ci ∈ πCi(χ(apply(
#    »

Init, updSequ)))]

⇔
(A.150)

IH(0)

For the induction step (i.e. IH(n) ⇒ IH(n + 1)), first, we define the set of members of
πCi( ̂Cmpnd′′n+1) which are not a member of πCi( ̂Cmpnd′′n).

πCi( ̂Cmpnd′′n+1) \ πCi( ̂Cmpnd′′n)

=
(A.148)

πCi({(. . . , t̂Ci , . . .) ∈ ̂Cmpnd′′ |
∑

x∈N
<len(t̂Ci )−1

̂BlockedLBCi
(t̂Ci , x) ≤ n+ 1}) \

πCi({(. . . , t̂Ci , . . .) ∈ ̂Cmpnd′′ |
∑

x∈N
<len(t̂Ci )−1

̂BlockedLBCi
(t̂Ci , x) ≤ n})

= πCi({(. . . , t̂Ci , . . .) ∈ ̂Cmpnd′′ |
∑

x∈N
<len(t̂Ci )−1

̂BlockedLBCi
(t̂Ci , x) = n+ 1})

(A.152)

Intuitively, for the members of πCi( ̂Cmpnd′′n+1) which are also a member of πCi( ̂Cmpnd′′n),
IH(n+ 1) holds as an immediate consequence of IH(n). As a consequence, it is sufficient to only
prove IH(n+ 1) for the members of πCi( ̂Cmpnd′′n+1) \ πCi( ̂Cmpnd′′n). Thus, in the remainder of
the induction step, we prove the following statement.

∀t̂Ci ∈ πCi( ̂Cmpnd′′n+1) \ πCi( ̂Cmpnd′′n) :

∃updSequ ∈ UpdateSequ : t̂Ci ∈ πCi(χ(apply(
#    »

Init, updSequ)))
(A.153)

In the following, let t̂Ci∗ be an arbitrary member of πCi( ̂Cmpnd′′n+1) \ πCi( ̂Cmpnd′′n).

t̂Ci∗ ∈ πCi( ̂Cmpnd′′n+1) \ πCi( ̂Cmpnd′′n) (A.154)

309



Appendix A. Additional Proofs

Based on the available information about t̂Ci∗, we can derive the following chain of implications.

⇒
(A.154)
(A.152)

[∃(. . . , t̂Ci−1∗, t̂Ci∗, t̂Ci+1∗, . . .) ∈ ̂Cmpnd′′ :

∑
x∈N

<len(
̂

tCi∗)−1

̂BlockedLBCi
(t̂Ci∗, x) = n+ 1]

⇔
(7.26)
(7.22)
(7.20)

[∃(. . . , t̂Ci−1∗, t̂Ci∗, t̂Ci+1∗, . . .) ∈ ̂ExecRunsC1′′
prog,Ci

× ̂ExecRunsC2′′
prog,Ci

× . . . :

(∃m ∈ N : ∀Ck ∈ Cores : len(t̂Ck∗) = m) ∧ P̂wc((. . . , t̂Ci−1∗, t̂Ci∗, t̂Ci+1∗, . . .)) ∧∑
x∈N

<len(
̂

tCi∗)−1

̂BlockedLBCi
(t̂Ci∗, x) = n+ 1]

⇒
(7.33)
(7.25)

[∃(. . . , ̂tCi−1∗∗, t̂Ci∗∗, ̂tCi+1∗∗, . . .) ∈ ̂ExecRunsC1′′
prog,Ci

× ̂ExecRunsC2′′
prog,Ci

× . . . :

(∃m ∈ N : ∀Ck ∈ Cores : len(t̂Ck∗∗) = m) ∧ P̂wc((. . . , ̂tCi−1∗∗, t̂Ci∗∗, ̂tCi+1∗∗, . . .)) ∧∑
x∈N

<len(t̂Ci∗∗)−1

̂BlockedLBCi
(t̂Ci∗∗, x) ≤ n ∧

(t̂Ci∗∗, t̂Ci∗) ∈ ̂PrefixOf ∧

n+ 1 ≤
∑

Cj∈Cores\{Ci}

∑
x∈N

<len(
̂
t
Cj∗∗)

̂GrantedUBCj
(t̂Cj∗∗, x)]

⇔
(7.20)
(7.22)
(7.26)

(A.148)

[∃(. . . , ̂tCi−1∗∗, t̂Ci∗∗, ̂tCi+1∗∗, . . .) ∈ ̂Cmpnd′′n :

(t̂Ci∗∗, t̂Ci∗) ∈ ̂PrefixOf ∧

∀Cj ∈ Cores \ {Ci} : len(t̂Cj∗∗) = len(t̂Ci∗∗) ∧

n+ 1 ≤
∑

Cj∈Cores\{Ci}

∑
x∈N

<len(
̂
t
Cj∗∗)

̂GrantedUBCj
(t̂Cj∗∗, x)]

The final statement of this chain of implications enables us to follow that there is a compound
abstract trace (. . . , ̂tCi−1∗∗, t̂Ci∗∗, ̂tCi+1∗∗, . . .) ∈ ̂Cmpnd′′n such that the following three statements
are fulfilled.

t̂Ci∗∗ ∈ πCi( ̂Cmpnd′′n) (A.155)

∀Cj ∈ Cores \ {Ci} :
∑

x∈N
<len(

̂
t
Cj∗∗)

ĈycleLB(t̂Cj∗∗, x) ≤
∑

x∈N
<len(t̂Ci∗∗)

̂CycleUB(t̂Ci∗∗, x) (A.156)

n+ 1 ≤
∑

Cj∈Cores\{Ci}

∑
x∈N

<len(
̂
t
Cj∗∗)

̂GrantedUBCj
(t̂Cj∗∗, x) (A.157)
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With this additional machinery in place, we can conduct the actual induction step. It follows
from IH(n) and statement (A.155) that there is a sequence of updates of approximation variables
which adds t̂Ci∗∗ to the approximation variable of core Ci when applied to the vector of initial
values of the approximation variables.

∃updSequ ∈ UpdateSequ : ∃ #             »

Approx :
#             »

Approx = apply(
#    »

Init, updSequ) ∧ t̂Ci∗∗ ∈ ̂ApproxCi

(A.158)

Next, based on this vector
#             »

Approx, we perform a simultaneous update of the approximation
variables of the concurrent cores of core Ci.

#               »

Approx′ = apply(
#             »

Approx, (Cores \ {Ci})) (A.159)

It follows from equations (A.156), (A.158), (A.159) and (A.133) that the approximation variable
of each concurrent core Cj in the resulting vector contains the respective abstract trace t̂Cj∗∗.

∀Cj ∈ Cores \ {Ci} : t̂Cj∗∗ ∈ ̂Approx′Cj (A.160)

Thus, as a consequence of equations (A.157) and (A.160), the following statement is fulfilled.

n+ 1 ≤
∑

Cj∈Cores\{Ci}

max
t̂Cj∈ ̂Approx′Cj

∑
x∈N

<len(t̂Cj )

̂GrantedUBCj
(t̂Cj , x) (A.161)

Next, based on the vector
#               »

Approx′, we perform an update of the approximation variable of
core Ci.

#                »

Approx′′ = apply(
#               »

Approx′, ({Ci})) (A.162)

As a consequence of equations (A.154), (A.152), (A.161), (A.162), and (A.141), the approxi-
mation variable of core Ci in the resulting vector contains abstract trace t̂Ci∗.

t̂Ci∗ ∈ ̂Approx′′Ci (A.163)

This means that there is also an update sequence which creates t̂Ci∗ starting from the optimistic
initialization.

t̂Ci∗ ∈
(A.163)

̂Approx′′Ci

⇔
(4.31)
(4.20)
(4.18)

t̂Ci∗ ∈ πCi(χ(
#                »

Approx′′))

⇒
(A.162)

∃updSequ ∈ UpdateSequ : t̂Ci∗ ∈ πCi(χ(apply(
#               »

Approx′, updSequ)))

⇒
(A.159)

∃updSequ ∈ UpdateSequ : t̂Ci∗ ∈ πCi(χ(apply(
#             »

Approx, updSequ)))

⇒
(A.158)

∃updSequ ∈ UpdateSequ : t̂Ci∗ ∈ πCi(χ(apply(
#    »

Init, updSequ)))

This concludes the proof of IH(n+ 1) and, thus, also the induction step.
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As a consequence, we have proven statement (A.147). This means that we are only left to
prove the part of statement (A.146) which argues about the concurrent cores Cj of core Ci.

∀Cj ∈ Cores \ {Ci} : ∀t̂Cj ∈ πCj ( ̂Cmpnd′′) :

∃updSequ ∈ UpdateSequ : t̂Cj ∈ πCj (χ(apply(
#    »

Init, updSequ)))
(A.164)

In the following, let t̂Cj∗ be an arbitrary member of πCj ( ̂Cmpnd′′) for any core Cj 6= Ci.

t̂Cj∗ ∈ πCj ( ̂Cmpnd′′) (A.165)
Cj ∈ Cores \ {Ci} (A.166)

This time, we can reuse statement (A.147) in order to demonstrate that there has to be an
update sequence which creates t̂Cj∗ starting from the optimistic initialization. In this way, we
prove statement (A.164), which concludes the overall proof.

⇒
(A.165)
(A.166)
(7.26)
(7.22)

[∃t̂Ci∗ ∈ πCi( ̂Cmpnd′′) :

len(t̂Cj∗) ≤ len(t̂Ci∗)]

⇒
(5.40)

[∃t̂Ci∗ ∈ πCi( ̂Cmpnd′′) :∑
x∈N

<len(
̂

t
Cj∗)

ĈycleLB(t̂Cj∗, x) ≤
∑

x∈N
<len(

̂
tCi∗)

̂CycleUB(t̂Ci∗, x)]

⇒
(A.147)

[∃updSequ ∈ UpdateSequ :

∃t̂Ci∗ ∈ πCi(χ(apply(
#    »

Init, updSequ))) :∑
x∈N

<len(
̂

t
Cj∗)

ĈycleLB(t̂Cj∗, x) ≤
∑

x∈N
<len(

̂
tCi∗)

̂CycleUB(t̂Ci∗, x)]

⇔
(A.133)
(A.166)

[∃updSequ ∈ UpdateSequ :

∃t̂Ci∗ ∈ πCi(χ(apply(
#    »

Init, updSequ))) :∑
x∈N

<len(
̂

t
Cj∗)

ĈycleLB(t̂Cj∗, x) ≤
∑

x∈N
<len(

̂
tCi∗)

̂CycleUB(t̂Ci∗, x) ∧

t̂Cj∗ ∈ πCj (χ(apply(apply(
#    »

Init, updSequ), ({Cj}))))]

⇒ [∃updSequ ∈ UpdateSequ :

t̂Cj∗ ∈ πCj (χ(apply(
#    »

Init, updSequ)))]
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Proof Sketch Demonstrating that the Calculation Procedure Presented in Section 8.2 Results in a
Compositional Base Bound Whenever It Results in a Defined Value. The soundness statements
of the calculation procedure presented in Section 8.2 are given by equations (8.7) and (8.8). Based
on equations (8.5) and (8.6), we derive the following equivalent soundness statements.

̂MaximumB,impli
prog,Ci,Ebnd,PenEv ∈ R

⇒∀t ∈ ExecRunsprog,Ci
:

numEvOccur(prog, Ci, t, Ebnd)−
∑

(pen,E)∈PenEv

pen · numEvOccur(prog, Ci, t, E)

≤ ̂MaximumB,impli
prog,Ci,Ebnd,PenEv

(A.167)

̂MinimumB,impli
prog,Ci,Ebnd,PenEv ∈ R

⇒∀t ∈ ExecRunsmin-relev
prog,Ci,E :

numEvOccur(prog, Ci, t, Ebnd)−
∑

(pen,E)∈PenEv

pen · numEvOccur(prog, Ci, t, E)

≥ ̂MinimumB,impli
prog,Ci,Ebnd,PenEv

(A.168)

Now, we sketch a proof of statements (A.167) and (A.168). The calculation procedure presented
in Section 8.2 operates at the level of approximation of implicit path enumeration. In order to
demonstrate its soundness (i.e. statements (A.167) and (A.168)), first, we specify the corresponding
calculation at the level of approximation of paths through a graph GB′.

̂MaximumB′,path
prog,Ci,Ebnd,PenEv = max

p̂∈ ̂LessFeedPathsB′prog,Ci

∑
x∈N<len(p̂)

[ ̂wEventUBprog,Ci,Ebnd
(p̂, x)

−
∑

(pen,E)∈PenEv

pen · ̂wEventLBprog,Ci,E(p̂, x)]

(A.169)

̂MinimumB′,path
prog,Ci,Ebnd,PenEv = min

p̂∈ ̂LessFeedPathsB′prog,Ci

∑
x∈N<len(p̂)

[ ̂wEventLBprog,Ci,Ebnd
(p̂, x)

−
∑

(pen,E)∈PenEv

pen · ̂wEventUBprog,Ci,E(p̂, x)]

(A.170)

The following statements claim the soundness of these bounds calculated at the level of
approximation of paths through a graph. Their proof is analogous to the proof of statements (6.129)
and (6.130) on page 289 and, thus, omitted.

[GB′ � Gdetail,prog,Ci ∧ ̂MaximumB′,path
prog,Ci,Ebnd,PenEv ∈ R]

⇒∀t ∈ ExecRunsprog,Ci
:

numEvOccur(prog, Ci, t, Ebnd)−
∑

(pen,E)∈PenEv

pen · numEvOccur(prog, Ci, t, E)

≤ ̂MaximumB′,path
prog,Ci,Ebnd,PenEv

(A.171)
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Appendix A. Additional Proofs

[GB′ � Gdetail,prog,Ci ∧ ̂MinimumB′,path
prog,Ci,Ebnd,PenEv ∈ R]

⇒∀t ∈ ExecRunsmin-relev
prog,Ci,E :

numEvOccur(prog, Ci, t, Ebnd)−
∑

(pen,E)∈PenEv

pen · numEvOccur(prog, Ci, t, E)

≥ ̂MinimumB′,path
prog,Ci,Ebnd,PenEv

(A.172)

Our graph construction algorithm (cf. Section 6.4.4) guarantees that the graph GB′ it constructs
is guaranteed to subsume the detailed graph—as required by statements (A.171) and (A.172).
Before we perform the implicit path enumeration, we add a set of feedback nodes to the end
nodes of the graph and optionally perform graph transformations (cf. our standard workflow as
described in Figure 6.5). The result of these operations is the graph GB .
Finally, statements (A.167) and (A.168) follow from statements (A.171) and (A.172), the

soundness of potential graph transformations, the soundness of implicit path enumeration, and
the soundness of property lifting.

Proof that the Alternative Implementation Presented in Section 8.2 Provides the Same Results as
the Calculation Procedure Presented in Section 8.2. First, we prove that the alternative imple-
mentation for calculating upper-bounding compositional base bounds (i.e. following equations (8.9)
and (8.10)) leads to the same result as the calculation procedure following equation (8.5).

̂MaximumB,impli
prog,Ci,Ebnd,PenEv

=
(8.5)

max
(tt,∗,∗)∈ ̂LessImplicitB

∑
edg∈EdgesB

tt(edg) ·

[ ̂wEventUBprog,Ci,Ebnd
(edg)−

∑
(pen,E)∈PenEv

pen · ̂wEventLBprog,Ci,E(edg)]

=
distributivity
commutativity

max
(tt,∗,∗)∈ ̂LessImplicitB

[
∑

edg∈EdgesB
tt(edg) · ̂wEventUBprog,Ci,Ebnd

(edg)

−
∑

(pen,E)∈PenEv

pen ·
∑

edg∈EdgesB
tt(edg) · ̂wEventLBprog,Ci,E(edg)]

=
(8.9)

max
(tt,∗,∗)∈ ̂LessImplicitB

∀(pen,E)∈PenEv:var(pen,E)∈Z

[
∑

edg∈EdgesB
tt(edg) · ̂wEventUBprog,Ci,Ebnd

(edg)

−
∑

(pen,E)∈PenEv

pen · var(pen,E)]

According to Section 8.2, there is a corresponding alternative implementation for the calculation
of lower-bounding compositional base bounds. Analogously to equations (8.9) and (8.10), it is
given by the following equations.

∀(pen, E) ∈ PenEv :
∑

edg∈EdgesB
tt(edg) · ̂wEventUBprog,Ci,E(edg) ≥ var(pen,E) (A.173)

min
(tt,∗,∗)∈ ̂LessImplicitB

∀(pen,E)∈PenEv:var(pen,E)∈Z

[
∑

edg∈EdgesB
tt(edg) · ̂wEventLBprog,Ci,Ebnd

(edg)

−
∑

(pen,E)∈PenEv

pen · var(pen,E)]

(A.174)
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Finally, we demonstrate that the calculation of lower-bounding compositional base bounds
following equations (A.173) and (A.174) leads to the same result as the calculation procedure
following equation (8.6).

̂MinimumB,impli
prog,Ci,Ebnd,PenEv

=
(8.6)

min
(tt,∗,∗)∈ ̂LessImplicitB

∑
edg∈EdgesB

tt(edg) ·

[ ̂wEventLBprog,Ci,Ebnd
(edg)−

∑
(pen,E)∈PenEv

pen · ̂wEventUBprog,Ci,E(edg)]

=
distributivity
commutativity

min
(tt,∗,∗)∈ ̂LessImplicitB

[
∑

edg∈EdgesB
tt(edg) · ̂wEventLBprog,Ci,Ebnd

(edg)

−
∑

(pen,E)∈PenEv

pen ·
∑

edg∈EdgesB
tt(edg) · ̂wEventUBprog,Ci,E(edg)]

=
(A.173)

min
(tt,∗,∗)∈ ̂LessImplicitB

∀(pen,E)∈PenEv:var(pen,E)∈Z

[
∑

edg∈EdgesB
tt(edg) · ̂wEventLBprog,Ci,Ebnd

(edg)

−
∑

(pen,E)∈PenEv

pen · var(pen,E)]

Proof Sketch that Equations (10.102) to (10.105) Precisely Simulate the Equivalence in Equa-
tion (10.101). Equation (10.101) is precisely simulated by the following set of implications.

∀prog ∈ ProgramsCj
:∑

prog′∈ProgramsCj
\{prog}

Runsprog′ > 0⇒ SingletonRunprog = 0 (A.175)

∑
prog∈ProgramsCj

Runsprog = 1⇒
∑

prog∈ProgramsCj

SingletonRunprog = 1 (A.176)

The intuition behind these implications is as follows. A program prog cannot perform a
singleton run in case a run of one of the other programs is executed as well (cf. equation (A.175)).
Moreover, in case there is only a single execution run over all programs, there has to be a program
performing a singleton execution run (cf. equation (A.176)).

It follows from equations (10.96), (10.113), (10.114), (10.115), (10.116), and (10.117) that the
interval length l is an upper bound of the sum of execution runs over all programs.∑

prog∈ProgramsCj

Runsprog ≤ l (A.177)

Thus, we use l as a Big-M in equation (10.102) in order to precisely simulate equation (A.175).
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The implication of equation (A.176), in contrast, is further split into the following three
implications that argue about the binary helper variables helper1 and helper2.∑

prog∈ProgramsCj

Runsprog ≥ 1⇒ helper1 = 1 (A.178)

∑
prog∈ProgramsCj

Runsprog ≤ 1⇒ helper2 = 1 (A.179)

helper1 ∧ helper2 ⇒
∑

prog∈ProgramsCj

SingletonRunprog = 1 (A.180)

Once again, we use l as a Big-M in equation (10.103) in order to precisely simulate equa-
tion (A.178). Moreover, equation (A.179) respectively (A.180) is precisely simulated by equa-
tion (10.104) respectively (10.105).
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Appendix B

Backup Experiment Results

– Where’s the fucking money Keith?
– Dad calm down! Listen to me, the money is not important here. . .

(Some Kind of Wonderful, 1987)

This appendix chapter contains additional experiment results that have not been presented in
the main part of this thesis for the sake of readability.
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Appendix B. Backup Experiment Results
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jfdctint
lms

ludcmp
matrix1
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prime
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st
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audiobeam

cjpeg_transupp
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gsm_dec

gsm_encode
h264_dec
huff_dec

mpeg2
ndes

petrinet
rijndael_dec
rijndael_enc

statemate
susan

—average—
—overall—

1.18 (0.82s → 0.97s)
1.05 (1.9s → 2s)
1.04 (0.84s → 0.87s)
1.07 (3.36s → 3.6s)
1.05 (1.25s → 1.31s)

1.16 (2.22s → 2.57s)
1.09 (6.23s → 6.78s)

1.06 (0.89s → 0.94s)
1.05 (4.89s → 5.15s)
1.05 (0.21s → 0.22s)

1.00 (0.35s → 0.35s)
1.14 (0.35s → 0.4s)

1.08 (0.39s → 0.42s)
1.03 (1.03s → 1.06s)
1.06 (2s → 2.11s)

1.39 (3.07s → 4.26s)
2.33 (0.55s → 1.28s)

1.06 (0.32s → 0.34s)
1.05 (0.62s → 0.65s)
1.05 (0.43s → 0.45s)
1.08 (2.26s → 2.44s)
1.05 (0.62s → 0.65s)
1.06 (5.3s → 5.6s)
1.06 (2.41s → 2.56s)

1.47 (15.86s → 23.34s)
1.02 (0.58s → 0.59s)
1.07 (2.06s → 2.2s)
1.08 (1.33s → 1.44s)

1.04 (1.54s → 1.6s)
1.05 (1.33s → 1.4s)

1.21 (4.26s → 5.16s)
1.05 (1m 24.91s → 1m 29.46s)
1.03 (0.75s → 0.77s)

1.12 (0.65s → 0.73s)
1.05 (1m 32.15s → 1m 37.15s)
1.06 (2.74s → 2.91s)
1.04 (5.36s → 5.58s)
1.08 (7.96s → 8.63s)

1.04 (35.81s → 37.14s)
1.05 (2.18s → 2.28s)
1.08 (1m 57.06s → 2m 6.55s)
1.07 (1.74s → 1.86s)
1.09 (1.76s → 1.91s)
1.07 (4.11s → 4.41s)
1.06 (4.35s → 4.61s)
1.06 (3.01s → 3.2s)
1.07 (1m 14.29s → 1m 19.78s)
1.10
1.08 (8m 28.1s → 9m 9.68s)

Figure B.1.: Co-runner-insensitive WCET analysis (with fast-forwarding of converged chains
and delayed case splits) for a quad-core processor with core configuration Conf ooois :
analysis runtime per benchmark normalized to the corresponding runtime of an
analysis assuming the absence of shared-bus interference.
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—average—

1.04 (49.07 MiB → 51.18 MiB)
1.08 (62.95 MiB → 67.89 MiB)

1.04 (49.48 MiB → 51.23 MiB)
1.06 (76.26 MiB → 80.7 MiB)
1.06 (54.66 MiB → 57.89 MiB)
1.06 (73.25 MiB → 77.71 MiB)

1.08 (124.39 MiB → 134.78 MiB)
1.01 (53.34 MiB → 54.03 MiB)

1.07 (100.38 MiB → 106.97 MiB)
1.00 (44.37 MiB → 44.47 MiB)
1.00 (46.23 MiB → 46.37 MiB)
1.00 (41.75 MiB → 41.91 MiB)
1.01 (45.88 MiB → 46.37 MiB)

1.06 (51.79 MiB → 54.75 MiB)
1.05 (62.71 MiB → 66.12 MiB)

1.18 (71.48 MiB → 84 MiB)
1.16 (43.59 MiB → 50.73 MiB)

1.02 (45.57 MiB → 46.31 MiB)
1.01 (44.35 MiB → 44.92 MiB)
1.02 (46.71 MiB → 47.42 MiB)

1.07 (59.02 MiB → 63.19 MiB)
1.04 (45.27 MiB → 47.24 MiB)

1.06 (95.24 MiB → 100.88 MiB)
1.03 (67.57 MiB → 69.54 MiB)

1.19 (185.77 MiB → 221.52 MiB)
1.02 (48.29 MiB → 49.15 MiB)

1.06 (66.62 MiB → 70.81 MiB)
1.10 (50.96 MiB → 56.08 MiB)

1.04 (54.01 MiB → 56.44 MiB)
1.04 (55.18 MiB → 57.21 MiB)

1.13 (76.3 MiB → 86.47 MiB)
1.03 (992.97 MiB → 1,021.76 MiB)

0.99 (53.2 MiB → 52.46 MiB)
1.03 (48.87 MiB → 50.23 MiB)

1.07 (1.1 GiB → 1.18 GiB)
1.07 (73.69 MiB → 78.55 MiB)

1.08 (102.82 MiB → 110.75 MiB)
1.08 (137.08 MiB → 147.79 MiB)

1.15 (239.82 MiB → 274.96 MiB)
1.06 (66.19 MiB → 70.32 MiB)

1.11 (1.31 GiB → 1.45 GiB)
1.04 (57.4 MiB → 59.55 MiB)

1.07 (64.06 MiB → 68.65 MiB)
1.05 (84.3 MiB → 88.32 MiB)
1.05 (84.23 MiB → 88.68 MiB)

1.08 (72.97 MiB → 78.99 MiB)
1.10 (802.5 MiB → 879.77 MiB)

1.06

Figure B.2.: Co-runner-insensitive WCET analysis (with fast-forwarding of converged chains
and delayed case splits) for a quad-core processor with core configuration Conf ooois :
analysis memory consumption per benchmark normalized to the corresponding
memory consumption of an analysis assuming the absence of shared-bus interference.
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1.13 (2.08s → 2.36s)

1.09 (0.67s → 0.73s)
1.17 (2.66s → 3.12s)

1.21 (10.41s → 12.62s)
1.09 (0.8s → 0.87s)

1.16 (4.51s → 5.24s)
1.00 (0.16s → 0.16s)
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1.06 (0.47s → 0.5s)

1.11 (0.63s → 0.7s)
1.05 (0.61s → 0.64s)
1.06 (0.16s → 0.17s)
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1.11 (1.21s → 1.34s)
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1.10 (1.06s → 1.17s)
1.10 (0.68s → 0.75s)

1.18 (3.68s → 4.35s)
1.27 (49.47s → 1m 3.06s)

1.11 (0.54s → 0.6s)
1.08 (0.5s → 0.54s)

1.37 (1m 22.73s → 1m 52.94s)
1.10 (1.07s → 1.18s)

1.14 (2.71s → 3.09s)
1.14 (3.9s → 4.43s)

1.17 (42.03s → 49.15s)
1.07 (1.23s → 1.32s)

1.44 (2m 5.6s → 3m 0.58s)
1.10 (1.59s → 1.75s)
1.09 (1.33s → 1.45s)

1.15 (2.25s → 2.58s)
1.20 (2.94s → 3.54s)

1.13 (2.76s → 3.12s)
1.52 (1m 53.39s → 2m 52.27s)

1.13
1.37 (7m 57.49s → 10m 51.91s)

Figure B.3.: Co-runner-insensitive WCET analysis (with fast-forwarding of converged chains
and delayed case splits) for a quad-core processor with core configuration Conf ioic :
analysis runtime per benchmark normalized to the corresponding runtime of an
analysis assuming the absence of shared-bus interference.
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—average—

1.07 (47.73 MiB → 50.94 MiB)
1.07 (58.74 MiB → 63.12 MiB)

1.02 (51.46 MiB → 52.55 MiB)
1.07 (72.41 MiB → 77.73 MiB)
1.08 (48.22 MiB → 52.19 MiB)

1.15 (67.52 MiB → 77.91 MiB)
1.36 (102.41 MiB → 139.12 MiB)

1.03 (51.87 MiB → 53.54 MiB)
1.20 (88.46 MiB → 106.22 MiB)

1.00 (43.45 MiB → 43.53 MiB)
1.01 (44.18 MiB → 44.56 MiB)
1.00 (40.27 MiB → 40.46 MiB)
1.01 (43.86 MiB → 44.51 MiB)
1.02 (47.87 MiB → 48.64 MiB)

1.05 (48.88 MiB → 51.26 MiB)
0.99 (52.09 MiB → 51.49 MiB)
1.01 (40.3 MiB → 40.57 MiB)
1.01 (40.42 MiB → 40.79 MiB)
1.01 (44.07 MiB → 44.68 MiB)
1.01 (44.88 MiB → 45.42 MiB)

1.05 (49.55 MiB → 51.96 MiB)
1.01 (44.24 MiB → 44.76 MiB)

1.11 (76.15 MiB → 84.68 MiB)
1.10 (55.77 MiB → 61.07 MiB)

1.13 (77.69 MiB → 87.66 MiB)
1.07 (47.71 MiB → 50.86 MiB)
1.09 (57.5 MiB → 62.46 MiB)

1.05 (49.7 MiB → 52.23 MiB)
1.07 (50.73 MiB → 54.13 MiB)

1.04 (49.63 MiB → 51.82 MiB)
1.21 (70.01 MiB → 84.44 MiB)

1.34 (405.73 MiB → 541.8 MiB)
1.03 (49.7 MiB → 51.43 MiB)

1.06 (46.95 MiB → 49.77 MiB)
1.43 (605.44 MiB → 868.61 MiB)

1.02 (60.41 MiB → 61.64 MiB)
1.13 (81.23 MiB → 91.51 MiB)
1.14 (97.29 MiB → 111.38 MiB)

1.42 (207.21 MiB → 293.68 MiB)
1.08 (59.16 MiB → 63.98 MiB)

1.50 (832.28 MiB → 1.22 GiB)
1.09 (53.82 MiB → 58.78 MiB)

1.05 (65.34 MiB → 68.63 MiB)
1.09 (78.95 MiB → 86.27 MiB)

1.12 (79.46 MiB → 89.07 MiB)
1.11 (72.48 MiB → 80.8 MiB)

1.45 (677.94 MiB → 984.1 MiB)
1.10

Figure B.4.: Co-runner-insensitive WCET analysis (with fast-forwarding of converged chains
and delayed case splits) for a quad-core processor with core configuration Conf ioic :
analysis memory consumption per benchmark normalized to the corresponding
memory consumption of an analysis assuming the absence of shared-bus interference.
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Figure B.5.: Co-runner-insensitive WCET analysis (with fast-forwarding of converged chains
and delayed case splits) for a quad-core processor with core configuration Conf oooic :
analysis runtime per benchmark normalized to the corresponding runtime of an
analysis assuming the absence of shared-bus interference.
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Figure B.6.: Co-runner-insensitive WCET analysis (with fast-forwarding of converged chains
and delayed case splits) for a quad-core processor with core configuration Conf oooic :
analysis memory consumption per benchmark normalized to the corresponding
memory consumption of an analysis assuming the absence of shared-bus interference.

323



Appendix B. Backup Experiment Results

cruise_control
digital_stopwatch

es_lift
flight_control

pilot
roboDog

trolleybus
lift

powerwindow
binarysearch

bsort
complex_updates

countnegative
fft

filterbank
fir2dim

iir
insertsort

jfdctint
lms

ludcmp
matrix1

md5
minver

pm
prime

sha
st

adpcm_dec
adpcm_enc
audiobeam

cjpeg_transupp
cjpeg_wrbmp

dijkstra
epic

g723_enc
gsm_dec

gsm_encode
h264_dec
huff_dec

mpeg2
ndes

petrinet
rijndael_dec
rijndael_enc

statemate
susan

—average—
—overall—

1.10 (0.3s → 0.33s)
1.11 (0.47s → 0.52s)

1.07 (0.29s → 0.31s)
1.07 (0.98s → 1.05s)

1.03 (0.36s → 0.37s)
1.08 (0.62s → 0.67s)

1.08 (1.45s → 1.56s)
1.00 (0.34s → 0.34s)

1.08 (1.31s → 1.41s)
1.00 (0.14s → 0.14s)

1.06 (0.16s → 0.17s)
1.14 (0.14s → 0.16s)

1.00 (0.16s → 0.16s)
1.06 (0.33s → 0.35s)

1.08 (0.4s → 0.43s)
1.12 (0.42s → 0.47s)

1.14 (0.14s → 0.16s)
1.00 (0.17s → 0.17s)

1.04 (0.24s → 0.25s)
1.05 (0.19s → 0.2s)

1.16 (0.49s → 0.57s)
1.06 (0.18s → 0.19s)

1.08 (1.47s → 1.59s)
1.18 (0.66s → 0.78s)

1.08 (1.32s → 1.43s)
1.04 (0.26s → 0.27s)

1.07 (0.54s → 0.58s)
1.08 (0.39s → 0.42s)

1.07 (0.46s → 0.49s)
1.07 (0.41s → 0.44s)

1.09 (1.01s → 1.1s)
1.08 (15.45s → 16.7s)

1.06 (0.35s → 0.37s)
1.04 (0.26s → 0.27s)

1.09 (21.17s → 23.16s)
1.08 (0.62s → 0.67s)
1.08 (1.3s → 1.41s)
1.09 (1.89s → 2.06s)

1.05 (9.58s → 10.04s)
1.09 (0.67s → 0.73s)

1.07 (26.48s → 28.34s)
1.04 (0.54s → 0.56s)

1.07 (0.6s → 0.64s)
1.09 (1.16s → 1.26s)
1.09 (1.24s → 1.35s)
1.10 (0.93s → 1.02s)

1.08 (18.96s → 20.54s)
1.07
1.08 (1m 57s → 2m 6.2s)

Figure B.7.: Co-runner-insensitive WCET analysis (with fast-forwarding of converged chains
and delayed case splits) for an octa-core processor with core configuration Conf iois :
analysis runtime per benchmark normalized to the corresponding runtime of an
analysis assuming the absence of shared-bus interference.
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Figure B.8.: Co-runner-insensitive WCET analysis (with fast-forwarding of converged chains
and delayed case splits) for an octa-core processor with core configuration Conf iois :
analysis memory consumption per benchmark normalized to the corresponding
memory consumption of an analysis assuming the absence of shared-bus interference.
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Figure B.9.: Co-runner-insensitive WCET analysis (with fast-forwarding of converged chains
and delayed case splits) for an octa-core processor with core configuration Conf ooois :
analysis runtime per benchmark normalized to the corresponding runtime of an
analysis assuming the absence of shared-bus interference.
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Figure B.10.: Co-runner-insensitive WCET analysis (with fast-forwarding of converged chains
and delayed case splits) for an octa-core processor with core configuration Conf ooois :
analysis memory consumption per benchmark normalized to the corresponding
memory consumption of an analysis assuming the absence of shared-bus interference.
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Figure B.11.: Co-runner-insensitive WCET analysis (with fast-forwarding of converged chains
and delayed case splits) for an octa-core processor with core configuration Conf ioic :
analysis runtime per benchmark normalized to the corresponding runtime of an
analysis assuming the absence of shared-bus interference.
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1.45 (677.94 MiB → 983.22 MiB)
1.11

Figure B.12.: Co-runner-insensitive WCET analysis (with fast-forwarding of converged chains
and delayed case splits) for an octa-core processor with core configuration Conf ioic :
analysis memory consumption per benchmark normalized to the corresponding
memory consumption of an analysis assuming the absence of shared-bus interference.
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1.04 (8.22s → 8.53s)
1.05 (13.7s → 14.45s)
1.13 (20.93s → 23.59s)

1.03 (4m 54.48s → 5m 3.97s)
1.10 (6.87s → 7.55s)

1.04 (16m 38.43s → 17m 17.46s)
1.07 (13.4s → 14.39s)
1.08 (8.88s → 9.58s)
1.07 (21.87s → 23.38s)
1.08 (30.42s → 32.77s)
1.10 (17.77s → 19.48s)
1.11 (19m 16.84s → 21m 19.71s)
1.14

1.11 (1h 8m 29.68s → 1h 15m 49.97s)

Figure B.13.: Co-runner-insensitive WCET analysis (with fast-forwarding of converged chains
and delayed case splits) for an octa-core processor with core configuration Conf oooic :
analysis runtime per benchmark normalized to the corresponding runtime of an
analysis assuming the absence of shared-bus interference.
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1.05 (73.88 MiB → 77.38 MiB)
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1.04 (63.32 MiB → 65.9 MiB)
1.08 (60.61 MiB → 65.27 MiB)
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Figure B.14.: Co-runner-insensitive WCET analysis (with fast-forwarding of converged chains
and delayed case splits) for an octa-core processor with core configuration Conf oooic :
analysis memory consumption per benchmark normalized to the corresponding
memory consumption of an analysis assuming the absence of shared-bus interference.

331



Appendix B. Backup Experiment Results

cruise_control
digital_stopwatch

es_lift
flight_control

pilot
roboDog

trolleybus
lift

powerwindow
binarysearch

bsort
complex_updates

countnegative
fft

filterbank
fir2dim

iir
insertsort

jfdctint
lms

ludcmp
matrix1

md5
minver

pm
prime

sha
st

adpcm_dec
adpcm_enc
audiobeam

cjpeg_transupp
cjpeg_wrbmp

dijkstra
epic

g723_enc
gsm_dec

gsm_encode
h264_dec
huff_dec

mpeg2
ndes

petrinet
rijndael_dec
rijndael_enc

statemate
susan

—average—

3.24 (47514cyc → 153816cyc)
2.65 (303716cyc → 804788cyc)

3.52 (42356cyc → 149138cyc)
3.70 (531746cyc → 1966958cyc)

3.49 (136136cyc → 474578cyc)
3.31 (87116cyc → 288668cyc)

3.11 (332019cyc → 1033638cyc)
3.13 (2935079cyc → 9181748cyc)

3.54 (11144429cyc → 39453281cyc)
3.23 (333cyc → 1074cyc)

3.65 (871882cyc → 3184816cyc)
3.69 (3160cyc → 11661cyc)

3.13 (14911cyc → 46735cyc)
3.45 (502295315cyc → 1732845116cyc)

3.14 (19628667cyc → 61613181cyc)
3.21 (14365cyc → 46166cyc)

3.52 (664cyc → 2334cyc)
3.67 (10893cyc → 39948cyc)

3.59 (6171cyc → 22161cyc)
3.11 (592984cyc → 1841803cyc)

3.20 (25365cyc → 81211cyc)
3.47 (65186cyc → 225983cyc)
3.49 (93353083cyc → 325582639cyc)

3.37 (13964cyc → 46997cyc)
3.23 (30675716cyc → 99164561cyc)

1.72 (27222cyc → 46722cyc)
3.45 (10316027cyc → 35597309cyc)

2.49 (240119cyc → 596696cyc)
3.39 (9938cyc → 33689cyc)

3.23 (11989cyc → 38704cyc)
3.28 (1381402cyc → 4536715cyc)

3.42 (77763142cyc → 265902574cyc)
3.27 (399206cyc → 1304006cyc)
3.24 (22106478396cyc → 71649010773cyc)

2.70 (1462852708cyc → 3956654863cyc)
2.93 (2442110cyc → 7154909cyc)

2.87 (14499789cyc → 41604360cyc)
3.02 (769105cyc → 2323104cyc)

1.80 (1801358cyc → 3240419cyc)
3.48 (2251377cyc → 7832043cyc)

3.11 (41031488788cyc → 127456293046cyc)
3.45 (285476cyc → 983537cyc)

3.15 (6591cyc → 20748cyc)
3.61 (825903280cyc → 2984670046cyc)
3.57 (16672495cyc → 59465713cyc)

3.40 (495735cyc → 1684471cyc)
3.22 (168982606cyc → 544683061cyc)
3.19

Figure B.15.: Co-runner-insensitive WCET analysis for a quad-core processor with core configu-
ration Conf ooois : WCET bounds per benchmark normalized to the corresponding
WCET bounds of an analysis assuming the absence of shared-bus interference.
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Figure B.16.: Co-runner-insensitive WCET analysis for a quad-core processor with core config-
uration Conf ioic : WCET bounds per benchmark normalized to the corresponding
WCET bounds of an analysis assuming the absence of shared-bus interference.
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Figure B.17.: Co-runner-insensitive WCET analysis for a quad-core processor with core configu-
ration Conf oooic : WCET bounds per benchmark normalized to the corresponding
WCET bounds of an analysis assuming the absence of shared-bus interference.
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Figure B.18.: Co-runner-insensitive WCET analysis for an octa-core processor with core config-
uration Conf iois : WCET bounds per benchmark normalized to the corresponding
WCET bounds of an analysis assuming the absence of shared-bus interference.
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6.99 (16672495cyc → 116523337cyc)
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6.19 (168982606cyc → 1045617001cyc)
6.10

Figure B.19.: Co-runner-insensitive WCET analysis for an octa-core processor with core configu-
ration Conf ooois : WCET bounds per benchmark normalized to the corresponding
WCET bounds of an analysis assuming the absence of shared-bus interference.
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6.50

Figure B.20.: Co-runner-insensitive WCET analysis for an octa-core processor with core config-
uration Conf ioic : WCET bounds per benchmark normalized to the corresponding
WCET bounds of an analysis assuming the absence of shared-bus interference.
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6.75

Figure B.21.: Co-runner-insensitive WCET analysis for an octa-core processor with core configu-
ration Conf oooic : WCET bounds per benchmark normalized to the corresponding
WCET bounds of an analysis assuming the absence of shared-bus interference.
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2.97 (1.08s → 3.21s)
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6.65 (2.75s → 18.29s)
4.81 (3.36s → 16.17s)
3.62 (10.07s → 36.47s)
5.71 (1.78s → 10.17s)
4.16 (24.5s → 1m 42.02s)
4.19 (15.49s → 1m 4.85s)
8.09 (7m 2.24s → 56m 56.22s)
3.56 (4.54s → 16.18s)
11.03 (15.51s → 2m 51.13s)

40.35 (17.39s → 11m 41.67s)
3.27 (11.03s → 36.09s)
7.00 (6.3s → 44.09s)
7.85 (1m 12.97s → 9m 32.73s)
8.77 (7m 20.87s → 1h 4m 25.55s)
7.15 (3.57s → 25.51s)
2.90 (4.51s → 13.09s)
8.87 (14m 14.31s → 2h 6m 20.89s)
3.33 (11.15s → 37.09s)
4.79 (19.33s → 1m 32.56s)

28.00 (29.51s → 13m 46.37s)
6.02 (5m 59.07s → 36m 1.97s)
4.75 (9.87s → 46.9s)
7.86 (20m 52.14s → 2h 43m 56.21s)
2.93 (16.91s → 49.5s)
7.50 (14.12s → 1m 45.93s)

39.01 (31.95s → 20m 46.23s)
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4.35 (24.08s → 1m 44.63s)
6.79 (25m 12.05s → 2h 51m 8.65s)
7.65
8.65 (1h 31m 53.91s → 13h 14m 50.43s)

Figure B.22.: Arrival curve values calculated by implicit subpath enumeration (Boundimpli
1,E (l)):

calculation runtime per benchmark normalized to the corresponding runtime of a
calculation at the granularity of program runs.
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Appendix B. Backup Experiment Results
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Figure B.23.: Arrival curve values calculated by implicit subpath enumeration (Boundimpli
1,E (l)):

memory consumption per benchmark normalized to the corresponding memory
consumption of a calculation at the granularity of program runs.
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9.78 (7m 20.87s → 1h 11m 53.3s)
7.62 (3.57s → 27.19s)
4.03 (4.51s → 18.17s)
9.94 (14m 14.31s → 2h 21m 27.95s)
3.82 (11.15s → 42.59s)
5.13 (19.33s → 1m 39.21s)
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13.00 (20m 52.14s → 4h 31m 23.05s)
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Figure B.24.: Arrival curve values calculated by implicit subpath enumeration (Boundimpli
comb,E(l)):

calculation runtime per benchmark normalized to the corresponding runtime of a
calculation at the granularity of program runs.
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Figure B.25.: Arrival curve values calculated by implicit subpath enumeration (Boundimpli
comb,E(l)):

memory consumption per benchmark normalized to the corresponding memory
consumption of a calculation at the granularity of program runs.
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4.64 (4.54s → 21.07s)
8.73 (15.51s → 2m 15.43s)
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6.95 (7m 20.87s → 51m 1.86s)
5.52 (3.57s → 19.7s)
5.52 (4.51s → 24.91s)
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8.55 (1h 31m 53.91s → 13h 5m 37.3s)

Figure B.26.: Arrival curve values calculated by implicit subpath enumeration without binary
variables (Boundimpli′

1,E (l)): calculation runtime per benchmark normalized to the
corresponding runtime of a calculation at the granularity of program runs.
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Figure B.27.: Arrival curve values calculated by implicit subpath enumeration without binary
variables (Boundimpli′

1,E (l)): memory consumption per benchmark normalized to the
corresponding memory consumption of a calculation at the granularity of program
runs.
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1.04 (25m 12.05s → 26m 17.49s)
1.07

1.05 (1h 31m 53.91s → 1h 36m 34.69s)

Figure B.28.: Arrival curve values calculated at the granularity of program runs assuming a relative
minimum inter-start time of 0.5: calculation runtime per benchmark normalized to
the corresponding runtime of a calculation at the granularity of program runs not
assuming a relative minimum inter-start time.
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Figure B.29.: Arrival curve values calculated at the granularity of program runs assuming a
relative minimum inter-start time of 0.5: memory consumption per benchmark
normalized to the corresponding memory consumption of a calculation at the
granularity of program runs not assuming a relative minimum inter-start time.
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138.31 (4.51s → 10m 23.77s)
10.95 (14m 14.31s → 2h 35m 55.57s)
7.20 (11.15s → 1m 20.24s)
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9.78 (1h 31m 53.91s → 14h 58m 37.16s)

Figure B.30.: Arrival curve values calculated by implicit subpath enumeration assuming a relative
minimum inter-start time of 0.5: calculation runtime per benchmark normalized to
the corresponding runtime of a calculation at the granularity of program runs not
assuming a relative minimum inter-start time.
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Figure B.31.: Arrival curve values calculated by implicit subpath enumeration assuming a relative
minimum inter-start time of 0.5: memory consumption per benchmark normalized
to the corresponding memory consumption of a calculation at the granularity of
program runs not assuming a relative minimum inter-start time.
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Figure B.32.: Arrival curve values calculated by implicit subpath enumeration incorporating a
relative minimum inter-start time of 0.5 in a more precise way: calculation runtime
per benchmark normalized to the corresponding runtime of a calculation at the
granularity of program runs not assuming a relative minimum inter-start time.
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Figure B.33.: Arrival curve values calculated by implicit subpath enumeration incorporating a
relative minimum inter-start time of 0.5 in a more precise way: memory consump-
tion per benchmark normalized to the corresponding memory consumption of a
calculation at the granularity of program runs not assuming a relative minimum
inter-start time.
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Figure B.34.: Arrival curve values calculated by taking the minimum of the curve values calculated
by the approaches presented in Section 10.3.1 and Section 10.3.3: calculation runtime
per benchmark normalized to the corresponding runtime of a calculation at the
granularity of program runs not assuming a relative minimum inter-start time.
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Figure B.35.: Arrival curve values calculated by taking the minimum of the curve values calcu-
lated by the approaches presented in Section 10.3.1 and Section 10.3.3: memory
consumption per benchmark normalized to the corresponding memory consumption
of a calculation at the granularity of program runs not assuming a relative minimum
inter-start time.
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Figure B.36.: Arrival curve values calculated by incorporating the curve value calculated by
the approach presented in Section 10.3.1 as upper bound during the calculation
presented in Section 10.3.3: calculation runtime per benchmark normalized to
the corresponding runtime of a calculation at the granularity of program runs not
assuming a relative minimum inter-start time.
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Figure B.37.: Arrival curve values calculated by incorporating the curve value calculated by
the approach presented in Section 10.3.1 as upper bound during the calculation
presented in Section 10.3.3: memory consumption per benchmark normalized to the
corresponding memory consumption of a calculation at the granularity of program
runs not assuming a relative minimum inter-start time.
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Figure B.38.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined by
ISPET, cf. Table 10.11) for a quad-core processor with core configuration Conf oooic :
analysis runtime per benchmark normalized to the corresponding runtime of a
co-runner-insensitive analysis.
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Figure B.39.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined by
progGran0.5, cf. Table 10.11) for a quad-core processor with core configuration
Conf oooic : analysis runtime per benchmark normalized to the corresponding runtime
of a co-runner-insensitive analysis.
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Figure B.40.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined by
combined0.5, cf. Table 10.11) for a quad-core processor with core configuration
Conf oooic : analysis runtime per benchmark normalized to the corresponding runtime
of a co-runner-insensitive analysis.
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Figure B.41.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined by
progGran0.9, cf. Table 10.11) for a quad-core processor with core configuration
Conf oooic : analysis runtime per benchmark normalized to the corresponding runtime
of a co-runner-insensitive analysis.
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Figure B.42.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined by
combined0.9, cf. Table 10.11) for a quad-core processor with core configuration
Conf oooic : analysis runtime per benchmark normalized to the corresponding runtime
of a co-runner-insensitive analysis.
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Figure B.43.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined by
progGran0.95, cf. Table 10.11) for a quad-core processor with core configuration
Conf oooic : analysis runtime per benchmark normalized to the corresponding runtime
of a co-runner-insensitive analysis.
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Figure B.44.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined by
combined0.95, cf. Table 10.11) for a quad-core processor with core configuration
Conf oooic : analysis runtime per benchmark normalized to the corresponding runtime
of a co-runner-insensitive analysis.
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Figure B.45.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined by
ISPET, cf. Table 10.11) for a quad-core processor with core configuration Conf oooic :
analysis memory consumption per benchmark normalized to the corresponding
memory consumption of a co-runner-insensitive analysis.
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Figure B.46.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined
by progGran0.5, cf. Table 10.11) for a quad-core processor with core configura-
tion Conf oooic : analysis memory consumption per benchmark normalized to the
corresponding memory consumption of a co-runner-insensitive analysis.
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Figure B.47.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined
by combined0.5, cf. Table 10.11) for a quad-core processor with core configura-
tion Conf oooic : analysis memory consumption per benchmark normalized to the
corresponding memory consumption of a co-runner-insensitive analysis.
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Figure B.48.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined
by progGran0.9, cf. Table 10.11) for a quad-core processor with core configura-
tion Conf oooic : analysis memory consumption per benchmark normalized to the
corresponding memory consumption of a co-runner-insensitive analysis.
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Figure B.49.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined
by combined0.9, cf. Table 10.11) for a quad-core processor with core configura-
tion Conf oooic : analysis memory consumption per benchmark normalized to the
corresponding memory consumption of a co-runner-insensitive analysis.
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Figure B.50.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined
by progGran0.95, cf. Table 10.11) for a quad-core processor with core configura-
tion Conf oooic : analysis memory consumption per benchmark normalized to the
corresponding memory consumption of a co-runner-insensitive analysis.
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Figure B.51.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined
by combined0.95, cf. Table 10.11) for a quad-core processor with core configura-
tion Conf oooic : analysis memory consumption per benchmark normalized to the
corresponding memory consumption of a co-runner-insensitive analysis.
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Figure B.52.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined by
ISPET, cf. Table 10.11) for a quad-core processor with core configuration Conf oooic :
WCET bounds per benchmark normalized to the corresponding WCET bounds of a
co-runner-insensitive analysis.
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Figure B.53.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined by
progGran0.5, cf. Table 10.11) for a quad-core processor with core configuration
Conf oooic : WCET bounds per benchmark normalized to the corresponding WCET
bounds of a co-runner-insensitive analysis.
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Figure B.54.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined by
combined0.5, cf. Table 10.11) for a quad-core processor with core configuration
Conf oooic : WCET bounds per benchmark normalized to the corresponding WCET
bounds of a co-runner-insensitive analysis.
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Figure B.55.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined by
progGran0.9, cf. Table 10.11) for a quad-core processor with core configuration
Conf oooic : WCET bounds per benchmark normalized to the corresponding WCET
bounds of a co-runner-insensitive analysis.
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Figure B.56.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined by
combined0.9, cf. Table 10.11) for a quad-core processor with core configuration
Conf oooic : WCET bounds per benchmark normalized to the corresponding WCET
bounds of a co-runner-insensitive analysis.
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Figure B.57.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined by
progGran0.95, cf. Table 10.11) for a quad-core processor with core configuration
Conf oooic : WCET bounds per benchmark normalized to the corresponding WCET
bounds of a co-runner-insensitive analysis.
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Figure B.58.: Co-runner-sensitive WCET analysis (arrival curve values calculated as defined by
combined0.95, cf. Table 10.11) for a quad-core processor with core configuration
Conf oooic : WCET bounds per benchmark normalized to the corresponding WCET
bounds of a co-runner-insensitive analysis.
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Fuck you, I won’t do what you tell me.

(Killing in the Name, Rage Against the Machine, 1992)


	I Overview
	1 Introduction
	1.1 Timing Verification
	1.2 Worst-Case Execution Time Analysis
	1.3 Multi-Core Processors
	1.4 Contributions of this Thesis
	1.5 Structure of this Thesis

	2 State of the Art in Timing Verification for Multi-Core Processors
	2.1 Partitioning of Shared Resources
	2.1.1 Space Resources
	2.1.2 Bandwidth Resources

	2.2 Unpartitioned Shared Resources
	2.2.1 Enumeration of Interleavings of Access Requests
	2.2.2 Processor-Core-Modular Timing Verification
	2.2.3 Relevance of this Thesis


	3 Contributions
	3.1 Property Lifting
	3.2 Formalization of the Levels of Approximation
	3.3 Calculation of General Event Bounds
	3.4 Modeling Shared-Resource Interference by Non-Determinism
	3.5 Compositional Base Bounds
	3.6 Calculation of Values on Arrival Curves


	II Design of WCET Analyses
	4 Property Lifting
	4.1 The Principle of Property Lifting
	4.1.1 Approximation by Abstract Traces
	4.1.2 Infeasible Abstract Traces
	4.1.3 System Properties
	4.1.4 Pruning Infeasible Abstract Traces
	4.1.5 Related Work

	4.2 Cooperation between Multiple Abstract Models
	4.2.1 A Compound Abstract Model
	4.2.2 Projections of the Compound Results
	4.2.3 Overapproximating the Projections by Starting from a Maximally Pessimistic Initialization
	4.2.4 Overapproximating the Projections by Starting from a Potentially Optimistic Initialization
	4.2.5 Related Work


	5 A Hierarchy of Abstract Models
	5.1 Concrete Traces of a Concrete System
	5.2 Approximation by Sequences of Abstract States
	5.3 Approximation by Paths through a Graph
	5.4 Approximation by Implicit Path Enumeration
	5.5 Relevance and Related Work

	6 Calculation of Event Bounds
	6.1 Program Execution Runs
	6.2 Exact Event Bounds
	6.3 Event Bounds Based on Sequences of Abstract States
	6.4 Event Bounds Based on Paths through a Graph
	6.4.1 Control Flow and Control Flow Graphs
	6.4.2 A Detailed Graph Representation
	6.4.3 Calculating Safe Event Bounds on a Graph
	6.4.4 Graphs at the Granularity of Basic Blocks
	6.4.5 ISA-Level Control Flow Properties
	6.4.6 Toward Graph Transformations
	6.4.7 Simplification under Guaranteed Termination

	6.5 Event Bounds Based on Implicit Path Enumeration
	6.5.1 The General Case
	6.5.2 The Special Case of WCET Bounds


	7 Multi-Core Processors with Shared Buses
	7.1 Schematic System Design
	7.2 A Baseline Abstract Model
	7.3 Running Example: Round-Robin Bus Arbitration
	7.4 A Co-Runner-Insensitive Analysis
	7.5 Co-Runner-Sensitive Analyses
	7.6 Quantifying Shared-Bus Interference of a Concurrent Core: Granted Access Cycles vs. Granted Accesses
	7.7 Toward Priority-Based Bus Arbitration
	7.8 Consideration of Further Shared Resources
	7.9 Discussion

	8 Compositional Base Bounds
	8.1 The Concept of Compositional Base Bounds
	8.2 Calculation by Subtraction of Edge Weights
	8.3 Calculation by Subtraction during Graph Construction
	8.4 Using Compositional Base Bounds in Existing Schedulability Analyses
	8.5 Sketch: Replacing Constraints by Compositionality for Path Analysis


	III Implementation of WCET Analyses
	9 Evaluation of the Co-Runner-Insensitive WCET Analysis
	9.1 A Naive Implementation
	9.2 Fast-Forwarding of Converged Chains
	9.3 Additionally Delaying the Case Splits
	9.4 Implementing Implicit Path Enumeration without Binary Variables
	9.5 Co-Runner-Insensitive WCET Bounds

	10 Calculation of Values on Arrival Curves
	10.1 Calculation at the Granularity of Program Runs
	10.2 Calculation at Finer Granularities
	10.2.1 Calculation Based on the Subpaths of a Graph
	10.2.2 Using Lifted System Properties to Detect Infeasible Subpaths
	10.2.3 Implicit Enumeration of the Subpaths
	10.2.4 Implicit Subpath Enumeration without Binary Variables
	10.2.5 Supporting Multiple Programs on the Same Processor Core
	10.2.6 Toward Preemptive Scheduling

	10.3 Enforcing Minimum inter-Start Times of Programs to Adjust the Amount of Generated Interference
	10.3.1 Incorporation during Calculation at the Granularity of Program Runs
	10.3.2 Incorporation during Implicit Subpath Enumeration
	10.3.3 More Precise Incorporation during Implicit Subpath Enumeration
	10.3.4 Combining a Curve Value Calculation at the Granularity of Program Runs with Implicit Subpath Enumeration

	10.4 Sketch: A Program-Modular and Precise Calculation Method
	10.4.1 Paths through a Scheduling Graph
	10.4.2 Implicit Scheduling Path Enumeration
	10.4.3 Curve Values Calculated at the Granularity of Program Runs
	10.4.4 Beyond the Granularity of Program Runs
	10.4.5 Advantages of the Sketched Program-Modular Calculation Method

	10.5 Evaluation in the Context of a Co-Runner-Sensitive WCET Analysis


	IV Closure
	11 Conclusion
	11.1 Relevance of Our Formal Framework
	11.2 Computational Complexity of WCET Analysis for Multi-Core Processors
	11.3 Results of the Processor-Core-Modular Experiments
	11.4 Future of WCET Analysis for Multi-Core Processors
	11.5 Related Work in Our Group


	V Appendices
	A Additional Proofs
	B Backup Experiment Results
	C Cited References


