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ABSTRACT

In this thesis we present extensions of spectral clustering and semi-supervised
learning to signed and multilayer graphs. These extensions are based on a one-
parameter family of matrix functions called Matrix Power Means. In the scalar case,
this family has the arithmetic, geometric and harmonic means as particular cases.

We study the effectivity of this family of matrix functions through suitable
versions of the stochastic block model to signed and multilayer graphs. We provide
provable properties in expectation and further identify regimes where the state of
the art fails whereas our approach provably performs well. Some of the settings
that we analyze are as follows: first, the case where each layer presents a reliable
approximation to the overall clustering; second, the case when one single layer has
information about the clusters whereas the remaining layers are potentially just
noise; third, the case when each layer has only partial information but all together
show global information about the underlying clustering structure.

We present extensive numerical verifications of all our results and provide matrix-
free numerical schemes. With these numerical schemes we are able to show that our
proposed approach based on matrix power means is scalable to large sparse signed
and multilayer graphs.

Finally, we evaluate our methods in real world datasets. For instance, we show
that our approach consistently identifies clustering structure in a real signed net-
work where previous approaches failed. This further verifies that our methods are
competitive to the state of the art.
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ZUSAMMENFASSUNG

In dieser Arbeit stellen wir Erweiterungen von spektralem Clustering und
teilüberwachtem Lernen auf signierte und mehrschichtige Graphen vor. Diese Er-
weiterungen basieren auf einer einparametrischen Familie von Matrixfunktionen, die
Potenzmittel genannt werden. Im skalaren Fall hat diese Familie die arithmetischen,
geometrischen und harmonischen Mittel als Spezialfälle.

Wir untersuchen die Effektivität dieser Familie von Matrixfunktionen durch
Versionen des stochastischen Blockmodells, die für signierte und mehrschichtige
Graphen geeignet sind. Wir stellen beweisbare Eigenschaften vor und identifizieren
darüber hinaus Situationen in denen neueste, gegenwärtig verwendete Methoden
versagen, während unser Ansatz nachweislich gut abschneidet. Wir untersuchen
unter anderem folgende Situationen: erstens den Fall, dass jede Schicht eine zuverläs-
sige Approximation an die Gesamtclusterung darstellt; zweitens den Fall, dass eine
einzelne Schicht Informationen über die Cluster hat, während die übrigen Schichten
möglicherweise nur Rauschen sind; drittens den Fall, dass jede Schicht nur partielle
Informationen hat, aber alle zusammen globale Informationen über die zugrunde
liegende Clusterstruktur liefern.

Wir präsentieren umfangreiche numerische Verifizierungen aller unserer Ergeb-
nisse und stellen matrixfreie numerische Verfahren zur Verfügung. Mit diesen
numerischen Methoden sind wir in der Lage zu zeigen, dass unser vorgeschla-
gener Ansatz, der auf Potenzmitteln basiert, auf große, dünnbesetzte signierte und
mehrschichtige Graphen skalierbar ist.

Schließlich evaluieren wir unsere Methoden an realen Datensätzen. Zum Beispiel
zeigen wir, dass unser Ansatz konsistent Clustering-Strukturen in einem realen
signierten Netzwerk identifiziert, wo frühere Ansätze versagten. Dies ist ein weiterer
Nachweis, dass unsere Methoden konkurrenzfähig zu den aktuell verwendeten
Methoden sind.
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1I N T R O D U C T I O N

Interactions are probably one of the major footprints of our times. Nowadays inter-
actions are permeating every aspect of our lives, taking unprecedented magnitudes
and posing new scientific challenges. Some examples of the current relevance of
interactions are:

• People who will never physically meet interact with each other by getting involved
in discussions that potentially engage thousands of people from the most diverse
countries and cultures.

• Researchers collaborate with colleagues who are based in other continents to po-
tentially produce scientific outputs that would be impossible wihtout interactions,
involving hundreds of scientific institutes around the world.

• International political treaties are discussed through virtual conferences, allowing
interactions and dynamics to evolve. We reach agreements with worldwide
consequences.

• Due to the present global pandemic, e-commerce is nowadays reaching unprece-
dented popularity, inducing transactions between costumers and producers that
otherwise would have never happened.

• Interactions are enhanced by the unprecedented level of human mobility around
the world. This became evident with the astonishing virus spread speed leading
to our current pandemic crisis.

To get a first glimpse of the nature of observed interactions, a first step consists in
the identification of sets of observations that present a similar behavior. To reach this
goal several clustering methods have been proposed so far, with spectral clustering
one of the most popular.

Spectral clustering is a graph-based method that identifies clusters based on observed
interactions, by first providing a suitable embedding of the nodes from a graph
operator, and later making cluster assignments. Spectral clustering has received a
relevant amount of attention for several reasons, for instance: superiority in perfor-
mance against other clustering approaches, a simple algorithmic description, and
many mathematical properties.

Despite the success of spectral clustering, one of its major drawbacks is its as-
sumption that all observed interactions are of the same nature. However, interactions
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2 chapter 1. introduction

between entities are potentially of many kinds, and each of them is likely to pro-
vide information regarding the underlying clustering structure between the entities.
Particular instances of multiple kinds of interactions are:

• Signed Graphs: graphs that encode both positive and negative kinds of interac-
tions, where positive interactions represent similarity, trust, or friendship, and
negative interactions encode dissimilarity, distrust, or conflicts.

• Multilayer Graphs: graphs that encode multiple kinds of interactions between a
fixed set of entities. For instance, it is possible that between researchers several
diverse interactions take place at the same time, such as interactions by citations,
co-authorships, or by jointly organized symposiums. All these interactions, while
informative of certain underlying clustering structure, convey different semantic
meanings.

The main limitation of spectral clustering to signed and multilayer graphs comes
from the fact that it relies on generating an informative embedding of the set of
nodes which is obtained from a suitable graph operator, for instance, the graph
Laplacian. Hence, when multiple kinds of interactions are observed, the question is
how one can merge the information encoded from multiple kinds of interactions to
obtain a useful embedding from the nodes.

Since most graph-based methods rely on some sort of a graph operator, the limita-
tions of spectral clustering on signed and multilayer graphs permeate as well into
other graph-based techniques, for instance graph-based semi-supervised learning.

The goal of graph-based semi-supervised learning is to build a classifier that takes
into account both labeled and unlabeled observations, by considering a suitable loss
function and the underlying graph structure of the observations. Similar to what
we have observed with spectral clustering, graph-based semi-supervised learning is
not clearly applicable to cases with multiple kinds of interactions, since it requires a
graph operator that induces the underlying clustering structure.

A natural extension of spectral clustering and semi-supervised learning to networks
with multiple kinds of interactions is to take the graph Laplacian per interaction
and afterwards use an average like the arithmetic mean. Whereas this notion at first
sight is a sensible one, it is not clear how effective this approach is. Moreover, if we
think about the arithmetic mean, a natural task would be to consider other cases like
the geometric or harmonic means.

Throughout this thesis we study extensions of spectral clustering and semi-supervised
learning to the case where multiple kinds of interactions are observed. Our proposed
extensions are based on a one-parameter family of matrix functions called Matrix
Power Means, which in the scalar case contains as particular cases the arithmetic,
geometric and harmonic means. We prove several properties of our proposed ex-
tensions under a suitable variation of the stochastic block model for signed and
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multilayer graphs, and show that in expectation they outperform the state of the art.
We verify our findings through extensive numerical experiments. We further perform
experiments in real datasets, showing that our approach does not perform worse
than the state of the art. Finally, we present matrix-free numerical schemes to show
that our proposed approaches are scalable to large sparse signed and multilayer
graphs.

It is worthwhile mentioning that in this work we focus on multilayer graph ap-
proaches. A popular related task is the one related to multi-view learning, based
on the assbumption that several views of the same entities are available. While
this approach sounds similar to the one of multilayer graphs, it is important to
emphasize that multi-view approaches often assume that multiple sets of features
are available, and hence the task is not strictly a graph-based task. Yet, several of
these approaches make use of certain graph tools, like the graph Laplacian. For an
overview of multi-view learning please see (Sun, 2013; Xu et al., 2013). We emphasize
that in this work we will only consider graph-based approaches that do not rely on
any feature data.

1.1 related work

In this section a brief overview is given about related work on the analysis of signed
and multilayer graphs. We first start with the case of signed graphs and focus on
clustering approaches, to later consider multilayer graphs and emphasize the tasks
of clustering and semi-supervised learning.

1.1.1 Signed Graphs

The analysis of signed graphs can be traced back to the concept of social bal-
ance (Cartwright and Harary, 1956; Harary, 1953; Davis, 1967), where the goal is to
identify a partition of the set of nodes so that positive interactions are mainly inside
the clusters, and negative interactions are mainly between clusters. This notion is
motivated by the concept of a k-balanced signed graph.

Definition 1.1 (Davis (1967), k-balance). A signed graph is k-balanced if the set of vertices
can be partitioned into k sets such that within the subsets there are only positive edges, and
between them only negative.

The concept of a k-balanced signed graph has been predominant in the analysis
of signed graphs. Several challenges are posed by signed networks in tasks like edge
prediction, where the task is not only to predict if there will be an interaction, as in
unsigned graphs, but to predict if it will be positive or negative. For instance (Falher
et al., 2017) propose to predict a directed signed edge under the Trust-Troll model, i.e.
in the fraction of outgoing negative edges (trollness) and incoming positive edges
(trustworthiness), (Kumar et al., 2016) introduce the notions of fairness and goodness
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of users in a signed social network to predict signed edges, and in (Leskovec et al.,
2010a) features build on the signed degree of nodes and from social balance theory
are used to predict the sign of an edge.

Signed networks pose as well several challenges to the task of node embeddings.
Node embeddings have received a relevant amount of attention as they allow the
application of standard feature-based methods for the analysis of graphs. In the
case of signed graphs, positive edges suggest that the corresponding nodes should
be embedded close to each other, whereas negative edges push them apart. For
instance (Chiang et al., 2011) propose to consider long cycles in signed graphs,
as these provide a criterion related to the notion of k-balance, (Derr et al., 2018)
extend the concept of graph convolutional networks to signed graphs and apply
it to generate informative embeddings of the nodes, (Kim et al., 2018) propose a
novel embedding technique for the case of directed signed graphs, and in (Wang
et al., 2017) it is proposed to consider 2-hop networks and generate embeddings that
follow the level of balance observed there.

Another line of work is the task of node classification. In this task the goal is to
build a classifier that takes into account both labeled and unlabeled observations,
based on a suitable loss function and a regularizer that induces the information
encoded by positive and negative edges. Since traditional graph operators are not
suitable to signed graphs, several challenges are posed by this task. For instance (Mer-
cado et al., 2019a) take an approached based on diffuse interface methods,(Tang
et al., 2016a) are motivated by matrix factorization approaches inspired by social
balance, and (Goldberg et al., 2007) propose a suitable graph operator together with
an extension inspired by wrapped kernels.

Closer to our goal are methods that extend spectral clustering to signed graphs. As
mentioned previously, the main challenge is to introduce an operator that merges
the information encoded by both positive and negatives interactions such that the
eigenvectors corresponding to the smallest eigenvalues are informative. Several
efforts have been focused on this task, for instance (Kunegis et al., 2010) propose
a new signed graph Laplacian inspired by extending the notion of graph cuts to
signed graphs. The proposed signed graph Laplacian is basically the addition of the
standard graph Laplacian on positive edges, and the signless Laplacian (Desai and
Rao, 1994) on negative edges. They show that the proposed signed graph Laplacian
inherits properties of the unsigned case, like being positive-semidefinite and that the
zero eigenvalue is observed if and only if the signed graph is 2-balanced.

Inspired by (Kunegis et al., 2010), (Chiang et al., 2012) proposed several notions of
graph cuts for signed graphs, together with their continuous relaxation inducing dif-
ferent Laplacians for signed graphs, which are additions of suitable graph operators
on positive and negative edges.

Based on the observation that previous approaches are basically additions of
matrices, works like (Mercado et al., 2016) and (Cucuringu et al., 2019) have proposed
novel extensions of spectral clustering. For instance, in (Mercado et al., 2016) it is
proposed to take the matrix geometric mean of suitable Laplacians of positive and
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negative edges, whereas (Cucuringu et al., 2019) proposed a continuous relaxation
inspired by the notion of non-uniform cuts.

A closely related approach to spectral clustering of signed graphs is correlation
clustering (Bansal et al., 2004). Whereas in spectral clustering it is required to specify
the number of clusters to identify, in correlation clustering the number of clusters
is automatically identified such that the final output is as close as possible to be
k-balanced. The case where the number of clusters is fixed a-priori has been explored
in (Giotis and Guruswami, 2006). In the context of correlation clustering, in (Saade
et al., 2015) the Bethe Hessian matrix is introduced. The Bethe Hessian matrix need
not be positive definite, but the number of negative eigenvalues is a good estimation
of the number of clusters in a signed network, and the corresponding eigenvectors
provide information of the clustering structure (Saade et al., 2014).

Further works related to clustering in signed graphs are (Sedoc et al., 2017;
Doreian and Mrvar, 2009; Knyazev, 2018; Kirkley et al., 2019; Cucuringu et al., 2018).
For a comprehensive survey on works related to signed networks we refer the reader
to (Tang et al., 2016b; Gallier, 2016).

1.1.2 Multilayer Graphs

Multilayer graphs pose several challenges due to the multiple kinds of interactions
that are encoded. For instance, each kind of interaction can be seen as a network that
constitutes a layer of the corresponding multilayer network. In this case, a multilayer
graph can be seen as a set of graphs over the same set of nodes. Moreover, if there
are interactions between nodes in different layers, then the ordering is relevant, for
instance when the layers are time snapshots of the same network over time (Taylor
et al., 2016, 2017), and thus tensor representations are potentially more suitable for this
case(Kivelä et al., 2014, see Section 2.2). Hence, the representation of multiple kinds
of interactions poses already certain aspects into consideration. Connections between
different representations of multilayer graphs have been studied, showing, for
instance, that the spectrum of supra-adjacency matrices interlace with the spectrum
of the average adjacency matrix (Sánchez-García et al., 2014). In this work we are
going to assume that interactions happen only inside layers, and that there is no
particular ordering of layers.

Further challenges of multilayer graphs are related to notions like node central-
ity (Tudisco et al., 2018; Battiston et al., 2014; Solá et al., 2013), multi-scale synthe-
sis (Lockerman et al., 2016), node embeddings (Zhang et al., 2018; Yang et al., 2020),
link prediction(De Bacco et al., 2017; Ermis et al., 2015; Koptelov et al., 2020) among
others.

In the following chapters we will give a brief overview of several approaches
concerning clustering and semi-supervised learning in multilayer graphs. For a
general discussion we refer the reader to (Boccaletti et al., 2014; Kivelä et al., 2014;
Aleta and Moreno, 2019).
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1.1.2.1 Clustering with Multilayer Graphs

The task of clustering in single layer graphs is one of the most popular tasks (Fortu-
nato, 2010), yet, its analysis on multilayer graphs remains in its infancy (Kivelä et al.,
2014, see Section 4.5.1). Most of the current methods on multilayer graphs rely on
joint matrix factorizations, graph-aggregation approaches, extensions of modularity,
and co-training, among others. We give a brief overview of these methods.

Several approaches to clustering with multilayer graphs have been proposed
based on the notion of matrix factorizations (Dong et al., 2012, 2014; Tang et al., 2009;
Zhao et al., 2017a; Rocklin and Pinar, 2011; Xia et al., 2014) where the goal is to
represent a multilayer graph with a small number of matrices that convey the most
relevant information regarding the underlying clustering structure of a multilayer
graph. (Tang et al., 2009), for instance, propose a joint factorization approach applied
to the adjacency matrices of the layers of a multilayer graph, whereas (Dong et al.,
2012) instead proposes to do this on the Laplacian spectrum of the layers.

Another approach is based on Bayesian inference (De Bacco et al., 2017; Paul
and Chen, 2016a; Peixoto, 2015; Schein et al., 2015, 2016; Jenatton et al., 2012). For
this approach a certain assumption on the distribution of the interactions is made
to later optimize a suitable likelihood function which frequently relies on proper
optimization techniques. For a self contained introduction into Bayesian approaches
related to the stochastic block model see (Peixoto, 2019).

Extensions of Newman’s modularity (Newman, 2006) and related null models
have been proposed to multilayer graphs (Mucha et al., 2010; Paul and Chen, 2016b;
Wilson et al., 2017). In the traditional single layer graph the goal of Newman’s
modularity (Newman, 2006) is to identify a partition of the set of nodes such that
the edge density per partition is larger than that of a certain reference (null) model.
One of the characteristics of modularity approaches is that they as well estimate
the number of clusters and hence it is not necessary to fix in advance the number
of clusters to search. For instance, (Wilson et al., 2017) propose a method that
recovers overlapping clusters and identifies observations that are not related to the
overall clustering structure. They further prove consistency in a suitable multilayer
stochastic block model. Moreover, several null models for multilayer graphs are
introduced in (Paul and Chen, 2016b; Bassett et al., 2013) related to the degree
corrected stochastic block model and Girvan-Newman modularity (Newman and
Girvan, 2004).

A co-training approach is proposed in (Kumar and III, 2011) where the main
assumption is that each layer in a multilayer graph is sufficient to produce meaningful
clusters and that layers are compatible in the sense that they basically generate the
same clustering. Hence, the goal is to produce a clustering that is consistent with
the information encoded in each layer. This approach is further explored in (Kumar
et al., 2011) under the notion of co-regularization.

A line of research that is close to our approach goes by compressing a multilayer
graph in a single matrix to later perform clustering on it. A natural first approach
goes by adding the adjacency matrices or the Laplacians of the layers (Chen and
Hero, 2017; Huang et al., 2012; Taylor et al., 2017; Zhou and Burges, 2007). For
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instance, (Chen and Hero, 2017) aim at identifying the optimal convex combination
of the layers of a multilayer graph, whereas (Zhou and Burges, 2007) presents a
weighted arithmetic mean motivated by graph cuts. A systematic analysis under
the stochastic block model has been presented in (Paul and Chen, 2020) providing a
comparison of matrix factorization and matrix averaging approaches.

For recent overviews related to clustering with multilayer graphs we refer the
reader to (Kim and Lee, 2015; Sun, 2013; Xu et al., 2013; Zhao et al., 2017b).

1.1.2.2 Semi-Supervised Learning with Multilayer Graphs

The task of semi-supervised learning on graphs is to build a classifier that takes into
consideration both labeled and unlabeled observations. A well-established approach
to this task is to take a suitable loss function on the labeled nodes and a regularizer
which provides information encoded by the graph. For semi-supervised learning
on single layer graphs (Zhu et al., 2003) consider a Gaussian Markov random field
together with harmonic functions whereas in (Zhou et al., 2003) a label propagation
approach is taken, and (Belkin et al., 2004) propose a manifold regularization ap-
proach. Further approaches have been developed through deep learning (Yang et al.,
2016) and graph convolutional networks (Kipf and Welling, 2017; Wu et al., 2019;
Chami et al., 2019).

Extensions of semi-supervised learning to multilayer graphs pose the challenge
of building a classifier by taking several kinds of interaction into consideration.
Inspired by the single layer approach by (Zhu et al., 2003; Zhou et al., 2003; Belkin
et al., 2004) several works have proposed different multilayer graph extensions, and
hence different kinds of multilayer graph operators are implicitly considered as some
sort of regularizers. Hence, a great amount of attention has been posed on finding
some sort of weighted arithmetic mean of the adjacency or Laplacian matrices of the
layers of a multilayer graph, such that layers with a higher weight are more infor-
mative. For instance, (Zhou and Burges, 2007) propose to take a suitable weighted
arithmetic mean of adjacency matrices inspired by the notion of multilayer graph
cuts, whereas in (Mostafavi et al., 2008) this is achieved by taking only labeled nodes.
Moreover (Tsuda et al., 2005) propose a suitable arithmetic mean of the Laplacians
of the layers as a regularizer, whereas (Argyriou et al., 2006) proposed a convex
combination of Laplacians via the pseudo inverse Laplacian kernel. (Kato et al.,
2009) combine Laplacians by a maximum a posterior estimation taking a Gamma
distribution as a prior for the weight of each layer, and (Nie et al., 2016) propose a
parameter-free approach. Further, a sparse linear combination of layer Laplacians
is proposed in (Karasuyama and Mamitsuka, 2013). Recently, (Viswanathan et al.,
2019) proposed a multi-component extension of Gaussian Markov random fields
where observations on the vertices are modelled as jointly Gaussian with an inverse
covariance matrix that is a weighted linear combination of multiple matrices.

Furthermore, based on improvements of belief propagation (Koutra et al., 2011), a
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scalable approximation to multilayer graphs has been proposed in (Eswaran et al.,
2017), whereas in (Gujral and Papalexakis, 2018) a tensor factorization method is
designed for semi-supervised learning in multilayer graphs.



1.2 contributions and outline 9

1.2 contributions and outline

The contributions in this thesis are extensions of spectral clustering for signed
and multilayer graphs, and semi-supervised learning for multilayer graphs. The
proposed extensions are based on a one-parameter family of matrix means called
Matrix Power Means which in the scalar case has as particular cases the arithmetic,
geometric and harmonic means.

We study the effectivity of Matrix Power Means under a suitable stochastic
block model for signed and multilayer graphs, and provably show that different
matrix means perform well under different settings in expectation. For instance,
for the limit case +∞ we show that matrix means effectively blend the information
of a signed/multilayer graph when each layer provides global information of the
clustering/class structure, whereas the limit case −∞ is effective in at least two cases:
a) when at least one layer conveys global information and the remaining layers are
potentially just noise; b) when each layer provides only local information but taking
all layers together one obtains global information of the clustering/class structure.
All our provable results are extensively verified through numerical experiments.

Further, we perform experiments on real datasets and show that our approach is
competitive to the state of the art. Furthermore, in signed networks our approach is
the first one identifying explicit clustering structure in a real-world dataset where it
was conjectured that there was no clustering structure.

Finally, we propose matrix-free numerical schemes showing that our proposed
approaches based on matrix power means are scalable to large sparse signed and
multilayer graphs.

We now present a summary of the contributions per chapter and the thesis’ outline.

• Background Material (Ch. 2) In this chapter we give a brief overview of spectral
clustering and provide a motivation in terms of graph cuts. Further, we briefly
describe k-means. This constitutes the last step in the algorithmic description of
spectral clustering.

We further introduce in Section 2.3 a well-known one-parameter family of means
called the scalar power means, which includes as particular cases the arithmetic,
geometric and harmonic mean. Moreover, we introduce a matrix extension called
the Matrix Power Means. The family of matrix power means are the fundamental
tools that we use to propose extensions of spectral clustering and semi-supervised
learning on signed and multilayer graphs. The following chapters present an
analysis on the effectivity of matrix power means to merge the information encoded
by multiple kinds of interactions under different contexts.

• Spectral Clustering of Signed Graphs via Matrix Power Means (Ch. 3).
This chapter presents and extension of spectral clustering to signed graphs by
introducing the Signed Power Mean Laplacian, which is the matrix power mean
applied to the Laplacian of positive edges and the signless Laplacian of negative
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edges. We present an analysis based on a suitable stochastic block model, and
show that our proposed approach provably outperforms the state of the art in
expectation. We further show that the Signed Power Mean Laplacian concentrates
around its mean under the stochastic block model. Moreover, we show that our
approach is competitive to the state of the art in real-world datasets. Finally, we
present a matrix-free numerical scheme showing that our proposed approach is
scalable to large sparse signed networks.

The content of this chapter corresponds to the ICML 2019 publication: “Spectral
Clustering of Signed Graphs via Matrix Power Means” (Mercado et al., 2019c).

• Spectral Clustering of Multilayer Graphs via Matrix Power Means (Ch. 4).
Based on the insights from the previous chapter, we present an extension of
spectral clustering to multilayer graphs via the Power Mean Laplacian obtained
from the Laplacian of each layer. We present an analysis under the stochastic
block model and show that our proposed approach outperforms the state of the
art under three different regimes: robustness under the presence of noise-layers;
the case when none of the layers contain full information of the clusters, but only
if one considers them all together; and when clusters present fluctuations between
layers. For the first two cases we present formal guarantees, whereas for the last
one we present numerical experiments. We further provide experiments on real
datasets and show that our approach performs no worse than the state of the art.

The content of this chapter corresponds to the AISTATS 2018 publication: “The
Power Mean Laplacian for Multilayer Graph Clustering” (Mercado et al., 2018).

• Semi-Supervised Learning on Multilayer Graphs via Matrix Power Means (Ch. 5).
In this chapter we consider the task of building a classifier taking both labeled
and unlabeled observations, by considering a suitable loss function and the un-
derlying multilayer graph structure of the observations. To induce the underlying
clustering structure we propose the Power Mean Laplacian as a regularizer. We
present an analysis under the stochastic block model and show that our proposed
approach yields a good classification performance when at least one of the layers
provides information from the class structure of the nodes. Moreover, we present
a weighted loss function that provably recovers the classes in expectation when
the number labeled nodes per class is different. We verify our findings with
extensive numerical experiments and further show that our proposed approach is
competitive to the state of the art in real datasets. Apart from that, we present a
matrix-free numerical scheme showing that our method is scalable to large sparse
graphs, outperforming the time execution of several state of the art approaches.

The content of this chapter corresponds to the NeurIPS 2019 publication: “Gener-
alized Matrix Means for Semi-Supervised Learning with Multilayer Graphs” (Mer-
cado et al., 2019b).



2B A C K G R O U N D M AT E R I A L

In this chapter we briefly introduce two of the main methods related to this work:
spectral clustering and k-means. In this first part we present spectral clustering,
which is a well-established, graph-based clustering method, and which we aim to
extend to signed and multilayer graphs in the remainder chapters of this work. In
the second section we briefly introduce k-means clustering, which corresponds to
the last algorithmic step of spectral clustering.

2.1 spectral clustering

Spectral clustering is a well-established technique which has proven to be useful in
the identification of sets of observations that present a similar behaviour. This is
achieved by finding a partition of the sets of nodes such that nodes belonging to the
same partition are highly similar. In this section we provide a brief introduction to
spectral clustering, broadly following the influential work of (von Luxburg, 2007).

Spectral clustering, based on the first eigenvectors of the (normalized) graph
Laplacian, first provides a k-dimensional embedding of the nodes of the correspond-
ing graph and then applies k-means to return a partition of the set of nodes. The
corresponding pseudo code is shown in Algorithm 1.

Algorithm 1: Spectral clustering
Input: Symmetric adjacency matrix W, number k of clusters to construct.
Output: Clusters C1, . . . , Ck.

1 Compute Laplacian matrix Lsym.
2 Compute eigenvectors u1, . . . , uk corresponding to the k smallest eigenvalues of Lsym.
3 Let U = (u1, . . . , uk) be the matrix containing eigenvectors u1, . . . , uk as columns.
4 Cluster the rows of U with k-means into clusters C1, . . . , Ck.

Spectral clustering relies on the (normalized) graph Laplacian, which we now
introduce. For a given graph G = (V, W) with a set of nodes V and adjacency matrix
W, the graph Laplacian and its normalized symmetric version are defined as

L = D−W , Lsym = D1/2LD1/2 (2.1)

where D is a diagonal matrix with Dii = di, and di = ∑n
j=1 wij. Among the properties

of the graph Laplacians L and Lsym are the following (von Luxburg, 2007):

• L and Lsym are symmetric and positive semi-definite,

• the smallest eigenvalue of L and Lsym is 0,

11
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• the quadratic form of the Laplacian L is: x′Lx = 1
2 ∑n

i,j=1 wij(xi − xj)
2

• the multiplicity of the eigenvalue 0 of L and Lsym is equal to the number of
connected components in the graph.

The intuition behind spectral clustering can be seen from different perspectives.
In what follows we provide a brief notion on how spectral clustering can be seen as
a relaxation of the normalized graph cut problem. We would like to mention that we
not only consider binary adjacency adjacency matrices but as well general weighted
graphs.

2.1.1 Spectral Clustering from the normalized graph cut perspective

Spectral clustering can be seen as a continuous relaxation of a discrete optimization
problem in terms of graph cuts. In particular, the discrete optimization problem can
be casted as the normalized graph cut problem as follows:

min
(C1,...,Ck)∈Pk

Ncut(C1, . . . , Ck) :=
k

∑
i=1

cut(Ci, C̄i)

vol(Ci)
. (2.2)

where Pk is the set of all k-partitions of the vertex set V, and

cut(C, C̄) = ∑
vi∈C,vj∈C̄

wij (2.3)

vol(C) = ∑
vi∈C

di (2.4)

where di = ∑n
j=1 wij Since the discrete optimization problem (2.2) is NP-hard, a

continuous relaxation is suitable. In particular, the following formulation leads to
spectral clustering with the normalized graph Laplacian Lsym:

min
H∈Rn×k

Tr(H′LsymH) subject to H′H = I. (2.5)

where the columns of the minimizer matrix H correspond to the k-eigenvectors with
the smallest eigenvalues of Lsym (Lütkepohl, 1996, Section 5.2.2.(6)).

We now verify that (2.5) indeed is a relaxation of (2.2). We first observe that by
defining T = D−1/2H we obtain

Tr(H′LsymH) = Tr(T′D1/2D−1/2LD−1/2D1/2T) = Tr(T′LT) (2.6)

together with the fact H′H = T′D1/2D1/2T = T′DT. Hence the optimization
problem (2.5) can now be expressed as

min
T∈Rn×k

Tr(T′LT) subject to T′DT = I. (2.7)
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Observe that from the solution matrix T of (2.7) one can recover the solution matrix
H of (2.5) by the relation H = D1/2T. We now introduce a specific family of matrices.
Let T ∈ Rn×k be defined entrywise as

tij =


1√

vol(Cj)
if vi ∈ Cj

0 else
(2.8)

where one can see that the columns of T are weighted indicator vectors. Let ti denote
the ith column of matrix T. Then, one can easily verify that t′iDti = δij and

t′iLti =
cut(Ci, C̄i)

vol(Ci)
(2.9)

and hence

Tr(T′LT) =
k

∑
i=1

t′iLti =
k

∑
i=1

cut(Ci, C̄i)

vol(Ci)
= Ncut(C1, . . . , Ck) (2.10)

Hence, the graph normalized cut problem (2.2) can be restated in terms of matrices
of the form (2.8), namely

min
(C1,...,Ck)∈Pk

Tr(T′LT)

subject to: T′DT = I,
T as defined in (2.8).

To further wrap-up the current exposition, observe that by relaxing the search space
from sets to matrices with real entries, and recalling that T = D−1/2H, we get the
continuous relaxation initially described in (2.5).

2.2 k-means

From the previous Section 2.1 we have seen that the last step of spectral clustering
(see Algorithm 1) relies on applying k-means to the matrix composed by certain
eigenvectors of the corresponding Laplacian. In this section we provide a brief
introduction to k-means.

The k-means method (traditionally believed that the name was first coined
in (MacQueen, 1967)) is a clustering method that identifies sets of observations
such that the distances between elements in the same cluster are smaller than those
between elements belonging to different clusters. This is achieved by identifying
certain prototypes per cluster (for instance, the mean among observations belonging
to a certain cluster) such that all observations belonging to a cluster share its nearest
prototype.
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The optimization problem of k-means can be stated as follows

arg min
(C1,...,Ck)∈Pk
µ1,...,µk∈RD

k

∑
i=1

∑
xj∈Ci

∥∥xj − µi
∥∥2 := J(k) (2.11)

where C1, . . . , Ck are the final clusters, Pk is the set of all k-partitions of the given
observations x1, . . . , xn ∈ RD, and µ1, . . . , µk ∈ RD are the corresponding prototypes.
This definition of the k-means problem has been shown to be NP-Hard (Mahajan
et al., 2012; Aloise et al., 2009). Hence approaches providing an approximate solution
have been proposed, among them Lloyd’s algorithm (Lloyd, 1982), which is described
in Algorithm 2.

Algorithm 2: Lloyd’s algorithm

Input: Observations x1, . . . , xn ∈ RD, number of clusters k to construct.
Output: Clusters C1, . . . , Ck, and prototypes µ1, . . . , µk ∈ RD

1 Initialize µ1, . . . , µk.
2 while J(k) has not converged do

// Update clusters
3 for i← 1 to n do
4 Assign xi to Cj∗ if j∗ = arg minj

∥∥xi − µj
∥∥

5 end
// Update prototypes

6 for i← 1 to k do

7 µi =
1
|Ci| ∑

xj∈Ci

xj

8 end
9 end

In practice it is recommended to execute Lloyd’s algorithm several times with
different starting prototypes, and choose the output that reached the best solution in
terms of Eq. (2.11).

We briefly mention that Lloyd’s algorithm consists of two alternating optimization
problems, each of them leading to the corresponding updating rule for clusters
and corresponding prototypes. For each updating rule we have the following
observations:

• Update clusters: for fixed prototypes one can minimize J(k) with respect to
C1, . . . , Ck, leading to the corresponding update rule for clusters, which is
obtained from the minimization of the entry

∥∥xi − µj
∥∥2 of J(k), by identifying

the nearest prototype of the corresponding observation,

• Update prototypes: for fixed clusters, one can minimize J(k) with respect to
µ1, . . . , µk, leading to the corresponding update rule for prototypes. This is
particularly clear since

1
|Ci| ∑

xj∈Ci

xj = arg min
µi∈RD

∑
xj∈Ci

∥∥xj − µi
∥∥2 (2.12)
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Aiming to improve the performance of k-means by considering suitable prototype
initialization approaches, several techniques have been proposed, for instance, k-
means++(Arthur and Vassilvitskii, 2007), one-shot coresets (Bachem et al., 2018), and
k-medoids (Newling and Fleuret, 2017).

2.3 power means

This section introduces a general family of scalar means called scalar power means.
We will show that scalar power means depends on one parameter, and that for
particular values it yields well known means as the arithmetic, geometric and
harmonic means. Based on this scalar family of means we will introduce a matrix
extension called the matrix power means. This will be our main tool to extend
spectral clustering and semi-supervised learning to signed and multilayer graphs.

2.3.1 Scalar Power Means

The scalar power mean of a set of non-negative scalars x1, . . . , xT is a general one-
parameter family of means defined for p ∈ R as

mp(x1, . . . , xT) =
( 1

T

T

∑
i=1

xp
i

)1/p
.

It is easy to see that the scalar power mean includes some well-known means as
special cases, among them the harmonic, geometric and arithmetic means:

name minimum harmonic mean geometric mean arithmetic mean maximum
p p→ −∞ p = −1 p→ 0 p = 1 p→ ∞

mp(a, b) min{a, b} 2
( 1

a +
1
b

)−1 √
ab (a + b)/2 max{a, b}

Table 2.1: Particular cases of scalar power means

While the arithmetic mean is a well-known mean (Lovric, 2011, see p.788-791), the
task of choosing a suitable mean in a given context is not trivial, as stated in (United
Nations Development Programme, 1997, see p.117-121):

There is an inescapable arbitrariness in the choice of p. The right way to
deal with this issue is to explain clearly what is being assumed [...]

Several examples of applying different power means are available. For instance,
the geometric mean (p→ 0) is used in the financial context to estimate the average
return of an investment based on compound interest over time, whereas the har-
monic mean (p = −1) is used to compare different indexes composed by multiple
price-earning ratios. The harmonic mean is preferred in this setting partly because it
avoids overestimations that are commonly seen with the arithmetic mean (Agrrawal
et al., 2010). For further discussions on when the harmonic mean is preferred over
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the arithmetic mean we refer to (Ferger, 1931; Hand, 1994; Haans, 2008). Further,
the power mean with parameter p = 3 is used by the United Nations Development
Program to calculate the Gender-Related Development Index (GDI), as it “places
greater weight on those dimensions in which deprivation is larger” (United Nations
Development Programme, 1997, see p.117-121).

The scalar power mean is monotone in the parameter p as stated by the follow-
ing Theorem.

Theorem 2.1 ((Hardy et al., 1934, Theorem 16), (Bullen, 2013, Ch. 3, Theorem 1)). Let
p < q then mp(a, b) ≤ mq(a, b) with equality if and only if a = b.

From this Theorem we can see that for powers p ∈ {−1, 0, 1} yields the well-
known harmonic-geometric-arithmetic mean inequality:

m−1(a, b) ≤ m0(a, b) ≤ m1(a, b) .

This inequality has been widely studied. For instance, there are well over 70 proofs
of the arithmetic-geometric mean inequality in (Bullen, 2013).

2.3.2 Matrix Power Means

Since matrices do not commute, the scalar power mean can be extended to positive
definite matrices in a number of different ways, all of them coinciding when applied
to commuting matrices (Bhatia, 2009, Chapter 4). In this work we use the following
matrix power mean.

Definition 2.1 ((Bhagwat and Subramanian, 1978)). Let A1, . . . , AT be symmetric posi-
tive definite matrices, and p ∈ R. The matrix power mean of A1, . . . , AT with exponent p is

Mp(A1, . . . , AT) =

(
1
T

T

∑
i=1

Ap
i

)1/p

(2.13)

where A1/p is the unique positive definite solution of the matrix Equation Xp = A.

The previous definition can be extended to positive semi-definite matrices. For
p> 0, Mp(A1, . . . , AT) exists for positive semi-definite matrices, whereas for p≤ 0
it is necessary to add a suitable diagonal shift to A1, . . . , AT to enforce them to be
positive definite (see (Bhagwat and Subramanian, 1978) for details).

We call the matrix above matrix power mean and we recover for p = 1 the standard
arithmetic mean of the matrices. Note that for p → 0, the power mean (2.13)
converges to the Log-Euclidean matrix mean (Bhagwat and Subramanian, 1978;
Arsigny et al., 2007)

M0(A1, . . . , AT) = exp

(
1
T

T

∑
i=1

log Ai

)
, (2.14)
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which is a popular form of matrix geometric mean used, for instance, in diffusion
tensor imaging or quantum information theory (see (Arsigny et al., 2006; Petz, 2007)).

Based on the Karcher mean, a different one-parameter family of matrix power
means has been discussed for instance in (Lim and Pálfia, 2012). When the parame-
ter goes to zero, the Karcher-based power mean of two matrices A and B converges
to the geometric mean

A#B = A1/2(A−1/2BA−1/2)1/2A−1/2

The mean A#B has been used for instance for clustering in signed networks (Fasi
and Iannazzo, 2018; Mercado et al., 2016), for metric learning (Zadeh et al., 2016) and
for geometric optimization (Sra and Hosseini, 2016). However, when more than two
matrices are considered, the Karcher-based power mean is defined as the solution of
a set of nonlinear matrix equations without any known closed-form solution (Bini
and Iannazzo, 2011). For an overview of matrix means we refer the reader to (Bhatia,
2009, Chapter 4).

In the following sections we will present several extensions of spectral clustering
and semi-supervised learning to signed and multilayer graph. Recall that spectral
clustering is a graph-based method relying on the spectrum of certain graph opera-
tors. Hence, we now introduce a result that gives a first glimpse into the spectrum
of the matrix power means, showing the effect of the matrix power mean when the
given matrices have a common eigenvector.

Lemma 2.1. Let u be an eigenvector of A1, . . . , AT with corresponding eigenvalues λ1, . . . , λT.
Then u is an eigenvector of Mp(A1, . . . , AT) with eigenvalue mp(λ1, . . . , λT).

Proof. Observe that for any positive definite matrix M, if Mx = λ(M)x, then Mp =
λ(M)px. Thus, we can see that as Aiu = λiu for i = 1, . . . , T. then, Ap

i u = λ
p
i u.

Hence,

Mp
p(A1, . . . , AT)u =

(
1
T

T

∑
i=1

Ap
i

)
u =

(
1
T

T

∑
i=1

λ
p
i

)
u = mp

p(λ1, . . . , λT)u

Thus u is an eigenvector of Mp(A1, . . . , AT) with eigenvalue mp(λ1, . . . , λT).



3
S P E C T R A L C L U S T E R I N G O F S I G N E D G R A P H S V I A
M AT R I X P O W E R M E A N S

In this chapter we extend spectral clustering to signed graphs via the one-parameter
family of Signed Power Mean Laplacians, defined as the matrix power mean of normal-
ized standard and signless Laplacians of positive and negative edges. We provide a
thorough analysis of the proposed approach in the setting of a general Stochastic
Block Model that includes models such as the Labeled Stochastic Block Model and
the Censored Block Model. We show that in expectation the signed power mean
Laplacian captures the ground truth clusters under reasonable settings where state-
of-the-art approaches fail. Moreover, we prove that the eigenvalues and eigenvectors
of the signed power mean Laplacian concentrate around their expectation under
reasonable conditions in the general Stochastic Block Model. Extensive experiments
on random graphs and real-world datasets confirm the theoretically predicted be-
havior of the signed power mean Laplacian and show that it compares favorably
with state-of-the-art methods.

3.1 introduction

The analysis of graphs has received a significant amount of attention due to their
capability to encode interactions that naturally arise in social networks. Yet, the
vast majority of graph methods focuses on the case where interactions are of the
same type, leaving aside the case where different kinds of interactions are avail-
able (Leskovec et al., 2010b). Graphs and networks with both positive and negative
edge weights arise naturally in a number of social, biological and economic contexts.
Social dynamics and relationships are intrinsically positive and negative: users of
online social networks such as Slashdot and Epinions, for example, can express
positive interactions, like friendship and trust, and negative ones, like enmity and
distrust. Other important application settings are the analysis of gene expressions in
biology (Fujita et al., 2012) or the analysis of financial and economic time sequences
(Ziegler et al., 2010; Pavlidis et al., 2006), where similarity and variable dependence
measures commonly used may attain both positive and negative values (e.g. the
Pearson correlation coefficient).

As briefly stated in Subsection 1.1.1 the analysis of signed graphs can be traced
back to social balance theory (Cartwright and Harary, 1956; Harary, 1953; Davis,
1967) where the concept of a k-balance signed graph is introduced. The analysis of
signed networks has been then pushed forward through the study of a variety of
tasks in signed graphs, as for example edge prediction (Kumar et al., 2016; Leskovec
et al., 2010a; Falher et al., 2017), node classification (Mercado et al., 2019a; Tang et al.,

18
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2016a), node embeddings (Chiang et al., 2011; Derr et al., 2018; Kim et al., 2018;
Wang et al., 2017; Yuan et al., 2017), node ranking (Chung et al., 2013; Shahriari
and Jalili, 2014), and clustering (Chiang et al., 2012; Kunegis et al., 2010; Mercado
et al., 2016; Sedoc et al., 2017; Doreian and Mrvar, 2009; Knyazev, 2018; Kirkley et al.,
2019; Cucuringu et al., 2019; Cucuringu et al., 2018). For recent surveys on the topic
see (Tang et al., 2016b; Gallier, 2016) .

In this chapter we present a novel extension of spectral clustering for signed
graphs. For a brief introduction to spectral clustering please see Section 2.1. We
introduce the family of Signed Power Mean (SPM) Laplacians: a one-parameter family
of graph matrices for signed graphs that blends the information from positive and
negative interactions through the matrix power mean, a general class of matrix
means that contains the arithmetic, geometric, and harmonic mean as special cases.
The family of Signed Power Mean Laplacians is inspired by recent extensions of
spectral clustering which merge the information encoded by positive and negative
interactions through different types of arithmetic (Chiang et al., 2012; Kunegis et al.,
2010) and geometric (Mercado et al., 2016) means of the standard and signless graph
Laplacians.

We analyze the performance of the signed power mean Laplacian in a general
Signed Stochastic Block Model. We first provide an analysis in expectation show-
ing that the smaller, the parameter of the signed power mean Laplacian, the less
restrictive are the conditions that ensure to recover the ground truth clusters. In
particular, we show that the limit cases +∞ and −∞ are related to the boolean
operators AND and OR, respectively, in the sense that for the limit case +∞ clusters
are recovered only if both positive and negative interactions are informative, whereas
for −∞ clusters are recovered if positive or negative interactions are informative.
Second, we show that the eigenvalues and eigenvectors of the signed power mean
Laplacian concentrate around their mean, so that our results hold also for the case
where one samples from the stochastic block model. To our knowledge these are the
first concentration results for matrix power means under any stochastic block model
for signed graphs.

Finally, we show that the signed power mean Laplacian compares favorably with
state-of-the-art approaches through extensive numerical experiments on diverse real
world datasets.

Notation. A signed graph is a pair G± = (G+, G−), where G+ = (V, W+) and
G− = (V, W−) encode positive and negative edges, respectively, with positive sym-
metric adjacency matrices W+ and W−, and a common vertex set V = {v1, . . . , vn}.
Note that this definition allows the simultaneous presence of both positive and
negative interactions between the same two nodes. This is a major difference with
respect to the alternative point of view where G± is associated to a single symmetric
matrix W with positive and negative entries. In this case W = W+ −W−, with
W+

ij = max{0, Wij} and W−ij = −min{0, Wij}, implying that every interaction is ei-
ther positive or negative, but not both at the same time. We denote by D+

ii = ∑n
j=1 w+

ij
and D−ii = ∑n

j=1 w−ij the diagonal matrix of the degrees of G+ and G−, respectively,
and D̄ = D+ + D−.
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3.2 related work

The study of clustering of signed graphs can be traced back to the theory of social
balance (Cartwright and Harary, 1956; Harary, 1953; Davis, 1967), where a signed
graph is called k-balanced if the set of vertices can be partitioned into k sets such that
within the subsets there are only positive edges, and between them only negative.

Inspired by the notion of k-balance, different approaches for signed graph clus-
tering have been introduced. In particular, many of them aim to extend spectral
clustering to signed graphs by proposing novel signed graph Laplacians. A related
approach is correlation clustering (Bansal et al., 2004). Unlike spectral clustering,
where the number of clusters is fixed a-priori, correlation clustering approximates
the optimal number of clusters by identifying a partition that is as close as possible
to be k-balanced. In this setting, the case where the number of clusters is constrained
has been considered in (Giotis and Guruswami, 2006).

We briefly introduce the standard and signless Laplacian and review different
definitions of Laplacians on signed graphs. The final clustering algorithm to find
k clusters is the same for all of them: compute the smallest k eigenvectors of the
corresponding Laplacian, use the eigenvectors to embed the nodes into Rk, obtain
the final clustering by doing k-means in the embedding space. However, we will see
below that in some cases we have to slightly deviate from this generic principle by
using the k− 1 smallest eigenvectors instead.

Laplacians of Unsigned Graphs: In the following all weight matrices are non-
negative and symmetric. Given an assortative graph G = (V, W), standard spectral
clustering is based on the Laplacian and its normalized version defined as:

L = D−W Lsym = D−1/2LD−1/2 (3.1)

where Dii = ∑n
j=1 wij is the diagonal matrix of the degrees of G. Both Laplacians are

symmetric positive semidefinite and the multiplicity of the eigenvalue 0 is equal to
the number of connected components in G. For a more detailed introduction please
see Section 2.1.

For disassortative graphs, i.e. when edges carry only dissimilarity information,
the goal is to identify clusters such that the amount of edges between clusters is
larger than the one inside clusters. Spectral clustering is extended to this setting by
considering the signless Laplacian matrix and its normalized version (see e.g. Liu
(2015); Mercado et al. (2016)), defined as:

Q = D + W Qsym = D−1/2QD−1/2 (3.2)

Both Laplacians are positive semi-definite, and the smallest eigenvalue is zero if and
only if the graph has a bipartite component (Desai and Rao, 1994).

Laplacians of Signed Graphs: Signed graphs encode both positive and negative
interactions. In the ideal k-balanced case positive interactions present an assortative
behavior, whereas negative interactions present a disassortative behavior. With this
in mind, several novel definitions of signed Laplacians have been proposed. We briefly
review them for later reference.
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In (Chiang et al., 2012) the balance ratio Laplacian and its normalized version are
defined as:

LBR = D+ −W+ + W−, LBN = D̄−1/2LBRD̄−1/2 (3.3)

whereas in (Kunegis et al., 2010) the signed ratio Laplacian and its normalized version
have been defined as:

LSR = D̄−W+ + W−, LSN = D̄−1/2LSRD̄−1/2 (3.4)

The signed Laplacians LBR and LBN need not be positive semidefinite, while the
signed Laplacians LSR and LSN are positive semidefinite with eigenvalue zero if and
only if the graph is 2-balanced.

In the context of correlation clustering, in (Saade et al., 2015) the Bethe Hessian
matrix is defined as:

H = (α− 1)I −
√

α(W+ −W−) + D (3.5)

where α is the average node degree α = 1
n ∑n

i=1 Dii. The Bethe Hessian H need not be
positive definite. In fact, eigenvectors with negative eigenvalues bring information
of clustering structure (Saade et al., 2014).

Let L+ = D+−W+ and Q− = D−+W− be the Laplacian and signless Laplacian
of G+ and G−, respectively. As noted in (Mercado et al., 2016), LSR = L+ + Q− i.e. it
coincides with twice the arithmetic mean of L+ and Q−. Note that the same holds for
H when the average degree α is equal to one, i.e. H = LSR when α = 1. In (Mercado
et al., 2016), the arithmetic mean and geometric mean of the normalized Laplacian
and its signless version are used to define new Laplacians for signed graphs:

LAM = L+
sym + Q−sym, LGM = L+

sym#Q−sym (3.6)

where A#B = A−1/2(A1/2BA1/2)1/2A−1/2 is the geometric mean of A and B, with
L+

sym = (D+)−1/2L+(D+)−1/2 and Q−sym = (D−)−1/2Q−(D−)−1/2. While the com-
putation of LGM is more challenging, (Mercado et al., 2016) have shown that the
clustering assignment obtained with the geometric mean Laplacian LGM outperforms
all other signed Laplacians.

Both the arithmetic and the geometric means are special cases of a much richer
one-parameter family of means known as power means. Based on this observation,
we introduce the Signed Power Mean Laplacian in Section 3.3, defined via the matrix
version of the family of power means which we briefly reviewed in Section 2.3.

3.3 the signed power mean laplacian

Given a signed graph G± = (G+, G−) we define the Signed Power Mean (SPM)
Laplacian Lp of G± as

Lp = Mp(L+
sym, Q−sym) =

(
(L+

sym)p + (Q−sym)p

2

)1/p

. (3.7)
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Algorithm 3: Spectral clustering of signed graphs with Lp

Input: Symmetric matrices W+, W−, number k of clusters to construct.
Output: Clusters C1, . . . , Ck.

1 Let k′ = k− 1 if p ≥ 1 and k′ = k if p < 1.
2 Compute eigenvectors u1, . . . , uk′ corresponding to the k′ smallest eigenvalues of Lp.
3 Set U = (u1, . . . , uk′) and cluster the rows of U with k-means into clusters C1, . . . , Ck.

For the case p < 0 the matrix power mean requires positive definite matrices, hence
we use in this case the matrix power mean of diagonally shifted Laplacians, i.e.
L+

sym + εI and Q−sym + εI. Our theoretical analysis that is following holds for all
possible shifts ε > 0, whereas in Section 3.6.3 we discuss the numerical robustness
with respect to ε. The clustering algorithm for identifying k clusters in signed graphs
is given in Algorithm 3. Please note that for p ≥ 1 we deviate from the usual scheme
and use the first k − 1 eigenvectors rather than the first k. The reason is a result
of the analysis in the stochastic block model in Section 3.4. In general, the main
influence of the parameter p of the power mean is on the ordering of the eigenvalues.
In Section 3.4 we will see that this effect on the ordering of eigenvalues significantly
influences the performance of different instances of SPM Laplacians, in particular,
the arithmetic and geometric mean discussed in (Mercado et al., 2016) are suboptimal
for the recovery of the ground truth clusters. For the computation of the matrix
power mean we adapt the scalable Krylov subspace-based algorithm proposed in
(Mercado et al., 2018).

3.4 stochastic block model analysis

In this section we analyze the signed power mean Laplacian Lp under a general
Signed Stochastic Block Model. Our results here are twofold. First, we derive new
conditions in expectation that guarantee that the eigenvectors corresponding to
the smallest eigenvalues of Lp recover the ground truth clusters. These conditions
reveal that, in this setting, the state-of-the-art signed graph matrices are suboptimal
as compared to Lp for negative values of p. Second, we show that our result in
expectation transfers to sampled graphs as we prove conditions that ensure that
both eigenvalues and eigenvectors of Lp concentrate around their expected value
with high probability. We verify our results by several experiments where the
clustering performance of state-of-the-art matrices and Lp are compared on random
graphs following the Signed Stochastic Block Model. All proofs hold for an arbitrary
diagonal shift ε > 0, whereas the shift is set to ε = log10(1 + |p|) + 10−6 in the
numerical experiments.

The Stochastic Block Model (SBM) is a well-established generative model for
graphs and a canonical tool for studying clustering methods (Holland et al., 1983;
Rohe et al., 2011; Abbe, 2018). Graphs drawn from the SBM show a prescribed
clustering structure, as the probability of an edge between two nodes depends only
on the clustering membership of each node. We introduce our SBM for signed Graphs
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(SSBM): we consider k ground truth clusters C1, . . . , Ck, all of them of size |C| = n
k ,

and parameters p+in, p+out, p−in, p−out ∈ [0, 1] where p+in (resp. p−in) is the probability of
observing an edge inside clusters in G+ (resp. G−) and p+out (resp. p−out) is the
probability of observing an edge between clusters in G+ (resp. G−). Calligraphic
letters are used for the expected adjacency matrices: W+ andW− are the expected
adjacency matrix of G+ and G−, respectively, where W+

i,j = p+in and W−i,j = p−in if
vi, vj belong to the same cluster, whereasW+

i,j = p+out andW−i,j = p−out if vi, vj belong
to different clusters.

Other extensions of the SBM to the signed setting have been considered. Particu-
larly relevant examples are the Labelled Stochastic Block Model (LSBM) (Heimlicher
et al., 2012) and the Censored Block Model (CBM) (Abbe et al., 2014). In the context
of signed graphs, both LSBM and CBM assume that an observed edge can be either
positive or negative, but not both. Our SSBM, instead, allows the simultaneous
presence of both positive and negative edges between the same pair of nodes, as the
parameters p+in, p+out, p−in, p−out in SSBM are independent. Moreover, the edge probabil-
ities defining both the LSBM and the CBM can be recovered as special cases of the
SSBM. In particular, the LSBM corresponds to the SSBM for the choices

p+in = pinµ+, p−in = pinµ− (within clusters)
p+out = poutν

+, p−out = poutν
− (between clusters)

where pin and pout are edge probabilities within and between clusters, respectively,
whereas µ+ and µ− = 1− µ+ (resp. ν+ and ν− = 1− ν+) are the probabilities of
assigning a positive and negative label to an edge within (resp. between) clusters.
Similarly, the CBM corresponds to the SSBM for the particular choices pin = pout,
µ+ = ν− = (1− η) and µ− = ν+ = η where η is a noise parameter.

3.4.1 SBM Analysis in Expectation

In this section our goal is to identify conditions in expectation in terms of k, p+in, p+out, p−in,
and p−out, such that C1, . . . , Ck are recovered by the smallest eigenvectors of the signed
power mean Laplacian. Consider the following k vectors:

χ1 = 1, χi = (k− 1)1Ci − 1Ci
.

i = 2, . . . , k. The node embedding given by {χi}k
i=1 is informative in the sense that

applying k-means on {χi}k
i=1 trivially recovers the ground truth clusters C1, . . . , Ck

as all nodes of a cluster are mapped to the same point. Note that the constant vector
χ1 could be omitted as it does not add clustering information. We derive conditions
for the SSBM such that {χi}k

i=1 are the smallest eigenvectors of the signed power
mean Laplacian in expectation. er

Theorem 3.1. Let Lp = Mp(L+sym,Q−sym) and let ε > 0 be the diagonal shift.

• If p ≥ 1, then {χi}k
i=2 correspond to the (k-1)-smallest eigenvalues of Lp if and only if

mp(ρ+ε , ρ−ε ) < 1 + ε;
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• If p < 1, then {χi}k
i=1 correspond to the k-smallest eigenvalues of Lp if and only if

mp(ρ+ε , ρ−ε ) < 1 + ε;
with ρ+ε = 1− (p+in − p+out)/(p+in + (k− 1)p+out) + ε and ρ−ε = 1 + (p−in − p−out)/(p−in +
(k− 1)p−out) + ε.

Proof. We first show that χ1, . . . , χk are eigenvectors of W+ and W−. For χ1 we
have,

W+χ1 =W+1 = |C|(p+in + (k− 1)p+out)1 = d+1 = λ+
1 1

For the remaining vectors χ2, . . . , χk we have

W+χi =W+
(
(k− 1)1Ci − 1Ci

)
=W+

(
k1Ci − (1Ci + 1Ci

)
)

=W+
(
k1Ci − 1

)
= k|C|(p+in1Ci + p+out1Ci

)− d+1

= k|C|(p+in1Ci + p+out1Ci
)− d+(1Ci + 1Ci

)

= |C|(kp+in − d+)1Ci + |C|(kp+out − d+)1Ci

= |C|(k− 1)(p+in − p+out)1Ci − |C|(p+in − p+out)1Ci

= |C|(p+in − p+out)
(
(k− 1)1Ci − 1Ci

)
= |C|(p+in − p+out)χi

= λiχi

The same procedure holds forW−. Thus, we have shown that χ1, . . . , χk are eigen-
vectors of bothW+ andW−. In particular, we have seen that

λ+
1 = |C|(p+in + (k− 1)p+out), λ+

i = |C|(p+in − p+out)

λ−1 = |C|(p−in + (k− 1)p−out), λ−i = |C|(p−in − p−out)

for i = 2, . . . , k. Further, as both matricesW+ andW− share all their eigenvectors,
they are simultaneously diagonalizable, that is there exists a non-singular matrix
Σ such that Σ−1W±Σ = Λ±, where Λ+ and Λ− are diagonal matrices Λ± =
diag(λ±1 , . . . , λ±k , 0, . . . , 0).

As we assume that all clusters are of the same size |C|, the expected signed graph
is a regular graph with degrees d+ and d−. Hence, the normalized Laplacian and
normalized signless Laplacian of the expected signed graph can be expressed as

L+sym = Σ(I − 1
d+

Λ+)Σ−1

Q−sym = Σ(I +
1

d−
Λ−)Σ−1
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Thus, we can observe that

λ+
1 (L

+
sym) = 0, λ−1 (Q

−
sym) = 2

λ+
i (L

+
sym) = 1− ρ+, λ−i (Q

−
sym) = 1 + ρ−

λ+
j (L

+
sym) = 1, λ−j (Q

−
sym) = 1

for i = 2, . . . , k, and j = k + 1, . . . , |V|, where

ρ+ = (p+in − p+out)/(p+in + (k− 1)p+out)

ρ− = (p−in − p−out)/(p−in + (k− 1)p−out)

By obtaining the signed power mean Laplacian on diagonally shifted matrices,

Lp = Mp(L+sym + εI,Q−sym + εI)

we have by Lemma 2.1

λ1(Lp) = mp(λ
+
1 + ε, λ−1 + ε) = mp(ε, 2 + ε)

λi(Lp) = mp(1− ρ+ + ε, 1 + ρ− + ε)

λj(Lp) = mp(λ
+
j + ε, λ−j + ε) = 1 + ε

(3.8)

Observe that λj(Lp), with j = k + 1, . . . , |V|, corresponds to eigenvectors that do not
yield an informative embedding. Hence, we do not want this eigenvalue to belong
to the bottom of the spectrum of Lp. Thus, for the case of χ2, . . . , χk, we can see that
they will be located at the bottom of the spectrum if the following condition holds:

λi(Lp) = mp(1− ρ+ + ε, 1 + ρ− + ε) = mp(ρ
+
ε , ρ−ε ) < 1 + ε = λj(Lp)

It remains to analyze the case of the constant eigenvector χ1. Note that its associated
eigenvalue λ1(L1) has the following relationship to the non-informative eigenvectors:

λ1(L1) = m1(ε, 2 + ε) = 1 + ε = λj(Lp)

By Theorem 2.1 we know that the scalar power mean is monotone in its parameter p,
and thus, for the case p < 1 we observe

λ1(Lp) = mp(ε, 2+ε) < m1(ε, 2+ε) = λ1(L1) = λj(Lp)

and for the case p ≥ 1 we observe

λ1(Lp) = mp(ε, 2+ε) ≥ m1(ε, 2+ε) = λ1(L1) = λj(Lp)

This means that for positive powers p ≥ 1 , the constant eigenvector χ1 does not
belong to the bottom of the spectrum, whereas for p < 1 it always does. With this in
mind, we reach the desired result.
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Note that Theorem 3.1 is the reason why Alg. 3 uses only the first k− 1 eigen-
vectors for p ≥ 1. The problem is that the constant eigenvector need not be among
the first k eigenvectors in the SSBM for p ≥ 1. However, as it is constant and thus
uninformative in the embedding, this does not lead to any loss of information.
The following Corollary shows that the limit cases of Lp are related to the boolean
operators AND and OR.

Corollary 3.1. Let Lp = Mp(L+sym,Q−sym).

• {χi}k
i=2 correspond to the (k-1)-smallest eigenvalues of L∞ iff p+in > p+out and p−in < p−out,

• {χi}k
i=1 correspond to the k-smallest eigenvalues of L−∞ iff p+in > p+out or p−in < p−out.

Proof. Following the proof from Theorem 3.1, we can observe that limp→∞ mp(x) =
max{x1, . . . , xT} and limp→−∞ mp(x) = min{x1, . . . , xT}.

Thus, m∞(ρ+ε , ρ−ε ) = max(1− ρ+ + ε, 1 + ρ− + ε), and hence m∞(ρ+ε , ρ−ε ) < 1 + ε
if and only if ρ+ > 0 and ρ− < 0, yielding the desired conditions.

The case for p → −∞ is analogous: m∞(ρ+ε , ρ−ε ) = min(1− ρ+ + ε, 1 + ρ− + ε)
and thus m−∞(ρ+ε , ρ−ε ) < 1 + ε if and only if ρ+ > 0 or ρ− < 0, yielding the desired
conditions.

The conditions for L∞ are the most conservative ones, as they require that G+ and
G− are informative, i.e. G+ has to be assortative and G− disassortative. Under these
conditions every clustering method for signed graphs should be able to identify
the ground truth clusters in expectation. On the other hand, the less restrictive
conditions for the recovery of the ground truth clusters correspond to the limit case
L−∞. If G+ or G− are informative, then the ground truth clusters are recovered, that
is, L−∞ only requires that G+ is assortative or G− is disassortative. In particular, the
following corollary shows that smaller values of p require less restrictive conditions
to ensure the identification of the informative eigenvectors.

Corollary 3.2. Let q ≤ p. If {χi}k
i=θ(p) correspond to the k-smallest eigenvalues of Lp,

then {χi}k
i=θ(q) correspond to the k-smallest eigenvalues of Lq, where θ(x) = 1 if x ≤ 0 and

θ(x) = 2 if x > 0.

Proof. If λ1, . . . , λk resp. (λ2, . . . , λk) are among the k (resp. k− 1)-smallest eigenval-
ues of Lp, then by Theorem 3.1, we have mp(ρ+ε , ρ−ε ) < 1 + ε. By Theorem 2.1 we
have mq(ρ+ε , ρ−ε ) ≤ mp(ρ+ε , ρ−ε ), Theorem 3.1 concludes the proof.

To better understand the different conditions we have derived, we visualize
them in Fig. 3.1, where the x-axis corresponds to how assortative G+ is, while the
y-axis corresponds to how disassortative G− is. The conditions of the limit case
L∞, i.e. the case where G+ and G− have to be informative, correspond to the
upper-right, dark blue region in Fig. 3.1(c), and correspond to the 25% of all possible
configurations of the SBM. The conditions for the limit case L−∞, i.e. the case where
G+ or G− has to be informative, instead correspond to all possible configurations
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(a) SBM Diagram (b) L−∞ (OR) (c) L∞ (AND)

Figure 3.1: Stochastic
Block Model (SBM) for
signed graphs. From left
to right: Fig. 3.1(a) SBM
Diagram. Fig. 3.1(b) SBM
for L−∞(OR), Fig. 3.1(c)
SBM for L∞(AND). ac-
cording to Corollary 3.1.
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Figure 3.2: Performance visualization for two clusters for different parameters of the
SBM. Top row: The settings where the signed power mean Laplacians Lp identify the
ground truth clusters in expectation for the SBM, see Theorem 3.1, are highlighted in
dark blue, whereas yellow indicates failure. Middle/Bottom row: average clustering
error (dark blue: small error, yellow: large error) of the signed power mean Laplacian
Lp and LGM, LSN, LBN, H for 50 samples from the SBM.

of the SBM except for the bottom-left region. This is depicted in Fig. 3.1(b) and
corresponds to the 75% of all possible configurations under the SBM. In Fig. 3.2
we present the corresponding conditions for recovery in expectation for the cases
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p ∈ {−10,−1, 0, 1, 10}. We can visually verify that the larger the value of p the
smaller is the region where the conditions of Theorem 3.1 hold. In particular, one
can compare the change of conditions as one moves from the signed harmonic
(L−1), geometric (L0), to the arithmetic (L1) mean Laplacians verifying the ordering
described in Corollary 5.2. Moreover, we clearly observe that L−10 and L10 are
already quite close to the conditions necessary for the limit cases L−∞ and L∞,
respectively.

In the middle row of Fig. 3.2 we show the average clustering error for each
power mean Laplacian when sampling 50 times from the SSBM following the
diagram presented in Fig. 3.1(a) and fixing the sparsity of G+ and G− by setting
p+in + p+out = 0.1 and p−in + p−out = 0.1 with two clusters each of size 100. We observe
that the areas with low clustering error qualitatively match the regions where in
expectation we have recovery of the clusters. However, due to the sampling which
can make one of the graphs G+ and G− quite sparse and as we just consider graphs
with 200 nodes, together with the sampling variance in the stochastic block model,
the area of low clustering error is smaller in comparison to the region of guaranteed
recovery in expectation.

In the bottom row of Fig. 3.2 we show the clustering error for the state of the art
methods LGM, LSN, LBM and H. We can see that LGM presents a similar performance
as the signed power mean Laplacian L0. The next Theorem shows that the geometric
mean Laplacian LGM and the limit p → 0 of the signed power mean Laplacian
agree in expectation for the SSBM. This implies via Corollary 5.2 that this operator is
inferior to the signed power mean Laplacian for p < 0. This is why we use in the
experiments on real world graphs later on always p < 0.

Theorem 3.2. Let LGM = L+sym#Q−sym and L0 be the signed power mean Laplacian with
p→ 0 of the expected signed graph. Then, L0 = LGM.

Proof. Following the proof from Theorem 3.1 we can see that L+sym and Q−sym share
all of their eigenvectors. Let u be an eigenvector of L+sym and Q−sym with eigenvalues
α and β, respectively.

By Lemma 2.1 we have
L0u = m0(α, β)u

Moreover, from (Mercado et al., 2016, Theorem 1) we know that

(L+sym#Q−sym)u =
√

αβu

Further, m0(α, β) =
√

αβ. Hence, as L0 and L+sym#Q−sym have in common all eigen-
vectors and eigenvalues, we conclude that L0 = L+sym#Q−sym.

In the bottom row of Fig. 3.2 we can observe that LSN, LBN and H present a
similar behaviour to the arithmetic mean Laplacian L1. A quick computation shows
that for the case where both G+, G− have the same node degree in expectation, the
conditions of Theorem 3.1 for L1 reduce to p−in + p+out < p+in + p−out. It turns out that
this condition is also required by LSN,LBN and H, as the following shows.
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Theorem 3.3 ((Mercado et al., 2016, Theorem 2)). Let LBN and LSN be the balanced
normalized Laplacian and signed normalized Laplacian of the expected signed graph. The
following statements are equivalent:

• {χi}k
i=1 are the eigenvectors corresponding to the k-smallest eigenvalues of LBN.

• {χi}k
i=1 are the eigenvectors corresponding to the k-smallest eigenvalues of LSN.

• inequalities p−in + (k− 1)p−out < p+in + (k− 1)p+out and p−in + p+out < p+in + p−out hold.

Finally, we present conditions in expectation for the Bethe Hessian to identify the
ground truth clustering.

Theorem 3.4. Let H be the Bethe Hessian of the expected signed graph. Then {χi}k
i=2 are

the eigenvectors corresponding to the (k− 1)-smallest negative eigenvalues of H if and only
if the following conditions hold:

1. max{0, 2(d++d−)−1√
d++d−|C| } < (p+in − p+out)− (p−in − p−out)

2. p+out < p−out

Moreover, for the limit case |V| → ∞ the first condition reduces to p−in + p+out < p+in + p−out.

Proof. In our framework the we can see that J = W+ −W−. In the proof of Theo-
rem 3.1 we can see that expected adjacency matricesW+ andW− have three distinct
eigenvalues:

λ+
1 = |C|(p+in + (k− 1)p+out), λ+

i = |C|(p+in − p+out)

λ−1 = |C|(p−in + (k− 1)p−out), λ−i = |C|(p−in − p−out)

for i = 2, . . . , k, with corresponding eigenvectors χ1, . . . , χk. Remaining eigenvalues
are equal to zero. Further, as both matricesW+ andW− share all their eigenvectors,
then the expected matrix J =W+−W− has the same eigenvectors with eigenvalues
being the difference between the positive and negative counterparts, i.e. J χi = µiχi
where

µi = λ+
i − λ−i .

As we assume that all clusters are of the same size |C|, the expected signed graph
is a regular graph with degrees d+ and d−. Thus, in expectation α̂ = d+ + d−,
where d+ = |C|(p+in + (k− 1)p+out) and d− = |C|(p−in + (k− 1)p−out). Hence, the Bethe
hessian of the expected signed graph can be expressed as

H = (α̂− 1)I −
√

α̂J +D
= (α̂− 1)I −

√
α̂J + α̂I

= (2α̂− 1)I −
√

α̂J
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It is easy to see that the matrix H is some sort of a diagonal shift of J , and thus they
have the same eigenvectors. In particular we can observe that:

Hχi =
(
(2α̂− 1)I −

√
α̂J
)
χi

= (2α̂− 1)χi −
√

α̂J χi

= (2α̂− 1)χi −
√

α̂µiχi

=
(
(2α̂− 1)−

√
α̂µi
)
χi

Hence, the corresponding eigenvalues of H are:

λi = (2α̂− 1)−
√

α̂µi . (3.9)

All in all, the corresponding eigenvalues of the expected Bethe hessian matrix H are:

λ1 = (2α̂− 1)−
√

α̂(d+ − d−) ,

λi = (2α̂− 1)−
√

α̂|C|
(
(p+in − p+out)− (p−in − p−out)

)
,

λj = (2α̂− 1) .

for i = 2, . . . , k and j = k + 1, . . . , n.
We now focus on the conditions that are necessary so that eigenvectors χ2, . . . , χk

have the smallest negative eigenvalues. This is based on the fact that informative
eigenvectors of the Bethe Hessian H have the smallest negative eigenvalue. From
Eq.3.9 we can see that the general condition for eigenvalues of the Bethe Hessian in
expectation H to be negative is

λi < 0 ⇐⇒ 2α̂− 1√
α̂

< µi . (3.10)

Hence the conditions to be analyzed are:

λi < λ1, for i = 2, . . . , k
λi < 0, for i = 2, . . . , k
λi < λj, for i = 2, . . . , k and j = k + 1, . . . , n

Therefore we can easily see that the corresponding condition λi < λ1 boils down to

p+out < p−out

whereas condition λi < 0 is equivalent to

2(d+ + d−)− 1√
d+ + d−|C|

<
(
(p+in − p+out)− (p−in − p−out)

)
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and for the remaining condition λi < λj the equivalent condition is

0 < (p+in − p+out)− (p−in − p−out)

By taking together conditions for λi < 0 and λi < λj we get the desired result.

For the limit case |V| → ∞ we have the following. Let

c2 = p+in + (k− 1)p+out + p−in + (k− 1)p−out

c3 = (p+in − p+out)− (p−in − p−out)

The first condition of Theorem 3.4 can be expressed as follows:

2(d+ + d−)− 1√
d+ + d−|C|

<
(
(p+in − p+out)− (p−in − p−out)

)
⇐⇒

2c1/2
2

|C|1/2 −
1

|C|3/2c1/2
2

< c3 .

Hence, in the limit where |C| → ∞ the above condition turns into

0 < c3 ⇐⇒ p−in + p+out < p+in + p−out . (3.11)

yielding the desired conditions.

The following Lemma states the interesting fact that the Bethe Hessian works
better for large graphs

Lemma 3.1. Let Hn be the Bethe Hessian of the expected signed graph under the SBM with
n nodes. Let χn = {χi}k

i=2 where χ2, . . . , χk ∈ Rn. Let 3
2 < d+ + d−. Let n < m. If χn

are eigenvectors corresponding to the (k− 1)-smallest negative eigenvalues of Hn, then χm

are eigenvectors corresponding to the (k− 1)-smallest negative eigenvalues of Hm.

Proof. In this proof we show that if for a given signed graph with n nodes the
conditions of Theorem 3.4 hold, then conditions of Theorem 3.4 hold for expected
signed graphs with a larger number of nodes.

By Theorem 3.4, we know that for a given graph in expectation with n nodes,
eigenvectors χn = {χi}k

i=2 correspond to the (k− 1)-smallest negative eigenvalues
of Hn if and only the following conditions hold:

1. max{0, 2(d++d−)−1√
d++d−|C| } < (p+in − p+out)− (p−in − p−out)

2. p+out < p−out
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Observe that the right hand side of the above conditions does not depend on the
number of nodes in the graph. We proceed by analyzing the left hand side of the
first condition:

2(d+ + d−)− 1
|C|
√

d+ + d−
. (3.12)

Note that under the Stochastic Block Model in consideration, all k clusters are of
size |C| = n

k . We now identify conditions such that the Equation 3.12 decreases with
larger values of |C|.

Let x, α ∈ R. Define the scalar function g : R>0 → R as

g(x) =
2αx− 1√

αx3

Observe that we recover Equation 3.12 by letting x = |C| and α = p+in + (k− 1)p+out +
p−in + (k− 1)p−out where αx = d+ + d−.

The corresponding derivative is

g′(x) =
3− 2αx

2x
√

αx3

Then
g′(x) < 0 ⇐⇒ 3

2
< αx . (3.13)

Hence, if 3
2 < αx then g(y) < g(x) if and only if x < y. We now apply this result to

our setting.
Let |Cn| := |C| = n

k and |Cm| = m
k denote the cluster size of the expected signed

graphs with n and m nodes, respectively. Let α = p+in +(k− 1)p+out + p−in +(k− 1)p−out.
Let 3

2 < d+ + d−. Then

g(|Cm|) < g(|Cn|) =
2(d+ + d−)− 1
|C|
√

d+ + d−
(3.14)

if and only if n < m. Hence, if conditions 1 and 2 hold for the expected graph G
with n nodes and its expected absolute degree is larger than 3

2 , i.e. 3
2 < d+ + d−,

then conditions 1 and 2 hold for expected graphs with a larger number of nodes,
leading to the desired result.

We can observe that the first condition in Theorem 3.4 is related to conditions of
L1 and LSN,LBN through the inequality p−in + p+out < p+in + p−out. This explains why
the performance of the Bethe Hessian H resembles the one of arithmetic Laplacians
LSN, LBN, L1.

3.4.2 SBM random graphs

We now zoom in on a particular setting of Fig. 3.2. Namely, the case where G+

(resp.G−) is fixed to be informative, whereas the remaining graph transitions from
informative to uninformative. The corresponding results are in Fig. 3.3.
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Figure 3.3: Left: Mean clustering error under the SSBM, with two clusters of size
100 and 50 runs. In Fig. 3.3(a): G+ is informative, i.e. assortative with p+in = 0.09
and p+out = 0.01. In Fig. 3.3(b): G− is informative, i.e. disassortative with p−in = 0.01
and p−out = 0.09. Right: Node embeddings induced by eigenvectors of different
signed Laplacians for a random graph drawn from SSBM for 2 clusters of size 100,
p+in = 0.025, p+out = 0.075, p−in = 0.01, p−out = 0.09.

In Fig. 3.3(a) we consider the case where G+ is informative with parameters
p+in = 0.09 and p+out = 0.01 (this corresponds to p+in− p+out = 0.08 in Fig. 3.2 ), and G−

goes from being informative (p−in < p−out) to non-informative (p−in ≥ p−out). We confirm
that the power mean Laplacian Lp presents smaller clustering errors for smaller
values of p. Moreover, it is clear that in the case p < 0, Lp is able to recover clusters
even in the case where G− is not informative, whereas for p > 0, Lp requires both
G+ and G− to be informative. We observe that the smallest (resp. largest) clustering
errors correspond to L−10 (resp. L10), corroborating Corollary 5.2. Further, we can
observe that LGM and L0 have a similar performance, as well as LSN, LBN, L1, H, as
observed before, confirming Theorem 3.2 and Theorem 3.4, respectively.

In Fig. 3.3(b) similar observations hold for the case where G− is informative
with parameters p−in = 0.01 and p−out = 0.09 (this corresponds to p−in − p−out = −0.08
in Fig. 3.2), and G+ goes from being non-informative (p+in ≤ p+out) to informative
(p+in > p+out). Within this setting we present the eigenvector-based node embeddings
of each method for the case p+in = 0.025, p+out = 0.075, p−in = 0.01, p−out = 0.09, in right
hand side of Fig. 3.3. For L−10, L−1, L0 the embeddings split the clusters properly,
whereas remaining embeddings are not informative, verifying the effectivity of Lp
with p < 0.

3.4.3 Experiments with the Censored Block Model

In this section we present a numerical evaluation of different methods under the
Stochastic Block Model following the parameters corresponding to the Censored
Block Model (CBM), following (Saade et al., 2015).

Observe that the CBM is a particular case of the Stochastic Block Model for signed
graphs as introduced in Section 3.4. Following (Saade et al., 2015), the CBM has two
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p = 0.03, ε ∈ [0, 0.5]

0.001 0.01 0.02 0.03

0.1

0.2

0.3

0.4

(b)
p∈ [0.001, 0.03], ε = 0.25

Figure 3.4: Mean clustering er-
ror under the Censored Block
Model (Saade et al., 2015), with
two clusters of size 500 and 20

runs. Fig. 3.4(a): probability of ob-
serving and edge is fixed to p =
0.03, and ε ∈ [0, 0.5]. Fig. 3.4(b):
probability of flipping sign of an
edge is fixed to ε = 0.25, and
p ∈ [0.001, 0.03]

parameters: probability of observing an edge (p), and the probability of flipping
the sign of an edge (ε). The CBM can be recovered from the SSBM introduced in
Section 3.4 by setting

p+in = p−out = p(1− ε), p−in = p+out = pε

Observe that the parameter ε works as a noise parameter: the noiseless setting
corresponds to ε = 0, where positive and negative edges are only inside and
between clusters, respectively. The case where ε = 0.5 corresponds to the case where
no clustering structure is conveyed by the sign of the edges.

We present a numerical evaluation under the SSBM with parameters from CBM
in Fig. 3.4. We consider two clusters and fix a priori its size to be of 500 nodes each.
We present the clustering error out of 20 realizations from the SSM with parameters
following the CBM. We consider two settings:

First setting: we fix the probability of observing an edge to p = 0.03, and evaluate
over different values of ε ∈ [0, 0.5]. In Fig. 3.4(a) we can observe that there is no
relevant difference in clustering error between methods. Further, as expected we can
see that for small values of ε all methods perform well, and for larger values of ε the
clustering error increases;

Second setting: we fix the probability of flipping the sign of an edge to ε = 0.25,
and evaluate over different values of p ∈ [0.001, 0.03]. In Fig. 3.4(b) we can observe
that the performance of the Bethe Hessian is best for small values of p, i.e. for sparser
graphs. Following the Bethe Hessian are the arithmetic mean Laplacian L1 together
with the signed normalized Laplacian LSN.

Hence we have observed that for sufficiently dense graphs following the Censored
Block Model, the performance of different methods is rather similar, whereas for
sparser graphs the Bethe Hessian performs best, confirming the analysis presented
in (Saade et al., 2015).

So far we have presented an analysis in expectation with verifications on sampled
random graphs following the stochastic and censored block models. In the following
section we continue with an analysis under the stochastic block model and focus on
an analysis of consistency.
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3.4.4 Consistency of the Signed Power Mean Laplacian for the Stochastic Block
Model

In this section we prove two novel concentration bounds for signed power mean
Laplacians of signed graphs drawn from the SSBM. The bounds show that, for
large graphs, our previous results in expectation transfer to sampled graphs with
high probability. We first show in Theorem 3.5 that Lp is close to Lp. Then, in
Theorem 3.6, we show that eigenvalues and eigenvectors of Lp are close to those of
Lp. We derive this result by tracing back the consistency of the matrix power mean
to the consistency of the standard and signless Laplacian established in (Chung and
Radcliffe, 2011).

The consistency of spectral clustering on unsigned graphs for the SBM has been
studied in (Lei and Rinaldo, 2015; Sarkar and Bickel, 2015; Rohe et al., 2011). More
recently also the consistency of several variants of spectral clustering has been
shown (Qin and Rohe, 2013; Joseph and Yu, 2016; Chaudhuri et al., 2012; Le et al.,
2017; Fasino and Tudisco, 2018; Davis and Sethuraman, 2018). Moreover, while the
case of multilayer graphs under the SBM has been previously analyzed (Han et al.,
2015; Heimlicher et al., 2012; Jog and Loh, 2015; Paul and Chen, 2020; Xu et al., 2014,
2020; Yun and Proutiere, 2016), there are no consistency results for matrix power
means for signed graphs. While our main emphasis is on the analysis of the SPM
Laplacian, our proofs are general enough to cover also the consistency of the matrix
power means for unsigned multilayer graphs (Mercado et al., 2018). In Thm. 3.5 we
show that the SPM Laplacian Lp for the SSBM is concentrated around Lp, with high
probability for large n. The following results hold for general shifts ε.

Theorem 3.5. Let p be a non-zero integer, let

Cp =

{
(2p)1/p(2 + ε)1−1/p p ≥ 1
|2p|1/|p|ε−(3+1/|p|) p ≤ −1

Choose ε > 0. If n
k (p+in+(k−1)p+out) > 3 ln(8n/ε), and n

k (p−in+(k−1)p−out) > 3 ln(8n/ε),
then with probability at least 1− ε, we have

∥∥Lp −Lp
∥∥ ≤ Cp m1/|p|

|p|

(√
3 ln(8n/ε)

n
k (p+in+(k− 1)p+out)

,

√
3 ln(8n/ε)

n
k (p−in+(k− 1)p−out)

)
Proof. Please see Appendix A.1.

In Thm 3.5 we take the spectral norm. A more general version of Theorem 3.5
for the inhomogeneous Erdős-Rényi model, where edges are formed independently
with probabilities p+ij , p−ij is given in Theorem A.1. Theorem 3.5 builds on top
of concentration results of (Chung and Radcliffe, 2011) proven for the unsigned
case ||L+

sym −L+sym||. We can see that the deviation of Lp from Lp depends on the
power mean of the individual deviations of L+

sym and Q−sym from L+sym and Q−sym,
respectively. Note that the larger the size n of the graph is, the stronger is the
concentration of Lp around Lp.
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The next Theorem shows that the eigenvectors corresponding to the smallest
eigenvalues of Lp are close to the corresponding eigenvectors of Lp. This is a key
result showing consistency of our spectral clustering technique with Lp for signed
graphs drawn from the SSBM.

Theorem 3.6. Let p 6= 0 be an integer. Let Vk,Vk ∈ Rn×k be orthonormal matrices whose
columns are the eigenvectors of the k smallest eigenvalues of Lp and Lp, respectively. Let ρ+ε ,
ρ−ε and Cp be defined as in Theorems 3.1 and 3.5, respectively. Define k̃ = k− 1, if p ≥ 1,
and k̃ = k, if p ≤ −1 and choose ε > 0.
If mp(ρ+ε , ρ−ε ) < 1 + ε, δ+ := n

k (p+in+(k−1)p+out) > 3 ln(8n/ε), and δ− := n
k (p−in+(k−

1)p−out) > 3 ln(8n/ε), then there exists an orthogonal matrix Ok̃ ∈ Rk̃×k̃ such that, with
probability at least 1− ε, we have

‖Vk̃ − Vk̃Ok̃‖ ≤

√
8k̃Cp m1/|p|

|p|

(√
3 ln(8n/ε)

δ+
,
√

3 ln(8n/ε)
δ−

)
(1 + ε)−mp(ρ

+
ε , ρ−ε )

Proof. Please see Appendix A.3.

Note that the main difference compared to Theorem 3.5 is the corresponding
spectral gap γp = (1 + ε)−mp(ρ+ε , ρ−ε ) of Lp, which is the difference of the eigen-
values corresponding to the informative versus non-informative eigenvectors of
Lp. Thus the stronger the clustering structure the tighter is the concentration of
the eigenvectors. Moreover, from the monotonicity of mp we have γp ≥ γq for
p < q, and thus for p ≤ −1 the spectral gap increases with |p|, ensuring a stronger
concentration of eigenvectors for smaller values of p.

3.5 computation of the smallest eigenvalues and eigenvec-
tors of mp(l

+
sym , q

−
sym)

For the computation of the eigenvectors corresponding to the smallest eigenvalues
of the signed power mean Laplacian Lp with p < 0, we take the Polynomial Krylov
Subspace Method. The corresponding numerical scheme is presented in Algorithms 4

and 5.
We briefly explain Algorithm 4. Let λ1 ≤ · · · ≤ λn be the eigenvalues of

Lp = Mp(L+
sym, Q−sym). Let p < 0. Then the eigenvalues of Lp

p are λ
p
1 ≥ · · · ≥ λ

p
n, that

is, the eigenvectors corresponding to the smallest eigenvalues of Lp correspond to the
largest eigenvalues of Lp

p. Thus, in order to obtain the eigenvectors corresponding
to the smallest eigenvalues of Lp we have to apply the power method to Lp

p. This is
depicted in Algorithm 4 . However, the main computational task now is the matrix-
vector multiplications (L+

sym)px and (Q−sym)px. This is approximated through the
Polynomial Krylov Subspace Method (PKSM). This approximation method allows
to obtain (L+

sym)px and (Q−sym)px without ever computing the matrices (L+
sym)p and

(Q−sym)p, respectively. This is depicted in Algorithm 5.
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Algorithm 4: PM applied to
Mp(L+

sym, Q−sym).

Input: x0, p < 0
Output: Eigenpair (λ, x) of

Mp(L+
sym, Q−sym)

1 repeat
2 u(1)

k ← (L+
sym)pxk

(Compute with Alg. 5)

3 u(2)
k ← (Q−sym)pxk

(Compute with Alg. 5)

4 yk+1 ← 1
2 (u

(1)
k + u(2)

k )

5 xk+1 ← yk+1/‖yk+1‖2
6 until tolerance reached
7 λ ← (xT

k+1xk)
1/p, x← xk+1

Algorithm 5: PKSM for the compu-
tation of Apy.

Input: u0 = y, V0 = [ · ], p < 0
Output: x = Apy

1 v0 ← y/‖y‖2
2 for s = 0, 1, 2, . . . , n do
3 Ṽs+1 ← [Vs, vs]
4 Vs+1 ← Orthogonalize columns of

Ṽs+1
5 Hs+1 ← VT

s+1 AVs+1
6 xs+1 ← Vs+1(Hs+1)

pe1‖y‖2
7 if tolerance reached then break
8 vs+1 ← Avs
9 end

10 x← xs+1

The main idea of PKSM s-step is to project a given matrix A onto the space
Ks(A, y) = {y, Ay, . . . , As−1y} and solve the corresponding problem there. The
projection on to Ks(A, y) is done by means of the Lanczos process, producing a
sequence of matrices Vs with orthogonal columns where the first column of Vs is
y/ ‖y‖ and range(Vs) = Ks(A, y). Moreover, at each step we have AVs = VsHs +
vs+1eT

s where Hs is s× s symmetric tridiagonal, and ei is the i-th canonical vector.
The matrix product vector x = Apy is approximated by xs = Vs(Hs)pe1 ‖y‖ ≈ Apy.

1 2 3 4

10 4

10 2

10 3

10 4

M
ea

n
 t

im
e 

(s
ec

.)

Figure 3.5: Median execution time of 10

runs for different Laplacians. Graphs have
two perfect clusters and 2.5% of edges
among nodes. LGM(ours) uses Algs 4 and 5,
whereas we used Matlab’s eigs for the other
matrices. The use of eigs on LGM is pro-
hibitive as it needs the matrix LGM to be
built (we use the toolbox provided in Bini
and Ianazzo (2015)), destroying the sparsity
of the original graphs. Experiments are per-
formed using one thread.

Time Execution Analysis. We present a time execution analysis in Fig. 3.5.
We depict the mean time execution out of 10 runs of the power mean Laplacian
Lp with p ∈ {−1,−2,−5 − 10}. In particular L−1(ours), L−2(ours), L−5(ours)
and L−10(ours) depict the time execution using our proposed method based on
Algorithm 4 together with the polynomial Krylov subspace method described in
Algorithm 5. For comparison we consider L−1(eigs) which is computed with the
function eigs from MATLAB instead of using Algorithm 5. All experiments are
performed using one thread. For evaluation random signed graphs following the
SSBM are generated, with parameters p+in = p−out = 0.05 and p−in = p+out = 0.025
with two equal sized clusters, and graph size |V| ∈ {10000, 20000, 30000, 40000}. We
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observe that our matrix-free approach based on the polynomial Krylov subspace
method systematically outperforms the natural approach based on the explicit
computation of power matrices per layer.

3.6 experiments

In this section we present experiments on different datasets. In Subsection 3.6.1 we
present experiments on UCI datasets, and in Subsection 3.6.2 we present experiments
on the Wikipedia-Elections dataset. Observe that in the datasets considered here it
is unlikely that the corresponding signed graph follow the stochastic block model.
Yet, we will observe that the proposed approach based on the Signed Power Mean
Laplacian does present a competitive performance with the state of the art.

3.6.1 Experiments on UCI datasets

We evaluate the signed power mean Laplacian with L−10, L−1 against LSN, LBN,
LAM, LGM and H using datasets from the UCI repository. We build W+ from the
k+ nearest neighbor graph, whereas W− is obtained from the k− farthest neighbor
graph. For each dataset we evaluate all clustering methods over all possible choices
of k+, k− ∈ {3, 5, 7, 10, 15, 20, 40, 60}, yielding in total 64 cases. We present the fol-
lowing statistics: Best(%): proportion of cases where a method yields the smallest
clustering error. Strictly Best(%): proportion of cases where a method is the only one
yielding the smallest clustering error. Results are shown in Table 3.1.

Observe that in 4 datasets H and LGM present a competitive performance. For
the remaining cases we can see that the best performance is obtained by the signed
power mean Laplacians L−1, L−10. This verifies the superiority of negative powers
(p < 0) to positive (p > 0) powers of Lp and related approaches like LSN, LBN.
Moreover, although the Bethe Hessian is known to be optimal under the sparse
transition theoretic limit under the Censored Block Model (Saade et al., 2015), in
the context where graphs unlikely follow a SBM distribution we can see that it is
outperformed by the signed power mean Laplacian Lp.

We emphasize that the eigenvectors of Lp are calculated without ever computing the
matrix itself, by using the method described in Sec.3.5.

3.6.2 Experiments on Wikipedia-Elections

We now evaluate the Signed Power Mean Laplacian Lp with p ∈ {−10,−5,−2,−1, 0, 1}
on Wikipedia-Elections dataset (Leskovec and Krevl, 2014). In this dataset each node
represents an editor requesting to become administrator and positive (resp. nega-
tive) edges represent supporting (resp. against) votes to the corresponding admin
candidate.
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iris wine ecoli australian cancer vehicle german image optdig isolet USPS pendig 20new MNIST
# vertices 150 178 336 690 699 846 1000 2310 5620 7797 9298 10992 18846 70000

# classes 3 3 8 2 2 4 2 7 10 26 10 10 20 10

H
Best (%) 14.1 14.1 10.9 7.8 0.0 20.3 34.4 0.0 3.1 0.0 0.0 0.0 45.3 0.0

Str. best (%) 4.7 3.1 7.8 3.1 0.0 14.1 17.2 0.0 3.1 0.0 0.0 0.0 45.3 0.0
Avg. error 16.8 32.2 23.9 41.7 13.2 58.4 29.5 64.0 32.5 54.0 41.3 39.2 88.5 48.2

LSN

Best (%) 10.9 10.9 14.1 4.7 15.6 12.5 12.5 17.2 26.6 7.8 14.1 7.8 26.6 14.1
Str. best (%) 1.6 3.1 9.4 1.6 15.6 7.8 0.0 17.2 26.6 7.8 14.1 7.8 26.6 14.1
Avg. error 17.5 32.2 24.5 42.8 8.8 57.2 29.9 53.9 24.9 51.2 38.6 37.8 89.0 45.8

LBN

Best (%) 4.7 12.5 0.0 6.3 1.6 6.3 40.6 0.0 0.0 0.0 0.0 0.0 1.6 0.0
Str. best (%) 1.6 1.6 0.0 0.0 1.6 4.7 17.2 0.0 0.0 0.0 0.0 0.0 1.6 0.0
Avg. error 26.6 33.6 30.5 42.5 10.2 61.6 29.6 57.2 41.1 67.4 50.1 50.5 92.5 58.6

LAM

Best (%) 6.3 20.3 7.8 6.3 0.0 20.3 15.6 9.4 0.0 0.0 0.0 0.0 4.7 0.0
Str. best (%) 1.6 9.4 6.3 1.6 0.0 7.8 1.6 6.3 0.0 0.0 0.0 0.0 4.7 0.0
Avg. error 19.0 32.7 24.4 42.7 11.6 58.1 29.7 47.7 33.5 49.6 44.7 48.3 89.7 56.1

LGM

Best (%) 32.8 35.9 34.4 32.8 7.8 17.2 46.9 6.3 29.7 28.1 12.5 0.0 1.6 82.8
Str. best (%) 1.6 7.8 21.9 23.4 6.3 14.1 25.0 6.3 28.1 28.1 9.4 0.0 1.6 82.8
Avg. error 14.1 31.9 20.4 39.3 11.3 57.6 29.5 46.8 13.0 42.6 27.6 45.0 89.9 26.7

L−1

Best (%) 25.0 45.3 39.1 42.2 0.0 12.5 15.6 39.1 4.7 37.5 4.7 9.4 12.5 1.6
Str. best (%) 0.0 14.1 18.8 31.3 0.0 9.4 1.6 29.7 4.7 37.5 4.7 9.4 12.5 1.6
Avg. error 13.8 29.8 20.3 38.2 8.3 56.2 29.8 39.7 16.3 42.1 25.2 32.9 88.3 32.3

L−10

Best (%) 73.4 43.8 25.0 34.4 76.6 31.3 20.3 39.1 37.5 26.6 71.9 82.8 7.8 1.6
Str. best (%) 42.2 7.8 10.9 18.8 75.0 25.0 4.7 31.3 35.9 26.6 68.8 82.8 7.8 1.6
Avg. error 12.7 30.2 20.8 38.6 5.7 55.9 29.7 39.4 12.1 42.3 21.9 26.9 89.8 28.6

Table 3.1: Experiments on UCI datasets. Positive edges generated by k-nearest
neighbours, and negative edges generated by k-farthest neighbours. We report the
percentage of cases where each method achieves the smallest and strictly smallest
clustering error, and the average clustering error.

While (Chiang et al., 2012) conjectured that this dataset has no clustering struc-
ture, recent works (Mercado et al., 2016; Cucuringu et al., 2019) have shown that
indeed there is clustering structure. As noted in (Mercado et al., 2016), using the
geometric mean Laplacian LGM and looking for k clusters unveils the presence of
a large non-informative cluster and k− 1 remaining smaller clusters which show
relevant clustering structure.

Our results verify these recent findings. We set the number of clusters to iden-
tify to k = 30 and in Fig. 3.6 we present the sorted adjacency matrices according
to the identified clusters. In the first two columns (left to right) we can see that
there is a large cluster (upper-left corner of each adjacency matrix) that does not
resemble any structure, whereas the remaining part of the graph does present certain
clustering structure. The following third and fourth columns zoom in into this
region. We can see that when p ≤ 0 the Signed Power Mean Laplacian Lp identifies
clustering structure, whereas this structure is overlooked by the arithmetic mean case
p = 1. Moreover, we can see that different powers identify slightly different clusters:
this happens as this dataset does not necessarily follow the Signed Stochastic Block
Model, and hence we do not fully retrieve the same behavior that was studied in
Section 3.4.
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(a) L−10 : W+ (b) L−10 : W− (c) L−10 : W+ (Zoom) (d) L−10 : W− (Zoom)

(e) L−5 : W+ (f) L−5 : W− (g) L−5 : W+ (Zoom) (h) L−5 : W− (Zoom)

(i) L−2 : W+ (j) L−2 : W− (k) L−2 : W+ (Zoom) (l) L−2 : W− (Zoom)

(m) L−1 : W+ (n) L−1 : W− (o) L−1 : W+ (Zoom) (p) L−1 : W− (Zoom)

(q) L0 : W+ (r) L0 : W− (s) L0 : W+ (Zoom) (t) L0 : W− (Zoom)

(u) L1 : W+ (v) L1 : W− (w) L1 : W+ (Zoom) (x) L1 : W− (Zoom)

Figure 3.6: Sorted adjacency matrices according to clusters identified by the Power
Mean Laplacian Lp with p ∈ {−10,−5,−2,−1, 0, 1}. Columns from left to right:
First two columns depict adjacency matrices W+ and W− sorted through the cor-
responding clustering. Third and fourth columns depict the portion of adjacency
matrices W+ and W− corresponding to the k− 1 identified clusters. Rows from top
to bottom: Clustering corresponding to L−10, L−5, L−2, L−1, L0, L−1.
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3.6.3 On Diagonal Shift

In this section we briefly discuss the effect of the diagonal shift on the power mean
Laplacian Lp for p ≤ 0. In the definition of power mean Laplacian in Eq. 3.7 it is
mentioned that for negative powers p ≤ 0 a diagonal shift is necessary.

To evaluate the influence of the magnitude of the diagonal shift we perform
numerical evaluations on two different kinds of signed graphs: on the one side
we consider signed graphs generated through the Signed Stochastic Block Model
introduced in Section 3.4, and on the other side we consider signed graphs built
from standard machine learning benchmark datasets following Section 3.6.1.

Experiments with benchmark datasets. We now perform a numerical evaluation
on different real-world networks, following the procedure of Section 3.6.1. Moreover,
we perform this analysis for p ∈ {−1,−10} and diagonal shifts {10−10, 10−9, . . . , 103}.
The corresponding results are presented in Fig. 3.7, where we show the average clus-
tering error taken across all values of k+ and k− (for more details on the construction
of the corresponding signed graphs please see Section 3.6.1).

We can observe a general behavior for L−10 across datasets where for a small
diagonal shift, the clustering error is high, and decreases for larger shifts, generally
reaching its minimum clustering error around diagonal shifts equal to one, to later
present a slight increase in clustering error. This confirms the proposed approach
to set the diagonal shift to log10(1 + |p|) + 10−6 which for the case of p = −10 is
≈ 1.04.

For the case of the harmonic mean Laplacian L−1 we can observe that it presents
a more stable behavior that slightly resembles the one of L−10. In particular, we can
observe that there is a region from 10−6 to 10−1 where the smallest average clustering
error is achieved. Hence, L−1 is relatively more robust to different diagonal shifts.
This confirms our observations made based on signed graphs following the SBM.

Experiments with SSBM. We begin with experiments based on signed graphs
following the SSBM. The corresponding results are presented in Fig. 3.8. We study the
performance of the power mean Laplacians L−1, L−2, L−5, L−10 with diagonal shifts
{10−10, 10−9, . . . , 103}. Moreover, the case where either G+ or G− are informative
i.e. assortative and disassortative, respectively. In particular, in top (resp. bottom)
row of Fig. 3.8 the results correspond to the case where G+ (resp.G−) is fixed to be
assortative (resp. disassortative).

We can observe that the larger the value of p, the more robust the performance
of the corresponding power mean Laplacian Lp to the values of the diagonal shift.
For instance, we can see for L−1 (see Figs. 5.14(d) and 3.8(e)) that the smaller the
diagonal shift, the better the smaller the clustering error, whereas for diagonal shifts
100, 101, 102, 103 its performance clearly deteriorates.

On the other side we can see that the power mean Laplacian L−10 presents a
high sensibility towards the value of the diagonal shift (see Figs. 5.6(d) and 3.8(h))
where the diagonal shift should be neither too large nor too small, being the values
{10−2, 10−1, 100} the more suitable for this particular case. Thiese observations are a
verification for the setting with sparse graphs, as it is observed in Fig. 3.9.
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Figure 3.7: Mean clustering error of the power mean Laplacians L−1 and L−10 with
diagonal shifts {10−10, 10−9, . . . , 103}.

On condition number. We now consider a condition number approach to study
the effect of the diagonal shift. Recall that the eigenvalue computation scheme
considered in this chapter and the corresponding Algorithm 4 are described in
Section 3.5. We can observe that the main computation steps are related to the
matrix vector operations (L+

sym)pxk and (Q−sym)pxk with p < 0. We highlight that this
framework considers only the case where p < 0.

Observe that in the operation (L+
sym)pxk, with p < 0, the condition number plays

an influential role due to the inverse operation implied by the negativity of p. Note
that the eigenvalues of the normalized Laplacians L+

sym are contained in the interval
[0, 2], hence, it is a singular matrix. As mentioned in the definition of the power
mean Laplacian in Eq. 3.7, a suitable diagonal shift is necessary for the case where
p < 0. Hence, the eigenvalues of the shifted Laplacian L+

sym + µI are contained in

the interval [µ, 2 + µ], therefore, condition number is equal to
λmax(L+

sym)

λmin(L+
sym)

which in

this case reduces to 2+µ
µ . Thus, it follows that the condition number of (L+

sym + µI)p

is g(µ, p) :=
(

2+µ
µ

)|p|
. It is easy to see that 2+µ

µ > 1 and hence g(µ, p) grows with

larger values of |p|, hence the condition number is larger for smaller values of the
power mean Laplacian. Moreover, the growth rate of g(µ, p) is larger for smaller
values of µ, suggesting that the shift µ should be set as large as possible. Yet, very
large values of µ overcome the information contained in the Laplacian matrix. Hence,
the diagonal shift should not be too small (due to numerical stability) and should not
be too large (due to information obfuscation). This confirms the behavior presented
in Figs. 3.8, 3.9 and 3.7.
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Figure 3.8: Mean clustering error under SBM for different diagonal shifts with
sparsity 0.1. Details in Sec. 3.6.3.
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Figure 3.9: Mean clustering error under SBM for different diagonal shifts with
sparsity 0.05. Details in Sec. 3.6.3.
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3.7 conclusion

In this chapter we have addressed the task of clustering signed graphs that encode
both positive and negative edges. We have introduced the Signed Power Mean
Laplacian, which is a one-parameter family of matrix means that has as particular
cases the arithmetic, log-euclidean and harmonic matrix means of the Laplacian
of positive edges and the signless Laplacian of negative edges. We have discussed
that state of the art approaches can be seen as some sort of arithmetic mean of
suitable Laplacians, and we have shown that the arithmetic mean is suboptimal
under a version of the stochastic block model for signed graphs. We have presented
an analysis in expectation with verifications on sampled random graphs following
a suitable stochastic block model. Moreover, we have shown that the eigenvalues
and eigenvectors of the Signed Power Mean Laplacian concentrate around their
expectation. Finally, through extensive numerical experiments we have verified that
our approach is competitive with the state of the art.

In the next chapter we will consider the case of clustering on multilayer graphs,
where multiple kinds of interactions are encoded, yet, contrary to signed graphs, all
interactions encode some sort of similarity.



4
S P E C T R A L C L U S T E R I N G O F M U LT I L AY E R G R A P H S
V I A M AT R I X P O W E R M E A N S

In the previous chapter we have studied the case of clustering in signed graphs
that encode two particular kinds of interactions. In this chapter we study clustering
on multilayer graphs that encode different kinds of interactions between the same
set of entities. In a similar way as in the signed graph case, one of the challenges
with multilayer graphs is how to merge the information from different layers in
a meaningful way. In this chapter we introduce a one-parameter family of matrix
power means for merging the Laplacians from different layers and analyze it in
expectation with several multilayer graph extensions of the stochastic block model.
We show that this family allows to recover ground truth clusters under different
settings and verify this in real-world data. While computing the matrix power
mean can be very expensive for large graphs, we introduce a numerical scheme to
efficiently compute its eigenvectors for the case of large sparse graphs.

4.1 introduction

Multilayer graphs have received an increasing amount of attention due to their
capability to encode different kinds of interactions between the same set of enti-
ties (Boccaletti et al., 2014; Kivelä et al., 2014). This kind of graphs arise naturally
in diverse applications such as transportation networks (Gallotti and Barthelemy,
2015), financial-asset markets (Bazzi et al., 2016), temporal dynamics (Taylor et al.,
2017, 2016), semantic world clustering (Sedoc et al., 2017), multi-video face anal-
ysis (Cao et al., 2015), mobile phone networks (Kiukkonen et al., 2010), social bal-
ance (Cartwright and Harary, 1956), citation analysis (Tang et al., 2009), and many
others.

The extension of clustering techniques to multilayer graphs is a challenging task
and several approaches have been proposed so far. For an overview see (Kim and
Lee, 2015; Sun, 2013; Xu et al., 2013; Zhao et al., 2017b). For instance, (Dong et al.,
2012, 2014; Tang et al., 2009; Zhao et al., 2017a) rely on matrix factorizations, whereas
(De Bacco et al., 2017; Paul and Chen, 2016a; Peixoto, 2015; Schein et al., 2015, 2016)
take a Bayesian inference approach, and (Kumar and III, 2011; Kumar et al., 2011)
enforce consistency among layers in the resulting clustering assignment. In (Mucha
et al., 2010; Paul and Chen, 2016b; Wilson et al., 2017) Newman’s modularity (New-
man, 2006) is extended to multilayer graphs. Recently (De Domenico et al., 2015;
Stanley et al., 2016) proposed to compress a multilayer graph by combining sets of
similar layers (called ‘strata’) to later identify the corresponding communities. Of

45
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particular interest to our work is the popular approach (Argyriou et al., 2006; Chen
and Hero, 2017; Huang et al., 2012; Taylor et al., 2017; Zhou and Burges, 2007) that
first blends the information of a multilayer graph by finding a suitable weighted
arithmetic mean of the layers and then applies standard clustering methods to the
resulting mono-layer graph.

In this chapter we focus on extensions of spectral clustering to multilayer graphs.
For a brief introduction to spectral clustering please refer to Section 2.1. We propose
to blend the information of a multilayer graph by taking certain matrix power means
of Laplacians of the layers.

The power mean of scalars is a general family of means that includes as spe-
cial cases, the arithmetic, geometric and harmonic means (see Section 2.3.1). The
arithmetic mean of Laplacians has been used before in the case of signed net-
works (Kunegis et al., 2010) and thus our family of matrix power means is a natural
extension of that approach. One of our main contributions is to show that the
arithmetic mean is actually suboptimal to merge information from different layers.

We analyze the family of matrix power means in the Stochastic Block Model (SBM)
for multilayer graphs in two settings, see Section 4.4. In the first one all the layers are
informative, whereas in the second setting none of the individual layers contains the
full information except for the case when considered all together. We show that as
the parameter of the family of Laplacian means tends to −∞, in expectation one can
recover perfectly the clusters in both situations. We provide extensive experiments
which show that this behavior is stable when one samples sparse graphs from the
SBM. Moreover, in Section 4.6, we provide additional experiments on real-world
graphs which confirm our finding in the SBM.

Similarly to the previous chapter, a main challenge for our approach is that the
matrix power mean of sparse matrices is in general dense and thus does not scale
to large sparse networks in a straightforward fashion. Thus a further contribution
of this chapter in Section 4.5 is to show that the first few eigenvectors of the matrix
power mean can be computed efficiently. Our algorithm combines the power method
with a Krylov subspace approximation technique and allows to compute the extremal
eigenvalues and eigenvectors of the power mean of matrices without ever computing
the matrix itself.

4.2 related work

A common assumption among clustering methods for multilayer graphs is that a
sensible clustering can be obtained by taking any single layer, and that clustering
information across layers is consistent, in the sense that each layer taken individually
basically generates the same clustering. This notion has led to different extensions
of clustering to multilayer graphs, like those based on co-training (Kumar and III,
2011) and co-regularization (Kumar et al., 2011), where the goal is to generate an
embedding of the set of nodes that is enforced to be aligned to the embedding that
each layer provides.
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Joint matrix factorizations provide another approach related to the assumption
previously described, where the goal was to find a factorization of the layers of
a multilayer graph, such that the underlying information shared in common by
the layers is obtained, to later apply a suitable clustering method. For instance, a
joint matrix factorization approach can be performed on the adjacency matrices of
the layers Tang et al. (2009) or on the eigenvectors corresponding to the smallest
eigenvalues of the Laplacians of the layers Dong et al. (2012).

Modularity-based approaches are closely related to spectral clustering. In these
techniques the goal is to identify clusters such that their edge density is larger
than certain reference null model. Several extensions of the notion of modularity
for multilayer graphs have been recently introduced (Mucha et al., 2010; Paul and
Chen, 2016b; Wilson et al., 2017). In contrast to spectral clustering, modularity-based
approaches do not require to pre-specify the number of clusters.

Another line of work that recently has gained a great amount of attention is based
on Bayesian inference (De Bacco et al., 2017; Peixoto, 2015; Schein et al., 2015, 2016;
Jenatton et al., 2012). This methods rely on suitable assumptions of the distribution
of the interactions encoded in a multilayer graph, leading to a likelihood function
whose optimization not only outputs a clustering, but tells as well to what degree
the observed clustering structure steps away from randomness, together with model
insights regarding the dynamics of the multilayer graph (Peixoto, 2019).

Finally, extensions of spectral clustering in general aim at identifying a multilayer
graph operator that blends the information encoded in a multilayer graph such that
the eigenvectors corresponding to the smallest eigenvalues are informative about
the clustering structure. Several of these extensions rely on some sort of arithmetic
mean, for instance the Laplacian of the average adjacency matrix, or the average
Laplacian matrix (Paul and Chen, 2020). Further examples are (Zhou and Burges,
2007) which is motivated through the notion of multilayer graphs cuts, and (Chen
and Hero, 2017) which identifies optimal convex combinations of layers based on
graph noise models.

The arithmetic mean can be seen as a particular case of a more general family of
means. In the next section we introduce the Power Mean Laplacian, which is based
on a one-parameter family of matrix means called matrix power means, and which
in the scalar case has the arithmetic, geometric and harmonic means as particular
cases (see Section 2.3 for a brief overview on power means).

4.3 the power mean laplacian

Let V = {v1, . . . , vn} be a set of nodes and let T the number layers, represented by
adjacency matrices W = {W(1), . . . , W(T)}. For each non-negative weight matrix
W(t) ∈ Rn×n

+ we have a graph G(t) = (V, W(t)) and a multilayer graph is the set
G = {G(1), . . . , G(T)}.

In this chapter our main focus are assortative graphs. This kind of graphs are used
to model the situation where edges carry similarity information of pairs of vertices
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Algorithm 6: Spectral clustering of multilayer graphs with Lp

Input: Symmetric matrices W(1), . . . , W(T), number k of clusters to construct.
Output: Clusters C1, . . . , Ck.

1 Compute eigenvectors u1, . . . , uk′ corresponding to the k smallest eigenvalues of Lp.
2 Set U = (u1, . . . , uk) and cluster the rows of U with k-means into clusters C1, . . . , Ck.

and thus are indicative for vertices being in the same cluster. For an assortative
graph G =(V, W), spectral clustering is typically based on the Laplacian matrix and
its normalized version, defined respectively as

L = D−W Lsym = D−1/2LD−1/2

where Dii = ∑n
j=1 wij is the diagonal matrix of the degrees of G. Both Laplacians

are symmetric positive semidefinite and the multiplicity of eigenvalue 0 is equal
to the number of connected components in G. For more details please see Section 2.1.

Given a multilayer graph with all assortative layers G(1), . . . , G(T), our goal is to
come up with a clustering of the vertex set V. We point out that in this chapter a
clustering is a partition of V, that is each vertex is uniquely assigned to one cluster.

We consider the multilayer graph G = (G(1), . . . , G(T)) and define the power mean
Laplacian Lp of G as

Lp = Mp(L(1)
sym, . . . , L(T)

sym) =

(
1
T

T

∑
i=1

(L(i)
sym)p

)1/p

(4.1)

where L(t)
sym is the normalized Laplacian of the graph G(t). Note that Definition 2.1 of

the matrix power mean Mp(A1, . . . , AT) requires A1, . . . , AT to be positive definite.
As the normalized Laplacian is positive semi-definite, in the following, for p ≤ 0
we add to L(t)

sym in Equation (4.1) a small diagonal shift which ensures positive

definiteness, that is we consider L(t)
sym + εI throughout this chapter. For all numerical

experiments we set ε = log(1+|p|) for p < 0 and ε = 10−6 for p = 0. Abusing
notation slightly, we always mean the shifted versions in the following, unless the
shift is explicitly stated.

Similar to spectral clustering for a single graph, we propose Alg. 6 for the spectral
clustering of multilayer graphs based on the matrix power mean of Laplacians. As in
standard spectral clustering, see (von Luxburg, 2007), our Algorithm 6 uses the eigen-
vectors corresponding to the k smallest eigenvalues of the power mean Laplacian
Lp. Thus the relative ordering of the eigenvalues of Lp is of utmost importance. By
Lemma 2.1 we know that if Aiu = λ(Ai)u, for i = 1, . . . , n, then the corresponding
eigenvalue of the matrix power mean is mp (λ(A1), . . . , λ(AT)). Hence, the ordering
of eigenvalues strongly depends on the choice of the parameter p. In the next section
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we study the effect of the parameter p on the ordering of the eigenvectors of Lp for
multilayer graphs following the stochastic block model.

4.4 stochastic block model analysis

In this section we present an analysis of the eigenvectors and eigenvalues of the
power mean Laplacian under the Stochastic Block Model (SBM) for multilayer graphs.
The SBM is a widespread random graph model for single-layer networks with a
prescribed clustering structure (Rohe et al., 2011). Studies on community detection for
multilayer networks following the SBM can be found in (Han et al., 2015; Heimlicher
et al., 2012; Jog and Loh, 2015; Xu et al., 2014, 2020; Yun and Proutiere, 2016).

In order to grasp how different methods identify communities in multilayer
graphs following the SBM we will analyze three different settings. In the first setting
all layers follow the same node partition (see f.i. (Han et al., 2015)). In this case we
study the robustness of the spectrum of the power mean Laplacian when the first
layer is informative and the other layers are noise or even contain contradicting infor-
mation. In the second setting we consider the particularly interesting situation where
multilayer-clustering is superior over each individual clustering. More specifically,
we consider the case where three clusters are to be found but each layer contains
only information about one of them and only considering all of the layers together
reveals the information about the underlying cluster structure. In a third setting we
go beyond the standard SBM and consider the case where we have a graph partition
for each layer, but this partition changes from layer to layer according to a generative
model (see f.i.(Bazzi et al., 2016)). However, for the last setting we only provide an
empirical study, whereas for the first two settings we analyze the spectrum also
analytically.

In the following we denote by C1, . . . , Ck the ground truth clusters that we aim
to recover. All the Ci are assumed to have the same size |C|. Calligraphic letters
are used for the expected matrices in the SBM. In particular, for a layer G(t) we
denote byW (t) its expected adjacency matrix, by D(t) = diag(W (t)1) the expected
degree matrix and by L(t)sym = I− (D(t))−1/2W (t)(D(t))−1/2 the expected normalized
Laplacian.

4.4.1 Case 1: Robustness to noise where all layers have the same cluster structure

The case where all layers follow a given node partition is a natural extension of the
mono-layer SBM to the multilayer setting. This is done by having different edge
probabilities for each layer (Han et al., 2015), while fixing the same node partition
in all layers. We denote by p(t)in (resp. p(t)out) the probability that there exists an edge
in layer G(t) between nodes that belong to the same (resp. different) clusters. Then
W (t)

ij = p(t)in if vi, vj belong to the same cluster and W (t)
ij = p(t)out if vi, vj belong to
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different clusters. Consider the following k vectors:

χ1 = 1, χi = (k− 1)1Ci − 1Ci

The use of k-means on the embedding induced by the vectors {χi}k
i=1 identifies

the ground truth communities {Ci}k
i=1. It turns out that in expectation {χi}k

i=1 are
eigenvectors of the power mean Laplacian Lp. We look for conditions so that they
correspond to the k smallest eigenvalues as this implies that our spectral clustering
Algorithm 6 recovers the ground truth.

Before addressing the general case, we discuss the case of two layers. For this
case we want to illustrate the effect of the power mean by simply studying the
extreme limit cases

L∞ := lim
p→∞
Lp and L−∞ := lim

p→−∞
Lp .

where Lp = Mp(L(1)sym,L(2)sym). The next Lemma shows that L∞ and L−∞ are related
to the logical operators AND and OR, respectively, in the sense that in expectation
L∞ recovers the clusters if and only if G(1) and G(2) have both clustering structure,
whereas in expectation L−∞ recovers the clusters if and only if G(1) or G(2) has
clustering structure.

Lemma 4.1. Let Lp = Mp(L(1)sym,L(2)sym).

• {χi}k
i=1 correspond to the k smallest eigenvalues of L∞ iff p(1)in > p(1)out and p(2)in > p(2)out.

• {χi}k
i=1 correspond to the k smallest eigenvalues of L−∞ iff p(1)in > p(1)out or p(2)in > p(2)out.

Proof. The result follows directly from Theorem 4.1 with T = 2.

The following theorem gives general conditions on the recovery of the ground
truth clusters in dependency on p and the size of the shift in Lp. Note that, in
analogy with Lemma 4.1, as p → −∞ the recovery of the ground truth clusters is
achieved if at least one of the layers is informative, whereas if p → ∞ all of them
have to be informative in order to recover the ground truth.

Theorem 4.1. Let Lp = Mp(L(1)sym, ...,L(T)sym) then χ1, . . . , χk correspond to the k-smallest
eigenvalues of Lp if and only if

mp(ρε)<1 + ε,

where (ρε)t=1− (p(t)in −p(t)out)/(p(t)in +(k−1)p(t)out) + ε, and t = 1, . . . , T.
In particular, for p→ ±∞, we have
1. χ1, . . . , χk correspond to the k-smallest eigenvalues of L∞ if and only if all layers are

informative, i.e. p(t)in > p(t)out holds for all t ∈ {1, . . . , T}.
2. χ1, . . . , χk correspond to the k-smallest eigenvalues of L−∞ if and only if there is at least

one informative layer, i.e. there exists a t ∈ {1, . . . , T} such that p(t)in > p(t)out.



4.4 stochastic block model analysis 51

Proof. We first show that χ1, . . . , χk are eigenvectors of W1, . . . , W(T). For χ1 we
have,

W (t)χ1 =W (t)1 = |C|(p(t)in + (k− 1)p(t)out)1 = d(t)1 = λ
(t)
1 1

For the remaining vectors χ2, . . . , χk we have

W (t)χi =W (t)((k− 1)1Ci − 1Ci

)
=W (t)(k1Ci − (1Ci + 1Ci

)
)

=W (t)(k1Ci − 1
)

= k|C|(p(t)in 1Ci + p(t)out1Ci
)− d(t)1

= k|C|(p(t)in 1Ci + p(t)out1Ci
)− d(t)(1Ci + 1Ci

)

= |C|(kp(t)in − d(t))1Ci + |C|(kp(t)out − d(t))1Ci

= |C|(k− 1)(p(t)in − p(t)out)1Ci − |C|(p(t)in − p(t)out)1Ci

= |C|(p(t)in − p(t)out)
(
(k− 1)1Ci − 1Ci

)
= |C|(p(t)in − p(t)out)χi

= λiχi

Thus, we have shown that χ1, . . . , χk are eigenvectors ofW (1), . . . , W(T). In particular,
we have seen that

λ
(t)
1 = |C|(p(t)in + (k− 1)p(t)out), λ

(t)
i = |C|(p(t)in − p(t)out)

for i = 2, . . . , k. Further, as matricesW (1), . . . , W(T) share all their eigenvectors, they
are simultaneously diagonalizable, that is there exists a non-singular matrix Σ such
that for t = 1, . . . , T we have Σ−1W (t)Σ = Λ(t), where Λ(t) are diagonal matrices
Λ(t) = diag(λ(t)

1 , . . . , λ
(t)
k , 0, . . . , 0).

As we assume that all clusters are of the same size |C|, the expected multi-
layer graph is a regular graph with degrees d(1), . . . , d(T). Hence, the normalized
Laplacians of the expected multilayer graph can be expressed as

L(t)sym = Σ(I − 1
d(t)

Λ(t))Σ−1

Thus, we can observe that

λ
(t)
1 := λ1(L

(t)
sym) = 0,

λ
(t)
i := λi(L

(t)
sym) = 1− ρt,

λ
(t)
j := λj(L

(t)
sym) = 1,
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for i = 2, . . . , k, and j = k + 1, . . . , |V|, where

ρt = (p(t)in − p(t)out)/(p(t)in + (k− 1)p(t)out)

By obtaining the power mean Laplacian on diagonally shifted matrices,

Lp = Mp(L(1)sym + εI, ...,L(T)sym + εI)

we have by Lemma 2.1

λ1(Lp) = mp(λ
(1)
1 + ε, . . . , λ

(T)
1 + ε) = mp(ε)

λi(Lp) = mp(1− ρ1 + ε, . . . , 1− ρT + ε)

λj(Lp) = mp(λ
(1)
j + ε, . . . , λ

(T)
j + ε) = 1 + ε

(4.2)

Observe that λj(Lp), with j = k + 1, . . . , |V|, corresponds to eigenvectors that do not
yield an informative embedding. Hence, we do not want this eigenvalue to belong
to the bottom of the spectrum of Lp. Thus, for the case of χ2, . . . , χk, we can see that
they will be located at the bottom of the spectrum if the following condition holds:

λi(Lp) = mp(1− ρ1 + ε, . . . , 1− ρT + ε) = mp(ρε) < 1 + ε = λj(Lp)

It remains to analyze the case of the constant eigenvector χ1. Note that its associated
eigenvalue λ1(L1) has the following relationship to the non-informative eigenvectors:

λ1(L1) = ε < 1 + ε = λj(Lp)

which trivially holds, leading to the desired result.
For the limit cases we can observe that limp→∞ mp(x) = max{x1, . . . , xT} and

limp→−∞ mp(x) = min{x1, . . . , xT}. Thus, m∞(ρε) < 1 + ε if and only if ρt > 0 for
all t = 1, . . . , T. The case for p→ −∞ is analogous: m−∞(ρε) < 1 + ε if and only if
ρt > 0 for at least one t in t = 1, . . . , T.

Theorem 4.1 shows that the informative eigenvectors of Lp are at the bottom of
the spectrum if and only if the scalar power mean of the corresponding eigenvalues
is small enough. Since the scalar power mean is monotonically decreasing with
respect to p, this explains why the limit case p→ ∞ is more restrictive than p→−∞.
The corollary below shows that the coverage of parameter settings in the SBM for
which one recovers the ground truth becomes smaller as p grows.

Corollary 4.1. Let q ≤ p. If χ1, . . . , χk correspond to the k-smallest eigenvalues of Lp, then
χ1, . . . , χk correspond to the k-smallest eigenvalues of Lq.

Proof. If λ1, . . . , λk are among the k-smallest eigenvalues of Lp, then by Theorem 4.1,
we have mp(ρε) < 1 + ε. As mp is monotone in the parameter p (see Theorem 2.1)
we have mq(ρε) ≤ mp(ρε), Theorem 4.1 concludes the proof.
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Figure 4.1: Mean Clustering Er-
ror under the SBM with two clus-
ters. First layer G(1) is assorta-
tive. Second layer G(2) transi-
tions from disassortative to as-
sortative. Fig. 4.1(a): Compar-
ison of L−10 with state of art.
Fig. 4.1(b): Performance of Lp
with p ∈ {0,±1,±2,±5,±10}.

The previous results hold in expectation. The following experiments show that
these findings generalize to the case where one samples from the SBM. In Fig. 4.1
we present experiments on sparse sampled multilayer graphs from the SBM. We
consider two clusters of size |C| = 100 and show the mean of clustering error of 50
runs. We evaluate the power mean Laplacian Lp with p ∈ {0,±1,±2,±5,±10} and
compare with other methods described in Section 4.6.

In Fig. 4.1 we fix the first layer G(1) to be strongly assortative and let the second layer
G(2) run from a disassortative to an assortative configuration. In Fig.4.1(a) we can see
that the power mean Laplacian L−10 returns the smallest clustering error, together
with the multitensor method, the best single view and the heuristic approach across
all parameter settings. The latter two work well by construction in this setting.
However, we will see that they fail for the second setting we consider next. All the
other competing methods fail as the second graph G(2) becomes non-informative
respesctively even violates the assumption to be assortative. In Fig. 4.1(b) we can see
that the smaller the value of p, the smaller the clustering error of the power mean
Laplacian Lp, as stated in Corollary 4.1.

4.4.2 Case 2: No layer contains full information on the clustering structure

We consider a multilayer SBM setting where each individual layer contains only
information about one of the clusters and only considering all the layers together
reveals the complete cluster structure. For this particular instance, all power mean
Laplacians Lp allow to recover the ground truth for any non-zero integer p.

For the sake of simplicity, we limit ourselves to the case of three layers and three
clusters, showing an assortative behavior in expectation. Let the expected adjacency
matrixW (t) of layer G(t) be defined by

W (t)
i,j =

{
pin, vi, vj ∈ Ct or vi, vj ∈ Ct

pout, else
(4.3)

for t = 1, 2, 3. Note that the three expected adjacency matrices have the form
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 1 1 1
1 1 1
1 1 1


︸ ︷︷ ︸

W (1)

,

 1 1 1
1 1 1
1 1 1


︸ ︷︷ ︸

W (2)

,

 1 1 1
1 1 1
1 1 1


︸ ︷︷ ︸

W (3)

,

where each (block) row and column corresponds to a cluster Ci and gray blocks
correspond to nodes whose probability of connections is pin, whereas white blocks
correspond to nodes whose probability of connections is pout. Let us assume an
assortative behavior on all the layers, that is pin > pout. In this case spectral clustering
applied on a single layerW (t) would return cluster Ct and a random partition of the
complement, failing to recover the ground truth clustering C1, C2, C3. This is shown
in the following Theorem.

Theorem 4.2. If pin > pout, then for any t = 1, 2, 3, there exist scalars α > 0 and β > 0
such that the eigenvectors of L(t)sym corresponding to the two smallest eigenvalues are

χ1 = α1Ct + 1Ct
and χ2 = −β1Ct + 1Ct

whereas any vector orthogonal to both χ1 and χ2 is an eigenvector for the third smallest
eigenvalue.

Proof. Please see Appendix B.

On the other hand, it turns out that the power mean Laplacian Lp is able to merge
the information of each layer, obtaining the ground truth clustering, for all integer
powers different from zero. This is formally stated in the following.

Theorem 4.3. Let pin > pout and for ε > 0 define
L̃(t)sym = L(t)sym + εI, t = 1, 2, 3.

Then the eigenvectors of Lp = Mp(L̃(1)sym, L̃(2)sym, L̃(3)sym) corresponding to its three smallest
eigenvalues are

χ1 = 1, χ2 = 1C2 − 1C1 , and χ3 = 1C3 − 1C1

for any nonzero integer p.

Proof. Please see Appendix B.

The proof of Theorem 4.3 is more delicate than the one of Theorem 4.1, as it
involves the addition of powers of matrices that do not have the same eigenvectors.

Note that Theorem 4.3 does not distinguish the behavior for distinct values of
p. In expectation all nonzero integer values of p work the same. This is different
to Theorem 4.1, where the choice of p had a relevant influence on the eigenvector
embedding even in expectation. However, we see in the experiments on graphs
sampled from the SBM (Figure 4.2) that the choice of p has indeed a significant
influence on the performance even though they are the same in expectation. This



4.4 stochastic block model analysis 55

0.03 0.05 0.07 0.09
0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
 C

lu
st

er
in

g
 E

rr
o

r

(a)

0.03 0.05 0.07 0.09

(b)

-10 -5 -1 0 1 5 10

1

2

3

4

5

6

7

8

9

10

E
ig

en
va

lu
e 

In
d

ex

(c)

-10 -5 -1 0 1 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

C
lu

st
er

in
g

 E
rr

o
r

(d)

Figure 4.2: SBM experiments with three layers. Each layer is informative with respect
to one cluster. 4.2(a): Comparison of L−10 with state of art. 4.2(b): Performance of Lp
with p ∈ {0,±1,±2,±5,±10}. 4.2(c): Eigenvalue ordering of power mean Laplacian
Lp across different powers. The ordering clearly changes for powers p ≥ 2, inducing
non-informative eigenvectors to the bottom of the spectrum. 4.2(d): Clustering error
of the power mean Laplacian Lp. Clustering error increases with p ≥ 2, as suggested
by ordering changes depicted in 4.2(c).

suggests that the smaller p, the smaller the variance in the difference to the expected
behavior in the SBM. We leave as an open problem if such a dependency can be
shown analytically.

In Figs. 4.2(a) and 4.2(b) we present the mean clustering error out of ten runs.
In Fig. 4.2(a) one can see that BestView and Heuristic, which rely on clusterings
determined by single views, return high clustering errors which correspond to
the identification of only a single cluster. The result of Theorem 4.3 explains this
failure. The reason for the increasing clustering error with p can be seen in Fig. 4.2(c)
where we analyze how the ordering of eigenvectors changes for different values of
p. We can see that for negative powers, the informative eigenvectors belong to the
bottom three eigenvalues (denoted in red). For the cases where p ≥2 the ordering
changes, pushing non-informative eigenvectors to the bottom of the spectrum and
thus resulting into a high clustering error, as presented in Fig. 4.2(d). However, we
conclude that also for this second case a strongly negative power mean Laplacian as
L−10 works best.

4.4.3 Case 3: Non-consistent partitions between layers

We now consider the case where all the layers follow the same node partition
(as in Section 4.4.1), but the partitions may fluctuate from layer to layer with a
certain probability. We use the multilayer network model introduced in (Bazzi et al.,
2016). This generative model considers a graph partition for each layer, allowing
the partitions to change from layer to layer according to an interlayer dependency
tensor. For the sake of clarity we consider a one-parameter interlayer dependency
tensor with parameter p̃ ∈ [0, 1] (i.e. a uniform multiplex network according to the
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p̃
0.5 0.6 0.7 0.8 0.9 1.0

Lagg 0.3 1.3 3.0 8.0 22.3 100.0
Coreg 0.3 0.0 0.3 0.0 0.0 64.7

BestView 9.7 1.0 0.3 0.0 0.7 77.3
Heuristic 0.0 0.0 0.0 0.0 0.3 59.3

TLMV 0.7 0.7 4.0 6.0 24.7 100.0
RMSC 1.0 1.7 4.0 7.0 19.7 100.0

MT 1.3 0.3 0.7 3.0 17.0 100.0
L10 0.0 0.0 0.0 0.0 1.0 100.0
L5 0.0 0.0 0.0 0.0 5.0 100.0
L2 0.0 0.0 0.3 2.3 18.3 100.0
L1 1.0 1.0 3.0 7.0 30.3 100.0
L0 4.3 4.3 9.7 15.3 38.3 100.0

L−1 6.7 7.7 15.7 16.3 42.3 100.0
L−2 8.0 13.0 20.3 20.7 42.7 100.0
L−5 22.3 23.0 36.3 37.7 50.0 100.0
L−10 69.0 76.3 68.0 67.3 59.7 100.0

µ
0.0 0.1 0.2 0.3 0.4 0.5

Lagg 24.7 21.7 21.3 21.7 24.3 21.3
Coreg 16.7 16.7 13.3 11.7 6.0 1.0

BestView 16.7 17.0 17.0 17.7 11.7 9.0
Heuristic 16.7 16.3 15.0 9.0 2.0 0.7

TLMV 25.7 24.3 21.7 23.3 21.0 20.0
RMSC 26.3 22.0 23.0 21.7 20.3 20.0

MT 19.7 19.7 21.0 20.7 20.7 20.7
L10 16.7 17.3 17.0 16.7 16.7 16.7
L5 17.0 18.0 17.3 17.7 18.0 17.0
L2 23.0 21.3 19.3 19.0 20.3 18.0
L1 26.3 25.3 24.0 23.0 22.3 21.3
L0 33.3 30.3 28.7 28.0 28.0 23.7

L−1 36.3 33.0 33.3 32.0 29.0 25.0
L−2 37.3 36.3 36.7 34.0 31.3 29.0
L−5 48.0 45.0 49.0 44.3 43.0 40.0
L−10 71.7 72.3 72.7 74.7 76.3 72.7

Table 4.1: Percentage of cases where the minimum clustering error is achieved by
different methods. Left: Columns correspond to a fixed value of p̃ and we aggregate
over µ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}. Right: Columns correspond to a fixed value of µ
and we aggregate over p̃ ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

notation used in Section 3.B in (Bazzi et al., 2016)), where for p̃ = 0 the partitions
between layers are independent, and for p̃ = 1 the partitions between layers are
identical. Once the partitions are obtained, edges are generated following a multilayer
degree-corrected SBM (DCSBM in Section 4 of (Bazzi et al., 2016)), according to a
one-parameter affinity matrix with parameter µ ∈ [0, 1], where for µ = 0 all edges are
within communities whereas for µ = 1 edges are assigned ignoring the community
structure.

We choose p̃ ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1} and µ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} and con-
sider all possible combinations of ( p̃, µ). For each pair we count how many times,
out of 50 runs, each method achieves the smallest clustering error. The remaining
parameters of the DCSBM are set as follows: exponent γ=−3, minimum degree
and maximum degree kmin = kmax = 10, |V|= 100 nodes, T = 10 layers and K = 2
communities. As partitions between layers are not necessarily the same, we take the
most frequent node assignment among all 10 layers as ground truth clustering.

In Table 4.1, left side, we show the results for fixed values of p̃ and average over
all values of µ. In the right table we show the corresponding results for fixed values
of µ and average over all values of p̃. In the left table we can see that for p̃ = 1,
where the partition is the same in all layers, all methods recover the clustering, while,
as one would expect, the performance decreases with smaller values of p̃. Further,
we note that the performance of the power mean Laplacian improves as p̃ decreases
and L−10 again achieves the best result. In the right table we see that performance
is degrading with larger values of µ. This is expected as for larger values of µ the
edges inside the clusters are less concentrated. Again the performance of the power
mean Laplacian improves as p decreases and L−10 performs best.
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4.5 computing the smallest eigenvalues and eigenvectors

of matrix power means

We present an efficient method for the computation of the smallest eigenvalues of
Mp(A1, . . . , AT) which does not require the computation of the matrix Mp(A1, . . . , AT).
This is particularly important when dealing with potential large-scale problems as
Mp(A1, . . . , AT) is typically dense even though each Ai is a sparse matrix. We restrict
our attention to the case p < 0 which is the most interesting one in practice. The
positive case p > 0 as well as the limit case p→ 0 deserve a different analysis and
are not considered here.

Let A1, . . . , AT be positive definite matrices. If λ1 ≤ · · · ≤ λn are the eigenvalues
of Mp(A1, . . . , AT) corresponding to the eigenvectors u1, . . . , un, then µi = (λi)

p,
i = 1, . . . , n, are the eigenvalues of Mp(A1, . . . , AT)

p corresponding to the eigen-
vectors ui. However, the function f (x) = xp is order reversing for p < 0. Thus,
the relative ordering of the µi’s changes into µ1 ≥ · · · ≥ µn. Thus, the smallest
eigenvalues and eigenvectors of Mp(A1, . . . , AT) can be computed by addressing
the largest ones of Mp(A1, . . . , AT)

p. To this end we propose a power method type
outer-scheme, combined with a Krylov subspace approximation inner-method. The
pseudo code is presented in Algs. 7 and 8. Each step of the outer iteration in
Alg. 7 requires to compute the pth power of T matrices times a vector. Computing
Ap × vector, reduces to the problem of computing the product of a matrix function
times a vector. Krylov methods are among the most efficient and most studied strate-
gies to address such a computational issue. As Ap is a polynomial in A, we apply a
Polynomial Krylov Subspace Method (PKSM), whose pseudo code is presented in
Alg. 8 and which we briefly describe in the following. For further details we refer
to (Higham, 2008) and the references therein. For the sake of generality, below we
describe the method for a general positive definite matrix A.

The general idea of PKSM s-th iteration is to project A onto the subspace Ks(A, y) =
span{y, Ay, . . . , As−1y} and solve the problem there. The projection onto Ks(A, y)
is realized by means of the Lanczos process, producing a sequence of matri-
ces Vs with orthogonal columns, where the first column of Vs is y/ ||y||2 and
range(Vs) = Ks(A, y). Moreover at each step we have AVs = VsHs + vs+1eT

s where
Hs is s× s symmetric tridiagonal, and ei is the i-th canonical vector. The matrix
vector product x = Apy is then approximated by xs = Vs(Hs)pe1‖y‖ ≈ Apy.

Clearly, if operations are done with infinite precision, the exact x is obtained after n
steps. However, in practice, the error ‖xs − x‖ decreases very fast with s and often
very few steps are enough to reach a desirable tolerance. Two relevant observations
are in order: first, the matrix Hs = VT

s AVs can be computed iteratively alongside
the Lanczos method, thus it does not require any additional matrix multiplication;
second, the p power of the matrix Hs can be computed directly without any notable
increment in the algorithm cost, since Hs is tridiagonal of size s× s.
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Algorithm 7: PM applied to Mp.1/2

Input: x0, p < 0
Output: Eigenpair (λ, x) of Mp

1 repeat
2 u(1)

k ← (A1)
pxk

3
...

4 u(T)
k ← (AT)

pxk

5 yk+1 ← 1
T ∑T

i=1 u(i)
k

6 xk+1 ← yk+1/‖yk+1‖2
7 until tolerance reached
8 λ ← (xT

k+1xk)
1/p, x← xk+1

Algorithm 8: PKSM for Apy

Input: u0 = y, V0 = [ · ], p < 0
Output: x = Apy

1 v0 ← y/ ||y||2
2 for s = 0, 1, 2, . . . , n do
3 Ṽs+1 ← [Vs, vs]
4 Vs+1 ← Orthogonalize columns of

Ṽs+1
5 Hs+1 ← VT

s+1 AVs+1
6 xs+1 ← Vs+1(Hs+1)

pe1 ||y||2
7 if tolerance reached then break
8 vs+1 ← Avs
9 end

10 x← xs+1
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Figure 4.3: Mean execution time of 10 runs for the
power mean Laplacian Lp. Lp(ours) stands for the
power mean Laplacian together with our proposed
Power Method (Alg. 7) based on the Polynomial Krylov
Approximation Method (Alg. 8). L1(eigs) stands for the
arithmetic mean Laplacian with eigenvectors computed
with Matlab’s eigs function. Experiments are performed
using one thread.

Several eigenvectors can be simultaneously computed with Algs. 7 and 8 by orthonor-
malizing the current eigenvector approximation at every step of the power method
(Alg. 7) (see f.i. algorithm 5.1 Subspace iteration in (Saad, 2011)). Moreover, the outer
iteration in Alg. 7 can be easily run in parallel as the vectors u(i)

k , i = 1, . . . , T can be
built independently of each other.

A numerical evaluation of Algs. 7 and 8 is presented in Fig. 4.3. We consider graphs
of sizes |V| ∈ {1×104, 2×104, 3×104, 4×104}. Further, for each multilayer graph we
generate two assortative graphs with parameters pin=0.05 and pin=0.025, following
the SBM. Moreover, we consider the power mean Laplacian Lp = Mp(L(1)

sym, L(2)
sym)

with parameter p∈{−1,−2,−5,−10}. As a baseline we take the arithmetic mean
Laplacian L1 = M1(L(1)

sym, L(2)
sym) and use Matlab’s eigs function. For all cases, we

compute the two eigenvectors corresponding to the smallest eigenvalues. We present
the mean execution time of 10 runs. Experiments are performed using one thread.

4.6 experiments

We take the following baseline approaches of spectral clustering applied to: the
average adjacency matrix (Lagg), the arithmetic mean Laplacian (L1), the layer with



4.6 experiments 59

3Sources BBC BBCS Wiki UCI Citeseer Cora WebKB
# vertices 169 685 544 693 2000 3312 2708 187

# layers 3 4 2 2 6 2 2 2

# classes 6 5 5 10 10 6 7 5

Lagg 0.194 0.156 0.152 0.371 0.162 0.373 0.452 0.277
Coreg 0.215 0.196 0.164 0.784 0.248 0.395 0.659 0.444

Heuristic 0.192 0.218 0.198 0.697 0.280 0.474 0.515 0.400

TLMV 0.284 0.259 0.317 0.412 0.154 0.363 0.533 0.430

RMSC 0.254 0.255 0.194 0.407 0.173 0.422 0.507 0.279

MT 0.249 0.133 0.158 0.544 0.103 0.371 0.436 0.298

L1 0.194 0.154 0.148 0.373 0.163 0.285 0.367 0.440

L−10 (ours) 0.200 0.159 0.144 0.368 0.095 0.283 0.374 0.439

Table 4.2: Average Clustering Error

the largest spectral gap (Heuristic), and to the layer with the smallest clustering
error (BestView). Further, we consider: Pairwise Co-Regularized Spectral Cluster-
ing (Kumar et al., 2011) with parameter λ = 0.01 (Coreg) which proposes a spectral
embedding generating a clustering consistent among all graph layers, Robust Multi-
View Spectral Clustering (Xia et al., 2014) with parameter λ = 0.005 (RMSC) which
obtains a robust consensus representation by fusing noiseless information present
among layers, spectral clustering applied to a suitable convex combination of normal-
ized adjacency matrices (Zhou and Burges, 2007) (TLMV), and a tensor factorization
method (De Bacco et al., 2017) (MT), which considers a multi-layer mixed member-
ship SBM.

We take several datasets: 3sources(Liu et al., 2013), BBC(Greene and Cunning-
ham, 2005) and BBC Sports(Greene and Cunningham, 2009) news articles, a dataset
of Wikipedia articles(Rasiwasia et al., 2010), the hand written UCI digits dataset
with six different features and citations datasets CiteSeer(Lu and Getoor, 2003),
Cora(McCallum et al., 2000) and WebKB(Craven et al., 2011), (from WebKB we only
take the subset Texas). For each layer we build the corresponding adjacency matrix
from the k-nearest neighbor graph based on the Pearson linear correlation between
nodes, i.e. the higher the correlation the nearer the nodes are. We test all clustering
methods over all choices of k ∈ {20, 40, 60, 80, 100} and present the average clustering
error in Table 4.2. The datasets CiteSeer, Cora and WebKB have two layers: one is a
fixed citation network, whereas the second one is the k-nearest neighbor graph built
on documents features. We can see that in four out of eight datasets the power mean
Laplacian L−10 gets the smallest clustering error. The largest difference in clustering
error is present in the UCI dataset, where MT turns out to be the the second best.
Further, L1 presents the smallest clustering error in Cora, being L−10 close to it. The
smallest clustering error in WebKB is achieved by Lagg. This dataset is particularly
challenging, due to conflictive layers(He et al., 2017).
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4.7 conclusion

In this chapter we have studied the task of clustering on graphs that encode multiple
kinds of interactions. We have introduced the Power Mean Laplacian and analyzed
it under the stochastic block model for multilayer graphs under different settings.
We have shown that in expectation it recovers the ground truth clusters under
suitable conditions, and verified them through extensive numerical experiments on
random multilayer graphs. Moreover, we have observed that our proposed approach
performs no worse than state of the art approaches on real world datasets.

In the next chapter we continue our study of multilayer graphs, yet we will leave
the unsupervised task of clustering to enter into semi-supervised learning.



5
S E M I - S U P E RV I S E D L E A R N I N G O N M U LT I L AY E R
G R A P H S V I A M AT R I X P O W E R M E A N S

In previous chapters we have studied the unsupervised learning task of clustering on
signed and multilayer graphs. In this chapter we study the task of semi-supervised
learning on multilayer graphs by taking into account both labeled and unlabeled
observations together with the information encoded by each individual graph layer.
We propose a regularizer based on the matrix power mean, which is a one-parameter
family of matrix means that includes the arithmetic, geometric and harmonic means
as particular cases. We analyze it in expectation under a Multilayer Stochastic Block
Model and verify numerically that it outperforms state of the art methods. Moreover,
we introduce a matrix-free numerical scheme based on contour integral quadratures
and Krylov subspace solvers that scales to large sparse multilayer graphs.

5.1 introduction

The task of graph-based Semi-Supervised Learning (SSL) is to build a classifier
that takes into account both labeled and unlabeled observations, together with the
information encoded by a given graph (Subramanya and Talukdar, 2014; Chapelle
et al., 2010). A common and successful approach to this task is to take a suitable
loss function on the labeled nodes and a regularizer which provides information
encoded by the graph (Zhou et al., 2003; Zhu et al., 2003; Belkin et al., 2004; Yang
et al., 2016; Kipf and Welling, 2017). Whereas this task is well studied, traditionally
these methods assume that the graph is composed by interactions of one single kind,
i.e. only one graph is available.

For the case where multiple graphs, or equivalently, multiple layers are available,
the challenge is to boost the classification performance by merging the information
encoded in each graph. The arguably most popular approach for this task consists of
finding some form of convex combination of graph matrices, where more informative
graphs receive a larger weight (Tsuda et al., 2005; Zhou and Burges, 2007; Argyriou
et al., 2006; Nie et al., 2016; Karasuyama and Mamitsuka, 2013; Kato et al., 2009;
Viswanathan et al., 2019; Ye and Akoglu, 2018).

Note that a convex combination of graph matrices can be seen as a weighted
arithmetic mean of graph matrices. In the context of multilayer graph clustering,
we have shown in Chapters 3 and 4 that weighted arithmetic means are suboptimal
under certain benchmark generative graph models, whereas other matrix means are
able to discover clustering structures that the arithmetic means overlook.

61
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In this chapter we study the task of semi-supervised learning with multilayer
graphs with a novel regularizer based on the power mean Laplacian. For a brief
introduction to matrix power means we refer to Section 2.3. We show that in expec-
tation under a Multilayer Stochastic Block Model, our approach provably correctly
classifies unlabeled nodes in settings where state of the art approaches fail. In
particular, a limit case of our method is provably robust against noise, yielding good
classification performance as long as one layer is informative and the remaining
layers are potentially just noise. We verify the analysis in expectation with extensive
experiments with random graphs, showing that our approach compares favorably
with state of the art methods, yielding a good classification performance on several
relevant settings where state of the art approaches fail.

Moreover, our approach scales to large datasets: even though the computation
of the power mean Laplacian is in general prohibitive for large graphs, we present
a matrix-free numerical scheme based on integral quadrature methods and Krylov
subspace solvers which allows us to apply the power mean Laplacian regularizer
to large sparse graphs. Finally, we perform numerical experiments on real world
datasets and verify that our approach is competitive to state of the art approaches.

Notation. Recall that we define a multilayer graph with T layers as the set G =

{G(1), . . . , G(T)}, with each graph layer defined as G(t) = (V, W(t)), where V =

{v1, . . . , vn} is the node set and W(t) ∈ Rn×n
+ is the corresponding adjacency matrix,

which we assume symmetric and nonnegative. We further denote the layers’ nor-
malized Laplacians as L(t)

sym = I − (D(t))−1/2W(D(t))−1/2, where D(t) is the degree

diagonal matrix with (D(t))ii = ∑n
j=1 W(t)

ij . For a brief introduction to the graph
Laplacian please see Section 2.1.

5.2 related work

In this section, we give a brief overview of graph-based semi-supervised methods
for multilayer graphs. A well-established approach to this task is, for the single-layer
case, based on building a classifier that takes into account both labeled and unlabeled
observations, together with the information encoded in the graph. The information
encoded in the graph is frequently induced through a regularized based on a graph
operator, like the graph Laplacian. When taking a quadratic loss, this leads to a
linear system of equations (Zhou et al., 2003; Zhu et al., 2003).

This approach has been the motivation of several extensions to multilayer graphs.
For instance, (Tsuda et al., 2005) proposes a regularization approach on each of the
Laplacians of the layers:

min
f∈Rn,γ∈R+

‖ f − y‖2
2 + cγ s.t. f T L(i) f ≤ γ, for i = 1, . . . , T
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where the vector y ∈ Rn contains the classes of labeled observations and zero
otherwise. This approach further leads to a dual problem which is expressed in
terms of a weighted arithmetic mean of Laplacians (Tsuda et al., 2005). Further,
in (Kato et al., 2009) an approach is proposed which is able to identify informative
layers of a multilayer graph using as a regularizer a weighted arithmetic mean of
Laplacians:

min
f∈Rn

β1

l

∑
i=1

( fi − yi)
2 + β2 ‖ f ‖2

2 + β3 f T L(u) f

where l is the number of labeled nodes and L(u) = ∑T
i=1 uiL(i). The optimal

weights of L(u) are identified through an updating rule derived from an Expectation
Maximization approach.

In (Karasuyama and Mamitsuka, 2013) the goal is to build a classifier while
identifying a sparse linear combination of the layers of the graph by taking a suitable
regularization scheme based on a weighted arithmetic mean of Laplacians:

min
f∈Rn,µ∈Rn

+

T

∑
i=1

µi

||L(i)
sym||F

f T L(i) f + λ1 ‖ f − y‖2
2 + λ2 ‖µ‖2

2 s.t.
T

∑
i=1

µi = 1

(Argyriou et al., 2006) propose an optimal linear combination by taking a convex com-
bination of the pseudo inverse Laplacian into consideration, whereas (Nie et al., 2016),
propose a parameter-free method inspired by the graph cut problem, and (Zhou
and Burges, 2007) introduce a weighted arithmetic mean of normalized adjacency
matrices to later classify node labels by solving a linear system of equations.

A slightly different approach is proposed in (Viswanathan et al., 2019) where
the goal is to extend the notion of Gaussian Markov random fields to multilayer
graphs through an inverse covariance matrix that is a weighted linear combination
of suitable matrices.

Moreover, based on improvements of belief propagation (Koutra et al., 2011),
a scalable approximation to multilayer graphs have been proposed in (Eswaran
et al., 2017) where the belief corresponds to node labels, whereas in (Gujral and
Papalexakis, 2018) a tensor factorization method is designed for semi-supervised
learning in multilayer graphs.

We have observed that several extensions to multilayer graphs rely on weighted
arithmetic means of suitable matrices. In the next section we introduce a multilayer
graph operator that we will use as a regularizer. This multilayer graph operator
is a one-parameter family of matrix functions, which has, in the scalar case, the
arithmetic, geometric and harmonic means as particular cases.

5.3 ssl with the power mean laplacian

In this section we now introduce our multilayer graph regularizer that is based on
the power mean Laplacian.
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The Power Mean Laplacian, as introduced in Chapter 4, is a matrix extension
of the scalar power mean (see Section 2.3) applied to the Laplacians of a multilayer
graph and proposed as a more robust way to blend the information encoded across
the layers. It is defined as

Lp =

(
1
T

T

∑
i=1

(L(i)
sym)p

)1/p

where A1/p is the unique positive definite solution of the matrix equation Xp = A.
For the case p ≤ 0 a small diagonal shift ε > 0 is added to each Laplacian, i.e. we
replace L(i)

sym with L(i)
sym + ε, to ensure that Lp is well defined as suggested in (Bhagwat

and Subramanian, 1978). In what follows all the proofs hold for an arbitrary shift.
Following Chapter 4, we set ε = log10(1 + |p|) + 10−6 for p ≤ 0 in the numerical
experiments.

We consider the following optimization problem for the task of semi-supervised
learning in multilayer graphs: Given k classes r = 1, . . . , k and membership vectors
Y(r) ∈ Rn defined by Y(r)

i = 1 if node vi belongs to class r and Y(r)
i = 0 otherwise,

we let

f (r) = arg min
f∈Rn

‖ f −Y(r)‖2 + λ f T Lp f . (5.1)

The final class assignment for an unlabeled node vi is yi = arg max{ f (1)i , . . . , f (k)i }.
Note that the solution f of (5.1), for a particular class r, is such that (I +λLp) f = Y(r).
Equation (5.1) has two terms: the first term is a loss function based on the labeled
nodes whereas the second term is a regularization term based on the power mean
Laplacian Lp, which accounts for the multilayer graph structure. It is worth noting
that the Local-Global approach of (Zhou et al., 2003) is a particular case of our
approach when only one layer (T = 1) is considered. Moreover, note that when
p = 1 we obtain a regularizer term based on the arithmetic mean of Laplacians
L1 = 1

T ∑T
i=1 L(i)

sym. In the following section we analyze our proposed approach (5.1)
under the Multilayer Stochastic Block Model.

5.4 stochastic block model analysis

In this section we provide an analysis of semi-supervised learning for multilayer
graphs with the power mean Laplacian as a regularizer under the Multilayer Stochas-
tic Block Model (MSBM). The MSBM is a generative model for graphs showing
certain prescribed clusters/classes structures via a set of membership parameters
p(t)in and p(t)out, t = 1, . . . , T. These parameters designate the edge probabilities: given
the nodes vi and vj the probability of observing an edge between them on layer t is

p(t)in (resp. p(t)out), if vi and vj belong to the same (resp. different) cluster/class. Note
that, unlike the Labeled Stochastic Block Model (Heimlicher et al., 2012), the MSBM
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allows multiple edges between the same pairs of nodes across the layers. For SSL
with one layer under the SBM we refer the reader to (Saade et al., 2018; Kanade et al.,
2016; Mossel and Xu, 2016).

We present an analysis in expectation. We consider k clusters/classes C1, . . . , Ck of
equal size |C| = n/k. We denote the layers of a multilayer graph in expectation with
calligraphic letters E(G) = {E(G(1), . . . , E(G(T))}, i.e. W (t) is the expected adjacency
matrix of the tth-layer. We assume that our multilayer graphs are non-weighted, i.e.
edges are zero or one, and hence we haveW (t)

ij = p(t)in , (resp.W (t)
ij = p(t)out) for nodes

vi, vj belonging to the same (resp. different) cluster/class.
In order to grasp how different methods classify the nodes in multilayer graphs

following the MSBM, we analyze three different settings. In the first setting (Section
5.4.1) all layers have the same class structure and we study the conditions for different
regularizers Lp to correctly predict class labels. We further show that our approach
is robust against the presence of noise layers, in the sense that it achieves a small
classification error when at least one layer is informative and the remaining layers
are potentially just noise. In the second setting (Section 5.4.2) we consider the case
where different classes of the same size have different number of labels. In the third
setting (Section 5.4.3) we consider the case where each layer taken alone would lead
to a large classification error whereas considering all the layers together can lead to
a small classification error.

5.4.1 Case 1: Robustness to Noise

A common assumption in multilayer semi-supervised learning is that at least one
layer encodes relevant information in the label prediction task. The next theorem
discusses the classification error of the expected power mean Laplacian regularizer
in this setting.

Theorem 5.1. Let E(G) be the expected multilayer graph with T layers following the

multilayer SBM with k classes C1, . . . , Ck of equal size and parameters
(

p(t)in , p(t)out

)T

t=1
.

Assume the same number of labeled nodes are available per class. Then, the solution of (5.1)
yields zero test error if and only if

mp(ρε) < 1 + ε , (5.2)

where (ρε)t = 1− (p(t)in − p(t)out)/(p(t)in + (k− 1)p(t)out) + ε, and t = 1, . . . , T.

Proof. Please see Appendix C.1.

This theorem shows that the power mean Laplacian regularizer allows to correctly
classify the nodes if p is such that condition (5.2) holds. In order to better understand
how this condition changes when p varies, we analyze in the next corollary the limit
cases p→ ±∞.
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Corollary 5.1. Let E(G) be an expected multilayer graph as in Theorem 5.1. Then,

• For p→ ∞, the test error is zero if and only if p(t)out < p(t)in for all t = 1, . . . , T.
• For p→−∞, the test error is zero if and only there exists a t ∈ {1, . . . , T} such that

p(t)out < p(t)in .

Proof. Observe that the limit cases of the scalar power means are

lim
p→−∞

mp(x1, . . . , xT) = min{x1, . . . , xT}

lim
p→+∞

mp(x1, . . . , xT) = max{x1, . . . , xT}

Applying this to condition

mp(ρε) < 1 + ε ,

where (ρε)t = 1− (p(t)in − p(t)out)/(p(t)in + (k− 1)p(t)out) + ε, and t = 1, . . . , T yields the
desired result.

This corollary implies that the limit case p → ∞ requires that all layers convey
information regarding the clustering/class structure of the multilayer graph, whereas
the case p→ −∞ requires that at least one layer encodes clustering/class information,
and hence it is clear that conditions for the limit p→ −∞ are less restrictive than the
conditions for the limit case p→ ∞. The next Corollary shows that the smaller the
power parameter p is, the less restrictive are the conditions to yield a zero test error.

Corollary 5.2. Let E(G) be an expected multilayer graph as in Theorem 5.1. Let p ≤ q. If
Lq yields zero test error, then Lp yields a zero test error.

Proof. By Theorem 2.1 we have that if p ≤ q then mp(x1, . . . , xT) ≤ mq(x1, . . . , xT).
Therefore, applying this to our case we can see that

mp(ρε) ≤ mq(ρε) < 1 + ε

A zero test classification error with parameter q is achieved if and only if mq(ρε) <
1+ ε, hence we can see that zero test classification error with parameter p is achieved
if it is achieved with parameter q and p ≤ q.

The previous results show the effectivity of the power mean Laplacian regular-
izer in expectation. We now present a numerical evaluation based on Theorem 5.1
and Corollaries 5.1 and 5.2 on random graphs sampled from the SBM. The cor-
responding results are presented in Fig. 5.1 for classification with regularizers
L−10, L−1, L0, L1, L10 and λ = 1.

We first describe the setting we consider: we generate random multilayer graphs
with two layers (T = 2) and two classes (k = 2) each composed by 100 nodes (|C| =



5.4 stochastic block model analysis 67

Classification Error

 0   0.5

-0.1 0 0.1
0

25

50

(a) L−10

-0.1 0 0.1
0

25

50

(b) L−1

-0.1 0 0.1
0

25

50

(c) L0

-0.1 0 0.1
0

25

50

(d) L1

-0.1 0 0.1
0

25

50

(e) L10

-0.1 0 0.1
0

25

50

(f) SMACD

-0.1 0 0.1
0

25

50

(g) AGML

-0.1 0 0.1
0

25

50

(h) TLMV

-0.1 0 0.1
0

25

50

(i) SGMI

-0.1 0 0.1
0

25

50

(j) TSS

Figure 5.1: Average classification error under the Stochastic Block Model computed
from 100 runs. Top Row: Particular cases with the power mean Laplacian. Bottom
Row: State of the art models.

100). For each parameter configuration (p(1)in , p(1)out, p(2)in , p(2)out) we generate 10 random
multilayer graphs and 10 random samples of labeled nodes, yielding a total of 100

runs per parameter configuration, and report the average test error. Our goal is to
evaluate the classification performance under different SBM parameters and different
amounts of labeled nodes. To this end, we fix the first layer G(1) to be informative of
the class structure (p(1)in − p(1)out = 0.08), i.e. one can achieve a low classification error
by taking this layer alone, provided sufficiently many labeled nodes are given. The
second layer will go from non-informative (noisy) configurations (p(2)in < p(2)out, left

half of x-axis) to informative configurations (p(2)in > p(2)out, right half of x-axis), with

p(t)in + p(t)out = 0.1 for both layers. Moreover, we consider different amounts of labeled
nodes: going from 1% to 50% (y-axis). The corresponding results are presented in
Figs. 5.1(a),5.1(b),5.1(c),5.1(d), and 5.1(e).

In general one can expect a low classification error when both layers G(1) and
G(2) are informative (right half of the x-axis). We can see that this is the case for all
power mean Laplacian regularizers here considered here (see top row of Fig. 5.1). In
particular, we can see in Fig. 5.1(e) that L10 performs well only when both layers are
informative and completely fails when the second layer is not informative, regardless
of the amount of labeled nodes. On the other side we can see in Fig. 5.1(a) that L−10
achieves in general a low classification error, regardless of the configuration of the
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second layer G(2), i.e. when G(1) or G(2) are informative. Moreover, we can see that
all areas with low classification error (dark blue) increase when the parameter p
decreases, verifying the result from Corollary 5.2. In the bottom row of Fig. 5.1 we
present the performance of state of the art methods. We can observe that most of
them present a classification performance that resembles the one of the power mean
Laplacian regularizer L1. In general their classification performance drops when the
level of noise increases, i.e. for non-informative configurations of the second layer
G(2), and they are outperformed by the power mean Laplacian regularizer for small
values of p.

5.4.2 Case 2: Unbalanced Class Labels

In the previous analysis we assumed that we had the same amount of labeled nodes
per class. Now we consider the case where the number of labeled nodes per class is
different. This setting was considered in (Zhu et al., 2003), where the goal was to
overcome unbalanced class proportions in labeled nodes. To this end, they propose
a Class Mass Normalization (CMN) strategy, whose performance was also tested
in (Zhu and Ghahramani, 2002). In the following result we show that, provided
the ground truth classes have the same size, different amounts of labeled nodes per
class affect the conditions in expectation for zero classification error of (5.1). For
simplicity, we consider here only the case of two classes.

Theorem 5.2. Let E(G) be the expected multilayer graph with T layers following the

multilayer SBM with two classes C1, C2 of equal size and parameters
(

p(t)in , p(t)out

)T

t=1
. Assume

n1, n2 nodes from C1, C2 are labeled, respectively. Let λ = 1. Then (5.1) yields zero test error
if

mp(ρε) < min
{

n1

n2
,

n2

n1

}
(5.3)

where (ρε)t = 1− (p(t)in − p(t)out)/(p(t)in + (k− 1)p(t)out) + ε, and t = 1, . . . , T.

Proof. Please see Appendix C.2

Observe that Theorem 5.2 provides only a sufficient condition. A necessary and
sufficient condition for a zero test error is given in Appendix C.2.

A different objective function can be employed for the case of classes with a
different number of labels per class. Let C be the diagonal matrix defined by
Cii = n/nr if node vi has been labeled to belong to class Cr. Consider the following
modification of (5.1)

arg min
f∈Rn

‖ f − CY‖2 + λ f T Lp f (5.4)

The next Theorem shows that using (5.4) in place of (5.1) allows us to retrieve the
same condition of Theorem 5.1 for a zero test error in expectation in the setting
where the number of labeled nodes per class is not equal.
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form loss, Fig. 5.2(b)
weighted loss, and
Fig. 5.2(c) Class Mass
Normalization.

Theorem 5.3. Let E(G) be the expected multilayer graph with T layers following the

multilayer SBM k classes C1, . . . , Ck of equal size and parameters
(

p(t)in , p(t)out

)T

t=1
. Let

n1, . . . , nk be the number of labeled nodes per class. Let C ∈ Rn×n be a diagonal matrix with
Cii = n/nr for vi ∈ Cr. The solution to (5.4) yields a zero test classification error if and only
if

mp(ρε) < 1 + ε , (5.5)

where (ρε)t = 1− (p(t)in − p(t)out)/(p(t)in + (k− 1)p(t)out) + ε, and t = 1, . . . , T.

Proof. The proof is similar to the one of Theorem 5.1 (see Appendix C.1). The only
change is in the terms cr

nr
n . Since we have by definition that cr =

n
nr

we have that
cr

nr
n = 1, leading to the conditions obtained by Theorem 5.1.

In Figs. 5.2(a), 5.2(b), and 5.2(c). we present a numerical experiment with random
graphs of our analysis in expectation. We consider the following setting: we generate
multilayer graphs with two layers (T = 2) and two classes (k = 2) each composed
by 100 nodes (|C| = 100). We fix p(1)in − p(1)out = 0.08 and p(2)in − p(2)out = 0, with

p(t)in + p(t)out = 0.1 for both layers. We fix the total amount of labeled nodes to be
n1 + n2 = 50 and let n1, n2 = 1, . . . 49. For each setting we generate 10 multilayer
graphs and 10 sets of labeled nodes, yielding a total of 100 runs per setting, and
report the average test classification error. In Fig. 5.2(a) we can see the performance
of the power mean Laplacian regularizer without modifications. We can observe how
different proportions of labeled nodes per class affect the performance. In Fig. 5.2(b),
we present the performance of the modified approach (5.4) and observe that it yields
a better performance against different class label proportions. Finally in Fig. 5.2(c)
we present the performance based on Class Mass Normalization 1, where we can
see that its effect is slightly skewed to one class and its overall performance is larger
than the proposed approach.

1We follow the authors’ implementation: http://pages.cs.wisc.edu/~jerryzhu/pub/harmonic_function.m
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Figure 5.3: The Average test error under the SBM.Multilayer graph with 3 layers and
3 classes.Top Row: Particular cases with the power mean Laplacian. Bottom Row:
State of the art models.

5.4.3 Case 3: No Layer Contains Full Information

In the previous section we considered the case where at least one layer had enough
information to correctly estimate the node class labels. In this section we now
consider the case where single layers taken alone obtain a large classification error,
whereas if all the layers are taken together it is possible to obtain a good classification
performance. For this setting we consider multilayer graphs with 3 layers (T = 3)
and three classes (k = 3) C1, C2, C3, each composed of 100 nodes (|C| = 100) with the
following expected adjacency matrix per layer:

W (t)
i,j =

{
pin, vi, vj ∈ Ct or vi, vj ∈ Ct

pout, else
(5.6)

for t = 1, 2, 3, i.e. layer G(t) is informative of class Ct but not of the remaining
classes, and hence any classification method using one single layer will provide a
poor classification performance. In Fig. 5.3 we present numerical experiments: for
each parameter setting (pin, pout) we generate 5 multilayer graphs together with
5 samples of labeled nodes yielding a total of 25 runs per setting, and report the
average test classification error. Also in this case we observe that the power mean
Laplacian regularizer does identify the global class structure and that it leverages
the information provided by labeled nodes, particularly for smaller values of p.
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Figure 5.4: Average test error under the SBM.Multilayer graph with 3 layers and 3

classes where pin − pout ∈ {0.03, 0.04, . . . , 0.1}.

On the other hand, this is not the case for all other state of the art methods. In
fact, we can see that SGMI and TSS performs similarly to L10 which has the largest
classification error. Moreover, we can see that AGML and TLMV perform similarly
to the arithmetic mean of Laplacians L1, which in turn is outperformed by the power
mean Laplacian regularizer L−10.

For a more detailed analysis we further consider the cases where pin − pout ∈
{0.03, 0.04, . . . , 0.1}, which are depicted in Fig.5.4. On the x-axis we have the amount
of labeled nodes and on the y- we have the classification error. We can see that in
general there is a trend between the performance of our proposed method (colorful
curves) and state of the art methods (black curves). We can see that the larger the
gap pin − pout the larger the difference is between our proposed method and state of
the art methods. Moreover, one can see that the smaller the value of p, the better
the performance of our proposed method. Moreover, there is a set of state of the
art methods that do not improve their performance with larger amounts of labeled
nodes. Yet, one can observe that there are three methods from the state of the art that
perform close to our methods: TLMV, ZooBP and AGML, which perform similarly
to our method L1 (i.e. the arithmetic mean of Laplacians).
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5.5 a matrix-free numerical method for (i+λlp) f =y

In this section we introduce a matrix-free method for the solution of the system
(I + λLp) f = Y based on contour integrals and Krylov subspace methods. The
method exploits the sparsity of the Laplacians of each layer and is matrix-free, in
the sense that it requires only to compute the matrix-vector product L(i)

sym × vector,
without requiring to store the matrices. Thus, when the layers are sparse, the method
scales to large datasets. Observe that this is a critical requirement as Lp is in general
a dense matrix, even for very sparse layers, and thus computing and storing Lp
is very prohibitive for large multilayer graphs. We present a method for negative
integer values p < 0, leaving aside the limit case p → 0 as it requires a particular
treatment.

Let A1, . . . , AT be symmetric positive definite matrices, Sp = Ap
1 + · · · + Ap

T,
ϕ : C → C be the complex function ϕ(z) = z1/p and let Lp be the matrix function
Lp = T−1/p ϕ(Sp). The proposed method essentially transforms the original problem
into a series of subproblems which thus allow us to solve the linear system (I +
λLp)−1y by solving several different linear systems with Ai as coefficient matrices.
The method consists of three main nested inner–steps which we present below.

1. First, we solve the linear system (I + λLp)−1y by a Krylov method (GMRES
in our case (Saad and Schultz, 1986)). This method projects, at each iteration, the
problem into the Krylov subspace spanned by {y, λLpy, (λLp)2y, . . . , (λLp)hy}. If
κ = λmax(Lp)/λmin(Lp), then the method converges as (Saad and Schultz, 1986)

O
((κ2 − 1

κ2

)h/2
)

.

Thus, if Lp is well conditioned, a relatively small h is required. In order to build
the appropriate Krylov subspace, we need to efficiently perform one matrix–vector
product Lpy at each iteration.

2. Second, in order to compute Lpy = T−1/p ϕ(Sp)y we use the Cauchy integral
form of the function ϕ, transformed via a conformal map, to approximate ϕ(Sp) via
the trapezoidal rule, as proposed in (Hale et al., 2008). Let m, M > 0 be such that
the interval [m, M] contains the whole spectrum of Sp and let t1, . . . , tN be N equally
spaced contour points to be used in the trapezoidal rule. As ϕ has a singularity at
z = 0 but just a brunch cut on (−∞, 0), we can approximate ϕ(Sp)y via (Hale et al.,
2008)

ϕN(Sp)y =
−8K(mM)1/4

πNk
Sp Im

{
N

∑
i=1

ϕ(z2
i )cidi

zi(k−1 − si)2 (z
2
i I − Sp)

−1y

}
where Im denotes the imaginary part, k =

(
(M/m)1/4 − 1

)
/
(
(M/m)1/4 + 1

)
, K is

the value of the complete elliptic integral of the first kind, evaluated at ke2, si = sn(ti)
is the Jacobi elliptic sine function evaluated on the i-th contour point ti, and

zi = (mM)1/4
(

k−1 + si

k−1 − si

)
, ci =

√
1− s2

i , di =
√

1− k2s2
i ,
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for i = 1, . . . , N. This approximation converges geometrically as the number of
points increases. Precisely, it holds (Hale et al., 2008)

‖ϕ(Sp)y− ϕN(Sp)y‖ = O(e−2π2N/(ln(M/m)+6)) .

Thus, the computation of ϕ(Sp)y is reduced to N linear systems (z2
i I − Sp)−1y. Note

that these systems are independent and thus they can be solved in parallel.
3. Finally, in order to solve the linear system (zI − Sp)−1y we employ again

a Krylov method. In order to build the Krylov space for (zI − Sp) and y we
need to efficiently perform one multiplication Sp times a vector per iteration. As
Sp = ∑T

i=1 Ap
i = ∑T

i=1(A−1
i )|p|, this problem reduces to solving q linear systems

with Ai as coefficient matrix, for i = 1, . . . , T. As the matrices Ai are assumed
sparse and positive definite, we can very efficiently solve each of these systems
via the Preconditioned Conjugate Gradient method with an incomplete Cholesky
preconditioner.

The pseudocode for the proposed algorithm is presented in Algorithms 9–11.

Input: A1, . . . , AT, p, y, λ
1 Compute preconditioners P1, . . . , PT for A1, . . . , AT
2 Compute estimates for m and M such that eigenvalues(Sp) ⊆ [m, M]
3 Choose number of contour points N
4 Compute contour coefficients zi, si, K, k
5 Solve (I + λLp)−1y with GMRES, using Alg.10 as subroutine

Output: u = (I + λLp)−1y

Algorithm 9: Solve (I + λLp)−1y

Input: A1, . . . , AT, p, y, N, m, M, contour
coefficients zi, si, ci, di, k, K

1 u← Spy, using Alg.11

2 for i = 1, . . . , N do
3 u← solve(zi I − Sp, y) with GMRES,

using Alg.11 as subroutine

4 u← (z2
i )

1/pcidi
zi(k−1−si)2 u

5 uk+1 = ‖vk+1‖
1−q
q |vk+1|q−2vk+1

6 end

7 u← 1
T1/p

−8K(mM)1/4

πNk Im(u)

Output: u = Lpy

Algorithm 10: Multiply Lp times a vector

Input: A1, . . . , AT, P1, . . . , PT, y

1 for k = 1, . . . , T do
2 u← u + solve(A|p|i , y) using CG

preconditioned with Pi

3 end
Output: u = Spy

Algorithm 11: Multiply Sp times
a vector

Implementation details and computational complexity. The preconditioners Pi
can be computed using an incomplete Cholesky factorization. In our test we observe
that a 1e-4 threshold is enough to ensure the convergence of Alg.11 to 1e-8 precision
in just 2 or 3 iterations. Since in our case the Ai are Laplacians, another excellent
preconditioner can be obtained by using a Combinatorial Multi Grid method (CMG).
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In our experiments, the CMG preconditioner performed similarly (but slightly worse)
than the incomplete Cholesky.

A precise estimate of M in Alg.9 step 2 can be obtained using a Krylov eigensolver
with Alg.11 as subroutine. As for m, since each Ap

i is positive definite and p is a
negative integer, an estimate is obtained via Weyl’s inequality (e.g. (Wilkinson, 1965))

m = λmax(A1)
p + · · ·+ λmax(AT)

p ≤ λmin(Sp) .

The number of contour points N can be chosen by using the geometric convergence
of ϕN. In our experiments, we chose a precision τ =1e-8 and we set

N = |(ln(M/m) + 6) ln(τ)/2π2| .

The contour points have been calculated using the code from (Driscoll, 2005).
On the computational cost of the method. Our analysis shows that it is propor-

tional to the number of edges in each layer, i.e. Alg.9 scales to large sparse datasets.
Let c(Ai) be the cost of multiplying c(Ai) times a vector (which is proportional to
the number of nonzeros in Ai, i.e. the number of edges in the layer i when Ai is the
normalized Laplacian of the i-th layer). Let K1, K2, K3 be the number of iterations of
GMRES,GMRES and PCG in lines 5, 3 and 2 of Algorithms 9, 10 and 11, respectively.
Each instance of solve(A|p|i , y) in Alg.11 requires K3p c(Ai) operations per step. So
the cost of Alg.11 is roughly pK3 ∑T

i=1 c(Ai). This implies that the cost of Alg.10 is
NK2K3p ∑T

i=1 c(Ai). Therefore, the cost of solving the linear system (I + λLp)−1y
with Alg.9 is

K1NK2K3p
(
c(A1) + · · ·+ c(AT)

)
,

showing that the method scales as the number of nonzeros in each layer, as claimed.
It is important to notice that the Algorithm allows for a high level of parallelism.
In fact, the computation of the preconditioners Pi at step 1 of Alg.9, the for at
step 2 of Alg.10 and the for at step 1 of Alg.11 can all be run in parallel. A time
execution analysis is provided in Fig 5.5, where we can see that the time execution
of our approach is competitive to the state of the art as TSS(Tsuda et al., 2005),
outperforming AGML(Nie et al., 2016), SGMI(Karasuyama and Mamitsuka, 2013)
and SMACD(Gujral and Papalexakis, 2018).
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Figure 5.5: Mean execution time of 10 runs.
L−1(ours) stands for the power mean Laplacian
regularizer together with our proposed matrix-
free method. We generate multilayer graphs with
two layers, with two classes of same size with pa-
rameters pin = 0.05 and pin = 0.025 and graph
sizes [0.5, 1, 2, 4, 8]× 104. Our matrix free approach
(solid blue curve) outperforms AGML(Nie et al.,
2016), SGMI(Karasuyama and Mamitsuka, 2013)
and SMACD(Gujral and Papalexakis, 2018).
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5.6 experiments

In this section we present further experiments to evaluate the proposed approach.
In Subsection 5.6.1 we present experiments on multilayer graphs from real-world
settings, where we observe that our approach is competitive to the state of the
art, and in Subsection 5.6.2 we present a numerical analysis of the effect of the
regularization parameter, based on both synthetic multilayer graphs following the
Multilayer Stochastic Block Model and on real datasets. We find that tuning the
regularization parameter is consistent across synthetic and real datasets.

5.6.1 Experiments on Real Datasets

In this section we compare the performance of the proposed approach with state
of the art methods on real-world datasets. We consider the following datasets:
3-sources (Liu et al., 2013), which consists of news articles that were covered by news
sources BBC, Reuters and Guardian; BBC (Greene and Cunningham, 2005) and BBC
Sports (Greene and Cunningham, 2009) news articles, a dataset of Wikipedia articles
with ten different classes (Rasiwasia et al., 2010), the hand written UCI digits dataset
with six different set of features, and citations datasets CiteSeer(Lu and Getoor,
2003), Cora(McCallum et al., 2000) and WebKB(Texas)(Craven et al., 2011). For each
dataset we build the corresponding layer adjacency matrices by taking the symmetric
k-nearest neighbour graph using the Pearson linear correlation as similarity measure
(i.e. we take the k neighbors with the highest correlation), and use the unweighted
version of it. Datasets CiteSeer, Cora and WebKB have only two layers, where the
first one is a fixed precomputed citation layer, and the second one the corresponding
k-nearest neighbour graph built from document features.

Baseline methods: TSS (Tsuda et al., 2005), which identifies an optimal lin-
ear combination of graph Laplacians, SGMI (Karasuyama and Mamitsuka, 2013),
which performs label propagation by sparse integration, TLMV (Zhou and Burges,
2007), which is a weighted arithmetic mean of adjacency matrices, CGL (Argyriou
et al., 2006), which is a convex combination of the pseudo inverse Laplacian kernel,
AGML (Nie et al., 2016), which is a parameter-free method for optimal graph layer
weights, ZooBP (Eswaran et al., 2017), which is a fast approximation of Belief Propa-
gation, and SMACD (Gujral and Papalexakis, 2018), which is a tensor factorization
method designed for semi-supervised learning. Finally we set the parameters for TSS
to (c = 10, c0 = 0.4), SMACD (λ = 0.01)2, TLMV (λ = 1), SGMI (λ1 = 1, λ2 = 10−3)
and λ = 0.1 for L1 and λ = 10 for L−1 and L−10. We do not perform cross validation
in our experimental setting due to the large execution time in some of the methods
considered here. Hence we fix the parameters for each method in all experiments.

We fix the nearest neighbourhood size to k = 10 and generate 10 samples of
labeled nodes, where the percentage of labeled nodes per class is in the range
{1%, 5%, 10%, 15%, 20%, 25%}. The average test errors are presented in table 5.1,

2this is the default value in the code released by the authors: github.com/egujr001/SMACD
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where the best (resp. second best ) performances are marked with bold fonts and
gray background (resp. with only gray background). We can see that the first and
second best positions are in general taken by the power mean Laplacian regularizers
L1, L−1, L−10, being clear for all datasets except with 3-sources. Moreover we can see
that in 77% of all cases L−1 performs either best or second best, further verifying that
our proposed approach based on the power mean Laplacian for semi-supervised
learning in multilayer graphs is a competitive alternative to state of the art methods3.

3Communications with the authors of (Gujral and Papalexakis, 2018) could not clarify the
performance of SMACD.
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3sources
1% 5% 10% 15% 20% 25%

TLMV 29.8 21.5 20.8 20.3 15.5 16.5
CGL 50.2 45.5 36.4 30.6 23.8 19.8

SMACD 91.5 91.1 91.2 90.9 90.7 91.3
AGML 23.9 26.3 33.9 33.3 26.1 22.0
ZooBP 31.0 21.9 21.3 19.8 15.0 15.3

TSS 29.8 23.9 33.1 34.6 34.8 35.0
SGMI 34.4 26.6 25.4 24.4 19.1 17.9

L1 33.5 23.9 23.4 20.1 15.6 14.6
L-1 28.4 20.0 21.8 22.0 17.2 17.9
L-10 40.9 29.1 21.9 19.3 14.8 14.7

BBC
1% 5% 10% 15% 20% 25%

TLMV 29.0 19.3 13.2 11.1 9.3 8.8
CGL 72.5 52.3 36.1 27.4 22.0 17.1

SMACD 74.4 73.5 72.8 72.6 72.5 72.4
AGML 60.0 34.2 18.6 13.1 11.0 9.5
ZooBP 31.1 20.1 15.0 12.2 10.0 9.1

TSS 40.4 26.1 20.9 20.1 19.8 19.7
SGMI 37.6 28.9 24.9 22.8 20.7 19.3

L1 31.3 22.8 17.4 13.5 10.2 8.9
L-1 31.0 17.0 11.5 10.5 9.2 8.7
L-10 51.6 26.9 16.6 12.8 10.3 9.5

BBCS
1% 5% 10% 15% 20% 25%

TLMV 25.6 12.6 10.5 7.5 6.4 5.4
CGL 79.2 51.6 34.9 23.4 16.5 12.7

SMACD 77.8 80.6 82.4 96.4 98.4 98.3
AGML 34.6 17.4 12.1 7.0 6.0 5.4
ZooBP 33.8 13.9 11.3 8.8 7.6 6.2

TSS 23.9 13.2 14.1 12.3 13.1 12.2
SGMI 31.9 19.6 16.6 15.5 14.8 12.1

L1 29.9 15.0 13.5 10.6 8.7 7.2
L-1 23.8 11.6 8.7 6.3 5.8 5.1
L-10 48.7 22.5 14.2 9.1 7.8 6.1

Wikipedia
1% 5% 10% 15% 20% 25%

TLMV 65.7 56.8 46.4 43.1 40.8 39.2
CGL 87.3 83.0 82.5 82.2 83.0 83.0

SMACD 85.4 85.6 85.4 85.3 86.8 90.0
AGML 71.3 66.6 48.1 42.1 38.4 37.3
ZooBP 67.6 58.0 47.0 43.8 41.2 39.8

TSS 87.7 84.7 83.3 81.9 82.3 81.4
SGMI 69.3 84.8 84.5 83.8 83.2 82.8

L1 68.2 61.1 53.6 48.3 44.1 42.3
L-1 59.1 52.3 40.2 36.3 35.1 34.1
L-10 66.9 57.2 43.2 38.7 36.3 34.9

UCI
1% 5% 10% 15% 20% 25%

TLMV 28.9 20.4 16.3 14.4 13.7 12.7
CGL 81.8 64.0 54.6 49.1 46.7 46.7

SMACD 73.6 81.0 90.0 90.0 86.2 81.9
AGML 25.3 17.2 15.2 13.2 12.5 12.0
ZooBP 30.8 21.7 17.6 15.1 14.1 13.0

TSS 24.0 17.6 16.6 15.9 15.8 15.6
SGMI 36.0 44.4 50.9 50.4 50.2 48.8

L1 31.3 23.8 18.7 15.6 14.4 13.2
L-1 30.5 17.1 13.8 12.6 12.3 11.9
L-10 57.0 33.8 23.7 17.6 15.3 13.4

Citeseer
1% 5% 10% 15% 20% 25%

TLMV 51.5 39.4 36.5 33.7 31.6 30.3
CGL 89.3 71.8 58.0 49.8 44.5 40.9

SMACD 90.7 90.4 67.0 65.5 66.8 68.9
AGML 47.3 32.3 29.6 28.2 27.5 27.0
ZooBP 63.6 41.9 38.7 35.8 33.8 32.2

TSS 58.5 49.5 45.9 42.1 39.8 38.4
SGMI 59.4 46.8 44.0 42.3 40.5 39.2

L1 56.3 44.1 41.2 38.5 36.1 34.7
L-1 52.4 39.0 35.6 32.6 30.9 29.5
L-10 68.6 54.6 48.5 43.0 39.7 37.2

Cora
1% 5% 10% 15% 20% 25%

TLMV 46.0 34.1 28.8 25.8 22.5 20.6
CGL 85.5 70.1 56.5 49.1 44.2 40.0

SMACD 75.6 76.7 78.7 78.7 81.0 87.1
AGML 54.7 36.0 25.4 20.7 18.1 16.5
ZooBP 54.7 38.0 32.9 30.2 27.6 26.2

TSS 38.8 27.7 24.1 21.5 20.0 19.1
SGMI 57.3 47.7 43.0 41.8 40.1 38.5

L1 50.7 38.2 33.4 31.2 28.2 25.6
L-1 43.2 31.8 24.5 21.1 18.8 17.2
L-10 62.0 46.3 35.4 29.4 25.2 22.3

WebKB
1% 5% 10% 15% 20% 25%

TLMV 58.6 49.4 45.6 47.2 47.6 48.2
CGL 80.4 82.4 84.4 86.9 82.7 89.2

SMACD 87.3 87.2 87.2 87.4 87.8 87.8
AGML 56.5 50.3 46.8 44.7 47.6 46.8
ZooBP 52.0 45.0 38.7 38.5 36.4 33.5

TSS 60.9 51.0 50.5 47.3 49.2 48.7
SGMI 44.9 39.7 41.9 34.9 40.3 52.5

L1 58.5 49.0 44.8 44.3 44.5 44.4
L-1 49.9 45.5 40.7 39.5 39.9 40.3
L-10 52.3 41.9 38.0 38.1 36.8 39.5

Table 5.1: Experiments in real datasets. Notation: best performances are marked
with bold fonts and gray background and second best performances with only gray
background.
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5.6.2 Analysis on the Effect of Regularization Parameter

Experiments under Multilayer Stochastic Block Model. We analyze the effect of
the regularization parameter λ under the Multilayer Stochastic Block Model. The
experimental setting is as follows: We fix the parameters of the first layer G(1) and
second layer G(2) to p(1)in = 0.09, p(1)out = 0.01, p(2)in = 0.05, p(2)out = 0.05. We consider
values of λ ∈ {10−3, 10−2, 10−1, 100, 101, 102, 103}, different amount of labeled nodes
{1%, . . . , 50%}. We sample five random multilayer graphs with the corresponding
parameters and 5 random samples of labeled nodes with a fixed percentage, and
present the average classification error. In Fig. 5.6 we can see that in general the
larger the value of λ the smaller the classification error. In particular we can see that
the performance does not present any relevant changes with λ ≤ 10−1.
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Figure 5.6: Mean test classification error under MSBM for different values of λ.
Details in Sec. 5.6.2.

Experiments with real-world datasets. We analyze the effect of the regularization
parameter λ with real-world datasets considered in Section 5.6. For each dataset we
build the corresponding layer adjacency matrices by taking the symmetric k-nearest
neighbour graph and take as similarity measure the Pearson linear correlation, (i.e.
we take the k neighbours with highest correlation), and use the unweighted version
of it.

We fix the nearest neighbourhood size to k = 10 and generate 10 samples of
labeled nodes, where the percentage of labeled nodes per class is in the range
{1%, 2%, . . . , 25%}. The average test errors are presented in Figs. 5.7–5.14, for the
power mean Laplacian regularizers L−1, L−2, L−5, and L−10. We can see that in
general the best performance, i.e. the smallest mean test classification error, cor-
responds to values of λ = 10, 102, 103, verifying the choice of λ = 10 presented in
Section 5.6. Moreover, we can see that the mean test error in general decreases
with larger amounts of labeled data, which verifies our previous experiments on
multilayer graphs following the Multilayer Stochastic Block Model.
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Figure 5.7: Mean test classification error on 3sources for different values of λ.
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Figure 5.8: Mean test classification error on BBC for different values of λ.
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Figure 5.9: Mean test classification error on BBCS for different values of λ.
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Figure 5.10: Mean test classification error on Wikipedia for different values of λ.
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Figure 5.11: Mean test classification error on UCI for different values of λ.
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Figure 5.12: Mean test classification error on Citeseer for different values of λ.
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Figure 5.13: Mean test classification error on Cora for different values of λ.
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Figure 5.14: Mean test classification error on WebKB for different values of λ.
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5.7 conclusion

In this chapter we have studied the task of semi-supervised learning on multilayer
graphs. We have introduced the Power Mean Laplacian as a multilayer graph
regularizer and analyzed it under a suitable stochastic block model in expectation.
We have shown that our proposed approach obtains a good classification performance
under suitable conditions, and provided verifications through extensive numerical
experiments. Furthermore, our proposed approach does not perform worse than
the state of the art on real datasets. Moreover, we presented a matrix-free numerical
scheme, showing that our proposed approach is scalable to sparse multilayer graphs,
outperforming the time execution of several state of the art approaches.
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In this thesis we have studied the task of extending spectral clustering and semi-
supervised learning to signed and multilayer networks. We have seen that each
setting studied here brings different challenges and opportunities.

We have observed that most of state of the art approaches are basically some sort of
arithmetic mean of graph matrices. Based on this observation we proposed novel
extensions based on a one-parameter family of means called power means. Particular
cases of the power means are the harmonic, geometric and arithmetic means.

We analyze our contributions theoretically and provide extensive numerical evalua-
tions. Our analysis is based on suitable extensions of the Stochastic Block Model.
Some of our results under the Stochastic Block Model are as follows: First, we show
robustness under noise for negative values of the power parameter of the matrix
power means. We prove this under the Stochastic Block Model and identify the
regimes where this holds. Second, we identify, for multilayer graphs, that the Power
Mean Laplacian is able to effectively merge the information encoded by different
layers, even in cases where global information is available only by taking all layers.
Third, we provide numerical evidence that the Power Mean Laplacian, for multilayer
graphs, is able to recover the right clusters in cases where the information between
layers is not consistent. Fourth, we provide concentration bounds for the eigenvalues
and eigenvectors of the (Signed) Power Mean Laplacian.

In our analysis we have included extensive numerical evaluation on real world
datasets and show that our approach is competitive to the state of the art. For the
case of spectral clustering in signed networks we have shown that our approach con-
sistently identifies explicit clustering structure in a dataset where it was previously
conjectured that there was no clustering structure.

Further, we have shown that all our approaches are scalable to large sparse graphs.
We have proposed numerical schemes that are matrix-free, in the sense that they
never explicitly compute the (Signed) Power Mean Laplacian, both for the case of
clustering and semi-supervised learning. Our matrix-free numerical schemes are
based on Krylov subspace methods and quadrature methods.

Due to the ill-posed nature of clustering, several opportunities remain naturally
open for the multilayer network setting. In what follows we briefly share challenges
that we consider relevant and interesting.

82



83

Future Work. The task of clustering and semi-supervised learning in multilayer
networks provide a rich scenario for future projects and open questions. We briefly
sketch some of them.

Spectral clustering provides a framework that nicely connects the discrete optimiza-
tion problem of graph cuts, with a continuous relaxation related to the quadratic
form associated to the graph Laplacian. Hence, it remains unclear what is the
corresponding graph cut for the different Power Mean Laplacians. For instance, is
it possible to say that the harmonic mean of Laplacians is related to the harmonic
mean of graph cuts?

Clustering with contraints has received a relevent amount of attention, particularly
in the context of fairness (Kleindessner et al., 2019). A clustering is fair (Chierichetti
et al., 2017) if every demographic group is proportionally represented in every cluster.
It is unclear how to extend the notion of fair clustering to multilayer graphs, where
demographic groups have different kinds of interactions and dynamics per layer.

Modularity provides interesting connections between approaches like the Louvain
method (Blondel et al., 2008), and spectral methods. Hence, it is unclear if, for the
case of multilayer graphs, there can be any connection between modularity and the
Power Mean Laplacian as in the single layer case.

Currently there is an important amount of attention towards deep learning on
graphs (Chen et al., 2019), particularly on graph convolutional networks (Kipf and
Welling, 2017). An interesting task is to extend the current approaches to the mul-
tilayer setting and explore if the matrix power means are advantageous in this setting.

Moreover, graph convolutional networks have been considered for the task of time
series forecasting (Wu et al., 2020). It remains as an open question if, for the case
where a graph is available per time snapshot, the matrix power means provide any
aid for this task. Further, this motivates the analysis of novel families of means
that support the analysis on subsets of time windows where graph time series are
available.

It remains an open question how matrix power means can be used for ranking
and node centrality in multilayer graphs (Tudisco et al., 2018). While there is already
relevant work based on tensors, it remains unclear how this can be done with matrix
power means.

Another attractive line of research focuses on optimal transport (Villani, 2008).
It is unclear if Wasserstein Barycenters (Cuturi and Doucet, 2014) of multilayer
graphs(Titouan et al., 2019) are effective as tools for clustering, and if there is any
connection to matrix power means. Moreover, in (Takatsu, 2011) it is shown that the
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optimal transport map between multilvariate gaussians is expressed in terms of a
matrix geometric mean. Hence, it remains open if different matrix means can be
related in a similar way.

A related approach for standard graphs has been proposed in (Abbe et al., 2020) and
is based on a thresholded powered adjacency matrix, showing robustness under
suitable generative block models. Whereas in our work we have shown that negative
powers present an interesting behavior on multilayer graphs, they show that indeed
positive powers of the adjacency matrix provide provable robustness. It remains
as an open question how these two approaches can be related, and if the approach
from (Abbe et al., 2020) can be extended to multilayer graphs.
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a.1 proof of theorem 3.5

For the proof of Theorem 3.5, we first present Theorem A.1 which is a general
version that allows to choose different diagonal shifts of the Laplacians together with
different edge probabilities.

Theorem A.1. Let G+ and G− be random graphs with independent edges P(W+
i,j = 1) =

p+ij and P(W−i,j = 1) = p−ij . Let δ+, δ− be the minimum expected degrees of G+ and G−,

respectively. Let C+
p = p1/pβ1−1/p, and C−p = |p|1/|p|α−(3+1/|p|). Choose ε > 0. Then

there exist constants k+ = k+(ε/2) and k− = k−(ε/2) such that if δ+ > k+ ln n, and
δ− > k− ln n then with probability at least 1− ε,

∥∥Lp −Lp
∥∥ ≤ C+

p mp

(
2

√
3 ln(8n/ε)

δ+
, 2

√
3 ln(8n/ε)

δ−

)1/p

for p ≥ 1, with p integer and

∥∥Lp −Lp
∥∥ ≤ C−p m|p|

(
2

√
3 ln(8n/ε)

δ+
, 2

√
3 ln(8n/ε)

δ−

)1/|p|

for p ≤ −1, with p integer, and where we have Lp = Mp(L+
sym + αI, Q−sym + αI), and

Lp = Mp(L+sym + αI,Q−sym + αI).

Before starting the proof of Theorem A.1, we present an upper bound on the
matrix power mean.

Theorem A.2. Let A1, . . . , AT, B1, . . . , BT be symmetric matrices where α≤ λ(Ai)≤ β,
α≤λ(Bi)≤β for i = 1, . . . T and α, β > 0.

Let C+
p = p1/pβ1−1/p and C−p = |p|1/|p|α−(3+1/|p|). Then, for p ≥ 1, with p integer∥∥Mp(A1, . . . , AT)−Mp(B1, . . . , BT)

∥∥
≤ C+

p mp
(
‖A1 − B1‖ , . . . , ‖AT − BT‖

)1/p

and, for p ≤ −1, with p integer∥∥Mp(A1, . . . , AT)−Mp(B1, . . . , BT)
∥∥

≤ C−p m|p|
(
‖A1 − B1‖ , . . . , ‖AT − BT‖

)1/|p|
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Proof. The proof is contained in Section A.2.

Observe that the upper bound in Theorem A.2 is general in the sense that it is
suitable for symmetric definite matrices with bounded spectrum, and for an arbitrary
number of matrices.

We are now ready to prove Theorem A.1.

Proof of Theorem A.1. Let

A1 = L+
sym, B1 = L+sym

A2 = Q−sym, B2 = Q−sym

with the corresponding signed power mean Laplacian

Lp = Mp(L+
sym, Q−sym), Lp = Mp(L+sym,Q−sym)

We start with the case p ≥ 1, with p integer. Let C+
p = p1/pβ1−1/p. By Theorem A.2

we have ∥∥Lp −Lp
∥∥ ≤ C+

p mp(
∥∥∥L+

sym −L+sym

∥∥∥ ,
∥∥∥Q−sym −Q−sym

∥∥∥)1/p

Let γ = (γ1, γ2) where

γ1 = 2
√

3 ln(8n/ε)
δ+

γ2 = 2
√

3 ln(8n/ε)
δ−

Define a = c mp(γ) and c = C+
p . Then,

P
( ∥∥Lp −Lp

∥∥ > a
)
≤P

(
c mp(

∥∥∥L+
sym −L+sym

∥∥∥ ,
∥∥∥Q−sym −Q−sym

∥∥∥) > a

)

=P

(
mp(

∥∥∥L+
sym −L+sym

∥∥∥ ,
∥∥∥Q−sym −Q−sym

∥∥∥) > a
c

)

=P

(∥∥∥L+
sym −L+sym

∥∥∥p
+
∥∥∥Q−sym −Q−sym

∥∥∥p
> 2

(
a
c

)p
)

=P

(∥∥∥L+
sym −L+sym

∥∥∥p
+
∥∥∥Q−sym −Q−sym

∥∥∥p
>

2

∑
i=1

γ
p
i

)

≤P

({∥∥∥L+
sym −L+sym

∥∥∥p
> γ

p
1

}
∪

{∥∥∥Q−sym −Q−sym

∥∥∥p
> γ

p
2

})

≤P

(∥∥∥L+
sym −L+sym

∥∥∥p
> γ

p
1

)
+ P

(∥∥∥Q−sym −Q−sym

∥∥∥p
> γ

p
2

)
(A.1)
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=P

(∥∥∥L+
sym −L+sym

∥∥∥ > γ1

)
+ P

(∥∥∥Q−sym −Q−sym

∥∥∥ > γ2

)
=P

(∥∥∥L+
sym −L+sym

∥∥∥ > 2

√
3 ln(8n/ε)

δ+

)
+ P

(∥∥∥Q−sym −Q−sym

∥∥∥ > 2

√
3 ln(8n/ε)

δ−

)
=P

(∥∥∥L+
sym −L+sym

∥∥∥ > 2

√
3 ln(4n/ε̂)

δ+

)
+ P

(∥∥∥Q−sym −Q−sym

∥∥∥ > 2

√
3 ln(4n/ε̂)

δ−

)
=P

(∥∥∥L+
sym −L+sym

∥∥∥ > 2

√
3 ln(4n/ε̂)

δ+

)
+ P

(∥∥∥L−sym −L−sym

∥∥∥ > 2

√
3 ln(4n/ε̂)

δ−

)
≤ε̂ + ε̂ (A.2)
=ε

where ε̂ = ε/2. Inequality (A.1) follows from Boole’s inequality. Inequality (A.2)
comes from applying Theorem A.5 from (Chung and Radcliffe, 2011) to G+ and G−,
with corresponding minimum expected degree δ+, and δ−, respectively, and ε̂, and∥∥∥Q−sym −Q−sym

∥∥∥ = ‖(I + T)− (I + T )‖

= ‖(I − T)− (I − T )‖

=
∥∥∥L−sym −L−sym

∥∥∥
where

T = (D−)−1/2W−(D−)−1/2

T = (D−)−1/2W−(D−)−1/2

Thus,

P

(∥∥Lp −Lp
∥∥ ≥ a

)
< ε

and hence

P

(∥∥Lp −Lp
∥∥ ≤ a

)
< 1− ε

completing the proof for the case p ≥ 1.
For the proof of the case p ≤ −1 with p integer, let c = |p|1/|p|α−(3+1/|p|), and

proceed as for the previous case with |p|.
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We now finally give the proof for Theorem 3.5.

Proof of Theorem 3.5. We will adapt to our particular case the general version pre-
sented in Theorem A.1. We do this by showing that our Stochastic Block Model
approach together with the shift of our model are particular cases of Theorem A.1.

First, note that the spectrum of the normalized Laplacians L+
sym and Q−sym is

upper bounded by two, i.e. λ(L+
sym), λ(Q−sym) ∈ [0, 2]. Hence, by adding a diagonal

shift we get λ(L+
sym + αI), λ(Q−sym + αI) ∈ [α, 2 + α]. Letting α = ε and β = 2 + α we

get the shift corresponding to the particular case from Theorem 3.5.
Further, observe that our SBM model is obtained by setting p+ij = p+in and p−ij = p−in

if vi, vj belong to the same cluster and p+ij = p+out and p−ij = p−out if vi, vj belong to
different clusters.

Moreover, under the Stochastic Block Model here considered, the induced ex-
pected graphs are regular, and thus all nodes have the same degree. Hence, the
minimum expected degrees of G+ and G− are

δ+ =
n
k
(p+in + (k− 1)p+out)

δ− =
n
k
(p−in + (k− 1)p−out)

Thus, taking these settings into Theorem A.1 we get the desired result, except
that the condition on the minimum expected degrees is that there exists constants
k+ = k+(ε/2), and k− = k−(ε/2) such that the desired concentration holds.

To overcome this, observe in the proof of Theorem A.5 (p.9) that the condition
δ > k ln(n) comes from the requirement√

3 ln(4n/ε)

δ
< 1

Thus, by setting δ > 3 ln(4n/ε) the condition is fulfilled. In our case, this yields
to δ+ > 3 ln(4n/ε̂) = 3 ln(8n/ε) and δ− > 3 ln(4n/ε̂) = 3 ln(8n/ε) , leading to the
desired result.

a.2 proof of theorem A.2

Before going into the proof, a set of preliminary results are necessary. In what
follows, for Hermitian matrices A and B we mean by A � B that B− A is positive
semidefinite (see (Bhatia, 1997), Ch. 5, and (Tropp, 2015), Ch. 2.1.8 for more details).
We now proceed with the definition of a operator monotone function:

Definition 1 ((Tropp, 2015) Ch. 8.4.2, (Bhatia, 1997) Ch. 5.). Let f :I → R be a function
on an interval I of the real line. The function f is operator monotone on I when A � B
implies f (A) � f (B) for all Hermitian matrices A and B whose eigenvalues are contained
in I.
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The following result states that the negative inverse is operator monotone.

Proposition A.1 ((Bhatia, 1997), Prop. V.1.6, (Tropp, 2015), Prop. 8.4.3). The function
f (t) = −1

t is operator monotone on (0, ∞).

The following result states that the effect of operator monotone functions can be
upper bounded in a helpful way.

Theorem A.3 ((Bhatia, 1997), Theorem. X.3.8). Let f be an operator monotone function
on (0, ∞) and let A, B be two positive definite matrices that are bounded below by a; i.e.
A ≥ aI and B ≥ aI for the positive number a. Then for every unitarily invariant norm

||| f (A)− f (B)||| ≤ f ′(a)|||A− B|||

Applying this to the case of the negative inverse leads to the following Corollary.

Corollary A.1. Let A, B be two positive definite matrices that are bounded below by a; i.e.
A ≥ aI and B ≥ aI for the positive number a. Then for every unitarily invariant norm

|||A−1 − B−1||| ≤ 1
a2 |||A− B|||

Proof. Let f (t) = −1
t . Then, by Proposition A.1 we know that f is operator monotone.

Since f ′(t) = 1/t2, it follows from Theorem A.3

|||A−1 − B−1||| = ||| f (A)− f (B)||| ≤

f ′(a)|||A− B||| = 1
a2 |||A− B|||

The next results states a useful result on positive powers between zero and one.

Corollary A.2 ((Bhatia, 1997), Eq. X.2). Let A, B be two positive semidefinite matrices.
Then, for 0 ≤ r ≤ 1

‖Ar − Br‖ ≤ ‖A− B‖r

Its equivalent to positive integer powers is stated in the following result.

Proposition A.2 (See (Bhatia, 1997), Eq. IX.4). For any two matrices X, Y, and for
m = 1, 2, . . . ,

‖Xm −Ym‖ ≤ mMm−1 ‖X−Y‖
where M = max(‖X‖ , ‖Y‖).

Next we show that the spectrum of the matrix power mean is well bounded for
positive powers larger than one.

Proposition A.3. Let A1, . . . , AT be symmetric positive definite matrices that are bounded
below and above by α and β; i.e. αI ≤ Ai ≤ βI for positive numbers α and β. Then, for
p ≥ 1, with p integer

α ≤ λ(Mp(A1, . . . , AT)) ≤ β
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Proof. Let Sp(A1, . . . , AT) =
1
T ∑T

i=1 Ap
i . Then

〈x, Sp(A1, . . . , AT)x〉 = 〈x,

(
1
T

T

∑
i=1

Ap
i

)
x〉

=
1
T

T

∑
i=1
〈x, Ap

i x〉

Thus, we obtain the following upper bound

max
‖x‖=1

〈x, Sp(A1, . . . , AT)x〉 = max
‖x‖=1

1
T

T

∑
i=1
〈x, Ap

i x〉

≤ 1
T

T

∑
i=1

max
‖x‖=1

〈x, Ap
i x〉

≤ βp

Hence, λmax(Sp(A1, . . . , AT)) ≤ βp, and thus we obtain the corresponding upper
bound λmax(Mp(A1, . . . , AT)) ≤ β.

In a similar way we obtain the following lower bound,

min
‖x‖=1

〈x, Sp(A1, . . . , AT)x〉 = min
‖x‖=1

1
T

T

∑
i=1
〈x, Ap

i x〉

≥ 1
T

T

∑
i=1

min
‖x‖=1

〈x, Ap
i x〉

≥ αp

Hence, λmin(Sp(A1, . . . , AT)) ≥ αp, and thus we obtain the corresponding lower
bound λmin(Mp(A1, . . . , AT)) ≥ α.

Therefore, α ≤ λ(Mp(A1, . . . , AT)) ≤ β.

We now present results for p ≥ 1 of Theorem A.2.

Results for the case p ≥ 1

The following two propositions are the main ingredients for the upper bound
presented in Theorem A.2 for the case p ≥ 1.

Proposition A.4. Let A1, . . . , AT, B1, . . . , BT be symmetric positive semidefinite matrices.
Then, for p ≥ 1 with p integer∥∥Mp(A1, . . . , AT)−Mp(B1, . . . , BT)

∥∥
≤
∥∥Mp

p(A1, . . . , AT)−Mp
p(B1, . . . , BT)

∥∥ 1
p



A.2 proof of theorem A.2 91

Proof. Let Sp(A1, . . . , AT) =
1
T ∑T

i=1 Ap
i and r = 1/p. Then,∥∥Mp(A1, . . . , AT)−Mp(B1, . . . , BT)

∥∥
=
∥∥∥S1/p

p (A1, . . . , AT)− S1/p
p (B1, . . . , BT)

∥∥∥
=
∥∥∥Sr

p(A1, . . . , AT)− Sr
p(B1, . . . , BT)

∥∥∥
≤
∥∥Sp(A1, . . . , AT)− Sp(B1, . . . , BT)

∥∥r

=
∥∥Sp(A1, . . . , AT)− Sp(B1, . . . , BT)

∥∥1/p

=
∥∥Mp

p(A1, . . . , AT)−Mp
p(B1, . . . , BT)

∥∥1/p

where the inequality comes from Corollary A.2, giving the desired result.

Proposition A.5. Let A1, . . . , AT, B1, . . . , BT be symmetric positive semidefinite matrices
such that λ(Ai)≤β and λ(Bi)≤β for i = 1, . . . T. Then, for p ≥ 1,∥∥Mp

p(A1, . . . , AT)−Mp
p(B1, . . . , BT)

∥∥
≤ pβp−1mp

(
‖A1 − B1‖ , . . . , ‖AT − BT‖

)
Proof. Let βi = max(‖Ai‖ , ‖Bi‖). Then,∥∥Mp

p(A1, . . . , AT)−Mp
p(B1, . . . , BT)

∥∥
=

∥∥∥∥∥
(

1
T

T

∑
i=1

Ap
i

)
−
(

1
T

T

∑
i=1

Bp
i

)∥∥∥∥∥
=

∥∥∥∥∥ 1
T

T

∑
i=1

Ap
i − Bp

i

∥∥∥∥∥
≤ 1

T

T

∑
i=1

∥∥Ap
i − Bp

i

∥∥
≤ 1

T

T

∑
i=1

p(βi)
p−1 ‖Ai − Bi‖

≤ 1
T

T

∑
i=1

pβp−1 ‖Ai − Bi‖

= pβp−1

(
1
T

T

∑
i=1
‖Ai − Bi‖

)
= pβp−1m1

(
‖A1 − B1‖ , . . . , ‖AT − BT‖

)
≤ pβp−1mp

(
‖A1 − B1‖ , . . . , ‖AT − BT‖

)
where: the first inequality follows from the triangular inequality, the second inequal-
ity follows from Proposition A.2, the third inequality follows as βi ≤ β, and the last
inequality comes from the monotonicity of the scalar power means.
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The next Lemma contains the proof corresponding to the case of positive powers
of Theorem A.2.

Lemma A.1 (Theorem A.2 for the case p ≥ 1). Let A1, . . . , AT, B1, . . . , BT be symmetric
positive semidefinite matrices where λ(Ai) ≤ β and λ(Bi) ≤ β for i = 1, . . . T. Let
C+

p = p1/pβ1−1/p. Let p ≥ 1, with p integer Then,∥∥Mp(A1, . . . , AT)−Mp(B1, . . . , BT)
∥∥

≤ C+
p mp

(
‖A1 − B1‖ , . . . , ‖AT − BT‖

)1/p

Proof. We can see that∥∥Mp(A1, . . . , AT)−Mp(B1, . . . , BT)
∥∥

≤
∥∥Mp

p(A1, . . . , AT)−Mp
p(B1, . . . , BT)

∥∥ 1
p

≤
(

pβp−1mp
(
‖A1 − B1‖ , . . . , ‖AT − BT‖

)) 1
p

= C+
p mp

(
‖A1 − B1‖ , . . . , ‖AT − BT‖

)1/p

where the first inequality comes from Proposition A.4, and the second inequality
comes from Proposition A.5.

Results for the case p ≤ −1

The following two propositions are the main ingredients for the upper bound
presented in Theorem A.2 for the case p ≤ −1.

Proposition A.6. Let A1, . . . , AT, B1, . . . , BT be symmetric positive definite matrices where
α ≤ λ(Ai) and α ≤ λ(Bi) for i = 1, . . . T, and α > 0. Then, for p ≤ −1, with p integer∥∥Mp(A1, . . . , AT)−Mp(B1, . . . , BT)

∥∥
≤ 1

α2

∥∥∥M|p||p|(A−1
1 , . . . , A−1

T )−M|p||p|(B−1
1 , . . . , B−1

T )
∥∥∥1/|p|

Proof. Let Sp(A1, . . . , AT) =
1
T ∑T

i=1 Ap
i . Then,∥∥Mp(A1, . . . , AT)−Mp(B1, . . . , BT)

∥∥
=
∥∥∥S1/p

p (A1, . . . , AT)− S1/p
p (B1, . . . , BT)

∥∥∥
=
∥∥∥S1/|p|

p (A1, . . . , AT)
−1 − S1/|p|

p (B1, . . . , BT)
−1
∥∥∥

=
∥∥∥S1/|p|
|p| (A−1

1 , . . . , A−1
T )−1 − S1/|p|

|p| (B−1
1 , . . . , B−1

T )−1
∥∥∥
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=
∥∥∥M|p|(A−1

1 , . . . , A−1
T )−1 −M|p|(B−1

1 , . . . , B−1
T )−1

∥∥∥
≤ 1

α2

∥∥∥M|p|(A−1
1 , . . . , A−1

T )−M|p|(B−1
1 , . . . , B−1

T )
∥∥∥

≤ 1
α2

∥∥∥M|p||p|(A−1
1 , . . . , A−1

T )−M|p||p|(B−1
1 , . . . , B−1

T )
∥∥∥1/|p|

where the first inequality follows from Corollary A.1 and Proposition A.3, whereas
the second inequality follows from Proposition A.4.

Proposition A.7. Let A1, . . . , AT, B1, . . . , BT be symmetric positive definite matrices such
that α≤λ(Ai) and α≤λ(Bi) for i = 1, . . . T. Then, for p ≤ −1, with p integer∥∥∥M|p||p|(A−1

1 , . . . , A−1
T )−M|p||p|(B−1

1 , . . . , B−1
T )
∥∥∥

≤ |p|α−(1+|p|)m|p|
(
‖A1 − B1‖ , . . . , ‖AT − BT‖

)
Proof. Let αi = min(‖Ai‖ , ‖Bi‖), then it clearly follows that 1

αi
= max(

∥∥∥A−1
i

∥∥∥ ,
∥∥∥B−1

i

∥∥∥).
Thus, ∥∥∥M|p||p|(A−1

1 , . . . , A−1
T )−M|p||p|(B−1

1 , . . . , B−1
T )
∥∥∥

=

∥∥∥∥∥
(

1
T

T

∑
i=1

(A−1
i )|p|

)
−
(

1
T

T

∑
i=1

(B−1
i )|p|

)∥∥∥∥∥
=

∥∥∥∥∥ 1
T

T

∑
i=1

(A−1
i )|p| − (B−1

i )|p|

∥∥∥∥∥
≤ 1

T

T

∑
i=1

∥∥∥(A−1
i )|p| − (B−1

i )|p|
∥∥∥

≤ 1
T

T

∑
i=1
|p|
( 1

αi

)|p|−1 ∥∥∥A−1
i − B−1

i

∥∥∥
≤ |p|

(1
α

)|p|−1
(

1
T

T

∑
i=1

∥∥∥A−1
i − B−1

i

∥∥∥)

≤ |p|
(1

α

)|p|−1
(

1
Tα2

T

∑
i=1
‖Ai − Bi‖

)

= |p|
(1

α

)|p|+1
(

1
T

T

∑
i=1
‖Ai − Bi‖

)

= |p|
(1

α

)|p|+1
m1
(
‖A1 − B1‖ , . . . , ‖AT − BT‖

)
≤ |p|

(1
α

)|p|+1
m|p|

(
‖A1 − B1‖ , . . . , ‖AT − BT‖

)
= |p|α−(1+|p|)m|p|

(
‖A1 − B1‖ , . . . , ‖AT − BT‖

)



94 chapter a. proof of theorems 3.5 and 3.6

where: the first inequality follows from the triangular inequality, the second inequal-
ity follows from Proposition A.2, the third inequality follows as α ≤ αi, and the
fourth inequality follows as Corollary A.1, and the last inequality comes from the
monotonicity of the scalar power means.

The next Lemma contains the proof corresponding to the case of negative powers
of Theorem A.2.

Lemma A.2 (Theorem A.2 for the case p ≤ −1). Let A1, . . . , AT, B1, . . . , BT be sym-
metric positive definite matrices where α ≤ λ(Ai) and α ≤ λ(Bi) for i = 1, . . . T. Let
C−p = |p|1/|p|α−(3+1/|p|). Let p ≤ −1 with p integer. Then,∥∥Mp(A1, . . . , AT)−Mp(B1, . . . , BT)

∥∥
≤ C−p m|p|

(
‖A1 − B1‖ , . . . , ‖AT − BT‖

)1/|p|

Proof. ∥∥Mp(A1, . . . , AT)−Mp(B1, . . . , BT)
∥∥

≤ 1
α2

∥∥∥M|p||p|(A−1
1 , . . . , A−1

T )−M|p||p|(B−1
1 , . . . , B−1

T )
∥∥∥1/|p|

≤ 1
α2

(
|p|α−(1+|p|)m|p|

(
‖A1 − B1‖ , . . . , ‖AT − BT‖

))1/|p|

= C−p m|p|
(
‖A1 − B1‖ , . . . , ‖AT − BT‖

)1/|p|

where the first inequality comes from Proposition A.6, and the second inequality
comes from Proposition A.7.

We are now ready to prove the result of Theorem A.2.

Proof of Theorem A.2. For the case p ≥ 1 see Lemma A.1. For the case p ≤ −1 see
Lemma A.2.

a.3 proof of theorem 3.6

Before giving the proof of Theorem 3.6 we need to present two auxiliary results.
The following is an auxiliary technical result that extends an implicit result stated

in (Rohe et al., 2011)(p.1908-1909) for the Frobenius norm to the case of the operator
norm.

Lemma A.3. Let X,X ∈ Rn×k be matrices with orthonormal columns. Let U, V be
orthonormal matrices and Σ a diagonal matrix such that

X TX = UΣVT
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where the diagonal entries of Σ are the cosines of the principal angles between the column
space of X and the column space of X . Let O = UVT. Then,

1√
2
‖X−XO‖ ≤ ‖ sin Θ(X , X)‖

Proof. For the proof we use the identity XTXO = (VΣUT)UVT = VΣVT, and the
fact that ‖A‖ =

√
λmax(AT A). That is,

(X−XO)T(X−XO)

= (XT −OTX T)(X−XO)

= XTX− XTXO−OTX TX + OTX TXO

= I − XTXO−OTX TX + OTO

= I − XTXO−OTX TX + I

= 2I − XTXO−OTX TX

= 2I −VΣVT −VΣVT

= 2(I −VΣVT)

Thus,

‖X−XO‖2 = λmax

(
(X−XO)T(X−XO)

)
= 2λmax(I −VΣVT)

= 2 max
i

(1− cos Θi)

≤ 2 max
i

(1− cos2 Θi)

= 2 max
i

(sin2 Θi)

= 2‖ sin Θ‖2

Hence, 1√
2
‖X−XO‖ ≤ ‖ sin Θ(X , X)‖

The next result is a useful representation of the Davis-Kahan theorem. It is a tech-
nical adaption from the Frobenius norm to the operator norm based on Lemma A.3
and Theorem A.7.

Theorem A.4. Let Σ, Σ̂ ∈ Rp×p be symmetric, with eigenvalues µ1 ≥ . . . ≥ µp and µ̂1 ≥
. . . ≥ µ̂p respectively. Fix 1 ≤ r ≤ s ≤ p and assume that min(µr−1− µr, µs − µs+1) > 0,
where µ0 := ∞ and µp+1 := −∞. Let d := s− r + 1, and let V = (vr, vr+1, . . . , vs) ∈
Rp×d and V̂ = (v̂r, v̂r+1, . . . , v̂s) ∈ Rp×d have orthonormal columns satisfying Σvj = µjvj

and Σ̂v̂j = µ̂jv̂j for j = r, r + 1, . . . , s. Then there exists an orthogonal matrix O ∈ Rd×d

such that
1√
2
‖V − V̂O‖ ≤ 2d1/2‖Σ̂− Σ‖

min(µr−1 − µr, µs − µs+1)



96 chapter a. proof of theorems 3.5 and 3.6

Proof. By theorem A.7 we have

‖ sin Θ(V̂, V)‖F ≤
2 min(d1/2‖Σ̂− Σ‖, ‖Σ̂− Σ‖F)

min(µr−1 − µr, µs − µs+1)
.

From lemma A.3 we can see that

1√
2
‖V − V̂O‖ ≤ ‖ sin Θ(V̂, V)‖

Moreover, as sin Θ(V̂, V) is a diagonal matrix, it holds that

‖ sin Θ(V̂, V)‖2 = max
i

(sin2 Θi)

≤
p

∑
i

sin2 Θi

= ‖ sin Θ(V̂, V)‖2
F

Thus,
1√
2
‖V − V̂O‖ ≤ ‖ sin Θ(V̂, V)‖ ≤ ‖ sin Θ(V̂, V)‖F

Further, it is straightforward to see that

min(d1/2‖Σ̂− Σ‖, ‖Σ̂− Σ‖F) ≤ d1/2‖Σ̂− Σ‖

Thus, all in all, we have

1√
2
‖V − V̂O‖ ≤ ‖ sin Θ(V̂, V)‖

≤ ‖ sin Θ(V̂, V)‖F

≤ 2d1/2‖Σ̂− Σ‖
min(µr−1 − µr, µs − µs+1)

which completes the proof.

We are now ready to give the proof of Theorem 3.6.

Proof of Theorem 3.6. The proof is an application of the Davis-Kahan theorem as
presented in Theorem A.4. Observe that in Theorem A.4 the eigenvalues are sorted
in a decreasing way i.e. µ1 ≥ · · · ≥ µn, whereas in our case they are sorted in an
increasing manner i.e. λ1 ≤ · · · ≤ λn.

Notationally, let the variables p, s, r from Theorem A.4 be defined as p = s =
n, r = p− k + 1.

We first focus in the case for p ≤ −1. For this case we are interested in the
k-smallest eigenvalues, i.e. λ1, . . . , λk, which correspond to µp, . . . , µr, where µp = λ1
and µr = λk.
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By definition, in Theorem A.4 we have that µp+1 = −∞. Thus, µp − µp+1 = ∞.
Further, we can see µr−1 − µr = λk+1 − λk = (1 + ε)− mp(1− ρ+ + ε, 1 + ρ− + ε)
and hence by Eq.C.7

min(µr−1 − µr, µs − µs+1) = (1 + ε)−mp(1− ρ+ + ε, 1 + ρ− + ε)

which by Theorem A.4 leads to the following inequality

‖Vk − VkOk‖ ≤
23/2k1/2

γ
‖Lp −Lp‖ =

√
8k

γ
‖Lp −Lp‖

By applying Theorem 3.5, we know that if

δ+ =
n
k
(p+in + (k− 1)p+out) > 3 ln(8n/ε), and

δ− =
n
k
(p−in + (k− 1)p−out) > 3 ln(8n/ε)

then with probability at least 1− ε

‖Vk − VkOk‖ ≤
√

8k
γ

C−p m1/|p|
|p|

(√
3 ln(8n/ε)

δ+
,

√
3 ln(8n/ε)

δ−

)
yielding the desired result. The case for p ≥ 1 is similar, where instead of k the value
k′ = k− 1 is used.

a.4 main building block for our results

In this section present two results from (Chung and Radcliffe, 2011) that are the
main building blocks for our results.

Theorem A.5 ((Chung and Radcliffe, 2011)). Let G be a random graph, where pr(vi ∼
vj) = pij, and each edges is independent of each other edge. Let A be the adjacency matrix
of G, so Aij = 1 if vi ∼ vj and 0 otherwise, and Ā = E(A), so Āij = pi,j. Let D be the
diagonal matrix with Dii = deg(vi), and D̄ = E(D). Let δ be the minimum expected degree
of G, and L = I − D−1/2AD−1/2 the (normalized) Laplacian matrix for G. Choose ε > 0.
Then there exists a constant k = k(ε) such that if δ > k ln n, then the probability at least
1− ε, the eigenvalues of L and L̄ satisfy

|λj(L)− λj(L̄)| ≤ 2

√
3 ln(4n/ε)

δ

for all 1 ≤ j ≤ n, where L̄ = I − D̄−1/2ĀD̄−1/2.

Although this theorem is presented as the main result, one can see in the proof
of theorem A.5 in (Chung and Radcliffe, 2011), that in deed what they proved was a
concentration bound for ‖L− L̄‖.
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Theorem A.6 ((Chung and Radcliffe, 2011)). Assume that conditions of Theorem A.5
hold. Choose ε > 0. Then there exists a constant k = k(ε) such that if δ > k ln n, then

P

(
‖L− L̄‖ ≤ 2

√
3 ln(4n/ε)

δ

)
> 1− ε (A.3)

Theorem A.7 ((Yu et al., 2015)). Let Σ, Σ̂ ∈ Rp×p be symmetric, with eigenvalues
µ1 ≥ . . . ≥ µp and µ̂1 ≥ . . . ≥ µ̂p respectively. Fix 1 ≤ r ≤ s ≤ p and assume that
min(µr−1 − µr, µs − µs+1) > 0, where µ0 := ∞ and µp+1 := −∞. Let d := s− r + 1,
and let V = (vr, vr+1, . . . , vs) ∈ Rp×d and V̂ = (v̂r, v̂r+1, . . . , v̂s) ∈ Rp×d have orthonor-
mal columns satisfying Σvj = µjvj and Σ̂v̂j = µ̂jv̂j for j = r, r + 1, . . . , s. Then

‖ sin Θ(V̂, V)‖F ≤
2 min(d1/2‖Σ̂− Σ‖, ‖Σ̂− Σ‖F)

min(µr−1 − µr, µs − µs+1)
.

Moreover, there exists an orthogonal matrix Ô ∈ Rd×d such that

‖V̂Ô−V‖F ≤
23/2 min(d1/2‖Σ̂− Σ‖, ‖Σ̂− Σ‖F)

min(µr−1 − µr, µs − µs+1)
.
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In this setting, we fix the number k of cluster to k = 3.
For convenience, we slightly overload the notation for the remaining of this section:
we denote by n the size of each cluster C1, . . . , Ck, i.e. |Ci| = |C| = n for i = 1, . . . , k.
Thus, the size of the graph is expressed in terms of the number and size of clusters,
i.e. |V| = nk.

Furthermore, we suppose that for t = 1, 2, 3, the expected adjacency matrix
W (t) ∈ R3n×3n of G(t), are given, for all i, j = 1, . . . , 3n, as

W (t)
ij =

{
pin if vi, vj ∈ Ct or vi, vj ∈ Ct

pout otherwise,

where 0 < pout ≤ pin ≤ 1. For t = 1, 2, 3 and ε ≥ 0, let D(t) = diag(W (t)1),

L(t)sym = I − (D(t))−1/2W (t)(D(t))−1/2 + εI,

and for a nonzero integer p let

Lp = Mp(L(1)sym,L(2)sym,L(3)sym),

where we assume that ε > 0 if p < 0. Consider further χ1, χ2, χ3 ∈ R3n the vectors
defined as

χ1 = 1, χ2 = 1C1 − 1C2 , χ3 = 1C1 − 1C3 .

In opposition to the previous model, it turns out that L(1)sym,L(2)sym,L(3)sym do not com-
mute and thus do not share the same eigenvectors. Hence, we can not derive an
explicit expression for Lp. In particular this implies that we need to use different
mathematical tools in order to study the eigenpairs of Lp.

The first main result of this section, presented in Theorem B.1, shows that, in
general, the ground truth clusters can not be reconstructed from the 3 smallest
eigenvectors of L(t)sym for any t = 1, 2, 3.

Theorem B.1. If 1 ≥ p+in > p+out > 0, then for any t = 1, 2, 3, there exist scalars α > 0

and β > 0 such that the eigenvectors of L(t)sym corresponding to the two smallest eigenvalues
are

κκκ1 = α1Ct + 1Ct
and κκκ2 = −β1Ct + 1Ct

whereas any vector orthogonal to both κκκ1 and κκκ2 is an eigenvector for the third smallest
eigenvalue.

99
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In fact, we prove even more by giving a full description of the eigenvectors of
L(t)

sym as well as the ordering of their corresponding eigenvalues. These results can be
found in Lemma B.11 below.

Our second main result is the following Theorem B.2. It shows that the ground truth
clusters can always be recovered from the three smallest eigenvectors of Lp.

Theorem B.2. Let p be any nonzero integer and assume that ε > 0 if p < 0. Furthermore,
suppose that 0 < pout < pin ≤ 1. Then, there exists λi such that Lpχi = λiχi for i = 1, 2, 3
and λ1, λ2, λ3 are the three smallest eigenvalues of Lp.

We actually prove more than just Theorem B.2. In fact, a full description of the
eigenvectors of Lp and of the ordering of their corresponding eigenvalues is given
in Lemma B.17 below.

For the proof of Theorem B.2, and the corresponding additional results, we proceed
as follows. First we assume that n = |Ci| = 1 and prove our claims. Then, we
generalize these results to the case n > 1. For the sake of clarity, as we will need to
refer to the case n = 1 for the proofs of the case n > 1, we put a tilde on the matrices
in R3×3.

b.1 the case n = 1

Suppose that n = 1, then L̃sym = L(1)sym is given by

L̃sym = τ I3 − D̃−1/2W̃D̃−1/2 = τ I3 − M̃,

where τ = 1 + ε, W̃ =W (1), D̃ = diag(W̃1), M̃ = D̃−1/2W̃D̃−1/2

W̃ =

 pin pout pout
pout pin pin
pout pin pin

 , D̃ =

α 0 0
0 β 0
0 0 β

 , M̃ =

a b b
b c c
b c c

 , (B.1)

and α, β, a, b, c > 0 are given by

α = pin + 2pout, β = 2pin + pout,

a =
pin

α
, b =

pout√
αβ

, c =
pin

β
.

Moreover, note that for any (λ, v) ∈ R×R3 we have

M̃v = λv ⇐⇒ L̃symv = (τ − λ)v. (B.2)

This implies that we can study the spectrum of M̃ in order to obtain the spectrum
of L̃sym. We have the following lemma:
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Lemma B.1. Suppose that pout > 0 and let ∆ > 0 be defined as ∆ =
√
(a− 2c)2 + 8b2.

Then the eigenvalues of M̃ are

λ̃1 = 0, λ̃2 =
a + 2c− ∆

2
, λ̃3 = 1,

and it holds λ̃1 < λ̃2 < λ̃3. Furthermore, the corresponding eigenvectors are given by

u1 = (0,−1, 1)>, u2 =
( a− 2c− ∆

2b
, 1, 1

)>
, u3 =

(√
α,
√

β,
√

β
)>,

and it holds a−2c−∆
2b < 0.

Proof. The equality M̃u1 = 0 follows from a direct computation. Furthermore, note
that u3 = D̃1/21 and so

M̃u3 = D̃−1/2W̃D̃−1/2D1/21 = D̃−1/2W̃1 = u3

implying M̃u3 = u3. Now, let s± = a−2c±∆
2b . Then s+ and s− are the solutions

of the quadratic equation bs2 + (2c − a)s − 2b = 0 which can be rearranged as
as + 2b = (bs + 2c)s. The latter equation is equivalent to{

as + 2b = λs
bs + 2c = λ

⇐⇒ M̃

s
1
1

 = λ

s
1
1

 .

Hence, u± = (s±, 1, 1) are both eigenvectors of M̃ corresponding to the eigenvalues

λ± = b s± + 2c =
a− 2c± ∆

2
+ 2c =

a + 2c± ∆
2

.

Note in particular that we have u2 = u− and λ̃2 = λ−. This concludes the proof
that (λi, ui) are eigenpairs of M̃ for i = 1, 2, 3. We now show that λ̃1 < λ̃2 < λ̃3 and
(a− 2c− ∆)/2b < 0.

As ∆ > 0, we have λ− < λ+. We prove λ− > 0. As pin > pout by assumption, the
definition of a, b, c > 0 implies that

b2 =
p2

out
(2pin + pout)(pin + 2pout)

<
p2

in
(2pin + pout)(pin + 2pout)

= ac.

And from ac > b2 it follows that a2 + 4ac + 4c2 > a2− 4ac + 4c2 + 8b2 which implies
that (a + 2c)2 > (a− 2c)2 + 8b2 = ∆2. Hence, a + 2c− ∆ > 0 and thus λ− > 0. Thus
we have 0 < λ− < λ+. Now, as M̃ has strictly positive entries, the Perron-Frobenius
theorem (see for instance Theorem 1.1 in (Tudisco et al., 2015)) implies that M̃ has
a unique nonnegative eigenvector u. Furthermore, u has positive entries and its
corresponding eigenvalue is the spectral radius of M̃. As u3 = D̃1/21 has positive
entries and is an eigenvector of M̃, we have u = u3. It follows that ρ(M̃) = λ+ = λ̃3.
Furthermore, u2 must have a strictly negative entry and thus it holds s− < 0.
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Combining the results of Lemma B.1 and Equation (B.2) we directly obtain the
following corollary which fully describes the eigenvectors of L̃sym as well as the
ordering of the corresponding eigenvalues:

Corollary B.1. There exists λ̃ ∈ (0, 1) and s− < 0 < s+ < 1 such that(
τ − 1, (s+, 1, 1)>

)
,

(
τ − λ̃, (s−, 1, 1)>

)
,

(
τ, (0,−1, 1)>

)
are the eigenpairs of L̃sym.

Proof. The only thing which is not directly implied by Lemma B.1 and Equation
(B.2) is that s+ < 1. But this follows again from Lemma B.1. Indeed, by the
Perron-Frobenius theorem the nonnegative eigenvector is unique, i.e. (s+, 1, 1) and
(
√

α,
√

β,
√

β) must span the same line. Hence we have

s+ =

√
α

β
=

√
pin + 2pout

2pin + pout
.

As pout < pin, we get 0 < s+ < 1.

Now, we study the spectral properties of L̃p = Lp ∈ R3×3. To this end, for

t = 1, 2, 3 let W̃ (t) = W (t), L̃(t)sym = L(t)sym ∈ R3×3. Furthermore, consider the
permutation matrices P̃1, P̃2, P̃3 ∈ R3×3 defined as

P̃1 = I3, P̃2 =

0 0 1
0 1 0
1 0 0

 , P̃3 =

0 1 0
1 0 0
0 0 1

 .

Then, we have W̃ (t) = P̃tW̃ P̃t for t = 1, 2, 3. The following lemma relates L̃(t)sym and
L̃sym.

Lemma B.2. For t = 1, 2, 3, we have P̃t = P̃−1
t = P̃>t and L̃(t)sym = P̃tL̃symP̃t.

Proof. The identity P̃t = P̃−1
t = P̃>t follows by a direct computation. Now, as P̃t1 = 1,

we have P̃tW̃ P̃t1 = P̃tW̃1. Assuming the exponents on the vector in the following
expressions are taken component wise, we have diag(W̃1)−1/2 = diag

(
(W̃1)−1/2)

and thus

diag(P̃tW̃ P̃t1)−1/2 = diag
(
(P̃tW̃ P̃t1)−1/2)

= diag
(

P̃t(W̃1)−1/2)
= P̃tdiag

(
(W̃1)−1/2)P̃t

= P̃tdiag(W̃1)−1/2P̃t

= P̃tD̃−1/2P̃t.
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It follows that

L̃(t)sym = τP̃tP̃t − P̃tD̃−1/2P̃tP̃tW̃ P̃tP̃tD̃−1/2P̃t

= τP̃tP̃t − P̃tD̃−1/2W̃D̃−1/2P̃t

= P̃t(τ I3 − D̃−1/2W̃D̃−1/2)P̃t

= P̃tL̃symP̃t,

which concludes our proof.

Combining Corollary B.1 with Lemma B.2, we directly obtain the following

Corollary B.2. There exists λ̃ ∈ (0, 1) and s− < 0 < s+ such that(
τ − 1, P̃t(s+, 1, 1)>

)
,

(
τ − λ, P̃t(s−, 1, 1)>

)
,

(
τ, P̃t(0,−1, 1)>

)
are the eigenpairs of L̃(t)sym for t = 1, 2, 3.

A similar argument as in the proof of Lemma 2.1 implies that the eigenvectors of
L̃p coincide with those of the matrix L̃p ∈ R3×3 defined as

L̃p = (L̃(1)sym)p + (L̃(2)sym)p + (L̃(3)sym)p = 3L̃p
p.

We study the spectral properties of L̃p. To this end, we consider the following
subspaces of matrices:

U3 =
{s1 s2 s2

s3 s5 s4
s3 s4 s5

 ∣∣∣ s1, . . . , s5 ∈ R
}

,

Z3 =
{t1 t2 t2

t2 t1 t2
t2 t2 t1

 ∣∣∣ t1, t2 ∈ R
}

.

We prove that for every p, it holds (L̃(1)sym)p ∈ U3 and L̃p ∈ Z3. We need the following
lemma:

Lemma B.3. The following holds:
1. For all Ã, B̃ ∈ U3 we have ÃB̃ ∈ U3.

2. If Ã ∈ U3 and det(Ã) 6= 0, then Ã−1 ∈ U3.

3. Z3 = P̃1U3P̃1 + P̃2U3P̃2 + P̃3U3P̃3.

Proof. Let Ã ∈ U3, C̃ ∈ Z3 be respectively defined as

Ã =

s1 s2 s2
s3 s5 s4
s3 s4 s5

 , C̃ =

t1 t2 t2
t2 t1 t2
t2 t2 t1


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1. Follows from a direct computation.

2. If det(Ã) 6= 0, then Ã is invertible and

det(Ã)Ã−1 = s2
5 − s2

4 s2(s4 − s5) s2(s4 − s5)
s3(s4 − s5) s1s5 − s2s3 s2s3 − s1s4
s3(s4 − s5) s2s3 − s1s4 s1s5 − s2s3

 .

It follows that Ã−1 ∈ U3.

3. We have
3

∑
i=1

P̃i ÃP̃i =

 s1 + 2s5 s2 + s3 + s4 s2 + s3 + s4
s2 + s3 + s4 s1 + 2s5 s2 + s3 + s4
s2 + s3 + s4 s2 + s3 + s4 s1 + 2s5

 (B.3)

and conversely, there clearly exists s1, . . . , s4 such that s1 + 2s5 = t1 and s2 + s3 +
s4 = t2, so we have ∑3

i=1 P̃i ÃP̃i = C̃ implying the reverse inclusion.

Now, we show that L̃p ∈ Z3 for all nonzero integer p.

Lemma B.4. For every integer p 6= 0 we have L̃p ∈ Z3.

Proof. From (B.1), we know that L̃(1)sym ∈ U3. By point 2 in Lemma B.3, this im-

plies that (L̃(1)sym)sign(p) ∈ U3. Now point 1 of Lemma B.3 implies that (L̃(1)sym)p =(
(L̃(1)sym)sign(p))|p| ∈ U3. Finally, by Lemma B.2 and point 3 in Lemma B.3, we have

L̃p =
3

∑
t=1

(L̃(t)sym)p =
3

∑
t=1

P̃t(L̃(1)sym)pP̃t ∈ Z3,

which concludes the proof.

Matrices in Z3 have the interesting property that they have a simple spectrum
and they all share the same eigenvectors. Indeed we have the following:

Lemma B.5. Let C̃ ∈ Z3 and t1, t2 be such that C̃ = (t1 − t2)I3 + t2Ẽ where Ẽ ∈ R3×3 is
the matrix of all ones. Then the eigenpairs of C̃ are given by:(

t1 − t2, (−1, 0, 1)>
)
,
(
t1 − t2, (−1, 1, 0)>

)
,

(
t1 + 2t2, (1, 1, 1)>

)
.

Proof. Follows from a direct computation.

So, the last thing we need to discuss is the order of the eigenvalues of L̃p. To this
end, we study the sign pattern of the powers of this matrix.

Lemma B.6. For every positive integer p > 0 we have (L̃p
sym)i,j < 0 < (L̃p

sym)i,i < τp for
all i, j = 1, 2, 3 with i 6= j. For every negative integer p < 0 we have (L̃p

sym)i,j > 0 for all
i, j = 1, 2, 3.
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Proof. First, assume that p > 0 and let S̃ = D̃−1W̃ . We have

L̃p
sym = (τ I3 − D̃−1/2W̃D̃−1/2)p

=
p

∑
r=0

(
p
r

)
τp−r(−1)r(D̃−1/2W̃D̃−1/2)r

= D̃1/2
( p

∑
r=0

(
p
r

)
τp−r(−1)r(D̃−1W̃)r

)
D̃−1/2

= D̃1/2(τ I3 − S̃)pD̃−1/2.

As D̃1/2 and D̃−1/2 are diagonal with positive diagonal entries, the sign of the
entries of L̃p

sym coincide with those of (τ I3 − S̃)p. Furthermore, we have (L̃p
sym)i,i =

((τ I3 − S̃)p)i,i for all i. Now the matrix S̃ is row stochastic, that is S̃1 = 1 and has
the following form

S̃ =

1− 2â â â
1− 2b̂ b̂ b̂
1− 2b̂ b̂ b̂

 â =
α̂

1 + 2α̂
, b̂ =

1
2 + α̂

where α̂ = pout/pin ∈ (0, 1). Let

γ = (â− b̂) =
p2

out − p2
in

(2pin + pout)(2pout + pin)
< 0,

µ = (1− 2b̂) =
pin

2pout + pin
> 0

We have the following result about (τ I3 − S̃)p.

Lemma B.7. For all positive integer p, we have

(τ I3 − S̃)p =
1

2γ + 1

qp rp rp
sp tp up
sp up tp


where qp, rp, sp, tp, up are given by

qp = µ(τ − 1)p + 2â(2γ + τ)p,

rp = â
[
(τ − 1)p − (2γ + τ)p],

sp =
µ

â
rp, (B.4)

tp = â
[
(τ − 1)p + τp]+ µ

2
[
τp + (2γ + τ)p],

up = â
[
(τ − 1)p − τp]− µ

2
[
τp − (2γ + τ)p].

Proof. Please see Section B.3
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Note that as pin > pout > 0, we have

δ = 2γ + 1 = 2(â− b̂) + 1 = 2â + µ

=
5pin pout + 4p2

out
2p2

in + 5pin pout + 2p2
out
∈ (0, 1),

Furthermore, as τ ≥ 1 and γ < 0, we have δ ≤ (2γ + τ) < τ. It follows that

0 < µ(τ − 1)p + 2âδp ≤ qp < µ(τ − 1)p + 2âτp ≤ δτp < τp, and

0 < â
[
(τ − 1)p + τp]+ µ

2
(τp + δp) ≤ tp < 2âτp + µτp = δτp < τp.

Finally, we have

rp = â
[
(τ − 1)p −

(
δ + (τ − 1)

)p]
< 0, sp =

µ

â
rp < 0.

Now, suppose that p < 0, then we have τ > 1 and

(τ I3 − D̃−1/2W̃D̃−1/2)−1 =
∞

∑
k=0

(D̃−1/2W̃D̃−1/2)k.

As M̃ = D̃−1/2W̃D̃−1/2 is a matrix with strictly positive entries, this implies that
L̃−1

sym has positive entries as well. Furthermore, it also implies that L̃p
sym = (L̃−1

sym)|p|

is positive for every p < 0.

We can now use Lemma B.6 to determine the ordering of the eigenvalues of L̃p.

Lemma B.8. Let t1, t2 ∈ R be such that it holds L̃p = (t1 − t2)I3 + t2Ẽ. Furthermore, for
any nonzero integer p, it holds 0 < t1 − t2 < t1 + 2t2 if p < 0 and t1 − t2 > t1 + 2t2
otherwise.

Proof. If p < 0, then we must have τ > 1 for L̃p to be well defined. By Lemma

B.6, (L̃(1)sym)p has strictly positive entries. Hence, L̃p = ∑3
t=1 P̃t(L̃(1)sym)pP̃t is also

a matrix with positive entries. It follows that t1 − t2 > 0 and t2 > 0 so that
0 < t1 − t2 < t1 + 2t2. Now assume that p > 0, Lemma B.6 implies that (L̃(1)sym)p

with positive diagonal elements and negative off-diagonal. It follows from (B.3) that
L̃p also has positive diagonal elements and negative off-diagonal. Hence, we have
t2 < 0 < t1 and thus t1 − t2 > t1 + 2t2 which concludes the proof.

We have the following corollary on the spectral properties of the Laplacian
p-mean.

Corollary B.3. Let p be a nonzero integer and let ε ≥ 0 if p > 0 and ε > 0 if p < 0.
Define

L̃p =
( (L̃(1)sym)p + (L̃(2)sym)p + (L̃(3)sym)p

3

)1/p
,

then there exists 0 ≤ λ̃1 < λ̃2 such that the eigenpairs of L̃p are given by(
λ̃1, (−1, 0, 1)>

)
,

(
λ̃1, (−1, 1, 0)>

)
,

(
λ̃2, (1, 1, 1)>

)
.



B.2 the case n > 1 107

Proof. First, note that L̃p =
(1

3 L̃p
)1/p hence as they are positive semi-definite matrices,

L̃p and L̃p share the same eigenvectors. Precisely, we have L̃pv = λv if and only
if L̃pv = f (λ)v where f (t) = (t/3)1/p. Now, by Lemmas B.4 and B.5 we know
all eigenvectors of L̃p and the corresponding eigenvalues are θ1 = t1 − t2 and
θ2 = t1 + 2t2. Finally, using Lemma B.8 and the fact that f is increasing if p > 0 and
decreasing if p < 0 we deduce the ordering of λ̃i = f (θi).

b.2 the case n > 1

We now generalize the previous results to the case n > 1. To this end, we use mainly
the properties of the Kronecker product ⊗ which we recall is defined for matrices
A ∈ Rm1×m2 , B ∈ Rm3×m4 as the block matrix A⊗ B ∈ Rm1m3×m2m4 with m1m2 blocks
of the form Ai,jB ∈ Rm3×m4 for all i, j. In particular, for n > 1, if E denotes the matrix
of all ones in Rn×n, we have thenW (t) = W̃ (t) ⊗ E for every t = 1, 2, 3. Furthermore,
let us define W = W̃ ⊗ E and Pt = P̃t ⊗ In for t = 1, 2, 3 so that W (t) = PtWPt for
t = 1, 2, 3. Finally, let Lsym = τ I3n −D−1/2WD−1/2 where we recall that τ = 1 + ε

and D = diag(W1). The normalized Laplacians of W and W̃ are related in the
following lemma:

Lemma B.9. It holds

Lsym = τ I3n −
[ 1

n D̃
−1/2W̃D̃−1/2]⊗ E.

Proof. First, note that D = nD̃ ⊗ In, as (A1⊗ B1)(A2⊗ B2) = (A1A2⊗ B1B2) for any
compatible matrices A1, A2, B1, B2. We have

D−1/2WD−1/2 =
(D̃−1/2 ⊗ In)(W̃ ⊗ E)(D̃−1/2 ⊗ In)

n
= 1

n D̃
−1/2W̃D̃−1/2 ⊗ E,

which concludes the proof.

In order to study the eigenpairs of Lsym, we combine Lemma B.1 with the
following theorem from (Horn and Johnson, 1991) which implies that eigenpairs of
Kronecker products are Kronecker products of the eigenpairs:

Theorem B.3 (Theorem 4.2.12, (Horn and Johnson, 1991)). Let A ∈ Rm×m and B ∈
Rn×n. Let (λ, x) and (µ, y) be eigenpairs of A and B respectively. Then (λµ, x⊗ y) is an
eigenpair of A⊗ B.

Indeed, the above theorem implies that the eigenpairs of D−1/2WD−1/2 are
Kronecker products of the eigenpairs of D̃−1/2W̃D̃−1/2 and E. As we already know
those of D̃−1/2W̃D̃−1/2, we briefly describe those of E:
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Lemma B.10. Let E ∈ Rn×n, n ≥ 2 be the matrix of all ones, then the eigenpairs of E are
given by (n, 1) and (0, v1), . . . , (0, vn−1) where vk ∈ Rn is given as

(vk)j =


1 if j ≤ k,
−k if j = k + 1,
0 otherwise.

(B.5)

Proof. As E = 11>, it is clear that (n, 1) is an eigenpair of E. Now, for every i we
have Evi = (1>vi)1 and 1>vi = i− i = 0.

We can now describe the spectral properties of L(t)sym for t = 1, 2, 3.

Lemma B.11. There exists λ ∈ (0, 1) and s− < 0 < s+ < 1 such that, for t = 1, 2, 3, the
eigenpairs of L(t)sym are given by(

τ − 1, Pt(s+, 1, 1)> ⊗ 1
)
,

(
τ, Pt(s+, 1, 1)> ⊗ vk

)
,(

τ, Pt(0,−1, 1)> ⊗ 1
)
,
(
τ, Pt(0,−1, 1)> ⊗ vk

)
,(

τ − λ, Pt(s−, 1, 1)> ⊗ 1
)
,

(
τ, Pt(s−, 1, 1)> ⊗ vk

)
,

for k = 1, . . . , n− 1, where vk is defined as in (B.5).

Proof. Follows from Lemmas B.1, B.10 and Theorem B.3.

Similarly to the case n = 1, let us consider Lp ∈ R3n×3n defined as

Lp = (L(1)sym)p + (L(2)sym)p + (L(3)sym)p = 3Lp
p.

Again, we note that the eigenvectors of Lp and 3Lp
p are the same. Now, let us consider

the sets U3n ⊂ R3n×3n and Z3n ⊂ R3n×3n defined as

U3n =
{

s0 I3n − Ã⊗ E
∣∣ Ã ∈ U3, s0 ∈ R},

Z3n =
{

t0 I3n − C̃⊗ E
∣∣ C̃ ∈ Z3, s0 ∈ R}.

Note that, as s0 I3 + U3 = U3 and s0 I3 +Z3 = Z3 for all s0 ∈ R, the definitions of U3n
and Z3n reduce to that of U3 and Z3 when n = 1. We prove that Lp ∈ Z3n for all
nonzero integer p. To this end, we first prove the following lemma which generalizes
Lemma B.3.

Lemma B.12. The following holds:

1. U3n is closed under multiplication, i.e. for all A, B ∈ U3n we have AB ∈ U3n.

2. If A ∈ U3n satisfies det(A) 6= 0, then A−1 ∈ U3n.

3. Z3 = P1U3nP1 + P2U3nP2 + P3U3nP3.
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Proof. Let A, B ∈ U3n, C ∈ Z3n and s0, r0, t0 ∈ R, Ã, B̃ ∈ U3, C̃ ∈ Z3 such that
A = s0 I3n − Ã⊗ E, B = r0 I3n − B̃⊗ E and C = t0 I3n − C̃⊗ E.

1. We have

A B = s0r0 I3n + (nÃB̃− s0B̃− r0Ã)⊗ E

As ÃB̃ ∈ U3 by point 1 in Lemma B.3, we have (nÃB̃− s0B̃− r0Ã) ∈ U3 and so
AB ∈ U3n.

2. First note that as A is invertible, it holds s0 6= 0. Furthermore, using von
Neumann series, we have

(s0 I3n − Ã⊗ E)−1 = s−1
0 (I3n − s−1

0 Ã⊗ E)−1

= s−1
0

∞

∑
k=0

s−k
0 (Ã⊗ E)k

= s−1
0

∞

∑
k=0

s−k
0 nk−1(Ãk ⊗ E).

As Ãk ∈ U3 for all k by point 1 in Lemma B.3 we have that Sν = s−1
0 ∑ν

k=0 s−k
0 nk−1(Ãk⊗

E) ∈ U3n for all ν = 0, 1, . . . As limν→∞ Sν = A−1 and U3n is closed, it follows
that A−1 ∈ U3n.

3. Note that for i = 1, 2, 3 it holds

Pi A Pi = s0 I3n − (P̃i ÃP̃i ⊗ E).

Hence, we have
3

∑
i=1

Pi A Pi = 3s0 I3n −
( 3

∑
i=1

P̃i ÃP̃i

)
⊗ E.

We know from point 3 in Lemma B.3 that ∑3
i=1 P̃i ÃP̃i ∈ U3 and thus ∑3

i=1 P̃i Ã P̃i ∈
Z3. Finally, note that by choosing the coefficients in Ã in the same way as in
the proof of point 3 in Lemma B.3, we have A = C with s0 = t0. This concludes
the proof.

We can now prove that Lp ∈ Z3n.

Lemma B.13. For every nonzero integer p, we have Lp ∈ Z3n.

Proof. As Lsym = L(1)sym ∈ U3n, we have Lp
sym ∈ U3n by points 1 and 2 in Lemma B.12.

We prove that Lp = ∑3
t=1 PtLp

symPt. To this end, note that, with the convention that
powers on vectors are considered component wise, for t = 1, 2, 3, we have

diag(PtWPt1)−1/2 = diag
(

Pt(W1)−1/2)
= Ptdiag

(
(W1)−1/2)Pt

= PtD−1/2Pt.



110 chapter b. proof of theorems 4.2 and 4.3

Furthermore,

diag(PtWPt1)−1/2PtWPtdiag(PtWPt1)−1/2

= PtD−1/2P2
tWP2

t D−1/2Pt

= PtD−1/2WD−1/2Pt.

This implies that L(t)sym = PtLsymPt for t = 1, 2, 3 and thus we obtain the desired
expression for Lp. Point 3 in Lemma B.12 finally imply that Lp ∈ Z3n.

We combine Theorem B.3 and Lemmas B.5, B.10 to obtain the following:

Lemma B.14. Let C ∈ Z3n and t0, t1, t2 such that C = t0 I3n − ((t1 − t2)I3 + t2Ẽ)⊗ E.
Then, the eigenpairs of C are given by(

t0 − n(t1 − t2), (−1, 0, 1)> ⊗ 1
)
,(

t0 − n(t1 − t2), (−1, 1, 0)> ⊗ 1
)
,(

t0 − n(t1 + 2t2), (1, 1, 1)> ⊗ 1
)
.

and, with vi defined as in (B.5),(
t0, (−1, 0, 1)> ⊗ vi

)
,

(
t0, (−1, 1, 0)> ⊗ vi

)
,(

t0, (1, 1, 1)> ⊗ vi
)
, i = 1, . . . , n− 1.

Similar to Lemma B.8, we have following the lemma for deciding the order of the
eigenvectors of Lp.

Lemma B.15. For every positive p > 0 we have (Lp
sym)i,j < 0 < (Lp

sym)i,i < τp for
all i, j = 1, . . . , 3n with i 6= j. For every negative p < 0 we have (Lp

sym)i,j > 0 for all
i, j = 1, . . . , 3n.

Proof. LetM = D−1/2WD−1/2, then by Lemma B.9, we haveM = 1
n (M̃⊗ E). Now,

for p > 0, it holds:

Lp
sym = (τ I3n −M)p

= (τ I3n − 1
n (M̃ ⊗ E))p

=
p

∑
k=0

(
p
k

)
τp−k(−1)kn−k(M̃k ⊗ Ek)

= τp I3n +
p

∑
k=1

(
p
k

)
τp−k(−1)kn−k(M̃k ⊗ Ek)

= τp I3n +
( p

∑
k=1

(
p
k

)
τp−k(−1)kM̃k

)
⊗ E

= τp I3n +
(
L̃p

sym − τp I3
)
⊗ E. (B.6)
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By Lemma B.6, we know that (L̃p
sym)i,j < 0 if i 6= j and (L̃p

sym)i,i − τp < 0 for all
i. Hence, the matrix Q̃ = L̃p

sym − τp I3 has strictly negative entries. Thus, all the
off-diagonal elements of Lp

sym are strictly negative. Finally, note that

(Lp
sym)i,i = τp + (L̃p

sym ⊗ E)i,i − τp = (L̃p
sym ⊗ E)i,i > 0.

This concludes the proof for the case p > 0. The case p < 0 can be proved in the
same way as for the case n = 1 (see Lemma B.6).

Observation B.1. We note that Equation (B.6) implies the following relation between Lp

and L̃p:
Lp = 3τp I3n +

(
L̃p − τp I3

)
⊗ E. (B.7)

Lemma B.16. Let t0, t1, t2 ∈ R be such that Lp = t0 I3n − ((t1 − t2)I3 + t2Ẽ)⊗ E. Fur-
thermore, for any integer p 6= 0, it holds t0 < t0 − n(t1 − t2) < t0 − n(t1 + 2t2) if p < 0
and t0 > t0 − n(t1 − t2) > t0 − n(t1 + 2t2) otherwise.

Proof. The proof is essentially the same as that of Lemma B.8. Indeed, if p <
0, then Lp is strictly positive and thus t2 < 0 as (Lp)1,3n > 0, t1 − t2 < 0 as
(Lp)1,n > 0 and t0 − t1 > 0 as (Lp)1,1 > 0. This means that t1 − t2 > t1 + 2t2 and so
t0 − n(t1 − t2) < t0 − n(t1 + 2t2). Furthermore, this shows that t0 − n(t1 − t2) > t0.
Now, if p > 0, by Lemma B.15 we have t2 > 0 as (Lp)1,3n < 0, t1 − t2 > 0 as
(Lp)1,n < 0 and t0 − t1 > 0 as (Lp)1,1 > 0. It follows that t1 − t2 < t1 + 2t2 and thus
t0 − n(t1 − t2) > t0 − n(t1 + 2t2). Finally, as t1 − t2 > 0, we have t0 > t0 − n(t1 − t2)
which concludes the proof.

We conclude by giving a description of the spectral properties of Lp.

Lemma B.17. Let p be any nonzero integer and assume that ε > 0 if p < 0. Define

Lp =
( (L(1)sym)p + (L(2)sym)p + (L(3)sym)p

3

)1/p
,

then there exists 0 ≤ λ1, λ2 < λ3 such that all the eigenpairs of Lp are given by(
λ1, (−1, 0, 1)> ⊗ 1

)
,

(
λ3, (−1, 0, 1)> ⊗ vi

)(
λ1, (−1, 1, 0)> ⊗ 1

)
,

(
λ3, (−1, 1, 0)> ⊗ vi

)(
λ2, (1, 1, 1)> ⊗ 1

)
,

(
λ3, (1, 1, 1)> ⊗ vi

)
,

and i = 1, . . . , n− 1, where vi is defined in (B.5).

Proof. The proof is the same as that of Corollary B.3 where one uses Lemmas B.13,
B.14, B.16 instead of Lemmas B.4, B.5, B.8.
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b.3 proof of lemma B.7

The proof is by induction. We first verify the base case p = 1 to later consider the
inductive step where we prove the general case for p + 1.

Please recall that

S̃ =

1− 2â â â
1− 2b̂ b̂ b̂
1− 2b̂ b̂ b̂

 â =
α̂

1 + 2α̂
, b̂ =

1
2 + α̂

where α̂ = pout/pin ∈ (0, 1), and

γ = (â− b̂) =
p2

out − p2
in

(2pin + pout)(2pout + pin)
< 0,

µ = (1− 2b̂) =
pin

2pout + pin
> 0

Base Case: We verify the conditions for the case p = 1. The corresponding ver-
ifications are contained in: Lemma B.18 for q1, Lemma B.19 for r1, Lemma B.20 for
s1, Lemma B.21 for t1, and Lemma B.22 for u1.

Lemma B.18. q1

(2γ + 1)
= (τ I3 − S̃)11

Proof. We can see that,

q1 = µ(τ − 1) + 2â(2γ + τ)

= µ(τ − 1) + 2â(2γ + τ) + (2â− 2â)

= (1− 2b̂)(τ − 1) + 2â(2(â− b̂) + τ) + (2â− 2â)

= τ(2â− 2b̂ + 1) + 2â(2â− 2b̂ + 1)− (2â− 2b̂ + 1)

= (τ + 2â− 1)(2â− 2b̂ + 1)
= (τ + 2â− 1)(2γ + 1)

Hence, q1
(2γ+1) = τ + 2â− 1 = (τ I3 − S̃)11

Lemma B.19.
r1

(2γ + 1)
= (τ I3 − S̃)12

Proof. We can see that,

r1 = â
[
(τ − 1)− (2γ + τ)

]
= −â(2γ + 1)

Hence, r1
(2γ+1) = −â = (τ I3 − S̃)12
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Lemma B.20.
s1

(2γ + 1)
= (τ I3 − S̃)21

Proof. We can see that,

s1 =
µ

â
rp =

µ

â
â
[
(τ − 1)− (2γ + τ)

]
= −µ(2γ + 1) = −(1− 2b̂)(2γ + 1)

Hence, s1
(2γ+1) = −(1− 2b̂) = (τ I3 − S̃)21

Lemma B.21.
t1

(2γ + 1)
= (τ I3 − S̃)22

Proof. We can see that,

t1 = â
[
(τ − 1) + τ

]
+

µ

2
[
τ + (2γ + τ)

]
= â(2τ − 1) + µ(τ + γ)

= τ(2â + µ) + (µγ− â)

= τ(2â + 1− 2b̂) +
[
(1− 2b̂)γ− â

]
= τ(2γ + 1)− 2γb̂ + γ− â

= τ(2γ + 1)− 2γb̂− b̂

= τ(2γ + 1)− b̂(2γ + 1)

= (τ − b̂)(2γ + 1)

Hence, t1
(2γ+1) = (τ − b̂) = (τ I3 − S̃)22

Lemma B.22.
u1

(2γ + 1)
= (τ I3 − S̃)23

Proof. We can see that,

u1 = â
[
(τ − 1)− τ

]
− µ

2
[
τ − (2γ + τ)

]
= −â + µγ

= −â + (1− 2b̂)γ

= −2b̂γ− â + γ

= −2b̂γ− b̂

= −b̂(2γ + 1)

Hence, u1
(2γ+1) = −b̂ = (τ I3 − S̃)23
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Inductive step: We verify the conditions for the case p+ 1. The corresponding ver-
ifications are contained in: Lemma B.23 for qp+1, Lemma B.24 for rp+1, Lemma B.25

for sp+1, Lemma B.26 for tp+1, and Lemma B.27 for up+1.

As a reference for our verifications, one can easily see that:

(τ I3 − S̃)p+1 = (τ I3 − S̃)p(τ I3 − S̃)

=
( 1

2γ + 1

)2
qp rp rp

sp tp up
sp up tp

q1 r1 r1
s1 t1 u1
s1 u1 t1


=
( 1

2γ + 1

)2
qpq1 + rps1 + rps1 qpr1 + rpt1 + rpu1 qpr1 + rpu1 + rpt1

spq1 + tps1 + ups1 spr1 + tpt1 + upu1 spr1 + tpu1 + upt1
spq1 + ups1 + tps1 spr1 + upt1 + tpu1 spr1 + upu1 + tpt1


Lemma B.23.

qp+1

(2γ + 1)
= (τ I3 − S̃)p+1

11

Proof. Since (τ I3 − S̃)p+1
11 =

qpq1+2rps1
(2γ+1)2 we can see that

qp
q1

2γ + 1
=
[
µ(τ − 1)p + 2â(2γ + τ)p](τ + 2â− 1) , and

rp
s1

2γ + 1
= â

[
(τ − 1)p − (2γ + τ)p](−1 + 2b̂) = −âµ

[
(τ − 1)p − (2γ + τ)p]

and hence

qpq1 + 2rps1

2γ + 1
=
[
µ(τ − 1)p + 2â(2γ + τ)p](τ + 2â− 1)− 2âµ

[
(τ − 1)p − (2γ + τ)p]

= (τ − 1)p[µ(τ + 2â− 1)− 2âµ
]
+ (2γ + τ)p[2â(τ + 2â− 1) + 2âµ

]
= (τ − 1)p[µ(τ − 1)

]
+ (2γ + τ)p[2â(τ + 2â− 1) + 2âµ

]
= (τ − 1)p[µ(τ − 1)

]
+ 2â(2γ + τ)p[(τ + 2â− 1) + µ

]
= (τ − 1)p[µ(τ − 1)

]
+ 2â(2γ + τ)p[(τ + 2â− 1) + 1− 2b̂

]
= (τ − 1)p[µ(τ − 1)

]
+ 2â(2γ + τ)p[2γ + τ

]
= µ(τ − 1)p+1 + 2â(2γ + τ)p+1

Hence,

(τ I3 − S̃)p+1
11 =

µ(τ − 1)p+1 + 2â(2γ + τ)p+1

2γ + 1
=

qp+1

2γ + 1

Lemma B.24.
rp+1

(2γ + 1)
= (τ I3 − S̃)p+1

12
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Proof. Since (τ I3 − S̃)p+1
12 =

qpr1+rpt1+rpu1
(2γ+1)2 we can see that

qp
r1

2γ + 1
=
[
µ(τ − 1)p + 2â(2γ + τ)p](−â) ,

rp
t1

2γ + 1
= â

[
(τ − 1)p − (2γ + τ)p](τ − b̂) , and

rp
u1

2γ + 1
= â

[
(τ − 1)p − (2γ + τ)p](−b̂)

and hence
rp

t1 + u1

2γ + 1
= â

[
(τ − 1)p − (2γ + τ)p](τ − 2b̂)

therefore:

qpr1 + rp(t1 + u1)

2γ + 1
= −â

[
µ(τ − 1)p + 2â(2γ + τ)p]+ â

[
(τ − 1)p − (2γ + τ)p](τ − 2b̂)

= â
{[
− µ(τ − 1)p − 2â(2γ + τ)p]+ [(τ − 1)p − (2γ + τ)p](τ − 2b̂)

}
= â

{
(τ − 1)p[− µ + (τ − 2b̂)

]
+ (2γ + τ)p[− 2â− (τ − 2b̂)

]}
= â

{
(τ − 1)p[− µ + (τ − 2b̂)

]
+ (2γ + τ)p[− (τ + 2γ)

]}
= â

{
(τ − 1)p[− (1− 2b̂) + (τ − 2b̂)

]
+ (2γ + τ)p[− (τ + 2γ)

]}
= â

{
(τ − 1)p[τ − 1

]
+ (2γ + τ)p[− (τ + 2γ)

]}
= â

{
(τ − 1)p+1 − (2γ + τ)p+1}

Hence,

(τ I3 − S̃)p+1
12 =

â
{
(τ − 1)p+1 − (2γ + τ)p+1}

2γ + 1
=

rp+1

2γ + 1

Lemma B.25.
sp+1

(2γ + 1)
= (τ I3 − S̃)p+1

21

Proof. Since (τ I3 − S̃)p+1
21 =

spq1+s1(tp+up)

(2γ+1)2 we can see that

sp
q1

2γ + 1
=

µ

â
rp
[
(τ − 1 + 2â)

]
= µ

[
(τ − 1)p − (2γ + τ)p][(τ − 1 + 2â)

]
tp

s1

2γ + 1
=
{

â
[
(τ − 1)p + τp]+ µ

2
[
τp + (2γ + τ)p]}(−1 + 2b̂) , and

up
s1

2γ + 1
=
{

â
[
(τ − 1)p − τp]− µ

2
[
τp − (2γ + τ)p]}(−1 + 2b̂)

Observe that

s1(tp + up)

2γ + 1
=
[
2â(τ − 1)p + µ(2γ + τ)p][− 1 + 2b̂

]
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Therefore,

spq1 + s1(tp + up)

2γ + 1
=

µ
[
(τ − 1)p − (2γ + τ)p][(τ − 1 + 2â)

]
+
[
2â(τ − 1)p + µ(2γ + τ)p][− 1 + 2b̂

]
=

µ
[
(τ − 1)p − (2γ + τ)p][(τ − 1 + 2â)

]
+
[
2â(τ − 1)p + µ(2γ + τ)p](−µ) =

µ
{[

(τ − 1)p − (2γ + τ)p][(τ − 1 + 2â)
]
−
[
2â(τ − 1)p + µ(2γ + τ)p]} =

µ
{
(τ − 1)p[(τ − 1 + 2â)− 2â

]
+ (2γ + τ)p[− (τ − 1 + 2â)− µ)

]}
=

µ
{
(τ − 1)p(τ − 1)− (2γ + τ)p[(τ − 1 + 2â) + µ)

]}
=

µ
{
(τ − 1)p(τ − 1)− (2γ + τ)p[(τ − 1 + 2â) + (1− 2b̂)

]}
=

µ
{
(τ − 1)p(τ − 1)− (2γ + τ)p(2γ + 1)

}
=

µ
{
(τ − 1)p+1 − (2γ + τ)p+1}

Hence,

(τ I3 − S̃)p+1
21 =

µ
{
(τ − 1)p+1 − (2γ + τ)p+1}

2γ + 1
=

sp+1

2γ + 1

Lemma B.26.
tp+1

(2γ + 1)
= (τ I3 − S̃)p+1

22

Proof. Since (τ I3 − S̃)p+1
22 =

spr1+tpt1+upu1
(2γ+1)2 we can see that

sp
r1

2γ + 1
=

µ

â
rp

r1

2γ + 1
=

µ

â
rp
(
− â
)
= −µrp = −µâ

[
(τ − 1)p − (2γ + τ)p] ,

tp
t1

2γ + 1
=
{

â
[
(τ − 1)p + τp]+ µ

2
[
τp + (2γ + τ)p]}[τ − b̂

]
, and

up
u1

2γ + 1
=
{

â
[
(τ − 1)p − τp]− µ

2
[
τp − (2γ + τ)p]}[− b̂

]
and hence

spr1 + tpt1 + upu1

2γ + 1
= â(τ − 1)p{− µ− b̂ + (τ − b̂)

}
+

µ

2
(2γ + 1)p{2â− b̂ + τ − b̂

}
+ τp{âb̂ +

µb̂
2

+ â(τ − b̂) +
µ(τ − b̂)

2
}

= â(τ − 1)p{− (1− 2b̂) + (τ − 2b̂)
}

+
µ

2
(2γ + 1)p{2(â− b̂) + τ

}
+ τp{âτ +

µτ

2
}
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= â(τ − 1)p(τ − 1)

+
µ

2
(2γ + 1)p(2γ + τ)

+ âτp+1 +
µ

2
τp+1

= â
[
(τ − 1)p + τp]+ µ

2
[
τp + (2γ + τ)p]

Hence,

(τ I3 − S̃)p+1
22 =

â
[
(τ − 1)p + τp]+ µ

2

[
τp + (2γ + τ)p]

2γ + 1
=

tp+1

2γ + 1

Lemma B.27.
up+1

(2γ + 1)
= (τ I3 − S̃)p+1

23

Proof. Since (τ I3 − S̃)p+1
23 =

spr1+tpu1+upt1
(2γ+1)2 we can see that

sp
r1

2γ + 1
=

µ

â
rp

r1

2γ + 1
=

µ

â
rp
(
− â
)
= −µrp = −µâ

[
(τ − 1)p − (2γ + τ)p] ,

tp
u1

2γ + 1
=
{

â
[
(τ − 1)p + τp]+ µ

2
[
τp + (2γ + τ)p]}[− b̂

]
up

t1

2γ + 1
=
{

â
[
(τ − 1)p − τp]− µ

2
[
τp − (2γ + τ)p]}[τ − b̂

]
and hence

spr1 + tpu1 + upt1

2γ + 1
= â(τ − 1)p[− µ− b̂ + (τ − b̂)

]
+

µ

2
(2γ + τ)p[2â− b̂ + (τ − b̂)

]
+ τp[− âb̂− µb̂

2
− â(τ − b̂)− µ

2
(τ − b̂)

]
= â(τ − 1)p[− (1− 2b̂) + (τ − 2b̂)

]
+

µ

2
(2γ + τ)p[2(â− b̂) + τ

]
+ τp[− âτ − µτ

2
]

= â(τ − 1)p(τ − 1)

+
µ

2
(2γ + τ)p(2γ + τ)

− âτp+1 − µ

2
τp+1

= â
[
(τ − 1)p+1 − τp+1]− µ

2
[
τp+1 − (2γ + τ)p+1]
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Hence,

(τ I3 − S̃)p+1
23 =

â
[
(τ − 1)p+1 − τp+1]− µ

2

[
τp+1 − (2γ + τ)p+1]

2γ + 1
=

up+1

2γ + 1

Therefore, with the base case (p = 1) and the induction step (p + 1) for all entries
of (τ I3 − S̃)p the proof of Lemma B.7is finished.



CP R O O F O F T H E O R E M S 5.1 AND 5.2

c.1 proof of theorem 5.1

For the proof of Theorem 5.1 we first present some results that are necessary.
The following Lemma states the eigenvalues and eigenvectors of expected adjacency
matrices according to the Stochastic Block Model here considered.

Lemma C.1. Let C1, . . . , Ck be clusters of equal size |C| = n/k. LetW ∈ Rn×n be defined
as

W = (pin − pout)
k

∑
i=1

1Ci1
T
Ci
+ pout11T (C.1)

and let χ1, . . . , χk ∈ Rn be defined as

χ1 = 1, χr =
r

∑
j=1

1Cj − r1Cr (C.2)

for r = 2, . . . , k. Then, χ1, . . . , χk are orthogonal eigenvectors ofW , with eigenvalues

λ1 = |C|(pin + (k− 1)pout), λr = |C|(pin − pout) (C.3)

Proof. Please note that from the definition that the matrix W is equal to pin in the
block diagonal and pout elsewhere. We first consider the following matrix vector
products that can be easily verified:

W1 = |C|(pin + (k− 1)pout)1 (C.4)
W1Ci = |C|(pin1Ci + pout1Ci

) (C.5)

Moreover, we can see that

W
(

1Cj − 1Ci

)
= |C|

((
pin1Cj + pout1C j

)
−
(

pin1Ci + pout1C i

))
= |C|

(
pin

(
1Cj − 1Ci

)
+ pout

(
1C j
− 1C i

))
= |C|

(
pin

(
1Cj − 1Ci

)
− pout

(
1Ci − 1Cj

))
= |C|(pin − pout)

(
1Cj − 1Ci

)
119
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Now we show that χ2, . . . , χk are eigenvectors ofW .

Wχr =W
(

r

∑
j=1

1Cj − r1Cr

)

=W
r

∑
j=1

(1Cj − 1Cr)

=
r

∑
j=1
W
(

1Cj − 1Cr

)
=

r

∑
j=1
|C|(pin − pout)

(
1Cj − 1Cr

)
= |C|(pin − pout)

r

∑
j=1

(
1Cj − 1Cr

)
= |C|(pin − pout)

(
r

∑
j=1

1Cj − r1Cr

)
= |C|(pin − pout)χr

= λrχr

Furthermore, we can see that eigenvectors χ2, . . . , χk are orthogonal.
Let 2 ≤ r < s ≤ k, then

χT
r χs =

(
r

∑
j1=1

1Cj1
− r1Cr

)T ( s

∑
j2=1

1Cj2
− s1Cs

)

=
r

∑
j1=1

s

∑
j2=1

1T
Cj1

1Cj2
− s

r

∑
j1=1

1T
Cj1

1Cs − r
s

∑
j2=1

1T
Cj2

1Cr + rs1T
Cr

1Cs

=
r

∑
j1=1

s

∑
j2=1

1T
Cj1

1Cj2
− r

s

∑
j2=1

1T
Cj2

1Cr

=
r

∑
j1=1

s

∑
j2=1

1T
Cj1

1Cj2
− r1T

Cr
1Cr

=
r

∑
j1=1

s

∑
j2=1

(
1T
Cj1

1Cj2

)
− r|C|

=
r

∑
j1=1

(
1T
Cj1

1Cj1

)
− r|C|

=
r

∑
j1=1
|C| − r|C|

= r|C| − r|C|
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= 0

where in the third step we used that fact that 1T
Cr

1Cs = 0 as r < s, and 1T
Cj1

1Cs = 0 as
j1 < s. Finally, we can see that for 2 ≤ r ≤ k

χT
1 χr = 1T

(
r

∑
j=1

1Cj − r1Cr

)
=

r

∑
j=1

(
1T1Cj

)
− r1T1Cr = r|C| − r|C| = 0

and hence χ1, . . . , χk are orthogonal eigenvectors of the matrixW .

The following Lemma shows the eigenvectors and eigenvalues of the power mean
Laplacian in expectation under the considered Stochastic Block Model.

Lemma C.2. Let E(G) be the expected multilayer graph with T layers following the multi-

layer SBM with k classes C1, . . . , Ck of equal size and parameters
(

p(t)in , p(t)out

)T

t=1
. Then the

eigenvalues of the power mean Laplacian Lp are

λ1(Lp) = ε, λi(Lp) = mp(ρε), λj(Lp) = 1 + ε (C.6)

with eigenvectors

χ1 = 1, χi =
i

∑
j=1

1Cj − i1Ci

where (ρε)t = 1− (p(t)in − p(t)out)/(p(t)in + (k− 1)p(t)out) + ε, t = 1, . . . , T, i = 2, . . . , k, and
j = k + 1, . . . , |V|,

Proof. From Lemma C.1 we know that χ1, . . . , χk are eigenvectors ofW (1), . . . ,W (T).
In particular, we have seen that

λ
(t)
1 = |C|(p(t)in + (k− 1)p(t)out), λ

(t)
i = |C|(p(t)in − p(t)out)

for i = 2, . . . , k. Further, as matricesW (1), . . . ,W (T) share all their eigenvectors, they
are simultaneously diagonalizable, i.e. there exists a non-singular matrix Σ such that
Σ−1W (t)Σ = Λ(t), where Λ(t) are diagonal matrices Λ(t) = diag(λ(t)

1 , . . . , λ
(t)
k , 0, . . . , 0).

As we assume that all clusters are of the same size |C|, the expected layer graphs
are regular graphs with degrees d(1), . . . , d(T). Hence, the normalized Laplacians of
the expected layer graphs can be expressed as

L(t)sym = Σ(I − 1
d(t)

Λ(t))Σ−1
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Thus, we can observe that

λ
(t)
1 (L(t)sym) = 0, λ

(t)
i (L(t)sym) = 1− ρ(t), λ

(t)
j (L(t)sym) = 1,

for i = 2, . . . , k, and j = k + 1, . . . , |V|, where

ρ(t) = (p(t)in − p(t)out)/(p(t)in + (k− 1)p(t)out)

for t = 1, . . . , T. By obtaining the power mean Laplacian on diagonally shifted
matrices,

Lp = Mp(L(1)sym + εI, . . . ,L(1)sym + εI)

we have by Lemma 2.1

λ1(Lp) = mp(λ
(1)
1 + ε, . . . , λ

(T)
1 + ε) = ε

λi(Lp) = mp(1− ρ(1) + ε, . . . , 1− ρ(T) + ε) = mp(ρε)

λj(Lp) = mp(λ
(1)
j + ε, . . . , λ

(T)
j + ε) = 1 + ε

(C.7)

where (ρε)t = 1− (p(t)in − p(t)out)/(p(t)in + (k− 1)p(t)out) + ε, and t = 1, . . . , T, i = 2, . . . , k,
and j = k + 1, . . . , |V|,

The following Lemma describes the general form of the solution matrix

F = ( f (1), . . . , f (k))

where the columns of F are obtained from the following optimization problem

f (r) = arg min
f∈Rn

‖ f − CY(r)‖2 + λ f T Lp f

Observe that this setting contains as a particular case the problem described in
Eq. (5.1).

Lemma C.3. Let E(G) be the expected multilayer graph with T layers following the mul-

tilayer SBM with k classes C1, . . . , Ck of equal size and parameters
(

p(t)in , p(t)out

)T

t=1
. Let ρε

be defined as in Lemma C.2. Let n1, . . . , nk be the number of labeled nodes per class. Let
C ∈ Rn×n be a diagonal matrix with Cii = cr for vi ∈ Cr. Let l(vi) be the label of node vi,
i.e. l(vi) = r if and only if vi ∈ Cr. Let the solution matrix F = ( f (1), . . . , f (k)) where

f (r) = arg min
f∈Rn

‖ f − CY(r)‖2 + µ f TLp f

Then the solution matrix F is such that:
• If r < l(vi), then

f (r)i = cr
nr

n
α + crnrβ

(1− l(vi))
1∥∥∥χl(vi)

∥∥∥2 +
k

∑
j=l(vi)+1

1∥∥χj
∥∥2


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• If r > l(vi), then

f (r)i = cr
nr

n
α + crnrβ

(
(1− r)

1

‖χr‖2 +
k

∑
j=r+1

1∥∥χj
∥∥2

)

• If r = l(vi), then

f (r)i = cr
nr

n
α + crnrβ

(
(1− r)2 1

‖χr‖2 +
k

∑
j=r+1

1∥∥χj
∥∥2

)

where α = 1
1+µε −

1
1+µ(1+ε)

, and β = 1
1+µmp(ρε)

− 1
1+µ(1+ε)

.

Proof. Let U ∈ Rn×n be an orthonormal matrix such that U = (u1, u2, . . . , un), with
ui = χi/ ‖χi‖ for i = 1, . . . , k, where χ1, . . . , χk are eigenvectors of the power mean
Laplacian as described in Lemma C.2.

The power mean Laplacian Lp is a symmetric positive semidefinite matrix (see
Lemma C.2) and hence we can express Lp as UΛUT where Λ is a diagonal matrix
with entries Λii = λi(Lp), with i = 1, . . . , n. Hence, we can see that

(I + µLp)
−1 = (I + UΛUT)−1 = (U(I + Λ)UT)−1 = U(I + Λ)−1UT = UΩUT

where Ω is a diagonal matrix with entries Ωii =
1

1+µλi
, with i = 1, . . . , n.

From Lemma C.2 we know that λk+1 = · · · = λn = 1 + ε =: ω̂, and hence it
follows that Ωii =

1
1+µω̂ for i = k + 1, . . . , n. Moreover, we can express Ω as the sum

of two diagonal matrices, i.e.

Ω = ωI + Θ

where ω = 1
1+µω̂ and Θ = diag (Ω11 −ω, . . . , Ωkk −ω, 0, . . . , 0). Observe that Θ11 =

Ω11 −ω = 1
1+µε −

1
1+µ(1+ε)

=: α and Θjj = Ωjj −ω = 1
1+µmp(ρε)

− 1
1+µ(1+ε)

=: β, for
j = 2, . . . , k.
Recall that we are interested in the equation

F = (I + µLp)
−1CY = UΩUTCY ∈ Rn×k,

where each column of Y = [y(1), . . . , y(k)] is a class indicator of labeled nodes, i.e.

y(j)
i =

{
1 if l(vi) = j
0 else

(C.8)

Hence, each column of Y can be expressed as

y(j) = ∑
vi∈V|l(vi)=j

ei (C.9)
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where ei ∈ Rn and (ei)i = 1 and zero else. With this in mind, we now study the
matrix-vector product UΩUTei. Recall that UΘUT is a k-rank matrix. Hence we have

UΩUTei = U(ωI + Θ)UTei

= ωei + UΘUTei

= ωei +

(
k

∑
j=1

ΘjjujuT
j

)
ei

= ωei +

(
k

∑
j=1

1∥∥χj
∥∥2 Θjjχjχ

T
j

)
ei

= ωei +
1
n

Θ11χ1 +

(
k

∑
j=2

1∥∥χj
∥∥2 Θjjχjχ

T
j

)
ei

= ωei +
1
n

αχ1 + β

(
k

∑
j=2

1∥∥χj
∥∥2 χjχ

T
j

)
ei

where in the last steps we used the fact that χT
1 ei = 1Tei = 1, and define α = Θ11

and β = Θjj due to the fact that Θjj are all equal for j = 2, . . . , k.
The remaining terms χjχ

T
j ei depend on the cluster to which the corresponding

node vi belongs to.
We first study the vector product χT

r ei. Observe that

χT
r ei =

(
r

∑
j=1

1Cj − r1Cr

)T

ei =
r

∑
j=1

(
1T
Cj

ei

)
− r1T

Cr
ei

Recall that l(vi) is the label of node vi, i.e. l(vi) = r if and only if vi ∈ Cr. Since
the nodes are ordered by class, we have that l(vi) = r for i = (r− 1)|C|+ 1, . . . , r|C|.
Then, we have

r

∑
j=1

(
1T
Cj

ei

)
− r1T

Cr
ei =


0 for r < l(vi)

1− l(vi) for r = l(vi)

1 for r > l(vi)

(C.10)

Therefore,(
k

∑
j=2

1∥∥χj
∥∥2 χjχ

T
j

)
ei = (1− l(vi))

χl(vi)∥∥∥χl(vi)

∥∥∥2 +
k

∑
j=l(vi)+1

χj∥∥χj
∥∥2

All in all we have

UΩUTei = ωei +
1
n

αχ1 + β

(1− l(vi))
χl(vi)∥∥∥χl(vi)

∥∥∥2 +
k

∑
j=l(vi)+1

χj∥∥χj
∥∥2


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Moreover, the solution matrix F can now be described column-wise as follows

f (r) = (I + µLp)
−1Cy(r)

= cr

 ∑
vi∈V|l(vi)=r

UΩUTei


= cr

 ∑
vi∈V|l(vi)=r

ωei

+
1
n

crnrαχ1 + crnrβ

(1− l(vi))
χl(vi)∥∥∥χl(vi)

∥∥∥2 +
k

∑
j=l(vi)+1

χj∥∥χj
∥∥2


= ωcry(r) + crnr

(
1
n

αχ1 + β

(
(1− r)

χr

‖χr‖2 +
k

∑
j=r+1

χj∥∥χj
∥∥2

))

We now study the columns of matrix F. For this, observe that the ith entry of the
column corresponding to the class r, is obtained by f (r)i = 〈ei, f (r)〉, and hence have

〈ei, f (r)〉 =〈ei, ωcry(r) + crnr

(
1
n

αχ1 + β

(
(1− r)

χr

‖χr‖2 +
k

∑
j=r+1

χj∥∥χj
∥∥2

))
〉

=cr
nr

n
α + crnrβ〈ei,

(
(1− r)

χr

‖χr‖2 cr +
k

∑
j=r+1

χj∥∥χj
∥∥2

)
〉

where 〈ei, ωcry(r)〉 = 0 for unlabeled nodes. Having this, we now proceed to study
three different cases of the remaining inner product. We do this by considering the
following cases and making use of Eq. (C.10):

First case: f (r)i with r < l(vi). We first analyze the following term

〈ei,

(
(1− r)

χr

‖χr‖2 +
k

∑
j=r+1

χj∥∥χj
∥∥2

)
〉 = 〈ei, (1− r)

χr

‖χr‖2 〉+ 〈ei,
k

∑
j=r+1

χj∥∥χj
∥∥2 〉

(by first case of Eq.C.10) = 〈ei,
k

∑
j=r+1

χj∥∥χj
∥∥2 〉

(by cases of Eq.C.10) = (1− l(vi))
1∥∥∥χl(vi)

∥∥∥2 +
k

∑
j=l(vi)+1

1∥∥χj
∥∥2

Thus, we have

f (r)i = cr
nr

n
α + crnrβ

(1− l(vi))
1∥∥∥χl(vi)

∥∥∥2 +
k

∑
j=l(vi)+1

1∥∥χj
∥∥2


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Second case: f (r)i with r > l(vi). We first analyze the following term

〈ei,

(
(1− r)

χr

‖χr‖2 +
k

∑
j=r+1

χj∥∥χj
∥∥2

)
〉 = 〈ei, (1− r)

χr

‖χr‖2 〉+ 〈ei,
k

∑
j=r+1

χj∥∥χj
∥∥2 〉

(by third case of Eq.C.10) = (1− r)
1

‖χr‖2 +
k

∑
j=r+1

1∥∥χj
∥∥2

Thus, we have

f (r)i = cr
nr

n
α + crnrβ

(
(1− r)

1

‖χr‖2 +
k

∑
j=r+1

1∥∥χj
∥∥2

)

Third case: f (r)i with r = l(vi). We first analyze the following term

〈ei,

(
(1− r)

χr

‖χr‖2 +
k

∑
j=r+1

χj∥∥χj
∥∥2

)
〉 = 〈ei, (1− r)

χr

‖χr‖2 〉+ 〈ei,
k

∑
j=r+1

χj∥∥χj
∥∥2 〉

(by second case of Eq.C.10) = (1− r)2 1

‖χr‖2 +
k

∑
j=r+1

1∥∥χj
∥∥2

Thus, we have

f (r)i = cr
nr

n
α + crnrβ

(
(1− r)2 1

‖χr‖2 +
k

∑
j=r+1

1∥∥χj
∥∥2

)

These three cases are the desired conditions.

We now finally provide the proof for Theorem 5.1.

Proof of Theorem 5.1. The proof of this theorem builds on top of Lemma C.3, where
the entries of the solution matrix F = ( f (1), . . . , f (k)) are described, where

f (r) = arg min
f∈Rn

‖ f − CY(r)‖2 + µ f TLp f

Let l(vi) be the label of node vi, i.e. l(vi) = r if and only if vi ∈ Cr. According to
Lemma C.3 the entries of matrix F for unlabeled nodes are such that
• If r < l(vi), then

f (r)i = cr
nr

n
α + crnrβ

(1− l(vi))
1∥∥∥χl(vi)

∥∥∥2 +
k

∑
j=l(vi)+1

1∥∥χj
∥∥2


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• If r > l(vi), then

f (r)i = cr
nr

n
α + crnrβ

(
(1− r)

1

‖χr‖2 +
k

∑
j=r+1

1∥∥χj
∥∥2

)

• If r = l(vi), then

f (r)i = cr
nr

n
α + crnrβ

(
(1− r)2 1

‖χr‖2 +
k

∑
j=r+1

1∥∥χj
∥∥2

)

where α = 1
1+µε −

1
1+µ(1+ε)

, and β = 1
1+µmp(ρε)

− 1
1+µ(1+ε)

.
Observe that the case here considered corresponds to the case where the amount

of labeled data per class is the same, i.e. n1 = · · · = nk, and where the matrix C is
the identity, i.e. c1 = · · · cr = 1.

Moreover, the estimated label assignment for unlabeled nodes goes by the follow-
ing rule

l̂(vi) = arg max{ f (1)i , . . . , f (k)i }

Hence, we need to find conditions so that the following inequality holds

f (j)
i < f (l(vi))

i ∀ j 6= l(vi)

Hence, we consider the following two cases:
Case 1: f (r)i < f (l(vi))

i for r > l(vi).
Let r∗ = l(vi), and r = r∗ + ∆. Then, we have

f (r)i < f (l(vi))
i ⇔

f (r)i < f (r
∗)

i ⇔

β

(
(1− r)

1

‖χr‖2 +
k

∑
j=r+1

1∥∥χj
∥∥2

)
< β

(
(1− r∗)2 1

‖χr∗‖2 +
k

∑
j=r∗+1

1∥∥χj
∥∥2

)
⇔

0 < β

(
(1− r∗)2 1

‖χr∗‖2 − (1− r)
1

‖χr‖2 +
k

∑
j=r∗+1

1∥∥χj
∥∥2 −

k

∑
j=r+1

1∥∥χj
∥∥2

)
⇔

0 < β

(
(1− r∗)2 1

‖χr∗‖2 + (r− 1)
1

‖χr‖2 +
k

∑
j=r∗+1

1∥∥χj
∥∥2 −

k

∑
j=r∗+∆+1

1∥∥χj
∥∥2

)
⇔

0 < β

(
(1− r∗)2 1

‖χr∗‖2 + (r− 1)
1

‖χr‖2 +
r∗+∆

∑
j=r∗+1

1∥∥χj
∥∥2

)
⇔

0 < β
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Case 2: f (r)i < f (l(vi))
i for r < l(vi).

Let r∗ = l(vi), and r∗ = r + ∆. Then, we have

f (r)i < f (l(vi))
i ⇔

f (r)i < f (r
∗)

i ⇔

β

(
(1− r∗)

1

‖χr∗‖2 +
k

∑
j=r∗+1

1∥∥χj
∥∥2

)
< β

(
(1− r∗)2 1

‖χr∗‖2 +
k

∑
j=r∗+1

1∥∥χj
∥∥2

)
⇔

0 < β

(
(1− r∗)2 1

‖χr∗‖2 − (1− r∗)
1

‖χr∗‖2

)

0 < β

(
(1− r∗)2 1

‖χr∗‖2 + (r∗ − 1)
1

‖χr∗‖2

)
⇔

0 < β

All in all, from the two considered cases we can see that

f (j)
i < f (l(vi))

i ∀ j 6= l(vi)⇐⇒ 0 < β

In fact,

0 < β⇔

0 <
1

1 + µmp(ρε)
− 1

1 + µ(1 + ε)
⇔

1
1 + µ(1 + ε)

<
1

1 + µmp(ρε)
⇔

1 + µmp(ρε) < 1 + µ(1 + ε)⇔
mp(ρε) < 1 + ε

which is the desired condition.

c.2 proof of theorem 5.2

We first give a general version of Theorem 5.2.

Theorem C.1. Let E(G) be the expected multilayer graph with T layers following the

multilayer SBM with two classes C1, C2 of equal size and parameters
(

p(t)in , p(t)out

)T

t=1
. Let

n1, n2 nodes from classes C1, C2 be labeled, respectively. Let µ = 1. Then, a zero test
classification error is achieved if and only if

mp(ρε) < min
{
(n1 + n2)((1 + ε)2 + 1)− 2n2

2n2 + (n1 + n2)ε
,
(n1 + n2)((1 + ε)2 + 1)− 2n1

2n1 + (n1 + n2)ε

}
where (ρε)l = 1− (p(l)in − p(l)out)/(p(l)in + (k− 1)p(l)out) + ε, and l = 1, . . . , T.
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Proof. The proof of this theorem builds on top of Lemma C.3, where the entries of
the solution matrix F = ( f (1), . . . , f (k)) are described, where

f (r) = arg min
f∈Rn

‖ f − CY(r)‖2 + µ f TLp f

Let l(vi) be the label of node vi, i.e. l(vi) = r if and only if vi ∈ Cr. According to
Lemma C.3 the entries of matrix F for unlabeled nodes are such that
• If r < l(vi), then

f (r)i = cr
nr

n
α + crnrβ

(1− l(vi))
1∥∥∥χl(vi)

∥∥∥2 +
k

∑
j=l(vi)+1

1∥∥χj
∥∥2


• If r > l(vi), then

f (r)i = cr
nr

n
α + crnrβ

(
(1− r)

1

‖χr‖2 +
k

∑
j=r+1

1∥∥χj
∥∥2

)

• If r = l(vi), then

f (r)i = cr
nr

n
α + crnrβ

(
(1− r)2 1

‖χr‖2 +
k

∑
j=r+1

1∥∥χj
∥∥2

)

where α = 1
1+µε −

1
1+µ(1+ε)

, and β = 1
1+µmp(ρε)

− 1
1+µ(1+ε)

.
Observe that the case here considered corresponds to the case with two classes,

i.e. k = 2 with equal size classes C1 and C2 where the amount of labeled data per
class is n1 and n2, respectively, with the matrix C as the identity, i.e. c1 = c2 = 1, and
regularization parameter µ = 1.

Moreover, the estimated label assignment for unlabeled nodes goes by the follow-
ing rule

l̂(vi) = arg max{ f (1)i , f (2)i }

Hence, we need to find conditions so that the following inequality holds

f (j)
i < f (l(vi))

i ∀ j 6= l(vi)

Let l(vi) = 1⇔ vi ∈ C1, and l(vi) = 2⇔ vi ∈ C2. A quick computation following
Lemma C.3 yields

• f (1)i = n1
n α + n1β( 1

‖χ2‖2 ) for vi ∈ C1, i.e. l(vi) = 1

• f (1)i = n1
n α− n1β( 1

‖χ2‖2 ) for vi ∈ C2, i.e. l(vi) = 2
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• f (2)i = n2
n α− n2β( 1

‖χ2‖2 ) for vi ∈ C1, i.e. l(vi) = 1

• f (2)i = n2
n α + n2β( 1

‖χ2‖2 ) for vi ∈ C2, i.e. l(vi) = 2

Observing that ‖χ2‖2 = n these conditions can be rephrased as follows

f (1) =
n1

n
(
(α + β) 1C + (α− β) 1C

)
f (2) =

n2

n
(
(α− β) 1C + (α + β) 1C

)
Hence, the conditions for correct label assignment of unlabeled nodes are

n1 (α + β) > n2 (α− β) and n2 (α + β) > n1 (α− β)

Let Ω11 = 1
1+ε , Ω22 = 1

1+mp(ρε)
, and ω = 1

1+(1+ε)
. Then, α = Ω11 − ω, and β =

Ω22 −ω.
By studying the first condition we observe

n1 (α + β) > n2 (α− β)⇔
n1 (Ω11 −ω + Ω22 −ω) > n2 (Ω11 −ω− (Ω22 −ω))⇔

n1 (Ω11 + Ω22 − 2ω) > n2(Ω11 −Ω22)⇔
(n1 − n2)Ω11 + (n1 + n2)Ω22 > 2n1ω ⇔

Ω22 >
1

n1 + n2
(2n1ω− (n1 − n2)Ω11)⇔

1
1 + mp(ρε)

>
1

n1 + n2

(
2n1

1
1 + (1 + ε)

− (n1 − n2)Ω11

)
⇔

1
1 + mp(ρε)

>
1

n1 + n2

(
2n1

1
2 + ε

− (n1 − n2)
1

1 + ε

)
⇔

1
1 + mp(ρε)

>
1

n1 + n2

(
2n2 + (n1 + n2)ε

(2 + ε)(1 + ε)

)
⇔

1 + mp(ρε) < (n1 + n2)

(
(2 + ε)(1 + ε)

2n2 + (n1 + n2)ε

)
⇔

mp(ρε) < (n1 + n2)

(
(2 + ε)(1 + ε)

2n2 + (n1 + n2)ε

)
− 1⇔

mp(ρε) <
(n1 + n2)(2 + ε)(1 + ε)− (2n2 + (n1 + n2)ε)

2n2 + (n1 + n2)ε
⇔

mp(ρε) <
(n1 + n2)((2 + ε)(1 + ε)− ε)− 2n2

2n2 + (n1 + n2)ε
⇔

mp(ρε) <
(n1 + n2)((1 + ε)2 + 1)− 2n2

2n2 + (n1 + n2)ε
⇔
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The corresponding condition for C2 can be obtained in a similar way, yielding

mp(ρε) <
(n1 + n2)((1 + ε)2 + 1)− 2n1

2n1 + (n1 + n2)ε

Hence, both conditions hold if and only if

mp(ρε) = mp(ρε) < min
{
(n1 + n2)((1 + ε)2 + 1)− 2n2

2n2 + (n1 + n2)ε
,
(n1 + n2)((1 + ε)2 + 1)− 2n1

2n1 + (n1 + n2)ε

}

We are now ready to give the proof of Theorem 5.2.

Proof of Theorem 5.2. We first analyze the first condition of the right hand side of

Theorem C.1. Let g(ε) = (n1+n2)((1+ε)2+1)−2n2
2n2+(n1+n2)ε

. Then,

g(0) =
2(n1 + n2)− 2n2

2n2
=

n1

n2

Moreover, it is clear that g is monotone, as it is quadratic on ε on the numerator and
linear on the denominator, and hence g(0) < g(ε).

A similar procedure with the second condition of the right hand side of Theo-
rem C.1 leads to the condition n2

n1
, leading to the desired result.
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