
Counting Patterns
in Strings and Graphs

A dissertation submitted towards the degree
Doctor of Natural Sciences

of the Faculty of Mathematics and Computer Science
of Saarland University

Philip Wellnitz

Saarbrücken / 2021

Colloquium Information

Date December 2, 2021; 15:00 cet

Dean Prof. Dr. Thomas Schuster

Chairman Prof. Dr. Markus Bläser

Reporters Prof. Dr. Dr. h.c. mult. Kurt Mehlhorn

Prof. Dr. Gad M. Landau

Prof. Dr. Martin Grohe

Prof. Dr. Karl Bringmann

Academic Assistant Dr. Roohani Sharma

Acknowledgments

First, I am deeply indebted to Kurt Mehlhorn for both funding
and supervising me. In particular, I felt honored to hear both his
words of encouragement, and even more so his words of wisdom.

Second, I want to thank Karl Bringmann, for introducing me
to the field of Fine-Grained Complexity Theory and to the problem of
Approximate String Matching, as well as his supervision. Further, I
want to thank him for the fruitful collaborations [18, 20, 19, 21] and
the many things I learned during them.

Third, I am extremely grateful to Marc Roth for introducing
me to the field of Parameterized (Counting) Complexity Theory and
for the fruitful collaborations [38, 101, 40, 102, 103]. Even more I
want to extend my gratitude for his never ending enthusiasm and
motivation that helped me go on at times, and for his patience to
clear up some of my confusions at other times.

Fourth, I wish to extend my sincere thanks to Tomasz Kociu-
maka for hosting me for a very productive two-week-stay at Bar-
IlanUniversity and for the fruitful and inspiring collaboration [26].

Fifth, I am very grateful to Martin Grohe and Gad M. Landau
for dedicating their time to read and assess this thesis.

Additionally, I want to thank the other co-authors of the afore-
mentioned collaborations—Panagiotis Charalampopoulos, Hol-
ger Dell, Julian Dörfler, Nick Fischer, Danny Hermelin, Marvin
Künnemann, Dvir Shabtay, and Johannes Schmitt—for the count-
less tricks and techniques that I learned from them. Also, I want to
thank André, Attila, Bhaskar, Edgar, Kai, and Leo, for interest-
ing, inspiring, and insightful discussions over the years.

Finally, this thesis would not exist without my trusty LuaLATEX
compiler, that almost never let me down, no matter the smashing,
breaking, and all the other cruelties it had to cope with.

Abriss

Wir untersuchen Probleme im Zusammenhang mit dem Finden und Zäh-
len von Mustern in Strings und Graphen.

Im Stringbereich ist die Aufgabe, alle Teilstrings eines Strings 𝑇 zu
bestimmen, die eineHamming- (oder Editier-)Distanz von höchstens 𝑘 zu
einemPattern𝑃 haben. Unter anderem sindwir amvoll-komprimierten
Setting interessiert, in dem sowohl 𝑇, als auch 𝑃 in komprimierter Form
gegeben sind. Für beide Abstandsbegriffe entwickeln wir die ersten Algo-
rithmenmit einer (fast) linearen Laufzeit in der Größe der komprimierten
Darstellungen. Die Algorithmen nutzen neue strukturelle Einsichten in
die Lösungsstruktur der Probleme.

Im Graphenbereich betrachten wir Probleme im Zusammenhang mit
dem Zählen von Homomorphismen zwischen Graphen. Im Besonderen
betrachten wir das Problem #IndSub(𝛷), bei dem alle induzierten Sub-
graphen mit 𝑘 Knoten zu zählen sind, die die Eigenschaft 𝛷 haben. Basie-
rend auf einer Theorie von Lovász, Curticapean, Dell, and Marx drücken
wir #IndSub(𝛷) als Linearkombination von Homomorphismen-Zahlen
aus um #W[1]-Härte und fast scharfe konditionale untere Laufzeitschran-
ken zu erhalten für 𝛷, die monoton sind oder nur auf der Kantenanzahl
der Graphen basieren. Somit beweisen wir eine Vermutung von Jerrum
and Meeks.

Weiterhin beschäftigen wir uns mit der Komplexität des Problems
#Hom(ℋ → 𝒢) für Graphklassen ℋ und 𝒢. Im Besonderen zeigen wir,
dass es für jedes Problem 𝑃 in #W[1] Graphklassen ℋ𝑃 und 𝒢𝑃 gibt,
sodass 𝑃 äquivalent zu #Hom(ℋ𝑃 → 𝒢𝑃) ist.

Summary

We study problems related to finding and counting patterns in
strings and graphs.

In the string-regime, we are interested in counting how many
substring of a text 𝑇 are at Hamming (or edit) distance at most 𝑘 to
a pattern 𝑃. Among others, we are interested in the fully-compressed
setting, where both 𝑇 and 𝑃 are given in a compressed representa-
tion. For both distance measures, we give the first algorithm that
runs in (almost) linear time in the size of the compressed repre-
sentations. We obtain the algorithms by new and tight structural
insights into the solution structure of the problems.

In the graph-regime, we study problems related to counting ho-
momorphisms between graphs. In particular, we study the param-
eterized complexity of the problem #IndSub(𝛷), where we are to
count all 𝑘-vertex induced subgraphs of a graph that satisfy the
property 𝛷. Based on a theory of Lovász, Curticapean et al., we
express #IndSub(𝛷) as a linear combination of graph homomor-
phism numbers to obtain #W[1]-hardness and almost tight con-
ditional lower bounds for properties 𝛷 that are monotone or that
depend only on the number of edges of a graph. Thereby, we prove
a conjecture by Jerrum and Meeks.

In addition, we investigate the parameterized complexity of the
problem #Hom(ℋ → 𝒢) for graph classes ℋ and 𝒢. In particular,
we show that for any problem𝑃 in the class #W[1], there are classes
ℋ𝑃 and 𝒢𝑃 such that 𝑃 is equivalent to #Hom(ℋ𝑃 → 𝒢𝑃).

Introduction to this Thesis

This thesis consists of two parts: Algorithms for counting patterns
in strings and lower bounds for counting patterns in graphs. Due
to limits in current technology, one part has to appear before the
other—this is by no means a statement regarding neither quantity
nor quality of the contained content. In both measures, the au-
thor considers both parts to be on equal footing with each other.
While both parts may be similar in name, they nevertheless are
completely independent of each other. Both parts assume as little
prior knowledge as possible to accommodate readers familiar only
with concepts from at most one of the parts.

Collaborations and Publications

This thesis is based on the conference publications [26, 102, 101],
where the publication [26] subsumes and extends the author’s ear-
lier publication [20]. All of the aforementioned publications are
the result of fruitful collaborations of the author with many re-
searchers. An overview of all chapters of this thesis follows that
lists the details and extent of the collaborations and the correspond-
ing publications. The list doubles as a quick overview over the nov-
elty of the content of a chapter: If a chapter contains mostly known
results (not by the author), the chapter is marked with a White
Square; a chapter is marked with a Pink Square if the contained
results are obtained via easy modifications of known results (not
by the author); and a chapter is marked with a Yellow Square
if the contained results are to be considered as the main contribu-
tion of this thesis. The same color scheme has been adopted for
theorems and other statements.

Part 1. Counting Patterns in Strings
1 This chapter introduces basic terminology used in this part.
2 This chapter introduces the abstract PILLAR model that en-

capsulates common operations on “string-like” objects such
as computing longest common prefixes. While the PILLAR

model was introduced by Panagiotis Charalampopoulos, To-
masz Kociumaka, and the author in [26], the underlying re-
sults on “string-like” objectswere known beforehand and are
in particular not the author’s work.

3 This chapter provides new structural insights into the solu-
tion structure of Pattern Matching with Mismatches.
A weaker version of the main structural result was first ob-
tained by Karl Bringmann, Marvin Künnemann, and the au-
thor in [20], from which select lemmas were included for
technical reasons. The improved (and optimal) structural
result was shown by Panagiotis Charalampopoulos, Tomasz
Kociumaka, and the author in [26]. All authors contributed
equally.

4 This chapter implements the insights from 3 into a PILLAR

model algorithm. The results are joint work by Panagiotis
Charalampopoulos, TomaszKociumaka, and the author [26].
All authors contributed equally.

5 In this chapter, the structural result from 3 is generalized to
Pattern Matching with Edits. The results are joint work by
Panagiotis Charalampopoulos, Tomasz Kociumaka, and the
author [26]. All authors contributed equally.

6 This chapter implements the insights from 5 into a PILLAR

model algorithm. The results are joint work by Panagiotis
Charalampopoulos, TomaszKociumaka, and the author [26].
All authors contributed equally.

Part 2. Counting Patterns in Graphs
7 This chapter introduces graph theoretic concepts used in this

part.
8 This chapter introduces parameterized (counting) complex-

ity theoretic concepts used in this part.

9 This chapter presents first, easy applications of the concepts
introduced in 7 and 8 . The results are joint work of Marc
Roth and the author [101]. All authors contributed equally.

10 This chapter presents new hardness results for the problem
#IndSub(𝛷) for (large) classes of properties 𝛷. The results
are joint work of Marc Roth, Johannes Schmitt, and the au-
thor [102]. All authors contributed equally.

11 This chapter presents a proof that any problem in the com-
plexity class #W[1] is equivalent to a problem of counting
homomorphisms. The result is joint work of Marc Roth and
the author [101]. All authors contributed equally.

All figures in this thesis have been produced by the author. Fig-
ures also appearing in a conference publication of the author are
indicated with a Blue Turnip that includes a reference to said
publication. In that case, the figure has been revised by the author
(multiple times) based on the valuable feedback of the correspond-
ing co-authors and applicable reviewer comments.

Finally, note that this thesis—apart from the cited results—is
not based on the authors other works [38, 40, 21, 19, 103] that were
published during their Ph.D.

Contents

I Counting Patterns in Strings

Introduction to Part I ⋅ 3

1 Strings, Approximate String Matching ⋅ 11

Strings, Fragments, and Periods ⋅ 11
String Measures and Approximate String Matching ⋅ 13

2 The PILLARModel ⋅ 17

Basic Building Blocks of the PILLAR Model ⋅ 17
PILLAR Model Implementation: Standard Setting ⋅ 20
PILLAR Model Implementation: Fully-Compressed Setting ⋅ 21
PILLAR Model Implementation: Dynamic Setting ⋅ 24

3 Pattern Matching with Mismatches: Structural Insights ⋅ 27

Characterization of the Periodic Case ⋅ 27
Characterization of the Non-Periodic Case ⋅ 35

4 Pattern Matching with Mismatches: PILLAR Algorithm ⋅ 43

Pattern Matching with Mismatches: Extra PILLAR Tools ⋅ 43
Computing Structure in the Pattern ⋅ 45
Computing Occurrences in the Periodic Case ⋅ 48
Computing Occurrences in the Non-Periodic Case ⋅ 54
The Combined Algorithms ⋅ 59

5 Pattern Matching with Edits: Structural Insights ⋅ 63

Characterization of the Periodic Case ⋅ 63
Characterization of the Non-Periodic Case ⋅ 87

6 Pattern Matching with Edits: PILLAR Algorithm ⋅ 95

Pattern Matching with Edits: Extra PILLAR Tools ⋅ 95
Computing Structure in the Pattern ⋅ 99
Computing Occurrences in the Periodic Case ⋅ 106
Computing Occurrences in the Non-Periodic Case ⋅ 121
The Combined Algorithms ⋅ 125

Conclusions and Open Questions ⋅ 129

II Counting Patterns in Graphs

Introduction to Part II ⋅ 135

7 Graphs, Graph Mappings, Graph Properties ⋅ 143

Graphs and Mappings between Graphs ⋅ 143
Common Graph Parameters ⋅ 147
Operations on Graphs ⋅ 151
Graph Classes and Graph Properties ⋅ 159
The Space of Graph Motif Parameters ⋅ 161

8 Parameterized Counting Problems ⋅ 167

Parameterized (Promise) Problems ⋅ 167
Reductions and (Conditional) Hardness ⋅ 170
The Complexity of Graph Motif Parameters ⋅ 184

9 Counting in F-colorable or Kőnig Graphs ⋅ 187

Counting in F-colorable Graphs ⋅ 187
Counting Homomorphisms to Kőnig graphs ⋅ 192

10 Homomorphism Vectors of Graph Properties ⋅ 205

𝑓-Vectors and ℎ-Vectors ⋅ 205
Homomorphism Coefficients via 𝑓-Vectors ⋅ 207
Hardness of #IndSub by Hamming Weight of 𝑓-Vectors ⋅ 212
Refined Lower Bounds and Clique-Minors ⋅ 216

11 Counting and Finding Homomorphisms is Universal ⋅ 223

Counting Homomorphisms Between Kneser Graphs ⋅ 225
Encoding Problems into Graphs Classes ⋅ 227
The Main Reductions ⋅ 232

Conclusions and Open Questions ⋅ 237

Bibliography ⋅ 239
Index ⋅ 254

List of Figures and Algorithms

Fig. 1.1 ⋅ 26 Examples Illustrating the Tightness of Main Theorems 3 and 4 ⋅ 8

Fig. 2.1 ⋅ 26 An Example for an slp ⋅ 22

Fig. 3.1 ⋅ Lemma 3.3 Illustrated ⋅ 28

Fig. 3.2 ⋅ Claim 3.4 Illustrated ⋅ 30

Alg. 3.3 ⋅ A Constructive Proof of Lemma 3.6 ⋅ 36

Alg. 4.1 ⋅ A Generator for the Set Mis(𝑆, 𝑄∗) ⋅ 44

Alg. 4.2 ⋅ A PILLAR Model Implementation of Algorithm 3.3 ⋅ 46

Alg. 4.3 ⋅ Computing a Fragment Containing All 𝑘-Mismatch Occurrences ⋅ 50

Alg. 4.4 ⋅ A PILLAR Algorithm for Lemma 3.3 ⋅ 52

Alg. 4.5 ⋅ A PILLAR Model Algorithm for Lemma 3.8 ⋅ 55

Alg. 4.6 ⋅ A PILLAR Model Algorithm for Lemma 3.11 ⋅ 56

Alg. 4.7 ⋅ A PILLAR Model Algorithm for Theorem 3.1 ⋅ 58

Alg. 5.1 ⋅ A Constructive Proof of Lemma 5.19 ⋅ 88

Alg. 6.1 ⋅ An Analogue of Algorithm 4.1 for the Edit Distance ⋅ 96

Alg. 6.2 ⋅ A PILLAR Model Implementation of Algorithm 5.1 ⋅ 102

Alg. 6.3 ⋅ Finding a Witness for 𝛿𝐸(𝑆, ∗𝑄∗) ≤ 𝑘 ⋅ 106

Alg. 6.4 ⋅ Computing a Fragment Containing All 𝑘-Error Occurrences ⋅ 110

Alg. 6.5 ⋅ Computing Locked Fragments in a String 𝑆 ⋅ 114

Alg. 6.6 ⋅ Computing 𝑘-Error Occurrences using Locked Regions ⋅ 118

Alg. 6.7 ⋅ A PILLAR Model Algorithm for Lemma 5.21 ⋅ 122

Alg. 6.8 ⋅ A PILLAR Model Algorithm for Lemma 5.24 ⋅ 124

Alg. 6.9 ⋅ Computing 𝑘-Error Occurrences in the PILLAR Model ⋅ 126

Fig. 7.1 ⋅ The Sets Hom(→), Emb(→), and StrEmb(→) ⋅ 144

Fig. 7.2 ⋅ The Sets Aut(), Sub(→), and IndSub(→) ⋅ 146

Fig. 7.3 ⋅ The Graphs 𝐾7 , 𝑃7 , 𝐶7 , and Tree Decompositions Thereof ⋅ 148

Fig. 7.4 ⋅ Operations on Graphs ⋅ 152

Fig. 7.5 ⋅ The (Isomorphism Classes of) Quotient Graphs of ⋅ 154

Fig. 7.6 ⋅ 101 Examples of Line Graphs ⋅ 156

Fig. 7.7 ⋅ Graph Labelings and Graph Properties ⋅ 158

Fig. 8.1 ⋅ Lemma 8.16 Illustrated ⋅ 178

Fig. 9.1 ⋅ 101 Overview of the Reduction from Lemma 9.14 ⋅ 198

Fig. 11.1 ⋅ 101 Examples for Kneser Graphs ⋅ 224

Fig. 11.2 ⋅ 101 Examples of Strings and their Encoding into a Graph ⋅ 226

Fig. 11.3 ⋅ 101 Lemma 11.6 Illustrated ⋅ 228

Part I

Counting Patterns in Strings

1 2 3 4 5 6

Introduction to Part I

In the first part of this thesis, we focus on counting patterns in strings.
In particular, we are interested in counting approximate occurrences
of a pattern in a text—Think of counting or finding dna or rna
sequences in (large) protein databases (possibly under so-called
“sequencing-errors”) [see 108, 91], common search functionality
on webpages that also accounts for spelling mistakes.1 Consult 1. Think of a certain

large online
encyclopedia as a
concrete example.

also the very good overview in [90] for a more detailed discussion
about the plethora of applications.

As an illustrative example, say you are interested in reading the
latest news about turnips—In your daily routine you check the
local newspaper for any news on turnips. Alas, sometimes youmiss
very interesting articles, because they are about turmips or tunips
instead—unacceptable.

Thus, instead of searching for exact occurrences, we are satisfied
with finding (or counting) substrings of the text𝑇, that are close to a
given pattern 𝑃. Many differentmeasures of “closeness” have been
studied (again, see [90] for an overview)—we focus on two very
prominent measures, theHamming distance and the edit distance. In
particular, we are interested in algorithms for very large strings or
data sets—just as dna sequences or (collections of) largewebpages.
To obtain said algorithms, we take a closer look at the rich solution
structure of the approximate pattern matching problems.

Highlights from Approximate Pattern Matching

Naturally, many (classical) results are known about approximate
pattern matching problems. We give a short summary of the most
prominent results next. To that and, write 𝑛 for the length of the
text 𝑇 and 𝑚 for the length of the pattern 𝑃.

4 introduction to part i

Pattern Matching with Mismatches

First, we consider the Hamming distance as a similarity measure,
that is, the number of positions where two strings differ. In our ex-
ample, wehave 𝛿𝐻(TURNIP, TURMIP) = 1 and 𝛿𝐻(TURNIP, TUNIP) = 4.
Our main question then becomes which substrings of 𝑇 are at Ham-
ming distance at most 𝑘 to𝑃?—We call this problem thePatternMatch-
ing with Mismatches problem.

Already in the late 1980s, Abrahamson [2] andKosaraju [74] in-
dependently gave an 𝑂(𝑛√𝑚 log𝑚)-time algorithm for computing
theHamming distance of 𝑃 and all length-𝑚 substrings of 𝑇. While
their algorithms can indeed be used to solve patternmatchingwith
mismatches, the first algorithm to be tailored to this problem was
given by Landau and Vishkin [77]: Based on so-called “kanga-
roo jumping”, they obtained an 𝑂(𝑘𝑛)-time2 algorithm—a faster2. Recall that 𝑘 is the

number of allowed
mismatches.

algorithm even for moderately large 𝑘. Amir, Lewenstein, and Po-
rat [5] improved Landau and Vishkin’s algorithm to obtain both
an 𝑂(𝑛√𝑘log 𝑘)-time algorithm and an

∽
𝑂(𝑛 + 𝑘3𝑛/𝑚)-time algo-

rithm; the latter algorithm was then improved further by Clifford,
Fontaine, Porat, Sach, and Starikovskaya [32] to obtain an

∽
𝑂(𝑛 +

𝑘2𝑛/𝑚)-time algorithm. Finally, Gawrychowski and Uznański [51]
bridged the running times of both algorithms with a smooth trade-
off by designing an

∽
𝑂(𝑛 + 𝑘𝑛/√𝑚)-time algorithm. Very recently,

Chan, Golan, Kociumaka, Kopelowitz, and Porat [23] reduced the
polylog𝑛 factors in the latter solution at the cost of (Monte-Carlo)
randomization, achieving a running time of

𝑂(𝑛 +min(𝑘2𝑛/𝑚, 𝑘𝑛√log𝑚/√𝑚).

Further, Gawrychowski and Uznański [51] demonstrated that a
significantly faster “combinatorial” algorithm would have (unex-
pected) consequences for the complexity of combinatorial matrix
multiplication.

We can thus conclude that pattern matching with mismatches
on strings is essentially fully understood. Nevertheless, for other
settings (that is, when the text and the pattern are not given as ordi-

introduction to part i 5

nary strings) a similar understanding, in terms of both upper and
lower bounds, is yet to be obtained. One of the main contributions
of this thesis is to improve the known upper bounds for two such
settings, obtaining algorithmswith running times analogous to the
algorithm of Clifford et al. [32].

Pattern Matching with Errors

As is evident from the example, the Hamming distance—while
easy to compute—is onlymoderately useful for counter-acting sim-
ple spelling mistakes, such as missing (or duplicate) characters.
Hence, we also consider the edit distance (also called Levenshtein
distance) as a similarity measure, that is, the number of insertions,
deletions, or replacements necessary to transform one string to an-
other. Returning to our example, we have 𝛿𝐸(TURNIP, TURMIP) = 1
(replace Nwith M) and 𝛿𝐸(TURNIP, TUNIP) = 1 (delete R). As before,
our main question then becomes which substrings of 𝑇 are at edit dis-
tance at most 𝑘 to 𝑃?—We call this problem the PatternMatching with
Edits (or Errors) problem.

Again, there is a by now classical 𝑂(𝑘𝑛)-time algorithm by Lan-
dau and Vishkin [78] that; a line of research [105, 33] improved
this running time (for some range of parameters) to 𝑂(𝑛+ 𝑘4𝑛/𝑚).
Froma lower-boundperspective, the classical𝑂(𝑛2)-time dynamic
programming-based algorithm for computing the edit distance of
two strings of size 𝑂(𝑛) is essentially optimal: Backurs and In-
dyk [7] recently proved that a significantly faster algorithmwould
translate to a major breakthrough for the Satisfiability problem.
For the patternmatchingwith edits problem, this means that there
is no hope for obtaining an algorithm that is significantly faster
than 𝑂(𝑘𝑛) or 𝑂(𝑛 + 𝑘2𝑛/𝑚); however, apart from that “trivial”
lower bound and the 20-year-old conjecture of Cole and Hariha-
ran [33] that an 𝑂(𝑛 + 𝑘3𝑛/𝑚) algorithm should be possible, nothing
is known that would close this gap. While we do not manage to
decrease the size of this gap, we do believe that the structural in-
sights that we obtain for patternmatchingwith editsmay be useful
for doing so. What we do manage, however, is to significantly im-

6 introduction to part i

prove the running time of the known algorithms in two settings
where 𝑇 and 𝑃 are not given as ordinary strings, thereby obtaining
running times similar to the running time of the algorithm of Cole
and Hariharan [33].

Results in the Fully-Compressed Setting

Recall the example of finding (parts of) dna sequences in each
other. In this case, both text and pattern may be huge—in partic-
ular, we would greatly appreciate if we could work on compressed
strings instead.3

3. While dna
sequences are not

really well
compressible, any

speed-ups are
welcome in that

setting.

Hence, the first setting that we consider is the so-called fully-
compressed setting; specifically, when both the text𝑇 and the pattern
𝑃 are given as straight-line programs (slp), that is as context-free
grammars that encode exactly one string.4 Our goal is to solve the4. We work with slps,

as they are equivalent
(up to logarithmic

factors) to
widely-used
compression

schemes [104, 70, 69]
such as the lz77

parsing [121] and the
run-length-encoded

Burrows-Wheeler
transform [22]. Even
more schemes can be

expressed as slps:
byte-pair encoding

[109], members
of the Lempel-Ziv

family [81, 119],
Sequitur [92], Re-Pair

[79], to name but a
few.

approximate string matching problemswithout decompressing the
slps first—as to not loose the gains from the compression.

In this setting, we obtain the first algorithms running in (al-
most) linear time.

Main Theorem 1. Let 𝒢𝑇 denote an slp of size 𝑛 generating a text 𝑇,
let 𝒢𝑃 denote an slp of size 𝑚 generating a pattern 𝑃, let 𝑘 denote a thresh-
old, and set 𝑁 ≔ |𝑇| + |𝑃|.

We can compute the number of occurrences of 𝑃 in 𝑇 with up to 𝑘
mismatches in time 𝑂(𝑚 log𝑁 + 𝑛 𝑘2log3𝑁).

We can compute the number of occurrences of 𝑃 in 𝑇 with up to 𝑘
errors in time 𝑂(𝑚 log𝑁 + 𝑛 𝑘4log3𝑁).

Further, in both settings we can report the starting positions of the
occurrences in constant time per occurrence.

Finally, observe that as a special case, we also solve the case if
only the text is compressed—think of searching in a compressed
file without wanting to decompress it first.

introduction to part i 7

Results in the Dynamic Setting

Recall the example of the search functionality of a large webpage.
It may be required to regularly update the database behind such
a webpage—recomputing answers to search queries after each up-
date naively, we possibly recompute queries whose answer did not
change (or did not change much).

Hence, we also consider a setting that is tailored to large, con-
stantly changing strings. In particular, we want to maintain an ini-
tially empty collection of non-empty persistent strings 𝒳 that can
be modified via the following “update” operations:

makestring(𝑈): Insert a non-empty string 𝑈 to 𝒳.
concat(𝑈, 𝑉): Insert 𝑈𝑉 to 𝒳, for 𝑈, 𝑉 ∈ 𝒳.
split(𝑈, 𝑖): Insert 𝑈[0 . . 𝑖) and 𝑈[𝑖 . . |𝑈|) in 𝒳, for 𝑈 ∈ 𝒳
and 𝑖 ∈ [0 . . |𝑈|).

Note that persistence here means that concat and split do not de-
stroy their arguments.

Our main goal in this setting (and for dynamic algorithms in
general) is to provide algorithms that are faster than recomputing
the answer from scratch after every update. Building on top of
a data structure by Gawrychowski, Karczmarz, Kociumaka, Lacki,
and Sankowski [52]5, we achieve this goal and obtain the following 5. This data structure

is in itself, the (final)
result of a long line of
research [112, 88, 4].

result.

Main Theorem 2. We can maintain a collection 𝒳 of non-empty
persistent strings of total length𝑁 under the operations makestring(𝑈),
concat(𝑈, 𝑉), split(𝑈, 𝑖) requiring time 𝑂(log𝑁 + |𝑈|), 𝑂(log𝑁)
and 𝑂(log𝑁), respectively, so that given two strings 𝑃, 𝑇 ∈ 𝒳 with |𝑃| =
𝑚 and |𝑇| = 𝑛 and a threshold 𝑘, we can compute the starting positions
of all 𝑘-mismatch occurrences of 𝑃 in 𝑇 in time 𝑂(𝑛/𝑚 ⋅ 𝑘4log2𝑁) and of
all 𝑘-error occurrences in time 𝑂(𝑛/𝑚 ⋅ 𝑘4log2𝑁).6

6. All running time
bounds hold w.h.p.

8 introduction to part i

𝑇

𝑃

a a a c c cc c c

a a c cc c

⋯ ⋯ ⋯ ⋯

⋯ ⋯

a3𝑚/4 c3𝑚/4

a𝑚/2 c𝑚/2

(a) Both 𝑃 and 𝑇 are not periodic, but there
are 2𝑘 𝑘-mismatch occurrences of 𝑃 in 𝑇.

𝑇

𝑃

a a a a a

a a a

c at 𝑘/2 random positions in each string

c c c

c c

⋯ ⋯

⋯

a3𝑚/2

a𝑚

(b) There are 𝑂(𝑚) 𝑘-mismatch occurrences of 𝑃
in 𝑇, but both 𝑃 and 𝑇 are not perfectly periodic.

𝑇

𝑃

a a a a a a a a a a a a a a ac c c

a a a a a a a a a ac c

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

a𝑛/2 a𝑘−1 a𝑘−1 a𝑘−1

a𝑚/2 a𝑘−1 a𝑘−1

(c) Both 𝑃 of length 𝑚 and 𝑇 of length 𝑛 ≔ 𝑚 + 2𝑘2 are not periodic, but there are 𝛺(𝑘2) 𝑘-error
occurrences of 𝑃 in 𝑇.

26 Figure 1.1. Examples 1 to 3 illustrated, showing that Main Theorems 3 and 4 are tight.

introduction to part i 9

Insights into the Solution Structure of
Approximate Pattern Matching

We obtain our main results by a gaining a better understanding in
the solution structure of the approximate pattern matching prob-
lems. In particular, we prove the following result.

Main Theorem 3. Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length
𝑛 ≤ 3/2 𝑚, and a threshold 𝑘 ≤ 𝑚, at least one of the following holds.

The number of 𝑘-mismatch occurrences of 𝑃 in 𝑇 is bounded by 𝑂(𝑘).
The pattern is very close to being periodic.7 7. More concretely,

there is a primitive
string 𝑄 of length
𝑂(𝑚/𝑘), such that 𝑃
has a Hamming
distance of at most 2𝑘
to any prefix of an
infinite repetition of
𝑄.

Our characterization is tight. Consider the following examples.

1 For 𝑇 ≔ a3𝑚/4c3𝑚/4 and 𝑃 ≔ a𝑚/2c𝑚/2, there is one exact
occurrence of 𝑃 in 𝑇. However, shifting 𝑃 by at most 𝑘 char-
acters in either direction still yields a 𝑘-mismatch occurrence.
Hence, in order to obtain periodicity for 𝑃, we need to ac-
count for 𝑂(𝑘) 𝑘-mismatch occurrences. Consult Figure 1.1a
for an illustration of this example.

2 Now consider 𝑇 ≔ a3𝑚/2 and 𝑃 ≔ a𝑚 and change both 𝑇
and 𝑃 at 𝑘/2 random positions to c. Then, we still have 𝑂(𝑚)
𝑘-mismatch occurrences of 𝑃 in 𝑇, but, with high probability,
both 𝑇 and 𝑃 are not perfectly periodic. Hence, we need to re-
lax the periodicity notion to allow for up to 𝑂(𝑘)mismatches.
Consult Figure 1.1b for an illustration of this example.

We generalize Main Theorem 3 to the edit distance case:

Main Theorem 4. Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length
𝑛 ≤ 3/2 𝑚, and a threshold 𝑘 ≤ 𝑚, at least one of the following holds.

The starting positions of all 𝑘-error occurrences of 𝑃 in 𝑇 lie in 𝑂(𝑘)
intervals of length 𝑂(𝑘) each.
The pattern is very close to being periodic.8

8. More concretely,
there is a primitive
string 𝑄 of length
𝑂(𝑚/𝑘), such that 𝑃
has a edit distance of
at most 2𝑘 to any
prefix of an infinite
repetition of 𝑄.

10 introduction to part i

Note that this characterization is tight as well: First, observe
that the examples from theHamming distance case are still valid as
any 𝑘-mismatch occurrence is also a 𝑘-error occurrence. However,
as the edit distance allows insertions and deletions of characters,
we can construct an example where both 𝑃 and 𝑇 are not periodic,
and the number of 𝑘-error occurrences is 𝛺(𝑘2):

3 Consider the text 𝑇 ≔ a𝑛/2(a𝑘−1c)𝑛/2𝑘 and the pattern 𝑃 ≔
a𝑚/2(a𝑘−1c)𝑚/2𝑘 for 𝑛 ≔ 𝑚 + 2𝑘2.
Now, at every position 𝑛/2 − 𝑚/2 + 𝑖 ⋅ 𝑘, 𝑖 ∈ [− 𝑘 . . 𝑘] in 𝑇,
a 𝑘-mismatch occurrence of 𝑃 in 𝑇 starts, and these are all 𝑘-
mismatch occurrences of𝑃 in𝑇. Any such occurrence has less
than 𝑘 mismatches—thus, there are also 𝑘-error occurrences
at all positions 𝑛/2 − 𝑚/2 + 𝑖 ⋅ 𝑘 + 𝑗, 𝑗 ∈ (− 𝑘 + 𝑖 . . 𝑘 − 𝑖). Thus
there are at least 𝛺(𝑘2) 𝑘-error occurrences of 𝑃 in 𝑇. Consult
Figure 1.1c for an illustration of this example.

1Almost Everything You Need to Know About Strings

Let us start with basic definitions and concepts used throughout
this part. We write [𝑖 . . 𝑗] to denote the set {𝑖, … , 𝑗} and [𝑖 . . 𝑗) to
denote the set {𝑖, … , 𝑗 − 1}; the sets (𝑖 . . 𝑗] and (𝑖 . . 𝑗) are defined
accordingly.

For a finite set 𝑆, we write {𝑎+ 𝑗 ⋅ 𝑑}𝑆 ≔ {𝑎+ 𝑗 ⋅ 𝑑 ∣ 𝑗 ∈ 𝑆} to denote
the (finite) arithmetic progression with starting value 𝑎, difference 𝑑,
and length |𝑆|. Whenever we use arithmetic progressions in an al-
gorithm, we store them as a triple of the first value, the difference,
and the length.

For a set𝑋, wewrite 𝑘𝑋 to denote the set containing all elements
of 𝑋 multiplied by 𝑘, that is, 𝑘𝑋 ≔ {𝑘 ⋅ 𝑥 ∣ 𝑥 ∈ 𝑋}. Similarly, we
define ⌊𝑋/𝑘⌋ ≔ {⌊𝑥/𝑘⌋ ∣ 𝑥 ∈ 𝑋} and 𝑘⌊𝑋/𝑘⌋ ≔ {𝑘 ⋅ ⌊𝑥/𝑘⌋ ∣ 𝑥 ∈ 𝑋}.

1.1 Strings, Fragments, and Periods

We write 𝑇 = 𝑇[0]𝑇[1]⋯ 𝑇[𝑛 − 1] to denote a string of length
|𝑇| = 𝑛 over an alphabet 𝛴. The elements of 𝛴 are called characters.
We write 𝜀 to denote the empty string.

For a string 𝑇, we denote the reverse string of 𝑇 by 𝑇𝑅, that is,
𝑇𝑅 ≔ 𝑇[𝑛 − 1]𝑇[𝑛 − 2]⋯ 𝑇[0]. For two positions 𝑖 and 𝑗 in 𝑇, we
write 𝑇[𝑖 . . 𝑗 + 1) ≔ 𝑇[𝑖 . . 𝑗] ≔ 𝑇[𝑖]⋯ 𝑇[𝑗] to denote the fragment
of 𝑇 that starts at position 𝑖 and ends at position 𝑗. We set 𝑇[𝑖 . . 𝑗] ≔
𝜀 whenever 𝑗 < 𝑖.

A string 𝑃 of length 𝑚 with 0 < 𝑚 ≤ 𝑛 is a substring of 𝑇 if there
is a fragment 𝑇[𝑖 . . 𝑖+𝑚) equal to 𝑃; wewrite 𝑃 ≼ 𝑇. In this case, we
say that there is an exact occurrence of 𝑃 at position 𝑖 in 𝑇, or, more
simply, that 𝑃 exactly occurs in 𝑇. We write Occ(𝑃, 𝑇) for the set of
all starting positions of exact matches of 𝑃 in 𝑇.

12 strings, approximate string matching

A prefix of a string 𝑇 is a fragment that starts at position 0 (that
is, a prefix is a fragment of the form 𝑇[0 . . 𝑗] for some 𝑗 ≥ 0). A
suffix of a string 𝑇 is a fragment that ends at position |𝑇| − 1 (that is,
a suffix is a fragment of the form 𝑇[𝑖 . . |𝑇|) for some 𝑖 < |𝑇|). For
two strings 𝑈 and 𝑉, the longest common prefix of 𝑈 and 𝑉 is the
length of the longest string that is a prefix of both 𝑈 and 𝑉, that is,

lcp(𝑈, 𝑉) ≔ 1 +max{𝑗 ∣ 𝑈[0 . . 𝑗] = 𝑉[0 . . 𝑗]}.

The longest common suffix of 𝑈 and 𝑉 is the length of the longest
string that is a suffix of both 𝑈 and 𝑉, that is,

lcp𝑅(𝑈, 𝑉) ≔ |𝑇| −min{𝑖 ∣ 𝑈[𝑖 . . |𝑇|) = 𝑉[𝑖 . . |𝑇|)}.

For two strings 𝑈 and 𝑉, we write 𝑈𝑉 to denote their concate-
nation. We also write 𝑈𝑘 ≔ 𝑈 ⋯ 𝑈 to denote the concatenation
of 𝑘 copies of the string 𝑈. Furthermore, 𝑈∞ denotes the string ob-
tained by concatenating infinitely many copies of 𝑈. A string 𝑇 is
called primitive if for no string 𝑈 and integer 𝑘 > 1, the string 𝑇 can
be expressed as 𝑈𝑘.

A positive integer 𝑝 is called a period of a string 𝑇 if 𝑇[𝑖] = 𝑇[𝑖+𝑝]
for all 𝑖 = 1, … , 𝑛 − 𝑝. We refer to the smallest period as the period
of the string and denote it by per(𝑇). A string is called periodic if its
period is no more than half of its length. If a string is not periodic,
we say that it is aperiodic.

For a string 𝑇, we define the following operations that rotate a
string. The operation rot(⋆) takes as input a string, and moves its
last character to the front; that is,

rot(𝑇) ≔ 𝑇[𝑛 − 1]𝑇[0 . . 𝑛 − 2].

The inverse operation rot−1(⋆) takes as input a string and moves
its first character to the end; that is,

rot−1(𝑇) ≔ 𝑇[1 . . 𝑛 − 1]𝑇[0].

string measures and approximate string matching 13

Note that a primitive string 𝑇 does not match any of its non-trivial
rotations, that is, we have 𝑇 = rot𝑗(𝑇) if and only if 𝑗 ≡ 0 (mod |𝑇|).

Finally, the run-length encoding (rle) of a string 𝑇 is a decompo-
sition of 𝑇 in maximal blocks such that each block is a power of a
single character. (For instance, the rle of the string aaabbabbbb

is a3b2ab3.) Note that each block of the rle can be represented in
𝑂(1) space.

1.2 String Measures and Approximate String Matching

Hamming Distance and Pattern Matching with Mismatches

For two strings 𝑆 and 𝑇 of the same length 𝑛, we define the set
of mismatches between 𝑆 and 𝑇 as

Mis(𝑆, 𝑇) ≔ {𝑖 ∈ [0 . . 𝑛) ∣ 𝑆[𝑖] ≠ 𝑇[𝑖]}.

Now, theHamming distance of 𝑆 and 𝑇 is the number of mismatches
between 𝑆 and 𝑇, that is, 𝛿𝐻(𝑆, 𝑇) ≔ |Mis(𝑆, 𝑇)|. The Hamming
distance has a triangle inequality:

Lemma 1.1 (Triangle Inequality, Hamming distance). Any three
strings 𝐴, 𝐵, and 𝐶 of the same length satisfy

𝛿𝐻(𝐴, 𝐶) + 𝛿𝐻(𝐶, 𝐵) ≥ 𝛿𝐻(𝐴, 𝐵) ≥ |𝛿𝐻(𝐴, 𝐶) − 𝛿𝐻(𝐶, 𝐵)|.

Proof. Observe that for any 𝜋 ∈ Mis(𝐴, 𝐵), and any string 𝐶,
we have at least one and at most both of 𝜋 ∈ Mis(𝐴, 𝐶) and 𝜋 ∈
Mis(𝐶, 𝐵); yielding the inequalities, respectively.

As we are often concerned with the Hamming distance of a
string 𝑆 and a prefix of 𝑇∞ for a string 𝑇, we write

Mis(𝑆, 𝑇∗) ≔ Mis(𝑆, 𝑇∞[0 . . |𝑆|))

and 𝛿𝐻(𝑆, 𝑇∗) ≔ |Mis(𝑆, 𝑇∗)|.

14 strings, approximate string matching

Now, for two strings 𝑃 (also called pattern) and 𝑇 (also called
text), and a positive integer 𝑘 (also called threshold), we say that
there is a 𝑘-mismatch occurrence of 𝑃 in 𝑇 at position 𝑖 if

𝛿𝐻(𝑃, 𝑇[𝑖 . . 𝑖 + 𝑚)) ≤ 𝑘.

We write Occ𝐻
𝑘 (𝑃, 𝑇) for the set of all positions of 𝑘-mismatch oc-

currences of 𝑃 in 𝑇, that is,

Occ𝐻
𝑘 (𝑃, 𝑇) ≔ {𝑖 ∣ 𝛿𝐻(𝑃, 𝑇[𝑖 . . 𝑖 + 𝑚) ≤ 𝑘)}.

Lastly, we define the pattern matching with mismatches problem.

Problem 1.2 (Pattern matching with mismatches). Given a pat-
tern 𝑃, a text 𝑇, and a threshold 𝑘, compute the set Occ𝐻

𝑘 (𝑃, 𝑇).

Note that depending on the use case, we may want to com-
pute only the size |Occ𝐻

𝑘 (𝑃, 𝑇)| or the leftmost position in the set
Occ𝐻

𝑘 (𝑃, 𝑇); especially if the set Occ𝐻
𝑘 (𝑃, 𝑇) is “huge”. However,

our algorithms easily adapt to these settings.

Edit Distance and Pattern Matching with Edits

The edit distance (also known as Levenshtein distance) between two
strings 𝑆 and 𝑇, denoted by 𝛿𝐸(𝑆, 𝑇), is the minimum total cost of a
sequence of unit cost edit operations (insertions, deletions, substi-
tutions) required to transform 𝑆 into 𝑇. The edit distance has a
triangle inequality as well:

Lemma 1.3 (Triangle Inequality, edit dis.). Any three strings 𝐴,
𝐵, and 𝐶 of the same length satisfy

𝛿𝐸(𝐴, 𝐶) + 𝛿𝐸(𝐶, 𝐵) ≥ 𝛿𝐸(𝐴, 𝐵) ≥ |𝛿𝐸(𝐴, 𝐶) − 𝛿𝐸(𝐶, 𝐵)|.

Proof. The edit sequence from 𝐴 to 𝐶 to 𝐵 is a valid edit se-
quence from 𝐴 to 𝐵; the lower bound follows by rearranging.

string measures and approximate string matching 15

Similarly to the Hamming distance, we write

𝛿𝐸(𝑆, 𝑇∗) ≔ min{𝛿𝐸(𝑆, 𝑇∞[0 . . 𝑗]) ∣ 𝑗 ∈ ℤ}

to denote the minimum edit distance between a string 𝑆 and any
prefix of a string 𝑇∞. Further, we write

𝛿𝐸(𝑆, ∗𝑇∗) ≔ min{𝛿𝐸(𝑆, 𝑇∞[𝑖 . . 𝑗]) ∣ 𝑖, 𝑗 ∈ ℤ}

for the minimum edit distance between 𝑆 and any substring of 𝑇∞.
Now, for two strings 𝑃 (also called pattern) and 𝑇 (also called

text), and a positive integer 𝑘 (also called threshold), we say that
there is a 𝑘-error or 𝑘-edits occurrence of 𝑃 in 𝑇 at position 𝑖 if

𝛿𝐸(𝑃, 𝑇[𝑖 . . 𝑗)) ≤ 𝑘 for some 𝑗 ≥ 𝑖.

We write Occ𝐸
𝑘 (𝑃, 𝑇) to denote the set of all positions of 𝑘-error

occurrences of 𝑃 in 𝑇, that is,

Occ𝐸
𝑘 (𝑃, 𝑇) ≔ {𝑖 ∣ ∃𝑗 ≥ 𝑖 ∶ 𝛿𝐸(𝑃, 𝑇[𝑖 . . 𝑗) ≤ 𝑘)}.

Lastly, we define the pattern matching with edits problem.

Problem 1.4 (Pattern matching with edits). Given a pattern 𝑃, a
text 𝑇, and a threshold 𝑘, compute the set Occ𝐸

𝑘 (𝑃, 𝑇).

We may want to compute only the size |Occ𝐸
𝑘 (𝑃, 𝑇)| or the left-

most position in the setOcc𝐸
𝑘 (𝑃, 𝑇); especially if the setOcc𝐸

𝑘 (𝑃, 𝑇)
is “huge”. Again, our algorithms easily adapt to these settings.

16 strings, approximate string matching

2The PILLAR Model

In order to unify the implementations of our approach in the dif-
ferent considered settings for pattern matching, we introduce the
PILLARmodel.9 The PILLARmodel captures certain primitive oper- 9. The name stems

from the basic
operations used in
the model.

ations which can be implemented efficiently in all considered set-
tings. Thus, in the algorithmic chapters of this part, 4 and 6 , we
bound the running times in terms of PILLAR operations—if the al-
gorithm uses more time than PILLAR operations, we also specify
the extra running time.

Further, we implement the PILLAR model in the static, fully-
compressed and dynamic settings. For each setting, we first show
how to implement each of the primitive PILLAR operations. Note
that for our main algorithms, it is not relevant how specific oper-
ations are implemented as long as the implementations meet the
running time bounds. In the interest of keeping this part short,
we hence defer most of the concrete implementations to the litera-
ture.10 10. In particular, a

non-expert reader
need not worry about
the details of the
implementation; an
expert reader may
already know most of
the implementation
details.

2.1 Basic Building Blocks of the PILLAR Model

In the PILLAR model, we are given a family of strings 𝒳 for prepro-
cessing. The elementary objects are fragments 𝑋[ℓ . . 𝑟) of strings
𝑋 ∈ 𝒳. Initially, the model provides access to each 𝑋 ∈ 𝒳 inter-
preted as 𝑋[0 . . |𝑋|). Other fragments can be obtained through an
Extract operation.

Extract(𝑆, ℓ, 𝑟): Given a fragment 𝑆 and positions 0 ≤ ℓ ≤ 𝑟 ≤
|𝑆|, extract the (sub)fragment 𝑆[ℓ . . 𝑟). If 𝑆 = 𝑋[ℓ′ . . 𝑟′) for
𝑋 ∈ 𝒳, then 𝑆[ℓ . . 𝑟) is defined as 𝑋[ℓ′ + ℓ . . ℓ′ + 𝑟).

18 the pillar model

Further, the followingprimitive operations are supported in the
PILLAR model:

LCP(𝑆, 𝑇): Compute the length of the longest common prefix
of 𝑆 and 𝑇.
LCP𝑅(𝑆, 𝑇): Compute the length of the longest common suf-
fix of 𝑆 and 𝑇.
IPM(𝑃, 𝑇): Assuming |𝑇| ≤ 2|𝑃|, compute Occ(𝑃, 𝑇) (repre-
sented as an arithmetic progression with difference per(𝑃)).
Access(𝑆, 𝑖): Retrieve the character 𝑆[𝑖].
Length(𝑆): Compute the length |𝑆| of the string 𝑆.

We now collect known results into a toolbox that is to be used
in 4 and 6 . We start with an operation that allows us to compute
the period of a given string.

Fact 2.1 (Period(𝑆), [73, 72]). Given a string 𝑆, we can compute
per(𝑆) or declare that per(𝑆) > |𝑆|/2 in𝑂(1) time in the PILLARmodel.

Next, we have an operation to “revert” a rotation of a string.

Fact 2.2 (Rotations(𝑆, 𝑇), [73, 72]). Given strings 𝑆 and 𝑇, we
can find all integers 𝑗 such that 𝑇 = rot𝑗(𝑆) in 𝑂(1) time in the PILLAR
model. The output is represented as an arithmetic progression.

Next, we generalize the primitive LCP and LCP𝑅 operations to
also support fragments of infinite repetitions of a string.

Fact 2.3 (LCP(𝑆, 𝑄∞), [72, Fact 2.5.2]; [6]). Given strings 𝑆 and
𝑄, we can compute LCP(𝑆, 𝑄∞) in𝑂(1) time in the PILLARmodel.

Corollary 2.4 (LCP(𝑆, 𝑄∞[ℓ . .))). Given strings 𝑆 and 𝑄, and
an integer ℓ > 0, we can compute LCP(𝑆, 𝑄∞[ℓ . .)) in 𝑂(1) time in the
PILLAR model.

basic building blocks of the pillar model 19

Proof. We first compute LCP(𝑆, 𝑄[ℓ mod |𝑄| . . |𝑄|)) by a prim-
itive operation. If we reach the end of the string 𝑄, we continue
with an LCP operation from Fact 2.3.

Next, we provide an equality check.

Fact 2.5 (Equality, [72, Fact 2.5.2]). Given strings 𝑆 and 𝑇, we
can check 𝑆 = 𝑇 in 𝑂(1) time in the PILLAR model.

Lastly, we discuss an operation to find all exact occurrences of a
given string 𝑃 in another given string 𝑇.

Lemma 2.6 (ExactMatches(𝑃, 𝑇)). Let 𝑇 denote a string of length 𝑛
and let 𝑃 denote a string of length 𝑚. We can compute the set Occ(𝑃, 𝑇)
using 𝑂(𝑛/per(𝑃)) time and 𝑂(𝑛/𝑚) PILLAR operations.

Proof. We perform an IPM(𝑃, 𝑇𝑖) query with

𝑇𝑖 ≔ 𝑇[⌊𝑖 ⋅ 𝑚/2⌋ . .min{𝑛, ⌊(𝑖 + 3) ⋅ 𝑚/2⌋ − 1})

for each 0 ≤ 𝑖 < ⌊2𝑛/𝑚⌋; that is a total of 𝑂(𝑛/𝑚) PILLAR oper-
ations. Each occurrence of 𝑃 in 𝑇 corresponds to a single occur-
rence of 𝑃 in a single 𝑇𝑖. Further, each IPM(𝑃, 𝑇𝑖) query returns an
arithmetic progressionwith difference per(𝑃), which thus consists
of 𝑂(𝑚/per(𝑃)) elements. Hence, the total number of elements
of all arithmetic progressions is 𝑂(𝑛/per(𝑃)).

Another important concept for us are generators.

Definition 2.7 (Generator of a set). For an (ordered) set 𝑆, an
(𝑂(𝑃), 𝑂(𝑄))-time generator of 𝑆 is a data structure that after 𝑂(𝑃)-
time initialization in the PILLARmodel, supports the following operation:

Next: In the 𝑖-th call of Next, return the 𝑖-th largest element of the set 𝑆
or return ⊥ if 𝑖 > |𝑆|, using 𝑂(𝑄(𝑖)) time in the PILLARmodel.

20 the pillar model

Note that a generator is not specific to the PILLAR model. We use
generators to obtain positions where two strings differ—either by
a mismatch or by an edit. Consult Sections 4.1 and 6.1 for the de-
tails, as well as other PILLAR operations that are specific to pattern
matching with mismatches or edits, respectively.

2.2 Implementing the PILLAR Model in the Standard Setting

Next, we present implementations of the PILLAR model. We start
with the standard setting. Unsurprisingly, this turns out to be a
straight-forward application of known tools for strings.

Let us denote the total length of all strings in 𝒳 by 𝑛. In the
standard setting, the implementations of Access(𝑆, 𝑖), Length(𝑆)
is trivial as we explicitly store all strings in 𝒳. Further, we can re-
trieve a pointer to the array storing each string in 𝑂(1) time using
a perfect hashmap [48].

Next, we efficiently implement LCP(𝑆, 𝑇) queries as follows. We
construct the generalized suffix tree for the elements of 𝒳 in 𝑂(𝑛)
time [45] andpreprocess itwithin the same time complexity so that
we can support 𝑂(1)-time lowest common ancestor queries [9].

Next, for efficient IPM(𝑃, 𝑇) queries, we build the data struc-
ture of Kociumaka et al. [73], Kociumaka [72]. This data structure
is encapsulated in the following fact for the concatenation of the
elements of 𝒳.

Fact 2.8 ([73, 72]). For every string 𝑆 of length 𝑛, there is a data
structure of size 𝑂(𝑛), which can be constructed in 𝑂(𝑛) time and an-
swers IPM(𝑃, 𝑇) queries in 𝑂(1) time for fragments 𝑃 and 𝑇 of 𝑆.

We summarize the above discussion in Lemma 2.9.

Lemma 2.9. After processing a collection of strings for 𝑂(𝑛)-time,
we can perform every PILLAR operation in 𝑂(1) time each.

pillar model implementation: fully-compressed setting 21

2.3 Implementing the PILLAR Model
in the Fully-Compressed Setting

Next, we focus on the fully-compressed setting, where we want to
solve approximate pattern matching when both the text and the
pattern are given as a straight-line programs—that is, in this set-
ting, wemaintain a collection 𝒳 of straight-line programs and show
how to implement the primitive PILLAR operations on this collec-
tion. We start with a short exposition on straight-line programs
and related concepts.

Straight-Line Programs

For a context-free grammar 𝒢, we write 𝑁𝒢 to denote the set of non-
terminals of 𝒢 and call the elements of 𝒮𝐺 ≔ 𝑁𝒢 ∪ 𝛴 the symbols
of 𝒢. A straight line program (slp) 𝒢 is a context-free grammar that
consists of a set 𝑁𝒢 = {𝐴1, … , 𝐴𝑛} of non-terminals, such that each
𝐴 ∈ 𝑁𝒢 is associated with a unique production rule 𝐴 → 𝑓𝒢(𝐴),
where 𝑓𝒢(𝐴) ∈ 𝒮∗

𝒢. For slps given as input, we can assume without
loss of generality that each production rule is of the form 𝐴 → 𝐵𝐶
for some symbols 𝐵 and 𝐶.11 11. That is, the given

slp is in Chomsky
normal form.

Every symbol 𝐴 ∈ 𝒮𝒢 generates a unique string, which we call
gen(𝐴) ∈ 𝛴∗. We can obtain the string gen(𝐴) from 𝐴 by repeatedly
replacing each non-terminal with its production. Sometimes we
also need an uncompressed representation of (the part of) a gram-
mar rooted at 𝐴; we call this representation the parse tree PT(𝐴).
Formally, we define PT(𝐴) as a tree that has a root labeled with 𝐴
and that has zero or more subtrees:

If 𝐴 is a terminal, the root has no subtrees.
If 𝐴 is a non-terminal 𝐴 → 𝐵1 ⋯ 𝐵𝑝, then the subtrees of 𝐴 are
PT(𝐵𝑖), in increasing order of 𝑖.

Observe that the leaves of PT(𝐴) from left to right spell out gen(𝐴).
The parse tree PT𝒢 of 𝒢 is the parse tree of the starting symbol

𝐴𝑛 ∈ 𝑁𝒢; we have gen(𝐴𝑛) = 𝑆, where 𝑆 is the unique string gener-

22 the pillar model

𝐴5 → 𝐴4𝐴4

𝐴4 → 𝐴1𝐴3

𝐴3 → 𝐴1𝐴2

𝐴2 → b

𝐴1 → a

(a) The slp 𝒢.

a a b a a b

𝐴1

𝐴1 𝐴2

𝐴1

𝐴1 𝐴2

𝐴3 𝐴3

𝐴4𝐴4

𝐴5

(b) The parse tree PT𝒢.

𝐴3

𝐴4

𝐴5

𝐴1 𝐴2

a b

(c) The acyclic graph 𝐻𝒢.

26 Figure 2.1. An slp 𝒢 generating aabaab and the corresponding parse tree PT𝒢 and
directed acyclic graph 𝐻𝒢.

ated by 𝒢. We write gen(𝒢) ≔ 𝑆. Finally, an slp can be represented
naturally as a directed acyclic graph 𝐻𝒢 of size at most 2|gen(𝒢)|.
Consult Figure 2.1 for an example of an slp, its parse tree, and the
corresponding acyclic graph.

The value val(𝑣) of a node 𝑣 in PT𝒢 is the fragment 𝑆[𝑎 . . 𝑏]
corresponding to the leaves 𝑆[𝑎], … , 𝑆[𝑏] in the subtree of 𝑣.1212. Note that val(𝑣) is

an occurrence
of gen(𝐴) in gen(𝒢),
where 𝐴 is the label

of 𝑣.

Given an slp 𝒢 of size 𝑛, we can compute |gen(𝒢)| in 𝑂(𝑛)
time using a straight-forward bottom-up dynamic programming
approach. Similarly, Bille, Landau, Raman, Sadakane, Satti, and
Weimann [12] have shown that we can efficiently access any char-
acter in gen(𝒢).

Fact 2.10 (Bille et al. [12]). An slp 𝒢 of size 𝑛, generating a string
𝑆 of size 𝑁, can be preprocessed in time 𝑂(𝑛 log(𝑁/𝑛)) so that, for any
𝑖 ∈ [0 . . 𝑁), we can access gen(𝒢)[𝑖] in 𝑂(log𝑁) time.

To answer LCP queries, we use the algorithm by I [60].

pillar model implementation: fully-compressed setting 23

Fact 2.11 (I [60]). An slp 𝒢 of size 𝑛, generating a string 𝑆 of size
𝑁, can be preprocessed in time 𝑂(𝑛 log(𝑁/𝑛)) so that for any 𝑖 and 𝑗, we
can compute LCP(𝑆[𝑖 . . 𝑁), 𝑆[𝑗 . . 𝑁)) in 𝑂(log𝑁) time.

Finally, we discuss how to “concatenate” two slps. Given two
slps 𝒢1 and 𝒢2, with gen(𝒢1) = 𝑆1 and gen(𝒢2) = 𝑆2, we can con-
struct an slp generating 𝑆1𝑆2 in 𝑂(|𝒢1| + |𝒢2|) time as follows. We
first rename the non-terminals in𝑁𝒢2

tomake sure that they are dis-
joint from the non-terminals in 𝑁𝒢1

. Next, let 𝑅1 and 𝑅2 denote the
starting non-terminals of 𝒢1 and 𝒢2, respectively. We construct a
new slp𝒢with𝑁𝒢 ≔ 𝑁𝒢1

∪ 𝑁𝒢2
∪{𝑅}, where𝑅has production rule

𝑅 → 𝑅1𝑅2. Note that this procedure can be applied to more than
two strings at once: We first apply a global renaming, and then
repeatedly “concatenate” two strings in the collection. Note fur-
ther that we can place distinct sentinel characters not in 𝛴 between
concatenated strings that cannot be “crossed” by longest common
prefix/suffix queries.

Let us now denote the total size of all slps in 𝒳 by 𝑛, and the
total length of all strings generated by those slps by 𝑁. We can
access each slp in 𝑂(1) time using a perfect hashmap.

The above discussion on computing the length of the string gen-
erated by an slp and Fact 2.10 imply that we can preprocess 𝒳 in
𝑂(𝑛 log(𝑁/𝑛)) time so that for any slp𝒢 ∈ 𝒳, a Length(gen(𝒢)) op-
eration requires 𝑂(1) time, while an Access(gen(𝒢), 𝑖) operation
requires 𝑂(log𝑁) time, for any 𝑖 ∈ [0 . . |gen(𝒢)|).

For efficiently answering LCP queries, we rely on Fact 2.11. We
build I’s data structure for an slp that generates the concatena-
tion of all elements in the multi-set {gen(𝒢) ∣ 𝒢 ∈ 𝒳}, with dis-
tinct sentinel characters not in 𝛴 between them. Therefore, after
an𝑂(𝑛 log(𝑁/𝑛))-time preprocessing, each LCP operation requires
𝑂(log𝑁) time.

To implement the IPM operation efficiently, we rely on the fol-
lowing known result.

24 the pillar model

Fact 2.12 ([69, Section 6.1 (full version)]). An slp 𝒢 of size 𝑛,
generating a string 𝑆 of size 𝑁, can be preprocessed in time 𝑂(𝑛 log𝑁)
so that, given a fragment 𝑇 = 𝑆[𝑗 . . 𝑗 + 𝜈), and a fragment 𝑃 = 𝑆[𝑖 . . 𝑖 +
𝜇) with |𝑇| ≤ 2|𝑃|, we can compute Occ(𝑃, 𝑇) in the time required by
𝑂(log2𝑁) LCP and LCP𝑅 operations on fragments of 𝑆.1313. Internally, this

operation is
implemented using
the recompression

technique due to Jeż
[65, 66].

In total, we have thus proved the following result.

Theorem 2.13. Given a collection of slps of total size 𝑛, generat-
ing strings of total length 𝑁, each PILLAR operation can be performed in
𝑂(log3𝑁) time after an 𝑂(𝑛 log𝑁)-time preprocessing.

2.4 Implementing the PILLAR Model in the Dynamic Setting

Lastly, we consider the dynamic setting. In particular, we want
to maintain a collection of non-empty persistent strings 𝒳 that is
initially empty and undergoes the following updates:

makestring(𝑈): Insert a non-empty string 𝑈 to 𝒳.
concat(𝑈, 𝑉): Insert 𝑈𝑉 to 𝒳, for 𝑈, 𝑉 ∈ 𝒳.
split(𝑈, 𝑖): Insert 𝑈[0 . . 𝑖) and 𝑈[𝑖 . . |𝑈|) in 𝒳, for 𝑈 ∈ 𝒳
and 𝑖 ∈ [0 . . |𝑈|).

Let 𝑁 denote an upper bound on the total length of all strings in
𝒳 throughout the execution of the algorithm. Gawrychowski et al.
[52] presented a data structure that efficiently maintains such a
collection and allows for efficient longest common prefix queries.

Fact 2.14 ([52]). A collection 𝒳 of non-empty persistent strings
of total length 𝑁 can be dynamically maintained with update operations
makestring(𝑈), concat(𝑈, 𝑉), split(𝑈, 𝑖) requiring time𝑂(log𝑁+
|𝑈|), 𝑂(log𝑁), and 𝑂(log𝑁),14 respectively, so that LCP(𝑈, 𝑉) queries14. These running

times hold w.h.p. for 𝑈, 𝑉 ∈ 𝒳 can be answered in time 𝑂(1).

pillar model implementation: dynamic setting 25

We maintain the lengths of the strings in 𝒳 explicitly. Upon a
makestring operation, we naively compute the length of 𝑈, while
upon a concat or a split operation, we can compute the lengths
of the strings that are inserted in 𝒳 in constant time from the argu-
ments of the operation.

We can compute the LCP and LCP𝑅 operations for arbitrary frag-
ments of elements of 𝒳 in time 𝑂(log𝑁) by first performing a con-
stant number of split operations to add the corresponding frag-
ments to the collection, and then using a LCP query on the frag-
ments.

Next, we wish to obtain fast Access and IPM operations. To that
end, we need to take a (slightly) closer look at the data structure
of Gawrychowski et al. [52]. For each string of the collection 𝒳, the
data structure of [52]maintains a recompressed slp that is of depth
𝑂(log𝑁) w.h.p.

We now show that Access(𝑋, 𝑖) for 𝑋 ∈ 𝒳 can be performed
efficiently. Given a string 𝑋 ∈ 𝒳, a pointer to the root of the parse
tree of 𝑋 can be retrieved in 𝑂(1) time. Even though the parse trees
are not maintained explicitly, given a pointer to any node 𝑣 in the
parse tree of 𝑋, we can obtain in constant time the endpoints 𝑎, 𝑏
of the fragment val(𝑣) = 𝑋[𝑎 . . 𝑏], the degree of 𝑣, a pointer to the
parent of 𝑣, and a pointer to the 𝑗-th child of 𝑣, provided that such a
child exists. Thus, we can implement the Access(𝑋, 𝑖) operation in
time proportional to the height of the parse tree, that is, in 𝑂(log𝑁)
time w.h.p.

Finally, we need to show that IPM operations can be performed
efficiently. To that end, one can show that Fact 2.12 also holds in
this setting;15 in particular, combining Facts 2.12 and 2.14, we can 15. Consult [25,

Section 4] for details.answer IPM(𝑃, 𝑇) queries in 𝑂(log2𝑁) time (w.h.p.) by performing
𝑂(log𝑁) split operations and 𝑂(log2𝑁) LCP queries.

We summarize the above discussion in Theorem 2.15.

Theorem 2.15. We can maintain a collection 𝒳 of non-empty per-
sistent strings of total length 𝑁 under makestring(𝑈), concat(𝑈, 𝑉),
split(𝑈, 𝑖) requiring time 𝑂(log𝑁 + |𝑈|), 𝑂(log𝑁) and 𝑂(log𝑁),
respectively, so that PILLAR operations take time 𝑂(log2𝑁).16

16. All running time
bounds hold w.h.p.

26 the pillar model

3Structural Insights into
Pattern Matching with Mismatches

In this chapter, we provide insight into the structure of 𝑘-mismatch
occurrences of a pattern 𝑃 in a text 𝑇. In particular, we show the
following tight characterization.

Theorem 3.1. Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛, and
a threshold 𝑘 ≤ 𝑚, at least one of the following holds:

We have |Occ𝐻
𝑘 (𝑃, 𝑇)| ≤ 576 ⋅ 𝑛/𝑚 ⋅ 𝑘.

There is a primitive 𝑄 with |𝑄| ≤ 𝑚/128𝑘 and 𝛿𝐻(𝑃, 𝑄∗) < 2𝑘.

3.1 Characterization of the Periodic Case

In order to prove Theorem 3.1, we first need to discuss in more de-
tail the (approximately) periodic case, that is, the case when we
have 𝛿𝐻(𝑃, 𝑄∗) < 2𝑘. In particular, we prove the following state-
ment.

Lemma 3.2. Let 𝑃 denote a string of length 𝑚, let 𝑇 denote a string
of length 𝑛 ≤ 3/2 𝑚, and let 𝑘 ≤ 𝑚 denote a non-negative integer. Suppose
that both 𝑇[0 . . 𝑚) and 𝑇[𝑛 − 𝑚 . . 𝑛) are 𝑘-mismatch occurrences of 𝑃,
that is, {0, 𝑛 − 𝑚} ⊆ Occ𝐻

𝑘 (𝑃, 𝑇). If there are a positive integer 𝑑 ≥ 2𝑘
and a primitive string 𝑄 with |𝑄| ≤ 𝑚/8𝑑 and 𝛿𝐻(𝑃, 𝑄∗) ≤ 𝑑, then each
of following holds:

1 Every position in Occ𝐻
𝑘 (𝑃, 𝑇) is a multiple of |𝑄|.

2 The string 𝑇 satisfies 𝛿𝐻(𝑇, 𝑄∗) ≤ 3𝑑.
3 The set Occ𝐻

𝑘 (𝑃, 𝑇) can be decomposed into 3𝑑(𝑑 + 1) arithmetic pro-
gressions with difference |𝑄|.

4 If 𝛿𝐻(𝑃, 𝑄∗) = 𝑑, then |Occ𝐻
𝑘 (𝑃, 𝑇)| ≤ 6𝑑.

28 pattern matching with mismatches: structural insights

𝑇

𝑞 𝑞

a b

𝑃 b

𝑃 b

𝑃 b

𝑃 b

𝑃 b

𝑃 b

𝑃 b

𝑃 b

𝑃 b

𝑃 b

𝑞 𝑞

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗∗

∗ ∗ ∗

∗ ∗

∗ ∗

∗

∗

ℎ0 = 3

ℎ1 = 3

ℎ2 = 3

ℎ3 = 2

ℎ4 = 3

ℎ5 = 2

ℎ6 = 0

ℎ7 = 2

ℎ8 = 1

ℎ9 = 1

Figure 3.1. Examples for a string 𝑇 of length 𝑛, a string 𝑃 of length 𝑚 and their align-
ments at positions 𝑗𝑞 for 0 ≤ 𝑗 ≤ (𝑛 − 𝑚)/𝑞. Each of the strings 𝑇 and 𝑃 decomposes into
blocks of size 𝑞 (and a possibly shorter last block); in each block the mismatches to the
string 𝑄 are denoted by a colored box. We have 𝑑𝑇 = 2 and 𝑑𝑃 = 1. Mismatches between
𝑃 and 𝑇 are denoted by asterisks above the corresponding positions in 𝑃; the number of
mismatches for each alignment (that is ℎ𝑗) is written after the pattern in each alignment.

Observe that mismatches in 𝑇 translate to mismatches in 𝑃 and vice versa—unless they
overlap and possibly even neutralize each other. In total, there are only 𝑑𝑇(2𝑑𝑃 + 1) = 6
changes in adjacent values of the sequence ℎ𝑗 and a single entry with ℎ𝑗 = 0 ≤ 𝑑𝑃/2.

characterization of the periodic case 29

Before proving Lemma 3.2, we characterize the values

𝛿𝐻(𝑇[𝑗|𝑄| . . 𝑗|𝑄| + 𝑚), 𝑃)

in the case that both 𝛿𝐻(𝑃, 𝑄∗) and 𝛿𝐻(𝑇, 𝑄∗) are small.

Lemma 3.3. Let 𝑃 denote a pattern of length 𝑚 and let 𝑇 denote a
text of length 𝑛 ≤ 3/2 𝑚. Further, let 𝑄 denote a string of length 𝑞 and set
𝑑𝑃 ≔ 𝛿𝐻(𝑃, 𝑄∗) and 𝑑𝑇 ≔ 𝛿𝐻(𝑇, 𝑄∗). Then, the sequence of values
ℎ𝑗 ≔ 𝛿𝐻(𝑇[𝑗𝑞 . . 𝑗𝑞 + 𝑚), 𝑃) for 0 ≤ 𝑗 ≤ (𝑛 − 𝑚)/𝑞 contains at most
𝑑𝑇(2𝑑𝑃 + 1) entries ℎ𝑗 with ℎ𝑗 ≠ ℎ𝑗+1 and, unless 𝑑𝑃 = 0, at most 2𝑑𝑇
entries ℎ𝑗 with ℎ𝑗 ≤ 𝑑𝑃/2.

Proof. First, consult Figure 3.1 for an illustration of an example.
Intuitively, first consider a pattern with 𝑑𝑃 = 0. In this case, the val-
ues ℎ𝑗 directly correspond to the mismatches between 𝑄∞ and the
corresponding fragment 𝑇[𝑗𝑞 . . 𝑗𝑞 +𝑚). Hence, ℎ𝑗 may differ from
ℎ𝑗+1 only if there is a mismatch between 𝑄 and 𝑇[𝑗𝑞 . . (𝑗 + 1)𝑞) or
between 𝑄 and 𝑇[𝑗𝑞 + 𝑚 . . (𝑗 + 1)𝑞 + 𝑚)—Hence, in total at most
𝑑𝑇 times. Now, each mismatch between 𝑃 and 𝑄∞ usually just in-
creases the corresponding values ℎ𝑗 for all 𝑗—unless such a mis-
match overlaps with a mismatch between 𝑇 and 𝑄∞; in such a
case the corresponding value ℎ𝑗 may differ from both the preced-
ing value and the following value in the sequence of the ℎ𝑗 values.
This gives the claimed bound of 𝑑𝑇 + 2𝑑𝐻𝑑𝑇.

Further, if 𝑑𝐻 > 0, then in any alignment with ℎ𝑗 ≤ 𝑑𝑃/2 at
least 𝑑𝑃/2mismatches between 𝑃 and 𝑄∞ are “neutralized” bymis-
matches between 𝑇 and 𝑄∞. As every such mismatch between 𝑇
and 𝑄∞ may “neutralize” every mismatch between 𝑃 and 𝑄∞ at
most once and there are at most 𝑑𝑃𝑑𝑇 possible “neutralizations” in
total, there are at most 𝑑𝑃𝑑𝑇/(𝑑𝑃/2) = 2𝑑𝑇 values ℎ𝑗 ≤ 𝑑𝑃/2.

Formally, for every 𝜏 ∈ Mis(𝑇, 𝑄∗) and 𝜋 ∈ Mis(𝑃, 𝑄∗), let us
put (2 − 𝛿𝐻(𝑃[𝜋], 𝑇[𝜏])) marks at position 𝜏 − 𝜋 in 𝑇. For each

30 pattern matching with mismatches: structural insights

𝑇

𝑞 𝑞

a b

𝑃 b

𝑃 b

𝑞 𝑞

1 2

ℎ3 = 2

ℎ6 = 0

Figure 3.2. The marks that we place in the example from Figure 3.1—The number
of marks are written at the corresponding position in the text with the same color as the
corresponding mismatch in 𝑇. We have

𝜇3 = 1 = 1 + 2 − 2 = 𝛿𝐻(𝑃, 𝑄∗) + 𝛿𝐻(𝑇[3𝑞 . . 3𝑞 + 𝑚), 𝑄∗) − ℎ3

and

𝜇3 = 2 = 1 + 1 − 0 = 𝛿𝐻(𝑃, 𝑄∗) + 𝛿𝐻(𝑇[6𝑞 . . 6𝑞 + 𝑚), 𝑄∗) − ℎ6.

0 ≤ 𝑗 ≤ (𝑛 − 𝑚)/𝑞, let 𝜇𝑗(𝜏, 𝜋) denote the number of marks placed
at position 𝑗𝑞 in 𝑇 due to the positions 𝜏 in 𝑇 and 𝜋 in 𝑃, that is,

𝜇𝑗(𝜏, 𝜋) ≔
⎧{
⎨{⎩

2 − 𝛿𝐻(𝑃[𝜋], 𝑇[𝜏]) if 𝜋 ∈Mis(𝑃, 𝑄∗) and
𝜏 = 𝑗𝑞 + 𝜋 ∈Mis(𝑃, 𝑄∗),

0 otherwise.

Further, define 𝜇𝑗 ≔ ∑𝜏,𝜋𝜇𝑗(𝜏, 𝜋) as the total number of marks
at position 𝑗𝑞 in 𝑇. Consult Figure 3.2 for a visualization for the
previous example.

Next, for every 0 ≤ 𝑗 ≤ (𝑛 − 𝑚)/𝑞, we relate the Hamming dis-
tance ℎ𝑗 ≔ 𝛿𝐻(𝑇[𝑗𝑞 . . 𝑗𝑞 + 𝑚), 𝑃) to the number of marks 𝜇𝑗 at po-
sition 𝑗𝑞 and the Hamming distances 𝛿𝐻(𝑇[𝑗𝑞 . . 𝑗𝑞 + 𝑚), 𝑄∗) and
𝛿𝐻(𝑃, 𝑄∗).

Claim 3.4. For each 0 ≤ 𝑗 ≤ (𝑛 − 𝑚)/𝑞, we have ℎ𝑗 = 𝛿𝐻(𝑃, 𝑄∗) +
𝛿𝐻(𝑇[𝑗𝑞 . . 𝑗𝑞 + 𝑚), 𝑄∗) − 𝜇𝑗.

characterization of the periodic case 31

Proof. By definition, it suffices to prove

|Mis(𝑇[𝑗𝑞 . . 𝑗𝑞 + 𝑚), 𝑃)|
= |Mis(𝑃, 𝑄∗)| + |Mis(𝑇[𝑗𝑞 . . 𝑗𝑞 + 𝑚), 𝑄∗)| − ∑

𝜏,𝜋
𝜇𝑗(𝜏, 𝜋).

(3.1)

By construction, we have 𝜇𝑗(𝜏, 𝜋) = 0 whenever 𝜏 ≠ 𝜋 + 𝑗𝑞. Hence,
we can prove Equation (3.1) by showing that for every position
0 ≤ 𝜋 < 𝑚 in 𝑃 and every position 𝜏 ≔ 𝑗𝑞 + 𝜋 in 𝑇, we have:

𝛿𝐻(𝑇[𝜏], 𝑃[𝜋])
= 𝛿𝐻(𝑃[𝜋], 𝑄∞[𝜋]) + 𝛿𝐻(𝑇[𝜏], 𝑄∞[𝜏]) − 𝜇𝑗(𝜏, 𝜋).

We proceed by case distinction on whether 𝜋 ∈ Mis(𝑃, 𝑄∗) and
whether 𝜏 ∈Mis(𝑇, 𝑄∗).
1 If 𝜋 ∉ Mis(𝑃, 𝑄∗) and 𝜏 ∉ Mis(𝑇, 𝑄∗), then we have 𝑃[𝜋] =

𝑄∞[𝜋] = 𝑄∞[𝜏] = 𝑇[𝜏] and thus

𝛿𝐻(𝑇[𝜏], 𝑃[𝜋]) = 0 = 0 + 0 − 0
= 𝛿𝐻(𝑃[𝜋], 𝑄∞[𝜋]) + 𝛿𝐻(𝑇[𝜏], 𝑄∞[𝜏]) − 𝜇𝑗(𝜏, 𝜋).

2 If 𝜋 ∈ Mis(𝑃, 𝑄∗) and 𝜏 ∉ Mis(𝑇, 𝑄∗), then we have 𝑃[𝜋] ≠
𝑄∞[𝜋] = 𝑄∞[𝜏] = 𝑇[𝜏] and thus

𝛿𝐻(𝑇[𝜏], 𝑃[𝜋]) = 1 = 1 + 0 − 0
= 𝛿𝐻(𝑃[𝜋], 𝑄∞[𝜋]) + 𝛿𝐻(𝑇[𝜏], 𝑄∞[𝜏]) − 𝜇𝑗(𝜏, 𝜋).

3 If 𝜋 ∉ Mis(𝑃, 𝑄∗) and 𝜏 ∈ Mis(𝑇, 𝑄∗), then we have 𝑃[𝜋] =
𝑄∞[𝜋] = 𝑄∞[𝜏] ≠ 𝑇[𝜏] and thus

𝛿𝐻(𝑇[𝜏], 𝑃[𝜋]) = 1 = 0 + 1 − 0
= 𝛿𝐻(𝑃[𝜋], 𝑄∞[𝜋]) + 𝛿𝐻(𝑇[𝜏], 𝑄∞[𝜏]) − 𝜇𝑗(𝜏, 𝜋).

32 pattern matching with mismatches: structural insights

4 If 𝜋 ∈ Mis(𝑃, 𝑄∗) and 𝜏 ∈ Mis(𝑇, 𝑄∗), then we have 𝑃[𝜋] ≠
𝑄∞[𝜋] = 𝑄∞[𝜏] ≠ 𝑇[𝜏] and thus

𝛿𝐻(𝑇[𝜏], 𝑃[𝜋]) = 1 + 1 − (2 − 𝛿𝐻(𝑇[𝜏], 𝑃[𝜋]))
= 𝛿𝐻(𝑃[𝜋], 𝑄∞[𝜋]) + 𝛿𝐻(𝑇[𝜏], 𝑄∞[𝜏]) − 𝜇𝑗(𝜏, 𝜋).

Combining the equations obtained for every pair of positions𝜋 and
𝜏, we derive Equation (3.1).

In particular, Claim 3.4 yields

ℎ𝑗+1 − ℎ𝑗 = |Mis(𝑇, 𝑄∗) ∩ [𝑗𝑞 + 𝑚 . . (𝑗 + 1)𝑞 + 𝑚)|
− |Mis(𝑇, 𝑄∗) ∩ [𝑗𝑞 . . (𝑗 + 1)𝑞)| − 𝜇𝑗+1 + 𝜇𝑗.

Hence, in order for ℎ𝑗+1 not to equal ℎ𝑗, at least one of the four
terms on the right hand side of the equation above must be non-
zero. Let us analyze when this is possible. To that end, we first
observe that the setMis(𝑇, 𝑄∗)∩[𝑗𝑞+𝑚 . . (𝑗+1)𝑞+𝑚) contains only
elements 𝜏 ∈Mis(𝑇, 𝑄∗) with 𝜏 ≥ 𝑚, and that the setMis(𝑇, 𝑄∗)∩
[𝑗𝑞 . . (𝑗+1)𝑞) contains only elements 𝜏 ∈Mis(𝑇, 𝑄∗)with 𝜏 < 𝑛−𝑚.
Using 𝑛 ≤ 3/2 𝑚, we observe that ℎ𝑗+1 can be different from ℎ𝑗 due to
the first or second term at most 𝑑𝑇 times. Further, each non-zero
value in one of the terms 𝜇𝑗+1 and 𝜇𝑗 can be attributed to a marked
position (𝑗𝑞 or (𝑗 + 1)𝑞, respectively). The total number of marked
positions is 𝑑𝑃𝑑𝑇, so ℎ𝑗+1 can be different from ℎ𝑗 due one of the
terms 𝜇𝑗+1 or 𝜇𝑗 at most 2𝑑𝑃𝑑𝑇 times. In total, we conclude that the
number of entries ℎ𝑗 with ℎ𝑗 ≠ ℎ𝑗+1 is at most 𝑑𝑇(2𝑑𝑃 + 1).

Next, observe that

𝜇𝑗 ≤ 2|Mis(𝑇, 𝑄∗) ∩ [𝑗𝑞 . . 𝑗𝑞 + 𝑚)| = 2𝛿𝐻(𝑇[𝑗𝑞 . . 𝑗𝑞 + 𝑚), 𝑄∗),

and therefore

ℎ𝑗 = 𝛿𝐻(𝑃, 𝑄∗) + 𝛿𝐻(𝑇[𝑗𝑞 . . 𝑗𝑞 + 𝑚), 𝑄∗) − 𝜇𝑗 ≥ 𝑑𝑃 − 𝜇𝑗/2.

characterization of the periodic case 33

Hence, ℎ𝑗 ≤ 𝑑𝑃/2 yields 𝜇𝑗 ≥ 𝑑𝑃, that is, that there are at least 𝑑𝑃
marks at position 𝑗𝑞. As the total number of marks is at most 2𝑑𝑃𝑑𝑇,
the number of entries ℎ𝑗 with ℎ𝑗 ≤ 𝑑𝑃/2 is at most 2𝑑𝑇.

We are now ready to consider a more general case, where only
𝛿𝐻(𝑃, 𝑄∗) is small, that is, we are ready to prove Lemma 3.2.

Lemma 3.2. Let 𝑃 denote a string of length 𝑚, let 𝑇 denote a string
of length 𝑛 ≤ 3/2 𝑚, and let 𝑘 ≤ 𝑚 denote a non-negative integer. Suppose
that both 𝑇[0 . . 𝑚) and 𝑇[𝑛 − 𝑚 . . 𝑛) are 𝑘-mismatch occurrences of 𝑃,
that is, {0, 𝑛 − 𝑚} ⊆ Occ𝐻

𝑘 (𝑃, 𝑇). If there are a positive integer 𝑑 ≥ 2𝑘
and a primitive string 𝑄 with |𝑄| ≤ 𝑚/8𝑑 and 𝛿𝐻(𝑃, 𝑄∗) ≤ 𝑑, then each
of following holds:

1 Every position in Occ𝐻
𝑘 (𝑃, 𝑇) is a multiple of |𝑄|.

2 The string 𝑇 satisfies 𝛿𝐻(𝑇, 𝑄∗) ≤ 3𝑑.
3 The set Occ𝐻

𝑘 (𝑃, 𝑇) can be decomposed into 3𝑑(𝑑 + 1) arithmetic pro-
gressions with difference |𝑄|.

4 If 𝛿𝐻(𝑃, 𝑄∗) = 𝑑, then |Occ𝐻
𝑘 (𝑃, 𝑇)| ≤ 6𝑑.

Proof. Consider anyposition ℓ ∈ Occ𝐻
𝑘 (𝑃, 𝑇). By definition of a

𝑘-mismatch occurrence, we have

𝛿𝐻(𝑇[ℓ . . ℓ + 𝑚), 𝑃) ≤ 𝑘 ≤ 𝑑/2.

Combining this inequality with 𝛿𝐻(𝑃, 𝑄∗) ≤ 𝑑 via the triangle in-
equality (Lemma 1.1) yields 𝛿𝐻(𝑇[ℓ . . ℓ+𝑚), 𝑄∗) ≤ 3/2 𝑑. Note that
similarly for the position 0 ∈ Occ𝐻

𝑘 (𝑃, 𝑇), we obtain

𝛿𝐻(𝑇[0 . . 𝑚), 𝑄∗) ≤ 3/2 𝑑,

34 pattern matching with mismatches: structural insights

which lets us compare the overlapping parts of 𝑄∞. Replacing
strings by superstrings and applying the triangle inequality yields

𝛿𝐻(𝑄∞[ℓ . . 𝑚), 𝑄∞[0 . . 𝑚 − ℓ))
≤ 𝛿𝐻(𝑇[ℓ . . 𝑚), 𝑄∞[ℓ . . 𝑚)) + 𝛿𝐻(𝑇[ℓ . . 𝑚), 𝑄∞[0 . . 𝑚 − ℓ))
≤ 𝛿𝐻(𝑇[0 . . 𝑚), 𝑄∞[0 . . 𝑚)) + 𝛿𝐻(𝑇[ℓ . . ℓ + 𝑚), 𝑄∞[0 . . 𝑚))
= 𝛿𝐻(𝑇[0 . . 𝑚), 𝑄∗) + 𝛿𝐻(𝑇[ℓ . . ℓ + 𝑚), 𝑄∗)
≤ 3𝑑.

Towards a proof by contradiction, suppose that ℓ is not an integer
multiple of |𝑄|. As 𝑄 is primitive, we have

3𝑑 ≥ 𝛿𝐻(𝑄∞[ℓ . . 𝑚), 𝑄∞[0 . . 𝑚 − ℓ)) ≥ ⌊
𝑚 − ℓ
|𝑄| ⌋ ≥ ⌊

𝑚/2
𝑚/8𝑑⌋ = 4𝑑,

where the second bound follows from ℓ ≤ 𝑚/2 and |𝑄| ≤ 𝑚/8𝑑. The
contradiction yields Item 1.

In order to prove Item 2, note that 𝑛 − 𝑚 ∈ Occ𝐻
𝑘 (𝑃, 𝑇) is a mul-

tiple of |𝑄|. Consequently,

𝛿𝐻(𝑇, 𝑄∗) = 𝛿𝐻(𝑇[0 . . 𝑛 − 𝑚), 𝑄∗) + 𝛿𝐻(𝑇[𝑛 − 𝑚 . . 𝑛), 𝑄∗)
≤ 𝛿𝐻(𝑇[0 . . 𝑚), 𝑄∗) + 3/2 𝑑 ≤ 3𝑑,

which concludes the proof of Item 2.
For a proof of Items 3 and 4, we apply Lemma 3.3. Due to

Item 1, each position inOcc𝐻
𝑘 (𝑃, 𝑇) corresponds to an entry ℎ𝑗 with

ℎ𝑗 ≤ 𝑘. In particular, each block of consecutive entries ℎ𝑗, ⋯ , ℎ𝑟
not exceeding 𝑘 yields an arithmetic progression (with difference
|𝑄|) in Occ𝐻

𝑘 (𝑃, 𝑇). The number of entries ℎ𝑗 with ℎ𝑗 < 𝑘 ≤ ℎ𝑗+1 or
ℎ𝑗 > 𝑘 ≥ ℎ𝑗+1 is in total at most 3𝑑(2𝑑 + 1), so the number of arith-
metic progressions is at most 1 + 1/2 ⋅ 3𝑑(2𝑑 + 1) ≤ 3𝑑(𝑑 + 1), which
proves Item 3.

characterization of the non-periodic case 35

In order to prove Item 4, we observe that if 𝑑 = 𝛿𝐻(𝑃, 𝑄∗), then
each position in Occ𝐻

𝑘 (𝑃, 𝑇) corresponds to an entry ℎ𝑗 with ℎ𝑗 ≤
𝑘 ≤ 𝑑/2. Hence, |Occ𝐻

𝑘 (𝑃, 𝑇)| ≤ 2 ⋅ 3𝑑 ≤ 6𝑑.

Corollary 3.5. Let 𝑃 denote a pattern of length 𝑚, let 𝑇 denote a
string of length 𝑛, and let 𝑘 ≤ 𝑚 denote a non-negative integer. Suppose
that there are a positive integer 𝑑 ≥ 2𝑘 and a primitive string 𝑄 with |𝑄| ≤
𝑚/8𝑑 and 𝛿𝐻(𝑃, 𝑄∗) ≤ 𝑑. Then, the set Occ𝐻

𝑘 (𝑃, 𝑇) can be decomposed
into 6⋅𝑛/𝑚⋅𝑑(𝑑+1) arithmetic progressionswith difference |𝑄|. Moreover,
if 𝛿𝐻(𝑃, 𝑄∗) = 𝑑, then |Occ𝐻

𝑘 (𝑃, 𝑇)| ≤ 12 ⋅ 𝑛/𝑚 ⋅ 𝑑.
Proof. Partition the string 𝑇 into ⌊2𝑛/𝑚⌋ blocks 𝑇0, … , 𝑇⌊2𝑛/𝑚⌋−1

of length less than 3/2 𝑚 each, where the 𝑖-th block starts at position
⌊𝑖 ⋅ 𝑚/2⌋, that is, 𝑇𝑖 ≔ 𝑇[⌊𝑖 ⋅ 𝑚/2⌋ . .min{𝑛, ⌊(𝑖 + 3) ⋅ 𝑚/2⌋ − 1}). If
Occ𝐻

𝑘 (𝑃, 𝑇𝑖) ≠ {}, we define 𝑇′
𝑖 to be the shortest fragment of 𝑇𝑖

containing all 𝑘-mismatch occurrences of 𝑃 in 𝑇𝑖. As a result, 𝑇′
𝑖

satisfies the assumptions of Lemma 3.2. Hence,Occ𝐻
𝑘 (𝑃, 𝑇′

𝑖) can be
decomposed into 3𝑑(𝑑+1) arithmetic progressions with difference
|𝑄|, and |Occ(𝑃, 𝑇′

𝑖)| ≤ 6𝑑 if 𝛿𝐻(𝑃, 𝑄∗) = 𝑑.
In total, we conclude thatOcc𝐻

𝑘 (𝑃, 𝑇′
𝑖) can be decomposed into

6 ⋅ 𝑛/𝑚 ⋅ 𝑑(𝑑 + 1) arithmetic progressions with difference |𝑄| and
that |Occ(𝑃, 𝑇𝑖)| ≤ 12 ⋅ 𝑛/𝑚 ⋅ 𝑑 if 𝛿𝐻(𝑃, 𝑄∗) = 𝑑.

3.2 Bounding the Number of Occurrences
in the Non-Periodic Case

Having dealt with the (approximately) periodic case, we now turn
to the general case. In particular, we show that whenever the string
𝑃 is sufficiently far from being periodic, there are at most 𝑂(𝑘) oc-
currences of 𝑃 in any other string 𝑇 of length at most 3/2 𝑚.

Intuitively, we proceed (and thereby prove Theorem 3.1) as fol-
lows: We first analyze the string 𝑃 for useful structure that helps
bounding the number of occurrences of 𝑃 in any string 𝑇. If we fail
to find any special structure in 𝑃, then we observe that the string 𝑃
is already very close to a periodic string with a small period (com-
pared to |𝑃|)—a casewe understand thanks to the previous section.

We start by investigating the structure of any string 𝑃.

36 pattern matching with mismatches: structural insights

Algorithm 3.3 A constructive proof of Lemma 3.6.

1 ℬ ← {}; ℛ ← {};
2 while true do
3 Consider fragment 𝑃′ = 𝑃[𝑗 . . 𝑗 + ⌊𝑚/8𝑘⌋) of the next ⌊𝑚/8𝑘⌋ unprocessed

characters of 𝑃;
4 if per(𝑃′) > 𝑚/128𝑘 then
5 ℬ ← ℬ ∪ {𝑃′};
6 if |ℬ| = 2𝑘 then return breaks ℬ;
7 else
8 𝑄 ← 𝑃[𝑗 . . 𝑗 + per(𝑃′));
9 Search for prefix 𝑅 of 𝑃[𝑗 . . 𝑚) with 𝛿𝐻(𝑅, 𝑄∗) = ⌈8𝑘/𝑚 ⋅ |𝑅|⌉ and |𝑅| > |𝑃′|;

10 if such 𝑅 exists then
11 ℛ ← ℛ ∪ {(𝑅, 𝑄)};
12 if ∑(𝑅,𝑄) ∈ ℛ|𝑅| ≥ 3/8 ⋅ 𝑚 then
13 return repetitive regions (and their corresponding periods) ℛ;
14 else
15 Search for suffix 𝑅′ of 𝑃 with 𝛿𝐻(𝑅′, rot|𝑅′|−𝑚+𝑗(𝑄)∗) = ⌈8𝑘/𝑚 ⋅ |𝑅′|⌉ and

|𝑅′| ≥ 𝑚 − 𝑗;
16 if such 𝑅′ exists then return repetitive region (𝑅′, rot|𝑅′|−𝑚+𝑗(𝑄));
17 else return approximate period rot𝑗(𝑄);

characterization of the non-periodic case 37

Lemma 3.6. Let 𝑃 denote a string of length 𝑚 and let 𝑘 ≤ 𝑚 denote a
positive integer. Then, at least one of the following holds:

1 The string 𝑃 contains 2𝑘 disjoint breaks 𝐵1, … , 𝐵2𝑘 each having peri-
ods per(𝐵𝑖) > 𝑚/128𝑘 and length |𝐵𝑖| = ⌊𝑚/8𝑘⌋.

2 The string 𝑃 contains disjoint repetitive regions 𝑅1, … , 𝑅𝑟 of total
length∑𝑟

𝑖=1 |𝑅𝑖| ≥ 3/8 ⋅𝑚 such that each region𝑅𝑖 satisfies |𝑅𝑖| ≥ 𝑚/8𝑘
and has a primitive approximate period 𝑄𝑖 with |𝑄𝑖| ≤ 𝑚/128𝑘 and
𝛿𝐻(𝑅𝑖, 𝑄∗

𝑖) = ⌈8𝑘/𝑚 ⋅ |𝑅𝑖|⌉.
3 The string𝑃 has a primitive approximate period𝑄 that satisfies |𝑄| ≤

𝑚/128𝑘 and 𝛿𝐻(𝑃, 𝑄∗) < 8𝑘.

Proof. We prove the claim constructively, that is, we either con-
struct a set ℬ of 2𝑘 breaks, a set ℛ of repetitive regions, or if we fail
to do so, detect that the string 𝑃 has an approximate period 𝑄 with
the desired properties.

We process the string 𝑃 from left to right as follows: If the frag-
ment 𝑃′ of the next ⌊𝑚/8𝑘⌋ (unprocessed) characters of 𝑃 has a
long period, we have found a new break and continue (or return
the found set of 2𝑘 breaks). Otherwise, if 𝑃′ has a short period 𝑄,
we try to extend the fragment 𝑃′ (to the right) into a repetitive re-
gion. If we succeed, we have found a new repetitive region and
continue (or return the found set of repetitive regions if the total
length of all repetitive regions found so far is at least 3/8 ⋅ 𝑚). If
we fail to construct a new repetitive region, then we conclude that
the suffix of 𝑃 starting with 𝑃′ has an approximate period 𝑄. We
try to construct a repetitive region by extending this suffix to the
left, dropping all other repetitive regions computed so far. If we
fail again, we declare that 𝑄 is an approximate period of the string
𝑃. Consider Algorithm 3.3 for a detailed description.

Note that by construction, all breaks in the set ℬ and repetitive
regions in the set ℛ returned by the algorithm are disjoint and sat-
isfy the claimed properties. To prove that the algorithm is also cor-
rect when it fails to find a new repetitive region, we start by upper
bounding the length of the processed prefix of 𝑃.

38 pattern matching with mismatches: structural insights

Claim 3.7. Any new fragment 𝑃[𝑗 . . 𝑗 + ⌊𝑚/8𝑘⌋) of ⌊𝑚/8𝑘⌋ unpro-
cessed characters of 𝑃 that we consider starts at a position 𝑗 < 5/8 ⋅ 𝑚.

Proof. Whenever we turn to a new fragment 𝑃[𝑗 . . 𝑗 + ⌊𝑚/8𝑘⌋),
the string 𝑃[0 . . 𝑗) has been partitioned into breaks and repetitive
regions. The total length of breaks is less than 2𝑘⌊𝑚/8𝑘⌋ ≤ 2/8 ⋅ 𝑚,
and the total length of repetitive regions is less than 3/8 ⋅𝑚. Hence,
𝑗 < 5/8 ⋅ 𝑚, yielding the claim.

Note that Claim 3.7 also shows that whenever we consider a
new fragment 𝑃′ of ⌊𝑚/8𝑘⌋ characters, there is indeed such a frag-
ment, that is, 𝑃′ is well-defined.

Now consider the following case: For a fragment 𝑃′ = 𝑃[𝑗 . . 𝑗 +
⌊𝑚/8𝑘⌋) (that is not a break) and its corresponding period 𝑄 =
[𝑗 . . 𝑗+per(𝑃′)), we fail to obtain a new repetitive region 𝑅. In this
case, we search for a repetitive region 𝑅′ of length |𝑅′| ≥ 𝑚− 𝑗 that is
a suffix of 𝑃 and has an approximate period 𝑄′ ≔ rot|𝑅′|−𝑚+𝑗(𝑄). If
we find such an𝑅′, then |𝑅′| ≥ 𝑚−𝑗 ≥ 𝑚−5/8⋅𝑚 = 3/8⋅𝑚 byClaim3.7,
so 𝑅′ is long enough to be reported on its own. However, if we fail
to find such an 𝑅′, we need to show that rot𝑗(𝑄) can be reported
as an approximate period of 𝑃, that is, 𝛿𝐻(𝑃, rot𝑗(𝑄)∗) < 8𝑘.

We first show that 𝛿𝐻(𝑃[𝑗 . . 𝑚), 𝑄∗) < ⌈8𝑘/𝑚⋅(𝑚− 𝑗)⌉. For this,
we inductively prove that the values

𝛥𝜌 ≔ ⌈8𝑘/𝑚 ⋅ 𝜌⌉ − 𝛿𝐻(𝑃[𝑗 . . 𝑗 + 𝜌), 𝑄∗)

for |𝑃′| ≤ 𝜌 ≤ 𝑚 − 𝑗 are all at least 1. In the base case of 𝜌 = |𝑃′|, we
have 𝛥𝜌 = 1 − 0 because 𝑄 is the string period of 𝑃′. To carry out
an inductive step, suppose that 𝛥𝜌−1 ≥ 1 for some |𝑃′| < 𝜌 ≤ 𝑚 − 𝑗.
Notice that 𝛥𝜌 ≥ 𝛥𝜌−1 − 1 ≥ 0: The first term in the definition of 𝛥𝜌
has not decreased, and the term 𝛿𝐻(𝑃[𝑗 . . 𝑗 + 𝜌), 𝑄∗) may have in-
creased by at most one compared to 𝛥𝜌−1. Moreover, 𝛥𝜌 ≠ 0 be-
cause 𝑅 = 𝑃[𝑗 . . 𝑗 + 𝜌) could not be reported as a repetitive region.
Since 𝛥𝜌 is an integer, we conclude that 𝛥𝜌 ≥ 1. This inductive rea-
soning ultimately shows that 𝛥𝑚−𝑗 > 0, that is, 𝛿𝐻(𝑃[𝑗 . . 𝑚), 𝑄∗) <
⌈8𝑘/𝑚 ⋅ (𝑚 − 𝑗)⌉.

characterization of the non-periodic case 39

A symmetric argument holds for values

𝛥′
𝜌 ≔ ⌈8𝑘/𝑚 ⋅ 𝜌⌉ − 𝛿𝐻(𝑃[𝑚 − 𝜌 . . 𝑚), rot𝜌−𝑚+𝑗(𝑄)∗)

for 𝑚 − 𝑗 ≤ 𝜌 ≤ 𝑚 because no repetitive region 𝑅′ was found as an
extension of 𝑃[𝑗 . . 𝑚) to the left. Hence, 𝛿𝐻(𝑃, rot𝑗(𝑄)∗) < 8𝑘, that
is, rot𝑗(𝑄) is an approximate period of 𝑃.

In the next steps, we discuss how to exploit the structure ob-
tained by Lemma 3.6. First, we discuss the case that a string 𝑃 con-
tains 2𝑘 disjoint breaks.

Lemma 3.8. Let 𝑃 denote a pattern of length 𝑚, let 𝑇 denote a text
of length 𝑚, and let 𝑘 ≤ 𝑚 denote a positive integer. Suppose that 𝑃
that contains 2𝑘 disjoint breaks 𝐵1, … , 𝐵2𝑘 ≼ 𝑃 each satisfying per(𝐵𝑖) ≥
𝑚/128𝑘. Then, |Occ𝐻

𝑘 (𝑃, 𝑇)| ≤ 256 ⋅ 𝑛/𝑚 ⋅ 𝑘.
Proof. For every break 𝐵𝑖 = 𝑃[𝑏𝑖 . . 𝑏𝑖+ |𝐵𝑖|)wemark a position

𝑗 in 𝑇 if 𝑗 + 𝑏𝑖 ∈ Occ(𝐵𝑖, 𝑇).

Claim 3.9. We place at most 256 ⋅ 𝑛/𝑚 ⋅ 𝑘2 marks in 𝑇.
Proof. Fix a break 𝐵𝑖. Notice that positions inOcc(𝐵𝑖, 𝑇) are at

distance at least per(𝐵𝑖) from each other. Hence, for the break 𝐵𝑖,
we place at most 128 ⋅𝑛/𝑚⋅𝑘 marks in 𝑇. In total, we therefore place
at most 2𝑘 ⋅ 128𝑛/𝑚 ⋅ 𝑘 = 256 ⋅ 𝑛/𝑚 ⋅ 𝑘2 marks in 𝑇.

In a next step, we show that every 𝑘-mismatch occurrence of 𝑃
in 𝑇 starts at a position with at least 𝑘 marks.

Claim 3.10. Each position ℓ ∈ Occ𝐻
𝑘 (𝑃, 𝑇) has at least 𝑘 marks in 𝑇.

Proof. Fix an ℓ ∈ Occ𝐻
𝑘 (𝑃, 𝑇). Out of the 2𝑘 breaks, at least 𝑘

breaks are matched exactly, as not matching a break exactly incurs
at least one mismatch. If a break 𝐵𝑖 is matched exactly, then we
have ℓ + 𝑏𝑖 ∈ Occ(𝐵𝑖, 𝑇). Hence, we have placed a mark at position
ℓ. Thus, there is a mark at position ℓ for every break 𝐵𝑖 matched
exactly in the corresponding occurrence of 𝑃 in 𝑇. In total, there
are at least 𝑘 marks at position ℓ in 𝑇.

40 pattern matching with mismatches: structural insights

By Claims 3.9 and 3.10, we have |Occ𝐻
𝑘 (𝑃, 𝑇)| ≤ (256 ⋅ 𝑛/𝑚 ⋅

𝑘2)/𝑘 = 256 ⋅ 𝑛/𝑚 ⋅ 𝑘.

Second, we discuss how to use repetitive regions in the string 𝑃
to bound |Occ𝐻

𝑘 (𝑃, 𝑇)|.

Lemma 3.11. Let 𝑃 denote a string of length 𝑚, let 𝑇 denote a string
of length 𝑛, and let 𝑘 ≤ 𝑚 denote a positive integer. Suppose that 𝑃
contains disjoint repetitive regions 𝑅1, … , 𝑅𝑟 with a total length of at
least ∑𝑟

𝑖=1 |𝑅𝑖| ≥ 3/8 ⋅ 𝑚 such that each region 𝑅𝑖 satisfies |𝑅𝑖| ≥ 𝑚/8𝑘
and has a primitive approximate period 𝑄𝑖 with |𝑄𝑖| ≤ 𝑚/128𝑘 and
𝛿𝐻(𝑅𝑖, 𝑄∗

𝑖) = ⌈8𝑘/𝑚 ⋅ |𝑅𝑖|⌉. Then, |Occ𝐻
𝑘 (𝑃, 𝑇)| ≤ 576 ⋅ 𝑛/𝑚 ⋅ 𝑘.

Proof. Set 𝑚𝑅 ≔ ∑𝑟
𝑖=1 |𝑅𝑖|. For every repetitive region 𝑅𝑖 =

𝑃[𝑟𝑖 . . 𝑟𝑖 + |𝑅𝑖|), we define 𝑘𝑖 ≔ ⌊4 ⋅ |𝑅𝑖|/𝑚 ⋅ 𝑘⌋, and place |𝑅𝑖| marks
at every position 𝑗 such that 𝑗 + 𝑟𝑖 ∈ Occ𝐻

𝑘𝑖
(𝑅𝑖, 𝑇).

Claim 3.12. We place at most 192 ⋅ 𝑛/𝑚 ⋅ 𝑘 ⋅ 𝑚𝑅 marks.
Proof. We use Corollary 3.5 to bound |Occ𝐻

𝑘𝑖
(𝑅𝑖, 𝑇)|. For this,

we set 𝑑𝑖 ≔ 𝛿𝐻(𝑅𝑖, 𝑄∗
𝑖) and notice that 𝑑𝑖 = ⌈8𝑘/𝑚⋅|𝑅𝑖|⌉ ≤ 16𝑘/𝑚⋅|𝑅𝑖|

since |𝑅𝑖| ≥ 𝑚/8𝑘. Moreover, 𝑑𝑖 ≥ 2𝑘𝑖 and |𝑄𝑖| ≤ 𝑚/128𝑘 ≤ |𝑅𝑖|/8𝑑𝑖
due to 𝑑𝑖 ≤ 16𝑘/𝑚⋅ |𝑅𝑖|. Hence, the assumptions of Corollary 3.5 are
satisfied. Consequently, |Occ𝐻

𝑘𝑖
(𝑅𝑖, 𝑇)| ≤ 12 ⋅ 𝑛/|𝑅𝑖| ⋅ 𝑑𝑖 ≤ 192 ⋅ 𝑛/𝑚 ⋅ 𝑘

where the last inequality is due to 𝑑𝑖 ≤ 16𝑘/𝑚 ⋅ |𝑅𝑖|.
Therefore, due to 𝑅𝑖, we place at most 192 ⋅ 𝑛/𝑚 ⋅ 𝑘 ⋅ |𝑅𝑖| marks.

Across all repetitive regions, this sums up to 192 ⋅𝑛/𝑚⋅𝑘 ⋅𝑚𝑅, yield-
ing the claim.

In a next step, we show that every 𝑘-mismatch occurrence of 𝑃
in 𝑇 starts at a position with many marks.

Claim 3.13. Each ℓ ∈ Occ𝐻
𝑘 (𝑃, 𝑇) has at least 𝑚𝑅 − 𝑚/4 marks.

Proof. Fix an ℓ ∈ Occ𝐻
𝑘 (𝑃, 𝑇) and let 𝑘′

𝑖 ≔ 𝛿𝐻(𝑅𝑖, 𝑇[ℓ + 𝑟𝑖 . . ℓ +
𝑟𝑖 + |𝑅𝑖|)) denote the number of mismatches incurred by repetitive
region 𝑅𝑖. Further, let 𝐼 ≔ {𝑖 ∣ 𝑘′

𝑖 ≤ 𝑘𝑖} = {𝑖 ∣ 𝑘′
𝑖 ≤ 4 ⋅ |𝑅𝑖|/𝑚⋅𝑘} denote

the set of indices of all repetitive regions that are 𝑘𝑖-mismatch oc-

characterization of the non-periodic case 41

currences at the corresponding positions in 𝑇. By construction, for
each 𝑖 ∈ 𝐼, we have placed |𝑅𝑖| marks at position ℓ. Hence, the total
number of marks at position ℓ is at least ∑𝑖∈𝐼 |𝑅𝑖| = 𝑚𝑅 − ∑𝑖∉𝐼 |𝑅𝑖|.
It remains to bound the term ∑𝑖∉𝐼 |𝑅𝑖|. Intuitively, 𝑖 ∉ 𝐼 implies that
there are at least 4𝑘/𝑚 mismatches on average incurred per posi-
tion of 𝑅𝑖. Formally, using the definition of 𝐼, we obtain

∑
𝑖∉𝐼

|𝑅𝑖| = ∑
𝑖∉𝐼

4𝑚𝑘
4𝑚𝑘 ⋅ |𝑅𝑖| =

𝑚
4𝑘 ⋅ ∑

𝑖∉𝐼
(4 ⋅ |𝑅𝑖|/𝑚 ⋅ 𝑘)

<
𝑚
4𝑘 ⋅ ∑

𝑖∉𝐼
𝑘′

𝑖 ≤
𝑚
4𝑘 ⋅

𝑟
∑
𝑖=1

𝑘′
𝑖 ≤

𝑚
4 ,

where the last bound holds because, in total, all repetitive regions
incur at most ∑𝑟

𝑖=1 𝑘′
𝑖 ≤ 𝑘 mismatches (since all repetitive regions

are pairwise disjoint). Hence, the number of marks placed is at
least 𝑚𝑅 − 𝑚/4, completing the proof of the claim.

In total, by Claims 3.12 and 3.13, the number of 𝑘-mismatch oc-
currences of 𝑃 in 𝑇 is at most

Occ𝐻
𝑘 (𝑃, 𝑇) ≤ 192 ⋅ 𝑛/𝑚 ⋅ 𝑘 ⋅ 𝑚𝑅

𝑚𝑅 − 𝑚/4 .

As this bound is a decreasing function in 𝑚𝑅, the bound 𝑚𝑅 ≥ 3/8 ⋅
𝑚 yields the upper bound

Occ𝐻
𝑘 (𝑃, 𝑇) ≤ 192 ⋅ 𝑛/𝑚 ⋅ 𝑘 ⋅ 3/8 ⋅ 𝑚

3/8 ⋅ 𝑚 − 𝑚/4 = 576 ⋅ 𝑛/𝑚 ⋅ 𝑘,

completing the proof.

Lemma 3.14. Let 𝑃 denote a string of length 𝑚, let 𝑇 denote a string
of length 𝑛, and let 𝑘 ≤ 𝑚 denote a positive integer. If there is a primitive
string 𝑄 of length at most |𝑄| ≤ 𝑚/128𝑘 that satisfies 2𝑘 ≤ 𝛿𝐻(𝑃, 𝑄∗) ≤
8𝑘, then |Occ𝐻

𝑘 (𝑃, 𝑇)| ≤ 96 ⋅ 𝑛/𝑚 ⋅ 𝑘.
Proof. We apply Corollary 3.5 with 𝑑 = 𝛿𝐻(𝑃, 𝑄∗). Observe

that 𝑑 ≥ 2𝑘 and that |𝑄| ≤ 𝑚/128𝑘 ≤ 𝑚/8𝑑 due to 𝑑 ≤ 8𝑘. Hence,

42 pattern matching with mismatches: structural insights

the assumptions of Corollary 3.5 are met. Thus, |Occ𝐻
𝑘 (𝑃, 𝑇)| ≤

12 ⋅ 𝑛/𝑚 ⋅ 𝑑 ≤ 96 ⋅ 𝑛/𝑚 ⋅ 𝑘.

Gathering Lemma 3.6 and Lemmas 3.8, 3.11 and 3.14, we are
now ready to prove Theorem 3.1.

Theorem 3.1. Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛, and
a threshold 𝑘 ≤ 𝑚, at least one of the following holds:

We have |Occ𝐻
𝑘 (𝑃, 𝑇)| ≤ 576 ⋅ 𝑛/𝑚 ⋅ 𝑘.

There is a primitive 𝑄 with |𝑄| ≤ 𝑚/128𝑘 and 𝛿𝐻(𝑃, 𝑄∗) < 2𝑘.

Proof. We apply Lemma 3.6 on the string 𝑃 and proceed de-
pending on the structure found in 𝑃.

If the string 𝑃 contains 2𝑘 disjoint breaks 𝐵1, … , 𝐵2𝑘 (in the sense
of Lemma 3.6), we apply Lemma 3.8 and obtain that |Occ𝐻

𝑘 (𝑃, 𝑇)| ≤
256 ⋅ 𝑛/𝑚 ⋅ 𝑘.

If the string 𝑃 contains 𝑟 disjoint repetitive regions 𝑅1, … , 𝑅𝑟
(again, in the sense of Lemma 3.6), we apply Lemma 3.11 and ob-
tain that |Occ𝐻

𝑘 (𝑃, 𝑇)| ≤ 576 ⋅ 𝑛/𝑚 ⋅ 𝑘.
Otherwise, Lemma 3.6 ensures that there is a primitive string

𝑄 of length at most |𝑄| ≤ 𝑚/128𝑘 that satisfies 𝛿𝐻(𝑃, 𝑄∗) < 8𝑘. If
𝛿𝐻(𝑃, 𝑄∗) ≥ 2𝑘, then Lemma 3.14 yields |Occ𝐻

𝑘 (𝑃, 𝑇)| ≤ 96 ⋅ 𝑛/𝑚 ⋅ 𝑘.
If, however, 𝛿𝐻(𝑃, 𝑄∗) < 2𝑘, then we are in the second alternative
of the theorem statement.

4Algorithm: Pattern Matching with Mismatches
in the PILLAR Model

In this chapter, we implement the structural result (Theorem 3.1)
from the previous chapter to obtain the following result.

Theorem 4.1. Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛,
and a positive integer 𝑘 ≤ 𝑚, we can compute (a representation of) the set
Occ𝐻

𝑘 (𝑃, 𝑇) using 𝑂(𝑛/𝑚 ⋅ 𝑘2loglog 𝑘) time plus 𝑂(𝑛/𝑚 ⋅ 𝑘2) PILLAR

operations.

The algorithm follows the outline given by the proof of Theo-
rem 3.1: We first show how to implement Lemma 3.6 to preprocess
the given pattern 𝑃. Then, depending on the structure of 𝑃, we
(construct and) use algorithms implementing the insights from the
corresponding lemmas from the previous chapter.

4.1 Auxiliary PILLAR Model Operations for
Pattern Matching with Mismatches

We start by introducing some commonly used operations for pat-
ternmatching withmismatches and show how to implement them
efficiently in the PILLAR model.

Lemma 4.2 (MismGen(𝑆, 𝑄∗), MismGen𝑅(𝑆, ∗𝑄)). For every pair
of strings 𝑆 and 𝑄, the sets Mis(𝑆, 𝑄∗) and Mis(𝑆𝑅, (𝑄𝑅)∗) admit
(𝑂(1), 𝑂(1))-time generators.

Proof. We develop only the MismGen generator; MismGen𝑅 can
be obtained similarly.

Given strings 𝑆 and 𝑄, the generator itself just stores 𝑆, 𝑄, and
an index 𝑖 of the position after the last returned value by Next; ini-
tially, we set 𝑖 to 0.

44 pattern matching with mismatches: pillar algorithm

Algorithm 4.1 A generator for the set Mis(𝑆, 𝑄∗).

1 MismGen(𝑆, 𝑄∗)
2 return G ← {𝑆 ← 𝑆; 𝑄 ← 𝑄; 𝑖 ← 0};
3 Next(G = {𝑆; 𝑄; 𝑖})
4 if 𝑖 ≥ |𝑆| then return ⊥;
5 𝜋 ← LCP(𝑆[𝑖 . . |𝑆|), 𝑄∞[𝑖 . .));
6 𝑖 ← 𝑖 + 𝜋 + 1;
7 if 𝑖 > |𝑆| then return ⊥;
8 else return 𝑖 − 1;

We implement the Next operation by using Corollary 2.4 to
compute 𝜋 = LCP(𝑆[𝑖 . . |𝑆|), 𝑄∞[𝑖 . .)). If we observe that 𝑖 + 𝜋 =
|𝑆|, that is, if we reached the end of the string 𝑆, then we return ⊥.
Otherwise, we report 𝑖 + 𝜋 and update the index 𝑖 to 𝑖 + 𝜋 + 1. See
Algorithm 4.1 for a pseudo-code.

For the correctness, we observe that due to storing the index 𝑖,
we are able to retrieve the suffixes of 𝑆 and 𝑄 to be compared, so
the correctness follows.

For the running time, we observe that the creation of a gener-
ator is only bookkeeping, which takes constant time. Further, the
Next operation uses one call to the primitive LCP operation and a
single call to the LCP operation fromCorollary 2.4, which uses 𝑂(1)
PILLAR operations. Thus in total, the Next operation also uses 𝑂(1)
PILLAR operations, completing the proof.

Corollary 4.3 (Mismatches(𝑆, 𝑄∗)). Given strings 𝑆 and 𝑄, we
can compute the set Mis(𝑆, 𝑄∗), using 𝑂(𝛿𝐻(𝑆, 𝑄∗) + 1) primitive op-
erations in the PILLAR model.

Proof. We use a MismGen from Lemma 4.2 and call its Next op-
eration until the Next operation returns ⊥. The claim follows.

computing structure in the pattern 45

Lemma 4.4 (Verify(𝑆, 𝑇, 𝑘)). Let 𝑆 and 𝑇 denote strings with
|𝑆| = |𝑇| = 𝑚, and let 𝑘 ≤ 𝑚 denote a positive integer. Using 𝑂(𝑘)
PILLAR operations, we can check whether 𝛿𝐻(𝑆, 𝑇) ≤ 𝑘.

Proof. We use a MismGen from Lemma 4.2 and call its Next op-
eration until either the Next operation returns ⊥ (in which case we
return true) or until we obtain the (𝑘 + 1)st mismatch between 𝑆
and 𝑇 (in which case we return false). The claim follows.

4.2 Computing Structure in the Pattern

In this chapter, we show how to implement Lemma 3.6. While the
proof of Lemma 3.6 is already constructive, we still need to fill in
some implementation details.

Lemma 4.5 (Analyze(𝑃, 𝑘): Implementation of Lemma 3.6). Let
𝑃 denote a string of length𝑚 and let 𝑘 ≤ 𝑚 denote a positive integer. Then,
there is an algorithm that computes one of the following:

1 2𝑘 disjoint breaks 𝐵1, … , 𝐵2𝑘 ≼ 𝑃 that each satisfy per(𝐵𝑖) > 𝑚/128𝑘
and |𝐵𝑖| = ⌊𝑚/8𝑘⌋;

2 disjoint repetitive regions 𝑅1, … , 𝑅𝑟 ≼ 𝑃 of total length ∑𝑟
𝑖=1 |𝑅𝑖| ≥

3/8 ⋅𝑚 such that each region𝑅𝑖 satisfies |𝑅𝑖| ≥ 𝑚/8𝑘 and is constructed
along with a primitive approximate period 𝑄𝑖 such that |𝑄𝑖| ≤ 𝑚/128𝑘
and 𝛿𝐻(𝑅𝑖, 𝑄∗

𝑖) = ⌈8𝑘/𝑚 ⋅ |𝑅𝑖|⌉; or
3 a primitive approximate period 𝑄 of 𝑃 that satisfies |𝑄| ≤ 𝑚/128𝑘 and

𝛿𝐻(𝑃, 𝑄∗) < 8𝑘.

The algorithm uses 𝑂(𝑘) time plus 𝑂(𝑘) PILLAR operations.
Proof. We follow Algorithm 3.3 from the proof of Lemma 3.6:

Recall that𝑃 is processed from left to right and split into breaks and
repetitive regions. In each iteration, the algorithm first considers a
fragment of length ⌊𝑚/8𝑘⌋. This fragment either becomes the next
break (if its shortest period is long enough) or is extended to the
right to a repetitive region (otherwise). Having constructed suffi-
ciently many breaks or repetitive regions of sufficiently large total

46 pattern matching with mismatches: pillar algorithm

Algorithm 4.2 A PILLAR model implementation of Algorithm 3.3.

1 Analyze(𝑃, 𝑘)
2 𝑗 ← 0; 𝑟 ← 1; 𝑏 ← 1;
3 while true do
4 𝑗′ ← 𝑗 + ⌊𝑚/8𝑘⌋;
5 if Period(𝑃[𝑗 . . 𝑗′)) > 𝑚/128𝑘 then
6 𝐵𝑏 ← 𝑃[𝑗 . . 𝑗′);
7 if 𝑏 = 2𝑘 then return breaks 𝐵1, … , 𝐵2𝑘;
8 𝑏 ← 𝑏 + 1; 𝑗 ← 𝑗′;
9 else

10 𝑞 ← Period(𝑃[𝑗 . . 𝑗′));
11 𝑄𝑟 ← 𝑃[𝑗 . . 𝑗 + 𝑞); 𝛿 ← 0;
12 generator G ← MismGen(𝑃[𝑗 . . 𝑚), 𝑄𝑟

∗);
13 while 𝛿 < 8𝑘/𝑚 ⋅ (𝑗′ − 𝑗) and (𝜋 ← Next(G)) ≠ ⊥ do
14 𝑗′ ← 𝑗 + 𝜋 + 1; 𝛿 ← 𝛿 + 1;
15 if 𝛿 ≥ 8𝑘/𝑚 ⋅ (𝑗′ − 𝑗) then
16 𝑅𝑟 ← 𝑃[𝑗 . . 𝑗′);
17 if ∑𝑟

𝑖=1 |𝑅𝑖| ≥ 3/8 ⋅ 𝑚 then
18 return repetitive regions 𝑅1, … , 𝑅𝑟 with periods 𝑄1, … , 𝑄𝑟;
19 𝑟 ← 𝑟 + 1; 𝑗 ← 𝑗′;
20 else
21 𝑄 ← 𝑄𝑟; 𝑗″ ← 𝑗;
22 generator G′ ← MismGen

𝑅(𝑃[0 . . 𝑗), ∗𝑄);
23 while 𝛿 < 8𝑘/𝑚 ⋅ (𝑚 − 𝑗″) and (𝜋 ← Next(G′)) ≠ ⊥ do
24 𝑗″ ← 𝜋; 𝛿 ← 𝛿 + 1;
25 𝑄 ← 𝑃[𝑗 + (𝑗″ − 𝑗)mod 𝑞 . . 𝑗 + (𝑗″ − 𝑗)mod 𝑞 + 𝑞); // 𝑄 ← rot𝑗−𝑗″(𝑄)
26 if 𝛿 ≥ 8𝑘/𝑚 ⋅ (𝑚 − 𝑗″) then
27 return repetitive region 𝑃[𝑗″ . . 𝑚) with period 𝑄
28 else return approximate period 𝑄;

computing structure in the pattern 47

length, the algorithm stops. Processing the string 𝑃 in this manner
guarantees disjointness of breaks and repetitive regions. As in the
proof of Lemma 3.6, a slightly different approach is needed if the
algorithm encounters the end of 𝑃 while growing a repetitive re-
gion. If this happens, the region is also extended to the left. This
way, the algorithm either obtains a single repetitive region (which
is not necessarily disjoint with the previously created ones, so it is
returned on its own) or learns that the whole string 𝑃 is close to
being periodic.

Next, we fill inmissing details of the implementation of the pre-
vious steps in the PILLAR model. To that end, first note that the
PILLAR model includes a Period operation of checking if the pe-
riod of a string 𝑆 satisfies per(𝑆) ≤ |𝑆|/2 and computing per(𝑆)
in case of a positive answer. Since our threshold 𝑚/128𝑘 satisfies
⌊𝑚/128𝑘⌋ ≤ ⌊𝑚/8𝑘⌋/2, no specific work is required to obtain the
period of an unprocessed fragment of ⌊𝑚/8𝑘⌋ characters of 𝑃.

To compute a repetitive region starting from a fragment 𝑃′ =
𝑃[𝑗 . . 𝑗 + ⌊𝑚/8𝑘⌋) with string period 𝑄 = 𝑃′[0 . . per(𝑃′)), we use
a MismGen(𝑃[𝑗 . . 𝑚), 𝑄∗) generator from Lemma 4.2: We extend 𝑃′

up to the next mismatch between 𝑃′ and 𝑄∞ until we either reach
the end of 𝑃 or the number 𝛿 = 𝛿𝐻(𝑃′, 𝑄∗) reaches the bound 8𝑘/𝑚⋅
|𝑃′|. If we reach the end of 𝑃, we similarly extend 𝑃′ = 𝑃[𝑗 . . 𝑚) to
the left using a MismGen𝑅(𝑃[0 . . 𝑗), ∗𝑄) generator from Lemma 4.2:
Again, we always extend 𝑃′ up to the next mismatch until we reach
the start of𝑃 or the number 𝛿 = 𝛿𝐻(𝑃′, 𝑄

∗) reaches the bound 8𝑘/𝑚⋅
|𝑃′| (where 𝑄 = rot|𝑃′|−𝑚+𝑗(𝑄) is the corresponding cyclic rotation
of 𝑄). If we reach the start of the string, we return a suitable cyclic
rotation of 𝑄; otherwise we found a long repetitive region, which
we then return. ConsiderAlgorithm4.2 for a detailed pseudo-code
of the implementation.

For the correctness, since our algorithm follows the proof of
Lemma 3.6, we need to show only that our implementation of find-
ing repetitive regions correctly implements the corresponding step
in Algorithm 3.3. However, this is easy, as with each extension
of 𝑃′, the number 𝛿 may increase by at most 1. As we start with
𝛿 = 𝛿𝐻(𝑃[𝑗 . . 𝑗 + ⌊𝑚/8𝑘⌋), 𝑄∗) = 0, we thus never skip over a repet-

48 pattern matching with mismatches: pillar algorithm

itive region. Further, the fragment 𝑃′ = 𝑃[𝑗 . . 𝑗 + ⌊𝑚/8𝑘⌋) by con-
struction contains at least two repetitions of the period𝑄, sowe can
obtain each cyclic rotation of 𝑄 as a fragment of 𝑃. In particular we
indeed compute a cyclic rotation of 𝑄 in Line 25 of Algorithm 4.2.
Consequently, Algorithm 4.2 indeed correctly implements Algo-
rithm 3.3.

For the running time analysis, observe that each iteration of the
outer while loop processes at least ⌊𝑚/8𝑘⌋ characters of 𝑃, so there
are atmost𝑂(𝑘) iterations of the outerwhile loop. In each iteration,
we perform one Period operation, a constant number of Access
operations, and at most 8𝑘/𝑚⋅(𝑗′ − 𝑗) calls to the generator MismGen.
Each of these calls uses 𝑂(1) PILLAR operations, which is 𝑂(8𝑘/𝑚⋅
𝑚) = 𝑂(𝑘) in total across all iterations. Similarly, we bound the
running time of the calls to the generator MismGen𝑅: As we find
at most 8𝑘/𝑚 ⋅ 𝑚 = 8𝑘 mismatches, MismGen𝑅 uses at most 𝑂(𝑘)
operations. Thus, Algorithm 4.2 uses 𝑂(𝑘) PILLAR operations.

The remaining running time is bounded by 𝑂(𝑘) in the same
way, completing the proof.

4.3 Computing Occurrences in the Periodic Case

We continue with detailed implementations for the twomain cases
of Theorem 3.1; we start with the (almost) periodic case.

Lemma 4.6 (FindRotation(𝑘, 𝑄, 𝑆)). Let 𝑘 denote a positive
integer, let 𝑄 denote a primitive string, and let 𝑆 denote a string with
|𝑆| ≥ (2𝑘 + 1)|𝑄|. Then, we can compute a unique integer 𝑗 ∈ [0 . . |𝑄|)
such that 𝛿𝐻(𝑆, rot𝑗(𝑄)∗) ≤ 𝑘, or report ⊥ if no such integer exists, us-
ing 𝑂(𝑘) time plus 𝑂(𝑘) PILLAR operations.

Proof. For every 0 ≤ 𝑖 ≤ 2𝑘, define 𝑆𝑖 ≔ 𝑆[𝑖 |𝑄| . . (𝑖 + 1) |𝑄|).
We compute the majority of 𝑆0, … , 𝑆2𝑘 (using Fact 2.5 for checking
equality of fragments). If nomajority exists, thenwe return⊥. Oth-
erwise, we set 𝑄 to be the majority string of 𝑆0, … , 𝑆2𝑘 and check
if 𝛿𝐻(𝑆, 𝑄

∗) ≤ 𝑘 using a MismGen from Lemma 4.2. If this test suc-
ceeds, we use a Rotations operation to retrieve all 𝑗 ∈ [0 . . |𝑄|)

computing occurrences in the periodic case 49

with 𝑄 = rot𝑗(𝑄) and return any such 𝑗. If the test fails or if no
such 𝑗 is found, then we return ⊥.

For the correctness, observe that if we have 𝛿𝐻(𝑆, 𝑄
∗) ≤ 𝑘, then

at least 𝑘+1 fragments 𝑆𝑖 match 𝑄 exactly, so 𝑄 must be themajority
of 𝑆0, … , 𝑆2𝑘. Moreover, since 𝑄 is primitive, there is at most one
𝑗 ∈ [0 . . |𝑄|) with 𝑄 = rot𝑗(𝑄).

For the running time, note that we can compute the majority
of 𝑂(𝑘) elements with a classic linear-time algorithm by Boyer and
Moore [17] using 𝑂(𝑘) equality tests; as (by Fact 2.5) each equality
test takes 𝑂(1) time in the PILLAR model, we obtain the claimed
running time and hence the claim.

Lemma 4.7 (FindRelevantFragment(𝑃, 𝑇, 𝑑, 𝑄)). Let 𝑃 de-
note a pattern of length 𝑚 and let 𝑇 denote a text of length 𝑛 ≤ 3/2 𝑚.
Further, let 𝑑 denote a positive integer and let 𝑄 denote a primitive string
that satisfies |𝑄| ≤ 𝑚/8𝑑 and 𝛿𝐻(𝑃, 𝑄∗) ≤ 𝑑.

Then, using 𝑂(𝑑) time plus 𝑂(𝑑) PILLAR operations, we can report
a fragment 𝑇′ = 𝑇[ℓ . . 𝑟) such that 𝛿𝐻(𝑇′, 𝑄∗) ≤ 3𝑑 and, for every
𝑘 ≤ 𝑑/2, the set Occ𝐻

𝑘 (𝑃, 𝑇′) = {𝑝 − ℓ ∣ 𝑝 ∈ Occ𝐻
𝑘 (𝑃, 𝑇)} contains only

multiples of |𝑄|.
Proof. First, we call FindRotation from Lemma 4.6 to find the

unique integer 𝑗 such that 𝛿𝐻(𝑇[𝑛 − 𝑚 . . 𝑚), rot𝑗(𝑄)∗) ≤ 3/2 𝑑. If
no such 𝑗 exists, then we return the empty string 𝜀. Otherwise, we
proceed by computing the rightmost position 𝑟 such that 𝛿𝐻(𝑇[𝑛 −
𝑚+ 𝑗 . . 𝑟), 𝑄∗) ≤ 3/2 𝑑 and the leftmost position ℓ (with ℓ ≡ (𝑛−𝑚+ 𝑗)
(mod |𝑄|)) such that 𝛿𝐻(𝑇[ℓ . . 𝑛 − 𝑚 + 𝑗), 𝑄∗) ≤ 3/2 𝑑; afterwards,
we return the fragment 𝑇[ℓ . . 𝑟). Consider Algorithm 4.3 for im-
plementation details.

For the correctness, triangle inequality (Lemma 1.1) yields

𝛿𝐻(𝑇[𝑝 . . 𝑝 + 𝑚), 𝑄∗) ≤ 𝑘 + 𝛿𝐻(𝑃, 𝑄∗) ≤ 3/2 𝑑.

Since 𝑝 ≤ 𝑛 − 𝑚 and 𝑝 + 𝑚 ≥ 𝑚, this yields

𝛿𝐻(𝑇[𝑛 − 𝑚 . . 𝑚), rot𝑝−𝑛+𝑚(𝑄)) ≤ 3/2 𝑑.

50 pattern matching with mismatches: pillar algorithm

Algorithm 4.3 A PILLAR algorithm computing a relevant fragment 𝑇: a fragment 𝑇′

such that all 𝑘-mismatch occurrences (for any 𝑘 ≤ 𝑑/2) of 𝑃 in 𝑇 start at a position in 𝑇′

which is a multiple of |𝑄|.

1 FindRelevantFragment(𝑃, 𝑇, 𝑑, 𝑄)

2 𝑗 ← FindRotation(⌊3/2 𝑑⌋, 𝑄, 𝑇[𝑛 − 𝑚 . . 𝑚));
3 if 𝑗 = ⊥ then return 𝜀;
4 𝛿 ← 0; 𝑟 ← 𝑛 − 𝑚 + 𝑗;
5 generator G ← MismGen(𝑇[𝑛 − 𝑚 + 𝑗 . . 𝑛), 𝑄∗);
6 while 𝛿 ≤ 3/2 𝑑 and (𝜋 ← Next(G)) ≠ ⊥ do
7 𝑟 ← 𝑛 − 𝑚 + 𝑗 + 𝜋;
8 𝛿 ← 𝛿 + 1;
9 if 𝛿 ≤ 3/2 𝑑 then 𝑟 ← 𝑚;

10 𝛿′ ← 0; ℓ ← 𝑛 − 𝑚 + 𝑗; ℓ′ ← (𝑛 − 𝑚 + 𝑗) mod |𝑄|;
11 generator G′ ← MismGen

𝑅(𝑇[ℓ′ . . 𝑛 − 𝑚 + 𝑗), ∗𝑄);
12 while 𝛿′ ≤ 3/2 𝑑 and (𝜋 ← Next(G′)) ≠ ⊥ do
13 ℓ ← ℓ′ + |𝑄| ⋅ ⌈(𝜋 + 1)/|𝑄|⌉;
14 𝛿′ ← 𝛿′ + 1;
15 if 𝛿′ ≤ 3/2 𝑑 then ℓ ← ℓ′;
16 return 𝑇[ℓ . . 𝑟);

Further, we have

|𝑇[𝑛 − 𝑚 . . 𝑚)| = 2𝑚 − 𝑛 ≥ 𝑚/2 ≥ 4𝑑|𝑄| ≥ (2 ⋅ ⌊3/2 𝑑⌋ + 1)|𝑄|,

so the call to FindRotation is valid.
Hence, if the call to FindRotation returns ⊥, thenOcc𝐻

𝑘 (𝑃, 𝑇) =
{} (for each 𝑘 ≤ 𝑑/2). Otherwise, each position 𝑝 ∈ Occ𝐻

𝑘 (𝑃, 𝑇)
satisfies 𝑝 ≡ 𝑛 − 𝑚 + 𝑗 ≡ ℓ (mod |𝑄|). Further, we have

𝛿𝐻(𝑇[𝑛 − 𝑚 + 𝑗 . . 𝑝 + 𝑚), 𝑄∗) ≤ 𝛿𝐻(𝑇[𝑝 . . 𝑝 + 𝑚), 𝑄∗) ≤ 3/2 𝑑,
𝛿𝐻(𝑇[𝑝 . . 𝑛 − 𝑚 + 𝑗), 𝑄∗) ≤ 𝛿𝐻(𝑇[𝑝 . . 𝑝 + 𝑚), 𝑄∗) ≤ 3/2 𝑑.

computing occurrences in the periodic case 51

Hence, the fragment 𝑇′ = 𝑇[ℓ . . 𝑟) contains all 𝑘-mismatch occur-
rences of 𝑃 in 𝑇 (for any 𝑘 ≤ 𝑑/2), and all these occurrences start at
multiples of |𝑄| in 𝑇′. Further, we have,

𝛿𝐻(𝑇′, 𝑄∗) = 𝛿𝐻(𝑇[ℓ . . 𝑛−𝑚+𝑗), 𝑄∗)+𝛿𝐻(𝑇[𝑛−𝑚+𝑗 . . 𝑟), 𝑄∗) ≤ 3𝑑.

For the running time (and the number of PILLAR operations
used), the call to FindRotation uses 𝑂(𝑑) time plus 𝑂(𝑑) PILLAR

operations; the same is true for the usage of MismGen and MismGen𝑅.
Thus, the algorithm uses 𝑂(𝑑) time plus 𝑂(𝑑) PILLAR operations
in total, completing the proof.

Lemma 4.8 (DistancesRLE(𝑃, 𝑇, 𝑄): Impl. of Lemma 3.3). Let
𝑃 denote a pattern of length 𝑚 and let 𝑇 denote a text of length 𝑛 ≤ 3/2 𝑚.
Further, let 𝑑 denote a positive integer and let 𝑄 denote a string that sat-
isfies 𝛿𝐻(𝑃, 𝑄∗) = 𝑂(𝑑) and 𝛿𝐻(𝑇, 𝑄∗) = 𝑂(𝑑).

Then, using 𝑂(𝑑2loglog 𝑑) time plus 𝑂(𝑑) PILLAR operations, we
can compute a run-length encoded sequence of ℎ𝑗 ≔ 𝛿𝐻(𝑇[𝑗|𝑄| . . 𝑗|𝑄| +
𝑚), 𝑃) for 0 ≤ 𝑗 ≤ (𝑛 − 𝑚)/|𝑄|.

Proof. Observe that Claim 3.4 already gives rise to an algo-
rithm: Starting with ℎ0, we can obtain the value ℎ𝑗+1 from ℎ𝑗 by
adding the value

ℎ𝑗+1 − ℎ𝑗 = |Mis(𝑇, 𝑄∗) ∩ [𝑗𝑞 + 𝑚 . . (𝑗 + 1)𝑞 + 𝑚)|
− |Mis(𝑇, 𝑄∗) ∩ [𝑗𝑞 . . (𝑗 + 1)𝑞)| − 𝜇𝑗+1 + 𝜇𝑗,

where 𝜇𝑗+1 and 𝜇𝑗 are defined as in Lemma 3.3.
We implement this idea in two steps: In a first step, we compute

the values 𝜇𝑗 (using marking) and the positions of mismatches in
Mis(𝑇, 𝑄∗) (using Mismatches from Corollary 4.3). In a second
step, we use a sliding-window approach (with the positions com-
puted in the first step interpreted as events) to output the sequence
of values of ℎ𝑗. Consider the pseudo-code (Algorithm 4.4) for im-
plementation details.

52 pattern matching with mismatches: pillar algorithm

Algorithm 4.4 A PILLAR algorithm for Lemma 3.3.

1 DistancesRLE(𝑃, 𝑇, 𝑄)

// Marking phase

2 𝑀 ← {};
3 foreach 𝜏 ∈ Mismatches(𝑇, 𝑄∗) do
4 𝑀 ← 𝑀 ∪ {(𝜏 − 𝑚, 1), (𝜏, −1)};
5 foreach 𝜋 ∈ Mismatches(𝑃, 𝑄∗) do
6 𝑀 ← 𝑀 ∪ {(𝜏 −𝜋 − 1, 𝛿𝐻(𝑃[𝜋], 𝑇[𝜏]) − 2), (𝜏 −𝜋, 2 − 𝛿𝐻(𝑃[𝜋], 𝑇[𝜏]))};

// Sliding-window phase

7 sort 𝑀;
8 ℎ ← |Mismatches(𝑃, 𝑄∗)|;
9 foreach (𝑖′, 𝑤) ∈ 𝑀 with 𝑖′ < 0 do ℎ ← ℎ + 𝑤;

10 𝑖 ← 0;
11 foreach (𝑖′, 𝑤) ∈ 𝑀 with 0 ≤ 𝑖′ < 𝑛 − 𝑚 sorted by 𝑖′ do
12 Output a block of ⌈(𝑖′ + 1)/𝑞⌉ − ⌈𝑖/𝑞⌉ values ℎ;
13 𝑖 ← 𝑖′ + 1;
14 ℎ ← ℎ + 𝑤;
15 Output a block of ⌈(𝑛 − 𝑚 + 1)/𝑞⌉ − ⌈𝑖/𝑞⌉ values ℎ;

For the correctness, in the marking phase, the algorithm con-
structs a multiset 𝑀 of pairs (𝑖, 𝑤) (where 𝑖 can be interpreted
as a position in 𝑇 and 𝑤 as the weight) so that ℎ𝑗 − 𝛿𝐻(𝑃, 𝑄∗) =
𝑤(𝑀, 𝑗|𝑄|), where

𝑤(𝑀, 𝑖) ≔ ∑
{(𝑖′,𝑤)∈𝑀∣𝑖′<𝑖}

𝑤.

Specifically, for each 𝜏 ∈ Mis(𝑇, 𝑄∗), the algorithm first inserts
to 𝑀 pairs (𝜏 − 𝑚, 1) and (𝜏, −1). As a result, for each position
𝑖 with 0 ≤ 𝑖 ≤ 𝑛 − 𝑚, we have 𝑤(𝑀, 𝑖) = |Mis(𝑇, 𝑄∗) ∩ [𝑖 . . 𝑖 +
𝑚)|. In particular, if 𝑖 = 𝑗|𝑄|, then 𝑤(𝑀, 𝑖) = 𝛿𝐻(𝑇[𝑗|𝑄| . . 𝑗|𝑄| +
𝑚), 𝑄∗). Next, for each 𝜏 ∈ Mis(𝑇, 𝑄∗) and each 𝜋 ∈ Mis(𝑃, 𝑄∗),

computing occurrences in the periodic case 53

the algorithm inserts to 𝑀 pairs (𝜏 −𝜋 − 1, 𝛿𝐻(𝑃[𝜋], 𝑇[𝜏]) − 2) and
(𝜏 − 𝜋, 2 − 𝛿𝐻(𝑃[𝜋], 𝑇[𝜏])). As a result, the values 𝑤(𝑀, 𝑖) with
𝑖 ≠ 𝜏−𝜋 are not altered, whereas 𝑤(𝑀, 𝑖) for 𝑖 = 𝜏−𝜋 is decreased by
the number of marks placed in the proof of Lemma 3.3 at position
𝑖 = 𝜏 − 𝜋 of 𝑇 due to positions 𝜏 in 𝑇 and 𝜋 in 𝑃. Consequently,
we have 𝑤(𝑀, 𝑗|𝑄|) = 𝛿𝐻(𝑇[𝑗|𝑄| . . 𝑗|𝑄| +𝑚), 𝑄∗) − 𝜇𝑗, which yields
ℎ𝑗 = 𝛿𝐻(𝑃, 𝑄∗) + 𝑤(𝑀, 𝑗|𝑄|) due to Claim 3.4.

Hence, in order to construct the sequence ℎ𝑗, the algorithm sorts
the pairs in 𝑀 and determines the partial sums 𝑤(𝑀, 𝑖). In each
block of [𝑖 . . 𝑖′] of equal partial sums, the algorithm reports a block
with all ⌈(𝑖′ + 1)/𝑞⌉ − ⌈𝑖/𝑞⌉ entries ℎ𝑗 for 𝑗|𝑄| ∈ [𝑖 . . 𝑖′), which is
indeed correct.

The running time is 𝑂(𝑑2loglog 𝑑) (dominated by sorting the
set 𝑀, which contains 𝑂(𝑑2) integer pairs) plus 𝑂(𝑑) PILLAR oper-
ations (for the calls to Mismatches(𝑃, 𝑄∗) and Mismatches(𝑇, 𝑄∗)
and for accessing the mismatching positions of 𝑃 and 𝑇).

Lemma 4.9 (PerMat(𝑃, 𝑇, 𝑘, 𝑑, 𝑄): Impl. of Corollary 3.5).
Let 𝑃 denote a pattern of length 𝑚 and let 𝑇 denote a text of length 𝑛.
Further, let 𝑘 ≤ 𝑚 denote a non-negative integer, let 𝑑 ≥ 2𝑘 denote a
positive integer, and let 𝑄 denote a primitive string 𝑄 that satisfies |𝑄| ≤
𝑛/8𝑑 and 𝛿𝐻(𝑃, 𝑄∗) ≤ 𝑑.

There is an algorithm that computes the set Occ𝐻
𝑘 (𝑃, 𝑇), represented

as𝑂(𝑛/𝑚⋅𝑑2) arithmetic progressions with difference |𝑄| (or as𝑂(𝑛/𝑚⋅
𝑑) individual positions if 𝛿𝐻(𝑃, 𝑄∗) = 𝑑). The algorithm uses 𝑂(𝑛/𝑚 ⋅
𝑑2loglog 𝑑) time plus 𝑂(𝑛/𝑚 ⋅ 𝑑) PILLAR operations.

Proof. First, we split the string 𝑇 into ⌊2𝑛/𝑚⌋ blocks

𝑇𝑖 ≔ 𝑇[⌊𝑖 ⋅ 𝑚/2⌋ . .min{𝑛, ⌊(𝑖 + 3) ⋅ 𝑚/2⌋ − 1}); 0 ≤ 𝑖 < ⌊2𝑛/𝑚⌋.

For each block 𝑇𝑖, we call FindRelevantFragment(𝑃, 𝑇𝑖, 𝑑, 𝑄)

from Lemma 4.7 to obtain a fragment 𝑇′
𝑖 = 𝑇[ℓ𝑖 . . 𝑟𝑖) containing all

𝑘-mismatch occurrences of 𝑃 in 𝑇𝑖. Next, we call DistancesRLE(𝑃,
𝑇′

𝑖, 𝑄) from Lemma 4.8, yielding a run-length encoded sequence
of values ℎ𝑡 ≔ 𝛿𝐻(𝑇′

𝑖[𝑡|𝑄| . . 𝑡|𝑄| + 𝑚), 𝑃) for 0 ≤ 𝑡 ≤ (|𝑇′
𝑖 | − 𝑚)/|𝑄|.

For each run ℎ𝑡 = ⋯ = ℎ𝑡′ ≤ 𝑘, we add the arithmetic progres-

54 pattern matching with mismatches: pillar algorithm

sion {ℓ𝑖 + 𝑗 ⋅ |𝑄|}[𝑡 . . 𝑡′] to Occ𝐻
𝑘 (𝑃, 𝑇). In the end, we return the set

Occ𝐻
𝑘 (𝑃, 𝑇).
For the correctness, observe that we essentially follow the proof

of Corollary 3.5. In particular, each 𝑘-mismatch occurrence of 𝑃 in
𝑇 is contained in exactly one of the fragments 𝑇𝑖. By Lemma 4.7,
we see that 𝑇′

𝑖 contains all the 𝑘-mismatch occurrences of 𝑃 in 𝑇𝑖.
Moreover, as Occ𝐻

𝑘 (𝑃, 𝑇′
𝑖) contains only multiples of |𝑄|, each 𝑝 ∈

Occ𝐻
𝑘 (𝑃, 𝑇′

𝑖) corresponds to an entry ℎ𝑗 ≤ 𝑘. Hence, all 𝑘-mismatch
occurrences of 𝑃 in 𝑇 are found.

Next, observe that we have

ℎ𝑗 = 𝛿𝐻(𝑇[ℓ𝑖 + 𝑗|𝑄| . . ℓ𝑖 + 𝑗|𝑄| + 𝑚), 𝑃) ≤ 𝑘

whenever ℓ𝑖 + 𝑗|𝑄| is reported. Hence, there are no false positives.
If 𝛿𝐻(𝑃, 𝑄∗) = 𝑑, then for each 𝑖, the number of entries ℎ𝑗 with

ℎ𝑗 ≤ 𝑘 is 𝑂(𝑑) by Lemma 3.3, so the corresponding positions ℓ𝑖+𝑗|𝑄|
can be added to Occ𝐻

𝑘 (𝑃, 𝑇) individually.
We obtain the bounds on the overall running time from Lem-

mas 4.7 and 4.8 as we have 𝛿𝐻(𝑃, 𝑄∗) ≤ 𝑑 and 𝛿𝐻(𝑇𝑖, 𝑄∗) ≤ 3𝑑 for
each 𝑖 by Lemma 4.8.

4.4 Computing Occurrences in the Non-Periodic Case

We discuss algorithms for the non-periodic case next.

Lemma 4.10 (BreakMatches(𝑃, 𝑇, {𝐵1, … , 𝐵2𝑘}, 𝑘): Impl. of
Lemma 3.8). Let 𝑃 denote a string of length 𝑚 having 2𝑘 disjoint breaks
𝐵1, … , 𝐵2𝑘 ≼ 𝑃 each satisfying per(𝐵𝑖) ≥ 𝑚/128𝑘. Further, let 𝑇 denote
a string of length 𝑛 ≤ 3/2 𝑚.

Then, we can compute the set Occ𝐻
𝑘 (𝑃, 𝑇) using 𝑂(𝑘2loglog 𝑘) time

plus 𝑂(𝑘2) PILLAR operations.
Proof. The implementation of (the marking in the proof of)

Lemma 3.8 is straightforward: For each break 𝐵𝑖 = 𝑃[𝑏𝑖 . . 𝑏𝑖 + |𝐵𝑖|),
we use a call to ExactMatches(𝐵𝑖, 𝑇) from Lemma 2.6 to find all
exact occurrences Occ(𝐵𝑖, 𝑇). For each occurrence 𝜋 ∈ Occ(𝐵𝑖, 𝑇),
we mark position 𝜋 − 𝑏𝑖 in 𝑇. Having placed all marks, we run

computing occurrences in the non-periodic case 55

Algorithm 4.5 A PILLAR model algorithm for Lemma 3.8.

1 BreakMatches(𝑃, 𝑇, {𝐵1 = 𝑃[𝑏1 . . 𝑏1 + |𝐵1|), … , 𝐵2𝑘 = 𝑃[𝑏2𝑘 . . 𝑏2𝑘 + |𝐵2𝑘|)}, 𝑘)
2 multi-set 𝑀 ← {}; Occ𝐻

𝑘 (𝑃, 𝑇) ← {};
3 for 𝑖 ← 1 to 2𝑘 do
4 foreach 𝜏 ∈ ExactMatches(𝐵𝑖, 𝑇) do
5 𝑀 ← 𝑀 ∪ {𝜏 − 𝑏𝑖}; // Mark position 𝜏 − 𝑏𝑖 in 𝑇
6 sort 𝑀;
7 foreach 𝜋 ∈ [0 . . 𝑛 − 𝑚] that appears at least 𝑘 times in 𝑀 do
8 if Verify(𝑃, 𝑇[𝜋 . . 𝜋 + 𝑚), 𝑘) then Occ𝐻

𝑘 (𝑃, 𝑇) ← Occ𝐻
𝑘 (𝑃, 𝑇) ∪ {𝜋};

9 return Occ𝐻
𝑘 (𝑃, 𝑇);

Verify from Lemma 4.4 for every position 𝜋 ∈ [0 . . 𝑛 − 𝑚] in 𝑇
that has at least 𝑘 marks. In the end, we return all positions where
Verify confirmed a 𝑘-mismatch occurrence. See Algorithm 4.5 for
a pseudo-code.

For the correctness, note that we placedmarks as in the proof of
Lemma 3.8; in particular, by Claim 3.10, any 𝜋 ∈ Occ𝐻

𝑘 (𝑃, 𝑇) has at
least 𝑘 marks. As we verify every possible candidate using Verify,
we report no false positives, and thus the algorithm is correct.

We continue with analyzing the number of PILLAR operations
used. As every break 𝐵𝑖 has period per(𝐵𝑖) > 𝑚/128𝑘, every call
to ExactMatches uses 𝑂(𝑘) basic PILLAR operations; thus, all calls
to ExactMatches use 𝑂(𝑘2) basic operations in total. As there are
at most 𝑂(𝑘2/𝑘) = 𝑂(𝑘) positions that we verify, and every call
to Verify uses 𝑂(𝑘) PILLAR operations, the verifications use 𝑂(𝑘2)
PILLAR operations in total.

Finally, for the running time, by Claim 3.9, we place at most
𝑂(𝑘2) marks in 𝑇, so the marking step uses 𝑂(𝑘2) operations in
total. Further, finding all positions in 𝑇 with at least 𝑘 marks can be
done via a linear scan over the multiset 𝑀 of all marks after sorting
𝑀, which can be done in time 𝑂(𝑘2loglog 𝑘). Overall, Algorithm4.5
runs in time 𝑂(𝑘2loglog 𝑘) plus 𝑂(𝑘2) PILLAR operations.

56 pattern matching with mismatches: pillar algorithm

Algorithm 4.6 A PILLAR model algorithm for Lemma 3.11.

1 RepMat(𝑃, 𝑇, {(𝑅1 = 𝑃[𝑟1 . . 𝑟1 + |𝑅1|), 𝑄1) … , (𝑅𝑟 = 𝑃[𝑟𝑟 . . 𝑟𝑟 + |𝑅𝑟|), 𝑄𝑟)}, 𝑘)
2 multi-set 𝑀 ← {}; Occ𝐻

𝑘 (𝑃, 𝑇) ← {};
3 for 𝑖 ← 1 to 𝑟 do
4 foreach 𝜏 ∈ PerMat(𝑅𝑖,𝑇,⌊4 ⋅ 𝑘/𝑚 ⋅ |𝑅𝑖|⌋, ⌈8 ⋅ 𝑘/𝑚 ⋅ |𝑅𝑖|⌉, 𝑄𝑖) do
5 𝑀 ← 𝑀 ∪ {(𝜏 − 𝑟𝑖, |𝑅𝑖|)}; // Place |𝑅𝑖| marks at position 𝜏 − 𝑟𝑖 in

𝑇
6 sort 𝑀 by positions;
7 foreach 𝜋 ∈ [0 . . 𝑛 − 𝑚] appearing at least ∑(𝜋,𝑣)∈𝑀𝑣 ≥ ∑𝑟

𝑖=1|𝑅𝑖| − 𝑚/4 times in
𝑀 do

8 if Verify(𝑃, 𝑇[𝜋 . . 𝜋 + 𝑚), 𝑘) then Occ𝐻
𝑘 (𝑃, 𝑇) ← Occ𝐻

𝑘 (𝑃, 𝑇) ∪ {𝜋};
9 return Occ𝐻

𝑘 (𝑃, 𝑇);

Lemma 4.11 (RepMat(𝑃, 𝑇, {(𝑅1, 𝑄1), … , (𝑅𝑟, 𝑄𝑟)}, 𝑘): Impl.
of Lemma 3.11). Let 𝑃 denote a string of length 𝑚, let 𝑇 denote a string
of length 𝑛 ≤ 3/2 𝑚, and let 𝑘 ≤ 𝑚 denote a positive integer. Suppose that
𝑃 contains disjoint repetitive regions 𝑅1, … , 𝑅𝑟 of total length at least
∑𝑟

𝑖=1 |𝑅𝑖| ≥ 3/8 ⋅ 𝑚 such that each region 𝑅𝑖 satisfies |𝑅𝑖| ≥ 𝑚/8𝑘 and has
a primitive approximate period 𝑄𝑖 with |𝑄𝑖| ≤ 𝑚/128𝑘 and 𝛿𝐻(𝑅𝑖, 𝑄∗

𝑖) =
⌈8𝑘/𝑚 ⋅ |𝑅𝑖|⌉.

Then, we can compute the set Occ𝐻
𝑘 (𝑃, 𝑇) using 𝑂(𝑘2loglog 𝑘) time

plus 𝑂(𝑘2) PILLAR operations.
Proof. As in the proof of Lemma 3.11, set

𝑚𝑅 ≔ ∑
𝑖∈[1 . . 𝑟]

|𝑅𝑖| ≥ 3/8 ⋅ 𝑚

and define for every 1 ≤ 𝑖 ≤ 𝑟 the values

𝑘𝑖 ≔ ⌊4 ⋅ 𝑘/𝑚 ⋅ |𝑅𝑖|⌋;
𝑑𝑖 ≔ ⌈8 ⋅ 𝑘/𝑚 ⋅ |𝑅𝑖|⌉ = |Mis(𝑅𝑖, 𝑄∗

𝑖)|.

computing occurrences in the non-periodic case 57

Further, write 𝑅𝑖 = 𝑃[𝑟𝑖 . . 𝑟𝑖 + |𝑅𝑖|).
We directly implement the marking of the proof of Lemma 3.11:

For every repetitive region 𝑅𝑖, we call PerMat(𝑅𝑖, 𝑇, 𝑘𝑖, 𝑑𝑖, 𝑄𝑖) from
Lemma 4.9 to obtain the set Occ𝐻

𝑘𝑖
(𝑅𝑖, 𝑇). Next, for each position

𝜏 ∈ Occ𝐻
𝑘𝑖

(𝑅𝑖, 𝑇), we place |𝑅𝑖| marks at position 𝜏 − 𝑟𝑖. Note that
for performance reasons, instead of placing |𝑅𝑖| unweightedmarks,
we place a single mark of weight |𝑅𝑖| at position 𝜏 − 𝑟𝑖.

Having placed all marks, we run Verify from Lemma 4.4 for
every position 𝜋 ∈ [0 . . 𝑛 − 𝑚] in 𝑇 that has marks of total weight
at least 𝑚𝑟 − 𝑚/4. We return all positions where Verify confirmed
a 𝑘-mismatch occurrence. See Algorithm 4.6 for a pseudo-code.

For the correctness, first note that in every call to PerMat from
Lemma 4.9, we have

16𝑘/𝑚 ⋅ |𝑅𝑖| ≥ 𝑑𝑖 = ⌈8𝑘/𝑚 ⋅ |𝑅𝑖|⌉ = 𝛿𝐻(𝑅𝑖, 𝑄∗
𝑖) ≥ 2𝑘𝑖,

so |𝑄𝑖| ≤ 𝑚/128𝑘 ≤ |𝑅𝑖|/8𝑑𝑖; hence, we can indeed call PerMat in
this case. Further, note that we placed the marks as in the proof
of Lemma 3.11; in particular, by Claim 3.13, any 𝜋 ∈ Occ𝐻

𝑘 (𝑃, 𝑇)
has at least 𝑚𝑅 −𝑚/4marks. As we verify every possible candidate
using Verify, we report no false positives, and thus the algorithm
is correct.

For the number of PILLAR operations, observe that during the
marking step, for every repetitive region 𝑅𝑖, we call PerMat once,
and the call uses 𝑂(𝑛/|𝑅𝑖| ⋅ 𝑑𝑖) = 𝑂(𝑚/|𝑅𝑖| ⋅ 𝑘/𝑚 ⋅ |𝑅𝑖|) = 𝑂(𝑘)
PILLAR operations. Hence, the marking step uses 𝑂(𝑟 ⋅ 𝑘) = 𝑂(𝑘2)
PILLAR operations in total. Next, during the verification step, by
Claims 3.12 and 3.13, we call Verify at most 𝑂(𝑘) times. As each
call to Verify uses 𝑂(𝑘) PILLAR operations, the verification step in
total uses 𝑂(𝑘2) PILLAR operations. Overall, Algorithm 4.6 uses
𝑂(𝑘2) PILLAR operations.

58 pattern matching with mismatches: pillar algorithm

Algorithm 4.7 A PILLAR model algorithm for Theorem 3.1.

1 MismatchOccurrences(𝑃, 𝑇, 𝑘)
2 (𝐵1, … , 𝐵2𝑘 or (𝑅1, 𝑄1), … , (𝑅𝑟, 𝑄𝑟) or 𝑄) ← Analyze(𝑃, 𝑘);
3 Occ𝐻

𝑘 (𝑃, 𝑇) ← {};
4 for 𝑖 ← 0 to ⌊2𝑛/𝑚⌋ do
5 𝑇𝑖 ← 𝑇[⌊𝑖 ⋅ 𝑚/2⌋ . .min{𝑛, ⌊(𝑖 + 3) ⋅ 𝑚/2⌋ − 1});
6 if breaks 𝐵1, … , 𝐵2𝑘 exist then
7 Occ𝐻

𝑘 (𝑃, 𝑇𝑖) ← BreakMatches(𝑃, 𝑇𝑖, {𝐵1, … , 𝐵2𝑘}, 𝑘);
8 else if repetitive regions (𝑅1, 𝑄1), … , (𝑅𝑟, 𝑄𝑟) exist then
9 Occ𝐻

𝑘 (𝑃, 𝑇𝑖) ← RepMat(𝑃, 𝑇𝑖, {(𝑅1, 𝑄1), … , (𝑅𝑟, 𝑄𝑟)}, 𝑘);
10 else Occ𝐻

𝑘 (𝑃, 𝑇𝑖) ← PerMat(𝑃, 𝑇𝑖, 𝑘, 8𝑘, 𝑄);
11 Occ𝐻

𝑘 (𝑃, 𝑇) ← Occ𝐻
𝑘 (𝑃, 𝑇) ∪ {ℓ + 𝑖𝑚/2 ∶ ℓ ∈ Occ𝐻

𝑘 (𝑃, 𝑇𝑖)};
12 return Occ𝐻

𝑘 (𝑃, 𝑇);

Finally, for the running time, with similar calculations as for
the number of PILLAR operations, we see that the marking step,
including calls to PerMat, takes time

∑
𝑖

𝑂(𝑛/|𝑅𝑖|⋅𝑑2𝑖 loglog 𝑑𝑖) = ∑
𝑖

𝑂(|𝑅𝑖|/𝑚⋅𝑘2loglog 𝑘) = 𝑂(𝑘2loglog 𝑘).

Further, for every 𝑅𝑖, we place at most |Occ𝐻
𝑘𝑖

(𝑅𝑖, 𝑇)| (weighted)
marks. Using Corollary 3.5, we have

|Occ𝐻
𝑘𝑖

(𝑅𝑖, 𝑇)| = 𝑂(𝑛/|𝑅𝑖| ⋅ 𝑑𝑖) = 𝑂(𝑘).

Thus, we place |𝑀| = 𝑂(𝑘2) (weighted) marks in total. Therefore,
we can sort 𝑀 (by positions) in time 𝑂(𝑘2loglog 𝑘); afterwards, we
can find the elements with total weight at least 𝑚𝑅 − 𝑚/4 via a
linear scan over 𝑀 in time 𝑂(𝑘2). Hence, Algorithm 4.6 runs in
𝑂(𝑘2loglog 𝑘) overall time, completing the proof.

the combined algorithms 59

4.5 A PILLAR Model Algorithm for
Pattern Matching with Mismatches

Piecing together the algorithms for the various cases, we obtain a
PILLAR model algorithm for Pattern Matching with Mismatches.

Theorem 4.1. Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛,
and a positive integer 𝑘 ≤ 𝑚, we can compute (a representation of) the set
Occ𝐻

𝑘 (𝑃, 𝑇) using 𝑂(𝑛/𝑚 ⋅ 𝑘2loglog 𝑘) time plus 𝑂(𝑛/𝑚 ⋅ 𝑘2) PILLAR

operations.
Proof. First, we split 𝑇 into overlapping parts 𝑇1, … , 𝑇⌊2𝑛/𝑚⌋ of

length less than 3/2 𝑚 each. In order to compute Occ𝐻
𝑘 (𝑃, 𝑇𝑖) for

each 𝑖, we follow the structure of the proof of Theorem 3.1: We
first call Analyze(𝑃,𝑘) from Lemma 4.5. If the call to Analyze(𝑃,𝑘)
yields 2𝑘 disjoint breaks 𝐵1, … , 𝐵2𝑘 in 𝑃, we call BreakMatches(𝑃,
𝑇𝑖,{𝐵1, … , 𝐵2𝑘}, 𝑘) from Lemma 4.10. If the call to Analyze(𝑃,𝑘)
yields disjoint repetitive regions 𝑅1, … , 𝑅𝑟 (and corresponding ap-
proximate periods 𝑄1, … , 𝑄𝑟), then we call use the implementa-
tion of Lemma 4.11 RepMat(𝑃, 𝑇𝑖, {(𝑅1, 𝑄1), … , (𝑅𝑟, 𝑄𝑟)}, 𝑘) from
Lemma 4.11. Finally, if the call to Analyze(𝑃,𝑘) yields an approxi-
mate period𝑄, thenwe call PerMat(𝑃, 𝑇𝑖, 𝑘, 8𝑘,𝑄) fromLemma4.9.
We obtain Occ𝐻

𝑘 (𝑃, 𝑇) by combining the sets Occ𝐻
𝑘 (𝑃, 𝑇𝑖). Con-

sider Algorithm 4.7 for a visualization as pseudo-code.
For the correctness, first, we do not lose any occurrences by

splitting 𝑇, since every length-𝑚 fragment of 𝑇 is contained in one
of the fragments 𝑇𝑖. Second, by Lemma 4.5 and due to |𝑇𝑖| ≤ 3/2 𝑚,
the parameters in the calls to BreakMatches and RepMat each sat-
isfy the requirements. Lastly, if we use PerMat, notice that again by
Lemma 4.5 the string 𝑄 satisfies 𝛿𝐻(𝑃, 𝑄∗) ≤ 8𝑘 and |𝑄| ≤ 𝑚/128𝑘 ≤
𝑚/(8 ⋅ 8𝑘); hence, we can indeed call PerMat in this case.

For the number of PILLAR operations used, the call to Analyze

uses 𝑂(𝑘) operations, each call to BreakMatches and RepMat uses
𝑂(𝑘2) operations, and each call to PerMat uses 𝑂(𝑘) operations.
As there are at most 𝑂(𝑛/𝑚) calls to BreakMatches, RepMat, and
PerMat, we use 𝑂(𝑛/𝑚 ⋅ 𝑘2) PILLAR operations in total.

60 pattern matching with mismatches: pillar algorithm

For the running time, the call to Analyze takes𝑂(𝑘) time, where
each call to BreakMatches, RepMat, and PerMat takes 𝑂(𝑘2loglog 𝑘)
time. As there are at most 𝑂(𝑛/𝑚) calls to BreakMatches, RepMat,
and PerMat each, andwe can combine the setsOcc𝐻

𝑘 (𝑃, 𝑇𝑖) into the
set Occ𝐻

𝑘 (𝑃, 𝑇) in total time 𝑂(𝑛/𝑚 ⋅ 𝑘2), we can bound the total
running time by 𝑂(𝑛/𝑚 ⋅ 𝑘2loglog 𝑘).

Combining Lemma 2.9 and Theorem 4.1, we obtain an algo-
rithm for pattern matching with mismatches with the same run-
ning time as the algorithm of Clifford et al. [32], that is essentially
optimal when 𝑘 = 𝑂(√𝑚).1717. Strictly speaking,

the algorithm in [32]
runs in time

𝑂(𝑛 polylog(𝑚) +
𝑛/𝑚 ⋅ 𝑘2log 𝑘), so our
algorithm is slightly
faster. However, an

even better
improvement in the
logarithmic factors

was already obtained
recently in [23].

Corollary 4.12. Given a text 𝑇 of length 𝑛, a pattern 𝑃 of length
𝑚 and a threshold 𝑘, we can compute the set Occ𝐻

𝑘 (𝑃, 𝑇) in time 𝑂(𝑛 +
𝑛/𝑚 ⋅ 𝑘2loglog 𝑘).

Next, we discuss an efficient algorithm for the fully-compressed
setting. We are given an slp 𝒢𝑇 of size 𝑛 with 𝑇 = gen(𝒢𝑇), an slp
𝒢𝑃 of size 𝑚 with 𝑃 = gen(𝒢𝑇) and a threshold 𝑘 and are required
to compute the 𝑘-mismatch or 𝑘-error occurrences of 𝑃 in 𝑇.

Set 𝑁 ≔ |𝑇| + |𝑃| and 𝒳 ≔ {𝒢𝑇, 𝒢𝑃}. The overall structure
of our algorithm is as follows: We first preprocess the collection
𝒳 in 𝑂((𝑛 + 𝑚)log𝑁) time according to Theorem 2.13. Next, we
traverse 𝒢𝑇 and compute for every non-terminal 𝐴 of 𝒢𝑇 the ap-
proximate occurrences of 𝑃 in 𝑇 that “cross” 𝐴. Now, we combine
Theorem 2.13 with Theorem 4.1 to compute the occurrences. Fi-
nally, we combine the computed occurrences using dynamic pro-
gramming.

Formally, for each non-terminal 𝐴 ∈ 𝑁𝒢𝑇
, with production rule

𝐴 → 𝐵𝐶, we wish to compute all approximate occurrences of 𝑃 in
the string

gen(𝐵)[|𝑔𝑒𝑛(𝐵)| − |𝑃| + 1 . . |𝑔𝑒𝑛(𝐵)|)gen(𝐶)[0 . . |𝑃| − 1),

the combined algorithms 61

which is indeed a fragment of gen(𝒢𝑇) and is of length |2𝑃| − 2. We
can compute these approximate occurrences in time 𝑂(𝑘2log3𝑁) by
combining Theorems 2.13 and 4.1.

Other approximate occurrences in gen(𝐴) lie entirely in gen(𝐵)
or gen(𝐶); hence we compute them when considering 𝐵 and 𝐶.
(Compare [20, Theorem 4.1] for a similar algorithm.)

Now, |Occ𝐻
𝑘 (𝑃, 𝑇)| can be computed by dynamic programming

that is analogous to the dynamic programming used to compute
the length of a string generated by an slp. Further, all approximate
occurrences can be reported in time proportional to their number
by performing a traversal of PT𝒢, avoiding to explore subtrees that
correspond to fragments of 𝑇 that do not contain any approximate
occurrences.

We hence obtain the following algorithm for pattern matching
with mismatches in the fully-compressed setting.

Corollary 4.13. Let𝒢𝑇 denote an slp of size 𝑛 generating a string 𝑇,
let 𝒢𝑃 denote an slp of size 𝑚 generating a string 𝑃, let 𝑘 denote a thresh-
old, and set 𝑁 ≔ |𝑇| + |𝑃|.

Then, we can compute |Occ𝐻
𝑘 (𝑃, 𝑇)| in time 𝑂(𝑚 log𝑁+𝑛 𝑘2log3𝑁).

The elements ofOcc𝐻
𝑘 (𝑃, 𝑇) can be reported with |Occ𝐻

𝑘 (𝑃, 𝑇)| extra
time.

Finally, combining Theorems 2.15 and 4.1, we obtain an algo-
rithm for approximate pattern matching for dynamic strings.

Corollary 4.14. We can maintain a collection 𝒳 of non-empty per-
sistent strings of total length 𝑁 under the operations makestring(𝑈),
concat(𝑈, 𝑉), split(𝑈, 𝑖) requiring time 𝑂(log𝑁 + |𝑈|), 𝑂(log𝑁)
and 𝑂(log𝑁), respectively, so that given two strings 𝑃, 𝑇 ∈ 𝒳 with
|𝑃| = 𝑚 and |𝑇| = 𝑛 and a threshold 𝑘, we can compute the setOcc𝐻

𝑘 (𝑃, 𝑇)
in time 𝑂(𝑛/𝑚 ⋅ 𝑘2log2𝑁).18

18. All running time
bounds hold w.h.p.

62 pattern matching with mismatches: pillar algorithm

5Structural Insights into Pattern Matching with Edits

In this chapter, we develop insights into the structure of 𝑘-error
occurrences of a pattern𝑃 in a text𝑇. We prove the following result,
which is analogous to Theorem 3.1.

Theorem 5.1 (Compare Theorem 3.1). Given a pattern 𝑃 of length
𝑚, a text 𝑇 of length 𝑛, and a positive integer 𝑘 ≤ 𝑚, then at least one of
the following holds.

We have |⌊Occ𝐸
𝑘 (𝑃, 𝑇)/𝑘⌋| ≤ 642045 ⋅ 𝑛/𝑚 ⋅ 𝑘.

There is a primitive 𝑄 with |𝑄| ≤ 𝑚/128𝑘 and 𝛿𝐸(𝑃, ∗𝑄∗) < 2𝑘.

5.1 Characterization of the Periodic Case

Similarly to 3 , we start with the (approximately) periodic case.
Unsurprisingly, the proofs are (much) more involved.19 19. For non-expert

readers, it may be a
wise decision to first
read the other
sections and return to
this section after you
read how we use the
results from this
section.

Lemma 5.2 (Compare Lemma 3.2). Let 𝑃 denote a pattern of length
𝑚, let 𝑇 denote a text of length 𝑛, and let 𝑘 ≤ 𝑚 denote a non-negative
integer such that 𝑛 < 3/2 𝑚 + 𝑘. Suppose that the 𝑘-error occurrences of 𝑃
in 𝑇 include a prefix of 𝑇 and a suffix of 𝑇. If there are a positive integer
𝑑 ≥ 2𝑘 and a primitive string 𝑄 with |𝑄| ≤ 𝑚/8𝑑 and 𝛿𝐸(𝑃, 𝑄∗) =
𝛿𝐸(𝑃, ∗𝑄∗) ≤ 𝑑, then each of following holds:

1 For every 𝑝 ∈ Occ𝐸
𝑘 (𝑃, 𝑇), we have 𝑝 mod |𝑄| ≤ 3𝑑 or 𝑝 mod |𝑄| ≥

|𝑄| − 3𝑑.
2 The string 𝑇 satisfies 𝛿𝐸(𝑇, ∗𝑄∗) ≤ 3𝑑.
3 If 𝛿𝐸(𝑃, ∗𝑄∗) = 𝑑, then |⌊Occ𝐸

𝑘 (𝑃, 𝑇)/𝑑⌋| ≤ 304𝑑.
4 The set Occ𝐸

𝑘 (𝑃, 𝑇) can be decomposed into 617𝑑3 arithmetic progres-
sions with difference |𝑄|.

64 pattern matching with edits: structural insights

Lemma 5.3. Let 𝑘 denote a positive integer, let 𝑄 denote a primitive
string, and let 𝑆 denote a string of length |𝑆| ≥ (2𝑘 + 1)|𝑄|. If there
are integers ℓ ≤ 𝑟 and ℓ′ ≤ 𝑟′ such that 𝛿𝐸(𝑆, 𝑄∞[ℓ . . 𝑟)) ≤ 𝑘 and
𝛿𝐸(𝑆, 𝑄∞[ℓ′ . . 𝑟′)) ≤ 𝑘, then there are integers 𝑗, 𝑗′ and a decomposition
𝑆 = 𝑆𝐿 𝑆𝑅 that satisfy

𝛿𝐸(𝑆, 𝑄∞[ℓ . . 𝑟))
= 𝛿𝐸(𝑆𝐿, 𝑄∞[ℓ . . 𝑗|𝑄|)) + 𝛿𝐸(𝑆𝑅, 𝑄∞[𝑗|𝑄| . . 𝑟)) and

𝛿𝐸(𝑆, 𝑄∞[ℓ′ . . 𝑟′))
= 𝛿𝐸(𝑆𝐿, 𝑄∞[ℓ′ . . 𝑗′|𝑄|)) + 𝛿𝐸(𝑆𝑅, 𝑄∞[𝑗′|𝑄| . . 𝑟′)).

If |𝑄| = 1, then the assumption |𝑆| ≥ (2𝑘 + 1)|𝑄| is not required.
Proof. If |𝑄| = 1, we can set 𝑆𝐿 ≔ 𝑆, 𝑆𝑅 ≔ 𝜀, 𝑗 ≔ 𝑟, and 𝑗′ ≔ 𝑟′.
Now assume that we have |𝑆| ≥ (2𝑘 + 1)|𝑄| and define 𝑆𝑖 ≔

𝑆[𝑖|𝑄| . . (𝑖 + 1)|𝑄|) for 0 ≤ 𝑖 ≤ 2𝑘. Further, fix optimal alignments
between 𝑆 and 𝑄∞[ℓ . . 𝑟) and between 𝑆 and 𝑄∞[ℓ′ . . 𝑟′).

Observe that at least one of the fragments 𝑆𝑖 is aligned without
errors in both alignments. Let us fix such a fragment 𝑆𝑖 and observe
that 𝑆𝑖 is a length-|𝑄| substring of 𝑄∞, so 𝑆𝑖 = rot𝑝(𝑄) for some
𝑝 ∈ [0 . . |𝑄|). Based on this value, we set 𝑆𝐿 ≔ 𝑆[0 . . 𝑖|𝑄| + 𝑝) and
𝑆𝑅 ≔ 𝑆[𝑖|𝑄| + 𝑝 . . |𝑆|).

Next, consider the fragment 𝑄′ of 𝑄∞[ℓ . . 𝑟) that is aligned to
𝑆𝑖 in the alignment fixed earlier. The fragment 𝑄′ matches rot𝑝(𝑄).
As 𝑄 is primitive, 𝑄′ is thus of the form 𝑄′ = 𝑄∞[𝑗|𝑄| − 𝑝 . . (𝑗 +
1)|𝑄| − 𝑝) for some integer 𝑗. Hence,

𝛿𝐸(𝑆, 𝑄∞[ℓ . . 𝑟)) = 𝛿𝐸(𝑆𝐿, 𝑄∞[ℓ . . 𝑗|𝑄|))+𝛿𝐸(𝑆𝑅, 𝑄∞[𝑗|𝑄| . . 𝑟)).

A similar argument shows that for some integer 𝑗′, we also have

𝛿𝐸(𝑆, 𝑄∞[ℓ′ . . 𝑟′))
= 𝛿𝐸(𝑆𝐿, 𝑄∞[ℓ′ . . 𝑗′|𝑄|)) + 𝛿𝐸(𝑆𝑅, 𝑄∞[𝑗′|𝑄| . . 𝑟′)).

This completes the proof.

characterization of the periodic case 65

Lemma 5.4. Let 𝑇 denote a text of length 𝑛, let 𝑘 denote a positive
integer, and let 𝑄 denote a primitive string. Suppose that for integers
𝑝 ≤ 𝑞, 𝑥 ≤ 𝑦, and 𝑥′ ≤ 𝑦′ we have

𝛿𝐸(𝑇[0 . . 𝑞), 𝑄∞[𝑥 . . 𝑦)) ≤ 𝑘 and
𝛿𝐸(𝑇[𝑝 . . 𝑛), 𝑄∞[𝑥′ . . 𝑦′)) ≤ 𝑘.

If |𝑄| = 1 or 𝑞 − 𝑝 ≥ (2𝑘 + 1)|𝑄|, then for some 𝑥″ ≡ 𝑥′ (mod |𝑄|) and
𝑦″ ≡ 𝑦′ (mod |𝑄|), and (𝑝 + 𝑥 − 𝑥′ + 2𝑘) mod |𝑄| ≤ 4𝑘, we have

𝛿𝐸(𝑇, 𝑄∞[𝑥″ . . 𝑦)) = 𝛿𝐸(𝑇, 𝑄∞[𝑥 . . 𝑦″)) ≤ 2𝑘.

Proof. Observe that, for some integer 𝑧 ∈ [𝑥 . . 𝑦], we have

𝛿𝐸(𝑇[0 . . 𝑞), 𝑄∞[𝑥 . . 𝑦))
= 𝛿𝐸(𝑇[0 . . 𝑝), 𝑄∞[𝑥 . . 𝑧)) + 𝛿𝐸(𝑇[𝑝 . . 𝑞), 𝑄∞[𝑧 . . 𝑦)).

Similarly, for some integer 𝑧′ ∈ [𝑥′ . . 𝑦′], we have

𝛿𝐸(𝑇[𝑝 . . 𝑛), 𝑄∞[𝑥′ . . 𝑦′)) =
𝛿𝐸(𝑇[𝑝 . . 𝑞), 𝑄∞[𝑥′ . . 𝑧′)) + 𝛿𝐸(𝑇[𝑞 . . 𝑛), 𝑄∞[𝑧′ . . 𝑦′)).

Now, Lemma 5.3 applied to 𝑆 ≔ 𝑇[𝑝 . . 𝑞) yields an integer 𝑟 ∈
[𝑝 . . 𝑞] and integers 𝑗, 𝑗′ such that

𝛿𝐸(𝑇[𝑝 . . 𝑞), 𝑄∞[𝑧 . . 𝑦))
= 𝛿𝐸(𝑇[𝑝 . . 𝑟), 𝑄∞[𝑧 . . 𝑗|𝑄|))
+ 𝛿𝐸(𝑇[𝑟 . . 𝑞), 𝑄∞[𝑗|𝑄| . . 𝑦)), and

𝛿𝐸(𝑇[𝑝 . . 𝑞), 𝑄∞[𝑥′ . . 𝑧′))
= 𝛿𝐸(𝑇[𝑝 . . 𝑟), 𝑄∞[𝑥′ . . 𝑗′|𝑄|))
+ 𝛿𝐸(𝑇[𝑟 . . 𝑞), 𝑄∞[𝑗′|𝑄| . . 𝑧′)).

66 pattern matching with edits: structural insights

This implies that

𝛿𝐸(𝑇[0 . . 𝑟), 𝑄∞[𝑥 . . 𝑗|𝑄|))
= 𝛿𝐸(𝑇[0 . . 𝑝), 𝑄∞[𝑥 . . 𝑧))
+ 𝛿𝐸(𝑇[𝑝 . . 𝑟), 𝑄∞[𝑧 . . 𝑗|𝑄|)) ≤ 𝑘, and

𝛿𝐸(𝑇[𝑟 . . 𝑛), 𝑄∞[𝑗′|𝑄| . . 𝑦′))
= 𝛿𝐸(𝑇[𝑟 . . 𝑞), 𝑄∞[𝑗′|𝑄| . . 𝑧′))
+ 𝛿𝐸([𝑞 . . 𝑛), 𝑄∞[𝑧′ . . 𝑦′)) ≤ 𝑘.

Combining the equations yields

𝛿𝐸(𝑇, 𝑄∞[𝑥 + (𝑗′ − 𝑗)|𝑄| . . 𝑦′))
= 𝛿𝐸(𝑇, 𝑄∞[𝑥 . . 𝑦′ + (𝑗 − 𝑗′)|𝑄|))
≤ 𝛿𝐸(𝑇[0 . . 𝑟), 𝑄∞[𝑥 . . 𝑗|𝑄|)) + 𝛿𝐸(𝑇[𝑟 . . 𝑛), 𝑄∞[𝑗′|𝑄| . . 𝑦′))
≤ 2𝑘.

We deduce |𝑗|𝑄| − 𝑥 − 𝑟| ≤ 𝑘 and |𝑗′|𝑄| − 𝑥′ − 𝑟 + 𝑝| ≤ 𝑘, which yields
|𝑝+𝑥−𝑥′−(𝑗−𝑗′)|𝑄|| ≤ 2𝑘, and thus (𝑝+𝑥−𝑥′+2𝑘) mod |𝑄| ≤ 4𝑘.

Definition 5.5. Let 𝑆 denote a string and let 𝑄 denote a primitive
string. We say that a fragment 𝐿 of 𝑆 is locked (with respect to 𝑄) if at
least one of the following holds:

For some integer 𝛼, we have 𝛿𝐸(𝐿, ∗𝑄∗) = 𝛿𝐸(𝐿, 𝑄𝛼).
The fragment 𝐿 is a suffix of 𝑆 and 𝛿𝐸(𝐿, ∗𝑄∗) = 𝛿𝐸(𝐿, 𝑄∗).
The fragment 𝐿 is a prefix of 𝑆 and 𝛿𝐸(𝐿, ∗𝑄∗) = 𝛿𝐸(𝐿, ∗𝑄).
We have 𝐿 = 𝑆.

The notion of locked fragments was also used in [33]. In order
to develop some intuition, let us consider the following example:
Consider a string 𝑈 = 𝑄𝑘+1𝑆𝑄𝑘+1 such that 𝛿𝐸(𝑈, ∗𝑄∗) ≤ 𝑘 and 𝑄
is primitive. Then, in any optimal alignment of 𝑈 with a substring
of 𝑄∞, at least one of the leading (or trailing) 𝑘+1 occurrences of 𝑄

characterization of the periodic case 67

in 𝑈 is matched exactly and hence also all occurrences preceding it
(or succeeding it). Thus 𝑈 is locked with respect to 𝑄.

Next, we show that we can identify short locked fragments cov-
ering all errors with respect to ∗𝑄∗. Intuitively, our strategy is to
start with at most 𝑘 fragments of length |𝑄| of 𝑆 that contain all the
errors and extend and/or merge them, so that the resulting frag-
ments contain sufficiently many copies of 𝑄.

Lemma 5.6. Let 𝑆 denote a string and let 𝑄 denote a primitive string.
There are disjoint locked fragments 𝐿1, … , 𝐿ℓ ⪯ 𝑆 with 𝛿𝐸(𝐿𝑖, ∗𝑄∗) > 0
such that

𝛿𝐸(𝑆, ∗𝑄∗) =
ℓ

∑
𝑖=1

𝛿𝐸(𝐿𝑖, ∗𝑄∗) and
ℓ

∑
𝑖=1

|𝐿𝑖| ≤ (5|𝑄|+1)𝛿𝐸(𝑆, ∗𝑄∗).

Proof. Let us choose integers 𝑥 ≤ 𝑦 that satisfy

𝛿𝐸(𝑆, ∗𝑄∗) = 𝛿𝐸(𝑆, 𝑄∞[𝑥 . . 𝑦)).

Without loss of generality, we may assume that 𝑥 ∈ [0 . . |𝑄|). If
𝑦 ≤ |𝑄|, then |𝑆| ≤ |𝑄| + 𝛿𝐸(𝑆, ∗𝑄∗); thus setting the whole string 𝑆
as the sole locked fragment satisfies the claimed conditions. Hence,
we may assume that 𝑦 > |𝑄|.

An arbitrary optimum alignment of 𝑆 and 𝑄∞[𝑥 . . 𝑦) yields a
partition 𝑆 = 𝑆(0)

0 ⋯ 𝑆(0)
𝑠(0) with 𝑠(0) = ⌊(𝑦 − 1)/|𝑄|⌋ such that

𝛿𝐸(𝑆, 𝑄∞[𝑥 . . 𝑦)) =
𝑠(0)

∑
𝑖=0

𝛥(0)
𝑖 ,

68 pattern matching with edits: structural insights

where

𝛥(0)
𝑖 =

⎧{{
⎨{{⎩

𝛿𝐸(𝑆(0)
0 , 𝑄[𝑥 . . |𝑄|)) if 𝑖 = 0,

𝛿𝐸(𝑆(0)
𝑖 , 𝑄) if 0 < 𝑖 < 𝑠(0),

𝛿𝐸(𝑆(0)
𝑠(0), 𝑄[0 . . 𝑦 − 𝑠(0)|𝑄|)) if 𝑖 = 𝑠(0).

We start with this partition and then coarsen it by exhaustively
applying the merging rules specified below, where each rule is ap-
plied only if the previous rules cannot be applied. In each case, we
re-index the unchanged fragments 𝑆(𝑡)

𝑖 to obtain a new partition
𝑆 = 𝑆(𝑡+1)

0 ⋯ 𝑆(𝑡+1)
𝑠(𝑡+1) and re-index the corresponding values 𝛥(𝑡)

𝑖 ac-
cordingly. We say that a fragment 𝑆(𝑡)

𝑖 is interesting if 𝑖 = 0, 𝑖 = 𝑠(𝑡),
𝑆(𝑡)

𝑖 ≠ 𝑄, or 𝛥(𝑡)
𝑖 > 0.

1 If subsequent fragments 𝑆(𝑡)
𝑖 and 𝑆(𝑡)

𝑖+1 are both interesting, then
we merge 𝑆(𝑡)

𝑖 and 𝑆(𝑡)
𝑖+1, obtaining 𝑆(𝑡+1)

𝑖 ≔ 𝑆(𝑡)
𝑖 𝑆(𝑡)

𝑖+1 and 𝛥(𝑡+1)
𝑖 ≔

𝛥(𝑡)
𝑖 + 𝛥(𝑡)

𝑖+1.
2 If 0 < 𝑖 < 𝑠(𝑡) and 𝛥(𝑡)

𝑖 > 0, then we merge the subsequent frag-
ments 𝑆(𝑡)

𝑖−1 = 𝑄, 𝑆(𝑡)
𝑖 , and 𝑆(𝑡)

𝑖+1 = 𝑄, obtaining 𝑆(𝑡+1)
𝑖−1 ≔ 𝑆(𝑡)

𝑖−1𝑆(𝑡)
𝑖 𝑆(𝑡)

𝑖+1,
and set 𝛥(𝑡+1)

𝑖−1 ≔ 𝛥(𝑡)
𝑖 − 1.

3 If 0 < 𝑖 = 𝑠(𝑡) and 𝛥(𝑡)
𝑖 > 0, then we merge the subsequent frag-

ments 𝑆(𝑡)
𝑖−1 = 𝑄 and 𝑆(𝑡)

𝑖 , obtaining 𝑆(𝑡+1)
𝑖−1 ≔ 𝑆(𝑡)

𝑖−1𝑆(𝑡)
𝑖 , and set

𝛥(𝑡+1)
𝑖−1 ≔ 𝛥(𝑡)

𝑖 − 1.
4 If 0 = 𝑖 < 𝑠(𝑡) and 𝛥(𝑡)

𝑖 > 0, then we merge the subsequent frag-
ments 𝑆(𝑡)

𝑖 and 𝑆(𝑡)
𝑖+1 = 𝑄, obtaining 𝑆(𝑡+1)

𝑖 ≔ 𝑆(𝑡)
𝑖 𝑆(𝑡)

𝑖+1, and set
𝛥(𝑡+1)

𝑖 ≔ 𝛥(𝑡)
𝑖 − 1.

Let 𝑆 = 𝑆0 ⋯ 𝑆𝑠 denote the obtained final partition. We select as
locked fragments all the fragments 𝑆𝑖 with 𝛿𝐸(𝑆𝑖, ∗𝑄∗) > 0. Below,
we show that this selection satisfies the desired properties. We start
by proving that we indeed picked locked fragments.

Claim 5.7. Each fragment 𝑆(𝑡)
𝑖 of each partition 𝑆 = 𝑆(𝑡)

0 ⋯ 𝑆(𝑡)
𝑠(𝑡)

satisfies at least one of the following:
1 𝛿𝐸(𝑆(𝑡)

𝑖 , 𝑄𝛼) ≤ 𝛿𝐸(𝑆(𝑡)
𝑖 , ∗𝑄∗) + 𝛥(𝑡)

𝑖 for some integer 𝛼;
2 𝑖 = 𝑠(𝑡) and 𝛿𝐸(𝑆(𝑡)

𝑖 , 𝑄∗) ≤ 𝛿𝐸(𝑆(𝑡)
𝑖 , ∗𝑄∗) + 𝛥(𝑡)

𝑖 ;

characterization of the periodic case 69

3 𝑖 = 0 and 𝛿𝐸(𝑆(𝑡)
𝑖 , ∗𝑄) ≤ 𝛿𝐸(𝑆(𝑡)

𝑖 , ∗𝑄∗) + 𝛥(𝑡)
𝑖 ;

4 𝑖 = 0 = 𝑠(𝑡).
Proof. We proceed by induction on 𝑡. The base case follows

from the definition of the values 𝛥(𝑡)
𝑖 .

As for the inductive step, we assume that the claim holds for all
fragments 𝑆(𝑡)

𝑖 and we prove that it holds for all fragments 𝑆(𝑡+1)
𝑖 .

We consider several cases based on the merge rule applied.
1 For a type-1 merge of interesting fragments 𝑆(𝑡)

𝑖 and 𝑆(𝑡)
𝑖+1 into

𝑆(𝑡+1)
𝑖 , it suffices to prove that 𝑆(𝑡+1)

𝑖 satisfies the claim.

a If 0 < 𝑖 < 𝑠(𝑡+1), then 𝛿𝐸(𝑆(𝑡)
𝑖 , 𝑄𝛼) ≤ 𝛿𝐸(𝑆(𝑡)

𝑖 , ∗𝑄∗) + 𝛥(𝑡)
𝑖 and

𝛿𝐸(𝑆(𝑡)
𝑖+1, 𝑄𝛼′) ≤ 𝛿𝐸(𝑆(𝑡)

𝑖+1, ∗𝑄∗) + 𝛥(𝑡)
𝑖+1 hold by the inductive as-

sumption for some integers 𝛼, 𝛼′. Hence,

𝛿𝐸(𝑆(𝑡+1)
𝑖 , 𝑄𝛼+𝛼′)

= 𝛿𝐸(𝑆(𝑡)
𝑖 𝑆(𝑡)

𝑖+1, 𝑄𝛼𝑄𝛼′) ≤ 𝛿𝐸(𝑆(𝑡)
𝑖 , 𝑄𝛼) + 𝛿𝐸(𝑆(𝑡)

𝑖+1, 𝑄𝛼′)
≤ 𝛿𝐸(𝑆(𝑡)

𝑖 , ∗𝑄∗) + 𝛥(𝑡)
𝑖 + 𝛿𝐸(𝑆(𝑡)

𝑖+1, ∗𝑄∗) + 𝛥(𝑡)
𝑖+1

≤ 𝛿𝐸(𝑆(𝑡+1)
𝑖 , ∗𝑄∗) + 𝛥(𝑡+1)

𝑖 .

b If 0 < 𝑖 = 𝑠(𝑡+1), then 𝛿𝐸(𝑆(𝑡)
𝑖 , 𝑄𝛼) ≤ 𝛿𝐸(𝑆(𝑡)

𝑖 , ∗𝑄∗) + 𝛥(𝑡)
𝑖 and

𝛿𝐸(𝑆(𝑡)
𝑖+1, 𝑄∗) ≤ 𝛿𝐸(𝑆(𝑡)

𝑖+1, ∗𝑄∗) + 𝛥(𝑡)
𝑖+1 hold by the inductive as-

sumption for some integer 𝛼. Hence,

𝛿𝐸(𝑆(𝑡+1)
𝑖 , 𝑄∗)

= 𝛿𝐸(𝑆(𝑡)
𝑖 𝑆(𝑡)

𝑖+1, 𝑄∗) ≤ 𝛿𝐸(𝑆(𝑡)
𝑖 , 𝑄𝛼) + 𝛿𝐸(𝑆(𝑡)

𝑖+1, 𝑄∗)
≤ 𝛿𝐸(𝑆(𝑡)

𝑖 , ∗𝑄∗) + 𝛥(𝑡)
𝑖 + 𝛿𝐸(𝑆(𝑡)

𝑖+1, ∗𝑄∗) + 𝛥(𝑡)
𝑖+1

≤ 𝛿𝐸(𝑆(𝑡+1)
𝑖 , ∗𝑄∗) + 𝛥(𝑡+1)

𝑖 .

c The analysis of the case that 0 = 𝑖 < 𝑠(𝑡+1) is symmetric to that
of the above case—this can be seen by reversing all strings in
scope.

d If 0 = 𝑖 = 𝑠(𝑡+1), then the claim holds trivially.

70 pattern matching with edits: structural insights

2 For a type-2 merge of 𝑆(𝑡)
𝑖−1 , 𝑆(𝑡)

𝑖 , and 𝑆(𝑡)
𝑖+1 into 𝑆(𝑡+1)

𝑖−1 , it suffices to
prove that 𝑆(𝑡+1)

𝑖−1 satisfies the claim.

a If 𝛿𝐸(𝑆(𝑡+1)
𝑖−1 , ∗𝑄∗) > 𝛿𝐸(𝑆(𝑡)

𝑖 , ∗𝑄∗), observe that 𝛿𝐸(𝑆(𝑡)
𝑖 , 𝑄𝛼) ≤

𝛿𝐸(𝑆(𝑡)
𝑖 , ∗𝑄∗) + 𝛥(𝑡)

𝑖 holds by inductive assumption for some
integer 𝛼. Hence,

𝛿𝐸(𝑆(𝑡+1)
𝑖−1 , 𝑄𝛼+2) = 𝛿𝐸(𝑄𝑆(𝑡)

𝑖 𝑄, 𝑄𝑄𝛼𝑄)
≤ 𝛿𝐸(𝑆(𝑡)

𝑖 , 𝑄𝛼) ≤ 𝛿𝐸(𝑆(𝑡)
𝑖 , ∗𝑄∗) + 𝛥(𝑡)

𝑖

≤ 𝛿𝐸(𝑆(𝑡+1)
𝑖−1 , ∗𝑄∗) − 1 + 𝛥(𝑡)

𝑖

= 𝛿𝐸(𝑆(𝑡+1)
𝑖−1 , ∗𝑄∗) + 𝛥(𝑡+1)

𝑖−1 .

b If 𝛿𝐸(𝑆(𝑡+1)
𝑖−1 , ∗𝑄∗) = 𝛿𝐸(𝑆(𝑡)

𝑖 , ∗𝑄∗), then let 𝑥′ ≤ 𝑦′ denote in-
tegers that satisfy 𝛿𝐸(𝑆(𝑡+1)

𝑖−1 , ∗𝑄∗) = 𝛿𝐸(𝑆(𝑡+1)
𝑖−1 , 𝑄∞[𝑥′ . . 𝑦′)).

This also yields integers 𝑥″, 𝑦″ with 𝑥′ ≤ 𝑥″ ≤ 𝑦″ ≤ 𝑦′ such
that

𝛿𝐸(𝑆(𝑡+1)
𝑖−1 , 𝑄∞[𝑥′ . . 𝑦′))

= 𝛿𝐸(𝑄, 𝑄∞[𝑥′ . . 𝑥″))
+ 𝛿𝐸(𝑆(𝑡)

𝑖 , 𝑄∞[𝑥″ . . 𝑦″))
+ 𝛿𝐸(𝑄, 𝑄∞[𝑦″ . . 𝑦′)).

Due to

𝛿𝐸(𝑆(𝑡)
𝑖 , ∗𝑄∗) ≤ 𝛿𝐸(𝑆(𝑡)

𝑖 , 𝑄∞[𝑥″ . . 𝑦″))
≤ 𝛿𝐸(𝑆(𝑡+1)

𝑖−1 , 𝑄∞[𝑥′ . . 𝑦′))
= 𝛿𝐸(𝑆(𝑡+1)

𝑖−1 , ∗𝑄∗) = 𝛿𝐸(𝑆(𝑡)
𝑖 , ∗𝑄∗),

characterization of the periodic case 71

we have 𝛿𝐸(𝑄, 𝑄∞[𝑥′ . . 𝑥″)) = 0 = 𝛿𝐸(𝑄, 𝑄∞[𝑦″ . . 𝑦′)). As
the string 𝑄 is primitive, this means that 𝑥′, 𝑥″, 𝑦″, 𝑦′ are all
multiples of |𝑄|. Hence,

𝛿𝐸(𝑆(𝑡+1)
𝑖−1 , 𝑄(𝑦′−𝑥′)/|𝑄|) = 𝛿𝐸(𝑆(𝑡+1)

𝑖−1 , 𝑄∞[𝑥′ . . 𝑦′))
= 𝛿𝐸(𝑆(𝑡+1)

𝑖−1 , ∗𝑄∗)
≤ 𝛿𝐸(𝑆(𝑡+1)

𝑖−1 , ∗𝑄∗) + 𝛥(𝑡−1)
𝑖−1 .

3 For a type-3 merge of 𝑆(𝑡)
𝑖−1 and 𝑆(𝑡)

𝑖 into 𝑆(𝑡+1)
𝑖−1 , it suffices to prove

that 𝑆(𝑡+1)
𝑖−1 satisfies the claim.

a If 𝛿𝐸(𝑆(𝑡+1)
𝑖−1 , ∗𝑄∗) > 𝛿𝐸(𝑆(𝑡)

𝑖 , ∗𝑄∗), observe that 𝛿𝐸(𝑆(𝑡)
𝑖 , 𝑄∗) ≤

𝛿𝐸(𝑆(𝑡)
𝑖 , ∗𝑄∗) + 𝛥(𝑡)

𝑖 holds by inductive assumption. Hence,

𝛿𝐸(𝑆(𝑡+1)
𝑖−1 , 𝑄∗)

= 𝛿𝐸(𝑄𝑆(𝑡)
𝑖 , 𝑄∗) ≤ 𝛿𝐸(𝑆(𝑡)

𝑖 , 𝑄∗)
≤ 𝛿𝐸(𝑆(𝑡)

𝑖 , ∗𝑄∗) + 𝛥(𝑡)
𝑖 ≤ 𝛿𝐸(𝑆(𝑡+1)

𝑖−1 , ∗𝑄∗) − 1 + 𝛥(𝑡)
𝑖

= 𝛿𝐸(𝑆(𝑡+1)
𝑖−1 , ∗𝑄∗) + 𝛥(𝑡+1)

𝑖−1 .

b If 𝛿𝐸(𝑆(𝑡+1)
𝑖−1 , ∗𝑄∗) = 𝛿𝐸(𝑆(𝑡)

𝑖 , ∗𝑄∗), then let 𝑥′ ≤ 𝑦′ denote in-
tegers that satisfy 𝛿𝐸(𝑆(𝑡+1)

𝑖−1 , ∗𝑄∗) = 𝛿𝐸(𝑆(𝑡+1)
𝑖−1 , 𝑄∞[𝑥′ . . 𝑦′)).

This also yields an integer 𝑥″ with 𝑥′ ≤ 𝑥″ ≤ 𝑦′ such that

𝛿𝐸(𝑆(𝑡+1)
𝑖−1 , 𝑄∞[𝑥′ . . 𝑦′))

= 𝛿𝐸(𝑄, 𝑄∞[𝑥′ . . 𝑥″)) + 𝛿𝐸(𝑆(𝑡)
𝑖 , 𝑄∞[𝑥″ . . 𝑦′)).

Due to

𝛿𝐸(𝑆(𝑡)
𝑖 , ∗𝑄∗) ≤ 𝛿𝐸(𝑆(𝑡)

𝑖 , 𝑄∞[𝑥″ . . 𝑦′))
≤ 𝛿𝐸(𝑆(𝑡+1)

𝑖−1 , 𝑄∞[𝑥′ . . 𝑦′))
= 𝛿𝐸(𝑆(𝑡+1)

𝑖−1 , ∗𝑄∗) = 𝛿𝐸(𝑆(𝑡)
𝑖 , ∗𝑄∗),

72 pattern matching with edits: structural insights

we have 𝛿𝐸(𝑄, 𝑄∞[𝑥′ . . 𝑥″)) = 0. As the string 𝑄 is primitive,
this means that 𝑥′, 𝑥″ are both multiples of |𝑄|. Hence,

𝛿𝐸(𝑆(𝑡+1)
𝑖−1 , 𝑄∗) = 𝛿𝐸(𝑆(𝑡+1)

𝑖−1 , 𝑄∞[𝑥′ . . 𝑦′))
= 𝛿𝐸(𝑆(𝑡+1)

𝑖−1 , ∗𝑄∗)
≤ 𝛿𝐸(𝑆(𝑡+1)

𝑖−1 , ∗𝑄∗) + 𝛥(𝑡−1)
𝑖−1 .

4 The analysis of type 4 merges is symmetrical to that of type 3
merges—this can be seen by reversing all strings in scope.
This completes the proof of the inductive step.

Observe that if no merge rule can be applied to a partition 𝑆 =
𝑆(𝑡)
0 ⋯ 𝑆(𝑡)

𝑠(𝑡), then 𝑠(𝑡) = 0 or 𝛥(𝑡)
0 = ⋯ = 𝛥(𝑡)

𝑠(𝑡) = 0. Hence, Claim 5.7
implies that all fragments 𝑆𝑖 in the final partition 𝑆 = 𝑆0 ⋯ 𝑆𝑠 are
locked.

Claim 5.8. For each partition 𝑆 = 𝑆(𝑡)
0 ⋯ 𝑆(𝑡)

𝑠(𝑡), the total length 𝜆(𝑡)

of interesting fragments satisfies

𝜆(𝑡) + 2|𝑄|
𝑠(𝑡)

∑
𝑖=0

𝛥(𝑡)
𝑖 ≤ (5|𝑄| + 1)𝛿𝐸(𝑆, ∗𝑄∗).

Proof. We proceed by induction on 𝑡. In the base case of 𝑡 = 0,
each interesting fragment other than 𝑆(0)

0 and 𝑆(0)
𝑠(0) satisfies 𝛥(0)

𝑖 > 0.
Hence, the number of interesting fragments is at most

2 +
𝑠(0)

∑
𝑖=0

𝛥(0)
𝑖 = 2 + 𝛿𝐸(𝑆, ∗𝑄∗).

characterization of the periodic case 73

Further, the length of each fragment 𝑆(0)
𝑖 does not exceed |𝑄|+𝛥(0)

𝑖 .
Hence,

𝜆(0) + 2|𝑄|
𝑠(0)

∑
𝑖=0

𝛥(0)
𝑖 ≤ (2 + 𝛿𝐸(𝑆, ∗𝑄∗))|𝑄| + (2|𝑄| + 1)

𝑠(0)

∑
𝑖=0

𝛥(0)
𝑖

≤ (5|𝑄| + 1) 𝛿𝐸(𝑆, ∗𝑄∗).

This completes the proof in the base case.
As for the inductive step, it suffices to prove that

𝜆(𝑡+1) + 2|𝑄|
𝑠(𝑡+1)

∑
𝑖=0

𝛥(𝑡+1)
𝑖 ≤ 𝜆(𝑡) + 2|𝑄|

𝑠(𝑡)

∑
𝑖=0

𝛥(𝑡)
𝑖

.
1 For a type-1 merge (where wemerge two interesting fragments),

we have

𝜆(𝑡+1) + 2|𝑄|
𝑠(𝑡+1)

∑
𝑖=0

𝛥(𝑡+1)
𝑖 = 𝜆(𝑡) + 2|𝑄|

𝑠(𝑡)

∑
𝑖=0

𝛥(𝑡)
𝑖 .

2 For a type-2, type-3, or type-4 merge (where we merge a frag-
ment with its one or two non-interesting neighbors), we have

𝜆(𝑡+1) + 2|𝑄|
𝑠(𝑡+1)

∑
𝑖=0

𝛥(𝑡+1)
𝑖 ≤ 𝜆(𝑡) + 2|𝑄| + 2|𝑄|

𝑠(𝑡+1)

∑
𝑖=0

𝛥(𝑡+1)
𝑖

= 𝜆(𝑡) + 2|𝑄|
𝑠(𝑡)

∑
𝑖=0

𝛥(𝑡)
𝑖 .

Overall, we obtain the claimed bound.

We conclude that the total length of interesting fragments 𝑆𝑖
does not exceed (5|𝑄| + 1)𝛿𝐸(𝑆, ∗𝑄∗).

74 pattern matching with edits: structural insights

Claim 5.9. We have 𝛿𝐸(𝑆, ∗𝑄∗) = ∑𝑠
𝑖=0 𝛿𝐸(𝑆𝑖, ∗𝑄∗).

Proof. The claim is immediate if 𝑠 = 0; hence, assume that 𝑠 ≥ 1.
Observe that the inequality ∑𝑠

𝑖=0 𝛿𝐸(𝑆𝑖, ∗𝑄∗) ≤ 𝛿𝐸(𝑆, ∗𝑄∗) easily fol-
lows from disjointness of fragments 𝑆𝑖; thus, we focus on proving
𝛿𝐸(𝑆, ∗𝑄∗) ≤ ∑𝑠

𝑖=0 𝛿𝐸(𝑆𝑖, ∗𝑄∗).
For 0 ≤ 𝑖 ≤ 𝑠, let 𝑄𝑖 denote a substring of 𝑄∞ that satisfies

𝛿𝐸(𝑆𝑖, ∗𝑄∗) = 𝛿𝐸(𝑆𝑖, 𝑄𝑖). Since each 𝑆𝑖 is locked (by Claim 5.7),
we may assume that for 0 < 𝑖 < 𝑠 the substring 𝑄𝑖 is a power of 𝑄,
the substring 𝑄𝑠 is a prefix of a power of 𝑄, and the substring 𝑄0 is
a suffix of a power of 𝑄. Hence, 𝑄0 ⋯ 𝑄𝑠 is a substring of 𝑄∞, and
we have

𝛿𝐸(𝑆, ∗𝑄∗) ≤ 𝛿𝐸(𝑆0 ⋯ 𝑆𝑠, 𝑄0 ⋯ 𝑄𝑠)

≤
𝑠

∑
𝑖=0

𝛿𝐸(𝑆𝑖, 𝑄𝑖) =
𝑠

∑
𝑖=0

𝛿𝐸(𝑆𝑖, ∗𝑄∗),

thus completing the proof.

The locked fragments created satisfy

𝛿𝐸(𝑆, ∗𝑄∗) =
ℓ

∑
𝑖=1

𝛿𝐸(𝐿𝑖, ∗𝑄∗)

due to Claim 5.9. Further, since we have 𝛿𝐸(𝑆𝑖, ∗𝑄∗) > 0 only for
interesting fragments, Claim 5.8 yields

ℓ
∑
𝑖=1

|𝐿𝑖| ≤ (5|𝑄| + 1) 𝛿𝐸(𝑆, ∗𝑄∗),

completing the proof.

characterization of the periodic case 75

To prove Theorem 5.1, we do not need the definition and lemma
that follow, as well as Item 4 of Lemma 5.2. A reader interested
only in Theorem 5.1 may safely skip them. They, however, provide
additional structural insights that we exploit in 6 .

Definition 5.10. Let 𝑆 denote a string, let𝑄 denote a primitive string,
and let 𝑘 ≥ 0 denote an integer. We say that a prefix 𝐿 of 𝑆 is 𝑘-locked
(with respect to 𝑄) if at least one of the following holds:

For every 𝑝 ∈ [0 . . |𝑄|), if we have 𝛿𝐸(𝐿, rot𝑝(𝑄)∗) ≤ 𝑘, then we also
have 𝛿𝐸(𝐿, rot𝑝(𝑄)∗) = 𝛿𝐸(𝐿, 𝑄∞[|𝑄| − 𝑝 . . 𝑗|𝑄|)) for an integer 𝑗.
We have 𝐿 = 𝑆.

Lemma 5.11. Let 𝑆 denote a string, let𝑄 denote a primitive string, and
let 𝑘 ≥ 0 be an integer. There are disjoint locked fragments 𝐿1, … , 𝐿ℓ ⪯ 𝑆,
such that 𝐿1 is a 𝑘-locked prefix of 𝑆, 𝐿ℓ is a suffix of 𝑆, 𝛿𝐸(𝐿𝑖, ∗𝑄∗) > 0
for 1 < 𝑖 < ℓ,

𝛿𝐸(𝑆, ∗𝑄∗) =
ℓ

∑
𝑖=1

𝛿𝐸(𝐿𝑖, ∗𝑄∗), and

ℓ
∑
𝑖=1

|𝐿𝑖| ≤ (5|𝑄| + 1)𝛿𝐸(𝑆, ∗𝑄∗) + 2(𝑘 + 1)|𝑄|.

Proof. We proceed as in the proof of Lemma 5.6 except that
𝛥(0)
0 is artificially increased by 𝑘 + 1, the prefix 𝑆0 in the final parti-

tion is included as 𝐿1 among the locked fragments even if we have
𝛿𝐸(𝑆0, ∗𝑄∗) = 0, and the suffix 𝑆𝑠 is included as 𝐿ℓ among the locked
fragments even if 𝛿𝐸(𝑆𝑠, ∗𝑄∗) = 0.

It is easy to see that Claims 5.7 and 5.9 remain satisfied, whereas
the upper bound in Claim 5.8 is increased by 2(𝑘 + 1)|𝑄|. We need
to prove only that 𝑆0 is a 𝑘-locked prefix of 𝑆. For this, we prove
the following claim using induction.

Claim 5.12. For each partition 𝑆 = 𝑆(𝑡)
0 ⋯ 𝑆(𝑡)

𝑠(𝑡), at least one of the
following holds:

76 pattern matching with edits: structural insights

1 For every 𝑝 ∈ [0 . . |𝑄|), if 𝛿𝐸(𝑆(𝑡)
0 , rot𝑝(𝑄)∗) ≤ 𝑘 − 𝛥(𝑡)

0 , then

𝛿𝐸(𝑆(𝑡)
0 , 𝑄∞[|𝑄| − 𝑝 . . 𝑗|𝑄|)) ≤ 𝛿𝐸(𝑆(𝑡)

0 , rot𝑝(𝑄)∗) + 𝛥(𝑡)
0

for an integer 𝑗.
2 We have 𝑆(𝑡)

0 = 𝑆.
Proof. We proceed by induction on 𝑡. In the base case of 𝑡 = 0,

the claim holds trivially since

𝛿𝐸(𝑆(0)
0 , rot𝑝(𝑄)∗) ≥ 0 > 𝑘 − 𝛥(0)

0

holds for every 𝑝 due to 𝛥(0)
0 ≥ 𝑘 + 1.

As for the induction step, we assume that the claim holds for
𝑆(𝑡)
0 and we prove that it holds for 𝑆(𝑡+1)

0 . The claim holds trivially
if the merge rule applied did not affect 𝑆(𝑡)

0 . Given that 𝑆(𝑡)
0 is inter-

esting by definition, the merges that might affect 𝑆(𝑡)
0 are of type 1

(if 𝑆(𝑡)
1 is interesting) or 4 (otherwise).

1 Consider a type-1 merge of 𝑆(𝑡)
0 and 𝑆(𝑡)

1 . If 𝑠(𝑡) = 1, then 𝑆(𝑡+1)
0 =

𝑆 satisfies the claim trivially. Hence, wemay assume that 1 < 𝑠(𝑡)

so that Claim 5.7 yields 𝛿𝐸(𝑆(𝑡)
1 , 𝑄𝛼) ≤ 𝛿𝐸(𝑆(𝑡)

1 , ∗𝑄∗) + 𝛥(𝑡)
1 for

some integer 𝛼. Let us fix 𝑝 ∈ [0 . . |𝑄|) with

𝛿𝐸(𝑆(𝑡+1)
0 , rot𝑝(𝑄)∗) ≤ 𝑘 − 𝛥(𝑡+1)

0 .

Due to 𝛥(𝑡+1)
0 ≥ 𝛥(𝑡)

0 , this yields 𝛿𝐸(𝑆(𝑡)
0 , rot𝑝(𝑄)∗) ≤ 𝑘 − 𝛥(𝑡)

0 , so
the inductive assumption implies for an integer 𝑗

𝛿𝐸(𝑆(𝑡)
0 , 𝑄∞[|𝑄| − 𝑝 . . 𝑗|𝑄|)) ≤ 𝛿𝐸(𝑆(𝑡)

0 , rot𝑝(𝑄)∗) + 𝛥(𝑡)
0 .

Hence,

𝛿𝐸(𝑆(𝑡+1)
0 , 𝑄∞[|𝑄| − 𝑝 . . (𝑗 + 𝛼)|𝑄|))

= 𝛿𝐸(𝑆(𝑡)
0 𝑆(𝑡)

1 , 𝑄∞[|𝑄| − 𝑝 . . 𝑗|𝑄|)𝑄𝛼)
≤ 𝛿𝐸(𝑆(𝑡)

0 , 𝑄∞[|𝑄| − 𝑝 . . 𝑗|𝑄|)) + 𝛿𝐸(𝑆(𝑡)
1 , 𝑄𝛼)

characterization of the periodic case 77

≤ 𝛿𝐸(𝑆(𝑡)
0 , rot𝑝(𝑄)∗) + 𝛥(𝑡)

0 + 𝛿𝐸(𝑆(𝑡)
1 , ∗𝑄∗) + 𝛥(𝑡)

1

≤ 𝛿𝐸(𝑆(𝑡+1)
0 , rot𝑝(𝑄)∗) + 𝛥(𝑡+1)

0 .

2 Consider a type-4 merge of 𝑆(𝑡)
0 and 𝑆(𝑡)

1 . Let us fix 𝑝 ∈ [0 . . |𝑄|)
with 𝛿𝐸(𝑆(𝑡+1)

0 , rot𝑝(𝑄)∗) ≤ 𝑘 − 𝛥(𝑡+1)
0 .

a If 𝛿𝐸(𝑆(𝑡+1)
0 , rot𝑝(𝑄)∗) > 𝛿𝐸(𝑆(𝑡)

0 , rot𝑝(𝑄)∗), then

𝛿𝐸(𝑆(𝑡)
0 , rot𝑝(𝑄)∗) ≤ 𝛿𝐸(𝑆(𝑡+1)

0 , rot𝑝(𝑄)∗) − 1
≤ 𝑘 − 𝛥(𝑡+1)

0 − 1 = 𝑘 − 𝛥(𝑡)
0 .

Hence, the inductive assumption implies

𝛿𝐸(𝑆(𝑡)
0 , 𝑄∞[|𝑄| − 𝑝 . . 𝑗|𝑄|)) ≤ 𝛿𝐸(𝑆(𝑡)

0 , rot𝑝(𝑄)∗) + 𝛥(𝑡)
0

for an integer 𝑗. Hence,

𝛿𝐸(𝑆(𝑡+1)
0 , 𝑄∞[|𝑄| − 𝑝 . . (𝑗 + 1)|𝑄|))

= 𝛿𝐸(𝑆(𝑡)
0 𝑄, 𝑄∞[|𝑄| − 𝑝 . . 𝑗|𝑄|)𝑄)

≤ 𝛿𝐸(𝑆(𝑡)
0 , 𝑄∞[|𝑄| − 𝑝 . . 𝑗|𝑄|))

≤ 𝛿𝐸(𝑆(𝑡)
0 , rot𝑝(𝑄)∗) + 𝛥(𝑡)

0

≤ 𝛿𝐸(𝑆(𝑡+1)
0 , rot𝑝(𝑄)∗) − 1 + 𝛥(𝑡)

0

= 𝛿𝐸(𝑆(𝑡+1)
0 , rot𝑝(𝑄)∗) + 𝛥(𝑡+1)

0 .

b If 𝛿𝐸(𝑆(𝑡+1)
0 , rot𝑝(𝑄)∗) = 𝛿𝐸(𝑆(𝑡)

0 , rot𝑝(𝑄)∗), then let 𝑦′ de-
note an arbitrary integer that satisfies 𝛿𝐸(𝑆(𝑡+1)

0 , rot𝑝(𝑄)∗) =
𝛿𝐸(𝑆(𝑡+1)

0 , 𝑄∞[|𝑄| − 𝑝 . . 𝑦′)). This also yields an integer 𝑦″

with |𝑄| − 𝑝 ≤ 𝑦″ ≤ 𝑦′ such that

𝛿𝐸(𝑆(𝑡+1)
0 , 𝑄∞[|𝑄| − 𝑝 . . 𝑦′))

= 𝛿𝐸(𝑆(𝑡)
0 , 𝑄∞[|𝑄| − 𝑝 . . 𝑦″)) + 𝛿𝐸(𝑄, 𝑄∞[𝑦″ . . 𝑦′)).

78 pattern matching with edits: structural insights

Due to

𝛿𝐸(𝑆(𝑡)
0 , rot𝑝(𝑄)∗)

≤ 𝛿𝐸(𝑆(𝑡)
0 , 𝑄∞[|𝑄| − 𝑝 . . 𝑦″))

≤ 𝛿𝐸(𝑆(𝑡+1)
0 , 𝑄∞[|𝑄| − 𝑝 . . 𝑦′))

= 𝛿𝐸(𝑆(𝑡+1)
0 , rot𝑝(𝑄)∗) = 𝛿𝐸(𝑆(𝑡)

0 , rot𝑝(𝑄)∗),

we have 𝛿𝐸(𝑄, 𝑄∞[𝑦″ . . 𝑦″)). As the string 𝑄 is primitive,
this means that 𝑦″, 𝑦′ are both multiples of |𝑄|. Hence,

𝛿𝐸(𝑆(𝑡+1)
0 , 𝑄∞[|𝑄| − 𝑝 . . 𝑦′))

= 𝛿𝐸(𝑆(𝑡+1)
0 , rot𝑝(𝑄)∗)

≤ 𝛿𝐸(𝑆(𝑡+1)
0 , rot𝑝(𝑄)∗) + 𝛥(𝑡+1)

0 .

This completes the proof of the inductive step.

Given that the final partition 𝑆 = 𝑆(𝑡)
0 ⋯ 𝑆(𝑡)

𝑠(𝑡) satisfies 𝑠(𝑡) = 0 or
𝛥(𝑡)
0 = 0, we conclude that 𝑆0 is indeed 𝑘-locked.

We are now ready to prove Lemma 5.2.

Lemma 5.2 (Compare Lemma 3.2). Let 𝑃 denote a pattern of length
𝑚, let 𝑇 denote a text of length 𝑛, and let 𝑘 ≤ 𝑚 denote a non-negative
integer such that 𝑛 < 3/2 𝑚 + 𝑘. Suppose that the 𝑘-error occurrences of 𝑃
in 𝑇 include a prefix of 𝑇 and a suffix of 𝑇. If there are a positive integer
𝑑 ≥ 2𝑘 and a primitive string 𝑄 with |𝑄| ≤ 𝑚/8𝑑 and 𝛿𝐸(𝑃, 𝑄∗) =
𝛿𝐸(𝑃, ∗𝑄∗) ≤ 𝑑, then each of following holds:

1 For every 𝑝 ∈ Occ𝐸
𝑘 (𝑃, 𝑇), we have 𝑝 mod |𝑄| ≤ 3𝑑 or 𝑝 mod |𝑄| ≥

|𝑄| − 3𝑑.
2 The string 𝑇 satisfies 𝛿𝐸(𝑇, ∗𝑄∗) ≤ 3𝑑.
3 If 𝛿𝐸(𝑃, ∗𝑄∗) = 𝑑, then |⌊Occ𝐸

𝑘 (𝑃, 𝑇)/𝑑⌋| ≤ 304𝑑.
4 The set Occ𝐸

𝑘 (𝑃, 𝑇) can be decomposed into 617𝑑3 arithmetic progres-
sions with difference |𝑄|.

characterization of the periodic case 79

Proof. Consider any 𝑘-error occurrence 𝑇[ℓ . . 𝑟) of 𝑃. By defi-
nition, 𝛿𝐸(𝑇[ℓ . . 𝑟), 𝑃) ≤ 𝑘 ≤ 𝑑/2. Combining this inequality with
𝛿𝐸(𝑃, 𝑄∗) ≤ 𝑑 via the triangle inequality (Lemma 1.3), we obtain
the bound 𝛿𝐸(𝑇[ℓ . . 𝑟), 𝑄∗) ≤ 3/2 𝑑. In particular, this inequality is
true for the 𝑘-error occurrence of 𝑃 as a prefix of 𝑇. Hence, for some
integer 𝑚′ ∈ [𝑚− 𝑘 . . 𝑚+ 𝑘], we have 𝛿𝐸(𝑇[0 . . 𝑚′), 𝑄∗) ≤ 3/2 𝑑, and
thus also 𝛿𝐸(𝑇[0 . .min(𝑟, 𝑚′)), 𝑄∗) ≤ 3/2 𝑑.

Next, we apply Lemma 5.4 on the fragment 𝑇[0 . . 𝑟), whose
prefix 𝑇[0 . .min(𝑟, 𝑚′)) satisfies 𝛿𝐸(𝑇[0 . .min(𝑟, 𝑚′)), 𝑄∗) ≤ 3/2 𝑑
andwhose suffix 𝑇[ℓ . . 𝑟) satisfies 𝛿𝐸(𝑇[ℓ . . 𝑟), 𝑄∗) ≤ 3/2 𝑑. Further,
if |𝑄| > 1, we also have |𝑇[ℓ . .min(𝑟, 𝑚′))| ≥ (3𝑑 + 1)|𝑄|: Due to
𝑟 − ℓ ≥ 𝑚 − 𝑘 and 𝑚′ ≥ 𝑚 − 𝑘, we have min(𝑟, 𝑚′) − ℓ ≥ 2(𝑚 − 𝑘) − 𝑛 >
𝑚/2 − 3𝑘 ≥ 4𝑑|𝑄| − 3𝑘. Hence, it suffices to prove that (𝑑 − 1)|𝑄| ≥
3𝑘 − 1. This equality holds trivially if 𝑘 = 0. For 𝑘 ≥ 1, we have
(𝑑 − 1)|𝑄| ≥ (2𝑘 − 1) ⋅ 2 = 4𝑘 − 2 ≥ 3𝑘 − 1 due to 𝑑 ≥ 2𝑘 and |𝑄| ≥ 2.
Thus, we can indeed use Lemma 5.4.

In particular, Lemma 5.4 implies (ℓ + 3𝑑) mod |𝑄| ≤ 6𝑑. Since
𝑇[ℓ . . 𝑟)was an arbitrary 𝑘-error occurrence of 𝑃 in 𝑇, we conclude
that Item 1 holds.

Further, Lemma5.4 implies 𝛿𝐸(𝑇[0 . . 𝑟), 𝑄∗) ≤ 3𝑑. Ifwe choose
𝑇[ℓ . . 𝑟) to be a 𝑘-error occurrence of 𝑃 that is a suffix of 𝑇, we have
𝑟 = 𝑛 and therefore 𝛿𝐸(𝑇, 𝑄∗) ≤ 3𝑑, which proves Item 2.

We proceed to the proof of Item 3. Let 𝐿1, … , 𝐿ℓ denote locked
fragments of 𝑃 obtained from Lemma 5.6. Note that we thus have

ℓ
∑
𝑖=1

𝛿𝐸(𝐿𝑖, ∗𝑄∗) = 𝛿𝐸(𝑃, ∗𝑄∗) = 𝑑; ℓ ≤ 𝑑,

and ∑ℓ
𝑖=1 |𝐿𝑖| ≤ (5|𝑄| + 1)𝑑.

Further, let us fix an optimal alignment between 𝑇 and a sub-
string 𝑄′ of 𝑄∗, and define 𝑑′ ≔ 𝛿𝐸(𝑇, 𝑄∗). This yields partitions
𝑇 = 𝑇0 ⋯ 𝑇2𝑑′ and 𝑄′ = 𝑄′

0 ⋯ 𝑄′
2𝑑′ such that:

𝑇𝑖 = 𝑄′
𝑖 for even 𝑖,

𝑇𝑖 ≠ 𝑄′
𝑖 and |𝑇𝑖|, |𝑄′

𝑖| ≤ 1 for odd 𝑖.

80 pattern matching with edits: structural insights

We create a multi-set 𝐸 = {∑𝑖′<𝑖 |𝑇𝑖′| ∶ 𝑖 is odd} of size 𝑑′. Its ele-
ments can be interpreted as positions in 𝑇 which incur errors in an
optimal alignment with 𝑄′. In particular, we show the following:

Claim 5.13. For every fragment 𝑇[𝑥 . . 𝑦), we have

𝛿𝐸(𝑇[𝑥 . . 𝑦), ∗𝑄∗) ≤ |{𝑒 ∈ 𝐸 ∣ 𝑥 ≤ 𝑒 < 𝑦}|.

Proof. Observe that the alignment between 𝑇 and 𝑄′ yields
an alignment between 𝑇[𝑥 . . 𝑦) and a fragment 𝑄′[𝑥′ . . 𝑦′) with
𝛿𝐸(𝑇[𝑥 . . 𝑦), 𝑄′[𝑥′ . . 𝑦′)) ≤ |{𝑒 ∈ 𝐸 ∣ 𝑥 ≤ 𝑒 < 𝑦}| edits.

We split ℤ into disjoint blocks of the form [𝑗𝑑 . . (𝑗 + 1)𝑑) for
𝑗 ∈ ℤ. We say that a block [𝑗𝑑 . . (𝑗+1)𝑑) is synchronized if it contains
a position 𝑝 such that (𝑝 + 3𝑑) mod |𝑄| ≤ 6𝑑. For every locked
fragment 𝐿𝑖 = 𝑃[ℓ𝑖 . . 𝑟𝑖) and every 𝑒 ∈ 𝐸, we mark a synchronized
block [𝑗𝑑 . . (𝑗 + 1)𝑑) if 𝑒 ∈ [𝑗𝑑 + ℓ𝑖 − 𝑘 . . (𝑗 + 1)𝑑 − 1 + 𝑟𝑖 + 𝑘).

Claim 5.14. If [𝑗𝑑 . . (𝑗 + 1)𝑑) ∩ Occ𝐸
𝑘 (𝑃, 𝑇) ≠ {}, then [𝑗𝑑 . . (𝑗 +

1)𝑑) has at least 𝑑 − 𝑘 marks.
Proof. Consider a 𝑘-error occurrence of 𝑃 in 𝑇 starting at posi-

tion 𝑝 ∈ [𝑗𝑑 . . (𝑗+ 1)𝑑) and fix its arbitrary optimal alignment with
𝑃. For each locked fragment 𝐿𝑖, let 𝐿′

𝑖 be the fragment of 𝑇 aligned
with 𝐿𝑖 in this alignment. Further, 𝐿′

𝑖 = 𝑇[ℓ′
𝑖 . . 𝑟′

𝑖) for

[ℓ′
𝑖 . . 𝑟′

𝑖) ⊆ [𝑝+ ℓ𝑖 −𝑘 . . 𝑝+ 𝑟𝑖+𝑘) ⊆ [𝑗𝑑+ ℓ𝑖 −𝑘 . . (𝑗+1)𝑑−1+ 𝑟𝑖+𝑘).

Also, by Claim 5.13, we have

𝛿𝐸(𝐿′
𝑖, ∗𝑄∗) ≤ |{𝑒 ∈ 𝐸 ∣ ℓ′

𝑖 ≤ 𝑒 < 𝑟′
𝑖}|

≤ |{𝑒 ∈ 𝐸 ∣ 𝑗𝑑 + ℓ𝑖 − 𝑘 ≤ 𝑒 < (𝑗 + 1)𝑑 − 1 + 𝑟𝑖 + 𝑘}|.

Hence, the number 𝜇 of marks at [𝑗𝑑 . . (𝑗 + 1)𝑑) is at least

𝜇 ≥
ℓ

∑
𝑖=1

𝛿𝐸(𝐿′
𝑖, ∗𝑄∗).

characterization of the periodic case 81

As the regions 𝐿𝑖 are disjoint, we have
ℓ

∑
𝑖=1

𝛿𝐸(𝐿′
𝑖, 𝐿𝑖) ≤ 𝑘.

By the triangle inequality (Lemma 1.3), this yields
ℓ

∑
𝑖=1

𝛿𝐸(𝐿𝑖, ∗𝑄∗) ≤ 𝑘 + 𝜇.

Since
ℓ

∑
𝑖=1

𝛿𝐸(𝐿𝑖, ∗𝑄∗) = 𝛿𝐸(𝑃, ∗𝑄∗) = 𝑑,

we conclude that 𝜇 ≥ 𝑑 − 𝑘.

Claim 5.15. We place at most 152𝑑2 marks.
Proof. Let us fix 𝑒 ∈ 𝐸 and a locked fragment 𝐿𝑖 = 𝑃[ℓ𝑖 . . 𝑟𝑖).

Recall that a mark is placed at a synchronized block [𝑗𝑑 . . (𝑗 + 1)𝑑)
if 𝑒 ∈ [𝑗𝑑 + ℓ𝑖 − 𝑘 . . (𝑗 + 1)𝑑 − 1 + 𝑟𝑖 + 𝑘), or, in other words,

[𝑗𝑑 . . (𝑗 + 1)𝑑) ∩ [𝑒 − 𝑟𝑖 − 𝑘 . . 𝑒 − ℓ𝑖 + 𝑘) ≠ {}.

The length of the interval 𝐼𝑖,𝑒 ≔ [𝑒 − 𝑟𝑖 − 𝑘 . . 𝑒 − ℓ𝑖 + 𝑘) satisfies
|𝐼𝑖,𝑒| = 2𝑘 + |𝐿𝑖| ≤ 𝑑 + |𝐿𝑖|.

We now consider two cases depending on whether or not the
inequality |𝑄| < 9𝑑 is satisfied. If |𝑄| < 9𝑑, it suffices to observe
that any interval 𝐼 overlaps with at most 2 + |𝐼|/𝑑 blocks. Hence,
𝐼𝑖,𝑒 overlaps with at most 3 + |𝐿𝑖|/𝑑 blocks, and thus the number
of marks we have placed due to 𝑒 and 𝐿𝑖 is bounded by 3 + |𝐿𝑖|/𝑑.
The overall number of marks is therefore at most

|𝐸| ⋅
ℓ

∑
𝑖=1

(3 + |𝐿𝑖|/𝑑) ≤ 9𝑑2 + 3
ℓ

∑
𝑖=1

|𝐿𝑖|

≤ 9𝑑2 + 3(5|𝑄| + 1)𝑑 ≤ 9𝑑2 + 135𝑑2 = 144𝑑2.

82 pattern matching with edits: structural insights

On the other hand, if |𝑄| ≥ 9𝑑, we utilize the fact that only syn-
chronized blocks are marked. For this, observe that any interval
𝐼 overlaps at most 2 + |𝐼|/|𝑄| intervals of the form [(𝑗′ − 1)|𝑄| −
4𝑑 . . 𝑗′|𝑄| + 4𝑑) each of which overlaps with at most 7 synchro-
nized blocks (covering [𝑗′|𝑄| − 3𝑑 . . 𝑗′|𝑄| + 3𝑑], which is of length
6𝑑 + 1). Hence, the total number of blocks marked due to 𝑒 and 𝐿𝑖
is bounded by 7(2 + (𝑑 + |𝐿𝑖|)/|𝑄|). The overall number of marks
is therefore at most

|𝐸| ⋅ ∑ℓ
𝑖=1 7(2 + (𝑑 + |𝐿𝑖|)/|𝑄|)𝑖

≤ 42𝑑2 + 21𝑑2/|𝑄| + 21𝑑/|𝑄| ⋅ ∑ℓ
𝑖=1 |𝐿𝑖|

≤ 42𝑑2 + 21𝑑2/|𝑄| + 21𝑑2 ⋅ (5|𝑄| + 1)/|𝑄|
≤ 42𝑑2 + 21𝑑2/|𝑄| + 105𝑑2 + 21𝑑2/|𝑄| < 152𝑑2.

This completes the proof of the claim.

Hence, the number of blocks with at least 𝑑/2 marks is at most
304𝑑, completing the proof of Item 3.

We proceed to the proof of Item 4. Let 𝐿𝑃
1 , … , 𝐿𝑃

ℓ𝑃 denote the
locked fragments of 𝑃 obtained from Lemma 5.11 (so that 𝐿𝑃

1 is a
𝑘-locked prefix of 𝑃), and let 𝐿𝑇

1 , … , 𝐿𝑇
ℓ𝑇 denote locked fragments

of 𝑇 obtained from Lemma 5.6. Set

𝐿𝑃
𝑖 ≔ 𝑃[ℓ𝑃

𝑖 . . 𝑟𝑃
𝑖) for 𝑖 ∈ [1 . . ℓ𝑃] and

𝐿𝑇
𝑗 ≔ 𝑇[ℓ𝑇

𝑗 . . 𝑟𝑇
𝑗) for 𝑗 ∈ [1 . . ℓ𝑇].

We say that a position 𝑝 ∈ [0 . . 𝑛) is marked if

𝑝 ∈ [𝑛 − 𝑚 − 𝑘 . . 𝑛 − 𝑚 + 𝑘] or
[𝑝 + ℓ𝑃

𝑖 − 𝑘 . . 𝑝 + 𝑟𝑃
𝑖 + 𝑘) ∩ [ℓ𝑇

𝑗 . . 𝑟𝑇
𝑗) ≠ {}

holds for some 𝑖 ∈ [1 . . ℓ𝑃] and 𝑗 ∈ [1 . . ℓ𝑇].20 Further, we say that

20. The positions in
[𝑛−𝑚−𝑘 . . 𝑛−𝑚+𝑘]

are marked for a
technical reason that
becomes clear in the
proof of Claim 5.17.

𝑝 is synchronized if 𝑝 mod |𝑄| ≤ 3𝑑 or 𝑝 mod |𝑄| ≥ |𝑄| − 3𝑑.
Informally, if there is a 𝑘-occurrence at an unmarked position

𝑝, then no locked region of 𝑃 can overlap a locked region of 𝑇 in

characterization of the periodic case 83

any corresponding optimal alignment andwe can exploit this struc-
ture. Hence, we now show that there are only a few synchronized
marked positions.

Claim 5.16. The set of marked positions can be decomposed into at
most 10𝑑2 integer intervals. Further, the number of synchronized marked
positions is at most 547𝑑3.

Proof. First, consider the interval [𝑛−𝑚−𝑘 . . 𝑛−𝑚+𝑘]. Observe
that each pair 𝑖 ∈ [1 . . ℓ𝑃] and 𝑗 ∈ [1 . . ℓ𝑇] yields marked positions
𝑝 ∈ (ℓ𝑇

𝑗 − 𝑟𝑃
𝑖 − 𝑘 . . 𝑟𝑇

𝑗 − ℓ𝑃
𝑖 + 𝑘). Hence, the marked positions can be

decomposed into 1 + ℓ𝑃 ⋅ ℓ𝑇 integer intervals. Due to

ℓ𝑃 ≤ 𝛿𝐸(𝑃, ∗𝑄∗) + 2 ≤ 𝑑 + 2 ≤ 3𝑑 and ℓ𝑇 ≤ 𝛿𝐸(𝑇, ∗𝑄∗) ≤ 3𝑑,

the number of intervals is at most 10𝑑2.
The interval of positions marked due to 𝑖 and 𝑗 is of length

2𝑘 + |𝐿𝑃
𝑖 | + |𝐿𝑇

𝑗 | − 1 ≤ 𝑑 + |𝐿𝑃
𝑖 | + |𝐿𝑇

𝑗 | − 1.

Out of any |𝑄| consecutive positions, atmost 6𝑑+1 ≤ 7𝑑 are synchro-
nized. Hence, in any such interval 𝐼, the number of synchronized
positions is at most 7𝑑(|𝐼| − 7𝑑 + |𝑄|)/|𝑄|. Thus, the total number
of synchronized marked positions does not exceed 2𝑘 + 1 ≤ 𝑑3 (for
[𝑛 − 𝑚 − 𝑘 . . 𝑛 − 𝑚 + 𝑘]) plus

ℓ𝑃

∑
𝑖=1

ℓ𝑇

∑
𝑗=1

7𝑑
|𝐿𝑃

𝑖 | + |𝐿𝑇
𝑗 | − 7𝑑 + |𝑄|
|𝑄|

≤
7𝑑ℓ𝑇

|𝑄|
ℓ𝑃

∑
𝑖=1

|𝐿𝑃
𝑖 | + 7𝑑ℓ𝑃

|𝑄|
ℓ𝑇

∑
𝑖=1

|𝐿𝑇
𝑖 | + 7𝑑ℓ𝑃ℓ𝑇(|𝑄| − 7𝑑)

|𝑄|

≤
21𝑑2

|𝑄| ((5|𝑄| + 1)𝑑 + 2(𝑘 + 1)|𝑄| + (5|𝑄| + 1)3𝑑 + 3𝑑(|𝑄| − 7𝑑))

≤ (21𝑑2/|𝑄|) ((5|𝑄| + 1)𝑑 + 3𝑑|𝑄| + (5|𝑄| + 1)3𝑑 + 3𝑑(|𝑄| − 7𝑑))
≤ (21𝑑2/|𝑄|) (26𝑑|𝑄| + 4𝑑 − 21𝑑2) ≤ 21 ⋅ 26𝑑3 = 546𝑑3.

This completes the proof.

84 pattern matching with edits: structural insights

Next, we characterize unmarked positions 𝑝 ∈ Occ𝐸
𝑘 (𝑃, 𝑇). The

unmarked positions can be decomposed into at most 10𝑑2 integer
intervals by Claim 5.16 and by the fact that 𝑝 < 𝑛 − 𝑚 − 𝑘. Consider
any such interval 𝐼.

Claim 5.17. For any 𝑝, 𝑝′ ∈ 𝐼 such that 𝑝 ≡ 𝑝′ (mod |𝑄|) we
have 𝑝 ∈ Occ𝐸

𝑘 (𝑃, 𝑇) if and only if 𝑝′ ∈ Occ𝐸
𝑘 (𝑃, 𝑇). In particular,

𝐼 ∩ Occ𝐸
𝑘 (𝑃, 𝑇) can be decomposed into at most 6𝑑 + 1 arithmetic pro-

gressions with difference |𝑄|.
Proof. By our marking scheme, for any 𝑖, 𝑗, for any pair 𝑥 ∈

[ℓ𝑃
𝑖 . . 𝑟𝑃

𝑖) and 𝑦 ∈ [ℓ𝑃
𝑗 . . 𝑟𝑃

𝑗), we see that |(𝑝 + 𝑥) − 𝑦| > 𝑘. Con-
sider an unmarked position 𝑝 ∈ Occ𝐸

𝑘 (𝑃, 𝑇) ∩ 𝐼 and fix any align-
ment of any prefix 𝑇[𝑝 . . 𝑡) of 𝑇[𝑝 . . 𝑛) with 𝑃 that has at most
𝑘 errors. Then, for all 𝑖, the fragment 𝑇𝑖 of 𝑇 that is aligned with
𝐿𝑃

𝑖 is disjoint from all locked fragments of 𝑇. Hence, 𝑇𝑖 is a sub-
string of 𝑄∞. Now, recall that 𝐿𝑃

1 is a prefix of 𝑃 and 𝐿𝑃
ℓ𝑃 is a suf-

fix of 𝑃. Hence, the locked fragments of 𝑇 that are considered are
exactly those 𝐿𝑇

𝑗 ’s with 𝑝 + 𝑘 < ℓ𝑗 < 𝑟𝑗 < 𝑝 + 𝑚 − 𝑘; assume that this
holds for 𝑗 ∈ [𝑗1 . . 𝑗2]. For all 𝑗 ∈ [𝑗1 . . 𝑗2], the fragment 𝑃𝑗 of 𝑃
aligned with 𝐿𝑇

𝑗 is disjoint from all locked fragments of 𝑃 and is a
substring of 𝑄∞. In addition, since 𝐼 = [𝑖1 . . 𝑖2] is an interval of un-
marked positions, 𝑇[𝑖1 . . 𝑖2 + |𝐿𝑃

1 | + 𝑘) is disjoint from all locked
fragments of 𝑇 and hence is equal to a substring of 𝑄∞. Thus, for
some 𝑟 we see that:

𝛿𝐸(𝑃, 𝑇[𝑝 . . 𝑡))

≥ 𝛿𝐸(𝐿𝑃
1 , rot𝑟(𝑄)∗) +

ℓ𝑃

∑
𝑖=2

𝛿𝐸(𝐿𝑃
𝑖 , 𝑄𝑖) +

𝑗2
∑
𝑗=𝑗1

𝛿𝐸(ℓ𝑇
𝑗 , 𝑃𝑗)

≥ 𝛿𝐸(𝐿𝑃
1 , rot𝑟(𝑄)∗) +

ℓ𝑃

∑
𝑖=2

𝛿𝐸(𝐿𝑃
𝑖 , ∗𝑄∗) +

𝑗2
∑
𝑗=𝑗1

𝛿𝐸(ℓ𝑇
𝑗 , ∗𝑄∗). (5.1)

characterization of the periodic case 85

Note that since 𝐿𝑃
1 is 𝑘-locked and 𝛿𝐸(𝐿𝑃

1 , rot𝑟(𝑄)∗) ≤ 𝑘 there is a 𝑗
such that

𝛿𝐸(𝐿𝑃
1 , rot𝑟(𝑄)∗) = 𝛿𝐸(𝐿𝑃

1 , 𝑄∞[|𝑄| − 𝑟 . . 𝑗|𝑄|)).

Set 𝑏 = |𝑄∞[|𝑄| − 𝑟 . . 𝑗|𝑄|)|.
Consider any position 𝑝′ ∈ 𝐼 with 𝑝′ ≡ 𝑝 (mod |𝑄|). We have

𝑇[𝑝′ . . 𝑝′ + 𝑏) = 𝑇[𝑝 . . 𝑝 + 𝑏) since both fragments lie in 𝑇[𝑖1 . . 𝑖2 +
|𝐿𝑃

1 |+ 𝑘] and start a multiple of |𝑄| positions apart. In addition, we
have

𝑃[|𝐿𝑃
1 | . . 𝑚) = 𝑄𝛼1𝐿𝑃

2 𝑄𝛼2 ⋯ 𝑄𝛼ℓ𝑃−1𝐿𝑃
ℓ𝑃

for non-negative integers 𝛼𝑖. Further, we have

𝑇[𝑝′ + 𝑏 . . 𝑝′ + 𝑚 + 𝑘) = 𝑄𝛽𝑗1−1𝐿𝑇
𝑗1𝑄

𝑗1 ⋯ 𝐿𝑇
𝑗2𝑄

𝛽𝑗2𝑄′

for non-negative integers 𝛽𝑗 and a prefix 𝑄′ of 𝑄.21 We claim that 21. Note that
𝑝′ + 𝑚 + 𝑘 < 𝑛 since
𝑝′ < 𝑛 − 𝑚 − 𝑘.

there is a 𝑡′ that satisfies

𝛿𝐸(𝑃, 𝑇[𝑝′ . . 𝑡′))
≤ 𝛿𝐸(𝐿𝑃

1 , 𝑇[𝑝′ . . 𝑝′ + 𝑏)) + 𝛿𝐸(𝑃[|𝐿𝑃
1 | . . 𝑚), 𝑇[𝑝′ + 𝑏 . . 𝑡′))

= 𝛿𝐸(𝐿𝑃
1 , rot𝑟(𝑄)∗) +

ℓ𝑃

∑
𝑖=2

𝛿𝐸(𝐿𝑃
𝑖 , ∗𝑄∗) +

𝑗2
∑
𝑗=𝑗1

𝛿𝐸(ℓ𝑇
𝑗 , ∗𝑄∗)

≤ 𝛿𝐸(𝑃, 𝑇[𝑝 . . 𝑡)).

In order to prove this, let us consider the following greedy align-
ment of 𝑃[|𝐿𝑃

1 | . . 𝑚) and 𝑇[𝑝′+𝑏 . . 𝑡′). We start at the leftmost posi-
tion in both strings. Wewill maintain the invariant that the remain-
der of each string starts with either 𝑄 or a locked fragment, except
possibly for the case that the remainder of 𝑃 is 𝐿𝑃

ℓ𝑃, in which case
the remainder of 𝑇 can be 𝑄′. While we have not reached the end
of 𝑃[|𝐿𝑃

1 | . . 𝑚) we repeat the following procedure. If both strings
have a prefix equal to 𝑄, we align those prefixes exactly. Else, the
prefix of one of the strings is a locked fragment 𝐿. Let us first as-

86 pattern matching with edits: structural insights

sume that 𝐿 ≠ 𝐿𝑃
ℓ𝑃. Then, since 𝑝′ is unmarked, 𝑄∞[0 . . |𝐿| + 𝑘 −

𝑘′) is a prefix of the other string, where 𝑘′ is the number of ed-
its already performed by our greedy alignment. Since 𝐿 is locked,
𝛿𝐸(𝐿, ∗𝑄∗) = 𝛿𝐸(𝐿, 𝑄𝛼) for some integer 𝛼. We have |𝛼|𝑄| − |𝐿|| ≤
𝑘 − 𝑘′ due to the fact that otherwise Equation (5.1) would imply
that 𝛿𝐸(𝑃, 𝑇[𝑝 . . 𝑡)) > 𝑘, a contradiction. Hence, 𝑄𝛼 is a prefix
of 𝑄∞[0 . . |𝐿| + 𝑘 − 𝑘′); we optimally align those two fragments.
If 𝐿 = 𝐿𝑃

ℓ𝑃, an analogous argument shows that there exists a pre-
fix 𝑄″ of the remainder of 𝑇[𝑝′ + 𝑏 . . 𝑡′) such that 𝛿𝐸(𝐿, ∗𝑄∗) =
𝛿𝐸(𝐿, 𝑄″). Upon termination of this greedy alignment, the equal-
ity in the above equation holds.

We have thus proved that if 𝑝 ∈ 𝐼 ∩ Occ𝐸
𝑘 (𝑃, 𝑇) then all 𝑝′ ∈ 𝐼

such that 𝑝′ ≡ 𝑝 (mod |𝑄|) are also in Occ𝐸
𝑘 (𝑃, 𝑇). Thus, for any

fixed 0 ≤ 𝑗 < |𝑄|, for 𝑈 = {𝑖 ⋅ |𝑄|+ 𝑗 ∈ 𝐼 ∣ 𝑖 ∈ ℤ} either 𝑈 ⊆ Occ𝐸
𝑘 (𝑃, 𝑇)

or 𝑈 ∩ Occ𝐸
𝑘 (𝑃, 𝑇) = {}. By Item 1, we can restrict our attention

to synchronized positions. We can thus decompose 𝐼 ∩Occ𝐸
𝑘 (𝑃, 𝑇)

into at most 6𝑑 + 1 arithmetic progressions.

Combining Claims 5.16 and 5.17, we conclude that Occ𝐸
𝑘 (𝑃, 𝑇)

can be decomposed into at most 547𝑑3 + 10𝑑2(6𝑑 + 1) ≤ 617𝑑3 arith-
metic progressions with difference |𝑄|.

Corollary 5.18 (Compare Corollary 3.5). Let 𝑃 denote a pattern
of length 𝑚, let 𝑇 denote a string of length 𝑛, and let 𝑘 ≤ 𝑚 denote a
non-negative integer. Suppose that there are a positive integer 𝑑 ≥ 2𝑘
and a primitive string 𝑄 with |𝑄| ≤ 𝑚/8𝑑 and 𝛿𝐸(𝑃, ∗𝑄∗) = 𝑑. Then
|⌊Occ𝐸

𝑘 (𝑃, 𝑇)/𝑑⌋| ≤ 1216 ⋅ 𝑛/𝑚 ⋅ 𝑑.
Proof. Partition the string 𝑇 into ⌊2𝑛/𝑚⌋ blocks 𝑇0, … , 𝑇⌊2𝑛/𝑚⌋−1

of length at most 3/2 𝑚+ 𝑘− 1 each, where the 𝑖th block starts at posi-
tion 𝑖 ⋅ 𝑚/2, that is, 𝑇𝑖 ≔ 𝑇[⌊𝑖 ⋅ 𝑚/2⌋ . .min{𝑛, ⌊(𝑖+ 3) ⋅ 𝑚/2⌋+ 𝑘 − 1}).
Observe that each 𝑘-error occurrence of 𝑃 in 𝑇 is contained in at
least one of the fragments 𝑇𝑖: Specifically, 𝑇𝑖 covers all the occur-
rences starting in [⌊𝑖 ⋅ 𝑚/2⌋ . . ⌊(𝑖 + 1) ⋅ 𝑚/2⌋). If Occ𝐸

𝑘 (𝑃, 𝑇𝑖) ≠ {},
we define 𝑇′

𝑖 ≔ 𝑇[𝑡′
𝑖 . . 𝑡′

𝑖 + |𝑇′
𝑖 |) to be the shortest fragment of 𝑇𝑖

containing all 𝑘-error occurrences of 𝑃 in 𝑇𝑖. As a result, 𝑇′
𝑖 sat-

isfies the assumptions of Lemma 5.2, so |⌊Occ𝐸
𝑘 (𝑃, 𝑇′

𝑖)⌋/𝑘| ≤ 304𝑑.

characterization of the non-periodic case 87

Each block [𝑗′𝑘 . . (𝑗′+1)𝑘) of positions in 𝑇𝑖 corresponds to a block
[𝑡′

𝑖 + 𝑗′𝑘 . . 𝑡′
𝑖 + (𝑗′ + 1)𝑘) of positions in 𝑇, which intersects at most

two blocks of the form [𝑗𝑘 . . (𝑗 + 1)𝑘). In total, we conclude that
|⌊Occ(𝑃, 𝑇𝑖)⌋/𝑘| ≤ ⌊2𝑛/𝑚⌋ ⋅ 2 ⋅ 304𝑑 ≤ 1216 ⋅ 𝑛/𝑚 ⋅ 𝑑.

5.2 Characterization of the Non-Periodic Case

Next, we turn to the non-periodic case again. While this case is
again more complicated compared to the Hamming distance set-
ting, it is only moderately so—fortunately.

Lemma 5.19 (Compare Lemma 3.6). Let 𝑃 denote a string of length
𝑚 and let 𝑘 ≤ 𝑚 denote a positive integer. Then, at least one of the follow-
ing holds:

1 The string 𝑃 contains 2𝑘 disjoint breaks 𝐵1, … , 𝐵2𝑘 each having peri-
ods per(𝐵𝑖) > 𝑚/128𝑘 and length |𝐵𝑖| = ⌊𝑚/8𝑘⌋.

2 The string 𝑃 contains disjoint repetitive regions 𝑅1, … , 𝑅𝑟 of total
length∑𝑟

𝑖=1 |𝑅𝑖| ≥ 3/8 ⋅𝑚 such that each region𝑅𝑖 satisfies |𝑅𝑖| ≥ 𝑚/8𝑘
and has a primitive approximate period 𝑄𝑖 with |𝑄𝑖| ≤ 𝑚/128𝑘 and
𝛿𝐸(𝑅𝑖, ∗𝑄∗

𝑖) = ⌈8𝑘/𝑚 ⋅ |𝑅𝑖|⌉.
3 The string𝑃 has a primitive approximate period𝑄 that satisfies |𝑄| ≤

𝑚/128𝑘 and 𝛿𝐸(𝑃, ∗𝑄∗) < 8𝑘.

Proof. We use essentially the same algorithm as in the proof of
Lemma 3.6: We replace all checks for a specific Hamming distance
with the corresponding counterpart for the edit distance. Further,
as we are interested only in (approximate) periods under an ar-
bitrary rotation, we do not need to explicitly rotate the string 𝑄 in
the algorithm anymore. Consider Algorithm 5.1 for a visualization;
the changes to Algorithm 3.3 are highlighted.

In particular, we directly get an analogue of Claim 3.7:

Claim 5.20 (See Claim 3.7). Whenever we consider a new fragment
𝑃[𝑗 . . 𝑗+⌊𝑚/8𝑘⌋) of ⌊𝑚/8𝑘⌋ unprocessed characters of𝑃, such a fragment
starts at a position 𝑗 < 5/8 ⋅ 𝑚.

88 pattern matching with edits: structural insights

Algorithm 5.1 A constructive proof of Lemma 5.19. Changes to Algorithm 3.3 are
highlighted.

1 ℬ ← {}; ℛ ← {};
2 while true do
3 Consider fragment 𝑃′ = 𝑃[𝑗 . . 𝑗 + ⌊𝑚/8𝑘⌋) of the next ⌊𝑚/8𝑘⌋ unprocessed

characters of 𝑃;
4 if per(𝑃′) > 𝑚/128𝑘 then
5 ℬ ← ℬ ∪ {𝑃′};
6 if |ℬ| = 2𝑘 then return breaks ℬ;
7 else
8 𝑄 ← 𝑃[𝑗 . . 𝑗 + per(𝑃′));
9 Search for prefix 𝑅 of 𝑃[𝑗 . . 𝑚)with 𝛿𝐸(𝑅, ∗𝑄∗) = ⌈8𝑘/𝑚 ⋅ |𝑅|⌉ and |𝑅| > |𝑃′|;

10 if such 𝑅 exists then
11 ℛ ← ℛ ∪ {(𝑅, 𝑄)};
12 if ∑(𝑅,𝑄)∈ℛ|𝑅| ≥ 3/8 ⋅ 𝑚 then
13 return repetitive regions (and their corresponding periods) ℛ;
14 else
15 Search for suffix 𝑅′ of 𝑃 with 𝛿𝐸(𝑅′, ∗𝑄∗) = ⌈8𝑘/𝑚 ⋅ |𝑅′|⌉ and |𝑅′| ≥ 𝑚 − 𝑗;
16 if such 𝑅′ exists then return repetitive region (𝑅′,𝑄);
17 else return approximate periodQ;

characterization of the non-periodic case 89

Again, note that Claim 5.20 also shows that whenever we con-
sider a new fragment 𝑃′ of ⌊𝑚/8𝑘⌋ characters, there is indeed such
a fragment, that is, 𝑃′ is well-defined.

Now consider the following case: For a fragment 𝑃′ = 𝑃[𝑗 . . 𝑗 +
⌊𝑚/8𝑘⌋) (that is not a break) and its corresponding period 𝑄 =
[𝑗 . . 𝑗+per(𝑃′)), we fail to obtain a new repetitive region 𝑅. Recall
that in this case, we search for a repetitive region 𝑅′ of length |𝑅′| ≥
𝑚 − 𝑗 that is a suffix of 𝑃 and has an approximate period 𝑄. If we
indeed find such a region 𝑅′, then |𝑅′| ≥ 𝑚 − 𝑗 ≥ 𝑚 − 5/8 ⋅ 𝑚 =
3/8 ⋅𝑚 byClaim 5.20, so 𝑅′ is long enough to be reported on its own.
However, if we fail to find such 𝑅′, we need to show that 𝑄 can be
reported as an approximate period of 𝑃, that is, 𝛿𝐸(𝑃, ∗𝑄∗) < 8𝑘.

Similar to Lemma 3.6, we first show that

𝛿𝐸(𝑃[𝑗 . . 𝑚), ∗𝑄∗) < ⌈8𝑘/𝑚 ⋅ (𝑚 − 𝑗)⌉.

For this, we inductively prove that the values

𝛥𝜌 ≔ ⌈8𝑘/𝑚 ⋅ 𝜌⌉ − 𝛿𝐸(𝑃[𝑗 . . 𝑗 + 𝜌), ∗𝑄∗)

for |𝑃′| ≤ 𝜌 ≤ 𝑚 − 𝑗 are all at least 1. In the base case of 𝜌 = |𝑃′|, we
have 𝛥𝜌 = 1 − 0 because 𝑄 is the string period of 𝑃′. To carry out an
inductive step, suppose that 𝛥𝜌−1 ≥ 1 for some |𝑃′| < 𝜌 ≤ 𝑚 − 𝑗.
Notice that 𝛥𝜌 ≥ 𝛥𝜌−1 − 1 ≥ 0: The first term in the definition
of 𝛥𝜌 has not decreased, and the term 𝛿𝐸(𝑃[𝑗 . . 𝑗 + 𝜌), ∗𝑄∗) may
have increased by at most 1 compared to 𝛥𝜌−1. Further, 𝛥𝜌 ≠ 0 as
𝑅 = 𝑃[𝑗 . . 𝑗 + 𝜌) could not be reported as a repetitive region. Since
𝛥𝜌 is an integer, we conclude that 𝛥𝜌 ≥ 1. This inductive reasoning
ultimately shows that 𝛥𝑚−𝑗 > 0, that is,

𝛿𝐸(𝑃[𝑗 . . 𝑚), ∗𝑄∗) < ⌈8𝑘/𝑚 ⋅ (𝑚 − 𝑗)⌉.

A symmetric argument holds for values

𝛥′
𝜌 ≔ ⌈8𝑘/𝑚 ⋅ 𝜌⌉ − 𝛿𝐸(𝑃[𝑚 − 𝜌 . . 𝑚), ∗𝑄∗)

90 pattern matching with edits: structural insights

for 𝑚 − 𝑗 ≤ 𝜌 ≤ 𝑚, as no repetitive region 𝑅′ was found as an ex-
tension of 𝑃[𝑗 . . 𝑚) to the left. Note that in contrast to the proof
of Lemma 3.6, the rotation of 𝑄 is implicit. This completes the
proof that 𝛿𝐸(𝑃, ∗𝑄∗) < 8𝑘, that is, 𝑄 is an approximate period
of 𝑃.

Lemma 5.21 (Compare Lemma 3.8). Let 𝑃 denote a pattern of length
𝑚, let 𝑇 denote a text of length 𝑛, and let 𝑘 ≤ 𝑚 denote a positive integer.
Suppose that 𝑃 that contains 2𝑘 disjoint breaks 𝐵1, … , 𝐵2𝑘 ≼ 𝑃 each satis-
fying per(𝐵𝑖) ≥ 𝑚/128𝑘. Then, |⌊Occ𝐸

𝑘 (𝑃, 𝑇)/𝑘⌋| ≤ 1024 ⋅ 𝑛/𝑚 ⋅ 𝑘.
Proof. The proof proceeds similarly to the proof of Lemma 3.8.

The only major difference is that we obtain length-𝑘 blocks of pos-
sible starting positions instead of single starting positions. This is
because the edit distance allows for deletions and insertions of char-
acters.

Hence, we split ℤ into disjoint blocks of the form [𝑗𝑘 . . (𝑗+ 1)𝑘)
for 𝑗 ∈ ℤ. Now for every break 𝐵𝑖 = 𝑃[𝑏𝑖 . . 𝑏𝑖 + |𝐵𝑖|), we mark a
block [𝑗𝑘 . . (𝑗 + 1)𝑘) if

[(𝑗 − 1) ⋅ 𝑘 + 𝑏𝑖 . . (𝑗 + 2) ⋅ 𝑘 + 𝑏𝑖) ∩ Occ(𝐵𝑖, 𝑇) ≠ {}.

Similarly to the proof of Lemma 3.8, we proceed to show that
we place at most 𝑂(𝑛/𝑚 ⋅ 𝑘2) marks and that every 𝑘-error occur-
rence starts in a block with at least 𝑘 marks.

Claim 5.22. We place at most 1024 ⋅ 𝑛/𝑚 ⋅ 𝑘2 marks on blocks.
Proof. Fix a break 𝐵𝑖. Notice that positions in Occ(𝐵𝑖, 𝑇) are

at distance at least per(𝐵𝑖) from each other. Further, note that for
every occurrence in Occ(𝐵𝑖, 𝑇) we mark at most 4 blocks. Hence,
for the break 𝐵𝑖, we place at most 512 ⋅ 𝑛/𝑚 ⋅ 𝑘 marks. In total, we
thus place at most 2𝑘 ⋅ 512𝑛/𝑚 ⋅ 𝑘 = 1024 ⋅ 𝑛/𝑚 ⋅ 𝑘2 marks.

Next, we show that every 𝑘-error occurrence of 𝑃 in 𝑇 starts in
a block with at least 𝑘 marks.

characterization of the non-periodic case 91

Claim 5.23. If [𝑗𝑘 . . (𝑗 + 1)𝑘) ∩ Occ𝐸
𝑘 (𝑃, 𝑇) ≠ {}, then [𝑗𝑘 . . (𝑗 +

1)𝑘) has at least 𝑘 marks.
Proof. Consider a 𝑘-error occurrence of 𝑃 in 𝑇 starting at posi-

tion ℓ ∈ [𝑗𝑘 . . (𝑗 + 1)𝑘) and fix an arbitrary optimal alignment of it
with 𝑃. Out of the 2𝑘 breaks, at least 𝑘 breaks are matched exactly,
as not matching a break exactly incurs at least one error. If a break
𝐵𝑖 is matched exactly, then for at least one 𝑠 ∈ [− 𝑘 . . 𝑘], we have
ℓ + 𝑏𝑖 + 𝑠 ∈ Occ(𝐵𝑖, 𝑇). Since 𝑗𝑘 ≤ ℓ < (𝑗 + 1)𝑘, we conclude that
[(𝑗 − 1) ⋅ 𝑘 + 𝑏𝑖 . . (𝑗 + 2) ⋅ 𝑘 + 𝑏𝑖) ∩ Occ(𝐵𝑖, 𝑇) ≠ {}, that is, that the
block [𝑗𝑘 . . (𝑗 + 1)𝑘) has been marked for 𝐵𝑖. In total, there are at
least 𝑘 marks for the at least 𝑘 breaks matched exactly.

By Claims 5.22 and 5.23, the number of blocks where 𝑘-error
occurrences of 𝑃 in 𝑇 may start is |⌊Occ𝐸

𝑘 (𝑃, 𝑇)/𝑘⌋| ≤ (1024 ⋅ 𝑛/𝑚 ⋅
𝑘2)/𝑘 = 1024 ⋅ 𝑛/𝑚 ⋅ 𝑘.

Lemma 5.24 (Compare Lemma 3.11). Let 𝑃 denote a string of length
𝑚, let 𝑇 denote a string of length 𝑛, and let 𝑘 ≤ 𝑚 denote a positive inte-
ger. Suppose that 𝑃 contains disjoint repetitive regions 𝑅1, … , 𝑅𝑟 of total
length at least ∑𝑟

𝑖=1 |𝑅𝑖| ≥ 3/8 ⋅ 𝑚 such that each region 𝑅𝑖 satisfies |𝑅𝑖| ≥
𝑚/8𝑘 and has a primitive approximate period 𝑄𝑖 with |𝑄𝑖| ≤ 𝑚/128𝑘 and
𝛿𝐸(𝑅𝑖, ∗𝑄∗

𝑖) = ⌈8𝑘/𝑚⋅ |𝑅𝑖|⌉. Then, |⌊Occ𝐸
𝑘 (𝑃, 𝑇)/𝑘⌋| ≤ 642045 ⋅ 𝑛/𝑚⋅𝑘.

Proof. Again, the proof is similar to its counterpart from the
Hamming distance setting. As before, a major difference is that
we obtain only length-𝑘 blocks of possible starting positions instead
of single starting positions.

As in the proof of Lemma 5.21, we split ℤ into disjoint blocks
of the form [𝑗𝑘 . . (𝑗 + 1)𝑘) for 𝑗 ∈ ℤ. Further, we set 𝑚𝑅 ≔ ∑𝑟 |𝑅𝑖|
and define 𝑘𝑖 ≔ ⌊4 ⋅ |𝑅𝑖|/𝑚 ⋅ 𝑘⌋ for every 1 ≤ 𝑖 ≤ 𝑟.

For every repetitive region 𝑅𝑖 = 𝑃[𝑟𝑖 . . 𝑟𝑖 + |𝑅𝑖|), we place |𝑅𝑖|
marks on block [𝑗𝑘 . . (𝑗 + 1)𝑘) if

[(𝑗 − 1) ⋅ 𝑘 + 𝑟𝑖 . . (𝑗 + 2) ⋅ 𝑘 + 𝑟𝑖) ∩ Occ𝐸
𝑘𝑖
(𝑅𝑖, 𝑇) ≠ {}.

92 pattern matching with edits: structural insights

Similarly to the proof Lemma 3.11, we proceed to show that we
placed at most 𝑂(𝑛/𝑚 ⋅ 𝑘 ⋅ 𝑚𝑅) marks and that every 𝑘-error occur-
rence of 𝑃 in 𝑇 starts in a block with at last 𝑚𝑅 − 𝑚/4 marks.

Claim 5.25. We place at most 214015 ⋅ 𝑛/𝑚 ⋅ 𝑘 ⋅ 𝑚𝑅 marks.
Proof. We use Corollary 5.18 to analyze Occ𝐸

𝑘𝑖
(𝑅𝑖, 𝑇). For this,

we set 𝑑𝑖 ≔ 𝛿𝐸(𝑅𝑖, ∗𝑄∗
𝑖) = ⌈8𝑘/𝑚 ⋅ |𝑅𝑖|⌉ and notice that 𝑑𝑖 ≤ 16𝑘/𝑚 ⋅

|𝑅𝑖| since |𝑅𝑖| ≥ 𝑚/8𝑘. Further, 𝑑𝑖 ≥ 2𝑘𝑖 and |𝑄𝑖| ≤ 𝑚/128𝑘 ≤
|𝑅𝑖|/8𝑑𝑖. Hence, the assumptions of Corollary 5.18 are satisfied, so
⌊Occ𝐸

𝑘𝑖
(𝑅𝑖, 𝑇)/𝑑𝑖⌋ ≤ 1216 ⋅ 𝑛/|𝑅𝑖| ⋅ 𝑑𝑖 ≤ 19456 ⋅ 𝑘 ⋅ 𝑛/𝑚.

For a block [𝑗′𝑑𝑖 . . (𝑗′ +1)𝑑𝑖) intersectingOcc𝐸
𝑘𝑖
(𝑅𝑖, 𝑇), we mark

a block [𝑗𝑘 . . (𝑗 + 1)𝑘) only if

[(𝑗 − 1) ⋅ 𝑘 + 𝑟𝑖 . . (𝑗 + 2) ⋅ 𝑘 + 𝑟𝑖) ∩ [𝑗′𝑑𝑖 . . (𝑗′ + 1)𝑑𝑖) ≠ {},

which holds only if 𝑗𝑘 ∈ [𝑗′𝑑𝑖 − 𝑟𝑖 − 2𝑘 . . (𝑗′ + 1)𝑑𝑖 − 𝑟𝑖 + 𝑘). The
length of the latter interval is 𝑑𝑖 + 3𝑘 = ⌈8𝑘/𝑚 ⋅ |𝑅𝑖|⌉+ 3𝑘 ≤ 11𝑘, so the
interval contains at most 11multiples of 𝑘. Hence, the total number
of marks placed due to 𝑅𝑖 is bounded by 11 ⋅ 19456 ⋅ 𝑛/𝑚 ⋅ 𝑘 ⋅ |𝑅𝑖|.
Across all repetitive regions, this sums up to no more than 214015 ⋅
𝑛/𝑚 ⋅ 𝑘 ⋅ 𝑚𝑅, yielding the claim.
Next, we show that every 𝑘-error occurrence of 𝑃 in 𝑇 starts in a
block with many marks.

Claim 5.26. If [𝑗𝑘 . . (𝑗 + 1)𝑘) ∩ Occ𝐸
𝑘 (𝑃, 𝑇) ≠ {}, then [𝑗𝑘 . . (𝑗 +

1)𝑘) has at least 𝑚𝑅 − 𝑚/4 marks.
Proof. Consider a 𝑘-error occurrence of 𝑃 in 𝑇 starting at posi-

tion ℓ ∈ [𝑗𝑘 . . (𝑗 + 1)𝑘) and fix an arbitrary optimal alignment of it
with 𝑃. For each repetitive region 𝑅𝑖, let 𝑅′

𝑖 be the fragment of 𝑇
aligned with 𝑅𝑖 in this alignment. Define 𝑘′

𝑖 = 𝛿𝐸(𝑅𝑖, 𝑅′
𝑖) and ob-

serve that 𝑅′
𝑖 = 𝑇[𝑟′

𝑖 . . 𝑟′
𝑖 + |𝑅′

𝑖|) for some 𝑟′
𝑖 ∈ [ℓ+ 𝑟𝑖 − 𝑘 . . ℓ+ 𝑟𝑖 + 𝑘] ⊆

[(𝑗 − 1) ⋅ 𝑘 + 𝑟𝑖 . . (𝑗 + 2) ⋅ 𝑘 + 𝑟𝑖). Hence,

[(𝑗 − 1) ⋅ 𝑘 + 𝑟𝑖 . . (𝑗 + 2) ⋅ 𝑘 + 𝑟𝑖) ∩ Occ𝐸
𝑘′

𝑖
(𝑅𝑖, 𝑇) ≠ {}.

characterization of the non-periodic case 93

Further, let 𝐼 ≔ {𝑖 ∣ 𝑘′
𝑖 ≤ 𝑘𝑖} = {𝑖 ∣ 𝑘′

𝑖 ≤ 4 ⋅ |𝑅𝑖|/𝑚 ⋅ 𝑘} denote
the set of indices 𝑖 for which 𝑅′

𝑖 is a 𝑘𝑖-error occurrence of 𝑅𝑖. By
construction, for each 𝑖 ∈ 𝐼, we have placed |𝑅𝑖| marks at the block
[𝑗𝑘 . . (𝑗 + 1)𝑘).

Hence, the total number of marks at the block [𝑗𝑘 . . (𝑗 + 1)𝑘) is
at least

∑
𝑖∈𝐼

|𝑅𝑖| = 𝑚𝑅 − ∑
𝑖∉𝐼

|𝑅𝑖|.

It remains to bound the term ∑𝑖∉𝐼 |𝑅𝑖|. Using the definition of 𝐼, we
obtain

∑
𝑖∉𝐼

|𝑅𝑖| =
𝑚
4𝑘 ⋅ ∑

𝑖∉𝐼
(4 ⋅ |𝑅𝑖|/𝑚 ⋅ 𝑘) < 𝑚

4𝑘 ⋅ ∑
𝑖∉𝐼

𝑘′
𝑖 ≤

𝑚
4𝑘 ⋅

𝑟
∑
𝑖=1

𝑘′
𝑖 ≤

𝑚
4 ,

where the last bound holds because, in total, all repetitive regions
incur at most ∑𝑟

𝑖=1 𝑘′
𝑖 ≤ 𝑘 errors (since the repetitive regions are

disjoint). Hence, the number of marks placed is at least 𝑚𝑟 −𝑚/4𝑘,
completing the proof of the claim.

In total, by Claims 5.25 and 5.26, the number of 𝑘-error occur-
rences of 𝑃 in 𝑇 is at most

Occ𝐸
𝑘 (𝑃, 𝑇) ≤ 214015 ⋅ 𝑛/𝑚 ⋅ 𝑘 ⋅ 𝑚𝑅

𝑚𝑅 − 𝑚/4 .

As this bound is a decreasing function in 𝑚𝑅, the assumption 𝑚𝑅 ≥
3/8 ⋅ 𝑚 yields

Occ𝐸
𝑘 (𝑃, 𝑇) ≤ 214015 ⋅ 𝑛/𝑚 ⋅ 𝑘 ⋅ 3/8 ⋅ 𝑚

3/8 ⋅ 𝑚 − 𝑚/4 = 642045 ⋅ 𝑛/𝑚 ⋅ 𝑘,

completing the proof.

Lemma 5.27 (Compare Lemma 3.14). Let 𝑃 denote a string of length
𝑚, let 𝑇 denote a string of length 𝑛, and let 𝑘 ≤ 𝑚 denote a positive inte-
ger. If there is a primitive string 𝑄 of length at most |𝑄| ≤ 𝑚/128𝑘 that
satisfies 2𝑘 ≤ 𝛿𝐸(𝑃, ∗𝑄∗) ≤ 8𝑘, then |⌊Occ𝐸

𝑘 (𝑃, 𝑇)/𝑘⌋| ≤ 87551 ⋅ 𝑛/𝑚 ⋅ 𝑘.

94 pattern matching with edits: structural insights

Proof. We apply Corollary 5.18 with 𝑑 = 𝛿𝐸(𝑃, ∗𝑄∗). Observe
that 𝑑 ≥ 2𝑘 and that |𝑄| ≤ 𝑚/128𝑘 ≤ 𝑚/8𝑑 due to 𝑑 ≤ 8𝑘. Hence, the
assumptions of Corollary 5.18 are met.

Hence, |⌊Occ𝐸
𝑘 (𝑃, 𝑇)/𝑑⌋| ≤ 1216 ⋅ 𝑛/𝑚 ⋅ 𝑑 ≤ 9728 ⋅ 𝑛/𝑚 ⋅ 𝑘. Every

block [𝑗′𝑑 . . (𝑗′+1)𝑑) is of length atmost 8𝑘, and thusmay intersect
atmost 9 blocks of the form [𝑗𝑘 . . (𝑗+1)𝑘). Hence, ⌊Occ𝐸

𝑘 (𝑃, 𝑇)/𝑘⌋ ≤
9 ⋅ 9728 ⋅ 𝑛/𝑚 ⋅ 𝑘, completing the proof.

Theorem 5.1 (Compare Theorem 3.1). Given a pattern 𝑃 of length
𝑚, a text 𝑇 of length 𝑛, and a positive integer 𝑘 ≤ 𝑚, then at least one of
the following holds.

We have |⌊Occ𝐸
𝑘 (𝑃, 𝑇)/𝑘⌋| ≤ 642045 ⋅ 𝑛/𝑚 ⋅ 𝑘.

There is a primitive 𝑄 with |𝑄| ≤ 𝑚/128𝑘 and 𝛿𝐸(𝑃, ∗𝑄∗) < 2𝑘.

Proof. The proof proceeds just as the proof of Theorem 3.1: We
apply Lemma 5.19 on the string 𝑃 and proceed depending on the
structure found in 𝑃.

If the string 𝑃 contains 2𝑘 disjoint breaks 𝐵1, … , 𝐵2𝑘 (in the sense
of Lemma 5.19), we apply Lemma 5.21 and obtain that

|⌊Occ𝐸
𝑘 (𝑃, 𝑇)/𝑘⌋| ≤ 1024 ⋅ 𝑛/𝑚 ⋅ 𝑘.

If the string 𝑃 contains disjoint repetitive regions 𝑅1, … , 𝑅𝑟 (in
the sense of Lemma 5.19), we apply Lemma 5.24 and obtain that

|⌊Occ𝐸
𝑘 (𝑃, 𝑇)/𝑘⌋| ≤ 642045 ⋅ 𝑛/𝑚 ⋅ 𝑘.

Otherwise, Lemma 5.19 yields that there is a primitive string
𝑄 of length at most |𝑄| ≤ 𝑚/128𝑘 that satisfies 𝛿𝐸(𝑃, ∗𝑄∗) < 8𝑘. If
𝛿𝐸(𝑃, ∗𝑄∗) ≥ 2𝑘, then Lemma 5.27 yields |⌊Occ𝐸

𝑘 (𝑃, 𝑇)/𝑘⌋| ≤ 87551 ⋅
𝑛/𝑚 ⋅ 𝑘. If, however, 𝛿𝐸(𝑃, ∗𝑄∗) < 2𝑘, then we are in the second
alternative of the theorem statement.

6Algorithm: Pattern Matching with Edits
in the PILLAR Model

In this chapter, wediscuss how to solve patternmatchingwith edits
in the PILLAR model. Specifically, we prove the following result.

Theorem 6.1. Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛,
and a positive integer 𝑘 ≤ 𝑚, we can compute (a representation of) the set
Occ𝐸

𝑘 (𝑃, 𝑇) using 𝑂(𝑛/𝑚 ⋅ 𝑘4) time in the PILLAR model.

The overall structure of the algorithm is similar to theHamming
distance case: We first introduce useful tools for the algorithms
later. Then, we implement Analyze, which is then followed by a
discussion of the case when the pattern is periodic. Finally, we
discuss the easier non-periodic case and conclude with combining
the various auxiliary algorithms.

6.1 Auxiliary PILLAR Model Operations for
Pattern Matching with Edits

As in the Hamming distance setting, we start the discussion of the
algorithms with general tools that we use as auxiliary procedures
in the remaining algorithms. Specifically, we discuss a generator
that computes the “next” error between two strings. Further, we
discuss a procedure to verify whether there is an occurrence of the
pattern at a given (interval of) position(s) in the text.

Lemma 6.2 (EditGen(𝑆, 𝑄), EditGen𝑅(𝑆, 𝑄)). Let 𝑆 denote a
string and let 𝑄 denote a string (that is possibly given as a cyclic rotation
𝑄′ = rot𝑗(𝑄)). Then, there is an (𝑂(1), 𝑂(𝑘))-time generator that in
the 𝑘-th call to Next returns the length of the longest prefix (suffix) 𝑆′

96 pattern matching with edits: pillar algorithm

Algorithm 6.1 An analogue of Algorithm 4.1 for the edit distance: We adapt the
algorithm by Landau and Vishkin [78] to make its execution “resumable”.

1 EditGen(𝑆, 𝑄′ = rot𝑗(𝑄))
2 return {

3 𝑆 ← 𝑆; 𝑄′ ← 𝑄′; 𝑘 ← 0; 𝑗 ← 𝑗; 𝑒𝑛𝑑 ← false;
4 (ℓ(−1)

−1 , … , ℓ(−1)
1) ← (−∞, −∞, −∞);

5 𝐴[− 2 . . 2] ← [(), … , ()];
6 };

7 Next(G = {𝑆; 𝑄′; 𝑘; 𝑗; (ℓ(𝑘−1)
−𝑘−1 , … , ℓ(𝑘−1)

𝑘+1); 𝐴; 𝑒𝑛𝑑})
8 if 𝑘 = 0 then
9 (ℓ(0)

−2 , … , ℓ(0)
2) ← (−∞, −∞, LCP(𝑆, 𝑄∞), −∞, −∞);

10 replace ℓ(𝑘−1) with ℓ(𝑘); 𝑘 ← 𝑘 + 1;
11 return ℓ(0)

0 ;

12 (ℓ(𝑘)
−𝑘−2, … , ℓ(𝑘)

𝑘+2) ← (−∞, … , −∞);
13 𝐴′[− 𝑘 − 2 . . 𝑘 + 2] ← [(), … , ()]; 𝑟 ← −∞; 𝑎𝑟 ← −1;
14 for 𝑖 ← −𝑘 − 1 to 𝑘 + 1 do

// Compute new prefix lengths as long as we did not reach the end of 𝑆
15 if not 𝑒𝑛𝑑 then
16 ℓ𝑖𝑛𝑠𝑒𝑟𝑡 ← ℓ(𝑘−1)

𝑖−1 + 1 + LCP(𝑆[ℓ(𝑘−1)
𝑖−1 − 𝑖 . . |𝑆|), 𝑄′∞[𝑗 + ℓ(𝑘−1)

𝑖 + 1 . .));
17 ℓ𝑟𝑒𝑝𝑙𝑎𝑐𝑒 ← ℓ(𝑘−1)

𝑖 + 1 + LCP(𝑆[ℓ(𝑘−1)
𝑖 − 𝑖 + 1 . . |𝑆|), 𝑄′∞[𝑗 + ℓ(𝑘−1)

𝑖 + 1 . .));
18 ℓ𝑑𝑒𝑙𝑒𝑡𝑒 ← ℓ(𝑘−1)

𝑖+1 + LCP(𝑆[ℓ(𝑘−1)
𝑖 − 𝑖 + 1 . . |𝑆|), 𝑄′∞[𝑗 + ℓ(𝑘−1)

𝑖 . .));
19 ℓ(𝑘)

𝑖 ← max(ℓ𝑖𝑛𝑠𝑒𝑟𝑡, ℓ𝑟𝑒𝑝𝑙𝑎𝑐𝑒, ℓ𝑑𝑒𝑙𝑒𝑡𝑒);
20 else ℓ(𝑘)

𝑖 ← ℓ(𝑘−1)
𝑖 ;

21 𝑟 ← max(𝑟, ℓ(𝑘)
𝑖);

22 if 𝑟 = ℓ(𝑘)
𝑖 − 𝑖 then 𝑎𝑟 ← ℓ(𝑘)

𝑖 + 𝑖;
23 if 𝑒𝑛𝑑 then continue;

// Store witness for Alignment

24 if ℓ(𝑘)
𝑖 = ℓ𝑖𝑛𝑠𝑒𝑟𝑡 then

25 𝐴′[𝑖] ← (𝐴[𝑖 − 1], (⊥, 𝑗 + ℓ(𝑘−1)
𝑖));

26 if ℓ(𝑘)
𝑖 = ℓ𝑟𝑒𝑝𝑙𝑎𝑐𝑒 then

27 𝐴′[𝑖] ← (𝐴[𝑖], (ℓ𝑖 − 𝑖, 𝑗 + ℓ(𝑘−1)
𝑖));

28 if ℓ(𝑘)
𝑖 = ℓ𝑑𝑒𝑙𝑒𝑡𝑒 then

29 𝐴′[𝑖] ← (𝐴[𝑖 + 1], (ℓ(𝑘−1)
𝑖 − 𝑖, ⊥));

30 replace ℓ(𝑘−1) with ℓ(𝑘); 𝑘 ← 𝑘 + 1; 𝐴 ← 𝐴′;
31 if 𝑟 ≥ |𝑆| then 𝑒𝑛𝑑 ← true;
32 return (𝑟, 𝑎𝑟);
33 Alignment(G = {𝑆; 𝑄′; 𝑘; 𝑗; (ℓ(𝑘−1)

−𝑘−1 , … , ℓ(𝑘−1)
𝑘+1); 𝐴; 𝑒𝑛𝑑})

34 𝑟 ← −∞; 𝑎𝑟 ← −1;
35 for 𝑖 ← −𝑘 − 1 to 𝑘 + 1 do
36 𝑟 ← max(𝑟, ℓ(𝑘−1)

𝑖);
37 if 𝑟 = ℓ(𝑘−1)

𝑖 then 𝑎𝑟 ← 𝑖;
38 return 𝐴[𝑎𝑟];

pattern matching with edits: extra pillar tools 97

of 𝑆 and the length of the corresponding prefix (suffix) 𝑄′ of 𝑄∞ such
that 𝛿𝐸(𝑆′, 𝑄′) ≤ 𝑘.22 22. Note that 𝑘 ≥ 0,

that is, the initial call
to Next is the zeroth
call.

Further, both generators support an additional operation Alignment,
that outputs a witness for the result returned by 𝑘-th call to Next that is,
Alignment outputs a sequence of edits ((𝑖, 𝑗) for a replacement, (𝑖, ⊥)
for an insertion in 𝑆, and (⊥, 𝑖) for an insertion in 𝑄). The operation
Alignment takes 𝑂(𝑘) time in the PILLAR model.

Proof. We focus on the generator EditGen(𝑆, 𝑄); we obtain
the generator EditGen𝑅(𝑆, 𝑄) in a symmetric manner.

We construct the generator as follows: We run the dynamic pro-
gramming algorithm by Landau and Vishkin [78] for one addi-
tional error (per call to Next) at a time, storing the dynamic pro-
gramming table as a state in the generator. In particular, we main-
tain a sequence ℓ that after 𝑘 calls to Next stores at a position 𝑖 ∈
[− 𝑘 . . 𝑘] the length of the longest prefix 𝑆′ of 𝑆 that satisfies23 23. Intuitively, we

store how far each
of the “diagonals”
of the dynamic
programming table
extends.

𝛿𝐸(𝑆′, 𝑄∞[0 . . |𝑆′| + 𝑖]) ≤ 𝑘.

In each call to Next, we update the values stored in the sequence
ℓ by using three calls to LCP from Corollary 2.4 (one call for each
of the insert, replace, delete cases of the edit distance) to com-
pute each new entry. We then obtain the result as the maximum
value of the newly computed sequence.

In order to support the Alignment operation, we additionally
store every diagonal represented as list of pairs of insert, replace,
and delete operations and the position(s) in the strings 𝑆 and 𝑄∞

where the edits happened. In each call to Next, we also update the
representations of the diagonals.24 24. Note that, for

performance reasons,
we need to avoid
copying whole
diagonals; this can be
done by storing all
diagonals together as
a (directed) graph.

Consider Algorithm 6.1 for a visualization of the generator as
pseudo-code; note that we simplified how we store the diagonals
for the Alignment operation to improve readability.

For the correctness, we show by induction that the values com-
puted in the array ℓ are indeed correct, that is, after 𝑘 calls to the
Next operation, for all 𝑖 ∈ [− 𝑘 . . 𝑘] we have

ℓ(𝑘)
𝑖 = max𝑟{𝑟 ∣ 𝛿𝐸(𝑆[0 . . 𝑟], 𝑄∞[0 . . 𝑟 + 𝑖]) ≤ 𝑘},

98 pattern matching with edits: pillar algorithm

or we reached the end of the string 𝑆 (in which case the output
does not change anymore after calling Next). For the zeroth call to
next, we explicitly return

ℓ(0)0 = LCP(𝑆, 𝑄∞) = max𝑟{𝑟 ∣ 𝛿𝐸(𝑆[0 . . 𝑟], 𝑄∞[0 . . 𝑟 + 0]) = 0},

which is thus correct. Now consider the 𝑘-th call to Next and as-
sume that the values computed so far are correct. In particular, for
all 𝑖 ∈ [− 𝑘 + 1 . . 𝑘 − 1], we have

ℓ(𝑘−1)
𝑖 = max𝑟{𝑟 ∣ 𝛿𝐸(𝑆[0 . . 𝑟], 𝑄∞[0 . . 𝑟 + 𝑖]) ≤ 𝑘 − 1}.

Now, fix a 𝑗 ∈ [𝑘 . . −𝑘] and consider the longest prefix 𝑆′ = 𝑆[0 . . 𝑟]
with 𝛿𝐸(𝑆′, 𝑄∞[0 . . 𝑟 + 𝑗]) = 𝑘′, for some 0 < 𝑘′ ≤ 𝑘. By definition
of the edit distance, there is an integer 𝑟′ that satisfies 𝑆′(𝑟′ . . 𝑟] =
𝑄∞(𝑟′ + 𝑗 . . 𝑟 + 𝑗] and at least one of the following

𝑘′ = 𝛿𝐸(𝑆′[0 . . 𝑟′), 𝑄∞[0 . . 𝑟′ + 𝑗)) + 1 and 𝑆[𝑟′] ≠ 𝑄∞[𝑟′]
(when changing the character 𝑆[𝑟′] to the character 𝑄∞[𝑟′+𝑗]);
𝑘′ = 𝛿𝐸(𝑆′[0 . . 𝑟′), 𝑄∞[0 . . 𝑟′ + 𝑗 − 1)) + 1 (when inserting the
character 𝑄∞[𝑟′ + 𝑗]); or
𝑘′ = 𝛿𝐸(𝑆′[0 . . 𝑟′], 𝑄∞[0 . . 𝑟′ + 𝑗)) + 1 (when deleting the char-
acter 𝑄∞[𝑟′ + 𝑗]).

Note that (as 𝑆′(𝑟′ . . 𝑟] = 𝑄∞(𝑟′+𝑗 . . 𝑟+𝑗])wemay assume that 𝑟′ is
maximal (that is there is no larger integer with the same properties
as 𝑟′). In particular, we have

𝑟′ = max(ℓ(𝑘−1)
𝑗 + 1, ℓ(𝑘−1)

𝑗−1 + 1, ℓ(𝑘−1)
𝑗+1),

and hence Next computes ℓ(𝑘)
𝑗 indeed correctly.

Using the computed values ℓ(𝑘), we can compute the length |𝑆′|
of the longest prefix 𝑆′ of 𝑆 and the length |𝑄′| of the corresponding
prefix 𝑄′ of 𝑄∞ such that 𝛿𝐸(𝑆′, 𝑄′) ≤ 𝑘: For |𝑆′|, we have

|𝑆′| = max𝑗,𝑟{𝑟 ∣ 𝛿𝐸(𝑆[0 . . 𝑟], 𝑄∞[0 . . 𝑟 + 𝑦]) ≤ 𝑘} = max𝑗ℓ
(𝑘)
𝑗 ,

computing structure in the pattern 99

as 𝑘 edits allow only for up to 𝑘 insertions or deletions (that is,
operations that can change the shift between 𝑄∞ and 𝑆). Hence,
the computation of |𝑆′| in Next is correct. For |𝑄′|, observe that
if |𝑆′| = ℓ(𝑘)

𝑗 for some 𝑗 ∈ [− 𝑘 . . 𝑘], by construction, we have
|𝑄′| = ℓ(𝑘)

𝑗 + 𝑗. Hence, also the computed value for |𝑄′| is correct.
For the correctness of Alignment, observe thatwe store informa-

tion computed in Next (which is correct); further we always syn-
chronize the information stored, hence also Alignment is correct.

For the running time, observe that in the 𝑘-th call to Nextwe call
LCP three times for each of the 2𝑘 + 3 values ℓ(𝑘)

𝑖 . Further, all other
operations are essentially book-keeping that can be implemented
in 𝑂(1) time. Hence in total, the 𝑘-th call to Next takes 𝑂(𝑘) time
in the PILLAR model.

For the Alignment operation, observe that we traverse the se-
quence ℓ(𝑘) exactly once, hence Alignment uses 𝑂(𝑘) time in the
PILLAR model, completing the proof.

Lemma 6.3 (Verify(𝑃, 𝑇, 𝑘, 𝐼), [33, Section 5]). Let 𝑃 denote
a string of length 𝑚, let 𝑇 denote a string, and let 𝑘 ≤ 𝑚 and denote
a positive integer. Further, let 𝐼 denote an interval of positive integers.
Using 𝑂(𝑘(𝑘 + |𝐼|)) PILLAR operations, we can compute25 25. Note that we can

also call Verify(𝑃,
𝑇, 𝑘, 𝐼) for strings
𝑇 = 𝑄∞ (for some
primitive 𝑄), as, by
Corollary 2.4, we can
also efficiently
compute LCP(𝑃, 𝑄∞).

{(ℓ,min𝑟𝛿𝐸(𝑃, 𝑇[ℓ . . 𝑟))) ∣ ℓ ∈ Occ𝐸
𝑘 (𝑃, 𝑇) ∩ 𝐼}.

Proof. Observe that the algorithm in [33, Section 5] uses only
LCP operations, as it mainly implements [78]. In particular, the
algorithm in [33, Section 5] uses 𝑂(𝑘(𝑘 + |𝐼|)) LCP operations. The
claim follows.

6.2 Computing Structure in the Pattern

We proceed to discuss the implementation of Lemma 5.19, that is,
the analysation of the pattern. While the algorithm itself is similar
to the Hamming distance case, the analysis requires more involved
arguments. We start with an auxiliary combinatorial lemma:

100 pattern matching with edits: pillar algorithm

Lemma 6.4. Let 𝑆 denote a string, let 𝑘 denote a positive integer, and
let 𝑄 denote a primitive string such that |𝑄| = 1 or |𝑆| ≥ (2𝑘 + 1)|𝑄|.
Suppose that for integers 𝑥 ≤ 𝑦, we have

𝛿𝐸(𝑆, ∗𝑄∗) = 𝛿𝐸(𝑆, 𝑄∞[𝑥 . . 𝑦)) ≤ 𝑘.

Then, for any string 𝑆′,

if 𝛿𝐸(𝑆𝑆′, ∗𝑄∗) ≤ 𝑘, then 𝛿𝐸(𝑆𝑆′, ∗𝑄∗) = 𝛿𝐸(𝑆𝑆′, rot−𝑥(𝑄)∗), and
if 𝛿𝐸(𝑆′𝑆, ∗𝑄∗) ≤ 𝑘, then 𝛿𝐸(𝑆′𝑆, ∗𝑄∗) = 𝛿𝐸(𝑆′𝑆, ∗rot−𝑦(𝑄)).

Proof. Suppose that 𝛿𝐸(𝑆𝑆′, ∗𝑄∗) = 𝛿𝐸(𝑆𝑆′, 𝑄∞[𝑥′ . . 𝑧′)) ≤ 𝑘
for some integers 𝑥′ ≤ 𝑧′. Then, there is a position 𝑦′ ∈ [𝑥′ . . 𝑧′]
such that

𝛿𝐸(𝑆𝑆′, ∗𝑄∗) = 𝛿𝐸(𝑆, 𝑄∞[𝑥′ . . 𝑦′)) + 𝛿𝐸(𝑆′, 𝑄∞[𝑦′ . . 𝑧′)) ≤ 𝑘.

Due to 𝛿𝐸(𝑆, 𝑄∞[𝑥 . . 𝑦)) ≤ 𝑘 and 𝛿𝐸(𝑆, 𝑄∞[𝑥′ . . 𝑦′)) ≤ 𝑘, we may
apply Lemma 5.3, which yields a decomposition 𝑆 = 𝑆𝐿 𝑆𝑅 and
integers 𝑗, 𝑗′ such that

𝛿𝐸(𝑆, 𝑄∞[𝑥 . . 𝑦))
= 𝛿𝐸(𝑆𝐿, 𝑄∞[𝑥 . . 𝑗|𝑄|)) + 𝛿𝐸(𝑆𝑅, 𝑄∞[𝑗|𝑄| . . 𝑦)) and

𝛿𝐸(𝑆, 𝑄∞[𝑥′ . . 𝑦′))
= 𝛿𝐸(𝑆𝐿, 𝑄∞[𝑥′ . . 𝑗′|𝑄|)) + 𝛿𝐸(𝑆𝑅, 𝑄∞[𝑗′|𝑄| . . 𝑦′)).

In particular, we have

𝛿𝐸(𝑆𝐿, 𝑄∞[𝑥 . . 𝑗|𝑄|)) + 𝛿𝐸(𝑆𝑅, 𝑄∞[𝑗|𝑄| . . 𝑦))
= 𝛿𝐸(𝑆, 𝑄∞[𝑥 . . 𝑦)) = 𝛿𝐸(𝑆, ∗𝑄∗)
≤ 𝛿𝐸(𝑆, 𝑄∞[𝑥′ . . 𝑦 + (𝑗′ − 𝑗)|𝑄|))
≤ 𝛿𝐸(𝑆𝐿, 𝑄∞[𝑥′ . . 𝑗′|𝑄|)) + 𝛿𝐸(𝑆𝑅, 𝑄∞[𝑗|𝑄| . . 𝑦)),

computing structure in the pattern 101

and hence 𝛿𝐸(𝑆𝐿, 𝑄∞[𝑥 . . 𝑗|𝑄|)) ≤ 𝛿𝐸(𝑆𝐿, 𝑄∞[𝑥′ . . 𝑗′|𝑄|)). Thus,

𝛿𝐸(𝑆𝑆′, rot−𝑥(𝑄)∗)
≤ 𝛿𝐸(𝑆𝑆′, 𝑄∞[𝑥 . . 𝑧′ + (𝑗 − 𝑗′)|𝑄|))
≤ 𝛿𝐸(𝑆𝐿, 𝑄∞[𝑥 . . 𝑗|𝑄|)) + 𝛿𝐸(𝑆𝑅, 𝑄∞[𝑗′|𝑄| . . 𝑦′))
+ 𝛿𝐸(𝑆′, 𝑄∞[𝑦′ . . 𝑧′))

≤ 𝛿𝐸(𝑆𝐿, 𝑄∞[𝑥′ . . 𝑗′|𝑄|)) + 𝛿𝐸(𝑆𝑅, 𝑄∞[𝑗′|𝑄| . . 𝑦′))
+ 𝛿𝐸(𝑆′, 𝑄∞[𝑦′ . . 𝑧′))

= 𝛿𝐸(𝑆𝑆′, ∗𝑄∗),

which implies 𝛿𝐸(𝑆𝑆′, ∗𝑄∗) = 𝛿𝐸(𝑆𝑆′, rot−𝑥(𝑄)∗).
Using a symmetric proof, we obtain the claim for 𝛿𝐸(𝑆′𝑆, ∗𝑄∗)

and 𝛿𝐸(𝑆′𝑆, ∗rot−𝑦(𝑄)).

Lemma 6.5 (Analyze(𝑃, 𝑘): Implementation of Lemma 5.19).
Let 𝑃 denote a string of length 𝑚 and let 𝑘 ≤ 𝑚 denote a positive inte-
ger. Then, there is an algorithm that computes one of the following:

1 2𝑘 disjoint breaks 𝐵1, … , 𝐵2𝑘 ≼ 𝑃, that each satisfy per(𝐵𝑖) > 𝑚/128𝑘
and |𝐵𝑖| = ⌊𝑚/8𝑘⌋;

2 disjoint repetitive regions 𝑅1, … , 𝑅𝑟 ≼ 𝑃 of total length ∑𝑟
𝑖=1 |𝑅𝑖| ≥

3/8 ⋅𝑚 such that each region𝑅𝑖 satisfies |𝑅𝑖| ≥ 𝑚/8𝑘 and is constructed
along with a primitive approximate period 𝑄𝑖 such that |𝑄𝑖| ≤ 𝑚/128𝑘
and 𝛿𝐸(𝑅𝑖, ∗𝑄∗

𝑖) = ⌈8𝑘/𝑚 ⋅ |𝑅𝑖|⌉; or
3 a primitive approximate period 𝑄 of 𝑃 that satisfies |𝑄| ≤ 𝑚/128𝑘 and

𝛿𝐸(𝑃, ∗𝑄∗) < 8𝑘.

The algorithm uses 𝑂(𝑘2) time plus 𝑂(𝑘2) PILLAR operations.
Proof. Similarly to the Hamming distance case, our implemen-

tation follows Algorithm 5.1 from the proof of Lemma 5.19.
Recall that 𝑃 is processed from left to right and split into breaks

and repetitive regions. In each iteration, the algorithm first consid-
ers a fragment of length ⌊𝑚/8𝑘⌋. This fragment either becomes the
next break (if its shortest period is long enough) or is extended to
the right to a repetitive region (otherwise). Having constructed

102 pattern matching with edits: pillar algorithm

Algorithm 6.2 Analyzing the pattern: A PILLAR model implementation of Algo-
rithm 5.1.

1 Analyze(𝑃, 𝑘)
2 𝑗 ← 0; 𝑟 ← 1; 𝑏 ← 1;
3 while true do
4 𝑗′ ← 𝑗 + ⌊𝑚/8𝑘⌋;
5 if Period(𝑃[𝑗 . . 𝑗′)) > 𝑚/128𝑘 then
6 𝐵𝑏 ← 𝑃[𝑗 . . 𝑗′);
7 if 𝑏 = 2𝑘 then return breaks 𝐵1, … , 𝐵2𝑘;
8 𝑏 ← 𝑏 + 1; 𝑗 ← 𝑗′;
9 else

10 𝑞 ← Period(𝑃[𝑗 . . 𝑗′)); 𝑄𝑟 ← 𝑃[𝑗 . . 𝑗 + 𝑞);
11 generator G ← EditGen(𝑃[𝑗 . . 𝑚), 𝑄𝑟);
12 𝛿 ← 0;
13 while 𝛿 < 8𝑘/𝑚 ⋅ (𝑗′ − 𝑗) and 𝑗′ ≤ 𝑚 do
14 (𝜋, 𝜋′) ← Next(G);
15 𝑗′ ← 𝑗 + 𝜋 + 1; 𝛿 ← 𝛿 + 1;
16 if 𝑗′ ≤ 𝑚 then
17 𝑅𝑟 ← 𝑃[𝑗 . . 𝑗′);
18 if ∑𝑟

𝑖=1 |𝑅𝑖| ≥ 3/8 ⋅ 𝑚 then
19 return repetitive regions 𝑅1, … , 𝑅𝑟 with periods 𝑄1, … , 𝑄𝑟;
20 𝑟 ← 𝑟 + 1; 𝑗 ← 𝑗′;
21 else
22 𝑄 ← 𝑄𝑟;
23 generator G′ ← EditGen𝑅(𝑃, rot−𝜋′(𝑄));
24 𝑗″ = 𝑚; 𝛿 ← 0;
25 while (𝑗″ ≥ 𝑗 or 𝛿 < 8𝑘/𝑚 ⋅ (𝑚 − 𝑗″)) and 𝑗″ ≥ 0 do
26 (𝜋, _) ← Next(G′);
27 𝑗″ ← 𝑚 − 𝜋 − 1; 𝛿 ← 𝛿 + 1;
28 if 𝑗″ ≥ 0 then return repetitive region 𝑃[𝑗″ . . 𝑚) with period 𝑄;
29 else return approximate period 𝑄;

computing structure in the pattern 103

sufficiently many breaks or repetitive regions of sufficiently large
total length, the algorithm stops. Processing the string 𝑃 in this
manner guarantees disjointness of breaks and repetitive regions.
As in the proof of Lemma 5.19, a slightly different approach is
needed if the algorithm encounters the end of 𝑃 while growing a
repetitive region. If this happens, the region is also extended to
the left. This way, the algorithm either obtains a single repetitive
region (which is not necessarily disjoint with the previously cre-
ated ones, so it is returned on its own) or learns that the whole
string 𝑃 is approximately periodic.

Next, we fill in missing details of the implementation of the
previous steps in the PILLAR model. To that end, first note that
the PILLAR model includes a Period operation of checking if the
period of a string 𝑆 satisfies per(𝑆) ≤ |𝑆|/2; computing per(𝑆)
in case of a positive answer. Since our threshold 𝑚/128𝑘 satisfies
⌊𝑚/128𝑘⌋ ≤ ⌊𝑚/8𝑘⌋/2, no specific work is required to obtain the
period of an unprocessed fragment of ⌊𝑚/8𝑘⌋ characters of 𝑃.

To compute a repetitive region starting at a fragment 𝑃[𝑗 . . 𝑗′)
with string period𝑄, we use a generatorG = EditGen(𝑃[𝑗 . . 𝑚), 𝑄)

from Lemma 6.2: for subsequent values 𝛿 ≥ 1, we find the shortest
prefix 𝑃′

𝛿 of 𝑃[𝑗 . . 𝑚) such that 𝛿𝐸(𝑃′
𝛿, 𝑄∗) = 𝛿, until no such prefix

exists or 𝛿 ≥ 8𝑘/𝑚 ⋅ |𝑃′
𝛿|. This is possible because the (𝛿 − 1)-st call

to Next(G) returns the length 𝜋 of the longest prefix of 𝑃[𝑗 . . 𝑚)
with 𝛿𝐸(𝑃[𝑗 . . 𝑗 + 𝜋), 𝑄∗) < 𝛿. If 𝛿 ≥ 8𝑘/𝑚 ⋅ |𝑃′

𝛿|, then we have iden-
tified a repetitive region 𝑃′

𝛿. Otherwise, we reach 𝜋 = 𝑚 − 𝑗 and re-
trieve 𝜋′ such that 𝛿𝐸(𝑃[𝑗 . . 𝑚), 𝑄∗) = 𝛿𝐸(𝑃[𝑗 . . 𝑚), 𝑄∞[0 . . 𝜋′))
from the last call to Next(G). In this case, we similarly use a gen-
erator G′ = EditGen𝑅(𝑃, rot−𝜋′(𝑄)) from Lemma 6.2: For subse-
quent values 𝛿 ≥ 1, we find the shortest suffix 𝑃″

𝛿 of 𝑃 such that
𝛿𝐸(𝑃″

𝛿 , ∗rot−𝜋′(𝑄)) = 𝛿, until no such suffix exists or we have |𝑃″
𝛿 | ≥

|𝑃[𝑗 . . 𝑚)| and 𝛿 ≥ 8𝑘/𝑚 ⋅ |𝑃″
𝛿 |. Again, this is possible because the

(𝛿 − 1)-st call to Next(G′) returns the length 𝜋 of the longest suffix
of 𝑃 with 𝛿𝐸(𝑃[𝑚 − 𝜋 . . 𝑚), ∗rot−𝜋′(𝑄)) < 𝛿. If we reach 𝜋 = 𝑚,
then we return 𝑄 as an approximate period of 𝑃; otherwise, we
return the final suffix 𝑃″

𝛿 as a long repetitive region. Consider Al-
gorithm 6.2 for implementation details.

104 pattern matching with edits: pillar algorithm

For the correctness, since our algorithm follows the proof of
Lemma 5.19, we need to show only that our method of finding
repetitive regions correctly implements the corresponding steps in
Algorithm 5.1.

In a first step, we inductively prove that each considered pre-
fix 𝑃′

𝛿 of 𝑃[𝑗 . . 𝑚) satisfies 𝛿𝐸(𝑃′
𝛿, ∗𝑄∗) = 𝛿 ≤ ⌈8𝑘/𝑚 ⋅ |𝑃′

𝛿|⌉. The
case of 𝛿 = 1 is easy since 𝛿𝐸(𝑃′

1, ∗𝑄∗) ≤ 𝛿𝐸(𝑃′
1, 𝑄∗) = 1, since

𝛿𝐸(𝑃′
1, ∗𝑄∗) = 0 would imply 𝛿𝐸(𝑃′

1, 𝑄∗) = 0 because 𝑄 is a pre-
fix of 𝑃′

1, and since 8𝑘/𝑚 ⋅ |𝑃′
1| > 0 due to |𝑃′

1| > 0. Next, we prove
that the claim holds for 𝛿+1 assuming that it holds for 𝛿. The induc-
tive assumption guarantees 𝛿𝐸(𝑃′

𝛿, ∗𝑄∗) = 𝛿𝐸(𝑃′
𝛿, 𝑄∗) = 𝛿. Since the

algorithm proceeded to the next step, we have 𝛿 < 8𝑘/𝑚 ⋅ |𝑃′
𝛿|. In

particular, |𝑃′
𝛿| ≥ (2𝛿 + 1) ⋅ 𝑚/128𝑘 ≥ (2𝛿 + 1)|𝑄|, so we can ap-

ply Lemma 6.4 to 𝑃′
𝛿. If 𝛿𝐸(𝑃′

𝛿+1, ∗𝑄∗) ≤ 𝛿, then Lemma 6.4 yields
𝛿𝐸(𝑃′

𝛿+1, 𝑄∗) = 𝛿𝐸(𝑃′
𝛿+1, ∗𝑄∗) ≤ 𝛿, which contradicts the definition

of 𝑃′
𝛿+1. Hence, 𝛿𝐸(𝑃′

𝛿+1, ∗𝑄∗) ≥ 𝛿+1. Due to 𝛿𝐸(𝑃′
𝛿+1, 𝑄∗) = 𝛿+1, we

have 𝛿𝐸(𝑃′
𝛿+1, ∗𝑄∗) = 𝛿+1. Moreover, ⌈8𝑘/𝑚⋅ |𝑃′

𝛿+1|⌉ ≥ ⌈8𝑘/𝑚⋅ |𝑃′
𝛿|⌉ >

𝛿 guarantees ⌈8𝑘/𝑚 ⋅ |𝑃′
𝛿+1|⌉ ≥ 𝛿 + 1, which completes the proof.

In particular, if we encounter a prefix 𝑃′
𝛿 that satisfies 𝛿 ≥ 8𝑘/𝑚⋅

|𝑃′
𝛿|, then 𝛿𝐸(𝑃′

𝛿, ∗𝑄∗) = ⌈8𝑘/𝑚 ⋅ |𝑃′
𝛿|⌉. If no such prefix 𝑃′

𝛿 exists,
then we have 𝛿𝐸(𝑅, ∗𝑄∗) < 8𝑘/𝑚 ⋅ |𝑅| for each non-empty prefix
of 𝑃[𝑗 . . 𝑚) (because 𝑅 = 𝑃′

𝛿 is the shortest prefix 𝑅 of 𝑃[𝑗 . . 𝑚)
with 𝛿𝐸(𝑅, ∗𝑄∗) = 𝛿). Thus, Line 9 of Algorithm 5.1 is correct.

In the following, we assume that no such prefix 𝑅 exists. In par-
ticular, we have 𝛿𝐸(𝑃[𝑗 . . 𝑚), ∗𝑄∗) < 8𝑘/𝑚 ⋅ |𝑃[𝑗 . . 𝑚)|. Then, the
last call to Next(G) resulted in (𝑚 − 𝑗, 𝜋′) with 𝛿𝐸(𝑃[𝑗 . . 𝑚), 𝑄∗) =
𝛿𝐸(𝑃[𝑗 . . 𝑚), 𝑄∞[0 . . 𝜋′)). Since𝑃′

𝛿 with 𝛿 = 𝛿𝐸(𝑃[𝑗 . . 𝑚), 𝑄∗) sat-
isfies 𝛿𝐸(𝑃′

𝛿, ∗𝑄∗) = 𝛿𝐸(𝑃′
𝛿, 𝑄∗) = 𝛿, we have

𝛿𝐸(𝑃[𝑗 . . 𝑚), ∗𝑄∗)
= 𝛿𝐸(𝑃[𝑗 . . 𝑚], 𝑄∗) = 𝛿𝐸(𝑃[𝑗 . . 𝑚), ∗rot−𝜋′(𝑄)) = 𝛿.

We inductively prove that each considered suffix of 𝑃″
𝛿 of 𝑃 with

|𝑃″
𝛿 | > 𝑗 − 𝑚 satisfies 𝛿𝐸(𝑃″

𝛿 , ∗𝑄∗) = 𝛿 ≤ ⌈8𝑘/𝑚 ⋅ |𝑃″
𝛿 |⌉. Let us prove

that this claim is true for 𝛿 + 1 assuming that is it true for 𝛿 (unless
𝛿 = 0, when there is no assumption). If 𝛿 < 𝛿𝐸(𝑃[𝑗 . . 𝑚), ∗𝑄∗),

computing structure in the pattern 105

then |𝑃″
𝛿+1| ≤ 𝑗 − 𝑚 and the claim is void, so we consider only 𝛿 ≥

𝛿𝐸(𝑃[𝑗 . . 𝑚), ∗𝑄∗). If we have

𝛿 > 𝛿𝐸(𝑃[𝑗 . . 𝑚), ∗𝑄∗) = 𝛿𝐸(𝑃[𝑗 . . 𝑚), ∗rot−𝜋′(𝑄)),

then |𝑃″
𝛿 | > 𝑗 − 𝑚 and the inductive assumption guarantees

𝛿𝐸(𝑅, ∗𝑄∗) = 𝛿𝐸(𝑅, ∗rot−𝜋′(𝑄)) = 𝛿

for 𝑅 = 𝑃″
𝛿 . Otherwise, we have

𝛿 = 𝛿𝐸(𝑃[𝑗 . . 𝑚), ∗𝑄∗) = 𝛿𝐸(𝑃[𝑗 . . 𝑚), ∗rot−𝜋′(𝑄)),

in which case 𝛿𝐸(𝑅, ∗𝑄∗) = 𝛿𝐸(𝑅, ∗rot−𝜋′(𝑄)) = 𝛿 holds for 𝑅 =
𝑃[𝑗 . . 𝑚). In either case, we also have 𝛿 < 8𝑘/𝑚 ⋅ |𝑅|, and hence
|𝑅| ≥ (2𝛿 + 1) ⋅ 𝑚/128𝑘 ≥ (2𝛿 + 1)|𝑄|. Therefore, we can apply
Lemma 6.4 to 𝑅. If 𝛿𝐸(𝑃″

𝛿+1, ∗𝑄∗) ≤ 𝛿, then Lemma 6.4 yields

𝛿𝐸(𝑃″
𝛿+1, ∗rot−𝜋′(𝑄)) = 𝛿𝐸(𝑃″

𝛿+1, ∗𝑄∗) ≤ 𝛿,

which contradicts the definition of 𝑃″
𝛿+1. Hence, 𝛿𝐸(𝑃″

𝛿+1, ∗𝑄∗) ≥ 𝛿 +
1. Due to 𝛿𝐸(𝑃″

𝛿+1, ∗rot−𝜋′(𝑄)) = 𝛿+ 1, we have 𝛿𝐸(𝑃″
𝛿+1, ∗𝑄∗) = 𝛿+ 1.

Moreover, ⌈8𝑘/𝑚 ⋅ |𝑃″
𝛿+1|⌉ ≥ ⌈8𝑘/𝑚 ⋅ |𝑅|⌉ > 𝛿 guarantees ⌈8𝑘/𝑚 ⋅

|𝑃″
𝛿+1|⌉ ≥ 𝛿 + 1, which completes the proof.
In particular, if we encounter a suffix 𝑃″

𝛿 that satisfies |𝑃″
𝛿 | > 𝑚− 𝑗

and 𝛿 ≥ 8𝑘/𝑚 ⋅ |𝑃″
𝛿 |, then 𝛿𝐸(𝑃″

𝛿 , ∗𝑄∗) = ⌈8𝑘/𝑚 ⋅ |𝑃″
𝛿 |⌉. On the

other hand, if no such suffix 𝑃″
𝛿 exists, then 𝛿𝐸(𝑅, ∗𝑄∗) < 8𝑘/𝑚 ⋅ |𝑅|

holds for each suffix 𝑅 of 𝑃 of length |𝑅| > 𝑚 − 𝑗 (because 𝑅 = 𝑃′
𝛿

is the shortest suffix 𝑅 of 𝑃 with 𝛿𝐸(𝑅, ∗𝑄∗) = 𝛿 assuming 𝛿 >
𝛿𝐸(𝑃[𝑗 . . 𝑚), ∗𝑄∗)). Thus, Line 15 of Algorithm 5.1 is also imple-
mented correctly.

For the running time analysis, observe that each iteration of the
outer while loop processes at least ⌊𝑚/8𝑘⌋ characters of 𝑃, so there
are atmost𝑂(𝑘) iterations of the outerwhile loop. In each iteration,
we perform one Period operation, a constant number of Access
operations, and at most 8𝑘/𝑚⋅(𝑗′ − 𝑗) calls to the generator EditGen.

106 pattern matching with edits: pillar algorithm

Algorithm 6.3 Finding a witness 𝑄∞[𝑥 . . 𝑦) for 𝛿𝐸(𝑆, ∗𝑄∗) ≤ 𝑘.

1 FindAWitness(𝑘, 𝑄, 𝑆)
// Compute ``correct'' rotation(s) of 𝑄

2 if |𝑄| ≤ 3𝑘 + 1 then 𝐽 ← [0 . . |𝑄|);
3 else
4 multi-set 𝑅 ← {};
5 for 𝑖 ← 0 to 2𝑘 do
6 𝑅 ← 𝑅 ∪ Rotations(𝑆[𝑖|𝑄| . . (𝑖 + 1)|𝑄|), 𝑄);
7 𝐼 ← ⋃{[𝑝 . . 𝑝 + 𝑘] ∶ 𝑝 ∈

ℤ and [𝑝 . . 𝑝 + 𝑘] contains at least 𝑘 + 1 elements of 𝑅};
8 Let 𝐽 ⊆ [0 . . 2|𝑄|) denote a shortest interval that satisfies

𝐼 mod |𝑄| ⊆ 𝐽 mod |𝑄|;
// Compute the start position of the witness

9 𝑂𝑐𝑐 ← Verify(𝑆, 𝑄∞, 𝑘, 𝐽);
10 if 𝑂𝑐𝑐 = ∅ then return ⊥;
11 Let (𝑥, 𝑘′) ∈ 𝑂𝑐𝑐 be an arbitrary element minimizing 𝑘′;

// Compute the end position of the witness

12 generator G ← EditGen(𝑆, rot−𝑥(𝑄));
13 for 𝑖 ← 1 to 𝑘′ do Next(G);
14 (𝜆, 𝜆′) ← Next(G);
15 return 𝑄∞[𝑥 . . 𝑥 + 𝜆′);

These calls use𝑂((8𝑘/𝑚⋅(𝑗′−𝑗))2) time in the PILLARmodel, which
is 𝑂(𝑘2) in total across all iterations (since the function 𝑥 ↦ 𝑥2

is convex). Similarly, we bound the running time of the calls to
the generator EditGen𝑅: As we find at most 8𝑘/𝑚 ⋅ 𝑚 = 8𝑘 errors,
EditGen𝑅 uses at most 𝑂(𝑘2) time. Overall, Algorithm 6.2 thus
uses 𝑂(𝑘2) time in the PILLAR model.

6.3 Computing Occurrences in the Periodic Case

We start this section with a subroutine to compute a witness that a
string 𝑆 has a small edit distance to a string 𝑄∞.

computing occurrences in the periodic case 107

Lemma 6.6 (FindAWitness(𝑘, 𝑄, 𝑆)). Let 𝑘 denote a positive in-
teger, let 𝑆 denote a string, and let𝑄 denote a primitive string that satisfies
|𝑆| ≥ (2𝑘 + 1)|𝑄| or |𝑄| ≤ 3𝑘 + 1.

Then, we can be compute a witness 𝑄∞[𝑥 . . 𝑦) such that

𝛿𝐸(𝑆, 𝑄∞[𝑥 . . 𝑦)) = 𝛿𝐸(𝑆, ∗𝑄∗) ≤ 𝑘,

or report that 𝛿𝐸(𝑆, ∗𝑄∗) > 𝑘. The algorithm takes 𝑂(𝑘2) time in the
PILLAR model.

Proof. For a set 𝐴 ⊆ ℤ and an integer 𝑝 > 0, we define 𝐴 mod
𝑝 ≔ {𝑎 mod 𝑝 ∣ 𝑎 ∈ 𝐴}. We first compute a (short) interval 𝐽 such
that Occ𝐸

𝑘 (𝑆, 𝑄∞) mod |𝑄| ⊆ 𝐽 mod |𝑄|. If |𝑄| ≤ 3𝑘 + 1, then we
simply set 𝐽 = [0 . . |𝑄|). Otherwise, we proceed similarly as in
the Hamming distance setting (Lemma 4.6), where we computed
a majority string of the first 2𝑘+ 1 length-|𝑄| subsequent fragments
𝑆1, … , 𝑆2𝑘 of 𝑆. However, now we need to accommodate for inser-
tions and deletions of a 𝑘-error occurrence. Hence, we first com-
pute an auxiliary set 𝐼 defined as the union of intervals [𝑝 . . 𝑝 + 𝑘]
such that for at least 𝑘 + 1 fragments 𝑆𝑖 of 𝑆, we have 𝑄 = rot𝑗(𝑆𝑖)
for 𝑗 ∈ [𝑝 . . 𝑝 + 𝑘]. Finally, we set 𝐽 ⊆ [0 . . 2|𝑄|) to be a short-
est interval satisfying 𝐼 mod |𝑄| ⊆ 𝐽 mod |𝑄|. Here, 𝐽 mod |𝑄| can
be interpreted as a shortest cyclic interval (modulo |𝑄|) containing
𝐼 mod |𝑄|.

Having computed the set 𝐽, we use Verify from Lemma 6.3 to
determine at which starting position 𝑥 in 𝐽 we have an occurrence
with the fewest number of errors (or to report that the number of er-
rors is greater than 𝑘 everywhere). Finally, we use an EditGen from
Lemma 6.2 to compute the ending position 𝑦 of the occurrence of 𝑆
as a prefix of 𝑄∞[𝑥 . .). Consider Algorithm 6.3 for a pseudo-code
implementation.

The correctness is based on the aforementioned characteriza-
tion of 𝐽.

108 pattern matching with edits: pillar algorithm

Claim 6.7. The interval 𝐽 satisfies

Occ𝐸
𝑘 (𝑆, 𝑄∞) mod |𝑄| ⊆ 𝐽 mod |𝑄|.

Proof. The claim trivially holds if |𝑄| ≤ 3𝑘+1, sowe assume that
|𝑄| > 3𝑘+1. For every 𝑖 ∈ [0 . . 2𝑘], define 𝑆𝑖 ≔ 𝑆[𝑖 |𝑄| . . (𝑖+1) |𝑄|).
Consider an optimum alignment between 𝑆 and its 𝑘-error occur-
rence 𝑄∞[𝑥 . . 𝑦), and let 𝑄𝑖 = 𝑄∞[𝑥𝑖 . . 𝑥𝑖+1) denote the fragment
aligned to 𝑆𝑖. Consider the multi-set 𝑅 ≔ ⋃𝑖 Rotations(𝑆𝑖, 𝑄).
Next, consider the values 𝛿𝑖 ≔ 𝑥𝑖 − 𝑖|𝑄| for 𝑖 ∈ [0 . . 2𝑘]. We have
𝛿0 = 𝑥, and 𝛿𝑖+1 = 𝛿𝑖 + |𝑄𝑖| − |𝑆𝑖| for 𝑖 > 0. Since

2𝑘
∑
𝑖=0

∣|𝑄𝑖| − |𝑆𝑖|∣ ≤
2𝑘
∑
𝑖=0

𝛿𝐸(𝑄𝑖, 𝑆𝑖) ≤ 𝑘,

all values 𝛿𝑖 belong to an interval of the form [𝑝 . . 𝑝 + 𝑘] for some
integer 𝑝. Moreover, note that 𝑄𝑖 = 𝑆𝑖 holds for at least 𝑘 + 1 frag-
ments 𝑄𝑖; these fragments satisfy 𝑄 = rot𝛿𝑖(𝑆𝑖) and thus contribute
𝛿𝑖 to 𝑅. We conclude that there is an interval [𝑝 . . 𝑝 + 𝑘] containing
𝑥 and at least 𝑘 + 1 elements of 𝑅. Consequently, we have 𝑥 ∈ 𝐼. By
definition of 𝐽, this yields 𝑥 mod |𝑄| ∈ 𝐽 mod |𝑄|.

Now, let 𝑄∞[𝑥 . . 𝑦) denote a witness that satisfies

𝛿𝐸(𝑆, ∗𝑄∗) = 𝛿𝐸(𝑆, 𝑄∞[𝑥 . . 𝑦)).

By Claim 6.7, there is a matching fragment

𝑄∞[𝑥′ . . 𝑦′) = 𝑄∞[𝑥 . . 𝑦)

starting at 𝑥′ ∈ 𝐽. Thus, we may assume without loss of general-
ity that 𝑥 ∈ 𝐽. As we verify all possible starting positions in 𝐽 using
Verify fromLemma6.3, we correctly compute the starting position
𝑥 of a witness occurrence of 𝑆 in 𝑄∞. Further, as we use an EditGen

computing occurrences in the periodic case 109

from Lemma 6.2, we also compute the corresponding ending posi-
tion correctly.

As for the running time, we prove the following characteriza-
tion of 𝐽.

Claim 6.8. The interval 𝐽 satisfies |𝐽| ≤ 3𝑘 + 1.
Proof. The claim trivially holds if |𝑄| ≤ 3𝑘+1, sowe assume that

|𝑄| > 3𝑘+1. Recall that the multiset 𝑅 in Algorithm 6.3 is the union
of 2𝑘 + 1 sets {𝑗 ∈ ℤ ∶ rot𝑗(𝑆𝑖) = 𝑄}. As the string 𝑄 is primitive, 𝑅
is the union of at most 2𝑘 + 1 infinite arithmetic progressions with
difference |𝑄|. In particular, if [𝑝 . . 𝑝+𝑘] and [𝑝′ . . 𝑝′+𝑘] contain at
least 𝑘+1 elements of 𝑅 each, then ([𝑝 . . 𝑝+𝑘] mod |𝑄|)∩([𝑝′ . . 𝑝′+
𝑘] mod |𝑄|) ≠ ∅, and thus [𝑝′ . . 𝑝′ + 𝑘] mod |𝑄| ⊆ [𝑝 − 𝑘 . . 𝑝 +
2𝑘] mod |𝑄|. Since 𝐽 is the union of such intervals [𝑝′ . . 𝑝′ + 𝑘], we
have 𝐽 mod |𝑄| ⊆ [𝑝 − 𝑘 . . 𝑝 + 2𝑘] mod |𝑄|. By definition of 𝐼, we
conclude that |𝐼| ≤ |[𝑝 − 𝑘 . . 𝑝 + 2𝑘]| = 3𝑘 + 1.

Now, observe that computing the multiset 𝑅26 takes 𝑂(𝑘) time 26. We represent 𝑅 as
the union of infinite
arithmetic
progressions modulo
|𝑄|.

in the PILLAR model; computing the sets 𝐼 and 𝐽 can be done in
𝑂(𝑘 loglog 𝑘) time by sorting 𝑅 (restricted to [0 . . |𝑄|)) and a sub-
sequent cyclic scan over 𝑅. Further, by Claim 6.8, we call Verify
on an interval of length 𝑂(𝑘); hence the call to Verify takes 𝑂(𝑘2)
time in the PILLAR model. Finally, as we query the EditGen for up
to 𝑘 errors, the last step of the algorithm takes 𝑂(𝑘2) time in the
PILLAR model as well. Hence in total, FindAWitness runs in 𝑂(𝑘2)
time in the PILLAR model, completing the proof.

Lemma 6.9 (FindRelevantFragment(𝑃, 𝑇, 𝑘, 𝑑, 𝑄)). Let 𝑃
denote a pattern of length 𝑚, let 𝑇 denote a text of length 𝑛, and let
0 ≤ 𝑘 ≤ 𝑚 denote a threshold such that 𝑛 < 3/2 𝑚 + 𝑘. Further, let 𝑑 ≥ 2𝑘
denote a positive integer and let 𝑄 denote a primitive string that satisfies
|𝑄| ≤ 𝑚/8𝑑 and 𝛿𝐸(𝑃, ∗𝑄∗) ≤ 𝑑.

Then, there is an algorithm that computes a fragment 𝑇′ = 𝑇[ℓ . . 𝑟)
and an integer range 𝐼 such that 𝛿𝐸(𝑇′, ∗𝑄∗) ≤ 3𝑑, |Occ𝐸

𝑘 (𝑃, 𝑇)| =
|Occ𝐸

𝑘 (𝑃, 𝑇′)|, |𝐼| ≤ 6𝑑 + 1, and Occ𝐸
𝑘 (𝑃, 𝑇′) mod |𝑄| ⊆ 𝐼 mod |𝑄|.

The algorithm runs in 𝑂(𝑑2) time in the PILLAR model.

110 pattern matching with edits: pillar algorithm

Algorithm 6.4 A PILLAR algorithm computing a relevant fragment 𝑇′ of 𝑇 containing
all 𝑘-error occurrences of 𝑃 in 𝑇, and an interval 𝐼 such that Occ𝐸

𝑘 (𝑃, 𝑇′) mod |𝑄| ⊆ 𝐼 mod
|𝑄|.

1 FindRelevantFragment(𝑃, 𝑇, 𝑘, 𝑑, 𝑄)

2 𝑄∞[𝑥 . . 𝑦) ← FindAWitness(𝑑, 𝑄, 𝑃);
3 𝑄′ ← FindAWitness(⌊3/2 𝑑⌋, 𝑄, 𝑇[𝑛 − 𝑚 + 𝑘 . . 𝑚 − 𝑘));
4 if 𝑄′ = ⊥ then return (𝜀, ∅);
5 𝑄∞[𝑥′ . . 𝑦′) ← 𝑄′;

// Extend 𝑄′ as much as possible to the right.

6 generator G ← EditGen(𝑇[𝑛 − 𝑚 + 𝑘 . . 𝑛), rot−𝑥′(𝑄));
7 for 𝑖 ← 0 to ⌊3/2 𝑑⌋ do (𝜆, _) ← Next(G);
8 𝑟 ← 𝑛 − 𝑚 + 𝑘 + 𝜆;

// Extend 𝑄′ as much as possible to the left.

9 generator G′ ← EditGen𝑅(𝑇[0 . . 𝑚 − 𝑘), rot−𝑦′(𝑄));
10 for 𝑖 ← 0 to ⌊3/2 𝑑⌋ do (𝜆′, _) ← Next(G′);
11 ℓ ← 𝑚 − 𝑘 − 𝜆′;
12 return (𝑇[ℓ . . 𝑟), [𝑛 − 𝑚 + 𝑘 − ℓ + 𝑥 − 𝑥′ − 3𝑑 . . 𝑛 − 𝑚 + 𝑘 − ℓ + 𝑥 − 𝑥′ + 3𝑑]);

Proof. We first call FindAWitness from Lemma 4.6 twice in or-
der to find a fragment 𝑄∞[𝑥 . . 𝑦) such that 𝛿𝐸(𝑃, 𝑄∞[𝑥 . . 𝑦)) =
𝛿𝐸(𝑃, ∗𝑄∗) ≤ 𝑑 and a fragment 𝑄∞[𝑥′ . . 𝑦′) such that

𝛿𝐸(𝑇[𝑛 − 𝑚 + 𝑘 . . 𝑚 − 𝑘), 𝑄∞[𝑥′ . . 𝑦′))
= 𝛿𝐸(𝑇[𝑛 − 𝑚 + 𝑘 . . 𝑚 − 𝑘), ∗𝑄∗) ≤ 3/2 𝑑.

If the fragment 𝑄∞[𝑥′ . . 𝑦′) does not exist, we return the empty
string 𝑇′ = 𝜀 and the empty interval 𝐼 = ∅. Otherwise, we pro-
ceed by computing the rightmost position 𝑟 such that 𝛿𝐸(𝑇[𝑛 −
𝑚 + 𝑘 . . 𝑟), rot−𝑥′(𝑄)∗) ≤ 3/2 𝑑 and the leftmost position ℓ such that
𝛿𝐸(𝑇[ℓ . . 𝑚 − 𝑘), ∗rot−𝑦′(𝑄)) ≤ 3/2 𝑑. That is, we “extend” the frag-

computing occurrences in the periodic case 111

ment found in the text as much as possible. Afterwards, we return
the fragment 𝑇′ = 𝑇[ℓ . . 𝑟) and the interval

𝐼 = [𝑛 − 𝑚 + 𝑘 − ℓ + 𝑥 − 𝑥′ − 3𝑑 . . 𝑛 − 𝑚 + 𝑘 − ℓ + 𝑥 − 𝑥′ + 3𝑑].

Consider Algorithm 6.4 for implementation details.
For the correctness, note that the due to the assumption on 𝑄,

the first call to FindAWitness is valid and indeed returns a witness
𝑄∞[𝑥 . . 𝑦). Next, consider a 𝑘-error occurrence 𝑇[𝑝 . . 𝑞) of 𝑃. By
triangle inequality (Lemma 1.3), we have

𝛿𝐸(𝑇[𝑝 . . 𝑞), 𝑄∞[𝑥 . . 𝑦)) ≤ 𝑘 + 𝛿𝐸(𝑃, 𝑄∞[𝑥 . . 𝑦))) ≤ 3/2 𝑑.

Due to |𝑇[𝑝 . . 𝑞)| ≥ 𝑚− 𝑘, we have 𝑞 ≥ 𝑚− 𝑘 and 𝑝 ≤ 𝑛−𝑚+ 𝑘, which
yields

𝛿𝐸(𝑇[𝑛 − 𝑚 + 𝑘 . . 𝑚 − 𝑘), 𝑄∞[𝑥″ . . 𝑦″)) ≤ 3/2 𝑑

for some integers 𝑥″, 𝑦″ with 𝑥 ≤ 𝑥″ ≤ 𝑦″ ≤ 𝑦. Moreover, as in the
proof of Lemma 5.2, we have |𝑇[𝑛 −𝑚 + 𝑘 . . 𝑚 − 𝑘)| = 2(𝑚 − 𝑘) − 𝑛 ≥
(3𝑑 + 1)|𝑄| or |𝑄| = 1, so the second call to FindAWitness is valid.
Thus, if the call returns ⊥, then Occ𝐸

𝑘 (𝑃, 𝑇) = ∅.
Nowassume that the call returned awitness𝑄∞[𝑥′ . . 𝑦′). Next,

we apply Lemma 6.4 for 𝑆 = 𝑇[𝑛 − 𝑚 + 𝑘 . . 𝑚 − 𝑘). This is indeed
possible because |𝑆| ≥ (3𝑑 + 1)|𝑄| or |𝑄| = 1. Due to

𝛿𝐸(𝑇[𝑛−𝑚+𝑘 . . 𝑞), ∗𝑄∗) ≤ 𝛿𝐸(𝑇[𝑛−𝑚+𝑘 . . 𝑞), 𝑄∞[𝑥″ . . 𝑦)) ≤ 3/2 𝑑,

Lemma 6.4 yields

𝛿𝐸(𝑇[𝑛−𝑚+𝑘 . . 𝑞), rot−𝑥′(𝑄)∗) = 𝛿𝐸(𝑇[𝑛−𝑚+𝑘 . . 𝑞), ∗𝑄∗) ≤ 3/2 𝑑.

Hence, we have 𝑞 ≤ 𝑟, as 𝑟 is computed correctly using EditGen

from Lemma 6.2. Symmetrically, due to

𝛿𝐸(𝑇[𝑝 . . 𝑚 + 𝑘), ∗𝑄∗) ≤ 𝛿𝐸(𝑇[𝑝 . . 𝑚 + 𝑘), 𝑄∞[𝑥 . . 𝑦″)) ≤ 3/2 𝑑,

112 pattern matching with edits: pillar algorithm

Lemma 6.4 yields

𝛿𝐸(𝑇[𝑝 . . 𝑚 − 𝑘), ∗rot−𝑦′(𝑄)) = 𝛿𝐸(𝑇[𝑝 . . 𝑚 + 𝑘), ∗𝑄∗) ≤ 3/2 𝑑.

Hence, we have 𝑝 ≥ ℓ, as ℓ is computed correctly using EditGen𝑅

from Lemma 6.2. We conclude that 𝑇[𝑝 . . 𝑞) is contained in 𝑇′ =
𝑇[ℓ . . 𝑟). Since 𝑇[𝑝 . . 𝑞) was an arbitrary 𝑘-error occurrence of 𝑃
in 𝑇, this implies |Occ𝐸

𝑘 (𝑃, 𝑇′)| = |Occ𝐸
𝑘 (𝑃, 𝑇)|.

Now consider the fragment 𝑇[𝑝 . . 𝑚−𝑘)whose prefix 𝑇[𝑝 . . 𝑚−
𝑘) satisfies

𝛿𝐸(𝑇[𝑝 . . 𝑚 − 𝑘), 𝑄∞[𝑥 . . 𝑦″)) ≤ 3/2 𝑑

and whose suffix 𝑇[𝑛 − 𝑚 + 𝑘 . . 𝑚 − 𝑘) satisfies

𝛿𝐸(𝑇[𝑛 − 𝑚 + 𝑘 . . 𝑚 − 𝑘), 𝑄∞[𝑥′ . . 𝑦′)) ≤ 3/2 𝑑.

Weapply Lemma5.4 to𝑇[𝑝 . . 𝑚−𝑘); this is indeedpossible because
|𝑇[𝑛−𝑚+𝑘 . . 𝑚−𝑘)| ≥ (3𝑑+1)|𝑄| or |𝑄| = 1. Lemma 5.4 now implies
(𝑛 − 𝑚 + 𝑘 − 𝑝 + 𝑥 − 𝑥′ + 3𝑑) mod |𝑄| ≤ 6𝑑. Hence, we have

𝑝 mod |𝑄| ∈ [𝑛−𝑚+ 𝑘+𝑥−𝑥′ −3𝑑 . . 𝑛−𝑚+ 𝑘+𝑥−𝑥′ +3𝑑] mod |𝑄|.

As 𝑇[𝑝 . . 𝑞) is an arbitrary 𝑘-error occurrence of 𝑃 in 𝑇, we have

Occ𝐸
𝑘 (𝑃, 𝑇′) mod |𝑄| ⊆ 𝐼 mod |𝑄|.

Further, |𝐼| ≤ 6𝑑 + 1 holds trivially by construction.
Consider the fragment 𝑇, whose prefix 𝑇[ℓ . . 𝑚 − 𝑘) satisfies

𝛿𝐸(𝑇[ℓ . . 𝑚 − 𝑘), ∗𝑄∗) ≤ 3/2 𝑑

and whose suffix 𝑇[𝑛 − 𝑚 + 𝑘 . . 𝑟) satisfies

𝛿𝐸(𝑇[𝑛 − 𝑚 + 𝑘 . . 𝑟), ∗𝑄∗) ≤ 3/2 𝑑.

computing occurrences in the periodic case 113

Again, we apply Lemma 5.4 to 𝑇′; this is indeed possible because
|𝑇[𝑛 − 𝑚 + 𝑘 . . 𝑚 − 𝑘)| ≥ (3𝑑 + 1)|𝑄| or |𝑄| = 1. Lemma 5.4 now
implies 𝛿𝐸(𝑇′, ∗𝑄∗) ≤ 3𝑑, as claimed.

As for the running time in the PILLAR model, observe that the
calls to FindAWitnessuse𝑂(𝑑2) time; the same is true for the usage
of EditGen and EditGen𝑅. Thus, the algorithm takes 𝑂(𝑑2) time in
the PILLAR model.

Lemma 6.10 (Locked(𝑆, 𝑄, 𝑑, 𝑘): Impl. of Lemma 5.11). Let
𝑆 denote a string, let 𝑄 denote a primitive string, let 𝑑 denote a positive
integer such that 𝛿𝐸(𝑆, ∗𝑄∗) ≤ 𝑑 and |𝑆| ≥ (2𝑑 + 1)|𝑄|, and let 𝑘 denote
a non-negative integer.

Then, there is an algorithm that computes disjoint locked fragments
𝐿1, … , 𝐿ℓ ⪯ 𝑆 such that 𝐿1 is a 𝑘-locked prefix of 𝑆, 𝐿ℓ is a suffix of 𝑆, and
𝛿𝐸(𝐿𝑖, ∗𝑄∗) > 0 for 1 < 𝑖 < ℓ. Moreover, we have

𝛿𝐸(𝑆, ∗𝑄∗) =
ℓ

∑
𝑖=1

𝛿𝐸(𝐿𝑖, ∗𝑄∗) and
ℓ

∑
𝑖=1

|𝐿𝑖| ≤ (5|𝑄|+1)𝑑+2(𝑘+1)|𝑄|.

The algorithm takes 𝑂(𝑑2 + 𝑘) time in the PILLAR model.
Proof. We implement the proof of Lemma 5.11. We start with

an overview of the algorithm; see also Algorithm 6.5 for implemen-
tation details.

First, we construct an optimal alignment between 𝑆 and a sub-
string of 𝑄∞. For this, we first use FindAWitness of Lemma 6.6
to obtain positions 𝑥 ≤ 𝑦 such that 𝛿𝐸(𝑆, ∗𝑄∗) = 𝛿𝐸(𝑆, 𝑄∞[𝑥 . . 𝑦)).
Then, we apply a generator EditGen (𝑆, rot−𝑥(𝑄)) of Lemma 6.2 to
construct an optimal alignment 𝐴 between 𝑆 and 𝑄∞[𝑥 . . 𝑥 + 𝜋′)
for some integer 𝜋′ ≥ 0 (note that we cannot guarantee 𝑦 = 𝑥 + 𝜋′).

Then, based on the alignment 𝐴, we construct a decomposition
𝑆 = 𝑆(0)

0 ⋯ 𝑆(0)
𝑠(0) such that 𝑆(0)

𝑖 is aligned with

𝑄(0)
𝑖 ≔ 𝑄∞[max(𝑥, (|𝑄| − 1)⌈𝑥/|𝑄|⌉) . .min(|𝑄|⌈𝑥/|𝑄|⌉, 𝑥 + 𝜋))

114 pattern matching with edits: pillar algorithm

Algorithm 6.5 Computing locked fragments in a string 𝑆.

1 Locked(𝑆, 𝑄, 𝑑, 𝑘)
2 𝑄∞[𝑥 . . 𝑦) ← FindAWitness(𝑑, 𝑄, 𝑆);
3 generator G ← EditGen(𝑆, rot−𝑥(𝑄));
4 do (𝜋, 𝜋′) ← Next(G) while 𝜋 < |𝑆|;
5 𝐴 ← Alignment(G);
6 ℓ𝑄 ← 𝑥; ℓ𝑆 ← 0;
7 𝑟𝑄 ← |𝑄|⌈𝑥/|𝑄|⌉; 𝑟𝑆 ← 𝑟𝑄 − ℓ𝑄;
8 𝛥 ← 𝑘 + 1;
9 queue 𝐹;

10 foreach (𝑠, 𝑞) ∈ 𝐴 ∪ (𝜋, 𝜋′) do
11 if 𝑠 = ⊥ then 𝑠 ← 𝑞 + 𝑥 + 𝑟𝑆 − 𝑟𝑄 − 1;
12 if 𝑞 = ⊥ then 𝑞 ← 𝑠 − 𝑥 + 𝑟𝑄 − 𝑟𝑆 − 1;
13 if 𝑥 + 𝑞 ≥ 𝑟𝑄 then
14 push(𝐹, (𝑆[ℓ𝑆 . . 𝑟𝑆), 𝛥));
15 ℓ𝑄 ← |𝑄|⌊(𝑥 + 𝑞)/|𝑄|⌋; ℓ𝑆 ← 𝑟𝑆 + ℓ𝑄 − 𝑟𝑄;
16 𝑟𝑄 ← ℓ𝑄 + |𝑄|; 𝑟𝑆 ← 𝑟𝑆 + |𝑄|;
17 𝛥 ← 0;
18 𝑟𝑆 ← 𝑟𝑄 − 𝑥 + 𝑠 − 𝑞;
19 if (𝑠, 𝑞) ≠ (𝜋, 𝜋′) then 𝛥 ← 𝛥 + 1;
20 push(𝐹, (𝑆[ℓ𝑆 . . |𝑆|), 𝛥));
21 stack 𝐿;
22 while 𝐹 is not empty do
23 (𝑆[ℓ . . 𝑟), 𝛥) ← front(𝐹); pop(𝐹);
24 while true do
25 if top(𝐿) = 𝑆[ℓ′ . . 𝑟′) and 𝑟′ = ℓ then
26 ℓ ← ℓ′;
27 pop(𝐿);
28 else if front(𝐹) = (𝑆[ℓ′ . . 𝑟′), 𝛥′) and ℓ′ = 𝑟 then
29 𝑟 ← 𝑟′;
30 𝛥 ← 𝛥 + 𝛥′;
31 pop(𝐹);
32 else if 𝛥 > 0 then
33 ℓ ← max(0, ℓ − |𝑄|);
34 𝑟 ← min(|𝑆|, 𝑟 + |𝑄|);
35 𝛥 ← 𝛥 − 1;
36 else
37 push(𝐿, 𝑆[ℓ . . 𝑟));
38 break;
39 return 𝐿;

computing occurrences in the periodic case 115

in the decomposition 𝐴, and a sequence 𝛥(0)
𝑖 such that we have

𝛥(0)
𝑖 = 𝛿𝐸(𝑆(0)

𝑖 , 𝑄(0)
𝑖) for 𝑖 > 0 and 𝛥(0)

0 = 𝛿𝐸(𝑆(0)
0 , 𝑄(0)

0) + 𝑘 + 1. As
this sequencemight be long, we generate only interesting fragments
𝑆(0)

𝑖 and store them, along with the values 𝛥(0)
𝑖 , in a queue 𝐹 in

left-to-right order. (Recall that 𝑆(𝑡)
𝑖 is interesting if 𝑖 = 0, 𝑖 = 𝑠(𝑡),

𝑆(𝑡)
𝑖 ≠ 𝑄, or 𝛥(𝑡)

𝑖 > 0.)
We construct interesting fragments 𝑆(0)

𝑖 as follows.27 We main- 27. One might
consider this process
to be slightly tedious.

tain a fragment ∞[ℓ𝑄 . . 𝑟𝑄), interpreted as 𝑄(0)
𝑖 for increasing val-

ues of 𝑖, a fragment 𝑆[ℓ𝑆 . . 𝑟𝑆), interpreted as a candidate for 𝑆(0)
𝑖 ,

and an integer 𝛥, interpreted as 𝛥(0)
𝑖 . These values are initialized

to 𝑄∞[𝑥 . . |𝑄|⌈𝑥/|𝑄|⌉), 𝑆[0 . . 𝑄|⌈𝑥/|𝑄|⌉ − 𝑥), and 𝑘+1, respectively.
Next, we process pairs (𝑠, 𝑞) corresponding to subsequent er-

rors in the alignment 𝐴. The interpretation of the 𝑗-th pair (𝑠, 𝑞) is
that 𝑆[0 . . 𝑠) is alignedwith 𝑄∞[𝑥 . . 𝑥 + 𝑞)with 𝑗 errors so that the
𝑗-th error is a substitution of 𝑆[𝑠] into 𝑄∞[𝑥 + 𝑞], and insertion of
𝑄∞[𝑥 + 𝑞], or a deletion of 𝑆[𝑠].

We perform the first step of processing (𝑠, 𝑞) only if the frag-
ment 𝑄∞[𝑥 . . 𝑥 + 𝑞) is not (yet) contained in 𝑄∞[ℓ𝑄 . . 𝑟𝑄). If this
is not the case, thenwe push 𝑆[ℓ𝑆 . . 𝑟𝑆)with budget 𝛥 to the queue
𝐹 of interesting fragments, and we update the maintained data:
The fragment 𝑄∞[ℓ𝑄 . . 𝑟𝑄) is set to be the fragment of 𝑄∞ match-
ing 𝑄 and containing 𝑄∞[𝑥 + 𝑞]; between the previous and the
current value of 𝑄∞[ℓ𝑄 . . 𝑟𝑄), there are zero or more copies of 𝑄
aligned in 𝐴 without error. Hence, we skip the same number of
copies of 𝑄 in 𝑆28 and set 𝑆[ℓ𝑆 . . 𝑟𝑆) to be the subsequent fragment 28. These are the

uninteresting
fragments 𝑆(0)

𝑖 .
of length |𝑄|. Finally, the budget 𝛥 is reset to 0.

In the second step, we update 𝑟𝑆 according to the type of the cur-
rently processed error: We increment 𝑟𝑆 in case of deletion of 𝑆[𝑠]
and we decrement 𝑟𝑆 in case of insertion of 𝑄∞[𝑥 + 𝑞]. This way,
we guarantee that |𝑆(𝑠 . . 𝑟𝑆)| = |𝑄∞(𝑥+ 𝑞 . . 𝑟𝑄)|, and that 𝐴 aligns
𝑆[ℓ𝑆 . . 𝑟𝑆) with 𝑄∞[ℓ𝑄 . . 𝑟𝑄) provided that we have already pro-
cessed all errors involving 𝑄∞[ℓ𝑄 . . 𝑟𝑄). Additionally, we increase
𝛥 to acknowledge the currently processed error between 𝑆[ℓ𝑆 . . 𝑟𝑆)
and 𝑄∞[ℓ𝑄 . . 𝑟𝑄).

In a similar way, we process (𝑠, 𝑞) = (|𝑆|, 𝜋′), interpreting it as
extra substitution. This time, however, we do not increase 𝛥 (be-

116 pattern matching with edits: pillar algorithm

cause this is a not a real error). Finally, we push 𝑆[ℓ𝑆 . . |𝑆|) = 𝑆(0)
𝑠(0)

with budget 𝛥 to the queue 𝐹.
In a second phase of the algorithm, we transform the decompo-

sition 𝑆 = 𝑆(0)
0 ⋯ 𝑆(0)

𝑠(0) and the sequence 𝛥(0)
0 ⋯ 𝛥(0)

𝑠(0) using the four
types of merge operations described in the proof of Lemma 5.6.

We maintain an invariant that a stack 𝐿 contains already pro-
cessed interesting fragments, all with budget equal to 0, in left-to-
right order (so that top(𝐿) represents the rightmost one), while 𝐹
contains fragments that have not beenprocessed yet (andmayhave
positive budgets) also in the left-to-right order (so that front(𝐹)
represents the leftmost one). Additionally, the currently processed
fragment 𝑆[ℓ . . 𝑟) is guaranteed to be to the right of all fragments
in 𝐿 and to the left of all fragments in 𝐹. The fragments in 𝐿, the
fragment 𝑆[ℓ . . 𝑟), and the fragments in 𝐹 form the sequence of all
interesting fragments in the current decomposition 𝑆 = 𝑆(𝑡)

0 ⋯ 𝑆(𝑡)
𝑠(𝑡).

In each iteration of the main loop, we pop the front fragment
𝑆[ℓ . . 𝑟)with budget 𝛥 from the queue 𝐹 and exhaustively perform
merge operations involving it: We first try applying a type-1 merge
with the fragment to the left (which must be top(𝐿)). If this is not
possible, we type applying a type-1 merge with the fragment to
the right (which must be front(𝐹)). If also this is not possible,
then 𝑆[ℓ . . 𝑟) is surrounded by uninteresting fragments. In this
case, we perform a type-2, type-3, or 4 merge provided that 𝛥 > 0.
Otherwise, we push 𝑆[ℓ . . 𝑟) to 𝐿 and proceed to the next iteration.

Finally, the algorithm returns the sequence of (locked) frag-
ments represented in the stack 𝐿.

The correctness of the algorithm follows from Lemma 5.11; no
deep insight is needed to prove that our implementation indeed
follows the procedure described in the proof of Lemma 5.6 and
extended in the proof of Lemma 5.11.

For the running time, the initial call to FindAWitness and ap-
plying the generator G each take 𝑂(𝑑2) time in the PILLAR model.
As the alignment 𝐴 is of size |𝐴| ≤ 𝑑, the for loop in Line 10 takes
𝑂(𝑑) time and generates 𝑂(𝑑) interesting locked fragments with
total budget 𝑂(𝑑 + 𝑘). Each iteration of the while loop in Line 24
decreases the number of interesting locked fragments or their total

computing occurrences in the periodic case 117

budget, so there are at most 𝑂(𝑑+ 𝑘) iterations in total. Overall the
algorithm runs in 𝑂(𝑑2 + 𝑘) time in the PILLAR model.

Lemma 6.11 (SynchedMatches(𝑃, 𝑇, 𝐼, 𝑑, 𝑑′, 𝑘, 𝑄)). Let 𝑃
denote a pattern of length 𝑚, let 0 ≤ 𝑘 ≤ 𝑚 denote a threshold, and let
𝑇 denote a text of length 𝑛 ≤ 3/2 𝑚 + 𝑘. Further, let 𝐼 denote an integer
range and let 𝑄 denote a primitive string that satisfies 𝛿𝐸(𝑃, ∗𝑄∗) ≤ 𝑑
and 𝛿𝐸(𝑇, ∗𝑄∗) ≤ 𝑑′.

There is an algorithm that computes the setOcc𝐸
𝑘 (𝑃, 𝑇) ∩ (𝐼+ |𝑄|ℤ)

as𝑂(|𝐼|𝑑′(𝑑+𝑘)) arithmetic progressions. The algorithm takes𝑂(𝑘𝑑′(𝑑+
𝑘)(𝑘 + |𝐼| + 𝑑 + 𝑑′)) time in the PILLAR model.

Proof. The algorithm resembles the proof of Lemma 5.2(4).
Consult Algorithm 6.6 for pseudo-code; in the interest of readabil-
ity we use Occ𝐸

𝑘 (𝑃, 𝑇) instead of Occ𝐸
𝑘 (𝑃, 𝑇) ∩ (𝐼 + |𝑄|ℤ) in the

pseudo-code. Note that if |𝐼| > |𝑄| we can replace 𝐼 with [0 . . 𝑄),
since in this case 𝐼 + |𝑄|ℤ = ℤ = [0 . . 𝑄) + |𝑄|ℤ. Hence, we can
assume that |𝐼| ≤ |𝑄|.

First, using Algorithm 6.5, we obtain ℒ𝑃 ≔ Locked(𝑃, 𝑄, 𝑑, 𝑘)
and ℒ𝑇 ≔ Locked(𝑇, 𝑄, 𝑑′, 0). We have ℓ𝑃 ≔ |ℒ𝑃| ≤ 𝛿𝐸(𝑃, ∗𝑄∗) +
2 ≤ 𝑑 + 2 and ℓ𝑇 = |ℒ𝑇| ≤ 𝛿𝐸(𝑇, ∗𝑄∗) ≤ 𝑑′ + 2.

Then, for each of the 𝑂(𝑑𝑑′) pairs of locked fragments 𝐿𝑃
𝑖 =

𝑃[ℓ . . 𝑟) ∈ ℒ𝑃 and 𝐿𝑇
𝑗 = 𝑇[ℓ′ . . 𝑟′) ∈ ℒ𝑇 we (implicitly) mark

the positions in the interval [ℓ′ − 𝑟 − 𝑘 . . 𝑟′ − ℓ + 𝑘). We also mark all
positions in [𝑛−𝑚−𝑘 . . 𝑛−𝑚+𝑘]. We decompose the set of marked
positions 𝑀 into 𝑂(𝑑𝑑′) maximal ranges 𝐽 ⊆ 𝑀. For each such
maximal range 𝐽, for each maximal range 𝐽′ ⊆ 𝐽 ∩ (𝐼 + |𝑄|ℤ), we
call Verify(𝑃, 𝑇, 𝑘, 𝐽′) and add its output toOcc𝐸

𝑘 (𝑃, 𝑇)∩(𝐼+|𝑄|ℤ).
This guarantees that we correctly compute all elements of the set
Occ𝐸

𝑘 (𝑃, 𝑇) ∩ (𝐼 + |𝑄|ℤ) ∩ 𝑀.
The decomposition of 𝑀 into maximal ranges yields a decom-

position of [0 . . 𝑛−𝑚+𝑘)⧵𝑀 into 𝑂(𝑑𝑑′) maximal ranges. For each
suchmaximal range 𝐽, we rely on the characterization of Claim 5.17
in order to compute Occ𝐸

𝑘 (𝑃, 𝑇) ∩ (𝐼 + |𝑄|ℤ) ∩ 𝐽. Recall that for
𝑝, 𝑝′ ∈ 𝐽 with 𝑝 ≡ 𝑝′ (mod |𝑄|) we have 𝑝 ∈ Occ𝐸

𝑘 (𝑃, 𝑇) if and only
if 𝑝′ ∈ Occ𝐸

𝑘 (𝑃, 𝑇). Hence, it suffices to restrict our attention to the
intersection of the first (at most) |𝑄| positions of 𝐽 with 𝐼 + |𝑄|ℤ.

118 pattern matching with edits: pillar algorithm

Algorithm 6.6 Computing 𝑘-error occurrences in the presence of locked regions in
text and pattern.

1 SynchedMatches(𝑃, 𝑇, 𝐼, 𝑘, 𝑑, 𝑑′, 𝑄)

2 ℒ𝑃 ← Locked(𝑃, 𝑄, 𝑑, 𝑘);
3 ℒ𝑇 ← Locked(𝑇, 𝑄, 𝑑′, 0);
4 𝑀 ← [𝑛 − 𝑚 − 𝑘 . . 𝑛 − 𝑚 + 𝑘];
5 foreach 𝑃[ℓ . . 𝑟) ∈ ℒ𝑃 do
6 foreach 𝑇[ℓ′ . . 𝑟′) ∈ ℒ𝑇 do
7 𝑀 ← 𝑀 ∪ (ℓ′ − 𝑟 − 𝑘 . . 𝑟′ − ℓ + 𝑘);
8 𝑀 ← 𝑀 ∩ [0 . . 𝑛 − 𝑚 + 𝑘);
9 foreach maximal range 𝐽 ⊆ 𝑀 do

10 foreach maximal range 𝐽′ ⊆ 𝐽 ∩ (𝐼 + |𝑄|ℤ) do
11 Occ𝐸

𝑘 (𝑃, 𝑇) ← Occ𝐸
𝑘 (𝑃, 𝑇) ∪ {𝑝𝑜𝑠 ∣ (𝑝𝑜𝑠, 𝑘𝑝𝑜𝑠) ∈ Verify(𝑃, 𝑇, 𝑘, 𝐽′)};

12 foreach maximal range [ℓ . . 𝑟) ⊆ [0 . . 𝑛 − 𝑚 + 𝑘) ⧵ 𝑀 do
13 𝐽 ← [ℓ . .min(𝑟, ℓ + |𝑄|));
14 foreach maximal range 𝐽′ ⊆ 𝐽 ∩ (𝐼 + |𝑄|ℤ) do
15 foreach (𝑝𝑜𝑠, 𝑘𝑝𝑜𝑠) ∈ Verify(𝑃, 𝑇, 𝑘, 𝐽′) do

16 Occ𝐸
𝑘 (𝑃, 𝑇) ← Occ𝐸

𝑘 (𝑃, 𝑇) ∪ ((𝑝𝑜𝑠 + |𝑄|ℤ) ∩ [ℓ . . 𝑟));
17 return Occ𝐸

𝑘 (𝑃, 𝑇);

computing occurrences in the periodic case 119

This intersection consists of at most two intervals of total size at
most |𝐼|. We call Verify for each of them, and for each position re-
turned by these Verify queries, we add an arithmetic progression
to Occ𝐸

𝑘 (𝑃, 𝑇) ∩ (𝐼 + |𝑄|ℤ).
We now proceed to analyze the time complexity of the algo-

rithm in the PILLARmodel. The two calls to Locked require𝑂(𝑑2+𝑘+
𝑑′2) time in total in the PILLARmodel due to Lemma 6.10. We then
decompose 𝑀 into maximal ranges, which can be implemented in
𝑂(𝑑𝑑′loglog(𝑑𝑑′)) time. The interval 𝑅 of positions marked due to
locked regions 𝐿𝑃

𝑖 and 𝐿𝑇
𝑗 is of size |𝐿𝑃

𝑖 | + |𝐿𝑇
𝑗 | + 2𝑘 − 1; the number

ofmaximal ranges 𝑅′ ⊆ 𝑅∩(𝐼+|𝑄|ℤ) is atmost (|𝑅|+2|𝑄|−2|𝐼|)/|𝑄|.
Consequently, the total number of maximal ranges of size at most
|𝐼| that we need to consider intervals does not exceed 2𝑘 + 1 plus

ℓ𝑃

∑
𝑖=1

ℓ𝑇

∑
𝑗=1

|𝐿𝑃
𝑖 | + |𝐿𝑇

𝑗 | + 2|𝑄| − 2|𝐼|
|𝑄|

≤
ℓ𝑇

|𝑄|
ℓ𝑃

∑
𝑖=1

|𝐿𝑃
𝑖 | + ℓ𝑃

|𝑄|
ℓ𝑇

∑
𝑖=1

|𝐿𝑇
𝑖 | + 2ℓ𝑃ℓ𝑇(|𝑄| − |𝐼|)

|𝑄|
= 𝑂((𝑑′(𝑑|𝑄| + 𝑘|𝑄|) + 𝑑𝑑′|𝑄| + 𝑑𝑑′|𝑄|)/|𝑄|)
= 𝑂(𝑑′(𝑑 + 𝑘)).

Each call to Verify in Line 11 ofAlgorithm6.6 requires time𝑂(𝑘(𝑘+
|𝐽′|)) by Lemma 6.3. By the above analysis, we make 𝑂(𝑑′(𝑑 +
𝑘)) calls to Verify, each time for an interval of size at most |𝐼|.
Hence, we can upper bound the overall running time for this step
by 𝑂(𝑑′(𝑑 + 𝑘)𝑘(𝑘 + |𝐼|)). Finally, the total time required by Verify

queries in Line 15 of Algorithm 6.6 is 𝑂(𝑑𝑑′𝑘(𝑘 + |𝐼|)) as we call
Verify 𝑂(𝑑𝑑′) times, each time for an interval of size 𝑂(|𝐼|). Thus,
the overall running time is

𝑂(𝑑′(𝑑 + 𝑘)𝑘(𝑘 + |𝐼|) + 𝑑2 + 𝑑′2 + 𝑑𝑑′loglog(𝑑𝑑′))
= 𝑂(𝑘𝑑′(𝑑 + 𝑘)(𝑘 + |𝐼| + 𝑑 + 𝑑′)).

120 pattern matching with edits: pillar algorithm

The bounds obtained in the time complexity analysis also im-
ply that our representation of Occ𝐸

𝑘 (𝑃, 𝑇) ∩ (𝐼 + |𝑄|ℤ) consists of
𝑂(|𝐼|𝑑′(𝑑 + 𝑘)) arithmetic progressions.

Lemma 6.12 (PerMat(𝑃, 𝑇, 𝑘, 𝑑, 𝑄)). Let 𝑃 denote a pattern
of length 𝑚 and let 𝑇 denote a text of length 𝑛. Further, let 0 ≤ 𝑘 ≤ 𝑚
denote a threshold, let 𝑑 ≥ 2𝑘 denote a positive integer, and let 𝑄 denote a
primitive string that satisfies |𝑄| ≤ 𝑚/8𝑑 and 𝛿𝐸(𝑃, ∗𝑄∗) ≤ 𝑑.

We can compute the set Occ𝐸
𝑘 (𝑃, 𝑇), using 𝑂(𝑛/𝑚 ⋅ 𝑑4) time in the

PILLAR model.
Proof. We consider ⌊2𝑛/𝑚⌋ blocks 𝑇0, … , 𝑇⌊2𝑛/𝑚⌋−1 of 𝑇, each

of length at most 3/2 𝑚 + 𝑘 − 1, where the 𝑖-th block starts at position
𝑖 ⋅ 𝑚/2, that is,

𝑇𝑖 ≔ 𝑇[⌊𝑖 ⋅ 𝑚/2⌋ . .min{𝑛, ⌊(𝑖 + 3) ⋅ 𝑚/2⌋ + 𝑘 − 1}).

Observe that each 𝑘-error occurrence of 𝑃 in 𝑇 is contained in at
least one of the fragments 𝑇𝑖: Specifically, 𝑇𝑖 covers all occurrences
starting in [⌊𝑖 ⋅ 𝑚/2⌋ . . ⌊(𝑖 + 1) ⋅ 𝑚/2⌋). For each block 𝑇𝑖, we call
FindRelevantFragment(𝑃, 𝑇𝑖, 𝑘, 𝑑, 𝑄) from Lemma 6.9 to ob-
tain a fragment 𝑇′

𝑖 = 𝑇[ℓ𝑖 . . 𝑟𝑖) containing all 𝑘-error occurrences
of 𝑃 in 𝑇𝑖 and an integer range 𝐼𝑖. Lemma 6.9 guarantees that we
have 𝛿𝐸(𝑇′

𝑖 , 𝑄) ≤ 3𝑑 and |𝐼𝑖| ≤ 6𝑑 + 1. We call SynchedMatches(𝑃,
𝑇′

𝑖, 𝐼𝑖, 𝑑, 3𝑑, 𝑘, 𝑄) from Lemma 6.11 next. The output of the
call to SynchedMatches consists of 𝑂((6𝑑 + 1)3𝑑(𝑑 + 𝑘)) = 𝑂(𝑑3)
arithmetic progressions. For each obtained arithmetic progression,
we first add ⌊𝑖 ⋅ 𝑚/2⌋ to all of its elements, and, if 𝑖 < ⌊2𝑛/𝑚⌋ − 1, we
intersect the resulting arithmetic progression with [⌊𝑖 ⋅𝑚/2⌋ . . ⌊(𝑖+
1) ⋅𝑚/2⌋); finally, we add the obtained set toOcc𝐸

𝑘 (𝑃, 𝑇). The inter-
section step guarantees that each 𝑘-error occurrence is accounted
for by exactly one block.

For the correctness, note that by Lemma 6.9, for each 𝑖, we have

Occ𝐸
𝑘 (𝑃, 𝑇′

𝑖) mod |𝑄| ⊆ 𝐼𝑖 mod |𝑄|.

computing occurrences in the non-periodic case 121

Thus, the call to SynchedMatches indeed computes all occurrences
of 𝑃 in 𝑇𝑖.

Each call to FindRelevantFragment requires 𝑂(𝑑2) time, while
each call to SynchedMatches requires time 𝑂(3𝑘𝑑(𝑑+𝑘)(𝑘+(6𝑑+1)+
𝑑 + 3𝑑)) = 𝑂(𝑑4). The claimed overall running time follows.

6.4 Computing Occurrences in the Non-Periodic Case

As a next building block, we again discuss how to obtain all 𝑘-edits
occurrences in the non-periodic case.

Lemma 6.13 (BreakMatches(𝑃, 𝑇, {𝐵1, … , 𝐵2𝑘}, 𝑘): Impl. of
Lemma 5.21). Let 𝑘 denote a threshold and let 𝑃 denote a pattern of length
𝑚 having 2𝑘 disjoint breaks 𝐵1, … , 𝐵2𝑘 ≼ 𝑃 each satisfying per(𝐵𝑖) ≥
𝑚/128𝑘. Further, let 𝑇 denote a text of length 𝑛 ≤ 3/2 𝑚 + 𝑘.

Then, we can compute the set Occ𝐸
𝑘 (𝑃, 𝑇) using 𝑂(𝑘3) time in the

PILLAR model.
Proof. We proceed similarly to Lemma 4.10: Instead of mark-

ing positions, we nowmark blocks of length 𝑘; in the end, we verify
complete blocks at once using Verify from Lemma 6.3. Consider
Algorithm 6.7 for pseudo-code.

For the correctness, note that we have placed the marks as in
the proof of Lemma 5.21; in particular, by Claim 5.23, any block
[𝑗𝑘 . . (𝑗 + 1)𝑘) that contains any position 𝜋 ∈ Occ𝐸

𝑘 (𝑃, 𝑇) has at
least 𝑘 marks. As we verify each such block using Verify from
Lemma 6.3, we report no false positives, and thus the algorithm is
correct.

Next, we analyze the running time. As every break 𝐵𝑖 has pe-
riod per(𝐵𝑖) > 𝑚/128𝑘, every call to ExactMatches uses 𝑂(𝑘) time
in the PILLARmodel by Lemma 2.6; thus, all calls to ExactMatches

in total take 𝑂(𝑘2) time in total. Next, by Claim 5.22, we place at
most 𝑂(𝑘2) marks in 𝑇, so the marking step uses 𝑂(𝑘2) operations
in total. Further, finding all positions in 𝑇 with at least 𝑘 marks can
be done via a linear scan over themulti-set 𝑀 of all marks after sort-
ing 𝑀, which can be done in time 𝑂(𝑘2loglog 𝑘). Finally, as there
are at most 𝑂(𝑘2/𝑘) = 𝑂(𝑘) blocks that we verify, and every call

122 pattern matching with edits: pillar algorithm

Algorithm 6.7 A PILLAR model algorithm for Lemma 5.21.

1 BreakMatches(𝑃, 𝑇, {𝐵1 = 𝑃[𝑏1 . . 𝑏1 + |𝐵1|), … , 𝐵2𝑘 = 𝑃[𝑏2𝑘 . . 𝑏2𝑘 + |𝐵2𝑘|)}, 𝑘)
2 multi-set 𝑀 ← {}; Occ𝐸

𝑘 (𝑃, 𝑇) ← {};
3 for 𝑖 ← 1 to 2𝑘 do
4 foreach 𝜏 ∈ ExactMatches(𝐵𝑖, 𝑇) do
5 𝑀 ← 𝑀 ∪ {⌊(𝜏 − 𝑏𝑖 − 𝑘)/𝑘⌋}; // Mark block ⌊(𝜏 − 𝑏𝑖 − 𝑘)/𝑘⌋ of 𝑇
6 𝑀 ← 𝑀 ∪ {⌊(𝜏 − 𝑏𝑖)/𝑘⌋}; // Mark block ⌊(𝜏 − 𝑏𝑖)/𝑘⌋ of 𝑇
7 𝑀 ← 𝑀 ∪ {⌊(𝜏 − 𝑏𝑖 + 𝑘)/𝑘⌋}; // Mark block ⌊(𝜏 − 𝑏𝑖 + 𝑘)/𝑘⌋ of 𝑇
8 𝑀 ← 𝑀 ∪ {⌊(𝜏 − 𝑏𝑖 + 2𝑘)/𝑘⌋}; // Mark block ⌊(𝜏 − 𝑏𝑖 + 2𝑘)/𝑘⌋ of 𝑇
9 sort 𝑀;

10 foreach 𝜋 ∈ [0 . . 𝑛 − 𝑚] that appears at least 𝑘 times in 𝑀 do
11 Occ𝐸

𝑘 (𝑃, 𝑇) ← Occ𝐸
𝑘 (𝑃, 𝑇) ∪ {𝑝𝑜𝑠 ∣ (𝑝𝑜𝑠, 𝑘𝑝𝑜𝑠) ∈

Verify(𝑃, 𝑇, 𝑘, [𝜋 ⋅ 𝑘 . . (𝜋 + 1) ⋅ 𝑘))};
12 return Occ𝐸

𝑘 (𝑃, 𝑇);

to Verify takes time 𝑂(𝑘2) in the PILLAR model, the verifications
take 𝑂(𝑘3) time in the PILLAR in total. Overall, Algorithm 6.7 thus
takes 𝑂(𝑘3) time in the PILLAR model.

Lemma 6.14 (RepMat(𝑃,𝑇,{(𝑅1, 𝑄1) … , (𝑅𝑟, 𝑄𝑟)},𝑘): Impl. of
Lemma 5.24). Let 𝑃 denote a pattern of length 𝑚 and let 𝑘 ≤ 𝑚 denote a
threshold. Further, let 𝑇 denote a string of length 𝑛 ≤ 3/2 𝑚 + 𝑘. Suppose
that 𝑃 contains disjoint repetitive regions𝑅1, … , 𝑅𝑟 of total length at least
∑𝑟

𝑖=1 |𝑅𝑖| ≥ 3/8 ⋅ 𝑚 such that each region 𝑅𝑖 satisfies |𝑅𝑖| ≥ 𝑚/8𝑘 and has
a primitive approximate period 𝑄𝑖 with |𝑄𝑖| ≤ 𝑚/128𝑘 and 𝛿𝐻(𝑅𝑖, 𝑄∗

𝑖) =
⌈8𝑘/𝑚 ⋅ |𝑅𝑖|⌉.

Then, we can compute the set Occ𝐸
𝑘 (𝑃, 𝑇) using 𝑂(𝑘4) time in the

PILLAR model.
Proof. As in the proof of Lemma 5.24, set 𝑚𝑅 ≔ ∑𝑟

𝑖=1 |𝑅𝑖| ≥
3/8 ⋅ 𝑚 and define for every 1 ≤ 𝑖 ≤ 𝑟 the values 𝑘𝑖 ≔ ⌊4 ⋅ 𝑘/𝑚 ⋅ |𝑅𝑖|⌋
and 𝑑𝑖 ≔ ⌈8 ⋅ 𝑘/𝑚 ⋅ |𝑅𝑖|⌉ = |Mis(𝑅𝑖, 𝑄∗

𝑖)|; write 𝑅𝑖 = 𝑃[𝑟𝑖 . . 𝑟𝑖 + |𝑅𝑖|).

computing occurrences in the non-periodic case 123

Again, we proceed similarly to the Hamming distance setting
(Lemma 4.11). However, instead of marking positions, we now
mark blocks of length 𝑘; in the end, we then verify complete blocks
at once using Verify from Lemma 6.3. Note that we need to en-
sure that wemark a block of 𝑇 only at most once for each repetitive
part 𝑅𝑖; we do so by first computing a set of all blocks to be marked
due to 𝑅𝑖 (thereby removing duplicates) and thenmerging the sets
computed for every 𝑅𝑖 into a multi-set. Consider Algorithm 6.8 for
the complete algorithm visualized as pseudo-code.

For the correctness, first note that in every call to PerMat from
Lemma 6.12, we have

16𝑘/𝑚 ⋅ |𝑅𝑖| ≥ 𝑑𝑖 = ⌈8𝑘/𝑚 ⋅ |𝑅𝑖|⌉ = 𝛿𝐻(𝑅𝑖, 𝑄∗
𝑖) ≥ 2𝑘𝑖,

hence |𝑄𝑖| ≤ 𝑚/128𝑘 ≤ |𝑅𝑖|/8𝑑𝑖; thus, we can indeed call PerMat
in this case. Further, note that we have placed the marks as in
the proof of Lemma 5.24; in particular, by Claim 5.26, any block
[𝑗𝑘 . . (𝑗 + 1)𝑘] that contains any position 𝜋 ∈ Occ𝐸

𝑘 (𝑃, 𝑇) has at
least 𝑚𝑅 −𝑚/4marks. As we verify every possible candidate using
Verify from Lemma 6.3, we report no false positives, and thus the
algorithm is correct.

For the running time in the PILLAR model, observe that during
themarking step, for every repetitive region 𝑅𝑖 we call PerMat once.
In total, all calls to PerMat take

∑
𝑖

𝑂(𝑛/|𝑅𝑖| ⋅ 𝑑4𝑖) = ∑
𝑖

𝑂(|𝑅𝑖|/𝑚 ⋅ 𝑘4) = 𝑂(𝑘4)

time in the PILLAR model. Further, for every 𝑅𝑖, we place at most
𝑂(|⌊Occ𝐸

𝑘𝑖
(𝑅𝑖, 𝑇)/𝑘⌋|) (weighted)marks, which can be bounded by

𝑂(|⌊Occ𝐸
𝑘𝑖
(𝑅𝑖, 𝑇)/𝑘⌋|) = 𝑂(𝑛/|𝑅𝑖| ⋅ 𝑑𝑖) = 𝑂(𝑘) using Corollary 5.18.

Thus, we place |𝑀| = 𝑂(𝑘2) (weighted) marks in total. Hence, the
marking step in total takes 𝑂(𝑘4) time in the PILLAR model.

As the multi-set 𝑀 contains at most 𝑂(𝑘2) (weighted) marks,
we can sort 𝑀 (by positions) in time 𝑂(𝑘2loglog 𝑘); afterwards, we
can find the elements with total weight at least 𝑚𝑅 − 𝑚/4 via a

124 pattern matching with edits: pillar algorithm

Algorithm 6.8 A PILLAR model algorithm for Lemma 5.24.

1 RepMat(𝑃, 𝑇, {(𝑅1 = 𝑃[𝑟1 . . 𝑟1 + |𝑅1|), 𝑄1) … , (𝑅𝑟 = 𝑃[𝑟𝑟 . . 𝑟𝑟 + |𝑅𝑟|), 𝑄𝑟)}, 𝑘)
2 multi-set 𝑀 ← {}; Occ𝐸

𝑘 (𝑃, 𝑇) ← {};
3 for 𝑖 ← 1 to 𝑟 do
4 set 𝑀𝑖 ← {};
5 foreach 𝜏 ∈ PerMat(𝑅𝑖, 𝑇, ⌊4 ⋅ 𝑘/𝑚 ⋅ |𝑅𝑖|⌋, ⌈8 ⋅ 𝑘/𝑚 ⋅ |𝑅𝑖|⌉, 𝑄𝑖) do
6 𝑀𝑖 ← 𝑀𝑖 ∪ {(⌊(𝜏 − 𝑟𝑖 − 𝑘)/𝑘⌋, |𝑅𝑖|)}; // Place |𝑅𝑖| marks at

bl.⌊(𝜏 − 𝑟𝑖 − 𝑘)/𝑘⌋
7 𝑀𝑖 ← 𝑀𝑖 ∪ {(⌊(𝜏 − 𝑟𝑖)/𝑘⌋, |𝑅𝑖|)}; // Place |𝑅𝑖| marks at block

⌊(𝜏 − 𝑟𝑖)/𝑘⌋
8 𝑀𝑖 ← 𝑀𝑖 ∪ {(⌊(𝜏 − 𝑟𝑖 + 𝑘)/𝑘⌋, |𝑅𝑖|)}; // Place |𝑅𝑖| marks at

bl.⌊(𝜏 − 𝑟𝑖 + 𝑘)/𝑘⌋
9 𝑀𝑖 ← 𝑀𝑖 ∪ {(⌊(𝜏 − 𝑟𝑖 + 2𝑘)/𝑘⌋, |𝑅𝑖|)}; // Place |𝑅𝑖| marks at

bl.⌊(𝜏 − 𝑟𝑖 + 2𝑘)/𝑘⌋
10 𝑀 ← 𝑀 ∪ 𝑀𝑖;
11 sort 𝑀 by positions;
12 foreach 𝜋 ∈ [0 . . 𝑛 − 𝑚] appearing at least ∑(𝜋,𝑣)∈𝑀 𝑣 ≥ ∑𝑟

𝑖=1 |𝑅𝑖| − 𝑚/4 times in

𝑀 do
13 Occ𝐸

𝑘 (𝑃, 𝑇) ← Occ𝐸
𝑘 (𝑃, 𝑇) ∪ {𝑝𝑜𝑠 ∣ (𝑝𝑜𝑠, 𝑘𝑝𝑜𝑠) ∈

Verify(𝑃, 𝑇, 𝑘, [𝜋 ⋅ 𝑘 . . (𝜋 + 1) ⋅ 𝑘))};
14 return Occ𝐸

𝑘 (𝑃, 𝑇);

the combined algorithms 125

linear scan over 𝑀 in time 𝑂(𝑘2). As there are (by Claims 5.25
and 5.26) at most 𝑂(𝑘) blocks with at least 𝑚𝑅 − 𝑚/4 marks, we
call Verify atmost 𝑂(𝑘) times. Aswe call verify always on awhole
block of length 𝑘 at once, each call to Verify takes 𝑂(𝑘2) time in
the PILLAR model. Hence, the verification step in total takes 𝑂(𝑘3)
time in the PILLAR model. In total, Algorithm 6.8 thus takes time
𝑂(𝑘4) in the PILLAR model.

6.5 A PILLAR Model Algorithm for
Pattern Matching with Edits

Finally, we are ready to prove Theorem 6.1.

Theorem 6.1. Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛,
and a positive integer 𝑘 ≤ 𝑚, we can compute (a representation of) the set
Occ𝐸

𝑘 (𝑃, 𝑇) using 𝑂(𝑛/𝑚 ⋅ 𝑘4) time in the PILLAR model.
Proof. We proceed, as in Theorem 4.1, by separately consider-

ing each of the three possible outcomes of Analyze (𝑃, 𝑘). Consider
Algorithm 6.9 for pseudo-code.

If there is an approximate period 𝑄 of 𝑃 we call PerMat (from
Lemma 6.12). Else, for each of the ⌊2𝑛/𝑚⌋ blocks 𝑇0, … , 𝑇⌊2𝑛/𝑚⌋−1,
where 𝑇𝑖 ≔ 𝑇[⌊𝑖 ⋅ 𝑚/2⌋ . .min{𝑛, ⌊(𝑖 + 3) ⋅ 𝑚/2⌋ + 𝑘 − 1}), we call
BreakMatches (from Lemma 6.13) or RepMat (from Lemma 6.14),
depending on the case we are in, and add the computed occur-
rences in Occ𝐸

𝑘 (𝑃, 𝑇).
The correctness in the approximately periodic case follows from

Lemma 6.12 and the fact that we can indeed call PerMat since, due
to Lemma 6.5, string 𝑄 satisfies 𝛿𝐸(𝑃, ∗𝑄∗) ≤ 8𝑘 and |𝑄| ≤ 𝑚/128𝑘 ≤
𝑚/(8 ⋅ 8𝑘). In the other cases, first observe that each length-(𝑚+ 𝑘)
fragment of 𝑇 is contained in at least one of the fragments 𝑇𝑖 and
hence we do not lose any occurrences. Second, by Lemma 6.5 and
due to |𝑇𝑖| ≤ 3/2 𝑚 + 𝑘, the parameters in the calls to BreakMatches

(from Lemma 6.13) and RepMat (from Lemma 6.14) each satisfy
the requirements. Finally, the intersection step in Line 13 of Algo-
rithm 6.9 guarantees that we account for each 𝑘-error occurrence
exactly once.

126 pattern matching with edits: pillar algorithm

Algorithm 6.9 Computing 𝑘-error occurrences in the PILLAR model.

1 EditOccurrences(𝑃, 𝑇, 𝑘)
2 (𝐵1, … , 𝐵2𝑘 or (𝑅1, 𝑄1), … , (𝑅𝑟, 𝑄𝑟) or 𝑄) ← Analyze(𝑃, 𝑘);
3 Occ𝐸

𝑘 (𝑃, 𝑇) ← {};
4 if approximate period 𝑄 exists then
5 return PerMat(𝑃, 𝑇, 𝑘, 8𝑘, 𝑄);
6 for 𝑖 ← 0 to ⌊2𝑛/𝑚⌋ − 1 do
7 𝑇𝑖 ← 𝑇[⌊𝑖 ⋅ 𝑚/2⌋ . .min{𝑛, ⌊(𝑖 + 3) ⋅ 𝑚/2⌋ − 1 + 𝑘});
8 if breaks 𝐵1, … , 𝐵2𝑘 exist then
9 Occ𝐸

𝑘 (𝑃, 𝑇𝑖) ← BreakMatches(𝑃, 𝑇𝑖, {𝐵1, … , 𝐵2𝑘}, 𝑘);
10 else if repetitive regions (𝑅1, 𝑄1), … , (𝑅𝑟, 𝑄𝑟) exist then
11 Occ𝐸

𝑘 (𝑃, 𝑇𝑖) ← RepMat(𝑃, 𝑇𝑖, {(𝑅1, 𝑄1), … , (𝑅𝑟, 𝑄𝑟)}, 𝑘);
12 if 𝑖 < ⌊2𝑛/𝑚⌋ − 1 then
13 𝑉 ← {ℓ + ⌊𝑖 ⋅ 𝑚/2⌋ ∣ ℓ ∈ Occ𝐸

𝑘 (𝑃, 𝑇𝑖)} ∩ [⌊𝑖 ⋅ 𝑚/2⌋ . . ⌊(𝑖 + 1) ⋅ 𝑚/2⌋);
14 Occ𝐸

𝑘 (𝑃, 𝑇) ← Occ𝐸
𝑘 (𝑃, 𝑇) ∪ 𝑉;

15 return Occ𝐸
𝑘 (𝑃, 𝑇);

For the running time in the PILLAR model, we have that the
call to Analyze takes 𝑂(𝑘2) time in the PILLAR model, the call to
PerMat takes 𝑂(𝑛/𝑚 ⋅ 𝑘4) time in the PILLAR model, each call to
BreakMatches takes 𝑂(𝑘3) time in the PILLARmodel, and each call
to RepMat takes 𝑂(𝑘4) time in the PILLARmodel. Finally, as the out-
put of our calls to BreakMatches and RepMat is of size 𝑂(𝑘2) and
is sorted, Lines 13 and 14 require 𝑂(𝑘2) time. As there are at most
𝑂(𝑛/𝑚) calls to BreakMatches and RepMat, we can bound the total
time in the PILLAR model by 𝑂(𝑛/𝑚 ⋅ 𝑘4).

As in the Hamming distance case, we now immediately obtain
the main results. In particular, combining Lemma 2.9 and Theo-
rem 6.1, we obtain an algorithm for pattern matching with edits
that is, again, not slower than the known algorithm by Cole and
Hariharan [33].

the combined algorithms 127

Corollary 6.15. Given a text 𝑇 of length 𝑛, a pattern 𝑃 of length
𝑚 and a threshold 𝑘, we can compute Occ𝐸

𝑘 (𝑃, 𝑇) in time 𝑂(𝑛 + 𝑛/𝑚 ⋅
𝑘4).

Combining Theorems 2.13 and 6.1 as in the Hamming distance
case, we obtain the main result for the fully-compressed setting.

Corollary 6.16. Let𝒢𝑇 denote an slp of size 𝑛 generating a string 𝑇,
let 𝒢𝑃 denote an slp of size 𝑚 generating a string 𝑃, let 𝑘 denote a thresh-
old, and set 𝑁 ≔ |𝑇| + |𝑃|.

Then, we can compute |Occ𝐸
𝑘 (𝑃, 𝑇)| in time 𝑂(𝑚 log𝑁+𝑛 𝑘4log3𝑁).

The elements of Occ𝐸
𝑘 (𝑃, 𝑇) can be reported within |Occ𝐸

𝑘 (𝑃, 𝑇)| ex-
tra time.

Finally, combining Theorems 2.15 and 6.1, we also obtain the
main result for the dynamic setting.

Corollary 6.17. We can maintain a collection 𝒳 of non-empty per-
sistent strings of total length 𝑁 under the operations makestring(𝑈),
concat(𝑈, 𝑉), split(𝑈, 𝑖) requiring time 𝑂(log𝑁 + |𝑈|), 𝑂(log𝑁)
and 𝑂(log𝑁), respectively, so that given two strings 𝑃, 𝑇 ∈ 𝒳 with
|𝑃| = 𝑚 and |𝑇| = 𝑛 and a threshold 𝑘, we can compute the setOcc𝐸

𝑘 (𝑃, 𝑇)
in time 𝑂(𝑛/𝑚 ⋅ 𝑘4log2𝑁).29

29. All running time
bounds hold w.h.p.

128 pattern matching with edits: pillar algorithm

Conclusions and Open Questions

In the preceding chapters, we have seen tight characterizations of
the solution structures of the pattern matching with mismatches
or errors problems. Further, we discussed algorithms—abstracted
to the PILLAR model—that exploited said structure.

As a first concluding remark, for both Theorems 3.1 and 5.1, we
can easily strengthen the (almost) periodic case to allow for only
(1 + 𝜀) mismatches or errors to a periodic string:

Theorem. Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛, a
threshold 𝑘 ≤ 𝑚, and a positive 𝜀, at least one of the following holds for a
function 𝑓:

We have |Occ𝐻
𝑘 (𝑃, 𝑇)| ≤ 𝑓(𝜀) ⋅ 576 ⋅ 𝑛/𝑚 ⋅ 𝑘.

There is a primitive 𝑄 with |𝑄| ≤ 𝑚/128𝑘 and
𝛿𝐻(𝑃, 𝑄∗) < (1 + 𝜀) 𝑘.

Theorem. Given a pattern 𝑃 of length 𝑚, a text 𝑇 of length 𝑛, a
threshold 𝑘 ≤ 𝑚, and a positive 𝜀, at least one of the following holds for a
function 𝑓:

We have |Occ𝐸
𝑘 (𝑃, 𝑇)| ≤ 𝑓(𝜀) ⋅ 642045 ⋅ 𝑛/𝑚 ⋅ 𝑘.

There is a primitive 𝑄 with |𝑄| ≤ 𝑚/128𝑘 and
𝛿𝐸(𝑃, ∗𝑄∗) < (1 + 𝜀) 𝑘.

Wedid not try to optimize the constants in Theorems 3.1 and 5.1,
especially the constant 642045 from Theorem 5.1 almost begs to be
improved.

130 conclusions and open questions

For the algorithm side, specifically for pattern matching with
mismatches, it seems as if we fully exploited the structural insight
from Theorem 3.1—at least in terms of possible improvements for
the dependency on 𝑘 in the running time of the PILLARmodel algo-
rithm.30 Essentially, to improve the current running time of 𝑂(𝑘2),30. Technically, this is

not completely true:
Recall the extra

loglog 𝑘 factor in the
running time due to

sorting 𝑂(𝑘2)
numbers. Removing
said factor seems to

be an interesting
problem in itself.

not only would one need to avoid handling up to 𝑂(𝑘2) marked
positions at once—it is also not admissible to Verify 𝑂(𝑘) differ-
ent starting positions using a Verify that takes 𝑂(𝑘) time per call.
While such a feat does not sound totally impossible, achieving it
does seem to be unrealistic. Perhaps it could hence be more time-
efficient to look for matching (conditional) lower bounds instead.

In contrast, for pattern matching with errors, there is hope. Ob-
serve that we Verify 𝑂(𝑘) blocks in time 𝑂(𝑘2) each—this yields
a dependency of 𝑂(𝑘3). As in [33], the critical case for the running
time is the (almost) periodic case, where we lose a factor of 𝑂(𝑘)
in the implementation of SynchedMatches. However, with the ad-
ditional insights gained in 5 , it is conceivable that there is a faster
implementation of SynchedMatches—in total yielding a faster algo-
rithm also for the standard setting where both text and pattern are
uncompressed.

In any case, such improvements seemingly cannot go beyond
𝑂(𝑘3)—for reasons very similar to the Hamming distance case: In
light of the (conditional) 𝑂(𝑛2) lower bound of computing the edit
distance between two strings [7], trying to improve Verify beyond
𝑂(𝑘2) seems to be lunatic. Again, perhaps it is possible to obtain
a (conditional) lower bound ruling out any improvements beyond
𝑂(𝑘3)—thiswould at least give a concrete reason for this seemingly
impenetrable barrier.

As a second concluding remark, recall that the motivation for
the PILLAR model was to give a simple interface that unifies many
of the classically studied settings in stringology. We saw implemen-
tations for three major settings, but other settings are imaginable.

Finally, it would be interesting to see the algorithms from the
previous chapters implemented into code. Especially for pattern
matching with mismatches, the algorithm is reasonably simple to
allow such a feat—It would be interesting to see if the improve-

ments in the running time then also yield actual improvements in
real-life. In particular in the fully-compressed setting this seems
to be not too far-fetched: The possibly very good compression of
slps does allow for some “slack” in possible algorithms—it is far
from clear though if said “slack” is enough. For the edit distance
case, the constant 642045 seems to be prohibitive. Hence, any im-
plementation would probably have to be preceded by an optimiza-
tion of said constant and probably a simplification of the algorithm
as well.

Part II

Counting Patterns in Graphs

7 8 9 10 11

Introduction to Part II

In the second part of this thesis, we focus on counting patterns in
graphs. Detecting, counting and enumerating patterns in graphs
are among the most well-studied computational problems in theo-
retical computer science, with applications in many fields—in biol-
ogywhen studying networks of interactions between proteins [107,
54]; in statistical physicswhen studying how certainmolecules can
be arranged on a surface [113, 67, 68]. Even more applications in-
clude the study of neural and social networks [89] and database
theory [56], to name but a few.

As an illustrative example, say you have a set of different wines
and a set of different cheeses. You want to find matching pairs of
wine and cheese, but without letting any wine or cheese go to waste.
Finding a solution—a perfect matching—easily,31 you are intrigued 31. Using for instance

the algorithm of
Edmonds [43].

and start to count the possible solutions—just to quickly give up:
As was seen by Valiant [117, 118], by counting perfect matchings
in a bipartite graph, we can compute the so-called permanent of a
matrix32—In particular, computing the permanent is much harder 32. In this case the

bi-adjacency matrix
of the bipartite graph.

than computing the related determinant of a matrix. In fact, com-
puting the permanent is #P-complete [117, 118], and thus harder
than every problem in the polynomial-time hierarchy PH [115].33 33. Read: very hard.
This surprising result motivated the subfield of Counting Complex-
ity Theory—the study of problems where the task is to count the
solutions and not just to find any.

Observe that this is in stark contrast to the first part of this
thesis—When concerning strings, finding and counting (approxi-
mate) matches of a pattern string turned out to be equally easy
and hence we could focus on finding patterns.

136 introduction to part ii

Finding and Counting Graph Homomorphisms

One possible way of formalizing the notion of “finding patterns in
a graph” is to turn to graph homomorphisms.34 For graph classes ℋ34. As we see later,

essentially any notion
of finding (or

counting) “patterns”
can be reduced to

finding (or counting)
graph

homomorphisms.
This includes in

particular (induced)
subgraphs.

and 𝒢, in the decision problem Hom(ℋ → 𝒢), we are given graphs
𝐻 ∈ ℋ and 𝐺 ∈ 𝒢, and are to decide whether there is a mapping
ℎ ∶ 𝑉(𝐻) → 𝑉(𝐺) such that for any edge {𝑢, 𝑣} in 𝐸(𝐻), the edge
{ℎ(𝑢), ℎ(𝑣)} exists in 𝐸(𝐺). Naturally, this (well-known) problem
has been studied in the literature—In fact first results were already
shown in the late 1970s and 1980s [50, 85, 3].

Complexity Dichotomies for Finding Graph Homomorphisms

Naturally, finding graph homomorphisms is a hard problem—if
both classes ℋ and 𝒢 contain all graphs (we write ℋ = 𝒢 = ⊤) the
problem Hom(ℋ → 𝒢) is easily NP-complete: Checking whether
a graph 𝐻 admits a homomorphism to the complete graph on 3
vertices 𝐾3 = 𝛥 is equivalent to checking whether 𝐻 is 3-colorable,
a classical NP-hard problem (see for instance [49]).

Motivated by the hardness in the general case, special cases
of the problem Hom(ℋ → 𝒢) were investigated. In the language-
restricted version of Hom(ℋ → 𝒢), we assume that only the class
ℋ = ⊤ is the set of all graphs and that the class 𝒢 is somehow re-
stricted.35 Setting 𝒢 = {𝐾3}, we observe that our example from35. For instance,

think of the class of
all bipartite graphs.

before is also an example of a language-restricted version of the
homomorphism counting problem—The problemHom(⊤ → 𝒢) is
NP-hard in general as well. However, if the class 𝒢 contains only bi-
partite graphs, the problemHom(⊤ → 𝒢) is solvable in polynomial
time [59]. In fact, Hell and Nešetřil [59] also prove the following
hardness result: If the class 𝒢 contains a non-bipartite graph, the
problem Hom(⊤ → 𝒢) is NP-hard. Together, this yields a complex-
ity dichotomy: for any problem Hom(⊤ → 𝒢), we obtain its com-
plexity just by looking at the class 𝒢.

With the problem Hom(⊤ → 𝒢) essentially fully understood,
the focus shifted to understanding “the other side”, that is the case
where the class 𝒢 contains all graphs instead. This structurally re-

introduction to part ii 137

stricted version of the problem is especially interesting from the
viewpoint of parameterized complexity theory: Given two graphs𝐻, 𝐺
to compute the number of homomorphisms from 𝐻 to 𝐺, we think
of the graph 𝐻—the pattern—as being much smaller than the host
graph 𝐺. Now, on “practical instances”36 an algorithm running 36. For instance if the

pattern has constant
size.

in time 2𝑂(|𝑉(𝐻)|) ⋅ |𝑉(𝐺)| might be more usable than the trivial
brute-force algorithm running in time 𝑂(|𝑉(𝐺)||𝑉(𝐻)|) (which al-
ways exists).

Specifically, Grohe [55] proved that if every graph in the graph
class ℋ contains only graphs for which the so-called treewidth is
small,37 then Hom(ℋ → ⊤) is “fixed-parameter tractable”38 (and 37. Strictly speaking,

the graphs in the
class ℋ need to be
only homomorphically
equivalent to graphs
with small treewidth.

38. That is, solvable
in time 𝑓(|𝑉(𝐻)|) ⋅
|𝑉(𝐺)|𝑂(1) for
graphs 𝐻 ∈ ℋ, 𝐺 ∈ ⊤.

in fact even polynomial-time solvable); otherwise it is “W[1]-hard”
(essentially a parameterized equivalent of NP-hardness). We for-
malize these notions later; also consult [93, 47, 36] for an in-depth
introduction to parameterized complexity theory.

Complexity Dichotomies for Counting Graph Homomorphisms

In this part of the thesis, we focus on counting the number of homo-
morphisms between graphs. For two graph classes ℋ and 𝒢, we
define the counting version of the homomorphism problem (de-
noted by #Hom(ℋ → 𝒢)) as follows: Given graphs 𝐻 ∈ ℋ and
𝐺 ∈ 𝒢, the task is to compute the number of (graph) homomor-
phisms from the graph 𝐻 to the graph 𝐺. As in the decision realm,
the language-restricted version #Hom(⊤ → 𝒢) has been studied in
the context of the counting constraint satisfaction problem: A di-
chotomy theorem of Dyer and Greenhill [42] implies that the prob-
lem #Hom(⊤ → 𝒢) is solvable in polynomial time or #P-complete
depending on an explicit criterion on 𝒢.

The structurally restricted version of the graph homomorphism
problem has been studied in the counting regime as well: A count-
ing analogue ofGrohe’s dichotomywas established byDalmau and
Jonsson [37]. In fact the explicit criterion on ℋ is almost the same:
#Hom(ℋ → ⊤) is solvable in polynomial time if and only if there is
a constant bound on the treewidth of the graphs in the class ℋ; oth-
erwise the problem #Hom(ℋ → ⊤) is complete for the class #W[1]

138 introduction to part ii

(where the class #W[1] is the counting equivalent of W[1]). We
take a closer look at the hardness part of the above dichotomy later
in this part.

The Doubly Restricted Version of Counting Homomorphisms

The previous results yield a surprisingly clean picture of the com-
plexity landscape of the problems of finding and counting graph
homomorphisms for both, the language-restricted and the struc-
turally restricted version. However, none of the previous results
are applicable for the doubly restricted version: Instead of restrict-
ing only ℋ or 𝒢, we consider the problem #Hom(ℋ → 𝒢) where
both classes are fixed. This can be seen as a special case of both
the structurally restricted version and the language-restricted ver-
sion. In particular, the known dichotomies translate only for cer-
tain pairs of classes ℋ, 𝒢, leaving a wide gap in the complexity
landscape to be explored. In particular, it is imaginable that for
real-world instances, both graphs 𝐻 and 𝐺 have a certain structure
that can be exploited. In fact, we can show exactly that: If we con-
sider so-calledKneser graphs for ℋ, thenwe can (reversibly) encode
any problem in #W[1] into a homomorphism problem. Formally,
we obtain the following universality result.

Main Theorem 5 (Universality for W[1] and #W[1]). For any
problem 𝑃 inW[1], there are graph classes ℋ𝑃 and 𝒢𝑃 such that

𝑃 ≡fpt
T Hom(ℋ𝑃 → 𝒢𝑃).

and for any problem 𝑃′ in #W[1], there are classes ℋ ′
𝑃 and 𝒢 ′

𝑃 such that

𝑃′ ≡fpt
T #Hom(ℋ ′

𝑃 → 𝒢 ′
𝑃),

where ≡fpt
T denotes interreducibility (sometimes also called equivalence)

with respect to parameterized Turing-reductions.
The classes ℋ𝑃 and ℋ ′

𝑃 are recursively enumerable and the classes 𝒢𝑃 and
𝒢 ′

𝑃 are recursive.39

39. Not to worry, we
recall the basic

concepts used in this
statement later in this

part.

introduction to part ii 139

Observe that Main Theorem 5 makes a clear categorization of
the problems Hom(ℋ → 𝒢) into “easy” (that is fixed-parameter
tractable) and “hard” (that is W[1]-hard or #W[1]-hard) cases
unlikely: Think of the work of Ladner [76] on NP-intermediate
problems and its generalization to the parameterized setting by
Downey and Fellows [41]. In particular, a general partition of the
class W[1] in fixed-parameter tractable and W[1]-complete prob-
lems is very unlikely—a similar reasoning applies to #W[1].

Note that Main Theorem 5 and in particular its consequences
for the classes #W[1] and W[1] are independent from the “non-
dichotomy” results of Bodirsky and Grohe [14] and Chen, Thurley,
and Weyer [30], which rule out a P vs. NP/#P dichotomy for the
structurally restricted versions: Bodirsky and Grohe [14] prove a
P vs. NP non-dichotomy by a modification of the result of Ladner
[76]; however, this has no direct implications from neither a pa-
rameterized complexity nor a counting complexity point of view.
Independently, Chen et al. [30] gave a similar result also for the
counting version and hence obtained a P vs. #P non-dichotomy re-
sult; again, this has no implications for the parameterized setting.

From Homomorphisms to (Induced) Subgraphs

In a sense, the graph homomorphism problem is sufficiently un-
derstood. As promised, we now move to induced subgraphs.

Specifically, for a graph property 𝛷, we consider the problem
#IndSub(𝛷), where we are given a graph 𝐺 and an integer 𝑘, and
we are to compute the number of all 𝑘-vertex induced subgraphs
of 𝐺 that satisfy 𝛷.40 Observe the trivial 𝑂(|𝑉(𝐺)|𝑘) brute-force

40. Note that this is a
slight abuse of
notation: For two
graph classes ℋ and 𝒢,
in the similar, but
different problem
#IndSub(ℋ → 𝒢) the
task is, given 𝐻 ∈ ℋ
and 𝐺 ∈ 𝒢 to
compute how often
𝐻 appears as an
induced subgraph in
𝐺—we have to count
a single pattern from
ℋ. In contrast, in
#IndSub(𝛷), we
have to count all
patterns of a fixed
size.

algorithm for this problem.
Introduced by Jerrum and Meeks [62], #IndSub(𝛷) has seen a

long line of research [63, 87, 64] that yielded #W[1]-hardness for
many, very specific properties 𝛷.

1 The property 𝛷 holds for a graph 𝐻 if and only if 𝐻 is con-
nected.

140 introduction to part ii

2 The property 𝛷 has low edge-densities; this is true for instance
for all sparse properties such as planarity and made formal
in Section 10.3.

3 The property 𝛷 holds for a graph 𝐻 if and only if the number
of edges of 𝐻 is even/odd.

4 The property 𝛷 is closed under the addition of edges, and
the minimal elements have large treewidth.

However, on a closer look, only Item 2 yields a (conditional) lower
bound that comes remotely close to the trivial upper bound from
the brute-force algorithm. This is mainly due to the fact that the
other results use Ramsey’s Theorem to obtain a clique (or inde-
pendent set) of size 𝑘 in a graph of size 𝑅(𝑘) = 2𝛩(𝑘) [95, 110, 44].
Using such a construction, the best lower boundmay ever hope for
is of order 𝑓(𝑘) ⋅ |𝑉(𝐺)|𝑜(log 𝑘) for any function 𝑓.

Alas, as Curticapean et al. [35] observed, the framework by
Lovász [83] lifts the dichotomies from counting homomorphisms
to counting (induced) subgraphs. The catch is, that the explicit-
ness of the criterion for counting homomorphisms does not trans-
fer: In particular, we can express #IndSub(𝛷) as a finite linear com-
bination of homomorphism numbers—we even get amonotonicity
statement41—however, the coefficients of the linear combination

41. That is, if
computing any of the

summands of the
linear combination is

hard, then so is the
whole linear
combination.

are alternating sums and notoriously hard to analyze.42 In fact,42. Later, we take a
detailed look at both

the framework of
Lovász [83] as well
as the coefficients of

said linear
combination.

a series of work [100, 40] found topological and algebraic interpre-
tations of said coefficients. We continue this line of work by giving
an interpretation in terms of so-called 𝑓-vectors and ℎ-vectors of a
property 𝛷. Among other results, this interpretation allows us to
resolve an open conjecture by Jerrum and Meeks.

Conjecture (Jerrum and Meeks [63, 64]). Let 𝛷 denote a graph
property that depends only on the number of edges of a graph. If the prop-
erty 𝛷 is not trivial,43 then #IndSub(𝛷) is #W[1]-complete.

43. We say a property
𝛷 is non-trivial if

there are only finitely
many 𝑘 where 𝛷 is
true of false for all

graphs with 𝑘
vertices.

We prove their conjecture.

introduction to part ii 141

Main Theorem 6. Let 𝛷 denote a non-trivial computable graph prop-
erty that depends only on the number of edges of a graph. #IndSub(𝛷) is
#W[1]-complete and cannot be solved in time 𝑓(𝑘) ⋅ |𝑉(𝐺)|𝑜(𝑘/log 𝑘) for
any 𝑓, unless eth fails.

Further, we obtain #W[1]-hardness results and (almost) tight
conditional lower bounds for large classes of properties 𝛷. As an
example, we obtain hardness whenever 𝛷 is monotone.

Main Theorem 7. Let 𝛷 denote a monotone graph property that is
not trivial. Then #IndSub(𝛷) is #W[1]-complete and cannot be solved
in time 𝑓(𝑘) ⋅ |𝑉(𝐺)|𝑜(𝑘/log1/2𝑘) for any function 𝑓, unless eth fails.

142 introduction to part ii

7Almost Everything You Need to Know About Graphs

Let us start with basic definitions and concepts used throughout
this part. We assume that numbers are encoded in binary; wewrite
ℕ ⊆ {0, 1}∗.44 For a positive integer 𝑛, we define [𝑛] ≔ {1, … , 𝑛} 44. Whenever we use

natural numbers and
the symbol ℕ in
particular, we
explicitly specify
whether 0 is to be
included or not.

and set [0] ≔ {}. For a finite set 𝑆, we write #𝑆 and |𝑆| for the
cardinality of 𝑆—we have #[𝑛] = |[𝑛]| = 𝑛.

For two functions 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶, we write 𝑓 ∘ 𝑔
for the function that maps 𝑥 ∈ 𝐴 to 𝑔(𝑓(𝑥)) ∈ 𝐶; we call 𝑓 ∘ 𝑔 the
composition of 𝑓 and 𝑔. Further, we use the symbol ⋆ to denote partial
function applications: For a function 𝑓 ∶ 𝐴 × 𝐵 → 𝐶 and an element
𝑎 ∈ 𝐴, we write 𝑓(𝑎, ⋆) for the function that maps 𝑏 ∈ 𝐵 to 𝑓(𝑎, 𝑏).45 45. Equivalently,

𝑓(𝑎, ⋆) ≔ 𝑓|{𝑎}×𝐵.This notation naturally generalizes to other domains.

7.1 Graphs and Mappings between Graphs

In this part, the central objects of study are graphs. A graph 𝐺 =
(𝑉(𝐺), 𝐸(𝐺)) is a pair consisting of a finite set of vertices𝑉(𝐺) and
afinite set of edges𝐸(𝐺) ⊆ {{𝑢, 𝑣} ∣ 𝑢, 𝑣 ∈ 𝑉(𝐺)}—Thegraphs that
we consider are unlabeled, undirected, and do not contain parallel
edges. The size of a graph 𝐺 is the size of its vertex set 𝑉(𝐺).

Of key relevance are mappings or morphisms between graphs—
for two graphs 𝐻 and 𝐺, a morphism 𝑓 ∶ 𝐻 → 𝐺 is a mapping from
𝑉(𝐻) to 𝑉(𝐺). A homomorphism is a morphism 𝑓 that preserves
edges, that is, for all {𝑢, 𝑣} ∈ 𝐸(𝐻) we have {𝑓(𝑢), 𝑓(𝑣)} ∈ 𝐸(𝐺).
An embedding is an injective homomorphism. A strong embedding
is an embedding 𝑓 that additionally preserves non-edges, that is
{𝑓(𝑢), 𝑓(𝑣)} ∈ 𝐸(𝐺) if and only if {𝑢, 𝑣} ∈ 𝐸(𝐻). Finally, an isomor-
phism is a surjective strong embedding. If there is an isomorphism
between two graphs 𝐻 and 𝐺, we say that 𝐻 and 𝐺 are isomorphic
and write 𝐻 ≅ 𝐺.

144 graphs, graph mappings, graph properties

(a) There are exactly 38 homomorphisms from the graph to the graph . Multiple edges
of that are mapped to the same edge of are depicted as parallel edges. Note that while two
homomorphisms may map vertices from to different vertices of , the image of the homo-
morphisms (and thus the corresponding subgraphs of) may coincide.

(b) Exactly 14 of the homomorphisms from to
are also embeddings.

(c) Exactly six of the homomorphisms
from to are also strong embeddings.

Figure 7.1. Morphisms from to : There are 38 homomorphisms, 14 embeddings
and six strong embeddings from to . In other words, we have #Hom(→) = 38,
#Emb(→) = 14, and #StrEmb(→) = 6.

graphs and mappings between graphs 145

Further, we write Hom(𝐻 → 𝐺) to denote the set of all homo-
morphisms from 𝐻 to 𝐺, we write Emb(𝐻 → 𝐺) for the set of all
embeddings, andwewrite StrEmb(𝐻 → 𝐺) for the set of all strong
embeddings. In particular, we write #Hom(𝐻 → ⋆) for the func-
tion that maps a graph 𝐺 to #Hom(𝐻 → 𝐺). Consider Figure 7.1
for an example and its visualization. Finally, very rarely, we need
color-prescribed homomorphisms: For graphs 𝐺 and 𝐻 and a homo-
morphism 𝑐 in Hom(𝐺 → 𝐻), we write cp-Hom(𝐻 → 𝐺) for all
homomorphisms ℎ from 𝐻 to 𝐺 that map vertices from ℎ to the ver-
tex (color) class prescribed by 𝑐. Formally: cp-Hom(𝐻 → 𝐺) ≔
{ℎ ∈ Hom(𝐻 → 𝐺) ∣ ∀𝑣 ∶ 𝑐(ℎ(𝑣)) = 𝑣}.

As a special case, we also consider morphisms from a graph 𝐺
to itself, so-called endomorphisms. In particular, we are interested
in endomorphisms that are also isomorphisms—we call them auto-
morphisms and writeAut(𝐺) for the set of all automorphisms of 𝐺.

A subgraph of a graph 𝐺 is a graph 𝐻 that consists of a subset
of the vertices in 𝑉(𝐺), and a subset of the edges in 𝐸(𝐺) that are
incident on two vertices in 𝑉(𝐻)—we have 𝑉(𝐻) ⊆ 𝑉(𝐺) and
𝐸(𝐻) ⊆ {{𝑢, 𝑣} ∈ 𝐸(𝐺) ∣ 𝑢, 𝑣 ∈ 𝑉(𝐻)}. Note that any subset
of 𝐸(𝐺) uniquely defines a subgraph of 𝐺. Hence, for a subset
𝐹 ⊆ 𝐸(𝐺), we write 𝐺{𝐹 } for the subgraph of 𝐺 with the edge
set 𝐹. We say a subgraph 𝐺{𝐹 } is proper if 𝐹 ≠ 𝐸(𝐺). Further,
we write Sub(𝐻 → 𝐺) to denote the set of all subgraphs of 𝐺 that
are isomorphic to 𝐻. Observe that each subgraph in Sub(𝐻 → 𝐺)
corresponds to #Aut(𝐻) embeddings from 𝐻 to 𝐺—we have

#Sub(𝐻 → 𝐺) = #Emb(𝐻 → 𝐺)/#Aut(𝐻). (7.1)

Consult Figure 7.2b for an example and its visualization.
An induced subgraph of a graph 𝐺 is a graph 𝐻 that consists of

a subset of the vertices in 𝑉(𝐺), and all of the edges in 𝐸(𝐺) that
are incident on two vertices in 𝑉(𝐻)—we have 𝑉(𝐻) ⊆ 𝑉(𝐺) and
𝐸(𝐻) = {{𝑢, 𝑣} ∈ 𝐸(𝐺) ∣ 𝑢, 𝑣 ∈ 𝑉(𝐻)}. Note that any subset of
𝑉(𝐺) uniquely defines an induced subgraph of 𝐺. Hence, for a
subset 𝑊 ⊆ 𝑉(𝐺), we write 𝐺[𝑊] for the induced subgraph of
𝐺 with the vertex set 𝑊. We say an induced subgraph 𝐺[𝑊] is

146 graphs, graph mappings, graph properties

(a) The graph has exactly two automorphisms.

(b) The graph appears exactly seven times
as a (not necessarily induced) subgraph of .
Note that two subgraphs are the same if and
only if they consist of the same set of edges.

(c) The graph appears exactly three times
as an induced subgraph of the graph . Note
that two induced subgraphs are the same if and
only if they consist of the same set of vertices.

Figure 7.2. Automorphisms of and counting in : The graph appears
seven times as a subgraph in and thrice as an induced subgraph. Observe that
each (induced) subgraph corresponds to #Aut() = 2 (strong) embeddings from
to . In other words, we have #Sub(→) = #Emb(→)/#Aut() = 7 and
#IndSub(→) = #StrEmb(→)/#Aut() = 3.

common graph parameters 147

proper if 𝑊 ≠ 𝑉(𝐺). Further, we write IndSub(𝐻 → 𝐺) to denote
the set of all induced subgraphs of 𝐺 that are isomorphic to 𝐻. Ob-
serve that each induced subgraph in Sub(𝐻 → 𝐺) corresponds to
#Aut(𝐻) strong embeddings from 𝐻 to 𝐺—we have

#IndSub(𝐻 → 𝐺) = #StrEmb(𝐻 → 𝐺)/#Aut(𝐻). (7.2)

Consult Figure 7.2c for an example and its visualization.
Finally, we say a graph 𝐻 is a core if and only if there is no homo-

morphism from 𝐻 to a proper subgraph of 𝐻. In particular, every
endomorphism of a core is an automorphism.

7.2 Common Graph Parameters

We discussed different mappings between graphs and different no-
tions of subgraphs—however, we did not yet discuss properties of
graphs themselves; that, we do in this section.

We start with global properties of graphs. To that end, we call
edges of the form {𝑢, 𝑢} a self-loop.46 Now, we say that a graph is 46. Note that we

write the set {𝑢} as
{𝑢, 𝑢} to emphasize it
being an edge from 𝑢
to 𝑢.

loop-free if it does not contain a self-loop.
Next, if two vertices 𝑢, 𝑣 in 𝑉(𝐺) form an edge {𝑢, 𝑣} in 𝐸(𝐺),

we say that 𝑢 and 𝑣 are adjacent and we say that the edge {𝑢, 𝑣} is
incident on 𝑢 and 𝑣. If all vertices of a graph are pairwise adjacent,
we say that the graph is a complete graph or a clique. We write 𝐾𝑛 to
denote the clique with 𝑛 vertices. Wewrite 𝜔(𝐺) for the size of the
largest subgraph of 𝐺 that is a clique. Wewrite 𝐾𝑎,𝑏 for the biclique
with sizes 𝑎 and 𝑏, that is, for the graph

𝐾𝑎,𝑏 ≔ (𝐴 ∪ 𝐵, {(𝑢, 𝑣) ∣ 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵}); 𝑎 = |𝐴|, 𝑏 = |𝐵|.

Similarly, we write ⊞𝑘 for the square grid graph on 𝑘 ⋅ 𝑘 vertices.
That is, we have

⊞𝑘 ≔ ([𝑘] × [𝑘], {{(𝑢, 𝑣), (𝑥, 𝑦)} ∣ |𝑢 − 𝑥| + |𝑣 − 𝑦| = 1}.

148 graphs, graph mappings, graph properties

(a) The clique 𝐾7 . (b) The cycle 𝐶7 . (c) The path 𝑃7 . (d) A tree 𝑇 with 7 vertices.

(e) All vertices
need to be in a
single bag, we have
tw(𝐾7) = 6.
In general, we have
tw(𝐾𝑛) = 𝑛 − 1.

(f) All but one edge
get their own bag,
the remaining edge
is added to the top-
most bag, we have
tw(𝐶7) = 2.
In general: tw(𝐶𝑛) = 2.

(g) Each edge gets
its own bag, we have
tw(𝑃7) = 1.
In general: tw(𝑃𝑛) = 1.

(h) Each edge gets its own
bag, we have tw(𝑇) = 1.
In general, for any tree𝑇we
have tw(𝑇) = 1.

Figure 7.3. The complete graph 𝐾7 , the cycle 𝐶7 , the path 𝑃7 , and a tree with seven
vertices, as well as tree decompositions with minimal width for each graph. Edges of
graphs are depicted in green; if a vertex appears in multiple bags, the corresponding
copies in the bags are connected with a black edge. Note that black edges also indicate
which bags of the tree decomposition are connected.

common graph parameters 149

The degree of a vertex 𝑣 is the number of edges incident on 𝑣;
denoted by 𝑑(𝑣).47 We define the average degree of a graph 𝐺 as 47. Note that a loop is

counted twice.

𝑑(𝐺) ≔
1

|𝑉(𝐺)| ⋅ ∑
𝑣∈𝑉(𝐺)

𝑑(𝑣) = |𝐸(𝐺)|
2 |𝑉(𝐺)| .

Intuitively, graphs with high average degree look like a clique.
Formally, extremal graph theory gives us the following fact.

Fact 7.1 (Turán’s Theorem, [see 83, Section 2.1]). Any graph 𝐺
with an average degree larger than (1−1/𝑟)/4⋅|𝑉(𝐺)| contains the clique
𝐾𝑟+1 as a subgraph.48 48. Note that

equivalently, we
could require 𝐺 to
have more than
(1 − 1/𝑟) ⋅ |𝑉(𝐺)|2/2
edges.

The neighborhood 𝑁𝐺(𝑣) = 𝑁1
𝐺(𝑣) of a vertex is the set of all

vertices in 𝑉(𝐺) that are adjacent to 𝑣. Similarly, we write 𝑁𝑖
𝐺(𝑣)

to denote the set of all vertices adjacent to any vertex in 𝑁𝑖−1
𝐺 (𝑣); we

write 𝑁∗
𝐺(𝑣) ≔ 𝑁1

𝐺(𝑣) ∪ ⋯ ∪ 𝑁|𝑉(𝐺)|
𝐺 for the set of all vertices that

are reachable from 𝑣. If all vertices are reachable from each other
in 𝐺, we say that 𝐺 is connected. We say a vertex is isolated, if it has
no neighbors.

A cycle is a connected graph 𝐺 that satisfies |𝑉(𝐺)| = |𝐸(𝐺)| and
every vertex in 𝑉(𝐺) has degree 2. Wewrite 𝐶𝑛 for the cycle with 𝑛
vertices. Similarly, a path is a cycle with exactly one edge removed;
we write 𝑃𝑛 to denote the path with 𝑛 vertices.49 49. While technically

undefined, we also
allow the path 𝑃2
with two vertices and
a single edge.

A tree is a connected graph 𝑇 with |𝑉(𝑇)| = |𝐸(𝐺)| + 1. Next,
we introduce a concept of “tree-likeness” of a graph. To that end,
we define a tree decomposition of a graph 𝐺 as follows: A tree de-
composition of a graph 𝐺 is a pair (𝑇, 𝑏) of a tree 𝑇 and a mapping 𝑏
that maps every vertex 𝑡 in 𝑉(𝑇) to a subset (a “bag”) of vertices
𝑏(𝑡) ⊆ 𝑉(𝐺), where

1 for each edge {𝑢, 𝑣} in 𝐸(𝐺) there is a bag that contains both
𝑢 and 𝑣,

2 every vertex 𝑣 in 𝑉(𝐺) appears in some bag,

150 graphs, graph mappings, graph properties

3 for each vertex 𝑢 in 𝑉(𝐺), the vertices of 𝑇 whose bag con-
tains 𝑢 form a tree.

Thewidth of a tree decomposition is the size of its largest bagminus
one. The treewidth of a graph 𝐺 is the minimal width of any tree de-
composition of 𝐺. Consult Figure 7.3 for examples of most of the
introduced graphs, as well as depictions of minimal tree decompo-
sitions of these graphs. We use the treewidth of a graph only in
a black-box fashion; hence, consult the literature, for instance Cy-
gan et al. [36, Chapter 7], for discussions as to why the depicted
decompositions are indeed optimal.

One of the aforementioned black-box uses of the treewidth of
a graph happens in the following well-known fact from extremal
graph theory (and its applications later).

Fact 7.2 (Folklore, [see for instance 24, Cor. 1]). Any graph 𝐺
with an average degree of at least 𝛿 has a treewidth of at least 𝛿/2.5050. Compare Facts 7.1

and 7.2: Fact 7.1
implies a treewidth
lower bound of at

least 𝑟 (see also
Figure 7.3e). Hence,

for small graphs
(𝑛 ≔ |𝑉(𝐺)| < 32),

Fact 7.1 always yields
a better bound,

otherwise Fact 7.1
yields a better bound
if 𝑟 is chosen outside

of ((𝑛 − 𝑞)/16,
(𝑛 + 𝑞)/16);

𝑞 ≔ (𝑛2 − 32𝑛)1/2.
For us, this is not
relevant, though.

Another important parameter of a graph is the size of the small-
est subgraph that is a cycle. We call this number the girth of a graph.
In particular, we are interested in the odd girth of a graph, that is,
the size of the smallest subgraph that is a cycle with an odd size; if
no such odd cycle exists we set the (odd) girth to −1. Homomor-
phisms preserve the odd girth of a graph in the following sense.

Lemma 7.3 (Folklore). For any two loop-free graphs 𝐻 and 𝐺 with
#Hom(𝐻 → 𝐺) > 0, the odd girth of 𝐺 is at most the odd girth of 𝐻.

Proof. Observe that a loop-free graph 𝐻 has an odd girth of at
most 𝛾 if there is a homomorphism 𝑓 from the cycle𝐶𝛾 to𝐻—weare
done if 𝑓 maps each vertex of 𝐶𝛾 to different vertex in 𝐻; otherwise,
as 𝐻 is loop-free, 𝑓 cannot map adjacent vertices of 𝐶𝛾 to the same
vertex in 𝐻. As 𝛾 is odd, 𝐻 has thus some odd cycle of length at
most 𝛾 − 2 as a subgraph.

Now, the concatenation of homomorphisms is again a homo-
morphism, so any homomorphism from a cycle 𝐶𝛾 to 𝐻 yields a
homomorphism from 𝐶𝛾 to 𝐺, yielding the claim.

operations on graphs 151

Next, an 𝐹-coloring of a graph 𝐺 is a graph homomorphism
𝑐 ∈ Hom(𝐺 → 𝐹). We say that a graph 𝐺 is 𝐹-colorable or allows
a coloring into 𝐹 if 𝐺 has an (unspecified) 𝐹-coloring. If a graph 𝐺
comes with an 𝐹-coloring 𝑐 ∈ Hom(𝐺 → 𝐹), we say that 𝐺 is (𝐹, 𝑐)-
colored. If the coloring is understood from the context, we also call
𝐺 just 𝐹-colored. Further, we say that 𝐺 is 𝑘-colorable, if 𝐺 has a
𝐾𝑘-coloring. We call a 2-colorable graph bipartite; we say that the
biclique 𝐾𝑎,𝑏 a complete bipartite graph.

The chromatic number 𝜒(𝐺) of a graph 𝐺 is the smallest 𝑘 such
that 𝐺 is 𝑘-colorable. We say a graph 𝐺 is perfect, if all induced sub-
graphs 𝐺[𝐹] of 𝐺 satisfy 𝜒(𝐺[𝐹]) = 𝜔(𝐺[𝐹]). Again, homomor-
phisms preserve the chromatic of a graph in the following sense;
note that the relation sign is flipped compared to Lemma 7.3.

Lemma 7.4 (Folklore). For any two graphs 𝐻 and 𝐺 that satisfy
#Hom(𝐻 → 𝐺) > 0, we have 𝜒(𝐻) ≤ 𝜒(𝐺).

Proof. The concatenation of homomorphisms is again a homo-
morphism. Hence, using the homomorphism from 𝐻 to 𝐺, any
homomorphism from 𝐺 to any 𝐾𝑘 yields a homomorphism from 𝐻
to 𝐾𝑘, yielding the claim.

Note that Lemmas 7.3 and 7.4 together imply that there is no
homomorphism between two graphs 𝐻 and 𝐺 if both the odd girth
and the chromatic number are smaller in 𝐻 than in 𝐺.

7.3 Operations on Graphs

Throughout this part, on multiple occasions we transform graphs
into different graphs. We discuss the operations used to accom-
plish those transformations next.

We start with the deletion of edges and vertices: We write 𝐺 ⧵
{𝑢, 𝑣} ≔ 𝐺{𝐸(𝐺) ⧵ {𝑢, 𝑣} } for the deletion of the edge {𝑢, 𝑣} and
𝐺 ⧵ 𝑢 ≔ 𝐺[𝑉(𝐺) ⧵ {𝑢}] for the deletion of the vertex 𝑢.

Similar, but different, is the contraction of two vertices 𝑢 and 𝑣.
Intuitively, the vertices 𝑢 and 𝑣 are merged into a single vertex 𝑢𝑣,

152 graphs, graph mappings, graph properties

(a) The deletion of an edge. (b) The deletion of a vertex.

(c) The contraction of two vertices. (d) The contraction of an edge.

(e) The looped complement. (f) The complement.

2 1

(g) All possible edge extensions of . Written atop the arrows is the number of different edge
extension that result in isomorphic graphs.

D

C

BA

×

1 2

(A,1) (A,2)

(B,1) (B,2)

(C,1) (C,2)

(D,1) (D,2)

(h) The categorical product of two graphs. Note that the vertex labels are added only for illus-
trative purpose; the graphs are unlabeled.

Figure 7.4. The various operations on graphs illustrated.

operations on graphs 153

any edges incident on 𝑢 or 𝑣 become incident on the new vertex 𝑢𝑣,
with duplicate edges removed. Formally, we set

𝑉(𝐺/∘{𝑢, 𝑣}) ≔ 𝑉(𝐺) ⧵ {𝑢, 𝑣} ∪ {𝑢𝑣}
𝐸(𝐺/∘{𝑢, 𝑣}) ≔ 𝐸(𝐺[𝑉(𝐺) ⧵ {𝑢, 𝑣}])

∪ {{𝑡, 𝑢𝑣} ∣ 𝑡 ∈ (𝑁𝐺(𝑢) ∪ 𝑁𝐺(𝑣)) ⧵ {𝑢, 𝑣}}
∪ {{𝑢𝑣, 𝑢𝑣} ∣ {𝑢, 𝑣} ∈ 𝐸(𝐺)}.

Further, the contraction of an edge {𝑢, 𝑣} is the contraction of
the vertices 𝑢 and 𝑣, except that we delete the self-loop {𝑢𝑣, 𝑢𝑣}:
We write 𝐺/{𝑢, 𝑣} ≔ 𝐺/∘{𝑢, 𝑣} ⧵ {𝑢𝑣, 𝑢𝑣}.51 Consult Figures 7.4a

51. Note that this
operation is
well-defined even if
the edge {𝑢, 𝑣} did
not exist in the first
place. Hence, we
could also define
𝐺/{𝑢, 𝑣} ≔
(𝐺 ⧵ {𝑢, 𝑣})/∘{𝑢, 𝑣}.

to 7.4d for examples of the introduced operations.
Combining the previous operations, we say that a minor of a

graph 𝐺 is a graph that can be obtained via (repeated) deletions of
vertices or edges from 𝐺 or via contraction of (existing) edges of 𝐺.

Using the notion of a minor, we can understand graphs of high
average degree even further.

Fact 7.5 (Kostochka [75], Thomason [114]). Any graph with an
average degree of at least 2.68 𝑟 log1/2 𝑟 has 𝐾𝑟 as a minor.52

52. The exact constant
in Thomason [114] is
𝛼 = 1 + log(2𝛼);
Compare Fact 7.5
with Facts 7.1 and 7.2.
Fact 7.1 also yields a
bound on the size of
a clique minor;
similar trade-offs as
between Facts 7.1
and 7.2 apply. With
Fact 7.2, the situation
is more complicated:
The treewidth of a
graph is at least the
treewidth of any of
its minors, so Fact 7.5
yields a treewidth
lower bound of 𝑟 − 1.
The other direction is
not known to be true.

In a next step, we generalize the contraction of vertices to the
contraction of sets of vertices. To that end, we say that for a set 𝑆, a
partition 𝜌 of 𝑆 is a pairwise disjoint set of subsets of 𝑆 (called blocks
of 𝜌)whose union is again 𝑆. Now, for a partition 𝜌 of𝑉(𝐺), the quo-
tient graph is the graph obtained from 𝐺 by contracting all vertices
in 𝑉(𝐺) that are contained in the same block of 𝜌. We write 𝐺/∘𝜌.
If we contract only vertices not connected by an edge we also write
𝐺/𝜌 for this operation. In contrast to notation of Curticapean et al.
[35], the spasms of a graph 𝐺 are all quotient graphs of 𝐺.53 Consult

53. In [35], the spasm
contains only
loop-free graphs,
they search for
patterns in loop-free
graphs only.

Figure 7.5 for an example illustrating the spasms of .
Having discussed various operations to shrink a graph, we turn

to operations that (potentially) enlarge graphs.

154 graphs, graph mappings, graph properties

d

c

ba

1

cd

ba

1

c

bda

d

2

bca

ad

c

b4
d

ac

b4
d

c

ab4

1

2

bcad

d

2

abc4
1

acd

b4
1

cd

ab4
1

ac

bd4
1

c

abd4
1

2

bcda

abcd

(a) The quotient graphs of . In each step, two (additional) vertices are contracted; vertex labels
are added for illustrative purpose only. The loop-free spasm of are colored in green.

1×

1× 1× 2× 2×

1× 6×

1×
(b) The isomorphism classes of quotient graphs of . In each step, two (additional) vertices
are contracted. Isomorphic graphs are shown only once, next to the number of how often they
appear. The loop-free spasms of are colored in green.

Figure 7.5. The (isomorphism classes of) quotient graphs of .

operations on graphs 155

We start with edge extensions: We write 𝐺 ∪ 𝑆 for the graph ob-
tained from 𝐺 by adding 𝑆 to the set of edges:

𝑉(𝐺 ∪ 𝑆) ≔ 𝑉(𝐺),
𝐸(𝐺 ∪ 𝑆) ≔ 𝐸(𝐺) ∪ 𝑆.

We write #Ext(𝐻 → 𝐺) for the number of graphs isomorphic to 𝐺
that can be obtained by adding edges to 𝐻. In other words

#Ext(𝐻 → 𝐺) ≔ #{𝑆 ∣ 𝐻 ∪ 𝑆 ≅ 𝐺}.

Observe that we have #Ext(𝐻 → 𝐺) = 0 if 𝐻 and 𝐺 have a different
number of vertices and that we have #Ext(𝐻 → 𝐾𝑘) = 1 for any
graph 𝐻 with 𝑘 vertices. Consider Figure 7.4g for an illustration of
an example.

Next, we define the looped complement of a graph 𝐺 as the graph
containing all edges that are not in 𝐸(𝐺); we write

𝐺
∘

≔ (𝑉(𝐺), {{𝑢, 𝑣} ∉ 𝐸(𝐺) ∣ 𝑢, 𝑣 ∈ 𝑉(𝐺)}).

Removing the self-loops of 𝐺
∘
, we obtain the complement of 𝐺; we

write 𝐺 ≔ 𝐺
∘
⧵ {{𝑢, 𝑢} ∣ 𝑢 ∈ 𝑉(𝐺)}.54 Consult Figures 7.4e to 7.4g 54. We have 𝐺

∘∘
= 𝐺;

also see that 𝐺
removes all self-loops
from 𝐺.

for examples of the introduced operations. Finally, the following
easy lemma reformulates our intuition of induced subgraphs (and
strong embeddings) preserving both edges and non-edges.

Lemma 7.6 ([see 83, Section 5.2.3]). For any graphs 𝐻, 𝐺, we have
#IndSub(𝐻 → 𝐺) = #IndSub(𝐻 → 𝐺).

Proof. Fix a ℎ ∈ StrEmb(𝐻 → 𝐺). For any vertices 𝑢, 𝑣 ∈ 𝑉(𝐻),
we have {𝑢, 𝑣} ∈ 𝐸(𝐻) ⇔ {ℎ(𝑢), ℎ(𝑣)} ∈ 𝐸(𝐺) and in particular
{𝑢, 𝑣} ∉ 𝐸(𝐻) ⇔ {ℎ(𝑢), ℎ(𝑣)} ∉ 𝐸(𝐺).

Another global operation on a graph is the line graph operation:
For a graph 𝐺, we obtain its associated line graph 𝐿(𝐺) by taking
the edges 𝐸(𝐺) as vertices of 𝐿(𝐺) and connecting two vertices

156 graphs, graph mappings, graph properties

𝐾𝑑 = 𝐿(𝐾1,𝑑) 𝐾1,𝑑

(a) A clique 𝐾𝑑 of size 𝑑 is the line graph of a star 𝐾1,𝑑 with 𝑑 rays.

(b) Connecting two vertex disjoint cliques corresponds to merging vertices in the corresponding
primal graphs. Note that the resulting primal graph stays bipartite.

𝐿(𝐾3) = 𝐿(𝐾1,3) 𝐾1,3𝐾3

(c) The claw 𝐾1,3 and the triangle 𝐾3 have the same line graph 𝐾3.

101 Figure 7.6. Examples of line graphs.

graph classes and graph properties 157

in 𝑉(𝐿(𝐺)) if the corresponding edges in 𝐺 are incident on ex-
actly one common vertex. Consult Figure 7.6 for examples of line
graphs.

Finally, the (categorical) product of two graphs 𝐺 and 𝐻 is the
following graph:

𝑉(𝐺 × 𝐻) ≔ {(𝑣𝐺, 𝑣𝐻) ∣ 𝑣𝐺 ∈ 𝑉(𝐺), 𝑣𝐻 ∈ 𝑉(𝐻)}
𝐸(𝐺 × 𝐻) ≔ {{(𝑢𝐺, 𝑢𝐻), (𝑣𝐺, 𝑣𝐻)}

∣ {𝑢𝐺, 𝑣𝐺} ∈ 𝐸(𝐺) and {𝑢𝐻, 𝑣𝐻} ∈ 𝐸(𝐻)}.

Consult Figure 7.4h for an example. It is well-known and easy
to see that the function #Hom(𝐻 → ⋆) is multiplicative with re-
spect to ×.

Lemma 7.7 (Lovász [83, Equation 5.30]). For any three graphs 𝐹,
𝐺, 𝐻, we have #Hom(𝐹 → 𝐺 × 𝐻) = #Hom(𝐹 → 𝐺)⋅#Hom(𝐹 → 𝐻).

Proof. Fix a homomorphism ℎ ∈ Hom(𝐹 → 𝐺 × 𝐻) and write
(𝑣𝐺, 𝑣𝐻) ≔ ℎ(𝑣). By construction, the mappings ℎ𝐺 ≔ 𝑣 ↦ 𝑣𝐺 and
ℎ𝐻 ≔ 𝑣 ↦ 𝑣𝐻 are homomorphisms from 𝐹 to 𝐺 and 𝐻, respectively.

For the other direction, fix homomorphisms ℎ𝐺 ∈ Hom(𝐹 → 𝐺)
and ℎ𝐻 ∈ Hom(𝐻 → 𝐺); again, by construction, the mapping ℎ ≔
𝑣 ↦ (ℎ𝐺(𝑣), ℎ𝐻(𝑣)) is a homomorphism from 𝐹 to 𝐺 × 𝐻.

Similarly, we can see that the product also preserves 𝐹-colorings.

Lemma 7.8 (Folklore). For any three graphs 𝐹, 𝐺 and𝐻 that satisfy
#Hom(𝐺 → 𝐹)+#Hom(𝐻 → 𝐹)>0, we have #Hom(𝐺 × 𝐻 → 𝐹)>0.

Proof. First consider the case when 𝐺 is 𝐹-colorable and write
ℎ ∈ Hom(𝐺 → 𝐹) to denote an 𝐹-coloring of 𝐺. Observe that the
mapping (𝑣𝐺, 𝑣𝐻) ↦ ℎ(𝑣𝐺) is indeed an 𝐹-coloring of 𝐺 × 𝐻.

If 𝐻 is 𝐹-colorable, the proof is symmetric.

158 graphs, graph mappings, graph properties

4

3
21

⎛⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

2

3
41

⎛⎜⎜⎜⎜⎜⎜
⎝

0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

(a) Two labelings of and the corresponding adjacency matrices. The canonical labeling is
highlighted in green.

(b) The graph class 𝒢𝛷,4.
The graphs are implicitly labeled.

(c) The graph class 𝒢¬𝛷,4.
The graphs are implicitly labeled.

(d) The graph class 𝒢𝛷,4.
The graphs are implicitly labeled.

Figure 7.7. Two labelings of ; the classes𝒢𝛷,4, 𝒢¬𝛷,4 and𝒢𝛷,4 for the graphproperty
𝛷(𝐺) = 1 ∶⇔ 𝐺 is bipartite. Note that the only graph itself is an induced subgraph of

with four vertices, so we have #IndSub(𝛷, 4 →) = 0, #IndSub(¬𝛷, 4 →) = 0, and
#IndSub(𝛷, 4 →) = 0.

graph classes and graph properties 159

7.4 Graph Classes and Graph Properties

In this part, we seldom consider graphs in isolation—Most of the
time, we are concerned with sets of graphs that share a common
property. Tomake these notions formal, we first need to take a step
back and discuss how we encode graphs.

First, for a graph 𝐺, a labeling is a bijection between 𝑉(𝐺) and
[|𝑉(𝐺)|]. Next, the adjacency matrix of 𝐺 for a labeling ℓ ∶ 𝑉(𝐺) ↔
[|𝑉(𝐺)|] is a symmetric matrix 𝐴𝐺,ℓ ∈ {0, 1}|𝑉(𝐺)|×|𝑉(𝐺)|, where

𝐴𝐺,ℓ[ℓ(𝑢), ℓ(𝑣)] = 𝐴𝐺,ℓ[ℓ(𝑣), ℓ(𝑢)] ≔ { 1, {𝑢, 𝑣} ∈ 𝐸(𝐺)
0, otherwise.

Linearizing adjacencymatrices by diagonal,55 we can sort them lex- 55. That is as 𝐴[1, 1],
𝐴[2, 1], 𝐴[1, 2], ….icographically; now a canonical labeling of 𝐺 is a labeling that corre-

sponds to an adjacency matrix that is lexicographically a smallest
matrix, which we call a canonical adjacency matrix 𝐴𝐺 of 𝐺. We
say a graph is unlabeled, if it is labeled with any canonical labeling.
56 Consult Figure 7.7a for an example. 56. Observe that for a

clique, all adjacency
matrices look the
same, so
lexicographically
smallest adjacency
matrices may not be
unique for a graph.
Further, we do not
want to compute
canonical labelings,
as that would most
likely be infeasible.
Hence, most of the
time, we abuse
notation and write 𝐺
for the canonical
adjacency matrix 𝐴𝐺.

Observe that two isomorphic graphs have the same canonical
adjacency matrix—this is intentional, as we want graph properties
to be independent of specific labelings. Specifically, a graph prop-
erty 𝛷 is a function from canonical adjacencymatrices to {0, 1}. We
abuse notation and write 𝛷(𝐺) for 𝛷(𝐴𝐺). Further, we say that a
graph 𝐺 satisfies 𝛷 if 𝛷(𝐺) = 1; we call the set of all graphs satis-
fying 𝛷 the graph class 𝒢𝛷 of 𝛷. Again, we abuse notation and say
that a graph 𝐺 is in 𝒢𝛷 if 𝛷(𝐺) = 1.

For a positive integer 𝑘 and a graph property 𝛷, we write 𝒢𝛷,𝑘
for the class of all (canonical adjacency matrices of) graphs with 𝑘
vertices that satisfy 𝛷. Further, given a graph𝐺, a positive integer 𝑘,
and a graph property 𝛷, we write IndSub(𝛷, 𝑘 → 𝐺) for the set
of all induced subgraphs with 𝑘 vertices of 𝐺 that satisfy 𝛷. We
write #IndSub(𝛷, 𝑘 → ⋆) for the function that maps a graph 𝐺 to
#IndSub(𝛷, 𝑘 → 𝐺).

160 graphs, graph mappings, graph properties

Given a graph property 𝛷, we define ¬𝛷(𝐻) = 1 ∶⇔ 𝛷(𝐻) = 0
as the negation of 𝛷. Further, we define 𝛷(𝐻) = 1 ∶⇔ 𝛷(𝐻) = 1
as the inverse of 𝛷.57 The negation and inverse of a graph class are57. We explicitly do

not use the word
“complement” for

graph properties to
avoid possible

confusions between
¬𝛷 and 𝛷.

defined accordingly. Consult Figures 7.7b to 7.7d for an example.
We have the following (easy) equalities.

Lemma 7.9. For every graph property 𝛷, graph 𝐺, and positive inte-
ger 𝑘, we have

#IndSub(¬𝛷, 𝑘 → 𝐺) = (|𝑉(𝐺)|
𝑘) − #IndSub(𝛷, 𝑘 → 𝐺), and

#IndSub(𝛷, 𝑘 → 𝐺) = #IndSub(𝛷, 𝑘 → 𝐺).

Proof. The first equation is immediate. For the second equa-
tion, observe that

#IndSub(𝛷, 𝑘 → 𝐺) = ∑
𝐻∈𝛷𝑘

#IndSub(𝐻 → 𝐺)

= ∑
𝐻∈𝛷𝑘

#IndSub(𝐻 → 𝐺)

= ∑
𝐻∈𝛷𝑘

#IndSub(𝐻 → 𝐺)

= #IndSub(𝛷, 𝑘 → 𝐺),

where we use Lemma 7.6 in the third step.

We conclude by listing the most relevant types of graph classes
used throughout this part.

We write ⊤ for the graph class of all graphs, that is, for the
graph class corresponding to the property that is always 1.
A class is non-trivial if for infinitely many 𝑘, the class and its
negation contain a graph with 𝑘 vertices.
A class is monotone, if it is closed under taking subgraphs. A
prominent example is the class of all bipartite graphs (or in
general all 𝐹-colorable graphs) [see 83, Section 4.1].

the space of graph motif parameters 161

A class is hereditary, if it is closed under taking induced sub-
graphs. Prominent example are the class of all line graphs
and the class of all perfect graphs [see 83, Section 4.1].
A class is minor-closed, if it is closed under taking minors. A
prominent example is the class of all planar graphs [see 83,
Section 4.1].

7.5 The Space of Graph Motif Parameters

In this section, we generalize the notion of a graph property—A
graph parameter is a function from ⊤ to ℝ. In fact, we have already
seen multiple functions on graphs, that can be recast as graph pa-
rameters: the treewidth tw(⋆), the chromatic number 𝜒(⋆), and
the size of the largest complete subgraph 𝜔(⋆). In particular, the
functions #Hom(𝐻 → ⋆), #Emb(𝐻 → ⋆), #Sub(𝐻 → ⋆), and so
on, can be seen as graph parameters for any fixed graph 𝐻.

We now follow the general framework by Lovász [83], and the
interpretation given by Curticapean et al. [35]. First observe that
we can order the canonical adjacency matrices in ⊤ lexicograph-
ically by their linearization. Now, we can interpret #Hom, #Sub,
#IndSub, and so on, as infinite matrices with indices from ⊤ × ⊤
and entries in (ℕ ∪ {0}), where the indices are ordered according
to the aforementioned ordering on ⊤.

As in [35] we now define graph motif parameters as finite linear
combinations of induced subgraph numbers. We represent such
linear combinations as infinite vectors in ℝ⊤ with finite support.58

58. Matrix-matrix
and matrix-vector
multiplication
generalize naturally.

Definition 7.10 (Curticapean et al. [35]). A graph parameter
𝑓 ∶ ⊤ → ℝ is a graph motif parameter, if there is a vector 𝛼 ∈ ℝ⊤ of
finite support such that 𝑓 = 𝛼 ⋅ #IndSub.59

59. Note that we
interpret both 𝛼 and 𝑓
as row vectors here.

162 graphs, graph mappings, graph properties

As in [35], we define a scalar product on graph motif param-
eters via the natural scalar product on the corresponding vectors
from ℝ⊤: For two finitely supported vectors 𝛼, 𝛽 ∈ ℝ⊤, we set

⟨𝛼, 𝛽⟩ ≔ ∑
𝐹∈⊤

𝛼𝐹 ⋅ 𝛽𝐹.

For two graph motif parameters 𝑓 = 𝛼 ⋅ #IndSub, 𝑔 = 𝛽 ⋅ #IndSub, we
set ⟨𝑓 , 𝑔⟩ ≔ ⟨𝛼, 𝛽⟩ ⋅ #IndSub. Now, the set of all graph motif param-
eters together with scalar multiplication and point-wise addition
form an infinite-dimensional vector space—the finitely supported
row-span of the matrix #IndSub.

Relations between Graph Motif Parameters

For us, it is easier toworkwith homomorphisms thanwith induced
subgraphs. In next two steps, we hence show that the row-spans of
#Hom, #Sub, and #IndSub are in fact the same. For the basis changes,
we now take a slightly different route than Curticapean et al. [35]
which is closer to the route of Lovász [83]: In [35], the first step
is to move from #IndSub to #Sub and then via #Emb to #Hom. For
analyzing values in the resulting basis transformation matrices, it
is more convenient to us to first move from #IndSub to #StrEmb and
then again via #Emb to #Hom.6060. Note that thereby,

we indirectly show
that the expressions
for the entries of the
basis transformation
matrices in [35] are

equivalent to the
corresponding terms

that we obtain.

Let us start with the change from #IndSub to #StrEmb. Using
Equation (7.2) and setting Aut ≔ diag(#Aut(𝐹)), we directly ob-
tain #StrEmb = #Aut ⋅ #IndSub, and indeed also #IndSub = #Aut−1 ⋅
#StrEmb, as every graph has at least one automorphism (the trivial
automorphism) and hence the diagonal matrix #Aut is invertible.61

61. Note that by using
Equation (7.1), we

can also obtain
#Emb = #Aut ⋅ #Sub.

As a next, we tackle the basis change from #StrEmb to #Emb. In
other words, for a graph 𝐻, we want to express #StrEmb(𝐻 → ⋆)
as a linear combination of functions #Emb(𝐹 → ⋆). To that end,
consider an embedding 𝑒 ∈ Emb(𝐻 → 𝐺) that is not also a strong
embedding from 𝐻 to 𝐺. This means that there is (at least) one
non-edge {𝑢, 𝑣} ∉ 𝐸(𝐻) such that the edge {𝑒(𝑢), 𝑒(𝑣)} exists in 𝐺.

the space of graph motif parameters 163

In particular, 𝑒 corresponds to a strong embedding from an edge
extension of 𝐻. This immediately yields

#Emb(𝐻 → ⋆) = ∑
𝑅 ∶ #Ext(𝐻→𝑅)>0

#Ext(𝐻 → 𝑅) ⋅ #StrEmb(𝑅 → ⋆), (7.3)

or #Emb = #Ext ⋅ #StrEmb in matrix notation.62 Now observe that 62. Note that the
notation of edge
extensions Ext that
we use is not to be
confused with the
notion of extensions
used in [35].

we have #Ext(𝐺 → 𝐺) = 1, and that the matrix #Ext is an upper
triangular matrix—Hence, any finite principal submatrix63 of #Ext

63. That is, any
square submatrix
with the same row
and column indices.

is invertible and thus we obtain #StrEmb = #Ext−1 ⋅ #Emb. While
this shows that #Emb—and hence #Sub—indeed spans the space
of graph motif parameters, it is useful to us to actually compute
#Ext−1. Using the Inclusion-Exclusion Principle we obtain

#StrEmb(𝐻 → ⋆)
= ∑

𝑅 ∶ #Ext(𝐻→𝑅)>0
(−1)#𝐸(𝑅)−#𝐸(𝐻) #Ext(𝐻 → 𝑅) ⋅ #Emb(𝑅 → ⋆).

(7.4)

Consult again Figures 7.1b and 7.1c for a small example.
In a second step, following Borgs, Chayes, Lovász, Sós, and

Vesztergombi [16], we now tackle the basis change from #Emb to
#Hom. In other words, for a graph 𝐻, we want to express the func-
tion #Emb(𝐻 → ⋆) as a linear combination of #Hom(𝐹 → ⋆). Con-
sider a homomorphism ℎ from a graph 𝐻 to a graph 𝐺 that is not
injective, andwrite 𝜌 for the partition of the vertices where two ver-
tices are in the same block if they aremapped to the same vertex by
ℎ. Observe that the homomorphism ℎ/∘𝜌 ∶ 𝐻/∘𝜌 → 𝐺 is injective.64 64. That is, the

homomorphism that
maps vertices
corresponding to a
block 𝐵 of 𝜌 to the
vertex ℎ(𝑣), 𝑣 ∈ 𝐵
(which is the same
for every 𝑣 ∈ 𝐵 by
definition of 𝜌).

Hence, we obtain

#Hom(𝐻 → ⋆) = ∑
𝜌

#Emb(𝐻/∘𝜌 → ⋆) (7.5)

= ∑
𝜌

#Aut(𝐻/∘𝜌) ⋅ #Sub(𝐻/∘𝜌 → ⋆)

= ∑
𝐹∈⊤

∑
𝜌

𝐹≅𝐻/∘𝜌

#Aut(𝐹) ⋅ #Sub(𝐹 → ⋆) (7.6)

164 graphs, graph mappings, graph properties

Before we turn to reversing Equation (7.5), let us quickly discuss
another interpretation of Equation (7.6). Observe that automor-
phisms of a quotient graph 𝐻/∘𝜌 one-to-one correspond to surjec-
tive homomorphisms from 𝐻.65 Write #Surj(𝐻 → 𝐹) for the num-65. For us, a

surjective
homomorphism is

surjective both on the
vertices and on the

edges.

ber of surjective homomorphisms from 𝐻 to 𝐹. We obtain

#Surj(𝐻 → 𝐹) = ∑
𝜌

𝐹≅𝐻/∘𝜌

#Aut(𝐹). (7.7)

Combining Equations (7.6) and (7.7) yields

#Hom(𝐻 → ⋆) = ∑
𝐹∈⊤

#Surj(𝐻 → 𝐹) ⋅ #Sub(𝐹 → ⋆), (7.8)

or #Hom = #Surj ⋅ #Sub in matrix form. In particular, observe that
#Surj is an upper triangular matrix with non-zero main diagonal
and is thus invertible—we have #Sub = #Surj−1 ⋅ #Hom. We can
extend this argument further to obtain the following useful fact.

Lemma 7.11 ([35, Lemma 3.3]). For any finite set of graphs 𝑃 closed
under surjective homomorphisms, the principal submatrix #Hom𝑃 is in-
vertible.

Proof. Observe that only graphs in 𝑃 contribute in the sum of
Equation (7.8). Further, #Surj𝑃 is an upper triangular (square)ma-
trix and #Sub is a lower triangular (square) matrix; hence, there
product—#Hom𝑃—is invertible.

Next, to understand the matrix #Surj−1—and thereby reverse
Equation (7.5)—we turn to so-called Möbius inversion, a general-
ization of the Inclusion-Exclusion Principle. In particular, we need
the following special case, which is due to Schützenberger and in-
dependently Frucht and Rota [see 98, page 359].

the space of graph motif parameters 165

Fact 7.12 (Frucht, Rota, Schützenberger [98, page 359]). For
two partitions 𝜌, 𝜋 of a set 𝑆, we write 𝜋 ≥ 𝜌 if every block of 𝜌 is a subset
of a block of 𝜋. Further, we write #𝜌 for the number of blocks of 𝜌 and
⊥ ≔ {{𝑠} ∣ 𝑠 ∈ 𝑆} for the discrete partition of 𝑆.

For any functions 𝑓 and 𝑔 mapping partitions of 𝑆 to the reals with66 66. The function 𝑓 is
also called upward
zeta transformation of
𝑔 of the partition
lattice. Consult for
instance the textbook
by Stanley [111] for
an introduction to
lattices and related
concepts.

𝑓(𝜌) = ∑
𝜋≥𝜌

𝑔(𝜋),

we have

𝑔(⊥) = ∑
𝜋

(−1)#𝑆−#𝜋∏
𝐵∈𝜋

(#𝐵 − 1)! 𝑓(𝜋).

Using 𝐻 = 𝐻/∘⊥, Fact 7.12 yields the reverse of Equation (7.5):

#Sub(𝐻 → ⋆)
=

1
#Aut(𝐻)∑

𝜌
(−1)#𝑉(𝐻)−#𝜌∏

𝐵∈𝜌
(#𝐵 − 1)! ⋅ #Hom(𝐻/∘𝜌 → ⋆).

(7.9)

As a special case of Equation (7.9), we are interested in the homo-
morphism coefficient aSub(𝐻→⋆)(𝐺) of a single graph 𝐺 = 𝐻/∘𝜌:67 67. There is no

particular reason for
the name a.

aSub(𝐻→⋆)(𝐺) ≔
(−1)#𝑉(𝐻)−#𝑉(𝐺)

#Aut(𝐻) ⋅ ∑
𝜌

𝐻/∘𝜌≅𝐺

∏
𝐵∈𝜌

(#𝐵 − 1)!. (7.10)

Note that Equation (7.10) implicitly defines a basis transforma-
tion matrix from #Sub to #Hom—#Surj−1. The crucial observation
of Curticapean et al. [35] now is the following corollary.

166 graphs, graph mappings, graph properties

Corollary 7.13. We have aSub(𝐻→⋆)(𝐺) ≠ 0 if and only if

∑
𝜌

𝐻/∘𝜌≅𝐺

1 = #Surj(𝐻 → 𝐺)/#Aut(𝐺) ≠ 0;

in other words, whenever 𝐺 is in the spasm of 𝐻.

Finally, let us discuss the entries aIndSub(𝐻→⋆)(𝐺) of the basis
transformation matrix from #IndSub to #Hom. Combining Equa-
tions (7.4) and (7.10) with Equations (7.1) and (7.2), we obtain

aIndSub(𝐻→⋆)(𝐺)

= ∑
𝑅 ∶ #Ext(𝐻→𝑅)>0

(−1)#𝐸(𝑅)−#𝐸(𝐻) #Ext(𝐻 → 𝑅)
#Aut(𝐻) ⋅ aSub(𝑅→⋆)(𝐺)

= ∑
𝑅 ∶ #Ext(𝐻→𝑅)>0

(−1)#𝐸(𝑅)−#𝐸(𝐻) #Ext(𝐻 → 𝑅)

⋅
(−1)#𝑉(𝑅)−#𝑉(𝐺)

#Aut(𝐻) ⋅ ∑
𝜌

𝑅/∘𝜌≅𝐺

∏
𝐵∈𝜌

(#𝐵 − 1)!. (7.11)

In particular, we are interested to find out when aIndSub(𝐻→⋆)(𝐺)
is nonzero—Amajor fraction of this part is dedicated to (partially)
solve just this “simple” task.

Let us conclude by discussing some easy, but useful results in
that direction.

Lemma 7.14. For any graphs 𝐺 and 𝐻 with |𝑉(𝐺)| < |𝑉(𝐻)|, we
have aIndSub(𝐺→⋆)(𝐻) = 0.

Proof. Observe in Equation (7.11) that only quotient graphs of
extensions of 𝐺 may contribute to aIndSub(𝐺→⋆)(𝐻) and only if they
are isomorphic to 𝐻. However, as both the (edge) extension and
the quotient operation do not add new vertices, none of them can
be isomorphic to 𝐺 and hence aIndSub(𝐺→⋆)(𝐻) = 0.

8Almost Everything You Need to Know About
Parameterized Counting Problems

Recall that in 7 , we defined the coefficient aIndSub(𝐻→⋆)(𝐺) for
graphs 𝐻, 𝐺 and asked when it is nonzero. As a major part of this
chapter, we discuss why this question is interesting for us—that
is, we discuss how the question relates to showing (conditional)
running time lower bounds for algorithms solving the problems
of counting (induced) subgraphs in a graph. We start with a for-
mal definition of the aforementioned problems and a gentle intro-
duction to Parameterized Complexity Theory, the setting in which we
consider these problems.

8.1 Parameterized (Promise) Problems

Let us start with recalling basic concepts from computational com-
plexity theory. We say a function 𝑓 ∶ 𝐴 → 𝐵 is computable, if there is
a Turingmachine that on any (binary encoded) input 𝑎 ∈ 𝐴 outputs
𝑓(𝑎) ∈ 𝐵 and halts. Unless stated otherwise, the functions we con-
sider are computable. We say a set 𝑆 ⊆ (ℕ ∪ {0}) is computable, de-
cidable, or recursive if its indicator function 𝟙𝑆 ∶ (ℕ ∪ {0}) → {0, 1},
𝟙𝑆(𝑠) ≔ 1 ⇔ 𝑠 ∈ 𝑆 is computable.68 We use the bijection between

68. Equivalently, we
can require that a
Turing machine, on
input (ℕ ∪ {0}),
accepts on any input
𝑠 ∈ 𝑆 and rejects any
other input.

(isomorphism classes of) graphs ⊤ to (ℕ ∪ {0}) from Section 7.5
and similarly say that a graph class is recursive, if its indicator func-
tion is computable. We say a set 𝑆 ⊆ (ℕ ∪ {0}) is computably enu-
merable, semidecidable, or recursively enumerable if it is the domain of
a computable function.69 Weuse the same notion for graph classes.

69. Equivalently, we
can require that a
Turing machine
accepts on any input
𝑠 ∈ 𝑆 but it need not
terminate on any
other input.

A parameterization 𝜅 is a polynomial-time computable function
from the set {0, 1}∗to (ℕ⧵{0}).70 A parameterized counting problem is

70. We require
parameterizations to
be polynomial-time
computable for
technical reasons. See
[47, Chapter 1.2] for
a detailed discussion
of this issue.

a pair of a function𝑃 ∶ {0, 1}∗→ (ℕ∪{0}) and aparameterization 𝜅.
We call strings in {0, 1}∗instances of (𝑃, 𝜅). We say a parameterized
counting problem (𝑃, 𝜅) is fixed-parameter tractable (fpt) if there is

168 parameterized counting problems

a computable function 𝑓 such that we can solve any instance 𝑥 of
(𝑃, 𝜅) in time 𝑓(𝜅(𝑥)) ⋅ |𝑥|𝑂(1), where |𝑥| is size of the instance.

As an important example for a parameterized counting prob-
lem, consider #Clique—Given a graph 𝐺 and a positive integer 𝑘,
the task is to compute #Sub(𝐾𝑘 → 𝐺) = #IndSub(𝐾𝑘 → 𝐺), the
number of complete 𝑘-vertex subgraphs of 𝐺. We parameterize the
problem #Clique by the pattern size 𝑘; we have 𝜅(𝐺, 𝑘) ≔ 𝑘.

In this part, we study generalizations of #Clique. First, for a
computable graph property 𝛷,71 in #IndSub(𝛷), we are given a71. We use graph

properties and not
graph classes in the

definition for
historical reasons.

graph 𝐺 and a positive integer 𝑘, and the task is to compute the
number #IndSub(𝛷, 𝑘 → 𝐺)—the number of induced 𝑘-vertex sub-
graphs in 𝐺 that satisfy 𝛷. We parameterize #IndSub(𝛷) by 𝑘.

Observe that we can solve both #IndSub(𝛷) and #Clique by
brute-force in time 𝑓(𝑘) ⋅ 𝑂(𝑛𝑘) by iterating over all subsets of 𝑘
vertices in 𝐺 and counting which of the subsets induce a graph
that satisfies 𝛷 (or are a complete graph). Note that we can test
membership in 𝛷 in some time 𝑓(𝑘) for a computable 𝑓, as 𝛷 is a
computable graph property.7272. For #Clique, the

exponent 𝑘 can be
reduced using fast

matrix
multiplication.

Second, for graph classes ℋ and 𝒢, in #Hom(ℋ → 𝒢), we are
given graphs 𝐻 ∈ ℋ and 𝐺 ∈ 𝒢 and the task is to compute the
number #Hom(𝐻 → 𝐺)—the number of homomorphisms from 𝐻
to 𝐺. We parameterize by the size of 𝐻.

However, this definition of #Hom(ℋ → 𝒢) is informal in the
sense that it leaves out the specification of the output if the input is
invalid, that is, if the graph 𝐻 does not belong to the class ℋ or the
graph 𝐺 does not belong to the class 𝒢.

As a naive option to solve this issue, consider requiring the
output to be 0 if the input is invalid. However, in this case we
exclude a plethora of interesting cases from our studies, as even
seemingly trivial instances might encode computationally infeasi-
ble (read NP-hard) problems. Consider for example the class 𝛥
of 3-colorable graphs. Following the naive option, the problem
#Hom(ℋ → 𝛥) becomes NP-hard even if the class ℋ contains only
the graph 𝐾1 consisting of a single vertex: #Hom({𝐾1} → 𝛥) en-
codes the 3-colorability problem: An instance (𝐾1, 𝐺) of the prob-
lem #Hom({𝐾1} → 𝛥) is mapped to 0 if and only if 𝐺 is 3-colorable.

parameterized (promise) problems 169

In particular, if #Hom({𝐾1} → 𝛥) was fpt, this would yield an al-
gorithm running in time 𝑓(|𝐾1|)⋅ |𝑉(𝐺)|𝑂(1) which is polynomial in
|𝑉(𝐺)|, and thus such an algorithmwould imply P = NP. In sharp
contrast, the number of homomorphisms from the graph 𝐾1 to any
graph 𝐺 is just the number of vertices |𝑉(𝐺)| and thus the hard-
ness of the problem #Hom({𝐾1} → 𝛥) stems only from enforcing
invalid inputs to be mapped to zero.

Another option of solving the issue of invalid instances of the
problem #Hom(ℋ → 𝒢) reads as follows: If a given instance (𝐻, 𝐺)
consists of graphs 𝐻 ∈ ℋ and 𝐺 ∈ 𝒢, then we are supposed to
compute the number of homomorphisms #Hom(𝐻 → 𝐺) correctly.
Otherwise, we may output any number. Formally, this requires us
to model the problem #Hom(ℋ → 𝒢) as a promise problem.73 73. Goldreich [53,

Chapter 2.4.1] states
that “promise
problems offer the
most direct way of
formulating natural
computational
problems.” Indeed,
some of the most
striking results in
complexity theory
implicitly rely on
promise problems.
Examples are “gap
problems” and
“uniqueness
promises”; we refer
the reader to [53,
Chapter 2.4.1.2] for a
discussion.

Definition 8.1. A parameterized promise counting (ppc) prob-
lem is a triple (𝑃, 𝜅, 𝛱) of a function 𝑃 ∶ {0, 1}∗→ (ℕ ∪ {0}), a param-
eterization 𝜅 ∶ {0, 1}∗→ (ℕ ⧵ {0}), and a promise 𝛱 ⊆ {0, 1}∗.

We say that a ppc problem (𝑃, 𝜅, 𝛱) is computable in time 𝑡 if
there is a deterministic algorithm 𝔸 that satisfies

1 On input 𝑥 ∈ {0, 1}∗, the algorithm 𝔸 runs in time 𝑡(|𝑥|).
2 On input 𝑥 ∈ 𝛱, the algorithm 𝔸 outputs 𝑃(𝑥).

We call strings in {0, 1}∗ instances of (𝑃, 𝜅, 𝛱) and we call all in-
stances 𝑥 ∈ 𝛱 valid. We say a ppc problem (𝑃, 𝜅, 𝛱) is fpt if there
is a computable function 𝑓 such that we can solve any instance 𝑥 in
time 𝑓(𝜅(𝑥)) ⋅ |𝑥|𝑂(1).

Observe that we recover the definition of parameterized count-
ing problems and their fixed-parameter tractability if we set the
promise 𝛱 to {0, 1}∗.

Further, observe that we obtain parameterized promise decision
problems from Definition 8.1 by restricting the image of the func-
tion 𝑃 to {0, 1}. In this case, Definition 8.1 coincides with the stan-
dard definition of (parameterized) promise problems (see for in-
stance Definition 3.1 in the full version [11] of [10]).

170 parameterized counting problems

Finally, we can give a formal definition of #Hom(ℋ → 𝒢). For
graph classes ℋ and 𝒢, in the ppc problem #Hom(ℋ → 𝒢), we are
given graphs 𝐻 ∈ ℋ and 𝐺 ∈ 𝒢, and the task is to compute the num-
ber of homomorphisms #Hom(𝐻 → 𝐺). The parameter is |𝑉(𝐻)|
and the promise is the set of all (encodings of) pairs (𝐻, 𝐺) ∈ ℋ×𝒢.

For simpler and shorter proofs, we also define a colored vari-
ant #cp-Hom(ℋ → 𝒢)—Given 𝐻 ∈ ℋ, and an (𝐻, 𝑐)-colored 𝐺 ∈ 𝒢,
the task is to compute the number of color-prescribed homomor-
phisms #cp-Hom(𝐻 → 𝐺). Again, the parameter is |𝑉(𝐻)| and the
promise is the set of all (encodings of) pairs (𝐻, 𝐺) ∈ ℋ × 𝒢.

In the same vein, we define the corresponding decision prob-
lemsHom(ℋ → 𝒢) and cp-Hom(ℋ → 𝒢)—the difference is that we
should output 1 if #Hom(𝐻 → 𝐺) or #cp-Hom(𝐻 → 𝐺) is positive.

Finally, observe that if membership of a graph in a class 𝒢 can
be tested in polynomial time and the class ℋ is recursive, then there
is no need to define the problem #Hom(ℋ → 𝒢) as a promise prob-
lem. Instead, we can define the output to be 0 if a given pair (𝐻, 𝐺)
is not contained in ℋ×𝒢; indeed 𝐻 ∈ ℋ can be verified in time 𝑓(𝐻)
for some computable function 𝑓 as, by assumption, ℋ is recursive.
In particular, the problems #IndSub(𝛷) and #Clique) can be as-
sumed to have no promises, as we do not restrict the graphs in
which we search for the corresponding patterns.

8.2 Reductions and (Conditional) Hardness

A central concept in computational complexity theory is the no-
tion of reductions between problems. For brevity, we discuss only
reductions for ppc problems, the notions easily extend to decision
problems or problems without promises.

Definition 8.2 (Parameterized Turing reductions). For two ppc
problems (𝑃, 𝜅, 𝛱) and (𝑄, 𝜆, 𝑌), a parameterized Turing reduction
from (𝑃, 𝜅, 𝛱) to (𝑄, 𝜆, 𝑌) is a pair (𝔸𝑄, (𝑓 , 𝑠)) of an algorithm 𝔸𝑄

that has oracle access to the function 𝑄 and a pair of computable functions
(𝑓 , 𝑠) such that:

reductions and (conditional) hardness 171

1 On input 𝑥 ∈ {0, 1}∗, the algorithm 𝔸𝑄 runs in time 𝑓(𝜅(𝑥)) ⋅ |𝑥|𝑂(1).
2 On input 𝑥 ∈ 𝛱, the algorithm 𝔸𝑄 computes the function 𝑃(𝑥).
3 On input 𝑥 ∈ 𝛱, the algorithm 𝔸𝑄 queries the oracle only on strings

𝑦 with 𝑦 ∈ 𝑌 and 𝜆(𝑦) ≤ 𝑠(𝜅(𝑥)).

We write (𝑃, 𝜅, 𝛱) ≤fptT (𝑄, 𝜆, 𝑌) if such a reduction exists. If 𝔸𝑄

even runs in time 𝑓(𝜅(𝑥)) ⋅ |𝑥|, we call the reduction linear74 and write 74. Recall, that we
assume that oracle
queries take constant
time.

(𝑃, 𝜅, 𝛱) ≤ℓ−fptT (𝑄, 𝜆, 𝑌).75

75. Note that this also
implies that the
oracle is called on
instances that are
only linearly (in |𝑥|)
larger than |𝑥|.

Definition 8.3 (Parameterized (Weakly) Parsimonious Reduc-
tions). For ppc problems (𝑃, 𝜅, 𝛱) and (𝑄, 𝜆, 𝑌) a parameterized
weakly parsimonious reduction from (𝑃, 𝜅, 𝛱) to (𝑄, 𝜆, 𝑌) is a pair
(𝔸, (𝑓 , 𝑔, 𝑠)) of a deterministic algorithm 𝔸 and a triple of computable
functions (𝑓 , 𝑔, 𝑠) such that:

1 For all valid instances 𝑥 ∈ 𝛱, the algorithm 𝔸 outputs a valid instance
of (𝑄, 𝜆, 𝑌), that is 𝔸(𝑥) ∈ 𝑌.

2 We can compute𝑃(𝑥) by computing𝑄 on the computed instance𝔸(𝑥)
and the function 𝑔(𝑥); in particular, we have 𝑃(𝑥) = 𝑔(𝑥) ⋅𝑄(𝔸(𝑥)).

3 The ppc problem (𝑔, 𝜅, 𝛱) is fixed-parameter tractable.
4 On input 𝑥 ∈ {0, 1}∗, the algorithm 𝔸 runs in time 𝑓(𝜅(𝑥)) ⋅ |𝑥|𝑂(1).
5 For all 𝑥 ∈ {0, 1}∗, the parameter of the instance 𝔸(𝑥) is bounded by

𝑠(𝜅(𝑥)), that is 𝜆(𝔸(𝑥)) ≤ 𝑠(𝜅(𝑥)).

We write (𝑃, 𝜅, 𝛱) ≤w-fpt (𝑄, 𝜆, 𝑌) if such a reduction exists. If 𝑔 is the
identity function on 𝛱, then we call the reduction parsimonious and
we write (𝑃, 𝜅, 𝛱) ≤fpt (𝑄, 𝜆, 𝑌). If 𝔸 even runs in time 𝑓(𝜅(𝑥)) ⋅ |𝑥|,
we call the reduction linear and write (𝑃, 𝜅, 𝛱) ≤wℓ-fpt (𝑄, 𝜆, 𝑌) and
(𝑃, 𝜅, 𝛱) ≤ℓ-fpt (𝑄, 𝜆, 𝑌).76 76. Note that this also

implies that 𝔸
“blows up” an
instance 𝑥 only
linearly (in |𝑥|).

We can easily see how the defined notions of reductions relate
to each other.

172 parameterized counting problems

Lemma 8.4. For ppc problems (𝑃, 𝜅, 𝛱) and (𝑄, 𝜆, 𝑌), we have

(𝑃, 𝜅, 𝛱) ≤fpt (𝑄, 𝜆, 𝑌) ⟹ (𝑃, 𝜅, 𝛱) ≤w-fpt (𝑄, 𝜆, 𝑌)
⟹ (𝑃, 𝜅, 𝛱) ≤fptT (𝑄, 𝜆, 𝑌).

Linearity transfers similarly.
Proof. For the first implication, observe that by definition par-

simonious reductions are a special case of weakly parsimonious
reductions. For the second implication, observe that we can inter-
pret a parameterized weakly parsimonious reduction as a parame-
terized Turing reduction with a single oracle call.

Further, we can easily see that all three notions of reducibility
≤fpt , ≤w-fpt , and ≤fptT (and their linear sub-variants) pass the san-
ity check of being transitive. We skip the proof, as it is not very
instructive.

Instead, let us discuss a first example of a reduction—namely
from #Clique to #ConnectedClique, that is, the problem of having
to compute #IndSub(𝐾𝑘 → 𝐺) for graphs 𝐺 that are connected.

Lemma 8.5 (Folklore). #Clique ≤ℓ−fptT #ConnectedClique and
#Clique ≤wℓ-fpt #ConnectedClique.7777. Note that by

Lemma 8.4, the
statement is
redundant—

intentionally—to
emphasize that we

discuss two different
reductions to give
examples for both

types of reductions.

Proof. Suppose we are given a disconnected graph 𝐺𝐷 as an
input, but we have only an algorithm 𝔸 for #ConnectedClique at
hand. Let us discuss two different approaches to nevertheless com-
pute the number of 𝑘-cliques in 𝐺𝐷:

Compute the connected components of 𝐺𝐷 and call 𝔸 on each
component (and input 𝑘) separately. The number of 𝑘-cliques in
𝐺𝐷 is then the sum of the numbers computed for each compo-
nent. Computing the connected components takes linear time
and there are at most linearlymany connected components, and
hence we have #Clique ≤ℓ−fptT #ConnectedClique.

reductions and (conditional) hardness 173

Instead of calling 𝔸 multiple times, we desire to call 𝔸 only
once. To that end, construct a new graph 𝐺 from 𝐺𝐷, such that
both 𝐺 and 𝐺𝐷 have the same number of 𝑘-cliques.
For 𝑘 = 1, that is, if the task is to count the vertices of 𝐺𝐷, this can
be achieved by using a path graph with |𝑉(𝐺𝐷)| vertices, that is
𝐺 ≔ 𝑃|𝑉(𝐺𝐷)|. Similarly for 𝑘 = 2, that is, if the task is to compute
the number of edges of 𝐺𝐷, setting 𝐺 ≔ 𝑃|𝐸(𝐺)|+1 suffices.
Now for the general case, again compute the connected compo-
nents 𝐷1, 𝐷2, … of 𝐺𝐷. However, instead of calling 𝔸 on each
component separately, connect the connected components in a
path-like fashion, that is, add an edge between (any vertex of)
𝐷1 and (any vertex of) 𝐷2, an edge between (any vertex of)
𝐷2 and (any vertex of) 𝐶3, and so on. Call the now connected
graph 𝐺 and call 𝔸 on (𝐺, 𝑘). As connecting two previously
disconnected vertices cannot create a new 𝑘-clique for 𝑘 > 2, the
graphs 𝐺 and 𝐺𝐷 have the same number of 𝑘-cliques. Observe
that the construction still runs in linear time, and hence we have
#Clique ≤ℓ-fpt #ConnectedClique.

Finally, let us discuss a useful reduction from #cp-Hom(ℋ → 𝒢)
to #Hom(ℋ → 𝒢)—Hence to obtain hardness, we can reduce to
the more structured problem #cp-Hom(ℋ → 𝒢), which simplifies
some of the proofs to come.

Lemma 8.6 ([99, 38]). For any graph classes ℋ and 𝒢, we have
#cp-Hom(ℋ → 𝒢) ≤ℓ−fptT #Hom(ℋ → 𝒢).

If, additionally, the class ℋ contains only cores, then the reduction is
weakly parsimonious.

If in a given instance (𝐻, 𝐺) to #cp-Hom(ℋ → 𝒢), the graph 𝐺 is
𝐻-colorable, then in all constructed instances (𝐼, 𝐹) to #Hom(ℋ → 𝒢),
the graph 𝐹 is 𝐼-colorable.78 78. In fact, we can

even ensure 𝐼 = 𝐻.Proof. Fix graphs 𝐻 ∈ ℋ and 𝐺 ∈ 𝒢 and let 𝑐 ∈ Hom(𝐺 → 𝐻)
denote the 𝐻-coloring of 𝐺. Recall that a color-prescribed homo-
morphism ℎ ∈ cp-Hom(𝐻 → 𝐺) is a homomorphism that addi-
tionally satisfies 𝑐(ℎ(𝑣)) = 𝑣 for all 𝑣 in 𝑉(𝐻). Hence, if 𝑐 is not

174 parameterized counting problems

surjective, then there is no color-prescribed homomorphism from
𝐻 to 𝐺, thus we may assume that 𝑐 is surjective.

Now, fix ℎ ∈ cp-Hom(𝐻 → 𝐺). As 𝑐 is surjective, we have
𝑐(ℎ(𝑉(𝐻))) = 𝑉(𝐻). In particular, as both ℎ and 𝑐 are homo-
morphisms, ℎ ∘ 𝑐 is an automorphism of 𝐻. In fact, each automor-
phism 𝑎 of 𝐻 can be decomposed into 𝑐 and a homomorphism 𝑔 in
Hom(𝐻 → 𝐺) such that 𝑎 = 𝑔 ∘ 𝑐 and 𝑐(𝑔(𝑉(𝐻))) = 𝑉(𝐻). Let us
call homomorphisms 𝑔 with 𝑔 ∘ 𝑐 ∈ Aut(𝐻) colorful and write

cf -Hom(𝐻 → 𝐺) ≔ {𝑔 ∈ Hom(𝐻 → 𝐺) ∣ 𝑔 ∘ 𝑐 ∈ Aut(𝐻)}.

Claim 8.7. #cf -Hom(𝐻 → 𝐺) = #Aut(𝐻) ⋅ #cp-Hom(𝐻 → 𝐺).
Proof. First observe that we have ℎ ∈ cf -Hom(𝐻 → 𝐺) and also

𝑎 ∘ ℎ ∈ cf -Hom(𝐻 → 𝐺) for any 𝑎 ∈ Aut(𝐻), as concatenation of
automorphisms (𝑎∘(ℎ∘𝑐)) is an automorphism again and concate-
nation is associative (𝑎 ∘ (ℎ ∘ 𝑐) = (𝑎 ∘ ℎ) ∘ 𝑐).79 Hence,79. Observe that we

have 𝑎 ∘ 𝑏 ∘ ℎ = 𝑐 ∘ ℎ
for 𝑎, 𝑏, 𝑐 ∈ Aut(𝐻)
for the same reason.

#cf -Hom(𝐻 → 𝐺) ≤ #Aut(𝐻) ⋅ #cp-Hom(𝐻 → 𝐺).

For the other direction, observe that distinct color-prescribed
homomorphisms have different images and that an automorphism
does not change the image.

For a set 𝑊 ⊆ 𝑉(𝐻), write 𝐺|𝑊 ≔ 𝐺[{𝑣 ∈ 𝑉(𝐺) ∣ 𝑐(𝑣) ∈ 𝑊}]
for the induced subgraph that contains only the colors in 𝑊.

Claim 8.8.
#cf -Hom(𝐻 → 𝐺) = ∑𝑊⊆𝑉(𝐻)(−1)#𝑉(𝐻)−#𝑊 ⋅ #Hom(𝐻 → 𝐺|𝑊).
Proof. Observe that a homomorphism that is not colorful is

missing (perhaps multiple) colors from 𝑉(𝐻) in its image. Now
the formula follows by the Inclusion-Exclusion Principle.

The combination of Claims 8.7 and 8.8 yields the desired pa-
rameterized Turing reduction, which is even linear as all instances
can be easily obtainedwith a linear pass over𝐺 and 𝑓(|𝑉(𝐻)|) extra
time for a computable 𝑓.

reductions and (conditional) hardness 175

For the weakly parsimonious reduction, Claim 8.7 is already
weakly parsimonious for any graph class ℋ. For Claim 8.8, re-
call that a core 𝐻 has no endomorphisms to a proper subgraph
of 𝐻. However, for a non-empty set 𝑊, any homomorphism 𝑔 ∈
Hom(𝐻 → 𝐺|𝑊) would yield an endomorphism 𝑔 ∘ 𝑐 to a proper
subgraph of 𝐻—Hence for a core 𝐻, we have #cf -Hom(𝐻 → 𝐺) =
#Hom(𝐻 → 𝐺).

Finally, observe that if the graph 𝐺 is 𝐻-colorable, then so are
all its subgraphs, and hence in particular the graphs 𝐺|𝑊 for all sets
𝐾; completing the proof.

As a small addendum, observe that the we can obtain a reduc-
tion in the other direction almost trivially.

Lemma 8.9 ([99, Lemma 2.53]). For any graph classes ℋ and 𝒢, we
have #Hom(ℋ → 𝒢) ≤ℓ-fpt #cp-Hom(ℋ → 𝒢).

Proof. Given an instance (𝐻, 𝐺) to #Hom(ℋ → 𝒢), consider
the graph 𝐻 × 𝐺. By Lemma 7.8, 𝐻 × 𝐺 is 𝐻-colorable; indeed, the
identity mapping on 𝐻 lifts to an 𝐻-coloring 𝑐 of 𝐻 × 𝐺.

First, fix a ℎ ∈ cp-Hom(𝐻 → 𝐺) and observe that the mapping
𝑓(𝑣) ≔ (𝑣, ℎ(𝑔)) is indeed in cp-Hom(𝐻 → 𝐻 × 𝐺). Next, fix a
𝑓 ∈ cp-Hom(𝐻 → 𝐻 × 𝐺) and observe that the mapping ℎ(𝑣) ≔ 𝑢,
where (𝑣, 𝑢) = 𝑓(𝑣), is indeed in Hom(𝐻 → 𝐺).

Hardness and Conjectured Hardness

In this part, we use reductionsmainly to show that we cannot solve
problems faster than some running time bound—In particular, we
show that if we could do so, we would violate widely believed con-
jectures from parameterized and fine-grained complexity theory.

Ourmainworking conjecture is the so-called Exponential-Time
Hypothesis (eth) which was introduced by Impagliazzo and Pa-
turi [61]. Recall that in the Satisfiability (Sat) problem, we are
given a boolean formula𝜙 over 𝑛 variables, and the task is to decide
whether there is an assignment of truth values to the variables that
satisfies 𝜙. Recall further that in the variant 3-Sat, the formula 𝜙

176 parameterized counting problems

has the form (ℓ11 ∨ ℓ12 ∨ ℓ13) ∧ (ℓ21 ∨ ℓ22 ∨ ℓ23) ∧ ⋯, where the ℓ𝑖𝑗
are either a variable or a negated variable. eth reads as follows.

Conjecture 8.10 (e t h). No algorithm solving 3-Sat runs in time
exp(𝑜(𝑛)), where 𝑛 is the number of variables of the input formula.

Assuming eth, one can show that the problem Clique—and
thus #Clique—is not fixed-parameter tractable.8080. Note that in

Fine-Grained
Complexity Theory, it
is sometimes [1, 18]

conjectured that
Clique has no

algorithm running in
time |𝑉(𝐺)|2𝜔𝑘/3−𝜀

for any 𝜀 > 0, where
𝜔 < 2.373 is the
so-called matrix
multiplication
exponent. For

algorithms not using
matrix multiplication

or other
“non-combinatorial”
techniques, a similar

lower bound of
|𝑉(𝐺)|𝑘−𝜀 is
conjectured.

Fact 8.11 (Chen, Chor, Fellows, Huang, Juedes, Kanj, and Xia
[28], Chen, Huang, Kanj, and Xia [29]). No algorithm can solve
Clique in time 𝑓(|𝑉(𝐻)|) ⋅ |𝑉(𝐺)|𝑜(𝑘) for any 𝑓, unless eth fails.

Observe that non-tractability extends to other problems via pa-
rameterized reductions, for instance to the aforementioned variant
#ConnectedClique. Naturally, the same is true for concrete run-
ning time lower bounds.81

81. Note that with
running times, we

need to be more
careful if we are
interested in the

concrete polynomial
in the part not

depending on the
parameter. However,

in this part, we are
not interested in this,
so-called fine-grained

complexity of
problems.

Lemma 8.12. Let (𝑃, 𝜅, 𝛱) and (𝑄, 𝜆, 𝑌) denote ppc problems and
assume that (𝑃, 𝜅, 𝛱) reduces to (𝑄, 𝜆, 𝑌) with respect to any of ≤fpt,
≤w-fpt, or ≤fptT If (𝑄, 𝜆, 𝑌) is fpt, then so is (𝑃, 𝜅, 𝛱).

If the reduction is even linear, then any 𝑔(𝜆(𝑥)) ⋅ |𝑥|𝑐-time algorithm
for (𝑄, 𝜆, 𝑌) yields an 𝑓(𝜅(𝑥)) ⋅ |𝑥|𝑐-time algorithm for (𝑃, 𝜅, 𝛱), where
𝑐 is a constant and 𝑓 , 𝑔 are computable.

Proof. Follows from Definitions 8.2 and 8.3.

Using the problem #Clique, we can define an important com-
plexity class in parameterized complexity theory, called #W[1].

Definition 8.13 ([46, 86]). The class #W[1] contains all param-
eterized counting problems without promises that can be reduced to the
problem #Clique by parameterized parsimonious reductions.

The class W[1] is defined similarly for decision problems.

Having defined a complexity class and reductions between its
problems, it is natural to also define hardness and completeness.

reductions and (conditional) hardness 177

Definition 8.14. A ppc problem (𝑃, 𝜅, 𝛱) is #W[1]-hard under
parameterized parsimonious reductions if #Clique ≤fpt (𝑃, 𝜅, 𝛱). Hard-
ness under ≤w-fpt and ≤fptT is defined likewise. A parameterized count-
ing problem (without promises) is #W[1]-complete if it is contained in
#W[1] and #W[1]-hard.82 82. The class is called

#W[1], as it is part of
the so-called
W-hierarchy of
complexity
classes—As an
equivalent definition,
one can define the
classes of the
W-hierarchy via the
so-called weft of a
circuit. Consult [46]
for more details.

Assuming eth, any #W[1]-hard problem is not fpt, as it is at
least as hard as #Clique. Any #W[1]-complete problem is interre-
ducible (denoted by ≡) to #Clique.83

83. That is, there is a
reduction from and
to #Clique.

Regarding the specific problems we study, Jerrum and Meeks
[62] have shown that for any computable property 𝛷, the prob-
lem #IndSub(𝛷) reduces to #Clique using parameterized Turing
reductions. Thuswe can focus on the “hardness part” of the #W[1]-
completeness results for #IndSub(𝛷).

For the homomorphism side, Dalmau and Jonsson [37] proved
a classification of #Hom(ℋ → ⊤) into polynomial-time and #W[1]-
complete cases based on the treewidth of the graphs in the class ℋ.
Further, Marx [84] (implicitly) gave a stronger conditional lower
bound for the hard cases.

Lemma 8.15 ([37, 84]). For any ℋ semidecidable graph class,

1 If the treewidth of ℋ is bounded then #Hom(ℋ → ⊤) is solvable in
polynomial time.

2 Otherwise, #Hom(ℋ → ⊤) is #W[1]-hard under parameterized Tur-
ing reductions and #Hom(ℋ → ⊤) has no algorithm running in time
𝑓(|𝑉(𝐻)|)⋅|𝑉(𝐺)|𝑜(tw(𝐻)/log(tw(𝐻))) for any 𝑓, unless eth fails.

As we need to use more of the technical details of the proof of
Lemma 8.15, we discuss both the original #W[1]-hardness, as well
as a proof for the eth-based lower bound inmore detail shortly. To
that end, write ⊞ for the graph class of all 𝑘 × 𝑘 square grids ⊞𝑘 for
𝑘 ∈ ℕ ⧵ {0}. For the #W[1]-hardness result for #PartSub(ℋ → ⊤),
we first consider the intermediate problem #cp-Hom(⊞ → ⊤).

178 parameterized counting problems

1

2
3

4

5

6

𝐺

Reduction

(1, 1)1,1

(2, 2)1,1

(3, 3)1,1

(4, 4)1,1

(5, 5)1,1

(6, 6)1,1

(1, 1)2,2

(2, 2)2,2

(3, 3)2,2

(4, 4)2,2

(5, 5)2,2

(6, 6)2,2

(1, 1)3,3

(2, 2)3,3

(3, 3)3,3

(4, 4)3,3

(5, 5)3,3

(6, 6)3,3

(1, 1)4,4

(2, 2)4,4

(3, 3)4,4

(4, 4)4,4

(5, 5)4,4

(6, 6)4,4

(1, 2)1,2
(1, 3)1,2

(1, 4)1,2

(2, 3)1,2
(2, 4)1,2

(3, 4)1,2
(3, 5)1,2

(3, 6)1,2

(4, 6)1,2

(5, 6)1,2

(1, 2)1,3
(1, 3)1,3

(1, 4)1,3

(2, 3)1,3
(2, 4)1,3

(3, 4)1,3
(3, 5)1,3

(3, 6)1,3

(4, 6)1,3

(5, 6)1,3

(1, 2)1,4
(1, 3)1,4

(1, 4)1,4

(2, 3)1,4
(2, 4)1,4

(3, 4)1,4
(3, 5)1,4

(3, 6)1,4

(4, 6)1,4

(5, 6)1,4

(2, 1)2,1

(3, 1)2,1

(4, 1)2,1

(3, 2)2,1

(4, 2)2,1

(4, 3)2,1

(5, 3)2,1

(6, 3)2,1

(6, 4)2,1

(6, 5)2,1

(1, 2)2,3

(1, 3)2,3

(1, 4)2,3

(2, 3)2,3

(2, 4)2,3

(3, 4)2,3

(3, 5)2,3

(3, 6)2,3

(4, 6)2,3

(5, 6)2,3

(1, 2)2,4

(1, 3)2,4

(1, 4)2,4

(2, 3)2,4

(2, 4)2,4

(3, 4)2,4

(3, 5)2,4

(3, 6)2,4

(4, 6)2,4

(5, 6)2,4

(2, 1)3,1

(3, 1)3,1

(4, 1)3,1

(3, 2)3,1

(4, 2)3,1
(4, 3)3,1

(5, 3)3,1

(6, 3)3,1
(6, 4)3,1

(6, 5)3,1

(2, 1)3,2

(3, 1)3,2

(4, 1)3,2

(3, 2)3,2

(4, 2)3,2
(4, 3)3,2

(5, 3)3,2

(6, 3)3,2
(6, 4)3,2

(6, 5)3,2

(1, 2)3,4
(1, 3)3,4

(1, 4)3,4

(2, 3)3,4
(2, 4)3,4

(3, 4)3,4
(3, 5)3,4

(3, 6)3,4

(4, 6)3,4

(5, 6)3,4

(2, 1)4,1

(3, 1)4,1

(4, 1)4,1

(3, 2)4,1

(4, 2)4,1

(4, 3)4,1

(5, 3)4,1

(6, 3)4,1

(6, 4)4,1

(6, 5)4,1

(2, 1)4,2

(3, 1)4,2

(4, 1)4,2

(3, 2)4,2

(4, 2)4,2

(4, 3)4,2

(5, 3)4,2

(6, 3)4,2

(6, 4)4,2

(6, 5)4,2

(2, 1)4,3

(3, 1)4,3

(4, 1)4,3

(3, 2)4,3

(4, 2)4,3

(4, 3)4,3

(5, 3)4,3

(6, 3)4,3

(6, 4)4,3

(6, 5)4,3

(1, 1)1,1(1, 1)1,1

(2, 2)1,1

(3, 3)1,1

(4, 4)1,1

(5, 5)1,1

(6, 6)1,1

(1, 1)2,2

(2, 2)2,2(2, 2)2,2

(3, 3)2,2

(4, 4)2,2

(5, 5)2,2

(6, 6)2,2

(1, 1)3,3

(2, 2)3,3

(3, 3)3,3(3, 3)3,3

(4, 4)3,3

(5, 5)3,3

(6, 6)3,3

(1, 1)4,4

(2, 2)4,4

(3, 3)4,4

(4, 4)4,4(4, 4)4,4

(5, 5)4,4

(6, 6)4,4

(3, 5)1,2
(3, 6)1,2

(4, 6)1,2

(5, 6)1,2

(1, 2)1,2(1, 2)1,2
(1, 3)1,2

(1, 4)1,2

(2, 3)1,2
(2, 4)1,2

(3, 4)1,2
(3, 5)1,3

(3, 6)1,3

(4, 6)1,3

(5, 6)1,3

(1, 2)1,3
(1, 3)1,3(1, 3)1,3

(1, 4)1,3

(2, 3)1,3
(2, 4)1,3

(3, 4)1,3
(3, 5)1,4

(3, 6)1,4

(4, 6)1,4

(5, 6)1,4

(1, 2)1,4
(1, 3)1,4

(1, 4)1,4(1, 4)1,4

(2, 3)1,4
(2, 4)1,4

(3, 4)1,4

(5, 3)2,1

(6, 3)2,1

(6, 4)2,1

(6, 5)2,1

(2, 1)2,1(2, 1)2,1

(3, 1)2,1

(4, 1)2,1

(3, 2)2,1

(4, 2)2,1

(4, 3)2,1

(3, 5)2,3

(3, 6)2,3

(4, 6)2,3

(5, 6)2,3

(1, 2)2,3

(1, 3)2,3

(1, 4)2,3

(2, 3)2,3(2, 3)2,3

(2, 4)2,3

(3, 4)2,3

(3, 5)2,4

(3, 6)2,4

(4, 6)2,4

(5, 6)2,4

(1, 2)2,4

(1, 3)2,4

(1, 4)2,4

(2, 3)2,4

(2, 4)2,4(2, 4)2,4

(3, 4)2,4

(5, 3)3,1

(6, 3)3,1
(6, 4)3,1

(6, 5)3,1

(2, 1)3,1

(3, 1)3,1(3, 1)3,1

(4, 1)3,1

(3, 2)3,1

(4, 2)3,1
(4, 3)3,1

(5, 3)3,2

(6, 3)3,2
(6, 4)3,2

(6, 5)3,2

(2, 1)3,2

(3, 1)3,2

(4, 1)3,2

(3, 2)3,2(3, 2)3,2

(4, 2)3,2
(4, 3)3,2

(3, 5)3,4
(3, 6)3,4

(4, 6)3,4

(5, 6)3,4

(1, 2)3,4
(1, 3)3,4

(1, 4)3,4

(2, 3)3,4
(2, 4)3,4

(3, 4)3,4(3, 4)3,4

(5, 3)4,1

(6, 3)4,1

(6, 4)4,1

(6, 5)4,1

(2, 1)4,1

(3, 1)4,1

(4, 1)4,1(4, 1)4,1

(3, 2)4,1

(4, 2)4,1

(4, 3)4,1

(5, 3)4,2

(6, 3)4,2

(6, 4)4,2

(6, 5)4,2

(2, 1)4,2

(3, 1)4,2

(4, 1)4,2

(3, 2)4,2

(4, 2)4,2(4, 2)4,2

(4, 3)4,2

(5, 3)4,3

(6, 3)4,3

(6, 4)4,3

(6, 5)4,3

(2, 1)4,3

(3, 1)4,3

(4, 1)4,3

(3, 2)4,3

(4, 2)4,3

(4, 3)4,3(4, 3)4,3

𝐹

Figure 8.1. The “grid-tiling” construction from Lemma 8.16.

reductions and (conditional) hardness 179

Lemma 8.16. #ConnectedClique ≤w-fpt #cp-Hom(⊞ → ⊤).
Further, in the constructed instance (⊞𝑘, 𝐹) of #cp-Hom(⊞ → ⊤), the
graph 𝐹 is connected and ⊞𝑘-colorable.

Proof. Given an instance (𝐺, 𝑘) of #ConnectedClique, we de-
fine the following graph 𝐹.84 (See also Figure 8.1.) 84. We order the

vertices arbitrarily.

𝑉(𝐹) ≔ ⋃
𝑖∈[𝑘]

{(𝑣, 𝑣)𝑖,𝑖 ∣ 𝑣 ∈ 𝑉(𝐺)}

∪ ⋃
𝑖<𝑗∈[𝑘]

{(𝑢, 𝑣)𝑖,𝑗 ∣ 𝑢 ≤ 𝑣, {𝑢, 𝑣} ∈ 𝐸(𝐺)}

∪ ⋃
𝑖>𝑗∈[𝑘]

{(𝑢, 𝑣)𝑖,𝑗 ∣ 𝑢 ≥ 𝑣, {𝑢, 𝑣} ∈ 𝐸(𝐺)}

𝐸(𝐹) ≔ {((𝑢, 𝑣)𝑖,𝑗, (𝑥, 𝑦)𝑎,𝑏) ∣ (𝑢 = 𝑥 ∧ 𝑖 = 𝑎) or (𝑣 = 𝑦 ∧ 𝑗 = 𝑏)}
∪ {((𝑣, 𝑣)𝑖,𝑖, (𝑣 + 1, 𝑣 + 1)𝑖,𝑖)}.

First, observe that 𝐹 has a natural ⊞𝑘-coloring that sends every ver-
tex 𝑣𝑖,𝑗 of 𝐹 to the vertex (𝑖, 𝑗) in ⊞𝑘. Next, observe that the edges
between vertices 𝑢𝑖,𝑖 and 𝑣𝑖,𝑖 make the graph 𝐹 connected; as a color-
prescribed homomorphismhas to pick exactly one of these vertices,
edges connecting these vertices serve no other purpose.

Next, recall from Equation (7.1) that we have #Sub(𝐾𝑘 → 𝐺) =
#Emb(𝐾𝑘 → 𝐺)/#Aut(𝐾𝑘); we easily see that #Aut(𝐾𝑘) = 𝑘!.

Fix a 𝑔 ∈ Emb(𝐾𝑘 → 𝐺) and fix any labeling of 𝐾𝑘; we write
[𝑘] for 𝑉(𝐾𝑘). Consider the mapping ℎ ∶ 𝑉(⊞𝑘) → 𝐹, where
ℎ((𝑖.𝑗)) ≔ (𝑔(𝑖), 𝑔(𝑗))𝑖,𝑗. Observe that the vertex (𝑔(𝑖), 𝑔(𝑗))𝑖,𝑗 al-
ways exists in 𝐹, as𝐾𝑘 contains the edge {𝑖, 𝑗} and 𝑔 is an embedding.
Further, for two adjacent vertices (𝑖, 𝑗) and (𝑥, 𝑦) of ⊞𝑘, the vertices
(𝑔(𝑖), 𝑔(𝑗))𝑖,𝑗 and (𝑔(𝑥), 𝑔(𝑦))𝑥,𝑦 are connected—again, as 𝑔 is an
embedding. Finally, 𝑔 is trivially color-prescribed. This yields the
lower bound #Emb(𝐾𝑘 → 𝐺) ≤ #cp-Hom(⊞𝑘 → 𝐹).

For the other direction, fix a 𝑓 ∈ cp-Hom(⊞𝑘 → 𝐹). As 𝑓 is color-
prescribed, for every (𝑖, 𝑗) ∈ [𝑘]×[𝑘], there is a single vertex 𝑣𝑖,𝑗 in
𝐹 with 𝑣𝑖,𝑗 ≔ 𝑓((𝑖, 𝑗)). Now, consider the mapping 𝑒 ∶ 𝑉(𝐾𝑘) → 𝐺
with 𝑒(𝑖) ≔ 𝑣𝑖,𝑖. Observe that for two neighboring vertices (𝑖, 𝑗)
and (𝑥, 𝑦) of ⊞𝑘, the corresponding vertices 𝑣𝑖,𝑗 and 𝑣𝑥,𝑦 are neigh-

180 parameterized counting problems

bors as well, as 𝑓 is a homomorphism. Hence, for any pair 𝑖 < 𝑗, the
vertices 𝑣𝑖,𝑖, 𝑣𝑖,𝑖+1, … , 𝑣𝑖,𝑗, 𝑣𝑖+1,𝑗, … , 𝑣𝑗,𝑗 form a path. By construction
of 𝐹, this in turn means that there is an edge {𝑖, 𝑗} in 𝐺—Hence, 𝑒 is
an embedding and thus #Emb(𝐾𝑘 → 𝐺) ≥ #cp-Hom(⊞𝑘 → 𝐹).

Combining both inequalities, we obtain

#Sub(𝐾𝑘 → 𝐺) = #Emb(𝐾𝑘 → 𝐺)/𝑘! = #cp-Hom(⊞𝑘 → 𝐹)/𝑘!,

which yields the desired reduction.

In the next step, we use the celebrated Excluded-Grid Theorem
by Robertson and Seymour [96]—For space constraints, we do not
discuss its proof here.

Fact 8.17 (Excluded-Grid Theorem, [96]). Let ℋ denote a recur-
sively enumerable graph class of unbounded treewidth.85 For any non-85. That is, there is no

global constant 𝑡 such
that every graph in ℋ
has a treewidth of at

most 𝑡.

negative integer 𝑘, there is a 𝐻𝑘 ∈ ℋ with the grid ⊞𝑘 as a minor.

Using Fact 8.17, we need to convince ourselves only that the
hardness from Lemma 8.16 is monotone with respect to taking mi-
nors; that, we do next.

Lemma 8.18 ([38, Lemma 8]). Let𝐻 denote a graph and let𝑀 denote
a minor of 𝐻. Further, let 𝐹 denote an 𝑀-colorable graph.
Then, there is an 𝐻-colorable graph 𝐺 of size |𝑉(𝐺)| ≤ |𝑉(𝐻)| ⋅ |𝑉(𝐹)|
that satisfies #cp-Hom(𝑀 → 𝐹) = #cp-Hom(𝐻 → 𝐺).

Proof. Write 𝑐 to denote an 𝐻-coloring of 𝐺.
If 𝑀 = 𝐻, there is nothing to show. Otherwise, we can obtain

𝑀 from 𝐻 via a set of vertex deletions, edge deletions, and edge
contractions. We show the claim for all three operations separately,
the claim then follows inductively.

Vertex deletions. Assume that we have 𝑀 = 𝐻 ⧵ 𝑣. Now, we
obtain 𝐺 from 𝐹 by adding a new isolated vertex 𝑢: We set 𝐺 ≔
(𝑉(𝐹) ∪ {𝑢}, 𝐸(𝐹)). Further, we extend 𝑐 to 𝐺 via 𝑐(𝑢) ≔ 𝑣. As

reductions and (conditional) hardness 181

any homomorphism ℎ ∈ cp-Hom(𝐻 → 𝐺) has to map 𝑣 to 𝑢, we
immediately obtain #cp-Hom(𝑀 → 𝐹) = #cp-Hom(𝐻 → 𝐺).

Edge deletions. Assume that we have 𝑀 = 𝐻 ⧵ {𝑢, 𝑣}. Now, we
obtain 𝐺 from 𝐹 by adding all edges between vertices 𝑥 and 𝑦 with
𝑐(𝑥) = 𝑢 and 𝑐(𝑦) = 𝑣: We set 𝐺 ≔ (𝑉(𝐹), 𝐸(𝐹) ∪ {{𝑥, 𝑦} ∣ 𝑐(𝑥) =
𝑢, 𝑐(𝑦) = 𝑣}). Observe that any ℎ ∈ cp-Hom(𝑀 → 𝐹) is also a
color-prescribed homomorphism from 𝐻 to 𝐺—clearly, any edge
{ℎ(𝑢), ℎ(𝑣)} exists in 𝐺; the other direction is immediate. Hence,
#cp-Hom(𝑀 → 𝐹) = #cp-Hom(𝐻 → 𝐺). For the size bound, we
have |𝑉(𝐺)| = |𝑉(𝐹)|.

Edge contractions. Assume that we have 𝑀 = 𝐻/{𝑢, 𝑣}. Now,
we obtain 𝐺 from 𝐹 by duplicating every vertex 𝑥 ∈ 𝑉(𝐹), 𝑐(𝑥) = 𝑢𝑣
and connecting both the original vertex and its copy: We set

𝑉(𝐺) ≔ 𝑉(𝐹) ∪ {𝑑𝑥 ∣ 𝑥 ∈ 𝑉(𝐹), 𝑐(𝑥) = 𝑢𝑣},
𝐸(𝐺) ≔ 𝐸(𝐹) ∪ {{𝑥, 𝑑𝑥} ∣ 𝑑𝑥 ∈ 𝑉(𝐺)}

∪ {{𝑎, 𝑑𝑥} ∣ {𝑎, 𝑥} ∈ 𝐸(𝐹)}.

Any ℎ ∈ cp-Hom(𝑀 → 𝐹) now one-to-one corresponds with a 𝑔 ∈
cp-Hom(𝐻 → 𝐺) with 𝑔(𝑢) ≔ ℎ(𝑢𝑣), 𝑔(𝑣) ≔ 𝑑ℎ(𝑢𝑣), and 𝑔(𝑎) ≔
ℎ(𝑎) otherwise. Hence, #cp-Hom(𝑀 → 𝐹) = #cp-Hom(𝐻 → 𝐺). For
the size bound, we have |𝑉(𝐺)| ≤ 2 ⋅ |𝑉(𝐹)|, as we may duplicate
every vertex of 𝐹 at most once.

For the size bound, write 𝐺𝑖 for the graph obtained after 𝑖 opera-
tions. Observe that in every vertex deletion, the constructed graph
𝐺𝑖 satisfies |𝑉(𝐺𝑖)| = |𝑉(𝐺𝑖−1)| + 1; observe that in every edge dele-
tion, the constructed graph 𝐺𝑖 satisfies |𝑉(𝐺𝑖)| = |𝑉(𝐺𝑖−1)|; and
observe that in every edge contraction, the constructed graph 𝐺𝑖
satisfies |𝑉(𝐺𝑖)| = |𝑉(𝐺𝑖−1)| + |𝑉(𝐺0)|, where 𝐺0 = 𝐹 denotes the
graph originally given. As each edge contraction and vertex dele-
tion operation reduce the size of 𝐻 by one, we obtain |𝑉(𝐺)| ≤
|𝑉(𝐻)| ⋅ |𝑉(𝐹)|.

182 parameterized counting problems

Finally, the #W[1]-hardness part of Lemma 8.15 follows from
Lemmas 8.5, 8.6, 8.16 and 8.18 and Fact 8.17.

Lemma 8.19 (Lemma 8.15, #W[1]-hardness). Let ℋ denote a recur-
sively enumerable graph class of unbounded treewidth.

1 We have #Clique ≤fptT #Hom(ℋ → ⊤). Further, in every oracle query
(𝐻, 𝐺), the graph 𝐺 is 𝐻-colorable.

2 If, additionally, the class ℋ contains only cores, then the reduction is
weakly parsimonious. If the cores are also connected, then so are the
graphs of the oracle query.

Proof. Our goal is to count 𝑘-cliques by using an oracle for the
problem #Hom(ℋ → ⊤).

First, we use the reduction #Clique ≤wℓ-fpt #ConnectedClique
from Lemma 8.5. Next, we obtain #Clique ≤wℓ-fpt #Hom(⊞ → ⊤)
by adding Lemma 8.16. Note that in the constructed query (⊞𝑘, 𝐹)
to #Hom(⊞ → ⊤), the graph 𝐹 is connected and ⊞𝑘-colorable.

By Fact 8.17, for any ⊞𝑘 there is a graph 𝐻𝑘 in ℋ that has ⊞𝑘 as
a minor; further, we can compute this graph 𝐻𝑘 as ℋ is recursively
enumerable. By Lemma 8.18, we can construct a graph 𝐺 that is
𝐻𝑘-colorable and satisfies #cp-Hom(⊞𝑘 → 𝐹) = #cp-Hom(𝐻𝑘 → 𝐺).
Note that 𝐻𝑘 may be disconnected only if ℋ contains graphs that
are disconnected. Further, if 𝐻𝑘 is connected, we may also assume
that 𝐺 is connected as well.8686. For any

disconnected
components of 𝐺, we

can use the edge
deletions step from

Lemma 8.18 to make
them connected.

Using Lemma 8.6, we transform the instance (𝐻𝑘, 𝐺) into (mul-
tiple) instances (𝐻, 𝐼) of #Hom(ℋ → ⊤)—which we compute us-
ing our oracle to recover the solution to our original problem.

Finally, observe that the last step becomesweakly parsimonious
if ℋ contains only cores; and thus the same is true for the overall
reduction.

Note that the proofs of Lemma 8.5 and Item 2 of Lemma 8.19
directly yield the following result for the decision versions under
parameterized many-one reductions [47, Definition 2.1].

reductions and (conditional) hardness 183

Corollary 8.20. Letℋ denote a recursively enumerable class of cores
of unbounded treewidth. Then, there is a parameterized many-one reduc-
tion from Clique to Hom(ℋ → ⊤) such that in every instance (𝐻, 𝐺)
to Hom(ℋ → ⊤) the graph 𝐺 is connected and 𝐻-colorable.

It is useful to us to apply the transformations between homo-
morphisms and color-prescribed homomorphisms to Lemma 8.18,
thereby obtaining a similar reduction between the corresponding
uncolored problems.

Lemma 8.21. Let ℋ and ℳ denote semidecidable graph classes, where
for each graph 𝑀 ∈ ℳ there is a graph 𝐻 ∈ ℋ that has 𝑀 as a minor.
Then, #Hom(𝑀 → ⊤) ≤ℓ−fptT #Hom(𝐻 → ⊤).

Proof. Combine Lemma 8.9 with Lemma 8.18 and Lemma 8.6.
Transitivity then yields the claim.

For the eth-based lower bound of Lemma 8.15, we use a known
hardness result for Partitioned Subgraph Isomorphism. For a graph
class ℋ, in PartSub(ℋ → ⊤), we are given a graphs 𝐻 ∈ ℋ, 𝐺 ∈ ⊤,
and a mapping 𝑐 ∶ 𝑉(𝐺) → 𝑉(𝐻); the task is to decide if there is an
embedding 𝜑 from 𝐻 to 𝐺 with 𝑐(𝜑(𝑣)) = 𝑣 for all 𝑣 in 𝑉(𝐻).

Fact 8.22 (Marx [84, Corollary 6.2]). Let ℋ denote a recursively
enumerable graph class of unbounded treewidth. No algorithm can solve
PartSub(ℋ → ⊤) in time 𝑓(|𝑉(𝐻)|)⋅|𝑉(𝐺)|𝑜(tw(𝐻)/log(tw(𝐻))) for any
computable 𝑓, unless eth fails.

Lemma 8.23. Let ℋ denote a semidecidable graph class of unbounded
treewidth. We have PartSub(ℋ → ⊤) ≤wℓ-fpt #Hom(ℋ → ⊤).

Proof. Now, suppose we are given a graph 𝐻 ∈ ℋ, an arbitrary
graph 𝐺, and a coloring 𝑐 ∶ 𝑉(𝐺) → 𝑉(𝐻). We wish to count em-
bedding 𝜑 from 𝐻 to 𝐺 that satisfies 𝑐(𝜑(𝑣)) = 𝑣 for each vertex 𝑣
in 𝑉(𝐻). First, observe that we can drop the requirement of 𝜑 be-
ing injective, as every homomorphism that preserves the coloring
is injective. Further, observe that without loss of generality, we can

184 parameterized counting problems

assume that 𝑐 is a homomorphism from 𝐺 to 𝐻: Every edge {𝑢, 𝑣}
in 𝐸(𝐺) with {𝑐(𝑢), 𝑐(𝑣)} ∉ 𝐸(𝐻) is irrelevant for finding a homo-
morphism 𝜑 from 𝐻 to 𝐺 that preserves the coloring 𝑐. Hence, we
can delete all of those edges from 𝐺.

Thus, PartitionedSub(ℋ) is equivalent to cp-Hom(ℋ → ⊤) and
at least as hard as #cp-Hom(ℋ → ⊤); by Lemma 8.6, the claimed
lower bound holds for #Hom(ℋ → 𝒢) as well.

8.3 The Complexity of Graph Motif Parameters

Having both seen that counting (induced) subgraphs in a graph
is nothing more but computing linear combinations of homomor-
phism numbers (Section 7.5), and that we can classify the prob-
lem of computing homomorphism numbers into easy and hard
cases based on the treewidth of the pattern (Lemma 8.15), it is nat-
ural to ask if we can obtain a similar dichotomy result for linear
combinations of homomorphism numbers—and as a consequence
for counting (induced) subgraphs. Note that the other direction, is
immediate: If computing a finite linear combination is hard, then
certainly it cannot be easier to compute all summands of said lin-
ear combination separately. In fact, it is somewhat surprising, that
for homomorphism numbers, indeed reductions in both directions
are possible.87This result by Curticapean et al. [35] (and indepen-

87. Consider the
textbook example of
counting satisfying

assignments to a Sat
formula and adding

the number of
non-satisfying
assignments to

it—Both problems
separately are hard,

computing their sum
is trivial.

dently Chen and Mengel [27]) is called Complexity Monotonicity
of Graph Motif Parameters or Complexity Monotonicity for short. For
completeness, we discuss a proof based on [35] next. For technical
reasons, we need to be slightly more general—however, this does
not affect the proof.

Lemma 8.24 ([35, Lemma 3.6]). Let 𝒢 denote a graph class that
is closed under categorical product with any graph from the right.88,89

88. That is, for any
graph 𝐺 ∈ 𝒢, we also

have 𝐺 × 𝐻 ∈ 𝒢 for
any graph 𝐻 ∈ ⊤.

89. Observe that this
requirement is

trivially met by the
graph class ⊤.

Further, for a finitely supported vector 𝛼 ∈ ℝ𝒢 let 𝑓 = 𝛼 ⋅ #Hom denote a
graph motif parameter and write 𝑆 for a graph in the support of 𝛼. Finally,
let 𝐺 denote a graph in 𝒢.

There is a deterministic algorithm𝔸 with oracle access to the function
(𝛼⋅#Hom)(⋆), that computes the number #Hom(𝑆 → 𝐺) in time 𝑔(𝛼)⋅

the complexity of graph motif parameters 185

poly(|𝑉(𝐺)|), where 𝑔 is a computable function depending only on 𝛼.
Further, 𝔸 queries the oracle at most 𝑔(𝛼) times and each queried graph
has a size of at most max𝐻∈supp(𝛼)|𝑉(𝐻)||𝑉(𝐺)| vertices.

Proof. Let 𝛼 ⋅ #Hom denote a graph motif parameter and let 𝑆
denote a graph in the support of 𝛼. Further, let 𝐺 ∈ 𝒢 denote a
graph. Recall from Lemma 7.7, that for any graph 𝐹, we have

#Hom(𝑆 → 𝐺 × 𝐹) = #Hom(𝑆 → 𝐺) ⋅ #Hom(𝑆 → 𝐹). (8.1)

Expanding the 𝛼 ⋅ #Hom and applying Equation (8.1) yields

(𝛼 ⋅ #Hom)(𝐺 × 𝐹) = ∑
𝐻

#Hom(𝐻 → 𝐺) ⋅ #Hom(𝐻 → 𝐹). (8.2)

Observe that plugging in different graphs for 𝐹 into Equation (8.2),
we obtain a system of linear equations. Observe further that we
can query the oracle for the values (𝛼 ⋅ #Hom)(𝐺 × 𝐹); and, as
long as |𝑉(𝐹)| ≤ ℎ(|𝑉(𝐻)|) for a computable ℎ, we can also com-
pute the values #Hom(𝐻 → 𝐹) in some time 𝑔(𝛼) for a computable
function 𝑔. It remains to find a set 𝑃 of graphs such that the cor-
responding principal submatrix #Hom𝑃 is invertible. Now recall
from Lemma 7.11, that this is true if 𝑃 is closed surjective homo-
morphisms. Finally, observe that by Equation (7.7), we can obtain
the surjective closure of a set of graphs by adding all spasms of
graphs in the set. Therefore, for

𝑃 ≔ ⋃
𝐻∈𝛼

spasms(𝐻),

the matrix #Hom𝑃 is invertible.
The algorithm 𝔸 now looks as follows: For every 𝐹 ∈ 𝑃, we call

the oracle for the value (𝛼 ⋅ #Hom)(𝐺 × 𝐹) and we compute in time
𝑔(𝛼) the matrix #Hom𝑃, which we invert in time 𝑔(𝛼). As 𝑆 ∈ 𝑃, we
thereby obtain the value #Hom(𝐻 → 𝑆), as desired.

186 parameterized counting problems

Finally, observe that in all queries the size of (𝐺 × 𝐹) is at most
|𝑉(𝐺)| ⋅ max𝐻∈𝑃|𝑉(𝐻)|—as the quotient operation cannot increase
the number of vertices, this yields the desired size bound.

Finally, let us combine Equation (7.11) and Lemma 8.24—note
that by Lemma 7.14, for any fixed graph 𝐻, there are only finitely
many 𝐹 with aIndSub(𝐻→⋆)(𝐹) ≠ 0, that is, the linear combination

#IndSub(𝐻 → ⋆) = ∑
𝐹

|𝑉(𝐹)|≤|𝑉(𝐻)|

aIndSub(𝐻→⋆)(𝐹)#Hom(𝐹 → ⋆)

corresponds to a graph motif parameter. As there are only finitely
many graphs of size 𝑘, the same is true for the linear combination

#IndSub(𝛷, 𝑘 → ⋆) = ∑
𝐻∈𝒢𝜑,𝑘

#IndSub(𝐻 → ⋆)

= ∑
𝐻∈𝒢𝜑,𝑘

∑
𝐹

|𝑉(𝐹)|≤|𝑉(𝐻)|

aIndSub(𝐻→⋆)(𝐹)#Hom(𝐹 → ⋆)

=∶ ∑
𝐹

|𝑉(𝐹)|≤𝑘

aIndSub(𝛷,𝑘→⋆)(𝐹)#Hom(𝐹 → ⋆) (8.3)

Adding Lemmas 8.15 and 8.24 directly yields the following result.

Corollary 8.25 ([35]). Let 𝛷 denote a computable graph property.
The problem #IndSub(𝛷) is either fpt or #W[1]-complete.

Note that Corollary 8.25 yields only an implicit dichotomy—to
obtain explicit hardness of #IndSub(𝛷) for specific graph proper-
ties 𝛷, we need to understand which aIndSub(𝐻→⋆)(𝐺) in Equa-
tion (8.3)—in particular, we want to identify graphs 𝐻 with high
treewidth with nonzero coefficients. We tackle this task in detail
in 10 .

9Counting Graph Motif Parameters in 𝐹-colorable or
Kőnig Graphs

Recall that back in Section 8.2, we exported more technical details
from the proof of Lemma 8.15. In this chapter, we see first applica-
tions of said technical details.

9.1 Counting Homomorphisms and Subgraphs
in 𝐹-Colorable Graphs

Let ℋ denote a recursively enumerable class of graphs. Further,
given a fixed graph 𝐹, let 𝒞𝐹 denote the class of all graphs 𝐺 that
admit a homomorphism to 𝐹, that is, the class of 𝐹-colorable graphs.
In this section, we generalize Lemma 8.15 to #Hom(ℋ → 𝒞𝐹); that
is, counting the number of homomorphisms from a graph 𝐻 ∈
ℋ to a graph 𝐺 ∈ 𝒞𝐹. Note that the notion of 𝒞𝐹 captures and
generalizes the important special cases of the class of all bipartite
graphs (when 𝐹 is a single edge) or, more general, the class of all
𝑘-colorable graphs for any fixed number 𝑘 (when 𝐹 is the complete
graph on 𝑘 vertices).

Theorem 9.1. Let 𝐹 denote a graph, and let ℋ denote a recursively
enumerable class of graphs.

1 If the treewidth of the class ℋ ∩ 𝒞𝐹 is bounded then the ppc problem
#Hom(ℋ → 𝒞𝐹) is polynomial-time solvable.

2 Otherwise, #Hom(ℋ → 𝒞𝐹) is #W[1]-hard.

We prove Theorem 9.1 in two steps. First, in Lemma 9.3, we ex-
tend the known polynomial-time algorithm for #Hom(ℋ → ⊤) for
bounded-treewidth graph classes ℋ to graph classes ℋ𝑒𝑎𝑠𝑦 that do

188 counting in f-colorable or kőnig graphs

not contain 𝐹-colorable graphs of arbitrarily large treewidth. After
that, we prove #𝑊[1]-hardness for all other graph classes.

Polynomial-Time Algorithm for the Tractable Cases

Let ℋ𝑒𝑎𝑠𝑦 denote graph class that contains only graphs that are
not 𝐹-colorable or graphs with a treewidth of at most 𝑐, where
𝑐 ≔ 𝑐(ℋ𝑒𝑎𝑠𝑦) is a constant depending only on ℋ𝑒𝑎𝑠𝑦. We obtain
a polynomial-time algorithm for #Hom(ℋ𝑒𝑎𝑠𝑦 → 𝒞𝐹) as follows.

Given graphs 𝐻 ∈ ℋ𝑒𝑎𝑠𝑦 and 𝐺 ∈ 𝒞𝐹, we check, using the algo-
rithm of Bodlaender [15], whether 𝐻 has a treewidth tw(𝐻) of at
most 𝑐(ℋ𝑒𝑎𝑠𝑦). Next, if tw(𝐻) ≤ 𝑐(ℋ𝑒𝑎𝑠𝑦), we use the standard dy-
namic programming algorithm of Díaz, Serna, and Thilikos [39] to
compute #Hom(𝐻 → 𝐺). Otherwise, that is if tw(𝐻) > 𝑐(ℋ𝑒𝑎𝑠𝑦),
we output 0, as 𝐻 is not 𝐹-colorable by definition of ℋ𝑒𝑎𝑠𝑦. This last
step is justified by the following observation.

Lemma 9.2. For any graphs 𝐹, 𝐺, and 𝐻, if there is no homomorphism
from 𝐻 to 𝐹, but a homomorphism from 𝐺 to 𝐹, then there is no homomor-
phism from 𝐻 to 𝐺.

Proof. Fix 𝑔 ∈ Hom(𝐺 → 𝐹) and suppose there was an ℎ ∈
Hom(𝐻 → 𝐺). As the concatenation of two homomorphisms is
again a homomorphism, in particular ℎ ∘ 𝑔 ∶ 𝐻 → 𝐹 is again a
homomorphism, which is a contradiction to the assumption that
there is no homomorphism from 𝐻 to 𝐹.

In total, we obtain the following algorithm.

Lemma 9.3 (Theorem 9.1, Item 1). For any graph classes ℋ𝑒𝑎𝑠𝑦 and
𝒞𝐹, there is a polynomial-time algorithm for #Hom(ℋ𝑒𝑎𝑠𝑦 → 𝒞𝐹).

Proof. The correctness follows directly from the definition of
ℋ𝑒𝑎𝑠𝑦 and Lemma 9.2.

For the running time, set 𝑐 ≔ 𝑐(ℋ𝑒𝑎𝑠𝑦), 𝑘 ≔ |𝑉(𝐻)|, and 𝑛 ≔
|𝑉(𝐺)|. Using the algorithm by Bodlaender [15], we check if the
given graph has a treewidth of at most 𝑐 in time 𝑐𝑂(𝑐3) ⋅ 𝑘. Next,
using the algorithmbyDíaz et al. [39], we can compute the number

counting in f-colorable graphs 189

of homomorphisms from a graph with treewidth at most 𝑐 in time
poly(𝑘, 𝑐)⋅𝑛𝑐+𝑂(1). Hence in total, our algorithmhas a running time
of poly(𝑘, 𝑐) ⋅ 𝑛𝑐+𝑂(1), which is polynomial.

#𝑊[1]-Hardness for the Intractable Cases

Next, we discuss the #W[1]-hardness of #Hom(𝐻 → 𝒞𝐹) when-
ever the treewidth of ℋ ∩ 𝒞𝐹 is unbounded. However, as we have
seen in Lemma 8.19, the existing hardness proof already shows the
desired stronger result.

Lemma 9.4 (Theorem 9.1, Item 2). Let ℋ denote a recursively enu-
merable class of graphs such that the treewidth of ℋ ∩ 𝒞𝐹 is unbounded.
Then, we have #Clique ≤fptT #Hom(ℋ → 𝒞𝐹).

Proof. We use Item 1 of Lemma 8.19 for the class ℋ ∩ 𝒞𝐹: As
in every oracle query (𝐻, 𝐺), the graph 𝐺 is 𝐻-colorable by a color-
ing 𝑐 and every graph 𝐻 ∈ ℋ ∩ 𝒞𝐹 is 𝐹-colorable by a coloring 𝑓, we
obtain that the composition 𝑐 ∘ 𝑓 is an 𝐹-coloring of 𝐺.

Now, Theorem 9.1 holds by Lemmas 9.3 and 9.4.

Counting Subgraphs in 𝐹-colorable Graphs

In a next step, we discuss an easy generalization of the Complexity
Monotonicity Framework to 𝐹-colorable graphs. Thereby, we show
that the previous classification for counting homomorphisms to 𝐹-
colorable graphs yields a complete classification for the associated
subgraph counting problem—For to graph classes ℋ and 𝒢, in the
ppc problem #Sub(ℋ → 𝒢) we are given graphs 𝐻 ∈ ℋ and 𝐺 ∈ 𝒢,
and the task is to compute #Sub(𝐻 → 𝐺). The parameter is |𝑉(𝐻)|;
the promise is the set ℋ × 𝒢.

As an example, consider computing the number of 𝑘-matchings
in a bipartite graph90—a well-known hard problem. In fact, the 90. Here a 𝑘-matching

is a set of 𝑘 edges that
are pairwise disjoint

(#W[1])-hardness criterion of #Sub(ℋ → ⊤) is indeed the similar-
ity to counting matchings:

190 counting in f-colorable or kőnig graphs

Fact 9.5 (Curticapean and Marx [34]). Let ℋ denote a recur-
sively enumerable class of graphs.

1 If the matching number of the class ℋ is bounded then the problem
#Sub(ℋ → ⊤) is polynomial-time solvable.

2 Otherwise, the problem #Sub(ℋ → ⊤) is #W[1]-hard.

Here, thematching number of a graph is the size of its largest match-
ing and a graph class ℋ has bounded matching number if there is
an overall constant 𝑐 such that the matching number of each graph
𝐻 ∈ ℋ is bounded by 𝑐.

Combining Equation (7.9) with the Complexity Monotonicity
Framework and in particular Lemma 8.24, Curticapean et al. [35]
strongly generalized Fact 9.5 with a much simpler proof. We can
easily see that Lemma 8.24 generalizes to 𝐹-colorable graphs.

Lemma 9.6. Let 𝐹 denote a fixed graph and write 𝒞𝐹 for the graph
class of all 𝐹-colorable graphs. Lemma 8.24 holds for 𝒞𝐹.

Proof. We need to show that 𝐹-colorable graphs are closed un-
der categorical product—indeed they are, see Lemma 7.8.

Using Lemma 9.6, Fact 9.5 generalizes to 𝐹-colorable graphs:

Theorem 9.7. Let 𝐹 denote a fixed graph and let ℋ denote a recur-
sively enumerable class of graphs.

1 If the matching number of the class ℋ ∩𝒞𝐹 is bounded then the problem
#Sub(ℋ → 𝒞𝐹) is polynomial-time solvable.

2 Otherwise, the problem #Sub(ℋ → 𝒞𝐹) is #W[1]-hard.

Proof. Proving Item 1 is easy: Let 𝑐 denote the constant up-
per bound on the matching number of graphs in ℋ ∩ 𝒞𝐹. Given
𝐻 ∈ ℋ and 𝐺 ∈ 𝒞𝐹, we obtain the matching number of 𝐻 in polyno-
mial time using the Blossom-Algorithm [43]. If the result is greater
than 𝑐, the promise yields 𝐻 ∉ 𝒞𝐹, in which case we can output 0

counting in f-colorable graphs 191

as 𝐻 would be 𝐹-colorable if it was isomorphic to a subgraph of
𝐺 ∈ 𝒞𝐹. Otherwise, we use the algorithm from Item 1 of Fact 9.5.

For #W[1]-hardness, we construct a reduction from the prob-
lem #Hom(spasms(ℋ) ∩ 𝒞𝐹 → 𝒞𝐹), where spasms(ℋ) is the set of
all spasms of graphs in ℋ. We start with the following observation.

Claim 9.8. The class spasms(ℋ) ∩ 𝒞𝐹 has unbounded treewidth if
the class ℋ ∩ 𝒞𝐹 has unbounded matching number.

Proof. Let 𝑏 ∈ ℕ ⧵ {0} denote a positive integer. We show that
there is a graph of treewidth at least 𝑏 in the class spasms(ℋ) ∩ 𝒞𝐹.
By assumption, there is a graph 𝐻 ∈ ℋ ∩ 𝒞𝐹 such that 𝐻 contains a
matching 𝑀 of size at least |𝐸(𝐹)| ⋅𝑏2; recall that |𝐸(𝐹)| is a constant
as the graph 𝐹 is fixed.

Let 𝑐 denote an 𝐹-coloring of 𝐻. Abusing notation, for an edge
{𝑢, 𝑣} we write 𝑐({𝑢, 𝑣}) ≔ {𝑐(𝑢), 𝑐(𝑣)} and say that 𝑐 maps the
edge {𝑢, 𝑣} to 𝑐({𝑢, 𝑣}). Now, as |𝑀| ≥ |𝐸(𝐹)| ⋅ 𝑏2, the coloring 𝑐
maps at least 𝑏2 edges in 𝑀 to a common edge 𝑒 in 𝐻. Let us call
these edges {𝑢1, 𝑣1}, … , {𝑢𝑏2, 𝑣𝑏2}—we have 𝑐({𝑢𝑖, 𝑣𝑖}) = 𝑒 for all
𝑖 ∈ {1, … , 𝑏2}.

As 𝑀 is a matching, we have that the vertices 𝑈 ≔ {𝑢1, … , 𝑢𝑏2}
and 𝑉 ≔ {𝑣1, … , 𝑣𝑏2} form independent sets.91 Hence, we can con- 91. That is, they are

pairwise not
connected by an
edge.

tract vertices in 𝑈 and 𝑉 such that we obtain a complete bipartite
graph 𝐾𝑏,𝑏 with 𝑏 vertices on each side—Write 𝜌 for the induced
partition of 𝑉(𝐻). Observe that 𝐻/𝜌 is still 𝐹-colorable as we con-
tracted only (independent) vertices that have the same color. Thus,
we have that 𝐻/𝜌 ∈ spasms(ℋ) ∩ 𝒞𝐹. As the treewidth of 𝐾𝑏,𝑏 is 𝑏
and the treewidth of a graph cannot increase by taking subgraphs,
we obtain that 𝐻/𝜌 has treewidth at least 𝑏.

By Claim 9.8 and Lemma 8.19, a reduction from the problem
#Hom(spasms(ℋ) ∩ 𝒞𝐹 → 𝒞𝐹) yields the desired #W[1]-hardness
for #Sub(ℋ → 𝒞𝐹).

Now, for the reduction itself, we use Equation (7.9) and in par-
ticular Corollary 7.13: Given a graph 𝑆 ∈ spasms(ℋ) ∩ 𝒞𝐹 we can
compute92 a graph 𝐻 ∈ ℋ with 𝐹 ∈ spasms(𝐻) and

92. This takes time
depending only on 𝑆.

192 counting in f-colorable or kőnig graphs

#Sub(𝐻 → ⋆) = ∑
𝑅∈spasms(𝐻)

aSub(𝐻→⋆)(𝑅) ⋅#Hom(𝑅 → ⋆). (9.1)

Next, observe that for 𝐹-colorable graphs 𝐺, in Equation (9.1) we
have #Hom(𝑅 → 𝐺) = 0 for any graph 𝑅 that is not 𝐹-colorable.

Hence, using an oracle query (𝐻, 𝐺) for #Sub(ℋ → 𝒞𝐹) for any
𝐹-colorable graph 𝐺, we can compute the left-hand side of Equa-
tion (9.1); finally, using Lemma 9.6, we can also extract the spe-
cific summand #Hom(𝑆 → 𝐺) from the right-hand side to solve
the original instance to #Hom(spasms(ℋ) ∩ 𝒞𝐹 → 𝒞𝐹).

9.2 Counting Homomorphisms to Kőnig graphs

We write ℒ for the class of all line graphs. By Kőnig’s Theorem,
a line graph of a bipartite graph is also a perfect graph (see for
instance [31]). To simplify notation, we hence call a line graph of
a bipartite graph a Kőnig graph. We write K to denote the class of
all Kőnig graphs93. In this section, we analyze the complexity of93. The symbol K is

used since “König” is
the German word for

“King”.

the problem #Hom(ℋ → K) of counting homomorphisms from a
graph from an arbitrary graph class ℋ to a Kőnig graph.

Checking Existence of Homomorphisms to Kőnig Graphs is fpt

We start by discussing the decision version, that is, the problem
Hom(⊤ → K). It turns out that if we are interested only in the ex-
istence, and not the number, of homomorphisms, then the problem
becomes fixed-parameter tractable.

Theorem 9.9. The decision problem Hom(⊤ → ℒ) is fpt. Thus,
also Hom(⊤ → K) is fpt. In particular, given a graph 𝐻 and a line
graph 𝐿, it is possible to decide #Hom(𝐻 → 𝐿) > 0 in time 𝑓(|𝑉(𝐻)|) ⋅
𝑂(|𝑉(𝐿)|2), for some computable function 𝑓 independent of 𝐻 and 𝐿.

Proof. For the algorithm, we use the so-called clique partition
of line graphs [58, Chapter 8]—we can partition the graph 𝐸(𝐿)
into cliques such that every vertex of 𝐿 is contained in at most two
cliques. Here, every clique corresponds to a vertex of a primal

counting homomorphisms to kőnig graphs 193

graph of 𝐺 such that 𝐿(𝐺) = 𝐿. In particular, we can easily see
that the size of the largest clique in the partition is exactly the max-
imum degree of 𝐺. Hence, we first compute a primal graph 𝐺 of 𝐿,
Next, we compute the maximum degree 𝑑 of 𝐺.

Now set 𝑘 ≔ |𝑉(𝐻)| and let 𝐻1, … , 𝐻ℓ denote the connected
components of 𝐻. For every connected component 𝐻𝑖, we proceed
as follows. If 𝑑 ≥ 𝑘 then there is a homomorphism from 𝐻𝑖 to 𝐿,
as we can embed 𝐻𝑖 into a clique of size 𝑑. Otherwise, the proper-
ties of the clique partition yield that the degree of 𝐿 is bounded by
2𝑘: Every vertex of 𝐿 is contained in at most two cliques and every
clique is of size at most 𝑑 < 𝑘. Hence, we can perform a standard
bounded search-tree algorithm: We guess the image 𝑣 ∈ 𝑉(𝐿) of
a vertex ℎ ∈ 𝑉(𝐻𝑖). As the graph 𝐻𝑖 is connected and |𝑉(𝐻𝑖)| ≤ 𝑘,
every homomorphism from 𝐻𝑖 to 𝐿 that maps ℎ to 𝑣 must also map
every further vertex of 𝐻𝑖 to a vertex in the 𝑘-neighborhood of 𝑣;
which we can explore via brute-force to search for a homomor-
phism. Finally, we output 1 if we found a homomorphism from
every connected component 𝐻𝑖 and 0 otherwise.

For the running time, we can compute the primal graph 𝐺 of
𝐿 in time 𝑂(|𝑉(𝐿)|2) [80]; we can find the maximum degree 𝑑 of
𝐺 easily in 𝑂(|𝑉(𝐺)|) = 𝑂(|𝑉(𝐿)|2). In our bounded search tree
approach, observe that as the maximum degree of 𝐿 is at most 2𝑘,
the size of the graph induced by the 𝑘-neighborhood of a vertex 𝑣
is bounded by (2𝑘)𝑘. Hence, the brute-force search for a homomor-
phism runs in time depending only on 𝑘.

The total running time is bounded by

𝑂(|𝑉(𝐿)|2) + 𝑓(|𝑉(𝐻)|) ⋅ 𝑂(|𝑉(𝐿)|) ≤ 𝑓(|𝑉(𝐻)|) ⋅ 𝑂(|𝑉(𝐿)|2);

this completes the proof.

Implicit Criterion for Hardness of
Counting Homomorphisms to Kőnig Graphs

The fpt algorithm for the decision version from Theorem 9.9 moti-
vates the study of the counting version: The most interesting hard-

194 counting in f-colorable or kőnig graphs

ness results in counting complexity theory are for problems with
a tractable decision version [117]. To understand the complexity
of #Hom(ℋ → K), we first turn to the Complexity Monotonicity
Framework again. This yields the following exhaustive, but implicit
complexity classification.

Theorem 9.10. Let ℋ denote a recursively enumerable class of graphs.
Then the problem #Hom(ℋ → K) is either fixed-parameter tractable or
#W[1]-hard under parameterized Turing-reductions.

Note that Kőnig graphs are a subset of the perfect graphs [31],
as well as a subset of the line graphs (of arbitrary graphs). As line
graphs are also claw-free graphs [8], Kőnig graphs are also a subset
of the claw-free graphs. Hence, the hardness result for the problem
#Hom(ℋ → K) extends to perfect graphs, line graphs, and claw-
free graphs as well.

To apply the Complexity Monotonicity Framework, we need
a theorem by Whitney [120] that allows us to “reverse” the line
graph operation.

Fact 9.11 (Whitney [120]). Let 𝐻 denote a connected line graph
that is not isomorphic to the triangle. Then there is a unique graph 𝐹 (up
to isolated vertices) such that 𝐿(𝐹) = 𝐻.9494. Recall from

Figure 7.6c that both
the triangle and the

claw have the triangle
as their line graph.

As the triangle is not bipartite, Fact 9.11 allows us to define the
inverse line graph operation for line graphs of bipartite graphs 𝐺. For-
mally, write 𝒞– for the class of bipartite graphswithout isolated ver-
tices, and set 𝐿−1 ∶ K → 𝒞–, 𝐿−1(𝐿(𝐺)) ≔ 𝐺. In particular, we have
that 𝐿−1(𝐾3) = 𝐾1,3.

As a useful property of 𝐿−1, we observe that 𝐿−1 is almost com-
patible with (induced) subgraph numbers.

counting homomorphisms to kőnig graphs 195

Lemma 9.12. For any line graph 𝐻 and any Kőnig graph 𝐺, we have

#IndSub(𝐻 → 𝐺) = { #Sub(𝐿−1(𝐻) → 𝐿−1(𝐺)), 𝐻 ∈ K;
0, else.

(9.2)

Proof. Assume first that the graph 𝐻 = 𝐿(𝐹) is a Kőnig graph.
Consider 𝑆 ⊆ 𝑉(𝐺) = 𝐸(𝐿−1(𝐺)) such that 𝐺[𝑆] ≅ 𝐻 and set

𝐷 ≔ 𝐿−1(𝐺){𝑆 }. By construction, we have 𝐿(𝐷) ≅ 𝐻. Thus, the
graphs 𝐹 and 𝐷 are isomorphic by Fact 9.11 and the fact that neither
𝐹 nor 𝐷 is the triangle.95 95. Note that a

bipartite graph
cannot contain a
subgraph isomorphic
to a triangle.

Now let 𝐷 denote a subgraph of 𝐿−1(𝐺) that is isomorphic to 𝐹.
As the graph 𝐹 does not contain isolated vertices, 𝐷 is determined
by its set of edges. We set 𝑆 = 𝐸(𝐷) and consider the induced sub-
graph 𝐺[𝑆]. By construction, 𝐺[𝑆] is isomorphic to 𝐿(𝐷) which
in turn is isomorphic to 𝐿(𝐹) (as the graphs 𝐷 and 𝐹 are isomor-
phic). This shows correctness for 𝐻 = 𝐿(𝐹) ∈ K.

If the graph 𝐻 is not a Kőnig graph, then 𝐻 is not a triangle.
Thus, we have that 𝐻 = 𝐿(𝐹) for some non-bipartite graph 𝐹 which
is uniquely determined (up to isolated vertices) by Fact 9.11. In
this case, the same argument as before shows that any induced sub-
graph of 𝐺 that is isomorphic to 𝐻 yields a subgraph of 𝐿−1(𝐺) that
is isomorphic to 𝐹. As 𝐿−1(𝐺) is bipartite and 𝐹 is not, such an in-
duced subgraph cannot exist; note that bipartite graphs are closed
under taking subgraphs.

In a next step, we convince ourselves that counting homomor-
phisms in Kőnig graphs is indeed a graph motif parameter.

Lemma 9.13. For any graph 𝐻 and any Kőnig graph 𝐺 ∈ K, we have

#Hom(𝐻 → 𝐺) = (𝛼 ⋅ #Hom)(𝐿−1(𝐺)),

for a finitely supported 𝛼 ∈ ℚ⊤.

196 counting in f-colorable or kőnig graphs

Proof. Fix a graph 𝐻 and a Kőnig graph 𝐺 = 𝐿(𝐹) and consider
#Hom(𝐻 → 𝐺). Combining Equations (7.3) and (7.5), we obtain

#Hom(𝐻 → 𝐺) = ∑
𝜌

#Emb(𝐻/∘𝜌 → 𝐺)

= ∑
𝜌

∑
𝑅

#Ext(𝐻/∘𝜌→𝑅)>0

#Ext(𝐻/∘𝜌 → 𝑅) ⋅ #IndSub(𝑅 → 𝐺)

=∶ ∑
𝑅

|𝑉(𝑅)|≤|𝑉(𝐻)|

a−1IndSub(𝐻→⋆)(𝑅) ⋅ #IndSub(𝑅 → 𝐺)

Now, we use Lemma 9.12 to replace 𝐺 with 𝐿−1(𝐺).

#Hom(𝐻 → 𝐺) = ∑
𝑅∈K

|𝑉(𝑅)|≤|𝑉(𝐻)|

a−1IndSub(𝐻→⋆)(𝑅) ⋅ #Sub(𝑅 → 𝐿−1(𝐺))

Finally, we use Equation (9.1) to return to homomorphisms.

#Hom(𝐻 → 𝐺) = ∑
𝑅∈K

|𝑉(𝑅)|≤|𝑉(𝐻)|

a−1IndSub(𝐻→⋆)(𝑅)

⋅ ⎛⎜
⎝

∑
𝑇∈spasms(𝑅)

aSub(𝑅→⋆)(𝑇) ⋅ #Hom(𝑇 → 𝐿−1(𝐺))⎞⎟
⎠

(9.3)

We skip the pain of expanding Equation (9.3), just observe that the
right-hand side is indeed a graph motif parameter.

Using Lemma 9.13, we obtain a proof for Theorem 9.10.

Theorem 9.10. Let ℋ denote a recursively enumerable class of graphs.
Then the problem #Hom(ℋ → K) is either fixed-parameter tractable or
#W[1]-hard under parameterized Turing-reductions.

Proof. Consider the graph class ℋ𝑆 of all bipartite graphs in
any support 𝑄𝐻 for 𝐻 ∈ ℋ.

ℋ𝑆 ≔ ⋃
𝐻∈ℋ

(𝑄𝐻) ∩ 𝒞–.

counting homomorphisms to kőnig graphs 197

We proceed to show #Hom(ℋ → K) ≡fpt
T #Hom(ℋ𝑆 → 𝒞–). Note

that this implies Theorem 9.10 by the classification of 𝐹-colorable
graphs (Theorem 9.1) for 𝐹 = 𝑃2.

For the direction #Hom(ℋ → K) ≤fptT #Hom(ℋ𝑆 → 𝒞–), assume
that graphs 𝐻 ∈ ℋ and 𝐺 ∈ K are given. By Lemma 9.14, we can
compute (in time depending only on 𝐻) a vector 𝛼𝐻 ∈ ℚ⊤ with

#Hom(𝐻 → 𝐺) = (𝛼𝐻 ⋅ #Hom)(𝐿−1(𝐺)). (9.4)

As 𝐺 is a Kőnig graph, we have that 𝐿−1(𝐺) is bipartite. Hence, by
Lemma 9.2, there is no homomorphism from a graph 𝐷 to 𝐿−1(𝐺)
whenever 𝐷 is not bipartite. Observe that we can verify whether
a graph 𝐷 ∈ supp(𝛼) is bipartite in time depending only on 𝛼 and
thus |𝑉(𝐻)|. All other terms #Hom(𝐷 → 𝐺) with 𝐷 ∈ 𝒞– can be
obtained by querying the oracle for the problem #Hom(ℋ𝑆 → 𝒞–).
Finally, we compute and the linear combination in Equation (9.4).
This completes the first reduction.

For the other direction, #Hom(ℋ𝑆 → 𝒞–) ≤fptT #Hom(ℋ → K),
assume that graphs 𝐷 ∈ ℋ𝑆 and 𝐺 ∈ 𝒞– are given. By definition of
the class ℋ𝑆, we have that the graph 𝐷 is a bipartite graph in 𝑄𝐻 for
some𝐻 ∈ ℋ. Asℋ is recursively enumerable and themapping𝐻 ↦
𝛼𝐻 is computable, we can compute 𝛼𝐻 in time depending only on
|𝑉(𝐹)| and 𝛼𝐻. By Lemma 9.6, we can also extract any summand of
𝛼𝐻 using the oracle for #Hom(ℋ → K) This completes the second
reduction, and hence the proof.

An Explicit Criterion for Hardness of
Counting Homomorphisms to Kőnig Graphs

Dissatisfied with the implicit nature of Theorem 9.10, we wish to
find explicit criteria on ℋ that make #Hom(𝐻 → K) hard. Hence,
we construct an explicit reduction from #Clique next, thereby prov-
ing the following hardness result.

198 counting in f-colorable or kőnig graphs

1, 𝑘

1, 𝑗

1, 1

𝑖, 𝑘

𝑖, 𝑗

𝑖, 1

𝑘, 𝑘

𝑘, 𝑗

𝑘, 1

𝑐(1, 𝑘)

𝑐(1, 𝑗)

𝑐(1, 1)

𝑐(𝑖, 𝑘)

𝑐(𝑖, 𝑗)

𝑐(𝑖, 1)

𝑐(𝑘, 𝑘)

𝑐(𝑘, 𝑗)

𝑐(𝑘, 1)

Hom(⊞𝑘 → 𝐺)

⊞𝑘

𝐺 (⊞𝑘-colored)

Reduction

𝑆(1, 𝑘)

𝑆(1, 𝑗)

𝑆(1, 1)

𝑆(𝑖, 𝑘)

𝑆(𝑖, 𝑗)

𝑆(𝑖, 1)

𝑆(𝑘, 𝑘)

𝑆(𝑘, 𝑗)

𝑆(𝑘, 1)

𝑆(1, 𝑘)

𝑆(1, 𝑗)

𝑆(1, 1)

𝑆(𝑖, 𝑘)

𝑆(𝑖, 𝑗)

𝑆(𝑖, 1)

𝑆(𝑘, 𝑘)

𝑆(𝑘, 𝑗)

𝑆(𝑘, 1)

𝑆(𝑐(1, 𝑘))

𝑆(𝑐(1, 𝑗))

𝑆(𝑐(1, 1))

𝑆(𝑐(𝑖, 𝑘))

𝑆(𝑐(𝑖, 𝑗))

𝑆(𝑐(𝑖, 1))

𝑆(𝑐(𝑘, 𝑘))

𝑆(𝑐(𝑘, 𝑗))

𝑆(𝑐(𝑘, 1))

𝑆(𝑐(1, 𝑘))

𝑆(𝑐(1, 𝑗))

𝑆(𝑐(1, 1))

𝑆(𝑐(𝑖, 𝑘))

𝑆(𝑐(𝑖, 𝑗))

𝑆(𝑐(𝑖, 1))

𝑆(𝑐(𝑘, 𝑘))

𝑆(𝑐(𝑘, 𝑗))

𝑆(𝑐(𝑘, 1))

Hom(K⊞𝑘 →
K

𝐺)

K⊞𝑘
K

𝐺

(a) Corner vertices (red), border vertices (blue), and interior vertices (purple) get replaced by
corresponding gadgets; the resulting graph

K

𝐺 is a Kőnig graph. We use 𝑐(⋆) to denote the set of
all vertices colored with ⋆ and 𝑆(⋆) to denote the gadget corresponding to ⋆; the numbers 𝑖 and
𝑗 denote intermediate columns and rows.

𝑐(𝑘, 1) 𝑐(𝑖, 1) 𝑐(𝑖, 𝑗)

R R R

𝑐(𝑘, 1, ←)

𝑐(𝑘, 1, ↓)

𝑐(𝑖, 1, ←)
𝑐(𝑖, 1, →)

𝑐(𝑖, 1, ↓)

𝑐(𝑖, 𝑗, ←) 𝑐(𝑖, 𝑗, →)

𝑐(𝑖, 𝑗, ↓)

𝑐(𝑖, 𝑗, ↑)

𝑐(𝑖, 𝑗, ↖)

𝑐(𝑖, 𝑗, ↘)

(b) The gadgets of Lemma 9.14 in detail.

101 Figure 9.1. General overview of the reduction from Lemma 9.14.

counting homomorphisms to kőnig graphs 199

Lemma 9.14. Let ℋ denote a recursively enumerable class of graphs.
If ℋ has unbounded treewidth and is closed under taking minors, then the
problem #Hom(ℋ → K) is #W[1]-hard.

Proof. We prove #cp-Hom(⊞ → ⊤) ≤fptT #Hom(ℋ → K). The
result then follows from the reduction Lemma 8.16. For the re-
duction, we use a gadget construction that transforms an arbitrary
(grid-colored) graph 𝐺 into a Kőnig graph such that the number
of homomorphisms remains stable; see Figure 9.1a for an overview
of the construction.

Let 𝐹 denote a ⊞𝑘-colored graph. We next discuss how to con-
struct a Kőnig graph

K

𝐹 from 𝐹. Let 𝑐 denote the coloring of 𝐹. We
partition the vertices of 𝐹 into three disjoint sets (again, consider
Figure 9.1a):
1 A vertex 𝑣 is called a corner vertex if its coloring 𝑐(𝑣) is one of the

values (1, 1), (1, 𝑘), (𝑘, 1), and (𝑘, 𝑘).
2 A vertex 𝑣 is called a border vertex if its coloring 𝑐(𝑣) satisfies

𝑐(𝑣) ∈ {(𝑖, 𝑗) ∈ [𝑘]2 ∣ 𝑖 ∈ {1, 𝑘} ∨ 𝑗 ∈ {1, 𝑘}} ⧵ {1, 𝑘} × {1, 𝑘}.

3 All remaining vertices are called interior vertices.

We construct a gadget (graph) 𝑆(𝑣) for each vertex 𝑣 ∈ 𝑉(𝐹),
depending on the type of 𝑣.
1 The vertex 𝑣 is a corner vertex. Assume that 𝑐(𝑣) = (1, 1); the

other cases are symmetric. Now let 𝑁→ denote the set of neigh-
bors of 𝑣 that are colored by 𝑐 with (1, 2) and let 𝑁↓ denote the
set of all neighbors of 𝑣 that are colored by 𝑐 with (2, 1). Note
that that those are all neighbors of 𝑣 as 𝐹 is ⊞𝑘-colored. For each
vertex 𝑢 ∈ 𝑁→, we add a vertex 𝑣𝑢

→ and color it with (1, 1, →). For
each vertex 𝑢 ∈ 𝑁↓, we add a vertex 𝑣𝑢

↓ and color it with (1, 1, ↓).
We obtain 𝑆(𝑣) by making all of the previous vertices adjacent
to each other.

2 The vertex 𝑣 is a border vertex. Assume that 𝑐(𝑣) = (1, 𝑗); the
other cases are symmetric. Now let 𝑁→ denote the set of neigh-
bors of 𝑣 that are colored by 𝑐 with (1, 𝑗 + 1), let 𝑁← denote the

200 counting in f-colorable or kőnig graphs

set of neighbors of 𝑣 that are colored by 𝑐 with (1, 𝑗 − 1), and let
𝑁↓ denote the set of all neighbors of 𝑣 that are colored by 𝑐 with
(2, 𝑗). For each vertex 𝑢 ∈ 𝑁→, we add a vertex 𝑣𝑢

→ and color it
with (1, 𝑖, →). We proceed similarly with 𝑁← and 𝑁↓. We obtain
𝑆(𝑣) by making all of the previous vertices adjacent.

3 The vertex 𝑣 is an interior vertex. Let 𝑣 have color 𝑐(𝑣) = (𝑖, 𝑗)
and let 𝑁→, 𝑁←, 𝑁↑ and 𝑁↓ denote the sets of neighbors of 𝑣 that
are colored by 𝑐 with (𝑖, 𝑗 + 1), (𝑖, 𝑗 − 1), (𝑖 − 1, 𝑗) and (𝑖 + 1, 𝑗), re-
spectively. We add a new vertex 𝑣𝑢

→ for each vertex 𝑢 ∈ 𝑁→ and
color it with (𝑖, 𝑗, →); we proceed similarly with the sets 𝑁↑, 𝑁←,
and 𝑁↓. Next, we add two new vertices 𝑣↖ and 𝑣↘, color them
(𝑖, 𝑗, ↖) and (𝑖, 𝑗, ↘), and connect them by an edge. Then we cre-
ate two cliques: The first clique contains the vertex 𝑣⋆ and all
vertices that we colored with (𝑖, 𝑗, ←) or with (𝑖, 𝑗, ↑). The sec-
ond clique contains the vertex 𝑣↘ and all vertices that we colored
with (𝑖, 𝑗, →) or with (𝑖, 𝑗, ↓). The resulting graph is 𝑆(𝑣).

We obtain the graph
K

𝐹 by connecting the gadgets as follows:
Let {𝑣, 𝑤} ∈ 𝐸(𝐹) denote an edge of 𝐹 and assume that the vertex
𝑣 has color 𝑐(𝑣) = (𝑖, 𝑗) and the vertex 𝑤 has color 𝑐(𝑤) = (𝑖, 𝑗 + 1);
the remaining cases are processed similarly. By construction, the
graph 𝑆(𝑣) contains a vertex 𝑣𝑤

→ and the graph 𝑆(𝑤) contains a
vertex 𝑤𝑣

←. We connect those two vertices with an edge.
We first observe that this construction yields a planar graph if it

is applied to the grid itself (Again, consider Figure 9.1a). Further,
when applied to the graph 𝐹, we indeed obtain a Kőnig graph:

Claim 9.15. If 𝐹 is ⊞𝑘-colored, then
K

𝐹 is a Kőnig graph.
Proof. We construct a bipartite graph𝐵 such that the line graph

𝐿(𝐵) of 𝐵 is the graph
K

𝐹. To this end, observe that the gadgets of
corner and border vertices are cliques, and the gadgets of interior
vertices are two cliques that are connected by a single edge. Hence,
the entire graph

K

𝐹 is obtained by connecting vertex disjoint cliques
with edges that are pairwise disjoint.

Now recall that a clique 𝐾𝑑 is the line graph of the star 𝐾1,𝑑;
consider also Figure 7.6a again for a visualization. For 𝐾1,𝑑, we call

counting homomorphisms to kőnig graphs 201

the single vertex of degree 𝑑 the center of 𝐾1,𝑑; we call the other 𝑑
vertices the rays of 𝐾1,𝑑.

Now, adding an edge between two vertex disjoint cliques cor-
responds to merging the right vertices of the corresponding rays
of the primal graphs (Recall Figure 7.6b for a visualization). Con-
sequently, we can construct a graph 𝐵 whose line graph is

K

𝐹 by
merging right vertices of the rays corresponding to the edges that
connect the cliques of the gadgets.

Finally, it is easy to see that 𝐵 is bipartite: A 2-coloring is given
by the function that maps the centers to 1 and the rays to 2.

Now, consider the graphs K⊞𝑘 and
K

𝐺 and recall that we colored
the vertices of

K

𝐺 (and K⊞𝑘) with triples (𝑖, 𝑗, ⋆) ∈ 𝑉(K⊞𝑘), where ⋆
is one of the symbols →, ←, ↑, ↓, ↖, and ↘. Call this mapping K𝑐 and
observe that K𝑐 is in fact not a K⊞𝑘-coloring of

K

𝐺, as two vertices of 𝐺
of the same color are adjacent in the gadget construction.

Hence, define a weakly color-prescribed homomorphism as a ℎ ∈
Hom(K⊞𝑘 →

K

𝐺) such that themapping ℎ∘K𝑐 is the identity. We abuse
notation and write cp-Hom(K⊞𝑘 →

K

𝐺) for the set of all weakly color-
prescribed homomorphisms.

Claim 9.16. We have #cp-Hom(K⊞𝑘 →
K

𝐺) = #cp-Hom(⊞𝑘 → 𝐺).
Proof. Let ℎ ∈ cp-Hom(⊞𝑘 → 𝐺) denote a color-prescribed ho-

momorphism. We define the mapping
K

ℎ ∈ cp-Hom(K⊞𝑘 →
K

𝐺) as
follows: For every 𝑖, 𝑗 ∈ [𝑘] we set

K

ℎ(𝑖, 𝑗, →) ≔ ℎ(𝑖, 𝑗)ℎ(𝑖,𝑗+1)
→ ;

K

ℎ(𝑖, 𝑗, ←) ≔ ℎ(𝑖, 𝑗)ℎ(𝑖,𝑗−1)
←

K

ℎ(𝑖, 𝑗, ↓) ≔ ℎ(𝑖, 𝑗)ℎ(𝑖+1,𝑗)
↓ ;

K

ℎ(𝑖, 𝑗, ↑) ≔ ℎ(𝑖, 𝑗)ℎ(𝑖−1,𝑗)
↑

K

ℎ(𝑖, 𝑗, ↘) ≔ ℎ(𝑖, 𝑗)↘;
K

ℎ(𝑖, 𝑗, ↖) ≔ ℎ(𝑖, 𝑗)↖

The construction of
K

𝐺 immediately yields that
K

ℎ is a (weakly color-
prescribed) homomorphism if ℎ is color-prescribed. Further, the
mapping ℎ ↦

K

ℎ is a bijection.

202 counting in f-colorable or kőnig graphs

Next, observe that the proof of Lemma8.6 generalizes toweakly
color-prescribed homomorphisms: We need only that every auto-
morphism of K⊞𝑘 can be decomposed into a homomorphism and
K𝑐, which is the case as K𝑐 is not a homomorphism only because of
edges between vertices of the same color.

Hence, we can compute #cp-Hom(K⊞𝑘 →
K

𝐺) with an oracle for
#Hom(K⊞𝑘 → ⋆). Recall from the proof of Claim 8.8 that we query
the oracle on graphs obtained from

K

𝐺 by deleting vertices.
Next, observe that Kőnig graphs are closed under the removal

of vertices: Deleting a vertex in aKőnig graph is equivalent to delet-
ing an edge in primal bipartite graph and bipartiteness is closed un-
der the removal of edges. Thus, the oracle needs to support query-
ing only for Kőnig graphs.

Now recall that the graph K⊞𝑘 is planar. By Fact 8.17, every class
ℋ of unbounded treewidth contains arbitrary large grids asminors.
Further, every planar graph is the minor of some grid [97]. As
the class ℋ is minor-closed, we hence obtain that K⊞𝑘 is contained
in ℋ for every 𝑘 ∈ ℕ ⧵ {0}. Therefore, an oracle for the problem
#Hom(ℋ → K) suffices, completing the proof.

As an application of Lemma 9.14, we obtain that for minor-
closed graph classes, the hardness of Lemma 8.15 can be restricted
to the case when tho host graphs are Kőnig graphs.

Theorem 9.17. Let 𝒞 denote one of the classes of line-graphs, claw-
free graphs or perfect graphs, or a non-empty union thereof. Further, let
ℋ denote a recursively enumerable class of graphs.

1 If the treewidth of ℋ is bounded, then #Hom(ℋ → 𝒞) is solvable in
polynomial time.

2 Else, ifℋ is additionally minor-closed, #Hom(ℋ → 𝒞) is #W[1]-hard.

Proof. The reduction #Hom(ℋ → 𝒞) ≤fptT #Hom(ℋ → ⊤) is im-
mediate. In fact, the reduction is the identity and preserves not
only fixed-parameter tractability, but polynomial-time tractability

counting homomorphisms to kőnig graphs 203

as well. By Lemma 8.15, #Hom(ℋ → ⊤) is solvable in polynomial
time if the class ℋ has bounded treewidth.

If the class ℋ has unbounded treewidth and is minor-closed,
#W[1]-hardness follows from Lemma 9.14, as Kőnig graphs are
claw-free [8], perfect [31] and, of course, line graphs.

Theorem9.17 raises the question of “forwhich restrictions of⊤ can
we obtain similar hardness results?” In 11 we show that an answer to
that question is “definitely not for every graph class”—We construct
a graph class, for which a dichotomy similar to Lemma 8.15 is very,
very unlikely. While this answer may satisfy some, we leave the
original question unanswered for everyone else.

204 counting in f-colorable or kőnig graphs

10Homomorphism Vectors of Graph Properties

In this chapter, we explore the hardness of the problem #IndSub𝛷.
In particular, we are interested in explicit criteria on 𝛷 that guar-
antee hardness. As a main result, we show that it suffices that 𝛷 is
subgraph-closed to obtain almost-tight conditional lower bounds.
All results are based on a better understanding of when the coeffi-
cient aIndSub(𝛷,𝑘→⋆)(𝐹) is nonzero for high-treewidth graphs 𝐹.

10.1 𝑓-Vectors and ℎ-Vectors

In this chapter, we generalize two topological invariants of simpli-
cial complexes to graph properties: The 𝑓-vector and the ℎ-vector.96 96. We do not need

simplicial graph
complexes in this
work. Hence we skip
their definition.
Consult Billera and
Björner [13] to learn
more about simplicial
(graph) complexes.

Definition 10.1. Let 𝛷 denote a graph property, let 𝑘 denote a posi-
tive integer and set 𝑑 = (𝑘

2). The 𝑓-vector 𝑓 𝛷,𝑘 = (𝑓 𝛷,𝑘
𝑖)𝑑

𝑖=0 of 𝛷 and 𝑘
contains the number of edge-subsets of size 𝑖 of 𝐾𝑘 such that the induced
graph satisfies 𝛷;97

97. In some parts of
the literature, the
𝑓-vector comes with
an index shift of −1
due to the topological
interpretation of
simplicial complexes.

𝑓 𝛷,𝑘
𝑖 ≔ #{𝐴 ∈ (𝐸(𝐾𝑘)

𝑖) ∣ 𝛷(𝐾𝑘{𝐴 }) = 1}, 𝑖 ∈ {0, … , 𝑑}.

The ℎ-vector ℎ𝛷,𝑘 = (ℎ𝛷,𝑘
ℓ)𝑑

ℓ=0 is defined by

ℎ𝛷,𝑘
ℓ ≔

ℓ
∑
𝑖=0

(−1)ℓ−𝑖 ⋅ (𝑑 − 𝑖
ℓ − 𝑖) ⋅ 𝑓 𝛷,𝑘

𝑖 , ℓ ∈ {0, … , 𝑑}.

We show that if suitable entries ℎ𝛷,𝑘
ℓ are nonzero, there are a

corresponding, nonzero numbers aIndSub(𝛷,𝑘→⋆)(𝐹) for graphs 𝐹
of high treewidth—and thus hardness for #IndSub(𝛷). In some
sense, we can view the result of Roth and Schmitt [100] as a very
restricted special case as it shows that the non-vanishing of the re-

206 homomorphism vectors of graph properties

duced Euler characteristic of the complex (which is equal to the
entry ℎ𝛷,𝑘

𝑑) implies non-vanishing of aIndSub(𝛷,𝑘→⋆)(𝐾𝑘).
Formanygraphproperties it is easy to obtain information about

the 𝑓-vector (for instance that 𝑓 𝛷,𝑘
ℓ = 0 for sufficiently large ℓ with

respect to 𝑘). We show that the 𝑓 and ℎ-vectors of a graph property
are related by the so-called the 𝑓-polynomial.9898. The 𝑓-polynomial

is again a
generalization of the
same polynomial for
simplicial complexes.

Definition 10.2. Let𝛷 denote a graph property, let 𝑘 denote a positive
integer, and set 𝑑 = (𝑘

2). The 𝑓-polynomial of 𝛷 and 𝑘 is the following
univariate polynomial of degree at most 𝑑:

f𝛷,𝑘(𝑥) ≔
𝑑

∑
𝑖=0

𝑓 𝛷,𝑘
𝑖 ⋅ 𝑥𝑑−𝑖.

Weare especially interested in the values of the derivatives of the
𝑓-polynomial at 0 and −1—As we see in the proof of Lemma 10.9,
these values yield (up to combinatorial factors) the 𝑓-vector and
the ℎ-vector. Intuitively, we apply Hermite-Birkhoff interpolation
(which we introduce below) on f𝛷,𝑘 and its derivatives to prove
that specific entries of ℎ𝛷,𝑘 cannot vanish in case a sufficient num-
ber of entries of 𝑓 𝛷,𝑘 do, unless 𝛷 is false on all 𝑘-vertex graphs.

Hermite-Birkhoff Interpolation and Pólya’s Theorem

In the classical interpolation problem, we seek to recover a (uni-
variate) polynomial f from evaluations of f at (pairwise) different
points. It is well known that we need 𝑑 + 1 evaluations to uniquely
recover a polynomial of degree 𝑑.

We need a slightly different kind of interpolation: Instead of
evaluations of f at different points, we have access only to evalua-
tions of f and its derivatives at a very limited number 𝑚 of distinct
points each—but we still wish to uniquely recover f. This problem
is called Hermite-Birkhoff interpolation. For our purposes, it turns
out that we need to evaluate polynomials only at at most two posi-
tions, namely 0 and −1. Fortunately, this case was fully solved by
Pólya [94].

To be more formal, we follow the notation of Schoenberg [106].

homomorphism coefficients via 𝑓-vectors 207

Fact 10.3 (Pólya [94], Schoenberg [106]). Let (𝜀𝑖𝑗) ∈ {0, 1}2×𝑑+1

denote a matrix with ∑𝑖,𝑗 𝜀𝑖𝑗 = 𝑑 + 1 and set 𝑥1 ≔ −1 and 𝑥2 ≔ 0. Sup-
pose that for all 𝑗 ∈ {0, … , 𝑑 − 1}, we have

𝑗

∑
ℓ=0

𝜀1ℓ + 𝜀2ℓ ≥ 𝑗 + 1.

Then, and only then, the system of 𝑑 + 1 differential equations

f(𝑗)(𝑥𝑖) = 0 (for every 𝜀𝑖𝑗 = 1)

has f = 0 as a unique solution with degree at most 𝑑.

10.2 Characterizing Homomorphism Coefficients
via 𝑓-Vectors and ℎ-Vectors

In this section we prove the main technical result of this chapter:

Theorem 10.4. Write 𝛷 for a computable graph property, 𝑘 for a
positive integer, and 𝑤 for the Hamming weight99 of 𝑓 𝛷,𝑘. Suppose that 99. That is, the

number of nonzero
entries.

𝛷 is not false on all 𝑘-vertex graphs. Then there is a graph 𝐾 on 𝑘 vertices
and at least (𝑘

2) − 𝑤 + 1 edges with aIndSub(𝛷,𝑘→⋆)(𝐾) ≠ 0.

First, recall from Equation (8.3) that for any computable graph
property 𝛷 and positive integer 𝑘, there is a unique computable
function a ∶ ⊤ → ℚ (with finite support) satisfying

#IndSub(𝛷, 𝑘 → ⋆) = ∑
𝐻

|𝑉(𝐻)|≤𝑘

aIndSub(𝛷,𝑘→⋆)(𝐻) ⋅ #Hom(𝐻 → ⋆)

Now, for the remainder of the section, fix a (computable) graph
property 𝛷 and a positive integer 𝑘 (and thus the function a). This
allows us to simplify the notation for the 𝑓 and ℎ-vectors, as well as
for the 𝑓-polynomial: We write 𝑓 ≔ 𝑓 𝛷,𝑘, ℎ ≔ ℎ𝛷,𝑘, and f ≔ f𝛷,𝑘.
Further, set 𝑑 ≔ (𝑘

2) and write ℋ𝑖 for the set of all graphs on 𝑘
vertices and with 𝑖 edges.

208 homomorphism vectors of graph properties

Next, we define the vector ℏ𝑖 as

ℏ𝑖 ≔ ∑
𝐾∈ℋ𝑖

aIndSub(𝛷,𝑘→⋆)(𝐾), 𝑖 ∈ {0, … , 𝑑},

that is, the 𝑖-th entry of ℏ is the sum of the coefficients of graphs
with 𝑘 vertices and 𝑖 edges in Equation (8.3). Now we are ready to
establish the aforementioned connection between the coefficients
of Equation (8.3) and the ℎ-vector of the property 𝛷.

Lemma 10.5. We have 𝑘! ⋅ ℏ = ℎ.100100. Note that as a
consequence, the

ℎ-vector of a
simplicial graph

complex is
determined by the
coefficients of its
associated linear
combination of

homomorphisms.

Proof. We start with investigating Equation (8.3) for graphs
with exactly 𝑘 vertices.

Claim 10.6 ([100]). Let 𝐾 denote a graph with 𝑘 vertices.

aIndSub(𝛷,𝑘→⋆)(𝐾) = ∑
𝐻∈𝒢𝛷,𝑘

(−1)#𝐸(𝐾)−#𝐸(𝐻)

#Aut(𝐻) ⋅ #Ext(𝐻 → 𝐾).

Proof. Fix a graph 𝐾 with 𝑘 vertices. First observe that for 𝐾
and a graph 𝐻 with 𝑘 vertices, Equation (7.11) simplifies to

aIndSub(𝐻→⋆)(𝐾) = (−1)#𝐸(𝐾)−#𝐸(𝐻)

#Aut(𝐻) ⋅ #Ext(𝐻 → 𝐾), (10.1)

as all extensions 𝑅 of 𝐻 have 𝑘 vertices and thus only the discrete
partition⊥may result in a quotient graph𝑅/∘⊥ isomorphic to𝐾. In
particular, only for the (possible) extension 𝐾 of 𝐻 we may end up
with a graph isomorphic to 𝐻—hence, we obtain Equation (10.1).
Summing over all (𝑘-vertex) graphs in 𝒢𝛷,𝑘 yields the claim.

Next, we investigate the term ∑𝐾∈ℋℓ
#Ext(𝐻 → 𝐾).

Claim 10.7. Let ℓ ∈ {0, … , 𝑑} denote an integer and let 𝐻 denote a
graph with 𝑘 vertices and at most ℓ edges. Then, we have

∑
𝐾∈ℋℓ

#Ext(𝐻 → 𝐾) = (𝑑 − #𝐸(𝐻)
ℓ − #𝐸(𝐻)).

homomorphism coefficients via 𝑓-vectors 209

Proof. Any extension from the graph 𝐻 to a graphwith ℓ edges
has to add ℓ−#𝐸(𝐻) edges to 𝐻; there are exactly 𝑑−#𝐸(𝐻) possible
choices for these ℓ − #𝐸(𝐻) edges. Hence the claim follows from
basic combinatorics.

Now, fix an ℓ ∈ {0, … , 𝑑}; we proceed to show that 𝑘! ⋅ ℏℓ = ℎℓ,
which yields the lemma. To that end, by definition of ℏ, we have

𝑘! ⋅ ℏℓ = 𝑘! ⋅ ∑
𝐾∈ℋℓ

aIndSub(𝛷,𝑘→⋆)(𝐾)

= 𝑘! ⋅ ∑
𝐾∈ℋℓ

∑
𝐻∈𝛷𝑘

#Aut(𝐻)−1 ⋅ (−1)ℓ−#𝐸(𝐻) ⋅ #Ext(𝐻 → 𝐾)

= ∑
𝐻∈𝛷𝑘

𝑘! ⋅ #Aut(𝐻)−1 ⋅ (−1)ℓ−#𝐸(𝐻) ∑
𝐾∈ℋℓ

#Ext(𝐻 → 𝐾),

where the second step holds due to Claim 10.6. Now observe that
#Ext(𝐻 → 𝐾) = 0 if 𝐻 has more edges than 𝐾. Thus, we have

𝑘! ⋅ ℏℓ = ∑
𝐻∈𝛷𝑘

#𝐸(𝐻)≤ℓ

𝑘! ⋅ #Aut(𝐻)−1 ⋅ (−1)ℓ−#𝐸(𝐻) ∑
𝐾∈ℋℓ

#Ext(𝐻 → 𝐾)

= ∑
𝐻∈𝛷𝑘

#𝐸(𝐻)≤ℓ

𝑘! ⋅ #Aut(𝐻)−1 ⋅ (−1)ℓ−#𝐸(𝐻) ⋅ (𝑑 − #𝐸(𝐻)
ℓ − #𝐸(𝐻)),

where the last equality holds by Claim 10.7.

Claim 10.8. For any 𝑘-vertex graph 𝐻, we have 𝑘! ⋅ #Aut(𝐻)−1 =
#Sub(𝐻 → 𝐾𝑘).101 101. Note that 𝐻 may

have isolated vertices.Proof. By Equation (7.1), showing 𝑘! = #Emb(𝐻 → 𝐾𝑘) suf-
fices. Observe that any permutation of 𝑉(𝐻) yields a valid embed-
ding and that no (injective) embedding may map two vertices of
𝐻 to the same vertex of 𝐾𝑘.

210 homomorphism vectors of graph properties

Finally, we observe

𝑘! ⋅ ℏℓ = ∑
𝐻∈𝛷𝑘

#𝐸(𝐻)≤ℓ

#Sub(𝐻 → 𝐾𝑘) ⋅ (−1)ℓ−#𝐸(𝐻) ⋅ (𝑑 − #𝐸(𝐻)
ℓ − #𝐸(𝐻))

=
ℓ

∑
𝑖=0

∑
𝐻∈𝛷𝑘

#𝐸(𝐻)=𝑖

#{𝐴 ⊆ 𝐸(𝐾𝑘) ∣ 𝐾𝑘{𝐴 } ≅ 𝐻} ⋅ (−1)ℓ−𝑖 ⋅ (𝑑 − 𝑖
ℓ − 𝑖)

=
ℓ

∑
𝑖=0

#{𝐴 ∈ (𝐸(𝐾𝑘)
𝑖) ∣ 𝛷(𝐾𝑘{𝐴 }) = 1} ⋅ (−1)ℓ−𝑖 ⋅ (𝑑 − 𝑖

ℓ − 𝑖)

=
ℓ

∑
𝑖=0

𝑓𝑖 ⋅ (−1)ℓ−𝑖 ⋅ (𝑑 − 𝑖
ℓ − 𝑖) = ℎℓ,

completing the proof.

In the next step, we use Pólya’s Theorem to prove that the Ham-
ming weight of the 𝑓-vector determines an index 𝛽 of the ℎ-vector
such that at least one entry of ℎ with index at least 𝛽 is non-zero.
By Lemma 10.5 the same then follows for ℏ.

Lemma 10.9. Let 𝑤 denote the Hamming weight of 𝑓 and set 𝛽 =
𝑑−𝑤. If 𝛷 is not false on all 𝑘-vertex graphs then at least one of the values
ℎ𝑑, … , ℎ𝛽+1 is non-zero.

Proof. Recall f(𝑥) ≔ ∑𝑑
𝑖=0𝑓𝑖 ⋅ 𝑥𝑑−𝑖 and observe

f(𝑗)(𝑥) =
𝑑−𝑗

∑
𝑖=0

𝑓𝑖 ⋅
(𝑑 − 𝑖)!

(𝑑 − 𝑖 − 𝑗)!
⋅ 𝑥𝑑−𝑗−𝑖.

Evaluating at 𝑥 = 0, we obtain f(𝑗)(0) = 𝑓𝑑−𝑗 ⋅ 𝑗!. By assumption, we
thus have f(𝑗)(0) = 0 for 𝛽 + 1 many indices 𝑗.

homomorphism coefficients via 𝑓-vectors 211

Further, we see that

f(𝑗)(−1) =
𝑑−𝑗

∑
𝑖=0

𝑓𝑖 ⋅
(𝑑 − 𝑖)!

(𝑑 − 𝑖 − 𝑗)!
⋅ (−1)𝑑−𝑗−𝑖

= 𝑗! ⋅
𝑑−𝑗

∑
𝑖=0

𝑓𝑖 ⋅ (𝑑 − 𝑖
𝑗) ⋅ (−1)𝑑−𝑗−𝑖

= 𝑗! ⋅
𝑑−𝑗

∑
𝑖=0

𝑓𝑖 ⋅ (𝑑 − 𝑖
(𝑑 − 𝑗) − 𝑖) ⋅ (−1)𝑑−𝑗−𝑖 = 𝑗! ⋅ ℎ𝑑−𝑗.

Now assume for the sake of contradiction that each of the val-
ues ℎ𝑑, … , ℎ𝛽+1 is zero. Thus, f(𝑗)(−1) = 0 for 𝑗 = 0, … , 𝑤 − 1. Inter-
preting those evaluations of the derivatives of the 𝑓-polynomial as
an instance of Hermite-Birkhoff interpolation, the corresponding
matrix (𝜀𝑖𝑗) looks as follows:102 102. Recall that an

entry 1 in the matrix
(𝜀𝑖𝑗) represents an
evaluation
f(𝑗)(−1) = 0 in the
first row and an
evaluation f(𝑗)(0) = 0
in the second row.

()1 1 1 … 1 0 … 0
𝜀20 𝜀21 𝜀22 … 𝜀2(𝑤−1) 𝜀2𝑤 … 𝜀2𝑑

0 1 2 … 𝑤 − 1 𝑤 … 𝑑

In particular, at least 𝛽 + 1 = 𝑑 + 1 − 𝑤 of the values 𝜀2𝑗 are 1; As
𝛽+ 1 and 𝑤 sum up to 𝑑+ 1, we can easily verify that the conditions
of Pólya’s Theorem (Fact 10.3) are satisfied: Let us modify (𝜀𝑖𝑗) by
arbitrarily choosing precisely 𝛽+1 of the 𝜀2,𝑗 that are 1 and set the oth-
ers to 0, and call the resultingmatrix 𝐸. Now, for all 𝑗 ∈ {0, … , 𝑑−1},
we have ∑𝑗

ℓ=0 𝜀1ℓ + 𝜀2ℓ ≥ 𝑗 + 1 and the first and second row of 𝐸 sum
up to exactly 𝑑 + 1. Hence, the only polynomial of degree at most
𝑑 that satisfies the corresponding instance of Hermite-Birkhoff in-
terpolation is the zero polynomial. As we obtained 𝐸 from (𝜀𝑖𝑗)
just by ignoring some vanishing conditions, the same conclusion
is true for 𝜀𝑖𝑗 and thus f = 0 is the unique solution. This, however,
contradicts the fact that the property 𝛷 is not false on all 𝑘-vertex
graphs, completing the proof.

212 homomorphism vectors of graph properties

Combining Lemmas 10.5 and 10.9 yields our main technical re-
sult, which we restate here for convenience.

Theorem 10.4. Write 𝛷 for a computable graph property, 𝑘 for a
positive integer, and 𝑤 for the Hamming weight103 of 𝑓 𝛷,𝑘. Suppose that103. That is, the

number of nonzero
entries.

𝛷 is not false on all 𝑘-vertex graphs. Then there is a graph 𝐾 on 𝑘 vertices
and at least (𝑘

2) − 𝑤 + 1 edges with aIndSub(𝛷,𝑘→⋆)(𝐾) ≠ 0.
Proof. Set 𝑑 = (𝑘

2) and 𝛽 = 𝑑 − 𝑤. By Lemma 10.9 at least one
of ℎ𝛷,𝑘

𝑑 , … , ℎ𝛷,𝑘
𝛽+1 is nonzero and thus, by Lemma 10.5, at least one

of the values ℏ𝑑, … , ℏ𝛽+1 is nonzero as well. Next, observe that
ℏ𝑖 = ∑𝐾∈ℋ𝑖

aIndSub(𝛷,𝑘→⋆)(𝐾) for all 𝑖 ∈ {0, … , 𝑑}, where ℋ𝑖 is the
set of all graphs on 𝑘 vertices and 𝑖 edges. In particular, ℏ𝑖 ≠ 0
implies that aIndSub(𝛷,𝑘→⋆)(𝐾) for at least one 𝐾 ∈ ℋ𝑖.

10.3 A Classification of #IndSub(𝛷)
by the Hamming Weight of the 𝑓-Vectors

In this section, we derive a general hardness result for #IndSub(𝛷)
based on theHammingweight of the 𝑓-vector. In a sense, we “black-
box” Theorem 10.4; using the resulting classification, we establish
first hardness results and almost tight conditional lower bounds
for a variety of families of graph properties.

However, note that taking a closer look at the number of edges
of the graphs with non-vanishing coefficients (as provided by The-
orem 10.4) often yields improved, sometimes evenmatching condi-
tional lower bounds; we defer the treatment of the refined analysis
to Section 10.4.

Write 𝒦𝛷 for the set of all 𝑘 such that 𝒢𝛷,𝑘 is non-empty.

Theorem 10.10. Let 𝛷 denote a computable graph property and sup-
pose that the set𝒦𝛷 is infinite.104 Let 𝛽 ∶ 𝒦𝛷 → ℤ≥0 denote the function

104. Note that this
condition is

necessary for
hardness: Otherwise
there is a constant 𝑐

such that we can
output 0 whenever
𝑘 ≥ 𝑐 and solve the

problem by
brute-force if 𝑘 < 𝑐,

yielding an algorithm
with a polynomial

running time.

that maps 𝑘 to (𝑘
2) − hw(𝑓 𝛷,𝑘). If 𝛽(𝑘) ∈ 𝜔(𝑘) then #IndSub(𝛷) is

#W[1]-complete. Further, no algorithm can solve #IndSub(𝛷) in time
𝑔(𝑘) ⋅ |𝑉(𝐺)|𝑜((𝛽(𝑘)/𝑘)/log(𝛽(𝑘)/𝑘)) for any function 𝑔, unless eth fails.
The same is true for #IndSub(𝛷) and #IndSub(¬𝛷).

hardness of #indsub by hamming weight of 𝑓-vectors 213

The (log(𝛽(𝑘)/𝑘))−1-term in the exponent is related to the ques-
tion of whether it is possible to “beat treewidth” [84]. In particular,
if the factor of (log(tw(𝐻)))−1 in Lemma 8.15 can be dropped, then
all further results in this section can be strengthened to yield tight
conditional lower bounds under eth.

Proof. By Theorem 10.4, for each 𝑘 ∈ 𝒦𝛷 there is a graph 𝐻𝑘
with 𝑘 vertices and at least 𝛽(𝑘) edgeswith aIndSub(𝛷,𝑘→⋆)(𝐻𝑘) ≠ 0,
The average degree of 𝐻𝑘 satisfies

𝑑(𝐻𝑘) =
1
𝑘 ⋅ ∑

𝑣∈𝑉(𝐻𝑘)
deg(𝑣) = 2|𝐸(𝐻𝑘)|

𝑘 ≥
2𝛽(𝑘)

𝑘 .

By Fact 7.2, we thus obtain that tw(𝐻𝑘) ≥ 𝛽(𝑘)/𝑘, which is un-
bounded as 𝛽(𝑘) ∈ 𝜔(𝑘) by assumption.

Now, let ℋ denote the set of all graphs 𝐻𝑘 for 𝑘 ∈ 𝒦𝛷. By
Lemma 8.15, we obtain that #Hom(ℋ → ⊤) is #W[1]-complete and
cannot be solved in time 𝑔(𝑘) ⋅ |𝑉(𝐺)|𝑜((𝛽(𝑘)/𝑘)/log(𝛽(𝑘)/𝑘)) for any
function 𝑔, unless eth fails. Further, by Lemma 8.24, the same is
true for #IndSub(𝛷) as well. Finally, we use Lemma 7.9 to obtain
the same result for #IndSub(𝛷) and #IndSub(¬𝛷).

Low Edge-Densities and Sparse Graph Properties

As a first application of Theorem 10.10, we consider properties 𝛷
that satisfy

hw(𝑓 𝛷,𝑘) ∈ 𝑜(𝑘2).

We say that such a property 𝛷 has a low edge-density. Properties
with low edge-density subsume, for example, exclusion of a set
of fixed minors such as planarity. They have been studied by Jer-
rum and Meeks [63], where they show that #IndSub(𝛷) is #W[1]-
complete for these properties. However, their proof uses Ramsey’s
Theorem and thus establishes only an implicit conditional lower
bound of 𝑔(𝑘) ⋅ |𝑉(𝐺)|𝑜(log 𝑘). In contrast, we achieve the following,
almost tight lower bound:

214 homomorphism vectors of graph properties

Theorem 10.11. Let 𝛷 denote a computable graph property with low
edge-densities. Suppose that the set 𝒦𝛷 is infinite. Then #IndSub(𝛷)
is #W[1]-complete and cannot be solved in time 𝑔(𝑘) ⋅ |𝑉(𝐺)|𝑜(𝑘/log(𝑘))

for any function 𝑔, unless eth fails. The same is true for the problems
#IndSub(𝛷) and #IndSub(¬𝛷).

Proof. If 𝛷 has low edge-densities, then we have 𝛽(𝑘) = (𝑘
2) −

hw(𝑓 𝛷,𝑘) ∈ 𝛩(𝑘2). Thus

𝑜 (𝛽(𝑘)/𝑘
log(𝛽(𝑘)/𝑘)) = 𝑜 (𝑘/log(𝑘)).

The claim hence follows by Theorem 10.10.

The previous result applies, in particular, to sparse properties.
In Section 10.4 we show, that a refined analysis based on Fact 7.1
aswell as Theorem 10.4 establishes a tight conditional lower bound
for sparse properties 𝛷 that also satisfy a density condition on 𝒦𝛷.

Graph Properties Depending Only on the Number of Edges

Jerrum andMeeks [63, 64] conjectured that #IndSub(𝛷) is #W[1]-
complete whenever a non-trivial 𝛷 depends only on the number
of edges of a graph, that is,

∀𝐻1, 𝐻2 ∶ |𝐸(𝐻1)| = |𝐸(𝐻2)| ⇒ 𝛷(𝐻1) = 𝛷(𝐻2).

We answer this question affirmatively, even for properties that can
depend both on the number of edges and vertices of the graph, and
additionally provide an almost tight conditional lower bound:

Theorem 10.12. Let 𝛷 denote a computable graph property that de-
pends only on the number of edges and the number of vertices of a graph.
For trivial 𝛷, the problem #IndSub(𝛷) is fpt. Otherwise, #IndSub(𝛷)
is #W[1]-complete and cannot be solved in time 𝑔(𝑘) ⋅ |𝑉(𝐺)|𝑜(𝑘/log 𝑘)

for any function 𝑔, unless eth fails.105

105. Note that
Theorem 10.12 is also
true for #IndSub(𝛷)
and #IndSub(¬𝛷),

as ¬𝛷 and 𝛷 depend
only on the number

of edges and vertices
of a graph if and only

if 𝛷 does.

hardness of #indsub by hamming weight of 𝑓-vectors 215

Proof. First, assume that 𝒢𝛷,𝑘 is trivial. Then, there is a con-
stant 𝑐 such that for every 𝑘 > 𝑐, the class 𝛷, 𝑘 is either empty or
contains all graphs with 𝑘 vertices. Hence, given as input a graph
𝐺 and an integer 𝑘, we check whether 𝑘 ≤ 𝑐. If this is the case, we
solve the problem by brute-force. Otherwise, we check whether
𝒢𝛷,𝑘 is empty.106 If 𝒢𝛷,𝑘 is empty, we output 0; otherwise we out- 106. This step is the

reason why we get
only fixed-parameter
tractability and not
necessarily
polynomial-time
tractability.

put (𝑛
𝑘). It is immediate that this algorithm yields fixed-parameter

tractability.
Now assume that 𝒢𝛷,𝑘 is non-trivial. Since for 𝒢𝛷,𝑘 we fix the

number of vertices to be 𝑘, by assumption 𝛷𝑘 depends only on the
number of edges of a graph. Thus, we have

hw(𝑓 ¬𝛷,𝑘) = (𝑘
2) − hw(𝑓 𝛷,𝑘). (10.2)

Hence, set

𝒢𝛹,𝑘 ≔ { 𝒢𝛷,𝑘 if hw(𝑓 𝛷,𝑘) ≤ 1
2(𝑘

2)
𝒢¬𝛷,𝑘 otherwise,

and 𝛹 ≔ ⋃ 𝛹𝑘. We observe that, by assumption, 𝒦𝛹 is infinite,
and by Lemma 7.9 #IndSub(𝛷) and #IndSub(𝛹) are equivalent.
By definition and by Equation (10.2), we see that hw(𝑓 𝛹,𝑘) ≤ (𝑘

2)/2
and therefore 𝛽(𝑘) = (𝑘

2) − hw(𝑓 𝛹,𝑘) ∈ 𝛩(𝑘2). Thus, we have

𝑜 (𝛽(𝑘)/𝑘
log(𝛽(𝑘)/𝑘)) = 𝑜 (𝑘/log 𝑘).

The claim hence follows by Theorem 10.10.

Monotone Graph Properties

Recall that a property 𝛷 is called monotone if it is closed under
taking subgraphs. The decision version of #IndSub(𝛷), that is, de-
ciding whether there is an induced subgraph of size 𝑘 that satisfies
𝛷 is known to be W[1]-complete if 𝛷 is monotone. Further, 𝛷 is
non-trivial and 𝒦𝛷 is infinite (this follows implicitly by a result

216 homomorphism vectors of graph properties

of Khot and Raman [71]). However, as the reduction of Khot and
Raman is not parsimonious, the reduction does not yield #W[1]-
completeness of the counting version. More importantly, the proof
of Khot and Raman uses Ramsey’s Theorem and thus implies only
a conditional lower bound of 𝑔(𝑘) ⋅ |𝑉(𝐺)|𝑜(log 𝑘). Using our main
result, we achieve a much stronger and almost tight lower bound
under eth.

Theorem 10.13. Write𝛷 for a computable, monotone, and non-trivial
graph property and suppose that 𝒦𝛷 is infinite. Then, #IndSub(𝛷)
is #W[1]-complete and cannot be solved in time 𝑔(𝑘) ⋅ |𝑉(𝐺)|𝑜(𝑘/log 𝑘)

for any function 𝑔, unless eth fails. The same is true for the problems
#IndSub(𝛷) and #IndSub(¬𝛷).

Proof. As 𝛷 is non-trivial, there is a graph 𝐹 such that 𝛷(𝐻)
is false for every 𝐻 that contains 𝐹 as a (not necessarily induced)
subgraph. Set 𝑟 = |𝑉(𝐹)| and fix 𝑘 ∈ 𝒦(𝛷). By Fact 7.1 we have

that every graph 𝐻 on 𝑘 vertices with more than (1 − 1
𝑟) ⋅ 𝑘2

2 edges
contains the clique 𝐾𝑟+1 and thus 𝐹 as a subgraph. Hence, 𝛷 is false
on every graphwith 𝑘 vertices andmore than (1 − 1/𝑟) ⋅ 𝑘2/2 edges.
Therefore, we have

𝛽(𝑘) = (𝑘
2) − hw(𝑓 𝛷,𝑘) ≥ (𝑘

2) − (1 − 1
𝑟) ⋅

𝑘2

2 =
𝑘2

2𝑟 −
𝑘
2 ∈ 𝛺(𝑘2).

Thus, 𝛽(𝑘) ∈ 𝛩(𝑘2) and we conclude that

𝑜 (𝛽(𝑘)/𝑘
log(𝛽(𝑘)/𝑘)) = 𝑜 (𝑘/log 𝑘) .

The claim hence follows by Theorem 10.10.

10.4 Refined Lower Bounds and Clique-Minors

Recall that the lower bounds of the previous section become tight
if it is impossible to “beat treewidth”, that is, if the (log(𝑘))−1 fac-
tor in the exponent of Lemma 8.15 can be dropped. In this sec-
tion, we show that the lower bounds of the previous section can

refined lower bounds and clique-minors 217

also be refined—and in case of sparse properties even be made
tight—without the assuming that you cannot “beat treewidth”. We
obtain these results by using Turán’s Theorem (Fact 7.1) and the
Kostochka-Thomason-Theorem (Fact 7.5).

Intuitively, we combine Fact 7.5 with Theorem 10.4 to obtain
graphs with large clique-minors in the graph motif parameter as-
sociated with a graph property 𝛷 as given by Equation (8.3). As
graphs with large clique-minors have large treewidth, we then ob-
tain (almost) tight bounds as a consequence of Fact 8.22.

We say that a subset 𝒦 of the natural numbers is dense if there
is a constant ℓ ≥ 1 such that for all 𝑛 ∈ ℕ ⧵ {0} there is a 𝑘 ∈ 𝒦
that satisfies 𝑛 ≤ 𝑘 ≤ ℓ𝑛. Now recall that 𝒦𝛷 is the set of all 𝑘 such
that 𝒢𝛷,𝑘 is not empty. The lower bounds for #IndSub(𝛷) in this
section require the set 𝒦𝛷 to be dense. We need this technicality
to exclude certain artificial properties.107 Fortunately, monotone

107. Consider for
instance 𝛷(𝐻) = 1 if
and only if 𝐻 is an
independent set and
|𝑉(𝐻)| = 2 ↑ 𝑚 for
some 𝑚 ∈ ℕ, where
2 ↑ 𝑚 is the 𝑚-fold
exponential tower of
2. While this
property satisfies the
conditions of
Theorem 10.10, we
cannot construct a
tight reduction to
#IndSub(𝛷) as the
only non-trivial
oracle queries satisfy
𝑘 = 2 ↑ 𝑚 for some
𝑚 ∈ ℕ.

properties are natural in the sense that they are always dense.

Lemma 10.14. Let 𝛷 denote a non-trivial monotone graph property.
If 𝒦𝛷 is infinite, 𝒦𝛷 is the set of all positive integers and thus dense.

Proof. Fix a 𝑛 ∈ ℕ ⧵ {0}. As 𝒦𝛷 is infinite, there is a 𝑘 ≥ 𝑛 in
𝒦𝛷. Thus there is a graph 𝐻 ∈ 𝒢𝛷,𝑘. Now delete 𝑘 − 𝑛 arbitrary
vertices of 𝐻 and call the resulting graph 𝑅. As 𝛷 is monotone, we
have that 𝑅 ∈ 𝒢𝛷,𝑛 and hence 𝑛 ∈ 𝒦𝛷 as well.

The hardness result is the basis for the lower bounds in this
section. We reduce directly from Clique, hardness then follows
from Fact 8.11.108 108. If you happen to

be a believer in the
Clique conjectures of
Fine-Grained
Complexity Theory, the
reduction also yields
tightness up

Lemma 10.15. Let 𝑟 ≥ 1 denote a constant, let ℋ denote a recursively
enumerable graph class. Call a 𝑘 ∈ ℕ ⧵ {0} good if there is a 𝑘-vertex
graph 𝐻 ∈ ℋ with at least 𝑘2/2𝑟 − 𝑘/2 edges and write 𝒦ℋ for the set
of all good 𝑘. If 𝒦ℋ is dense, no algorithm can solve #Hom(ℋ → ⊤) in
time 𝑓(|𝑉(𝐻)|) ⋅ |𝑉(𝐺)|𝑜(|𝑉(𝐻)|/log1/2(|𝑉(𝐻)|)) for any 𝑓, unless eth fails.

Proof. As 𝒦ℋ is dense, there is a constant ℓ ≥ 1 such that for all
positive integers 𝑚, there is a 𝑘 ∈ 𝒦ℋ with 𝑚 ≤ 𝑘 ≤ ℓ𝑚.

218 homomorphism vectors of graph properties

Toward a reduction from Clique to #Hom(ℋ → ⊤), let (𝐺, 𝑚)
denote an instance of Clique. Note that 𝑚 is not necessarily con-
tained in 𝒦ℋ, so in a first step, we compute a good integer 𝑚 ≤
𝑘 ≤ ℓ𝑚 and a corresponding 𝑘-vertex graph 𝐻𝑘 ∈ ℋ with at least
𝑘2/2𝑟 − 𝑘/2 edges. Using Fact 7.5 on 𝐻𝑘, we obtain that 𝐻𝑘 has 𝐾𝑡
as a minor for a 𝑡 = 𝛩(𝑘/log1/2(𝑘)). Now, we transform 𝐺 into a
graph 𝐹𝑡 such that 𝐹𝑡 has 𝐾𝑡 as a subgraph if and only if 𝐺 has 𝐾𝑚 as
a subgraph. Using Lemma 8.21, we then transform 𝐹𝑡 into a graph
𝐺𝑡 such that #Hom(𝐾𝑡 → 𝐹𝑡) = #Hom(𝐻𝑘 → 𝐺𝑡).109 Finally, using109. This is a

simplification: Recall
that the reduction in

fact produces
multiple graphs 𝐺𝑡|𝑊
and that the number

#Hom(𝐾𝑡 → 𝐹𝑡) is
then recovered from
a linear combination
of homomorphism

numbers of the
constructed graphs.

the oracle for #Hom(ℋ → ⊤), we check if #Hom(𝐾𝑡 → 𝐹𝑡)—the
number of 𝑡 cliques in 𝐹𝑡 and thus the number of 𝑚 cliques of the
original graph 𝐺—is positive.

Tofill the above outlinewith technical details, assume that there
is an algorithm 𝔸 that solves #Hom(𝛷 → ⊤) in time 𝑓(|𝑉(𝐻)|) ⋅
|𝑉(𝐺)|𝑜(|𝑉(𝐻)|/log1/2|𝑉(𝐻)|) for some function 𝑓. We use 𝔸 to solve
Clique in time 𝑝(𝑚) ⋅ |𝑉(𝐺)|𝑜(𝑚) for some function 𝑝.

Write (𝐺, 𝑚) for the given instance of #Clique. First, we pad 𝐺
to a graph 𝐺𝑘 to transform (𝐺, 𝑚) into a #Clique instance (𝐺𝑘, 𝑘),
where 𝑘 ∈ 𝒦ℋ and 𝑚 ≤ 𝑘 ≤ ℓ𝑚.110 To that end, add 𝑘 − 𝑚 times110. We can find such

a 𝑘 as 𝒦(ℋ) is
recursively

enumerable.

a new vertex to 𝐺 and connect it to all other vertices in 𝐺 (includ-
ing previously created new vertices); call the resulting graph 𝐺𝑘.
Observe that #Sub(𝐾𝑚 → 𝐺) = #Sub(𝐾𝑘 → 𝐺𝑘) and that this step
takes 𝑂(𝑛𝑚−𝑘) time, but also increases the parameter accordingly.

Next, let 𝑐 ≈ 2.68 denote the constant fromFact 7.5 and set 𝑟++ ≔
𝑟 + 1. Further, set

ℎ(𝑘) ≔ 𝑐𝑟++ ⋅ log1/2(𝑘/𝑐𝑟++)

and 𝑡 ≔ ℎ/ℎ(𝑘). Next, we transform the instance (𝐺𝑘, 𝑘) into an
equivalent instance (𝐹𝑡, 𝑡). To that end, set

𝑉(𝐹𝑡) ≔ {𝑈 ∣ 𝐺𝑘[𝑈] = 𝐾ℎ(𝑘)},
𝐸(𝐹𝑡) ≔ {{𝑈, 𝑊} ∣ 𝐺𝑘[𝑈 ∪ 𝑊] = 𝐾2ℎ(𝑘)}.

refined lower bounds and clique-minors 219

Observe that 𝐹𝑡 has 𝑂(𝑛ℎ(𝑘)) vertices and can be constructed in
time 𝑔(𝑚)⋅𝑂(|𝑉(𝐺)|ℎ(𝑘)) for some computable function 𝑔. Further,
observe that #Sub(𝐾𝑡 → 𝐹𝑡) = #Sub(𝐾𝑘 → 𝐺𝑘).111 111. Formally, we

have to round ℎ(𝑘)
and later 𝑡 = 𝑘/ℎ(𝑘).
For the sake of
readability, we
assume that all logs
and fractions yield
integers. Note that
this might require us
to count ⌈𝑡⌉-cliques at
the end of the proof,
while the oracle can
determine only the
existence of a
⌊𝑡⌋-clique.
Nevertheless, we can
easily decide whether
there is a ⌈𝑡⌉-clique
by checking for each
vertex whether its
neighborhood
contains a ⌊𝑡-clique.

Next, we search for a graph 𝐻𝑘 ∈ ℋ with 𝑘 vertices and at least
𝑘2/2𝑟 − 𝑘/2 edges. As ℋ is recursively enumerable, we can find 𝐻𝑘
in time 𝑏(𝑘) for a computable function 𝑏. Now we see that

𝑑(𝐻) = 1
𝑘 ⋅ ∑

𝑣∈𝑉(𝐻)
deg(𝑣) = 2|𝐸(𝐻)|

𝑘 ≥
𝑘
𝑟 − 1.

For 𝑘 large enough,112 we have

112. If 𝑘 is not large
enough for the
inequalities to hold,
then 𝑘 and thus 𝑚 are
bounded by a
constant, and we can
compute the number
of 𝑚-cliques in 𝐺 by
brute-force.

𝑑(𝐻) ≥ 𝑘
𝑟 − 1 ≥

𝑘
𝑟++ = 𝑐 ⋅

𝑘

𝑐𝑟++ ⋅ √log(𝑘/𝑐𝑟++)
⋅ √log(𝑘/𝑐𝑟++)

≥ 𝑐 ⋅
𝑘

𝑐𝑟++ ⋅ √log(𝑘/𝑐𝑟++)
⋅ √log(𝑘/𝑐𝑟++) − log√log(𝑘/𝑐𝑟++)

= 𝑐𝑡√log(𝑡).

Fact 7.5 thus implies that 𝐾𝑡 is a minor of 𝐻. Using the reduction
fromLemma 8.21, we can use the algorithm𝔸 to compute the num-
ber of homomorphisms from 𝐾𝑡 to 𝐹𝑡. By assumption on 𝔸, this
takes time at most

𝑓(|𝑉(𝐻)|) ⋅ |𝑉(𝐹𝑡)|𝑜(|𝑉(𝐻)|/log1/2|𝑉(𝐻)|)

= 𝑓(𝑘) ⋅ (𝑛ℎ(𝑘))𝑜(𝑘/log1/2(𝑘)) = 𝑓(𝑘) ⋅ 𝑛𝑜(𝑘),

where the last equation holds as ℎ(𝑘) ∈ 𝛩(log1/2(𝑘))—recall that
𝑟++ and 𝑐 are constants.

Now, it is easy to see that 𝐹𝑘 contains a 𝑡-clique—and hence 𝐺
an 𝑚-clique—if and only if the number of homomorphisms from

220 homomorphism vectors of graph properties

𝐾𝑡 to 𝐹𝑘 is at least 1. As 𝑘 ∈ 𝛩(𝑚) (recall that ℓ is a constant), the
overall running time is bounded by

𝑔(𝑚) ⋅𝑂(|𝑉(𝐺)|ℎ(𝑘))+𝑏(𝑘)+ 𝑓(𝑘) ⋅ |𝑉(𝐺)|𝑜(𝑘) ≤ 𝑝(𝑚) ⋅ |𝑉(𝐺)|𝑜(𝑚)

for 𝑝(𝑚) ≔ 𝑔(𝑚) + 𝑏(ℓ𝑚) + 𝑓(ℓ𝑚). This yields the desired contra-
diction and concludes the proof.

Next, we conclude the refined lower bounds for #IndSub(𝛷).

Theorem 10.16. Let 𝛷 denote a non-trivial, semidecidable and mono-
tone graph property such that 𝒦𝛷 is infinite. No algorithm can solve
#IndSub(𝛷) in time 𝑔(𝑘) ⋅ |𝑉(𝐺)|𝑜(𝑘/log1/2(𝑘)) for any function 𝑔, un-
less eth fails. The same is true for #IndSub(𝛷) and #IndSub(¬𝛷).

Proof. We begin just as in the proof of Theorem 10.13: As 𝛷 is
non-trivial, there is a graph 𝐹 such that 𝛷(𝐻) is false for every 𝐻
that contains 𝐹 as a (not necessarily induced) subgraph. Set 𝑟 ≔
|𝑉(𝐹)| and fix 𝑘 ∈ 𝒦𝛷. By Fact 7.1 we have that every graph 𝐻 on
𝑘 vertices with more than (1 − 1/𝑟) ⋅ 𝑘2/2 edges contains the clique
𝐾𝑟+1 and thus 𝐹 as a subgraph. Hence, 𝛷 is false on every graph
with 𝑘 vertices and more than (1 − 1/𝑟) ⋅ 𝑘2/2 edges. We now use
Theorem 10.4 and obtain a graph 𝐻𝑘 on 𝑘 vertices and at least

(𝑘
2) − hw(𝑓 𝛷,𝑘) + 1 ≥ (𝑘

2) − (1 − 1
𝑟) ⋅

𝑘2

2 + 1 ≥
𝑘2

2𝑟 −
𝑘
2

edges such that aIndSub(𝛷,𝑘→⋆)(𝐻𝑘) ≠ 0. Hence, Lemma8.24 yields
a tight reduction from the problem #Hom(ℋ → ⊤) where ℋ ≔
{𝐻𝑘 ∣ 𝑘 ∈ 𝒦𝛷}. By the previous observation, the graph 𝐻𝑘 has 𝑘
vertices and at least 𝑘2/2𝑟 − 𝑘/2 many edges, and by Lemma 10.14
the set of 𝑘 such that𝐻𝑘 ∈ ℋ is dense. Thuswe canuse Lemma 10.15,
which concludes the proof—note that the results for #IndSub(𝛷)
and #IndSub(¬𝛷) follow by Lemma 7.9.

refined lower bounds and clique-minors 221

We continue with the refined lower bound for properties that
depend only on the number of edges of a graph; in this case, we
have to assume density.

Theorem 10.17. Let 𝛷 denote a computable graph property that de-
pends only on the number of edges of a graph. If the set of 𝑘 for which
𝛷𝑘 is non-trivial is dense, then #IndSub(𝛷) cannot be solved in time
𝑔(𝑘) ⋅ |𝑉(𝐺)|𝑜(𝑘/log1/2(𝑘)) for any function 𝑔, unless eth fails.

Proof. We use the same set-up as in the proof of Theorem 10.12.
In particular, we obtain 𝛹 such that #IndSub(𝛷) and #IndSub(𝛹)
are equivalent, 𝒦𝛹 is dense, and hw(𝑓 𝛹,𝑘) ≤ (𝑘

2)/2 for all 𝑘 ∈ ℋ𝛹).
We use Theorem 10.4 to obtain a graph 𝐻𝑘 on 𝑘 vertices and at least

(𝑘
2) − hw(𝑓 𝛷,𝑘) + 1 ≥

𝑘2

4 −
𝑘
2

edges such that aIndSub(𝛷,𝑘→⋆)(𝐻𝑘) ≠ 0. Combining Lemmas 10.15
and 8.24 (with 𝑟 = 2) yields the claim.

As a final result in this section, we establish a tight conditional
lower bound for sparse properties; recall that we call a property
𝛷 sparse if there is a constant 𝑠 depending only on 𝛷 such that 𝛷
is false on every graph with 𝑘 vertices and more than 𝑠𝑘 edges. In-
stead of relying in the Kostochka-Thomason-Theorem, it suffices to
use Turán’s Theorem, however.

Theorem 10.18. Let 𝛷 denote a computable sparse graph property
such that 𝒦(𝛷) is dense. Then #IndSub(𝛷) cannot be solved in time
𝑔(𝑘) ⋅ |𝑉(𝐺)|𝑜(𝑘) for any function 𝑔, unless eth fails. The same is true
for #IndSub(𝛷) and #IndSub(¬𝛷).

Proof. Let 𝑠 denote the constant from the definition of sparsity,
and fix 𝑘 ∈ 𝒦𝛷. Using Theorem 10.4, we obtain a 𝑘-vertex graph 𝐻𝑘

222 homomorphism vectors of graph properties

with at least (𝑘
2) − hw(𝑓 𝛷,𝑘) + 1 edges and aIndSub(𝛷,𝑘→⋆)(𝐻𝑘) ≠ 0.

Set 𝑟 ≔ ⌈𝑘/(2(𝑠 + 1) + 1)⌉, and observe that

(𝑘
2)−hw(𝑓 𝛷,𝑘)+1 > (𝑘

2)−𝑠𝑘 > (𝑘
2)−(𝑠+1)𝑘 ≥ (1 − 1

𝑟)⋅
1
2 |𝑉(𝐻𝑘)|2.

By Turán’s Theorem (Fact 7.1), 𝐻𝑘 hence contains 𝐾𝑟+1 as a sub-
graph and, in particular, 𝐾𝑟 as a minor. By Lemma 8.24 we can,
given a graph 𝐺 compute #Hom(𝐻𝑘 → 𝐺) in linear time if we are
given oracle access to #IndSub(𝛷, 𝑘 → ⋆). AddingLemma8.21, we
can compute #Hom(𝐾𝑟 → 𝐺) in linear time if we are given oracle
access to #IndSub(𝛷, 𝑘 → ⋆). Note further that #Hom(𝐾𝑟 → 𝐺) is
at least 1 if and only if 𝐺 contains a clique of size 𝑟.

We continue similarly to the proof of Lemma 10.15: Assume
that there is an algorithm 𝔸 that solves #IndSub(𝛷) in time 𝑔(𝑘) ⋅
|𝑉(𝐺)|𝑜(𝑘) for some function 𝑔. We show that 𝔸 can be used to
solve the problem of finding a clique of size 𝑚 in a graph 𝐺 in time
𝑝(𝑚) ⋅ |𝑉(𝐺)|𝑜(𝑚) for some function 𝑝. Given 𝑚 and 𝐺, search for
the smallest 𝑘 ∈ 𝒦𝛷 with 𝑚 ≤ 𝑟,. Observe that we can find such a
𝑘 in time depending only on 𝑚 as 𝛷 is semidecidable. Further, see
that 𝑘 ∈ 𝑂(𝑚) as 𝑠 is a constant and 𝒦𝛷 is dense.

As in Lemma 10.15, we pad 𝐺 to a graph 𝐺𝑟 by adding 𝑟 times
a new vertex to 𝐺 and connecting it to all other (possibly new) ver-
tices of 𝐺. Again, it is easy to see that 𝐺 has a clique of size 𝑚 if and
only if 𝐺𝑟 has a clique of size 𝑟. By the analysis and assumptions
above, we can decide whether 𝐺𝑟 indeed has an 𝑟-clique by using
𝔸 in time 𝑔(𝑘)⋅|𝑉(𝐺𝑟)|𝑜(𝑘). As |𝑉(𝐺𝑟)| ∈ 𝑂(|𝑉(𝐺)|) and 𝑘 ∈ 𝑂(𝑚),
the overall time to decide whether 𝐺 has a clique of size 𝑚 is hence
bounded by 𝑝(𝑚) ⋅ |𝑉(𝐺)|𝑜(𝑚) for some function 𝑝, which is impos-
sible, unless eth fails (Fact 8.11). The results for #IndSub(𝛷) and
#IndSub(¬𝛷) follow by Lemma 7.9.

11Counting and Finding Homomorphisms is Universal

In this chapter, we show that every parameterized counting prob-
lem 𝑃 ∈ #W[1] is interreducible with a problem #Hom(ℋ𝑃 → 𝒢𝑃)
under parameterized Turing-reductions. Further, the proof shows
that the corresponding statement holds for (parameterized) deci-
sion problems in W[1] and a problem Hom(ℋ → 𝒢). Our start-
ing point is Lemma 8.19—Indeed, in this chapter we finally see
the main reason, why we exported more technical details from the
hardness proof of #Hom(ℋ → ⊤).

The main result of this chapter reads as follows.

Theorem 11.1. For any problem (𝑃, 𝜅) in #W[1], there are graph
classes ℋ𝑃 and 𝒢𝑃 such that

(𝑃, 𝜅) ≡fpt
T #Hom(ℋ𝑃 → 𝒢𝑃).

Further, ℋ𝑃 is recursively enumerable and 𝒢𝑃 is recursive.

In particular, we show that for any problem (𝑃, 𝜅) in #W[1], we
can construct graph classes ℋ𝑃 and 𝒢𝑃 such that we have for any
graphs 𝐻 ∈ ℋ𝑃 and 𝐺 ∈ 𝒢𝑃:

1 If #Hom(𝐻 → 𝐺) ≠ 0, the pair (𝐻, 𝐺) corresponds to exactly
one instance 𝑥 of the problem (𝑃, 𝜅), and we can obtain both
𝑥 and 𝜅(𝑥) from 𝐻 and 𝐺.

2 If #Hom(𝐻 → 𝐺) = 0, the pair (𝐻, 𝐺) does not correspond
to an instance of (𝑃, 𝜅).

224 counting and finding homomorphisms is universal

(a) K(5, 1) = 𝐾5 . (b) K(5, 2), or Petersen graph. (c) K(6, 2).

(d) K(7, 3) = K(3).

101 Figure 11.1. Examples for Kneser graphs. The set corresponding to each vertex is
depicted inside of each vertex—a black dot denotes the presence of an element in a set,
while a white dot denotes the absence of an element in a set.

counting homomorphisms between kneser graphs 225

11.1 Counting Homomorphisms Between Kneser Graphs

By Lemma 8.19, the problem #Hom(ℋ → ⊤) is #W[1]-hard for any
(computable) class of connected cores. In particular, it is known
that this is the case for (subclasses) of the class of Kneser graphs.
Further, Kneser graphs have other nice propertieswhichwe exploit
in the proof of Theorem 11.1. Formally, we start with the following
definition; consider also Figure 11.1 for examples of Kneser graphs.

Definition 11.2 ([see 57, Chapter 3]). For 𝑟, 𝑠 ∈ ℕ ∪ {0}, the
Kneser graph K(𝑟, 𝑠) is the graph with

𝑉(K(𝑟, 𝑠)) ≔ ([𝑟]
𝑠)

𝐸(K(𝑟, 𝑠)) ≔ {{𝑈, 𝑊} ∣ 𝑈 ∩ 𝑊 = ∅},

that is, the vertices of K(𝑟, 𝑠) are the subsets of size 𝑠 of [𝑟] and K(𝑟, 𝑠)
has edges exactly between vertices that correspond to disjoint sets.

For an integer 𝑛 ≥ 3, we set K(𝑛) ≔ K((2𝑛+ 1)(𝑛−2), 𝑛(𝑛−2)).
With this choice of 𝑟 and 𝑠, we can use the following results;

Fact 11.3 ([82] and Propositions 3.13, 3.14 in [57]). For any
integer 𝑛 ≥ 3, all of the following hold:

1 K(𝑛) has chromatic number 𝑛.
2 K(𝑛) has odd girth 2𝑛 + 1.
3 K(𝑛) is a core; #Hom(K(𝑛) → K(𝑛)) = #Aut(K(𝑛)).

Fact 11.4 (Folklore, [see 116]). For non-negative integers 𝑟, 𝑠, the
graph K(𝑟, 𝑠) is connected if and only if 𝑟 > 2𝑠.
Hence, K(𝑛) is connected.

It is of crucial importance to us that Kneser graphs form an an-
tichain with respect to the homomorphism order.

226 counting and finding homomorphisms is universal

0 0 0 0𝑥
enc(𝑥)

1 0 0 0𝑥
enc(𝑥)

0 1 0 0𝑥
enc(𝑥)

1 1 0 0𝑥
enc(𝑥)

0 0 1 0𝑥
enc(𝑥)

1 0 1 0𝑥
enc(𝑥)

0 1 1 0𝑥
enc(𝑥)

1 1 1 0𝑥
enc(𝑥)

0 0 0 1𝑥
enc(𝑥)

1 0 0 1𝑥
enc(𝑥)

0 1 0 1𝑥
enc(𝑥)

1 1 0 1𝑥
enc(𝑥)

0 0 1 1𝑥
enc(𝑥)

1 0 1 1𝑥
enc(𝑥)

0 1 1 1𝑥
enc(𝑥)

1 1 1 1𝑥
enc(𝑥)

101 Figure 11.2. Examples of strings and their encoding into a graph.

encoding problems into graphs classes 227

Lemma 11.5. For distinct integers 𝑛, 𝑚 ≥ 3, we have

#Hom(K(𝑚) → K(𝑛)) = 0.

Proof. Follows from Lemmas 7.3 and 7.4 and Fact 11.3.

Now, let 𝒦𝑒𝑣𝑒𝑛 denote the set of all graphs K(𝑛) with even 𝑛
and let 𝒦𝑜𝑑𝑑 denote the set of all graphs K(𝑛) with odd 𝑛.

11.2 Encoding Problems into Graphs Classes

A central tool for the proof of Theorem 11.1 is an encoding of ar-
bitrary strings into graphs, which we discuss next. In particular,
we use a disjoint union of paths for the encoding. Given a string
𝑥 = 𝑥[1]𝑥[2]⋯ 𝑥[𝑛] ∈ {0, 1}∗, we write enc(𝑥) for the graph that
is the disjoint union of paths 𝑃𝑖+1 for all 𝑖 ≤ |𝑥| with 𝑥𝑖 = 1,113 as well 113. Recall that 𝑃𝑖 is

the path with 𝑖
vertices and 𝑖 − 1
edges.

as of |𝑥| isolated vertices. Consider Figure 11.2 for a visualization.
Next, we show how to use the encoding enc to (reversibly) en-

code an instance of an arbitrary problem in #W[1] into a pair of
graphs. To that end, let (𝑃, 𝜅) denote any problem in #W[1]. By
Lemma 8.19, we have (𝑃, 𝜅) ≤w-fpt #Hom(𝒦𝑒𝑣𝑒𝑛 → ⊤), that is, there
is an algorithm 𝔸 = 𝔸𝑃 and a triple (𝑓 , 𝑔, 𝑠) of computable func-
tions such that for all 𝑥 ∈ {0, 1}∗all of the following hold:

1 The algorithm 𝔸 computes a pair of graphs 𝔸(𝑥) = (𝐻𝑥, 𝐺𝑥),
where 𝐻𝑥 ∈ 𝒦𝑒𝑣𝑒𝑛 and 𝐺𝑥 is connected and 𝐻𝑥-colorable.

2 The answer to the instance 𝑥 of the problem (𝑃, 𝜅) can be
computed as 𝑃(𝑥) = 𝑔(𝑥) ⋅ #Hom(𝐻𝑥 → 𝐺𝑥).

3 The problem (𝑔, 𝜅) is fpt in time 𝑝(𝜅(𝑥)) ⋅ |𝑥|𝑂(1).
4 The algorithm 𝔸 runs in time 𝑓(𝜅(𝑥)) ⋅ |𝑥|𝑂(1).
5 The size of the computed graph |𝑉(𝐻𝑥)| is at most 𝑠(𝜅(𝑥)).

Now, fix an instance 𝑥 to (𝑃, 𝜅). Using the graphs 𝔸(𝑥) =
(𝐻𝑥, 𝐺𝑥) computed by the algorithm 𝔸, we construct a pair of new

228 counting and finding homomorphisms is universal

Hom
(𝐻𝑥 → 𝐺𝑥)

Aut(K(2𝜅(𝑥) + 3))

𝐻𝑥

K(2𝜅(𝑥) + 3)
𝐻∗

𝑥

𝐺𝑥 (𝐻𝑥-colored)

enc(⟨𝑥, 𝐻𝑥⟩)

K(2𝜅(𝑥) + 3)
𝐺∗

𝑥

101 Figure 11.3. Lemma 11.6 illustrated. A cross denotes that no homomorphisms be-
tween the parts of the graphs exist. Note that the Kneser graphs used in the lemma differ
from the ones depicted.

encoding problems into graphs classes 229

graphs, that additionally encode the original instance 𝑥 as well as
its parameter 𝜅(𝑥) by setting

𝐻∗
𝑥 ≔ 𝐻𝑥 ∪ K(2𝜅(𝑥) + 3), and (11.1)

𝐺∗
𝑥 ≔ 𝐺𝑥 ∪ enc(⟨𝑥, 𝐻𝑥⟩) ∪ K(2𝜅(𝑥) + 3), (11.2)

where ⟨𝑥, 𝐻𝑥⟩ is any efficient encoding of the pair (𝑥, 𝐻𝑥). We pro-
ceed to show that the constructed graphs 𝐻∗

𝑥 and 𝐺∗
𝑥 behave as in-

tended; also consider Figure 11.3 for a visualization.

Lemma 11.6. For any (𝑃, 𝜅) ∈ #W[1] and any instance 𝑥 to (𝑃, 𝜅),
let the graphs 𝐻∗

𝑥 and 𝐺∗
𝑥 be defined as in Equations (11.1) and (11.2).

Then,

1 The graph 𝐺∗
𝑥 is 𝐻∗

𝑥-colored and
2 #Hom(𝐻∗

𝑥 → 𝐺∗
𝑥) = #Hom(𝐻𝑥 → 𝐺𝑥) ⋅ #Aut(K(2𝜅(𝑥) + 3)).

Proof. By definition, we have 𝐻∗
𝑥 ≔ 𝐻𝑥 ∪ K(2𝜅(𝑥) + 3) and

𝐺∗
𝑥 ≔ 𝐺𝑥 ∪ enc(⟨𝑥, 𝐻𝑥⟩) ∪ K(2𝜅(𝑥) + 3), where enc(⋆) encodes a

string into a disjoint set of paths and isolated vertices.
Now, for the homomorphism from𝐺∗

𝑥 to𝐻∗
𝑥, note that the graph

𝐺𝑥 is 𝐻𝑥-colored (by Lemma 8.19 and in particular Item 1). Fur-
ther, the graph K(2𝜅(𝑥) + 3) has an automorphism and contains
at least one edge, so there is a homomorphism from the graph
enc(⟨𝑥, 𝐻𝑥⟩) ∪ K(2𝜅(𝑥) + 3) into the graph K(2𝜅(𝑥) + 3). In total,
this completes the proof that 𝐺∗

𝑥 is 𝐻∗
𝑥-colored.

For the number of homomorphisms from 𝐻∗
𝑥 to 𝐺∗

𝑥, note that
there are #Hom(𝐻𝑥 → 𝐺𝑥) many homomorphisms from 𝐻𝑥 to 𝐺𝑥
and #Aut(K(2𝜅(𝑥)+3))many homomorphisms fromK(2𝜅(𝑥)+3)
to itself. As the graphs 𝐻∗

𝑥 and 𝐺∗
𝑥 consist of the disjoint union of

𝐻𝑥 and K(2𝜅(𝑥) + 3), and 𝐺𝑥 and K(2𝜅(𝑥) + 3), respectively, we
directly obtain a lower bound for the number of homomorphisms:

#Hom(𝐻∗
𝑥 → 𝐺∗

𝑥) ≥ #Hom(𝐻𝑥 → 𝐺𝑥)⋅#Aut(K(2𝜅(𝑥)+3)). (11.3)

230 counting and finding homomorphisms is universal

To prove the upper bound, observe the following.
1 The graph 𝐻𝑥 cannot be mapped homomorphically to the graph
K(2𝜅(𝑥) + 3), as 𝐻𝑥 is contained in 𝒦𝑒𝑣𝑒𝑛 and K(2𝜅(𝑥) + 3) is
contained in 𝒦𝑜𝑑𝑑; hence both are distinct Kneser graphs and by
Lemma 11.5 no homomorphisms between them are possible.

2 The graph K(2𝜅(𝑥) + 3) cannot be mapped homomorphically
to the graph 𝐺𝑥. Suppose otherwise, that an homomorphism
ℎ ∶ K(2𝜅(𝑥) + 3) → 𝐺𝑥 existed. As 𝐺𝑥 is 𝐻𝑥-colorable, there is a
homomorphism 𝑐 ∶ 𝐺𝑥 → 𝐻𝑥. Composing the homomorphisms
ℎ and 𝑐 yields a homomorphism ℎ ∘ 𝑐 ∶ K(2𝜅(𝑥) + 3) → 𝐻𝑥, that
is, a homomorphism from a graph in 𝒦𝑜𝑑𝑑 to a graph in 𝒦𝑒𝑣𝑒𝑛,
which, again, is not possible by Lemma 11.5.

3 None of the graphs 𝐻𝑥 and K(2𝜅(𝑥) + 3) can be mapped homo-
morphically to the graph enc(⟨𝑥, 𝐻𝑥⟩), as paths have a chromatic
number of at most 2, and both graphs 𝐻𝑥 and K(2𝜅(𝑥)+ 3) have
a chromatic number of at least 3.

Hence, the homomorphisms counted in the lower bound (11.3) are
already all homomorphisms from 𝐻∗

𝑥 to 𝐺∗
𝑥:

#Hom(𝐻∗
𝑥 → 𝐺∗

𝑥) = #Hom(𝐻𝑥 → 𝐺𝑥) ⋅ #Aut(K(2𝜅(𝑥) + 3)).

This completes the proof.

Now write ℋ𝑃 and 𝒢𝑃 for the graph class of all graphs 𝐻∗
𝑥 and

𝐺∗
𝑥, respectively, that correspond to instances 𝑥 to (𝑃, 𝜅) for which

the function 𝑔 is non-zero. For the classes ℋ𝑃 and 𝒢𝑃 to be use-
ful to us, we need to show that the only pairs of graphs 𝐻 ∈ ℋ𝑃
and 𝐺 ∈ 𝒢𝑃 that admit a homomorphism from 𝐻 to 𝐺 are those,
that correspond to the same pair (𝑥, 𝜅(𝑥)). Formally, consider the
following lemma.

Lemma 11.7. Let (𝑃, 𝜅) denote a problem in #W[1] with the corre-
sponding graph classes ℋ𝑃 and 𝒢𝑃. For any graphs 𝐻 ∈ ℋ𝑃 and 𝐺 ∈ 𝒢𝑃,
if there is a homomorphism from 𝐻 to 𝐺, then there is an instance 𝑥 to
(𝑃, 𝜅) that corresponds to both 𝐻 and 𝐺, that is, 𝐻 = 𝐻∗

𝑥 and 𝐺 = 𝐺∗
𝑥.

encoding problems into graphs classes 231

Proof. It suffices to show that there are no homomorphisms
from 𝐻 to 𝐺 if the graphs 𝐻 and 𝐺 do not correspond to the same
instance of (𝑃, 𝜅). Hence, assume that the graphs 𝐻∗

𝑥 ∈ ℋ𝑃 and
𝐺∗

𝑦 ∈ 𝒢𝑃 correspond to distinct instances 𝑥 and 𝑦 of (𝑃, 𝜅). For
the sake of contradiction, further assume that there is a homomor-
phism ℎ from 𝐻∗

𝑥 to 𝐺∗
𝑦. By Equations (11.1) and (11.2), for an even

integer 𝑎 and odd integers 𝑏 and 𝑐, we have

𝐻∗
𝑥 = 𝐻𝑥 ∪ K(2𝜅(𝑥) + 3)
=∶ K(𝑎) ∪ K(𝑏) and

𝐺∗
𝑦 = 𝐺𝑦 ∪ enc(⟨𝑦, 𝐻𝑦⟩) ∪ K(2𝜅(𝑦) + 3)
=∶ 𝐺𝑦 ∪ enc(⟨𝑦, 𝐻𝑦⟩) ∪ K(𝑐),

where 𝐺𝑦 is a connected graph that is 𝐻𝑦-colored.
Similar to Item 3 of the proof of Lemma 11.6 we can show that

#Hom(K(𝑎) → enc(⟨𝑥, 𝐻𝑥⟩)) = #Hom(K(𝑏) → enc(⟨𝑥, 𝐻𝑥⟩)) = 0.
Now, first assume 𝑏 = 𝑐. In this case, we have K(𝑏) = K(𝑐), and

hence 𝜅(𝑥) = 𝜅(𝑦). Further, by Lemma 11.5, the ℎ mapsK(𝑎) to 𝐺𝑦,
as K(𝑎) and K(𝑐) are different Kneser graphs. Combining this ho-
momorphism from K(𝑎) to 𝐺𝑦 with the homomorphism from 𝐺𝑦
to 𝐻𝑦 (which exists as 𝐺1 is 𝐻𝑦-colorable) yields a homomorphism
from K(𝑎) to 𝐻𝑦. However, as K(𝑎) = 𝐻𝑥 and 𝐻𝑦 are both Kneser
graphs, a homomorphism between them is possible only if they
are the same Kneser graph. This in turn, means that the instances
𝑥 and 𝑦 are the same, which is a contradiction.

Second, consider the casewhere the numbers 𝑎, 𝑏, and 𝑐 are pair-
wise distinct. By Lemma 11.5, we obtain #Hom(K(𝑎) → K(𝑐)) = 0
and #Hom(K(𝑏) → K(𝑐)) = 0. Hence, the homomorphism ℎmaps
both graphs K(𝑎) and K(𝑏) to the graph 𝐺𝑦. Now, as before, we
obtain a homomorphism from the graph 𝐻𝑥 to the graph 𝐻𝑦 and
hence (by Lemma 11.5) 𝐻𝑥 = K(𝑎) = 𝐻𝑦 = K(𝑏), which is a contra-
diction as 𝑎 ≠ 𝑏.

In total, if 𝐻 and 𝐺 do not correspond to the same instance 𝑥,
there is no homomorphism from 𝐻 to 𝐺.

232 counting and finding homomorphisms is universal

11.3 The Main Reductions

Fix a problem (𝑃, 𝜅) ∈ #W[1] and the corresponding graph classes
ℋ𝑃 and 𝒢𝑃. Using Lemmas 11.6 and 11.7, we proceed to show that
the problems (𝑃, 𝜅) and #Hom(ℋ𝑃 → 𝒢𝑃) are interreducible with
respect to parameterized Turing reductions.114 We start with the114. Note that the

reductions are almost
weakly

parsimonious—The
main problem lies in

obtaining a trivial
instance of the
problem 𝑃. In

Lemma 11.8, if we
obtain malformed

input, we output 0 in
the Turing

reduction—For a
(weakly)

parsimonious
reduction we would

need to output an
instance 𝑐 such that

𝑔(𝑐) ⋅ 𝑃(𝑐) = 0. A
task that is easily
doable for most

natural problems 𝑃,
but not in general.

more involved direction.

Lemma 11.8. We have #Hom(ℋ𝑃 → 𝒢𝑃) ≤fptT (𝑃, 𝜅).
Proof. Given graphs 𝐻 and 𝐺 and an oracle 𝕆 for (𝑃, 𝜅), we

wish to compute the number of homomorphisms #Hom(𝐻 → 𝐺) if
the promise 𝐻 ∈ ℋ𝑃 and 𝐺 ∈ 𝒢𝑃 is fulfilled. Consider the following
algorithm 𝔹.
1 Verify that the graph 𝐻 is the union of twoKneser graphsK(𝑎) ∈

𝒦𝑒𝑣𝑒𝑛 and K(𝑏) ∈ 𝒦𝑜𝑑𝑑. If this is not the case, output 0.
2 Verify that the graph 𝐺 is the union of a set of paths 𝒫 (and

isolated vertices) and two connected components 𝐺1 and 𝐺2 that
are not paths. If this is not the case, output 0.

3 Verify that either 𝐺1 = K(𝑏) or 𝐺2 = K(𝑏) holds, otherwise out-
put 0. Now, assume that 𝐺2 = K(𝑏).115

115. Otherwise
relabel 𝐺1 and 𝐺2.

4 Find a pair (𝑐, 𝐻𝑐) such that enc(⟨𝑐, 𝐻𝑐⟩) = 𝒫 or report that no
decoding is possible.116 If the decoding failed, output 0.

116. For instance if
the set of paths 𝒫 is
empty, contains the
same path multiple
times or the number
of isolated vertices

does not match.

5 Compute the parameter 𝜅(𝑐) of the instance 𝑐. If we have 2𝜅(𝑐)+
3 ≠ 𝑏, output 0.

6 Verify that the graphs 𝐻𝑐 and K(𝑎) are isomorphic. If they are
not isomorphic, output 0.

7 Compute the value 𝑔(𝑐). If we have 𝑔(𝑐) = 0, output 0.
8 Query the oracle 𝕆 on input 𝑐 and obtain 𝕆(𝑐). Output 𝕆(𝑐) ⋅

#Aut(K(2𝜅(𝑐) + 3))/𝑔(𝑐).
We first prove the required bound on the running time of the algo-
rithm 𝔹. On input 𝐻 and 𝐺, Step 1 takes time depending only on
|𝑉(𝐻)|; Step 2 can be done in time polynomial in |𝑉(𝐺)|. Step 3
takes again time depending only on |𝑉(𝐻)|. Considering Step 4,
we observe that by the definition of the encoding enc and by the
assumption that ⟨⋆, ⋆⟩ is an efficient encoding of pairs, the decod-
ing can be done in time polynomial in |𝑉(𝒫)| ≤ |𝑉(𝐺)|. Step 5

the main reductions 233

can also be done in time polynomial in |𝑉(𝐺)|, as the function 𝜅 is
computable in polynomial time in |𝑐|. As the encoding enc(⟨𝑐, 𝐻⟩)
contains an isolated vertex for every bit of the string 𝑐, we have

|𝑐| ≤ |𝑉(𝐺)| (11.4)

and hence the claimed running time for Step 5. Similarly to Step 3,
we can perform Step 6 in time depending only on |𝑉(𝐻)|. Now
assume Step 7 is reached. In this case, 2𝜅(𝑐) + 3 = 𝑏 and hence

𝜅(𝑐) ≤ |𝑉(𝐻)|, (11.5)

as the graph K(𝑏) is a component of 𝐻 and we have |𝑉(K(𝑏))| ≥ 𝑏.
Note that Steps 7 and 8 take time 𝑝(𝜅(𝑐)) ⋅ |𝑐|𝑂(1), as the problem
(𝑔, 𝜅) is fpt (see 3). We may assume that 𝑝 is monotonically in-
creasing and thus Equation (11.5) yields a running time bound of
𝑝(|𝑉(𝐻)|)⋅|𝑉(𝐺)|𝑂(1); recall Equation (11.4), that is |𝑐| ≤ |𝑉(𝐺)|.117 117. Note that the last

argument also shows
that the parameter
𝜅(𝑐) of the oracle
query 𝕆(𝑐) is
bounded by |𝑉(𝐻)|.

Next, we prove the correctness of 𝔹. To that end, assume that
the promise is fulfilled, that is, 𝐻 ∈ ℋ𝑃 and 𝐺 ∈ 𝒢𝑃.118

118. If the promise is
not fulfilled, we are
not required to
compute a correct
output.

Hence, for instances 𝑥 and 𝑦, we have

𝐻 = 𝐻∗
𝑦 = K(𝑎) ∪ K(𝑏)
= 𝐻𝑦 ∪ K(2𝜅(𝑦) + 3),

𝐺 = 𝐺∗
𝑥 = 𝐺1 ∪ 𝒫 ∪ 𝐺2

= 𝐺𝑥 ∪ enc(⟨𝑥, 𝐻𝑥⟩) ∪ K(2𝜅(𝑥) + 3).

Further, by constructionwe have 𝑔(𝑥) ≠ 0. We consider three cases.
1 𝐻𝑥 ≠ 𝐻𝑦: The instances 𝑥 and 𝑦 are different. By Lemma 11.7,

there are no homomorphisms from 𝐻 to 𝐺.
In the algorithm 𝔹, in this case, the test in Step 6 fails, and 𝔹
outputs 0, which is correct.

2 𝐻𝑥 = 𝐻𝑦 and 𝜅(𝑥) ≠ 𝜅(𝑦).119 Indeed, in this case the instances

119. Note that
𝐻𝑥 = 𝐻𝑦 does not
imply that the
corresponding
instances are the
same; the
algorithm 𝔸 is not
necessarily injective.

𝑥 and 𝑦 differ and so, again by Lemma 11.7, there are no homo-
morphisms from the graph 𝐻 to the graph 𝐺.

234 counting and finding homomorphisms is universal

In the algorithm 𝔹, in this case, the test in Step 3 fails, and 𝔹
outputs 0, which is correct.

3 𝐻𝑥 = 𝐻𝑦 and 𝜅(𝑥) = 𝜅(𝑦): In this case, we have 𝐻∗
𝑦 = 𝐻∗

𝑥. Hence,
by Lemma 11.6, the number of homomorphisms from 𝐻 to 𝐺 is

#Hom(𝐻 → 𝐺) = #Hom(𝐻𝑥 → 𝐺𝑥) ⋅ #Aut(K(2𝜅(𝑥) + 3)).
(11.6)

Note that the oracle 𝕆 on input 𝑥 computes the number

𝕆(𝑥) = 𝑔(𝑥) ⋅ #Hom(𝐻𝑥 → 𝐺𝑥), (11.7)

and we may assume that 𝑔(𝑥) ≠ 0 by construction. Hence, com-
bining Equation (11.6) and Equation (11.7) yields that we can
compute the number of homomorphisms from 𝐻 to 𝐺 by

#Hom(𝐻 → 𝐺) = 𝕆(𝑥) ⋅ #Aut(K(2𝜅(𝑥) + 3))/𝑔(𝑥).

In the algorithm 𝔹, it is easy to verify that Steps 3 to 7 succeed
and that in Step 8, we do return 𝕆(𝑥)⋅#Aut(K(2𝜅(𝑥)+3))/𝑔(𝑥).
Hence, the algorithm is correct in this case as well.

In total, the algorithm 𝔹 correctly solves #Hom(ℋ𝑃 → 𝒢𝑃).

Finally, we construct and verify the easy reduction.

Lemma 11.9. We have (𝑃, 𝜅) ≤fptT #Hom(ℋ𝑃 → 𝒢𝑃).
Proof. Given an instance 𝑥 to (𝑃, 𝜅) and an oracle 𝕆 for the

problem #Hom(ℋ𝑃 → 𝒢𝑃), we wish to compute the number 𝑃(𝑥).
By Lemma 8.19, we have (𝑃, 𝜅) ≤w-fpt #Hom(𝒦𝑒𝑣𝑒𝑛 → ⊤); let 𝔸
denote the corresponding algorithm. For the graphs (𝐻𝑥, 𝐺𝑥) ≔
𝔸(𝑥), we have 𝑃(𝑥) = 𝑔(𝑥) ⋅ #Hom(𝐻𝑥 → 𝐺𝑥).

Now, to compute the result 𝑃(𝑥), we first compute the value
𝑔(𝑥) in fpt time with respect to 𝜅. If we observe 𝑔(𝑥) = 0, we out-
put 0. Otherwise, we simulate the algorithm 𝔸 and obtain graphs
𝐻𝑥 and 𝐺𝑥 in time 𝑓(𝜅(𝑥)) ⋅ |𝑥|𝑂(1). After that, we can compute

the main reductions 235

the graphs 𝐻∗
𝑥 and 𝐺∗

𝑥 in time 𝑝(𝜅(𝑥)) ⋅ |𝑥|𝑂(1): The construction
of the encoding enc(⟨𝑥, 𝐻𝑥⟩) can be done in polynomial time in |𝑥|
and |𝑉(𝐻𝑥)|. Note that |𝑉(𝐻𝑥)| is bounded by 𝑠(𝜅(𝑥)) and that
the construction of K(2𝜅(𝑥)+ 3) clearly takes time depending only
on 𝜅(𝑥). In particular, we have the size of the graph 𝐻∗

𝑥 depends
only on 𝜅(𝑥). Hence, we can query 𝕆 on (𝐻∗

𝑥, 𝐺∗
𝑥) and obtain

#Hom(𝐻∗
𝑥 → 𝐺∗

𝑥).
Recall that by Lemma 11.6, we have

#Hom(𝐻𝑥 → 𝐺𝑥) = #Aut(K(2𝜅(𝑥) + 3))−1 ⋅ #Hom(𝐻∗
𝑥 → 𝐺∗

𝑥)
= #Aut(K(2𝜅(𝑥) + 3))−1 ⋅ 𝕆(𝐻∗

𝑥, 𝐺∗
𝑥).

Hence, to compute the result 𝑃(𝑥) = 𝑔(𝑥) ⋅ #Hom(𝐻𝑥 → 𝐺𝑥),
we can compute the number #Aut(K(2𝜅(𝑥)+3))−1 in time depend-
ing only on 𝜅(𝑥) and multiply it with the result of the oracle query
and the result previous computation of the value 𝑔(𝑥).

Theorem 11.1. For any problem (𝑃, 𝜅) in #W[1], there are graph
classes ℋ𝑃 and 𝒢𝑃 such that

(𝑃, 𝜅) ≡fpt
T #Hom(ℋ𝑃 → 𝒢𝑃).

Further, ℋ𝑃 is recursively enumerable and 𝒢𝑃 is recursive.
Proof. Follows from Lemmas 11.8 and 11.9.

Using Corollary 8.20 as a starting point, we also obtain:

Theorem 11.10. For any problem (𝑃, 𝜅) in W[1], there are graph
classes ℋ𝑃 and 𝒢𝑃 such that

(𝑃, 𝜅) ≡fpt
T Hom(ℋ𝑃 → 𝒢𝑃).

Further, ℋ𝑃 is recursively enumerable and 𝒢𝑃 is recursive.

236 counting and finding homomorphisms is universal

Conclusions and Open Questions

The contributions of this part were two-fold. First, we studied the
problem #Hom(ℋ → 𝒢) for graph classes ℋ and 𝒢. We discussed
complexity dichotomies for two specific pairs of graph classes. Fur-
ther, we convinced ourselves that we may not hope for clean di-
chotomy for all pairs of graph classes—We can reversibly encode
any problem in #W[1] into classes of Kneser graphs, thereby ob-
taining a universality result for #W[1]. In particular, we relied on
(specific) Kneser graphs forming an infinite anti-chainwith respect
to the homomorphism order.120 There are other (sets of) graphs 120. To some extent

we also needed that
Kneser graphs cannot
be mapped
homomorphically to
collections of paths.
However, this seems
to be the
less-important
property.

with this property—Can we obtain a similar universality result for
them? Are such anti-chains the only obstacle for obtaining com-
plexity dichotomy results for #Hom(ℋ → 𝒢)?

Second, we studied the problem #IndSub(𝛷) for a graph prop-
erty 𝛷. Exploiting that said problem morphs to evaluating linear
combinations of homomorphism counts and known hardness re-
sults for evaluating said linear combinations, we could obtain hard-
ness for a variety of properties 𝛷 by analyzing the so-called 𝑓-vector
of𝛷. In particular, assuming eth,we obtained (almost) tight lower
bounds for all monotone, that is subgraph-closed, properties and
properties that only depend on the number of edges of a graph.
Even more general, we proved that a sufficiently sparse 𝑓-vector
guarantees hardness. Together with the long line of previous work
on #IndSub(𝛷) [62, 63, 87, 64, 100, 40], our results provide fur-
ther evidence that for all non-trivial 𝛷, the problem #IndSub(𝛷) is
hard. This motivates the following conjecture.

Conjecture. For any non-trivial 𝛷, the problem #IndSub(𝛷) is
#W[1]-complete and, assuming eth, cannot be solved in time 𝑓(𝑘) ⋅
|𝑉(𝐺)|𝑜(𝑘) for any function 𝑓.

238 conclusions and open questions

As next steps toward proving this conjecture, it seems natural to
consider properties with non-spare 𝑓-vectors. As a natural example,
consider properties closed under induced subgraphs or hereditary
properties. In [102], we did prove first results in that direction—
a comprehensive study of such properties is still missing though.
Similarly, for properties closed under edge-removal, the above con-
jecture holds on odd cycles [100] and for properties that are non-
trivial on bipartite graphs [40]. Again, the general case is still not
resolved, though.

As a final concluding remark, when generalizing graph proper-
ties to graph functions—that is allowing arbitrary reals as values of
𝛷—it is fathomable that we can capture many more natural prob-
lems. While the graph motif parameter framework naturally gen-
eralizes, proving non-vanishing of the corresponding coefficients
a does require new ideas.

Bibliography

1 A. Abboud, A. Backurs, and V. V. Williams. If the current
clique algorithms are optimal, so is Valiant’s parser. In 56th
Annual Symposium on Foundations of Computer Science, FOCS’15,
pages 98–117, 2015. doi: 10.1109/FOCS.2015.16.

2 K. R. Abrahamson. Generalized stringmatching. SIAM J. Com-
put., 16(6):1039–1051, 1987. doi: 10.1137/0216067.

3 M. O. Albertson and K. L. Collins. Homomorphisms of 3-
chromatic Graphs. Discrete Mathematics, 54(2):127–132, 1985.
doi: 10.1016/0012-365X(85)90073-1.

4 S. Alstrup, G. S. Brodal, and T. Rauhe. Pattern matching in dy-
namic texts. In D. B. Shmoys, editor, Proceedings of the Eleventh
Annual ACM-SIAM Symposium on Discrete Algorithms, January
9-11, 2000, San Francisco, CA,USA, pages 819–828. ACM/SIAM,
2000.

5 A. Amir, M. Lewenstein, and E. Porat. Faster algorithms
for string matching with 𝑘 mismatches. J. Algorithms, 50(2):
257–275, 2004. doi: 10.1016/S0196-6774(03)00097-X.

6 M. Babenko, P. Gawrychowski, T. Kociumaka,
I. Kolesnichenko, and T. Starikovskaya. Computing mini-
mal and maximal suffixes of a substring. Theoretical Computer
Science, 638:112–121, 2016. doi: 10.1016/j.tcs.2015.08.023.

7 A. Backurs and P. Indyk. Edit Distance Cannot Be Computed
in Strongly Subquadratic Time (Unless SETH is False). SIAM
J. Comput., 47(3):1087–1097, 2018. doi: 10.1137/15M1053128.

240 bibliography

8 L. W. Beineke. Characterizations of Derived Graphs. Journal of
Combinatorial Theory, 9(2):129–135, 1970. ISSN 0021-9800. doi:
https://doi.org/10.1016/S0021-9800(70)80019-9.

9 M. A. Bender and M. Farach-Colton. The LCA problem revis-
ited. In LATIN 2000: Theoretical Informatics, 4th Latin American
Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceed-
ings, pages 88–94, 2000. doi: 10.1007/10719839_9.

10 A. Bhattacharyya, S. Ghoshal, Karthik C. S., and P. Manu-
rangsi. Parameterized Intractability of Even Set and Short-
est Vector Problem from Gap-ETH. In 45th International Col-
loquium on Automata, Languages, and Programming, ICALP 2018,
July 9-13, 2018, Prague, Czech Republic, pages 17:1–17:15, 2018.
doi: 10.4230/LIPIcs.ICALP.2018.17.

11 A. Bhattacharyya, S. Ghoshal, Karthik C. S., and P. Manu-
rangsi. Parameterized Intractability of Even Set and Shortest
Vector Problem from Gap-ETH. CoRR, abs/1803.09717, 2018.

12 P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti,
and O. Weimann. Random Access to Grammar-Compressed
Strings and Trees. SIAM J. Comput., 44(3):513–539, 2015. doi:
10.1137/130936889.

13 L. Billera andA. Björner. FaceNumbers of Polytopes and Com-
plexes. InHandbook of discrete and computational geometry, pages
291–310. CRC Press, Inc., 1997.

14 M. Bodirsky and M. Grohe. Non-dichotomies in constraint
satisfaction complexity. In Automata, Languages and Program-
ming, 35th International Colloquium, ICALP 2008, Reykjavik, Ice-
land, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Se-
mantics, and Theory of Programming & Track C: Security and
Cryptography Foundations, pages 184–196, 2008. doi: 10.1007/
978-3-540-70583-3_16.

bibliography 241

15 H. L. Bodlaender. A Linear-Time Algorithm for Finding Tree-
Decompositions of Small Treewidth. SIAM J. Comput., 25(6):
1305–1317, 1996. doi: 10.1137/S0097539793251219.

16 C. Borgs, J. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi.
Counting graph homomorphisms. In M. Klazar, J. Kratochvíl,
M. Loebl, J. Matoušek, P. Valtr, and R. Thomas, editors, Top-
ics in Discrete Mathematics, pages 315–371, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg. ISBN 978-3-540-33700-3.

17 R. S. Boyer and J. S. Moore. MJRTY—a fast majority vote al-
gorithm. In R. S. Boyer, editor, Automated Reasoning: Essays
in Honor of Woody Bledsoe, Automated Reasoning Series, pages
105–117. Kluwer Academic Publishers, 1991. doi: 10.1007/
978-94-011-3488-0_5.

18 K. Bringmann and P. Wellnitz. Clique-based lower bounds
for parsing tree-adjoining grammars. In J. Kärkkäinen, J. Ra-
doszewski, and W. Rytter, editors, 28th Annual Symposium on
Combinatorial Pattern Matching, CPM 2017, July 4-6, 2017, War-
saw, Poland, volume 78 of LIPIcs, pages 12:1–12:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi: 10.
4230/LIPIcs.CPM.2017.12.

19 K. Bringmann and P. Wellnitz. On Near-Linear-Time Algo-
rithms for Dense Subset Sum. In D.Marx, editor, Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA
2021, Virtual Conference, January 10 - 13, 2021, pages 1777–1796.
SIAM, 2021. doi: 10.1137/1.9781611976465.107.

20 K. Bringmann, M. Künnemann, and P. Wellnitz. Few matches
or almost periodicity: Faster pattern matching with mis-
matches in compressed texts. In 30th Annual ACM-SIAM Sym-
posium on Discrete Algorithmsm, SODA 2019, San Diego, CA,
USA, 2019. SIAM.

21 K. Bringmann,N. Fischer, D.Hermelin, D. Shabtay, andP.Well-
nitz. Faster Minimization of Tardy Processing Time on a Sin-
gle Machine. In A. Czumaj, A. Dawar, and E. Merelli, editors,

242 bibliography

47th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany
(Virtual Conference), volume 168 of LIPIcs, pages 19:1–19:12.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.ICALP.2020.19.

22 M. Burrows and D. Wheeler. A block-sorting lossless data
compression algorithm. Technical report, DIGITAL SRC RE-
SEARCH REPORT, 1994.

23 T. M. Chan, S. Golan, T. Kociumaka, T. Kopelowitz, and E. Po-
rat. Approximating Text-to-PatternHammingDistances, 2020.
To appear at STOC’20.

24 L. S. Chandran and C. R. Subramanian. Girth and treewidth.
J. Comb. Theory, Ser. B, 93(1):23–32, 2005. doi: 10.1016/j.jctb.
2004.05.004.

25 P. Charalampopoulos. Data Structures for Strings in the Inter-
nal and Dynamic Settings. PhD thesis, King’s College London,
2021.

26 P. Charalampopoulos, T. Kociumaka, and P. Wellnitz. Faster
Approximate Pattern Matching: A Unified Approach. In 61st
IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages
978–989. IEEE, 2020. doi: 10.1109/FOCS46700.2020.00095.

27 H. Chen and S. Mengel. Counting Answers to Existential Pos-
itive Queries: A Complexity Classification. In Proceedings of
the 35th ACMSIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS 2016, San Francisco, CA, USA, June
26 - July 01, 2016, pages 315–326, 2016. doi: 10.1145/2902251.
2902279.

28 J. Chen, B. Chor, M. Fellows, X. Huang, D.W. Juedes, I. A. Kanj,
and G. Xia. Tight lower bounds for certain parameterized NP-
hard problems. Inf. Comput., 201(2):216–231, 2005. doi: 10.
1016/j.ic.2005.05.001.

bibliography 243

29 J. Chen, X.Huang, I. A. Kanj, andG. Xia. Strong computational
lower bounds via parameterized complexity. J. Comput. Syst.
Sci., 72(8):1346–1367, 2006. doi: 10.1016/j.jcss.2006.04.007.

30 Y. Chen, M. Thurley, and M. Weyer. Understanding the Com-
plexity of Induced Subgraph Isomorphisms. In Automata, Lan-
guages and Programming, 35th International Colloquium, ICALP
2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack
A: Algorithms, Automata, Complexity, and Games, pages 587–596,
2008. doi: 10.1007/978-3-540-70575-8_48.

31 M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas.
The Strong Perfect Graph Theorem. Annals of Mathematics, 164
(1):51–229, 2006. ISSN 0003486X.

32 R. Clifford, A. Fontaine, E. Porat, B. Sach, and T. Starikovskaya.
The 𝑘-mismatch problem revisited. In R. Krauthgamer, edi-
tor, 27th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, pages 2039–2052. SIAM, 2016. doi: 10.1137/1.
9781611974331.ch142.

33 R. Cole and R. Hariharan. Approximate String Matching: A
Simpler Faster Algorithm. SIAM J. Comput., 31(6):1761–1782,
2002. doi: 10.1137/S0097539700370527.

34 R. Curticapean and D. Marx. Complexity of Counting Sub-
graphs: Only the Boundedness of the Vertex-Cover Number
Counts. In 55th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2014, Philadelphia, PA, USA, October 18-21,
2014, pages 130–139, 2014. doi: 10.1109/FOCS.2014.22.

35 R. Curticapean, H. Dell, and D. Marx. Homomorphisms are
a good basis for counting small subgraphs. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages
210–223, 2017. doi: 10.1145/3055399.3055502.

36 M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx,
M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized

244 bibliography

Algorithms. Springer, 2015. ISBN 978-3-319-21274-6. doi:
10.1007/978-3-319-21275-3.

37 V. Dalmau and P. Jonsson. The complexity of counting homo-
morphisms seen from the other side. Theor. Comput. Sci., 329
(1-3):315–323, 2004. doi: 10.1016/j.tcs.2004.08.008.

38 H. Dell, M. Roth, and P. Wellnitz. Counting answers to ex-
istential questions. In C. Baier, I. Chatzigiannakis, P. Floc-
chini, and S. Leonardi, editors, 46th International Colloquium on
Automata, Languages, and Programming, ICALP 2019, July 9-12,
2019, Patras, Greece, volume 132 of LIPIcs, pages 113:1–113:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.ICALP.2019.113.

39 J. Díaz, M. J. Serna, and D. M. Thilikos. Counting H-colorings
of partial k-trees. Theor. Comput. Sci., 281(1-2):291–309, 2002.
doi: 10.1016/S0304-3975(02)00017-8.

40 J. Dörfler, M. Roth, J. Schmitt, and P. Wellnitz. Counting In-
duced Subgraphs: AnAlgebraic Approach to #W[1]-hardness.
In P. Rossmanith, P. Heggernes, and J. Katoen, editors, 44th In-
ternational Symposium on Mathematical Foundations of Computer
Science, MFCS 2019, August 26-30, 2019, Aachen, Germany, vol-
ume 138 of LIPIcs, pages 26:1–26:14. SchlossDagstuhl - Leibniz-
Zentrum für Informatik, 2019. doi: 10.4230/LIPIcs.MFCS.2019.
26.

41 R. Downey and M. Fellows. Fixed-parameter tractability and
completeness III: Some structural aspects of the W hierarchy.
In Complexity theory, pages 191–225. Cambridge University
Press, 1993.

42 M. E. Dyer and C. S. Greenhill. The complexity of counting
graph homomorphisms. Random Struct. Algorithms, 17(3-4):
260–289, 2000.

43 J. Edmonds. Paths, Trees, and Flowers. Canadian Journal of
Mathematics, 17:449–467, 1965. doi: 10.4153/CJM-1965-045-4.

bibliography 245

44 P. Erdös and G. Szckeres. A combinatorial problem in geome-
try. In I. Gessel and G.-C. Rota, editors, Classic Papers in Com-
binatorics, pages 49–56, Boston, MA, 1987. Birkhäuser Boston.
ISBN 978-0-8176-4842-8. doi: 10.1007/978-0-8176-4842-8_3.

45 M. Farach. Optimal suffix tree construction with large alpha-
bets. In 38th Annual Symposium on Foundations of Computer Sci-
ence, FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997,
pages 137–143, 1997. doi: 10.1109/SFCS.1997.646102.

46 J. Flum and M. Grohe. The Parameterized Complexity of
Counting Problems. SIAM J. Comput., 33(4):892–922, 2004.
doi: 10.1137/S0097539703427203.

47 J. Flum and M. Grohe. Parameterized Complexity Theory. Texts
in Theoretical Computer Science. An EATCS Series. Springer,
2006. ISBN 978-3-540-29952-3. doi: 10.1007/3-540-29953-X.

48 M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse
table with 0(1) worst case access time. J. ACM, 31(3):538–544,
1984. doi: 10.1145/828.1884.

49 M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.
ISBN 0-7167-1044-7.

50 M. R. Garey, D. S. Johnson, and H. C. So. An Application of
Graph Coloring to Printed Circuit Testing (Working Paper).
In 16th Annual Symposium on Foundations of Computer Science,
Berkeley, California, USA, October 13-15, 1975, pages 178–183,
1975. doi: 10.1109/SFCS.1975.3.

51 P. Gawrychowski and P. Uznański. Towards unified approx-
imate pattern matching for Hamming and 𝐿1 distance. In
I. Chatzigiannakis, C. Kaklamanis, D. Marx, and D. Sannella,
editors, Automata, Languages, and Programming, ICALP 2018,
volume 107 of LIPIcs, pages 62:1–62:13. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2018. doi: 10.4230/LIPIcs.
ICALP.2018.62.

246 bibliography

52 P. Gawrychowski, A. Karczmarz, T. Kociumaka, J. Lacki, and
P. Sankowski. Optimal dynamic strings. In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018,
pages 1509–1528, 2018. doi: 10.1137/1.9781611975031.99. Full
version available at arXiv:1511.02612.

53 O. Goldreich. Computational Complexity - A Conceptual Perspec-
tive. CambridgeUniversity Press, 2008. ISBN 978-0-521-88473-
0.

54 J. A. Grochow and M. Kellis. Network Motif Discovery Using
Subgraph Enumeration and Symmetry-Breaking. In T. Speed
and H. Huang, editors, Research in Computational Molecular Bi-
ology, pages 92–106, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg. ISBN 978-3-540-71681-5.

55 M. Grohe. The complexity of homomorphism and constraint
satisfaction problems seen from the other side. J. ACM, 54(1):
1:1–1:24, 2007. doi: 10.1145/1206035.1206036.

56 M. Grohe, T. Schwentick, and L. Segoufin. When is the eval-
uation of conjunctive queries tractable? In Proceedings on
33rd Annual ACM Symposium on Theory of Computing, July 6-
8, 2001, Heraklion, Crete, Greece, pages 657–666, 2001. doi:
10.1145/380752.380867.

57 G.Hahn andC. Tardif. Graph homomorphisms: Structure and
Symmetry. In Graph symmetry, pages 107–166. Springer, 1997.

58 F.Harary. Graph theory. Addison-Wesley series inmathematics.
Addison-Wesley Pub. Co., 1969.

59 P. Hell and J. Nesetril. On the Complexity of H-coloring.
J. Comb. Theory, Ser. B, 48(1):92–110, 1990. doi: 10.1016/
0095-8956(90)90132-J.

60 T. I. Longest common extensions with recompression. In
J. Kärkkäinen, J. Radoszewski, and W. Rytter, editors, 28th

arXiv:1511.02612

bibliography 247

Annual Symposium on Combinatorial Pattern Matching, CPM
2017, volume 78 of LIPIcs, pages 18:1–18:15. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2017. doi: 10.4230/LIPIcs.
CPM.2017.18.

61 R. Impagliazzo and R. Paturi. On the Complexity of k-SAT. J.
Comput. Syst. Sci., 62(2):367–375, 2001. doi: 10.1006/jcss.2000.
1727.

62 M. Jerrum and K. Meeks. The parameterised complexity of
counting connected subgraphs and graph motifs. J. Comput.
Syst. Sci., 81(4):702–716, 2015. doi: 10.1016/j.jcss.2014.11.015.

63 M. Jerrum and K. Meeks. Some Hard Families of Parameter-
ized Counting Problems. TOCT, 7(3):11:1–11:18, 2015. doi:
10.1145/2786017.

64 M. Jerrum and K. Meeks. The parameterised complexity of
counting even and odd induced subgraphs. Combinatorica, 37
(5):965–990, 2017. doi: 10.1007/s00493-016-3338-5.

65 A. Jeż. Faster fully compressed pattern matching by recom-
pression. ACM Transactions on Algorithms, 11(3):20:1–20:43,
2015. doi: 10.1145/2631920.

66 A. Jeż. Recompression: A simple and powerful technique for
word equations. Journal of the ACM, 63(1):4:1–4:51, 2016. doi:
10.1145/2743014.

67 P. W. Kasteleyn. The statistics of dimers on a lattice: I. The
number of dimer arrangements on a quadratic lattice. Physica,
27(12):1209–1225, 1961. doi: 10.1016/0031-8914(61)90063-5.

68 P. W. Kasteleyn. Dimer Statistics and Phase Transitions. Jour-
nal of Mathematical Physics, 4(2):287–293, 1963. doi: 10.1063/1.
1703953.

69 D. Kempa and T. Kociumaka. Resolution of the burrows-
wheeler transform conjecture. In 61st IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2020, Durham, NC,

248 bibliography

USA, November 16-19, 2020, pages 1002–1013. IEEE, 2020. doi:
10.1109/FOCS46700.2020.00097.

70 D. Kempa and N. Prezza. At the roots of dictionary com-
pression: string attractors. In I. Diakonikolas, D. Kempe,
and M. Henzinger, editors, Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, Los An-
geles, CA, USA, June 25-29, 2018, pages 827–840. ACM, 2018.
doi: 10.1145/3188745.3188814.

71 S. Khot and V. Raman. Parameterized complexity of finding
subgraphs with hereditary properties. Theor. Comput. Sci., 289
(2):997–1008, 2002. doi: 10.1016/S0304-3975(01)00414-5.

72 T. Kociumaka. Efficient Data Structures for Internal Queries in
Texts. PhD thesis, University of Warsaw, Oct. 2018.

73 T. Kociumaka, J. Radoszewski, W. Rytter, and T. Walen. In-
ternal pattern matching queries in a text and applications. In
P. Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego,
CA, USA, January 4-6, 2015, pages 532–551. SIAM, 2015. doi:
10.1137/1.9781611973730.36.

74 S. Kosaraju. Efficient string matching. Manuscript, 1987.

75 A. V. Kostochka. Lower bound of the Hadwiger number of
graphs by their average degree. Combinatorica, 4(4):307–316,
1984. doi: 10.1007/BF02579141.

76 R. E. Ladner. On the structure of polynomial time reducibility.
J. ACM, 22(1):155–171, 1975. doi: 10.1145/321864.321877.

77 G. M. Landau and U. Vishkin. Efficient string matching with
𝑘 mismatches. Theor. Comput. Sci., 43:239–249, 1986. doi: 10.
1016/0304-3975(86)90178-7.

78 G. M. Landau and U. Vishkin. Fast parallel and serial approx-
imate string matching. J. Algorithms, 10(2):157–169, 1989. doi:
10.1016/0196-6774(89)90010-2.

bibliography 249

79 N. Larsson and A. Moffat. Off-line dictionary-based compres-
sion. Proceedings of the IEEE, 88(11):1722–1732, 2000. doi:
10.1109/5.892708.

80 P. G. H. Lehot. An Optimal Algorithm to Detect a Line Graph
and Output Its Root Graph. J. ACM, 21(4):569–575, Oct. 1974.
ISSN 0004-5411. doi: 10.1145/321850.321853.

81 A. Lempel and J. Ziv. On the complexity of finite sequences.
IEEE Transactions on Information Theory, 22(1):75–81, 1976.

82 L. Lovász. Kneser’s Conjecture, Chromatic Number, and Ho-
motopy. J. Comb. Theory, Ser. A, 25(3):319–324, 1978. doi:
10.1016/0097-3165(78)90022-5.

83 L. Lovász. Large Networks and Graph Limits, volume 60 of Col-
loquium Publications. American Mathematical Society, 2012.
ISBN 978-0-8218-9085-1.

84 D. Marx. Can You Beat Treewidth? Theory of Computing, 6(1):
85–112, 2010. doi: 10.4086/toc.2010.v006a005.

85 H. A. Maurer, I. H. Sudborough, and E. Welzl. On the Com-
plexity of the General Coloring Problem. Information and Con-
trol, 51(2):128–145, 1981. doi: 10.1016/S0019-9958(81)90226-6.

86 C. McCartin. Parameterized counting problems. Ann. Pure
Appl. Logic, 138(1-3):147–182, 2006. doi: 10.1016/j.apal.2005.
06.010.

87 K. Meeks. The challenges of unbounded treewidth in param-
eterised subgraph counting problems. Discrete Applied Mathe-
matics, 198:170–194, 2016. doi: 10.1016/j.dam.2015.06.019.

88 K. Mehlhorn, R. Sundar, and C. Uhrig. Maintaining Dynamic
Sequences under Equality Tests in Polylogarithmic Time. Al-
gorithmica, 17(2):183–198, 1997. doi: 10.1007/BF02522825.

250 bibliography

89 R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,
and U. Alon. NetworkMotifs: Simple Building Blocks of Com-
plex Networks. Science, 298(5594):824–827, 2002. ISSN 0036-
8075. doi: 10.1126/science.298.5594.824.

90 G. Navarro. A guided tour to approximate string matching.
ACM Computing Surveys, 33:2001, 2001.

91 S. B. Needleman andC. D.Wunsch. A general method applica-
ble to the search for similarities in the amino acid sequence of
two proteins. Journal of Molecular Biology, 48(3):443–453, 1970.
ISSN 0022-2836. doi: https://doi.org/10.1016/0022-2836(70)
90057-4.

92 C. G. Nevill-Manning and I. H. Witten. Compression and ex-
planation using hierarchical grammars. The Computer Journal,
40(2 and 3):103–116, 1997.

93 R. Niedermeier. Invitation to fixed-parameter algorithms. Ox-
ford Lecture Series in Mathematics and its Applications, 31, 2002.

94 G. Pólya. Bemerkung zur Interpolation und zur Näherungs-
theorie der Balkenbiegung. ZAMM-Journal of Applied Mathe-
matics andMechanics/Zeitschrift für AngewandteMathematik und
Mechanik, 11(6):445–449, 1931.

95 F. P. Ramsey. On a Problem of Formal Logic. Proceedings of
the London Mathematical Society, s2-30(1):264–286, 1930. doi:
10.1112/plms/s2-30.1.264.

96 N. Robertson and P. D. Seymour. Graph minors. V. Excluding
a planar graph. J. Comb. Theory, Ser. B, 41(1):92–114, 1986. doi:
10.1016/0095-8956(86)90030-4.

97 N. Robertson, P. D. Seymour, and R. Thomas. Quickly Exclud-
ing a Planar Graph. J. Comb. Theory, Ser. B, 62(2):323–348, 1994.
doi: 10.1006/jctb.1994.1073.

bibliography 251

98 G.-C. Rota. On the foundations of combinatorial theory I. The-
ory of Möbius functions. Zeitschrift für Wahrscheinlichkeitstheo-
rie und verwandte Gebiete, 2(4):340–368, 1964.

99 M. Roth. Counting Problems on Quantum Graphs: Parameterized
and Exact Complexity Classifications. PhD thesis, Saarland Uni-
versity, 2019.

100 M. Roth and J. Schmitt. Counting induced subgraphs: A Topo-
logical Approach to #W[1]-hardness. In 13th International Sym-
posium on Parameterized and Exact Computation, IPEC 2018, Au-
gust 20-24, 2018, Helsinki, Finland, pages 24:1–24:14, 2018. doi:
10.4230/LIPIcs.IPEC.2018.24.

101 M. Roth and P. Wellnitz. Counting and Finding Homomor-
phisms is Universal for Parameterized Complexity Theory. In
S. Chawla, editor, Proceedings of the 2020 ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pages 2161–2180. SIAM, 2020. doi:
10.1137/1.9781611975994.133.

102 M. Roth, J. Schmitt, and P. Wellnitz. Counting Small Induced
Subgraphs Satisfying Monotone Properties. In 61st IEEE An-
nual Symposium on Foundations of Computer Science, FOCS 2020,
Durham, NC, USA, November 16-19, 2020, pages 1356–1367.
IEEE, 2020. doi: 10.1109/FOCS46700.2020.00128. Accepted
(subject to minor revision) to the SICOMP Special Issue.

103 M. Roth, J. Schmitt, and P. Wellnitz. Detecting and counting
small subgraphs, and evaluating a parameterized tutte poly-
nomial: Lower bounds via toroidal grids and cayley graph ex-
panders. In N. Bansal, E. Merelli, and J. Worrell, editors, 48th
International Colloquium on Automata, Languages, and Program-
ming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual
Conference), volume 198 of LIPIcs, pages 108:1–108:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi: 10.
4230/LIPIcs.ICALP.2021.108.

252 bibliography

104 W. Rytter. Application of Lempel-Ziv factorization to the
approximation of grammar-based compression. Theor. Com-
put. Sci., 302(1-3):211–222, 2003. doi: 10.1016/S0304-3975(02)
00777-6.

105 S. C. Sahinalp and U. Vishkin. Approximate pattern matching
using locally consistent parsing. Manuscript, 1997.

106 I. J. Schoenberg. On Hermite-Birkhoff Interpolation. Journal
of Mathematical Analysis and Applications, 16(3):538–543, 1966.
ISSN 0022-247X. doi: 10.1016/0022-247X(66)90160-0.

107 F. Schreiber and H. Schwöbbermeyer. Frequency Concepts
and Pattern Detection for the Analysis of Motifs in Networks.
In C. Priami, E. Merelli, P. Gonzalez, and A. Omicini, editors,
Transactions on Computational Systems Biology III, pages 89–104,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN
978-3-540-31446-2.

108 P. H. Sellers. The theory and computation of evolutionary
distances: Pattern recognition. Journal of Algorithms, 1(4):
359–373, 1980. ISSN 0196-6774. doi: https://doi.org/10.1016/
0196-6774(80)90016-4.

109 Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara,
T. Shinohara, and S. Arikawa. Byte pair encoding: A text com-
pression scheme that accelerates pattern matching. Technical
report, Technical Report DOI-TR-161, Department of Informat-
ics, Kyushu University, 1999.

110 J. Spencer. Ramsey’s theorem—a new lower bound. Journal of
Combinatorial Theory, Series A, 18(1):108–115, 1975. ISSN 0097-
3165. doi: 10.1016/0097-3165(75)90071-0.

111 R. P. Stanley. Enumerative Combinatorics: Volume 1. Cambridge
University Press, 2011. ISBN 978-1-107-60202-5.

112 R. Sundar and R. E. Tarjan. Unique binary-search-tree repre-
sentations and equality testing of sets and sequences. SIAM
Journal on Computing, 23(1):24–44, 1994.

bibliography 253

113 H. N. V. Temperley and M. E. Fisher. Dimer problem in sta-
tistical mechanics-an exact result. The Philosophical Magazine:
A Journal of Theoretical Experimental and Applied Physics, 6(68):
1061–1063, 1961. doi: 10.1080/14786436108243366.

114 A. Thomason. An extremal function for contractions of graphs.
Mathematical Proceedings of the Cambridge Philosophical Society,
95(2):261–265, 1984. doi: 10.1017/S0305004100061521.

115 S. Toda. PP is asHard as the Polynomial-TimeHierarchy. SIAM
J. Comput., 20(5):865–877, 1991. doi: 10.1137/0220053.

116 M. Valencia-Pabon and J.-C. Vera. On the diameter of kneser
graphs. DiscreteMathematics, 305(1):383–385, 2005. ISSN 0012-
365X. doi: https://doi.org/10.1016/j.disc.2005.10.001.

117 L. G. Valiant. The Complexity of Computing the Perma-
nent. Theor. Comput. Sci., 8:189–201, 1979. doi: 10.1016/
0304-3975(79)90044-6.

118 L. G. Valiant. The Complexity of Enumeration and Reliability
Problems. SIAM J. Comput., 8(3):410–421, 1979. doi: 10.1137/
0208032.

119 T.Welch. A technique for high-performance data compression.
Computer, 17:8–19, 1984.

120 H. Whitney. Congruent Graphs and the Connectivity of
Graphs. In Hassler Whitney Collected Papers, pages 61–79.
Birkhäuser Boston, 1992. doi: https://doi.org/10.1007/
978-1-4612-2972-8_4.

121 J. Ziv and A. Lempel. A universal algorithm for sequential
data compression. IEEE Transactions on Information Theory, 23
(3):337–343, 1977.

Index

Computable Function, 169

Function
Composition, 145
Partial Application, 145

Generator of a Set, 19
Graph, 145

Adjacency Matrix, 161
Average Degree, 151
Bipartite Graph, 153
Canonical Labeling, 161
Chromatic Number, 153
Clique, 149
Complete Graph, 149
Connectivity, 151
Core, 149
Cycle, 151
(𝐹, 𝑐)-colored Graph, 153
𝐹-colorable Graph, 153
𝐹-Coloring, 153
Girth, 152
Induced Subgraph, 147
𝑘-Colorability, 153
Kneser Graph, 227
Labeling, 161
Line Graph, 157
Loop-free Graph, 149
Matching Number, 192
Minor, 155
Morphism, 145
Automorphism, 147
Embedding, 145
Endomorphism, 147
Homomorphism, 145
Isomorphism, 145
Strong Embedding, 145

Odd Girth, 152
Path, 151

Perfect Graph, 153
Spasm, 155
Subgraph, 147
Tree, 151
Tree Decomposition, 151
Treewidth, 152
unlabeled, 161
Vertex
Degree, 151
Isolated Vertex, 151
Neighborhood, 151

Graph Motif Parameter, 163
Graph Operation

Categorical Product, 159
Complement, 157
Edge Deletion, 153
Edge Extension, 157
Looped Complement, 157
Quotient Graph, 155
Vertex Contraction, 153
Vertex Deletion, 153

Graph Parameter, 163
Graph Property

𝑓-Polynomial, 208
𝑓-Vector, 207
Graph Class, 161
ℎ-Vector, 207
Hereditary Property, 162
Inverse, 161
Low Edge-Density, 215
Minor-closed Property, 163
Monotone Property, 162
Negation, 161
Non-Trivial Property, 162

Hamming Distance, 13

𝑘-Edits Occurrence, 15
𝑘-Locked Prefix, 75

𝑘-Mismatch Occurrence, 14

Locked Fragment, 66

Partition of a Set, 155
Problem

Fixed-Parameter Tractability, 169
Instance, 169
Parameterization, 169
Parameterized Counting Problem, 169
Parameterized Promise Counting Prob-

lem, 171
Valid Instance, 171

Recursive Set, 169
Recursively Enumerable Set, 169
Reduction

Parameterized (Weakly) Parsimonious
Reduction, 173

Parameterized Turing Reduction, 172

Straight-Line Program, 21
Parse Tree, 21

String, 11
Empty String, 11
Exact Occurrence, 11
Fragment, 11
Length, 11
Longest Common Prefix, 12
Longest Common Suffix, 12
Period, 12
Prefix, 12
Primitive String, 12
Reverse, 11
Run-Length Encoding, 13
Substring, 11
Suffix, 12

String Mismatch, 13
String Operation

Concatenation, 12
Rotation, 12

#W[1], 178
Completeness for, 179
Hardness for, 179

W[1], 178

	I Counting Patterns in Strings
	Introduction to Part I
	Strings, Approximate String Matching
	Strings, Fragments, and Periods
	String Measures and Approximate String Matching

	The PILLAR Model
	Basic Building Blocks of the PILLAR Model
	PILLAR Model Implementation: Standard Setting
	PILLAR Model Implementation: Fully-Compressed Setting
	PILLAR Model Implementation: Dynamic Setting

	Pattern Matching with Mismatches: Structural Insights
	Characterization of the Periodic Case
	Characterization of the Non-Periodic Case

	Pattern Matching with Mismatches: PILLAR Algorithm
	Pattern Matching with Mismatches: Extra PILLAR Tools
	Computing Structure in the Pattern
	Computing Occurrences in the Periodic Case
	Computing Occurrences in the Non-Periodic Case
	The Combined Algorithms

	Pattern Matching with Edits: Structural Insights
	Characterization of the Periodic Case
	Characterization of the Non-Periodic Case

	Pattern Matching with Edits: PILLAR Algorithm
	Pattern Matching with Edits: Extra PILLAR Tools
	Computing Structure in the Pattern
	Computing Occurrences in the Periodic Case
	Computing Occurrences in the Non-Periodic Case
	The Combined Algorithms

	Conclusions and Open Questions

	II Counting Patterns in Graphs
	Introduction to Part II
	Graphs, Graph Mappings, Graph Properties
	Graphs and Mappings between Graphs
	Common Graph Parameters
	Operations on Graphs
	Graph Classes and Graph Properties
	The Space of Graph Motif Parameters

	Parameterized Counting Problems
	Parameterized (Promise) Problems
	Reductions and (Conditional) Hardness
	The Complexity of Graph Motif Parameters

	Counting in F-colorable or Kőnig Graphs
	Counting in F-colorable Graphs
	Counting Homomorphisms to Kőnig graphs

	Homomorphism Vectors of Graph Properties
	f-Vectors and h-Vectors
	Homomorphism Coefficients via f-Vectors
	Hardness of #IndSub by Hamming Weight of f-Vectors
	Refined Lower Bounds and Clique-Minors

	Counting and Finding Homomorphisms is Universal
	Counting Homomorphisms Between Kneser Graphs
	Encoding Problems into Graphs Classes
	The Main Reductions

	Conclusions and Open Questions

	Bibliography
	Index

