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“Wisdom comes from experience. Experience is often a result of lack of wisdom.”

Terry Pratchett





v

Abstract

The field of quantum information develops rapidly as it promises to solve various
computational problems that are intractable for classical computers. However, build-
ing a functional quantum computer turns out to be a challenging task as its per-
formance suffers from unavoidable decoherence. Decoherence removes the quantum
nature of matter and hence the source of the quantum advantage over classical com-
puting. However, for specific applications, some carefully engineered decoherence
assisting the unitary quantum evolution can be beneficial. In this thesis, I discuss
two such examples: Quantum stochastic walks (QSWs) and hybrid quantum-classical
annealing (HQCA). QSWs generalize the concept of unitary quantum walks to ad-
ditional non-unitary evolution. This gives rise to directed walks. QSWs can either
be continuous-time or discrete-time. In the first part of this work, I present two al-
gorithms to simulate specific QSWs on a coherent quantum computer. The first one
applies to continuous-time QSWs and the second one applies to discrete-time QSWs.
In the second part of this work, I present a method called hybrid quantum-classical
annealing to improve the performance of adiabatic quantum computing (AQC), which
is supposed to find the ground state of some target Hamiltonian. HQCA is supposed
to increase the final ground state probability by coupling the qubit system to an engi-
neered heat bath. The performance of HQCA is numerically tested for a single qubit
and for two qubits.
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Kurzzusammenfassung

Die Quanteninformationstheorie entwickelt sich rapide, da sie verspricht verschiede-
ne Rechenaufgaben zu lösen, die für klassische Rechner nicht handhabbar sind. Doch
ist es eine Herausforderung einen Quantenrechner zu bauen, weil dessen Performanz
von unvermeidbarer Dekohärenz eingeschränkt wird. Durch diese verliert Materie ihre
quantenmechanischen Eigenschaften und damit die Quelle der Vorteile eines Quanten-
rechners. Für bestimmte Anwendungen kann gesteuerte, die unitären Zeitentwicklung
begleitende Dekohärenz allerdings von Vorteil sein. In dieser Arbeit diskutiere ich zwei
solcher Fälle: stochastische Quanten-Walks (QSWs) und hybrides quanten-klassisches
Ausglühen (HQCA). QSWs sind eine Verallgemeinerung der Quanten-Walks auf zu-
sätzliche nicht-unitäre Zeitentwicklung. Damit ermöglichen sie gerichtete Walks. Wie
ihre unitären Analoga können QSWs sowohl stetig als auch diskret in der Zeit sein.
Im ersten Teil dieser Arbeit präsentiere ich zwei Algorithmen, die QSWs auf einem
Quantenrechner simulieren. Der erste Algorithmus simuliert stetige und der zweite
diskrete QSWs. Im zweiten Teil dieser Arbeit präsentiere ich eine Methode, die wir
vorgeschlagen haben um adiabatisches Quantencomputing (AQC) zu verbessern. Das
Ziel von AQC ist es den Grundzustand eines gewünschten Hamiltonoperators zu fin-
den. HQCA soll die Grundzustandsbesetzung erhöhen, indem man die Qubits an ein
künstliches Wärmebad ankoppelt. Der Effekt von HQCA wird numerisch für ein und
für zwei Qubits getestet.





ix

Publication List

Published

• L. C. G. Govia, B. G. Taketani, P. K. Schuhmacher and F. K. Wilhelm
Quantum Simulation of a Quantum Stochastic Walk
Quantum Science and Technology (2017)

Submitted

• L. S. Theis, P. K. Schuhmacher, M. Marthaler and Frank K. Wilhelm
Gap-independent cooling and hybrid quantum-classical annealing
arXiv:1808.09873 (2018)

• P. K. Schuhmacher, L. C. G. Govia, B. G. Taketani and Frank K. Wilhelm
Quantum Simulation of a Discrete-Time Quantum Stochastic Walk
arXiv:2004.06151 (2020)

Previous Publications

• F. K. Wilhelm, R. Steinwandt, B. Langenberg, P. J. Liebermann, A. Messinger,
P. K. Schuhmacher and A. Misra-Spieldenner
Entwicklungsstand Quantencomputer
BSI Project Number 283 (2018)

https://iopscience.iop.org/article/10.1088/2058-9565/aa540b
https://arxiv.org/abs/1808.09873
https://arxiv.org/abs/2004.06151
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Kryptografie/Quantencomputing/entwicklungsstand-quantencomputer_node.html




xi

Acknowledgements

First and foremost I thank Prof. Frank Wilhelm-Mauch who has given me the chance
to work in his research group. His scientific supervision has been outstandingly well
throughout my time there.

I would also like to thank all the people I worked with during the process of this
thesis, especially Dr. Luke Govia, Dr. Bruno Taketani and Dr. Salil Bedkihal who
have been the perfect collaborators guiding me through the challenges of my research
goals. Also I would like to thank Aditi Misra-Spieldenner, Dr. Lukas Theis, Dr. Per
Liebermann, Dr. David Bruschi and all the other group members I had the chance to
work and to become friends with.

Additionally I would like to thank all my family and friends, it would not have
been possible to achieve the completion of this thesis without your love and support.

Finally I thank all people who contributed to this thesis in some way and who
supported me throughout the writing of this thesis, including Dr. Marius Schöndorf,
Andrii Sokolov, Matthias Kreis, Lukas Wettmann, Tina Rohrbacher and Andreas
Buchheit who helped with proofreading. I also thank Prof. Sergej Rjasanow to vol-
unteer as my second examiner.





xiii

Contents

Acknowledgements xi

I Introduction 1

1 Development of Modern Computers . . . . . . . . . . . . . . . . . . . . 3
2 Quantum Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Postulates of Quantum Mechanics . . . . . . . . . . . . . . . . 5
2.2 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Qubits and Quantum Gates . . . . . . . . . . . . . . . . . . . . 7
2.4 Quantum Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 DiVincenzo Criteria . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Open Quantum Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Density Matrices and Partial Trace . . . . . . . . . . . . . . . . 11
3.3 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Quantum Channels . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Quantum Dynamical Maps . . . . . . . . . . . . . . . . . . . . 14
3.6 The Lindblad Master Equation . . . . . . . . . . . . . . . . . . 15
3.7 The Redfield Master Equation . . . . . . . . . . . . . . . . . . 18
3.8 Bath Correlation Functions . . . . . . . . . . . . . . . . . . . . 19
3.9 Quantum Adiabatic Markovian Master Equations . . . . . . . . 20
3.10 The Secular Approximation . . . . . . . . . . . . . . . . . . . . 29
3.11 Comparison of Master Equations . . . . . . . . . . . . . . . . . 30
3.12 Harmonic Baths . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.13 The Quasi-Adiabatic Propagator Path Integral Method . . . . . 34

4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

II Quantum Simulations of Quantum Stochastic Walks 39

4 Introduction to Quantum Stochastic Walks (QSWs) . . . . . . . . . . . 41
4.1 Continuous-Time Quantum Stochastic Walks . . . . . . . . . . 41
4.2 Discrete-Time Quantum Stochastic Walks . . . . . . . . . . . . 42

5 Quantum Simulation of a Continuous-Time QSW . . . . . . . . . . . . 43
5.1 Quantum Trajectories on a Classical Computer . . . . . . . . . 44
5.2 Quantum Trajectories on a Quantum Computer . . . . . . . . . 44
5.3 QTQC of a Quantum Stochastic Walk . . . . . . . . . . . . . . 46
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Quantum Simulation of a Discrete-Time QSW . . . . . . . . . . . . . . 52
6.1 Quantum Simulation of a Kraus Map . . . . . . . . . . . . . . . 52
6.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3 Simulating a Continuous-Time QSW by a Discrete-Time QSW 57
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
A.a Graph Restriction due to Commutation of K̂SE and ĤSE . . . . 61
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Chapter I

Introduction

In this first part of the thesis I discuss the scientific context which is needed to un-
derstand this work. First, I give a brief overview of the historical development of
computers and explain how quantum effects influence the further development in sec-
tion 1. This interplay between computers and quantum physics culminates in the
today’s strongly expanding research field of quantum information which we introduce
in section 2. Last but not least, I briefly review the theory of open quantum systems
which sets up the physical background to engineer real-life quantum devices in section
3.
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1 Development of Modern Computers

Creating physical devices that are able to perform difficult computations remains an
active research discipline, although the first examples of such devices like the abacus
were invented in ancient times. Abaci have been used over centuries to add or multiply
numbers and for more complex operations such as calculating square roots. However,
the potential of such devices is obviously limited, and hence, people tried to develop
other machines.

The starting shot of modern computer science goes back to Alan Turing. In 1936,
he proposed an abstract version of a programmable computer, which is nowadays
known as the Turing machine [1]. In his remarkable article, he proved that any
algorithm implemented on any deterministic device can also be implemented on the
Turing machine. This fundamental property is called universality.

Although the Turing machine serves an useful model for theoretical studies, its
direct physical implementation would be inefficient as the runtime for computations
scales terribly. However, one could build a computer out of any physical device, as
long as one can mathematically map the Turing machine on it. For instance, a famous
trading card game has been shown to be Turing-complete [2]. Obviously, this result
is a useless fact from a practical perspective. However, it shows that computers can
be designed in various ways.

Inspired by Turing’s work, the development of modern computers made a re-
markable progress all over the world. In 1941, Konrad Zuse presented the Z3, the
first functional, fully automatic and programmable computing device using floating
point numbers in binary representation. In 1945, the United States Army’s Ballistic
Research Laboratory completed the first electronic version of a Turing-complete com-
puting device called ENIAC (Electronic Numerical Integrator and Computer). It is
still under debate which of these two machines counts as the first modern computer.

The main issue of these first machines was their large physical size and their error-
proneness which limited the calculations to small-scale problems. This changed dra-
matically with the invention of the transistor in 1947 by W. B. Shockley, J. Bardeen,
and W. H. Brattain who have been awarded with the Nobel price in 1956 [3] for their
joint work. The transistor is an error-robust physical key building block of universal
electronic computers and it turned out to be enormously scalable by using integrated
circuits and miniaturizing them. The further development of integrated circuits has
been honored with a Nobel price for Jack S. Kilby in 2010 [4]. As predicted by Moore
in the 1960s, the computer power doubled every year since then, a circumstance re-
ferred to as Moore’s law [5].

It is somehow surprising, how many years Moore’s phenomenological prediction
has been come true1. However, it slowly starts to saturate as quantum effects become
more and more relevant in the miniaturizing procedure [6]. Particularly, the quantum
mechanical tunnel effect, which is the basic ingredient to make a transistor work,
becomes too dominant at small scales and hence, it causes the transistor to behave
like a cable. In other words, the quantum mechanical tunnel effect is crucial for
building transistors but it also limits the minimal size of such a device fundamentally.

In conclusion, the strategy to build better computers by miniaturizing hardware is
reaching its fundamental limits. However, there exist computational problems which
probably will never be efficiently solvable on standard-type computers independent of
even optimized hardware [7]. Standard examples are the traveling-salesman-problem
or 3-SAT. These kind of problems scale at least exponentially in their run-time, their

1Actually, Moore’s prediction became a self-fulfilling prophecy: It defined roadmaps and everyone
tried to satisfy them.
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memory, or both. Hence, the ressources to solve these problems exceed the overall
ressources available on our finite planet even for rather small problem sizes.

Another exponential hard problem for standard-type computers, which I from now
on refer as classical computers, is the simulation of quantum mechanical systems. The
hardness in this case results from the exponential growth of its Hilbert space dimension
with system size [8]. Hence, quantum mechanics plays an important role regarding
the hardware limitations and in addition, its simulation represents a computationally
hard problem itself. This observation leads to the idea that a computer that satisfies
the laws of quantum mechanics itself (particularly using its exponential Hilbert space
dimension as a computing resource) could circumvent the fundamental restrictions of
classical computers. This idea goes back to Paul Benioff in 1980 and Richard Feynman
in 1981 [9, 10] and can be treated as the child birth of quantum information theory.

There is no unique way how to exploit quantum mechanics for computational tasks.
Today’s main research direction is the so-called gate-based model [8]. It is similar to
classical computing: A quantum algorithm is performed via quantum gates on a uni-
versal quantum computer where quantum bits replace the classical bit. The gate-based
model is strongly pushed by academic research but also by commercial companies like
IBM, Google, Microsoft and various new startup companies like Rigetti Computing.
However, even if we would focus only on the gate-based model, it is not clear yet which
kind of physical platform like ion traps, superconducting circuits or quantum dots will
be used to construct the first useful gate-based quantum computer. An overview of
the different platforms with their respective advantages and disadvantages, as well
as a list of international competitors in the field can be found in Ref. [11], a study
about the state of development of quantum computers with focus on their impact on
cryptoanalysis.

The most prominent alternative to the gate-based model is adiabatic quantum
computation or quantum annealing [12]. Here, the solution of an optimization problem
is encoded in the ground state of a Hamiltonian. Calculating its eigenspectrum is
intractable for classical computers. Instead, one initializes the quantum annealer in
the ground state of some initial Hamiltonian and then transforms it adiabatically to
the target Hamiltonian. The adiabatic theorem guarantees then ending in the desired
ground state. Although shown to be equivalent to the gate-based model , quantum
annealing is far less developed. However, the Canadian company D-Wave Systems
works on such devices and did already sell some prototypes to customers.

Another way to think about quantum algorithms is given by the concept of quan-
tum walks [13]. A quantum walk is the quantum mechanical analogue to the ubiqui-
tous classical random walk on a graph. They can either be continuous-time [14] or
discrete-time [15, 16] and both types have been shown to be universal for quantum
computation [17, 18]. However, quantum walks currently play a minor role in the
context of building a universal quantum computer as the underlying graph typically
needs an exponential number of nodes to show an asymptotical quantum advantage
[19]. Nevertheless, quantum walks can be thought of as quantum simulation of quan-
tum transport. Purposefully built quantum simulators [20] are not universal but
found application in a range of fields like quantum chemistry [21, 22]. Hence, quan-
tum simulators might solve the first real-life problems before the ability to construct
an error-robust and universal quantum computer is reached [23, 24, 25].

All the different strategies have a common obstacle to overcome: Decoherence
arising from the unavoidable disturbence of any quantum system to its environment
[26]. Decoherence causes the transition between quantum and classical behavior of a
physical system. The time this takes limits the time a quantum computer performes
correctly in a fundamental way. However, in special cases, purposefully engineered



2. Quantum Information 5

decoherence could enhance the performance of a quantum device, as it will be shown
in this thesis.

In this work, I do not only regard decoherence as a real-life phenomenon physicists
have to deal with. Instead, I outline the potential of some amount of engineered
decoherence as a resource to improve the performance of specific quantum information
applications. Prima facie, this ansatz appears counter-intuitive as decoherence is the
main enemy of quantum computing, because it destroys the quantum nature of the
computation and hence the source of the advantage over classical computing. However,
in very special cases, some engineered decoherence assisting the quantum evolution
can indeed be beneficial. I discuss two such examples in this thesis: In chapter II , it
is shown how to simulate so-called quantum stochastic walks on a quantum computer.
In this case, engineered decoherence provides the option of directional walks. Here, it
is implemented via a special measurement and feed-forward scheme. In chapter III, I
outline hybrid quantum-classical annealing. Here, the ansatz is to engineer decoherence
on top of standard ground state quantum annealing to increase the probability to find
the ground state of the target Hamiltonian.

2 Quantum Information

As mentioned in the previous section, the development of a functional quantum com-
puter is a central research goal these days. In this section, I review the basics of
quantum mechanics needed to understand the working principle of a quantum com-
puter [8]. Afterwards, I outline the general concepts like quantum bits (qubits) and
quantum gates for quantum information. Finally, I review the DiVincenzo criteria for
scalable quantum computing [27].

2.1 Postulates of Quantum Mechanics

The paradigms of quantum mechanics can be found in many textbooks [28, 29]. Here,
I review the basic terms and postulates.

The quantum state of a quantum system is described by a complex vector |ψ〉 ∈ H
of unit norm in a Hilbert space H = C

d and d ∈ N ∪ {∞} covering all the possible
states of the quantum system1. The adjoint |ψ〉† is denoted by 〈ψ| and as the vector
has unit norm 〈ψ|ψ〉 = 1. Let |ξ〉 ∈ H be another quantum state, then the square of
the absolute value of the scalar product |〈ξ|ψ〉|2 describes the probability to find the
quantum system in state |ξ〉 given a state |ψ〉. Note that the scalar product 〈·|·〉 in
physics is defined as linear in the second argument and antilinear in the first argument.

An observable in quantum mechanics is represented by a Hermitian operator Ô
acting on the Hilbert space H. If H is finite dimensional, this implies Ô = Ô†. This
property guarantees the eigenvalues of Ô are real and hence, we refer these eigenvalues
as the possible measurement results if one measures Ô. The most important operator
in this context is the Hamiltonian Ĥ. It represents the energy of the quantum system
and generates its time-evolution according to Schrödinger’s equation

i~
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉 (1.1)

1In quantum information theory, the Hilbert space dimensions are typically finite.
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with Planck’s constant ~ = h/2π. Note that Ĥ can itself be time-dependent. The
formal solution of equation (1.1) reads

|ψ(t)〉 = T̂ exp

(

− i

~

∫ t

0
Ĥ(s)ds

)

|ψ(0)〉 =: Û(t, 0)|ψ(0)〉. (1.2)

Here, the operator T̂ denotes time-ordering to ensure causality. The operator Û(t, 0)
is called the propagator of the quantum system. It is a unitary operator and therefore,
it satisfies Û †Û = Î with the identity Î.

If we couple a quantum system described by Hilbert space H1 to another decribed
by H2, the Hilbert space decribing the combined system is given by the product space
H = H1 ⊗H2. Its dimension equals

dim(H) = dim(H1) · dim(H2). (1.3)

Hence, if we couple N identical d-dimensional quantem systems to each other, the joint
Hilbert space dimension then equals dN . As pointed out in section 1, this exponential
growth of the Hilbert space dimension with the number of couples quantum systems
is the resource to exploit in quantum computers.

Equation (1.1) describes the evolution of a closed quantum system. Therefore, it
is only truely valid if the quantum system of interest is completely decoupled from
its environment. However, this will never be the case in a real-life laboratory as the
quantum system has at least to couple to its measurement apparatus. Therefore, the
unitary time-evolution (1.2) is only true for the combined system of the quantum
system under interest and its environment. Hence, the time-evolution of the quantum
subsystem only will not be unitary in general. We are going to discuss the theory of
open quantum systems in section 3.

The quantum measurement represents an important example for open quantum
system evolution as measurements are made by a controled coupling between the
quantum system and its measurement apparatus. Therefore, measurements break the
unitary time-evolution in general. Nevertheless, the founders of quantum mechanics
included measurements in the closed quantum system description via the concept of
projective measurements [30]. In this context, every measurement is described by a
set of measurement operators {M̂k} which satisfy the completeness relation

∑

k

M̂ †
kM̂k = Î. (1.4)

These measurement operators are projective and act on the Hilbert space of the system
being measured. The possible measurement results are represented by the index k.
Let |ψ〉 be the current state of the quantum system. The probability P (k) to observe
the result k is then given by

P (k) = 〈ψ|M̂ †
kM̂k|ψ〉. (1.5)

If k is measured, the state vector after the measurement equals

M̂k|ψ〉
√

〈ψ|M̂ †
kM̂k|ψ〉

(1.6)

where the scaling factor guarantees that the resulting state vector has unit norm.
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2.2 Entanglement

Entanglement is one of the most counter-intuitive concepts of quantum mechanics.
Even Albert Einstein was struggling with it [31]. Nevertheless, the existence of entan-
glement has been shown many times by violating Bell’s inequalities [32, 33, 34, 35].
In the context of quantum information, entanglement is treated as one of main ingre-
dients to reach an quantum advantage over classical computers, although there is no
proof yet that entanglement is necessary for it.

To define entanglement it is convenient to define its opposite first. Let H =
HA⊗HB be the Hilbert space of a composite quantum system consisting of subsystems
A and B. A quantum state |ψ〉 is called a product state if and only if it can be written
as |ψ〉 = |ψ〉A ⊗ |ψ〉B where |ψ〉A ∈ HA and |ψ〉B ∈ HB. If this is not possible, then
|ψ〉 is called entangled.

For example, we consider two coupled spin- 12 particles. Each of the particles
has two natural eigenstates "spin up" |↑〉1/2 and "spin down" |↓〉1/2. Therefore, the

Hilbert space describing the two spin- 12 particles is spanned by the four basic states
|↑↑〉 , |↑↓〉 , |↓↑〉 and |↓↓〉. Here, we used the short notation |ss′〉 := |s〉1 ⊗ |s′〉2 for
s, s′ ∈ {↑, ↓}. The symmetric superpostion of all the four basis states is not entangled
as it can be written as a product state

1

2
(|↑↑〉+ |↑↓〉+ |↓↑〉+ |↓↓〉) =

(
1√
2
(|↑〉1 + |↓〉1)

)

⊗
(

1√
2
(|↑〉2 + |↓〉2)

)

. (1.7)

In contrast, the quantum state

1√
2
(|↑↑〉+ |↓↓〉) (1.8)

is entangled. The state (1.8) is one of the famous Bell states.

2.3 Qubits and Quantum Gates

The basic abstract building block of a classical computer is the bit. It takes either the
values "0" or "1". A bit is typically realized by a transistor, which can be switched
between conductive or non-conductive. In a quantum computer, the bit is replaced
by a quantum bit (qubit) [8]. In contrast to its classical counterpart, the qubit has
two basis states |0〉 and |1〉 which span a two-dimensional Hilbert space H. Hence, an
arbitrary quantum state of the qubit can be written in the form

|ψ〉 = α|0〉+ β|1〉 (1.9)

with coefficients α, β ∈ C such that |α|2 + |β|2 = 1 due to normalization. In polar
coordinates, equation (1.9) can be rewritten as

|ψ〉 = eiγ
(

cos

(
θ

2

)

|0〉+ eiϕ sin

(
θ

2

)

|1〉
)

(1.10)

with γ, θ, ϕ ∈ R. The global phase eiγ is irrelevant because it never affects any
measurement probabilities. Therefore, without loss of generality, we fix γ := 0. The
two quantities θ and ϕ can be interpreted as the polar and azimuthal angle of a unit
sphere, which is called the Bloch sphere (see figure 1.1). In Cartesian representation,
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Figure 1.1: Illustration of the qubit state |ψ〉 as a vector on the
Bloch sphere. It is fully determined by the polar angles θ and ϕ.

the quantum state |ψ〉 is given by the vector

|ψ〉 =





sin θ cosϕ
sin θ sinϕ

cos θ



 . (1.11)

In classical computing there are only two possible gates on a single bit: the identity,
0/1 → 0/1, and the negation, 0/1 → 1/0. In quantum computing, this situation
changes dramatically. For each initial and each target qubit state |ψ〉 respectively |ϕ〉,
there exists a rotation of the Bloch sphere R̂ which maps |ψ〉 to |ϕ〉. As quantum
mechanics predicts unitary time-evolution, and rotations are unitary in general, each
rotation of the Bloch sphere is a valid quantum gate. Therefore, the set of possible
quantum gates even for a single qubit is infinite as the set of initial and target states
is uncountable.

To build a useful quantum computer, it is not enough to study single-qubit rota-
tions. Analogously to classical computing, we need a qubit register out of N qubits and
we need the ability to apply multi-qubit gates between different qubits. However, it can
be shown that it is sufficient to be able to implement a single arbitrary maximally en-
tangling two-qubit gate in addition to arbitrary single-qubit gates to build a universal
quantum computer [36]. This means, any unitary transformation on the multi-qubit
register can be realized by this basic set of quantum gates. Which two-qubit en-
tangling gate is used in practice depends on the chosen qubit hardware. The most
commonly used ones are the controled-not-gate (CNOT) and the controled-phase-gate
(CPHASE). Represented in the standard basis {|00〉 , |01〉 , |10〉 , |11〉}, these gates are
given by the matrices

CNOT =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







and CPHASE =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1






. (1.12)

As we have seen in section 2.1, the Hilbert space of the N -qubit register has dimen-
sion 2N . The exponential growth with the number of qubits causes the simulation of an
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all-to-all connected multi-qubit system to be intractable for classical supercomputers
even for qubit numbers about N ≈ 50. In 2019, Google reached quantum supremacy:
they built the first quantum computer which can not be simulated with the world’s
largest supercomputers [37, 38]. Although useless for practical applications, this step
was a synthetic benchmark in the development of quantum computers.

2.4 Quantum Algorithms

Running quantum algorithms is the core motivation to engineer a quantum computer.
The most famous quantum algorithms so far are Shor’s algorithm for prime factoriza-
tion of large integers [39] and Grover’s algorithm for unsorted database search [40].
The latter is proven to have a quadratical speed-up against any classical algorithm.
Shor’s algorithm finds the prime factorization in polynomial time in contrast to the
best known classical algortihm which needs exponential time. However, there is no
proof about speed-up yet, as it is not clear if there is no better classical algorithm
for factorization which is not known. Both algorithms are on high importance on
cryptoanalysis [11].

However, implementing Shor’s and Grover’s algorithms on an actual device is still
far outside reach in current technology. This is due to the huge required overhead in
the number of qubits and quantum gates as a consequence of unavoidable quantum
error correction [41, 42, 43]. Hence, in the near future, applications will be limited
to so-called intermediate scale quantum (NISQ) devices [44]. At this stage of devel-
opment, these devices are supposed to being used for very specific applications like
quantum simulation of quantum chemistry, material science or quantum transport
[45, 46, 47, 48, 49].

2.5 DiVincenzo Criteria

In the previous sections the basics of quantum information theory like entanglement,
qubits and gates have been introduced. However, in order to build a functional quan-
tum computer, it is necessary to translate this abstract logic into physical hardware.
In 2000, David DiVincenzo presented five qualitative criteria in order to successfully
implement quantum algorithms on an experimental platform [27]. I briefly review
these criteria:

1. A scalable physical system with well characterized qubits : A qubit is realized by a
quantum mechanical two-level system which has to be "well characterized": The
states should be well separated by an energy gap and the qubit’s parameters
should be accurately known to perform single and multi-qubit gates. During
the whole run-time of the quantum algorithm, the system should not leak out of
the two-level subspace. Furthermore, the qubit system has to be scalable. This
means that one has to be able to build a large qubit register and couple these
qubits together while not losing the adressability of the single qubits.

2. The ability to initialize the state of the qubits to a simple fiducial state: Any
computer maps an input to an output. Hence, quantum algorithms always begin
with some initial state, which has to be prepared deterministicly. A convenient
choice is to represent the logical |0〉-state by the ground state of the qubit
which can be prepared by waiting a multiple of the relaxation time of the qubit.
However, this process is too slow if one needs deterministic qubit reset during
the run-time of the algorithm. A fast reset can be implemented by projective
measurements.
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3. Long relevant coherence times : The performance of the qubits will always be
infected by the interaction with their environment. This interaction induces
decoherence transferring the quantum state into a classical one (see section 3).
The time this process takes is called decoherence time and it limits the gate and
measurement times. In most experimental platforms, the decoherence times
are rather small which makes active error correction schemes crucial to reduce
the computational errors to a reasonable threshold. Unfortunately, these error
correction schemes require a significant overhead in the number of qubits and
quantum gates.

4. Universal set of gates : As mentioned in section 2.3, it is necessary to be able to
perform arbitrary single-qubit rotations on the Bloch sphere and to implement
one maximally entangling two-qubit gate to run arbitrary quantum algorithms.
These operations have to be implemented deterministicly with very high fideli-
ties.

5. Qubit specific measurement capability : At the end of the quantum algorithm, it
is necessary to measure the state of the qubit register with high fidelity to extract
the output of the computation and hence, to find an answer to the problem the
algorithm is supposed to solve. This qubit readout has to be fast compared to
the decoherence rates of the quantum system.

These criteria are of qualitative nature and were established for the gate-based model.
A quantitative statement will always depend on the chosen hardware. Moreover, the
criteria will slightly change in the regard of alternative models like quantum annealing.
However, it is reasonable to treat these criteria as a guideline for quantum hardware
development.

3 Open Quantum Systems

In the theory of open quantum systems, it is well-known that the coupling between
a quantum system and its environment leads to decoherence. Decoherence transfers
quantum states into classical ones. It destroys quantum superpositions. Therefore, it
is crucial to isolate the qubits very well from environmental disturbances according
to DiVincenzo’s criterion 3. However, the criteria 2, 4 and 5 rely on the coupling be-
tween the quantum system and some control electronics respectively its measurement
apparatus. These requirements lead to an unavoidable trade-off between coherence
and controllability. Therefore, a quantum computer can not be treated as a closed
quantum system in practice.

The theory of open quantum systems is a very agile research field on its own
since decades. Open quantum systems are hard to simulate on classical computers
in general. Equations of motion, which can be solved on classical computers, can
usually be derived under strong approximations only. In this section, I review the
basic concepts first. In the next step, I assemble a toolbox of different methods
(i.e. several quantum master equations and path integral methods) and compare
their applicability. For further reading on the theroy of open quantum systems, I
recommend the textbook written by H.-P. Breuer and F. Petruccione [50].

3.1 Preliminaries

In quantum mechanics of closed systems, the quantum state of a quantum system is
described by a vector |ψ〉 ∈ H in a Hilbert space H and its dynamics is determined
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by Schrödinger’s equation (see section 2.1). For closed quantum systems, this is a
valid description. However, in real-life experiments, the quantum system of interest
will unavoidably be coupled to its environment. Therefore, the composite system
consisting of quantum system and its environment will follow closed-system dynamics,
but not the quantum system on its own. The degrees of freedom of the environment
are typically unknown, uncontrolled and their number might be infinite. Hence, the
simulation of the full closed-system dynamics of quantum system and its environment
is usually intractable. Nevertheless, as we are only interested in the time evolution of
the quantum system only rather than the dynamics of the environment, it is possible
to derive effective equations of motion for the system. To do so, it is necessary to
have some stochastic knowledge of the environment to simulate its influence onto the
system. It is convenient to treat the environment as a heat bath in thermal equilibrium
at temperature T .

In the following, we refer HS as the Hilbert space attached to the quantum system
and HB as the Hilbert space attached to the heat bath. The time-evolution of the
state |ψ〉 ∈ HS ⊗ HB is given by Schrödinger’s equation (1.1). The Hamiltonian Ĥ
can be written as the sum

Ĥ = ĤS ⊗ ÎB + ÎS ⊗ ĤB + Ĥint. (1.13)

Here, the Hamiltonians ĤS/B and the identities ÎS/B act only on HS/B. To shorten
the notation, we will neglect the tensor products in the identities in the following.

The actual quantum state |ψ(t)〉 of the composite system will not be known in
detail, because we assume the microscopic bath degrees of freedom to be unknown.
Let {|ψi(t)〉 ∈ H = HS ⊗HB} be a (not necessarily orthogonal) set of possible states
with corresponding classical probabilities pi. We define the Hermitian operator

ρ̂(t) =
∑

i

pi|ψi(t)〉〈ψi(t)|. (1.14)

If we differentiate equation (1.14) with respect to time and make use of the fact that
each of the |ψi(t)〉 follows Schrödinger’s equation (1.1), we find the equation of motion

˙̂ρ(t) = − i

~

[

Ĥ(t), ρ̂(t)
]

. (1.15)

Here, we defined the commutator of two operators [Â, B̂] := ÂB̂ − B̂Â. Equation
(1.15) is called the Liouville-Von Neumann equation. It is the quantum mechanical
analogue to the Liouville equation in classical mechanics with the operator ρ̂ taking
the role of the classical probability density function. Therefore, the operator ρ̂ is
called the density operator or density matrix. If ρ̂ is diagonal, it is equivalent to a
classical probability distribution.

3.2 Density Matrices and Partial Trace

The Liouville-Von Neumann equation (1.15) gives the exact quantum dynamics for
the density matrix (1.14). We rediscover Schrödinger’s equation (1.1) in the special
case ρ̂ = |ψ〉〈ψ| for some |ψ〉 ∈ H. Hence, the Liouville-Von Neumann equation is the
generalization of Schrödinger’s equation to statistical ensembles of quantum states,
described by a density matrix ρ̂. If the ensemble includes only a single quantum state
ρ̂ = |ψ〉〈ψ|, then we refer ρ̂ to be a pure state and a mixed state, otherwise. Obviously,
its representation (1.14) is not unique. We postulate the three properties
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1. ρ̂ = ρ̂† (ρ̂ is Hermitian)

2. ∀|ψ〉 ∈ H : 〈ψ|ρ̂|ψ〉 ≥ 0 (ρ̂ is positive semi-definite)

3. Tr (ρ̂) = 1 (trace is normalized).

These properties guarantee that the eigenvalus of ρ̂ are

1. real,

2. positive,

3. and they add up to 1.

Hence, the eigenvalues of ρ̂ can be treated as probabilities. Obviously, any operator
written in the form (1.14) satisfies these postulates. Conversely, each operator which
satisfies the postulates can be written in the form (1.14) by chosing a specific basis.
Hence, both ways to define a density matrix are equivalent.

Let Ô be an arbitrary observable and {|ψi〉 ∈ H} a complete set of possible states
with corresponding probabilities pi. The expectation value of Ô then reads

〈Ô〉 =
∑

i

pi〈ψi|Ô|ψi〉 =
∑

i

piTr
(

|ψi〉〈ψi|Ô
)

= Tr
(

=ρ̂
︷ ︸︸ ︷
∑

i

pi|ψi〉〈ψi| Ô
)

. (1.16)

Hence, we can compute the expectaion value of any observable Ô via 〈Ô〉 = Tr
(

ρ̂Ô
)

if the density matrix ρ̂ is known. This property jusitfies to identify the density matrix
with the quantum state of the ensemble.

Now, let ρ̂AB denote the density matrix of a composite quantum system consisting
of subsystems A and B. For example, A could be the quantum system of interest and
B its environment. In this case, it is obvious that we need a mathematical operation
that maps the density matrix ρ̂AB of the composite system uniquely to the reduced
density matrix ρ̂A of the system of interest. Crucially, this map has to preserve the
postulates of density matrices. The map which satisfies these conditions is the partial
trace. Let ÔAB be an operator acting on the composite system which can be written
as a product ÔAB = ÔA ⊗ ÔB, then the partial trace over the subsystem B is defined
as

TrB

(

ÔA ⊗ ÔB

)

:= Tr
(

ÔB

)

· ÔA. (1.17)

For the density matrix ρ̂A ⊗ ρ̂B this gives

TrB (ρ̂A ⊗ ρ̂B) = Tr (ρ̂B) · ρ̂A = ρ̂A (1.18)

as the trace of the density matrix ρ̂B equals 1 due to normilization. The physical
interpretation of equation (1.18) is the following: If the systems A and B separate,
then tracing out system B has no impact on system A (and vice versa). Hence, A and
B are uncorrelated.

The partial trace is a linear map by definition (1.17). Using this and the fact, that
every operator ÔAB has a representation in the form

ÔAB =
∑

i

Ô
(i)
A ⊗ Ô

(i)
B , (1.19)
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the partial trace generalizes to

TrB

(

ÔAB

)

= TrB

(
∑

i

Ô
(i)
A ⊗ Ô

(i)
B

)

:=
∑

i

Tr
(

Ô
(i)
B

)

· Ô(i)
A . (1.20)

Applying the partial trace over the heat bath to the Liouville-Von Neumann equation
(1.15), one obtains the exact equation of motion for the reduced density matrix ρ̂S(t)

˙̂ρS(t) = − i

~
TrB

([

Ĥ(t), ρ̂(t)
])

. (1.21)

In the following, we set ~ := 1.

3.3 Entropy

One of the key concepts in the field of open quantum systems is the Von-Neumann
entropy S. It is defined as the functional

S (ρ̂) := −Tr (ρ̂ log (ρ̂)) (1.22)

on the density matrix ρ̂. The definition (1.22) generalizes the classical entropy to
the quantum case. It somehow measures the amount (or more precisely the absence)
of information one has about a quantum system described by the density matrix ρ̂.
There is a huge research field regarding Von-Neumann entropy. Here, we only review
a few crucial properties:

1. The Von-Neumann entropy is nonegative: S (ρ̂) ≥ 0 for all ρ̂ and S (ρ̂) = 0 if
and only if ρ̂ = |ψ〉〈ψ| is a pure state.

2. Let B(H) denote the operator algebra of bounded operators acting on a Hilbert
space H. If dim(H) = d, then S (ρ̂) ≤ log(d) for all ρ̂ ∈ B(H). The maximal
value is reached if and only if ρ̂ = 1

d Î.

3. For all ρ̂AB ∈ B (HA ⊗HB), the Von-Neumann entropy is subadditive: S (ρ̂AB) ≤
S (ρ̂A) +S (ρ̂B). Equality holds if and only if ρ̂AB = ρ̂A ⊗ ρ̂B is a product state.

For further details, see [8].
The Liouville-Von-Neumann equation (1.15) keeps Von-Neumann entropy constant

as

S (ρ̂(t)) = S
(

Û(t, 0)ρ̂(0)Û †(t, 0)
)

= −Tr
(

Û(t, 0)ρ̂(0)Û †(t, 0)Û(t, 0) log (ρ̂(0)) Û †(t, 0)
)

= −Tr (ρ̂(0) log (ρ̂(0))) = S (ρ̂(0)) . (1.23)

Hence, the entropy of a system following closed system dynamics stays constant.
Therefore, any change of entropy in the system has to result from its interaction with
unobserved degrees of freedom of its environment. In other words, decoherence of the
system can only be induced by environmentally driven dynamics.

3.4 Quantum Channels

A linear map E : B(H) −→ B(H) is called positive, if it maps positive semi-definite
operators onto positive semi-definite operators. It is called completely positive if for
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all k ≥ 1 the amplification map

E(k) : Mk (B(H)) −→ Mk (B(H))

E(k) := Îk ⊗ E (1.24)

is positive. Here, Mk (B(H)) denotes the k2-dimensional matrix algebra with matrix
entries in B(H).

Quantum channels are linear, completely positive and trace-preserving maps. These
properties guarantee that quantum channels map density matrices to density matri-
ces and hence, physical states to physical states. They are important to study the
dynamics of open quantum systems. Here, we briefly review the basic terms and con-
cepts. For the mathematical details including rigorous definitions, theorems and their
proofs, I recommend the review [51].

Let dim(H) = N , N ∈ N, and let E : B(H) −→ B(H) be a linear, completely
positive map. Then E can be represented as

E(ρ̂) =
N2
∑

i=1

Âiρ̂Â
†
i ∀ρ̂ ∈ B(H). (1.25)

This representation is called Kraus decomposition and the operators Âi ∈ B(H) are
called Kraus operators. If and only if E is a quantum channel (it preserves additionally
the trace), then the Âi satisfy the completeness condition

N2
∑

i=1

Â†
i Âi = Î. (1.26)

The choice of the operators Âi is not unique and their number can be smaller than
N2. For dim(H) = 2, any quantum channel E can be represented using the Pauli spin
matrices Î, σ̂x, σ̂y and σ̂z as Kraus operators. For example, the depolarizing channel
is given by

ρ̂→ ρ̂′ = (1− p)ρ̂+
p

3
(σ̂xρ̂σ̂x + σ̂yρ̂σ̂y + σ̂zρ̂σ̂z) (1.27)

with p ∈ [0, 1]. It describes a simple error model: With probability p one of three
equally likely errors accurs and changes the qubit state. With probability 1 − p, no
error accurs.

3.5 Quantum Dynamical Maps

If we assume that for time t = 0, the initial density matrix of the total system is given
by a product state

ρ̂(0) = ρ̂S(0)⊗ ρ̂B(0), (1.28)

where ρ̂S/B(t) := TrS/B (ρ̂(t)), then the state evolution of the reduced density matrix
ρ̂S(0) can be expressed with the help of a quantum dynamical map Vt : B(HS) −→
B(HS) such that

ρ̂S(0) 7→ ρ̂S(t) = Vtρ̂S(0) ∀t ≥ 0. (1.29)
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Figure 1.2: Commutative diagramm to illustrate the definition of
the quantum dynamical map Vt.

Its defintion is illustrated in the commutative diagram 1.2. The map Vt is a one-
parameter family of completely positive and trace preserving maps. Hence, Vt can
be written in Kraus decompostion (1.25) for all t > 0 and dim(HS) = d using time-
dependent Kraus operators

ρ̂S(t) = Vtρ̂S(0) =
d2∑

i=1

Âi(t)ρ̂S(0)Â
†
i (t). (1.30)

In many cases, correlations between environmental degrees of freedom decay fast
compared to the characteristic time-scales of the system, such that it is valid to neglect
memory effects in the reduced system dynamics. This Markovian approximation can
be formulated by the semigroup property

Vt1+t2 = Vt1Vt2 ∀t1, t2 ≥ 0. (1.31)

If this semigroup property (1.31) holds, then there is a generator L of the semigroup
such that

Vt = exp(Lt). (1.32)

For further details regarding quantum dynamical semigroups I refer the reader to the
textbook [26].

3.6 The Lindblad Master Equation

In the following, we derive the most general form of a completely positive and trace-
preserving master equation called the Lindblad master equation named after G. Lind-
blad [52]. For simplicity, we consider a finite dimensional Hilbert space HS with
dim (HS) = d.

Using the semigroup property (1.31) and expressing the quantum dynamical map
V(∆t) via equation (1.32), the reduced density matrix ρ̂S(t+∆t) equals

ρ̂S(t+∆t) = V∆tρ̂S(t) = exp(L∆t)ρ̂S(t). (1.33)

Expanding the exponential in equation (1.33) up to first order gives

ρ̂S(t+∆t)− ρ̂S(t) = ∆tLρ̂S(t) +O
(
∆t2

)
. (1.34)

In the limit ∆t→ 0, equation (1.34) leads to the Markovian master equation

d

dt
ρ̂S(t) = Lρ̂S(t). (1.35)
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Now we derive the general form of the generator L. Let {Êj |1 ≤ j ≤ d2} be an
orthonormal basis of the d2-dimensional algebra B(HS) of the operators acting on the
d-dimensional Hilbert space HS satisfying1

Tr
(

Ê†
i Êj

)

= δij . (1.36)

Without loss of generality, we choose Êd2 = 1√
d
Î. This choice forces all the other

operators to be traceless. As any operator in B(HS) can be expressed in terms of the
operators Êj , so can the Kraus operators in equation (1.30). We hence find

V∆tρ̂S(t) =
d2∑

i,j=1

cij(∆t)Êiρ̂S(t)Ê
†
j (1.37)

with coefficient functions cij(∆t). Equation (1.37) will now be used to find an expres-
sion for the generator. After some algebra we find

Lρ̂S(t) = lim
∆t→0

V∆tρ̂S(t)− ρ̂S(t)

∆t

= c(0)ρ̂S(t) + Ôρ̂S(t) + ρ̂S(t)Ô
† +

d2−1∑

i,j=1

αijÊiρ̂S(t)Ê
†
j

= −i
[

Ĥ, ρ̂S(t)
]

+
{

Ĝ, ρ̂S(t)
}

+
d2−1∑

i,j=1

αijÊiρ̂S(t)Ê
†
j , (1.38)

where

c(0) := lim
∆t→0

1
dcd2d2(∆t)− 1

∆t
, (1.39)

αij := lim
∆t→0

cij(∆t)

∆t
, (1.40)

Ô :=

d2−1∑

j=1

1√
d
αd2jÊ

†
j , (1.41)

Ĝ :=
1

2

(

Ô + Ô† + c(0)Î
)

, (1.42)

Ĥ := − i

2

(

Ô − Ô†
)

. (1.43)

The operator Lρ̂S(t) is traceless, because

0 =
d

dt
1 =

d

dt
Tr (ρ̂S(t)) = Tr

(
d

dt
ρ̂S(t)

)

= Tr (Lρ̂S(t)) . (1.44)

If we take the trace over equation (1.38) and we find by equation (1.44) that

Ĝ = −1

2

d2−1∑

i,j=1

αijÊ
†
j Êi, (1.45)

1For operators Ô1, Ô2 ∈ B(HS), the map Tr
(

Ô
†
2Ô1

)

defines the scalar product on B(HS).
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and hence

Lρ̂S(t) = −i
[

Ĥ, ρ̂S(t)
]

+

d2−1∑

i,j=1

αij

(

Êiρ̂S(t)Ê
†
j −

1

2

{

Ê†
j Êi, ρ̂S(t)

})

. (1.46)

Equation (1.46) is called the first standard form of the generator L. The coefficient

matrix (αij)
d2−1
i,j=1 is positive semidefinite and can be diagonalized with the help of a

unitary transformation û satisfying

û (αij)
d2−1
i,j=1 û

† = diag (γ1, . . . , γd2−1) . (1.47)

If we define the Lindblad operaors L̂k as

L̂k :=

d2−1∑

j=1

Êj û
†
jk, (1.48)

we find the second standard form or Lindblad form of the generator

Lρ̂S(t) = −i
[

Ĥ, ρ̂S(t)
]

+
d2−1∑

k=1

γk

(

L̂kρ̂S(t)L̂
†
k −

1

2

{

L̂†
kL̂k, ρ̂S(t)

})

. (1.49)

If we insert equation (1.49) into the master equation (1.35) we reach the Lindblad
master equation

d

dt
ρ̂S(t) = −i

[

Ĥ, ρ̂S(t)
]

+
d2−1∑

k=1

γk

(

L̂kρ̂S(t)L̂
†
k −

1

2

{

L̂†
kL̂k, ρ̂S(t)

})

. (1.50)

The Lindblad master equation (1.50) is the most general form of a completely posi-
tive and trace-preserving master equation. In other words, any master equation which
guarantees to map density matrices to density matrices1 can be written in Lindblad
form. The generator L is fully determined by a unitary part, generated by the Hermi-
tian operator Ĥ, and a dissipative part given by d2 − 1 Lindblad operators L̂k. Their
choice is not unique, because the Lindblad master equation (1.50) is invariant under
two kinds of transformations:

• L̂k →∑

j V̂klL̂j with a unitary matrix V̂ .

• L̂k → L̂k + lk Î and Ĥ → Ĥ + 1
2i

∑

j γj

(

l∗l L̂j − ljL̂
†
j

)

+ m where lk ∈ C and

m ∈ R.

Therefore, the Hermitian operator Ĥ(t) is not necessarily the system Hamiltonian.
But it will be in typical cases of interest. Further, we rediscover the Liouville-Von
Neumann equation (1.15) as a special case of equation (1.50) with vanishing Lindblad
operators. Hence, the Liouville-Von Neumann equation is a completely positive and
trace-preserving master equation too. However, the Lindblad master equation does
not keep entropy constant and does not conserve energy in general. The second part
of equation (1.50) is suitably called the dissipator D (ρ̂S(t)).

1And hence physically meaningful states to physically meaningful states!
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3.7 The Redfield Master Equation

In section 3.6, we have shown that any completely positive and trace-preserving master
equation can be written in Lindblad form (1.50). However, it is not clear how to derive
the concrete master equation of an open quantum system based on a microscopic
model at this stage. In other words, given a concrete open quantum system, how
do we find the corresponding Lindblad operators L̂k? In this section, we review
the standard steps and approximations that lead to the Redfield master equation1.
Its derivation is an intermediate step to reach Lindblad form and hence, it is not
completely positive and trace-preserving in general. Nevertheless, the Redfield master
equation is a useful tool to simulate open quantum system dynamics as long as the
positivity of the density matrx is preseved. If applicable, the Redfield master equation
is more accurate as the Lindblad equation as it needs one questionable approximation
less. A complete description can be found in [26].

We start the derivation with the system-bath Hamiltonian (1.13)

Ĥ = ĤS + ĤB + Ĥint, (1.51)

where the interaction Hamiltonian Ĥint can always be written as

Ĥint =
∑

j

Ŝj ⊗ B̂j (1.52)

using proper Hermitian operators Ŝj and B̂j only acting on the system respectively
the bath. The time evolution of the total density matrix follows the Liouville-Von-
Neumann equation (1.15). It is convenient to transform it to the interaction picture
with respect to Ĥ0 := ĤS + ĤB

2. We find

˙̂ρint(t) = −i
[

Ĥint(t), ρ̂int(t)
]

. (1.53)

To shorten the notation, we drop the index ρ̂int(t) → ρ̂(t) in the following. The
integral form of equation (1.53) reads

ρ̂(t) = ρ̂(0)− i

∫ t

0

[

Ĥint(s), ρ̂(s)
]

ds. (1.54)

Inserting equation (1.54) into equation (1.53) and taking the partial trace over the
bath we get the integro-differential equation

˙̂ρS(t) = −iTrB
[

Ĥint(t), ρ̂(0)
]

−
∫ t

0
TrB

[

Ĥint(t),
[

Ĥint(s), ρ̂(s)
]]

ds. (1.55)

This exact equation is equivalent to equation (1.21). In the thermodynamic equi-
librium, we can assume that the expectation value of the bath operators 〈B̂j(t)〉 =

TrB

[

B̂j(t)ρ̂(0)
]

= 0 vanishes for all j without loss of generality. In consequence, the

inhomogenious term in equation (1.55) vanishes.
Equation (1.55) is at least very hard or even impossible to solve as it contains

the knowledge of the full density matrix ρ̂(s) at all times 0 ≤ s ≤ t. In order
to eliminate ρ̂(s) inside the integral, we first perform an approximation called the

1For qubits, the Redfield master equation is typically called the Bloch-Redfield master equation.
2Indeed, the transformation to the interaction picture is crucial to perfom the Markov approxi-

mation later on.
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Born approximation. This approximation relies on the assumption that the coupling
between the system and the heat bath is weak. Hence, the influence of the system on
the heat bath is negligibly small such that the density matrix ρ̂B := ρ̂B(0) is stationary
for all times 0 ≤ s ≤ t and the total density matrix can be approximated by a product
state

ρ̂(s) ≈ ρ̂S(s)⊗ ρ̂B. (1.56)

Thus, equation (1.55) can be approximated by

˙̂ρS(t) = −
∫ t

0
TrB

[

Ĥint(t),
[

Ĥint(s), ρ̂S(s)⊗ ρ̂B

]]

ds. (1.57)

Equation (1.57) is still hard to solve as it contains a time-convolution. In order
to get rid of this, we perform the Markov approximation. Here, we assume that
environmental excitations decay very fast against all system dynamics such that, on a
coarse-grained time scale, we can replace ρ̂S(s) inside the integral by the instantaneous
value ρ̂S(t). In other words, the Markov approximation neglects memory effects. It
yields

˙̂ρS(t) = −
∫ t

0
TrB

[

Ĥint(t),
[

Ĥint(s), ρ̂S(t)⊗ ρ̂B

]]

ds. (1.58)

Equation (1.58) is the Redfield master equation [53]. It is local in time but not com-
pletely Markovian, because the time evolution of the reduced density matrix depends
on the initial preparation at time t = 0. Nevertheless, it is possible to make it Marko-
vian by applying a further approximation. Be τB the time scale over which the bath
correlation functions decay (see section 3.8 for further information). If we substitute
s in equation (1.58) by t− s and let the upper limit of the integral go to infinity, we
achieve the Markovian master equation

˙̂ρS(t) = −
∫ ∞

0
TrB

[

Ĥint(t),
[

Ĥint(t− s), ρ̂S(t)⊗ ρ̂B

]]

ds. (1.59)

This approximation is valid if the integrand vanishes sufficiently fast for s > τB.
In other words, equation (1.59) describes the time evolution of the reduced density
matrix on a coarse-grained time scale.

Equation (1.59) can not be written in Lindblad form (1.50) and hence, it does not
guarantee to preserve the properties of density matrices at all times. Particularly, it
does not preserve positivity in general. Nevertheless, it is possible to derive a master
equation in Lindblad form by applying a further approximation to equation (1.59)
called the secular approximation. However, a further approximation means further
inaccuracy of the resulting master equation and hence, the Redfield equation is more
precise than the corresponding Lindblad equation if it preserves positivity.

3.8 Bath Correlation Functions

As mentioned in section 3.2, every operator of a composite system has a representa-
tion given by equation (1.19). Hence, we can decompose the operator Ĥint(t) in the
integrand of equation (1.59) as

Ĥint(t) =
∑

k

gkŜk(t)⊗ B̂k(t) (1.60)
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with coupling strengths gk and appropriate Hermitian operators Ŝk(t) and B̂k(t) with
unit operator norm acting only on the system or the bath respectively. For simplicity,
we assume gk = g for all k. If we insert equation (1.60) into equation (1.59), we get

˙̂ρS(t) = −g2
∑

k,k′

∫ ∞

0

(

TrB

[

Ŝk(t)Ŝk′(t− s)ρ̂S(t)⊗ B̂k(t)B̂k′(t− s)ρ̂B

]

−TrB

[

Ŝk(t)ρ̂S(t)Ŝk′(t− s)⊗ B̂k(t)ρ̂BB̂k′(t− s)
]

+TrB

[

ρ̂S(t)Ŝk′(t− s)Ŝk(t)⊗ ρ̂BB̂k′(t− s)B̂k(t)
]

−TrB

[

Ŝk′(t− s)ρ̂S(t)Ŝk(t)⊗ B̂k′(t− s)ρ̂BB̂k(t)
] )

ds. (1.61)

Using the definition of the partial trace (1.20) as well as the cyclic property of the
trace we find

˙̂ρS(t) = −g2
∑

k,k′

∫ ∞

0

(

Tr
[

ρ̂BB̂k(t)B̂k′(t− s)
]

Ŝk(t)Ŝk′(t− s)ρ̂S(t)

−Tr
[

ρ̂BB̂k′(t− s)B̂k(t)
]

Ŝk(t)ρ̂S(t)Ŝk′(t− s)

+Tr
[

ρ̂BB̂k′(t− s)B̂k(t)
]

ρ̂S(t)Ŝk′(t− s)Ŝk(t)

−Tr
[

ρ̂BB̂k(t)B̂k′(t− s)
]

Ŝk′(t− s)ρ̂S(t)Ŝk(t)
)

ds. (1.62)

Regarding equation (1.62), we make the following observation: The influence of the
bath on the system appears only through the bath correlation functions

Bkk′(t, t− s) :=
〈

B̂k(t)B̂k′(t− s)
〉

= Tr
[

ρ̂BB̂k(t)B̂k′(t− s)
]

. (1.63)

As we assumed the density matrix of the heat bath ρ̂B to be stationary, the correlation
function

Bkk′(t, t− s) =
〈

B̂k(t)B̂k′(t− s)
〉

=
〈

B̂k(s)B̂k′(0)
〉

= Bkk′(s, 0) (1.64)

only depends on the time difference s and hence, we can drop the second argument
Bkk′(s) := Bkk′(s, 0). Then, equation (1.62) can be written in the form

˙̂ρS(t) = g2
∑

k,k′

∫ ∞

0
Bkk′(s)

(

Ŝk′(t− s)ρ̂S(t)Ŝk(t)− Ŝk(t)Ŝk′(t− s)ρ̂S(t)
)

ds+H.c.

(1.65)

where H.c. denotes the Hermitian conjugate of the first term. As mentioned in section
3.7, equation (1.59), and consequently equation (1.65), can not be written in Lindblad
form.

3.9 Quantum Adiabatic Markovian Master Equations

In many cases, the quantum system of interest undergoes an external drive which
causes its Hamiltonian ĤS = ĤS(t) to be time-dependent. There are different options
to tackle such problems like the time-dependent Redfield master equation or path inte-
gral methods (see sections 3.7 and 3.13). Here, I review a very useful master equation
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approach proposed by T. Albash et al. which relies on an adiabatic approximation
[54].

We assume the Hamiltonian Ĥ(t) of the total system formed by the time-dependent
quantum system of interest and its time-independent environment to be of the form

Ĥ(t) = ĤS(t) + ĤB + Ĥint (1.66)

with

Ĥint = g
∑

k

Ŝk ⊗ B̂k. (1.67)

The first steps of the derivation are similar to the derivation of the Redfield master
equation (1.58): We transform the Liouville-Von-Neumann equation (1.15) to inter-
action picture using the unitary

Û0(t, t
′) := ÛS(t, t

′)⊗ ÛB(t, t
′) = T̂ e−i

∫ t

t′
ĤS(s)ds ⊗ e−iĤBt (1.68)

and follow the same strategy as in section (3.7), we find equation (1.57)

˙̂ρI
S(t) = −

∫ t

0
TrB

[

ĤI
int(t),

[

ĤI
int(t− s), ρ̂S(t− s)⊗ ρ̂B

]]

ds. (1.69)

Here, the index I indicates the interaction picture1 and we substituted the variable s
by t− s. Inserting equation (1.67) into equation (1.69) we find after some algebra

˙̂ρI
S(t) = g2

∑

k,k′

∫ t

0

((

ŜI
k′(t− s)ρ̂I

S(t− s)ŜI
k(t)− ŜI

k(t)Ŝ
I
k′(t− s)ρ̂I

S(t− s)
)

Bkk′(s)

+
(

ŜI
k(t)ρ̂

I
S(t− s)ŜI

k′(t− s)− ρ̂I
S(t− s)ŜI

k′(t− s)ŜI
k(t)

)

Bk′k(s)
)

ds,

(1.70)

where Bkk′(s) denotes the bath correlation function defined in equation (1.63). Equa-
tion (1.70) looks similar to equation (1.65), but it is not as there was no Markovian
approximation made yet.

Now, we shall replace the operator ŜI
k′(t − s) = Û †

S(t − s, 0)Ŝk′ÛS(t − s, 0) by an
appropriate adiabatic approximation to take it in front of the integral. To do so, we
have to talk about the adiabatic limit first.

3.9.1 Adiabatic Limit

Let {|ǫa(t)〉} be the instantaneous eigenbasis of ĤS(t) with the corresponding eigen-
values ĤS(t)|ǫa(t)〉 = ǫa(t)|ǫa(t)〉 and Bohr frequencies ωba(t) = ǫb(t) − ǫa(t). The
unitary ÛS(t, t

′) follows the Schrödinger equation

i
∂

∂t
ÛS(t, t

′) = ĤS(t)ÛS(t, t
′)

=
∑

a

ǫa(t)|ǫa(t)〉〈ǫa(t)|ÛS(t, t
′). (1.71)

1We keep the index I this time to avoid confusion in the end.
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It can be written as the ideal adiabatic propagator Ûad
S (t, t′) plus an error term

ÛS(t, t
′) = Ûad

S (t, t′) +O
(

h

∆2tf

)

, (1.72)

where we introduced the definitions

Ûad
S (t, t′) :=

∑

a

|ǫa(t)〉〈ǫa(t)|e−iµa(t,t′), (1.73)

∆ := min
t∈[0,tf]

ǫ1(t)− ǫ0(t) (1.74)

µa(t, t
′) :=

∫ t

t′
ǫa(τ)− φa(τ)dτ (1.75)

φa(t) := i〈ǫa(t)|ǫ̇a(t)〉 (1.76)

h := max
τ∈[0,1]

a,b

∣
∣
∣
∣

〈

ǫa(τ)

∣
∣
∣
∣

∂

∂τ
ĤS(τ)

∣
∣
∣
∣
ǫb(τ)

〉∣
∣
∣
∣
. (1.77)

Here, ǫ0(t) and ǫ1(t) denote the energies of the instantaneous ground and first exited
state of ĤS(t) respectively. Additionally, we set the dimensionless time τ := t/tf,
where tf denotes the final time of the adiabatic time evolution1. In the following, we
derive equation (1.72). First, we define the adiabatic intertwiner Ŵ (t, t′) by

Ŵ (t, t′) :=
∑

a

|ǫa(t)〉〈ǫa(t)| = T̂ exp

[

−i
∫ t

t′
K̂(s)ds

]

(1.78)

and the adiabatic Hamiltonian

K̂(t) := i

[
∂

∂t
Ŵ (t, t′)

]

Ŵ †(t, t′) = i
∑

a

|ǫ̇a(t)〉〈ǫa(t)|. (1.79)

To extract the geometric phase we define further

ĤG(t) :=
∑

a

φa(t)|ǫa(t)〉〈ǫa(t)| (1.80)

and

Ĥ ′
S(t) := ĤS(t)− ĤG(t) (1.81)

as well as the operator V̂ (t, t′) via the transform to the adiabatic interaction picture

V̂ (t, t′) = Ŵ †(t, t′)ÛS(t, t
′). (1.82)

1In quantum annealing literature, and particularly in Ref. [54] where this derivation was taken,
the usual term for the dimensionless time is s. We used τ instead to avoid confusion with the s as
the integration variable in equations like (1.70).
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We find the transformation rules

ˆ̃HS(t, t
′) = Ŵ †(t, t′)ĤS(t)Ŵ (t, t′) =

∑

a

ǫa(t)|ǫa(t′)〉〈ǫa(t′)|, (1.83)

ˆ̃HG(t, t
′) = Ŵ †(t, t′)ĤG(t)Ŵ (t, t′) =

∑

a

φa(t)|ǫa(t′)〉〈ǫa(t′)|, (1.84)

ˆ̃H ′
S(t, t

′) = ˆ̃HS(t)− ˆ̃HG(t), (1.85)

ˆ̃K(t, t′) = Ŵ †(t, t′)K̂(t)Ŵ (t, t′) = iŴ †(t, t′)
∂

∂t
Ŵ (t, t′). (1.86)

Note that the time dependence of the operators ˆ̃HS(t, t
′) and ˆ̃H ′

S(t, t
′) is completely

determined by the time dependence of their corresponding eigenvalues. Hence, V̂ (t, t′)
follows the equation

i
∂

∂t
V̂ (t, t′) = ˆ̃Had

S (t, t′)V̂ (t, t′) (1.87)

where

ˆ̃Had
S (t, t′) := ˆ̃HS(t, t

′)− ˆ̃K(t, t′). (1.88)

If the time evolution is nearly adiabatic, then ˆ̃Had
S (t, t′) can only represent a weak

disturbance. Therefore, we can use the ansatz

V̂ (t, t′) = V̂0(t, t
′)
(

Î+ V̂1(t, t
′) + . . .

)

. (1.89)

Here, the first term represents the pure adiabatic time evolution including the geo-
metric phase

V̂0(t, t
′) := T̂ exp

[

−i
∫ t

t′

ˆ̃H ′
S(s, t

′)ds

]

(1.90)

and hence

Ûad
S (t, t′) := Ŵ (t, t′)V̂0(t, t

′) =
∑

a

|ǫa(t)〉〈ǫa(t)|e−i
∫ t

t′
ǫa(s)−φa(s)ds. (1.91)

If we derive equation (1.91) with respet to t we find the differential equation

˙̂
Uad

S (t, t′) = ˙̂
W (t, t′)V̂0(t, t

′) + Ŵ (t, t′) ˙̂V0(t, t
′)

= −iK̂(t)Ŵ (t, t′)V̂0(t, t
′)− iŴ (t, t′) ˆ̃H ′

S(t, t
′)V̂0(t, t

′)

= −i
[

Ĥad
S (t)− ĤG(t)

]

Ûad
S (t, t′), (1.92)

where

Ĥad
S (t) := K̂(t) + ĤS(t). (1.93)
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Inserting (1.89) into equation (1.87) leads after some algebra using the identities (1.85)
and (1.88)

i
˙̂
V1(t, t

′)
(

Î+
˙̂
V2(t, t

′) + . . .
)

=V̂ †
0 (t, t

′) ˆ̃Had
S (t, t′)V̂0(t, t

′)
(

Î+ V̂1(t, t
′) + . . .

)

− V̂ †
0 (t, t

′) ˆ̃H ′
S(t, t

′)V̂0(t, t
′)
(

Î+ V̂1(t, t
′) + . . .

)

=− V̂ †
0 (t, t

′)
[
ˆ̃K(t, t′)− ˆ̃HG(t, t

′)
]

V̂0(t, t
′)

− V̂ †
0 (t, t

′)
[
ˆ̃K(t, t′)− ˆ̃HG(t, t

′)
]

V̂0(t, t
′)V̂1(t, t

′) + . . .

(1.94)

The expansion (1.89) is an expansion in the parameter 1/tf. Up to first order in 1/tf,
equation (1.94) becomes

i
˙̂
V1(t, t

′) = −V̂ †
0 (t, t

′)
[
ˆ̃K(t, t′)− ˆ̃HG(t, t

′)
]

V̂0(t, t
′)

= −iÛad†
S (t, t′) ˙̂

W (t, t′)V̂0(t, t
′) + Ûad†

S (t, t′)ĤG(t)Û
ad
S (t, t′). (1.95)

Equation (1.95) can be integrated:

V̂1(t, t
′) = −

∫ t

t′

[

Ûad†
S (s, t′)

∂

∂s
Ŵ (s, t′)V̂0(s, t

′)−
∑

a

φa(s)|ǫa(t′)〉〈ǫa(t′)|
]

ds

= −
∑

a 6=b

∫ t

t′
e−iµba(s,t

′)|ǫa(t′)〉〈ǫb(t′)|〈ǫa(s)|ǫ̇b(s)〉ds, (1.96)

because

Ûad†
S (t, t′)ĤG(t)Û

ad
S (t, t′) =

∑

a

φa(t
′)|ǫa(t′)〉〈ǫa(t′)| (1.97)

holds. Here, we defined

µba(t, t
′) :=

∫ t

t′
([ǫb(s)− φb(s)]− [ǫa(s)− φa(s)]) ds. (1.98)

Now, we can write the system propagator ÛS(t, t
′) as

ÛS(t, t
′) = Ûad

S (t, t′) +Q(t, t′)Ûad
S (t, t′) +O

((
1

tf

)2
)

, (1.99)

with

Q̂(t, t′) := Ûad
S (t, t′)V̂1(t, t

′)Ûad†
S (t, t′)

=
∑

a 6=b

e−iµba(t,t
′)

(

−
∫ t

t′
〈ǫa(s)|ǫ̇b(s)〉ds

)

|ǫa(t)〉〈ǫb(t′)|. (1.100)

Equation (1.99) shows, that the first order correction to the pure adiabatic time
evolution is given by the operator Q̂(t, t′) in equation (1.100). Therefore, we can find
the adiabatic time scale by forcing its matrix elements to be small. In the following,
we show that a sufficient condition is given by the condition h

∆2tf
<< 1.
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Regarding the matrix elements of Q̂(t, t′), we find using (1.100)

Q̂ab(t, t
′) = e−iµba(t,t

′)

(

−
∫ t

t′
eiµba(s,t

′)〈ǫa(s)|∂s|ǫb(s)〉ds
)

. (1.101)

If we substitude τ := t/tf and use the definition

µ̃ba(τ, t
′/tf) :=

∫ τ

t′

tf

ωba(τ
′)dτ ′ =

1

tf
µba(t, t

′), (1.102)

we find

∫ t

t′
eiµba(s,t

′)〈ǫa(s)|∂s|ǫb(s)〉ds =
∫ τ

t′

tf

eitfµ̃ba(τ
′,t′/tf)〈ǫa(τ ′)|∂τ ′ |ǫb(τ ′)〉dτ ′. (1.103)

Using

eitfµ̃ba(τ
′,t′/tf) =

i

tfωab(τ ′)
d

dτ ′
eitfµ̃ba(τ

′,t′/tf) (1.104)

we can integrate the right hand side of equation (1.103) by parts leading to

∫ s

t′

tf

eitfµ̃ba(τ
′,t′/tf)〈ǫa(τ ′)|∂τ ′ |ǫb(τ ′)〉dτ ′ =

i

tfωab(τ ′)
eitfµ̃ba(τ

′,t′/tf)〈ǫa(τ ′)|∂τ ′ |ǫb(τ ′)〉
∣
∣
∣
∣
∣

τ

t′/tf

− i

tf

∫ τ

t′

tf

eitfµ̃ba(τ
′,t′/tf)

ωab(τ ′)
d

dτ ′
〈ǫa(τ ′)|∂τ ′ |ǫb(τ ′)〉dτ ′. (1.105)

If |ǫa(t)〉 and |ǫb(t)〉 are not degenerate, then

〈ǫb(t)|ǫ̇a(t)〉 =
〈ǫb(t)| ˙̂HS(t)|ǫa(t)〉

ωab(t)
, (1.106)

because

ĤS(t)|ǫa(t)〉 = ǫa(t)|ǫa(t)〉
⇒ ˙̂

HS(t)|ǫa(t)〉+ ĤS(t)|ǫ̇a(t)〉 = ǫ̇a(t)|ǫa(t)〉+ ǫa(t)|ǫ̇a(t)〉
⇒ 〈ǫb(t)| ˙̂HS(t)|ǫa(t)〉+ ǫb(t)〈ǫb(t)|ǫ̇a(t)〉 = ǫ̇a(t)δab + ǫa(t)〈ǫb(t)|ǫ̇a(t)〉

⇒ 〈ǫb(t)|ǫ̇a(t)〉 =
〈ǫb(t)| ˙̂HS(t)|ǫa(t)〉
ǫb(t)− ǫa(t)

.
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Now, we have all the ingredients to bound the matrix elements (1.101):

∣
∣
∣Q̂ab(t, t

′)
∣
∣
∣

(1.105)

≤
∣
∣
∣
∣

〈ǫa(τ ′)|∂τ ′ |ǫb(τ ′)〉
tfωab(τ ′)

∣
∣
∣
∣

∣
∣
∣
∣
∣

τ

t′

tf

+

∣
∣
∣
∣
∣

∫ τ

t′

tf

eitfµ̃ba(τ
′,t′/tf)

tfωab(τ ′)
d

dτ ′
〈ǫa(τ ′)|∂τ ′ |ǫb(τ ′)〉

∣
∣
∣
∣
∣

(1.106)
=

∣
∣
∣
〈ǫa(τ ′)|∂τ ′ĤS(τ

′)|ǫb(τ ′)〉
tfω

2
ab(τ

′)
︸ ︷︷ ︸

=:ξ

∣
∣
∣

∣
∣
∣
∣
∣

t′

tf

t′

tf

+

∣
∣
∣
∣
∣

∫ t′

tf

t′

tf

eitfµ̃ba(τ
′,t′/tf)

tfω
2
ab(τ

′)

d

dτ ′
〈ǫa(τ ′)|∂τ ′ĤS(τ

′)|ǫb(τ ′)〉
∣
∣
∣
∣
∣
. (1.107)

Iterative integration by parts of the second term in equation (1.107) always leads
to increasing powers of the dimensionless number ξ. Therefore, the matrix element∣
∣
∣Q̂ab(t, t

′)
∣
∣
∣ is small for all a and b, if the sufficient condition

max
τ ′∈[0,1]

a,b

|〈ǫa(τ ′)|∂τ ′ĤS(τ
′)|ǫb(τ ′)〉|

/

min
τ ′∈[0,1]

a,b

tfω
2
ab(τ

′) << 1 (1.108)

is satisfied. If we assume that the minimal Bohr frequency equals the gap between
ground state and first excited state ∆, then (1.108) means

h

∆2tf
<< 1, (1.109)

with which we have derived equation (1.72).

3.9.2 Derivation of the Master Equation

In the adiabatic limit, which is defined by the inequalities (1.108) respectively (1.109),
we can now go ahead to derive the desired quantum master equation. To do so, we
shall express the integrals in equation (1.70) by the one-sided Fourier transform1

Γkk′(ω) :=

∫ ∞

0
eiωsBkk′(s)ds. (1.110)

It can be written as a sum of Hermitian matrices with the use of the spectral function

γkk′(ω) :=

∫ ∞

−∞
eiωsBkk′(s)ds = γ∗k′k(ω) (1.111)

and

Skk′(ω) :=
1

2π

∫ ∞

−∞
γkk′(ω

′)P
(

1

ω − ω′

)

dω′ = S∗
k′k(ω) (1.112)

1The one-sided Fourier transform Γkk′(ω) is called spectral density matrix or spectral function

depending on author and context. Here, we follow the terminology of Ref. [54], where »spectral
density matrix«refers to Γkk′(ω) and »spectral function«to γkk′(ω).
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as

Γkk′(ω) =

∫ ∞

0
eiωs

(
1

2π

∫ ∞

−∞
γkk′(ω

′)e−iω′sdω′
)

ds

=

∫ ∞

−∞

γkk′(ω
′)

2π

(∫ ∞

0
ei(ω−ω′)sds

)

dω′

(∗)
=

1

2
γkk′(ω) + iSkk′(ω). (1.113)

In (∗), we used the well-known relation

∫ ∞

0
ei(ω−ω′)sds = πδ(ω − ω′) + iP

(
1

ω − ω′

)

(1.114)

with the Dirac δ-function and the Cauchy principle value P(·).
As mentioned before, the strategy is to replace the operator ŜI

k′(t − s) = Û †
S(t −

s, 0)Ŝk′ÛS(t − s, 0) by an appropriate adiabatic approximation to take it in front of
the integral. To do this, we decompose the system propagator

ÛS(t− s, 0) = ÛS(t− s, t)ÛS(t, 0) = Û †
S(t, t− s)ÛS(t, 0), (1.115)

and we replace ÛS(t, 0) by

ÛS(t, 0) → Ûad
S (t, 0), (1.116)

where Ûad
S (t, 0) is the ideal adiabatic propagator defined in equation (1.73) and the or-

der of the error caused by this approximation is given by equation (1.72). Additionally,

we replace Û †
S(t, t− s) by

Û †
S(t, t− s) → eisĤS(t). (1.117)

This approximation is called adiabatic Markovian approximation. Here, s sets a time
scale of the interaction between system and heat bath over which the system Hamil-
tonian ĤS(t) can be treated as a constant. Hence, it can be evaluated at any time,
conveniently at the instantaneous time t. The error caused by this approximation is
bounded by

∣
∣
∣

∣
∣
∣Θ̂(t, s)

∣
∣
∣

∣
∣
∣
∞

≤ min

{

2,
h

∆2tf
+
hs2

tf

}

, (1.118)

where

Θ̂(t, s) := ÛS(t− s, 0)− eisĤS(t)Ûad
S (t, 0). (1.119)

Finally, we apply a Markovian approximation for each of the four summands in equa-
tion (1.70): If the time scale τB, over which the bath correlation functions decay,
satisfies τB <<

1
g , then we can replace ρ̂I

S(t− s) by

ρ̂I
S(t− s) → ρ̂I

S(t) (1.120)



28 Chapter I. Introduction

up to an error of O
(
τ3Bg

2
)
. Applying these approximations to the first integral of

equation (1.70) we find

∫ ∞

0
ŜI
k′(t− s)ρ̂I

S(t− s)ŜI
k(t)Bkk′(s)ds

=

∫ ∞

0
Û †

S(t− s, 0)Ŝk′ÛS(t− s, 0)ρ̂I
S(t)Ŝ

I
k(t)Bkk′(s)ds+O

(
τ3Bg

2
)

≈
∫ ∞

0
Ûad†

S (t, 0)e−isĤS(t)Ŝk′e
isĤS(t)Ûad

S (t, 0)ρ̂I
S(t)Ŝ

I
k(t)Bkk′(s)ds. (1.121)

Now, we replace the operator Ûad
S (t, 0) according to its definition (1.73) and make use

of the equation ĤS(t)|ǫa(t)〉 = ǫa(t)|ǫa(t)〉. We find

∫ ∞

0
ŜI
k′(t− s)ρ̂I

S(t− s)ŜI
k(t)Bkk′(s)ds

≈
∑

a,b

e−iµba(t,0)|ǫa(0)〉〈ǫa(t)|Ŝk′ |ǫb(t)〉〈ǫb(0)|ρ̂I
S(t)Ŝ

I
k(t)

∫ ∞

0
eis(ǫb(t)−ǫa(t))ds

=
∑

a,b

e−iµba(t,0)Sk′ab(t)Π̂ab(0)ρ̂
I
S(t))Ŝ

I
k(t)Γkk′(ωba(t)), (1.122)

where

Sk′ab(t) := 〈ǫa(t)|Ŝk′ |ǫb(t)〉 = S∗
k′ba(t) (1.123)

Π̂ab(t) := |ǫa(t)〉〈ǫb(t)|. (1.124)

A similar derivation can be made for the second integral in equation (1.70). The result
is

∫ ∞

0
ŜI
k(t)Ŝ

I
k′(t− s)ρ̂I

S(t− s)Bkk′(s)

≈
∑

a,b

e−iµba(t,0)Sk′ab(t)Ŝ
I
k(t)Π̂ab(0)ρ̂

I
S(t))Γkk′(ωba(t)). (1.125)

The third and the fourth integral in (1.70) are the Hermitian conjugates of the first two.
Now, we insert the approximations of the four integrals into equation (1.70). After
some algebra,we derived the one-sided adiabatic master equation in the interaction
picture

˙̂ρI
S(t) = g2

(∑

a,b

e−iµba(t,0)
∑

k,k′

Γkk′(ωba(t))Sk′ab(t)
[

Π̂ab(0)ρ̂
I
S(t), Ŝ

I
k(t)

]

+
∑

a,b

eiµba(t,0)
∑

k,k′

Γ∗
kk′(ωba(t))S

∗
k′ab(t)

[

ŜI
k(t), ρ̂

I
S(t)Π̂ba(0)

] )

. (1.126)

The same approximations which have been applied to ŜI
k′(t − s) can also be ap-

plied to ŜI
k(t). Doing so in equation (1.126), and transforming this equation back

to Schrödinger picture, it is straightforward to derive the desired quantum adiabatic
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Markovian master equation

˙̂ρS(t) = −i
[

ĤS(t), ρ̂S(t)
]

+ g2
(∑

a,b

∑

k,k′

Γkk′(ωba(t))
[

L̂ab,k′(t)ρ̂S(t), Ŝk

]

+
∑

a,b

∑

k,k′

Γ∗
kk′(ωba(t))

[

Ŝk, ρ̂S(t)L̂
†
ab,k′(t)

] )

(1.127)

with the definition

L̂ab,k(t) := Skab(t)|ǫa(t)〉〈ǫb(t)| = L̂†
ba,k(t). (1.128)

For more details we refer again to Ref. [54]. The final master equation (1.127) is not
in Lindblad form. To achieve this, we further have to apply the secular approximation
to it, like it has been the case for the Bloch-Redfield equation (1.58).

3.10 The Secular Approximation

The secular approximation is needed to achieve Lindblad form as well for the Redfield
master equation as for the adiabatic master equation. It discards fast oscillating terms
which average out on the time scale of interest. Hence, the idea is similar to the well-
known rotating-wave approximation (RWA) [55]. However, the secular approximation
is carried out on the level of the quantum master equation rather than on the level on
the interaction Hamiltonian as this can cause problems which are discussed in Ref. [56].
To apply the secular approximation, we again follow Ref. [54] for the adiabtic master
equation. The derivation for the Redfield master equation can be found in Ref. [26]
and is similar to the version which will be reviewed briefly here.

Suppose we follow the arguments leading to equation (1.121) but without the limit
t→ ∞. This yields

∫ t

0
ŜI
k′(t− s)ρ̂I

S(t− s)ŜI
k(t)Bkk′(s)ds

≈
∫ t

0

∑

abcd

e−i(µba(t,0)+µcd(t,0))|ǫa(0)〉〈ǫa(t)|Ŝk′ |ǫb(t)〉〈ǫb(0)|ρ̂I
S(t)|ǫc(0)〉×

× 〈ǫc(t)|Ŝk|ǫd(t)〉〈ǫd(0)|eiωba(t)sBkk′(s)ds. (1.129)

One can now make the argument that when the t → ∞ limit is taken, terms for
which the integrand vanishes will dominate, thus enforcing the "energy conservation"
condition ωba = −ωdc. This is a similar rotating wave approximation as made in
the standard time-independent treatment, although here, the approximation of phase
cancellation is made along the entire time evolution of the instantaneous energy eigen-
states1. In the t→ ∞ limit, we find

∫ t

0
ŜI
k′(t− s)ρ̂I

S(t− s)ŜI
k(t)Bkk′(s)ds

≈
∑

ω(t)

Sω(t),k′Sω(t),kΠ̂ω(t)(0)ρ̂
I
S(t)Π̂ω(t)(0)Γkk′(ω(t)) (1.130)

1This is a questionable approximation. For instance, the harmonic oscillator fails to meet this
condition dramatically. However, for qubit systems, the approximation typically holds if they do not
experience effects like frequency crowding during the complete time-evolution.
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where we defined

Sω(t),k :=
∑

a,b

∑

ǫb(t)−ǫa(t)=ω(t)

〈ǫa(t)|Ŝk|ǫb(t)〉 (1.131)

Π̂ω(t)(0) :=
∑

a,b

∑

ǫb(t)−ǫa(t)=ω(t)

|ǫa(0)〉〈ǫb(0)|. (1.132)

An analogue calculation as in section 3.9.2 leads to the quantum adiabatic Markovian
master equation in Lindblad form

˙̂ρS(t) = −i
[

ĤS(t) + ĤLS(t), ρ̂S(t)
]

+
∑

ω(t)

∑

k,k′

γkk′(ω(t))
(

L̂ω(t),k′(t)ρ̂S(t)L̂
†
ω(t),k(t) +

1

2

{

L̂†
ω(t),k(t)L̂ω(t),k′(t), ρ̂S(t)

})

,

(1.133)

where

ĤLS(t) :=
∑

ω(t)

∑

k,k′

L̂†
ω(t),k(t)L̂ω(t),k′(t)Skk′(ω(t)) (1.134)

denotes the Lamb shift and we have defined

L̂ω(t),k(t) :=
∑

a,b

∑

ǫb(t)−ǫa(t)=ω(t)

L̂ab,k(t). (1.135)

Equation (1.133) is transformed back to Schrödinger picture already. It is in Lindblad
form and hence preserves the positivity of the density matrix. The secular approx-
imation has been shown here in a very dense fashion. We recommend Ref. [54] for
more details.

3.11 Comparison of Master Equations

In section 3.6, I have reviewed the proof of the Lindblad theorem that states that
any master equation, which guarantees to preserve the properties of density matrices,
can be written in Lindblad form. Therefore, the Lindblad master equation (1.50) is
the tool of choice for simulating open quantum system dynamics if its conditions are
fulfilled. However, the Born approximation, the Markov approximation and the secu-
lar approximation need to be made to derive a quantum master equation in Lindblad
form for the reduced system starting from a microscopic model: As it is typically
not possible to solve the complete Liouville-Von Neumann equation (1.15) for system
and bath, we have to apply the Born and the Markov approximation to trace out the
heat bath resulting in the Redfield master equation (1.65). This procedure causes two
kinds of drawbacks: First, the conditions of these approximations have to be satisfied
to get the correct time evolution of the state, and second, we lost the desired Lindblad
form1. Hence, the outcome of the Redfield master equation might be not a valid den-
sity matrix and hence, it does not represent a valid physical state. This drawback can
be overcome by a further approximation, namely the secular approximation discussed

1It is possible to achieve Lindblad form by a different but less popular approach pursued in
Ref. [57]. Here, the authors perform the Born and Markov approximations in a different way such
that the resulting master equation preserves positivity.
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in section 3.10. Obviously, this causes an additional approximation error and hence,
this procedure is questionable1.

The adiabatic master equation of Ref. [54], which I have reviewed in section 3.9,
is a useful tool for simulating time-dependent open quantum systems in the adiabatic
limit. Nevertheless, it relies on a bunch of uncontroled approximations too and hence,
its use is only reliably justified if its conditions are satisfied. Particularly, the secular
approximation is even more questionable compared to the time-independent case.

To conclude, all the presented master equations have their own benefits and draw-
backs. Therefore, the answer to the question "Which one is the best?" will strongly
depend on the system of interest and it might happen, that none of these are reliably
applicable. However, it is legitimate to use them anyways, if there is no other tool
available2. In this case, their predictions need to be judged by experiments.

3.12 Harmonic Baths

To solve any of the equations (1.65), (1.127) or (1.133), an expression for the bath
correlation function Bkk′(s) is needed. Hence, it is crucial to find a model for the heat
bath. A widely applicable model is to write down the bath Hamiltonian ĤB as a sum
of non-interacting harmonical oscillators

ĤB :=
∑

j

ωj b̂
†
j b̂j . (1.136)

Here, b̂j and b̂†j denote the annihilation and the creation operator of the j-th oscillator
mode at frequency ωj . Even though this model looks quite artificial and specific, it
applies as long as the heat bath can be treated within linear response theory, meaning
that it is essentially infinite, has a regular spectrum, and is in thermal equilibrium [58,
59]. In this setting, the central limit theorem applies. Hence, all the bath fluctuations
are Gaussian distributed and therefore, can be modeled by harmonical oscillators. We
derive the general form of the correlation function Bkk′(s) for harmonic baths in the
following.

We insert equations (1.136) and (1.52) into equation (1.51) and obtain

Ĥ = ĤS +
∑

j

ωj b̂
†
j b̂j +

∑

i

ŜiB̂i, (1.137)

with appropriate system and bath operators Ŝi and B̂i whose sum describes a bilinear
interaction between system and bath. Note that the system Hamiltonian ĤS may
depend on time i.e. if a laser drive is applied. For simplicity, we restrict ourselves to
the case with only a single coupling term. The derivation generalizes trivially to more
terms. For a suitable choice operators b̂k, the bath operator B̂ equals

B̂ =
∑

k

λk

(

b̂k + b̂†k

)

. (1.138)

This assumption can always be satisfied3. We can choose λk real as it is just a global
phase (corresponding to the choice of zero of time and energy).

1The secular approximation is typically performed off the cuff by neglecting "fast oscillating terms"
and hence, the approximation error is typically uncontroled.

2In some cases, path integral methods can do the job.
3For Gaussian noise, it needs to be a quadrature λk b̂k+H.c.
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First, we transform the Hamiltonian Ĥ to the interaction picture with respect to
Ĥ0 := ĤS + ĤB. The time evolution is then given by

Ĥint(t) = Û †
S(t, 0)ŜÛS(t, 0)
︸ ︷︷ ︸

=:Ŝ(t)

· eiĤBtB̂e−iĤBt
︸ ︷︷ ︸

=:B̂(t)

, (1.139)

where ÛS(t, 0) denotes the propagator of the quantum system only. We calculate

B̂(t) = ei
∑

j ωj b̂
†
j b̂jt

(
∑

k

λk

(

b̂k + b̂†k

)
)

e−i
∑

j ωj b̂
†
j b̂jt

=
∑

k

λk
∏

j

eiωj b̂
†
j b̂jt
(

b̂k + b̂†k

)∏

j

e−iωj b̂
†
j b̂jt

=
∑

k

λk
∏

j

eiωj b̂
†
j b̂jt




∏

j 6=k

e−iωj b̂
†
j b̂jt





︸ ︷︷ ︸

=e
iωkb̂

†
k
b̂kt

(

b̂k + b̂†k

)

e−iωk b̂
†
k
b̂kt

=
∑

k

λke
iωk b̂

†
k
b̂kt
(

b̂k + b̂†k

)

e−iωk b̂
†
k
b̂kt. (1.140)

For linear operators X̂, Ŷ and m ∈ N we define recursively

[

X̂, Ŷ
]

m
:=

[

X̂,
[

X̂, Ŷ
]

m−1

]

with
[

X̂, Ŷ
]

0
= Ŷ . (1.141)

Using this notation, we can write down the genral Baker-Campbell-Hausdorff formula
in the form1

eX̂ Ŷ e−X̂ =
∞∑

m=0

1

m!

[

X̂, Ŷ
]

m
(1.142)

Inserting
[

iωktb̂
†
k b̂k, b̂k + b̂†k

]

m
= (iωkt)

m
(

(−1)mb̂k + b̂†k

)

into equation (1.142) gives

eiωk b̂
†
k
b̂kt
(

b̂k + b̂†k

)

e−iωk b̂
†
k
b̂kt =

∞∑

m=0

1

m!

[

iωktb̂
†
k b̂k, b̂k + b̂†k

]

m

=
(

b̂k + b̂†k

)

cos (ωkt) + i
(

−b̂k + b̂†k

)

sin (ωkt)

= b̂ke
−iωkt + b̂†ke

iωkt (1.143)

and hence

B̂(t) =
∑

k

λk

(

b̂ke
−iωkt + b̂†ke

iωkt
)

. (1.144)

1We do not discuss mathematical details like convergence here. See [60] for further information.
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Using equation (1.144), it is now possible to calculate the correlation function for
harmonic baths B(s) as

B(s) = 〈B̂(s)B̂(0)〉
=
∑

j,k

λjλk〈
(

b̂j(s) + b̂†j(s)
)(

b̂k(0) + b̂†k(0)
)

〉

(∗)
=
∑

k

λ2k

(

〈b̂k(s)b̂†k(0)〉+ 〈b̂†k(s)b̂k(0)〉
)

=
∑

k

λ2k
(
(n̄k + 1) e−iωks + n̄ke

iωks
)
, (1.145)

where n̄k := 〈b̂†k(0)b̂k(0)〉 denotes the average number of excitations of the k-th bath

mode with frequency ωk. In step (∗) we used that 〈b̂j(s)b̂k(0)〉 = 〈b̂†j(s)b̂
†
k(0)〉 = 0

and 〈b̂j(s)b̂†k(0)〉 ∝ δjk which are due to the thermodynamic equilibrium. Harmonic
baths in thermodynamic equilibrium obey Bose-Einstein statistics, which means that
n̄k equals the Bose function

n̄k = n̄ (ωk) =
1

e~βωk − 1
, (1.146)

where β = 1
kBT denotes inverse temperature and kB is the well-known Boltzmann

constant. We define the spectral density function

J(ω) :=
∑

k

λ2kδ (ω − ωk) . (1.147)

Inserting equation (1.147) into equation (1.145) yields

B(s) =
∫ ∞

0
J(ω)

(
(n̄(ω) + 1) e−iωs + n̄(ω)eiωs

)
dω. (1.148)

All the information about the structure of a specific harmonic bath is encoded in the
spectral density function J(ω). Typically, it can be treated as a continuous function.

Equation (1.148) can be simplified using

n̄(−ω) = 1

e−~βω − 1
= − e~βω

e~βω − 1
= −

(
1

e~βω − 1
+ 1

)

= − (n̄(ω) + 1) . (1.149)

Hence

B(s) =
∫ ∞

0
J(ω) (n̄(ω) + 1) e−iωsdω +

∫ ∞

0
J(ω)n̄(ω)eiωsdω

=

∫ ∞

0
J(ω) (n̄(ω) + 1) e−iωsdω +

∫ 0

−∞
J(|ω|)n̄(−ω)e−iωsdω

=

∫ ∞

0
J(ω) (n̄(ω) + 1) e−iωsdω −

∫ 0

−∞
J(|ω|) (n̄(ω) + 1) e−iωsdω

=

∫ ∞

−∞
sgn(ω)J(|ω|) (n̄(ω) + 1) e−iωsdω, (1.150)
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where sgn(·) denotes the signum function. Now, we define the spectral function S(ω)
as the inverse Fourier transform of the bath correlation function

S(ω) :=

∫ ∞

−∞
eiωsB(s)ds. (1.151)

Finally, we get

S(ω) = sgn(ω)J(|ω|) (n̄(ω) + 1) . (1.152)

As mentioned before, all the information on the structure of a specific harmonic bath is
encoded in the spectral density function J(ω). Equation (1.152) shows, that it is also
possible to use the spectral function S(ω) instead. For harmonic baths, it is usually
just a matter of taste which of these functions is more practical to use. However, the
spectral function S(ω) can be defined even if the bath is not harmonic whereas the
spectal density function J(ω) is only well-defined for harmonic baths.

3.13 The Quasi-Adiabatic Propagator Path Integral Method

Quantum mechanics can be completely reformulated in terms of path integrals which
are also named Feynman integrals after Nobel laureate Richard P. Feynman [61]. This
equivalent approach to standard quantum mechanics can be beneficial depending on
the context. Particularly, diverse path integral based methods can be used to simulate
open quantum system dynamics with their own benefits and drawbacks compared
to master equation approaches discussed above. The most prominent path integral
techniques are quantum Monte Carlo (QMC) methods [62, 63, 64]. In many cases,
QMC algorithms are the only tools available for studying large quantum many body
systems. Therefore, QMC algorithms are used in a variety of fields [65, 66, 67, 68, 69].

However, the applicability of QMC techniques suffers from the so-called sign prob-
lem: QMC techniques evaluate thermal averages of physical observables by the sam-
pling of quantum configuration space. To achieve this goal, it is crucial to decompose
the partition function of the model of interest into a sum of easily computable non-
negative weights that are subsequently interpreted as probabilities in a Markovian
sampling process [70]. Whenever terms appear with a negative sign, QMC methods
tend to converge exponentially slowly and become impractical. Due to this sign prob-
lem, QMC methods will not play any role in this work and hence, we do not pay heed
to them anymore in the following.

Here, we follow another approach: the quasi-adiabatic propagator path integral
method (QUAPI) invented by N. Makri in 1992 avoids the sign problem accepting
the trade-off to scale exponentially in computing memory. It is thus limited to small-
sized quantum systems [71, 72, 73]. For simplicity, we review its derivation following
Ref. [74] for time-independent Hamiltonians. However, the method can also be applied
to time-dependent Hamiltonians with minor changes in the derivation.

Let Ĥ be the Hamiltonian of the total system consisting of the quantum system S
of interest and its environment B. The density matrix ρ̂(t) follows the Liouville-Von
Neumann equation (1.15) with the solution

ρ̂(t) = e−iĤtρ̂(0)eiĤt. (1.153)
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Our goal is to compute the reduced density matrix ρ̂S. To this end, we calculate the
probability amplitude

ρS

(
s′′, s′; t

)
:=
〈

s′′
∣
∣
∣TrB

[

e−iĤtρ̂(0)eiĤt
]∣
∣
∣ s′
〉

, (1.154)

where |s′〉, |s′′〉 denote eigenstates of the system Hamiltonian1 ĤS. Obviously, if we
would be able to solve equation (1.154) for all |s′〉, |s′′〉, then we would obtain the time
evolution of the full density matrix.

First, we decompose the Hamiltonian Ĥ into the form as discussed in section 3

Ĥ = ĤS + ĤB + Ĥint =: Ĥ0 + Ĥ1 (1.155)

with Ĥ0 := ĤS + ĤB and Ĥ1 := Ĥint. We assume the Hamiltonian H0 can be
diagonalized analytically. Next, we decompose the propagator into a product of N
exponentials

eiĤt =
(

eiĤδt
)N

, δt :=
t

N
, (1.156)

and define the discrete-time evolution operator Ĝ := eiĤδt = ei(Ĥ0+Ĥ1)δt. The next
step is to apply a suitable Trotter decomposition to the operator Ĝ. To do this, we
have many options and it depends on the context which one is most appropriate.
Different examples can be found in [75]. Here, we take

Ĝ = eiĤ1
δt
2 eiĤ0δteiĤ1

δt
2 +O

(
δt3
)
. (1.157)

We note that this approximation can be made arbitrarily accurate by increasing the
number of time steps N . Hence, this approximation only causes a numerical error.
After inserting equation (1.157) into equation (1.154) we obtain

ρS

(
s′′, s′; t

)
=
〈

s′′
∣
∣
∣TrB

[

Ĝ†N ρ̂(0)GN
]∣
∣
∣ s′
〉

+O
(
δt3
)

=

〈

s′′
∣
∣
∣
∣
TrB

[(

Ĝ†
Î

)N
ρ̂(0)

(

ÎG
)N
]∣
∣
∣
∣
s′
〉

+O
(
δt3
)
. (1.158)

The identities in the second step of equation (1.158) allow us to rewrite the matrix
element ρS (s

′′, s′; t) in the path integral formulation

ρS

(
s′′, s′; t

)
≈
∫

ds+0

∫

ds+1 · · ·
∫

ds+N−1

∫

ds−0

∫

ds−1 · · ·
∫

ds−N−1I
(
s±0 , . . . , s

±
N

)
,

(1.159)

where s+k , s
−
k for {0 ≤ k ≤ N − 1}index the eigenstates of the system, representing

the discrete path on the forward (+) and backward (−) contours. Furthermore, we

1In the time-dependent case, |s′〉, |s′′〉 correspond to the instantaneous eigenbasis of the Hamilto-
nian Ĥ(t).



36 Chapter I. Introduction

defined the influence functional1

I
(
s±0 , . . . , s

±
N

)
:=TrB

[
〈

s+N

∣
∣
∣Ĝ†
∣
∣
∣ s+N−1

〉〈

s+N−1

∣
∣
∣Ĝ†
∣
∣
∣ s+N−2

〉

· · ·
〈
s+0 |ρ̂(0)| s−0

〉
· · ·

〈

s−N−2

∣
∣
∣Ĝ†
∣
∣
∣ s−N−1

〉〈

s−N−1

∣
∣
∣Ĝ†
∣
∣
∣ s−N

〉
]

, (1.160)

with s+N := s′′ and s−N := s′. In general, computing I
(
s±0 , . . . s

±
N−1

)
is a non-easy or

even impossible task. However, if the heat bath is harmonic, it the influence functional
can be determined analytically. It then reads [74]

IH
(
s±0 , . . . , s

±
N

)
=exp

(

−
N∑

k=0

k∑

k′=0

(
s+k − s−k

) (
ηk,k′s

+
k′ − η∗k,k′s

−
k′

)

)

×

×
〈

s+N

∣
∣
∣e−iĤ0δt

∣
∣
∣ s+N−1

〉

· · ·
〈
s+0 |ρ̂S(0)| s−0

〉
· · ·
〈

s−N−1

∣
∣
∣eiĤ0δt

∣
∣
∣ s−N

〉

.

(1.161)

Here, the coefficients ηk,k′ depend on the bath spectral density function J(ω) and
temperature T . Their precise form can be found in Ref. [73].

So far, the derivation shown here is rather general with a well-controlled numerical
error caused by the Trotter decompostion, which can be made arbitrarily small by
increasing the number of time steps N , in contrast to master equation approaches that
rely on uncontrolled approximations as shown in sections (3.6) to (3.11). However,
the drawback here is the terrible scaling in computing resources and hence, brute force
direct numerical simulations can only simulate very short time scales, even when the
form of the influence functional is analytically known as in equation (1.161). This
case arises typically for very small bath temperatures as the bath correlation time
diverges for T → 0 thereby demanding shorter time-steps and hence longer simulation
times. Furthermore, the method is of iterative nature: To compute ρ̂S(t + δt), all
the intermediate states from ρ̂S(0) to ρ̂S(t) enter the calculation. The size of the
influence functional I

(
s±0 , . . . s

±
N

)
, interpreted as a huge tensor, therefore increases

exponentially with the number of time-steps N . Hence, the primary memory cost
(PMC) is proportional to

PMC ∝M2(N+1), (1.162)

where M = dim(HS) denotes the Hilbert space dimension of the quantum system S.
For more detailed discussions we refer to Refs. [73] and [74].

It is possible to reduce the computational overhead by a controlled approximation:
If there is only a single heat bath at temperature T , its memory time τB is of finite
length enabling us to truncate the influence functional after this time in a controled
way. In other words, in order to compute ρ̂S(t+δt), it is sufficient to take into account
the last ∆k time-steps satisfying

δt =
τB
∆k

. (1.163)

Obviously, the practical limitation of the number ∆k limits the reachable precision
as we have to satisfy the convergence condition (1.163) and the error scales with

1The original but less general definition of the influence functional goes back to Feynman and
Vernon [76].
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δt3. Following this argument, the influence functional can be written as a cumulant
expansion resulting in

I
(
s±0 , . . . , s

±
N

)
≈ I∆k

(
s±0 , . . . , s

±
∆k

)
I∆k

(
s±1 , . . . , s

±
∆k+1

)
· · · I∆k

(
s±N−∆k, . . . , s

±
N

)

(1.164)

with

I∆k

(
s±k , . . . , s

±
k+∆k

)
:=

I
(
s±k , . . . , s

±
k+∆k

)

I
(
s±k , . . . , s

±
k+∆k−1

) . (1.165)

The details of this approximation can be found in Ref. [77]. We observe that we can
compute the influence functional iteratively . This avoids the sign problem in contrast
to QMC. Due to the truncation after the bath memory time τB, the primary memory
cost scales as

PMC ∝M2(∆k+1) ≪M2(N+1). (1.166)

However, the memory scaling is still exponential and hence, the method is limited to
small system sizes. Additionally, the temperature T should not be too small as, for
limited ∆k, the numerical error caused by the minimal step size δt might become too
large.

To conclude, QUAPI is a mighty tool if the Hilbert space dimension of the system
of interest is small and the temperature is large enough to ensure a sufficiently small
error. However, these asumptions are quite restrictive. We note that there is an open
source code implementing QUAPI available [73].

4 Summary

In this chapter, I have provided a review on quantum computing and open quantum
systems, which establishes the foundation for the rest of the thesis. In section 1,
I have given an historical overview on the development of modern computers, from
early implementations till the current development of quantum computers. In the
next step, I have discussed the paradigms of quantum information theory in section 2.
As a functional quantum computer is fundamentally described by the theory of open
quantum systems, I have derived the standard tools for simulating open quantum sys-
tem dynamics in section 3, comparing their respective advantages and disadvantages
and the resulting fields of application.
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Chapter II

Quantum Simulations of Quantum

Stochastic Walks

Quantum walks have been shown to have a wide range of applications, from artificial
intelligence, to photosynthesis, and quantum transport. Quantum stochastic walks
(QSWs) generalize this concept to additional non-unitary evolution. This allows for
incoherent movement of the walker, and therefore, directionality. In this chapter, we
propose two trajectory-based quantum simulation protocols to effectively implement
two kinds of QSWs in a quantum device. First, we show how to simulate a family of
continuous-time QSWs. In the second case, we demonstrate how to simulate a family
of discrete-time QSWs on a coherent quantum computer. In both cases, the desired
decoherence is implemented via a suitable measurement and feed-forward scheme.

This chapter is based on Refs. [47] and [78]. It is organized as follows. In sec-
tion 4, we review the basics on quantum stochastic walks and we briefly discuss the
issues to implement the latter directly in a quantum device. In section 5, we present
our results on continuous-time QSWs and in section 6, we give a description of our
results on discrete-time QSWs. In particular, we show how to simulate a restricted
set of continuous-time quantum stochastic walks by suitable discrete-time quantum
stochastic walks.

Preface

This chapter is based on joint work of four authors including me. Initially, the goal
has been to find a direct way to implement QSWs in a quantum device. After a few
months, we realized that, in general, this constitutes a very hard or even impossible
task. Afterwards, the project developed into various directions: Bruno G. Taketani
focussed on the direct realizability, Luke C. G. Govia developed the protocol for
continuous-time QSWs and I found the protocol for discrete-time QSWs. However,
we collaborated very closely, particularly through fruitful discussions. In this sense it
is true joint work which justifies to use both protocols as parts of my thesis.
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4 Introduction to Quantum Stochastic Walks (QSWs)

In 1993, Y. Aharonov, L. Davidovich and N. Zagury invented the concept of quantum
random walks (quantum walks) as the quantum mechanical analogue to the ubiquitous
classical random walk [13]: a "walker" can "jump" between the vertices on a graph
G = (V (G), E(G)) along the edges. However, this jump follows the laws of quantum
physics resulting in a unitary evolution. This property distinguishes the quantum walk
fundamentally from its classical counterpart: While the classical walker jumps between
graph vertices according to some probability distribution defined by the structure of
the underlying graph, the quantum walker takes all the possible paths at the same
time resulting in constructive and detructive interference along the edges. Here, the
probabilities are replaced by probability amplitudes. In other words, the classical
walk is completely incoherent whereas the quantum walk is fully coherent. For an
introductory overview on quantum walks, we refer to Ref. [79].

Quantum walks can be either continuous-time [14], or discrete-time [15, 16], and
both types have been shown to be universal for quantum computation [17, 18]. As a re-
sult, they can have computational advantages over classical algorithms, and quantum
walks have been proposed for application in a variety of fields. Promising examples in-
clude machine learning [80, 81], search algorithms [82], and photosynthetic excitation
transfer [83, 84].

Extending on the idea of the quantum walk is the quantum stochastic walk (QSW),
which combines the unitary evolution of a quantum walk with non-unitary stochastic
evolution [85]. This breaks time-reversal symmetry of the walker’s evolution, and al-
lows for the possibility of directed walks1. During the last years, it has been shown that
when compared to their coherent counterparts, QSWs can have beneficial properties,
such as speeding-up learning algorithms [87, 88], or enhancing excitation transport
[83, 89]. Again, QSWs can either be continuous-time or discrete-time2. Both versions
will be discussed in the following.

4.1 Continuous-Time Quantum Stochastic Walks

The continuous-time quantum stochastic walk of Ref. [85] is given by a Lindblad
master equation of the form

˙̂ρ = (ω − 1)i
[

ĤG , ρ̂
]

+ ω
∑

k

γk

(

L̂kρ̂L̂
†
k −

1

2

{
L̂†
kL̂k, ρ̂

}
)

, (2.1)

where ρ̂ is the density operator of the system, L̂k are the Lindblad operators with γk
their associated incoherent transition rates, ĤG is the Hamiltonian of the underlying
graph G and ω ∈ [0, 1]. For ω = 0, we obtain the completely coherent quantum walk
and for ω = 1, pure environmentally driven dynamics like the classical random walk.
Hence, for ω ∈ (0, 1), equation (2.1) leads to dynamics we could not obtain in a purely
coherent or incoherent framework3. In Ref. [47], we were guided by proposals for QSWs
solving various computational problems [87, 88] in which the walker is restricted to
the single excitation subspace of the graph. Therefore, each node can be described
by a qubit, with the excited state indicating the presence of the walker. For such a

1Time-reversal symmetry can also be broken in chiral quantum walks [86]; however, these are
completely coherent and therefore not QSWs.

2In literature, the term "quantum stochastic walk" often refers to the continuous-time version
only.

3The notations used here slightly differ from the notations in the papers to be consistent through-
out the thesis.
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situation, the QSW can be described by the Lindblad master equation

ρ̇ = −i
[

Ĥ, ρ̂
]

+
∑

nm

γnm

(

σ̂+mσ̂
−
n ρ̂σ̂

+
n σ̂

−
m − 1

2

{
σ̂+n σ̂

−
mσ̂

+
mσ̂

−
n , ρ̂

}
)

, (2.2)

where σ̂
+/−
n is the raising/lowering operator for node n, and in general γnm 6= γmn.

Additionally, we have absorbed the prefactos in equation (2.1) into Ĥ and γnm to
shorten the notation. Crucially, the incoherent evolution of equation (2.2) also con-
serves the total excitation number in the graph, and as such the walker cannot be lost.
It is important to point out that the QSWs considered here have only a positional
degree of freedom, and are distinct from the open quantum walks of Refs. [90, 91],
which contain both positional and internal (coin) degrees of freedom.

The QSW of equation (2.2) is a non-standard open system evolution, as incoher-
ent excitation exchange occurs between the nodes, without local decay from the nodes
into their environment, and possibly without local dephasing. As it has been shown
in Ref. [92], using standard two-body system-bath interactions and assuming an un-
structured bath in the weak coupling limit, it is not possible to microscopically build a
Lindblad equation of the form of equation (2.2). Heuristically, this can be understood
to result from the fact that any incoherent evolution must arise from unitary coupling
of the system to an environment, and that such coupling must take the form of local
decay to the environment or local dephasing due to it. Therefore, one cannot avoid
both of these local incoherent process and still have incoherent excitation exchange
between nodes.

The restrictions found in Ref. [92] can be circumvented with knowledge of the
eigenspectrum of the graph Hamiltonian, and/or elaborate reservoir engineering. How-
ever, for QSWs of practical interest, the graph Hamiltonian will be sufficiently com-
plicated that obtaining its eigenspectrum will be computational impractical on a clas-
sical computer. Also, while reservoir engineering can be useful in many circumstances
[93, 94, 95, 96, 97, 98], it requires an understanding and control of the environment
that makes it impractical for implementing general, large-scale QSWs.

In Ref. [47], we proposed another way to circumvent the restrictions of Ref. [92], by
simulating the desired QSW on a fully coherent quantum computer. In doing so, we
use the QSW only as a quantum algorithm, and not a physical implementation. We
will introduce the concept of quantum trajectories on a quantum computer (QTQC)
in section 5, which is a way of simulating general Lindblad open system evolution on
a coherent quantum simulator.

4.2 Discrete-Time Quantum Stochastic Walks

Discrete-time quantum stochastic walks are by far less popular than their continuous-
time counterparts. First, they were mentioned in Ref. [85] but in a side note only. In
Ref. [78], we defined them as follows.

Let G = (V (G), E(G)) be an arbitrarily connected (and possibly directed) graph
with vertices V (G) and edges E(G), and {|n〉, 1 ≤ n ≤ |V (G|} a set of pairwise
orthonormal quantum states which enumerate the location of a “walker” on the graph
vertices. We will restrict our system to the single excitation subspace, so that |n〉
denotes a quantum state with a single excitation in vertex n and all other vertices
empty.
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For any connected graph G, we consider a quantum stochastic map B representing
a single time-step of a QSW, which can be written in Kraus form as

B[ρ] := αÛG(∆t)ρ(t)Û
†
G(∆t) +

∑

(m,n)∈E(G)
κnm|m〉〈n|ρ|n〉〈m|. (2.3)

Here, ÛG(∆t) := e−iĤG∆t is the propagator of the graph coherent evolution for a time-
step of length ∆t, generated by the Hamiltonian ĤG of the graph G. The coefficients
α, κnm ∈ [0, 1] represent the weights for coherent or incoherent processes to happen
and satisfy

∑

m κnm = 1− α for all n ∈ V (G) due to trace-preservation.
We define a discrete-time quantum stochastic walk by the repeated application of

the single time-step quantum stochastic map B to the initial state ρ0

ρn = Bn [ρ0] := B[B[. . .B [ρ0]
︸ ︷︷ ︸

n times

. . .]]. (2.4)

We are not aware of any publication which applies discrete-time QSWs to any problem
of interest. However, we are optimistic that, when further developed, discrete-time
QSWs will have their own applications in the future, because, in contrast to their
continuous-time counterparts, there are no fundamental restrictions to simulate them
on a coherent quantum simulator. The way this is done will be shown in section
6. Further, it is possible to simulate a restricted set of continuous-time QSWs by
discrete-time QSWs. This will be shown in section 6.3.

5 Quantum Simulation of a Continuous-Time QSW

As we have discussed in section 4.1, direct physical implementation of a system that
evolves under the master equation of equation (2.2) poses a significant challenge. To
circumvent this restriction, we propose simulation of equation (2.2) on a quantum
computer using a quantum trajectories [99] style approach.

To begin, we consider the stochastic master equation unraveling of equation (2.43),
which is given by

d |ψ(t)〉 =
∑

k

[

dNk(t)







L̂k
√
〈

L̂†
kL̂k

〉

(t)

− 1







+ dt




γk

〈

L̂†
kL̂k

〉

(t)

2
− γkL̂

†
kL̂k

2
− iĤ





]

|ψ(t)〉 , (2.5)

where dNk(t) is the stochastic increment for each Lindblad operator, for which the

mean value is E [dNk(t)] = 〈ψ(t)| L̂†
kL̂k |ψ(t)〉. We will first briefly review the quantum

trajectories procedure used to simulate this equation on a classical computer and to
find the density matrix of equation (2.43). A full description of this technique can be
found in Refs. [99, 100].

*Section 5 was published in "Luke C. G. Govia, Bruno G. Taketani, Peter K. Schuhmacher and
Frank K. Wilhelm, Quantum Science and Technology (2017)". Copyright (2017) by IOP Publishing.
The majority of the text was written by Luke C. G. Govia.

https://iopscience.iop.org/article/10.1088/2058-9565/aa540b
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5.1 Quantum Trajectories on a Classical Computer

The approach to simulate quantum trajectories on a classical computer (QTCC) relies
on a discretization of time and a separation between coherent and incoherent evolution.
It consists of the following steps.

(1) Coherent Evolution: Starting at t = 0, the system evolves under the unnor-
malized, non-Hermitian evolution

d

dt
|ψ(t)〉 = −i(Ĥ − iK̂) |ψ(t)〉 , (2.6)

until a time t1 such that 〈ψ(t1)|ψ(t1)〉 = R1, where R1 is a random number from the

closed unit interval [0, 1]. Here K =
∑

k γkL̂
†
kL̂k/2, and the random number R1 is

used to determine when an incoherent process (a quantum jump) occurs.
(2) Incoherent Evolution or Quantum Jump: The normalized expectation values

Ek(t1) =
γk 〈ψ(t1)| L̂†

kL̂k |ψ(t1)〉
∑

k γk 〈ψ(t1)| L̂
†
kL̂k |ψ(t1)〉

, (2.7)

are calculated, and used as weights to determine, via a second random number, which
incoherent process L̂k occurs at time t1. Assuming that L̂n is selected, then the state
is updated via the rule

|ψ′(t1)〉 =
L̂n |ψ(t1)〉

〈ψ(t1)| L̂†
nL̂n |ψ(t1)〉

, (2.8)

which both applies the relevant jump operator, and renormalizes the state. The state
|ψ′(t1)〉 is then used as the new initial state.

Steps (1) and (2) are repeated, with new random numbers generated for each iter-
ation, until the total simulation time T is reached, producing an output state |ψ(T )〉
which corresponds to a single trajectory of the system evolution. An ensemble average
of all possible trajectories gives the correct density matrix for a system evolving under
the master equation of equation (2.43), i.e.

ρ(T ) = E [|ψ(T )〉 〈ψ(T )|] . (2.9)

Note that if tn > T no final incoherent jump is performed.
Quantum trajectory simulations on a classical computer of a system of Hilbert

space dimension D require S trajectories to converge to an answer for the density
matrix at time T . The runtime required is O(SD2), compared to the O(D4) runtime
required for a numerical master equation solver [99]. For S < D2, QTCC is the more
efficient technique [99]. It can also be beneficial if the density matrix is too large
to store on a classical computer, but the state vector is not. Nevertheless, quantum
trajectories is still an inefficient algorithm on a classical computer, as the Hilbert
space dimension increases exponentially with the number of qubits.

5.2 Quantum Trajectories on a Quantum Computer

Practical implementations of the above protocol are inefficient on a classical computer,
and hence would be limited to small graphs. To overcome this, one could envision
implementation on a quantum computer. For this, the protocol requires the following
modifications:
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(1) Coherent Evolution: The evolution described by equation (2.6) is in general
nonphysical, and therefore is impossible to implement on a quantum computer with
Hamiltonian evolution only. For time independent Ĥ and K̂, the solution to equation
(2.6) is

|ψ(t)〉 = e−i(Ĥ−iK̂)t |ψ(0)〉 . (2.10)

If Ĥ and K̂ commute, then this can be written as

|ψ(t)〉 = e−iĤte−K̂t |ψ(0)〉 , (2.11)

and furthermore, if |ψ(0)〉 is an eigenvector of K̂ with eigenvalue λ, then the solution
for |ψ(t)〉 becomes

|ψ(t)〉 = e−λte−iĤt |ψ(0)〉 . (2.12)

As can clearly be seen, equation (2.12) is equivalent to the solution for evolution under
the physical Hamiltonian Ĥ alone, up to a normalization factor e−λt. To render this
nontrivial while obeying the condition that K and H commute, the eigenvalues of K
need to be degenerate. In section 5.3 we will discuss the implications of this restriction
in a specific example.

Therefore, we see that we can implement the coherent evolution step of the quan-
tum trajectories algorithm on a quantum computer provided the following three con-
ditions hold:

1.
[

Ĥ, K̂
]

= 0,

2. The initial state, |ψ(0)〉, and the states at the start of each further coherent
evolution step, |ψ′(ti)〉, are all eigenstates of K̂.

3. |ψ′(ti)〉 is known at the end of each iteration, so that e−λit can be calculated
and used to determine the coherent evolution time ti+1 for the next iteration,
using 〈ψ(ti+1)|ψ(ti+1)〉 = e−2λiti+1 = Ri+1, with Ri+1 a random number from
the unit interval.

Note that the second restriction can be lifted by simulating e−K̂t |ψ(0)〉 using a large
ancilla system (see A.b), and if this is the case, the formula to calculate the norm in
restriction (iii) changes. Moreover, for large enough incoherent rates, under certain
circumstances the first condition may be relaxed as the small average coherent time
steps ti will justify a Suzuki-Trotter decomposition. See A.a for further details.

(2) Incoherent Evolution: On a classical computer, the complete state |ψ(t)〉 after
the previous coherent evolution is known, and so calculation of expectation values
is simple. However, on a quantum computer the state is not known, and at each
time ti either full state tomography must be performed to determine |ψ(ti)〉, or each
observable from equation (2.7) must be measured sufficient times to obtain the relevant
expectation values. Therefore, the first immediate problem with implementation of
the incoherent step of the quantum trajectories algorithm on a quantum computer is
efficient calculation of the expectation values Ek(t) of equation (2.7).

As a result, each iteration step in a single trajectory must be run many times.
The first N − 1 times to generate sufficient measurement statistics so as to be able to
determine the next incoherent quantum jump, and the N ’th time to actually imple-
ment the next quantum jump, and continue on with the trajectory. This introduces
considerable overhead to the protocol. If S trajectories are required for convergence,
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a total of O(NjumpsNS) runs will be needed, where Njumps is the average number of
jumps per trajectory.

However, for certain classes of quantum jumps this overhead can be avoided. We
will discuss one such case in the next section, where we consider a “quantum tra-
jectories on a quantum computer” (QTQC) implementation of the class of quantum
stochastic walks described by equation (2.2).

5.3 QTQC of a Quantum Stochastic Walk

For the quantum stochastic walk of equation (2.2) we have

K̂ =
∑

nm

γnm
2
σ+n σ

−
mσ

+
mσ

−
n =

1

2

∑

n 6=m

γnmP
(1)
n ⊗ P (0)

m +
1

2

∑

n

γnnP
(1)
n (2.13)

where P
(1)
n is the projector onto the excited state of the qubit at node n and P

(0)
m the

projector onto the ground state of the qubit at node m.
As we have a single walker on the graph, we can restrict our system to the single

excitation subspace, and we use the notation |φk〉 to indicate that the walker is in the
k’th node of the graph. In the single excitation subspace the K̂ matrix is diagonal
and given by

K̂SE =
1

2

∑

k

λk |φk〉 〈φk| , (2.14)

where λk =
∑

n γkn is the total rate at which an excitation incoherently decays from
node k (into the other nodes). We consider a general Hamiltonian for a graph con-
sisting of qubits coupled resonantly via the Jaynes-Cummings interaction, which in
the single excitation subspace takes the form

ĤSE =
∑

ij

gij |φi〉 〈φj | , (2.15)

where the coupling strengths satisfy |gij | = |gji| due to the symmetry of the Hamilto-
nian.

5.3.1 Coherent Evolution

To simulate this stochastic quantum walk with a QTQC approach, we still require

that
[

ĤSE, K̂SE

]

= 0. A simple calculation (see A.a) shows that this is equivalent to

the condition

gnm (λn − λm) = 0 (2.16)

for all nodes n and m. What this means is that any two nodes with non-zero coherent
coupling must have the same total incoherent decay rate λ. This is not in general
true, and only a restricted set of graphs will satisfy this condition. An example of
such a graph is shown in figure 2.1. Extending this condition to a coherently connected
subgraph, one sees that all nodes of this subgraph must have the same total decay
rate. The subgraph need not be completely connected, a single coherent connection
between a new node and an existing subgraph is enough to enforce that the new node
must have the same total decay rate as the nodes of the subgraph, see for example
node 2 in the right panel of figure 2.1. In addition, the only way to connect subgraphs



5. Quantum Simulation of a Continuous-Time QSW 47

1

2

3

76

5

4

Figure 2.1: Left Panel : A sample graph, showing four coherently
connected subgraphs linked by incoherent connections. Right Panel :
Zoom in of the dashed square in the left panel, an example of a single
coherently connected subgraph with complicated network connectivity.
The only restriction on the incoherent rates for this subgraph is that
γ17+γ11 = γ21+γ23+γ22 = γ3∗+γ33 = γ4∗+γ45+γ44 = γ56+γ51+γ55 =
γ65 + γ61 + γ66 = γ74 + γ77 = λ1. Here γ3∗ and γ4∗ indicate the
incoherent connections from nodes 3 and 4 that leave the subgraph.
Notice that γ∗5, the incoherent connection entering the subgraph at

node 5, plays no role in the definition of λ1.

with different λ’s is through a purely incoherent connection, as shown in the left panel
of figure 2.1.

In summary, the condition
[

ĤSE, K̂SE

]

= 0 enforces that the total decay rate λ

must be the same for nodes that are coherently connected. We emphasize that this
does not mean all γnm must be the same within a coherently connected graph, only
∑

k γnk = λn = λ must be constant for each node in the graph. Moreover, while all
nodes have equal loss rates, the gain rates need not be equal, one can, for example,
easily design a graph where an excitation can incoherently decay from, but never into,
some given nodes. This implies that graphs with both source and sink nodes can be
implemented.

Furthermore, the coherent couplings between elements are unrestricted. As such,
complicated connectivity networks are still possible, as demonstrated by the connec-
tivity of the subgraph shown in the right panel of figure 2.1. In addition, QSWs
that satisfy the required criteria for QTQC simulation have already been shown to be
advantageous in learning processes using neural networks [80].

In light of the previous discussion, we see that K̂SE takes the form

K̂SE =
1

2

∑

i

∑

k∈Gi

λi |φk〉 〈φk| , (2.17)

where Gi are the incoherently connected subgraphs of the graph G, and λi is the total
decay rate of each node belonging to subgraph Gi (the left panel of figure 2.1 is an
example of such a complete graph). To perform a QTQC simulation we also require
that the initial state |ψ(0)〉 is an eigenstate of K̂SE. From equation (2.17) we see that
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this is satisfied provided |ψ(0)〉 is a superposition of nodes contained within a single
subgraph Gi (assuming all λi are distinct). In addition, we require that after each
quantum jump the state |ψ′(ti)〉 is an eigenstate of K̂SE. Luckily, the form of the
Lindblad operator, L̂nm = σ−n σ

+
m, ensures this is the case, as it localizes the excitation

at node m of the graph.

5.3.2 Incoherent Evolution

The fact that all Lindblad operators L̂nm localize the walker to a single node is also
beneficial for implementing the incoherent quantum jumps. This comes from the
realization that the normalized expectation values

Enm(t) =
γnm 〈ψ(t)|P (1)

n ⊗ P
(0)
m |ψ(t)〉

∑

nm γnm 〈ψ(t)|P (1)
n ⊗ P

(0)
m |ψ(t)〉

=
γnm |〈ψ(t)|φn〉|2

2 〈ψ(t)| K̂SE |ψ(t)〉

=
γnm |〈ψ(t)|φn〉|2

λn

=
γnm |〈ψ(t)|φn〉|2

∑

k γnk
(2.18)

are equivalent to the probability that the excitation is in node n, given by | 〈ψ(t)|φn〉 |2,
multiplied by the probability the excitation decays into node m from node n, given
by γnm/

∑

k γnk.
If we measure the entire graph, we localize the excitation at a specific node n,

which occurs with probability |〈ψ(t)|φn〉|2. Next, using a random number and the
weighted distribution γnm/

∑

k γnk (which we know from designing the graph) we can
determine into which node m the excitation decays, and implement this transition.
The net effect of this two-step process is that the probability of the transition from
mode n to mode m is given by

Pnm =
γnm |〈ψ(t)|φn〉|2

∑

k γnk
= Enm(t). (2.19)

The choice of node n is random due to the nature of quantum measurement, while
the choice of node m is random as we use a classical random number to choose m.
Therefore, this hybrid quantum-classical probabilistic process samples randomly from
the weighted distribution given by the expectation values {Enm(t)}. In doing so,
it correctly mimics the statistics of the QTQC simulation outlined in section 5.2,
which allows the quantum jump to be implemented in a single shot with the correct
statistics, without the large number of identical pre-runs normally required for a
QTQC simulation.

It is important to point out that the simple form of the denominator of equation
(2.18) is due to the fact that all coherently coupled nodes must have the same total
decay rate λ. Therefore, since |ψ(0)〉 is an eigenstate of K̂SE, then |ψ(t)〉 will also be
an eigenstate of K̂SE as coherent evolution can only lead to a superposition of nodes
which all have the same total decay rate.
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Figure 2.2: Algorithm to simulate a quantum stochastic walk via
quantum trajectories on a quantum computer.

5.3.3 QTQC Protocol

Putting everything together, the full procedure for simulating a quantum stochastic
walk using a QTQC protocol is as follows (also shown in figure 2.2).

1. The system starts in a state |ψ(0)〉 for which K̂SE |ψ(0)〉 = λ
2 |ψ(0)〉. The system

evolves coherently under ĤSE until a time t1, such that e−λt1 = R1, where R1

is a random number from the unit interval.

2. The local population of the complete graph is measured (this measurement does
not need to be quantum non-demolition). The walker is found in node n with
probability |〈ψ(t1)|φn〉|2, where |φn〉 is the single excitation subspace state with
the walker in node n.

3. A second random number is selected from the weighted distribution γnm/
∑

k γnk
to determine the destination node m, and the walker is re-initialized in node m.
The graph is now in the state |φm〉.

4. The above process is repeated, replacing |ψ(0)〉 with the localized state |ψ′(t1)〉 =
|φm〉, until the total evolution time T is reached, with new random numbers be-
ing generated for each iteration. Due to the fact that the state at the beginning
of each iteration is localized, it is guarantied that K̂SE |ψ′(ti)〉 = λi

2 |ψ′(ti)〉 for
each iteration. However, λi may change between iterations, as the walker moves
between subgraphs.

Following this procedure, the quantum stochastic walk along any graph that sat-
isfies equation (2.16) can be simulated. The density matrix for the walker can be
obtained using sufficient trajectories and state tomography.



50 Chapter II. Quantum Simulations of Quantum Stochastic Walks

5.3.4 Resource Analysis and Scalability

In this section we consider the resources required for a physical implementation of the
QTQC simulation of a quantum stochastic walk. The number of trajectories required
to accurately calculate the expectation value of an observable depends on the nature
of the graph connectivity and on the observable, so general statements are difficult to
make. However, the number of trajectories required for accurate results in a QTQC
simulation will be the same as in QTCC, as the statistical procedure is effectively the
same.

As described before, a QTCC has a run time that scales as O(SD2), where S is
the number of trajectories required for converging results, and D is the Hilbert space
dimension of the system, while a numerical solution of the master equation has a
runtime that scales as O(D4). Therefore, a trajectories simulation is more efficient
for S < D2 [99]. In the situation considered here, D is the number of nodes of the
graph, as we have restricted ourselves to the single excitation subspace. In a QTQC
simulation the coherent part of the evolution is run on an actual quantum computer.
Therefore, for a useful QSW, QTQC will have a computational speed-up over the
best classical algorithm for the given problem. It is important to note that the best
classical algorithm may not be QTCC, but nevertheless, for a useful QSW the QTQC
simulation will be at least polynomially faster (in terms of the Hilbert space dimension
D) than the best classical algorithm.

The main resource requirements present in a QTQC simulation that do not have
clear analogues in QTCC are steps (2) and (3) of the protocol. These are full mea-
surements of the graph to locate the walker, and moving the walker from one node to
another, respectively. As a walker move only ever occurs after a graph measurement,
we will only discuss the average number of measurements in a given trajectory.

Sampling uniformly over the unit interval gives an expected R1 of 〈R1〉 = 1/2.
Therefore, the average coherent evolution time before a quantum jump (and therefore
a full graph measurement) satisfies

e−λtavg = 〈R1〉 =
1

2
, (2.20)

which implies that

tavg =
log (2)

λ
, (2.21)

where λ is the eigenvalue of K̂SE for the graph initial state. If λ does not change after
each measurement, then the average number of measurements per trajectory is simply
given by

〈Nmeas〉 =
T

tavg
, (2.22)

where T is the total time of the trajectory. When λ does change this formula is
no longer accurate, but by choosing the smallest tavg (corresponding to the largest
eigenvalue) one can calculate the “worst case” average number of measurements per
trajectory.

However, it is not the number of required measurements that is most limiting to
the size and complexity of the graph on which a QTQC simulation can be run. It is the
required coherence time of the graph that is most limiting, as keeping large, strongly
coupled networks of qubits coherent is a challenging experimental task. However,
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the coherence time is not given by the total length T of a trajectory as one might
naïvely expect, but instead by the average time between quantum jumps tavg, as after
each quantum jump the graph is “reset” into a definite (classically localized) state
with no coherence. This potentially significant reduction in required coherence time
increases the size of graphs on which a QTQC simulation could be run. In addition, the
required coherence time actually decreases with the average number of measurements
performed per trajectory, as the more measurements that are required, the stronger
the incoherent process in the simulated quantum stochastic walk are in comparison
to the coherent evolution.

It is also possible to use QTQC to simulate walks on graphs with more nodes
than are experimentally feasible. Since the connections between coherent subgraphs
are purely incoherent, they occur as quantum jumps, and the state of the walker is
always confined to a single coherent subgraph. When a quantum jump between co-
herent subgraphs occurs, the experimental set-up needs only to be “rewired” so that
it expresses the connectivity of the new coherent subgraph (and the excitation placed
in the appropriate node). Therefore, the total number of physical nodes need only be
as large as the largest coherently connected subgraph, provided the coherent coupling
between physical nodes is tunable. One can image creating very large graphs built
up of smaller coherent subgraphs in this way. Another approach one can envision
would be to have different physical set-ups for each subgraph. As jumps effectively
erase the memory of system, the statistical behaviour of each subgraph can be inves-
tigated independently and the final (complete) trajectories determined by connecting
corresponding subgraph trajectories. This approach would require no rewiring of the
set-up.

5.4 Conclusion

In this work we have introduced the concept of “quantum trajectories on a quan-
tum computer” (QTQC), which is a quantum trajectories simulation of open system
dynamics run on a quantum computer instead of a classical computer. As we have
shown, QTQC cannot be used to simulate all Lindblad master equations, but when
it can, it is more efficient than the classical simulation, owing to its quantum nature.

We have applied QTQC to simulating quantum stochastic walks (QSWs), a class
of quantum algorithms that have many applications, including machine learning [80,
87], and quantum transport [83, 89]. We have found that using QTQC, one can
simulate a restricted class of QSWs that still exhibit a flexible and rich graph topology.
Examples of interesting QSWs that can be simulated with QTQC already exist [80].
Additionally, for some graphs the restrictions can be lifted using ancillary systems
and/or approximately lifted using a Suzuki-Trotter decomposition of the coherent
evolution.

The coherence time of a QTQC simulator for a QSW need only be longer than the
average time between quantum jumps, which can be many times shorter than the total
simulation time. In addition, the QTQC simulator must only contain as many nodes
as the largest coherently connected subgraph of the QSW, as QTQC trajectories can
be pieced together. With these points in mind, QTQC simulation of a complex QSW
on a large graph is likely achievable in the near future.
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6 Quantum Simulation of a Discrete-Time QSW

In this section we propose an algorithm to simulate discrete-time QSWs. The central
concept behind our protocol is that if one performs randomly chosen unitary dynamics
from a carefully designed set, this can implement a specific non-unitary evolution in the
ensemble average [101]. Our protocol is based on ancilla systems and a feed-forward
scheme to implement the required evolution. The simplicity of the implementation of
a single edge leads to straight-forward scaling to more complex graphs, and is a key
feature of the protocol.

6.1 Quantum Simulation of a Kraus Map

The algorithm proposed here will be formulated on the Kraus decomposition of the
desired QSW. Any completely-positive and trace preserving quantum operation [8],
can be written in Kraus operator form as

B[ρ] =
∑

j

K̂jρK̂
†
j , (2.23)

where {K̂j} are the Kraus operators, which must satisfy
∑

j K̂
†
j K̂j = Î to preserve

the trace of the quantum state. This condition implies that

Tr




∑

j

K̂†
j K̂jρ



 = 1 ⇒
∑

j

Tr
[

K̂†
j K̂jρ

]

=
∑

j

P̃j = 1, (2.24)

where we have defined the probabilities P̃j = Tr[K̂†
j K̂jρ], which are guaranteed to

be non-negative as K̂†
j K̂j is Hermitian. We can then rewrite our original quantum

operation as

B[ρ] =
∑

j

P̃jK̃jρK̃
†
j , (2.25)

where K̃j = K̂j/
√

P̃j . This definition will easily allow us to define our protocol
through the ensemble average of quantum trajectories.

We now suppose that we have a protocol (which in our case uses ancilla systems
and quantum measurement), labeled B̃, that implements one of the K̃j sampled from
the set {K̃j} with the correct probability P̃j . Then, if we implement this protocol
many times on identical copies of the same initial state ρ, we have that

E

(

B̃ [ρ]
)

=
∑

j

P̃jK̃jρK̃
†
j = B[ρ], (2.26)

where E (.) is the ensemble average. We will use the above description as a single
time-step of the discrete-time QSW.

Let us now consider repeated action of B̃, and in analogy to the “quantum tra-
jectories on a quantum computer” scheme developed in Ref. [47] (see section 5) we
shall refer to each instance of such repeated action as a trajectory. By linearity of the

*Section 6 is available as an outdated preprint "P. K. Schuhmacher, L. C. G. Govia, B. G. Taketani
and Frank K. Wilhelm", arXiv:2004.06151 (2020). It has recently been accepted for publication in
Europhysics Letters. The majority of the text was written by P. K. Schuhmacher.

https://arxiv.org/abs/2004.06151
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Figure 2.3: The most general 2-vertex-graph as the key building-
block for arbitrary graphs. The vertices are coherently coupled (blue
dashed arrow) as well as incoherently coupled (black arrows). The
probabilities satisfy κ11 + κ12 = κ21 + κ22 = 1 − α due to trace-

preservation of the density matrix.

quantum operations, we see that

E

(

B̃
[

B̃ [ρ]
])

= E

(

B̃
[

E

(

B̃ [ρ]
)])

= B [B[ρ]] , (2.27)

which can be trivially extended to any number of actions of B̃. Thus, by averaging
over the final outcome of many trajectories we can simulate the action of an arbitrary
number of repetitions of the Kraus map B. In the rest of this manuscript, we detail
how to implement a map of the form of B̃ for the case of a discrete-time QSW.

6.2 Protocol

In the following, we show how to construct the quantum stochastic map B̃ that, as
described previously, can be used to simulate B via the ensemble average. To do this
for any connected graph G, we use its key building-block: the 2-vertex graph G2 with a
single (possibly directed) edge. Notice that Eq. (2.3) is of the form of the single time-
step quantum operation, see Eq. (2.25). We thus need to define how to implement
each of its Kraus operators.

6.2.1 A general 2-vertex graph

Let us consider the most general 2-vertex graph G2 with coherent edge coupling and
all possible directed1 edges, see figure 2.3. As we will argue, the procedure outlined
below easily generalizes to larger graphs. For such 2-vertex graphs, Eq. (2.3) becomes

B[ρ] := αÛG2(∆t)ρ(t)Û
†
G2
(∆t) +

2∑

m,n=1

κnm|m〉〈n|ρ|n〉〈m|, (2.28)

where trace-preservation implies that κ11 + κ12 = κ21 + κ22 = 1− α. The full system
will be comprised of the original graph vertices, represented by the basis states |n〉,
and one ancillary quantum state coupled to each graph vertex. We shall refer to the
graph vertices simply as the system, and the ancillary states as the ancillae. The
ancillae will be used to implement the stochastic processes. A single time-step of the
QSW, given by Eq. (2.28), will be divided into three parts (see figure 2.4):

1We call an edge directed if any of the κnm > 0, since that is the defining difference between a
QSW and a coherent QW.
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Figure 2.4: Protocol to simulate a discrete-time quantum stochastic
walk on the most general 2-vertex graph G2. a) The vertex-states
are coherently coupled to their corresponding ancillae via Ĥinit for
time ∆tinit such that g∆tinit = arccos (

√
α). b) The vertex-states

are coupled according to the coherent part of the graph G2. c) The
population of the ancillae is measured. If one of them is found to be
occupied, the excitation is transitioned to one of the vertices according
to the corresponding rates. If the ancillae are both found to be empty,
no further feed-forward step is needed. This completes a single time-

step of the discrete-time quantum stochastic walk.

(1) Initialization: At the start of each time-step, the system and ancillae are
uncoupled with no excitations in the ancillae. The density matrix can then be written
as

ρ0 =







ρ11 ρ12 ρ1a1 ρ1a2
ρ21 ρ22 ρ2a1 ρ2a2
ρa11 ρa12 ρa1a1 ρa1a2
ρa21 ρa22 ρa2a1 ρa2a2







=







ρ11 ρ12 0 0
ρ21 ρ22 0 0
0 0 0 0
0 0 0 0






, (2.29)

where the subscript 1 (2) denotes vertex 1 (2), and subscripts a1, a2 denote the
corresponding ancillae. All vertices are then coupled to their corresponding ancillae
via the interaction Hamiltonian

Ĥinit := g (|1〉〈a1|+ |a1〉〈1|+ |2〉〈a2|+ |a2〉〈2|) , (2.30)

for time ∆tinit. All couplings are equal and ∆tinit is chosen such that

g∆tinit = arccos
(√
α
)
. (2.31)

This choice is crucial, as will become clear in the second step discussed below. It
results in a density matrix ρinit right after the initialization step that is given by

ρinit = Ûinitρ0Û
†
init =





αρ11 αρ12
αρ21 αρ22

Υ1

Υ†
1 Υ0



 , (2.32)
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where Ûinit = e−iĤinit∆tinit and the Υ symbols represent generic 2× 2 matrices whose
precise form is not relevant at this stage.

(2) Coherent Evolution: We now decouple the ancillae from the system and im-
plement the desired coherent evolution between the graph vertices within the system

ĤG2 := gcoh (|1〉〈2|+ |2〉〈1|) (2.33)

for the desired length of the time-step ∆t. Note that ĤG2 is the Hamiltonian of the
graph G2, which has one free element gcoh ≥ 0. The density matrix ρcoh after the
coherent evolution is

ρcoh = ÛG2(∆t)ρinitÛ
†
G2
(∆t), (2.34)

where ÛG2 = e−iĤG2
∆t is the propagator of the graph Hamiltonian. Explicitly, at the

end of the coherent evolution step we obtain

ρcoh =




αÛG2(∆t)

(
ρ11 ρ12
ρ21 ρ22

)

Û †
G2
(∆t) Υ

Υ Υ



 . (2.35)

which is an implementation of the first term (coherent evolution) on the right-hand
side of Eq. (2.28) in the subspace of the vertices.

(3) Measurement and Feed-Forward: The final part of the protocol uses quantum
measurement to randomly determine which term from Eq. (2.28) is implemented for
each time-step in a given trajectory. The coherence between vertices and ancillae is
also removed, guaranteeing that once each time-step is concluded the system state is
of the form of Eq. (2.29). To do this, we decouple the system vertices and measure all
ancillae simultaneously. As the system is restricted to the single-excitation subspace,
there are three possible results:

1. the excitation is measured in ancilla a1,

2. the excitation is measured in ancilla a2,

3. all ancillae are found empty.

For an n-vertex graph there are n + 1 possible measurement outcomes. The last
outcome guarantees that the walker is in one of the system vertices, and the second
step implements the coherent evolution part of Eq. (2.28) in this case. No further
action is required, and we can proceed to the next time-step in the trajectory.

The other measurement results are interpreted as one of the incoherent processes
having taken place. To determine which, we use the incoherent rates κij of the in-
tended QSW as follows. If the excitation is found in ancilla ai this fixes the index i in
κij , i.e. the starting vertex of the incoherent process. To determine the index j and
implement the incoherent evolution, we randomly choose j from a probability distri-
bution given by the conditional probabilities P (j|i), and then move the excitation to
system vertex j. These conditional probabilities are given by

P (j|i) = κij
∑

j κij
. (2.36)

In this feed-forward operation, the outcome of the quantum measurement combined
with the outcome of the classical random choice determines which of the incoherent
terms in Eq. (2.28) is implemented in this time-step of the trajectory.
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The complete set of operators which describe the measurement and feed-forward
step for a two-vertex graph is given by

{
M̂0, M̂

a1
1 , M̂a1

2 , M̂a2
1 , M̂a2

2

}
. Their precise

forms are given in appendix A.c. M̂0 describes the measurement outcome where both
ancillae are found to be empty, and we write

M̂a1
1/2 = F̂ a1

1/2M̂a1 and M̂a2
1/2 = F̂ a2

1/2M̂a2 , (2.37)

where M̂a1/a2 describes the measurement where the excitation is found in ancilla a1/a2,

and F̂
a1/a2
1/2 describes the conditional feed-forward according to the measurement result

and classical random choice.
The three step procedure outlined above implements a single step of a single

trajectory of the discrete-time QSW. Averaging over many trajectories we obtain the
density matrix

ρ∆t := M̂0ρcohM̂
†
0 +

∑

y∈{1,2}

∑

x∈{a1,a2}
M̂x

y ρcohM̂
x†
y (2.38)

=







B
[(

ρ11 ρ12
ρ21 ρ22

)]
0 0
0 0

0 0
0 0

0 0
0 0






. (2.39)

A k-step trajectory is performed by k successive implementations of the above proto-
col, with its ensemble average having the desired statistics to simulate the QSW.

6.2.2 Arbitrary Graphs

The protocol proposed in section 6.2.1 generalizes trivially to any larger graph G, with
each system vertex requiring an ancilla. As before, a single time-step is split into three
parts:

(1) Initialization: System states are coupled to their corresponding ancillae via

Ĥinit :=
∑

m∈V (G)
g (|m〉〈am|+ |am〉〈m|) , (2.40)

for a time ∆tinit. Here, the summation covers all the graph vertices m ∈ V (G) and
the state |am〉 denotes the ancilla state which corresponds to vertex m. Again, ∆tinit
is chosen such that

g∆tinit = arccos
(√
α
)
. (2.41)

During this step, there is no coupling between the vertices at all. Hence, the scalability
of this step to larger graphs is trivial, since each vertex-ancilla pair is independent of
the others.

(2) Coherent Evolution: The ancillae are now decoupled from the system and the
system evolves coherently with

ĤG :=
∑

(n,m)∈E(G)
gnm (|m〉〈n|+ |n〉〈m|) , (2.42)

for a time ∆t. Note that Eq. (2.42) is the full Hamiltonian of the graph as the
summation covers all the edges of the graph.
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(3) Measurement and Feed-Forward: Finally, the ancillae are measured. As before,
if the ancilla are all found to be empty the time-step is complete. If the excitation
is found in an ancilla, then the excitation will be incoherently moved to a randomly
chosen system vertex that is connected to the system vertex corresponding to the
excited ancilla. This process is identical to that described previously for a two-vertex
graph, but with the choice of final vertex expanded to include all vertices connected
incoherently (κij > 0) to the initial vertex.

Parts (1)-(3) implement a single time-step of Eq. (2.28). Again, the complete walk
will be given by iterating this procedure. We note that the projective measurement
resets all the ancillae at each logical time-step. Therefore, all the correlations between
the ancilla states one could imagine due to the repetition of the whole protocol will be
erased at every single logical time-step. Hence, there is no disturbing indirect coupling
between ancillae induced dependent on the graph topology.

We remark that the protocol presented here is distinct from the one introduced
in appendix A.b, to simulate non-unitary dynamics. The discrete time of the model
presented here allows for the design of system-ancilla interactions and a measurement
scheme such that all possible measurement outcomes are interpreted as part of a
given trajectory. This overcomes an important drawback of the more broad protocol
of appendix A.b, where post-selection is in general required.

6.3 Simulating a Continuous-Time QSW by a Discrete-Time QSW

In the previous sections we showed how to simulate discrete-time quantum stochastic
walks as defined by Eq. (2.3) and Eq. (2.4), using a trajectory approach. However,
currently the majority of applications of QSWs use the continuous-time version, as is
widely documented in literature [80, 83, 87, 89, 102, 103, 104, 105]. Therefore, we now
show how to implement a restricted set of continuous-time QSW by a discrete-time
QSW, such that our method for simulating discrete-time QSWs is also applicable.

As mentioned in section 4, the continuous-time quantum stochastic walk of Ref. [85]
is given by a Lindblad master equation of the form

ρ̇ = (ω − 1)i
[

ĤG , ρ
]

+ ω
∑

k

γk

(

L̂kρL̂
†
k −

1

2

{
L̂†
kL̂k, ρ

}
)

, (2.43)

where ρ is the density operator of the system, L̂k are the Lindblad operators with γk
their associated incoherent transition rates, ĤG is the Hamiltonian of the underlying
graph G and ω ∈ [0, 1]. We write the Liouvillian Lω of equation (2.43) as

Lωρ = (1− ω)Hρ+ ωΛρ, (2.44)

where Hρ = −i
[

ĤG , ρ
]

and

Λρ =
∑

k

γk

(

L̂kρL̂
†
k −

1

2

{
L̂†
kL̂k, ρ

}
)

. (2.45)

The Liouvillian (2.44) is the generator of a quantum dynamical semigroup [26]. There-
fore, we can write

ρ(t+∆t) = exp (Lω∆t) ρ(t) =

( ∞∑

l=0

1

l!
Ll
ω∆t

l

)

ρ(t). (2.46)
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Inserting Eq. (2.44) into Eq. (2.46) yields, up to first order in ∆t,

ρ(t+∆t) =
(

1 + ∆t ((1− ω)HG + ωΛ) +O
(
∆t2

) )

ρ(t)

=
(

(1− ω) (1 + ∆tHG) + ω (1 + ∆tΛ) +O
(
∆t2

) )

ρ(t). (2.47)

Prima facie, this short-time Taylor expansion violates completely positive and trace
preserving (CPTP) conditions on the dynamics in general. However, we will soon
derive the necessary and sufficient condition to ensure that the simulated dynamics
are CPTP.

The first term on the right-hand side of Eq. (2.47) can be interpreted as pure
coherent evolution that occurs with probability (1−ω). Analogously, we interpret the
second term as describing incoherent evolution occurring with probability ω.

We now consider continuous-time QSWs where the incoherent evolution describes
incoherent excitation transfer between system vertices [87], such that L̂k = |m〉〈n|. In
this case, the incoherent evolution of Eq. (2.47) becomes

ω (1 + ∆tΛ) ρ = ωρ

+
∑

(m,n)∈E(G)
ω∆tγnm

(

|m〉〈n|ρ|n〉〈m| − 1

2

{
|n〉〈n|, ρ

}
)

. (2.48)

Here, the k-th Lindblad operator L̂k = |m〉〈n| generates an incoherent jump from
vertex n to vertex m, and γnm describes the transition rate for this process, with
E (G) the set of connected edges of the graph.

To first order in ∆t, we see that pnm = ∆tγnm can be treated as the conditional
probability to transition to vertex m if the excitation is in vertex n during time-step
∆t, if the Lindblad rates satisfy

∑

m∈V (G)
pnm =

∑

m∈V (G)
∆tγnm = 1, (2.49)

to ensure conservation of probability. In other words, satisfying Eq. (2.49) guarantees
that the simulated dynamics are CPTP. This condition must be satisfied simultane-
ously for all n, which is possible if and only if

∑

m∈V (G)
γnm = γ ∀n ∈ V (G) , (2.50)

such that ∆t = γ−1 can be chosen uniquely to simultaneously guarantee Eq. (2.49)
for all n. We note that this is the same restriction on the Lindblad rates as was
necessary for protocols to simulate continuous time QSWs using quantum trajectories
on a quantum computer [47].
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Under this restriction, we can write the incoherent evolution as

ωρ+ ω
∑

(m,n)∈E(G)
pnm

(

|m〉〈n|ρ|n〉〈m| − 1

2

{
|n〉〈n|, ρ

}
)

=ωρ+ ω
∑

(m,n)∈E(G)
pnm|m〉〈n|ρ|n〉〈m|

− ω

2

∑

n∈V (G)

{
|n〉〈n|, ρ

}

︸ ︷︷ ︸

=2ρ

∑

m∈V (G)
pnm

︸ ︷︷ ︸

=1

=
∑

(m,n)∈E(G)
κnm|m〉〈n|ρ|n〉〈m|, (2.51)

where in the last line we have defined κnm = ωpnm. Thus, we see that the short-time
incoherent evolution for this restricted class of continuous-time QSWs has the same
form of the incoherent part of the discrete-time QSW we have used throughout this
manuscript.

Similarly, we replace (1 + ∆tHG) with the unitary propagator ÛG(∆t) = e−iĤG∆t

for the coherent evolution. Combining these results, and defining α = 1 − ω, we see
that we can write the continuous-time evolution for short ∆t as

ρ(t+∆t) =αÛG(∆t)ρ(t)Û
†
G(∆t)

+
∑

(m,n)∈E(G)
κnm|m〉〈n|ρ|n〉〈m|+O

(
∆t2

)
. (2.52)

This has the form of a Kraus map for a discrete-time QSW, and as such, we have
shown how to implement the short time evolution of a restricted class of continuous-
time QSWs with a discrete-time QSW, broadening the applicability of our simulation
method for discrete-time QSWs.

6.4 Conclusion

In this section, we developed a trajectory-based protocol to simulate discrete-time
QSWs on a coherent quantum computer. This ancilla-based protocol breaks down
each time-step of the QSW into three parts that require only coherent couplings,
measurements, and feed-forward operations, and thus are suitable to implementation
on quantum hardware. Subsequent applications of this process create a single quantum
trajectory with a certain probability, and we show that, as with the standard quantum
trajectories approach, ensemble averages over many trajectories mimics the desired
QSW dynamics.

The full time-step was carefully detailed for the most general graph of two vertices
and we have shown that this serves as a building block to simulate arbitrary graphs.
The simple procedure to generalize to complex graphs is one of the key features of
our proposal, as no complicated design of system-ancillae interaction is needed. The
protocol can also be employed for simulations of continuous-time QSWs satisfying
certain conditions, which are also present in previously proposed simulation methods
using quantum computers.

We note that as our protocol is designed on the single-excitation subspace, hard-
ware implementations using qubits to represent vertices and ancillae are not resource
efficient. Such qubit implementations use a 22N -dimensional Hilbert space to simulate
a graph G with |V (G) | = N , which only requires 2N degrees of freedom including
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ancillae1. The system size scales linearly as the walk size increases, and we have
demonstrated that the same scaling is possible for the additional ancillae resources.
Reducing this further to a constant scaling necessitates an increase in protocol com-
plexity, and requires increased device connectivity and protocol time. For near-term
devices, we believe that our simple protocol, even with its linear resource scaling, will
be the better option. Particularly, the initialization step becomes very easy indepen-
dently of the graph topology if we use one ancilla per vertex. This is due to the fact
that it is sufficient to turn the coupling on and off between each vertex and its ancilla
and hence, no further control is needed..

As it is usual for quantum trajectory based protocols, our proposal will be more
suited for simulations for which convergence scales faster than D2, where D is the
Hilbert space dimension of the system to be simulated. As this heavily depends on
the underlying graph G, no general statement is possible. However, we note that as
the system evolution is reset to a specific state after any ancilla is measured to be
occupied, the protocol requires coherence times much shorter than the total simulation
time and could therefore be useful for near-term quantum hardware implementations.

1An alternative approach could use qutrits to represent each vertex, with the third energy level
representing the ancillae.
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Appendices

A.a Graph Restriction due to Commutation of K̂SE and ĤSE

To simulate a quantum stochastic walk using a QTQC protocol, it is required that
the operators K̂SE and ĤSE commute. Using the form of these operators given in
equations (2.14) and (2.15), we see that

[

ĤSE, K̂SE

]

=
1

2

∑

ijk

(

gijλk |φi〉 〈φj〉φk 〈φk| − gijλk |φk〉 〈φk〉φi 〈φj |
)

=
1

2

∑

ijk

(

gijλkδjk |φi〉 〈φk| − gijλkδki |φk〉 〈φj |
)

=
1

2

∑

ij

gij (λj − λi) |φi〉 〈φj | , (2.53)

where δnm is the usual Kronecker delta, and we have used the fact that the single
excitation subspace states |φn〉 are orthonormal. As the set of operators {|φi〉 〈φj |}ij
are mutually orthogonal, then each term in the sum in equation (2.53) must vanish
independently, which leads to the graph restriction of equation (2.16).

The restriction gij(λi − λj) = 0 does not need to precisely hold for the QTQC
protocol to be applicable. If (λi −λj)/λi ≪ 1 for all {i, j} for which gij 6= 0, then the
Suzuki-Trotter decomposition of equation (2.10) can be applied and the protocol can
be used as an approximate solution.

A.b Simulating Nonphysical Evolution

In this appendix we describe a protocol to simulate nonphysical evolution. Previous
protocols have been developed to simulate specific nonphysical evolutions [106], and

here we present a protocol to simulate the evolution |ψ(t)〉 = e−K̂t |ψ(0)〉, where K is

a normal operator that is not skew-Hermitian, such that e−K̂t is not a unitary matrix.
However, as K̂ is a normal matrix it is diagonalizable in its eigenbasis, which we

shall label by {|Kn〉}Dn=1, where D is the dimension of the Hilbert space of the graph.

We begin by expressing the initial state in terms of the eigenbasis of K̂

|ψ(0)〉 =
D∑

n=1

cn |Kn〉 , (2.54)

and it is clear that in this basis the final state is given by

|ψ(t)〉 =
D∑

n=1

e−kntcn |Kn〉 , (2.55)

where kn is the n’th eigenvalue of K̂.
We introduce an ancillary quantum system of dimension D spanned by the ba-

sis {|ηn〉}Dn=1, which is initialized in a state |Ω〉. Next, we perform the controlled
entangling unitary

Û =
D∑

n=1

|Kn〉 〈Kn| ⊗ Ûn, (2.56)
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where Ûn |Ω〉 = |ηn〉, such that the state of the joint system becomes

|ϕ〉 =
D∑

n=1

cn |Kn〉 |ηn〉 . (2.57)

Finally, we perform a measurement of the ancilla system in a basis that contains
the state

|M〉 = 1√
N

D∑

n=1

e−knt |ηn〉 , (2.58)

where N =
∑D

n=1 e
−2knt. When the outcome of the measurement is the state |M〉 the

final state of the joint system is

|ϕ′〉 = Î⊗ |M〉 〈M |ϕ〉
√

Tr
[

Î⊗ |M〉 〈M |ϕ〉 〈ϕ|
] (2.59)

=
1√
N

D∑

n=1

cne
−knt |Kn〉 ⊗ |M〉 = 1√

N
|ψ(t)〉 |M〉 .

As can be seen, the graph has been unentangled from the ancilla, and is now in the
desired state |ψ(t)〉 (up to an irrelevant normalization factor).

The protocol is probabilisitic, as it succeeds only when the outcome of the ancilla
measurement is |M〉, which happens with a probability given by the normalization
factor N . The longer the desired simulation time t, the smaller this factor, and
therefore, the less likely the protocol is to succeed.

In addition, this protocol creates the state |ψ(t)〉 for a single time t, and cannot
simulate continuous time evolution under the nonphysical K̂. For QTQC, one still
needs to know the state |ψ′(ti)〉 at the beginning of each coherent time step, in order
to calculate the norm as a function of time, now given by the formula

〈ψ(ti+1)|ψ(ti+1)〉 = 〈ψ′(ti)| e−2K̂t |ψ′(ti)〉 =
D∑

n=1

|cn|2 e−2knt. (2.60)

The protocol presented here is one example of a protocol to simulate e−K̂t |ψ(0)〉,
and is neither meant to be optimal in any sense (resources, complexity, etc.), nor
simple to implement in a physical system. It is only meant to highlight the fact

that simulation of e−K̂t |ψ(0)〉 is possible in principle, and we anticipate that physical
implementation of such a simulation will require extensive further theoretical and
experimental work.

One advantage of this approach based on quantum trajectories is that the dimen-
sion of the ancillary system scales with D, whereas general environmental representa-
tions require ancillary systems with dimension scaling with D2 [107]. We note that
related protocols have recently been proposed in Ref. [108].
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A.c Measurement Operators

The measurement operators in Eq. (2.37) for a 2-vertex graph are:

M̂0 = |1000〉〈1000|+ |0100〉〈0100| (2.61)

M̂a1 = |0010〉〈0010| (2.62)

M̂a2 = |0001〉〈0001| (2.63)

F̂ a1
1 = P (1|1)

(
|1000〉〈0010|+ |0100〉〈0100|

+ |0010〉〈1000|+ |0001〉〈0001|
)

(2.64)

F̂ a1
2 = P (2|1)

(
|1000〉〈1000|+ |0100〉〈0010|

+ |0010〉〈0100|+ |0001〉〈0001|
)

(2.65)

F̂ a2
1 = P (1|2)

(
|1000〉〈0001|+ |0100〉〈0100|

+ |0010〉〈0010|+ |0001〉〈1000|
)

(2.66)

F̂ a2
2 = P (2|2)

(
|1000〉〈1000|+ |0100〉〈0001|

+ |0010〉〈0010|+ |0001〉〈0100|
)
. (2.67)
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Chapter III

Hybrid Quantum-Classical

Annealing

Adiabatic quantum computing (AQC) is an equivalent alternative to the gate-based
model for quantum computing described in chapter I. It has been shown to be uni-
versal by Aharonov et al. in 2004 [109]. However, the two approaches differ a lot:
In contrast to the circuit model, where the computation is performed via a sequence
of unitary quantum gates, in AQC, the solution of the problem of interest will be
encoded in the ground state of some suitible Hamiltonian. Finding this ground state
is a computationally hard task in general. The core idea is to evolve the system
over time, from the known, unique and easily preparable ground state of some initial
Hamiltonian, to the ground state of the desired Hamiltonian. If this evolution is slow
enough, the adiabatic theorem guarantees that the system will stay in the instan-
taneous ground state during all the evolution time and the solution of the problem
will be found by just measuring the state of the final Hamiltonian in its eigenbasis.
Obviously, the drawback of this approach is the condition to evolve "slow enough". In
many cases of interest, satisfying this condition implies an exponential growth of the
needed evolution time with respect to the system size. In this chapter, we discuss hy-
brid quantum-classical annealing, an alternative approach to target this issue. Here,
the core idea is to accept diabatic excitations during the sweep due to finite sweep
times and to cool the system back to the instantaneous ground state afterwards. As
cooling reduces energy, carefully engineered decoherence will be needed to drain the
energy out of the system.

Preface

This chapter is based on joint work of many people including me. I spent a long time
on the principle ideas how a cooling scheme assisting AQC could work and and to find
a master equation approach which promised reliable results, as we were interested in
a parameter regime where typical approximations are questionable. At the time we
knew what to test and how to do the numerics, I went to parental leave and during
this time, Lukas S. Theis took over my project (still supported by me) and finished
the work on HQCA for a single qubit that resulted in the preprint [110]. Section 9
is based on this preprint and it also appears as a part of the PhD thesis of its first
author Lukas S. Theis. The majority of this preprint has been written by him during
the time of my parental leave. However, as his work was based on my previous work,
it is warrantable to be part of my thesis too. Section 10 in currently unpublished and
completely written by me.
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8 Introduction to Adiabatic Quantum Computing

In this section, I give a brief overview on the field of adiabatic quantum computing, its
promises and drawbacks. In the last years, its development became faster and faster,
driven by academic and industrial research [111]. I do not cover all the details here.
For further reading, I recommend the elaborate review [12].

8.1 3-SAT

Some of the simplest examples of NP-complete problems come from propositional
logic [7]. A Boolean formula over the variables u1, . . . , un consists of the variables
and the logical operators AND (∧), NOT (¬) and OR (∨). If ϕ is a Boolean formula
over variables u1, . . . , un and z ∈ {0, 1}n, then ϕ(z) denotes the value of ϕ when the
variables of ϕ are assigned the values z (where we identify 1 with TRUE and 0 with
FALSE). A formula ϕ is satisfiable if there there exists some assignment z such that
ϕ(z) is TRUE. Otherwise, we say that ϕ is unsatisfiable.

A Boolean formula over variables u1, . . . , un is in conjunctive normal form, if it is
an AND of OR’s of variables or their negations, i. e.

∧

i

∨

j

vij , (3.1)

where each vij is either a variable uk or to its negation ¬uk. The terms vij are called
the literals of the formula and the terms

Ci :=
∨

j

vij (3.2)

are called its clauses. Now, we focus on the following problem:

Is a given formula ϕ, written in conjunctive normal form in which all clauses contain
at most k literals, satisfiable?

This is a standard problem in computer science known as k-SAT. It is proven to be
NP-complete for k ≥ 3. This means, each problem in NP can be mapped to k-SAT
and k-SAT∈NP itself [7]. Particularly, 3-SAT is NP-complete.

8.2 Solving 3-SAT by Exploiting Physics

A k-local Hamiltonian is a Hermitian matrix that acts nontrivially on at most k p-
state particles [12]. The k-local Hamiltonian problem is defined on n qubits with the
following input:

• The total Hamiltonian Ĥ can be written es a sum Ĥ =
∑r

i=1 Ĥi, where each Ĥi

is k-local, r = poly(n) and ||Ĥi|| = poly(n) and its nonzero entries are specified
by poly(n) bits1.

• There exist two real numbers a and b specified with poly(n) bits of precision,
such that

b− a >
1

poly(n)
. (3.3)

1The expression "x = poly(n)" for some left hand side x means that the growth of x with increasing
number of qubits n can be bounded by some polynomial function in n.
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The output (0 or 1) answers the question: Is the smallest eigenvalue of Ĥ smaller
than a (output is 1), or are all eigenvalues larger than b (output is 0)? Here, we are
promised that the ground state eigenvalue is not between a and b.

It is possible to map 3-SAT to the 3-local Hamiltonian problem as follows. For
each clause Ci, we define a 3-local projector Ĥi onto all the unsatisfying assignments of
Ci. As Ĥi is a projector, it has eigenvalues 0 and 1, where 0 corresponds to satisfying
assignments and 1 corresponds to unsatisfying assignments. Hence,

Ĥ|X〉 =
r∑

i=1

Ĥi|X〉 = q|X〉, (3.4)

where q is the number of unsatisfied assigments by X. Therefore, 3-SAT can be solved
by solving the following 3-local Hamiltonian problem:

Is the smallest eigenvalue of Ĥ zero (the 3-SAT problem is satisfiable) or it is greater
or equal 1 (the 3-SAT problem is unsatisfiable)?

This native mapping from 3-SAT to the 3-local Hamiltonian problem proves the
3-local Hamiltonian problem to be NP-complete1. Now, one could argue that this
observation is not a big deal as we just replaced a computational hard problem by
another equivalent computational hard problem. From the point of view of classical
computing, this statement is true. However, in contrast to 3-SAT, the 3-local Hamil-
tonian problem is a problem in physics. Therefore, one could imagine to engineer an
analogue device which is supposed to find the ground state of a 3-local Hamiltonian by
the laws of physics rather than brute-force calculating it. Unfortunately, all (known)
interactions existing in nature are 2-local and hence, there is no 3-local Hamiltonian
in nature which can be used for this task. Hence, the desired 3-local Hamiltonian has
to be engineered artificially using 2-local terms. This can be done using perturbative
gadgets [12, 112, 113, 114, 115, 116]. The goal of the gadget is to approximate the 3-
local target Hamiltonian Ĥtarget of n qubits by a 2-local gadget Hamiltonian Ĥgadget

acting on the same n qubits plus some polynomial number of ancilla qubits. The
gadget Hamiltonian Ĥgadget can be chosen such that its low-energy eigenspace equals

the eigenspace of Ĥtarget up to a weak perturbation and all the "unwanted" states
feel an energy penalty. For the details of this construction, we recommend App. E of
Ref. [12].

With this, it is possible to map 3-SAT onto finding the ground state of problem
Hamiltonians of the form

ĤP :=
∑

(i,j)∈E(G)
Jx
ij σ̂

x
i σ̂

x
j + Jy

ij σ̂
y
i σ̂

y
j + Jz

ij σ̂
z
i σ̂

z
j

+
∑

i∈V (G)
hxi σ̂

x
i + hyi σ̂

y
i + hzi σ̂

z
i , (3.5)

where V (G) and E(G) denote the vertices and the edges of a graph G, σ̂νi is the Pauli-
ν-operator on the i-th qubit for ν ∈ {x, y, z} and the coefficients hνi and Jν

ij can all be
chosen to be real. Indeed, it is sufficient to focus on a special case of equation (3.5),
namely the well-studied Ising spin glass Hamiltonian

ĤIsing :=
∑

(i,j)∈E(G)
Jz
ij σ̂

z
i σ̂

z
j +

∑

i∈V (G)
hzi σ̂

z
i . (3.6)

1Alternatively, there is a direct map to graph colouring too.
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The problem to solve will be encoded in the coefficients hzi and Jz
ij . Hence, we are

going to discuss how to build an analogue device which is supposed to find the ground
states of Ising spin glass Hamiltonians in the following sections.

8.3 Adiabatic Quantum Computing

As we have seen in section 8.2, we can map the NP-complete 3-SAT problem to the
problem of finding the ground state of the famous Ising spin glass Hamiltonian defined
in equation (3.6) up to a polynomial overhead in the number of qubits n. Hence, if
we would be able to build an analogue device which is supposed to find the ground
state of such a Hamiltonian, we would be able to solve any problem in NP with it.
Now, the question arises how to build such a device in practice. A promising ansatz
is the so-called quantum annealer which will be discussed in the following.

When the term adiabatic quantum computing (AQC) has been introduced, it was
focused on optimization [117]. Later on, it has been extended its scope and is now
treated as a competing approach to the gate-based model for quantum computing. The
original idea of using adiabatic evolution for solving computational problems appeared
in Ref. [118]. Here, adiabaticity was proposed to solve classical combinatorial prob-
lems. This ansatz was introduced as quantum stochastic optimization, but the term
quantum annealing has been established later on [119] as it is a quantum-improved
version of the classical simulated annealing algorithm [120]. Quantum annealing can
be implemented to run in the "native instruction set" of an AQC platform [121].

The core idea of AQC relies on the adiabatic theorem which appears in various
approximate and rigoros versions [12, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131].
Here, we give its simplest as well as one of the oldest traditional versions [12]:

Let |ǫj(t)〉 (j ∈ N∪{0}) denote the instantaneous eigenstate of the time-dependent
Hamiltonian Ĥ(t) with energy ǫj(t) such that ǫj(t) ≤ ǫj+1(t) ∀j, t and j = 0 denotes
the (possibly degenerate) ground state. We assume that the initial state is prepared in
one of the eigenstates |ǫj(0)〉. Let tf denote the final time and s := t/tf. The quantum
system will remain in the same instantaneous eigenstate |ǫj(t)〉 (up to a global phase)
for all s ∈ [0, 1] if

1

tf
max
s∈[0,1]

∣
∣
∣〈ǫi(s)|∂sĤ(s)|ǫj(s)〉

∣
∣
∣

|ǫi(s)− ǫj(s)|2
<< 1 ∀j 6= i. (3.7)

The condition (3.7) gives rise to the widey used criterion that the total adiabatic
evolution time should be large on the time scale set by the minimum of the square of
the inverse spectral gap ∆ij(s) := ǫi(s)− ǫj(s). In AQC, one is typically interested in
the ground state, so that ∆ij(s) can be replaced by

∆ := min
s∈[0,1]

∆(s) = min
s∈[0,1]

(ǫ1(s)− ǫ0(s)) . (3.8)

In other words, if we prepare a quantum system in its instantaneous ground state
and evolve the system Hamiltonian slow enough to some target Hamiltonian at t = tf,
then the adiabatic theorem guarantees the quantum system to end up in the ground
state of this Hamiltonian at t = tf. This observation leads to the original paradigm of
AQC:
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1. We encode the solution of some computational problem in the ground state of
some Hamiltonian Ĥtarget. If it is a computational hard problem, this ground
state will be hard to be computed on a classical computer as well.

2. We prepare a quantum system in the well-known and non-degenerate ground
state of some easily preparable Hamiltonian Ĥ0.

3. We evolve the system adiabatically from Ĥ0 to Ĥtarget. The adiabatic theorem
guarantees us to end up in the desired ground state.

4. We measure the ground state of Ĥtarget and we get the solution of the original
computational problem.

Usually, the quantum system will consist of n strongly interacting qubits. A typical
choice for the Hamiltonians Ĥ0 and Ĥtarget is then given by

Ĥ0 := −1

2

n∑

i=1

∆iσ̂
x
i and Ĥtarget := ĤIsing =

n∑

i,j=1
j>i

Jz
ij σ̂

z
i σ̂

z
j +

n∑

i=1

hzi σ̂
z
i . (3.9)

The reason behind this choice is manifold. The Hamiltonian Ĥ0 has a unique, well-
known and easily preparable ground state by applying a strong transversal magnetic
field to the n-qubit system. And ĤIsing as written in equation (3.6) is a diagonal matrix
with known eigenstates. Nevertheless, finding the ground state of a general Ising spin
glass Hamiltonian ĤIsing is NP-complete (even though the eigenstates are known, it is
not clear which one of them is the ground state as there are 2n possibilities). Therefore,
even if the problem setting we choose here looks very specific, it is rather general as
each computational problem in NP could be solved this way1.

Now, the question arises how to interpolate between Ĥ0 and ĤIsing. The most
general annealing schedule can be written as

Ĥ(s) := A(s)Ĥ0 +B(s)Ĥcat + C(s)ĤIsing, (3.10)

where A(s), B(s) and C(s) are smooth functions satisfying A(tf) = B(0) = B(tf) =
C(0) = 0 and A(0) = C(tf) = 1. The Hamiltonian Ĥcat is called the catalyst Hamil-
tonian and can be used to optimize the schedule. In this work, we focus on the linear
schedule

Ĥ(s) := (1− s)Ĥ0 + sĤIsing, (3.11)

which is not optimal but the simplest option to study.
So far, we explained the original paradigm of adiabatic quantum computing. Ob-

viously, this approach has a crucial drawback2. The gist of the matter is "to evolve
the system adiabatically from Ĥ0 to Ĥtarget". What does "adiabatically" mean in this
context? How fast are we allowed to sweep? Figure 3.1 targets these questions regard-
ing a qubit undergoing the standard Landau-Zener sweep [132, 133] which serves as a
toy model for AQC3. It is the easiest time-dependent problem leading to an avoided
crossing and hence, passing through a minimal gap ∆.

1We do not really expect AQC to efficiently solve NP-complete problems. However, it is worth it
to try.

2If life would be that easy, then we could stop all the research programs on quantum computing
immediately.

3For the Landau-Zener problem, the time t fulfills t ∈ [−tf, tf] due to historical reasons.
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Figure 3.1: Landau-Zener physics as a toy model for AQC. a) Qubit
eigenfrequencies as a function of dimensionless time s ∈ [−1, 1] . The
qubit is initialized in the ground state at s = −1 (visualized as the
black dot) and it is supposed to end up in the ground state at s = 1.
During the sweep, the qubit will pass through the minimal gap ∆ at
s = 0. b) Desired time evolution. If the sweep velocity v is small
enough, the qubit will stay in its instantaneous ground state through-
out all the sweep time (green path). c) Diabatic errors. If the sweep
velocity v is too large, the qubit will undergo a diabatic transition to
the excited state (red path) and hence, the qubit will be found in the
wrong state at the end of the sweep. d) Finite temperature effects. If
kBT & ∆, then the system can be excited by thermal fluctuations.

The Landau-Zener Hamiltonian ĤLZ(t) reads

ĤLZ(t) := −v · t
2
σ̂z − ∆

2
σ̂x. (3.12)

Here, the schedule is linear in t with a constant sweep velocity v. The goal is, starting
in the ground state at t = −tf, to end up in the ground state at t = tf. To guarantee
success, we have to satisfy the condition (3.7). Hence, the sweep velocity (which is
proportional to 1/tf) has to be chosen as a function of ∆. The smaller ∆, the larger
tf has to be to avoid diabatic transitions. This is a challenging observation, because
it is known that the size of the minimal gap ∆ typically becomes tiny for compu-
tationally hard problems. In the worst-case scenario, it can decrease exponentially
with the number of qubits n [134]. But, an exponentially decreasing gap means an
exponentially increasing tf. On the other hand, if the temperature of the annealer’s
environment exceeds the minimal gap, the qubit system will thermalize if the sweep
is too slow. To add insult to injury, the size of the gap is unknown in general as
calculating the gap requires diagonalization of the Hamiltonian [135]. Hence, even
if the gap decreases only polynomially with increasing system size, we do not know



72 Chapter III. Hybrid Quantum-Classical Annealing

how to choose the time tf to satisfy the condition (3.7) properly. In other words, we
are not allowed to go too fast, we are not allowed to go too slow, and we do not
know what "fast" and "slow" mean in practice. Hence, we will never be guaranteed
to reach the ground state of the target Hamiltonian when we try to solve an unsolved
computational problem.

In this regard, we should extend this original paradigm of AQC to target these
issues. We tackle this challenge with an approach which we call hybrid quantum-
classical annealing (HQCA) [110]. This approach is based on engineered decoherence
which will be used to cool the system to its instantaneous ground state during the
sweep. This concept is shown schematically in figure 3.2. Consider the 2n eigenstates
of a given Ising spin glass Hamiltonian of n qubits in some arbitrary order. These
states form the discrete configuration space we would like to search for the state of
lowest energy. Quantum annealing exploits the quantum mechanical tunnel effect
to search the configuration space. This allows to go "through the hills in the enrgy
landscape" which would not be possible in classical optimization. However, pure
tunneling is totally coherent. Therefore, energy is conserved. On the other hand, the
classical ansatz to use relaxation allows for reducing the energy, but it is exponentially
likely to be stuck in some local minimum. The concept of hybrid quantum-classical
annealing combines these two strategies: On the one hand, we exploit the tunnel
effect to search the configuration space. On the other hand, we carefully engineer
some decoherence on top of the pure coherent evolution to cool the system down to the
desired ground state. This concept will be discussed in the following sections. We note
that HQCA is distinct from the thermally assisted adiabatic quantum computation
(TA-AQC) of Ref. [136] as the relaxation is induced by an engineered heat bath rather
than using natural thermal fluctuations.

9 Hybrid Quantum-Classical Annealing of a Single Qubit

In section 8.3, we discussed the core idea of hybrid quantum-classical annealing as
an advancement of adiabatic quantum computing. The main principle is to accept
unavoidable diabatic transitions during the annealing sweep and to cool the system
back to its instantaneous ground state using carefully engineered decoherence. Now,
we apply this idea to a suitable toy model, namely the dissipative Landau-Zener
problem governed by a spin-boson model [137].

9.1 Model and Equations of Motion

We investigate a dissipative Landau-Zener problem, governed by a spin-boson model
[137]. The bare system Hamiltonian ĤQ(t) features a generally time-dependent drive
ǫ(t) ∈ R and a constant tunneling amplitude ∆ > 0, i.e.

ĤQ(t) := −ǫ(t)
2
σ̂z − ∆

2
σ̂x. (3.13)

In the simplest non-trivial model, ǫ(t) is linear in time with sweep velocity v and y-
intercept ǫ0, i.e. ǫ(t) = v ·t+ǫ0. Without loss of generality we will assume ǫ0 = 0 in the
remainder of this work and let the sweep take place within the time interval [−t0, t0]
with t0 chosen such that the initial energy splitting is large compared to the gap, i.e
v · t0 = 80∆. This serves as a proper toy model, especially if the two eigenstates can

*Section 9 is available as a preprint "L. S. Theis, P. K. Schuhmacher, M. Marthaler and Frank K.
Wilhelm", arXiv:1808.09873 (2018). The majority of the text was written by L. S. Theis.

https://arxiv.org/abs/1808.09873


9. Hybrid Quantum-Classical Annealing of a Single Qubit 73

Figure 3.2: Hybrid Quantum-Classical Annealing (HQCA). The ul-
timate goal is to find the configuration which minimizes the energy.
Quantum annealing exploits the quantum mechanical tunnel effect to
search the configuration space. However, pure tunneling is totally
coherent (it conserves energy). Hence, it only allows for going hori-
zontally in the diagram. On the other hand, pure dissipation allows for
reducing the energy, but it is exponentially likely to be stuck in some
local minimum. Hybrid quantum-classical annealing combines these
two principles: We use quantum tunneling to search the configuration
space and in addition, we engineer some decoherence to reduce the

energy.

be mapped to well-isolated adiabatic states of a larger system. In fact, a system that
features such an isolated small gap has been engineered and analyzed with respect to
the influence of (thermal) noise [138]. The full Hamiltonian of our system is given by
the bare qubit ĤQ(t), the heat bath ĤB and the qubit-environment coupling terms

ĤQB. We model each heat bath as harmonic oscillators and assume that there are
bothX- and Z-couplings present, which we will refer to as transverse and longitudinal,
respectively. The respective Hamiltonians are then given by

ĤQB :=
∑

ν=x,z

∑

k

σ̂νλνk

(

b̂νk + b̂ν†k

)

(3.14)

ĤB :=
∑

ν=x,z

∑

k

ων
k b̂

ν†
k b̂

ν
k. (3.15)

Based on previous ideas and experiments [139, 140, 141, 142, 143] we propose a cooling
scheme via an additional σ̂x coupling – for instance realized by using a coplanar
waveguide (CPW) as an environment, as shown in figure 3.3. The coupling strength
to the qubit can be controlled in the fabrication process through the distance d between
CPW and qubit. In order to derive an analytic set of equations of motions for the
qubit subsystem, we follow the core idea of the standard Bloch-Redfield formalism (see
section 3.7). An adequate model to describe the physics of AQC/QA is the spin-boson
model [137], which properly characterizes the coupling of some quantum system with
an external environment. In order to obtain analytic expressions for the equations
of motion in case of generic time-dependent Hamiltonians we apply an appropriate
formulation [144, 145] of the Bloch-Redfield theory. Following Refs. [144, 146] we
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transform to a frame defined by the time-dependent rotation R̂(t) := exp (iφ(t)σ̂y/2)
and denote operators in that frame with a tilde, i.e. Õ(t) := R̂(t)Ô(t)R̂†(t). Since
the transformation is time-dependent the qubit Hamiltonian acquires an additional
inertial term, which can be related to non-stoquastic interactions in a multi-qubit
scenario [147], so that the Landau-Zener Hamiltonian in the rotating frame reads

H̃Q(t) = −E(t)

2
σ̂x +

φ̇(t)

2
σ̂y (3.16)

where we use the mixing angle φ(t) = arctan(ǫ(t)/∆) and the instantaneous energy
splitting E(t) =

√

∆2 + ǫ2(t). For later use we define H̃0(t) := −E(t)σ̂x/2. Analo-
gously,the qubit-environment coupling becomes

H̃QB(t) =
∑

ν=x,z

∑

k

σ̃νλνk

(

b̂νk + b̂ν†k

)

(3.17)

with σ̃ν being the Pauli matrices in the rotating frame. By introducing the weights
f1(t) := sin(φ(t)) and f2(t) := cos(φ(t)) we can express the rotating-frame-matrices
as σ̃x = −f1(t)σ̂z + f2(t)σ̂

x and σ̃z = f2(t)σ̂
z + f1(t)σ̂

x, respectively. In order to
provide closed analytical expressions for the equations of motion, one employs stan-
dard Markovian approximations and an additional adiabatic-Markovian approxima-
tion [144] (AMA). The latter is inevitable to deal with the interaction picture trans-
formation needed to carry out the time-dependent Bloch-Redfield formalism. For a
detailed derivation, please see appendix A.d. The AMA features two important parts:
(i) the memory time of the bath τmem is assumed to be much smaller than any system
time scale and (ii) the drive ǫ(t) approximately acts on time scales much larger than
τmem so that it has no significant contribution to the rates. This, in turn, allows to
derive the Bloch equations for the density matrix

ρ̃Q(t) =
1

2

(

Î+
∑

n

rn(t)σ̂n

)

(3.18)

associated to the qubit subsystem (3.16). The Bloch vector (rx, ry, rz)
T is determined

by the set of quantum master equations (QME)

ṙx =
(

φ̇− γxz

)

rz − γr(rx − r̄x), (3.19)

ṙy = Etrz − (γd + γr)ry, (3.20)

ṙz = −φ̇rx − Etry − γdrz − γzx(rx − r̄x). (3.21)

Here, we used the shorthand notation Et := E(t) and r̄x := tanh(βEt/2). The energy
normalization is given by β = 1/kBT with Boltzmann constant kB and temperature
T . Note that we explicitly assume equal temperature for both reservoirs since, in
experiments, they will be located in the same cyrostat. We also defined the set of
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Figure 3.3: Schematic circuit diagram to implement both σ̂x and σ̂z

coupling to a superconducting flux qubit. While the flux noise σ̂z is
always present, we propose to add an additional σ̂x coupling in terms
of a coplanar waveguide (CPW) at distance d from the qubit. The

σ̂x-coupling strength is set by the distance d.

rates

γr := 2π coth

(
βEt

2

)
(
f21Jx(Et) + f22Jz(Et)

)
, (3.22)

γd := 4π lim
ω→0

n̄(ω) (Jz(ω) + Jx(ω)) , (3.23)

γxz := 4πf1f2 lim
ω→0

n̄(ω) (Jx(ω)− Jz(ω)) , (3.24)

γzx := 2πf1f2 coth

(
βEt

2

)

(Jx(Et)− Jz(Et)) , (3.25)

where n̄(ω) = 1/(eβω − 1) is the single particle Bose distribution. Note that the rates
depend on the spectral densities Jν(ω) of the respective environments. Relaxation
is encoded in γr, while γd and γxz,zx describe pure dephasing and cross-dephasing,
respectively. We stress that the Bloch-type equations (3.58)-(3.60) are based on a
proper treatment of external drives. The performed AMA might suggest that the
QME are only valid inside the adiabatic regime, i.e. when v << ∆2. However,
even for non-adiabatic drives they are still a good approximation. This has been
verified numerically for a similar Hamiltonian in Ref. [146] by comparing the numerical
solutions of their equivalent of equations (3.58)-(3.60) to a numerically exact solution
obtained via the path integral based method QUAPI which we introduced in section
3.13. Furthermore, a detailed analysis of the assumptions that lead to the QME in
terms of different time scales has been carried out in Ref. [145].

9.2 Environmental Engineering

In our analysis we restrict ourselves to the case of Ohmic heat baths [148, 149]. That
is, the spectral densities Jν(ω) depend linearly on ω. However, this model is only
valid up to some high-frequency cutoff ων

C. For our purpose, we choose to work with
an exponential cutoff at frequencies ων

C := 10∆ whereby the exact numerical value
has an irrelevant impact on the quality of our results. Different coupling strengths
are modeled by the parameter αν , so that the spectral density is eventually given by

Jν(ω) := ανωe−ω/ων
C . (3.26)
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With this explicit form of J(ω) we compute the limit

lim
ω→0

n̄(ω)Jν(ω) =
αν

β
. (3.27)

We simulate the set of quantum master equations (3.19)-(3.21) with initial conditions
set up such that the system will always start in the exact ground state of Hamiltonian
(3.16). We use the final ground state population pG after a full Landau-Zener sweep
as our figure of merit to evaluate cooling effects.

In figure 3.4a we depict the dependence of pG on the sweep velocity v, temperature
T and for a pure σ̂z coupling with αz = 5 · 10−3. As one expects, thermal excita-
tions heat the system significantly, leading to significant population loss compared
to coherent dynamics. If temperatures are not too high, i.e. kBT . 5∆, there is a
locally optimal velocity v0 at which the sum of diabatic errors due to finite sweep
length and thermal excitations are minimized [150, 151]. However, since both v0 and
pG(v0) strongly depend on αz and temperature, sweeping with velocity v0 would be
a tradeoff which still features poor performance. Instead, we deduce from figure 3.4b
that an additional transversely coupled reservoir with αx = αz generally performs sig-
nificantly better compared to the situation with only longitudinal thermal noise. The

relative gain we show in figure 3.4c is defined as (p
(x,z)
G −pzG)/pzG where the superscript

indicates the type of couplings in the system. We find that – as long as kBT < 30∆ –
the relative gain increases with temperature. Finite temperatures in QA applications
pose a significant fundamental problem, since ideally the temperature of a quantum
annealer should decrease logarithmically (or power law) with its system size [152]. It
is therefore important to remark that the benefit of our method rises with tempera-
ture. The data in figure 3.4b reveals that there is indication for TA-AQC [136] in the
non-adiabatic regime for v & ∆2: We find enhancement of pG with increasing tem-
perature due to the presence of a thermal environment during open system dynamics.
Remarkably, we observe cooling effects even for αz > αx, noting that the effect is
slightly attenuated compared to the situation αz ≤ αx. Aside, we remark that the
results for higher temperatures serve as a mock-up for small energy gaps.

In case of pure thermal noise (σ̂z ), we only observe negligible TA-AQC for rea-
sonable values of αz in the non- adiabatic regime. Nevertheless, for α & O(0.001) ,
we find appreciable indications for TA-AQC even without an additional transversely
coupled reservoir. A detailed numerical study of how the final ground state population
depends on αx and αz for fixed temperature kBT = 5∆ and fixed velocity v = 0.5∆2

is depicted in figure 3.5a. Comparing to the behavior of pG(αz) for αx = 0, the advan-
tage of an additional σ̂x heat bath becomes clear: as soon as even a small coupling αx

is present, pronounced relaxation after sweeping through the avoided crossing leads
to significant cooling of the system. This is apparent from equation (3.22): Contribu-
tions to the relaxation rate γr are non-negative so that additional transverse coupling
amplifies relaxation processes.

Based on the concept of frustrated decoherence [139, 140] one might suspect that
excitations into the excited state are effectively blocked due to the non-commutativity
of σ̂x and σ̂z. However, we do not observe such quantum effects (which are similar to
the Zeno blockade [153]) and attribute the efficiency of the cooling scheme solely to
enhanced relaxation effects, as illustrated in Appendix B. Hence, the general quantum
annealing process is supported by relaxation processes at finite temperatures that must
be smaller than E(t) well outside the avoided crossing regime; which is similar to the
classical simulated annealing [120] algorithm. We therefore refer to our method as
Hybrid Quantum-Classical Annealing (HQCA).
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Figure 3.4: (a) Final ground state population pG as a function of the
sweep velocity v for a σ̂z -only coupling with coupling strength αz =
5 · 10−3 at different temperatures. Clearly, even for small velocities
and small temperatures, a significant amount of population is lost
into the excited state owing to heating. (b) Final population pG if
an additional transversely coupled heat bath with coupling strength
αx = αz is present. We observe significant improvements over the
results with only longitudinal couplings. In the non-adiabatic regime
we find numerical evidence for TA-AQC, that is better results at higher
temperature. (c) Relative improvement of pG computed from the data

in (a) and (b), i.e. we plot (p
(x,z)
G − pzG)/p

z
G where the superscript

indicates the type of couplings in the system. In the adiabatic regime
we find improvements of about 50% while the cooling effect in the non-
adiabatic regime is even more pronounced with gains of a few hundred
percent. Generally, the relative gain increases with temperature, as
long as temperature is smaller than the instantaneous splitting E(t)

outside the avoided crossing regime.
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If the transverse coupling exceeds αx & 5 ·10−3, roughly all population has relaxed
back to the ground state by the end of the sweep – irrespective of αz . The value αz,0

where the curve pG(αz) reaches its minimum decreases with increasing temperature.
Note that the non-monotonic behavior of pG(αz) for αx . 10−4 in figure 3.5a can
be explained using a key result of Ref. [154], where the authors show how dissipative
dynamics merge into semiclassical dynamics if the associated rates exceed a certain
temperature-dependent value. In that case, the final ground state population will be
approximately given by the result of coherent dynamics – which can be estimated via
the Landau-Zener formula pLZ

G (v) = 1 − e−π∆2/(2v) [132, 133]. For the parameters
in figure 3.5 this corresponds to a semiclassical limit of about 0.95, which is in good
agreement to the limit we find for αz ≈ 1. We provide the exact dependence of
pG(αz) for αx = 0 in figure 3.5b and remark that it effectively equals the intersection
pG(αz, 10

−7) one can deduce from figure 3.5a.

9.3 Conclusion

In conclusion, we presented a gap-independent cooling scheme for a quantum system
affected by σ̂z noise. Our method generally increases the ground state population
after sweeping through an avoided crossing at finite temperatures, owing to enhanced
relaxation processes induced by an additional transversely coupled heat bath, that can
for instance be realized in form of a coplanar waveguide. We find numerical indications
for thermally assisted quantum annealing, and numerically demonstrated that the
proposed cooling scheme improves ground state populations by up to a few hundred
percent. Thereby we developed a method that has the potential to improve the quality
of current quantum annealing devices. Recall that parameters are independent of the
energy gap, so that the cooling scheme is intrinsically robust against fluctuations of
the energy gap.

10 On the Scaling to Larger Qubit Numbers

In section 8, we have presented hybrid quantum-classical annealing (HQCA), an ansatz
to enhance the performance of quantum annealing by engineering an artificial heat
bath to effectively cool the annealer back to its instantaneous ground state during
the annealing sweep. In this spirit, we discussed HQCA of a single qubit in section 9.
Here, we enhanced the ground state population of the qubit by attaching an additional
Ohmic heat bath coupled via σ̂x to always present longitudinal noise coupled via σ̂z.
The results appeared to be encouraging (see figure 3.4). Now, the natural question
arises how to scale this method up to larger qubit numbers. Unfortunately, there is no
obvious way to generalize the procedure and it is still ongoing research to answer this
question. Here, we give a brief overview on the approaches we tried, their challenges
and we give an outlook what could be tried in the future.

10.1 Cooling Operator Candidates

For a single qubit undergoing a Landau-Zener sweep, we observed a large benefit by
attaching an Ohmic heat bath coupled via σ̂x to the qubit (see section 9). This is due
to the fact that σ̂x causes transitions in the σ̂z basis. Hence, if the qubit is excited
around the end of the sweep (then the qubit eigenstates are close to the eigenstates of
σ̂z), σ̂x allows for relaxation from the excited state to the ground state. On the other
hand, σ̂x commutes with the Hamiltonian (3.13) at the avoided crossing and hence,
there are no diabatic transitions at the gap due to the engineered bath. Therefore,
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Figure 3.5: (a): Dependence of the final ground state population pG
on the coupling strengths αx and αz for a temperature of kBT = 5∆
at fixed sweep velocity v = 0.5∆2. The velocity is chosen such that it
corresponds to a local optimum of pG(v) as extracted from figure 3.4a.
(b): Dependence of pG on αz without the existence of an additional
CPW, i.e. for αx= 0,with identical parameters as in (a). The minimum

is reached at αz,o ≈ 0.01.
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as we want to generalize the method to larger qubit numbers, it is desirable to find
cooling operators satisfying similar properties for the schedule Hamiltonian Ĥ(s). This
is a question related to shortcuts to adiabaticity [155, 156, 157, 158, 159] and therefore,
the ideal cooling operator Ĉ will strongly depend on the nature of Ĥ(s). To make the
first baby steps, we focus here on linear schedule Hamiltonians of the form

Ĥ(s) := (1− s)Ĥ0 + sĤtarget (3.28)

with

Ĥ0 := −1

2

n∑

i=1

∆iσ̂
x
i and Ĥtarget := ĤIsing =

n∑

i,j=1
j>i

Jij σ̂
z
i σ̂

z
j +

n∑

i=1

hiσ̂
z
i . (3.29)

Here, the computational problem to solve is encoded in the couplings Jij and the local
fields hi [12].

We are not aware of any method to compute the desired cooling operator Ĉ for
a given schedule Hamiltonian. Therefore, we are going to test two phenomenological
approaches and compare their observed cooling effects in the following.

10.1.1 Approach I: Generalizing σ̂x to Higher Dimensions

Our first ansatz is to use the naïve generalization of σ̂x to higher dimensions. For n
qubits, we define

Σ̂x
n :=

n∑

m=1

Σ̂x
nm :=

n∑

i=1

σ̂xi +

n∑

i,j=1
j>i

σ̂xi σ̂
x
j +

n∑

i,j,k=1

k>j>i

σ̂xi σ̂
x
j σ̂

x
k + · · ·+

n∏

i=1

σ̂xi . (3.30)

Here, Σ̂x
nm denotes the m-th term in the sum above read from left to right. In the

eigenbasis of ĤIsing the operator Σ̂x
n has the matrix representation

Σ̂x
n =












0 1 1 1 · · · 1
1 0 1 1 · · · 1
1 1 0 1 · · · 1
1 1 1 0 · · · 1
...

...
...

...
. . .

...
1 1 1 1 · · · 0












⇒
(

Σ̂x
n

)

ij
= 1− δij . (3.31)

Hence, Σ̂x
n couples all the eigenstates of ĤIsing to each other. In other words, if we

treat these eigenstates as 2n vertices of a graph, then Σ̂x
n is the adjacency matrix

corresponding to the complete graph.
We treat Σ̂x

n as a promising cooling operator candidate for the following reason:
We want to have an operator which causes transitions between all the eigenstates of
the target Hamiltonian to its ground state at the end of the sweep as this operator
should allow for cooling to the ground state. However, as we do not know the ground
state, we should couple every single state to every other single state. As ĤIsing is

given as a diagonal matrix, Σ̂x
nm should do this job. However, it is obvious that such a

cooling operator will never be implemented in an actual physical device, as one would
have to implement all the k-local couplings for 1 ≤ k ≤ n. Hence, we will also test its
restricted contributions Σ̂x

nm. We expect to reach better cooling behavior the higher
the number of couplings we are able to engineer.
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10.1.2 Approach II: Schedule Hamiltonian Derived Cooling Operators

The second approach that we are going to test is to use a cooling operator which will
be computed as a function of the given schedule Hamiltonian Ĥ(s). This is a plausible
ansatz as a cooling scheme that is adapted on the actual problem rather than defining
a cooling operator for all the possible Hamiltonians together should lead to better
results.

To find plausible cooling operator candidates, we perform a short derivation fol-
lowing Ref. [160]. The basic idea is to relate the appearance of avoided crossings to
the energy level curvature. As already mentioned, we consider schedule Hamiltonians
of the form (3.28). Let |ψn(s)〉 denote an instantaneous eigenstate of Ĥ(s), i.e.

Ĥ(s)|ψn(s)〉 = En(s)|ψn(s)〉. (3.32)

Using the Hellmann-Feynman theorem, it is easy to see that

dEn(s)

ds
=

〈

ψn(s)

∣
∣
∣
∣
∣

dĤ(s)

ds

∣
∣
∣
∣
∣
ψn(s)

〉

. (3.33)

If we differentiate equation (3.33) with respect to s again, we get

d2En(s)

ds2
= 2

∑

k 6=n

∣
∣
∣

〈

ψn(s)
∣
∣
∣
dĤ(s)
ds

∣
∣
∣ψn(s)

〉∣
∣
∣

2

En(s)− Ek(s)
+

〈

ψn(s)

∣
∣
∣
∣
∣

d2Ĥ(s)

ds2

∣
∣
∣
∣
∣
ψn(s)

〉

︸ ︷︷ ︸

=0 for the linear schedule

. (3.34)

Equation (3.34) is commonly used to compute the energy level curvature [122, 161].
If we expand the fraction in the sum by (En(s)−Ek(s))

2 and make use of the identity

−i
〈

ψn(s)

∣
∣
∣
∣
∣

dĤ(s)

ds

∣
∣
∣
∣
∣
ψk(s)

〉

(En(s)− Ek(s)) = −i
〈

ψn(s)

∣
∣
∣
∣
∣

[

Ĥ(s),
dĤ(s)

ds

]∣
∣
∣
∣
∣
ψk(s)

〉

(3.35)

taken from Ref. [162], we can relate the energy level curvature to the commutator
[

Ĥ(s), dĤ(s)
ds

]

as

d2En(s)

ds2
= −2

∑

k 6=m

∣
∣
∣

〈

ψk(s)
∣
∣
∣

[

Ĥ(s), dĤ(s)
ds

]∣
∣
∣ψn(s)

〉∣
∣
∣

2

(En(s)− Ek(s))3
. (3.36)

We deduce from equation (3.36) that the commutator −i
[

Ĥ(s), dĤ(s)
ds

]

might be a

good cooling operator candidate. For the linear schedule (3.28), it reads

−i
[

Ĥ(s),
dĤ(s)

ds

]

= −i
[

(1− s)Ĥ0 + sĤtarget, Ĥ0 + Ĥtarget

]

= −i
[

Ĥ0, Ĥtarget

]

.

(3.37)

In addition to this commutator, we test the operator dĤ(s)
ds = −Ĥ0 + Ĥtarget too, as

the change of the Hamiltonian over time is the source of diabatic transitions.
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10.2 Defining the Toy Model

Our goal is to benchmark the performance of several cooling operator candidates for
the linear annealing schedule. To have a fair competition, we need to define a suitable
toy model to simulate. As the toy model itself will strongly influence the results (even
in a qualitative manner), and the parameter set for the simulation is way to large to
explore everything, we define our problem setting in the following way:

• To minimize the number of parameters, we restrict ourselves to a two-qubit
system initially prepared in the ground state of Ĥ0 undergoing a linear annealing
sweep from Ĥ0 to ĤIsing. The two qubits are assumed to be identical.

• As in the single-qubit case, our figure of merit is the ground state probability
pG. This quantity will depend on the sweep velocity, or equivalently the total
sweep time tf. Hence, we are going to compute pG(tf) for all the cooling operator
candidates and reasonable sweep times.

• We try to avoid to rely too much on the chosen schedule Hamiltonian Ĥ(s).
Hence, we are going to create 10 random target Hamiltonians and therefore,
10 random schedule Hamiltonians. Afterwards we average pG(tf) over the 10
instances.

• In the spirit of section 9, the qubits are affected by always present longitudinal
noise. Hence, the system Hamiltonian Ĥ(s) is constantly coupled to a heat bath
in thermal equilibrium at temperature T through σ̂z1 + σ̂z2 . We refer this heat
bath to the natural bath. In absence of any engineered bath, it defines the base
line to benchmark the performance of some engineered cooling operator. All
the appearing heat baths are assumed to be Ohmic (Jb(ω) = αbω exp(−ω/ωC)
for b ∈ {nat, eng}) and to share the same temperature T . Additionally, we fix
αnat = αeng.

• We are interested in the parameter range hν . kBT , where ν is a typical tech-
nical frequency defining the size of the minimal gap. In this regard, we fix the
temperature T to equal the typical cryostat temperature T := 20mK. This im-
plies ν lies in the GHz range, which corresponds to a natural time scale measured
in nano seconds.

• We fix ∆1 = ∆2 := 1GHz and hence Ĥ0 = −1
2

∑n
i=1 σ̂

x
i measured in the unit

GHz. The parameters for the 10 instances of the Ising Hamiltonian are chosen
randomly in the range 0GHz < h1, h2, J12 ≤ 1GHz.

In summary, a single instance of our toy model is described by the total Hamiltonian

Ĥtot(s) := (1− s)Ĥ0 + sĤIsing + ĤB,nat + ĤB,eng + Ĥint,nat + Ĥint,eng. (3.38)

As both heat baths in equation (3.38) are assumed to be harmonic (see section 3.12)
with Ohmic spectral densities and αnat = αeng =: α, we can treat them as a single
Ohmic heat bath coupled to the system through

Ĥint := α
(

Σ̂z + Ĉ
)

, (3.39)

where Ĉ is the engineered cooling operator, Σ̂z := σ̂z1 + σ̂z2 and we fixed α := 5 · 10−3

in the spirit of Ref. [110]. In the following, we briefly discuss the methods we tried to
simulate the dynamics generated by the Hamiltonian (3.38).
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10.3 Methods

The adiabatic theorem states that, if we sweep slowly enough, the system will stay in
its instantaneous ground state [12]. Hence, we would not see any cooling effect if we
stay inside the adiabatic limit (1.109). Therefore, to benchmark the performance of
the cooling operator candidates, we have to leave the adiabatic limit. Unfortunately,
the validity of the adiabatic master equation (1.133) derived in Ref. [54] relies exactly
on this assumption. This is also the reason why we used this unusual time-dependent
Bloch-Redfield master equation in section 9 to simulate the qubit dynamics. This
method was shown to be valid to simulate Landau-Zener dynamics [146]. However,
we are not aware of a generalization to use it for more than a single qubit. Therefore,
we decided to apply the numerically exact path integral method QUAPI [71, 72]
instead, which we reviewed in section 3.13. For time-independent Hamiltonians, an
open source code written by N. Dattani [73] is available. We applied this code and
generalized it to time-dependent Hamiltonians1. Unfortunately, using QUAPI turned
out to be a very bad idea for a non-obvious reason: As already mentioned in section
3.13, the primary memory cost scales like

PMC ∝M2(∆k+1), (3.40)

where M = 4 is the Hilbert space dimension for two qubits and ∆k is the number of
previous time-steps used to compute the next time-step for the density matrix of the
two-qubit system ρ̂S(t). Hence, the maximum ∆k one can use in practice is strongly
limited by computational hardware due to this exponential scaling. This limitation to
some maximum ∆k implies a minimum size of the time-step δt, because the product

∆k · δt = τB (3.41)

has to cover all the bath memory time τB at least to not effectively change the sim-
ulated physics. This memory time satisfies τB ∝ 1/T . Therefore, it becomes larger
for smaller temperatures, which forces the minimal step size δt to become larger too.
Ther numerical error induced by QUAPI scales like δt3. In the end, it turned out that
we are not able to reach the desired accuracy for convergence regarding the boundary
conditions set by our system of interest2.

In conclusion, the months we spent on implementing QUAPI turned out to be
wasted time. Hence, we decided to use the adiabatic master equation in Lindblad
form (1.133) despite the fact that its validity is not guaranteed for the parameter
regime we are interested in. Nevertheless, it turned out to be the only method we are
aware of which gave us physically reasonable results. To run the simulations, we used
a software tool developed by H. Chen [163].

10.4 The Cooling Operator Championship

In this section, we show the results of the competition between our suggested cooling
operator candidates phenomenologically derived in section 10.1. We computed our
figure of merit, namely the average ground state probability pG at t = tf, as a function
of the total annealing time for the considered cooling operator candidates by means
of the toy model described in section 10.2. At this juncture, we compare two different
cooling scenarios: First, we consider a cooling scheme in which the cooling operators

1Implementing QUAPI is a Sisiphos-like task, because it covers a huge index battle. It took us
several months to make it run.

2The numerical error we observed has been that large that we got negative probabilities!
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Figure 3.6: Average ground state probability pG as a function of the
total annealing time tf to benchmark the performance of the considered
cooling operator candidates, if the engineered heat bath is turned on
throughout all the sweep. Here, we assume always present longitudinal
noise affecting the two-qubit system through Σ̂z = σ̂z

1 + σ̂z
2 . We show

the performance of the bare ground state probability as the reference
point for cooling (blue dots). We observe that all the considered cool-
ing operator candidates Ĉ lead to cooling for all the considered sweep
times. However, the effect is rather small (it acts on the second digit
after the decimal point). The smallest effect is shown by the cooling
operator Ĉ = Σ̂x

22 = σ̂x
1 σ̂

x
2 . We observe the best performance using

the anti-Hermitian cooling operator Ĉ = [Ĥ(s),
˙̂
H(s)]. All the other

results are that close to each other, such that the points in the plot
overlapp.

are chosen to be constant throughout all the sweep time tf. Second, we compute
the position of the minimal gap between ground state and first excited state for each
random target Hamiltonian and then, we turn on the engineered cooling operators
right after the gap. In practice, the second strategy is not very realistic, because
the position of the gap is typically unknown. However, we were interested in its
performance compared to the cooling throughout as one should see, if the engineered
baths lead to unwanted heating in the beginning of the sweep. The numerical results of
the first scenario are shown in figure 3.6. Overall, all the considered cooling operator
candidates induce some amount of cooling with respect to the bare case with only
natural longitudinal noise. The smallest effect is shown by the cooling operator Ĉ =
Σ̂x
22 = σ̂x1 σ̂

x
2 . We observe the best performance using the anti-Hermitian cooling

operator Ĉ = [Ĥ(s),
˙̂
H(s)]1, and hence we refer it to the winner of the cooling operator

championship. All the other results are that close to each other, such that the points
in the plot overlapp. Unfortunately, the magnitude of the observed gain is too small
to improve quantum annealing in a useful way. However, the observed results are
interesting in a qualitative manner. As mentioned in section 10.1.1, we expected the
performance of the cooling to be better the more eigenstates of ĤIsing will be coupled

by the engineered cooling operator. Hence, we expected the performance of Σ̂x
22 to

1We computed the performance of this anti-Hermitian operator by accident. In the first run, we
just forgot about the imaginary unit in front of the commutator.
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Figure 3.7: Average ground state probability pG as a function of the
total annealing time tf to benchmark the performance of the consid-
ered cooling operator candidates, if the engineered heat bath is turned
on right after the minimal gap. Here, we assume always present lon-
gitudinal noise affecting the two-qubit system through Σ̂z = σ̂z

1 + σ̂z
2 .

We show the performance of the bare ground state probability as the
reference point for cooling (blue dots). The results do not change much
compared to the case with the cooling operators turned on through-
out al the sweep. The only improvement accurs for the anti-Hermitian

cooling operator Ĉ = [Ĥ(s),
˙̂
H(s)] for small annealing times. All the

other values become slightly worse by starting the cooling only after
the gap.

be worse than the performance of Σ̂x
21 and the performance of Σ̂x

21 to be worse than
the performance of Σ̂x

2 . This is more or less what we observe in figure 3.6 with the
exception that the performance of Σ̂x

21 and Σ̂x
2 are too close to be distinguished as we

only averaged over ten random instances.
Additionally, we observe that the schedule Hamiltonian derived cooling operators

behave as well as Σ̂x
21 and Σ̂x

2 . This is encouraging, because implementing the general
cooling operator Σ̂x

n of equation (3.30) for n qubits is far outside experimental reach.
In contrast, the schedule Hamiltonian derived cooling operators have no need for more
than 2-local couplings.

The most interesting oberservation is that the anti-Hermitian cooling operator Ĉ =

[Ĥ(s),
˙̂
H(s)] performs best. On top, it shows an unexpected behavior as a function of

the total annealing time: Whereas the performance of all the other considered cooling
operators enhances with growing annealing time tf (which is expected according to the
adiabatic theorem), its resulting ground state probability pG decreases as a function
of tf. This is unexpected and we have to keep it as an open question why this happens.
Nevertheless, this is a point for further research which can not be covered in this thesis
anymore.

The numerical results of the second scenario are shown in figure 3.7. The re-
sults do not change much compared to the case with the cooling operators turned on
throughout al the sweep. The only improvement occurs for the anti-Hermitian cool-

ing operator Ĉ = [Ĥ(s),
˙̂
H(s)] for small annealing times. All the other values become

slightly worse by starting the cooling only after the gap. Therefore, we conclude that
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the engineered cooling effect by implementing one of the considered cooling operators
is more relevant to the performance than a possible heating imposed by the additional
bath.

10.5 Conclusion and Outlook

In section 10, we tried to find the best cooling operators to translate the approach
of hybrid quantum-classical annealing developed in Refs. [110, 164] and reviewed in
section 9 to larger qubit numbers. We tried two different types of cooling operators:
The first type is based on a direct generalization of the σ̂x operator of a single qubit.
The second type is phenomenologically derived from the given schedule Hamiltonian
itself. Each considered cooling operator candidate indeed shows a small increase of
the ground state probability at the end of the annealing sweep and hence, cooling.
However, the observed effect is relatively small and hence not yet useful from a prac-
tical perspective. Nevertheless, we showed that cooling by engineered decoherence is
possible in principle not only for the single-qubit case and therefore, we claim that
the potential of HQCA should be explored in more detail. There are plenty ways to
move on: The coupling strength of the engineered heat baths to the system could be
optimized, the temperature dependence of the performance should be studied and one

should explore the reason, why the anti-Hermitian operator Ĉ = [Ĥ(s),
˙̂
H(s)], which

we tried by accident, behaves much better than its Hermitian counterpart.



10. On the Scaling to Larger Qubit Numbers 87

Appendices

A.d Derivation of the quantum master equations

We provide details on the derivation of the quantum master equation. The total
Hamiltonian is decomposed as

Ĥ(t) = ĤQ(t) + ĤQB + ĤB, with (3.42)

ĤQ(t) := −ǫ(t)
2
σ̂z − ∆

2
σ̂x (3.43)

ĤQB :=
∑

ν=x,z

∑

k

σ̂νλνk

(

b̂νk + b̂ν†k

)

(3.44)

ĤB :=
∑

ν=x,z

∑

k

ων
k b̂

ν†
k b̂

ν
k. (3.45)

Following Ref. [144], we move to the rotating frame defined by the transformation
R̂(t) := exp (iφ(t)σ̂y/2) with φ(t) = arctan(ǫ(t)/∆). With the instantaneous energy
splitting E(t) =

√

ǫ2(t) + ∆2 the bare system Hamiltonian and the coupling term
become

H̃Q(t) = −E(t)

2
σ̂x +

φ̇(t)

2
σ̂y =: H̃0(t) +

φ̇(t)

2
σ̂y (3.46)

H̃QB(t) =
∑

ν=x,z

∑

k

σ̃νλνk

(

b̂νk + b̂ν†k

)

. (3.47)

By introducing the weights f1(t) := sin(φ(t)) and f2(t) := cos(φ(t)) we can express
the rotating-frame-matrices as σ̃x = −f1(t)σ̂z + f2(t)σ̂

x and σ̃z = f2(t)σ̂
z + f1(t)σ̂

x,
respectively. Following standard Bloch-Redfield theory (cf. section 3.3 in Ref. [26] or
section 3.7) we start in the interaction frame with respect to H̃Q(t) and H̃B. Hence,
the coupling Hamiltonian in the interaction picture is given by

H̃QB,I(t) =
∑

ν=x,z

ŨQ(t)σ̃
ν(t)Ũ †

Q(t)⊗ B̂ν(t), B̂ν(t) =
∑

k

λνk

(

eiω
ν
k
tb̂† + e−iων

k
tb̂
)

(3.48)

with some bath operator B̂ν and the free propagator of the bare qubit ŨQ(t) =

T̂ exp
(

−i
∫ t
0 H̃Q(s)ds

)

. The equation of motion for the density matrix of the reduced

qubit subsystem is hence given by

˙̃ρQ,I(t) = −
∫ ∞

0
TrB

[

H̃QB,I(t),
[

H̃QB,I(s), ρ̃Q,I(t)⊗ ρ̂B

]]

ds

= −
∫ ∞

0

∑

ν,ν′

{

σ̃νI (t)σ̃
ν′

I (t− s)ρ̃Q,I(t)
〈

B̂ν(t)B̂ν′(t− s)
〉

− σ̃νI (t)ρ̃Q,I(t)σ̃
ν′

I (t− s)
〈

B̂ν′(t− s)B̂ν(t)
〉

+ h.c.
}

ds. (3.49)

In the above equation we have already included (i) a weak-coupling approximation
(Born approximation), which states that the reservoir is negligibly affected by the
system so that we may write the full density matrix as a tensor product ρ̃I(t) =
ρ̃Q,I(t) ⊗ ρ̂B and (ii) a Markovian approximation. The latter states that there is no
memory, i.e. time evolutionof the state depends only on its present value, and is based
on the assumption that the correlation functions decay sufficiently fast compared
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to the time scale over which the system changes notably. If we choose ρ̂B to be a
stationary state of the reservoir, the correlation functions are homogeneous in time,

hence
〈

B̂ν(t)B̂ν′(t− s)
〉

=
〈

B̂ν(s)B̂ν′(0)
〉

. Furthermore we assume that there is no

correlation between different baths, i.e.
〈

B̂ν(s)B̂ν′(0)
〉

∝ δν,ν′ . We can then write

equation (3.49) in the form

˙̃ρQ,I(t) = −
∫ ∞

0

∑

ν=x,z

{

[σ̃νI (t), σ̃
ν
I (t− s)ρ̃Q,I(t)]

〈

B̂ν(s)B̂ν(0)
〉

+ h.c.
}

. (3.50)

We are looking for the equation of motion in the Schrödinger picture, that is the
evolution of ρ̃Q(t), which we obtain by computing

˙̃ρQ(t) = ŨQ(t) ˙̃ρQ,I(t)Ũ
†
Q(t)− i

[

H̃Q(t), ρ̃Q(t)
]

. (3.51)

A straightforward calculation reveals the sought equation of motion in the Schrödinger
picture to be

ρ̃Q(t) = −i
[

H̃Q(t), ρ̃Q(t)
]

−
∑

ν=x,z

{[

σ̃ν(t), S̃ν(t)ρ̃Q(t)
]

+ h.c.
}

(3.52)

where we introduced the operator

S̃ν(t) :=

∫ ∞

0
ŨQ(t, t− s)σ̃ν(t− s)Ũ †

Q(t, t− s)
〈

B̂ν(s)B̂ν(0)
〉

ds. (3.53)

In order to derive an analytic form for the equation of motion we further need to
apply an adiabatic Markovian approximation [144] which amounts to expressing the
propagator as

ŨQ(t, t− s) ≈ exp
(

−iH̃Q(t)s
)

. (3.54)

This is sufficiently accurate provided the memory time τmem of the bath is much
smaller than any system time scale, τmem << (t − s), and if the drive ǫ(t) acts on
time scales τǫ >> τmem so that it has no significant effect on the rates.The correlation
function can be expressed in terms of the spectral density Jν(ω) (see section 3.12)

〈

B̂ν(s)B̂ν(0)
〉

=

∫ ∞

0
Jν(ω)

(
(n̄ν(ω) + 1) e−iωs + n̄ν(ω)e

iωs
)
dω (3.55)

with the single-particle Bose distribution n̄ν(ω) = 1/(eβνω − 1). Using the identity
n̄ν(−ω) = −(n̄ν(ω) + 1) we can rewrite equation (3.55) as an integral over positive
and negative ω, i.e.

〈

B̂ν(s)B̂ν(0)
〉

=

∫ ∞

−∞
sgn(ω)Jν(|ω|)n̄ν(ω)eiωsdω. (3.56)

Inserting equation (3.56) into the definition (3.53) allows us to carry out the integra-
tion over s first, which yields terms

∫∞
0 eiωsds ≈ δ(ω). Note that we here neglect

imaginary parts resulting from principal value integrals since theysimply manifest
themselves as Lamb shifts. Calculating the right hand side of equation (3.52) while
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using the Bloch representation

ρ̃Q(t) =
1

2

(

Î+
∑

n

rn(t)σ̂n

)

(3.57)

we eventually find the quantum master equations presented in section 9.1

ṙx =
(

φ̇− γxz

)

rz − γr(rx − r̄x), (3.58)

ṙy = Etrz − (γd + γr)ry, (3.59)

ṙz = −φ̇rx − Etry − γdrz − γzx(rx − r̄x). (3.60)

Here, we used the shorthand notation Et := E(t) and r̄x := tanh(βEt/2). The energy
normalization is given by β = 1/kBT with Boltzmann constant kB and temperature
T . Note that we explicitly assume equal temperature for both reservoirs since, in
experiments, they will be located in the same cyrostat. The rates are then given by

γr := 2π coth

(
βEt

2

)
(
f21Jx(Et) + f22Jz(Et)

)
, (3.61)

γd := 4π lim
ω→0

n̄(ω) (Jz(ω) + Jx(ω)) , (3.62)

γxz := 4πf1f2 lim
ω→0

n̄(ω) (Jx(ω)− Jz(ω)) , (3.63)

γzx := 2πf1f2 coth

(
βEt

2

)

(Jx(Et)− Jz(Et)) . (3.64)

A.e Numerical verification of relaxation and cooling

In addition to the graphics shown in section 9, we want to support the statements
by providing further numerical data. Our statement that cooling is solely caused by
relaxation processes is supportedby Fig. 5, which depicts the evolution of ground
state population for different parameter settings. If the CPWis transversely coupled
to the qubit, excitation out of the ground state is not minimized intermediately. In-
stead,population relaxes back into the ground state after passing the avoided crossing.
We find qualitatively identicaldynamics for other parameter regimes as well.
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Figure 3.8: Population of the ground state as a function of time for
different parameter settings with sweep velocity v = 0.3∆2. As appar-
ent from the plots, an additional transverse coupling does not reduce
intermediate excitations. Cooling into the groundstate is achieved by

relaxation back into the ground state.
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Conclusion and Outlook

In quantum information theory, physicists, mathematicians, computer scientists and
engineers work together as well from hardware-side as from application-side to exploit
the counter-intuitive nature of quantum mechanics to solve real-life problems. The
main obstacle in this development is decoherence: the process which causes the tran-
sition between quantum and classical behavior of a physical system. As decoherence
reduces the quantum nature of matter and radiation (i.e. quantum superposition
and entanglement) to classical physics, it removes the resource of a quantum com-
puter’s advantage with respect to classical computing. Nevertheless, I did not only
regard decoherence as a real-life phenomenon we have to deal with in this thesis. On
the contrary, I discussed the potential of purposefully engineered decoherence as a
resource to improve the performance of specific quantum information applications.
Prima facie, treating decoherence itself as a possibly beneficial resource for quantum
computing looks like an oxymoron. However, as the time evolution in quantum me-
chanics of closed systems is unitary, and hence undirected in time, carefully engineered
decoherence could allow for a desired directional time evolution, and therefore for hy-
brid quantum-classical algorithms. In this work, I discussed two examples of such
approaches: quantum stochastic walks and hybrid quantum-classical annealing.

This thesis consists of three distinct chapters: Whereas chapter I reviews the basic
concepts and methods in quantum information theory and the theory of open quantum
systems to set up a solid background, chapter II and chapter III cover new research
results.

As mentioned above, chapter I provides an introduction to the field of quantum
information theory as well as to the field of open quantum systems. It consists of three
sections: After a brief historical overview on the developments of modern computers
in section 1, section 2 introduces the main terms and concepts of quantum informa-
tion theory, which are needed to understand the purposes of the following chapters.
Here, after a dense summary of standard quantum mechanics, I introduced the con-
cepts of qubits, quantum algorithms and the famous DiVincenzo criteria, a qualitative
summary of the basic ingredients to build a functional quantum computer [27].

Section 3 provides a rather broad introduction to the theory of open quantum
systems. In quantum mechanics of closed systems, the system’s entropy is preserved
for the whole time of quantum evolution predicted by Schrödinger’s equation. Hence,
decoherence only appears in the context of open quantum systems and therefore,
their understanding is crucial for the rest of this thesis. First, I introduced the basic
concepts like density matrices, entropy and quantum channels. Afterwards, I assem-
bled a toolbox for the simulation of open quantum system dynamics. There are two
fundamentally distinct approaches: quantum master equations and path integral tech-
niques. Both approaches arise with their own benefits and drawbacks, so I tried to
give an idea under which conditions one or the other should be used.

Chapter II covers the quantum simulation of quantum stochastic walks (QSWs),
which generalize the concept of coherent quantum walks to additional non-unitary
evolution [85]. This allows for incoherent movement of the walker, and therefore,
directionality. QSWs arise in two distinct versions: continuous-time and discrete-time.
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The first version is defined by a specific kind of a Lindblad master equation and is
widely used in literature for different computational tasks [83, 87, 88, 89]. In section 5,
I presented our results of Ref. [47], in which we have shown how to simulate a restricted
class of them on a coherent quantum computer using a trajectory approach. We are
not aware of any previous work targeting this problem. The restriction follows from the
requirement of conservation of probability. Interestingly, we found the same restriction
in Ref. [78] (presented in section 6) when we showed how to simulate a continuous-time
QSW by using a discrete-time QSW. However, the quantum simulation of discrete-
time QSWs, which we defined as the repetitive application of a quantum stochastic
map of the form (2.3), itself is not subject to this restriction. Up to date, we are not
aware of any further application of discrete-time QSWs besides the simulation of their
continuous counterparts yet. Nevertheless, I am optimistic that they will be used in
future as we found that they underly less restrictive conditions to be simulated on a
quantum computer than continuous-time QSWs.

Last but not least, chapter III highlights another route to use engineered deco-
herence as a beneficial tool in quantum compting: hybrid quantum-classcal annealing
(HQCA). Here, we combined the paradigms of quantum annealing with the classical
simulated annealing algorithm. The core idea of this approach is explained in section
8: HQCA uses quantum tunneling to search the energy landscape of a given opti-
mization problem (i.e. finding the ground state of a Ising spin glass Hamiltonian)
and a carefully engineered heat bath is supposed to force the system to relax to the
desired ground state. In section 9, I presented our results on HQCA of a single qubit
which are available as a preprint [110]. Here, we benchmarked the performance of an
artificially engineered Ohmic heat bath, which is coupled via σ̂x to a qubit undergo-
ing the standard Landau-Zener sweep in addition to the always present longitudinal
noise. We found that this procedure can enhance the final ground state population
of the qubit dramatically. However, this encouraging observation only holds for the
case of a single qubit so far. It is not clear how to scale HQCA up to larger qubit
numbers in a useful way. Particularly, it is not clear which operator should be used
to take the role of σ̂x used in the single-qubit case. In this regard, section 10 is a
roadmap to further exploration. Here, I presented two phenomenological approaches:
generalizing σ̂x to higher dimensions and deriving the desired operator as a function
of the schedule. To make a long story short, we observed an enhancement of the final
ground state probability, but the effect so far observed is tiny. The reason for this
remains unclear and needs to be explored further in future research.
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[59] M. Toda, R. Kubo, N. Saitō, N. Hashitsume, et al., Statistical physics II:
nonequilibrium statistical mechanics, Vol. 2 (Springer Science & Business Media,
1991).

[60] W. Rossmann, Lie Groups: An Introduction Through Linear Groups , Oxford
graduate texts in mathematics (Oxford University Press, 2006).

[61] R. P. Feynman, A. R. Hibbs, and D. F. Styer, Quantum mechanics and path
integrals (Courier Corporation, 2010).

[62] K. Binder and D. Heermann, Monte Carlo Simulation in Statistical Physics: An
Introduction, Graduate Texts in Physics (Springer Berlin Heidelberg, 2010).

[63] M. Newman and G. Barkema, Monte Carlo Methods in Statistical Physics
(Clarendon Press, 1999).

[64] R. Egger, L. Mühlbacher, and C. H. Mak, Phys. Rev. E 61, 5961 (2000).

[65] L. Mühlbacher and E. Rabani, Phys. Rev. Lett. 100, 176403 (2008).

[66] T. Albash, G. Wagenbreth, and I. Hen, Phys. Rev. E 96, 063309 (2017).

[67] F. Alet, K. Damle, and S. Pujari, Phys. Rev. Lett. 117, 197203 (2016).

[68] A. Honecker, S. Wessel, R. Kerkdyk, T. Pruschke, F. Mila, and B. Normand,
Phys. Rev. B 93, 054408 (2016).

[69] K. Okunishi and K. Harada, Phys. Rev. B 89, 134422 (2014).

[70] I. Hen, Phys. Rev. E 99, 033306 (2019).

[71] N. Makri, Chemical Physics Letters 193, 435 (1992).

[72] N. Makri, Journal of Mathematical Physics 36, 2430 (1995).

[73] N. S. Dattani, Computer Physics Communications 184, 2828 (2013).

[74] D. Segal, A. J. Millis, and D. R. Reichman, Phys. Rev. B 82, 205323 (2010).

[75] N. Hatano and M. Suzuki, “Finding exponential product formulas of higher or-
ders,” in Quantum Annealing and Other Optimization Methods , edited by A. Das
and B. K. Chakrabarti (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005)
pp. 37–68.

[76] R. Feynman and F. Vernon, Annals of Physics 281, 547 (2000).

[77] N. Makri, J. Phys. Chem. B 103, 2823 (1999).

https://books.google.de/books?id=Q-4dIthPuL4C
http://dx.doi.org/10.1088/1751-8113/43/40/405304
http://dx.doi.org/10.1088/1751-8113/43/40/405304
http://dx.doi.org/10.1103/PhysRevA.94.042111
https://books.google.de/books?id=bAjulQ65W-UC
https://books.google.de/books?id=y6oDME582TEC
https://books.google.de/books?id=y6oDME582TEC
https://books.google.de/books?id=J5aLdDN4uFwC
http://dx.doi.org/10.1103/PhysRevE.61.5961
http://dx.doi.org/10.1103/PhysRevLett.100.176403
http://dx.doi.org/10.1103/PhysRevE.96.063309
http://dx.doi.org/10.1103/PhysRevLett.117.197203
http://dx.doi.org/ 10.1103/PhysRevB.93.054408
http://dx.doi.org/10.1103/PhysRevB.89.134422
http://dx.doi.org/10.1103/PhysRevE.99.033306
http://dx.doi.org/https://doi.org/10.1016/0009-2614(92)85654-S
http://dx.doi.org/10.1063/1.531046
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2013.07.001
http://dx.doi.org/10.1103/PhysRevB.82.205323
http://dx.doi.org/10.1007/11526216_2
http://dx.doi.org/https://doi.org/10.1006/aphy.2000.6017
http://dx.doi.org/10.1021/jp9847540


BIBLIOGRAPHY 97

[78] P. K. Schuhmacher, L. C. G. Govia, B. G. Taketani, and F. K. Wilhelm,
“Quantum simulation of a discrete-time quantum stochastic walk,” (2020),
arXiv:2004.06151 [quant-ph] .

[79] J. Kempe, Contemporary Physics 44, 307 (2003).

[80] M. Schuld, I. Sinayskiy, and F. Petruccione, Physical Review A 89, 032333
(2014), arXiv:1404.0159 .

[81] P. Rebentrost, M. Mohseni, and S. Lloyd, Phys. Rev. Lett. 113, 130503 (2014).

[82] N. Shenvi, J. Kempe, and K. B. Whaley, Phys. Rev. A 67, 052307 (2003).

[83] M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, The Journal of
chemical physics 129, 174106 (2008), arXiv:0805.2741 .

[84] M. Walschaers, J. F.-d.-C. Diaz, R. Mulet, and A. Buchleitner, Phys. Rev. Lett.
111, 180601 (2013).

[85] J. D. Whitfield, C. A. Rodríguez-Rosario, and A. Aspuru-Guzik, Phys. Rev. A
81, 022323 (2010).

[86] D. Lu, J. D. Biamonte, J. Li, H. Li, T. H. Johnson, V. Bergholm, M. Faccin,
Z. Zimborás, R. Laflamme, J. Baugh, and S. Lloyd, Phys. Rev. A 93, 042302
(2016).

[87] H. J. Briegel and G. De las Cuevas, Scientific reports 2 (2012).

[88] G. D. Paparo, V. Dunjko, A. Makmal, M. A. Martin-Delgado, and H. J. Briegel,
Phys. Rev. X 4, 031002 (2014).

[89] Z. Zimborás, M. Faccin, Z. Kádár, J. D. Whitfield, B. P. Lanyon, and J. Bia-
monte, Scientific Reports 3, 2361 EP (2013).

[90] S. Attal, F. Petruccione, C. Sabot, and I. Sinayskiy, Journal of Statistical
Physics 147, 832 (2012).

[91] I. Sinayskiy and F. Petruccione, Journal of Physics: Conference Series 442,
012003 (2013).

[92] B. G. Taketani, L. C. G. Govia, and F. K. Wilhelm, Phys. Rev. A 97, 052132
(2018).

[93] H. Weimer, M. Muller, I. Lesanovsky, P. Zoller, and H. P. Buchler, Nat Phys
6, 382 (2010).

[94] K. W. Murch, U. Vool, D. Zhou, S. J. Weber, S. M. Girvin, and I. Siddiqi,
Phys. Rev. Lett. 109, 183602 (2012).

[95] T. Fogarty, E. Kajari, B. G. Taketani, T. Busch, and G. Morigi, Physical Review
A 87, 050304 (2013).

[96] L. C. G. Govia and F. K. Wilhelm, Phys. Rev. Applied 4, 054001 (2015).

[97] L. G. Mourokh and F. Nori, Phys. Rev. E 92, 052720 (2015).

[98] A. Metelmann and A. A. Clerk, Phys. Rev. X 5, 021025 (2015).

http://arxiv.org/abs/2004.06151
http://dx.doi.org/10.1103/PhysRevA.89.032333
http://dx.doi.org/10.1103/PhysRevA.89.032333
http://arxiv.org/abs/1404.0159
http://dx.doi.org/10.1103/PhysRevLett.113.130503
http://dx.doi.org/10.1103/PhysRevA.67.052307
http://dx.doi.org/ 10.1063/1.3002335
http://dx.doi.org/ 10.1063/1.3002335
http://arxiv.org/abs/0805.2741
http://dx.doi.org/10.1103/PhysRevLett.111.180601
http://dx.doi.org/10.1103/PhysRevLett.111.180601
http://dx.doi.org/ 10.1103/PhysRevA.81.022323
http://dx.doi.org/ 10.1103/PhysRevA.81.022323
http://dx.doi.org/10.1103/PhysRevA.93.042302
http://dx.doi.org/10.1103/PhysRevA.93.042302
http://dx.doi.org/10.1103/PhysRevX.4.031002
http://dx.doi.org/10.1038/srep02361
http://dx.doi.org/ 10.1007/s10955-012-0491-0
http://dx.doi.org/ 10.1007/s10955-012-0491-0
http://dx.doi.org/10.1103/PhysRevA.97.052132
http://dx.doi.org/10.1103/PhysRevA.97.052132
http://dx.doi.org/10.1038/nphys1614
http://dx.doi.org/10.1038/nphys1614
http://dx.doi.org/ 10.1103/PhysRevLett.109.183602
http://dx.doi.org/ 10.1103/PhysRevA.87.050304
http://dx.doi.org/ 10.1103/PhysRevA.87.050304
http://dx.doi.org/10.1103/PhysRevApplied.4.054001
http://dx.doi.org/10.1103/PhysRevE.92.052720
http://dx.doi.org/10.1103/PhysRevX.5.021025


98 BIBLIOGRAPHY

[99] H. Wiseman and G. Milburn, Quantum Measurement and Control (Cambridge
University Press, 2010).

[100] K. Jacobs and D. A. Steck, Contemporary Physics 47, 279 (2006),
http://dx.doi.org/10.1080/00107510601101934 .

[101] C. W. Gardiner and P. Zoller, Quantum Noise (Springer Complexity, Heidelberg,
2004).

[102] F. Caruso, New Journal of Physics 16, 055015 (2014).

[103] S. Viciani, M. Lima, M. Bellini, and F. Caruso, Phys. Rev. Lett. 115, 083601
(2015).

[104] F. Caruso, A. Crespi, A. G. Ciriolo, F. Sciarrino, and R. Osellame, Nat Commun
7 (2016).

[105] H. Park, N. Heldman, P. Rebentrost, L. Abbondanza, A. Iagatti, A. Alessi,
B. Patrizi, M. Salvalaggio, L. Bussotti, M. Mohseni, F. Caruso, H. C. Johnsen,
R. Fusco, P. Foggi, P. F. Scudo, S. Lloyd, and A. M. Belcher, Nat Mater 15,
211 (2016).

[106] J. Casanova, L. Lamata, I. L. Egusquiza, R. Gerritsma, C. F. Roos, J. J. García-
Ripoll, and E. Solano, Phys. Rev. Lett. 107, 260501 (2011).

[107] I. Bengtsson and K. Zyczkowski, Geometry of Quantum States: An Introduction
to Quantum Entanglement (Cambridge University Press, New York, NY, USA,
2006).

[108] R. Sweke, M. Sanz, I. Sinayskiy, F. Petruccione, and E. Solano, Phys. Rev. A
94, 022317 (2016).

[109] D. Aharonov, W. Van Dam, J. Kempe, Z. Lamda, S. Lloyd, and O. Regev, in
Proceedings of the 45th IEEE Symposium on Foundations of Computer Science,
Rome, Italy , 42 (2004).

[110] L. S. Theis, P. K. Schuhmacher, M. Marthaler, and F. K. Wilhelm,
“Gap-independent cooling and hybrid quantum-classical annealing,” (2018),
arXiv:1808.09873 [quant-ph] .

[111] Office of the Director of National Intelligence, Quantum Enhanced Optimization
(QEO) (visited on: 2020-08-10).

[112] J. Kempe, A. Kitaev, and O. Regev, SIAM Journal on Computing 35, 1070
(2006).

[113] J. D. Biamonte and P. J. Love, Phys. Rev. A 78, 012352 (2008).

[114] S. Bravyi, D. P. DiVincenzo, D. Loss, and B. M. Terhal, Phys. Rev. Lett. 101,
070503 (2008).

[115] Y. Cao, R. Babbush, J. Biamonte, and S. Kais, Phys. Rev. A 91, 012315 (2015).

[116] M. Schöndorf and F. Wilhelm, Phys. Rev. Applied 12, 064026 (2019).

[117] W. van Dam, M. Mosca, and U. Vazirani, in Proceedings 42nd IEEE Symposium
on Foundations of Computer Science (2001) pp. 279–287.

http://dx.doi.org/10.1080/00107510601101934
http://arxiv.org/abs/http://dx.doi.org/10.1080/00107510601101934
http://stacks.iop.org/1367-2630/16/i=5/a=055015
http://dx.doi.org/10.1103/PhysRevLett.115.083601
http://dx.doi.org/10.1103/PhysRevLett.115.083601
http://dx.doi.org/10.1038/ncomms11682
http://dx.doi.org/10.1038/ncomms11682
http://dx.doi.org/10.1038/nmat4448
http://dx.doi.org/10.1038/nmat4448
http://dx.doi.org/ 10.1103/PhysRevLett.107.260501
http://dx.doi.org/ 10.1103/PhysRevA.94.022317
http://dx.doi.org/ 10.1103/PhysRevA.94.022317
https://arxiv.org/abs/quant-ph/0405098
https://arxiv.org/abs/quant-ph/0405098
https://arxiv.org/abs/quant-ph/0405098
http://arxiv.org/abs/1808.09873
https://www.iarpa.gov/index.php/research-programs/qeo
https://www.iarpa.gov/index.php/research-programs/qeo
http://dx.doi.org/10.1103/PhysRevA.78.012352
http://dx.doi.org/10.1103/PhysRevLett.101.070503
http://dx.doi.org/10.1103/PhysRevLett.101.070503
http://dx.doi.org/ 10.1103/PhysRevA.91.012315
http://dx.doi.org/10.1103/PhysRevApplied.12.064026


BIBLIOGRAPHY 99

[118] B. Apolloni, C. Carvalho, and D. De Falco, Stochastic Processes and their
Applications 33, 233 (1989).

[119] B. Apolloni, D. De Falco, and N. Cesa-Bianchi, A numerical implementation
of" quantum annealing", Tech. Rep. (1988).

[120] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science 220, 671 (1983).

[121] C. C. McGeoch, Synthesis Lectures on Quantum Computing 5, 1 (2014).

[122] M. H. S. Amin, Phys. Rev. Lett. 102, 220401 (2009).

[123] T. Kato, Journal of the Physical Society of Japan 5, 435 (1950).

[124] G. Nenciu, Communications in mathematical physics 152, 479 (1993).

[125] J. E. Avron and A. Elgart, Communications in mathematical physics 203, 445
(1999).

[126] G. A. Hagedorn and A. Joye, Journal of Mathematical Analysis and Applications
267, 235 (2002).

[127] S. Jansen, M.-B. Ruskai, and R. Seiler, Journal of Mathematical Physics 48,
102111 (2007), https://doi.org/10.1063/1.2798382 .

[128] M. J. O’Hara and D. P. O’Leary, Phys. Rev. A 77, 042319 (2008).

[129] D. A. Lidar, A. T. Rezakhani, and A. Hamma, Journal of Mathematical Physics
50, 102106 (2009), https://doi.org/10.1063/1.3236685 .

[130] D. Cheung, P. Høyer, and N. Wiebe, Journal of Physics A: Mathematical and
Theoretical 44, 415302 (2011).

[131] Y. Ge, A. Molnár, and J. I. Cirac, Phys. Rev. Lett. 116, 080503 (2016).

[132] L. Landau, Physikalische Zeitschrift der Sowjetunion 2, 46 (1932).

[133] C. Zener and R. H. Fowler, Proceedings of the Royal Society of London. Series A,
Containing Papers of a Mathematical and Physical Character 137, 696 (1932).

[134] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser (2000).

[135] S. Ashhab, J. R. Johansson, and F. Nori, Phys. Rev. A 74, 052330 (2006).

[136] M. H. S. Amin, P. J. Love, and C. J. S. Truncik, Phys. Rev. Lett. 100, 060503
(2008).

[137] U. Weiss, Quantum Dissipative Systems , Series in modern condensed matter
physics (World Scientific, 2008).

[138] N. G. Dickson, M. W. Johnson, M. H. Amin, R. Harris, F. Altomare, A. J.
Berkley, P. Bunyk, J. Cai, E. M. Chapple, P. Chavez, F. Cioata, T. Cirip,
P. deBuen, M. Drew-Brook, C. Enderud, S. Gildert, F. Hamze, J. P. Hilton,
E. Hoskinson, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Lanting, T. Mahon,
R. Neufeld, T. Oh, I. Perminov, C. Petroff, A. Przybysz, C. Rich, P. Spear,
A. Tcaciuc, M. C. Thom, E. Tolkacheva, S. Uchaikin, J. Wang, A. B. Wilson,
Z. Merali, and G. Rose, Nature Communications 4, 1903 (2013).

http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1103/PhysRevLett.102.220401
http://dx.doi.org/10.1143/JPSJ.5.435
http://dx.doi.org/https://doi.org/10.1006/jmaa.2001.7765
http://dx.doi.org/https://doi.org/10.1006/jmaa.2001.7765
http://dx.doi.org/10.1063/1.2798382
http://dx.doi.org/10.1063/1.2798382
http://arxiv.org/abs/https://doi.org/10.1063/1.2798382
http://dx.doi.org/10.1103/PhysRevA.77.042319
http://dx.doi.org/10.1063/1.3236685
http://dx.doi.org/10.1063/1.3236685
http://arxiv.org/abs/https://doi.org/10.1063/1.3236685
http://dx.doi.org/10.1088/1751-8113/44/41/415302
http://dx.doi.org/10.1088/1751-8113/44/41/415302
http://dx.doi.org/10.1103/PhysRevLett.116.080503
http://dx.doi.org/10.1103/RevModPhys.90.015002
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1103/PhysRevA.74.052330
http://dx.doi.org/10.1103/PhysRevLett.100.060503
http://dx.doi.org/10.1103/PhysRevLett.100.060503
https://books.google.de/books?id=mGVhDQAAQBAJ
https://doi.org/10.1038/ncomms2920


100 BIBLIOGRAPHY

[139] E. Novais, A. H. Castro Neto, L. Borda, I. Affleck, and G. Zarand, Phys. Rev.
B 72, 014417 (2005).

[140] H. Kohler and F. Sols, Phys. Rev. B 72, 180404 (2005).

[141] K. Saito, M. Wubs, S. Kohler, Y. Kayanuma, and P. Hänggi, Phys. Rev. B 75,
214308 (2007).

[142] R. Harris, T. Lanting, A. J. Berkley, J. Johansson, M. W. Johnson, P. Bunyk,
E. Ladizinsky, N. Ladizinsky, T. Oh, and S. Han, Phys. Rev. B 80, 052506
(2009).

[143] P.-Q. Jin, M. Marthaler, A. Shnirman, and G. Schön, Phys. Rev. Lett. 108,
190506 (2012).

[144] P. Nalbach, Phys. Rev. A 90, 042112 (2014).

[145] M. Yamaguchi, T. Yuge, and T. Ogawa, Phys. Rev. E 95, 012136 (2017).

[146] L. Arceci, S. Barbarino, R. Fazio, and G. E. Santoro, Phys. Rev. B 96, 054301
(2017).

[147] W. Vinci and D. A. Lidar, npj Quantum Information 3, 38 (2017).

[148] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and
W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).

[149] A. Shnirman, Y. Makhlin, Y. Makhlin, G. Sch?n, and G. Sch?n, Physica Scripta
T102, 147 (2002).

[150] M. Keck, S. Montangero, G. E. Santoro, R. Fazio, and D. Rossini, New Journal
of Physics 19, 113029 (2017).

[151] L. Arceci, S. Barbarino, D. Rossini, and G. E. Santoro, Phys. Rev. B 98, 064307
(2018).

[152] T. Albash, V. Martin-Mayor, and I. Hen, Phys. Rev. Lett. 119, 110502 (2017).

[153] K. Kraus, Foundations of Physics 11, 547 (1981).

[154] M. H. S. Amin and D. V. Averin, Phys. Rev. Lett. 100, 197001 (2008).

[155] M. Demirplak and S. A. Rice, J. Phys. Chem. A 107, 9937 (2003).

[156] M. V. Berry, Journal of Physics A: Mathematical and Theoretical 42, 365303
(2009).

[157] D. Sels and A. Polkovnikov, Proceedings of the National Academy of Sciences
114, E3909 (2017).

[158] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot,
and J. G. Muga, Rev. Mod. Phys. 91, 045001 (2019).

[159] H. Zhou, Y. Ji, X. Nie, X. Yang, X. Chen, J. Bian, and X. Peng, Phys. Rev.
Applied 13, 044059 (2020).

[160] S. Bedkihal and M. Canturk, “Notes on curvature operator,” (2020).

[161] A. Maksymov, P. Sierant, and J. Zakrzewski, Phys. Rev. B 99, 224202 (2019).

http://dx.doi.org/10.1103/PhysRevB.72.014417
http://dx.doi.org/10.1103/PhysRevB.72.014417
http://dx.doi.org/10.1103/PhysRevB.72.180404
http://dx.doi.org/ 10.1103/PhysRevB.75.214308
http://dx.doi.org/ 10.1103/PhysRevB.75.214308
http://dx.doi.org/10.1103/PhysRevB.80.052506
http://dx.doi.org/10.1103/PhysRevB.80.052506
http://dx.doi.org/10.1103/PhysRevLett.108.190506
http://dx.doi.org/10.1103/PhysRevLett.108.190506
http://dx.doi.org/10.1103/PhysRevA.90.042112
http://dx.doi.org/10.1103/PhysRevE.95.012136
http://dx.doi.org/ 10.1103/PhysRevB.96.054301
http://dx.doi.org/ 10.1103/PhysRevB.96.054301
http://dx.doi.org/10.1038/s41534-017-0037-z
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/ 10.1238/physica.topical.102a00147
http://dx.doi.org/ 10.1238/physica.topical.102a00147
http://dx.doi.org/ 10.1088/1367-2630/aa8cef
http://dx.doi.org/ 10.1088/1367-2630/aa8cef
http://dx.doi.org/10.1103/PhysRevB.98.064307
http://dx.doi.org/10.1103/PhysRevB.98.064307
http://dx.doi.org/10.1103/PhysRevLett.119.110502
https://doi.org/10.1007/BF00726936
http://dx.doi.org/10.1103/PhysRevLett.100.197001
http://dx.doi.org/10.1021/jp030708a
http://dx.doi.org/10.1088/1751-8113/42/36/365303
http://dx.doi.org/10.1088/1751-8113/42/36/365303
http://dx.doi.org/10.1073/pnas.1619826114
http://dx.doi.org/10.1073/pnas.1619826114
http://dx.doi.org/10.1103/RevModPhys.91.045001
http://dx.doi.org/10.1103/PhysRevApplied.13.044059
http://dx.doi.org/10.1103/PhysRevApplied.13.044059
http://dx.doi.org/10.1103/PhysRevB.99.224202


BIBLIOGRAPHY 101

[162] K. Nakamura and M. Lakshmanan, Phys. Rev. Lett. 57, 1661 (1986).

[163] H. Chen and D. A. Lidar, “Hoqst: Hamiltonian open quantum system toolkit,”
(2020), arXiv:2011.14046 [quant-ph] .

[164] L. S. Theis, “Enhancing the performance of quantum computers,” (2018).

http://dx.doi.org/10.1103/PhysRevLett.57.1661
http://arxiv.org/abs/2011.14046
http://dx.doi.org/http://dx.doi.org/10.22028/D291-27923

	Acknowledgements
	Introduction
	Development of Modern Computers
	Quantum Information
	Postulates of Quantum Mechanics
	Entanglement
	Qubits and Quantum Gates
	Quantum Algorithms
	DiVincenzo Criteria

	Open Quantum Systems
	Preliminaries
	Density Matrices and Partial Trace
	Entropy
	Quantum Channels
	Quantum Dynamical Maps
	The Lindblad Master Equation
	The Redfield Master Equation
	Bath Correlation Functions
	Quantum Adiabatic Markovian Master Equations
	The Secular Approximation
	Comparison of Master Equations
	Harmonic Baths
	The Quasi-Adiabatic Propagator Path Integral Method

	Summary

	Quantum Simulations of Quantum Stochastic Walks
	Introduction to Quantum Stochastic Walks (QSWs)
	Continuous-Time Quantum Stochastic Walks
	Discrete-Time Quantum Stochastic Walks

	Quantum Simulation of a Continuous-Time QSW
	Quantum Trajectories on a Classical Computer
	Quantum Trajectories on a Quantum Computer
	QTQC of a Quantum Stochastic Walk
	Conclusion

	Quantum Simulation of a Discrete-Time QSW
	Quantum Simulation of a Kraus Map
	Protocol
	Simulating a Continuous-Time QSW by a Discrete-Time QSW
	Conclusion

	Appendices
	Graph Restriction due to Commutation of SE and SE
	Simulating Nonphysical Evolution
	Measurement Operators


	Hybrid Quantum-Classical Annealing
	Introduction to Adiabatic Quantum Computing
	3-SAT
	Solving 3-SAT by Exploiting Physics
	Adiabatic Quantum Computing

	Hybrid Quantum-Classical Annealing of a Single Qubit
	Model and Equations of Motion
	Environmental Engineering
	Conclusion

	On the Scaling to Larger Qubit Numbers
	Cooling Operator Candidates
	Defining the Toy Model
	Methods
	The Cooling Operator Championship
	Conclusion and Outlook

	Appendices
	Derivation of the quantum master equations
	Numerical verification of relaxation and cooling


	Conclusion and Outlook

