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Abstract: A two-dimensional numerical model for self-propagating reactions in Al/Ni multilayer
foils was developed. It was used to study thermal properties, convective heat loss, and the effect of
initial temperature on the self-propagating reaction in Al/Ni multilayer foils. For model adjustments
by experimental results, these Al/Ni multilayer foils were fabricated by the magnetron sputtering
technique with a 1:1 atomic ratio. Heat of reaction of the fabricated foils was determined employing
Differential Scanning Calorimetry (DSC). Self-propagating reaction was initiated by an electrical
spark on the surface of the foils. The movement of the reaction front was recorded with a high-
speed camera. Activation energy is fitted with these velocity data from the high-speed camera to
adjust the numerical model. Calculated reaction front temperature of the self-propagating reaction
was compared with the temperature obtained by time-resolved pyrometer measurements. X-ray
diffraction results confirmed that all reactants reacted and formed a B2 NiAl phase. Finally, it is
predicted that (1) increasing thermal conductivity of the final product increases the reaction front
velocity; (2) effect of heat convection losses on reaction characteristics is insignificant, e.g., the foils
can maintain their characteristics in water; and (3) with increasing initial temperature of the foils, the
reaction front velocity and the reaction temperature increased.

Keywords: reactive materials; superlattice; nickel; aluminum; propagation velocity; self-sustained
reaction; self-propagating reaction; transformation imprinted materials

1. Introduction

The Nickel and Aluminum binary system in different forms such as particles, powder,
flakes, nanorods, and foils, were under intensive investigation since the end of the 20th
century [1–13]. Fast and steady reaction and releasing a huge amount of energy on a very
short time scale are the main beneficial aspects, applied in different fields of science and
engineering. For example, applications are found in aerospace [14], thermal batteries [15],
and potential application in drug delivery systems [16], where thermally actuated valving
mechanism could be obtained by the development of reactive nanorods and porous thin
films, and also at a smaller scale, such as joining electrical components in the semiconductor
industry [17,18], welding [19], self-healing [20], etc. When the periodic bilayer thickness
is less than 200 nm, the diffusion length decreases, and atomic diffusion will play a
dominating role in the direction normal to the multilayer surface and thermal diffusion
along the layers will be the governing process. Consequently, the chemical mixing rate
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increases, and in presence of external stimulation, the reaction occurs in the in-plane
direction of the binary film in high-temperature self-propagating mode. In this case,
theoretically, the temperature could increase up to 1912 K, which is the melting temperature
of the NiAl B2 phase. The measured propagation velocity of the reaction front as reported
in the literature is up to 15 m s−1, depending on the bilayer thickness and the intermixing
at the interfaces between the layers [21,22].

Complexities and limitations of measurement devices and techniques drew attention
towards analytical and numerical modeling of such reactions in multilayer foils [21,23–28].
In [21,29], the reaction front velocity was investigated in dependence on bilayer and
intermixing at the interface between the layers and it was concluded that the average
combustion velocity increases, when the periodic thickness decreases, but below a critical
thickness, where the intermixing zone becomes comparable to the bilayer thickness, this
trend is inverted. Former models showed that this prior intermixing in the multilayers
decreased the reaction front velocity by reducing the rate of atomic diffusion [23]. Different
techniques have been implemented to measure the heat of reaction and the activation
energy of the self-propagating reaction [30–33]. In the current study, the activation energy
was fitted to the measured reaction front velocity from high-speed camera measurement.
The reaction energy was measured by differential scanning calorimetry (DSC). In [34],
the effect of activation energy and initial temperature on the reaction front velocity and
the reaction temperature in the Ti-C system was studied. In the simulations performed
here, this effect is considered for the Al/Ni systems as well. In [27], a reduced model was
introduced to investigate the reaction front velocity in direction normal to multilayers of
uniform and non-uniform free-standing composite foils. In the current study, the effect of
ambient conditions and the initial temperature of the foils on reaction characteristics were
investigated. For this, a diffusion-limited finite element model was built with the help of
COMSOL MULTIPHYSICS 5.6. To our knowledge, the influence of the initial temperature
of nickel and aluminum multilayer foils on the characteristics of the reaction had not been
investigated so far in the literature.

Due to different fabrication setups and environments, different microstructures are
deposited, the main factors which are affecting the heat of reaction and consequently,
the ignition properties of multilayer foils, are the bilayer thickness and premixing at the
interface of the individual nickel and aluminum layers. The sputtering-induced alloying
caused the formation of a few nanometer-thick NiAl intermetallic alloy at the interface of
Ni and Al, which can act as a diffusion barrier. For this reason, we have conducted the DSC
analysis on sputtered samples. To adjust the numerical model, the results obtained from the
simulations were compared with those of the experimental measurements from the high-
speed camera detecting of the reaction front velocity and the temperature measurements
by a high-speed pyrometer.

2. Materials and Methods

The summary of the conducted research is shown in Figure 1. In the first step, the
alternating Al and Ni layers were deposited by magnetron sputtering to total multilayer
thickness of 1 µm. After that, free-standing multilayers were fabricated using the mechan-
ical exfoliation process. The formed free-standing foils were ignited using an electrical
ignition spark between two measurement tips, placed on the surface of the reactive mul-
tilayer foils. The propagation velocity of the reaction front and the time-temperature
behavior were recorded using a high-speed camera and a high-speed pyrometer, respec-
tively. Free-standing thin films were additionally measured via DSC to obtain the total
reaction enthalpy (heat release) during the reaction with slow heating rates. The obtained
data were compared to the results of the simulations of the propagation velocity and the
time–temperature dependence to adjust and validate the simulation model.
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Figure 2. (a) Schematic of the implemented model. Qconv and Qrad are convective heat loss and radiative heat loss (b) 
enlarged view of the selected red area in (a), where w is the intermixing thickness of the multilayers and 2𝛿 is the bilayer 
thickness. 

A two-dimensional numerical model is implemented characterizing the self-
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Figure 1. Summary of the current study.

2.1. Model Description

Schematic of deposited Ni and Al layers are illustrated in Figure 2a. The length (L) of
the model should be long enough to ensure that the finite size of the numerical domain is
not affecting the characteristics of the self-propagating reaction [35]. On the other hand,
it should be short enough to reduce computational costs. Therefore, the length of the
multilayers is taken as 200 µm, to maintain a homogenous reaction front at different time
steps. In Figure 2b, the formation of the reaction front and the intermixing zone of NiAl,
which will be discussed later, is represented.
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bilayer thickness.

A two-dimensional numerical model is implemented characterizing the self-propagating
diffusion reaction of Ni and Al multilayers. The computational domain and also the ther-
mal boundary conditions, such as convective and radiative heat losses are represented in
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Figure 2a. Mass transfer equation is coupled with heat transfer equation with a heat source
term represented in the following:

∂C
∂t

= ∇ (D(T) ∇C), (1)

Equation (1) is the mass transfer equation where C is atomic species concentration
of Ni and Al, and D is the diffusion coefficient which is described in Equation (2), where
D0 is the pre-exponential coefficient and Ea is the activation energy, R is the universal gas
constant, and T is the temperature. To perform the calculations, D0, is taken from [29].

D = D0 exp
(
− Ea

R T

)
, (2)

Equation (3) is the heat transfer equation, where ρ is the temperature dependent
density, Cp is the temperature dependent specific heat capacity, K is the temperature
dependent thermal conductivity, and Q(C) which is taken from [35] is the concentration
dependent heat source, which couples the mass and heat transfer equation mentioned
earlier and it is defined in Equation (4), where Hrxn is the heat of reaction.

ρ(T) Cp(T)
∂T
∂t

= ∇ (K(T) ∇T) + Q(C), (3)

Q(C) = −ρ(T)Hrxn
∂C2

∂t
, (4)

The convective heat loss can theoretically be calculated from Equation (5) where h, is
the convection coefficient, T∞, is the ambient temperature, and A is the surface area from
where the heat is transferred.

Qconv = hA(T∞ − T), (5)

2.2. Premixing and Concentration Profiles

Al and Ni atoms are already intermixed during the sputtering process [20]. In Figure 3,
the imposed concentration profile is plotted, as described; the primary concentration of
Al and Ni and intermixed NiAl is considered 1, −1, and 0, respectively. The intermixed
zone is implemented as linear and sinusoidal concentration profiles, as proposed in [35].
In an ideal case (no pre-intermixing), the concentration profile forms a step function as
represented in Figure 3. The concentration distributions with a finite transition layer
account for the existence of a premixing layer.
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In [36], the prediction of the premixing thickness of 4 nm is reported, which is also
comparable with the DSC analysis done in this work. This will be elaborated in detail in
the next subsections.

2.3. Heat of Reaction

Experimental and theoretical studies have been performed to measure and calculate
the enthalpy of formation of the B2 NiAl phase [30,37,38]. As reported by [30], the enthalpy
of formation of NiAl varies in the range of −57.2 to −80 kJ g-atom−1. The negative sign is
showing that the reaction is exothermic.

Due to the premixing of Ni and Al phases before the initiation of the self-propagating
reaction, the heat, which is generated from the multilayer system decreases with the
increasing thickness of the premixing layer w as is illustrated in Figure 2b. This effect is
well investigated in [9]. According to [9], the dependence of the heat of reaction, on the
bilayer thickness and the premixing thickness can be described by Equation (6).

Hrxn = H f

(
1− w

δ

)
, (6)

where Hrxn is the heat of reaction and H f is the enthalpy of formation of NiAl from its
constituent phases.

The DSC measurement (see Section 2.7) conducted in this study is shown in Figure 4.
The measured enthalpy of reaction of deposited Al/Ni multilayers is −55.01 kJ g-atom−1

(where 1 g-atom = 1 mole of atom) or −1284 J g−1. This value, however, is measured
by DSC for a constant slow heating rate of 20 K min−1 (0.333 K s−1), and the reaction
starts at around 400 K and is completed at 700 K; it means that the reaction during the
DSC annealing occurs exclusively in the solid-state. When the reaction is ignited at higher
temperatures, where Al is in the molten state, the enthalpy of the reaction is expected to be
more negative by at least 7 kJ mol−1 [30,39]. With a prediction of a premixing thickness
of 4 nm by [36] and Equation (6), we can estimate the enthalpy of formation of the NiAl
phase being approximately −65.5 kJ g-atom−1 or −1528 J g−1, which is in good agreement
with literature data reported in [30]. This value is taken to perform the numerical study.
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enthalpy release.
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2.4. Material Properties

The thermal properties, affecting the diffusion-driven reaction are thermal conductiv-
ity, density, and specific heat capacity of individual compounds and final product as well as
intermetallic phases which are formed during the self-propagating reaction. The precision
of implementation of these properties within the numerical model, makes simulation to be
close to the real phenomenon of the Ni and Al reaction. For this, temperature dependent
thermal properties are implemented. In [40], it was shown that NiAl crystalline phase is
formed in 300 ns, after passing of the reaction front. It is known that the diffusion rate
after melting of Al at 933 K significantly increases due to liquid–solid diffusion instead
of solid–solid diffusion. Therefore, the reactant mixing rate dramatically rises [41]. In the
current study, it is assumed that the dominating phase formed at the propagation front
is NiAl; thus, we have adapted material properties and combined them as described in
Figure 5. The isotropic material condition is assumed in this study, meaning that material
properties are independent of direction.
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The density of NiAl in the solid phase is estimated using Equation (7) as represented
in Figure 5a, where M is the molar mass and ρ is the density of the compound.

ρNiAl =
MNi ρNi + MAlρAl

MNiAl
, (7)

The Ni density data were extracted from [42] and linearly fitted. The fitting equation
is described in Equation (8).

ρNi = 9028.1− 0.44925T T < Tm,Ni, (8)

where T is the temperature in Kelvin, ρ is the density in kg m−3, and Tm,Ni is the melting
point of Ni which is 1728 K. The Aluminum density was extracted from [48] and described
in Equation (9).

ρAl = 2378− 0.3111(T − 933) T < Tm,Al , (9)

The melting point of Al is Tm,Al = 933 K. Due to large deviations in thermal con-
ductivity data at high temperature from the literature within the range of approximately
50–110 W m−1 K−1, we have studied the effect of different thermal conductivity values
within this range on the velocity of reaction front and reaction temperature [43,46,49]. This
is indicated in Figure 5b.
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2.5. Ignition Initiator

Ignition is obtained by imposing initial energy, which starts the self-propagating
reactions in the deposited multilayers. The possibilities for ignition are laser pulses,
mechanical impact, electrical spark, or uniform heating of the foils [50]. The last three
methods of ignition were studied in [33], where the threshold of ignition energy in form of
energy density was reported for different ignition techniques. Igniting with laser pulses is
studied in [51] for the Al/Pt system. In the current work, free-standing multilayer foils were
ignited by the electrical current at 16 V. In the numerical model, heat pulse of 1011 W m−2

for 1 µs is applied on one side of the foil, to ensure the initiation of self-propagating ignition,
while having insignificant thermal effects induced by the igniter.

2.6. Al/Ni Multilayer Deposition

The Ni and Al multilayers were prepared by magnetron sputtering using high purity
Al and Ni targets in the PVD-Cluster 400 ES. Alternating layers of Ni and Al, with layer
thicknesses of 20 nm and 30 nm for Ni and Al, respectively, were repeatedly deposited
at room temperature onto p-type Si(100) substrates, covered with a native silicon dioxide
layer, until the overall film thickness of 1 µm was reached. The starting layer was Al. The
Ni and Al thicknesses were chosen to achieve a nearly 1:1 atomic ratio of the two elements
in the bilayer. In all of these layers, the bilayer thickness was 50 nm.

2.7. Ignition and Measurements

The free-standing multilayer Al/Ni foils were ignited electrically by placing two
measurement tips on the surface of the foils at the edge of the samples. The distance
between the tips was 1 mm. The ignition was initiated by applying a voltage of 16 V
between the tips. The velocity of the reaction front was recorded using a high-speed camera
FASTCAM SA-X2 with a frame rate of 50,000 fps. The reaction temperature was measured
using a high-speed KLEIBER-Pyrometer Pyroskop 840. The focus of the pyrometer was set
to a predefined location and the temperature-time dependence was measured when the
reaction front was passing it (see Figure 6).
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(c) t = 0.2 µs, and (d) t = 0.3 µs.

In separate experiments, the heat of reaction of the Al/Ni multilayer foils was de-
termined by DSC measurements using a power-compensated Perkin Elmer Differential
Scanning Calorimeter 8500 using Al crucibles under a constant flow of high-purity Ar
(99.99 mol. %) of 20 mL min−1 (see Section 2.3). The samples were heated with a constant
rate of 0.333 K s−1 from 200 to 823 K. A second run with the reacted material under iden-
tical conditions allowed for determining the baselines, which were subtracted from the
first up-scan. The calorimeter was calibrated by measuring the melting temperatures and
melting enthalpies of In and Zn [52]. Multiple pieces of the thin films have been stacked to
reach a sufficient total mass for a good signal to noise ratio.
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The phase identification for the reacted and unreacted Al/Ni free-standing foils was
carried out by X-ray diffraction (XRD) (Bruker D5000 Theta-Theta X-ray diffractometer)
with Cu-Kα (1.5406 Ȧ) radiation at 40 kV and 40 mA in Bragg–Brentano working mode.
Figure 7 depicts the XRD patterns of unreacted and reacted free-standing foils. It shows
that before the reaction, the main peaks are belonging to Al (PDF 01-1179) and Ni (PDF
01-1179) and indicate the dominating presence of an fcc (111) orientation of Al and Ni
elements in the unreacted free-standing foils. After the reaction, significant changes in the
structure are shown by the elemental Al and Ni peaks disappearing and instead, exhibiting
the B2 Al0.9Ni1.1 (PDF 44-1185) phase [53].
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No additional phases were found which gives proof of the formation of the Al0.9Ni1.1
phase after the reaction. This Ni rich NiAl phase has already been observed due to changes
in the composition of the grains in already existing phases [54].

2.8. Foil Formation

For the fabrication of the free-standing foils, a technique was used which is widely
applied to exfoliate and transfer two dimensional materials to foreign substrates. It is the so-
called dry transfer technique [55]. For the formation of the free-standing foils, the first step
of this technique was used in a modified form. Specifically, a Kapton tape was mounted
to the edge of the Si(100) substrate covered with the Al/Ni multilayer. Subsequently, the
Al/Ni multilayer was exfoliated from the substrate. The Kapton foil was not removed from
the foil edge, but used to mount the foil to the ignition set-up.

3. Results and Discussion
3.1. Adjustment of Model Parameters

The parametric validation of the developed model was conducted by relating the
dependence of the simulated reaction propagation front velocity for a given width of the
intermixing zone between the constituent layers of the bilayer stacks to the experimentally
determined reaction front velocity. The correlation of the simulated and the experimentally
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determined reaction front velocity allows the determination of the Ea. In this approach, it
was assumed that the width of the intermixing zone is equal for all interfaces.

Figure 8 illustrates the effect of the Ea on the reaction front velocity and the reaction
front temperature. The reaction front temperature is independent of the activation energy
and is equal to 1499 K. The measured temperature by high-speed pyrometer showed the
maximum temperature of 1396 K. The deviation of temperature results of simulation and
measurement is about 7%. This difference can be due to the finite integration time of the
pyrometer used for the temperature measurements. Furthermore, it has to be mentioned
that in the model, the interface roughness and waviness were not taken into account. The
morphological real structure of the interface can influence the reaction temperature, as it
acts as an effective medium and effectively increases the intermixing zone.
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temperature at the reaction front. The width of the intermixing zone was set to 4 nm.

The reaction front velocity decreases with increasing the activation energy Ea following
an exponential rule introduced in [56] and later implemented by [9,36] as well. The
application of the correlation procedure yields an Ea = 107 kJ mol−1. The obtained value
agrees with the results obtained in [57,58]. For the following numerical investigations, this
value was used for the activation energy.

3.2. Influence of Premixing

The influence of the thickness of the premixing zone at the interfaces between the
two constituent materials is shown in Figure 9. Linear concentration profiles have a larger
impact on both characteristics of the self-propagating reaction. Increasing premixing
thickness causes a lower diffusion rate at the interface and a decrease in heat of reaction
of Ni and Al which results in a lower propagation velocity of the reaction front. This is
also mentioned in [35] and it is in good agreement with the effect of premixing (sinusoidal
and linear) on the velocity of the reaction front and reaction temperature conducted in
this study.
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Figure 9. The effect of sinusoidal and linear premixing zone (explained in Section 2.2) on (a) the reaction front velocity and
(b) the reaction temperature at the reaction front, where Ea = 107 kJ mol−1, D0 = 2.18× 10−5 m2s−1 and heat of reaction is
calculated by Equation (6). (Lines are drawn to guide the eyes).

3.3. Influence of NiAl Thermal Conductivity

As mentioned in Section 2, the thermal conductivity of the reacting materials and
the reaction product impacts the characteristics of the self-propagating reactions. On the
other hand, the thermal properties of the initial materials in the bilayer stack and reaction
product are affected by their real structures and therefore, depend on defect densities
and composition. For the estimation of the impact of the thermal conductivity on the
reaction front velocity, this parameter was varied. The results of the carried-out simulations
are shown in Figure 10. According to the obtained results, the reaction front velocity
increases nearly linear with the increase of the thermal conductivity of the final reaction
product NiAl.
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3.4. Influence of Convective Heat Loss

Changing the ambient condition can cause change in the convective coefficient and
consequently, affects heat loss from the multilayer foil to the environment (see Equation (5)).
In Figure 11, the dependence of reaction front velocity and temperature at the reaction
front on the convection coefficient is illustrated. Calculations showed in Figure 11 that for
increasing convection coefficients from 5 to 15,000 W m−2 K−1, the propagation reaction
front velocity decreases slightly. The relative decrease in the values of the reaction front
velocity and the reaction temperature was obtained to be about 5 and 1.5%, respectively.
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Figure 11. Effect of changing the ambient condition (convective coefficient) on the reaction front
velocity and the temperature at the reaction front.

Therefore, increasing heat transfer coefficients causes a reduction in both characteristic
values of the self-sustained reaction. Table 1 represents the convection coefficients related
to these environmental conditions. From Table 1 and the calculations for different con-
vection coefficients, we can conclude that multilayer foils behave similarly in an aqueous
environment as they do in air.

Table 1. Convection Coefficient Examples (taken from [59]).

Convection Type Convection Coefficient h (W m−2 K−1)

Air, Free Convection 2.5–25
Air, Forced Convection 10–500

Liquid, Forced Convection 100–15,000

3.5. Influence of Initial Temperature

In the previous subsections, the influence of the thermal conductivity and the heat
loss conditions on the reaction front velocity and the reaction front temperature were
studied. In Section 2.4, it was shown that the properties of the materials are affected by
the temperature. Therefore, it is of interest to study the effect of the initial temperature
of the multilayer foils. In [50], an ignition temperature of 521 K was measured on a hot
plate for the solid-state reaction of Al/Ni multilayer foils. The results of the calculations
are summarized in Figure 12. It is predicted that, with increasing the initial temperature of
the foils from room temperature up to the ignition initiation temperature, we are able to
increase the reaction front velocity within the range of 5 m s−1 and the temperature at the
reaction front within the range of 100 K (see Figure 12).
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Figure 12. Influence of initial temperature of the reactive multilayer foil on the propagation reaction
front velocity and temperature.

The increase of the reaction front velocity follows an exponential function whereas
the reaction temperature obeys a linear law. Therefore, the initial temperature allows
tuning both of these characteristic properties of the self-propagating reactions in reactive
multilayer foils.

4. Conclusions

A two-dimensional numerical model was developed to investigate and analyze the
influence of environmental variables and material properties on reaction front velocity
and reaction temperature of reactive Ni and Al multilayer foils. For this, mass and heat
transfer equations were coupled with a concentration dependent heat source as a coupling
parameter. The interdiffusion of Ni and Al reactants and the formation of the final NiAl
intermetallic alloy were considered. The boundary conditions of the interaction of the
reactive multilayer system were determined by the heat dissipation conditions of a viscous
medium, i.e., radiation, heat conduction, and convective losses have been chosen. Basic
assumptions of the current study were as follows: (1) stoichiometric reaction of Al and
Ni, (2) only the NiAl phase exists at temperatures higher than melting temperature of
aluminum, and (3) isotropic temperature dependent material properties. It is shown
that with increasing thermal conductivity of the final product of the self-propagating
reaction, the reaction front velocity increases. Convective cooling has an insignificant
effect on reaction characteristics. It is predicted that Ni and Al multilayer foils can react in
liquid as well as in an air environment. The characteristics of the reaction can be controlled,
imposing the multilayer foils at different initial temperatures. With the increase of the initial
temperature of the reactive multilayer systems, the velocity and the reaction temperature
will increase.
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