
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2021) 35:41
https://doi.org/10.1007/s10458-021-09523-9

1 3

Towards completing the puzzle: complexity of control
by replacing, adding, and deleting candidates or voters

Gábor Erdélyi1 · Marc Neveling2 · Christian Reger3 · Jörg Rothe2 · Yongjie Yang4  ·
Roman Zorn2

Accepted: 2 July 2021 / Published online: 29 July 2021
© The Author(s) 2021

Abstract
We investigate the computational complexity of electoral control in elections. Electoral
control describes the scenario where the election chair seeks to alter the outcome of the
election by structural changes such as adding, deleting, or replacing either candidates or
voters. Such control actions have been studied in the literature for a lot of prominent voting
rules. We complement those results by solving several open cases for Copeland� , maximin,
k-veto, plurality with runoff, veto with runoff, Condorcet, fallback, range voting, and nor-
malized range voting.

Keywords  Computational complexity · Electoral control · Copeland · Maximin · Veto ·
Plurality with runoff · Veto with runoff · Condorcet · Fallback · Range voting · Normalized
range voting

1  Introduction

Computational social choice has established itself as a central part in the research and
development of multiagent systems and artificial intelligence. Without going into the
details here, it is important to note that preference aggregation and voting—and the
related scenarios of strategic behavior so as to change the outcome of elections—have
many applications in artificial intelligence and, especially, in multiagent systems (e.g.,
in information extraction [57], planning [15], recommender systems [28], ranking algo-
rithms [14], computational linguistics [53], automated scheduling [32], collaborative fil-
tering [55], etc.). Interestingly, as noted by Hemaspaandra [36, p. 7971], “At the 2017

The authors are ordered alphabetically.
This paper merges and extends two preliminary versions that appeared in the proceedings of the 18th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019) [21] and in
the proceedings of the 15th International Computer Science Symposium in Russia (CSR 2020) [50];
the latter paper was also presented at the 16th International Symposium on Artificial Intelligence and
Mathematics (ISAIM 2020) with nonarchival website proceedings.

 *	 Yongjie Yang
	 yyongjiecs@gmail.com

Extended author information available on the last page of the article

http://orcid.org/0000-0002-7731-6818
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-021-09523-9&domain=pdf

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 2 of 48

AAMAS conference, for example, there were four sessions devoted to Computational
Social Choice; no other topic had that many sessions.”

Since the seminal work of Bartholdi, Orlin, Tovey, and Trick [5–7], the founders of
computational social choice, many strategic voting problems have been proposed and
studied from a complexity-theoretic point of view. These strategic voting problems
include

•	 manipulation where voters cast their votes strategically;
•	 bribery where an external agent bribes some voters—without exceeding a given

budget—so as to change their votes; and
•	 electoral control where an external agent (usually called the chair) tries to alter the

outcome of an election by structural changes such as adding, deleting, partitioning, or
replacing either candidates or voters.

For a broad overview of these strategic actions and their applications in artificial intelli-
gence and multiagent systems and for a comprehensive survey of related results, we refer to
the book chapters by Conitzer and Walsh [12], Faliszewski and Rothe [25], and Baumeister
and Rothe [8] and to the comprehensive list of references cited therein.

We will focus on electoral control, first and foremost on control by replacing but also
on control by adding and by deleting either candidates or voters. There is a long line of
research centered on the complexity of control. So, before providing the specific motiva-
tion for our results, let us briefly outline the history of research on electoral control, focus-
ing on the particular scenarios we will be concerned with.

Bartholdi, Tovey, and Trick [7] were the first to propose control of elections as a mali-
cious way of tampering with their outcome via changing their structure, e.g., by adding or
deleting voters or candidates. They introduced the constructive variant where the goal of
an election chair is to make a favorite candidate win. Focusing on plurality and Condorcet
elections, they determined which control scenarios these rules are immune to (i.e., impos-
sible for the chair to successfully exert control), and in cases where these rules are not
immune, they studied the complexity of the associated control problems, showing either
resistance ( NP-hardness) or vulnerability (membership in P ). Complementing their work,
Hemaspaandra, Hemaspaandra, and Rothe [33] introduced the destructive variant of con-
trol where the chair’s goal is to prevent a despised candidate’s victory. Pinpointing the
complexity of destructive control in plurality and Condorcet elections, they also studied the
constructive and destructive control complexity of approval voting.

As surveyed by Faliszewski and Rothe [25] and Baumeister and Rothe [8], plenty of
voting rules have been analyzed in terms of their control complexity since then. In addition
to the just mentioned results on plurality, Condorcet, and approval voting (and its variants)
[7, 9, 16, 19, 33]; the complexity of control in various scenarios has been thoroughly ana-
lyzed for Copeland [9, 24]; maximin [23, 45, 47, 61]; k-veto and k-approval [39, 43, 46,
62]; Bucklin and fallback voting [16, 17, 20, 22], range voting and normalized range voting
[48], and Schulze voting [49, 54]. Among these voting rules, fallback voting (a hybrid sys-
tem due to Brams and Sanver [10] that combines Bucklin with approval voting) and nor-
malized range voting (both will be defined in Sect. 3) are special in that they are the only
two natural voting rules with a polynomial-time winner problem that are currently known
to have the most resistances to standard control attacks. “Standard control” here refers to

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 3 of 48  41

control by adding, deleting, or partitioning either candidates or voters because these are the
control types originally introduced by Bartholdi, Tovey, and Trick [7].1

On the other hand, the computational complexity of replacing either candidates or vot-
ers—the control action we mostly focus on—was first studied by Loreggia et al. [40–43].
Replacement control models voting situations in which the number of candidates or voters
are predefined and cannot be changed by the chair. For instance, a parliament often consists
of a fixed number of seats whose occupants must be replaced if they are removed from their
seats. From another viewpoint, the chair might try to veil his or her election tampering via
replacement control actions by making sure that the number of participating candidates
and voters is the same as before, hoping that the election might appear to be unchanged at
first glance. There are also other types of electoral control, such as more natural models of
control by partition introduced by Erdélyi, Hemaspaandra, and Hemaspaandra [18], but we
will not consider those in this paper.

Compared with the standard control types (adding/deleting/partitioning voters or candi-
dates), much less is known for the control action of replacing voters or candidates. It can
be seen as a combination of adding and deleting them, with the additional constraint that
the same number of voters/candidates must be added as have been deleted. Other types
of combining standard control attacks, namely multimode control, have been investigated
by Faliszewski, Hemaspaandra, and Hemaspaandra [23]. In their model, an external agent
is allowed to perform different types of control actions at once such as deleting and/or
adding voters and/or candidates. Although some types of multimode control seem to be
similar to replacement control, the key difference lies in the tightly coupled control types
of replacement control, whereas in multimode control the combined types of standard elec-
toral control can often be handled separately. This leads to the interesting and subtle situa-
tion that resistances of voting rules to certain types of standard control do not transfer trivi-
ally to related types of replacement control, whereas this indeed can happen for multimode
control.

The reader may ask, why do we need yet another paper on the complexity of control?
That is, what is the main motivation for the research presented here? Well, the answer is
twofold.

First, from a theoretical perspective, it is unsatisfactory that our knowledge about the
complexity of control is still incomplete; there are several important voting rules for which
we still have some unsolved open cases regarding certain control actions, especially for
replacement control. In this paper, we are filling many of these gaps (see Sect. 2 and, in
particular, Table 1 for the details).

Second, from a practical perspective, a designer of a multiagent system will have to
have a careful look at which specific application of voting is planned in his or her system
and which strategic scenarios the system will most likely be attacked with. Then, to make

1  As defined by Bartholdi, Tovey, and Trick [7], for control by partition of either candidates or voters, there
is a first round in which the candidates or voters are partitioned into two subgroups which separately elect
winners who then may proceed to the final-round election. Hemaspaandra, Hemaspaandra, and Rothe [33]
introduced two tie-handling rules, ties eliminate and ties promote, that determine which of the first-round
winners proceed to the final runoff in case of a tie among two or more candidates in any of the two first-
round subelections. Further, there are two variants of control by partition of candidates, one with runoff
(where both subgroups send their winners to the final round) and one without (where the winners of one
subgroup face all candidates of the other in the final round). Hemaspaandra, Hemaspaandra, and Menton
[35] showed that certain destructive variants of these problems in fact are the same. In this paper, we will
not consider any cases of control by partition, though.

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 4 of 48

a reasonable decision as to which voting rule to choose, the designer will have to know the
computational (and other) properties of these strategic (e.g., control) actions against his
or her system for the various voting rules. The more complete our knowledge is about the
complexity of control scenarios for the most commonly used voting rules, the better will be
the designer’s decision and the better will be the multiagent system.

Table 1   Overview of results on the complexity of control by adding, deleting, and replacing either candi-
dates or voters in various voting rules. Our results are in boldface. Previous results [7, 23, 24, 33, 39, 43,
48] are in gray. Entries “NPC” are a shorthand for “ NP-completeness” and indicate resistance, “ P ” vulner-
ability, and “I” immunity results. The complexity of CCRV for 2-approval —marked by “?”—is still open

(a) Constructive control

CCAV CCDV CCRV CCAC​ CCDC CCRC​

Copeland� NPC NPC NPC NPC NPC NPC
Maximin NPC NPC NPC NPC P NPC
Plurality P P P NPC NPC NPC
2-Approval P P ? NPC NPC NPC
3-Approval P NPC NPC NPC NPC NPC
k-Approval, k ≥ 4 NPC NPC NPC NPC NPC NPC
Veto P P P NPC NPC NPC
2-Veto P P P NPC NPC NPC
k-Veto, k ≥ 3 NPC NPC NPC NPC NPC NPC
Plurality with runoff P P P NPC NPC NPC
Veto with runoff P P P NPC NPC NPC
Condorcet voting NPC NPC NPC I P P
Fallback voting NPC NPC NPC NPC NPC NPC
Range voting NPC NPC NPC I P P
Normalized range voting NPC NPC NPC NPC NPC NPC

(b) Destructive control

DCAV DCDV DCRV DCAC​ DCDC DCRC​

Copeland� NPC NPC NPC P P P
Maximin NPC NPC NPC P P P
Plurality P P P NPC NPC NPC
2-Approval P P P NPC NPC NPC
3-Approval P P P NPC NPC NPC
k-Approval, k ≥ 4 P P P NPC NPC NPC
Veto P P P NPC NPC NPC
2-Veto P P P NPC NPC NPC
k-Veto, k ≥ 3 P P P NPC NPC NPC
Plurality with runoff P P P NPC NPC NPC
Veto with runoff P P P NPC NPC NPC
Condorcet voting P P P P I P
Fallback voting P P P NPC NPC NPC
Range voting P P P P I P
Normalized range voting P P P NPC NPC NPC

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 5 of 48  41

Overview of the paper:
Before diving into the technical details of our results, we give an overview of our main con-

tributions in Sect. 2. In Sect. 3, we define the voting rules and control problems to be studied,
fix our notation, and give some background on computational complexity. We then study the
complexity of various control scenarios for Copeland� in Sect. 4, maximin in Sect. 5, k-veto in
Sect. 6, plurality with runoff and veto with runoff in Sect. 7, Condorcet in Sect. 8, fallback in
Sect. 9, and for range voting and normalized range voting in Sect. 10. Finally, we conclude in
Sect. 11.

2 � Our main contributions

In the following, we highlight our main contributions in detail and compare them with the
related work to demonstrate how our contributions have improved the state of the art in elec-
toral control. Table 1 gives an overview of previously known and our new results on the com-
plexity of control by replacing, adding, and deleting either candidates or voters for numerous
voting rules. For the formal definition of voting rules and control scenarios mentioned and for
the notation of control problems, such as CCAV, the reader is referred to Sect. 3.

•	 Faliszewski et al. [24] and Loreggia [40] investigated the complexity of control in Cope-
land� elections, leaving open the case of destructive control by replacing voters for any
rational � , where 0 ≤ � ≤ 1 . We settle this open problem.

•	 Faliszewski, Hemaspaandra, and Hemaspaandra [23] and Maushagen and Rothe [45, 47]
investigated the complexity of control in maximin elections but focused on standard con-
trol types (i.e., on the cases of constructive and destructive control by adding, deleting, and
partitioning either candidates or voters). This leaves the corresponding cases of control by
replacing candidates or voters open. We solve these problems. Moreover, we also solve a
more general problem called exact destructive control by adding and deleting candidates,
a special form of multimode control.

•	 Lin [39] and Loreggia et al. [43] focused on control in k-veto (see also the work of Maush-
agen and Rothe [46] on control in veto elections). Open cases are constructive control
by replacing voters in k-veto elections for k ≥ 2 . We solve these open cases, providing a
dichotomy result for k-veto with respect to the values of k.

•	 The standard control scenarios were studied by Bartholdi, Tovey, and Trick [7] and
Hemaspaandra, Hemaspaandra, and Rothe [33] for Condorcet voting, by Erdélyi et al. [16,
17, 20, 22] for fallback elections, and by Menton [48] for range voting and normalized
range voting, leaving open for all these rules the cases of constructive and destructive con-
trol by replacing either candidates or voters.

•	 Finally, we investigate the complexity of control for two common voting rules that, some-
what surprisingly, have not been considered yet in the literature, namely plurality with run-
off and veto with runoff.

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 6 of 48

3 � Preliminaries

An election E is given by a pair E = (C,V) , where C is a finite set of candidates and V is
a finite multiset of votes. Voters typically2 express their preferences over the candidates by
linear orders over C, such as c b a d for C = {a, b, c, d} , where the leftmost candidate is the
most preferred one by this voter and preference (strictly) decreases from left to right. When
a subset X ⊆ C of candidates occurs in a vote (e.g., c X d for X = {a, b} ), this means that
the candidates in X are ranked in this vote according to a fixed order (e.g., assuming the
lexicographic order, c X d stands for c a b d ). A voting rule (or, more technically, a voting
correspondence) � maps each election (C, V) to a subset W ⊆ C of the candidates, called
the � winners (or simply the winners if � is clear from the context) of (C, V).

For an election E = (C,V) and two candidates a, b ∈ C , let NE(a, b) be the number of
voters preferring a to b. We drop E from the notation if it is clear from the context. Fur-
thermore, for any set X (e.g., of candidates or voters), let |X| denote the cardinality of X. For
ease of exposition, in this paper we exchangeably use the words vote and voter.

Letting E = (C,V) be a given election, we consider the following voting rules.

Copeland�	� For each pairwise comparison between any two candi-
dates, say a and b, if NE(a, b) > NE(b, a), a receives one
point and b zero points. If NE(a, b) = NE(b, a) , both a
and b receive � points, where � ∈ [0, 1] is a rational num-
ber. The Copeland� score of any candidate c is the total
number of points c receives from all votes in the election,
and all candidates with the highest Copeland� score win.

Maximin	� The maximin score of a candidate a ∈ C is defined as
minb∈C⧵{a} NE(a, b) , and all candidates with the highest
maximin score wins.

k-Approval	� Each voter gives one point to every candidate in the top-k
positions, and all candidates with the highest score win.
In particular, 1-approval is often referred to as plurality
voting in the literature.

k-Veto	� A candidate gains a point from each vote in which he or
she is ranked higher than in the last k positions (i.e., the
candidates in the last k positions are vetoed), and all can-
didates with the highest score win. In particular, 1-veto is
simply referred to as veto.

Plurality with Runoff (PRun)	� Each voter only approves of his or her top-ranked candi-
date. If there is a candidate c who is approved by every
voter, then c is the unique winner. Otherwise, this vot-
ing rule takes two stages to select the winner. In the first
stage, all candidates except the two who receive the,
respectively, most and second-most approvals are elimi-
nated from the election. If more than two candidates
have the same highest total approvals, a tie-breaking rule

2  Some voting rules, such as fallback voting, require a different input format to specify votes, as will be
explained below.

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 7 of 48  41

is applied to select exactly two of them, and if there is
one candidate with the most approvals but several can-
didates with the second-most approvals, a tie-breaking
rule is used to select exactly one of those with the sec-
ond-most approvals. Then the remaining two candidates,
say c and d, compete in the second stage (runoff stage).
In particular, if NE(c, d) > NE(d, c) then c wins; and if
NE(d, c) > NE(c, d) then d wins. Otherwise, a tie-break-
ing rule applies to determine the winner between c and d.

Veto with Runoff (VRun)	� Each voter vetoes exactly the last-ranked candidate. This
voting rule is defined similarly to PRun, with a slight dif-
ference in the first stage: all candidates except the two
candidates who have the least and second-least vetoes are
eliminated from the election (again applying a tie-break-
ing rule if necessary).

Condorcet	� A Condorcet winner is a candidate c who beats all other
candidates in pairwise contests, i.e., for each other candi-
date d, it holds that NE(c, d) > NE(d, c) . Note that a Con-
dorcet winner does not always exist, but if there is one,
he or she is unique.

Fallback	� In a fallback election (C, V), each voter v sub-
mits his or her preferences as a subset of candidates
Sv ⊆ C that he or she approves of and, in addition,
a strict linear ordering of the approved candidates.
For instance, if a voter v approves of the candidates
Sv = {c1, ..., ck} ⊆ C and orders them lexicographically,
his or her vote would be denoted as c1 ⋯ ck | C ⧵ Sv .
Let score(C,V)(c) = |{v ∈ V ∣ c ∈ Sv}| be the number of
approvals of c and scorei

(C,V)
(c) be the number of level i

approvals of c (i.e., the number of voters who approve of
c and rank c in their top i positions). For convenience, let
score0

(C,V)
(c) = 0 for every c ∈ C . The fallback winner(s)

will then be determined as follows:

1.	 A candidate c is a level � winner if score�
(C,V)

(c) > |V|∕2 . Letting i be the smallest integer
such that there is a level i winner, all candidates with the most level i approvals win.

2.	 If there is no fallback winner on any level, all candidates with the most approvals win.

Range Voting	� Instead of a linear order over the m candidates, each voter
is associated with a size-m vector v ∈ {0, 1,… , k}m describ-
ing the points the voter gives to each candidate. The number
k is the maximum number of points a voter can give to a
candidate, i.e., in such a k-range election, every voter gives
at most k points to a candidate. The k-range-voting winners
are the candidates with the most points in the given k-range
election. 1-range voting is also known as approval voting.

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 8 of 48

Normalized Range Voting	� Similarly to range voting, each voter is associated with a
size-m vector v ∈ {0, 1,… , k}m . Additionally, each voter’s
vote is normalized to the range of 0 to k in the following
way. For each candidate c, let s be the number of points this
candidate gains from the voter and smin and smax be the mini-
mal and maximal score the voter gives to any candidate.
Then the normalized score that v gives to c is k(s−smin)

smax−smin

 . Note
that if smax = smin , the voter is indifferent to all candidates
and can therefore be ignored. Again, the k-normalized-
range-voting winners are the candidates with the most nor-
malized points in the given k-range election.

We study various control problems that can be considered as special cases of the follow-
ing problem [23], which is defined for a given voting rule � .

�-Constructive-Multimode-Control

Input: An election (C ∪ D,V ∪W) with a set C of (registered) candidates,3 a set D of as yet unreg-
istered candidates, a list V of registered voters, a list W of as yet unregistered voters, a
distinguished candidate c ∈ C , and four nonnegative integers �AV, �DV, �AC , and �DC ,
with �AV ≤ |W| , �DV ≤ |V| , �AC ≤ |D| , and �DC ≤ |C|.

Question: Are there V ′
⊆ V  , W ′

⊆ W , C�
⊆ C ⧵ {c} , and D′

⊆ D such that |V ′| ≤ �DV , |W ′| ≤ �AV ,
|C′| ≤ �DC , |D′| ≤ �AC , and c is a � winner of the election ((C ⧵ C�) ∪ D�, (V ⧵ V �) ∪W �)?

We may sometimes omit mentioning explicitly that these candidates are registered.

In �-Destructive-Multimode-Control, we ask whether there exist sub-
sets V ′, W ′, C′ , and D′ as in the above definition such that c is not a � winner in
((C ⧵ C�) ∪ D�, (V ⧵ V �) ∪W �).

We will study several special cases or restricted versions of multimode control, such as
adding, deleting, or replacing either candidates or voters. Table 2 gives an overview of the
restrictions compared to the general multimode control problem.

Throughout the paper, we will use a four-letter code to denote our problems. The first
two characters CC/DC stand for constructive/destructive control, the third character A/D/R
stands for adding/deleting/replacing, and the last one V/C for voters/candidates. For exam-
ple, DCRV stands for destructive control by replacing voters. For simplicity, in each prob-
lem in the above table, we use � to denote the integer(s) in the input that is not necessarily
required to be 0. For example, when considering CCRV, we use � to denote �AV = �DV .

Table 2   Special cases of the �-Constructive-Multimode-Control problem studied in this paper

Problems Restrictions

Adding voters �AC = �DC = �DV = 0 , D = �

Adding candidates �DC = �AV = �DV = 0 , W = �

Deleting voters �AC = �DC = �AV = 0 , D = W = �

Deleting candidates �AC = �AV = �DV = 0 , D = W = �

Replacing voters |V �| = |W �| , �AV = �DV , �AC = �DC = 0 , D = �

Replacing candidates |C�| = |D�| , �AC = �DC , �AV = �DV = 0 , W = �

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 9 of 48  41

As mentioned in the introduction, since the seminal work of Bartholdi, Tovey, and Trick
[7] control by adding and deleting candidates or voters has been extensively studied in
the literature (see, e.g., [11, 17, 34, 44, 49, 60, 62]). However, the complexity of control
by replacing candidates or voters has been introduced and studied just recently by Loreg-
gia et al. [40–43].

We remark that our proofs are based on the nonunique-winner model but can be modi-
fied to work for the unique-winner model of the control problems as well.3

We assume the reader to be familiar with the basics of complexity theory, such as the
complexity classes P and NP and the notions of NP-hardness and NP-completeness under
(polynomial-time many-one) reductions. We refer to Tovey’s tutorial [58] for a concise
introduction to complexity theory and to the books by Arora and Barak [2], Garey and
Johnson [27], and Rothe [56] for more comprehensive discussions.

We call a voting rule immune to a type of control if it is never possible for the chair to
reach his or her goal by this control action; otherwise, the voting rule is said to be suscep-
tible to this control type. A susceptible voting rule is said to be vulnerable to this control
type if the associated control problem is in P , and it is said to be resistant to it if the asso-
ciated control problem is NP-hard. Note that all considered control problems are easily
seen to be in NP , so any resistance result immediately implies NP-completeness, and we
only provide the NP-hardness proofs since membership of these problems in NP is easy
to check. Our NP-hardness results are mainly based on reductions from the Restricted-
Exact-Cover-By-3-Sets (RX3C) problem [29] and the Hitting-Set problem [37]:

Restricted-Exact-Cover-By-3-Sets (RX3C)

Input: A set U = {u1,… , u3�} and a collection S = {S1,… , S3�} of 3-element subsets of U such that
each u ∈ U occurs in exactly three subsets S ∈ S .

Question: Does S contain an exact 3-set cover for U , i.e., a subcollection S′
⊆ S such that every ele-

ment of U occurs in exactly one member of S′?

If we do not request every u ∈ U to occur in exactly three elements of S in the RX3C
problem, we obtain the generalized X3C problem.

Hitting-Set

Input: A set U = {u1,… , us} with s ≥ 1 , a family S = {S1,… , St} of nonempty subsets Si ⊆ U , and
an integer � with 1 ≤ � ≤ s.

Question: Is there a subset U′
⊆ U , |U′| ≤ � , such that each Si ∈ S is hit by U′ (i.e., Si ∩ U� ≠ � for all

Si ∈ S)?

Note further that all voting rules considered here are susceptible to the control sce-
narios we study. Since the corresponding proofs can be easily obtained by appropri-
ate examples, we will omit them in most cases. The only exceptions are Condorcet and
range voting: While among the voting rules we consider these two are the only ones that
are immune to some of the standard control scenarios (namely, to constructive control by

3  In the nonunique-winner model, for a constructive (respectively, destructive) control action to be suc-
cessful, it is enough to make the distinguished candidate c a winner, possibly among others, of the resulting
election (respectively, it must be ensured that c is not even a winner), whereas in the unique-winner model,
a constructive (respectively, destructive) control action is considered to be successful only when c alone
wins (respectively, it is enough to ensure that c is not the only winner).

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 10 of 48

adding candidates [7, 48] and to destructive control by deleting candidates [33, 48]), we
will explicitly show that susceptibility holds in these control scenarios for Condorcet (see
Example 1) and range voting (see Example 2).

Assuming that the reader is familiar with graph theory (see also the books by Bang-
Jensen and Gutin [4] and West [59]), we will in some proofs make use of the following
problems to show membership in P .

Integral-Minimum-Cost-Flow (IMCF)

Input: A network G = (V ,E) , capacity functions b
�
, b

�
∶ E → ℕ0 , a source vertex x ∈ V  , a sink vertex

y ∈ V ⧵ {x} , a cost function g ∶ E → N0 , and an integer r.
Task: Find a minimum cost flow from x to y of value r. Recall that a flow f is a function assigning to

each arc (u, v) ∈ E an integer number f (u, v) such that (1) b
�
(u, v) ≤ f (u, v) ≤ b

�
(u, v) ; and (2) for

every node v except x and y, it holds that
∑

(u,v)∈E f (u, v) =
∑

(v,u)∈E f (v, u).
4 The cost of a flow f is ∑

(u,v)∈E f (u, v) ⋅ g(u, v) , and the value of f is
∑

(x,v)∈E f (x, v).

In the above definitions, b
�
 and b

�
 are called the lower-bound capacity and the upper-

bound capacity, respectively. The IMCF problem is well-known to be polynomial-time
solvable [1].

b-Edge-Cover (b-EC)

Input: An undirected multigraph G = (V ,E) without loops, two capacity functions b
�
, b

�
∶ V → ℕ0 ,

and an integer r.
Question: Is there a b-edge cover in G of size at most r, i.e., a subset E′

⊆ E of at most r edges such that
each node v ∈ V is incident to at least b

�
(v) and at most b

�
(v) edges in E′?

The b-EC problem is also known to be polynomial-time solvable [26, 30].

4 � Copeland˛ voting

We start by completing our knowledge on control complexity in Copeland� elections. Pre-
viously, Faliszewski et al. [24] and Loreggia [40] investigated the complexity of control in
Copeland� elections, leaving open the cases of destructive control by replacing voters and
of constructive and destructive control by replacing candidates. In this section, we fill the
gaps. We refer to Table 3 for a summary of our results in this section.

Table 3   Complexity of control for Copeland� . Our results are in boldface. “NPC” stands for “ NP-com-
plete” and “ P ” stands for “polynomial-time solvable”

CCAV CCDV CCRV CCAC​ CCDC CCRC​ DCAV DCDV DCRV DCAC​ DCDC DCRC​

NPC NPC NPC NPC NPC NPC NPC NPC NPC P P P

4  For simplicity, we write b
�
(u, v) for b

�
((u, v)) , b

�
(u, v) for b

�
((u, v)) , and g(u, v) for g((u, v)) throughout

this paper.

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 11 of 48  41

Definition 1  (Lang, Maudet, and Polukarov [38]) A voting rule satisfies Insensitivity
to Bottom-ranked Candidates (IBC) if for any election with at least two candidates, the
winners do not change after deleting a subset of candidates who are ranked after all other
candidates in all votes.

Note that both Copeland� and maximin satisfy IBC. Loreggia et al. [42, 43] established
the following relationship between CCRC and CCDC, and between DCRC and DCDC.

Lemma 1  (Loreggia et al. [42, 43]) Let � be a voting rule satisfying IBC. Then �-CCRC​ is
NP-hard if �-CCDC is NP-hard, and �-DCRC​ is NP-hard if �-DCDC is NP-hard.

By Lemma 1 and the facts that Copeland� satisfies IBC and that, as shown by Falisze-
wski et al. [24], Copeland�-CCDC is NP-hard for any rational � with 0 ≤ � ≤ 1 , we have
the following result.

Corollary 1  For any rational � with 0 ≤ � ≤ 1 , Copeland�-CCRC​ is NP-complete.

However, for each rational � with 0 ≤ � ≤ 1 , Copeland�-DCDC is not NP-hard but in P
[24], so Lemma 1 does not imply NP-hardness of Copeland�-DCRC​. In fact, we now show
that this problem can be solved in polynomial time.

Theorem 1  For any rational � with 0 ≤ � ≤ 1 , Copeland�-DCRC​ is in P.

Proof  To show membership in P , we will provide an algorithm that runs in polynomial
time. Given a Copeland�-DCRC​ instance ((C ∪ D,V), c,�) , we first check the trivial
case, and immediately accept if c is already not winning the election (C, V). Otherwise,
for any two candidates c1, c2 ∈ C ∪ D , let Score(c1, c2) be the number of points c1 receives
by c2 ’s presence in the election (i.e., Score(c1, c2) = 1 if N(C∪D,V)(c1, c2) > N(C∪D,V)(c2, c1) ,
Score(c1, c2) = � if N(C∪D,V)(c1, c2) = N(C∪D,V)(c2, c1) , and Score(c1, c2) = 0 otherwise).5
We now try to find a candidate d ∈ (C ∪ D) ⧵ {c} and an integer �′ with 1 ≤ �

′ ≤ � so
that d beats c by replacing �′ candidates. For a pair (d,��) , we can check if this is possible
in polynomial time in the following way. Firstly, we compute Score(c, e) and Score(d, e)
for every e ∈ (C ∪ D) ⧵ {c, d} . Then we sort C ⧵ {c, d} in decreasing order according to
Score(c, e) − Score(d, e) for each candidate e ∈ C ⧵ {c, d} and let C�

⊆ C ⧵ {c, d} contain
the first �′ candidates according to this ordering. Furthermore, we sort D ⧵ {d} in decreas-
ing order according to Score(d, e) − Score(c, e) and let D�

⊆ D ⧵ {d} contain the first �′
candidates according to this ordering if d ∉ D and the first �� − 1 candidates according to
this ordering if d ∈ D . We then check if c is not winning in ((C ⧵ C�) ∪ D� ∪ {d},V).

Correctness of the algorithm follows from the fact that we iterate over all possible can-
didates that can prevent c from winning and all possible numbers of replacements we may
need to this end, and then check whether we can be successful by adding and deleting the
most optimal candidates in regards to how they affect the points balance of c and the candi-
date that should beat c after this replacement.

To see that the above algorithm runs in polynomial time, note that we can iterate over
all pairs of candidates and replacements in O(|C ∪ D|�) time and checking whether a pair

5  Note that the value of Score(c1, c2) does not depend on any other candidates in the election.

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 12 of 48

is successful takes O(|C|log(|C|) + |D|log(|D|)) time for sorting and choosing the subsets
and polynomial time for winner determination. 	� ◻

It remains to handle the case of destructive control by replacing voters. We solve it in
the following theorem.

Theorem 2  For any rational � with 0 ≤ � ≤ 1 , Copeland�-DCRV is NP-complete.

Proof  Our proof is a slight modification of the proof of Theorem 4.17 (showing that for
every rational number � such that 0 ≤ � ≤ 1 , Copeland�-CCAV is NP-complete) given by
Faliszewski et al. [24], with the only difference that there are a number of new registered
votes. In particular, from an instance (U,S) of the RX3C problem, it is shown by Falisze-
wski et al. [24] that an instance of CCAV with the following property can be constructed in
polynomial time.6 Let |U| = |S| = 3� . The candidate set is

where D is a set of t padding candidates with t a sufficiently large integer but bounded by a
polynomial in � (e.g., t = 9(� + 1)3 ). The multiset V of registered votes are constructed so
that, with respect to these registered votes, the Copeland� scores of p is t , of r is t + 3� , and
of every other candidate is at most t − 1 . Moreover, it holds that

–	 N(C,V)(s, p) − N(C,V)(p, s) = � − 1,
–	 N(C,V)(r, u) − N(C,V)(u, r) = � − 3 for every u ∈ U , and
–	 |N(C,V)(c, c

�) − N(C,V)(c
�, c)| ≥ � + 1 for all other pairs of candidates c and c′ in C.

( |N(C,V)(c, c
�) − N(C,V)(c

�, c)| is the absolute value of N(C,V)(c, c
�) − N(C,V)(c

�, c).)

We refer to [24] for the details of how these votes are created. In addition to the above
registered votes, we add the following registered votes. First, for every two candidates
c, c� ∈ C such that N(C,V)(c, c

�) − N(C,V)(c
�, c) ≥ � + 1 , we add 2� registered votes, among

which � of them are of the form c c� C ⧵ {c, c�} and the other � of them are of the form
�����������������⃗C ⧵ {c, c�} c c� , where �����������������⃗C ⧵ {c, c�} is the reversal of C ⧵ {c, c�} . Let V1 be the multiset of the
above newly added votes. Then we add a multiset V2 of � votes, each of which ranks r in
the top, ranks p in the last place, and ranks s just before p. (Other candidates are ranked
arbitrarily between r and s.) For notational brevity, let us redefine V ∶= V ∪ V1 ∪ V2 as the
multiset of all registered votes hereinafter in the proof. Then it is fairly easy to check that
the following conditions hold.

–	 The Copeland� scores of all candidates remain the same as before the creation of
V1 ∪ V2;

–	 N(C,V)(s, p) − N(C,V)(p, s) = 2� − 1;
–	 N(C,V)(r, u) − N(C,V)(u, r) = 2� − 3 for every u ∈ U ; and
–	 |N(C,V)(c, c

�) − N(C,V)(c
�, c)| ≥ 2� + 1 holds for all other pairs of candidates c and c′ not

specified above.

C = U ∪ {p, r, s} ∪ D,

6  The reduction in [24] is in fact from the X3C problem, which is a generalization of RX3C where the
restriction that every u ∈ U occurs in exactly three elements of S is dropped.

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 13 of 48  41

The unregistered votes are constructed according to S  . Precisely, for every S ∈ S  ,
there is an unregistered vote with the following preference:

Let W denote the set of all unregistered votes. Additionally, we set � = � . Finally, we let r
be the distinguished candidate (who is the current winner).

We move on to the proof for the equivalence of the two instances.
(⇒ ) Assume that U admits an exact set cover S′

⊆ S  . Let W ′
⊆ W be the set of unregis-

tered votes corresponding to S′ . We claim that after replacing V2 with W ′, r is not a winner
anymore. Let E = (C,V ⧵ V2 ∪W �) . Observe that if |N(C,V)(c, c

�) − N(C,V)(c
�, c)| > 2𝜅 + 1 ,

then c still beats c′ in E, as we replace at most � votes. As S′ is an exact set cover of U ,
for every u ∈ U , there are exactly � − 1 votes in W ′ which rank u above r. In addition, as
N(C,V)(r, u) = 2� − 3 holds for every u ∈ U and all votes in V2 rank r in the first place, we
know that r is beaten by all candidates in U in the election E. So, the Copeland� score of r
decreases to t in E. Moreover, as all votes in V2 rank s above p, all votes in W ′ rank p in the
top, and N(C,V)(s, p) − N(C,V)(p, s) = 2� − 1 , we have that NE(p, s) − NE(s, p) = 1 , i.e., in the
election E the candidate p beats s. Therefore, the Copeland� score of p in E increases to
t + 1 . Clearly, r is no more a winner in E.

(⇐ ) Assume that there are V ′
⊆ V and W ′

⊆ W such that |V �| = |W �| ≤ � , and
r is not a winner in the election E = (C,V ⧵ V � ∪W �) . As pointed out above, if
N(C,V)(c, c

�) − N(C,V)(c
�, c) ≥ 2� + 1 , then c still beats c′ after replacing at most � votes.

This means that replacing at most � votes can only change the Copeland� scores of p, s,
and r (see the above conditions). More importantly, between p and s, as all unregistered
votes rank s in the last place, replacing at most � votes does not increase the score of s.
Moreover, as |N(C,V)(r, c

�) − N(C,V)(c
�, r)| ≥ 2� + 1 for all other candidates c� ∈ C ⧵ U ,

replacing at most � votes can only change the head-to-head comparisons between r and
candidates in U . This implies that in the election E, r has Copeland� score at least t. There-
fore, we know that p is the only candidate that prevents r from winning in E. Then, as
|N(C,V)(p, c) − N(C,V)(c, p)| ≥ 2� − 1 for all candidates c ∈ C ⧵ {p, s} , the Copeland� score
of p in E can be at most t + 1 . This implies that the Copeland� score of r in E is exactly t.
As the comparisons between r and any of the other candidates in C ⧵ U do not change by
replacing at most � votes, this is possible only when r is beaten by everyone in U in the
election E. This means that for every u ∈ U , there are at least � − 1 votes in W ′ which
rank u above r. Due to the construction of the unregistered votes, for each S ∈ S that cor-
responds to an unregistered vote ranking u above r, it holds that u ∉ S . As this holds for all
u ∈ U and W ′ contains at most � votes, we can conclude that the subcollection of S cor-
responding to W ′ is an exact set cover of U . 	� ◻

p (U ⧵ S) r S (C ⧵ ({p, r, s} ∪ U)) s.

Table 4   Complexity of control for maximin. Our results are in boldface. “NPC” stands for “ NP-complete”
and “ P ” stands for “polynomial-time solvable”

CCAV CCDV CCRV CCAC​ CCDC CCRC​ DCAV DCDV DCRV DCAC​ DCDC DCRC​

NPC NPC NPC NPC P NPC NPC NPC NPC P P P

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 14 of 48

5 � Maximin voting

Let us now turn to maximin voting. Faliszewski, Hemaspaandra, and Hemaspaandra [23]
have already investigated the complexity of constructive and destructive control by adding
and deleting either candidates or voters. Maushagen and Rothe [45, 47] settled all cases
of constructive and destructive control by partitioning either candidates or voters. We will
complete the picture on control in maximin elections by providing results on constructive
and destructive control by replacing either candidates or voters. Our results in this section
are summarized in Table 4.

It is known that constructive control by deleting candidates for maximin is polynomial-
time solvable [23]. Hence, assuming P ≠ NP , Lemma 1 cannot be used to obtain NP-hard-
ness of Maximin-CCRC​. However, as stated below, Loreggia [42] introduced another use-
ful lemma.

Definition 2  A voting rule is said to be unanimous if whenever the same candidate is
ranked in the top position in all votes, this candidate wins.

Lemma 2  (Loreggia [42]) Let � be an unanimous voting rule that satisfies IBC. If �-CCAC​
is NP-hard, then �-CCRC​ is NP-hard.

Due to this lemma and the facts that (1) maximin is unanimous; (2) maximin satisfies
IBC; and (3) Maximin-CCAC​ is NP-complete [23], we have

Corollary 2  Maximin-CCRC​ is NP-complete.

The following theorem handles constructive and destructive control by replacing voters.
Our proof is a modification of the proof of constructive control by adding voters in maxi-
min [23]. In the following, for two subsets A and B of candidates and a linear order over
candidates, A B means that a b for every a ∈ A and b ∈ B.

Theorem 3  Maximin-CCRV and Maximin-DCRV are NP-complete.

Proof  We start with the constructive case. Let (U,S) be a given RX3C instance such that
|U| = |S| = 3� . We construct the following Maximin-CCRV instance. Let the set of can-
didates be C = U ∪ {c, d} such that {c, d} ∩ U = � . The distinguished candidate is c. The
registered votes are as follows:

•	 there are 3� + 1 votes of the form d U c;
•	 there are � votes of the form c U d ; and

Table 5   Head-to-head comparisons of candidates with respect to the registered votes in the proof of Theo-
rem 3. * means that the value does not have any impact on the correctness of the reduction

c d u ∈ U maximin score

c − 2� 2� 2�

d 3� + 1 − 4� + 1 3� + 1

u� ∈ U 3� + 1 � ∗ ≤ �

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 15 of 48  41

•	 there are � votes of the form c d U.

Let V denote the multiset of the above 5� + 1 registered votes. The head-to-head com-
parisons of candidates (i.e., |N(C,V)(c, c

�)| for all c, c� ∈ C ) and their maximin scores with
respect to the registered votes are summarized in Table 5.

Moreover, for each S ∈ S  , we create an unregistered vote in W of the form

We use v(S) to denote this vote. Finally, we set � = � , i.e., we are allowed to replace at
most � voters.

The above Maximin-CCRV instance clearly can be constructed in polynomial time. We
claim that we can make c the winner of the election by replacing up to � voters if and only
if S contains an exact set cover of U.

(⇒) Assume that U admits an exact set cover S′
⊆ S  . Let W � = {v(S) ∣ S ∈ S

�} be the
set of the unregistered votes corresponding to this exact set cover. Clearly, |W �| = |S�| = � .
Let V ′ be a multiset of � registered votes of the form d U c . We claim that c becomes a win-
ner in the election E� = (C, (V ⧵ V �) ∪W �) . Let us now analyze the maximin scores of the
candidates in E′ . First, as all votes in W ′ rank c above d, and all votes in V ′ rank c in the
last position, it holds that NE� (c, d) = 2� − 0 + � = 3� . As S′ is an exact set cover of U ,
for every candidate u ∈ U there is exactly one vote, namely, the vote v(S) such that u ∈ S ,
which ranks c above u and is contained in V ′ . In addition, as all votes in V ′ rank c in the
end, we know that NE� (c, u) = 2� + 1 for every u ∈ U . So, the maximin score of c in the
election E′ increases from 2� to 2� + 1 . Now we start the analysis for the candidate d. As
all votes in W ′ rank d in the last position and all votes in V ′ rank d in the first position, the
maximin score of d in E′ decreases from 3� + 1 to 2� + 1 . As the maximin score of every
candidate u ∈ U is at most � with respect to V, and we are allowed to replace at most �
votes, the maximin score of u in E′ can be at most 2� . In summary, c and d are the only two
candidates having the maximum maximin score in E′ , and hence c is a winner in E′.

(⇐) Assume that there is a subset V ′
⊆ V and a subset W ′

⊆ W such that |V �| = |W �| ≤ �
and c wins the election (C, (V ⧵ V �) ∪W �) . Let Ê = (C, (V ⧵ V �) ∪W �) , and let
S

� = {S ∈ S ∣ v(S) ∈ W �} . An important observation is that the maximin score of c in Ê
can be at most 2� + 1 . In fact, no matter which up to � unregistered votes are included
in W ′ , there is at least one candidate u ∈ U such that there is at most one unregistered vote
in W ′ which ranks c above u , implying that NÊ(c, u) ≤ 2𝜅 + 1 . From this observation, we
know that V ′ must consist of exactly � votes and, moreover, all votes in V ′ must rank d
above c, since otherwise d would have maximin score at least 3� + 1 − (� − 1) = 2� + 2
in Ê , contradicting that c is a winner in Ê . This means that V ′ consists of exactly � reg-
istered votes of the form d U c . Now the maximin score of d in Ê is determined as
3� + 1 − � = 2� + 1 . We claim that S′ is an exact set cover of U . For the sake of contra-
diction, assume that this is not the case. Then there is a candidate u ∈ U such that none of
the sets in S contains u . In light of the above construction of the unregistered votes, all
the � votes in W ′ rank this particular candidate u above c, resulting in the maximin score
of c in Ê being at most 2� , contradicting that c is a winner in E′.

The destructive version works identically, except that the first group of votes (i.e., votes
of the type d U c ) consists of 3� registered votes and the distinguished candidate is d. In
this case, one can check that, similarly to the analysis in the above (⇒) direction, after
replacing � registered votes of the form d U c with � unregistered votes corresponding to

(U ⧵ S) c S d.

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 16 of 48

an exact set cover of U , the maximin scores of c and d are, respectively, 2� + 1 and 2� ,
leading to d not being a winner anymore. For the proof of the other direction, one observes
that the maximin score of d, after replacing at most � votes from V and by as many votes
from W, is at least 3� − � = 2� , and the maximin score of every u ∈ U can be at most 2� .
This means that c is the only candidate that may have maximin score at least 2� + 1 in the
final election. Analogously to the analysis in the above (⇐) direction, we can show that the
candidate c achieves the maximin score 2� + 1 if and only if there exists a set of � unregis-
tered votes corresponding to an exact set cover of U . 	� ◻

It remains to show the complexity of destructive control by replacing candidates for
maximin. In contrast to the NP-hardness results for the other replacing cases, we show that
Maximin-DCRC​ is polynomial-time solvable. In fact, we show P membership of a more
general problem called �-Exact-Destructive-Control-by-Adding-and-Deleting-Candi-
dates, denoted by �-EDCAC+DC, where � is a voting rule. In particular, this problem is a
variant of �-Destructive-Multimode-Control, where �AV = �DV = 0 , W = � . Moreover, it
must hold that in the solution |C�| = �DC and |D�| = �AC (i.e., the chair deletes exactly �DC
candidates and adds exactly �AC candidates). Note that the number of candidates added and
the number of candidates deleted do not have to be the same.

Theorem 4  Maximin-EDCAC+DC is in P.

Proof  Our input is a Maximin-EDCAC+DC instance as defined above. Suppose that the
chair adds exactly �AC candidates from D and deletes exactly �DC candidates from C. Note
that �DC < |C| since the chair must not delete the distinguished candidate c. Our algo-
rithm works as follows. It checks if there is a pivotal candidate c′ ≠ c that beats c in the
final election. In case c has maximin score at most k for some integer k in the final elec-
tion, there exists some candidate d ∈ (C ∪ D) ⧵ {c} , not necessarily different from c′ with
N(c, d) ≤ k . Our algorithm checks whether there is a final election including c, c′ , and d,
the candidate c has maximin score at most k, and c′ has maximin score at least k + 1 , where
k ∈ {0, 1,… , |V| − 1} . Note that we may restrict ourselves to values k ≤ ⌈�V�∕2⌉ − 1 . Oth-
erwise, c does not lose any pairwise comparison and is a weak Condorcet winner and thus
a maximin winner.

In more detail, the algorithm first tries to find the candidate c� ∈ (C ∪ D) ⧵ {c} and the
threshold score k as discussed above, and then proceeds with the following steps.

1.	 Let D(c�) = {d ∈ (C ∪ D) ⧵ {c} ∶ N(c, d) ≤ k ∧ (c� = d ∨ N(c�, d) > k)} . If D(c�) = �
or N(c�, c) ≤ k , we immediately reject for the pair (c�, k) . Otherwise, we try to find a
candidate d ∈ D(c�) (not necessarily different from c′ ). The candidate d has the function
to fix the score of c below or equal to k. In order to keep c′ ’s score above the score of c,
it must hold either c� = d or N(c�, d) > k.7 We go to the next step.

2.	 Check whether �DC ≤ |C| − 1 − |C ∩ {c�, d}| and �AC ≥ |D ∩ {c�, d}| . If this is the case,
proceed with the next step. Otherwise, we reject because there is no way for the chair
to keep both c′ and d in (or to add them to) the final election.

7  Note that if the maximin score of c is less than k, the candidate c′ can also beat c with maximin score k,
but this case is captured by another pair (c�, k).

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 17 of 48  41

3.	 Let C1 = {c�� ∈ C ⧵ {c, c�, d} ∶ N(c�, c��) ≤ k} . The candidates in C1 must all be deleted
in order to keep the maximin score of c′ higher than k. If |C1| > �DC , we discard this
subcase and try the next triple (c�, k, d) . Otherwise, the chair deletes all candidates in C1
and arbitrary other candidates in C ⧵ {c, c�, d} such that exactly �DC candidates have been
deleted. We go to the next step.

4.	 Let D1 = {a ∈ D ⧵ {c�, d} ∶ N(c�, a) > k} . Candidates in D1 are the only can-
didates which may be added and the score of c′ does not decrease. Hence, if
|D1| < �AC − |D ∩ {c�, d}| , we reject for the triple (c�, k, d) since the chair must add
some candidates leading to a lower score than k + 1 for c′ . Otherwise, we accept.

If the given instance is a YES-instance, at least one such triple (c�, k, d) must lead to the
algorithm accepting it. However, if we are given a NO-instance, the algorithm must reject.
Finally, the algorithm runs in polynomial time because there are polynomially many triples
to check and each of them can be done in polynomial time as described above. 	� ◻

Note that Maximin-DCRC​ is polynomial-time Turing-reducible to Maximin-
EDCAC+DC. Then, from Theorem 4 we obtain the following result.

Corollary 3  Maximin-DCRC​ is in P.

Theorem 4 generalizes the polynomial-time solvability results for Maximin-DCAC​ and
Maximin-DCDC obtained by Faliszewski et al. [23]. We also point out that Faliszewski,
Hemaspaandra, and Hemaspaandra [23] showed that Maximin-CCAC​u+DC is polynomial-
time solvable, where the subscript u refers to control by adding an unlimited number of
candidates, as originally defined by Bartholdi, Tovey, and Trick [7]: In this case, the chair
is allowed to add as many unregistered candidates as desired but can only delete a limited
number of candidates.

6 � k‑veto

Turning now to k-veto and starting with control by replacing voters, it is known that Veto-
CCRV and k-Veto-DCRV for all possible k are polynomial-time solvable [43], which
leaves open the complexity of k-Veto-CCRV for k ≥ 2 . We complement these results by
showing that 2-Veto-CCRV is polynomial-time solvable and k-Veto-CCRV is NP-com-
plete for k ≥ 3 , achieving a dichotomy result for constructive control by replacing voters in
k-veto with respect to the values of k. Our results in this section are summarized in Table 6.

As a notation, let Vc (Wc ) be the set consisting of all voters in V (W) vetoing c, and
define V¬c = V ⧵ Vc ( W¬c = W ⧵Wc).

Theorem 5  2-Veto-CCRV is in P.

Proof  Let (C,V ∪W), � , and c ∈ C be the components of a given 2-Veto-CCRV instance,
as described in Sect. 3. Recall that c is the distinguished candidate in the input. Our algo-
rithm distinguishes the following cases:

Case 1:	� |Vc| ≤ min(�, |W| − |Wc|).

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 18 of 48

Ta
bl

e 
6  

C
om

pl
ex

ity
 o

f c
on

tro
l f

or
 k

-v
et

o.
 O

ur
 re

su
lts

 a
re

 in
 b

ol
df

ac
e.

 “
N

PC
”

st
an

ds
 fo

r “
 N
P

-c
om

pl
et

e”
 a

nd
 “

 P  ”
 st

an
ds

 fo
r “

po
ly

no
m

ia
l-t

im
e

so
lv

ab
le

”

C
CA

V
C

C
D

V
C

C
RV

C
CA

C
​

C
C

D
C

C
C

RC
​

D
CA

V
D

C
D

V
D

C
RV

D
CA

C
​

D
C

D
C

D
C

RC
​

k
=
1

P
P

P
N

PC
N

PC
N

PC
P

P
P

N
PC

N
PC

N
PC

k
=
2

P
P

P
N

PC
N

PC
N

PC
P

P
P

N
PC

N
PC

N
PC

k
≥
3

N
PC

N
PC

N
PC

N
PC

N
PC

N
PC

P
P

P
N

PC
N

PC
N

PC

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 19 of 48  41

	� In this case, the algorithm returns “YES” since c can be made a winner with
zero vetoes by replacing all registered votes vetoing c with the same number of
unregistered votes not vetoing c.

Case 2:	� |W| − |Wc| ≤ min(�, |Vc|).

	� In this case, the optimal choice for the chair is to replace |W| − |Wc| voters in V
vetoing c by the same number of voters from W not vetoing c. Hence, all votes
in W¬c are ensured in the final election. In addition, all votes in V¬c are also in
the final election, as none of these votes needs to be exchanged in an optimal
solution. However, the chair possibly needs to exchange further � − |W| + |Wc|
V-voters vetoing c by the same number of W-voters vetoing c. Anyway, c has
exactly

 vetoes in the final election. Due to these observations, the question is equivalent to search-
ing for no more than vc voters in Vc ∪Wc that shall belong to the final election such that
at least max(0, |Vc| − �) and at most |Vc| − |W| + |Wc| among them belong to Vc . We
sequentially check for the exact number �′ , where

 of V-voters that are kept in the final election. This implies that we keep exactly vc − �
�

votes from Wc in the final election. Clearly, if the given instance falls into this case and is a
YES-instance, at least one of these checked numbers leads to a YES answer.

In the following, we transform the instance into an equivalent b-EC instance in polyno-
mial time, thus providing a reduction from 2-Veto-CCRV to b-EC.

For each candidate d ∈ C ⧵ {c} , we create a vertex d. In addition, we create two verti-
ces cV and cW representing vetoes that nondistinguished candidates receive from voters in V
or W vetoing c, respectively. Each voter in Vc (Wc ) vetoing some candidate d ∈ C ⧵ {c}
and c yields an edge between d and cV (cW ). The capacities are as follows:

–	 b
�
(cV) = b

�
(cV) = �

� . These capacities ensure that exactly �′ votes from Vc are kept in
the final election.

–	 b
�
(cW) = b

�
(cW) = vc − �

� . These capacities ensure that exactly vc − �
� votes from Wc

are kept in the final election.
–	 b

�
(d) = |V ∪W| and b

�
(d) = vc − |(V¬c ∪W¬c)d| for every candidate d ∈ C ⧵ {c} .

As discussed above, all votes in V¬c ∪W¬c are in the final elections. These votes give
|(V¬c ∪W¬c)d| vetoes to the candidate d. Hence, the lower-bound capacity for d is to
ensure that in the final election d has at least the same number of vetoes as c. The
upper-bound capacity for d is not important and can be changed to any integer that is
larger than the maximum possible vetoes the candidate d can obtain.

It is fairly easy to check that there is a b-edge cover with at most vc edges if and only if c
can be made a winner in the final election by replacing exactly |Vc| − �

� votes.

Case 3:	� � ≤ min(|Vc|, |W| − |Wc|.

vc = |Vc| − (|W| − |Wc|) = |(V ∪W)c| − |W|

max(0, |Vc| − �) ≤ �
� ≤ |Vc| − |W| + |Wc|,

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 20 of 48

	� In this case, the optimal choice for the chair is to replace exactly � voters in V
vetoing c with � voters from W not vetoing c. In other words, we have ensured
that the final election contains all voters in V¬c , exactly |Vc| − � voters in Vc , and
exactly � voters from W¬c . This observation enables us to reduce the 2-Veto-
CCRV instance in this case to the following b-EC instance.

	� The vertex set is {cV} ∪ (C ⧵ {c}) , i.e., we create a vertex cV first and then for
each candidate in C ⧵ {c} we create a vertex denoted by the same symbol. For
each voter in Vc vetoing some d ∈ C ⧵ {c} (and c), we create an edge (cV , d) . In
addition, for each voter in W¬c vetoing two distinct candidates d and e, we create
an edge (d, e) . The capacities of the vertices are as follows:

–	 b
�
(cV) = b

�
(cV) = |Vc| − � . This capacity makes sure that exactly |Vc| − � voters

from Vc remain in the final election.
–	 For every d ∈ C ⧵ {c} , we set b

�
(d) = |V ∪W| and

 The lower bound ensures that in the final election d has at least the same number of
vetoes as c. Here, |(V¬c)d| is the number of vetoes of d obtained from voters in V¬c
which, as discussed above, are ensured in the final election. The upper bound is not
very important and can be set as any integer larger than the maximum possible number
of vetoes that d can obtain in the final election.

Given the above discussions, it is fairly easy to check that c can be made a winner by
replacing � voters if and only if there is a b-edge cover of size at most |Vc|.

Each subcase can be done in polynomial time. Consequently, the overall algorithm ter-
minates in polynomial time. Since we thus have a polynomial-time reduction from 2-Veto-
CCRV to b-EC and b-EC can be solved in polynomial time, the theorem is proven. 	� ◻

We fill the complexity gap of CCRV for k-veto by showing that k-Veto-CCRV is NP
-complete for every k ≥ 3 . The proof is an adaption of the NP-hardness proof of construc-
tive control by adding voters for 3-veto due to Lin [39].8

Theorem 6  For every constant k ≥ 3 , k-Veto-CCRV is NP-complete.

Proof  We show our result only for k = 3 and argue at the end of the proof how to han-
dle the cases k ≥ 4 . Our proof provides a reduction from the RX3C problem. Given an
instance (U,S) of RX3C, where |U| = |S| = 3� , we construct an instance of 3-Veto-
CCRV as follows. Let the candidate set be C = {c} ∪ {d1, d2, d3} ∪ U , where the set

b
�
(d) = max

(
0, |Vc| − � − |(V¬c)d|

)
.

8  We remark in passing that Loreggia et al. [43] showed NP-hardness for k-Approval-CCRV with
k ≤ m − 3 from which NP-hardness of k-Veto-CCRV with k ≥ 3 immediately follows (k-veto and (m − k)
-approval are the same for constant m), but their proof (given in the PhD thesis of Loreggia [42]), which
reduces X3C to 3-Approval-CCRV, does not make it clear how the reduction can be adapted to k-approval
with k ≤ m − 3 (in particular, since the addition of dummy candidates would also increase m).

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 21 of 48  41

{c, d1, d2, d3} is disjoint from U. The distinguished candidate is c. For ease of exposition,
let n = 3� . The multiset V consists of the following 2n − 2� + 3�n registered voters:

•	 There are n + � voters vetoing c, d1 , and d2;
•	 There are n voters vetoing d1, d2 , and d3 ; and
•	 For each u ∈ U , there are n − 1 voters vetoing u and any two arbitrary candidates in

{d1, d2, d3}.

Note that with the registered voters, the distinguished candidate c has n + � vetoes, each
u ∈ U has n − 1 vetoes, and di , i ∈ {1, 2, 3} , has at least n vetoes. Let the multiset W of
unregistered voters consist of the following n voters. For each S ∈ S  , there is a voter veto-
ing the candidates in S . Finally, we are allowed to replace at most � voters, i.e., � = �.

We claim that c can be made a 3-veto winner by replacing at most � voters if and only if
an exact 3-set cover of U exists.

(⇐ ) Assume that U has an exact 3-set cover S′
⊆ S  . After replacing the � votes

corresponding to S′ from W with � voters in V vetoing c, c has (n + �) − � = n vetoes,
every u ∈ U has (n − 1) + 1 = n vetoes, and each d1, d2 , and d3 has at least n vetoes.
Clearly, c becomes a winner.

(⇒ ) Assume that c can be made a 3-veto winner by replacing at most � voters. Let
V ′

⊆ V and W ′
⊆ W be the two multisets such that |V �| = |W �| and c becomes a winner

after replacing all votes in V ′ with all votes in W ′ . Observe first that |V ′| and |W ′| must
be exactly � , since otherwise c has at least n + 1 vetoes and there exists one u ∈ U hav-
ing at most n − 1 vetoes in the final election, contradicting that c becomes a winner in the
final election. In addition, no matter which � voters are in W ′ , there must be at least one
candidate u ∈ U who has at most n vetoes after the replacement. This implies that each
voter in V ′ must veto c. As a result, c has (n + �) − � = n vetoes after the replacement.
This further implies that, for each u ∈ U , there is at least one voter in W ′ who vetoes u. As
|W �| = � , due to the construction of W, the collection of the 3-subsets corresponding to
the � voters in W ′ form an exact 3-set cover.

To show NP-hardness of k-Veto-CCRV for k ≥ 4 , we additionally create k − 3 dummy
candidates being vetoed by every vote. The correctness argument is analogous.

Turning now to control by replacing candidates in k-veto, Loreggia et al. [43] solved
the two cases of constructive and destructive control by replacing candidates for veto only
(i.e., for k-veto with k = 1 ). Note that Loreggia et al. [43] solved both cases for k-approval
for any k. However, this does not solve these two cases for k-veto since their proofs (which
again can be found in the PhD thesis of Loreggia [42]) rely on the fact that k-approval sat-
isfies IBC, but k-veto does not.9 We solve these two cases, CCRC​ and DCRC​, for k-veto
with k ≥ 2 in Theorems 7 and 8.

Theorem 7  For every constant k ≥ 2 , k-Veto-CCRC​ is NP-complete.

9  Indeed, to see that k-veto does not satisfy IBC, consider the set C = {a, b, c1,… , ck} of candidates and let
there be only one voter with vote a b c1 ⋯ ck . Then a and b win the election under k-veto, but if we remove
the bottom ranked candidate ck , only a wins the election alone, so the set of winners can be changed by
removing a bottom-ranked candidate.

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 22 of 48

Proof  To prove NP-hardness of k-Veto-CCRC​ for k ≥ 2 , we will modify the reduction pro-
vided by Lin [39] to prove that k-Veto-CCAC​ and k-Veto-CCDC are NP-hard. Since his
reduction was designed so as to prove both cases at once but we only need the “adding
candidates” part, we will simplify the reduction.

Let (U,S, �) be an instance of Hitting-Set with U = {u1,… , us} , s ≥ 1 ,
S = {S1,… , St} , t ≥ 1 , and integer � , 1 ≤ 𝜅 < s (without loss of generality, we may
assume that 𝜅 < s since (U,S, �) is trivially a YES-instance if � ≥ s).

We construct an instance ((C ∪ U,V), c, �) of k-Veto-CCRC​ with candidates
C = {c, d} ∪ C� ∪ X ∪ Y  , where

and unregistered candidates U . Let V contain the following votes:

•	 (t + 2s)(s − � + 1) votes of the form Y ⋯ c C′;
•	 (t + 2s)(s − � + 1) − s + � votes of the form Y ⋯ d X;
•	 for each i, 1 ≤ i ≤ t , one vote of the form Y ⋯ c X Si;
•	 for each i, 1 ≤ i ≤ s , one vote of the form Y ⋯ d X ui ; and
•	 for each i, 1 ≤ i ≤ s , (t + 2s)(s − � + 1) + � votes of the form Y ⋯ c U ⧵ {ui} X ui.

Let M = (t + 2s)(s − � + 1) . Without the unregistered candidates, vetoes are assigned to
the other candidates as follows:

candidates in C c d c� ∈ C� x ∈ X y ∈ Y

number of vetoes M(s + 1) + s� + t M + � M M(s + 1) + �(s + 1) + t 0

We show that (U,S, �) is a YES-instance of Hitting-Set if and only if c can be made
a k-veto winner of the election by replacing � candidates from C with candidates from U.

(⇒ ) Assume there is a hitting set U′
⊆ U of S of size � (since 𝜅 < s , if U′ is a hitting

set of size less than � , we fill U′ up by adding arbitrary candidates from U ⧵ U′ to U′ until
|U�| = � ). We then replace the candidates from Y with the candidates from U′ . Since c, d,
and candidates from C′ have (t + 2s)(s − � + 1) vetoes and candidates from X and U′ have
at least (t + 2s)(s − � + 1) + � vetoes, c is a k-veto winner.

(⇐ ) Assume c can be made a k-veto winner of the election by replacing � candidates.
Since the � candidates from Y have zero vetoes but c has at least one veto, we need to
remove each candidate of Y (and no other candidate), and in turn we need to add � candi-
dates from U . Note that c cannot have more than (t + 2s)(s − � + 1) vetoes, for otherwise c
would lose to the candidates from C′ . Let U′

⊆ U be the set of � candidates from U that are
added to the election. Since |U�| = 𝜅 > 0 , c will lose all s((t + 2s)(s − � + 1) + �) vetoes
from the last group of voters. Furthermore, in order to tie the candidates in C′, c cannot
gain any vetoes from the third group of voters. Thus the � added candidates from U need
to be a hitting set of S  . Also note that with the � added candidates from U, c also ties d
(who lost � vetoes from the fourth group of voters) and beats the candidates from X and the
added candidates from U . 	� ◻

C� ={c�
1
,… , c�

k−1
},

X ={x1,… , xk−1}, and

Y ={y1,… , y
�
},

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 23 of 48  41

The same result can be shown for destructive control by replacing candidates in
k-veto elections via a similar proof.

Theorem 8  For every constant k ≥ 2 , k-Veto-DCRC​ is NP-complete.

Proof  As in the proof of Theorem 7, we will prove NP-hardness of k-Veto-DCRC​, k ≥ 2 ,
by providing a reduction from Hitting-Set to k-Veto-DCRC​ that is a simplified and
slightly modified variant of a reduction used by Lin [39] to show that k-Veto-DCAC​ and
k-Veto-DCDC are NP-hard.

Let (U,S, �) be an instance of Hitting-Set with U = {u1,… , us} , s ≥ 1 ,
S = {S1,… , St} , t ≥ 1 , and integer � , 1 ≤ � ≤ s.

We construct an instance ((C ∪ U,V), c, �) of k-Veto-DCRC​ with candidates
C = {c, c�} ∪ X ∪ Y  , where X = {x1,… , xk−1} and Y = {y1,… , y

�
} , and unregistered can-

didates U . Let V contain the following votes:

•	 2(s − �) + 2t(� + 1) + 4 votes of the form ⋯ c Y X c′;
•	 2t(� + 1) + 5 votes of the form ⋯ c′ X c;
•	 for each i, 1 ≤ i ≤ t , 2(� + 1) votes of the form ⋯ c′ X Si;
•	 for each i, 1 ≤ i ≤ s , two votes of the from ⋯ c Y X ui;
•	 for each i, 1 ≤ i ≤ � , 2(s − �) + 2t(� + 1) + 6 votes of the form c c′ ⋯ yi X ; and
•	 for each i, 1 ≤ i ≤ s , 2(s − �) + 2t(� + 1) + 6 votes of the form c c′ ⋯ ui X.

In (C, V), c wins the election with 2t(� + 1) + 5 vetoes while c′ has 2(s − �) + 4t(� + 1) + 4
vetoes and every other candidate has at least 2(s − �) + 2t(� + 1) + 6 vetoes.

To complete the proof of Theorem 8, we will now show that (U,S, �) is a YES-instance
of Hitting-Set if and only if c can be prevented from being a k-veto winner of the election
by replacing � candidates from C with candidates from U.

(⇒ ) Assume there is a hitting set U′
⊆ U of S of size � (since 𝜅 < s , if U′ is a hitting set

of size less than � , we again fill U′ up by adding arbitrary candidates from U ⧵ U′ to U′ until
|U�| = � ). Replacing the candidates from Y with the candidates from U′ , c gains 2(s − �)
vetoes and now has 2(s − �) + 2t(� + 1) + 5 vetoes and c′ loses 2t(� + 1) vetoes and now
has 2(s − �) + 2t(� + 1) + 4 vetoes, so c does no longer win the election.

(⇐ ) Assume c can be prevented from being a k-veto winner of the election by replac-
ing at most � candidates. We first argue why we must remove all � candidates from Y.
Firstly, from removing c′ from the election, c’s strongest rival, c does not gain any vetoes
and then there won’t be any candidate in the election that can beat c. Secondly, removing
any candidate in X from the election will lead to c′ gaining vetoes (which c′ cannot afford)
while c can in the best case gain the same number of vetoes as c would gain by replacing
candidates from Y. Thus removing candidates from Y is the best choice. All � candidates
from Y need to be removed, for otherwise c does not gain any vetoes. Then � candidates
from U need to be added to the election. Note that c will always gain 2(s − �) vetoes from
those replacements, which will bring c to 2(s − �) + 2t(� + 1) + 5 vetoes, so every candi-
date other than c′ cannot beat c. In order for c′ to beat c, c′ cannot gain any vetoes from the
third group of voters. Therefore, for each Si ∈ S  , at least one uj ∈ Si needs to be added to
the election. Thus the � added candidates from U need to correspond to a hitting set of S  . 	
� ◻

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 24 of 48

Although we do not focus on parameterized complexity [13, 51] here, we mention in
passing that the proofs of Theorems 7 and 8 in fact even show W[2]-hardness of CCRC​ and
DCRC​, for k-veto with k ≥ 2.

7 � Plurality with runoff and veto with runoff

We now turn to plurality with runoff and veto with runoff, two quite common voting rules
that proceed in two stages, eliminating the “weakest” candidate(s) in the first stage and
then holding a runoff among the two surviving candidates for a winner to emerge. To the
best of our knowledge, no results on control in plurality with runoff or veto with runoff are
known to date. However, a related work has been done by Guo and Shrestha [31] who stud-
ied the complexity of control for two-stage voting rules X Then Y, where X and Y are both
voting rules. Particularly, under X Then Y, the rule X is first applied and then all winning
candidates under X enter a runoff election whose winners are determined by Y. Plurality
(respectively, veto) with runoff can be considered as an X Then Y rule where Y is plurality
(respectively, veto), and X is a rule which selects exactly two candidates with the highest
plurality score (respectively, with the fewest vetoes). Nevertheless, it should be pointed out
that such an X Then Y rule has not been investigated by Guo and Shrestha [31].

Our results in this section are summarized in Table 7.
We first show that the problems CCAV, CCDV, and CCRV for both plurality with run-

off and veto with runoff are polynomial-time solvable when ties are broken in favor of the
chair in both stages. More precisely, if several candidates are tied in the first stage, the chair
has the right to select the two candidates who survive this stage, and if in the second stage
NE(c, d) = NE(d, c) for the two candidates c and d who survive the first stage, the chair is
obligated to select the final winner between c and d.

Instead of showing the results separately one-by-one, we prove that a variant of the mul-
timode control problem, �-Exact Constructive Control by Adding and Deleting Voters,
denoted by �-ECCAV+DV, is polynomial-time solvable, where � is either plurality with
runoff or veto with runoff. In this exact variant of �-Constructive-Multimode-Control,
we require that the number of added voters and the number of deleted voters are exactly
equal to the corresponding given integer, i.e., we require that |V �| = �DV and |W �| = �AV .
Moreover, we have �AC = �DC = 0 and D = � . Note that each of CCAV, CCDV, and CCRV
is polynomial-time reducible to ECCAV+DV.

For an election (C, V), a candidate d ∈ C , and � ∈ {PRun, VRun} , let �(C,V)(d) be the
number of voters in V approving d if � is PRun, and be the number of voters in V veto-
ing d if � is VRun. In the proof of the following theorem we will show P membership of
PRun-ECCAV+DV and VRun-ECCAV+DV by reducing them to the problem Integral-
Minimum-Cost-Flow (IMCF), defined in Sect. 3, which is known to be polynomial-time
solvable [1].

Table 7   Complexity of control for plurality with runoff. All results are ours. “NPC” stands for “ NP-com-
plete” and “ P ” stands for “polynomial-time solvable”

CCAV CCDV CCRV CCAC​ CCDC CCRC​ DCAV DCDV DCRV DCAC​ DCDC DCRC​

P P P NPC NPC NPC P P P NPC NPC NPC

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 25 of 48  41

Theorem 9  For each � ∈ {PRun, VRun} , � -ECCAV+DV is in P.

Proof  Let (C, V), W, c ∈ C, �AV , and �DV be the components of a given instance as
described in the definition of �-ECCAV+DV. Here, c is the distinguished candidate. We
first give the algorithm for � being plurality with runoff, and then we discuss how to mod-
ify the algorithm for the case where � is veto with runoff.

� = PRun. Our algorithm tries to find a candidate d ∈ C ⧵ {c} and four nonnegative
integers �c

AV
, �d

AV
, �c

DV
 , and �d

DV
 such that �c

X
+ �

d
X
≤ �X for X ∈ {AV, DV} . This candi-

date d is supposed to be the one who competes with c in the runoff stage. Moreover, �c
AV

(respectively, �d

AV
 ) is supposed to be the number of voters added from W that approve c

(respectively, d), and �c
DV

 (respectively, �d
DV

 ) is supposed to be the number of voters deleted
from V that approve c (respectively, d). Given such a candidate and integers, we determine
whether we can add exactly �AV votes from W of which �c

AV
 (respectively, �d

AV
 ) approve c

(respectively, d), and delete exactly �DV votes from V of which �c
DV

 (respectively, �d
DV

 )
approve c (respectively, d). Clearly, the original instance is a YES-instance if and only if
at least one of these tests leads to a YES answer. We show how to find the answer to each
subinstance in polynomial time. First, we immediately discard a currently tested candi-
date d if one of the following conditions holds:

•	 �
c
DV

> 𝜏(C,V)(c);
•	 �

d
DV

> 𝜏(C,V)(d);
•	 �

c
AV

> 𝜏(C,W)(c) ; or
•	 �

d
AV

> 𝜏(C,W)(d).

So let us assume that none of the above conditions holds. Then the number of voters
approving c and d in the final election are determined. More precisely, the number of voters
approving e ∈ {c, d} is �(C,V)(e) + �

e
AV

− �
e
DV

 . For notational simplicity, for each e ∈ {c, d} ,
let �(e) = �(C,V)(e) + �

e
AV

− �
e
DV

 . Let

To ensure that c and d participate in the runoff stage, each candidate a ∈ C ⧵ {c, d}
may have at most s approvals in total. A second condition for c to be a runoff win-
ner against d is that c is not beaten by d in their pairwise comparison. Since there are
n� = |V| + �AV − �DV voters in the final election (C,V �), d must win at most ⌊n�∕2⌋ duels
against c. Let A = C ⧵ {c, d} and �(C,V)(A) =

∑
a∈A �(C,V)(a) . Moreover, for X ∈ {AV,DV} ,

let �A
X
= �X − �

c
X
− �

d
X
 . As d in turn wins �(d) comparisons against c in all votes who

s = min{�(c), �(d)}.

Fig. 1   An illustration of con-
structing the IMCF instance in
the proof of Theorem 9

x y

V A

WA

AW

V

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 26 of 48

approve d, if ⌊n�∕2⌋ − 𝜏(d) < 0 , we reject the currently tested candidate d and regard the
next one. Otherwise, we search for exactly

voters in V not deleted and approving candidates in A, and exactly �A
AV

 voters added from W
and approving some a ∈ A such that the final election contains at most ⌊n�∕2⌋ − �(d) voters
who approve some a ∈ A first and prefer d over c. We solve this question by reducing it to
the IMCF problem.

The construction of the IMCF instance is illustrated in Figure 1. In more detail, there
is a source x, a sink y, and two nodes VA and WA . Moreover, each voter in V ∪W approv-
ing some a ∈ A yields a node. Additionally, each a ∈ A yields a node a. If not mentioned
otherwise, each cost is equal to zero. There is an arc from x to VA with lower-bound and
upper-bound capacities

There is another arc from x to WA with lower-bound and upper-bound capacities

Each voter v ∈ V who approves some candidate in A yields an arc (VA, v) with upper-bound
capacity 1 and lower-bound capacity 0. The cost of this arc is equal to 1 if v prefers d to c.
Analogously, we define edges from WA to vertices w corresponding to voters in W who
approve some a ∈ A . There is an arc from some v ∈ V ∪W to some a ∈ A with upper-
bound capacity 1 and lower-bound capacity 0 if and only if v approves a. Each a ∈ A yields
an arc (a, y) with upper-bound capacity s and lower-bound capacity 0.

One can check that there is a (maximum) flow with value

and (minimum) cost of at most ⌊n�∕2⌋ − �(d) if and only if we can find exactly
�(C,V)(A) − �

A
DV

 (remaining) voters in V approving some a ∈ A and exactly �A
AV

 voters added
from W approving some a ∈ A such that each a ∈ A has at most s approvals, and a weak
majority of voters prefers c to d in the final election.

� = VRun. Notice that in this case, �(C,V)(a) denotes the number of voters vetoing a in
the election (C, V). The algorithm is similar to the above described algorithm with the fol-
lowing differences. First, for X ∈ {AV,DV}, �c

X
 and �d

x
 are defined analogously but with

respect to vetoes of c and d, respectively. Technically, this is achieved by replacing the
occurrences of the word “approve” (respectively, “approves” and “approving” and “approv-
als”) with the word “veto” (respectively, “vetoes” and “vetoing” and “vetoes”) through-
out the above algorithm. Second, we replace ⌊n�∕2⌋ − �(d) marked above with ⌊n�∕2⌋ − �(c) .
Recall that in the above algorithm, we use the condition ⌊n�∕2⌋ − 𝜏(d) < 0 to reject a tested
candidate d, as in this case a majority of voters in the final election prefer d to c. When
the rule used is veto with runoff, a majority of voters in the final election prefer d to c
if ⌊n�∕2⌋ − 𝜏(c) < 0 . Finally, in the IMCF instance constructed in the above algorithm, we
change the capacity of each arc from a ∈ A to y so that the lower- bound capacity is s′ ,
where s� = max{�(c), �(d)} , and the upper-bound capacity is |V ∪W| . The reason is that
in veto with runoff, the two candidates with the least vetoes survive the first stage of the

|V| − �(C,V)(c) − �(C,V)(d)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=�(C,V)(A)

−�A
DV

b
�
(x,VA) = b

�
(x,VA) = �(C,V)(A) − �

A
DV

.

b
�
(x,WA) = b

�
(x,WA) = �

A
AV

.

�(C,V)(A) − �
A
DV

+ �
A
AV

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 27 of 48  41

election. Therefore, if the final vetoes of c and d are both at most s′ with one of them being
exactly s′ , and c and d are the two candidates surviving the first stage, it must be the case
that each other candidate has at least s′ vetoes in the final election. 	� ◻

The exact versions of the destructive multimode control for plurality with runoff and
veto with runoff are polynomial-time solvable, too.

Theorem 10  PRun-EDCAV+DV and VRun-EDCAV+DV are in P.

Proof  To solve a PRun-EDCAV+DV or VRun-EDCAV+DV instance I with the distin-
guished candidate p, we solve m − 1 instances of the constructive exact multimode prob-
lems PRun-ECCAV+DV or VRun-ECCAV+DV, respectively, each of which takes the
same input as I with only the difference that the distinguished candidate is someone in
C ⧵ {p} , where C is the set of candidates in the input and m = |C| . Moreover, all the m − 1
instances have different distinguished candidates. Clearly, I is a YES-instance of either of
the two destructive problems if and only if at least one of these m − 1 instances of the cor-
responding constructive problem is a YES-instance. Due to Theorem 9, each these m − 1
instances can be solved in polynomial time. Therefore, I can be solved in polynomial time. 	
� ◻

Note that for each Y ∈ {CCAV,CCDV,CCRV,DCAV,DCDV,DCRV} and for each
X ∈ {PRUN,VRUN} , X-Y is polynomial-time Turing-reducible to its exact version.
Then, given the above results, we obtain the following corollary.

Corollary 4  For each Y ∈ {CCAV,CCDV,CCRV,DCAV,DCDV,DCRV} , both PRun-Y
and VRun-Y are in P.

Concerning control by adding candidates, we have the following results for plurality
with runoff and veto with runoff.

Theorem 11  PRun-CCAC​, PRun-DCAC​, VRun-CCAC​, and VRun-DCAC​ are NP-complete.

Proof  We prove the theorem by reductions from the RX3C problem. Let (U,S) , where
|U| = |S| = 3� , be an instance of the RX3C problem. We prove the theorem for the four
different problems separately.

PRun-CCAC. For each u ∈ U , we create a registered candidate, denoted by the same
symbol. In addition, we create two registered candidates, q and c, with c being the dis-
tinguished candidate. Moreover, for each S ∈ S  , we create an unregistered candidate,
denoted by the same symbol. Regarding the votes, we create 16 + 24� votes in total defined
as follows.

•	 First, we create nine votes with q in the first position.
•	 Second, we create seven votes with c in the first position.
•	 Third, for each u ∈ U , we create two votes with u in the first position.

The preferences over candidates other than the top-ranked one in the above 16 + 6�
votes can be set arbitrarily.

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 28 of 48

•	 Finally, for each S ∈ S and each u ∈ S , we create two votes of the form S u c q ⋯.

We complete the construction by setting � = � , i.e., we are allowed to add at most � candi-
dates. It remains to prove the correctness of the reduction: There is an exact 3-set cover if
and only if c can be made a winner by adding up to � candidates.

(⇒ ) If there is an exact 3-set cover S� ∈ S  , we claim that S′ is a solution of the
PRun-CCAC​ instance constructed above. Clearly, after adding candidates in S′, q has 9
approvals, c has 7 approvals, every S ∈ S

� has 6 approvals, and every u ∈ U has 8 − 2 = 6
approvals. Then, according to the definition of plurality with runoff, q and c enter the run-
off stage. Clearly, a majority of voters prefer c to q, and hence c becomes the unique winner
after adding all candidates in S′.

(⇐ ) Consider now the opposite direction. Observe that to ensure c to survive the first
stage, at least � candidates must be added, since otherwise there were at least one can-
didate u ∈ U which receives at least 8 approvals, resulting in q and u entering the runoff
stage. Let S′ be a solution of the PRun-CCAC​ instance. As discussed, we have |S�| = � .
If S′ is not an exact 3-set cover, again there is a candidate u ∈ U such that u is not in
any subset of S′ . According to the construction of the instance, the candidate u receives
at least 8 approvals after adding the candidates in S′ , and hence survives the first stage
with q. Therefore, S′ must be an exact 3-set cover of U.

PRun-DCAC. The reduction differs from the above proof for PRun-CCAC only in that
the distinguished candidate is q. The correctness relies on the observation that candidate c
is the only candidate that can preclude q from winning.

VRun-CCAC. For each u ∈ U , we create a registered candidate, denoted still by u for
simplicity. In addition, we create two registered candidates c and q with c being the distin-
guished candidate. Hence, the set of registered candidates is C = U ∪ {c, q} . The unreg-
istered candidates are created according to S  , one for each S ∈ S  , denoted by the same
symbol for simplicity. We create a multiset V of votes as follows.

•	 We create one vote of the form S U c q.
•	 For each u ∈ U , we crate 6� − 3 votes of the form c q S U ⧵ {u} u.
•	 For each S ∈ S  , we create 6� + 5 votes as follows:

–	 3� + 1 votes of the form q U cS ⧵ {S} S;
–	 3� + 1 votes of the form c U qS ⧵ {S} S ; and
–	 three votes of the form q U S ⧵ {S} c S.

•	 For each S = {ux, uy, uz} ∈ S  , we further create six votes as follows:

–	 two votes of the form c q U ⧵ {ux}S ⧵ {S} ux S;
–	 two votes of the form c q U ⧵ {uy}S ⧵ {S} uy S ; and
–	 two votes of the form c q U ⧵ {uz}S ⧵ {S} uz S.

We are allowed to add at most � candidates, i.e., � = � . Note that in the election restricted
to the registered candidates,

•	 c has 3� ⋅ (3� + 1) + 9� vetoes,
•	 q has 3� ⋅ (3� + 1) + 1 vetoes, and
•	 every u ∈ U has 6� + 3 vetoes.

Hence, c is not a veto with runoff winner of the election. It remains to prove the correctness
of the reduction.

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 29 of 48  41

(⇒ ) Assume that there is an exact 3-set cover S′
⊆ S of U. After adding the candidates

in S′ , candidate q has one veto, every S ∈ S
� has at least 6� + 11 vetoes, every u ∈ U has

6� + 3 − 2 = 6� + 1 vetoes, and c has 6� vetoes. Hence, q and c move on to the runoff
stage. As more voters prefer c over q, c becomes the final winner.

(⇐ ) Suppose that we can add a subset S′
⊆ S of at most � unregistered candidates to

make c a winner under veto with runoff. Observe first that S′ must contain exactly � candi-
dates, since otherwise c would have at least 6� + 3 vetoes, while at least one candidate in U
would have at most 6� + 3 − 2 = 6� + 1 vetoes. Hence, this candidate in U and q would be
the two candidates going to the runoff stage. Then, from |S�| = � , it follows that c has 6�
vetoes after adding candidates in S′ . If S′ is not an exact 3-set cover, there must be a
candidate u ∈ U occurring in at least two subsets of S′ . Then the candidate u has at most
6� + 3 − 4 = 6� − 1 vetoes, leading to q and u being the two candidates competing in the
runoff stage. We can conclude that S′ is an exact 3-set cover.

VRun-DCAC. The reduction differs from the one for VRun-CCAC only in that the dis-
tinguished candidate is q. The correctness relies on the observation that candidate c is the
only candidate that can preclude q from winning.

Next, we study the complexity of control by deleting candidates for plurality with runoff
and veto with runoff.

Theorem 12  PRun-CCDC, PRun-DCDC, VRun-CCDC, and VRun-DCDC are NP

-complete.

Proof  Again, letting (U,S) with |U| = |S| = 3� be a given RX3C instance, we separately
provide our four reductions from RX3C to PRun-CCDC, PRun-DCDC, VRun-CCDC, and
VRun-DCDC, respectively. Let U = {u1, u2,… , u3�} . Without loss of generality, assume
that � ≥ 4.

PRun-CCDC. From (U,S) , we create the following instance of PRun-CCDC. Let
C = {c, q} ∪ U ∪S be the set of candidates and c the distinguished candidate. We create a
multiset V of 9�2 + 21� + 1 votes as follows.

•	 We create 2� votes of the form q u1 u2 … u3� S c.
•	 We create � + 1 votes of the form q u3� u3�−1 … u1 S c.
•	 For each u ∈ U , we create 3� − 3 votes of the form u U ⧵ {u} S c q.
•	 For each S ∈ S  , we create three votes of the form S c C ⧵ (S ∪ {c, q}) q.
•	 For each S = {ux, uy, uz} ∈ S  , we further create six votes as follows:

–	 two votes of the form S ux C ⧵ {c, q, ux} c q;
–	 two votes of the form S uy C ⧵ {c, q, uy} c q ; and
–	 two votes of the form S uz C ⧵ {c, q, uz} c q.

Furthermore, let �DC = � . It remains to prove the correctness.
(⇒ ) Assume there is an exact set cover S′

⊆ S  . After deleting the candidates in S′, q
has 2� + � + 1 = 3� + 1 approvals, c has 3� approvals, every remaining S ∈ S ⧵S� has 9
approvals, and every u ∈ U has 3� − 3 + 2 = 3� − 1 approvals. Hence, q and c go to the
runoff stage, leading to c being the final winner.

(⇐ ) Assume that it is possible to make c a plurality-with-runoff winner of the elec-
tion by deleting a set C�

⊆ C ⧵ {c} of at most � candidates. Note that q ∉ C� , since oth-
erwise there would be two candidates in U receiving at least 3� − 3 + 2� = 5� − 3 and

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 30 of 48

3� − 3 + � + 1 = 4� − 2 approvals, preventing c from winning. Therefore, q has at least
3� + 1 approvals in the final election. Furthermore, none of the candidates in U can be
deleted, i.e., U ∩ C� = � . In fact, if we delete some candidate u ∈ U , then the candidate
ranked immediately after u in the 3� − 3 votes created for u (in the third voter group) would
receive at least (3� − 3) + (3� − 3) = 6� − 6 approvals, preventing c from winning. This
means that the deletion of one candidate in U invites the deletion of all candidates in U ,
to make c the winner. However, we are allowed to delete at most � candidates. In sum-
mary, we have C′

⊆ S  . After deleting the candidates in C′, c has 3|C′| approvals. Note that
|C�| = � must hold, since otherwise at least one candidate in U would receive more approv-
als than candidate c, after deleting all candidates in C′ ; hence, this candidate and q would
be the two candidates going to the runoff stage. Therefore, we know that c receives 3�
approvals after deleting all candidates in C′ . If C′ is not an exact 3-set cover, there must be
a candidate u ∈ U who occurs in at least two subsets of C′ . Due to the construction, can-
didate u receives at least 3� − 3 + 2 + 2 = 3� + 1 approvals, implying that q and u are the
two candidates surviving the first stage, contradicting that c is the final winner after delet-
ing all candidates in C′ . Thus C′ must be an exact 3-set cover.

PRun-DCDC. The candidate set is

where A = {a1,… , a
�
} . For two positive integers x and y such that x < y ≤ 9𝜅2 , we define

We create in total 18�2 + 36� + 4 votes classified into the following groups.

1.	 There are 3� + 4 votes of the form q C ⧵ {q}.
2.	 For each i ∈ [3�] , there are 3� − 3 votes of the form

3.	 For each S ∈ S  , S = {ux, uy, uz} , where {x, y, z} ⊆ [3𝜅] , there are nine votes as follows:

•	 three votes of the form S c q C ⧵ {S, c, q};
•	 two votes of the form S ux c q C ⧵ {S, ux, c, q};
•	 two votes of the form S uy c q C ⧵ {S, uy, c, q} ; and
•	 two votes of the form S uz c q C ⧵ {S, uz, c, q}.

C = {c, q} ∪ U ∪S ∪ {h1,… , h9�2+15�} ∪ A,

H[x, y] = {hz ∣ x ≤ z ≤ y}.

ui H[(i − 1) ⋅ �, i ⋅ �] C ⧵ (A ∪ H[(i − 1) ⋅ �, i ⋅ �] ∪ {ui, c, q}) c q A.

Table 8   Plurality scores of candidates in the reduction for PRun-DCDC in the proof of Theorem 12. The
numbers in the equation in each row corresponding to a candidate are the plurality scores of the candidates
received respectively from the four groups of votes constructed above

plurality scores

q (3� + 4) + 0 + 0 + 0 = 3� + 4

c 0 + 0 + 0 + 0 = 0

u ∈ U 0 + (3� − 3) + 0 + 0 = 3� − 3

S ∈ S 0 + 0 + 9 + 0 = 9

hi 0 + 0 + 0 + 1 = 1

aj 0 + 0 + 0 + 0 = 0

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 31 of 48  41

4.	 There are 9�2 + 15� votes denoted by v1,… , v9�2+15� such that for every i ∈ [9�2 + 15�] ),
the vote vi is of the form

Let V denote the multiset of the above constructed votes. The distinguished candidate is q.
Finally, we define � = � , i.e., we are allowed to delete at most � candidates from C. The
time to construct the above instance is clearly bounded by a polynomial in the size of the
RX3C instance.

We are left with the proof of correctness of the reduction. It is useful to first provide a
summary of the plurality scores of all candidates for a better understanding of the follow-
ing arguments. We refer to Table 8 for such a summary.

Due to Table 8, q survives the first stage but c does not. One can check that q is beaten
by c but beats everyone else. As a consequence, q is the winner of the above constructed
election.

(⇒) Assume that there is an exact set cover S′
⊆ S of U . Let E = (C ⧵S�,V) . We

claim that q is no longer the winner of the election E. With the help of Table 8 one can
check easily that in the election E the two candidates q and c receive the most approvals.
Particularly, if a candidate S ∈ S

� is deleted, the three votes of the form S c q C ⧵ {S, c, q}
give three approvals to c. Then, as |S�| = � , after deleting the candidates in S′ , the can-
didate c receives 3� new approvals. In addition, as S′ is an exact set cover, for every
u ∈ U , there is exactly one S ∈ S

� such that u ∈ S . Then, due to the construction of the
votes in the third group, the plurality score of u increases by exactly two, reaching to
3� − 3 + 2 = 3� − 1 . Other candidates clearly have only constant plurality scores. There-
fore, c and q are the two candidates that survive the first stage, and this is the case no mat-
ter which tie-breaking scheme is used. As c beats q in the election E, we know that q is no
longer a winner.

(⇐) Assume that there is a subset C�
⊆ C ⧵ {q} of at most � candidates such that q is no

longer a winner of (C ⧵ C�,V) . First, it is easy to verify that it is impossible to prevent q
from surviving the first stage by deleting at most � candidates. Additionally, candidate c is
the only one beating q. Due to these two observations, we know that the candidates surviv-
ing the first stage of (C ⧵ C�,V) must be c and q. By Table 8, there are candidates in U who
receive at least 3� − 3 approvals in E. This means that the deletion of the candidates in C′
increases the plurality score of c to at least 3� − 3 . Note that after deleting candidates in C′ ,
none of the votes in the groups (1), (2), and (4) rank c in the top. Therefore, the plural-
ity score of c must be from votes in the group (3). Another significant observation is that
C′

⊆ S and, moreover, |C�| = � , since otherwise at least one candidate in U has a higher
plurality score than that of c in E. Therefore, we know that in the election E, c has plurality
score exactly 3� . Finally, we claim that C′ is an exact set cover of U . Assume for the sake
of contradiction that this is not the case. Then there exists at least one candidate u ∈ U
such that there are two S, S� ∈ C� such that u ∈ S ∩ S� . By the construction of the votes
in the group (3), the candidate u will be ranked in the top in four votes (two of the form
S u c q C ⧵ {S, u, c, q} and two of the form S� u c q C ⧵ {S�, u, c, q} ). This means that in the
election E, the plurality score of u is at least 3� − 3 + 4 = 3� + 1 , which is larger than that
of c. However, in this case, c is excluded in the first stage, a contradiction.

VRun-DCDC. The candidate set is the same as in the reduction for PRun-CCDC. Pre-
cisely, we define

hi A c q C ⧵ ({c, q, hi} ∪ A).

C = {c, q} ∪ U ∪S,

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 32 of 48

where q is the distinguished candidate. We create the following votes.

•	 There are three votes of the form qS U c.
•	 For each S = {ux, uy, uz} ∈ S  , we create six votes as follows:

–	 two votes of the form c q U ⧵ {ux}S ⧵ {S} ux S;
–	 two votes of the form c q U ⧵ {uy}S ⧵ {S} uy S ; and
–	 two votes of the form c q U ⧵ {uz}S ⧵ {S} uz S.

•	 For each u ∈ U , there are two votes of the form c q S U ⧵ {u} u.

Finally, we define � = � , i.e., we are allowed to delete at most � candidates from C ⧵ {q} .
Clearly, the above instance of VRun-DCDC can be constructed in polynomial time. We
show that there is an exact set cover of U if and only if the above VRun-DCDC instance is
a YES-instance. The number of vetoes of all candidates are summarized in Table 9.

From Table 9, we know that q and some u ∈ U survives the first stage of the election.
In addition, it is easy to verify that q beats everyone else except c, and hence q wins the
election.

(⇒) Assume that U admits an exact set cover S′
⊆ S  . Let E� = (C ⧵S�,V) . We claim

that q is no longer a winner in the election E′ . To this end, let us first analyze the vetoes of
candidates in E′ . Observe that deleting candidates only in S never changes the vetoes of c
and q. So, the vetoes of q and c in E′ are still 0 and 3, respectively. For each u ∈ U , as S′ is
an exact set cover of U , there is exactly one S ∈ S

� such that u ∈ S . Then, after deleting S
from C, u receives two more vetoes from the two votes of the form c q U ⧵ {u} S ⧵ {S} u S ,
resulting in a final veto count of 2 + 2 = 4 . As this holds for all candidates in U , the two
candidates surviving the first stage of the election are q and c. As pointed out above, c
beats q, and hence c substitutes q as the new winner in E′.

(⇐) Assume that there is a subset C�
⊆ C ⧵ {q} of at most � candidates such that q is no

longer a winner of (C ⧵ C�,V) under veto with runoff. Let E� = (C ⧵ C�,V) . From Table 9,
it holds that every candidate in C ⧵ C′ except q has a positive veto count in E′ . Moreover, as
in each of the above constructed votes there are more than � + 1 candidates ranked after q
and |C′| ≤ � , in the election E′ , q has no vetoes. This means that q survives the first stage
of E′ . Then, as c is the only candidate that beats q, we know that c is the other candidate
who survives the first stage together with q. This implies that c ∉ C� . As in each vote not
vetoing c, there are more than � + 1 candidates ranked after c, and it holds that |C′| ≤ � , we
know that the veto count of c in E′ is 3. Let S� = C� ∩S and U� = U ⧵

⋃
S∈S� S . We first

prove the following claims.

Claim 1 U′
⊆ C′.

Table 9   Vetoes of candidates in
the instance of VRun-DCDC in
the proof of Theorem 12

vetoes

q 0
c 3
u ∈ U 2
S ∈ S 6

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 33 of 48  41

Assume for the sake of contradiction there exists a candidate u ∈ U� such that u ∉ C� .
Then, due to the definition of the votes, u has two vetoes in E′ . However, this contradicts
with the fact that c is the candidate that survives the first stage with q. This proves Claim 1.

Claim 2 U� = �.

Let t = |C� ∩S| and t� = |C� ∩ U| . If U′ ≠ ∅ , then we have t < 𝜅 . As S′ covers at
most 3t elements of U , it holds that t� ≥ 3� − 3t . It follows that t + t� ≥ 3𝜅 − 2t > 𝜅 , a con-
tradiction. This proves Claim 2.

Due to the above claim, we know that S′ covers U . Then, as |S′| ≤ �, S′ must be an
exact set cover of U.

VRun-CCDC. The reduction for VRun-CCDC is similar to the above reduction for
VRun-DCDC with only the difference that we set c as the distinguished candidate. If U
admits an exact set cover, then as shown above, after deleting the candidates corresponding
to this set cover, c becomes the winner. For the other direction, one observes first that the
above two claims still hold in this case. Then it is easy to see that if c becomes a winner
after deleting at most � candidates, the deleted candidates must correspond to an exact set
cover of U.

Finally, we study the complexity of control by replacing candidates for plurality with
runoff and veto with runoff.

Observe that plurality with runoff is unanimous. Then the NP-hardness result for PRun-
CCAC​ studied in Theorem 11 and Lemma 2 directly yields NP-hardness of PRun-CCRC​
. In addition, plurality with runoff satisfies IBC when ties are broken deterministically.
Hence, from Lemma 1 and the NP-hardness of PRun-DCDC stated in Theorem 12, it fol-
lows that PRun-DCRC​ is NP-hard when ties are broken deterministically. However, in the
proof of NP-hardness of PRun-DCDC, the distinguished candidate q has a strictly higher
plurality score than any other candidate. So, no matter which tie-breaking scheme is used, q
survives the first stage. In addition, as c is the candidate who replaces q as the winner in the
final election, it does not matter which candidate in U survives the first stage with q in the
original election. Therefore, NP-hardness applies to all tie-breaking schemes. (Precisely,
we modify the instance of PRun-DCDC by adding an additional set of � unregistered can-
didates who are ranked after all the other candidates in all votes.)

However, it is easy to check that veto with runoff is not unanimous and does not sat-
isfy IBC either. Hence, we cannot obtain NP-hardness for VRun-CCRC​ and VRun-DCRC​
using Lemmas 1 and 2. Nevertheless, we can show NP-hardness of these problems by
modifications of the proofs for VRun-CCAC​ and VRun-DCDC studied in Theorems 11
and 12. In particular, to obtain NP-hardness of VRun-CCRC​, we modify the instance of
VRun-CCAC​ by adding an additional set of � registered candidates and rank them before
all the other candidates in all votes. More importantly, we rank all the � registered candi-
dates in an arbitrary but fixed order so that they have to be replaced to guarantee the vic-
tory of the distinguished candidate. To obtain NP-hardness of VRun-DCRC​, we modify
the instance of VRun-DCDC by creating a set of � unregistered candidates, and rank them
directly after q in all votes (i.e., q and these � candidates are ranked consecutively in all
votes with q being the first one among them). The relative order among these � candidates
does not matter.

Summing up, we have the following results.

Theorem 13  PRun-CCRC​, PRun-DCRC​, VRun-CCRC​, and VRun-DCRC​ are NP-complete.

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 34 of 48

Note that the NP-hardness results in the above three theorems (Theorems 11, 12,
and 13) hold regardless of the tie-breaking rule used because no tie occurs in either stage
of the constructed elections.

8 � Condorcet voting

In this section, we study Condorcet voting. Our results of this section are summarized in
Table 10.

For Condorcet we will show that it is vulnerable to three types of replacement control,
yet resistant to the fourth one, starting with the resistance proof.

Theorem 14  Condorcet-CCRV is NP-complete.

Proof  We prove NP-hardness by reducing RX3C to Condorcet-CCRV.10 Let (U,S) be an
RX3C instance with U = {u1,… , u3�} , � ≥ 2 (which may be assumed, as RX3C is trivially
solvable when � = 1 ), and S = {S1,… , S3�} . The set of candidates is C = U ∪ {c} with c
being the distinguished candidate. The votes are constructed as follows:

•	 There are 2� − 3 registered votes of the form u1 ⋯ u3� c in V and
•	 for each j, 1 ≤ j ≤ 3� , there is one unregistered vote of the form Sj c U ⧵ Sj in W.

The ordering of candidates in Sj and U ⧵ Sj does not matter in any of those votes. Finally,
set � = �.

Analyzing the election (C, V), u1 is the Condorcet winner; in particular, c loses against
every ui ∈ U with a deficit of 2� − 3 votes, i.e.,

We will now show that (U,S) is a YES-instance of RX3C if and only if c can be made the
Condorcet winner of the election by replacing � votes from V with votes from W.

(⇒ ) Assume there is an exact cover S′
⊆ S of U . We remove � votes of the form

u1 ⋯ u3� c from the election and replace them by the votes of the form Sj c U ⧵ Sj for
all Sj ∈ S

� . Let (C,V �) be the resulting election. Since S′ is an exact cover of U , for each
ui ∈ U,

N(C,V)(ui, c) − N(C,V)(c, ui) = 2� − 3.

N(C,V �)(ui, c) − N(C,V �)(c, ui) = (2𝜅 − 3 − 𝜅 + 1) − (𝜅 − 1) = −1 < 0.

Table 10   Complexity of control for Condorcet. Our results are in boldface. “NPC” stands for “ NP-com-
plete,” “ P ” for “polynomial-time solvable,” and “’I” for “immune”

CCAV CCDV CCRV CCAC​ CCDC CCRC​ DCAV DCDV DCRV DCAC​ DCDC DCRC​

NPC NPC NPC I P P P P P P I P

10  A similar reduction was used by Bartholdi, Tovey, and Trick [7] to prove that Condorcet-CCAV is NP
-hard.

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 35 of 48  41

Thus c now defeats each ui ∈ U in pairwise comparison and, therefore, has been made the
Condorcet winner of (C,V �).

(⇐ ) Assume that c can be made a Condorcet winner of the election by replacing at most
� votes. Recall that c has a deficit of

to every ui ∈ U in the original election. Thus exactly � votes need to be removed from the
election, for otherwise c’s deficit of at least � − 2 to every other candidate cannot be caught
up on, since at least one other candidate is in front of c in every unregistered vote. With
� removed votes, c’s deficit to every other candidate is now decreased to � − 3 . However,
none of the � votes from W replacing the removed votes can rank some ui ∈ U in front of c
more than once, as otherwise we would have

for at least one ui ∈ U in the resulting election (C,V �) , and c would not win. Let S′
⊆ S

be the set such that each Sj ∈ S
� corresponds to the vote Sj c U ⧵ Sj from W that is added to

the election to replace a removed vote. Every unregistered voter ranks three candidates of
U in front of c. By the pigeonhole principle, in order for the � new votes to rank each of the
3� candidates of U in front of c only once, S′ needs to be an exact cover of U.

By contrast, we show vulnerability to destructive control by replacing voters for Con-
dorcet via a simple algorithm.

Theorem 15  Condorcet-DCRV is in P.

Proof  To prove membership in P , we will provide an algorithm that solves the problem in
polynomial time and outputs, if possible, which of the registered voters must be replaced
by which unregistered voters for c to not win.

The input to our algorithm is an election (C,V ∪W) , the distinguished candidate c ∈ C ,
and a positive integer � . The algorithm will output either a pair (V �,W �) with V ′

⊆ V  ,
W ′

⊆ W , and |V �| = |W �| ≤ � (i.e., for c to not win, there are votes in V ′ that must be
removed and votes in W ′ that must be added to the election instead), or that control is
impossible.

First, the algorithm checks whether c is already not winning the election (C, V) and out-
puts (�, �) if this is the case, and we are done.

Otherwise, c currently wins, and the algorithm iterates over all candidates d ∈ C ⧵ {c}
and first checks whether N(C,V)(c, d) − N(C,V)(d, c) + 1 ≤ 2� (if this is not the case, d loses
to c in any case and we can skip this candidate.)

Let V ′
⊆ V contain at most � votes from V preferring c to d and let W ′

⊆ W contain at
most � votes from W preferring d to c. If one of them is smaller than the other, remove
votes from the larger one until they are equal in size.

Then we check whether NE(c, d) ≤ NE(d, c) in the election E = (C, (V ∪W �) ⧵ V �)) . If
this is the case, c does not beat d in direct comparison, so c cannot win the election. The
algorithm then outputs (V �,W �).

Otherwise, d cannot beat c and the algorithm proceeds to the next candidate. If, after
all iterations, no candidate was found that beats or ties c, the algorithm outputs “control
impossible.” Obviously, this algorithm runs in polynomial-time and solves the problem.

N(C,V)(ui, c) − N(C,V)(c, ui) = 2� − 3

N(C,V �)(ui, c) ≥ 𝜅 − 1 > 𝜅 − 2 ≥ N(C,V �)(c, ui)

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 36 of 48

Bartholdi, Tovey, and Trick [7] observed that, due to the Weak Axiom of Revealed
Preference, Condorcet voting is immune to constructive control by adding candidates,
and Hemaspaandra, Hemaspaandra, and Rothe [33] made the same observation regard-
ing destructive control by deleting candidates. For control by replacing candidates,
however, Condorcet is susceptible both in the constructive and in the destructive case,
as shown in the following example.

Example 1  To see that Condorcet is susceptible to constructive control by replacing candi-
dates, consider a set C = {b, c} with two registered candidates, a set D = {d} with just one
unregistered candidate, and only one vote of the form b c d over C ∪ D . We can turn c (who
does not win according to b c ) into a Condorcet winner by replacing b with d (so we now
have c d).

For susceptibility in the destructive case, just consider C� = {c, d} and D� = {b} , and
replace d with b, all else being equal.

Moreover, since in Condorcet elections the direct comparison between two candi-
dates cannot be influenced by deleting or adding other candidates to the election, Con-
dorcet-CCRC​ and Condorcet-DCRC​ are both easy to solve.

Theorem 16  Condorcet-CCRC​ is in P.

Proof  To prove membership in P , we will provide an algorithm that solves the problem in
polynomial time and outputs, if possible, which of the original candidates must be replaced
by which unregistered candidates for c to win.

The input to our algorithm is an election (C ∪ D,V) , the distinguished candidate c ∈ C ,
and a positive integer � . The algorithm will output either a pair (C�,D�) with C�

⊆ C ⧵ {c} ,
D′

⊆ D , and |C�| = |D�| ≤ � (i.e., for c to win, there are candidates in C′ that must be
removed and candidates in D′ that must be added to the election instead), or that control is
impossible.

First, we check whether c already wins the election (C, V) and output (�, �) if this is the
case, and we are done.

Otherwise, let C�
⊆ C ⧵ {c} be the set of candidates from C ⧵ {c} that beat or tie c in

direct comparison and let D′
⊆ D be a set of at most |C′| candidates from D that c beats in

direct comparison.
If |C′| ≤ � and |C�| = |D�| , we output (C�,D�) , and otherwise we output “control

impossible.”
Obviously, the algorithm solves the problem and runs in polynomial time.

Theorem 17  Condorcet-DCRC​ is in P.

Proof  An algorithm that solves the problem works as follows: Given an election (C ∪ D,V) ,
a distinguished candidate c ∈ C , and an integer � , it checks whether c is not winning the
election (C, V) and outputs (�, �) if this is the case.

Otherwise, it checks whether there is a candidate d ∈ D who beats or ties c in direct
comparison, whether there is another candidate b ∈ C with b ≠ c and whether � ≥ 1 . If
these conditions are satisfied, it outputs ({b}, {d}) , and otherwise “control impossible.”

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 37 of 48  41

This algorithm outputs either a successful pair (C�,D�) with C�
⊆ C ⧵ {c} , D� ∈ D , and

|C�| = |D�| ≤ � if c can be prevented from winning by replacing at most � candidates, or
else “control impossible.” Obviously, the algorithm is correct and runs in polynomial time.

9 � Fallback voting

We will now consider fallback voting and show that it is vulnerable to one type of replace-
ment control and resistant to the others. Our results for fallback voting are summarized in
Table 11.

Theorem 18  Fallback-CCRV is NP-complete.

Proof  To prove NP-hardness, we will modify the reduction from X3C that Erdélyi and
Rothe [22] (and Erdélyi et al. [16]) used to show NP-hardness of Fallback-CCAV. Let
(U,S) be an X3C instance with U = {u1,… , u3�} , � ≥ 2 , and S = {S1,… , St} , t ≥ 1 .
The set of candidates is C = U ∪ B ∪ {c} with c being the distinguished candidate and
B = {b1,… , bt(3�−4)} a set of t(3� − 4) dummy candidates. In V (corresponding to the
registered voters), there are the 3� − 1 votes (recall the input format in fallback elections
described in Sect. 3):

•	 2� − 1 votes of the form U ∣ B ∪ {c} and
•	 for each i, 1 ≤ i ≤ � , one vote of the form bi ∣ U ∪ (B ⧵ {bi}) ∪ {c}.

In W (corresponding to the unregistered voters), there are the following t votes:

–	 For each j, 1 ≤ j ≤ t , let Bj = {b(j−1)(3�−4)+1,… , bj(3�−4)} and include in W the vote
Bj Sj c | (U ⧵ Sj) ∪ (B ⧵ Bj).

Finally, set � = �.
Having no approvals in (C, V), c does not win. We will show that (U,S) is a YES-

instance of X3C if and only if c can be made a fallback winner of the constructed election
by replacing at most � votes from V with as many votes from W.

(⇒ ) Suppose there is an exact cover S′
⊆ S of U . Remove � votes U | B ∪ {c} from the

election and add, for each Sj ∈ S
� , the vote Bj Sj c | (U ⧵ Sj) ∪ (B ⧵ Bj) instead. Let (C, V̂)

be the resulting election. It follows that

•	 score
(C,V̂)

(bi) ≤ 2 for every bi ∈ B,
•	 score

(C,V̂)
(ui) = � for every ui ∈ U ( � − 1 approvals from the remaining registered vot-

ers and one approval from the added voters since S′ is an exact cover of U ), and

Table 11   Complexity of control for fallback voting. Our results are in boldface. “NPC” stands for “ NP
-complete” and “ P ” stands for “polynomial-time solvable”

CCAV CCDV CCRV CCAC​ CCDC CCRC​ DCAV DCDV DCRV DCAC​ DCDC DCRC​

NPC NPC NPC NPC NPC NPC P P P NPC NPC NPC

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 38 of 48

•	 score
(C,V̂)

(c) = �.

Thus no candidate has a majority on any level and c is one of the winners since he or she
ties all candidates of U for the most approvals overall.

(⇐ ) Suppose c can be made a fallback winner of the election by replacing at most �
votes from V with as many votes from W. Since c has no approvals in (C, V) and we can
only add at most � approvals for c, the only chance for c to win is to have the most approv-
als in the last stage of the election. Regardless of which votes we remove or add to the
election, every dummy candidate can have at most two approvals, which will at least be
tied by c if we add � ≥ 2 unregistered votes to the election. We need to remove � votes
U ∣ B ∪ {c} from the election; otherwise, some ui ∈ U would have at least s approvals,
whereas c could gain no more than � − 1 approvals from adding unregistered votes. Each
ui ∈ U receives � − 1 approvals from the remaining registered votes of the original election
and c receives � approvals from the added votes. Additionally, every added voter approves
of three candidates from U . Hence, in order for c to at least tie every candidate from U ,
each ui ∈ U can only be approved by at most one of the added votes. Since there are �
added votes, there must be an exact cover of U.

By contrast, we establish vulnerability of the destructive case of control by replacing
voters for fallback voting. The proof employs a rather involved polynomial-time algorithm
solving this problem.

Theorem 19  Fallback-DCRV is in P.

Proof  We provide a polynomial-time algorithm that solves the problem and computes
which voters need to be removed and which need to be added to prevent the distinguished
candidate from being a fallback winner. The algorithm is inspired by an algorithm designed
by Erdélyi and Rothe [22] (see also Erdélyi et al. [16]) to prove membership of fallback-
DCAV in P.

For an election (C, V), let maj(V) = ⌊�V�∕2⌋ + 1 and let

be the deficit of candidate d ∈ C to a strict majority in (C, V) on level i, 1 ≤ i ≤ |C| . Note
that the number of voters is always the same, namely |V|, and so we will use maj(V) even
after we have replaced some voters.

The input of the algorithm is an election (C,V ∪W) , a distinguished candidate c ∈ C ,
and an integer � . The algorithm will output either a pair (V �,W �) with V ′

⊆ V  , W ′
⊆ W ,

and |V �| = |W �| ≤ � (i.e., for c to not win, there are votes in V ′ that must be removed and
votes in W ′ that must be added to the election instead), or that control is impossible.

The algorithm runs through n = maxv∈V∪W |Sv| stages which we call the majority stages
and one final stage which we call the approval stage. In the majority stages the algorithm
checks whether c can be beaten in the first n levels of the fallback election by replacing at
most � voters, and in the approval stage it checks whether c can be dethroned in the last
stage of the fallback election by this control action.

The algorithm works as follows: If c is already not winning in (C, V), we output (�, �)
and are done.

Majority Stage i, 1 ≤ i ≤ n: For i > 1 , this stage is reached if we could not successfully
control the election in majority stages 1 through i − 1 . Note that in each majority stage i

def i
(C,V)

(d) = maj(V) − scorei
(C,V)

(d)

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 39 of 48  41

we assume that a candidate that is approved by a voter on level j > i is disapproved by this
voter. Now, for every candidate d ∈ C ⧵ {c} , we check whether d can beat c on level i of
the fallback election. First, we check if the following two conditions hold:

If at least one of (1) and (2) does not hold, d cannot have a strict majority on level i or can-
not beat c on this level, no matter which at most � votes we replace, and we skip d and pro-
ceed to the next candidate (or the next stage if all candidates failed to beat c in this stage).

Otherwise (i.e., if both (1) and (2) hold), we determine the largest Wd ⊆ W such that
|Wd| ≤ � and all votes of Wd approve of d and disapprove of c on the first i levels. Further-
more, we determine the largest Vd ⊆ V such that |Vd| ≤ � and all votes of Vd approve of c
and disapprove of d on the first i levels. Again, if |Vd| ≠ |Wd| , we fill up the smaller vote
list with votes as follows until they are equal in size:

•	 If |Vd| < |Wd| , we fill up Vd with votes of V ⧵ Vd who approve of neither c nor d until
we either have |Vd| = |Wd| or run out of those votes, and in the latter case we now keep
adding to Vd those votes of V ⧵ Vd who approve of both c and d while prioritizing those
votes that approve of c on levels up to i − 1 over votes that approve of c on level i. Only
if this is still not enough to make these two vote lists equal in size, we remove votes
from Wd until both lists are equally large.

•	 If |Vd| > |Wd| , we fill up Wd with votes of W ⧵Wd that approve of both c and d on the
first i levels while prioritizing those votes that approve of c on level i over votes that
approve of c on levels up to i − 1 , and if this is not enough to make these two vote lists
equal in size, we add those votes from W ⧵Wd to Wd that disapprove of both c and d.
Again, only if this is still not enough to make them both equal in size, we will remove
votes from Vd (while prioritizing votes that approve of c on level i) until both lists are
equally large.

Now, knowing that the resulting lists Vd and Wd are equal in size, we check the following
condition:

If (3) or (4) does not hold, d cannot beat c and win on level i, and we skip d and proceed to
the next candidate or the next stage.

Otherwise, we check the following condition:

If (5) does not hold, we output (Vd,Wd) , as d wins on the ith level and so prevents c from
winning. Note that for i = 1 condition (5) always fails to hold, so the following steps are
only done in majority stages 2 through n. If (5) does hold, then c wins on an earlier level
and we failed to control the election. We will try to fix this, if at all possible, in two steps.

(1)def i
(C,V)

(d) ≤�;

(2)scorei
(C,V)

(d) >scorei
(C,V)

(c) − 2�.

(3)scorei
(C,(V⧵Vd)∪Wd)

(d) ≥maj(V);

(4)scorei
(C,(V⧵Vd)∪Wd)

(d) >scorei
(C,(V⧵Vd)∪Wd)

(c).

(5)scorei−1
(C,(V⧵Vd)∪Wd)

(c) ≥maj(V).

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 40 of 48

Firstly, if there are votes in Wd that approve of c on levels up to i − 1 and of d on the
first i levels (this would mean that all votes in Vd approve of c and disapprove of d on the
first i levels), then we remove, by taking turns, one of them from Wd and one from Vd that
approve of c on level i as long as possible and as long as

and (4) still hold. Note that we can skip this step if Wd was not filled up with votes in earlier
steps to bring Wd and Vd to the same size.

Secondly, we find the largest vote lists Wcd ⊆ (W ⧵Wd) and Vcd ⊆ (V ⧵ Vd) such that:

(a)	 |Vd ∪ Vcd| ≤ �,
(b)	 |Vcd| = |Wcd|,
(c)	 all votes in Vcd approve of c on the first i − 1 levels,
(d)	 all votes in Wcd approve of c on level i or disapprove of c, and
(e)	 we have

Items (a), (b), and (e) make sure that we still have a valid replacement action and items (c)
and (d) find the best votes to be added and removed such that c loses approvals on the first
i − 1 levels.

Then we check the following condition:

If (6) holds, c cannot be prevented from reaching a strict majority in the first i − 1 levels
without d not reaching a strict majority or failing to beat c on level i as well.

Otherwise, d still has a strict majority on level i and c cannot beat d with a strict major-
ity on earlier levels, so we output (Vd ∪ Vcd,Wd ∪Wcd) as a successful pair.

ApprovalStage : This stage will only be reached if it was not possible to find a successful
control action in majority stages 1 through n.

We first check whether the following holds:

If (7) does not hold, we output “control impossible” since, after replacing at most � suit-
able votes, (1) we could not find a candidate that beats c in the majority stages and reaches
a strict majority and (2) c cannot be prevented from reaching a strict majority in overall
approvals; so c must win, no matter which at most � votes are replaced.

Otherwise (i.e., if (7) holds), we iterate over all candidates d ∈ C ⧵ {c} and check
whether

If this is the case, we skip d and proceed to the next candidate or, if none is left, we output
“control impossible” since then d cannot catch up on his or her deficit to c.

Otherwise, we will try to make d overtake c in overall approvals while decreasing c’s
overall approvals as much as possible in order to prevent c from reaching a strict majority.
We again determine the largest Wd ⊆ W such that |Wd| ≤ � and all votes of Wd approve
of d and disapprove of c. Furthermore, we again determine the largest Vd ⊆ V such that

scorei
(C,(V⧵Vd)∪Wd)

(d) ≥ maj(V)

scorei
(C,(V⧵(Vd∪Vcd))∪Wd∪Wcd)

(d) ≥ max{maj(V), scorei
(C,(V⧵(Vd∪Vcd))∪Wd∪Wcd)

(c) + 1}.

(6)scorei−1
(C,(V⧵(Vd∪Vcd))∪Wd∪Wcd)

(c) ≥maj(V).

(7)score(C,V)(c) − � < maj(V).

score(C,V)(c) − 2� > score(C,V)(d).

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 41 of 48  41

|Vd| ≤ � and all votes of Vd approve of c and disapprove of d. Once more, if |Vd| ≠ |Wd| ,
we fill up the smaller vote list with votes as follows until they are equal in size:

•	 If |Vd| < |Wd| , we fill up Vd with votes of V ⧵ Vd who approve of both c and d until
we either have |Vd| = |Wd| or run out of those votes, and in the latter case we now
keep adding to Vd those votes of V ⧵ Vd who approve of neither c nor d. Only if this
is still not enough to make the two lists equal in size, we remove votes from Wd until
both lists are equally large.

•	 If |Vd| > |Wd| , we fill up Wd with votes of W ⧵Wd that disapprove of both c and d
until we either have |Vd| = |Wd| or run out of those votes, and in the latter case we
now keep adding to Wd those votes of W ⧵Wd that approve of both c and d. We pre-
fer adding votes disapproving both c and d over votes approving both c and d since
the former type of votes keep c’s score as low as possible. Again, only if this is still
not enough to make both vote lists equal in size, we remove votes from Vd until both
lists are equally large. Afterwards, if there are votes in V ⧵ Vd that approve of both c
and d and votes in W ⧵Wd that disapprove of both c and d, we add as many as pos-
sible of them to Vd and Wd , respectively, always ensuring that |Vd| = |Wd| still holds.
By doing this, we further reduce c’s score without changing the score balance of c
and d.

Then we check the following conditions:

If (8) and (9) are true, output (Vd,Wd) since we have successfully prevented c from reach-
ing a strict majority and found a candidate d that beats c by approval score.

Otherwise, we proceed to the next candidate or, if none is left, output “control
impossible.”

Correctness of the algorithm follows from the explanations given during its description:
The algorithm takes the safest way possible to guarantee that a YES-instance is verified.
Clearly, the algorithm runs in polynomial time.

Turning to control by replacing candidates, fallback is resistant in both the constructive
and the destructive case.

Theorem 20  Fallback-CCRC​ and Fallback-DCRC​ are NP-complete.

Proof  Erdélyi and Rothe [22] (see also the subsequent journal version by Erdélyi et al.
[16]) showed that fallback is resistant to constructive and destructive control by delet-
ing candidates. Recall that in the former problem (denoted by Fallback-CCDC), we are
given a fallback election (C, V), a distinguished candidate c ∈ C , and an integer � , and
we ask whether c can be made a fallback winner by deleting at most � votes, whereas in
the destructive variant (denoted by Fallback-DCDC), for the same input we ask whether
we can prevent c from winning by deleting at most � votes. To prove the theorem, we will
reduce

(8)score(C,(V⧵Vd)∪Wd)
(d) >score(C,(V⧵Vd)∪Wd)

(c),

(9)score(C,(V⧵Vd)∪Wd)
(c) <maj(V).

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 42 of 48

–	 Fallback-CCDC to Fallback-CCRC​ and
–	 Fallback-DCDC to Fallback-DCRC​, respectively.

Let ((C,V), c,�) be an instance of Fallback-CCDC (or Fallback-DCDC). We con-
struct from (C, V) a fallback election (C ∪ D,V �) with (dummy) unregistered candidates
D = {d1,… , d

�
} , D ∩ C = � , where we extend the votes of V to the set of candidates C ∪ D

by letting all voters disapprove of all candidates in D, thus obtaining V ′ . Our distinguished
candidate remains c, and the deletion bound � now becomes the limit on the number of
candidates that may be replaced.

Since all candidates from D are irrelevant to the election and can be added to the elec-
tion without changing the winner(s), it is clear that c can be made a fallback winner of
(C, V) by deleting up to � candidates from C if and only if c can be made a fallback win-
ner of (C ∪ D,V �) by deleting up to � candidates from C and adding the same number of
dummy unregistered candidates from D. This gives the desired reduction in both the con-
structive and the destructive case.

10 � Range voting and normalized range voting

Now we study range voting and normalized range voting. Our results in this section are
summarized in Table 12.

We first solve the cases in which range voting and normalized range voting have the
same complexity and can be solved at one go starting with constructive control by replac-
ing voters that follows from a result by Menton [48] that makes use of the fact that approval
voting is a special case of range voting and normalized range voting.

Theorem 21  (Menton [48]) If approval voting is resistant to a case of control, range vot-
ing and normalized range voting will also be resistant for any scoring range.

Corollary 5  Range-Voting-CCRV and Normalized-Range-Voting-CCRV are NP-complete.

The destructive variant can be solved by a simple algorithm for range voting and nor-
malized range voting.

Theorem 22  Range-Voting-DCRV and Normalized-Range-Voting-DCRV are in P.

Proof  To prove membership in P of both problems, we will provide an algorithm that
solves the problems in polynomial time and outputs, if possible, which of the regis-
tered voters must be replaced by which unregistered voters for c to not win. The input
to our algorithm is a k-range election (C,V ∪W) , the distinguished candidate c ∈ C , and

Table 12   Complexity of control for range voting (second row) and for normalized range voting (the third
row). Our results are in boldface. “NPC” stands for “ NP-complete,” “ P ” for “polynomial-time solvable,”
and “I” for “immune”

CCAV CCDV CCRV CCAC​ CCDC CCRC​ DCAV DCDV DCRV DCAC​ DCDC DCRC​

NPC NPC NPC I P P P P P P I P
NPC NPC NPC NPC NPC NPC P P P NPC NPC NPC

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 43 of 48  41

an integer � . The algorithm will output either a pair (V �,W �) with V ′
⊆ V  , W ′

⊆ W , and
|V �| = |W �| ≤ � (i.e., for c to not win, there are votes in V ′ that must be removed and votes
in W ′ that must be added to the election instead), or that control is impossible.

First, the algorithm checks whether c is already not winning the election (C, V) and out-
puts (�, �) if this is the case, and we are done.

Otherwise (i.e., if c is initially winning), we will try to find a candidate d ∈ C ⧵ {c} who
can beat the distinguished candidate c if voters are replaced. Since removing voters from or
adding voters to the election does not affect the number of points (normalized or not) other
voters give to the candidates, we can compute the change of the points balance (for range
voting and normalized range voting, respectively) of c and d for each voter in V ∪W . For-
mally, let v ∈ V ∪W and sv

c
 and sv

d
 be the (normalized) points given to c and d by voter v.

Let dist(C,{v})(c, d) = sv
c
− sv

d
 be the points difference that c and d would gain if v were part

of the election. Order the voters in V and W, respectively, according to those values. Let
V � = � and W � = � . Then, in at most � rounds, choose one vote v ∈ V to remove from the
election that maximizes the points balance in favor of c (i.e., v = argmax

v∈V

dist(C,{v})(c, d) )

and one vote from w ∈ W to add to the election that maximizes the points balance in favor
of d (i.e., w = argmin

v∈V

dist(C,{v})(c, d) ). If the replacement of v with w changes the points

balance of c and d in favor of d (i.e., if dist(C,{w})(c, d) − dist(C,{v})(c, d) < 0 ), set
V = V ⧵ {v} , V � = V � ∪ {v} , W = W ⧵ {w} , and W � = W � ∪ {w}.

Afterwards, check whether c is beaten by d in (C, (V ⧵ V �) ∪W �) and output (V �,W �) if
this is the case. If there is no such candidate d, output that control is impossible. The algo-
rithm solves the problems and runs in polynomial-time.

Turning now to control by replacing candidates, we start by examining construc-
tive and destructive control for range voting and show that these problems are easy to
solve. First note that Menton [48] showed that range voting (just like its special variant
approval voting [33]) is immune to constructive control by adding candidates and to
destructive control by deleting candidates. For control by replacing candidates, how-
ever, range voting is susceptible both in the constructive and in the destructive case, as
shown in the following example.

Example 2  Consider a set C = {c, d} of registered candidates, a set D = {e} with only one
unregistered candidate, and one voter v with points vector (1, 2, 0), where C ∪ D is ordered
lexicographically (i.e., c gets one point, d two, and e zero points). If we are allowed to
replace one candidate, c loses in the 2-range election (C, V) under range voting, but wins
if d is replaced by e. This shows that range voting is susceptible to constructive control by
replacing candidates.

We can use the same candidate sets C and D and the points vector (1, 0, 2) for v to show
susceptibility of range voting for destructive control by replacing candidates analogously.

Theorem 23  Range-Voting-CCRC​ and Range-Voting-DCRC​ are in P.

Proof  For range voting, adding or removing candidates does not affect the points given
to other candidates. Therefore, for an input of Range-Voting-CCRC​ and Range-Voting-
DCRC​, respectively, we do the following after checking whether the chair’s constructive or
destructive goal is reached trivially (and accepting in this case).

In the constructive case, we need to check whether the number of registered candi-
dates that beat the distinguished candidate c is at most � and whether there are enough

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 44 of 48

unregistered candidates that do not beat c so that each of them can replace one registered
candidate beating c. If so, we accept; otherwise, control is impossible.

In the destructive case, we check if there exists an unregistered candidate d that beats c;
if so, we choose an arbitrary registered candidate that is not c and replace this candidate
by d; otherwise, control is impossible.

In contrast to range voting, we now show that normalized range voting is resistant to
constructive and destructive control by replacing candidates. Starting with constructive
control, we adapt a reduction by Menton [48] to reduce Hitting-Set to Normalized-Range-
Voting-CCRC​.

Theorem 24  Normalized-Range-Voting-CCRC​ is NP-complete.

Proof  The reduction is a simple modification of the reduction that Menton [48] used to
show that normalized range voting is resistant to constructive control by adding candidates.

Given a Hitting-Set instance (U,S, �) , construct a Normalized-Range-Voting-CCRC​
instance as follows. Let C = E ∪ {c,w} with E = {e1,… , e

�
} be the set of registered candi-

dates and D = U the set of unregistered candidates.

•	 2t(� + 1) + 4s voters give a score of 2 to c and each ei ∈ E , and a score of 0 to all other
candidates;

•	 3t(� + 1) + 2� voters give a score of 2 to w and each ei ∈ E , and a score of 0 to all
other candidates;

•	 for each b ∈ U , 4 voters give a score of 2 to b and each ei ∈ E , a score of 1 to w, and a
score of 0 to all other candidates; and

•	 for each Si ∈ S  , 2(� + 1) voters give a score of 2 to each b ∈ Si and each ei ∈ E , a
score of 1 to c, and a score of 0 to all other candidates.

The voters are exactly the same as in the reduction for Normalized-Range-Voting-CCAC​
of Menton [48] (the number of voters in the second group are adjusted to the nonunique-
winner model) except that every voter gives the candidates from E the maximum number
of points. Since w gains zero points from the second group of voters in order for w to
have a chance of winning, all candidates from E need to be removed. Together with the
fact that we can pad every solution of the Hitting-Set instance to contain exactly � ele-
ments of U we can conclude that (U,S, �) is a YES-instance of Hitting-Set if and only if
((C ∪ D,V),w, �) is a YES-instance of Normalized-Range-Voting-CCRC​.

For the destructive variant we can use the NP-hardness of Normalized-Range-Voting-
DCDC proven by Menton [48].

Theorem 25  Normalized-Range-Voting-DCRC​ is NP-complete.

Proof  To show NP-hardness we will reduce Normalized-Range-Voting-DCDC to Nor-
malized-Range-Voting-DCRC​. Given a Normalized-Range-Voting-DCDC instance
((C,V), c,�) , construct a set of unregistered candidates D with |D| = � and let every voter
v ∈ V give every candidate from D as many points as he or she gives to c. Therefore, c
and every candidate from D will always have the same number of points. Since c is always
part of the election (removing c would trivially achieve the destructive goal), adding any
candidate of D never affects the number of points given to other candidates. Therefore, if at

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 45 of 48  41

most � candidates from C ⧵ {c} can be removed from the election (C, V) to make c not win
(i.e., ((C,V), c,�) is a YES-instance of Normalized-Range-Voting-DCDC), we can add
the same number of candidates from D to the election without changing the winners, so
((C ∪ D,V), c,�) is a YES-instance of Normalized-Range-Voting-DCRC​. For the converse
direction, if we cannot make c be beaten in (C, V) by removing at most � candidates, we
cannot do so by adding candidates from D. Menton [48] showed that Normalized-Range-
Voting-DCDC is NP-hard. Thus the theorem is proven.

11 � Conclusions and open problems

We have investigated the computational complexity of control for Copeland� , maximin,
k-veto, plurality with runoff, veto with runoff, Condorcet, fallback, range voting, and
normalized range voting, closing a number of gaps in the literature. Table 1 on page 5 in
Sect. 2 gives an overview of our and previously known results on the complexity of control
by replacing, adding, and deleting either candidates or voters for the voting rules men-
tioned above.

Our proofs are based on the nonunique-winner model but can be modified to work for
the unique-winner model of the control problems as well. Notice that the complexity of
CCRV for 2-approval remains the only open problem in Table 1. The polynomial-time
algorithm for 2-Veto-CCRV from the proof of Theorem 5 cannot be trivially extended to
2-approval. In 2-veto, any optimal solution only replaces registered voters in V that veto
the distinguished candidate. However, this is not the case in 2-approval. In a worst case, we
need to replace registered votes in V that do not approve of c with some unregistered votes
in W that also do not approve of c. It is not clear how to reduce such a worst-case instance
to an equivalent b-EC instance.

We point out that the complexity of partitioning either candidates or voters (in the vari-
ous scenarios due to Bartholdi, Tovey, and Trick [7] and Hemaspaandra, Hemaspaandra,
and Rothe [33]) is still open for plurality with runoff and veto with runoff. In addition, it
would also be interesting to study the parameterized complexity of control problems for
plurality with runoff and veto with runoff. Third, it is important to point out that our NP
-completeness results provide purely a worst-case analysis and whether these problems
are hard to solve in practice needs to be further investigated. Finally, our polynomial-time
algorithm in Theorem 9 relies on that ties are broken in favor of the chair. It would be inter-
esting to see if the result still holds for other tie-breaking rules. It has been observed that
tie-breaking rules may affect the complexity of strategic voting problems [3, 52, 63].

Acknowledgements  We thank the anonymous JAAMAS, AAMAS’19, CSR’20, and ISAIM’20 review-
ers for their helpful comments. This work was supported in part by DFG Grants RO-1202/14-2 and
RO-1202/21-1.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

http://creativecommons.org/licenses/by/4.0/

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 46 of 48

References

	 1.	 Ahuja, R., Magnanti, T., & Orlin, J. (1993). Network Flows: Theory, Algorithms, and Applications.
New Jersey: Prentice-Hall.

	 2.	 Arora, S., & Barak, B. (2009). Computational Complexity: A Modern Approach. Cambridge: Cam-
bridge University Press.

	 3.	 Aziz, H., Gaspers, S., Mattei, N., Narodytska, N., & Walsh, T. (2013) Ties matter: Complexity of
manipulation when tie-breaking with a random vote. In: Proceedings of the 27th AAAI Conference on
Artificial Intelligence, pp. 74–80

	 4.	 Bang-Jensen, J., & Gutin, G. (2008). Digraphs: Theory. Berlin: Springer-Verlag.
	 5.	 Bartholdi, J., & III., & Orlin, J. . (1991). Single transferable vote resists strategic voting. Social Choice

and Welfare, 8(4), 341–354.
	 6.	 Bartholdi, J., & III., Tovey, C., & Trick, M. . (1989). The computational difficulty of manipulating an

election. Social Choice and Welfare, 6(3), 227–241.
	 7.	 Bartholdi, J., & III., Tovey, C., & Trick, M. . (1992). How hard is it to control an election? Mathemati-

cal and Computer Modelling, 16(8/9), 27–40.
	 8.	 Baumeister, D., & Rothe, J. (2015). Preference aggregation by voting. In: J. Rothe (ed.) Economics and

Computation. An Introduction to Algorithmic Game Theory, Computational Social Choice, and Fair
Division, Springer Texts in Business and Economics, chap. 4, pp. 197–325. Springer-Verlag

	 9.	 Betzler, N., & Uhlmann, J. (2009). Parameterized complexity of candidate control in elections and
related digraph problems. Theoretical Computer Science, 410(52), 5425–5442.

	10.	 Brams, S., & Sanver, R. (2009). Voting systems that combine approval and preference. In: S. Brams,
W. Gehrlein, F. Roberts (eds.) The Mathematics of Preference, Choice, and Order: Essays in Honor of
Peter C. Fishburn, pp. 215–237. Springer

	11.	 Chen, J., Faliszewski, P., Niedermeier, R., & Talmon, N. (2017). Elections with few voters: Candidate
control can be easy. Journal of Artificial Intelligence Research, 60, 937–1002.

	12.	 Conitzer, V., & Walsh, T. (2016). Barriers to manipulation in voting. In: F. Brandt, V. Conitzer,
U. Endriss, J. Lang, A. Procaccia (eds.) Handbook of Computational Social Choice, chap. 6, pp. 127–
145. Cambridge University Press

	13.	 Downey, R., & Fellows, M. (2013). Parameterized Complexity (2nd ed.). Springer-Verlag.
	14.	 Dwork, C., Kumar, R., Naor, M., & Sivakumar, D. (2001). Rank aggregation methods for the web. In:

Proceedings of the 10th International World Wide Web Conference, pp. 613–622
	15.	 Ephrati, E., & Rosenschein, J. (1997). A heuristic technique for multi-agent planning. Annals of Math-

ematics and Artificial Intelligence, 20(1–4), 13–67.
	16.	 Erdélyi, G., Fellows, M., Rothe, J., & Schend, L. (2015). Control complexity in Bucklin and fallback

voting: A theoretical analysis. Journal of Computer and System Sciences, 81(4), 632–660.
	17.	 Erdélyi, G., Fellows, M., Rothe, J., & Schend, L. (2015). Control complexity in Bucklin and fallback

voting: An experimental analysis. Journal of Computer and System Sciences, 81(4), 661–670.
	18.	 Erdélyi, G., Hemaspaandra, E., & Hemaspaandra, L. (2015). More natural models of electoral control

by partition. In: Proceedings of the 4th International Conference on Algorithmic Decision Theory, pp.
396–413

	19.	 Erdélyi, G., Nowak, M., & Rothe, J. (2009). Sincere-strategy preference-based approval voting fully
resists constructive control and broadly resists destructive control. Mathematical Logic Quarterly,
55(4), 425–443.

	20.	 Erdélyi, G., Piras, L., & Rothe, J. (2011). The complexity of voter partition in Bucklin and fallback
voting: Solving three open problems. In: Proceedings of the 10th International Conference on Autono-
mous Agents and Multiagent Systems, pp. 837–844

	21.	 Erdélyi, G., Reger, C., & Yang, Y. (2019). Towards completing the puzzle: Solving open problems for
control in elections. In: Proceedings of the 18th International Conference on Autonomous Agents and
Multiagent Systems, pp. 846–854

	22.	 Erdélyi, G., & Rothe, J. (2010). Control complexity in fallback voting. In: Proceedings of Computing:
the 16th Australasian Theory Symposium, pp. 39–48

	23.	 Faliszewski, P., Hemaspaandra, E., & Hemaspaandra, L. (2011). Multimode control attacks on elec-
tions. Journal of Artificial Intelligence Research, 40, 305–351.

	24.	 Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., & Rothe, J. (2009). Llull and Copeland voting
computationally resist bribery and constructive control. Journal of Artificial Intelligence Research, 35,
275–341.

	25.	 Faliszewski, P., & Rothe, J. (2016). Control and bribery in voting. In: F. Brandt, V. Conitzer,
U. Endriss, J. Lang, A. Procaccia (eds.) Handbook of Computational Social Choice, chap. 7, pp. 146–
168. Cambridge University Press

Autonomous Agents and Multi-Agent Systems (2021) 35:41	

1 3

Page 47 of 48  41

	26.	 Gabow, H. (1983). An efficient reduction technique for degree-constrained subgraph and bidirected
network flow problems. In: Proceedings of the 15th ACM Symposium on Theory of Computing, pp.
448–456

	27.	 Garey, M., & Johnson, D. (1979). Computers and Intractability: A Guide to the Theory of NP-Com-
pleteness. Freeman and Company: W. H.

	28.	 Ghosh, S., Mundhe, M., Hernandez, K., & Sen, S. (1999). Voting for movies: The anatomy of
recommender systems. In: Proceedings of the 3rd Annual Conference on Autonomous Agents, pp.
434–435

	29.	 Gonzalez, T. (1985). Clustering to minimize the maximum intercluster distance. Theoretical Com-
puter Science, 38, 293–306.

	30.	 Grötschel, M., Lovász, L., & Schrijver, A. (1988). Geometric Algorithms and Combinatorial Opti-
mization. Berlin: Springer.

	31.	 Guo, J., & Shrestha, Y.R. (2014). Controlling two-stage voting rules. In: Proceedings of the 21st
European Conference on Artificial Intelligence, pp. 411–416

	32.	 Haynes, T., Sen, S., Arora, N., & Nadella, R. (1997). An automated meeting scheduling system
that utilizes user preferences. In: Proceedings of the 1st International Conference on Autonomous
Agents, pp. 308–315

	33.	 Hemaspaandra, E., Hemaspaandra, L., & Rothe, J. (2007). Anyone but him: The complexity of pre-
cluding an alternative. Artificial Intelligence, 171(5–6), 255–285.

	34.	 Hemaspaandra, E., Hemaspaandra, L., & Schnoor, H. (2014). A control dichotomy for pure scoring
rules. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence, pp. 712–720

	35.	 Hemaspaandra, E., Hemaspaandra, L. A., & Menton, C. (2020). Search versus decision for election
manipulation problems. ACM Transactions on Computation Theory, 12(1), 3:1-3:42.

	36.	 Hemaspaandra, L. (2018). Computational social choice and computational complexity: BFFs? In:
Proceedings of the 32nd AAAI Conference on Artificial Intelligence, pp. 7971–7977

	37.	 Karp, R. (1972). Reducibility among combinatorial problems. In: R. Miller, J. Thatcher (eds.)
Complexity of Computer Computations, pp. 85–103

	38.	 Lang, J., Maudet, N., & Polukarov, M. (2013). New results on equilibria in strategic candidacy. In:
Proceedings of the 6th International Symposium on Algorithmic Game Theory, pp. 13–25

	39.	 Lin, A. (2011). The complexity of manipulating k-approval elections. In: Proceedings of the 3rd
International Conference on Agents and Artificial Intelligence, pp. 212–218

	40.	 Loreggia, A. (2012). Iterative voting and multi-mode control in preference aggregation. Master’s
thesis, University of Padova

	41.	 Loreggia, A. (2014). Iterative voting and multi-mode control in preference aggregation. Intelligenza
Artificiale, 8(1), 39–51.

	42.	 Loreggia, A. (2016). Iterative voting, control and sentiment analysis. Ph.D. thesis, University of
Padova

	43.	 Loreggia, A., Narodytska, N., Rossi, F., Venable, B., & Walsh, T. (2015). Controlling elections by
replacing candidates or votes (extended abstract). In: Proceedings of the 14th International Confer-
ence on Autonomous Agents and Multiagent Systems, pp. 1737–1738

	44.	 Magiera, K., & Faliszewski, P. (2017). How hard is control in single-crossing elections? Journal of
Autonomous Agents and Multi-Agent Systems, 31(3), 606–627.

	45.	 Maushagen, C., & Rothe, J. (2016). Complexity of control by partitioning veto and maximin elec-
tions and of control by adding candidates to plurality elections. In: Proceedings of the 22nd Euro-
pean Conference on Artificial Intelligence, pp. 277–285

	46.	 Maushagen, C., & Rothe, J. (2018). Complexity of control by partitioning veto elections and of
control by adding candidates to plurality elections. Annals of Mathematics and Artificial Intelli-
gence, 82(4), 219–244.

	47.	 Maushagen, C., & Rothe, J. (2020). The last voting rule is home: Complexity of control by partition
of candidates or voters in maximin elections. In: Proceedings of the 24th European Conference on
Artificial Intelligence, pp. 163–170

	48.	 Menton, C. (2013). Normalized range voting broadly resists control. Theory of Computing Systems,
53(4), 507–531.

	49.	 Menton, C., & Singh, P. (2013). Control complexity of Schulze voting. In: Proceedings of the 23rd
International Joint Conference on Artificial Intelligence, pp. 286–292

	50.	 Neveling, M., Rothe, J., & Zorn, R. (2020). The complexity of controlling Condorcet, fallback, and
k-veto elections by replacing candidates or voters. In: Proceedings of the 15th International Com-
puter Science Symposium in Russia, pp. 314–327

	51.	 Niedermeier, R. (2006). Invitation to Fixed-Parameter Algorithms. Oxford: Oxford University Press.

	 Autonomous Agents and Multi-Agent Systems (2021) 35:41

1 3

41  Page 48 of 48

	52.	 Obraztsova, S., Elkind, E., & Hazon, N. (2011). Ties matter: Complexity of voting manipulation
revisited. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp.
2698–2703

	53.	 Oflazer, K., & Tür, G. (1997). Morphological disambiguation by voting constraints. In: Proceed-
ings of the 8th Conference of the European Chapter of the Association for Computational Linguis-
tics, pp. 222–229

	54.	 Parkes, D., & Xia, L. (2012). A complexity-of-strategic-behavior comparison between Schulze’s
rule and ranked pairs. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence, pp.
1429–1435

	55.	 Pennock, D., Horvitz, E., & Giles, C. (2000). Social choice theory and recommender systems: Analy-
sis of the axiomatic foundations of collaborative filtering. In: Proceedings of the 17th National Confer-
ence on Artificial Intelligence, pp. 729–734

	56.	 Rothe, J. (2005). Complexity Theory and Cryptology. An Introduction to Cryptocomplexity. EATCS
Texts in Theoretical Computer Science. Springer-Verlag

	57.	 Sigletos, G., Paliouras, G., Spyropoulos, C., & Hatzopoulos, M. (2005). Combining information
extraction systems using voting and stacked generalization. Journal of Machine Learning Research, 6,
1751–1782.

	58.	 Tovey, C. (2002). Tutorial on computational complexity. Interfaces, 32(3), 30–61.
	59.	 West, D. (2000). Introduction to Graph Theory. New Jersey: Prentice-Hall.
	60.	 Yang, Y. (2017). The complexity of control and bribery in majority judgment. In: Proceedings of the

16th International Conference on Autonomous Agents and Multiagent Systems, pp. 1169–1177
	61.	 Yang, Y., & Guo, J. (2014).Controlling elections with bounded single-peaked width. In: Proceedings

of the 13th International Conference on Autonomous Agents and Multiagent Systems, pp. 629–636
	62.	 Yang, Y., & Guo, J. (2017). The control complexity of r-approval: From the single-peaked case to the

general case. Journal of Computer and System Sciences, 89, 432–449.
	63.	 Yang, Y., & Wang, J. (2017). Anyone but them: The complexity challenge for a resolute election con-

troller. In: Proceedings of the 16th International Conference on Autonomous Agents and Multiagent
Systems, pp. 1133–1141

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Gábor Erdélyi1 · Marc Neveling2 · Christian Reger3 · Jörg Rothe2 · Yongjie Yang4  ·
Roman Zorn2

	 Gábor Erdélyi
	 gabor.erdelyi@canterbury.ac.nz

	 Marc Neveling
	 marc.neveling@hhu.de

	 Christian Reger
	 christian.reger@ymail.com

	 Jörg Rothe
	 rothe@hhu.de

	 Roman Zorn
	 roman.zorn@hhu.de

1	 School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
2	 Institut für Informatik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
3	 School of Economic Disciplines, University of Siegen, Siegen, Germany
4	 Chair of Economic Theory, Saarland University, Saarbrücken, Germany

http://orcid.org/0000-0002-7731-6818

	Towards completing the puzzle: complexity of control by replacing, adding, and deleting candidates or voters
	Abstract
	1 Introduction
	2 Our main contributions
	3 Preliminaries
	4 Copeland voting
	5 Maximin voting
	6 k-veto
	7 Plurality with runoff and veto with runoff
	8 Condorcet voting
	9 Fallback voting
	10 Range voting and normalized range voting
	11 Conclusions and open problems
	Acknowledgements
	References

