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Abstract

This work concerns the interaction of single atoms and light as a platform for
quantum-communication networks, both experimentally and simulative.
It treats, at its kernel, the calcium ion as a node of such a network, i. e. as
storage of a quantum bit. Especially the quantum interface of this ion with the
light field and its experimental implementation are addressed in detail. Thereby
spontaneous Raman scattering is used to transfer the polarisation state of a single
photon onto the ion’s electronic state and vice versa.
On the way to this interface the Raman scattering process of single photons was
investigated intensively. This led to a high-precision experiment measuring the
phase shift of such photons as well as a detailed theoretical study of the spectral
and temporal structure of the photons.
The experiments used and expanded an existing hybrid quantum-optical set-up
consisting of two identical ion traps and a light source of entangled photon
pairs.

Zusammenfassung

Diese Arbeit behandelt die Wechselwirkung einzelner Atome mit Licht als Plattform
für Quantenkommunikationsnetzwerke, sowohl experimentell als auch simulativ.
Im Kern befasst sie sich mit dem Calciumion als Knotenpunkt eines solchen Netz-
werks, d. h. als Speicher eines Quantenbits. Insbesondere wird die Quantenschnitt-
stelle dieses Ions mit dem Lichtfeld und ihre experimentelle Umsetzung detailliert
behandelt. Dabei wird durch spontane Raman-Streuung der Polarisationszustand
eines einzelnen Photons auf den elektronischen Zustand des Ions übertragen und
umgekehrt.
Auf dem Weg zur Umsetzung dieser Schnittstelle wurde der Raman’sche Streu-
prozess einzelner Photonen genau untersucht. Dies mündete in einem Hochpräzi-
sionsexperiment zur Messung des Phasengangs solcher Photonen sowie zu einer
detaillierten theoretischen Studie der spektralen und temporalen Struktur der Pho-
tonen.
Zur Verwirklichung dieser Experimente wurde ein bestehender hybrider quantenop-
tischer Aufbau, bestehend aus zwei identischen Ionenfallen sowie einer Lichtquelle
verschränkter Photonenpaare, genutzt und erweitert.
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Zammefassung

Die dò Ahwett hannelt vun de Weggselwirgung ähnselner Atome mim Licht als
Arwettsplatt fa e Quandenetzwerk – unn zwar experimendell unn simmuleert.
In de Hauptsach geht’s um’s Calciumion als Knibbelche vun some Netzwerk, das
häßt, es dud e Quandebit speichere. Insbesonnere gebt die Quandeschnittstell
vum Ion mim Lichtfeld unn die experimendell Umsetzung dòdevun genau beschrieb.
Dòdebei werd mit spondaner Raman-Streiung de Polarisationszustand vumme
ähnselne Phoddòn uff de elegdronische Zustand vum Ion iwwertrah odder an-
nersch’erum.
Uffem Wäh zu der dò Schnittstell is ’em Raman sei Streiprozess genau unnersucht
wòr. Das hat zum ähne zuner scheen Messung vum Phasegang vun so Phodone
gefihrt unn zum annere zuner deddaijiert theoredisch Ahwett iwwer die spegdral
unn zeitlich Strugdur vun denne Phodone.
Fa die dò Experimende ze mache, is amme voorischer Quandeobdik-Uffbau ge-
knoddelt wòr unn aach noch meh draangebaut wòr. Bestehn duder aus zwä
Ionefalle vun ähn unn de selb Sort unn’er Quell vun veschrängde Phodonepaa-
re.
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Introduction

«I would like, ah, if I may,
. . . to take you on a strange journey.»

— C. Gray, RHPS (1975)[85]

The human civilisation is at the advent of a new milestone on the way of its
technological development—the quantum computer. It opens the door not only to
a huge speed-up due to the quantum parallelism, but although to new algorithms
that are not possible on classical machines. Its influence in the upcoming decades
is presumed to be as high as the invention of the classical computer had been in
the past decades. At the risk of seeming pretentious the author suggests this thesis
to be seen as one of the many cobblestones that pave the road to a quantum
computer based on single calcium ions.

A historical prologue

Since the emergence of quantum mechanics at the beginning of the twentieth cen-
tury it evolved into one of the two most-successful theories in the natural sciences,
besides the theory of general relativity. The key to its success—as of all other sci-
entific theories—is verification/falsification of its different implications through a
plenty of experiments and observations of predicted events, and finally its (tech-
nical) application. All quantum effects arisen from theory that have been tested
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in experiments were confirmed very well. Such an extreme success tempted the
Horodeckis to say: «What is predicted by quantum formalism must occur in the
laboratory.» [46].
Even more astonishing is the range of applications of quantum physics as it grew
since the middle of the past century, e. g. high-impact inventions like the transistor,
the laser, and the photovoltaic cell. The tremendous change in the human society
that is owed to the conventional computer would not be the same without the
many quantum technologies behind it. But the new millennium goes even deeper
into the application of quantum phenomena as the idea of the quantum computer
is at the threshold of its materialisation.

Quantum computation

The idea of a quantum computer came up in about 1980 by, among others, Yuri
Manin [73] and Richard Feynman [31]. Based on the insight that the high degree
of correlation in quantum systems causes the calculating time of a conventional
computer to grow exponentially with the simulated quantum system’s size (i. a.
NP-hard problems), the idea bloomed that a computer based itself on quantum
mechanics may simulate another quantum-mechanical system in a sufficiently fast
manner.
Such a device is defined in analogy to the conventional computer as a set of
quantum logic gates that transform a certain input state of one or more quantum
bits (q-bits) into an output state which is the desired result of the calculation. In
contrast to the classical machine it exploits the quantum phenomena of superposi-
tion and entanglement. Sloppily said, the first allows for q-bits to be in both logic
states, «0» and «1», simultaneously, and the other for stronger correlation between
q-bits as possible in classical systems. Both together open up a plenty of new lo-
gic gates not possible in conventional computers, the said quantum (logic) gates,
that allow for new kinds of algorithms, and enable a high degree of parallelism
in the computation.
In the following years, the first specific algorithms for quantum computers, i. e.
sets of quantum gates, were proposed. The three most-prominent exemplars are
the Deutsch–Jozsa algorithm [20, 21] of 1985/1992 as a proof of principle for
the performance advantage of quantum computation, the Shor algorithm [115, 116]
of 1994 for prime factorisation in polynomial time that may drastically accelerate
cryptanalysis, and the Grover algorithm [37, 38] of 1996 for data-base search that
is quadratically faster than conventional algorithms. As the number, complexity,
and field of potential applications for quantum algorithms are growing all the
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time, even today, it is not clear which physical platform will prevail as an efficient,
not to say commercial, quantum computer. To reach a decision, the research goes
into several different directions with the q-bits encoded in nuclear spin ensembles
by the nuclear magnetic resonance (NMR) technique [16], in magnetic flux quanta
of superconducting circuits (Josephson junctions) [18], in the spin or spatial states
of quantum dots [70], in colour centres of crystals (crystallographic defects) [51], in
neutral atoms trapped in an optical lattice [13], or in trapped ions as proposed
in this thesis. A good example of the latter, the first experimental realisation of
a quantum algorithm using trapped ions, was the Deutsch–Jozsa algorithm in
2003 using a single trapped calcium-40 ion [39].
From 1996 to 2000, David DiVincenzo has drafted out seven general criteria that
have to be fulfilled to accomplish sincere quantum communication [22, 23]. The
first five specify the quantum computer itself:

1. A scalable physical system with well characterised q-bits,

2. The ability to initialise the state of the q-bits to a simple fiducial state, such
as |000...〉,

3. Long relevant decoherence times, much longer than the gate operation time,

4. A «universal» set of quantum gates, and

5. A q-bit-specific measurement capability.

The two additional criteria specify the communication between several quantum
computers or nodes to establish a so-called quantum network:

6. The ability to inter-convert stationary and flying q-bits, and

7. The ability to faithfully transmit flying q-bits between specified locations.

Special attention has been drawn to the last criterion (no. 7) because the transmis-
sion of a flying q-bit does not only have to preserve the state of that q-bit but in
addition the entanglement it has with other q-bits of the network. This challenge
is connected with the no-cloning theorem [133] that rules out the possibility to amp-
lify or copy a quantum state. Together with the demanded transfer of information
over long distances it leads to the principle of the quantum repeater [14].
In analogy to the classical communication the channel between sender and re-
ceiver is divided by several repeater stations to decrease the information loss of
the transmissions along this way. But these stations cannot just measure the in-
coming signals, amplify, and send them to the next station. The procedure is
totally different: Before the transmission, states of maximal (or at least high) en-
tanglement are distributed between each pair of two subsequent stations (sender,
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repeaters, and receiver). As this is done only over short distances the losses are
low. Afterwards, the entanglement is swapped at each repeater station leading
to an entangled state of sender and receiver only. With an optional overhead
of additional channels this remote entanglement may be purified. The signal that
the sender wants to transmit is then teleported to the receiver using the resulting
entangled state. With this technique it is possible to reduce the error probability,
given e. g. by transmission through optical fibres, from exponential to polynomial
growth with the length of the channel. [25]

Overview of the thesis

This thesis studies the interaction of light and matter at the fundamental level of
single particles, more specifically, photons and a trapped calcium ion. In the
context of quantum technology, this contributes to the development of a quantum
network based on ion traps wherein the ions serve as the quantum nodes, local
memories and processors of quantum information, while the photons serve as the
flying q-bits to transport the information from node to node. The speciality of
this system is the use of spontaneous Raman scattering of single photons as a
heralding mechanism for the interaction. This permits high fidelity close to unity
despite the low efficiency of the interaction because the detection of an emitted
photon (the so-called herald) tells if the whole process was successful, and thus
all failed cases can be ignored.
The quantum interface treated in chapter 5 is a versatile building block of the
ion-trap quantum network. It uses a single calcium-40 ion trapped in a linear
Paul trap as a single-q-bit quantum node by enabling storage, readout, and
entanglement of quantum states. Of DiVincenzo’s criteria this interface fulfils
no. 2, 3, 5, and 6. Photon-pair sources as of section 1.5 in combination with
quantum converters [12, 67] are able to realise criterion no. 7. The missing two,
no. 1 and 4, are future tasks on the agenda of our research group.
The phase-shift measurement presented in chapter 6 has three aspects: 1.) It
reveals the phase difference of the complex absorption profiles of two Raman
transitions, not only their amplitudes. 2.) It demonstrates the high degree of control
over the atom-to-photon quantum state transfer in the ion-trap set-up. 3.) Its data
are evaluated through the application of the hitherto underestimated method of
Bayesian inference.
The quantum interface is set as a cornerstone «on the way» to quantum networking,
while the phase-shift measurement threw us «off the trail», but led to an extended
investigation of the spontaneous Raman process and brought grand insight to
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it.
As these experiments needed a significant amount of preparatory work this is
expounded in the preceding chapters: the experimental set-up in chapter 1, the
quantum optical theory in chapter 2 with a detailed investigation of the Raman
scattering summarised in chapter 3, and the numerical simulation of the Bloch
equations for the 18-level system in chapter 4.

List of publications

The following is a chronological list of the publications made during the time of
this thesis, and to which the author contributed:

[107] N. Sangouard, J-D. Bancal, P. Müller, J. Ghosh & J. Eschner «Heral-
ded mapping of photonic entanglement into single atoms in free space:
proposal for a loophole-free Bell test» in New J. Phys. 15 (2013), 085004.
DOI: 10.1088/1367-2630/15/8/085004

[111] M. Schug, J. Huwer, C. Kurz, P. Müller & J. Eschner «Heralded Photonic
Interaction between Distant Single Ions» in Phys. Rev. Lett. 110 (2013), 213603.
DOI: 10.1103/PhysRevLett.110.213603

[61] C. Kurz, J. Huwer, M. Schug, P. Müller & J. Eschner «A high-rate source
for single photons in a pure quantum state» in New J. Phys. 15 (2013), 055005.
DOI: 10.1088/1367-2630/15/5/055005

[80] P. Müller & J. Eschner «Single calcium-40 ion as quantum memory for
photon polarization: a case study» in Appl. Phys. B 114 (2014), 303, s.
arXiv: 1309.7863

This became the basis of the schemes of the quantum interface, section 5.2 on
p. 82.

[113] M. Schug, C. Kurz, P. Eich, J. Huwer, P. Müller & J. Eschner «Quantum
interference in the absorption and emission of single photons by a single
ion» in Phys. Rev. A 90 (2014), 23829

[64] C. Kurz, M. Schug, P. Eich, J. Huwer, P. Müller & J. Eschner «Experi-
mental protocol for high-fidelity heralded photon-to-atom quantum state
transfer» in Nat. Commun. 5 (2014), 5527. DOI: 10.1038/ncomms6527

This is the first publication of an implementation of the quantum interface presented
in this thesis, precisely the receiver mode, see section 5.3 on p. 89.
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Chapter 1

Natural and experimental fundamentals

This chapter summarises the natural prerequisites for the experiments as well as the
crucial technical parts of the experimental set-up. It begins in the first section with
the conceptual basis of quantum communication—the q-bit—that is described by
several mathematical objects as well as represented by different physical objects.
The calcium ion serves as one of the latter, and is introduced subsequently in
detail in section 1.2. Thereafter, the method and apparatus used in the research
group to master this quantum-mechanical object are described.

1.1 The spheres of Bloch and Poincaré

«. . . only a congeries of iridescent globes,
yet stupendous in its malign suggestiveness.»

— H. Heald & H. P. Lovecraft (1933)[43]

In analogy to the binary digit or bit as the fundamental unit of information in clas-
sical computers, the proposed quantum computer is based on the «quantum bit» as
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the fundamental unit of quantum information. The abbreviation «q-bit» or «qubit»,
introduced in [114], reminds of the cubit, the fundamental length unit of ancient ar-
chitecture [68]. Perhaps, this expression was chosen with the subconscious hope
that the one will suit the action to the wonderful idea of the quantum computer
as the other helped to create similarly impressive constructions as the pyramids of
Gizeh.
In the theory of quantum mechanics the most simple system that can carry in-
formation is the two-level system. Its general state, the q-bit, is described by
the two-dimensional density operator ρ̂ on the two-dimensional complex Hilbert
space H2 with the universal symmetry group SU(2) [71]. Thus, only three real num-
bers are needed to quantify ρ̂ and so it is rewritten as a three-dimensional real
vector in [33], the so-called Bloch vector r = (x, y, z), through

ρ̂ = 1 + r · σ̂
2 =

1
2 �

1 + z x − iy
x + iy 1 − z

� (1.1)

wherein σ̂ = (σ̂x, σ̂y , σ̂z ) is the vector operator of the Pauli matrices [91],

σ̂x = �
0 1
1 0

� , σ̂y = �
0 −i
i 0

� , σ̂z = �
1 0
0 −1

� . (1.2)

The reverse transformation is done by r = tr(ρ̂σ̂) = 〈σ̂〉. The properties of ρ̂
transform into properties of r as follows:

ρ̂ self-adjoint Û r real
ρ̂ positive semi-definite Û |r| ¢ 1

and tr ρ̂ = 1 is given by construction (1.1).
Following this equivalence, precisely the isomorphism of SU(2) and SO(3), the q-
bit may even be seen as the fundamental entity of nature as envisaged by Carl
Friedrich von Weizsäcker in his «Ur-Theorie» [71, 128–130]. Therein, information
is seen as the most fundamental concept of nature, and encoded in quantum-
mechanical states. These in turn are unravelled into tensor products of the smallest
possible alternatives, the binary alternative, i. e. the decision between just two
options. He calls these «ur-alternatives», nowadays they are called q-bits. As the
density operator ρ̂ of each q-bit corresponds to a three-dimensional entity r in
real space, this theory considers the three-dimensionality of space as an inherent
consequence of quantum mechanics.
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One famous physical example of a q-bit is the spin state of a spin-1⁄2 particle.
The expectation value of its spatial spin orientation Ŝ is directly given by the
quantum-mechanical state through tr(ρ̂Ŝ) = ħr. An expressive visualisation thereof
is the so-called Bloch sphere where the pairs of eigenstates of the three Pauli
matrices,

|±1x〉 =
1
√
2

�
1
±1
� , ||±1y� =

1
√
2

�
1
±i
� , |+1z〉 = �

1
0
� , |−1z〉 = �

0
1
� ,

correspond to ±ex, ±ey , and ±ez in real space, and thus define the three Cartesian
axes, see figure 1.1.

x
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z
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V D

A
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θ

φ

(a)

r θ φ S1 S2 S3 pol.

+ex
°
2 0 1 0 0 H

−ex
°
2 ° −1 0 0 V

+ey
°
2

°
2 0 1 0 D

−ey
°
2

3
2° 0 −1 0 A

+ez 0 (0) 0 0 1 R
−ez ° (0) 0 0 −1 L

(b)

Figure 1.1 – The Bloch and Poincaré sphere with the six basic Pauli eigenstates, their Bloch
vectors r expressed by the two spherical angles θ and φ, and their relation to the Stokes
parameters Si , and to the six polarisation states (R, L, H, V, D, and A). Values in parentheses
are chosen arbitrarily.

Another example is the polarisation state of an electromagnetic wave. This clas-
sical degree of freedom translates into a quantum-mechanical property through
field quantisation: The gauge boson of the electromagnetic field is the photon
(with spin 1), whose spin state is again a two-level system as the relativistic be-
haviour of light prohibits the one spin state perpendicular to the direction of
propagation (mS = 0). The two remaining states of spin orientation, parallel and
anti-parallel to the propagation direction (mS = +1 and −1), correspond to right- and
left-circular polarisation, respectively. As a visualisation, the expectation values
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of the spin orientation for all possible superposition states form again a sphere
in the three-dimensional space, called Poincaré sphere. Two opposite points on
it correspond to a pair of orthogonal polarisations. Thus, the poles correspond
to the two circular polarisations, and its equator comprises all linear polarisation
states.
If the direction of propagation is chosen to be the z-direction, the Poincaré and
the Bloch sphere are identical. Its surface (r = 1) encompasses all pure states
while its volume covers all mixed states.
The connection to the electric field is depicted in the following. The normalised
Stokes parameters [120], S1, S2, and S3, are combined to a three-dimensional
vector of a length r ¢ 1 that is equal to the Bloch vector:

r =
 ((
0

S1

S2

S3

!))
1
=
 ((
0

r cos φ sin θ
r sin φ sin θ

r cos θ

!))
1
∈ R3.

The two angles θ and φ for inclination and azimuth of the standard spherical
coordinate system [98] are introduced to characterise all pure polarisation states
(with r = 1). The corresponding state in the two-dimensional Hilbert space is

|θ,φ〉 = e−i
φ
2 cos θ

2 |R〉 + e+i
φ
2 sin θ

2 |L〉 ∈ H2 (1.3)

using the two states |R〉 and |L〉 of right- and left-circular polarisation as basis.
It is associated with the direction of the wave’s electric field vector in the same
manner,

E (θ, φ) = |E | �e−i
φ
2 cos θ

2eR + e+i
φ
2 sin θ

2eL	 , (1.4)

where eR and eL are the vectors for the two circular polarisations in position
space. These are complex linear combinations of ones for horizontal and vertical
polarisation:

eR =
1
√
2

(eH + ieV ) =
1
√
2

 ((
0

1
i
0

!))
1

and eL =
1
√
2

(eH − ieV ) =
1
√
2

 ((
0

1
−i
0

!))
1
.

This notation of the electric polarisation of a single photon as a quantum-mechanical
state is henceforth used in this thesis. The integration over all possible polarisa-
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tion states is the well-known spherical integral over the unit sphere:

X
unit sphere

dV =
1

X
0

°

X
0

2°

X
0

r2 sin θ dr dθ dφ

1.2 The calcium ion

The quantum system of choice for the experiments presented in this work is the
singly ionised isotope 40 of calcium, 40Ca+. It has several advantages, in technical
as well as in physical aspects: Calcium is a wide spread, easily extracted and
purified material. In natural sources it is dominated by the stable isotope 40 with
nearly 97 % [76]. Its electronic transitions are well accessible by wavelengths
of conventional laser systems and it is easily trappable and storable for several
hours or even days in a linear Paul trap [47]. The 4 s–3d quadrupole serves as a
good transition for the purpose of quantum logic. The lack of nuclear spin allows
one to concentrate the study on the valence electron alone, and spares the need
of microwave sources to drive hyperfine transitions.

4 p 2P3/2

gJ =
2+gS

3

4 p 2P1/2

gJ =
4−gS

3

3 d 2D5/2

gJ =
4+gS

5

3 d 2D3/2

gJ =
6−gS

5

4 s 2S1/2
gJ =gS

393nm
A

=
2°

·21.49
M

Hz

397
nm

A
=

2°
·20.97

M
Hz

854 nmA = 2° · 1.35 MHz850 nm
A

= 2° · 152 kHz866 nm
A = 2° · 1.46 MHz

729 nm

A = 2° · 136
mHz

732 nm

A = 2° · 135 mHz

Figure 1.2 – The energy level scheme of 40Ca+. Shown are the five lowest energy levels as
grey boxes enclosing their Zeeman-split sub-levels as black crossbars. The seven optical
transitions connecting these levels are drawn as arrows labelled with their wavelengths and
Einstein A-coefficients. The Landé factors gJ of the levels are although given.

In this work, the relevant energy levels of 40Ca+ are the ground state, where the
one remaining valence electron is in the 4 s-orbital, and the lowest excited states,
where it is in the 3 d- or 4 p-orbital. Due to the fine-structure splitting, these are
realised as five different energy levels, shown in figure 1.2. They are connected
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by seven optical transitions identified by their wavelengths. The exact values are
given in table 1.1. Both transitions between 4 s and 3 d are dipole-forbidden,
electric quadrupole transitions. This causes the 3 d-levels to be metastable with
lifetimes of about 1 s. The lifetime τ of an energy level is given by the reciprocal
of its decay constant Γ , i. e. the sum over the Einstein A-coefficients of all its
decay channels, 1

τ = Γ = @i Ai (also given in table 1.1 in technical frequencies).
The lack of a nuclear spin leaves the spin of the valence electron as the total
spin of the system, S = 1⁄2. Thus, the anomalous Zeeman effect is observed in
presence of an external magnetic field, splitting the five energy levels further into
eighteen Zeeman sub-levels (black crossbars in figure 1.2). For a field strength of
several Gauss (= 10−4 T), the splitting of neighbouring levels is in the order of MHz
in frequency. The resulting plethora of states and transitions serves as a good
playground for quantum optics [10, 39, 53, 108, 126, etc.].

Table 1.1 – Numerical values of the relevant states and transitions of 40Ca+. The transition
wavelengths were measured using a Fizeau interferometer (model WS/7 of «HighFinesse
GmbH») and are given for vacuum. Their uncertainties correspond to the interferometer’s
inaccuracy of 60 MHz. The last column gives the numbering of the transitions used in the
Matlab programme of section 4.2 on p. 65.

level lifetime decay channel wavelength Ai/2° no.

P3/2 6.924(19) ns[52] Ù D5/2 854.44337(15) nm 1.350(6) MHz[52] 6
Ù D3/2 850.03561(14) nm 0.1520(9) MHz[52] 4
Ù S1/2 393.48075(3) nm 21.49(6) MHz[52] 3

P1/2 7.098(20) ns[52] Ù D3/2 866.45211(15) nm 1.44(7) MHz[52, 100] 2
Ù S1/2 396.95915(3) nm 20.97(7) MHz[52, 100] 1

D5/2 1.168(9) s[57] Ù S1/2 729.34765(11) nm 0.1363(10) Hz[57] 5
D3/2 1.176(11) s[57] Ù S1/2 732.5905(2) nm 0.1353(13) Hz[57] 0
S1/2 stable

In the experimental set-up, the S1/2–P1/2 transition is used for cooling the ion
by a laser at 397 nm wavelength that is slightly red-detuned from the atomic
resonance. In addition, a laser at 866 nm is used to pump the ion back from the
D3/2 manifold, which happens many orders of magnitude faster than the natural
decay at the 732 nm transition. Both lasers are switched on also in the idle time
between actual measurements or experimentation sequences as this cooling cycle
is part of the trapping too. Above this �-shaped level system S1/2–P1/2–D3/2
lies another �-system S1/2–P3/2–D5/2 with nearly the same properties but more
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Zeeman sub-levels. This one is used for the quantum logic with the advantage of
separating the cooling and fluorescence detection from the logical operations.
Note, that the two transitions at 397 nm and 393 nm wavelength are the blue
Fraunhofer lines H and K, respectively [35]. Qualitatively, their level structure
is the same as the well-known D1 and D2 lines of neutral sodium.

1.2.1 Photo-ionisation of calcium

The two natural occurrences of atomic calcium are neutral (Ca I) in solid state and
doubly ionised (Ca III) in solution. To attain singly ionised calcium (Ca II) only
one of the two valence electrons has to be removed from the neutral atom. In
the experiment this is achieved in a two-step photo-ionisation process: From the
ground state of Ca I, [Ar] 4 s2, a photon at 423 nm wavelength excites to [Ar] 4 sp,
and a second photon at 389 nm wavelength transfers one electron to a Rydberg
state where the trap potential adds the tiny last bit of energy to ionise the atom
to Ca II, precisely [Ar] 4 s. For the first step a frequency-doubled diode laser is
used, and for the second step a simple ultraviolet LED. Details are found in [110,
p. 68 ff.].

1.3 Theory of ion trapping

«In the first place it is fair to state
that we are not experimenting

with single particles . . . »

— E. Schrödinger (1952)[109]

To use a single atomic ion as a quantum-mechanical test ground, it has to be wholly
separated from the environment. To put this into practice, the research group,
among many others, uses the linear type of the radio-frequency trap invented
(and patented) by Wolfgang Paul in the year 1953 [86–89] as engine of choice.
Facile in construction and very versatile in use, it brought him the Nobel prize in
physics in 1989 [90]. Being placed in ultra-high vacuum, such a device is able to
trap and confine single charged particles for long times, and thus, it serves as the
fundamental building block for excellent high-precision spectrometers [84, 131].
It is impossible to trap a charged particle in a static electromagnetic field be-
cause of the lack of a global minimum in such a field, as dictated by Earnshaw’s
theorem [26]. In detail, the Laplace equation for the two electromagnetic poten-
tials Φ and A shows that all extrema in free space are in fact saddle points. In
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the Paul trap this problem is solved through an oscillating field. It has equipoten-
tial planes in the shape of an elliptic hyperboloid (the so-called saddle potential)
with an oscillating cross section. In the case of the linear type, this is achieved by
four longitudinal electrodes, metallic rods or blades, arranged parallel to each
other as the edges of a cuboid, at which two diagonally opposed electrodes
carry the same voltage URF oscillating with a radio frequency ωRF. This oscillat-
ing quadrupole potential in the cross section is superposed by a static electric
potential Uend of two ring- or tiplike end electrodes that sit on the middle axis
(see fig. 1.3).

blade
URF

ground

(a)

URF

blade

blade

Uend

end tip end tip

(b)

Figure 1.3 – Schematic drawings of the linear Paul trap used in the experimental set-up: a)
cross section through x-y-plane; b) side view, cut through two opposed blades.

The resulting total electric potential is approximated about the trap centre by

Φ(x, y, z, t ) =
αUend

2l20
(2z2 − x2 − y2) +

URF

2r20
cos(ωRFt )(x2 − y2) (1.5)

wherein the minimum distance of the trap centre to the end electrodes and to the
longitudinal electrodes are denoted by l0 and r0, respectively. The trap geometry
causes a shielding of the axial potential, which is conveyed by the numerical
factor α < 1. The equations of motion for each of the Cartesian coordinates of a
charged particle in this potential (1.5) are Mathieu differential equations [75]

d2xi
dφ2

+ (ai − 2qi cos(2φ))xi = 0

with a phase φ = ωRFt
2 as the variable and six dimensionless coefficients, ai and

qi , called stability parameters. They are defined by

−ax = −ay =
az
2 =

4QαUend

Ml20 ω2
RF

=: a, −qx = qy =
2QURF

Mr20ω2
RF

=: q, qz = 0
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where Q and M denote the charge and mass of the particle, respectively.
In the case of |ai | , q2

i À 1, the Mathieu equations have stable solutions in which
the particle’s motion in each coordinate is a superposition of two oscillations,

xi (t ) È cos(ωi t ) �1 −
qi
2 cos(ωRFt )	 ,

the so-called «micro-motion» with the fast, driving radio frequency ωRF in the x-y-
plane and the «secular motion» with a slower frequency,

ωx = ωy =
ωRF
2

é
1
2q2 − a =: ωr or ωz =

ωRF
2
√az =

ë
2QαUend

Ml20
,

in the x-y-plane and on the z-axis, respectively.

1.4 The twin ion engine

Q.: «Can you fly a TIE Fighter?»
A.: «I can fly anything.»

— Star Wars V II (2015)

To accomplish more complex experiments in the scope of quantum networks, e. g.
showing interaction of two distant single ions [111], two identically constructed Paul
traps are set up separated by about one metre from each other in the same
laboratory. They are referred to as «Dark Trap» (DT) and «Bright Trap» (BT) due to
their change in colour after the first bake-out [104]. The design of the traps was
developed at the «Leopold-Franzens-Universität Innsbruck» [40] in the mid-1990s.
Its size parameters are r0 = 0.8 mm and l0 = 2.5 or 5 mm according to eq. (1.5),
and the geometric shielding factor unfolded to be α = 0.183�. With a typical
static electric potential of Uend = 400 V the resulting axial secular frequency is
ωz = 2°· 1.197 MHz�. The radio frequency of ωRF = 2°·26.133 MHz with an amplitude
of URF = 1449 V leads to the radial secular frequency, ωr = 2° · 3.647 MHz�, and
to the stability parameters, a = 0.004 and q = 0.405�. These verify the case of
stable oscillatory motion of the ion.
Initially, the twin ion engine (TIE) was set up at the «Institut de Ciències Fotò-
niques» (ICFO) in Barcelona. Detailed descriptions of that stage are given in
the theses of Marc Almendros, Felix Rohde, and Carsten Schuck [3, 104, 110].
In the year 2010, the whole apparatus was moved to the «Universität des Saar-
landes» (UdS) in Saarbrücken, and modified and improved over the following
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years by Jan Huwer, Michael Schug, Christoph Kurz, Stephan Kucera, Pascal
Eich [28, 47, 58, 62, 112], and the author.
All devices sensitive to acoustic noise are set up on optical tables actively damped
by laminar air flow. Both vacuum chambers are mounted on one table, model ST
of «Newport Corporation», all lasers are set up on another one, model RS4000 of
«Newport Corporation», except for the 854 nm laser that rests on the same table
(by «Melles Griot») as the photon-pair source (sec. 1.5).

1.4.1 Vacuum vessels

Each Paul trap is mounted inside a separate chamber of ultra-high vacuum,
hanging from the top CF-200 flange under an angle of 22.5˚ to the horizontal
plane. Optical access is achieved through eight CF-63 ports in that plane, one CF-
200 port at the bottom, and three small CF-16 ports on top with cut-outs through
the mounting flange, for details see [110, p. 26–29]. The ultra-high vacuum (UHV)
is reached and maintained without interruption over several years by a 50-liter
ion pump, model IP-050 of «Thermionics Laboratory Inc.», after a necessary low
pressure is reached by a titanium sublimation pump, model SB-1020 of the same
company. Applying this procedure after a two-step bake-out of the vacuum cham-
ber as described in [110, p. 242] a pressure below 5 · 10−10 mbar is reached.
As a source of single calcium atoms two tubes of stainless steel, 60mm long and
2mm in diameter, filled with calcium powder are installed below each Paul trap.
If one of them is heated up to 300–400˚C by running an electric current of 4–6A
thought them, an atom beam of evaporated calcium flows through the trap centre.
The other oven is just a reserve. With the activation of both, the photo-ionisation
light sources according to section 1.2.1 and the trap potential, single 40Ca+ ions
are trapped within a few minutes.

1.4.2 Optical access

Together with each trap a pair of high-numerical-aperture laser objectives (HALOs)
is mounted in-vacuum, and connected to the top flange by a three-dimensional
translation stage1 that allows the fine-adjustment of the focussing of the laser
beams to the trap centre. The HALOs consist of four lenses especially designed2

to be diffraction limited over the wide range of visible wavelengths, 400 nm to

1) This ANP xyz 100 configuration of «attocube systems AG» consists of two ANP x and one ANP z
translation stage stacked above each other.
2) The HALOs are designed by the company «Linos Photonics», for details see [110, p. 51–55].
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870nm, and to collect a reasonable portion of the solid angle. With an opening
angle of 47.2˚ they cover 4.18 % of the solid angle corresponding to a numerical
aperture (NA) of 0.4. Thus, the focal spot at the centre of the trap ranges from
1.2 ¬m at 393 nm wavelength to 2.6 ¬m at 866 nm wavelength [36]. This enables
the separate optical access («addressing») of single ions in a string, both by laser
excitation and by their emission (fig. 1.4).

Figure 1.4 – Image of the first ion string trapped in Saarbrücken. This false-colour picture
was taken on 26. 11. 2010 with the Andor camera (see sec. 1.4.4) detecting blue fluorescence of
397 nm wavelength of about 100 000 photons per second with optics focused to the centre
of the trap (BT). The four trapped ions are visible as clearly separated single spots.

Any laser beam sent through one of the other view ports, without the strong
focusing by the HALOs, illuminates all ions in the trap centre with almost equal
strength. Typical focal spots range from 50 to 100 ¬m.

1.4.3 Magnetic field

Each trap is equipped with a set of magnetic coils outside of the vacuum vessel.
These sets consist of three pairs of series-connected magnetic coils that provide
three orthogonal static magnetic fields. One of them, usually the pair on the
HALO axis, produces the main static magnetic field B0 that defines the quant-
isation axis of the ion (see p. 28) while the other two are weaker and provide
compensation of the terrestrial field and of static stray fields, which is important
for a controlled and stable orientation of the quantisation axis. With an elec-
tric current of about 3 A through the main pair a typical magnetic field of 280 ¬T
is reached. The employed power supplies of model QL 355 of «Aim-TTi» have a
long-term stability below 100 ¬A at 3A leading to an expected contribution to the
magnetic field noise just below 10 nT.
Another important part of magnetic field noise is attributed to dynamic stray fields
emitted chiefly by the electronic devices of the laboratory itself. These show the
power-line frequency of 50 Hz and its harmonics. Three additional smaller coils
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are set-up for compensation of the dynamic stray fields, but only the one at the
quantisation axis is used so far. A weak AC signal of sine components at 50 Hz
and 150 Hz with fixed amplitudes and phases given by calibration measurements
is applied to this coil. The signal is locked to the power line by a phase-locked
loop (PLL). This compensation leads to an increase of the ion’s coherence time
from 97 ¬s to 204 ¬s at the RF transition in the S1/2, measured through Ramsey
interferometry [101]. Details are given in the master thesis of Matthias Kreis [56].

1.4.4 Photon detection

The detection of single photons is a crucial point in quantum-optics experiments.
Photons emitted by the calcium ion are sent either via optical fibre cables to single-
photon detectors shielded in lightproof boxes for fast and efficient detection or
to a highly sensitive camera for spatial resolution.
The blue photons emitted at the fluorescence transitions of 393 nm or 397 nm
wavelength are sent through a multi-mode fibre with about 85 % transmission ef-
ficiency into photo-multiplying tubes (PMT). With the model «H7422P-40 SEL» of
«Hamamatsu Photonics K. K.» quantum efficiencies of 25 and 28(1) % are achieved.
The temporal spread of the electric signals that correspond to single-photon de-
tections is specified to be 280 ps. Taken the cooling cycle of a single trapped
ion as an example (see sec. 1.2), a detected fluorescence rate of slightly more than
200000 clicks per second is achievable under optimised conditions for high emis-
sion. This almost reaches the possible maximum for steady-state conditions estim-
ated as follows: Under strong excitation all eight participating Zeeman sub-levels
(of S1/2, P1/2, D3/2) are equally populated leading to the maximal population of
the P1/2 of 2⁄8 (see figure 1.2). Multiplying this with the Einstein A-coefficient
of the transition, 2° · 20.97(7) MHz, and with the efficiencies of photon collection,
coupling, and detection, results in an estimated maximum of 320 000 clicks per
second.
The infrared photons are guided through single-mode fibres with about 60 %
efficiency onto avalanche photodiodes (APD), model «COUNT-10C-FC» of «Laser
Components», with a detection efficiency of 24(5) % and a low dark-count rate of
about 30/s.
For spatial resolution an electron-multiplying charge-coupled device (EMCCD),
camera model «iXon DV887DCS-BV», serial number X-1602, from «Andor Techno-
logy Ltd.» is used. The ion’s fluorescence light collected by a HALO is magnified
by an optical telescope by a factor of 20. Thus, the size of a camera pixel of
16 ¬m corresponds to 800nm resolution in the object plane of the ion as depicted
in figure 1.4.

18

www.hamamatsu.com
www.lasercomponents.com
www.lasercomponents.com
www.andor.com
www.andor.com


1.4.5 Coherent light sources

To address all five electric dipole transitions and the quadrupole transition at
729 nm mentioned above, six commercial diode lasers with additional, home-
build stabilisation are used. All of these are extended-cavity diode lasers (ECDL)
with a grating in Littrow configuration for the optical feedback, developed by
«Toptica Photonics AG» [102]. Depending on the wavelength different models are
in use; these are «DL 100» for 852 nm and 846 nm, «DL pro» for 850 nm, 866 nm,
and 393nm, «TA pro» for 729nm, and «TA-SHG pro» for 397nm and 854nm. Their
fundamental optical frequency has a narrow spectral linewidth of about 150 kHz
in free-running mode (for a integration over 5 ¬s). The abbreviation SHG means
second-harmonic generation. These models are diode lasers at the fundamental
wavelengths 794 nm and 854 nm, respectively, that are frequency doubled to
397 nm and 427 nm by a non-linear crystal (in a χ(2) process) in a folded ring
cavity. In the case of the 854 nm laser a portion of the fundamental beam is
sent directly to the ion while the SHG light of 427 nm wavelength is used as the
source of photon pairs at 854 nm in another set-up, see section 1.5. Each laser is
frequency stabilised via a so-called transfer resonator, see section 1.4.6 and [103],
to the same reference laser of 852 nm wavelength that itself is stabilised to the
S1/2–P3/2 transition of caesium by saturated absorption in a vapour cell.
As the light of 729 nm wavelength is used to drive the S1/2–D5/2 quadrupole
transition in 40Ca+ with a natural linewidth of only 136mHz (see section 1.2 on p. 11),
more effort has to be put into the frequency stabilisation of that laser. The main
part of this is owed to Jan Huwer and well documented in his thesis [47]. The laser
is stabilised to an ultra-stable resonator made of ultra-low expansion glass (ULE)
that has a high finesse of 480 000 and a spectral linewidth of 4.034(5) kHz.
Together with the Pound–Drever–Hall technique (PDH), see section 1.4.6, and
a high-speed control amplifier, model «FALC», the linewidth of the laser light is
reduced below 32(2) Hz.
In addition, as part of the photo-ionisation (sec. 1.2.1 on p. 13) a laser of 846 nm
wavelength is used. This one is not stabilised, but tuned manually to the proper
wavelength where it stays for the duration of some minutes needed for the trap-
ping. Its light, about 130 mW, is frequency doubled to 423 nm wavelength by
single-pass second-harmonic generation, sending it through a periodically poled
crystal of potassium titanyl phosphate (KTiOPO4).
Acousto-optical modulators (AOM) are used to fine-tune the frequencies of the
lasers in the MHz-regime as well as to control their amplitude and phase sent
into the ion trap. A special kind of AOM, an acousto-optic deflector (AOD), is
used to address single sites of an ion string, which is mandatory for the effective
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operation of multi-ion quantum gates.

A special source of electromagnetic radiation is used to drive the magnetic di-
pole transition in the S1/2 ground-state manifold. It is an LC circuit consisting of a
tunable capacitor and a simple two-winding copper-wire coil underneath the bot-
tom flange of the vacuum vessel, which transmits the applied radio frequency (RF)
as an electromagnetic wave to the ion. The coil has a diameter of 16 cm and its
centre is 8 cm below the ion’s position in the trap, see figure 2.4 on p. 40. A ra-
dio frequency equal to gSµBB0/h, i. e. 8MHz for an RF amplitude of B0 É 300 ¬T,
is resonant with the transition between the two Zeeman sub-levels in S1/2. De-
tails to this RF coil are given in [62, p. 50 ff.]. Both traps are equipped with such
a device.

1.4.6 Laser stabilisation

To excite an atomic transition by laser light in a fully controlled way the laser
needs to have a linewidth comparable to, but lower than the natural linewidth
of the transition and a stable optical frequency, both over the course of a whole
experimental sequence (or even a whole measurement day). The first is achieved
by locking the laser to a Fabry–Pérot cavity with the Pound–Drever–Hall tech-
nique (PDH) [9, 24], and the second by locking this cavity to a stable reference.
Therefore, these cavities are called transfer resonators.
As mentioned above the primal reference for frequency stability is the S1/2–P3/2
transition of caesium at 852.347 275 82(27) nm [124]. By Doppler-free absorption
spectroscopy in a caesium vapour cell at room temperature the first transfer res-
onator is used to lock the 852 nm laser to this reference. All other lasers use
that laser as reference and are locked to it by their individual transfer resonat-
ors. This active laser-stabilisation scheme was introduced at ICFO in the starting
time of the research group, for more details see [3, 103, 104].

1.5 Photon-pair sources

As a resource of quantum-mechanical entanglement, a source of photon pairs
based on spontaneous parametric down-conversion (SPDC) is set up in the same
laboratory.
In a non-linear optical medium, such as periodically poled potassium titanyl phos-
phate (KTiOPO4), the dielectric polarisation P does not only depend linearly on
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the electric field E but also on higher orders,

P = ε0 �χ(1)E + χ(2)E2 + χ(3)E3 + . . .� ,

wherein χ(n) are tensors of (n+1)-th order that represent the electric susceptibilities of
n-th order, respectively. Quantum field theory tells that the second order, due to
its E2-dependence, induces two-photon processes in the quantum regime. One of
these is the spontaneous parametric down-conversion or parametric fluorescence
where a single photon with frequency ωin and wave vector kin entering the non-
linear medium is transformed into a pair of two photons with frequencies ωi and
wave vectors ki . The conservation of energy and momentum are reflected in the
so-called phase-matching conditions,

ħωin = ħω1 + ħω2 and ħkin = ħk1 + ħk2.

These cause the resulting photons of a pair to be entangled both in frequency
and propagation direction. Due to the conservation of angular momentum they
are additionally entangled in polarisation. In the case of periodically poled
KTiOPO4 (with a certain arrangement of regularly spaced layers of alternating
ferro-electric orientation) the photon pair is in the maximally entangled singlet
state,

|Ψ −〉 = 1
√
2

(|1H1V 〉 − |1V 1H〉) ,

that is often sloppily deemed the Bell state of orthogonal (linear) polarisation.
This kind of SPDC is called type II.
Two such photon-pair sources are set up and operated in the laboratory. The
early experiments were conducted using the source described in [41, 93, 94]. With
a maximal pump power of 70mW of the blue laser beam (at 427nm wavelength) it
produces about 5600 photon pairs per second. Filtered to the atomic bandwidth
of about 22 MHz this corresponds to a spectral brightness of 3.6/(s MHz mW) for
single-mode fibre-coupled photon pairs. Their polarisation entanglement has a
concurrence of 94.8(1.5) %.
Later experiments use a new photon-pair source, set up by Stephan Kucera [59]
with a much higher output through resonator enhancement, and augmented by
Jan Arenskötter [4] with a bidirectional pumping scheme to improve purity and
entanglement of the pair state. At a 427 nm pump power of 40 mW it pro-
duces 1.8(2) million photon pairs per second with a concurrence of 98.3(5) % and
a purity of 97.1(9) % [60]. In addition to the enhancement the resonator acts
as a filter reducing the linewidth of the photons to 9.43(1) MHz, already compat-
ible with the calcium transition at 854 nm. This leads to a spectral brightness of
4.8(5) · 103 photons per s MHz mW.
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1.6 Experiment control

To perform complex experimental protocols consisting of sequences of many short
and precise pulses of several lasers and RF sources sent to the ion traps, the
whole experimental apparatus has to be controlled by a single device. It was
the main part of Marc Almendros’ thesis [3] to develop and build such a pulse
sequencer, the «Hydra».
Its prototype version is a modular backplane-based bus system consisting of a
digital signal processor (DSP) connected to several digital input–output cards and
RF-generator cards. The DSP has a clock frequency of 1GHz, and is stabilised to
a rubidium atomic clock, model FS 725 of «Stanford Research Systems». Each RF-
generator card includes a field-programmable gate array (FPGA) and a direct
digital synthesiser (DDS) to generate RF pulses that are arbitrary in amplitude,
duration, frequency, and phase down to a resolution of 12.5 ns (due to the update
rate of 80 MHz). Up to 13 RF signals are generated simultaneously and sent
to the AOMs to be transformed into laser pulses as mentioned above. Some
cards include an analogue input channel that uses the signal of a photodiode to
stabilise the optical power of the laser beam. The user controls Hydra through the
HydraPC software, a programme written in C++ and installed on a conventional
computer.
As this prototype lacks the ability to temporally resolve the clicks of single-photon
detectors, a commercial time-correlated pulse counter, model PicoHarp 300 of
«PicoQuant» with a maximal resolution of 4 ps, is used.
Now, already the next generation, Hydra-II, is installed in the laboratory. It is a
commercial device by «Signadyne», a spin-off company that was founded by Marc
Almendros in 2010, and by now is part of «Keysight Technologies». Is has the
advantage of directly processing the single-photon-detection inputs with a time-
tag resolution of 320ps that enables even more complex sequences including the
reaction to single photons in a phase-dependent manner. Additionally, it has a
higher RF-pulse resolution of 1.25 ns. Its user-friendly control programme, made
by the author and others, is a graphical user interface (GUI) written in Matlab
of «The MathWorks, Inc.» that interprets between the internal software made by
«Signadyne» and the experimenter.
To be able to use the analogue signals of the photodiodes for intensity stabilisa-
tion of the laser beams they have to be digitised as Hydra-II has no analogue input
channels. This is achieved by a single external custom-made analogue input card
called «Karkinos», developed by Stephan Kucera as his diploma thesis [58].

All these control devices together enabled more and more automation of the
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experiment over the past years, for a detailed example see [59]. This complex
and extensive set-up makes the sophisticated experiments presented in this thesis
practically feasible in the first place.
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Chapter 2

Interaction of light and matter

«Sweet exists by convention,
and bitter by convention,
. . . colour by convention;

but in reality, atoms and the void alone exist.»

— Democritus (about 400 BC)

In this chapter, the general interaction of charged matter with the electromagnetic
field is approximated to adapt to the situation of a single isolated ion in the pres-
ence of laser light. This is done in a semiclassical approach: The ion is treated as
a hydrogen-like atom in the widespread comprehension of quantum-mechanical
atom physics, while the laser light is considered as classical, electromagnetic plane
waves.
First, the multipole expansion of the electromagnetic field about the centre of mass
is carried out, which leads to the energy terms driving the individual transitions
in the ion. Then, one such elemental transition is studied exemplarily in detail
as a two-level model. Including additional approximations this leads to a very
general Hamilton operator (2.8) that serves as a building block for the complex
dynamics covered in chapter 4. Special attention to the influence of the geometry
on the interaction completes this chapter.
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2.1 The multipole expansion

Singly ionised calcium-40 is modelled as a hydrogen-like atom. It consists of
two charged particles: the atomic core 40Ca+ with closed electron shells, and
the single valence electron e−. Both have three spatial degrees of freedom, say
their position coordinates, r̂c = (x̂c , ŷc , ẑc ) for the core and r̂e = (x̂e, ŷe, ẑe) for the
valence electron. These are written with a circumflex to indicate them as quantum-
mechanical observables. As the core consists of an even–even nucleus and a
closed shell of 18 electrons, its residual spin is zero. Thus, the only additional
degree of freedom is the valence electron’s spin as the total spin of the system
with the quantum number S = 1⁄2.
As the core is several orders of magnitude heavier than the electron (mc Á me),
it is favourable to transform the coordinate system into the one of the centre of
mass,

R̂ =
mc r̂c + me r̂e

mc + me
É r̂c ,

wherein the total mass M = mc + me is at rest, and the electron with the reduced
mass m = mcme

mc+me
has the relative coordinate r̂ = r̂e − r̂c . The two position vectors

transform according to

r̂e = R̂ +
mc
M

r̂ and r̂c = R̂ −
me
M

r̂ (2.1)

and their momenta to

p̂e =
me
M

P̂ + p̂ and p̂c =
mc
M

P̂ − p̂ (2.2)

into the momentum P̂ of the total mass and the momentum p̂ of the reduced mass,
which is directly linked to the relative velocity,

v̂ =
p̂
m =

p̂e
me
−

p̂c
mc

.

Following the general Pauli equation [91], the Hamilton operator for two charged
particles (one without spin; the other with spin 1⁄2) in an external electromagnetic
field defined by the potentials Φ and A is

Ĥ =
(p̂c − qcA(r̂c , t ))

2

2mc
+

(σ̂ · (p̂e − qeA(r̂e, t )))
2

2me
+ qcΦ(r̂c , t ) + qeΦ(r̂e, t ) +

qcqe

4°ε0 |r̂e − r̂c |
,
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wherein the Pauli operator σ̂ (see eq. (1.2) on p. 8) pays tribute to the electron spin;
the first two terms are the kinetic energies of the two particles with the canonical
momenta, the third and fourth term denote the potential energy in the external
electric field, and the last term is the energy of the interaction of the two particles.
Here, the two potentials are no operators as the electromagnetic field is treated
classically in the following sections. With the Taylor expansions of the external
electric and magnetic field about the centre of mass,

E (R̂ + ε̂, t ) =
∞
@
k=0

1
k!

(ε̂ · ∇̂R)kE (R̂, t ),

B(R̂ + ε̂, t ) =
∞
@
k=0

1
k!

(ε̂ · ∇̂R)kB(R̂, t ),

the potentials transform to

Φ(R̂ + ε̂, t ) = Φ(R̂, t ) − ε̂ ·
∞
@
k=0

1
(k + 1)!

(ε̂ · ∇̂R)kE (R̂, t ),

A(R̂ + ε̂, t ) = − 12 R̂ , B(R̂, t ) − ε̂ ,
∞
@
k=0

1
(k + 2)k!

(ε̂ · ∇̂R)kB(R̂, t ),

fulfilling Ê = −∇̂Φ̂ − ∂t Â and B̂ = ∇̂ , Â. Hence, inserting the coordinate transform-
ation, eq. (2.1) and eq. (2.2), results in

Ĥ = P̂2

2M
+

p̂2

2m +QΦ(R̂, t ) − q r̂ · E (R̂, t ) −
qred
2 r̂ · (r̂ · grad E (R̂, t )) + O(|r̂|3)

+ Ĥdia − µ̂L · B(R̂, t ) − µ̂S · B(R̂, t ) +
qcqe

4°ε0 |r̂|
(2.3)

for the Hamilton operator. The introduced parameters are the total charge Q,
the so-called interaction charge q, and the reduced charge qred,

Q = qc + qe, q =
qcme − qemc

M
, qred =

qcm2
e + qem2

c
M2 ,

as well as the magnetic moments,

µ̂L =
qc
2mc

L̂c +
qe
2me

L̂e and µ̂S =
qe
2me

gS Ŝ,

with the orbital angular momenta L̂c = r̂c , p̂c and L̂e = r̂e , p̂e, and the spin angular
momentum Ŝ = ħ

2 σ̂.
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In the scope of perturbation theory, the trap potential Φ(R̂, t ) together with the
static portion B0 of the magnetic field B(R̂, t ), and all terms independent of the
external fields are treated as the unperturbed Hamiltonian,

Ĥ0 = QΦ(R̂, t ) + P̂2

2Mø ñ ú
=:ĤT

harm. oscillator

+

=:ĤAð ù ò
p̂2

2m +
qcqe

4°ε0 |r̂|
ø ñ ú

H-like atom

− µ̂J · B0 , (2.4)

where the first two terms determine the motion of the entire ion in the external trap
potential Φ(R̂, t ) as discussed in section 1.3, while the third and fourth term give
rise to the behaviour of a hydrogen-like atom at the centre of mass. The last term
containing the operator of the total magnetic moment µ̂J = µ̂L + µ̂S generates the
Zeeman splitting, which defines the direction of B0 as the axis of quantisation. This
formula shows a separation of the seven degrees of freedom into two sub-systems,
the external motion of the coordinate R̂ and the internal dynamics of r̂ and Ŝ. In
the quantum regime, the first one governs the phononic excitation of the centre
of mass as a three-dimensional harmonic oscillator ĤT with eigenfrequencies ωx,
ωy , and ωz , and with the phonon numbers nx, ny , and nz as the external degrees
of freedom. The second sub-system ĤA governs the electronic state of the ion
with the four quantum numbers of the atomic orbitals as the internal degrees of
freedom, n, L, J , and mJ (since S is fixed). Hence, the eigenstates of Ĥ0 are
written as the tensor product of the eigenstates of ĤA and ĤT , i. e. |n, L, J ,mJ 〉 and
|nx, ny , nz〉, respectively.
The terms quadratic in the electromagnetic field are summarised in Ĥdia È A2 and
are neglected in the regime of weak fields. All other terms are linear in the
field strengths and govern the interactions between the ion and the fields such
as laser beams. These are treated as perturbations. The two lowest orders in r̂
are of great interest for the excitation of the ion in the laboratory. The term of
the lowest order is the interaction of the electric dipole moment ˆd = q r̂ with the
electric field at the centre of mass,

ĤE1 = −
ˆd · E (R̂, t ). (2.5)

The second order consists of two terms, one is the interaction of the electric quad-
rupole moment Q̂i j = qred(3x̂i x̂j − ¤i j r̂2) with the gradient of the electric field,

ĤE2 = −
1
6 tr(Q̂ · grad E (R̂, t )),
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and the other is the interaction of the magnetic dipole moment µ̂J with the dynam-
ical part of the magnetic field Bdyn(R̂, t ) = B(R̂, t ) − B0,

ĤM1 = −µ̂J · Bdyn(R̂, t ).

Each of the higher orders O(|r̂|3) brings three additional terms, a higher electric
and magnetic multipole moment as well as a moment of the displacement current.
For details on these see [74].

Remark: The presented treatment is done non-relativistically because all relativ-
istic corrections, e. g. Lamb shift and spin–orbit coupling, do not change the level
structure qualitatively, only additional energy shifts come into play. These are
already included in the fine-structure splitting given in section 1.2 on p. 11. The
same argument holds for the atomic structure of the closed inner electron shells,
whose interaction with the valence electron gives the largest contribution to the
fine structure.

2.2 The two-level system

To determine the properties of the transitions in the atom in a general man-
ner, a single transition between two eigenstates |ψ〉 = |n, L, J ,mJ 〉|nx, ny , nz〉 and
|ψ ′〉 = |n′, L′, J ′,mJ ′〉|n′

x, n′
y , n′

z〉 of the unperturbed system is picked out and this sub-
system is treated as a closed two-level system. In addition to the above-mentioned
multipole expansion two other approximations are applied, as describes in the fol-
lowing, the Lamb–Dicke assumption and the rotating-wave approximation. With
the eigenenergies ħω0 and ħω′

0 of these two states the corresponding Hamilton
operator of the unperturbed reduced two-level system is

Ĥ0 = ħ �
ω0 0
0 ω′

0

� = ħ �
ωA + n · ωT +

ωsum
2 0

0 ω′
A + n′ · ωT +

ωsum
2

�

in the basis of |ψ〉 and |ψ ′〉. Herein, the parameters of the harmonic oscillator are
combined into the vectors n = (nx, ny , nz ), n′ = (n′

x, n′
y , n′

z ), and ωT = (ωx, ωy , ωz ),
and the scalar ωsum = ωx +ωy +ωz . The natural frequency of the atomic transition
including the Zeeman shifts due to B0 is ω12 := ω′

A −ωA, excluding the change in
phonon numbers.
From now on, the system is described in the interaction picture defined by the
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unitary transformation based on Ĥ0,

Û = e−
i
ħ Ĥ0t = �

e−i(ωA+n·ωT +
ωsum

2 )t 0
0 e−i(ω

′
A+n

′·ωT +
ωsum

2 )t � .

The eigenstates in the interaction picture are written |ψA〉 = Û +|n, L, J ,mJ 〉, |ψ ′
A〉 =

Û +|n′, L′, J ′,m′
J 〉, |ψT 〉 = Û +|n〉, and |ψ ′

T 〉 = Û +|n′〉.
The interaction between the two states is governed by one of the multipole terms,
ĤE1, ĤE2, or ĤM1, depending on the selection rules, see section 2.3.

2.2.1 Classical laser field

The light of each laser beam sent to the ion is treated classically as a plane
electromagnetic wave. Its vector potential is described by

A(R̂, t ) = A0u sin(k · R̂ −ωt ) (2.6)

with the propagation direction given by the wave vector k, and an angular fre-
quency of ω = c |k|. The polarisation direction is given by the unit vector u, which
is perpendicular to k. Its exact form is treated in section 2.3. The amplitude A0
is related to the square root of the laser intensity at the place of the atom. From
eq. (2.6) follows the electric field of the laser,

E (R̂, t ) = A0ωu cos(k · R̂ −ωt ),

which drives the electric dipole moment of the atom as depicted by eq. (2.5). This
leads to the off-diagonal matrix element,

E21 = 〈ψ ′|ĤE1|ψ〉 = −�n′, L′, J ′,m′
J
||

ˆd |n, L, J ,mJ 〉 · 〈n′|E (R̂, t )|n〉

= −�n′, L′, J ′,m′
J
||Û Û + ˆd Û Û +|n, L, J ,mJ 〉 · 〈n′|Û Û +E (R̂, t )Û Û +|n〉

= −�ψ ′
A
||Û
+ ˆd Û |ψA〉 · �ψ ′

T
||Û
+E (R̂, t )Û |ψT 〉

= −�ψ ′
a
||

ˆdei(ω′
A−ωA )t |ψA〉 · �ψ ′

T
||E (Û +R̂Û , t )|ψT 〉

= −�ψ ′
A
||

ˆd |ψA〉eiω12t · �ψ ′
T
||E (R̂(t ), t )|ψT 〉

= −d12eiω12t · A0ωu 1
2 ��ψ ′

T
||e

ik·R̂(t )|ψT 〉e−iωt + �ψ ′
T
||e
−ik·R̂(t )|ψT 〉eiωt 	 ,

with the electric-dipole matrix element d12 := 〈ψ ′
A| ˆd |ψA〉. The constant pre-factor

− |d12| A0ω is abbreviated by ħΩE1 introducing the Rabi frequency ΩE1 of the
ideal case of a point-like atom. The directional dependence (d12 · u ) leads to
geometrical factors that are discussed below in section 2.3.
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2.2.2 The Lamb–Dicke regime

The remaining brackets are solved by expressing the position operators through
the creation and annihilation operators of the harmonic oscillator in the interaction
picture, R̂j (t ) = R0,j (â+j (t ) + âj (t ))/

√
2 with âj (t ) = âje−iωj t , and applying the Taylor

expansion. This leads to

�ψ ′
T
||e

ik·R̂(t )|ψT 〉 = ei�n·ωT t e−
η2
2

3
A
j=1

ë
nj ,max!
nj ,min!

nj ,min

@
m=0

�
nj ,min

m �
(iηj )|

�nj |+2m

(||�nj || + m)!
ø ñ ú

=:
Ωn,n′
ΩE1

with nj ,min and nj ,max being the minimum and maximum of nj and n′
i , respectively,

and �nj = n′
j − nj . The three dimensionless numbers ηj = kjR0,j /

√
2 are called

Lamb–Dicke parameters. In the case that the extension of the atomic wave packet
is much smaller than the wavelength of the exciting light, i. e. if 〈(k · R̂)2〉 À 1, only
the leading order of ηj is relevant, thus

Ωn,n′ È e−
η2
2

3
A
j=1

η|�nj |
j ,

and transitions with a big change |�n| Á 1 in phonon numbers are suppressed. This
is called Lamb–Dicke regime. In this case the transition with �n = 0, the carrier
transition, is the strongest one. It is resonant to the natural atomic frequency ω12
and has the coupling strength Ωn,n = ΩE1 exp(−η2/2). The first-order sideband
transitions are the ones where n changes by one in only one dimension, say
�n = (±1, 0, 0). A transition accompanied by an increase in phonon number is
called blue sideband because a higher frequency, ω12 + ωT , is needed. Its
coupling strength is Ωn,n+1 = iη1

è
nj + 1 Ωn,n . The other one, the red sideband, is

resonant to ω12 −ωT and has the coupling strength Ωn,n−1 = iη1
è
nj Ωn,n .

2.2.3 Rotating-wave approximation

The matrix element of eq. (2.5) takes the form

E21 =
ħΩn,n′

2 eiω12t (ei�n·ωT t e−iωt + e−i�n·ωT t eiωt ) (2.7)

where the first term oscillates with the difference frequency,

∆n,n′ := ω −ω12 − �n · ωT = ω −ωatom,
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called detuning of the laser from the atomic transition. It is usually in the MHz-
regime or lower. The other term oscillates with the sum frequency. On time scales
above its inverse, which for optical transitions is in the femtosecond regime, this
term averages out and thus is neglected in the so-called «rotating-wave approx-
imation» (RWA). The resulting two-level Hamilton operator is

Ĥ ′
E1 =

ħ
2 �

0 Ω*
n,n′e

i∆n,n′ t

Ωn,n′e−i∆n,n′ t 0
� .

The Rabi frequency Ωn,n′ is the frequency with which the atom oscillates between
the two states |ψ〉 and |ψ ′〉 in the presence of a resonant field, i. e. for ∆n,n′ = 0.
For the further calculation it is useful to remove the time dependence. This is
achieved by a transformation ĤL into a reference frame rotating with the detuning
of the laser:

ĤL =
ħ
2 �
−∆n,n′ 0

0 +∆n,n′

� Ù ÛL = e−
i
ħ ĤLt = �

e
i
2 ∆n,n′ t 0
0 e−

i
2 ∆n,n′ t

�

It leads to the Hamilton operator

Ĥ ′′
E1 = Û +L Ĥ

′
E1ÛL − ĤL =

ħ
2 �
+∆n,n′ Ω*

n,n′

Ωn,n′ −∆n,n′

� , (2.8)

which is used in chapter 4 to model each fundamental transition of the complex
dynamics in 40Ca+. This reference frame demonstrates the presence of one addi-
tional photon in the laser mode with energy ħω when the atom is in the energetic
lower state |ψ〉. The discrepancy between the total energies of these two states
is just given by the detuning ∆n,n′ = ω −ωatom.

2.2.4 Higher-order transitions

The same reasoning leads to similar expressions for the higher-order transitions.
The vector potential A of eq. (2.6) yields the magnetic field

B(R̂, t ) = A0(k , u ) cos(k · R̂ −ωt )

and the electric quadrupole field

(grad E (R̂, t ))i j = A0ωkiuj sin(k · R̂ −ωt )

of the exciting (laser) light.
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The same approximations as in the case of an electric dipole transition are valid
and lead to the respective Rabi frequencies

ΩM1 = −
1
ħ

|µ12| A0 |k| =
gJµB

ħ
A0k

for a magnetic dipole transition and

ΩE2 = −
1

6ħ
|||
Q̂|||

A0ω |k| = −
qred〈r2〉

2ħ
A0ωk

for an electric quadrupole transition. The first depends on the Bohr mag-
neton µB = eħ/ (2me) and the Landé factor gJ , the second depends on the reduced
electric charge qred introduced on p. 27. The different directional dependence
for all three kinds of transitions are discussed in the next section. In comparison
to the electric dipole transition with ΩE1 = −q〈r〉A0ω/ħ the coupling strength of
the quadrupole has an extra factor proportional to the ratio of the expansion of
the electronic wave function to the wavelength of the exciting light (È r/λ). This
makes such transitions weaker by several orders of magnitude. The magnetic di-
pole is similarly weak due to the relative factor ħ/ (cme〈r〉) and the much lower
transition frequency.

2.3 Geometrical considerations

Since the electromagnetic field has vectorial character its polarisation implies a dir-
ectional dependence of the driven transitions. This leads to geometrical weighting
factors to the above-mentioned Rabi frequencies that depend on the polarisation
direction of the exciting light.
As the quantisation axis is defined by the static magnetic field that couples to the
total magnetic moment, the Zeeman splitting of the fine-structure states leads to
the anomalous Zeeman effect. Thus, for the electric transitions, which couple only
to the degree of freedom of the orbital angular momentum, the combination of
spin and orbital angular momentum becomes important. This leads to a complex
dependency between the coupling strengths and the direction of polarisation of
the exciting light, and the Clebsch–Gordan coefficients have to be taken into
account as further factors to the Rabi frequencies. This section goes into the
geometrical details to find both factors for all considered transitions.

2.3.1 Addition of angular momenta

As mentioned in section 2.1 the energy eigenstates |n, L, J ,mJ 〉 of the unperturbed
system are also eigenstates of the total angular momentum to which the magnetic
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multipoles couple directly. As the electric multipoles couple only to the orbital
angular momentum of charged particles and keep the spin state untouched, the
eigenstates of the uncoupled momenta L̂e and Ŝ have to be taken into account.
These are |n, l ,m〉 and |S,mS〉, respectively. Their connection to the eigenstates
of the total angular momentum are given by linear combination that follows from
the calculus of the addition of angular-momentum operators. The coefficients of
these linear combinations are complex numbers called Clebsch–Gordan coeffi-
cients cCG:

|n, L, J ,mJ 〉 =
+S
@

mS=−S
cCG(L, m, S, mS, J )|n, l ,m〉 � |S,mS〉

Herein mJ = m + mS and |L − S| ¢ J ¢ L + S must both be fulfilled to satisfy the con-
servation of angular momentum. The tables of the Clebsch–Gordan coefficients
for all combinations of two angular momenta with the quantum numbers 1⁄2, 1, 3⁄2,
and 2 are found in [83, p. 368].
To calculate the matrix element of an electric multipole moment for the transition
between two certain states, the coupling between all products of |n, l ,m〉 and
|S,mS〉 in the respective two linear combinations have to be taken into account.
Fortunately, this is given by the same formalism applied to the addition of the
lower state’s with the photon’s total angular momentum (with indices 1 and φ) to
yield the angular momentum of the upper state (with the index 2), i. e.

||n2, L2, J2,mJ2� =
+Jφ
@

mφ=−Jφ
cCG(J1, m1, Jφ, mφ, J2)||n1, L1, J1,mJ1� � ||Jφ,mφ�.

This is owed to another case of the law of conservation of angular momentum,
which applies to both particles together—the atom and the single photon that
is emitted or absorbed at this transition. The resulting values of the Clebsch–
Gordan coefficients for the seven relevant transitions in 40Ca+ are specified in
the appendix, see section A 3 on p. 117. The principal quantum number n does
not affect the angular dependence: In spherical coordinates the position repres-
entation of the spatial part of the atomic wave function shows the separation of
the angular dependence into spherical harmonics Ylm from the radial dependence
into Rnl ,

〈r|n, l , m〉 = ψnlm (r ) = Rnl (r)Ylm (θ, φ).

Furthermore, the selection rules for the electric multipole transitions follow directly
from the properties of the spherical harmonics Ylm (θ, φ) = 〈θ, φ|l , m〉, precisely
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through the formulae,

cos θ̂|l ,m〉 =
é

(l+1+m)(l+1−m)
(2l+1)(2l+3) |l + 1,m〉 +

é
(l+m)(l−m)

(2l−1)(2l+1) |l − 1,m〉, (2.9)

e±iφ̂ sin θ̂|l ,m〉 = ∓
é

(l±m+2)(l±m+1)
(2l+1)(2l+3) |l + 1,m ± 1〉 ±

é
(l∓m)(l∓m−1)
(2l−1)(2l+1) |l − 1,m ± 1〉. (2.10)

This is carried out in section 2.3.3 and 2.3.4.

2.3.2 The laboratory coordinate system

For a general description of the laser-beam geometry, the laboratory coordinate
system is defined in the following way: The plane of the laboratory table is
given by the two Cartesian coordinates x and z, the latter being the direction
of the static magnetic field B0. The third coordinate y points upwards out of the
laboratory table, see figure 2.1.

ε

k
x

y

z
B0

α

Figure 2.1 – Geometry of the laboratory coordinate system (see text).

The direction of a laser beam is set by two angles, the azimuth α indicating
the rotation in the plane of the laboratory table out of the z-direction and the
elevation ε above this plane, which in most of the practical cases is equal to zero.
This leads to the wave vector

k = 2°
λ

 ((
0

cos ε sin α
sin ε

cos ε cos α

!))
1
. (2.11)

To cover the full surface of the sphere, the allowed intervals are α ∈ [0; 2°] and ε ∈
[−°⁄2; °⁄2]. In contrast to the standard spherical coordinates (see sec. 1.1 on p. 7), the
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volume element in this case is dV = r2 cos ε dr dα dε. The polarisation component
in the x-z-plane of the laboratory table is called horizontal (H); the other one
perpendicular to H is called vertical (V). As both are of course perpendicular to
the wave vector, their unit vectors are

eH =
 ((
0

cos α
0

− sin α

!))
1

and eV =
 ((
0

− sin ε sin α
cos ε

− sin ε cos α

!))
1
.

Thus, the laser’s electric-field vector, given in eq. (1.4) on p. 10, transforms accord-
ingly to E = |E | u with the unit vector u = (eH〈H| + eV 〈V|) |θ,φ〉 into the laboratory
system:

u = 1
√
2

 ((
0

(cos α − i sin ε sin α)e−i
φ
2 cos θ

2 + (cos α + i sin ε sin α)ei φ2 sin θ
2

i cos ε(e−i
φ
2 cos θ

2 − e
i φ2 sin θ

2 )
−(sin α + i sin ε cos α)e−i

φ
2 cos θ

2 − (sin α − i sin ε cos α)ei φ2 sin θ
2

!))
1

(2.12)

Therein, the two angles θ and φ define the general polarisation state, eq. (1.3).

2.3.3 Electric dipole transitions

The representation of the electric dipole moment in spherical coordinates is

ˆd = q r̂ = qr̂
 ((
0

cos φ̂ sin θ̂
sin φ̂ sin θ̂

cos θ̂

!))
1
= qr̂

 ((
0

1
2 (e+iφ̂ + e−iφ̂ ) sin θ̂
1
2i (e

+iφ̂ − e−iφ̂ ) sin θ̂
cos θ̂

!))
1
,

and in combination with eq. (2.9) and (2.10) this leads directly to the selection
rules for electric dipoles as �l = ±1 and �m ∈ {−1, 0, +1} , and to the directions
of the dipole moments, ez for �m = 0 and ex ∓ iey for �m = ±1. The electric
dipole interaction ĤE1 connects this with the direction of polarisation. Thus, the
z-component of the polarisation, i. e. the one parallel to the quantisation axis,
drives the transitions with �m = 0, which therefore are called °-transitions; while
the other two components drive both of the two transitions with �m = ±1, and are
thus called ²±-transitions.1 The coupling strength of the electric dipole between
two states results to be

〈ψ ′|ĤE1|ψ〉 = −〈n′, l ′,m′| ˆd |n, l ,m〉 · 〈n′|E (R̂, t )|n〉 =
ħΩE1

2 g|�l |,�m ,

1) The ° stands for german «parallel», and ² for «senkrecht» (i. e. perpendicular).
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where l ′ = l + �l and m′ = m + �m, and a geometrical weighting factor g|�l |,�m
appears that depends on the four angles α, ε, θ, and φ of the laser beam. These
factors are

g1,0 =
uz
|u|

�
é

(l+1+m)(l+1−m)
(2l+1)(2l+3) δl ′, l+1 +

é
(l+m)(l−m)

(2l−1)(2l+1) δl ′, l−1� ,

g1,±1 =
ux ∓ iuy

2 |u|
�∓
é

(l±m+2)(l±m+1)
(2l+1)(2l+3) δl ′, l+1 ±

é
(l∓m)(l∓m−1)
(2l−1)(2l+1) δl ′, l−1�

for °- and ²-transitions, respectively. Inserting eq. (2.12) leads to the formulae used
in the Matlab programme of chapter 4.
The other way around, these factors are the partial directive gain (or emission
probability amplitude) of the atom as a single-photon emitter if it does a quantum
jump on the corresponding transition. To find the directional characteristics (or
directivity) for the light emitted at these transitions one has to integrate over all
possible polarisation states weighted by the geometrical factors g|�l |,�m ,

||Pol|�l |,�m (α, ε)� = 1
2° Y g*

|�l |,�m |θ,φ〉 sin θ dθ dφ .

This is visualised in figure 2.2 for the three possible cases of �m. If the emitted
light of these three cases is added incoherently, the result will be a spherical
wave of non-polarised light.

z

(a) �m = +1 (²+)

z

(b) �m = 0 (°)

z

(c) �m = −1 (²−)

Figure 2.2 – Directional characteristics of the electric dipole emission. The radius indicates
the directional dependence of the intensity (i. e. the directivity) while the colours encode the
polarisation of the radiation. Red and cyan indicate the right- and left-circular polarisation,
respectively; green and magenta the linear polarisation parallel and perpendicular to the
plane spanned by the wave vector k and the quantisation axis ez .
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2.3.4 Electric quadrupole transitions

The electric quadrupole moment in spherical coordinates reads as follows:

Q̂ = qredr̂2
 ((
0

3 cos2 φ̂ sin2 θ̂ − 1 3 cos φ̂ sin φ̂ sin2 θ̂ 3 cos φ̂ sin θ̂ cos θ̂
3 cos φ̂ sin φ̂ sin2 θ̂ 3 sin2 φ̂ sin2 θ̂ − 1 3 sin φ̂ sin θ̂ cos θ̂
3 cos φ̂ sin θ̂ cos θ̂ 3 sin φ̂ sin θ̂ cos θ̂ 3 cos2 θ̂ − 1

!))
1
.

Again using eq. (2.9) and (2.10) the selection rules for electric quadrupoles result
in �l = 0 = �m, or �l = ±2 and �m ∈ {0, ±1, ±2} . The discussion is restricted to the
cases of |�l | = 2 as these alone are of interest in 40Ca+ because they correspond to
the quadrupole transitions at 729nm and 732nm wavelength. The interaction term,
ĤE2 = −

1⁄6 tr(Q̂ · grad E (R̂, t )), leads to the quadrupole-moment matrix elements,

〈ψ ′|ĤE2|ψ〉 = −16 〈n′, l ′,m′|Q̂i j |n, l ,m〉〈n′|kjEi (R̂, t )|n〉 =
ħΩE2

2 g|�l |,�m ,

with the introduction of the Rabi frequency ΩE2 for electric quadrupole transitions
and again geometrical weighting factors. For |�l | = 2 these are,

g2,0 = −
3
2

kxux+kyuy−2kzuz
|k||u| �

é
(l−m+1)(l+m+1)(l−m+2)(l+m+2)

(2l+1)(2l+3)2 (2l+5) ¤l ′, l+2

+

é
(l−m−1)(l+m−1)(l−m)(l+m)

(2l−3)(2l−1)2 (2l+1) ¤l ′, l−2� ,

g2,±1 = ∓
3
2

kz (ux∓iuy )+(kx∓iky )uz
|k||u| �

é
(l−m+1)(l+m+1)(l±m+2)(l±m+3)

(2l+1)(2l+3)2 (2l+5) ¤l ′, l+2

−

é
(l−m)(l+m)(l∓m−1)(l∓m−2)

(2l−3)(2l−1)2 (2l+1) ¤l ′, l−2� ,

g2,±2 =
3
4

kxux∓i(kxuy+kyux )−kyuy
|k||u| �

é
(l∓m+1)(l∓m+2)(l±m+3)(l±m+4)

(2l+1)(2l+3)2 (2l+5) ¤l ′, l+2

+

é
(l∓m−3)(l∓m−2)(l±m−1)(l±m)

(2l−3)(2l−1)2 (2l+1) ¤l ′, l−2� .

Here, eq. (2.11) and (2.12) are used to find the angular dependence.
The directivity for the cases of different �m is shown in figure 2.3. And as above,
if the emitted light of these five cases is added incoherently, the result will be a
non-polarised spherical wave.
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z

(a) �m = +1

z

(b) �m = 0

z

(c) �m = −1z

(d) �m = +2

z

(e) �m = −2

Figure 2.3 – Directional characteristics of the electric quadrupole emission for �l = ±2. The
radius indicates the directional dependence of the intensity (i. e. the directivity) while the
colours encode the polarisation of the radiation as in figure 2.2.

2.3.5 Magnetic dipole transitions

Finally, the simple case of the magnetic dipole interaction ĤM1 is discussed. Again,
the multipole-moment operator, here

µ̂J =
−e
2me

gJ Ĵ = −gJ
µB

ħ
 ((
0

1
2 (Ĵ+ + Ĵ−)
1
2i (Ĵ+ − Ĵ−)

Ĵz

!))
1

with the ladder operators Ĵ±, exhibits the selection rules, �J = 0 and �mJ = ±1. In
addition it shows that the driven transitions are between eigenstates of spin–orbit
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coupling directly, so the Clebsch–Gordan coefficients do not come into play here.
The only degree of freedom that changes is the magnetic quantum number mJ .
Looking at the interaction term

ĤM1 = −µ̂J · Bdyn(R̂, t ) = gJ
µB

ħ
Ĵ · (k , u )A0 cos(k · R̂ −ωt )

shows furthermore that only the one component of the total angular momentum Ĵ ,
which is perpendicular to the wave vector k and to the polarisation direction u,
governs this interaction. As the atom stays in its Zeeman manifold under this
interaction the light to drive it has to be radio waves instead of visible or near-
infrared light. The coil underneath the ion trap (see section 1.4.5 and figure 2.4)
produces a magnetic field Bdyn in y-direction that oscillates with about 8 MHz to
drive the magnetic dipole transition between the S1/2 Zeeman sub-levels.

8
cm

8 cm

B0 ∥ ez

Bdyn(t ) ∥ ey

ion

È

Figure 2.4 – Geometry of the radio-frequency coil that drives the magnetic dipole transition.
The alternating electric current applied to the coil beneath the ion trap produces an oscillating
magnetic field Bdyn(t ) perpendicular to the quantisation axis given by the static field B0 �.

The geometrical weighting factors are,

g|�J|,�mJ
=

(ky ∓ ikx )uz ± ikz (ux ± iuy )
2 |k|

é
(J ∓ mJ )(J ± mJ + 1) ,

and lead to the directivity shown in figure 2.5.
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z

(a) �m = +1

z

(b) �m = −1

Figure 2.5 – Directional characteristics of the magnetic dipole emission. The radius indicates
the directional dependence of the intensity (i. e. the directivity) while the colours encode the
polarisation of the radiation as in figure 2.2.

In opposition to the two electric transitions mentioned above, the magnetic dipole
does not support a spherical wave as it is aligned with the axis of the external
magnetic field.
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Chapter 3

Modelling the spontaneous Raman scattering

«Die ganzen 50 Jahre bewusster Grübelei haben mich
der Antwort der Frage „Was sind Lichtquanten“

nicht näher gebracht. Heute glaubt zwar jeder Lump,
er wisse es, aber er täuscht sich.»

— A. Einstein (1951)[29]

The spirit that hovered over the whole thesis is the question:

«How does a photon emitted by an atom really looks like?»

One of the abiding and heated debates in quantum optics over the last few
decades is about the nature of Raman-scattered light, especially at the single-
photon level. The addressed issues are the purity and coherence of the scattered
light and the question if these single photons actually reach the Fourier limit.
Another question rises from the impression that an excitation far below saturation
generates Raman-scattered photons with a bandwidth arbitrarily narrower than
the natural linewidth of the atomic emitter, and how this is compatible to the
property of an atom to act as a filter for broadband light.
Answering these questions led to an extended investigation over several years.
Its results are summarises in this chapter and confirm previously existing intuitions.
After a brief introduction to Raman scattering, a model based on resolvent theory
(sec. 3.1) and in particular its results and predictions are presented in detail. This is
followed by another model, based on the Lindblad equation (sec. 3.5). Finally the
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Raman operator is derived (sec. 3.6), a concise tool that comprehends the essence
of this scattering process, and which is used in chapter 5 for further calculations.

The elastic or Rayleigh scattering of photons at a single atom or molecule, where
the initial and final state of the scattering centre are the same, is well described in
the picture of a two-level system. The inelastic or Raman scattering on the other
hand is more complex due to the needed third level where the process ends, and
thus poorly described in the literature. The best references so far [54, 135, 136]
concern only partial aspects of the elemental process. Especially the excitation
by a single photon, which is very important in the context of quantum networks, is
absent in the literature.
Raman scattering is the simultaneous absorption and emission of a photon by a
single atom or molecule in which the scattering centre ends in a state different
from where it started. This effect was predicted by Adolf Smekal in 1923 [117], and
measured for the first time by Chandrasekhara V. Raman and Kariamanickam S.
Krishnan in 1928 [99]. In the youth of this field of research the processes between
different vibrational and rotational states of molecules were investigated which
opened up the wide field of Raman spectroscopy [125]. It is used to identify
molecules and to study their chemical bonding as well as to characterise material
properties of e. g. semiconductors. These techniques have application in chemistry,
archaeology, forensic analysis, art history, and medical sciences. Decades later,
processes between internal states of single atoms were examined, as it is the
case in this thesis. Today, surface-enhanced Raman spectroscopy (SERS) reaches
an enhancement factor of up to 1011 above the free-space variant, which makes
even single-molecule imaging possible [65].
If the final state of the emitter is energetically higher than the initial one, the
process is called Stokes–Raman scattering. The opposite is hence called anti-
Stokes–Raman scattering. In the case of only one present light field (with a
carrier frequency close to the resonance of the absorption transition) the scatter-
ing is called spontaneous as a single photon is emitted spontaneously into the
vacuum field. This is the case of interest in this thesis. The other case is called
stimulated Raman scattering at which a second light field is present, resonant or
near-resonant to the emission transition. This non-linear optical effect is exploited
in so-called Raman amplifiers and Raman lasers [27, 106].
A quantum-mechanical treatment of the process needs to include at least three
atomic states, the initial and the final state as well as an excited state that is
populated, at least virtually, during the scattering process. The corresponding
level scheme for the spontaneous Raman scattering is sketched in figure 3.1. It
introduces the detuning ∆ of the excitation light field with carrier frequency ω
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|2〉

|e〉
∆

|1〉

excitation

A2
A1

Figure 3.1 – The level scheme of a spontaneous Raman transition. Excitation from the initial
state |1〉 to the intermediate, excited state |e〉, detuned by ∆, results in a decay into the final
state |2〉. The branching ratio of spontaneous decay is given by the Einstein A-coefficients,
A1 and A2.

from the atomic absorption transition with frequency ωA, i. e. ∆ := ω −ωA.
In the preceding work of the research group, a model of rate equations was
investigated, see Michael Schug’s thesis [112, p. 26–32]. It yields the same transition
rates as the detailed models below, but does neither explain any dynamical
effects such as Rabi oscillation, nor does it provide detailed spectral information.

3.1 General model based on resolvent theory

To gain a deeper understanding of the spectral properties of spontaneously Ra-
man-scattered photons, and their dependency on the spectrum of the exciting light
a theoretical study was undertaken, starting with the master thesis of Tristan Ten-
trup [121]. That work has been comprehensively revised, extended, and finalised
by the author of this thesis, and led to the article:

P. Müller, T. Tentrup, M. Bienert, G. Morigi & J. Eschner «Spectral
properties of single photons from quantum emitters» in Phys. Rev. A 96
(2017), 23861. DOI: 10.1103/PhysRevA.96.023861, i. e. [82]

The whole study is based on the resolvent theory using the projection method and
the residue theorem as presented in the textbook [19], and applies the Weisskopf–
Wigner approximation [127].

3.1.1 Resolvent theory

In a first approach, the initial state of the system is

|i 〉 = |1〉 � ||1ω1
�,
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where the atom is in the state |1〉 and a single monochromatic photon with the
frequency ω1 is present. To calculate the amplitude spectrum of the emitted
photon, the time evolution of this state is regarded. The probability amplitude
to end in the final state

|f 〉 = |2〉 � ||1ω2
�,

where the atom changed into the state |2〉 by emission of a single photon whose
spectrum is afterwards projected to the monochromatic frequency ω2, is already
the wanted amplitude spectrum. It is:

Uf i (t , ω2, ω1) = 〈f |Û (t )|i 〉

with the time-evolution operator

Û (t ) = e−
i
ħ Ĥt

for a system driven by a time-independent Hamilton operator Ĥ for a dura-
tion t .
In the second step, the same is calculated for a generic incident photon with an
arbitrary amplitude spectrum ψ1, hence

|i 〉 = |1〉 �
∞

X
0

ψ1(ω)|1ω〉 dω .

This leads to the spectrum1

ψ2(t , ω2) =
∞

X
−∞

ψ1(ω)Uf i (t , ω2, ω) dω (3.1)

for the emitted photon. As a function of the observation interval t it exhibits the
temporal evolution of the spectrum during the emission process. In the following
all calculations are restricted to the limit t Ù ∞, which means only the spectrum
in the asymptote of the completed emission process is considered, ψ2(t Ù ∞, ω2).
A positive side effect is that this result is far more simpler and cleaner than the
general one, and it matches the intuition.

1) For calculational simplification the integration interval is henceforth extended to negative infinity
under the assumption that the spectral function ψ1(ω) has a negligible contribution for ω < 0, which
is the case for linewidths �ω À ω.
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To handle Uf i (t , ω2, ω) the resolvent theory is used: Following [19, p. 170 f.], the
time-evolution operator is rewritten as a complex integral,

Û (t ) = 1
2°i X

C+

1
z1 − Ĥø ñ ú
=:Ĝ(z)

e−
i
ħ zt dz, (3.2)

over the complex variable, z = ħω + iη, where the integration path C+ is the real
axis in negative direction, but slightly shifted upward the imaginary axis by a
constant η to avoid division by zero, see figure 3.2. After integration this constant
is turned to zero again (η Ù 0+). The path is extended over the lower half-plane
to apply the residue theorem, thus solving the integral with ease.

Re(z)

Im(z)

C+

η

Figure 3.2 – The integration path C+ of eq. (3.2) in the complex plane (solid arrow). It is
extended by a semi-circle with the radius r Ù ∞ (dashed arrow) to close the integration path
for the application of the residue theorem.

The fraction in the integrand of eq. (3.2) is called the resolvent Ĝ(z) of the Hamil-
ton operator Ĥ . To find the amplitude spectrum, Gf i (z) := 〈f |Ĝ(z)|i 〉 is solved
through the so-called projection method.

3.1.2 Projection method

Following [19, p. 174–179], the action of an operator on the excited state is separ-
ated from the other states by expressing the unity operator as the sum over the
projector onto the excited state, P̂ = |e〉〈e|, and its complement, Q̂ = 1 − P̂. Hence,
Gf i (z) = 〈f |Ĝ(z)|i 〉 = 〈f |Q̂Ĝ(z)Q̂|i 〉. Considering the interaction V̂ between atom
and light field as a perturbation, it has been shown that

Q̂Ĝ(z)Q̂ = Q̂
z1 − Q̂Ĥ0Q̂ − Q̂V̂ Q̂

· �1 + V̂ P̂
z1 − P̂Ĥ0P̂ − P̂R̂(z)P̂

V̂ Q̂
z1 − Q̂Ĥ0Q̂ − Q̂V̂ Q̂

�
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with the so-called level-shift operator,

R̂(z) = V̂ + V̂ Q̂
z1 − Q̂Ĥ0Q̂ − Q̂V̂ Q̂

V̂ + O(V̂ 3).

In the following, this is expressed in the unperturbed eigenstates |1〉, |e〉, and |2〉,
with the eigenenergies E1, Ee, and E2, respectively. As the interaction term governs
only transitions, the diagonal terms Q̂V̂ Q̂ and 〈e|V̂ |e〉 vanish, and the remaining
off-diagonals, 〈e|V̂ |1〉 =: Ve1 and 〈e|V̂ |2〉 =: Ve2, are the coupling strengths of these
transitions.
The only remaining matrix element of R̂(z) is evaluated using the Cauchy principal
value P [44, p. 69 f.],

〈e|R̂(z)|e〉 = 0 + @
q

Veq
1

z − Eq − 0
Vqe + O(V̂ 3)

É @
q

VeqVqeP � 1
z − Eq

�
ø ñ ú

=:ħ∆

−
i
2 2°@

q
VeqVqe¤(z − Eq )

ø ñ ú
=:ħΓ

,

introducing the line shift ∆ and the line width Γ . Hence, the resolvent takes the
form

Gf i (z) =
1

z − Ef
Vfe

1
z − Ee − ħ∆ + iħ Γ

2

Vei
1

z − Ei
.

In general, it is a product of one fraction for each participating state (here 3 terms),
and the coupling strengths of each participating transition (here 2 terms).
Inserting this into the time-evolution operator, eq. (3.2), leads to a complex integral
with three poles of first order each, that is easily solvable by the residue theorem.
Thus, Uf i (t , ω2, ω) results to be a sum over three terms corresponding to the three
participating states in this process. In the limit t Ù ∞ only one of these summands
remains, and inserting it into eq. (3.1) yields the emission amplitude spectrum to
be

ψ2(ω2) =

ê
2°A1A2

Γ ψ1(ω2 − (ωE −ωA)) · LΓ (ω2 −ωE) (3.3)

with the centre frequency ω1 of the incident spectrum. That is the product of
the incident photon’s spectrum ψ1 (just shifted by the difference in the transition
frequencies, ωE −ωA) and the atomic Lorentzian of the emission transition,

LΓ (ω −ωE) =

é
Γ
2°

ω −ωE + i
Γ
2

,
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with the full atomic linewidth Γ = A1 + A2. The pre-factor in eq. (3.3) reveals
the influence of the branching fractions onto the probability that the scattering
actually occurs. This success probability is given by the integral over the squared
modulus,

Pscatter =

∞

X
−∞

|ψ2(ω2)|
2 dω2,

and thus, the normalised power spectrum is

S(ω2) =
1

Pscatter
|ψ2(ω2)|

2 .

In the article [82] this is investigated in detail for three different cases of incoming
light: rectangular, exponential, and Gaußian wave packets (or sinc, Lorentzian,
and Gaußian spectra, respectively).

3.1.3 Results for an exponential photon

The most important case for experimental situations are single photons used for
excitation that are approximately exponential in their wave form. Thus, their
spectrum is a Lorentzian line of a certain width �ω1 centred at the carrier
frequency ω1 of the wave,

ψ1(ω) = L�ω1
(ω −ω1) =

é
�ω1
2°

ω −ω1 + i
�ω1
2

.

The resulting amplitude spectrum of the emitted photon, eq. (3.3), is a product
of two complex Lorentzian curves. Through partial fraction decomposition, it is
rewritten as a sum,

L�ω1
(∆2 − ∆1) · LΓ (∆2) =

è
Γ�ω1

∆1 + i
Γ−�ω1

2

� 1
è
�ω1

L�ω1
(∆2 − ∆1) −

1
√
Γ

LΓ (∆2)� , (3.4)

expressed in the detunings, ∆1 = ω1 −ωA and ∆2 = ω2 −ωE. This decomposition is
invalid only if the two Lorentzian lines are exactly the same (i. e. if both, ∆ω1 = Γ
and ∆1 = 0). It shows that the emitted photon is a superposition of two Lorentz-
ian spectral states weighted by the reciprocal square roots of their respective
widths. The first part of eq. (3.4) corresponds to the Raman peak with detuning
and linewidth equal to the excitation detuning and linewidth. The other part is
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emitted at resonance with the linewidth of the natural decay, and thus called
spontaneous peak. In the usual case of narrowband photons (�ω1 À Γ ) the
Raman peak is dominant and just as narrow. In the other extremum only the
spontaneous part remains—matching the intuition that then the atom acts as a
filter. If the excitation occurs close to resonance (∆1 É 0) the two peaks merge to
a single one.
The success probability for this Raman process is,

Pscatter =
A1A2

Γ
Γ + �ω1

∆2
1 + �

Γ+�ω1
2 	

2 ¢ 1,

which reaches unity only in the marginal case of resonant excitation (∆1 = 0) by a
purely monochromatic photon (�ω1 Ù 0), and additionally with equal branching
fractions (A1 = A2 =

Γ⁄2).

3.2 Excitation by laser

If the exciting light source is not a single photon, but many, e. g. a laser beam,
several excitations and de-excitations on the first transitions may occur before the
final, Raman photon is emitted, see figure 3.3. For the calculation, each case of
N additionally scattered photons has to be treated individually.

|1〉

|e〉

|2〉

N = 0

|1〉

|e〉

|2〉

N = 1

|1〉

|e〉

|2〉

N = 2

Figure 3.3 – The three cases of Raman scattering with 0, 1, or 2 additional photons emitted
at the transition |1〉 Û |e〉.

Thus, the final states for these cases read,

|fN 〉 = |2〉 � |||
1ω′

1
, 1ω′′

1
, ..., 1ω(N)

1
, 1ω2

�,

with the occupation number 1 in each mode of the additionally scattered photons
and of the final, Raman photon.
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Under the assumption that all information about the additionally scattered photons
is lost (a so-called Markov chain), the full spectrum of the final photon is given
by the incoherent sum over all possible cases of N additional photon emissions,
weighted by the corresponding success probabilities,

S(ω2) =
∞
@

N=0
Pscatter,NSN (ω2), (3.5)

and including the integration over all their possible frequencies,

SN (ω2) = X · · · X ||UfN i (ω2)||
2 dω′

1 . . . dω(N)
1 .

3.2.1 Dressed states

For the explicit calculation the equivalent reference frame of dressed states is
used where the Hamilton operator takes the form [19],

Ĥ ′ = Ĥ ′
0 + V̂ + V̂L.

The eigenfrequency of the initial atomic state is shifted by the laser frequency,
−ωA Ù −ωA + ω1 =: ∆1, and the interaction of laser and atom is described by the
additional term,

V̂L =
ħΩ
2 (|1〉〈e| + |e〉〈1|) ,

with the on-resonance Rabi frequency Ω. Due to this interaction term the states |1〉
and |e〉 are replaced by dressed states with the complex eigenfrequencies

ω± =
1
2 �∆1 − i

Γ
2 ±

ê
|Ω|2 + �∆1 + i

Γ
2 	

2
� . (3.6)

For each case of N the matrix element of the time-evolution operator is calculated
as before, and the resolvent shows again resonances at each involved state. Thus,
UfN i (t ) is a sum over (3 + 2N) terms. For example, the five involved states for N = 1
are |ω+〉, |ω−〉, |ω+〉 � |1ω′〉, |ω−〉 � |1ω′〉, and |2〉 � |1ω′ , 1ω2

〉.
The detailed calculation of the three cases N = 0, 1, and 2 including the full
expressions for UfN i (t ) are presented in the article [82], and not repeated here.
For the limit t Ù ∞ only one term in UfN i remains, and the resulting spectral density
is the same for all cases,

SN (∆2) =
κ(Γ − κ) �(∆1 + 2∆S )2 +

Γ2

4 	

2°Γ |||
�∆2 − ∆1 − ∆S + i

κ
2 � �∆2 + ∆S + i

Γ−κ
2 	|||

2 . (3.7)
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This is a product of two Lorentzian functions centred at ∆2 = ∆1 +∆S and ∆2 = −∆S,
and with the respective widths

κ = Γ
∆S

∆1 + 2∆S
and Γ − κ.

Therein, ∆S denotes the AC Stark shift due to the presence of the exciting laser
field,

∆S = −
∆1
2 +

sgn ∆1

2
√
2

îííííííì

Ω2
eff −

Γ2

4 +

ë

�Ω2
eff −

Γ2

4 �
2
+ ∆2

1Γ2 ,

introducing the effective Rabi frequency, Ωeff =

é
|Ω|2 + ∆2

1 . With these character-
istic parameters the dressed states’ energies (3.6) take the form

ω+ = ∆1 + ∆S − i
κ
2 and ω− = −∆S − i

Γ−κ
2 .

The success probabilities turn out to be

Pscatter,N =
A2
Γ �

A1
Γ �

N
,

where the results for the first three cases of N = 0, 1, and 2 were explicitly found
(see again [82]). Even though a mathematical proof is pending, they are general-
ised to all cases due to their appearance (a so-called «proof by obviousness»).

3.2.2 Results for laser excitation

In the same manner as before on p.49, the power spectral density (3.7) is rewritten
as a superposition,

SN (∆2) =
C
2° ·

|||||

1
∆2 − ∆1 − ∆S + i

κ
2

−
1

∆2 + ∆S + i
Γ−κ
2

|||||

2

= C ·

|||||||

1
√
κ

Lκ (∆2 − ∆1 − ∆S )ø ñ ú
Raman

−
1

√
Γ − κ

LΓ−κ (∆2 + ∆S )ø ñ ú
spontaneous

|||||||

2

, (3.8)

with the constant pre-factor,

C =
κ(Γ − κ)

Γ ·

|||
∆1 + 2∆S + i

Γ
2
|||
2

|||
∆1 + 2∆S + i

Γ−2κ
2

|||
2 .
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Here too, the emitted photon is a superposition of two Lorentzian spectral states
weighted by the reciprocal square roots of their respective widths. In this case
though, the Raman peak is always narrowband (κ < Γ ) and dominates the spectrum.
The two peaks are shifted further away from each other to a total difference
of (∆1 + 2∆S ) instead of ∆1, and as a result they do not merge in the case of
near-resonant excitation if it is strong enough (Ω > Γ⁄2). The emission spectra of
figure 3.4 illustrate these characteristics.

−3 Γ −2 Γ −Γ 0 +Γ +2 Γ +3 Γ
detuning ∆2 of the emitted photon
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te

ns
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in
a.

u.
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Figure 3.4 – A set of emission spectra for strong laser excitation with |Ω| = 3⁄2 Γ and several
values of ∆1 from −2 Γ (red-detuned) to +2 Γ (blue-detuned). Each spectrum consists of two
Lorentzian components with considerably different linewidths and weights. The dashed lines
indicate the position of the two line centres in the absence of the Stark shift (∆S = 0, i. e. for
|Ω| < Γ⁄2).

In this regime, the peaks are separated by
ê
|Ω|2 − Γ2

4

at resonance. This kind of avoided crossing of line centres is known as the
Autler–Townes splitting [5], a consequence of the AC Stark effect of the exciting
laser field. The energy levels of the dressed states in case of exactly resonant
excitation (∆1 = 0) are shown in figure 3.5. They exhibit a sudden splitting at a
Rabi frequency of |Ω| = Γ⁄2.
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asymptote: E = +
ħ|Ω|

2

asymptote: E = − ħ|Ω|
2

E

ħωE
|Ω|Γ

2
Γ

= ħ
é
|Ω|2 −

Γ2

4

−2 Γ −Γ 0 +Γ +2 Γ

detuning ∆2

|Ω| = Γ⁄2

−2 Γ −Γ 0 +Γ +2 Γ

detuning ∆2

|Ω| = Γ

−2 Γ −Γ 0 +Γ +2 Γ

detuning ∆2

|Ω| = 3⁄2 Γ

Figure 3.5 – Autler–Townes splitting of the dressed states’ energy E shown for the case of
resonant excitation, ∆1 = 0. The points on the line correspond to the centres of the Lorentz-
ian curves in eq. (3.8). The dotted vertical cuts correspond to three spectra below that illustrate
the splitting of the emission line with growing laser power.

The two cases of excitation by a low-intensity laser (Ω Ù 0) and a narrow-linewidth
single photon (�ω1 Ù 0) converge to the same emission spectrum, κ Ù 0 in eq. (3.7)
and ψ2(∆2−∆1) = δ(∆2−∆1) in eq. (3.3), respectively. This shows that a single narrow-
linewidth photon acts in the same manner as an extremely weak laser beam—a
statement holding for the spectra only, as the photon statistics of these two sources
still differ fundamentally.
Furthermore it is a reasonable presumption that a small, but non-vanishing linewidth
of the laser (such as 150 kHz À Γ , see section 1.4.5 on p. 19) does practically not
change the results.
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3.3 Temporal structures

Spectrum and wave packet of single photons are equally interesting to study and
both are two sides of the same coin. It is flipped by Fourier transformation of
the wave function. The following investigation of wave packets results from this
method.

3.3.1 Single-photon excitation

In the case of excitation by a single photon the emitted photon is in a pure quantum
state |ψ2〉 identified as a Fourier-limited wave packet. Thus, its temporal structure
follows from the Fourier transformation of its spectral amplitude function, eq. (3.3).
For excitation by a Lorentzian spectrum (sec. 3.1.3) the arrival-time distribution of
the wave packet is a superposition of two exponential decays,

R(t ) =
2°A1A2�ω1

∆2
1 − �

Γ−�ω1
2 	

2 �(t ) |||
e−i(ωE+∆1 )t e−

�ω1
2 t − e−iωEt e−

Γ
2 t |||

2
. (3.9)

If the two linewidths, Γ and �ω1, are of similar value and distinctly smaller than
the detuning ∆1, the wave packet exhibits an interference pattern with a beat
frequency equal to the detuning, see figure 3.6.
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Figure 3.6 – Wave packet of a Raman photon generated by single-photon excitation according
to eq. (3.9) with Γ = 2° · 23MHz, �ω1 = 2° · 10MHz, and ∆1 = 2° · 200MHz.
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3.3.2 laser excitation

To quantify the temporal distribution of the Raman photon in the case of laser
excitation is more elaborate as all previously emitted photons have to be taken
into account: It is assumed that after each spontaneously emitted photon on the
transition |e〉 Ù |1〉, the emitter is projected back onto the initial state |1〉, and the
excitation process starts again. For each photon emitted after such a projection,
the temporal shape of its wave packet is the square of the absolute value of the
Fourier transformation of the amplitude spectrum (that on its own is the square
root of SN , eq. (3.8)),

p1(t ) = C�(t ) |||
e−i(ωE+∆1+∆S )t e−

κ
2 t − e−i(ωE−∆S )t e−

Γ−κ
2 t |||

2
, (3.10)

that is again a superposition of two exponential decays. As this distribution
describes the uncertain instance of time when the photon is emitted, the wave
packet of the next photon is broadened accordingly, i. e. its temporal shape p2(t ) is
the convolution of the temporal shape of the first photon with itself.2 Consequently,
the temporal shape of the N -th photon is the convolution of the previous one with
p1(t ),

pN (t ) = (pN−1 * p1)(t ).

In the case of a convolution of probability distributions one finds for the first
moment,

〈t 〉N = X pN (t )t dt = 〈t 〉N−1 + 〈t 〉1,

and for the second central moment,

(∆t )2N = 〈(t − 〈t 〉N )2〉N = (∆t )2N−1 + (∆t )21.

Thus, the N -th photon has a mean arrival time of 〈t 〉N = N〈t 〉1, and a temporal
spread of (∆t )N =

√
N (∆t )1.

From this the mean arrival time of the Raman photon is finally found by summing
over all cases of N previously emitted photons weighted by their probabilities (cf.
eq. (3.5)),

〈t 〉Raman =
∞
@

N=0
Pscatter,N 〈t 〉N+1 = (N̄ + 1)〈t 〉1.

2) Note that any possible interference between the spontaneously emitted photons on transition
|1〉 Û |e〉 are traced out (Markov chain).
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Through a corresponding calculation the spread of the arrival time of the Raman
photon is given by

(∆t )Raman = (N̄ + 1)(∆t )1.

This shows that the Raman photon is temporally broadened by a factor equal
to the mean number of spontaneously emitted photons including this final one,
and with N̄ + 1 = Γ⁄A2 it demonstrates the significance of the branching ratio in this
case.

3.4 Résumé

The method presented and used in this chapter is a universal tool to calculate the
spectra of Raman-scattering processes and to understand and quantify many of
the emerging effects. The important conclusions are:

• The Raman photon created by single-photon excitation is fully coherent, i. e.
Fourier limited.

• The success probability is limited by the product of the branching fractions,
A1A2.

• Laser excitation on the other hand generates the photon with 100% probab-
ility, but its coherence is reduced due to backscattering.

• This incoherence is not observed as a spectral broadening, but solely as a
temporal extension of the wave packet (by the factor Γ⁄A2).

• In both excitation scenarios the branching ratio plays an important role, but
these two roles are totally different from each other.

Raman spectra for some other input spectra are presented in the article [82].

Remarks: If the incident single photon is in fact a stream of single photons, e. g.
in the case of an SPDC source (see sec. 1.5), the generated Raman photon is in
a mixed state, and thus not fully coherent anymore. Its coherence is dependent
on the intensity of the single-photon source by means of loosing the information,
which photon is absorbed—just as in the case of laser excitation. This effect is
negligible in the experiments presented in this thesis, but must be kept in mind
for future developments. To overcome it the incident photons could be heralded
to filter out the immediate emission events, a well feasible possibility in the case
of SPDC photon pairs. The resulting spectrum of that scenario is again equal to
the one of a true single photon.
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The spectra presented in the last section of the article [82, sec. IV.] are erroneous.
It concerns the application of the presented model to quantum beats that result
from two simultaneous Raman transitions via the same excited state. These er-
rors were noticed not before publication, but far after it. They result from the
approximation that the two excitations do not influence each other, i. e. the pos-
sibility was neglected that one excitation leads to a transfer of population to the
other initial energy eigenstate. It turned out that this effect is too large to be
negligible. Thus, these erroneous results are not recapitulated here. For a de-
tailed investigation and the correct spectra see the forthcoming thesis of Matthias
Kreis.

3.5 Alternative calculation for laser excitation

Here, the spontaneous Raman process is modelled using the Lindblad equa-
tion (4.1) on p. 64 for a three-level system. A coherent interaction with Rabi fre-
quency Ω tuned to the transition |1〉 Û |e〉 with a detuning ∆ competes with the
decay of the upper state |e〉 to the final state |2〉 with the rate Γ (see figure 3.7).
In opposition to the general case of figure 3.1 on p. 45, the decay back to the
initial state |1〉 is neglected by choosing A1 = 0 and A2 = Γ . This is an eligible
approximation to the Raman transition D5/2–P3/2–S1/2 in 40Ca+ with a branching
ratio of A1/A2 = 6.28(5) %, see table 1.1 on p. 12. Thus, the emitted photon has a
high coherence close to the Fourier limit.

|2〉

|e〉
∆

|1〉

Ω

Γ

Figure 3.7 – The level scheme of a spontaneous Raman transition neglecting decay back to
the initial state, cf. figure 3.1.

The coherent interaction is modelled based on the Hamilton operator of the two-
level system |1〉–|e〉, eq. (2.8) on p. 32 (cf. section 2.2 for details). Here, the excited
state is used as energy reference, and the system is extended by the third state |2〉
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with the energy ħωE of one emitted photon missing, thus:

Ĥ = ħ
 ((
0

∆ Ω*

2 0
Ω
2 0 0
0 0 −ωE

!))
1
.

The decay is modelled by the operator Ĉ =
√
Γ |2〉〈e|. Both operators are fed into

the Lindblad equation (4.1),

d
dt

ρ̂ = i
ħ

 ρ̂, Ĥ� + 1

2 �2Ĉρ̂Ĉ + − ρ̂Ĉ +Ĉ − Ĉ +Ĉ ρ̂	 .

Starting in the initial state ρ̂(0) = |1〉〈1| at time t = 0, the time evolution

ρ′(t ) = eL̂ t ρ′(0)

for the vectorised operators3 with the Liouville superoperator L̂ leads for t £ 0
to the solution

ρ̂(t ) = |φ(t )〉〈φ(t )| + �1 − 〈φ(t )|φ(t )〉� |2〉〈2|.

There, |φ(t )〉 is a non-normalised superposition state of |1〉 and |e〉, corresponding
to the not-yet decayed amount of the atomic state,

|φ(t )〉 = 1
N

 ((
0
e−

κ
2 t −i(∆+∆S )t

 ((
0

∆ + ∆S + i
Γ−κ
2

Ω
2
0

!))
1
− e−

Γ−κ
2 t +i∆St

 ((
0

−∆S + i
κ
2

Ω
2
0

!))
1

!))
1
,

with the same characteristic parameters as before (in section 3.2),

κ = Γ
∆S

∆ + 2∆S
,

∆S = −
∆
2 +

sgn ∆
2
√
2

îííííííì

Ω2
eff −

Γ2

4 +

ë

�Ω2
eff −

Γ2

4 �
2
+ ∆2Γ2 ,

Ωeff =

é
|Ω|2 + ∆2 ,

3) See section 4.1 on p. 64 for details.
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and a pre-factor,

N =
||||
∆ + 2∆S + i

Γ − 2κ
2

||||
.

The probability amplitude to find the atom in the excited state at the time t is
proportional to 〈e|φ(t )〉, which leads to the temporal probability-amplitude function
of the emitted photon,

R(t ) =
è
N ′ e−iωEt 〈e|φ(t )〉 = −i

è
C �(t ) �e−

κ
2 t −i(ωE+∆+∆S )t − e−

Γ−κ
2 t −i(ωE−∆S )t 	 . (3.11)

Therein, a phase factor given by the optical carrier frequency ωE of the emission
transition and a normalisation factor N ′ complete the formula. The result is the
same as the wave packet of the first emitted photon in the general model, eq. (3.10)
on p. 56, a fact owed to the neglected back scattering. Its Fourier transformation
leads to the amplitude spectrum,

R(ω) =

ê
C
2° � 1

ω −ωE − ∆ − ∆S + i
κ
2

−
1

ω −ωE + ∆S + i
Γ−κ
2

� , (3.12)

depicting a superposition of two Lorentzian amplitude spectra that are weighted
by the reciprocal square roots of their respective widths—the same result as before
in section 3.2.2.

3.6 The Raman operator

Furthermore, the whole process is easily expressed in representation-independent
notation through a single operator called Raman operator,

R̂ = R̂ωE,Γ ,∆,Ω,�ω = |ψf 〉〈ψi | = |2〉 � ||RωE,Γ ,∆,Ω,�ω� 〈1| � 〈Φ|, (3.13)

that transforms the initial state |1〉 of the atom into the joint state |ψf 〉 = |ψ(t Ù∞)〉 =
R̂|ψi 〉 = |2〉� |R〉 of atom and emitted photon through the presence of a light field of
the state |Φ〉. The characterising parameters are the natural frequency ωE of the
emission transition, the decay constant Γ of the excited state, and the detuning ∆,
Rabi frequency Ω, and linewidth �ω of the exciting light. The state in which the
exciting light field remains after the process is omitted in this description.
The two cases of the previous sections are hence represented in the following way:
Excitation by laser light implies Φ to be a coherent field state in the language of
the second quantisation. It is characterised only by detuning (or carrier frequency)
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and Rabi frequency as the linewidth of the laser is assumed to be much more
narrow than the atomic transition, i. e. �ω À Γ , practically setting �ω Ù 0, thus

R̂laser = R̂ωE,Γ ,∆,Ω = |2〉||RωE,Γ ,∆,Ω(,�ωÙ0)�〈1|�Φ∆,Ω ||.

Photonic excitation, on the other hand, is characterised by the detuning (or carrier
frequency) and the (coherent) linewidth of the single photon, and assigning the
photon a vanishing Rabi frequency Ω Ù 0 in the language of lasers, thus

R̂photon = R̂ωE,Γ ,∆,�ω = |2〉||RωE,Γ ,∆(,ΩÙ0),�ω�〈1|�Φ∆,�ω||.

The representation in frequency space is thus given by the scalar product with
a frequency eigenstate of the emitted photon, R(ω) = 〈ω|R〉, corresponding to
eq. (3.12), and the representation in the temporal domain by the product with a
temporal eigenstate of the photon, R(t ) = 〈t |R〉, i. e. the Fourier transformation of
the aforementioned.
The calculation of the quantum interface in chapter 5 is based on this operator
and thereby much more transparent and concise as other approaches.
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Chapter 4

The Matlab programme

«Shut up and calculate!»

— --------------------R. P. Feynman N. D. Mermin (2004)[77]

To investigate the internal dynamics of the 40Ca+ ion in detail, a computer pro-
gramme for the dynamics of its eighteen internal levels has been written. The
programming language of choice is Matlab (abbrev. for matrix laboratory), a
trademark of «The MathWorks, Inc.». This chapter describes the mathematical
principles on which it is based as well as its implementation as a set of easy-to-
use Matlab functions.
The programme has already been used over the past years as visible in the theses
of the author’s co-workers [47, 62, 112] and in some publications [111, 113].
This chapter starts with a recapitulation of the equation of motion that is the
mathematical basis of the programme. In section 4.2, it is applied to the relevant
electronic energy levels of the calcium ion. The final section (sec. 4.3) concerns the
implementation in Matlab including some examples of its use.
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4.1 The master-equation formalism in general

The programme is based on the Kossakowski–Lindblad equation [55, 69, 78]:

d
dt

ρ̂ = i
ħ

 ρ̂, Ĥ� + 1

2
m
@
k=1

�2Ĉkρ̂Ĉ +k − ρ̂Ĉ +kĈk − Ĉ +kĈkρ̂	 (4.1)

This is an equation of motion for the density operator ρ̂ in the n-dimensional
Hilbert space H . The reversible/coherent part of the evolution is given by the
first term on the right-hand side governed by the Hamilton operator Ĥ , while
the second term treats the irreversible/non-unitary part of the evolution due to
dissipation to the environment governed by the so-called relaxation operators Ĉk.
One example of such dissipative processes is the decay of an internal state |i 〉 into
another state |f 〉 under emission of a photon into the environment. The relaxation
operator for this example is Ĉ =

√
Γ |f 〉〈i | assuming a decay rate Γ .

As eq. (4.1) is linear in ρ̂, a linear superoperator L̂ , the Liouville operator, in the
product spaceH�H is found that acts on the n2-dimensional vector ρ′ containing
the components of the density operator row-wise stacked, i. e. according to

ρi ,j = ρ′
(i−1)n+j (4.2)

with i , j ∈ { 1, . . . , n} . Hence, the equation of motion takes the form

d
dt

ρ′ = L̂ · ρ′, (4.3)

and the time evolution of the system is simply given by

ρ′(t ) = e P L̂ dt ρ′(0).

Using the Kronecker product in H � H and introducing the non-Hermitian so-
called effective Hamilton operator

Ĥeff =
Ĥ
ħ
−

i
2

m
@
k=1

Ĉ +kĈk,

eq. (4.1) is rewritten into eq. (4.3) with the Liouville operator having the form

L̂ = i �1 � Ĥ *
eff − Ĥeff � 1	 + @

k
Ĉk � Ĉ *

k. (4.4)

Please note that the sign * indicates complex conjugation only. For the explicit
derivation of L̂ see the appendix (sec. A 1 on p. 113).
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4.2 The master equation for the 18-level system

The Matlab programme restricts itself to the internal dynamics of a 40Ca+ ion, more
precisely to its five lowest energy terms that are split into eighteen sub-levels by
the present static magnetic field. The relevant additional energy term, due to
the linear Zeeman effect, is −µ̂J · B0, which shifts all 18 sub-levels according to
their magnetic quantum number mJ and the respective Landé factor gJ . In the
following description the sub-levels are numbered according to figure 4.1, from 1
to 18.

P3/2

P1/2 D5/2

D3/2

S1/2
|1〉

−
1⁄2

|2〉

+
1⁄2

|3〉

−
1⁄2

|4〉

+
1⁄2

|5〉

−
3⁄2

|6〉

−
1⁄2

|7〉

+
1⁄2

|8〉

+
3⁄2

|9〉

−
3⁄2

|10〉

−
1⁄2

|11〉

+
1⁄2

|12〉

+
3⁄2

|13〉

−
5⁄2

|14〉

−
3⁄2

|15〉

−
1⁄2

|16〉

+
1⁄2

|17〉

+
3⁄2

|18〉

+
5⁄2

Figure 4.1 – The 18 lowest energy sub-levels of 40Ca+ (cf. fig. 1.2) showing the numbering used
in the Matlab programme. The values below each level indicate the magnetic quantum
number mJ of the respective state. Energy differences are not to scale.

Similarly the seven relevant transition channels (fig. 1.2 on p. 11) are split into 56 sub-
channels (see fig. A.1 on p. 117). As this splitting is owed to spin–orbital coupling,
it connects the photon’s spin with the change in the magnetic quantum number of
the ion, and thus the geometry as well as the Clebsch–Gordan coefficients (cCG)
enter the coupling strength of all these sub-channels. The following subsections
provide details to this.

4.2.1 Spontaneous decays

On each transition channel, spontaneous decay is possible, and modelled as
relaxation operators in the form Ĉ =

√
Γ |f 〉〈i | as mentioned above. If photons

emitted on different (sub-)channels are indistinguishable for the environment, they
must be modelled conjointly as a single relaxation operator. For a small Zeeman
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splitting compared to the decay rate, this is the case just for sub-channels of
the same transition and with the same polarisation. Thus, there are 25 decay
operators Ĉk,�m for the 56 sub-channels in total, where k stands for the transition
number (0–6) and �m for the change in the z-component of the atomic total
angular momentum.
The Einstein coefficients Ak of each transition (given in table 1.1 on p. 12) are
distributed to the sub-channels according to the spin–orbital coupling, thus the
Clebsch–Gordan coefficients (given in fig. A.1 on p. 117) appear as factors in the
relaxation operators of the spontaneous decay.
In detail, these operators are:

1. for transition no. 1 (P1/2 Ù S1/2)

Ĉ1,+1 = −
è
A1

è
2⁄3 |1〉〈4|

Ĉ1,±0 =
è
A1

è
1⁄3 (|2〉〈4| − |1〉〈3|)

Ĉ1,−1 =
è
A1

è
2⁄3 |2〉〈3|

2. for transition no. 2 (P1/2 Ù D3/2)

Ĉ2,+1 =
è
A2 �

è
1⁄2 |5〉〈3| +

è
1⁄6 |6〉〈4|	

Ĉ2,±0 = −
è
A2

è
1⁄3 (|6〉〈3| + |7〉〈4|)

Ĉ2,−1 =
è
A2

è
1⁄6 �|7〉〈3| +

è
1⁄2 |8〉〈4|	

3. for transition no. 3 (P3/2 Ù S1/2)

Ĉ3,+1 =
è
A3

è
1⁄3 (|1〉〈11| + √3 |2〉〈12|)

Ĉ3,±0 =
è
A3

è
2⁄3 (|1〉〈10| + |2〉〈11|)

Ĉ3,−1 =
è
A3

è
1⁄3 (√3 |1〉〈9| + |2〉〈10|)

4. for transition no. 4 (P3/2 Ù D3/2)

Ĉ4,+1 =
è
A4

è
1⁄15 �−

√
6 |5〉〈10| −

√
8 |6〉〈11| −

√
6 |7〉〈12|	

Ĉ4,±0 =
è
A4

è
1⁄15 (−3|5〉〈9| − |6〉〈10| + |7〉〈11| + 3|8〉〈12|)

Ĉ4,−1 =
è
A4

è
1⁄15 �+

√
6 |6〉〈9| +

√
8 |7〉〈10| +

√
6 |8〉〈11|	
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5. for transition no. 5 (D5/2 Ù S1/2)

Ĉ5,+2 =
è
A5

è
1⁄5 (|1〉〈17| + √5 |2〉〈18|)

Ĉ5,+1 =
è
A5

è
1⁄5 �
√
2 |1〉〈16| + 2|2〉〈17|�

Ĉ5,±0 =
è
A5

è
1⁄5 (√3 |1〉〈15| + √3 |2〉〈16|)

Ĉ5,−1 =
è
A5

è
1⁄5 �2|1〉〈14| +

√
2 |2〉〈15|�

Ĉ5,−2 =
è
A5

è
1⁄5 (√5 |1〉〈13| + |2〉〈14|)

6. for transition no. 6 (P3/2 Ù D5/2)

Ĉ6,+1 =
è
A6

è
1⁄15 �|16〉〈12| + √3 |15〉〈11| +

√
6 |14〉〈10| +

√
10 |13〉〈9|	

Ĉ6,±0 = −
è
A6

è
1⁄15 �√4 |17〉〈12| +

√
6 |16〉〈11| +

√
6 |15〉〈10| + √4 |14〉〈9|	

Ĉ6,−1 =
è
A6

è
1⁄15 �

√
10 |18〉〈12| +

√
6 |17〉〈11| + √3 |16〉〈10| + |15〉〈9|	

7. for transition no. 0 (D3/2 Ù S1/2)

Ĉ0,+2 = −
è
A0

è
4⁄5 |1〉〈8|

Ĉ0,+1 =
è
A0

è
1⁄5 (−√3 |1〉〈7| + |2〉〈8|)

Ĉ0,±0 =
è
A0

è
1⁄5 �−

√
2 |1〉〈6| +

√
2 |2〉〈7|�

Ĉ0,−1 =
è
A0

è
1⁄5 (−|1〉〈5| + √3 |2〉〈6|)

Ĉ0,−2 =
è
A0

è
4⁄5 |2〉〈5|

4.2.2 Coherent interactions

As described in chapter 2, the coherent interaction at each sub-channel |g〉 Û |e〉
is expressed by a Hamilton operator in the form of

Ĥ = ħ
2 �Ωge|e〉〈g| +Ω*

ge|g〉〈e| + ∆(|g〉〈g| − |e〉〈e|)	 = ħ
2 �
+∆ Ω*

ge

Ωge −∆
� (4.5)

in the time-independent reference frame rotating with the laser frequency, cf.
eq. (2.8) on p. 32. To keep such a reference frame for each transition, the detuning
of the laser from the atomic resonance, ∆ = ωL − ωA, enters not only the two
states |g〉 and |e〉, but also all states connected with these two via other laser
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beams. Thus, all states connected with |g〉 receive a detuning of +∆2 , and all
states connected with |e〉 receive a detuning of −∆2 . The same consideration must
be done for the laser linewidths (see sec. 4.2.3).
To get the actual value of Ωge for a certain sub-channel, the total Rabi frequency
of the laser has to be multiplied by the proper Clebsch–Gordan coefficient cCG
as well as the geometry factor g|�l |,�m according to section 2.3 on p. 33. In this
way the direction and polarisation of each laser beam enters the coupling strength
for each of the 56 sub-channels.

Remarks: For each laser only the transition to which it is close to resonance
is taken into account. Its detuning to the other transitions is several orders of
magnitude larger, in the regime of optical frequencies, and thus, these interactions
are negligibly weak.
The magnetic dipole interaction between the two Zeeman sub-levels of S1/2 is
driven by the RF coil (sec. 1.4.5 on p. 20) but mathematically treated in the same
way as the laser transitions. This requires a re-examination of the rotating-wave
approximation as the transition is at radio frequency (É 8 MHz). But nevertheless,
for typical Rabi frequencies of about 1 MHz, this leads to a neglected Bloch–
Siegert shift [11] in the single-digit kHz-regime.

4.2.3 Linewidths of the lasers

Fluctuations of the laser frequencies wash out the coherent interaction of the lasers
with the ion. These reduce the so-called coherences, the off-diagonal elements of
the density operator. In the simulation, this is modelled by relaxation operators
that take into account the couplings done by the respective laser and all couplings
that the upper and lower states have via the other lasers. So, for a laser that is
incoherently broadened with a linewidth of �ωL and connects the states |gi 〉 with
the states |ej 〉 the corresponding operator is,

ĈL =

ê
�ωL
2 �@

i
|gi 〉〈gi | + @

k
|k〉〈k| − @

j
||ej ��ej || − @

l
|l 〉〈l |� , (4.6)

where |k〉 and |l 〉 are all states connected with |gi 〉 and |ej 〉, respectively, via
other lasers. This formalism follows the example of a «Relaxation of Type T2» as
presented in [78].
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4.2.4 Closed paths of atomic states

If the different laser beams allow more than one connection between two states
of the atom, these excitation pathways interfere with each other dependent on
the phase difference of the participating lasers. E. g. the states S1/2 and P3/2 are
connected via the D5/2 state by the 729 nm and the 854 nm transition, or directly
by the 393 nm transition. As the different lasers are not necessarily phase-stable
to each other, and the actual values of their phases at every point in time are
unknown, it is not possible to simulate their interference. Thus, the programme
has to assert, that there are no such closed paths for the given set of lasers that
are switched on at the same time.
In the 18-level scheme of 40Ca+ (fig. 1.2 on p. 11) without a 732 nm laser, only three
closed paths exist:

• 393 nm Û 854 nm Û 729 nm

• 397 nm Û 866 nm Û 850 nm Û 393 nm

• 397 nm Û 866 nm Û 850 nm Û 854 nm Û 729 nm

In addition, the radio-frequency transition may close paths if it is switched on simul-
taneously with one of the blue lasers. This is also excluded by the programme.

4.2.5 Connections between atomic states

It is necessary to known, for a given set of lasers, which states are connected with
each other to set up the linewidth operators of section 4.2.3. In the same manner
the detuning values that fill up the diagonal of the total Hamilton operator Ĥtot
are calculated. These connections are determined by the programme after closed
paths have been excluded.
As a simple example, consider the cooling cycle in which only the 397 nm and the
866 nm lasers shine on the ion. In this case, according to eq. (4.5), the detuning
of the first laser, or precisely ħ∆397/2, is added to both sub-levels of the S1/2
manifold, and subtracted from P1/2 as well as from D3/2. The latter because of
the connection by the 866 nm laser. This second laser’s detuning is added to the
four D3/2 sub-levels, and subtracted from the other four (S1/2 and P1/2). Thus, the
diagonal entries of Ĥtot result to be ∆S1/2

= ħ(∆397−∆866)/2, ∆P1/2
= −ħ(∆397+∆866)/2,

∆D3/2
= ħ(−∆397 + ∆866)/2, and zero for the other ten sub-levels.

In addition to this, every sub-level is shifted individually by gJmJµBB0 due to the
static magnetic field, hence e. g. ∆6 = ħ(∆866 − ∆397)/2 − gD3/2

µBB0/2.
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4.2.6 Everything together

Combining the previous considerations of this section leads to the resulting total
Hamilton operator as a block matrix in the unperturbed eigenbasis,

Ĥtot =

 ((((((((((((((((((((((((((((((((((((((((
0

∆1 Ω*
RF

ΩRF ∆2
Ĥ +1 0 Ĥ +3 Ĥ +5

Ĥ1
∆3 0
0 ∆4

Ĥ2 0 0

0 Ĥ +2

∆5 0 0 0
0 ∆6 0 0
0 0 ∆7 0
0 0 0 ∆8

Ĥ +4 0

Ĥ3 0 Ĥ4

∆9 0 0 0
0 ∆10 0 0
0 0 ∆11 0
0 0 0 ∆12

Ĥ6

Ĥ5 0 0 Ĥ +6

∆13 0 0 0 0 0
0 ∆14 0 0 0 0
0 0 ∆15 0 0 0
0 0 0 ∆16 0 0
0 0 0 0 ∆17 0
0 0 0 0 0 ∆18

!))))))))))))))))))))))))))))))))))))))))
1

where each off-diagonal submatrix Ĥi covers the distribution of a Rabi frequency Ωi
to the sub-channels of the respective transition (no. i ). This results from the spin–
orbital coupling and the coupling to the electromagnetic field, which are ex-
pressed by the Clebsch–Gordan coefficients and the geometrical weighting
factors, cCG and g|�l |,�m , respectively:

Ĥ1 =
ħΩ1
2 �

−
è

1⁄3 g (1)
1,0

è
2⁄3 g (1)

1,−1

−
è

2⁄3 g (1)
1,+1

è
1⁄3 g (1)

1,0

�

Ĥ2 =
ħΩ2
2 �

è
1⁄2 g (2)

1,+1 −
è

1⁄3 g (2)
1,0

è
1⁄6 g (2)

1,−1 0

0
è

1⁄6 g (2)
1,+1 −

è
1⁄3 g (2)

1,0

è
1⁄2 g (2)

1,−1

�
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Ĥ3 =
ħΩ3
2

 (((((
0

g (3)
1,−1 0è

2⁄3 g (3)
1,0

è
1⁄3 g (3)

1,−1è
1⁄3 g (3)

1,+1

è
2⁄3 g (3)

1,0

0 g (3)
1,+1

!)))))
1

Ĥ4 =
ħΩ4
2

 ((((((
0

−
è

3⁄5 g (4)
1,0

è
2⁄5 g (4)

1,−1 0 0

−
è

2⁄5 g (4)
1,+1 −

è
1⁄15 g (4)

1,0

è
8⁄15 g (4)

1,−1 0

0 −
è

8⁄15 g (4)
1,+1

è
1⁄15 g (4)

1,0

è
2⁄5 g (4)

1,−1

0 0 −
è

2⁄5 g (4)
1,+1

è
3⁄5 g (4)

1,0

!))))))
1

Ĥ5 =
ħΩ5
2

 (((((((((((
0

1 · g (5)
2,−2 0è

4⁄5 g (5)
2,−1

è
1⁄5 g (5)

2,−2è
3⁄5 g (5)

2,0

è
2⁄5 g (5)

2,−1è
2⁄5 g (5)

2,+1

è
3⁄5 g (5)

2,0è
1⁄5 g (5)

2,+2

è
4⁄5 g (5)

2,+1

0 1 · g (5)
2,+2

!)))))))))))
1

and

Ĥ6 =
ħΩ6
2√15

 (((((
0

√
10 g (6)

1,+1 −2g (6)
1,0 g (6)

1,−1 0 0 0
0

√
6 g (6)

1,+1 −
√
6 g (6)

1,0
√3 g (6)

1,−1 0 0
0 0 √3 g (6)

1,+1 −
√
6 g (6)

1,0

√
6 g (6)

1,−1 0
0 0 0 g (6)

1,+1 −2g (6)
1,0

√
10 g (6)

1,−1

!)))))
1

.

4.3 Implementation in Matlab

This section may be used as a manual for the Matlab programme as it explains
the different implemented functions in detail. The author hopes that it serves
users of the programme as a guide to build their own scripts of data analysis or
modelling.
The kernel of the implementation is the file Liou18.m which calculates the Liouville
operator L̂ , eq. (4.4), out of the laser parameters and the magnetic field. Only
laser excitations at six of the seven transitions are considered, the 732 nm trans-
ition (no. 0) is omitted. All parameters for these six possible laser beams have to
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be input collectively as a single input argument, the so-called «laser matrix». Each
laser is characterised by seven parameters: its total Rabi frequency Ω, the detun-
ing ∆ off the natural atomic transition frequency, the linewidth �ω, two angles for
the orientation, α and ε (acc. to sec. 2.3 on p. 33), and two angles of polarisation,
θ and φ (acc. to sec. 1.1 on p. 7). The first three are given as technical frequencies
in hertz, the four angles in radians. Thus, the laser matrix is a 6 , 7-dimensional
array:

LASER =

 ((((((((((
0

Ω1

Ω2

Ω3

Ω4

Ω5

Ω6

∆1

∆2

∆3

∆4

∆5

∆6

�ω1

�ω2

�ω3

�ω4

�ω5

�ω6

α1

α2

α3

α4

α5

α6

ε1
ε2
ε3
ε4
ε5
ε6

θ1

θ2

θ3

θ4

θ5

θ6

φ1

φ2

φ3

φ4

φ5

φ6

!))))))))))
1

for 397 nm

for 866 nm

for 393 nm

for 850 nm

for 729 nm

for 854 nm

The second input argument, called «Mag», is the value of the static magnetic
field |B0| in gauss (= 10−4 tesla). If the radio-frequency transition in the S1/2 is
driven this is extended to a vector carrying additionally the strength (as a Rabi
frequency), radio frequency, and phase of that drive:

Mag = �|B0| , ΩRF, ωRF, φRF�

4.3.1 Steady-state calculation

To simulate the ion’s behaviour in continuous-wave excitation like most cases of
spectroscopy, one has to determine the equilibrium or steady state of the ion
under given conditions. The density operator of the steady state, ρ̂st, fulfils the
condition

d
dt

ρ̂st = 0.

This means the steady states lie in the null space of the Liouville operator,
L̂ρ′

st = 0′. It can be found by the Matlab function null.m through singular-value
decomposition (SVD), but here a different method is used: Gaußian elimination
with partial pivoting through Matlab’s fast backslash operation «\». This would
lead to a problem as the inverse of the Liouville operator has to be applied
to the zero vector, ρ′

st = L̂
−10′, which is mathematically absurd. So, a simple

trick is used. One row of L̂ is replaced by the unit matrix 1 written as a row
vector 1′ the same way as eq. (4.2) with 1

′
(i−1)n+j = ¤i ,j and the respective entry of

0′ is replaced by the trace of ρ̂, i. e. the number one. This keeps the information
content unchanged, but makes the new equation solvable. The function stst18.m
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calculates the steady state using this trick. It is about two times faster than the
corresponding function using SVD, but is fruitful only if the steady state is unique,
otherwise it will give an error message. In case of success stst18.m gives the steady
state of the ion as an 18 , 18-density matrix.

−100 −80 −60 −40 −20 0 20 40 60 80 100

10 000

20 000

30 000

detuning of 866 nm laser in MHz

flu
or

es
ce

nc
e

in
cli

ck
s

pe
rs

ec
on

d

Figure 4.2 – Fluorescence spectrum of 40Ca+ at the P1/2–D3/2 transition: The dots are measured
data, the line is calculated with stst18.m using the parameters Ω397 = 24.5MHz, Ω866 = 11 MHz,
∆397 = −17.4MHz and �ω397 = �ω866 = 150 kHz. Four dark resonances are clearly visible.

As an example, figure 4.2 shows a spectroscopy at 866nm wavelength of a single
40Ca+ ion during the cooling cycle. Each data point is the number of fluorescence
clicks detected in 500 ms at the respective detuning value of the 866 nm laser.
The fluorescence rate is directly proportional to the population of the excited
state P1/2, which is calculated with Matlab and compared. By varying the model
parameters globally and calculating the steady state for each point using the
function stst18.m, the optimal parameters are found. This can be done manually
or by a regression analysis. Here, the Rabi frequencies of both lasers, and the
detuning of the 397 nm laser are varied manually. All other parameters are
kept fixed, the laser linewidths are determined by earlier measurements of laser
specification (see sec. 1.4.5), and the angles are given through the experimental
set-up.
The model does not only depict the general atomic resonance curve, but explains
the four narrow dips as dark resonances that are associated to transitions between
certain Zeeman sub-levels.

73



4.3.2 Simulation of dynamics

The time evolution of the density operator (in row-vector form) is given by, ρ′(t ) =
eL̂ t ρ′(0), see section 4.1. To simulate dynamical behaviour in 40Ca+ the density
matrices for a number s of steps in time with the step size �t are calculated
using a given Liouville operator L̂ defined by LASER and Mag. There are two
functions conducting this:
Ù dyn18init.m starts the simulation from an initial state ρ0:

obj = dyn18init(ρ0, s, �t , LASER, Mag)

Ù dyn18_steps.m starts the simulation from the last density matrix of a previously
calculated «obj»:

obj = dyn18_steps(obj, s, �t , LASER, Mag)

The «obj» is a big matrix of the calculated data. It has one row per time step with
the time values in the first column and the density matrices as 324-dimensional
row vectors in the other columns.
The dynamics in the case of a time-dependent Liouville operator are simulated
by approximating it with a stepwise-changing operator and using a sequence of
several calls of dyn18_steps.m, one for each step. This allows for the analysis
of arbitrary complex dynamics. To show the power of this modelling method,
the example of a rather complex wave packet of a Raman photon at 393 nm is
analysed in the following:
A single 40Ca+ ion is initially prepared in D5/2 in a pure state, the Zeeman sub-
level with mJ = +

5⁄2 (state no. 18 in figure 4.1), and then excited by an 854 nm
laser beam. For details to the state preparation see [61]. The driven �-shaped
transition D5/2–P3/2–S1/2 results in the emission of a Raman photon of 393 nm
wavelength. A laser power of 3.1 ¬W tightly focused by a HALO corresponds to
a Rabi frequency higher than the decay rate of the excited level P3/2. This leads
to Rabi oscillations between the D5/2 and P3/2 level, visible as a modulation
of the exponential decay. The detection of this photon with a time resolution
of 0.4 ns in 33 562 runs of the experiment leads to the arrival-time distribution
shown in figure 4.3 as a histogram of blue dots. These data were recorded on
5. 3. 2012 (lab book 6, p. 30) and published in [61] for the first time, but only now
a quantitative explanation is given.
A single call of dyn18init.m can simulate the oscillating decay of the wave packet,
but not the shape of its initial rise (from about 20 to 33 ns in the plot). As the
strong excitation leads to a very short wave packet, the switching behaviour of the
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AOM that directs the laser beam to the ion becomes relevant. This is simulated as
a temporal step function of increasing Rabi frequency over a switching time τ, thus
a sequence of dyn18_steps.m. Assuming a Gaußian beam profile, the intensity
at the ion increases as the integral of the Gauß curve with the switching time as
standard deviation. The step function approximates the course of this function by
21 equidistant steps over a time span of 2τ where the integral increases from 0.02
to 0.98. Thus, the relative intensity increases from 0.2 to 0.8 over a time span
of τ.
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Figure 4.3 – Wave packet of a 393 nm Raman photon generated by high-intensity laser light
at 854 nm wavelength. The blue dots form a histogram of 33 562 successful repetitions of the
experiment with a binning of 0.4 ns. The red line is the simulation fitted to the measurement;
the light-red area indicates the relative power of the exciting laser, see main text.

Using this sequence to simulate the dynamics in a standard χ-squared fitting routine
gives the Rabi frequency, detuning, and linewidth of the laser to be Ω = 350 MHz,
∆ = −5 MHz, and �ω = 15.6 MHz, as well as the switching time of the AOM, τ = 22 ns.
The line in figure 4.3 corresponds to these values, and shows a good agreement
with the data and the actual experimental parameters. The only conspicuous
value is the fitted laser linewidth �ω, which is two orders of magnitude bigger
than the measured linewidth of about 150 kHz (see section 1.4.5). This is attributed
to other sources of incoherence in the measurement, e. g. the temporal spread of
the electric signal in the photon detectors, and the fluctuation of the magnetic
field.
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4.3.3 Summary of the Matlab functions

The following summarises the provided functions and may serve as a reference
guide for users of the programme.
Ù Liou18.m calculates the Liouville superoperator L̂ :

L = Liou18(LASER, Mag)

Ù dyn18init.m calculates the dynamics for L̂ starting in a pure state (n = 1–18), a
mixed orbital state (n = ’s’, ’p’, ’d’, ’ P’ or ’D’), or any given state (full 18 , 18 density
matrix n):

obj = dyn18init(n, steps, �t , LASER, Mag)

This is a generalised version of the following function.
Ù dyn18_init.m calculates the dynamics for L̂ starting in the state |1〉 = |S1/2, −1⁄2〉:

obj = dyn18_init(steps, �t , LASER, Mag)

Ù dyn18_steps.m calculates the dynamics for L̂ , continuing from a given «obj»:
obj = dyn18_steps(obj, steps, �t , LASER, Mag)

Ù stst18.m calculates the steady state of L̂ :
rho = stst18(LASER, Mag)

Ù script18stst.m runs «stst18» multiple times (with different values for one of the
laser parameters):

obj = script18stst(LASER, Mag, laser no. , laser pmt, interval)

Ù plot18.m plots the population of one state (n = 1–18) or one orbital (n = ’s’, ’p’, ’d’,
’ P’ or ’D’) of an «obj»:

plot18(obj, n)

Ù laststate.m extracts the density matrix of the last state out of an «obj»:
rho = laststate(obj)

Ù plotstate.m plots the absolute values of rho as a fancy 3D bar diagramme:
plotstate(rho)

Ù entropy.m calculates the relative entropy S (scaled to the interval [0, 1]) of a
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state rho or of all states in an «obj»:
S = entropy(rho or obj)

Ù purity.m calculates the relative purity r (Ö= P = tr(ρ2), but scaled to the interval
[0, 1]) of a state rho or of all states in «obj»:

r = purity(rho or obj)

As the simple purity tr(ρ̂2) of a density matrix is a non-intuitive physical quantity,
a «more intuitive» one, the relative purity r, ranging from 0 to 1, is used here. It
derives from the comparison of the (arbitrary) density matrix ρ̂ with the weighted
sum

ρ̂′ = (1 − r) 1
d
+ r|ψ〉〈ψ|

of a total mixture and a pure state such that tr(ρ̂′2) = tr(ρ̂2). Herein, 1 denotes
the unity matrix, d the dimension of the Hilbert space (here d = 18), and |ψ〉 the
unknown pure part that is not necessarily unique. Thus, the relative purity is given
by

r =

ê
d · tr(ρ̂2) − 1

d − 1
.

In the case of a single q-bit (d = 2) the relative purity r coincides with the length |r|
of the Bloch vector as introduced in section 1.1 on p.7. For a maximally entangled
state |ψ〉, the density matrix ρ̂′ is a Werner state [132].
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Chapter 5

The atom–photon quantum interface

«At any rate, it seems that the laws of physics present no barrier
to reducing the size of computers until bits are the size of atoms,

and quantum behavior holds dominant sway.»

— R. P. Feynman (1986)[32]

This chapter presents the quantum interface implemented by our research group
over the recent years. It gives a general description of the interface and com-
pletes the published material [62–64, 80]. As a fundamental building block, the
interface makes use of a single calcium-40 ion as the memory for a single q-bit,
i. e. a node of a quantum communication network. Via spontaneous Raman scat-
tering the ion is interfaced with single photons, acting as channels for quantum
information. Therefore, the polarisation state of the participating single photons
acts as the flying q-bit whereas the orientation of the atomic magnetic moment
represents the stationary q-bit.
At first, the different modes of operation are introduced in section 5.1, and the
roles they play in a quantum-network node are explained. In the subsequent sec-
tion (sec. 5.2) based on [80], the necessary atom-physical principles are discussed in
detail, which lead to different possible schemes how to implement the quantum in-
terface. In the end, these are compared with each other. The last section (sec. 5.3)
compiles some experimental realisations implemented by the research group [59,
60, 62–64].
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5.1 Modes of operation

On the long route to quantum networking several experiments were carried out
to show the implementation and versatility of the quantum interface based on
a single calcium ion and photons at wavelengths of 854 nm and 393 nm. Four
essentially different modes of operation of the interface were put into practice:
receiver, sender, entangler, and converter mode.
All modes of operation are based on the same principle: The ion is prepared in a
pure state in the D5/2 manifold, labelled ψD, ready to absorb a photon at 854nm
wavelength in a certain polarisation state, ψ854. Such an absorption initiates the
emission of a single spontaneous Raman photon at 393 nm in a polarisation state
labelled ψ393. The ion is thus left in the S1/2 manifold in the state labelled ψS.
The treatment of the initial and final states of photon and atom sets the mode of
operation. In the following each mode of operation is outlined separately; all
four are summarised in table 5.1.

Table 5.1 – Overview of the four modes of operation of the quantum interface. Each of the
four participating quantum properties play a different role depending on the mode. Some
being input and output while others are fixed or projected to a certain state.

operation mode ψ854 ψD ψS ψ393

receiver [62, 64] input fixed output projected
sender [63] fixed input projected output
entangler [62, 63] fixed fixed output
converter input fixed projected output

5.1.1 The receiver mode

The receiver or storage mode is a possibility to transfer a q-bit of information from
a single photon at 854 nm to a 40Ca+ ion. To do so, the quantum node has to
be prepared initially in a fixed state, i. e. a certain well-known and pure state ψD.
In particular, such a state is a balanced superposition of two states sensitive to
two orthogonal polarisation states, and thus leading to a superposition of two
individual Raman scattering processes. After this scattering the Raman photon
needs to be projected to a fixed basis, and its arrival time measured with respect
to the initialisation time of the ion.
In the case of success, heralded by the Raman photon, the q-bit is stored in
the S1/2 manifold preserving the superposition except for a phase shift due to
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the frequency difference of the Larmor precessions between ψD and ψS. The
projection of the herald, both in polarisation and time, gives the exact value of
this phase.
The whole process leaves the stored q-bit untouched, revealing no information
that might be therein.

5.1.2 The sender mode

The opposite of the above-mentioned is the read-out of the ion’s state, i. e. the
ion acts as a sender of quantum information.
In this mode, a q-bit is initially stored in the ion as a potentially unknown state ψD.
Then, the ion is excited by laser light at 854 nm wavelength with a known fixed
polarisation ψ854. This induces the Raman-scattering process with near unity prob-
ability bringing the ion into the S1/2 manifold. A final projective measurement of
the ion’s state erases the sprouted entanglement, and the emitted 393 nm photon
carries away the q-bit as its polarisation state.
Not every scheme presented in section 5.2 may serve the sender mode; a initial
superposition state to carry the q-bit is needed.

5.1.3 The entangler mode

It is also possible to use the interface as a source of atom–photon entanglement.
This mode is the same as the sender mode except for the final, projective meas-
urement of the S1/2 manifold. For this mode one has more freedom in the choice
of the initial atomic state ψD as it does not need to carry any quantum informa-
tion. But the state must be known if the entanglement is created only between
these two final q-bits.
The generation of entanglement of this kind is a natural consequence of a conser-
vation principle, in this case, the conservation of total angular momentum.

5.1.4 The converter mode

The fourth mode of operation is the frequency conversion of a single photon under
conservation of its polarisation state.
In this case, the initial state of the ion is fixed, and its final state is projected to a
fixed basis. This combination transfers the q-bit state of the absorbed photon at
854nm wavelength to the Raman photon at 393nm. As with the other operations,
a potential phase shift of ° is induced depending on the result of the projection
of ψS. As this phase shift is known, it can be incorporated in any subsequent
processing.
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5.2 Schemes of Implementation

This section is an updated and extended version of the publication:

P. Müller & J. Eschner «Single calcium-40 ion as quantum memory for
photon polarization: a case study» in Appl. Phys. B 114 (2014), 303, i. e.
[80], see arXiv:1309.7863

To use a single atom and single photons as fundamental building blocks of a
quantum communication network, their interaction has to be well controlled, and
the mapping of the quantum states from one medium to the other one has to
preserve the coherence and purity of each state. To fulfil these requirements,
spontaneous Raman scattering of single photons is chosen for each elementary
process of quantum information transfer.
Each single-photon Raman-scattering process consists of three participants, the
incoming/absorbed photon, the atom and the outgoing/emitted photon. The crux
is, that one of them carries the information initially and another one carries it after
the process, while the third one serves as a herald of the whole process. This
herald tells the experimenters, if and when the process took place, but it does not
reveal the quantum information that has been processed. In addition, only the
successful cases, defined by the heralding, are evaluated in the post-processing,
and thereby the fidelity of the process is increased close to unity despite the low
efficiency of the Raman scattering.

5.2.1 The choice of calcium

In our experiments the Raman transition D5/2–P3/2–S1/2 in 40Ca+ was mainly
chosen because of the branching ratio (see fig. 1.2 on p. 11). An initial state in
D5/2 excited by light of 854 nm wavelength will end up in a final state in S1/2
by emission of a single photon at 393 nm with preferably less additional scatter-
ing in between. In 40Ca+ this is possible with a high probability of about 93.5%.
The additional scattering is the main source of impurity of the interface. On the
other hand, a Raman transition with an extremer, more unbalanced branching
ratio demands a stronger excitation, or will lead to a lower efficiency.
In the same way, the transition D3/2–P1/2–S1/2 with the wavelengths of 866 nm
and 397nm could be used, but in our set-up these levels are already used for the
cooling cycle and for fluorescence detection. In addition due to the lower total
angular momenta, 3⁄2 and 1⁄2 instead of 5⁄2 and 3⁄2, respectively, the interface
would be less versatile due to the lower number of possible schemes.
Here, in opposition to the earlier publications [63, 80, 113], the nomenclature for
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polarisation states of section 1.1 is used, recapitulating the general polarisation
state of eq. (1.3) on p. 10,

|θ,φ〉 = e−i
φ
2 cos θ

2ø ñ ú
=:p+

|R〉 + e+i
φ
2 sin θ

2ø ñ ú
=:p−

|L〉. (5.1)

The variables θ, φ, and p± are used to characterise the polarisation state of the
incoming light as a possible q-bit. In the same manner the polarisation state
of the emitted photon is denoted by θ′, φ′, and p′

±
, just adding a prime. The

same general form is also used to describe an atomic q-bit state, but the basis
is of course a different one, see for example eq. (5.3) below for the final atomic
superposition in the S1/2 manifold.
In general, the procedure starts with the preparation of the ion in a certain pure
state |ψD〉 = @ cmD

|D5/2,mD〉 in the D5/2 multiplet. Then, light at the wavelength of
854 nm is shone onto the ion. Depending on the mode of operation, this is either
laser light or a single photon. In any case, its polarisation state |θ,φ〉, given by
eq. (1.3), translates into the atomic transitions depending on the angle α between
the propagation direction k of the 854 nm beam and the quantisation axis of the
ion defined by the external magnetic field B. This resembles a rotation of the
coordinate system about the angle α out of the z-direction. It is conveyed by the
unitary transformation

P̂α = |+1〉 �cos2 α
2 〈R| − sin2 α

2 〈L|	

+ |−1〉 �cos2 α
2 〈L| − sin2 α

2 〈R|	

−
sin α
√
2

|0〉 (〈R| + 〈L|)

onto the atomic transitions |0〉 and |±1〉 labelled by the change in the magnetic
quantum number of the ion, m854 = mP − mD, thus corresponding to the °- and
²±-channels of the D5/2–P3/2 transition, respectively.
The Raman operator of chapter 3 (see eq. (3.13) on p. 60 for details) is used to
express each single spontaneous Raman process at the sub-channels of the trans-
ition D5/2–P3/2–S1/2. For this purpose it is extended by the angular-momentum
states of the two light fields and the three atomic levels. These states are de-
termined by their respective magnetic quantum numbers, m854, m393, mD, mP, and
mS. Thus, the resulting Raman operator is

R̂mD,mP ,mS
(ω854) = |S1/2,mS〉||Rω393,Γ ,∆854

;m393�〈D5/2,mD|〈ω854;m854|.
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Herein ∆854 = ω854 −ωP +ωD − (mPgP −mDgD)ζ denotes the detuning of the incident
light from the atomic absorption transition, ω393 = ωP −ωS+ (mPgP −mSgS)ζ the centre
frequency of the emission transition (both using the abbreviation ζ = µBB/ħ for the
Zeeman factor), and Γ is the decay constant of the P3/2 state. To let this process
happen, the two involved photonic spin states have to satisfy m854 = mP − mD and
m393 = mP − mS, in order to obey the conservation of angular momentum.
To model all possible transitions, the sum over all combinations of the three
magnetic quantum numbers has to be performed:

R̂(ω854) =
+5/2
@

mD=−5/2

+3/2
@

mP=−3/2

+1/2
@

mS=−1/2
C (CG)

mD,mP
C (CG)

mP ,mS
R̂mD,mP ,mS

(ω854).

The weights account for the respective relative transition strengths, i.e. the Clebsch–
Gordan coefficients (cf. section 2.3.1 on p. 33, and for 40Ca+, see section A 3 on
p. 117). This procedure transforms the initial state into a joint (and in general
entangled) state of the ion in the S1/2 manifold and the emitted 393 nm photon.
Furthermore, collecting this photon under the angle α ′ to the quantisation axis
results in

||ψjoint� = P̂+α ′ R̂(ω854) �|ψD〉 � P̂α |ω854;θ,φ〉	 . (5.2)

Again depending on the mode of operation, a final projection may complete the
process, either of the atom to a certain superposition state

|ψS〉 = e−i
φS
2 cos θS

2ø ñ ú
=:s+

|S1/2, +1⁄2〉 + e+i
φS
2 sin θS

2ø ñ ú
=:s−

|S1/2, −1⁄2〉 (5.3)

or the photon to a certain polarisation state

|θ′, φ′〉 = e−i
φ′
2 cos θ′

2ø ñ ú
=:p′
+

|R〉 + e+i
φ′
2 sin θ′

2ø ñ ú
=:p′
−

|L〉.

In the latter case, fast temporal detection (as by a bare photomultiplier or ava-
lanche photodiode) projects the photon further, fixing its arrival time to a cer-
tain value t . With an uncertainty lower than the inverse bandwidth of the
photon, the detection erases all spectral information, and the final atomic state,
|ψS(t )〉 È �t ; θ′, φ′||ψjoint�, depends only on the six angles θ, φ, α, α ′, θ′, φ′ and on
the initial atomic state ψD.
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The relative efficiency of the quantum interface is defined as the probability to
detect the Raman photon at any time in relation to the maximal probability of a
single Raman process1:

ε =
∞

X
0

〈ψS(t )|ψS(t )〉 dt · 1
�R∆854

||R∆854
�
.

The different modes of operation as mentioned above are achieved by setting
some of these parameters to fixed values. The remaining degrees of freedom
may serve to maximise the efficiency of the process. In addition, the efficiency
has to be independent of the parameters that indicate the input state of the
corresponding mode (θ and φ, or cmD

, resp. , see table 5.1 on p. 80).
If the projection is done by a polariser (a Wollaston prism or a polarising beam
splitter), the photon may leave the other possible output channel and is projected
to the orthogonal state leaving the ion in the state orthogonal to ψS.

5.2.2 An exemplary calculation

Possible sets of the parameter values are found by choosing a certain initial
state of the ion, ψD, and calculating with the other six parameters kept variable.
The results of this calculation for the five schemes introduced in article [80] are
presented in figure 5.1.
As a notable example the calculation that leads to scheme (a) is presented in
detail because it is the one most frequently utilised in the laboratory. An arbitrary
superposition of the two outermost Zeeman states is chosen as a starting point,

|ψD〉 = e−i
φD
2 cos θD

2ø ñ ú
=:d+

|D5/2, +5⁄2〉 + e+i
φD
2 sin θD

2ø ñ ú
=:d−

|D5/2, −5⁄2〉

with general, complex coefficients d+ and d−. Together with a general polarisation
state of the input photon, |θ,φ〉 = p+|R〉 + p−|L〉, as mentioned above, this leads to
a joint state of ion and Raman photon according to eq. (5.2),

|ψjoint〉 = @
±

d± �p∓ cos2(α2 ) − p± sin2(α2 )� |S1/2, ±1⁄2〉

� |RωP−ωS±ζ,∆1±ζ〉 �cos2(α
′

2 )|±1〉 − sin2(α
′

2 )|∓1〉	 ,

1) In this context, «maximised» concerns the optimal input and output polarisation, but keeps the
detuning ∆854 fixed to the value used in the interface. Only in the case of excitation by a laser
the normalisation factor equals unity: 〈R∆854

|R∆854
〉 = 1.
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(a) |ψD〉 = d−|−5⁄2〉 + d+|+5⁄2〉
α = 0˚, α ′ = 0˚
receiver: θD =

°
2 , θ ′ =

°
2

|R〉 Ù |−1⁄2〉
|L〉 Ù |+1⁄2〉

sender: θ = °
2 , θS =

°
2

|+5⁄2〉 Ù |R〉
|−5⁄2〉 Ù |L〉

ε = 50 %

(b) |ψD〉 = d−|−3⁄2〉 + d+|+3⁄2〉
α = 0˚, α ′ = 90˚
receiver: θD =

°
2 , θ ′ =

°
2

|R〉 Ù |∓1⁄2〉
|L〉 Ù |±1⁄2〉

sender: θ = °
2 , θS =

°
2

|+3⁄2〉 Ù |R〉
|−3⁄2〉 Ù |L〉

ε = 25 %

(c) |ψD〉 = d−|−3⁄2〉 + d+|+3⁄2〉
α = 0˚, α ′ = 0˚
receiver: θD =

°
2 , θ ′ =

°
2

|R〉 Ù |+1⁄2〉
|L〉 Ù |−1⁄2〉

sender: θ = °
2 , θS =

°
2

|+3⁄2〉 Ù |R〉
|−3⁄2〉 Ù |L〉

ε = 10 %

S1/2

P3/2

D5/2

(d) |ψD〉 = |−3⁄2〉
α = 47.06˚, α ′ = 47.06˚
receiver: θ ′ = 100.74˚, φ′ = 0˚

|R〉 Ù 0.98|+1⁄2〉 − 0.19|−1⁄2〉
|L〉 Ù 0.19|+1⁄2〉 + 0.98|−1⁄2〉

ε = 10.72 %

S1/2

P3/2

D5/2

(e) |ψD〉 = |−1⁄2〉
α = 90˚, α ′ = 90˚
receiver: θ ′ =

°
2 , φ′ = °

|H〉 Ù |+1⁄2〉
|V〉 Ù |−1⁄2〉

ε = 10 %

Figure 5.1 – Five possible schemes of implementation of the quantum interface. The pictures
show the Zeeman manifolds of P3/2, D5/2, and S1/2 with the prepared initial state ψD and the
driven Raman transitions. The mappings are given for receiver and sender mode as well as
the relative efficiency ε. All five schemes qualify as receiver and entangler, but (d) and (e)
are obviously not suitable for the sender mode.
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with ∆1 = ω854 −ωP +ωD being the detuning of the incident photon from the centre
frequency of the absorption transition.
If the incident light is resonant with the absorption transition, ∆1 = 0, the wave
packets of the two parts of the Raman photon, R±(t ) = �t ||RωP−ωS±ζ,±ζ�, have the
same envelope and intensity, and differ only in their time-dependent phase (with
a beat frequency ωR), R±(t ) = |R(t )| e±iωRt /2. Thus, the starting point for the following
application to the modes of operation is the joint state

|ψjoint(t )〉 = |R(t )|@
±

e±
i
2 ωRt d± �p∓ cos2(α2 ) − p± sin2(α2 )� |S1/2, ±1⁄2〉

� �cos2(α
′

2 )|±1〉 − sin2(α
′

2 )|∓1〉	 . (5.4)

5.2.3 Application to the modes of operation

To get an entangled state, a balanced superposition is used for both initial states,
i. e. |d±|

2 =
1
2 = |p±|2. Thus, eq. (5.4) leads to

|ψjoint(t )〉 =
|R(t )|
2 @

±

e±
i
2 (ωRt −φD )(cos φ

2 cos α ± i sin φ
2 )|S1/2, ±1⁄2〉

� �cos2(α
′

2 )|±1〉 − sin2(α
′

2 )|∓1〉	 ,

which is already a good candidate for the entangler mode. The relative efficiency
is

ε = 1
4 �cos2(φ2 ) cos2 α + sin2(φ2 )	 (1 + cos2 α ′)

and maximises to 1⁄2 for α ′ = 0˚ and α = 0˚ (on axis) or φ = 180˚ (vertical polarisation).
In the experimental set-up α = α ′ = 0˚ is chosen for maximal coupling efficiency
leading to the Bell state

|ψjoint(t )〉 =
|R(t )|
2 @

±

e±
i
2 (ωRt −φD+φ)|S1/2, ±1⁄2〉 � |±1〉 = |R(t )|

√
2

|ΦφB (t )〉

with the phase φB(t ) = ωRt − φD + φ depending on the arrival time of the 393 nm
photon.
For the receiver mode, the emitted photon is projected to a certain polarisation
state reducing eq. (5.4) to the final atomic state

|ψS(t )〉 = |R(t )|@
±

e±
i
2 ωRt d± �p∓ cos2(α2 ) − p± sin2(α2 )�·�p′

±
cos2(α

′

2 ) − p′
∓
sin2(α

′

2 )	 |S1/2, ±1⁄2〉.
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If both the initial atomic state is set to a fixed balanced superposition, |d±|
2 =

1
2 ,

and the emitted photon projected to a balanced superposition, i. e. a linear
polarisation (θ′ =

°
2 ), the ion is afterwards left in the state

|ψS(t )〉 =
|R(t )|
2 @

±

e±
i
2 (ωRt +φD ) �p∓ cos2(α2 ) − p± sin2(α2 )� · (cos φ′

2 cos α ′ ± i sin φ′

2 )|S1/2, ±1⁄2〉.

Again, for coupling and collection on the quantisation axis, α = 0˚ = α ′, the
efficiency is maximal, here ε = 1⁄4, and the final atomic state reads

|ψS(t )〉 =
1
2 @
±

e±
i
2 (ωRt +φD+φ′ )p∓ø ñ ú

=s±

|S1/2, ±1⁄2〉.

This shows the direct mapping of the initial photonic q-bit given by p± onto the
atomic one given by s± with an additional phase depending on the detection
time of the herald. The angles on the Bloch sphere are accordingly transformed,
φS(t ) = −φ−φ′ −φD −ωRt and θS = °−θ. E. g. the two circular polarisations are stored
in the ion as the corresponding energy eigenstates while a linear polarisation is
stored as an equal superposition:

|R〉 Ù |S1/2, −1⁄2〉
|L〉 Ù |S1/2, +1⁄2〉

|H〉 Ù 1
√
2

(eiφS (t )|S1/2, +1⁄2〉 + e−iφS (t )|S1/2, −1⁄2〉)

Emitted photons that leave the other output of the projection lead to the same
process except for a phase shift of ° in φ′. Including this information in the
following processes, both cases are usable, thus doubling the efficiency of the
receiver to ε = 1⁄2.
Similarly, in the case of sender or converter, the final state of the ion is projected
to a certain balanced superposition, |s±|2 = 1⁄2. Thus, reducing eq. (5.4) to the state
of the emitted photon,

|ψ393(t )〉 =
|R(t )|
√
2 @

±

e±
i
2 (ωRt +φS )d± �p∓ cos2(α2 ) − p± sin2(α2 )	 · �cos2(α

′

2 )|±1〉 − sin2(α
′

2 )|∓1〉� .

For the sender mode, the initial polarisation is fixed and linear, |p±|2 = 1⁄2, whereas
for conversion, the initial state of the ion is a fixed and balanced superposition,
|d±|

2 = 1⁄2. With α = 0˚ = α ′, the final states are

|ψ393(t )〉 =
|R(t )|
2 @

±

e±
i
2 (ωRt +φS−φ)d±ø ñ ú

=p′
±

|±1〉
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for sender and

|ψ393(t )〉 =
|R(t )|
2 @

±

e±
i
2 (ωRt +φS+φD )p±ø ñ ú

=p′
±

|±1〉

for converter, respectively, both with efficiency ε = 1⁄4.
This means for the sender mode, the Bloch angles are φ′(t ) = φD +φ −φS −ωRt and
θ′ = θD, and thus the states |D5/2, ±5⁄2〉 are mapped to the circular polarisations
while equal superpositions are mapped to linear polarisations with an additional
phase depending on the point in time when the photon is emitted:

|D5/2, +5⁄2〉 Ù |R〉
|D5/2, −5⁄2〉 Ù |L〉

1
√
2

(|D5/2, +5⁄2〉 + |D5/2, +5⁄2〉) Ù 1
√
2

(eiφ(t )|R〉 + e−iφ(t )|L〉)

On the other hand, the single-photon conversion from 854 nm to 393 nm is done
with an additional transformation on the Bloch sphere, φ′ = φ − φS − φD −ωRt and
θ′ = θ, i. e. just a time-dependent rotation of the equatorial plane.
Again, using both projection outcomes (here, of the atomic state) doubles the
efficiency to ε = 1⁄2. This is the general maximum for all modes of operation that is
owed to the average overlap of the arbitrary or random polarisation state with the
arbitrary initial atomic state, i. e. only in one half of the cases the two states match
for absorption. Under certain conditions even this limitation can be overcome by
the use of entanglement of the initial states (ψ854 or ψD) with further quantum
systems instead of fixed states as described in this chapter. The entanglement-
swapping protocol proposed in [47, p. 27 ff.] uses this idea quite naturally. There,
one photon of an entangled pair is stored in the ion by implementing the receiver
mode in scheme (c). As a result the entanglement of the pair is transferred to the
ion and the remaining partner photon. With a maximally entangled photon-pair
state the efficiency of the interface will be doubled, but the additional q-bit brings
further complexity to the overall set-up.

5.3 Experimental realisation

The realisation of individual modes of operation as done by the author and others
is published in several articles and summarised in this section. For details see the
theses of Christoph Kurz [62] for section 5.3.1 and 5.3.3, and Stephan Kucera [59]
for section 5.3.2.
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5.3.1 Receiver mode with laser photons

The first implementation of the receiver mode was done using photons of a laser
beam instead of proper single photons:

C. Kurz, M. Schug, P. Eich, J. Huwer, P. Müller & J. Eschner «Ex-
perimental protocol for high-fidelity heralded photon-to-atom quantum
state transfer» in Nat. Commun. 5 (2014), 5527.
DOI: 10.1038/ncomms6527, i. e. [64]

It was achieved in scheme (b), see figure 5.1 (b) on p. 86. The data were recorded
at 4. 11. 2013 (p. 89 f. in lab book 11). The received photon in this case is not a
true single photon but taken from a laser beam at 854 nm wavelength. Thus, the
stored q-bit state is accessible by analysis of the laser’s polarisation state. This
fact makes the set-up useless for actual quantum communication scenarios, but it
still serves as a proof-of-principle experiment for the receiver mode.
The mapping of the laser’s polarisation state to the atomic q-bit is verified by
the analysis of the atomic state after the projection and detection of the 393 nm
Raman photon. This is done for several different polarisation settings to achieve
a full quantum process tomography. Linear polarisations drive both transitions
equally strong leading to full interference in the emission. This is observable as
oscillations in the arrival-time distribution of the 393nm photon, if the atomic state
is projected to a superposition basis. The polarisation angle is directly identified
by the phase of the oscillation. To make it visible the wave packet is elongated
over several periods of the oscillation through weak excitation. With 12 ¬W of
laser power and a beam waist of 125 ¬m a Rabi frequency of about 9 MHz is
reached.
Due to the possible backscattering from the excited state in P3/2 to the initial
state in D5/2 the coherence is reduced over time. A short detection-time window
for the Raman photon is chosen to overcome this drawback, at least partially.
This means only the cases of photon detection up to a maximum arrival time are
evaluated. Thus, a compromise between efficiency and fidelity was found: For
a time window of 450 ns the detection efficiency is 0.438(2) %, and the process
fidelity 95.0(2) %. The quantum process tomography for this case is visualised as
a deformed Bloch sphere in figure 5.2.
The same measurement was done also in scheme (a), see p. 86 again. But due
to the higher sensitivity of the prepared superposition state to magnetic field
fluctuations the efficiency and fidelity are lower in this case. For details, see [62,
p. 91 f.].
As mentioned above, this experiment is just a proof of principle as the stored
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Figure 5.2 – Visualisation of the receiver mode with laser photons as a deformed Bloch
sphere according to section 1.1. The shown grey surface corresponds to the set of final states
out of pure initial states, the red arrows indicate how the six basic states end up in this
process.

photon is not a true single one, but one out of a laser beam. The next section
shows how this flaw is overcome.

5.3.2 Receiver mode with single photons

The storage of single photons from an SPDC source has been implemented and
will be published as a part of:

S. Kucera, J. Arenskötter, M. Kreis, P. Eich, P. Müller & J. Esch-
ner «Photon-photon to atom-photon entanglement transfer to a 40Ca+
quantum node and state readout by teleportation», i. e. [60]

Using the SPDC source as characterised in [4] (see section 1.5 on p. 20) with a fibre-
coupled photon rate of 2.5 · 106/s, the receiver mode has been implemented in
scheme (a), see figure 5.1 (a) on p. 86. With a repetition period of 558 ¬s including
56 ¬s exposure time of the photons to the prepared ion a process fidelity of
χ00 = 89.9 % has been achieved. The main drawback in this measurement is
owed to the source-sided detectors. A post-processed background correction
resembling ideal detectors increases the value to 94.8%. The complete quantum
process tomography is visualised as a deformed Bloch sphere in figure 5.3.
The fluctuations of the magnetic field that reduce the coherence of the superpos-
ition state during the exposure time are identified as the main drawback in this
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Figure 5.3 – Visualisation of the receiver mode with SPDC photons as a deformed Bloch
sphere according to section 1.1. The shown grey surface corresponds to the set of final states
out of pure initial states, the red arrows indicate how the six basic states end up in this
process.

set-up.2 The reconstructed success probability for a fibre-coupled photon to be
stored in the ion is ηabs = 7.4 · 10−4 in this experiment. This value is in agreement
with previous absorption measurements [15, 66]. As the successful storage is heral-
ded by a 393 nm photon the low success probability does not reduce the fidelity
of the interface, only its speed. For more details, see [59, p. 81–92].

5.3.3 Sender and entangler mode

The implementation of sender and entangler mode was published for the first
time as:

C. Kurz, P. Eich, M. Schug, P. Müller & J. Eschner «Programmable
atom-photon quantum interface» in Phys. Rev. A 93 (2016), 62348.
DOI: 10.1103/PhysRevA.93.062348, i. e. [63]

It is the implementation of scheme (a), see figure 5.1 (a) on p.86, but with the 854nm
laser beam perpendicular to the quantisation axis, α = 90˚. This is irrelevant as
it solely reduces the interaction strength of that laser with the ion. It has no
influence on the protocol in sender or entangler mode, but the receiver mode is

2) Several measurements of the coherence times yield a range from 130 to 400 ¬s for the concerned
superposition state in D5/2.
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impossible in this configuration.
The experiment was performed at 15. 2. 2015 (p. 15–17 in lab book 18). To prove
and evaluate the quantum interface, the 393 nm photons are sent through a
polarisation-analysis set-up consisting of a half- and a quarter-wave plate to
project the polarisation onto different bases in consecutive measurements. In
addition—in the case of sender mode—six different initial states are prepared
in the ion, while in the case of entangler the final atomic state is projected to
different bases.
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Figure 5.4 – Visualisation of the entangler mode. The left and right plot respectively display
the real and imaginary part of the density matrix ρ̂ of the joint atom–photon state.

Figure 5.4 shows the reconstructed density matrix of the joint atom–photon state.
Its proximity to the maximally entangled state, |φ+〉 = 1

√
2

(|+1⁄2〉|R〉+ |−1⁄2〉|L〉), is clearly
visible. Due to improper calibration of the wave plates the overlap fidelity of this
state with respect to |φ+〉, is found to be F = 84.6(2) %. This relatively low value
lies still 89 standard deviations above the threshold of 2⁄3 for classical correlation,
thus verifying the non-local entanglement of atom and photon. The corresponding
concurrence or entanglement of formation [134] is 76.75 %.
For the sender mode the six polarisation states, R, L, H, V, D, and A, of the
393 nm photon are correlated with the six corresponding initial atomic states.
From the evaluation of these 36 individual measurements the process fidelity for
the sender is determined (and published) to be 90.2(1.0) % using the maximum-
likelihood method [48]. If the improper calibration of the polarisation-analysis
set-up is taken into account by disclosure of the actual polarisation in each of the
six cases through Bayesian inference (sec. 6.5), and using these for the evaluation,
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the process fidelity goes up to 94.0(1.5) %. This value is compatible with the
expected maximum due to parasitic backscattering given by the branching fraction
of 93.47(5) % (see sec. 1.2). The corresponding quantum process tomography is
visualised as before as a deformed Bloch sphere in figure 5.5.
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R

Figure 5.5 – Visualisation (as in fig. 5.2) of the sender mode as a deformed Bloch sphere.
The shown grey surface corresponds to the set of final states out of pure initial states, the
red arrows indicate how the six basic states end up in this process.

5.4 Conclusion

This chapter has shown the implementation of a versatile, programmable, and
bidirectional interface between single photons and ions as flying and stationary
q-bits, respectively. It demonstrates the single 40Ca+ ion in free space as a
possible building block for quantum networking.
The general use of the Raman photon as a herald for the single transfer process
enables high fidelities even though the efficiencies of absorption, emission, and
collection of the photons are low. This makes it possible to use the quantum
interface as the fundament for reliable quantum gates.
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Chapter 6

Measurement of the scattering phase in a
spontaneous Raman process

«Don’t keep forever on the public road,
going only where others have gone.

Leave the beaten track behind occasionally
and . . . You will be certain to find

something you have never seen before.»

— A. G. Bell (1847–1922)

This chapter anticipates the forthcoming publication of the same title:

P. Müller, M. Kreis, P. Eich & J. Eschner «Measurement of the scattering
phase in a spontaneous Raman process», i. e. [81]

By preparing a single ion in a superposition state and driving two equally strong
Raman transitions, a single photon is scattered that embodies the interference of
the two transitions. Its phase was measured to reveal the phase difference of the
two corresponding complex absorption profiles. The results are in good agree-
ment with numerical simulations. The details of the applied model of spontaneous
Raman scattering is presented in chapter 3.

6.1 Experimental set-up

For the experimental realisation a singly ionised calcium-40 ion trapped in a linear
Paul trap is used (see figure 6.1). The experimental protocol for heralded photon-
to-atom state transfer as published in [64] is implemented, i. e. the receiver mode
of the quantum interface as presented in section 5.3.1 on p.90, using laser photons
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at 854 nm wavelength. The 40Ca+ ion is excited by beams of various frequency-
stabilised diode lasers. It is Doppler cooled on the S1/2–P1/2 transition using
a laser at 397 nm while a laser at 866 nm repumps the population from the
metastable D5/2 level (see figure 1.2 on p. 11).

B

V
393 nm

H

854 nm729 nm
Paul trap HALOHALO PBS

PMT 1

PMT 2

Figure 6.1 – Sketch of the experimental set-up. The calcium ion (green dot) at the centre of
the Paul trap emits blue photons at 393 nm wavelength. Those that are collected by one of
the HALOs, are analysed by a PBS and detected by two PMTs.

A static magnetic field of flux density |B| = 284.195(6) ¬T defines the quantisation
axis and lifts the degeneracy of the atomic levels due to Zeeman splitting. To
drive the magnetic dipole transition in the S1/2 manifold at ωL,S = 7.9643(2) MHz,
a radio-frequency signal (RF) is applied to a simple copper-wire coil underneath
the trap’s vacuum vessel. A narrowband laser at 729 nm drives the S1/2–D5/2
quadrupole transition, whereupon a single transition between two Zeeman sub-
levels is selected by tuning the laser frequency. This enables us to coherently
manipulate the internal state of the calcium ion, e. g. to prepare a superposition
in the D5/2 manifold by a set of laser pulses of certain duration and frequency. A
laser at 854 nm drives the D5/2–P3/2 transition to release the single spontaneous
Raman photon at 393 nm.
A high-numerical-aperture laser objective (HALO) [36] is used to collect the 393nm
photons emitted into 4.18% of the solid angle (NA = 0.4) in direction of the quant-
isation axis. Thereafter, a polarising beam splitter (PBS) is used to separate the
photons, enabling us to measure the polarisation state and arrival time through
two photo-multiplying tubes (PMT), see figure 6.1.

6.2 Theoretical model

For the quantum-mechanical description of spontaneous Raman scattering, a three-
level system of two stable states and one short-lived excited state is considered,
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see figure 6.2. The respective levels in 40Ca+ are the S1/2, D5/2, and P3/2 fine
structure manifolds, for details see figure 1.2 on p. 11. A laser field at 854 nm
wavelength couples one of the stable states (D5/2) to the excited state (P3/2),
tuned away from the resonance by a certain detuning ∆.

S1/2

P3/2
∆

D5/2

854 nm

393 nm

Figure 6.2 – The level scheme of the spontaneous Raman transition.

The theory of Raman scattering (see [82], or chapter 3 on p. 43 ff.) predicts the
amplitude spectrum of the scattered photon at frequency ω to be a superposition
(or product) of two complex Lorentzian lines,

R(ω) =

ê
C
2° � 1

ω −ωE − ∆ − ∆S + i
κ
2

−
1

ω −ωE + ∆S + i
Γ−κ
2

� , (3.12′)

with different linewidths and detunings from the natural frequency ωE of the emis-
sion transition. The first term is the Raman peak that is narrowband (κ < Γ ) and
dominates the spectrum. It is detuned by ∆ from the emission transition as the ex-
citing laser is from the absorption transition. The minor part given by the other
peak corresponds to the spontaneous emission at resonance. Additionally, both
peaks are separated further by the AC Stark shift moving their line centres by
±∆S from the ideal positions.
The Fourier transformation of the spectrum is the temporal wave function of the
photon,

R(t ) = −i
è
C �(t ) �e−

κ
2 t −i(ωE+∆+∆S )t − e−

Γ−κ
2 t −i(ωE−∆S )t 	 . (3.11′)

A measurement of the arrival-time distribution or the power spectrum, i. e. the
absolute squares |R(ω)|2 or |R(t )|2, respectively, is easily done, but the phase of
the wave packet, arg(R(t )), is inaccessible without a suitable reference. Several
experiments [2, 45, 97] were done using the exciting light as reference, i. e. the
phase shift of the exciting laser beam induced by the scattering from a single
atom or molecule was measured. A good theoretical treatment thereof is given
in [118]. The largest phase shift measured in those experiments was 6˚. Here,
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the emitted photon itself is used as reference, which enables significantly higher
values.
This is accomplished by preparing the ion in a symmetric superposition of the two
outermost Zeeman sub-levels of the D5/2 manifold (filled circles in fig. 6.3), and
driving the two Raman transitions with the one and same laser. Thus, the ion
ends up in the S1/2 (empty circles) in a state entangled with the polarisation of
the scattered 393 nm photon.

S1/2

P3/2

D5/2 ωL,D = (4 + gS)µB |B|

ωL,S = gSµB |B|

−1⁄2−3⁄2−5⁄2mJ +1⁄2 +3⁄2 +5⁄2

σ+

σ−

∆−

∆+

σ+

σ−

Figure 6.3 – Detailed level scheme showing the Zeeman-split states (as bars) with the magnetic
quantum number mJ and the two Raman transitions (as arrows). The two red arrows indicate
the excitation by the same laser.

Expressed in the nomenclature of chapter 3 this state reads,

|ψ〉 = 1
√
2

�||−
1⁄2� � |R−;σ+〉 + ||+

1⁄2� � |R+;σ−〉� ,

with the Raman modes R± (according to eq. (3.11)) for the two different detunings ∆±
due to the Zeeman splitting, and with the corresponding circular polarisations σ∓.
The two final atomic states |S1/2,mJ =±

1⁄2〉 are abbreviated as |±1⁄2〉.
Measuring, i. e. projecting, the ion and the emitted photon in a respective basis
of symmetric superpositions, and recording the photon’s arrival time t leads to
four combinations of outcomes, each showing the beating of the two Raman
transitions. The chosen basis states are |±〉 = 1

√
2

(|−1⁄2〉 ± |+1⁄2〉) for the ion and
the linear polarisations, H and V, for the photon. With |H〉 = 1

√
2

(|R〉 + |L〉) and
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|V〉 = −i
√
2

(|R〉 − |L〉) the temporal probability distributions are

P±,H/V(t ) = |(〈±| � 〈H/V;t |)|ψ〉|2

=
1
8Θ(t ) |||

±
è
C+ �e−

κ+
2 t −i(ω++∆++∆S,+ )t − e−

Γ−κ+
2 t −i(ω+−∆S,+ )t 	

±
è
C− �e−

κ−
2 t −i(ω−+∆−+∆S,− )t − e−

Γ−κ−
2 t −i(ω−−∆S,− )t 	|||

2
(6.3)

with the Zeeman-shifted transition frequencies and detunings, ω± = ωE ± µB |B| and
∆± = ∆ ± µB |B|, respectively. The «±» sign in the second row of eq. (6.3) corresponds
to the measured ionic state |±〉 while the «±» sign in the third row corresponds to
the measured photonic state («+» for H, «−» for V). For low excitation power Ω À Γ ,
the respective first terms in the parentheses are dominant, yielding the same beat
frequency in all four cases, which is close to the difference between the Larmor
frequencies of the initial and final superposition state, ωL = ωL,D − ωL,S = 4µB |B|
(see figure 6.3). The detuning ∆ of the 854 nm laser causes tiny changes in the
beating that result in small frequency and phase shifts in the wave packet. These
are the key point of the experiment and become visible through the following
high-precision measurement and analysis.

6.3 Experimental sequence

The experimental sequence is the following: After 100 ¬s of Doppler cooling,
the ion is optically pumped to the pure state |S1/2, mJ = −

1⁄2〉 by driving the
transition |S1/2, +1⁄2〉Û|D5/2, −3⁄2〉 with the narrowband laser at 729 nm while the
854nm laser is switched on. After 60¬s the probability to find the ion in |S1/2, −1⁄2〉
is 99.6(3) % [66]. Afterwards, three consecutive Rabi pulses prepare the initial
superposition of the two outermost sub-levels of the D5/2 manifold: An RF °⁄2-
pulse (5 ¬s) creates a superposition in the S1/2 followed by two 729 nm °-pulses
(7 ¬s each) at different frequencies to transfer this state to the D5/2. The phase
relationship between these pulses has to be fixed to get a superposition, not a
mixture. After the preparation, laser light at 854 nm is shone to the ion driving
two possible transitions (red arrows in figure 6.3) and causing the scattering of a
single 393 nm photon at some instance during the 20 ¬s of this pulse. In 4.18% of
all cases the photon is scattered into the HALO, and thus detected with a total
probability of 1 %. Its arrival time is recorded with a resolution of 320 ps.
If a photon is detected, the measurement basis { |+〉, |−〉} of the final atomic state
is chosen by a second RF °⁄2-pulse. This completes the Ramsey interference [101]
started by the first RF °⁄2-pulse. A final 729 nm °-pulse transfers the population
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that is in |S1/2, −1⁄2〉 to the now empty |D5/2, −5⁄2〉 (electron shelving). Finally, the
cooling is switched on again and fluorescence is detected if the ion is in |S1/2, +1⁄2〉
(called bright state). If no fluorescence photon is detected after 100 ¬s, the ion is
deemed to be in the D5/2 (dark state).
Then, in any case, the 854nm laser is switched on again to repump the dark ion into
the cooling cycle and to start over the whole sequence. Every 5 000 repetitions
of this sequence, the power levels of the 729 nm and 854 nm laser beams are
stabilised by PID control loops. After 15 of these cycles (É 17 s), the resonance of
the RF transition is measured, and the drift of the magnetic field is compensated.
The whole procedure is repeated for nine different frequency settings of the 854nm
excitation pulse, from −40 to +40 MHz detuned from the centre frequency. For
every setting and for each of the four combinations of photonic state (H or V po-
larisation) and atomic state (bright or dark), the arrival times of the 393nm photon
with respect to the start of the excitation are compiled into a histogram. These
36 histograms or arrival-time distributions display nothing but different projections
of the single photon’s wave packet, eq. (3.9). As an example, one such histogram
is shown in figure 6.4.
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Figure 6.4 – Exemplary plot of an arrival-time distribution: for vertically polarised 393 nm
photons conditioned to the dark state of the ion, measurement at +10 MHz detuning. The
inset shows a zoom into raw time-tag data of 320 ps resolution, while the main plot shows
the entire detection window binned to 25 ns intervals. Blue bars depict the measured data,
the red line in the inset corresponds to the wave packet according to eq. (6.3) fitted to the
data, and the red lines in the main diagram illustrate the envelope thereof.
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As predicted by the model, a beating with an exponential envelope arises. The
inset shows an oscillation period of about 63 ns, i. e. a beat frequency of about
16 MHz. Comparing the histograms for different frequency values of the 854 nm
laser reveals the phase of the oscillation to shift forward and backward again
when the detuning is varied over the centre of the two resonances.

6.4 Data analysis

Quantifying the small phase shift took a big effort as the methods of data analysis
that the research group usually applies failed in this case, and a wholly new one
had to be introduced.
The first and naïve approach was to directly apply the least-squares method
(especially the χ2 test) to fit a model function to the arrival-time distributions. A
simple sine function, with and without an exponential envelope, as well as the
detailed function of section 6.2 were tested. But all these have yielded no useful
result due to the low number of counts (É 1 on average) per time tag of 320 ps.
Increasing this number to an adequate level by binning several time tags together
(as in the main plot of figure 6.4) leads to an extreme reduction of temporal
resolution and contrast. This is owed to the information lost that accompanies the
binning.
A second and intuitive approach was to convert the arrival-time histograms into
phase histograms by modulo calculation of the time t with the beat period T É
63 ns, i. e. φ = 2°(t mod T ). This would give sufficiently high count numbers per
phase bin to fit a single sine period to the 2°-scope using the χ2 test—a method
used fruitfully in the past, e. g. [63, 64]. But here this method failed because the
period T has to be known very accurately in advance, which was not given due
to the fact that it also changes with the detuning of the laser.
Finally, the method of Bayesian inference [50] was studied and introduced by the
author. It determines the probability distribution for the parameters of an as-
sumed model to fit the data set. Even though its numerical effort is much larger
than for the common methods, there are three main advantages: It is applicable
to arbitrary low counting numbers with no need for binning; the probability dis-
tribution yields mean values and standard deviations for each model parameter
directly, i. e. without additional considerations about uncertainties as in other re-
gression analyses; and the tested models may even lack some of the features
seen in the data, but give still good results for the considered parameters. The
complete procedure is explained in the following section.
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6.5 Bayesian inference

The empirical sciences are based on the interplay between observation and ex-
periments on the one hand and modelling or theory formation on the other hand.
Following Popper’s idea of falsification [96] we assume every model to be false,
and proved so at some time in the future. Thus, the question is not «if», but «how»
false a certain model or hypothesis is; or in other words, how good the model
supports the experimentally found data.
In recent times, a new method for hypothesis testing has been established and
is applied more and more in many fields of science. It is called Bayesian infer-
ence due to the fact that it uses the theorem of Bayes as the central point of
reasoning.
The underlying idea is to calculate first the probability P(D|H) to find the data
set D under the assumption of a hypothesis H . Then, by the application of Bayes’
theorem of conditional probabilities [6, 50],

P(H|D) =
P(D|H) · P(H)

P(D)
, (6.4)

the constraining D|H is reversed, leading to the probability P(H|D) that the hypo-
thesis suits to the measured data set. If this is done not only for one hypothesis,
but for a set of hypotheses characterised by different values of one or more
model parameters {m1, m2, . . .} , then P(H|D) itself is a function of hypotheses, or
more precisely a probability distribution of the model parameters—a property
that is often called likelihood or plausibility function. Expectation values for the
parameters and their deviations can easily be calculated out of this, and taken
as a «replacement» for the fitted parameters of frequentistic regressions like the
maximum-likelihood estimation or the least-squares method.

6.5.1 Application to histograms

Here, Bayesian inference is applied to histogram data, where D is a set of
integers ni that count how often certain events Ei occurred. In this case hypo-
theses H are evaluated, which predict the probabilities pi (H) to get in a single
run the event Ei . In the said experiment, the events Ei are the photon clicks de-
tected in a corresponding time tag ti . In the first place, the probabilities pi (H)
are calculated in dependence on the model parameters H = {m1, m2, . . .} . For
the whole data set, this leads to a multinomial distribution,

P(D|H) = N!

Ak
i=1 ni !

k
A
i=1

(pi (H))ni ,
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wherein N = @k
i=1 ni is the total number of events in the total number of k time

tags.
From this, the probability distribution P(H|D) of the parameters is inferred through
application of Bayes’ theorem, eq. (6.4). In this calculation the probability P(D) to
find the data set D independent of any hypothesis is determined by the law of
total probability, P(D) = @H P(D|H) P(H), with the so-called prior distribution P(H).
Its name «prior» is owed to the image of this function as the probability distribution
expressing the knowledge of the experimenter «prior» to any measurement. Under
the principle of maximum entropy [49], it is assumed constant (and of course
normalised to unity). In this case, eq. (6.4) reduces to

P(H|D) =
P(D|H)

@H P(D|H)
È

k
A
i=1

(pi (H))ni =: f (H) (6.5)

where f (H) serves as a non-normalised distribution to find the mean values and
standard deviations of the model parameters, 〈mj 〉 ±∆mj , by integration over the
whole parameter space, e. g.

〈mj 〉 =
P · · · P mj f (H) dm1 dm2 . . .
P · · · P f (H) dm1 dm2 . . .

.

The advantage over the well-known χ2 test is that it gives valid results even in
the case of small numbers ni (see the ordinate of the inset in fig. 6.4). Further-
more, the uncertainties (standard deviations ∆mj ) are thrown in directly. This is
an advantage over the maximum-likelihood method [1, 34] where the likelihood
function f (H) is just maximised, and the uncertainties have to be found through
additional considerations, which are often not treated with the necessary care.
Here, the whole distribution f (H) is used to get mean values (instead of values at
maximum) and their uncertainties directly.
The essence of this evaluation is that the estimated parameter values are computed
directly out of the primary data, and all of this data is used at once—in particular
without intermediate evaluation steps, grouping of data, or loss of information
through binning and so on.

6.5.2 Numerical approximation

To use this method for a numerical mean-value estimation, every integral is re-
placed by a sum over a well-chosen interval around the mean value and with a
discretisation far below the standard deviation.
For a high number of events (say N > 1000) the values of the total probabil-
ity distributions (as eq. (6.5) for example) become very small, and may result in
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rounding errors on a computing machine. In such cases, it is preferable to cal-
culate the logarithms of the single probabilities pi and normalise the logarithmic
distribution,

LH := log f (H) =
k
@
i=1

ni log pi (H) ¢ 0,

to a maximum value of zero: Thus, using f̃ (H) := eLH −max LH instead of f (H) leads to
the same mean values and standard deviations, but prevents the rounding errors
of small numbers.

6.5.3 The ψ-test

As a figure of merit for a hypothesis H the measure

ψ(H) := Lrf − LH =
k
@
i=1

ni log �
ni

Npi (H)
� £ 0 (6.6)

is introduced. It discloses a comparison of the hypothesis H with the best possible,
but usually unknown hypothesis Hrf, i. e. the one that would yield exactly the relative
frequencies as single-event probabilities for all events, pi (Hrf) =

ni
N . The ψ-value

tells how far-off a hypothesis is from this ideal one since obviously ψ(Hrf) = 0.
To show the meaning of ψ quantitatively the following approximation is examined.
In the case where the relative frequencies are close to the calculated probabilities,
||
ni
N − pi || À pi , the Taylor expansion of x log x at x = 1 leads to an approximation

of eq. (6.6)1:

ψ(H) =
k
@
i=1

Npi (H)
ni

Npi (H)
log �

ni
Npi (H)

�

=
k
@
i=1

Npi (H) �
ni

Npi (H)
− 1 + 1

2 �
ni

Npi (H)
− 1�

2
� + O � 1

√
N

�

=
k
@
i=1

ni
ø ñ ú
=N

− N
k
@
i=1

pi (H)
ø ñ ú
=1

+
1
2

k
@
i=1

(ni − Npi (H))2

Npi (H)
ø ñ ú

= χ2|σ2
i =Npi

+ O � 1
√
N

�

The lowest remaining order corresponds to the goodness of fit of the well-known
χ2-test [92] under the assumption that the frequencies ni obey the Poissonian

1) In detail x log x = 0 + (x − 1) + 1
2 (x − 1)2 + O((x − 1)3).
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distribution with the rate parameter Npi (= 〈ni 〉 = σ2
i ) [95]. This shows that the

χ2-value is just an approximation, only valid for large numbers ni . For further
details, see [50, p. 298 f.]. Thus, a good ψ-value is about k⁄2, or in other words (in
comparison to the reduced χ2-value) a reduced ψ-value defined by

ψred(H) =
ψ(H)
k⁄2

indicates a good hypothesis if ψred(H) É 1.

6.6 Results

The Bayesian inference is applied to two different models for the arrival-time
distributions of the measured Raman scattering process. The first one is a simple
sine function used to find the phase and frequency shifts,

f (t |ω, φ) = 1
2 +

1
2 sin (ωt + φ) , (6.7)

with the beat frequency ω and the phase φ as the only model parameters. It
does not at all concern the envelope of the wave packet (cf. figure 6.4), which
is possible in and a big advantage of Bayesian inference as mentioned above
in section 6.4. The analysis is done separately for each detuning value, but for
all four bases combinations in one run including correction for the 180° phase
jump between the two pairs of combinations (H, bright and V, dark vs. H, dark
and V, bright). The resulting phase and frequency shifts including their standard
deviations are shown as nine points for each of three separate measurement series
in figure 6.5 (a) and (b), respectively. A total phase shift of over 35° and a total
frequency shift of about 10 kHz are clearly visible.

The second analysis uses the more complex model of interference of two Raman
transitions, eq. (6.3), and applies the Bayesian method to the full data set of
all 36 histograms at once. This yields mean values and standard deviations for
the Rabi frequency, and the Larmor frequency as well as an offset ∆0 that the
detuning has compared to the imprecise pre-measurements (using ∆ − ∆0 instead
of ∆ in eq. (6.3)). Table 6.1 shows these values for three independent measurement
series. With these parameters the lines in figure 6.5 are drawn, showing good
agreement with the directly retrieved shifts.
The standard deviation of the Larmor frequency and an additional uncertainty
due to the temporal resolution of 320 ps are both in the same order of mag-
nitude, about 5 · 10−6. Their interplay is even more precise than the independently
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measured magnetic-field uncertainty of about 6 nT that corresponds to a relat-
ive uncertainty of 2 · 10−5 and proves the magnetic field fluctuations as the main
limitation of the experiment.

Table 6.1 – Values of the model parameters Rabi frequency Ω, Larmor frequency ωL, and
detuning offset ∆0 for three measurement series.

measurements Ω/2° ωL/2° ∆0/2°
series 1 (blue) 894(2) kHz 15.91103(9) MHz +4.82(6) MHz
series 2 (green) 696(3) kHz 15.91095(16) MHz +5.75(9) MHz
series 3 (red) 845(3) kHz 15.91111(16) MHz +6.04(9) MHz
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Figure 6.5 – Phase φ and light shift ¤ω of the Larmor precession as functions of the detun-
ing ∆. Points indicate the measured data, extracted using the simple sine function, eq. (6.7),
lines the full model of section 6.2, and colours different series of measurements.

From the Larmor frequency ωL and the radio frequency ωL,S the Landé factor of
the valence electron is inferred to gS = 4ωL,S/ωL = 2.002 21(6). This value shows
a significant distance of two standard deviations to the Landé factor of the free
electron [122], 2.00231930436256(35), but matches the one for the valence electron
of 40Ca+, 2.002 25664(9), found in high-precision measurements using a Penning
trap [123]. It demonstrates the necessity to take even the small energy corrections
due to the electromagnetic field of the core electrons into account, and is one of
the most remarkable results of the experiment.
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6.7 Conclusion

This chapter presents the measurement of a phase shift larger than 35° in the
wave function of a single photon. Thereby the photon is used as a self-reference
in contrast to other experiments where the exciting laser light serves as reference,
and only phase shifts up to 6° were accessible.
The high contrast of the beating as seen in the inset of figure 6.4 reveals that
the emitted photons are close to the Fourier limit. Moreover, it confirms the
possibility that the linewidth of Raman photons can be much narrower than the
natural atomic linewidth of their emitter. This is the case for weak excitation, and
it is owed to the temporal stretching of the wave packet.
The method enables a very accurate measurement of the magnetic field down
to its fluctuations, more than five orders of magnitude in our case—a degree
of precision where not only the small quantum electrodynamical corrections to
the Landé factor of 2 in general become relevant, but even the tiny differences
between free and bound electrons. The results also demonstrates the importance
of, as well as a precise method for the calibration of scattering phases in single-
photon-based quantum-networking protocols.
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Outlook

«Like the legend of the Phoenix,
All ends with beginnings . . . »

— Daft Punk, Get Lucky (2012)

The work on this thesis did not start the experimental set-up nor the theory of
the Raman scattering, and so it will not finish with any of both or even the
development of a quantum computer. But it demonstrates again the fruitfulness
of several hybridisations: of different quantum systems, trapped ions and SPDC
photon pairs, as well as the marvellous unison of experiment and theory, and
not to forget the interplay of experts from different fields in this research group.
As it’s time to pass on the torch, some issues for the further evolution should be
addressed.
As already mentioned in the introduction one of DiVincenzo’s criteria that is still
missing to advance our quantum interface to a quantum computer is the needed
universal set of quantum gates. A fruitful approach is the Mølmer–Sørensen
gate [79, 119] on multiple q-bits in combination with all single-q-bit gates. Our
first steps in this direction are found in the Ph. D. thesis of Pascal Eich [28]. We
have already demonstrated the trapping and cooling of a string of several ions
in one trap, and addressing single sites of this string by the application of an
acousto-optical deflector.
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A new approach to the stabilisation of the static magnetic field following [105]
is the change from DC electromagnets (coils) to sets of permanent magnets. This
should remove the influence of the fluctuations of the electric current, and thus
increase the coherence time of the quantum memory even further. The first step
in this direction is the master thesis of Omar Elshehy [30].
With a new trap design including an optical resonator directly around the trap
centre, the coupling efficiencies of the light to and from the trapped ion(s) can be
improved. This might increase the success probability of the quantum interface by
two to three orders of magnitude, which is the best prospect of improvement at
the moment.
The control electronics of the set-up are reconditioned at the moment by a new
generation of cavity lockers, see the forthcoming Ph. D. thesis of Matthias Kreis.
This will enable the next step of automation in the laboratory, where the detection
of an error in the laser stabilisation and its re-stabilisation in a fully-automated
manner seems a reachable goal.
To complete the picture of the spontaneous Raman scattering, direct measure-
ments of the spectra of Raman-scattered single photons will be a future work
of the research group. This would be a validation of our theoretical work
(chapter 3 and [82]), and the final evidence that Raman photons—under cer-
tain circumstances—are narrower in frequency than their emitter. First steps in
this direction are the bachelor theses of Christian Haen [42] and Max Berger-
hoff [7].
On the theory side it would be desirable to expand the description of the spon-
taneous Raman transition by coherent as well as incoherent broadening of the
exciting laser’s frequency. Another improvement, on a more fundamental level,
would be to correct the model by restricting the spectra to exclusively positive
frequencies. The negative frequencies are a subsequent error owed to the Weiss-
kopf–Wigner approximation; the correction could be based on a variant of the
rotating-wave approximation presented in [8]. Furthermore, the Markovian as-
sumption in section 3.2 could be proved by mathematical induction over the number
of scattered photons.
A personal desire of the author is the prosperity of the application of Bayesian
inference in the analysis of measurement data as this method is in many cases
superior to the more established methods. One of these cases is the quantum
tomography with the expected goal to find a simple formula for the entries of the
density matrix including reliable uncertainties out of the ratios of detector clicks
in a manner similar to the analysis of a Bernoulli process (as tossing a coin).
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Appendix

«There are only two perfectly useless things in the world.
One is an appendix and the other is Poincaré!»

— G. Clemenceau (1919)[72, p. 33]

A 1 Derivation of the Liouville operator

The Liouville operator, eq. (4.4) on p. 64, is derived by rewriting the Lindblad
equation (4.1) component-wise using eq. (4.2) and identifying the effective Hamil-
ton operator and some Kronecker products

Ai ,sBj ,t = (A � B)(i−1)n+j , (s−1)n+t .
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The explicit calculation is:
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eff − Ĥeff � 1	 + @
k
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A 2 Quantum process tomography

To judge the quality of the mapping of one q-bit ρ̂in onto another one ρ̂ex, the
process matrix χ̂ is reconstructed following the definition in [17]. In the case of a
single q-bit, it is a four-dimensional matrix fulfilling the transformation equation

ρ̂ex =
3
@

m,n=0
χmnÂmρ̂inÂ+n

for all possible pairs of ρ̂in and ρ̂ex. Herein, the operators { Âm} are 1, σ̂x,
−iσ̂y , and σ̂z , respectively. The process matrix can be calculated out of the four
reconstructed density matrices, ρ̂R, ρ̂L, ρ̂H, and ρ̂D, after performing the mapping
of the initial states, |R〉, |L〉, |H〉, and |D〉, respectively, onto a photon. The explicit
formula is

χ̂ = λ̂ρ̂′λ̂

with

λ̂ = 1
2 �

1 σ̂x

σ̂x −1
� = 1

2

 (((((
0

1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1

!)))))
1

and ρ̂′ = �
ρ̂R ρ̂+
ρ̂− ρ̂L

�

wherein ρ̂± = ρ̂H ± iρ̂D −
1
2 (1 ± i)(ρ̂R + ρ̂L).

Alternatively, many textbooks define the process matrix slightly different through

ρ̂ex =
3
@

m,n=0
χ̄mnσ̂mρ̂inσ̂+n (1)

with the unity matrix and the Pauli matrices directly, σ̂m = {1, σ̂x, σ̂y , σ̂z } . This
obviously leads to a different process matrix, ˆ̄χ = Û χ̂Û + Ö= χ̂, with Û = diag(1, 1, −i, 1),
but both share the same properties inherited from the density matrix. They are
positive semi-definite, Hermitian, and have trace 1.
The value of interest is the first entry, χ̄00 = χ00, indicating the identity part of
the process. It tells how good the information of the q-bit is preserved, and thus
is called process fidelity. It is connected with the overlap fidelity, F = tr(ρ̂inρ̂ex),
averaged over all pure input states, through 〈F〉 = (2χ00 + 1)/3.

Furthermore, reference [17] gives a very clear visualisation of the mapping for the
case of a single q-bit. With the quantum states written as Bloch vectors, rin and
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rex, according to eq. (1.1) on p. 8, the transformation (1) takes the shape

rex = Mrin + c.

Therein, the three-dimensional, real matrix M and the constant, real vector c are
directly determined by ˆ̄χ through,

Mi j = (2χ̄00 − 1)¤i j + 2 Re(χ̄i j ) − 2
3
@
k=1

εi j k Im(χ̄0k),

ci = 4 Re(χ̄0i ),

and vice versa,

χ̄00 =
1
4 (1 + tr(M)),

χ̄0i =
1
4 �ci − i

3
@
k=1

3
@
j=1

εi j kMjk� ,

χ̄i j =
1
4 �(1 − tr(M))¤i j + Mi j + Mj i − i

3
@
k=1

εi j kck)� ,

wherein the indices i and j only go from 1 to 3, and εi j k denotes the three-
dimensional Levi-Civita tensor.
This shows, that the Bloch sphere defined by all possible states { rin} is shrunk
into an ellipsoid with semi-axes less than 1, possibly rotated, and shifted off the
origin by the vector c. The explicit values for shrinkage and rotation are found
by singular value decomposition (SVD) of the matrix M. Several examples of such
«deformed Bloch spheres» are found in section 5.3 on p. 89.
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A 3 The Clebsch–Gordan coefficients

This section presents the Clebsch–Gordan coefficients (cCG) of all seven transitions
in 40Ca+ (see figure 1.2 on p. 11). They are displayed in the following energy
schemes, figure A.1. For clarity, each cCG is written at its respective transition
line, the square-root sign is omitted, and the constant factor is written aside, e. g.
the coefficient for the transition from |S1/2, −1⁄2〉 to |P1/2, +1⁄2〉, see figure A.1 (c),
is cCG = −

è
2⁄3 . It pertains to the angular momentum values J1 = 1⁄2, mJ1 = −

1⁄2,
J2 = 1, mJ2 = +1, J = 1⁄2, and mJ = +

1⁄2.
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Figure A.1 – The Clebsch–Gordan coefficients of 40Ca+.
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Remark: In the case of different multiplicities of the lower and upper manifold,
the values presented in this figure are valid only for expressing an upper state as
a composition of lower states (corresponding to an emission process). Regarding
the 866 nm transition as an example (see figure A.1 (c)), one gets

||P1/2, +1⁄2� Ù
è

1⁄6 ||D3/2, −1⁄2�|σ+〉 −
è

2⁄6 ||D3/2, +1⁄2�|°〉 +
è

3⁄6 ||D3/2, +3⁄2�|σ−〉.

Expressing a lower state as a composition of upper states (corresponding to an ab-
sorption of a photon with polarisation coefficients c−, c0, c+), the Clebsch–Gordan
coefficients have to be renormalised by the square root of the quotient of these
multiplicities (4 : 2 in the example above), e. g.

||D3/2, +1⁄2� (c−|σ−〉 + c0|°〉 + c+|σ+〉) Ù c−
è

1⁄3 ||P1/2, −1⁄2� − c0
è

2⁄3 ||P1/2, +1⁄2�.
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