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Abstract
Mailing lists are a major communication channel for supporting developer coordina-
tion in open-source software projects. In a recent study, researchers explored tempo-
ral relationships (e.g., synchronization) between developer activities on source code 
and on the mailing list, relying on simple heuristics of developer collaboration (e.g., 
co-editing files) and developer communication (e.g., sending e-mails to the mailing 
list). We propose two methods for studying synchronization between collaboration 
and communication activities from a higher-level perspective, which captures the 
complex activities and views of developers more precisely than the rather technical 
perspective of previous work. On the one hand, we explore developer collaboration 
at the level of features (not files), which are higher-level concepts of the domain and 
not mere technical artifacts. On the other hand, we lift the view of developer com-
munication from a message-based model, which treats each e-mail individually, to 
a conversation-based model, which is semantically richer due to grouping e-mails 
that represent conceptually related discussions. By means of an empirical study, we 
investigate whether the different abstraction levels affect the observed relationship 
between commit activity and e-mail communication using state-of-the-art time-
series analysis. For this purpose, we analyze a combined history of 40 years of data 
for three highly active and widely deployed open-source projects: QEMU, BUsyBox, 
and opEnssL. Overall, we found evidence that a higher-level view on the coordina-
tion of developers leads to identifying a stronger statistical dependence between the 
technical activities of developers than a less abstract and rather technical view.
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1 Introduction

The success of large software projects relies on the extent to which developers 
coordinate their efforts. This is especially true for large-scale open-source soft-
ware (OSS) projects, to which often numerous globally distributed and independ-
ent developers contribute (Herbsleb 2007). When multiple developers contribute to 
interrelated source-code fragments, changes that lack coordination often introduce 
unintentional side effects. Developers must coordinate their interdependent activities 
to prevent conflicting changes, to avoid bugs, or to keep the code simple and main-
tainable (Cataldo et al. 2008, 2009; Bird 2011; Kwan et al. 2011). In large-scale pro-
jects, developer coordination is absolutely crucial to ensuring high-quality software 
and to supporting high developer productivity (Cataldo and Herbsleb 2013).

Since software developers in OSS projects are often globally distributed, they 
mostly communicate via the Internet to discuss software issues or enhancements or 
to review code changes (Wu et al. 2003). Mailing lists, issue trackers, and instant 
messengers are the most commonly used communication channels for coordina-
tion of developers in OSS projects (Storey et al. 2017). We dedicate attention to 
analyzing developer communication on mailing lists because they are historically 
rich and well-established sources of data for discussions regarding software archi-
tecture and reviewing of code changes (Rigby et al. 2008; Ramsauer et al. 2019). 
In a recent study on 37 OSS projects, Mannan et al. 2020) have shown that about 
89% of such discussions take place on the project’s mailing list. Mailing lists are 
a greater source of longitudinal data than more recently introduced social-coding 
platforms (e.g., GitHUB), because their usage dates back more than 10 years (see 
Table 2). Mailing lists are also used to discuss the outcomes of developer confer-
ences and similar events where complex issues and long-term plans for feature 
development are discussed. Even developers in OSS projects who work for cor-
porations may use mailing-list discussions to communicate their intentions to oth-
ers as public communication is one of the basic concepts in OSS projects (Riehle 
2015).

To obtain deeper insights into the fundamentals of developer coordination and the 
role communication plays in OSS projects, we investigate the relationship between 
co-editing activities on source-code artifacts and communication activities on the 
developer mailing list. For this purpose, we replicate and extend an empirical study 
of Xuan and Filkov 2014) on synchronous development in OSS projects, which we 
will refer to as the original study. The authors of the original study identified pairs 
of developers co-editing files to explore the relationship between developer produc-
tivity and communication activities. Their major finding was that time intervals rich 
in co-editing activities are correlated with time intervals rich in e-mail activities 
and, more importantly, that during these synchronized periods developer productiv-
ity was higher.

The original study already provided interesting and useful insights on developer 
collaboration and developer communication. Nonetheless, they relied on a rather 
technical, low-level view. Regarding developer collaboration, they limited their per-
spective to co-edits of individual files. There is reason to believe, though, that this 
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perspective only covers technical edits to files which are likely to be a noisy indica-
tion of the content-wise relationship between the edits. Developers co-editing a file 
may not change any interrelated source code because a file can contain lots of inde-
pendent functionality. Conversely, highly interrelated source code that is scattered 
across multiple files will also not be captured by a file-level abstraction. To raise the 
abstraction level, we analyze co-edits on related source code in terms of features. A 
feature is a characteristic, user-visible behavior or configuration option of a software 
product (Czarnecki and Eisenecker 2000; Apel et al. 2013). The information a fea-
ture usually conveys is richer and more closely mirrors a developer’s mental model 
of the software than files. For that reason and also due to the fact that the concept 
of features is apparently used by developers (Berger et al. 2015; Queiroz et al. 2017; 
Hunsen et al. 2016, 2020), our overarching research question is whether there is a 
difference in developers’ collaboration and coordination on features and files. Tech-
nically, the code belonging to a feature may be scattered across several files and 
several features may be tangled within a file (Apel et al. 2013), which needs to 
be taken into account when developers coordinate.

Compared to the original study, we also take a more nuanced view on commu-
nication activity by grouping individual e-mails together according to the thread of 
communication they belong to. In the original study, all e-mails sent to the mail-
ing list are considered equally likely to be related to each other. We extend the 
original study by lifting this message-based view of developer communication to 
a conversation-based view, which incorporates the context of e-mails by grouping 
e-mails according to threads. Since e-mails belonging to the same thread address 
a relatively narrow topic space, the likelihood of these e-mails being content-wise 
related is higher  (Bird et  al. 2008). A heuristic solely based on temporally close-
by e-mails sent to the mailing list likely misses meaningful communicative asso-
ciations between developers. Hence, we investigate the question of whether there 
is a difference in the dependence of social and technical activities using a message-
based or a conversation-based view of the complex processes involved in developer 
coordination.

By means of an empirical study, we investigate whether the different abstraction 
levels (file-based vs. feature-based and message-based vs. conversation-based) affect 
the relationship between commit activity and e-mail communication observed in the 
original study using state-of-the-art time-series analysis. More specifically, to learn 
whether developers engineer their mutual contributions on features, we investigate 
whether synchronous development occurs more frequently or with a higher degree 
of synchronicity on features than on files. Knowing about differences between 
abstraction levels could be exploited for improving developer coordination (e.g., to 
predict on which parts of the source code a developer is likely to work on next). Fur-
thermore, we investigate whether synchronous development is temporally aligned 
with coordination on the mailing list. To find out whether developers working on the 
same file or same feature contemporaneously also communicate, that is, to measure 
synchronization, we use dynamic time warping (Rabiner and Juang 1993), a state-
of-the-art time-series analysis technique.



 Automated Software Engineering            (2022) 29:3 

1 3

    3  Page 4 of 53

It is important to note that, when we investigate whether co-editing activity is 
accompanied by communication on the mailing list, we cannot be sure that the mail-
ing-list communication is related to the co-editing activity. However, it is a difficult 
task to find out which e-mails are related to the co-editing activity and which not, as 
e-mails sent by a developer shortly before or after a commit could also cover com-
pletely unrelated topics (especially if there are many commits and e-mails within 
a short period of time); when relating only e-mails whose subject is related to the 
commit we may omit related e-mails that have a different subject. For that reason, 
we propose two different approaches, which we call the lower-bound approach and 
the upper-bound approach: Whereas the upper-bound approach considers all e-mails 
sent to the mailing list to identify time intervals rich in e-mail activities (as in the 
original study), the lower-bound approach considers only e-mails whose subject is 
topically related to the co-editing activity following a very strict matching proce-
dure. We call them upper-bound and lower-bound because the former considers all 
messages without restrictions, ending up in the maximum amount of considering 
communication activity, and the latter considers only messages related to co-editing 
activity, which is a very small subset of the total set of e-mails. Hence, the actual 
amount of the communication that is content-wise related to the co-editing activity 
lies in-between these bounds. For the upper-bound approach, we additionally per-
form manual checks to explore to which extent the content of e-mail communication 
is related to temporally close-by collaboration on the source code.

For the purpose of the study, we analyze a combined history of 40 years of data 
for three highly active and widely deployed open-source projects: QEMU, BUsyBox, 
and opEnssL. We investigate synchronous collaboration on source code and coordi-
nation on mailing lists using different abstraction levels. Overall, we found evidence 
that a more abstract and higher-level view describes developer collaboration and 
coordination more accurately than a less abstract and more technical view. That is, 
developers collaborate more frequently and more synchronously on features than on 
files. For some of our approaches and projects, a conversation-based representation 
of developer coordination reveals a stronger statistical relation to co-editing source-
code artifacts than a message-based representation.

In summary, we make the following contributions:

• We replicate the original study on a different data set: three highly active and 
widely deployed open-source projects. Regarding the existence of synchronous 
development, we are able to confirm the results of the original study. However, 
we cannot confirm the results of the original study regarding code growth and 
implementation effort in synchronous development nor the relationship between 
the number of synchronous collaboration activities and the number of synchro-
nous communication activities.

• We propose two methods for raising the abstraction level of exploring synchroni-
zation between developers’ collaboration and communication activities:

• Instead of viewing files as the primary artifacts on which developers are 
expected to coordinate, we lift the abstraction level to the higher-level per-
spective of features (which often crosscut the underlying file decomposition).
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• We lift the view of developer communication from a message-based model, 
which treats each e-mail individually, to a conversation-based model, which 
is semantically richer due to grouping e-mails that represent conceptually 
related discussions.

• We introduce the continuous variable synchronicity degree to quantify the sig-
nificance of co-editing artifacts. (Previously only binary variables were used.)

• We propose an upper bound and a lower bound for determining whether e-mail 
communication is related to co-editing activity, as relating e-mail communica-
tion to co-editing activity is not trivial.

• We manually investigate whether e-mail communication is content-wise related 
to temporally close-by collaboration activities. Our results indicate that only 
between 29% and 47% (depending on the subject project) of temporally aligned 
collaboration and communication activities are content-wise related.

• We use a novel technique based on dynamic time warping to measure synchroni-
zation of activities across source code and mailing lists to adequately take care of 
the dynamic nature of socio-technical congruence.

• We report on an extensive empirical study of three highly active and widely 
deployed OSS projects. We found that feature-based collaboration captures 
developer collaboration more accurately than file-based collaboration. In general, 
our results indicate that a more abstract and higher-level view leads to a stronger 
statistical dependence between developers’ pairwise technical activities than a 
less abstract, technical view.

A full replication package is available on a supplementary Web site.1

2  Background

Xuan and Filkov (2014) define synchronous development as the situation where two 
developers contribute to the same source-code file within a short period of time. 
In the original study, they consider two different kinds of synchronous activities: 
co-commit bursts and e-mail bursts. To explore the temporal relationship between 
co-commit bursts and e-mail bursts, they construct continuous curves by smooth-
ing time series of bursts. In the end, they calculated the correlation of these curves 
to measure the synchronization of collaboration activities and communication 
activities.

In this section, we introduce the algorithms and concepts of co-commit bursts 
and e-mail bursts as well as the continuous curves in detail, as used by the authors of 
the original study.

1 https:// se- sic. github. io/ paper- coord inati on- bursts/
 Data and scripts are also available at https:// zenodo. org/ record/ 51312 82.

https://se-sic.github.io/paper-coordination-bursts/
https://zenodo.org/record/5131282


 Automated Software Engineering            (2022) 29:3 

1 3

    3  Page 6 of 53

2.1  Co‑commit bursts

Version-control systems (VCS), such as Git, are frequently used to manage the code-
base of software projects. In a VCS, developers can access the source code from a 
main repository, modify parts of the code, and submit their patches, for example, 
to the mailing list (Sommerville 2010; Ramsauer et al. 2019; Draheim and Pekacki 
2003). Code changes can implement bug fixes, refactorings, or further enhancement 
of the software. Developers often discuss and review code changes on the project’s 
developer mailing list (Mannan et al. 2020) and then someone else may merge the 
discussed changes into the main repository (Storey et al. 2017). The VCS stores all 
code changes in the form of commits together with meta-data such as author infor-
mation and modification timestamps.

When two developers commit to the same source-code artifact (i.e., file) within 
a short period of time, Xuan and Filkov 2014) call this a co-commit burst (short, 
C-burst). For two commits to be included in a burst, the time difference between the 
commits must not exceed a specified time window, denoted by � . The time window 
resembles the fact that developers may have different preferences of how quickly 
and often they contribute code. Note that looking at only pairs of developers is not 
a limitation, as groups of more than two collaborating developers end up in separate 
C-bursts for each pair of developers that are part of such a group. Hence, group-wise 
collaboration can be considered as the composition of the collaborations of indi-
vidual developer pairs.

Algorithm 1 Identification of C-bursts
Input: list of commits c (annotated with timestamps and developer names)
1: bursts ← ∅
2: for each pair of developers {A,B} do
3: burstsAB ← ∅
4: for each commit cA ∈ c authored by developer A do
5: burst ← {cA}
6: for each commit cB ∈ c authored by developer B do
7: if |time(cA) − time(cB)| ≤ ξ

and artifacts(cA) ∩ artifacts(cB) �= ∅ then
8: burst ← burst ∪ {cB}
9: end if
10: end for
11: if burst �= {cA} then
12: for each burst b in burstsAB do
13: if overlap(burst , b) then
14: burst ← merge(burst , b)
15: burstsAB ← burstsAB \ {b}
16: end if
17: end for
18: burstsAB ← burstsAB ∪ burst
19: end if
20: end for
21: bursts ← bursts ∪ {burstsAB}
22: end for
Output: bursts containing lists of C-bursts for all developer pairs
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As we describe in Algorithm 1 (adapted from Xuan and Filkov 2014, for each 
pair of developers (Lines 2–22), it is checked whether the two developers are authors 
of mutual commits to the same source-code artifact that have a time2 distance of, at 
most, � , and whether these commits have been made to, at least, one common arti-
fact (Line 7). If so, these commits form a C-burst (Lines 4–10), where each burst 
is represented by a start time and an end time. Finally, overlapping bursts of the 
same developer pair are merged (Lines 11–19). This algorithm has a complexity of 
O(|D|2 ⋅ |cmax|2) , with |D| being the number of developers and |cmax| being the maxi-
mum number of commits of a single developer in the project.

In Fig. 1, we show an example of four commits made by one pair of developers, 
D1 and D2. In the commits c1 and c2 , both D1 and D2 change artifact A3. Using a 
time window � = 5 days, c1 and c2 were created within the time window and form a 
burst. Analogously, c2 and c3 form a C-burst due to the change of artifact A5. Since 
both bursts overlap at c2 , they are merged into one burst in the end. c4 also changes 
the same artifact as c3 , but these commits have a larger distance than the time win-
dow. Hence, c3 and c4 do not form a C-burst.

In addition to identifying C-bursts, the original study analyzed how C-bursts 
are related to code growth �L and implementation effort �W , defined as fol-
lows: Let LAdd denote the number of added lines of code (LOC) per commit and 
LDelete the number of deleted LOC per commit. Then, �L = LAdd − LDelete and 
�W = LAdd + LDelete (Xuan and Filkov 2014).

D1 D1D2 D2

commit c1 commit c2 commit c3 commit c4

A1

A2

A3

A3

A4

A5

A5 A5

day 4 day 8 day 11 day 17

C-burst

< 5 days < 5 days > 5 days

Fig. 1  An example containing four commits made by one pair of developers, D1 and D2. Commits c
1
,   

c
2
 , and c

3
 form a C-burst: In c

1
 and c

2
 , both developers change one artifact synchronously within the 

time window � of 5 days; commits c
2
 and c

3
 also form a burst for the same reason. Since these two bursts 

overlap at c
2
 , they are combined to one burst. c

3
 and c

4
 do not form a C-burst as their temporal distance is 

larger than the time window

2 All timestamps are transferred to the Coordinated Universal Time (UTC) first.
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2.2  E‑mail bursts

Xuan and Filkov (2014) use a message-based model to identify e-mail bursts. An 
e-mail burst (short, E-burst) arises if two persons each send an e-mail to the mailing 
list within a defined time window � . For determining E-bursts, Xuan and Filkov use 
almost the same approach as for identifying C-bursts: For each pair of developers, 
they iterate over all the e-mails sent by one developer and search for all e-mails of 
the other developer whose creation dates have an absolute time difference of less 
than or equal � to the e-mail of the first developer. As opposed to the C-burst iden-
tification, there are no further conditions to be checked. Hence, all detected e-mails 
of two different developers within the time window � form an E-burst, where each 
burst is represented by a start time and an end time. Similar to C-bursts, overlapping 
E-bursts of the same developer pair are merged.

2.3  C‑curves and E‑curves

To check whether two developers coordinate their collaboration, that is, to check 
whether C-bursts and E-bursts of a developer pair are synchronized, Xuan and 
Filkov (2014) introduced the notions of C-curves and E-curves. They compute a 
C-curve (or E-curve) for each developer pair denoting the number of commits (or 
e-mails) that are part of a burst aggregated for each day of the time series, as we 
illustrate in Fig. 2. By comparing the C-curve and the E-curve of a developer pair, 
they investigate whether synchronous development and communication activities 
of the developer pair are temporally related. Since coding collaboration and e-mail 
communication do not take place at exactly the same time, it is not useful to directly 
compute the overlap of the resulting curves. Therefore, they applied Gaussian 
smoothing on each of the curves to also be able to align slightly off-set C-bursts and 
E-bursts. To compare the smoothed curves, they used the Pearson correlation coef-
ficient to check whether C-curve and E-curve of a developer pair are dependent or 
independent from each other.

Fig. 2  Example for the C-curve and E-curve of a pair of developers. The horizontal axis represents 
the time dimension (days), the vertical axis the intensity of the bursts (number of commits and e-mails 
respectively within the burst)
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3  Research approach

In our study, we extend the original study by lifting the abstraction level in two 
ways and by changing the methodology of comparing C-curves and E-curves. On 
source code, we consider synchronous development based on files and features. 
Additionally, we introduce a metric to quantify the synchronicity of C-bursts. On 
mailing lists, we differentiate between message-based communication (consider-
ing all synchronously sent e-mails from two developers) and conversation-based 
communication (considering only e-mails belonging to the same thread). When 
identifying E-bursts, we use two different approaches to determine a lower-bound 
and an upper-bound for identifiable coordination. Finally, we use a sophisticated 
time-series analysis technique to check whether C-bursts and E-bursts of a pair of 
developers are synchronized.

3.1  Research questions

Before we state our research questions, let us reiterate the precise meaning of the 
terms collaboration, communication, and coordination: 

Collaboration  means that two developers work together by contributing to 
common source-code artifacts.

Communication  means that two developers talk to one another on the mailing list 
(i.e., exchanging e-mails).

Coordination  means developers are collaborating and communicating in (con-
tent-wise related) temporally aligned manners.

To obtain deeper insights into the fundamentals of developer coordination in 
OSS projects, we investigate the relationship between co-editing activities on 
source-code artifacts and communication activities on the mailing list. The idea 
is that developers rely on the characteristic information conveyed by features and 
conversation threads for building a mental model of the software and the pro-
cesses around it, which in turn drives the communication and coordination with 
other developers (Espinosa et al. 2001; Scozzi et al. 2008; Cannon-Bowers et al. 
1993). So, the overarching question is whether there is a difference in the statisti-
cal dependence of social and technical activities between a semantic, high-level 
view and a rather technical, low-level view of the complex processes involved 
in developer coordination. That is, we investigate whether developers collaborate 
more frequently and more synchronously on features than on files and whether a 
conversation-based representation of developer coordination reveals a statistically 
stronger relation to co-editing source-code artifacts than a sole message-based 
representation. Specifically, we will address the following two research questions 
regarding each abstraction level of collaboration (files and features) and coordina-
tion (message-based communication and conversation-based communication): 
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RQ1:  Which abstraction level of the source code captures the collaboration of 
developers best: files or features? That is, which of the two abstraction lev-
els of the source code leads to identifying a stronger statistical dependence 
between technical activities of developer pairs?

RQ2:  Which abstraction level of the mailing list captures the coordination of 
developers best: message-based communication or conversation-based 
communication? That is, which of the two abstraction levels of the mailing 
list leads to identifying a stronger statistical dependence between technical 
activities and social activities on the mailing list?

3.2  Files and features

We perform the extraction of C-bursts, as defined in Sect. 2, in two separate analy-
ses for files and features. In the file-based analysis, the commits from two develop-
ers within a certain time window form a C-burst if the commits change the same 
file. One could also think of considering a C-burst if the commits just change a file 
in the same folder, as files in the same folder may be semantically related to each 
other. However, projects differ in how they organize files into folders. Folders may 
be deeply nested, having files at different nesting levels. High-level folders may be 
too coarse-grained (co-editing code in the same folder may be not related at all), 
whereas low-level folders may be too fine-grained (missing the relations between 
files at different levels of nested folders). As it is not obvious and mostly project-
dependent which nesting level of folders would be appropriate for C-burst identifi-
cation, we stick to a file-based analysis, which has been established in the original 
study.

In the feature-based analysis, the commits from two developers within a certain 
time window form a C-burst if the commits change the same feature. A feature is 
a characteristic, user-visible behavior or configuration option of a software prod-
uct  (Czarnecki and Eisenecker 2000). There are different ways of implementing 

Fig. 3  Example for feature code using preprocessor directives (#ifdefs), taken from the source code of 
QEMU (file util/qemu-timer-common.c (https:// github. com/ qemu/ qemu/ blob/ master/ util/ qemu- 
timer- common.c (accessed: 2019-02-12)). Source code belonging to feature CLOCK_MONOTONIC 
is surrounded by an #ifdef directive (Lines  6–13). Hence, Lines  7–12 belong to this feature whereas 
Lines 1–5 and Line 14 do not belong to this feature

https://github.com/qemu/qemu/blob/master/util/qemu-timer-common.c
https://github.com/qemu/qemu/blob/master/util/qemu-timer-common.c
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features in source code, one common way is the use of preprocessor directives (Apel 
et al. 2013; Ernst et al. 2002). For feature extraction from the source code, we rely 
on C preprocessor directives (#ifdef, #endif, etc.)  (Kernighan and Ritchie 1988). 
In Fig. 3, we demonstrate a short example: All the code which is in-between #ifdef 
and #endif belongs to the feature stated in the same line as the #ifdef directive (in 
the example, the feature is called CLOCK_MONOTONIC. Note that one line of 
code can belong to multiple features, for example if nested #ifdef directives are used 
or more than one feature is stated at the beginning of #ifdef. All code changes that 
affect one of the lines between #ifdef and #endif account for the change of the cor-
responding feature(s). Note that features may be scattered across multiple files, pos-
sibly tangled with other features (Apel et al. 2013). All the changes surrounded by 
#ifdef directives together with the same feature name belong to the same feature, 
even if they are part of different files. When analyzing co-edits to features, in our 
study, code changes which do not belong to a feature (i.e., not surrounded by #ifdef 
directives) are ignored. We introduce the tools we use to extract feature information 
in Sect. 4.2.

3.3  Synchronicity degree

The method to identify synchronous development described in Sect.  2 is limited 
because it does not quantify the magnitude of the overlap among the commits of a 
C-burst. Essentially, the variable denoting synchronous development is binary. To 
gain precision, we model the overlap of synchronously changed artifacts within a 
burst using a continuous variable. This is beneficial because synchronous commits 
from two developers can contain changes to one common artifact while most of the 
other changes are to artifacts that are touched by only one of the developers (Bird 
et al. 2011). For this reason, we introduce the synchronicity degree, a metric captur-
ing the overlap based on the number of lines of code (LOC) each of the two develop-
ers adds to the artifacts changed in a C-burst. We calculate the synchronicity degree 
individually for each C-burst. Formally, we define the synchronicity degree degsync 
for a C-burst c of the developers A and B as follows:

where add(A, x) denotes the number of code lines added by developer A to the list 
of code artifacts x in C-burst c, syncArt(c) denotes the list of synchronously changed 
artifacts in C-burst c (i.e., the set of all artifacts changed by both A and B in their 
respective commits), while art(c) is the set of all artifacts changed in C-burst  c. 
In other words, to determine the synchronicity degree, we calculate the geometric 
mean of the code changes made by the two developers involved in a C-burst. Spe-
cifically, the metric incorporates the size of changes to synchronously changed arti-
facts of each developer, normalized by the changes to all artifacts in the C-burst. 
To let the synchronicity degree assign high values only to C-bursts that have a high 
portion of synchronously changed artifacts, and to down-weight C-bursts that have 

(1)degsync(c) =

√
add(A, syncArt(c))

add(A, art(c))
⋅

add(B, syncArt(c))

add(B, art(c))
,
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a highly imbalanced number of changes to non-synchronously changed artifacts, we 
use the geometric mean, this way reducing the weight of higher values compared to 
the arithmetic mean (as we also show in the following examples).

In Table 1, we provide examples how the synchronicity degree treats the size of 
mutual contributions in a C-burst: If both developers change all artifacts touched 
in the commits of a C-burst synchronously, degsync = 1 . When both developers 
change synchronous artifacts and individually changed artifacts of the C-burst in a 
balanced way, degsync = 0.5 . Finally, if the proportion of synchronously added lines 
over all added lines is highly imbalanced, the synchronicity degree is very low (e.g., 
degsync = 0.06).3

3.4  E‑mails and e‑mail threads

We analyze the mailing list of the selected software projects by identifying message-
based E-bursts, as described in Sect. 2. For identifying conversation-based E-bursts, 
we introduce the additional constraint that only e-mails belonging to a common thread 
can appear in an E-burst. The rationale is, if two e-mails belong to the same e-mail 
thread, then this is a more reliable indicator of coordination due to the topical scope in 
e-mail threads. We identify e-mail threads by cross-referencing e-mail headers. That 
is, we consider the <In-Reply-To> and <References> tags in e-mail headers 
to group e-mails belonging to the same thread. We used the threading algorithm of the 
R package tM-pLUGin-MaiL4, which basically implements the standard RFC 5256.

For example, consider the situation illustrated in Fig.  4: Developers D1, D2, 
and D3 each write an e-mail to the mailing list on the same day. Without consider-
ing thread information, each pair of e-mails forms a message-based E-burst of the 
corresponding developer pair, as all three e-mails were sent on the same day. How-
ever, e-mail e2 may address a completely different topic than e1 and e3 , e2 may not be 
related to e1 and e3 at all. When considering thread information, we see that e1 and e3 

Table 1  Examples of the synchronicity degree degsync for different numbers of added LOC by developers 
A and B in C-burst c 

add(A, syncArt(c)) add(B, syncArt(c)) add(A, art(c)) add(B, art(c)) degsync

10 10 10 10 1.00
10 10 20 20 0.50
10 10 15 2010 0.06

3 In this example, only about 0.5% of developer B’s changed lines are made to a synchronously changed 
artifact, meaning that there is almost no synchronicity. If we would use the arithmetic mean instead of 
the geometric mean for the calculation of the synchronicity degree, we would get a value of 0.34 instead 
of 0.06, as the imbalance of the non-synchronously changed lines would not be respected. As a conse-
quence, we use the geometric mean, since a value of 0.06 better describes that there is almost no syn-
chronicity.
4 https://r- forge.r- proje ct. org/ proje cts/ tm- plugin- mail/ (accessed: 2019-02-12).

https://r-forge.r-project.org/projects/tm-plugin-mail/
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belong to the same thread since e3 is sent in reply to e1 . Therefore, these e-mails can 
be considered as content-wise related (as defined by the thread). As a consequence, 
we consider e1 and e3 as a conversation-based E-burst, which is a more robust indica-
tor of coordination between developers D1 and D3 due to the conceptual relation of 
their e-mails. In this example, there is no conversation-based E-burst including e2.

3.5  Upper‑bound and lower‑bound approach for determining coordination

To search for coordination between two developers, we check whether C-bursts and 
E-bursts of a developer pair are temporally aligned. However, we cannot be cer-
tain whether temporally aligned C-bursts and E-bursts are related to each other or 
whether they are completely unrelated and just are temporally aligned by coinci-
dence. We elaborate on this later in detail and manually check in Sect. 6 for a small 
sample of our data whether and for which percentage of the E-bursts such relation-
ships exist. As it is prohibitively time-consuming to manually decide for each pair of 
temporally aligned C-bursts and E-bursts whether they are related, we here use two 
automatic approaches, which we illustrate in Fig. 5:

There is an upper bound for coordination, that is, we assume that all the tem-
porally aligned C-bursts and E-bursts are content-wise related and therefore repre-
sent coordination (see Algorithm 2 for the trivial e-mail filtering in the upper-bound 
approach).

Alternatively, in many OSS projects, there is information on the relation 
between e-mails and commits. For example, if code changes (which form a com-
mit) have to be submitted to the mailing list in form of a patch (like in QEMU), 
the e-mail subject is often automatically generated out of the heading of the com-
mit message. This way, we can learn that contents of e-mail threads whose sub-
ject is also the beginning of a commit message are related to the respective com-
mit. Therefore, temporally aligned C-bursts and E-bursts for which one e-mail 

e1 e2 e3

D1 D2 D3

8 am 9 am 10 am

conversation-based E-burst

< 1 day

In-Reply-To

Fig. 4  An example containing three e-mails to the mailing list sent by three different developers D1, D2, 
and D3. All three e-mails were sent on the same day, therefore, each pair of e-mails forms a message-
based E-burst of the involved developer pair. Incorporating thread information, we see that e
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3
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3
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of the E-burst has a subject which belongs to a commit message of the tempo-
rally aligned C-burst are content-wise related and, hence, indicate coordination. 
Nevertheless, this might not be the only kind of coordination as e-mails that do 
not follow this convention could also contain content-wise related information. 
This is why we call the approach lower-bound approach (see Algorithm 3 for the 
e-mail filtering based on commit messages in the lower-bound approach). E-mail 
filtering in the lower-bound approach has a complexity of O(|D|2 ⋅ |cmax| ⋅ |emax|) , 
with |D| being the number of developers, |cmax| being the maximum number of 
commits of a single developer, and |emax| being the maximum number of e-mails 
of a single developer in the project. 

commits

C-burst identification

C-bursts

commit messages

extract commit messages

filter critereon

e-mails

filter e-mails

filtered e-mails

E-burst identification

E-bursts

temporal alignment

results

Fig. 5  Workflow for one pair of developers using the upper-bound approach (black, solid only) and 
the lower-bound approach (red, dashed, and black, solid, together). Commit data are used to identify 
C-bursts. For the upper-bound approach, all e-mail data are used to identify E-bursts. For the lower-
bound approach, the e-mails are first filtered based on the commit messages, which are extracted from 
the identified C-bursts of the developer pair. Only those e-mails whose subjects match one of those 
extracted commit messages are kept. Then, the E-bursts are extracted from the filtered e-mails. In the 
end, independent of the approach, C-bursts and E-bursts of a developer pair are temporally aligned 
(Color figure online)



1 3

Automated Software Engineering            (2022) 29:3  Page 15 of 53     3 

Algorithm 2 E-mail filtering in the upper-bound approach
Input: list of e-mails of a developer pair {A,B} e{A,B}
1: � no filtering needs to be performed
2: e{A,B},filtered ← e{A,B}
Output: list of e-mails of a developer pair {A,B} e{A,B},filtered

Algorithm 3 E-mail filtering in the lower-bound approach
Input: list of e-mails of a developer pair {A,B} e{A,B},

list of C-bursts of the developer pair {A,B} cb{A,B}
1: e{A,B},filtered ← ∅
2: for each C-burst cb ∈ cb{A,B} do
3: mcb ← extract commit messages from all commits belonging to cb
4: for each e-mail e ∈ e{A,B} do
5: se ← extract subject from e-mail e
6: se ← remove auto-generated prefixes like ’Re:’ or ’Fwd:’ or ’[PATCH]’ from se
7: for each commit message m ∈ mcb do
8: if m starts with se then
9: e{A,B},filtered ← e{A,B},filtered ∪ e
10: break
11: end if
12: end for
13: end for
14: end for
Output: filtered list of e-mails of a developer pair {A,B} e{A,B},filtered

Both the upper-bound and the lower-bound approach will not represent the actual 
amount of coordination, but by using an upper-bound and a lower bound we are able 
to narrow down the problem and know that the truth must be somewhere in-between 
these bounds.

3.6  Time‑series analysis of C‑curves and E‑curves

To check whether C-bursts and E-bursts of a developer pair are synchronized, we 
need to measure the similarity between both sequences of bursts. For this purpose, 
we construct C-curves and E-curves for each developer pair. The curves denote the 
number of commits and e-mails that are contained in a burst aggregated for each day 
of the time series. That is, we build a histogram of the numbers of these commits 
and e-mails per day and derive a curve from that, as depicted in Fig. 2.

Since commit activities and e-mail activities rarely occur at the same instant of time, 
the comparison of C-curves and E-curves needs to be error-tolerant such that we are 
able to tolerate slight temporal shifts between C-bursts and E-bursts. For example, 
as developers need some time to create a commit and also some time passes until an 
e-mail is written, we aggregate the number of commits or e-mails belonging to a burst 
on a daily basis so that we can perceive bursts of developer activity more clearly. To 
incorporate also latent times of activity (such as time for implementation, testing, or 
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planning) into this line of thought, we use rectangular smoothing, which achieves two 
objectives: (1) We reduce noise in the curves and alleviate the intensity of a burst at 
a specific day (as the aggregation on a daily basis is sensitive to the distribution of 
the commits or e-mails among several days), and (2) we slightly broaden bursts in the 
curve to cover that developers may prepare or deal with source-code changes or com-
munication activity longer than the actual work on commits and e-mails lasts, to be 
robust to a shift of several days between C-bursts and E-bursts. We use a smoothing 
parameter of 2� (with � being the time-window parameter used for burst identifica-
tion). That is, we also take � days before and after a burst into account to check whether 
C-bursts and E-bursts are synchronized. (We also tried other smoothing parameters, 
which led to similar results, though. For more information, please refer to the supple-
mentary Web site.)

To compare C-curves and E-curves, we use dynamic time warping (DTW)  (Rabi-
ner and Juang 1993), effectively calculating their distances. The DTW algorithm trans-
forms one time series (the query) into the other (the reference) and measures the trans-
formation costs. The higher the resulting transformation costs, the greater the distance 
between the compared time series. In addition, we use a Sakoe–Chiba band (Sakoe and 
Chiba 1978) to constrain the maximum allowed time deviation between two matched 
data points. The Sakoe–Chiba band prohibits global deformations to match the time 
series restricting the optimization algorithm to only local transformation operations. 
With that, we have a global constraint that allows only close-by bursts of the two time 
series to get matched. Consequently, when using a band-window size of 2� , we restrict 
C-bursts and E-bursts to get matched when their data points have a maximal distance 
of 2� days. We provide further information regarding DTW and the Sakoe–Chiba band 
in Appendix 1.

The outcome of the DTW calculation is a distance value describing how differ-
ent the C-burst time series and the regarding E-burst time series are under the defined 
transformation restrictions. So, using the DTW, we can measure the temporal correla-
tion between C-bursts and E-bursts of a developer pair.

4  Study design

In our empirical study, we consider coordination in synchronous development for dif-
ferent abstraction levels: file-based and feature-based collaboration as well as message-
based and conversation-based communication on the mailing list. For this purpose, we 
analyze the OSS projects QEMU, BUsyBox, and opEnssL. In this section, we provide 
information on our subject projects, describe our data-extraction procedure, give a 
description of the experiment variables, and formulate our hypotheses.

4.1  Subject projects

We analyze three different OSS projects: QEMU, BUsyBox, and opEnssL. As these 
projects differ in size, commit policies, and application domain, they already pro-
vide enough insights. Although, due to high computation time and high memory 
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consumption when identifying bursts, we cannot analyze more projects with rea-
sonable effort. All projects are developed in the programming language C, using C 
preprocessor directives to annotate feature-specific code (Liebig et al. 2010; Hunsen 
et al. 2016). Moreover, all projects used a mailing list as well-established and—in 
the time range we analyze—persistent contribution system to discuss patches and 
share developer knowledge. For all projects, we analyze all commits and e-mails 
(sent by developers which also contributed to the source code) from 2002 until 2016. 
This sums up to about 54,000 commits and 409,000 e-mails across all projects. We 
provide more details for each project in Table 2.

QEMU is an open-source virtual-machine emulator. The QEMU project has a 
policy5 that forces developers to send patches to the mailing list first. Within the 
analyzed time range of more than 13 years, 951 developers of QEMU created 35,608 
commits that changed 3165 different files and 1739 different features. The develop-
ers, who contributed to the source code, sent 374,815 e-mails in 52,170 different 
e-mail threads to the mailing list.

BUsyBox is a UNIX command-line tool suite, having 230 developers. They cre-
ated 10,087 commits in the analyzed time range and changed 1362 different files 
and 2498 different features. The developers of BUsyBox sent 23,527 e-mails in 7320 
e-mail threads to the mailing list.

opEnssL is an open-source encryption library to secure connections on the Inter-
net, having 168 developers and 7887 commits. The developers changed 1378 differ-
ent files and 1107 different features. On the corresponding mailing list, the develop-
ers sent 10,228 mails in 6280 e-mail threads.

Table 2  Analyzed time range and size (in terms of numbers of developers, commits, LOC, files, features, 
e-mails, and e-mail threads) of the subject projects

QEMU BUsyBox opEnssL

Analyzed time 
range

start: 2003-02-18 2003-01-14 2002-02-18

end: 2016-07-27 2016-02-19 2016-02-19
# developers 951 230 168
# developer pairs 451,725 26,335 14,028
average # developers active per year 151 34 26
# commits 35,608 10,087 7887
average # commits per year 3484 831 791
# LOC (at the latest analyzed commit) 1,106,794 229,087 334,149
# files 3165 1362 1378
# features 1739 2498 1107
# e-mails (messages) 374,815 23,527 10,228
# e-mail threads (conversations) 52,170 7320 6280

5 https:// wiki. qemu. org/ Contr ibute/ Submi tAPat ch/ (accessed: 2019-02-12).

https://wiki.qemu.org/Contribute/SubmitAPatch/
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In Fig. 6, we show the distribution of the sizes of files and features (in terms of 
LOC) of our three subject projects (for the latest analyzed commit). In general, the 
size of a feature is smaller than the size of a file. On the one hand, this is because 
features cover mostly small related units, whereas files may contain code of several 
features. On the other hand, files also contain some base code, which not necessarily 
belongs to any feature (e.g., defining constants, copyright headers, glue code).

4.2  Data extraction

For our study, we gathered commit and e-mail data for each of the subject projects. 
To obtain commit data, we cloned the publicly available Git repositories hosted on 
GitHUB. For the extraction of the commit data, we use the framework CodEfaCE6, 
which analyzes social and technical aspects of development in software projects 
based on the Git version history. Internally, CodEfaCE uses the tool Cppstats (Liebig 
et al. 2010) for determining which code belongs to which feature, based on preproc-
essor directives. That is, Cppstats identifies code blocks which are surrounded by 
preprocessor directives belonging to the feature which is named in the surrounding 
preprocessor directives. Cppstats is regularly used for locating features (Hunsen et al. 
2016, 2020; Berger and Guo 2013; Feigenspan et al. 2013) and has been extended in 
various ways (Fenske et al. 2005; Schulze and Fenske 2018; Medeiros et al. 2015). 
Using CodEfaCE, we are able to extract meta-data of all commits of a software pro-
ject, as has been demonstrated in prior studies  (Joblin et  al. 2015, 2017a, b). The 
commit meta-data contain information on the author of a commit, the date at which 
the author had finished the commit, the number of added and deleted lines, as well 
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Fig. 6  Box plots of the sizes of files and features in terms of LOC; outliers are omitted. These plots refer 
to the latest analyzed commit for each of the three subject projects. We do not provide these sizes for the 
complete project history, as these sizes vary after each single commit but the whole distribution only dif-
fers slightly

6 https:// sieme ns. github. io/ codef ace/ (accessed: 2019-02-12).

https://siemens.github.io/codeface/
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as the changed artifacts (files or features), together with the number of added lines 
per artifact. We limit the extraction of commit data to files that are implementation-
related, so header files, documentation files, and build files are not considered in our 
study (see Sect. 8).

Beside commit data, we have collected e-mail data from each subject project. We 
downloaded the e-mails from the publicly available mailing-list archive GManE7. For 
each of our subject projects, we only downloaded the e-mails of the corresponding 
developer mailing list (not user mailing lists), as we focus on investigating the coor-
dination of source-code changes of developers. We used again CodEfaCE to extract 
information from e-mail headers: the date on which an e-mail was created, the 
author of the e-mail, and the thread ID of the e-mail (e-mails belonging to the same 
thread have the same thread ID). In our study, we only include e-mails of developers 
who also appear in commits, because we want to investigate the relation between 
C-bursts and corresponding E-bursts.

Authors can use different names and several e-mail addresses, which makes it 
challenging to map e-mails and commits onto real persons. CodEfaCE first attempts 
to assign e-mails to a certain author by matching the author’s names. If names of 
authors do not match, CodEfaCE proceeds with matching e-mail addresses. To put it 
simply, authors of e-mails which use the same name or the same e-mail address are 
mapped to one real person. Regarding name and e-mail disambiguation, CodEfaCE 
implements the heuristics of Oliva et al. (2012)), which provides good results com-
pared to other heuristics as it has a median recall of approximately 0.5 and a median 
precision of about 0.9 (Wiese et al. 2016).

4.3  Variables

In Table 3, we provide an overview of the independent and dependent variables of 
our study.

Table 3  Independent and dependent variables of our empirical study

Independent variables Dependent variables

- Abstraction of co-editing (files, features) - Number of C-bursts
- Abstraction of communication (message-

based, conversation-based)
- Synchronicity 

 degree degsync
- Filtering of the e-mails: (none (upper-bound), 

by C-bursts’ commit messages (lower-bound))
- Classification of commits (synchronous and non-

synchronous)
- Time window �   (1 day, 5 days, 10 days, 

15 days)
- Code growth �L
- Code effort �W
- Number of E-bursts
- DTW distances describing the temporal correlation 

between C-curves and E-curves

7 https:// gmane. org/ (accessed: 2019-02-12).

https://gmane.org/
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As independent variables, we vary the considered artifact types (files and fea-
tures) for identifying the C-bursts. For identifying E-bursts, we distinguish between 
message-based E-bursts and conversation-based E-bursts. On top of that, we also 
vary the e-mail filtering: Whereas we use all e-mails and perform no filtering for 
our upper-bound approach, we filter the e-mails by commit messages of the C-bursts 
before identifying E-bursts for the lower-bound approach. In addition, we vary the 
time window for burst identification: We consider time windows � of 1 day, 5 days, 
10  days, and 15  days, based on a response-time analysis: In Fig.  7, we show the 
response times for subsequent e-mails and subsequent commits to a common artifact 
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Fig. 7  Box plots of the response times for each pair of developers; outliers are omitted. File-based and 
feature-based response times represent the time distances between subsequent commits to a common file 
or feature of a developer pair. Message-based response times represent the time distances between sub-
sequent e-mails of a developer pair, conversation-based response times only represent the time distances 
between subsequent e-mails of a developer pair within the same thread. The red vertical lines represent 
the time windows (Color figure online)� chosen for our study
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for each pair of developers, for each level of abstraction and subject project con-
sidered in our study. Depending on project and abstraction level, at least, 70% of 
the different response times are shorter than 15  days. When omitting outliers, all 
response times on features are shorter than 15 days. Especially on mailing lists, at 
least, 70% of the response times are even shorter than 1 day. Hence, our chosen time 
windows � are reasonable time distances that synchronous development can deliber-
ately last, because developers mostly reply to e-mails or commits within a few days.

The results of our study depend on the variations of the above described inde-
pendent variables (cf. Table 3). In particular, the number of bursts, the synchronic-
ity degree of C-bursts, and the temporal correlation between C-bursts and E-bursts 
depend on the independent variables. Also the differentiation of commits into syn-
chronous and non-synchronous as well as code growth and code effort depend on 
the independent variables. Notice that we consider a commit to be synchronous if, at 
least, one of its changed artifacts is mutually changed within a C-burst.

4.4  Null model

To determine whether the bursts and their synchronicity degrees are just artifacts 
of a purely random process (and thus uninteresting for us as we expect that col-
laboration and communication are dependent and correlated processes), we use a 
simulation technique based on synthetic data sets drawn from a null model. The null 
models, which represent random time series, allow us to test whether empirically 
observed bursts are significantly different from purely random bursts (i.e., whether 
they convey information). That is, by using a null model, we check whether our 
results are dependent on our variables or arise randomly. Specifically, we use the 
null models of the original study, as we explain next (Xuan et al. 2012).

For commit data, we generate synthetic data based on a null model by purely 
randomizing the time intervals between two successive commits for each developer. 
The randomization operation is performed by randomly permuting the time intervals 
between all commits of the considered developer (see Algorithm 4 in Appendix 2). 
This way, for each developer, the distribution of the time intervals, the order of the 
commits, and the artifacts changed by this developer are preserved. C-bursts gener-
ated from the purely randomized time series are referred to as simulated C-bursts.

For e-mail data, we use a similar approach. The only difference is that we do not 
randomize the time intervals between the e-mails of each developer, but the time 
intervals between successive e-mails of each pair of developers to preserve the order 
of e-mails sent by two different developers. So, each pair of developers has their 
own simulated e-mail time series (see Algorithm 5 in Appendix 2). E-bursts of the 
purely randomized time series are referred to as simulated E-bursts.

Generating a simulated commit time series (without burst detection) has a com-
plexity of O(|D| ⋅ |cmax|) , generating a simulated e-mail time series has a complex-
ity of O(|D|2 ⋅ |emax|2) , with |D| being the number of developers, |cmax| being the 
maximum number of commits of a single developer, and |emax| being the maximum 
number of e-mails of a single developer in the project.
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For both commit and e-mail time series, we generate 100 simulated time series 
each, except for one subject project. For QEMU, we only generate 2 simulations of 
the e-mail time series due to computational limitations.8 See Sect. 8 for a discussion 
of threats to validity.

4.5  Hypotheses

Next, we introduce our hypotheses. Each hypothesis is evaluated by varying time 
window (1 day, 5 days, 10 days, 15 days) and abstraction levels.

Before introducing our hypotheses, let us explain our numbering scheme for 
hypotheses: Our main hypotheses (i.e., H1, H2, and H3) are related to the compari-
son of the different abstraction levels. However, before comparing abstraction levels, 
we first check for each of them whether the underlying hypotheses of the original 
study hold. We introduce the underlying hypotheses of the original study as sub-
hypotheses of our main hypotheses (i.e., H1.1, H1.2, H1.3, H1.4, H2.1, and H3.1). 
To answer our main hypotheses (i.e., to compare the different abstraction levels), 
we compare the outcomes of the corresponding sub-hypotheses on the different 
abstraction levels. So, for comparing abstraction levels, we lift the particular sub-
hypotheses and define composed hypotheses (i.e., H1+H1.1, H1+H1.2, H1+H1.3, 
H1+H1.4, H2+H2.1, and H3+H3.1).

4.5.1  Hypotheses related to C‑bursts

First, we define hypotheses regarding the collaboration of developers. Since features 
are higher-level units and are a common concept in software engineering, we formu-
late the following hypothesis: 

H1  Feature-based collaboration captures developer collaboration more accurately 
than file-based collaboration.

Specifically, due to the nature of features and the extensive use of features by the 
developers, we hypothesize that feature-based C-bursts appear more often and with 
higher synchronicity degree than file-based C-bursts. Moreover, for the same reason, 
we hypothesize that synchronous commits result in higher code growth and lower 
implementation effort, since synchronously working on features is more productive 
and less laborious. In particular, we define the following four sub-hypotheses, which 
we check for file-based and feature-based C-bursts separately: 

H1.1  The number of empirical C-bursts is higher than the number of simulated 
C-bursts.

8 To identify E-bursts in 100 simulations of QEMU for four different time windows and two abstraction 
levels, we would need about 22 months using 40 nodes, having a 2.2 GHz processor, with 20 cores each 
in parallel and 128 GB RAM per node.
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H1.2  The synchronicity degree of empirical C-bursts is higher than the one of 
simulated C-bursts.

H1.3  The code growth �L is higher in synchronous commits than in non-synchro-
nous commits.

H1.4  The implementation effort �W is lower in synchronous commits than in non-
synchronous commits.

We check these sub-hypotheses to examine that developer collaboration is not a 
purely random process and has an effect on the number of C-bursts and the con-
sidered characteristics. After checking the four sub-hypotheses for file-based and 
feature-based C-bursts separately, we use the results of all four sub-hypotheses and 
compare the outcomes for the different abstraction levels to answer H1 conclusively. 
In particular, H1 comprises the following hypotheses: 

(H1+H1.1)  The number of empirical feature-based C-bursts is higher than the 
number of empirical file-based C-bursts.

(H1+H1.2)  The synchronicity degree of empirical feature-based C-bursts is higher 
than the synchronicity degree of empirical file-based C-bursts.

(H1+H1.3)  The code growth �L in synchronous commits is higher on features 
than on files.

(H1+H1.4)  The implementation effort �W in synchronous commits is lower on 
features than on files.

If one of the four sub-hypotheses H1.1, H1.2, H1.3, or H1.4 does not hold, we 
neglect the corresponding part of H1 since the corresponding characteristic appears 
purely random.

4.5.2  Hypotheses related to E‑bursts

Second, as developers converse via mailing lists, we formulate hypotheses regard-
ing which abstraction level of mailing-list communication captures coordination of 
developers best. That is, we expect that conversations capture the coordination activ-
ity among developers more accurately than considering individual messages only, as 
e-mail conversations represent the conceptual relationship between e-mails. 

H2  Conversation-based communication captures developer coordination more 
accurately than message-based communication.

In particular, we check the following sub-hypothesis for both conversation-based and 
message-based communication, as a high amount of collaboration activity should be 
aligned with a high amount of coordination: 

H2.1  The relation between the number of C-bursts and the number of E-bursts is 
described by a linear relationship.
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For this hypothesis, we consider only developer pairs that have, at least, one 
C-burst and, at least, one E-burst, since we aim at analyzing developer pairs that 
contribute to the source code and communicate on the mailing list. Here, we use 
both our upper-bound and our lower-bound approach and evaluate the hypothesis 
separately for both approaches. After checking this sub-hypothesis for all abstrac-
tion levels separately, we compare the strengths of the linear relationships of mes-
sage-based and conversation-based coordination to answer H2 conclusively: 

(H2+H2.1)  The linear relation between the number of C-bursts and the number of 
E-bursts has a higher goodness of fit for conversation-based E-bursts 
than for message-based E-bursts.

Also, here, we evaluate the hypothesis separately for the upper-bound and the 
lower-bound approach.

4.5.3  Hypotheses related to C‑bursts and E‑bursts

Finally, we investigate the temporal relationship between C-bursts and E-bursts of 
developer pairs with the following hypothesis: 

H3  The temporal correlation between C-bursts and E-bursts is higher for feature-
based C-bursts than for file-based C-bursts and higher for conversation-based 
E-bursts than for message-based E-bursts.

If a C-burst and an E-burst of the same developer pair are temporally related, 
this is an indicator of a relationship between these bursts. That is, an E-burst that 
appears right before or after a C-burst may address the discussion of the code 
changes applied in the C-burst. To answer H3, we check the following sub-
hypothesis for each of the abstraction levels of source code and mailing list to 
examine that the empirical DTW distances are not purely random and empirical 
C-bursts and E-bursts are dependent processes: 

H3.1  C-bursts and E-bursts are temporally correlated, that is, the DTW dis-
tances between empirical C-curves and empirical E-curves are smaller than 
between simulated curves.

That is, we expect related C-bursts and E-bursts to appear temporally close to 
each other, resulting in smaller DTW distances than for simulated bursts. Again, 
we analyze the temporal correlation only of developer pairs which have, at least, 
one C-burst and, at least, one E-burst.

After checking the sub-hypothesis, we compare the empirical DTW distances 
of the different abstraction levels with each other to answer H3 conclusively: 
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(H3+H3.1)  The DTW distances between C-curves and E-curves are smaller for 
feature-based C-bursts than for file-based C-bursts and also smaller for 
conversation-based E-bursts than for message-based E-bursts.

We use the E-bursts of our two different approaches separately and evaluate our 
hypothesis for both the upper-bound and the lower-bound approach.

4.5.4  Statistical tests

To test the hypotheses, we use a suite of statistical methods. All the above stated 
hypotheses are alternative hypotheses.

For H1.1, we use a one-tailed, paired Wilcoxon signed-rank test to compare the 
numbers of empirical and simulated C-bursts for each pair of developers. Therefore, 
for each of the developer pairs, we compute the median of the numbers of C-bursts 
of the 100  simulations and compare this median with the empirical number of 
C-bursts of the developer pair. (We use an aggregated measure of the 100 simula-
tions to be able to use a paired test for comparing the real and empirical numbers of 
C-bursts per developer pair. To be robust to outliers, we use the median.) Here, we 
consider also developer pairs that have no C-burst at all, since the number of devel-
oper pairs having no burst can be different and, therefore, can affect the comparison. 
Together with the Wilcoxon signed-rank test, we compute the corresponding effect 
size r.9

For H1.2, H1.3, and H1.4, we use a one-tailed, unpaired Mann-Whitney U test: 
We compare the whole population of the synchronicity degrees of all empirical 
bursts with the whole population of the synchronicity degrees of all 100 simulations 
together. We also compute Cliff’s Delta, which quantifies the effect size that corre-
sponds to the Mann-Whitney U test.

For H2 and H2.1, we fit a linear regression model and compare the fitted models 
by comparing their adjusted R-square values and p-values.

For H3.1, we use a one-tailed, unpaired Mann-Whitney U test to compare the 
empirical DTW distances of all considered developer pairs with the simulated 
DTW distances of all simulations together. Note that we use a Mann-Whitney U 
test because the number of available data points can be rather small (especially 
when using the lower-bound approach, we have only few developer pairs that have, 
at least, one C-burst and, at least, one E-burst in some cases), and the data are not 
necessarily normally distributed, which we measured using the Shapiro-Wilk test. 
Corresponding to the Mann-Whitney U test, we again use Cliff’s Delta to quantify 
the effect size.

Finally, for the comparison of the different abstraction levels using a Mann-Whit-
ney U test in the hypotheses H1 and H3, we use False Discovery Rate (FDR) correc-
tion to account for multiple testing.

9 https:// www. rdocu menta tion. org/ packa ges/ rcomp anion/ versi ons/2. 3.7/ topics/ wilco xonPa iredR 
(accessed: 2019-02-12).

https://www.rdocumentation.org/packages/rcompanion/versions/2.3.7/topics/wilcoxonPairedR
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5  Results

Next, we present our results.10 To generate the results (including simulations), we 
used the following hardware in parallel over several weeks: 40 computation nodes 
having a 2.2 GHz processor, with 20 cores each and 128 GB RAM per node. In the 
tables and plots that follow, we concentrate on the results for our largest and, there-
fore, most representative subject project QEMU, which also exemplifies the results 
of the other projects. For all data and plots, we refer the reader to the supplementary 
Web site11.

5.1  C‑bursts

In H1, we state that feature-based collaboration captures developer collaboration 
more accurately than file-based collaboration. Before investigating this hypothesis, 
we check our four corresponding sub-hypotheses separately for both abstraction 
levels.

As we show in Table 9 in the appendix, we found for QEMU that the C-bursts 
per developer pair based on files or features occur significantly more frequently than 
purely by chance ( p < 0.05 ), independent of the time window � . However, the cor-
responding effect size is very low. The reason for the low effect size is that most 
of the developer pairs have no C-burst at all. For example, in QEMU, only ∼ 1% of 
the developer pairs have, at least, a C-burst, due to the combinatorial explosion of 
developer pairs. Nevertheless, when we restrict our analysis to developer pairs that 
have, at least, one C-burst, then we still get significant results (empirical C-bursts 
occur more frequently than purely by chance), but we get higher effect sizes (abso-
lute values between 0.59 and 0.90, see also the corresponding tables on our supple-
mentary Web site). Regardless of that, also the overall number of empirical C-bursts 
(file-based or feature-based) is higher than the overall number of simulated C-bursts 
(using the median of the 100 simulations to get one number per developer pair). For 
example, in the file-based analysis with � = 5 , there are 5185 empirical C-bursts, 
but only 3122 simulated ones. There are similar results for BUsyBox and opEnssL. 
Therefore, we accept H1.1 .

Also, the synchronicity degrees of the empirical C-bursts are significantly higher 
than the synchronicity degrees of the simulated C-bursts (see Table 10 in the appen-
dix; p < 0.05 ) for all abstraction levels and time windows. This holds for each sub-
ject project; for BUsyBox and opEnssL the corresponding effect sizes are even 
higher than for QEMU. Hence, we accept H1.2 .

Regarding the code growth of synchronous and non-synchronous commits, 
we observe in Table 11 in the appendix that code growth ( �L ) is, according to 
the Mann-Whitney U test ( p < 0.05 ), only in the file-based analysis with � = 1 
or � = 5 higher in synchronous commits than in non-synchronous commits of 

10 When we state that we accept a certain hypothesis (all our hypotheses are alternative hypotheses, as 
stated above), we actually mean that we reject the corresponding null hypothesis.
11 https:// se- sic. github. io/ paper- coord inati on- bursts/

https://se-sic.github.io/paper-coordination-bursts/
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QEMU. For other time windows and for the feature-based analysis of QEMU, 
this does not hold. In BUsyBox, code growth in synchronous commits is higher 
than the code growth in non-synchronous commits only in the feature-based anal-
ysis with � = 10 or � = 15 . In opEnssL, code growth in synchronous commits 
is not higher than in non-synchronous commits for both file-based and feature-
based analyses for all chosen time windows � . As we can observe a higher code 
growth in synchronous commits than in non-synchronous commits only in some 
rare cases, but not in general, we reject H1.3 .

When we look at code effort (Table 12 in the appendix), we find that �W  is 
not significantly lower in synchronous commits than in non-synchronous com-
mits, in all cases except for the feature-based analysis of QEMU. For BUsyBox 
and opEnssL, �W  is not lower in synchronous commits than in non-synchronous 
commits for all feature-based and all file-based analyses. Hence, as there is no 
statistically significant difference, we reject H1.4 .

Finally, to test H1, we compare the outcomes of  H1.1 to  H1.4 for file-based 
and feature-based C-bursts. For H1+H1.1, we see that the number of C-bursts per 
developer pair is higher for feature-based C-bursts than for file-based C-bursts. The 
Mann-Whitney U tests with FDR correction in Table 13 (left) in the appendix also 
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Fig. 8  Box plots of the synchronicity degrees of file-based and feature-based C-bursts at different time 
windows for QEMU (left) and opEnssL (right). Outliers are omitted

Table 4  Overview of the results regarding H1 and its sub-hypotheses. ✓ denotes that we accept a (sub-)
hypothesis, ✗ the denotes that we reject a (sub-)hypothesis

H1.1 H1.2 H1.3 H1.4

Files ✓ ✓ ✗ ✗
Features ✓ ✓ ✗ ✗

H1+H1.1 H1+H1.2 H1+H1.3 H1+H1.4 H1

Files vs. features ✓ ✓ ✗ ✗ ✓
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indicate that the number of C-bursts per developer pair is significantly higher for 
feature-based C-bursts than for file-based C-bursts ( p < 0.05 ). This holds for all 
projects, except for BUsyBox with � = 1 . The low effect sizes arise from the huge 
number of developer pairs that have no C-burst at all (due to combinatorial explo-
sion), as stated above. Comparing the results of H1+H1.2, as we show in Fig. 8, the 
synchronicity degrees of feature-based C-bursts are always higher than of file-based 
C-bursts, for all projects. From the corresponding Mann-Whitney U tests with FDR 
correction in Table 13 (right) in the appendix we can see that this is also a signifi-
cant result ( p < 0.05 ), having medium to large effect sizes. As we have already seen 
that H1.3 and H1.4 do not hold, we do not need to compare the respective data for 
H1. (For the sake of completeness, Table 14 in the appendix contains the results of 
the corresponding Mann-Whitney U tests with FDR correction.)

So, overall, we reject H1  (see Table  4), as it holds for the comparison of files 
and features of H1+H1.1 in all projects (except for the comparably small pro-
ject BUsyBox with � = 1 ), and also for the comparison of files and features of 
H1+H1.2 in all projects. As H1.3 and H1.4 both do not hold, neither for features, 
nor for files, we do not need to take these sub-hypotheses into account for check-
ing our main hypothesis H1. So, based on H1+H1.1 and H1+H1.2, we conclude 
that feature-based collaboration captures collaboration statistically more accu-
rately than file-based collaboration in terms of a higher number of bursts and a 
higher synchronicity degree.

5.2  E‑bursts

For the comparison of message-based and conversation-based E-bursts, we first test for 
H2.1 whether the number of C-bursts and the number of E-bursts for a developer pair 
(having, at least, one burst each) are linearly dependent. We do this separately for the 
E-bursts extracted with our lower-bound approach and with our upper-bound approach 
respectively. Using the upper-bound approach, fitting a linear model on the message-
based E-bursts results in a very small adjusted R-square value of 0.03 (see left plot in 
Fig. 9), that is, only 3% of the variance is described by the linear model. Only a high 
adjusted R-square value would indicate that the model describes the data points well.

In contrast, still using the upper-bound approach, the linear model of conversa-
tion-based E-bursts and C-bursts fits significantly better, as the adjusted R-square 
value of 0.32 in Fig. 9 (right) illustrates. That is, 32% of the variance is described by 
the linear model, and hence there is a stronger linear relationship between the num-
ber of C-bursts and the number of E-bursts for conversation-based E-bursts than for 
message-based E-bursts.

Switching to the lower-bound approach, we get significant linear models for both 
message-based and conversation-based E-bursts, as the adjusted R-square values 
of 0.74 (message-based) and 0.35 (conversation-based) indicate (see Fig. 10). This 
result holds only for QEMU, though. In BUsyBox and opEnssL, there are too few data 
points to fit a significant linear model. Instead of fitting a linear model, we also tried 
to compute Spearman’s rank correlation, which also led to similar, non-significant 
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Fig. 9  Upper-bound approach: Linear model fitting for the relationship between the number of C-bursts 
( N

C
 ) and the number of message-based E-bursts ( N

E
 ) (left) and conversation-based E-bursts (right). 

Every data point represents one developer pair. Model fitting was applied only to developer pairs having, 
at least, one C-burst and, at least, one E-burst (data points above and right respectively of the red hori-
zontal and vertical lines respectively) (Color figure online)
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Table 5  Overview of the results regarding H2 and its sub-hypothesis. ✓ denotes that we accept a (sub-)
hypothesis, ✗ the denotes that we reject a (sub-)hypothesis

H2.1 (lower bound) H2.1 (upper bound)

Messages ✓ ✗
Conversations ✓ ✓

H2+H2.1 (lower bound) H2+H2.1 (upper bound)

Messages vs. conversations ✗ ✓
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results for these subject projects. Therefore, we accept H2.1 for conversation-
based E-bursts , as it holds for both the upper-bound and the lower-bound approach 

of QEMU. However, we reject H2.1 for message-based E-bursts , as we get a sig-
nificant linear model only for the lower-bound approach.

Table 6  Overview of the results regarding H3 and its sub-hypothesis. ✓ denotes that we accept a (sub-)
hypothesis, ✗ the denotes that we reject a (sub-)hypothesis

H3.1 (lower-bound) H3.1 (upper-bound)

✓ (see Table 16, appendix) ✓ (see Table 15, appendix)

H3+H3.1 (lower-bound) H3+H3.1 (upper-bound)

Files vs. features inconclusive inconclusive
Messages versus conversations ✗ inconclusive

Eventually, comparing the results for message-based and conversation-based 
E-bursts shows that conversation-based E-bursts have a better linear relation-
ship to the number of C-bursts than message-based E-bursts for most of the 
cases when we use the upper-bound approach (see adjusted R-square values in 
Fig. 9). Nevertheless, when we use the lower-bound approach, it is the other way 
round (see adjusted R-square values in Fig. 10). So, overall, we are inconclusive
regarding H2  (see Table 5).

5.3  C‑bursts and E‑bursts

Finally, we search for temporal correlation between C-bursts and E-bursts by com-
puting the DTW distances of the C-curves and E-curves of each developer pair.

First of all, we investigate whether the temporal correlation of the empirical 
C-bursts and E-bursts is different from the correlation in the null model. In Table 15 
in the appendix, we state the results of using the upper-bound approach. For QEMU, 
message-based E-bursts have significantly smaller DTW distances to C-bursts for all 
abstraction levels (files, features) and time windows than in the null model. For con-
versation-based E-bursts, we also obtain significantly smaller DTW distances to the 
C-bursts than in the null model. Similar results hold for BUsyBox: Here, we have sig-
nificantly smaller DTW distances for the empirical bursts than for the null model for 
all abstraction levels, except for message-based E-bursts and feature-based C-bursts 
with � = 5 , � = 10 , or � = 15 . Also for opEnssL we obtain similar findings: There are 
significantly smaller DTW distances for the empirical bursts than for the null model 
for all abstraction levels, except for feature-based C-bursts and conversation-based 
E-bursts with � = 1 or � = 5 and file-based C-bursts and conversation-based E-bursts 
with � = 1 . When we use the lower-bound approach instead, the empirical DTW dis-
tances are smaller than the simulated ones in all cases of QEMU and BUsyBox (see 
Table 16 in the appendix). For opEnssL, this holds only for message-based C-bursts 
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and file-based E-bursts with � = 15 . The reason for that is that there are too few data 
points: When using the lower-bound approach, we often have zero E-bursts per devel-
oper pair, resulting in empty DTW curves. Hence, for opEnssL, we cannot state any 
results regarding H3. When we neglect the cases where we have insufficient data, the 
empirical DTW distances are (with few exceptions) shorter for empirical bursts than 
for the null model, for both the upper-bound and the lower-bound approach. There-
fore, we accept H3.1 for all abstraction levels .

After comparing the empirical DTW distances with our null models, we now com-
pare the outcomes of the different abstraction levels of the empirical data with each 
other. We provide a general overview of the corresponding results for the comparison 
of files and features in Table 17 in the appendix and the corresponding results for the 
comparison of messages and conversations in Table 18 in the appendix.

When we compare feature-based C-bursts and file-based C-bursts, we can see 
that using feature-based C-bursts leads to significantly lower DTW distances than 
using file-based C-bursts only if we analyze QEMU with message-based E-mails 
(see Table 17 in the appendix). For all the other cases and subject projects, this is 
not the case. Note that these results are almost identical for the upper-bound and the 
lower-bound approach.

For the comparison of message-based E-bursts and conversation-based E-bursts 
we obtain a complex picture (see Table 18 in the appendix). When analyzing QEMU 
with the upper-bound approach, using conversation-based E-bursts leads to signifi-
cantly lower DTW distances than using message-based E-bursts, independent from � 
and independent from whether using file-based of feature-based C-bursts. However, 
when using the lower-bound approach, this does not hold at all. Also for BUsyBox, 
no matter which approach and which kind of C-bursts are used, this does not hold 
(except for the file-based C-bursts with � = 5 in the upper-bound approach). As we 
have seen for H3.1, there are too few data points to state valid results for opEnssL.

Since feature-based C-bursts have only in some cases significantly lower 
DTW distances with the E-bursts than file-based ones, and conversation-based 
E-bursts do not have significantly lower DTW distances with the C-bursts 
than message-based ones (except for QEMU with the upper-bound approach), 
we have inconclusive results regarding H3  (see Table 6).

6  What is discussed within E‑bursts?

In Sect.  5, we presented the results of our quantitative analysis of the relation of 
C-bursts and E-bursts. The weakness of our quantitative analysis is that it does not 
capture whether there is actual coordination of source-code changes in temporally 
close-by discussions on the developer mailing list. To alleviate this threat to validity, 
we conducted a qualitative analysis to investigate whether our notion of coordination 
is reliable. We performed this qualitative analysis only for E-bursts identified via our 
upper-bound approach, but not for E-bursts identified via our lower-bound approach. 
The reason is that, in the lower-bound approach, for each developer pair, we filter the 
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e-mails already by comparing the commit messages of temporally close-by C-bursts 
with the e-mail subjects. Hence, in the lower-bound approach, we only get E-bursts 
which are content-wise related to the C-bursts of the developer pair. As we cannot 
assume anything regarding the relation of C-bursts and E-bursts for the upper-bound 
approach, we perform this qualitative analysis to find out to which extent temporally 
close-by C-bursts and E-bursts are indeed content-wise related.

In a first step, we manually checked for all developer pairs with, at least, five C-bursts 
and five E-bursts whether the content of e-mails of an E-burst is related to the commits 
of the temporally close-by C-bursts. As this is a very time-consuming manual task, we 
only performed this for conversation-based E-bursts and only for � = 15 . So, we manu-
ally looked at 56 E-bursts of BUsyBox, 49 E-bursts of opEnssL, and 766 E-bursts of 
QEMU. In BUsyBox, 29% of these E-bursts are content-wise related to a C-burst of 
the same developer pair; in opEnssL we found that 41% of the E-bursts are related to 
a C-burst, and in QEMU this holds even for 47%. Throughout our manual analysis, we 
identified different kinds of how C-bursts and E-bursts are related: In most cases, the 
e-mail subject is related to the commit message or the e-mail content even contains 
parts of the commit message or the patch itself. Also, certain key words are often used 
in commit messages or code patches that are also used in the content or subject of an 
e-mail. In addition to that, we also were able to match C-bursts and E-bursts by inspect-
ing the file names of the changed files and searching for them in the e-mail subject or 
content. However, in cases where we decided that all the e-mails of an E-burst are not 
related to C-bursts of the same developer pair, we had a closer a look at the content of 
these E-bursts to find out what these conversations are about. It turned out that these 
conversations are mostly about future plans of the software project or organizational 
matters (e.g., coding conventions, contribution guides, workflows, or future releases). 
However, there are also lots of discussions regarding bugs or problems identified by 
users (even though we analyzed only developer mailing lists). This is also supported 
by the results of previous research: Guzzi et al. (2013)) analyzed the communication 
in mailing lists of OSS projects and found that only about 35% of the discussions are 

Table 7  The results of our qualitative analysis using our mention rate, that is, the percentage of C-bursts 
whose artifacts (file names and feature names respectively) are mentioned in a temporally close-by 
E-burst of the same developer pair

� QEMU BUsyBox opEnssL

Messages 
(%)

Convers.  
(%)

Messages  
(%)

Convers. 
(%)

Messages 
(%)

Convers. 
(%)

Files 1 34 9 10 5 1 0
5 50 13 15 8 4 1
10 55 15 19 10 6 1
15 59 17 24 12 9 2

Features 1 41 8 14 12 0 0
5 62 12 24 15 2 0
10 69 14 30 21 4 0
15 72 16 33 24 6 1
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related to actual source-code changes. Nevertheless, in our study, up to one half of all 
the E-bursts are directly related to co-edits, which justifies our assumption that the 
developer mailing lists are used to coordinate source-code changes.

In a second step, we used an automatic approach to determine whether C-bursts 
and E-bursts are content-wise related. We calculated a mention rate for file names 
and feature names in E-bursts. That is, we determine the percentage of C-bursts 
whose artifacts (at least, one) are mentioned in temporally close-by E-bursts. In 
Table 7 we present the results of this analysis. As we can clearly see, the results dif-
fer between subject projects and abstraction levels. The mention rates are higher for 
message-based E-bursts than for conversation-based E-bursts. This is not surpris-
ing as the message-based E-bursts contain also single e-mails that are not related to 
other e-mails and, therefore, the chance for a file or feature of a C-burst to be men-
tioned is higher than for conversation-based ones, due to the potentially higher num-
ber of e-mails that are contained in E-bursts. Mention rates for file-based C-bursts 
are higher than for feature-based C-bursts as file names are used more often due 
to technical reasons (source code is organized in files). Overall, we can see that 
the mention rate ranges from 0 to 72%, which indicates that temporally close-by 
C-bursts and E-bursts are related in many cases. However, the exact file names or 
exact feature names need not be mentioned when coordinating software changes. 
Sometimes, developers may paraphrase which feature or file they are talking about 
without directly stating the name of the file or feature. Hence, our mention rate only 
covers a (possible small) part of the actual relation of C-bursts and E-bursts.

In a third step, we evaluated whether the e-mail filtering of our lower-bound 
approach is reasonable. So, we automatically checked for each commit of a C-burst 
whether there is, at least, one e-mail in the E-bursts of the same developer pair 
whose subject is equal to the beginning of the commit message. (Notice that we 
removed auto-generated prefixes of the e-mail subjects that match standard patterns 
like Re: or Fwd: or [PATCH] and alike before performing this analysis). We present 
the results of this check in Table 8: For QEMU, almost all commits of a C-burst are 

Table 8  The results of determining the percentage of commits of C-bursts whose commit messages map 
with the subject of, at least, one e-mail of an E-burst of the same developer pair

� QEMU BUsyBox opEnssL

Messages 
(%)

Convers. 
(%)

Messages 
(%)

Convers. 
(%)

Messages 
(%)

Convers. 
(%)

Files 1 86 31 0 0 0 0
5 97 43 2 2 0 0
10 98 44 28 23 2 0
15 98 45 24 21 5 0

Features 1 84 21 0 0 0 0
5 95 32 0 0 0 0
10 97 36 6 3 2 0
15 98 41 8 4 4 0
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related to, at least, one e-mail of an E-burst of the same developer pair, using mes-
sage-based e-mails. When only investigating e-mails belonging to the same thread, 
as in conversation-based E-bursts, the percentage of commits of C-bursts whose 
commit messages match the subject of, at least, one e-mail of an E-burst is much 
lower. This might be the case because we neglect single e-mails not belonging to 
a thread: Some of the automatically generated e-mails, whose subjects match com-
mit messages, just contain the patch, whereas the discussion of this patch can take 
place in an e-mail thread different from the patch. So, the corresponding thread for 
the discussion of the patch can have a slightly different subject, which cannot be 
matched in this analysis. For BUsyBox and opEnssL it is only rarely the case that 
commit messages and e-mail subjects can be mapped to each other, as those do not 
have such a strict commit policy to send patches to the mailing list as QEMU. As a 
consequence, our lower-bound approach (in which we also map commit messages 
with e-mail subjects) seems to be a reasonable filtering of the e-mails before E-burst 
identification, at least, for the subject project QEMU.

7  Discussion

7.1  C‑bursts (H1)

Our study confirms that, for all abstraction levels and time windows, synchronous 
development is not a purely random process where developers’ activities are statisti-
cally independent. Knowing that our operationalization of synchronous development 
does not occur purely by chance, we analyze the synchronicity degree of the identi-
fied C-bursts, which is also higher than for randomly generated C-bursts. Altogether, 
our results show that considering the concept of synchronous development in OSS 
projects is well-founded. This is in line with the original study.

Code growth in synchronous development is, in most cases, lower than in non-
synchronous development. This is contrary to the outcomes of the original study. 
The reason for this is that, in synchronous development, not only the number of 
added lines is higher, but also the number of deleted lines. H1.3 ignores that high 
coding activity in synchronous development does not necessarily incur high code 
growth. This also affects code effort, which is, in most cases, higher in synchro-
nous commits than in non-synchronous commits. This is in contrast to H1.4 and, 
therefore, also in contrast to the results of the original study. As code additions and 
deletions are both higher in synchronous commits, we conclude that, in synchronous 
development, more lines are changed than in non-synchronous development. Hence, 
due to higher coding activity in terms of LOC, analyzing synchronous development 
is useful for understanding developer collaboration.

Finally, there are differences between abstraction levels. First, the number of 
feature-based C-bursts per developer pair is significantly higher than the number of 
file-based C-bursts per developer pair, which supports our reasoning that collabora-
tion on features is more common than on files. Feature-based collaboration is not 
only more common, but also has higher synchronicity degrees. These results suggest 
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that developer collaboration rather takes place at the level of features, which seem 
to represent the developers’ mental model of the software system more appropri-
ately. Consequently, further studies on the collaboration of developers should pursue 
a more higher-level view.

7.2  E‑bursts (H2)

According to our results, the number of C-bursts and the number of E-bursts per 
developer pair correlate only weakly. We use the goodness of the linear fit to assess 
whether message-based or conversation-based E-bursts lead to identifying a stronger 
statistical dependence between the amount of collaboration and the amount of com-
munication. Contrary to the original study (which only considered message-based 
E-bursts of the upper-bound approach), the goodness of the linear fit is lower in our 
analysis, but when we use conversation-based E-bursts, we get a similar linear fit as 
the original study reported for message-based E-bursts. The difference between our 
message-based results and the message-based results of the original study may be 
due to different sizes of the projects in terms of developers and in terms of e-mails, 
as our largest subject projects has 951 developers and 374,815 e-mails, whereas the 
largest subject project of the original study had 72 developers and 11,865 e-mails. 
As there is huge difference in the size of the projects, there may be also differences 
in the organizational structure of the projects, resulting in different numbers of 
E-bursts. In the following, we compare message-based and conversation-based com-
munication. We discuss our outcomes regarding H2 here only based on the results 
of QEMU, as we cannot draw reliable conclusions from BUsyBox and opEnssL. See 
Sect. 8 for the discussion of the corresponding threats to validity.

When we look at message-based E-bursts arising from the upper-bound approach, 
where we keep all e-mails for E-burst identification, we see that the number of resulting 
E-bursts is too high, as the goodness of fit of the linear model is rather weak. Keep-
ing the upper-bound approach but identifying E-bursts only among e-mails which are 
content-wise related (conversation-based), we get a lower number of E-bursts, resulting 
in a better goodness of fit with the number of C-bursts than for message-based E-bursts.

When using the lower-bound approach, we recognize the opposite behavior: 
Conversation-based E-bursts lead to a lower goodness of fit than message-based 
E-bursts. An explanation might be that, in the lower-bound approach, we filter the 
e-mails before E-burst identification by checking whether their subject is part of the 
beginning of a commit message of a C-burst of the same developer pair. Due to this 
filtering, we already narrowed down the number of E-bursts to keep only those for 
which we are sure that they are related to a C-burst. When we then construct con-
versation-based E-bursts, the number of E-bursts is narrowed down again as e-mails 
need to belong to the same thread to form an E-burst. Hence, the number of E-bursts 
may be too small in the end.

As a lesson learned, only focusing on conversations of e-mails, of which we can 
be sure that they are related to C-bursts, is a too severe restriction of the view of 
coordination. The actual truth with respect to the identification of E-bursts is some-
where in-between our lower-bound and upper-bound approach.
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When looking at the goodness of fit in general, the linear model fitted on con-
versation-based E-bursts in the upper-bound approach describes only less than 
40% of the variance, the linear model fitted on the message-based E-bursts in the 
lower-bound approach describes around 75%. Such low percentages are not unex-
pected since developers may often send e-mails to the mailing list without contribut-
ing to the source code at temporally close time. For instance, they can comment on 
other issues or discuss topics independent from the source code (Guzzi et al. 2013). 
Furthermore, multiple C-bursts may be discussed in one E-burst, whereas several 
E-bursts can address one single C-burst. That is, the number of C-bursts does not 
necessarily need to correlate with the number of E-bursts, as bursts can last differ-
ently long and discussions on inter-related topics among co-edits are possible. For 
the lower-bound approach, in particular, we can draw two subsequent conclusions 
from that: (1) Coordination of co-edits may not always happen within the same 
e-mail thread, as using thread information leads to a lower correlation with the num-
ber of C-bursts, and (2) coordination may not only take place via e-mails that are 
related to specific commits indicated by the e-mail subject and the commit message, 
as considering only commit-related e-mails is a strong restriction, which drastically 
reduces the number of E-bursts compared to the upper-bound approach.

7.3  C‑bursts and E‑bursts (H3)

Even though we found that features are a suitable abstraction (H1) and that a more 
nuanced view on e-mail communication (a message-based view for the lower-bound 
approach and a conversation-based view for the upper-bound approach) is valuable 
(H2), we often cannot find significant differences between the DTW distances on 
different abstraction levels (although the empirical DTW distances are significantly 
smaller than for the corresponding null models, which is in line with the results of 
the original study, where the authors used correlation coefficients instead of DTW 
distances).

When we compare file-based coordination with feature-based coordination, we 
can see that there is mostly no significant difference. When using message-based 
E-bursts in QEMU, feature-based C-bursts have smaller DTW distances to the 
E-bursts than file-based ones. This shows us that message-based communication in 
QEMU is more related to coordinating feature-based collaboration than to coordi-
nating file-based collaboration. As this does not hold for conversation-based com-
munication and also not for other projects, we cannot generally assume that feature-
based coordination reveals a stronger statistical dependence between developers’ 
pairwise technical activities and their social activities than file-based coordination.

Also the comparison of message-based and conversation-based abstraction does 
not show significant differences, at least, when using our lower-bound approach. 
That is, in this case, a lot more C-bursts than E-bursts occur per developer pair, so 
the number of matched C-bursts and E-bursts is comparably small. Even if there 
are more message-based E-bursts than conversation-based ones, in the end, the dif-
ferentiation here does not matter, since, in both cases, many C-bursts do not have a 
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corresponding E-burst. For the upper-bound approach, in most cases, conversation-
based E-bursts lead to identifying a stronger statistical dependence between collabo-
ration and communication than message-based E-bursts. Thus, if there are enough 
communication data, a more nuanced view on the communication of developers 
describes coordination among developers more precisely than simply looking at sin-
gle messages.

Nevertheless, the correlation between C-bursts and E-bursts is for both the upper-
bound and the lower-bound approach higher than in the null model. This demon-
strates a significant statistical dependence between collaboration and communica-
tion, which implies that developer coordination is actually taking place, but depends 
on many variables.

7.4  Research questions (RQ1 and RQ2) and perspectives

In RQ1, we asked for the abstraction level of source code which captures collabora-
tion of developers best in terms of a stronger statistical dependence between tech-
nical activities of developers. As discussed in Sect.  7.1, collaboration takes place 
mostly and most synchronously at the level of features. This is intelligible given the 
characteristic, user-visible dimension of features. So, a higher-level view on devel-
oper collaboration should be pursued in further work.

In RQ2, we looked for the best abstraction level of developer coordination in 
terms of a stronger statistical dependence between the technical activities and the 
social activities on the mailing list. Our results suggest that lifting the study of devel-
oper coordination to a conversation-based model is worthwhile and sometimes even 
required. However, for temporal alignment of coding and communication, many dif-
ferent aspects matter, which shall be explored in further studies.

To summarize, the correlation of collaboration and communication activities of 
developers depends on many variables. We did not observe any universal devel-
oper behavior when comparing the coordination using feature-based and file-based 
C-bursts, nor when comparing the coordination using message-based and conversa-
tion-based E-bursts. We noticed that, to some extent, the relationship between col-
laboration and communication is project dependent, which needs to be taken into 
account to refine the general measurement method toward a specific setting.

As the null model essentially captures the case in which developers’ technical 
activities and social activities are performed independently at random and, since 
we see a departure from the null model in our empirical data, there is a stochas-
tic dependence between developers’ technical activities and their social activities. 
This is in line with the outcomes of the original study and indicates some extent of 
alignment in terms of time and structure between the technical realm and the social 
realm, which is sometimes referred to as socio-technical congruence. Our approach 
relies on a more dynamic interpretation of socio-technical congruence than in most 
previous work: We use dynamic time warping to identify the alignment of technical 
and social activities, whereas previous work adequately ignored the dynamic nature 
of the phenomenon and searched for an alignment within static time windows, as, 
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for instance, in the work of Joblin et al. (2017b)) (see Sect. 9 for more details on 
that).

The stochastic dependence between collaboration and coordination that we have 
identified has practical value because it helps to reduce the uncertainty when mak-
ing predictions. For example, if we know that a pair of developers was involved in a 
huge number of C-bursts and we know that C-bursts and E-bursts are dependent, we 
may build a model that predicts for their joint technical activity the need for coor-
dinating their work. In addition, we could think about exploiting the relationship 
between two developers represented by a C-burst to predict which files or features 
a developer is likely to work on next by considering past C-bursts. We could also 
search for missing dependences between collaboration and coordination and inves-
tigate how the quality of the development process and the developed artifacts are 
affected. For instance, one could check whether there are more bugs and other issues 
on a specific artifact if there is no E-burst related to a C-burst on the considered arti-
fact, to get an even more detailed view on how software development is influenced 
by coordinating activities. Finally, as we have identified stronger statistical depend-
ences when using higher-level views on the abstraction levels of collaboration (i.e., 
features) and coordination (i.e., a more content-related view), it is more feasible to 
execute the described ideas using these abstraction levels.

8  Threats to validity

8.1  Internal validity

The results of our study rely on the performance and correctness of CodEfaCE as we 
extract all the commit and e-mail data using this tool. For the extraction of feature 
code, CodEfaCE relies in turn on Cppstats, which has already been used to extract 
feature code in other empirical studies (Liebig et al. 2010; Hunsen et al. 2016, 2020; 
Berger and Guo 2013; Fenske et  al. 2005; Schulze and Fenske 2018; Feigenspan 
et  al. 2013; Medeiros et  al. 2015). Even if preprocessor annotations are not used 
the same way in different projects, preprocessor annotations are a well-established 
means to denote feature-specific code.

In our study, we do not consider changes to header files, documentation files, and 
build files. This affects our results only barely, though, as the number of changes 
of build files or documentation files is comparably low. In addition, in non-imple-
mentation files, mostly, there is no variability implemented. Thus, considering non-
implementation files would cause an imbalance among the abstraction levels.

As the studied projects predate the existence of the version-control system Git, 
the commits in the Git history at the beginning of the analyzed time range of all 
three subject projects had originally been imported from the previously used ver-
sion-control system sVn, which had a slightly different operationalization of com-
mits. However, to the best of our knowledge, this does not threaten our notion of 
C-bursts, as the import of sVn commits into Git did preserve authoring timestamp, 
author, and code changes.
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The validity of our results could potentially be threatened by the occurrence of 
bots that automatically send e-mails to the mailing list (e.g., when a commit is added 
to the VCS). This could lead to identifying E-bursts between bots and developers, 
which could be mitigated by detecting and filtering bots’ e-mails (e.g., based on spe-
cific e-mail patterns used by the respective bot). However, this is not relevant in our 
study as the subject projects we analyzed, to the best of our knowledge, do not use 
such bots, which we have checked on a sample basis using the information from both 
the projects’ Web sites and e-mail headers of the e-mails sent to the mailing lists.

For both commit and e-mail time series, we generated 100 simulated time series 
each per project. Due to the sheer size and complexity (that is, generating an indi-
vidual simulation of the e-mail time series separately for each developer pair), we 
were not able to achieve this for the e-mail time series of QEMU (which has 451,725 
developer pairs). While this threatens the validity of the results of H3.1, all other 
results confirm that the involved processes are significantly different from the null 
model and thus not purely random.

We introduce synchronicity degree and DTW distances describing the tempo-
ral correlation between C-curves and E-curves. For the synchronicity degree, we 
designed a metric that reasonably considers the size of commits. For the DTW dis-
tances, we rely on the fact that the technique of DTW is well-established and can 
be properly restricted regarding the distance measurement (i.e., the Sakoe–Chiba 
band (Sakoe and Chiba 1978)).

The sparseness of the data threatens the validity of our study: The number of 
developer pairs having, at least, one C-burst and, at least, one E-burst is low 
( ∼  0.2%), although, this is expected since not all developers actually collaborate. 
This is also the reason why we also consider developer pairs that have no bursts in 
our C-burst-related analysis.

BUsyBox and opEnssL have only few developer pairs involved in, at least, one 
C-burst and one E-burst. So, we cannot draw reliable conclusions from these pro-
jects regarding the relationship between the number of C-bursts and the number of 
E-bursts. Nonetheless, as the number of E-bursts is narrowed down to zero with the 
lower-bound approach in some cases of opEnssL, we should take a closer look at 
the different code-contribution practices of the different projects: Whereas there is a 
policy in QEMU12 to send patches to the mailing list and discuss them there, other 
projects, such as opEnssL, do not have such a strict code-contribution policy. As 
a consequence, on the QEMU mailing list, there are lots of e-mails that contain a 
patch and therefore, automatically, contain the title of the corresponding commit 
message in their e-mail subjects, whereas in other projects like opEnssL this is not 
the case that often. Hence, our lower-bound approach is limited to the strictness of 
the patch-contribution policy of the respective subject project.

We rely on mailing lists as the only communication channel, although develop-
ers may happen to use further channels (e.g., personal e-mails or verbal communi-
cation) (Storey et al. 2017). We mitigate this threat by selecting only projects that 

12 https:// wiki. qemu. org/ Contr ibute/ Submi tAPat ch/ (accessed: 2019-02-12).

https://wiki.qemu.org/Contribute/SubmitAPatch/
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have a historically rich and well-established mailing list for discussing software 
architecture and reviewing code changes and also subject projects which have man-
dates regarding patch submission to the mailing list prior to being accepted (Rigby 
et al. 2008; Sommerville 2010; Ramsauer et al. 2019; Draheim and Pekacki 2003). 
In addition, more recently introduced social-coding platforms (e.g., GitHUB) are 
too young for history analysis, whereas the mailing lists of our subject projects date 
back more than 10 years (see Table 2).

Finally, we did not perform a linguistic analysis of the e-mail data. Hence, the 
communication on the mailing list may partly concern other issues than coordinat-
ing source-code changes. We alleviate this by considering only e-mails of develop-
ers who also contributed to the source code of the corresponding project. Moreover, 
we performed a qualitative analysis to check whether there is a content-wise correla-
tion between temporally close-by C-bursts and E-bursts (see Sect. 6).

8.2  External validity

We have analyzed three different OSS projects, which differ in size, commit poli-
cies, and application domain. Due to the high computation time and huge memory 
consumption of our approach, we cannot analyze more than these three subject pro-
jects within a reasonable amount of time and memory. While one cannot generalize 
our findings arbitrarily—as always in such a study—we have substantial data for 
three large, highly active, and widely deployed OSS projects, which gives us rele-
vant insights into the behavior of collaboration and coordination at different abstrac-
tions levels.

The restriction to preprocessor annotations as means for locating feature-specific 
code may threaten external validity, as they are mostly specific to C. Preprocessor 
annotations are well-established in OSS to implement features (e.g., Ernst et  al. 
2002; Liebig et al. 2010; Apel et al. 2013; Hunsen et al. 2016, 2020), but the find-
ings may vary in detail for other feature implementation techniques, though not the 
big picture.

9  Related work

Beside the study of Xuan and Filkov (2014), which we reproduce and extend, there 
has been various research on the relationship between development and communica-
tion between developers. Herbsleb and Grinter (1999) conducted a study on coor-
dination in geographically distributed software projects. They found that ad-hoc 
communication between developers is one of the most important parts of today’s 
well-working software development. Related studies (Cataldo and Herbsleb 2013; 
Herbsleb and Mockus 2003; Mockus et  al. 2002; Crowston and Howison 2005; 
de Souza et al. 2005) showed that coordination in software projects affects software 
quality and that considering social aspects, such as communication of developers, 
is essential for understanding OSS projects. We extend on these by considering the 
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temporal and content-wise dependency between communication and technical activ-
ities from a higher-level perspective.

The authors of the original study enhanced their work by identifying patterns on 
the time series of working activity in terms of source-code commits and communi-
cation activity in terms of replying to e-mails on the mailing list for developer pairs, 
which indicate that collaboration on source-code artifacts and coordinating events 
on the mailing list are temporally related (Xuan et al. 2016).

Gharehyazie and Filkov (2017) extended the original study by not investigat-
ing pairs of developers but groups of developers working on the same source-code 
artifacts temporally close-by. In their work, they analyzed whether the size of such 
groups is purely random and how often developers work in groups rather than work-
ing alone. Contrary to our work, they chose an even more coarse-grained level of 
abstraction and analyzed source-code changes on package level. Similarly to our 
qualitative analysis, they manually checked for coordination of a developer group 
by searching for file names of temporally close-by edited files within e-mails of the 
developer group, resulting in finding actual coordination on the mailing list. In addi-
tion, they performed developer surveys which confirmed their results, which is also in 
line with the hypotheses of our study. They also analyzed if the code growth is higher 
and the corresponding effort is lower for developers working in groups than solely. In 
line with our results, they only identified rare projects where this hypothesis holds.

In previous work, researchers used network approaches to describe the collabora-
tion and coordination of developers: López-Fernández et al. (2006) constructed net-
works representing mutual contributions of developers to the same software module, 
that is, to files contained in the same directory. Jermakovics et al. (2011) built net-
works based on co-editing files, and Toral et al. (2010) analyzed social communi-
ties on e-mail networks that arose from software development. Joblin et al. (2015) 
constructed developer networks based on co-commits on source-code artifacts, espe-
cially at the more fine-grained level of functions, and used network analysis tech-
niques to gain more information on collaboration. In contrast to our work, none of 
these analyzed features, and they also neglected temporal aspects.

Joblin et  al. (2017b) analyzed structural and evolutionary trends of developer 
coordination using an evolutionary network approach, though synchronicity between 
collaboration at the code level and communication via e-mail was not in their focus, 
nor the characteristic, user-visible level of features.

Bacchelli et  al. (2010) analyzed the e-mail communication of OSS projects, 
determined the much discussed source-code artifacts, and investigated the defect-
proneness of those artifacts. Bird et  al. (2006, 2008) investigated whether coding 
activities on files are related to communication on the mailing list by focusing on 
collaboration within sub-communities and analyzing e-mail social networks. In our 
study, we measure the synchronicity of co-edits and directly compare synchronous 
development on files or features to e-mail communication using state-of-the-art 
time-series analysis.

Jiang et  al. (2014) linked commits to certain e-mails on the mailing list by com-
paring commits to previously submitted patches on the mailing list. Also, Ramsauer 
et al. (2019) use a similar approach. Compared to our study, they explicitly trace back 
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commits (that is, changed source-code lines) to e-mails that contain these changed 
source-code lines as part of a patch, whereas we are interested in all kinds of e-mails 
that are in some way related to certain code changes, not necessarily containing patches 
changing exactly the lines which are changed in a commit. Coordination of certain 
changes may cover more discussions and high-level design decisions than just submit-
ting or discussing patches. Ali et al. (2013) mined software repositories to build trace-
ability links between source code and textual requirements documents using advanced 
information-retrieval techniques. As we look for relationships between code changes 
and communication among developers, we also link textual documents (sets of e-mails) 
to source-code changes, but as we are more interested in the coordination activities than 
the concrete content, we do not use advanced information-retrieval techniques.

10  Conclusion

The success of software projects, in particular, large-scale, globally distributed 
projects, relies essentially on the coordination of co-edits to the source code, as 
previous work has shown  (Crowston and Howison 2005; Cataldo and Herbsleb 
2013; Kwan et al. 2011). Co-editing source code is a common way of perform-
ing bug fixes, refactorings, enhancements, and adding new features concur-
rently  (Singh 2010). We investigated the relationship between co-editing activ-
ities and communication on the mailing list for three highly active and widely 
deployed OSS projects using different abstraction levels.

In a nutshell, we demonstrated that a more abstract, higher-level view on source 
code (features) captures the notion of developer collaboration and synchronicity 
of co-edits more precisely than a less abstract, technical view (files). Furthermore, 
we found that a more nuanced view of communication substantially increases the 
correlation between co-editing and coordinating e-mail activities compared to a 
simple message-based view, which is reasonable since coordination of developers 
comprises collections of conceptually related e-mails. We did not observe a general 
picture regarding the temporal correlation between co-editing code and e-mail com-
munication, though, which depends to a good extent on the project setting at hand.

Overall, we found evidence that a more abstract and higher-level perspective 
captures the developers’ collaboration and coordination activities more accurately 
than a sole technical perspective. This is not unexpected because developers typi-
cally think in terms of features and topics when building mental models of soft-
ware rather than in terms of technical artifacts or individual text messages. Fur-
ther studies in this area should take this perspective into account.
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Appendix

Dynamic time warping and Sakoe–Chiba band

Dynamic Time Warping (DTW) tries to align two time series of equal length with each 
other by traversing a matrix D beginning in D(0, 0) and ending in D(n, n), where 0 and 
n are the earliest and latest time of the two time series. Using dynamic programming and 
calculating cumulative sums of distances on the path, DTW explores the whole matrix 
space to find the path of the shortest distance (Rabiner and Juang 1993; Berndt and Clif-
ford 1994; Keogh and Pazzani 2001). The Sakoe–Chiba band only allows exploring cells 
in the matrix at which the absolute distance of the compared data is less than or equal to 
the chosen band-window size. So, only data points of the two time series get matched that 
have an absolute distance less than or equal to the chosen band-window size (Sakoe and 
Chiba 1978). In our study, this prohibits that a C-burst and an E-burst that occur tempo-
rally extremely distant to each other get matched by the DTW algorithm. (How we use 
DTW is described in Sect. 3.6.)
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Algorithms

Algorithm 4 Generation of simulated C-bursts
Input: list of commits c (annotated with timestamps and developer names)
1: � generate simulated commit time-series
2: csim ← ∅
3: for each developer D do
4: cD ← commits in c authored by D
5: t(D) ← sorted list of timestamps of cD
6:
7: � create an ordered list intervals to store the lengths
8: � of intervals between two subsequent commits of D
9: for i in 2 : length(t(D)) do
10: interval ← t(D)i − t(D)i−1
11: intervalsi ← interval
12: end for
13:
14: � randomize the order of the intervals, but keep the same distribution
15: randomizedIntervals ← shuffle the elements in intervals
16:
17: � generate simulated list of timestamps s(D)
18: s(D)1 ← t(D)1
19: for i in 2 : length(t(D)) do
20: s(D)i ← s(D)i−1 + randomizedIntervalsi−1
21: end for
22: cD,sim ← update the timestamps in the list of commits cD according to s(D)
23: csim ← csim ∪ cD,sim

24: end for
25:
26: � extract simulated C-bursts
27: apply Algorithm 1 to the simulated commit list csim
Output: simulated C-bursts for each pair of developers
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Algorithm 5 Generation of simulated E-bursts
Input: list of e-mails e (annotated with timestamps and developer names)
1: � generate a simulated e-mail time-series for each pair of developers
2: for each pair of developers {A,B} do
3: e{A,B} ← e-mails in e sent by A or B
4: t(A,B) ← sorted list of timestamps of e{A,B}
5:
6: � create an ordered list intervals to store the lengths
7: � of intervals between two subsequent e-mails sent by A or B
8: for i in 2 : length(t(A,B)) do
9: interval ← t(A,B)i − t(A,B)i−1
10: intervalsi ← interval
11: end for
12:
13: � randomize the order of the intervals, but keep the same distribution
14: randomizedIntervals ← shuffle the elements in intervals
15:
16: � generate simulated list of timestamps s(A,B)
17: s(A,B)1 ← t(A,B)1
18: for i in 2 : length(t(A,B)) do
19: s(A,B)i ← s(A,B)i−1 + randomizedIntervalsi−1
20: end for
21: e{A,B},sim ← update the timestamps in the list of e-mails e{A,B} using s(A,B)
22:
23: � extract simulated E-bursts
24: apply E-burst extraction to pair {A,B} using e{A,B},sim, as described in Section 2.2
25: end for
Output: simulated E-bursts for each pair of developers

Result tables

Here, we only present some selected result tables for our largest subject project 
QEMU (Tables  9, 10, 11, 12, 13, 14, 15, 16, 17, 18). For all data and results, 
we refer the reader to our supplementary Web site: https:// se- sic. github. io/ paper- 
coord inati on- bursts/.

https://se-sic.github.io/paper-coordination-bursts/
https://se-sic.github.io/paper-coordination-bursts/
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Table 9  Paired, one-tailed Wilcoxon signed-rank test for comparing empirical simulated numbers of 
C-bursts per developer pair (H1.1). (We use the median of all simulations to get one value per developer 
here.)

s denotes the standard deviation. V  represents the V-statistic of the Wilcoxon signed-rank test, the cor-
responding p-value indicates whether the alternative hypothesis H1.1 is accepted ( p < 0.05 ) or not. 
r denotes the effect size corresponding to the paired Wilcoxon signed-rank test

# bursts (mean ± s)

QEMU � Empirical Simulated V p-value r

Files 1 0.005 ± 0.117 0.002 ± 0.079 706,200 < 0.05 − 0.041
5 0.011 ± 0.235 0.007 ± 0.213 2,948,700 < 0.05 − 0.045
10 0.017 ± 0.305 0.012 ± 0.280 5,925,700 < 0.05 − 0.047
15 0.022 ± 0.340 0.015 ± 0.310 8,491,000 < 0.05 − 0.048

Features 1 0.008 ± 0.163 0.004 ± 0.136 257,870 < 0.05 − 0.040
5 0.023 ± 0.296 0.016 ± 0.302 1,908,400 < 0.05 − 0.038
10 0.036 ± 0.343 0.026 ± 0.352 4,973,200 < 0.05 − 0.036
15 0.044 ± 0.373 0.035 ± 0.377 8,208,900 < 0.05 − 0.032

Table 10  One-tailed Mann-Whitney U test for comparing synchronicity degrees (H1.2)

s  denotes the standard deviation. U  represents the U-statistic of the Mann-Whitney U test, the corre-
sponding p-value indicates whether the alternative hypothesis H1.2 is accepted ( p < 0.05 ) or not. Cliff’s 
Delta denotes the corresponding effect size

degsync (mean ± s)

QEMU � Empirical Simulated U p-value Cliff’s 
Delta

Files 1 0.466 ± 0.352 0.340 ± 0.306 169,020,000 < 0.05 0.207
5 0.369 ± 0.325 0.296 ± 0.284 1,403,200,000 < 0.05 0.123
10 0.332 ± 0.308 0.270 ± 0.269 3,296,700,000 <0.05 0.110
15 0.307 ± 0.297 0.254 ± 0.260 5,078,600,000 < 0.05 0.097

Features 1 0.642 ± 0.307 0.601 ± 0.311 47,697,000 < 0.05 0.076
5 0.609 ± 0.310 0.584 ± 0.309 418,200,000 < 0.05 0.048
10 0.603 ± 0.307 0.575 ± 0.307 981,100,000 < 0.05 0.054
15 0.590 ± 0.308 0.565 ± 0.307 1,509,200,000 < 0.05 0.047
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Table 11  One-tailed Mann-Whitney U test for comparing code growth �L of synchronous and non-syn-
chronous commits (H1.3)

s  denotes the standard deviation. U  represents the U-statistic of the Mann-Whitney U test, the corre-
sponding p-value indicates whether the alternative hypothesis H1.3 is accepted ( p < 0.05 ) or not. Cliff’s 
Delta denotes the corresponding effect size

�L (mean ± s)

QEMU � Synchronous Non-synchronous U p-value Cliff’s 
Delta

Files 1 42.647 ± 732.059 39.235 ± 263.358 96,963,000 < 0.05 0.059
5 34.986 ± 515.489 42.769 ± 285.679 152,310,000 < 0.05 0.023
10 34.232 ± 448.141 46.100 ± 308.759 158,750,000 0.22 0.005
15 32.979 ± 415.286 51.160 ± 339.906 147,620,000 0.91 − 0.009

Features 1 53.356 ± 310.371 78.065 ± 366.911 6,548,900 1.00 − 0.062
5 47.646 ± 269.631 96.741 ± 422.171 7,994,600 1.00 − 0.104
10 48.250 ± 262.206 108.914 ± 460.593 7,356,300 1.00 − 0.129
15 50.724 ± 267.304 111.965 ± 474.954 6,895,300 1.00 − 0.139

Table 12  One-tailed Mann-Whitney U test for comparing code effort �W of synchronous and non-syn-
chronous commits(H1.4)

s  denotes the standard deviation. U  represents the U-statistic of the Mann-Whitney U test, the corre-
sponding p-value indicates whether the alternative hypothesis H1.4 is accepted ( p < 0.05 ) or not. Cliff’s 
Delta denotes the corresponding effect size

�W (mean ± s)

QEMU � Synchronous Non-synchronous U p-value Cliff’s 
Delta

Files 1 87.903 ± 764.969 74.342 ± 318.517 99,455,000 1.00 0.086
5 78.643 ± 563.798 75.551 ± 326.277 158,850,000 1.00 0.067
10 72.276 ± 493.614 78.330 ± 349.167 166,410,000 1.00 0.053
15 72.550 ± 460.570 83.605 ± 378.551 155,570,000 1.00 0.045

Features 1 118.545 ± 500.311 130.350 ± 438.243 6,727,800 < 0.05 − 0.036
5 109.036 ± 423.502 146.456 ± 486.597 8,453,900 < 0.05 − 0.053
10 107.703 ± 401.941 158.623 ± 529.273 7,941,400 < 0.05 − 0.059
15 109.363 ± 400.097 161.995 ± 546.241 7,518,300 < 0.05 − 0.061
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Table 13  One-tailed Mann-Whitney U tests with FDR correction for comparing file-based and feature-
based C-bursts (H1)

The tests on the left (H1+H1.1) test whether the number of C-bursts per developer pair is higher in the 
feature-based analysis than in the file-based analysis. The tests on the right (H1+H1.2) test whether the 
synchronicity degree is higher in the feature-based analysis than in the file-based analysis. U represents 
the U-statistic of the Mann-Whitney U test, the corresponding p-value indicates whether the correspond-
ing alternative hypothesis is accepted ( p < 0.05 ) or not. Cliff’s Delta denotes the corresponding effect 
size

H1+H1.1 H1+H1.2

(# C-bursts per developer pair) (Synchronicity degree)

QEMU � U p-value Cliff’s Delta U p-value Cliff’s 
Delta

1 25,891,734,214 < 0.05 0.003 681,840 < 0.05 0.298
Features 5 25,746,439,556 < 0.05 0.008 3,949,898 < 0.05 0.426
vs. files 10 25,612,361,104 < 0.05 0.014 8,290,824 < 0.05 0.486

15 25,515,286,716 < 0.05 0.017 12,049,580 < 0.05 0.514

Table 14  One-tailed Mann-Whitney U tests with FDR correction for comparing file-based and feature-
based C-bursts (H1)

The tests on the left (H1+H1.3) test whether the code growth �L in synchronous commits is higher in the 
feature-based analysis than in the file-based analysis. The tests on the right (H1+H1.4) test whether code 
effort �W in synchronous commits is lower in the feature-based analysis than in the file-based analysis. 
U represents the U-statistic of the Mann-Whitney U test, the corresponding p-value indicates whether the 
alternative hypothesis is accepted ( p < 0.05 ) or not. Cliff’s Delta denotes the corresponding effect size

H1+H1.3 H1+H1.4

(Code growth in sync. dev.) (Code effort in sync. dev.)

QEMU � U p-value Cliff’s Delta U p-value Cliff’s 
Delta

1 7,273,482 1.00 − 0.037 7,013,639 1.00 0.000
Features 5 29,462,292 1.00 − 0.009 28,321,505 1.00 0.030
vs. files 10 48,855,197 1.00 0.004 46,651,924 < 0.05 0.049

15 61,288,970 0.30 0.011 58,353,021 1.00 0.058
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Table 15  The results of testing H3.1 for different abstraction levels using the upper-bound approach

✓ denotes that the empirical DTW distances are smaller than the corresponding simulated ones, ✗  the 
opposite

� QEMU BUsyBox opEnssL

Messages Convers. Messages Convers. Messages Convers.

Files 1 ✓ ✓ ✓ ✓ ✓ ✗
5 ✓ ✓ ✓ ✓ ✓ ✓
10 ✓ ✓ ✓ ✓ ✓ ✓
15 ✓ ✓ ✓ ✓ ✓ ✓

Features 1 ✓ ✓ ✓ ✓ ✓ ✗
5 ✓ ✓ ✗ ✓ ✓ ✗
10 ✓ ✓ ✗ ✓ ✓ ✓
15 ✓ ✓ ✗ ✓ ✓ ✓

Table 16  The results of testing H3.1 for different abstraction levels using the lower-bound approach

✓ denotes that the empirical DTW distances are smaller than the corresponding simulated ones, ✗  the 
opposite. ? denotes that there are insufficient data (no E-bursts at all)

� QEMU BUsyBox opEnssL

Messages Convers. Messages Convers. Messages Convers.

Files 1 ✓ ✓ ✓ ✓ ✗ ?

5 ✓ ✓ ✓ ✓ ✗ ✗
10 ✓ ✓ ✓ ✓ ✗ ✗
15 ✓ ✓ ✓ ✓ ✓ ✗

Features 1 ✓ ✓ ✓ ✓ ? ?

5 ✓ ✓ ✓ ✓ ✗ ?

10 ✓ ✓ ✓ ✓ ✗ ?

15 ✓ ✓ ✓ ✓ ✗ ?

Table 17  The results of testing H3+H3.1 for comparing file and feature level using lower-bound or 
upper-bound approach respectively

✓  denotes that the DTW distances using feature-based C-bursts are smaller then the DTW distances 
using file-based C-bursts, ✗ the opposite. ? denotes that there are insufficient data (no E-bursts at all)

Files vs. � QEMU BUsyBox opEnssL

Features Messages Convers. Messages Convers. Messages Convers.

Upper-bound 1 ✗ ✗ ✗ ✗ ✗ ✗
Approach 5 ✓ ✗ ✗ ✗ ✗ ✗

10 ✓ ✗ ✗ ✗ ✗ ✗
15 ✓ ✗ ✗ ✗ ✗ ✗

Lower-bound 1 ✓ ✗ ✗ ✗ ? ?
Approach 5 ✓ ✗ ✗ ✗ ✗ ?

10 ✓ ✗ ✗ ✗ ✗ ?

15 ✓ ✗ ✗ ✗ ✗ ?
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