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Abstract
This article is part of a series with the aim of classifying all non-hyperoctahedral categories of
two-colored partitions. Those constitute by someTannaka-Krein type result the representation
categories of a specific class of quantum groups. In Part I we introduced a class of parameters
which gave rise to many new non-hyperoctahedral categories of partitions. In the present
article we show that this class actually contains all possible parameter values of all non-
hyperoctahedral categories of partitions. This is an important step towards the classification
of all non-hyperoctahedral categories.

Keywords Quantum group · Unitary easy quantum group · Unitary group · Half-liberation ·
Tensor category · Two-colored partition · Partition of a set · Category of partitions · Brauer
algebra

Mathematics Subject Classification 05A18 (Primary) · 20G42 (Secondary)

1 Introduction

In [8], Woronowicz provided a Tannaka duality for the (today so-called) compact matrix
quantum groups he defined in [7] and which can be seen as a certain class of complex
Hopf-∗-algebras (compare also [9] for general compact quantum groups). More precisely,
Woronowicz’s theorem establishes a 2-equivalence between, on the one hand, the opposite
of the (2, 1)-category CMQG of compact matrix quantum groups and, on the other hand,
the slice 2-category gmC∗Catscfr/Hilbf of small Cauchy-complete finite-dimensional rigid
monoidal C∗-categories with a fixed a single-object generator (as 0-cells and with unitary
monoidal functors as 1-cells and unitary monoidal natural transformations as 2-cells) over
the category of finite-dimensional complex Hilbert spaces.
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Banica and Speicher showed in [1] how to construct 0-cells of the 2-category
gmC∗Catscfr/Hilbf from so-called categories of partitions, importantly utilizing combi-
natorics to produce heretofore scarce examples. Tarrago and the second author extended
their construction in [6] to produce even more examples, now from categories of two-colored
partitions. Moreover, they initiated a program to classify all such categories. The present
article aims to further this effort.

Categories of two-colored partitions are explained in reference to a certain category P◦•
. The latter is defined to have as objects all words c1 . . . ck over the alphabet {◦, •}. The
morphism set from any word c1 . . . ck to any word d1 . . . d� consists of all set-theoretical
partitions p of {◾1, . . . ,◾ k,

◾
1, . . . ,

◾
�}. Morphisms are composed by “vertical concatena-

tion”, which importantly involves the (associative operation of) forming the join of two
set-theoretical partitions. The identity of c1 . . . ck is the set containing exactly the sets {◾i,

◾
i}

for all i ∈ {1, . . . , k}. Morphisms are frequently depicted graphically. E.g., the identity mor-
phism of ◦ ◦ • is addressed as .

Moreover, P◦• is equipped with the strict monoidal structure given on objects by the
(“horizontal”) concatenation of words, c1 . . . ck ⊗ c′

1 . . . c′
k′ = c1 . . . ckc′

1 . . . c′
k′ , and on

morphisms by an operation in the same spirit. The monoidal unit object is the empty word
∅. The dagger functor acts by “reflection”, i.e., exchanging ◾i ↔

◾
i . With respect to this

monoidal structure, P◦• is rigid. Moreover, it is generated as a rigid monoidal category by
the single object given by the one-letter word ◦, whose dual object is •. The (left) evaluation
and co-evaluation morphisms of ◦ correspond to and , respectively. (That is enough to
know because P◦• can further be equipped with a symmetry, e.g., from ◦• to •◦.)

By definition, a category of two-colored partitions is now any wide (necessarily rigid)
monoidal dagger-subcategory ofP◦• containing the evaluation and co-evaluationmorphisms
of ◦. Routinely, the symbol P◦• is also used for the set of all morphisms of P◦•. And since
categories of two-colored partitions are in particular supposed to be wide they are usually
framed as subsets C ⊆ P◦• of this set P◦•, subject to corresponding closure conditions. (See
[6] or [5] for an unabridged version of all those defini.)

Since the classification program for categories of two-colored partitions was begun, differ-
ent subclasses have been indexed by various contributors (see [2–4,6]). The present article is
the second part of a series aiming to determine and describe all so-called non-hyperoctahedral
categories, i.e., all categories C ⊆ P◦• with ⊗ ∈ C or /∈ C.

In this regard the first article [5] and the present one pursue complementary approaches
to detecting whether a given set of partitions is a non-hyperoctahedral category: Part I gave
sufficient conditions for being a non-hyperoctahedral category, Part II nowprovides necessary
ones.

Let us take a closer look at the findings of Part I, [5]. Every two-colored partition can be
equipped with two natural structures on its set of points: a measure-like one, the color sum,
and a metric-like one, the color distance. Both [5] and the present article study tuples of six
properties of any given partition:

(1) the set of block sizes,
(2) the set of block color sums,
(3) the color sum of the set of all points,
(4) the set of color distances between subsequent legs of the same block with identical

(normalized) colors,
(5) the set of color distances between subsequent legs of the same block with different

(normalized) colors and
(6) the set of color distances between legs belonging to crossing blocks.
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Non-hyperoctahedral Categories of Two-Colored Partitions 953

By forming unions, one can aggregate these data over a given set of partitions. This infor-
mation extracted from a set S ⊆ P◦• of partitions was called Z(S) in [5].

There it was shown that one can give constraints on the above six properties which are
preserved under category operations: A partially ordered set (Q,≤) of parameters was intro-
duced to prove that the sets of the form

RQ :={p ∈ P◦• | Z({p}) ≤ Q} for Q ∈ Q

form non-hyperoctahedral categories.
The current article now shows that these constraints encoded in Z and (Q,≤) are natural

in the following sense. (See also Section 2 for the definitions.)

Main Theorem [Theorem 9.1] Given any non-hyperoctahedral category C ⊆ P◦• of two-
colored partitions, we have Z(C) ∈ Q.

The importance of this result comes from its role in the overall program of the article
series. On the one hand, it will be crucial to proving the main assertions of the ensuing
articles. On the other hand, once those have been established, it will combine with them to
show the final result of the entire series, roughly:

Main Theorem of the Series (Excerpt). Z restricts to a one-to-one correspondence between
the set PCat◦•

NHO of non-hyperoctahedral categories of two-colored partitions and the param-
eter set Q.

The proof will go as follows: By Part I of the series, RQ ⊆ PCat◦•
NHO for every Q ∈ Q.

Conversely, by the above Main Theorem of Part II, Z(C) ∈ Q for any C ∈ PCat◦•
NHO. In the

subsequent articles we will define a set GZ(C) ⊆ P◦• and show

GZ(C) ⊆ C ⊆ 〈GZ(C)〉 and GZ(RZ(C)) ⊆ RZ(C) ⊆ 〈GZ(RZ(C))〉.
Proving Z(RZ(C)) = Z(C) will then let us conclude C = 〈GZ(C)〉 = 〈GZ(RZ(C))〉 = RZ(C).

2 Reminder on Definitions from Part I

For the convenience of the reader we briefly repeat those definitions from [5, Sections 3–
5] which are relevant to the current article. For definitions of partitions and categories of
partitions see [5, Sections 3.1 and 4.2]. Throughout this article we will use the notations and
definitions from [5, Sections 3–5].

Notation 2.1 For every set S denote its power set by P(S).

Definition 2.2 [5, Definition 5.2] The parameter domain L is the sixfold Cartesian product
of P(Z).

Definition 2.3 [5, Definition 5.3] Using the notation from [5, Sections 3–5], we define the
analyzer Z : P(P◦•) → L by

Z :=( F, V , �, L, K , X )

where, for all S ⊆ P◦•,

(a) F(S):={ |B| | p ∈ S, B block of p} is the set of block sizes,
(b) V (S):={ σp(B) | p ∈ S, B block of p} is the set of block color sums,
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(c) �(S):={�(p) | p ∈ S} is the set of total color sums,
(d) L(S):={ δp(α1, α2) | p ∈ S, B block of p, α1, α2 ∈ B, α1 = α2,

]α1, α2[p∩B = ∅, σp({α1, α2}) = 0}
is the set of color distances between any two subsequent legs of the same block
having the same normalized color,

(e) K (S):={ δp(α1, α2) | p ∈ S, B block of p, α1, α2 ∈ B, α1 = α2,

]α1, α2[p∩B = ∅, σp({α1, α2}) = 0}
is the set of color distances between any two subsequent legs of the same block
having different normalized colors and

(f) X(S):={ δp(α1, α2) | p ∈ S, B1, B2 blocks of p, B1 crosses B2,

α1 ∈ B1, α2 ∈ B2}
is the set of color distances between any two legs belonging to two crossing blocks.

Notation 2.4 (a) For all x, y ∈ Z and A, B ⊆ Z write

x A + yB:={xa + yb | a ∈ A, b ∈ B}.
Moreover, put x A− yB:=x A+(−y)B. Per A = {1} expressions like x+ yB are defined
as well, and per x = 1 so are such like A + yB.
(b) Let ±S:=S ∪ (−S) for all sets S ⊆ Z.
(c) For all m ∈ Z and D ⊆ Z define

Dm :=(D ∪ (m − D)) + mZ and D′
m :=(D ∪ (m − D) ∪ {0}) + mZ.

(d) Use the abbreviations [[0]]:=∅ and [[k]]:={1, . . . , k} for all k ∈ N.

Definition 2.5 ([5, Definition 5.7]). Define the parameter range Q as the subset of L com-
prising all tuples ( f , v, s, l, k, x) listed below, where u ∈ {0} ∪ N, where m ∈ N, where
D ⊆ {0} ∪ [[�m

2 �]], where E ⊆ {0} ∪ N and where N is a subsemigroup of (N,+):

f v s l k x

{2} ±{0, 2} 2umZ mZ mZ Z

{2} ±{0, 2} 2umZ m+2mZ 2mZ Z

{2} ±{0, 2} 2umZ m+2mZ 2mZ Z\mZ

{2} {0} {0} ∅ mZ Z

{2} ±{0, 2} {0} {0} {0} Z\N0

{2} {0} {0} ∅ {0} Z\N0

{2} {0} {0} ∅ {0} Z\N ′
0{1, 2} ±{0, 1, 2} umZ mZ mZ Z\Dm

{1, 2} ±{0, 1, 2} 2umZ m+2mZ 2mZ Z\Dm

{1, 2} ±{0, 1} umZ ∅ mZ Z\Dm

{1, 2} ±{0, 1, 2} {0} {0} {0} Z\E0

{1, 2} ±{0, 1} {0} ∅ {0} Z\E0

N Z umZ mZ mZ Z\Dm

N Z {0} {0} {0} Z\E0

The goal of this article, as sketched in the introduction, is to prove that Z restricts to
a map PCat◦•

NHO → Q (see Theorem 9.1). Evidently, Q is not a Cartesian product; the
six entries of the tuples cannot vary independently. Rather, only very special tuples of sets
are allowed. Hence, if the claim Z : PCat◦•

NHO → Q is to be true, then it is not enough
to study the components of Z individually. We must also investigate the relations between
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Non-hyperoctahedral Categories of Two-Colored Partitions 955

them. In consequence, the argument follows a winding path, taking components into and out
of consideration underway as required or convenient.

3 Tools: Equivalence and Projection

We introduce an equivalence relation on pairs of partitions and consecutive sets therein by
which to compare partitions locally (cf. [3, Definition 6.2]).

Definition 3.1 For all i ∈ {1, 2}, let Ppi denote the set of all points of pi ∈ P◦• and let
Si ⊆ Ppi be consecutive. We call (p1, S1) and (p2, S2) equivalent if S1 = S2 = ∅ or if
the following is true: There exist n ∈ N and for each i ∈ {1, 2} pairwise distinct points
γi,1, . . . , γi,n in pi such that (γi,1, . . . , γi,n) is ordered in pi and Si = {γi,1, . . . , γi,n} and
such that for all j, j ′ ∈ {1, . . . , n} (possibly j = j ′) the following are true:

(1) The normalized colors of γ1, j in p1 and γ2, j in p2 agree.
(2) The points γ1, j and γ1, j ′ both belong to a block B1 of p1 with B1 ⊆ S1 if and only

if γ2, j and γ2, j ′ both belong to a block B2 of p2 with B2 ⊆ S2.
(3) The points γ1, j and γ1, j ′ both belong to a block B1 of p1 with B1 � S1 if and only

if γ2, j and γ2, j ′ both belong to a block B2 of p2 with B2 � S2.

pS p′ S′

class of (p, S) ∼= (p′, S′)

If (p1, S1) and (p2, S2) are equivalent, then S1 and S2 agree in size and normalized
coloring up to a rotation � and the induced partitions {B1 ∩ S1 | B1 block of p1} of S1 and
{B2 ∩ S2 | B2 block of p2} of S2 concur up to �. However, this is only a necessary condition.
Equivalence further requires that a block B1 ∩ S1 of the restriction of p1 stems from a block
B1 of p1 which has legs outside S1 if and only if the corresponding statement B2 � S2 is
true for the block B2 of p2 which B1 is mapped to under �.

We define and construct special representatives of the classes of this equivalence relation.
Recall that a partition p ∈ P◦• is called projective if p is self-adjoint, i.e., p = p∗, and
idempotent, i.e., the pair (p, p) is composable and pp = p.

Definition 3.2 For every consecutive set S in p ∈ P◦• we call the unique projective partition
q with lower row M such that (q, M) and (p, S) are equivalent the projection P(p, S) of
(p, S).
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class of (p, S) ∼= (q, M) P(p, S) = q

M

In truth, of course, for any consecutive set S in p ∈ P◦• the projection P(p, S) depends
only on the equivalence class of (p, S). The following lemma constitutes a generalization of
[3, Lemma 6.4].

Lemma 3.3 P(p, S) ∈ 〈p〉 for any consecutive set S in any p ∈ P◦•.

Proof As S = ∅ implies P(p, S) = ∅ ∈ 〈p〉, let S = ∅. By rotation we can assume that S
is the lower row of p. Then S has the same size and coloring in p as in q:=pp∗. We show
q = P(p, S). By the nature of composition the blocks of p which are contained in S are
blocks of q as well. We only need to care about the other blocks of q . If we identify the
upper row of p and the lower row of p∗, the same partition s is induced there by p and p∗.
Consequently, the meet of the two induced partitions is identical with s as well. That means
that every block D of s intersects exactly one block B of p and exactly one block of p∗,
namely the mirror image of B. The block of q resulting from D therefore contains exactly
the restriction of B to the lower row and the mirror image of that set on the upper row. That
means q = P(p, S), which proves the claim. ��

4 Step 1: Component F in Isolation

We now take our first step towards proving the main result that the analyzer Z from Def-
inition 2.3 restricts to a map PCat◦•

NHO → Q (see Theorem 9.1). Namely, we verify (see
Proposition 4.3) that, for every non-hyperoctahedral category C ⊆ P◦•, the set

F(C):={|B| | p ∈ C, B block of p}
of block sizes appearing in C can only be one of the three sets of integers admissible as a first
component for tuples in Q by Definition 2.5.

Lemma 4.1 [6, Lemmata 1.3 (b), 2.1 (a)] Let C ⊆ P◦• be a category.

(a)
〈

⊗
〉 = 〈

⊗
〉 =

〈 〉
=

〈 〉
.

(b) The following statements are equivalent:

(1) There exists in C a partition with a singleton block.
(2) ⊗ ∈ C.

(c) If ⊗ ∈ C, then C is closed under disconnecting points from their blocks.

Proof (a) All transformations can be achieved by basic and cyclic rotations.
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(b) Projecting to a singleton block produces or . Hence, Part (a) and Lemma 3.3
prove the claim.
(c) Rotate a given partition such that the leg to disconnect from its block is the only
lower point. Composing from below with or , depending on the color of the leg, and
reversing the rotation achieves what is claimed. Hence, Part (a) concludes the proof. ��

Lemma 4.2 [6, Lemmata 1.3 (d), 2.1 (b)] Let C ⊆ P◦• be a category.

(a)
〈 〉 = 〈 〉 =

〈 〉
=

〈 〉
.

(b) The following statements are equivalent:

(1) There exists in C a partition with a block with at least three legs.
(2) ∈ C.

(c) If ∈ C, then C is closed under connecting the two points in any turn.

Proof (a) Once again, by basic and cyclic rotations we can transform the partitions into
each other.
(b) Suppose B is a block in p ∈ C with at least three legs, α, β ∈ B, α = β

and ]α, β[p∩B = ∅. Let T be the set of the first lower and the first upper point of
P(p, [α, β]p). The partition P(P(p, [α, β]p), T ) is either or . Thus follows the
claim by Part (a) and Lemma 3.3.
(c) Let T be the turn in p ∈ C whose points we want to connect. By rotation we can
assume that T is the upper rowof p. By composing p fromabovewith or , depending
on the sequence of colors in T , and reversing the initial rotation we achieve exactly what
is claimed. So, Part (a) implies the assertion. ��

Recall the cases O, B, S from [5, Definition 4.1].

Proposition 4.3 Let C ⊆ P◦• be a non-hyperoctahedral category.

(a) The set F(C) is given by {2}, {1, 2} or N.
(b) If C is case O, then F(C) = {2}.
(c) If C is case B, then F(C) = {1, 2}.
(d) If C is case S, then F(C) = N.

Proof By definition of a category, ∈ C and thus {2} ⊆ F(C).

(a) The first claim follows from the other three.
(b) Because ⊗ /∈ C and /∈ C, Lemmata 4.1 (b) and 4.2 (b) show that every block

in every partition of C has exactly two legs, i.e., F(C) = {2}.
(c) The assumption /∈ C implies by Lemma 4.2 (c) that no partition of C has blocks

withmore than two legs: F(C) ⊆ {1, 2}. Because ⊗ ∈ C, it is clear that {1} ⊆ F(C).
Thus, F(C) = {1, 2} has been proven.

(d) It suffices to show N ⊆ F(C). Let n ∈ N be arbitrary. Then,

p:=( ⊗ )⊗� n
2 � ∈ C.

Thanks to ∈ C we can, by Lemma 4.2 (c), connect the first n points in p to
produce a partition in C containing a block with n points, proving {n} ⊆ F(C). ��
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5 Step 2: Component V and its Relation to F and L

The next objective is to narrow down the range of the component V of Z over PCat◦•
NHO.

Given a non-hyperoctahedral category C ⊆ P◦•, we show that the set

V (C):={σp(B) | p ∈ C, B block of p}
of block color sums occurring in C can only be one of the five sets allowed as second
components for tuples of Q by Definition 2.5. Beyond that, we can use Proposition 4.3 to
show a result about the three parameters V (C), F(C) and

L(C):={ δp(α1, α2) | p ∈ C, B block of p, α1, α2 ∈ B, α1 = α2,

]α1, α2[p∩B = ∅, σp({α1, α2}) = 0},
the set of color distances between legs of the same block with identical normalized colors
appearing in C: Viewed together as (F, V , L)(C), they satisfy the conditions necessary for
Z(C) to be element of Q by Definition 2.5.

Proposition 5.1 Let C ⊆ P◦• be a non-hyperoctahedral category.

(a) The set V (C) is given by {0}, ±{0, 2}, ±{0, 1}, ±{0, 1, 2} or Z.
(b) If C is case O, then

V (C) =
{

±{0, 2} if L(C) = ∅,

{0} otherwise.

(c) If C is case B, then

V (C) =
{

±{0, 1, 2} if L(C) = ∅,

±{0, 1} otherwise.

(d) If C is case S, then L(C) = ∅ and V (C) = Z.

Proof Two general facts about V (C) in advance: In any case, 0 ∈ V (C) since V
({ }) = {0}.

And [5, Lemma 6.4], using the fact that p ∈ C implies p̃ ∈ C, showed V (C) = −V (C).

(a) Claim (a) follows from the other three.
(b) A pair block B in p ∈ C satisfies σp(B) = 0 if and only if that block has no two

(necessarily subsequent) legs of the same normalized colors. Otherwise it has color
sum −2 or 2.

(c) And a singleton block always has color sums −1 or 1. The rest follows from the
proof of Part (b).

(d) If C is case S, then ∈ C and ⊗ ∈ C. Hence, we can use ⊗ to disconnect
the left black point in by Lemma 4.1 (c) to obtain p:= ∈ C with V ({p}) =
{−1, 1}. Given any n ∈ N, we use to connect in p⊗n ∈ C all the n many three-
leg blocks together (leaving the disconnected singletons alone) in accordance with
Lemma 4.2 (c). That procedure results in the partition q ∈ C with V ({q}) = {−1, n}.
By V (C) = −V (C) it then follows V (C) = Z as claimed. ��

6 Step 3: Component 6 in Isolation

Easily, we can confirm that for all non-hyperoctahedral categories C ⊆ P◦• the set

�(C):={�(p) | p ∈ C}
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of all total color sums appearing in C is within the range of allowed third entries of tuples in
Q by Definition 2.5. The following proposition contains a generalization of [6, Lemma 2.6]
and [6, Proposition 2.7].

Proposition 6.1 For every category C ⊆ P◦• the set �(C) is a subgroup of Z.

Proof [5, Lemma 6.5 (c)] implies �(C) + �(C) ⊆ �(C). And −�(C) ⊆ �(C) was shown
in [5, Lemma 6.4]. As also �( ) = 0 and ∈ C by definition, the set �(C) is indeed a
subgroup of Z. ��

7 Step 4: General Relations between 6, L, K and X

The goal remains proving that Z (see Definition 2.3) maps the set PCat◦•
NHO of non-

hyperoctahedral categories to Q (see Definition 2.5). So far, we have tackled this problem,
more or less, one component of Z at a time. In that way, what we have managed to show is,
mostly, that the values over PCat◦•

NHO of each of the three maps F , V and �, viewed indi-
vidually, are confined to the range of parameters allowed by Q as corresponding entries of its
elements. To complete this picture, wewould also like to see that for any non-hyperoctahedral
category C ⊆ P◦• the three sets L(C),

K (C):={ δp(α1, α2) | p ∈ C, B block of p, α1, α2 ∈ B, α1 = α2,

]α1, α2[p∩B = ∅, σp({α1, α2}) = 0}
and X(C):={ δp(α1, α2) | p ∈ C, B1, B2 blocks of p, B1 crosses B2,

α1 ∈ B1, α2 ∈ B2},
too, can only be of the kinds allowed as fourth, fifth and sixth components of tuples in Q,
respectively, by Definition 2.5. However, due to the strong interdependences between these
three components of Z , it is not even possible to prove this basic claim about the ranges of
the individual maps by studying them one at a time. Instead, now, the reasonable thing to do
is to consider the tuple (�, L, K , X) and make inferences about its range over PCat◦•

NHO.
That will give us (see Proposition 7.23) the claim about the individual ranges of L , K and
X but also many more of the relations between them (and �), which we need to verify the
main result.

7.1 Abstract Arithmetic Lemma

As a first step, it is best to study the relationship between the�-, L-, K - and X -components of
Z in an abstract context, merely talking about arbitrary subsets ofZ subject to certain axioms.
Our goal for this subsection is to prove the Arithmetic Lemma (7.13): Assuming certain
axioms (7.1), we may deduce a certain parameter range. We will show in Subsection 7.3 that
for non-hyperoctahedral categories C ⊆ P◦• our sets �(C), L(C), K (C) and X(C) satisfy
these axioms. Recall •:=◦ and ◦:=•.
Axioms 7.1 Letσ aswell as κc1,c2 and ξc1,c2 for all c1, c2 ∈ {◦, •} be subsets ofZ. Throughout
this subsection, make the following assumptions:

(i) σ is a subgroup of Z.

For all (ωc1,c2)c1,c2∈{◦,•} ∈ {(κc1,c2)c1,c2∈{◦,•}, (ξc1,c2)c1,c2∈{◦,•}} and for all c1, c2 ∈ {◦, •}:
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(ii) ωc1,c2 + σ ⊆ ωc1,c2 .
(iii) ωc1,c2 ⊆ −ωc2,c1 .
(iv) ωc1,c2 ⊆ −ωc2,c1 + σ .

For all c1, c2, c3 ∈ {◦, •}:
(v) ξc1,c2 ⊆ ξc1,c2 ∪ (−ξc2,c1 + σ

)
.

(vi) 0 ∈ κ◦• ∩ κ•◦.
(vii) κc1,c2 + κc2,c3 ⊆ κc1,c3 .
(viii) κc1,c2 + ξc2,c3 ⊆ ξc1,c3 .

Let us first study how much κc1,c2 and ξc1,c2 depend on c1, c2 ∈ {◦, •}.
Lemma 7.2 For any (ωc1,c2)c1,c2∈{◦,•} ∈ {(κc1,c2)c1,c2∈{◦,•}, (ξc1,c2)c1,c2∈{◦,•}}:

(a) ω◦◦ = ω•• and ω◦◦ = −ω◦◦ = ω◦◦ + σ .
(b) ω◦• = ω•◦ and ω◦• = −ω◦• = ω◦• + σ .

Proof Because 0 ∈ σ by Assumption (i), the Assumption (ii) actually means

ωc1,c2 = ωc1,c2 + σ (ii’)

for all c1, c2 ∈ {◦, •}. And with this new identity we can, for all c1, c2 ∈ {◦, •}, refine
Assumption (iv) to

ωc1,c2 ⊆ −ωc2,c1 (iv’)

as −ωc2,c1 + σ = −(ωc2,c1 − σ) = −(ωc2,c1 + σ) = −ωc2,c1 due to σ = −σ .

(a) Version (ii’) ofAssumption (ii) yieldsω◦◦ = ω◦◦+σ as claimed.AndAssumption (iv)
in the form of (iv’) proves

ω◦◦
(iv)⊆ −ω◦◦

(iv)⊆ ω◦◦ and ω••
(iv)⊆ −ω••

(iv)⊆ ω••,

thus verifying ω◦◦ = −ω◦◦ and ω•• = −ω••. Now, if we apply Assumption (iii) to
conclude

ω◦◦
(i i i)⊆ −ω••

(i i i)⊆ ω◦◦,

we can infer ω◦◦ = ω••. That proves the remainder of the claims about ω◦◦ and ω••.
(b) Here also, Version (ii’) of Assumption (ii) implies ω◦• = ω◦• + σ . Now, though,

for ω◦• and ω•◦ the roles of Assumptions (iii) and (iv) reverse. First, we apply the
former to conclude

ω◦•
(i i i)⊆ −ω◦•

(i i i)⊆ ω◦• and ω•◦
(i i i)⊆ −ω•◦

(i i i)⊆ ω•◦,

which shows the claims ω◦• = −ω◦• and ω•◦ = −ω•◦. Then, it is the refined version
(iv’) of Assumption (iv) that yields

ω◦•
(iv)⊆ −ω•◦

(iv)⊆ ω◦•,

implying ω◦• = ω•◦ and thus completing the proof. ��
In the case of (ωc1,c2)c1,c2∈{◦,•} = (ξc1,c2)c1,c2∈{◦,•} of Lemma 7.2 we can go even further

and combine the objects of Parts (a) and (b).
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Lemma 7.3 ξ◦◦ = ξ◦•.

Proof Since ξc2,c1 = ξc2,c1 + σ for all c1, c2 ∈ {◦, •} by Version (ii’) of Axiom (ii), our
Assumption (v) actually spells

ξc1,c2 ⊆ ξc1,c2 ∪ (−ξc2,c1) (v’)

for all c1, c2 ∈ {◦, •} as σ = −σ . Using this version of the assumption twice, we conclude

ξ◦◦
(v)⊆ ξ◦• ∪ (−ξ◦•) = ξ◦•

(v)⊆ ξ◦◦ ∪ (−ξ••) = ξ◦◦,

where we have used the results ξ◦• = −ξ◦• and ξ◦◦ = −ξ•• of Lemma 7.2. It follows that
indeed ξ◦◦ = ξ◦•. ��
Definition 7.4 Write λ:=κ◦◦ = κ•• and κ:=κ◦• = κ•◦ and ξ :=ξ◦◦ = ξ•• = ξ◦• = ξ•◦.

Our next step is to show that the pair (λ, κ) is of a very simple form (Lemma 7.7).

Definition 7.5 Define the non-negative integers

d:=
{
min (κ ∩ N) if κ ∩ N = ∅,

0 otherwise,
and l:=

{
min (λ ∩ N) if λ ∩ N = ∅,

0 otherwise.

Lemma 7.6 (a) κ = dZ.
(b) If λ = ∅, then l ∈ λ and λ − l ⊇ κ .
(c) λ − l ⊆ κ .
(d) If λ = ∅ and d = 0, then l ≤ d.
(e) If λ = ∅ and d = 0, then l = 0.
(f) If λ = ∅, then 2lZ ⊆ dZ.
(g) If λ = ∅, then d = l or d = 2l.

Proof (a) Of course, 0 ∈ κ by Assumption (vi). And −κ = κ was established
in Lemma 7.2 (b). And with the choices c1 = ◦, c2 = c3 = •, Assumption (vii)
implies that

κ + κ = κ◦• + κ◦•
(vi i)⊆ κ◦• = κ.

Hence, κ is indeed a subgroup of Z. The definition of d makes d a generator of κ ,
implying κ = dZ.
(b) As λ = −λ by Lemma 7.2 (a), assuming λ = ∅ ensures λ ∩ ({0} ∪ N) = ∅. Hence,
under this assumption, l ∈ λ by definition of l. If we choose c1 = c3 = ◦ and c2 = • in
Assumption (vii), it follows that

κ + λ = κ◦• + κ◦◦
(vi i)⊆ κ◦◦ = λ.

Since l ∈ λ, we can specialize the λ on the left hand side of that inclusion to l and then
subtract l on both sides. We obtain κ ⊆ λ − l.
(c) If λ = ∅, there is nothing to prove. Hence, let λ = ∅, implying l ∈ λ by Part (b).
Using Assumption (vii) once more, this time with the choices c1 = c2 = ◦ and c3 = •,
yields

λ − λ = λ + λ = κ◦◦ + κ••
(vi i)⊆ κ◦• = κ,

where we have used λ = −λ (Lemma 7.2 (a)) in the first step. Specializing on the left
hand side the second instance of λ to l yields λ − l ⊆ κ .
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(d) Actually, we show the contraposition. Hence, suppose λ = ∅ and l > d . Since
λ = l + dZ by Parts (a)–(c), it then follows that l − d ∈ λ ∩ N. The definition of l
consequently requires l ≤ l − d , i.e. d ≤ 0. As d ≥ 0 by definition, d = 0 is the only
possibility.
(e) We prove the contraposition indirectly. As λ = l + dZ by Parts (a)–(c), supposing
l = 0 entails λ = dZ. Thus, if d = 0 were true, then ∅ = dZ ∩ N = λ ∩ N would yield
the contradiction 0 < min(λ ∩ N) = l = 0 by definition of l.
(f) In the proof of Part (c) we saw λ+λ ⊆ κ . Specializing therein both instances of λ on
the left hand side to l (which we can do due to λ = ∅ by Part (b)) yields 2l ∈ κ = dZ.
It follows 2lZ ⊆ dZ as asserted.
(g) From 2lZ ⊆ dZ, as shown in Part (f), it is immediate that, if d = 0, then l = 0 = d
as claimed. If d = 0, we know, firstly, l ≤ d by Part (d), secondly, l = 0 by Part (e)
and, thirdly, 2lZ ⊆ dZ by Part (f). That is only possible if d = l or d = 2l: Indeed, if
c ∈ Z is such that 2l = cd , then l > 0 and d ≥ 0 ensure c > 0. Moreover, l ≤ d implies
2l ≤ 2d , i.e., cd ≤ 2d . We infer c ≤ 2 by d > 0. Hence, c ∈ {1, 2} by c > 0. ��

Lemma 7.7 (a) If λ = ∅, then (λ, κ) = (∅, dZ).
(b) If λ = ∅, then (λ, κ) is equal to (l + 2lZ, 2lZ) or (lZ, lZ).

Proof In Lemma 7.6 we established that κ = dZ (Part (a)) and that λ = ∅ or λ = l + dZ

(Parts (b) and (c)), where d = l or d = 2l (Part (g)). In other words, we have proven that
(λ, κ) is of the asserted form. ��

We can immediately relate σ to κ .

Definition 7.8 Define

k:=
{
min (σ ∩ N) if σ ∩ N = ∅,

0 otherwise.

Lemma 7.9 σ = kZ ⊆ dZ = κ .

Proof Because σ is a subgroup of Z, the definition of k implies σ = kZ. Moreover, we
know κ = κ + σ by Lemma 7.2 (b). Hence Assumption (vi), namely 0 ∈ κ , implies
kZ = σ ⊆ κ + σ ⊆ κ = dZ. ��

Let us now turn to the description of ξ .

Lemma 7.10 (a) ξ = ξ + dZ.
(b) If λ = ∅, then ξ = ξ + lZ.

Proof (a) Picking c1 = ◦, c2 = c3 = •, Assumption (viii) implies the inclusion

κ + ξ = κ◦• + ξ◦•
(vi i i)⊆ ξ◦• = ξ.

As the reverse inclusion is trivially true by 0 ∈ κ (Assumption (vi)), we have thus verified
our claim ξ = ξ + dZ by Lemma 7.6 (a).
(b) Assumption (viii), applied a second time, now with c1 = c2 = c3 = ◦, allows us to
conclude

λ + ξ = κ◦◦ + ξ•◦
(vi i i)⊆ ξ◦◦ = ξ.
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If λ = ∅, then l ∈ λ by Lemma 7.6 (b). Hence, the above inclusion shows in particular
ξ + l ⊆ ξ . Using this, induction proves ξ + lN ⊆ ξ . Lemma 7.6 (g) established that
d = l or d = 2l. Either way, ξ = ξ + dZ, as seen in Part (a), then ensures ξ − 2l ⊆ ξ .
Combining this conclusion with ξ + l ⊆ ξ lets us infer ξ − l = (ξ + l) − 2l ⊆ ξ .
Again, it follows ξ − lN ⊆ ξ by induction. Hence, altogether we have shown ξ + lZ =
(ξ − lN) ∪ ξ ∪ (ξ + lN) ⊆ ξ . Of course, the converse inclusion is true as well because
0 ∈ Z, proving ξ = ξ + lZ as claimed. ��
In order to obtain a refined understanding of ξ we need the following preparatory lemma.

Lemma 7.11 Let χ ⊆ Z and m ∈ N satisfy χ = −χ = χ + mZ.

(a) χ = (χ ∩ ({0} ∪ [[m − 1]]))m.
(b) χ ∩ [[m − 1]] = m − (χ ∩ [[m − 1]]).
(c) χ = (χ ∩ ({0} ∪ [[�m

2 �]]))m.
(d) χ = Z\Dm for D = ({0} ∪ [[�m

2 �]])\χ .
Proof The mapping S �→ Sm :=(S ∪ (m − S)) + mZ of subsets S ⊆ Z is a closure operator
with respect to ⊆, i.e., for all S, T ⊆ Z with S ⊆ T we have S ⊆ Sm and Sm ⊆ Tm and
(Sm)m = Sm . In particular S = Sm if and only if S = −S = S + mZ.

(a) The assumption χ = −χ = χ + mZ implies χ = χm . Hence, χ = χm ⊇ (χ ∩
({0} ∪ [[m − 1]]))m is clear by monotonicity of S �→ Sm . We show the converse:
If x ∈ χ , we find x ′ ∈ {0} ∪ [[m − 1]] such that x ′ − x ∈ mZ. Consequently,
x ′ ∈ x + mZ ⊆ χ + mZ ⊆ χ by assumption. We conclude x ∈ x ′ + mZ ⊆
(χ ∩ ({0} ∪ [[m − 1]])) + mZ ⊆ (χ ∩ ({0} ∪ [[m − 1]]))m , which is what we needed
to show.

(b) We further deduce from χ = −χ = χ + mZ that m − χ ⊆ χ . Natu-
rally, m − (χ ∩ [[m − 1]]) ⊆ m − [[m − 1]] = [[m − 1]]. Combining this with
m − (χ ∩ [[m − 1]]) ⊆ m − χ ⊆ χ yields m − (χ ∩ [[m − 1]]) ⊆ χ ∩ [[m − 1]]. We
conclude χ ∩ [[m − 1]] = m − (m − (χ ∩ [[m − 1]])) ⊆ m − (χ ∩ [[m − 1]]), which
proves one inclusion.
Now, the converse. From χ = −χ = χ + mZ we can infer m − χ = −(m − χ) =
(m − χ) + mZ. In consequence we can apply the inclusion we just proved to
the set m − χ in the role of χ . Since m − [[m − 1]] = [[m − 1]], the result-
ing inclusion (m − χ) ∩ [[m − 1]] ⊆ m − ((m − χ) ∩ [[m − 1]]) actually spells
m − (χ ∩ [[m − 1]]) ⊆ χ ∩ [[m − 1]]. That is just what we had to show.

(c) Due to the monotonicity and idempotency of the mapping S �→ Sm , it suffices by
Part (a) to prove χ ∩ ({0} ∪ [[m − 1]]) ⊆ (χ ∩ ({0} ∪ [[�m

2 �]]))m . Let x ∈ χ ∩
({0} ∪ [[m − 1]]) be arbitrary. If x ≤ �m

2 �, then, naturally, x ∈ χ ∪ ({0} ∪ [[�m
2 �]]) ⊆

(χ ∩ ({0} ∪ [[�m
2 �]]))m . Hence, we can assume x > �m

2 �. By Part (b) we know
m − x ∈ χ . By assumption, m − x < m − �m

2 �. If m is even, then this inequality
says m − x < m − m

2 = m
2 = �m

2 �. Should m be odd instead, it means m −
x < m − m−1

2 = m+1
2 , which implies m − x ≤ m+1

2 − 1 = m−1
2 = �m

2 �. Thus,
m − x ≤ �m

2 � in all cases. Hence we have shown m − x ∈ χ ∩ ({0} ∪ [[�m
2 �]]). It

follows x = m − (m − x) ∈ m − (χ ∩ ({0} ∪ [[�m
2 �]])) ⊆ (χ({0} ∪ [[�m

2 �]]))m . That
is what we needed to see.

(d) The assumption χ = −χ = χ + mZ implies Z\χ = −(Za
¯
ckslashχ) = (Z\χ) +

mZ. Hence, we can apply Part (c) to the set Z\χ in the role of χ and obtain Z\χ =
((Z\χ) ∩ ({0} ∪ [[�m

2 �]]))m . Since (Z\χ) ∩ ({0} ∪ [[�m
2 �]]) = ({0} ∪ [[�m

2 �]])\χ = D
we have shown Z\χ = Dm . It follows χ = Z\Dm as claimed. ��
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Lemma 7.12 (a) If d = 0, then ξ = Z\E0 for E = ({0} ∪ N)\ξ .
(b) If d ≥ 1 and λ = ∅, then ξ = Z\Dl for D = ({0} ∪ [[� l

2�]])\ξ .
(c) If d ≥ 1 and λ = ∅, then ξ = Z\Dd for D = ({0} ∪ [[� d

2 �]])\ξ .
Proof (a) The defining equations E = ({0} ∪ N)\ξ and E0 = E ∪ (−E) imply E0 =

(({0}∪N)\ξ)∪((−({0}∪N))\(−ξ)). Hence, ξ = −ξ (by Lemma 7.2) shows E0 = Z\ξ
and thus the claim ξ = Z\E0.
(b) Because λ = ∅, Lemma 7.6 (g) guarantees d = l or d = 2l. Hence, the assumption
d ≥ 1 implies l ≥ 1. Moreover, Lemma 7.10 (b) assures us that ξ = ξ + lZ. And, we
already know ξ = −ξ by Lemma 7.2. Hence, Lemma 7.11 (d) yields the claim.
(c) Still, ξ = −ξ , of course. And ξ = ξ + dZ by Lemma 7.10 (a) as d ≥ 1. Thus, once
more, Lemma 7.11 (d) proves the claim. ��
In conclusion we have shown the following auxiliary result.

Lemma 7.13 (Arithmetic Lemma). If the nine sets of integers σ and κc1,c2 , ξc1,c2 for c1, c2 ∈
{◦, •} satisfy Axioms 7.1, then

κ◦◦ = κ•• =: λ, κ◦• = κ•◦ =: κ and ξ◦◦ = ξ•• = ξ◦• = ξ•◦ =: ξ

and there exist u ∈ {0} ∪ N, m ∈ N, D ⊆ {0} ∪ [[�m
2 �]] and E ⊆ {0} ∪ N such that the tuple

(σ, λ, κ, ξ) is given by one of the following:

σ λ κ ξ

umZ mZ mZ Z\Dm

2umZ m + 2mZ 2mZ Z\Dm

umZ ∅ mZ Z\Dm

{0} {0} {0} Z\E0

{0} ∅ {0} Z\E0

Proof That λ, κ and ξ are well-defined was shown in Lemmata 7.2 and 7.3. Hence, we can
let k, d and l be as in Definitions 7.8 and 7.5. We distinguish five cases in total.

Case 1: First, suppose that λ = ∅. Then, κ = dZ. By Lemma 7.7 (a). There are now two
possibilities depending on the value of d ∈ {0} ∪ N.

Case 1.1: If d = 0, which is to say κ = {0}, then Lemma 7.12 (a) yields ξ = Z\E0 for
E :=({0} ∪ N)\ξ . And Lemma 7.9 proves σ = kZ ⊆ dZ = {0}, implying k = 0 and thus
σ = {0}. As, naturally, E ⊆ {0} ∪ N, the tuple (σ, λ, κ, ξ) is indeed as claimed in the fifth
row of the table.

Case 1.2: Should d ≥ 1 on the other hand, then by Lemma 7.12 (c) we infer ξ = Z\Dd for
D:=({0} ∪ [[� d

2 �]])\ξ . Since σ = kZ ⊆ dZ by Lemma 7.9, if we put u:= k
d , then σ = udZ.

Recognizing D ⊆ {0} ∪ [[� d
2 �]] and defining m:=d thus proves that (σ, λ, κ, ξ) is as asserted

by the third row of the table.
Case 2: Now, let λ = ∅ instead. Then, (λ, κ) = (l + 2lZ, 2lZ) or (λ, κ) = (lZ, lZ) by

Lemma 7.7 (a). Respectively, d = 2l or d = l. We now distinguish two cases based on the
value of l ∈ {0} ∪ N.

Case 2.1: Assuming l = 0 lets us conclude lZ = 2lZ = l + 2lZ = {0}, which implies
(λ, κ) = ({0}, {0}). Lemma 7.9 gives σ = kZ ⊆ κ = {0} and thus k = 0 and σ = {0}.
Because d = l = 2l = 0 we can infer ξ = Z\E0 for E :=({0} ∪ N)\ξ by Lemma 7.12 (a).
As E ⊆ {0} ∪ N, the tuple (σ, λ, κ, ξ) is hence given by the fourth row of the table.

Case 2.2: Finally, let l ≥ 0. Then, also d ≥ 0, no matter whether d = l or d = 2l. In
conclusion, ξ = Z\Dl for D:=({0} ∪ [[� l

2�]])\ξ by Lemma 7.12 (c).
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Case 2.2.1: If (λ, κ) = (l + 2lZ, 2lZ), i.e., d = 2l, then the implication σ = kZ ⊆
dZ = 2lZ of Lemma 7.9 lets us define u ∈ {0} ∪ N by u:= k

2l and obtain σ = 2ulZ. Hence,
choosing m:=l proves that (σ, λ, κ, ξ) fits the second row of the table.

Case 2.2.2: If instead, (λ, κ) = (lZ, lZ), i.e., d = l, then Lemma 7.9 yields σ = kZ ⊆
dZ = lZ, thus permitting us to define u ∈ {0} ∪ N by u:= k

l and obtain σ = ulZ. The choice
m:=l hence shows (σ, λ, κ, ξ) to be given by the first row. ��

As mentioned before, our goal will be to show (Section 7.3) that for every non-
hyperoctahedral category C ⊆ P◦• the tuple (�, L, K , X)(C) is of the form given in the
table of the Arithmetic Lemma.

7.2 Reduction to Singleton and Pair Blocks

Let us return to categories of partitions. To elucidate the ranges of K , L and X over PCat◦•
NHO

and central relations between�(C), K (C), L(C) and X(C) for non-hyperoctahedral categories
C ⊆ P◦•, we must consider certain decompositions of K , L and X according to leg colors.

Definition 7.14 Let S ⊆ P◦• and c1, c2 ∈ {◦, •} be abitrary. Then, define
Kc1,c2(S):={ δp(α1, α2) | p ∈ S, B block of p, α1, α2 ∈ B, α1 = α2, (a)

]α1, α2[p∩B = ∅, ∀i = 1, 2 : αi of normalized color ci },

Xc1,c2(S):={ δp(α1, α2) | p ∈ S, B1, B2 blocks of p, B1 and B2 cross, (b)

α1 ∈ B1, α2 ∈ B2, ∀i = 1, 2 : αi of normalized color ci }.
L , K and X can then be written as, where the union occurs pointwise,

L =
⋃

c1,c2∈{◦,•}
c1=c2

Kc1,c2 , K =
⋃

c1,c2∈{◦,•}
c1 =c2

Kc1,c2 , and X =
⋃

c1,c2∈{◦,•}
Xc1,c2 .

Recall that P◦•≤2 denotes the set of all partitions with block sizes one or two and that it is
a category (see [5, Lemma 4.4 (a)]). By the next lemma we may always restrict to partitions
in P◦•≤2 when studying Kc1,c2 and Xc1,c2 . This is trivial in cases O and B, while for case S
this basically follows from Lemma 4.1(c).

Lemma 7.15 For all non-hyperoctahedral categories C ⊆ P◦• and c1, c2 ∈ {◦, •}:
(a) Kc1,c2(C) = Kc1,c2(C ∩ P◦•≤2).
(b) Xc1,c2(C) = Xc1,c2(C ∩ P◦•≤2).

Proof (a) If C is case O or case B, i.e., if C ⊆ P◦•≤2 by Proposition 4.3, there is nothing
to show. Hence, suppose that C is case S and let c1, c2 ∈ {◦, •}. We only need to prove
Kc1,c2(C) ⊆ Kc1,c2(C ∩ P◦•≤2). Let α1 and α2 with α1 = α2 be points in p ∈ C such
that αi is of normalized color ci for every i ∈ {1, 2} and such that α1, α2 ∈ B and
]α1, α2[p∩B = ∅ for some block B in p. Because C is case S, by Lemma 4.1 (c) we
do not violate the assumption p ∈ C by assuming that every block other than B is a
singleton. In the same way we can assume that α1 and α2 are the only legs of B. None of
these assumptions affect δp(α1, α2) or the normalized colors of α1 or α2. As they ensure
p ∈ C ∩ P◦•≤2 though, we have shown δp(α1, α2) ∈ Kc1,c2(C ∩ P◦•≤2), which is what we
needed to see.
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(b) Again, all that we need to prove is that Xc1,c2(C) ⊆ Xc1,c2(C∩P◦•≤2) if C is case S and
if c1, c2 ∈ {◦, •}. Let the points α1 of normalized color c1 and α2 of normalized color c2
in p ∈ C belong to the blocks B1 and B2, respectively, and suppose that B1 and B2 cross.
Because C is case S we can, by Lemma 4.1 (c), assume that all other blocks of p besides
B1 and B2 are singletons. Now the only thing standing in the way of p ∈ C ∩ P◦•≤2 is
the possibility of at least one of B1 and B2 having more than two legs. We would like to
assume that B1 and B2 have only two legs each and stillmaintain all the other assumptions
including α1 ∈ B1 and α2 ∈ B2 and, of course, not alter δp(α1, α2). By Lemma 4.1 (c),
we can always remove surplus legs of B1 and B2. But it is not immediately clear that we
can remove legs without affecting the other assumptions. A priori, the crossing between
B1 and B2 only implies that we can find points β1, γ1 ∈ B1 and β2, γ2 ∈ B2 such that
(β1, β2, γ1, γ2) is ordered in p. If now α1 ∈ {β1, γ1} and α2 ∈ {β2, γ2}, then we can
certainly remove all legs except {βi , γi } from Bi for all i ∈ {1, 2} and still maintain the
other assumptions. In fact, we can do so in general as well:
Let us only consider the “worst case” that α1 /∈ {β1, γ1} and α2 /∈ {β2, γ2}. There are 20
possible arrangements of the points {α1, β1, γ1, α2, β2, γ2} relative to each other with
respect to the cyclic order respecting that (β1, β2, γ1, γ2) is ordered.

↓
α1β1β2γ1γ2 β1

↓
α1β2γ1γ2 β1β2

↓
α1γ1γ2 β1β2γ1

↓
α1γ2

α2α1β1β2γ1γ2 α2β1α1β2γ1γ2 α2β1β2α1γ1γ2 α2β1β2γ1α1γ2

α1α2β1β2γ1γ2 β1α2α1β2γ1γ2 β1α2β2α1γ1γ2 β1α2β2γ1α1γ2

α1β1α2β2γ1γ2 β1α1α2β2γ1γ2 β1β2α2α1γ1γ2 β1β2α2γ1α1γ2

α1β1β2α2γ1γ2 β1α1β2α2γ1γ2 β1β2α1α2γ1γ2 β1β2γ1α2α1γ2

α1β1β2γ1α2γ2 β1α1β2γ1α2γ2 β1β2α1γ1α2γ2 β1β2γ1α1α2γ2

We remove all legs of B1 and B2 except for the underlined ones. Then the above table
shows that we can always turn B1 and B2 into crossing pair blocks containing α1 and
α2, respectively. That concludes the proof. ��

7.3 Verifying the Axioms

We want to apply the Arithmetic Lemma 7.13 to the sets σ :=�(C), κc1,c2 :=Kc1,c2(C) and
ξc1,c2 :=Xc1,c2(C) for c1, c2 ∈ {◦, •} and non-hyperoctahedral categories C ⊆ P◦•. In order
to be able to do so, we, of course, need to show that these sets actually satisfy the prerequisite
Axioms 7.1. Proving that will crucially utilize the reduction to singleton and pair blocks from
Lemma 7.15.

Lemma 7.16 For every non-hyperoctahedral category C ⊆ P◦•, the set σ :=�(C) satisfies
Axiom (i) of 7.1: σ is a subgroup of Z.

Proof That was shown in Proposition 6.1. ��
Lemma 7.17 For every non-hyperoctahedral category C ⊆ P◦•, the sets σ :=�(C) and
κc1,c2 :=Kc1,c2(C) for c1, c2 ∈ {◦, •} satisfy Axioms (ii)–(iv) of 7.1:

(ii) κc1,c2 + σ ⊆ κc1,c2 , (iii) κc1,c2 ⊆ −κc2,c1 , (iv) κc1,c2 ⊆ −κc2,c1 + σ

for all c1, c2 ∈ {◦, •}.
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Proof Let c1, c2 ∈ {◦, •} be arbitrary and let α1 and α2 be distinct points of the same block
B in p ∈ C such that ]α1, α2[p∩B = ∅ and such that αi has normalized color ci for every
i ∈ {1, 2}. In other words, let δp(α1, α2) be a generic element of Kc1,c2(C) = κc1,c2 .

Axiom (ii): Let q ∈ C be arbitrary. None of the assumptions about p, α1, α2 and δp(α2, α2)

are impacted by assuming that p is rotated in such a way that α1 is the rightmost lower point
of p. Then, B is a block of p ⊗ q ∈ C as well and ]α1, α2[p⊗q∩B = ∅.

c1

c2

α1

α2

p →
c1

c2

α1

α2

p ⊗ q

Now, because all points stemming from q lie within ]α1, α2[p⊗q ,

δp⊗q(α1, α2) = δp(α1, α2) + �(q).

That proves δp(α1, α2) + �(q) ∈ Kc1,c2(C) = κc1,c2 , which is what we needed to see.
Axiom (iii): The verticolor reflection p̃ of p belongs to C. The set ]α1, α2]p in p is mapped

by the reflection ρ to the set [ρ(α2), ρ(α1)[ p̃ in p̃. As the operation of verticolor reflection
inverts normalized colors, σp(S) = −σ p̃(ρ(S)) for any set S of points in p.

Using the case distinction free formula for δp(α1, α2) given in the proof of
[5, Lemma 3.1 (b)], we thus compute

δp(α1, α2) = σp(]α1, α2]p) + 1
2 (σp(α1) − σp(α2))

= −σ p̃([ρ(α2), ρ(α1)[ p̃) − 1
2 (σ p̃(ρ(α1)) − σ p̃(ρ(α2)))

= −σ p̃(]ρ(α2), ρ(α1)] p̃) − σ p̃(ρ(α2)) + σ p̃(ρ(α1))

− 1
2 (σ p̃(ρ(α1)) − σ p̃(ρ(α2)))

= −σ p̃(]ρ(α2), ρ(α1)] p̃) − 1
2 (σ p̃(ρ(α2)) − σ p̃(ρ(α1)))

= −δ p̃(ρ(α2), ρ(α1)).

Because, for every i ∈ {1, 2}, the point ρ(αi ) has normalized color ci in p̃ and because ρ(B)

is a block of p̃ with ]ρ(α2), ρ(α1)[ p̃∩ρ(B) = ∅, we conclude δp(α1, α2) ∈ −Kc2,c1(C) =
−κc2,c1 . And that is what we had to show.

Axiom (iv): So far, we have not made use of Lemma 7.15. Now, though, we employ it
to additionally assume p ∈ C ∩ P◦•≤2. In particular, then, B = {α1, α2} is a pair block.
Consequently, not only ]α1, α2[p∩B = ∅ but also ]α2, α1[p∩B = ∅.
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By [5, Lemma 2.1 (b)] we infer

δp(α1, α2) = −δp(α2, α1) mod �(p).

As �(p) ∈ �(C), it follows δp(α1, α2) ∈ −Kc2,c1(C)+�(C) = −κc2,c1 + σ , which is what
we wanted to see. ��
Lemma 7.18 For every non-hyperoctahedral category C ⊆ P◦•, the sets σ :=�(C) and
ξc1,c2 :=Xc1,c2(C) for c1, c2 ∈ {◦, •} satisfy Axioms (ii)–(iv) of 7.1:

(ii) ξc1,c2 + σ ⊆ ξc1,c2 , (iii) ξc1,c2 ⊆ −ξc2,c1 , (iv) ξc1,c2 ⊆ −ξc2,c1 + σ

for all c1, c2 ∈ {◦, •}.
Proof The proof is similar to that of Lemma 7.17. Let c1, c2 ∈ {◦, •}, let B1 and B2 be
crossing blocks of p ∈ C and let α1 ∈ B1 and α2 ∈ B2 have normalized colors c1 and c2,
respectively. That makes δp(α1, α2) a generic element of Xc1,c2(C) = ξc1,c2 .

Axiom (ii): Just like in the proof of Lemma 7.17, we can assume that α1 is the rightmost
lower point. Given arbitrary q ∈ C, the sets B1 and B2 are crossing blocks of p ⊗ q as well,

which proves

δp(α1, α2) + �(q) = δp⊗q(α1, α2) ∈ Xc1,c2(C) = ξc1,c2 .

Thus, ξc1,c2 + σ ⊆ ξc1,c2 as claimed.
Axiom (iii): Likewise, the sets ρ(B1) and ρ(B2) are still crossing blocks in p̃ ∈ C. There,

αi has normalized color ci for every i ∈ {1, 2}.

and because, δp(α1, α2) ≡ −δp(α2, α1) mod �(p) (by [5, Lemma 2.1 (b)]), we can imme-
diately conclude δp(α1, α2) ∈ −Xc2,c1(C) + �(C). Thus, ξc1,c2 ⊆ −ξc2,c1 + σ . Differently
from Lemma 7.17, we did not need Lemma 7.15 to see this. ��
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Lemma 7.19 For every non-hyperoctahedral category C ⊆ P◦•, the sets σ :=�(C) and
ξc1,c2 :=Xc1,c2(C) for c1, c2 ∈ {◦, •} satisfy Axiom (v) of 7.1: For all c1, c2 ∈ {◦, •},

ξc1,c2 ⊆ ξc1,c2 ∪ (−ξc2,c1 + σ
)
.

Proof Let B1 and B2 be crossing blocks in p ∈ C ∩ P◦•≤2 and let α1 ∈ B1 and α2 ∈ B2 have
normalized colors c1 ∈ {◦, •} and c2 ∈ {◦, •}, respectively. According to Lemma 7.15 then,
every element of ξc1,c2 = Xc1,c2(C) = Xc1,c2(C ∩ P◦•≤2) is of the form δp(α1, α2). Because
p ∈ P◦•≤2, the blocks B1 and B2 are pairs. Hence, the crossing between these blocks means
that we find points β1 ∈ B1 and β2 ∈ B2 with α1 = β1 and α2 = β2 such that either
(α1, α2, β1, β2) or (α2, α1, β2, β1) is ordered.

Case 1:First,we suppose that (α1, α2, β1, β2) is ordered and show δp(α1, α2) ∈ Xc1,c2(C).
We can assume that α1 is the leftmost and β1 the rightmost lower point.

By Lemma 3.3, the partition p′:=P(p, [α1, β1]p) belongs to C. The definition of the
projection operation has the following consequences: The three lower points α1, α2 and β1

of p, also points of p′, all retain their normalized colors in p′; the set B1 = {α1, β1} is still
a block of p′; the point α2 is now connected to its counterpart β ′

2 on the upper row of p′,
implying in particular that the blocks of α1 and α2 still cross in p′; and it holds

δp′(α1, α2) = δp(α1, α2).

We apply Lemma 3.3 a second time to infer p′′:=P(p′, [β ′
2, α2]) ∈ C. Denote the images

of the points β ′
2, α1 and α2 of p′ in p′′ by β ′′

2 , α
′′
1 and α′′

2 , respectively. Now, β
′′
2 is the leftmost

lower point and α′′
2 the rightmost lower point of p′′ and the two form a block; the point

α′′
1 ∈ [β ′′

2 , α′′
2 ]p′′ is connected to its counterpart on the upper row; and

δp′′(α′′
1 , α

′′
2 ) = δp′(α1, α2) = δp(α1, α2).
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There are two crucial observations to make about the successor γ ′′ of α′′
2 in p′′, the

rightmost upper point of p′′. Firstly, γ ′′ has the inverse normalized color c2 of α′′
2 , which in

particular implies that δp′′(α′′
2 , γ

′′) = 0. Secondly, γ ′′ forms a block of p′′ together with the
leftmost upper point of p′′, which entails that its block crosses the block of α′′

1 in p′′. Hence,
δp′′(α′′

1 , γ
′′) ∈ Xc1,c2(C) and

δp′′(α′′
1 , γ

′′) = δp′′(α′′
1 , α

′′
2 ) + δp′′(α′′

2 , γ
′′) = δp(α1, α2)

together show δp(α1, α2) ∈ Xc1,c2(C) = ξc1,c2 , which is what we set out to prove.
Case 2: Now, let (α2, α1, β2, β1) be ordered instead. By Case 1 then, δp(α2, α1) ∈

Xc2,c1(C). [5, Lemma 2.1 (b)] shows δp(α2, α1) ≡ −δp(α1, α2) mod �(p). That implies
δp(α1, α2) ∈ −Xc2,c1(C) + �(C) = −ξc2,c1 + σ , which is what we needed to see. ��
Lemma 7.20 For every non-hyperoctahedral category C ⊆ P◦•, the sets σ :=�(C) and
κc1,c2 :=Kc1,c2(C) for c1, c2 ∈ {◦, •} satisfy Axiom (vi) of 7.1: 0 ∈ κ◦• ∩ κ•◦.

Proof Since ∈ C and K◦•({ }) = K•◦({ }) = {0}, this is clear. ��
Lemma 7.21 For every non-hyperoctahedral category C ⊆ P◦•, the sets σ :=�(C) and
κc1,c2 :=Kc1,c2(C) for c1, c2 ∈ {◦, •} satisfy Axiom (vii) of 7.1:

κc1,c2 + κc2,c3 ⊆ κc1,c3

for all c1, c2, c3 ∈ {◦, •}.
Proof Let c1, c2, c3 ∈ {◦, •} be arbitrary and let η1 and η2 be distinct points of the same
block B of p ∈ C such that ]η1, η2[p∩B = ∅ and such that ηi has normalized color ci in p
for every i ∈ {1, 2}. Furthermore, let θ1 and θ2 be distinct points of the same blockC of q ∈ C
with ]θ1, θ2[q∩C = ∅ such that θ1 has normalized color c2 in q and θ2 normalized color
c3. None of these assumptions are impacted and neither δp(η1, η2) nor δq(θ1, θ2) altered by
assuming that η2 is the rightmost lower point of p and θ1 the leftmost lower point of q .

Denote the images of the points θ1 and θ2 of q in p ⊗ q ∈ C by θ ′
1 and θ ′

2, respectively.
The assumptions about the normalized colors of η2 and θ1 imply that T :={η2, θ ′

1} is a turn
in p ⊗ q , meaning in particular δp⊗q(η2, θ

′
1) = 0.
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Moreover, δp⊗q(η1, η2) = δp(η1, η2) and δp⊗q(θ
′
1, θ

′
2) = δq(θ1, θ2) by nature of the

tensor product.
Let θ ′′

2 denote the image of θ ′
2 in r :=E(p ⊗ q, T ) ∈ C, the partition obtained from p ⊗ q

by erasing the turn T (see [5, Section 4.3]). By definition of the erasing operation, η1 and θ ′′
2

belong to the same block D in r with ]η1, θ ′′
2 [r∩D = ∅.

Hence, from δr (η1, θ
′′
2 ) ∈ Kc1,c3(C) = κc1,c3 and from

δr (η1, θ
′′
2 ) = δp⊗q(η1, θ2) − σp⊗q(T )

= δp⊗q(η1, θ2)

= δp⊗q(η1, η2) + δp⊗q(η2, θ
′
1) + δp⊗q(θ

′
1, θ

′
2)

= δp⊗q(η1, η2) + δp⊗q(θ
′
1, θ

′
2)

= δp(η1, η2) + δq(θ1, θ2)

it follows δp(η1, η2) + δq(θ1, θ2) ∈ κc1,c3 . And that is what we needed to show. ��

Lemma 7.22 For every non-hyperoctahedral category C ⊆ P◦•, the sets σ :=�(C) and
κc1,c2 :=Kc1,c2(C) and ξc1,c2 :=Xc1,c2(C) for c1, c2 ∈ {◦, •} satisfy Axiom (viii) of 7.1: For all
c1, c2, c3 ∈ {◦, •},

κc1,c2 + ξc2,c3 ⊆ ξc1,c3 .

Proof We adapt the proof of Lemma 7.21. Let c1, c2 ∈ {◦, •} be arbitrary. Let p, q ∈ C, let
B be a block in p, and let C and D be two crossing blocks in q . Let γ1 and γ2 be two distinct
points of B of normalized colors c1 respectively c2 in p with ]γ1, γ2[p∩B = ∅. In q , let
η1 ∈ C have normalized color c2 and θ1 ∈ D normalized color c3. Then, δp(γ1, γ2) is a
generic element of Kc1,c2(C) = κc1,c2 and δq(η1, θ1) one of Xc2,c3(C) = ξc2,c3 . No generality
is lost assuming that γ2 is the rightmost lower point of p and η1 the leftmost lower point of
q . We find η2 ∈ C and θ2 ∈ D such that η1 = η2 and θ1 = θ2 and such that (η1, θ1, η2, θ2)
or (η1, θ2, η2, θ1) is ordered in q .
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Let η′
1, η

′
2, θ

′
1 and θ ′

2 denote the images of, respectively, η1, η2, θ1 and θ2 in p⊗q ∈ C. By
nature of the tensor product, B is a block of p ⊗ q . Likewise, η′

1 and η′
2 belong to the same

block in p ⊗ q and so do θ ′
1 and θ ′

2. And each involved point has the same normalized color
in p ⊗ q as the corresponding preimage in p or q . The set T :={γ2, η′

1} is a turn in p ⊗ q .

If we denote by η′′
2 , θ

′′
1 and θ ′′

2 the images of η′
1, θ

′
1 and θ ′

2 in r :=E(p ⊗ q, T ) ∈ C, then
γ1 and η′′

2 belong to the same block in r and so do θ ′
1 and θ ′

2. Because (γ1, γ2, η
′
1, θ

′
i , η

′
2, θ

′¬i )

is ordered in p ⊗ q for some i,¬i ∈ {1, 2} with {i,¬i} = {1, 2}, the tuple (γ1, θ
′′
i , η′′

2 , θ
′′¬i )

is then ordered in r . Thus, the blocks of γ1 and η′′
2 and of θ ′′

1 and θ ′′
2 cross in r .

Consequently, from δr (γ1, θ
′′
1 ) ∈ Xc1,c3(C) and from

δr (γ1, θ
′′
1 ) = δp⊗q(γ1, θ

′
1) − σp⊗q(T )

= δp⊗q(γ1, θ
′
1)

= δp⊗q(γ1, γ2) + δp⊗q(γ2, η
′
1) + δp⊗q(η

′
1, θ

′
1)

= δp⊗q(γ1, γ2) + δp⊗q(η
′
1, θ

′
1)

= δp(γ1, γ2) + δq(η1, θ1)

it follows δp(γ1, γ2)+ δq(η1, θ1) ∈ Xc1,c3(C) = ξc1,c3 . And that is what we needed to see. ��
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Finally, we can give the final result of this section.

Proposition 7.23 Let C ⊆ P◦• be a non-hyperoctahedral category. Then,

L(C) = K◦◦(C) = K••(C), K (C) = K◦•(C) = K•◦(C)

and

X(C) = X◦◦(C) = X••(C) = X◦•(C) = X•◦(C)

and there exist u ∈ {0} ∪ N, m ∈ N, D ⊆ {0} ∪ [[�m
2 �]] and E ⊆ {0} ∪ N such that the tuple

(�, L, K , X)(C) is one of the following:

�(C) L(C) K (C) X(C)

umZ mZ mZ Z\Dm

2umZ m + 2mZ 2mZ Z\Dm

umZ ∅ mZ Z\Dm

{0} {0} {0} Z\E0

{0} ∅ {0} Z\E0

Proof Follows from Lemmata 7.16–7.22 and the Arithmetic Lemma 7.13. ��

8 Step 5: Special Relations between 6, L, K and X depending on F and V

Our objective remains proving Z(C) ∈ Q for any non-hyperoctahedral category C ⊆ P◦•.
After studying components F (Section 4) and� (Section 6) in isolation and after investigating
the images of the mappings (F, V , L) (Section 5) and (�, L, K , X) (Section 7), we have
arrived at the point where we must take all six components of Z = (F, V , �, L, K , X)

into account simultaneously. Fortunately, we can capitalize on the results of Sections 4–7
in this endeavor. In consequence, it largely suffices to understand better the behavior of
(�, L, K , X) as dependent on (F, V ) or, roughly, on F .

Recall from [5, Definition 4.1] that a category is non-hyperoctahedral if and only if it is
case O, B or S and that these cases are mutually exclusive.

8.1 Special Relations in CaseS

For case S categories C ⊆ P◦•, i.e., by Proposition 4.3 assuming F(C) = N, there is just a
single fact about (�, L, K , X)(C) we have to note, one about L(C).

Proposition 8.1 0 ∈ L(C) for every case S category C ⊆ P◦•.

Proof As ⊗ ∈ C, we can, by Lemma 4.1 (c), disconnect the black points in ∈ C and
obtain ∈ C. It follows {0} = L({ }) ⊆ L(C). ��

8.2 Special Relations in CaseO

For caseO categories C ⊆ P◦•, i.e., assuming F(C) = {2}, more than what Proposition 7.23
is able to discern can be said about �(C) and X(C).
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8.2.1 Relation of 6 to L and K in CaseO

First, we treat the total color sums of case O categories.

Proposition 8.2 Let C ⊆ P◦• be a case O category and let m ∈ N.

(a) If (L, K )(C) = (∅,mZ), then �(C) = {0}.
(b) If (L, K )(C) = (mZ,mZ) or (L, K )(C) = (m + 2mZ, 2mZ), then

�(C) = 2umZ

for some u ∈ {0} ∪ N.

Proof (a) By Proposition 7.23 there exists ũ ∈ {0} ∪ N such that �(C) = ũmZ. We
suppose ũ = 0 and derive a contradiction. As C is closed under erasing turns and as
erasing turns does not affect total color sum, we find p ∈ C with no turns such that
�(p) = ũm. Because ũm > 0, the partition p has at least one block. As all blocks of p
are pairs by Proposition 4.3, there is a block B of p with (necessarily subsequent) legs
α, β ∈ B and α = β. Since p has no turns, all points of p have normalized color ◦. In
particular, α and β do. That proves L(C) = ∅, contradicting the assumption.
(b) Proposition 7.23 guarantees that �(C) = ũmZ for some ũ ∈ {0} ∪ N and that
ũ is even if (L, K )(C) = (m + 2mZ, 2mZ). We want to show that ũ is even also if
(L, K )(C) = (mZ,mZ). If ũ = 0, this claim is true. Hence, suppose ũ > 0. As in
Part (a), we utilize p ∈ C with no turns such that �(p) = ũm > 0 and, this time, also
with no upper points.
For every i ∈ N with i ≤ m consider the set

Si = {
◾
j | j ∈ (i + mN0), j ≤ ũm}

comprising the i-th lower point and all its m-th neighbors to the right. Then,
⋃m

i=1 Si
comprises all points of p and |Si | = ũ for every i ∈ N with i ≤ m.
The sets S1, . . . , Sm must all be subpartitions of p: Otherwise, we find j, j ′ ∈ N with
j < j ′ ≤ ũm and j ′ − j /∈ mZ such that

◾
j and

◾
j ′ belong to the same block. As all of

]
◾
j,
◾
j ′]p has normalized color ◦,

δp(◾ j,◾ j
′) = σp(]◾ j,◾ j ′]p) = |]

◾
j,
◾
j ′]p| = j ′ − j /∈ mZ.

That contradicts the assumption L(C) = mZ.
Because all blocks of p are pairs by Proposition 4.3, subpartitions of p have even cardi-
nality. We conclude ũ = |S1| ∈ 2Z, which then proves the claim. ��

8.2.2 Relation of X to L and K in CaseO

When studying X(C) further for caseO categories C ⊆ P◦•, it is best to distinguish whether
(L ∪ K )(C) contains non-zero elements or not.

Proposition 8.3 Let C ⊆ P◦• be a case O category and let m ∈ N.

(a) If (L, K )(C) = (m + 2mZ, 2mZ), then X(C) = Z or X(C) = Z\mZ.
(b) If (L, K )(C) = (mZ,mZ) or (L, K )(C) = (∅,mZ), then X(C) = Z.

Proof No matter which of the three values (L, K )(C) takes, by Proposition 7.23 the set
X(C) is m-periodic. Therefore, showing [[m]] ⊆ X(C) already implies X(C) = Z. Likewise,
provided m ≥ 2, establishing [[m − 1]] ⊆ X(C) forces the conclusion that X(C) = Z\mZ or
X(C) = Z.
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(a) First, let (L, K )(C) = (m + 2mZ, 2mZ). If m = 1, the 1-periodicity of X(C)

immediately implies X(C) = ∅ or X(C) = Z. Hence, we can suppose m ≥ 2 and
only need to prove [[m − 1]] ⊆ X(C) by the initial remark.
Proposition 7.23 lets us infer K◦◦(C) = m + 2mZ. Hence, we find a partition p ∈
C ⊆ P◦•

2 , therein a block {α, β}with α and β both of normalized color ◦, with α = β

and with δp(α, β) = m. Without infringing on any of these assumptions we can
additionally suppose that there are no turns T in p such that T ⊆]α, β[p (otherwise
we erase them). Then, all of ]α, β[p has the same normalized color c ∈ {◦, •}.

Because α and β also identically have normalized color ◦,

m = δp(α, β) = σp(]α, β]p) =
{

|]α, β]p| if c = ◦,

−|]α, β]p| otherwise.

As m > 0, the only option is c = ◦. That means [α, β]p consists of m + 1 points of
normalized color ◦.
By definition of the projection operation and by Lemma 3.3, it is possible to further
add the premise p = P(p, [α, β]p) without impacting any of the previous assump-
tions. Now, p is also projective and [α, β]p = [

◾
1,
◾
(m + 1)]p is its lower row.

For every j ∈ Nwith 1 < j < m+1 the point
◾
j belongs to a through block: Assum-

ing otherwise, forces us to accept the existence of j, j ′ ∈ Nwith 1 < j < j ′ < m+1
such that

◾
j and

◾
j ′ belong to the same block. But then, the uniform color ◦ of [α, β]p

implies

1 ≤ δp(◾ j,◾ j
′) = j ′ − j ≤ m − 2 ≤ m − 1

and thus L(C) ∩ {1, . . . ,m − 1} = ∅, contradicting L(C) ⊆ mZ.
Thus we have shown that α =

◾
1 and

◾
j belong to crossing blocks for every j ∈ N

with 1 < j < m + 1. Because δp(α,
◾
j) = j − 1 for every such j , this proves

[[m − 1]] ⊆ X(C). And that is what we needed to show.
(b) Let (L, K )(C) be given by (mZ,mZ) or (∅,mZ). We adapt the proof of Part (a).

However, this time, we do not yet impose any restriction on m.
Proposition 7.23 assures us that K◦•(C) = K (C) = mZ. Hence, we again find p ∈ C,
a block B of p and legs α, β ∈ B with α = β, with ]α, β[p∩B = ∅ and with
δp(α, β) = m, but this time, such that α is of normalized color ◦ and β of normalized
color •. By the same argument as before we can assume that all points of ]α, β[p
share the same normalized color. Then, the deviating assumption on the colors of α

and β implies m = δp(α, β) = σp(]α, β[p) = |]α, β[p|, which forces [α, β]p to
consist of exactly m + 2 points (rather than m + 1 as in Part (a)), the first m + 1 of
which have normalized color ◦. Once more, we can assume p = P(p, [α, β]p).
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If m = 1, then F({p}) = {2} requires the unique point
◾
2 ∈]

◾
1,
◾
3[p to belong to

a through block, proving 1 ∈ X(C) and thus X(C) = Z as claimed. Hence, suppose
m ≥ 2 in the following.
We prove that only through blocks intersect ]

◾
1,
◾
(m + 2)[p: Supposing that ◾ j and

◾
j ′, where j, j ′ ∈ N and 1 < j < j ′ < m + 2, belong to the same block requires us

to believe, as both
◾
j and

◾
j ′ are ◦-colored, that

1 ≤ δp(◾ j,◾ j
′) = j ′ − j ≤ (m + 1) − 2 = m − 1

and thus L(C) ∩ {1, . . . ,m − 1} = ∅. As this would contradict the assumption
L(C) ⊆ mZ, this cannot be the case.
Now, the conclusion that the blocks of

◾
1 and of

◾
j cross for every j ∈ N with

1 < j < m + 2 and the fact δp(◾1,◾ j) = j − 1 let us deduce [[m]] ⊆ X(C), which
is what needed to see. ��

Proposition 8.4 Let C ⊆ P◦• be a case O category.

(a) If (L, K )(C) = ({0}, {0}), then X(C) = Z\N0 for a subsemigroup N of (N,+).
(b) If (L, K )(C) = (∅, {0}), then there exists a subsemigroup N of (N,+) such that

X(C) = Z\N0 or X(C) = Z\N ′
0.

Proof Let (L, K )(C) be given by ({0}, {0}) or (∅, {0}). We show the two claims jointly in
two steps:

Step 1: First, we prove that there exists a subsemigroup N of (N,+) such that X(C) =
Z\N0 or X(C) = Z\N ′

0. That in itself requires two steps as well.
Step 1.1: Recall from [3, Definition 4.1] that by S0 we denote the set of all p ∈ P◦•

2 with
σp(B) = 0 and δp(α, β) = 0 for all blocks B of p and all α, β ∈ B. We justify that it suffices
to prove

{|z| | z ∈ X(C)}\{0} !⊆ {|z| | z ∈ X(C ∩ S0)} (∗)
in order to verify the assertion of Step 1.
Indeed, in [4, Theorem 8.3, Lemmata 8.1 (b) and 7.16 (c)] it was shown that for every

category I ⊆ S0 there exists a subsemigroup N of (N,+) such that

{|z| | z ∈ X(I)}\{0} = N\N .

The set S0 is a category by [3, Proposition 5.3], which means that so is C ∩S0. Thus, we find
a corresponding subsemigroup N for the special case I = C ∩ S0. If we now suppose (∗),
which can immediately be sharpened to

{|z| | z ∈ X(C)}\{0} = {|z| | z ∈ X(C ∩ S0)}\{0},
that implies

{|z| | z ∈ X(C)}\{0} = N\N .
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As we know X(C) = −X(C) by Proposition 7.23, this is equivalent to

X(C)\{0} = Z\N ′
0

and thus the claim of Step 1. Hence, it is indeed sufficient to show (∗).
Step 1.2:Weprove (∗). As C ⊆ P◦•

2 by Proposition 4.3,we are assured byLemma7.15 and
Proposition 7.23 that X(C) = Xc1,c2(C ∩ P◦•

2 ) for all c1, c2 ∈ {◦, •}. Now, let z ∈ X(C)\{0}
be arbitrary. By definition we find p ∈ C ∩ P◦•

2 and therein crossing blocks B1 and B2 as
well as points α1 ∈ B1 and α2 ∈ B2 such that δp(α1, α2) = z. Then, there exist points
β1 ∈ B1 and β2 ∈ B2 such that α1 = β1 and α2 = β2 and such that either (α1, α2, β1, β2)

or (α2, α1, β2, β1) is ordered in p. As �(C) = {0} by Proposition 7.23 and thus �(p) =
0, we know δp(α2, α1) = −δp(α1, α2) by [5, Lemma 2.1]. Hence, by renaming B1 and
B2 if necessary we can, at the cost of weakening δp(α1, α2) = z to |δp(α1, α2)| = |z|,
assume that (α1, α2, β1, β2) is ordered. As C ∩ P◦•

2 is closed under erasing turns and as
(B1∪B2)∩]α1, α2[p= ∅we can further suppose that no turns T exist in pwith T ⊆]α1, α2[p .
In other words, there is c ∈ {◦, •} such that every point in ]α1, α2[p has normalized color c.

Even further, by Lemma 3.3 none of the previous assumptions are violated by assuming
that p = P(p, [α1, β1]p). Then, β2 is the counterpart of α2 on the upper row, α1 ∈ [β2, α2]p
and β1 /∈ [β2, α2]p . If we let ε be the predecessor of α1, i.e., if ε is the leftmost upper point
of p, then (β2, ε, α1, α2, β1) is ordered.

Recall that there are no turns T in p with T ⊆]α1, α2[p . As p = p∗, there are none
with T ⊆]β2, ε[p either. That means every point in ]α1, α2[p has normalized color c and
every point in ]β2, ε[p normalized color c. We can also say a lot about the blocks of p
which intersect [β2, α2]p: If a point θ1 ∈]α1, α2[p belongs to a through block it must be
connected to its counterpart on the upper row because p ∈ P◦•

2 is projective. If θ1 belongs to
a non-through block instead, then the partner θ2 of θ1 must lie outside [β2, α2]p: Supposing
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otherwise, i.e., θ2 ∈]α1, α2[p , produces a contradiction: If (α1, θi , θ¬i , β2)with i,¬i ∈ {1, 2}
and {i,¬i} = {1, 2} is ordered, then, as all points in [θi , θ¬i ]p are c-colored, the consequence
|δp(θi , θ¬i )| = |]θi , θ¬i ]p| > 0 violates L(C) ⊆ {0}, which follows from K (C) = {0} by
Proposition 7.23.

Define p′:=P(p, [β2, α2]p) ∈ C ∩ P◦•
2 and denote by β ′

2, ε
′, α′

1 and α′
2 the images in p′

of β2, ε, α1 and α2, respectively. In p′ the leftmost lower point β ′
2 and the rightmost lower

point α′
2 form a block. The points ε′, α′

1 ∈ [β ′
2, α

′
2] are each paired with their respective

counterpart on the upper row. In particular the blocks of α′
1 and α′

2 cross in p′.

Our knowledge about the blocks of p intersecting [β2, α2]p lets us draw the following
conclusions about the blocks of p′: A point in ]α′

1, α
′
2[p is either partnered with its reflection

at the center [ε′, α′
1]p′ of the lower row of p′ in ]β ′

2, ε
′[p′ or, as p′ is projective, it is partnered

with its counterpart on the opposite row. As ]β ′
2, ε

′[p′ is uniformly c-colored and ]α′
1, α

′
2[p′

uniformly c-colored, that means that all blocks emanating from ]β ′
2, ε

′[p′∪]α′
1, α

′
2[p are

neutral. But then, all blocks of p′ are neutral. Due to L(C) ⊆ {0} and K (C) = {0}, this
is already enough to know p′ ∈ S0. Because δp′(α′

1, α
′
2) = δp(α1, α2), that proves |z| =

|δp(α1, α2)| = |δp′(α′
1, α2)| ∈ {|z| | z ∈ X(C ∩ S0)}. As z was arbitrary, (∗) holds true and

Part (b) has been proven.
Step 2: In order to prove Part (a) it remains to show 0 ∈ X(C) provided L(C) = {0}. Under

this latter assumption, by Proposition 7.23 we infer K◦◦(C) = {0}. Hence, we find p ∈ C,
therein a block B and legs α, β ∈ B of normalized color ◦ with α = β, with ]α, β[p∩B = ∅

and with δp(α, β) = 0. As in the proof of Proposition 8.3 we can assume that there are no
turns T in p such that T ⊆]α, β[p , i.e. that all points in ]α, β[p have the same normalized
color c ∈ {◦, •}. From

0 = δp(α, β) = σp(]α, β]p) = σp(]α, β[p) + σp({β}) =
{

|]α, β[p| + 1 if c = ◦,

−|]α, β[p| + 1 otherwise

and from |]α, β[p| ≥ 0 it follows that c = • and that ]α, β[p is a singleton set. Emulating
the proof of Proposition 8.3 further, we can assume p = P(p, [α, β]p).
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Then, the lower row [α, β]p = [
◾
1,
◾
3]p of p has coloration ◦ • ◦. As p ∈ P◦•

2 and as p
is projective, the block of

◾
2 is the pair {

◾
2,◾ 2}. That means the blocks of α =

◾
1 and

◾
2

cross, implying 0 = δp(◾1,◾ 2) ∈ X(C). That concludes the proof. ��

9 Step 6: Synthesis

Combining the results from Sects. 4–8, we are able to show the main theorem.

Theorem 9.1 Z(C) ∈ Q for every non-hyperoctahedral category C ⊆ P◦•.

Proof By Lemma 7.23 there exist u ∈ {0} ∪ N, m ∈ N, D ⊆ {0} ∪ [[�m
2 �]] and E ⊆ {0} ∪ N

such that the tuple (�, L, K , X)(C) is given by one of the following:

� L K X

umZ mZ mZ Z\Dm

2umZ m + 2mZ 2mZ Z\Dm

umZ ∅ mZ Z\Dm

{0} {0} {0} Z\E0

{0} ∅ {0} Z\E0

(∗)

We treat the three cases O, B and S individually. The formulaic presentation will mirror
that of Definition 2.5 exactly, to facilitate cross-checking.

Case B: First, let C be case B. Proposition 4.3 (c) implies F(C) = {1, 2}. So, we can
immediately add the column for F(C) to table (∗). Further, Proposition 5.1 (c) shows V (C) =
±{0, 1, 2} if and only if L(C) = ∅ and V (C) = ±{0, 1} otherwise. That allows us to fill in
the column for V (C) as well. The result is that Z(C) concurs with a row of the table

F V � L K X

{1, 2} ±{0, 1, 2} umZ mZ mZ Z\Dm

{1, 2} ±{0, 1, 2} 2umZ m+2mZ 2mZ Z\Dm

{1, 2} ±{0, 1} umZ ∅ mZ Z\Dm

{1, 2} ±{0, 1, 2} {0} {0} {0} Z\E0

{1, 2} ±{0, 1} {0} ∅ {0} Z\E0

for some u ∈ {0}∪N,m ∈ N, D ⊆ {0}∪ [[�m
2 �]] and E ⊆ {0}∪N. Hence, by Definition 2.5,

we have shown Z(C) ∈ Q if C is case B.
Case S: Next, let C be case S. Propositions 4.3 (d) and 5.1 (d) guarantee F(C) = N and

V (C) = Z. Hence, we can fill in the columns for F and V in (∗) once more. Moreover, 0 ∈
L(C) by Proposition 8.1. Thus, we can exclude that (�, L, K , X)(C) is given by the second,
third or fifth rows of (∗). In other words, there are u ∈ {0} ∪ N, m ∈ N, D ⊆ {0} ∪ [[�m

2 �]]
and E ⊆ {0} ∪ N such that Z(C) is given by one of the rows of the following table:

F V � L K X

N Z umZ mZ mZ Z\Dm

N Z {0} {0} {0} Z\E0

And, by Definition 2.5, this means Z(C) ∈ Q for C in case S.
Case O: Lastly, let C be case O. Once more, Propositions 4.3 (b) and 5.1 (b) give, on the

one hand, F(C) = {2} and, on the other hand, V (C) = ±{0, 2} if L(C) = ∅ and V (C) = {0}
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otherwise. That enables us to fill in the columns for F(C) and V (C) in (∗):
F V � L K X

{2} ±{0, 2} umZ mZ mZ Z\Dm

{2} ±{0, 2} 2umZ m+2mZ 2mZ Z\Dm

{2} {0} umZ ∅ mZ Z\Dm

{2} ±{0, 2} {0} {0} {0} Z\E0

{2} {0} {0} ∅ {0} Z\E0

(∗∗)

This is not yet what we claim as this range is not contained in Q. We need to exclude certain
values for u, D and E by taking into account the results of Section 8.2. This we shall do on
a row-by-row basis.

Case O.1: First, suppose (L, K )(C) = (mZ,mZ) for some m ∈ N, as in the first row of
Table (∗∗). Then �(C) ⊆ 2mZ (corresponding to parameters u ∈ 2Z) according to Proposi-
tion 8.2 (b). Moreover, X(C) = Z (corresponding to D = ∅) as seen in Proposition 8.3 (b).
Hence, we can replace the first row of Table (∗∗) by

F V � L K X

{2} ±{0, 2} 2umZ mZ mZ Z

still for parameters u ∈ {0} ∪ N and m ∈ N exactly as before.
Case O.2: Now, proceeding to the second row of Table (∗∗), let (L, K )(C) = (m +

2mZ, 2mZ) for some m ∈ N. By Proposition 8.3 (a) the only two values X(C) can possibly
take are Z and Z\mZ (corresponding to D = ∅ and D = {0}, respectively). Thus, we can
delete the second row of Table (∗∗) and insert the two new rows

F V � L K X

{2} ±{0, 2} 2umZ m+2mZ 2mZ Z

{2} ±{0, 2} 2umZ m+2mZ 2mZ Z\mZ

in its stead, still for parameters m ∈ N and u ∈ {0} ∪ N.
Case O.3: Next, assume (L, K )(C) = (∅,mZ) for some m ∈ N as in row three of

Table (∗∗). Then, in fact, �(C) = {0} as seen in Proposition 8.2 (a). Furthermore, X(C) = Z

by Proposition 8.3 (b). Hence, we rewrite the third row of (∗∗) as
F V � L K X

{2} {0} {0} ∅ mZ Z

depending only on the parameter m ∈ N.
Case O.4: Let (L, K )(C) = ({0}, {0}), i.e., consider the fourth row of Table (∗∗). Then,

X(C) = Z\N0 for some subsemigroup of (N,+) by Proposition 8.4 (a) (corresponding to
E = N being a subsemigroup). Accordingly, we can replace the fourth row of Table (∗∗) by

F V � L K X

{2} ±{0, 2} {0} ∅ {0} Z\N0

for a new table parameter N , running through all subsemigroups of (N,+).
Case O.5: Lastly, suppose (L, K )(C) = (∅, {0}) as in the fifth row of Table (∗∗). In

Proposition 8.4 (a) we showed X(C) is of the form Z\N0 or Z\N ′
0 for some subsemigroup

N of (N,+) (corresponding to E = N and E = {0} ∪ N , respectively). Thus, strike the last
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row of Table (∗∗) and append the two rows

F V � L K X

{2} {0} {0} ∅ {0} Z\N0

{2} {0} {0} ∅ {0} Z\N ′
0

to the table, with N being a subsemigroup of (N,+).
Synthesis in case O: If we combine the results of Cases 1–5, then we can say that there

exist m ∈ N, u ∈ {0} ∪ N and a subsemigroup N of (N,+) such that Z(C) is given by one
of the rows of the following table:

F V S L K X

{2} ±{0, 2} 2umZ mZ mZ Z

{2} ±{0, 2} 2umZ m+2mZ 2mZ Z

{2} ±{0, 2} 2umZ m+2mZ 2mZ Z\mZ

{2} {0} {0} ∅ mZ Z

{2} ±{0, 2} {0} {0} {0} Z\N0

{2} {0} {0} ∅ {0} Z\N0

{2} {0} {0} ∅ {0} Z\N ′
0

Definition 2.5 thus yields Z(C) ∈ Q if C is case O. Hence, the overall claim is true. ��
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