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Abstract
We calculate the automorphism group of certain Enriques surfaces. The Enriques
surfaces that we investigate include very general n-nodal Enriques surfaces and very
general cuspidal Enriques surfaces. We also describe the action of the automorphism
group on the set of smooth rational curves and on the set of elliptic fibrations.
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Mathematics Subject Classification 14J28 · 14J50

1 Introduction

A central theme in algebraic geometry is to study varieties using convex geometry.
The cone of curves of a variety is the convex hull of the numerical equivalence classes
of curves. Its dual is the cone of nef line bundles. Much of the birational geometry of a
variety is encoded in these cones and their interplay with the canonical divisor. While
for Fano varieties the nef cone is rational polyhedral [15, Theorem 3.7], in general the
nef cone is not well understood. For instance it can have infinitely many faces or be
round.
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TheMorrison–Kawamata cone conjecture [12,20] gives a clear picture of the effec-
tive nef cone of a Calabi–Yau variety. It predicts that the action of the automorphism
group on the effective nef cone admits a fundamental domain which is a rational
polyhedral cone.

The conjecture is wide open in dimension three and beyond [18]. But it has been
verified for K3 surfaces by Sterk [33], and for Enriques surfaces by Namikawa [21].
It follows that an Enriques surface admits up to the action of the automorphism group
only finitely many smooth rational curves, finitely many elliptic fibrations, finitely
many projective models of a given degree and its automorphism group is finitely
generated and in fact finitely presented [19, Corollaries 4.15, 4.16].

Naturally, enumerative questions arise:

• Can one explicitly describe a fundamental domain?
• Howmany smooth rational curves, elliptic fibrations or projective models are there
up to the action of the automorphism group?

• Can one give generators for the automorphism group?

Barth and Peters [2] noted that very general Enriques surfaces do not contain smooth
rational curves. Hence their nef cone is round—it is the entire positive cone, and they
proceed to answer the three questions for very general Enriques surfaces.

Enriques surfaces containing a smooth rational curve are called nodal. They form
a subset of codimension one in the moduli space of Enriques surfaces. Very general
nodal Enriques surfaces are treated by Cossec–Dolgachev [8] (see also the works of
Allcock [1] and Peters and Sterk [25]).

When an Enriques surface is deformed to one containing more rational curves
several phenomena working against each other occur. On the one hand the nef cone
gets smaller and on the other hand the automorphism group may change drastically.
Barth and Peters [2, p. 395] write that they do not know whether one can control these
effects. Albeit the behaviour of the nef cone and the automorphism group may be
erratic, the cone conjecture promises that the fundamental domain on the nef cone
stays of finite volume at least. Our first main result (Theorem 3.4) states that we can
control the (change of) volume in a precise way under mild assumptions.

To generalize the aforementioned results of Barth, Peters, Cossec and Dolgachev to
Enriques surfaces withmore nodes, we introduce the notion of (τ, τ̄ )-generic Enriques
surfaces, which is closely related to the root invariant introduced by Nikulin [24]. See
the next subsection for the precise definition. For instance the very general Enriques
surface is (0, 0)-generic, a very general nodal Enriques surface is (A1, A1)-generic
and if Y is an Enriques surface that is very general in the moduli of Enriques surfaces
containing n disjoint smooth rational curves, then Y is (nA1, nA1)-generic. If Y is
very general in the moduli of Enriques surfaces containing two smooth rational curves
whose dual graph is � � (that is, Y is a very general cuspidal Enriques surface),
then Y is (A2, A2)-generic.

Nextwegive algorithms to compute generators for the automorphismgroupAut(Y ),
a fundamental domain for Aut(Y ) on the nef and big cone Nef(Y ) and orbit represen-
tatives for its action on

R(Y ) := the set of smooth rational curves on Y ,
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E(Y ) := the set of elliptic fibrations Y → P
1.

We apply Theorem 3.4 and the aforementioned algorithms to (τ, τ̄ )-generic Enriques
surfaces. This results in our second, series of main results: Theorem 1.18 expresses
the volume of the fundamental domain of Aut(Y ) on the nef cone Nef(Y ) in terms of
the Weyl group of τ , Theorem 1.19 relates the orbits of Aut(Y ) on the set of smooth
rational curves R(Y ) to the connected components of the Dynkin diagram τ and
Theorem 1.21 counts the Aut(Y )-orbits of the set of elliptic fibrations E(Y ) and their
fiber types.

Our new idea is the lattice theoretic result obtained in [6] (see also Dolgachev and
Kondo [9, Chapter 10]). For a lattice L with the intersection form 〈−,−〉, let L(m)

denote the lattice with the same underlying Z-module as L and with the intersection
form m 〈−,−〉. A lattice L of rank n > 1 is said to be hyperbolic if the signature is
(1, n−1). For a positive integer nwith n mod 8 = 2, let Ln denote an even unimodular
hyperbolic lattice of rank n, which is unique up to isomorphism. Borcherds [4,5]
developed a method to calculate the orthogonal group of an even hyperbolic lattice
S by embedding S primitively into L26 and using the result of Conway [7]. This
method has been applied to the study of automorphism groups of K3 surfaces by
many authors. However, the method often requires impractically heavy computation
(see, for example, [11,28]).

On the other hand, in [6], we have classified all primitive embeddings of L10(2)
into L26 and showed that they have a remarkable property (see Theorems 4.2 and 4.3)
which enables us to calculate automorphism groups of Enriques surfaces efficiently
and explicitly for the first time. The resulting speed up (roughly by a factor of 1020 in
the best situation see Remark 6.1) over a more direct approach, allows us to calculate
the automorphism groups of the 184 families of (τ, τ̄ )-generic Enriques surfaces.

1.1 Definition of (�, �̄)-Generic Enriques Surfaces

First, we define (τ, τ̄ )-generic Enriques surfaces. Let L be a lattice. We let the group
O(L) of isometries of L act on L from the right, and write the action as v �→ vg for
v ∈ L ⊗ R and g ∈ O(L). We have a natural identification O(L) = O(L(m)) for
any nonzero integer m. A vector v of a lattice is called a k-vector if 〈v, v〉 = k. A
(−2)-vector is called a root.

Definition 1.1 An ADE-lattice is an even negative definite lattice generated by roots.
AnADE-lattice R has a basis consisting of rootswhose dual graph is aDynkin diagram
of an ADE-type. This ADE-type is denoted by τ(R).

A positive half-cone of a hyperbolic lattice L is one of the two connected com-
ponents of { x ∈ L ⊗ R | 〈x, x〉 > 0 }. Let P be a positive half-cone of a hyperbolic
lattice L . We put

OP (L) := { g ∈ O(L) | Pg = P }.
In [29], we classified the ADE-sublattices of L10 up to the action of OP (L10). Let R
be an ADE-sublattice of L10, and R the primitive closure of R in L10. It turned out
that R is also an ADE-sublattice of L10.
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Proposition 1.2 [29]

(1) Let R′ be anotherADE-sublattice of L10 with the primitive closure R
′
. Then R and

R′ are in the same orbit under the action ofOP (L10) if and only if (τ (R), τ (R)) =
(τ (R′), τ (R

′
)).

(2) The pair (τ, τ̄ ) of ADE-types is equal to (τ (R), τ (R)) of an ADE-sublattice R of
L10 if and only if (τ, τ̄ ) is one of the 184 pairs in Table 1, where the 3rd column
being “–” means τ = τ̄ . 	

Let R be an ADE-sublattice of L10. We denote by ιR : R ↪→ L10 the inclusion.

We define MR to be the Z-submodule of (L10(2)⊕ R(2))⊗ Q generated by L10(2)
and (ιR(v),±v)/2 ∈ (L10⊕ R)⊗Q, where v runs through R, and equip MR with an
intersection form by extending the intersection form of L10(2)⊕ R(2). By definition,
MR is an even hyperbolic lattice with a chosen primitive embedding �R : L10(2) ↪→
MR . If R′ is another ADE-sublattice of L10 such that (τ (R′), τ (R

′
)) = (τ (R), τ (R)),

then, by Proposition 1.2, we have an isometry g : L10
∼−→ L10 that induces an isometry

g|R : R
∼−→ R′, and hence we obtain an isometry g̃ : MR

∼−→ MR′ induced by g⊕g|R ,
which makes the following diagram commutative:

L10(2)
�R
↪→ MR

g ↓� g̃ ↓�
L10(2)

�R′
↪→ MR′ .

By an explicit calculation, we obtain the following:

Proposition 1.3 Let R be anADE-sublattice of L10. Then the orthogonal complement
of �R : L10(2) ↪→ MR is isomorphic to ˜R(2) for some ADE-lattice ˜R. In the 4th
column of Table 1, we give the ADE-type τ(˜R) of ˜R, where “–” means τ(R) =
τ(˜R). 	


Let Y be an Enriques surface. We denote by SY the lattice of numerical equivalence
classes of divisors of Y . It is well-known that SY is isomorphic to L10. Let π : X → Y
be the universal covering of Y , and let SX denote the lattice of numerical equivalence
classes of divisors of the K3 surface X . Then the étale double covering π induces a
primitive embedding

π∗ : SY (2) ↪→ SX .

Definition 1.4 Let (τ, τ̄ ) be one of the 184 pairs in Table 1. An Enriques surface Y is
said to be (τ, τ̄ )-generic if the following conditions are satisfied.

(i) Let TX be the transcendental lattice of X , and ω a nonzero holomorphic 2-form
of X , so that we have Cω = H2,0(X) ⊂ TX ⊗ C. Then the group

O(TX , ω) := { g ∈ O(TX ) | g preserves Cω ⊂ TX ⊗ C }

is equal to {±1}.
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Table 1 ADE-sublattices of L10

No. τ(R) τ (R) τ (˜R) exist c(τ,τ̄ ) rat irec

1 A1 – – 1 1 96C

2 2A1 – – 1 2 96C

3 A2 – – 1 1 96C

4 3A1 – – 1 3 96C

5 A2 + A1 – – 1 2 96C

6 A3 – – 1 1 96C

7 4A1 – – 1 4 96C

8 4A1 D4 D4 1 4 96C

9 A2 + 2A1 – – 1 3 96C

10 A3 + A1 – – 1 2 96C

11 2A2 – – 1 2 96C

12 A4 – – 1 1 40E

13 D4 – – 1 1 96A

14 5A1 – – 1 5 96C

15 5A1 D4 + A1 D4 + A1 1 5 96C

16 A2 + 3A1 – – 1 4 96C

17 A3 + 2A1 – – 1 3 96C

18 A3 + 2A1 D5 D5 1 3 96C

19 2A2 + A1 – – 1 3 96C

20 A4 + A1 – – 1 2 40E

21 D4 + A1 – – 1 2 96A

22 A3 + A2 – – 1 2 96C

23 A5 – – 1 1 40E

24 D5 – – 1 1 40A

25 6A1 D4 + 2A1 D4 + 2A1 1 6 96C

26 6A1 D6 D6 × 1 6 96C

27 A2 + 4A1 – – 1 5 96C

28 A2 + 4A1 D4 + A2 D4 + A2 1 5 96C

29 A3 + 3A1 – – 1 4 96C

30 A3 + 3A1 D5 + A1 D5 + A1 1 4 96C

31 2A2 + 2A1 – – 1 4 96C

32 A4 + 2A1 – – 1 3 40E

33 D4 + 2A1 – – 1 3 96A

34 D4 + 2A1 D6 D6 1 3 96A

35 A3 + A2 + A1 – – 1 3 96C

36 A5 + A1 – – 1 2 40E

37 A5 + A1 E6 E6 1 2 40E

38 D5 + A1 – – 1 2 40A

39 3A2 – – 1 3 96C

40 3A2 E6 3A2 1 3 96C
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Table 1 continued

No. τ(R) τ (R) τ (˜R) exist c(τ,τ̄ ) rat irec

41 A4 + A2 – – 1 2 40E

42 D4 + A2 – – 1 2 96A

43 2A3 – – 1 2 96A

44 2A3 D6 D6 1 2 96C

45 A6 – – 1 1 40C

46 D6 – – 1 1 40A

47 E6 – – 1 1 20E

48 7A1 D6 + A1 D6 + A1 × 1 7 96C

49 7A1 E7 E7 × 1 7 96A

50 A2 + 5A1 D4 + A2 + A1 D4 + A2 + A1 1 6 96C

51 A3 + 4A1 D5 + 2A1 D5 + 2A1 1 5 96C

52 A3 + 4A1 D4 + A3 D4 + A3 1 5 96A

53 A3 + 4A1 D7 D7 × 1 5 96C

54 2A2 + 3A1 – – 1 5 96C

55 A4 + 3A1 – – 1 4 40E

56 D4 + 3A1 D6 + A1 D6 + A1 1 4 96A

57 D4 + 3A1 E7 E7 × 1 4 96A

58 A3 + A2 + 2A1 – – 1 4 96C

59 A3 + A2 + 2A1 D5 + A2 D5 + A2 1 4 96C

60 A5 + 2A1 – – 1 3 40E

61 A5 + 2A1 E6 + A1 E6 + A1 1 3 40E

62 D5 + 2A1 – – 1 3 40A

63 D5 + 2A1 D7 D7 1 3 40A

64 3A2 + A1 – – 1 4 96C

65 3A2 + A1 E6 + A1 3A2 + A1 1 4 96C

66 A4 + A2 + A1 – – 1 3 40E

67 D4 + A2 + A1 – – 1 3 96A

68 2A3 + A1 – – 1 3 96A

69 2A3 + A1 D6 + A1 D6 + A1 1 3 96C

70 2A3 + A1 E7 D6 + A1 1 3 96C

71 A6 + A1 – – 1 2 40C

72 D6 + A1 – – 1 2 40A

73 D6 + A1 E7 E7 1 2 40A

74 E6 + A1 – – 1 2 20E

75 A3 + 2A2 – – 1 3 96C

76 A5 + A2 – – 1 2 40E
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Table 1 continued

No. τ(R) τ (R) τ (˜R) exist c(τ,τ̄ ) rat irec

77 A5 + A2 E7 A5 + A2 1 2 40E

78 D5 + A2 – – 1 2 40A

79 A4 + A3 – – 1 2 40E

80 D4 + A3 – – 1 2 20F

81 D4 + A3 D7 D7 1 2 96A

82 A7 – – 1 1 20D

83 A7 E7 E7 1 1 40C

84 D7 – – 1 1 20B

85 E7 – – 1 ×2 20A

86 8A1 E7 + A1 E7 + A1 × 1 8 96A

87 8A1 D8 D8 × 1 8 96B

88 8A1 E8 E8 × See Remark 1.16

89 A2 + 6A1 D6 + A2 D6 + A2 × 1 7 96C

90 A3 + 5A1 D7 + A1 D7 + A1 × 1 6 96C

91 A4 + 4A1 D4 + A4 D4 + A4 1 5 40E

92 D4 + 4A1 E7 + A1 E7 + A1 × 1 5 96A

93 D4 + 4A1 D8 D8 × 1 5 96A

94 D4 + 4A1 E8 E8 × 2 5 96A

95 A3 + A2 + 3A1 D5 + A2 + A1 D5 + A2 + A1 1 5 96C

96 A5 + 3A1 E6 + 2A1 E6 + 2A1 1 4 40E

97 D5 + 3A1 D7 + A1 D7 + A1 1 4 40A

98 3A2 + 2A1 E6 + 2A1 3A2 + 2A1 1 5 96C

99 A4 + A2 + 2A1 – – 1 4 40E

100 D4 + A2 + 2A1 D6 + A2 D6 + A2 1 4 96A

101 2A3 + 2A1 E7 + A1 D6 + 2A1 1 4 96C

102 2A3 + 2A1 D5 + A3 D5 + A3 1 4 96A

103 2A3 + 2A1 D8 D8 × 1 4 96C

104 2A3 + 2A1 E8 D8 × 1 4 96C

105 A6 + 2A1 – – 1 3 40C

106 D6 + 2A1 E7 + A1 E7 + A1 1 3 40A

107 D6 + 2A1 D8 D8 1 3 40A

108 D6 + 2A1 E8 E8 × 2 3 40A

109 E6 + 2A1 – – 1 3 20E

110 A3 + 2A2 + A1 – – 1 4 96C

111 A5 + A2 + A1 – – 1 3 40E

112 A5 + A2 + A1 E7 + A1 A5 + A2 + A1 1 3 40E

113 A5 + A2 + A1 E6 + A2 E6 + A2 1 3 40E

114 A5 + A2 + A1 E8 E6 + A2 1 3 40E

115 D5 + A2 + A1 – – 1 3 40A

123



Foundations of Computational Mathematics

Table 1 continued

No. τ(R) τ (R) τ (˜R) exist c(τ,τ̄ ) rat irec

116 A4 + A3 + A1 – – 1 3 40E

117 D4 + A3 + A1 D7 + A1 D7 + A1 1 3 96A

118 A7 + A1 – – 1 2 20D

119 A7 + A1 E7 + A1 E7 + A1 1 2 40C

120 A7 + A1 E8 E7 + A1 1 2 40C

121 D7 + A1 – – 1 2 20B

122 E7 + A1 – – 1 ×3 20A

123 E7 + A1 E8 E8 2 ×3 20A

124 4A2 E6 + A2 4A2 1 4 96C

125 4A2 E8 4A2 1 4 96C

126 A4 + 2A2 – – 1 3 40E

127 2A3 + A2 D6 + A2 D6 + A2 1 3 96C

128 A6 + A2 – – 1 2 40C

129 D6 + A2 – – 1 2 40A

130 E6 + A2 – – 1 2 20E

131 E6 + A2 E8 E6 + A2 1 2 20E

132 A5 + A3 – – 1 2 40E

133 D5 + A3 – – 1 2 20F

134 D5 + A3 D8 D8 1 2 40A

135 D5 + A3 E8 D8 1 2 40A

136 2A4 – – 1 2 40E

137 2A4 E8 2A4 1 2 40E

138 D4 + A4 – – 1 2 20F

139 A8 – – 1 1 20D

140 A8 E8 A8 1 1 20D

141 2D4 D8 D8 1 2 20F

142 2D4 E8 E8 × 1 ×1 96A

143 D8 – – 1 1 12B

144 D8 E8 E8 2 ×2 20B

145 E8 – – 2 ×4 12A

146 9A1 E8 + A1 E8 + A1 × See Remark 1.16

147 A2 + 7A1 E7 + A2 E7 + A2 × 1 8 96A

148 A3 + 6A1 D9 D9 × 1 7 96B

149 D4 + 5A1 E8 + A1 E8 + A1 × 2 6 96A

150 D5 + 4A1 D9 D9 × 1 5 40A
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Table 1 continued

No. τ(R) τ (R) τ (˜R) exist c(τ,τ̄ ) rat irec

151 D4 + A2 + 3A1 E7 + A2 E7 + A2 × 1 5 96A

152 2A3 + 3A1 E8 + A1 D8 + A1 × 1 5 96C

153 D6 + 3A1 E8 + A1 E8 + A1 × 2 4 40A

154 A5 + A2 + 2A1 E8 + A1 E6 + A2 + A1 1 4 40E

155 A4 + A3 + 2A1 D5 + A4 D5 + A4 1 4 40E

156 D4 + A3 + 2A1 D9 D9 × 1 4 96A

157 A7 + 2A1 E8 + A1 E7 + 2A1 1 3 40C

158 D7 + 2A1 D9 D9 1 3 20B

159 E7 + 2A1 E8 + A1 E8 + A1 2 ×4 20A

160 4A2 + A1 E8 + A1 4A2 + A1 × 1 5 40E

161 2A3 + A2 + A1 E7 + A2 D6 + A2 + A1 1 4 96C

162 A6 + A2 + A1 – – 1 3 40C

163 D6 + A2 + A1 E7 + A2 E7 + A2 1 3 40A

164 E6 + A2 + A1 E8 + A1 E6 + A2 + A1 1 3 20E

165 A5 + A3 + A1 E6 + A3 E6 + A3 1 3 40E

166 D5 + A3 + A1 E8 + A1 D8 + A1 1 3 40A

167 2A4 + A1 E8 + A1 2A4 + A1 1 3 40E

168 A8 + A1 – – 1 2 20D

169 A8 + A1 E8 + A1 A8 + A1 1 2 20D

170 2D4 + A1 E8 + A1 E8 + A1 × 1 ×2 96A

171 D8 + A1 E8 + A1 E8 + A1 2 ×3 20B

172 E8 + A1 – – 2 ×5 12A

173 A3 + 3A2 E6 + A3 A3 + 3A2 1 4 96C

174 A5 + 2A2 E7 + A2 A5 + 2A2 1 3 40E

175 A7 + A2 E7 + A2 E7 + A2 1 2 40C

176 E7 + A2 – – 1 ×3 20A

177 3A3 D9 D9 × 1 3 96C

178 D6 + A3 D9 D9 1 2 40A

179 E6 + A3 – – 1 2 20E

180 A5 + A4 – – 1 2 40E

181 D5 + A4 – – 1 2 20F

182 A9 – – 1 1 20D

183 D5 + D4 D9 D9 1 2 20F

184 D9 – – 1 ×2 12B

For τ(R), τ (R), τ (˜R), see Propositions 1.2 and 1.3. For exist, see Proposition 1.5. For c(τ,τ̄ ), see Theo-
rem 1.18. For rat, see Theorem 1.19. For irec, see Sect. 4.3
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(ii) Let R be an ADE-sublattice of L10 with (τ (R), τ (R)) = (τ, τ̄ ). Then there
exist isometries g : L10

∼−→ SY and g̃ : MR
∼−→ SX that make the following

commutative diagram

L10(2)
�R
↪→ MR

g ↓� g̃ ↓�
SY (2)

π∗
↪→ SX .

(1.1)

The numbering of the ADE-types in Table 1 of the present article is the same as the
numbering in Table 1.1 of our previous paper [29], and hence the 1st-3rd columns of
the two tables are identical. By definition, a (τ, τ̄ )-generic Enriques surface exists if
and only if the 4th column of the corresponding row of Table 1.1 of [29] contains 0.
Hence we obtain the following:

Proposition 1.5 [29] A (τ, τ̄ )-generic Enriques surface exists if and only if the 5th
column of the corresponding row in Table 1 is not marked by ×. 	

Example 1.6 Consider the case where τ(R) = 8A1 (Nos. 86, 87, 88). By [29], we
have no SX (No. 86), or SX/MR is non-trivial ((Z/2Z)2 for No. 87 and (Z/2Z)3 for
No. 88), that is, the inclusion g̃ is not an isometry. Hence there exist no (τ, τ̄ )-generic
Enriques surfaces with τ = 8A1, even though there exist surfaces with 8 ordinary
nodes birational to Enriques surfaces.

Remark 1.7 The geometry of Enriques surfaces with O(TX , ω) = {±1} but with
SX/MR being non-trivial and finite is left for future studies.

Let PY (resp. PX ) be the positive half-cone of SY (resp. SX ) containing an ample
class. We regard PY as a subspace of PX by the embedding π∗ ⊗ R. We put

Nef X := { x ∈ PX | 〈x, [˜C]〉 ≥ 0 for all curves ˜C on X },
NefY := { y ∈ PY | 〈y, [C]〉 ≥ 0 for all curves C on Y } = PY ∩ Nef X ,

where [D] is the class of a divisor D. The following will be proved in Sect. 3.2.

Proposition 1.8 Let Y and Y ′ be (τ, τ̄ )-generic Enriques surfaces with the universal
coverings π : X → Y and π ′ : X ′ → Y ′, respectively. Then there exist isometries
ψX : SX

∼−→ SX ′ and ψY : SY
∼−→ SY ′ that make the diagram

SY (2)
π∗−→ SX

ψY ↓ ↓ ψX

SY ′(2)
π ′∗−→ SX ′

(1.2)

commutative and that induce NefX ∼= NefX ′ and NefY ∼= NefY ′ .

We denote by aut(Y ) the image of the natural representation Aut(Y ) → OP (SY ).
We embed the set R(Y ) of smooth rational curves C on Y into SY by C �→ [C], and
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the set E(Y ) of elliptic fibrations φ : Y → P
1 into SY by φ �→ [F]/2, where F is a

general fiber of φ. In Sect. 6, we will see that aut(Y ) and its actions on NefY , R(Y ),
E(Y ) depend only on the data π∗ : SY (2) ↪→ SX and Nef X . Therefore we obtain the
following:

Corollary 1.9 Let Y and Y ′ be as in Proposition 1.8. Then there exist an isomorphism
aut(Y ) ∼= aut(Y ′) and bijectionsR(Y ) ∼= R(Y ′) and E(Y ) ∼= E(Y ′) that are compat-
ible with aut(Y ) ∼= aut(Y ′). 	

Remark 1.10 The root invariant of a (τ, τ̄ )-generic Enriques surface (defined by
Nikulin [24]) is equal to (τ,Ker ξ), where ξ : R ⊗ F2 → L10 ⊗ F2 is the linear
homomorphism induced by the inclusion R ↪→ L10 of the ADE-sublattice R of L10
such that (τ, τ̄ ) = (τ (R), τ (R)).

1.2 Chambers

Before we state our geometric results, we define the notion of chambers of hyperbolic
lattices, and recall the classical result of Vinberg [35].

A root r of an even lattice L defines the reflection sr : x �→ x + 〈x, r〉r of L with
respect to r . TheWeyl group W (L) of L is the subgroup of O(L) generated by all the
reflections sr with respect to the roots of L . Let L be an even hyperbolic lattice with a
positive half-cone P . For v ∈ L ⊗ R with 〈v, v〉 < 0, let (v)⊥ denote the hyperplane
of P defined by 〈x, v〉 = 0. Then we have W (L) ⊂ OP (L), and the action of sr on P
is the reflection into the mirror (r)⊥. A closed subset D of P is called a chamber if D
contains a non-empty open subset of P and D is defined by inequalities

〈x, vi 〉 ≥ 0 (i ∈ I ),

where {(vi )⊥}i∈I is a locally finite family of hyperplanes of P . A wall of a chamber
D is a closed subset of D of the form D ∩ (v)⊥ such that (v)⊥ is disjoint from the
interior of D and that D ∩ (v)⊥ contains a non-empty open subset of (v)⊥. We say
that a vector v ∈ L ⊗ R defines a wall D ∩ (v)⊥ of D if D ∩ (v)⊥ is a wall of D
and 〈x, v〉 > 0 holds for one (and hence any) point x in the interior of D. We say that
a closed subset A of P is tessellated by a set {Dj } j∈J of chambers if A is the union
of Dj ( j ∈ J ) and the interiors of two distinct chambers Dj and Dj ′ in the family
{Dj } j∈J have no common points.

Definition 1.11 Let L be an even hyperbolic lattice with a positive half-cone P . An
L-chamber is the closure in P of a connected component of

P\
⋃

r

(r)⊥,

where r runs through the set of roots of L . For an L-chamber D, we denote the
stabilizer of D by

O(L, D) := { g ∈ OP (L) | Dg = D }.
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Fig. 1 The basis e1, . . . , e10 of
L10

� e1

e2 e3 e4 e5 e6 e7 e8 e9 e10

� � � � � � � � �

Remark 1.12 In Sect. 2.4, we extend the notion of L-chambers to the notion of L/M-
chambers in the positive-half cone PM of a primitive lattice M of L .

ThegroupOP (L) acts on the set of L-chambers.The actionof the subgroupW (L)of
OP (L) on this set is free and transitive. Hence an L-chamber is a standard fundamental
domain of the Weyl group W (L). Let D be an L-chamber. Then we have OP (L) =
W (L)�O(L, D), and moreover,W (L) is generated by the reflections sr with respect
to the roots r that define the walls of D.

Recall that L10 is an even unimodular hyperbolic lattice of rank 10. Then L10 has
a basis e1, . . . , e10 consisting of roots whose dual graph is given in Fig. 1. Let P10 be
the positive half-cone of L10 containing e∨1 + · · · + e∨10, where {e∨1 , . . . , e∨10} is the
basis of L∨10 = L10 dual to {e1, . . . , e10}.
Theorem 1.13 (Vinberg [35]) The chamber D0 in P10 defined by 〈x, ei 〉 ≥ 0 for
i = 1, . . . , 10 is an L10-chamber, and {e1, . . . , e10} is the set of roots defining walls
of D0. 	

Definition 1.14 We call an L10-chamber a Vinberg chamber.

Let D0 be a Vinberg chamber. Since the dual graph in Fig. 1 has no non-trivial
symmetries, we have O(L10, D0) = {1} and hence

OP (L10) = W (L10). (1.3)

1.3 Main Results

We investigate the geometry of a (τ, τ̄ )-generic Enriques surface Y . In particular, we
calculate a finite generating set of aut(Y ) and the action of aut(Y ) on NefY ,R(Y ) and
E(Y ).

Remark 1.15 Since our approach relies on the interplay between lattice theory and
hyperbolic geometry, we can, except for the cases Nos. 88 and 146 in Table 1, calculate
the geometric data of a hypothetical (τ, τ̄ )-generic Enriques surface even when it is
not realized by an actual Enriques surface. (See Remark 4.7).

Remark 1.16 For the cases Nos. 88 and 146 in Table 1, we cannot construct SX by
means of the method described in Sect. 4.3. Since there do not exist (τ, τ̄ )-generic
Enriques surfaces in these cases, we leave them blank.

Let Y be an Enriques surface. Recall that aut(Y ) ⊂ OP (SY ) is the image of the
natural homomorphism Aut(Y ) → OP (SY ). Since SY is isomorphic to L10, we have
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Vinberg chambers in the positive half-cone PY . Since NefY is bounded by ([C])⊥,
where C runs through R(Y ), and 〈[C], [C]〉 = −2, the cone NefY is tessellated by
Vinberg chambers. We put

V(NefY ) := the set of Vinberg chambers contained in NefY ,

on which aut(Y ) acts, and define

vol(NefY /aut(Y )) := the number of orbits of the action of aut(Y ) on V(NefY ).

An Enriques surface that is very general in the sense of Barth and Peters [2] is (0, 0)-
generic, and its automorphism group was determined by Barth and Peters [2] and
Nikulin [23, Theorem 10.1.2 (c)] independently.

Theorem 1.17 (Barth and Peters [2], Nikulin [23]) Let Y0 be a (0, 0)-generic Enriques
surface. Then aut(Y0) ⊂ OP (SY0) is equal to the kernel of the reduction homomor-
phism OP (SY0) → O(SY0) ⊗ F2. In particular, the index of aut(Y0) in OP (SY0) is
equal to

221 · 35 · 52 · 7 · 17 · 31 = 46998591897600.

Since a (0, 0)-generic Enriques surface Y0 contains no smooth rational curves, we
have PY0 = NefY0 . Combining this with (1.3), we obtain bijections

OP (SY0) = W (SY0) ∼= V(NefY0).

We define the unit 1BP (BP stands for Barth–Peters) of volume to be

1BP := vol(NefY0/aut(Y0)) = [OP (SY0): aut(Y0)] = 221 · 35 · 52 · 7 · 17 · 31.

Our first main result is as follows. For an ADE-type τ , let W (Rτ ) denote the Weyl
group of the ADE-lattice Rτ with τ(Rτ ) = τ , that is, the finite Coxeter group defined
by the Dynkin diagram of type τ . An automorphism of Y is called numerically trivial
if it acts trivially on SY .

Theorem 1.18 Let Y be a (τ, τ̄ )-generic Enriques surface. Then we have

vol(NefY /aut(Y )) = c(τ,τ̄ )

|W (Rτ )| · 1BP,

where c(τ,τ̄ ) ∈ {1, 2} is the number of numerically trivial automorphisms of Y and is
given in 6th column of Table 1.

In twonon-geometric casesNos. 142 and 170 (Remark 1.15), there exists a contribu-
tion to c(τ,τ̄ ) not coming from a numerically trivial automorphism. (See Theorem 3.11
and Remark 3.12). Theorem 1.18 is in fact obtained from a more general result
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Theorem 3.4 on vol(NefY /aut(Y )). To obtain Theorem 3.4, we prove a result (Propo-
sition 2.1) of the theory of discriminant forms in the spirit of Nikulin [22]. The proof
of these theorems is conceptual. Nevertheless the ability to compute examples played
a crucial role in finding the correct statements.

Next, we calculate explicitly a finite generating set of aut(Y ) and a complete set
of representatives of the orbits of the action of aut(Y ) on NefY . The algorithms we
use for this purpose are variations of a simple algorithm given in Sect. 4.1, which is
an abstraction of the generalized Borcherds’ method described in [28]. By means of
these computational data, we analyze the action of aut(Y ) onR(Y ) and E(Y ). (Recall
that R(Y ) and E(Y ) are embedded into SY .)

Our second main result is as follows.

Theorem 1.19 Let Y be a (τ, τ̄ )-generic Enriques surface.

(1) There exist smooth rational curves C1, . . . ,Cm on Y whose dual graph � is a
Dynkin diagram of type τ . Under the action of aut(Y ), any smooth rational curve
C on Y is in the same orbit as one of C1, . . . ,Cm.

(2) The size ofR(Y )/aut(Y ) is given in the 7th column rat of Table 1. Except for the
cases marked by × in this column, two curves Ci and C j are in the same orbit if
and only if the vertices of the dual graph � corresponding to Ci and C j belong
to the same connected component of �, and hence |R(Y )/aut(Y )| is equal to the
number of connected components of the Dynkin diagram of type τ .

In [2], Barth and Peters also proved the following.

Theorem 1.20 (Barth and Peters [2])Let Y0 be a (0, 0)-generic Enriques surface. Then
Y0 has exactly 17 · 31 = 527 elliptic fibrations modulo aut(Y0).

We calculate E(Y )/aut(Y ) for (τ, τ̄ )-generic Enriques surfaces. Since the tables
span 7 pages, we relegate a part of it to the ancillary files.

Theorem 1.21 Let Y be a (τ, τ̄ )-generic Enriques surface. Then the orbits of the
action of aut(Y ) on the set E(Y ) of elliptic fibrations of Y are indicated in Sect. 6.5
for rank τ ≤ 7 and in the ancillary files [32] for rank τ ≥ 8.

1.4 The Plan of the Paper

This paper is organized as follows. In Sect. 2, we prepare basic notions about finite
quadratic forms, discriminant forms, lattices and chambers. Proposition 2.1 in Sect. 2.1
plays a crucial role in the proof of the volume formula in the next section. The notion
of L/M-chambers given in Sect. 2.4 is the main tool of our computation. In Sect. 3, we
investigate the nef-and-big cone NefY of an Enriques surface Y from the point of view
of L/M-chambers, and prove Proposition 1.8. Then, by means of Proposition 2.1, we
prove a formula (Theorem 3.4) for the volume of NefY /aut(Y ), and in Sect. 3.4, we
deduce Theorem 1.18 from Theorem 3.4.

In Sect. 4, we present a computational procedure on a graph (Procedure 4.1), which
is an abstraction of the generalized Borcherds’ method formulated in [28]. Then we
recall the classification of primitive embeddings L10(2) ↪→ L26 obtained in [6], and

123



Foundations of Computational Mathematics

construct primitive embeddings SY (2) ↪→ SX ↪→ L26 for (τ, τ̄ )-generic Enriques
surfaces Y . In Sect. 5, we prepare some geometric algorithms used in the application
of the generalized Borcherds’ method to (τ, τ̄ )-generic Enriques surfaces. In Sect. 6,
we calculate aut(Y ) and NefY /aut(Y ), and prove Theorems 1.19 and 1.21. The table
of elliptic fibrations is given in Sect. 6.5.

In Sect. 7, we exhibit some examples. In particular, we treat an (E6, E6)-generic
Enriques surface (No. 47 of Table 1) in detail, because we investigated this surface in
[31]. Section 7.1 contains a correction of a wrong assertion made in [31].

In the second author’s webpage and in the repository “zenodo” [32], we put a
detailed computation data made by GAP [34].

Thanks are due to Professor Igor Dolgachev for his comments on the manuscript
of this paper. The authors also thank the referees for many valuable comments.

2 Finite Quadratic Forms, Lattices and Chambers

We fix notions and terminologies about finite quadratic forms, discriminant forms,
lattices and chambers.

2.1 Finite Quadratic Forms

A finite quadratic form is a finite abelian group A with a quadratic form

qA : A→ Q/2Z.

We say that a finite quadratic form is non-degenerate if the bilinear form

bA : A × A→ Q/Z

associated with qA is non-degenerate. The automorphism group of a finite quadratic
form A is denoted by O(A), and we let it act on A from the right. For a subgroup
D ⊂ A, let D⊥ denote the orthogonal complement of D with respect to bA, and let
O(A, D) denote the subgroup { g ∈ O(A) | Dg = D } of O(A).

The following proposition will play a crucial role in the proof of the volume for-
mula (Theorem 3.4).

Proposition 2.1 Let (A, qA) and (B, qB) be non-degenerate finite quadratic forms,
and let DA ⊂ A and DB ⊂ B be subgroups. Suppose that we have an isomorphism
φ : DA

∼−→ DB that induces an isometry (DA,−qA|DA) ∼= (DB, qB |DB) of finite
quadratic forms. Let � ⊂ A ⊕ B be the graph of φ, which is an isotropic subgroup
with respect to qA⊕qB. We put C := �⊥/�. Then qA⊕qB induces a quadratic form
qC on C, and we have a natural homomorphism

{ (g, h) ∈ O(A)× O(B) | �(g,h) = � } → O(C).
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We denote by K the kernel of this homomorphism. Then the homomorphism

iA : K ↪→ O(A)× O(B)→ O(A), (g, h) �→ g

is injective, and the image of iA is equal to the kernel of the natural homomorphism

O(A, DA) → O(D⊥A ).

Proof First we prove that the natural projection �⊥ → B is surjective. Since qA
and qB are non-degenerate, we have natural isomorphisms A ∼= Hom(A, Q/Z) and
B ∼= Hom(B, Q/Z) induced by bA and bB . Hence we have natural isomorphisms
Hom(DA, Q/Z) ∼= A/D⊥A and Hom(DB, Q/Z) ∼= B/D⊥B . We have an isomorphism

−φ∗ : Hom(DB, Q/Z) ∼= Hom(DA, Q/Z)

induced by −φ : DA
∼−→ DB . Combining them, we obtain a homomorphism

ψ : B→→ B/D⊥B ∼= Hom(DB, Q/Z) ∼= Hom(DA, Q/Z) ∼= A/D⊥A . (2.1)

For α ∈ A, we put

ᾱ := α mod D⊥A ∈ A/D⊥A .

Then, for α ∈ A and β ∈ B, we have

ᾱ = ψ(β) ⇐⇒ bA(α, x) = −bB(β, φ(x)) for all x ∈ DA ⇐⇒ (α, β) ∈ �⊥.

(2.2)

In particular, for any β ∈ B, we have α ∈ A such that (α, β) ∈ �⊥.
Next we prove that i A : K → O(A) is injective. Let (1, h) ∈ K be an element of

Ker i A. For β ∈ B, we choose α ∈ A such that (α, β) ∈ �⊥. Since (1, h) acts on
C = �⊥/� trivially, we have (α, β)− (α, βh) = (0, β − βh) ∈ �. Since � ∩ B = 0,
we have βh = β. Since β ∈ B is arbitrary, we have h = 1.

Now we determine the image of i A. “⊂”: Suppose that (g, h) ∈ K . Since (g, h)

preserves �, we see that g = i A(g, h) preserves the image DA of the projection � →
A. For anyα ∈ D⊥A , we have (α, 0) ∈ �⊥. Since (g, h) acts onC = �⊥/� trivially, we
have αg−α ∈ �∩A = 0. Therefore Im i A is contained inKer(O(A, DA)→ O(D⊥A )).

“⊃”: To show the opposite inclusion, we fix g ∈ Ker(O(A, DA) → O(D⊥A )) and
construct h ∈ O(B) such that (g, h) ∈ K . Since g acts on D⊥A trivially, the linear map

lg : A/D⊥A → A, ᾱ �→ αg − α

is well-defined. The image of lg is contained in DA = (D⊥A )⊥: indeed, for any α ∈ A
and y ∈ D⊥A , we have

bA(lg(ᾱ), y) = bA(αg, y)− bA(α, y) = bA(αg, yg)− bA(α, y) = 0.
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We define h : B → B by

βh := β + φlgψ(β),

where ψ is given in (2.1). We show that h ∈ O(B). We put ᾱ = ψ(β). Then we have

qB(βh)− qB(β) = 2bB(β, φlg(ᾱ))+ qB(φlg(ᾱ))

= −2bA(α, αg − α)− qA(αg − α) = 0,

because g ∈ O(A). It only remains to show that (g, h) ∈ O(A) × O(B) preserves
� and acts on C = �⊥/� trivially. Using (2.2) and � ⊂ �⊥, we see that for any
α ∈ DA, we have ᾱ = ψφ(α), and therefore

φ(α)h = φ(α)+ φlg(ᾱ) = φ(α)+ φ(αg)− φ(α) = φ(αg).

Since g preserves DA, we have (α, φ(α))(g,h) = (αg, φ(αg)) ∈ � for any α ∈ DA.
Therefore (g, h) preserves �. Suppose that (α, β) ∈ �⊥. Then we have ᾱ = ψ(β)

by (2.2), and

(αg, βh)− (α, β) = (lg(ᾱ), φlg(ᾱ)) ∈ �.

Therefore (g, h) acts on �⊥/� trivially. 	


Remark 2.2 Proposition 2.1 holds for non-degenerate finite bilinear forms (A, bA) and
(B, bB) as well.

2.2 Discriminant Forms and Overlattices

Let L be an even lattice. We put

L∨ := { x ∈ L ⊗Q | 〈x, v〉 ∈ Z for all v ∈ L },

onwhich O(L) acts naturally. The finite abelian group L∨/L is called the discriminant
group of L . Then

q(x̄) = 〈x, x〉 mod 2Z for x ∈ L∨ and x̄ = x mod L

defines a finite quadratic form q : L∨/L → Q/2Z, which is called the discriminant
form of L . An even lattice L ′ is an overlattice of L if we have L ⊂ L ′ ⊂ L∨ and the
intersection form of L ′ is the extension of that of L . See Nikulin [22] for the details
of the theory of discriminant forms and its application to the enumeration of even
overlattices of a given even lattice.

To illustrate Proposition 2.1, we apply it to two known extreme cases.
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Example 2.3 Let M, N ⊂ L be primitive sublattices of an even lattice L such that
M ⊥ N and rank M + rank N = rank L . Then we have

M ⊕ N ⊂ L ⊂ L∨ ⊂ M∨ ⊕ N∨,

and L is an overlattice of M ⊕ N . Let (A, qA) = (M∨/M, qM ) and (B, qB) =
(N∨/N , qN ) be the respective discriminant forms. Then � = L/(M ⊕ N ) is the
graph of an anti-isometry φ : A ⊃ DA → DB ⊂ B and �⊥/� ∼= L∨/L .

First suppose that L is unimodular. Then, by a result of Nikulin [22], DA = A and
DB = B. Since L∨/L ∼= �⊥/� is trivial, we have

K = {(g, h) ∈ O(A)× O(B): h ◦ φ = φ ◦ g}.

We see that i A : K → O(A) is an isomorphism as predicted by Proposition 2.1.
Indeed, since D⊥A = A⊥ = 0, the homomorphism O(A, DA)→ O(D⊥A ) is trivial.

For the other extreme suppose that M ⊕ N = L . Then DA = 0, DB = 0, K = 1
and D⊥A = A.

2.3 Faces of a Chamber

Let L be a hyperbolic lattice with a positive half-cone P , and D a chamber in P . A
face of D is a closed subset of D that is an intersection of some walls of D. Let f be a
face of D. The dimension dim f of f is the dimension of the minimal linear subspace
of L ⊗R containing f , and the codimension of f is rank L − dim f . The walls of D
are exactly the faces of D with codimension 1.

LetP and D be the closures ofP and D in L⊗R, respectively. A half-line contained
in (P\P) ∩ D is called an isotropic ray of D.

Suppose that D has only finitely many walls, that they are defined by vectors in
L ⊗Q, and that the list of defining vectors of these walls in L ⊗Q is available. Then
we can make the list of faces of D by means of linear programming. For each isotropic
ray R≥0v, we have a unique primitive vector v ∈ L that generates R≥0v, which we
call a primitive isotropic ray of D. We can also make the list of primitive isotropic
rays of D.

2.4 L/M-Chambers

Let (L, 〈 , 〉L) and (M, 〈 , 〉M ) be even hyperbolic lattices with fixed positive half-
cones PL and PM , respectively. Suppose that we have an embedding M ↪→ L that
maps PM into PL . We regard PM as a subspace of PL by this embedding. The notion
of L-chambers was introduced in Sect. 1.2. The following class of chambers plays an
important role in this paper.

Definition 2.4 A chamber DM in PM is called an L/M-chamber if there exists an
L-chamber DL ⊂ PL such that DM = PM ∩ DL . In this case, we say that DM is
induced by DL .
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In particular, an L-chamber is an L/L-chamber.

Definition 2.5 Let N be a negative definite even lattice. For a root r of N , let [r ]⊥
denote the hyperplane of N ⊗ R defined by 〈x, r〉 = 0. The connected components
of (N ⊗ R)\⋃ [r ]⊥, where r runs through the set of roots of N , are called the Weyl-
chambers of N . The Weyl group W (N ) acts simply transitively on the set of Weyl-
chambers.

Remark 2.6 Let DM be an L/M-chamber. Then the number of L-chambers that induce
DM is equal to the number of Weyl-chambers of the orthogonal complement (M ↪→
L)⊥ ofM in L . In particular, if (M ↪→ L)⊥ contains no roots, then each L/M-chamber
is induced by a unique L-chamber.

Definition 2.7 Two distinct L/M-chambers D1 and D2 are adjacent if there exists a
hyperplane (v)⊥ of PM such that D1 ∩ (v)⊥ is a wall of D1, that D2 ∩ (v)⊥ is a wall
of D2, and that D1 ∩ (v)⊥ = D2 ∩ (v)⊥ holds. In this case, we say that D2 is adjacent
to D1 across the wall D1 ∩ (v)⊥.

Let pr : L → M ⊗Q be the orthogonal projection. Then an L/M-chamber is the
closure in PM of a connected component of

PM\
⋃

r

(pr(r))⊥,

where r runs through the set of roots r of L such that 〈pr(r), pr(r)〉M < 0 holds, and
(pr(r))⊥ = PM ∩ (r)⊥ is the hyperplane ofPM defined by pr(r). Hence, for each wall
DM ∩ (v)⊥ of an L/M-chamber DM , there exists a unique L/M-chamber adjacent
to DM across the wall DM ∩ (v)⊥.

Since a root of M is mapped to a root of L by the embedding M ↪→ L , an M-
chamber is tessellated by L/M-chambers. More generally, we have the following
proposition, which is easy to prove:

Proposition 2.8 Suppose that M1 ↪→ M2 ↪→ L is a sequence of embeddings of
even hyperbolic lattices that induces a sequence of embeddings PM1 ↪→ PM2 ↪→
PL of fixed positive half-cones. Then each M2/M1-chamber is tessellated by L/M1-
chambers. 	


If g̃ ∈ OP (L) satisfies Mg̃ = M , then g̃|M ∈ OP (M) preserves the tessellation of
PM by L/M-chambers.

In general, twodistinct L/M-chambers are not isomorphic to eachother. See [11,28]
for examples of K3 surfaces X with a primitive embedding SX ↪→ L26 such that PX

is tessellated by L26/SX -chambers of various shapes.

Definition 2.9 We say that the tessellation of PM by L/M-chambers is reflexively
simple if, for each wall DM ∩ (v)⊥ of an L/M-chamber DM , there exists an isometry
g̃ of L preserving M such that the restriction g̃|M of g̃ to M is an involution that fixes
every point of the hyperplane (v)⊥. Note that, if this is the case, the isometry g̃|M of
M maps DM to the L/M-chamber adjacent to DM across the wall DM ∩ (v)⊥.

The tessellation of PL by L/L-chambers is obviously reflexively simple.
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3 The Cone NefY

Let Y be an Enriques surface with the universal covering π : X → Y . Let ε ∈ Aut(X)

be the deck-transformation of π : X → Y , and we put

SX+ := { v ∈ SX | vε = v }, SX− := { v ∈ SX | vε = −v }.

Then SX+ is equal to the image of π∗ : SY (2) ↪→ SX , and SX− is the orthogonal
complement of SX+. We regard PY as a subspace of PX by π∗ ⊗ R.

3.1 SX/SY(2)-Chambers

It is well-known that NefX is an SX -chamber. Therefore the chamber NefY = PY ∩
NefX is an SX/SY (2)-chamber. Since π is étale, the lattice SX− contains no roots, and
hence each SX/SY (2)-chamber DY is induced by a unique SX -chamber DX , that is,
DY contains an interior point of DX .

Proposition 3.1 The tessellation of PY by SX/SY (2)-chambers is reflexively simple.
More precisely, every wall of an SX/SY (2)-chamber DY is defined by a root r of SY ,
and the reflection sr ∈ OP (SY )with respect to the root r is the restriction sr̃+sr̃−|SY (2)
of the product of two reflections with respect to roots r̃+, r̃− of SX .

Proof Let 〈−,−〉X and 〈−,−〉Y be the intersection forms of SX and SY , respectively.
We denote by (u)⊥X the hyperplane of PX defined by u ∈ SX ⊗ R, and by (v)⊥Y the
hyperplane of PY defined by v ∈ SY ⊗ R. Let DY be an SX/SY (2)-chamber, and let
DY ∩ (v)⊥Y be a wall of DY .

By the definition of SX/SY (2)-chambers, there exists a root r̃ of SX such that
(v)⊥Y = PY ∩ (r̃)⊥X . We first prove that 〈r̃ , r̃ε〉X = 0. Let r̃ be written as vL + vR ,
where vL ∈ SY (2)∨ and vR ∈ S∨X−. We have 〈vL , vL〉X + 〈vR, vR〉X = −2. Since
r̃ε = vL − vR , it is enough to show that 〈vL , vL 〉X = −1. Since

PY ∩ (r̃)⊥X = (vL)⊥Y

is non-empty, we have 〈vL , vL 〉Y < 0. Note that 2vL ∈ SY because 2SY (2)∨ = SY (2).
Since SY is even, 〈vL , vL 〉X = 2〈vL , vL 〉Y must be an integer. Since SX− is negative
definite, we have 〈vR, vR〉X ≤ 0 and hence 〈vL , vL 〉X is−2 or−1. If 〈vL , vL〉X = −2,
then vR = 0 and r̃ = vL ∈ SY (2), which is absurd.

Let s and s′ be the reflections with respect to the roots r̃ and r̃ε of SX , respectively.
By 〈r̃ , r̃ε〉X = 0, we have ss′ = s′s. Since s′ = εsε, we see that ss′ commutes with ε

and hence ss′ preserves PY . The vector r := r̃ + r̃ε is contained in SY . Moreover we
have 〈r , r〉Y = −2 and

(v)⊥Y = PY ∩ (r̃)X = (vL)⊥Y = (r)⊥Y .

Therefore the wall DY ∩ (v)⊥Y of DY is defined by a root r or −r of SY . It is easy to
confirm that the restriction of ss′ to SY is equal to the reflection with respect to the
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root r of SY and therefore maps DY to the SX/SY (2)-chamber D′Y adjacent to DY

across the wall DY ∩ (v)⊥Y = DY ∩ (r)⊥Y . 	


3.2 Proof of Proposition 1.8

We prove Proposition 1.8. By Proposition 1.2, we have isomorphisms ψX and ψY

that make the diagram (1.2) commutative. By Proposition 3.1, we have g̃ ∈ OP (SX )

commuting with ε such that g̃|SY (2) maps NefY to the inverse image of NefY ′ by ψY .
Then the isometries g̃ ◦ ψX : SX ′

∼−→ SX and g̃|SY (2) ◦ ψY : SY ′
∼−→ SY satisfy the

required properties. 	


3.3 TheVolume of NefY/aut(Y)

In this subsection, we give a formula (Theorem 3.4) for vol(NefY /aut(Y )) under the
assumption that

the group O(TX , ω) in Definition 1.4 is {±1}. (3.1)

We put

GX := { g̃ ∈ OP (SX ) | g̃ commutes with ε and acts on S∨X/SX trivially }. (3.2)

Then g̃ �→ (g̃|SX+, g̃|SX−) embeds GX into OP (SX+) × O(SX−). Let GX+ and
GX− denote the images of the projections GX → OP (SX+) and GX → O(SX−),
respectively. When we regard GX+ as a subgroup of OP (SY ) via the identification
SX+ = SY (2) induced by π∗, we writeGY instead ofGX+. Recall that the setR(Y ) of
smooth rational curves on Y is embedded into SY by C �→ [C]. The correspondence

C �→ NefY ∩ ([C])⊥

gives a bijection from R(Y ) to the set of walls of the SX/SY (2)-chamber NefY . We
denote by W (R(Y )) the subgroup of OP (SY ) generated by the reflections s[C] with
respect to the roots [C] ∈ R(Y ). Recall also that aut(Y ) is the image of the natural
representation Aut(Y ) → OP (SY ).

Proposition 3.2 Suppose that Y satisfies (3.1).

(1) The action of GY on PY preserves the set of SX/SY (2)-chambers, and aut(Y ) is
equal to the stabilizer subgroup of NefY in GY .

(2) The group W (R(Y )) is contained in GY as a normal subgroup, and we have
GY = W (R(Y )) � aut(Y ).

Proof Since every g ∈ GY lifts to an element g̃ of GX ⊂ OP (SX ), the action of GY

on PY preserves the tessellation of PY by SX/SY (2)-chambers.
Let aut(X) be the image of the natural representation Aut(X) → OP (SX ). By

the Torelli theorem for complex K3 surfaces ( [3, Chapter VIII]), we have a natural
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embedding

Aut(X) ↪→ OP (SX )× O(TX , ω), (3.3)

and an element (g̃, f ) of OP (SX )×O(TX , ω) belongs to Aut(X) if and only if (g̃, f )
preserves the overlattice H2(X , Z) of SX ⊕ TX and g̃ preserves Nef X . The even
unimodular overlattice H2(X , Z) of SX ⊕ TX induces an isomorphism

iH(X) : S∨X/SX ∼= T∨X /TX

of discriminant groups, and (g̃, f ) preserves H2(X , Z) if and only if the action of g̃ on
S∨X/SX is compatible with the action of f on T∨X /TX via iH(X) (see [22]). Therefore,
by assumption (3.1), an isometry g̃ ∈ OP (SX ) belongs to aut(X) if and only if g̃
preserves NefX and acts on S∨X/SX as ±1.

Let Aut(X , ε) denote the centralizer of ε inAut(X).We have a natural identification
Aut(Y ) ∼= Aut(X , ε)/〈ε〉. Suppose that g ∈ aut(Y ). We will show that g belongs to
the stabilizer subgroup of NefY in GY . It is obvious that g preserves NefY . Let γ̃ be
an element of Aut(X , ε) that induces g on SY . We write γ̃ as (g̃, f ) by (3.3). Note that
ε acts on TX as −1. Hence, replacing γ̃ with γ̃ ε if f = −1, we can assume f = 1.
Then the action g̃ ∈ OP (SX ) of γ̃ on SX induces the trivial action on S∨X/SX , which
means g̃ ∈ GX . Hence g = g̃|SY belongs to GY .

Conversely, suppose that g is an element of the stabilizer subgroup of NefY in
GY . We will show that g ∈ aut(Y ). Let g̃ be an element of GX such that g = g̃|SY .
Since NefY contains an interior point of NefX , g̃ preserves Nef X , and hence g̃ belongs
to aut(X). Let γ̃ = (g̃, f ) be an element of Aut(X) that induces g̃. Since g̃ ∈ GX

commuteswith the actionof ε on SX , thefirst factor of the commutator [γ̃ , ε] ∈ Aut(X)

is 1. Since O(TX , ω) = {±1} is abelian, the second factor of [γ̃ , ε] is also 1. Hence
γ̃ ∈ Aut(X , ε), and therefore g is induced by an element of Aut(Y ). Thus assertion (1)
is proved.

By Proposition 3.1, for each r ∈ R(Y ), the reflection sr = sr̃+sr̃−|SY (2) belongs to
GY , because the reflections sr̃+ and sr̃− act on S∨X/SX trivially and hence sr̃+sr̃− ∈ GX .
Therefore we have W (R(Y )) ⊂ GY . Moreover, by Proposition 3.1 again, we see that
W (R(Y )) acts on the set of SX/SY (2)-chambers transitively.

If C1,C2 ∈ R(Y ) satisfy 〈C1,C2〉Y > 1, then the walls NefY ∩ ([C1])⊥ and
NefY ∩ ([C2])⊥ of NefY do not intersect. Hence each face of NefY with codimension
2 is of the form

NefY ∩ ([C1])⊥ ∩ ([C2])⊥ with 〈C1,C2〉Y ∈ {0, 1},

and we have (s[C1]s[C2])m = 1, where m = 2 if 〈C1,C2〉Y = 0 and m = 3 if
〈C1,C2〉Y = 1. Therefore, by the standard method of geometric group theory (see, for
example, Section 1.5 of [36]), we see that NefY is a standard fundamental domain of
the action of W (R(Y )) on PY , and W (R(Y )) acts on the set of SX/SY (2)-chambers
simply-transitively. Recalling that aut(Y ) is the stabilizer subgroup of NefY inGY , we
have W (R(Y ))∩ aut(Y ) = {1}. Moreover GY is generated by the union ofW (R(Y ))

and aut(Y ).
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It remains to show that W (R(Y )) is a normal subgroup of GY . Let r be a root in
R(Y ) and g an arbitrary element of GY . It is enough to show that g−1sr g belongs to
W (R(Y )). Note that g−1sr g = srg and r g defines a wall of the SX/SY (2)-chamber
DY := NefY g . We have an element w ∈ W (R(Y )) such that DY = NefYw. Then
r ′ := r gw

−1
defines a wall of NefY , and wsrgw−1 = sr ′ is an element of W (R(Y )).

Hence g−1sr g = srg = w−1sr ′w ∈ W (R(Y )). 	

Let (A+, q+) and (A−, q−) be the discriminant forms of SX+ = SY (2) and SX−,

respectively. We put

�X := SX/(SX+ ⊕ SX−) ⊂ A+ ⊕ A−,

and let D+ ⊂ A+ and D− ⊂ A− be the image of the projections of �X . Then �X

is the graph of an isometry (D+, q+|D+) ∼= (D−,−q−|D−), and the discriminant
group of SX is canonically isomorphic to �⊥X /�X . We denote by GX+ and GX−
the images of GX+ and GX− by the natural homomorphisms OP (SX+) → O(A+)

and O(SX−) → O(A−), respectively, and by GX the image of GX by the natural
homomorphism to O(A+) × O(A−). Note that GX is a subgroup of the kernel K of
the natural homomorphism

{ (g, h) ∈ O(A+)× O(A−) | �(g,h)
X = �X } → O(�⊥X /�X ) = O(S∨X/SX ).

Then we have a commutative diagram

GX+ ←− GX −→ GX−
↓↓ ↓↓ ↓↓

GX+
∼←− GX

∼−→ GX−
(3.4)

where the two arrows below are isomorphisms by the first part of Proposition 2.1
applied to (A, B) = (A+, A−) and (A, B) = (A−, A+).

Lemma 3.3 Suppose that Y satisfies (3.1). Then the group

Autnt (Y ) := Ker(Aut(Y ) → aut(Y ))

of numerically trivial automorphisms of Y is isomorphic to the kernel of the natural
homomorphism GX− → GX−.

Proof There is an isomorphismofAutnt (Y )withKer (GX → GX+) given bymapping
a numerically trivial automorphism g to its lift g̃ ∈ Aut(X) acting trivially on the 2-
form ω and restricting to its action on SX . By the diagram (3.4) and GX ⊂ GX+ ×
GX−, the kernel Ker (GX → GX+) injects into Ker(GX− → GX−). Conversely any
element of Ker(GX− → GX−) can be extended to an element of Ker (GX → GX+)

by complementing it with the trivial action of SX+. 	
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Theorem 3.4 Suppose that Y satisfies (3.1). Let O(SX−, D−) be the subgroup of
O(SX−) consisting of isometries g whose action on A− preserves D−. Then we have

GX− = Ker(O(SX−, D−)→ O(D⊥−)). (3.5)

Moreover we have

vol(NefY /aut(Y )) = 1BP
|GX−|

= |Autnt (Y )|
|GX−| 1BP. (3.6)

Proof Recall that we have |GX | = |GX+| = |GX−|. Let GBP be the kernel of the
natural homomorphism OP (SX+) = OP (SY (2)) → O(A+). Then GBP is equal to
aut(Y0) by Theorem 1.17 and hence the index of GBP in OP (SX+) = OP (SY ) is
1BP. If g ∈ GBP, then (g, 1) ∈ OP (SX+) × O(SX−) acts trivially on A+ ⊕ A−, and
hence preserves �X and acts on �⊥X /�X trivially. Therefore the action of (g, 1) on
SX+⊕SX− preserves the overlattice SX , and (g, 1)|SX is an element ofGX . ThusGBP
is contained in GX+ = GY . Since the natural homomorphism OP (SY (2))→ O(A+)

is surjective (see [2]), the index of GBP in GY is equal to |GX+| = |GX−|.
Applying the second part of Proposition 2.1 to (A, B) = (A−, A+), we see that

GX− ⊂ Im i A− = Ker(O(A−, D−) → O(D⊥−)).

Hence the inclusion⊂ in (3.5) is proved. Conversely, let f be an element of the right-
hand side of (3.5), anddenote by f̄ ∈ O(A−) the actionof f on A−. ByProposition2.1,
we have f̄ ∈ Im i A− and hence there exists a unique element h̄ ∈ K such that i A−(h̄) =
f̄ . We put ḡ := i A+(h̄). Since the natural homomorphism OP (SX+) → O(A+) is
surjective, we have g ∈ OP (SX+) that maps to ḡ. Since h̄ = (ḡ, f̄ ) ∈ K , we have
(g, f ) ∈ GX , which implies f ∈ GX−. Thus (3.5) is proved. Moreover we have

vol(NefY /aut(Y )) = vol(PY /GY ) = 1

[GY : GBP] · vol(PY /GBP) = 1BP
|GX−|

,

where the first equality follows from Proposition 3.2. From Lemma 3.3 we get the
second equality of (3.6). 	


Since SX− is negative definite, O(SX−) is a finite group and can be computed easily.
Thus this formula enables us to calculate vol(NefY /aut(Y )).

3.4 Proof of Theorem 1.18

Inwhat followswe calculate the finite groupGX− of a (τ, τ̄ )-generic Enriques surface.
It is closely related to the Weyl group W (Rτ ).

For a sublattice L ′ of a lattice L , we denote byO(L, L ′) the group of isometries of L
preserving L ′. When L is an overlattice of L ′, then O(L, L ′) is the group of isometries
of L ′ preserving the overlattice L , or equivalently the intersection O(L) ∩ O(L ′) in
O(L ⊗Q) = O(L ′ ⊗Q), and hence sometimes is written as O(L ′, L).
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Lemma 3.5 Let Y be (τ, τ̄ )-generic. Recall the commutative diagram (1.1)

L10(2)
�R
↪→ MR

g ↓� g̃ ↓�
SY (2)

π∗
↪→ SX .

Denote by π− : SX → S∨X− the orthogonal projection. Identify MR with SX via g̃.
Then the following equalities hold:

(1) ˜R = SX−, (4) 1
2 R/˜R = D−,

(2) R = π−(2SX ), (5) R∨/˜R = D⊥−,

(3) 1
2
˜R∨/˜R = A−, (6) O(˜R, R) = O(SX−, D−).

Note that we neglect the quadratic forms in (1)–(5) and just consider them as
equalities of abelian groups.

Proof The equality (1) is by the definition.

(2) Note that MR is spanned by Im�R and {(iR(v)± v)/2 | v ∈ R}. Hence π−(MR)

is spanned by 0 and 1
2 R.

(3) As lattices we have ˜R(2) = SX−, and (˜R(2))∨ = 1
2
˜R∨ yields the claim.

(4) By definition, we have π−(SX )/SX− = D−.
(5) Let x ∈ 1

2 R and y ∈ R∨. Then 〈x, y〉MR = 2〈x, y〉R ≡ 0 mod Z and x+˜R ∈ D−.
This shows that R∨/˜R ⊂ D⊥− . Conversely let x + ˜R ∈ D⊥− . For y ∈ R we have
〈x, y〉R = 1

2 〈x, y〉MR = 〈x, 1
2 y〉MR ≡ 0 mod Z because y

2 + ˜R ∈ D− = 1
2 R/˜R.

This shows that x ∈ R∨.
(6) O(˜R, 1

2 R/˜R) = O(˜R, 1
2 R) = O(˜R, R). 	


Let R be an ADE-lattice and � the set of its roots. We fix a subset �+ ⊂ � of
positive roots. There exists a unique Weyl-chamber C of R (see Definition 2.5) such
that for all r ∈ �+ and c ∈ C we have 〈r , c〉 > 0.We callC the fundamental chamber.
The positive roots perpendicular to the walls of C are the so-called simple roots. The
simple roots form a basis of R whose Dynkin diagram is of ADE-type τ(R). As before
we have O(R) = W (R) � O(R,C), where O(R,C) is the stabilizer of C in O(R).
Via the action of O(R,C) on the vertices of the Dynkin diagram, we identify O(R,C)

with the symmetry group Aut(τ (R)) of the Dynkin diagram τ(R), that is, we have

O(R) = W (R) � Aut(τ (R)).

A lattice is called irreducible if it cannot be written as a non-trivial orthogonal sum of
two sublattices. Definite lattices admit an orthogonal decomposition into irreducible
sublattices which is unique up to reordering (cf. [14, 27.1]).

Lemma 3.6 Let R be an ADE-lattice, and let O0(R) be the kernel of the natural
homomorphism O(R) → O(R∨/R). Then we have

[O0(R):W (R)] = n!,
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where n is the number of E8 components of τ(R).

Proof Since reflections with respect to roots act trivially on the discriminant group,
we have W (R) ⊆ O(R)0. Thus it suffices to compute the kernel of

ψ : Aut(τ (R))→ O(R∨/R).

If τ(R) is irreducible, a case by case analysis shows that this map is injective: indeed
for A1, E7 and E8, Aut(τ (R)) = 1; for Ak with k ≥ 1, Dk with k > 4 and E6 the
group Aut(τ (R)) is of order two. A direct computation shows that it acts faithfully on
the discriminant group.

Suppose that the root system τ(R) is reducible. The decomposition of τ(R) into
connected components corresponds to a decomposition of R into an orthogonal sum
of irreducible ADE-lattices, which in turn induces a corresponding decomposition of
the discriminant group R∨/R. The action of Aut(τ (R)) preserves the three decom-
positions. Hence the elements of Kerψ must preserve the components which have a
non-trivial discriminant group, that is, all components which are not of type E8. By the
first part, they must act trivially on these components. Finally, since the E8 diagram
has no symmetry, the elements in the kernel act as a permutation of the connected
components of τ(R) of type E8. 	

Lemma 3.7 Let R be an ADE-lattice of rank at most 10 and ˜R an even overlattice.
Consider the homomorphism

O(R, ˜R) → O(R∨/˜R). (3.7)

If there is a component ˜R j of ˜R with τ(˜R j ) = E8 and τ(˜R j ∩ R) = 2D4, then the
kernel of (3.7) is W (R) � 〈h〉 where h ∈ Aut(τ (R), ˜R) is an involution. Otherwise
the kernel is just the Weyl group W (R).

Proof Let Aut(τ (R), ˜R) ≤ Aut(τ (R)) be the stabilizer of ˜R. Since the elements of
W (R) act trivially on R∨/R, they preserve ˜R and

O(˜R, R) = W (R) � Aut(τ (R), ˜R) ≤ W (R) � Aut(τ (R)).

The elements of W (R) act trivially on the domain of R∨/R � R∨/˜R, so they lie in
the kernel of (3.7). Thus it suffices to compute the kernel of

ϕ : Aut(τ (R), ˜R)→ O(R∨/˜R).

Indeed, the kernel of (3.7) is given by W (R) � Ker ϕ.
Firstwe suppose that τ(R) is irreducible. If R = ˜R, thenW (R) = O0(R)byLemma

3.6, and hence ϕ is injective. Otherwise (as rank R ≤ 10) the pair (τ (R), τ (˜R)) ∈
{(A7, E7), (A8, E8), (D8, E8)}. Suppose we are in the case (A7, E7). Then R∨/R ∼=
Z/8Z and ˜R/R = 4(R∨/R). Then Aut(τ (R)) is of order two and acts as ±1 on
R∨/R which is non-trivial in R∨/˜R ∼= Z/4Z. A similar argument applies to (A8, E8).
Finally the symmetry of the D8 diagram exchanges the two isotropic vectors of its
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discriminant. In particular it does not fix any non-trivial even overlattice which implies
that Aut(τ (R), ˜R) = 1 in the (D8, E8) case. In any case ϕ is injective.

Now suppose that R = ⊕

Ri has several irreducible components Ri and let h ∈
Ker ϕ. Note that h preserves the decomposition R∨ =⊕

R∨i . Let x ∈ R∨i be a nonzero
element.

If xh lies in the same component R∨i as x , then h must preserve it. Hence we may
restrict h to this component and the previous paragraph yields xh = x .

If x and xh lie in different components R∨i and R∨j , then these components are

isomorphic and q(xh − x) = q(xh) + q(x) = 2q(x). Since h ∈ Ker ϕ, we have
xh − x ∈ ˜R Further ˜R/R is totally isotropic with respect to the discriminant form.
Thus q(xh − x) = 2q(x) ≡ 0 mod 2Z, i.e. q(x) ≡ 0 mod Z. If y is any non-trivial
element of R∨i , then xh and yh lie in the same connected component R∨j and the same
reasoning applies. In particular

∀y ∈ R∨i : q(y) ≡ 0 mod Z

which implies that Ri is 2-elementary and qRi has values inZ/2Z. Under the constraint
rank R ≤ 10, this is possible only if τ(Ri ) = τ(R j ) = D4. To sum up ϕ is injective,
except possibly if τ(R) has two D4 components. We analyse this case in detail.

We may assume that R = R1 ⊕ R2 is of type 2D4 and R̃ an overlattice of R. If
˜R = R, then ϕ is injective by Lemma 3.6. Hence we may further assume that R � ˜R.
Suppose there exists a non-trivial element h in the kernel of ϕ. By the previous part
this implies that Rh

1 = R2.
Let e1, e2, e3, e4 be the simple roots of R1 with e4 giving the central vertex of the

Dynkin diagram of type D4, i.e. 〈e4, ei 〉 = 1 for i = 1, 2, 3. Let (e∨1 , . . . , e∨4 ) ∈ R∨1
be the dual basis. The four elements of R∨1 /R1 are represented by e∨1 , e∨2 , e∨3 and e∨4
representing 0. Set fi = ehi ∈ R2. Then f hi = eσ(i) for some permutation σ ∈ S4
with σ(4) = 4. Since h ∈ Ker ϕ, we have ti := e∨i − f ∨i ∈ ˜R for i ∈ {1, 2, 3}. Now
the cosets of 0, t1, t2 and t3 constitute a maximal totally isotropic subspace of R∨/R
contained in ˜R/R. Since ˜R/R is totally isotropic as well, the subspaces must be equal.
We conclude that τ(˜R) = E8. By the same reasoning we have f ∨i − e∨σ(i) ∈ ˜R. As
˜R/R has only four elements, this is possible only if σ = 1. Hence h is an involution
and uniquely determined by ˜R/R. This shows that the kernel of ϕ is of order 2. 	


Lemma 3.8 Let ˜R be an ADE-lattice and �+ the set of its positive roots. Then the
natural map �+ → ˜R/2˜R is injective.

Proof We may assume that ˜R is irreducible. In what follows we explicitly compute
η : �+ → ˜R/2˜R for each case using classical constructions of the ADE-lattices (see
e.g. [10, Theorem 1.2]).

Let (ε1, . . . , εn+1) be the standard basis of Z
n+1. The n(n + 1) roots of the lattice

An =
{

(xi ) ∈ Z
n+1:

n+1
∑

i=1
xi = 0

}
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are given by

�(An) = {αi j = εi − ε j | 1 ≤ i �= j ≤ n + 1}.

Suppose that αi j ≡ αlk mod 2An ⊆ 2Z
n+1. Then we have that εi − ε j + εk − εl ≡ 0

mod 2Z
n+1. This is possible only if each standard basis vector appears twice, i.e.

(i, j) = (k, l) or (i, j) = (l, k) which means that αi j = ±αlk . Since either αlk ∈ �+
or −αlk ∈ �+, the map η is injective.

Let (ε1, . . . , εn) be the standard basis of Z
n , n ≥ 4. The 2n(n − 1) roots of the

lattice

Dn =
{

(xi ) ∈ Z
n :

n
∑

i=1
xi ≡ 0 mod 2

}

are given by ±(εi + ε j ) and ±(εi − ε j ) for 1 ≤ i < j ≤ n. Suppose that ±εi ± ε j ≡
±εk ± εl mod 2Dn . As before this implies that {i, j} = {k, l}. Since

(εi + ε j )− (εi − ε j ) = 2ε j /∈ 2D4,

the map η is injective. We leave the exceptional cases E6, E7, E8 to the reader. 	


Lemma 3.9 Let ˜R =⊕

j∈J ˜R j be anADE-lattice with ˜R j irreducible. Then the kernel
of the natural homomorphism

ψ : O(˜R) = O(˜R(2))→ O( 12
˜R∨/˜R),

where 1
2
˜R∨/˜R is the discriminant form of ˜R(2), is generated by the elements⊕ j∈J g j

with g j = ±1˜R j
if ˜R j is unimodular and g j = 1

˜R j
otherwise.

Proof We identify 1
2
˜R∨/˜R and ˜R∨/2˜R. Let g ∈ Kerψ . Since ˜R ⊆ ˜R∨, g acts trivially

on ˜R∨/2˜R∨. The action of O(˜R) preserves the decomposition ˜R = ⊕

j∈J ˜R j . In

particular g acts on the set J . As ˜R∨/2˜R∨ = ⊕

j∈J ˜R∨j /2˜R∨j and g is in Kerψ we

have j g = j . Hence g must fix each connected component of ˜R and we may and will
assume that ˜R is irreducible.

We tensor the perfect pairing ˜R∨ × ˜R → Z with F2, to obtain a perfect pairing
˜R∨/2˜R∨ × ˜R/2˜R → F2. Since g acts trivially on the first factor, so does it on the
second factor ˜R/2˜R. By Lemma 3.8 �(˜R)/{±1} ∼= �+(˜R) injects into ˜R/2˜R, which
implies that g(r) = ±r for every root r ∈ �(˜R). As any simple root system of ˜R is
connected, the sign is the same for each simple root. Since the simple roots form a
basis, g = ±1.

Set ˜R± = Ker(g ∓ 1) ⊂ ˜R. We apply Proposition 2.1 to the primitive extension

˜R+(2)⊕ ˜R−(2) ⊆ ˜R(2).
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Since g acts trivially on the discriminant group 1
2
˜R∨/˜R of ˜R(2), the implication

g| 1
2

˜R∨+/˜R+
= 1 "⇒ g| 1

2
˜R∨−/˜R−

= 1 (3.8)

holds. By definition g|
˜R− = −1

˜R− and then by the right hand side of (3.8), the

lattice ˜R−(2) must be 2-elementary, i.e. ˜R− is unimodular. In particular ˜R− is a direct
summand of ˜R. But we assumed the latter to be irreducible, so that ˜R ∈ {0, ˜R−}. Thus
g = ±1 if ˜R is unimodular and g = 1 else. 	

Remark 3.10 Let R be an irreducible ADE-lattice. By [10, Proposition 1.5], we have
−1 ∈ W (R) if and only if R contains rank R pairwise orthogonal roots, if and only
if τ(R) is one of An (n ≥ 1), Dn (n ≥ 4, n even), E7, E8.

Theorem 3.11 Let Y be a (τ, τ̄ )-generic Enriques surface, and let R, R, ˜R be as in
Table 1. Let ˜R =⊕

j
˜R j be the decomposition into irreducible components. Then we

have

|GX−| = |W (R)| d(τ,τ̄ )

e(τ,τ̄ )

,

where d(τ,τ̄ ), e(τ,τ̄ ) are given as follows.

d(τ,τ̄ ) :=
{

2 ∃ j such that τ(˜R j ) = E8 and τ(˜R j ∩ R) = 2D4,

1 otherwise,

e(τ,τ̄ ) :=
{

2 ∃ j such that τ(˜R j ) = E8 and ˜R j ∩ R contains 8 orthogonal roots,

1 otherwise.

Hence the value of c(τ,τ̄ ) in Table 1 is equal to e(τ,τ̄ )/d(τ,τ̄ ) = |Autnt (Y )|/d(τ,τ̄ ).

Proof By Theorem 3.4 and Lemma 3.5, we have

GX− = Ker(O(˜R, R) → O(R∨/˜R)),

which, by Lemma 3.7, is given by W (R), or by W (R) � 〈h〉 for some involution
h ∈ Aut(τ (R), ˜R) if there is some component ˜R j with τ(˜R j ) = E8 and τ(˜R j ∩ R) =
2D4. Consider the natural homomorphism ψ : O(˜R) → O( 12

˜R∨/˜R) in Lemma 3.9.
By our dictionary in Lemma 3.5, we have GX− = ψ(GX−). By Lemma 3.9, the
kernel of ψ consists of those g = ⊕ j∈J g j with g j = ±1˜R j

if ˜R j is unimodular and

g j = 1
˜R j

else. Further Kerψ ∩ W (R) consists of those g with g j = ±1 if ˜R j is

unimodular and −1 ∈ W (R ∩ ˜R j ), and g j = 1 else. Now Remark 3.10 yields the
condition for e(τ,τ̄ ). Since the g j = ±1 do not preserve any positive root system,
the involution h is not in Kerψ . This explains the presence of d(τ,τ̄ ). Finally, in the
geometric situation, we have GX− = W (R) (see Remark 3.12 below), and hence
Autnt (Y ) ∼= Ker

(

GX− → GX−
) = Kerψ ∩W (R) gives e(τ,τ̄ ) = |Autnt (Y )|, where

the isomorphism follows from Lemma 3.3. 	
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Remark 3.12 The factor d(τ,τ̄ ) is nontrivial only for Nos. 142 and 170 which are not
realized geometrically. This is explained by an extra “automorphism” of Y which
exchanges two D4 configurations of “smooth rational curves” and acts trivially on
their orthogonal complement in SY . This is not visible in the Weyl group. Thus in the
geometric cases a nontrivial contribution of c(τ,τ̄ ) = e(τ,τ̄ ) is indeed explained by the
presence of a numerically trivial involution of Y .

4 Borcherds’ Method

4.1 An Algorithm on a Graph

The algorithms to prove our main results are variations of the following computational
procedure.

Let (V , E) be a simple non-oriented connected graph, where V is the set of vertices
and E is the set of edges, which is a set of non-ordered pairs of distinct elements of
V . The set V may be infinite. Suppose that a group G acts on (V , E) from the right.
We assume the following.

(VE-1) For any vertex v ∈ V , the set { v′ ∈ V | {v, v′} ∈ E } of vertices adjacent to v

is finite and can be calculated effectively.
(VE-2) For any vertices v, v′ ∈ V , we can determine effectively whether the set

TG(v, v′) := { g ∈ G | vg = v′ } (4.1)

is empty or not, and when it is non-empty, we can calculate an element of
TG(v, v′).

(VE-3) For any v ∈ V , the stabilizer subgroup TG(v, v) of v inG is finitely generated,
and a finite set of generators of TG(v, v) can be calculated effectively.

We define the G-equivalence relation ∼ on V by

v ∼ v′ ⇐⇒ TG(v, v′) �= ∅.

Suppose that V0 is a non-empty finite subset of V with the following properties.

(V0-1) If v, v′ ∈ V0 are distinct, then v � v′.
(V0-2) We put ˜V0 := { v ∈ V | v is adjacent to a vertex belonging to V0 }. Then, for

each v ∈ ˜V0, there exists a vertex v′ ∈ V0 such that v ∼ v′.

For each v ∈ ˜V0, we choose an element h(v) ∈ TG(v, v′), where v′ is the unique
vertex in V0 such that v ∼ v′, and put

H := { h(v) | v ∈ ˜V0 }.

We fix an element v0 ∈ V0.
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Proposition 4.1 The natural mapping

V0 ↪→ V →→ V /∼ = V /G (4.2)

is a bijection, and the group G is generated by the union of TG(v0, v0) and H.

Proof Let 〈H〉 be the subgroup of G generated by H. First we prove that, for any
v ∈ V , there exists an element h ∈ 〈H〉 such that vh ∈ V0. Let an element v ∈ V be
fixed. A sequence

v(0), v(1), . . . , v(l) (4.3)

of vertices is said to be a path from V0 to v〈H〉 if v(i−1) and v(i) are adjacent for
i = 1, . . . , l, the starting vertex v(0) is in V0, and the ending vertex v(l) belongs to the
orbit v〈H〉 of the fixed vertex v under the action of 〈H〉. Since (V , E) is connected
and V0 is non-empty, there exists at least one path from V0 to v〈H〉. Suppose that the
sequence (4.3) is a path from V0 to v〈H〉 of length l > 0. Since v(1) is adjacent to the
vertex v(0) in V0, we have v(1) ∈ ˜V0 and there exists an element h1 := h(v(1)) ∈ H
that maps v(1) to an element of V0. Then

v
h1
(1), . . . , v

h1
(l)

is a path from V0 to v〈H〉 of length l − 1. Thus we obtain a path from V0 to v〈H〉 of
length 0, which implies the claim.

The injectivity of (4.2) follows from property (V0-1) of V0. The surjectivity follows
from the claim above. Suppose that g ∈ G. By the claim, there exists an element
h ∈ 〈H〉 such that vgh0 ∈ V0. By property (V0-1) of V0, we have v0 = v

gh
0 and hence

gh ∈ TG(v0, v0). Therefore G is generated by the union ofH and TG(v0, v0). 	

To obtain V0 and H, we employ Procedure 4.1. This procedure terminates if and

only if |V /G| <∞.

Initialize V0 := [v0], H := {}, and i := 0.
while i < |V0| do

Let vi be the (i+ 1)st entry of the list V0.
Let A(vi) be the set of vertices adjacent to vi.
for each vertex v′ in A(vi) do

Set flag := true.
for each v′′ in V0 do

if TG(v′, v′′) �= ∅ then
Add an element h of TG(v′, v′′) to H.
Replace flag by false.
Break from the innermost for–loop.

if flag = true then
Append v′ to the list V0 as the last entry.

Replace i by i+ 1.
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4.2 17 Primitive Embeddings

Recall that L26 is an even unimodular hyperbolic lattice of rank 26. The L26-chamber
(that is, the standard fundamental domain of W (L26)) was studied by Conway [7].
He constructed a bijection between the set of walls of an L26-chamber D and the set
of vectors of the Leech lattice, and showed that the automorphism group O(L26, D)

of D is isomorphic to the group of affine isometries of the Leech lattice. Using this
result, Borcherds [4,5] developed a method to calculate the orthogonal group of an
even hyperbolic lattice S by embedding S primitively into L26 and investigating the
tessellation of an S-chamber (that is, a standard fundamental domain of W (S)) by
L26/S-chambers.

In [6], we apply this method to S = L10(2). We fix positive half-cones P10 of L10
and P26 of L26. In [6], we have proved the following.

Theorem 4.2 [6] Up to the action of O(L10) and O(L26), there exist exactly 17 prim-
itive embeddings of L10(2) into L26. 	


These 17 primitive embeddings of L10(2) into L26 are named as

12A, 12B, 20A, . . . ,20F, 40A, . . . ,40E, 96A, 96B, 96C, infty.

Recall the notion of being reflexively simple from Definition 2.9.

Theorem 4.3 [6] Suppose that a primitive embedding L10(2) ↪→ L26 is not of
type infty, Then each L26/L10(2)-chamber has only finitely many walls, and they
are defined by roots of L10. Moreover the tessellation ofP10 by L26/L10(2)-chambers
is reflexively simple. 	


The explicit description of the 17 primitive embeddings and L26/L10(2)-chambers
is given in [6,30]. From these data, we see the following. Let L10(2) ↪→ L26 be a
primitive embedding whose type is not infty, and D an L26/L10(2)-chamber. The
automorphism group of D is denoted by

O(L10, D) := { g ∈ OP (L10) | Dg = D }.

Since the walls of D are defined by roots of L10, the chamber D is tessellated by
Vinberg chambers. The volume of D is defined by

vol(D) := the number of Vinberg chambers contained in D.

Let f be a face of D with codimension k. Then the defining roots of the walls of
D containing f form a configuration whose dual graph is a Dynkin diagram of an
ADE-type. The ADE-type of f is the ADE-type of this Dynkin diagram. The closure
D of D in SX ⊗R contains only a finite number of isotropic rays. Let v ∈ SX ∩ D be
a primitive isotropic ray (see Sect. 2.3). Then the defining roots r of walls of D such
that 〈r , v〉 = 0 form a configuration whose dual graph is a Dynkin diagram of an affine
ADE-type. The affine ADE-type of the isotropic ray R>0v is the affine ADE-type of
this Dynkin diagram.
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Example 4.4 Let L10(2) ↪→ L26 be the primitive embedding of type 96C, and D0
an L26/L10(2)-chamber. Then D0 has exactly 96 walls. The group O(L10, D0) is of
order 110592 = 212 · 33, and this group acts on the set of walls of D0 transitively. We
have

vol(D0) = 1BP
72

= 652758220800.

The L26/L10(2)-chamber D0 has 1728+768+144 faces of codimension 2, which are
decomposed into orbits of size 1728, 768, 144 under the action of O(L10, D0). Hence
each wall of D0 is bounded by 36+ 16+ 3 = 55 faces of codimension 2 of D0. The
ADE-types of faces in these orbits are 2A1, 2A1, A2, respectively. The L26/L10(2)-
chamber D0 has 18 + 256 + 256 + 864 isotropic rays, which are decomposed into
orbits of size 18, 256, 256, 864 by the action of O(L10, D0). The affine ADE-types of
isotropic rays of these orbits are 8A1, 4A2, 4A2, 2A1 + 2A3, respectively.

4.3 Constructing SX

Let Y be an Enriques surface with the universal covering π : X → Y . We consider
the following assumption:

we have a primitive embedding SX ↪→ L26 such that the composite

SY (2) ∼= L10(2) ↪→ L26 of π∗ : SY (2) ↪→ SX and SX ↪→ L26 is not of

type infty, and we have the list of walls of an L26/SY (2)-chamber

D0 that is contained in NefY . (4.4)

Suppose that (4.4) holds. ThenPY has the following three tessellations, each of which
is a refinement of the one below.

• by Vinberg chambers,
• by L26/SY (2)-chambers, each of which has only finite number of walls, and
• by SX/SY (2)-chambers, one of which is NefY .

The tessellation of NefY by L26/SY (2)-chambers is very useful in analyzing NefY .
Recall that GY ⊂ OP (SY ) is the image of the projection of GX ⊂ OP (SX ) defined
by (3.2).

Proposition 4.5 Suppose that Y satisfies (3.1) and (4.4). Then the action of GY onPY

preserves the tessellation of PY by L26/SY (2)-chambers. In particular, the action of
aut(Y ) on NefY preserves the tessellation of NefY by L26/SY (2)-chambers.

Proof It is enough to prove that the action of g̃ ∈ GX on PX preserves the tessellation
of PX by L26/SX -chambers. Let idP be the identity of the orthogonal complement
P of SX in L26. Since the action of g̃ on S∨X/SX is 1, the action of (g̃, idP ) on
SX ⊕ P preserves the even unimodular overlattice L26 of SX ⊕ P . Thus g̃ extends to
an isometry of L26, and hence its action on PX preserves the L26/SX -chambers. The
second assertion follows from the fact that aut(Y ) is the stabilizer subgroup of NefY
in GY . 	
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The purpose of this section is to construct a primitive embedding SX ↪→ L26 for
a (τ, τ̄ )-generic Enriques surface Y , so that we can assume (4.4). We start from a
primitive embedding ι : L10(2) ↪→ L26 whose type is not infty and which has a
fixed L26/L10(2)-chamber D0, and then proceed to the construction of SX between
L10(2) ∼= SY (2) and L26 such that the inclusion of L10(2) ∼= SY (2) into SX is the
embedding π∗, and that the fixed L26/L10(2)-chamber D0 is contained in NefY .

Recall that, for a (τ, τ̄ )-generic Enriques surface Y , the lattice SX is obtained from
SY (2) by adding roots of the form (r + v)/2, where r is a root of SY and v is a (−4)-
vector in SX−. To find roots in L26 that yield an appropriate extension from SY (2) to
SX , we search for pairs α = (r , v) of a root r of L10 defining a wall of D0 and a (−4)-
vector v of Qι such that (r + v)/2 is in L26, where Qι is the orthogonal complement
of L10(2) in L26. For a finite set p = {α1, . . . , αm} of such pairs, we consider the
sublattice Mp of L26 generated by L10(2) and the roots (r1+ v1)/2, . . . , (rm + vm)/2
of L26, where αi = (ri , vi ). Suppose that p = {α1, . . . , αm} satisfies the following:
(i) The dual graph of r1, . . . , rm is a Dynkin diagram of some ADE-type τ . By

Proposition 1.2, the primitive closure R of theADE-sublattice R of L10 generated
by r1, . . . , rm is also an ADE-sublattice of L10. Let τ̄ denote the ADE-type of
R.

By Proposition 1.2, the embedding L10(2) ↪→ Mp is isomorphic to L10(2) ↪→ MR ,
and hence, by Proposition 1.3, we see that L10(2) is a primitive sublattice of Mp,
and the orthogonal complement of L10(2) in Mp contains no roots. We consider the
following condition:

(ii) Mp can be embedded primitively into the K3 lattice (an even unimodular lattice
of rank 22 with signature (3, 19)). This condition is checked by calculating the
discriminant form of Mp and applying the theory of genera (see [22]).

Suppose that Mp satisfies condition (ii). Since 22 − rank Mp = 12 − m > 2, the
surjectivity of the period mapping of complex K3 surfaces [3, Chapter VIII] implies
that there exists a K3 surface X withMp ∼= SX such that O(TX , ω) = {±1}.Moreover,
by [13], the K3 surface X has a fixed point free involution εwith the quotientmorphism
π : X → Y = X/〈ε〉 to the Enriques surface Y such that, under suitable choices of
isometries Mp ∼= SX , the embedding L10(2) ↪→ Mp is identified with π∗ : SY (2) ↪→
SX . By the construction of Mp, this Enriques surface Y is (τ, τ̄ )-generic. Thanks to
Proposition 3.1, we can further assume that D0 is contained in NefY by changing the
isometry Mp ∼= SX .

Except for the type (τ, τ̄ ) of Nos 88 and 146, we can find a set p = {α1, . . . , αm}
satisfying condition (i) above using the primitive embedding ι : L10(2) ↪→ L26 given
in the 8th column (irec) of Table 1. If the 5th column (exist) is not marked by×,
then Mp satisfies condition (ii).

Example 4.6 Let ι : L10(2) ↪→ L26 be the primitive embedding of type 96C (see
Example 4.4). Then the even negative definite lattice Qι contains 2208 vectors v of
square-norm −4, and we have 192 pairs α = (r , v) such that (r + v)/2 ∈ L26.
Choosing appropriate subsets from these 192 pairs, we can construct SX for many
types (τ, τ̄ ) (Nos. 1, 2, …).
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Remark 4.7 Even when Mp does not satisfy condition (ii), we can use Mp as the
Néron–Severi lattice SX of a “non-existing K3 surface” X and run the geometric
algorithms below.

5 Geometric Algorithms

We prepare some algorithms that will be used in the application of the generalized
Borcherds’ method to geometric situations.

Let Y be an Enriques surface with the universal covering π : X → Y . We
assume (3.1) and (4.4). First we prepare the following computational data:

(i) an integral interior point aY0 ∈ SY of D0, which is an ample class of Y ,
(ii) the list of roots defining the walls of D0,
(iii) the finite group OP (SY , D0) = { g ∈ OP (SY ) | Dg

0 = D0 },
(iv) the finite group O(SX−), and
(v) the list of (−4)-vectors of SX−.

5.1 Separating Roots

Definition 5.1 Let L be an even hyperbolic lattice with a positive half-cone P , and let
a1, a2 be elements of P ∩ L . We say that a hyperplane (v)⊥ of P separates a1 and
a2 if 〈v, a1〉 and 〈v, a2〉 are nonzero and have different signs. We say that a vector
v ∈ L ⊗Q with 〈v, v〉 < 0 separates a1 and a2 if (v)⊥ separates a1 and a2.

By an algorithm given in [27], we can calculate, for any a1, a2 ∈ P ∩ L , the set of
roots of L that separate a1 and a2.

5.2 Splitting Roots

Definition 5.2 We say that a root r of SY splits in SX if there exists a root r̃ of SX such
that π∗(r) = r̃ + r̃ε.

A root r of SY splits in SX if and only if there exists a (−4)-vector v of SX−
such that (π∗(r) + v)/2 ∈ SX . Hence we can effectively determine whether a given
root r of SY splits in SX or not. Moreover, when r splits, we can calculate the roots
r̃ = (π∗(r)+ v)/2 and r̃ε = (π∗(r)− v)/2 of SX such that π∗(r) = r̃ + r̃ε.

Suppose that a root r of SY satisfies that NefY ∩ (r)⊥ contains a non-empty open
subset of (r)⊥ and that 〈r , aY 〉 > 0 for an ample class aY of Y . Then the following
are equivalent:

• NefY ∩ (r)⊥ is a wall of NefY (that is, the hyperplane (r)⊥ is disjoint from the
interior of NefY ),

• r splits in SX , and
• r is the class of a smooth rational curve C on Y .

In this case, the roots r̃ and r̃ε of SX are the classes of the smooth rational curves ˜C
and ˜Cε on X such that π−1(C) = ˜C + ˜Cε.
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5.3 Membership Criterion of GY in OP (SY)

An element g of OP (SY ) belongs to GY if and only if there exists an isometry h ∈
O(SX−) such that the action of (g, h) on SX+ ⊕ SX− preserves the overlattice SX and
that g̃ := (g, h)|SX acts on S∨X/SX trivially. Since we have the list of elements of the
finite group O(SX−), we can determine whether an element g ∈ OP (SY ) belongs to
GY or not, and if g ∈ OP (SY ), we can calculate a lift g̃ ∈ GX of g.

5.4 Membership Criterion of aut(Y) in GY

Suppose that g ∈ GY , and let g̃ ∈ GX be a lift of g. Recall from Proposition 3.2
that g belongs to aut(Y ) if and only if g preserves NefY , or equivalently g̃ preserves
NefX . Hence g ∈ aut(Y ) holds if and only if one of the following conditions that are
mutually equivalent is satisfied:

• For any ample classes aX and a′X of X , there exist no root of SX separating ag̃X
and a′X .• For any ample classes aY and a′Y of Y , any roots of SY separating agY and a′Y does
not split in SX .

• There exist ample classes aX and a′X of X such that there exist no roots of SX
separating ag̃X and a′X .• There exist ample classes aY and a′Y of Y such that any root of SY separating agY
and a′Y does not split in SX .

Thuswe can determine effectivelywhether a given isometry g ∈ GY belongs to aut(Y )

or not, because we have at least one ample class aY0 of Y .

5.5 Criterion for aut(Y)-Equivalence

Recall from Theorem 4.3 that, for every L26/SY (2)-chamber D, we have an isometry
g ∈ OP (SY ) such that D = Dg

0 . Let D1 and D2 be L26/SY (2)-chambers. Suppose
that we have isometries g1, g2 ∈ OP (SY ) such that D1 = Dg1

0 and D2 = Dg2
0 . Then

the set

isoms(D1, D2) := { g ∈ OP (SY ) | Dg
1 = D2 } = g−11 · OP (SY , D0) · g2

is finite, and can be explicitly calculated. Therefore we can calculate the set

isoms(Y , D1, D2) := aut(Y ) ∩ isoms(D1, D2)

explicitly, and in particular, we can calculate the group aut(Y , D) := isoms(Y , D, D)

for an L26/SY (2)-chamber D.
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6 Proofs of Main Theorems

Wepresent algorithms that proveTheorems 1.19 and 1.21. LetY be anEnriques surface
with the universal covering π : X → Y . Suppose that Y is (τ, τ̄ )-generic, where (τ, τ̄ )

is not equal to No. 88 nor No. 146 in Table 1, so that we can assume (3.1) and (4.4).

6.1 Generators of aut(Y) and Representatives of NefY/aut(Y)

We calculate a finite generating set of aut(Y ) and a complete set of representatives of
NefY /aut(Y ). This calculation affirms Theorem 1.18 computationally. Moreover the
results will be used in the proofs of Theorems 1.19 and 1.21 below.

Let (V , E) be the graph where V is the set of L26/SY (2)-chambers contained in
NefY and E is defined by the adjacency relation of L26/SY (2)-chambers. LetG be the
group aut(Y ), and let v0 ∈ V be the L26/SY (2)-chamber D0 in NefY . Let D = Dg

0 be
an L26/SY (2)-chamber contained in NefY , where g ∈ OP (SY ). Then we can calculate
the set of roots defining the walls of D by mapping the set of roots defining the walls
of D0 by the isometry g. For each root r defining a wall of D, the chamber Dsr = Dgsr

0
adjacent to D across the wall D ∩ (r)⊥ of D is contained in NefY if and only if r
does not split in SX . Therefore we can determine Dsr ⊂ NefY or not by the method in
Sect. 5.2. Therefore condition (VE-1) in Sect. 4.1 is satisfied. Since we can calculate

isom(Y , Dg
0 , Dg′

0 ) for any g, g′ ∈ OP (SY ) by Sect. 5.5, conditions (VE-2) and (VE-3)
are also satisfied. Therefore we can apply Procedure 4.1 to the graph (V , E) and the
group G, and obtain a complete set V0 of representatives of orbits of the action of G
on V , the stabilizer subgroups isom(Y , D, D) = aut(Y , D) of these representatives
D ∈ V0, and a generating set

G := H ∪ aut(Y , D0)

of aut(Y ). Then we have

vol(NefY /aut(Y )) = vol(D0)
∑

D∈V0

1

|aut(Y , D)| . (6.1)

Thus Theorem 1.18 is computationally affirmed.

Remark 6.1 The amount of computation of Procedure 4.1 grows quadratically as
|V /G| becomes large, because we have to check TG(v, v′) = ∅ for all pairs of distinct
v, v′ ∈ V0. We could calculate a finite generating set of aut(Y ) by using, naively,
the graph (V ′, E ′), where V ′ is the set of Vinberg chambers contained in NefY and
E ′ is the adjacency relation of Vinberg chambers. However, the size of V ′/aut(Y )

is approximately vol(D0) times the size of V /aut(Y ). Thus, very roughly speaking,
using the primitive embedding SY (2) ↪→ L26 of type 96C gives us computational
advantage of multiplicative factor the square of vol(D0) = 652758220800.
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6.2 CalculatingRtemp, Etemp andGX

From V0 and G calculated above, we compute the following data, which will be used
in Sects. 6.3 and 6.4.

Recall that R(Y ) is embedded in SY by C �→ [C]. For each D ∈ V0, let R(Y , D)

be the set of roots r = [C] inR(Y ) such that D∩(r)⊥ is a wall of D. Since D ⊂ NefY ,
a root r defining a wall of D belongs to R(Y ) if and only if r splits in SX . Therefore
we can calculate R(Y , D) by the method in Sect. 5.2. We put

Rtemp :=
⋃

D∈V0
R(Y , D).

Then the mapping

Rtemp ↪→ R(Y )→→R(Y )/aut(Y )

is surjective. Via the generating set G, we can generate (pseudo-)random elements of
aut(Y ) = 〈G〉. For [C], [C ′] ∈ Rtemp, if we find g ∈ aut(Y ) such that [C]g = [C ′],
then we remove [C ′] from Rtemp. Repeating this process many times, we obtain a
smaller subset R′temp of R(Y ) that is mapped toR(Y )/aut(Y ) surjectively.

Let φ : Y → P
1 be an elliptic fibration of Y , and F a general fiber of φ. Then

fφ := [F]/2 ∈ SY is a primitive isotropic ray (see Sect. 2.3 for the definition)
contained in the closure of NefY in PY . For each D ∈ V0, let E(Y , D) be the set of
primitive isotropic rays contained in the closure D of D in PY . We put

Etemp :=
⋃

D∈V0
E(Y , D).

Then the mapping

Etemp ↪→ E(Y )→→ E(Y )/aut(Y )

is surjective. As above, from Etemp and using G, we obtain a smaller subset E ′temp of
E(Y ) that is mapped to E(Y )/aut(Y ) surjectively.

Let Aut(X , ε) be the centralizer of ε ∈ Aut(X) in Aut(X), and let aut(X , ε) be the
image of Aut(X , ε) in aut(X). We write an element γ̃ ∈ Aut(X) as (g̃, f ) by (3.3).
Since O(TX , ω) = {±1} is abelian, we see that γ̃ commutes with ε ∈ Aut(X) if and
only if g̃ commutes with ε ∈ aut(X). Hence aut(X , ε) is equal to the centralizer of ε ∈
aut(X) in aut(X). By the Torelli theorem (see the proof of Proposition 3.2), an element
g̃ of OP (SX ) belongs to aut(X , ε) if and only if g̃ acts on S∨X/SX as ±1, preserves
NefX , and commutes with ε ∈ OP (SX ). Let aut(X , ε)0 be the group consisting of
elements g̃ ∈ aut(X , ε) that act on S∨X/SX as 1.We have aut(X , ε)0 = aut(X , ε)∩GX .

The restriction homomorphism g̃ �→ g̃|SY gives a surjective homomorphism
aut(X , ε) → aut(Y ). We calculate the kernel

K := Ker(aut(X , ε) → aut(Y )).
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The kernel K is naturally embedded into O(SX−) by g̃ �→ g̃|SX−. We put

K0 := Ker(aut(X , ε)0 → aut(Y )) ⊂ GX .

By definition K0 acts trivially on S∨X+/SX+ and by Proposition 2.1 it must act trivially
on S∨X−/SX− as well. Hence, regarded as a subgroup of GX− ⊂ O(SX−), K0 is
contained in the kernel of

ψ : GX− → O(S∨X−/SX−).

Conversely the elements of Kerψ can be extended by the identity on SX+ to elements
of GX which trivially preserve NefY . Hence they are induced by automorphisms of
Y and we have K0 = Kerψ . The kernel of ψ is explicitly computed in the proof of
Theorem3.11. Its order is given by eτ,τ̄ ∈ {1, 2}. Suppose that eτ,τ̄ = 2. If ε ∈ K0, then
K = K0 = 〈ε〉. This is the case if in addition τ(˜R) = E8. Otherwise K = K0 × 〈ε〉
is of order 4.

For each g in the generating set G of aut(Y ), we calculate a lift g̃ ∈ aut(X , ε) of g,
and put

GX := { g̃ | g ∈ G } ∪ K .

Then aut(X , ε) is generated by GX .

6.3 Rational Curves on Y

We prove Theorem 1.19. By the construction of SX given in Sect. 4.3, we have a set
of splitting roots that define some walls of D0 ⊂ NefY and form the dual graph of
ADE-type τ . Therefore the existence of C1, . . . ,Cm in assertion (1) is proved.

Let C be a smooth rational curve on Y , and r := [C] the class of C . Let ˜VC be
the set of L26/SY (2)-chambers D such that D ∩ (r)⊥ is a wall of D and that D is
located on the same side of (r)⊥ as NefY . Let D be an element of ˜VC , and suppose
that F := D ∩ (r)⊥ ∩ (r ′)⊥ is a face of codimension 2 of D that is a boundary of
the wall D ∩ (r)⊥, where r ′ is a root of SY defining a wall of D. Then there exists a
unique element D′ of ˜VC such that D∩ D′ = F holds. We say that this chamber D′ is
adjacent in ˜VC to D across F . This L26/SY (2)-chamber D′ is calculated as follows.
As is seen from the set of faces of L26/SY (2)-chambers (see [30]), we have 〈r , r ′〉 = 0
or 〈r , r ′〉 = 1. Let s and s′ be the reflections with respect to the roots r = [C] and r ′,
respectively. Then

D′ =
{

Ds′ if 〈r , r ′〉 = 0,

Dss′ if 〈r , r ′〉 = 1.

Suppose that D is contained in NefY . Then D′ is contained in NefY if and only if r ′ is
not the class of a smooth rational curve on Y , or equivalently, r ′ does not split in SX .
We consider the graph (VC , EC ), where VC is the set of L26/SY (2)-chambers D ∈ ˜VC
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contained in NefY , and EC is the restriction to VC ⊂ ˜VC of the adjacency relation on
˜VC defined above. Then the stabilizer subgroup

GC := aut(Y ,C) = { g ∈ aut(Y ) | r g = r }

of C in aut(Y ) acts on (VC , EC ). For D, D′ ∈ VC , we have

TG(D, D′) = { g ∈ isoms(Y , D, D′) | r g = r },

where TG(D, D′) ⊂ GC is defined by (4.1), and isoms(Y , D, D′) is defined in
Sect. 5.5. Therefore (VC , EC ) and GC satisfy conditions (VE-1), …, (VE-3) in
Sect. 4.1. We apply Procedure 4.1 to every C ∈ R′temp and obtain a complete set
VC,0 of representatives of orbits of the action of GC on VC .

Two elements C and C ′ of R′temp are contained in the same orbit under the action
of aut(Y ) on R(Y ) if and only if we have one of the following conditions that are
mutually equivalent.

• Let D be an arbitrary element of VC,0. Then there exists an L26/SY (2)-chamber D′
in VC ′,0 such that isoms(Y , D, D′) contains an isometry g such that [C]g = [C ′].

• There exist a pair of L26/SY (2)-chambers D ∈ VC,0 and D′ ∈ VC ′,0 and an
isometry g ∈ isoms(Y , D, D′) such that [C]g = [C ′].

Applying this method to all pairs C,C ′ of distinct elements of R′temp, we obtain a
complete set of representatives C ′1, . . . ,C ′k of orbits of the action of aut(Y ) onR(Y ).
We then apply this method to the representatives C ′1, . . . ,C ′k and the smooth rational
curves C1, . . . ,Cm in assertion (1), and complete the proof of Theorem 1.19.

The algorithm given above is a priori guaranteed to work. A posteriori, Theo-
rem 1.19 can be verified by the following simple strategy. Let aut(X , ε)|SX− be the
image of the homomorphism

aut(X , ε) → O(SX−)

given by g̃ �→ g̃|SX−. Since we have calculated a finite generating set GX of aut(X , ε),
we can calculate the elements of the finite group aut(X , ε)|SX−. LetC,C ′ be elements
ofR(Y ). If the orbit of {±vC } ⊂ SX− by aut(X , ε)|SX− and that of {±vC ′ } are disjoint,
then the orbits of C and C ′ by aut(Y ) are disjoint. Even though the converse does not
necessarily hold, we know a posteriori that once the size of R′temp is small enough,
this separates the orbits of R′temp.

6.4 Elliptic Fibrations of Y

Letφ : Y → P
1 be an elliptic fibrationofY .Weconsider the followinggraph (Vφ, Eφ).

We define Vφ to be the set of L26/SY (2)-chambers D contained in NefY such that the
closure D of D in SY ⊗ R contains the primitive isotropic ray fφ = [F]/2, where F
is a general fiber of φ, and Eφ to be the set of pairs of adjacent L26/SY (2)-chambers
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in Vφ . The stabilizer subgroup

Gφ := aut(Y , φ) := { g ∈ aut(Y ) | f gφ = fφ }

of φ in aut(Y ) acts on (Vφ, Eφ). Then condition (VE-1) is satisfied. Indeed, the set
of L26/SY (2)-chambers in Vφ adjacent to D ∈ Vφ is the set of all Dsr , where r runs
through the set of non-splitting roots of SY defining walls of D such that 〈r , fφ〉 = 0.
For D, D′ ∈ Vφ , the subset TG(D, D′) of Gφ is the set of isometries belonging to
isoms(Y , D, D′) that fixes fφ . Therefore (VE-2) and (VE-3) are also satisfied.

We apply Procedure 4.1 to every φ ∈ E ′temp and obtain a complete set Vφ,0 of
representatives of orbits of the action of Gφ on Vφ . We also obtain a finite generating
set Gφ of the stabilizer subgroup aut(Y , φ).

The set �φ of classes of smooth rational curves C contained in some fiber of φ is
calculated as follows. Let aY be an ample class of Y . Every class [C] ∈ �φ satisfies
〈[C], fφ〉 = 0 and 0 < 〈[C], aY 〉 < 2〈 fφ, aY 〉. We calculate the set �′ of all roots r
of SY satisfying 〈r , fφ〉 = 0 and 0 < 〈r , aY 〉 < 2〈 fφ, aY 〉. Then r ∈ �′ belongs to
�φ if and only if r splits in SX (see Sect. 5.2) and there exist no roots r ′ ∈ �φ such
that 〈r ′, aY 〉 < 〈r , aY 〉 and 〈r , r ′〉 < 0. Therefore we can calculate �φ by sorting the
elements r of �′ according to 〈r , aY 〉 and applying the above criterion to r ∈ �′ in
this order.

Each connected component of the dual graph of roots in �φ corresponds to a
reducible fiber of φ, and is the Dynkin diagram of an affine ADE-type. Let � be
a connected component. The weighted sum of roots in � with appropriate weights
according to the ADE-type of � (see, for example, [26, Theorem 5.12]) is either fφ
or 2 fφ . The former case occurs when the corresponding reducible fiber is a multiple
fiber, while the latter occurs when the fiber is non-multiple.

Let φ′ : Y → P
1 be another element of E ′temp. Then φ and φ′ are contained in the

same orbit under the action of aut(Y ) on E(Y ) if and only if the following holds. Let D
be an element of Vφ,0. Then there exists D′ ∈ Vφ′,0 such that isoms(Y , D, D′) contains
an isometry that maps fφ to fφ′ . Note that D′ can be computed explicitly. Applying
this method to all pairs φ, φ′ of distinct elements of E ′temp, we obtain a complete set
of representatives of the action of aut(Y ) on E(Y ).

6.5 Table of Elliptic Fibrations

Let φ : Y → P
1 be an elliptic fibration of an Enriques surface Y . Then φ has exactly

two multiple fibers, and both of them are of multiplicity 2. In the table below, the first
column shows the ADE-types of non-multiple reducible fibers, and the second column
shows the ADE-types of multiple reducible fibers. The third column gives the number
of elliptic fibrations modulo aut(Y ). See [32] for the cases with rank τ ≥ 8.

No. 1: (A1, A1)

none none 136
A1 none 255

No. 2: (2A1, 2A1)

none none 36
none A1 1
A1 none 128
2A1 none 126

No. 3: (A2, A2)

A1 none 136
A2 none 119

No. 4: (3A1, 3A1)
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none none 10
A1 none 48
A1 A1 3
2A1 none 96
3A1 none 60

No. 5: (A2 + A1, A2 + A1)

none A1 1
A1 none 36
A2 + A1 none 63
2A1 none 63
A2 none 28

No. 6: (A3, A3)

none A2 1
2A1 none 36
A2 none 64
A3 none 54

No. 7: (4A1, 4A1)

none none 3
A1 none 16
2A1 none 48
2A1 A1 6
3A1 none 64
4A1 none 25

No. 8: (4A1, D4)

none none 10
none 2A1 3
2A1 none 96
4A1 none 60

No. 9: (A2 + 2A1, A2 + 2A1)

A1 none 10
A1 A1 2
A2 + A1 none 32
2A1 none 32
A2 + 2A1 none 30
3A1 none 30
A2 none 6
A2 A1 1

No. 10: (A3 + A1, A3 + A1)

A1 A1 1
A1 A2 1
A2 + A1 none 32
A3 + A1 none 30
2A1 none 10
3A1 none 15
A2 none 16
A3 none 12

No. 11: (2A2, 2A2)

none A1 1
A2 + A1 none 56
2A1 none 35
2A2 none 35

No. 12: (A4, A4)

none A2 1
A2 + A1 none 36
A3 none 27
A4 none 27

No. 13: (D4, D4)

none A3 3
4A1 none 10
A3 none 48
D4 none 20

No. 14: (5A1, 5A1)

none none 1
A1 none 5
2A1 none 20
3A1 none 40
3A1 A1 10
4A1 none 40
5A1 none 5

No. 15: (5A1, D4 + A1)

none none 3
A1 none 4
A1 2A1 3
2A1 none 24
3A1 none 48
3A1 A1 4
4A1 none 16
5A1 none 24

No. 16: (A2 + 3A1, A2 + 3A1)

A1 none 3
A2 + A1 none 12
A2 + A1 A1 3
2A1 none 12
2A1 A1 3
A2 + 2A1 none 24
3A1 none 24
A2 + 3A1 none 12
4A1 none 13
A2 none 1

No. 17: (A3 + 2A1, A3 + 2A1)

A2 + A1 none 16
A3 + A1 none 16
2A1 none 3
2A1 A1 2
2A1 A2 1
A2 + 2A1 none 16
A3 + 2A1 none 13
3A1 none 8
4A1 none 6
A2 none 4
A3 none 2
A3 A1 1

No. 18: (A3 + 2A1, D5)

none A2 + A1 1
none 2A1 1
A2 + A1 none 32
2A1 none 10
A3 + 2A1 none 30
4A1 none 15
A3 none 6

No. 19: (2A2 + A1, 2A2 + A1)

A1 A1 1
A2 + A1 none 12
2A2 + A1 none 15
2A1 none 10
A2 + 2A1 none 30
3A1 none 15
A2 A1 2
2A2 none 10

No. 20: (A4 + A1, A4 + A1)

A1 A2 1
A2 + A1 none 10
A3 + A1 none 15
A4 + A1 none 15
A2 + 2A1 none 15
A2 A1 1
A3 none 6
A4 none 6

No. 21: (D4 + A1, D4 + A1)

A1 A3 3
A3 + A1 none 24
D4 + A1 none 12
3A1 A1 1
4A1 none 3
5A1 none 3
A3 none 12
D4 none 4

No. 22: (A3 + A2, A3 + A2)

A1 A1 1
A2 + A1 none 16
A3 + A1 none 12
A2 + 2A1 none 6
3A1 none 9
A2 A2 1
A3 + A2 none 18
2A2 none 16

No. 23: (A5, A5)

A1 A2 1
A3 + A1 none 15
2A2 none 10
A4 none 12
A5 none 15

No. 24: (D5, D5)

none A3 1
none A4 1
A3 + 2A1 none 10
A4 none 16
D4 none 5
D5 none 10

No. 25: (6A1, D4 + 2A1)

none none 1
A1 none 2
2A1 none 8
2A1 2A1 3
3A1 none 24
4A1 none 28
4A1 A1 9
5A1 none 16
6A1 none 3
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No. 27: (A2 + 4A1, A2 + 4A1)

A1 none 1
A2 + A1 none 4
2A1 none 4
A2 + 2A1 none 12
A2 + 2A1 A1 6
3A1 none 12
3A1 A1 4
A2 + 3A1 none 16
4A1 none 16
A2 + 4A1 none 1
5A1 none 4

No. 28: (A2 + 4A1, D4 + A2)

A1 none 3
A2 + 2A1 none 24
3A1 none 24
3A1 A1 4
A2 + 4A1 none 12
5A1 none 12
A2 none 1
A2 2A1 3

No. 29: (A3 + 3A1, A3 + 3A1)

A2 + A1 none 6
A3 + A1 none 6
A3 + A1 A1 3
2A1 none 1
A2 + 2A1 none 12
A3 + 2A1 none 12
3A1 none 3
3A1 A1 3
3A1 A2 1
A2 + 3A1 none 8
A3 + 3A1 none 3
4A1 none 6
5A1 none 1
A2 none 1

No. 30: (A3 + 3A1, D5 + A1)

A1 A2 + A1 1
A1 2A1 1
A2 + A1 none 8
A3 + A1 none 4
A3 + A1 A1 2
2A1 none 3
A2 + 2A1 none 16
A3 + 2A1 none 8
3A1 none 4
3A1 A1 1
A3 + 3A1 none 12
4A1 none 4
5A1 none 6
A3 none 1

No. 31: (2A2 + 2A1, 2A2 + 2A1)

A2 + A1 none 2
A2 + A1 A1 4
2A2 + A1 none 8
2A1 none 3
2A1 A1 1
A2 + 2A1 none 16
2A2 + 2A1 none 6
3A1 none 8
A2 + 3A1 none 12
4A1 none 7
2A2 none 3
2A2 A1 1

No. 32: (A4 + 2A1, A4 + 2A1)

A2 + A1 none 3
A2 + A1 A1 2
A3 + A1 none 8
A4 + A1 none 8
2A1 A2 1
A2 + 2A1 none 8
A3 + 2A1 none 7
A4 + 2A1 none 6
A2 + 3A1 none 6
A3 none 1
A4 none 1
A4 A1 1

No. 33: (D4 + 2A1, D4 + 2A1)

A3 + A1 none 12
D4 + A1 none 8
2A1 A3 3
A3 + 2A1 none 12
D4 + 2A1 none 3
4A1 none 1
4A1 A1 2
5A1 none 2
A3 none 3
D4 A1 1

No. 34: (D4 + 2A1, D6)

none A3 + A1 1
A3 + A1 none 16
2A1 2A1 1
2A1 A3 2
A3 + 2A1 none 8
D4 + 2A1 none 12
4A1 none 3
6A1 none 3
A3 none 4
D4 none 2

No. 35:

(A3 + A2 + A1, A3 + A2 + A1)

A2 + A1 none 4
A2 + A1 A1 1
A2 + A1 A2 1
A3 + A2 + A1 none 6
2A2 + A1 none 8
A3 + A1 none 2
2A1 A1 1
A2 + 2A1 none 9
A3 + 2A1 none 7
3A1 none 3
A2 + 3A1 none 3
4A1 none 3
A3 + A2 none 6
2A2 none 4
A3 A1 1

No. 36: (A5 + A1, A5 + A1)

2A2 + A1 none 4
A3 + A1 none 4
A4 + A1 none 8
A5 + A1 none 7
2A1 A2 1
A3 + 2A1 none 6
2A2 none 3
A3 A1 1
A4 none 2
A5 none 4

No. 37: (A5 + A1, E6)

none A2 + A1 1
A5 + A1 none 15
A3 + 2A1 none 15
2A2 none 10
A4 none 6

No. 38: (D5 + A1, D5 + A1)

A1 A3 1
A1 A4 1
A3 + A1 A1 1
A4 + A1 none 8
D4 + A1 none 3
D5 + A1 none 6
A3 + 2A1 none 3
A3 + 3A1 none 3
A4 none 4
D4 none 1
D5 none 2

No. 39: (3A2, 3A2)

2A2 + A1 none 30
A2 + 2A1 none 15
3A1 none 10
A2 A1 3
3A2 none 5

No. 40: (3A2, E6)

2A2 + A1 none 30
A2 + 2A1 none 15
3A1 none 10
A2 A1 3
3A2 none 5

No. 41: (A4 + A2, A4 + A2)

2A2 + A1 none 6
A3 + A1 none 6
A4 + A1 none 6
A2 + 2A1 none 9
A2 A1 1
A2 A2 1
A3 + A2 none 9
A4 + A2 none 9

No. 42: (D4 + A2, D4 + A2)

A3 + A1 none 12
D4 + A1 none 4
3A1 A1 1
A2 + 4A1 none 1
5A1 none 2
A2 A3 3
A3 + A2 none 12
D4 + A2 none 8

No. 43: (2A3, 2A3)

2A1 A1 1
A2 + 2A1 none 8
A3 + 2A1 none 4
4A1 none 2
A3 + A2 none 16
2A2 none 8
A3 A2 2
2A3 none 9
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No. 44: (2A3, D6)

none 2A1 1
none 2A2 1
A3 + 2A1 none 12
4A1 none 9
2A2 none 16
2A3 none 18

No. 45: (A6, A6)

A4 + A1 none 6
A2 A2 1
A3 + A2 none 9
A5 none 6
A6 none 9

No. 46: (D6, D6)

none A5 1
2A1 A3 1
D4 + 2A1 none 3
2A3 none 3
A5 none 8
D5 none 2
D6 none 6

No. 47: (E6, E6)

none A4 1
A5 + A1 none 10
D5 none 5
E6 none 5

No. 50:

(A2 + 5A1, D4 + A2 + A1)

A1 none 1
A2 + A1 none 1
A2 + A1 2A1 3
2A1 none 1
A2 + 2A1 none 6
3A1 none 6
A2 + 3A1 none 12
A2 + 3A1 A1 4
4A1 none 12
4A1 A1 5
A2 + 4A1 none 4
5A1 none 4
6A1 none 3

No. 51: (A3 + 4A1, D5 + 2A1)

A2 + A1 none 2
A3 + A1 none 2
2A1 none 1
2A1 A2 + A1 1
2A1 2A1 1
A2 + 2A1 none 8
A3 + 2A1 none 4
A3 + 2A1 A1 5
3A1 none 2
A2 + 3A1 none 8
A3 + 3A1 none 8
4A1 none 3
4A1 A1 2
A3 + 4A1 none 1
5A1 none 4
6A1 none 1

No. 52: (A3 + 4A1, D4 + A3)

2A1 none 1
A2 + 2A1 none 12
A3 + 2A1 none 12
4A1 none 6
4A1 A1 4
4A1 A2 1
A2 + 4A1 none 8
A3 + 4A1 none 3
A2 none 1
A3 2A1 3

No. 54: (2A2 + 3A1, 2A2 + 3A1)

2A2 + A1 none 3
2A2 + A1 A1 3
2A1 none 1
A2 + 2A1 none 6
A2 + 2A1 A1 6
2A2 + 2A1 none 6
3A1 none 3
3A1 A1 1
A2 + 3A1 none 12
4A1 none 6
A2 + 4A1 none 2
5A1 none 3
2A2 none 1

No. 55: (A4 + 3A1, A4 + 3A1)

A2 + A1 none 1
A3 + A1 none 3
A4 + A1 none 3
A4 + A1 A1 3
A2 + 2A1 none 3
A2 + 2A1 A1 3
A3 + 2A1 none 6
A4 + 2A1 none 6
3A1 A2 1
A2 + 3A1 none 6
A3 + 3A1 none 3
A2 + 4A1 none 1

No. 56: (D4 + 3A1, D6 + A1)

A1 A3 + A1 1
A3 + A1 none 6
D4 + A1 none 2
D4 + A1 A1 2
A3 + 2A1 none 10
D4 + 2A1 none 4
3A1 2A1 1
3A1 A3 2
A3 + 3A1 none 4
D4 + 3A1 none 2
4A1 none 1
5A1 none 1
5A1 A1 1
6A1 none 1
A3 none 1

No. 58:

(A3 + A2 + 2A1, A3 + A2 + 2A1)

A2 + A1 none 1
A3 + A2 + A1 none 4
2A2 + A1 none 4
A3 + A1 A1 2
A2 + 2A1 none 4
A2 + 2A1 A1 2
A2 + 2A1 A2 1
A3 + A2 + 2A1 none 1
2A2 + 2A1 none 4
A3 + 2A1 none 4
3A1 none 1
3A1 A1 1
A2 + 3A1 none 6
A3 + 3A1 none 2
4A1 none 2
5A1 none 1
A3 + A2 none 2
A3 + A2 A1 1
2A2 none 1

No. 59:

(A3 + A2 + 2A1, D5 + A2)

2A2 + A1 none 8
A3 + A1 none 1
A3 + A1 A1 2
A2 + 2A1 none 9
A3 + A2 + 2A1 none 6
3A1 none 3
3A1 A1 1
A3 + 3A1 none 6
A2 + 4A1 none 3
5A1 none 3
A2 A2 + A1 1
A2 2A1 1
A3 + A2 none 3

No. 60: (A5 + 2A1, A5 + 2A1)

2A2 + A1 none 2
A3 + A1 none 1
A3 + A1 A1 2
A4 + A1 none 4
A5 + A1 none 4
2A2 + 2A1 none 2
A3 + 2A1 none 4
A4 + 2A1 none 4
A5 + 2A1 none 2
3A1 A2 1
A3 + 3A1 none 1
2A2 none 1
A5 none 1
A5 A1 1

No. 61: (A5 + 2A1, E6 + A1)

A1 A2 + A1 1
2A2 + A1 none 4
A3 + A1 A1 1
A4 + A1 none 4
A5 + A1 none 4
A3 + 2A1 none 4
A5 + 2A1 none 6
A3 + 3A1 none 6
2A2 none 3
A4 none 1
A5 A1 1

No. 62: (D5 + 2A1, D5 + 2A1)

A4 + A1 none 4
D4 + A1 none 2
D5 + A1 none 4
2A1 A3 1
2A1 A4 1
A3 + 2A1 none 1
A3 + 2A1 A1 2
A4 + 2A1 none 4
D4 + 2A1 none 1
D5 + 2A1 none 1
A3 + 3A1 none 2
A4 none 1
D5 A1 1

No. 63: (D5 + 2A1, D7)

none A4 + A1 1
A4 + A1 none 8
2A1 A3 1
A3 + 2A1 none 3
D4 + 2A1 none 3
D5 + 2A1 none 6
A3 + 4A1 none 3
A3 2A1 1
D4 none 1
D5 none 1

No. 64: (3A2 + A1, 3A2 + A1)
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A2 + A1 A1 3
2A2 + A1 none 9
3A2 + A1 none 3
A2 + 2A1 none 3
2A2 + 2A1 none 9
3A1 none 3
A2 + 3A1 none 9
4A1 none 4
2A2 A1 3
3A2 none 1

No. 65: (3A2 + A1, E6 + A1)

A2 + A1 A1 3
2A2 + A1 none 9
3A2 + A1 none 3
A2 + 2A1 none 3
2A2 + 2A1 none 9
3A1 none 3
A2 + 3A1 none 9
4A1 none 4
2A2 A1 3
3A2 none 1

No. 66:

(A4 + A2 + A1, A4 + A2 + A1)

A2 + A1 A1 1
A2 + A1 A2 1
A3 + A2 + A1 none 3
A4 + A2 + A1 none 3
2A2 + A1 none 1
A3 + A1 none 1
A4 + A1 none 1
A2 + 2A1 none 3
2A2 + 2A1 none 3
A3 + 2A1 none 4
A4 + 2A1 none 3
A2 + 3A1 none 3
A3 + A2 none 3
A4 + A2 none 3
2A2 A1 1
A4 A1 1

No. 67:

(D4 + A2 + A1, D4 + A2 + A1)

A2 + A1 A3 3
A3 + A2 + A1 none 6
A3 + A1 none 3
A3 + 2A1 none 6
D4 + 2A1 none 3
A2 + 3A1 A1 1
4A1 A1 1
5A1 none 1
A3 + A2 none 3
D4 + A2 none 4
D4 A1 1

No. 68: (2A3 + A1, 2A3 + A1)

A3 + A2 + A1 none 8
2A2 + A1 none 4
A3 + A1 A1 2
A3 + A1 A2 2
2A3 + A1 none 1
A2 + 2A1 none 2
3A1 A1 1
A2 + 3A1 none 4
A3 + 3A1 none 2
4A1 none 1
A3 + A2 none 4
2A2 none 2
2A3 none 4

No. 69: (2A3 + A1, D6 + A1)

A1 2A1 1
A1 2A2 1
2A2 + A1 none 8
A3 + A1 A1 2
2A3 + A1 none 6
A3 + 2A1 none 2
A3 + 3A1 none 6
4A1 none 3
5A1 none 3
2A2 none 4
2A3 none 6

No. 70: (2A3 + A1, E7)

A1 2A1 1
A1 2A2 1
2A2 + A1 none 8
A3 + A1 A1 2
2A3 + A1 none 6
A3 + 2A1 none 2
A3 + 3A1 none 6
4A1 none 3
5A1 none 3
2A2 none 4
2A3 none 6

No. 71: (A6 + A1, A6 + A1)

A2 + A1 A2 1
A3 + A2 + A1 none 3
A4 + A1 none 1
A5 + A1 none 4
A6 + A1 none 3
A4 + 2A1 none 3
A3 + A2 none 3
A4 A1 1
A5 none 1
A6 none 3

No. 72: (D6 + A1, D6 + A1)

A1 A5 1
2A3 + A1 none 1
A5 + A1 none 4
D4 + A1 A1 1
D5 + A1 none 2
D6 + A1 none 2
D4 + 2A1 none 1
3A1 A3 1
2A3 none 1
A5 none 2
D6 none 2

No. 73: (D6 + A1, E7)

A1 A3 + A1 1
A1 A5 1
A5 + A1 none 4
D6 + A1 none 6
D4 + 3A1 none 3
2A3 none 3
A5 none 4
D5 none 1

No. 74: (E6 + A1, E6 + A1)

A1 A4 1
A5 + A1 none 3
D5 + A1 none 3
E6 + A1 none 3
A5 + 2A1 none 3
A5 A1 1
D5 none 1
E6 none 1

No. 75: (A3 + 2A2, A3 + 2A2)

A2 + A1 A1 2
A3 + A2 + A1 none 12
2A2 + A1 none 8
A2 + 2A1 none 4
2A2 + 2A1 none 3
A3 + 2A1 none 1
4A1 none 3
2A2 A2 1
3A2 none 4
A3 A1 1

No. 76: (A5 + A2, A5 + A2)

A2 + A1 A2 1
A3 + A2 + A1 none 3
2A2 + A1 none 3
A4 + A1 none 2
A5 + A1 none 4
A3 + 2A1 none 3
A4 + A2 none 6
A5 + A2 none 3
3A2 none 1
A3 A1 1

No. 77: (A5 + A2, E7)

A2 + A1 A2 1
A3 + A2 + A1 none 3
2A2 + A1 none 3
A4 + A1 none 2
A5 + A1 none 4
A3 + 2A1 none 3
A4 + A2 none 6
A5 + A2 none 3
3A2 none 1
A3 A1 1

No. 78: (D5 + A2, D5 + A2)

A3 + A1 A1 1
A4 + A1 none 4
D4 + A1 none 1
D5 + A1 none 2
A3 + A2 + 2A1 none 1
A3 + 3A1 none 2
A2 A3 1
A2 A4 1
A4 + A2 none 4
D4 + A2 none 2
D5 + A2 none 4

No. 79: (A4 + A3, A4 + A3)

A2 + A1 A1 1
A3 + A2 + A1 none 2
2A2 + A1 none 4
A3 + 2A1 none 1
A4 + 2A1 none 1
A2 + 3A1 none 2
A3 + A2 none 4
A4 + A2 none 4
A3 A2 1
A4 + A3 none 4
2A3 none 5
A4 A2 1

No. 80: (D4 + A3, D4 + A3)

A3 + 2A1 none 3
4A1 A1 1
A2 + 4A1 none 1
A3 + A2 none 6
D4 + A2 none 4
A3 A3 3
D4 + A3 none 3
2A3 none 6
D4 A2 1
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No. 81: (D4 + A3, D7)

none A3 + A2 1
2A1 2A1 1
A3 + 2A1 none 4
D4 + 2A1 none 2
A3 + 4A1 none 1
6A1 none 2
A3 + A2 none 8
A3 A3 2
D4 + A3 none 8
2A3 none 4

No. 82: (A7, A7)

A5 + A1 none 2
A4 + A2 none 4
A3 A2 1
2A3 none 2
A6 none 4
A7 none 5

No. 83: (A7, E7)

none 2A2 1
A5 + A1 none 6
2A3 none 9
A7 none 9

No. 84: (D7, D7)

none A6 1
D5 + 2A1 none 1
A3 A3 1
D4 + A3 none 2
A6 none 4
D6 none 1
D7 none 4

No. 85: (E7, E7)

A1 A5 1
D6 + A1 none 3
A7 none 3
E6 none 1
E7 none 3

7 Examples

7.1 An (E6, E6)-Generic Enriques Surface

In [31], we investigated an (E6, E6)-generic Enriques surface (No. 47 of Table 1). We
briefly review the result of [31].

Let X ⊂ P
3 be a quartic Hessian surface associated with a very general cubic

homogeneous polynomial, and X the minimal resolution of X . Then X contains 10
lines and has 10 ordinary nodes, and the K3 surface X has a fixed-point free involution
ε that interchanges the strict transforms of the 10 lines and the exceptional curves over
the 10 ordinary nodes. Let π : X → Y be the quotient morphism by ε. Then the
Enriques surface Y is (E6, E6)-generic (see Kondo [17]).

We can construct a sequence of primitive embeddings SY (2) ↪→ SX ↪→ L26 from
the primitive embeddings L10(2) ↪→ L26 of type20E.We see that D0 is a fundamental
domain of the action of aut(Y ) on NefY , and hence

vol(NefY /aut(Y )) = vol(D0) = 1BP
51840

= 1BP
|W (RE6)|

.

In fact, the L26/SY (2)-chamber D0 is equal to the chamber DY in [31].We then obtain
the same result as Table 1.1 of [31] for E(Y )/aut(Y ). We also prove that aut(Y ) acts
onR(Y ) transitively.

The last result contradicts Theorem 1.5 of [31], because Table 1.2 of [31] says that
there exist 10 orbits of the action of aut(Y ) onR(Y ). In fact, the argument in Section
7.6 of [31] for the calculation of the number of aut(Y )-orbits of RDP-configurations
is wrong, and Table 1.2 of [31] should be replaced by Table 2.

Here we present a correct method for the calculation of aut(Y )-orbits of RDP-
configurations. Let ψ : Y → Y be a birational morphism to a surface Y that has only
rational double points as its singularities, and let hψ be an ample class of Y . Since the
L26/SY (2)-chamber D0 is a fundamental domain of the action of aut(Y ) on NefY , we
can assume that ψ∗(hψ) ∈ SY belongs to D0 by composing ψ with an automorphism
of Y . Let f be the minimal face of D0 containing ψ∗(hψ). Then the set of the classes
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Table 2 RDP-configurations on
Y

ADE-type Number ADE-type Number

E6 1 A3 + A1 1

A5 + A1 5 2A2 1

3A2 1 A2 + 2A1 1

D5 1 4A1 5

A5 1 A3 1

A4 + A1 1 A2 + A1 1

A3 + 2A1 5 3A1 2

2A2 + A1 1 A2 1

D4 1 2A1 1

A4 1 A1 1

of smooth rational curves C contracted by ψ is equal to

�( f ) := { [C] | C is a smooth rational curve on Y such that f ⊂ ([C])⊥ }.

For a given face f of D0, we calculate the set of roots r of SY such that f ⊂ (r)⊥. From
this set, we can calculate �( f ) by using the ample class aY and the set of (−4)-vectors
in SX−. We calculate �( f ) for all faces f of D0, and obtain 750 RDP-configurations
of smooth rational curves. Every RDP-configuration on Y is equal to one of them
modulo the action of aut(Y ).

Let � be one of the 750 RDP-configurations. We put μ := |�|, that is, μ is the total
Milnor number of the singularities of the surface Y corresponding to �. The sublattice
〈�〉 of SY generated by the classes in� is negative definite of rankμ, and its orthogonal
complement 〈�〉⊥ is hyperbolic of rank 10 − μ. Let P〈�〉⊥ be the positive half-cone
of 〈�〉⊥ contained in PY . Composing the primitive embedding 〈�〉⊥ ↪→ SY with the
primitive embedding SY (2) ↪→ L26 of type 20E, we have L26/〈�〉⊥(2)-chambers
of P〈�〉⊥ . The intersection f0 := P〈�〉⊥ ∩ D0 is one of the L26/〈�〉⊥(2)-chambers,
and it is the maximal face of D0 among all the faces f of D0 such that �( f ) = �.
Let (V�, E�) be the graph where V� is the set of L26/〈�〉⊥(2)-chambers on P〈�〉⊥
contained in P〈�〉⊥ ∩NefY and E� is the usual adjacency relation of chambers. Then
D �→ P〈�〉⊥ ∩ D gives a bijection to the set V� of vertices from the set of L26/SY (2)-
chambers D contained in NefY such thatP〈�〉⊥ ∩D is a face of D of dimension 10−μ,
or equivalently, such that P〈�〉⊥ ∩ D contains a non-empty open subset of P〈�〉⊥ . The
group

G� := { g ∈ aut(Y ) | �g = � }

acts on the graph (V�, E�). We apply Procedure 4.1 to (V�, E�) and G� , and
obtain a complete set V�,0 of representatives of V�/G� . Let �′ be one of the 750
RDP-configurations with the same ADE-type as �. Let V�′,0 be a complete set of
representatives of V�′/G�′ . Then the RDP-configurations � and �′ are in the same
orbit under the action of aut(Y ) if and only if there exists an L26/〈�′〉⊥(2)-chamber
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f ′ = P〈�′〉⊥ ∩ D′ ∈ V�′,0 with D′ ⊂ NefY such that isoms(Y , D0, D′) contains an
element g satisfying �g = �′. Since |V�′,0| is finite, we can determine whether � and
�′ are in the same orbit or not. Applying this method to all pairs � and �′ with the
same ADE-type, we obtain a complete set of representatives of RDP-configurations
modulo aut(Y ).

7.2 (4A1, 4A1)-Generic and (4A1,D4)-Generic Enriques Surfaces

Let Y be a (4A1, 4A1)-generic Enriques surface (No. 7 of Table 1). We construct a
sequence SY (2) ↪→ SX ↪→ L26 from the primitive embedding L10(2) ↪→ L26 of type
96C. The complete set V0 of representatives of orbits of the action of aut(Y ) on the
set of L26/SY (2)-chambers contained in NefY consists of 5 elements with the orders
of stabilizer subgroups 1, 1, 1, 2, 1. Since vol(D0) = 1BP/72, we have

vol(NefY /aut(Y )) = vol(D0)

(

1

1
+ 1

1
+ 1

1
+ 1

2
+ 1

1

)

= 1BP
16

= 1BP
|W (R4A1)|

.

The setRtemp is of size 56 and the set Etemp is of size 6270.
We also construct SY (2) ↪→ SX ↪→ L26 for a (4A1, D4)-generic Enriques surface

(No. 8 of Table 1) from the primitive embedding of type 96C. The set V0 consists of
18 elements with the orders of stabilizer subgroups 4, . . . , 4. We have |Rtemp| = 154
and |Etemp| = 21452.

7.3 A (D5,D5)-Generic Enriques Surface

Wehave to use the primitive embedding of type40A to construct SY (2) ↪→ SX ↪→ L26
for a (D5, D5)-generic Enriques surface (No. 24 of Table 1). The set V0 consists of
6 elements with the orders of stabilizer subgroups 2, . . . , 2. In this case, we have
vol(D0) = 1BP/5760 and

vol(NefY /aut(Y )) = vol(D0)

(

1

2
+ 1

2
+ 1

2
+ 1

2
+ 1

2
+ 1

2

)

= 1BP
1920

= 1BP
|W (RD5)|

.

We have |Rtemp| = 15 and |Etemp| = 758.

7.4 Enriques Surfaces with Finite Automorphism Group

Let Y be an Enriques surface with finite automorphism group of type I in Kondo’s
classification [16]. We assume that Y is chosen very general so that the covering
K3 surface X is of Picard number 19 and satisfies O(TX , ω) = {±1}. Then Y is
(E8+ A1, E8+ A1)-generic (No. 172 of Table 1). The automorphism group Aut(Y ) is
a dihedral group of order 8, and its image aut(Y ) in OP (SY ) is order 4. The Enriques
surface Y has exactly 12 smooth rational curves, and their dual graph is given in [16,
Fig. 1.4]. The chamber NefY is isomorphic to an L26/L10(2)-chamber D0 of the prim-
itive embedding L10(2) ↪→ L26 of type 12A, and hence vol(D0) = 1BP/174182400
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(see [6]). Therefore

vol(NefY /aut(Y )) = vol(D0)

4
= 1BP

21435527
= 2BP
|W (RE8+A1)|

.

The group aut(Y ) decomposes R(Y ) as 2+ 2+ 2+ 2+ 4.
For a very general Enriques surface Y with finite automorphism group of type

II, the chamber NefY is isomorphic to an L26/L10(2)-chamber D0 of the primitive
embedding L10(2) ↪→ L26 of type 12B. We have vol(D0) = 1BP/3870720. Note that
3870720 · |S4| = |W (RD9)|. The Enriques surface Y is (D9, D9)-generic (No. 184 of
Table 1), and we have Aut(Y ) ∼= aut(Y ) ∼= S4. The group aut(Y ) decomposes R(Y )

as 6+ 6.
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