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Abstract
We prove an analogue of Horrocks’ splitting theorem for Segre–Veronese varieties building
upon the theory of Tate resolutions on products of projective spaces.
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Introduction

Horrocks’ famous splitting theorem [3] on P
n says that a vector bundle F on P

n splits into
a direct sum of line bundles

F ∼=
⊕

j

O(k j )

if and only if F has no intermediate cohomology, i.e., if

Hi (Pn,F(k)) = 0 ∀ k ∈ Z and ∀i with 0 < i < n.

In this note we prove a similar criterion for Segre–Veronese varieties

P
n1 × · · · × P

nt ↪→ P
N

embedded by the complete linear system of a very ample line bundleO(H) = O(d1, . . . , dt ),
so N = (

∏t
j=1

(n j+d j
n j

)
) − 1.

Theorem 0.1 Let O(H) = O(d1, . . . , dt ) be a very ample line bundle on a product of pro-
jective spaces P = P

n1 × · · · × P
nt of dimension m = n1 + · · · + nt with t ≥ 2 factors. A

torsion free sheaf F on P splits into a direct sum F ∼= ⊕
j O(k j H) if and only if
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1352 F.-O. Schreyer

∀ i ∈ {1, . . . ,m − 1} Hi (P,F(a1, . . . , at )) = 0

for all twists with O(a1, . . . , at ) such that the cohomology groups Hi (P,O(kH) ⊗
O(a1, . . . , at )) vanish for all i ∈ {1, . . . ,m − 1} and all k ∈ Z.

We can rephrase the theorem as follows: If a torsion free sheaf F on a product
P
n1 × · · · × P

nt has no intermediate cohomology in the range where the sheaves O(kH)

have no intermediate cohomology, then it is a direct sum of these sheaves.

Example 0.2 For P = P
n1 ×P

n2 , the line bundleO(a1, a2) has a nonzero cohomology group

Hn1(O(a1, a2)) �= 0, H0(O(a1, a2)) �= 0,
Hm(O(a1, a2)) �= 0, Hn2(O(a1, a2)) �= 0,

for a = (a1, a2) in the range

{a1 < −n1, a2 ≥ 0}, {a1 ≥ 0, a2 ≥ 0}
{a1 < −n1, a2 < −n2}, {a1 ≥ 0, a2 < −n2}

respectively and is zero otherwise.
In particular for P

2×P
3 and the area {−5 ≤ a1 ≤ 1,−5 ≤ a2 ≤ 2}, nonzero cohomology

and nonzero intermediate cohomology occur in the shaded regions

and respectively.

Thus forO(H) = O(4, 2), the assumption of the theorem in this case is that the intermedi-
ate cohomology occurs only in a range as indicated in the area {−8 ≤ a1 ≤ 12,−4 ≤ a2 ≤ 6}
by the shaded region below:
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Horrocks splitting on Segre–Veronese varieties 1353

Remark 0.3 For any coherent sheaf F on P the condition

Hi (P,F(kH)) = 0foralli ∈ {1, . . . ,m − 1}andallk ∈ Z

implies that F is locally free unless F has a zero dimensional subsheaf. The condition F
torsion free in Theorem 0.1 is only used to exclude such torsion subsheaves.

1 Preliminaries and notation

The Tate resolutions of a sheaf on products of projective spaces is a generalization of the
Tate resolution on P

n [2]. We recall from [1] the basic notation.
Let P = P

n1 × · · · × P
nt = P(W1)×· · ·×P(Wt ) be a product of t projective spaces over

an arbitrary field K . Set Vi = W ∗
i and V = ⊕

i Vi . Let E be the Z
t -graded exterior algebra

on V , where elements of Vi ⊂ E have degree (0, . . . , 0,−1, 0, . . . , 0) with −1 in the i-th
place.

For a sheaf F on P the Tate resolution T(F) is a minimal exact complex of graded E-
modules with terms

T(F)d =
⊕

a∈Zt

HomK (E, Hd−|a|(P,F(a))),

where the cohomology group Hd−|a|(P,F(a)) is regarded as a vector space concentrated in
degree a, and |a| = ∑t

j=1 a j denotes the total degree.
SinceωE = HomK (E, K ) is the free E-module of rank 1with socle in degree 0 and hence

generator in degree (n1 + 1, . . . , nt + 1), the differential of the complex T(F) is given by
a matrix with entries in E . More precisely, the component HomK (E, Hd−|a|(P,F(a))) →
HomK (E, Hd+1−|b|(P,F(b))) is given by a hd+1−|b|(P,F(b)) × hd−|a|(P,F(a))-matrix
with entries in

�b−aV := �b1−a1V1 ⊗ · · · ⊗ �bt−at Vt .

In particular, if b j < a j for some j , then the corresponding block is zero. Moreover, all
blocks corresponding to cases with a = b are also zero, since T(F) is a minimal complex.

The complex T(F) has various exact free subquotient complexes: For c ∈ Z
t a degree

and I , J , K ⊂ {1, . . . , t} disjoint subsets we have the subquotient complex Tc(I , J , K )with
terms

Tc(I , J , K )d =
∑

a∈Zt

ai<ci fori∈I
ai=ci fori∈J
ai≥ci fori∈K

HomK (E, Hd−|a|(P,F(a)))

By [1, Theorem 3.3 and Corollary 3.5] these complexes are exact as long as I ∪ J ∪ K �

{1, . . . , t}. The complexes Tc(∅, J ,∅) can be used to compute the direct image complex of
F(c) along a partial projection πJ : P → ∏

j /∈J P
n j [1, Corollary 0.3 and Proposition 3.6].

Lemma 1.1 Let F be a coherent sheaf on a product of projective spaces P = P
n1 × . . .×P

nt

and let a = (a1, a2, . . . , at ) = (a′, at ) ∈ Z
t = Z

t−1 × Z and n ∈ Z. If

Hn(F(a′, at )) = Hn−1(F(a′, at + 1)) = . . . = Hn−nt (F(a′, at + nt )) = 0

then Hn(F(a′, at − 1)) = 0 as well. A similar statement holds for the cohomology along the
j-th strand Ta(∅, {1, . . . , t}\{ j},∅).
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1354 F.-O. Schreyer

Proof We consider the strand Ta(∅, {1, . . . , t − 1},∅) of T(F). The differential starting at
the summand HomK (E, Hn(F(a′, at − 1)) ⊂ Ta(∅, {1, . . . , t − 1},∅) maps in the strand to
the summands

HomK (E, Hn(F(a′, at ))) ⊕ . . . ⊕ HomK (E, Hn−nt (F(a′, at + nt ))).

By assumption the target is zero. Since of Ta(∅, {1, . . . , t − 1},∅) is minimal and exact, the
source is zero as well.

The proof of the our main theorem uses the corner complexes T�c(F) which are defined
as the cone of a map of complexes

ϕc : Tc({1, . . . , t},∅,∅)[−t] → Tc(∅,∅, {1, . . . , t})
from the last quadrant complex to the first quadrant complex. The map ϕc is the composition
of t maps

Tc({1, . . . , k},∅, {k + 1, . . . , t})[−k] → Tc({1, . . . , k − 1},∅, {k, . . . , t})[−k + 1]
each of which is obtained from the differential of T(F) by taking the terms with source in
one quadrant and target in the next quadrant. The corner complexes are exact as well by [1,
Theorem 4.3 and Corollary 4.5].

If we follow a path from the last quadrant to the first quadrant using a different order of the
elements in the set {1, . . . , t}, we obtain an isomorphic complex. Indeed, all of these corner
complexes are exact and their differentials

T�c(F)d → T�c(F)d+1

coincide for sufficiently large cohomological degree d , since those differentials involve only
terms from the first quadrant Tc(∅,∅, {1, . . . , t}).

2 Proof of themain result

We use the partial order a ≥ b on Z
t defined by a j ≥ b j for j = 1, . . . , t and write a > b if

a ≥ b and a �= b.
Let F be a coherent sheaf on P = P

n1 × · · · × P
nt . If Hm(P,F(a)) �= 0 then

Hm(P,F(b)) �= 0 for all b ≤ a as we see from applying Hm to the surjection

H0(P,O(a − b)) ⊗ F(b) → F(a).

An extremal Hm-position of F is a degree a ∈ Z
t such that Hm(P,F(a)) �= 0 but

Hm(P,F(c)) = 0 for all c > a.

Proposition 2.1 LetF be a torsion free sheaf onP
n1 × · · · × P

nt satisfying the assumption of
Theorem 0.1 with respect to O(H) = O(d1, . . . , dt ). There exists an extremal Hm-position
for F of the form

(a1, . . . , at ) = (kd1 − n1 − 1, . . . , kdt − nt − 1)

for some k ∈ Z.

Note that O(−n1 − 1, . . . ,−nt − 1) ∼= ωP is the canonical sheaf on P.
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Horrocks splitting on Segre–Veronese varieties 1355

Proof Since F is nonzero and torsion free, we have Hm(F(kH) ⊗ ωP) �= 0 for k � 0 and
Hm(F(kH)⊗ωP) = 0 for k � 0. Let k be the maximum such that Hm(F(kH)⊗ωP) �= 0.
We claim that (kd1 − n1 − 1, . . . , kdt − nt − 1) is an extremal Hm-position. Suppose it is
not. Then there exists a maximal a in the range

(kd1 − n1 − 1, . . . , kdt − nt − 1) < a ≤ ((k + 1)d1 − n1 − 1, . . . , (k + 1)dt − nt − 1)

such that Hm(F(a)) �= 0. At least for one i we have kdi − ni − 1 < ai . Then for any
j �= i we consider J = {1, . . . , t}\{ j} and look at the j-th strand Ta(∅, J ,∅) through a.
Lemma 1.1 implies a j = (k + 1)d j − n j − 1: If a j < (k + 1)d j − n j − 1, then we cannot
reach the intermediate cohomology range of F after at most n j + 1 steps along this strand,
contradicting the maximality of a. Starting with kd j −n j −1 < a j = (k+1)d j −n j −1 and
interchanging the role of i and j in the argument above, we deduce ai = (k + 1)di − ni − 1
for all i . This is a contradiction to the maximality of k.

Proposition 2.2 Let F be a torsion free sheaf on P
n1 × · · · × P

nt satisfying the assumption
of Theorem 0.1 with respect to O(H) = O(d1, . . . , dt ). If

(kd1 − n1 − 1, . . . , kdt − nt − 1)

is an extremal Hm-position for F , then

F ∼= O(kH) ⊕ F ′.

Proof We consider the corner complex T�c(F) for c = (kd1 − n1, . . . , kdt − nt ). The first
part of the corner map

Tc({1, . . . , t},∅,∅)[−t] → Tc({1, . . . , t − 1},∅, {t})[−t + 1]
with source HomK (E, Hm(F(kH) ⊗ ωP) is a map

HomK (E, Hm(F(kH) ⊗ ωP)) → HomK (E, Hm−nt (F ⊗ ωP ⊗ O(0, . . . , 0, nt + 1)))

given by a matrix with entries in �nt+1Vt . Indeed, Hm((F ⊗ ωP ⊗ O(0, . . . , 0, 1)) = 0
holds since (kd1 − n1 − 1, . . . , kdt − nt − 1) is extremal. Since the map follows the strand
Tc(∅, {1, . . . , t −1},∅), the group Hm−nt (F ⊗ωP ⊗O(0, . . . , 0, nt +1) is the first possible
non-zero intermediate cohomology group by assumption. Composed with the second part of
the corner complex

Tc({1, . . . , t − 1},∅, {t})[−t + 1] → Tc({1, . . . , t − 2},∅, {t − 1, t})[−t + 2]
the image is in

HomK (E, Hm−nt−nt−1(F ⊗ ωP ⊗ O(0, . . . , 0, nt−1 + 1, nt + 1)))

since �nt+2Vt = 0 and other possible intermediate cohomology groups in the strand
Tc(∅, {1, . . . , t − 2},∅) vanish by assumption. Repeating these arguments, we conclude
that the corner map with source HomK (E, Hm(F(kH) ⊗ ωP) has an image only in
HomK (E, H0(F(kH)). It is given by an

h0(F(kH)) × hm(F(kH) ⊗ ωP)−matrix

with entries in the one-dimensional space

�m+t V = �n1+1V1 ⊗ · · · ⊗ �nt+1Vt .
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1356 F.-O. Schreyer

Consider the submatrix of the differential in the corner complex with target equal to the
summand HomK (E, H0(F(kH)). The only other subspaces in the source which have this
target come from H0-groups:

HomK (E, H0(F(kH)(−1, 0, . . . , 0)), . . . ,HomK (E, H0(F(kH)(0, . . . , 0,−1)).

Thus this differential is given by an

h0(F(kH)) × [(hm(F(kH) ⊗ ωP) + h0(F(kH) ⊗ B))]−matrix

with B = O(−1, 0, . . . , 0)⊕ . . .⊕O(0, . . . , 0,−1). Note that h0(F(kH)) ≥ hm(F(kH)⊗
ωP), because otherwise a generator of HomK (E, Hm(F(kH) ⊗ ωP) would map to zero
which is impossible because T�c(F) is exact and minimal. Thus in a suitable basis the matrix
has shape

ϕ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

v 0 �1 j . . . �1n
. . .

...
...

0 v �r j . . . �rn
�r+1 j . . . �r+1n

0
...

...

�s j . . . �sn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

with v ∈ �m+t V a fixed basis element and �i j ∈ V1 ∪ · · · ∪ Vt .
We claim now that �1 j is a K -linear combination of �r+1 j , . . . , �s j . Indeed if not, we

couldmultiply the j-th column by a decomposable elementw ∈ �m+t−1V which annihilates
�r+1 j , . . . , �s j but does not annihilate �1 j , so that �1 jw = v. This would give us a column

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

v 0 v

. . .
...

0 v λrv

0

0
...

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

for possibly zero scalars λ2, . . . , λr , and the first column would be an E-linear combination
of columns 2 to j . This is impossible since no generator can map to zero in T�c(F).

Let r1 − r denote the dimension of the linear span of �r+1 j , . . . , �s j . Then after row
operations we may assume that ϕ has the shape

ϕ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v 0 0 . . . �1n
. . .

...
...

0 v �r j . . . �rn
�r+1 j . . . �r+1n

0
...

...

�r1 j . . . �r1n
...

...

0 . . . �sn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with �r+1 j , . . . �r1 j K -linearly independent.
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Next we note that the columns of the matrix
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v 0 �1 j+1
. . . 0

...

0 v
...

v 0
...

0
. . .

...

0 v �r1 j+1

�r1+1 j+1

0 0
...

�s j+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

are in the E-column span of ϕ. Arguing as before, we see that �1 j+1 is a linear combination
of �r1+1 j+1, . . . , �s j+1, and repeating the arguments, we find that ϕ can be transformed by
row operations into a matrix of type

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

v 0 0 . . . 0
. . . �2 j . . . �2n

0 v
...

...

...
...

0 �s j . . . �sn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=
(

v 0
0 ϕ′

)

We conclude that T�c(O(kH)) is a direct summand of the complex T�c(F), and

F ∼= O(kH) ⊕ F ′,

since we can recover F from its corner complex with the Beilinson functor U applied to
T�c(F)(a)[|a|] for a suitable a ∈ Z

t by [1, Theorem 0.1]. Indeed U(T�c(F)(a)[|a|]) and
U(T(F)(a)[|a|]) coincide for a � 0.

Proof of Theorem. Let F be a torsion free sheaf on P
n1 × · · · × P

nt with no intermediate
cohomology where the sheaves O(kH) for O(H) = O(d1, . . . , dt ) have no intermediate
cohomology. By Proposition 2.1 there is an extremal Hm-position of F of the form

(k1d1 − n1 − 1, . . . , k1dt − nt − 1)

and by Proposition 2.2 we get a summand

F ∼= O(k1H) ⊕ F ′.

If rankF = 1, we are done: F ′ = 0 since F is torsion free. Otherwise we can argue by
induction on the rank since F ′ satisfies the assumption of the Theorem again. ��
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