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Abstract
The semidirect product of a finitely generated group dual with the symmetric group
can be described through so-called group-theoretical categories of partitions (covers
only a special case; due toRaum–Weber, 2015) and skew categories of partitions (more
general; due to Maaßen, 2018). We generalize these results to the case of graph cate-
gories, which allows to replace the symmetric group by the group of automorphisms
of some graph.
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Introduction

The main subject of this article is diagrammatic categories that can be used to model
representation categories of groups and quantum groups. One typical example is the
category of all partitions P , which models the intertwiner spaces of the symmetric
group [4]. Another classical example is so-called Brauer duality, which connects the
category of all pairings with the orthogonal group. Some additional categories of
partitions (i.e. subcategories of the category of all partitions) were later interpreted in

The author was supported by the collaborative research centre SFB-TRR 195 “Symbolic Tools in
Mathematics and their Application”.
I would like to thank Alexander Mang, David Roberson, and Moritz Weber for inspiring discussions about
graph categories. I also thank to Laura Maaßen for discussing details of her work and the relations with
this article.
I am grateful to Moritz Weber also for reading and commenting an early draft of this manuscript. Many
thanks go to the referee for a detailed review that significantly improved the quality of the article.
Data sharing not applicable to this article as no datasets were generated or analysed during the current
study.

B Daniel Gromada
gromada@math.uni-sb.de

1 Fachbereich Mathematik, Saarland University, Postfach 151150, 66041 Saarbrücken, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10801-021-01063-5&domain=pdf
http://orcid.org/0000-0001-7852-518X


Journal of Algebraic Combinatorics

the theory of quantum groups [2]. A recent paper [8] studies categories of graphs. In
particular, the category of all graphs can be used to model the representation category
of the automorphism group Aut G of a given graph G.

These results can all be understood as some generalizations of the classical Schur–
Weyl duality.Butwe can also go the opposite direction. Startingwith a certain category,
we can reconstruct the unique compact matrix quantum group associated with this
category using the so-called Tannaka–Krein reconstruction (for quantum groups for-
mulated by Woronowicz [15]). This idea motivated the search for classification of all
categories of partitions as every such instance defines a new compact matrix quantum
group.

This classification was successfully completed in [11]. An important large class of
the categories of partitions is formed by so-called group-theoretical categories [9,10].
Those categories are shown to be in one-to-one correspondence with sS∞-invariant
normal subgroups A � Z

∗∞
2 . In addition, it is shown that the associated quantum

group is of the form �̂ � Sn , where � = Z
∗n
2 /A.

The semidirect product construction �̂ � Sn makes sense also if A is S∞-invariant,
but not sS∞-invariant. In that case, the standard categories of partitions cannot be used
to describe the intertwiners. A natural question is then, whether there is an alternative
approach to model the representation categories. This was solved in [7] by introducing
skew categories of partitions.

The goal of the current article is to generalize those concepts defined for categories
of partitions into themore general context of categories of graphs. The article is divided
into two parts—the first part dealing with combinatorics and the second part dealing
with the quantum groups and intertwiners. Each part consists of a preliminary section
(Sects. 1 and 3 ) and sections with original results (Sects. 2, 4, 5).

In Sect. 1, we introduce categories of partitions and graphs and recall the important
combinatorial results from [9] and [7]. In Sect. 2, we generalize those results into the
graph-categorical context. We define group-theoretical graph categories to be those
graph categories that are invariant under taking graph quotients. We also introduce
more general skew graph categories. We show that such categories can be described
in a group-theoretical manner in terms of graph fibrations.

Theorem A (Theorem 2.13) There is a one-to-one correspondence between graph
fibrations F and skew graph categories C described by Formulae (2.1), (2.2). The
graph fibration F is easy if and only if the skew graph categoryC is a group-theoretical
graph category.

In Sect. 3, we introduce compact matrix quantum groups and their connections
with categories of partitions and graphs. In particular, we recall the important results
from [7,10]. In Sect. 4, we generalize those results into the graph-categorical context.
First, we look at the easy case. In Theorem 4.1, we show that group-theoretical graph
categories correspond to quantum groups of the form �̂ � Aut G. Then, we focus on
the more general case of skew graph categories and obtain the following result.

Theorem B (Theorem 4.18) Let F be a graph fibration and C the corresponding
category. Let G be a graph and let K be the greatest subgraph of G contained in F.
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Then, the quantum group corresponding to C G is

G = �̂ � Aut K ,

where � = Z
∗V (K )
2 /F(K ).

Finally, in Sect. 5, we discuss the opposite question: Given a quantum group of the
form G = �̂ � Aut G, what graph category can we associate with it and what are the
corresponding intertwiner spaces. In Theorem 5.11, we even generalize Theorem and
describe the intertwiner spaces for the semidirect product �̂ � H , where H ⊆ Sn is
an arbitrary permutation group and � is an H -invariant quotient of Z

∗n
2 .

1 Preliminaries: partitions, graphs, and their categories

1.1 Partitions

Let S be a set. A partition π of S is a decomposition of the set S into disjoint non-
empty subsets. That is, π = {V1, . . . , Vn} with Vi �= ∅, Vi ∩ Vj = ∅, and ⋃

i Vi = S.
We denote π ∈ P(S).

Consider k ∈ N0. By a partition of k points, wemean a partition of the set {1, . . . , k}.
We denote P(k) := P({1, . . . , k}) the set of all such partitions. We denote such
partitions pictorially by drawing the k points on a line and connecting those that are
contained in the same part by strings. For example,

p = {{1, 2, 4}, {3, 6}, {5}, {7, 8}} = ∈ P(8).

Another way to represent partitions is to use words. Let V be some countable
alphabet. We denote by V ∗ the monoid of words over V . By V k , we denote all words
of length k. We denote by ∅ ∈ V 0 the empty word. We may represent partitions of
k points as words in V k by identifying the blocks of p with some letters in V . Note that
this representation is not unique as we may always choose a different identification
between letters and blocks. Given a word a ∈ V k , we denote by ker(a) the associated
partition. For example, the above partition p can be represented by the following
words

p = = ker(aabacbdd) = ker(ccecgeaa).

Consider k, l ∈ N0. We denote by P(k, l) the set of partitions of k upper and
l lower points, that is, partitions of the set {1, . . . , k} 	 {1, . . . , l}. Those will again
be represented pictorially. This time, we put k points in one line and l on another line
below and connect again those points that share the same part. In order to make clear,
whether crossing strings denote a single block or two separate ones, we denote the
blocks by dots. That is, all strings coming from points belonging to a single block
intersect in a single point emphasized by a dot. For example,

P = ∈ P(3, 4) Q = ∈ P(4, 4). (1.1)

123



Journal of Algebraic Combinatorics

The partitions on two lines can also be represented by pairs of words. The first word
represents the top line, and the second word represents the bottom line.

P = ab c = ker(aaa,baac) Q = a d
e c b = ker(abcd, ecbb).

For partitions on two lines P ∈ P(k, l), it will also be convenient to allow having
empty blocks. That is, in the diagrams, there may also occur isolated dots.

1.2 Categories of partitions

We define the following operations on the sets P(k, l)

• The tensor product of two partitionsP ∈ P(k, l) andQ ∈ P(k′, l ′) is the partition
P ⊗Q ∈ P(k + k′, l + l ′) obtained by writing the graphical representations of P
and Q “side by side”.

⊗ =

• For P ∈ P(k, l), Q ∈ P(l, m), we define their composition QP ∈ P(k, m) by
putting the graphical representation of Q below P identifying the lower row of P
with the upper row of Q. The upper row of P now represents the upper row of the
composition, and the lower row ofQ represents the lower row of the composition.

· = = .

• For P ∈ P(k, l), we define its involution P∗ ∈ P(l, k) by reversing its graphical
representation with respect to the horizontal axis.

( )∗ = .

Those operations define the structure of a rigid monoidal involutive category on
the collection P(k, l). The set of natural numbers forms the set of objects, and the
partitions P ∈ P(k, l) are the morphisms k → l.

Any collection of subsets C (k, l) ⊆ P(k, l) containing the identity partition ∈
C (1, 1) and the pair partition ∈ C (0, 2) (playing the role of the duality morphism)
that is closed under the category operations and under adding and removing empty
blocks is again a category called a category of partitions.

This definition comes from [2]. We made a slight modification here by allowing
partitions to have empty blocks. (In [2], the empty blocks that arise in composition
are simply deleted.) But since we require the categories to be closed under adding and
removing empty blocks, the definitions are equivalent.
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1.3 Group-theoretical categories of partitions

A category of partitions C is called group-theoretical if ∈ C . This definition was
introduced in [9]. The name comes from a certain correspondence formulated below.

Let V be a countable set. We denote by Z
∗V
2 the free product Z

∗|V |
2 , where the

generators of the factors are identified with the elements of V . For a given word
a ∈ V ∗, we denote by ga ∈ Z

∗V
2 the corresponding group element.

A normal subgroup A � Z
∗V
2 is called SV -invariant if it is invariant with respect to

finitary permutations V → V (i.e. bijections V → V that act as identity up to a finite
amount of points). It is called sSV -invariant if it is invariant with respect to arbitrary
finitary maps V → V , i.e. arbitrary maps V → V that act as identity up to a finite
amount of points.

Given a word a ∈ V ∗, we denote by a∗ ∈ V ∗ its reflection, i.e. the word read
backwards. Note that ga∗ = g−1

a .

Theorem 1.1 [9, Theorem 3.7] Let V be some infinite countable set. We have the
following one-to-one correspondence:

Let A � Z
∗V
2 be an sSV -invariant normal subgroup. Then,

C := {ker(a,b) | ga∗b ∈ A}

forms a group-theoretical category of partitions.
Conversely, let C be a group-theoretical category of partitions. Then,

A := {ga∗b | ker(a,b) ∈ C }

is an sSV -invariant normal subgroup of Z
∗V
2 .

As an example of an sSV -invariant normal subgroup, wemention the infinite family

As = 〈〈(ab)s | a, b ∈ V 〉〉 ⊆ Z
∗V
2 ,

where the double angle brackets denote the smallest normal subgroup generated by
the given generators. For more instances, see [9, Example 3.9].

1.4 Skew categories of partitions

The definition of a category of partitions was modified in [7] in order to generalize the
above-described correspondence to all SV -invariant normal subgroups A � Z

∗V
2 . We

define the following operations that are essentially based on the group multiplication
in Z

∗V
2

Considering P = ker(a,b) and Q = ker(c,d), we call the partition ker(ac,bd) a
connected tensor product of P andQ. Note that the result does not only depend on the
partitions P and Q, but also on the labelling of the blocks. For given P and Q, we can
always choose the corresponding labellings a, b, c, d in such a way that the words a
and b do not share any letters with c and d. In that case, we obtain the standard tensor
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product as defined in Sect. 1.2. In general, the connected tensor product enables to
unite some blocks from P with some blocks from Q by choosing a common letter to
denote those blocks.

We define the restricted composition to be the ordinary composition from Sect. 1.2,
but we restrict only to the pairs of partitions of the form P = ker(a,b),Q = ker(b, c).
Note that we can choose the words a and c in such a way that they share only the
letters contained in b. In that case, the result of such composition can be written as
QP = ker(a, c). In general, we can define the restricted connected composition to be
the operation (ker(a,b), ker(b, c)) �→ ker(a, c).

A skew category of partitions is a collectionof setsC (k, l) ⊆ P(k, l) containing the
identity partition and the pair partition that is closed under all possible connected
tensor products (with all possible choices of the labelling), restricted compositions,
involution, and adding/removing empty blocks. It automatically follows that C is
closed under restricted connected compositions.

Skew categories of partitions are again rigid monoidal involutive categories, but
this time the set of objects is formed by one-line partitions

⋃
k∈N0

P(k). For a pair of
partitions p ∈ P(k), q ∈ P(l), we define the set of morphisms

C (p, q) := {ker(a,b) ∈ C (k, l) | p = ker(a), q = ker(b)} ⊆ C (k, l).

Note that any group-theoretical category of partitions is closed under joining blocks
[9, Lemma 2.3]. Consequently, it is closed under connected tensor products and hence
forms a skew category of partitions. On the other hand, skew categories of partitions
always contain the partition . Moreover, group-theoretical categories of partitions
precisely correspond to those skew categories of partitions that are invariant with
respect to joining blocks.

We have the following generalization of Theorem 1.1.

Theorem 1.2 [7, Theorem 2.2] Let V be some infinite countable set. We have the
following one-to-one correspondence:

Let A � Z
∗V
2 be an SV -invariant normal subgroup. Then,

C := {ker(a,b) | ga∗b ∈ A}

forms a skew category of partitions.
Conversely, let C be a skew category of partitions. Then,

A := {ga∗b | ker(a,b) ∈ C }

is an SV -invariant normal subgroup of Z
∗V
2 .

1.5 Graph categories

The goal of this work is to generalize the above results to so-called graph categories
defined in [8].

123



Journal of Algebraic Combinatorics

In this article, by a graph, we will always mean a finite undirected graph with no
multiple edges, but with possibility of having loops.

A bilabelled graph K is a triple (K , a,b), where K is a graph, a = (a1, . . . , ak),
b = (b1, . . . , bl) are tuples of vertices of K . We will call a the tuple of input vertices,
while b are output vertices. (The role of a and b is switched in comparison with [8] to
be consistent with the notation for partitions.) For any k, l ∈ N0, we denote by G (k, l)
the set of all bilabelled graphs K = (K , a,b) with |a| = k, |b| = l (considering the
graphs “up to isomorphism”). The set of all bilabelled graphs is denoted simply by G .

We define a structure of a (monoidal involutive) category on the set of all bilabelled
graphs by introducing some operations. Consider K = (K , a,b), H = (H , c,d). We
define

• tensor product K ⊗ H = (K 	 H , ac,bd),
• composition (only defined if |b| = |c|) H · K = (H · K , a,d), where H · K is
a graph that is created from H 	 K by contracting the vertex bi with ci for every i
(ignoring the resulting edge multiplicities),

• involution K∗ = (K ,b, a).

We denote by Nk the edgeless graph with k vertices. In particular, N0 is the null
graph containing no vertex. We denote 0 := (N0,∅,∅) ∈ G (0, 0).

We denote Mk,l := (M, vk, vl), where M is a graph with a single vertex v.
Any collection of bilabelled graphsC containingM1,1 (playing the role of identity),

M0,2 (playing the role of the duality morphism), 0 (playing the role of the scalar iden-
tity) and closed under the above-defined operations forms a rigid monoidal involutive
category called a graph category.

We can represent the bilabelled graphs pictorially in a similar way as partitions.
Unlike [8], we will draw them “top to bottom” instead of “right to left” to be consistent
with partitions.

Considering K = (K , a,b) ∈ G (k, l), we put k points on a line and l points on
another line below. Between those two lines of points, we draw the graph K and each
input vertex ai is connected by a string to the i th point on the top line and each output
vertex b j is connected by a string to the j th point on the bottom line. The graph edges
are drawn by thick lines, whereas the above-mentioned connecting strings are drawn
thin. Typical examples of a bilabelled graphs may look as follows:

K = , H = .

The categorical operations then have a similar pictorial interpretation as in the case
of partitions. Tensor product is putting “side by side”:

⊗ = .
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Composition is putting one graph below the other and contracting the strings:

· = = .

Involution is vertical reflection.

( )∗ = .

In this spirit, the category of partitions embed into the category of all graphs. Given
P ∈ P(k, l), we associate with it an edgeless bilabelled graph, where the vertices
stand for the blocks of P. That is, P �→ (Nb, a,b), where b is the number of blocks
in P and P = ker(a,b). In particular, note that the bilabelled graphs Mk,l containing
a single vertex correspond to partitions consisting of a single block (e.g. M1,1 = ,
M0,2 = ). For the rest of this article, we will not distinguish between partitions with
k upper and l lower points and the associated bilabelled graphs.

Remark 1.3 Formally, there is no bijection between categories of partitions and cat-
egories of edgeless graphs. The reason is that in case of partitions, we assume by
definition that the categories are closed with respect to adding and removing empty
blocks. In the language of graphs, empty blocks correspond to isolated vertices. Any
graph category is certainly closed under adding isolated vertices as the graph with
a single isolated vertex is contained in any category (since = · ), but it need
not be closed under removing those vertices. In case of graph categories, this can be
considered as an unimportant technical detail. However, it becomes important in case
of skew categories of partitions and skew graph categories, which we are going to
define later.

1.6 Rotations and Frobenius reciprocity

Consider a bilabelled graphK = (K , (a1, . . . , ak), (b1, . . . , bl)) ∈ G (k, l).We define
its

• left rotation LrotK := (K , (a2, . . . , ak), (a1, b1, . . . , bl)) ∈ G (k − 1, l + 1),
• right rotation RrotK := (K , (a1, . . . , ak, bl), (b1, . . . , bl−1)) ∈ G (k + 1, l − 1).

It holds that every category of graphs (and hence also every category of partitions)
is closed under both those operations and their inverses. The proof is simple: Those
rotations can actually be realized by composing with some tensor product of the pair
partition and identities. For example, we can express

RrotK = ( ⊗ · · · ⊗ ⊗ ) · (K ⊗ ).

As a consequence, any category of graphsC is generated by the collection of graphs
with output vertices only K ∈ C (0, k), k ∈ N0.
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2 Group-theoretical graph categories

In this section, we generalize the group-theoretical categories of partitions and skew
categories of partitions from [7,9] (summarized here in Sects. 1.3 and 1.4) by intro-
ducing the following concepts.

Partition concept Graph analogue

Group-theoretical cat. of partitions Group-theoretical graph category
sSV -invariant norm. subgrp. A � Z

∗V
2 Easy graph fibration

Skew category of partitions Skew graph category
SV -invariant norm. subgrp. A � Z

∗V
2 Graph fibration

2.1 Graph quotients and overlapping unions

First, we define some important operations on graphs.

Definition 2.1 Let K be a graph and π a partition of its vertex set V (K ). We denote
by K/π the quotient graph, where the set of vertices are the blocks of π and there is
an edge between two blocks if there is an edge in K between some of their elements.
We denote by qπ the surjection V (K ) → V (K/π), which actually defines a graph
homomorphism qπ : K → K/π .

Definition 2.2 Consider twographs K and H .An injective partial function f : V (K ) →
V (H), that is, a subset f ⊆ V (K )×V (H) such that for every v ∈ V (K ) or v ∈ V (H)

there is at most one pair in f containing v will be called a vertex overlap of K and H .
We denote by K ∪ f H the quotient of K 	 H , where we identify all the pairs in f .
We call it the f -union of K and H .

If f is empty, then K ∪ f H = K 	 H is the disjoint union. Considering non-
empty f corresponds to the situation where the vertex sets V (K ) and V (H) overlap
and then we compute the true union of K and H . We denote by fK the inclusion
V (K ) → V (K ∪ f H) and similarly fH : V (H) → V (K ∪ f H).

2.2 Graph fibrations

Before introducing group-theoretical categories of partitions, we first define the struc-
ture providing the group-theoretical description, which we call the graph fibration.
Let us start with introducing some notation.

Notation 2.3 Let V , V ′ be some sets and consider a map ϕ : V → V ′. Then, the
obvious homomorphisms V ∗ → V ′∗ and Z

∗V
2 → Z

∗V ′
2 induced by ϕ are denoted

by the same letter ϕ. In particular, the same applies if ϕ is a graph homomorphism
G → G ′ and V = V (G), V ′ = V (G ′).
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Definition 2.4 A graph fibration F is a set of ordered pairs (K , a), where K is a graph
(equivalence class up to isomorphism) and a ∈ Z

∗V (K )
2 , such that (N0, e), (N1, e) ∈ F

(e denotes the group identity) and the following holds.

(F1) The sets F(K ) := {a ∈ Z
∗V (K )
2 | (K , a) ∈ F} are either empty or normal

subgroups of Z
∗V (K )
2 .

(F2) For any automorphism ϕ of K , we have F(K ) = ϕ(F(K )).
(F3) For any pair of graphs K and H and any vertex overlap f , F(K ) and F(H)

embed into F(K ∪ f H) by fK and fH . That is, F is closed under the operation
of f -union defined as

(K , a) ∪ f (H , b) = (K ∪ f H , fK (a) fH (b)).

If F(K ) is non-empty, we write K ∈ F and call F(K ) a fibre of F . A graph fibration
is called easy if it is closed under quotients. That is:

(F4) For any K ∈ F and any partition π of V (K ), we have qπ (F(K )) ⊆ F(K/π).

Remark 2.5 Let us clarify what do we exactly mean by “up to isomorphism” here. The
elements of F are formally equivalence classes of the pairs (K , a) with respect to the
following equivalence: (K , a) ≡ (K ′, a′) if there is a graph isomorphism ϕ : K → K ′
such that a′ = ϕ(a).

Nevertheless, in the following text we will not strictly distinguish between the
elements and the equivalence classes. In particular, given a graph K , we denote by
F(K ) the set of alla ∈ Z

∗V (K )
2 such that the equivalence class of (K , a) is an element of

F (exactly as wewrote in (F1)). So, F(K ) should always be seen as a normal subgroup
of Z

∗V (K )
2 containing the actual elements of Z

∗V (K )
2 , not any kind of equivalence

classes. This then of course already implies that F(K ) is invariant with respect to the
automorphisms of K , so the axiom (F2) is in some sense redundant. Nevertheless, it
is convenient to have it explicitly listed since, if we are practically working with the
actual graph and not their equivalence classes, we then have to explicitly check that
every F(K ) is indeed Aut K -invariant.

Remark 2.6 In case of easy graph fibrations, the axiom (F3) can be equivalently for-
mulated just for disjoint unions since any f -union is a quotient of the disjoint union.

Notation 2.7 In the following text, we will usually suppress the maps fK and fH .
That is, for a pair of graphs K and H and a vertex overlap f , we identify K and H
with the corresponding subgraphs of K ∪ f H . If it is clear, which vertex overlap f
are we using, this should cause no confusion.

2.3 Group-theoretical graph categories

In this section, we define what is a group-theoretical graph category. The motivation
for such a definition andname is (similarly as in case of partitions) thatwehave a certain
group-theoretical description of such categories—namely the easy graph fibrations
defined in the previous section. The structure of group-theoretical graph categories is
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then generalized by defining skew graph categories, which then correspond to general
graph fibrations.

Definition 2.8 A group-theoretical graph category is a graph category C ⊆ G , which
is closed under taking graph quotients.

Remark 2.9 In terms of partitions, taking quotients means simply joining different
blocks. The ability to join blocks is also the key feature of group-theoretical categories
of partitions. That is, a category of partitionsC contains (soC is group-theoretical)
if and only if it is closed under joining blocks [9, Lemma 2.3].

That is, there is a correspondence between group-theoretical categories of partitions
and group-theoretical graph categories containing edgeless graphs only. In contrast to
Remark 1.3, this correspondence is bijective. Indeed, since group-theoretical graph
categories are supposed to be closed under quotients, they must in particular be closed
under removing isolated vertices.

There is no such a simple characterization for group-theoretical graph categories as
we do for categories of partitions. For instance, it does not hold that any graph category
containing the partition would be group-theoretical. Nevertheless, in Sect. 2.6, we
are going to formulate a similar characterization in terms of generators.

In the following,we are going to define skewcategories of graphs as a generalization
of skew categories of partitions.

Considering partitions p ∈ P(k), q ∈ P(l), denote

G (p, q) := {K = (K , a,b) ∈ G (k, l) | p = ker a, q = ker b} ⊆ G (k, l).

We can restrict the composition of bilabelled graphsK = (K , a,b),H = (H , c,d)

only to the cases, when ker b = ker c and then interpret the collection of sets G (p, q)

as a monoidal ∗-category with one-line partitions
⋃

k∈N0
P(k) as the set of objects.

Definition 2.10 A skew graph category C is a set C ⊆ G of bilabelled graphs con-
taining 0 ∈ C (0, 0), ∈ C (1, 1) and ∈ C (0, 2), which is closed under

• f -unions—for everyK = (K , a,b) ∈ C (k, l) andH = (H , c,d) ∈ C (k′, l ′) and
for every vertex overlap f , we haveK∪ f H := (K ∪ f H , ac,bd) ∈ C (k+k′, l+l ′)
(for disjoint union, we get the tensor product),

• restricted composition—for every K = (K , a,b) ∈ C (k, l) and H = (H , c,d) ∈
C (l, m) such that ker b = ker c, we have HK ∈ C (k, m),

• involution—K = (K , a,b) ∈ C (k, l) implies K∗ = (K ,b, a) ∈ C (l, k).

In addition, considerK = (K , a,b) ∈ C (k, l),H = (H , c,d) ∈ C (l, m) and a vertex
overlap f of K and H such that (bi , ci ) ∈ f for all i (existence of which implies
ker b = ker c). Then, we define the f -composition H · f K := (K ∪ f H , a,d).

Remark 2.11 Skew graph categories are indeed rigid monoidal ∗-categories. In partic-
ular, the following holds.

(a) For every partition p ∈ P(k), we have an identity morphism idp ∈ C (p, p) ⊆
C (k, k) that can be created as an appropriate f -union of the identities ∈ C (1, 1).
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(b) Skew graph categories are closed under left and right rotations. (Proof the same
as in [7, Lemma 1.8(i)].)

(c) Skew graph categories are closed under f -compositions. (Proof the same as in [7,
Lemma 1.8(ii)].)

Remark 2.12 (a) Any group-theoretical graph category is also a skew graph category.
(b) Any skew graph category contains as a union of , , and .
(c) Nonetheless, not every skew graph category is a (group-theoretical) graph category

as it may not be closed under all compositions.

Finally, we connect skew graph categories with their group-theoretical description.

Theorem 2.13 There is the following one-to-one correspondence between graph fibra-
tions and skew graph categories. For any graph fibration F, we define a graph category

C := {(K , a,b) | (K , g−1
a gb) ∈ F} = {(K , a,b) | (K , gbg−1

a ) ∈ F}. (2.1)

Conversely, we associate with any skew graph category C a graph fibration

F := {(K , g−1
a gb) | (K , a,b) ∈ C } = {(K , gbg−1

a ) | (K , a,b) ∈ C }
= {(K , ga) | (K ,∅, a) ∈ C }. (2.2)

The graph fibration F is easy if and only if the skew graph category C is a group-
theoretical graph category.

Proof Take a graph fibration F and construct C as in (2.1). The equality in (2.1)
follows from F(K ) being normal. Now, we prove that C is a skew graph category,
that is, closed under the skew category operations.

Unions: Take K = (K , a,b) and H = (H , c,d) from C and a vertex overlap f .
We have (K , g−1

a gb) ∪ f (H , gdg−1
c ) = (K ∪ f H , g−1

a gbgdg−1
c ) ∈ F and, from

normality of F(K ∪ f H), also (K ∪ f H , g−1
c g−1

a gbgd) = (K ∪ f H , g−1
ac gbd) ∈ F ,

so (K ∪ f H , ac,bd) ∈ C .
Involution follows from F(K ) being closed under the group inversion, so if

(K , g−1
a gb) ∈ F then also (K , g−1

b ga) ∈ F .
Composition: Take K = (K , a,b), H = (H , c,d), so (K , g−1

a gb) ∈ F and
(H , g−1

c gd) ∈ F . Suppose first that ker b = ker c. Then, we can choose a vertex
overlap f = {(bi , ci )}i , so fK (b) = fH (c). Then, HK = (K ∪ f H , a,d), which is
indeed in C since we have (K , g−1

a gb) ∪ f (H , g−1
c gd) = (K ∪ f H , g−1

a gd).
Now, let us assume that F is easy, i.e. invariant with respect to quotients and let

us prove that C is closed under all compositions. So, take arbitrary K = (K , a,b) ∈
C (k, l), H = (H , c,d) ∈ C (l, m). Then, we have (K , g−1

a gb) 	 (H , g−1
c gd) =

(K 	 H , g−1
a gbg−1

c gd) ∈ F . Now, we can take the quotient of K 	 H by identifying
the vertices bi with ci for every i . This then exactly corresponds to the composition
HK. Finally, since F is closed under quotients, C is also closed under quotients.

The converse direction is very straightforward. Consider a skew graph category C
and prove that (2.2) defines a graph fibration. First of all, note that the equalities in (2.2)
follow from skew graph categories being closed under rotations. Now, consider some
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K ∈ F and prove that F(K ) is a normal subgroup ofZ∗V (K )
2 . First, we prove that F(K )

is closed with respect to multiplication. Take a,b such that (K ,∅, a), (K ,∅,b) ∈ C ,
so ga, gb ∈ F(K ). Then, we must have (K ,∅, a) ∪id (K ,∅,b) = (K ,∅, ab), so
gagb ∈ F(K ). Secondly, we prove that F(K ) is closed on taking inverses. Considering
K = (K ,∅, a) ∈ C , we have K∗ = (K , a,∅) ∈ C , so g−1

a ∈ F(K ). Finally, the
normality. Taking again K = (K ,∅, a) ∈ C and v ∈ V (K ), then we can construct
K ∪ f = (K , v, av), where f is the vertex overlap identifying the vertex of with
v. This graph then corresponds to g−1

v gagv .
Proving that F is closed under f -unions and, assuming thatC is a group-theoretical

graph category, proving that F is closed under taking quotients, is similarly straight-
forward.

Finally, we prove that those assignments C �→ F and F �→ C are inverse to
each other, which means that the correspondence is indeed one-to-one. Denote by �

the map (K , a,b) �→ (K , g−1
a gb). The correspondence can then be formulated as an

assignmentC �→ F := �(C ) and F �→ C := �−1(F). Note that� is a well-defined
mapping, but it is not injective. So, it remains to prove that�−1(�(C )) = C . In other
words, we have to prove that, for every skew category of graphs,K := (K , a,b) ∈ C
implies K′ := (K , c,d) ∈ C whenever g−1

a gb = g−1
c gd. The equality means that K′

can differ from K by rotation—but this is fine as C is closed under rotations—and
by adding or removing some pair vv, where v ∈ V (K ), to the input/output sequence.
Adding of such a pair can be achieved by computing an f -union with (or or ),
removing canbe achievedby contraction, i.e. composingwith ⊗· · · ⊗ ⊗ ⊗· · ·⊗
(some additional rotations may be needed). �	

Remark 2.14 (On loops in graphs) Often, people are interested in simple graphs, that
is, graphswithout loops. So, theremight be a question: Is it essential to consider graphs
with loops in the definition of a graph category and graph fibration or can one do the
same also without loops?

The easiestway is to actually consider graphswith a loop at every vertex. Everything
works perfectly fine if we implicitly assume that every graph appearing in this article
has a loop at every vertex. Some statements can even be formulated in a simpler
way under this assumption. We will comment on this at the particular places later on
in this article. Note, however, that this assumption also means that we are slightly
modifying the definition of graph categories and graph fibrations since now N1—the
graph, which is by assumption contained in every graph fibration and every graph
category—denotes the graph with a single vertex and a loop.

Now, what if we want to restrict to truly simple graphs only, i.e. graphs that have
literally no loops. Simple bilabelled graphs are closed under all the operations of skew
graph categories. So, in case of skew graph categories, we can again just restrict to
simple graphs. However, simple graphs are not closed under taking quotients. So, in
case we want to work with ordinary graph categories or, equivalently, easy graph fibra-
tions, then we actually have to construct a quotient category rather than a subcategory.
If a graph operation on simple graphs yields a non-simple graph, then just declare the
result to be equal to zero.

Note that in the easy case, the distinction between the loops-everywhere and no-
loops-at-all approaches may not be entirely cosmetic. As we just mentioned, the
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category operations will act differently. Also the notion of a graph homomorphism
differs in those two situations. On the other hand, in the non-easy situation, we deal
only with injective homomorphisms, where this distinction disappears.

2.4 Full fibrations

Definition 2.15 A graph fibration F is called full if K ∈ F for all K .

Lemma 2.16 Let F be a graph fibration. Suppose K , H ∈ F are graphs such that there
is an embedding (an injective homomorphism) ι : H → K . Then, ι(F(H)) ⊆ F(K ).

Proof We have K = K ∪ι H , so the lemma follows from axiom (F3). �	
Proposition 2.17 (Alternative definition of full graph fibrations) A full graph fibra-
tion F is equivalently a collection of normal subgroups F(K ) � Z

∗V (K )
2 for all

graphs K , which is closed under injective homomorphisms. That is, for every injective
homomorphism of two graphs ι : H → K , we have ι(F(H)) ⊆ F(K ).

Proof The left–right implication follows from Lemma 2.16. For the right–left impli-
cation, we get axiom (F2) by choosing ϕ to be the graph automorphism. To check
(F3), take any pair of fibres K , H ∈ F and their vertex overlap f . Since F contains
all graphs as fibres, it must contain also K ∪ f H . Choosing ι := fK in our assump-
tion, we directly have that F(K ) embed into F(K ∪ f H) by fK and the same holds
for H . �	
Proposition 2.18 (Alternative definition of easy full graph fibrations) An easy full
graph fibration F is equivalently a collection of normal subgroups F(K ) � Z

∗V (K )
2

for all graphs K , which is closed under all homomorphisms. That is, for every homo-
morphism of two graphs ϕ : H → K , we have ϕ(F(H)) ⊆ F(K ).

Proof For the left–right implication, we just decompose the homomorphism as ϕ =
ι◦q, where q is a surjective homomorphism (that is, a quotient) and ι is injective (that
is, an embedding). Now we just use axiom (F4) to deal with q and Lemma 2.16 to
deal with ι.

Most of the right–left multiplication is proven in 2.17, and we just have to handle
the easiness, i.e. axiom (F4). This follows by taking ϕ = qπ . �	
Proposition 2.19 Let B be a set of graphs containing N0 and N1 and closed under
quotients and arbitrary f -unions. If B contains some graph with at least one edge,
then B contains all graphs with loops at every vertex.

So, if we are computing with the implicit assumption that every graph has a loop at
every vertex (see Remark 2.14), then a graph fibration is always full unless it contains
edgeless graphs only.

Proof If there is any H ∈ B containing at least one edge, then we can construct
a graph with two vertices connected by an edge as its quotient. Possibly missing loops
at those two vertices can be added using some f -union with itself and then performing
a quotient. From the full graph on two vertices (with loops everywhere), any graph K
(with loops everywhere) can be constructed using f -unions. �	
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2.5 Examples

Let V := {a1, a2, . . . } be an infinite countable set.

Example 2.20 (Group-theoretical categories of partitions)Consider A an sSV -invariant
normal subgroup of Z

∗V
2 . Let CA be the associated category of partitions. Denote by

Vn := {a1, . . . , an} the first n letters in V and by An := A ∩ Z
∗Vn
2 the corresponding

subgroup of A using only those letters a1, . . . , an . Then, we can define an easy graph
fibration

FA := {(Nn, g) | g ∈ An, n ∈ N0},

where Nn is the edgeless graph with n vertices identified with the letters a1, . . . , an .
The associated graph category can then be identifiedwith the category of partitionsCA.

Conversely, as we mention in Remark 2.9, a group-theoretical graph category C
where all graphs have no edges can always be identified with a group-theoretical
category of partitions. Such a category then corresponds to some graph fibration F
with fibres Ak := F(Nk). Axiom (F3) in this case means that the groups Ak are closed
under injective homomorphisms Ak → Al , k ≤ l mapping generators to generators,
so we have a chain of embeddings · · · Ak ⊆ Ak+1 ⊆ · · · . Axiom (F4) means that the
groups are closed also under the surjective homomorphisms Al → Ak , k ≤ l mapping
generators to generators, so, in particular, each group is just a subgroup of the union
A := ⋃

k Ak generated by {a1, . . . , ak}.
Example 2.21 (Skew categories of partitions) Let A be an SV -invariant normal sub-
group of Z

∗V
2 . Then, the above-mentioned construction defines a (possibly non-easy)

graph fibration FA. The associated skew graph category then coincides with the skew
category of partitions corresponding to A.

Example 2.22 (“New” skew categories of partitions) In this case, the converse does not
hold. A skew graph category C containing edgeless graphs only may not be closed
under removing isolated vertices, in which case we cannot identify it with a skew
category of partitions in the sense of [7]. Let us look what happens on the level of
the group-theoretical description. Let F be the corresponding graph fibration with
fibres Ak := F(Nk). Again, axiom (F3) means that we have a chain of embeddings
· · · Ak ⊆ Ak+1 ⊆ · · · . But now we are missing axiom (F4) which would allow us to
project from right to left. So, F may not be determined by a single group A � Z

∗V
2 .

Let us bring a concrete example suggested to the author by LauraMaaßen: Consider
the skew graph categoryC generated by . That is, A3 is the normal subgroup ofZ∗3

2
generated by a1a2a3 and its permutations; moreover, Ak for any k ≥ 3 is the normal
subgroup of Z

∗k
2 generated by aia jak with i, j, k ∈ {1, . . . , k} mutually distinct. For

k < 3 is Ak trivial. We can again try to take A := ⋃
k Ak , but this no more determines

all the sets Ak . Indeed, we have a1a2 = (a1a3a4) · (a4a3a2) ∈ A4 ⊆ A, but obviously
a1a2 /∈ A2! (And one can actually also prove that a1a2 /∈ A3.)

Wecan lookon this example in termsof pictures. Startingwith the generator ,we
can do the connected tensor product with itself to obtain . Now, a composition
with gives us . So, in the end, ∈ C , but /∈ C .
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Modifying the definition of a skewgraph category, namely by removing the assump-
tion that the category is closed under removing empty blocks, we can “repair” the
correspondence. Using this modified definition, it will again hold that skew categories
of partitions exactly correspond to the skew graph categories containing edgeless
graphs only. It depends on the application whether it is more convenient to use the
former simpler definition, where a skew category is determined by a single group
A � Z

∗V
2 , or whether one needs themore general definition with a sequence of groups.

Note that the latter may be necessary to describe certain quantum group semidirect
products �̂ � Sn , see Remark 5.2.

Example 2.23 (Homogeneous graph fibration) Let A be an SV -invariant normal sub-
group of Z

∗V
2 and let B be a set of graphs closed under arbitrary f -unions. For every

graph K ∈ B, consider some injection ιK : V (K ) → V . Denote AK := ι−1
K (A). Since

A is SV -invariant, it does not matter, how precisely we define the injection ιK . Then,
we can define a graph fibration FA,B by

FA,B(K ) =
{

AK if K ∈ B,

∅ otherwise.

The associated graph category can be described as follows:

CA,B = {K = (K , a,b) | K ∈ B, ker(a,b) ∈ CA}.

Example 2.24 (Easy full homogeneous graph fibration) Let A be sSV -invariant normal
subgroup of Z

∗V
2 . Then, we can construct an easy full graph fibration FA,full := FA,B

taking B to be the set of all graphs. So, FA,full(K ) = AK for every graph K .

In the following example, we construct an easy full graph fibration that is not
determined by a single normal subgroup A � Z

∗V
2 .

Example 2.25 (There is more!) For every graph K , we define F(K ) to be the normal
subgroup ofZ

∗V (K )
2 generated by words of the form abab, where a, b are any adjacent

vertices in K , so

F(K ) = 〈〈abab | {a, b} ∈ E(K )〉〉 � Z
∗V (K )
2 .

Here, by the double brackets, we denote the normal subgroup generated by the given
generators. Now since adjacency is preserved under f -unions and quotients, we have
that F is indeed closed under those operations and hence it is an easy graph fibration.

2.6 Generators of categories

In this section, we study group-theoretical graph categories and skew graph categories
in terms of generators. We answer the following two questions. Firstly, given a set of
generators, find an explicit description of the group-theoretical category or the skew
category it generates. Secondly, we characterize group-theoretical categories among
all graph categories in terms of their generators.
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Definition 2.26 Let S be a set of bilabelled graphs. We denote by 〈S〉, resp., 〈S〉grp-th,
resp., 〈S〉skew the graph category, resp., group-theoretical graph category, resp., skew
graph category generated by S. That is, the smallest category containing S.

Definition 2.27 Let S be a set of graphs. We define its closure under arbitrary f -
unions to be the smallest set of graphs containing S and closed under f -unions.

In this article, we will typically consider generating sets S that contain the one-
vertex graph N1 as this is required by the definition of a graph fibration. (We should
formally also always include the empty graph N0, but this has of course virtually no
impact on the closure under f -unions.)

Example 2.28 Take the graph of two adjacent vertices K2 = . Then, the closure of
{N1, K2} is simply the set of all graphs (as was already used in the proof of Proposi-
tion 2.19).

Take now the triangle K3 = . The closure of {N1, K3} is the set of all graphs,
where every edge is incident to some triangle. (Indeed, take such a graph G and denote
by n the number of its vertices. We can reconstruct G as follows. By repeated unions
of N1, construct the edgeless graph Nn . Now, go through every edge in G and use
the f -union to add the whole triangle this edge is incident with to our graph we are
constructing (it does not matter which one if there is more). This way, we add all the
necessary edges. For the converse direction, it is easy to see that the described set is
indeed closed under f -unions.)

In the following propositions, the double angle brackets again denote the normal
subgroup generated by the given generators.

Proposition 2.29 Let S be a set of bilabelled graphs. Denote by C the skew graph
category generated by S and by F the corresponding graph fibration. Then, F contains
as fibres the closure of N0, N1, and the underlying graphs in S under arbitrary f -
unions. For every K ∈ F, we then have

F(K ) = 〈〈ι(ga∗b) | (H , a,b) ∈ S; ι : H → K an embedding〉〉 � Z
∗V (K )
2

Proof The fact that F contains as fibres (at least) the f -union closure of graphs in S
follows from axiom (F3) of graph fibrations being closed under f -unions. Now the ⊇
inclusion in the equality follows from Lemma 2.16.

To prove the inclusion ⊆, it is enough to show that the right-hand side defines
a graph fibration. By definition, F(K ) is a normal subgroup so (F1) holds. If we take
an embedding ι : H → K , then ϕ ◦ ι is surely also an embedding for any ϕ ∈ Aut K ,
so (F2) holds. Finally, taking two fibres K , K ′ ∈ F and their vertex overlap f , then
K ∪ f K ′ is again a fibre by definition. Any element of F(K ) is of the form a =
ι(ga∗b). Since fK ◦ ι is surely an injective homomorphism, we have that fK (a) =
( fK ◦ ι)(ga∗b) ∈ F(K ∪ f K ′). Similarly for fK ′ . �	

The situation in the easy case, i.e. with group-theoretical graph categories, gets a bit
simpler ifwe are focusing only on graphswith a loop at every vertex (seeRemark 2.14).
Recall from Proposition 2.19 that in this case a group-theoretical graph category either

123



Journal of Algebraic Combinatorics

coincides with some group-theoretical category of partitions or it corresponds to a full
graph fibration.

Proposition 2.30 Let S be a set of bilabelled graphs containing at least one graph
with at least one edge. Denote by C the group-theoretical graph category generated
by S and by F the corresponding full easy graph fibration. Then,

F(K ) = 〈〈ϕ(ga∗b) | (H , a,b) ∈ S; ϕ : H → K a homomorphism〉〉 � Z
∗V (K )
2

for every graph K with loops at every vertex.

Proof Follows directly from Propositions 2.18 and 2.19. �	
Now, we look on the question of generators of group-theoretical graph categories.

First, we need a small lemma.

Lemma 2.31 Let C be a graph category containing . Then, C is closed under the
following operations.

(1) Moving a pair of neighbouring output strings coming from a common vertex:

(K ,∅, axxbc) ↔ (K ,∅, abxxc).

(2) Computing quotients K �→ K/π , where all vertices of K that are not input/output
are singletons in π (i.e. they are not identified with any other vertex).

Proof Moving the pair of strings one position left, resp., right is achieved by composing
with … … , resp., … … .

Identifying two distinct output vertices is achieved by composing with partition
… ……… , which is generated by (see [9, page 6]). �	
Proposition 2.32 Let S be a set of bilabelled graphs such that every vertex appears
at least once within the input/output vertices. Then, the graph category 〈 , S〉 is
group-theoretical. Consequently, 〈 , S〉 = 〈S〉grp-th.

Proof Given any bilabelled graph K = (K , a,b), we associate with it a bilabelled
graph K̃ := (K , a,bv), where v = v1v1v2v2 · · · vmvm and {v1, . . . , vm} denotes
the set of all vertices in K . It holds that for any K ∈ S, we have K̃ ∈ 〈 , S〉.
Indeed, recall that for every v ∈ V (K ), we assume that it is an input/output vertex.
We can create two extra input/output strings coming from the vertex by composing
with = · ( ⊗ ). Then, we can move those to the end of the output tuple by
Lemma 2.31(1).

Now, we prove that actually for any K ∈ 〈 , S〉, we have K̃ ∈ 〈 , S〉. It
is enough to show that for every K,H ∈ 〈 , S〉, such that K̃, H̃ ∈ 〈 , S〉,
we also have K̃ ⊗ H, H̃ · K, K̃∗ ∈ 〈 , S〉. This is straightforward to check using
Lemma 2.31(1).

Finally, it follows from Lemma 2.31(2) that 〈 , S〉 is closed under arbitrary
graph quotients. Indeed, taking any K ∈ 〈 , S〉, we can construct K̃, then use
Lemma 2.31(2) to construct the corresponding quotient, and finally delete the redun-
dant output strings by composing with . �	
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We can also reformulate the above proposition as an equivalence.

Proposition 2.33 Let C be a graph category. It is group-theoretical if and only if there
exists a set of bilabelled graphs S whose vertices all appear in the input/output tuples
such that C = 〈 , S〉.
Proof The right–left implication follows directly from Proposition 2.32. To prove the
left–right implication, take any generating set S̃ of C . Computing f -unions of graphs
in S̃ with , we are able to make all vertices of the graphs appear in the input/output
tuples while not changing the category they generate. Finally, we already mentioned
in Remark 2.12 that every group-theoretical graph-category must contain as an
f -union of , , and . �	
Example 2.34 As an example, consider the category 〈 , 〉. From Proposi-
tion 2.32, it follows that it is a group-theoretical graph category—the smallest one
containing the bilabelled graph . Now using Proposition 2.30, we find out that
this category is described by the graph fibration from Example 2.25.

3 Preliminaries: quantum groups and Tannaka–Krein duality

In this section, we introduce very briefly the theory of compactmatrix quantumgroups,
Tannaka–Krein duality, and the connection with diagram categories. For more detailed
introduction, see, for example, [3,13].

3.1 Compact matrix quantum groups

An orthogonal compact matrix quantum group is a pair G = (A, u), where A is a
∗-algebra and u ∈ Mn(A) a matrix such that

(1) the elements ui j i, j = 1, . . . , n generate A,
(2) the matrix u is orthogonal, i.e. ui j = u∗

i j and uut = 1n = ut u,
(3) the map � : A → A ⊗min A defined as �(ui j ) := ∑n

k=1 uik ⊗ ukj extends to
a ∗-homomorphism.

This formulation comes from [3]. We could consider more general compact matrix
quantum groups by weakening axiom (2) (instead of orthogonality assuming only that
u and ut are unitarizable). This concept was first introduced by Woronowicz in [14].
Compact matrix quantum groups generalize the notion of compact matrix groups in
the following sense.

Example 3.1 (Compact matrix group H ) Let H be an (orthogonal) compact matrix
group. Consider the coordinate functions vi j : H → C defined by vi j (h) = hi j for
h ∈ H . Let A := O(H) be the coordinate algebra, i.e. the ∗-algebra generated by vi j .
Then, (A, v) forms an (orthogonal) compact matrix quantum group. Conversely, any
compact matrix quantum group H = (A, v), where A is a commutative ∗-algebra, is
of this form.
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For this reason, given any compact matrix quantum group G = (A, u), we denote
O(G) := A (interpreting the elements as non-commutative functions). The matrix u
is called the fundamental representation of G. However, there is also a dual viewpoint
coming from the following example.

Example 3.2 (Finitely generated group�) Let� be a finitely generated discrete group.
Denote by g1, . . . , gn its generators. LetC� be the associated group ∗-algebra, denote
by γ1, . . . , γn ∈ C� its elements corresponding to the generators of � and by γ the
diagonal matrix γ = diag(γ1, . . . , γn). Then, �̂ = (C�, γ ) is also a compact matrix
quantum group. If g2

i = e, i.e. γ 2
i = 1, then it is an orthogonal CMQG. It is called the

compact dual of �.

We say that a compactmatrix quantumgroupH = (O(H), v) is aquantum subgroup
ofG = (O(G), u), denotedH ⊆ G, if there is a surjective ∗-homomorphism O(G) →
O(H) mapping ui j �→ vi j . That is, quantum subgroup can be constructed by adding
relations to the algebra.

In this article, we focus on compact matrix quantum groups of the following form.

Example 3.3 (Semidirect product �̂ � H ) Let H ⊆ Sn be a permutation group rep-
resented by permutation matrices. That is, H can be considered as a compact matrix
quantum group H = (O(H), v), where vi j : H → C is the function defined by
vi j (σ ) = δiσ( j). Note in particular that v2i j = vi j and

∑
k vik = 1 = ∑

k vk j for
every i, j . Let � be a finitely generated group with generators g1, . . . , gn and let us
define the matrix γ = diag(γ1, . . . , γn) ∈ Mn(C�), where γi correspond to gi , so
�̂ = (C�, γ ) is a compact matrix quantum group as discussed above.

It holds that G := �̂H := (C� ⊗ O(H), γ v) is a compact matrix quantum group.
In particular, if we assume that g2

i = e, i.e. g−1
i = gi , so γ 2

i = 1 and γ ∗
i = γi , then

G is an orthogonal compact matrix quantum group.
To see that, denote u := γ v, i.e. ui j = γivi j . The orthogonality is obvious since

both γ and v are orthogonal matrices. Consequently, axiom (2) holds. We have that
γi = ∑

k uik and vi j = u2
i j , so the axiom (1) holds. Finally, axiom (3) can be proven by

showing that the comultiplication � corresponds to a semidirect product construction
with respect to the (co)action of H ⊆ Sn on � by permuting the generators. See [10,
Sect. 2.5] for details (also see, e.g. [6, Sect. 10.2.6] for the definition of the double
crossed product). In order to emphasize this structure, we will denote this quantum
group by �̂ � H := G.

3.2 Representation categories and Tannaka–Krein duality

In this paper, by a representation category, wemean a linear rigidmonoidal ∗-category,
where the monoid of objects is the natural numbers N0 and morphisms are realized as
linear operators. To be more concrete:

Consider n ∈ N. A representation category is a collection of vector spaces

C(k, l) ⊆ L ((Cn)⊗k, (Cn)⊗l), k, l ∈ N0

such that the following holds:
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(1) For T ∈ C(k, l), T ′ ∈ C(k′, l ′), we have T ⊗ T ′ ∈ C(k + k′, l + l ′).
(2) For T ∈ C(k, l), S ∈ C(l, m), we have ST ∈ C(k, m).
(3) For T ∈ C(k, l), we have T ∗ ∈ C(l, k).
(4) For every k ∈ N0, we have 1⊗k

n ∈ C(k, k).
(5) We have

∑n
k=1 ek ⊗ ek ∈ C(0, 2).

Given a compact matrix quantum group G with fundamental representation u of
size n × n, we define

CG(k, l) := Mor(u⊗k, u⊗l) := {T : (Cn)⊗k → (Cn)⊗l | T u⊗k = u⊗l T }.
It is easily checked that CG is a representation category in the sense of our definition.
The so-called Tannaka–Krein duality says also the converse:

Theorem 3.4 (Woronowicz–Tannaka–Krein [15]) For every representation cate-
gory C, there exists a unique orthogonal compact matrix quantum group G with
CG = C.

Recall that quantum subgroups H ⊆ G are defined by the fact that O(H) has more
relations than O(G). Consequently, we have that H ⊆ G if and only if CH ⊇ CG.

3.3 CMQGs associated with diagram categories

Let us fix a graph G and label its vertices by numbers 1, . . . , n := |V (G)|. For every
bilabelled graph K = (K , a,b) ∈ G (k, l), we define a linear map T G

K : (Cn)⊗k →
(Cn)⊗l by the following formula

[T G
K ]ji := #{homomorphisms ϕ : K → G | ϕ(a) = i, ϕ(b) = j}

for any pair of multiindices i, j with i1, . . . , ik, j1, . . . , jl ∈ {1, . . . , n} � V .

Theorem 3.5 [8, Sect. 3.2] Let G be a graph. The assignment K �→ T G
K is a monoidal

unitary functor. That is,

(1) T G
K⊗H = T G

K ⊗ T G
H ,

(2) T G
HK = T G

H T G
K ,

(3) T G
K∗ = T G∗

K .

Consequently, for anygraph categoryC ⊆ G , its imageunderT G , i.e. the collection

C(k, l) := span{T G
K | K ∈ C (k, l)} ⊆ L ((Cn)⊗k, (Cn)⊗l)

forms a representation category. We can apply Woronowicz–Tannaka–Krein theorem
to this category and associate a compact matrix quantum group to it.

Corollary 3.6 ([8, Theorem 8.2]) Let G be a graph and C a graph category. Then,
there exists a unique orthogonal compact matrix quantum group G = (O(G), u) such
that

Mor(u⊗k, u⊗l) = span{T G
K | K ∈ C (k, l)}.
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We can actually construct the quantum group very explicitly. The associated ∗-
algebra can be defined as the universal ∗-algebra satisfying the intertwiner relations
u⊗k T = T u⊗l :

O(G) = ∗-alg(ui j ; i, j = 1, . . . , n | T G
K u⊗k = u⊗l T G

K ∀K ∈ C (k, l); k, l ∈ N0).

Actually, thanks to the Frobenius reciprocity, we may only consider the bilabelled
graphs with output vertices only:

O(G) = ∗-alg(ui j ; i, j = 1, . . . , n | u⊗k T G
K = T G

K ∀K ∈ C (0, k); k ∈ N0).

Those ideas formulated in [8] constitute a generalization of the work [2], which
used categories of partitions to construct quantum groups. Recall that the category
of all partitions embed into the category of all graphs. Let G be a graph and n :=
|V (G)|. Consider a partitionP ∈ P(k, l), which can also be interpreted as an edgeless
bilabelled graph P ∈ G (k, l). Then, regardless of the structure of G, we have T G

P =
T (n)
P , where the entries of T (n)

P are given by “blockwise Kronecker delta” [T (n)
P ]ji =

δP(i, j). That is, assign the k points in the upper row of p the numbers i1, . . . , ik (from
left to right) and the l points in the lower row j1, . . . , jl (again from left to right).
Then, δP(i, j) = 1 if the points belonging to the same block are assigned the same
numbers. Otherwise δP(i, j) = 0.

To bring an example, recall the partitions p and q from Equation 1.1.

P = ∈ P(3, 4) Q = ∈ P(4, 4).

In this case, we have

δP(i, j) = δi1i2i3 j2 j3 , δQ(i, j) = δi2 j3 j4δi3 j2 .

Example 3.7 (Important graph categories and the associated quantum groups) In this
paper, wewill use the following two important results: LetG be a graphwith n vertices.

The category of all partitions P corresponds to the group of all permutations Sn

represented by permutation matrices [2,4]. That is, considering n ∈ N, denote by Aσ

the permutation matrix corresponding to a permutation σ ∈ Sn . Then,

{T : (Cn)⊗k → (Cn)⊗l | T A⊗k
σ = A⊗l

σ T ∀σ ∈ Sn} = span{T (N )
P | P ∈ P(k, l)}.

The category of all graphs G corresponds to the group of all automorphisms Aut G
of the given graph G [8]. That is, intertwiners of Aut G are given by

{T : (Cn)⊗k → (Cn)⊗l | T A⊗k
σ = A⊗l

σ T ∀σ ∈ Aut G} = span{T G
K | K ∈ G (k, l)}.

3.4 CMQGs associated with group-theoretical categories of partitions

The quantum groups corresponding to group-theoretical categories of partitions were
identified in [10]:
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Theorem 3.8 [10, Theorem 4.5] Consider a natural number n ∈ N. Let C be a group-
theoretical category of partitions. Denote by A � Z

∗∞
2 the associated normal

subgroup and by An � Z
∗n
2 its subgroup using only n generators (as in Example 2.20).

Denote � := Z
∗n
2 /An. Then, the quantum group associated with C is of the form

G = �̂ � Sn .

Now, a natural question is, what if A is S∞-invariant, but not sS∞-invariant? In
that case, the quantum group G := �̂ � Sn does not correspond to any category of
partitions. But can we describe the associated intertwiner spaces in a different way?
This question is answered in [7], where skew categories of partitions were introduced
for this purpose.

Let P ∈ P(k, l) be a partition and n ∈ N. We define

δ̂
(n)
P (i, j) =

{
1 P = ker(i, j)
0 otherwise.

This defines a linear map T̂ (n)
P : (Cn)⊗k → (Cn)⊗l by [T̂ (n)

P ]ji := δ̂P(i, j).

The assignment P �→ T̂ (n)
P is not a functor! Despite this, the following holds.

Theorem 3.9 [7, Theorem 3.5] Consider a collection of subsets C (k, l) ⊆ P(k, l).
Then,

C(k, l) := span{T̂ (n)
P | P ∈ C (k, l)}

forms a representation category if and only if C is a skew category of partitions.

Theorem 3.10 [7, Theorem 4.17] Consider a natural number n ∈ N. Let C be a skew
category of partitions. Denote by A � Z

∗∞
2 the associated normal subgroup and

by An � Z
∗n
2 its subgroup using only n generators (as in Example 2.20). Denote

� := Z
∗n
2 /An. Then, the quantum group associated with the representation category

from the previous theorem is of the form

G = �̂ � Sn .

4 CMQGs associated with group-theoretical graph categories

4.1 The easy case

Let G be a graph. In the following theorem, we characterize the compact matrix quan-
tum group associated through the functor T G to a group-theoretical graph category C
corresponding to some graph fibration F assuming that G ∈ F . Recall from Proposi-
tion 2.19 that, if G has a loop at every vertex, then G ∈ F is satisfied automatically
unless F contains edgeless graphs only (which would mean that C is a category of
partitions and this case is already handled by Theorem 3.8).
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Theorem 4.1 Let G be a graph, F an easy graph fibration with G ∈ F. Denote by C
the group-theoretical graph category associated with F and by G the quantum group
associated with C and G. Then,

G = �̂ � Aut G,

where � = Z
∗V (G)
2 /F(G).

Proof To make sense of the statement and the proof, we need to identify the ver-
tices of G with numbers 1, . . . , n := |V (G)|. Let us denote by u the fundamental
representation of G. We have ∈ C and hence G ⊆ Z

∗n
2 � Sn . Therefore, we

can write u = γ v, where γ = diag(γ1, . . . , γn) with γ1, . . . , γn corresponding to
the generators of Z

∗n
2 and vi j corresponding to the generators of Sn . So, γk commute

with vi j , the vi j are even central projections, and we can express vi j = v2i j = u2
i j and

γi = ∑
j γivi j = ∑

j ui j .

Before going into the proof, let us denote by ξa := T G
(G,∅,a) the intertwiner associ-

ated with the bilabelled graph (G,∅, a) for some given word a. Recall that the entries
of this vector are given by

ξai = #homomorphisms ϕ : G → G such that ϕ(a) = i.

First, we are going to prove the inclusion⊆. We need to show that the generators γi

satisfy the relations of � and that the generators vi j satisfy the relations of Aut G.
Let us start with the latter. Denote G := (G,∅, v) and G̃ := (G,∅, ṽ), where v =
(1, 2, . . . , n) and ṽ = (1, 1, 2, 2, . . . , n, n). Since gṽ = e and since G ∈ F , we surely
have G̃ ∈ C (0, 2n). We can write

G̃ = ⊗n · G,

so the relation associated with G̃ ∈ C (0, 2n) can be written as

(u ⊗ u)⊗nT ⊗nξv = T ⊗nξv.

One can easily check that T (u ⊗ u)T = v since u2
i j = vi j . So, multiplying the

relation above with T ⊗n from left, we get exactly v⊗nξv = ξv. Substituting v by some
permutation matrix Aσ corresponding to a permutation σ ∈ Sn , we need to show that
the relation implies that σ ∈ Aut G. In terms of the entries, the relation then reads
ξvi = [Aσ ξv]i = ξv

σ−1(i). Note that ξ
v
i equals either one or zero depending on whether

j �→ i j defines a homomorphism G → G. Hence, if we choose i := (1, 2, . . . , n),
the relation exactly says that σ should be an automorphism G → G.

So, we have just proven that v represents some subgroup of Aut G. Consequently,
its representation category contains all intertwiners associated with any bilabelled
graph. In particular, v⊗kξa = ξa for any word a with ga ∈ F(G). (This can actually
be proven also directly by modifying the proof above.)
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Now, we derive the relations for the generators γi . We need to show that γa =
γa1 · · · γak equals identity for every word a such that ga ∈ F(G). So, take someword a
such that ga ∈ F(G), for which we have the relation ξa = u⊗kξa = γ ⊗kv⊗kξa =
γ ⊗kξa, so

γi1 · · · γik ξ
a
i = [γ ⊗kξa]i = ξai .

If we choose i := a, we surely have ξaa �= 0, so we can divide by this number and get
γa1 · · · γak = 1, which is what we wanted.

To prove the opposite inclusion, we need to take arbitrary K ∈ C (k, l) and show
that the relation ũ⊗l T G

K = T G
K ũ⊗k is satisfied in �̂ � Aut G. Here, we denote by ũ

the fundamental representation of �̂ � Aut G. Let us denote also ũ = γ̃ ṽ, where
γ̃ is the fundamental representation of �̂ and ṽ is the fundamental representation
of Aut G. From Frobenius reciprocity, it is enough to consider bilabelled graphs K
with output vertices only. For any such K = (K ,∅, a) ∈ C (0, k), denote by ξaK the
corresponding intertwiner. Since v is the fundamental representation of Aut G, we
have again ũ⊗kξaK = γ̃ ⊗kξaK . The relation [γ̃ ⊗kξaK ]i = [ξaK ]i can be written as

γ̃i1 · · · γ̃ik = 1 whenever ∃ϕ : K → G such that ϕ(a) = i.

So, we need to show that gi ∈ F(G) for all words i ∈ V (G)∗ such that there exist
a graph K and a word a ∈ V (K )∗ such that ga ∈ F(K ) and a graph homomorphism
ϕ : K → G such that ϕ(a) = i. But this directly follows from Proposition 2.18. �	
Example 4.2 Recall the category 〈 , 〉 from Examples 2.25 and 2.34. Consider-
ing a graph G, this category corresponds to the semidirect product �̂ �Aut G, where
� is a group generated by some gv , v ∈ V (G) such that g2

v = e for every v and
gvgw = gwgv if there is an edge {v,w} ∈ E(G).

For example, consider G = . In this case, Aut G = S2 × E , � = (Z2 ×Z2)∗Z2,
so

G = �̂ � Aut G = ̂((Z2 × Z2) ∗ Z2) � (S2 × E) = H2 ∗̂ Z2,

where H2 = Z2 � S2 = (Z2 × Z2) � S2 is the hyperoctahedral group and ∗̂ denotes
the quantum group (dual) free product as defined by Wang [12].

4.2 TheT̂maps

In the following subsections, we are going to interpret the skew categories of graphs
in terms of quantum groups. We start with generalizing the idea of the maps T̂ .

Definition 4.3 Let G be a graph. Denote n := |V (G)| and label all vertices of G by
numbers 1, . . . , n. For every bilabelled graphK = (K , a,b) ∈ G (k, l), we define the
map T̂ G

K : (Cn)⊗k → (Cn)⊗l by

[T̂ G
K ]ji := #{injective homomorphisms ϕ : K → G | ϕ(a) = i, ϕ(b) = j}.
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Remark 4.4 Considering some bilabelled graph K = (K , a,b), we have T̂K = 0
unless K is a subgraph of G. In particular, we have T̂K = 0 whenever V (K ) > V (G).

The following result constitutes a generalization of [7, Lemma 3.2].

Proposition 4.5 Consider K = (K , a,b) ∈ G (k, l), H = (H , a′,b′) ∈ G (k′, l ′).
Then, the following holds.

(1) T̂ G
K ⊗ T̂ G

H = ∑
f T̂ G

K∪ f H
.

(2) T̂ G
H T̂ G

K = ∑
f T̂ G

H· f K
(supposing k′ = l). In particular T̂ G

H T̂ G
K = 0 if ker b �=

ker a′.
(3) (T̂ G

K )∗ = T̂ G
K∗ .

Proof To prove item (1), we need to show for all multiindices i, j, i′, j that

#

{

(ϕ, ψ)

∣
∣
∣
∣

ϕ : K → G inj. hom.; ϕ(a) = i, ϕ(b) = j
ψ : H → G inj. hom.; ψ(a′) = i′, ψ(b′) = j′

}

=
∑

f

#{ω : K ∪ f H → G inj. hom. | ω(aa′) = ii′, ω(bb′) = jj′}.

For every (ϕ, ψ), we can define a vertex overlap f := {(v,w) | ϕ(v) = ψ(w)} ⊆
V (K ) × V (H) and an injective homomorphism ω : K ∪ f H → G by gluing ϕ

andψ together. Conversely, taking a vertex overlap f and an injective homomorphism
ω : K ∪ f H → G, we can define ϕ : K → G and ψ : H → G by ϕ(v) = ω(v) and
ψ(w) = ω(w). We see that the assignment (ϕ, ψ) ↔ (ω, f ) is a bijection. From this,
the equality follows.

We use the same approach to prove (2).

[T̂ G
H T̂ G

K ]ji =
∑

k

#

{

(ϕ, ψ)

∣
∣
∣

ϕ : K → G inj. hom.; ϕ(a) = i, ϕ(b) = k
ψ : H → G inj. hom.; ψ(a′) = k, ψ(b′) = j

}

=
∑

k

∑

f

#

{

ω : K ∪ f H → G inj. hom.
∣
∣
∣
ω(a) = i, ω(b′) = j,

ω(b = a′) = k

}

=
∑

f

#{ω : K ∪ f H → G inj. hom. | ω(a) = i, ω(d) = j} =
∑

f

[T G
H· f K]ji.

Item (3) can be seen directly from the definition of T̂ G
K . �	

Let us also formulate the connection between the intertwiners T G
K and T̂ G

K by
generalizing [7, Lemma 4.21].

Proposition 4.6 Let G be a graph, K a bilabelled graph. Then,

T G
K =

∑

π∈P(V (K ))

T̂ G
K/π .
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Proof Recall that

[T G
K ]ji = #{homomorphisms ϕ : K → G such that ϕ(i) = a, ϕ(j) = b}.

Now every such homomorphism ϕ can be decomposed as ϕ = ι ◦ qπ , where blocks
of π are the sets of vertices that are mapped onto a single vertex, so π = {ϕ−1(v) | v ∈
V (G)}, and ι : K/π → G is an injective homomorphism. This proves the inequality
[T G

K ]ji ≤ ∑
π [T̂ G

K/π ]ji.
For the opposite inequality, note that considering any partition π ∈ P(V (K ))

and any injective homomorphism ι : K/π → G, we can construct a homomorphism
ι◦qπ =: ϕ : K → G.Moreover, distinct pairs (π, ι) define distinct homomorphismsϕ.

�	

4.3 Representation category associated with a skew graph category

Themaps T̂ allow us to associate a representation category to any skew graph category.

Definition 4.7 Let G be a graph and C a skew graph category. We denote

C G(k, l) := span{T̂ G
K | K ∈ C (k, l)} ⊆ L ((Cn)⊗k, (Cn)⊗l),

where n = |V (G)|.
Proposition 4.8 C G is a representation category.

Proof Follows from Proposition 4.5. �	
An important point is that this generalizes the easy case, which uses the maps T

instead of T̂ .

Proposition 4.9 Let G be a graph andC a group-theoretical category of graphs. Then,

C G = span{T̂ G
K | K ∈ C (k, l)} = span{T G

K | K ∈ C (k, l)}.

Proof Recall that a group-theoretical category of graphs is by definition closed under
graph quotients. Therefore, the inclusion ⊇ directly follows from Proposition 4.6.
The matrix of coefficients of (T G

K )K∈C (k,l) expressed as linear combinations of
(T̂ G

K )K∈C (k,l) is triangular with nonzero diagonal. So, the transformation can be
inverted, which provides a proof for the opposite inclusion ⊆. �	

In the following,we are going tofind a linear basis for themorphism spacesC G(k, l)
(compare with [7, Lemma 3.4]).

Definition 4.10 Let G be a graph. We denote by WG(k) := V (G)k/Aut G the set of
equivalence classes of words a over V (G) of length k ∈ N0 up to automorphisms of G.
We also denote WG(k, l) := V (G)k × V (G)l/Aut G. For given a,b, we denote by
[a] ∈ WG(k) and [a,b] ∈ WG(k, l) the corresponding equivalence classes. For a skew
category C , we denote WC

G (k, l) := {[a,b] ∈ WG(k, l) | (G, a,b) ∈ C (k, l)}.
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Definition 4.11 Let G be a graph. We denote ξaG := T̂ G
(G,∅,a) for every a ∈ V (G)∗.

That is,

[ξaG]i = #{automorphisms ϕ : G → G | ϕ(a) = i}.

Similarly, we define T̂ ab
G := T̂ G

(G,a,b) for every a,b ∈ V (G)∗.

We obviously have ξaG = ξa
′

G if a′ = ϕ(a) for some automorphism ϕ : G →
G. Similar equality holds for T̂ ab

G . So, these tensors can be assigned to the whole
equivalence classes [a] ∈ WG(k), resp., [a,b] ∈ WG(k, l).

Lemma 4.12 Let G be a graph. The set {T̂ ab
G | [a,b] ∈ WG(k, l)} is linearly indepen-

dent for every k, l ∈ N0.

Proof Follows from the fact that [T̂ ab
G ]ji[T̂ a′b′

G ]ji = 0 unless [a,b] = [a′,b′] in
WG(k, l). �	
Proposition 4.13 Let G be a graph, C a skew graph category such that (G,∅,∅) ∈ C .
The vector space C G(k, l) has a linear basis {T̂ ab

G | [a,b] ∈ WC
G (k, l)}.

Proof The linear independence is proven in Lemma 4.12. Obviously, we have the
inclusion. It remains to prove that the set generates indeed the whole space. To prove
that, take arbitrary H ∈ C (k, l). Using Proposition 4.5, we have

αT̂H = T̂H ⊗ T̂(G,∅,∅) =
∑

f

T̂ G
H∪ f (G,∅,∅) =

∑

ϕ : H→G
inj. hom.

T̂ ϕ(a)ϕ(b)
G ,

where α = T̂(G,∅,∅) = |Aut G| �= 0. For the last equality, recall Remark 4.4. We have
T̂H∪ f (G,∅,∅) = 0 unless f identifies all the vertices of H with some vertices of G.
That is, f = {(v, ϕ(v)) | v ∈ H}, where ϕ is some embedding H → G. Then, of
course, H ∪ f G = G. �	

Now, we make the result more general getting rid of the assumption (G,∅,∅) ∈ C
(which is equivalent to G ∈ F for the associated graph fibration F).

Lemma 4.14 Let F be a set of graphs closed under arbitrary f -unions. Then, for every
graph G, there exists a greatest subgraph K of G contained in F. That is, there is
K ∈ F such that K ⊆ G and, for every G ⊇ H ∈ F, we have H ⊆ K .

Moreover, the embedding K → G is determined uniquely up to automorphisms
of K .

Proof Suppose there were two different maximal graphs K1, K2 ∈ F contained in G
and denote by ι1, ι2 the corresponding embeddings. Then, their union inside G, that
is, K := ι1(K1) ∪ ι2(K2) would also satisfy the assumptions, but it would be larger
than both K1 and K2, which is a contradiction.

The second part is proven the same way. If there were two embeddings ι1, ι2 : K →
G such that ι1(K ) �= ι2(K ), then the union of their images would define a greater
subgraph of G contained in F , which is a contradiction. �	
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Remark 4.15 If F contains the single vertex graph N1, then the number of vertices in
K coincides with the number of vertices in G. Indeed, if K had fewer vertices, then
K 	 N1 would still be a subgraph of G contained in F .

Proposition 4.16 Let G be a graph,C a skew graph category corresponding to a graph
fibration F. Denote by K the greatest subgraph of G contained in F. Then, the vector
space C G(k, l) has a linear basis {T̂ G

(K ,a,b) | [a,b] ∈ WC
K (k, l)}.

Proof Again,wehave thatT G
(K ,a,b) iswell defined as it does not dependon the particular

representative of [a,b]. The proof of linear independence is the sameas inLemma4.12.
Toprove that the set generatesC G(k, l), take arbitraryH = (H , a,b) ∈ C (k, l). Then,

αT̂ G
H = T̂ G

H ⊗ T̂(K ,∅,∅) =
∑

f

T̂ G
(H∪ f K ,a,b) =

∑

ϕ : H→K
inj. hom.

T̂ G
(K ,a,b),

where α �= 0 is the number of embeddings K → G. Let us again explain the last
equality. In the sum on the left hand side, we have either H ∪ f K ⊆ G, so, from
maximality of K , we must have H ∪ f K = K , or we have H ∪ f K �⊆ G and hence
T G

(H∪ f K ,a,b) = 0. �	

4.4 Quantum group associated with a skew graph category

Now we are about to formulate the main result of this article interpreting the skew
graph categories in terms of quantum groups. We start with a simplified version of the
result.

Proposition 4.17 Let F be a set of graphs containing N0 and N1 and closed under
arbitrary f -unions. Setting F(H) = Z

∗V (H)
2 for all H ∈ F turns it into a graph

fibration corresponding to a skew category C (k, l) = {(H , a,b) | H ∈ F, a ∈
V (K )k,b ∈ V (K )l}. Let G be a graph and denote by K the greatest subgraph of G
contained in F. Then, the quantum group corresponding to the category C G is the
group Aut K .

Proof Let us denote the associated (quantum) group by G. In order to make sense
of the statement, we need to fix the inclusion ι : K → G and identify the vertex
sets V := V (K ) = V (G) (recall from Remark 4.15 that |V (K )| = |V (G)|) so that
Aut K ⊆ SV = SV (G). First of all, note that C contains all partitions P ⊆ C .
Consequently, the associated quantum group is a subgroup of the symmetric group
G ⊆ SV .

First, we prove that G ⊇ Aut K . So, take an element σ ∈ Aut K and prove that
the associated permutation matrix Aσ (with entries [Aσ ]i j = δiσ( j)) satisfies all the
intertwiner relations coming fromC G . Thanks to theFrobenius reciprocity, it is enough
to consider the intertwiners ξ ∈ C G(0, k). According to Proposition 4.16, C G(0, k)

has a linear basis of elements ξa := T̂ G
(K ,∅,a). So, we need to show that A⊗k

σ ξa = ξa

for every a ∈ V (K )k and every k ∈ N0. This relation means

[ξa]i = [A⊗k
σ ξa]i = [ξa]σ−1(i),
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that is,

#{inj. hom. ϕ : K → G such that ϕ(a) = i}
= #{inj. hom. ϕ : K → G such that σ(ϕ(a)) = i}.

This is surely satisfied by every σ ∈ Aut K .
For the converse inclusion G ⊆ Aut K , we need to take any σ ∈ SV (K ) satisfying

the intertwiner relations of C G and show that actually σ ∈ Aut K . We do this by a
smart choice for the intertwiner: we take v := (v1, . . . , vn), where v1, . . . , vn is the
list of all the vertices in V .

1 = [ξv]v = [Aσ ξv]v = [ξv]σ−1(v)

=
{
1 if σ−1 is an injective homomorphism K → G

0 otherwise.

�	
Theorem 4.18 Let F be a graph fibration and C the corresponding category. Let G be
a graph, and let K be the greatest subgraph of G contained in F. Then, the quantum
group corresponding to C G is

G = �̂ � Aut K ,

where � = Z
∗V (K )
2 /F(K ).

Proof Again, we need to fix the inclusion ι : K → G, so that we can identify the
vertices of K with the vertices of G, i.e. V := {v1, . . . , vn} := V (K ) = V (G). The
proof now closely follows the proof of Theorem 4.1. Denote by G the quantum group
corresponding to C . Again, we must have G ⊆ Z

∗n
2 � Sn as ∈ C . So, denote

u = γ v the fundamental representation of G.
To prove the inclusion G ⊆ �̂ � Aut K , we have to show that the generators γi

satisfy the relations of � and that vi j satisfy the relations of Aut K . For the first part,
the proof is completely the same as in case of Theorem 4.1.

For the second part, put ṽ = (v1v1v2v2 · · · vmvm). We surely have e = gṽ ∈ F(K ),
so K̃ := (K ,∅, ṽ) ∈ C (0, 2m). Denote also K := (K ,∅, v) with v = (v1v2 · · · vm).
We can write

K̃ = ⊗m · K,

so the relation associated with K̃ ∈ C (0, 2m) can be written as

(u ⊗ u)⊗m T ⊗mξv = T ⊗mξv,

where we denote ξv = T̂ G
(K ,∅,v) and T = T G = T̂ G .
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Recall that vi j = v2i j = u2
i j and hence v = T (u ⊗ u)T . Thus, multiplying the

above relation by T ⊗m from the right, we obtain

v⊗mξv = ξv.

As we show in the proof of Proposition 4.17, this is exactly the defining relation for
the group Aut K .

To show the opposite inclusion, denote by ũ = γ̃ ṽ the fundamental representation
of �̂ � Aut K . We need to show that ũ satisfies the relations corresponding to the
intertwiners from C G . Thanks to Proposition 4.16, we know the linear bases of the
morphism spaces andwe do not have to consider every possibleH ∈ C . So, we need to
show that ũξa = ξa for every a ∈ V (K )∗ such that ga ∈ F(K ), where ξa = T̂ G

(K ,∅,a).
From Proposition 4.17, we know that ξa is an intertwiner of Aut K , so we have

ũ⊗kξa = γ̃ ⊗k ṽ⊗kξa = γ̃ ⊗kξa,

where k denotes the length of a. It remains to show that γ̃ ⊗kξa = ξa. This relation,
rewritten in the tensor entries, reads

γ̃i1 · · · γ̃ik = 1 whenever ∃ϕ : K → G inj. hom. such that ϕ(a) = i.

According to Lemma 4.14, the embedding of K to G is determined uniquely up to
automorphisms of K . So, we must have ϕ ∈ Aut K for the injective homomorphism
above. So, we need to show that γ̃ϕ(a1) · · · γ̃ϕ(ak) = 1. Since F(K ) is supposed to be
Aut K -invariant, we have ϕ(ga) ∈ F(K ) and hence the mentioned relation is indeed
satisfied in Z

∗V
2 /F(K ). �	

5 Associating categories to semidirect product CMQGs

In the previous text, we managed to determine the quantum groups associated with
group-theoretical graph categories and skew categories. Namely, it turned out that the
quantum group is always of the formG = �̂�Aut K . In this section, we would like to
comment on the opposite direction: Given a quantum group of such a structure, what
categories can we associate with it? What are the corresponding intertwiner spaces?

5.1 Graph category associated with quantum group

Proposition 5.1 Let G be a graph and let � be some Aut G-invariant quotient of
Z

∗V (G)
2 . Then, there exists a skew graph category C such that C G forms the represen-

tation category associated with the quantum group G = �̂ � Aut G.

Proof Let A be the Aut G-invariant normal subgroup of Z
∗V (G)
2 such that � =

Z
∗V (G)
2 /A. We construct C to be the smallest skew category containing all the bil-

abelled graphs (G,∅, a) with ga ∈ A.
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Recall from Proposition 2.29 that we are able to explicitly construct the associated
graph fibration F : The fibres of F are formed by the closure of the set {N0, N1, G}
under arbitrary f -unions. Each fibre is then defined by F(H) := {ιH (a) | a ∈
A; ιH : G → H inj. hom.}. In particular, we have F(G) = A, so� = Z

∗V (G)
2 /F(G).

Therefore, the quantum group corresponding to the above-defined category is indeed
G = �̂ � Aut G. �	
Remark 5.2 By choosing G := Nn the edgeless graph on n vertices, we get the fol-
lowing statement:

Let An be an Sn-invariant normal subgroup of Z
∗n
2 . Denote � := Z

∗n
2 /An . Then,

there exists a skew graph category C containing edgeless graphs only such that C G

forms the representation category associated with the quantum group �̂ � Sn .
This statement does not hold for skew categories of partitions as they were defined

in [7]. That is, although the category C from the statement above contains edgeless
graphs only, it might not correspond to any skew category of partitions, because it
might not be closed under removing isolated vertices (see Example 2.22). In the group
language, there need not exist an S∞-invariant normal subgroup A � Z

∗∞
2 such that

An is a subgroup of A generated by n of the canonical generators. Compare with [7,
Theorem 4.20].

Remark 5.3 The above-mentioned proposition can be easily generalized replacing
Aut G by Aut K , but K is not allowed arbitrary. It must hold that if F is the clo-
sure of {N0, N1, K } under arbitrary f -unions, then K must be the greatest subgraph
of G contained in F . This condition can be equivalently formulated as follows: K is a
subgraph of G with |V (K )| = |V (G)| and, for every ϕ ∈ Aut G, if ϕ(K ) is a subgraph
of G (taking the same embedding), then ϕ ∈ Aut K .

Remark 5.4 The graph category corresponding to a given quantum group G =
�̂�Aut G is not determined uniquely. For example, the groupG = Aut G is known to
be associated with the category of all graphs (which is also a special case of Theorems
4.1, 4.18). However, the construction described in the proof abovewould yield a differ-
ent category: The fibres of the graph fibration would be determined as the completion
of {N0, N1, G} under f -unions. Consequently, it would not be a full graph fibration
and it would not correspond to the category of all graphs.

Wecould alsomodify the proof of Proposition5.1 and construct a full graphfibration
F corresponding toG = �̂�Aut G. Every graph H would formafibre of F determined
by exactly the same formula F(H) = {ιH (a) | a ∈ A; ιH : G → H inj. hom.} and
F(H) = E trivial if H is not a subgraph of G. Such a collection would be obviously
closed under injective graph homomorphisms, so it would indeed form a full graph
fibration. Returning back to the example G = Aut G, this construction would lead to
yet another graph category.

We can formulate an analogous statement also in the easy case. Let us denote by
End G the monoid of graph homomorphisms G → G.

Proposition 5.5 Consider a graph G and let � be some End G-invariant quotient
of Z

∗V (G)
2 . Then, there exists a group-theoretical graph categoryC such thatC G forms

the representation category associated with the quantum group G = �̂ � Aut G.
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Proof Let A be the End G-invariant normal subgroup of Z
∗V (G)
2 such that � =

Z
∗V (G)
2 /A. We construct an easy full graph fibration by putting F(H) := {ϕ(a) |

a ∈ A; ϕ : G → H homomorphism} (cf. Prop. 2.30) and F(H) := E (the trivial
group) if there is no homomorphism G → H . Such a collection is certainly closed
under graph homomorphisms, so according to Proposition 2.18 it must be a full easy
graph fibration.

Since A is End G-invariant, we have that F(G) = A, so � = Z
∗V (G)
2 /F(G)

and hence the above-defined graph fibration corresponds to the quantum group G =
�̂ � Aut G. �	

However, even in the easy case, the category is not determined uniquely. Take,
for example, the graph G = of two connected vertices, so Aut G = S2 and take
� = Z2 × Z2. So we are looking for a group-theoretical graph category C such that
C G corresponds to G := �̂ � Aut G = ̂(Z2 × Z2) � S2 = H2—the hyperoctahedral
group. The following three categories are mutually distinct, but all of them correspond
to G:

〈 , 〉, 〈 , 〉, 〈 , , 〉.

The first one is the category constructed in the proof of Proposition 5.5—the smallest
full category. We have encountered it already in Examples 2.25, 2.34, and 4.2. The
second one is the group-theoretical partition category corresponding to �̂ � S2. The
last one is generated by the previous two.

5.2 Computing intertwiners

In this subsection, we look on the problem of associating the intertwiner spaces

CG(k, l) = Mor(u⊗k, u⊗l) = {T : (Cn)⊗k → (Cn)⊗l | T u⊗k = u⊗l T }

to a given quantum group G = (O(G), u) of the form G = �̂ � Aut G.
First of all, let us mention what is, in our opinion, a serious disadvantage of graph

categories in comparisonwith categories of partitions: Themorphism spacesC (k, l) of
a given graph category are typically infinite. This alsomeans that the functorK �→ T G

K
is highly non-injective.

As a consequence, if we want to construct a representation category C G(k, l) :=
span{T G

K | K ∈ C (k, l)} (interpreting it afterwards as a representation category CG

of some quantum group G), then it might be highly non-trivial to explicitly compute
what those spaces actually are (for some given k, l) since we are making a linear span
over an infinite number of elements. In addition, in many applications, we need linear
independence, that is, we really need to know a basis of the intertwiner spaces (see,
e.g. [3,5]).

Fortunately, this issue was solved in case of group-theoretical and skew graph
categories in Sect. 4.2: Considering the quantum group G = �̂ � Aut G, we know
that the basis of CG(k, l) is exactly the set {T̂ ab

G }[a,b]∈WG (k,l) (recall Prop. 4.13). In
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the following section, we formulate a generalization of such statement replacing the
group Aut G with any permutation group.

Remark 5.6 This disadvantage of graph categories is in general unavoidable. In partic-
ular, it is not possible to give such a formula for the intertwiner spaces for the so-called
quantum automorphism group of graphs (determined by the category of all planar bil-
abelled graphs) as this would solve the quantum isomorphism problem, which was
proven to be undecidable [1].

5.3 Intertwiners corresponding to any permutation group

In this section, we generalize the results of Sect. 4 replacing the automorphism group
Aut G or Aut K by any permutation group H ⊆ Sn . However, in this case we do not
have such a diagrammatic calculus (at least not such a simple one given by bilabelled
graphs) since the representation category of H may not be generated by a singlematrix
A : C

n → C
n .

Definition 5.7 Consider H ⊆ Sn . Considering a ∈ {1, . . . , n}k , b ∈ {1, . . . , n}l , we
denote by T̂ ab

H : (Cn)⊗k → (Cn)⊗l the linear mapping with entries

[T̂ ab
H ]ji = #{ϕ ∈ H | ϕ(a) = i, ϕ(b) = j}.

Note that given a graph G, we have T̂ ab
Aut G = T̂ ab

G = T̂ G
(G,a,b). Moreover, we have

the following.

Lemma 5.8 Fix n ∈ N and H ⊆ Sn. For any partition P ∈ P(k, l), we have

T̂ (n)
P = 1

|H |
∑

a,b∈{1,...,n}∗
P=ker(a,b)

T̂ ab
H

Proof Let us look on the entries of the right-hand side

∑

a,b∈{1,...,n}∗
P=ker(a,b)

[T̂ ab
H ]ji =

∑

a,b∈{1,...,n}∗
P=ker(a,b)

#{ϕ ∈ H | ϕ(a,b) = (i, j)}.

Assuming that ϕ(a,b) = (i, j), then obviously P = ker(a,b) if and only if P =
ker(i, j). So, the above equals zero whenever P �= ker(i, j). On the other hand, assume
that P = ker(i, j). Choose two pairs (a1,b1) and (a2,b2) such that P = ker(ak,bk),
k = 1, 2. Choose also two permutations ϕ1, ϕ2 ∈ H such that ϕk(ak,bk) = (i, j).
Then, if the pairs (ak,bk) are distinct, the permutations ϕk must also be distinct.
Consequently, the sum above counts every permutation in H exactly once, so the
result must be equal to |H |. �	
Proposition 5.9 Consider H ∈ Sn and a,b, c,d ∈ {1, . . . , n}∗. It holds that
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(1) T̂ ab
H ⊗ T̂ cd

H =
∑

η∈H

T aη(c)bη(d)
H ,

(2) T̂ ab
H T̂ cd

H =
∑

η∈H
b=η(c)

T aη(d)
H (assuming b and c have the same length),

(3) (T̂ ab
H )∗ = T ba

H .

In particular, the collection C H (k, l) := span{T a,b
H | a ∈ {1, . . . , n},b ∈ {1, . . . , n}}

is a representation category

Proof For the tensor product, we have by definition

[T̂ ab
H ⊗ T̂ cd

H ]ik jl = #{(ϕ, ψ) ∈ H2 | ϕ(a,b) = (i, j), ψ(c,d) = (k, l)}.

Now, given such a pair (ϕ, ψ), we can denote by η ∈ H their “difference”, that is,
η := ϕ−1 ◦ ψ . Consequently, the above equals

=
∑

η∈H

#{ϕ ∈ H | ϕ(a,b) = (i, j), (ϕ ◦ η)(c,d) = (k, l)} =
∑

η∈H

[T aη(c)bη(d)
H ]ik jl.

The proof of (2) goes similar way:

[T̂ ab
H T̂ cd

H ]ij =
∑

k

#{(ϕ, ψ) ∈ H2 | ϕ(a) = i, ϕ(b) = k = ψ(c), ψ(d) = j}

=
∑

η∈H

#{ϕ ∈ H | ϕ(a) = i, ϕ(b) = (ϕ ◦ η)(c), (ϕ ◦ η)(d) = j}

=
∑

η∈H
b=η(c)

[T aη(d)]ij.

Item (3) is clear directly from the definition.
From Lemma 5.8, it follows thatC H contains the identity morphism T̂ (n) as well as

the duality morphism T̂ (n). Since it is also closed under tensor products, compositions
and the involution, it must form a representation category. �	

We again denote by WH (k) := {1, . . . , n}k/H the set of equivalence classes of
the tuples a ∈ {1, . . . , n}k with respect to the action of H . We denote the equivalence
classes by [a]. Similarly, we denote by WH (k, l) the equivalence classes [a,b] of pairs
of tuples. Similarly to the operators associated with bilabelled graphs, the operators
T̂ ab do not depend on the particular representative of the class [a,b].
Proposition 5.10 Let H ⊆ Sn be a permutation group. Then, CH = C H . That is,
denoting by u the fundamental representation of H, we have

Mor(u⊗k, u⊗l) = span{T̂ ab
H | [a,b] ∈ WH (k, l)}.

The sets of linear maps {T̂ ab
H }[a,b]∈WH (k,l) are linearly independent.
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Proof The linear independence is proven the same way as in Lemma 4.12. It follows
from the fact that [T̂ ab

H ]ji[T̂ a′b′
H ]ji = 0 unless [a,b] = [a′,b′] in WH (k, l).

To show that CH = C H , we can essentially copy the proof of Proposition 4.17
replacing Aut K by H . To prove the inclusion ⊇, take any σ ∈ H and show that the
associated permutation matrix Aσ satisfy the intertwiner relations Aσ ξa = ξa with
ξa = T̂ ∅a

H . This is equivalent with saying that

#{ϕ ∈ H | ϕ(a) = i} = #{ϕ ∈ H | (σ ◦ ϕ)(a) = i},

which is obviously true.
To prove the opposite inclusion, it is enough to check that taking any σ ∈ Sn

satisfying the intertwiner relations of C H , we necessarily have σ ∈ H . We get this by
choosing a = i = (1, . . . , n) since then

[ξa]a = {ϕ ∈ H | ϕ = id} = 1

[Aσ ξa]a = {ϕ ∈ H | σ ◦ ϕ = id} =
{
1 if σ−1 ∈ H

0 otherwise.

�	

Theorem 5.11 Let H ⊆ Sn be a permutation group and consider � = Z
∗n
2 /A with

A � Z
∗n
2 being H-invariant. Denote by u the fundamental representation of the

quantum group G := �̂ � H. Then,

Mor(u⊗k, u⊗l) = span{T̂ ab
H | [a,b] ∈ WH (k, l) such that gab∗ ∈ A}.

The sets of linear maps {T̂ ab
H }[a,b]∈WH (k,l) are linearly independent.

Proof Wedenote byG the quantumgroup corresponding to the representation category
C H and show that G = �̂ � H . The proof is basically the same as in case of Theorem
4.18. In particular, thanks to Lemma 5.8, we can do the “partition tricks” also here.
For instance, we immediately know that G ⊆ Ẑ

∗n
2 � Sn since T̂ (n) ∈ C H . The linear

independence was proven in Proposition 5.10. �	
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