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Abstract
Time-domain Boundary Element Methods (BEM) have been successfully used in
acoustics, optics and elastodynamics to solve transient problems numerically. How-
ever, the storage requirements are immense, since the fully populated system matrices
have to be computed for a large number of time steps or frequencies. In this article,
we propose a new approximation scheme for the Convolution Quadrature Method
powered BEM, which we apply to scattering problems governed by the wave equa-
tion. We use H 2-matrix compression in the spatial domain and employ an adaptive
cross approximation algorithm in the frequency domain. In this way, the storage and
computational costs are reduced significantly, while the accuracy of the method is
preserved.

Mathematics Subject Classification 65N30 · 65N38 · 65N50

1 Introduction

Thenumerical solution ofwavepropagation problems is a crucial task in computational
mathematics and its applications. In this context, BEM play a special role, since they
only require the discretisation of the boundary instead of the whole domain. Hence,
BEM are particularly favourable in situations where the domain is unbounded, as it is
often the case for scattering problems. There, the incoming wave hits the object and
emits a scattered wave, which is to be approximated in the exterior of the scatterer.

In contrast to Finite Element or Difference Methods, BEM are based on boundary
integral equations posed in terms of the traces of the solution. For the classical exam-
ple of the scalar wave equation, the occurring integral operators take the form of so
called “retarded potentials” related to Huygen’s principle. In [2], Bamberger and Ha
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Duong laid the foundation for their analysis by applying variational techniques in the
frequency domain. Since then, significant improvements have been made, which are
explained thoroughly in the monograph of Sayas [59]. Recently, a unified and elegant
approach based on the semi-group theory has been proposed in [34]. Besides, the
articles [22] and [38] give an excellent overview of the broad topic of time-domain
boundary integral equations.

There are three different strategies for the numerical solution of time-dependent
problems with BEM. The classical approach is to treat the time variable separately
and discretise it via a time-stepping scheme. This leads to a sequence of station-
ary problems, which can be solved with standard BEM [49]. However, one serious
drawback is the emergence of volume terms even for vanishing initial conditions and
right-hand side. Therefore, additional measures like the dual-reciprocity method [54]
are necessary or otherwise the whole domain needs to be meshed, which undermines
the main benefit of BEM.

In comparison to time-stepping methods, space-time methods regard the time vari-
able as an additional spatial coordinate and discretise the integral equations directly
in the space-time cylinder. To this end, the latter is partitioned either into a tensor
grid or into an unstructured grid made of tetrahedral finite elements [41]. For that
reason, space-time methods feature an inherent flexibility, including adaptive refine-
ment in both time and space simultaneously as well as the ability to capture moving
geometries [25,26,55]. However, the computational costs are high due to the increase
in dimensionality and the calculation of the retarded potentials is far from trivial [56].

Finally, transformation methods like Lubich’s CQM [46,47] present an appeal-
ing alternative. The key idea is to take advantage of the convolutional nature of the
operators by use of the Fourier-Laplace transform and to further discretise via linear
multi-step [48] or Runge-Kuttamethods [6,7]. Although the transition to the frequency
domain comes with certain restrictions, e.g. the physical domain needs to be constant
in time, it features some important advantages. Foremost, the approximation involves
only spatial boundary integral operators related toHelmholtz problems. The properties
of these frequency-dependent operators are well studied [50] and they are substan-
tially easier to deal with than retarded potentials. Moreover, the CQM is applicable
for several problems of poro- and visco-elasticity, where only the Fourier-Laplace
transform of fundamental solution is explicitly known [61]. Higher order discretisa-
tion spaces [33] as well as variable time step sizes [45] are also supported. Apart from
acoustics [8,35,58], CQM have been applied successfully to challenging problems in
electrodynamics [1], elastodynamics [36,39,60] and quantum mechanics [51].

Regardless of themethod in use,we face the samemajor difficulty: asBEMtypically
generate fully populated matrices, the storage and computational costs are huge. Since
this is already valid for the stationary case, so called fast methods driven by low-
rank approximations have been developed for elliptic equations, see the monographs
[11,28,57]. The crucial observation is that the kernel function admits a degenerated
expansion in the far-field, which can be exploited by analytic [19,29] or algebraic
compression algorithms [10,14]. In this way, the numerical costs are lowered to almost
linear in the number of degrees of freedom. For highly oscillatory kernel functions,
so called multilevel or directional algorithms [13,18,21,23,24] feature nearly linear
complexity. The situation becomes even more difficult when moving to time-domain
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Boundary element methods for the wave equation ... 631

BEM. In the CQM formulation, several system matrices per frequency need to be
assembled, culminating in a large number of matrices overall. Because they stem from
elliptic problems, it is straightforward to approximate them via standard techniques
[40]. Based on the observation that the convolution weights decay exponentially, cut-
off strategies [5,30] have been developed to accelerate the calculations. Details on how
to combine these two concepts and how to solve the associated systems efficiently are
given in [4]. It is also possible to filter out irrelevant frequencies if a priori information
about the solution is known [9].

In this article, we present a novel approach which relies on hierarchical low-rank
approximation in both space and frequency. The main idea is to reformulate the prob-
lem of approximating the convolutionweights as a tensor approximation problem [31].
By means ofH 2-matrices in space and ACA in frequency, we manage to reduce the
complexity to almost linear in the number of degrees of freedom as well as in the
number of time steps. In other words, the numerical costs are significantly reduced,
which makes the algorithm particularly fast and efficient.

The paper is structured as follows. In Sect. 2, we recall the boundary integral equa-
tions and their Galerkin formulation for the wave equation, which serves as our model
problem throughout this article. Subsequently, we describe the numerical discretisa-
tion of the integral equations powered by CQM and BEM in Sect. 3. The next two
Sects. 4 and 5 deal with the low-rank approximation of the associated matrices and
tensors respectively. Afterwards, in Sect. 6, we analyse the hierarchical approximation
and specify the algorithm in its entirety. Finally, we present numerical examples in
Sect. 7 and summarise our results in Sect. 8.

2 Preliminaries

2.1 Formulation of the problem

Let Ω in ⊂ R
3 be a bounded domain with Lipschitz boundary Γ = ∂Ω and denote

by Ω = R
3 \ Ω in the exterior domain. Further, let n be the unit normal vector on Γ

pointing into Ω .
We study the situation depicted in Fig. 1 where an incident wave uin is scattered by

the stationary obstacle Ω in, causing a scattered wave u to propagate in the free space
Ω . In the absence of external sources, wemay assume that u satisfies the homogeneous
wave equation

∂2u

∂t2
(x, t) − c2Δu(x, t) = 0, (x, t) ∈ Ω × (0, T ). (1)

Here, the coefficient c is the speed at which the wave travels in the medium. Using
dimensionless units, we set c = 1. Moreover, Δ is the Laplacian in the spatial domain
and T > 0 is a fixed final time. Depending on the characteristics of the scatterer Ω in

and the incoming wave uin, the scattered wave u is subject to boundary conditions
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Fig. 1 Visualisation of the scattering problem

posed on the surface Γ . We prescribe mixed boundary conditions of the form

u(x, t) = gD(x, t), (x, t) ∈ ΓD × (0, T ),

∂u

∂n
(x, t) = gN (x, t), (x, t) ∈ ΓN × (0, T ),

(2)

given either on the Dirichlet boundary ΓD or the Neumann boundary ΓN with

Γ = Γ D ∪ Γ N , ΓD ∩ ΓN = ∅.

Furthermore, we assume that uin has not reached Ω yet, which implies vanishing
initial conditions for u,

u(x, 0) = ∂u

∂t
(x, 0) = 0, x ∈ Ω.

Remark 1 Surprisingly enough, regularity results for hyperbolic problems of type (1)
with non-homogeneous boundary conditions were not available until the fundamental
works of Lions and Magenes [44]. By the use of sophisticated tools from functional
analysis and the theory of pseudo-differential operators, they paved the way for the
mathematical analysis of general second-order hyperbolic systems. Subsequently, their
findings were substantially improved and we present two examples here. Let Σ =
Γ × [0, T ] be the lateral boundary of the space-time cylinder Q = Ω × [0, T ]. For
the pure Dirichlet case, ΓD = Γ , it is shown in [42] that

gD ∈ H1(Σ) �⇒ u ∈ C0(H1(Ω); [0, T ]), ∂

∂n
u ∈ L2(Σ).
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In comparison, optimal regularity results for the Neumann problem, Γ = ΓN , are
derived in [62] and are of the form

gN ∈ L2(Σ) �⇒ u ∈ H3/4(Q), u|Σ ∈ H1/2(Σ).

In [43] it is shown that this result cannot be improved, i.e. that for all ε > 0 there exist
gN ∈ L2(Σ) such that u /∈ H3/4+ε(Q). From these findings, it becomes evident that
the situation ofmixed conditions like (2) is far from trivial and needs special treatment.
An alternative approach involves the theory of boundary integral equations, which are
introduced in Sect. 2.2. In combination with the semi-group theory [34] or Laplace
domain techniques [2,59], general transmission problems can be treated in a uniform
manner. To keep things simple, we refrain from specifying the function spaces in the
following sections and refer to the given publications instead.

2.2 Boundary integral equations

The fundamental solution of (1) is given by

u∗(y − x, t − τ) = δ (t − τ − |y − x |)
4π |y − x | , (x, t) ∈ Ω × (0, T ),

where δ is the Dirac delta distribution defined by

(δ(t − τ − |y − x |)) (ϕ) = ϕ(t − |y − x |)

for smooth test functions ϕ. Thus, the behaviour of the wave at position x and time t is
completely determined by its values at locations y and earlier times τ = t − |y − x |.
In other words, an event at (x, t) is only affected by actions that took place on the
backward light cone

{
(y, τ ) ∈ Q : τ = t − |y − x |}

of (x, t) in space-time. Therefore, u∗ is also known as retarded Green’s function and
τ = t − |y − x | is called retarded time [37]. This property becomes particularly
important in the representation formula,

u(x, t) = −
t∫

0

∫

Γ

u∗(y − x, t − τ)
∂

∂n
u(y, τ ) dS(y) dτ

+
t∫

0

∫

Γ

∂u∗

∂ny
(y − x, t − τ) u(y, τ ) dS(y) dτ , (3)

which expresses the solution by the convolution of the boundary data with the funda-
mental solution. Although formally specified on the lateral surfaceΣ , the evaluation of
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634 D. Seibel

the Dirac delta reduces the domain of integration to its intersection with the backward
light cone,

u(x, t) = −
∫

Γ

1

4π |y − x |
∂

∂n
u(y, t − |y − x |) dS(y) dτ

+
∫

Γ

(y − x) · ny
4π |y − x |2

(
u(y, t − |y − x |)

|y − x | + ∂

∂t
u(y, t − |y − x |)

)
dS(y) dτ .

(4)

Since the boundary data is only given on ΓD or ΓN , we derive a system of boundary
integral equations for its unknown parts. To this end, we define the trace operators γ0
and γ1 by

γ0,xv(x) = lim
y→x

v(y), γ1,xv(x) = lim
y→x

∇v(y) · n(x), x ∈ Γ , y ∈ Ω,

for sufficiently smooth v. Note that γ1 coincides with the normal derivative ∂/∂n.
Now, we take the Dirichlet trace in (3) and obtain the first equation

γ0,xu(x, t) = −
t∫

0

∫

Γ

u∗(y − x, t − τ) γ1,yu(y, τ ) dS(y) dτ +1

2
γ0,xu(x, t)

−
t∫

0

∫

Γ

γ1,yu
∗(y − x, t − τ) γ0,yu(y, τ ) dS(y) dτ

for almost every (x, t) ∈ Σ . Similarly, application of the Neumann trace yields

γ1,xu(x, t) = 1

2
γ1,xu(x, t) −

t∫

0

∫

Γ

γ1,xu
∗(y − x, t − τ) γ1,xu(y, τ ) dS(y) dτ

−
t∫

0

∫

Γ

γ1,xγ1,y u
∗(y − x, t − τ) u(y, τ ) dS(y) dτ .

We identify the terms above with so-called boundary integral operators,

(V w) (x, t) =
t∫

0

∫

Γ

u∗(y − x, t − τ)w(y, τ ) dS(y) dτ ,

(K w) (x, t) =
t∫

0

∫

Γ

γ1,yu
∗(y − x, t − τ)w(y, τ ) dS(y) dτ ,
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(
K ′w

)
(x, t) =

t∫

0

∫

Γ

γ1,xu
∗(y − x, t − τ)w(y, τ ) dS(y) dτ ,

(Dw) (x, t) =
t∫

0

∫

Γ

γ1,xγ1,yu
∗(y − x, t − τ)w(y, τ ) dS(y) dτ ,

(Iw) (x, t) =
t∫

0

∫

Γ

δ(t − τ − |y − x |) w(y, τ ) dS(y) dτ , (5)

and rewrite the boundary integral equations in matrix form,

(
γ0,xu
γ1,xu

)
(x, t) =

[( 1
2I + K −V

−D 1
2I − K ′

)(
γ0,yu
γ1,yu

)]
(x, t), (x, t) ∈ Σ. (6)

Hence, the solution to the wave equation (1) is found by solving for the unknown
boundary data in the system above and inserting it into the representation formula (3).
For the mapping properties of the operators and the solvability of the equations, we
refer to [34].

2.3 Galerkin formulation

We derive a Galerkin formulation of (6). Taking mixed boundary conditions (2) into
account, we choose extensions g̃D and g̃N on Γ satisfying

g̃D(x, t) = gD(x, t), x ∈ ΓD, g̃N (x, t) = gN (x, t), x ∈ ΓN , t ∈ [0, T ].

Furthermore, we decompose the Dirichlet and Neumann traces as follows

γ0u = ũ + g̃D with ũ(x, t) = 0 for (x, t) ∈ ΓD × [0, T ],
γ1u = q̃ + g̃N with q̃(x, t) = 0 for (x, t) ∈ ΓN × [0, T ],

and obtain for t ∈ [0, T ]

(V q̃) (x, t) − (K ũ) (x, t) =
[(

− 1
2I + K

)
g̃D
]
(x, t) − (V g̃N ) (x, t), x ∈ ΓD,

(
K ′q̃

)
(x, t) + (D ũ) (x, t) =

[(
− 1

2I − K ′)g̃N
]
(x, t) − (D g̃D) (x, t), x ∈ ΓN .

Here, the right hand side is known and we have to solve for the unknown Neumann
data q̃ on the Dirichlet boundary ΓD and the Dirichlet data ũ on the Neumann part
ΓN , respectively. Hence, the Galerkin formulation is to find q̃ and ũ such that

〈w,V q̃〉ΓD
− 〈w,K ũ〉ΓD

= 〈w,
(− 1

2I + K
)
g̃D
〉
ΓD

− 〈w,V g̃N 〉ΓD
,

〈
v,K ′q̃

〉
ΓN

+ 〈v,D ũ〉ΓN
= 〈v,

(− 1
2I − K ′) g̃N

〉
ΓN

− 〈v,D g̃D〉ΓN
(7)
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636 D. Seibel

holds at every time t ∈ [0, T ] and for all test functions w and v. The index of the
duality product 〈·, ·〉 indicates on which part of the boundary it is formed.

3 Numerical discretisation

In view of the numerical treatment of (7), we have to discretise both time and space.
We start with the time discretisation.

3.1 Convolution quadrature method

The application of the integral operators in (5) requires the evaluation of the convolu-
tion in time of the form

h(t) =
t∫

0

f (t − τ)g(τ ) dτ , 0 ≤ t ≤ T , (8)

where f is a distribution and g is smooth. In order to compute such convolutions
numerically, we employ the Convolution Quadrature Method (CQM) introduced in
[46]. It is based on the Fourier-Laplace transform defined by

f̂ (s) =
∞∫

0

f (t)e−st dt ∈ C, s ∈ C,

and on the observation that we can replace f by the inverse transform of f̂ and change
the order of integration, i.e.

h(t) =
∫

C

t∫

0

e(t−τ)sg(τ ) dτ f̂ (s) ds, 0 ≤ t ≤ T .

The integration is performed along the contour

C = {s ∈ C : σ + ı z, z ∈ R} ,

where σ > 0 is greater than the real part of all singularities of f̂ . In further steps, the
inner integral is approximated by a linear multi-step method and Cauchy’s integral
formula is used. In this way, the CQM yields approximations of (8) at discrete time
points

tn = nΔt, Δt = T /N , n = 0, . . . , N ,
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via the quadrature formula

h(tn) ≈
n∑

k=0

ωn−k g(tk), (9)

For a parameter 0 < R < 1, the quadrature weights are defined by

ωn = R−n

N

N−1∑

�=0

f̂ (s�) e
−2π ı
N n�

, (10)

and they are given in terms of f̂ sampled at specific frequencies

s� =
χ

(
R · e 2π ıN �

)

Δt
∈ C, � = 0, . . . , N − 1, (11)

which depend on the quotientχ of the generating polynomials of themulti-stepmethod
[32]. Popular examples are the backward differentiation formulas (BDF) of order
p ≤ 2 with

χ(s) =
p∑

j=1

j−1(1 − s) j ,

which are A-stable. The parameter R controls the distribution of the frequencies and
is subject to the numerical implementation of the method. If we assume that f̂ (s�) are
approximated with an error bounded by δ > 0, then the choice R = δ1/2N guarantees
that ωn are accurate up to O(

√
δ). For further details we refer to [46–48].

Returning to the setting of (7), we apply the CQM to approximate the expressions
occurring in the Galerkin formulation, for instance h(t) = 〈w,V q̃(t)〉ΓD

, at equidis-
tant time steps t = tn . For the the single layer operator V we obtain

〈w,V q̃(tn)〉ΓD
=

tn∫

0

∫

ΓD

∫

Γ

u∗(y − x, tn − τ) q̃(y, τ ) dS(y) w(x) dS(x) dτ

≈
∫

ΓD

∫

Γ

n∑

k=0

ωn−k(y − x) q̃(y, tk) dS(y) w(x) dS(x),

with quadrature weights

ωn−k(y − x) = R−(n−k)

N

N−1∑

�=0

û∗ (y − x, s�) e
−2π ı
N (n−k)�

.
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The transformed fundamental solution û∗ is precisely the fundamental solution of the
Helmholtz equation for complex frequencies s ∈ C,

−Δû + s2û = 0,

and has the representation

û∗(y − x, s) = e−s |y − x |
4π |y − x | . (12)

In contrast to the retarded fundamental solution u∗, its transform û∗ defines a smooth
function for x �= y and all s. Hence, the CQM formulation has the advantage that
distributional kernel functions are avoided. We set q̃k = q̃(·, tk) and introduce the
operator

V̂n−k q̃k(x) = R−(n−k)

N

N−1∑

�=0

e
−2π ı
N (n−k)�

∫

Γ

û∗ (y − x, s�) q̃k(y) dS(y), (13)

which acts only on the spatial component. Finally, we end up with the approximation

〈w,V q̃(tn)〉ΓD
≈

n∑

k=0

〈
w, V̂n−k q̃k

〉
ΓD

,

where the continuous convolution is now replaced by a discrete one. Repeating this
procedure for the other integral operators leads to the time-discretised Galerkin for-
mulation: find ũk and q̃k , k = 0, . . . , N , such that

n∑

k=0

( 〈
w, V̂n−k q̃k

〉
ΓD

− 〈w, K̂n−k ũk
〉
ΓD〈

v, K̂′
n−k q̃k

〉
ΓN

+ 〈v, D̂n−k ũk
〉
ΓN

)

=
n∑

k=0

( 〈
w,
(− 1

2 În−k + K̂n−k
)
g̃D,k

〉
ΓD

− 〈w, V̂n−k g̃N ,k
〉
ΓD〈

v,
(− 1

2 În−k − K̂′
n−k

)
g̃N ,k

〉
ΓN

− 〈v, D̂n−k g̃D,k
〉
ΓN

)

(14)

holds for all test functions w and v and n = 0, . . . , N .
From its Definition (13), we see that the single layer operator V̂n−k admits the

representation

V̂n−k q̃k(x) = R−(n−k)

N

N−1∑

�=0

e
−2π ı
N (n−k)�

(V� q̃k) (x) (15)

as a scaled discrete Fourier transform of the operators V�,

V� q̃k(x) =
∫

Γ

û∗ (y − x, s�) q̃k(y) dS(y), � = 0, . . . , N − 1.
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These are exactly the single layer operators corresponding to the Helmholtz equations
with frequencies s�. In the same manner, the other integral operators K̂n−k , K̂′

n−k and
D̂n−k may be written in terms of the respective operatorsK�,K′

�,D� of the Helmholtz
equations. Since Re(s�) �= 0, the single layer operator V� and hypersingular operator
D� are elliptic [2,53]. The operator În−k on the other hand can be easily calculated,

Î0 = I , În−k = 0, k �= n.

Therefore, the spatial discretisation of (14) is equivalent to a spatial discretisation of
a sequence of Helmholtz problems.

3.2 Galerkin approximation

We assume that the boundary Γ admits a decomposition into flat triangular elements,
which belong either to ΓD or ΓN . We define boundary element spaces of constant and
linear order

S0h(ΓD) = span
{
ϕ0
m

}MD

m=1
, S1h(ΓN ) = span

{
ϕ1
m

}MN

m=1
,

and global variants

S0h(Γ ) = span
{
ϕ0
m

}M0

m=1
, S1h(Γ ) = span

{
ϕ1
m

}M1

m=1
.

Then, we follow the ansatz

q̃n =
MD∑

m=1

q
n
[m] ϕ0

m ∈ S0h(ΓD), ũn =
MN∑

m=1

un[m] ϕ1
m ∈ S1h(ΓN ), n = 0, . . . , N ,

with q
n

∈ R
MD , un ∈ R

MN to approximate the unknownNeumann and Dirichlet data.

Likewise, the boundary conditions are represented by coefficient vectors gN
n

∈ R
M0

and gD
n

∈ R
M1 , which are determined by L2-projections onto Sih(Γ ).

As pointed out before, we begin with the discretisation of the boundary integral
operators of Helmholtz problems. For each frequency s�, � = 0, . . . , N − 1, we have
boundary element matrices

V� ∈ C
MD×M0 , K� ∈ C

MD×M1 , K ′
� ∈ C

MN×M0 , D� ∈ C
MN×M1,

I ∈ R
MD×M1, I ′ ∈ R

MN×M0 ,
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640 D. Seibel

defined by

V�[m, i] =
〈
ϕ0
m,V�ϕ

0
i

〉

ΓD
, K�[m, j] =

〈
ϕ0
m,K�ϕ

1
j

〉

ΓD
,

K ′
�[p, i] =

〈
ϕ1
p,K

′
�ϕ

0
i

〉

ΓN
, D�[p, j] =

〈
ϕ1
p,D�ϕ

1
j

〉

ΓN
,

I [m, j] =
〈
ϕ0
m, ϕ1

j

〉

ΓD
, I ′[p, i] =

〈
ϕ1
p, ϕ

0
i

〉

ΓN
,

with i = 1, . . . , M0, j = 1, . . . , M1, m = 1, . . . , MD , p = 1, . . . , MN . Just as
in (15), these auxiliary matrices are then transformed to obtain the integration weights
of the CQM. In the case of the single layer operators this amounts to

V̂n = R−n

N

N−1∑

�=0

e
−2π ı
L n� V�, n = 0, . . . , N , (16)

such that

V̂n[m, i] =
〈
ϕ0
m, V̂nϕ

0
i

〉

ΓD
, i = 1, . . . , M0, m = 1, . . . , MD,

holds by linearity. Moreover, we identify sub-matrices

V̂ D
n = V̂n[1 : MD, 1 : MD] ∈ C

MD×MD ,

K̂ N
n = K̂n[1 : MD, 1 : MN ] ∈ C

MD×MN ,

D̂N
n = D̂n[1 : MN , 1 : MN ] ∈ C

MN×MN .

TheGalerkin approximation of (14) is then equivalent to the systemof linear equations

(
V̂ D
0 −K̂ N

0

(K̂ N
0 )� D̂N

0

)(
q
n

un

)

=
(
f Dn
f Nn

)

, n = 0, . . . , N , (17)

with right-hand side

(
f Dn
f Nn

)

= −1

2

(
I gD

n

I ′gN
n

)

+
n∑

k=0

(
−V̂n−k K̂n−k

−K̂ ′
n−k −D̂n−k

)(
gN
k

gD
k

)

+
n−1∑

k=0

( −V̂ D
n−k K̂ N

n−k

−(K̂ N
n−k)

� −D̂N
n−k

)(
q
k

uk

)

. (18)

While the first row in (18) corresponds to the right-hand side of (14), the second
row contains the boundary values of the previous time steps and results from the
convolutional structure of the CQM approximation. Since the left-hand side of the
linear system stays the same for every time step, only one matrix inversion has to
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be performed throughout the whole simulation. To be more precise, system (17) is
equivalent to the decoupled system

Sun = f Nn − (K̂ N
0 )�(V̂ D

0 )−1 f Dn ,

V̂ D
0 q

n
= K̂ N

0 un + f Dn ,

where S is the Schur complement

S = D̂N
0 + (K̂ N

0 )�(V̂ D
0 )−1 K̂ N

0 .

Since both V̂0 and S are real symmetric and positive definite, we factorise them via
LU decomposition once for n = 0 and use forward and backward substitution to solve
the systems progressively in time.

Naturally, the assembly of the boundary element matrices and the computation of
the right-hand side (18) for each step are the most demanding parts of the algorithm,
both computational and storage wise. Due to the fact that the matrices are generally
fully populated, sparse approximation techniques are indispensable for large scale
problems. Compared to stationary problems, this is even more crucial here, as the
amount of numerical work scales with the number of time steps. Therefore, it is
necessary to not only approximate in the spatial but also in the frequency variable. It
proves to be beneficial to interpret the array of matrices Vk , k = 0, . . . , N − 1, as a
third order tensor

VVVVVVVVVVVVVVVVV [i, j, k] = Vk[i, j]. (19)

In this way, we can restate the problem within the frame of general tensor approxima-
tion and compression. To that end, we introduce low-rank factorisations which make
use of the tensor product.

Definition 1 (Tensor Product) For matrices A( j) ∈ C
r j×I j , j = 1, . . . , d and a tensor

XXXXXXXXXXXXXXXXX ∈ C
I1×···×Id , we define the tensor or mode product × j by

(
XXXXXXXXXXXXXXXXX × j A

( j)
)

[i1, . . . , i j−1, �, i j+1, . . . , id ]

=
I j∑

i j=1

XXXXXXXXXXXXXXXXX [i1, . . . , id ] A( j)[�, i j ], � = 1, . . . , r j .

Because of the singular nature of the fundamental solution, a global low-rank approx-
imation of VVVVVVVVVVVVVVVVV is practically not achievable. Instead, we follow a hierarchical approach
where we partition the tensor into blocks, which we approximate individually. Our
scheme is based on H 2-matrix approximation in the spatial domain, i.e. in i and j ,
and ACA in the frequency, i.e. in k.
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4 Hierarchical matrices

The boundary element matrices Vk are of the form

G[i, j] =
∫

Γ

∫

Γ

g(x, y)ϕ j (y) dS(y) ψi (x) dS(x), i ∈ I , j ∈ J ,

where ψi and ϕ j are trial and test functions respectively with index sets I and J and
g is a kernel function. We associate with each i ∈ I and j ∈ J sets Xi and Y j , which
correspond to the support of ψi and ϕ j . For r ⊂ I and c ⊂ J , we define

Xr =
⋃

i∈r
Xi and Yc =

⋃

j∈c
Y j .

Moreover, we choose axis-parallel boxes Br and Bc that contain the sets Xr and Yc,
respectively.

Since g is non-local, the matrix G is typically fully populated. However, if Xr and
Yc are well separated, i.e. if they satisfy the admissibility condition

max {diam(Xr ), diam(Xc)} ≤ η dist(Xr , Xc) (20)

for fixed η > 0, then the kernel function admits the degenerated expansion

g(x, y) ≈
p∑

μ=1

p∑

ν=1

Lr ,μ(x)g(ξr ,μ, ξc,ν)Lc,ν(y), x ∈ Xr , y ∈ Yc, (21)

into Lagrange polynomials Lr ,μ and Lc,ν on Xr ×Yc . Here, we choose tensor products
ξr ,μ and ξc,ν of Chebyshev points in Br and Bc as interpolation points. In doing so,
the double integral reduces to a product of single integrals

G[i, j] ≈
p∑

μ=1

p∑

ν=1

g(ξr ,μ, ξc,ν)

∫

Γ

Lr ,μ(x)ψi (x) dS(x)

∫

Γ

Lc,ν(y)ϕ j (y) dS(y), (i, j) ∈ r × c,

which results in the low-rank approximation of the sub-block

G[b] ≈ Ub Sb W
H
b , b = r × c, (22)
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with

Ub[i, μ] =
∫

Γ

Lr ,μ(x)ψi (x) dS(x), i ∈ r , μ = 1, . . . , p,

Sb[μ, ν] = g(ξr ,μ, ξc,ν), μ, ν = 1, . . . , p,

Wb[ j, ν] =
∫

Γ

Lc,ν(y)ϕ j (y) dS(y), j ∈ c, ν = 1, . . . , p.

By approximating suitable sub-blockswith low-rankmatrices, we obtain a hierarchical
matrix approximation of G. This approach leads to a reduction of both computational
and storage costs for assembling G from quadratic to almost linear in #I and #J ,
where #I denotes the cardinality of the set I .

4.1 Matrix partitions

In the following, we give a short introduction on hierarchical matrices based on the
monographs [11,17]. Since only sub-blocks that satisfy the admissibility condition (20)
permit accurate low-rank approximations, a partition of the matrix indices I × J into
admissible and inadmissible blocks is required. To this end, we define cluster trees for
I and J .

Definition 2 (Cluster trees) Let T (I ) be a tree with nodes ∅ �= r ⊂ I . We callT (I )
a cluster tree if the following conditions hold:

1. I is the root of T (I ).
2. If r ∈ T (I ) is not a leaf, then r is the disjoint union of its sons

r =
⋃

r ′∈sons(r)
r ′.

3. # sons(r) �= 1 for r ∈ T (I ).

We denote by L (T (I )) the set of leaf clusters

L (T (I )) = {r ∈ T (I ) : sons(r) = ∅} .

Moreover, we assume that the size of the clusters is bounded from below, i.e.

#r > nmin > 1, r ∈ T (I ), sons(r) �= ∅,

in order to control the number of clusters and limit the overhead in practical applica-
tions.

There are several strategies to perform the clustering efficiently. For instance, the
geometric clustering in [28] constructs the cluster tree recursively by splitting the
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bounding box in the direction with largest extent. Alternatively, the principal compo-
nent analysis can be used to produce well-balanced cluster trees [11].

Since searching the whole index set I × J for an optimal partition is not reasonable,
we restrict ourselves to partitions which are based on cluster trees of I and J .

Definition 3 (Block cluster trees) Let T (I ) and T (J ) be cluster trees. We construct
the block cluster tree T (I × J ) by

1. setting I × J as the root of T (I × J ),
2. and defining the sons recursively starting with r × c for r = I and c = J :

sons(r × c) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sons(r) × c, if sons(r) �= ∅ and sons(c) = ∅,

r × sons(c), if sons(r) = ∅ and sons(c) �= ∅,

sons(r) × sons(c), if sons(r) �= ∅ and sons(c) �= ∅,

∅, if r × c is admissible or

sons(r) = sons(c) = ∅.

Then, the set of leaves L (T (I × J )) is a partition in the following sense.

Definition 4 (Admissible partition) We callP a partition of I × J with respect to the
block cluster tree T (I × J ) if

1. P ⊂ T (I × J ),
2. b, b′ ∈ P �⇒ b ∩ b′ = ∅ or b = b′,
3.
⋃̇

b∈P b = I × J .

Moreover,P is said to be admissible if every r × c ∈ P is either admissible (20) or

max {#r , #c} ≤ nmin.

In this case, the near and far field of P are defined by

P− = {r × c ∈ P : max {#r , #c} ≤ nmin} , P+ = P \ P−.

Thus, the near fieldP− describes those blocks of G that are stored in full, because
they are inadmissible or simply too small. On the other hand, the far fieldP+ contains
admissible blocks only, which are approximated by low-rank matrices. In Fig. 2 a
partition for the single layer potential is visualised.

Remark 2 Since evaluating the admissibility condition (20) is rather expensive, we use
the alternative condition

max {diam(Br ), diam(Bc)} ≤ η dist(Br , Bs), (23)

which operates on the bounding boxes and is easier to check.
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Fig. 2 Visualisation of a matrix partition. Green blocks are admissible, whereas red ones are inadmissible

4.2 H 2-matrices

One special class of hierarchical matrices consists of H 2-matrices. They are based
on the observation that the matrices Ub and Wb in the low-rank factorisation (22) of
the far field block b = r × c only depend on the respective row cluster r or column
cluster c and not on the block b itself.

Definition 5 (H 2-matrices) Let P be an admissible partition of I × J .

1. We call

(Ur )r∈T (I ), Ur ∈ C
r×kr , kr > 0,

(nested) cluster basis, if for all non-leaves r ∈ T (I )\L (T (I )) transfer matrices

Er ′,r ∈ C
kr ′×kr , r ′ ∈ sons(r),

exist such that

Ur =
⎛

⎝
Ur1Er1,r

. . .

Urp Erp,r

⎞

⎠ , sons(r) = {r1, . . . , rp
}
.

2. G is calledH 2-matrix with row cluster basis (Ur )r∈T (I ) and column cluster basis
(Wc)c∈T (J ), if there are coupling matrices Sb ∈ C

kr×kc such that

G[b] = Ur Sb W
H
c

for each far field block b = r × c.
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In view of our interpolation scheme, we observe that the Lagrange polynomials of
the father cluster r ∈ T (I ) can be expressed by the Lagrange polynomials of its son
clusters r ′ ∈ sons(r) via interpolation,

Lr ,μ(x) =
p∑

λ=1

Lr ,μ(ξr ′,λ)Lr ′,λ(x), x ∈ Br ′ .

Hence, by choosing transfer matrices

Er ′,r [λ,μ] = Lr ,μ(ξr ′,λ),

the cluster basis becomes nested

Ur [i, μ] =
∫

Xi

Lr ,μ(x)ψi (x) dS(x) =
p∑

λ=1

Lr ,μ(ξr ′,λ)
∫

Xi

Lr ′,λ(x)ψi (x) dS(x)

=
p∑

λ=1

Er ′,r [λ,μ] Ur ′ [i, λ] = (Ur ′Er ′,r
) [i, μ], i ∈ r ′.

Algorithm 1 describes the assembly of cluster bases and summarises the construction
of anH 2 -matrix by interpolation.

In the following, let G̃ be the H 2-approximation of the dense Galerkin matrix
G. Kernel functions like (12) are asymptotically smooth, i.e. there exist constants
Cas > 0, c0 ≥ 1 such that

∣∣∣∂α
x ∂β

y g(x, y)
∣∣∣ ≤ Cas n! cn0

|x − y|n+1 , x �= y, n = |α + β| , (24)

for all multi-indices α, β ∈ N
3. Together with the admissibility condition (23), this

property implies exponential decay of the approximation error [17].

Theorem 1 (Approximation error) Let r × c ∈ P+ be admissible with η ∈ (0, 2)
and let g(·, ·) be an asymptotically smooth function. If we use a fixed number of m
interpolationpoints in eachdirection, resulting in p = m3 points overall, the separable
expansion

g̃(x, y) =
p∑

μ=1

p∑

ν=1

Lr ,μ(x)g(ξr ,μ, ξc,ν)Lc,ν(y), x ∈ Xr , y ∈ Yc,

satisfies

‖g − g̃‖∞,Br×Bc ≤ Cint dist(Br , Bc)
−1 qm
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for some constant Cint independent of m and

q = min

{
c0η

1 + c0η
,
c0η

2

}
< 1.

Algorithm 1H 2-matrix by interpolation.

1: procedure clusterbasis(r , p)

2: if sons(r) �= ∅ then � Build cluster basis recursively

3: for r ′ ∈ sons(r) do

4: Er ′,r [λ,μ] = Lr ,μ(ξr ′,λ), i ∈ r ′, μ = 1, . . . , p � Transfer matrix

5: (Ur̂ )r̂∈L (r ′),
(
Er∗,r̂

)
r∗∈sons(r̂), r̂∈T (r ′) = clusterbasis(r ′, p)

6: end for

7: else � r is leaf cluster, compute leaf matrix

8: Ur [i, μ] =
∫

Γ

Lr ,μ(x)ψi (x) dS(x), i ∈ r , μ = 1, . . . , p

9: end if

10: return (Ur ′)r ′∈L (r),
(
Er̂ ,r ′

)
r̂∈sons(r ′), r ′∈T (r)

11: end procedure

12: procedure h2(b)

13: if sons(b) �= ∅ then � Build H 2-matrix recursively

14: for b′ ∈ sons(b) do

15: G[b′] = h2(b′)
16: end for

17: else

18: if b = r × c is admissible then � Compute coupling matrix

19: Sb[μ, ν] = g(ξr ,μ, ξc,ν), μ, ν = 1, . . . , p

20: else � Compute dense matrix

21: G[i, j] =
∫

Γ

∫

Γ

g(x, y)ϕ j (y) dS(y) ψi (x) dS(x), i ∈ r , j ∈ c

22: end if

23: end if

24: return G[b]
25: end procedure
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Consequently, the matrix approximation error is bounded by

∥∥G − G̃
∥∥
F =

∥∥∥∥∥∥

∑

r×c∈P+
G −Ur Sr×cW

H
c

∥∥∥∥∥∥
F

≤ Cint CΓ max
i∈I ‖ψi‖L2(Γ ) max

j∈J

∥∥ϕ j
∥∥
L2(Γ )

qm,

where the constant CΓ depends only on Γ and the clustering.

Remark 3 Following [20], the kernel function in (12) is asymptotically smooth for
Re(s) > 0 with constants

Cas = 1

4π
, c0 = 2 +

√
1 + tan2 α,

where

tan α =
∣∣∣∣
Im(s)

Re(s)

∣∣∣∣

is the quotient between imaginary and real part of the frequency s. Note that this
estimate is not optimal and diverges for Re(s) → 0, although the kernel function is
still asymptotically smooth for Re(s) = 0, see [11].

As the computation of the far field only requires the assembly of the nested cluster
bases and coupling matrices, the storage costs are reduced drastically, as depicted in
Fig. 3. The red boxes symbolise dense near-field blocks, whereas far-field coupling
matrices are painted magenta. The blocks to the left and above the partition illustrate
the nested row and column cluster bases. There, leaf matrices are drawn in blue, while
transfer matrices are coloured in magenta.

TheH 2-matrix scheme scales linearly in the number of degrees of freedom [16].

Theorem 2 (Complexity estimates)LetT (I×J ) be sparse in the sense that a constant
Csp exists such that

#
{
c′ ∈ T (J ) : r × c′ ∈ T (I × J )

}
, #
{
r ′ ∈ T (I ) : r ′ × c ∈ T (I × J )

} ≤ Csp

for all r ∈ T (I ) and c ∈ T (J ). Then, theH 2-matrix G̃ requires

O(p(#I + #J ))

units of storage and the matrix-vector multiplication can be performed in just as many
operations.

The number of interpolation points p = m3 equals the rank of the low-rank fac-
torisations in the far field. Due to Remark 3, we see that m scales linearly with tan α

or, equivalently, m is of order O (|Im(s)/Re(s)|) for a fixed accuracy ε < 1 of the
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Fig. 3 Visualisation of the storage costs of anH 2-matrix

approximation. If α is bounded by a constant, then p only depends on ε and grows
like O(−log(ε)3). However, the frequencies s� of (11) in the CQM depend on R and
χ .

Example 1 For the BDF-2 method with χ(R) = (R2 − 4R + 3)/2 and R = δ1/2N ,
we obtain

∣∣∣∣
Im(s�)

Re(s�)

∣∣∣∣ ≤ max
θ∈[0,1]

∣∣∣∣∣∣

Im
(
χ
(
R · e2π ıθ

))

Re
(
χ
(
R · e2π ıθ

))

∣∣∣∣∣∣
≤ 3

χ(R)
,

since the real part takes its minimum at θ = 0 and the imaginary part is less than 3.
Due to

3

χ(R)
≤ 3

1 − R
= 3

2
+ 3N

− ln(δ)
+ O(N−1) for N → ∞

it follows that m is of order O(N ).

Thus, we conclude that the interpolation ordermmay grow linearlywith the number
of time steps N , cf. [3]. Nonetheless, the exponential decay from the real part of the
frequency significantly improves the situation in practical applications as we see in
Sect. 7.

Remark 4 Similar results hold for the kernel functions of the double layer and hyper-
singular operator as well, see [11,17]. The approach is also not limited to polynomial
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interpolation but alternative techniques like fast multipolemethods [21,24] or methods
based on algebraic compression [18,52] exist, which may generate lower ranks.

5 Adaptive cross approximation

Returning to the setting of (19), namely the approximation of the tensor

VVVVVVVVVVVVVVVVV [i, j, k] = Vk[i, j],

we have the preliminary result that each slice Vk is given in form of an H 2-matrix.
Since the geometry Γ is fixed for all times, we can construct a partition that does not
depend on the particular frequency sk . Therefore, we can select the same set of clusters
T (I ) and T (J ) for all Vk . In this way, the partition P as well as the cluster bases
(Ur )r∈T (I ) and (Wc)c∈T (J ) have to be built only once and are shared between all Vk .
The latter only differ in the coupling matrices and near-field entries, which have to be
computed separately for each frequency sk .

Since all Vk are partitioned identically, the tensor VVVVVVVVVVVVVVVVV defined in (19) inherits their
block structure in the sense that it can be decomposed according to P by simply
ignoring the frequency index k.

Definition 6 Let K = {0, . . . , N − 1} and T (K ) = {K }. In the current context, we
define PPPPPPPPPPPPPPPPP ∈ T (I × J × K ) to be the tensor partition with blocks

b = r × c × K , r × c ∈ P,

which are admissible or inadmissible whenever r × c ∈ P is admissible or inadmis-
sible, respectively.

Naturally, this construction implies that the far-field blocks of VVVVVVVVVVVVVVVVV are given in low-rank
format,

VVVVVVVVVVVVVVVVV [r , c, k] = Ur Sb,k W
H
c , k = 0, . . . , N − 1,

with Sb,k being the coupling matrix of b for the frequency sk . If we collect the matrices
Sb,k in the tensor SSSSSSSSSSSSSSSSS b in the same manner as Vk in VVVVVVVVVVVVVVVVV , we can factor out the cluster
bases Ur and Wc using the tensor product from Definition 7,

VVVVVVVVVVVVVVVVV [r , c, K ] = SSSSSSSSSSSSSSSSS b ×1 Ur ×2 Wc.

The coupling tensorSSSSSSSSSSSSSSSSS b consists of kernel evaluations of the transformed fundamental
solution,

SSSSSSSSSSSSSSSSS b[μ, ν, k] = e−sk
∣∣ξc,ν − ξr ,μ

∣∣

4π
∣∣ξc,ν − ξr ,μ

∣∣ ,
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Fig. 4 Visualisation of the low-rank factorisation

which is smooth in Br × Bc but also in the frequency s ∈ C. The latter holds true even
for the near-field, whose entries are

VVVVVVVVVVVVVVVVV [i, j, k] =
∫

Γ

∫

Γ

e−sk |y − x |
4π |y − x | ϕ0

j (y) dS(y) ϕ0
i (x) dS(x) .

Hence, it is feasible to compress the tensor even further with respect to the frequency
index k. In particular, the above discussion shows that we may proceed separately for
each block b ∈ PPPPPPPPPPPPPPPPP , which represents either a dense block VVVVVVVVVVVVVVVVV [b] in the near-field or a
coupling block SSSSSSSSSSSSSSSSS b in the far-field.

5.1 Multivariate adaptive cross approximation

Let GGGGGGGGGGGGGGGGG ∈ C
m×n×p be a tensor. The multivariate adaptive cross approximation (MACA)

introduced in [12] finds a low-rank approximation of rank r ≤ p of the form

GGGGGGGGGGGGGGGGG ≈ GGGGGGGGGGGGGGGGG (r) =
r∑

�=1

C� ×3 d� (25)

with matrices C� ∈ C
m×n and vectors d� ∈ C

p as illustrated in Fig. 4. When applied
to the tensors VVVVVVVVVVVVVVVVV [b] orSSSSSSSSSSSSSSSSS b of the CQM,C� includes the spatial information whereas d�

contains the frequency part. The main idea of the ACA is to reuse the original entries
of the tensor.

Starting from RRRRRRRRRRRRRRRRR(0) = GGGGGGGGGGGGGGGGG , we pick a non-zero pivot element in RRRRRRRRRRRRRRRRR(�) with index
(i�, j�, k�) and select the corresponding matrix slice and fibre for our next low-rank
update, i.e.

C� = RRRRRRRRRRRRRRRRR(�)[1 : m, 1 : n, k�], d� = RRRRRRRRRRRRRRRRR(�)[i�, j�, k�]−1
RRRRRRRRRRRRRRRRR(�)[i�, j�, 1 : p].
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Fig. 5 One step of the MACA

Then, we compute the residual RRRRRRRRRRRRRRRRR(�+1) by subtracting their tensor product,

RRRRRRRRRRRRRRRRR(�+1) = RRRRRRRRRRRRRRRRR(�) − C� ×3 d� = RRRRRRRRRRRRRRRRR(�) − RRRRRRRRRRRRRRRRR(�)[1 : m, 1 : n, k�] ×3 RRRRRRRRRRRRRRRRR
(�)[i�, j�, 1 : p]

RRRRRRRRRRRRRRRRR(�)[i�, j�, k�]
.

The residual RRRRRRRRRRRRRRRRR(�+1) = GGGGGGGGGGGGGGGGG − GGGGGGGGGGGGGGGGG (�) measures the accuracy of the approximation. After
r = � steps we obtain the low-rank factorisation (25). By construction, the cross
entries successively vanish, i.e.

RRRRRRRRRRRRRRRRR(r)[i, j, k�] = RRRRRRRRRRRRRRRRR(r)[i�, j�, k] = 0, � = 0, . . . , r − 1,

which implies RRRRRRRRRRRRRRRRR(p+1) = 0 and hence r ≤ p. Figure 5 depicts one complete step of
the MACA. We extract the cross consisting of C� and d� from RRRRRRRRRRRRRRRRR(�) and subtract the
update C� ×3 d�, thereby eliminating the respective cross from RRRRRRRRRRRRRRRRR(�+1).

The choice of the pivoting strategy is the crucial part of the algorithm. On the
one hand, it should lead to nearly optimal results, in the sense that high accuracy is
achieved with relatively low rank. On the other hand, it should be reliable and fast,
otherwise it would become a bottleneck of the algorithm. Different pivoting strategies
are available [11], but we restrict ourselves to finding the maximum entries in C� and
d�−1, i.e. we choose (i�, j�, k�) such that

|d�−1[k�]| = max
k

|d�−1[k]| ,
|C�[i�, j�]| = max

i, j
|C�[i, j]| ,

with k1 = 0. Throughout the algorithm, only r slices and fibres of the original tensor
GGGGGGGGGGGGGGGGG are used. Thus, there is no need to build the whole tensor GGGGGGGGGGGGGGGGG in order to approximate
it and its entries are computed only on demand. This feature presents a clear advantage
of the ACA, especially in BEM, where the generation of the entries is expensive. In
this regard, the routine entry in Algorithm 2 is understood to be a call-back that
computes the entries of GGGGGGGGGGGGGGGGG at the time of its call. Moreover, the tensors GGGGGGGGGGGGGGGGG (�) are never
formed explicitly but are stored in the low-rank format.
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Algorithm 2MACA

1: procedure maca(entry, ε)

2: GGGGGGGGGGGGGGGGG (0) = 0, k1 = 0 and � = 0.

3: do

4: � = � + 1

5: C�[i, j] = entry(i, j, k�)−GGGGGGGGGGGGGGGGG (�−1)[i, j, k�], i = 1, . . . , n, j = 1, . . . ,m

6: C�[i�, j�] = max
i, j

|C�[i, j]|
7: if C�[i�, j�] = 0 then

8: � = � − 1

9: break

10: end if

11: d�[k] =C�[i�, j�]−1
(
entry(i�, j�, k)−GGGGGGGGGGGGGGGGG (�−1)[i�, j�, k]

)
, k = 1, . . . , p

12: GGGGGGGGGGGGGGGGG (�) = GGGGGGGGGGGGGGGGG (�−1) + C� ×3 b�

13: k�+1 = argmaxk |d�[k]|
14: while ‖C�‖F ‖d�‖2 > ε

∥∥∥GGGGGGGGGGGGGGGGG (�)
∥∥∥
F

15: r = � − 1

16: return GGGGGGGGGGGGGGGGG (r) =
r∑

�=1

C� ×3 d�

17: end procedure

Here, we terminate the algorithm if the low-rank update C� ×3 d� = GGGGGGGGGGGGGGGGG � − GGGGGGGGGGGGGGGGG �−1 is
sufficiently small compared to GGGGGGGGGGGGGGGGG (�). Likewise, this stopping criterion does not require
the expansion of GGGGGGGGGGGGGGGGG (�) due to the identity

∥∥∥GGGGGGGGGGGGGGGGG (�)
∥∥∥
2

F
=
∑

i, j,k

∣∣∣∣∣

r∑

�=1

C�[i, j]b�[k]
∣∣∣∣∣

2

=
r∑

�,�′=1

⎛

⎝
∑

i, j

C�[i, j]C�′ [i, j]
⎞

⎠
(
∑

k

b�[k] b�′ [k]
)

.

Neglecting the numerical work needed to compute the entries of GGGGGGGGGGGGGGGGG , the overall com-
plexity of the MACA amounts to O(r2(nm + p)).

If we collect the vectors d� in the matrix D(r) ∈ C
p×r and the matrices C� in the

tensor CCCCCCCCCCCCCCCCC (r) ∈ C
m×n×r , we obtain the short representation

GGGGGGGGGGGGGGGGG (r) = CCCCCCCCCCCCCCCCC (r) ×3 D(r), (26)

which is equivalent to (25).
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Remark 5 A tensor XXXXXXXXXXXXXXXXX ∈ C
I1×···×Id can be unfolded into a matrix by rearranging

the index sets, which is called matricisation. For instance, the mode- j unfolding
M j (XXXXXXXXXXXXXXXXX ) ∈ C

I j×(Πk �= j Ik ) is defined by

M j (XXXXXXXXXXXXXXXXX )[i j , (i1, . . . , i j−1, i j+1, . . . , id)] = XXXXXXXXXXXXXXXXX [i1, . . . , id ].

With this in mind, it turns out that the MACA is in fact the standard ACA applied to
a matricisation of the tensor. In our special case, it is the mode-3 unfolding.

Due to Remark 5, we can derive error bounds for the approximant GGGGGGGGGGGGGGGGG (r) based on
standard results for the ACA.

Theorem 3 (Approximation error) Let GGGGGGGGGGGGGGGGG be either a dense block VVVVVVVVVVVVVVVVV [b] or a coupling
block SSSSSSSSSSSSSSSSS b. Then there exist 0 < ρ < 1 and C > 0 such that the residual satisfies

∥∥∥RRRRRRRRRRRRRRRRR(�)
∥∥∥
F

=
∥∥∥GGGGGGGGGGGGGGGGG − GGGGGGGGGGGGGGGGG (�)

∥∥∥
F

< Cρ�+1, � > 0.

The constants C and ρ depend on the block b and on R, χ and N of (11).

Proof We parameterise s according to (11),

s(θ) =
χ
(
R · eπ ıθ

)

Δt
, θ ∈ [−1, 1].

Then, the entries of GGGGGGGGGGGGGGGGG are obtained by collocation of the functions

Fi j (θ) =
∫

Γ

∫

Γ

e−s(θ) |y − x |
4π |y − x | ϕ0

j (y) dS(y) ϕ0
i (x) dS(x),

Gμν(θ) = e−s(θ)
∣∣ξc,ν − ξr ,μ

∣∣

4π
∣∣ξc,ν − ξr ,μ

∣∣

at θ = k/N , k = −N + 1, . . . , N . Because they are analytic in θ , we may use [15,
Sect. 68 (76)] to bound the error of the best polynomial approximation of degree �,

inf
m∈P�

‖ f − m‖∞,[−1,1] <
2M

1 − ρ
ρ�+1,

where f = Fi j ,Gμν , 0 < ρ < 1 and M is chosen such that the absolute value of
f is less than M within an ellipse in the complex plane whose foci are at −1 and 1
and the sum of whose semi-axes is 1/ρ. Since the equidistant sampling points form a
unisolvent set for the approximating polynomials, the requirements of [11, Theorem
3.35] are satisfied and the desired bound follows. ��
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Theorem 3 also justifies the choice of our stopping criterion. If we assume

∥∥∥RRRRRRRRRRRRRRRRR(�+1)
∥∥∥
F

≤ ρ

∥∥∥RRRRRRRRRRRRRRRRR(�)
∥∥∥
F

,

then we obtain

∥∥∥RRRRRRRRRRRRRRRRR(r)
∥∥∥
F

≤ ρ ‖GGGGGGGGGGGGGGGGG ‖F

by setting ε = δ(1 − ρ)/(1 + δ).

6 Combined algorithm

We are ready to state the complete algorithm, see Algorithm 3, for the low-rank
approximation of the boundary element tensors from Sect. 3.2. In the first step, we
build the cluster bases and construct a partition of the associated tensor (19) as outlined
in Sect. 4 andDefinition 6. In the second step, we apply theMACA fromSect. 5 to each
block of the partition and obtain low-rank factorisations of the form (26). Eventually,
we end up with a hierarchical tensor approximation, which reads

VVVVVVVVVVVVVVVVV [b] ≈ CCCCCCCCCCCCCCCCC b ×3 Db, b ∈ PPPPPPPPPPPPPPPPP−,

VVVVVVVVVVVVVVVVV [b] ≈ CCCCCCCCCCCCCCCCC b ×1 Ur ×2 Wc ×3 Db, b ∈ PPPPPPPPPPPPPPPPP+.
(27)

Besides the calls of the MACA routine, Algorithm 3 is identical to Algorithm 1.

6.1 Error analysis

Before we discuss computational aspects of this algorithm, we state a result for the
approximation error.

Corollary 1 (Tensor Approximation Error) For every ε ≥ 0, we find an approximation
ṼVVVVVVVVVVVVVVVV of VVVVVVVVVVVVVVVVV generated by Algorithm 3 which satisfies

∥∥VVVVVVVVVVVVVVVVV − ṼVVVVVVVVVVVVVVVV
∥∥
F ≤ ε.

Proof For admissible blocks b ∈ PPPPPPPPPPPPPPPPP+ we observe that the first term in

∥∥VVVVVVVVVVVVVVVVV [b] − CCCCCCCCCCCCCCCCC b ×1 Ur ×2 Wc ×3 Db
∥∥
F ≤ ∥∥VVVVVVVVVVVVVVVVV [b] − SSSSSSSSSSSSSSSSS b ×1 Ur ×2 Wc

∥∥
F

+ ∥∥(CCCCCCCCCCCCCCCCC b ×3 Db − SSSSSSSSSSSSSSSSS b) ×1 Ur ×2 Wc
∥∥
F ,

is controlled by theH 2-approximation and the second one by theMACA. By virtue of
Theorems 1 and 3 , we can prescribe accuracies δb > 0 on the approximation error for
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Algorithm 3 Combined Algorithm

1: procedure main({ψi }i∈I ,
{
ϕ j
}
j∈J , {sn}n=1,...,N , nmin, η, m, ε)

2: T (I ) = cluster({ψi }i∈I , nmin), T (J ) = cluster(
{
ϕ j
}
j∈J , nmin)

3: rb = clusterbasis(I , m), cb = clusterbasis(J , m)

4: P = partition(T (I ), T (J ), η)

5: for b ∈ P do � Call MACA for each block

6: if b is admissible then

7: CCCCCCCCCCCCCCCCC b, Bb = maca(far, b, ε)

8: else

9: CCCCCCCCCCCCCCCCC b, Bb = maca(near, b, ε)

10: end if

11: end for

12: return AAAAAAAAAAAAAAAAA = {{CCCCCCCCCCCCCCCCC b, Bb}b∈P , rb, cb
}

13: end procedure

14: procedure far(μ, ν, n)

15: return g(ξr ,μ, ξc,ν , sn) � Entries of coupling tensors

16: end procedure

17: procedure near(i , j , n)

18: return
∫

Γ

∫

Γ

g(x, y, sn)ψ j (y) dS(y) ϕi (x) dS(x) � Entries of dense blocks

19: end procedure

every far-field block. Similarly, we can bound the error block-wisely in the near-field
by δb. Hence, we obtain the desired bound by choosing δb such that

∥∥VVVVVVVVVVVVVVVVV − ṼVVVVVVVVVVVVVVVV
∥∥2
F ≤

∑

b∈PPPPPPPPPPPPPPPPP
δ2b ≤ ε2

is satisfied. ��

6.2 Complexity and fast arithmetics

For admissible blocks, the low-rank approximation is given in the so called Tucker
format [27].

Definition 7 (Tucker format) For a tensorXXXXXXXXXXXXXXXXX ∈ C
I1×···×Id the Tucker format of tensor

rank (p1, . . . , pd) consists of matrices A( j) ∈ C
p j×I j , j = 1, . . . , d, and a core tensor

CCCCCCCCCCCCCCCCC ∈ C
p1×···×pd such that
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XXXXXXXXXXXXXXXXX = CCCCCCCCCCCCCCCCC ×d
j=1 A( j),

with the tensor product from Definition 1.

One of the main advantages of the approximation in the Tucker format is the reduc-
tion in storage costs. The Tucker representation requires

d∏

j=1

p j +
d∑

j=1

p j #I j intead of
d∏

j=1

#I j

units of storage when compared with the dense block tensor. For (27) we deduce the
following corollary.

Corollary 2 (Storage Complexity) Let p denote the rank of the H 2-matrix approxi-
mation and r the maximal rank of the MACA over all blocks. Under the assumptions
of Theorem 2, the hierarchical tensor decomposition needs about

O(r p (#I + #J ) + r N )

units of storage.

In addition, the low-rank structure allows us to substantially accelerate important
steps of the CQM.We recall that the computation of the integration weights V̂n in (16)
comprises a matrix-valued discrete Fourier transform of the auxiliary matrices V�.
If we use representation (25) instead, we can factor out the frequency-independent
matrices, i.e.

V̂n = R−n

N

N−1∑

�=0

e
−2π ı
N n�

r∑

k=1

Ck dk[�]

=
r∑

k=1

Ck
R−n

N

N−1∑

�=0

e
−2π ı
N n�dk[�], n = 0, . . . , N . (28)

Therefore, the transform has to be performed solely on the vectors dk ,

d̂k[n] = R−n

N

N−1∑

�=0

e
−2π ı
N n�dk[�],

with the result that the tensor of integration weights V̂VVVVVVVVVVVVVVVV inherits the hierarchical low-
rank format of the original tensor VVVVVVVVVVVVVVVVV . In particular, the decomposition (27) still holds
with Db replaced by D̂b, whose columns are precisely the transformed vectors d̂k .
Thereby, we reduce the number of required FFTs to less than r per block. The other
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Table 1 Comparison of the complexities. Note that the ranks depend on N , see the discussion below

Approximation Storage Computational

DFT RHS Solving

None M2 N M2 N log(N ) M2 N 2 M3 + M2 N

H 2 p M N p M N log(N ) p M N 2 M2 + M N

H 2 + MACA r p M + r N r N log(N ) r p M N M2 + MN

improvement concerns the computation of the right-hand side in (18). There, discrete
convolutions of the form

fn =
n∑

k=0

V̂n−k qk

need to be evaluated in each step. Once again, we insert (25) and obtain

fn =
n∑

k=0

r∑

�=1

d�[n − k]C� qk =
r∑

�=1

C�

(
n∑

k=0

d�[n − k] q
k

)

. (29)

This representation requires r matrix-vector multiplications, which amounts to r N
matrix-vector multiplications in total. This is significantly less than the N 2/2 multi-
plications needed by the conventional approach.

In combination with fast H 2-matrix arithmetics [16], the algorithm scales nearly
linearly in the number of degrees of freedomM and time steps N . This is shownTable 1,
where we compare the storage and operation counts of our algorithm with those of
the traditional ones. The estimates follow from the observation that the algorithm
essentially computes r H 2-matrices and additional r vectors per block. The discrete
Fourier transform is applied only to the vectors dk of length N which amounts to
O(N log(N )) operations in each case. The algorithm performs r H 2-matrix-vector-
multiplications, each of which takes O(p M) operations, for the computation of the
right-hand side at a time step. Finally, the solution of the linear systems consists of one
hierarchical LU-decomposition of complexity O(M2) and N forward and backward
substitutions with a cost of O(M) for each. If an efficient preconditioner is available,
we may replace the direct solver by an iterative algorithm to eliminate the quadratic
term M2. Note that the numerical effort for computing the tensor entries is not stated
explicitly but is reflected in the storage complexity. Note that the ranks themselves
depend not only on the prescribed accuracy but on N as well. The discussion at the end
of Sect. 4 shows that the interpolation orderm scales linearly with N and the numerical
experiments in Sect. 7.1 indicate a logarithmic growth. Similarly, the tensor rank r
displays a linear dependency on N . Nevertheless, the algorithm still performs quite
well as we see in the next section.
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Fig. 6 Spherical geometry Γ used in the performance tests

7 Numerical examples

In this section, we present numerical examples which confirm our theoretical results
and show the efficiency of our newalgorithm. In all experiments,we set the parameterη
in the admissibility condition (20) to 2.0 and use the backward differentiation formula
of order 2 (BDF-2) with R = 10−5/N in the CQM. The core implementation is based
on the H2Lib software.1 The machine in use consists of two Intel Xenon Gold 6154
CPUs operating at 3.00 GHz with 376 GB of RAM.

7.1 Tensor approximation

The first set of examples concerns the performance and accuracy of the tensor approx-
imation scheme.

Let Γ be the surface of a polyhedron Ω , which approximates the sphere of radius
1 with M flat triangles, see Fig. 6. The time interval is set to (0, 5). We compare the
dense tensor VVVVVVVVVVVVVVVVV of single layer potentials with its low-rank factorisation ṼVVVVVVVVVVVVVVVV and study
the impact of the interpolation order m as well as accuracy ε of the MACA on the
approximation error, rank distribution, memory requirements and computation time.

We first set the number of degrees of freedom to M = 51, 200 and time steps to
N = 256, resulting in a Courant number of Δt/h ≈ 0.83. In Fig. 7, the results for
varying ε and fixed m = 3, 5, 7 are presented.

1 The source code is available at https://github.com/H2Lib/H2Lib.
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Fig. 7 Results for M = 51, 200, N = 256, m = 3, 5, 7 and improving accuracy ε of the MACA

Foremost, we observe that the relative error

e =
∥∥VVVVVVVVVVVVVVVVV − ṼVVVVVVVVVVVVVVVV

∥∥
F

‖VVVVVVVVVVVVVVVVV ‖F .

in the Frobenius norm decreases with ε until it becomes constant for ε ≥ 10−4. This
behaviour can be explained by Corollary 1. Even if the coupling blocks are reproduced
exactly by the MACA, the H 2-matrix approximation still dominates the total error.
Moreover, the numerical results confirm that the maximal block-wise rank r of the
MACA depends logarithmically on ε for fixed m. It stays below 30 in contrast to
256 time steps, which reveals the distinct low-rank character of the block tensors.
Accordingly, our algorithm demands only for a small fraction of memory compared
with the conventional dense approach. At worst, the compression rate reaches 3% of
the original storage requirements for m = 7. For m = 3, 5 and optimal choice of
ε = 10−2, 10−3, we further improve it to 0.2% and 0.8%, respectively. Similarly, the
computation time needed for the assembly of the tensor is drastically reduced. For the
optimal values of ε, the algorithm takes only a couple of seconds (m = 3, 5) orminutes
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Fig. 8 Storage requirements relative to the plain H 2-matrix approach for M = 51,200, N = 256, m =
3, 5, 7 and varying ε

(m = 7) to compute the approximation of the single layer potentials. Furthermore,
we report that both memory requirements and computation time scale logarithmically
with ε.

To further demonstrate the benefits of the MACA, we consider the compression
rate in comparison to the case when onlyH 2-matrices are used. In Fig. 8, the storage
costs for the same test setup are presented. We notice that the inclusion of the MACA
reduces the memory requirements to less than 15%, while the same level of accuracy
is achieved. If we modify the interpolation order m instead, Theorems 1 and 2 indi-
cate that the approximation error decreases exponentially while the storage costs rise
polynomially. This is confirmed by the findings in Fig. 9, where we set ε = 10−m

to ensure that MACA error is negligible. Indeed, we see that the error e is roughly
halved wheneverm is increased by one and reaches almost 10−4 form = 8. The upper
right plot shows that the simultaneous change in ε and m leads to a linear growth of
the MACA rank r in terms of m. Since the storage and computational complexity for
fixed M and N is of orderO(p r), where p = m3 is the interpolation rank, we observe
that the memory and time consumption scale approximately as O(m4). Note that in
contrast to the prior example, the partition changes with differentm, because the latter
directly affects the clustering. Since the performance is more sensitive to a change in
m, we recommend to select ε on the basis of m.

In the next two tests, we investigate the scaling of the algorithm in the number
of degrees of freedom M and time steps N . First off, we fix the Courant number
Δt/h = 0.7 and refine the mesh Γ successively. The parametersm = 7 and ε = 10−8

are chosen in such a way that the error e is of the magnitude 10−3. Note that the
approximation is more accurate for small M as the near-field still occupies a large
part of the partition. The results are depicted in Fig. 10, where the number of time
steps is added for the sake of completeness. First of all, we notice that the storage and
computational complexity are linear in M in accordance with Corollary 2. Although
the maximal rank r grows logarithmically at the same time, it does not influence the
overall performance. This is probably due to the average rank staying almost constant
in comparison. The rank distribution is visualised in form of a heat map in Fig. 11.
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Fig. 9 Results for M = 51,200, N = 256, ε = 10−m and increasing interpolation order m

The dependence on the number of time steps N for constant M = 51, 200 is
illustrated in Fig. 12. We use the same values for the parameters as before, i.e., m = 7
and ε = 10−8, and now change the Courant number Δt/h instead of M . As expected,
the memory and time requirements scale linearly in N . The rise of the error e is
attributed to the change in frequencies s�. From the discussion at the end of Sect. 4 we
recall that the convergence rate of the interpolation error is controlled by the quotient
|Im(s�)/Re(s�)| which itself depends on N . The numerical results here indicate that
the error e grows linearly with N , so the interpolation order m and hence p scale
logarithmically in N for fixed e. Note that the result in Example 1 only implies linear
scaling for p. A more accurate estimate than the one provided in Remark 3 could
potentially resolve this discrepancy. Finally, the rank r of the MACA exhibits linear
growth in N for a fixed accuracy ε. This is probably related to the change in frequencies
as well. Yet, this seems to have no noticeable impact on the complexity of the method.

We summarise that the approximation scheme has almost linear complexity in both
the number of degrees of freedom M and time steps N for fixed tolerance ε and
interpolation order m.
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Fig. 10 Results for constant courant number Δt/h = 0.7, m = 7, ε = 10−8 and increasing number of
degrees of freedom M

7.2 Scattering problem

In this last section, we perform benchmarks for our fast CQM algorithm from Sect. 6
and study the effect of the tensor approximation on the solution of the wave problem.

To that end, we switch settings to the model problem (1) posed in the exterior of
the geometry pictured in Fig. 13. The spherical wave

u(x, t) = f (t − |x |)
|x | , f (z) =

{
cos(5z + 1) − 1, z > −1/5,

0, z ≤ −1/5,

serves as the exact solution.We shift the time variable such that u reaches the boundary
Γ right after t = 0.
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Fig. 11 Exemplary rank distribution of the tensor partition for M = 51,200 degrees of freedom and
N = 768 time steps

Thefirst part of tests concerns the fast arithmetics developed in Sect. 6.2. To simplify
matters, we impose pure Dirichlet conditions on ΓD = Γ and solve for the Neumann
trace qn in

V̂0qn =
(

−1

2
I + K̂0

)
gD
n

+
n−1∑

k=0

(
K̂n−kg

D
k

− V̂n−kqk

)
, n = 0, . . . , N , (30)

as outlined in Sect. 3.2. We choose T = 4.7 as the final time. We identify three major
stages of the algorithm, firstly the assembly of the tensors, secondly the inversion of
V̂0 and thirdly the step-by-step solution of the linear systems, which is also known
as marching-in-on-time (MoT). In Fig. 14, we visualise how the running time is dis-
tributed among the stages and how they scale in N and M for fixed parameters m = 5
and ε = 10−4. Overall, we see that the numerical results are consistent with the esti-
mates from Table 1. Beginning with the tensor assembly, we once again observe linear
complexity in M . The assembly comprises the fast transformation from (28) and is not
explicitly listed, since it requires less than 2 seconds to perform in all cases. The LU
decomposition of the matrix V̂0 involves O(M2) operations but it nevertheless poses
the least demanding part of the algorithm for our problem size. On the other hand, the
iterative solution of (30) takes the largest amount of time. However, the application
of (29) allows for the fast computation of the right-hand sides in just O(MN ). This
presents a significant speed up over the conventional implementation. Taking into
account that N ∼ M1/2 for a constant Courant number, we expect the second stage
to be the most expensive for very large M . Therefore, it might be advantageous to
switch to iterative algorithms to solve the linear systems if efficient preconditioners
are available.
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Fig. 12 Results for M = 51,200, m = 7, ε = 10−8 and increasing number of time steps N

For the last example, we split the boundary Γ in Neumann and Dirichlet parts
ΓN and ΓD and replace the Dirichlet conditions by mixed conditions. The Neumann
boundary ΓN covers the upper half of Γ with positive component x3 > 0, while the
rest of Γ accounts to the Dirichlet part. Furthermore, we consider the time interval
(0, 1.7). We denote by un and qn the exact solutions and compare them with the
approximations ũn and q̃n obtained by our fast CQM. We also include the reference
solutions ũrefn and q̃refn provided by the dense version. In particular, we are interested
in how the interpolation order m affects the quality of the approximations, which we
estimate by computing the deviations

eDn = ‖un − ũn‖L2(Γ )∥∥un − ũrefn

∥∥
L2(Γ )

, eNn = ‖qn − q̃n‖L2(Γ )∥∥qn − q̃refn

∥∥
L2(Γ )

, n = 0, . . . , N ,

A value close to one indicates that the interpolation error does not spoil the overall
accuracy of the algorithm. We select a mesh with M = 19,182 triangles and set the
number of time steps to N = 235. The choice of ε = 10−8 guarantees that the MACA
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Fig. 13 Front view and back view of the obstacle

does not deteriorate the interpolation quality. The results for varying m are depicted
in Fig. 15. We observe that the approximations show the same level of accuracy for
n ≤ 75 regardless of the interpolation order. Then, the interpolation error becomes
noticeable for m = 4 as eDn and eNn grow with n. The deviations from the reference
solution are considerably smaller form = 6 and our approximation scheme has almost
no impact on the accuracy for m ≥ 8.
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Fig. 14 Results for constant courant number Δt/h = 0.2, m = 5, ε = 10−4 and increasing number of
degrees of freedom M
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8 Conclusion

In this paper, we have presented a novel fast approximation technique for the numerical
solution of wave problems by the CQM and BEM. We have given insights into the
theoretical and practical aspects of our algorithm and have explained how it acts
as a kind of hierarchical tensor approximation. Moreover, we have proposed fast
arithmetics for the evaluations of the discrete convolutions in the CQM. In this way, we
manage to reduce the complexity in terms of the number of spatial degrees of freedom
M and number of time steps N : the storage costs from O(M2N ) to O(r p M + r N )

and the computational costs from O(M2N 2 + M3) to O(r p MN + M2), where p
and r are the ranks of the H 2-matrix approximation and the MACA respectively.
Therefore, we consider our work to be a step towards making large scale space-time
simulations possible with BEM.
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