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ABSTRACT

Humans have an innate ability to excel at activities that involve prediction of complex
object dynamics such as predicting the possible trajectory of a billiard ball after it has
been hit by the player or the prediction of motion of pedestrians while on the road.
A key feature that enables humans to perform such tasks is anticipation. There has
been continuous research in the area of Computer Vision and Artificial Intelligence
to mimic this human ability for autonomous agents to succeed in the real world
scenarios. Recent advances in the field of deep learning and the availability of large
scale datasets has enabled the pursuit of fully autonomous agents with complex
decision making abilities such as self-driving vehicles or robots. One of the main
challenges encompassing the deployment of these agents in the real world is their
ability to perform anticipation tasks with at least human level efficiency.

To advance the field of autonomous systems, particularly, self-driving agents, in
this thesis, we focus on the task of future prediction in diverse real world settings,
ranging from deterministic scenarios such as prediction of paths of balls on a billiard
table to the predicting the future of non-deterministic street scenes. Specifically, we
identify certain core challenges for long-term future prediction: long-term prediction,
uncertainty, multi-modality, and exact inference.

To address these challenges, this thesis makes the following core contributions.
Firstly, for accurate long-term predictions, we develop approaches that effectively
utilize available observed information in the form of image boundaries in videos or
interactions in street scenes. Secondly, as uncertainty increases into the future in
case of non-deterministic scenarios, we leverage Bayesian inference frameworks to
capture calibrated distributions of likely future events. Finally, to further improve
performance in highly-multimodal non-deterministic scenarios such as street scenes,
we develop deep generative models based on conditional variational autoencoders
as well as normalizing flow based exact inference methods. Furthermore, we
introduce a novel dataset with dense pedestrian-vehicle interactions to further aid
the development of anticipation methods for autonomous driving applications in
urban environments.






ZUSAMMENFASSUNG

Menschen haben die angeborene Fahigkeit, Vorgédnge mit komplexer Objektdynamik
vorauszusehen, wie z. B. die Vorhersage der moglichen Flugbahn einer Billard-
kugel, nachdem sie vom Spieler gestofsen wurde, oder die Vorhersage der Bewegung
von Fufigidngern auf der Strafle. Eine Schliisseleigenschaft, die es dem Menschen
ermoglicht, solche Aufgaben zu erfiillen, ist die Antizipation. Im Bereich der Com-
puter Vision und der Kiinstlichen Intelligenz wurde kontinuierlich daran geforscht,
diese menschliche Fahigkeit nachzuahmen, damit autonome Agenten in der realen
Welt erfolgreich sein konnen. Jiingste Fortschritte auf dem Gebiet des Deep Learn-
ing und die Verfiigbarkeit grofSer Datensitze haben die Entwicklung vollstindig
autonomer Agenten mit komplexen Entscheidungsfihigkeiten wie selbstfahrende
Fahrzeugen oder Roboter ermoglicht. Eine der grofiten Herausforderungen beim
Einsatz dieser Agenten in der realen Welt ist ihre Fahigkeit, Antizipationsaufgaben
mit einer Effizienz durchzufiihren, die mindestens der menschlichen entspricht.

Um das Feld der autonomen Systeme, insbesondere der selbstfahrenden Agen-
ten, voranzubringen, konzentrieren wir uns in dieser Arbeit auf die Aufgabe der
Zukunftsvorhersage in verschiedenen realen Umgebungen, die von deterministis-
chen Szenarien wie der Vorhersage der Bahnen von Kugeln auf einem Billardtisch
bis zur Vorhersage der Zukunft von nicht-deterministischen StrafSenszenen reichen.
Insbesondere identifizieren wir bestimmte grundlegende Herausforderungen fiir
langfristige Zukunftsvorhersagen: Langzeitvorhersage, Unsicherheit, Multimodalitét
und exakte Inferenz.

Um diese Herausforderungen anzugehen, leistet diese Arbeit die folgenden
grundlegenden Beitrdge. Erstens: Fiir genaue Langzeitvorhersagen entwickeln wir
Ansétze, die verfltigbare Beobachtungsinformationen in Form von Bildgrenzen in
Videos oder Interaktionen in Strafienszenen effektiv nutzen. Zweitens: Da die Un-
sicherheit in der Zukunft bei nicht-deterministischen Szenarien zunimmt, nutzen wir
Bayes’sche Inferenzverfahren, um kalibrierte Verteilungen wahrscheinlicher zukiin-
ftiger Ereignisse zu erfassen. Drittens: Um die Leistung in hochmultimodalen, nicht-
deterministischen Szenarien wie Straflenszenen weiter zu verbessern, entwickeln wir
tiefe generative Modelle, die sowohl auf konditionalen Variations-Autoencodern als
auch auf normalisierenden fliefenden exakten Inferenzmethoden basieren. Dartiiber
hinaus stellen wir einen neuartigen Datensatz mit dichten Fufsigidnger-Fahrzeug-
Interaktionen vor, um Antizipationsmethoden fiir autonome Fahranwendungen in
urbanen Umgebungen weiter zu entwickeln.
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“Prediction is very difficult, especially if it’s about the future!”
— Niels Bohr

autonomous agents that can operate successfully in real world scenarios.

In this context, an agent is a system that has the ability to function inde-
pendently in order to achieve certain (pre-defined) goals, with at least human level
performance. Particularly, an autonomous agent exhibits decision making abilities
based on input signals from sensors, e.g. camera or lidar, so as to successfully ac-
complish a certain task (Maes, 1993). Potential applications of autonomous agents
include home-assistant robots to perform day-to-day tasks such as cleaning in a
domestic setting or autonomous vehicles to assist human drivers so as to eventually
improve road safety. While considerable progress has been made to improve the
decision making abilities of the aforementioned autonomous agents, yet these agents
are limited to constrained environments and settings.

For example, current state of the art self-driving vehicles are still limited to very
specific geographic locations or traffic conditions (Janai et al., 2020; LeBeau, 2018).
Specifically, self-driving vehicles are largely limited to highway environments where
interactions with other traffic participants, such as pedestrians, are sparse. Therefore,
the deployment of self-driving vehicles which maintain adequate safety distance
in dense urban environments (Sauer et al., 2018; Prakash et al., 2020) with multi-
agent interactions, e.g. pedestrians and bicyclists becomes challenging. Analogously,
although there has been recent progress on robots designed for specific cases, e.g.

ONE of the key challenges facing artificial intelligence is the development of
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Figure 1.1: Here we show routine tasks where anticipation is crucial. Left: A driver
needs to anticipate whether the pedestrian would yield or step onto the path of the
oncoming vehicle to avoid a collision. Right: A billiards player needs to anticipate
the trajectory of the ball to score.

search and rescue (Raibert et al., 2008) or drone racing (Madaan et al., 2019), assistive
robots widely deployable to home environments are still not available. Two important
areas where the performance of home robots is limited are: navigation and object
manipulation. For navigation in unknown environments robots must be able to
avoid obstacles such as humans or other autonomous agents. For manipulation
tasks, the robot must be able to understand the effect of its actions, e.g. how much
force should be applied to move an object without damage.

Humans, in contrast, excel at the same tasks — driving in inner city environments,
navigating in dense crowds or manipulating objects. A key component that enables
the success of humans at these tasks is anticipation. While driving, anticipation
allows us to maintain adequate safety distances and to avoid obstacles in order to
prevent collisions. In Fig. 1.1 (left), we show a case where anticipation is crucial
for making a decision while driving: to avoid collision it is essential to anticipate
whether the pedestrian would yield or step onto the path of the oncoming vehicle so
as to brake in time. Similarly, humans are good at manipulation tasks. In Fig. 1.1
(right), humans can anticipate the path of balls on the billiard table and are thus able
to aim the strike such that the ball reaches the pocket. Further examples include
sports such as soccer, where the goalkeeper can anticipate the motion of the players
and of the ball to prevent goals from being scored.

In fact, recent work has shown that humans develop the ability to anticipate
actions of other people and complex object dynamics from an early age. Green
et al. (2014); Elsner et al. (2012) shows that even infants can anticipate the goal states
and movements associated with human actions. Further, humans can anticipate the
effect of social interactions. This explains why humans are good at anticipating the
movements of pedestrians while driving (Fig. 1.1, left) even in urban environments
with dense interactions. Similar results have been shown for complex object dynam-
ics. Green et al. (2014) has shown that infants can already extrapolate the motion
of objects such as moving balls. Further, Hamrick et al. (2011) shows that humans
have comparable performance on prediction of complex object dynamics to that
of physics simulation based oracles. This makes humans not only excel at routine
tasks such as driving, object manipulation or playing sports but also helps humans
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generalize to new and unseen tasks and situations.

For autonomous agents to succeed at real world tasks such as autonomous
driving (Mueller et al., 2020) or to provide assistance in the household (Pirhonen
et al., 2020), abilities similar to or even exceeding humans in anticipating future
events becomes particularly important. Therefore, in this thesis we focus on the
task of anticipation — predicting future states — under diverse scenarios. These
scenarios, which are important for the success of autonomous agents, can be divided
into two (sometimes overlapping) categories. They are: 1. Deterministic scenarios
which are governed by a set of deterministic rules, e.g. the laws of physics, and
2. Non-deterministic or agent-based scenarios whose future states are inherently
ambiguous. Deterministic scenarios include, e.g. anticipation of future states of
billiard tables (Fragkiadaki et al., 2016), stability of object arrangements (Li et al.,
2017), dynamics of fluids (Bates et al., 2019), among many others (Chuang et al.,
2018). These scenarios are important for robotic grasping and manipulation tasks.
Non-deterministic scenarios include, e.g. traffic scenes, where the anticipation of
paths of agents such as pedestrians or vehicles (Alahi et al., 2016; Gupta et al., 2018;
Lee et al., 2017b; Yu et al., 2020b) are important for self-driving applications. In this
thesis, owing to their importance and the potential for wide applicability, we focus
on both of these scenarios.

Anticipating or predicting future states, even a few seconds into the future is very
challenging (also attested by Niels Bohr in the opening quote of this chapter). The
difficulty in prediction increases with increasing prediction horizons into the future.
With the following key ingredients, we successfully address the challenges associated
with long-term future prediction in this thesis: 1. Effectively utilizing observed
information. 2. Reasoning over uncertain and multi-modal futures. 3. Inferring and
optimizing the exact likelihood of future events under our models. Finally, in this
thesis we show accurate predictions over long-time horizons in diverse scenarios
including, 1. Predictions upto ~1 second into the future on complex billiard ball
scenarios with multiple balls, using only raw visual data. 2. Predictions of future
pedestrian trajectories upto ~4 seconds into the future in complex multi-modal
street scenes with dense interactions between the traffic participants, including
predictions in an “on-board” setting. 3. Predictions of full street scenes upto ~1
second into the future, in similar complex multi-modal settings. 4. Reliable and
calibrated uncertainty estimates to aid the decision making process of autonomous
agents.

We now provide a comprehensive discussion of these challenges and include a
brief overview of the contributions of the thesis which aims to improve long-term
future prediction for autonomous agents (Table 1.1).

1.1 CHALLENGES OF FUTURE PREDICTION

Here, we discuss some of the challenges involved in anticipation or future prediction
tasks, which can be broadly categorized into, 1. Long-term predictions: effective use
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of available information to maximize the accuracy of predictions in the long-term,
2. Uncertainty: capturing the distribution of likely futures in non-deterministic
scenarios and ensuring that the uncertainty of the predictive distribution is calibrated,
3. Multi-modality: capturing the modes of the multi-modal distribution of likely
futures, 4. Exact inference: inferring the exact likelihoods of future states under the
model in order to maximize accuracy. Next, we discuss these challenges in more
detail and also provide a brief overview of how this thesis addresses these challenges
in Table 1.1.

1.1.1 Long-term Predictions

We divide the discussion on challenges of long-term predictions into two parts based
on the type of scenario, deterministic or non-deterministic.

Long-term predictions in deterministic scenarios, such as billiard tables, is possi-
ble if the applicable deterministic rules (the laws of physics in case of billiard tables)
and all associated physical quantities, e.g. the speed of the balls and coefficient of
friction of the table are known apriori. However, accurately estimating the set of
applicable deterministic rules and the corresponding physical quantities of interest
is challenging. While it is definitely possible to hand-craft systems based on domain
knowledge such systems would have to be tailor made for a particular scenario and
would not generalize. Therefore, a recent group of work (Fragkiadaki et al., 2016;
Lerer et al., 2016; Li et al., 2017; Battaglia et al., 2016; Watters et al., 2017) have focused
on implicitly learning these rules and associated physical quantities directly from the
data without explicit human supervision. This enables such methods to be broadly
applicable to diverse scenarios. In this thesis, we focus on such flexible methods to
address the challenge of long-term predictions in Chapter 3 (Table 1.1).

In case of non-deterministic scenarios, it is still crucial to effectively integrate
available information to maximize accuracy in the long-term (Yu et al., 2020b). In
case of street scenes, it is crucial to effectively integrate information from multiple
sensors, e.g. RGB camera and Lidar, the effect of interactions among agents such as
pedestrians and vehicles and in case of “on-board” prediction it is also crucial to
integrate ego-motion information. We address these challenges in Chapters 4 to 6, 9
and 11 as illustrated in Table 1.1. Particularly for autonomous driving applications
in dense urban environments, the interactions between the self-driving vehicle and
the pedestrians (bicyclists) are of special interest (Gupta et al., 2018; Mangalam et al.,
2020; Sadeghian et al., 2019; Salzmann et al., 2020). One of the challenges in the
development of accurate models which can capture the effect of interactions in the
distribution of likely future trajectories is the lack of large scale datasets which focus
on pedestrian - vehicle interactions in dense urban environments. We deal with this
challenge in Chapter 9, with a novel dataset which focuses on pedestrian - vehicle
interactions.
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Initial Observation Likely Trajectories Likely Trajectories

4 4
Time: t Time: t+k

Figure 1.2: In case of non-deterministic agent based scenarios, such as street scenes,
the future is highly uncertain and the distribution of likely future outcomes is multi-
modal. Here we show the distribution of likely future trajectories for a vehicle at
an intersection, at k and 2k seconds after observation at time f (modes are shown in
different colors). The uncertainty and multi-modality of the distribution of likely
trajectories increases from into the future, highlighting the challenges of future
prediction tasks.

1.1.2 Uncertainty

Many important real world scenarios are inherently non-deterministic, e.g. street
scenes. Street scenes are inherently non-deterministic due to the involvement of
external agents such as pedestrians or vehicles, whose future states are dependent
upon decisions made by the agents themselves, which are hard to anticipate. This
makes the future uncertain in such non-deterministic scenarios. The uncertainty
increases into the future, with many possible distinct future outcomes even a few
seconds into the future as shown in Fig. 1.2. Anticipation methods (Alahi et al.,
2016; Helbing and Molnar, 1995; Mathieu et al., 2016) which aim to predict a single
future outcome, e.g. the most likely outcome, do not perform well as the single
predicted future can be far away from the true outcome. Therefore, it is crucial to ac-
curately capture the distribution of likely future outcomes in such non-deterministic
scenarios. Capturing the distribution of likely future outcomes comes with many
challenges. An important challenge that we consider in this thesis is calibration
(Gal and Ghahramani, 2016b; Kendall and Gal, 2017). Calibration here means that
the uncertainty of the predicted distribution (variance) should correspond well to
the observed (groundtruth) uncertainty. Calibration is important as it allows us
to express confidence in the likelihood of occurrence of a predicted future state.
Bayesian inference provides a theoretically grounded approach to obtain calibrated
predictive uncertainties. However, standard approaches (MacKay, 1992; Neal, 2012)
are computationally expensive. In this thesis, we focus on the challenge of devel-
opment of scalable Bayesian inference methods for calibration in future prediction
tasks in Chapters 4 and 5 as illustrated in Table 1.1.
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Contribution
Paper Long-term  Uncertainty =~ Multi-modality =~ Exact Inference

Long-Term Image Boundary Prediction

Chapter 3, Bhattacharyya et al. (2018b) v

Long-Term On-Board Prediction of People-
-in Traffic Scenes Under Uncertainty v v
Chapter 4, Bhattacharyya et al. (2018b)

Bayesian Prediction of Future Street Scenes-
-using Synthetic Likelihoods v 124 v
Chapter 5, Bhattacharyya ef al. (2019a)

Accurate and Diverse Sampling of Sequences-
-Based on a "Best of Many" Sample Objective v v v
Chapter 6, Bhattacharyya et al. (2018¢)

Conditional Flow Variational Autoencoders
for Structured Sequence Prediction v v 2%
Chapter 7, Bhattacharyya ef al. (2019¢)

Euro-PVI: Pedestrian Vehicle-
-Interactions in Dense Urban Centers v v vV
Chapter 9, Bhattacharyya ef al. (2021)

Normalizing Flows With Multi-Scale-
-Autoregressive Priors 2% v
Chapter 10,Bhattacharyya et al. (2020a)

Haar Wavelet Based Block-
-Autoregressive Flows for Trajectories v v 2% v
Chapter 11,Bhattacharyya ef al. (2020b)

Table 1.1: Overview of the main focus area of each methodological contribution of
papers associated with this thesis.

1.1.3 Multi-modality

The next challenge that we consider in this thesis is multi-modality. In many real
world scenarios, the distribution of likely futures is highly multi-modal. It is crucial
to accurately capture all modes of the distribution of likely futures especially in
safely critical applications such as autonomous driving, e.g. all likely paths that
a pedestrian or vehicle can take need to be captured in order to avoid collisions
(Fig. 1.2). Prior work on many important non-deterministic real-world scenarios with
complex multi-modal distributions, e.g. trajectory prediction, have established latent
variable models such as conditional generative adversarial networks and conditional
variational autoencoders as state of the art (Gupta et al., 2018; Lee et al., 2017b).
While such methods have shown promising performance, capturing multi-modal
distributions still remains challenging, which we discuss next in more detail.

Conditional generative adversarial are trained using an adversarial min-max
game formulation and they do not explicitly maximize the likelihood of the data un-
der the model. This leads to the well know issue of mode collapse where one or more
modes of the target distribution are missing (Arjovsky et al., 2017; Srivastava et al.,
2017; Salimans et al., 2016), which makes it challenging to fully capture multi-modal
distributions. On the other hand, conditional variational autoencoders maximize
a lower bound on the data log-likelihood under the model and the posterior dis-
tribution of latent variables is inferred using variational inference in a Bayesian
framework. Thus, they have been shown to be better at capturing modes of the target
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data distribution (Bao et al., 2017; Rosca et al., 2017). Still, the standard objective
for training conditional variational autoencoders does not sufficiently encourage
diversity in predictions. Furthermore, the standard Gaussian prior used in condi-
tional variational autoencoders also makes it challenging to fully capture distribution
of likely future states. In this thesis, we focus on the challenge of improving the
modelling flexibility of conditional variational autoencoders in Chapters 6 to 9 help
better capture multi-modal data distributions in future prediction tasks.

1.1.4 Exact Inference

As noted above, conditional variational autoencoder based models only maximize a
lower bound on the true data log-likelihood, the tightness of which is hard to control
in practice (Cremer et al., 2018; Huang et al., 2020). The exact likelihood of a future
state under the model cannot be optimized. This makes it challenging to accurately
capture multi-modal data distributions. Recent work has therefore focused on exact
inference models, e.g. autoregressive models (van den Oord et al., 2016b; Salimans
et al., 2017) and normalizing flow (Dinh et al., 2015, 2017; Kingma and Dhariwal, 2018)
based models, however mostly for image data. Autoregressive models, while being
highly flexible, are difficult to parallelize and thus suffer from slow sampling speeds.
Normalizing flows on the other hand are easy to parallelize. However, normalizing
flows suffer from comparatively low modelling flexibility due to the invertibility
constraints on its internal layers. Long-term spatio-temporal correlations crucial for
accurate long-term predictions are not fully captured. Therefore, it is challenging to
design exact inference models for accurate long-term future prediction tasks. In this
thesis, we deal with this challenge in Chapters 10 and 11 as illustrated in Table 1.1.

1.1.5 Summary

To summarize, in this thesis, we tackle the problem of anticipating the future
upto several seconds in scenarios ranging from deterministic billiard tables to non-
deterministic agent based street scenes. We target these scenarios because they
are important for the success of autonomous agents in the real world, e.g. for
autonomous driving. We address four important challenges: 1. Accurate long-term
predictions; 2. Uncertainty of future states in the long-term; 3. Multi-modality of
the distribution of likely future states in the long-term; 4. Exact inference of the
likelihood of future states under the model.

We first deal with the challenge of long-term prediction through a method
that exploits image boundaries and can be applied to both deterministic and non-
deterministic scenarios. We show that prediction of image boundaries is easier than
predictions directly in the RGB pixel space. We also propose the novel Euro-PVI
dataset to foster the development of methods which can deal with the effect of
interactions on the future states of pedestrians in dense urban environments for
long-term predictions. To deal with the challenge of uncertainty, we develop scalable
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Bayesian inference methods. We show that efficient Monte Carlo dropout based
Bayesian inference methods can be successfully extended to the task of long-term
on-board prediction of pedestrian trajectories, while yielding calibrated uncertainties.
To deal with the challenge of multi-modality, we propose novel objectives and priors
for Monte-Carlo Bayesian inference and conditional variational autoencoders. Finally
in order to further improve accuracy and diversity of predictions, we turn our
attention to the challenge of exact inference. We focus on normalizing flow based
exact inference models, as they allow for efficient inference and sampling. To deal
with the challenge of limited modelling flexibility of normalizing flow based model,
we introduce efficient autoregressive structures which leads to competitive results in
highly multi-modal scenarios. Next, we discuss these contributions in more detail.

1.2 MAIN THESIS CONTRIBUTIONS

This thesis contributes to the broad areas of Bayesian inference, generative mod-
elling, trajectory prediction and scene prediction in general. Next, we group the
contributions of the thesis and place them in context of prior work in the field.
We additionally provide an overview in Table 1.1, where we highlight the main
methodological contribution of each publication associated with this thesis.

1.2.1 Long-term Prediction from Raw Pixel Data

In this thesis, we propose the following approaches to improve long-term predictions
in diverse real-world scenarios.

In Bhattacharyya et al. (2018b), discussed in Chapter 3, we propose an approach
using image boundaries that enables long-term prediction in diverse deterministic
and non-deterministic scenarios. Scene boundaries capture the important structure
and extents of objects. Moreover, they can be accurately estimated (Khoreva et al.,
2016). This makes learning the dynamics of scene evolution and prediction con-
siderably easier. Therefore, we propose to exploit image boundaries in addition
to raw RGB pixel data. To predict future image boundaries, we propose a fully
convolutional model, which includes a wide receptive field allowing the model to
learn complex spatio-temporal dependencies. Accurate prediction at each time-step
is additionally enabled by the lack of bottleneck layers. Global consistency of predic-
tions is enabled by a shared context which allows for information sharing. We obtain
accurate long-term predictions, in contrast to predictions directly on RGB data,
which leads to very blurry results in the long-term. Accurate long-term predictions
in deterministic scenarios and accurate short and medium-term predictions in non-
deterministic agent based scenarios shows that our model developed a data-driven
model of future motion and scene evolution over long time horizons.

In (Bhattacharyya et al., 2021), discussed in Chapter 9, we propose a novel dataset
with dense interactions to improve long-term prediction of pedestrian trajectories
in dense urban environments. Anticipating the motion of agents in dense urban
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environments is made especially challenging due to the effect of interactions between
different agents. Interactions add significant complexity to the distribution of the
likely future trajectories which are already highly multi-modal. Most public datasets,
e.g. nuScenes (Caesar et al., 2020), Argoverse (Chang et al., 2019), or Lyft L5 (Houston
et al., 2020), are primarily focused on trajectories of vehicles and vehicle-vehicle
interactions — collected to a large extent on multi-lane roads in North America or
Asia, with sparse interactions between the ego-vehicle and pedestrians or bicyclists.
In Chapter 9, we propose the new European Pedestrian Vehicle Interaction (Euro-PVI)
dataset which is collected in a dense urban environment in Brussels and Leuven,
Belgium. The Euro-PVI dataset contains a rich and diverse set of interactions between
the ego-vehicle and pedestrians (bicyclists). Sequences are recorded near busy urban
landmarks, e.g. railway stations, narrow lanes or intersections where interactions are
frequent and it is therefore challenging to predict pedestrian (bicyclist) paths.

1.2.2 Scalable Bayesian Inference for Uncertainty and Calibration

In this thesis, we propose the following Bayesian inference approaches to obtain
calibrated uncertainty estimates in case of complex real-world non-deterministic
scenarios.

In Bhattacharyya et al. (2018a), discussed in Chapter 4, we propose the first
method for long-term prediction of pedestrian trajectories in an “on board setting”.
In such non-deterministic scenarios with multiple likely futures, a model which
predicts a single future outcome would likely be inaccurate. In such settings, it is
useful to consider the distribution of likely models that can explain (predict) the
observed future, corresponding to the distribution of likely futures. This is also
known as model or epistemic uncertainty (Kendall and Gal, 2017). In Bhattacharyya
et al. (2018a), to capture the uncertainty in the distribution of likely futures, we aim
to estimate this distribution of likely models in a Bayesian framework.

We propose a novel two stream Bayesian RNN encoder-decoder model in Bhat-
tacharyya et al. (2018a), where the distribution of likely models (parameters) is
inferred using dropout based Monte Carlo Bayesian inference. The two streams
in our model jointly predict the pedestrian trajectory and the vehicle ego-motion
for improved long-term prediction accuracy. The distribution of likely models is
represented by a Bernoulli distribution (using dropout) on the weights matrices of
the RNN encoder and decoder. The uncertainty introduced due to observation noise
(aleatoric uncertainty) is captured by assuming a distribution of observation noise
and estimating the sufficient statistics of the distribution. Our two stream Bayesian
RNN encoder-decoder model leads to accurate predictions in this challenging “on-
board” over a time horizon of 1 second on CityScapes (Cordsts et al., 2016). Moreover,
we observe that the predicted uncertainty is calibrated. As the predicted uncertainty
is calibrated, we also show that the predicted uncertainty upper bounds the error of
the mean of the predictive distribution. Therefore, the predicted uncertainty helps
us express trust in predictions and has the potential to serve as a basis for better
decision making.
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However, note that, in many real world scenarios, the distribution of likely future
states is highly multi-modal. E.g. in case of a pedestrian crossing the street in
front of a car the two most likely modes correspond to stopping and yielding to
the oncoming car or pedestrian crossing the street and the oncoming car stopping
and yielding to the pedestrian. However, we show in Bhattacharyya et al. (2019a)
that the approach of Bhattacharyya et al. (2018a), does not perform well in case
of multi-modal distributions. This is because the approach of Bhattacharyya et al.
(2018a) uses the estimate of data log-likelihood as outlined in Gal and Ghahramani
(2016b); Kendall and Gal (2017). This estimate of data log-likelihood does not lead
to the recovery of the true model uncertainty (Osband, 2016), due to a conflation
of risk and uncertainty (Osband, 2016). This limits the accuracy of the models over
a plain deterministic (non-Bayesian) approach. In detail, this estimate of the data
log-likelihood considers for every data point the average likelihood assigned by
all models in the distribution of likely models. This forces every model to explain
every data point well, pushing every model in the distribution of likely models to
the mean. We address this problem in Bhattacharyya et al. (2019a), discussed in
Chapter 5, through an objective leveraging synthetic likelihoods (Wood, 2010; Rosca
et al., 2017), obtained from a classifier. The synthetic likelihood estimate is based
on whether the models explain (generate) data samples likely under the true data
distribution. This removes the constraint on models to explain every data point —
it only requires the explained (generated) data points to be likely under the data
distribution. Thus, this allows models in the distribution of likely models to be
diverse and deals with multi-modality. Our proposed method shows state of the art
performance on the challenging task of predicting the future of street scenes in the
Cityscapes dataset. More importantly, we show that the predictive distribution of
our Bayesian model produces calibrated uncertainties.

1.2.3 Conditional Variational Autoencoders for Multi-modality

In this thesis, we propose the following to the improve accuracy and diversity of
conditional variational autoencoders, to deal with complex multi-modal distributions
for future prediction tasks: 1. A “Best of Many” samples objective (Bhattacharyya
et al., 2018¢c) (discussed in Chapter 6); 2. A flexible conditional normalizing flow
based prior (Bhattacharyya et al., 2019¢) (discussed in Chapter 7); 3. A joint prediction
framework to capture interactions across agents in a scene (Bhattacharyya et al., 2021)
(discussed in Chapter 9). 4. Building on the insights in Bhattacharyya et al. (2018¢)
we also propose a method to improve performance of VAE-GAN based methods for
image generation in Chapter 8. Next, we discuss these contributions in more detail.

“Best of Many” samples objective. = We identify two key limitations of the standard
conditional variational autoencoder framework (Sohn et al., 2015), popularly used
for future prediction tasks (Lee et al., 2017b). First, the standard objective hinders the
learning of diverse predictions due to a marginalization over multi-modal futures.
Second, a mismatch in latent variable distribution between training and testing leads
to errors in model fitting. To overcome these limitations we propose a novel “Best of
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many” samples objective (Bhattacharyya et al., 2018c). Compared to the standard
conditional variational autoencoder objective, the recognition network of the condi-
tional variational autoencoder now has multiple chances to draw samples with high
posterior probability. This encourages diversity in the generated samples. Further-
more, the data log-likelihood estimate in our “Best of many” samples objective is
tighter. Therefore, our “Best of many” sample objective loosens the constrains on the
recognition network and allows it more closely match the latent prior distribution.
We demonstrate improved accuracy as well as diversity of the generated samples
on three diverse tasks: stroke completion on MNIST digits (D. De Jong, 2016), tra-
jectory prediction on Stanford Drone Dataset (Cordts et al., 2016) and precipitation
nowecasting on HKO weather data (Shi et al., 2017). On all three task we consistently
outperform prior work.

Conditional normalizing flow based prior. ~Conditional variational autoencoders
assume a standard Gaussian prior on the latent variables which induces a strong
model bias (Hoffman and Johnson, 2016; Tomczak and Welling, 2018). This makes
it challenging to capture multi-modal distributions. This also leads to missing
modes due to posterior collapse (Bowman et al., 2016; Razavi et al., 2019a). Recent
work (Tomczak and Welling, 2018; Wang et al., 2017; Gu et al., 2019) has focused
on more complex Gaussian mixture based priors. Gaussian mixtures still have
limited expressiveness and optimization is not straightforward, e.g. determining
the number of mixture components. Normalizing flows are more expressive and
enable the modelling of complex multi-modal priors. Here, we propose Conditional
Flow Variational Autoencoders (CF-VAE) (Bhattacharyya et al., 2019c) based on novel
conditional normalizing flow based priors In order to model complex multi-modal
conditional distributions over sequences. Our proposed CE-VAE outperforms prior
work on diverse prediction tasks — stroke completion on MNIST, trajectory prediction
on Stanford Drone (Cordsts et al., 2016) and highD (Krajewski et al., 2018).

Joint prediction framework. State of the art conditional variational autoencoder
based methods for trajectory prediction(Bhattacharyya et al., 2018c, 2019c; Mangalam
et al., 2020; Salzmann et al., 2020), encode interactions directly in the posterior. Thus,
the latent space does not express interaction information from the input distribution
which limits the accuracy of the generated future trajectories. To address this
limitation, we develop a latent variable deep generative model in Bhattacharyya
et al. (2021) which jointly models the distribution of future trajectories of the agents
in the scene. This formulation leads to a “shared” latent space between agents,
which can better capture the effect of interactions in the latent space and accurately
represent the multi-modal distribution of trajectories. We demonstrate state of the
art performance on pedestrian (bicyclist) trajectory prediction on nuScenes (Caesar
et al., 2020) and Euro-PVI (Bhattacharyya et al., 2021).

“Best of Many” distribution matching. Variational autoencoders (VAE) in case of
image data, maximize a data likelihood estimate based on the L;/L; reconstruction
cost which leads to lower overall sample quality (blurriness in case of image distribu-
tions). Therefore, there has been a spur of recent work (Donahue et al., 2017; Larsen
et al., 2016; Rosca et al., 2017) which aims integrate generative adversarial network
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(GAN) in a variational autoencoder framework to improve generation quality of
Variational autoencoders while covering all the modes. However, the reconstruction
log-likelihood in the variational autoencoder objective is at odds with the divergence
to the latent prior (Tabor et al., 2018). This problem is further exacerbated with
the addition of the synthetic likelihood term in the hybrid VAE-GAN objective —
it is necessary for sample quality but it introduces additional constraints on the
encoder/decoder. This leads to the degradation in the quality and diversity of
samples. Here, we propose a novel objective (Bhattacharyya et al., 2019b) for training
hybrid VAE-GAN frameworks, which relaxes the constraints on the encoder by
giving the encoder multiple chances to draw samples with high likelihood enabling
it to generate realistic images while covering all modes of the data distribution. We
demonstrate significant improvement over state of the art hybrid VAE-GANs and
plain GANs on multi-modal synthetic data and on CIFAR-10 and CelebA datasets.

1.2.4 Exact Inference Models for Multi-modal Distributions

Recent work (Dinh et al., 2015, 2017; Kingma and Dhariwal, 2018) considers nor-
malizing flow based exact likelihood models to overcome limitations of generative
adversarial networks and variational autoencoders. Still, normalizing flows suffer
from limited modelling flexibility due to the invertibility constraints on the cou-
pling layers. In this thesis, we propose the following contributions to improve the
modelling flexibility of normalizing flows, 1. A multi-scale autoregressive prior
(Bhattacharyya et al., 2020a) (discussed in Chapter 9), 2. A block autoregressive
scheme using Haar wavelets (Bhattacharyya et al., 2020b) (discussed in Chapter 11).
Next, we discuss these contributions in more detail.

Multi-scale autoregressive prior. We propose in Bhattacharyya et al. (2020a)
multi-scale autoregressive priors for invertible flow models with split coupling
flow layers, termed mAR-SCF. Our mAR prior is designed to capture long-term
dependencies in multi-modal data distributions, directly in the latent space. Our
multi-scale autoregressive prior is designed such that the computational cost of
sampling grows linearly in the spatial dimensions in case of image data, compared
to the quadratic cost of traditional autoregressive models. We show state-of-the-art
density estimation results on MNIST, CIFAR-10, and ImageNet compared to prior
invertible flow-based approaches and better sample quality as measured by the FID
metric (Heusel et al., 2017) and the Inception score (Salimans et al., 2016), significantly
lowering the gap to generative adversarial network based approaches.

Block autoregressive scheme using Haar wavelets. We introduce a block
autoregressive exact inference model for future trajectory prediction using Haar
wavelets. In more detail, we use a Haar-wavelet based invertible transform to
recursively transform the trajectories into coarse and fine components in a multi-
scale setup. Normalizing flows are applied at each scale of the multi-scale setup
in a block auto-regressive structure. Normalizing flows at a certain scale model
the fine components, and are conditioned on coarse trajectories from previous
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scale. The coarse trajectories provide global context, thereby modeling long term
spatio-temporal correlations and leading to more accurate long-term predictions. We
demonstrate the effectiveness of our approach for trajectory prediction on Stanford
Drone (Cordts et al., 2016) and Intersection Drone (Bock et al., 2020), with improved
accuracy over long time horizons.

1.3 CONTRIBUTIONS TO OTHER PROJECTS

Besides the main contributions discussed above, the author of this thesis actively
collaborated in the following research projects mainly in an advisory role in the
development of the core contributions of the respective projects. Next, we discuss
these contributions and provide short descriptions of the projects.

Update Leaks. In this work (Salem et al., 2020), we study the vulnerability
of machine learning models to specific kinds of attacks that can reveal (private)
information about the test-set. In many real-world settings, machine learning models
are continuously updated with newly-collected data in an online learning scenario.
This leads to the situation where a user would have access to the result of the model
to the same query at two different points in time. In this work, we investigate
whether the change in the result of the query (if any) would reveal information
about the data used to update the model (updating set). This work investigates
four different types of attacks to reveal different types of information about the
updating set. These attacks can be divided into two cases where one or multiple data
samples were used to update the model. Each case includes attacks to reconstruct
the updating set. We propose to use a hybrid GAN based generative model for the
reconstruction attacks.

The author of this dissertation helped in the development of the hybrid GAN
based generative model for the reconstruction, which is partially based on Bhat-
tacharyya et al. (2018c, 2019b) .

SampleFix. In this work (Hajipour et al., 2019), we focus on the task of automatic
program repair. Current approaches for automatic program repair aim to predict a
single correct fix for an erroneous program. However, this is challenging due to the
uncertainty associated with the true intention of the programmer. Therefore, in this
work, we propose to instead deal with this uncertainty by learning the distribution
over likely fixes. To this end, we propose a conditional variational autoencoder
based model with a novel regularizer that encourages diversity in predictions. Our
experiments show that our model is able to capture the distribution of likely fixes in
case of common programming errors.

The author of this dissertation helped in the development of the conditional
variational autoencoder and the novel regularizer which is based on Bhattacharyya
et al. (2018c) for the generation of diverse fixes.
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1.4 OUTLINE OF THE THESIS

In this section, we provide a short overview of each chapter in this thesis and relate
the chapters to each other. With the exception of Chapters 1 and 12, all other chapters
have been published in conferences or shown in a workshop. The author of this
thesis, Apratim Bhattacharyya, is a lead author of the conference/workshop papers
presented in Chapters 3 to 9 and 11 of this thesis. Chapter 10 is a joint work with
Shweta Mahajan. The contributions of Shweta Mahajan are included in Chapter 10
for completeness. Prof. Dr. Bernt Schiele and Prof. Dr. Mario Fritz, the PhD
co-supervisors of Apratim Bhattacharyya are co-authors of all the papers presented
in this thesis. We discuss collaborations with other researchers per chapter in detail
below.

Chapter 1: Introduction This chapter introduces the main research direction of the
thesis, that is, anticipation of the future. This chapter highlights the main challenges
associated with this research direction, 1. Long-term predictions, 2. Uncertainty,
3. Multi-modality, 4. Exact inference. This chapter also highlights the contributions
of the thesis to the areas of Bayesian inference, generative models and datasets for
anticipation in dense urban environments. This chapter also provides chapter wise
outlines of each chapter included in the thesis.

Chapter 2: Related Work This chapter provides an extensive discussion of prior
work pertaining to the main research directions of the thesis. We begin with a
discussion of prior work on the area of long-term prediction in deterministic sce-
narios, in particular, the area of intuitive physics. We also include a discussion of
methods with the aim to provide long-term predictions on highly non-deterministic
scenarios, e.g. video frame prediction and street scene prediction. This is followed by
a discussion of prior work on Bayesian inference methods with a focus on scalable
methods which deal with the challenge of uncertainty. We then discuss generative
models in more detail, in particular, conditional generative adversarial networks,
conditional variational auto-encoders and exact inference methods, especially the
successful application of these approaches to the challenge of multi-modality in
diverse scenarios for anticipation including trajectory prediction. This chapter also
provides an overview of existing datasets relevant to the problem of anticipation.

Chapter 3: Long-term Image Boundary Prediction. This chapter is based on the
publication (Bhattacharyya et al., 2018b) presented in AAAI Conference on Artificial
Intelligence, 2018. This work is a collaboration with Mateusz Malinowski from
MPI Informatics and Google Deepmind. In this chapter, we propose a method for
long-term prediction that operates on raw image data for both deterministic (physics
based) scenarios and non-deterministic agent based scenarios. Our method works
directly on image boundaries for learning and prediction instead of the raw RGB
images which allows for long-term prediction.

Chapter 4: Long-Term On-Board Prediction of People in Traffic Scenes under
Uncertainty. This chapter is based on the publication Bhattacharyya et al. (2018a)
presented at the IEEE Conference on Computer Vision and Pattern Recognition
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(CVPR), 2018. In this chapter we present a Bayesian inference method to deal with
uncertainty in the highly non-deterministic scenario of on-board pedestrian trajectory
prediction. We show that our method produces calibrated uncertainty estimates,
where the predicted uncertainty is empirically shown to upper bound the maximum
observed error.

Chapter 5: Bayesian Prediction of Future Street Scenes using Synthetic Likelihoods.
The chapter is based on the publication Bhattacharyya et al. (2019a) presented at
the International Conference on Learning Representations, (ICLR), 2019. In this
chapter we build upon the Bayesian inference method introduced in Chapter 4 to
deal with multi-modal distributions. We introduce a novel objective function based
upon synthetic classifier based likelihood estimates when encourages the coverage
of all modes of a multi-modal distribution. We demonstrate state of the art results
on future street scene prediction on the Cityscapes datasets.

Chapter 6: Accurate and Diverse Sampling of Sequences based on a “Best of Many”
Sample Objective. = This chapter is based on the publication Bhattacharyya et al.
(2018c) presented at the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2018. In this chapter we focus on improving conditional variational
autoencoders in order to deal with highly multi-modal distributions encountered
in future prediction problems. We introduce a novel “Best of Many” objective for
training conditional variational autoencoders which explicitly encourages diversity
in predictions. We demonstrate state of the art results on trajectory prediction results
on Stanford Drone dataset and precipitation nowcasting on HKO.

Chapter 7: Conditional Flow Variational Autoencoders for Structured Sequence
Prediction.  This chapter is based on the workshop publication Bhattacharyya
et al. (2019c) presented at the Machine Learning for Autonomous Driving and
Bayesian Deep Learning, NeurIPS workshops 2019. This work is a collaboration
with Christoph-Nikolas Straehle and Michael Hanselmann from Bosch Center for
Artificial Intelligence, Renningen, Germany. In this chapter we further improve the
conditional variational autoencoder framework presented in Chapter 6 for multi-
modal distributions with a complex prior. The standard Gaussian prior in conditional
variational autoencoders induces a strong model bias which makes it challenging
to capture multi-modal distributions. Here we introduce a novel conditional nor-
malizing flow based prior to capture complex multi-modal conditional distributions.
We demonstrate state of the art results on trajectory prediction results on Stanford
Drone and HighD datasets.

Chapter 8: “Best-of-Many-Samples” Distribution Matching. = This chapter is
based on the workshop publication Bhattacharyya et al. (2019b) presented at the
Bayesian Deep Learning, NeurIPS workshop 2019. We build upon the insights gained
in Chapter 6 and propose a “Best of Many” samples objective for image generation
using a hybrid VAE-GAN based method. Similar to the findings in Chapter 6, we
see that the “Best of Many” samples objective leads to higher diversity also in case
of highly multi-modal image distributions. We demonstrate a better match to the
groundtruth image distribution on CIFAR-10 and CelebA datasets compared to both
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hybrid VAE-GANSs and plain GANS.

Chapter 9: Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers.
This chapter is based on the publication Bhattacharyya et al. (2021) presented at the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021. This
work is a collaboration with Daniel Olmeda Reino from Toyota Motor Europe. In
this chapter we focus on the effect of agent-agent interactions, in particular pedes-
trian (bicyclist) - vehicle interactions, on the highly multi-modal future pedestrian
trajectory distribution in dense urban environments. Firstly, we propose Euro-PVI,
a novel dataset of pedestrian and bicyclist trajectories recorded in Europe with
dense interactions with the ego-vehicle. Secondly, we propose a joint conditional
variational autoencoder that models a shared latent space to better capture the effect
of interactions on the multi-modal distribution of future trajectories. We demonstrate
state of the art results both on nuScenes and Euro-PVL

Chapter 10: Normalizing Flows with Multi-scale Autoregressive Priors.  This
chapter is based on the publication Bhattacharyya et al. (2020a) presented at the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020. This
is a joint work with Shweta Mahajan and Stefan Roth from TU Darmstadt. In this
chapter, we propose a normalizing flow based exact inference method to deal with
highly multi-modal distributions. We propose an efficient multi-scale autoregressive
prior to deal with the limited modelling flexibility of invertible normalizing flow
based models. We demonstrate improved accuracy and image generation quality on
CIFAR-10 and ImageNet datasets.

Chapter 11: Haar Wavelet based Block Autoregressive Flows for Trajectories.
This chapter is based on the publication Bhattacharyya et al. (2020b) presented at
the DAGM German Conference on Pattern Recognition (GCPR), 2020. This work
is a collaboration with Christoph-Nikolas Straehle from Bosch Center for Artificial
Intelligence, Renningen, Germany. Here we propose a multi-scale normalizing flow
based model to deal with multi-modal trajectory distributions. We introduce a novel
normalizing flow based block autoregressive approach that models trajectories at
different spatio-temporal resolutions in a hierarchical manner using Haar wavelets.
We demonstrate state of the art trajectory prediction results on Stanford Drone and
Intersection Drone datasets.

Chapter 12: Conclusions and Future Perspectives.  This chapter concludes the
thesis by highlighting the key contributions and findings from each chapter. We also
discuss their limitations and possible future directions of research to address these

limitations. We also provide a broader outlook of future directions of research for
the field.
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tainty, multi-modality and exact inference associated with anticipation of the

tuture. This chapter presents prior work in the area of long-term prediction
in diverse scenarios, in particular, video frame prediction, street scene prediction
and trajectory prediction. Followed by a discussion of methods that deal with un-
certainty in predictive settings, with a focus on Bayesian inference methods. Finally
we discuss prior work in generative modelling for multi-modal distributions. Here,
we focus on conditional generative adversarial networks, conditional variational
autoencoders and exact inference methods including both auto-regressive methods
and normalizing flow based methods.

The following chapters (3-11) also discuss related work but restricted to the main
area of focus of the respective chapter.

THE main focus of this thesis are the challenges of long-term prediction, uncer-

2.1 LONG-TERM PREDICTION

Here we discuss prior work on long-term prediction broadly categorized by the
chosen representation (video, semantic segmentation, trajectory) and task (frame
prediction, semantic segmentation prediction, trajectory prediction).

17
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2.1.1 Video Frame Prediction

We begin with a discussion on the task of video frame prediction. More formally,
given a sequence of t frames, X = {Xy,---,X;}, the target is to predict the next k
frames, Y = {Y;;1,- -+, X;1x} based on X and any other conditioning information
(Oprea et al., 2020). Note that, here X; and Y; are both 3-dimensional tensors. Video
frame prediction is challenging as it is quite general and videos can include both
deterministic, e.g. physics based motion and non-deterministic agent based motion.

Most methods in literature consider the more general class of videos which
includes non-deterministic motion. The first method using a deep neural architecture
for video prediction was proposed by Ranzato et al. (2014). In this work, it was shown
that existing methods for language modelling can be extended to the task of video
prediction. Ranzato et al. (2014) also noted the difficulty of long-term prediction
and the issue of blurriness associated with long-term prediction. Ranzato et al.
(2014) sought to remedy the blurriness problem by discretizing the input through
k-means atoms and predicting on this vocabulary instead. While it makes learning
easier, it does not address the core issue of uncertainty. As there are already many
likely future frames even a few time-steps into the future, the mean square error
loss used in Ranzato et al. (2014) leads to the prediction of the average of the likely
frames and thus leads to blurriness. The work of Mathieu et al. (2016) proposes
using adversarial loss, which leads to improved results over Ranzato et al. (2014)
as the adversarial loss prefers the prediction of a single sharp (thus likely) future
frame over the average (thus very unlikely) future frame. Continuing on this line
of work,Liang et al. (2017); Liu et al. (2017b); Patraucean et al. (2015) shows further
improvement in sharpness through the use of optical flow information.Aigner and
Korner (2018) improves over Ranzato et al. (2014) by using the progressively growing
training scheme. Xu et al. (2018) proposes to decompose videos into high and low
frequency content. The proposed model in Xu et al. (2018) consists of two streams
which predict these two frequency bands separately for improved performance.
Note that these methods do not fully address the core issue of uncertainty and
thus truly long-term predictions are not possible. Another line of work considers
more constrained scenarios where certain high level structures are present, which
are easier to predict due to lower overall uncertainty. Villegas et al. (2017); Yang
et al. (2018) proposes such methods. These works show promising results on videos
where human pose is easily identifiable and is the appropriate high level structure
to exploit — especially in videos where a single person performs an action such as
hitting a baseball with a bat. In such cases, the sequence of possible future poses is
highly constrained and thus easier to predict.

In contrast to the above mentioned approaches, Sutskever et al. (2008); Michalski
et al. (2014) focus on deterministic scenarios, e.g. bouncing ball sequences, with the
aim of long-term prediction with promising results. On the other hand, Kalchbrenner
et al. (2017) focus on synthetic moving MNIST digits and Finn et al. (2016) focus on
(partially deterministic) action conditioned video prediction of robotic arms.

More recently, Babaeizadeh et al. (2018); Denton and Fergus (2018) use generative
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models to explicitly deal with uncertainty and multi-modality. We provide a more
in depth look at generative models in the following sections.

2.1.2 Intuitive Physics

Here we discuss methods which aim for long-term prediction in deterministic
scenarios largely governed by the laws of physics. The knowledge of the relevant
laws and the associated physical quantities would enable long-term prediction.
While it is certainly possible to design hand-crafted methods particular to a certain
environment based on domain knowledge to enable long-term prediction, such
a system would not generalize and would require extensive manual intervention.
On the other hand, humans develop an intuitive notion of physics from an early
age, including notions of force, stability and object permanence (Smith and Casati,
1994; McCloskey, 1983; Liu et al., 2017a) directly from observation. This intuitive
notion of physics enables humans to excel at sports such as billiards which requires
extensive reasoning and long-term prediction about the future state of the world. The
challenges involved in developing such an “intuitive” understanding for autonomous
agents has been recognised for a long time (Battaglia et al., 2013). While pioneering
work by Battaglia et al. (2013) took an simulation based approach, recent work
(Fragkiadaki et al., 2016; Lerer et al., 2016; Li et al., 2017) has taken a data driven
approach to solve this problem, partly inspired by the ability of humans to develop
this intuitive notion of physics largely from observation. Fragkiadaki et al. (2016)
proposes an approach to predict future states of balls moving on a billiard table and
Lerer et al. (2016); Li et al. (2017) aims to predict the stability of towers made out of
blocks. These approaches present promising results — accurate long-term predictions
several seconds into the future are shown. However, the specific tasks considered
by these approaches are largely synthetic and far from the real world. Moreover,
they do not operate on raw sensory input but input representations tailored to the
specific task. Thus, generalization is limited. More recently, there is increasing
interest in the development of “intuitive” physics approaches that operate directly
on raw sensory input. In Ehrhardt ef al. (2018), learning and prediction directly from
raw visual observations is enabled by tracking dynamically-salient objects in videos
using causality and equivariance. In Li et al. (2019) an end-to-end learning-based
approach to predict stability directly from appearance is presented. Similarly, in
Wang et al. (2018) real images are first converted to a synthetic domain representation
that reduces complexity arising from lighting and texture which allows for intuitive
learning of physics and accurate long-term prediction.

2.1.3 Trajectory Prediction

The task of trajectory prediction focuses on predicting the (future) trajectory y =
{¥t+1,- -, Visk} of an agent, e.g. a pedestrian, k time-steps into the future, given
the initial f time-steps, x = {xy,- - -, x¢}. Here, each x;, y; is a vector of the position
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and/or velocity and acceleration of the agent. Most methods in literature focus
on the prediction of trajectories of pedestrians, bicyclists and/or vehicles in highly
non-deterministic traffic scenarios, due to the applications in the area of autonomous
driving. Early approaches did not explicitly take into account uncertainty, similar to
the area of video frame prediction. This therefore limited performance in the long-
term, however to improve short to medium term performance recent approaches
(Alahi et al., 2016) aimed at capturing the effect of interactions.

One of the first approaches in this direction was the Social Forces model of
Helbing and Molnar (1995). This line of work which considers the problem of traffic
participant prediction in a social context, by taking into account interactions among
traffic participants was followed up by recent work including but not limited to
Alahi et al. (2016); Helbing and Molnar (1995); Yamaguchi et al. (2011); Robicquet et al.
(2016). Social LSTM (Alahi et al., 2016) was one of the first successful deep learning
based approaches. To capture the effect of interactions over a simple LSTM based
model, Social LSTM (Alahi et al., 2016) introduces a social pooling layer to aggregate
interaction information of nearby traffic participants. Although the proposed pooling
layer improved accuracy, it introduced a significant computational overhead. An
efficient extension of the social pooling operation was developed in Deo and Trivedi
(2018). Other recent approaches have attempted to further improve the performance
of the Social LSTM. Ma et al. (2019) proposed alternate instance and category layers
to model interactions. Weighted interactions are proposed in Chandra et al. (2019).
Another promising approach is the convolutional multi-agent tensor fusion scheme
as proposed in Zhao et al. (2019) to capture interactions. The approach of Zhao
et al. (2019) is also quite efficient as it is convolutional similar to Deo and Trivedi
(2018). More recently, an attention based model to better capture interactions and to
effectively integrate visual cues in path prediction tasks is proposed in Sadeghian
et al. (2018).

Although the works discussed above have made great progress in effectively
capturing the effect of interactions for accurate prediction, likely future trajectories
are highly uncertain and the distribution of likely trajectories is highly multi-modal.
The above discussed methods mostly assume a deterministic future and do not
directly deal with the challenges of uncertainty and multimodality. To deal with
the challenges of uncertainty and multimodality in anticipating future trajectories,
recent works employ generative approaches to capture the distribution of future
trajectories which we discuss in the following sections.

2.1.4 Street Scene Prediction

Anticipating the future of street scenes is important for applications such as au-
tonomous driving. However, street scenes are highly non-deterministic. This makes
the prediction of street scenes directly in RGB space challenging (due to issues
pointed out in Section 2.1.1). Recent work therefore considers prediction in semantic
segmentation space instead of RGB pixel space. That is, instead of predicting full
RGB future frames, future semantic segmentations are predicted. Practically, future
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semantic segmentations are still very useful as the location and extents in the future
are captured. Luc et al. (2017) proposes the first such method for the prediction of
future semantic segmentations. The proposed model is fully convolutional with
prediction at multiple scales and is trained auto-regressively. Accurate results upto 1
second into the future are presented, significantly more than RGB frame predictions.
Jin et al. (2017) improves upon the model of Luc et al. (2017) using optical flow
cues. Architecturally similar to Luc et al. (2017), the model of Jin et al. (2017) is fully
convolutional model and is based on a Resnet-101 He ef al. (2016) backbone with
a single prediction scale. More recently, Luc et al. (2018) has extended the model
of Luc et al. (2017) to the related task of future instance segmentation prediction.
In Nabavi et al. (2018), a Convolutional LSTM based model is proposed, further
improving short-term results over Jin et al. (2017). Fugosic et al. (2020); Saric et al.
(2021) proposes models that predict future deep semantic features and predicts
future motion based on the predicted features. Graber et al. (2021) proposes to use
panoptic segmentation to help distinguish between background and foreground
objects.

More accurate predictions in the medium to long-range over RGB predictions
show the promise of future semantic segmentation prediction.

2.1.5 Relation to Our Work

Long-term prediction in both deterministic and non-deterministic scenarios is a
primary goal of this thesis.

In Chapter 3, we propose a method for long-term video prediction for both of
these scenarios. Our approach exploits image boundaries which captures crucial
high frequency information in the scene. In case of deterministic scenarios, we
show that our approach can develop an intuitive understanding of physics similar
to approaches like Fragkiadaki et al. (2016); Lerer et al. (2016); Li et al. (2017), but
directly from raw sensory input. Moreover, we show that our proposed approach
leads to sharper video prediction in the long-term in comparison to approaches like
Mathieu et al. (2016) . This is because image boundaries are easier to predict into the
long-term and can be exploited by our approach to deal with blurriness issues.

In Chapter 4, we propose a method of trajectory prediction in an “on-board”
setting in dense urban environments. A key ingredient of our success in long-term
prediction in Chapter 4 is a two-stream model that jointly predicts pedestrian and
vehicle ego-motion. However, the main focus of Chapter 4, is to develop an approach
which can effectively capture uncertainty. Although interactions are important for
accuracy in dense urban environments, we choose to address the issue of uncertainty
as it has only been addressed in a limited manner by prior work. Rather than
focusing solely on accuracy, an important observation from our work in Chapter 4,
is that addressing uncertainty leads to the development of a more reliable method —
we show empirically that our approach leads to a measure of uncertainty that upper
bounds the maximum observed error.

In Chapter 5, we show long-term predictions on street scenes through future
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semantic segmentation prediction. In comparison to prior work such as Luc et al.
(2017); Jin et al. (2017); Nabavi et al. (2018), we explicitly take into account the
uncertainty associated with the prediction of future street scenes in a Bayesian
framework. Building on our conclusions in Chapter 5, we see that our approach can
deal with the uncertainty in the distribution of future street scenes even in case of
multi-modal distributions.

In Chapter 9, we deal with the effect of interactions for long-term trajectory
prediction of traffic participants such as pedestrians and bicyclists. Due to the
particular importance in the area of autonomous driving we focus on pedestrian-
vehicle interactions. We propose a novel dataset with dense pedestrian-vehicle
interactions and a joint prediction framework to capture the effect of interactions
across all agents in the scene.

2.2 MODELLING UNCERTAINTY

In this section, we discuss approaches that aim to capture uncertainty in predictive
distributions. These methods are of particular interest for this thesis as the distribu-
tion of future states especially in case of non-deterministic, e.g. agent based motion,
becomes highly uncertain. In particular, we focus on methods that aim to predict
calibrated uncertainty estimates, that is, the uncertainty of the predictive distribution
matches the uncertainty of the groundtruth distribution. Next, we discuss two main
lines of research which aim to predict such calibrated uncertainty estimates.

2.2.1 Bayesian Methods

Bayesian methods aim to capture both observation (aleatoric) and model (epistemic)
uncertainty (Gal and Ghahramani, 2016a). Model (epistemic) uncertainty deals
with our ignorance about which model generated our data. Aleatoric uncertainty
deals with noise inherent in the observation, e.g. sensor noise or motion noise.
Note that heteroscedastic regression methods (Nix and Weigend, 1994; Le et al.,
2005) estimate aleatoric uncertainty by predicting the parameters of an assumed
observation noise distribution. However, Bayesian methods provide an attractive
framework to capture both epistemic and aleatoric uncertainty. Bayesian neural
networks (MacKay, 1992; Neal, 2012) provide the opportunity to cast modern neural
networks as Bayesian inference methods. Unlike standard neural networks, Bayesian
neural networks place a distribution over the model parameters (weights). This
offers a probabilistic view of deep learning and more importantly, provides an
approach to obtain model (epistemic) uncertainty estimates — through uncertainty
in the weight parameters. However, inference of the posterior distribution over
weights in such networks is difficult. A popular approach is variational Inference
(Blundell et al., 2015). However, the approach of Blundell et al. (2015) incurs a
considerable computational overhead. To deal with these computational issues, Gal
and Ghahramani (2016b) showed that dropout training in deep neural networks
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approximates Bayesian inference in deep Gaussian processes. Extending these
results it was shown in Gal and Ghahramani (2016a) that dropout training can be
cast as approximate Bernoulli variational inference in Bayesian neural networks,
with minimal computational overhead. These results were extended to recurrent
neural networks in Gal and Ghahramani (2016c). The proposed Bayesian recurrent
neural networks showed superior performance to standard recurrent neural networks
with dropout in various tasks. More recently, Kendall and Gal (2017) presents a
Bayesian deep learning framework jointly estimating aleatoric uncertainty together
with epistemic uncertainty. The resulting framework provides state-of-the-art results
on segmentation and depth regression benchmarks. This shows the promise of such
Bayesian approaches to deal with complex real world problems.

2.2.2 Non-Bayesian Methods

In contrast to these Bayesian approaches, Lakshminarayanan et al. (2017) proposes
an ensemble based approach for uncertainty estimation that is simple to implement,
readily parallelizable, and requires very little hyperparameter tuning compared
to Bayesian methods, with competitive uncertainty estimates. Another promising
approach, as proposed by Malinin and Gales (2018), models uncertainty by pa-
rameterizing a prior distribution over predictive distributions. Other non-Bayesian
approaches include Garriga-Alonso et al. (2019); Hendrycks et al. (2020); Thulasidasan
et al. (2019) among others.

2.2.3 Relation to Our Work

We use Bayesian inference methods to deal with uncertainty in the distribution of
likely future pedestrian trajectories and street scenes in Chapter 4 and Chapter 5.
Specifically, we build upon the Bayesian inference method of Gal and Ghahramani
(2016b). In Chapter 4, we propose a Bayesian inference method for “on-board”
trajectory prediction. In detail, our proposed model is of a two stream Bayesian
network that integrates ego-motion for improved pedestrian trajectory prediction.
In Chapter 5, we specially consider the issue of multi-modality. Our model from
Chapter 4, as it is based on the work of Gal and Ghahramani (2016b), cannot
accurately capture multi-modal distributions. In Chapter 5, we propose a novel
synthetic likelihood based objective for training Bayesian inference methods. This
novel objective encourages diversity in the model distribution and allows us to better
capture multi-modal data distributions.

2.3 GENERATIVE MODELS FOR MULTI-MODALITY

In this section, we discuss methods which aim to address the challenge of multi-
modality in future prediction. Most such approaches are based on a type of gen-
erative model — most popularly conditional generative adversarial networks or
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conditional variational autoencoders. We begin with a discussion on both uncondi-
tional and conditional generative adversarial networks and variational autoencoders.
We also discuss future prediction methods which are based on conditional generative
adversarial networks or conditional variational autoencoders. Finally, we also discuss
exact inference methods which unlike conditional generative adversarial Networks
and conditional variational autoencoders allows for the computation of the exact
likelihood of the data under the model.

2.3.1 Generative Adversarial Networks

Unconditional generative adversarial networks. The classic generative adversarial
network formulation was proposed by Goodfellow et al. (2014). It consists of a
generator which transforms a simple latent distribution to the target distribution.
To learn this transformation, the generator is trained along with a discriminator in
a adversarial setting. The discriminator is trained to distinguish between samples
from the true data distribution and samples from the generator. In the ideal setting,
the generator learns to match the true data distribution and the discriminator
cannot distinguish between the true and generated data distributions. Experimental
results in Goodfellow et al. (2014) already showed promising results on complex
multi-modal image distributions. One of the first important improvements over the
original formulation was proposed by Radford et al. (2016), through the introduction
of a convolutional model architecture. However, the formulation of Goodfellow et al.
(2014); Radford et al. (2016) has several shortcomings — importantly mode collapse.
Mode collapse occurs when one or more modes of a multi-modal data distribution
are not captured by the generative adversarial network. To address the challenge of
multi-modality in future prediction, avoiding the issue of mode collapse is crucial.
Denoising Feature Matching (Warde-Farley and Bengio, 2017) deals with mode
collapse by regularizing the discriminator using an autoencoder. MDGAN (Che et al.,
2017) uses two separate discriminators and regularizes using a auto-encoder. In
EBGAN (Zhao et al., 2017b), the discriminator is interpreted as an energy functional
and is also cast in an auto-encoder framework, leading to improvements in semi-
supervised learning tasks. BEGAN (Berthelot et al., 2017) proposes a Wasserstein
distance based objective to train such GANs with auto-encoder based discriminators.
The proposed approach leads to smoother convergence. InfoGAN (Chen et al., 2016)
maximizes the mutual information between a small subset of latent variables and
observations in an information theoretic framework. This leads to disentangled
and more interpretable latent representations. PacGAN (Lin et al., 2018) proposes
to deal with the mode collapse problem by using the discriminator to distinguish
between product distributions. D2GAN (Nguyen et al., 2017) proposes to use two
discriminators — one for the forward KL divergence between the true and generated
distributions and one for the reverse. BourGAN (Xiao et al., 2018) proposes to learn
the distribution of the latent space (instead of assuming Gaussian) which reflects
the distribution of the data. In Srivastava et al. (2017), a inverse mapping from
from latent to data space is learned and the generator is penalized based on the
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inverted distribution to cover all modes. Ravuri et al. (2018) proposes a moment
matching paradigm different from VAEs or GANs. Arjovsky et al. (2017); Gulrajani
et al. (2017a) proposes GANs which minimize the Wasserstein distance between true
and generated distributions. Miyato et al. (2018) demonstrates improved results
by applying Spectral Normalization on the weights. In Tran et al. (2018), distance
constraints are applied on top. In Adler and Lunz (2018), WGANSs were extended to
Banach Spaces to emphasize edges or large scale behavior. Orthogonally, Karras et al.
(2018) focus on progressively learning to use more complex model architectures to
improve performance.

Conditional generative adversarial networks and future prediction. In the
majority of the future prediction tasks, we are interested in modelling conditional
distributions, conditioned on observations and contextual information. Extension of
generative adversarial network to the conditional case was proposed by Mirza and
Osindero (2014). Conditional Generative Adversarial Networks suffer from similar
issues as their unconditional counterparts, e.g. mode collapse. Fortunately, many of
the methods described above for the unconditional case are applicable also to the
conditional case to mitigate mode collapse. On the other hand, recent works such
as Yang et al. (2019) specifically target the mode collapse problem in conditional
generative adversarial networks. Yang et al. (2019) propose to explicitly regularize
the generator to produce diverse outputs depending on latent codes. Liu et al. (2021)
uses contrastive learning for diverse conditional image synthesis. Chrysos et al.
(2019) leverages structure in the target space of the model to address the issue of
robustness to noise. Brock et al. (2019) shows very high quality conditional image
generation at high resolutions.

Conditional generative adversarial networks have been used in diverse scenarios
for future prediction. Mathieu et al. (2016) was the first to propose the use of
adversarial loss for future frame prediction. This basic formulation has been further
improved by Lee et al. (2018); Kwon and Park (2019); Liang et al. (2017) among
others. Conditional generative adversarial networks have also been widely used for
trajectory prediction tasks to deal with multi-modality. Social-GAN (Gupta et al.,
2018) proposes to use social pooling in a conditional GAN setup to capture the effect
of social interactions in the distribution of future pedestrian trajectories. Sophie
(Sadeghian et al., 2019) uses an attention mechanism in a conditional GAN setup
to capture the effect of interactions. Graph attention networks are employed by
Kosaraju et al. (2019) in a conditional GAN setup.

2.3.2 Variational Autoencoders

Unconditional variational autoencoders. Similar to generative adversarial
networks, variational autoencoders are deep latent variable models. However, unlike
generative adversarial networks which do not explicitly maximize the likelihood of
the data under the model, variational autoencoders maximize a lower bound on the
data log-likelihood. This property is potentially helpful for capturing all modes of
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complex multi-modal data distributions.

Variational learning has enabled learning of such deep directed graphical models
with Gaussian latent variables on large datasets (Kingma and Welling, 2014; Kingma
et al., 2014; Rezende et al., 2014). Model training is made possible through stochastic
optimization by the use of a variational lower bound of the data log-likelihood and
the re-parameterization trick. In Burda et al. (2016), a tighter lower bound on the
data log-likelihood is introduced and multiple samples are used during training
which are weighted according to importance weights. It is shown empirically that
the IWAE framework can learn richer latent space representations. However, the
standard variational autoencoder framework (Kingma and Welling, 2014) uses uni-
modal Gaussian prior and posterior distributions. This induces a strong model
bias Hoffman and Johnson (2016); Tomczak and Welling (2018) which makes it
challenging to capture multi-modal distributions. Thereafter, two lines of work have
focused on developing either more expressive prior or posterior distributions.

Rezende and Mohamed (2015) propose normalizing flows to model complex
posterior distributions. Kingma et al. (2016); Tomczak and Welling (2016); van den
Berg et al. (2018) present more complex inverse autoregessive flows, householder
and Sylvester normalizing flow based posteriors.

Nalisnick and Smyth (2017) which proposes a Dirichlet process prior and Goyal
et al. (2017) which proposes a nested Chinese restaurant process prior. However,
these methods require sophisticated learning methods. In contrast, Tomczak and
Welling (2018) proposes a mixture of Gaussians based prior (with fixed number of
components) which is easier to train and shows promising results on some image
generation tasks. Chen et al. (2017) proposes an inverse autoregressive flow based
prior which leads to improvements in complex image generation tasks like CIFAR-10.
(Ziegler and Rush, 2019) proposes a prior for VAE based text generation using
complex non-linear flows which allows for complex multi-modal priors.

While these approaches focus on the unconditional case, in this thesis we focus
primarily on the conditional case, which we discuss in the following.

Conditional variational autoencoders and future prediction. Conditional vari-
ational autoencoders Sohn ef al. (2015) extend the VAE variational autoencoder of
Kingma and Welling (2014) to model conditional distributions. Conditional varia-
tional autoencoders, similar to variational autoencoders, maximize a lower bound
on the conditional data log likelihood. Note that conditional variational autoen-
coders suffer from similar issues in modelling multi-modality as the unconditional
variational autoencoders. In this thesis, we focus on these issues in the conditional
case and propose improved objective functions and flexible priors to better model
multi-modal distributions.

This conditional framework has been used for a variety of future prediction tasks.
Xue et al. (2016); Li et al. (2018) propose to use conditional variational autoencoders
for future frame prediction. Lee et al. (2017b); Felsen et al. (2018); Zhang et al.
(2019); Mangalam et al. (2020); Salzmann et al. (2020) use conditional variational
autoencoders for trajectory prediction. In more detail, DESIRE (Lee et al., 2017b)
uses a RNN refinement module over the plain conditional variational autoencoder
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setup. Predictions that “personalize” to agent behaviour are proposed in Felsen
et al. (2018). A social graph network is used for conditioning in Zhang et al. (2019).
It is shown in Mangalam et al. (2020) that conditioning additionally on the goal
state can significantly improve accuracy. Finally, Trajectron++ (Salzmann et al., 2020)
uses a pooled scene graph in a conditional variational autoencoder framework to
capture interactions. In this thesis, we propose methods to improve the accuracy and
diversity of trajectory prediction methods in highly multi-modal scenarios. We also
propose methods which can model the effect of interactions directly in the latent
space for improved accuracy.

2.3.3 Hybrid and Alternative Approaches

Hybrid approaches.  As both generative adversarial networks and variational
autoencoders have their respective shortcomings in modelling complex multi-modal
distributions, recent works have proposed hybrid methods which aim to combine
their strengths to improve overall performance especially for image distributions.
In Larsen et al. (2016), a VAE-GAN hybrid is proposed with discriminator feature
matching — the variational autoencoders decoder is trained to match discriminator
features instead of a L1/ L, reconstruction loss. ALI (Dumoulin et al., 2017) proposes
to instead match the encoder and decoder joint distributions — with limited success
on diverse datasets. BIGAN (Donahue et al., 2017), builds upon ALI to learn inverse
mappings from the data to the latent space and demonstrate effectiveness on various
discriminative tasks. Rosca et al. (2017) extends standard VAEs by replacing the
log-likelihood term with a hybrid version based on synthetic likelihoods. The KL-
divergence constraint to the prior is also recast to a synthetic likelihood form, which
can be enforced by a discriminator (as in Makhzani et al. (2016); Tolstikhin et al.
(2018)). The second improvement is crucial in generating realistic images at par
with classic/Wasserstein generative adversarial networks. In this thesis, we propose
improved objective functions for training such hybrid framework for improved
diversity and mode coverage while maintaining competitive image quality.

Alternative approaches. Due to shortcoming of both generative adversarial
networks and variational autoencoders, some recent works have taken alternative
approaches to deal with the challenge of multi-modality. Rhinehart et al. (2018);
Deo and Trivedi (2019) introduce push-forward policies and motion planning for
generative modelling of trajectories. Determinantal point processes are used in Yuan
and Kitani (2020) to better capture diversity of trajectory distributions.

2.3.4 Exaction Inference Methods

Exact likelihood models, especially autoregressive models, normalizing flows and
very recently diffusion models, have been recently considered to overcome the
limitations of generative adversarial networks and variational autoencoders mostly
in the context of image synthesis.
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Autoregressive models. These are a class of exact inference models that factorize
the joint probability distribution over the input space as a product of conditional
distributions, where each dimension is conditioned on the previous ones in a
pre-defined order (Chen et al., 2018; Domke et al., 2008; Graves, 2013; Hochreiter
and Schmidhuber, 1997, Parmar et al., 2018; van den Oord et al., 2016a,b). Recent
autoregressive models, such as PixelCNN and PixelRNN (van den Oord et al.,
2016a,b), can generate high-quality images but are difficult to parallelize since
synthesis is sequential. It is worth noting that autoregressive image models, such as
that of Domke et al. Domke et al. (2008), significantly pre-date their recent popularity.
Various extensions have been proposed to improve the performance of the PixelCNN
model. For example, Multiscale-PixelCNN (Reed et al., 2017) extends PixelCNN to
improve the sampling runtime from linear to logarithmic in the number of pixels,
exploiting conditional independence between the pixels. Chen et al. (2018) introduce
self-attention in PixelCNN models to improve modelling power. Salimans et al. (2017)
introduce skip connections and a discrete logistic likelihood model. WaveRNN
(Kalchbrenner et al., 2018) leverages customized GPU kernels to improve the sampling
speed for audio synthesis. Menick and Kalchbrenner (2019) synthesize images by
sequential conditioning on sub-images within an image. These methods, however,
still suffer from slow sampling speed and are difficult to parallelize, therefore in this
thesis we focus primarily on normalizing flow based models.

Normalizing flows. These models first introduced in Dinh et al. (2015), also allow
for exact inference. They are composed of a series of invertible transformations, each
with a tractable Jacobian and inverse, which maps the input distribution to a known
base density, e.g. a Gaussian. Papamakarios et al. (2017) proposed autoregressive
invertible transformations using masked decoders. However, these are difficult
to parallelize just like PixelCNN-based approaches. Kingma et al. (2016) propose
inverse autoregressive flow (IAF), where the means and variances of pixels depend
on random variables and not on previous pixels, making it easier to parallelize.
However, the approach offers limited generalization van den Oord et al. (2018).
Recent work Behrmann et al. (2019); Dinh et al. (2017); Kingma and Dhariwal (2018)
extends normalizing flows Dinh et al. (2015) to multi-scale architectures with split
couplings, which allow for efficient inference and sampling. For example, Kingma
and Dhariwal (2018) introduce additional invertible 1 x 1 convolutions to capture
non-linearities in the data distribution. Hoogeboom et al. (2019) extend this to
d x d convolutions, increasing the receptive field. Chen et al. (2019) improve the
residual blocks of flow layers with memory efficient gradients based on the choice of
activation functions. A key advantage of flow-based generative models is that they
can be parallelized for inference and synthesis. Ho et al. (2019) propose Flow++ with
various modifications in the architecture of the flows in Dinh et al. (2017), including
attention and a variational quantization method to improve the data likelihood. The
resulting model is computationally expensive as non-linearities are applied along
all the dimensions of the data at every step of the flow, i.e. all the dimensions are
instantiated with the prior distribution at the last layer of the flow. Yu et al. (2020a)
proposes a Haar-wavelet based decomposition for scalability on high resolution
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image data. Lu and Huang (2020) extended normalizing flows to model conditional
distributions. While comparatively efficient, such flow-based models have limited
expressiveness compared to autoregressive models, which is reflected in their lower
data log-likelihood. The goal of this thesis is to develop models that have the
expressiveness of autoregressive models and the efficiency of flow-based models.

Diffusion models. These models are a recently proposed class of latent variable
models based on nonequilibrium thermodynamics. Diffusion based models are
parameterized Markov chains trained to convert a latent noise distribution to the
target data distribution and have shown remarkable performance on image datasets
such as CIFAR-10 (Ho et al., 2020). While sampling from these models remains
computationally expensive compared to flow based models, they offer a promising
direction of future research.

Relation to our work. In Chapter 6 and Chapter 7, we primarily deal with the uni-
modal Gaussian constraint on both the prior and posterior of conditional variational
autoencoders. In Chapter 6, we concentrate on the fact that this unimodal Gaussian
constraint leads to a mismatch between the prior and posterior distributions in case
of multi-modal data distributions. We argue that this gap cannot be fully closed by
the standard conditional variational autoencoder objective function. We consider a
new multi-sample objective which relaxes the constraints on the recognition network
by encouraging diverse sample generation and thus leads to a better match between
the prior and posterior latent variable distributions. In Chapter 7, we propose a
normalizing flow based prior for conditional variational autoencoders. This removes
the unimodal Gaussian constraints and leads to significantly improved performance
on multi-modal pedestrian trajectory distributions. In Chapter 8, we propose a novel
objective for hybrid VAE-GAN based models. Similar to our objective introduced
in Chapter 6, our multi-sample objective in Chapter 8 relaxes the constraints on the
recognition network and leads to a better match between the prior and posterior
latent variable distributions. In Chapter 9, we propose a novel conditional variational
autoencoder framework to model the effect of interactions on the distribution of
pedestrian trajectories. Our formulation models the joint distribution of all agents,
e.g. pedestrians, bicyclists in the scene, through a shared latent space across all
agents in the scene.

In Chapter 10 and Chapter 11, we focus on exact inference models, in particular
normalizing flows due to their advantage of efficiency. We focus on improving the
modelling flexibility of normalizing flow based models. In Chapter 10, we propose
an auto-regressive prior for normalizing flow based models. Our auto-regressive
prior is applied channel-wise in a computationally efficient setup. In Chapter 11,
we propose to use a Haar-wavelet based decomposition for normalizing flows on
trajectory data. The Haar-wavelet based decomposition allows us to model the fine
components of the decomposition conditioned on the coarse components which
provides global context, leading to improved modelling flexibility.
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2..4 DATASETS FOR TRAJECTORY PREDICTION

Datasets like ETH/UCY (Lerner et al., 2007) and Stanford Drone (Pellegrini et al.,
2009) are among the first datasets in the field of pedestrian trajectory prediction.
However, they are recorded using a bird’s eye view camera or drone. In order
to aid the development of autonomous driving capabilities, recent datasets have
moved to a more realistic “on-board” setting — recorded from a (ego-)vehicle. The
popular “on-board” datasets: nuScenes (Caesar et al., 2020), Argoverse (Chang et al.,
2019) and Lyft L5 (Houston et al., 2020) focus primarily on trajectories of nearby
vehicles. nuScenes (Caesar et al., 2020) and Argoverse (Chang et al., 2019) do not
include annotated pedestrian (bicyclist) trajectories in their test set. Although Lyft L5
(Houston et al., 2020) includes pedestrian and bicyclist trajectories in the test set they
are relatively rare (5.91% and 1.62% of all trajectories) as the chosen route does not
include significant portions of dense urban environments. Moreover, in comparison
to nuScenes (Caesar et al., 2020) and Argoverse (Chang et al., 2019), Lyft L5 (Houston
et al., 2020) has lower diversity in terms of locations as it recorded only along a fixed
route (~ 6km) in Palo Alto, California. Additionally, Lyft L5 (Houston et al., 2020)
does not provide images from cameras and lidar point clouds, which are sources of
rich contextual information. In contrast, PIE (Rasouli et al., 2019), TITAN (Malla et al.,
2020) and TRAF (Chandra et al., 2019) focus primarily on pedestrians (bicyclists).
However, the trajectories are recorded as sequences of 2d bounding boxes in the
image plane and are not localized in the 3d world. The ApolloScapes (Ma et al., 2019)
dataset does not include the trajectory of the ego-vehicle or contextual information,
e.g. images from cameras or lidar point clouds. Finally, note that these datasets are
recorded either in North America or Asia and no large scale trajectory datasets are
available for Europe. Euro-PVI is the first large scale dataset recorded in Europe
dedicated to the task of trajectory prediction and unlike the existing datasets focuses
on interactions between the ego-vehicle and pedestrian (bicyclist).

Relation to our work.  In Chapter 9, we propose a novel pedestrian trajectory
prediction dataset, Euro-PVI. Most popular “on-board” datasets, e.g. (Caesar et al.,
2020; Chang et al., 2019; Houston et al., 2020), are recorded either in North America
or Asia and no large scale trajectory datasets are available for Europe. Euro-PVI is
the first large scale dataset recorded in Europe dedicated to the task of trajectory
prediction and unlike the existing datasets focuses on interactions between the
ego-vehicle and pedestrian (bicyclist).
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research, and organizing visual information into boundaries and segments

is believed to be a cornerstone of visual perception. While prior work has
focused on estimating boundaries for observed frames, in this chapter our aim is
to predict boundaries of future unobserved frames. This requires our model to
learn about the fate of boundaries and corresponding motion patterns — including
a notion of “intuitive physics”. We experiment on natural video sequences along
with synthetic sequences with deterministic physics-based and agent-based motions.
While not being our primary goal, we also show that fusion of RGB and boundary
prediction leads to improved RGB predictions.

BOUNDARY estimation in images and videos has been a very active topic of

3.1 INTRODUCTION

In this chapter, we propose the task of predicting future scene boundaries. Scene
boundaries capture the important structure and extents of objects. Moreover, they can
be accurately estimated Khoreva et al. (2016). Prediction of future scene boundaries
requires understanding of object dynamics and motion patterns including an intuitive
understanding of physical laws or “intuitive physics”. In this work, we focus on two
particular scenarios involving motion and local interactions. The first one, which
we call physics-based motion (deterministic), can fully be described by the laws of
physics, e.g. dynamics of billiard balls. The second one, which we call agent-based
motion (non-deterministic), also involves understanding of intentions, e.g. dynamics
of an ice-skater. Therefore, our methods have to deal with diverse situations, work on

31
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Last Observation: ¢ Prediction

Figure 3.1: Predicted future boundary images, from ¢ + 1 (Yellow) to t + 8 (Row 1), ¢
+ 18 (Row 2) (Red), superimposed.

raw pixels, and should be capable of long-term predictions. Fig. 3.1 shows example
results of our method that accurately predicts future scene boundaries.

Recently, full future frame prediction of observed scenes has been studied (Math-
ieu et al., 2016; Liu et al., 2017b). But up to now, only very short range predictions
of few frames have been shown, where blurriness/distortion artifacts occur in the
predicted future frames — losing/incorrectly propagating high-frequency informa-
tion. This high frequency information is crucial for meaningful predictions about
the future, e.g. on a billiard table the location of a ball and table boundaries are
necessary to infer the future state of the table. Boundaries capture this crucial high
frequency information and are also known to reveal important structures of the
visual scene (Wertheimer, 1923; Arbelaez et al., 2011; Galasso et al., 2013). Therefore,
we argue that the task of future boundary prediction is a more suitable benchmark
for understanding and predicting physics or agent-based motion.

The main contributions of this chapter are as follows, 1. We propose the novel
task of future boundary prediction. 2. We propose the first method that predicts
future boundaries based only on the raw pixels. 3. We evaluate our model on
two scenarios involving deterministic physics-based (synthetic and real billiard
sequences) and non-deterministic agent-based motion (VSB10oo, Galasso et al. (2013)).
4. Under the physics-based scenario, the method shows for the first time long-term
predictions. 5. Under the agent-based scenario on VSBioo and UCF101, we show
that the predicted boundaries can be used in a fusion scheme that improves RGB
video prediction in the longer-term.

3.2 RELATED WORK

While we provide a broader discussion on related work in Chapter 2, here we discuss
related work relevant to this chapter.

Video segmentation. Video segmentation as the task of finding consistent spatio-
temporal boundaries in a video volume has received significant attention over the
last years (Galasso et al., 2014; Ochs et al., 2014; Galasso et al., 2013; Chang et al., 2013),
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as it provides an initial analysis and abstraction for further processing. In contrast,
our approach aims at predicting these boundaries into the future without any video
observed for future frames.

3.3 MODEL

We present a model that observes a sequence of boundary images, where each pixel
encodes the confidence of occurrence of an image boundary at that location and
then predicts the boundary image(s) at the next time-step(s). An overview of our
Convolutional Multi-Scale Context (CMSC) model is shown in Fig. 3.2.

We approach long term prediction by recursion, due to the advantage of efficiency.
However, errors are potentially propagated and accumulated over time. In order
to mitigate such effects, we need our model to be accurate and to consolidate
information over time. Our model has been designed through analysis of prior work
on the related task of frame prediction, to maximize accuracy. Furthermore, our
model has many novel aspects which are key to long term prediction.

In order to generalize across diverse sequences while maintaining a tractable
number of parameters, a patch based approach is adopted. Therefore, our model
observes and predicts on patches rather than the complete input image. Alternatively,
this can be seen as multiple replicas (“patch predictors”) of our model predicting on
patches of the input sequence. We now describe our model through an analysis of
its various components.

3.3.1 Fully Convolutional

Our CMSC model consists of only convolutional layers. The input boundary image
sequence is concatenated as channels and is read by the first convolutional layer.
Convolutional layers can extract high quality location invariant features. In par-
ticular, they can extract information about the orientation and direction of motion
of boundaries. Neurons at upper convolutional layers have larger receptive fields
and can aggregate information. In fact, as shown by the work of Jain et al. (2007),
the output layer should have a wide receptive field to preserve long range spatial
and temporal dependencies and learn about interaction among boundaries in a
spatio-temporal context. We therefore use several convolutional layers in our CMSC
model. We also introduce pooling in between convolutional layers. Pooling further
helps in the aggregation of information and increases receptive fields. However,
excessive pooling (or tight bottlenecks with fully connected layers) have been shown
to be successful in classification tasks, but also have shown by Ranzato et al. (2014)
to induce image degradations for synthesis tasks. Therefore, it is crucial to use
moderate pooling. Finally, we use up-sampling layers after pooling to maintain
resolution.
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Figure 3.2: Convolutional Multi-scale with Context architecture (only 2 out of 4
scales illustrated).

3.3.2 Multiple Scale Prediction

Multi-Scale model architectures akin to a Laplacian pyramid have shown to be
advantageous for generating natural images (Denton et al., 2015) and predicting
future rgb frames (Mathieu et al., 2016). Such model architectures contain multiple
levels which observes the input boundary image(s) at increasing (coarse to fine)
scales. Down-sampling a boundary image would have the effect of smoothing and
discarding details of a boundary image. Therefore, it would be easier to predict
future boundary images at a coarser resolution. Our CMSC model also uses multiple
scales (or levels). The input I(Lyg) to a certain level (Ly) is the input boundary
image sequence scaled to the current level X, and the boundary image O predicted
by the previous coarser level (Lx). The boundary image predicted by the coarser
level is upsampled O to the scale at the current level. We have,

I(Ly) = {Xox, O(L) }

The coarse predicted boundary images O(Ly) act a guide for the next higher level of
the model.

In detail, we use four levels, with scales increasing by a factor of two. Each level
of the model consists of five sets of two convolutional layers. They are of a constant
size 3x3. We introduce a pooling layer after the first three sets of convolutional layers.
We double the number of convolutional kernels after pooling. There are 32, 64, 128,
64 and 32 filters respectively in each set. We upsample the convolutional maps after
the third set to maintain resolution. We use ReLU non-linearities between every layer
except the last. We use the tanh non-linearity at the end to ensures output in [o0,1].

For accurate long term prediction, it is crucial to ensure global consistency
through communication between the patch predictors. Consider a video of a moving
ball. The trajectory of a ball might intersect with multiple patches. To correctly
predict the motion far into the future, replicas of the model predicting on neighboring
patches need to be consistent especially during transition of the ball between patches.
Therefore, we describe next the final component of our CMSC model, the context,
which ensures global consistency.
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3.3.3 Context

Our CMSC model observes a central patch along with the directly neighbouring 8
patches. This neighbourhood is called the context. However, the model only predicts
on the central patch. While predicting recursively, the model observes its previous
output along with the the output of the neighboring patch predictors. This enables
the learning of spatially consistent predictions while keeping the same number of
parameters.

The addition of a context has the added advantage that the output layer neurons
now have receptive fields that are uniform in size. Without context, the neurons
at the boundary of the (2D) output layer have a smaller receptive field compared
to the neurons at the center. This leads to a non-uniform (training and test) error
distribution at the output layer neurons. In Fig. 3.3 we plot the average error at
the output layer neurons of our CMSC model at increasing distance from the patch
border, with and without context. Error increases consistently from patch center
(right) to the patch border (left) without a context. Note that, the model of Mathieu
et al. (2016) is also multi-scale and fully convolutional like CMSC, but it does not
have pooling or context.
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Figure 3.3: Our model without context has higher error near the patch boundary
(red) vs. with context (green).

Next, we evaluate our CMSC model and the effectiveness of its various compo-
nents.

3.4 EXPERIMENTS

We evaluate our CMSC model on natural video sequences involving agent-based
motion and billiard sequences with only physics-based motion. We compare with
various baselines and perform ablation studies to confirm design choices. We convert
each video into 32x32 pixel patches. The CMSC model observes a central patch and
eight neighbouring patches resulting in a context of size 9g6x96 pixels.

Training loss. =~ We use L2 loss (mean square error) during training, which we
optimize using the ADAM optimizer.
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Figure 3.4: Evaluation of boundary prediction on VSB1oo.
Evaluation metric. As we want sharp and accurate boundaries, we use the

established boundary precision recall (BPR) evaluation metric from the video seg-
mentation literature (Galasso et al., 2013). This metric is defined for a set P of
predicted boundary images and G of corresponding ground truth boundary images
as,

 YpepBeec | BpNBg |

p=
YB,ep | By |
R YB,ep,BeG | Bp M By |
YB,ec | By |
_ 2PR
~ P+R’

where P is boundary precision, R is boundary recall and F is the combined F-
measure. As we are interested in accurate predictions, predicted boundary pixels
should be at most 1 pixel away from ground-truth boundary pixels to be correct.

3.4.1 Evaluation on Sequences with Agent-based Motion

Dataset and training. We use the VSB10oo dataset which contains 101 videos with
a maximum 121 frames each. The training set consists of 40 videos and the test
set consists of 60 videos. The videos contain a wide range of objects of different
sizes and shapes, including vehicles, humans and animals. The videos also have
a wide variety of both object and camera motion. We use the hierarchical video
segmentation algorithm in Khoreva et al. (2016) to segment these videos. The output
is a ultra-metric contour map (ucm). Boundaries higher in the hierarchy typically
correspond to semantically coherent entities like animals, vehicles etc and therefore
their motion corresponds to object/camera motion. We discard boundaries belonging
to the lowest level of the hierarchy (corresponding to an over-segmentation), as they
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Figure 3.5: RGB versus boundary prediction.

Last Observation: ¢+ Prediction: t + 1 Prediction: t + 2 Prediction: t + 4

Figure 3.6: Rows top to bottom: Prediction on airplane and hummingbird sequences
from VSB10o. Correct boundaries predictions are encoded in green. Missed bound-
aries are encoded in yellow. Wrong boundaries are encoded in red.

are temporally very unstable. We use the ucm hierarchy as a confidence measure on
boundary location at a pixel.

Experimental settings and baselines. The models are trained to predict boundaries
of segmented VSB100 videos. Recall that the ground-truth boundaries (ucm) in
VSB1oo have different confidence values. Thus, we threshold the predictions before
comparison to the groundtruth. We vary the threshold to obtain a precision-recall
curve and report the area under the curve (AUC) along with the best F-measure
across all thresholds. We include a “Last Input” baseline by using the last input
frame as constant prediction and a “Optical flow” baseline. As many boundaries
do not change between frames in the videos of VSB100, the last input is a strong
baseline especially when we are predicting one step into the future. In case of the
optic flow baseline, the optic flow is calculated between the last two input frames (at
t - 1 and t) using the Epic flow method of Revaud et al. (2015). The boundary pixels
at time t are propagated using the calculated flow to generate predictions at ¢ + 1 to
t+8.

Results on VSB1oo. = We perform an ablation study of our CMSC model and
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Figure 3.7: Trails produced by super-imposing predicted boundaries on synthetic
sequences.
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Figure 3.8: Trails produced by super-imposing predicted boundaries on real se-
quences.

we compare to, 1. A convolutional single scale model (CSS) 2. A convolutional
multi-scale model (CMS), in addition to the baselines. Both models do not have
a context. We report the quantitative results in Fig. 3.4(a) and Fig. 3.4(b) and the
qualitative results in Fig. 3.6.

Quantitative evaluation: In the short term the CMS model (green lines) performs
well. However, our CMSC (red lines) performs best in the longer term (both having
the same number of parameters). This demonstrates the importance of the context
for long-term prediction. The good performance of both of the mutli-scale models
(CMS and CMSC) versus the single scale CSS model, shows that multiple scales
lead to more accurate predictions. The performance advantage of our CMSC model
over the last input baseline shows that the model learns to predict boundaries of
moving objects while keeping static boundaries intact. The recall of the CMSC
model declines with time as the future becomes increasingly uncertain. The poor
performance of the “Optic flow” baseline is due to inaccurate flow information at
object boundaries.

Qualitative evaluation: The boundaries produced by our CMSC model are sharp
whenever the motion is smooth, e.g. the predictions in Fig. 3.6. However, the
models are not able to deal with high uncertainty in the long-term often due to non-
deterministic motion. The models in such situations react by blurring the boundaries,
as a consequence of using the L2 training loss. While predicting recursively, this
leads to loss of boundary confidence and eventual vanishing boundaries. The “Optic
flow” baseline produces discontinuous (jagged) boundaries. Next we evaluate and
compare RGB prediction to boundary prediction.

RGB verses boundary prediction. = We report the sharpness of RGB frames (of
VSB100) predicted by the adversarial model of Mathieu et al. (2016) (fine-tuned on
VSB100) using the Laplacian measure Krotkov (2012) in Fig. 3.5(a). The Laplacian
measure pools the gradient information of the image. We observe that the model
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Figure 3.9: Our fusion model architecture.

of Mathieu et al. (2016) makes increasingly blurry predictions into the future. We
also compare the mean squared error of RGB predictions of Mathieu et al. (2016) and
predicted boundaries of our CMSC model in Fig. 3.5(b). We see a sharper increase in
the error of RGB predictions compared to boundaries in the long term.

Step Last Input CMS CMSC-BL CMSC
t+1 0.141  0.282  0.957 0.987
t+5 0.038  0.101  0.841 0.900
t+20 0.002 0066  0.347 0.632

Table 3.1: Evaluation on single ball billiard table worlds.

3.4.2 Evaluation on physics-based motion

Motion in the videos in the VSB1oo dataset is frequently very complex as agent’s ac-
tions quickly become non-deterministic and hence increasingly uncertain. Therefore,
we also look at physics-based motion, which is still challenging yet it factors out
the aforementioned issues. In this scenario, we evaluate the long-term prediction
performance of the models on real and synthetic billiard ball sequences. We begin
by describing our dataset.

Synthetic data generation. The synthetic billiard ball sequences are sampled from
worlds which consist of balls moving on a frictionless surface with a border, akin
to a billiard table. We used pygame to create such worlds and sample boundary
images from them. The output images contain boundaries that can stem from ball(s)
or the table and have binary confidence measures (indicating a boundary at that
location). During evaluation, as the target is always a binary image, we report
only the best F-measure obtained by thresholding the predicting boundary images
and varying the threshold parameter. We sampled synthetic billiard sequences
using the following parameters. 1. Table size: Side length randomly sampled from
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— Evaluation on three ball worlds — - Evaluation on six ball worlds —
Step Last Input CMSC-2B CMSC  Last Input CMSC-3B  CMSC
t+1 0.246 0.967 0.968 0.250 0.962 0.964
t+5 0.118 0.890 0.892 0.130 0.875 0.866
t+ 20 0.090 0.664 0.700 0.115 0.511 0.600

Table 3.2: Evaluation on complex billiard table worlds.

{96,128,160,192,256} pixels. 2. Ball velocity: Randomly sampled from [{-3,..,3},{-3,..,3}]
pixels. 3. Ball size: Constant, with a radius of 13 pixels. 4. Initial Position: Uniformly
over the table surface.

Real data collection. We captured a novel data-set of real billiard sequences on a
mini-billiard table. Frame rate was set to 120 per second to minimize motion blur.
Each sequence consists of an actor (not visible) striking the ball with a cue stick once.
The motion in the sequences of the dataset are that of the cue stick and the balls. We
produce boundary images using the method of Maninis et al. (2018).

Evaluation on synthetic single ball worlds. = We generate a training set using
parameters in Section 3.4.2. However, to keep our training set as diverse as possible
we prefer short sequences. We restrict each sequence to a maximum length of one or
two collisions with walls and set a 50% bias of the initial position of the balls being
40 pixels from the walls. We sample 500 such sequences and train the models on
these sequences. We then test the models on 30 independent test sequences. We
again include the “last input” baseline as a constant predictor . We also include a
“blind” Convolutional multi-scale Context model (CMSC-BL), which cannot see the
table borders. This is a strong baseline as starting from 42% frames in the test set,
there are no ball-wall collisions 20 steps into the future. To beat this baseline, our
models need to learn the physics of ball-wall collisions. We report the results in
Table 3.1.

Our CMSC model performs the best with accurate predictions 20 time-steps
into the future — also exceeding the “blind” version (CMSC-BL) that cannot handle
ball-wall collisions. The model without a context CMS, produces inaccurate results
at patch borders and thus suffers heavily especially at larger time-steps.

Evaluation on synthetic two and three ball worlds. Worlds with more than
one ball also involve harder to model physics of ball-ball collisions. To evaluate the
models on such worlds we sample 100 training sequences each with two, three and
six balls respectively with a maximum length of 200 frames. We use a curriculum
learning approach (Bengio et al., 2009), where we initialize the models with the
weights learned on single, two and three ball worlds respectively. We test the models
on 30 independent sequences containing two, three and six balls respectively. We
report the results in Table 3.2. In each case, we also include CMSC models trained
on single ball worlds (CMSC-1B), two ball worlds (CMSC-2B) and three ball worlds
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Figure 3.10: Sharpening RGB predictions using our Fusion scheme on VSB1oo (top
two rows) and on UCF101 (bottom two rows).

(CMSC-3B) respectively as baselines. To beat these strong baselines learning the
physics of ball-ball collisions is necessary as in case of our two-ball and three-ball
test sets, there are no ball-ball and 3-ball collisions 20 steps into the future for 92%
and 98% of the starting frames (and no 6-ball collisions). Again, we see accurate
prediction by the CMSC model even at 20 time-steps in the future.

Prediction over very long time scales. Although we evaluate only 20 timesteps
into the future in Table 3.1 and Table 3.2, our models are stable over longer time-
horizons. In Fig. 3.7, we predict 100 timesteps and visualize the boundary images by
trails obtained by superposition. We notice a few failure cases where a ball reverse
direction mid table and the ball(s) get deformed or disappear.

Step Last Input CMSC Last Input(M) CMSC(M)

t+1 0.890 0.850 0.126 0.570
t+5 0.855 0.804 0.085 0.541
t+ 20 0.844 0.746 0.087 0.497

Table 3.3: Evaluation on real billiard sequences (M-masked).

Evaluation on real billiard sequences. Prediction on real billiard table sequences
is a challenging test for our models. The table fabric causes rapid deceleration of
the ball (compared to the constant velocity in the synthetic sequences). Spin is
sometimes inadvertently introduced and a segmentation algorithm applied on the
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PSNR
Step RGB prediction De-blurring Fusion (Ours) RGB prediction De-blurring Fusion (Ours) RGB prediction De-blurring Fusion (Ours)
VSB10o

Sharpness Loss

Laplacian Measure

t+2 24.4 24.5 25.1 18.5 18.5 18.6 0.142 0.139 0.155

t+3 22.2 22.9 23.1 18.2 18.2 18.3 0.121 0.109 0.127

t+4 20.4 21.7 22.3 18.1 18.1 18.2 0.103 0.114 0.118
UCF1o01

t+2 26.5 27.7 28.2 21.4 21.5 21.7 0.101 0.122 0.136

t+3 23.4 25.1 25.2 20.5 20.8 20.9 0.095 0.093 0.102

t+4 21.4 23.4 23.8 20.4 20.5 20.6 0.089 0.101 0.112

Table 3.4: Evaluation of our Fusion scheme. PSNR, Sharpness Loss and Laplacian
measure: Higher is better.

observed frames introduce artifacts. The boundaries are not always consistent across
frames of a sequence and they are jagged and change shape. We collect 350 real
billiard sequences, with one ball, as our training set. To deal with deceleration,
we experiment with increasing the number of input frames. We train our CMSC
model with six input frames and pre-train on our synthetic one ball training set.
We report the results of evaluation using F-measure on 30 independent sequences
in Table 3.3. As many boundaries (e.g. table borders) remain static the last input
baseline performs very well. For fair comparison we use a mask obtained with a ball
tracker, Our method is able to propagate the motion of the ball and beats the last
input baseline in the masked case. We show qualitative results in Fig. 3.8 as trails,
where our model predicts 20 and 50 time-steps into the future.

35 SHARPENING RGB PREDICTIONS WITH FUSION

The sharp boundaries produced by our models raise the prospect of sharpening
RGB predictions in a fusion scheme. We present our fusion architecture in Fig. 3.9,
which fuses RGB predictions of Mathieu et al. (2016) with our boundaries. Note that,
our approach can be used on top of any RGB frame prediction method and unlike
Villegas et al. (2017) is video domain agnostic. It is inspired by prior work (Eigen
et al., 2013; Mao et al., 2016) on deblurring/denoising. Like these models our fusion
model is fully convolutional. Resolution is maintained by skip connections, as in
Mao et al. (2016). Our fusion model takes as input the predicted RGB and boundaries
at each timestep and is trained with L2 loss.

Datasets and metrics. =~ We evaluate on both VSB1oo and UCF101 datasets. We
randomly select 30 and 20 videos from VSB1oo to train our CMSC model and our
fusion model. We test on the remaining 50 videos. Similarly we randomly select
1000, 500 (training) and 1000 (test) videos from UCF101. The UCF1o01 train/test
set was segmented using the method of Maninis et al. (2018). We use PSNR, the
sharpness loss measure from Mathieu et al. (2016) and the Laplacian measure as
evaluation metrics.

Baselines. We include a baseline de-blurring model. It has the same architecture
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as our fusion model, except for the top block. This baseline aims to de-blur RGB
predictions without observing our predicted boundaries.

Evaluation. We observe improved and sharper RGB predictions (see Table 3.4) *.
Our fusion model learns to reintroduce lost high frequency information.

3.6 CONCLUSION

We propose the novel task of boundary prediction and demonstrate accurate results
with our CMSC model. We argue for the key design choices, 1. A wide receptive
tield allowing the model to learn complex spatio-temporal dependencies. 2. Accurate
prediction at each time-step with a fully convolutional setup without any bottleneck
layers. 3. The context which allows for information sharing thus leading to global
consistency. We obtain sharp predictions using L2 loss (in contrast to RGB prediction,
which leads to very blurry results with L2 loss). Predictions by our CMSC model on
diverse scenarios shows that it developed a data-driven model of future boundary
motions over long time horizons. This includes dynamics of moving agents and
billiard balls. Moreover, while not being our primary goal, our predicted boundaries
lead to sharper RGB video predictions via a fusion-based approach.

* Corresponding results in Table 5 in Mathieu et al. (2016). We do not use motion masking as we
would like our model to keep still boundaries intact.
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leveraging recent advances in recognition and segmentation methods. Yet,

we are still facing challenges in bringing reliable driving to inner cities, as
those are composed of highly dynamic scenes observed from a moving platform at
considerable speeds. Anticipation becomes a key element in order to react timely
and prevent accidents. In this chapter, we argue that it is necessary to predict at
least 1 second and we thus propose a new model that jointly predicts ego motion
and people trajectories over such large time horizons. We pay particular attention
to modeling the uncertainty of our estimates arising from the non-deterministic
nature of natural traffic scenes. Our experimental results show that it is indeed
possible to predict people trajectories at the desired time horizons and that our
uncertainty estimates are informative of the prediction error. We also show that
both sequence modeling of trajectories as well as our novel method of long term
odometry prediction are essential for best performance.

PROGRESS towards advanced systems for assisted and autonomous driving is

4.1 INTRODUCTION

While methods for automatic scene understanding have progressed rapidly over the
past years, it is just one key ingredient for assisted and autonomous driving. Human
capabilities go beyond inference of scene structure and encompass a broader type of
scene understanding that also lends itself to anticipating the future.

As discussed in Chapter 1, anticipation is key in preventing collisions by predict-
ing future movements of dynamic agents, e.g. people and cars in inner cities. It is

45
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High

Mid
- - - - Low

Last Observation: ¢ Prediction: { + 5 Prediction: f + 10 Prediction: { + 15 Probability

Table 4.1: Our predictive distribution upto t + 15 frames. The heat map encodes the
probability of a certain pixel belonging to the person. The variance of the distribution
encodes the uncertainty. Row 1: Low uncertainty. Row 2: High uncertainty.

also the key to operating at practical safety distances. Without anticipation, domain
knowledge and experience, drivers would have to maintain an equally large safety
distance to all objects, which is clearly impractical in dense and cluttered inner city
traffic. Additionally, anticipation enables decision making, e.g. passing cars and
pedestrians while respecting the safety of all participants. Even at conservative and
careful driving speeds of 25miles/hour (~ 40km /hour) in residential areas, the dis-
tance traveled in 1 second corresponds roughly to the braking distance. Anticipation
of traffic scenes on a time horizon of at least 1 second would therefore enable safe
driving at such speeds.

We propose the first approach to predict people (pedestrians including cyclists)
trajectories from on-board cameras over such long-time horizons with uncertainty
estimates. Due to the particular importance for safety, we are focusing on the people
class. While pedestrian trajectory prediction has been approached in prior work, we
propose the first approach for on-board prediction. As predictions are made with
respect to the moving vehicle, we formulate a novel two stream model for long-term
person bounding box prediction and vehicle ego motion (odometry). In contrast to
prior work, we model both aleatoric (observation) uncertainty and epistemic (model)
uncertainty (Der Kiureghian and Ditlevsen, 2009) in order to arrive at an estimate of
the overall uncertainty.

Our contributions in this chapter in detail are: 1. First approach to long-term
prediction of pedestrian bounding box sequences from a mobile platform; 2. Novel
sequence to sequence model which provides a theoretically grounded approach
to quantify uncertainty associated with each prediction; 3. Detailed experimental
evaluation of alternative architectures illustrating the importance and effectiveness
of using a two-stream architecture; 4. Analysis of dependencies between uncertainty
estimates and actual prediction error leading to an empirical error bound.
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4.2 RELATED WORK

While we provide a broader discussion on related work in Chapter 2, here we discuss
related work relevant to this chapter.

Human trajectory prediction. Recent works such as Keller et al. (2011); Rehder
and Kloeden (2015) focus on the task of pedestrian trajectory prediction in 3D space.
Initial trajectories and obstacle occupancy maps are obtained by dense stereo match-
ing, assuming a linear road model of fixed width. However, 3D coordinates and
obstacle maps obtained from stereo matching can be very noisy especially in un-
known environments. Moreover, evaluation is on sequences with linear or no vehicle
ego-motion. Our method does not depend upon unreliable 3D coordinates and
needs no assumptions about scene geometry and vehicle ego-motion. Another class
of models such as Helbing and Molnar (1995); Yamaguchi et al. (2011); Robicquet et al.
(2016); Alahi et al. (2016); Trautman et al. (2013) consider the problem of pedestrian
trajectory prediction in a social context by modelling human-human interactions.
However, in the case of on-board prediction vehicle ego-motion dominates social
aspects. Moreover, most methods are trained /tested on static camera datasets which
are hand annotated with minimum observation noise. Apart from these, the class of
models such as Hu et al. (2007); Kim ef al. (2011); Morris and Trivedi (2011); Zhou
et al. (2011); Zhang et al. (2013) aim at discovering motion patterns of humans and
vehicles. Such methods cannot be used for trajectory prediction and do not consider
vehicle ego-motion.

Assisted and autonomous driving.  One of the earliest works on vehicle ego-
motion (odometry) prediction or popularly, autonomous driving, was ALVINN by
Pomerleau (1989). This work showed the possibility of directly predicting steering
angles from visual input. This system used a simple fully-connected network. More
recently, Bojarski et al. (2016) uses a convolutional neural network for this task and
achieves a autonomy of 9o% using a relatively small training set. However, the
focus is on highway driving. Xu et al. (2017) proposes a FCN-LSTM that predicts the
next vehicle odometry based on the visual input captured by an on-board camera
and previous odometry of the vehicle. Here, a diverse crowd sourced dataset is
used. However, these methods predict vehicle odometry (e.g. steering angle) only
for the next time-step. In contrast, we focus on inner-city driving and predict
multiple time-steps into the future. Santana and Hotz (2016) proposes a driving
simulator that predicts the future in the form of frames, based on the current and
past visuals observed from an on-board camera. It is well known that future frame
prediction suffers from blurriness problems. In the long-term important details get
lost (Mathieu et al., 2016). We predict the future in terms of bounding box coordinates
which remain well defined by design in the long-term.
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Figure 4.1: Two stream architecture for prediction of future pedestrian bounding
boxes.
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In order to anticipate motion of people in real-world traffic scenes from on-board
cameras, we propose a novel approach that conditions the prediction of motion of
people on predicted odometry (Section 4.3.4). Moreover, our approach models both
aleatoric and epistemic uncertainty. Our model (see Fig. 4.1) consists of two specialized
streams for prediction of pedestrian motion and odometry. The odometry specialist
stream predicts the most likely future vehicle odometry sequence. The bounding
box specialist stream consists of a novel Bayesian RNN encoder-decoder architecture
to predict odometry conditioned distributions over pedestrian trajectories and to
capture epistemic and aleatoric uncertainty. Bayesian probability theory provides us
with a theoretically grounded approach to dealing with both types of uncertainties
(Section 4.3.2).

We start by describing the bounding box prediction stream of our model and
introduce our novel Bayesian RNN encoder-decoder which provides theoretically
grounded uncertainty estimates.

4.3.1 Prediction of Pedestrian Trajectories

A bounding box corresponding to the i*" pedestrian observed on-board a vehicle
at time step t can be described by the top-left and bottom-right pixel coordinates:
bt = {(xt, yu), (Xpr, Ypr) }- We want to predict the distribution of future bounding
box sequences B¢ (where |B,| = m) of the pedestrian. We condition our predictions
on the past bounding box sequence By, the past odometry sequence O, and the
corresponding future odometry sequence O of the vehicle. The future odometry
sequence Oy is predicted conditioned on the past odometry sequence O, and on-
board visual observation. Odometry sequences consists of the speed s! and steering
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angle d' of the vehicle, that is, o = (s!,d") at time-step ¢.

p(Be = [bith, ., bi"] | By, Op, Of)
By =[0I, ..., bl],
Op = [0, ...,01],

Of = [Ot—H, ceey OH_n]

The variance of the predictive distribution p(B¢|By) provides a measure of the
associated uncertainty.

We will describe a basic sequence to sequence RNN first and then extend it to
predict distributions and provide uncertainty estimates. Our sequence to sequence
RNN (Fig. 4.1) consists of two embedding layers, an encoder RNN and a decoder
RNN. The input sequence consists of the concatenated past bounding box and
odometry sequences By, Op. The input embedding layer embeds the inputs sequence
x; into the representation £;. This embedded sequence is read by the encoder
RNN (RNNgnc) which produces a summary vector vyp,,. This summary vector is
concatenated with predicted odometry O and this summary sequence is embedded
using the second embedding layer. This embedded summary sequence 9 (containing
information about past pedestrian motion and future vehicle odometry) is used by
the decoder RNN (RNNge.) for prediction.

In the following, we extend this model to predict distributions and estimate
uncertainty.

4.3.2 Bayesian of Modelling of Uncertainty

We phrase our novel RNN encoder-decoder model in a Bayesian framework (Kendall
and Gal, 2017). We capture epistemic (model) uncertainty by inferring posterior
distribution of models (here models are RNN encoder-decoders with varying param-
eters) p(f|X,Y) likely to have generated our data {X, Y}, given the prior belief of
the distribution of RNN encoder-decoders p(f). The predictive probability over the
future sequence By given the past sequence By, is obtained by marginalizing over the
posterior distribution of RNN encoder-decoders,

p(BilBy, X, Y) = [ p(BlBy, Fp(FIX, Y)df 41)

However, the integral in Eq. (4.1) is intractable. But, we can approximate it in
two steps (Gal and Ghahramani, 2016a,c; Kendall and Gal, 2017). First, we assume
that our RNN encoder-decoder models can be described by a finite set of variables
w. Thus, we constrain the set of possible RNN encoder-decoders to ones that can be
described with w. Now, Eq. (4.1) can be equivalently written as,

p(BelBp, X, Y) = [ p(BlBp, ) p(w]X, V) (4.2)
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Second, we assume an approximating variational distribution g(w) which allows
efficient sampling,

(BilBp) = [ p(BilBp, w)g(w)deo @)

We choose the set of weight matrices {Wy,.., W} € W of our RNN enocder-
decoder as the set of variables w. Then we define an approximating Bernoulli
variational distribution g(w) over the columns w{ of the weight matrices Wy € W,

q(Wy) = M - diag([zi,j]jc:kl)

o . (4-4)
zjj = Bernoulli(p;),i =1,..,L,j=1,..., K.
where, M are the variational parameters. This distribution allows for efficient
sampling during training and testing which we discuss in the following subsection.
For an accurate approximation, we minimize the KL divergence between g(w)
and the true posterior p(w|X,Y) as the training step. It can be shown that, (as in
Gal and Ghahramani (2016b,a)),

KL(g(w) || p(w|X,Y)) < KL(q(w) || p(w))
_Z/‘?(“’) log p(by b1, By, w)dw. (4-5)

The first part corresponds to the distance to the prior model distribution and
the second to the data fit. During training and prediction, we use Monte-Carlo
integration to approximate the integrals Eq. (4.3) and Eq. (4.5) (see Section 4.3.5).

Aleatoric uncertainty can be captured along with epistemic uncertainty, by as-
suming a distribution of observation noise and estimating the sufficient statistics
of the distribution. Here, we assume it to be a 4-d Gaussian at each time-step,
N (b, %8), where, & = diag((o3");, (03 t")i, (0317)i, (07");) in x and y directions
in pixel space at time-step t + n. The predictive distribution of models parametrized
by w in our distribution p(w|X,Y) is Gaussian at every time-step and complete the
predictive distribution p(B¢|Bp, X,Y) takes the form of a mixture of Gaussians at
every time-step.

Uncertainty is the variance of our predictive distribution (Eq. (4.3)) and can be
obtained through moment matching (Gal and Ghahramani, 2016b; Kendall and Gal,
2017). If we have T samples of future pedestrian bounding box sequences B, with
corresponding samples from the RNN encoder-decoder, the total uncertainty at
time-step t is,

T T T
Ly ari- Lnam (o)

N
I
—_
-
I
—_
-
I
—_
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The first part of the sum corresponds to the epistemic uncertainty u{ and the second
part corresponds to the aleatoric uncertainty uf. We average the uncertainty across
time-steps to arrive at the complete uncertainty estimate. Next, we describe how we
sample from the Bernoulli distribution of RNN encoder-decoder weight matrices
and the final sampling from the predictive distribution p(B¢|Bp, Op, Of).

4.3.3 Bayesian RNN Encoder-Decoder

The RNN encoder-decoder model of Section 4.3.1 contains four weight matrices. In
detail, the two embedding layers contain two weight matrices W,,,,;, Wens. The other
two weight matrices belong to the encoder and decoder RNNs. We use an LSTM
formulation as RNNs. Following Graves et al. (2013) the weight matrices of an LSTM
can be concatenated into a matrix W and the LSTM can be formulated as in,

i sigm

| = (s | () )

0 sigm hi—1 (4.7)
¢ tanh

c=fOc1+i®C, h =00 tanh(c)

where i is the input gate, f is the forget gate, o0 is the output gate, c; is the cell
state, ¢ is the candidate cell state and /; is the hidden state.

We define the Bernoulli variational distribution g(w) (as in Eq. (4.4)) over the
union of all the weight matrices of our model,

w = {Wemir Wems, Wenc, Wdec} . (4-8)

where, Wey,c, Wy are the weight matrices of our RNN encoder and decoder.

Sampling from q(Weyi), §(Wems) can be done efficiently by sampling random
Bernoulli masks z.;, zems and applying these masks after the linear transformations.
In case of the input embedding,

Xt = (xt : Wemi) © Zemi (4.9)

Similarly, it was shown in Gal and Ghahramani (2016c) sampling weight matrices of
a LSTM (here, q(Wenc), 9(Wgec)) can be efficiently performed by sampling random
Bernoulli masks zy, z; and applying them at each time-step, while the LSTM encoder
and decoder are unrolled,

sigm

sigm Xt ©O2zx \
= | sigm ((ht—1®zh) W) (4.10)

tanh

1O [ [~ 1=

Sampling from our predictive distribution p(Bgyture|Bpast, Ofutures Opast) is done
by first sampling weights matrices of our Bayesian RNN encoder-decoder. Then
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the parameters of the Gaussian observation noise distribution at each time-step is
predicted. For this, we use the hidden state sequence hfiec of the RNNye. and an
additional linear transformation,

t+n _ t+n—1 .
hdeg - RNNdec(hde? 7+ Obboxs Zxs Zh)

rt+n ~t+n At+n _ t+n .
bi ’ (Ui )X/ (Ui )y = Whpox * hdec + biasppoy-

We then sample from the predicted Gaussian distribution.
Next, we describe the second stream of our two-stream model — our model for
long-term odometry prediction.

4.3.4 Prediction of Odometry

We use a similar RNN encoder-decoder architecture used for bounding box predic-
tion, but without the embedding layers. We do not place a distribution over the
weights but learn a single point estimate. We condition the predicted sequence O¢ on
the past odometry sequence O, and last visual observation on-board the vehicle. The
past odometry Opast is input to an encoder RNN which produces a summary vector
Uodo- The past odometry of the vehicle O, gives a strong cue about the future velocity
especially in the short term (~100ms). We use the same LSTM formulation described
previously as the RNN encoder; with the final hidden state h! as the summary. The
last visual observation can help in the longer term prediction of odometry, e.g. visual
cues about bends in the road, obstacles etc. Similar to Xu et al. (2017); Bojarski et al.
(2016), we employ a convolutional neural network (CNN-encoder) to embed the
visual information provided by the currently observed frame; a visual summary
vector v,;s. Next we describe our CNN-encoder architecture.

CNN-encoder. Our CNN-encoder should extract visual features to improve longer-
term (multi-step versus single-step in Xu et al. (2017); Bojarski et al. (2016)) prediction.
Therefore, we use a more complex CNN compared to Bojarski et al. (2016) and during
training we learn the parameters from scratch, unlike Xu et al. (2017) which uses a
pre-trained VGG network. Our CNN-encoder has 10 convolutional layers with ReLU
non-linearities. We use a fixed, small filter size of 3x3 pixels. We use max-pooling
after every two layers. After max-pooling we double the number of convolutional
filters; we use {32,64,128,256,512} convolutional filters. The convolutional layers are
followed by three fully connected layers with 1024, 256 and 128 neurons and ReLU
non-linearities. The output of the last fully connected layer is the visual summary
Uois-

The odometry and visual summary vectors are concatenated v = {v,4,, Vyis } and
read by the RNN decoder (RNNg.). We use the same LSTM formulation described
previously as the RNN-decoder. As before, the hidden state of the LSTM decoder is
used for predicting the future odometry sequence through a linear transformation.

hé:él = RNNdec(hggg_ll {Uodor Uz;is})
0; " = Wogo * BT + bias,gp.
We next describe training and inference in the complete two-stream model.
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4.3.5 Training and Inference

Training.  The two streams are trained separately. As the odometry prediction
stream predicts point estimates, it is trained first by minimizing the MSE over the
training set. The Bayesian bounding-box prediction stream is trained by estimating
(Monte-Carlo) and minimizing the KL divergence of its approximate weight distri-
bution g(w) (Eq. (4.5)). More specifically, 1. We sample a mini-batch of size T of
examples from the training set. 2. For each example, weights { W,y,;, Wems, Wene, Wiec }
are sampled from gq(w) Eq. (4.8), by sampling Bernoulli masks as in Eq. (4.9) and
Eq. (4.10). 3. For each example, the predicted means By and variances ¢ of the
heteroscedastic models parameterized by w are inferred. 4. The KL divergence ??
can be equivalently minimized by (similar to Gal and Ghahramani (2016b); Kendall
and Gal (2017)) the following loss,

1 Y& a2 e .
(5 L LB — 613 ()2 ) + A Wa + log ?
i=1j=1

where, | Bf |= n and N pedestrians. The left part is the equivalent of the negative log
likelihood term in Eq. (4.5). The middle part is weight regularization parameterized
by A, equivalent to the KL term in Eq. (4.5). The right part is additional regularization
as in Kendall and Gal (2017), to ensure finite predicted variance.

The ADAM optimizer (Kingma and Ba, 2015) is used during training. For training
sequences longer than |By| + [B| (|Op + Of| respectively) we use a sliding window
to convert to multiple sequences. Moreover, as the sequences in the training set are
of varying lengths, we use a curriculum learning (CL) approach. We fix the length
of the conditioning sequence |Bp|, |Op| and train for increasing longer time horizons
|Bg|, |O¢| (initializing the model parameters with those for shorter horizons). This
allows us to train on a larger part of the Cityscapes training set (also on sequences
shorter than |Bp,| + [B¢| of the final model) and leads to faster convergence.

Inference. Given a bounding box sequence B, and corresponding odometry
sequence (and visual observation), the odometry prediction stream is first used to
predict O¢. We sample from the predictive distribution (Eq. (4.3)) by, 1. Sampling the
weight matrices {W,y,i, Wems, Wene, Wyee } of the Bayesian bounding box prediction
stream from the (learned) approximate distribution g(w), by sampling Bernoulli
masks as in Eq. (4.9) and Eq. (4.10), 2. The RNNy, is unrolled to obtain a sample
{B¢, 0,0 }. The associated uncertainty is obtained using multiple samples as in

Eq. (4.6).

4.4 EXPERIMENTS

We evaluate our model on real-world on-board street scene data and show predictions
over a 1 second time horizon along with the associated uncertainty.

Dataset and evaluation metric. =~ We evaluate on the Cityscapes dataset (Cordts et al.,
2016) which contains 2975 training, 500 validation and 1525 test video sequences
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MSE L

[Bp| [Bp|
Method Odometry 4 6 8 4 6 8
Kalman Filter None 1938 1289 1098 X X X
LST™M None 692 663 650 8.11 7.99 7.77

LSTM-Aleatoric None 772 758 750 5.92 5.81 5.54
LSTM-Bayesian None 647 624 618 4.31 4.26 4.13

LSTM-Bayesian Ground-truth 374 358 343 3.94 3.93 3.88

Table 4.2: Bounding box prediction error with varying [B,|.

Method MSE L
Social LSTM Alahi et al. (2016) 1514 5.63
LSTM-Bayesian 695 3.97

LSTM-Bayesian (centers) 648 x

Table 4.3: Bounding box center prediction error.

of length 1.8 seconds (30 frames). The video resolution is 2048 x 1024 pixels. The
sequences were recorded on-board a vehicle in inner cities. Each sequence has
associated odometry information. Pedestrian tracks were automatically extracted
using the tracking by detection method of Tang et al. (2016). Detections were obtained
using the Faster R-CNN based method of Zhang et al. (2017). This mimics real world
autonomous/assisted driving systems where detections/tracks are obtained with
a state-of-the-art detector/tracker and we have to deal with noise introduced by
the detector and on rare occasions false positives from the pedestrian detector and
tracker failures. We use as evaluation metric MSE in pixels (of the mean of the
predictive distribution) and the negative log-likelihood L. The £ metric measures
the probability assigned to the true sequence by our predictive distribution. We
report these metrics averaged across all time-steps and plots per time-step. We use
a dropout rate of 0.35, A = 10~* (tuned on validation set) and use 50 Monte-Carlo
samples across all Bayesian models.

Evaluation of bounding box prediction. = We independently evaluate the first
Bayesian LSTM stream of our two stream model, without conditioning it on pre-
dicted odometry. We predict 15 time-steps into the future and report the results
in Table 4.2. We compare its performance with, 1. A linear Kalman filter baseline.
2. A homoscedastic LSTM encoder-decoder model (LSTM). 3. A heteroscedastic
LSTM encoder-decoder (LSTM-Aleatoric). Finally, as an Oracle case, we compare
against a Bayesian version in which the LSTM encoder can see the past odometry
and the LSTM decoder can see the true future odometry at every time-step. We also
vary the length of the conditioning sequence |Bp| (training/test sets constant across
varying |Bp|). In Table 4.2, we see that the homoscedastic LSTM model (2nd row)
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Method Visual Speed (m/sec) Angle (degrees)

Constant None 1.62 26.85
Kalman Filter None 0.053 2.44
LSTM None 0.056 0.94
LSTM RGB 0.048 0.88

Table 4.4: Odometry prediction error (MSE), |Op| = {8}.

outperforms the linear Kalman filter (1st row). This shows that many bounding box
sequences have a complex motion and therefore cannot be modelled by a Kalman
tilter. We see that the heteroscedastic LSTM (LSTM-Aleatoric, 3rd row) outperforms
the homoscedastic LSTM (2nd row) with respect to the £ metric. This means that the
heteroscedastic LSTM learns to capture uncertainty and assigns higher probability
to the true bounding box sequence. However, when epistemic uncertainty is not
modelled, aleatoric uncertainty tried to compensate (as in Kendall and Gal (2017))
and this leads to poorer MSE. Finally, our Bayesian LSTM (4th row) outperforms all
other methods. This can be attributed to two factors, 1. The richer Gaussian mixture
model fitted by the Bayesian LSTM can capture aleatoric and epistemic uncertainty
and fits the data distribution better (evidenced by £ metric). 2. Additional intro-
duced regularization (dropout and weight). Furthermore, we see that increasing the
length of the conditioning sequence improves model performance. However, the
performance gain saturates at |B,s¢| = 8. Henceforth, we will report results using
|Bp| = {4,8} in the following. Finally, the odometry oracle case outperforms our
Bayesian LSTM by a large margin. This shows that knowledge of vehicle odometry
is crucial for good performance.

Comparison with Social LSTM (Alahi et al., 2016).  We compare our Bayesian
LSTM model with the vanilla LSTM * model of Alahi et al. (2016) (with 128 neurons)
that predicts trajectories independently in Table 4.3. Both models are trained to
predict sequences of bounding box centers (length 15, given 8). Our Bayesian LSTM
model performs better as it is more robust to mistakes during recursive prediction.
The model of Alahi et al. (2016) observes true past pedestrian coordinates during
training. However, during prediction it observes its own predictions causing errors
to be propagated through multiple steps of prediction. Furthermore, we compare
both methods to the centers obtained from the predictions of our Bayesian LSTM
(second row of Table 4.2). The results show that we can improve upon bounding box
center prediction by predicting bounding boxes.

Evaluation of odometry prediction. = We train our odometry prediction LSTM
encoder-decoder on the visual and odometry data of the Cityscapes training set.
As many sequences have close to zero steering angle, we augment the training
set to improve prediction performance. We reflect the steering angle and flip last
observed image left to right of sequences with non-zero average steering angle.

*The version with social pooling did not converge on our dataset.



56 CHAPTER 4. LONG-TERM ON-BOARD PREDICTION UNDER UNCERTAINTY

MSE L

[Bp| [Bp|
Method Streams Visual 4 8 4 8

Kalman Filter X None 1938 1098 x X
LSTM-Bayesian ~ One None 572 546 4.03 3.97
LSTM-Bayesian ~ Two RGB 532 505 3.99 3.92

Table 4.5: Evaluation of our Bayesian two stream model (Fig. 4.1).
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Table 4.6: MSE per time-step of models in Table 4.2 row 1, 4, 5 and Table 4.5 row 3.

This increases the training data with non-zero steering angles by a factor of two.
We use MSE between the predicted future vehicle velocity and steering angles as
evaluation metric. The velocity is in meters per second and angle in degrees. We
include as baselines: 1. A constant steering predictor that predicts the last observed
odometry. 2. A linear Kalman filter. 3. Our LSTM encoder-decoder without visual
observation (v = {v,4,}). The third baseline is an ablation study. We observe no
significant performance difference between |Op| = {4} and |Op| = {8}. We evaluate
15 time-steps into the future and report the results in Table 4.4. We observe that
the constant angle predictor performs significantly worse compared to the other
baselines. This shows that the Cityscapes test set includes a significant number of
non-trivial sequences with complex vehicle trajectories. We observe that the Kalman
filter is able to quite accurately predict the vehicle speed. This is because most
vehicles are travelling with constant speed or accelerating/decelerating smoothly.
However, the performance of the linear Kalman filter is worse compared to the
LSTM models with respect to steering angle. This means that many sequences have
non-linear vehicle trajectories. The superior performance of our model compared to
the RNN baseline without visual observations, especially in the long-term shows
that our CNN encoder extracts information useful for long-term prediction.

Evaluation of our two-stream model. We perform an ablation study of our
two-stream model (Fig. 4.1) and compare with a single-stream Bayesian LSTM
encoder-decoder model where the encoder observes the concatenated past bounding
box and velocity sequence {Bp,Op } and the decoder predicts the future bounding
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Figure 4.2: Quality of our uncertainty metric: plots 1 and 2 - uncertainty versus
squared error, plots 3 and 4 - uncertainty versus maximum observed squared error.

Last Observation: ¢ Prediction: f + 5 Prediction: f + 10 Prediction: t + 15

Figure 4.3: Rows 1-3: Point estimates. Blue: Ground-truth, Red: Kalman Filter
(Table 4.2 row 1), Yellow: One-stream model (Table 4.2 row 4), Green: Two-stream
model (mean of predictive distribution, Table 4.5 row 3). Rows 4-6: Predictive
distributions of our two-stream model as heat maps.

box sequence B¢. This model does not see predicted future odometry. We evaluate the
models and report the results in Table 4.5 and plot the MSE per time-step Table 4.6.
The results show that jointly predicting odometry with pedestrian bounding boxes
(3rd row) significantly improves performance (2nd row). The predicted odometry
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helps our two-stream model recover a significant fraction of the performance of
the Oracle case in Table 4.2 row 5. The limiting factor here is that the odometry is
difficult to predict in certain situations, e.g. at T-intersections. Apart from cases with
inaccurate odometry prediction, the residual error of our two-stream (and the Oracle
case) on a large part is due to the noise of the pedestrian detector and tracker failures.
We show qualitative examples in Fig. 4.3. Row 1 shows point estimates under linear
vehicle ego-motion and Rows 2, 3 non-linear vehicle ego-motion. Our two-stream
model (mean of predictive distribution) outperforms other methods in the second
case. Rows 4-5 shows the predictive distributions of the two-stream model under
linear vehicle and pedestrian motion. The distribution is symmetric and has high
aleatoric uncertainty which captures detection noise and possible pedestrian motion.
Row 6 shows a case of a skewed distribution with high epistemic uncertainty which
captures uncertainty in vehicle motion.

Quality of our uncertainty metric. =~ We evaluate our uncertainty metric in Fig. 4.2.
The first two plots show the aleatoric and epistemic uncertainty to the squared error
of the mean of the predictive distribution of our two-stream model. We use log-log
plots for better visualization as most sequences have low error (note, log(530) ~ 6.22
the MSE of our two stream model, Table 4.5). We see that the epistemic and aleatoric
uncertainties correlate well with the squared error. This means that for sequences
where the mean of our predictive distribution is far from the true future sequence,
our predictive distribution has a high variance (and vice versa). Therefore, for
sequences with multiple likely futures, where the mean estimate would have high
error, our model learns to predict diverse futures. In the third plot of Fig. 4.2, we plot
the maximum log squared error (of the mean of the predictive distribution) observed
at a certain predicted uncertainty level (sum of aleatoric and epistemic) in the test
test. In the fourth plot, we plot the uncertainty with the maximum observed squared
error at time-steps t 4 {5,10,15}. In both cases, uncertainty and observed maximum
error is well correlated. This shows that the predicted uncertainty upper bounds the error
of the mean of the predictive distribution. Therefore, the predicted uncertainty helps
us express trust in predictions and has the potential to serve as a basis for better
decision making.

4.5 CONCLUSION

We highlight the importance of anticipation for practical and safe driving in inner
cities. We contribute to this important research direction the first model for long term
prediction of pedestrians from on-board observations. We show predictions over
a time horizon of 1 second. Predictions of our model are enriched by theoretically
grounded uncertainty estimates. Key to our success is a Bayesian approach and long
term prediction of odometry. We evaluate and compare several different architecture
choices and arrive at a novel two-stream Bayesian LSTM encoder-decoder.
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modal, particularly on long time horizons. As discussed in Chapter 4, dropout

based Bayesian inference provides a computationally tractable, theoretically well
grounded approach to learn likely hypotheses/models to deal with uncertain futures
and make predictions that correspond well to observations — are well calibrated.
However, it turns out that such approaches fall short to capture complex real-world
scenes, even falling behind in accuracy when compared to the plain deterministic
approaches. This is because the used log-likelihood estimate discourages diversity.
In this work, we propose a novel Bayesian formulation for anticipating future scene
states which leverages synthetic likelihoods. Unlike the formulation in Chapter 4, our
novel Bayesian formulation encourages the learning of diverse models to accurately
capture the multi-modal nature of future scene states. We show that our approach
achieves accurate state-of-the-art predictions and calibrated probabilities through
extensive experiments for scene anticipation on Cityscapes dataset.

IN real-world scenarios, future states become increasingly uncertain and multi-

5.1 INTRODUCTION

The future states of street scenes are inherently uncertain and the distribution of
outcomes is often multi-modal. This is especially true for important classes like
pedestrians. Recent works on anticipating street scenes (Luc et al., 2017; Jin et al.,
2017; Nabavi et al., 2018) do not systematically consider uncertainty.

Bayesian inference provides a theoretically well founded approach to capture both

59
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Figure 5.1: Blue: Groundtruth distribution. Black: Models sampled at random from
the model distribution.

model and observation uncertainty but with considerable computational overhead.
A recently proposed approach (Gal and Ghahramani, 2016b; Kendall and Gal, 2017),
as discussed in Chapter 4, uses dropout to represent the posterior distribution
of models and capture model uncertainty. This approach has enabled Bayesian
inference with deep neural networks without additional computational overhead.
Moreover, it allows the use of any existing deep neural network architecture with
minor changes.

However, when the underlying data distribution is multimodal and the model set
under consideration do not have explicit latent state/variables (as most popular deep
deep neural network architectures), the approach of Gal and Ghahramani (2016b);
Kendall and Gal (2017) is unable to recover the true model uncertainty (see Fig. 5.1
and Osband (2016)). This is because this approach is known to conflate risk and
uncertainty (Osband, 2016). This limits the accuracy of the models over a plain
deterministic (non-Bayesian) approach. The main cause is the data log-likelihood
maximization step during optimization — for every data point the average likelihood
assigned by all models is maximized. This forces every model to explain every data
point well, pushing every model in the distribution to the mean. We address this
problem through an objective leveraging synthetic likelihoods (Wood, 2010; Rosca
et al., 2017) which relaxes the constraint on every model to explain every data point,
thus encouraging diversity in the learned models to deal with multi-modality.

In this chapter, 1. We develop the first Bayesian approach to anticipate the
multi-modal future of street scenes and demonstrate state-of-the-art accuracy on
the diverse Cityscapes dataset without compromising on calibrated probabilities,
2. We propose a novel optimization scheme for dropout based Bayesian inference
using synthetic likelihoods to encourage diversity and accurately capture model
uncertainty, 3. Finally, we show that our approach is not limited to street scenes
and generalizes across diverse tasks such as digit generation and precipitation
forecasting.

Note that, as this chapter is based on the work Bhattacharyya et al. (2019a), we
compare to prior work on street scene prediction; Luc et al. (2017); Nabavi et al.
(2018). We provide an overview of more recent work in Chapter 2.
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5.2 BAYESIAN MODELS FOR PREDICTION UNDER UNCERTAINTY

We phrase our models in a Bayesian framework, to jointly capture model (epistemic)
and observation (aleatoric) uncertainty (Kendall and Gal, 2017). We begin with
model uncertainty.

5.2.1 Model Uncertainty

Let x € X be the input (past) and y € Y be the corresponding outcomes. Consider
f : x — y, we capture model uncertainty by learning the distribution p(f|X,Y)
of generative models f, likely to have generated our data {X,Y}. The complete
predictive distribution of outcomes y is obtained by marginalizing over the posterior
distribution,

Py XY) = [ plylx p(FIX,Y)df 51)

However, the integral in Eq. (5.1) is intractable. But, we can approximate it in
two steps (Gal and Ghahramani, 2016b). First, we assume that our models can be
described by a finite set of variables w. Thus, we constrain the set of possible models
to ones that can be described with w. Now, Eq. (5.1) is equivalently,

plyxXY) = [ plyb@)p(wlX, Y)do. (52)

Second, we assume an approximating variational distribution g(w) of models
which allows for efficient sampling. This results in the approximate distribution,

Py X, Y) & plyb) = [ plylxw)q(w)de. 53)

For convolutional models, Gal and Ghahramani (2016a) proposed a Bernoulli
variational distribution defined over each convolutional patch. The number of
possible models is exponential in the number of patches. This number could be very
large, making it difficult to optimize over this very large set of models. In contrast,
in our approach (Eq. (5.4)), the number of possible models is exponential in the
number of weight parameters, a much smaller number. In detail, we choose the set
of convolutional kernels and the biases {(Wj,b1),...,(Wr,br)} € W of our model as
the set of variables w. Then, we define the following novel approximating Bernoulli

variational distribution q(w) independently over each element w;c,] ;. (correspondingly
by) of the kernels and the biases at spatial locations {i,j},

qg(Wk) = Mg © Zg

Z;(’/jk = Bernoulli(pK), k, - 1;- ce |Kl|/ k= 1/- ct |K| : (54)
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Note, © denotes the hadamard product, My are tuneable variational parameters,
zk, ¢ € Zk are the independent Bernoulli variables, px is a probability tensor equal to

the size of the (bias) layer, |K| (|K’|) is the number of kernels in the current (previous)
layer. Here, px is chosen manually. Moreover, in contrast to Gal and Ghahramani
(2016a), the same (sampled) kernel is applied at each spatial location leading to the
detection of the same features at varying spatial locations. Next, we describe how
we capture observation uncertainty.

5.2.2 Observation Uncertainty

Observation uncertainty can be captured by assuming an appropriate distribution of
observation noise and predicting the sufficient statistics of the distribution (Kendall
and Gal, 2017). Here, we assume a Gaussian distribution with diagonal covariance
matrix at each pixel and predict the mean vector 4/ and co-variance matrix o/ of
the distribution. In detail, the predictive distribution of a generative model draw
from & ~ g(w) at a pixel position {i,j} is,

P (y|x, @) = N (4" |x, @), (¢ ]x, @)) . (5.5)

We can sample from the predictive distribution p(y|x) (Eq. (5.3)) by first sam-
pling the weight matrices w from Eq. (5.4) and then sampling from the Gaussian
distribution in Eq. (5.5). We perform the last step by the linear transformation of a
zero mean unit diagonal variance Gaussian, ensuring differentiability,

y” ~ ;u (x|w) +z X0 (x|w) where p(z) is N(0,I) and @ ~ g(w). (5.6)

where, ¥/ is the sample drawn at a pixel position {i,j} through the liner trans-
formation of z (a vector) with the predicted mean "l and variance o™/, In case of
street scenes, y'/ is a class-confidence vector and sample of final class probabilities is
obtained by pushing ¥/ through a softmax.

5.2.3 Training

For a good variational approximation (Eq. (5.3)), our approximating variational
distribution of generative models g(w) should be close to the true posterior p(w|X,Y).
Therefore, we minimize the KL divergence between these two distributions. As
shown in Gal and Ghahramani (2016b,a); Kendall and Gal (2017), the KL divergence
is given by (over i.i.d data points),

KL(q(@) || p(@lX,Y) xKL((@) || p(w)) = [ qlw)logp(¥[X,w)do  (57)
=KL(9(w) || p(w)) = [ 9(w)( [ log plylx @)d(x,y))deo.
=KL((w) [| p(@)) = [ ( [ a(w)log plylx,w)dew)d(x,y).
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The log-likelihood term at the right of (Eq. (5.7)) considers every model for every
data point. This imposes the constraint that every data point must be explained
well by every model. However, if the data distribution (x,y) is multi-modal, this
would push every model to the mean of the multi-modal distribution (as in Fig. 5.1
where only way for models to explain both modes is to converge to the mean). This
discourages diversity in the learned modes. In case of multi-modal data, we would
not be able to recover all likely models, thus hindering our ability to fully capture
model uncertainty. The models would be forced to explain the data variation as
observation noise (Osband, 2016), thus conflating model and observation uncertainty.
We propose to mitigate this problem through the use of an approximate objective
using synthetic likelihoods (Wood, 2010; Rosca et al., 2017) — obtained from a classifier.
The classifier estimates the likelihood based on whether the models & ~ g(w) explain
(generate) data samples likely under the true data distribution p(y|x). This removes
the constraint on models to explain every data point — it only requires the explained
(generated) data points to be likely under the data distribution. Thus, this allows
models @ ~ g(w) to be diverse and deal with multi-modality. Next, we reformulate
the KL divergence estimate of Eq. (5.7) to a likelihood ratio form which allows us to
use a classifier to estimate (synthetic) likelihoods,

~KL((w) || p(w)) —/’/qwl%pWMwawuwy

=KL(q(w) || p(w /ﬁl/q (log ? |‘ ))+40gP64Xde)dbgy) (5.8)
()

«KL(g(w) || p(e)) ~ | [ atw)iog EFodw dix, ).

In the second step of Eq. (5.8), we divide and multiply the probability assigned
to a data sample by a model p(y|x,w) by the true conditional probability p(y|x)
to obtain a likelihood ratio. We can estimate the KL divergence by equivalently
estimating this ratio rather than the true likelihood. In order to (synthetically)
estimate this likelihood ratio, let us introduce the variable 6 to denote, p(y|x,0 = 1)
the probability assigned by our model w to a data sample (x,y) and p(y|x,0 = 0)
the true probability of the sample. Therefore, the ratio in the last term of Eq. (5.8) is,

—KL(g(w) | plw)) ~ [ [ a(e)tog EE¥ L= o )

)
:KL(E](CU) || p(w)) —//L](CU) lOg de d(X,Y) (Using Bayes theorem) (59)

(8 =0lxy)
_ p0=1lxy)
=KL(g(w) || plw)) = [ [ alw)log 7 =500 dw ()
In the last step of Eq. (5.9) we use the fact that the events 6 = 1 and 6 = 0 are
mutually exclusive. We can approximate the ratio % by jointly learning a

discriminator D(x, §) that can distinguish between samples of the true data distri-
bution and samples (x, ) generated by the model w, which provides a synthetic
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estimate of the likelihood, and equivalently integrating directly over (x,¥),

~KL(g(w) || plw)) ~ [ [ a(e)tog (P32 e dixg). (1o

Note that the synthetic likelihood (13()’?)}:)}, )) is independent of any specific pair
(x,y) of the true data distribution (unlike the log-likelihood term in Eq. (5.7)), its
value depends only upon whether the generated data point (x, §) by the model w is
likely under the true data distribution p(y|x). Therefore, the models w have to only
generate samples (x,§) likely under the true data distribution. The models need
not explain every data point equally well. Therefore, we do not push the models
w to the mean, thus allowing them to be diverse and allowing us to better capture
uncertainty.

Empirically, we observe that a hybrid log-likelihood term using both the log-
likelihood terms of Eq. (5.10) and Eq. (5.7) with regularization parameters « and p
(with &« > B) stabilizes the training process,

//q log Dlx (Y)y)>dw dx,y)+ B //q w)log p(y|x, w)dw d(x,y).
(5.11)

Note that, although we do not explicitly require the posterior model distribution
to explain all data points, due to the exponential number of models afforded by
dropout and the joint optimization (min-max game) of the discriminator, empirically
we see very diverse models explaining most data points. Moreover, empirically
we also see that predicted probabilities remain calibrated. Next, we describe the
architecture details of our generative models w and the discriminator D(x, §).

5.2.4 Model Architecture for Street Scene Prediction

The architecture of our ResNet based
generative models in our model distribu-
tion g(w) is shown in Fig. 5.2. The gen-
erative model takes as input a sequence
of past segmentation class-confidences
sp, the past and future vehicle odometry
0p, 0f (X = {sp,0p,0¢}) and produces the ~ {sp,0p,04 + + + + oy = {5}
class-confidences at the next time-step _

as output. The additional conditioning Figure 5.2: The architecture of our ResNet
on vehicle odometry is because the se- based generative models for street scene
quences are recorded in frame of refer- Prediction in our model distribution g(w).
ence of a moving vehicle and therefore the future observed sequence is dependent
upon the vehicle trajectory. We use recursion to efficiently predict a sequence of fu-
ture scene segmentations y = {s¢}. The discriminator takes as input s; and classifies
whether it was produced by our model or is from the true data distribution.
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In detail, generative model architecture consists of a fully convolutional encoder-
decoder pair. This architecture builds upon prior work of Luc et al. (2017); Jin et al.
(2017), however with key differences. In Luc et al. (2017), each of the two levels of the
model architecture consists of only five convolutional layers. In contrast, our model
consists of one level with five convolutional blocks. The encoder contains three
residual blocks with max-pooling in between and the decoder consists of a residual
and a convolutional block with up-sampling in between. We double the size of the
blocks following max-pooling in order to preserve resolution. This leads to a much
deeper model with fifteen convolutional layers, with constant spatial convolutional
kernel sizes. This deep model with pooling creates a wide receptive field and helps
better capture spatio-temporal dependencies. The residual connections help in the
optimization of such a deep model. Computational resources allowing, it is possible
to add more levels to our model. In Jin et al. (2017), a model is considered which uses
a Res101-FCN as an encoder. Although this model has significantly more layers, it
also introduces a large amount of pooling. This leads to loss of resolution and spatial
information, hence degrading performance. Our discriminator model consists of
six convolutional layers with max-pooling layers in-between, followed by two fully
connected layers.

EXPERIMENTS

53

Next, we evaluate our approach on synthetic 2D data, MNIST digit generation and
street scene anticipation on Cityscapes.
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Figure 5.3: Blue: Data points. Black:
Sampled models @ € g(w) learned by
the Bayes-S approach. All models fit to
the mean.

5.3.1 Multi-modal 2D Data.

Figure 5.4: Blue: Data points. Black:
Sampled models @ € g(w) learned by
the Bayes-SL approach. We recover mod-
els covering both modes.

We show results on simple multi-modal 2d data as in the motivating example in
the introduction. The data consists of two parts: x € [—10,0] we have y = 0 and
x € [0,10] we have y = (—0.3,0.3). The set of models under consideration is a two



66 CHAPTER 5. BAYESIAN PREDICTION OF FUTURE STREET SCENES

Groundtruth  Bayes-S Samples  Bayes-SL Samples Method ~ Top-10%
PayerS 759504
EICIEICIE] EICIEEE . 5o

Table 5.1: Left: MNIST generations: The models see the non grayed-out region of
the digit. The samples are generated from models drawn at random from @ ~ g(w).
Right: Top-10% accuracy on MNIST generation.

Timestep

Method +0.06sec  +0.18sec +0.54secC
Last Input (Luc ef al. (2017)) X 49.4 36.9
Luc et al. (2017) (ft) X 59.4 47.8 Method mloU
Last Input (Nabavi et al. (2018)) 62.6 51.0 X Dilation1o (Luc et al., 2017)  68.8
Nabavi et al. (2018) 71.3 60.0 X PSPNet (Nabavi ef al., 2018)  75.7
Last Input (Ours) 67.1 52.1 38.3 PSPNet (Ours) 76.9
Bayes-S (mean) 71.2 64.8 45.7
Bayes-WD (mean) 73.7 63.5 44.0 Table 5.3: Comparison
Bayes-WD-SL . . . . . .
B WD-SL (mean) R A of segmentation estimation

ayes-WD-SL (ft, mean) X 65.1 51.2 hod Ci 1
Bayes-WD-SL (top 5%) 75.3 65.2 49.5 met_ ods on ltyscap €s val-
Bayes-WD-SL (ft, top 5%) x 66.7 52.5 idation set.

Table 5.2: Comparing mean predictions to the state-
of-the-art.

hidden layer neural network with 256-128 neurons with 50% dropout. We show
10 randomly sampled models from @ ~ g(w) learned by the Bayes-S approach in
Figure 5.3 and our Bayes-SL approach in Figure 5.4 (with « = 1, B = 0). We assume
constant observation uncertainty (=1). We clearly see that our Bayes-SL learns models
which cover both modes, while all the models learned by Bayes-S fit to the mean.
Clearly showing that our approach can better capture model uncertainty.

5.3.2 MNIST Digit Generation

Here, we aim to generate the full MNIST digit given only the lower left quarter of the
digit. This task serves as an ideal starting point as in many cases there are multiple
likely completions given the lower left quarter digit, e.g. 5 and 3. Therefore, the
learned model distribution g(w) should contain likely models corresponding to these
completions. We use a fully connected generator with 6000-4000-2000 hidden units
with 50% dropout probability. The discriminator has 1000-1000 hidden units with
leaky ReLU non-linearities. We set B = 10~ for the first 4 epochs and then reduce
it to o, to provide stability during the initial epochs. We compare our synthetic
likelihood based approach (Bayes-SL) with, 1. A non-Bayesian mean model, 2. A
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standard Bayesian approach (Bayes-S), 3. A Conditional Variational Autoencoder
(CVAE) (architecture as in Sohn et al. (2015)). As evaluation metric we consider
(oracle) Top-k% accuracy (Lee et al., 2017b). We use a standard Alex-Net based
classifier to measure if the best prediction corresponds to the ground-truth class —
identifies the correct mode — in Table 5.1 (right) over 10 splits of the MNIST test-set.
We sample 10 models from our learned distribution and consider the best model.
We see that our Bayes-SL performs best, even outperforming the CVAE model. In
the qualitative examples in Table 5.1 (left), we see that generations from models
@ ~ g(w) sampled from our learned model distribution corresponds to clearly
defined digits (also in comparison to Figure 3 in Sohn et al. (2015)). In contrast, we
see that the Bayes-S model produces blurry digits. All sampled models have been
pushed to the mean and show little advantage over a mean model.

5.3.3 Cityscapes Street Scene Anticipation

Next, we evaluate our apporach on the Cityscapes dataset — anticipating scenes
more than 0.5 seconds into the future. The street scenes already display considerable
multi-modality at this time-horizon.

Evaluation metrics and baselines. ~We use PSPNet (Zhao et al., 2017a) to segment
the full training sequences as only the 20" frame has groundtruth annotations. We
always use the annotated 20" frame of the validation sequences for evaluation
using the standard mean Intersection-over-Union (mloU) and the per-pixel (negative)
conditional log-likelihood (CLL) metrics. We consider the following baselines for
comparison to our Resnet based (architecture in Fig. 5.2) Bayesian (Bayes-WD-SL)
model with weight dropout and trained using synthetic likelihoods: 1. Copying the
last seen input; 2. A non-Bayesian (ResG-Mean) version; 3. A Bayesian version with
standard patch dropout (Bayes-S); 4. A Bayesian version with our weight dropout
(Bayes-WD). Note that, combination of ResG-Mean with an adversarial loss did not
lead to improved results (similar observations made in Luc et al. (2017)). We use
grid search to set the dropout rate (in Eq. (5.4)) to 0.15 for the Bayes-S and o.20 for
Bayes-WD(-SL) models. We set &, = 1 for our Bayes-WD-SL model. We train all
models using Adam (Kingma and Ba, 2015) for 50 epochs with batch size 8. We use
one sample to train the Bayesian methods as in Gal and Ghahramani (2016a) and
use 100 samples during evaluation.

Comparison to state of the art. We begin by comparing our Bayesian models to
state-of-the-art methods (Luc et al., 2017, Nabavi et al., 2018) in Table 5.2. We use the
mloU metric and for a fair comparison consider the mean (of all samples) prediction
of our Bayesian models. We always compare to the groundtruth segmentations of the
validation set. However, as all three methods use a slightly different semantic seg-
mentation algorithm (Table 5.3) to generate training and input test data, we include
the mlIoU achieved by the Last Input of all three methods. Similar to Luc et al. (2017),
we fine-tune (ft) to predict at 3 frame intervals for better performance at +0.54sec.
Our Bayes-WD-SL model outperforms baselines and improves on prior work by 2.8
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Timestep Timestep
t+5 t+ 10 t+5 t+10
Method mloU CLL mloU CLL Method mloU mloU
Last Input 457 086 371 135 CVAE (First)  58.7 455
ResG-Mean 50.1 0.49 46.6 0.89 CVAE (Mid) 589 466

CVAE (Last) 59.2  46.8

Bayes-S 58.8 048 46.1 o0.80 Bayes WD-SL 602  47.1

Bayes-WD 50.2 048 46.6 0.79
Bayes-WD-SL  60.2  0.47 47.1 0.79

Table 5.5: Ablation study
Table 5.4: Evaluation on capturing uncertainty (us- and comparison to a
ing mloU top 5%). CVAE baseline.

mloU at +o0.06sec and 4.8 mloU/3.4 mloU at +o0.18sec/+0.54sec respectively. Our
Bayes-WD-SL model also obtains higher relative gains in comparison to Luc et al.
(2017) with respect to the Last Input Baseline. These results validate our choice
of model architecture and show that our novel approach clearly outperforms the
state-of-the-art. The performance advantage of Bayes-WD-SL over Bayes-S shows
that the ability to better model uncertainty does not come at the cost of lower mean
performance. However, at larger time-steps as the future becomes increasingly uncer-
tain, mean predictions (mean of all likely futures) drift further from the ground-truth.
Therefore, next we evaluate the models on their (more important) ability to capture
the uncertainty of the future.

Evaluation of predicted uncertainty. = Next, we evaluate whether our Bayesian
models are able to accurately capture uncertainty and deal with multi-modal futures,
upto t + 10 frames (0.6 seconds) in Table 5.4. We consider the mean of (oracle) best
5% of predictions (Lee et al., 2017b) of our Bayesian models to evaluate whether
the learned model distribution g(w) contains likely models corresponding to the
groundtruth. We see that the best predictions considerably improve over the mean
predictions — showing that our Bayesian models learns to capture uncertainty and
deal with multi-modal futures. Quantitatively, we see that the Bayes-S model
performs worst, demonstrating again that standard dropout (Kendall and Gal, 2017)
struggles to recover the true model uncertainty. The use of weight dropout improves
the performance to the level of the ResG-Mean model. Finally, we see that our
Bayes-WD-SL model performs best. In fact, it is the only Bayesian model whose
(best) performance exceeds that of the ResG-Mean model (also outperforming state-
of-the-art), demonstrating the effectiveness of synthetic likelihoods during training.
In Fig. 5.5 we show examples comparing the best prediction of our Bayes-WD-SL
model and ResG-Mean at t + 9. The last row highlights the differences between the
predictions — cyan shows areas where our Bayes-WD-SL is correct and ResG-Mean is
wrong, red shows the opposite. We see that our Bayes-WD-SL performs better at
classes like cars and pedestrians which are harder to predict (also in comparison to
Table 5 in Luc et al. (2017)). In Fig. 5.6, we show samples from randomly sampled
models @ ~ g(w), which shows correspondence to the range of possible movements
of bicyclists/pedestrians. Next, we further evaluate the models with the CLL metric



5.3 EXPERIMENTS 69

Groundtruth, t + 9

Figure 5.5: Bayes-WD-SL (top 1) vs ResG-Mean. Cyan: Bayes-WD-SL is correct and
ResG-Mean is wrong. Red: Bayes-WD-SL is wrong and ResG-Mean is correct, white:
both right, black: both wrong/unlabeled.

Sample #1,t + 9 Sample #2,t + 9 Sample #3,t + 9 Sample #4, t + 9

Figure 5.6: Random samples from our Bayes-WD-SL model corresponds to the range
of likely movements of bicyclists/pedestrians.

in Table 5.4. We consider the mean predictive distributions (Eq. (5.3)) up to t +
10 frames. We see that the Bayesian models outperform the ResG-Mean model
significantly. In particular, we see that our Bayes-WD-SL model performs the best,
demonstrating that the learned model and observation uncertainty corresponds to
the variation in the data.

Comparison to a CVAE baseline.  As there exists no CVAE (Sohn et al., 2015)
based model for future segmentation prediction, we construct a baseline as close as
possible to our Bayesian models based on existing CVAE based models for related
tasks (Babaeizadeh et al., 2018; Xue et al., 2016). Existing CVAE based models (?Xue
et al., 2016) contain a few layers with Gaussian input noise. Therefore, for a fair
comparison we first conduct a study in Table 5.5 to find the layers which are most
effective at capturing data variation. We consider Gaussian input noise applied in
the first, middle or last convolutional blocks. The noise is input dependent during
training, sampled from a recognition network. We observe that noise in the last layers
can better capture data variation. This is because the last layers capture semantically
higher level scene features. Overall, our Bayesian approach (Bayes-WD-SL) performs
the best. This shows that the CVAE model is not able to effectively leverage Gaussian
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noise to match the data variation.
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Figure 5.7: Uncertainty calibration at ¢t + 10.

Uncertainty calibration. = We further evaluate predicted uncertainties by measuring
their calibration — the correspondence between the predicted probability of a class
and the frequency of its occurrence in the data. As in Kendall and Gal (2017), we
discretize the output probabilities of the mean predicted distribution into bins and
measure the frequency of correct predictions for each bin. We report the results at
t + 10 frames in Fig. 5.7. We observe that all Bayesian approaches outperform the
ResG-Mean and CVAE versions. This again demonstrates the effectiveness of the
Bayesian approaches in capturing uncertainty.

5.4 CONCLUSION

We propose a novel approach for predicting real-world semantic segmentations into
the future that casts a convolutional deep learning approach into a Bayesian formula-
tion. One of the key contributions is a novel optimization scheme that uses synthetic
likelihoods to encourage diversity and deal with multi-modal futures. Our proposed
method shows state of the art performance in challenging street scenes. More im-
portantly, we show that the probabilistic output of our deep learning architecture
captures uncertainty and multi-modality inherent to this task. Furthermore, we
show that the developed methodology goes beyond just street scene anticipation and
creates new opportunities to enhance high performance deep learning architectures
with principled formulations of Bayesian inference.
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uncertainty for future prediction problems. This is because predictions

become increasingly uncertain — in particular on long time horizons. While
impressive results have been shown on point estimates, scenarios that induce multi-
modal distributions over future sequences remain challenging. Our work addresses
these challenges in a Gaussian latent variable model for sequence prediction. Our
core contribution in this chapter is a “Best of Many” sample objective that leads to
more accurate and more diverse predictions that better capture the true variations in
real-world sequence data. Beyond our analysis of improved model fit, our models
also empirically outperform prior work on three diverse tasks ranging from traffic
scenes to weather data.

S s discussed in Chapters 1 and 5, real-world scenarios demand a model of

Moreover, following the contributions in this chapter, in Chapter 7 we introduce
a novel conditional normalizing flow based prior to further improve performance of
Gaussian latent variable models for multi-modal distributions. Further, in Chapter 8,
we build a hybrid VAE-GAN model using the insights gained in this chapter for
multi-modal distributions. Finally, in Chapter 9, we propose a joint inference
framework for Gaussian latent variable models to capture the effect of interactions,
among agents such as pedestrians or vehicles in traffic scenes, on the multi-modal
distribution of future trajectories.

71



72 CHAPTER 6. “BEST OF MANY” SAMPLE OBJECTIVE

6.1 INTRODUCTION
Many future prediction tasks ranging from autonomous driving to precipitation

forecasting can be formulated as sequence prediction problems. Given a past
sequence of events, probable future outcomes are to be predicted.

A q¢ (2|, y) A
Julal] jon

1

)
Error \.

Error averaged. Error is of best sample.

Figure 6.1: Comparison between our “Best of Many” sample objective and the
standard CVAE objective.

Recurrent Neural Networks (RNN) especially LSTM formulations are state-of-
the-art models for sequence prediction tasks (Alahi et al., 2016; Xu et al., 2017; Finn
et al., 2016; Shi et al., 2015). These approaches predict only point estimates. However,
many sequence prediction problems are only partially observed or stochastic in
nature and hence the distribution of future sequences can be highly multi-modal.
Consider the task of predicting future pedestrian trajectories. In many cases, we do
not have any information about the intentions of the pedestrians in the scene. A
pedestrian after walking over a zerba crossing might decide to turn either left or
right. A point estimate in such a situation would be highly unrealistic. Therefore, in
order to incorporate uncertainty of future outcomes, we are interested in structured
predictions. Structured prediction implies learning a one to many mapping of a given
fixed sequence to plausible future sequences (Sohn et al., 2015). This leads to more
realistic predictions and enables probabilistic inference.

Recent work Lee et al. (2017b) has proposed deep conditional generative models
with Gaussian latent variables for structured sequence prediction. The Conditional
Variational Auto-Encoder (CVAE) framework (Sohn ef al., 2015) is used in Lee
et al. (2017b) for learning of the Gaussian Latent Variables. We identify two key
limitations of this CVAE framework. First, the currently used objectives hinder
learning of diverse samples due to a marginalization over multi-modal futures.
Second, a mismatch in latent variable distribution between training and testing
leads to errors in model fitting. We overcome both challenges which results in more
accurate and diverse samples — better capturing the true variations in data. Our
main contributions in this chapter are, 1. We propose a novel “Best of many” sample
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objective for which we provide an analytic derivation. 2. We analyze the benefits
of our model analytically as well as show an improved fit for the latent variables
compared to prior approaches. 3. We also show for the first time that this modeling
paradigm extends to full-frame images sequences with diverse multi-modal futures.
4. We demonstrate improved accuracy as well as diversity of the generated samples
on three diverse tasks: stroke completion, Stanford Drone Dataset and HKO weather
data. On all three datasets we consistently outperform the state of the art and
baselines.

Note that, as this chapter is based on the work Bhattacharyya et al. (2018c), we
compare to prior work with Gaussian latent variables on the Stanford Drone dataset;
Lee et al. (2017b). We provide an overview of more recent work, e.g. Pajouheshgar
and Lampert (2018); Gupta et al. (2018); Zhao et al. (2019); Sadeghian et al. (2019);
Deo and Trivedi (2019); Mangalam et al. (2020) in Chapter 2.

6.2 RELATED WORK

While we provide a broader discussion on related work in Chapter 2, here we discuss
related work relevant to this chapter.

Structured output prediction. Stochastic feed-forward neural networks (SFNN)
(Tang and Salakhutdinov, 2013) model multi-modal conditional distributions through
binary stochastic hidden variables. During training multiple samples are drawn and
weighted according to importance-weights. However, due to the latent variables
being binary SFNNSs are hard to train on large datasets. There have been several
efforts to make training more efficient for binary latent variables (Raiko et al., 2015;
Gu et al., 2016; Mnih and Rezende, 2016; Lee et al., 2017a). However, not all tasks can
be efficiently modelled with binary hidden variables. In Sohn et al. (2015), Gaussian
hidden variables are considered where the re-parameterization trick can be used for
learning on large datasets using stochastic optimization. Inspired by this technique
we model Gaussian hidden variables for structured sequence prediction tasks.

Recurrent neural networks. Recurrent Neural Networks (RNNNs) are state of
the art methods for a variety of sequence learning tasks (Graves, 2013; Sutskever
et al., 2014). In this work, we focus on sequence to sequence regression tasks, in
particular, trajectory prediction and image sequence prediction. RNNs have been
used for pedestrian trajectory prediction. In Alahi et al. (2016), trajectories of multiple
people in a scene are jointly modelled in a social context. However, even though the
distribution of pedestrian trajectories are highly multimodal (with diverse futures),
only one mean estimate is modelled. Lee et al. (2017b) jointly models multiple
future pedestrian trajectories using a recurrent CVAE sampling module. Samples
generated are refined and ranked using image and social context features. While
our trajectory prediction model is similar to the sampling module of Lee et al.
(2017b), we focus on improving the sampling module by our novel multi-sample
objective function. Convolutional RNNs (Shi et al., 2015) have been used for image
sequence prediction. Examples include, robotic arm movement prediction (Finn et al.,
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2016) and precipitation now-casting (Shi et al., 2015, 2017). In this work, we extend
the model of Shi et al. (2015) for structured sequence prediction by conditioning
predictions on Gaussian latent variables. Furthermore, we show that optimization
using our novel multi-sample objective leads to improved results over the standard
CVAE objective.

63 STRUCTURED SEQUENCE PREDICTION WITH GAUSSIAN LATENT
VARIABLES

We begin with an overview of deep conditional generative models with gaussian
latent variables and the CVAE framework with the corresponding objective (Sohn
et al., 2015) used for training. Then, we introduce our novel “Best of many” samples
objective function. Thereafter, we introduce the conditional generative models
which serve as the test bed for our novel objective. We first describe our model for
structured trajectory prediction which is similar to the sampling module of Lee et al.
(2017b) and consider extensions which additionally conditions on visual input and
generates full image sequences.

2 p(el)

pt?(y|za$)

Figure 6.2: Conditional generative models.

We consider deep conditional generative models of the form shown in Fig. 6.2.
Given an input sequence x, a latent variable Z is drawn from the conditional distri-
bution p(z|x) (assumed Gaussian). The output sequence 7 is then sampled from the
distribution pg(y|x,z) of our conditional generative model with parameterized by 6.
The latent variables z enables one-to-many mapping and the learning of multiple
modes of the true posterior distribution p(y|x). In practice, the simplifying assump-
tion is made that z is independent of x and p(z|x) is N'(0,I). Next, we discuss the
training of such models.

6.3.1 Conditional Variational Auto-encoder Training Objective

We would like to maximize the data log-likelihood pg(y | x). To estimate the data
log-likelihood of our model pg, one possibility is to perform Monte-Carlo sampling
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of the latent variable z. For T samples, this leads to the following estimate,

R 1 & . .
Lnic =1log (= Y po(yl2,x) ), £ ~ N0, D). (6.1)
i=1

This estimate is unbiased but has high variance (Mnih and Rezende, 2016). We
would underestimate the log-likelihood for some samples and overestimate for
others, especially if T is small. This would in turn lead to high variance weight
updates.

We can reduce the variance of updates by estimating the log-likelihood through
importance sampling during training. As described in Sohn et al. (2015), we can sam-
ple the latent variables z from a recognition network g4 using the re-parameterization
trick (Kingma and Welling, 2014). The data log-likelihood is,

log(p(y | x)) =

log (/Pe(mzw {J(Z—K)y)%(ﬂx,y) dz ).

(6.2)

The integral in Eq. (6.2) is computationally intractable. In Sohn et al. (2015), a
variational lower bound of the data log-likelihood Eq. (6.2) is derived, which can be
estimated empirically using Monte-Carlo integration (also used in Lee et al. (2017b)),

. 1 &
ﬁc AE — = lo 2',x
v Tz-; g po(yl2i %) 6:3)

— Dxw(qp(zlx,y) || p(2]x)), 2i ~ qp(2|%, y)-

The lower bound in Eq. (6.3) weights all samples (Z;) equally and so they must all
ascribe high probability to the data point (x,y). This introduces a strong constraint
on the recognition network gq,. Therefore, the model is forced to trade-off between a
good estimate of the data log-likelihood and the KL divergence between the training
and test latent variable distributions. One possibility to close the gap introduced
between the training and test pipelines, as described in Sohn et al. (2015), is to use
an hybrid objective of the form (1 — a)Lyc + & Lcyag. Although such a hybrid
objective has shown modest improvement in performance in certain cases, we could
not observe any significant improvement over the standard CVAE objective in our
structured sequence prediction tasks. In the following, we derive our novel “Best of
many” samples objective which on the one hand encourages sample diversity and
on the other hand aims to close the gap between the training and testing pipelines.

6.3.2 “Best of Many” Samples Objective

Here, we propose our objective which unlike Eq. (6.3) does not weigh each sample
equally. Consider the functions fi(z) = PEX)/gs(zlxy) and fa(z) = pe(y|z, x) X
9¢(z|x,y) in Eq. (6.2). We cannot evaluate f,(z) directly for Monte-Carlo samples.
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(a) Our model for structured (b) Our model for structured image sequence
trajectory prediction. prediction.

Figure 6.3: Our model architectures. The recognition networks are only available
during training.

Notice, however, that both f1(z) and f»(z) are continuous and positive. As gy (z|x,y)
is normally distributed, the integral above can be very well approximated on a
large enough bounded interval [a, b]. Therefore, we can use the First Mean Value
Theorem of Integration Comenetz (2002) ¥, to separate the functions f;(z) and f»(z)
in Eq. (6.2),

ogi(palyl)) = 1o ([ putulz ) gl )z ) 10 (EEELY, 2 e o
(6.4)

To do this, we set fi(z) = P(IX)/g4(zlxy) and fo(z) = pe(y|z, x) X qp(z|x,y) in
Eq. (6.2). The integral in Eq. (6.2) can be very well approximated on a large enough
bounded interval [a,b]. Thus, the integral in Eq. (6.2) can be expressed using the
First Mean Value Theorem as,

b z|x Z'|x b
([ oty ) FER gl dz) = FERL ([ palolz 00 gp0cl, ) ).
(6.5)

Taking log on both sizes of Eq. (6.5) leads to Eq. (6.4). We can further lower bound
Eq. (6.4) leading to,

lo8(patylx)) > 1og ( [ po(yle,x)ap(elx,)dz ) + mln](log(%)) (6.6)

Z€[ab Z'|x,y

The First Mean Value Theorem of Integration states that, if f1 : [2,b] — R is continuous and f, is
an integrable function that does not change sign on |4, b], then 3z’ € (4, b) such that,

[ p@pEE= A6 [ A (51)
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However, the minimum in Eq. (6.6) is difficult to estimate. Therefore, we use the
following approximation. From Eq. (6.4), we know that 3z € (a,b) which lower
bounds the data log-likelihood. To maximize this data log-likelihood, we would
like to maximize log(f1(z")). However, as we do not know z’, we instead choose to
maximize it for a set of N points in (a,b),

log (/ﬂb po(y|z, x) qp(z|x, ) dz> + log (qp((zﬁ) +...+log <p((z/$|x))>

p(z11%,Y) 99 (2n 1%y
(6.7)
As Values of both p and g4 are bounded above by 1, the value of the function
f2(z}) = pEilx)/g4(2|xy) is likely to be low when is p low and g is high. Therefore, to
give more 1mportance to such points z;, we weight each point by 9¢(z; Zi|x,y),
tog ([ polylz 1) ag(zlx, ) dz ) + a2 y) x log (LA
j %) qe(Z]X, p(211%, T CAERT) 68)
p(zy]%) '
+ .. Fge(zih]x,y) x 1o
q‘P( INEADRS g<q¢(ZN‘x’y)>
Flipping the sign before the terms in the second part of Eq. (6.8),
b /
9p(z1| %, y)
log (/ Po(ylz,X) ag(zlx,y) dz ) — qg(i]x,) x log (F£L)
: Pl 6o

qu(Z’N\xz}/)).

— . —ge(Zh|x,y) x 1o
q(f’( N| ]/) g( P(Zé\]|x)

If we choose a sufficiently large set of points z; € (a,b), we can collect the terms in
the second part of Eq. (6.9) and replace them with a single integral,

log </ab pe(ylz, x) q¢(z|x,y) dz) — /ab q4,(z|x,y) x log (%) dz. (6.10)

The second integral in Eq. (6.10) is the KL divergence between the two distributions
9¢(z[x,y) and p(z|x),

b
log (| polylz x) gp(zlx,y) dz ) = Dia(gpzlx,) || p(alx)).  (611)

We can estimate the data log-likelihood term in Eq. (6.11) using Monte-Carlo
integration. This leads to the following “many-sample” objective,

. 1 & . .
Lyis = 10g (7 1= po(yl2i,%) ) = Di(ap(zlxy) || p(zlx), 2~ gp(zlx,y). (6.12)
i=1

Compared to the CVAE objective Eq. (6.2), the recognition network g4 now has
multiple chances to draw samples with high posterior probability (ps(y | z,x)). This
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encourages diversity in the generated samples. Furthermore, the data log-likelihood
Eq. (6.2) estimate in this objective is tighter as Las > Lovag follows from the Jensen'’s
inequality. Therefore, this bound loosens the constraints on the recognition network
g4 and allows it more closely match the latent variable distribution p(z | x). However,
as we focus on regression tasks, probabilities are of the form e MSE(7¥), Therefore,
in practice the Log-Average term can cause numerical instabilities due to limited
machine precision in representing the probability e MSE(¥). Therefore, we use a
“Best of Many” samples approximation of Eq. (6.12). We can pull the constant 1/7
term outside the average in Eq. (6.12) and approximate the sum with the maximum,

T
Las =log () po(ylzi,x) ) ~log(T)
i=1

— Dxw(q¢(zlx,y) || p(2]x)), 2i ~ q4(z|x,y)

(6.13)

Lys > Lpms = max (log(pe(y|2i, x))) —log(T) (6.14)
! .14
— Dx(q9(z[x,y) || p(2]x)), 2i ~ gp(z|x,y).

Similar to Eq. (6.12), this objective encourages diversity and loosens the constraints
on the recognition network gy as only the best sample is considered. During training,
initially py assigns low probability to the data for all samples Z;. The log(T) difference
between Eq. (6.12) and Eq. (6.14) would be dominated by the low data log-likelihood.
Later on, as both objectives promote diversity, the Log-Average term in Eq. (6.12)
would be dominated by one term in the average. Therefore, Eq. (6.12) would be well
approximated by the maximum of the terms in the average. Furthermore, Eq. (6.14)
avoids numerical stability issues.

6.3.3 Model Architectures for Structured Sequence Prediction

We base our model architectures on RNN Encoder-Decoders. We use LSTM formu-
lations as RNNSs for structured trajectory prediction tasks (Fig. 6.3(a)) and Convo-
lutional LSTM formulations (Fig. 6.3(b)) for structured image sequence prediction
tasks. During training, we consider LSTM recognition networks in case of trajectory
prediction (Fig. 6.3(a)) and for image sequence prediction, we consider Conv-LSTM
recognition networks (Fig. 6.3(b)). Note that, as we make the simplifying assumption
that z is independent of x, the recognition networks are conditioned only on y.

Model for structured trajectory prediction. ~Our model for structured trajectory
prediction (see Fig. 6.3(a)) is similar to the sampling module of Lee et al. (2017b). The
input sequence x is processed using an embedding layer to extract features and the
embedded sequence is read by the encoder LSTM. The encoder LSTM produces a
summary vector v, which is its internal state after reading the input sequence x. The
decoder LSTM is conditioned on the summary vector v and additionally a sample
of the latent variable z. The decoder LSTM is unrolled in time and a prediction is
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generated by a linear transformation of it’s output. Therefore, the predicted sequence
at a certain time-step ' is conditioned on the output at the previous time-step, the
summary vector v and the latent variable z. As the summary v is deterministic given
x, we have,

po(ylx) = Zpe ¥y, o) p(olx)
_ t+1
= ;PG y Y x) (6.15)

= [ o1y 2,%) palzl) dz
t

Conditioning the predicted sequence at all time-steps upon a single sample of z
enables z to capture global characteristics (e.g. speed and direction of motion) of the
future sequence and generation of temporally consistent sample sequences 7.

Extension with visual input. In case of dynamic agents e.g. pedestrians in traffic
scenes, the future trajectory is highly dependent upon the environment e.g. layout
of the streets. Therefore, additionally conditioning samples on sensory input (e.g.
visuals of the environment) would enable more accurate sample generation. We use
a CNN to extract a summary of a visual observation of a scene. This visual summary
is given as input to the decoder LSTM, ensuring that the generated samples are
additionally conditioned on the visual input.

Model for structured image sequence prediction. If the sequence (x,y) in question
consists of images e.g. frames of a video, the trajectory prediction model Fig. 6.3(a)
cannot exploit the spatial structure of the image sequence. More specifically, consider
a pixel ytH at time-step t + 1 of the image sequence y. The pixel value at time-
step t + 1 depends upon only the pixel yf’j and a certain neighbourhood around
it. Furthermore, spatially neighbouring pixels are correlated. This spatial structure
can be exploited by using Convolutional LSTMs (Shi et al., 2015) as RNN encoder-
decoders. Conv-LSTMs retain spatial information by considering the hidden states h
and cell states c as 3D tensors — the cell and hidden states are composed of vectors

ht corresponding to each spatial position. New cell states, hidden states and
outputs are computed using convolutional operations. Therefore, new cell states

tjl hidden states ht“L1 depend upon only a local spatial neighbourhood of c ht

thus preserving spat1a1 information.

We propose conditional generative models networks with Conv-LSTMs for struc-
tured image sequence prediction (Fig. 6.3(b)). The encoder and decoder consists of
two stacked Conv-LSTMs for feature aggregation. As before, the output is condi-
tioned on a latent variable z to model multiple modes of the conditional distribution
p(y | x). The future states of neighboring pixels are highly correlated. However,
spatially distant parts of the image sequences can evolve independently. To take into
account the spatial structure of images, we consider latent variables z which are 3D
tensors. As detailed in Fig. 6.3(b), the input image sequence x is processed using a
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convolutional embedding layer. The Conv-LSTM reads the embedded input sequence
and produces a 3D tensor v as the summary. The 3D summary v and latent variable
z is given as input to the Conv-LSTM decoder at every time-step. The cell state,
hidden state or output at a certain spatial position, cf’j, hf,]-, yf’j, is conditioned on a
sub-tensor z; ; of the latent tensor z. Spatially neighbouring cell states, hidden states
(and thus outputs) are therefore conditioned on spatially neighbouring sub-tensors
z; ;- This coupled with the spatial information preserving property of Conv-LSTMs
detailed above, enables z to capture spatial location specific characteristics of the
future image sequence and allows for modeling the correlation of future states of
spatially neighboring pixels. This ensures spatial consistency of sampled output
sequences 1j. Furthermore, as in the fully connected case, conditioning the full output
sequence sample 7 is on a single sample of z ensures temporal consistency.

6.4 EXPERIMENTS

We evaluate our models both on synthetic and real data. We choose sequence
datasets which display multimodality. In particular, we evaluate on key strokes from
MNIST sequence data (D. De Jong, 2016) (which can be seen as trajectories in a
constrainted space), human trajectories from Stanford Drone data (Robicquet et al.,
2016) and radar echo image sequences from HKO (Shi et al., 2015). All models were
trained using the ADAM optimizer, with a batch size of 32 for trajectory data and 4
for the radar echo data. All experiments were conducted on a single Nvidia M40
GPU with 12GB memory. For models trained using the Lcovag and Lpms objectives,
we use T = {10,10,5} samples during training on the MNIST Sequence, Stanford
Drone, and HKO datasets respectively.

Method CLL

LSTM 136.12

LSTM-MC  102.34
LSTM-CVAE 96.42
LSTM-BMS  95.63

Table 6.1: Evaluation on the MNIST Sequence dataset.

6.4.1 MNIST Sequence

The MNIST sequence dataset consists of pen strokes which closely approximate the
skeleton of the digits in the MNIST dataset. We focus on the stroke completion task.
Given an initial stroke the distribution of possible completions is highly multimodal.
The digits o, 3, 2 and 8, have the same initial stroke with multiple writing styles for
each digit. Similarly for the digits o and 6, with multiple writing styles for each
digit.
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Figure 6.4: Diverse samples drawn from our LSTM-BMS model trained using the
Lpms objective, clustered using k-means. The number of clusters is set manually to
the number of expected digits based on the initial stroke on the MNIST Sequence
dataset.

Figure 6.5: Top 10% of samples drawn from the LSTM-BMS model (magenta) and the
LSTM-CVAE model (yellow), with the groundtruth in (blue) on the MNIST Sequence
dataset.

Method Visual Err at 1.0(sec) Err at 2.0(sec) Err at 3.0(sec) Err at 4.0(sec) CLL

LSTM X 1.08 2.57 4.70 7.20 134.29
LSTM RGB 0.84 1.95 3.86 6.24 133.12
DESIRE-SI-IT4 RGB 1.29 2.35 3.47 5.33 X
LSTM-CVAE  RGB 0.71 1.86 3.39 5.06 127.51
LSTM-BMS RGB 0.80 1.77 3.10 4.62 126.65

Table 6.2: Evaluation on the Stanford Drone dataset. Euclidean error measured at
(1/5) resolution (DESIRE-SI-IT4 is from Lee et al. (2017b)).

We fix the length of the initial stroke sequence at 10. We use the trajectory
prediction model from Fig. 6.3(a) and train it using the Lgys objective (LSTM-BMS).
We compare it against the following baselines: 1. A vanilla LSTM encoder-decoder
regression model (LSTM) without latent variables; 2. The trajectory prediction
model from Fig. 6.3(a) trained using the Lyic objective (LSTM-MC); 3. The trajectory
prediction model from Fig. 6.3(a) trained using the Lcvar objective (LSTM-CVAE).
We use the negative conditional log-likelihood metric (CLL) and report the results in
Table 6.1. We use T = 100 samples to estimate the CLL.
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Figure 6.6: KL Divergence during training on the MNIST Sequence dataset.

We observe that our LSTM-BMS model achieves the best CLL. This means that
our LSTM-BMS model fits the data distribution best. Furthermore, we see that the
latent variables sampled from our recognition network q4(z | x,y) during training
better matches the true distribution p(z | x) used during testing. This can be seen
through the KL divergence in Fig. 6.6 Dx1.(94(z | x,y) || p(z | x)) during training of
the recognition network trained with the Lems objective versus that of the LevaE
objective. We observe that the KL divergence of the recognition network trained
with the Lpys to be substantially lower, thus, reducing the mismatch in the latent
variable z between the training and testing pipelines.

We show qualitative examples of generated samples in Fig. 6.4 from the LSTM-
BMS model. We show T = 100 samples per test example. The initial conditioning
stroke is shown in white. The samples drawn are diverse and clearly multimodal. We
cluster the generated samples using k-means for better visualization. The number of
clusters is set manually to the number of expected digits based on the initial stroke.
In particular, our model generates corresponding to 2, 3, o (1st example), o, 6 (2nd
example) and so on.

We compare the accuracy of samples generated by our LSTM-BMS model versus
the LSTM-CVAE model in Fig. 6.5. We display the mean of the oracle top 10% of
samples (closest in euclidean distance w.r.t. groudtruth) generated by both models.
Comparing the results we see that, using the Lgys objective leads to the generation
of more accurate samples.

Method RainfalllMSE CSI  FAR POD Correlation NLL

Shi et al. (2015) 1.420 0.577 0.195 0.660 0.908 X
Conv-LSTM-CVAE 1.259 0.651 0.155 0.701 0.910 132.78
Conv-LSTM-BMS 1.163 0.670 0.163 0.734 0.918 132.52

Table 6.3: Evaluation on HKO radar image sequences.
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Figure 6.7: Diverse samples dawn from our LSTM-BMS model trained using the
Lpms objective, color-coded after clustering using k-means with four clusters on the
Stanford Drone dataset

Figure 6.8: Top 10% of samples drawn from the LSTM-BMS model (magenta) and
the LSTM-CVAE model (yellow), with the groundtruth in blue on the Stanford Drone
dataset

6.4.2 Stanford Drone

The Stanford Drone dataset consists of overhead videos of traffic scenes. Trajectories
of various dynamic agents including Pedestrians and Bikers are annotated. The
paths of such agents are determined by various factors including the intention of
the agent, paths of other agents and the layout of the scene. Thus, the trajectories
are highly multi-modal. As in Robicquet et al. (2016); Lee et al. (2017b), we predict
the trajectories of these agents 4.8 seconds into the future conditioned on the past
2.4 seconds. We use the same train-test split as in Lee et al. (2017b). We encode
trajectories as relative displacement from the initial position. The trajectory at each
time-step can be seen as the velocity of the agent.

We consider the extension of our trajectory prediction model (in Fig. 6.3(a)) dis-
cussed in Section 6.3.3 conditioned on the last visual observation from the overhead
camera. We use a 6 layer CNN to extract visual features. We train this model
with the £pys objective and compare it to: 1. A vanilla LSTM encoder-decoder
regression model with and without visual observation (LSTM); 2. The state of the art
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Figure 6.9: Statistics of samples generated by our LSTM-BMS model on the HKO
dataset (T-step is Timestep and GT is groundtruth).

DESIRE-SI-IT4 model from Lee et al. (2017b); 3. Our extended trajectory prediction
model Fig. 6.3(a) trained using the Lcyag objective (LSTM-CVAE).

We report the results in Table 6.2. We report the CLL metric and the euclidean
distance in pixels between the true trajectory and the oracle top 10% of generated
samples at 1, 2, 3 and 4 seconds into the future at (1/5) resolution (as in Lee et al.
(2017b)). Our LSTM-BMS model again performs best both with respect to the
euclidean distance and the CLL metric. This again demonstrates that using the Lgys
objective enables us to better fit the groundtruth data distribution and enables the
generation of more accurate samples. The performance advantage with respect to
DESIRE-SI-ITy4 (Lee et al., 2017b) is due to 1. Conditioning the decoder LSTM in
Fig. 6.3(a) directly on the visual input at higher (1/2 versus 1/5) resolution (as our
LSTM-CVAE outperforms DESIRE-SI-ITy ), 2. Our Lems objective (as our LSTM-BMS
outperforms both DESIRE-SI-IT4 and LSTM-CVAE).

We show qualitative examples of generated samples (T = 10) in Fig. 6.7. We
color code the generated samples using k-means with four clusters. The qualitative
examples display high plausibility and diversity. They follow the layout of the
scene, the location of roads, vegetation, vehicles etc. We qualitatively compare the
accuracy of samples generated by our LSTM-BMS model versus the LSTM-CVAE
model in Fig. 6.8. We see that the oracle top 10% of samples generated using the
Lems objective are more accurate and thus more representative of the groundtruth.

6.4.3 Radar Echo

The Radar Echo dataset (Shi et al., 2015) consists of weather radar intensity images
from 97 rainy days over Hong Kong from 2011 to 2013. The weather evolves due
to varity of factors, which are difficult to identify using only the radar images,
with varied and multimodal futures. Each sequences consists of 20 frames each of
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resolution 100x 100, recorded at intervals of 6 minutes. We use the same dataset
split as Shi et al. (2015) and predict the next 15 images given the previous 5 images.

We compare our image sequence prediction model in Fig. 6.3(b) trained with
the Lgps (Conv-LSTM-BMS) objective to one trained with the Lcvag (Conv-LSTM-
CVAE) objective. We additionally compare it to the Conv-LSTM model of Shi et al.
(2015). In addition to the CLL metric (calculated per image sequence), we use the
following precipitation nowcasting metrics from Shi et al. (2015), 1. Rainfall means
squared error (Rainfall-MSE), 2. Critical success index (CSI), 3. False alarm rate
(FAR), 4. Probability of detection (POD), and 5. Correlation. For fair comparison we
estimate these metrics using T = 1 random samples from the Conv-LSTM-CVAE
and Conv-LSTM-BMS models.

We report the results in Table 6.3. Both the Conv-LSTM-CVAE and Conv-LSTM-
CMS models perform better compared to Shi et al. (2015). This is due to the use of
embedding layers for feature extraction and the use of 2x2 max pooling in between
two Conv-LSTM layers for feature aggregation (compared no embedding layers or
pooling in Shi et al. (2015)). Furthermore, the superior CLL of the Conv-LSTM-BMS
model demonstrates it’s ability to fit the data distribution better. We show qualitative
examples in Fig. 6.9 att +1, t + 5 and t 4 10. We generate T = 50 samples and show
the sample closest to the groundtruth, the mean of all the samples and the per-pixel
variance (uncertainty) in the samples. The qualitative examples demonstrate that
our model produces highly accurate and diverse samples.

6.5 CONCLUSION

We have presented a novel “Best of many” sample objective for Gaussian latent
variable models and show its advantages for learning conditional models on multi-
modal distributions. Our analysis shows indeed the learnt latent representation is
better matched between training and test time — which in turn leads to more accurate
samples. We show the benefits of our model on trajectory as well as image sequence
prediction using three diverse datasets: MNIST strokes, Stanford drone and HKO
weather. Our proposed appraoch consistently outperforms baselines and state of the
art in all these scenarios.
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introduced in Chapter 6, imposes priors with limited expressiveness or prior

which are difficult to optimize, e.g. determining the number of Gaussian
mixture components. This makes it challenging to fully capture the multi-modality
of the distribution of the future states. In this chapter, we introduce Conditional
Flow Variational Autoencoders (CF-VAE) using our novel conditional normalizing flow
based prior to capture complex multi-modal conditional distributions for effective
structured sequence prediction. Moreover, we propose two novel regularization
schemes which stabilizes training and deals with posterior collapse for better fit
to the target data distribution. Our experiments on three multi-modal structured
sequence prediction datasets - MNIST Sequences, Stanford Drone and HighD — show
that the proposed method obtains state of art results across different evaluation
metrics.

PRIOR work for structured sequence prediction based on latent variable models,

7.1 INTRODUCTION

Conditional Variational Autoencoders (CVAE) (Sohn et al., 2015; Bayer and Osendor-
fer, 2014; Chung et al., 2015) have been very successful in future prediction problems
— from prediction of pedestrians trajectories (Lee et al., 2017b; Bhattacharyya et al.,
2018c; Pajouheshgar and Lampert, 2018) to outcomes of robotic actions (Babaeizadeh
et al., 2018). In complex real world environments, the distribution of future sequences
is diverse and highly multi-modal. As discussed in Chapter 6, CVAEs model diverse

87
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Figure 7.1: Clustered stroke predictions on MNIST sequences. Our multi-modal
Conditional Normalizing Flow based prior (right) enables our regularized CF-VAE
to capture the two modes of the conditional distribution, while predictions with
unimodal Gaussian prior (left) have limited diversity. Note, our 64D CF-VAE latent
distribution is (approximately) projected to 2D using tSNE and KDE.

futures by factorizing the distribution of future states using a set of latent variables
which are mapped to likely future states. However, CVAEs assume a standard Gaus-
sian prior on the latent variables which induces a strong model bias (Hoffman and
Johnson, 2016; Tomczak and Welling, 2018) which makes it challenging to capture
multi-modal distributions. This also leads to missing modes due to posterior collapse
(Bowman et al., 2016; Razavi et al., 2019a).

Recent work (Tomczak and Welling, 2018; Wang et al., 2017; Gu et al., 2019) has
therefore focused on more complex Gaussian mixture based priors. Gaussian mix-
tures still have limited expressiveness and optimization suffers from complications,
e.g. determining the number of mixture components. Normalizing flows are more
expressive and enable the modelling of complex multi-modal priors. Recent work on
flow based priors (Chen et al., 2017; Ziegler and Rush, 2019), have focused only on
the unconditional (plain VAE) case. However, this is not sufficient for CVAEs because
in the conditional case the complexity of the distributions are highly dependent on
the condition.

In this chapter, 1. We propose Conditional Flow Variational Autoencoders (CF-VAE)
based on novel conditional normalizing flow based priors in order to model complex
multi-modal conditional distributions over sequences. In Fig. 7.1, we show example
predictions of MNIST handwriting stroke of our CF-VAE. We observe that, given
a starting stroke, our CF-VAE model with data dependent normalizing flow based
latent prior captures the two main modes of the conditional distribution —i.e. 1
and 8 — while CVAEs with fixed unimodal Gaussian prior predictions have limited
diversity. 2. We propose a regularization scheme that stabilizes the optimization
of the evidence lower bound and leads to better fit to the target data distribution.
3. We leverage our conditional flow prior to deal with posterior collapse which
causes standard CVAEs to ignore modes in sequence prediction tasks. 4. Finally,
our method outperforms the state of the art on three structured sequence prediction
tasks — handwriting stroke prediction on MNIST, trajectory prediction on Stanford
Drone and HighD.

Note that, as this chapter is based on the work Bhattacharyya et al. (2019c), we
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compare to prior work on the Stanford Drone dataset; Lee et al. (2017b); Pajouheshgar
and Lampert (2018); Gupta et al. (2018); Zhao et al. (2019); Sadeghian et al. (2019); Deo
and Trivedi (2019). We provide an overview of more recent work, e.g. Mangalam
et al. (2020) in Chapter 2.

7.2 RELATED WORK

While we provide a broader discussion on related work in Chapter 2, here we discuss
related work relevant to this chapter.

Posterior collapse.  Posterior collapse arises when the latent posterior does not
encode useful information. Most prior work (Yang et al., 2017; Dieng et al., 2019;
Higgins et al., 2017) concentrate on unconditional VAEs and modify the training
objective — the KL divergence term is annealed to prevent collapse to the prior.
Fu et al. (2019) extends KL annealing to CVAEs. However, KL annealing does not
optimize a true lower bound of the ELBO for most of training. Zhao et al. (2017c¢)
also modifies the objective to choose the model with the maximal rate. Razavi et al.
(2019a) propose anti-causal sequential priors for text modelling tasks. Bowman
et al. (2016); Gulrajani et al. (2017b) proposes to weaken the decoder so that the
latent variables cannot be ignored, however only unconditional VAEs are considered.
Wang and Wang (2019) shows the advantage of normalizing flow based posteriors
for preventing posterior collapse. In contrast, we study for the first time posterior
collapse in conditional models on datasets with minor modes.

73 CONDITIONAL FLOW VARIATIONAL AUTOENCODER (CF-VAE)

Our Conditional Flow Variational Autoencoder is based on the conditional variational
autoencoder (Sohn et al., 2015) which is a deep directed graphical model for modeling
conditional data distributions pg(y|x). Here, x is the sequence up to time ¢, x =
[x!,-++,x!] and y is the sequence to be predicted up to time T, y = [y*1,--- ,yT].
CVAEs factorize the conditional distribution using latent variables z. In detail,
po(y1x) = [ po(ylz, x)p(z|x)dz, where p(z|x) is the prior on the latent variables.
During training, amortized variational inference is used and the posterior distribution

94(z|x,y) is learnt using a recognition network. The ELBO is maximized, given by,

log(pe(ylx)) = Eg, (1) 108(pe(ylz, X)) — Dxi(qe(z[x,y)|Ip(z]x)).  (7.1)

In practice, to simplify learning, simple unconditional standard Gaussian priors are
used (Sohn et al., 2015). However, the complexity, e.g. the number of modes of the
target distributions pg(y|x), is highly dependent upon the condition x. An uncon-
ditional prior demands identical latent distributions irrespective of the complexity
of the target conditional distribution — a very strong constraint on the recognition
network. Moreover, the latent variables cannot encode any conditioning information
and this leaves the burden of learning the dependence on the condition completely
on the decoder.
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Furthermore, on complex conditional multi-modal data, Gaussian priors have
been shown to induce a strong model bias (Tomczak and Welling, 2016; Ziegler and
Rush, 2019). It becomes increasingly difficult to map complex multi-modal distribu-
tions to unimodal Gaussian distributions, further complicated by the sensitivity of
the RNNs encoder/decoders to subtle variations in the hidden states (Bowman ef al.,
2016). Moreover, the standard closed form estimate of the KL-divergence pushes the
encoded latent distributions to the mean of the Gaussian leading to latent variable
collapse (Wang et al., 2017; Gu et al., 2019) while discriminator based approaches
(Tolstikhin et al., 2018) lead to underestimates of the KL-divergence (Rosca et al.,
2017).

Therefore, we propose conditional priors based on conditional normalizing flows
to enable the latent variables to encode conditional information and allow for com-
plex multi-modal latent representations. Next, we introduce our new conditional
non-linear normalizing flows followed by our regularized Conditional Flow Varia-
tional Autoencoder (CF-VAE) formulation.

7.3.1  Conditional Normalizing Flows

Recently, normalizing flow (Tabak et al., 2010; Dinh et al., 2015) based priors for
VAEs have been proposed (Chen et al., 2017; Ziegler and Rush, 2019). Normalizing
flows allows for complex priors by transforming a simple base density, e.g. standard
Gaussian, to a complex multi-modal density through a series of n layers of invertible
transformations f;,

ey Eohy g (7.2)

However, such flows cannot model conditional priors. In contrast to prior
work, we utilize conditional normalizing flows to model complex conditional priors.
Conditional normalizing flows also consists of a series of n layers of invertible
transformations f; (with parameters ), however we modify the transformations f;
such that they are dependent on the condition x,

e|x&>h1|xﬂ>h2|x--- &z|x. (7.3)

Further, in contrast to prior work (Lu and Huang, 2020; Atanov et al., 2019;
Ardizzone et al., 2019a) which use affine flows (f;), we build upon Ziegler and Rush
(2019) and introduce conditional non-linear normalizing flows with split coupling.
Split couplings ensure invertibility by applying a flow layer f; on only half of the
dimensions at a time. To compute Eq. (7.5), we split the dimensions z" of the latent
variable into halfs, z* = {1,---,D/2} and z8 = {D/2,--- ,d} at each invertible layer
fi. Our transformation takes the following form for each dimension z/ alternatively

from zL or Z&,

c(zR, x)

fUZ|ZR, x) = ¢/ = a(2R,x) + b(zR,x) x 2/ + . .
: 1+ (d(zR,x) x 2 + g (2R, X))

(7-4)
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where, z/ € z'. To ensure that the generated prior distribution is conditioned

on x, in Eq. (7.4) and in the corresponding forward operation f;, the coefficients
{a,b,c,d,g} € R are functions of both the other half of the dimensions of z and the
condition x (unlike Ziegler and Rush (2019)). Finally, due to the expressive power
of our conditional non-linear normalizing flows, simple spherical Gaussians base
distributions were sufficient.

7.3.2 Variational Inference using Flow based Priors

Here, we derive the ELBO in Eq. (7.1) for our regularized CF-VAE with our condi-
tional flow based prior. In the case of the standard CVAE with the Gaussian prior,
the KL divergence term in the ELBO has a simple closed form expression. In case
of our conditional flow based prior, we can use the change of variables formula to
compute the KL divergence. In detail, given the base density p(e|x) and the Jacobian
Ji of each layer i of the transformation, the log-likelihood of the latent variable z
under the prior can be expressed using the change of variables formula,

log(py(2]x)) = log(p(elx)) + élogwetm» 75

This change of variables allows us to evaluate the likelihood of latent variable z
over the base distribution instead of the complex conditional prior and to express
the KL divergence as,

—Dx1.(q9 (2], y)[|py(2[X)) = —Ey, (2x,y) 108(99(2[X, ¥)) + By, (2/x,y) l0g(py (z[x))

= H(q¢) + IE’q(p(z\x,y) log(p(elx)) + Zlog“det]i‘)'
i=1
(7.6)

where, H(qy) is the entropy of the variational distribution. Therefore, the ELBO
can be expressed as,

1og(pa(y[X)) 2 Egy(z1xy) 108(Po(y|2, X)) + H(qp) +Eg, 7)x,y) log(p(€[x))

log(ldetjil) 77

_|_

n
i=1

To learn complex conditional priors, we alternately optimize both the variational
posterior distribution g4(z|x,y) and the conditional prior py(z|x) in Eq. (7.7). This
would allow the variational posterior gg to match the conditional prior and vice-versa
so that the ELBO Eq. (7.7) is maximized. However, in practice we observe instabilities
during training and posterior collapse. Next, we introduce our novel regularization
schemes to deal with both these problems.

Posterior regularization for stability (pR). The entropy and the log-Jacobian
of the CF-VAE objective Eq. (7.7)) are at odds with each other. The log-Jacobian
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Figure 7.2: CF-VAE. The decoder is regularized by removing conditioning (grey
arrow) to prevent posterior collapse.

favours the contraction of the base density. Therefore, log-Jacobian at the right of
Eq. (7.7) is maximized when the conditional flow maps the base distribution (€ <+ z
in Fig. 7.2) to a low entropy conditional prior and thus a low entropy variational
distribution q¢(z|x,y). Therefore, in practice we observe instabilities during training.
We observe that either the entropy or the log-Jacobian term dominates and the data
log-likelihood is fully or partially ignored. Therefore, we regularize the posterior
qd¢(z|x,y) by fixing the variance to C. This leads to a constant entropy term which in
turn bounds the maximum possible amount of contraction, thus upper bounding
the log-Jacobian. This encourages our model to concentrate on explaining the data
and leads to a better fit to the target data distribution. Note that, although g4 (z|x,y)
has fixed variance, this does not significantly effect sample quality as the marginal
¢ (z|x) can be arbitrarily complex due to our conditional flow prior. Moreover, we
observe that the LSTM based decoders employed demonstrate robust performance
across a wide range of values C = [0.05,0.25].

Condition regularization for posterior collapse (cR). We observe missing modes
when the target conditional data distribution has a major mode(s) and one or
more minor modes (corresponding to rare events). This is because the condition
x on the decoder is already enough to model the main mode(s). If the cost of
ignoring the minor modes is out-weighed by the cost of encoding a more complex
latent distribution reflecting all modes, the minor modes and the latent variables
are ignored. We propose a regularization scheme by removing the additional
conditioning x on the decoder, when the dataset in question has a dominating
mode(s). This enabled by our conditional flow prior, which ensures that conditioning
information is encoded in the latent space and pg(y|z) can match py(y|x, z). Leading
to a simpler factorization, pg(y|x) = [ pa(y|z)py(z|x)dz. Equivalently, this ensures
that the latent variable z cannot be ignored by the CF-VAE and thus must encode
useful information. Note that this regularization scheme is only possible due to our
conditional prior, the unconditional Gaussian prior of CVAE would always need to
condition the decoder.

The parallel work of Klushyn et al. (2019) also proposes a similar regularization
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scheme. However, we employ this regularization to deal with posterior collapse only
in case of distributions with dominant modes.
Finally, we discuss the integration of diverse sources of contextual information

into the conditional prior py(z|x) for even richer conditional latent distributions of
our regularized CE-VAE.

7.3.3 Conditioning Priors on Contextual Information

For prediction tasks, it is often crucial to integrate sources of contextual information,
e.g. past trajectories or environmental information, for accurate predictions. As
these sources are heterogeneous, we employ source specific networks to extract fixed
length vectors from each source.

Past trajectory. We encode the past trajectories using a LSTM to an fixed length
vector x;. For efficiency we share the condition encoder between the conditional flow
and the CF-VAE decoder.

Environmental map. We use a CNN to encode environmental information to a
set of region specific feature vectors. We apply attention conditioned on the past
trajectory to extract a fixed length conditioning vector x;;, such that x;, contains
information relevant to the future trajectory.

Interacting agents. To encode information of interacting traffic participants/agents,
we build on Deo and Trivedi (2018) and propose a fully convolutional social pooling
layer. We aggregate information of interacting agents using a grid overlaid on the
environment. This grid is represented using a tensor, where the past trajectory infor-
mation of traffic participants are aggregated into the tensor indexed corresponding
to the grid in the environment. In Deo and Trivedi (2018) past trajectory information
is aggregated using a LSTM. We aggregate the past trajectory information into the
tensor using 1 x 1 convolutions as it allows for stable learning and is computationally
efficient. Finally, we apply several layers of k x k convolutions to capture interaction
aware contextual features x, of traffic participants in the scene.

Due to the expressive power of our conditional non-linear normalizing flows,
simple concatenation into a single vector x = {x¢, X, Xt} was sufficient to learn
powerful conditional priors.

7.4 EXPERIMENTS

We evaluate our CF-VAE on three popular and highly multi-modal sequence pre-
diction datasets. We begin with a description of our evaluation metrics and model
architecture.

Evaluation metrics. In line with prior work (Lee et al., 2017b; Bhattacharyya et al.,
2018¢; Pajouheshgar and Lampert, 2018; Deo and Trivedi, 2019; Bhattacharyya et al.,
2019a) (see also Chapter 6), we use the negative conditional log-likelihood (-CLL)
and mean Euclidean distances of the oracle Top n% of N predictions. The oracle
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Condition = BMS-CVAE Modes (Bhattacharyya et al., 2018¢) Our CF-VAE Modes Our CF-VAE Prior

™

Figure 7.3: Random samples clustered using k-means. The number of clusters is set
manually to the number of expected digits. The corresponding priors of our CF-VAE
+ PR on the right. Note, our 64D CF-VAE latent distribution is (approximately)
projected to 2D using tSNE and KDE.

Top 1% metric measures not only the coverage of all modes but also discourages
random guessing for a reasonably large value of n (e.g. n = 10%). This is because, a
model can only improve this metric by moving randomly guessed samples from an
overestimated mode to the correct modes.

Conditional flow model architecture. =~ Our conditional flow prior consists of 16
layers of conditional non-linear flows with split coupling. Increasing the number
of conditional non-linear flows generally led to “over-fitting” on the training latent
distribution.

7.4.1  MNIST Sequences

The MNIST Sequence dataset (D. De Jong, 2016) consists of sequences of handwriting
strokes of the MNIST digits. The state-of-the-art approach is the “Best-of-Many”'-
CVAE (Bhattacharyya et al., 2018c) in Chapter 6 with a Gaussian prior. We follow
the evaluation protocol of Bhattacharyya et al. (2018¢) (in Chapter 6) and predict
the complete stroke given the first ten steps. We also compare with, 1. A standard
CVAE with uni-modal Gaussian prior; 2. A CVAE with a data dependent conditional
mixture of Gaussians (MoG) prior; 3. A CF-VAE without any regularization ; 4. A
CF-VAE without the conditional non-linear flow layers (CF-VAE-Affine, replaced
with affine flows (Lu and Huang, 2020; Atanov et al., 2019)). We also experiment
with a conditional MoG prior. We use the same model architecture (Bhattacharyya
et al., 2018¢) across all baselines.

We report the results in Table 7.1. We see that our CF-VAE with posterior
regularization (pR) performs best. It has a performance advantage of over 20%
against the state of the art BMS-CVAE. We see that without regularization (pR)
(C = 0.2) there is a 40% drop in performance, highlighting the effectiveness of
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Table 7.1: Evaluation on MNIST Sequences.

Method -CLL |
CVAE (Sohn et al., 2015) 96.4
BMS-CVAE (Bhattacharyya et al., 2018c)  95.6
CVAE + increased capacity (Ours) 94.5
CVAE + conditional prior (Ours) 88.9
MoG-CVAE, M =3 84.6
CF-VAE - no regularization (Ours) 104.3
CF-VAE - Affine + pR, C = 0.2 (Ours) 77.2
CF-VAE + pR, C = 0.2 (Ours) 74.9

our proposed regularization scheme. We further illustrate the modes captured and
the learnt multi-modal conditional flow priors in Fig. 7.3. We do not use condition
regularization here (cR) as we do not observe posterior collapse. In contrast, the BMS-
CVAE is unable to fully capture all modes — its predictions are pushed to the mean
due to the strong model bias induced by the Gaussian prior. The results improve
considerably with the multi-modal MoG prior (M = 3 components work best). We
also experiment with optimizing the standard CVAE architecture. This improves
performance only slightly (after increasing LSTM encoder/decoder units to 256 from
48, increasing the number of layers did not help). Moreover, our experiments with
a conditional (MoG) AAE/WAE (Gu et al., 2019) based baseline did not improve
performance beyond the standard (MoG) CVAE, because the discriminator based
KL estimate tends to be an underestimate (Rosca et al., 2017). This illustrates that
in practice it is difficult to map highly multi-modal sequences to a Gaussian prior
and highlights the need of a data-dependent multi-modal priors. Our CF-VAE still
significantly outperforms the MoG-CVAE as normalizing flows are better at learning
complex multi-modal distributions (Kingma and Dhariwal, 2018). We also see that
affine conditional flow based priors leads to a drop in performance (77.2 vs 74.9
CLL) illustrating the advantage of our non-linear conditional flows.

7.4.2  Stanford Drone

The Stanford Drone dataset (Robicquet et al., 2016) consists of multi-model trajectories
of traffic participants, e.g. pedestrians, bicyclists, cars captured from a drone. Prior
works follow two different evaluation protocols, 1. (Lee et al., 2017b; Bhattacharyya
et al., 2018c; Pajouheshgar and Lampert, 2018) (see also Chapter 6) use 5 fold cross
validation, 2. (Robicquet et al., 2016; Sadeghian et al., 2018, 2019; Deo and Trivedi,
2019) use a single split. We evaluate using the first protocol in Table 7.2 and the
second in Table 7.3.

Additionally, Pajouheshgar and Lampert (2018) suggest a “Shotgun” baseline.
This baseline extrapolates the trajectory from the last known position and orientation
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Method Visual Error @ 1sec Error @ 2sec Error @ 3sec Error @ 4sec -CLL |
“Shotgun” (Top 10%) (Pajouheshgar and Lampert, 2018) None 0.7 1.7 3.0 4.5 91.6
DESIRE-SI-IT4 (Top 10%) (Lee et al., 2017b) RGB 1.2 2.3 3.4 5.3 X
STCNN (Top 10%) (Pajouheshgar and Lampert, 2018) RGB 1.2 2.1 3.3 4.6 X
BMS-CVAE (Top 10%) (Bhattacharyya et al., 2018¢) RGB 0.8 1.7 3.1 4.6 126.6
MoG-CVAE, M = 3 (Top 10%) None 0.8 1.7 2.7 3.9 86.1
CF-VAE - no regularization (Ours, Top 10%) None 0.9 1.9 3.3 4.7 96.2
CF-VAE + pR, C = 0.2 (Ours, Top 10%) None 0.7 1.5 2.5 3.6 84.6
CF-VAE + pR, C = 0.2 (Ours, Top 10%) RGB 0.7 1.5 2.4 3.5 84.1

Table 7.2: Five fold cross validation on the Stanford Drone dataset. Euclidean error
at (1/5) resolution.

Sampled Predictions Latent Prior Sampled Predictions Latent Prior Sampled Predictions Latent Prior
Figure 7.4: Randomly sampled predictions of our CF-VAE + pR model on the
Stanford Drone. We observe that our predictions are highly multi-modal and are

reflected by the Conditional Flow Priors. Note, our 64D CF-VAE latent distribution
is (approximatly) projected to 2D using tSNE and KDE.

ok

L

in 10 different ways — 5 orientations: (0°, £8°, £15°) and 5 velocities: None or
exponentially weighted over the past with coefficients (0, 0.3, 0.7, 1.0). This baseline
obtains results at par with the state-of-the-art because it is a good template which
covers the most likely possible futures (modes) for traffic participant motion in
this dataset. We report the results using 5 fold cross validation in Table 7.2. We
additionally compare to a mixture of Gaussians prior. We use the same model
architecture as in Bhattacharyya et al. (2018c) (Chapter 6) and a CNN encoder with
attention to extract features from the last observed RGB image. These visual features
serve as additional conditioning (x;;) to our Conditional Flow model. We see that
our CF-VAE model with RGB input and posterior regularization (pR) performs best
— outperforming the state-of-the-art “Shotgun” and BMS-CVAE by over 20% (Error
@ gsec). We see that our conditional flows are able to utilize visual scene (RGB)
information to improve performance (3.5 vs 3.6 Error @ 4sec). We also see that the
MoG-CVAE and our CF-VAE + pR outperforms the BMS-CVAE, even without visual
scene information. This again reinforces our claim that the standard Gaussian prior
induces a strong model bias and data dependent multi-modal priors are needed
for best performance. The performance advantage of CF-VAE over the MoG-CVAE
again illustrates the advantage of normalizing flows at learning complex conditional
multi-modal distributions. The performance advantage over the “Shotgun” baseline
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Figure 7.5: Comparison of our CE-VAE + pR (Red) and the “Shoutgun” baseline (Yel-
low) of (Pajouheshgar and Lampert, 2018), Groundtruth (Blue). Initial conditioning
trajectory in white. Our CF-VAE not only learns to capture the correct modes but
also generates more fine-grained predictions.

Method mADE | mFDE |
Social GAN (Gupta et al., 2018) 27.2 41.4
MATF GAN (Zhao et al., 2019) 22.5 33.5
SoPhie (Sadeghian et al., 2019) 16.2 29.3
Goal Prediction (Deo and Trivedi, 2019) 15.7 28.1
CF-VAE + pR, C = 0.2 (Ours) 12.6 22.3

Table 7.3: Evaluation on the Stanford Drone dataset on a single split (see also
Table 7.2).

shows that our CF-VAE + pR not only learns to capture the correct modes but also
generates more fine-grained predictions. The qualitative examples in Fig. 7.5 shows
that our CF-VAE is better able to capture complex trajectories with sharp turns.

We report results using the single train/test split of (Robicquet et al., 2016;
Sadeghian et al., 2018, 2019; Deo and Trivedi, 2019) in Table 7.3. We use the mini-
mum Average Displacement Error (nADE) and minimum Final Displacement Error
(mFDE) metrics as in (Deo and Trivedi, 2019). The minimum is over as set of predic-
tions of size N. Although this metric is less robust to random guessing compared to
the Top 1% metric, it avoids rewarding random guessing for a small enough value
of N. We choose N = 20 as in (Deo and Trivedi, 2019). Similar to the results with 5
fold cross validation, we observe 20% improvement over the state-of-the-art.

7.4.3 HighD

The HighD dataset (Krajewski ef al., 2018) consists of vehicle trajectories recorded
using a drone over highways. In contrast to other vehicle trajectory datasets e.g.
NGSIM it contains minimal false positive trajectory collisions or physically improv-
able velocities.

The HighD dataset is challenging because lane changes or interactions are rare ~
10% of all trajectories. The distribution of future trajectories contain a single main
mode (linear continuations) along with several minor modes. Thus, approaches
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Method Context ADE | FDE| -CLL |
Constant Velocity None 1.09 2.66 X
FF (Diehl et al., 2019) None 0.45 1.09 X
GAT (Diehl et al., 2019) Yes 0.47 1.04 X
CVAE (Top 10%) None 0.45 0.96 5.32
CVAE + Cyclic KL (Top 10%) None 0.38 0.80 4.80
CF-VAE + pR, (Ours, Top 10%) None 0.44 0.94 4.71

CF-VAE + {pR,cR}, (Ours, Top 10%) None 0.30 0.57 3.64
CE-VAE + {pR,cR}, (Ours, Top 10%) Yes 0.29 0.55 3.42

Table 7.4: Evaluation on the HighD dataset.

which predict a single mean trajectory (targeting the main mode) are challenging to
outperform. In Table 7.4, we see that the simple Feed Forward (FF) model performs
well and the Graph Convolutional GAT model of Diehl et al. (2019), which captures
interactions, only narrowly outperforms the FF model. This dataset is challenging
for CVAE based models as they frequently suffer from posterior collapse when a
single mode dominates. This is clearly observed with our CVAE baseline in Table 7.4.
To prevent posterior collapse, we use the cyclic KL annealing scheme proposed
in Fu et al. (2019) (using a MoG prior did not help). This already leads to signifi-
cant improvement over the deterministic FF and GAT baselines. We also observe
posterior collapse with our CF-VAE model. Therefore, we regularize by removing
additional conditioning (cR). Our CF-VAE + {pR,cR} with condition regularization
significantly outperforms the CF-VAE + pR and CVAE baselines (with cyclic KL
annealing), demonstrating the effectiveness of our condition regularization scheme
(cR) in preventing posterior collapse. The addition of contextual information of inter-
acting traffic participants using our convolutional social pooling network with 1x1
convolutions significantly improves performance, demonstrating the effectiveness of
our conditional normalizing flow based priors.

7.5 CONCLUSION

In this chapter, we presented the first variational model for learning multi-modal
conditional data distributions with Conditional Flow based priors — the Conditional
Flow Variational Autoencoder (CF-VAE). Furthermore, we propose two novel regu-
larization techniques — posterior regularization (pR) and condition regularization
(cR) — which stabilizes training solutions and prevents posterior collapse leading
to better fit to the target distribution. These techniques lead to a better match to
the target distribution. Our experiments on diverse sequence prediction datasets
show that our CF-VAE achieves state-of-the-art results across different performance
metrics.
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quality in generative modelling tasks but suffer from the mode collapse

problem. Variational Autoencoders (VAE) on the other hand explicitly
maximize a reconstruction-based data log-likelihood forcing it to cover all modes,
but suffer from poorer sample quality. Recent works have proposed hybrid VAE-
GAN frameworks which integrate a GAN-based synthetic likelihood to the VAE
objective to address both the mode collapse and sample quality issues, with limited
success. This is because the VAE objective forces a trade-off between the data log-
likelihood and divergence to the latent prior. The synthetic likelihood ratio term
also shows instability during training. Based on our insights from Chapter 6, we
propose a novel objective with a “Best-of-Many-Samples” reconstruction cost and a
stable direct estimate of the synthetic likelihood. This enables our hybrid VAE-GAN
framework to achieve high data log-likelihood and low divergence to the latent prior
at the same time and shows significant improvement over both hybrid VAE-GANs
and plain GANs in mode coverage and quality.

GENERATIVE Adversarial Networks (GANSs) can achieve state-of-the-art sample

8.1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have achieved
state-of-the-art sample quality in generative modeling tasks. However, GANs do not
explicitly estimate the data likelihood. Instead, it aims to “fool” an adversary, so that
the adversary is unable to distinguish between samples from the true distribution
and the generated samples. This leads to the generation of high quality samples

99
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(Adler and Lunz, 2018; Brock et al., 2019). However, there is no incentive to cover the
whole data distribution. Entire modes of the true data distribution can be missed —
commonly referred to as the mode collapse problem.

In contrast, the Variational Auto-Encoders (VAEs) (Kingma and Welling, 2014)
explicitly maximize data likelihood and can be forced to cover all modes (Bozkurt
et al., 2018; Shu et al., 2018). VAEs enable sampling by constraining the latent space
to a unit Gaussian and sampling through the latent space. However, VAEs maximize
a data likelihood estimate based on the Li/L, reconstruction cost which leads to
lower overall sample quality — blurriness in case of image distributions. Therefore,
there has been a spur of recent work (Donahue et al., 2017; Larsen et al., 2016; Rosca
et al., 2017) which aims to integrate GANs in a VAE framework to improve VAE
generation quality while covering all the modes. Notably in Rosca et al. (2017), GANs
are integrated in a VAE framework by augmenting the L;/L; data likelihood term in
the VAE objective with a GAN discriminator based synthetic likelihood ratio term.

However, Rosca et al. (2017) reports that in case of hybrid VAE-GANS, the latent
space does not usually match the Gaussian prior. This is because, the reconstruction
log-likelihood in the VAE objective is at odds with the divergence to the latent prior
(Tabor et al., 2018) (also in case of alternatives proposed by Makhzani et al. (2016);
Arjovsky et al. (2017)). This problem is further exacerbated with the addition of
the synthetic likelihood term in the hybrid VAE-GAN objective — it is necessary
for sample quality but it introduces additional constraints on the encoder/decoder.
This leads to the degradation in the quality and diversity of samples. Moreover, the
synthetic likelihood ratio term is unstable during training — as it is the ratio of outputs
of a classifier, any instability in the output of the classifier is magnified. We directly
estimate the ratio using a network with a controlled Lipschitz constant, which leads
to significantly improved stability. Our contributions in this chapter in detail are,
1. We propose a novel objective for training hybrid VAE-GAN frameworks, which
relaxes the constraints on the encoder by giving the encoder multiple chances to draw
samples with high likelihood enabling it to generate realistic images while covering
all modes of the data distribution, 2. Our novel objective directly estimates the
synthetic likelihood term with a controlled Lipschitz constant for stability, 3. Finally,
we demonstrate significant improvement over prior hybrid VAE-GANs and plain
GANSs on highly muti-modal synthetic data, CIFAR-10 and CelebA.

8.2 NOVEL OBJECTIVE FOR HYBRID VAE-GANS

We begin with a brief overview of hybrid VAE-GANSs followed by details of our
novel objective.

Overview. Hybrid VAE-GANSs (Fig. 8.1) are generative models for data distribu-
tions x ~ p(x) that transform a latent distribution z ~ p(z) to a learned distribution
X ~ pg(x) approximating p(x). The GAN (Ggy,Dj alone can generate realistic samples,
but has trouble covering all modes. The VAE (Ry,Gy,Dy) can cover all modes of the
distribution, but generates lower quality samples overall. VAE-GANSs leverage the
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strengths of both VAEs and GANs to generate high quality samples while capturing
all modes. We begin with a discussion of the prior hybrid VAE-GAN objectives
(Rosca et al., 2017) and its shortcomings, followed by our novel “Best-of-Many-
Samples” objective with a novel reconstruction term and regularized stable direct
estimate of the synthetic likelihood.

8.2.1 Shortcomings of Hybrid VAE-GAN Objectives

Hybrid VAE-GANs (Dumoulin et al., 2017; Makhzani et al., 2016; Rosca et al., 2017;
Zhao et al., 2017¢) maximizes the log-likelihood of the data (x ~ p(x)) akin to VAEs.
The log-likelihood, assuming the latent space to be distributed according to p(z),

log(po(x)) = log ( [ po(xl2)p(2)dz ). (5.1

Here, p(z) is usually Gaussian. This requires the generator Gy to generate samples
that assign high likelihood to every example x in the data distribution for a likely
z ~ p(z). Thus, the decoder 0 can be forced to cover all modes of the data distribution
X ~ p(x). In contrast, GANs never directly maximize the data likelihood and there
is no direct incentive to cover all modes.

However, the integral in Eq. (8.1) is intractable. VAEs and Hybrid VAE-GANs
use amortized variational inference using a recognition network g¢(z|x) (Ry). The
final hybrid VAE-GAN objective of the state-of-the-art a-GAN (Rosca et al., 2017)
which integrates a synthetic likelihood ratio term is,

Di(x|z)
1-— DI(X‘Z))

—Dx1(p(2) || 9¢(z|x)).

This objective has two important shortcomings. Firstly, as pointed in Bhat-
tacharyya et al. (2018c); Tolstikhin et al. (2018) (see also Chapter 6), this objective
severely constrains the recognition network as the average likelihood of the samples
generated from the posterior g4(z|x) is maximized. This forces all samples from
¢ (z|x) to explain x equally well, penalizing any variance in g4 (z|x) and thus forcing
it away from the Gaussian prior p(z). Therefore, this makes it difficult to match
the prior in the latent space and the encoder is forced to trade-off between a good
estimate of the data log-likelihood and the divergence to the latent prior.

Secondly, the synthetic likelihood ratio term is the ratio of the output of Dy, any
instability (non-smoothness) in the output of the classifier is magnified. Moreover,
there is no incentive for Dy to be smooth (stable). For two similar images, {x;,X2}
with |x; — xz| < €, the change of output |Dy(x;|z1) — D1(x1]z2)| can be arbitrarily
large. This means that a small change in the generator output (e.g. after a gradient
descent step) can have a large change in the discriminator output.

Next, we describe how we can effectively leverage multiple samples from g4(z|x)
to deal with the first issue. Finally, we derive a stable synthetic likelihood term
(Rosca et al., 2017, Wood, 2010) to deal with the second issue.

Locan = A By 0 10g(pe(x|2)) + Ey () log ( (8.2)
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Best Match Our “Best of Many”-VAE-GAN Objective
[ (e > max log(po (x/2"))
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Figure 8.1: Overview of our BMS-VAE-GAN framework. The terms of our novel
objective Eq. (8.7) are highlighted at the right. We consider only the best sample
from the generator Gy while computing the reconstruction loss.

8.2.2 Leveraging Multiple Samples

Building upon Bhattacharyya et al. (2018c) (discussed in Chapter 6), we derive an
alternative variational approximation of Eq. (8.1), which uses multiple samples to
relax the constraints on the recognition network,

Lus =10 ( [ pa(x12)0(zIx) d2) — Dy (gp(2]x) || p(2)). 83)

In comparison to the a-GAN objective in Eq. (8.2) where the expected likelihood
assigned by each sample to the data point x was considered, we see that in Eq. (8.3)
the likelihood is computed considering all generated samples. The recognition
network gets multiple chances to draw samples which assign high likelihood to x.
This allows g4(z|x) to have higher variance, helping it better match the prior and
significantly reducing the trade-off with the data log-likelihood. Next, we describe
how we can integrate a synthetic likelihood term in Eq. (8.3) to help us generate
sharper images.

8.2.3 Integrating Stable Synthetic Likelihoods

Considering only L; /L, reconstruction based likelihoods pg(x|z) (as in Bhattacharyya
et al. (2018¢); Kingma and Welling (2014); Tolstikhin et al. (2018) and Chapter 6) might
not be sufficient in case of complex high dimensional distributions, e.g. in case of
image data this leads to blurry samples. Synthetic estimates of the likelihood Wood
(2010) leverages a neural network (usually a classifier) which is jointly trained to
distinguish between real and generated samples. The network is trained to assign
low likelihood to generated samples and higher likelihood to real data samples.
Starting from Eq. (8.3), we integrate a synthetic likelihood term with weight B to
encourage our generator to generate realistic samples. The L;/L; reconstruction
likelihood (with weight a) forces the coverage of all modes. However, unlike prior
work (Bhattacharyya et al., 2019a; Rosca et al., 2017) (as in Chapter 5), our synthetic
likelihood estimator Dy is not a classifier. We first convert the likelihood term to a
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likelihood ratio form which allows for synthetic estimates,
Lais =010 (Eq,(4xPo(x12) ) + B10g (Eq (2 Po(x12) ) = D (g (z1x) | P
8.4

o« 1108 (g 0 P20 o o (629 — D (210 | pl2))

To enable the estimation of the likelihood ratio re(x|2)/p(x) using a neural network,
we introduce the auxiliary variable y where, y = 1 denotes that the sample was
generated and y = 0 denotes that the sample is from the true distribution. We can
now express Eq. (8.4) (using Bayes theorem),

po(x|z,y =1)
=alog (E log (E - D .
1105 (Eqy ), =7 ) + B108 (Eqyaopo(x12)) — Dic(ag(zho) | e
_ poly =1|z,x) '
=a10g (Fgy o 1y —177) + B108 (Egyapopo(x12)) = D doz1x) || plz).
The ratio re(y=1/2x)/1-p(y=1/x) should be high for generated samples which are
indistinguishable from real samples and low otherwise. In case of image distribu-
tions, we find that direct estimation of the numerator/denominator (as in Rosca
et al. (2017)) exacerbates instabilities (non-smoothness) of the estimate. Therefore, we
estimate this ratio directly using the neural network Dj(x) — trained to produce high
values for images indistinguishable from real images and low otherwise,

LMS-S X OCIOg (Eq¢(z|x)DI(X’Z)> + [Slog (IE%(Z‘X)I)Q(X‘Z))
—Dxw(g9(z]x) || p(2))-

To further ensure smoothness, we directly control the Lipschitz constant K of
Dy. This ensures, Vxi,Xp, |Di(x1]z1) — Di(x2]z2)| < K|x; — x| — the function is
strictly smooth everywhere. Small changes in generator output cannot arbitrarily
change the synthetic likelihood estimate, hence allowing the generator to smoothly
improve sample quality. We constrain the Lipschitz constant K to 1 using Spectral
Normalization (Miyato et al., 2018). Note that the likelihood py(x|z) takes the form
e~ MxXllx in Eq. (8.6) — a log-sum-exp which is numerically unstable. As we perform
stochastic gradient descent, we can deal with this after stochastic (MC) sampling
of the data points. We can estimate the log-sum-exp well using the max — the
“Best-of-Many-Samples” (Nielsen and Sun, 2016),

(8.6)

1 i=T , .
log (:T Y Pe(X\21)> > maxlog(pe(x|2')) —log(T)
i=1 !

Furthermore, in practice, we observe that we can improve sharpness of generated
images by penalizing generator Gy, using the least realistic of the T samples,

i=T . .
log ( Y. DI(X|2’)> > miinlog (Di(x]2"))
i=1



104 CHAPTER 8. “BEST-OF-MANY-SAMPLES” DISTRIBUTION MATCHING

Our final “Best-of-Many”-VAE-GAN objective takes the form (ignoring the constant
log(T) term),

Leuss = aminlog (Di(x|2')) + pmaxlog(py(x|2')) — Dxe(9s(zIx) || p(2)). (87)

We use the same optimization scheme as in Rosca et al. (2017).

Approximation Errors. The “Best-of-Many-Samples” scheme introduces the log(T)
error term. However, this error term is dominated by the low data likelihood term in
the beginning of optimization (see Bhattacharyya et al. (2018c) and Chapter 6). Later,
as generated samples become more diverse, the log likelihood term is dominated by
the Best of T samples — “Best of Many-Samples” is equivalent.

Classifier based estimate of the prior term. Recent work (Makhzani et al., 2016;
Arjovsky et al., 2017; Rosca et al., 2017) has shown that point-wise minimization of
the KL-divergence using its analytical form leads to degradation in image quality.
Instead, KL-divergence term is recast in a synthetic likelihood ratio form minimized
“globally” using a classifier instead of point-wise. Therefore, unlike Bhattacharyya
et al. (2018c), here we employ a classifier based estimate of the KL-divergence to
the prior. However, as pointed out by prior work on hybrid VAE-GANs (Rosca
et al., 2017), a classifier based estimate with still leads to mismatch to the prior
as the trade-off with the data log-likelihood still persists without the use of the
“Best-of-Many-Samples”. Therefore, as we shall demonstrate next, the benefits of
using the “Best-of-Many-Samples” extends to cases when a classifier based estimate
of the KL-divergence is employed.

8.3 EXPERIMENTS

Next, we evaluate on multi-modal synthetic data as well as CIFAR-10 and CelebA.
We perform all experiments on a single Nvidia V1ioo GPU with 16GB memory. We
use as many samples during training as would fit in GPU memory so that we make
the same number of forward /backward passes as other approaches and minimize
the computational overhead of sampling multiple samples.

8.3.1 Evaluation on Multi-modal Synthetic data.

We evaluate in Tables 8.1 and 8.2 on the standard 2D Grid and Ring datasets, which
are highly challenging due to their multi-modality. The metrics considered are
the number of modes captured and % of high quality samples (within 3 standard
deviations of a mode). The generator/discriminator architecture is the same as in
Srivastava et al. (2017). We see that our BMS-VAE-GAN (using the best of T = 10
samples) outperforms state of the art GANs, e.g. Eghbal-zadeh et al. (2019) and
the WAE / a-GAN baselines. The explicit maximization of the data log-likelihood
enables our BMS-VAE-GAN and the WAE and a-GAN baselines to capture all modes
in both the grid and ring datasets. The significantly increased proportion of high
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2D Grid (25 modes) 2D Ring (8 modes)

Method Modes HQ% Modes HQ%
VEEGAN (Srivastava et al., 2017) 24.6 40 8 52.9
GDPP-GAN (Elfeki et al., 2019) 24.8 68.5 8 71.7
SN-GAN (Miyato et al., 2018) 23.8+1.5 90.9E£4.0 6.8f1.1 86.6+9.7
MD-GAN (Eghbal-zadeh et al., 2019) 25 99.3t2.2 8 89.0£3.6
WAE (Arjovsky et al., 2017) 25 65.4+£3.8 8 35.8+£4.7
«-GAN (Rosca et al., 2017) 25 70.51+4.2 8 83.6£5.3
BMS-VAE-GAN (Ours) T = 10 25 99.740.2 8 99.6+0.3

Table 8.1: Evaluation on multi-modal synthetic data.

Target WAE x-GAN BMS-VAE-GAN
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Table 8.2: Visualization of samples.

quality samples with respect to WAE and a-GAN baselines is due to our novel
“Best-of-Many-Samples” objective. We illustrate this in Table 8.3. Following Rosca
et al. (2017), we analyze the learnt latent spaces in detail, in particular we check
for points (in red) which are likely under the Gaussian prior p(z) (blue) but have
low probability under the marginal posterior 44(z) = [ g4(z|x)dx. We use tSNE to
project points from our 32-dimensional latent space to 2D. In Table 8.3 (Top Row)
we clearly see that there are many such points in case of the WAE and a-GAN
baselines (note that this low probability threshold is common across all methods). In
Table 8.3 (Bottom Row) we see that these points lead to the generation of low quality
samples (in red) in the data space. Therefore, we see that our “Best-of-Many-Samples”
samples objective helps us match the prior in the latent space and thus this leads
to the generation of high quality samples and outperforming both state of the art
GANSs and hybrid VAE-GAN baselines.
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WAE a-GAN BMS-VAE-GAN
(Gaussian) Latent space samples z, g4(z) < p(z)
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Table 8.3: Effect of our novel objective in the latent space. Top Row: The standard
WAE and a-GAN objectives lead to mismatch to the prior in the latent space. We
show samples z (in red) which are highly likely under the standard Gaussian prior
(blue) but have low probability under the learnt marginal posterior q4(z). Bottom
Row: We show that such points z lead to low quality data samples (in red), which
do correspond to any of the modes.

8.3.2 Evaluation on CIFAR-10

Next, we evaluate on the CIFAR-10 dataset. Auto-encoding based approaches
(Kingma and Welling, 2014; Makhzani et al., 2016) do not perform well on this
dataset, as a simple Gaussian reconstruction based likelihood is insufficient for such
highly multi-modal image data. This makes CIFAR-10 a challenging dataset for
hybrid VAE-GAN:S.

Architecture details. We use two different types of architectures for the genera-
tor /discriminator pair Gy, D1 : DCGAN based (Radford et al., 2016) as used in Rosca
et al. (2017) and the Standard CNN used in Miyato et al. (2018); Tran et al. (2018).

Experimental details and baselines. We use the ADAM optimizer (Kingma
and Ba, 2015) and use a learning rate of 2 x 1074, B1 = 0.0 and B = 0.9 for all
components. We use the same architecture of the latent space discriminator Dy,
as in a-GAN (Rosca et al., 2017) (3-layer MLP with 750 neurons each). Values of
log(Dr) € [0,2] work well.

We consider the following baselines for comparison against our BMS-VAE-GAN
with a DCGAN generator/discriminator, 1. A standard DCGAN (Radford et al.,
2016), 2. The a-GAN model of (Rosca et al., 2017). Furthermore, we compare our
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Method IvOM |

DCGAN (Radford et al., 2016) 0.0084+0.0020
VEEGAN (Srivastava et al., 2017) 0.006840.0001

SN-GAN (Miyato et al., 2018) 0.005574-0.0006
x-GAN + SN (Ours) T =1 0.00487+0.0005
BMS-VAE-GAN (Ours) T = 30 0.0037-+0.0005

Table 8.4: IvOM on CIFAR-10.

x-GAN + SN BMS-VAE-GAN

Test Sample SN-GAN

Figure 8.2: Closest generated images found using IvOM.

BMS-GAN with the Standard CNN generator /discriminator to, 1. SN-GAN (Miyato
et al., 2018), 2. BW-GAN (Adler and Lunz, 2018), 3. Dist-GAN (Tran et al., 2018),
4. Our a-GAN + SN is an improved version of the a-GAN which includes Spectral
Normalization for stable estimation of synthetic likelihoods. Again, the x-GAN and
«-GAN + SN baselines are identical to the corresponding BMS-VAE-GAN except for
the “Best-of-Many-Samples” reconstruction likelihood.

Discussion of results. We report results in Table 8.5. Please note that the higher
latent space dimensionality (100) makes the latent spaces much harder to reliably
analyze. Therefore, we rely on the FID and IoVM metrics. We follow the evaluation
protocol of Miyato et al. (2018); Tran et al. (2018) and use 10k/5k real/generated
samples to compute the FID score. The a-GAN (Rosca et al., 2017) model with
(DCGAN architecture) demonstrates better fit to the true data distribution (29.3
vs 30.7 FID) compared to a plain DCGAN. This again shows the ability of hybrid
VAE-GANSs in improving the performance of plain GANs. We observe that our
novel “Best-of-Many-Samples” optimization scheme outperforms both the plain
DCGAN and hybrid a-GAN(28.8 vs 29.4 FID), confirming the advantage of using
“Best-of-Many-Samples”. Furthermore, we see that our BMS-VAE outperforms the
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Method FID |
DCGAN Architecture
WAE (Tolstikhin et al., 2018) 89.3+0.3
BMS-VAE (Ours) T = 10 87.91t0.4
DCGAN (Radford et al., 2016) 30.7+0.2
«-GAN (Rosca et al., 2017) 29.4%+0.3
BMS-GAN (ours) T = 10 28.8+0.4
Standard CNN Architecture

SN-GAN (Miyato et al., 2018) 25.5
BW-GAN (Adler and Lunz, 2018) 25.1
®-GAN + SN (Ours) T =1 24.6+0.3

BMS-VAE-GAN (Ours) T = 10 23.840.2
BMS-VAE-GAN (Ours) T = 30 23.47F0.2

Dist-GAN (Tran et al., 2018) 22.9
BMS-VAE-GAN (Ours) T = 10 21.840.2

Table 8.5: FID on CIFAR-10.

state-of-the-art plain auto-encoding WAE (Tolstikhin et al., 2018).

We further compare our BMS-VAE-GAN to state-of-the-art GANs using the
Standard CNN architecture in Table 8.5 with 100k generator iterations. Our x-GAN
+ SN ablation significantly outperforms the state-of-the-art plain GANs (Adler and
Lunz, 2018; Miyato et al., 2018), showing the effectiveness of hybrid VAE-GANs with
a stable direct estimate of the synthetic likelihood on this highly diverse dataset.
Furthermore, our BMS-VAE-GAN model trained using the best of T = 30 samples
significantly improves over the a-GAN + SN baseline (23.4 vs 24.6 FID), showing the
effectiveness of our “Best-of-Many-Samples”. We also compare to Tran et al. (2018)
using 300k generator iterations, again outperforming by a significant margin (21.8 vs
22.9 FID). The IoVM metric of Srivastava et al. (2017) (Table 8.4 and Fig. 8.2), illustrates
that we are also able to better reconstruct the image distribution. The improvement
in both sample quality as measured by the FID metric and data reconstruction
as measured by the IoVM metric shows that our novel “Best-of-Many-Samples”
objective helps us both match the prior in the latent space and achieve high data
log-likelihood at the same time.

8.3.3 Evaluation on CelebA

Next, we evaluate on CelebA at resolutions 64 x 64 and 128 x 128.

Training and architecture details. As the focus is to evaluate training objectives
for hyrid VAE-GANSs, we use simple DCGAN based generators and discriminators
for generation at both 64 x64 and 128 x128. Approaches like progressive growing
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(Karras et al., 2018) are orthogonal and can be applied on top.

Baselines and experimental details. =~ We consider the following baselines for
comparison with our BMS-GAN with T = {10,30} samples, 1. WAE (Tolstikhin
et al., 2018) the state-of-the-art plain auto-encoding generative model, 2. a-GAN
(Rosca et al., 2017) the state-of-the-art hybrid VAE-GAN, 3. Our a-GAN + SN is an
improved version of the x-GAN which includes Spectral Normalization for stable
estimation of synthetic likelihoods. Note, the a-GAN baseline is identical to our
BMS-GAN except for the “Best-of-Many” reconstruction likelihood. Moreover, we
include several plain GAN baselines, 1. Wasserstein GAN with gradient penalty
(WGAN-GP) Gulrajani et al. (2017a), 2. Spectral Normalization GAN (SN-GAN)
Miyato et al. (2018), 3. Dist-GAN (Tran et al., 2018).

To train our BMS-VAE-GAN and aR-GAN models we use the two time-scale
update rule (Heusel et al., 2017) with learning rate of 1 x 10~* for the generator
and 4 x 10~ for the discriminator. We use the Adam optimizer with 8; = 0.0
and B2 = 0.9. We use a three layer MLP with 750 neurons as the latent space
discriminator Dy, (as in Rosca et al. (2017)) and a DCGAN based recognition network
Rgp. We use the hinge loss to train Dy to produce high values for real images and low
values for generated images, constraining log(Dy) € [—0.5,0.5] works well.

Method FID |
Resolution: 64x 64
WAE (Tolstikhin et al., 2018) 41.2£0.3
BMS-VAE (Ours) T = 10 39.8+0.3
DCGAN 31.130.9
WGAN-GP (Gulrajani et al., 2017a) 26.8+1.2
BEGAN (Berthelot et al., 2017) 26.31+0.9
Dist-GAN (Tran et al., 2018) 23.740.3
SN-GAN (Miyato et al., 2018) 21.940.8
«-GAN (Rosca et al., 2017) 19.21+0.8
x-GAN + SN (Ours) T =1 15.11+0.2
BMS-VAE-GAN (Ours) T = 10 14.3t0.4
BMS-VAE-GAN (Ours) T = 30 13.610.4
Resolution: 128 x 128

SN-GAN (Miyato et al., 2018) 60.5+1.5
aR-GAN (Ours) T =1 45.8£1.4
BMS-GAN (Ours) T = 10 42.7t1.2

Table 8.6: FID on CelebA.

Discussion of results. We train all models for 200k iterations and report
the FID scores (Heusel et al., 2017) for all models using 10k/10k real/generated
samples in Table 8.6. The pure auto-encoding based WAE (Tolstikhin et al., 2018)



110 CHAPTER 8. “BEST-OF-MANY-SAMPLES” DISTRIBUTION MATCHING

T TS N : :
(a) Our a-GAN + SN (T =1, 128 x128) (b) Our BMS-VAE-GAN (T = 10, 128 x128)

Figure 8.3: CelebA Random Samples. Our “Best of Many” reconstruction cost leads
to sharper results.

has the weakest performance due to blurriness. Our pure auto-encoding BMS-VAE
(without synthetic likelihoods) improves upon the WAE (39.8 vs 41.2 FID), already
demonstrating the effectiveness of using “Best-of-Many-Samples”. We see that the
base DCGAN has the weakest performance among the GANs. BEGAN suffers
from partial mode collapse. The SN-GAN improves upon WGAN-GP, showing the
effectiveness of Spectral Normalization. However, there exists considerable artifacts
in its generations. The a-GAN of Rosca et al. (2017), which integrates the base
DCGAN in its framework performs significantly better (31.1 vs 19.2 FID). This shows
the effectiveness of VAE-GAN frameworks in increasing the quality and diversity of
generations. Our enhanced x-GAN + SN regularized with Spectral Normalization
performs significantly better (15.1 vs 19.2 FID). This shows the effectiveness of a
regularized direct estimate of the synthetic likelihood. Using the gradient penalty
regularizer of Gulrajani et al. (2017a) lead to a drop of 0.4 FID. Our BMS-VAE-GAN
improves significantly over the a-GAN + SN baseline using the “Best-of-Many-
Samples” (13.6 vs 15.1 FID). The results at 128 x 128 resolution mirror the results
at 64x64. We see that by using the “Best-of-Many-Samples” we obtain sharper
(Fig. 8.3(b)) results that cover more of the data distribution as shown by both the
FID and IoVM.

8.4 CONCLUSION

We propose a new objective for training hybrid VAE-GAN frameworks which
overcomes key limitations of current hybrid VAE-GANs. We integrate, 1. A “Best-of-
Many-Samples” reconstruction likelihood which helps in covering all the modes
of the data distribution while maintaining a latent space as close to Gaussian as
possible, 2. A stable estimate of the synthetic likelihood ratio.. Our hybrid VAE-
GAN framework outperforms state-of-the-art hybrid VAE-GANs and plain GANSs in
generative modelling on CelebA and CIFAR-10, demonstrating the effectiveness of
our approach.



EURO-PVI: PEDESTRIAN VEHICLE INTERACTIONS IN
DENSE URBAN CENTERS

Contents

9.1 Introduction. ... ... ... ... 111
9.2 The Euro-PVIDataset . . . ... ... ... .. ... ... ...... 113
9.3 Joint-B-cVAE: Joint Model for Dense Urban Environments . . . . . . 116
9.4 Experiments. ... ... ... ... ... ... .. . ... 119

0.4.1 MNUSCENES . . . . .« v vttt 121

9.4.2 Euro-PVI . .. ... . ... . 122
9.5 Conclusion . . ... ... ... ... 123

on the trajectories of traffic participants, e.g. stopping or turning to avoid col-

lisions. Although recent datasets and trajectory prediction approaches have fos-
tered the development of autonomous vehicles yet the amount of vehicle-pedestrian
(bicyclist) interactions modeled are sparse. In this chapter, we propose Euro-PVI,
a dataset of pedestrian and bicyclist trajectories. In particular, our dataset caters
more diverse and complex interactions in dense urban scenarios compared to the
existing datasets. To address the challenges in predicting future trajectories with
dense interactions, we develop a joint inference model that learns an expressive
multi-modal shared latent space across agents in the urban scene. This enables our
Joint-B-cVAE approach to better model the distribution of future trajectories. We
achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrat-
ing the importance of capturing interactions between ego-vehicle and pedestrians
(bicyclists) for accurate predictions.

INTERACTIONS between vehicle and pedestrian or bicyclist have a significant impact

9.1 INTRODUCTION

Notwithstanding recent progress in the development of reliable self-driving vehicles,
dense inner city environments remain challenging. One of the key components
for the success of self-driving vehicles in dense urban environments is anticipation
(Bhattacharyya et al., 2018c; Lee et al., 2017b). Anticipating the motion of traffic
participants in dense urban environments is made especially challenging due to the
effect of interactions between different agents. For example, a pedestrian might turn
onto the road to avoid an obstacle on the sidewalk which requires the vehicle to
stop (Fig. 9.1(c)). Alternately, a pedestrian attempting to cross the road ahead of the
ego-vehicle might continue or stop depending upon the distance and velocity of the

111
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(a) Pedestrian speeds to avoid vehicle. (b) Pedestrians yield to the vehicle.

(c) Vehicle slows to avoid pedestrian. (d) Vehicle yields to the bicyclists.

Figure 9.1: Examples of interactions between the ego-vehicle and pedestrians (bicy-
clists) in Euro-PVI.

vehicle (cf. Fig. 9.2). Thus, interactions add significant complexity to the distribution
of the likely future trajectories which is highly multi-modal.

Recently, datasets like nuScenes (Caesar et al., 2020), Argoverse (Chang et al., 2019),
or Lyft L5 (Houston et al., 2020) have greatly aided the development of trajectory
prediction methods. However, these datasets are primarily focused on trajectories of
vehicles and vehicle-vehicle interactions — collected to a large extent on multi-lane
roads in North America or Asia, with sparse interactions between the ego-vehicle
and pedestrians or bicyclists (e.g. Figure 4 in Houston et al. (2020)). Therefore, they
do not represent trajectories in dense urban environments well where interactions
between the trajectories of agents are prominent. Such scenarios are particularly
common in inner-city environments in Europe.

In this chapter, we propose the new European Pedestrian Vehicle Interaction
(Euro-PVI) dataset S which is collected in a dense urban environment in Brussels and
Leuven, Belgium. The Euro-PVI dataset contains a rich and diverse set of interactions
between the ego-vehicle and pedestrians (bicyclists). Sequences are recorded near
busy urban landmarks, e.g. railway stations, narrow lanes or intersections (cf. Figs. 9.1
to 9.3) where interactions are frequent and it is therefore challenging to predict
pedestrian (bicyclist) paths.

Further, in spite of the recent progress in trajectory prediction methods, accurately
capturing the multi-modal distribution of future trajectories, e.g. in dense urban
environments, remains challenging. Current state of the art (Bhattacharyya et al.,
2019¢; Mangalam et al., 2020; Salzmann et al., 2020) generative models for trajectory
prediction and the approaches presented in Chapters 6 and 7 encode interactions
directly in the posterior. Thus, the latent space does not express interaction informa-
tion from the input distribution which limits the accuracy of the generated future

SThe dataset is available at www.europvi.mpi-inf.mpg.de
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trajectories. To address this limitation, we develop a latent variable deep generative
model which jointly models the distribution of future trajectories of the agents in
the scene. Our Joint-B-Conditional Variational Autoencoder (Joint-B-cVAE) models a
“shared” latent space between agents, to better capture the effect of interactions in
the latent space and accurately represent the multi-modal distribution of trajectories.

Our contributions in this chapter are, 1. We propose Euro-PVI, a novel dataset
of pedestrian and bicyclist trajectories recorded in Europe with dense interactions
with the ego-vehicle. 2. Our dataset facilitates research on dense interactions as we
show that — in contrast to prior datasets — there is a pronounced performance gap
between methods that model vehicle-pedestrian-interaction vs not. 3. To this end, we
develop a latent generative model — Joint-B-cVAE — that models a shared latent space
to better capture the effect of interactions on the multi-modal distribution of future
trajectories. 4. Finally, we demonstrate state of the art performance on pedestrian
(bicyclist) trajectory prediction on nuScenes and Euro-PVI.

9.2 THE EURO-PVI DATASET

In this section, we introduce our Euro-PVI dataset to advance the task of “on-board”
trajectory prediction especially in dense urban environments. The dataset focuses
on the role of the ego-vehicle - pedestrian (bicyclist) interactions present in a scene
to predict the future trajectories in dense urban environments. We first concretely
define an “interaction”, which guides our data collection process and helps us
select relevant sequences. Next, we provide details of the sensor setup and the data
collection process. We then compare Euro-PVI to the existing datasets with respect
to the density of interactions and provide detailed dataset statistics.

Interactions. We define an interaction between the ego-vehicle and a traffic
participant (e.g. pedestrian or bicyclist) as an event where the presence of either (or
both) the ego-vehicle or the traffic participant causes a change in velocity (change of
speed/direction of motion i.e. acceleration) of the other. Examples of interactions
include, 1. The ego-vehicle yielding to a pedestrian at a crosswalk (Fig. 9.2 top).
2. Non-verbal communication causes the ego-vehicle to slow down, as to avoid a
bicycle which wants to turn (Fig. 9.2 bottom). We aim to record sequences which
contain dense interactions between the ego-vehicle and vulnerable traffic participants,
in particular, pedestrians and bicyclists.

Drive planning and scene selection. = Euro-PVI is recorded in the dense urban
scene of Brussels and Leuven, Belgium. The ego-vehicle is equipped with a 360° lidar,
a positioning system and a set of front-facing synchronized cameras. The ego-vehicle
is crewed by a pilot and a co-pilot. The pilot is instructed to drive freely over a
predetermined area and to re-visit locations at times when dense concentration of
pedestrians (bicyclists) is to be expected, such as transport hubs during peak hour.
The duration of the driving sessions were up to 8 hours per day, over the course
of two weeks. The co-pilot is tasked with identifying interactions and tagging the
event. In the case of changes in trajectory or velocity of the ego-vehicle, the co-pilot
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Figure 9.2: Examples of interactions in Euro-PVI. Spikes in the magnitude (L, norm)
of acceleration resulting from interactions are marked.

asks the pilot for confirmation. The pilot is also instructed to spontaneously indicate
that an interaction has happened. In Fig. 9.3 we show the geographical distributions
of the trajectories in two example locations. We see that there is a high density of
trajectories located around busy urban landmarks e.g. the railway station. We also
show that interactions are not confined to road intersections with crosswalks where
pedestrian (bicyclist) trajectories are simpler to predict, but also occur at locations
without crosswalks (i.e. without designated crossing areas for pedestrians/bicyclists)
where trajectories are more challenging to predict.

Interactions in urban environments. We now compare Euro-PVI to existing
datasets for trajectory prediction with respect to the density of interactions, in
particular to the two largest datasets — nuScenes (Caesar et al., 2020) and Lyft L5
(Houston et al., 2020). First, we compare the distances between the ego-vehicle and
pedestrians (bicyclists) in the scene. Short distances are indicative of closely packed
urban environments where interactions frequently occur. In Fig. 9.4 (left), we show
the closest approach (proximity) of a pedestrian or bicyclist to the ego-vehicle. We see
that in the nuScenes and Lyft L5 datasets, the majority of the pedestrians (bicyclists)
do not approach the ego-vehicle closer than ~ 20 meters. Such large distances
between the pedestrians (bicyclists) and the ego-vehicle, more than 4 typical car
lengths, decreases the likelihood of interactions. In contrast, in Euro-PVI the majority
of the pedestrians (bicyclists) approach the ego-vehicle as close as ~ 8 meters. Such
short distances between the ego-vehicle and pedestrians (bicyclists) are indicative
of the densely packed urban environment in which Euro-PVI is recorded which
increases the likelihood of interactions.
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(a) Leuven railway station. (b) Leuven city center.

Figure 9.3: Examples of aggregated spatial distribution of trajectories of pedestrians
and cyclists around intersections and urban landmarks.
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Figure 9.4: Left (a): Cumulative distribution sorted by distance to the ego-vehicle.
Close proximity of the ego-vehicle and pedestrians(bicyclists) in Euro-PVI indicate
dense traffic scenarios where interactions are likely. Right (b): Maximum acceleration
sorted by distance to the ego-vehicle. High acceleration in close proximity of the
ego-vehicle and pedestrians(bicyclists) indicate high likelihood of interactions.

However, close proximity only increases the likelihood of interactions, but does
not necessarily lead to interactions. Note that by definition, interactions lead to a
change in velocity i.e. acceleration. Therefore, in Fig. 9.4 (right) we plot the maximum
acceleration experienced by the pedestrian (bicyclist) and ego-vehicle with increasing
distance to the ego-vehicle and a pedestrian (bicyclist) respectively. In the case of
nuScenes and Lyft L5 we do not see a strong dependence on distance. In contrast, in
Euro-PVI both pedestrians (bicyclists) and the ego-vehicle experience the maximum
acceleration close to the point of closest approach. This is again strongly indicative
of dense interactions in Euro-PVL

Qualitative examples of interactions. We provide example interactions in Euro-
PVI along with the resultant acceleration of the involved agents in Fig. 9.2, e.g. top
row: the pedestrian first slows down due to the approaching ego-vehicle and at the
same time, the ego-vehicle sees the pedestrian and yields. This is visible as a spike
in the velocity and acceleration plots. Similar spikes in acceleration can be observed
due to interactions in the other examples in Fig. 9.2.

Additional statistics. = We report dataset statistics and available labels of Euro-PVI
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Trajectory Instances Labels
Dataset Location Scenes  Length (hrs) Pedestrians Bicyclists Front Camera Lidar Seg. Maps IMU
nuScenes North Am. & Asia 1000 5.5 9142 550 v v v v
ApolloScapes Asia 54 1.7 3065 1827" X X X X
Lyft Ls North Am. 170X103 1118 605x103 77%x103 X X X v
CityScapes Europe 5000 2.5 o 0 v X v v
KITTI Europe 71 1.5 380 150 v v v v
KITTI-360 Europe 9 2.2 262 82 v v v v
A2D2 Europe 23 0.9 260 248 v v v v
Euro-PVI (Ours) Europe 1077 2.2 6177 1581 v v v v

Table 9.1: Comparison of dataset statistics. (Seg. Maps — semantic and/or instance
segmentation, * includes motorbikes. nuScenes (Caesar et al., 2020), ApolloScapes
(Ma et al., 2019), Lyft L5 (Houston et al., 2020), CityScapes (Cordts et al., 2016), KITTI
(Geiger et al., 2012), KITTI-360 (Xie et al., 2016), KITTI-360 (Xie et al., 2016), A2D2
(Geyer et al., 2020))

in Table 9.1. In addition to the annotated pedestrian (bicyclist) trajectories, Euro-PVI
contains 83k camera images and the corresponding lidar point clouds along with
synchronized IMU data. In terms of size Euro-PVI is competitive with nuScenes
(Caesar et al., 2020) and ApolloSpaces (Ma et al., 2019) and while Lyft L5 Houston
et al. (2020) is significantly larger, it does not provide labels e.g. camera images or
lidar point clouds. Furthermore, Euro-PVI surpasses the the largest autonomous
driving datasets collected in Europe i.e. CityScapes (Cordsts et al., 2016), KITTI Geiger
et al. (2012), KITTI-360 (Xie et al., 2016) and A2D2 (Geyer et al., 2020) in terms of
number of instances of pedestrian (bicyclist) trajectories. CityScapes and A2D2 do
not provide annotated 3D pedestrian or bicycle trajectories. KITTI (Geiger et al.,
2012) and KITTI-360 (Xie et al., 2016) contains mostly linear motion with sparse
interactions and thus commonly not used for trajectory prediction Ma et al. (2019);
Rhinehart et al. (2018). In fact, Euro-PVI is the first large scale dataset with dense
interactions (Fig. 9.4) dedicated to trajectory prediction in Europe, to the best of our
knowledge.
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Following the observations in Section 9.2, we find that vehicle-pedestrian (bicyclist)
interactions are crucial to the task of future trajectory prediction in dense urban
scenarios. In particular, inherent multi-modality of the distribution of future trajec-
tories and the effect of interactions on this complex distribution, make accurately
predicting the future trajectories in dense urban environments challenging.

Specifically, given a scene with n agents e.g. vehicles, pedestrians or bicyclists
in a dense urban environment and the past observations x; € X for each agent
i, we model the future trajectories y; € Y for each agent i € {1,...,n} in the
scene. Here the past observations x; include the past trajectories and the past context
corresponding to the past trajectory sequence. Prior work (Bhattacharyya et al., 2019c,
2018c; Mangalam et al., 2020; Salzmann et al., 2020) and Chapters 6 and 7 models
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the conditional distribution pg(y;|X) parameterized by 6 of the future trajectories y;
using the latent variables z; in the standard conditional VAE formulation (Higgins
et al., 2017; Kingma and Welling, 2014; Sohn et al., 2015),

pe(yilX) :/PG(Yi’Zirx) pe(zi|x;) dz;. (9.1)

Here, the distribution py(z;|x;) assumes conditional independence of the latent vari-
ables {z1,...,z,} € Z given the past observation x; of each agent. This assumption
essentially ignores the motion patterns of interacting agents i.e. the ego-vehicle
and other pedestrians (bicyclists) in the scene, which in real world dense urban
scenarios is critical for the accurate prediction of future trajectories. The formulation
in Eq. (9.1) therefore limits the amount of interactions between the agents that can
be encoded in the latent space. Since the latent variables z; are crucial for capturing
diverse futures in such conditional models, it is important to express the effect of
interactions in the latent space.

We now introduce our Joint-B-cVAE approach which aims to accurately capture
the effect of interactions in the latent space for trajectory prediction in dense urban
environments. Our proposed Joint-B-cVAE model, in contrast to prior conditional
VAE based models (Bhattacharyya et al., 2019c, 2018¢c; Mangalam et al., 2020; Salz-
mann et al., 2020) encodes the joint distribution of the latent variables across all
agents in the scene. This allows our Joint-B-cVAE model to encode the dependence
of the future trajectory distribution on interacting agents in the latent space, leading
to more accurate modeling of the multi-modal future trajectory distribution.

Formulation. Our Joint-B-cVAE in Fig. 9.5 models the joint distribution of future
trajectories Y across all n agents, using the latent variables z; € Z,

po(Y[X) = /Pe(Y,Z|X) dz
n

Z/HP9(Yi’Zi|Z<i/Y<i,X) dz 02)
n

B /HP@(Y{’ZSZ', Y<i’ X)pg(Zi|Z<i, Y<i/ X) dZ
i

where py(Y,Z|X) is the joint distribution of the future trajectories and the latent
variables for all agents. In the second step, without loss of generality, we auto-
regressively factorize the joint distribution over the n agents, where Z-;, Y_; denotes
the latent variables and trajectories for agents {1,...,i — 1}. Note that, the factoriza-
tion is agnostic to the choice of ordering of the agents. In contrast to Eq. (9.1), the
prior distribution of the latent variables in Eq. (9.2) exhibits joint modeling of the
latent variables z;, i.e. pg(z;|Z-;, Y i, X).

We maximize the log-likelihood of the data under the model in Eq. (9.2) with
variational inference using a joint variational posterior distribution g4(Z|X,Y).

The joint posterior.  To encode rich latent spaces shared between the n agents
which capture the effect of interactions in dense urban environments, we propose a
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Figure 9.5: Our Joint-B-cVAE, which models a Joint latent space across all agents
{1,---,n} in the scene. The posterior latent distribution g4(Z|X,Y) factorizes auto-
regressively and models the dependence of z; on {Z_;, X, Y} using an attention
mechanism.

joint posterior over all n agents in the scene, which auto-regressively factorizes,

9p(ZIX,Y) = q¢(z1|X,Y) - - - ¢(zn|Z<n, X, Y). (9-3)

The conditional distributions g4(z;|Z-;, X, Y) corresponding to agent i are normal
distributions whose mean and variances are functions of Z_;, X and Y. Intuitively,
given the past trajectories of the agents {1,...,n} and the joint latent posterior
distribution over the interacting agents {1,...,i}, the latent posterior distribution
corresponding to agent i encoding its interactions can be inferred conditioned on
the latent information of the interacting agents {1,...,i —1}. We use an attention
mechanism inspired by Anderson et al. (2018), to model the dependence of the
distribution of z; on Z_; and {X, Y}. The attention weights on z; and {x;,y;}, for
j # 1, is additionally conditioned on the past observation and location of the agents
(Fig. 9.5) — which allows to attend to agents j interacting with agent i.

In contrast, prior work (Bhattacharyya et al., 2019c, 2018c; Mangalam et al., 2020;
Salzmann et al., 2020) and Chapters 6 and 7 employ conditionally independent
posteriors gy (z;|x;, y;) across agents in a scene — encoding limited interactions in the
latent space.

The joint prior. The prior term in Eq. (9.2), pg(z;|Z~;, Y~;,X), encodes the effect
of interactions on the latent space of agent i through the dependence on Z_;, X. In
practice, we find that a simpler joint prior,

pe(Z|X) = po(z1]X) - - - po(zn|Z<n, X) (9-4)

is sufficient for rich latent spaces that capture interactions. We parameterize the
prior as a conditional normal distribution, where the mean and variance depends on

{Z<1, X}.
The ELBO. As the standard log evidence lower bound (ELBO) for cVAEs, proposed
in (Kingma and Welling, 2014; Sohn et al., 2015), experiences several issues, e.g.
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Interactions Best of N=20 | KDE NLL |
Method P-P P-V t+lsec t+2sec t+3sec t+1sec t+2sec t+3sec
Social-GAN v - 0.04 0.11 0.21 -2.78 -1.40 -0.46
Social- GAN v v 0.04 0.11 0.21 -2.80 -1.41 -0.48
Sophie v - 0.04 0.11 0.21 -2.59 -1.26 -0.41
Sophie v v 0.04 0.11 0.21 -2.63 -1.27 -0.42
Trajectron++ v - 0.01 0.08 0.15 -5.55 -3.87 -2.69
Trajectron++ v v 0.01 0.08 0.15 -5.58 -3.96 -2.77
cVAE - - 0.05 0.12 0.23 -2.51 -1.20 -0.21
B-cVAE - 0.01 0.08 0.17 -6.90 -4.10 -2.41
Joint-B-cVAE v - 0.01 0.06 0.13 -7.50 -4.53 -2.95
Joint-B-cVAE v v 0.01 0.06 0.13 -7.55 -4.59 -2.98

Table 9.2: Evaluation on nuScenes. P-P and P-V: whether pedestrian - pedestrian or
pedestrian - ego-vehicle interactions are modeled (Social-GAN Gupta et al. (2018),
Sophie Sadeghian et al. (2019), Trajectron++ Salzmann et al. (2020), B-cVAE Higgins
et al. (2017), Joint-B-cVAE (Ours)).

posterior collapse, we employ the ELBO formulation of 8-VAE (Higgins et al., 2017)
to improve the representational capacity of the latent space and more accurately
capture the effect of interactions in dense urban environments. With the formulation
of the factorized variational distribution g4(Z|X,Y) in Eq. (9.3) and the joint prior
distribution in Eq. (9.4), the ELBO is given by,

log(pe(Y|X)) > ZIE% log(pe(yilZ<i, Y<i, X))
1

- ,BZDKL (99(2iZ<i, X, Y)||po(zi|Z i, X)) ©5)

Additionally, we find it beneficial to model the observation noise ¢ in the posterior
distribution over the trajectories pg (yi]ZSi, Y_;, X) as recommended in Lucas ef al.
(2019). During training, we alternately optimize both the posterior and the prior
distributions such that the ELBO is maximized (Bhattacharyya et al., 2019c; Tomczak
and Welling, 2018) (see also Chapter 7).

We find in practice that is it sufficient to condition the decoder py(yi|Z<;, Y, X)
only on {Z~;, X}. The rich latent space of our Joint-S-cVAE already models the effect
of interactions, making it unnecessary to additionally condition on Y; for good
performance.

9.4 EXPERIMENTS

In this section, we 1. Demonstrate the effectiveness of our Joint--cVAE method.
2. Provide additional experimental evidence to better highlight the differences in the
density of interactions between the ego-vehicle and pedestrians(bicyclists) Euro-PVI
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Interactions Best of N=20 | KDE NLL |
Method P-P P-V t+4+1lsec t+2sec t+3sec t+1sec t-+2sec t+3sec
Social-GAN v - 0.14 0.36 0.65 -0.38 0.74 1.55
Social-GAN v v 0.14 0.35 0.64 -0.41 0.73 1.52
Sophie v - 0.11 0.30 0.58 -1.53 -0.22 0.53
Sophie v v 0.11 0.29 0.56 -1.71 -0.31 0.40
Trajectron++ v - 0.09 0.29 0.56 -2.75 -0.91 0.23
Trajectron++ v v 0.09 0.28 0.54 -2.81 -1.00 0.15
cVAE - - 0.12 0.32 0.60 -1.40 -0.08 0.78
B-cVAE - - 0.10 0.30 0.56 -2.61 -0.78 0.31
Joint-B-cVAE v - 0.09 0.29 0.53 -3.69 -1.29 0.02
Joint-B-cVAE v v 0.09 0.27 0.51 -3.75 -1.38 -0.05
Joint-p-cVAE  + v v 0.09 0.27 0.50 -3.78 -1.41 -0.13

{Camera, Lidar}

Table 9.3: Evaluation on Euro-PVI. P-P and P-V: whether pedestrian - pedestrian or
pedestrian - ego-vehicle interactions are modeled (Social-GAN Gupta et al. (2018),
Sophie Sadeghian et al. (2019), Trajectron++ Salzmann et al. (2020), B-cVAE Higgins
et al. (2017), Joint-B-cVAE (Ours))).

—— Groundtruth

X

—— Groundtruth
—— Trajectron+-+ —— Trajectron++
—— Joint-3-cVAE —— Joint-B-cVAE

Figure 9.6: Qualitative examples on Euro-PVI. We compare the Best of N = 20
samples for Trajectron++ (red) and our Joint-B-cVAE (blue).

—— Groundtruth
—— Trajectron++
—— Joint-3-cVAE

and current datasets. In order to address the above points, in addition to Euro-PVI,
we evaluate on nuScenes (Caesar et al., 2020). We choose nuScenes (Caesar et al., 2020)
as it is significantly larger compared to datasets like ApolloScapes (Ma et al., 2019)
and more diverse in comparison to Lyft L5 (Houston et al., 2020), while possessing
similar proximity/acceleration statistics (Fig. 9.4). We first evaluate our approach on
the nuScenes dataset followed by the evaluation on our proposed Euro-PVI dataset.

Evaluation metrics. Following Salzmann et al. (2020), we report, 1. Best of N
(FDE): The final (euclidean) displacement error in meters using the best of N =20
samples (Gupta et al., 2018; Sadeghian et al., 2019; Salzmann et al., 2020). 2. KDE NLL:
The (mean) negative log-likelihood of the groundtruth trajectory under the predicted
distribution estimated using a Gaussian kernel (Ivanovic and Pavone, 2019; Thiede
and Brahma, 2019), computed using the code provided by Salzmann et al. (2020).
Both these metrics aim to measure the match of the predicted trajectory distribution
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to the groundtruth distribution (Bhattacharyya et al., 2019c; Gupta et al., 2018; Lee
et al., 2017b).

9.4.1 nuScenes

Following Salzmann et al. (2020), we split the training set into the training and
validation splits. The original validation split is used as test set. We provide 1 - (upto)
5 secs of observation (historical context) and predict 3 seconds ahead Salzmann
et al. (2020). We compare our Joint-B-cVAE approach to the following state of the
art models: Social- GAN Gupta et al. (2018), Sophie Sadeghian et al. (2019) and
Trajectron++ Salzmann et al. (2020). Additionally, in order to measure the density
and influence of interactions between the ego-vehicle and pedestrians (bicyclists) on
the trajectories in nuScenes (in comparison to Euro-PVI), we also evaluate the above
methods without modeling ego-vehicle - pedestrians (bicyclists) interactions. Any
significant difference in performance of these models would indicate the presence of
dense ego-vehicle - pedestrian (bicyclist) interactions.

To illustrate the effectiveness of our Joint-B-cVAE, we also include two ablations
of our Joint-B-cVAE model, 1. A simple c¢VAE model and, 2. A B-cVAE model,
(neither of which can model interactions). These ablations are designed to show the
effectiveness of our Joint-B-cVAE model in capturing interactions in the latent space.

We report results using both the Best of N and KDE NLL metrics in Table 9.2.
The P-P and P-V columns in Table 9.2 indicate whether the pedestrian (bicyclist) -
pedestrian (bicyclist) and pedestrian( bicyclist) - ego-vehicle interactions are modeled
— using social pooling in case of Social-GAN (Gupta et al., 2018), the attention
mechanism in case of Sophie (Sadeghian et al., 2019), the scene graph in case of
Trajectron++ (Salzmann et al., 2020) and with a shared latent space in case of our Joint-
B-cVAE model. Trajectron++ outperforms both the conditional GAN based Social-
GAN and Sophie models — partly due to the better modeling of interaction with
the scene graph compared to Social-GAN and Sophie. Also, note that Trajectron++
is built using a cVAE backbone. Thus, the performance advantage of Trajectron++
also illustrates the effectiveness of cVAE based models in capturing the distribution
of future trajectories. We see that our Joint-B-cVAE outperforms Trajectron++.
Additionally, our Joint-B-cVAE outperforms both the simple c¢VAE and B-cVAE
ablations, illustrating that our Joint-B-cVAE model can effectively model interactions
in the latent space. The performance advantage of our Joint-f-cVAE model over
Trajectron++ shows the advantage of a joint latent space that can model the effect of
interactions, in comparison to independent latent spaces which model the effect of
interactions only as an additional condition to the decoder. Finally, across all models,
we see that models which additionally encode pedestrian (bicyclist) - ego-vehicle
interactions in nuScenes do not show a significant improvement in performance. This
further lends support to the fact that pedestrian (bicyclist) - ego-vehicle interactions
are sparse in the nuScenes dataset.
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9.4.2 Euro-PVI

We now evaluate the different models for trajectory prediction on our novel Euro-PVI
dataset. We use 792 sequences for training, 100 sequences for validation and 185
sequences for testing. The train/val/test splits do not share pedestrian (bicyclist)
instances. As on nuScenes, we compare our Joint-$-cVAE model with the Social-GAN
(Gupta et al., 2018), Sophie (Sadeghian et al., 2019), Trajectron++ (Salzmann et al.,
2020) models. We also include the cVAE and B-cVAE ablations (which cannot model
interactions), to establish whether our Joint-B-cVAE approach can model interactions
in the latent space. We follow a similar evaluation protocol as in nuScenes, where we
predict trajectories up to 3 seconds into the future. However, we provide a shorter
observation of 0.5 seconds as quick reactions are essential in dense traffic scenarios.

We report the results in Table 9.3. As on nuScenes, we observe that our Joint-$-
cVAE approach outperforms the competing methods. The performance advantage
over Trajectron++ again illustrates the advantage of the joint latent space over all
agents in the scene versus an independent latent space which cannot model the
effect of interactions. Our Joint-B-cVAE outperforms the cVAE and S-cVAE baselines,
which illustrates that our Joint-B-cVAE model can model the effect of interactions
successfully in the latent space. Additionally, the performance gain on Euro-PVI
(0.03m, Best of N =20) of our Joint-f-cVAE model over Trajectron++ is larger than in
nuScenes. This shows that our Joint-B-cVAE model can better capture the complex
distribution of pedestrians (bicyclists) trajectories in dense urban environments
under the effect of interactions. We further show that performance can be improved
by conditioning our Joint-B-cVAE model on visual features from the camera and lidar.
We provide qualitative examples comparing our Joint-B-cVAE model to Trajectron++
in Fig. 9.6. We see in Fig. 9.6 (left) that Trajectron++ incorrectly predicts that the
pedestrian will step onto the road, while our Joint-B-cVAE correctly predicts that due
to the oncoming ego-vehicle the pedestrian avoids stepping onto the road. Similarly,
in Fig. 9.6 (middle) our Joint-B-cVAE correctly predicts that the pedestrian quickly
crosses the street due to the oncoming ego-vehicle and in Fig. 9.6 (right) the bicyclist
merges in front of the ego-vehicle which slows down.

Finally, across all methods, we see the gain in performance (using both the Best
of N and KDE NLL metrics) across methods when pedestrian (bicyclist) - ego-vehicle
(P-V) interactions are modeled in Table 9.3 is larger than in nuScenes. This provides
further evidence of dense pedestrian(bicyclist) - ego-vehicle interactions in Euro-PVI
compared to the sparse interactions in nuScenes. Additionally, in Fig. 9.7 we plot the
Best of N error of our Joint-B-cVAE model along with the 8-cVAE ablation versus
the distance of the trajectory from the ego-vehicle for both nuScenes and Euro-PVL
We see that in case of nuScenes, the error does not depend strongly on distance.
This mirrors the results in Fig. 9.4 (right) which again suggests that the interactions
between pedestrians and the ego-vehicle are sparse. In contrast, in case of our
Euro-PVI dataset, the error is largest when the distance between the pedestrian
(bicyclist) and the ego-vehicle is smallest i.e. at close encounters. This again suggests
the presence of dense pedestrian (bicyclist) - ego-vehicle interactions in Euro-PVI.
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Best of N=20 |

Method t+1sec t+2sec t-+3sec
Trajectron++ Salzmann et al. (2020) 0.10 0.35 0.63
Joint-B-cVAE (Ours) 0.10 0.33 0.61

Table 9.4: Transferring models trained on nuScenes to Euro-PVI.

nuScenes Euro-PVI
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Figure 9.7: Error sorted by closest approach (proximity) to ego-vehicle. Higher error
in close proximity to the ego-vehicle suggests dense interactions.

Transferring models from nuScenes.  Finally, we experiment with transferring
the best performing models on nuScenes i.e. Trajectron++ and our Joint-B-cVAE
from nuScenes (with both P-PP-V interactions) to Euro-PVI in Table 9.4. We observe
a considerable drop in performance in the Best of N error in comparison to the
performance of the models when they are both trained and evaluated on Euro-PVI
(Table 9.3). This provides additional evidence that the distribution of trajectories and
interaction patterns in Euro-PVI is significantly different compared to nuScenes.

9.5 CONCLUSION

We presented Euro-PVI, a new dataset with dense scenarios of vehicle-pedestrian
(bicyclist) interaction and their trajectories to advance the task of future trajectory
prediction which is crucial to the development of self-driving vehicles. We inves-
tigated the effect of interactions in urban environments on current state-of-the-art
methods for existing nuScenes dataset which show a notable performance gap on
our Euro-PVI dataset. To address this challenge of modeling complex interactions,
we propose a Joint-B-cVAE approach. We demonstrate state of the art results both
on nuScenes and on Euro-PVI. The performance advantage of our Joint-8-cVAE on
Euro-PVI highlights the effectiveness of our approach in dense urban scenarios. The
key to our success is a shared latent space between the interacting agents — which
encodes the effect of intersections — in comparison to prior work which employ condi-
tionally independent latent spaces. We believe that the Euro-PVI dataset along with
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Joint-B-CVAE approach provides a new important dimension to the task of future
trajectory prediction with dense ego-vehicle - pedestrian (bicyclist) interactions.
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that admit efficient inference and sampling for image synthesis. Owing to the

efficiency constraints on the design of the flow layers, e.g. split coupling flow
layers in which approximately half the pixels do not undergo further transforma-
tions, they have limited expressiveness for modeling long-range data dependencies
compared to autoregressive models that rely on conditional pixel-wise generation.
In this chapter, we improve the representational power of flow-based models by
introducing channel-wise dependencies in their latent space through multi-scale
autoregressive priors (mAR). Our mAR prior for models with split coupling flow
layers (mAR-SCF) can better capture dependencies in complex multimodal data.
The resulting model achieves state-of-the-art density estimation results on MNIST,
CIFAR-10, and ImageNet. Furthermore, we show that mAR-SCF allows for im-
proved image generation quality, with gains in FID and Inception scores compared
to state-of-the-art flow-based models.

FLow—based generative models are an important class of exact inference models

10.1 INTRODUCTION

Deep generative models aim to learn complex dependencies within very high-
dimensional input data, e.g. natural images (Brock et al., 2019; Razavi et al., 2019b)
or audio data (Dieleman et al., 2018), and enable generating new samples that
are representative of the true data distribution. These generative models find
application in various downstream tasks like image synthesis (Goodfellow et al.,
2014; Kingma and Welling, 2014; van den Oord et al., 2016b) or speech synthesis

125
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Figure 10.1: Our mAR-SCF model combines normalizing flows with autoregressive
(AR) priors to improve modeling power while ensuring that the computational cost
grows linearly with the spatial image resolution N x N.

(Dieleman et al., 2018; van den Oord et al., 2018). Since it is not feasible to learn the
exact distribution, generative models generally approximate the underlying true
distribution. Popular generative models for capturing complex data distributions
are Generative Adversarial Networks (GANSs) (Goodfellow et al., 2014), which model
the distribution implicitly and generate (high-dimensional) samples by transforming
a noise distribution into the desired space with complex dependencies; however,
they may not cover all modes of the underlying data distribution. Variational
Autoencoders (VAEs) (Kingma and Welling, 2014) optimize a lower bound on the
log-likelihood of the data. This implies that VAEs can only approximately optimize
the log-likelihood (Rezende et al., 2014).

Autoregressive models (Domke et al., 2008; van den Oord et al., 2016a,b) and
normalizing flow-based generative models (Dinh et al., 2015, 2017; Kingma and
Dhariwal, 2018) are exact inference models that optimize the exact log-likelihood of
the data. Autoregressive models can capture complex and long-range dependencies
between the dimensions of a distribution, e.g. in case of images, as the value of a
pixel is conditioned on a large context of neighboring pixels. The main limitation of
this approach is that image synthesis is sequential and thus difficult to parallelize.
Recently proposed normalizing flow-based models, such as NICE (Dinh et al., 2015),
RealNVP (Dinh et al., 2017), and Glow (Kingma and Dhariwal, 2018), allow exact
inference by mapping the input data to a known base distribution, e.g. a Gaussian,
through a series of invertible transformations. These models leverage invertible
split coupling flow (SCF) layers in which certain dimensions are left unchanged by
the invertible transformation as well as SrLIT operations following which certain
dimensions do not undergo subsequent transformations. This allows for considerably
easier parallelization of both inference and generation processes. However, these
models lag behind autoregressive models for density estimation.
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In this chapter, we (i) propose multi-scale autoregressive priors for invertible flow
models with split coupling flow layers, termed mAR-SCF, to address the limited
modeling power of non-autoregressive invertible flow models (Dinh et al., 2017;
Ho et al., 2019; Kingma and Dhariwal, 2018; Razavi et al., 2019b) (Fig. 10.1); (ii) we
apply our multi-scale autoregressive prior after every SpLIT operation such that the
computational cost of sampling grows linearly in the spatial dimensions of the image
compared to the quadratic cost of traditional autoregressive models (given sufficient
parallel resources); (iii) our experiments show that we achieve state-of-the-art density
estimation results on MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky et al., 2009),
and ImageNet (Russakovsky et al., 2015) compared to prior invertible flow-based
approaches; and finally (iv) we show that our multi-scale autoregressive prior leads
to better sample quality as measured by the FID metric (Heusel et al., 2017) and
the Inception score (Salimans et al., 2016), significantly lowering the gap to GAN
approaches (Radford et al., 2016; Wei et al., 2018).

10.2 RELATED WORK

While we provide a broader discussion on related work in Chapter 2, here we discuss
related work relevant to this chapter.

Methods with complex priors. Recent work (Chen et al., 2017) develops complex
priors to improve the data likelihoods. VQ-VAE2 integrates autoregressive models as
priors (Razavi et al., 2019b) with discrete latent variables (Chen et al., 2017) for high-
quality image synthesis and proposes latent graph-based models in a VAE framework.
Tomczak and Welling (2018) propose mixtures of Gaussians with predefined clusters,
and Chen et al. (2017) use neural autoregressive model priors in the latent space,
which improves results for image synthesis. Ziegler and Rush (2019) learn a prior
based on normalizing flows to capture multimodal discrete distributions of character-
level texts in the latent spaces with nonlinear flow layers. However, this invertible
layer is difficult to be optimized in both directions. Moreover, these models do not
allow for exact inference. In this chapter, we propose complex autoregressive priors
to improve the power of invertible split coupling-based normalizing flows (Dinh
et al., 20177; Ho et al., 2019; Kingma and Dhariwal, 2018).

10.3 OVERVIEW AND BACKGROUND

In this chapter, we propose multi-scale autoregressive priors for split coupling-based
flow models, termed mAR-SCF, where we leverage autoregressive models to improve
the modeling flexibility of invertible normalizing flow models without sacrificing
sampling efficiency. As we build upon normalizing flows and autoregressive models,
we first provide an overview of both (see also Chapter 7).

Normalizing flows. =~ Normalizing flows (Dinh et al., 2015) are a class of exact
inference generative models. Here, we consider invertible flows, which allow for
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both efficient exact inference and sampling. Specifically, invertible flows consist of a
sequence of n invertible functions fy,, which transform a density on the data x to a
density on latent variables z,

x g L2hy s L g (10.1)

Given that we can compute the likelihood of p(z), the likelihood of the data x
under the transformation f can be computed using the change of variables formula,

log pa(x) =logp(z) + Y _ log |det Jy,], (10.2)
=1

where Jp. = 9hi/oh;_, is the Jacobian of the invertible transformation fy, going from
h;_; to h; with hg = x. Note that most prior work (Chen et al., 2019; Dinh et al., 2015,
2017; Ho et al., 2019; Kingma and Dhariwal, 2018) considers i.i.d. Gaussian likelihood
models of z, e.g. p(z) = N(z|u,0).

These models, however, have limitations. First, the requirement of invertibility
constrains the class of functions fy, to be monotonically increasing (or decreasing),
thus limiting expressiveness. Second, of the three possible variants of fq to date
(Ziegler and Rush, 2019), MAF (masked autoregressive flows), IAF (inverse autore-
gressive flows), and SCF (split coupling flows), MAFs are difficult to parallelize due
to sequential dependencies between dimensions and IAFs do not perform well in
practice. SCFs strike the right balance with respect to parallelization and modeling
power. In detail, SCFs partition the dimensions into two equal halves and transform
one of the halves r; conditioned on 1;, leaving 1; unchanged and thus not introducing
any sequential dependencies (making parallelization easier). Examples of SCFs in-
clude the affine couplings of RealNVP (Dinh et al., 2017) and MixLogCDF couplings
of Flow++ (Ho et al., 2019).

In practice, SCFs are organized into blocks (Dinh et al., 2015, 2017; Kingma
and Dhariwal, 2018) to maximize efficiency such that each fy. typically consists of
SQUEEZE, STEPOFFLOW, and SPLIT operations. SQUEEZE trades off spatial resolution
for channel depth. Suppose an intermediate layer h; is of size [C;,N;,N;], then
the SQUEEZE operation transforms it into size [4 C;,N;/2,N;/2] by reshaping 2 x 2
neighborhoods into 4 channels. STEPOFFLOW is a series of SCF (possibly several)
coupling layers and invertible 1 x 1 convolutions (Dinh et al., 2015, 2017; Kingma
and Dhariwal, 2018).

The Srrit operation (distinct from the split couplings) splits an intermediate layer
h; into two halves {1;,r;} of size [2C;,N;/2,N;/2] each. Subsequent invertible layers
foj>i operate only on 1;, leaving 1; unchanged. In other words, the SpLiT operation
fixes some dimensions of the latent representation z to 1; as they are not transformed
any further. This leads to a significant reduction in the amount of computation and
memory needed. In the following, we denote the spatial resolutions at the n different
levels as N = {Ny,---,N,}, with N = Ny being the input resolution. Similarly,
C = {Co,---,Cy} denotes the number of feature channels, with C = Cj being the
number of input channels.
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In practice, due to limited modeling flexibility, prior SCF-based models (Dinh
et al., 2017; Ho et al., 2019; Kingma and Dhariwal, 2018) require many SCF coupling
layers in fq, to model complex distributions, e.g. images. This in turn leads to high
memory requirements and also leads to less efficient sampling procedures.

Autoregressive models. Autoregressive generative models are another class
of powerful and highly flexible exact inference models. They factorize complex
target distributions by decomposing them into a product of conditional distribu-
tions, e.g. images with N x N spatial resolution as p(x) = [T~ Hjlil P (Xij|Xpred(ij))
(Dombke et al., 2008; Graves, 2013; Papamakarios et al., 2017; van den Oord et al.,
2016a,b). Here, pred(i, j) denotes the set of predecessors of pixel (i, j). The functional
form of these conditionals can be highly flexible, and allows such models to capture
complex multimodal distributions. However, such a dependency structure only
allows for image synthesis via ancestral sampling by generating each pixel sequen-
tially, conditioned on the previous pixels (van den Oord et al., 2016a,b), making
parallelization difficult. This is also inefficient since autoregressive models, including
Pixel CNN and PixelRNN, require O(N?) time steps for sampling.

10.4 MULTI-SCALE AUTOREGRESSIVE FLOW PRIORS

We propose to leverage the strengths of autoregressive models to improve invertible
normalizing flow models such as (Dinh et al., 2017; Kingma and Dhariwal, 2018).
Specifically, we propose novel multi-scale autoregressive priors for split coupling flows
(mAR-SCF). Using them allows us to learn complex multimodal latent priors p(z)
in multi-scale SCF models, cf. Eq. (10.2). This is unlike Dinh et al. (2017); Ho et al.
(2019); Kingma and Dhariwal (2018); Razavi et al. (2019b), which rely on Gaussian
priors in the latent space. Additionally, we also propose a scheme for interpolation
in the latent space of our mAR-SCF models.

The use of our novel autoregressive mAR priors for invertible flow models has
two distinct advantages over both vanilla SCF and autoregressive models. First, the
powerful autoregressive prior helps mitigate the limited modeling capacity of the
vanilla SCF flow models. Second, as only the prior is autoregressive, this makes
flow models with our mAR prior an order of magnitude faster with respect to
sampling time than fully autoregressive models. Next, we describe our multi-scale
autoregressive prior in detail.

Our mAR-SCF model uses an efficient invertible split coupling flow fy (x) to
map the distribution over the data x to a latent variable z and then models an
autoregressive mAR prior over z, parameterized by ¢. The likelihood of a data point
x of dimensionality [C, N, N] can be expressed as

n

log pe,p(x) = log pp(z) + ) _ log |det J,|. (10.3)
=1

1=

Here, ]y, is the Jacobian of the invertible transformations fy,. Note that, as fy. (x)
is an invertible function, z has the same total dimensionality as the input data point
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Figure 10.2: Flow-based generative models with multi-scale autoregressive priors
(mAR-SCF). The generative model (left) shows the multi-scale autoregressive sam-
pling of the channel dimensions of 1; at each level. The spatial dimensions of each
channel are sampled in parallel. r; are computed with invertable transformations.
The mAR-SCF model (right) shows the complete multi-scale architecture with the
mAR prior applied along the channels of 1;, i.e. at each level i after the SpLIT opera-
tion.

10.4.1 Formulation of the mAR prior and mAR-SCF model. 1

mAR prior. ~ We now introduce our mAR prior py(z) along with our mAR-SCF
model, which combines the split coupling flows fy with an mAR prior. As shown
in Fig. 10.2, our mAR prior is applied after every SrLIT operation of the invertible

flow layers as well as at the smallest spatial resolution. Let 1; = {111, cee ,llc’} be
the C; channels of size [C;, N;, N;|, which do not undergo further transformation fy,
after the SrLit at level i. Following the SriiT at level i, our mAR prior is modeled
as a conditional distribution, py(l;|r;); at the coarsest spatial resolution it is an
unconditional distribution, p¢(hn). Thereby, we assume that our mAR prior at each
level i autoregressively factorizes along the channel dimension as

G . ,
-1
p¢(li|ri) = | | p(P(li 111/ o /15 /ri>' (10‘4)
=1

IThis section is based on the contributions of Shweta Mahajan from the joint work Bhattacharyya
et al. (2020a). It is included in this thesis for completeness.
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Furthermore, the distribution at each spatial location (m,n) within a channel 1{ is
modeled as a conditional Gaussian,

, - , ,
p‘P(l?(m,n) |111/ o ’l; ’ri) = N(ﬂug(m,n)’(fz](m,n)) : (10'5)

Thus, the mean, 'u;(m,n) and variance, (7{ (mm)
sively modeled along the channels. This allows the distribution at each spatial
location to be highly flexible and capture multimodality in the latent space. More-
over from Eq. (10.4), our mAR prior can model long-range correlations in the latent
space as the distribution of each channel is dependent on all previous channels.

This autoregressive factorization allows us to employ Conv-LSTMs (Shi et al., 2017)

to model the distributions pg(1[1}, - - -, 1;—1’ r;) and pg(h;,). Conv-LSTMs can model
long-range dependencies across channels in their internal state. Additionally, long-
range spatial dependencies within channels can be modeled by stacking multiple
Conv-LSTM layers with a wide receptive field. This formulation allows all pixels
within a channel to be sampled in parallel, while the channels are sampled in a
sequential manner,

at each spatial location are autoregres-

i/ ]
L~y <1i i
This is in contrast to Pixel CNN/RNN-based models, which sample one pixel at a
time.

mAR-SCF model. We illustrate our mAR-SCF model architecture in Fig. 10.2(b).
Our mAR-SCF model leverages the SQUEEZE and SpLIT operations for invertible flows
introduced in Dinh et al. (2015, 2017) for efficient parallelization. Following Dinh
et al. (2015, 2017); Kingma and Dhariwal (2018), we use several SQUEEZE and SpLIT
operations in a multi-scale setup at n scales (Fig. 10.2(b)) until the spatial resolution
at h; is reasonably small, typically 4 x 4. Note that there is no SrLIT operation at
the smallest spatial resolution. Therefore, the latent space is the concatenation of
z = {ly,...,1,_1,h,}. The split coupling flows (SCF) fy. in the mAR-SCF model
remain invertible by construction. We consider different SCF couplings for fq,
including the affine couplings of Dinh et al. (2017); Kingma and Dhariwal (2018) and
MixLogCDF couplings (Ho et al., 2019).

Given the parameters ¢ of our multimodal mAR prior modeled by the Conv-
LSTMs, we can compute py(z) using the formulation in Egs. (10.4) and (10.5). We
can thus express Eq. (10.3) in closed form and directly maximize the likelihood of the
data under the multimodal mAR prior distribution learned by the Conv-LSTMs.

Next, we show that the computational cost of our mAR-SCF model is O(N)
for sampling an image of size [C, N, N]; this is in contrast to the standard O(N?)
computational cost required by purely autoregressive models.

l}, e ,1].'71,r1~>. (10.6)

10.4.2 Analysis of sampling time.

We now formally analyze the computational cost in the number of steps T required
for sampling with our mAR-SCF model. First, we describe the sampling process in
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Algorithm 1 Marps: Multi-scale Autoregressive Prior Sampling

1: Sample h,, ~ pg(hy)
2. fori+n—-1,---,1do

3: {/ % SPLITINVERSE /}
VRS IR fliH {Assign prev1ous}
5 1~ pe(li|r;) {Sample mAR prior}
6 h; « {ii,f'i} {Concatenate}
{/ * STEPOFFLOWINVERSE /}
7. Apply f (k) {SCF couphng}
{/ * SQUEEZEINVERSE /}
8:  Reshape h; {Depth to Space}
9: end for
10: X < ﬁl

detail in Algorithm 1 (the forward training process follows the sampling process in
reverse order). Next, we derive the worst-case number of steps T required by MaRrps,
given sufficient parallel resources to sample a channel in parallel. Here, the number
of steps T can be seen as the length of the critical path while sampling.

Lemma 10.4.1. Let the sampled image x be of resolution [C, N, N], then the worst-case
number of steps T (length of the critical path) required by MARPS is O(N).

Proof. At the first sampling step (Fig. 10.2(a)) at layer fy , our mAR prior is applied
to generate h,, which is of shape [2"*1 C, N/2", N/2"]. Therefore, the number of
sequential steps required at the last flow layer hy, is

T, =C-2"1 (10.7)

Here, we are assuming that each channel can be sampled in parallel in one time-step.
From fy | to fg,, fo, always contains a SpLIT operation. Therefore, at each fy,

we use our mAR prior to sample 1;, which has shape [Zi C,N/2! N/ Zi]. Therefore,
the number of sequential steps required for sampling at layers h;, 1 < i < n of our
mAR-SCF model is

T, =C-2\ (10.8)

Therefore, the total number of sequential steps (length of the critical path) re-
quired for sampling is
T=T,+T, 1+ ---+T;+---+T)
:C.(2”+1_|_2”—1_|_...+2i_|_..._|_21> (10.9)
=C-(3-2"-2).

Now, the total number of layers in our mAR-SCF model is n < log(N). This is
because each layer reduces the spatial resolution by a factor of two. Therefore, the
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total number of time-steps required is
T<3-C-N. (10.10)

In practice, C < N, with C = Cy = 3 for RGB images. Therefore, the total number
of sequential steps required for sampling in our mAR-SCF model is T = O(N). O

It follows that with our multi-scale autoregressive mAR priors in our mAR-SCF
model, sampling can be performed in a linear number of time-steps in contrast to
fully autoregressive models like PixelCNN, which require a quadratic number of
time-steps (van den Oord et al., 2016b).

10.4.3 Interpolation.

A major advantage of invertible flow-based models is that they allow for latent spaces,
which are useful for downstream tasks like interpolation — smoothly transforming
one data point into another. Interpolation is simple in case of typical invertible flow-
based models, because the latent space is modeled as a unimodal i.i.d. Gaussian. To
allow interpolation in the space of our multimodal mAR priors, we develop a simple
method based on Bregler and Omohundro (1994).

Let xpo and xp be the two images (points) to be interpolated and z, and zp
be the corresponding points in the latent space. We begin with an initial lin-

ear interpolation between the two latent points, {z A, z}% B z’lg B/ ZB}, such that,

z\, 3 = (1 — a') zo + &’ zg. The initial linearly interpolated points z/, ; may not lie in
a high-density region under our multimodal prior, leading to non-smooth transfor-
mations. Therefore, we next project the interpolated points ZZ/B to a high-density
region, without deviating too much from their initial position. This is possible be-
cause our mAR prior allows for exact inference. However, the image corresponding
to the projected z), ; must also not deviate too far from either x5 and xg either to
allow for smooth transitions. To that end, we define the projection operation as

ZZ,B = arg min (HZfA,B — zfA/BH — A1log py (ZfA,B)
f(Zhs) —xs]))),

where Ay, Ay are the regularization parameters. The term controlled by A; pulls
the interpolated zf&B back to high-density regions, while the term controlled by A,
keeps the result close to the two images x5 and xg. Note that this reduces to linear
interpolation when A1 = A, = 0.

(10.11)

+ Apmin (|| fH(Z) g) — Xa

7

10.5 EXPERIMENTS

We evaluate our approach on the MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky
et al., 2009), and ImageNet (van den Oord et al., 2016b) datasets. In comparison
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Method Coupling  Levels |SCF| Channels bits/dim ({)
Glow (Kingma and Dhariwal, 2018) Affine 3 32 512 1.05
Residual Flow (Chen et al., 2019) Residual 3 16 - 0.97
mAR-SCF (Ours) Affine 3 32 256 1.04
mAR-SCF (Ours) Affine 3 32 512 1.03
mAR-SCF (Ours) MixLogCDF 3 4 96 0.88

Table 10.1: Evaluation of our mAR-SCF model on MNIST (using uniform dequanti-
zation for fair comparsion with Chen et al. (2019); Kingma and Dhariwal (2018)).

Method Coupling Levels |SCF| Channels bits/dim (])
PixelCNN (van den Oord et al., 2016b) Autoregressive - - - 3.00
PixelCNN++ (van den Oord et al., 2016a) Autoregressive - - - 2.92
Glow (Kingma and Dhariwal, 2018) Affine 3 32 512 3.35
Flow++ (Ho et al., 2019) MixLogCDF 3 - 96 3.29
Residual Flow (Chen et al., 2019) Residual 3 16 - 3.28
mAR-SCF (Ours) Affine 3 32 256 3.33
mAR-SCF (Ours) Affine 3 32 512 3.31
mAR-SCF (Ours) MixLogCDF 3 4 96 3.27
mAR-SCF (Ours) MixLogCDF 3 4 256 3.24

Table 10.2: Evaluation of our mAR-SCF model on CIFAR-10 (using uniform dequan-
tization for fair comparsion with Chen et al. (2019); Kingma and Dhariwal (2018)).

to datasets like CelebA, CIFAR-10 and ImageNet are highly multimodal and the
performance of invertible SCF models has lagged behind autoregressive models
in density estimation and behind GAN-based generative models regarding image
quality.

10.5.1 MNIST and CIFAR-10

Architecture details. Our mAR prior at each level fq, consists of three convolutional
LSTM layers, each of which uses 32 convolutional filters to compute the input-to-
state and state-to-state components. Keeping the mAR prior architecture constant,
we experiment with different SCF couplings in fy. to highlight the effectiveness of
our mAR prior. We experiment with affine couplings of Dinh et al. (2017); Kingma
and Dhariwal (2018) and MixLogCDF couplings Ho et al. (2019). Affine couplings
have limited modeling flexibility. The more expressive MixLogCDF applies the
cumulative distribution function of a mixture of logistics. In the following, we
include experiments varying the number couplings and the number of channels in the
convolutional blocks of the neural networks used to predict the affine/MixLogCDF
transformation parameters.

Hyperparameters. = We use Adamax (as in Kingma and Dhariwal (2018)) with
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Figure 10.3: Comparison of random samples from our mAR-SCF model with state-
of-the-art models.

a learning rate of 8 x 107, We use a batch size of 128 with affine and 64 with
MixLogCDF couplings (following Ho et al. (2019)).

Density estimation. We report density estimation results on MNIST and CIFAR-10
in Tables 10.1 and 10.2 using the per-pixel log-likelihood metric in bits/dim. We
also include the architecture details (# of levels, coupling type, # of channels). We
compare to the state-of-the-art Flow++ (Ho et al., 2019) method with SCF couplings
and Residual Flows (Chen et al., 2019). Note that in terms of architecture, our mAR-
SCF model with affine couplings is closest to that of Glow (Kingma and Dhariwal,
2018). Therefore, the comparison with Glow serves as an ideal ablation to assess the
effectiveness of our mAR prior. Flow++ (Ho et al., 2019), on the other hand, uses the
more powerful MixLogCDF transformations and their model architecture does not
include SpL1T operations. Because of this, Flow++ has higher computational and
memory requirements for a given batch size compared to Glow. Furthermore, for
fair comparison with Glow (Kingma and Dhariwal, 2018) and Residual flows (Chen
et al., 2019), we use uniform dequantization unlike Flow++, which proposes to use
variational dequantization.
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In comparison to Glow, we achieve improved density estimation results on both
MNIST and CIFAR-10. In detail, we outperform Glow (e.g. 1.05 vs. 1.04 bits/dim
on MNIST and 3.35 vs. 3.33 bits/dim on CIFAR-10) with |SCF|= 32 affine couplings
and 3 levels, while using parameter prediction networks with only half (256 vs. 512)
the number of channels. We observe that increasing the capacity of our parameter
prediction networks to 512 channels boosts the log-likelihood further to 1.03 bits/dim
on MNIST and 3.31 bits/dim on CIFAR-10. As this setting with 512 channels is
identical to the setting reported in Kingma and Dhariwal (2018), this shows that our
mAR prior boosts the accuracy by ~ 0.04 bits/dim in case of CIFAR-10. To place
this performance gain in context, it is competitive with the ~ 0.03 bits/dim boost
reported in Kingma and Dhariwal (2018) (cf. Fig. 3 in Kingma and Dhariwal (2018))
with the introduction of the 1 x 1 convolution. We train our model for ~ 3000 epochs,
similar to Kingma and Dhariwal (2018). Also note that we only require a batch size
of 128 to achieve state-of-the-art likelihoods, whereas Glow uses batches of size 512.
Thus our mAR-SCF model improves density estimates and requires significantly
lower computational resources (~48 vs. ~128 GB memory). Overall, we also observe
competitive sampling speed (see also Table 10.3). This firmly establishes the utility
of our mAR-SCF model.

For fair comparison with Flow++ (Ho et al., 2019) and Residual Flows (Chen
et al., 2019), we employ the more powerful MixLogCDF couplings. Our mAR-SCF
model uses 4 MixLogCDF couplings at each level with 96 channels but includes
SrLIT operations unlike Flow++. Here, we outperform Flow++ and Residual Flows
(3.27 vs. 3.29 and 3.28 bits/dim on CIFAR-10) while being equally fast to sample
as Flow++ (Table 10.3). A baseline model without our mAR prior has performance
comparable to Flow++ (3.29 bits/dim). Similarly on MNIST, our mAR-SCF model
again outperforms Residual Flows (0.88 vs. 0.97 bits/dim). Finally, we train a more
powerful mAR-SCF model with 256 channels with sampling speed competitive with
Chen et al. (2019), which achieves state-of-the-art 3.24 bits/dim on CIFAR-10 ¥. This
is attained after ~ 400 training epochs (comparable to ~ 350 epochs required by
Chen et al. (2019) to achieve 3.28 bits/dim). Next, we compare the sampling speed
of our mAR-SCF model with that of Flow++ and Residual Flow.

Method Coupling Levels |SCF| Ch. Speed (ms])
Glow (Kingma and Dhariwal, 2018) Affine 3 32 512 13
Flow++ (Ho et al., 2019) MixLogCDF 3 - 96 19
Residual Flow (Chen et al., 2019) Residual 3 16 - 34
PixelCNN++ (Salimans et al., 2017)  Autoregressive - - - 5e3
mAR-SCF (Ours) Affine 3 32 256 6
mAR-SCF (Ours) Affine 3 32 512 17
mAR-SCF (Ours) MixLogCDF 3 4 96 19
mAR-SCF (Ours) MixLogCDF 3 4 256 32

Table 10.3: Evaluation of sampling speed with batches of size 32.

tmAR-SCF with 256 channels trained to convergence on CIFAR-10 achieves 3.22 bits/dim.
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Figure 10.5: Random samples on ImageNet (64 x 64).

Sampling speed. We report the sampling speed of our mAR-SCF model in
Table 10.3 in terms of sampling one image on CIFAR-10. We report the average
over 1000 runs using a batch size of 32. We performed all tests on a single Nvidia
V1ioo GPU with 32GB of memory. First, note that our mAR-SCF model with affine
coupling layers in 3 levels with 512 channels needs 17 ms on average to sample an
image. This is comparable with Glow, which requires 13 ms. This shows that our
mAR prior causes only a slight increase in sampling time — particularly because our
mAR-SCF requires only O(N) steps to sample and the prior has far fewer parameters
compared to the invertible flow network. Moreover, our mAR-SCF model with affine
coupling layers with 256 channels is considerably faster (6 vs. 13 ms) with an accuracy
advantage. Similarly, our mAR-SCF with MixLogCDF and 96 channels is competitive
in speed with Ho et al. (2019) with an accuracy advantage and considerably faster
than Chen et al. (2019) (19 vs. 34 ms). This is because Residual Flows are slower to
invert (sample) as there is no closed-form expression of the inverse. Furthermore, our
mAR-SCF with MixLogCDF and 256 channels is competitive with respect to Chen
et al. (2019) in terms of sampling speed while having a large accuracy advantage.
Finally, note that these sampling speeds are two orders of magnitude faster than
state-of-the-art fully autoregressive approaches, e.g. PixelCNN++ (Salimans et al.,
2017).

Sample quality. Next, we analyze the sample quality of our mAR-SCF model in
Table 10.4 using the FID metric (Heusel et al., 2017) and Inception scores (Salimans
et al., 2016). The analysis of sample quality is important as it is well-known that
visual fidelity and test log-likelihoods are not necessarily indicative of each other
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Method Coupling FID () Inception Score (1)
PixelCNN (van den Oord et al., 2016b) Autoregressive 65.9 4.6
PixellQN (Ostrovski et al., 2018) Autoregressive 49.4 -

Glow (Kingma and Dhariwal, 2018) Affine 46.9 -
Residual Flow (Chen et al., 2019) Residual 46.3 5.2
mAR-SCF (Ours) MixLogCDF 41.9 5.7
mAR-SCF (Ours) Affine 41.0 5.7
DCGAN (Radford et al., 2016) Adversarial 37.1 6.4
WGAN-GP (Wei et al., 2018) Adversarial 36.4 6.5

Table 10.4: Evaluation of sample quality on CIFAR-10. Other results are quoted from
Chen et al. (2019); Ostrovski et al. (2018).

Method Coupling |SCF| Ch.  bits/dim ({) Mem (GB, |)
Glow (Kingma and Dhariwal, 2018) Affine 32 512 4.09 ~ 128
Residual Flow (Chen et al., 2019) Residual 32 - 4.01 -
mAR-SCF (Ours) Affine 32 256 4.07 ~ 48
mAR-SCF (Ours) MixLogCDF 4 460 3.99 ~ 8o

Table 10.5: Evaluation on ImageNet (32 x 32).

(Theis et al., 2016). We achieve an FID of 41.0 and an Inception score of 5.7 with our
mAR-SCF model with affine couplings, significantly better than Glow with the same
specifications and Residual Flows. While our mAR-SCF model with MixLogCDF
couplings also performs comparably, empirically we find affine couplings to lead
to better image quality as in Chen et al. (2019). We show random samples from
our mAR-SCF model with both affine and MixLogCDF couplings in Fig. 10.3. Here,
we compare to the version of Flow++ with MixLogCDF couplings and variational
dequantization (which gives even better log-likelihoods) and Residual Flows. Our
mAR-SCF model achieves better sample quality with more clearly defined objects.
Furthermore, we also obtain improved sample quality over both PixelCNN and
PixellQN and close the gap in comparison to adversarial approaches like DCGAN
(Radford et al., 2016) and WGAN-GP (Wei et al., 2018). This highlights that our
mAR-SCF model is able to better capture long-range correlations.

Interpolation. = We show interpolations on CIFAR-10 in Fig. 10.4, obtained using
Eq. (10.11). We observe smooth interpolation between images belonging to distinct
classes. This shows that the latent space of our mAR prior can be potentially used
for downstream tasks similarly to Glow (Kingma and Dhariwal, 2018).
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10.5.2 ImageNet

Finally, we evaluate our mAR-SCF model on ImageNet (32 x 32 and 64 x 64) against
the best performing models on MNIST and CIFAR-10 in Table 10.5, i.e. Glow (Kingma
and Dhariwal, 2018) and Residual Flows (Chen et al., 2019). Our model with affine
couplings outperforms Glow while using fewer channels (4.07 vs. 4.09 bits/dim). For
comparison with the more powerful Residual Flow models, we use four MixLogCDF
couplings at each layer fy. with 460 channels. We again outperform Residual Flows
(Chen et al., 2019) (3.99 vs. 4.01 bits/dim). These results are consistent with the
findings in Tables 10.1 and 10.2, highlighting the advantage of our mAR prior. Finally,
we also evaluate on the ImageNet (64 x 64) dataset. Our mAR-SCF model with affine
flows achieves 3.80 vs. 3.81 bits/dim in comparison to Glow Kingma and Dhariwal
(2018). We show qualitative examples in Fig. 10.5 and compare to Residual Flows.
We see that although the powerful Residual Flows obtain better log-likelihoods (3.75
bits/dim), our mAR-SCF model achieves better visual fidelity. This again highlights
that our mAR is able to better capture long-range correlations.

10.6 CONCLUSION

We presented mAR-SCF, a flow-based generative model with novel multi-scale
autoregressive priors for modeling long-range dependencies in the latent space of
flow models. Our mAR prior considerably improves the accuracy of flow-based
models with split coupling layers. Our experiments show that not only does our mAR-
SCF model improve density estimation (in terms of bits/dim), but also considerably
improves the sample quality of the generated images compared to previous state-
of-the-art exact inference models. We believe the combination of complex priors
with flow-based models, as demonstrated by our mAR-SCF model, provides a path
toward efficient models for exact inference that approach the fidelity of GAN-based
approaches.
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models like GANs and VAEs (as in Chapters 6, 7 and 9) have been leveraged

for learning the distribution of likely future trajectories. Accurately modeling
the dependency structure of these multimodal distributions, particularly over long
time horizons remains challenging. Normalizing flow based generative models can
model complex distributions admitting exact inference. These include variants with
split coupling invertible transformations that are easier to parallelize compared to
their autoregressive counterparts. To this end, we introduce a novel Haar wavelet
based block autoregressive model leveraging split couplings, conditioned on coarse
trajectories obtained from Haar wavelet based transformations at different levels
of granularity. This yields an exact inference method that models trajectories at
different spatio-temporal resolutions in a hierarchical manner. We illustrate the
advantages of our approach for generating diverse and accurate trajectories on two
real-world datasets — Stanford Drone and Intersection Drone.

FOR pediction of trajectories such as that of pedestrians, conditional generative

11.1 INTRODUCTION

To capture the uncertainty of the real world for anticipation tasks such as trajectory
prediction, it is crucial to model the distribution of likely future trajectories. Therefore
recent work (Bhattacharyya et al., 2018c, 2019c; Lee et al., 2017b; Sadeghian et al.,
2019) (see also Chapters 6, 7 and 9) have focused on modeling the distribution
of likely future trajectories using either generative adversarial networks (GANSs,
Goodfellow et al. (2014)) or variational autoencoders (VAEs, Kingma and Dhariwal
(2018)). However, GANSs are prone to mode collapse and the performance of VAEs
depends on the tightness of the variational lower bound on the data log-likelihood

141
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which is hard to control in practice (Cremer et al., 2018; Huang et al., 2020). This
makes it difficult to accurately model the distribution of likely future trajectories.

Normalizing flow based exact likelihood models (Dinh et al., 2015, 2017; Kingma
and Dhariwal, 2018) have been considered to overcome these limitations of GANSs
and VAEs in the context of image synthesis. Building on the success of these methods,
recent approaches have extended the flow models for density estimation of sequential
data, e.g. video (Kumar et al., 2019) and audio (Kim et al., 2019). Yet, VideoFlow
(Kumar et al., 2019) is autoregressive in the temporal dimension which results in
the prediction errors accumulating over time Lee et al. (2018) and reduced efficiency
in sampling. Furthermore, FloWaveNet (Kim et al., 2019) extends flows to audio
sequences with odd-even splits along the temporal dimension, encoding only local
dependencies (Bhattacharyya et al., 2020a; Huang et al., 2020; Kirichenko et al., 2020),
(also discussed in Chapter 10). We address these challenges of flow based models for
trajectory generation and develop an exact inference framework to accurately model
future trajectory sequences by harnessing long-term spatio temporal structure in the
underlying trajectory distribution.

In this chapter, we propose HBA-Flow, an exact inference model with coarse-to-
fine block autoregressive structure to encode long term spatio-temporal correlations
for multimodal trajectory prediction. The advantage of the proposed framework is
that multimodality can be captured over long time horizons by sampling trajectories
at coarse-to-fine spatial and temporal scales (Fig. 10.1). Our contributions are:
1. we introduce a block autoregressive exact inference model using Haar wavelets
where flows applied at a certain scale are conditioned on coarse trajectories from
previous scale. The trajectories at each level are obtained after the application of
Haar wavelet based transformations, thereby modeling long term spatio-temporal
correlations. 2. Our HBA-Flow model, by virtue of block autoregressive structure,
integrates a multi-scale block autoregressive prior which further improves modeling
flexibility by encoding dependencies in the latent space. 3. Furthermore, we show
that compared to fully autoregressive approaches (Kumar et al., 2019), our HBA-Flow
model is computationally more efficient as the number of sampling steps grows
logarithmically in trajectory length. 4. We demonstrate the effectiveness of our
approach for trajectory prediction on Stanford Drone and Intersection Drone, with
improved accuracy over long time horizons.

Note that, as this chapter is based on the work Bhattacharyya et al. (2020b), we

Observed
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Coarse Prediction Coarse Prediction

Haar
Transform

Haar
Transform
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D e A e
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Figure 11.1: Our normalizing flow based model uses a Haar wavelet based decom-
position to block autoregressively model trajectories at K coarse-to-fine scales.
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compare to prior work on the Stanford Drone dataset; Lee et al. (2017b); Pajouheshgar
and Lampert (2018); Gupta et al. (2018); Zhao et al. (2019); Sadeghian et al. (2019); Deo
and Trivedi (2019). We provide an overview of more recent work, e.g. Mangalam
et al. (2020) in Chapter 2.

11.2 BLOCK AUTOREGRESSIVE MODELING OF TRAJECTORIES

In this work, we propose a coarse-to-fine block autoregressive exact inference model,
HBA-Flow, for trajectory sequences. We first provide an overview of conditional
normalizing flows which form the backbone of our HBA-Flow model. To extend nor-
malizing flows for trajectory prediction, we introduce an invertible transformation
based on Haar wavelets which decomposes trajectories into K coarse-to-fine scales
(Fig. 11.1). This is beneficial for expressing long-range spatio-temporal correlations
as coarse trajectories provide global context for the subsequent finer scales. Our
proposed HBA-Flow framework integrates the coarse-to-fine transformations with in-
vertible split coupling flows where it block autoregressively models the transformed
trajectories at K scales.

11.2.1 Conditional Normalizing Flows for Sequential Data

We base our HBA-Flow model on normalizing flows (Dinh et al., 2015) which are
a type of exact inference model (see also Chapters 7 and 10). In particular, we
consider the transformation of the conditional distribution p(y|x) of trajectories
y to a distribution p(z|x) over z with conditional normalizing flows (Ardizzone
et al., 2019b; Bhattacharyya et al., 2019c) using a sequence of n transformations
gi - hj_1 — h;, with hg = y and parameters 6;,
y&)h1<g—2>h2---ﬁ>z. (11.1)
Given the Jacobians Jy. = ohi/on;_; of the transformations g;, the exact likelihoods
can be computed with the change of variables formula,

n
log pe(y|x) =log p(z|x) + ) _log |detJy,|, (11.2)
i=1

Given that the density p(z|x) is known, the likelihood over y can be computed
exactly. Recent works (Dinh et al., 2015, 2017; Kingma and Dhariwal, 2018) consider
invertible split coupling transformations g; as they provide a good balance between
efficiency and modeling flexibility. In (conditional) split coupling transformations,
the input h; is split into two halves 1;, r;, and g; applies an invertible transformation
only on 1; leaving r; unchanged. The transformation parameters of 1; are dependent
on r; and x, thus h; 1 = [g;1+1(1;|r;, x), r;]. The main advantage of (conditional) split
coupling flows is that both inference and sampling are parallelizable when the
transformations g;,1 have an efficient closed form expression of the inverse gijrll, e.g.
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(a) Generative model. (b) Multi-scale architecture.

Figure 11.2: Left: HBA-Flow generative model with the Haar wavelet Haar (1910)
based representation Fy,. Right: Our multi-scale HBA-Flow model with K scales of
Haar based transformation.

affine (Kingma and Dhariwal, 2018) or non-linear squared (Ziegler and Rush, 2019)
and unlike residual flows (Chen ef al., 2019).

As most of the prior work, e.g. (Ardizzone et al., 2019b; Dinh et al., 2015, 2017;
Kingma and Dhariwal, 2018), considers split coupling flows g; that are designed
to deal with fixed length data, these models are not directly applicable to data
of variable length such as trajectories. Moreover, recall that for variable length
sequences, while VideoFlow (Kumar et al., 2019) utilizes split coupling based flows to
model the distribution at each time-step, it is still fully autoregressive in the temporal
dimension, thus offering limited computational efficiency. FloWaveNets (Kim et al.,
2019) split I; and r; along even-odd time-steps for audio synthesis. This even-odd
formulation of the split operation along with the inductive bias (Kirichenko et al.,
2020; Huang et al., 2020; Bhattacharyya et al., 2020a) of split coupling based flow
models is limited when expressing local and global dependencies which are crucial
for capturing multimodality of the trajectories over long time horizons. Next, we
introduce our invertible transformation based on Haar wavelets to model trajectories
at various coarse-to-fine levels to address the shortcomings of prior flow based
methods (Kumar et al., 2019; Kim et al., 2019) for sequential data.
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11.2.2 Haar Wavelet based Invertible Transform

Haar wavelet transform allows for a simple and easy to compute coarse-to-fine
frequency decomposed representation with a finite number of components unlike
alternatives, e.g. Fourier transformations (Porwik and Lisowska, 2004). In our HBA-
Flow framework, we construct a transformation Fy,, consisting of mappings fy,
recursively applied across K scales. With this transformation, trajectories can be
encoded at different levels of granularity along the temporal dimension. We now
formalize invertible function fy;, and its multi-scale Haar wavelet based composition

Fiipa-
Single scale invertible transformation. Consider the trajectory at scale k as

Vi = [y,%, e ,yz"], where Tj is the number of timesteps of trajectory y;. Here, at
scale k = 1, y1 = y is the input trajectory. Each element of the trajectory is a

vector, y{( € R? encoding spatial information of the traffic participant. Our proposed
invertible transformation f;;, at any scale k is a composition, fys, = fraar © feo- First,
feo transforms the trajectory into even (ex) and odd (o) downsampled trajectories,

T T—1
feo(yk) = ey, 0 where, e, = [y, - - - ,Y,"] and o = lyi,--- Y (11.3)
Next, frqqr takes as input the even (e;) and odd (o;) downsampled trajectories
and transforms them into coarse (cx) and fine (f;) downsampled trajectories using a
scalar “mixing” parameter «. In detail,

Fraar(€x, 0x) = fr, ¢ where, ¢ = (1 — a)e, + a0, and

11.
kaOk—Ck:(l—lX)Ok—f—(lX—l)ek ( 4)

where, the coarse (c) trajectory is the element-wise weighted average of the
even (e;) and odd (o;) downsampled trajectories and the fine (f;) trajectory is the
element-wise difference to the coarse downsampled trajectory. The coarse trajectories
(cx) provide global context for finer scales in our block autoregressive approach,
while the fine trajectories (f;) encode details at multiple scales. We now discuss the
invertibility of this transformation fy;, and compute the Jacobian.

Lemma 11.2.1. The generalized Haar transformation fup, = fuaar © feo is invertible for
a € [0,1) and the determinant of the Jacobian of the transformation fyp, = fuaar © feo for

sequence of length Ty with y| € R? is detJpp, = (1 — o) “/2,

Proof. First, note that fy,,, in Eq. (11.4) is a linear system. To compute the Jacobian
of fups, Note that each element of the output fine (f;) and coarse (ci) trajectories can
be equivalently written (using Eq. (11.3)) and Eq. (11.4)) in terms of the elements of
the input trajectory yx. We can now rearrange the output by placing elements from
fr and ¢, in an alternating fashion. This results in a Jacobian [y, € R¥ Texd Tk which
is block diagonal, with a repeating block Jj;, of the form,

= (ML 620)
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This block repeats (4-Tx)/2 times in [y as the trajectory is of length Ty and each
element of the trajectory has d dimensions. Therefore, the determinant of the
Jacobian Ji, is (1 — a) @772,

For a € [0,1) we see that det Jj,;, > 0. Thus, the linear system fj,;;, in Eq. (11.4)
is non-singular and invertible. O

This property allows our HBA-Flow model to exploit f;;, for spatio-temporal
decomposition of the trajectories y while remaining invertible with a tractable
Jacobian for exact inference. Next, we use this transformation fy;, to build the
coarse-to-fine multi-scale Haar wavelet based transformation Fy;, and discuss its
properties.

Multi-scale Haar wavelet based transformation. = To construct our generalized
Haar wavelet based transformation Fy,, the mapping f;, is applied recursively at K
scales (Fig. 11.2, left). The transformation f;, at a scale k applies a low and a high
pass filter pair on the input trajectory y; resulting in the coarse trajectory c; and the
fine trajectory f; with high frequency details. The coarse (spatially and temporally
sub-sampled) trajectory (cx) at scale k is then further decomposed by using it as
the input trajectory yx.1 = ¢k to fyp, at scale k 4+ 1. This is repeated at K scales,
resulting in the complete Haar wavelet transformation Fy,(y) = [f1,-- -, £k, ck]
which captures details at multiple (K) spatio-temporal scales. The finest scale
f; models high-frequency spatio-temporal information of the trajectory y. The
subsequent scales f; represent details at coarser levels, with cx being the coarsest
transformation which expresses the “high-level” spatio-temporal structure of the
trajectory (Fig. 11.1).

Next, we show that the number of scales K in Fy,, is upper bounded by the
logarithm of the length of the sequence. This implies that Fy;,, when integrated in
the multi-scale block auto-regressive model, provides a computationally efficient
setup for generating trajectories.

Lemma 11.2.2. The number of scales K of the Haar wavelet based representation Fyy, is
K <log(Ty), for an initial input sequence y1 of length Ty.

Proof. The Haar wavelet based transformation f,;, halves the length of trajectory yy
at each level k. Thus, for an initial input sequence y; of length Tj, the length of the
coarsest level K in Fy,(y) is |cx|= T1/2X > 1. Thus, K < log(T7). O

11.2.3 Haar Block Autoregressive Framework

HBA-Flow model. We illustrate our HBA-Flow model in Fig. 11.2. Our HBA-Flow
model first transforms the trajectories y using Fy;,, where the invertible transform
fnva is recursively applied on the input trajectory y to obtain f; and c; at scales
k€ {1,---,K}. Therefore, the log-likelihood of a trajectory y under our HBA-Flow
model can be expressed using the change of variables formula as,
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log(po(y[x)) = log(pe(f1, c1x)) + log |det (Jupa )1 |
K
= log(pe(f1, -~ -, fx, cx|x)) + ) _ log [det (Jua); |
i=1

(11.5)

Next, our HBA-Flow model factorizes the distribution of fine trajectories w.l.o.g.
such that f; at level k is conditionally dependent on the representations at scales
k+1toK,

log(PG(fL e IfKI CK|X)) = log(PQ(f1|f2; e /fK/ CK, X)) + -
+log(pe(fx ek, x)) + log(pe(cx|x))-
Finally, note that [fy 1, - -, fk, ck] is the output of the (bijective) transformation

Fipa(cx) where fy, is recursively applied to ¢ = yy.q at scales {k+1,---,K}. Thus
HBA-Flow equivalently models pg(fx|fxi1,- - - , ¢k, X) as po(fx|ck, x),

(11.6)

log(pe(y|x)) =log(pe(filci,x)) + - - - +log(pe(fx|ck,x))

K
+log(pe(ck|x)) + ) log [det (Jypa); |-
i=1

(11.7)

Therefore, as illustrated in Fig. 11.2 (right), our HBA-Flow models the distribution
of each of the fine components f; block autoregressively conditioned on the coarse
representation ¢ at that level. The distribution pg(fx|c, x) at each scale k is modeled
using invertible conditional split coupling flows (Fig. 11.2, right) Kim et al. (2019),
which transform the input distribution to the distribution over latent “priors” z.
This enables our framework to model variable length trajectories. The log-likelihood
with our HBA-Flow approach can be expressed using the change of variables formula
as,

log(pe(frlck, x)) = log(pe(zk|cr, x)) + log |det(Jsc)x| (11.8)

where, log |det(Jsc)x| is the log determinant of Jacobian (Js )k of the split coupling
flow at level k. Thus, the likelihood of a trajectory y under our HBA-Flow model
can be expressed exactly using Egs. (11.7) and (11.8).

The key advantage of our approach is that after spatial and temporal downsam-
pling of coarse scales, it is easier to model long-term spatio-temporal dependencies.
Moreover, conditioning the flows at each scale on the coarse trajectory provides
global context as the downsampled coarse trajectory effectively increases the spatio-
temporal receptive field. This enables our HBA-Flows better capture multimodality
in the distribution of likely future trajectories.

HBA-Prior. Complex multi-model priors can considerably increase the modeling
flexibility of generative models (Bhattacharyya et al., 2019c; Kim et al., 2019; Kumar
et al., 2019). The block autoregressive structure of our HBA-Flow model allows us
introduce a Haar block autoregressive prior (HBA-Prior) over z = [z, - - - , zfx, z°¢]
in Eq. (11.8), where z; is the latent representation for scales k € {1,--- ,K—1}
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and zfg, z¢x are the latents for the coarse and fine representations scales K. The
log-likelihood of the prior factorizes as,

log(py(z|x)) = log(pe(zil|zo, - -+ , 2k, 2%, X)) + - - -
+1og(pg(z k|2, X)) +1og(py(2°k|x)).

Each coarse level representation c; is the output of a bijective transformation of
the latent variables [z 1, - - ,zfx z°k] through the invertible split coupling flows
and the transformations f;, at scales {k+1,---,K}. Thus, HBA-Prior models
Po(Zk|Zks1, - - - ,2fx, 2%, x) as pe(zk|ck, x) at every scale (Fig. 11.2, left). The log-
likelihood of the prior can also be expressed as,

(11.9)

log(py(z|x)) = log(pg(z1lc1,x)) + - - - + log(pg(zx-1|ck-1,x))

¢ . (11.10)
+log(pg(z'k|ck, X)) + log(pe(z kX))

We model py(zg|ck, x) as conditional normal distributions which are multimodal

as a result of the block autoregressive structure. In comparison to the fully autore-
gressive prior in Kumar et al. (2019), our HBA-Prior is efficient as it requires only
O(log(Ty)) sampling steps.
Analysis of sampling speed. From Eq. (11.6) and Fig. 11.2 (left), our HBA-
Flow model autoregressively factorizes across the fine components f; at K scales.
From Lemma 11.2.2, K < log(T;). At each scale our HBA-Flow samples the fine
components f; using split coupling flows, which are easy to parallelize. Thus, given
enough parallel resources, our HBA-Flow model requires maximum K < log(T7)
i.e. O(log(T1)) sampling steps and is significantly more efficient compared to fully
autoregressive approaches e.g.VideoFlow (Kumar ef al., 2019), which require O(T;)
steps.

11.3 EXPERIMENTS

We evaluate our approach for trajectory prediction on two challenging real world
datasets — Stanford Drone (Robicquet et al., 2016) and Intersection Drone (Bock et al.,
2020). These datasets contain trajectories of traffic participants including pedestrians,
bicycles, cars recorded from an aerial platform. The distribution of likely future
trajectories is highly multimodal due to the complexity of the traffic scenarios e.g. at
intersections.

Evaluation metrics. = We are primarily interested in measuring the match of the
learned distribution to the true distribution. Therefore, we follow (Bhattacharyya
et al., 2018c, 2019c; Lee et al., 2017b; Pajouheshgar and Lampert, 2018), Chapters 6
and 7 and use Euclidean error of the top 10% of samples (predictions) and the
(negative) conditional log-likelihood (-CLL) metrics. The Euclidean error of the top
10% of samples measures the coverage of all modes of the target distribution and is
relatively robust to random guessing as shown in Bhattacharyya et al. (2019c).



11.3 EXPERIMENTS 149

Method Visual Er @ 1sec Er @ 2sec Er @ 3sec Er @ g4sec -CLL Speed
“Shotgun” (Pajouheshgar and Lampert, 2018) - 0.7 1.7 3.0 4.5 91.6 -
DESIRE-SI-IT4 (Lee et al., 2017b) v 1.2 2.3 3.4 5.3 - -
STCNN (Pajouheshgar and Lampert, 2018) v 1.2 2.1 3.3 4.6 - -
BMS-CVAE (Bhattacharyya ef al., 2018c) v 0.8 1.7 3.1 4.6 126.6 58
CF-VAE (Bhattacharyya ef al., 2019c) - 0.7 1.5 2.5 3.6 84.6 47
CF-VAE (Bhattacharyya et al., 2019c) v 0.7 1.5 2.4 3.5 84.1 88
Auto-regressive (Kumar et al., 2019) - 0.7 1.5 2.6 3.7 86.8 134
FloWaveNet (Kim ef al., 2019) - 0.7 1.5 2.5 3.6 845 38
FloWaveNet (Kim et al., 2019) + HWD - 0.7 1.5 2.5 3.6 84.4 38
FloWaveNet (Kim et al., 2019) v 0.7 1.5 2.4 3.5 84.1 77
HBA-Flow (Ours) - 0.7 1.5 2.4 3.4 84.1 41
HBA-Flow + Prior (Ours) - 0.7 1.4 2.3 3.3 83.4 43
HBA-Flow + Prior (Ours) v 0.7 1.4 2.3 3.2 831 81

Table 11.1: Five fold cross validation on the Stanford Drone dataset. Lower is better
for all metrics. Visual refers to additional conditioning on the last observed frame.
Top: state of the art, Middle: Baselines and ablations, Bottom: Our HBA-Flow. (HWD
is from Ardizzone et al. (2019b))

11.3.1 Stanford Drone

We use the standard five-fold cross validation evaluation protocol (Bhattacharyya
et al., 2018c, 2019c¢; Lee et al., 2017b; Pajouheshgar and Lampert, 2018) and predict
the trajectory up to 4 seconds into the future. We use the Euclidean error of the top
10% of predicted trajectories at the standard (1/5) resolution using 50 samples and
the CLL metric in Table 11.1. We additionally report sampling time for a batch of
128 samples in milliseconds.

We compare our HBA-Flow model to the following state-of-the-art models: The
handcrafted “Shotgun” model (Pajouheshgar and Lampert, 2018), the conditional
VAE based models of Bhattacharyya et al. (2018¢, 2019¢); Lee et al. (2017b) (and
Chapter 6) and the autoregressive STCNN model (Pajouheshgar and Lampert,
2018). We additionally include the various exact inference baselines for modeling
trajectory sequences: the autoregressive flow model of VideoFlow (Kumar et al., 2019),
FloWaveNet (Kim et al., 2019) (without our Haar wavelet based block autoregressive
structure), FloWaveNet (Kim et al., 2019) with the Haar wavelet downsampling of
Ardizzone et al. (2019b) (FloWaveNet + HWD), our HBA-Flow model with a Gaussian
prior (without our HBA-Prior). The FloWaveNet (Kim ef al., 2019) baseline serves as
ideal ablations to measure the effectiveness of our block autoregressive HBA-Flow
model. For fair comparison, we use two scales (levels) K = 2 with eight non-linear
squared split coupling flows (Ziegler and Rush, 2019) each, for both our HBA-Flow
and FloWaveNet (Kim et al., 2019) models. Following (Bhattacharyya et al., 2019¢;
Pajouheshgar and Lampert, 2018) and Chapter 7, we additionally experiment with
conditioning on the last observed frame using a attention based CNN (indicated by
“Visual” in Table 11.1).

We observe from Table 11.1 that our HBA-Flow model outperforms both state-
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Mean Top 10%, B - GT, FloWaveNet (Kim ef al., 2019) HBA-Flows (Ours)
Observed -(Kim et al., 2019), R - Ours Predictions Predictions

Figure 11.3: Mean top 10% predictions (Blue - Groudtruth, - FloWaveNet Kim
et al. (2019), Red - Our HBA-Flow model) and predictive distributions on Intersection
Drone dataset. The predictions of our HBA-Flow model are more diverse and better
capture the multimodality the future trajectory distribution.

Method mADE | mFDE |
Social GAN (Gupta et al., 2018) 27.2 41.4
MATF GAN (Zhao et al., 2019) 22.5 33.5
SoPhie (Sadeghian et al., 2019) 16.2 29.3
Goal Prediction (Deo and Trivedi, 2019) 15.7 28.1
CF-VAE (Bhattacharyya et al., 2019c) 12.6 22.3
HBA-Flow + Prior (Ours) 10.8 19.8

Table 11.2: Evaluation on the Stanford Drone using the split of Deo and Trivedi
(2019); Sadeghian et al. (2019); Zhao et al. (2019).
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of-the-art models and baselines. In particular, our HBA-Flow model outperforms
the conditional VAE based models of Bhattacharyya et al. (2018c, 2019c); Lee et al.
(2017b) in terms of Euclidean distance and -CLL. Further, our HBA-Flow exhibits
competitive sampling speeds. This shows the advantage of exact inference in the
context of generative modeling of trajectories — leading to better match to the
groundtruth distribution. Our HBA-Flow model generates accurate trajectories
compared to the VideoFlow (Kumar et al., 2019) baseline. This is because unlike
VideoFlow, errors do not accumulate in the temporal dimension of HBA-Flow. Our
HBA-Flow model outperforms the FloWaveNet model of Kim et al. (2019) with
comparable sampling speeds demonstrating the effectiveness of the coarse-to-fine
block autoregressive structure of our HBA-Flow model in capturing long-range
spatio-temporal dependencies. This is reflected in the predictive distributions and the
top 10% of predictions of our HBA-Flow model in comparison with FloWaveNet (Kim
et al., 2019) in Fig. 11.3. The predictions of our HBA-Flow model are more diverse
and can more effectively capture the multimodality of the trajectory distributions
especially at complex traffic situations, e.g. intersections and crossings. We also
observe in Table 11.1 that the addition of Haar wavelet downsampling (Ardizzone
et al., 2019b) to FloWaveNets (Kim et al., 2019) (FloWaveNet + HWD) does not
significantly improve performance. This illustrates that Haar wavelet downsampling
as used in Ardizzone et al. (2019b) is not effective in case of sequential trajectory data
as it is primarily a spatial pooling operation for image data. Finally, our ablations
with Gaussian priors (HBA-Flow) additionally demonstrate the effectiveness of our
HBA-Prior (HBA-Flow + Prior) with improvements with respect to accuracy. We
further include a comparison using the evaluation protocol of Robicquet et al. (2016);
Sadeghian et al. (2018, 2019); Deo and Trivedi (2019) in Table 11.2. Here, only a
single train/test split is used. We follow Bhattacharyya et al. (2019c); Deo and Trivedi
(2019) and use the minimum average displacement error (nADE) and minimum
tinal displacement error (mFDE) as evaluation metrics. Similar to Bhattacharyya et al.
(2019c); Deo and Trivedi (2019) the minimum is calculated over 20 samples. Our
HBA-Flow model outperforms the state-of-the-art demonstrating the effectiveness of
our approach.

11.3.2 Intersection Drone

We further include experiments on the Intersection Drone dataset (Bock et al., 2020).
The dataset consists of trajectories of traffic participants recorded at German inter-
sections. In comparison to the Stanford Drone dataset, the trajectories in this dataset
are typically longer. Moreover, unlike the Stanford Drone dataset which is recorded
at a University Campus, this dataset covers more “typical” traffic situations. Here,
we follow the same evaluation protocol as in Stanford Drone dataset and perform a
tive-fold cross validation and evaluate up to 5 seconds into the future.

We report the results in Table 11.3. We use the strongest baselines from Table 11.1
for comparison to our HBA-Flow + Prior model (with our HBA-Prior), with three
scales, each having eight non-linear squared split coupling flows (Ziegler and Rush,
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Mean Top 10%, B - GT, FloWaveNet (Kim et al., 2019) HBA-Flow (Ours)
Observed -(Kim et al., 2019), R - Ours Predictions Predictions

Figure 11.4: Mean top 10% predictions (Blue - Groudtruth, - FloWaveNet (Kim
et al., 2019), Red - Our HBA-Flow model) and predictive distributions on Intersection
Drone dataset. The predictions of our HBA-Flow model are more diverse and better
capture the modes of the future trajectory distribution.

Method Er @ 1sec Er @ 2sec Er @ 3sec Er @ 4sec Er @ 5sec -CLL
BMS-CVAE (Bhattacharyya et al., 2018¢) 0.25 0.67 1.14 1.78 2.63 26.7
CF-VAE (Bhattacharyya ef al., 2019¢) 0.24 0.55 0.93 1.45 2.21 21.2
FloWaveNet (Kim et al., 2019) 0.23 0.50 0.85 1.31 1.99 19.8
FloWaveNet (Kim et al., 2019) + HWD 0.23 0.50 0.84 1.29 1.96 19.5
HBA-Flow + Prior (Ours) 0.19 0.44 0.82 1.21 1.74 17.3

Table 11.3: Five fold cross validation on the Intersection Drone dataset (HWD is from
Ardizzone et al. (2019b)).

2019). For a fair comparison, we compare with a FloWaveNet (Kim et al., 2019)
model with three levels and eight non-linear squared split coupling flows per level.
We again observe that our HBA-Flow leads to much better improvement with
respect to accuracy over the FloWaveNet (Kim et al., 2019) model. Furthermore,
the performance gap between HBA-Flow and FloWaveNet increases with longer
time horizons. This shows that our approach can better encode spatio-temporal
correlations. The qualitative examples in Fig. 11.4 from both models show that our
HBA-Flow model generates diverse trajectories and can better capture the modes
of the future trajectory distribution, thus demonstrating the advantage of the block
autoregressive structure of our HBA-Flow model. We also see that our HBA-Flow
model outperforms the CE-VAE model (Bhattacharyya et al., 2019c), again illustrating
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the advantage of exact inference.

11.4 CONCLUSION

In this chapter, we presented a novel block autoregressive HBA-Flow framework
taking advantage of the representational power of autoregressive models and the
efficiency of invertible split coupling flow models. Our approach can better represent
the multimodal trajectory distributions capturing the long-range spatio-temporal
correlations. Moreover, the block autoregressive structure of our approach provides
for efficient O(log(T)) inference and sampling. We believe that accurate and compu-
tationally efficient invertible models that allow exact likelihood computations and
efficient sampling present a promising direction of research of anticipation problems
in autonomous systems.
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future prediction to aid the development of autonomous agents which can

deal with complex real-world scenarios and safety-critical environments, e.g.
self-driving vehicles in dense urban landscapes (Janai et al., 2020). The progress
has largely been accelerated through the development of data-driven deep learning-
based approaches (Mathieu et al., 2016; Lee et al., 2017b; Cordts et al., 2016), for both
deterministic and non-deterministic scenarios.

In case of deterministic scenarios, recent work has made significant progress on
“intuitive” physics-based methods, facilitating anticipation capabilities for robotic
manipulation and grasping (Battaglia et al., 2016; Watters et al., 2017). However,
one of the key limitations of these approaches is the reliance on explicit object level
information, e.g. velocity or acceleration, raw visual data cannot be directly leveraged.
For non-deterministic scenarios, the main challenge for long-term predictions is that
of uncertainty, multi-modality and exact inference — there are many likely futures and
the distribution of likely futures is highly multi-modal. Recent work (Mathieu et al.,
2016; Finn et al., 2016), which model the most likely future state while not addressing
aforementioned issues of uncertainty, multi-modality and exact inference, do not
perform well. Bayesian approaches (Gal and Ghahramani, 2016b; Kendall and Gal,
2017) have been applied to deal with uncertainty, however, performance on multi-
modal distributions is lacking. To deal with multi-modality, generative adversarial
networks (Goodfellow et al., 2014) or variational autoencoders (Kingma and Welling,
2014) have been proposed, but capturing the fully diversity of the groundtruth data
distribution still remains challenging (Lee et al., 2017b; Salzmann et al., 2020). To deal
with the limitations of generative adversarial networks (Goodfellow et al., 2014) or

RECENT work has lead to significant progress in the area of anticipation and
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variational autoencoders (Kingma and Welling, 2014), exact inference models, e.g.
normalizing flows (Kingma and Dhariwal, 2018; Ho et al., 2019) are promising. Yet
performance of such models are limited due to specific architectural requirements.
Next, we discuss the contributions of this thesis which address these challenges in
more detail.

12.1 PROGRESS TOWARDS PREDICTING THE FUTURE

The main goal of this thesis is to develop methods for long-term future prediction in
diverse scenarios — both deterministic and non-deterministic scenarios. Prediction in
both scenarios is important for the success of autonomous agents such as self-driving
vehicles in the real world. We focus especially on dealing with the challenges of long-
term prediction, uncertainty, multi-modality, and exact inference for in real-world
scenarios such as street scenes. Next, we discuss our contributions with respect to
these goals in each chapter.

12.1.1 Long-term Predictions

The first main contribution of this thesis is that of long-term prediction in diverse
scenarios, ranging from deterministic billiard ball scenarios to street scenes and
pedestrian trajectories. We find that the first key ingredient which enables long-term
predictions is the effective utilization of observed (available) information. This can
be in the form of image boundaries in the observed frames of a video sequence or
interaction information in case of street scenes with multiple traffic participants.

In detail, we observe that the use of image boundaries from the observed frames
in case of videos, leads to improved video prediction performance (Chapter 3). This
is because image boundaries preserve high frequency information which is crucial for
meaningful predictions about the future, while discarding details such as appearance
and texture. This preserves important structures of the visual scene, while making
training and long-term predictions much simpler. We also find that it is important to
choose the correct model architecture for prediction: especially with a wide receptive
tield allowing the model to learn complex spatio-temporal dependencies, lack of
bottleneck layers and a context for information sharing and global consistency. Using
image boundaries we obtain sharp long-term predictions (upto ~1 second into the
future) in deterministic billiard ball scenarios with complex dynamics, showing
that our model develops an intuitive understanding of physics. Furthermore, we
show that with the fusion of image boundaries we can improve long term video
frame prediction in non-deterministic scenarios even in the RGB prediction space on
complex diverse datasets such as UCF-101 (Soomro et al., 2012). We obtain improved
results over methods such as (Mathieu et al., 2016), that rely only on raw RGB
pixel data. Similar to the video sequences, we observe that long-term prediction on
street scenes can be improved by exploiting semantic segmentations of the observed
sequence instead of relying only on raw RGB pixel data (Chapter 5). Additionally,
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we find that the choice of model architecture is also important — crucial to our
success is a fully convolutional network with residual connections that preserves
high frequency information. We show accurate long-term predictions upto 1 second
into the future on complex multi-modal street scenes from Cityscapes (Cordts et al.,
2016). Thus, these approaches using image boundaries or semantic segmentations
uses observed information more effectively and also allows for the model to be
trained directly on raw visual data for widely applicability across diverse scenarios.

Additionally, we observe that long-term prediction of pedestrian trajectories can
be improved by taking into account interaction information between traffic partici-
pants. To aid the development of interaction-aware trajectory prediction methods
for dense urban environments, we propose a novel dataset (Chapter 9). The pro-
posed Euro-PVI dataset contains dense scenarios of vehicle-pedestrian (bicyclist)
interactions, unlike current datasets such as nuScenes (Caesar et al., 2020) and Lyft
L5 (Houston et al., 2020) which focus mainly on trajectories of vehicles and vehicle-
vehicle interactions. We see that approaches which do not model vehicle-pedestrian
(bicyclist) interactions do not perform well on Euro-PVI. Thus, the Euro-PVI dataset
highlights the importance of modelling interaction information — effectively uti-
lizing observed information — for long-term trajectory prediction in dense urban
environments.

12.1.2 Uncertainity and Calibration

The second main contribution of this thesis is that of calibrated estimates of uncer-
tainty for long-term predictions in case of non-deterministic scenarios. We find that
scalable Bayesian inference schemes based on dropout based Monte Carlo variational
inference (Gal and Ghahramani, 2016b; Kendall and Gal, 2017) can be successfully
applied to future prediction tasks for calibrated uncertainties and when trained
using synthetic likelihood based objectives can also deal with complex multi-modal
distributions.

In detail, we show that the Bayesian inference scheme of Gal and Ghahramani
(2016b); Kendall and Gal (2017) can be extended to the complex real-world task of
long-term “on-board” trajectory prediction. Crucial to our success is the choice of
model architecture: a novel Bayesian two-stream recurrent model. Our two-stream
model architecture jointly predicts odometry for improved long term prediction.
This enables long-term predictions of at least 1 second on pedestrian trajectories
from Cityscapes (Cordts et al., 2016) dataset, with calibrated uncertainty estimates
(in Chapter 4). However, we observe that the Bayesian inference scheme of Gal
and Ghahramani (2016b); Kendall and Gal (2017) is not sufficient in case of multi-
modal data distributions, e.g. predicting the future of street scenes, crucial for
anticipation tasks in real-world scenarios. We show that the main bottleneck is the
training objective which does not encourage diversity. Therefore, we propose a novel
objective for training Bayesian inference models on multi-modal data distributions.
Our novel optimization scheme uses synthetic likelihoods to deal with multi-modal
distributions for future prediction tasks. We show that this encourages the Bayesian
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posterior distribution of models to be diverse and thus capture different modes of
the multi-modal future distribution without collapsing to the mean. We apply this
approach to the challenging task of long-term prediction of real-world semantic
segmentations of at least 1 second into the future on street scenes from the Cityscapes
(Cordsts et al., 2016) dataset (in Chapter 5).

To summarize, we observe that our Bayesian inference schemes provide calibrated
uncertainty estimates in the long-term — even with our synthetic likelihood based op-
timization scheme uncertainties remain calibrated and competitive with the scheme
of Gal and Ghahramani (2016b); Kendall and Gal (2017). Furthermore, in practice,
we observe that the predicted uncertainties upper bound the maximum error during
evaluation. This makes the predictions of our models more trustworthy and helps
autonomous agents in decision making in complex real-world scenarios such as
street scenes. Finally, we believe that the proposed Bayesian inference schemes are
not limited to the task of pedestrian trajectory or street scene prediction and creates
new opportunities to enhance high-performance deep learning architectures with
principled formulations of Bayesian inference.

12.1.3 Multi-modality

The third main contribution of this thesis deals with the challenge of multi-modality
in long-term future prediction tasks in non-deterministic scenarios, through novel
formulations of conditional variational autoencoder based models. Specifically, we
focused on non-deterministic scenarios with are especially important for the success
of autonomous agents, e.g. pedestrian trajectories in dense urban environments. We
find that the objective used for training and the latent prior distribution are crucial
for good performance. Moreover, in case of trajectory prediction in dense urban
environments the factorization of the latent prior distribution plays an important
role in capturing interactions between agents.

In detail, we observe that the standard objective (Kingma and Welling, 2014; Lee
et al., 2017b) for training conditional variational autoencoders, does not encourage
diversity in predictions making it challenging to fully capture multi-modal distri-
butions and leading to issues such as missing modes. To deal with this issue, we
proposed a novel “Best of many” sample objective for training conditional variational
autoencoder based models (Chapter 6). We observe that our “Best of many” sample
objective leads to a better match between the training time (aggregate) posterior and
the test (sampling) time prior distributions. We show that conditional variational
autoencoder based models when trained using our objective obtain improved results
on diverse tasks including trajectory prediction upto 4 seconds into the future on
Stanford drone dataset (Robicquet et al., 2016) and precipitation nowcasting on
the HKO weather dataset (Shi et al., 2015). However, independent of the training
objective, the latent prior distribution has an important role in determining mod-
elling capacity of the conditional variational autoencoder model. We observe that
the standard unimodal Gaussian prior imposes a strong model bias which makes
it challenging to fully capture complex multi-modal distributions. Therefore, we
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proposed a novel — multi-modal — conditional normalizing flow based prior which
allows improved modelling of complex multi-modal data distributions (Chapter 7).
To further improve performance, we found regularization to be helpful, through
two novel regularization techniques — posterior regularization and condition regu-
larization. We show that posterior regularization helps to improve traning stability.
On the other hand, condition regularization prevents posterior collapse leading to
better fit to the target distribution. This allows us to further significantly improve
performance on trajectory prediction tasks on Stanford Drone and highD datasets
(Krajewski et al., 2018) up to 4 seconds into the future. This confirms that both the
training objective (with regularization) and latent prior distributions are crucial for
best performance on complex multi-modal future prediction tasks.

Although the above mentioned approaches improved performance on pedestrian
trajectory prediction tasks (e.g. on Stanford Drone and highD), they do not explicitly
take into account the effect of interactions which are especially important in dense
urban environments. The latent distribution of each agent is modelled independently,
making it challenging to fully capture the complex multi-modal distribution of future
trajectories. We observe that a shared latent space between all interacting agents
which encodes the effect of intersections is especially helpful for good performance.
To this end, we proposed a Joint-B-cVAE approach (Chapter 9) which infers the joint
latent distribution across all agents in the scene. We observe improved performance
with our Joint-B-cVAE on Euro-PVI for long-term predictions up to 3 seconds into
the future, highlighting the effectiveness in capturing interactions in dense urban
scenarios. Thus, these experiments show that the choice of factorization of the
latent space also plays a crucial role in capturing interactions for accurate long-term
predictions.

Finally, we also show that the insights gained by improving the modelling
flexibility of conditional variational autoencoder based models for multi-modal
data distributions (in Chapters 6 and 7), can also be applied to hybrid VAE-GAN
frameworks for image datasets. In detail, we show that the integration of a “Best of
Many” samples based objective (Chapter 8) improves performance of hybrid VAE-
GAN frameworks. The “Best of Many” samples based objective helps in covering all
the modes of the data distribution while maintaining a latent space (the aggregate
posterior distribution) as close to Gaussian as possible — similar to our observations
on the “Best of many” sample objective for trajectory prediction tasks (in Chapter 6).
Moreover, we show that the performance is further improved by a stable estimate of
the synthetic likelihood ratio term in the hybrid VAE-GAN objective. Our hybrid
VAE-GAN framework trained with our novel objective, outperforms state-of-the-
art hybrid VAE-GANs and plain GANs in generative modelling on CelebA and
CIFAR-10, demonstrating the effectiveness of our approach.

12.1.4 Exact Inference

The fourth main contribution is the development of exact inference models for the
task of future prediction in highly multi-modal non-deterministic scenarios. We focus
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on normalizing flows, as they allow for efficient inference and sampling — especially
important for quick reactions of autonomous agents to changing environmental
conditions. However, we observe that compared to alternative generative models
such as conditional generative adversarial networks and conditional variational
autoencoders, accurately modeling the dependency structure of of multimodal dis-
tributions, e.g. trajectories, particularly over long time horizons remains challenging
with normalizing flows due to their limited modelling flexibility. Therefore, we focus
on improving the modelling flexibility of normalizing flow based exact inference
models.

In detail, we observe that one key factor which limits modelling flexibility nor-
malizing flow models is the standard unimodal Gaussian prior (base) distribution.
To deal with this limitation, we propose a novel autoregressive prior for normalizing
flow based models to improve modelling flexibility (Chapter 10). Our multi-scale
autoregressive prior for models with split coupling flow layers (mAR-SCF model)
can better capture dependencies in complex multimodal data. This is because our
computationally efficient mAR prior mitigates the limited expressive power of the
split coupling flow layers. The model achieves state-of-the-art density estimation
results on complex multi-modal datasets including MNIST, CIFAR-10, and Ima-
geNet, while having completive sampling speeds in comparison to state of the
art flow-based models. Furthermore, we show that our mAR-SCF model allows
for improved image generation quality, with gains in standard image generation
quality scores, e.g. FID (Heusel et al., 2017) and Inception scores (Salimans et al.,
2016) compared to state-of-the-art flow-based models. Secondly, we observe that the
modelling flexibility of normalizing flow based models can be further improved by
integrating a (computationally efficient) partial auto-regressive structure. Specifically,
we propose a multi-scale Haar-wavelet based decomposition for normalizing flow
based trajectory prediction models (Chapter 11). Our block autoregressive model
can leverage computationally efficient split couplings, while conditioning on coarse
trajectories obtained from Haar wavelet based transformations at different levels of
granularity for improve modelling flexibility and captures long-term correlations.
This is because the coarse levels in the multi-scale structure provide global context
to finer levels. Furthermore, sampling speeds remain competitive with respect to
state of art trajectory prediction models. Finally, we show state of the art results upto
4 seconds into the future on two real-world datasets, Stanford Drone (Robicquet
et al., 2016) (improving over Chapters 6 and 7) and Intersection Drone (Bock et al.,
2020). To summarize, these experiments show that normalizing flows can outperform
competing generative models including conditional generative adversarial networks
or variational autoencoders, while providing exact likelihoods. Thus, looking ahead
they are potentially the generative model of choice for future prediction tasks.
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12.2 FUTURE PERSPECTIVES

The main goal of this thesis is that of development of accurate models for future pre-
diction tasks. Despite the recent progress in this area, accurate long-term predictions
for safely critical scenarios such as autonomous driving remain challenging. Next,
we discuss future perspectives for the focus areas in this thesis, in particular for the
challenges of long-term prediction, uncertainty, multi-modality and exact inference.
Finally, in the last section we provide a broader outlook of the field.

12.2.1 Long-term Predictions

While the main challenges for long-term prediction in non-deterministic scenarios
are that of uncertainty, multi-modality and exact inference, we differ the discussion
on these topics to the next section. In this section, we begin with a discussion of
perspectives on how to more effectively exploit available (observed) information for
improving long-term predictions and thus can be applied to both deterministic and
non-deterministic scenarios.

Alternative representations for video prediction.  As discussed in Chapter 3,
video frame prediction directly in RGB pixel space is challenging due to the difficulty
in modelling the changes in appearance, e.g. texture and lighting. The key to our
success on long-term prediction in Chapter 3 using image boundaries is due to
the fact image boundaries discard details in appearance which makes it easier to
learn (and predict) the dynamics of motion, while keeping the shape and extents of
objects intact. However, a drawback of utilizing only image boundaries is that object
class and instance information is lost. An interesting direction of future research is
integrating image boundaries and semantic (instance) segmentations for video frame
prediction. Semantic (instance) segmentations have been already explored for pre-
diction in street scenes and shown to be easier to predict than RGB pixels. Semantic
(instance) segmentations would provide object class and instance information which
are missing from image boundaries. While prediction of image boundaries along
with semantic (instance) segmentations would provide rich information about the
future and is sufficient for many applications, for more complex tasks such as full
video frame prediction appearance cues (e.g. color and texture) must also be inte-
grated. One possibility is to formulate conditional generative models, conditioned on
image boundary and segmentation information to fill in appearance details similar
to Villegas et al. (2017). Another promising extension of this approach is to use a
hierarchy of representations, where representations lower in the hierarchy capture
high level features which are easy to predict in the long-term and prediction of
each subsequent (finer) level with more appearance details are aided by the coarser
representations.

Integrating 3d scene structure for street scene prediction. Current models
for street scene prediction, e.g. the model described in Chapter 5, do not have an
explicit understanding of the 3d scene structure. This makes it challenging to predict
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the motion of objects in the long-term because it limits the understanding of both
motion patterns and interaction patterns with other objects in the scene. Therefore,
long-term prediction accuracy can potentially be improved by additionally including
3d scene structure information along with RGB or semantic scene information.
However, it is unclear how this can be done effectively. One potential option would
be to include lidar segmentation maps as they are now widely available (Caesar
et al., 2020) and because they provide rich 3d scene information along with class
information. However, lidar point clouds lack resolution at larger distances and
full 3d scene reconstructions using automotive lidar still remain challenging. One
potential solution could be to additionally include high definition map information
for high level scene information, which is available in recent datasets (Caesar et al.,
2020; Chang et al., 2019; Houston et al., 2020). Secondly, lidar point clouds do not
have an explicit notion of objects. Therefore, another direction for future research
is that of including at least partial 3d reconstructions of street scenes using recent
techniques such as occupancy networks (Mescheder et al., 2019), which includes
important objects such as vehicles, pedestrians, drivable surfaces and obstacles.

12.2.2 Uncertainty and Calibration

Obtaining calibrated uncertainty estimates remains a challenging task as described
in Chapters 4 and 5. While the Bayesian inference approach in Chapter 5 already
shows significant improvement over the naive non-Bayesian approaches, the results
are still far from being perfectly calibrated. Here, we discuss two directions of future
research which are promising for improving calibration of uncertainty estimates.

Ensemble based approaches. In contrast to the Bayesian inference methods
presented in Chapters 4 and 5, ensemble based approaches (Lakshminarayanan
et al., 2017) for uncertainty estimation are readily parallelizable and require very
little hyperparameter tuning with competitive uncertainty estimates. In more detail,
performance of Bayesian inference based neural networks depends on the necessary
approximations introduced due computational constraints. Performance further de-
pends upon the chosen prior. Ensemble based approaches (Lakshminarayanan et al.,
2017) do not suffer from these disadvantages. Recent ensemble based approaches
have shown promise in semantic segmentation tasks with fully convolutional ar-
chitectures (K et al., 2020). Extending such approaches to street scene prediction
tasks using fully convolutional architectures as in Chapter 5 is promising. On the
other hand, for many future prediction tasks such as trajectory prediction, recur-
rent neural networks have shown state-of-the-art performance (see also Chapter 4).
Therefore, another direction of future research is the development of ensemble based
approaches using recurrent neural networks for trajectory prediction tasks.

Alternatives to synthetic likelihoods.  As discussed in Chapter 5, the Bayesian
inference method in Chapter 4 does not perform well on multi-modal data distribu-
tions. The issue identified in Chapter 5 is that of the data log-likelihood term in the
objective used for training the Bayesian inference method, which does not encourage
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diversity. The proposed synthetic likelihood term in Chapter 5 is designed to ad-
dress this issue. However, the synthetic likelihood term is obtained from a classifier
that is trained jointly. This makes training computationally more expensive and
unstable. Therefore, an interesting direction of future research is the development of
novel objectives which encourage diversity similar to our synthetic likelihood based
objective. In this regard, combining normalizing flows with Bayesian inferences is
an interesting direction of research Radev et al. (2020).

12.2.3 Multi-modality

Capturing multi-modality in complex real-world data distributions remains a chal-
lenging task as described in Chapters 6, 7 and g to 11. In Chapters 6 and 7 , we
focused on improving the flexibility of conditional variational autoencoders to help
capture complex multi-modal distributions. While exact inference models have
advantages over conditional variational autoencoders (as discussed in Chapters 10
and 11), the performance of conditional variational autoencoders can be further
improved. We discuss potential avenues for improvement in the following.

Autoregressive priors. = We observed the most substantial gain in performance
of conditional variational autoencoders on multi-modal distributions in Chapter 7
through the use of complex priors over the standard uni-modal Gaussian prior.
While the conditional normalizing flow based prior in Chapter 7 offers the advantage
of efficient inference, autoregressive priors can potentially offer more modelling
flexibility as demonstrated on image data by Razavi ef al. (2019b). The challenge es-
pecially for long-term future prediction tasks would be to balance the computational
cost of an autoregressive prior, which grows with the prediction horizon, with the
modelling flexibility.

Priors for interactions. As discussed in Chapter 9, in case of street scenes,
interactions between the traffic participants are crucial in future prediction tasks.
The joint prediction framework introduced in Chapter 9 accounts for the effect of
interactions using a shared latent space. The latent distribution of each agent in the
scene is, however, still uni-modal Gaussian distributed. The modelling flexibility of
this joint prediction framework can be further improved through the use of more
expressive conditional normalizing flow based priors.

12.2.4 Exact Inference

Exact inference models allow for the inference and thus optimization of the exact
likelihood of a future outcome under the model, leading to improved accuracy over
alternatives like conditional variational autoencoders as discussed in Chapters 10
and 11. Normalizing flow based exact inference models provide the advantage of
efficiency, but suffer from limited modelling flexibility. Next, we discuss potential
directions for research to improve the modelling flexibility of normalizing flow based
exact inference models and integrating interactions to improve accuracy in case of
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street scenes.

Improving modelling flexibility of normalizing flow based models. In Chap-
ter 11, the proposed normalizing flow model for trajectories uses affine coupling
based flow layers. While such affine couplings are efficient, they are not particularly
flexible. Thus, recent work (Ho et al., 2019; Behrmann et al., 2019; Chen et al., 2019)
has proposed more flexible flow layers which have shown promising performance on
image data. A promising direction of future research is the development of similar
more flexible flow layers for future prediction tasks. Particularly promising is the de-
velopment of residual flow based methods (Chen et al., 2019) for pedestrian trajectory
prediction tasks. The affine couplings used in Chapter 11 employ 1d convolutions to
model the transformation parameters of the flow. Therefore, it would be feasible to
transform the model from Chapter 11 into a fully convolutional model that can be
cast in the residual flow framework, for improved modelling flexibility.

Normalizing flow based models for interactions. In Chapter 11, the proposed
normalizing flow model for trajectories does not take into account the effect of
interactions on the distribution of future pedestrian trajectories. On the other
hand, the model proposed in Chapter g proposes a joint prediction framework for
conditional variational autoencoders to take into account the effect of interactions. A
promising direction of future research would be to investigate similar joint prediction
frameworks for normalizing flow based models. The joint prediction framework in
Chapter 9 uses an autoregressive factorization of the latent variables corresponding
to each agent and an attention mechanism to model the effect of interactions. An
analogous approach can be used for flow based models, where 1 x 1 convolutions
(Kingma and Dhariwal, 2018), coupling with an attention mechanism in the flow
layers can be used to model the effect of interactions in a joint exact inference
framework.

12.2.5 Broader Outlook of the Field

The broader goal of this thesis is the development of autonomous agents that are
successful in real world situations for tasks such as autonomous driving or household
assistance. Anticipation methods are crucial to this goal and such methods developed
in this thesis illustrate the great progress in this field in recent years. However, for
wide-spread deployment of autonomous agents in the real world there are still
multiple hurdles to overcome.

Generalization to unseen scenarios. A person who has never played a game of
billiards still can easily anticipate the motion of balls on the billiard table. On the
other hand, current anticipation methods on the same task requires task specific
training. To obtain flexible methods that mimic human ability to generalize across
tasks, multi-task learning (Zamir et al., 2018) approaches across anticipation tasks is
an interesting direction of research. While generalizing across tasks is an important
challenge, given a certain task, e.g. trajectory prediction, the dataset employed for
training can still bias the learned method to the locations and specifics of that
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particular dataset (Wang et al., 2020). Development of methods that can generalize
across datasets and geographical locations remains an important avenue for future
research.

Integration with planning and control modules. Most recent work on various
anticipation tasks such as trajectory prediction are currently developed in isolation.
However, to maximize the utility of anticipation approaches, integration with the
planning and control modules of the autonomous agents would be helpful. Recent
work has already shown the promise of such joint prediction, planning and control
approaches (Casas et al., 2021) which leads to improved results across all three tasks.
Such joint leaning approaches are an important direction of future research.

Assisted versus fully autonomous driving.  Autonomous driving is one of the
main focus areas where anticipation plays a key role. However, fully autonomous
driving still has many challenges to overcome before it can be deployed at a large
scale. In the meantime, anticipation approaches can help in the area of assisted driv-
ing to improve safety. One particular case of interest is that of trajectory prediction
approaches which work in parallel with the human driver to anticipate potentially
dangerous situations and warn the driver in advance.






LIST OF FIGURES

1.1

1.2

3.1
3.2
33

3.4

35

3.6

37

3.8

39
3.10

4.1

Here we show routine tasks where anticipation is crucial. Left: A
driver needs to anticipate whether the pedestrian would yield or step
onto the path of the oncoming vehicle to avoid a collision. Right: A
billiards player needs to anticipate the trajectory of the ball to score. .
In case of non-deterministic agent based scenarios, such as street
scenes, the future is highly uncertain and the distribution of likely
future outcomes is multi-modal. Here we show the distribution of
likely future trajectories for a vehicle at an intersection, at k and 2k
seconds after observation at time { (modes are shown in different
colors). The uncertainty and multi-modality of the distribution of
likely trajectories increases from into the future, highlighting the
challenges of future prediction tasks. . . . . ... .. ... ........
Predicted future boundary images, from t + 1 (Yellow) to ¢t + 8 (Row
1), t + 18 (Row 2) (Red), superimposed. . . . ... ... ... . ... ..
Convolutional Multi-scale with Context architecture (only 2 out of 4
scales illustrated). . . . . . .. .. ... oo
Our model without context has higher error near the patch boundary
(red) vs. with context (green). . . . . . ... ... ... .. ... . ...

Evaluation of boundary prediction on VSB1oo. . . . . . ... ... ...
(@) Areaunderthecurve. . ... .. ... ... .. ... ..
(b) BestF-measure. . . . ... ... ... ... ... ... ...
RGB versus boundary prediction. . . . . .. ... ... o000
(@) Laplacianmeasure. . . . . . ... ... ... ... . ... ...
(b) Meansquarederror. . ... ... . ... L

Rows top to bottom: Prediction on airplane and hummingbird sequences
from VSB1oo. Correct boundaries predictions are encoded in green.
Missed boundaries are encoded in yellow. Wrong boundaries are
encodedinred. . .. ... ... ... ... ... .
Trails produced by super-imposing predicted boundaries on synthetic
SEQUENCES. . . o\ v e e e e e e e
Trails produced by super-imposing predicted boundaries on real se-
QUENCES. .« o v v vt e e e e
Our fusion model architecture. . . . ... ... ... ... ... .....
Sharpening RGB predictions using our Fusion scheme on VSB10o0 (top
two rows) and on UCF1o01 (bottom tworows). . ... ... .......
Two stream architecture for prediction of future pedestrian bounding



168

LIST OF FIGURES

43

5.2
53
54

55

5.7
6.1

6.2
6.3

6.4

6.5

6.6
6.7

6.8

Quality of our uncertainty metric: plots 1 and 2 - uncertainty versus
squared error, plots 3 and 4 - uncertainty versus maximum observed
squared €rror. . . . . ... 57
Rows 1-3: Point estimates. Blue: Ground-truth, Red: Kalman Filter
(Table 4.2 row 1), Yellow: One-stream model (Table 4.2 row 4), Green:
Two-stream model (mean of predictive distribution, Table 4.5 row 3).
Rows 4-6: Predictive distributions of our two-stream model as heat

INAPS. « « o v e e e e e e 57
Blue: Groundtruth distribution. Black: Models sampled at random
from the model distribution. . . . . .. ... ... .o 000000 60
The architecture of our ResNet based generative models for street
scene prediction in our model distribution g(w). . . . . .. .. ... .. 64
Blue: Data points. Black: Sampled models @ € gq(w) learned by the
Bayes-S approach. All models fit to the mean. . . . ... ... ... .. 65
Blue: Data points. Black: Sampled models @ € g(w) learned by the
Bayes-SL approach. We recover models covering both modes. . . . . . 65

Bayes-WD-SL (top 1) vs ResG-Mean. Cyan: Bayes-WD-SL is correct
and ResG-Mean is wrong. Red: Bayes-WD-SL is wrong and ResG-

Mean is correct, white: both right, black: both wrong/unlabeled. . . . 69
Random samples from our Bayes-WD-SL model corresponds to the

range of likely movements of bicyclists/pedestrians.. . . . . . ... .. 69
Uncertainty calibrationatt+10. . . .. ... ... ... ......... 70
Comparison between our “Best of Many” sample objective and the

standard CVAE objective. . . . . . ... ... ... ... ... . ... 72
Conditional generative models. . . . . ... ... ... .. ........ 74
Our model architectures. The recognition networks are only available

during training. . . . . ... ... Lo Lo o 76
(@) Our model for structured trajectory prediction. . ... ... ... 76
(b) Our model for structured image sequence prediction. . . . . . . . 76

Diverse samples drawn from our LSTM-BMS model trained using the
Lpnms objective, clustered using k-means. The number of clusters is set
manually to the number of expected digits based on the initial stroke
on the MNIST Sequence dataset. . . . ... ... ............. 81
Top 10% of samples drawn from the LSTM-BMS model (magenta) and
the LSTM-CVAE model (yellow), with the groundtruth in (blue) on
the MNIST Sequence dataset. . . . . .. ... ... ............ 81
KL Divergence during training on the MNIST Sequence dataset. . .. 82
Diverse samples dawn from our LSTM-BMS model trained using the
Lams objective, color-coded after clustering using k-means with four
clusters on the Stanford Drone dataset . . . . . .. ... ... ...... 83
Top 10% of samples drawn from the LSTM-BMS model (magenta) and
the LSTM-CVAE model (yellow), with the groundtruth in blue on the
Stanford Drone dataset . . . . ... ... ... ... ... ... ... . 83



LIST OF FIGURES 169

6.9

7.2

7-3

7-4

7:5

9.2

93

Statistics of samples generated by our LSTM-BMS model on the HKO
dataset (T-step is Timestep and GT is groundtruth). . . . ... ... .. 84
Clustered stroke predictions on MNIST sequences. Our multi-modal
Conditional Normalizing Flow based prior (right) enables our regular-
ized CF-VAE to capture the two modes of the conditional distribution,
while predictions with unimodal Gaussian prior (left) have limited
diversity. Note, our 64D CE-VAE latent distribution is (approximately)

projected to 2D using tSNEand KDE. . . . ... ... .......... 88
CF-VAE. The decoder is regularized by removing conditioning (grey
arrow) to prevent posterior collapse. . . . . .. ... ... ... ... 92

Random samples clustered using k-means. The number of clusters
is set manually to the number of expected digits. The corresponding
priors of our CF-VAE + pR on the right. Note, our 64D CF-VAE latent
distribution is (approximately) projected to 2D using tSNE and KDE. . 94
Randomly sampled predictions of our CF-VAE + pR model on the
Stanford Drone. We observe that our predictions are highly multi-
modal and are reflected by the Conditional Flow Priors. Note, our 64D
CF-VAE latent distribution is (approximatly) projected to 2D using
tSNEand KDE. . ... ... ... ... ... ... .. .. .. .. . .. .. 96
Comparison of our CF-VAE + pR (Red) and the “Shoutgun” baseline
(Yellow) of (Pajouheshgar and Lampert, 2018), Groundtruth (Blue).
Initial conditioning trajectory in white. Our CF-VAE not only learns
to capture the correct modes but also generates more fine-grained
predictions. . . . . .. ... 97
Overview of our BMS-VAE-GAN framework. The terms of our novel
objective Eq. (8.7) are highlighted at the right. We consider only the
best sample from the generator Gy while computing the reconstruction

loss. . . . o 102
Closest generated images found using IVOM. . . . . ... ... ... .. 107
CelebA Random Samples. Our “Best of Many” reconstruction cost

leads to sharper results. . . ... ... ... ... ... . ... . ..., 110
(@ Oura-GAN +SN (T =1,128x128) . .. ... ... ... ..... 110
(b) Our BMS-VAE-GAN (T =10, 128%x128) . . . . . ... ... .... 110
Examples of interactions between the ego-vehicle and pedestrians

(bicyclists) in Euro-PVL. . . . . . ... ... ..o oo oo 112
(a) Pedestrian speeds to avoid vehicle. . . . . . . . . . o . 0000000000 112
(b) Pedestrians yield to the vehicle. . . . . . . . . . . . 000000000000 112
(C) Vehicle slows to avoid pedestrian. . . . . . . . . . . . .. .00 00000 112
(d) Vehicle yields to the bicyclists. . . . . . . . . . . . . ..o 000000 112
Examples of interactions in Euro-PVI. Spikes in the magnitude (L,

norm) of acceleration resulting from interactions are marked. . . . . . 114
Examples of aggregated spatial distribution of trajectories of pedestri-

ans and cyclists around intersections and urban landmarks. . . . . .. 115

(@) Leuvenrailway station. . ... ... ...... ... .. .. ..., 115



170

LIST OF FIGURES

9:4

9-5

9.6

9.7

10.1

10.2

10.3

10.4
10.5

(b) Leuvencitycenter. . ... ... ... ... ... ... . ... ... 115

Left (a): Cumulative distribution sorted by distance to the ego-vehicle.
Close proximity of the ego-vehicle and pedestrians(bicyclists) in Euro-
PVI indicate dense traffic scenarios where interactions are likely. Right
(b): Maximum acceleration sorted by distance to the ego-vehicle.
High acceleration in close proximity of the ego-vehicle and pedes-

trians(bicyclists) indicate high likelihood of interactions. . . . ... .. 115
(a) Distance to the ego-vehicle. . . . . ... ... . ... ... .... 115
(b) Maximum acceleration. . . . ... ... ... ... ... 115

Our Joint-B-cVAE, which models a Joint latent space across all agents
{1,---,n} in the scene. The posterior latent distribution q4(Z|X,Y)
factorizes auto-regressively and models the dependence of z; on
{Z_;,X,Y} using an attention mechanism. . .. ............. 118

Qualitative examples on Euro-PVI. We compare the Best of N =20
samples for Trajectron++ (red) and our Joint-B-cVAE (blue). . . . . . . 120

Error sorted by closest approach (proximity) to ego-vehicle. Higher
error in close proximity to the ego-vehicle suggests dense interactions. 123

Our mAR-SCF model combines normalizing flows with autoregres-
sive (AR) priors to improve modeling power while ensuring that the
computational cost grows linearly with the spatial image resolution
NXN. o 126

Flow-based generative models with multi-scale autoregressive pri-
ors (mAR-SCF). The generative model (left) shows the multi-scale
autoregressive sampling of the channel dimensions of 1; at each level.
The spatial dimensions of each channel are sampled in parallel. r;
are computed with invertable transformations. The mAR-SCF model
(right) shows the complete multi-scale architecture with the mAR prior
applied along the channels of 1;, i.e. at each level i after the SprLiT

operation.. . . . . . ... ..o 130
(@) Generative model for mAR-SCE. . . . ... ... .......... 130
(b) SCF flow withmAR prior. . . . .. ... ... .. ... . ... ... 130
Comparison of random samples from our mAR-SCF model with state-
of-the-art models. . . . .. ... ... ... L 135
(@) Residual Flows Chen et al. (2019) (3.28 bits/dim, 46.3 FID) . . . . 135
(b) Flow++ with variational dequantization Ho et al. (2019) (3.08
bits/dim) . . . . ... 135
(¢) Our mMAR-SCF Affine (3.31 bits/dim, 41.0 FID). . . . . . .. .. 135
(d) Our mMAR-SCF MixLogCDF (3.24 bits/dim, 41.9 FID) . . . . . . 135
Interpolations of our mAR-SCF model on CIFAR-10. . . . . .. ... .. 137
Random samples on ImageNet (64 x 64). . ... ... ... ....... 137
(@) Residual Flows (Chen et al., 2019) (3.75 bits/dim) . . . ... ... 137

(b) Our mMAR-SCF (Affine, 3.80 bits/dim) . . . ... ... ...... 137



LIST OF FIGURES

171

11.1

11.2

11.3

11.4

Our normalizing flow based model uses a Haar wavelet based decom-
position to block autoregressively model trajectories at K coarse-to-fine
scales. . . ..
Left: HBA-Flow generative model with the Haar wavelet Haar (1910)
based representation Fy,. Right: Our multi-scale HBA-Flow model
with K scales of Haar based transformation. . . ... ... .......
(@) Generativemodel. . ... ... ... ... ...
(b) Multi-scale architecture. . . . . .. ... ... ... ... ... ...
Mean top 10% predictions (Blue - Groudtruth, - FloWaveNet
Kim et al. (2019), Red - Our HBA-Flow model) and predictive distribu-
tions on Intersection Drone dataset. The predictions of our HBA-Flow
model are more diverse and better capture the multimodality the
future trajectory distribution. . . . ... ... ..o 00000
Mean top 10% predictions (Blue - Groudtruth, - FloWaveNet
(Kim et al., 2019), Red - Our HBA-Flow model) and predictive distribu-
tions on Intersection Drone dataset. The predictions of our HBA-Flow
model are more diverse and better capture the modes of the future
trajectory distribution. . . . .. ... ... . o oo Lo

144
144






LIST OF TABLES

Tab.

Tab.
Tab.
Tab.
Tab.

Tab.

Tab.
Tab.
Tab.
Tab.
Tab.

Tab.

Tab.
Tab.

Tab.
Tab.
Tab.
Tab.

Tab.
Tab.
Tab.

Tab.
Tab.

Tab.
Tab.

1.1

3.1
3.2
33
3-4

4.1

4.2
4.3
4-4
4.5
4.6

5.1

5.2
53

54
5-5
6.1
6.2

6.3
7.1
7.2

7-3

74
8.1

Overview of the main focus area of each methodological contri-

bution of papers associated with this thesis. . . . ... ... ... 6
Evaluation on single ball billiard table worlds. . . . . ... .. .. 39
Evaluation on complex billiard table worlds. . . . . ... ... .. 40
Evaluation on real billiard sequences (M-masked). . . . . . .. .. 41
Evaluation of our Fusion scheme. PSNR, Sharpness Loss and

Laplacian measure: Higher is better. . . . .. ... ... ... .. 42

Our predictive distribution upto t + 15 frames. The heat map
encodes the probability of a certain pixel belonging to the person.
The variance of the distribution encodes the uncertainty. Row 1:

Low uncertainty. Row 2: High uncertainty. . . .. ... ... ... 46
Bounding box prediction error with varying [B,|. . ... ... .. 54
Bounding box center predictionerror. . . . ... ... ... ... .. 54
Odometry prediction error (MSE), [Op| = {8}. . . ... ... ... 55
Evaluation of our Bayesian two stream model (Fig. 4.1). . . . . . . 56
MSE per time-step of models in Table 4.2 row 1, 4, 5 and Table 4.5

FOW 3. o o vt e e e e 56

Left: MNIST generations: The models see the non grayed-out
region of the digit. The samples are generated from models
drawn at random from @ ~ g(w). Right: Top-10% accuracy on

MNIST generation. . . .. ... .................... 66
Comparing mean predictions to the state-of-the-art. . . . . . . .. 66
Comparison of segmentation estimation methods on Cityscapes

validationset. . . ... .. ... ... L Lo o 66
Evaluation on capturing uncertainty (using mloU top 5%). . . . . 68
Ablation study and comparison to a CVAE baseline. . . ... .. 68
Evaluation on the MNIST Sequence dataset. . . ... ....... 8o

Evaluation on the Stanford Drone dataset. Euclidean error mea-
sured at (1/5) resolution (DESIRE-SI-IT4 is from Lee et al. (2017b)). 81

Evaluation on HKO radar image sequences. . . .. ... .. ... 82
Evaluation on MNIST Sequences. . . . . . ... ... ... ..... 95
Five fold cross validation on the Stanford Drone dataset. Eu-

clidean error at (1/5) resolution. . . . . . ... ... ... ... ... 96
Evaluation on the Stanford Drone dataset on a single split (see

alsoTable 7.2). . . . . . . ... 97
Evaluation on the HighD dataset. . . . . . ... ... ........ 98
Evaluation on multi-modal syntheticdata. . ... ... ... ... 105
Visualization of samples. . . . . . ... ... ... L. 105



174

LIST OF TABLES

Tab.

Tab.
Tab.
Tab.
Tab.

Tab.

Tab.

Tab.

Tab.

Tab.

Tab.

Tab.

Tab.
Tab.

Tab.

8.3

9.2

93

94

10.1

10.2

10.3

10.4

10.5
11.1

11.2

Effect of our novel objective in the latent space. Top Row: The
standard WAE and «-GAN objectives lead to mismatch to the
prior in the latent space. We show samples z (in red) which
are highly likely under the standard Gaussian prior (blue) but
have low probability under the learnt marginal posterior g4(z).
Bottom Row: We show that such points z lead to low quality
data samples (in red), which do correspond to any of the modes. 106
IVOM on CIFAR-10. . . . . . . . oo 107
FIDon CIFAR-10. . . . . . . ... . . 108
FID on CelebA. . . . . . . . . . 109
Comparison of dataset statistics. (Seg. Maps — semantic and/or
instance segmentation, * includes motorbikes. nuScenes (Caesar
et al., 2020), ApolloScapes (Ma et al., 2019), Lyft L5 (Houston et al.,
2020), CityScapes (Cordts et al., 2016), KITTI (Geiger et al., 2012),
KITTI-360 (Xie et al., 2016), KITTI-360 (Xie et al., 2016), A2D2
(Geyeretal.,2020)) . .. ... ... ... 116
Evaluation on nuScenes. P-P and P-V: whether pedestrian -
pedestrian or pedestrian - ego-vehicle interactions are modeled
(Social-GAN Gupta et al. (2018), Sophie Sadeghian et al. (2019),
Trajectron++ Salzmann et al. (2020), B-cVAE Higgins et al. (2017),
Joint-B-cVAE (Ours)). . . . . ... ... . oo 119
Evaluation on Euro-PVI. P-P and P-V: whether pedestrian - pedes-
trian or pedestrian - ego-vehicle interactions are modeled (Social-
GAN Gupta et al. (2018), Sophie Sadeghian et al. (2019), Tra-
jectron++ Salzmann et al. (2020), B-cVAE Higgins et al. (2017),
Joint-B-cVAE (Ours))). . . ... ... ... .. . 120
Transferring models trained on nuScenes to Euro-PVL. . . .. .. 123
Evaluation of our mAR-SCF model on MNIST (using uniform de-
quantization for fair comparsion with Chen et al. (2019); Kingma
and Dhariwal (2018)). . . . . . . . . ... 134
Evaluation of our mAR-SCF model on CIFAR-10 (using uni-
form dequantization for fair comparsion with Chen et al. (2019);
Kingma and Dhariwal (2018)).. . . . ... ... ... ........ 134
Evaluation of sampling speed with batches of size 32. . . . . . .. 136
Evaluation of sample quality on CIFAR-10. Other results are
quoted from Chen et al. (2019); Ostrovski et al. (2018). . . . . . .. 138
Evaluation on ImageNet (32 x32). . . ... ... ... ....... 138
Five fold cross validation on the Stanford Drone dataset. Lower is
better for all metrics. Visual refers to additional conditioning on
the last observed frame. Top: state of the art, Middle: Baselines
and ablations, Bottom: Our HBA-Flow. (HWD is from Ardizzone
etal. (2019b)) . . . . .. L 149
Evaluation on the Stanford Drone using the split of Deo and
Trivedi (2019); Sadeghian et al. (2019); Zhao et al. (2019). . . . . . . 150



LIST OF TABLES 175

Tab. 11.3 Five fold cross validation on the Intersection Drone dataset (HWD
is from Ardizzone et al. (2019b)). . . . . ... 152






BIBLIOGRAPHY

J. Adler and S. Lunz (2018). Banach Wasserstein GAN, in NeurIPS 2018. Cited on
pages 25, 100, 107, and 108.

S. Aigner and M. Korner (2018). FutureGAN: Anticipating the Future Frames of
Video Sequences using Spatio-Temporal 3d Convolutions in Progressively Growing
Autoencoder GANs, CoRR, vol. abs/1810.01325. Cited on page 18.

A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, F. Li, and S. Savarese (2016). Social
LSTM: Human Trajectory Prediction in Crowded Spaces, in CVPR 2016. Cited on

pages 3, 5, 20, 47, 54, 55, 72, and 73.

P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang (2018).
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question
Answering, in CVPR 2018. Cited on page 118.

P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik (2011). Contour Detection and
Hierarchical Image Segmentation, TPAMI. Cited on page 32.

L. Ardizzone, ]J. Kruse, C. Rother, and U. Kothe (2019a). Analyzing Inverse Problems
with Invertible Neural Networks, in ICLR (Poster) 2019. Cited on page go.

L. Ardizzone, C. Liith, J. Kruse, C. Rother, and U. Kothe (2019b). Guided Image Gen-
eration with Conditional Invertible Neural Networks, CoRR, vol. abs/1907.02392.
Cited on pages 143, 144, 149, 151, 152, 174, and 175.

M. Arjovsky, S. Chintala, and L. Bottou (2017). Wasserstein GAN. Cited on pages 6,
25, 100, 104, and 105.

A. Atanov, A. Volokhova, A. Ashukha, I. Sosnovik, and D. Vetrov (2019). Semi-
Conditional Normalizing Flows for Semi-Supervised Learning, in ICML Workshop
2019. Cited on pages 90 and 94.

M. Babaeizadeh, C. Finn, D. Erhan, R. H. Campbell, and S. Levine (2018). Stochastic
Variational Video Prediction, in ICLR (Poster) 2018. Cited on pages 18, 69, and 87.

J. Bao, D. Chen, F. Wen, H. Li, and G. Hua (2017). CVAE-GAN: Fine-Grained Image
Generation through Asymmetric Training, in ICCV 2017. Cited on page 7.

C. Bates, I. Yildirim, ]J. B. Tenenbaum, and P. W. Battaglia (2019). Modeling human
intuitions about liquid flow with particle-based simulation, PLoS Comput. Biol.,
vol. 15(7). Cited on page 3.

177



178 BIBLIOGRAPHY

P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum (2013). Simulation as an engine
of physical scene understanding, Proceedings of the National Academy of Sciences,
vol. 110(45), pp- 18327-18332. Cited on page 19.

P. W. Battaglia, R. Pascanu, M. Lai, D. ]J. Rezende, and K. Kavukcuoglu (2016).
Interaction Networks for Learning about Objects, Relations and Physics, in NIPS
2016. Cited on pages 4 and 155.

J. Bayer and C. Osendorfer (2014). Learning Stochastic Recurrent Networks, CoRR,
vol. abs/1411.7610. Cited on page 87.

J. Behrmann, W. Grathwohl, R. T. Q. Chen, D. Duvenaud, and ]. Jacobsen (2019).
Invertible Residual Networks, in ICML 2019. Cited on pages 28 and 164.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston (2009). Curriculum learning, in
ICML 2009. Cited on page 4o0.

D. Berthelot, T. Schumm, and L. Metz (2017). BEGAN: Boundary Equilibrium
Generative Adversarial Networks, CoRR, vol. abs/1703.10717. Cited on pages 24
and 109.

A. Bhattacharyya, M. Fritz, and B. Schiele (2018a). Long-Term On-Board Prediction
of People in Traffic Scenes Under Uncertainty, in CVPR 2018. Cited on pages 9,
10, and 14.

A. Bhattacharyya, M. Fritz, and B. Schiele (2019a). Bayesian Prediction of Future
Street Scenes using Synthetic Likelihoods, in ICLR (Poster) 2019. Cited on pages 6,
10, 15, 60, 93, and 102.

A. Bhattacharyya, M. Fritz, and B. Schiele (2019b). "Best-of-Many-Samples" Distribu-
tion Matching, NeurIPS workshops. Cited on pages 12, 13, and 15.

A. Bhattacharyya, M. Hanselmann, M. Fritz, B. Schiele, and C. Straehle (2019c).
Conditional Flow Variational Autoencoders for Structured Sequence Prediction,
NeurIPS workshops. Cited on pages 6, 10, 11, 15, 88, 112, 116, 117, 118, 119, 121,
141, 143, 147, 148, 149, 150, 151, and 152.

A. Bhattacharyya, S. Mahajan, M. Fritz, B. Schiele, and S. Roth (2020a). Normalizing
Flows With Multi-Scale Autoregressive Priors, in CVPR 2020. Cited on pages 6,
12, 16, 130, 142, and 144.

A. Bhattacharyya, M. Malinowski, B. Schiele, and M. Fritz (2018b). Long-Term Image
Boundary Prediction, in AAAI 2018. Cited on pages 6, 8, and 14.

A. Bhattacharyya, D. O. Reino, M. Fritz, and B. Schiele (2021). Euro-PVI: Pedestrian
Vehicle Interactions in Dense Urban Centers, in CVPR 2021. Cited on pages 6, 8,
10, 11, and 16.



BIBLIOGRAPHY 179

A. Bhattacharyya, B. Schiele, and M. Fritz (2018c). Accurate and Diverse Sampling
of Sequences Based on a "Best of Many" Sample Objective, in CVPR 2018. Cited
on pages 6, 10, 11, 13, 15, 73, 87, 93, 94, 95, 96, 101, 102, 104, 111, 116, 117, 118, 141,
148, 149, 151, and 152.

A. Bhattacharyya, C. Straehle, M. Fritz, and B. Schiele (2020b). Haar Wavelet Based
Block Autoregressive Flows for Trajectories, in GCPR 2020. Cited on pages 6, 12,
16, and 142.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra (2015). Weight Uncertainty
in Neural Network, vol. 37, pp. 1613—-1622. Cited on page 22.

J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein (2020). The
inD Dataset: A Drone Dataset of Naturalistic Road User Trajectories at German
Intersections, pp. 1929-1934. Cited on pages 13, 148, 151, and 160.

M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba (2016). End to
End Learning for Self-Driving Cars, CoRR, vol. abs/1604.07316. Cited on pages
47 and 52.

S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. J6zefowicz, and S. Bengio (2016).
Generating Sentences from a Continuous Space, pp. 10-21. Cited on pages 11, 88,
89, and 9o.

A. Bozkurt, B. Esmaeili, D. H. Brooks, J. G. Dy, and J.-W. van de Meent (2018). Can
VAEs Generate Novel Examples?, NeurIPS Workshop. Cited on page 100.

C. Bregler and S. M. Omohundro (1994). Nonlinear Image Interpolation using
Manifold Learning, in NIPS 1994. Cited on page 133.

A. Brock, J. Donahue, and K. Simonyan (2019). Large Scale GAN Training for High
Fidelity Natural Image Synthesis, in ICLR 2019. Cited on pages 25, 100, and 125.

Y. Burda, R. B. Grosse, and R. Salakhutdinov (2016). Importance Weighted Autoen-
coders, in ICLR (Poster) 2016. Cited on page 26.

H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan,
G. Baldan, and O. Beijpom (2020). nuScenes: A Multimodal Dataset for Au-
tonomous Driving, in CVPR 2020. Cited on pages 9, 11, 30, 112, 114, 116, 120, 157,
162, and 174.

S. Casas, A. Sadat, and R. Urtasun (2021). MP3: A Unified Model to Map, Perceive,
Predict and Plan, CoRR, vol. abs/2101.06806. Cited on page 165.

R. Chandra, U. Bhattacharya, A. Bera, and D. Manocha (2019). TraPHic: Trajectory
Prediction in Dense and Heterogeneous Traffic Using Weighted Interactions, in
CVPR 2019. Cited on pages 20 and 30.



180 BIBLIOGRAPHY

J. Chang, D. Wei, and J. W. F. III (2013). A Video Representation Using Temporal
Superpixels, in CVPR 2013. Cited on page 32.

M. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr,
S. Lucey, D. Ramanan, and ]J. Hays (2019). Argoverse: 3D Tracking and Forecasting
With Rich Maps, in CVPR 2019. Cited on pages 9, 30, 112, and 162.

T. Che, Y. Li, A. P. Jacob, Y. Bengio, and W. Li (2017). Mode Regularized Generative
Adversarial Networks, in ICLR (Poster) 2017. Cited on page 24.

R. T. Q. Chen, J. Behrmann, D. Duvenaud, and J. Jacobsen (2019). Residual Flows for
Invertible Generative Modeling, in NeurIPS 2019. Cited on pages 28, 128, 134, 135,

136, 137, 138, 139, 144, 164, 170, and 174.

X. Chen, Y. Duan, R. Houthooft, ]J. Schulman, I. Sutskever, and P. Abbeel (2016).
InfoGAN: Interpretable Representation Learning by Information Maximizing
Generative Adversarial Nets, in NIPS 2016. Cited on page 24.

X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J. Schulman, I. Sutskever,
and P. Abbeel (2017). Variational Lossy Autoencoder, in ICLR 2017. Cited on
pages 26, 88, 90, and 127.

X. Chen, N. Mishra, M. Rohaninejad, and P. Abbeel (2018). PixelSNAIL: An Improved
Autoregressive Generative Model, in ICML 2018. Cited on page 28.

G. G. Chrysos, J. Kossaifi, and S. Zafeiriou (2019). Robust Conditional Generative
Adversarial Networks, in ICLR (Poster) 2019. Cited on page 25.

C. Chuang, J. Li, A. Torralba, and S. Fidler (2018). Learning to Act Properly: Pre-
dicting and Explaining Affordances From Images, in CVPR 2018. Cited on page

3.

J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio (2015). A
Recurrent Latent Variable Model for Sequential Data, in NIPS 2015. Cited on page
87.

M. Comenetz (2002). Calculus: the elements, World Scientific Publishing Co Inc. Cited
on page 76.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele (2016). The Cityscapes Dataset for Semantic Urban Scene
Understanding, in CVPR 2016. Cited on pages 9, 11, 13, 53, 116, 155, 157, 158,
and 174.

C. Cremer, X. Li, and D. Duvenaud (2018). Inference Suboptimality in Variational
Autoencoders, vol. 80, pp. 1086-1094. Cited on pages 7 and 142.

E. D. De Jong (2016). The MNIST Sequence Dataset., https://edwin-de-jong.github.io/blog/
mnist-sequence-data/. Cited on pages 11, 80, and 94.


https://edwin-de-jong.github.io/blog/mnist-sequence-data/
https://edwin-de-jong.github.io/blog/mnist-sequence-data/

BIBLIOGRAPHY 181

E. Denton and R. Fergus (2018). Stochastic Video Generation with a Learned Prior,
vol. 8o, pp. 1182-1191. Cited on page 18.

E. L. Denton, S. Chintala, A. Szlam, and R. Fergus (2015). Deep Generative Image
Models using a Laplacian Pyramid of Adversarial Networks, in NIPS 2015. Cited

on page 34.

N. Deo and M. M. Trivedi (2018). Convolutional Social Pooling for Vehicle Trajectory
Prediction, in CVPR Workshops 2018. Cited on pages 20 and 93.

N. Deo and M. M. Trivedi (2019). Scene Induced Multi-Modal Trajectory Forecasting
via Planning, in ICRA Workshop 2019. Cited on pages 27, 73, 89, 93, 95, 97, 143,
150, 151, and 174.

A. Der Kiureghian and O. Ditlevsen (2009). Aleatory or epistemic? Does it matter?,
Structural Safety, vol. 31(2), pp. 105-112. Cited on page 46.

E. Diehl, T. Brunner, M. Truong-Le, and A. C. Knoll (2019). Graph Neural Networks
for Modelling Traffic Participant Interaction, in IV 2019. Cited on page 98.

S. Dieleman, A. van den Oord, and K. Simonyan (2018). The challenge of realistic
music generation: Modelling raw audio at scale, in NeurIPS 2018. Cited on pages
125 and 126.

A. B. Dieng, Y. Kim, A. M. Rush, and D. M. Blei (2019). Avoiding Latent Variable
Collapse with Generative Skip Models, vol. 89, pp. 2397—-2405. Cited on page 89.

L. Dinh, D. Krueger, and Y. Bengio (2015). NICE: Non-linear Independent Compo-
nents Estimation, in ICLR Workshop 2015. Cited on pages 7, 12, 28, 90, 126, 127,
128, 131, 142, 143, and 144.

L. Dinh, ]J. Sohl-Dickstein, and S. Bengio (2017). Density estimation using Real NVP,
in ICLR 2017. Cited on pages 7, 12, 28, 126, 127, 128, 129, 131, 134, 142, 143,
and 144.

J. Domke, A. Karapurkar, and Y. Aloimonos (2008). Who killed the directed model?,
in CVPR 2008. Cited on pages 28, 126, and 129.

J. Donahue, P. Krdhenbiihl, and T. Darrell (2017). Adversarial Feature Learning, in
ICLR (Poster) 2017. Cited on pages 11, 27, and 100.

V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropietro, and A. C.
Courville (2017). Adversarially Learned Inference, in ICLR (Poster) 2017. Cited on
pages 27 and 101.

H. Eghbal-zadeh, W. Zellinger, and G. Widmer (2019). Mixture Density Generative
Adversarial Networks, pp. 5820-5829. Cited on pages 104 and 105.



182 BIBLIOGRAPHY

S. Ehrhardt, A. Monszpart, N. J. Mitra, and A. Vedaldi (2018). Unsupervised Intuitive
Physics from Visual Observations, in ACCV (3) 2018. Cited on page 19.

D. Eigen, D. Krishnan, and R. Fergus (2013). Restoring an Image Taken through a
Window Covered with Dirt or Rain, in ICCV 2013. Cited on page 42.

M. Elfeki, C. Couprie, M. Riviére, and M. Elhoseiny (2019). GDPP: Learning Diverse
Generations using Determinantal Point Processes, vol. 97, pp. 1774-1783. Cited
on page 105.

C. Elsner, T. Falck-Ytter, and G. Gredebédck (2012). Humans anticipate the goal of
other people’s point-light actions, Frontiers in psychology, vol. 3, p. 120. Cited on

page 2.

P. Felsen, P. Lucey, and S. Ganguly (2018). Where Will They Go? Predicting Fine-
Grained Adversarial Multi-agent Motion Using Conditional Variational Autoen-
coders, in ECCV 2018. Cited on pages 26 and 27.

C. Finn, L. ]. Goodfellow, and S. Levine (2016). Unsupervised Learning for Physical
Interaction through Video Prediction, in NIPS 2016. Cited on pages 18, 72, 73,
and 155.

K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik (2016). Learning Visual Predictive
Models of Physics for Playing Billiards, in ICLR (Poster) 2016. Cited on pages 3, 4,
19, and 21.

H. Fu, C. Li, X. Liu, J. Gao, A. Celikyilmaz, and L. Carin (2019). Cyclical Annealing
Schedule: A Simple Approach to Mitigating KL Vanishing, in NAACL-HLT (1)
2019. Cited on pages 89 and 98.

K. Fugosic, J. Saric, and S. Segvic (2020). Multimodal Semantic Forecasting Based on
Conditional Generation of Future Features, in GCPR 2020. Cited on page 21.

Y. Gal and Z. Ghahramani (2016a). Bayesian Convolutional Neural Networks with
Bernoulli Approximate Variational Inference, in ICLR (Workshop) 2016. Cited on
pages 22, 23, 49, 50, 61, 62, and 67.

Y. Gal and Z. Ghahramani (2016b). Dropout as a Bayesian Approximation: Repre-
senting Model Uncertainty in Deep Learning, in ICML 2016. Cited on pages 5, 10,
22, 23, 50, 53, 60, 61, 62, 155, 157, and 158.

Y. Gal and Z. Ghahramani (2016c). A Theoretically Grounded Application of Dropout
in Recurrent Neural Networks, in NIPS 2016. Cited on pages 23, 49, and 51.

E. Galasso, M. Keuper, T. Brox, and B. Schiele (2014). Spectral Graph Reduction for
Efficient Image and Streaming Video Segmentation, in CVPR 2014. Cited on page

32.



BIBLIOGRAPHY 183

F. Galasso, N. S. Nagaraja, T. J. Cardenas, T. Brox, and B. Schiele (2013). A Unified
Video Segmentation Benchmark: Annotation, Metrics and Analysis, in ICCV 2013.
Cited on pages 32 and 36.

A. Garriga-Alonso, C. E. Rasmussen, and L. Aitchison (2019). Deep Convolutional
Networks as shallow Gaussian Processes, in ICLR (Poster) 2019. Cited on page 23.

A. Geiger, P. Lenz, and R. Urtasun (2012). Are we ready for autonomous driving?
The KITTI vision benchmark suite, in CVPR 2012. Cited on pages 116 and 174.

J. Geyer, Y. Kassahun, M. Mahmudi, X. Ricou, R. Durgesh, A. S. Chung, L. Hauswald,
V. H. Pham, M. Miihlegg, S. Dorn, T. Fernandez, M. Janicke, S. Mirashi, C. Savani,
M. Sturm, O. Vorobiov, M. Oelker, S. Garreis, and P. Schuberth (2020). A2D2: Audi
Autonomous Driving Dataset, CoRR. Cited on pages 116 and 174.

L. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C.
Courville, and Y. Bengio (2014). Generative Adversarial Nets, in NIPS 2014. Cited
on pages 24, 99, 125, 126, 141, and 155.

P. Goyal, Z. Hu, X. Liang, C. Wang, E. P. Xing, and C. Mellon (2017). Nonparametric
Variational Auto-Encoders for Hierarchical Representation Learning, in ICCV 2017.
Cited on page 26.

C. Graber, G. Tsai, M. Firman, G. J. Brostow, and A. G. Schwing (2021). Panoptic
Segmentation Forecasting, CoRR, vol. abs/2104.03962. Cited on page 21.

A. Graves (2013). Generating Sequences With Recurrent Neural Networks,
arXiv:1308.0850. Cited on pages 28, 73, and 129.

A. Graves, A. Mohamed, and G. E. Hinton (2013). Speech recognition with deep
recurrent neural networks, in ICASSP 2013. Cited on page 51.

D. Green, O. Kochukhova, and G. Gredeback (2014). Extrapolation and direct match-
ing mediate anticipation in infancy, Infant Behavior and Development, vol. 37(1),
pp- 111-118. Cited on page 2.

S. Gu, S. Levine, 1. Sutskever, and A. Mnih (2016). MuProp: Unbiased Backprop-
agation for Stochastic Neural Networks, in ICLR (Poster) 2016. Cited on page

73

X. Gu, K. Cho, J. Ha, and S. Kim (2019). DialogWAE: Multimodal Response Gen-
eration with Conditional Wasserstein Auto-Encoder. Cited on pages 11, 88, 90,
and 95.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville (2017a).
Improved Training of Wasserstein GANSs, in NIPS 2017. Cited on pages 25, 109,
and 110.



184 BIBLIOGRAPHY

I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taiga, F. Visin, D. Vazquez, and A. C.
Courville (2017b). PixelVAE: A Latent Variable Model for Natural Images, in ICLR
(Poster) 2017. Cited on page 89.

A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi (2018). Social GAN:
Socially Acceptable Trajectories With Generative Adversarial Networks, in CVPR
2018. Cited on pages 3, 4, 6, 25, 73, 89, 97, 119, 120, 121, 122, 143, 150, and 174.

A. Haar (1910). Zur Theorie der orthogonalen Funktionensysteme, Mathematische
Annalen, vol. 69(3), pp. 331—371. Cited on pages 144 and 171.

H. Hajipour, A. Bhattacharyya, and M. Fritz (2019). SampleFix: Learning to Correct
Programs by Sampling Diverse Fixes, CoRR, vol. abs/1906.10502. Cited on page

13.

J. B. Hamrick, P. W. Battaglia, and J. B. Tenenbaum (2011). Probabilistic internal
physics models guide judgments about object dynamics, in CogSci 2011. Cited on

page 2.

K. He, X. Zhang, S. Ren, and ]J. Sun (2016). Deep Residual Learning for Image
Recognition, in CVPR 2016. Cited on page 21.

D. Helbing and P. Molnar (1995). Social force model for pedestrian dynamics, Physical
review E, vol. 51(5), p. 4282. Cited on pages 5, 20, and 47.

D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lakshminarayanan
(2020). AugMix: A Simple Data Processing Method to Improve Robustness and
Uncertainty, in ICLR 2020. Cited on page 23.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter (2017). GANs
Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium,
in NeurIPS 2017. Cited on pages 12, 109, 127, 137, and 160.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and
A. Lerchner (2017). beta-VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework, in ICLR 2017. Cited on pages 89, 117, 119, 120, and 174.

J. Ho, X. Chen, A. Srinivas, Y. Duan, and P. Abbeel (2019). Flow++: Improving
Flow-Based Generative Models with Variational Dequantization and Architecture
Design, in ICML 2019. Cited on pages 28, 127, 128, 129, 131, 134, 135, 136, 137,
156, 164, and 170.

J. Ho, A. Jain, and P. Abbeel (2020). Denoising Diffusion Probabilistic Models, in
NeurIPS 2020. Cited on page 29.

S. Hochreiter and J. Schmidhuber (1997). Long Short-Term Memory, Neural Computa-
tion, vol. 9(8), pp. 1735-1780. Cited on page 28.



BIBLIOGRAPHY 185

M. D. Hoffman and M. J. Johnson (2016). ELBO surgery: yet another way to carve
up the variational evidence lower bound, in NIPS Workshop 2016. Cited on pages
11, 26, and 88.

E. Hoogeboom, R. van den Berg, and M. Welling (2019). Emerging Convolutions for
Generative Normalizing Flows, in ICML 2019. Cited on page 28.

J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, A. Jain, S. Omari, V. Iglovikov, and
P. Ondruska (2020). One Thousand and One Hours: Self-driving Motion Prediction
Dataset, CoRR. Cited on pages 9, 30, 112, 114, 116, 120, 157, 162, and 174.

W. Hu, D. Xie, Z. Fu, W. Zeng, and S. Maybank (2007). Semantic-based surveillance
video retrieval, IEEE Transactions on image processing, vol. 16(4), pp. 1168-1181.
Cited on page 47.

C. Huang, L. Dinh, and A. C. Courville (2020). Augmented Normalizing Flows:
Bridging the Gap Between Generative Flows and Latent Variable Models, CoRR,
vol. abs/2002.07101. Cited on pages 7, 142, and 144.

B. Ivanovic and M. Pavone (2019). The Trajectron: Probabilistic Multi-Agent Trajectory
Modeling With Dynamic Spatiotemporal Graphs, in ICCV 2019. Cited on page
120.

V. Jain, J. F. Murray, F. Roth, S. C. Turaga, V. P. Zhigulin, K. L. Briggman, M. Helm-
staedter, W. Denk, and H. S. Seung (2007). Supervised Learning of Image Restora-
tion with Convolutional Networks, in ICCV 2007. Cited on page 33.

J. Janai, E. Giiney, A. Behl, and A. Geiger (2020). Computer Vision for Autonomous
Vehicles: Problems, Datasets and State of the Art, Found. Trends Comput. Graph.
Vis., vol. 12(1-3), pp. 1—308. Cited on pages 1 and 155.

X. Jin, H. Xiao, X. Shen, J. Yang, Z. Lin, Y. Chen, Z. Jie, J. Feng, and S. Yan (2017).
Predicting Scene Parsing and Motion Dynamics in the Future, in NIPS 2017. Cited
on pages 21, 22, 59, and 65.

S. B. K, N. Hochgeschwender, P. Ploger, E. Kirchner, and M. Valdenegro-Toro (2020).
Evaluating Uncertainty Estimation Methods on 3D Semantic Segmentation of
Point Clouds, CoRR, vol. abs/2007.01787. Cited on page 162.

N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande, E. Lockhart,
F. Stimberg, A. van den Oord, S. Dieleman, and K. Kavukcuoglu (2018). Efficient
Neural Audio Synthesis, in ICML 2018. Cited on page 28.

N. Kalchbrenner, A. van den Oord, K. Simonyan, I. Danihelka, O. Vinyals, A. Graves,
and K. Kavukcuoglu (2017). Video Pixel Networks, in ICML 2017. Cited on page
18.



186 BIBLIOGRAPHY

T. Karras, T. Aila, S. Laine, and J. Lehtinen (2018). Progressive Growing of GANs
for Improved Quality, Stability, and Variation, in ICLR 2018. Cited on pages 25
and 109.

C. G. Keller, C. Hermes, and D. M. Gavrila (2011). Will the Pedestrian Cross? Proba-
bilistic Path Prediction Based on Learned Motion Features, in DAGM-Symposium
2011. Cited on page 47.

A. Kendall and Y. Gal (2017). What Uncertainties Do We Need in Bayesian Deep
Learning for Computer Vision?, pp. 5574-5584. Cited on pages 5, 9, 10, 23, 49, 50,
53, 55, 60, 61, 62, 68, 70, 155, 157, and 158.

A. Khoreva, R. Benenson, F. Galasso, M. Hein, and B. Schiele (2016). Improved Image
Boundaries for Better Video Segmentation, in ECCV Workshops (3) 2016. Cited on
pages 8, 31, and 36.

K. Kim, D. Lee, and I. A. Essa (2011). Gaussian process regression flow for analysis
of motion trajectories, in ICCV 2011. Cited on page 47.

S. Kim, S. Lee, J. Song, J. Kim, and S. Yoon (2019). FloWaveNet : A Generative Flow
for Raw Audio, in ICML 2019. Cited on pages 142, 144, 147, 149, 150, 151, 152,
and 171.

D. P. Kingma and J. Ba (2015). Adam: A Method for Stochastic Optimization. Cited
on pages 53, 67, and 106.

D. P. Kingma and P. Dhariwal (2018). Glow: Generative Flow with Invertible 1x1
Convolutions, in NeurIPS 2018. Cited on pages 7, 12, 28, 95, 126, 127, 128, 129,

131, 134, 135, 136, 138, 139, 141, 142, 143, 144, 156, 164, and 174.

D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling (2014). Semi-supervised
Learning with Deep Generative Models, in NIPS 2014. Cited on page 26.

D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, 1. Sutskever, and M. Welling
(2016). Improved variational inference with inverse autoregressive flow, in NIPS
2016. Cited on pages 26 and 28.

D. P. Kingma and M. Welling (2014). Auto-Encoding Variational Bayes, in ICLR 2014.
Cited on pages 26, 75, 100, 102, 106, 117, 118, 125, 126, 155, 156, and 158.

P. Kirichenko, P. Izmailov, and A. G. Wilson (2020). Why Normalizing Flows Fail to
Detect Out-of-Distribution Data. Cited on pages 142 and 144.

A. Klushyn, N. Chen, B. Cseke, J. Bayer, and P. van der Smagt (2019). Increasing the
Generalisaton Capacity of Conditional VAEs, in ICANN (2) 2019. Cited on page

92.



BIBLIOGRAPHY 187

V. Kosaraju, A. Sadeghian, R. Martin-Martin, I. D. Reid, H. Rezatofighi, and
S. Savarese (2019). Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-
GAN and Graph Attention Networks, in NeurIPS 2019. Cited on page 25.

R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein (2018). The highD Dataset: A Drone
Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of
Highly Automated Driving Systems, in ITSC 2018. Cited on pages 11, 97, and 159.

A. Krizhevsky, G. Hinton, et al. (2009). Learning multiple layers of features from tiny
images, Technical report, U. of Toronto. Cited on pages 127 and 133.

E. P. Krotkov (2012). Active computer vision by cooperative focus and stereo, Springer
Science & Business Media. Cited on page 38.

M. Kumar, M. Babaeizadeh, D. Erhan, C. Finn, S. Levine, L. Dinh, and
D. Kingma (2019). VideoFlow: A Flow-Based Generative Model for Video, CoRR,
vol. abs/1903.01434. Cited on pages 142, 144, 147, 148, 149, and 151.

Y. Kwon and M. Park (2019). Predicting Future Frames Using Retrospective Cycle
GAN, in CVPR 2019. Cited on page 25.

B. Lakshminarayanan, A. Pritzel, and C. Blundell (2017). Simple and Scalable Predic-
tive Uncertainty Estimation using Deep Ensembles, in NeurIPS 2017. Cited on
pages 23 and 162.

A. B. L. Larsen, S. K. Senderby, H. Larochelle, and O. Winther (2016). Autoencoding
beyond pixels using a learned similarity metric, in ICML 2016. Cited on pages 11,
27, and 100.

Q. V.Le, A.]. Smola, and S. Canu (2005). Heteroscedastic Gaussian process regression,
in ICML 2005. Cited on page 22.

P. LeBeau (2018). Waymo starts commercial ride-share service, URL: https://www. cnbc.
com/2018/12/05/waymo-starts-commercial-ride-share-service. html. Cited on page 1.

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. (1998). Gradient-based learning
applied to document recognition, Proc. IEEE, vol. 86(11), pp. 2278-2324. Cited on
pages 127 and 133.

A. X. Lee, R. Zhang, F. Ebert, P. Abbeel, C. Finn, and S. Levine (2018). Stochastic
Adversarial Video Prediction, CoRR, vol. abs/1804.01523. Cited on pages 25
and 142.

K. Lee, J. Kim, S. Chong, and J. Shin (2017a). Simplified Stochastic Feedforward
Neural Networks, CoRR, vol. abs/1704.03188. Cited on page 73.

N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. S. Torr, and M. Chandraker (2017b).
DESIRE: Distant Future Prediction in Dynamic Scenes with Interacting Agents, in
CVPR 2017. Cited on pages 3, 6, 10, 26, 67, 68, 72, 73, 74, 75, 78, 81, 83, 84, 87, 89,
93, 95, 96, 111, 121, 141, 143, 148, 149, 151, 155, 158, and 173.



188 BIBLIOGRAPHY

A. Lerer, S. Gross, and R. Fergus (2016). Learning Physical Intuition of Block Towers
by Example, in ICML 2016. Cited on pages 4, 19, and 21.

A. Lerner, Y. Chrysanthou, and D. Lischinski (2007). Crowds by Example, in Computer
Graphics Forum 2007. Cited on page 30.

W. Li, A. Leonardis, ]J. Bohg, and M. Fritz (2019). Learning Manipulation under
Physics Constraints with Visual Perception, CoRR, vol. abs/1904.09860. Cited on

page 19.
W. Li, A. Leonardis, and M. Fritz (2017). Visual Stability Prediction for Robotic

Manipulation, in IEEE International Conference on Robotics and Automation (ICRA)
2017. Cited on pages 3, 4, 19, and 21.

Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M. Yang (2018). Flow-Grounded Spatial-
Temporal Video Prediction from Still Images, in ECCV (9) 2018. Cited on page
26.

X. Liang, L. Lee, W. Dai, and E. P. Xing (2017). Dual Motion GAN for Future-Flow
Embedded Video Prediction, in ICCV 2017. Cited on pages 18 and 25.

Z. Lin, A. Khetan, G. C. Fanti, and S. Oh (2018). PacGAN: The power of two samples
in generative adversarial networks, in NeurIPS 2018. Cited on page 24.

R. Liu, Y. Ge, C. L. Choi, X. Wang, and H. Li (2021). DivCo: Diverse Conditional
Image Synthesis via Contrastive Generative Adversarial Network, in CVPR 2021.
Cited on page 25.

S. Liu, T. Ullman, J. Tenenbaum, and E. S. Spelke (2017a). What’s worth the effort:
Ten-month-old infants infer the value of goals from the costs of actions, in CogSci
2017. Cited on page 19.

Z. Liu, R. A. Yeh, X. Tang, Y. Liu, and A. Agarwala (2017b). Video Frame Synthesis
Using Deep Voxel Flow, in ICCV 2017. Cited on pages 18 and 32.

Y. Lu and B. Huang (2020). Structured Output Learning with Conditional Generative
Flows, in AAAI 2020. Cited on pages 29, 9o, and 94.

P. Luc, C. Couprie, Y. LeCun, and ]. Verbeek (2018). Predicting Future Instance
Segmentations by Forecasting Convolutional Features, CoRR, vol. abs/1803.11496.
Cited on page 21.

P. Luc, N. Neverova, C. Couprie, J. Verbeek, and Y. LeCun (2017). Predicting Deeper
into the Future of Semantic Segmentation, in ICCV 2017. Cited on pages 21, 22,
59, 60, 65, 66, 67, and 68.

J. Lucas, G. Tucker, R. B. Grosse, and M. Norouzi (2019). Don’t Blame the ELBO! A
Linear VAE Perspective on Posterior Collapse, in NeurIPS 2019. Cited on page
119.



BIBLIOGRAPHY 189

Y. Ma, X. Zhu, S. Zhang, R. Yang, W. Wang, and D. Manocha (2019). TrafficPredict:
Trajectory Prediction for Heterogeneous Traffic-Agents, in AAAI 2019. Cited on
pages 20, 30, 116, 120, and 174.

D. J. MacKay (1992). A practical Bayesian framework for backpropagation networks,
Neural computation, vol. 4(3), pp. 448—472. Cited on pages 5 and 22.

R. Madaan, N. Gyde, S. Vemprala, M. Brown, K. Nagami, T. Taubner, E. Cristofalo,
D. Scaramuzza, M. Schwager, and A. Kapoor (2019). AirSim Drone Racing Lab, in
Proceedings of Machine Learning Research 2019. Cited on page 2.

P. Maes (1993). Modeling adaptive autonomous agents, Artificial life, vol. 1(1_2),
pp- 135-162. Cited on page 1.

A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey (2016). Adversarial
autoencoders, in ICLR 2016. Cited on pages 27, 100, 101, 104, and 106.

A. Malinin and M. J. F. Gales (2018). Predictive Uncertainty Estimation via Prior
Networks, in NeurIPS 2018. Cited on page 23.

S. Malla, B. Dariush, and C. Choi (2020). TITAN: Future Forecast Using Action Priors,
in CVPR 2020. Cited on page 30.

K. Mangalam, H. Girase, S. Agarwal, K. Lee, E. Adeli, J. Malik, and A. Gaidon
(2020). It Is Not the Journey But the Destination: Endpoint Conditioned Trajectory
Prediction, in ECCV 2020. Cited on pages 4, 11, 26, 27, 73, 89, 112, 116, 117, 118,
and 143.

K. Maninis, J. Pont-Tuset, P. Arbelaez, and L. V. Gool (2018). Convolutional Oriented
Boundaries: From Image Segmentation to High-Level Tasks, IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40(4), pp. 819-833. Cited on pages 40 and 42.

X. Mao, C. Shen, and Y. Yang (2016). Image Restoration Using Convolutional Auto-
encoders with Symmetric Skip Connections, CoRR, vol. abs/1606.08921. Cited on

page 42.

M. Mathieu, C. Couprie, and Y. LeCun (2016). Deep multi-scale video prediction
beyond mean square error. Cited on pages 5, 18, 21, 25, 32, 34, 35, 38, 39, 42, 43,
47, 155, and 156.

M. McCloskey (1983). Intuitive physics, Scientific american, vol. 248(4), pp. 122-131.
Cited on page 19.

J. Menick and N. Kalchbrenner (2019). Generating High fidelity Images with subscale
pixel Networks and Multidimensional Upscaling, in ICLR 2019. Cited on page 28.

L. M. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger (2019).
Occupancy Networks: Learning 3D Reconstruction in Function Space, in CVPR
2019. Cited on page 162.



190 BIBLIOGRAPHY

V. Michalski, R. Memisevic, and K. R. Konda (2014). Modeling Deep Temporal
Dependencies with Recurrent "Grammar Cells", in NIPS 2014. Cited on page 18.

M. Mirza and S. Osindero (2014). Conditional Generative Adversarial Nets, CoRR.
Cited on page 25.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida (2018). Spectral Normalization for
Generative Adversarial Networks, in ICLR 2018. Cited on pages 25, 103, 105, 106,
107, 108, and 109.

A. Mnih and D. ]J. Rezende (2016). Variational Inference for Monte Carlo Objectives,
in ICML 2016. Cited on pages 73 and 75.

B. T. Morris and M. M. Trivedi (2011). Trajectory learning for activity understanding;:
Unsupervised, multilevel, and long-term adaptive approach, IEEE transactions on
pattern analysis and machine intelligence, vol. 33(11), pp. 2287—2301. Cited on page

47.

A. S. Mueller, J. B. Cicchino, and D. S. Zuby (2020). What humanlike errors do
autonomous vehicles need to avoid to maximize safety?, Journal of safety research,
vol. 75, pp. 310-318. Cited on page 3.

S. S. Nabavi, M. Rochan, and Y. Wang (2018). Future Semantic Segmentation with
Convolutional LSTM, in BMVC 2018. Cited on pages 21, 22, 59, 60, 66, and 67.

E. T. Nalisnick and P. Smyth (2017). Stick-Breaking Variational Autoencoders, in
ICLR (Poster) 2017. Cited on page 26.

R. M. Neal (2012). Bayesian learning for neural networks, vol. 118, Springer Science &
Business Media. Cited on pages 5 and 22.

T. D. Nguyen, T. Le, H. Vu, and D. Q. Phung (2017). Dual Discriminator Generative
Adversarial Nets, in NIPS 2017. Cited on page 24.

F. Nielsen and K. Sun (2016). Guaranteed Bounds on the Kullback-Leibler Divergence
of Univariate Mixtures, IEEE Signal Process. Lett., vol. 23(11), pp. 1543-1546. Cited
on page 103.

D. A. Nix and A. S. Weigend (1994). Estimating the mean and variance of the target
probability distribution, in Neural Networks 1994. Cited on page 22.

P. Ochs, J. Malik, and T. Brox (2014). Segmentation of Moving Objects by Long Term
Video Analysis, IEEE Trans. Pattern Anal. Mach. Intell., vol. 36(6), pp. 1187-1200.
Cited on page 32.

S. Oprea, P. Martinez-Gonzalez, A. Garcia-Garcia, J. A. Castro-Vargas, S. Orts-
Escolano, J. G. Rodriguez, and A. A. Argyros (2020). A Review on Deep Learning
Techniques for Video Prediction, CoRR, vol. abs/2004.05214. Cited on page 18.



BIBLIOGRAPHY 191

I. Osband (2016). Risk versus uncertainty in deep learning: Bayes, bootstrap and the
dangers of dropout, NIPS Workshop on Bayesian Deep Learning. Cited on pages 10,
60, and 63.

G. Ostrovski, W. Dabney, and R. Munos (2018). Autoregressive Quantile Networks
for Generative Modeling, in ICML 2018. Cited on pages 138 and 174.

E. Pajouheshgar and C. H. Lampert (2018). Back to square one: probabilistic trajectory
forecasting without bells and whistles, in NeurIPS Workshop 2018. Cited on pages

73, 87, 89, 93, 95, 96, 97, 143, 148, 149, and 169.

G. Papamakarios, I. Murray, and T. Pavlakou (2017). Masked Autoregressive Flow
for Density Estimation, in NeurIPS 2017. Cited on pages 28 and 129.

N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer, A. Ku, and D. Tran (2018).
Image Transformer, in ICML 2018. Cited on page 28.

V. Patraucean, A. Handa, and R. Cipolla (2015). Spatio-temporal video autoencoder
with differentiable memory, CoRR, vol. abs/1511.06309. Cited on page 18.

S. Pellegrini, A. Ess, K. Schindler, and L. V. Gool (2009). You'll never walk alone:
Modeling social behavior for multi-target tracking, in ICCV 2009. Cited on page

30.

J. Pirhonen, H. Melkas, A. Laitinen, and S. Pekkarinen (2020). Could robots
strengthen the sense of autonomy of older people residing in assisted living
facilities? - A future-oriented study, Ethics Inf. Technol., vol. 22(2), pp. 151-162.
Cited on page 3.

D. A. Pomerleau (1989). ALVINN, an autonomous land vehicle in a neural network,
Technical report, Carnegie Mellon University, Computer Science Department.
Cited on page 47.

P. Porwik and A. Lisowska (2004). The Haar-wavelet transform in digital image
processing: its status and achievements, Machine graphics and vision, vol. 13(1/2),

pp- 79-98. Cited on page 145.

A. Prakash, A. Behl, E. Ohn-Bar, K. Chitta, and A. Geiger (2020). Exploring Data
Aggregation in Policy Learning for Vision-Based Urban Autonomous Driving, in
CVPR 2020. Cited on page 1.

S. T. Radev, U. K. Mertens, A. Voss, L. Ardizzone, and U. Kéthe (2020). BayesFlow:
Learning complex stochastic models with invertible neural networks, CoRR,
vol. abs/2003.06281. Cited on page 163.

A. Radford, L. Metz, and S. Chintala (2016). Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks, in ICLR 2016. Cited
on pages 24, 106, 107, 108, 127, and 138.



192 BIBLIOGRAPHY

M. Raibert, K. Blankespoor, G. Nelson, and R. Playter (2008). Bigdog, the rough-
terrain quadruped robot, IFAC Proceedings Volumes, vol. 41(2), pp. 10822—10825.
Cited on page 2.

T. Raiko, M. Berglund, G. Alain, and L. Dinh (2015). Techniques for Learning Binary
Stochastic Feedforward Neural Networks, in ICLR (Poster) 2015. Cited on page 73.

M. Ranzato, A. Szlam, J. Bruna, M. Mathieu, R. Collobert, and S. Chopra (2014).
Video (language) modeling: a baseline for generative models of natural videos,
CoRR, vol. abs/1412.6604. Cited on pages 18 and 33.

A. Rasouli, I. Kotseruba, T. Kunic, and J. K. Tsotsos (2019). PIE: A Large-Scale Dataset
and Models for Pedestrian Intention Estimation and Trajectory Prediction, in ICCV
2019. Cited on page 30.

S. V. Ravuri, S. Mohamed, M. Rosca, and O. Vinyals (2018). Learning Implicit
Generative Models with the Method of Learned Moments, vol. 8o, pp. 4311—4320.
Cited on page 25.

A. Razavi, A. van den Oord, B. Poole, and O. Vinyals (2019a). Preventing Posterior
Collapse with delta-VAEs, in ICLR (Poster) 2019. Cited on pages 11, 88, and 89.

A. Razavi, A. van den Oord, and O. Vinyals (2019b). Generating Diverse High-
Fidelity Images with VQ-VAE-2, in NeurIPS 2019. Cited on pages 125, 127, 129,
and 163.

S. E. Reed, A. van den Oord, N. Kalchbrenner, S. G. Colmenarejo, Z. Wang, Y. Chen,
D. Belov, and N. de Freitas (2017). Parallel Multiscale Autoregressive Density
Estimation, in ICML 2017. Cited on page 28.

E. Rehder and H. Kloeden (2015). Goal-Directed Pedestrian Prediction, in ICCV
Workshops 2015. Cited on page 47.

J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid (2015). EpicFlow: Edge-
preserving interpolation of correspondences for optical flow, in CVPR 2015. Cited

on page 37.

D.]J. Rezende and S. Mohamed (2015). Variational Inference with Normalizing Flows,
in ICML 2015. Cited on page 26.

D. J. Rezende, S. Mohamed, and D. Wierstra (2014). Stochastic Backpropagation and
Approximate Inference in Deep Generative Models, in ICML 2014. Cited on pages
26 and 126.

N. Rhinehart, K. M. Kitani, and P. Vernaza (2018). R2P2: A ReparameteRized
Pushforward Policy for Diverse, Precise Generative Path Forecasting, in ECCV
2018. Cited on pages 27 and 116.



BIBLIOGRAPHY 193

A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese (2016). Learning Social
Etiquette: Human Trajectory Understanding In Crowded Scenes, in ECCV (8) 2016.
Cited on pages 20, 47, 80, 83, 95, 97, 148, 151, 158, and 160.

M. Rosca, B. Lakshminarayanan, D. Warde-Farley, and S. Mohamed (2017). Varia-
tional Approaches for Auto-Encoding Generative Adversarial Networks, CoRR,
vol. abs/1706.04987. Cited on pages 7, 10, 11, 27, 60, 63, 90, 95, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, and 110.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei (2015). ImageNet Large Scale
Visual Recognition Challenge, International Journal of Computer Vision, vol. 115(13),
pp- 211—252. Cited on page 127.

A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, H. Rezatofighi, and S. Savarese
(2019). SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and
Physical Constraints, in CVPR 2019. Cited on pages 4, 25, 73, 89, 95, 97, 119, 120,
121, 122, 141, 143, 150, 151, and 174.

A. Sadeghian, F. Legros, M. Voisin, R. Vesel, A. Alahi, and S. Savarese (2018). CAR-
Net: Clairvoyant Attentive Recurrent Network, in ECCV (11) 2018. Cited on pages
20, 95, 97, and 151.

A. Salem, A. Bhattacharya, M. Backes, M. Fritz, and Y. Zhang (2020). Updates-Leak:
Data Set Inference and Reconstruction Attacks in Online Learning, in USENIX
Security Symposium 2020. Cited on page 13.

T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen
(2016). Improved Techniques for Training GANSs, in NIPS 2016. Cited on pages 6,
12, 127, 137, and 160.

T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma (2017). PixelCNN++: Im-
proving the PixelCNN with Discretized Logistic Mixture Likelihood and Other
Modifications, in ICLR (Poster) 2017. Cited on pages 7, 28, 136, and 137.

T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone (2020). Trajectron++: Multi-
Agent Generative Trajectory Forecasting With Heterogeneous Data for Control, in
ECCV 2020. Cited on pages 4, 11, 26, 27, 112, 116, 117, 118, 119, 120, 121, 122, 123,
155, and 174.

E. Santana and G. Hotz (2016). Learning a Driving Simulator, CoRR,
vol. abs/1608.01230. Cited on page 47.

J. Saric, S. Vrazic, and S. Segvic (2021). Joint Forecasting of Features and Feature
Motion for Dense Semantic Future Prediction, CoRR, vol. abs/2101.10777. Cited
on page 21.



194 BIBLIOGRAPHY

A. Sauer, N. Savinov, and A. Geiger (2018). Conditional Affordance Learning for
Driving in Urban Environments, in CoRL 2018. Cited on page 1.

X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, and W. Woo (2015). Convolutional
LSTM Network: A Machine Learning Approach for Precipitation Nowcasting, in
NIPS 2015. Cited on pages 72, 73, 74, 79, 80, 82, 84, 85, and 158.

X. Shi, Z. Gao, L. Lausen, H. Wang, D. Yeung, W. Wong, and W. Woo (2017). Deep
Learning for Precipitation Nowcasting: A Benchmark and a New Model, in
NeurIPS 2017. Cited on pages 11, 74, and 131.

R. Shu, H. H. Bui, S. Zhao, M. J. Kochenderfer, and S. Ermon (2018). Amortized
Inference Regularization, pp. 4398—4407. Cited on page 100.

B. Smith and R. Casati (1994). Naive physics, Philosophical psychology, vol. 7(2),
pp- 227—247. Cited on page 19.

K. Sohn, H. Lee, and X. Yan (2015). Learning Structured Output Representation
using Deep Conditional Generative Models, in NeurIPS 2015. Cited on pages 10,

26, 67, 69, 72,73, 74, 75, 87, 89, 95, 117, and 118.

K. Soomro, A. R. Zamir, and M. Shah (2012). UCF101: A Dataset of 101 Human
Actions Classes From Videos in The Wild, CoRR, vol. abs/1212.0402. Cited on

page 156.
A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann, and C. Sutton (2017). VEEGAN:

Reducing Mode Collapse in GANs using Implicit Variational Learning, in NIPS
2017. Cited on pages 6, 24, 104, 105, 107, and 108.

L. Sutskever, G. E. Hinton, and G. W. Taylor (2008). The Recurrent Temporal Restricted
Boltzmann Machine, in NIPS 2008. Cited on page 18.

I. Sutskever, O. Vinyals, and Q. V. Le (2014). Sequence to Sequence Learning with
Neural Networks, in NIPS 2014. Cited on page 73.

E. G. Tabak, E. Vanden-Eijnden, et al. (2010). Density estimation by dual ascent of the
log-likelihood, in Communications in Mathematical Sciences 2o10. Cited on page 9o.

J. Tabor, S. Knop, P. Spurek, I. T. Podolak, M. Mazur, and S. Jastrzebski (2018). Cramer-
Wold AutoEncoder, CoRR, vol. abs/1805.09235. Cited on pages 12 and 100.

S. Tang, B. Andres, M. Andriluka, and B. Schiele (2016). Multi-person Tracking by
Multicut and Deep Matching, in ECCV Workshops (2) 2016. Cited on page 54.

Y. Tang and R. Salakhutdinov (2013). Learning Stochastic Feedforward Neural
Networks, in NIPS 2013. Cited on page 73.

L. Theis, A. van den Oord, and M. Bethge (2016). A note on the evaluation of
generative models, in ICLR 2016. Cited on page 138.



BIBLIOGRAPHY 195

L. A. Thiede and P. P. Brahma (2019). Analyzing the Variety Loss in the Context of
Probabilistic Trajectory Prediction, in ICCV 2019. Cited on page 120.

S. Thulasidasan, G. Chennupati, J. A. Bilmes, T. Bhattacharya, and S. Michalak (2019).
On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep
Neural Networks, in NeurIPS 2019. Cited on page 23.

L. O. Tolstikhin, O. Bousquet, S. Gelly, and B. Scholkopf (2018). Wasserstein Auto-
Encoders, in ICLR 2018. Cited on pages 27, 90, 101, 102, 108, and 109.

J. M. Tomczak and M. Welling (2016). Improving variational auto-encoders using
householder flow, in NIPS Workshop 2016. Cited on pages 26 and go.

J. M. Tomczak and M. Welling (2018). VAE with a VampPrior, in AISTATS 2018.
Cited on pages 11, 26, 88, 119, and 127.

N. Tran, T. Bui, and N. Cheung (2018). Dist-GAN: An Improved GAN Using Distance
Constraints, in ECCV (14) 2018. Cited on pages 25, 106, 107, 108, and 109.

P. Trautman, J. Ma, R. M. Murray, and A. Krause (2013). Robot navigation in dense
human crowds: the case for cooperation, in ICRA 2013. Cited on page 47.

R. van den Berg, L. Hasenclever, ]J. M. Tomczak, and M. Welling (2018). Sylvester
Normalizing Flows for Variational Inference, in UAI 2018. Cited on page 26.

A. van den Oord, N. Kalchbrenner, L. Espeholt, K. Kavukcuoglu, O. Vinyals, and
A. Graves (2016a). Conditional Image Generation with PixelCNN Decoders, in
NIPS 2016. Cited on pages 28, 126, 129, and 134.

A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu (2016b). Pixel Recurrent
Neural Networks, in ICML 2016. Cited on pages 7, 28, 125, 126, 129, 133, 134,
and 138.

A. van den Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals, K. Kavukcuoglu,
G. van den Driessche, E. Lockhart, L. C. Cobo, F. Stimberg, N. Casagrande,
D. Grewe, S. Noury, S. Dieleman, E. Elsen, N. Kalchbrenner, H. Zen, A. Graves,
H. King, T. Walters, D. Belov, and D. Hassabis (2018). Parallel WaveNet: Fast
High-Fidelity Speech Synthesis, in ICML 2018. Cited on pages 28 and 126.

R. Villegas, J. Yang, Y. Zou, S. Sohn, X. Lin, and H. Lee (2017). Learning to Generate
Long-term Future via Hierarchical Prediction, in ICML 2017. Cited on pages 18,
42, and 161.

L. Wang, A. G. Schwing, and S. Lazebnik (2017). Diverse and Accurate Image
Description Using a Variational Auto-Encoder with an Additive Gaussian Encoding
Space, in NIPS 2017. Cited on pages 11, 88, and go.



196 BIBLIOGRAPHY

P. Z. Wang and W. Y. Wang (2019). Riemannian Normalizing Flow on Variational
Wasserstein Autoencoder for Text Modeling, in NAACL-HLT (1) 2019. Cited on

page 89.
Y. Wang, X. Chen, Y. You, L. E. Li, B. Hariharan, M. E. Campbell, K. Q. Weinberger,

and W. Chao (2020). Train in Germany, Test in the USA: Making 3D Object
Detectors Generalize, in CVPR 2020. Cited on page 165.

Z. Wang, S. Rosa, Y. Miao, Z. Lai, L. Xie, A. Markham, and N. Trigoni
(2018). Neural Allocentric Intuitive Physics Prediction from Real Videos, CoRR,
vol. abs/1809.03330. Cited on page 19.

D. Warde-Farley and Y. Bengio (2017). Improving Generative Adversarial Networks
with Denoising Feature Matching, in ICLR (Poster) 2017. Cited on page 24.

N. Watters, D. Zoran, T. Weber, P. W. Battaglia, R. Pascanu, and A. Tacchetti (2017).
Visual Interaction Networks: Learning a Physics Simulator from Video, in NIPS
2017. Cited on pages 4 and 155.

X. Wei, B. Gong, Z. Liu, W. Lu, and L. Wang (2018). Improving the Improved Training
of Wasserstein GANs: A Consistency Term and Its Dual Effect, in ICLR 2018. Cited
on pages 127 and 138.

M. Wertheimer (1923). Laws of organization in perceptual forms, A source book of
Gestalt Psychology. Cited on page 32.

S. N. Wood (2010). Statistical inference for noisy nonlinear ecological dynamic
systems, Nature, vol. 466(7310), p. 1102. Cited on pages 10, 60, 63, 101, and 102.

C. Xiao, P. Zhong, and C. Zheng (2018). BourGAN: Generative Networks with Metric
Embeddings, in NeurIPS 2018. Cited on page 24.

J. Xie, M. Kiefel, M. Sun, and A. Geiger (2016). Semantic Instance Annotation of
Street Scenes by 3D to 2D Label Transfer, in CVPR 2016. Cited on pages 116
and 174.

H. Xu, Y. Gao, F. Yu, and T. Darrell (2017). End-to-End Learning of Driving Models
from Large-Scale Video Datasets, pp. 3530—3538. Cited on pages 47, 52, and 72.

J. Xu, B. Nj, Z. Li, S. Cheng, and X. Yang (2018). Structure Preserving Video Prediction,
in CVPR 2018. Cited on page 18.

T. Xue, J. Wu, K. L. Bouman, and B. Freeman (2016). Visual Dynamics: Probabilistic
Future Frame Synthesis via Cross Convolutional Networks, in NIPS 2016. Cited
on pages 26 and 69.

K. Yamaguchi, A. C. Berg, L. E. Ortiz, and T. L. Berg (2011). Who are you with and
where are you going?, in CVPR 2011. Cited on pages 20 and 47.



BIBLIOGRAPHY 197

C. Yang, Z. Wang, X. Zhu, C. Huang, J. Shi, and D. Lin (2018). Pose Guided Human
Video Generation, in ECCV (10) 2018. Cited on page 18.

D. Yang, S. Hong, Y. Jang, T. Zhao, and H. Lee (2019). Diversity-Sensitive Conditional
Generative Adversarial Networks, in ICLR (Poster) 2019. Cited on page 25.

Z.Yang, Z. Hu, R. Salakhutdinov, and T. Berg-Kirkpatrick (2017). Improved Varia-
tional Autoencoders for Text Modeling using Dilated Convolutions, in ICML 2017.
Cited on page 89.

J. J. Yu, K. G. Derpanis, and M. A. Brubaker (2020a). Wavelet Flow: Fast Training of
High Resolution Normalizing Flows, in NeurIPS 2020. Cited on page 28.

W. Yu, Y. Lu, S. Easterbrook, and S. Fidler (2020b). Efficient and Information-
Preserving Future Frame Prediction and Beyond, in ICLR 2020. Cited on pages 3
and 4.

Y. Yuan and K. M. Kitani (2020). Diverse Trajectory Forecasting with Determinantal
Point Processes. Cited on page 27.

A. R. Zamir, A. Sax, W. B. Shen, L. J. Guibas, J. Malik, and S. Savarese (2018).
Taskonomy: Disentangling Task Transfer Learning, in CVPR 2018. Cited on page
164.

H. Zhang, A. Geiger, and R. Urtasun (2013). Understanding High-Level Semantics
by Modeling Traffic Patterns, in ICCV 2013. Cited on page 47.

L. Zhang, Q. She, and P. Guo (2019). Stochastic trajectory prediction with social
graph network, CoRR. Cited on pages 26 and 27.

S. Zhang, R. Benenson, and B. Schiele (2017). CityPersons: A Diverse Dataset for
Pedestrian Detection, pp. 4457-4465. Cited on page 54.

H. Zhao, J. Shi, X. Qi, X. Wang, and ]. Jia (2017a). Pyramid Scene Parsing Network,
in CVPR 2017. Cited on page 67.

J. J. Zhao, M. Mathieu, and Y. LeCun (2017b). Energy-based Generative Adversarial
Networks, in ICLR (Poster) 2017. Cited on page 24.

S. Zhao, J. Song, and S. Ermon (2017c¢). InfoVAE: Information Maximizing Variational
Autoencoders. Cited on pages 89 and 101.

T. Zhao, Y. Xu, M. Monfort, W. Choi, C. L. Baker, Y. Zhao, Y. Wang, and Y. N. Wu
(2019). Multi-Agent Tensor Fusion for Contextual Trajectory Prediction, in CVPR
2019. Cited on pages 20, 73, 89, 97, 143, 150, and 174.

B. Zhou, X. Wang, and X. Tang (2011). Random field topic model for semantic region
analysis in crowded scenes from tracklets, in CVPR 2011. Cited on page 47.



198 BIBLIOGRAPHY

Z. M. Ziegler and A. M. Rush (2019). Latent Normalizing Flows for Discrete Se-
quences, in ICML 2019. Cited on pages 26, 88, 90, 91, 127, 128, 144, 149, and 151.



	Title Page
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction
	1.1 Challenges of Future Prediction
	1.1.1 Long-term Predictions
	1.1.2 Uncertainty
	1.1.3 Multi-modality
	1.1.4 Exact Inference
	1.1.5 Summary

	1.2 Main Thesis Contributions
	1.2.1 Long-term Prediction from Raw Pixel Data
	1.2.2 Scalable Bayesian Inference for Uncertainty and Calibration
	1.2.3 Conditional Variational Autoencoders for Multi-modality
	1.2.4 Exact Inference Models for Multi-modal Distributions

	1.3 Contributions to Other Projects
	1.4 Outline of the Thesis

	2 Related work
	2.1 Long-term Prediction
	2.1.1 Video Frame Prediction
	2.1.2 Intuitive Physics
	2.1.3 Trajectory Prediction
	2.1.4 Street Scene Prediction
	2.1.5 Relation to Our Work

	2.2 Modelling Uncertainty
	2.2.1 Bayesian Methods
	2.2.2 Non-Bayesian Methods
	2.2.3 Relation to Our Work

	2.3 Generative Models for Multi-modality
	2.3.1 Generative Adversarial Networks
	2.3.2 Variational Autoencoders
	2.3.3 Hybrid and Alternative Approaches
	2.3.4 Exaction Inference Methods

	2.4 Datasets for Trajectory Prediction

	3 Long-Term Image Boundary Prediction
	3.1 Introduction
	3.2 Related work
	3.3 Model
	3.3.1 Fully Convolutional
	3.3.2 Multiple Scale Prediction
	3.3.3 Context

	3.4 Experiments
	3.4.1 Evaluation on Sequences with Agent-based Motion
	3.4.2 Evaluation on physics-based motion

	3.5 Sharpening RGB predictions with fusion
	3.6 Conclusion

	4 Long-Term On-Board Prediction of People in Traffic Scenes under Uncertainty
	4.1 Introduction
	4.2 Related work
	4.3 On-board Pedestrian Prediction under Uncertainty
	4.3.1 Prediction of Pedestrian Trajectories
	4.3.2 Bayesian of Modelling of Uncertainty
	4.3.3 Bayesian RNN Encoder-Decoder
	4.3.4 Prediction of Odometry
	4.3.5 Training and Inference

	4.4 Experiments
	4.5 Conclusion

	5 Bayesian Prediction of Future Street Scenes using Synthetic Likelihoods
	5.1 Introduction
	5.2 Bayesian models for prediction under uncertainty
	5.2.1 Model Uncertainty
	5.2.2 Observation Uncertainty
	5.2.3 Training
	5.2.4 Model Architecture for Street Scene Prediction

	5.3 Experiments
	5.3.1 Multi-modal 2D Data.
	5.3.2 MNIST Digit Generation
	5.3.3 Cityscapes Street Scene Anticipation

	5.4 Conclusion

	6 Accurate and Diverse Sampling of Sequences based on a ``Best of Many'' Sample Objective
	6.1 Introduction
	6.2 Related work
	6.3 Structured Sequence Prediction with Gaussian Latent Variables
	6.3.1 Conditional Variational Auto-encoder Training Objective
	6.3.2 ``Best of Many'' Samples Objective
	6.3.3 Model Architectures for Structured Sequence Prediction

	6.4 Experiments
	6.4.1 MNIST Sequence
	6.4.2 Stanford Drone
	6.4.3 Radar Echo

	6.5 Conclusion

	7 Conditional Flow Variational Autoencoders
	7.1 Introduction
	7.2 Related work
	7.3 Conditional Flow Variational Autoencoder (CF-VAE)
	7.3.1 Conditional Normalizing Flows
	7.3.2 Variational Inference using Flow based Priors
	7.3.3 Conditioning Priors on Contextual Information

	7.4 Experiments
	7.4.1 MNIST Sequences
	7.4.2 Stanford Drone
	7.4.3 HighD

	7.5 Conclusion

	8 ``Best-of-Many-Samples'' Distribution Matching
	8.1 Introduction
	8.2 Novel Objective for Hybrid VAE-GANs
	8.2.1 Shortcomings of Hybrid VAE-GAN Objectives
	8.2.2 Leveraging Multiple Samples
	8.2.3 Integrating Stable Synthetic Likelihoods

	8.3 Experiments
	8.3.1 Evaluation on Multi-modal Synthetic data.
	8.3.2 Evaluation on CIFAR-10
	8.3.3 Evaluation on CelebA

	8.4 Conclusion

	9 Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers
	9.1 Introduction
	9.2 The Euro-PVI Dataset
	9.3 Joint–cVAE: Joint Model for Dense Urban Environments
	9.4 Experiments
	9.4.1 nuScenes
	9.4.2 Euro-PVI

	9.5 Conclusion

	10 Normalizing Flows with Multi-Scale Autoregressive Priors
	10.1 Introduction
	10.2 Related work
	10.3 Overview and Background
	10.4 Multi-scale Autoregressive Flow Priors
	10.4.1 Formulation of the mAR prior and mAR-SCF model.
	10.4.2 Analysis of sampling time.
	10.4.3 Interpolation.

	10.5 Experiments
	10.5.1 MNIST and CIFAR-10
	10.5.2 ImageNet

	10.6 Conclusion

	11 Haar Wavelet based Block Autoregressive Flows for Trajectories
	11.1 Introduction
	11.2 Block Autoregressive Modeling of Trajectories
	11.2.1 Conditional Normalizing Flows for Sequential Data
	11.2.2 Haar Wavelet based Invertible Transform
	11.2.3 Haar Block Autoregressive Framework

	11.3 Experiments
	11.3.1 Stanford Drone
	11.3.2 Intersection Drone

	11.4 Conclusion

	12 Conclusions and Future Perspectives
	12.1 Progress Towards Predicting the Future
	12.1.1 Long-term Predictions
	12.1.2 Uncertainity and Calibration
	12.1.3 Multi-modality
	12.1.4 Exact Inference

	12.2 Future Perspectives
	12.2.1 Long-term Predictions
	12.2.2 Uncertainty and Calibration
	12.2.3 Multi-modality
	12.2.4 Exact Inference
	12.2.5 Broader Outlook of the Field


	 List of Figures
	 List of Tables
	 Bibliography
	 Publications

