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Electro-physiological sensing devices are becoming increasingly common in diverse appli-

cations. However, designing such sensors in compact form factors and for high-quality signal

acquisition is a challenging task even for experts, is typically done using heuristics, and

requires extensive training. Our work proposes a computational approach for designing multi-

modal electro-physiological sensors. By employing an optimization-based approach alongside

an integrated predictive model for multiple modalities, compact sensors can be created which

offer an optimal trade-off between high signal quality and small device size. The task is

assisted by a graphical tool that allows to easily specify design preferences and to visually

analyze the generated designs in real-time, enabling designer-in-the-loop optimization.

Experimental results show high quantitative agreement between the prediction of the opti-

mizer and experimentally collected physiological data. They demonstrate that generated

designs can achieve an optimal balance between the size of the sensor and its signal

acquisition capability, outperforming expert generated solutions.
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Measurement of biosignals through electrodes placed on
the skin is common practice in specialized areas within
medicine, health monitoring, and rehabilitation. Recent

technical advances in highly ergonomic sensing devices now
enable biosignal measurements to be accessible in more diverse
contexts and to a larger audience. For example, advances in
epidermal electronics have led to the development of skin-
conformal devices that can monitor electrophysiological signals
through skin-exposed electrodes1–3. Typically, electrodes are
patterned on various ultra-thin substrates using functional
materials2,4–6. Prior work has contributed epidermal sensors for
capturing biosignals of various modalities, such as muscle
movements using electromyogram (EMG)2, cardiac activity using
electrocardiogram (ECG)6, or the electrical activity of the brain
using electroencephalogram (EEG)7.

This new class of highly ergonomic devices promises to make
electrophysiological sensing more widespread and opens up
highly relevant new avenues in diverse fields, comprising wear-
able computing, augmented and virtual reality, entertainment
computing, and human–machine interaction. However, designing
sensor layouts for optimal acquisition of electrophysiological
signals remains a hard problem, which currently limits a more
widespread deployment of this technology. The exact placement
of the sensing electrodes on the user’s body is critically important
for acquiring high-quality signals8, as the quality of these signals
often changes drastically even with small variations in the pla-
cement. Moreover, each biosignal poses unique requirements on
valid body locations and electrode arrangements. These locations
can further depend on an individual’s anatomical proportions,
and hence differ across users9. This task is even more demanding
if multiple biosignals are to be captured using one device. The
current state-of-the-art is designing an electrode layout manually,
using iterative trial-and-error by following a set of heuristic
guidelines9,10. This manual approach is time-consuming and
requires extensive domain expertise. Even with expert skills,
electrode placements are known to be error prone11. Moreover,
one of the key requirements for ergonomic wearability is a
compact device form factor. At the same time, the device should
be capable of acquiring signals with high quality. A good design
solution should optimally trade-off between such conflicting
design goals. Yet, manually finding such optimal trade-offs is
typically not feasible due to the complex interplay of many
parameters.

We propose a computational design approach to tackle this
problem (Fig. 1). It automates the design of electrode layouts for
epidermal electrophysiological sensors that can sense biosignals
of one or multiple modalities. It achieves two main goals: firstly,
optimized sensor designs in compact form factors can be
designed for supporting wearability and mobility, secondly,
designs encapsulating electrodes which can measure multiple
biosignal modalities can be rapidly realized taking into account
multiple constraints. Based on the desired application, designs
can be optimized not only for an individual user’s body but also
for conflicting parameters such as signal quality and device
footprint. An interactive design tool assists the user in easily
specifying desired properties and aids in the rapid iterative design
of multi-modal electrode layouts. To validate this approach, an
optimization scheme has been designed and implemented for
generating multi-modal electrode layouts, comprising three
modalities: electromyography (EMG), electrodermal activity
(EDA), and electrocardiogram (ECG). The optimizer has been
conceived by formulating the electrode layout design process as a
geometrical optimization problem.

Optimization techniques using physics-based models have
been successfully employed for optimizing device designs in prior
work, such as the design of actuators12, mechanical robots13, and
optimized meta-materials14. The problem investigated here poses
a new class of problems since biosignals depend on anatomical
features of the human body. Therefore, an integrated predictive
model has been devised that takes human anatomy into account
to predict the sensing quality of multi-modal electrophysiological
sensor designs. It comprises three biosignal modalities and can be
operationalized for computational optimization. The main con-
tribution here not only lies in applying geometrical optimization
for tackling the problem of electrode placement but also in
identifying, formalizing, and integrating the set of rules that are
inherent to electrode placement for sensing multiple modalities.
We show that an optimization approach can be employed for
creating compact wearable devices that can measure multiple
biosignal modalities.

The results presented here show that by using a computational
design approach, multi-modal electrophysiological sensing lay-
outs can be designed with considerably reduced device footprint
while achieving high signal acquisition capability. The approach
can rapidly identify optimal solutions for designs of complex
combinations of electrodes for multiple modalities that comply

Fig. 1 Overview of the concept of computational design and optimization of electro-physiological sensors. An integrated predictive model is presented,
which encapsulates three biosignal modalities (EMG, EDA, and ECG). This model along with inputs from the user are fed to an optimizer which generates
an optimized layout that optimally trades-off between desired device size and sensing quality. An interactive software tool assists the user in specifying
desired properties and inspecting the generated design in real-time. The design can be further fine-tuned by an expert while interactively inspecting its
quality, allowing for a “human-in-the-loop” optimization process. The optimized device can then be realized using commercial gel electrodes or through dry
electrodes fabricated on a temporary tattoo.
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with a desired device form factor—a task that so far was tedious
and impractical even for experts. In the following, we use the
placement of electrodes on the anterior side of the forearm as an
example in order to demonstrate our approach and test its
applicability by comparing it to conventionally obtained designs.
First, we introduce an integrated predictive model for the three
modalities EMG, EDA, and ECG that covers the anterior side of
the forearm. The optimization problem is then formally intro-
duced based on the model, and the algorithm is outlined. An
optimizer was implemented with an interactive real-time gra-
phical design tool that shields the user from lower-level details
and exposes easy-to-use parameters for the design of sensors.
Designs generated by the optimizer outperform the designs cre-
ated by experts using conventional placement methods. Results
from an experimental validation further show that a high quan-
titative agreement was found between experimentally collected
physiological data from multiple subjects and the prediction of
the optimizer. Finally, by unifying this optimization-based design
strategy with multi-material inkjet printing, we demonstrate two
application scenarios that provide a promising route towards a
fully automated pipeline for the design and creation of complex
multi-modal electrophysiological sensing devices.

Results
Traditional manual placement of electro-physiological sensing
electrodes relies on placing electrodes at specific locations, usually
called keypoints, following a set of heuristic rules and placement
guides presented in literature9,15–18. For multi-modal sensing,
this typically results in either placing a dedicated device per
modality at separate body locations or having large sensor sizes
for sensing multiple modalities19,20. For improved wearability
and mobility, we demonstrate a method based on computational
optimization. The optimizer produces a single device that
encapsulates electrodes that can measure multiple modalities and
can be worn on the forearm. The forearm has been chosen as the
location for this first study since it allows to capture multiple
biosignals, supports ergonomic wearability15,16,21–23 and is one of
the most promising areas for human-machine interaction24–26.
However, this approach can also be applied to other modalities
and body locations.

Integrated predictive model. Computational design requires a
formal model of electrode performance that can be oper-
ationalized for computational optimization. Furthermore, as the
optimization approach searches for a globally optimal design of
multi-modal sensors, this model needs to be compatible with
multiple modalities. However, the current state of the art con-
siders different modalities separately and uses incompatible
metrics. For instance, the quality of an EMG signal is commonly
measured in ARV (Average Rectified Value) or RMS (Root Mean
Square) value of the signal, whereas EDA signals are measured
through skin conductance levels denoted in MicroSiemens (μS).
This limitation is overcome with an integrated model that for-
malizes individual objective functions for each modality and
defines cost functions for each, such that they can be combined in
the overall objective function. The objective functions were for-
malized based on empirical findings reported from the literature
for each modality. Here, we briefly discuss our approach for
constructing the models. We first outline our approach for EMG
and then very briefly introduce the main concepts underlying the
models for EDA and ECG. The details of the entire model are
described in the “Methods” section.

Electromyography (EMG) measures the MUAP (Motor Unit
Action Potential) as an electrical potential between a ground

electrode and sensing electrodes. The Surface-EMG (sEMG)
measurement is a typical non-invasive method to capture MUAP
by placing electrodes on the surface of the skin. For a given
muscle, the EMG signal is captured by a pair of electrodes with
respect to a reference electrode. The signal quality depends on a
number of factors such as the electrode size, its placement with
respect to the muscle line and the distance between electrodes.
From an optimization perspective, the overall optimizer score for
a given muscle is normalized in the range [0,1], with 0 denoting
the best and 1 denoting the worst sensing quality. Our current
implementation supports five muscles on the anterior side of the
forearm: Flexor Carpi Radialis (FCR), Brachioradialis (BR),
Palmaris Longus (PL), Pronator Quadratus (PQ), and Flexor
Carpi Ulnaris (FCU).

Input parameters of the model are a set of forearm
measurements F= {f1, f2, f3, f4} (Supplementary Fig. 1), a weight
w1 determining the priority for EMG in the overall objective
function, and optionally the desired shape of the sensor S. Using
F, the five muscle lines can be reconstructed based on the guides
from prior work9,17,27. To ensure good signal acquisition, the
model incorporates electrodes that have a surface area of
50 mm29,10,28.

Following successful checks for electrode distances from the
muscle lines and their non-presence within Innervation Zones
(IZ) (which are unsuitable locations for placing electrodes)17, a
normalized score is calculated based on the electrode orientation
with respect to muscle and the inter-electrode distance. For a
given muscle i, the overall energy function is calculated as follows:

O1i ¼
α � ωðθiÞ þ ð1� αÞ � νðj e!ijÞ if e0i; e

00
i =2Ri

1 otherwise

(
ð1Þ

where ω(θi) and νðj e!ijÞ represent cost functions for the electrode
orientation θ and inter-electrode distance e!i ¼ e0i � e00i , respec-
tively, α and 1− α are the respective priorities, and Ri
corresponds the innervation zones which are not suitable
locations for the electrode placement. In the current model,
equal priorities (α= 0.5) are given for both these factors. The full
details of the model are described in detail in the Methods
section.

For n selected muscles, the overall EMG score is then
calculated as the product of the EMG weight assigned and the
average of the scores of all selected muscles, which can be
formulated as:

O1ðF; E1;w1; SÞ ¼ w1 �
1
m

∑
m

i¼1
O1i ð2Þ

where F= {f1, f2, f3, f4} is the set of forearm measurements, E1 is
the set of electrodes for EMG, w1 is the weight determining the
priority for EMG in the overall objective function, and S is the
optional input shape.

Electrodermal activity (EDA) measures the changes in
electrical conductance of the skin and has been used as an
indicator for detecting emotional responses29. The EDA response
is influenced by the sweat gland activity, which is directly
proportional to the number of sweat glands (higher the number
of sweat glands, higher the skin conductance levels). Hence the
EDA model predicts the number of sweat glands covered
between the electrodes, which determines the quality of the EDA
response. The details of the model are presented in the
“Methods” section.

Electrocardiogram (ECG) measures the electrical activity that
occurs during a cardiac cycle. Clinically, the measurements are
obtained by placing 12 electrodes near the chest18. More recently,
three-electrode ECG configurations on the forearm have been
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designed to support ambulatory and wearable devices16,21,23,30.
Our model is derived based on the mapping of ECG signals at
various locations on the forearm as described in prior work16.
The details of the model can be found in the “Methods” section.

To ensure that devices with small form factors are created, an
additional weight w4 for small area is incorporated into the
model. This small area weight w4 determines the priority given to
the size of the device. The details of this model can be found in
the “Methods” section.

Computational optimization. The predictive model provides the
basis of a computational design tool that can generate a sensor
design that packs a set of electrodes for measuring one or more
electrophysiological signals. Each pair of electrodes have a specific
functionality; for instance, two electrodes placed on the muscle
measure electric potential generated from muscle movements,
while another electrode pair measures electrodermal activity, etc.
The spatial configuration of the electrodes affects the quality of
the biosignals which are to be acquired. The aim of the optimizer
is to find a globally optimal solution that provides a good trade-
off between signal quality and the overall size of the sensor.

The model allows for specifying which biosignals the sensor
should be able to capture. Any combination of EMG, EDA, and
ECG can be selected. The choice of EMG involving specifying the
set of individual muscles for sensing. The designer can further
specify weights for prioritizing or de-prioritizing biosignals in
global optimization. A higher priority implies that this biosignal
is given more weight, increasing the likelihood the corresponding
electrodes are placed such that high-quality sensing is ensured.
Similarly, the designer can specify a weight indicating how
aggressively the optimizer seeks to create small form factor
solutions. Furthermore, if desired, the designer can specify the
exact outline and position on the body that any valid design must
not exceed. In this case of constrained optimization, the optimizer
searches for optimal solutions only within the given input shape
S, which is a closed polygon.

The optimization problem was formulated as follows. Given a
set of forearm measurements F= {f1, f2, f3, f4} (Supplementary
Fig. 1), an input shape S, and a set of weightsW= {w1, w2,w3, w4}
which represent the priorities for EMG, EDA, ECG and Small
Area respectively (w1+w2+w3= 1), an electrode set E= {e1,
e2, . . , en} is generated. The overall global objective function of the
electrode set E is:

OðF;W; SÞ ¼ ∑
4

k¼1
wk � Ok ð3Þ

which is minimized over all non-overlapping placements of the
electrodes in E within the input shape S, where O1,O2,O3,O4 are
the objective functions for EMG, EDA, ECG, and small area,
respectively.

Considering the challenge of dealing with a large search space,
a large number of potential solutions are possible. Monte-Carlo
approaches are well suited for these kinds of problems, where
sampling the entire solution space is not feasible. Here, efficient
sampling of new configurations with an objective function that
can be evaluated quickly can result in well-optimized solutions.
Hence, simulated annealing (SA)31 was used for implementing
the optimization scheme. It is a probabilistic technique for
approximating the global optimum of a given energy function.
The annealing procedure starts with a random initial layout that
is generated within the shape S. After every iteration, a
neighboring layout is generated by picking a random electrode
and translating it with a vector v!. The new solution is accepted if
it either lowers the objective or raises it based on a randomized
probability function which is given as follows:

c ← rand(0, 1)
if c≤ e

�ΔO
T then

accept solution
else
reject solution

end if
where ΔO=O(t)−O(t− 1) is the difference in the objective
function at successive annealing temperatures, and T is the
annealing temperature.

In addition to the weight-based optimization approach in
which the user provides relative priorities through weights, an
additional optimization scheme has been incorporated. In this
lower-bound based-optimization, the user specifies a required
reference signal value for each of the modalities. The optimizer
then strives for higher quality scores than the respective lower
bounds for each modality. The user can control the hardness of
the lower bound constraints by a parameter, i.e., violations are
penalized as described in the “Methods” section. In this scheme,
the relative weights of the modalities can be disabled such that
only the area weight is used for calculating the objective function.
Hence, each modality receives equal priority for achieving a
quality above the corresponding lower bound. However, the user
can also activate lower bounds and modality weights at the same
time in a hybrid scheme.

Conception of an interactive optimizer with a software tool. A
computational predictive model and optimizer are necessary but
not sufficient for the rapid design of electrode layouts. To make
the optimization approach accessible to a wide audience of
practitioners and researchers and to ease visual analysis and rapid
iterations of custom designs, an interactive software tool has been
designed and implemented (Fig. 2). The graphical tool abstracts
low-level details of the model, electrode design and optimization
scheme (e.g., electrode sizes, spacing, placement, etc.), while
exposing relevant parameters in an intuitive and user-friendly
interface. It offers a Web-based interface that encapsulates the
predictive model and automatically sets low-level parameters of
the design. For instance, the size of electrodes is preset with
appropriate dimensions for ensuring maximum performance, and
their spacing is automatically adjusted by the optimizer. High-
level parameters that allow for customizing the sensor can be
adjusted through intuitive checkboxes and sliders. This offers a
direct, fast, and user-friendly way of setting body dimensions,
selecting the modalities the sensor will be able to capture (EMG,
ECG, and/or EDA), and selecting specific muscles for EMG
sensing. The sensing quality of one or multiple modalities can be
easily prioritized by moving a slider. Similarly, the priority of a
compact sensor vs. the highest possible sensing quality can be
continuously adjusted. In our current implementation, the
interface was designed for the anterior side of the forearm.
However, it can be extended to support other body sites as well
based on the underlying anatomical properties (e.g., muscles
lines, types, and their directions, sweat gland concentration, etc.).

By default, the search space of the optimization scheme spans
the entire surface of the body site. In cases when a more precise
control over the location and shape of the sensor is required, the
search space can be constrained interactively. As shown in Fig. 2
and video supplement (Supplementary Video 1), the location and
shape can be quickly specified by sketching a free-form polygonal
outline on the canvas, using a mouse or a touchscreen. This
defines a region which the sensor design must not exceed. Lastly,
more detailed settings can be adjusted in dropdown panels, if
experts wish to do so. Then, with the click of a button, the sensor
design is generated and optimized for the given parameters.
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To allow for real-time visual analysis of the result’s quality, the
design is immediately visualized within a few seconds, alongside
metrics for the predicted quality of the sensor (Fig. 2b, f). If the
design is not fully satisfactory yet, parameters can be fine-tuned
and the design re-optimized. Moreover, a basic electrode layout
editor has been incorporated, which enables the user to directly
adjust the electrode positions if desired. The resultant quality
metrics are immediately updated. These features are vital to
enable a designer in-the-loop optimization32,33 approach: rather
than simply accepting the solutions generated by the optimizer,
the designer interacts in real-time with the optimizer; this allows
for combining the strengths of algorithmic optimization with
human creativity and knowledge of the application domain.

Finally, to ease sensor fabrication and ease replication, the
generated design can be exported to a standard scalable vector
graphics (SVG) file. This can be directly used for printing the
electrode layout using conductive ink on a flexible substrate6,34.
Alternatively, if off-the-shelf wet-gel electrodes are going to be
used, the SVG file defines a stencil for electrode placement that is
printed on a transparent PET. Holes can be punched through the
PET film at electrode locations, and once overlaid onto the
forearm, a marker can be used for marking electrode locations on
the forearm. Electrodes can then be placed on these locations on
the forearm. In addition, design solutions can be saved as a JSON
formatted file for later use in the design tool. These functionalities

help overcome a major drawback of the classic manual placement
approach by making it possible to precisely replicate a specific
electrode placement.

Comparison of optimizer results with conventional designs.
The performance of the optimizer was experimentally validated
for tasks of various complexity. The experiment had two objec-
tives. Firstly, understand how well a computationally optimized
design performs in comparison to the standard placement tech-
niques and an expert generated solution. The second objective
was to assess the efficiency and scalability of the optimizer for
more complex device configurations encapsulating electrodes that
measure multiple physiological modalities.

To address the first objective, electrode layouts were optimized
that capture one modality only. Electromyography was selected as
the most demanding modality due to its strong requirements for
precise electrode placement. A combination comprising three
muscles was chosen, which together support a variety of arm
movements35: Flexor Carpi Radialis (FCR), BrachioRadiali (BR),
and Palmaris Longus (PL). The following electrode layouts were
compared:

● BASELINE SOLUTION: This is a non-optimized rule-
based solution generated following the existing placement
guides for EMG electrodes presented in the

Fig. 2 Screenshot of the graphical design tool for interactively generating and inspecting optimized results. a Input panel for selecting the modalities
and muscles, setting forearm dimensions and setting the lower bounds. b The canvas area where the generated designs are visualized. Designs can be fine-
tuned by drawing a desired location and shape or dragging individual electrodes. c Panel for choosing the optimization type, weights for each of the
modalities, and overall sensor area. d Shape customization panel for fine-tuning the properties related to the sensor shape. Additionally, this panel also
allows for uploading existing designs and exporting the current designs. e Buttons for one-click automatic generation of the layout. The result is displayed
in real-time in the canvas area. f Panel visualizing quality metrics for the generated layout. Advanced functionality for use by experts can be accessed
through drop-down panels. This includes functions for adjusting and editing the electrodes in the generated solution, adjusting the internal parameters of
the model, tweaking the optimization parameters, and adjusting the appearance of the forearm polygon. The workflow for using the tool is shown in
Supplement tool is shown in Supplementary Video 1.
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literature9,17,36,37. Electrodes are placed at the respective
muscle’s keypoints, which ensures the highest quality.

● QUALITY OPTIMIZED: The optimizer has traded-off size
for achieving high-quality sensing. Details on how this
solution was generated can be found in the “Methods”
section.

● AREA OPTIMIZED: The optimizer has aggressively tried
to reduce the size of the layout while trading-off sensing
quality. Details can be found in the “Methods” section.

● EXPERT GENERATED: This solution was manually
created by a human expert (a sports scientist, male,
31 years old, specializing in placing EMG electrodes for
rehabilitation and performance monitoring with 6 years of
professional experience). The expert was tasked to design a
sensor layout for use near the wrist, ensuring the smallest
possible size. The expert stressed the challenging nature of
creating the design for multiple muscles in a compact form
factor. The heuristic approach used by the expert was to
first identify for each of the three muscles the muscle line
and place the electrodes close to the wrist while ensuring
the electrodes are approximately aligned with the muscle.
Then, the expert aggressively reduced the inter-electrode
distance while ensuring that there was at least a 10 mm
distance between electrodes. He considered this minimum
distance as absolutely essential to keep sensing quality at a
reasonable level, which is in-line with recommendations
presented in the literature10.

Figure 3a depicts the generated designs alongside their area and
quality score predicted by the model. (The optimizer score, i.e.,
the result of the cost function, represents the sensing quality
predicted by the model. It is in the range [0, 1], with 1 being worst
and 0 being the best. For better clarity, we report the quality
score, which is the complement (1–Optimizer Score), with higher
values denoting higher predicted quality.)

The BASELINE SOLUTION (predicted quality: 1.0) was taken
as reference, and the scores for other solutions were normalized
with respect to this condition. The QUALITY OPTIMIZED
solution achieves a signal quality almost on-par with the
BASELINE SOLUTION (average quality of 0.979 [max: 0.99,
min: 0.96]), while considerably shrinking the sensor area by an
average of 44% across the three participants (max: 56%,
min: 33%). The AREA OPTIMIZED solution yielded a lower
predicted sensor quality with an average of 0.60 (max: 0.72, min:
0.54) while however being able to shrink the sensor’s footprint to
almost one-third of the baseline’s footprint (max: 65%, min: 48%).
Noteworthy, it clearly outperforms the EXPERT GENERATED
solution by offering a considerably higher predicted sensing
quality (18% more) with only a minimally larger footprint (2%
larger).

For achieving our second objective, we were interested in how
the optimizer would perform for more complex combinations
involving larger number of muscles and additional physiological
modalities (EDA and ECG), resulting in a multi-modal sensor. To
investigate the optimization of a multi-modal sensor, a complex
combination was chosen, involving EDA and ECG modalities as
well as EMG sensing for five muscles: Flexor Carpi Radialis
(FCR), Brachiradialis (BR), Palmaris Longus (PL), Pronator
Quadratus (PQ), and Flexor Carpi Radialis (FCU). It involves
placement of 14 measurement electrodes for acquiring signals.
Arranging all these electrodes while ensuring a minimum size is a
very taxing task, even for experts.

Similar to the uni-modal case described above, four electrode
layouts were compared: a BASELINE solutions that is not
optimized and follows the existing placement guides for
EMG9,17,27, EDA15, and ECG16 electrodes presented in the

literature; a QUALITY OPTIMIZED design; an AREA OPTI-
MIZED design; and an EXPERT GENERATED design. Figure 3c
depicts the generated designs alongside their area and quality
score predicted by the model. The average reduction in the area
for a QUALITY OPTIMIZED solution was 10% (max: 14.4%,
min: 4.8%), with an average drop in quality of only 0.5%. This
reduction is smaller compared to the uni-modal case presented
above due to specifics of ECG sensing: the ECG key points located
closer to the elbow on the upper forearm produce higher signal
quality, whereas the quality decreases drastically closer to the
wrist. Therefore the optimizer favors designs that span a larger
area up to the forearm. The average reduction in area for the
AREA OPTIMIZED solution was 75.9% (max: 79.1%, min: 68%)
with an average reduction in quality of 26.2% (min: 25.6%,
max: 26.7%). The AREA OPTIMIZED solution again clearly
outperformed the EXPERT GENERATED design (75% reduction
in size with 38% drop in quality), yielding a comparably smaller
footprint while offering considerably higher predicted sensing
quality than the EXPERT GENERATED design. The quality for
EMG was high for all the solutions since there was enough space
for electrodes to be aligned to their respective muscle lines while
maintaining a good inter-electrode distance. For EDA, the key
takeaway here is that the optimizer scores were very similar
between AREA OPTIMIZED and QUALITY OPTIMIZED
solutions, owing to the fact that a similar number of sweat
glands were covered in both the AREA OPTIMIZED and
QUALITY OPTIMIZED solutions. For ECG, the position of the
electrodes was the same for the BASELINE SOLUTION and the
QUALITY OPTIMIZED solution; therefore, the difference in
the SNR levels across the designs was minimal. However, for the
AREA OPTIMIZED solution, the quality drops drastically since
the electrode locations are located further below on the forearm.

Experimental validation of prediction quality. To experimen-
tally validate the optimizer’s prediction quality for uni-modal
optimization, EMG data were recorded for each muscle on each
design. Three volunteer participants (two female, one male, mean
age: 8 years old, SD: 2.9) were recruited for the experiment. The
physical measurements of the forearm were procured from the
participants. QUALITY OPTIMIZED and AREA OPTIMIZED
designs were generated for the participants’ arm dimensions
through the software tool. The EXPERT GENERATED design
was manually generated for only one participant. Wet-gel elec-
trodes (Kendall™ Covidien, H135SG, Sensor Area: 50 mm2) were
placed on the participants’ right forearm at the locations specified
in the design. Wet-gel electrodes are the experimental standard
for measuring physiological signals and provide a stable baseline
for evaluating the predicted signal quality of the optimizer. In the
Supplementary Information (Fig. 9), our results indicate that the
quality prediction of the optimizer also generalizes to dry elec-
trodes fabricated through conductive inkjet printing, demon-
strating a close agreement between the predicted and measured
signal quality.

The EMG signals were average rectified. The peaks corre-
sponded to the signal when there was a muscle movement. For
each muscle, the mean Average Rectified Signals (ARVs) were
calculated across all the trials. As shown in Fig. 3b the scores
predicted by the optimizer match very closely with the
experimentally measured values. Overall, there was an average
2% difference between the predicted and measured values across
all the muscles and all the participants for the QUALITY
OPTIMIZED condition. The difference is marginally higher for
the AREA OPTIMIZED solution (2.8%) and for the EXPERT
GENERATED solution (4.5%). These results show that the
optimization scheme can closely predict the sensing quality of a
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real sensor and offers an effective way of generating highly
compact designs while maintaining a high-quality signal acquisi-
tion capability.

To experimentally validate the optimizer’s prediction quality
for multi-modal sensors, EMG, EDA and ECG data was recorded
for each of the layout conditions. Wet-gel electrodes (Covidien,
H124SG) were placed on the participants’ right forearm at the
locations specified in the design. Similar to the Uni-Modal
combination, the EMG signals were average rectified. For the
EDA, skin conductance measurements were obtained through
off-the-shelf GSR sensors by placing the electrodes on the
fingertips. Finally for the ECG measurements, a commercial
portable ECG device (EKG Monitor MD100E, ChoiceMMed) was
used for recording. For details on the method and the raw signals
please see “Methods” section and Supplementary Information
respectively.

The experimentally measured value for EDA and ECG are skin
conductance level and SNR values, respectively. The SNR values
as reported in prior work16 correspond to the ratio of the QRS
wave peak-to-peak voltage to the T-P wave peak-to-peak voltage.
For EMG, the difference between measured and predicted values
across all participants and all muscles was 0.8% for the QUALITY
OPTIMIZED layout and 1.3% for the AREA OPTIMIZED layout.
For EDA signals, the average difference between the predicted
and measured values was 2.5% for the QUALITY OPTIMIZED
layout and 4.5% for the AREA OPTIMIZED layout.

The average difference in measured skin conductance levels
between the BASELINE SOLUTION and QUALITY OPTI-
MIZED solutions was 0.0776μS (resulting in an average of 2.9%
difference) and 0.1096μS (resulting in an average of 4.7%
difference) for the BASELINE SOLUTION and AREA OPTI-
MIZED solution. These differences are in-line with the variance

Fig. 3 Comparison of the optimizer results with conventional designs and the experimentally collected physiological data. a Visual representation of the
generated designs for the uni-modal combination, involving EMG with three muscles, alongside their area and quality score predicated by the optimizer
(values are normalized w.r.t. the baseline solution). b Comparison of model prediction with empirically measured quality scores of EMG sensing. The model
is able to accurately predict the sensing quality (values are normalized w.r.t the baseline solution). c Visual representation of the generated designs for the
multi-modal combination, involving EMG with five muscles, EDA and ECG. d–f Modality-wise comparison of model prediction with empirically measured
quality scores for EMG, EDA, and ECG sensing, showing the model accurately predicts the sensing quality. Note: The optimizer score ranges between 0
and 1, with 0 being the best. For better clarity, the graphs plot the complement value (1–Optimizer Score), which gives a direct measure of the quality
predicted. Error bars indicate standard deviation.
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found in skin conductance levels on the forearm as reported in
prior work15. For ECG, the difference in the predicted and
measured values for the AREA OPTIMIZED and EXPERT
GENERATED designs was very small as well (1.1% and 0.3%,
respectively). It should also be noted that, although the quality of
ECG signals drops drastically near the wrist, the distinct QRS
peaks can still be noticed, implying the signal can be used for
measuring the beats per minute (BPM) or heart rate variability
(HRV) (Fig. 4e).

Applications. The computational design approach and the opti-
mizer are generic. The generated designs can be implemented
with either commercial gel electrodes or dry electrodes fabricated
with conductive materials. Two application cases have been rea-
lized to demonstrate the benefits of the proposed approach for

applications of electrophysiological sensing beyond the medical
field, such as interactive sports devices, gaming, and virtual rea-
lity. Applications in these areas benefit from devices that have a
small footprint while capturing multiple biosignals. Moreover,
they impose high demands on ergonomic wearability to not
obstruct body movement. These requirements can be met by
integrating the computational design approach with a rapid
fabrication technique19,34 to realize compact layouts of dry elec-
trodes on ultra-thin temporary tattoo films.

To demonstrate an end-to-end pipeline for iterative design and
rapid prototyping, a conductive inkjet printing technique34 has
been coupled with the design tool. This combination has been
utilized for fabricating an ultra-thin temporary tattoo device
encapsulating EMG, EDA, and ECG electrodes. The AREA
OPTIMIZED device (Fig. 3c) was fabricated on temporary tattoo
paper for measuring EMG, EDA, and ECG signals (Fig. 4a). Once

Fig. 4 Example applications. a Ultra-thin temporary tattoo with compact sensor layout generated by the optimizer and fabricated with an off-the-shelf
desktop inkjet printer. b Augmented reality exercising application: a virtual character performs push-up motion when the user performs a push-up. c A
virtual reality game in which EMG-sensed gestures are used for controlling the virtual character in a first-person shooter game. d Raw signals of the EMG
signals when performing a push-up exercise. e Increase in the skin conductivity levels before and after the push-ups. The shaded region represents the
standard deviation. f Difference in the heart rate before and after performing the push-ups. g Raw EMG signals of the five muscles for each of the gestures
used in the virtual reality game.
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the design was generated by the tool, a standard vector graphics
application was used for creating the routing traces to connect the
sensor to an external microcontroller. A flexible printed circuit
(20 pins, 1 mm pitch) was connected to the device with the help
of a conductive z-axis tape which in turn was interfaced to two
Arduino microcontrollers. One microcontroller (Arduino Uno,
ATmega328P) was used to interface the five EMG channels, while
another microcontroller (Arduino Uno, ATmega328P) unit
interfaced with the EDA and ECG channels. Details of the
hardware specifications can be found in the “Methods” section.

Recording of physiological signals can be beneficial for
personal health analytics. Inspired by new opportunities for
improving physical exercising with augmented reality, an
application for augmented push-up exercising has been devel-
oped. In this application, a virtual on-screen avatar performs
push-ups along with the user and offers a synchronized
experience using biosignals (Fig. 4b, Supplementary Video 3).
When the user performs a push-up, the movement is detected
through the EMG signals picked up through the temporary tattoo
device on the wrist. A custom Unity application loads the virtual
avatar and processes the EMG signals. When the signal
corresponding to the PQ muscle exceeds a threshold, a push-up
is recognized (Fig. 4d). Then, the push-up counter is incremen-
ted, and the virtual avatar performs the push-up. The EDA and
ECG signals can also be monitored. Figure 4f shows the change in
the heartbeat before and after performing five push-ups, while
Fig. 4g shows an increase in the skin conductance levels after
performing push-ups. The computational design approach
integrated with the custom fabrication pipeline enables the rapid
design of a compact epidermal interface that is ergonomic to wear
during physical movement. Future designs could involve designs
placed at various other body locations, such as the biceps, to
monitor multi-modal physiological signals while performing
physically demanding activities.

The use of physiological signals in augmented or virtual reality
environments is actively explored in research38. Inspired by this,
we developed a second application case demonstrating that a
multi-modal sensor tattoo designed with the optimizer can be
used as an intuitive body-based controller for gestural input in
virtual reality applications. A virtual reality first-person shooter
game was implemented in Unity; the interaction with the game
was integrated through hand gestures that can be recognized
through EMG signals. In the game, the user has to explore and
shoot all the germs present in the human body (Fig. 4c,
Supplementary Video 3). Three gestures were recognized in
real-time through thresholding of the signals from five EMG
channels: a “Fist Clench” gesture is used to shoot a given target; a
Hand pronation gesture is used to change the weapon, and a wrist
flexion gesture is used for jumping. The minimally invasive form
factor of the multi-modal patch can peripherally record the
biosignals without the need for dedicated sensors at multiple
locations on the body. While in this scenario, we have
demonstrated the use of EMG as a medium for gestural
interaction, recording multi-modal physiological data can open
up new possibilities for interaction and experiences in the context
of augmented and virtual reality. For example, the EDA and heart
rate variability data could be used for detecting the mood of the
user and adapt the game’s content on the fly.

Discussion
The results reported in this article demonstrate the feasibility and
effectiveness of computationally designing and optimizing multi-
modal electrophysiological sensor layouts. Using a computational
design paradigm coupled with an optimization-based approach
paves the way for automatically generating highly compact

wearable devices that can monitor multiple electrophysiological
modalities. With an integrated predictive model that takes into
account the human anatomy, the electrode design task has been
formulated as a geometric packing optimization problem. A Web-
based graphical software tool allows for interactively specifying
desired design parameters in a user-friendly way and for visually
analyzing the quality of generated designs. Results from the
experimental evaluations show that the generated designs out-
perform expert-generated solutions and can considerably reduce
the size of a device. Multi-modal sensors can be reduced in size by
up to 79% when compared to the BASELINE SOLUTION. The
sensors are also considerably smaller (19.5%) than the EXPERT
GENERATED design, which suggests that the approach can
create solutions that provide a very good balance between signal
quality and size. Similarly, for uni-modal sensors, the AREA
OPTIMIZED solution is only marginally larger (2%) but achieves
considerably better quality (18.2%). The results further demon-
strate high quantitative agreement between experiments and the
model predictions. Two application examples were implemented
and showed the feasibility of an end-to-end pipeline for com-
putational design and fabrication of compact and ergonomic
wearable sensing devices. The computational design approach is
scalable to other electrophysiological modalities provided, and
there exists an empirically validated model that defines the pla-
cement of electrodes.

This proof-of-concept study is subject to several limitations
that open a series of perspectives for future research. The model
and tool are currently limited to one body location—the anterior
side of the forearm. High-quality clinical-grade acquisition of
ECG and EDA biosignals is usually performed on the chest and
fingertips. However, the forearm offers the benefit of superior
wearability (wearability in design research is defined as the
physical shape of wearables and their active relationship with the
human form24). The forearm is one of locations that are most
unobtrusive for wearable objects24,39 and offer unmatched
opportunities for user interaction—important benefits when
considering highly practical non-medical applications such as
entertainment computing, human–machine interaction, and
wearable computing. While the methods presented here are
expected to generalize to other body locations where continuous
models are available (e.g., on the chest where continuous ECG
models are available, along with placement strategies for a few
muscles), there still remain several challenges to be addressed: (1)
To the best of our knowledge, there exists no continuous model
that evaluates ECG signals on the forearm. The discrete model
used for ECG mapping in our study is simplified. Of note, this is
not a limitation of the method; more advanced continuous
models for ECG signals on the forearm and on other body
locations should be integrated in future studies. (2) A variety of
parameters, including subcutaneous fat levels, skin moisture
levels, and variations in skin–electrode contact, all affect the
sensing quality40,41. While the currently existing models do not
consider these factors, it can be observed that the model pre-
dictions closely match the experimental measurements that were
taken in the real world. It will be important for future work to
develop more sophisticated models that capture more of these
factors, most notably sub-cutaneous fat levels. (3) Future more
advanced models could integrate additional metrics for EMG,
such as RMS (Root Mean Square), Conduction Velocity, and
Frequency Response. These could be beneficial for specific
applications such as gait analysis, fatigue analysis, etc. Future
implementations also should expand the scope of computational
design and optimization to additional electrophysiological mod-
alities, such as EEG and EOG. (4) Currently, our model is
agnostic of the type of electrode. Different electrode types can
affect the signal quality due to differences in impedance,

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26442-1 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6351 | https://doi.org/10.1038/s41467-021-26442-1 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


durability of tight skin contact, or effects of skin moisture,
amongst others. While the dry electrodes fabricated through our
technique have low impedance and offer tight skin contact, they
need to be studied more extensively with respect to the rate of
degradation of the skin contact and impedance levels over an
extended duration. These factors are crucial and generic for all
types of dry electrodes, which can be realized through various
fabrication strategies. While evaluating multiple types of dry
electrodes is beyond the scope of this work, this first study pro-
vides evidence that computational design approaches can be
integrated with custom-fabricated dry electrodes.

For all these modalities requiring precise placement of elec-
trodes on the body, this computational approach could pave a
promising way for guiding electrode placement and reducing
manual placement overhead. From an optimization perspective,
our current implementation is based on simulated annealing,
which needs to be stopped after a finite number of iterations
without exactly knowing how far the result is from the optimum.
One approach to improve the optimization scheme in future
work is to use a mixed-integer optimization that yields a rigorous
lower bound on the signal quality using methods such as branch-
and-bound that could serve as a benchmark.

Considering that electrophysiological sensing is becoming
more widespread and is making its way into non-medical dis-
ciplines, approaches based on computational design, rather
than manual heuristics for experts, promise to accelerate the
widespread adoption of these sensing techniques. This first
exploration unfolds a new dimension for the design of electro-
physiological sensors leveraging the power of computational
optimization, guided by an interactive real-time design tool. This
can represent a significant step towards a fully automated and
highly scalable pipeline for the design and creation of electro-
physiological sensing devices.

Methods
Predictive model for EMG electrodes. Given a set of forearm measurements
(Supplementary Fig. 1) F= {f1, f2, f3, f4}, the five muscle lines can be reconstructed
based on the guides from prior work9,17,27. Based on this, a set of keypoints is
calculated which is represented by KEMG= {k1, k2, k3…, kℓ}. These keypoints con-
sist of ideal locations for EMG electrode placement. For EMG acquisition, the
electrodes should have a minimum surface area of 50 mm2 and the diameter should
not exceed 10 mm9,10,28. To ensure good signal acquisition, the model incorporates
electrodes that have a surface area of 50 mm2.

For a given pair of electrodes that measure the potential of a specific muscle, a
series of pre-checks are made. Firstly, both electrodes need to be within a distance
of 1 cm from the muscle line. This is based on the recommendation from prior
work, which suggests that more than 1 cm offset from the muscle line could result
in a considerable decrease in signal and recognition accuracy42. If at least one of the
electrodes is farther away, then a score of 1 is assigned. Otherwise, an additional
check is made to ensure that both electrodes are not present within innervation
zones. Based on the recommendations from Barbero et al.17, innervation zones (IZ)
are unsuitable locations to place electrodes. Hence if either of the electrodes falls
within these regions, then a score of 1 is assigned. The innervation zones for
muscles are well documented in the literature17,36.

Following successful checks for these conditions, a normalized score is
calculated based on the electrode orientation with respect to the muscle line and
the inter-electrode distance. The orientation of the electrodes with respect to the
muscle line is calculated as follows:

θ ¼ arccos
ki
!� e!

j k!j � j e!j

 !
ð4Þ

where k
!

is the vector connecting the two keypoints for the specific muscle m in
the set KEMG (this is the vector representing the muscle line) and e! is the vector
connecting the two measuring EMG electrodes e0 and e″.

Once the angle between the muscle line and the electrodes is determined, data
from the literature is used to inform the model. Merletti et al.43 showed how the
quality of the EMG signal is affected by the orientation between the muscle line and
the electrodes, and showed that the signal drastically drops with misalignments >60
degrees. The least squares curve-fitting method has been used to derive the closest
curve (R2= 0.9971), which fits the data presented in prior work43. Based on this,

the energy function for the orientation of the electrodes is defined by:

ωðθÞ ¼ 0:0057θ þ 0:000181θ2 if θ ≤ 60�

1; otherwise

(
ð5Þ

If the electrode orientation is <60∘, then the inter-electrode distance j e!j is
calculated for the electrode pair. The model is informed from prior literature,
which shows how the signal varies with respect to changes in the inter-electrode
distance43. The data were normalized and a best-fitting curve was calculated using
the method of least squares (R2= 0.9986). The energy function for the inter-
electrode distance j e!j for an electrode pair is as follows:

νðj e!jÞ ¼
maxð0; 1:0125� 0:0586j e!jþ 0:0007j e!j2Þ if 5< j e!j≤ 25
0 if 25< j e!j≤ 60
1 if 60< j e!j

8><
>:

ð6Þ
Prior literature10,44 suggests that large inter-electrode distances (> 60 mm) can

create a drastic drop in the signal quality. Hence a limit of 6 cm was applied to
ensure that large inter-electrode distances were not generated.

For calculating the overall score of the EMG electrodes, the inter-electrode
distance and electrode orientation are taken into account. Combining Eqs. (5) and
(6), the overall energy function for a muscle m is calculated as a weighted average
of the angle orientation score and the inter-electrode distance score, which is
defined as:

O1i ¼
α � ωðθiÞ þ ð1� αÞ � νðj e!ijÞ if e0i; e

00
i =2Ri

1 otherwise

(
ð7Þ

where α and 1− α are the priorities assigned for both parameters and serve as the
calibration parameter for EMG measurement hardware. Rm corresponds to the
innervation zones which, are not suitable locations for the electrode placement. In
the current model, equal priorities (α= 0.5) are given for both these factors.

For n selected muscles, the overall EMG score is then calculated as the product
of the EMG weight assigned and the average of the overall muscle scores of each of
the selected muscles, which can be formulated as:

O1ðF; E1;w1; SÞ ¼ w1 �
1
m

∑
m

i¼1
O1i ð8Þ

where F= {f1, f2, f3, f4} is the set of forearm measurements, E1 is the electrode set for
EMG, w1 is the weight determining the priority for EMG in the overall objective
function, and S is the optional input shape.

Predictive model for EDA electrodes. Electrodermal activity (EDA) measures the
changes in electrical conductance of the skin that result from sympathetic neuronal
activity. The EDA activity monitors the sweat gland activity. A sensor typically
consists of two electrodes placed on the body, between which the conductance is
measured. Based on the recommendations from the literature45, the surface area of
electrodes was set to 0.78 cm2. The quality of a given layout of electrodes for
sensing EDA is based on two factors: the density of the sweat glands at a given body
location and the inter-electrode distance.

Electrode location on the body. The electrodes for EDA response can be placed
on various locations on the body as long as a required minimum number of sweat
glands are captured. The density of sweat glands varies across the body, with higher
concentrations present at fingertips, palms, and forehead. The density of sweat
glands is rather a discrete function, and the forearm is reported to have about ≈
108/cm246. The sweat gland concentration for various other locations is reported in
the literature46,47. Prior work has shown that a minimum number of sweat glands
that need to be covered between EDA electrodes for maintaining functionality is
14048.

For two given circular electrodes, the area covered between two electrodes
comprises the surface of the electrodes and the area comprised in-between
electrodes, as shown in Supplementary Fig. 2 . Hence, if Ds is the density of sweat
glands at a specific location, the number of sweat glands covered by the electrodes
is given by: Ns= (πr2+ (d × 2r)) ×Ds.

Inter-electrode distance. The skin conductance level is linearly proportional to
the number of sweat glands between the electrodes. This is because the glands act
as resistors connected in parallel, thus bringing the skin resistance down49. The
recommended distance between the electrodes is 5–6 cm15,49. For larger distances,
the two electrodes risk not being on the same dermatome, which can lead to invalid
readings49. Assuming an ideal inter-electrode distance of 6 cm, the maximum
number of sweat glands that can be covered on the forearm is
Nmax ¼ ðπ0:52 þ ð6 ´ 2 ´ 0:5ÞÞ ´ 108 ≈ 733 sweat glands.

The energy function is as follows:

O2ðE2;DsÞ ¼
1 if Ns ≤ 140 or ds >D

1� Ns=Nmax otherwise

�
ð9Þ

where ds is the inter-electrode distance and D is the recommended distance of 6 cm.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26442-1

10 NATURE COMMUNICATIONS |         (2021) 12:6351 | https://doi.org/10.1038/s41467-021-26442-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Ns is the number of sweat glands covered by the electrodes for a given inter-
electrode distance ds and Nmax is the maximum number of sweat glands that can be
covered on the forearm for a recommended distance of 6 cm (which is ≈733). For
inter-electrode distances larger than 6 cm, a score of 1 is assigned since larger inter-
electrode distances are not recommended.

Predictive model for ECG electrodes. Electrocardiogram refers to the recording of
electrical changes that occur in the heart during a cardiac cycle. It works on the
principle that a contracting muscle generates a small electric potential that can be
detected and measured through electrodes suitably placed on the body. Clinically,
the measurements are obtained by placing 12 electrodes near the chest18. However,
more recently, for ambulatory and wearable devices, three-electrode configurations
have been explored16,23,50.

This approach is based on prior work, which designed a three-electrode ECG
configuration on the forearm16,21,23,30. Based on prior work16, a set of keypoints
(near the wrist, upper forearm, and the central region of the forearm) on the
forearm were chosen as the ECG locations. For each of these locations, the ECG
recordings were obtained with a portable commercial ECG device (EKG Monitor
MD100E, ChoiceMMed). For each of the recordings, the SNR values were
computed as follows based on prior work16:

SNR ¼ ðQRSÞECGp�p

ðT � PÞnoisep�p
ð10Þ

where the ECGp−p is the peak-to-peak ECG QRS amplitude, and the noisep−p is the
peak-to-peak noise amplitude from the T-P interval. The SNR values for each of
the combinations are shown in Supplementary Fig. 3. For optimization, the SNR
values are normalized with respect to the highest achieved SNR. The ECG electrode
pair on the upper forearm achieves an optimizer score of 0, indicating that this is
the best electrode pair, while the electrode pair near the wrist achieves a score of
0.75 because the SNR levels at this location drop drastically by about three-
quarters.

For a given set of keypoints k1 and k2, the energy function is given as:

O3ðE3Þ ¼
SNRðk0; k00Þ

SNRðk0max; k
00
maxÞ

ð11Þ

where SNR(k1max, k2max) is the SNR for the keypoints, which can provide the
maximum SNR levels on the forearm, and SNR(k1, k2) is the SNR for a given set of
keypoints.

Predictive model for area. For a given layout, the area of the convex hull of all
electrodes is calculated based on the Graham scan algorithm51. This area is then
normalized with respect to the area of the BASELINE SOLUTION for a given
combination of modalities. While we have assigned a linear cost penalty for the
area, a quadratic cost penalty can be assigned alternatively to more aggressively
shrink the sensor size. The energy function is as follows:

O4ðEÞ ¼
AðEÞ
AðEbÞ

ð12Þ

where A(E) is the area of a given layout, and A(Eb) is the area of the BASELINE
SOLUTION.

Lower-bound-based optimization. In addition to the weight-based optimization
scheme in which relative weights are provided for the EMG, EDA, and ECG
modalities, we additionally implemented a lower-bound-based optimization
scheme.

To this end, we increase the objective function by a penalty for each modality
that grows exponentially with the extent of the violation of the corresponding
lower bound.

That is, we define

Pk :¼ p � ðemaxðOk�‘k ;0Þ � 1Þ ð13Þ
where ℓk is the specified lower bound for modality k and p is a parameter to control
the softness of the lower-bound constraints. The higher the value of p is, the harder
the lower bound is enforced by the optimizer. Observe that a penalty only occurs if
a lower bound is violated, i.e., Pk= 0 whenever Ok ≥ ℓk.

In the hybrid scheme, the complete objective function becomes

OðF;W; SÞ ¼ ∑
3

k¼1
ðwk � Ok þ PkÞ þ w4 � O4; ð14Þ

whereas w1= w2= w3= 0 when we only consider the lower bounds.

Inputs and constraints. The optimization step requires a set of user inputs, such as
the forearm dimensions, modality weights, and an (optional) input shape, which
serve as parameters and constraints for the integrated predictive model.

User inputs. The inputs to the model which are provided through the software tool
are formalized as follows:

● Dimensions of the location: The dimensions refer to the body site (the
forearm in our implementation).

● Modalities: These involve the selection of desired modalities.
● Individual muscles: These involve the set of muscles for EMG sensing.
● Area weight or outline of sensor shape: The shape of the sensor layout can

be sketched by the user. Alternatively, if no shape is specified, the tool
automatically generates the appropriate sensor layout based on the weight
provided for the small area.

● Weights: These include the weights for each of the modalities. These
weights can be represented asW= {w1,w2,w3,w4} where w1+ w2+ w3= 1
and correspond to the weights of EMG, EDA,, and ECG respectively. w4

refers to the weight for the Small Area of the sensor layout.

Derived parameters. Based on the user inputs, the following parameters are derived:

● Keypoint set: Given the dimensions, modalities, and the muscle selection,
the keypoints set K= {k1, k2, k3…, kn} is calculated. These keypoints consist
of ideal locations for EMG and ECG electrode placement.

● Electrode sizes: Based on the selected modalities, the optimizer selects the
size of electrodes for high-quality signal acquisition. The electrode sizes
were fixed as follows: 50 mm2 for EMG and ECG electrodes and 80 mm2

for EDA electrodes. These sizes were chosen such that they match the
dimensions of electrodes that are commercially available. Finally, prior
literature also suggests that increasing the electrode surface area does not
necessarily result in better signal quality10,45.

● Electrode set: Based on the above three parameters, a measuring electrode
set E= {e1, e2…, eℓ} is generated, which contains disjoint subsets of
electrodes E1 ¼ fe01; e001 ; ¼ ; e0m; e

00
mg for EMG, E2= {e2,1, e2,2} for EDA,

and E3= {e3,1, e3,2} for ECG, i.e., E1 _∪ E2 _∪ E3 � E. For all these electrodes,
a maximum of two reference electrodes are required: one electrode which
acts as a common reference for the EMG and one electrode which is
required for the ECG. Both these electrodes need to be placed away from
the forearm (preferably near the shoulder/chest) for having a high-quality
ECG signal.

For ensuring the validity of the generated electrode layout, the following set of
constraints have been imposed:

● Overlapping electrodes: To ensure that no electrodes overlap with each
other, the center-to-center distance between each pair of electrodes with
radii r1 and r2 must be greater than r1+ r2. For ensuring a safe distance
between all the electrodes, the pair-wise inter-electrode distance between all
pairs of electrodes was set to at least 12 mm. To ensure that all the
electrodes within a layout are inside the input region sketched by the user,
the Point-in-Polygon (PIP) algorithm52 was implemented. For all the
generated solutions, this constraint is checked and only if it is met, the
energy of the layout is calculated.

Validation of optimizer. The key goal of the experiment is to demonstrate that the
optimizer generates valid and functional solutions. We were also interested in the
broad spectrum of solutions that could be generated. Therefore the entire forearm
space was sampled, allowing for (1) informing about the influence of the search
space on the quality of the generated solutions and (2) providing a wide range of
solutions with varying levels of quality and sizes sampled across the entire forearm
search space. Note that in typical usage scenarios, it is not required to sample the
entire forearm space; instead, an optimal solution can be directly generated by
setting the desired priority for a small area or by providing a desired shape of the
sensor.

The entire forearm was sampled at high resolution, starting at the wrist. Two
configurations were chosen: a multi-modal configuration where all the modalities
were included (five muscles, EDA, and ECG) and a uni-modal configuration with
EMG only (three muscles). Starting at the wrist, the search space for the optimizer
was incrementally increased by providing a bounding box as shown in
Supplementary Fig. 4. The height of the bounding box was increased in 1 mm
increments until the box covered the entire forearm, as shown in Supplementary
Fig. 4. For each 1 mm increment, a solution was generated through the optimizer.
The AREA OPTIMIZED solution was identified as the first solution that gives an
optimizer score lower than 1. For obtaining the QUALITY OPTIMIZED solution,
the search space was incrementally decreased in 1 mm intervals, starting at the top
of the forearm until the predicted signal quality dropped below 0.9. The QUALITY
OPTIMIZED solution was then identified as the solution which had the smallest
size out of all solutions that have predicted quality of ≥0.95, or ≤0.05 optimizer
score. The annealing parameters were kept constant for all iterations. Each iteration
generated a design file which contained information about the electrode layout,
quality, area, and other configuration information. For the multi-modal
configuration containing EMG, EDA, and ECG modalities, there were a total of 193
iterations, with each iteration picking an optimal solution from a set for 15,490
randomly generated solutions, resulting in a total of 2,989,570 solutions. For the
uni-modal combination involving three muscles, a total of 122 iterations were
generated, resulting in a total of 1,889,780 solutions.
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The smallest possible solution (AREA OPTIMIZED) for the uni-modal
configuration was generated at a window of height 3 cm. No solution was generated
below this height since there was not enough space for the optimizer to fill all the
electrodes. The solution generated by the optimizer was slightly larger in size than
the EXPERT GENERATED solution because of the constraint imposed, which
limits too small inter electrode distances (the inter electrode distances between all
pairs of electrodes is kept at least 12 mm). It is noteworthy that despite this
constraint, the optimizer was able to shrink the device size to a level that is
comparable to the expert-generated design.

The window height was 7.8 cm for the multi-modal combination. The relatively
large window height was required due to the fact that the multi-modal case requires
a larger number of electrodes (14 electrodes) than compared to the uni-modal
configuration (six electrodes). It should be noted that these window heights depend
on factors such as the configuration chosen, the number of electrodes to fit in, and
the individual forearm dimensions.

Experimental data collection. Commercial gel-based electrodes (Kendall™ Covidien
H135SG, Sensor Area: 50 mm2 for EMG and ECG53, Kendall™ Covidien H124SG,
Sensor Area: 80 mm2 for EDA54) were used to experimentally evaluate the per-
formance of the optimization technique.

EMG data collection. The primary functions of each of the muscles were identified
from the literature. For each of the muscles, participants were instructed to perform
maximal voluntary contractions with five repetitions. Before the start of the
experiment, the participants were free to perform and practice the contractions.
EMG recordings were recorded using a custom hardware acquisition unit (see the
section on “Hardware Interfacing”). Digitized signals were full-wave rectified and
integrated to calculate the Average Rectified Value (ARV). For each of the muscles,
the movements performed for EMG signal capturing are described in Table 1.

EDA data collection. For EDA, the participant underwent a Stroop color test55. This
test has been used in prior work for assessing EDA response19. In brief, cognitive
stimuli were presented to the subject through the use of words of different colors
which were either conflicting (word and color of text were different, e.g., “blue” was
written in green color) and non-conflicting (word and color of text were the same).
The participant was instructed to state the color of the word and not read the text.
The task consisted of an initial 1 min rest period followed by a 2–3 min long Stroop
test. This was followed by a final 1 min rest period. The reference skin conductance
level was also measured for each of the conditions by placing a commercial EDA
sensor consisting of dry metallic electrodes (Seeed Studio Groove56) on the fingers.
One electrode was placed on the index finger, while the other electrode was placed
on the middle finger.

ECG data collection. For ECG signal acquisition, the participant was at rest, with
the hands on a table, while a commercial portable ECG device (MD100, Choi-
ceMed) logged the data for 30 seconds.

Fabrication of dry electrodes with conductive desktop inkjet printing. The fabrication
method is based on prior work, which used a desktop inkjet printer to print
functional traces on various substrate materials19,34. Commercial tattoo decal paper
(SUNNYSCOPA, printable temporary tattoo paper for laser printer) was used as
the substrate material. A layer with electrodes and connecting traces was printed
using silver nanoparticle ink (Sicrys™ I40DM-106) and heat cured. An additional
three layers of PEDOT:PSS (Orgacon™ IJ-1005, 739316) conductive polymer using
the same design were printed to enhance the mechanical robustness of the brittle
metallic traces. Routing traces, but not electrodes, were then insulated by printing
five layers of PVP (Polyvinylphenol, Mw= 11,000 g/mol) on top. The layers were
thermally cured. A sheet of skin adhesive film (SUNNYSCOPA) was laser cut to
leave electrode locations uncovered and then bonded onto the printed tattoo sheet.
The sandwich was then transferred onto the skin.

Hardware and interfacing. Custom hardware setups were implemented for
recording EMG and EDA signals based on existing open-source hardware specifi-
cations. For EMG, our hardware setup is based on prior work, which presented
solutions for recording high-quality EMG data57–59. The sEMG acquisition board
consists of one differential amplifier (INA331IDGKT, Texas Instruments) and two
zero-drift amplifiers (OPA333, Texas Instruments) and can measure the EMG signal
of one muscle through three electrodes (two measurements and one reference). The
acquisition board converts the analog differential signal (the EMG bio-potentials
generated by muscles) attached to its inputs through a disposable surface electrodes
connector into a single stream of data as output. The output signal is analog and has
to be discretized for digital processing. The signal is passed through an instru-
mentation amplifier (Gain= 10) followed by a high-pass filter with a cut-off fre-
quency of 0.2Hz. Finally, an operational amplifier with a regulated gain (in the range
[5.76, 101]) was used for producing a filtered amplified signal. The electrodes
(measurement and reference) are connected to the board through an audio jack (aux
cable). For supporting multiple muscles, multiple sEMG boards were connected with
one common reference electrode. For EDA signal acquisition, an open-source
hardware platform was used56. The hardware units were externally grounded.

Data availability
All data generated or analyzed during this study are included in the published article and
its Supplementary Information. Additional raw data is hosted on the OSF (Open Science
Framework) platform and can be found at the following link: https://osf.io/zerqx/?
view_only=cf2a719779134c59a0bf35a2e642c2f2.

Code availability
Custom code used in the current study is available from the corresponding author on
request.
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