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Small noncoding RNAs (ncRNAs) play a vital role in a broad range
of biological processes both in health and disease. A comprehen-
sive quantitative reference of small ncRNA expression would
significantly advance our understanding of ncRNA roles in shaping
tissue functions. Here, we systematically profiled the levels of five
ncRNA classes (microRNA [miRNA], small nucleolar RNA [snoRNA],
small nuclear RNA [snRNA], small Cajal body-specific RNA [scaRNA],
and transfer RNA [tRNA] fragments) across 11 mouse tissues by
deep sequencing. Using 14 biological replicates spanning both
sexes, we identified that ∼30% of small ncRNAs are distributed
across the body in a tissue-specific manner with some also being
sexually dimorphic. We found that somemiRNAs are subject to “arm
switching” between healthy tissues and that tRNA fragments are
retained within tissues in both a gene- and a tissue-specific manner.
Out of 11 profiled tissues, we confirmed that brain contains the
largest number of unique small ncRNA transcripts, some of which
were previously annotated while others are identified in this study.
Furthermore, by combining these findings with single-cell chromatin
accessibility (scATAC-seq) data, we were able to connect identified
brain-specific ncRNAs with their cell types of origin. These results
yield the most comprehensive characterization of specific and ubiq-
uitous small RNAs in individual murine tissues to date, and we ex-
pect that these data will be a resource for the further identification
of ncRNAs involved in tissue function in health and dysfunction
in disease.
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Small noncoding RNAs (ncRNAs) are a large family of en-
dogenously expressed transcripts, 18 to 200 nt long, that play

a crucial role in regulating cell function (1, 2). Seen mainly as
“junk” RNA of unknown function two decades ago, today small
ncRNAs are believed to be involved in nearly all developmental
and pathological processes in mammals (2–4). While the exact
function of many ncRNAs remain unknown, numerous studies
have revealed the direct involvement of various small ncRNAs in
regulation of gene expression at the levels of posttranscriptional
mRNA processing (5–7) and ribosome biogenesis (8). Aberrant ex-
pression of small ncRNAs, in turn, has been associated with diseases
such as cancer, autoimmune disease, and several neurodegenerative
disorders (9, 10).
Mammalian cells express several classes of small ncRNA, in-

cluding microRNA (miRNA) (11), small interfering RNAs
(siRNA), small nucleolar RNAs (snoRNA) (12), small nuclear
RNA (snRNA) (13), PIWI-interacting RNA (piRNA) (14), and
tRNA-derived small RNAs (tRFs) (15), with some being shown
to be expressed in a tissue- (16), cell type- (17), or even cell state-
specific manner (18). Through their interactions with ribosomes
and mRNA, these small noncoding molecules shape the dynamic
molecular spectrum of tissues (4, 17). Despite extensive knowl-
edge of ncRNA biogenesis and function, much remains to be
explored about tissue- and sex-specific small ncRNA expression.
Given the emerging role of ncRNAs as biomarkers (19, 20) and
potent therapeutic targets (21), a comprehensive reference atlas
of tissue small ncRNA expression would represent a valuable
resource not only for fundamental but also for clinical research.
The first attempts to catalog tissue-specific mammalian small

ncRNAs began a decade ago with characterization of miRNA

levels (16, 22, 23). While these pioneering microarray-, qPCR-,
and Sanger sequencing-based studies mapped only a limited
number of highly expressed miRNA, they nevertheless estab-
lished a “gold standard” reference for the following decade of
miRNA research. Efforts to characterize tissue-specific non-
coding transcripts have recently resumed with the advent of
RNA sequencing (RNA-seq), which greatly advanced the dis-
covery of novel and previously undetected miRNA (24, 25).
However, no prior study encompasses a spectrum of mammalian
tissues from both female and male individuals, nor includes the
other noncoding RNA types that have recently been identified to
carry out tissue- and cell type-specific functions (26, 27).
Here, we describe a comprehensive atlas of small ncRNA

expression across 11 mammalian tissues. Using multiple biolog-
ical replicates (n = 14) from individuals of both sexes, we
mapped tissue-specific as well as broadly transcribed small
ncRNA attributed to five different classes and spanning a large
spectrum of expression levels. Our data reveal that tissue spec-
ificity extends to ncRNA types other than miRNA and provide
insights on the tissue-dependent distribution of miRNA arms
and tRNA fragments. We have also discovered that certain
miRNAs are broadly sexually dimorphic, while other show sex
bias in the context of specific tissues. Finally, integrating our
ncRNA expression measurements with the scATAC-seq data
(28) enabled us to map cell type specificity of small ncRNA
expressed in the adult mouse brain.

Results
Small ncRNA Expression Atlas of Mouse Tissues. We profiled the
expression of small ncRNA across 10 tissues from adult female
(n = 10) and 11 from adult male (n = 4) C57BL/6J mice (Fig. 1A
and Dataset S1). We generated a dataset comprising a total of
140 small ncRNA sequencing libraries from brain, lung, heart,
muscle, kidney, pancreas, liver, small intestine, spleen, bone
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marrow, and testes RNA. Each library yielded ∼5 to 20 million
reads mapping to the mouse genome, out of which, on average
∼7 million mapped to the exons of small ncRNA genes (Mate-
rials and Methods), resulting in a total of ∼100 million ncRNA
reads per tissue (SI Appendix, Fig. S1A). Using the GENCODE
M20 (29), GtRNAdb (30), and miRBase (31) mouse annota-
tions, we mapped the expression of distinct small ncRNA classes:
miRNA, snRNA, snoRNA, scaRNA, tRF, and other small
ncRNA in profiled tissues (Fig. 1B). Among all of the tissues, we
identified a total of 1,317 distinct miRNA, 733 snRNA, 583
snoRNA, 25 scaRNA, 346 tRNA, 22 mitochondrial tRNA, and
193 other miscellaneous small ncRNA genes, which correspond
to 60%, 53%, 39%, 96%, 92%, 100%, and 34% of annotated
transcripts of each respective class (Fig. 1B). miRNA was the
most abundant small ncRNA type in our libraries, followed by
snoRNA, snRNA, and tRFs (Fig. 1C and SI Appendix, Fig. S1B).

snoRNA and snRNA are believed to yield incomplete recovery
in small RNA-seq experiments due to their secondary structure
(32). With respect to protein coding genes, the detected tRFs
were intergenic, snoRNAs were of intronic origin, snRNAs and
scaRNAs were intronic and intergenic (63/35% and 64/36%,
respectively), and miRNAs were transcribed from either introns
(53%), exons (11%), or intergenic regions (11%) (SI Appendix,
Fig. S1C). The number of distinct ncRNA greatly varied across
tissues; for example, lymphoid tissues (lung, spleen, and bone
marrow) contained the largest number of distinct ncRNA, while
pancreas and liver contained the fewest (Fig. 1C and SI Appen-
dix, Fig. S1B). Furthermore, within the profiled tissues, we de-
tected 95.1% of miRNA precursors denoted by miRBase v22
database as high-confidence transcripts (31). Using these data,
we have reconstructed genome-wide expression map of various
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Fig. 1. Small ncRNA expression across mouse tissues. (A) Tissues and ncRNA classes profiled in the current study. Ten somatic tissues were collected from adult
mice (n = 14). Testes were collected from male mice (n = 4). (B) ncRNAs identified in the current study. Numbers indicate detected and total annotated within
GENCODE M20 miRNA, snoRNA, snRNA, scaRNA, Mt_tRNA, as well as high-confidence tRNA listed in GtRNAdb. (C) Coverage of ncRNA types within the
profiled tissues. ncRNA was considered transcribed in a tissue if detected at >1 cpm. (D) Genomic map of small RNAs (sRNAs) expression across mouse genome.
The bars show the log-transformed normalized expression count of ncRNAs. The red and gray bars around each circle represent the variance of each sRNA
across 10 mouse tissues. Red denotes highly (the SD of expression above 25% of the mean value), and gray, low, variable ncRNAs (SD below 25% of the
mean value).
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small ncRNA types across 11 murine tissues (Fig. 1D and
Dataset S2).

Tissue-Specific Expression of Small ncRNA. We first assessed the
differences in the levels of small ncRNAs across profiled tissues
at the gene level, based on the expression of all assayed RNA
types. Dimensionality reduction via t-distributed stochastic
neighbor embedding (t-SNE) (Materials and Methods) on ncRNA
genes revealed a robust clustering of samples according to tissue
types (Fig. 2A). For each ncRNA, we have computed the tissue
specificity index (TSI), as described previously in ref. 33. We
observed that ∼17% of all detected ncRNA were present in only
one tissue (TSI = 1) (SI Appendix, Fig. S2A), while the remaining
ncRNA were either ubiquitously expressed or found in some but
absent in other tissues. We next ran a differential gene expres-
sion (DGE) analysis on all detected ncRNAs across 11 tissues
(Materials and Methods) and found that out of 3,219 detected
genes, 897 (28%) contribute to the tissue-specific signature of
ncRNA expression (at a false discovery rate [FDR] < 1%)
(Fig. 2 B and C and Dataset S3). Interestingly, we found brain to
contain the highest number of unique transcripts not present in
other tissues (∼400) (Fig. 2 B and C and Dataset S3) even though
lung, spleen, and bone marrow expressed the widest spectrum of
detected genes (Fig. 1C). We found miRNA to be the main con-
tributor of tissue specificity (reflected by the fraction of each spe-
cific RNA type with TSI > 0.9) (Fig. 2 B and C); however, we have
also identified hundreds of ncRNAs of other types that are
expressed in a tissue-specific fashion (SI Appendix, Fig. S2).

Tissue-Specific snoRNAs. We found that snoRNA alone is capable
of separating the majority of profiled tissues based on their tran-
script levels (SI Appendix, Fig. S2B), with over 200 snoRNA showing
tissues-specific patterns (SI Appendix, Fig. S2C and Dataset S3).
For example, we discovered that maternally imprinted AF357428
(also known as MBII-78), AF357341 (MBII-19), and Gm25854,
transcribed from a 10-kb region of chromosome 12qF1, are
up-regulated in the brain and muscle. Interestingly, two other
snoRNA, Gm22962 and Gm24598, followed the same tissue-
specificity pattern, despite being transcribed from other chro-
mosomes (9qC and XqA7.1, respectively). While present at low
levels, we also identified Snora35 (MBI-36) and Snord116
(MBII-85), known to be involved in neurodevelopmental disorders
(34), to be brain exclusive (TSI = 1). We observed high levels of
Snord17 and Snord15a in the spleen and bone marrow, and lower
levels in other tissues. These snoRNAs have been previously
reported among up-regulated genes in bacterial infection of soft
tissues (35), suggesting the association of these transcripts with
immune cells. We found several snoRNAs present mainly in the
pancreas, such as Snord123 (SI Appendix, Fig. S2C), located 3 kb
upstream of the pancreatic cancer-associated Sema5a gene, and
Gm22888 (Fig. 2B) located within the introns of Ubap2. We also
identified a large number of other snoRNA, the exact function of
which is still unknown, to be enriched in either one or multiple
tissues (SI Appendix, Fig. S2C), among which are Snord53,
Gm24339, Gm26448, Snora73a, Snord104 in lymphoid tissues, and
Snord34, Gm24837 in testes. Finally, we show that some
snoRNAs, such as Snord70 and Snord66, which are often used as
normalization controls in qPCR-based assays (36, 37), are also
expressed in a tissue-biased manner (SI Appendix, Fig. S2C).

Tissue-Specific Expression of Rny, Terc, and Other ncRNA. Analyzing
the levels of other ncRNA classes, we found that the brain
contains high levels of Rny1 compared to other tissues (Fig. 2B).
We also observed that the levels of another transcript from the
same class, Rny3, are elevated in pancreas, brain, and kidney (SI
Appendix, Fig. S2D). The precise biological function of Rny1 and
Rny3 is so far undefined, although they have been suggested to
maintain RNA stability (38).

Interestingly, we detected the presence of telomerase RNA
component (Terc) in analyzed somatic tissues, with the highest
levels seen in the bone marrow and spleen. Together with pre-
vious reports that identify telomerase activity in hematopoietic
cells (39) and show Terc+ cells to secrete inflammatory cytokines
(39, 40), our data suggest that Terc is specific to cells of hema-
topoietic origin. Among other ncRNA types that we found to be
differentially expressed across profiled tissues are snRNA and
scaRNA, both known to be involved in the regulation of splicing
events (41). We observed that, similarly to primate orthologs
(42), mouse Rnu11 and Scarna6 are preferentially found in
lymphoid tissues, while three snRNAs of unverified function,
Gm25793, Gm22448, and Gm23814, are specific to the brain
(SI Appendix, Fig. S2D).

Tissue-Specific miRNA. We found ∼400 miRNAs differentially
expressed across profiled tissues (Dataset S3). Out of these 400,
nearly one-quarter are specific to the brain, with some being
uniquely expressed within the tissue (SI Appendix, Fig. S3A). We
identified both well-described brain-specific miRNAs, such as
mir-9, mir-124, mir-219, mir-338 (16, 24, 33), as well as those
which are missing from existing catalogs, such as mir-666, mir-
878, mir-433, etc. (Fig. 2B and SI Appendix, Fig. S3A). Examples
of other miRNAs previously unknown to be tissue-specific in-
clude mir-499 in the heart, mir-3073b in the kidney, and mir-215
and mir-194 in the intestine (SI Appendix, Fig. S3A). We also
observed multiple miRNAs present in several tissues but absent
in others, reflecting the cellular composition of the tissues.
Surprisingly, we also found a few miRNAs, such as mir-134, mir-
182, mir-376c, mir299a, mir-3061, and mir-7068 (SI Appendix,
Fig. S3A) to be shared solely between muscle, brain, and pan-
creas, which, in turn, do not contain any evident common cell
types that are absent in other tissues. Independently, unsuper-
vised clustering of the top 400 most differentially expressed
ncRNA in our dataset also revealed that two out of three iden-
tified clusters comprise ncRNA genes that are up-regulated in
the above-mentioned three tissues (SI Appendix, Fig. S3B). Al-
together, these findings suggest that certain small ncRNAs are
involved in maintaining a specific function within the brain,
pancreas, and muscle, which could, for example, be ion transport
or exocytosis.

Tissue-Specific Arm Selection of miRNA. Assessing the overall
abundance of 5p or 3p arms of miRNA across tissues, we found
no significant bias in strand selection (SI Appendix, Fig. S4A).
For many miRNAs, we generally observed the dominance of
either 3p or 5p arm, while for some we also detected high levels
of both arms present in one or multiple tissues (Fig. 2 C and D
and Dataset S4). Nonetheless, we found that ∼5% of all miR-
NAs switch their arm preference between tissues. Some of them,
like mir-337, mir-106b, and mir-26b, are represented by both
arms in certain tissues but only by one of the arms in other
(Fig. 2D and Dataset S4). More striking examples of complete
arm switching from one tissue to another are mir-141 and mir-
350 (Fig. 2D). miR-141-5p but not -3p is present in the brain, and
-3p but not -5p in the testes, while both arms are found in the
pancreas and intestine. In the case of mir-350, both arms are
detected in the bone marrow, brain, and spleen, while only the
5p arm is present in the heart, lung, and muscle, and the 3p arm
in the pancreas (Fig. 2D). This highlights the complexity of
tissue-dependent miRNA biogenesis and indicates that the
phenomena of miRNA arm switching, so far only observed in
cancer, extends to healthy mammalian tissues (43–45).

Ubiquitous ncRNA Transcripts. We detected many ubiquitously
expressed ncRNAs across tissues (SI Appendix, Fig. S4B).
Among these are ncRNAs known to be expressed in a large
number of cell types, such as let-7d-3p,miR-320-3p (25), ncRNAs
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the cell type specificity of which is still unknown, such as Snord4a
and Snord55, as well as those known to be expressed in the cell
types that are abundant in all tissues (like endothelial miR-151-
5p) (SI Appendix, Fig. S4B).

Novel miRNAs. We have recently demonstrated that the current
miRbase annotation of mammalian miRNA remains incomplete
but can be readily expanded with the help of emerging small
RNA-seq data (46). To search for novel miRNA in our data, we
first processed all unmapped reads using miRDeep2 (47) and
selected 473 genomic regions harboring a putative miRNA gene
supported by at least 10 sequencing reads. To refine this list, we
employed three parallel strategies: 1) we searched for the pres-
ence of the putative miRNA in 141 public Argonaute CLIP-seq
(AGO-CLIP) datasets from various mouse cell and tissue types;
2) we performed a literature and database search for prior
mentions of the putative miRNA; and 3) we ran an RT-qPCR
validation of selected candidates. Analysis of AGO-CLIP data
showed evidence for 214 out of 473 candidates (total, >5 counts).
We also found that 87 out of 473 novel miRNA were previously
reported within other studies (48–52) (Fig. 3A). Importantly, 52
novel miRNAs identified by this and previous studies were not
present in the AGO-CLIP data (Dataset S5). The RT-qPCR
quantification of two miRNAs selected from this list, 17_11530
and 7_16137, in turn, confirmed the existence of these transcripts
(SI Appendix, Fig. S5A). On the other hand, we identified novel
miRNAs (17_8620, 4_6440, 9_15723) that are supported by
AGO-CLIP data, prior reports, or both, but for which we could
not confirm the existence through RT-qPCR (SI Appendix, Fig.

S5A). We also found a novel miRNA that, among the three
validation methods, was only verified through RT-qPCR. In-
terestingly, the genomic coordinates of this miRNA, 14_6588,
matched the coordinates of another, annotated one, mir-802a.
Unlike mir-802a, however, 14_6588 is transcribed from the nega-
tive DNA strand and is only present in the brain (SI Appendix, Fig.
S5B). Altogether, by comparing the miRNA levels measured
through RT-qPCR with the tissue transcript abundance identified
by small RNA-seq, we validated 12 novel miRNAs that were ei-
ther also reported by others (Fig. 3B and SI Appendix, Fig. S5A) or
uniquely identified in the present study (Fig. 3 C and D and SI
Appendix, Fig. S5A).
We found that the majority of putative miRNAs are present in

only one tissue (312), but a small number (4) are found in all 11
tissues (Fig. 3E). Principal-component analysis on the newly iden-
tified miRNAs, supported by at least 50 reads, showed a clear
separation of brain, lung, and muscle from other tissues based on
expression values. Similar to annotated transcripts, novel miRNAs
demonstrate a spectrum of tissue specificity with some being
ubiquitously expressed, while others are only present in one
tissue (SI Appendix, Fig. S5C). Differential expression analysis on
putative novel miRNAs identified six miRNAs to be also expressed
in a sex-specific manner. Strikingly, all six were male-dominant, with
one of them even found to be consistently up-regulated in two tis-
sues, male muscle and pancreas (SI Appendix, Fig. S5D).

Tissue-Resident tRNA Fragments. About a quarter of our small
RNA-seq libraries consisted of tRFs—fragments of either mature
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of precursor tRNA molecules enzymatically cleaved by angio-
genin (Ang), Dicer, RNaseZ, and RNaseP (7, 53) (Fig. 4A).
“Exact tRNA multimapping” of these fragments to the mouse

genome revealed the presence of tRFs of various sizes. Inter-
estingly, consistent with a previous report on tRFs in human cell
lines (7), we observed a major difference in the size of fragments
originating from either nuclearly or mitochondrially encoded
tRNA (ntRNA and mtRNA, respectively). While the majority of
ntRNA fragments were 33 nt long, mtRNA fragments spanned a
large size range of 18 to 54 nt (Fig. 4B and SI Appendix, Fig.
S6A). This distinct pattern of fragment sizes reflected the bias in
the amounts of tRF types originating from nt- and mtRNA
(Fig. 4C and SI Appendix, Fig. S6B). We observed that the dis-
tribution of nuclear tRFs was largely skewed toward 5′tR-halves,
generated by the cleavage in the anticodon loops of mature
tRNA. However, within mitochondrial tRFs, we identified a
more uniform representation of cleaved fragments. Further-
more, we found that the relative abundance of tRF types, within
both ntRNA and mtRNA space, is not constant, but varies across
tissues (Fig. 4 C and D). The tissue-type differences are also
present across different tRNA isoacceptors and even its antico-
dons (Fig. 4D and SI Appendix, Fig. S6B). In the case of nuclear
tRFs, the vast majority of fragments in each tissue were attrib-
uted to glycine, glutamine, valine, and lysine tRNA, with the
intestine containing the largest amounts of the respective 5′tR-
halves. Since the abundance of these specific fragments has been
shown to correlate with the levels of functional angiogenin in the
cell (54), we speculate that the biological explanation of the in-
testine yielding high levels of tRFs is due to the activity of Ang4,
one of the five Ang proteins in mouse, highly expressed in
Paneth and Goblet cells of the intestinal epithelium (55, 56).
For many ntRFs, the distribution between 3′- and 5′-, tRF and

tR-halves was surprisingly shifted toward one form, i.e., one frag-
ment type was present at higher amounts than others (Fig. 4 E and
F). For the majority of fragments, we found 5′tR- or 3′tR-halves to
be the most dominant fragment type. However, in the rare cases, we
found 5′- or 3′tRFs to dominate other fragments in a tissue-specific
manner. An example of such a fragment is 5′tRF Glu-TTC, which
we found to be enriched in the pancreas, compared to other tissues
that mostly contained Glu-TTC 5′tR-halves. mtRFs followed a
similar trend of fragment shift. We found 5′tRFs of proline-
transferring mt-Tp in the heart and 5′tRFs of asparagine-
transferring mt-Tn in the liver, while within other tissues we de-
tected different fragment types of these tRNAs (Fig. 4F).

miRNAs Are Expressed in a Sex-Specific Manner. Several groups have
observed a sex bias in the levels of miRNA in blood, cancer
tissues, and human lymphoblastoid cell lines (57, 58). To inves-
tigate whether this phenomenon extends to healthy tissues, we
compared the ncRNA levels within each tissue coming from ei-
ther female or male mice. Among ∼6,000 genes assigned to
various ncRNA classes, we identified several miRNAs to be
differentially expressed between females and males (at FDR <
0.01) (Fig. 5A). Some of them are globally sexually dimorphic,
while the majority are sex-biased only within a specific tissue. In
each somatic tissue, except pancreas, we identified at least two
miRNAs differentially expressed between sexes (log2Fold-
Change > 1, normalized counts > 100, FDR < 0.01) (SI Ap-
pendix, Fig. S7 A and B). Kidney and lung contained the highest
number of sex-biased miRNAs (27 and 18, respectively), while
only two were detected in the heart, five in the muscle, and seven
in the brain (Fig. 5B and SI Appendix, Fig. S7A). Three out of
eight female-dominant miRNAs: mir-182, mir-148a, and mir-
145a, were also shown previously to be estrogen regulated
(59), while another miRNA, mir-340, was reported to be down-
regulated in response to elevated androgen levels (60). Inter-
estingly, we also found that four out of five male-specific miRNAs

in the brain are transcribed from a 5-kb region of imprinted
Dlk1-Dio3 locus on chromosome 12 (Fig. 5C).
Given the innate ability of miRNA to lower the levels of target

mRNA (61), we hypothesized that the levels of protein-coding
transcripts targeted by sex-biased miRNA would also differ
across male and female tissues. To test this hypothesis, we cor-
related the expression of sex-biased miRNAs with the levels of
their respective target mRNAs across profiled tissues (Materials
and Methods). Among the 60 anticorrelated targets (rs < −0.8,
FDR < 0.1) we identified two genes previously shown to be
sexually dimorphic (SI Appendix, Fig. S7C). Specifically, we
found miR-423, up-regulated in male lung and bone marrow, to
negatively correlate with its target, estrogen-related receptor
gamma (Esrrg) (rs = −0.9, FDR < 0.1), and female-specific miR-
340 to negatively correlate with androgen-associated ectodys-
plasin A2 receptor (Eda2r).

ncRNA-Based Tissue Classification. It is natural to wonder whether
the observed variation in ncRNA expression across tissues
(Fig. 2 B and C) would be sufficient to accurately predict the
tissue type based solely on small RNA-seq data. To address this
question, we set out to construct an algorithm that can learn the
characteristics of a healthy tissue from the data reported in the cur-
rent study and make predictions on new datasets. We limited our
analysis to miRNA, since high-throughput tissue data for other
ncRNA types is not available. We trained a support vector machine
(SVM) model (62) on datasets generated in this study, each con-
taining the expression scores for 1,973 miRNAs (SI Appendix, Fig.
S8A). As a validation dataset, we used available miRNA-seq data
released by the ENCODE consortium for multiple mouse tissues
(63). Notably, the ENCODE datasets contained data generated for
the postnatal and embryonic life stages, as opposed to the adult stage
profiled in the current study (Dataset S6). Nonetheless, our SVM
model accurately classified postnatal forebrain, midbrain, hindbrain,
and neural tube as brain tissue, as well as accurately inferred the
tissue types for heart, intestine, kidney, liver, and muscle samples,
yielding an overall accuracy of 0.96 (Materials and Methods) (see
Fig. 6A for a full list of accurately predicted tissues as well as for false
positives/negatives). For the embryonic tissues, however, our model
was able to only reach an accuracy of 0.69. This was mainly due to
inability of the model to correctly classify liver tissues instead of
assigning them to bone marrow (Fig. 6A). Strikingly, in this case, our
model accurately predicted the hematopoietic composition of the
organ, known to shift from the liver at the embryonic stages to the
bone marrow in adulthood (64), rather than the tissue type itself.
Furthermore, we identified hematopoiesis-associated miR-150 and
miR-155 (65) to have highest weights among the features defining the
bone marrow in our model (SI Appendix, Fig. S8B).
We next asked how the identified tissue expression patterns

compare to those of individual cell types. To investigate this, we
correlated our data with the miRNA data generated for primary
mammalian cells by FANTOM5 consortium (25). Comparing
mouse samples first, we found that FANTOM5 embryonic and
neonatal cerebellum tissues strongly correlated with our brain
samples (rs = 0.89 to 0.9), while erythroid cells had the strongest
correlation with spleen and bone marrow (rs = 0.93) (SI Ap-
pendix, Fig. S8C). To perform a comparison with human sam-
ples, we focused on the expression scores of 531 orthologs
detected in both the current study and the FANTOM5 samples
(SI Appendix, Fig. S8D). Spearman correlation coefficients
reflected the cell-type composition of tissues (SI Appendix, Fig.
S8E). As such, we observed that mouse bone marrow and spleen
had the highest correlation with human B cells, T cells, dendritic
cells, and macrophages (0.5 < rs < 0.6), muscle correlated the
most with myoblasts and myotubes (rs = 0.47), while brain cor-
related best with neural stem cells, spinal cord, and pineal and
pituitary glands (rs = 0.49) (SI Appendix, Fig. S8E).
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Integration of Small RNA-Seq and scATAC-Seq Data. Finally, to
deconvolute the complex noncoding tissue profiles and identify
the cell types that contribute the observed tissue-specific
ncRNAs, we integrated the sequencing data generated within
our study with a previously published single-cell ATAC-seq
atlas—a catalog of single-cell chromatin accessibility profiles

across various cell types (28). First, we compared the expression
scores predicted through ATAC-seq measurements with our es-
timates of ncRNA expression, derived from small RNA-seq. Using
the top 400 ncRNAs identified in our analysis as tissue-specific, we
correlated average ATAC-seq activity scores and ncRNA levels
across eight tissues for which both types of data were available. We
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observed a strong correlation of both measurements for the brain,
liver, and heart, and a weaker correlation for kidney and mixed
scores between spleen, bone marrow, and lung (Fig. 6B). We
found, however, that within each tissue we could attribute the

cell type of origin to a number of identified tissue-specific
ncRNA. For example, in agreement with previous studies, we
could identify that muscle-specific mir-133a-2 is expressed in car-
diomyocytes, while mir-148a is expressed in hepatocytes and duct
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cells (Fig. 6 C and D) and mir-194–2 comes from the enterocytes in
the gut (24, 25). In addition, we found that in the lung, mir-449c in
expressed in alveolar macrophages, mir-34b and mir-34c in type II
pneumocytes (Fig. 6E), and mir-155 is found in B cells and even
correlates with its maturation status (Fig. 6F). Among brain-specific
ncRNA, we identified mir-187 and mir-142 to be expressed in
microglia, mir-27b in oligodendrocytes, and mir-124a-3, mir-1983,
mir-212, and others in neurons (Fig. 6G). For the majority of brain-
specific ncRNA identified in our study, however, due to resolution
limitations of the mouse ATAC atlas data, we were unable to un-
ambiguously define the cell type of origin. To overcome that, we
analyzed a complimentary single-cell ATAC-seq dataset, generated
specifically from the mouse adult brain (obtained from 10X Ge-
nomics; Materials and Methods) and mapped the activity of the
brain-specific ncRNA to 15 cell types in the adult mouse brain
annotated by the Allen Brain Atlas (66). This analysis revealed that
among the brain-specific ncRNA, many are potentially expressed
solely in neurons, with some even being predominantly present in
either glutamatergic (Snord53, mir-802) or GABAergic (mir-3107)
neurons (Fig. 6H). Among glia-specific ncRNA, we identified

Snord17 and mir-700 in macrophages as well as mir-193a and mir-
6236 in astrocytes and oligodendrocytes.

Discussion
Small ncRNA plays an indispensable role in shaping cellular
identity in health and disease by orchestrating vital cellular
processes and altering the expression of protein-coding genes
(12). Recent efforts in profiling of the most studied types
of small ncRNA, miRNA, across cells and tissues demonstrated
the existence of tissue- and cell type-specific short noncoding tran-
scripts (16, 24, 25, 33). In this work, we show that this phenomenon
extends beyond one ncRNA class and involves not only tissue-specific
but also sex-specific ncRNA expression. The present resource
demonstrates that each healthy mammalian tissue carries a unique
noncoding signature, contributed by well-understood RNA types
as well as by less studied ones.
By analyzing the expression of several classes of ncRNA we

discovered that nearly ∼900 transcripts contribute to the unique
noncoding tissue profile. Moreover, we identified that in addition
to variable transcription levels and posttranscriptional modifi-
cations, noncoding tissue specificity is achieved through an
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unknown mechanism of selective RNA retention. While at this
point we are unable to judge the functional significance of this
phenomenon, we discovered that, even between healthy tissues,
certain miRNA undergo so-called “arm switching”—a process
previously thought to be strictly pathogenic in mammals (43, 45,
67). Among other ncRNA class, tRFs, we observed a selective
enrichment of certain fragment types over others, happening in
both gene- and tissue-specific manners. Taken together with
previous observations (7, 68, 69), this finding raises additional
questions regarding the biogenesis pathways of tRFs as well as
their tissue-specific function.
Within our study, we also report several tissue-specific miR-

NAs not identified in previous studies (Fig. 3, SI Appendix, Fig.
S4, and Dataset S7). The validation process of the identified
miRNAs brought to light several important observations. First,
we noted that the AGO-CLIP, while often used as a “gold stan-
dard” of miRNA validation (24), in fact, does not support the
existence of many miRNA independently detected within RNA-
seq datasets or directly validated through RT-qPCR. The gap
between AGO-CLIP and small RNA-seq data in terms of data
quality, diversity, and depth suggests that validating against AGO-
CLIP data may not be the optimal approach for miRNA discov-
ery. Instead, one could search for evidence of miRNA expression
within publicly available RNA-seq data as a first thresholding step
(70). Second, it is important to consider that the genomic location
of a novel miRNA might match with that of a previously anno-
tated one, while the molecule itself could be transcribed from an
opposite DNA strand. We observed this phenomenon on the de
novo identified miRNA 14_6588, whose coordinates strictly
overlap with mir-802a and that is only present in the brain.
miRNA has been previously used to train classifiers capable of

differentiating cancer/tissue types (71). Our work demonstrates that
machine learning algorithms applied to quantitative miRNA ex-
pression estimates also detect changes related to the cell-type com-
position of tissues, such as the shift in hematopoietic cell abundance
in the postnatal compared to the fetal liver. Given the emerging
evidence of ncRNA stability in the blood and its rapid propagation
throughout the body within extracellular vesicles (72), we anticipate
that the current space of markers used to noninvasively monitor
development (73) could be further expanded to small ncRNA.
Small ncRNAs have been long known to regulate the devel-

opment and function of the brain. Despite the tremendous
progress of neuroscience in understanding the regulation of
coding genes, surprisingly little is known about cell type-specific
small ncRNA in the brain. Even within the available tissue-level
ncRNA resources, the brain remains one of the most under-
represented tissue. We believe this is mostly due to technical
limitations of small RNA sequencing, which has yet to be applied
to single neurons and, so far, still relies on the robust enrichment
of certain cell types. Given the extensive molecular heterogeneity
of cell types in the brain, one would expect the diversity of
ncRNAs in this tissue to be high. Our study finds that the brain,
in fact, contains the largest number of unique mammalian
ncRNA transcripts that are absent in other tissues. However, our
knowledge of cell-specific ncRNA expression is not complete,
and thus for the majority of these identified RNA we could not
call the cell type of origin based in the data generated within
previous studies offering cell type resolution (24, 25). Taking an
alternative route and integrating our tissue-level ncRNA mea-
surement with single-cell chromatin accessibility profiles turned
out to be surprisingly informative and allowed us to infer the
activity of ncRNA within individual neuronal and glial types.
While the validation of these cell-specific transcripts through a
direct measurement remains highly desirable, the provided
ncRNA estimates indicate that ncRNA is another contributor to
complexity in the architecture of nervous system.
We found that the lung contains the largest number of distinct

small ncRNA among 11 profiled tissues. However, in the case of the

lung, open chromatin data did not provide sufficient resolution for
us to infer the cell types of origin for the majority of the transcripts.
This inability to fully explain the roots of tissue complexity points to
the need for further characterization of the ncRNAs content of
specific cell types or even, similarly to mRNA, that of single cells
(17, 74). This atlas, meanwhile, will hopefully stimulate future small
ncRNA studies and serve as a powerful resource of ncRNA tissue
identity for fundamental and clinical research.

Materials and Methods
Subject Details.
Animals. All procedures followed animal care and biosafety guidelines ap-
proved by Stanford University’s Administrative Panel on Laboratory Animal
Care and Administrative Panel of Biosafety. Wild-type C57BL/6J mice, 4
males and 10 females, aged ∼3 mo old, were used (Dataset S1).

Tissue Handling and RNA Extraction. Upon collection, tissue samples were
submerged and preserved at −80 °C in RNAlater stabilization solution
(Thermo Fisher; catalog #AM7021) until further processing. Total RNA was
isolated from ∼100 mg of tissue using Qiagen miRNeasy mini kit (catalog
#217004) and the Qiagen tissue lyser using 5-mm stainless-steel beads. RNA
integrity was assessed using Agilent Bioanalyzer using RNA 6000 pico kit
(Agilent Technologies; catalog #5067-1513).

Library Preparation and Sequencing. Short RNA libraries were prepared fol-
lowing the Illumina TruSeq Small RNA Library Preparation kit (catalog
#RS-200-0012, RS-200-0024, RS-200-0036, RS-200-0048) according to the
manufacturer’s protocol and size-selected using Pippin Prep 3% Agarose Gel
Cassette (Safe Science) in a range from 135 to 250 bp. Samples were pooled in
batches of 48 and sequenced using the Illumina NextSeq500 instrument in a
single-read, 50- or 75-base mode.

Data Processing. Sequencing reads were demultiplexed by BaseSpace (Illumina).
Reads were trimmed from the adaptor sequences and aligned to the
mouse genome (GRCm38) following ENCODE small RNA-seq pipeline (63),
with minor modifications. We used STAR v2.5.1 (75) with the following
parameters: –outFilterMismatchNoverLmax 0.04–outFilterMatchNmin 16–
outFilterMatchNminOverLread 0–outFilterScoreMinOverLread 0–alignIntronMax
1–outMultimapperOrder Random–clip3pAdapterSeq TGGAATTCTC–
clip3pAdapterMMp 0.1. We allowed incremental mismatch: no mismatches
in the reads ≤25 bases, 1 mismatch in 26 to 50 bases, and 2 in 51 to 75 bases.
Spliced alignment was disabled. We additionally filtered out reads “soft-
clipped” at the 5′-end but kept 3′-clipped ones to account for miRNA iso-
forms and tRNA modifications. We used GENCODE M20 (29) and miRBase
v22 (31) annotations to count the number of ncRNA transcripts. For snoRNAs,
snRNAs, scaRNA, miscRNA, or miRNA quantification, reads were assigned to
the respective genes using featureCounts v 1.6.1 (76) with the following pa-
rameters: -a Mus_musculus.M20.gtf -M –primary -s 1. Read spanning two over-
lapping exons were excluded. To account for the multimappers, we used -M
-primary option, which only counts a “primary” alignment reported by STAR
(either a location with the best mapping score or, in the case of equal multi-
mapping score, the genomic location randomly chosen as “primary”). This
quantification approach largely agreed with the results obtained through
mapping and quantification against the short nucleotide library (77) (SI Ap-
pendix, Fig. S9). However, it proved to be more inclusive for the reads uniquely
mapping within themiRNA exon but missing one base at the 5′ prime end of the
molecule and more strict in counting reads mapping elsewhere in the genome,
for which the levels were consistently overestimated by the other method. All
reads mapping to miRNA arms and to stem loops were used to quantify miRNA
expression at the gene level. For tRF quantification, for each library, we first
extracted reads mapped by STAR to the GENCODE-annotated tRNA within the
mouse genome (30, 78). We then ran unitas (78) on these reads and used frac-
tionated scores to compute the differences in tRF abundance across tissues.

Unsupervised Clustering and Dimensionality Reduction Analysis. Raw counts
were normalized and log-transformed using DESeq2 package. Batch effects
were corrected using limma R package (79). Hierarchical clustering was
performed using log2-transformed expression values and using complete
linkage as distance measure between clusters. We computed Euclidian dis-
tances between samples and used these values to perform the t-SNE with
the following parameters: perplexity = 20 and maximum iteration of 1,000.
Transcripts detected in one or more samples with overall log2 expression
scores <1 were excluded from this analysis.
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TSI. To compute the tissue specificity index, we used the formula described
previously in ref. 33:

TSIj = ∑N
i=1(1 − xj,i)
N − 1

,

where N is the total number of tissues measured and xj,i is the expression
score of tissue i normalized by the maximal expression of any tissue for
miRNA j.

Comparison with Available miRNA Data. To compute Spearman coefficients of
correlation between samples generated in the current study and the mouse
miRNA data generated by FANTOM5 consortium (25), we used DESeq2-
normalized scores of 2,207 annotated miRNAs. To compare miRNA expres-
sion between mouse tissues and human cell types, we generated a curated
list of miRNA orthologs, each of which contained a maximum of two mis-
matches per mature miRNA. In total, 531 miRNAs passed this criteria and
were used to compute Spearman correlation coefficients shown in SI Ap-
pendix, Fig. S8.

Differential Expression Analysis with DESeq2. We used a likelihood-ratio test
(LRT) implemented in DESeq2 (80) to compute the significance of each gene
in tissue-specific expression. Briefly, LRT compares whether the tissue type
parameter, removed in the “reduced” (∼ Batch + Sex), compared to “full”
model (∼ Batch + Sex +Tissue, in DESeq2), explains a significant amount of
variation in the data. Statistical significance of the test (P values) was calcu-
lated by comparing the difference in deviance between the “full” and “re-
duced” model to χ2 distribution. P values obtained from the LRT test were
corrected using Benjamini–Hochberg procedure to obtain an FDR estimate of
tissue specificity scores for each gene. Gene clusters in SI Appendix, Fig. S3B
were computed on 250 differentially expressed genes (Padj < 1e-90 and base
mean > 3) using DEGreport R package (81). miRNAs differentially expressed
between female and male tissues were computed based on uniquely mapping
counts (excluding multimappers), using Wald test within DESeq2. To test for
the NULL hypothesis, we performed a permutation test in which we randomly
reassigned the sex labels to 14 samples across each tissue and plotted the
distribution of DESeq2 P values computed for the two groups (i.e., female and
male) (SI Appendix, Fig. S7A). We used Benjamini–Hochberg-corrected P values
(FDR) to assess the statistical significance of the computed DE scores (Fig. 5 and
SI Appendix, Fig. S7A). The differentially expressed miRNAs were visualized on
volcano plots, where male- and female-specific miRNAs (adjusted P value <
0.01 and absolute fold change > 1) were labeled accordingly.

Analysis of Correlation between miRNA Expression and the Expression of Its
Targets. Putative miRNA target genes were extracted from TargetScan, DI-
ANA, miRanda, or mirDB databases (82, 83). Only targets present in two or
more databases were used. The gene expression scores of the respective
targets in various tissues were extracted from the ENCODE database (84)
(Dataset S7). Spearman correlation coefficients were computed between
fragments per kilobase of transcript per million mapped reads retrieved
from the ENCODE mRNA expression tables and DESeq2-normalized miRNA
counts across 10 profiled tissues using corr.test() function from “psych”
R package, and thresholded above Benjamini–Hochberg-adjusted P value
of 0.1 and Spearman correlation coefficient (−0.8 < rs < 0.8).

Identification of Identified Candidate miRNA. Candidate miRNAs were iden-
tified using miRDeep2 software (47). Only miRNAs supported by >5 reads
were reported in this study. AGO-CLIP data were mapped to the mouse
genome using STAR (same as for small RNA-seq libraries described in Data
Processing) and the reads falling within the putative miRNA coordinates
were counted using featureCounts. We counted a putative miRNA as
“supported” if it had >5 AGO-CLIP counts.

To search for the previous mentions of identified miRNAs, we looked up
their sequences in miRCarta (85) and used the Google search engine to query

the literature. Candidate miRNAs were ranked by novoMiRank scores, which
we computed as described in ref. 85.

For independent validation, we performed RT-qPCR using custom Small
RNA TaqMan probes (Life Technologies; catalog #4398987) designed on the
star consensus sequence reported by miRDeep2. We used 0.5 ng of total RNA
per tissue sample supplied with Cel-mir-39 spike-in (Qiagen; catalog
#339390) to perform the reactions in a final volume of 20 μL.

We analyzed tissue and sex specificity of identified miRNAs based on
transcripts supported by at least 50 sequencing reads across all samples.
Statistical analysis and data visualization were performed as described above
for annotated miRNAs.

miRNA-Based Classifier. We trained the radial kernel SVM model on 136
samples corresponding to different tissue types (SI Appendix, Fig. S8A) using
e1070 (86) R package. We used z scores of DESeq2 normalized counts
obtained in this study as the train dataset and those obtained from ENCODE
miRNA-seq data as the test dataset (Dataset S6). We normalized and scaled
train and test datasets separately.

To measure the predictive power of each model we used the accuracy
measure, calculated as the following:

Σ  True  positive + Σ  True  negative
Σ  True  observations

.

We tuned the SVMmodel to derive optimal cost and gamma using tune.svm()
function and searching within gamma ∈ [2̂ (−10): 2̂ 10] and cost ∈
[10̂ (−5):10̂ 3]. We tuned RF model using first random and then grid search,
with an evaluation metric set to “Accuracy.” The accuracy was computed
using 10-fold cross-validation procedure. The reported accuracy is computed
as a mean over the 10 testing sets in which nine folds are used for training
and the held-out fold used as a test set. The R script used to train the models
and compute the predictions is included in the supplement.

Comparison with scATAC-Seq Data. To compute and plot the correlations of
small RNA-seq with scATAC-seq (Fig. 6 B–G), we used Cicero “activity scores”
reported in Cusanovich et al. (28). Cicero scores were computed as described
in ref. 87. Briefly, Cicero activity score represents the summarized score of
chromatin accessibility of all sites linked to a given gene, which include
proximal sites to the gene’s transcription start site (within 500 bp of an
annotated TSS) or distal sites linked to them. Cicero scores were loaded in
Seurat v3, normalized, scaled, and averaged per cell or tissue type. To
compute the accessibility scores for the brain-specific ncRNA in Fig. 6H, we
used Cicero to derive gene activity scores from scATAC-seq data generated
by 10XGenomics for the mouse adult brain (https://www.10xgenomics.com/
10x-university/single-cell-atac/) with the chromium single-cell ATAC plat-
form, and demultiplexed and preprocessed with the single-cell ATAC Cell
Ranger platform. Using Seurat v3, we clustered the cells and merged them
with Allen Brain Atlas single-cell RNA-seq data (66) for the further transfer
of cell annotation labels. We computed the activity scores for brain-specific
ncRNA identified through small RNA-seq using cicero (87). We used Spear-
man correlation of top 400 tissue-specific genes to compute the relationship
between small RNA-seq and ATAC-seq activity scores reported in Fig. 6B.

Data Availability. The datasets generated and analyzed in the study have
been deposited in the National Center for Biotechnology Information Gene
Expression Omnibus (GEO) repository (GSE119661) (88). All study data are
included in the article and SI Appendix.
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