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Abstract
The main topic of this thesis is the study of a special class of translation surfaces called
normal origamis. The theory of translation surfaces is an active research area with appli-
cations in various fields such as dynamical systems, algebraic geometry, and geometric
group theory. Normal origamis are surfaces with a maximal symmetry group and induce
normal covers of the torus T. We focus on p-origamis, where the deck transformation
groups of the torus covers are p-groups, and answer the questions: Which strata contain
p-origamis? Does already the deck transformation group determine the stratum?

We then turn toward the study of Veech groups of certain normal origamis. These groups
are the stabilizer groups of an origami under an SL(2,Z)-action. We are especially inter-
ested in the question, whether the occurring Veech groups are congruence groups. The
SL(2,Z)-orbits on normal origamis are closely related to the group-theoretic concept of
T2-systems. We investigate this relationship and transfer group-theoretic results to the
geometric setting.

Cylinder decompositions are an important concept occurring in different contexts within
this thesis. Geminal origamis exhibit special cylinder decompositions. Apisa and Wright
asked whether geminal origamis are cyclic covers of the surface (2 × 2)-torus. We use
methods from group theory to answer this question partially.

This thesis contains results of the author’s research articles [FT20] and [The21].
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Zusammenfassung
Im Zentrum dieser Dissertation steht das Studium normaler Origamis, einer Familie von
Translationsflächen. Seit 40 Jahren sind Translationsflächen Gegenstand aktiver mathe-
matischer Forschung mit Anwendungen in diversen mathematischen Bereichen wie alge-
braischer Geometrie und geometrischer Gruppentheorie. Normale Origamis haben eine
maximale Symmetriegruppe und definieren normale Überlagerungen des Torus. Zunächst
untersuchen wir p-Origamis, d.h. normale Origamis mit einer p-Gruppe als Decktrans-
formationsgruppe. Wir beantworten die Fragen, welche Strata p-Origamis enthalten und
ob die Decktransformationsgruppe bereits das Stratum festlegt.

Des Weiteren betrachten wir Veechgruppen bestimmter normaler Origamis. Diese Grup-
pen sind Stabilisatoren eines Origamis unter einer SL(2,Z)-Wirkung. Unter anderem un-
tersuchen wir die Fragen, ob und wann die Veechgruppen normaler Origamis Kongruenz-
gruppen sind. Zudem diskutieren wir den Zusammenhang zwischen den SL(2,Z)-Bahnen
normaler Origamis und dem gruppentheoretischen Konzept der T2-Systeme.

Zylinderzerlegungen sind ein wichtiges Konzept in der Theorie der Translationsflächen,
welches wir an verschiedenen Stellen in dieser Arbeit verwenden. Geminale Origamis
sind Origamis mit sehr speziellen Zylinderzerlegungen. Unter gewissen Voraussetzungen
beantworten wir die Frage, ob geminale Origamis den (2×2)-Torus zyklisch überlagern.

Diese Dissertation enthält Ergebnisse aus folgenden Publikationen der Autorin [FT20]
und [The21].
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Chapter 1.

Introduction

This thesis connects ideas and methods from geometry and group theory. The guid-
ing theme throughout this work is to investigate certain geometric objects with large
symmetry groups by using methods from group theory. We briefly discuss the central
mathematical objects studied in this thesis: translation surfaces, normal origamis, and
Veech groups. After exhibiting the motivation of this thesis and illustrating the main
results, we briefly outline the structure of this thesis.

Central mathematical objects
This thesis chiefly studies a special class of translation surfaces called normal origamis.
Translation surfaces are closed Riemann surfaces with an additional structure given by a
translation atlas, a holomorphic 1-form, or certain gluing data. Such surfaces can be con-
structed from finitely many polygons embedded in the Euclidean plane. These polygons
are glued together along pairs of parallel edges by translations. The study of translation
surfaces dates back to the pioneering work of Masur, Smillie, and Veech in the 1980s (see
[Mas82; Vee89; KMS86]). Over the past 40 years, this study has developed into a fruit-
ful research area with connections to and applications in numerous mathematical areas,
such as algebraic geometry, dynamical systems, geometric group theory, low-dimensional
topology, and number theory.

The matrix group SL(2,R) acts naturally on the set of translation surfaces as follows.
A matrix acts on a given translation surface by applying the matrix to the edges of the
polygons that make up this surface. Since matrices in SL(2,R) map parallel edges to
parallel edges, one obtains a translation surface. We call the stabilizer of a translation
surface X under this SL(2,R)-action the Veech group of X and we denote this stabilizer
SL(X). Veech groups link the theory of translation surfaces to geometric group theory.
Furthermore, these groups are of particular interest because they detect whether the im-
age of the SL(2,R)-orbit of a translation surface induces an algebraic curve in the moduli
space of complex curvesMg. Such an algebraic curve is referred to as Teichmüller curve.
The SL(2,R)-orbit of a translation surface X defines a Teichmüller curve if and only if
the Veech group is a lattice in SL(2,R). Then, the Teichmüller curve is birational to the
quotient H/ SL(X). In other words, the Veech group recognizes the corresponding Teich-
müller curve up to birationality. See, e.g., [HS06; Zor06; Wri15] for further information
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Chapter 1. Introduction

on Veech groups and Teichmüller curves.

This thesis focuses on origamis, which are translation surfaces that are constructed by
gluing the edges of finitely many unit squares through translations. An origami acquires
a combinatorial nature from the gluing data, which can be described by two permutations
of the squares that compose it. Moreover, origamis are particularly interesting because
the Veech group of each origami is a lattice and thus each origami defines a Teichmüller
curve. If we introduce the mild assumption that the origami is reduced, its Veech group
is a finite index subgroup of SL(2,Z). As a consequence, the Veech groups of origamis
are easier to compute than the Veech groups of general translation surfaces. For example,
Schmithüsen presents an algorithm for computing Veech groups of origamis in [Sch04].
See, e.g., [Sch05; HS06; Zor06; Wri15] for further information about origamis.

Investigating a special class of origamis called p-origamis with methods from the theory of
p-groups was the starting point for this thesis. For this, topological covers are a powerful
tool because they link the geometry of origamis to group theory. Each origami O naturally
defines a torus cover O → T by sending each of the unit squares to the torus T (obtained
by gluing the parallel edges of a unit square). This cover can be ramified over one point. If
the cover is ramified, the preimages of the ramification point can have a cone angle which
is larger than 2π. We call such points (with cone angle larger than 2π) singularities.
Further, call the degree of a cover O → T the degree of the origami O. We specifically
examine origamis that induce a normal cover. These origamis are called normal or regular
origamis and have a maximal symmetry group. Here, we consider deck transformations
as symmetries. If the deck transformation group of a normal origami is a p-group, we call
the origami a p-origami. Prominent p-origamis that have been intensively studied are, for
instance, the “eierlegende Wollmilchsau” surface (see [HS08; For06; AN20; Möl11]) and
certain dihedral origamis, also known as escalator origamis, (see [Zmi11, Section 4.2.2]
and [SW17, Example 7]).

Motivation
The motivation for this thesis is the study of geometric objects with maximal symmetry
group. A natural question asks how the symmetry group of a normal origami influences
its geometric properties. This thesis considers certain geometric aspects such as the types
of singularities and the Veech group of a normal origami.

We mainly focus on p-origamis, whose definition originates from origamis such as the
“eierlegende Wollmilchsau” surface (see [HS08; For06] and Example 2.2.3), which is a
p-origami for the prime number p = 2. This surface has the quaternion group as deck
transformation group and SL(2,Z) as Veech group. Furthermore, it is one out of two
translation surfaces whose SL(2,R)-orbit induces not only a Teichmüller curve in the
moduli space of complex curves but also a Shimura curve in the moduli space of abelian
varieties. Consequently, its Teichmüller curve has an extraordinary dynamical behavior
(see [AN20; Möl11]). The “eierlegende Wollmilchsau” has often served as an important
counterexample in the study of translation surfaces. Recently, Apisa and Wright intro-
duced a specific family of origamis generalizing the “eierlegende Wollmilchsau”, called
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geminal origamis, and studied GL(2,R)-orbit closures of these origamis (see [AW21a]).
Investigating expedient examples of translation surfaces and origamis has played an es-
sential role in the theory of translation surfaces. We discover origamis with interesting
properties by studying p-origamis.

This thesis is inspired by results that have been achieved studying normal origamis and
normal covers of translation surfaces. Normal origamis were studied in the dissertations
of Zmiaikou and Kremer (see [Zmi11; Kre09]). Zmiaikou studied normal origamis from
a similar perspective by identifying a normal origami with a pair of deck tranformations
generating the deck transformation group. He focused on normal origamis whose deck
transformation group is, for example, an alternating group. This thesis focuses on normal
origamis whose deck transformation groups have prime power order and uses the theory of
p-groups to study these surfaces. Zmiaikou also investigated the GL(2,Z)-action of specific
origamis and examined the relationship between normal origamis and certain origamis
that are not normal. Kremer considered normal origamis from another perspective and
concentrated on questions motivated from algebraic geometry. For instance, he studied
whether there exist normal origamis with isomorphic deck transformation group that
define different Teichmüller curves. Kremer answered this question for groups up to order
250. We use his results to derive examples at several points in this thesis.

Further inspiration originates from results that concern either families of normal origamis
or generalizations of normal origamis. Herrlich introduced characteristic origamis, which
are normal origamis whose Veech group equals SL(2,Z) (see [Her06]). He described a con-
struction that, for each origami O, gives a characteristic origami O′ and a cover O′ → O.
In addition, he studied Teichmüller curves defined by characteristic origamis. In [Bau05],
a characteristic origami of degree 108 was examined intensively using similar methods
from group theory and covering theory as the methods used in this thesis. A generaliza-
tion of normal origamis, called quasi-regular origamis, was studied by Matheus, Yoccoz,
and Zmiaikou in [MYZ14]. Given that normal origamis are also called regular origamis,
normal origamis are quasi-regular origamis satisfying an additional property. They used
elementary representation theory to examine the connection between the automorphism
group of an origami and the Lyapunov exponents of a dynamical system related to the
origami. In this work, we study the sum of non-negative Lyapunov exponents of normal
origamis using a combinatorial formula which was introduced in [EKZ14].

Finally, we refer to the dissertations [Kar20] and [Fin13]. Karg investigated the coarse
geometry of countable infinite normal covers of translation surfaces. Such an infinite cover
is quasi-isomorphic to a certain Cayley graph of the corresponding deck transformation
group. Finster studied finite covers of translation surfaces. She connected the Veech
group SL(X) of a finite translation surface X to the Veech group of finite covers of the
surface X.

Veech groups have played an essential role in the theory of translation surfaces since the
groundbreaking work of Veech [Vee89]. He related properties of the Veech group to prop-
erties of trajectories in the context of mathematical billiards in this article. Even though
Veech groups have been intensively studied, fundamental questions remain unanswered:
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Chapter 1. Introduction

(1) Which Fuchsian groups occur as Veech groups of translations surfaces? (2) When
are the Veech groups of translation surfaces congruence subgroups, and when are they
far from being congruence subgroups? Partial results have been achieved considering
congruence subgroups and origamis. On the one hand, Schmithüsen showed that almost
all congruence groups of prime level appear as Veech groups (see [Sch05]). Furthermore,
Ellenberg and McReynolds showed in [EM12] that all finite index subgroups of the prin-
cipal congruence group Γ(2) containing the matrix −I occur as a Veech group. On the
other hand, Hubert and Lelièvre studied the situation in the stratum H(2) (see [HL05]).
They proved that, except for the Veech group of one origami, all occurring Veech groups
are not congruence groups. Weitze-Schmithüsen introduced the deficiency of finite index
subgroups of SL(2,Z), which measures how far a subgroup is from being a congruence
subgroup (see [Wei13]). If the deficiency of a group Γ is as large as possible, i.e., Γ sur-
jects onto each SL(2,Z/nZ) for each natural number n, we call Γ a totally non-congruence
group. In [Wei13] and [SW18], properties of subgroups of SL(2,Z) are presented which
imply that these groups are totally non-congruence groups. However, these results do not
fully answer the aforementioned questions. In this thesis, we are particularly interested
in the question when Veech groups of normal origamis are congruence groups and totally
non-congruence groups, respectively.

Main results
A central topic of this thesis investigates the number and types of singularities of p-
origamis. For this, we define the stratum Hg(k1 × a1, . . . , km × am) as the set of all
translation surfaces of genus g with ki singularities of multiplicity ai + 1 for 1 ≤ i ≤ m.
Here, the multiplicity ai + 1 of a singularity describes the cone angle at the singularity,
which equals 2π·(ai+1). The strataHg(k1×a1, . . . , km×am), ai, ki ∈ Z+, stratify the space
of translation surfaces of genus g. We often omit the index g. One computes as follows
in which stratum a normal origami is contained. Each normal origami is determined by
its deck transformation group G and a particularly chosen pair of generators (x, y) of G.
This description allows us to examine such origamis using group theory. If G has order
d and the commutator of x and y has order a, then the corresponding origami lies in the
stratum H(d

a
× (a− 1)) (see Remark 2.2.10).

We prove a precise characterization in which strata p-origamis occur. As for many ques-
tions in the theory of p-groups, we obtain two fundamentally different situations for the
even prime 2 and for all odd primes.

Theorem A (Theorem 3.2.3, Theorem 3.2.7) Let n ∈ Z≥0. Then any p-origami of
degree pn has either no singularity and genus 1, or lies in one of the following strata:

• H
(
2n−k ×

(
2k − 1

))
, for 1 ≤ k ≤ n− 2, if p = 2,

• H
(
pn−k ×

(
pk − 1

))
, for 1 ≤ k < n

2 , if p > 2.

Moreover, all of these strata occur.
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If we consider an abelian 2-generated p-group, the commutator of any pair of generators
is trivial. Consequently, all p-origamis with abelian deck transformation group are tori
and lie in the same stratum. This raises the question which p-groups behave in the same
manner, i.e., for which p-groups G lie all p-origamis with deck transformation group G
in the same stratum. We prove that far beyond the abelian case, the deck transforma-
tion group determines a unique stratum – one which is independent of the choice of the
generators x, y – in many more situations.

Theorem B (Theorem 3.2.11) Many deck transformation groups of prime-power order
admit only one possible stratum for their p-origamis, including all p-groups G which are
regular, of maximal class, powerful, or those whose commutator subgroup G′ is regular,
powerful, or order-closed. This includes all p-groups of order up to pp+2 or of nilpotency
class up to p.

These results on strata of p-origamis are achieved using various methods from group
theory. First, we derive results on the possible exponent of the commutator subgroup,
which contains the commutator [x, y] for each pair of generators (x, y). We then show that
these exponents can always be realized as commutator orders of pairs of generators. This
yields a complete characterization of the possible orders of the considered commutators
for p-groups and forms the group-theoretic analogue of Theorem A:

Theorem C (Proposition 3.1.2, Proposition 3.1.4, Proposition 3.1.5, Proposi-
tion 3.1.8)

1. For any finite 2-group G, exp(G′) = 1 if |G| ≤ 2, or else exp(G′) ≤ |G|
4 .

2. For all integers n ≥ 2 and 0 ≤ k ≤ n − 2, there exists a 2-generated 2-group G of
order 2n with generators x, y such that

ord([x, y]) = exp(G′) = 2k.

3. For any non-trivial finite p-group G with odd prime p,

exp(G′)2 < |G|.

4. For any odd prime p and any n, k ∈ Z≥0 with k < n
2 , there exists a 2-generated

p-group G of order pn with generators x, y such that

ord([x, y]) = exp(G′) = pk.

We similarly translate the question, when the deck transformation group determines the
stratum of a p-origami (as partially answered in Theorem B), into a group-theoretic
problem. This geometric phenomenon corresponds to the property of a p-group, that the
commutator order is a fixed number for all pairs of generators. We call this property (C)
and we prove with Theorem B that many, but not all p-groups have property (C). For
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Chapter 1. Introduction

this, we consider various well-known classes of p-groups such as regular, powerful, order-
closed, and power-closed p-groups as well as p-groups of maximal class. In Section 3.1.2,
the precise definitions of these properties are introduced. The proven implications are
summarized in the following diagram (Theorem 3.1.29). This diagram forms the group-
theoretic basis for Theorem B.

G regular

G order-closed

G power-closed

G′ regular

G′ order-closed

G′ power-closed

G′ weakly
order-closed

G′ weakly
power-closed

G maximal class G powerful

G′ powerful

G has property (C)

Here, the thick arrows on the right represent the new implications proved in this thesis.
The other implications are established facts in the theory of p-groups.

A rather new branch in the field of translation surfaces studies infinite translation sur-
faces. These surfaces are constructed of countably infinitely many polygons that are glued
along pairs of parallel edges by translations (see, e.g., [Ran16; DHV]). Infinite translation
surfaces occur for instance as infinite covers of finite translation surfaces (see, e.g., [HS10;
HW12; HW13; HHW13]). Karg studied in [Kar20] the geometry of infinite normal covers
of finite translation surfaces. In this thesis, we study the singularities of infinite normal
origamis, which are infinite normal torus covers ramified over one point. We focus on
infinite normal origamis with dense subgroups of profinite groups as deck transforma-
tion groups. The infinite staircase origami is a well-known example and has the infinite
dihedral group as deck transformation group (see [HS10; HHW13]). After generalizing
the definition of property (C) to profinite and pro-p groups, we transfer results from the
setting of finite p-groups to these new situations.

Theorem D (Proposition 3.3.8) A topologically 2-generated pro-p group Ĝ has prop-
erty (Cpro) if Ĝ′ is either weakly order-closed or powerful.

As in the case of finite p-groups in Theorem B, the group-theoretic results have a geometric
interpretation concerning the singularities of infinite normal origamis.

The second main topic of this thesis centers around Veech groups of normal origamis. We
are particularly interested in the following questions: When are the Veech groups of normal
origamis congruence subgroups, and when are they far from being congruence subgroups?
On the one hand, we study the Veech groups of infinite families of 2-origamis. On the
other hand, we prove that certain properties of the deck transformation group imply that
the Veech group of the corresponding normal origami is a totally non-congruence group,
i.e., the Veech group surjects onto SL(2,Z/nZ) for each natural number n ∈ Z+.
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Starting point for the example series of 2-origamis, that we study, is the class of Pen-
rose stairs origamis with dihedral groups as deck transformation groups. Penrose stairs
origamis have been studied in [Zmi11, Section 4.2.2] and [SW17, Example 7] under the
names dihedral origamis and escalator origamis, respectively. We determine all 2-origamis
with these deck transformation groups and compute their Veech groups. On the basis
of dihedral groups, we then construct various infinite families of 2-groups of the form
H(m,k) = C2m o C2k , e.g., generalized dihedral groups and all semidirect products for
k = 1. For each of the infinite families of groups H(m,k), we determine all 2-origamis with
H(m,k) as deck transformation group and show that the group SL(2,Z) acts transitively on
these 2-origamis. Given a 2-origami O with deck transformation group H(m,k), we there-
fore obtain the index of the Veech group SL(O) in SL(2,Z) as the number of all 2-origamis
with deck transformation group H(m,k). Although the group structure of the considered
deck transformation groups is very similar, the indices of the corresponding Veech groups
differ much. Subsequently, we prove that the Veech groups of the considered origamis are
all congruence subgroups of SL(2,Z) and we compute their congruence level. We conclude
the construction of example series by considering an infinite family of 2-groups such that
each group has the quaternion group as a quotient. As a consequence, the corresponding
2-origamis are covers of the “eierlegende Wollmilchsau”. The results obtained for this
family of origamis resemble the ones for the other example series. We summarize the
results on the Veech groups of the 2-origamis under consideration in Table 1.1.

deck transformation group G D2m Am Bm Wm G2
(n,k)

range of parameters m ∈ Z+ m > 2 m > 2 m > 1 1 ≤ k ≤ n− 3
order of G 2m 2m+1 2m+1 22m−1 2n

order of O(G) 3 6 3 · 2m−2 3 · 2m−2 3 · 2n−k−3

Is SL(2,Z)-action
transitive on O(G)?

yes yes yes yes yes

index of Veech
group in SL(2,Z)

3 6 3 · 2m−2 3 · 2m−2 3 · 2n−k−3

Is Veech group a
congruence group?

yes yes yes yes yes

Congruence level
of Veech group

2 2 2m−1 2m 2n−k−2

Table 1.1.: This table shows some of the results for the families of normal origami studied in
Section 4.1.

A connection between translation surfaces and dynamical systems enables us to derive
information on the Lyapunov exponents of certain dynamical systems from the results
on the considered Veech groups. Lyapunov exponents of the Kontsevich-Zorich cocycle
describe the behavior of the Teichmüller flow, which is a dynamical system related to
translation surfaces, and have been intensively studied (see, e.g., [Möl11; EKZ11; FMZ11;
EKZ14; MYZ14; Esk+18; Api21]). Eskin, Kontsevich, and Zorich introduced a combi-
natorial formula for the sum of non-negative Lyapunov exponents for origamis in [EKZ14].
We simplify this formula in the case of normal origamis and compute the sum for all
families of 2-origamis that we considered previously. For this, we use the results regarding
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Chapter 1. Introduction

the SL(2,Z)-orbits. Finally, we prove that the sum of non-negative Lyapunov exponents
is always an integer for the constructed example series. However, this is an exceptional
behavior and we provide an example of a 2-origami where this is not the case. We
summarize the results on the sums of non-negative Lyapunov exponents in Table 1.2.

Deck group of range of parameters sum of non-negative
normal origami Lyapunov exponents

Am m > 2 3 · 2m−3

Bm m > 2 2m−3 + 1
Wm m ∈ Z+ 3−1 · (2m−1 + 1)
G2

(n,k)
n−3

2 ≤ k ≤ n− 3 3−1 · (2n−2 + 22k+3−n)
G2

(n,k) 1 ≤ k < n−3
2 3−1 · (2n−2 + 22k+3−n − 2n−2k−2

+22 +∑n−2k−4
j=1 22k+4+j−n)

Table 1.2.: This table shows the sums of non-negative Lyapunov exponents of the normal
origamis studied in Section 4.1.2.

As shown in Table 1.1, the Veech groups of all considered 2-origamis are congruence
groups. We present conditions on the deck transformation group of a normal origami
such that the Veech group is a totally non-congruence group.

Theorem E (Theorem 4.2.9) Let a, b, c ∈ Z≥0 be pairwise coprime and G = 〈x, y〉 be a
finite group with a = ord(x), b = ord(y), and c = ord(xy). The Veech group of the normal
origami (G, y, x) is a totally non-congruence group.

Finally, we study two mathematical objects that are closely related to normal origamis.
We first discuss the relationship between the concept of T2-systems from group theory and
the SL(2,Z)-orbits on the set of normal origamis O(G) with fixed deck transformation
group G. For a finite group G, we consider the set E(G) that consists of all pairs of
generators of G, i.e., E(G) = {(x, y) | 〈x, y〉 = G}. The T2-systems are the orbits on the
set E(G) under a group action. Neumann and Neumann introduced T2-systems, and more
generally Tk-systems for natural numbers k, in [NN51]. Recent interest in Tk-systems is
caused by the connection to the Product Replacement Algorithm (PRA) (see, e.g., [Pak01]
and [GS09]). The PRA is used to construct random elements in finite groups and was
analyzed in [Cel+95].

Given a finite group G, denote the number of T2-systems by n. We discuss that the
number of SL(2,Z)-orbits on the set of normal origamis O(G) lies between n and 2n.
Using results from literature about T2-systems, we then derive conclusions about the
number of SL(2,Z)-orbits on the set of normal origamis with fixed deck transformation
group.

At last, we examine a class of translation surfaces that we call geminal origamis. These
surfaces were introduced in [AW21a] and are origamis with exceptional cylinder decompo-
sitions. The study of geminal origamis is related to GL(2,R)-orbit closures of translation
surfaces and motivated by work of Mirzakhani and Wright (see [MW18]). A prominent
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example for a geminal origami is the previously mentioned surface called “eierlegende
Wollmilchsau”. Apisa and Wright define a family of geminal origamis which generalize the
“eierlegende Wollmilchsau” and have higher dimensional GL(2,R)-orbit closures. Geminal
origamis define not only a cover of the torus T but also a cover of the (2 × 2)-torus
T[2] which is ramified over up to four points of T[2] (see [AW21a]). Given a geminal
origami O, Apisa and Wright asked the question whether the induced cover O → T[2] is
normal with a cyclic deck transformation group (see [AW21a, Problem 8.16]). We discuss
the connection between this geometric question and a group-theoretic question regarding
stabilizer subgroups in a symmetric group. Subsequently, we use the group-theoretic
framework to prove the following theorem.

Theorem F (Theorem 6.3.1) Let O be a geminal origami which induces a normal cover
O → T[2] then the deck transformation group of this cover is cyclic.

1.1. Outline

This thesis is organized as follows. Chapter 2 provides the mathematical preliminaries
for translation surfaces, normal origamis, and Veech groups, which are needed in the
subsequent chapters.

In Chapter 3, we explore two questions: (1) In which strata do p-origamis occur? (2)
Do all p-origamis with isomorphic deck transformation groups lie in the same stratum?
To answer these questions, we first introduce results on p-groups in Section 3.1. Sec-
tion 3.1.1 contains the results that are used to classify which strata contain p-origamis.
In Section 3.1.2, we study a group-theoretic property, which we call property (C). A
group G has property (C) if and only if all p-origamis with deck transformation group
G lie in the same stratum. Applying the results from Section 3.1.1 and Section 3.1.2,
we answer the aforementioned questions in Section 3.2.1 and Section 3.2.2, respectively.
Finally, we discuss infinite normal origamis in Section 3.3. We provide a construction of
infinite normal origamis using inverse systems of finite groups and profinite groups. By
generalizing property (C) to profinite groups, we transfer some results from Section 3.1.2
and Section 3.2.2 into the setting of infinite normal origamis.

Chapter 4 addresses the study of Veech groups of normal origamis. In Section 4.1, we ex-
amine infinite families of 2-origamis with certain deck transformation groups and the Veech
groups of these 2-origamis. Section 4.1.1 focuses on the study of the Veech groups of the
considered 2-origamis. We then apply these results to compute the sum of non-negative
Lyapunov exponents for these normal origamis. Section 4.1.2 presents these results. All
normal origamis considered in Section 4.1 have Veech groups that are congruence groups.
In Section 4.2, we investigate which properties of deck transformation groups of normal
origamis indicate that the corresponding Veech groups are totally non-congruence groups,
i.e., they are as far from being a congruence subgroup as possible.

Chapter 5 considers the concept of T2-systems from group theory. The number of SL(2,Z)-
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orbits on the set of normal origamis with fixed deck transformation group is closely related
to the number of T2-systems. In Section 5.1, we discuss this relationship. In Section 5.2,
we use results from literature about T2-systems to derive conclusions about the number of
SL(2,Z)-orbits on the set of normal origamis with a fixed deck transformation group.

In Chapter 6, we study geminal origamis. These surfaces exhibit exceptional cylinder
decompositions. Furthermore, geminal origamis define not only a cover of the torus T but
also a cover of the (2× 2)-torus T[2]. This cover of T[2] is ramified over up to four points.
In Section 6.1, we explain the connection between a geometric question regarding geminal
origamis and a group-theoretic question regarding stabilizer subgroups in a symmetric
group. We use the group-theoretic framework to study the case when a geminal origami
is a normal cover of T[2] in Section 6.3.

Chapter 7 identifies an outlook on open questions that arose during the process of writing
this thesis and that require additional research.

In the last chapter, we describe code that was used to obtain the results presented in this
thesis. The code has been published in [FT20].

1.2. Previously published content

Parts of this thesis have been published in the articles [FT20] and [The21].

• Chapter 1 is partially based on the article [FT20].

• Chapter 2 is partially based on the articles [FT20] and [The21].

• Chapter 3 is based on the article [FT20].

• Section 4.2 is based on the article [The21].

• Appendix A is based on the article [FT20].

The article [FT20] has been accepted for publication in Mathematische Nachrichten. This
article as well as the content of Chapter 6 result from a collaboration with Johannes Flake.
Both, Johannes Flake and I, contributed to these projects likewise.
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Chapter 2.

Preliminaries

This chapter provides the preliminaries needed in the subsequent chapters of this thesis.
We focus on the main concepts regarding translations surfaces, normal origamis, and
Veech groups. All results presented in this chapter are well-known facts. Proofs are
included, whenever it serves the exposition of this thesis.

We use [HS06], [Zor06], [Wri15], and [Kar20] as main references for well-known facts
about translation surfaces. The dissertations [Zmi11] and [Kar20] serve as references on
normal origamis. Furthermore, we refer the interested reader to [For91] for background
knowledge about covers.

2.1. Translation surfaces and origamis

In this section, we introduce fundamental concepts regarding translation surfaces and
origamis. There are three equivalent ways to define a translation surface. We discuss two
possible definitions in detail because both points of view are relevant for this thesis. We
follow the notation from [Kar20] in this section.

Let P denote a finite set of polygons in the Euclidean plane and let E(P) denote the
edges of the polygons. It is important to fix an orientation of the plane and view the
polygons and their edges as embedded objects in the Euclidean plane. Given a bijective
map g` : E(P) → E(P) with the property that for each edge e the edges e and g`(e)
are parallel, of equal length, oppositely oriented, and not equal. We call the map g`
gluing map and two edges e and g`(e) partner edges. The requirement that partner
edges e and g`(e) are parallel and of equal length implies that the edges differ by a
translation. The requirement that the edges have opposite orientation is necessary to
ensure that identifying edges e and g`(e) via the corresponding translation in the disjoint
union ⊎P∈P P defines an oriented surface. More precisely, the gluing map defines a relation
on E(P)× E(P) and the surface X is defined as the quotient space⊎

P∈P
P/ ∼g` .
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We have now introduced the necessary objects to define a translation surfaces.

Definition 2.1.1

• Let P , E(P), g`, and X be as above. If the surface X is connected, we call it a
(finite) translation surface.

• The cone angle at a point x ∈ X is 2π · a for some natural number a. The mul-
tiplicity of x is defined as a and denoted by mult(x). A singularity is a point
of X which originates from a vertex of a polygon in P and has multiplicity larger
than 1. Let Σ denote the set of singularities. Define the order of a singularity x as
mult(x)− 1 and denote it by ord(x).

Example 2.1.2 The following figure shows a translation surface which is constructed out
of one polygon by gluing opposite edges. All vertices of the polygon are identified in the
translation surface.

Figure 2.1.: This translation surface has one singularity of order 2 and lies in the stratum
H(2). Edges with the same labels are identified by translations.

Given a translation surface, we consider the surface as unchanged if we cut a polygon in
P along a straight line and glue it back along a partner edge. We call this a cut and
glue operation. This operation induces an equivalence relation on the set of translation
surfaces. From now on, we consider translation surfaces up to this equivalence relation.
Accordingly, we call two translation surfaces X and X ′ equal if we obtain X ′ from X by
finitely many cut and glue operations. In Figure 2.2, we give an example.

=

Figure 2.2.: This figure shows two translation surfaces. In both cases, the opposite edges are
identified. The right surface is obtained from the left one by cutting along the red and green

edges and gluing the parts along the partner edges.
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Definition 2.1.3 Let ai and ki be natural numbers for 1 ≤ i ≤ m. Then, the stratum
H(k1 × a1, . . . , km × am) consists of all translation surfaces with ki singularities of mul-
tiplicity ai + 1 for 1 ≤ i ≤ m. We omit the parameter ki in this notation if it equals 1.
Denote the set of translation surfaces without a singularity, i.e., the set of tori, by H(0).

Remark 2.1.4 If we allow countable infinitely many polygons in the definition of a
translation surface, we obtain infinite translation surfaces. In this case, the quotient
space ⊎P∈P P/ ∼g` can have two further types of singularities which are called infinite
angle singularities and wild singularities. For more details, see, e.g., [Kar20] or
[Ran16]. We focus on the study of finite translation surfaces in this thesis and consider
infinite origamis only in Section 3.3. Unless stated otherwise, we assume that a translation
surface is finite.

The Euclidean metric on the plane R2 induces a metric on X \Σ which can be completed
to a metric on X. By this, we obtain notions as directions, length, and geodesic on
translation surfaces inherited from the ones on the Euclidean plane.

Definition 2.1.5 Let X be a translation surface. A saddle connection of X is a
geodesic with singularities as start and end point that does not contain a singularity in
its interior.

Instead of defining the translation structure of a translation surface via gluing data of
polygons, we can also define the translation structure using a translation atlas. We start
with a connected surface X. Consider an atlas A of X with charts ϕi : Ui → R2. In
particular, the sets (Ui)i∈Z+ form an open cover of X and the maps ϕi : Ui → ϕi(Ui)
are homeomorphisms. We call the atlas a translation atlas if the transition maps
ϕj ◦ ϕ−1

i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) are locally translations, i.e., of the form x 7→ x + b
for some b ∈ R2. The following definition is equivalent to Definition 2.1.1.

Definition 2.1.6 A translation surface is a tuple (X,Σ,A), where Σ is the smallest
discrete subset of a compact surface X such that A is a maximal translation atlas on
X \ Σ.

Pulling back the Euclidean metric of R2, we obtain a metric on X which coincides with
the metric which was introduced in the polygon construction. The singularities are the
elements of the set Σ. Two translation surfaces (X,Σ,A) and (X ′,Σ′,A′) are equivalent
if there exists a homeomorphism ψ : X → X ′ which induces translations in the charts
and satisfies ψ(Σ) = Σ′. This induces an equivalence relation on the set of translation
surfaces which coincides with the equivalence relation defined via cut and glue operations
in the polygon construction. Recall that we consider translation surfaces only up to
equivalence. From now on, we often denote the translation surface by X and omit the
tuple (X,Σ,A).

Equivalently, one can define a translation surface as a closed Riemann surface together
with a (non-trivial) holomorphic one-form. Here, the singularities are the zeros of the
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one-form and the order of a singularity coincides with the order of the corresponding
zero. We refer the interested reader to [DHV, Chapter 1] for further details on this point
of view and a proof of the fact that all three definitions are indeed equivalent.

We now turn toward certain maps between translation surfaces.
Definition 2.1.7 An affine homeomorphism α : X → X ′ between two translation
surfaces is a homeomorphism respecting the sets of singularities, i.e., α(Σ) = Σ′. In
addition, it is locally of the form x 7→ Ax+b for x ∈ X \Σ and some A ∈ GL(2,R), b ∈ R2.

Let α be an affine homeomorphism as in the definition above. The matrix A is independent
of local coordinates. It is called the derivative of α and denoted by Dα. See, e.g., [Sch05,
Section 1.3] for further information on the derivative map.
Definition 2.1.8 A translation α : X → X ′ between two translation surfaces is an
affine homeomorphism whose derivative Dα equals the identity matrix. If a topological
cover of translation surfaces is locally a translation, i.e., of the form x 7→ x+ b for b ∈ R2,
we call it a translation cover.

This thesis focuses on the study of translation surfaces which can be constructed from
finitely many unit squares. Such surfaces are called origamis or square-tiled surface.
Definition 2.1.9 A translation surface that is constructed from finitely many unit squares
is called an origami or a square-tiled surface. The degree of an origami is defined as
the number of squares it is constructed of.

Each origami O defines naturally a translation cover O → T of the torus T by sending
each unit square to T. This cover is at most ramified over one point denoted by ∞ and
the singularities are preimages of the point ∞. Note that the degree of an origami equals
the degree of the corresponding torus cover.
Example 2.1.10 The following origami induces a torus cover of degree 4. Edges with
the same labels are identified.

∞ ∞

∞ ∞

Figure 2.3.: An origami with one singularity of order 2, i.e., it lies in the stratum H(2).

Consider two origamis Oi and the induced covers ci : Oi → T for 1 ≤ i ≤ 2. In topology,
these covers are called equivalent if there exists a homeomorphism α : O1 → O2 such
that c1 = c2◦α. As c1 and c2 are translation covers, the homeomorphism α is a translation
and the origamis are equal.
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2.2. Normal origamis and p-origamis

The main goal of this thesis is to consider origamis with maximal symmetry group and
to examine the connection between properties of the symmetry group and geometric
properties of origamis in this case. In our context, we consider deck transformations as
symmetries.

Let c : O → T be the cover induced by an origami O of degree d. The deck trans-
formation group of the origami consists of all homeomorphisms α : O → O such that
c ◦ α = c.

Definition 2.2.1

• An origami O is called normal (or regular) if the cover c : O → T is normal,
i.e., the deck transformation group acts transitively on the squares the origami O
consists of.

• Let p be a prime number. An origami is called p-origami if it is normal and the
deck transformation group of the corresponding cover is a finite p-group.

2.2.1. Monodromy maps

The concept of monodromy maps will be essential in the course of this thesis. It relates
properties of a normal origami to group-theoretic properties of its deck transformation
group. We consider the corresponding unramified cover of the once punctured torus
c∗ : O∗ → T∗, where O∗ = O \ c−1(∞) and T∗ = T \ {∞}. Recall that the fundamental
group π1(T∗) is the free group F2 on two generators. We choose a base point q on T∗
which lies in the interior of the unit square from which T∗ is constructed and not on an
edge of this unit square. Label the preimages of q (under c) by q1, . . . , qd. In particular,
in each square lies exactly one point qi for 1 ≤ i ≤ d. Label this square by si. Denote
the simple closed horizontal and vertical curve on T∗ passing through q by a and b,
respectively. These two curves generate the fundamental group F2. The monodromy
map µ : F2 → Sym(d), w 7→ σ−1

w is a homomorphism defined as follows: A word w ∈ F2
describes a path f on T∗. For 1 ≤ i ≤ d, one obtains a lifted path f̃i of f on O∗ starting at
the point qi. Set σw(i) := j, if the path f̃i ends at the point qj. This defines a permutation
σw ∈ Sym(d). To obtain a homomorphism, one needs to invert this permutation in the
definition of the monodromy map µ. The origami O is determined by the permutations σa
and σb. These permutations describe the horizontal and vertical gluing of the d squares.
Note that σa and σb depend on the numbering of the d squares. Renumbering the squares
corresponds to conjugating σa and σb simultaneously with a permutation in Sym(d).

Let c : O → T be the cover induced by a normal origami and denote the deck trans-
formation group of O by G. We can modify the codomain of the monodromy map in
this case. For this, we fix a preimage of q under the covering map, say q1. Note that
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the degree of the cover is the order of the deck transformation group and for each point
qi there is a unique deck transformation sending the point q1 to qi. We define the map
µG : F2 → G,w 7→ gw. Here, gw is the unique deck transformation mapping the point q1
to the end point of the lift of w to O starting at q1. We do not invert gw in the definition of
µG as in the definition of µ because the deck transformation group G of the cover O → T
is anti-isomorphic to the quotient of the corresponding fundamental groups. Choosing,
instead of q1, a different preimage of q as reference point corresponds to simultaneous
conjugation with a deck transformation in the definition of µG. For further details, see,
e.g., [Kar20, Sections 2.6 and 3.2].
Lemma 2.2.2 (see, e.g., [Zmi11, Section 4.1] or [Kar20, Sections 3.2 and 3.3])
The following holds:

(i) A finite 2-generator group G together with an (ordered) pair of generators of the
group G determines a normal origami with deck transformation group G.

(ii) A normal origami is uniquely determined by its deck transformation group G and
the two deck transformations µG(a) and µG(b).

Proof (i) Given a 2-generator group G of order d together with generators x and y, we
can construct a normal origami of degree d as follows. Take d squares labeled by the
group elements. The right and upper neighbor of a square labeled by g in G is the one
with label gx and gy, respectively. This construction data defines an origami of degree d
with deck transformation group G. Since x and y generate G, the group acts transitively
on the squares and thus the cover is normal. For further details on this construction, see
[Kar20, Section 3.2].

(ii) Given a normal origami O with deck transformation group G and the induced cover
O → T. Consider the deck transformations x := µG(a) and y := µG(b). These deck
transformations represent passing from the square labeled by the identity element of G to
its right and upper neighbor, respectively. The deck transformation group G is generated
by x and y. The procedure described in (i) reconstructs the origami O from the data
(G, x, y) (up to equivalence). �

Example 2.2.3 We consider the quaternion group

Q8 :=
〈
i, j, k | i2 = j2 = k2 = ijk, i4 = 1

〉
with (i, j) as the pair of generators. The group Q8 can be viewed as a group of units in
the quaternion division algebra, where ijk = −1. Following the construction described in
Lemma 2.2.2 (i), we obtain the 2-origami W with deck transformation group Q8 shown
in Figure 2.4. This origami is called “eierlegende Wollmilchsau”. It is a well-known
and extensively studied example (see [HS08; For06]).

Recall that origamis c1 : O1 → T and c2 : O2 → T are equivalent if there exists a
homeomorphism α : O1 → O2 such that c1 = c2 ◦ α. Further, we consider equivalent
origamis as equal. It is natural to ask when different pairs of generators of a given group
describe the same origami. The following lemma answers this question.
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1 i −1 −i

j

−k k

−j

Figure 2.4.: The “eierlegende Wollmilchsau” is a 2-origami of degree 8 with 4 singularities of
cone angle 4π. It lies in the stratum H(4× 1).

Lemma 2.2.4 (see, e.g., [Zmi11, Lemma 4.2] or [Kar20, Lemma 2.4]) Let O1 and
O2 be normal origamis with deck transformation group G defined by pairs of generators
(x1, y1) and (x2, y2), respectively. Let µi : F2 → G with µi(a) = xi and µi(b) = yi denote
the monodromy maps of Oi for i = 1, 2. Then the following are equivalent

(i) the origamis O1 and O2 are equal,

(ii) the kernels of the monodromy maps µ1 and µ2 are equal,

(iii) there exists a group automorphism ϕ : G→ G such that (ϕ(x1), ϕ(y1)) = (x2, y2).

Proof We begin by showing that (i) implies (ii). Let α : O1 → O2 be a homeomorphism
such that c1 = c2 ◦ α. Recall that an element w ∈ F2 defines a path f on T∗ passing
through a chosen base point q1. If w lies in the kernel of µ1, each lift f̃i on O∗1 of f starts
and ends at the same preimage of q1. Further, each of the paths f̃i on O∗1 induces a path
α(f̃i) which also has the same start and end point. This implies that w lies in the kernel
of µ2. Hence, we obtain the inclusion ker(µ1) ⊆ ker(µ2). Using the inverse α−1, a similar
argument shows the inclusion ker(µ2) ⊆ ker(µ1).

Now we show that (ii) implies (iii). Suppose that the kernels of µ1 and µ2 are equal. We
want to define a group isomorphism ϕ : G→ G such that the following diagram commutes

F2

id
��

µ1 // G

ϕ

��
F2

µ2 // G.

Let K denote the kernel ker(µ1). Since the kernels of µ1 and µ2 coincide, we obtain
isomorphisms µi : F2/K → G with µi(a) = xi and µi(b) = yi for 1 ≤ i ≤ 2. Define ϕ as
the composition µ2◦(µ1)−1. Then ϕ is an isomorphism such that (ϕ(x1), ϕ(y1)) = (x2, y2).

Finally, we assume statement (iii). Let ϕ : G → G be an automorphism such that
(ϕ(x1), ϕ(y1)) = (x2, y2). Sending a square in the tiling of O1 labeled by the deck trans-
formation g to the square in the tiling of O2 labeled by ϕ(g) defines a map α : O1 → O2.
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Observe that α maps neighboring squares in O1 to neighboring squares in O2 and thus
α is a well-defined homeomorphism. The equation c1 = c2 ◦ α implies the equality of the
origamis. �

Remark 2.2.5 For a finite 2-generated group G, we consider the set

E(G) := {(x, y) | 〈x, y〉 = G} ⊆ G×G.

The automorphism group of G acts on E(G) via ϕ◦ (x, y) := (ϕ(x), ϕ(y)) for ϕ ∈ Aut(G)
and (x, y) ∈ E(G). Note that the stabilizer of each pair (x, y) ∈ E(G) under this action
is trivial. By Lemma 2.2.4, two normal origamis (G, x, y) and (G, x′, y′) are equal if
and only if there exists an automorphism ϕ ∈ Aut(G) with ϕ ◦ (x, y) = (x′, y′). Hence,
the set of cosets E(G)/Aut(G) coincides with the set of all normal origamis with deck
transformation group G. We denote the set of normal origamis with deck transformation
group G by O(G).

Example 2.2.6 Note that the automorphism group of the quaternion group Q8 is iso-
morphic to the symmetric group Sym(4) and thus has order 24. By the following argu-
ment, we further know that there are exactly 24 pairs of generators (x, y) in E(Q8). The
restriction on x, y is that {x, y} ⊆ {±i,±j,±k} is a subset of size two not containing ±a
for a in Q8. It is easy to check that these sets {x, y} generate Q8 and that ±1 cannot be
contained in a generating set of size 2.

Since the stabilizer of each pair (x, y) ∈ E(Q8) under the action of the automorphism
group Aut(Q8) is trivial by Remark 2.2.5, the group Aut(Q8) acts transitively on E(Q8).
Hence, for any two pairs of generators (x1, y1) and (x2, y2), we find an automorphism ϕ of
Q8 such that (ϕ(x1), ϕ(y1)) is equal to (x2, y2). By Lemma 2.2.4, we obtain that the only
2-origami with deck transformation group Q8 is the “eierlegende Wollmilchsau” (see Ex-
ample 2.2.3).

From now on, we denote a normal origami with deck transformation group G defined by
the pair of generators (x, y) by (G, x, y).

Example 2.2.7 For an even number n, we define the origami PSn of degree n by the
permutations

σa = (1, 2)(3, 4) . . . (n− 1, n) and σb = (2, 3)(4, 5) . . . (n− 2, n− 1)(n, 1).

Here, the permutations σa and σb describe the horizontal and vertical gluing of the n
squares, respectively. We call such an origami a Penrose stairs origami as it resembles
the infinite staircase known from work of Penrose [PP58] and a lithograph of Escher called
Klimmen en dalen. The origami PSn is a normal origami with the dihedral group

Dn = 〈r, s | rn/2 = s2 = 1, s−1rs = r−1〉

of order n as deck transformation group and the pair of generators (s, sr). Penrose stairs
origamis have been studied in [Zmi11, Section 4.2.2] and [SW17, Example 7] under the
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srs sr

1 s

r rs

r2 r2s

1 2

3 4

5 6

7 8

Figure 2.5.: While the Penrose stairs origami PS8 = (D8, s, sr) has four singularities with cone
angle 4π, the origami St8 has two singularities with cone angle 8π. Opposite sides are

identified, unless marked otherwise.

name dihedral origamis and escalator origamis, respectively. In Figure 2.5, the Penrose
stairs origami PS8 is shown.

Note that the family of Penrose stairs origamis is similar to the well-studied family of stair
origamis (see, e.g., [Sch05, Section 5.3]). For an even number n, define the permutation
σ′b as

(1)(2, 3)(4, 5) . . . (n− 2, n− 1)(n).

The stair origami Stn defined by the permutations σa and σ′b is not normal. We will
consider in Figure 3.5 and Example 3.3.1 an infinite version of the Penrose stairs origamis
called infinite staircase origami. This infinite origami can be viewed as a limit of certain
Penrose stairs origamis PSn and has been intensively studied, for instance, in [HHW13]
and [HS10].

2.2.2. Orders of singularities

The fact that normal origamis have maximal symmetry groups leads to restrictions on the
number of singularities of a normal origami and the orders of these singularities. These
restrictions can be phrased in terms of properties of the deck transformation group. We
begin with a remark showing that all singularities of a normal origami have the same
multiplicity. That gives a first restriction on the strata which contain normal origamis.

Remark 2.2.8 The deck transformation group of a normal origami acts transitively on
the squares of the origami. Hence, all singularities have the same multiplicity, and lie in
a stratum of the form H (0) or H (k × a) for a, k ∈ Z+. Further, a normal origami with
deck transformation group G and set of singularities Σ with s ∈ Σ satisfies the following
equation ∑

s′∈Σ
mult(s′) = |Σ| ·mult(s) = |G|.
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In particular, we note that either all corners of the squares of a normal origami are
singularities or all corners of the squares are regular points.

With the help of the next lemma we connect the multiplicity of singularities to a statement
phrased in the language of group theory. For elements x, y of a group, we denote their
commutator x−1y−1xy by [x, y].

Lemma 2.2.9 (see, e.g., [Zmi11, Section 4.1]) Let O = (G, x, y) be a normal origami.
The cover of the torus induced by the origami is unramified if and only if [x, y] = 1. In
particular, all normal origamis with abelian deck transformation group lie in the stratum
H(0). If the cover is ramified, the multiplicity of each singularity of O coincides with the
order of [x, y] in G.

Proof Let S denote the square labeled by the group element 1. Then the deck trans-
formation [x, y] = x−1y−1xy sends the square S to the one lying 2π (with respect to the
lower left corner of S) above S.

x−1y−1 x−1y−1x

1 [x, y]x−1

Figure 2.6.: The deck transformation [x, y] maps the square labeled by 1 to the square labeled
by the commutator [x, y].

Hence, the deck transformation [x, y]m sends the square S to the one lying 2πm above
S for m ∈ Z+. We conclude with Remark 2.2.8 that the cone angle at each corner is
2π· ord([x, y]). �

Remark 2.2.10 By the lemma above and Lemma 2.2.2, finding a normal origami of
degree d = (a+ 1) ·k in the stratum H(k×a) is equivalent to finding a 2-generated group
of order d and a generating set of size two such that the commutator of the generators
has order a+ 1.

In Chapter 3, we will study in which strata p-origamis occur. For this, we will use the
following connection between the deck transformation group and the type of singularities
of normal p-origamis to derive conclusions about the stratum they lie in.

Remark 2.2.11 By Remark 2.2.8, all singularities of a p-origami have the same multi-
plicity. Each p-origami outside the stratum H(0) satisfies the equation d = (a + 1) · k,
where d is the degree, a + 1 is the multiplicity of each singularity, and k is the number
of singularities. This reduces the possible strata significantly. All p-origamis of degree pn
(outside the stratum H(0)) have pn−k singularities of multiplicity pk for 1 ≤ k ≤ n, i.e.,
they lie in strata of the form H

(
pn−k ×

(
pk − 1

))
.
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Example 2.2.12 The Penrose stairs origami PS2m = (D2m , s, sr) is a 2-origami with
four singularities of order 2m−2 because the commutator [s, sr] = r2 has order 2m−2. In
Figure 2.5, we considered the origami PS8.

We end this section by stating the famous Gauß-Bonnet formula in the context of trans-
lation surfaces. It enables us to compute the genus of a translation surface given the
number of singularities and their orders. For a geometric proof, see, e.g., [Ran16, Propo-
sition 1.14].

Proposition 2.2.13 (Gauß-Bonnet formula) For a translation surface of genus g
that lies in the stratum H(k1 × a1, . . . , km × am), the following equation holds

g = 1 + 1
2

m∑
i=1

ki · ai.

2.3. Veech groups

The matrix group SL(2,R) acts naturally on the Euclidean plane by matrix multiplica-
tion, i.e., a matrix A sends a vector v to the vector A · v. Note that this action preserves
parallelism. Geometrically, the matrices act, for instance, by shearing and rotating vec-
tors. This SL(2,R)-action induces an action on the translation surfaces in a given stratum
H(k1× a1, . . . , km× am) by applying a matrix to the edges of the polygons the respective
surface is constructed of. One can also use the description as a Riemann surface together
with a translation atlas to define this group action: Given a translation surface (X,Σ,A)
and a matrix M ∈ SL(2,R), we obtain the translation surface (X,Σ,AM). Here, the
translation atlas AM is defined by composing each chart in the atlas A with the linear
map z 7→M · z.

Example 2.3.1 In Figure 2.7, we consider a matrix that stabilizes a translation surface.
Using cut and glue operations, we see that both surfaces on the right side are equal (see
Figure 2.2).

M
=

Figure 2.7.: The action of the matrix M = ( 1 2
0 1 ) on an origami. Opposite sides are identified

unless marked otherwise.

Definition 2.3.2 The Veech group of a translation surface X is the stabilizer under
the SL(2,R)-action described above and is denoted by SL(X).
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Equivalently, the Veech group can be defined as the image of the orientation preserving
affine homeomorphisms on the translation surface under the derivative map (see, e.g.,
[Sch05, Section 1.3]). A main goal when studying translation surfaces is the description of
their SL(2,R)-orbits and -stabilizers. The SL(2,R)-orbits of certain translation surfaces,
e.g., origamis, define complex curves in a moduli space of curves Mg. These curves are
called Teichmüller curves and are birationally equivalent to the quotient of the upper
halfplane by the Veech groups. For a detailed introduction about Veech groups we refer
the reader to [HS04], [Sch05], and [Zor06].

2.3.1. Veech groups of origamis

In this section, we discuss special properties that hold for Veech groups of origamis. We
begin by introducing the notion of reduced origamis. For this, we need the following way
of assigning a vector in R2 ∩ Z2 to a saddle connection of an origami. Given an origami
O and a saddle connection starting at a singularity s, we place the origin of R2 in the
point s. The direction and the length of the geodesic define a vector v in R2 starting at
the origin. Since the origami consists of unit squares and all singularities are corners of
these squares, the vector v lies in Z2. We say that the saddle connections of an origami
span Z2 if the vectors corresponding to the saddle connections span Z2.

Definition 2.3.3 An origami is reduced if the saddle connections span Z2.

Note that reduced origamis cannot be tiled by larger squares. Veech groups of reduced
origamis are finite index subgroups of the group SL(2,Z) (see [GJ00, Theorem 5.5]). Thus,
it is sufficient to consider the action of the matrix group SL(2,Z) instead of the SL(2,R)-
action. Normal origamis of genus g > 1 are always reduced. Therefore, we assume from
now on that all origamis under consideration are reduced unless stated otherwise.

The special linear group SL(2,Z) is 2-generated, e.g., by the matrices

S = ( 0 −1
1 0 ) , T = ( 1 1

0 1 ) .

Geometrically, the action of S corresponds to a rotation by π
2 , while the action of T

corresponds to shearing the squares in the tiling of an origami by T . Alternatively, the
action of these matrices can be also described with the help of the monodromy map. See
[Wei13] for further information. Given an origami O defined by permutations σa and σb,
the permutations σ−1

b and σa define the origami S · O. The permutations σa and σbσ−1
a

define the origami T · O. For a normal origami (G, x, y), the actions of the matrices S,
S−1, T , and T−1 are given by

S · (G, x, y) = (G, y−1, x), S−1 · (G, x, y) = (G, y, x−1),
T · (G, x, y) = (G, x, yx−1), T−1 · (G, x, y) = (G, x, yx).

In particular, the SL(2,Z)-action restricts to an action on the set of normal origamis with
a fixed deck transformation group, i.e., on the cosets E(G)/Aut(G).
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Example 2.3.4 Example 2.2.6 shows that there is only one normal origami with deck
transformation group Q8. Hence, each matrix in SL(2,Z) stabilizes the “eierlegende Woll-
milchsau” W and the Veech group SL(W) is SL(2,Z) (see [HS10, Proposition 2]).

2.3.2. Cylinder decompositions and parabolic matrices

The concept of cylinder decompositions is crucial at various points in this thesis. For
instance, to construct parabolic elements in Veech groups and to study geminal origamis.
In the subsequent definition, we follow the notation from [Ran16].

Definition 2.3.5

• A cylinder on a translation surface is an open subsurface that is isometric to a
Euclidean cylinder R/wZ× (0, h) for w, h > 0. One calls w the circumference, h
the height, and the quotient h

w
the modulus of the cylinder.

• If the genus of the translation surface is larger than one, a maximal cylinder (with
respect to inclusion) is bounded by saddle connections. The direction of a saddle
connection bounding a cylinder is called the direction of the cylinder.

• A cylinder decomposition is a collection of pairwise disjoint cylinders such that
the union of their closures covers the whole surface. The directions of the cylinders
in a cylinder decomposition coincide and this direction is called the direction of
the cylinder decomposition.

Example 2.3.6 Let D8 = 〈r, s | r4 = s2 = 1, s−1rs = r−1〉 denote the dihedral group
of order 8. Figure 2.8 shows the cylinder decompositions of the origami (D8, r, s) in
horizontal and vertical direction. In horizontal direction, the decomposition consists of
two cylinders of circumference 4 and height 1. The cylinder decomposition in vertical
direction consists of four cylinders of circumference 2 and height 1.

1 r r2 r3

s

rs

r2s

r3s

1 r r2 r3

s

rs

r2s

r3s

Figure 2.8.: The cylinder decomposition of the 2-origami O = (D8, r, s) in horizontal direction
consists of two cylinders shaded in green and blue, respectively. In vertical direction, we obtain

four cylinders shaded in orange, green, blue, and red.
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Remark 2.3.7 A normal origami O = (G, x, y) of degree n and genus g ≥ 2 decomposes
into n

ord(x) horizontal cylinders of circumference ord(x) and height 1 as the following argu-
ment shows. As O is normal, the set of singularities consists of all square corners and thus
the height of the cylinders is 1. We use the bijection between the deck transformations and
the squares of O introduced in the proof of Lemma 2.2.2 and obtain that the horizontal
cylinder containing the trivial deck transformation consists of ord(x) squares. Since the
deck transformation group acts transitively on the set of cylinders, the cylinders in the
horizontal cylinder decomposition have equal circumference and height. Analogously, one
shows that the vertical cylinder decomposition consists of n

ord(y) cylinders of circumference
ord(y) and height 1.

Cylinder decompositions and parabolic elements of Veech groups are closely connected.
This connection was first introduced by Veech in [Vee89] and is often used in the study
of translation surfaces. In the following lemma, we use a version of this statement which
is due to Vorobets (see [Vor96, Lemma 3.9]).

Lemma 2.3.8 ([Vor96, Lemma 3.9]) Let O be an origami, v ∈ Z2 be a rational
direction, and M ∈ SL(2,Z) be a matrix mapping e1 =

(
1
0

)
to v. If O decomposes in

direction v into cylinders C1, . . . , Ck with inverse moduli m1, . . . ,mk and m is the smallest
common integer multiple of all the mi, then the matrix M ·

(
1 m
0 1

)
·M−1 is contained in

the Veech group SL(O).

Example 2.3.9 The left picture in Figure 2.8 shows the cylinder decomposition of the
2-origami O = (D8, r, s) in horizontal direction that consists of two cylinders shaded in
green and blue, respectively. The inverse modulus of both cylinders is 4. Choosing A as
the identity element, we obtain that the parabolic matrix

(
1 4
0 1

)
lies in the Veech group

SL(O).
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Chapter 3.

Strata of p-origamis

This chapter deals with the orders of singularities of p-origamis. The stratum, in which
a given p-origami lies, is determined by the order of a certain deck transformation. In
Section 3.1, we focus on the group-theoretic aspect. We find bounds for the orders of
certain commutators in p-groups. Further, we study when the isomorphism type of the
p-group determines the order of all commutators under consideration. In Section 3.2, we
translate these results into the geometric setting of p-origamis and deduce implications of
the orders of the singularities.

3.1. Results on p-groups

3.1.1. Bounds for the exponent of commutator subgroups of
p-groups

The geometric setting in Section 2.2.2 motivates the study of the following problem. Given
a finite 2-generated p-group G of order pn, find a bound for the order of commutators
[x, y] with 〈x, y〉 = G. In this section, we answer a more general question. We give a
sharp bound for the exponent of the commutator subgroup. This bound is different for
the prime 2 and odd primes.

We recall some basic definitions and facts from the theory of p-groups. Let G be a finite
p-group. The order |G| of G is the number of its elements. For any element x ∈ G, the
order ord(x) of x is the smallest positive integer n such that xn = 1. The exponent
exp(G) of G is the greatest order of any element in G. The commutator subgroup G′

of G is the subgroup generated by all commutators

[x, y] = x−1y−1xy for x, y ∈ G.

The center Z(G) of G is the subgroup {x ∈ G | xy = yx for all y ∈ G}. The Frattini
subgroup Φ(G) of G is the intersection of all maximal subgroups of G. For each i ∈ Z+,
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we define the omega and agemo subgroup,

Ωi(G) := 〈g | g ∈ G, gpi = 1〉,
0i(G) := 〈gpi | g ∈ G〉.

Lemma 3.1.1 ([LM02, Proposition 1.2.4]) Let G be a finite p-group.

• The Frattini subgroup Φ(G) equals G′01(G), the group generated by all commutators
and p-th powers. In particular, G/Φ(G) is elementary abelian (that is, abelian and
of exponent p).

• Burnside’s basis theorem: A set of elements of G is a (minimal) generating set if
and only if the images in G/Φ(G) form a (minimal) generating set of G/Φ(G). In
particular, every generating set for G contains a generating set with exactly d(G)
elements, where d(G) is the rank of the elementary abelian quotient G/Φ(G).

This can be used to establish first bounds for the exponent of a p-group which holds for
all prime numbers.

Proposition 3.1.2 For a finite p-group G of order pn, exp(G′) = 1 if n ≤ 2 or otherwise

exp(G′) ≤ pn−2.

Proof Any cyclic p-group is in particular abelian. Hence, exp(G′) = 1, in this case.

Suppose G is a non-cyclic p-group of order pn with a minimal generating set of length
d ≥ 2. By Burnside’s basis theorem, we obtain |G/Φ(G)| = pd and thus |Φ(G)| = pn−d.
The inclusion G′ ⊆ Φ(G) implies the inequality |G′| ≤ pn−d. In particular, the inequality
exp(G′) ≤ pn−d ≤ pn−2 holds. �

2-groups

In this section, we show that the bound in Proposition 3.1.2 is sharp for the prime 2. What
is more, we construct 2-generated 2-groups with certain generators whose commutator has
the desired order. These groups will be used to construct 2-origamis in Section 3.2.1. We
need the following lemma.

Lemma 3.1.3 ([Hup67, Kapitel III, Hilfssatz 1.11 a)]) For a group G generated by a
subset S, the commutator subgroup G′ is generated by the set {g−1[x, y]g | x, y ∈ S, g ∈ G}.

Proposition 3.1.4 Let n, k ∈ Z≥0 with n > 2 and k ≤ n− 2. There exists a 2-generated
2-group G of order 2n with generators x, y ∈ G such that

ord([x, y]) = exp(G′) = 2k.
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Proof Let k be a natural number with 0 ≤ k ≤ n − 2. We construct a group G2
(n,k) of

order 2n and a pair of generators r, s whose commutator is of order 2k. The group G2
(n,k) is

a semidirect product of two cyclic groups C2k+1 = 〈r〉 and C2n−k−1 = 〈s〉 of order 2k+1 and
2n−k−1, respectively. First, define the group automorphism α : C2k+1 → C2k+1 , rm 7→ r−m.
Since α2n−k−1 is the identity map on C2k+1 , the map

ϕ : C2n−k−1 → Aut(C2k+1), sm 7→ αm

is a group homomorphism. Let G2
(n,k) be the semidirect product

C2k+1 oϕ C2n−k−1 = 〈r, s | r2k+1 = s2n−k−1 = 1, s−1rs = r−1〉.

Then G2
(n,k) has order 2n. Using the defining relations of G2

(n,k), we conclude

[r, s] = r−1s−1rs = r−2.

Hence, the commutator [r, s] has order 2k.

Finally, we show that the commutator subgroup (G2
(n,k))′ has exponent 2k. The group

G2
(n,k) is generated by {r, s}. By Lemma 3.1.3, the commutator subgroup is generated by

elements of the form g−1[r, s]g for g ∈ G2
(n,k). As [r, s] = r−2 and s−1[r, s]s = r2, each of

the elements g−1[r, s]g is contained in 〈r2〉. Hence (G2
(n,k))′ is cyclic of order 2k. �

Note that all the 2-groups constructed in the proof of Proposition 3.1.4 are semidirect
products of two cyclic groups.

p-groups for odd primes p

Throughout this section, let p denote an odd prime. In Proposition 3.1.5, we introduce a
much stronger bound on the exponent of the commutator subgroup which holds for odd
primes. This is a generalization of a theorem by van der Waall (see [Waa73, Theorem 1]).
There, the order of the commutator subgroup of finite p-groups is bounded under the
condition that the commutator subgroup is cyclic.

Subsequently, we show in Proposition 3.1.8 that the bound introduced in Proposition 3.1.5
is sharp. To this end, we construct 2-generated p-groups and generators whose com-
mutators have the desired orders. These groups are used to construct certain p-origamis
in Section 3.2.1.

Proposition 3.1.5 For a non-trivial finite p-group G, p odd, the following inequality
holds

exp(G′)2 < |G|. (3.1)
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Proof As the inequality holds for all cyclic p-groups, we may use an induction and
consider a p-group G such that the inequality holds for all p-groups of smaller order.

By Lemma III 7.5 in [Hup67], a finite p-groupG for p odd is either cyclic, or it has a normal
subgroup N E G isomorphic to Cp×Cp. In the first case, again the inequality (3.1) holds.
So without loss of generality, we may assume that there exists a normal subgroup N E G
isomorphic to Cp × Cp. Define H as the quotient G/N . By the induction hypothesis
we have exp(H ′)2 < |H|. Consider the canonical epimorphism ϕ : G → H. It maps
commutators of G to commutators of H, so for g ∈ G′, the image ϕ(g) lies in H ′. Thus,
ϕ(g) has order at most exp(H ′), and g has order at most exp(N) · exp(H ′) = p · exp(H ′)
in G. Hence, we obtain the desired inequality

exp(G′)2 ≤ p2 · exp(H ′)2 < p2 · |H| = |N | · |H| = |G|. �

Corollary 3.1.6 Let G be a 2-generated p-group of order pn for an odd prime p. For
generators x, y of G, the order of their commutator obeys the inequality

ord([x, y]) < p
n
2 .

Proof Let exp(G′) = pm, |G| = pn, and ord([x, y]) = pk. Since k ≤ exp(G′), it is
sufficient to show that m < n

2 . This is equivalent to 2m < n. By Proposition 3.1.5, we
have exp(G′)2 < |G| and thus the inequality 2m < n holds. �

As in the case of 2-groups, we construct for natural numbers n, k with k < n
2 a p-group

of order pn which is a semidirect product of two cyclic groups and generators x, y such
that the order of [x, y] equals pk. This implies that the proven bound is sharp. The
construction given in Proposition 3.1.8 works similarly as the one for 2-groups in the
proof of Proposition 3.1.4. However, the group homomorphism defining the semidirect
products needs to be chosen more carefully for odd primes.

We begin with a purely number-theoretic observation which will be useful when con-
structing the semidirect products. The following lemma can be proved directly using the
binomial expansion, which we include for completeness. See, for instance, [Rot95, Proof
of Theorem 6.7, p. 129] for an alternative proof.

Lemma 3.1.7 Let p be an odd prime and let k be a positive natural number. Then p+ 1
has order pk in

(
Z/pk+1Z

)∗
.

Proof First, we prove by induction on m that for each m ≥ 0, the following congruence
holds

(1 + p)pm ≡ 1 + pm+1 mod pm+2. (3.2)

This is clear for m = 0. We assume that the congruence holds for some m, i.e., we have

(1 + p)pm = 1 + pm+1(1 + pq)
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for some q ∈ Z≥0. Using this, we compute

(1 + p)pm+1 = (1 + pm+1(1 + pq))p

= 1 + p · pm+1(1 + pq)︸ ︷︷ ︸
≡ pm+2 mod pm+3

+
p∑
i=2

(
p

i

)
p(m+1)·i

︸ ︷︷ ︸
≡ 0 mod pm+3

(1 + pq)i

≡ 1 + pm+2 mod pm+3.

This shows that the congruence relation (3.2) is true for m+ 1. By induction, it holds for
all m ∈ Z≥0.

Choosing m = k we get

(1 + p)pk ≡ 1 + pk+1 mod pk+2

≡ 1 mod pk+1.

In particular, the order of 1 + p in
(
Z/pk+1Z

)∗
divides pk. For 1 ≤ m < k, we have

(1 + p)pm ≡ 1 + pm+1 mod pm+2

6≡ 1 mod pm+2.

We conclude that
(1 + p)pm 6≡ 1 mod pk+1

for 1 ≤ m < k. Thus, the order of 1 + p is pk. �

Proposition 3.1.8 Let n, k ∈ Z≥0 with k < n
2 . There exists a 2-generated p-group G of

order pn with generators x, y ∈ G such that

ord([x, y]) = exp(G′) = pk.

Proof Fix a positive natural number n and let k be an integer with 0 ≤ k < n
2 . The

group Gp
(n,k) is constructed as a semidirect product of two cyclic groups Cpk+1 = 〈r〉 and

Cpn−k−1 = 〈s〉 of order pk+1 and pn−k−1, respectively. First, consider the automorphism
group of Cpk+1 . From elementary group theory, we know that

Aut(Cpk+1) ∼=
(
Z/pk+1Z

)∗ ∼= Cϕ(pk+1) = Cpk(p−1).

The map
α : Cpk+1 → Cpk+1 , rm 7→ rm·(p+1)

defines a group automorphism, since p and p+ 1 are coprime.

Now, we consider the map

ϕ : Cpn−k−1 → Aut(Cpk+1), sm 7→ αm.

We claim that ϕ is a well-defined group homomorphism. To see this, we need to show that
αp

n−k−1 is the identity map on Cpk+1 . We prove this as follows. The inequality k ≤ n−1
2
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implies n − k − 1 ≥ k. Hence, we obtain the congruence (p + 1)pn−k−1 ≡ 1 mod pk+1

because p+ 1 has order pk in
(
Z/pk+1Z

)∗
by Lemma 3.1.7. Write

(p+ 1)p
n−k−1

= j · pk+1 + 1

for some natural number j. Then we have

αp
n−k−1(ri) = ri·(p+1)pn−k−1

= ri·j·p
k+1 · ri

= ri

for each 1 ≤ i ≤ pk+1. Since r has order pk+1 in Cpk+1 , the last equality follows. We
conclude that αpn−k−1 is the identity map on Cpk+1 .

Let Gp
(n,k) be the semidirect product

Cpk+1 oϕ Cpn−k−1 = 〈r, s | rpk+1 = sp
n−k−1 = 1, s−1rs = rp+1〉.

Then Gp
(n,k) has order pn. We claim that Gp

(n,k) together with the pair of generators (r, s)
has the desired properties. Using the defining relations of Gp

(n,k), we conclude

[r, s] = r−1s−1rs = rp.

In particular, the commutator [r, s] has order pk.

Finally, we show that the commutator subgroup of Gp
(n,k) has exponent pk. Since Gp

(n,k)
is generated by {r, s}, the commutator subgroup is generated by elements of the form
g−1[r, s]g for g ∈ Gp

(n,k) by Lemma 3.1.3. Each of these elements is contained in 〈rp〉
because

s−1[r, s]s = s−1rps = rp·(p+1).

Hence, (Gp
(n,k))′ is cyclic of order pk. �

3.1.2. On the order of certain commutators in 2-generated p-groups

In this section, we study a second question that arises from the geometric setting in
Section 2.2.2. Recall that the group of deck transformations of a normal origami is always
a finite 2-generated group. Further, recall that two normal origamis with isomorphic deck
transformation groups (G, x1, y1) and (G, x2, y2) lie in the same stratum if and only if the
orders of the commutators [x1, y1] and [x2, y2] agree.

We first note that the sets of possible strata for normal origamis with a fixed deck trans-
formation group depend only on its isoclinism class and the order of the group. We
recall that isoclinism is an equivalence relation for groups generalizing isomorphism. For
its definition, we use the observation that the commutator in any group G induces a
well-defined map

[., .] : G/Z(G)×G/Z(G)→ G′, (x, y) 7→ [x, y].
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Definition 3.1.9 ([Hal40]) Two groups G1, G2 are isoclinic if there are isomorphisms
φ : G1/Z(G1)→ G2/Z(G2) and ψ : G′1 → G′2 which are compatible with the commutator
maps in the sense that the following diagram is commutative

G1/Z(G1)×G1/Z(G1)
φ×φ
��

[·,·] // G′1

ψ

��
G2/Z(G2)×G2/Z(G2) [·,·] // G′2.

In particular, all abelian groups are isoclinic.

Lemma 3.1.10 The set of possible commutator orders ord([x, y]) for generators x, y of
a 2-generated group G depends only on the isoclinism class of G.

Proof Assume G1 and G2 are isoclinic groups and [x, y] has order n for generators x, y
of G1. Then n is also the order of ψ([x, y]) = [φ(x), φ(y)], where x, y are the images in
G1/Z(G1). Thus, ord([x′, y′]) = ord([x, y]) for any x′, y′ in G2 such that x′ ≡ φ(x) and
y′ ≡ φ(y) modulo Z(G2).

If Z(G2) does not lie in the Frattini subgroup Φ(G2), then a central element can be chosen
as one of two generators of G2 (see Lemma 3.1.1). So, G2 is abelian and G1 is abelian,
and the only possible commutator order is 1 in each of these groups.

Otherwise, Z(G2) lies in Φ(G2). Let x′ and y′ be preimages of the elements φ(x) and φ(y)
in G2, respectively. The images of x′, y′ in G2/Φ(G2) generate the quotient, so x′, y′ are
generators of G2 and the order of [x′, y′] equals the order of [x, y]. Since isoclinism is a
reflexive relation, the argument is symmetric in G1 and G2. Thus, we have proved the
assertion. �

Corollary 3.1.11 For each n ≥ 1, the dihedral group, the generalized quaternion group,
and the semidihedral group with 2n elements have the same set of possible commutator
orders ord([x, y]) for generators x, y.

Proof It is well-known that these groups are isoclinic (see, for instance, [Ber08, §29
Exercise 4]). �

We will return to these groups, recall their definition, and compute the set of possible
commutator orders in the section on p-groups of maximals class (see Proposition 3.1.18
and Lemma 3.1.19).

We have seen that the possible strata of p-origami with a given deck transformation
group depends on the possible commutator orders for pairs of generators of this group
(see Remark 2.2.10). We will see that, in fact, for many groups there is only one stratum
possible (see Theorem 3.1.29 and Theorem 3.2.11). To study such groups, we first translate
this property into the language of group theory.
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Definition 3.1.12 We say that a finite 2-generated group G has property (C), if there
exists a natural number n such that for each 2-generating set {x, y} of G the order of
[x, y] equals n.

We pose the following question:

Question 3.1.13 Which finite 2-generated p-groups have property (C)?

For a large class of p-groups, we prove property (C). However, in Lemma 3.1.34 we give a
counterexample for each prime p, i.e., we construct a finite p-group with generating sets
{x, y} and {x′, y′} such that ord([x, y]) 6= ord([x′, y′]).

In a first example, we show that most alternating groups – which are not p-groups – do
not have property (C). We use this example to construct origamis in Section 3.2.

Example 3.1.14 For n ∈ N≥5 odd, we consider the alternating group Alt(n) with two
pairs of generators: ((1, 2, . . . , n−1, n), (1, 2, 3)) and ((3, 4, . . . , n−1, n), (1, 3)(2, 4)). The
orders of the commutators

[(1, 2, . . . , n− 1, n), (1, 2, 3)] = (1, 2, 4)
[((3, 4, . . . , n− 1, n), (1, 3)(2, 4))] = (1, 2, 5, 4, 3)

are 3 and 5, respectively. Hence, there are two pairs of generators such that the order
of their commutator is different and thus Alt(n) does not have property (C) for n ≥ 5.
Notice that those alternating groups Alt(n) are not p-groups, since their order is n!

2 .

Further, note that we multiply permutations from the left because we label the squares
of a normal origami by multiplying generators of the deck transformation group from the
right.

In the following, we will prove property (C) for certain families of p-groups.

Regular and order-closed p-groups

We begin by stating some basic properties of regular p-groups. See, e.g., [Hup67; LM02;
HEO05] for further information on p-groups. Recall that a p-group G is regular if for
each g, h ∈ G and i ∈ Z+, there exists some c ∈ 〈g, h〉′ such that

(gh)pi = gp
i

hp
i

c.

Note that the commutator subgroup of a regular p-group is regular.

We call a p-group G weakly order-closed if the product of elements of order at most pk
has order at most pk for any k ≥ 0. In the literature, p-groups for which all sections (i.e.,
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subquotients) are weakly order-closed according to our definition have been studied and
are called order-closed p-groups (see [Man76]). Clearly, order-closed p-groups are weakly
order-closed and all subgroups of a weakly order-closed group are so, as well. Hence, a
p-group is order-closed if and only if all its quotients are weakly order-closed. The class
of p-groups we call weakly order-closed has been called Op in [Wil02].

Lemma 3.1.15 (see [LM02], Lemma 1.2.13)

(i) Any regular p-group is order-closed, and hence also weakly order-closed.

(ii) A 2-group is regular if and only if it is abelian.

Lemma 3.1.16 Let G be a weakly order-closed p-group. If x1, . . . , xr ∈ G generate G,
then the exponent of G is equal to the maximum of the orders ord(xi), 1 ≤ i ≤ r.

Proof Note that the orders of xi and x−1
i are equal. As every group element can be

written as a word in {xi, x−1
i | 1 ≤ i ≤ r}, the claim follows. �

Proposition 3.1.17 Any finite 2-generated p-group with weakly order-closed commutator
subgroup has property (C). In particular, any finite 2-generated p-group with regular com-
mutator subgroup has property (C).

Proof Let G be a finite 2-generated p-group with regular commutator subgroup. Further,
let x, y and x′, y′ be two pairs of generators of G. Hence, by Lemma 3.1.3, the commutator
subgroup G′ is generated by each of the sets{

g−1[x, y]g | g ∈ G
}
,{

g−1[x′, y′]g | g ∈ G
}
.

We have

ord(g−1[x, y]g) = ord([x, y]),
ord(g−1[x′, y′]g) = ord([x′, y′]).

By the previous lemma, G′ being weakly order-closed implies that

ord([x, y]) = exp(G′) = ord([x′, y′]).

Hence, the orders of the commutators [x, y] and [x′, y′] coincide. �

As we will discuss in Section 3.3, a version of this result holds for pro-p groups (see
Proposition 3.3.8).
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p-groups of maximal class

In this section, we prove that property (C) holds for p-groups of maximal class.

We recall that the lower central series of a group G is the series of subgroups

γ1(G) ≥ γ2(G) ≥ γ3(G) ≥ . . . ,

where γ1(G) := G and γi(G) := [γi−1(G), G] for i > 1. The nilpotency class of G is c
if

γc(G) 
 γc+1(G) = 〈1〉 .

A p-group of order pn has nilpotency class at most n− 1 and is called of maximal class
in that case.

As 2-groups of maximal class are completely classified by the following proposition, we
treat these groups separately from the p-groups for odd primes p.

Proposition 3.1.18 ([Hup67, Kapitel III, Satz 11.9]) Each 2-group of maximal
class and order 2n is isomorphic to one of the following groups

• a dihedral group, i.e., a group given by the presentation

D2n =
〈
r, s | r2n−1 = s2 = 1, s−1rs = r−1

〉
,

• a generalized quaternion group, i.e., a group given by the presentation

Q2n =
〈
r, s | r2n−1 = 1, s2 = r2n−2

, s−1rs = r−1
〉
,

• a semidihedral group, i.e., a group given by the presentation

SD2n =
〈
r, s | r2n−1 = s2 = 1, s−1rs = r2n−2−1

〉
.

We can now strengthen the result in Corollary 3.1.11 for 2-groups of maximal class. Note
that according to the classification in Proposition 3.1.18, each such group is 2-generated.

Lemma 3.1.19 Any 2-generated 2-group of maximal class and of order 2n has prop-
erty (C) and for each pair of generators x, y, the order of the commutator [x, y] is 2n−2.

Proof Let G be a 2-group of maximal class and of order 2n. By Proposition 3.1.18, it
is isomorphic to a dihedral group, quaternion group or semidihedral group. In each case,
we show that the commutator subgroup is regular and that for a pair of generators r, s
the commutator [r, s] has order 2n−2. By Proposition 3.1.17, this proves the claim.
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For the semidihedral group SD2n , the commutator subgroup is generated by the set
{g−1[r, s]g | g ∈ SD2n}. Since the commutator [r, s] equals r2n−2−2, the commutator sub-
group is cyclic. In particular, it is abelian and thus regular. The order of the commutator
[r, s] is 2n−2.

For the dihedral group D2n and the generalized quaternion group Q2n , the commutator
subgroup is generated by [r, s] = r−2. Here, we use the relation rs = sr−1. Hence,
the commutator subgroup is abelian and thus regular. As in the previous case, the
commutator [r, s] has order 2n−2. �

We turn our attention to p-groups of maximal class for odd primes p.

Lemma 3.1.20 Let G be a 2-generated p-group of maximal class and order pn for a
natural number n with 5 ≤ n ≤ p+ 1 and an odd prime p. Then G has property (C) and
for each pair of generators x, y, the order of the commutator [x, y] equals p.

Proof Assume G is a group of order pn of maximal class for 5 ≤ n ≤ p + 1. Then the
commutator subgroup G′ has exponent p by [Hup67, Kapitel III, Hilfssatz 14.14]. Hence,
all elements of G′ have either order p or order 1. Let (x, y) be a pair of generators of G.
Then G′ is generated by elements of the form g−1[x, y]g for g ∈ G. Since G is of maximal
class, it is non abelian. We conclude that [x, y] 6= 1 has order p. �

Lemma 3.1.21 Any finite 2-generated p-group of maximal class for p odd has prop-
erty (C).

Proof Let G be a group of order pn. If n ≤ 4, then the order of the commutator
subgroup G′ is smaller than p4. Hence, we have |G′| ≤ pp. By [Hup67, Kapitel III, Satz
10.2 b)], the commutator subgroup is regular. Using Lemma 3.1.15, the claim follows
from Proposition 3.1.17. In Lemma 3.1.20, we showed the claim for groups of order pn of
maximal class with 5 ≤ n ≤ p+ 1.

Now assume G has order pn and is of maximal class for n > p + 1. Then there exists a
maximal subgroup H of G which is regular (see [Hup67, Kapitel III, Satz 14.22]). Recall
that the Frattini subgroup Φ(G) is the intersection of the set of maximal subgroups. We
have the following inclusions

G′ ⊆ Φ(G) ⊆ H.

Since subgroups of regular groups are regular as well, the commutator subgroup G′ is
regular. By Proposition 3.1.17, the claim follows. �

We obtain the following theorem from Lemma 3.1.19 and Lemma 3.1.21.

Theorem 3.1.22 Any finite 2-generated p-group of maximal class has property (C).
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Powerful p-groups

We introduce some further basics from the theory of p-groups to show that property (C)
holds for the class of powerful p-groups.

A p-group G is called powerful if either p is odd and G′ ⊆ 01(G), or p = 2 and
G′ ⊆ 02(G) = 〈g4 | g ∈ G〉. A normal subgroup N E G is powerfully embedded in G
if either p is odd and [N,G] ⊆ 01(N), or p = 2 and [N,G] ⊆ 02(N). In particular, any
powerfully embedded p-group is powerful.

Corollary 3.1.23 Any finite 2-generated powerful p-group G has a cyclic commutator
subgroup G′.

Proof Let G be a powerful p-group with 2-generating set {x, y}. Then the commutator
subgroup G′ is powerfully embedded in G by [LM87, Theorem 1.1. and Theorem 4.1.1.].
Further, G′ is generated by all elements of the form g−1[x, y]g for g ∈ G by Lemma 3.1.3.
Now [LM87, Theorem 1.10. and Theorem 4.1.10.] state that if a powerfully embedded
subgroup of a powerful p-group is the normal closure of a subset, then it is generated by
this subset. Thus, we conclude that G′ is generated by [x, y], i.e., G′ is cyclic. �

Corollary 3.1.24 Any finite 2-generated powerful p-group has property (C).

Proof G′ is cyclic, so in particular, G′ is regular. Using Proposition 3.1.17, the claim
follows. �

Proposition 3.1.25 Let G be a finite 2-generated p-group such that G′ is powerful. Then
G has property (C).

Proof Let G be a finite 2-generated p-group such that G′ is powerful. Let {x, y} be a
generating set. Denote the order of [x, y] by pm. Recall that G′ is generated by the set
{g−1[x, y]g | g ∈ G} whose elements are all of order pm (see Lemma 3.1.3). Since G′ is
powerful, we apply [LM87, Theorem 1.9. and Theorem 4.1.9.] stating that in a powerful
p-group, any agemo subgroup is generated by the corresponding powers of a given set of
generators, and deduce

0m(G′) = 〈gpm | g ∈ G′〉

= 〈
(
g−1[x, y]g

)pm

| g ∈ G〉
= {1}.

In particular, the exponent of G′ equals pm, and hence equals the order of [x, y]. As {x, y}
is an arbitrary pair of generators of G, this proves the claim. �

Since the commutator subgroup of a powerful p-group is powerful by [LM87, Theorem
1.1], Corollary 3.1.24 is also a consequence of Proposition 3.1.25.

We will see in Section 3.3, that the result of the proposition can be extended to pro-p
groups (see Proposition 3.3.8).

50



3.1. Results on p-groups

Power-closed p-groups

Recall from Section 3.1.2 that we call a p-group weakly order-closed, if products of ele-
ments of order at most pk have order at most pk for all k ≥ 0. We call a p-group weakly
power-closed, if products of pk-th powers are pk-th powers for all k ≥ 0. Such groups
generalize power-closed p-groups ([Man76]), for which all sections (i.e., subquotients)
have to be weakly power-closed in our sense. As quotients of weakly power-closed groups
are automatically weakly power-closed, a p-group is power-closed if and only if all its
subgroups are weakly power-closed. In [Wil02], the class of p-groups we call weakly
power-closed has been called Pp.

It is known that order-closed p-groups generalize regular p-groups, and that power-closed
p-groups generalize order-closed p-groups (see [Man76]).

Recall that in Proposition 3.1.17, we have shown that 2-generated p-groups G for which
G′ is weakly order-closed have property (C).

Example 3.1.26 Using the GAP code in Listing A.3 (in Appendix A), we find instances
of a 2-group G such that G′ is weakly power-closed, but which does have generators x, y
such that ord([x, y]) 6= ord([x, y3]). As G is a 2-group, x, y3 is a pair of generators, as
well, so G does not have property (C).

We obtain, for example, the permutations x, y ∈ Sym(16) given as

x := (1, 13, 2, 14)(3, 16, 4, 15)(5, 9, 7, 11, 6, 10, 8, 12) ,
y := (1, 16, 6, 11, 4, 14, 7, 9, 2, 15, 5, 12, 3, 13, 8, 10) ,

and G = 〈x, y〉. Then, the commutators

[x, y] = (1, 5, 2, 6)(3, 7, 4, 8)(9, 13, 10, 14)(11, 16, 12, 15) ,
[x, y3] = (1, 6)(2, 5)(3, 7)(4, 8)(9, 15)(10, 16)(11, 14)(12, 13)

have order 4 and 2, respectively. The group G has order 212 and nilpotency class 7.

However, this counterexample is not a power-closed p-group, since it has subgroups which
are not weakly power-closed. We have found such subgroups using the computer algebra
system GAP. This example yields the following corollary.

Corollary 3.1.27 There are 2-groups with weakly power-closed commutator subgroup
which do not have property (C).

However, let us contrast this with the case of minimal non-power-closed or minimal non-
order-closed p-groups, where minimal means that all proper sections are power-closed or
order-closed, respectively.

Lemma 3.1.28 Let G be a minimal non-power-closed p-group or a minimal non-order-
closed p-group. Then G has property (C) and for each pair of generators x, y, the order
of the commutator [x, y] equals p.
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Proof Let G be a minimal non-power-closed or a minimal non-order-closed p-group. By
[Man76, Theorem 3 and Theorem 6], the Frattini group Φ(G) has exponent p and the
center satisfies Z(G) 6= G. As G′ is contained in Φ(G), we conclude that G′ has exponent
p. Hence, G′ is regular. Proposition 3.1.17 implies that G has property (C). For a pair of
generators x, y of G, the commutator subgroup G′ is generated by all conjugates of [x, y].
Since G′ is not trivial, the commutator [x, y] has exponent p. �

Let us summarize our results on groups with property (C).

Theorem 3.1.29 The implications and the non-implication visualized in the following
diagram are true for any finite 2-generated p-group G. In particular, all p-groups falling
into the classes above the gray line have property (C).

G regular

G order-closed

G power-closed

G′ regular

G′ order-closed

G′ power-closed

G′ weakly
order-closed

G′ weakly
power-closed

G maximal class G powerful

G′ powerful

G has property (C)

Proof The implications regular⇒ order-closed⇒ power-closed are due to [Man76]. Each
of these properties is inherited by subgroups, so by G′ from G. By our definition, the
properties weakly order-closed and power-closed generalize order-closed and power-closed,
respectively. Powerful p-groups and p-groups of maximal class have regular commutator
subgroups as explained in the proof of Corollary 3.1.24 and Lemma 3.1.21, respectively.
The commutator subgroup of a powerful p-group is powerful by [LM87, Theorem 1.1,
Theorem 4.1.1].

The results that G′ powerful or weakly order-closed imply property (C), are given in
Proposition 3.1.25 and Proposition 3.1.17, respectively. Corollary 3.1.27 shows that prop-
erty (C) does not follow from the property that G′ is weakly power-closed. �

Remark 3.1.30 We note that, in particular, all 2-generated p-groups of order at most
pp+2 or of nilpotency class at most p have property (C). In the first case, G′ has order
at most pp, because it lies in the Frattini subgroup which has index p2 in G, so G′ is
regular by [Hup67, Kapitel III, Satz 10.2 b)]. Similarly, in the second case, G is regular
by [Hup67, Kapitel III, Satz 10.2 a)].

It is an open questions, whether G or G′ being power-closed implies property (C) for a
p-group G. To study this and similar questions, we offer a reduction argument.
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Lemma 3.1.31 Let F be a family of finite 2-generated p-groups which is closed under
quotients and such that property (C) holds for all members of F with cyclic center. Then
property (C) holds for all members of F .

Proof Observe that property (C) holds for all abelian groups and assume that prop-
erty (C) holds all members of F with cyclic center. Consider a non-abelian group G ∈ F
whose center is not cyclic such that property (C) holds for any member of F of smaller
cardinality.

Since the center of G has rank at least two, i.e., the center is not cyclic, we can choose
two trivially intersecting central cyclic subgroups N1, N2 of order p. We consider pairs of
generators x, y and x′, y′ of G, and we define

c := [x, y], m := ord([x, y]),
c′ := [x′, y′], m′ := ord([x′, y′]).

Without loss of generality, we may assume m ≥ m′ ≥ p. Now c
m
p has order p. Since N1

and N2 intersect trivially, c
m
p lies in at most one of these subgroups. We may assume that

c
m
p /∈ N1. Consider the canonical epimorphism : G → G/N1. The order of c is equal

to m because c
m
p /∈ N1. Now x, y and x′, y′ are pairs of generators of the p-group G/N1.

By our assumptions, G/N1 has property (C), so

m = ord(c) = ord(c′).

Thus, we conclude that the m′ is either m or m · p. Since m ≥ m′ holds, we obtain that
m and m′ coincide. This shows that G has property (C).

An induction using this argument proves the assertion. �

Corollary 3.1.32 G being power-closed or G′ being power-closed implies property (C) if
it implies property (C) together with the assumption that G has cyclic center.

Proof The family of power-closed p groups is closed under taking arbitrary quotients.
The same is true for the family of p-groups with power-closed commutator subgroup, since
for any group, the commutator subgroup of a quotient is a quotient of the commutator
subgroup. �

A family of counterexamples

We conclude our discussion of property (C) by constructing 2-generated p-groups for all
primes p which do not have property (C): for each such group, we exhibit two pairs of
generators with different commutator order.

As these will be realized as certain subgroups of a p-Sylow subgroup of the symmetric
group on pr letters, for some r ≥ 0, let us first recall a description of one of these Sylow
subgroups which we will denote Pp,r. Recall that we multiply permutations from the
left.
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Definition 3.1.33 For any prime p and any r ≥ 0, consider the perfect p-ary tree with
pr leaves (as in Figure 3.1 below for p = r = 3). Given 1 ≤ i ≤ r, 1 ≤ j ≤ pi−1, let N be
the j-th node of this tree at level i− 1 (where the root node is at level 0), then we define
a tree automorphism by fixing all nodes which are not descendants of N , while rotating
the subtrees starting at the p direct descendants of N cyclically to the right. We denote
the permutation of the pr leaves of the tree induced by this graph automorphism by ei,j.
Let Pp,r be the subgroup of Spr generated by all ei,j for 1 ≤ i ≤ r, 1 ≤ j ≤ pi−1.

level 0

level 3

level 0

level 3

level 0

level 3

level 0

level 3

Figure 3.1.: A perfect tertiary tree with 33 leaves. Its automorphism group contains a group
isomorphic to P3,3.

In cycle notation, ei,j is a product of disjoint p-cycles defined by

ei,j :=
pr+1−i(j−1)+pr−i∏
k=pr+1−i(j−1)+1

(k, k + pr−i, . . . , k + pr−i(p− 1)) . (3.3)

From Equation (3.3) we get the conjugation relation

e−1
i,j ek,lei,j = ek,l′ (3.4)

for i ≤ k, where l′ is defined by

(j − 1)pk−i < l′ ≤ jpk−i and l′ − l ≡ pk−i−1 mod pk−i

if i < k and (j − 1)pk−i < l ≤ jpk−i, and l = l′ otherwise.

This implies that Pp,r is, in fact, generated by (ei,1)1≤i≤r. We can check that Pp,r is
isomorphic to the r-fold wreath product of Cp by identifying the respective generators.
So, Pp,r is indeed a Sylow p-subgroup of Spr . For further information on iterated wreath
products of cyclic groups Cp see, e.g., [LM02, Section 2.4].

Lemma 3.1.34 For any prime p, there exist elements x, x′, y ∈ Pp,4 such that

Hp := 〈x, y〉 = 〈x′, y〉 and ord([y, x′]) = p 6= p2 = ord([y, x]) .

In particular, the p-group Hp does not have property (C).
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3.1. Results on p-groups

Proof We define

x := e1,1e2,1 , y := e1,1e2,1e3,1e4,1+p2 ∈ Pp,4 .

Assume p > 3, then by Equation (3.4),

x−1yx = e−1
2,1(e1,1e2,2e3,1+pe4,1+2p2)e2,1

= e1,1e2,1e3,1+pe4,1+2p2 ,

x−2yx2 = e−1
2,1(e1,1e2,2e3,1+2pe4,1+3p2)e2,1

= e1,1e2,1e3,1+2pe4,1+3p2 ,

so [y, x] = y−1x−1yx = e−1
4,1+p2e

−1
3,1e3,1+pe4,1+2p2 ,

[y, x2] = y−1x−2yx2 = e−1
4,1+p2e

−1
3,1e3,1+2pe4,1+3p2 .

We compute the restriction of the permutation [y, x] to the set S := {p3 + 1, . . . , p3 + p2}:

[y, x]|S = (e−1
4,1+p2e

−1
3,1e3,1+pe4,1+2p2)|S

= (e−1
4,1+p2e3,1+p)|S

= (p3 + 1, p3 + 2, . . . , p3 + p)−1(p3 + 1, p3 + p+ 1, . . . , p3 + p(p− 1) + 1)
. . . (p3 + p, p3 + 2p, . . . , p3 + p2)

= (p3 + p, p3 + 2p− 1, . . . , p3 + p2 − 1,
p3 + p− 1, p3 + 2p− 2, . . . , p3 + p2 − 2,
. . . ,

p3 + 1, p3 + 2p, . . . , p3 + p2) .

Since the permutation [y, x]|S is a p2-cycle, we obtain the inequality ord([y, x]) ≥ p2. As
all p-cycles occurring in e3,1 or e4,1+2p2 are disjoint from each other and from the set S,
indeed, ord([y, x]) = p2. At the same time, our formula for [y, x2] exhibits it as a product
of disjoint p-cycles, hence ord([y, x2]) = p. So, we have shown

ord([y, x2]) = p 6= p2 = ord([y, x]) .

Since p is an odd prime, we deduce the equality 〈x, y〉 = 〈x2, y〉. This proves the assertion
with x′ := x2.

It can be verified that the same is true for p = 3, even though the formulae for x−2yx2

and [y, x2] become slightly different:

x−2yx2 = e−1
2,1(e1,1e2,2e3,1+2pe4,1)e2,1 = e1,1e2,1e3,1+2pe4,1+p ,

[y, x2] = e−1
4,1+p2e

−1
3,1e3,1+2pe4,1+p .

All conclusions, however, remain valid.
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Chapter 3. Strata of p-origamis

For p = 2, take

x := e1,1e2,1e3,1e4,1 = (1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16) ,
x′ := x3 = (1, 13, 7, 10, 4, 16, 5, 11, 2, 14, 8, 9, 3, 15, 6, 12) ,
y := e1,1e3,4e4,1 = (1, 9, 2, 10)(3, 11)(4, 12)(5, 15, 7, 13)(6, 16, 8, 14) .

Since 3 does not divide the order of x, we obtain the equality 〈x, y〉 = 〈x′, y〉. At the same
time, we compute

ord([y, x]) = 2 6= 4 = ord([y, x′]).
This proves the assertion for the prime p = 2. �
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3.2. Results on strata of p-origamis

The purpose of this section is to derive results about p-origamis from the results about
p-groups in Section 3.1. In Section 3.2.1, we answer the question in which strata p-origamis
occur. Subsequently, we study in Section 3.2.2 under which conditions p-origamis with
isomorphic deck transformation groups lie in the same stratum.

3.2.1. Strata of p-origamis

The answer to the question in which strata p-origamis occur depends on whether the
considered prime is 2 or not. We begin this section with some facts that hold for all
primes. In the following two subsections, we consider 2-origamis and p-origamis for odd
primes p, respectively.

Recall from Lemma 2.2.9 that all normal origamis with abelian deck transformation group
lie in the stratum H(0). Since all abelian groups are isoclinic, the following can be viewed
as a generalization of the previous observation:

Corollary 3.2.1 The set of possible types of singularities of normal origamis with a given
deck transformation group depends only on the isoclinism class of this deck transformation
group.

Proof By Lemma 3.1.10, the set of possible commutator orders for pairs of generators
coincides for isoclinic 2-generated groups. The commutator order determines the multi-
plicity of the singularity. �

Remark 3.2.2 As an example, we have seen that for each n ≥ 1, there is a stratum
containing all 2-origamis with the dihedral group, the generalized quaternion group, or the
semidihedral group of order 2n as the group of deck transformations (see Corollary 3.1.11).
It was computed to be H(4× (2n−2 − 1)) in Lemma 3.1.19.

Strata of 2-origamis

In this subsection, we classify the strata of 2-origamis. We will see in the next subsection
that the occurring strata differ from the ones of p-origamis for odd primes p.

Theorem 3.2.3 Let n ∈ Z≥0. For 2-origamis of degree 2n, exactly the following strata
appear

• H(0),

• H
(
2n−k ×

(
2k − 1

))
, where 1 ≤ k ≤ n− 2.
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Chapter 3. Strata of p-origamis

Proof For n ≤ 2, all groups of order 2n are abelian, so the corresponding 2-origamis lie
in the trivial stratum by Lemma 2.2.9.

Let n, k ∈ Z≥0 with n > 2 and k ≤ n−2. By Proposition 3.1.4, there exists a 2-generated
group G of order 2n and generators x, y such that ord([x, y]) = 2k. Hence, the origami
(G, x, y) lies in the stratum H(0) for k = 0 and in H

(
2n−k ×

(
2k − 1

))
for k > 0.

It remains to prove that other strata cannot occur. Let O = (G, x, y) be a 2-origami of
degree 2n. By Remark 2.2.11, the only possible strata are of the form H(k × (a − 1))
where a is the multiplicity of each singularity and k is the number of singularities. Using
Proposition 3.1.2, we deduce that the inequality exp(G′) ≤ 2n−2 holds. By Lemma 2.2.9,
the multiplicity of each singularity equals ord([x, y]). Since ord([x, y]) ≤ 2n−2, the claim
follows. �

Remark 3.2.4 We recall the definition of the series of 2-groups in the proof of Proposi-
tion 3.1.4. For n, k ∈ Z≥0 with k ≤ n− 2, we define the semidirect product

G2
(n,k) := C2k+1 oϕ C2n−k−1 = 〈r, s | r2k+1 = s2n−k−1 = 1, s−1rs = r−1〉.

The commutator [r, s] has order 2k and thus the 2-origami (G2
(n,k), r, s) lies in the stratum

H
(
2n−k ×

(
2k − 1

))
.

In particular, this shows that in each of the occurring strata there exists a 2-origami with
a semidirect product of two cyclic groups as deck transformation group.

Example 3.2.5 For n = 3 and k = 1, we obtain the group

G2
(3,1) = C4 oϕ C2 = 〈r, s | r4 = s2 = 1, s−1rs = r−1〉.

This group is isomorphic to the dihedral group D8 of order 8. In Figure 3.2, we consider
the 2-origami O = (G2

(3,1), r, s). The commutator [r, s] = r−2 has order 2 and thus O lies
in H(4× 1).

1 r r2 r3

s

rs

r2s

r3s

Figure 3.2.: The 2-origami O = (G2
(3,1), r, s) with marked horizontal cylinders.

Choosing (s, rs) as the pair of generators of the group G2
(3,1), we obtain the normal origami

O′ = (G2
(3,1), s, rs) shown in Figure 3.3. Note that this is the Penrose stairs origami PS8
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3.2. Results on strata of p-origamis

(see Figure 2.5). Since [s, rs] = r−2 has order 2, the origamis O and O′ lie in the same
stratum. In the following, we show that the origamis are different. Recall that a maximal
cylinder is a maximal open subsurface that is isometric to an Euclidean cylinder. For a
normal origami (H, x, y), the length of each cylinder in horizontal and vertical direction
equals the order of x and y, respectively. We conclude that the horizontal cylinders of O′
have length 2, whereas the horizontal cylinders ofO have length 4. Hence, the origamis are
different. (Alternatively, one can use Lemma 2.2.4 and the fact that group isomorphisms
preserve orders.)

1 s

rsr

r2sr2

r3sr3

Figure 3.3.: The 2-origami O′ = (G2
(3,1), s, rs) with marked horizontal cylinders. It coincides

with the Penrose stairs origami PS8. Opposite sides are identified unless marked otherwise.

The example above gives two different 2-origamis with isomorphic deck transformation
group. In Section 3.2.2, we address the question whether the deck transformation group
determines the stratum of a normal origami.

Remark 3.2.6 We recall from Section 2.3 that the matrix group SL(2,Z) is generated
by S = ( 0 −1

1 0 ) and T = ( 1 1
0 1 ) and acts on the set of normal origamis with a fixed deck

transformation group. Note that Example 3.2.5 shows an instance of this SL(2,Z)-action
because of the equation

T · O′ =
(
G2

(3,1), s, rss
−1
)

= (G, s, r) = O.

In particular, O and O′ lie in the same SL(2,Z)-orbit. Recall that the dihedral group D8
is isomorphic to the group G2

(3,1). In Proposition 4.1.4, we will see that there are three
normal origamis with deck transformation group D8 and that SL(2,Z) acts transitively
on these origamis.

Strata of p-origamis for odd primes p

Throughout this section, let p denote an odd prime. We study the question in which
strata p-origamis lie. Compared to the case of 2-origamis fewer strata occur. This is
shown in the following theorem.
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Chapter 3. Strata of p-origamis

Theorem 3.2.7 Let n ∈ Z≥0. For p-origamis of degree pn, exactly the following strata
appear

• H(0)

• H
(
pn−k ×

(
pk − 1

))
, where 1 ≤ k < n

2 .
Proof For n ≤ 2, all groups of order pn are abelian, so the corresponding p-origamis lie
in the trivial stratum by Lemma 2.2.9.

Let n, k ∈ Z≥0 with n > 2 and k < n
2 . By Proposition 3.1.8, there exist a 2-generated

group G of order pn and generators x, y such that ord([x, y]) = pk. Hence, the origami
(G, x, y) lies in the stratum H(0) for k = 0 and in the stratum H

(
pn−k ×

(
pk − 1

))
for

k > 0.

It remains to prove that other strata cannot occur. Let O = (G, x, y) be a p-origami of
degree pn. By Remark 2.2.11, the only possible strata are of the form H(k × (a − 1))
where a is the multiplicity of each singularity and k is the number of singularities. By
Lemma 2.2.9, the multiplicity of each singularity equals ord([x, y]). Using Corollary 3.1.6,
we deduce that the inequality ord([x, y]) ≤ pk holds, where k < n

2 . �

Remark 3.2.8 We recall the definition of the series of p-groups in the proof of Proposi-
tion 3.1.8. For n, k ∈ Z≥0 with k < n

2 , we define the semidirect product

Gp
(n,k) := Cpk+1 oϕ Cpn−k−1 = 〈r, s | rpk+1 = sp

n−k−1 = 1, s−1rs = rp+1〉.

The commutator [r, s] has order pk and thus the p-origami (Gp
(n,k), r, s) lies in the stratum

H
(
pn−k ×

(
pk − 1

))
. As in Remark 3.2.4, this shows that in each of the occurring strata

there exists a p-origami with a semidirect product of two cyclic groups as deck transfor-
mation group.
Example 3.2.9 For p = 3, n = 3 and k = 1, we obtain the group

G3
(3,1) = C9 oϕ C3 = 〈r, s | r9 = s3 = 1, s−1rs = r4〉.

1 r r2 r3 r4 r5 r6 r7 r8

s

rs2 r3s2

r2s

r5s2

r4s r6s

r7s2

r8s2s2

rs r3s

r2s2

r5s

r4s2 r6s2

r7s

r8s

Figure 3.4.: The 3-origami (G3
(3,1), r, s). All horizontal cylinders are of length 9 and all vertical

cylinders are of length 3.
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3.2. Results on strata of p-origamis

We consider the origami O = (G3
(3,1), r, s). The commutator [r, s] has order 3 and thus

the origami O lies in H(9× 2). Hence, the origami has nine singularities of angle 3 · 2π.
Using the GAP-package [Ert+21], we compute that the set of normal origamis with deck
transformation group G3

(3,1) consists of 8 origamis.

3.2.2. p-origamis with isomorphic deck transformation groups

In this section, we study the question whether the deck transformation group determines
the stratum of a normal origami. This question was motivated by computer experiments.
For p-origamis, computer experiments suggested that the stratum depends only on the
isomorphism class of the deck transformation group. Using Example 3.1.14, we show that
this does not hold for all finite groups.

Example 3.2.10 For n ∈ N≥5 odd, we consider the alternating group Alt(n) with two
pairs of generators ((1, 2, . . . , n−1, n), (1, 2, 3)) and ((3, 4, . . . , n−1, n), (1, 3)(2, 4)). Recall
from Example 3.1.14 that the orders of the commutators

[(1, 2, . . . , n− 1, n), (1, 2, 3)] and [((3, 4, . . . , n− 1, n), (1, 3)(2, 4))]

are 3 and 5, respectively. Hence, the normal origami

On := (Alt(n), (1, 2, . . . , n− 1, n), (1, 2, 3))

has n!
6 singularities of multiplicity 3, whereas the normal origami

O′n := (Alt(n), (3, 4, . . . , n− 1, n), (1, 3)(2, 4))

has n!
10 singularities of multiplicity 5. It follows that there are two pairs of generators of

Alt(n) defining normal origamis lying in different strata.

The origami constructed in [Ath+20, Example 7.3] is a normal origami with deck trans-
formation group Alt(5). It lies in the same stratum as origami O′5 and thus could replace
O′5 in the example above for n = 5.

Recall that two normal origamis (G, x1, y1) and (G, x2, y2) with isomorphic group of deck
transformation group lie in the same stratum if and only if the orders of the commutators
[x1, y1] and [x2, y2] agree (see Remark 2.2.10). This is the case for all possible pairs of
generators of a group G if and only if the deck transformation group has property (C)
(see Definition 3.1.12). Using Theorem 3.1.29 and Remark 3.1.30, we obtain Theorem B
from the introduction.

Theorem 3.2.11 Let G be a finite 2-generated p-group. If G satisfies one of the properties
(1) to (8), then all p-origamis with deck transformation group G lie in the same stratum.

(i) G is regular.
(ii) G has maximal class.
(iii) G is powerful.
(iv) G′ is regular.

(v) G′ is powerful.
(vi) G′ is order-closed.
(vii) G has order at most pp+2.
(viii) G has nilpotency class at most p.
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Chapter 3. Strata of p-origamis

Proof By definition, a finite 2-generated group G has property (C), if there exists a
natural number n such that for each 2-generating set {x, y} of G the order of [x, y] equals
n. Hence, it is sufficient to show that property (C) holds for all groups satisfying one of
the properties (i) to (viii). This follows from Theorem 3.1.29. The connection to groups
up to a certain order or nilpotency class is made in Remark 3.1.30. �

For certain p-groups with property (C), we studied the constant given by the order of the
commutator of a pair of generators in Section 3.1.2 (see Lemma 3.1.19, Lemma 3.1.20,
and Lemma 3.1.28). We deduce the corresponding results for the strata of the respective
p-origamis.

Corollary 3.2.12 Any 2-origami of degree 2n whose deck transformation group has max-
imal class lies in the stratum H (4× (2n−2 − 1)).

Corollary 3.2.13 For 5 ≤ n ≤ p+ 1 and an odd prime p, any p-origami of degree pn
whose deck transformation group has maximal class lies in the stratum H (pn−1 × (p− 1)).

Corollary 3.2.14 Any p-origami of degree pn whose deck transformation group is a min-
imal non-power-closed p-group or a minimal non-order-closed p-group lies in the stratum
H (pn−1 × (p− 1)).

In Lemma 3.1.34, we constructed for each prime p a 2-generated p-group that does not
have property (C). Hence, we obtain the following proposition.

Proposition 3.2.15 For each prime p, there exist p-origamis with isomorphic deck
transformation group that lie in different strata.

Proof In Lemma 3.1.34, we proved for each prime p the existence of a 2-generated p-group
Hp which is contained in the Sylow p-subgroup of the symmetric group Sym(p4) and does
not have property (C). Hence, there exist p-origamis with deck transformation group
isomorphic to Hp that lie in different strata. �

Remark 3.2.16 The 2-group G with pairs of generators (x, y) and (x, y3) defined in
Example 3.1.26 is weakly power-closed, but not power-closed. Recall that the orders of
the commutators ord([x, y]) and ord([x, y3]) are 4 and 2, respectively. We obtain that the
2-origamis (G, x, y) and (G, x, y3) lie in different strata, namely H(210×3) and H(211×1).
Here we use that the group G has order 212.
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3.3. Infinite normal origamis

So far, we have considered surfaces that are also called finite translation surfaces, i.e., the
surface can be described as finitely many polygons with edge identifications via trans-
lations. As a generalization, infinite translation surfaces have been studied during
the past 10 years (see, e.g., [BV13]). In contrast to finite translation surfaces, one allows
countably many polygons glued by translations. For a detailed introduction to infinite
translation surfaces see [Ran16] and [DHV].

In this section, we consider a well-known infinite translation surface called staircase ori-
gami. Moreover, we generalize the notion of property (C) to pro-p groups, certain infinite
analogs of finite p-groups. We then transfer some results from Section 3.1.2 to pro-p
groups and deduce conclusions about a class of translation surfaces which we call infinite
normal origamis.

Let O → T be a countably infinite, normal cover of the torus T ramified over at most one
point. Then the corresponding surfaceO is called an infinite normal origami. Amongst
others, these surfaces have been studied by [Kar20], where they are called regular origamis.
As in the finite case, they correspond to a special class of infinite translation surfaces where
all polygons are squares of the same size. The concepts introduced in Section 2.2 carry
over to infinite origamis. Given a countably infinite group G with 2-generating set (x, y),
one constructs an infinite normal origami (G, x, y) as in Lemma 2.2.2. One has a natural
bijection between the squares in the tiling and the elements of the deck transformation
group. Singularities of infinite normal origamis can have finite cone angle, i.e., 2πn for
n ∈ Z+ as in the case of finite origamis, or infinite angle, i.e., a neighborhood of the
singularity is isometric to a neighborhood of the branching point of the infinite cyclic
branched cover of R2. As in the case of finite normal origamis, the cone angle of all
singularities of the origami (G, x, y) coincide and are equal to 2π · a, where a is the order
of the commutator [x, y]. If the order of [x, y] is infinite, then the cone angle is infinite as
well.

Example 3.3.1 An example for an infinite normal origami is the staircase origami St∞
in Figure 3.5. It has been studied both from the geometric (see, e.g., [HS10]) and from
the dynamical point of view (see, e.g., [HHW13]). The deck transformation group of the
origami St∞ is the infinite dihedral group

D∞ := 〈r, s | s2 = 1, srs = r−1〉.

For the origami St∞, the elements s, sr are chosen as generators. The commutator sub-
group of D∞ is the infinite cyclic group generated by [r, s] = r−2. Hence, for any pair of
generators x, y, the commutator [x, y] has order infinity. We conclude that each infinite
normal origami with deck transformation group D∞ has 4 singularities of infinite cone
angle.

Choosing the generators r, s we obtain a surface different from St∞. In contrast to the
latter, it has 2 infinite horizontal cylinders, as shown in Figure 3.6. Both normal origamis
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Chapter 3. Strata of p-origamis

lie in the same SL(2,Z)-orbit because of the following equation

ST · (D∞, s, sr) = S · (D∞, s, r−1) = (D∞, r, s).

We see that the horizontal cylinders of origamis in the same SL(2,Z)-orbit can be finite
and infinite.

srs sr

1 s

r rs

r2 r2s

...

...
Figure 3.5.: The infinite staircase origami St∞ = (D∞, s, sr) has four singularities of infinite
cone angle. All vertical and horizontal cylinders have length 2. Here, the horizontal cylinders

are shaded in different colors. Opposite sides are identified unless marked otherwise.

r−3 r−2 r−1 1 r r2 r3

r−2s s r2s

r−3s r−1s rs r3s

. . . . . .

Figure 3.6.: The origami (D∞, r, s) has two infinite horizontal cylinders and infinitely many
vertical cylinders of height 2. Here, the horizontal cylinders are shaded in different colors.

Opposite sides are identified unless marked otherwise.

The infinite dihedral group is a dense subgroup of the pro-2 group Z(2)nC2. Pro-p groups
have played an essential role in the study of finite p-groups (see, e.g., [LM00]). It is a
natural question, whether results of Section 3.1.2 and Section 3.2.2 can be transferred
to certain infinite groups, in particular profinite and pro-p groups, and infinite normal
origamis. To this end, we extend the definition of property (C) to possibly infinite groups
which are 2-generated. Note that, as we do not consider topological groups yet, the groups
under consideration are still countable.
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3.3. Infinite normal origamis

Definition 3.3.2 A (possibly countably infinite) 2-generated group G has property (C)
if there is an element k ∈ Z+∪{∞} such that the order of [x, y] equals k for any pair x, y
of generators of G.

Example 3.3.3 Recall that the infinite dihedral group D∞ has an infinite cyclic com-
mutator subgroup, i.e., D∞ has property (C) (see Example 3.3.1).

In the following, we consider 2-generated profinite groups. For this purpose, recall that an
inverse system of groups is a collection of groups (Gi)i∈I indexed by a directed poset I
and homomorphisms ψi,j : Gj → Gi for all i, j ∈ I, i ≤ j, such that ψi,i is the identity and
ψi,j ◦ ψj,k = ψi,k for all i ≤ j ≤ k. The inverse limit of an inverse system (Gi)i, (ψi,j)i≤j
is the group

Ĝ := {(gi)i ∈
∏
i

Gi : ψi,j(gj) = gi for all i ≤ j}

together with the projection maps πi : Ĝ→ Gi onto the components Gi. It is the categor-
ical limit for the diagram described by the inverse system in the category of groups, and
is distinguished by the corresponding universal property (see Diagram (3.5)).

Recall that a profinite group is a Hausdorff, compact, totally disconnected topological
group. For any profinite group Ĝ, the quotients Ĝ/N for all normal open subgroups
N of Ĝ form an inverse system of finite groups whose inverse limit is isomorphic to Ĝ.
Equivalently, one can define profinite groups as those which are isomorphic to the inverse
limit of an inverse system of finite groups. We refer the interested reader to [Dix+99] for
background knowledge about profinite groups.

For profinite, or more generally, topological groups, we can consider topological gener-
ating sets, i.e., subsets which generate a dense subgroup. A profinite group is topolo-
gically 2-generated if and only if it is isomorphic to the inverse limit of an inverse system of
2-generated finite groups ([Dix+99, Prop. 1.5]). This motivates the following definition.

Recall that a Steinitz number k is a formal product ∏p p
νp(k), where p ranges over

all prime numbers and νp(k) is a non-negative integer or ∞ for each prime p. Steinitz
numbers were first considered in [Ste10] and the order of each element in a profinite group
can be viewed as a Steinitz number (see, e.g., [Wil98, Chapter 2]).

Definition 3.3.4 We say that a topologically 2-generated profinite group has prop-
erty (Cpro) if there exists a Steinitz number k such that for all topological 2-generating
sets x, y the commutator order ord([x, y]) equals k.

Using the connection between commutator orders of 2-generating sets and cone angles of
singularities for infinite normal origamis, we obtain the following lemma directly from the
definition of property (Cpro).

Lemma 3.3.5 Let Ĝ be a topologically 2-generated profinite group with property (Cpro).
The singularities of all infinite normal origamis whose deck transformation group is a
(countable) dense subgroup of Ĝ have the same cone angle.
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One way of verifying that a given profinite group has property (Cpro) is given by the
following lemma.

Lemma 3.3.6 A topologically 2-generated profinite group has property (Cpro) if it is iso-
morphic to the inverse limit of an inverse system of finite groups which have property (C).

Proof Consider the profinite group Ĝ ∼= lim←−(Gi, ψi,j) for an inverse system
((Gi)i, (ψi,j)i≤j) of finite groups with property (C). Denote the structural projections
of the inverse limit by πi : Ĝ→ Gi.

From the inverse limit construction it is clear that the order of any element g ∈ Ĝ is the
least common multiple (as a Steinitz number) of the element orders (ord(πi(g)))i in the
respective groups Gi. If g is the commutator of a pair of (topological) generators x, y of
the group Ĝ, then πi(g) is the commutator of a pair of generators in Gi for every i, since
πi is an epimorphism. By assumption, the group Gi has property (C) for each i. Hence,
the number ord(πi(g)) is independent of the choice of the generators x, y for each i. We
conclude that the least common multiple of the element orders (ord(πi(g)))i is independent
of the choice of the generators x, y as well. This proves that Ĝ has property (Cpro). �

Remark 3.3.7 Let (Gi)i, (ψi,j)i≤j be an inverse system of 2-generated finite groups. We
call 2-generating sets (xi, yi)i compatible if ψi,j(xj) = xi and ψi,j(yj) = yi for all i and
j. Denote the inverse limit by (Ĝ, πi). Applying the universal mapping property of the
inverse limit to the free group F2 = 〈a, b〉 and the monodromy maps mi : F2 → Gi of the
normal origamis (Gi, xi, yi), one obtains a unique group homomorphism α : F2 → Ĝ and
the following commutative diagram

F2

α
�� mj

��

mi

��

Ĝ
πi

~~

πj

  
Gj

ψi,j // Gi.

(3.5)

The image α(F2) is a (countable) dense subgroup of Ĝ with the following 2-generating
set x := α(a) and y := α(b) (in the sense of classical group theory). Note that πi(x) = xi
and πi(y) = yi for all i ∈ I. We obtain an infinite normal origami (α(F2), x, y) associated
with the infinite sequence of finite normal origamis (Gi, xi, yi)i.

Similarly, any given infinite normal origami (H, x′, y′) for a (countable) dense subgroup H
of Ĝ yields infinitely many finite normal origamis (Gi, πi(x′i), πi(y′i))i. Here, we use that
the image πi(H) equals Gi for each i ∈ I (see [Dix+99, Proposition 1.5]).

Recall that for any prime p, a pro-p group is a profinite group Ĝ such that Ĝ/N is a
finite p-group for any open normal subgroup N of Ĝ. Equivalently, it is a group which
is isomorphic to the inverse limit of an inverse system of finite p-groups. Pro-p groups
play a central role in the coclass conjectures by Leedham-Green and Newman ([LN80]),
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3.3. Infinite normal origamis

proved by Leedham-Green ([Lee94]) and Shalev ([Sha94]), concerning a way of classifying
all finite p-groups.

We can now extend some of our results from finite p-groups to pro-p groups. Let us
call a pro-p group weakly order-closed if products of elements of order pk have order
at most pk, for any k ≥ 0. Let us also recall that a pro-p group is called powerful if
G/ cl({gpk : g ∈ G}) is abelian for k = 1 if p > 2 and for k = 2 if p = 2, where cl(S)
denotes the minimal closed subgroup generated by a set S (see [Dix+99, Definition 3.1]).

We observe that key results for finite p-groups, e.g., Proposition 3.1.17 and Corol-
lary 3.1.24, can be generalized to pro-p groups.

Proposition 3.3.8 A topologically 2-generated pro-p group Ĝ has property (Cpro) if

(i) Ĝ′ is weakly order-closed, or

(ii) Ĝ′ is powerful.

Proof If the order of the commutator [x, y] is infinite for all (topological) generators x, y
of Ĝ, the claim follows. Assume that x and y are (topological) generators of Ĝ such that
the order of the commutator [x, y] is finite. The commutator subgroup Ĝ′ is generated
by conjugates of [x, y], all having the same order, say pk for k ≥ 1. We will show that
assuming (i) or (ii) implies that this order is the exponent of Ĝ′ and thus is independent
of the choice of x, y. This proves the assertion that Ĝ has property (Cpro).

If we assume (i), then the countable subgroup of Ĝ′ generated (without topological closure)
by all conjugates of [x, y] consists of elements of order at most pk. Hence indeed, pk is the
exponent of the countable subgroup, and of Ĝ′ being its closure.

If we assume (ii), then Ĝ′ is a powerful pro-p group topologically generated by conjugates
of [x, y]. Hence, by [Dix+99, Prop. 3.6 (iii)], the set of all pk-th powers in Ĝ′ equals the
closed subgroup generated by the pk-th powers of the conjugates of [x, y], which is the
trivial subgroup. Thus, all pk-th powers in Ĝ′ have to be trivial, so pk is the exponent of
the commutator subgroup Ĝ′. �

As for finite p-groups this has implications for families of normal origamis:

Corollary 3.3.9 Let Ĝ be a topologically 2-generated pro-p group which is either powerful
or has a weakly order-closed commutator subgroup. The singularities of all infinite normal
origamis whose deck transformation group is a (countable) dense subgroup of Ĝ have the
same cone angle.

We conclude our exploration into the world of infinite deck transformation groups with
some examples.
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Chapter 3. Strata of p-origamis

Example 3.3.10 In this example, we introduce a setup to construct inverse systems
from semidirect products of cyclic groups. Such groups appeared several times in Sec-
tion 3.1.1 and Section 3.2 (e.g. Proposition 3.1.4, Proposition 3.1.8, Remark 3.2.4, and
Remark 3.2.8). For a prime p, let Cpm = 〈x〉 and Cp` = 〈y〉 be cyclic groups of order
pm and p`, respectively. If a ∈ Z is coprime to p and ap

m ≡ 1 mod p`, then the map
ϕa : Cpm → Aut(Cp`), x 7→ (y 7→ ya) is a group homomorphism and defines a semidirect
product

H(`,m,a) := Cp` oϕa Cpm = 〈x, y | xpm = yp
` = 1, x−1yx = ya〉.

Now for any m′ ≥ m and `′ ≥ ` with m′ − `′ ≥ m − `, we show that the congruences
ap

m′ ≡ 1 mod p`′ and ap
m′ ≡ 1 mod p` hold as well. For this, it suffices to prove the

congruence apm+1 ≡ 1 mod p`+1 and apply an induction argument. By assumption, we
have apm = d · p` + 1 for some integer d. Using binomial expansion, we compute

ap
m+1 ≡ (dp` + 1)p

≡
p∑

k=1

(
p

k

)
·
(
dp`

)p−k
· 1k

≡ 1 +
(

p

p− 1

)
· dp`

≡ 1 mod p`+1.

Hence, the groups H(`′,m′,a) and H(`,m′,a) are still well-defined and we have epimorphisms
H(`′,m′,a) → H(`,m,a) and H(`,m′,a) → H(`,m,a) sending x 7→ x and y 7→ y in the respective
groups. Using these epimorphisms, we get an inverse system(

H(`,m′,a)
)
m′≥m

with inverse limit Cp` o Z(p), or an inverse system(
H(`′,m′,a)

)
m′≥m,`′≥`,m′−`′≥m−`

with inverse limit Z(p) o Z(p).

Choosing compatible 2-generating sets for the groups forming an inverse system, one
obtains an infinite sequence of finite normal origamis and an infinite normal origami
which has a (countable) dense subgroup of the inverse limit as its deck transformation
group (see Remark 3.3.7).

Note, that all groups of the form H(`,m,a) have property (C), since the commutator sub-
group is always cyclic (generated by ya−1). Hence, both constructions of inverse systems
yield pro-p groups with property (Cpro) (see Lemma 3.3.6). The constructions of inverse
systems given above can be applied as well to the inverse systems formed by the groups
Gp

(n,k) considered in Remark 3.2.4 and Remark 3.2.8 for p = 2 and p > 2, respectively.

The dihedral groups D2n = 〈rn, sn | r2n−1
n = s2

n = 1, snrnsn = r−1
n 〉, considered in Ex-

ample 3.3.1, form an inverse system constructed in a similar, but slightly different way.
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3.3. Infinite normal origamis

Here, we fix m = 1 as well as a = −1 and let ` vary. The infinite dihedral group D∞
is a 2-generated countable dense subgroup of the inverse limit D̂2 = Z(2) o C2 of the
2-generated 2-groups (D2n)n≥0. By Lemma 3.1.21, the dihedral groups have property (C)
and thus the pro-2 group has property (Cpro) (see Lemma 3.3.6). For n ∈ Z+, the tuples
(rn, sn)n form compatible 2-generating sets. Using the construction in Remark 3.3.7, we
obtain the normal infinite origami (D∞, r, s) in Figure 3.6. Choosing (sn, snrn)n as com-
patible 2-generators, the construction yields the infinite staircase origami in Figure 3.5.
For each natural number n, the finite normal origami (D2n , sn, snrn) is the Penrose stairs
origami PS2n (see Example 2.2.7). We observe that the infinite staircase origami can be
viewed as the limit of the finite Penrose stairs origamis PS2n .

In the following example, we construct an inverse system taking the quaternion group as
a starting point. This yields an infinite series of normal origamis covering the “eierlegende
Wollmilchsau” (see Example 2.2.3).

Example 3.3.11 The groups

Wn = 〈x, y | x2n+1 = y2n+1 = x2n

y2n = 1, x−1yx = y−1〉

are 2-generated 2-groups of order 22n+1. For any n ≥ 1, consider the group element
z := y2 = [x, y]. It lies in the commutator subgroup W ′

n, commutes with y, and obeys the
equality

x−1zx = x−1y2x = y−2 = z−1 .

1 x x2 x3 x4 = y4 x5 x6 x7

y

xy7 x3y7

x2y

xy3

y5 x2y5

x3y3

y2

y3

xy6

xy5

x3y6

x3y5

x2y2

x2y3

xy2

xy

y6

y7

x2y6

x2y7

x3y2

x3y

Figure 3.7.: The origami (W2, x, y) as in Example 3.3.11 is a cover of the “eierlegende
Wollmilchsau” of degree 4.
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Chapter 3. Strata of p-origamis

Hence, by Lemma 3.1.3, the commutator subgroup W ′
n = 〈z〉 is cyclic of order 2n. The

defining relations of Wn imply that its elements are of the form yixj for 0 ≤ i < 2n+1 and
0 ≤ j < 2n. The images of x and y in the abelianization Wn/W

′
n = Wn/〈y2〉 have order

2n and 2, respectively, and the abelianization is isomorphic to C2n × C2.

Note that we have epimorphisms from Wn+1 to Wn for any n ≥ 1 sending x 7→ x, y 7→ y
(and z 7→ z) in the respective groups. We obtain an inverse system whose inverse limit
has property (Cpro) by Lemma 3.3.6. The groupW1 is isomorphic to the quaternion group
with 8 elements and the generators (x, y) (viewed as elements in the groups Wn) form a
set of compatible generators. Hence, we obtain an infinite sequence of normal origamis
(Wn, x, y) covering the “eierlegende Wollmilchsau”. We give an example of these origamis
for n = 2 in Figure 3.7.
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Chapter 4.

Veech groups of normal origamis

In this chapter, we study the SL(2,Z)-action on and the Veech groups of certain normal
origamis. We are especially interested in the following questions: When are the Veech
groups of origamis congruence subgroups, and when are they far from being congruence
subgroups? On the one hand, [Sch05] demonstrated that almost all congruence groups
occur as Veech groups of origamis. On the other hand, Hubert and Lelièvre studied the
situation in the stratum H(2) in [HL05]. They proved that, except for the Veech group
of one origami, all occurring Veech groups are not congruence groups. However, these
results do not fully answer the aforementioned questions.

In Section 4.1, we mostly consider families of 2-groups that are semidirect products of
cyclic groups. We construct and examine all normal origamis with these groups as deck
transformation groups and study properties of their Veech groups as well as their SL(2,Z)-
orbits in Section 4.1.1. For instance, we prove that the Veech groups of the 2-origamis
under consideration are a congruence subgroup and that the group SL(2,Z) acts tran-
sitively on the set of normal origamis O(G) with deck transformation group G for all
considered groups G.

Translation surfaces are closely related to the study of dynamical systems, e.g., the Teich-
müller flow. Lyapunov exponents capture the dynamical behavior of the homology along
the orbits of the Teichmüller flow. In Section 4.1.2, we use a combinatorial formula intro-
duced by Eskin, Kontsevich, and Zorich (see Theorem 4.1.24) together with the results
obtained in Section 4.1.1 to compute the sum of non-negative Lyapunov exponents for
the normal origamis under consideration.

The results in Section 4.1.1 raise the question whether there exist normal origamis whose
Veech groups are not congruence groups. In Section 4.2, conditions for the deck trans-
formation group of a normal origami O are introduced which imply that its Veech group
is a totally non-congruence group, i.e., SL(O) surjects onto SL(2,Z/nZ) for each n ∈ Z+.
The notion of totally non-congruence groups was established by Weitze-Schmithüsen (see
[Wei13]). In [SW18], for each stratum an infinite family of origamis with totally non-
congruence groups as Veech groups is constructed. These origamis have only few sym-
metries and thus are far from being normal origamis. In Section 4.2, we give examples of
normal origamis whose Veech groups are totally non-congruence groups. For instance, we
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Chapter 4. Veech groups of normal origamis

construct such a normal origami for each Hurwitz group.

4.1. Veech groups of 2-origamis

In this section, we study families of normal origamis whose deck transformation groups
are isomorphic and have a particular group structure. Starting from dihedral groups and
the family of groups G2

(n,k) constructed in Section 3.1, we consider more general families
of 2-groups. After investigating the set of normal origamis O(G) with these groups as
deck transformation groups, the SL(2,Z)-action on the set O(G), and the occurring Veech
groups in Section 4.1.1, we compute the sum of non-negative Lyapunov exponents for the
normal origamis in O(G).

We begin by recalling the definition of congruence subgroups.

Definition 4.1.1

• For n ∈ Z+, the principal congruence subgroup Γ(n) is defined as the kernel of
the natural projection SL(2,Z)→ SL(2,Z/nZ).

• A subgroup G of SL(2,Z) is a congruence subgroup if it contains a principal
congruence subgroup Γ(n) for some natural number n. The minimal n such that
Γ(n) is contained in G is called the level of G.

The following lemma and corollary are useful to decide whether the Veech group of a
normal origami is a congruence subgroup of level 2.

Lemma 4.1.2 For a normal origami O = (G, x, y), its Veech group contains the parabolic
matrices

1 ord(x)

0 1

 ,
 1 0

ord(y) 1

 .

Proof Consider the cylinder decomposition in horizontal direction. Each horizontal
cylinder has height 1, circumference ord(x) and thus inverse modulus ord(x) (see Re-
mark 2.3.7). Hence, the first matrix lies in the Veech group SL(O) (see Lemma 2.3.8).
For the second matrix, consider the cylinder decomposition of O in vertical direction.
These cylinders have height 1, circumference ord(y) and hence inverse modulus ord(y).
The matrix M = ( 0 1

1 0 ) maps the vertical direction to the horizontal one and is inverse to
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4.1. Veech groups of 2-origamis

itself. We compute

M ·

1 ord(y)

0 1

 ·M = M ·

ord(y) 1

1 0



=

 1 0

ord(y) 1

 .
Thus, the second matrix lies in SL(O). �

Corollary 4.1.3 The Veech group of a normal origami O = (G, x, y) is a congruence
group of level at most 2 if the orders of x and y are 2.

Proof Recall that the principal congruence subgroup Γ(2) is generated by the matrices

S2 =

−1 0

0 −1

 , T 2 =

1 2

0 1

 , and ST−2S−1 =

1 0

2 1

 .

By Lemma 4.1.2, the matrices T 2 and ST−2S−1 lie in the Veech group SL(O). Applying
the matrix S2 to the origami O yields the origami (G, x−1, y−1). This equals O and thus
the claim follows. �

In the rest of this section, we study the Veech groups of a first family of normal origamis.
Recall that D2m = 〈r, s | rm = s2 = 1, s−1rs = r−1〉 denotes the dihedral group with
2m elements for m ∈ N>1. Further, recall that the set of normal origamis with D2m as
deck transformation group is denoted by O(D2m). Note that we call the normal origamis
(D2m, s, sr) Penrose stairs origamis PS2m (see Example 2.2.7 and Example 3.2.5). How-
ever, we will see in Proposition 4.1.4 that for each m there are two other origamis with
the dihedral group of order 2m as deck transformation group.

Recall that two normal origamis O = (G, x, y) and O′ = (G, x′, y′) are equal if and only
if there exists an automorphism ϕ of G sending the pair of generators (x, y) to the pair
(ϕ(x), ϕ(y)) = (x′, y′). Further, the SL(2,Z)-action on the set of normal origamis O(G)
can be described in terms of the pairs of generators (see Remark 2.2.5 and Section 2.3.1 for
further information). In the following proposition, we use this to describe the SL(2,Z)-
action on all origamis in O(D2m) and study the Veech groups of these origamis. The
Veech group of the Penrose stairs origamis PS2m has been computed in a different way
by Zmiaikou in [Zmi11, Proposition 4.10 and Section 2.6].

Proposition 4.1.4 The set O(D2m) has cardinality 3 and SL(2,Z) acts transitively on
O(D2m). Veech groups of origamis in O(D2m) have index 3 and are congruence subgroups
of level 2.
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Chapter 4. Veech groups of normal origamis

Proof Recall that each element in the dihedral group D2m can be written as rjsk with
0 ≤ j < m, 0 ≤ k < 2. Further, note that elements of the form rjs have order 2. This
implies that 2-generating sets of D2m are of the form

(i) {rj, rks} with j ∈ (Z/mZ)∗ , 0 ≤ k < m, or

(ii) {rjs, rks} with j − k ∈ (Z/mZ)∗.

Define α(j,k) : D2m → D2m by α(j,k)(r) = rj and α(j,k)(s) = rks for j ∈ (Z/mZ)∗ and
0 ≤ k < m. One easily checks that α(j,k) defines an automorphism of D2m. Since group
automorphisms are order preserving, no further automorphism exists. Each automor-
phism sends r to a power of r and thus applying an automorphism cannot change the
form of a 2-generating set. Pairs of generators of form (i) yield the following two orbits
under the action of Aut(D2m)

(1) o1 = [(r, s)] = {(rj, rks) | j ∈ (Z/mZ)∗ , 0 ≤ k < m},

(2) o2 = [(s, r)] = {(rks, rj) | j ∈ (Z/mZ)∗ , 0 ≤ k < m}.

Consider a pair of generators (rjs, rks) with j − k ∈ (Z/mZ)∗. Applying α(1,−j) yields
(s, rk−js). The automorphism α((k−j)−1,0) sends this pair of generators to (s, rs). We
conclude that all tuples of generators arising from generating sets of form (ii) lie in the
same orbit

(3) o3 = [(s, rs)] = {(rjs, rks) | j − k ∈ (Z/mZ)∗}.

Each of the orbits oi = [(g, h)] defines a normal origami Oi = (D2m, g, h) with deck
transformation group D2m for 1 ≤ i ≤ 3 and each origami in O(D2m) arises in this way.
This proves the statement about the cardinality of O(D2m).

To prove the statement about the Veech group, we study the SL(2,Z)-action on the set
O(D2m). We first consider the action of the matrix S:

S · O1 = (D2m, s
−1, r) = O2,

S · O2 = (D2m, r
−1, s) = O1,

S · O3 = (D2m, s
−1r−1, s) = O3.

Hence, the permutation σS = (1, 2) describes the action of S. The action of the matrix T
on the set O(D2m) is given by:

T · O1 = (D2m, r, sr
−1) = (D2m, r, rs) = O1,

T · O2 = (D2m, s, rs
−1) = O3,

T · O3 = (D2m, s, rss
−1) = O2.

This corresponds to the permutation σT = (2, 3). We conclude that SL(2,Z) acts tran-
sitively on O(D2m). Hence, the Veech groups of the origamis O1,O2, and O3 have index
3 in SL(2,Z) and are conjugated in SL(2,Z).
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Finally, we show that the Veech groups SL(Oi) is a congruence group of level 2 for
1 ≤ i ≤ 3. Since principal congruence subgroups are normal in SL(2,Z) and the Veech
groups under consideration are conjugated in SL(2,Z), it is sufficient to prove the claim
for the origami O3. Note that the orders of the group elements s and rs are 2. By
Corollary 4.1.3, the Veech group of the origami O3 = (D2m, s, rs) is a congruence subgroup
of level at most 2. We proved that the index of SL(O3) is 3 and thus the congruence level
equals 2. �

The family of normal origamis O(D2m) studied in the previous proposition illustrates how
one can use the concepts introduced in Chapter 2 to study the SL(2,Z)-action of normal
origamis with a fixed deck transformation group and the ocurring Veech groups.

4.1.1. 2-origamis with congruence groups as Veech groups

In this section, we construct interesting families of finite groups and use similar techniques
as in Proposition 4.1.4 to deduce results on the Veech groups of the corresponding normal
origamis and the SL(2,Z)-action. We will see that even if the group structure of the deck
transformation groups of normal origamis are very similar, the corresponding normal
origamis may behave very differently. To this end, we mainly focus on studying 2-groups
that are semidirect products of cyclic groups. However, at the end of this section we
consider the family of 2-groups introduced in Example 3.3.11 that are extensions of the
quaternion group. We begin by defining generalized dihedral groups.

Definition 4.1.5 A generalized dihedral group is a semidirect productHoϕC2, where
H is an abelian group, C2 = 〈g〉 is a cyclic group of size 2, and ϕ(g) : H → H, h 7→ h−1.

Given a generalized dihedral group G = H oϕ C2 that is also a 2-generated 2-group, the
group H is cyclic and of order 2m for some m. Hence, G is of the form C2m oϕ C2 with
ϕ as above and m ∈ Z≥0. Notice that for m ≥ 1 the group C2m oϕ C2 is isomorphic to
the group D2m+1 ∼= G2

(m+1,m−1) (we recall the definition of the groups G2
(n,k) below). As

we have studied this case in Proposition 4.1.4, we will not consider these groups in the
following.

In Chapter 3, we classified the strata in which p-origamis occur. To construct origamis in
the respective strata, we considered the following family of 2-groups (see Remark 3.2.4).
We recall the definition of the groups G2

(n,k):

C2k+1 oϕ C2n−k−1 = 〈r, s | r2k+1 = s2n−k−1 = 1, s−1rs = r−1〉,

where n, k ∈ Z≥0 with k ≤ n − 2. In this chapter, we set G(n,k) := G2
(n,k) to simplify the

notation. These groups generalize dihedral groups by other means. We use Remark 2.2.5
as well as the definition of the SL(2,Z)-action on the generating pairs to compute all
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2-origamis with a group G(n,k) for 1 ≤ k ≤ n− 3. Note that we do not consider the case
k = n− 2 because the corresponding groups G(n,n−2) are dihedral groups.

We will use frequently several relations and automorphisms of the group G(n,k) when
studying the normal origamis with deck transformation group G(n,k). Observe that the
relation s−1rs = r−1 implies the following relations for an even integer i and an odd
integer j:

rjs = sr−j, rsi = sir,

(rs)j = rsj, (rs)i = si.

Further, we obtain the following automorphisms for 1 ≤ i, ` ≤ 2k+1, 1 ≤ j ≤ 2n−k−1 with
i, j odd:

α(i,j) : G(n,k) → G(n,k) defined by α(i,j)(r) = ri and α(i,j)(s) = sj,

β` : G(n,k) → G(n,k) defined by β`(r) = r and β`(s) = r`s,

γ : G(n,k) → G(n,k) defined by γ(r) = rs2n−k−2 and γ(s) = s.

To show that these maps are indeed automorphisms, one checks the defining relations for
the images of r and s and observes that the images of r and s generate the group G(n,k).

Proposition 4.1.6 Let n, k ∈ Z+ such that 1 ≤ k ≤ n− 3. The set O(G(n,k)) of normal
origamis with deck transformation group G(n,k) has cardinality 3 · 2n−k−3 and is contained
in the stratum H

(
2n−k ×

(
2k − 1

))
. Representatives of these origamis are given as the

union R = R1 ∪̇ R2 ∪̇ R3, where

R1 :=
{

(G(n,k), s, rs
m) | 1 ≤ m ≤ 2n−k−2, 2 6 | m

}
,

R2 :=
{

(G(n,k), s, rs
2·m) | 1 ≤ m ≤ 2n−k−3

}
,

R3 :=
{

(G(n,k), rs
2·m, s) | 1 ≤ m ≤ 2n−k−3

}
.

Proof Fix natural numbers n, k such that 1 ≤ k ≤ n − 3. Consider the normal origami
(G(n,k), s, r). The commutator [s, r] = r2 has order 2k and thus this origami lies in
the claimed stratum. Note that the conjugates r−1[s, r]r = r2 and s−1[s, r]s = r−2 are
contained in the group generated by r2. We conclude that the commutator subgroup
G′(n,k) is generated by the commutator [s, r] and thus it is regular (see Lemma 3.1.3). By
Theorem 3.2.11, all normal origamis with deck transformation group G(n,k) lie in the same
stratum. Hence, we have O(G(n,k)) ⊆ H

(
2n−k ×

(
2k − 1

))
.

The relation rs = sr−1 implies that each group element g ∈ G(n,k) can be written as r`sm
for 1 ≤ ` ≤ 2k+1 and 1 ≤ m ≤ 2n−k−1. Further, two group elements r`1sm1 and r`2sm2

with 1 ≤ `i ≤ 2k+1 and 1 ≤ mi ≤ 2n−k−1 are equal if and only if `1 = `2 and m1 = m2.

Let T = (r`1sm1 , r`2sm2) be a tuple of generators of G(n,k). We first show that there is
an automorphism δ ∈ Aut(G(n,k)) mapping T to a representative in R. Suppose both m1
and m2 are even integers. Then the relation rs = sr−1 implies that the group generated
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by r`1sm1 and r`2sm2 does not contain the group element s. However, the tuple T gen-
erates G(n,k) by assumption and this yields a contradiction. We conclude that one of the
exponents m1 and m2 is odd.

Assume m1 is odd. For m−1
1 ∈ (Z/2n−k−1Z), the automorphism α(1,m−1

1 ) maps the tuple
T to

T1 = (r`1s, r`2sm2m
−1
1 ).

Next, consider the automorphism β−`1 which maps T1 to

T2 = (s, r`2−`1msm2m
−1
1 ),

where m = 1 if m2m
−1
1 is odd, and m = 0 else. The tuple T2 generates G(n,k). Hence, the

exponent ` := `2 − `1m of r is odd. Applying the automorphism α(`−1,1) to the tuple T2,
we obtain the tuple of generators T3 = (s, rsm2m

−1
1 ).

Since γ : G(n,k) → G(n,k) given by γ(r) = rs2n−k−2
, γ(s) = s defines an automorphism, we

may assume that m2m
−1
1 ≤ 2n−k−2. Hence, the normal origami (G(n,k), s, rs

m2m
−1
1 ) lies in

R1 or R2 and thus is a representative in R.

Assume m2 is odd and m1 is even. Analog computations as above yield an automorphism
δ ∈ Aut(G(n,k)) mapping T to a tuple of the form (rs2·m, s) for 1 ≤ m ≤ 2n−k−3. The
normal origami (G(n,k), rs

2·m, s) lies in R3.

It remains to show that each representative given in R defines a different origami. To
prove this, one shows that xi 7→ aj, yi 7→ bj does not define an automorphism of G(n,k).
Here, the normal origamis (G(n,k), xi, yi) and (G(n,k), aj, bj) are elements of Ri and Rj,
respectively, and 1 ≤ i, j ≤ 3.

We begin with the case i = 2 and j = 3. Let (G(n,k), s, rs
2·`) and (G(n,k), rs

2·m, s) be
origamis in R2, R3, respectively. Suppose that

δ(rs2·m) := s and δ(s) := rs2·` (4.1)

define an automorphism δ of G(n,k). We deduce the following equation for the image of r

δ(r) = s · (rs2·`)−2m = r2ms1−4`m.

Since the relation s−1rs = r−1 holds in G(n,k), the images of r and s under δ have to
satisfy the same relation. For the left hand side, we obtain the equality

δ(s)−1 · δ(r) · δ(s) =
(
rs2·`

)−1
·
(
r2ms1−4`m

)
·
(
rs2·`

)
= r2m−2s1−4`m.

(4.2)

For the right hand side, we obtain the equality

δ(r)−1 =
(
r2ms1−4`m

)−1
= r2ms4`m−1. (4.3)
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Chapter 4. Veech groups of normal origamis

Since 2m and 2m−2 are not equivalent modulo 2k+1, the equations (4.2) and (4.3) are not
equal. Hence, (4.1) does not define an automorphism. This implies that the considered
normal origamis are different.

We check the other cases in an analogous manner using the relation rs = sr−1 in G(n,k).
Consider the case i = 1 and j = 2. The origamis are of the form O = (G(n,k), s, rs

m) and
O′ = (G(n,k), s, rs

`) with m even and ` odd. Then there is an automorphism δ of G(n,k)
with δ(s) = s and δ(r) = rsm−`. Note m− ` is odd. As δ is an automorphism, we obtain
the equality δ(r)δ(s) = δ(s)δ(r−1). For the left side, we obtain

rsm−`s = rsm−`+1 = sm−`+1r.

For the right side, we obtain

ss`−mr−1 = s`−m+1r−1 =: x.

The equality of both sides yields

1 = sm−`+1r · x−1

= sm−`+1rrsm−`−1

= r2s2m−2`+2.

However, this does not hold because k 6= 0.

Consider the case i = 1 and j = 3. The origamis are of the form O = (G(n,k), s, rs
m) and

O′ = (G(n,k), rs
`, s) with m odd and ` even. Then there is an automorphism δ of G(n,k)

with δ(s) = rs` and δ(rsm) = s. Then we have

δ(r) = s · δ(sm)−1

= s(rs`)−m

= rms1−m`.

Here, we use that ` is an even integer. As δ is an automorphism, we obtain the equality
δ(r)δ(s) = δ(s)δ(r−1). For the left side, we obtain

rms1−m` · rs` = rm−1s1−m`+`.

For the right side, we obtain

rs` · sm`−1r−m = r1+ms`+m`−1 =: x.

The equality of both sides yields

1 = rm−1s1−m`+` · x−1

= rm−1s1−m`+` · s1−`−m`r−1−m

= rm−1s2−2m`r−1−m

= r−2s2−2m`.
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This does not hold because k 6= 0.

Finally, consider the case 1 ≤ i, j ≤ 3 with i = j. Without loss of generality, we may
assume that the origamis are of the form O = (G(n,k), s, rs

m) and O′ = (G(n,k), s, rs
`)

such that m and ` have the same parity and m 6= `. Then there is an automorphism δ of
G(n,k) with δ(s) = s and δ(rsm) = rs`. Then we have

δ(r) = rs` · δ(sm)−1

= rs`s−m

= rs`−m.

Notem−` is even. As δ is an automorphism, we obtain the equality δ(r)δ(s) = δ(s)δ(r−1).
For the left side, we obtain

rs`−ms = rs`−m+1.

For the right side, we obtain

ssm−`r−1 = sm−`+1r−1 =: x.

The equality of both sides yields

1 = rs`−m+1 · x−1

= rs`−m+1rs`−m−1

= s2`−2m.

Hence, 2`− 2m is a multiple of 2n−k−2 and thus `−m is a multiple of 2n−k−3. This is a
contradiction because 0 6= `−m < 2n−k−3. �

Proposition 4.1.7 The group SL(2,Z) acts transitively on the set of normal origamis
O(G(n,k)). The Veech groups of origamis in O(G(n,k)) are conjugated in SL(2,Z) and have
index 3 · 2n−k−3.

Proof We use the notation from Proposition 4.1.6. Computing the action of S on origa-
mis in R2 and R3, one obtains

S · (G(n,k), s, rs
2m) = (G(n,k), s

−2mr−1, s)
= (G(n,k), r

−1s−2m, s)
= (G(n,k), rs

−2m, s),
S · (G(n,k), rs

−2m, s) = (G(n,k), s
−1, rs−2m)

= (G(n,k), s, rs
2m).

Here, we use that r 7→ r−1, s 7→ s and r 7→ r, s 7→ s−1 define automorphisms of G(n,k).
Using the automorphism γ with γ(r) = rs2n−k−2 and γ(s) = s, we observe that the normal
origami (G(n,k), rs

−2m, s) = (G(n,k), rs
2n−k−2−2m, s) lies in R3. We consider the generating

tuple (rs−2m, s) to simplify the calculation above. The permutation describing the action
of S on the origamis in R2 and R3 consists of disjoint 2-cycles. Each 2-cycle connects an
origami in R2 with one in R3. The matrix T−1 acts on origamis in R1 and R2 as follows

T−1 · (G(n,k), s, rs
i) = (G(n,k), s, rs

i+1).
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Chapter 4. Veech groups of normal origamis

We obtain a 2n−k−2-cycle describing the action of T on the origamis in R1 and R2. This
permutation acts transitively on all origamis in R1 and R2.

Combining these two results, we obtain the following diagram

O1
T−1
// O2n−k−3+1

T−1
//

S

��

O2
T−1
// O2n−k−3+2

T−1
//

S

��

. . .
T−1
// O2n−k−3

T−1
// O2n−k−2

S

��

T−1

ss

O2n−k−2+1

S

WW

O2n−k−2+2

S

WW

O3·2n−k−3

S

WW (4.4)

Here, the origamis in Ri+1 are labeled by Oi·2n−k−3+1, . . . ,O(i+1)·2n−k−3 in a suitable way
for 0 ≤ i ≤ 2. Proposition 4.1.6 implies that SL(2,Z) acts transitively on the set of
normal origamis O(G(n,k)). This shows that the Veech groups of such origamis have index
3 · 2n−k−2 in SL(2,Z) and are conjugated in SL(2,Z). �

In the following corollaries, we use the notation from Proposition 4.1.6. Note that we
will use the notation for the sets of representatives R1, R2, and R3 in later parts of this
thesis as well. We will then refer to Proposition 4.1.6. Further, note that we will use
both corollaries in the proof of Proposition 4.1.11. There, we show that the Veech group
of each normal origami with deck transformation group G(n,k) is a congruence group and
we compute the congruence level.

Corollary 4.1.8 Let O be an origami in R1 ∪R2. The smallest natural number m ∈ Z+
with Tm ∈ SL(O) is m = 2n−k−2.

We have seen in Diagram (4.4) that the difference n− k is essential when describing the
SL(2,Z)-action on the set O(G(n,k)). Note that the representatives in the sets R1, R2, and
R3 also depend on the difference n− k (see Proposition 4.1.6). The subsequent corollary
shows that the occurring Veech groups depend only on the difference n − k as well. To
see this, we set d := n− k. We then use that there is a natural bijection between the sets
of representatives if we consider integers n1, k1, n2, k2 with 1 ≤ ki ≤ ni−3 and d = ni−ki
for i = 1, 2. Further, we show that the SL(2,Z)-action on these sets of representatives
coincide.

Corollary 4.1.9 Let (n1, k1) and (n2, k2) be pairs of natural numbers with 1 ≤ ki ≤ ni−3
and n1 − k1 = n2 − k2. Further, let F2 = 〈r̃, s̃〉 be the free group on two generators and
µi : F2 → G(ni,ki) be the group homomorphism defined by µi(r̃) = r and µi(s̃) = s with
i = 1, 2. Given words v, w ∈ F2 such that (G(n1,k1), µ1(v), µ1(w)) defines a normal origami,
the tuple (G(n2,k2), µ2(v), µ2(w)) defines a normal origami as well. The Veech groups of
both origamis coincide.

Proof Without loss of generality, we may assume that Oi := (G(ni,ki), µi(v), µi(w)) is one
of the representatives given in Proposition 4.1.6 for i = 1, 2. The equality n1−k1 = n2−k2
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implies that the representatives of the normal origamis with deck transformation group
G(n1,k1) and deck transformation groupG(n2,k2) are equal (as formal words in the generators
r and s). Denote d = n1 − k1.

We claim that the SL(2,Z)-action on the representatives coincides for G(n1,k1) and G(n2,k2).
For this, note that µi(v) = s or µi(w) = s for i = 1, 2. We have

T · Oi = (G(ni,ki), µi(v), µi(w)µi(v)−1).

If µi(v) = s, then µi(w) = rs` holds for some natural number ` with 1 ≤ ` ≤ 2n−k−2.
Hence, we compute T · Oi = (G(ni,ki), s, rs

`−1), i.e., the action of the matrix T on these
representatives coincides. If µi(w) = s, then µi(v) = rs2·` holds for some natural number
` with 1 ≤ m ≤ 2n−k−3. Hence, we obtain

T · Oi = (G(ni,ki), rs
2·`, s(rs2·`)−1)

= (G(ni,ki), rs
2·`, s1−2·`r−1)

= (G(ni,ki), rs
2·`·a, rs)

= (G(ni,ki), r(r−1s)2·`·a, s)
= (G(ni,ki), rs

2·`·a, s).

Here, a denotes (1 − 2`)−1 ∈ Z/2d−1. Recall d = n1 − k1. If 2 · ` · a > 2d−3 holds, apply
the automorphism defined by s 7→ s, r 7→ rs2d−2 . This proves the claim for the action of
the matrix T on the sets O(G(ni,ki)) for i = 1, 2.

The action of S is given by

S · Oi = (G(ni,ki), µi(w)−1, µi(v)).

For {µi(v), µi(w)} = {s, rs2·`}, we compute

S · (G(ni,ki), s, rs
2·`) = (G(ni,ki), s

−2·`r−1, s)
= (G(ni,ki), rs

−2·`, s),
S · (G(ni,ki), rs

2·`, s) = (G(ni,ki), s
−1, rs2·`)

= (G(ni,ki), s, rs
−2·`).

Since s 7→ s, r 7→ rs2d−2 defines an automorphism of G(ni,ki) for i = 1, 2, we deduce that
the action of the matrix S on these representatives coincides. For an odd natural number
` with 1 ≤ ` ≤ 2d−2, we obtain

S · (G(ni,ki), s, rs
`) = (G(ni,ki), s

−`r−1, s)
= (G(ni,ki), rs

−`, s),
= (G(ni,ki), r(r−1s)−`, r−1s),
= (G(ni,ki), s

−`, r−1s),
= (G(ni,ki), s, rs

(−`)−1).

Hence, the action of S on the representatives coincides. We have shown that the SL(2,Z)-
action on the sets O(G(ni,ki)) coincide for i = 1, 2. This implies that the Veech groups of
the origamis (G(n1,k1), µ1(v), µ1(w)) and (G(n2,k2), µ2(v), µ2(w)) coincide as well. �
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Using [Sch05, Proposition 3.5.] and the natural projection Z2 → (Z/mZ)2, one obtains
the following lemma.

Lemma 4.1.10 Let m ∈ Z+, M ∈ Γ(m), and (G, x, y) be a normal origami. There exist
v, w ∈ F2 = 〈x̃, ỹ〉 with

#x̃ v ≡ 1 mod m, #x̃ w ≡ 0 mod m,

#ỹ v ≡ 0 mod m, #ỹ w ≡ 1 mod m.

and M · (G, x, y) = (G, µ(v), µ(w)). Here, µ denotes the monodromy map F2 → G with
µ(x̃) = x and µ(ỹ) = y. Further, #x̃ z denotes the number of x̃ minus the number of x̃−1

appearing in a word z ∈ F2. One defines #ỹ analogously.

Proposition 4.1.11 The Veech groups of 2-origamis with deck transformation group
G(n,k) are congruence subgroups of level 2n−k−2 for 1 ≤ k ≤ n− 3.

Proof By Corollary 4.1.9, it is sufficient to consider the groups G(n,1) for n ≥ 3. Principal
congruence groups are normal subgroups of SL(2,Z) and SL(2,Z) acts transitively on
the 2-origamis with deck transformation group G(n,1) (see Proposition 4.1.7). Hence, it
suffices to consider the origami O := (G(n,1), r, s). Consider a matrix M ∈ Γ(2n−3). By
Lemma 4.1.10, we have M ·O = (G(n,1), µ(v(r̃, s̃)), µ(w(r̃, s̃))) for words v, w ∈ F2 = 〈r̃, s̃〉
with

#r̃ v ≡ 1 mod 2n−3, #r̃ w ≡ 0 mod 2n−3,

#s̃ v ≡ 0 mod 2n−3, #s̃ w ≡ 1 mod 2n−3.

We write µ(v) as risj for some i, j with 1 ≤ i ≤ 4 and 1 ≤ j ≤ 2n−2. The relation
rs = sr−1 implies that j ∈ {2n−2, 2n−3} and i is odd. Moreover, µ(w) = r`sm for some
`,m with m ∈ {1, 1 + 2n−3}. Applying the automorphisms α(1,m−1), β−`, α(i−1,1) and γ, we
obtain

M · O = (G(n,1), r
isj, r`sm)

= (G(n,1), r
isjm

−1
, r`s)

= (G(n,1), r
isjm

−1
, s)

= (G(n,1), rs
jm−1

, s)
= (G(n,1), r, s)
= O.

Hence, the Veech group SL(O) contains M and is thus a congruence subgroup of level at
most 2n−3.

Finally, we show that the Veech group SL(O) contains no principal congruence subgroup
Γ(m) for m < 2n−3. To this end, consider the matrices Tm = ( 1 m

0 1 ) for m ∈ Z+. By
Corollary 4.1.8, the matrix Tm does not lie in SL((G(n,1), s, r)) for m < 2n−3. Using
O ∈ SL(2,Z) · (G(n,1), s, r) and Γ(m) E SL(2,Z), we deduce that the congruence level is
2n−3. The claim follows from Corollary 4.1.9 for all k, n ∈ Z+ with 1 ≤ k ≤ n− 3. �
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In a next step, we allow that the group homomorphism defining the semidirect product
structure differs. More precisely, we study normal origamis with semidirect products of
the form C2m oϕ C2 as deck transformation groups. Although the group structures are
very similar, the corresponding normal origamis and Veech groups behave differently (see
Proposition 4.1.13, Proposition 4.1.16, and Proposition 4.1.18).

Lemma 4.1.12 Let C2 and C2m be cyclic groups generated by s and r, respectively. For
m > 2, the nontrivial group homomorphisms C2 → Aut(C2m) are given by

ϕ1(s) =
(
C2m → C2m , r 7→ r−1

)
,

ϕ2(s) =
(
C2m → C2m , r 7→ r2m−1−1

)
,

ϕ3(s) =
(
C2m → C2m , r 7→ r1−2m−1)

.

The nontrivial semidirect products of the form C2m o C2 are given by C2m oϕi
C2 for

1 ≤ i ≤ 3.

Proof Each nontrivial group homomorphism C2 → Aut(C2m) is uniquely defined by an
element of order 2 in the automorphism group Aut(C2m) (the image of the generator s).
Note that we have the following isomorphisms

Aut(C2m) ∼= (Z/2mZ)∗ ∼= C2 × C2m−2

(see, e.g., [Hup67, Kapitel I, Satz 4.6]). Hence, Aut(C2m) has thus three elements of order
2. These are given by ϕ1, ϕ2, and ϕ3. Thus, the nontrivial semidirect products are of the
form C2m oϕi

C2 for 1 ≤ i ≤ 3. �

Recall that C2m oϕ1 C2 is equal to the dihedral group D2m+1 . The corresponding normal
origamis have been studied in Proposition 4.1.4. For m ≥ 2, define

Am := C2m oϕ2 C2 = 〈r, s | s2 = r2m = 1, s−1rs = r2m−1−1〉,
Bm := C2m oϕ3 C2 = 〈r, s | s2 = r2m = 1, s−1rs = r1−2m−1〉.

Note that the group A2 is isomorphic to the direct product C4 × C2 and the group B2 is
isomorphic to the dihedral group D8. Hence, we only consider the groups Am and Bm for
m > 2. Further, note that because of the last relation each element in Am and Bm can
be written in the form sjr` with 0 ≤ j ≤ 1 and 0 ≤ ` < 2m. This will be used extensively
throughout the rest of this section. In the following, we study the sets of normal origamis
O(Am) and O(Bm).

Proposition 4.1.13 For m > 2, the set O(Am) is contained in the stratum
H (4× (2m−1 − 1)) and has cardinality 6. The group SL(2,Z) acts transitively on O(Am)
and the Veech group of each origami in O(Am) is the principal congruence group Γ(2).

Proof Fix a natural number m > 2. Consider the normal origami O = (Am, r, s). The
commutator [r, s] = r2m−1−2 has order 2m−1 and thus O lies in the claimed stratum.
Using Lemma 3.1.3 and the relation s−1rs = r2m−1−1, we conclude that the commu-
tator subgroup A′m is generated by the commutator [r, s] and thus A′m is regular. By
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Theorem 3.2.11, all normal origamis with deck transformation group Am lie in the same
stratum. Hence, we have the inclusion O(Am) ⊆ H (4× (2m−1 − 1)).

In a next step, we compute the set O(Am) using Remark 2.2.5. For this, we determine
the automorphism group Aut(Am). Since automorphisms preserve the order of elements,
r and s are mapped to elements of order 2m and 2, respectively. The elements of order
2m and 2 are

R := {r` | ` ≡2 1} and S := {r2m−1
, sr` | ` ≡2 0},

respectively. If s is mapped to r2m−1 , the images of r and s do not generate Am. Hence,
this cannot happen. For ` ≡2 1 and j ≡2 0, one easily checks that α(`,j) : Am → Am with

α(`,j)(r) = r`, α(`,j)(s) = srj

defines an automorphism. Hence, Aut(Am) contains only automorphisms of this form.

The 2-generating sets of Am are of the form

(i) {sr`, rj} with j ≡2 1 or

(ii) {sr`, srj} with `+ j ≡2 1.

Applying an automorphism of Am cannot change the form of the 2-generating set because
each automorphism sends r to a power of r. The generating sets of form (i) yield the
following four orbits under the action of Aut(Am)

(1) o1 = [(s, r)] = {(sr`, rj) | ` ≡2 0, j ≡2 1},

(2) o2 = [(r, s)] = {(rj, sr`) | ` ≡2 0, j ≡2 1},

(3) o3 = [(sr, r)] = {(sr`, rj) | ` ≡2 1, j ≡2 1},

(4) o4 = [(r, sr)] = {(rj, sr`) | ` ≡2 1, j ≡2 1}.

To see this, observe first that all elements inside a set oi differ by an automorphism of Am
for 1 ≤ i ≤ 4. For instance, applying the automorphism α(`,j) to the pair of generators
(s, r) yields the pair (sr`, rj) for ` ≡2 0 and j ≡2 1. Further, check that two elements
(x, y) and (x′, y′) of sets oi and oj, respectively, do not lie in the same Aut(Am)-orbit for
i 6= j because γ(x) := x′ and γ(y) := y′ does not define an automorphism of Am. Recall
that we have computed all automorphisms of Am above. For instance, assume that the
pairs of generators (s, r) and (r, s) lie in the same Aut(Am)-orbit. Then γ(r) := s and
γ(s) := r define an automorphism. This yields a contradiction because all automorphism
of Am are of the form α(`,j) for ` ≡2 0 and j ≡2 1. Hence, the pairs of generators (s, r)
and (r, s) lie in the different Aut(Am)-orbits.

The generating sets of form (ii) yield two orbits under the action of Aut(Am)
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(5) o5 = [(sr, s)] = {(sr`, srj) | ` ≡2 1, j ≡2 0},

(6) o6 = [(s, sr)] = {(sr`, srj) | ` ≡2 0, j ≡2 1}.

Each of the orbits oi = [(g, h)] defines a normal origami Oi = (Am, g, h) with deck
transformation group Am for 1 ≤ i ≤ 6. This shows the statement about the cardinality
of O(Am).

To prove the statement about the Veech groups, we study the SL(2,Z)-action on O(Am).
We first consider the action of the matrix S.

S · O1 = (Am, r−1, s) = (Am, r, s) = O2,

S · O2 = (Am, s−1, r) = (Am, s, r) = O1,

S · O3 = (Am, r−1, sr) = (Am, r, sr) = O4,

S · O4 = (Am, r−1s−1, r) = (Am, sr−(2m−1−1), r) = O3,

S · O5 = (Am, s−1, sr) = (Am, s, sr) = O6,

S · O6 = (Am, r−1s−1, s) = (Am, sr−(2m−1−1), s) = O5.

Hence, the permutation σS = (1, 2)(3, 4)(5, 6) describes the action of S. The action of the
matrix T is given by

T · O1 = (Am, s, rs−1) = (Am, s, sr2m−1−1) = O6,

T · O2 = (Am, r, sr−1) = (Am, r, sr) = O4,

T · O3 = (Am, sr, rr−1s−1) = (Am, sr, s) = O5,

T · O4 = (Am, r, srr−1) = (Am, r, s) = O2,

T · O5 = (Am, sr, sr−1s−1) = (Am, sr, r1−2m−1) = O3,

T · O6 = (Am, s, srs−1) = (Am, s, r2m−1−1) = O1.

This corresponds to the permutation σT = (1, 6)(2, 4)(3, 5). We conclude that SL(2,Z)
acts transitively on O(Am). Hence, the Veech groups of the origamis have index 6 in
SL(2,Z) and are conjugated in SL(2,Z).

Finally, we show that the Veech group Γ(O1) is the principal congruence group Γ(2).
Recall that Γ(2) is generated by the matrices

S2 =

−1 0

0 −1

 , T 2 =

1 2

0 1

 , and ST−2S−1 =

1 0

2 1

 .
Since σS and σT consist of disjoint transpositions, these matrices fix all origamis inO(Am).
Hence, we have the inclusion Γ(2) ⊆ Γ(Oi) for 1 ≤ i ≤ 6. As Γ(2) has index 6 in SL(2,Z),
equality follows. �

Remark 4.1.14 Observe that the 6 normal origamis with Am as deck transformation are
defined by the following pairs of generators (s, r), (s, sr), (sr, r), (sr, s), (r, s), and (r, sr)
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for each m > 2. The first generators of these pairs have order 2, 2, 4, 4, 2m, and 2m. We
will use this fact in the proof of Proposition 4.1.26.

Example 4.1.15 For m = 3, we obtain the group

A3 = C8 oϕ C2 = 〈r, s | r8 = s2 = 1, s−1rs = r3〉.

We consider the origami O = (A3, r, s). The commutator [r, s] = r2 has order 4 and thus
O lies in H(4× 3).

1 r r2 r3 r4 r5 r6 r7

s

rs r3s

r2s

r5s

r4s r6s

r7s

Figure 4.1.: The SL(2,Z)-orbit of the origami O = (A3, r, s) contains 6 origamis. The Veech
group SL(O) is the principal congruence group Γ(2).

We now turn toward the second family of 2-groups defined as a semidirect products. In
the following, we study for m > 2 the set of normal origamis with deck transformation
group

Bm = 〈r, s | s2 = r2m = 1, s−1rs = r1−2m−1〉,

denoted by O(Bm).

Proposition 4.1.16 For m > 2, the set O(Bm) is contained in the stratum H (2m × 1)
and has cardinality 3 ·2m−2. The group SL(2,Z) acts transitively on O(Bm) and the Veech
group of each origami in O(Bm) has index 3 · 2m−2.

Proof Fix a natural number m > 2. Consider the normal origami O = (Bm, r, s). The
commutator [r, s] = r−2m−1 has order 2 and thus O lies in the claimed stratum. Since
the commutator subgroup B′m is generated by the commutator [r, s], it is regular. By
Theorem 3.2.11, all normal origamis with deck transformation group Bm lie in the same
stratum. Hence, we have O(Bm) ⊆ H (2m−1 × 1).

In a next step, we compute the set O(Bm) as described in Remark 2.2.5. For this, we
determine the automorphism group Aut(Bm). Since automorphisms preserve the order of
elements, r and s are mapped to elements of order 2m and 2, respectively. The elements
of order 2m and 2 are

R := {r`, sr` | ` ≡2 1} and S := {s, sr2m−1
, r2m−1},

respectively.
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The images of s and r need to generate Bm. Hence, if s is mapped to r2m−1 then r has to
be mapped to sr` for ` ≡2 1. Suppose γ(s) = r2m−1 and γ(r) = sr` with ` odd defines an
automorphism of Bm. We compute

γ(s)−1γ(r)γ(s) = r−2m−1
sr`r2m−1

= sr−2m−1·(1−2m−1)+2m−1+`

= sr`

6=
(
sr`
)1−2m−1

= γ(r)1−2m−1
.

Here we use that sr` has order 2m. We conclude that there is no automorphism mapping
s to r2m−1 . For ` ≡2 1 and j ∈ {0, 1}, we claim that α(`,j), β(`,j) : Bm → Bm with

α(`,j)(r) = r`, α(`,j)(s) = sr2m−1·j,

β(`,j)(r) = sr`, β(`,j)(s) = sr2m−1·j
(4.5)

define automorphisms. We prove that β(`,j) defines an automorphism. Note that β(`,j)(s)
and β(`,j)(r) generate the group Bm.

First, we check that β(`,j)(s)2 = 1. We compute

β(`,j)(s)2 = s2r(1−2m−1)·2m−1j+2m−1·j

= r(2−2m−1)·2m−1j

= r(1−2m−2)·2mj

= 1.

Now, we check that β(`,j)(r)2m = 1. We have

β(`,j)(r)2m = (sr` · sr`)2m−1

= (s2r`+(1−2m−1)·`)2m−1

= r2m`·(1−2m−2)

= 1.

Finally, we check the relation

β(`,j)(r)β(`,j)(s) = β(`,j)(s)β(`,j)(r)1−2m−1
.

For the left side, we obtain

sr` · sr2m−1j = s2r`(1−2m−1)+2m−1j

= r`(1−2m−1)+2m−1j.
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For the right side, we compute

sr2m−1j · (sr`)1−2m−1 = (sr2m−1jsr`)(sr`)−2m−1

= r(1−2m−1)2m−1j+` · r`·(2−2m−1)·(−2m−2)

= r2m−1j+`+`2m−1

= r`(1+2m−1)+2m−1j.

Hence, the equality holds and β(`,j) defines an automorphism. Analogously, one checks
that α(`,j) is a homomorphism. The computations are less tedious and we leave this to
the reader. We conclude that the automorphism group Aut(Bm) consists of the automor-
phisms α(`,j) and β(`,j) for ` ≡2 1 and j ∈ {0, 1}.

The 2-generating sets of Bm are of the form

(i) {sr`, rj} with ` ≡2 1 and j ≡2 1,

(ii) {sr`, rj} with ` ≡2 0 and j ≡2 1,

(iii) {sr`, srj} with ` ≡2 1 and j ≡2 0.

Recall that we denote the pairs of generators by E(Bm) = {(x, y) | 〈x, y〉 = Bm}. We
claim that there are three types of orbits under the action of Aut(Bm) on the set E(Bm)
given by

(1) [(r, sri)] for 1 ≤ i ≤ 2m−1, i ≡2 1,

(2) [(r, sri)] for 1 ≤ i ≤ 2m−1, i ≡2 0,

(3) [(sri, r)] for 1 ≤ i ≤ 2m−1, i ≡2 0.

Observe that an automorphism fixing r is either the identity or sends s to sr2m−1 . This
implies that the above orbits are all disjoint.

It remains to show that each pair of generators lies in one of the orbits. Let (srk, ri) be a
pair of generators with k ≡2 1 and i ≡2 1. Applying β(1,0) yields (rk1 , sri1) with k1 ≡2 1
and i1 ≡2 1. We apply α(k−1

1 ,0) and obtain (r, sri1k−1
1 ). If i1k−1

1 > 2m−1, then apply α(1,1)

to conclude that this pair of generators lies in an orbit of the form (1). Given a pair
of generators (ri, srk) with i ≡2 1, apply α(i−1,0). One obtains (r, srki−1). By the above
argument, this lies in an orbit of the form (1) or (2).

Given a pair of generators (srk, ri) with k ≡2 0 and i ≡2 1, the automorphism α(i−1,0)

sends this pair to (srki−1
, r). Since ki−1 ≡2 0, such a pair of generators lies in an orbit of

the form (3).

Finally, we consider pair of generators of form (iii). Let (srk, sri) with k ≡2 1 and i ≡2 0.
Applying the automorphism β(1,0) yields (rk1 , sri1) with k1 ≡2 1 and i1 ≡2 0. Hence, this
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pair of generators lies in an orbit of the form (2). Given a pair (srk, sri) with k ≡2 0 and
i ≡2 1. Again, we apply β(1,0) and obtain (srk1 , ri1) with k1 ≡2 0 and i1 ≡2 1. Thus, this
pair of generators lies in an orbit of the form (3). We conclude that E(Bm)/Aut(Bm)
consists of the orbits [(r, sri)], [(r, srj)], and [(srj, r)] with 1 ≤ i, j ≤ 2m−1, i ≡2 1, j ≡2 0.
Thus, the set O(Bm) has cardinality 3 · 2m−2.

Lastly, we prove that SL(2,Z) acts transitively on O(Bm). Number the origamis in
O(Bm) as follows: Let O1, . . . ,O2m−2 denote the origamis defined by pairs of generators
of type (1). For pairs of generators of type (2), denote the corresponding origamis by
O2m−2+1, . . . ,O2m−1 . Finally, let O2m−1+1, . . . ,O3·2m−2 denote the origamis with generators
of type (3). Computing the action of S one obtains

S · (Bm, r, sr
i) = (Bm, r

−is−1, r)
= (Bm, sr

−i·(1−2m−1), r)
= (Bm, sr

−i, r),
S · (Bm, sr

−i, r) = (Bm, r
−1, sr−i)

= (Bm, r, sr
i),

for an even integer i with 1 ≤ i ≤ 2m−1. We conclude that the permutation describing
the action of the matrix S on the origamis of type (2) and (3) consists of 2-cycles. Each
2-cycle connects an origami of type (2) with one of type (3).

The matrix T−1 acts on origamis of type (1) and (2) as follows

T−1 · (Bm, r, sr
i) = (Bm, r, sr

i+1),

1 ≤ i ≤ 2m−1. We obtain a 2m−1-cycle describing the action of T−1 on the origamis of
type (1) and (2). This permutation acts transitively on all origamis of type (1) and (2).

Renumbering the origamis within the types (1) to (3) appropriately and combining these
two results, we obtain the following diagram describing the action:

O1
T−1
// O2m−2+1

T−1
//

S

��

O2
T−1
// O2m−2+2

T−1
//

S

��

. . .
T−1
// O2m−2

T−1
// O2m−1

S

��

T−1

ss

O2m−1+1

S

WW

O2m−1+2

S

WW

O3·2m−2

S

WW

Hence, SL(2,Z) acts transitively on O(Bm). This shows that the Veech groups of origamis
in O(Bm) have index 3 · 2m−2 in SL(2,Z) and are conjugated in SL(2,Z). �

Corollary 4.1.17 For a 2-origami O = (Bm, r, sr
i) with 0 ≤ i ≤ 2m−1, the smallest

natural number k ∈ Z+ with T k ∈ SL(O) is k = 2m−1.
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Proposition 4.1.18 The Veech groups of 2-origamis with deck transformation group Bm

are congruence subgroups of level 2m−1 for m > 2.

Proof Principal congruence groups are normal subgroups of SL(2,Z) and SL(2,Z) acts
transitively on the 2-origamis with deck transformation group Bm by Proposition 4.1.16.
Hence, it suffices to consider the Veech group of the origami O := (Bm, r, s). Consider
a matrix M in the principal congruence group Γ(2m−1). By Lemma 4.1.10, we obtain
M · O = (Bm, µ(v(r̃, s̃)), µ(w(r̃, s̃))) for words v, w ∈ F2 = 〈r̃, s̃〉 with

#r̃ v ≡ 1 mod 2m−1, #r̃ w ≡ 0 mod 2m−1,

#s̃ v ≡ 0 mod 2m−1, #s̃ w ≡ 1 mod 2m−1.
(4.6)

Recall that µ : F2 → Bm denotes the monodromy map. We have µ(v) = sjri with
0 ≤ j ≤ 1 and 0 ≤ i < 2m. The relations rs = sr1−2m−1 and s = s−1 imply that j = 0
and i is odd. Since s2 = 1, there exist ` even and k1, . . . , k` ∈ Z≥0 such that

µ(w) = rk1srk2srk3 · · · srk`

= srk,

where

k =
∑

i∈{1,...,`}
i odd

ki(1− 2m−1) +
∑

i∈{1,...,`}
i even

ki

= −
∑

i∈{1,...,`}
i odd

ki · 2m−1 +
∑

i∈{1,...,`}
ki

Here, we use (1 − 2m−1)2 ≡2m 1. Using the equivalence given in (4.6), we obtain the
equation ∑`

i=1 ki ≡ 0 modulo 2m−1 and therefore the exponent k is equivalent to 0 modulo
2m−1. We conclude M · O = (Bm, r

i, srj·2
m−1) for i odd and j ∈ {0, 1}. We obtain

M ·O = (Bm, r, s) using the automorphisms α(i−1,0) and α(1,1) defined in (4.5) in the proof
of Proposition 4.1.16. Hence, M lies in the Veech group SL(O). This shows that SL(O)
is a congruence group of level at most 2m−1.

Finally, we show that the Veech group SL(O) contains no principal congruence subgroup
Γ(k) for k < 2m−1. To this end, observe that T k = ( 1 k

0 1 ) for k ∈ Z≥0. By Corollary 4.1.17,
the matrix T k does not lie in SL(O) for k < 2m−1. Thus, the congruence level is 2m−1. �

Example 4.1.19 For m = 3 we obtain the group

B3 = C8 oϕ C2 = 〈r, s | r8 = ss = e, s−1rs = r−3〉.

We consider the origami O = (B3, r, s). The commutator [r, s] = r−4 has order 2 and thus
O lies in H(8× 1).
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1 r r2 r3 r4 r5 r6 r7

s

rs r3s

r2s

r5s

r4s r6s

r7s

Figure 4.2.: The SL(2,Z)-orbit of the origami O = (B3, r, s) contains 6 origamis. The Veech
group SL(O) has index 6 in SL(2,Z) and is a congruence subgroup of level 4. In particular, the
Veech group SL(O) is different from the Veech group of the origami (A3, r, s) (see Figure 4.1).

Finally, we consider the example series of normal origamis introduced in Example 3.3.11
covering the “eierlegende Wollmilchsau”. The deck transformation groups of origamis in
this example series are extensions of the quaternion group. We recall the definition of the
deck transformation groups Wm. For m ∈ Z+, define the group

Wm = 〈x, y | x2m+1 = y2m+1 = x2m

y2m = 1, x−1yx = y−1〉.

Note that the groups Wm are not semidirect products of cyclic groups as the families of
groups studied previously. Further, recall that every element in Wm can be written as
yixj for 0 ≤ i < 2m+1, 0 ≤ j < 2m and thus Wm has order 22m+1 (see Example 3.3.11).

Let O(Wm) denote the set of normal origamis with deck transformation group Wm. Since
the “eierlegende Wollmilchsau” is the only normal origami with deck transformation group
Q8, the set O(W1) consists of this origami. In the remaining part of this section, we study
O(Wm) for m > 1.

Proposition 4.1.20 For m ≥ 2, the set O(Wm) is contained in the stratum
H (2m+1 × (2m − 1)) and has cardinality 3 · 2m−1. The group SL(2,Z) acts transitively
on O(Wm) and the Veech group of each origami in O(Wm) has index 3 · 2m−1.

Proof Fix a natural number m ≥ 2. Consider the normal origami O = (Wm, x, y).
The commutator [x, y] = y2 has order 2m. Since Wm has order 22m+1, the origami O
lies in the claimed stratum. The commutator subgroup W ′

m is generated by the com-
mutator [x, y] and thus it is regular. By Theorem 3.2.11, all normal origamis with
deck transformation group Wm lie in the same stratum. Hence, we obtain the inclusion
O(Wm) ⊆ H (2m+1 × (2m − 1)).

In a next step, we compute the set O(Wm) as described in Remark 2.2.5 and claim that
it is the disjoint union of the sets

(1) R1 := {(Wm, x, yx
i) | 0 ≤ i < 2m, i ≡2 1},

(2) R2 := {(Wm, x, yx
i) | 0 ≤ i < 2m, i ≡2 0},
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(3) R3 := {(Wm, yx
i, x) | 0 ≤ i < 2m, i ≡2 0}.

Let T = (yixj, ykx`) with 0 ≤ i, k < 2m+1 and 0 ≤ j, ` < 2m be an arbitrary tuple
generating the group Wm. The relation x−1yx = y−1 implies that j is odd or ` is odd.

If j is odd, then the map

α1 : Wm → Wm given by α1(x) = xj
−1 and α1(y) = y

defines an automorphism with j−1 ∈ (Z/2m+1Z)∗. It maps the tuple T to T1 = (yix, ykx˜̀)
for some 0 ≤ ˜̀< 2m+1. Without loss of generality, we assume ˜̀< 2m. Otherwise, replace
k and ˜̀ by k + 2m and ˜̀− 2m, respectively. Applying the automorphism

α2 : Wm → Wm defined by α2(x) = y−ix and α2(y) = y

to T1, yields T2 = (x, yk̃x˜̀) for some 0 ≤ k̃ < 2m+1. As the tuple T2 generates Wm, the
exponent k̃ is odd and thus invertible in (Z/2m+1Z). We apply the automorphism

α3 : Wm → Wm given by α3(x) = x and α3(y) = yk̃
−1

to T2 and obtain T3 = (x, yx˜̀). Hence, the normal origami (Wm, y
ixj, ykx`) equals

(Wm, x, yx
˜̀) and lies in R1 or R2.

If j is even and ` is odd, then analog computations as above yield an automorphism
α ∈ Aut(Wm) mapping T to a tuple of the form (yxi, x) for an even number i ≤ 2m. The
origami (Wm, yx

i, x) lies in R3.

It remains to show that all origamis in R1, R2, and R3 are different. To prove this, one
shows that vi 7→ aj, wi 7→ bj does not define an automorphism of Wm. Here, (Wm, vi, wi)
and (Wm, aj, bj) are elements of Ri and Rj, respectively, and 1 ≤ i, j ≤ 3.

We begin with the case i = 1 and j = 3. Let O = (Wm, x, yx
k) and O′ = (Wm, yx

`, x)
be origamis in R1 and R3, respectively. Hence, the indices obey 0 ≤ k, ` < 2m, k ≡2 1,
and ` ≡2 0. Suppose that the origamis O and O′ are equal. Then the equalities

δ(x) := yxk and δ(yx`) := x

define an automorphism δ of Wm. We deduce the following equation for the image of y

δ(y) = x · (yxk)−` = x1−k`.

Here, we use that k is odd and ` is even. Since the relation x−1yx = y−1 holds in Wm,
the images of x and y under δ have to satisfy the same relation. For the left hand side,
we obtain the equality

δ(x)−1 · δ(y) · δ(x) =
(
yxk

)−1
·
(
x1−k`

)
·
(
yxk

)
= y2x1−k`.

(4.7)
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For the right hand side, we obtain the equality

δ(y)−1 =
(
x1−k`

)−1
= xk`−1. (4.8)

The equations (4.7) and (4.8) are not equal and thus the origamis O and O′ are different.

We check the other cases in an anologous manner using the same relation. For this,
consider first the case i = 1 and j = 2. The origamis are of the form O = (Wm, x, yx

i)
and O′ = (Wm, x, yx

j) with i odd and j even. Then there is an automorphism δ of Wm

with δ(x) = x and δ(y) = yxj−i. Note j − i is odd. As δ is an automorphism, we obtain
the equality δ(x−1)δ(y)δ(x) = δ(y−1). For the left side, we obtain

x−1yxj−ix = y−1xj−i.

For the right side, we obtain
xi−jy−1 = yxi−j.

The equality of both sides implies

1 = y−1xj−i · (yxi−j)−1

= y−1x2j−2iy−1

= y−2x2j−2i.

However, this does not hold.

Consider the case i = 2 and j = 3. The origamis are of the form O = (Wm, x, yx
i) and

O′ = (Wm, yx
j, x) with i and j even. Then, there is an automorphism δ of Wm with

δ(x) = yxj and δ(yxi) = x. Thus, we have

δ(y) = x · (yxj)−i

= xx−ijy−i

= yix1−ij.

Here, we use that i and j are even integers. As δ is an automorphism, we obtain the
equality δ(x−1)δ(y)δ(x) = δ(y−1). For the left side, we obtain

x−jy−1 · yix1−ij · yxj = yi−2x1−ij.

For the right side, we obtain
xij−1y−i = yixij−1.

The equality of both sides yields

1 = yi−2x1−ij · (yixij−1)−1

= yi−2x2−2ijy−i

= y−2x2−2ij.

This does not hold.
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Finally, consider the case 1 ≤ i, j ≤ 3 with i = j. We assume that i = j = 3. The other
two cases i = j = 1 and i = j = 2 follow analogously. So, let O and O′ be origamis of the
form O = (Wm, x, yx

i) and O′ = (Wm, x, yx
j) such that i and j have the same parity and

i 6= j. Then there is an automorphism δ of Wm with δ(x) = x and δ(yxi) = yxj. Then we
have δ(y) = yxj−i. Note j − i is even. As δ is an automorphism, we obtain the equality
δ(x−1)δ(y)δ(x) = δ(y−1). For the left side, we obtain

x−1yxj−ix = y−1xj−i.

For the right side, we obtain
xi−jy−1 = y−1xi−j.

Both equalities are equal if and only if 2m divides i−j. However, we have 0 6= |i−j| < 2m
which yields a contradiction. We conclude that the set O(Wm) has cardinality 3 · 2m−1.

Lastly, we prove that SL(2,Z) acts transitively on O(Wm). Number the origamis in
O(Wm) as follows: Let O1, . . . ,O2m−1 denote the origamis in R1, let O2m−1+1, . . . ,O2m de-
note the origamis in R2 and let O2m+1, . . . ,O3·2m−1 denote the origamis in R3. Computing
the action of S, one obtains for an even number i

S · (Wm, x, yx
i) = (Wm, x

−iy−1, x)
= (Wm, yx

−i, x),
S · (Wm, yx

−i, x) = (Wm, x
−1, yx−i)

= (Wm, x, yx
i).

Here, we use that x 7→ x, y 7→ y−1 as well as x 7→ x−1, y 7→ y define automorphisms
of Wm. We conclude that the permutation describing the S-action on the set R2 ∪ R3
consists of 2-cycles. Each 2-cycle connects an origami in R2 with one in R3.

The matrix T−1 acts on the set R1 ∪R2 as follows

T−1 · (Wm, x, yx
i) = (Wm, x, yx

i+1),

1 ≤ i ≤ 2m. We obtain a 2m-cycle describing the action of S on the set R1 ∪ R2. This
permutation acts transitively on the set R1 ∪R2.

Renumbering the origamis within the sets R1, R2, and R3 appropriately and combining
these two results, we obtain the following diagram:

O1
T−1

// O2m−1+1
T−1

//

S

��

O2
T−1

// O2m−1+2
T−1

//

S

��

. . .
T−1

// O2m−1
T−1

// O2m

S

��

T−1

ss

O2m+1

S

WW

O2m+2

S

WW

O3·2m−1

S

WW

Hence, SL(2,Z) acts transitively on O(Wm). This shows that the Veech groups of origamis
in O(Wm) have index 3 · 2m−1 in SL(2,Z) and are conjugated in SL(2,Z). �
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Corollary 4.1.21 For a 2-origami O = (Wm, x, yx
i) with 0 ≤ i < 2m, m ≥ 2, the

smallest natural number k ∈ Z+ with T k ∈ SL(O) is k = 2m.

Proposition 4.1.22 The Veech groups of 2-origamis with deck transformation group Wm

are congruence subgroups of level 2m for m ≥ 2.

Proof Principal congruence groups are normal subgroups of SL(2,Z) and SL(2,Z) acts
transitively on the set of 2-origamis O(Wm) by Proposition 4.1.20. Hence, it suffices to
consider the Veech group of the origami O := (Wm, x, y). Consider a matrix M ∈ Γ(2m).
By Lemma 4.1.10, we obtain M · O = (Wm, µ(v(x̃, ỹ)), µ(w(x̃, ỹ))) for words v, w in the
free group F2 = 〈x̃, ỹ〉 with

#x̃ v ≡ 1 mod 2m, #x̃ w ≡ 0 mod 2m,
#ỹ v ≡ 0 mod 2m, #ỹ w ≡ 1 mod 2m.

(4.9)

Recall that µ denotes the monodromy map. We have µ(v) = yixj with 0 ≤ i < 2m+1 and
0 ≤ j < 2m. The relations yx = xy−1 and x2m = y2m imply that µ(v) = yix. Using these
relations for µ(w), we obtain µ(w) = yk with 0 ≤ k < 2m+1. As µ(v) and µ(w) generate
Wm we conclude that k is odd. Applying suitable automorphisms of Wm, we obtain

M · O = (Wm, y
ix, yk)

= (Wm, y
ix, y)

= (Wm, x, y)
= O.

Hence, the Veech group SL(O) contains M and thus is a congruence subgroup of level at
most 2m. Consider the matrices T k = ( 1 k

0 1 ) for k ∈ Z≥0. By Corollary 4.1.21, the matrix
T k does not lie in SL(O) for k < 2m. Thus, the congruence level of SL(O) is 2m. �

Remark 4.1.23 So far, all groups considered in this section have the property that
SL(2,Z) acts transitively on the corresponding normal origamis (see Proposition 4.1.4,
Proposition 4.1.7, Proposition 4.1.16, Proposition 4.1.13, and Proposition 4.1.20). This
depends on the structure of the deck transformation groups and is not true in general.
For each prime number p, two p-origamis with isomorphic deck transformation groups
exist that lie in different strata (see Proposition 3.2.15). Since the SL(2,Z)-action fixes
the stratum, the action is not transitive in this case.

Moreover, the Veech groups of all 2-origamis studied in this section are congruence groups
of level 2k for some k ∈ Z≥0. However, this does not hold in general. In Proposition 4.2.4
and Theorem 4.2.9, conditions for the deck transformation group of a normal origami
O are introduced which imply that the Veech group is a totally non-congruence group,
i.e., SL(O) surjects onto SL(2,Z/nZ) for each n ∈ Z+. Furthermore, examples of normal
origamis with this property are given (see Example 4.2.10 and Corollary 4.2.5).
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4.1.2. Application to sums of Lyapunov exponents

This section aims at applying the results on the normal origamis studied in Section 4.1.1
to deduce information about dynamical systems related to these normal origamis. We
give a brief and informal description of these dynamical systems. For more details, see,
e.g., [Wil17] and [Kap11].

The Teichmüller flow Ft acts on the moduli space of translation surfaces. For a trans-
lation surface X, it is defined as

(
et 0
0 e−t

)
· X, i.e., it stretches the East-West direction

and contracts the North-South direction. The Kontsevich-Zorich cocycle captures the
change of the homology along the orbits of the Teichmüller flow and takes values A(t) in
the symplectic group Sp(2g,R). Finally, the Lyapunov exponents of the Kontsevich-
Zorich cocycle λ1 ≥ λ2 ≥ · · · ≥ λ2g are defined as the logarithm of the eigenvalues of the
matrix

Λ := lim
t→∞

(
A(t)TA(t)

)−2t
.

Here, g denotes the genus of the surface X. As A(t) is a symmetric matrix, the Lyapunov
exponents satisfy the equality λi = −λ2g+1−i for 1 ≤ i ≤ g. In particular, the top g
Lyapunov exponents are non-negative and the bottom g ones are non-positive.

In this section, we compute the sum of the top g Lyapunov exponents of the Kontsevich-
Zorich cocycle defined by certain normal origamis. For this, we use the following theorem
of Eskin, Kontsevich, and Zorich and adapt it to the case of normal origamis.

Theorem 4.1.24 ([EKZ14, Corollary 8]) Let O be an origami of genus g in some
stratum H(a1, . . . , am). Then the sum of the top g Lyapunov exponents of the Kontsevich-
Zorich cocycle defined by O satisfies the following equation

g∑
i=1

λi = 1
12 ·

m∑
i=1

ai · (ai + 2)
ai + 1 + 1

| SL(2,Z) · O| ·
∑

Oi∈SL(2,Z)·O

∑
horizontal
cylinders cij

such that
Oi=tcij

hij
wij

.

Here, hij and wij denote the height and circumference of the horizontal cylinder cij, re-
spectively.

We deduce the following simplified formula for normal origamis.

Corollary 4.1.25 For a normal origami O = (G, x, y) in some stratum Hg(a1, . . . , am),
the sum of the top g Lyapunov exponents satisfies the following equation

g∑
i=1

λi = m

12 ·
a1 · (a1 + 2)
a1 + 1 + 1

| SL(2,Z) · O| ·
∑

Oi=(G,xi,yi)
∈SL(2,Z)·O

|G|
ord(xi)2 . (4.10)
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Proof Note that all singularities of a normal origami have the same order. This explains
the simplification of the first sum. Given a normal origami Oi = (G, xi, yi) of genus g ≥ 2,
the cylinder decomposition in horizontal direction consists of cylinders of height 1 and
circumference ord(xi). The origami Oi has degree |G| and thus the number of horizontal
cylinders is equal to |G|

ord(xi) (see Remark 2.3.7). �

In the remaining part of this section, we compute the sum of the positive Lyapunov
exponents for the families of normal origamis studied in Section 4.1.1. For this, we apply
Corollary 4.1.25 and use the results obtained in Section 4.1.1. It will be especially useful
that Equation (4.10) is invariant under the SL(2,Z)-action.

Proposition 4.1.26 The sum of the top 2m − 1 Lyapunov exponents for a 2-origami in
O(Am) is 3 · 2m−3 for m > 2.

Proof Let m > 2. By Proposition 4.1.13, the group SL(2,Z) acts transitively on the
set O(Am) of all 2-origamis with deck transformation group Am. Each origami in O(Am)
lies in the stratum H (4× (2m−1 − 1)) and has genus 2m − 1 (see Proposition 2.2.13).
Corollary 4.1.25 implies that the sum of the top 2m− 1 Lyapunov exponents coincides for
all origamis in O(Am). We obtain the equation

2m−1∑
i=1

λi = 22m−1 − 2
3 · 2m + 1

6
∑

Oi=(Am,xi,yi)∈O(Am)

|Am|
ord(xi)2 .

Using the characterization of the origamis in O(Am) from the proof of Proposition 4.1.13
and the orders of the possible generators xi noted in Remark 4.1.14, yields

2m−1∑
i=1

λi = 22m−1 − 2
3 · 2m + 1

6
∑

Oi ∈ O(Am)

2m+1

ord(xi)2

= 22m−1 − 2
3 · 2m + 1

6 · 2 ·
(

2m+1

22 + 2m+1

42 + 2m+1

2m·2

)

= 22m−1 − 2
3 · 2m + 22m−1 + 22m−3 + 2

3 · 2m

= 22m + 22m−3

3 · 2m

= 2m + 2m−3

3

= 2m−3 · 23 + 1
3

= 3 · 2m−3. �

Proposition 4.1.27 The sum of the top 2m−1 + 1 Lyapunov exponents for a 2-origami
in O(Bm) is 2m−3 + 1 for m > 2.

Proof Let m > 2. By Proposition 4.1.16, the group SL(2,Z) acts transitively on the set
O(Bm) of 2-origamis with deck transformation group Bm. Each origami in O(Bm) lies
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in the stratum H (2m × 1) and has genus 2m−1 + 1 (see Proposition 2.2.13). By Corol-
lary 4.1.25, the sum of the top 2m−1 + 1 Lyapunov exponents coincides for all origamis in
O(Bm). For the summand depending on the stratum, we obtain

2m
12 ·

3
2 = 2m−3.

In a next step, we compute

1
3 · 2m−2 ·

∑
(Bm,xi,yi) ∈ O(Bm)

|Bm|
ord(xi)2

Recall that for 2m−1 origamis xi can be chosen as r (see the proof of Proposition 4.1.16).
Call the set of these origamis O1. We compute

1
3 · 2m−2 ·

∑
(Bm,r,yi) ∈ O1

2m+1

22m

= 2m−1

3 · 2m−2 ·
1

2m−1

= 1
3 · 2m−2 .

Recall that for the remaining 2m−2 origamis xi can be chosen as sr2i with 1 ≤ i ≤ 2m−2

(see thee proof of Proposition 4.1.16). Call the set of these origamis O2. For 2i = 2k · `
with ` odd, the order of sr2i is 2m−k. This follows from the equation

(
sr2i

)2
= r2i·(1−2m−1)+2i = r4i.

We conclude

1
3 · 2m−2 ·

∑
(Bm,xi,yi) ∈ O2

2m+1

ord(xi)2

= 1
3 · 2m−2 ·

2m−2∑
i=1

2m+1

ord(sr2i)2

= 1
3 · 2m−2 ·

2m+1

22 +
m−1∑
j=2

2j−2 · 2m+1

22j


= 1

3 · 2m−2 ·

2m−1 + 2m−3 ·
m−3∑
j=0

2−j


= 1
3 · 2m−2 ·

(
2m−1 + 2m−3 ·

(
−2 ·

(
22−m − 1

)))
= 1

3 · 2m−2 ·
(
2m−1 − 1 + 2m−2

)
= 3 · 2m−2 − 1

3 · 2m−2 .
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Since O(Bm) = O1 ∪O2, we obtain

2m−1+1∑
i=1

λi = 2m−3 + 1
3 · 2m−2 ·

∑
Oi ∈ O(Bm)

|Bm|
ord(xi)2

= 2m−3 + 1
3 · 2m−2 + 3 · 2m−2 − 1

3 · 2m−2

= 2m−3 + 1. �

Proposition 4.1.28 The sum of the top 22m−2m+1 Lyapunov exponents for a 2-origami
in O(Wm) is an integer and equals 22m−1+1

3 for m ≥ 1.

Proof Let m ≥ 1. By Proposition 4.1.20, the group SL(2,Z) acts transitively on the set
O(Wm) of normal origamis with deck transformation group Wm. Using Corollary 4.1.25,
we deduce that the sum of the top 22m − 2m + 1 Lyapunov exponents coincides for all
origamis in O(Wm). Denote this sum by Lm. Each origami in O(Wm) lies in the stratum
H (2m+1 × (2m − 1)) and has genus 22m − 2m + 1 (see Proposition 4.1.20 and Proposi-
tion 2.2.13). For the summand depending on the stratum, we obtain

2m+1

12 · (2m − 1) · (2m + 1)
2m = 1

6 ·
(
22m − 1

)
.

In a next step, we compute

1
3 · 2m−1 ·

∑
(Wm,v,w) ∈ O(Wm)

|Wm|
ord(v)2 .

In the following, we use the notation of the proof of Proposition 4.1.20. Recall that for
the 2m origamis in R1 ∪ R2 the group element v can be chosen as x (see the proof of
Proposition 4.1.20). For the 2m−1 origamis in R3, we choose v as an element of the form
yx` with an even integer `. Using that x as well as elements of the form yx` have order
2m+1, we compute

1
3 · 2m−1 ·

∑
(Wm,v,w) ∈ O(Wm)

|Wm|
ord(v)2

= 1
3 · 2m−1 ·

3·2m−1∑
i=1

22m+1

2(m+1)·2

= 3 · 2m−1

3 · 2m−1 ·
1
2

= 1
2 .

Here, we use that the set of origamis O(Wm) has cardinality 3 · 2m−1. Consequently, the

99



Chapter 4. Veech groups of normal origamis

sum of Lyapunov exponents obeys the following equality

Lm = 22m − 1
6 + 1

2

= 22m + 2
6

= 22m−1 + 1
3 .

It remains to show that Lm is an integer. Note that 2k ≡3 (−1)k for k ∈ Z≥0. Hence, we
obtain 22m−1 ≡3 −1 and thus 22m−1 + 1 is divisible by 3. �

Proposition 4.1.29 Let n, k ∈ Z+ such that 1 ≤ k ≤ n − 3. The sum of the top
2n−1 − 2n−k−1 + 1 Lyapunov exponents for a 2-origami with deck transformation group
G(n,k) is an integer and equals

1
3
(
2n−2 + 22k+3−n

)
, if k ≥ n− 3

2
1
3

2n−2 + 22k+3−n − 2n−2k−2 + 22 +
n−2k−4∑
j=1

22k+4+j−n

 , else.

Proof Let n, k ∈ Z+ such that 1 ≤ k ≤ n − 3. By Proposition 4.1.7, the matrix group
SL(2,Z) acts transitively on the set O(G(n,k)) of 2-origamis with deck transformation
group G(n,k). Each origami in O(G(n,k)) lies in the stratum H

(
2n−k ×

(
2k − 1

))
and has

genus 2n−1 − 2n−k−1 + 1 (see Proposition 4.1.6 and Proposition 2.2.13). Using Corol-
lary 4.1.25, we deduce that the sum of the top 2n−1 − 2n−k−1 + 1 Lyapunov exponents
coincides for all origamis in O(G(n,k)). Denote this sum by L(n,k). For the summand
depending on the stratum, we obtain

2n−k
12 ·

(
2k − 1

)
·
(
2k + 1

)
2k = 1

3 ·
(
2n−2 − 2n−2k−2

)
.

In a next step, we compute
1

3 · 2n−k−3 ·
∑

(G(n,k),xi,yi) ∈ O(G(n,k))

|G(n,k)|
ord(xi)2 .

For this, we use the notation of the proof of Proposition 4.1.6. Recall that O(G(n,k)) is
the disjoint union of the sets R1, R2, and R3 (see Proposition 4.1.6). Further, note that
for the 2n−k−2 origamis in R1 ∪ R2 the group element xi can be chosen as s, which has
order 2n−k−1. We compute

1
3 · 2n−k−3 ·

∑
(G(n,k),s,yi) ∈ R1∪R2

2n
2(n−k−1)·2

= 2n−k−2

3 · 2n−k−3 ·
1

2n−2k−2

= 22k+3−n

3 .
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We recall the definitions of G(n,k) and R3 (see Proposition 4.1.6)

G(n,k) = C2k+1 oϕ C2n−k−1 = 〈r, s | r2k+1 = s2n−k−1 = 1, s−1rs = r−1〉,
R3 =

{
(G(n,k), rs

2·m, s) | 1 ≤ m ≤ 2n−k−3
}
.

Since rs = sr−1 and r−1s = sr, the order of rs2m equals max{2k+1, 2n−k−j−2}, where 2j
is the maximal power of 2 dividing m. In the following, we consider two cases.

If k ≥ n−3
2 , then the inequality k + 1 ≥ n− k− j − 2 for all 1 ≤ m ≤ 2n−k−2 and thus we

obtain ord(rs2m) = 2k+1. Hence, we compute

1
3 · 2n−k−3 ·

2n−k−3∑
j=1

2n
2(k+1)·2

= 2n−k−3

3 · 2n−k−3 ·
2n

22k+2

= 2n−2k−2

3 .

In this case, the sum of Lyapunov exponents obeys the following equality

L(n,k) = 1
3 ·
(
2n−2 − 2n−2k−2 + 22k+3−n + 2n−2k−2

)
= 1

3 ·
(
2n−2 + 22k+3−n

)
.

To prove the claim for k ≥ n−3
2 , it remains to show that L(n,k) is an integer. Note that

2m ≡3 (−1)m for m ∈ Z≥0. The equality

n− 2 6≡2 n− 3 ≡2 2k + 3− n

implies that
2n−2 ≡3 −22k+3−n.

This proves the claim for k ≥ n−3
2 .

If k < n−3
2 , then we have 0 < n−2k−3. For 1 ≤ j ≤ n−2k−4, there are 2n−k−3−j many

group elements of the form rs2m and order 2n−k−j−2. Further, there are 2n−k−3−(n−2k−4) =
2k+1 many group elements of the form rs2m and order 2k+1. We obtain the following
equation

1
3 · 2n−k−3 ·

n−2k−4∑
j=1

(
2n−k−3−j · 2n

2(n−k−j−2)·2

)
+ 2k+1 · 2n

2(k+1)·2


= 2

3 ·
n−2k−4∑

j=1

(
22k+j+3−n

)
+ 2

 .
101



Chapter 4. Veech groups of normal origamis

In this case, the sum of Lyapunov exponents equals

L(n,k) = 1
3 ·
2n−2 − 2n−2k−2 + 22k+3−n + 22 +

n−2k−4∑
j=1

(
22k+j+4−n

) .

It remains to show that L(n,k) is an integer for the case k < n−3
2 . Recall that 2m ≡3 (−1)m

for m ∈ Z≥0. Then n− 2k − 2 ≡2 n− 2 implies 2n−2 − 2n−2k−2 ≡3 0. For n ∈ Z≥0 odd,
the sum ∑n−2k−4

j=1

(
22k+j+4−n

)
has an odd number of summands. The inequality

2k + j + 4− n 6≡2 2k + j + 1 + 4− n

implies that
22k+j+4−n ≡3 −22k+j+1+4−n.

Thus, the sum ∑n−2k−4
j=1

(
22k+j+4−n

)
is equivalent to the first summand 22k+5−n modulo 3.

Moreover, we have
2k + 3− n ≡2 2 ≡2 2k + 5− n

and thus we conclude
22k+3−n + 22 + 22k+5−n ≡3 3 · 1 ≡3 0.

If n is even, then the sum ∑n−2k−4
j=1

(
22k+j+4−n

)
has an even number of summands and is

equivalent to 0 modulo 3. As 2k + 3− n is odd in this case, the remaining terms satisfy
the equation

22k+3−n + 22 ≡3 −1 + 1 ≡3 0.
This shows that L(n,k) is an integer. �

The example series studied in Proposition 4.1.26, Proposition 4.1.27, Proposition 4.1.28,
and Proposition 4.1.29 might suggest that the sum of the positive Lyapunov exponents of
the Kontsevich-Zorich cocycle defined by a normal origami is always an integer. However,
this is not the case. Consider the normal origami O := (G, x, y) with G = 〈x, y〉 and

x := (1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16) ,
y := (1, 9, 2, 10)(3, 11)(4, 12)(5, 15, 7, 13)(6, 16, 8, 14)

(see Lemma 3.1.34). This origami has degree 212, lies in the stratum H (211 × 1), and has
genus 1025. We use the SageMath package [DFL] to compute that the sum of the top
1025 Lyapunov exponents equals 25

16 .
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4.2. Normal origamis with totally non-congruence groups
as Veech groups

In the previous section, we studied families of normal origamis whose Veech groups are
congruence groups. This motivates the question of interest in this section: Are there
normal origamis with Veech groups that are far away from being a congruence subgroup?
In [Wei13], Weitze-Schmithüsen introduced the deficiency of finite index subgroups of
SL(2,Z). It measures how far the group is from being a congruence subgroup. She
also established the notion of totally non-congruence groups, namely, groups that are
as far from being a congruence group as possible. Such a group projects surjectively
onto SL(2,Z/nZ) for each n ∈ Z+, i.e., no information about the group itself can be
recovered from the images under these natural projections. In [SW18], an infinite family
of origamis with totally non-congruence subgroups as Veech groups are constructed for
each stratum. These origamis have only few symmetries. In this section, we present
sufficient conditions for normal origamis to have totally non-congruence subgroups as
Veech groups and introduce a class of normal origamis satisfying these conditions.

Definition 4.2.1 Consider the natural projection πn : SL(2,Z)→ SL(2,Z/nZ) for a nat-
ural number n ∈ Z+. A finite index subgroup G of SL(2,Z) is a totally non-congruence
subgroup if the image of G under πn equals SL(2,Z/nZ) for all n ∈ Z+.

The results in this section are based upon the following theorem that gives a sufficient
condition when finite index subgroups of SL(2,Z) are totally non-congruence groups. It
is used in the proofs of Proposition 4.2.4 and Theorem 4.2.9.

Theorem 4.2.2 ([SW18, Theorem 1]) Let Γ be a finite index subgroup of SL(2,Z).
Suppose that for each prime p there exist matrices A1, A2 ∈ SL(2,Z) with the following
properties:

(i) For all j ∈ Z+, the inequality A1e1 6≡p j · A2e1 holds.

(ii) There exist m1,m2 ∈ Z+ with A1T
m1A−1

1 , A2T
m2A−1

2 ∈ Γ such that p divides neither
m1 nor m2.

Then Γ is a totally non-congruence group.

In this section, we use cylinder decompositions in different directions to construct the
parabolic matrices occurring in Theorem 4.2.2 (see Lemma 2.3.8). The moduli of the
considered cylinders coincide with the order of certain deck transformations (see Re-
mark 2.3.7). We apply Theorem 4.2.2 to normal origamis with deck transformation groups
that admit for each prime number a cylinder decomposition with a suitable modulus.
The following lemma computes the inverse moduli of the cylinders in the directions of
interest.
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Lemma 4.2.3 Let O = (G, x, y) be a normal origami. For m ∈ Z≥0, the inverse modulus
of all cylinders in direction

(
1
−m

)
coincides with the order of xym.

Proof Denote
(

1
−m

)
by v. Acting with the matrix A =

(
1 0
−m 1

)
= S−1TmS ∈ SL(2,Z)

maps the horizontal direction to the direction v, i.e., A · e1 = v. The inverse modulus
of all horizontal cylinders of the origami A · O = (G, xym, y) coincides with the order of
xym (see Remark 2.3.7). Note that acting by matrices in SL(2,Z) does not change the
modulus of a cylinder. Hence, the inverse modulus of the cylinder in direction v of the
origami O equals the order of xym. �

Using Theorem 4.2.2 and Lemma 4.2.3, we deduce a sufficient condition for normal ori-
gamis to have a totally non-congruence group as Veech group.

Proposition 4.2.4 Let O = (G, x, y) be a normal origami. If for each prime p one of
the following holds

(i) p does not divide ord(y) · ord(yx) or

(ii) there exist natural numbers m1,m2 ∈ Z≥0 with m1 6≡p m2 and p does not divide
ord(xy−m1) · ord(xy−m2).

Then the Veech group SL(O) is a totally non-congruence group.

Proof Fix a prime p. If condition (i) holds, consider the matrices S−1T−1 =
(

0 1
−1 1

)
and

TS−1 =
(
−1 1
−1 0

)
. We obtain

S−1T−1 · O = (G, yx, x−1),
TS−1 · O = (G, y, x−1y−1).

The inverse moduli of the horizontal cylinders of the normal origamis (G, yx, x−1) and
(G, y, (yx)−1) are ord(yx) =: a and ord(y) =: b, respectively (see Remark 2.3.7). By
Lemma 2.3.8, the Veech group SL(O) contains the matrices

S−1T−1 · T a · TS =
(

1 0
−a 1

)
,

TS−1 · T b · ST−1 =
(

1−b b
−b 1+b

)
.

Moreover, we obtain for each j ∈ Z+ the inequality

S−1T−1 · e1 ≡p
(

0
−1

)
6≡p j ·

(
−1
−1

)
≡p j · TS−1 · e1.

Using Theorem 4.2.2, the claim follows in this case.
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If condition (ii) holds, then let m1,m2 be natural numbers satisfying condition (2). Define
the matrices

A1 = S−1Tm1S =
(

1 0
m1 1

)
,

A2 = S−1Tm2S =
(

1 0
m2 1

)
.

Since m1 6≡p m2, we have A1e1 6≡ j · A2e1 modulo p for each j ∈ Z+.

Note that p does not divide ord(xy−m1) · ord(xy−m2). Further, set k1 := ord(xy−m1) and
k2 := ord(xy−m2). Using Lemma 4.2.3 and Lemma 2.3.8, we conclude that the matrices
AiT

kiA−1
i are contained in the Veech group of the origami O. Again, the claim follows by

Theorem 4.2.2. �

In the following corollary, we construct generating sets {x, y} of alternating groups Alt(n)
satisfying the conditions given in Proposition 4.2.4. Consequently, the infinite family of
normal origamis (Alt(n), x, y) have totally non-congruence groups as Veech groups.
Corollary 4.2.5 For each prime number n ≥ 5, the normal origami
(Alt(n), (1, 2, 3), (1, 2, 3, . . . , n)) has a totally non-congruence group as Veech group.

Proof Set x := (1, 2, 3) and y := (1, 2, 3, . . . , n). For each prime p 6= n, we consider the
group elements y and yx. Since the orders of y and yx are equal to n, the prime p does
not divide ord(y) · ord(yx).

For the prime n, we consider the group elements xyn−1 and x, i.e., m1 = 1−n andm2 = 0.
Note that 1− n 6≡n 0. The permutation xyn−1 has the fixed point 2. Since n is a prime,
this implies that the permutation xyn−1 is not a cycle of length n and its order is not
divisible by n. Since ord(x) = 3 < n, the prime n does not divide the order of x either.
By Proposition 4.2.4, the claim follows. �

Remark 4.2.6 Denote the origami (Alt(n), (1, 2, 3), (1, 2, 3, . . . , n)) by On for n ∈ Z+.
We determine the strata in which the normal origamis On for n prime lie. For this, we
compute the commutator [(1, 2, 3), (1, 2, 3, . . . , n)] = (1, 4, 2). Hence, the origami On lies
in the stratum H(k × 2) with k = n!

6 and has genus g = n!
6 + 1.

Example 4.2.7We consider the normal origami O := (Alt(5), (1, 2, 3), (1, 2, 3, 4, 5)) given
in Corollary 4.2.5 for the prime n = 5. Using the GAP package [Ert+21], we compute that
the Veech group SL(O) is generated by the matrices

S2, TST−1, T 3, T−1STS−1, STST−3S−1

and has index 9 in SL(2,Z). Representatives of the SL(2,Z)-orbit are given by the fol-
lowing origamis

O = (Alt(5), (1, 2, 3), (1, 2, 3, 4, 5)), O2 := (Alt(5), (2, 4)(3, 5), (1, 2, 3, 4, 5)),
O3 := (Alt(5), (1, 2, 4, 5, 3), (1, 2, 3, 5, 4)), O4 := (Alt(5), (3, 5, 4), (1, 2, 3, 4, 5)),
O5 := (Alt(5), (1, 3, 2, 5, 4), (1, 2)(3, 4)), O6 := (Alt(5), (1, 2, 3, 4, 5), (1, 2, 3)),
O7 := (Alt(5), (1, 3, 5, 4, 2), (1, 2, 3)), O8 := (Alt(5), (1, 2, 3, 4, 5), (1, 2, 3, 5, 4)),
O9 := (Alt(5), (3, 4, 5), (1, 2, 3)).
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Chapter 4. Veech groups of normal origamis

Figure 4.3.: This figure shows the origami O. Each unlabeled edge is glued to the opposite
edge. For clarity, these edges are not labeled.
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Corollary 4.2.5 motivates to examine finite simple groups more generally. Simple groups
form an interesting class of 2-generated groups. The natural question, how the orders of
generators for a fixed group can be chosen, has been studied intensively (see e.g. [JLM18]
for further information). In this context it is natural to consider (a, b, c)-groups.

Definition 4.2.8 A finite group generated by two elements x and y with ord(x) = a,
ord(y) = b, and ord(xy) = c is called an (a, b, c)-group. We call such generators (a, b, c)-
generators.

Each (a, b, c)-group is a finite quotient of the triangle group

T(a,b,c) = 〈x, y, z | xa = yb = zc = xyz = 1〉.

The following theorem shows that (a, b, c)-groups where a, b, and c are chosen pairwise
coprime produce normal origamis with a totally non-congruence group as Veech group.

Theorem 4.2.9 Let a, b, c ∈ Z≥0 be pairwise coprime and G be an (a, b, c)-group with
(a, b, c)-generators x, y. The Veech group of the normal origami (G, y, x) is a totally non-
congruence group.

Proof We prove that the assumptions of Theorem 4.2.2 are satisfied for the Veech group
of the normal origami O = (G, y, x). Let p be a prime. Since a, b, and c are pairwise
coprime, p divides at most one of the numbers a, b, and c. We consider each of the three
cases separately.

If p is coprime to b · c, then consider the matrices I2 and S−1T−1 =
(

0 1
−1 1

)
. We obtain

I2 · O = O and S−1T−1 · O = (G, xy, y−1). The inverse moduli of the horizontal cylinders
of the normal origamis O and (G, xy, y−1) are ord(y) = b and ord(xy) = c, respectively.
Hence, T b and S−1T−1 · T c · TS lie in the Veech group SL(O). Moreover, we obtain for
each integer j ∈ Z+

S−1T−1 · e1 ≡p
(

0
−1

)
6≡p j ·

(
1
0

)
.

If p is coprime to a · c, then consider the matrices S−1T−1 =
(

0 1
−1 1

)
and TS−1 =

(
−1 1
−1 0

)
.

We obtain the normal origamis

S−1T−1 · O = (G, xy, y−1),
TS−1 · O = (G, x, y−1x−1).

The inverse moduli of the horizontal cylinders of the normal origamis (G, xy, y−1) and
(G, x, (xy)−1) are ord(xy) = c and ord(x) = a, respectively. Hence, the matrices S−1T−1 ·
T c · TS and TS−1 · T a ·ST−1 lie in the Veech group SL(O). Moreover, we obtain for each
j ∈ Z+ the inequality

S−1T−1 · e1 ≡p
(

0
−1

)
6≡p j ·

(
−1
−1

)
≡p j · TS−1 · e1.
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If p is coprime to a · b, then consider the matrices I2 and S−1 =
(

0 1
−1 0

)
. We obtain

the normal origamis I2 · O = O and S−1 · O = (G, x, y−1). The inverse moduli of
the horizontal cylinders of the normal origamis O and (G, x, y−1) are ord(y) = b and
ord(x) = a, respectively. Hence, T b and S−1 · T a · S lie in the Veech group SL(O).
Moreover, we have for each integer j ∈ Z+

S−1 · e1 ≡p
(

0
−1

)
6≡p j ·

(
1
0

)
. �

Example 4.2.10 A well-studied family of groups satisfying the assumption in The-
orem 4.2.9 are (2, 3, 7)-groups, which are also called Hurwitz groups. Hurwitz groups are
of interest from a geometric point of view because they arise as automorphism groups of
compact Riemann surfaces of genus g > 1 with maximal order, i.e., of order 84(g − 1).
The smallest Hurwitz group is the projective linear group PSL(2, 7) and has order 168.
For further information about Hurwitz, see, e.g., [Con90] and [Con10].
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Chapter 5.

T2-systems and normal origamis

In this chapter, we investigate the connection between the group theoretic concept of
T2-systems and the SL(2,Z)-orbits on sets of normal origamis. Subsequently, we deduce
results for such SL(2,Z)-orbits from the results known for T2-systems.

5.1. Connection between T2-systems and normal origamis

First, we introduce the notion of Tk-systems that are orbits under a special group action.
We then describe the connection between T2-systems and the SL(2,Z)-action on normal
origamis with a fixed deck transformation group. The T2-systems turn out to be unions
of up to two orbits under the SL(2,Z)-action. Zmiaikou discussed in [Zmi11, Chapter 4]
the analog connection for a GL(2,Z)-action which generalizes the SL(2,Z)-action. In this
case, the T2-systems coincide with the GL(2,Z)-orbits.

Let G be a finite group and k ∈ Z+. Define the set

Ek(G) := {(g1, . . . , gk) | 〈g1, . . . , gk〉 = G}.

That is, Ek(G) contains k-tuples with generators of G as entries. Such a k-tuple can be
viewed as an epimorphism from the free group Fk on k letters to G sending the standard
generators x1, . . . , xk of Fk to the entries of the tuple. The two automorphism groups
Aut(Fk) and Aut(G) act on Ek(G) via precomposing and postcomposing the homomor-
phisms, respectively. More precisely, for g = (g1, . . . , gk) in Ek(G) define αg : Fk → G via
αg(xi) = gi for 1 ≤ i ≤ k. The Aut(Fk)× Aut(G)-action is defined by

(ψ, ϕ) · αg := ϕ ◦ αg ◦ ψ−1

for (ψ, ϕ) ∈ Aut(Fk)×Aut(G) and g ∈ Ek(G). Again, the images of x1, . . . , xk under the
epimorphism ϕ ◦ αg ◦ ψ−1 define an element in Ek(G).

Definition 5.1.1 For a finite group G and k ∈ Z+, the orbits of the Aut(Fk)× Aut(G)-
action on the set Ek(G) are called Tk-systems.
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The concept of Tk-systems was introduced in the context of ultracharacteristic groups by
B. H. Neumann and H. Neumann in [NN51]. Since then Tk-systems have been studied by
various mathematicians such as Dunwoody, Evans, Gilman, Guralnick, and Pak (see, e.g.,
[Dun63], [Eva93], [Gil77], and [GP03]). Renewed interest in Tk-systems was caused by
the connection between Tk-systems and the Product Replacement Algorithm (PRA) (see,
e.g., [Pak01] and [GS09]). The PRA was introduced and analyzed in [Cel+95]. It is used
to construct random elements in finite groups and implemented as a standard routine in
the computer algebra systems GAP and MAGMA.

In the following, we briefly describe the connection between Tk-systems and the PRA.
For this, we introduce a particular generating set of the automorphism group of Fk.
This generating set consists of the following automorphisms which are called Nielsen
transformations

Ri,j : (x1, . . . , xi, . . . , xk) 7→ (x1, . . . , xi · xj, . . . , xk),
Li,j : (x1, . . . , xi, . . . , xk) 7→ (x1, . . . , xj · xi, . . . , xk),
Pi,j : (x1, . . . , xi, . . . , xj, . . . , xk) 7→ (x1, . . . , xj, . . . , xi, . . . , xk),
Ii : (x1, . . . , xi, . . . , xk) 7→ (x1, . . . , x

−1
i , . . . , xk),

for 1 ≤ i 6= j ≤ k. Further, consider for 1 ≤ i 6= j ≤ k the automorphisms

R−i,j = Ij ◦Ri,j ◦ Ij,
L−i,j = Ij ◦ Li,j ◦ Ij.

The PRA constructs random group elements by conducting a random walk on the
product replacement graph Γk(G), where the vertices of Γk(G) are the elements of
Ek(G). An edge connects two vertices of Γk(G) if one vertex is mapped to the other
vertex by an automorphism R−i,j, Ri,j, L

−
i,j, or Li,j for 1 ≤ i 6= j ≤ k. One is interested in

studying the connected components of the graph Γk(G).

Similarly, one can construct the extended product replacement graph Γ̃k(G). Again,
the vertices are the elements of Ek(G). An edge corresponds to the application of an
automorphism Pi,j, Ii, R

−
i,j, Ri,j, L

−
i,j, or Li,j for 1 ≤ i 6= j ≤ k. Thus, the number of

Tk-systems is less or equal to the number of connected components of the graph Γ̃k(G).
Further, the number of connected components of the graph Γ̃k(G) is smaller or equal to
the number of connected components of the graph Γk(G).

In the remaining part of this chapter, we focus on the case k = 2.

Remark 5.1.2 Recall that we identify normal origamis with deck transformation group
G with pairs of generators of G. More precisely, the set of normal origamis O(G) coincides
with the quotient E2(G)/Aut(G), where Aut(G) acts componentwise on tuples in E2(G)
as in the definition of T2-systems (see Remark 2.2.5). Note that inner automorphisms
of F2 act as automorphism of G and thus it is possible to consider the orbits under the
action of Out(F2)×Aut(G) instead of Aut(F2)×Aut(G) in the definition of T2-systems.
Further, recall that for the free group on two generators the outer automorphism group
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Out(F2) is isomorphic to the group GL(2,Z). Since SL(2,Z) is a subgroup of GL(2,Z), we
can assign an automorphism in Out(F2) to each element of SL(2,Z). The SL(2,Z)-action
introduced in Section 2.3 coincides with the Out(F2)-action considered for T2-systems.
For instance, the action of the matrices S = ( 0 −1

1 0 ) and T = ( 1 1
0 1 ) corresponds to the

automorphisms (viewed as elements in the outer automorphism group)

ψS = P1,2 ◦ I1, x 7→ y, y 7→ x−1 and
ψT = R1,2, x 7→ x, y 7→ yx,

respectively.

The following lemma connects the number of T2-systems with the number of SL(2,Z)-
orbits in the set of normal origamis with fixed deck transformation group.

Lemma 5.1.3 For a finite group G, denote the number of T2-systems by n. Then the
number of SL(2,Z)-orbits in O(G) lies between n and 2n.

Proof Let G be a group. Recall that the SL(2,Z)-action on O(G) coincides with the
group action of SL(2,Z) × Aut(G) on E2(G) occurring in the definition of T2-systems.
The group SL(2,Z) is the kernel of the determinant map GL(2,Z)→ Z∗ and thus it has
index 2 in GL(2,Z). Hence, we deduce the claim: If n denotes the number of T2-systems,
the number of SL(2,Z)-orbits in the set O(G) lies between n and 2n. �

We obtain the following corollary and apply it to the families of groups considered in
Section 4.1.1.

Corollary 5.1.4 If the group SL(2,Z) acts transitively on the set O(G) for a group G,
then G admits only one T2-system.

Example 5.1.5 In Section 4.1.1, we showed that the SL(2,Z)-action is transitive on
each of the sets of normal origamis O(D2m),O(G2

n,k),O(Am),O(Bm), and O(Wm) (see
Proposition 4.1.4, Proposition 4.1.7, Proposition 4.1.13, Proposition 4.1.16, and Proposi-
tion 4.1.20). By Corollary 5.1.4, each of these groups admits only one T2-system.

Given a T2-system T of a group G, we examine whether T induces one or two SL(2,Z)-
orbits. Consider a matrix M ∈ GL(2,Z) \ SL(2,Z) and a normal origami O = (G, x, y)
defined by a pair of generators (x, y) in T . Then M · O is either contained in the orbit
SL(2,Z) ·O or not. We first consider the case that M ·O lies in SL(2,Z) ·O. There exists
a matrixM ′ ∈ SL(2,Z) such thatM ·O = M ′ ·O. We obtain the equality O = M−1M ′ ·O
and thus M−1M ′ ∈ StabGL(2,Z)(O). This implies that the stabilizer StabGL(2,Z)(O) is not
contained in SL(2,Z).

We now consider the case M · O 6∈ SL(2,Z) · O. Recall that the general linear group
GL(2,Z) is the disjoint union SL(2,Z) ] SL(2,Z) ·M . We conclude that each matrix in
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GL(2,Z) \ SL(2,Z) is not contained in the stabilizer StabGL(2,Z)(O). As a consequence,
we obtain

StabGL(2,Z)(O) = SL(O) ⊆ SL(2,Z).

Since GL(2,Z) equals SL(2,Z) ] SL(2,Z) · M , the argument above is independent of
the matrix M . Furthermore, it does not depend on the choice of the pair of generators
(x, y) ∈ T . We obtain the following lemma:

Lemma 5.1.6 The GL(2,Z)-orbit of a normal origami O splits into two SL(2,Z)-orbits
if the inclusion StabGL(2,Z)(O) ⊆ SL(2,Z) holds. If this inclusion is not satisfied, then the
orbits GL(2,Z) · O and SL(2,Z) · O coincide.

Remark 5.1.7 We consider the action of the matrix M =
(

1 0
0 −1

)
on a normal origami

O = (G, x, y). This action corresponds to the automorphism ψ of F2 with ψ(x1) = x1
and ψ(x2) = x−1

2 in the setting of T2-systems. The origami O is stabilized by the matrix
M if x 7→ x and y 7→ y−1 defines an automorphism of G. If this is the case, we have
StabGL(2,Z)(O) 6⊆ SL(2,Z) and derive that the T2-system containing the pair (x, y) induces
only one SL(2,Z)-orbit.

Example 5.1.8 The considered groups in Example 5.1.5 have the property that the
T2-systems and SL(2,Z)-orbits coincide. We now search for small groups G such that
a T2-system of G splits into two SL(2,Z)-orbits. For all groups G of order smal-
ler than 81, the number of T2-systems of G and the number of SL(2,Z)-orbits in
the set of normal origamis O(G) coincide. To see this, one computes for each such
group G the SL(2,Z)-orbits in the set of normal origamis O(G) using the GAP-package
[Ert+21]. For most groups G, this SL(2,Z)-action is transitive and thus the number
of T2-systems and the number of SL(2,Z)-orbits are equal. This is consistent with the
results of Kremer who examined which groups G of order up to 250 admit more than
one SL(2,Z)-orbit (see [Kre09, Appendix A.4]). The possible orders of such groups are
60, 81, 120, 160, 162, 168, 180, 189, 192, 200, 216, 240, and 243.

If the SL(2,Z)-action on O(G) is not transitive, one checks for a normal origami O in
O(G) whether M · O lies in the orbit SL(2,Z) · O. Here, M denotes the matrix

(
1 0
0 −1

)
.

The smallest group G such that M ·O does not lie in the orbit SL(2,Z) ·O for O ∈ O(G)
has order 81 and was assigned the identification number (81, 10) in the Small Groups
library in GAP. It is generated by the two permutations

x = (1, 2, 4, 8, 16, 30, 15, 23, 37)(3, 6, 12, 17, 32, 52, 29, 46, 65)
(5, 10, 20, 31, 50, 68, 43, 62, 77)(7, 14, 27, 33, 54, 21, 39, 55, 69)
(9, 18, 34, 49, 67, 78, 59, 76, 81)(11, 22, 41, 51, 24, 35, 56, 70, 79)
(13, 25, 38, 53, 71, 80, 66, 19, 36)(26, 45, 63, 72, 47, 57, 75, 40, 61)
(28, 48, 60, 73, 42, 64, 74, 44, 58),
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y = (1, 3, 7, 15, 29, 39, 8, 17, 33)(2, 5, 11, 23, 43, 56, 16, 31, 51)
(4, 9, 19, 37, 59, 71, 30, 49, 25)(6, 13, 26, 46, 66, 75, 32, 53, 72)
(10, 21, 40, 62, 27, 47, 50, 69, 45)(12, 24, 44, 65, 22, 42, 52, 70, 48)
(14, 28, 34, 55, 74, 81, 54, 73, 78)(18, 35, 57, 76, 41, 63, 67, 79, 61)
(20, 38, 60, 77, 36, 58, 68, 80, 64).

The set O(G) consists of 8 normal origamis and splits into two SL(2,Z)-orbits of length
4. For the origami O = (G, x, y), the origami M ·O = (G, x, y−1) does not lie in the same
SL(2,Z)-orbit as the origami O. Thus, we obtain the inclusion StabGL(2,Z)(O) ⊆ SL(2,Z).
We conclude that there is one T2-system of G which induces two SL(2,Z)-orbits.

We consider yet another example. The next larger group with the desired property has
order 162 and was assigned the identification number (162, 31) in the Small Groups library.
It is generated by the two permutations

x = (1, 2, 4, 8, 16, 30, 52, 81, 113)(3, 6, 12, 17, 32, 56, 82, 115, 143)
(5, 10, 20, 31, 54, 84, 114, 142, 158)(7, 14, 27, 33, 58, 21, 39, 60, 85)
(9, 18, 34, 53, 83, 116, 141, 157, 140)(11, 22, 41, 55, 24, 35, 61, 87, 117)
(13, 25, 38, 57, 88, 118, 144, 19, 36)(15, 23, 37, 59, 86, 45, 66, 93, 120)
(26, 46, 69, 89, 48, 62, 94, 40, 67)(28, 49, 65, 90, 42, 70, 92, 44, 63)
(29, 47, 73, 91, 121, 78, 99, 126, 71)(43, 68, 98, 119, 75, 103, 125, 77, 96)
(50, 79, 102, 122, 64, 95, 124, 74, 100)(51, 80, 109, 123, 147, 101, 130, 148, 107)
(72, 104, 133, 145, 105, 127, 149, 110, 131)(76, 106, 129, 146, 111, 134, 150, 97, 128)
(108, 137, 155, 159, 138, 151, 162, 132, 154)(112, 139, 153, 160, 135, 156, 161, 136, 152),

y = (1, 3, 7, 15, 29, 51, 8, 17, 33, 59, 91, 123, 52, 82, 39, 66, 99, 130)
(2, 5, 11, 23, 43, 72, 16, 31, 55, 86, 119, 145, 81, 114, 61, 93, 125, 149)
(4, 9, 19, 37, 64, 97, 30, 53, 25, 45, 74, 106, 113, 141, 88, 120, 79, 111)
(6, 13, 26, 47, 76, 108, 32, 57, 89, 121, 146, 159, 115, 144, 94, 126, 150, 162)
(10, 21, 40, 68, 101, 132, 54, 85, 46, 75, 107, 137, 142, 27, 48, 77, 109, 138)
(12, 24, 44, 73, 105, 136, 56, 87, 49, 78, 110, 139, 143, 22, 42, 71, 104, 135)
(14, 28, 50, 80, 112, 140, 58, 90, 122, 147, 160, 34, 60, 92, 124, 148, 161, 116)
(18, 35, 62, 95, 127, 151, 83, 117, 67, 100, 131, 154, 157, 41, 69, 102, 133, 155)
(20, 38, 65, 98, 129, 153, 84, 118, 70, 103, 134, 156, 158, 36, 63, 96, 128, 152).

The set O(G) consists of 24 normal origamis and splits into two SL(2,Z)-orbits of length
12. For the origami O = (G, x, y), the origami M · O = (G, x, y−1) does not lie in the
same SL(2,Z)-orbit as the origami O. Again, we conclude that there is one T2-system of
G which induces two SL(2,Z)-orbits.

Finally, we present one example showing the opposite behaviour. The matrix group
PSL(3, 2) has order 168 and was assigned the identification number (168, 42) in the Small
Groups library. Note that this group is isomorphic to the group PSL(2, 7) and is a Hurwitz
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group (see Example 4.2.10). It is generated by the two permutations

x = (1, 2)(3, 5)(4, 7)(6, 10)(8, 12)(9, 13)(11, 16)(14, 20)(15, 21)(17, 24)
(18, 25)(19, 27)(22, 31)(23, 32)(26, 36)(28, 38)(29, 39)(30, 41)(33, 45)(34, 46)
(35, 48)(37, 51)(40, 55)(42, 57)(43, 58)(44, 59)(47, 63)(49, 65)(50, 66)(52, 67)
(53, 68)(54, 70)(56, 73)(60, 77)(61, 78)(62, 80)(64, 83)(69, 89)(71, 81)(72, 91)
(74, 92)(75, 85)(76, 94)(79, 98)(82, 100)(84, 101)(86, 103)(87, 105)(88, 107)
(90, 110)(93, 114)(95, 108)(96, 116)(97, 118)(99, 121)(102, 125)(104, 119)
(106, 128)(109, 130)(111, 131)(112, 132)(113, 134)(115, 137)(117, 140)(120, 142)
(122, 143)(123, 144)(124, 146)(126, 149)(127, 151)(129, 153)(133, 152)(135, 158)
(136, 159)(138, 160)(139, 154)(141, 157)(145, 161)(147, 164)(148, 165)(150, 166)
(155, 162)(156, 167)(163, 168),

y = (1, 3, 6)(2, 4, 8)(5, 9, 14)(7, 11, 17)(10, 15, 22)(12, 18, 26)(13, 19, 28)(16, 23, 33)
(20, 29, 40)(21, 30, 42)(24, 34, 47)(25, 35, 49)(27, 37, 52)(31, 43, 59)(32, 44, 60)
(36, 50, 51)(38, 53, 69)(39, 54, 71)(41, 56, 74)(45, 61, 79)(46, 62, 81)(48, 64, 84)
(55, 72, 73)(57, 75, 93)(58, 76, 95)(63, 82, 83)(65, 85, 102)(66, 86, 104)(67, 87, 106)
(68, 88, 108)(70, 90, 111)(77, 96, 117)(78, 97, 119)(80, 99, 122)(89, 109, 110)
(91, 112, 133)(92, 113, 135)(94, 115, 138)(98, 120, 121)(100, 123, 145)(101, 124, 147)
(103, 126, 150)(105, 127, 152)(107, 129, 154)(114, 136, 137)(116, 139, 161)
(118, 141, 151)(125, 148, 149)(128, 146, 153)(130, 155, 166)(131, 156, 144)
(132, 143, 163)(134, 157, 140)(142, 162, 160)(158, 167, 165)(159, 164, 168).

Using GAP, one computes that the Veech group of the origami (PSL(3, 2), x, y) has index
16 in SL(2,Z). Furthermore, one sees x 7→ x and y 7→ y−1 defines an automorphism of the
group PSL(3, 2). Hence, we obtain the equality (PSL(3, 2), x, y) = M · (PSL(3, 2), x, y)
and conclude that the T2-system containing the tuple (x, y) induces only one SL(2,Z)-
orbit (see Remark 5.1.7). The set O(PSL(3, 2)) splits into four SL(2,Z)-orbits of length
7, 16, 16, and 18. Note that the following is a consequence of the orbit-stabilizer theorem:
If a T2-system splits into two SL(2,Z)-orbits, then both SL(2,Z)-orbits have the same
length. The normal origami (PSL(3, 2), x, y) lies in an SL(2,Z)-orbit of length 16 and
thus we conclude that each T2-system induces only one SL(2,Z)-orbit.

In addition, we compute with the help of GAP that all 32 normal origamis with deck
transformation group PSL(3, 2) that lie in an SL(2,Z)-orbit of length 16 are contained in
the stratum H(42× 3). The normal origamis in the SL(2,Z)-orbits of length 7 and 18 lie
in the stratum H(24× 6) and H(56× 2), respectively.
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5.2. Transfer of results to SL(2,Z)-orbits of normal
origamis

In this section, we collect known results about T2-systems and use Lemma 5.1.3 to deduce
results on SL(2,Z)-orbits of normal origamis with isomorphic deck transformation groups.
More precisely, we show that the number of SL(2,Z)-orbits in the set of normal origamis
O(G) is unbounded for a finite groupG that is either simple, a p-group, or equals PSL(2, p)
for p prime.

We begin with a result on the number of T2-systems for the groups PSL(2, p) with p
prime.

Theorem 5.2.1 ([GP03, Theorem 1.2]) For each natural number n, there exists a
prime number p such that the number of T2-systems for the group PSL(2, p) is at least n.

Corollary 5.2.2 For each natural number n, there exists a prime number p such that the
number of SL(2,Z)-orbits in the normal origamis O(PSL(2, p)) is at least n.

Garion and Shalev showed that the number of T2-systems for finite simple groups is also
unbounded.

Theorem 5.2.3 ([GS09, Theorem 1.8]) Let G be a finite simple group. Then the
number of T2-systems in G tends to infinity as |G| → ∞.

Corollary 5.2.4 Let G be a finite simple group. Then the number of SL(2,Z)-orbits in
the normal origamis O(G) tends to infinity as |G| → ∞.

Let T denote a T2-system of a group G. By Higman’s Lemma (see [Neu56, Section 2]),
there exists a natural number k such that for each tuple (x, y) in T the order of the
commutator [x, y] equals k. So, the commutator order is an invariant of a T2-system. In
[Neu56, Section 3], Neumann constructs a 2-group G of order 215 with more than one
T2-system. He considers group elements x, y, y′ ∈ G such that

G = 〈x, y〉 = 〈x, y′〉,
ord([x, y]) = 2,
ord([x, y′]) = 4.

As the order of the commutator [a, b] is fixed for all pairs of generators (a, b) in the T2-
system containing the pair of generators (x, y), the pair (x, y′) lies in a different T2-system
than the pair (x, y). Neumann computes that the nilpotency class of G is 12. Considering
a suitable quotient of G, he obtains a group which has more than one T2-system, order 213,
nilpotency class 10, and derived length 3. Note that a group has derived length 3 if the
derived series has length 3, i.e., G(2) ) G(3) = 〈1〉. He poses the following question: What
is the minimal natural number n such that there exists a 2-group of nilpotency class n with
more than one T2-system? Dunwoody answered this question in the following theorem.
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Theorem 5.2.5 ([Dun63, Theorem 1]) For each natural number n and each prime
number p, there exists a finite p-group of nilpotency class 2 with at least n T2-systems.

Corollary 5.2.6 For each natural number n and each prime number p, there exists a
finite p-group G of nilpotency class 2 with at least n SL(2,Z)-orbits in the set of normal
origamis O(G).

However, the order of the groups constructed in the proof of Theorem 5.2.5 grows very
quickly.

Example 5.2.7 In Lemma 3.1.34, we considered the group G = 〈x, y〉, where

x := e1,1e2,1e3,1e4,1 = (1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16),
x′ := x3 = (1, 13, 7, 10, 4, 16, 5, 11, 2, 14, 8, 9, 3, 15, 6, 12),
y := e1,1e3,4e4,1 = (1, 9, 2, 10)(3, 11)(4, 12)(5, 15, 7, 13)(6, 16, 8, 14).

This group is a 2-group of order 212, nilpotency class 7, and derived length 3. Since the
order of x is 16 and 3 is coprime to 16, one has 〈x〉 = 〈x′〉 and thus 〈x, y〉 = 〈x′, y〉. At
the same time, we compute

ord([y, x]) = 2 6= 4 = ord([y, x′]).

We used this example to construct two normal origamis (G, y, x) and (G, y, x′) with iso-
morphic deck transformation group that lie in different strata. This implies that they also
lie in different SL(2,Z)-orbits. Applying Higman’s Lemma, we see that the tuples (y, x)
and (y, x′) in E2(G) lie in different T2-system of the group G as well.
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Chapter 6.

Geminal origamis

The content of this chapter is motivated by recent studies of Apisa and Wright on gener-
alizations of the “eierlegende Wollmilchsau” origami (see [AW21a]). In their work, Apisa
and Wright examine GL(2,R)-orbit closures that consist of surfaces with extraordinary
cylinder decompositions. They call such orbit closures geminal and provide a classifica-
tion which is useful in different frameworks. Firstly, Apisa and Wright answer two ques-
tions from Mirzakhani and Wright regarding GL(2,R)-invariant varieties (see [AW21a,
Section 1.4] and [MW18]). Secondly, Apisa derives results on certain varieties with a
degenerate Lyapunov spectrum (see [Api21]). Lastly, Apisa and Wright obtain results on
GL(2,R)-invariant varieties of high rank (see [AW21b]).

One case in the classification of geminal orbit closures involves origamis covering the
(2× 2)-torus T[2], which we call geminal origamis. In this chapter, we investigate the
conjecture of Apisa and Wright that each geminal origami induces a cyclic cover of T[2]
(see [AW21a, Section 8.4]).

6.1. Connection between the geometric and the
group-theoretic setting

In this section, we discuss the connection between a geometric question regarding gem-
inal origamis (see Question 6.1.2) and a group-theoretic question regarding stabilizer
subgroups in a symmetric group (see Question 6.1.7). We begin by defining geminal
origamis.

Definition 6.1.1 Let O be an origami that allows a cover c1 : O → T[2] with up to four
ramification points. The possible ramification points are the corners of the four squares
in the (2×2)-torus T[2]. We further require that the cover c1 is compatible with the cover
c : O → T, i.e., if c2 denotes the natural cover T[2] → T, then the equality c = c2 ◦ c1
holds. Denote the degree of the cover c1 by d. We call the origami O geminal if the
monodromy map µ : F2 → Sym(4d) corresponding to the cover O → T satisfies the
following property: For each pair of generators (a′, b′) of the group F2, the images µ(a′)
and µ(b′) consist of two disjoint 2d-cycles each.
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Each geminal origami O is described by two permutations x and y describing the hori-
zontal and vertical gluings of the origami via the monodromy map (see Section 2.2.1).
As O covers the surface T[2], the degree of the origami is 4d. Hence, x and y are per-
mutations in the group Sym(4d). We denote the group 〈x, y〉 by G and identify the
fundamental group of the punctured torus T∗ with the free group F2. The monodromy
map µ : F2 → Sym(4d) sends the standard generators a and b to x and y, respectively.
Thus, the permutations x and y consist of two disjoint 2d-cycles each. We call such
permutations a (2d, 2d)-cycle. Note that the cycle structure of the permutation x im-
plies that the cylinder decomposition in horizontal direction consists of two cylinders of
circumference 2d and height 1.

A geometric property of cylinder decompositions motivates the definition of geminal ori-
gamis. The cylinder decomposition in each direction consists of two cylinders of equal
height and circumference, respectively. We consider the projection of a cylinder from a
geminal origami to the torus T. Each core curve of a cylinder is mapped to a curve in the
torus. For a geminal origami, the length of the core curve of each cylinder divided by the
length of the corresponding curve in the torus equals 2d. This is caused by the group-
theoretic property in the definition of geminal origamis which states that generators of F2
are mapped to (2d, 2d)-cycles. Different generators of the free group F2 correspond to core
curves of cylinder decompositions in different directions. This relates the group-theoretic
property of generators of F2 to the geometric property of cylinder decompositions. See
[AW21a, Section 8.4] for further details.

Apisa and Wright asked the following question:

Question 6.1.2 ([AW21a, Problem 8.16]) Let O be a geminal origami. Is the cover
c1 : O → T[2] normal with a cyclic deck transformation group?

Example 6.1.3 The standard example for a geminal origami is the “eierlegende Woll-
milchsau” which we have considered for instance in Example 2.2.3 and Example 3.3.11.
Using the permutation notation, the “eierlegende Wollmilchsau” is defined by the per-
mutations x = (1, 2, 3, 4)(5, 6, 7, 8) and y = (1, 5, 3, 7)(2, 8, 4, 6). The “eierlegende Woll-
milchsau” is shown in Figure 6.1.

Example 6.1.4 A further example for a geminal origami was introduced in [FM08]. See
also [MW15] and [AW21a] for further information. This origami is often called “Orni-
thorynque”. Using the permutation notation, the “Ornithorynque” is defined by the per-
mutations x = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12) and y = (1, 11, 5, 7, 3, 9)(2, 12, 4, 10, 6, 8).
The “Ornithorynque” is shown in Figure 6.2.

Apisa and Wright formulated Question 6.1.2 in the language of group theory using covers
and fundamental groups (see [AW21a, Section 8.4]). In the following, we explain the con-
nection between the geometric and the group-theoretic statement. For this, we consider
a second group homomorphism

α : F2 → Z/2Z× Z/2Z defined by α(a) = (1, 0) and α(b) = (0, 1).
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1 2 3 4
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6 8

7
c1 c2

Figure 6.1.: This figure shows the cover c1 from the “eierlegende Wollmilchsau” to T[2] and the
cover c2 from T[2] to T. The cover c1 has degree 2 and the sheets of the cover are shaded in

blue and green. The deck transformation group is the cyclic group of order 2.

1 2 3 4 5 6

11 9

12 10

7

8

c1

Figure 6.2.: This figure shows the cover c1 from the “Ornithorynque” to T[2]. The cover c1 has
degree 3 and the sheets of the cover are shaded in orange, green, and blue.

Note that the kernel ker(α) is the smallest normal subgroup of F2 containing a2, b2, and
the commutator [a, b]. The fundamental groups of the surfaces T[2] and O are the kernel
ker(α) and the preimage µ−1(StabG(1)), respectively. Here, we consider the permutation
action of the symmetric group on the squares 1, . . . , 4d the origami O consists of. Further,
note that the monodromy group µ(F2) is isomorphic to the group G. We identify the
monodromy group with G and thus we notate the intersection StabSym(4d)(1) ∩ µ(F2) by
StabG(1). As we have the covers

O c1−→ T[2] c2−→ T,

we obtain the inclusions
µ−1(StabG(1)) ⊆ ker(α) ⊆ F2.

The cover c1 is normal if and only if the group µ−1(StabG(1)) is normal in the kernel
ker(α). Furthermore, the corresponding deck transformation group is cyclic if and only
if the quotient ker(α)/µ−1(StabG(1)) is cyclic. We denote ker(α) by K in the remaining
part of this chapter. In summary, Question 6.1.2 is equivalent to the question below.

Question 6.1.5 Is the stabilizer µ−1(StabG(1)) a normal subgroup of K? Is the quotient
K/µ−1(StabG(1)) cyclic in this case?
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The following lemma transfers this question from the free group F2 to the finite group
Sym(4d) using basic facts from group theory. This setting will be used in the remaining
part of this chapter.
Lemma 6.1.6 The following holds:

(i) The stabilizer µ−1(StabG(1)) is a normal subgroup of K if and only if StabG(1) is
a normal subgroup of µ(K).

(ii) Let µ−1(StabG(1)) be a normal subgroup of K. The quotient K/µ−1(StabG(1)) is
cyclic if and only if the quotient µ(K)/ StabG(1) is cyclic.

Proof Statement (i) follows from [Fra14, Chapter 3, Theorem 5.16].

For statement (ii), note that µ induces a homomorphism

µ : K/µ−1(StabG(1))→ µ(K)/ StabG(1).

On the one hand, a generator of the cyclic group K/µ−1(StabG(1)) is mapped to a gener-
ator of the group µ(K)/ StabG(1) under µ. On the other hand, the preimage of a generator
of the cyclic group µ(K)/ StabG(1) is a generator of the quotient K/µ−1(StabG(1)). �

Using the lemma above, we deduce that Question 6.1.5 is equivalent to the following
question:
Question 6.1.7 Is the stabilizer StabG(1) a normal subgroup of µ(K)? Is the quotient
µ(K)/ StabG(1) cyclic in this case?

The following commutative diagram shows the inclusions between the groups under con-
sideration:

Sym(4d)

T π1(T) = F2 = 〈a, b〉 µ // G = 〈x, y〉
?�

OO

T[2]

c2

OO

π1(T[2]) = K
?�

OO

µ // µ(K)
?�

OO

O

c1

OO

π1(O) = µ−1(StabG(1))
?�

OO

µ // StabG(1).
?�

OO

Example 6.1.8 Consider again the “eierlegende Wollmilchsau” (see Example 2.2.3). We
show that in this particular case the answer to Question 6.1.7 is yes. The group µ(K) is
cyclic and generated by the permutation

x2 = y2 = [x, y] = (1, 3)(2, 4)(5, 7)(6, 8).

Further, the stabilizer StabG(1) is trivial for G = 〈x, y〉. In particular, the stabilizer
StabG(1) is normal in K and the quotient is cyclic.
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Remark 6.1.9 The stabilizer StabG(1) is trivial if the geminal origami O is a normal
origami, i.e., the cover O c2 ◦ c1−−−→ T is normal. In this case, the stabilizer StabG(1) is a
normal subgroup of µ(K) and Question 6.1.7 is equivalent to the question whether µ(K)
is cyclic.

Example 6.1.10 Next, consider the “Ornithorynque” origami from Example 6.1.4. In
the following, we show that the answer to Question 6.1.7 is yes for this surface as well.
Again, we compute the following permutations in µ(K)

x2 = (1, 3, 5)(2, 4, 6)(7, 9, 11)(8, 10, 12),
y2 = (1, 5, 3)(2, 4, 6)(7, 9, 11)(8, 12, 10),

[x, y] = (1, 5, 3)(2, 6, 4)(7, 9, 11).

Using GAP, we check that the group 〈x2, y2, [x, y]〉 is a normal subgroup of the group
G = 〈x, y〉. Hence, this group equals µ(K). Furthermore, note that the separate cycles
occurring in the permutations x2, y2, and [x, y] are all powers of the disjoint cycles (1, 3, 5),
(2, 4, 6), (7, 9, 11), or (8, 10, 12). This implies that the permutations x2, y2, and [x, y]
commute with each other and thus the group µ(K) is abelian. More precisely, the group
µ(K) is isomorphic to the elementary abelian group C3 × C3 × C3. Since each subgroup
of an abelian group is normal, the group StabG(1) is a normal subgroup of µ(K). In
Theorem 6.3.1, we will show that this implies that the quotient µ(K)/ StabG(1) is a
cyclic group.

6.2. Permutations describing geminal origamis

This section examines conditions which are satisfied by permutations defining a geminal
origami. We use these conditions to obtain a bound for the number of geminal surfaces
of fixed degree. Moreover, the results obtained in this section will be useful to partially
answer Question 6.1.7 in Section 6.3.

In this section, we use the notation introduced in Section 6.1. Recall that the permuta-
tions x and y define the horizontal and vertical gluings of a geminal origami O, respec-
tively. Further, recall that both permutations consist of two disjoint 2d-cycles each. The
group 〈x, y〉 is denoted by G and µ(K) is the smallest normal subgroup of G containing
the permutations x2, y2, and [x, y]. The following definition will be useful to study the
permutations x and y.

Definition 6.2.1 We denote the entries of the permutations x and y as follows

x = (x1, . . . , x2d)(x2d+1, . . . , x4d),
y = (y1, . . . , y2d)(y2d+1, . . . , y4d).
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Further, we define the following sets

Xi := {x2d·i+k | 1 ≤ k ≤ 2d},
Xj
i := {x2d·i+k | 1 ≤ k ≤ 2d, k ≡2 j + 1},
Yi := {y2d·i+k | 1 ≤ k ≤ 2d},
Y j
i := {y2d·i+k | 1 ≤ k ≤ 2d, k ≡2 j + 1}.

for i, j ∈ {0, 1}.

The sets Xi and Yi consist of the entries of the cycles of the permutations x and y, respec-
tively. Furthermore, the sets Xj

i with j ∈ {0, 1} consist of the entries of the cycles of the
permutation x which have even and odd indices, respectively. The sets Y j

i with j ∈ {0, 1}
are defined analogously for the permutation y.
Definition 6.2.2 We say that the permutation x is alternating in the blocks of y if
the following holds: if k and ` are natural numbers such that ` ≡2d k+1 and {xk, x`} ⊆ Xi

for some i ∈ {0, 1}, then
|{xk, x`} ∩ Yj| = 1

for j = 0 and j = 1. Analogously, we define that the permutation y is alternating in
the blocks of x.

In other words, the permutation x is alternating in the blocks of y if two consecutive
entries of a 2d-cycle of x do not lie in the same 2d-cycle of y. The subsequent lemma
shows that permutations describing a geminal surface are alternating in the blocks of each
other.
Lemma 6.2.3 Let x and y be permutations in Sym(4d) describing a geminal origami.
The following holds:

(i) The permutation x is alternating in the blocks of y.

(ii) The permutation y is alternating in the blocks of x.

Proof To proof statement (i), consider natural numbers k and ` such that ` ≡2d k+1 and
{xk, x`} ⊆ Xi for some i ∈ {0, 1}. Assume x is not alternating in the blocks of y. Then
we obtain |{xk, x`} ∩ Yj| = 2 for some j ∈ {0, 1}, i.e., {xk, x`} ⊆ Yj for some j ∈ {0, 1}.
Thus, there exist k′ and `′ such that xk = yk′ , x` = y`′ , and the numbers yk′ and y`′ lie in
the same cycle of the permutation y. Set r := k′ − `′ and compute

yrx(xk) = yr(x`) = yr(y`′) = yk′ = xk.

This implies that the permutation yrx has the fixed point xk and thus is not a (2d, 2d)-
cycle. However, (yrx, y) is a generating pair of the group G = 〈x, y〉. Since x and y
define a geminal origami, both permutations have to be (2d, 2d)-cycles. This yields a
contradiction. This proves statement (i).

Note that the above argument is symmetric in x and y. Hence, statement (ii) follows
analogously with the above argument. �
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Corollary 6.2.4 The following equality holds
{Xj

i | 0 ≤ i, j ≤ 1} = {Y j
i | 0 ≤ i, j ≤ 1}.

Proof Assume that {xk, x`} ⊆ Xj
i for some 1 ≤ k, ` ≤ 4d and 0 ≤ i, j ≤ 1. In particular,

k−` is even. Let 0 ≤ i′, j′ ≤ 1 such that xk is contained in the set Y j′

i′ . By Lemma 6.2.3 (i),
we conclude x` lies either in the set Y j′

i′ or in the set Y 1−j′
i′ . In the following, we show

x` lies in Y j′

i′ . Suppose to the contrary that x` lies in Y 1−j′
i′ . Then, there are natural

numbers k′ and `′ such that xk = yk′ , x` = y`′ , and k′ − `′ ≡2 1. Using Lemma 6.2.3 (ii),
we conclude that the numbers yk′ and y`′ lie in different cycles of the permutation x.
This is a contradiction to the inclusion {xk, x`} ⊆ Xj

i . Since all the sets Xj
i and Y j

i with
0 ≤ i, j ≤ 1 have cardinality d, the claim follows. �

Without loss of generality, we may assume that the number 1 is contained in both sets
X0

0 and Y 0
0 . Otherwise, we change the order of the 2d-cycles of the permutations x and

y, respectively. We obtain the following result.
Lemma 6.2.5 Assuming that the number 1 is contained in both sets X0

0 and Y 0
0 , we

obtain the equalities
X0

0 = Y 0
0 , X1

0 = Y j1
1

X0
1 = Y j2

i2 , X1
1 = Y j3

1−i2

for some i2, j1, j2, and j3 ∈ {0, 1}.

Proof Lemma 6.2.3 (ii) implies that for all i, j ∈ {0, 1}, there is an i′ ∈ {0, 1} such that
Y j
i ⊂ Xi′ . Since the number 1 is contained in both sets X0

0 and Y 0
0 , we have the inclusion

Y 0
0 ⊂ X0. We conclude

X0 = Y 0
0 t Y

j1
i1 , X1 = Y j2

i2 t Y
j3
i3

for some i1, i2, i3, j1, j2, j3 ∈ {0, 1}. Hence, we obtain the equalities
X0

0 tX1
0 = Y 0

0 t Y
j1
i1 ,

X0
1 tX1

1 = Y j2
i2 t Y

j3
i3 .

Lemma 6.2.3 (i) implies that i1 6= 0 and i2 6= i3. Thus, we have i1 = 1. Finally, we use
Corollary 6.2.4 to obtain

X0
0 = Y 0

0 , X1
0 = Y j1

1 ,

X0
1 = Y j2

i2 , X1
1 = Y j3

1−i2 . �

Note that we may assume without loss of generality that the permutation x equals
(1, 2, . . . , 2d)(2d + 1, . . . , 4d). Otherwise, conjugate x and y simultaneously with an
appropriate permutation in Sym(4d). This does not change the origami O, but cor-
responds to renumbering the squares of the origami. Furthermore, we can change the
entry of the 2d-cycles of the permutation y where the numbering of the entries starts
without changing the permutation. In other words, the permutations (y1, y2, . . . , y2d) and
(y1+k mod 2d, y2+k mod 2d, . . . , y2d+k mod 2d) are equal for each natural number k. Here, we
set y0 := y2d. Hence, we may assume y1 = 1 and that y2d+1 is the smallest number in the
second cycle of y without changing y.
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Proposition 6.2.6 Let x and y be permutations in Sym(4d) describing a geminal origami
O. Assume x = (1, 2, . . . , 2d)(2d+1, . . . , 4d) and y1 = 1. Further, assume that y2d+1 is the
smallest number in the second cycle of the permutation y. Then, there exists a permutation
y′ such that O = (x, y′) and y′ has a cycle representation such that the following holds

• each of the two 2d-cycles of y is alternating with respect to being ≤ 2d or > 2d,

• each of the two 2d-cycles of y is constant with respect to the parity.

Proof Since x = (1, 2, . . . , 2d)(2d+ 1, . . . , 4d), we obtain

X0
0 = {1 ≤ k ≤ 2d | k ≡2 1}, X1

0 = {1 ≤ k ≤ 2d | k ≡2 0},
X0

1 = {2d+ 1 ≤ k ≤ 4d | k ≡2 1}, X1
1 = {2d+ 1 ≤ k ≤ 4d | k ≡2 0}.

Using Lemma 6.2.5, we conclude that either

Y 0
0 = X0

0 , Y
1

0 = X1
1 , Y

0
1 = X1

0 , Y
1

1 = X0
1

or
Y 0

0 = X0
0 , Y

1
0 = X0

1 , Y
0

1 = X1
0 , Y

1
1 = X1

1 .

Recall that simultaneous conjugation of two permutations defining an origami does not
change the origami. Conjugating x with the permutation (2d+1, . . . , 4d) does not change
x because this permutation lies in the stabilizer of x. If each of the two 2d-cycles of y is
alternating with respect to the parity (as in the first case), then conjugating y with the
permutation (2d + 1, . . . , 4d) yields a permutation y′. This permutation consists of two
2d-cycles that are both constant with respect to the parity (as in the second case). This
proves the claim. �

Example 6.2.7 Observe that the permutations defining the “eierlegende Wollmilch-
sau” and the “Ornithorynque” in Example 6.1.3 and Example 6.1.4, respectively, satisfy
the properties given in Proposition 6.2.6.

Using Proposition 6.2.6, we obtain the following bound of the number of geminal origamis
of fixed degree.

Corollary 6.2.8 The number of geminal origamis of degree 4d is bounded above by

d! · ((d− 1)!)3.

Proof Proposition 6.2.6 implies that we may assume y1 = 1 and y2d+1 = 2. Thus, there
are (d− 1)! choices for the entries with odd index of the first cycle and second cycle of y,
respectively. Using that conjugating y with even powers of the permutation (2d+1, . . . , 4d)
does not change the origami and does preserve the properties given in Proposition 6.2.6,
one can choose y2 = 2d+ 1. We obtain (d− 1)! choices for the entries with even index of
the first cycle of y. Furthermore, one has d! choices for the entries with even index of the
second cycle of y. Thus, we obtain the claimed bound. �
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6.3. Normality implies cyclicality

Example 6.2.9 We consider the case d = 2. By Corollary 6.2.8, there exist at most two
geminal origamis of degree 8. The permutations describing the gluings of the two possible
origamis are (x, y) and (x, y′), where

x = (1, 2, 3, 4)(5, 6, 7, 8),
y = (1, 5, 3, 7)(2, 8, 4, 6),
y′ = (1, 5, 3, 7)(2, 6, 4, 8).

The origami defined by the permutations x and y is the “eierlegende Wollmilchsau” (see
Example 6.1.3).

In the following, we show that the origami O defined by the permutations x and y′ is not
a geminal origami. To see this, compute

y′x3 = (1, 5, 3, 7)(2, 6, 4, 8) · (4, 3, 2, 1)(8, 7, 6, 5)
= (1, 8)(2, 5)(3, 6)(4, 7).

Furthermore, define G := 〈x, y′〉 and observe that the two permutations y′x3 and x gen-
erate the group G. Hence, the group G has the pair of generators (y′x3, x) such that one
generator consists of 4 transpositions and not a (4, 4)-cycle. We conclude that the origami
O is not a geminal origami.

Remark 6.2.10 Let x and y be two permutations satisfying the conditions from Propo-
sition 6.2.6. If i or j is coprime to 2d, then permutations of the form xiyj have no fixed
points. However, Proposition 6.2.6 does not prevent that permutations of the form xiyj

consist of at least three cycles of length at least two each if i or j is coprime to 2d. To
introduce further conditions on x and y that prevent this behavior is work in progress.
Thereby, one could also improve the bound given in Corollary 6.2.8.

6.3. Normality implies cyclicality

In this section, we work toward answering the Question 6.1.7 and give the following partial
answer. We prove that if StabG(1) is a normal subgroup of µ(K) then the quotient
µ(K)/ StabG(1) is cyclic. For this, we use the notation introduced in Section 6.1 and
Section 6.2.

Theorem 6.3.1 If the stabilizer StabG(1) is a normal subgroup of µ(K), then the quotient
µ(K)/ StabG(1) is cyclic.

Proof Suppose that the stabilizer StabG(1) is a normal subgroup of µ(K). Recall that K
is the smallest normal subgroup of F2 containing a2, b2, and the commutator [a, b]. Thus,
the group µ(K) is the smallest normal subgroup of G containing x2, y2, and [x, y]. Here,
we use the fact that the image of µ equals G. To show that µ(K)/ StabG(1) is cyclic, we
construct a set M of elements in the stabilizer StabG(1) such that the quotient µ(K)/N
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Chapter 6. Geminal origamis

is cyclic. Here, N denotes the smallest normal subgroup of µ(K) that contains M . Then
it follows that µ(K)/ StabG(1) is cyclic as well.

By Proposition 6.2.6, m := y2(1) ≤ 2d is odd. We obtain the permutation x1−my2,
which is contained in the stabilizer StabG(1). Similarly, m′ := y−2(1) ≤ 2d is odd by
Proposition 6.2.6. Therefore, the permutation y2xm

′−1 lies in the stabilizer StabG(1).
Consider the permutation yxy−1. For 1 ≤ i ≤ 4d, we claim that both i and yxy−1(i) lie
in the same cycle of the permutation x and are of different parity. To see this, observe
that for all i the numbers y−1(i) and y(i) both lie in the cycle of x in which the number
i is not contained. However, the numbers x(i) and i lie in the same cycle of x for all i.
Further, note that applying y to i preserves the parity for each i with 1 ≤ i ≤ 4d. Hence,
n := yxy−1(1) is even and satisfies n ≤ 2d. Therefore, x1−nyxy−1 lies in the stabilizer
StabG(1).

We conclude that the permutations x1−my2, y2xm
′−1, and x1−nyxy−1 lie in the stabilizer

StabG(1) for some m,m′, and n. This means, each element in µ(K)/ StabG(1) can be
written as xiyk with i ∈ Z and k ∈ {0, 1}.

Finally, we show that each element g in µ(K) is of even total degree in y, i.e., by consid-
ering g as a word in x and y and by adding all the exponents occurring for y, one obtains
an even number. Recall that µ(K) is the normal closure of 〈S〉 with S = {x2, y2, [x, y]}.
Hence, we have

µ(K) = 〈g−1sg | g ∈ G, s ∈ S〉.

However, conjugating an element s ∈ S with some g ∈ G does not change its total degree
in y. All elements in S have even total degree in y. Consequently, we have a generating set
of µ(K) that consists of elements with even total degree in y. It follows that all elements
in µ(K) can be written as words in this generating set and all these words have even total
degree in y. The elements x1−my2, y2xm

′−1, and x1−nyxy−1 lie in the stabilizer and have
even total degree in y. This implies that we can write each element in µ(K)/ StabG(1) as
xi for some i. In particular, we obtain that µ(K)/ StabG(1) is cyclic. �

Remark 6.3.2 If a geminal origami O is a normal origami, the stabilizer StabG(1) is
trivial and thus a normal subgroup of µ(K) (see Remark 6.1.9). Furthermore, we obtain
the equality µ(K) = µ(K)/ StabG(1). By Theorem 6.3.1, the group µ(K) is cyclic.

Remark 6.3.3 Let O be a geminal origami O such that µ(K) is an abelian group. Then,
the stabilizer StabG(1) is a normal subgroup of µ(K). By Theorem 6.3.1, the quotient
µ(K)/ StabG(1) is cyclic.
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Open problems

During the work on this thesis several questions arose, which remain open for further
research. A first interesting problem involves quasi-regular origamis studied in [MYZ14].
These translation surfaces generalize normal origamis, which are also called regular ori-
gamis. Matheus, Yoccoz, and Zmiaikou used methods from representation theory to
investigate the relation between the automorphism group of a quasi-regular origami and
the Lyapunov exponents of the Kontsevich-Zorich cocycle defined by the origami. A
natural approach would consider quasi-regular origamis instead of regular ones and apply
methods used in this thesis to study this more general class of origamis. Below, we discuss
the remaining questions following the structure of this thesis.

Strata of p-origamis
We begin with questions regarding the strata of normal origamis.

p-origamis with isomorphic deck transformation groups

Recall that the deck transformation group G of a normal origami determines its stratum
if and only if the deck transformation group G has property (C), i.e., if and only if there
exists a natural number n such that for each 2-generating set {x, y} of G the order of
[x, y] equals n (see Definition 3.1.12). In Section 3.2.2, we studied which p-groups have
property (C). For large classes of p-groups, for instance, groups of maximal class and
groups whose commutator subgroups are powerful or weakly order-closed, we showed
that they fulfill property (C) (see Theorem 3.1.29). Moreover, we constructed a p-group
whose commutator subgroup is weakly power-closed that does not have property (C)
(see Corollary 3.1.27). It would be interesting to study the following question, where we
consider not only p-groups, but arbitrary finite groups.

Problem 7.1 Which finite groups have property (C)?

In Proposition 4.1.4, we computed all normal origamis with dihedral groups as deck
transformation group. When considering these origamis, we realize that all dihedral
groups satisfy property (C), whereas alternating groups Alt(n) do not satisfy prop-
erty (C) for n ≥ 5 odd (see Example 3.2.10). Furthermore, symmetric groups Sym(n)
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do not satisfy property (C) for n ≥ 5. To see this, consider the normal origamis
O1 = ((1, 2), (1, 2, . . . , n), Sym(n)) and O2 = ((2, 2 + p), (1, 2, . . . , n), Sym(n)). Here, p
denotes a prime number which is smaller then n− 1 and coprime to n. We compute the
commutators

[(1, 2), (1, 2, . . . , n)] = (1, n, 2),
[(2, 2 + p), (1, 2, . . . , n)] = (1, 1 + p)(2, 2 + p).

Hence, the origamis O1 and O2 lie in the stratum H(n!
3 ×2) and H(n!

2 ×1). Consequently,
the symmetric group does not satisfy property (C).

In the following, we discuss the situation for small groups of order up to 250. Kremer
computed in his dissertation that the SL(2,Z)-action on the set of normal origamis O(G)
is transitive for most such groups G (see [Kre09, Appendix A.4]). He listed the 30 groups
for which this is not the case. The SL(2,Z)-action leaves the stratum invariant and thus
all normal origamis in the same SL(2,Z)-orbit lie in the same stratum. From the 30
groups with a intransitive SL(2,Z)-action, 18 groups admit normal origamis that lie in
different strata. We see that almost all of these groups of small order satisfy property (C).
A natural approach would examine groups of larger order.

Infinite normal origamis

In Section 3.3, we considered infinite normal origamis and generalized the concept prop-
erty (C) to these surfaces. Again, a deck transformation group G of an infinite normal
origami has property (Cpro) if and only if the deck transformation group G determines the
order of all singularities of the origami. Due to the correspondence between infinite fam-
ilies of finite normal origamis and infinite normal origamis described in Remark 3.3.7, we
studied infinite normal origamis with dense subgroups of profinite groups as deck trans-
formation groups. We were especially interested in pro-p groups, i.e., profinite groups
that are the inverse limit of an inverse system consisting of p-groups. In this case, we
were able to generalize results from Section 3.1.2 (see Proposition 3.3.8). As in the finite
case, the following problem is compelling:

Problem 7.2 Characterize which profinite groups have property (Cpro).

Moreover, we are interested in constructing further intriguing infinite families of normal
origamis that contain surfaces which have been studied in literature. We would like to
use the setting described in Remark 3.3.7 to deduce new results for such surfaces.

Veech groups of normal origamis
We next discuss some open questions regarding the study of Veech groups of normal
origamis. In Section 4.1, we studied 2-origamis and their Veech groups for certain families
of deck transformation groups. The considered groups were either semidirect groups
or extensions of the quaternion group. In a next step, more general families of deck
transformation groups should be considered. For example, it would be interesting to
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consider p-groups for odd primes p and 2-groups with a more complex group structure.
A next goal could be the study of normal origamis whose deck transformation group is a
semidirect product of two cyclic groups as well as the study of the corresponding Veech
groups. This could give further insights regarding the following question:
Problem 7.3 Which finite index subgroups of SL(2,Z) occur as Veech groups of normal
origamis?

Several results in Chapter 4 (see, e.g., Corollary 4.1.3 and Theorem 4.2.9) show that
certain properties of the deck transformation group of a (finite) normal origami imply
properties of its Veech group. This raises the question whether a similar behavior occurs
in the case of infinite normal origamis.
Problem 7.4 Which properties of the Veech group of an infinite normal origami are
influenced by certain properties of its deck transformation group?

Two remaining questions regarding infinite normal origamis concern the construction of
infinite normal origamis using inverse systems and profinite groups (see Remark 3.3.7).
Problem 7.5 (Geometry) Are there infinite normal origamis constructed as in Re-
mark 3.3.7 such that the corresponding deck transformation groups are not isomorphic
and the closures of the deck transformation groups are isomorphic?

The equivalent question using group theory is the following:
Problem 7.5 (Group theory) Are there compatible generating sets (xi, yi) and (ai, bi)
of finite groups Gi and Hi defining inverse systems (Gi)i and (Hi)i, respectively, with
the following property? The inverse limits lim←− Gi and lim←− Hi are isomorphic and the
corresponding elements x, y, a, b in the inverse limits define dense subgroups 〈x, y〉 and
〈a, b〉 which are not isomorphic?

Several families of groups studied in Section 4.1.1 form inverse systems of groups and
were considered in examples in Section 3.3 as well (see, e.g., Example 3.3.11). We observe
that finite normal origamis whose deck transformation groups belong to the same family
share several properties. For instance, see Proposition 4.1.20 and Proposition 4.1.22 for
the family Wm. This raises the following question:
Problem 7.6 Is the Veech group of an infinite normal origami constructed as in Re-
mark 3.3.7 related to the Veech groups of the corresponding finite normal origamis?

Application to sums of Lyapunov exponents

In Section 4.1.2, we computed the sum of non-negative Lyapunov exponents for infinite
families of normal origamis. The sums of non-negative Lyapunov exponents were integers
for the considered surfaces. However, we gave an example for a normal origami such that
the sum of non-negative Lyapunov exponents is not an integer. We ask the following
question:
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Problem 7.7 When is the sum of non-negative Lyapunov exponents of a normal origami
an integer?

Instead of the sum of non-negative Lyapunov exponents, it would be interesting to com-
pute individual Lyapunov exponents for the considered surfaces. The individual Lyapunov
exponents capture the dynamics of the Teichmüller flow (see Section 4.1.2). In Table 7.1,
the second largest Lyapunov exponent λ2 of the normal origami in (G2

(n,k), r, s) is listed for
several values of n and k. The software package [DFL] was used for these computations.

n k 2k−1
2k Lyapunov exponent λ2 of the origami (G2

(n,k), r, s)

3 1 0.5 0.5

4 1 0.5 0.5

5 1 0.5 0.5

6 1 0.5 0.5

7 1 0.5 0.5

4 2 0.75 0.75

5 2 0.75 0.75

6 2 0.75 0.75

7 2 0.75 0.75

5 3 0.875 0.875

6 3 0.875 0.875

7 3 0.875 0.875

6 4 0.9375 0.938

Table 7.1.: The second largest Lyapunov exponent λ2 of the normal origami in (G2
(n,k), r, s)

was computed for several values of n and k using the software package [DFL]. The values are
rounded.

The values in Table 7.1 suggest that the Lyapunov exponent λ2 of the normal origami
(G2

(n,k), r, s) does only depend on k. They support the conjecture that the Lyapunov
exponent of the origami (G2

(n,k), r, s) equals 2k−1
2k for n ≥ k + 2. This example motivates

the following problem.
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Problem 7.8 Compute and analyze the Lyapunov exponents of normal origamis whose
deck transformation groups lie in certain families of groups. Under which circumstances
are the Lyapunov exponents in such infinite families of normal origamis related?

Again, it would be interesting to consider the case where the deck transformation groups
form an inverse system.
Problem 7.9 Are the Lyapunov exponents of an infinite normal origami constructed as
in Remark 3.3.7 related to the Lyapunov exponents of the corresponding finite normal
origamis?

Normal origamis with totally non-congruence groups as Veech
groups

In Section 4.2, we introduced properties of the deck transformation group of a normal ori-
gami implying that the Veech group is a totally non-congruence group. This was motivated
by the normal origamis studied in Section 4.1.1 whose Veech groups were all congruence
subgroups. The main results of Section 4.2 (Proposition 4.2.4 and Theorem 4.2.9) are not
applicable to p-groups because all elements of a p-group have order pm for some m. This
raises the following questions:
Problem 7.10 Are there p-origamis with totally non-congruence groups that are not equal
to SL(2,Z) as Veech groups? Which properties of a p-group imply this behavior?

More generally, we would like to understand the interaction between the properties of the
deck transformation group of normal origamis and the properties of their Veech groups.
We would be especially interested in the deficiency of Veech groups, a concept introduced
in [Wei13] for measuring how far a finite index subgroup of SL(2,Z) is from being a
congruence group. More precisely, the deficiency of a finite index subgroup Γ of SL(2,Z)
is defined as follows (see [Wei13, Section 3] for further details). For each natural number
m, we consider the natural projections πm : SL(2,Z) → SL(2,Z/mZ) and the exact
sequences defining the following commutative diagram

1 // Γ(m) � � // SL(2,Z) πm // SL(2,Z/mZ) // 1

1 // Γ ∩ Γ(m) � � //
?�

OO

Γ πm //
?�

OO

πm(Γ)
?�

OO

// 1.

Recall that the principal congruence group Γ(m) is the kernel of the projection πm.
Define

fm := [Γ(m) : Γ ∩ Γ(m)],
d := [SL(2,Z) : Γ],
em := [SL(2Z/mZ) : πm(Γ)].
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Observe that the indices obey the equation d = em · fm as the above diagram commutes.
The deficiency of Γ is defined as the minimal fm for m ∈ Z+. Note that the group Γ is a
congruence subgroup if and only if fm = 1 and em = d. Further, the group Γ is a totally
non-congruence group if and only if fm = d and em = 1. In Chapter 4, we studied these
two cases. An interesting question for further research is the general case.

Problem 7.11 Which properties of the deck transformation group are related to the de-
ficiency of Veech groups of normal origamis?

T2-systems and normal origamis
Next, we discuss some questions concerning the study of T2-systems which is related to
the study of SL(2,Z)-orbits on the set of normal origamis with fixed deck transformation
group. In Lemma 5.1.3, we saw that the number of SL(2,Z)-orbits lies between n and
2n, where n equals the number of T2-systems. In Example 5.1.8, we gave examples where
T2-systems split into two SL(2,Z)-orbits as well as examples where T2-systems induce
only one SL(2,Z)-orbit. This raises two obvious questions.

Problem 7.12 For which groups G coincide the number of T2-systems and the number
of SL(2,Z)-orbits on O(G)? When is the number of SL(2,Z)-orbits twice the number of
T2-systems?

Another question is related to Example 5.2.7 where we defined a group of order 212 which
has at least two T2-systems.

Problem 7.13 Which is the minimal exponent m such that there exists a group of order
2m with at least two T2-systems?

Finally, we pose a question which is related to infinite normal origamis. One can consider
profinite groups instead of finite ones in the definition of T2-systems. In this case, one
considers topological generating sets instead of generating sets in the sense of classical
group theory. Moreover, one considers the free profinite group on two generators F̂2
instead of the free group F2.

Lubotzky showed that each profinite group has only one T2-system. This is a consequence
of the following theorem (see [Lub01, Proposition 2.2]).

Theorem 7.14 Let Ĝ be a (topologically) 2-generated profinite group with 2-generating
sets {x1, y1} and {x2, y2}. Consider the two corresponding epimorphisms π1 and π2 from
the free profinite group F̂2 on two generators to Ĝ. Then there exists an automorphism α
of F̂2 such that π1 ◦ α = π2.

Since we consider the free profinite group here, we cannot simply proceed as in the finite
case to deduce a connection between the number of T2-systems and the number of SL(2,Z)-
orbits. We ask the question.
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Problem 7.15 Does Theorem 7.14 imply a bound on the number of SL(2,Z)-orbits of
infinite origamis whose deck transformation groups are dense subgroups of a profinite
group?

Geminal origamis
We showed in Chapter 6 that if a geminal origami induces a normal cover of the (2× 2)-
torus T[2] then this cover is cyclic. The question whether each geminal origami induces
such a normal cover remains open for further research. Another interesting project is
the classification of geminal surfaces. For this purpose, one could continue to study the
properties of two permutations defining a geminal surface using group theory.

Overall, this thesis demonstrates that the interaction between the geometric properties
of normal origamis and the properties of the corresponding deck transformation groups
yields a powerful tool for studying normal origamis. Moreover, this thesis provides a basis
for further research on various interesting problems regarding normal origamis.
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Appendix A.

GAP code

All of the following is GAP4 code (see [GAP19]).

Listing A.1: For natural numbers n, k with 1 ≤ k ≤ n− 2, the following code defines the group
G2

(n,k) as well as the corresponding 2-generating set constructed in Proposition 3.1.4. A very
similar code can be used to define the groups Gp(n,k) and their generating sets as discussed in

Proposition 3.1.8

G2 := function(n,k)
local C1, C2, alpha, phi, G, x, y;
C1 := CyclicGroup(2^(k+1)); C2 := CyclicGroup(2^(n-k-1));
alpha := GroupHomomorphismByImages(C1, C1, [C1.1], [(C1.1)^(-1)]);
phi := GroupHomomorphismByImages(C2, AutomorphismGroup(C1), [C2.1],

[alpha]);
G := SemidirectProduct(C2, phi,C1);
x := Image(Embedding(G,2), C1.1); y := Image(Embedding(G,1), C2.1);
return [G, x, y];

end;

Listing A.2: Variations of the following code were used to find p-groups which do not have
property (C).

p := 3; n := 4;
g := SylowSubgroup(SymmetricGroup(p^n), p);

repeat x := Random(g); y := Random(g);
until Order(Comm(x, y)) <> Order(Comm(x, y^2));
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Listing A.3: The following code defines a function to test whether a given p-group is weakly
power-closed (i.e., products of pk-th powers are pk-th powers for any k ≥ 0), and uses it to find
a 2-generated subgroup G of the 2-Sylow subgroup of the symmetric group S24 with generators

x, y such that ord([x, y]) 6= ord([x, y3]) and G′ is weakly power-closed.

IsWeaklyPowerClosedPGroup := function(g)
local powers, el;
if IsTrivial(g) then return true; fi;
powers := g;
repeat

powers := Set(powers, x -> x^PrimePGroup(g));
if Size(Group(powers)) > Size(powers) then return false; fi;

until IsTrivial(powers);
return true;

end;

p := 2; n := 4;
gg := SylowSubgroup(SymmetricGroup(p^n), p);;
repeat x := Random(gg); y := Random(gg);

g := Group(x, y); d := DerivedSubgroup(g);
until Order(Comm(x, y)) <> Order(Comm(x, y^(p+1)))

and IsWeaklyPowerClosedPGroup(d);
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