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Zusammenfassung

Mobile Geräte und mobile Plattformen sind omnipräsent. Android hat sich zum
bedeutendsten mobilen Betriebssystem entwickelt und bietet Milliarden Benutzer:innen
eine Plattform mit Millionen von Apps. Diese bieten zunehmend Lösungen für alltägliche
Probleme und sind aus dem Alltag nicht mehr wegzudenken.
Mobile Apps arbeiten dazu mehr und mehr mit persönlichen sensiblen Daten, sodass
ihr Datenverkehr ein attraktives Angriffsziel für Man-in-the-Middle-attacks (MitMAs)
ist. Schutz gegen solche Angriffe bieten Protokolle wie Transport Layer Security (TLS)
und Hypertext Transfer Protocol Secure (HTTPS), deren fehlerhafter Einsatz jedoch
zu ebenso gravierenden Unsicherheiten führen kann. Zahlreiche Ereignisse und frühere
Forschungsergebnisse haben diesbezüglich Schwachstellen in Android Apps gezeigt.
Diese Arbeit präsentiert eine Reihe von Forschungsbeiträgen, die sich mit der Sicher-
heit von Android befassen. Der Hauptfokus liegt dabei auf der Netzwerksicherheit
von Android Apps. Hierbei untersucht diese Arbeit verschiedene Möglichkeiten zur
Verbesserung der Netzwerksicherheit und deren Erfolg, wobei sie die Situation in Android
auch mit der generellen Evolution von Netzwerksicherheit in Kontext setzt. Darüber
hinaus schließt diese Arbeit mit einer Erhebung der aktuellen Situation und zeigt
Möglichkeiten zur weiteren Verbesserung auf.
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Abstract

Smart devices and mobile platforms are omnipresent. Android OS has evolved to become
the most dominating mobile operating system on the market with billions of devices
and a platform with millions of apps. Apps increasingly offer solutions to everyday
problems and have become an indispensable part of people’s daily life.
Due to this, mobile apps carry and handle more and more personal and privacy-sensitive
data which also involves communication with backend or third party services. Due
to this, their network traffic is an attractive target for Man-in-the-Middle-attacks
(MitMAs). Protection against such attacks is provided by protocols such as Transport
Layer Security (TLS) and Hypertext Transfer Protocol Secure (HTTPS). Incorrect use
of these, however, can impose similar vulnerabilities lead to equally serious security
issues. Numerous incidents and research efforts have featured such vulnerabilities in
Android apps in this regard.
This thesis presents a line of research addressing security on Android with a main focus
on the network security of Android apps. This work covers various approaches for
improving network security on Android and investigates their efficacy as well as it puts
findings in context with the general evolution of network security in a larger perspective.
Finally, this work concludes with a survey of the current state of network security in
Android apps and envisions directions for further improvement.
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Background of this Dissertation

This dissertation is based on the papers mentioned in the following. I contributed to all
papers as one of the main authors.
The idea for the first work is inspired by the findings of Fahl et al. [114, 115] on parts
of the author’s master thesis together with findings on the limits of the browser-based
security mechanism and the Public Key Infrastructure (PKI). The author conducted
the analysis and toolchain implementation for the work. The analysis toolchain extends
Sascha Fahl’s initial implementation of MalloDroid [205] based on Androguard [22]. The
author and Sascha Fahl discussed the results and Sascha Fahl motivated the analysis
of telemetry data provided by Zoner [312] which was then conducted by the author.
Yasemin Acar and Sascha Fahl contributed in conducting the developer study and
writing the paper.
The idea for the work on application generators originates from Sascha Fahl’s initial
proposal in 2015 that application that are automatically generated instead of being
developed from scratch every time could have a positive amplification effect on ecosystem
security. In an early stage of this work, Yasemin Acar, Karoline Busse, Sascha Fahl
and Christian Stransky contributed in the initial collection of application generators.
Together with Sascha Fahl and Christian Stransky the author developed and implemented
an initial version of a Play Crawler to create a local repository of Android apps for
enabling large scale analyses of the Android ecosystem. The further investigation,
analysis and extension of the set of generators was conducted by the author as well
as the feature collection and implementation of the classification. At the same time,
Sven Bugiel, Erik Derr and Giancarlo Pellegrino also worked on a security analysis of a
subset of Android application generators. Therefore, forces on this topic were pooled.
While the author conducted the classification and security analysis, the other authors
contributed in parts of the security analysis as well as the discussion and interpretation
of results including. Yasemin Acar, Michael Backes, Sven Bugiel, Erik Derr, Sascha
Fahl, Giancarlo Pellegrino, Christian Rossow and Christian Stransky contributed in
writing the paper.
Alongside the work on the topic of application generators in 2016, the author already
identified Network Security Configuration (NSC) as a relevant configuration option not
yet covered by prior work. The author implemented analysis tooling for detection and
analysis for usage of Network Security Configuration (NSC). A first iteration of this
analysis resulted in only identifying a very sparse adoption of this feature in only a few
dozens of Android apps. Later on, after finishing the previous topic, the author, again,
intensified efforts in the analysis of NSC usage. The author conducted implementation,
evaluation and analysis. The author discussed the findings with Sascha Fahl. Based on
past research on and evolution of Android and Transport Layer Security (TLS) this
discussion lead to the decision to extend this work with a focus on revisiting findings
of Fahl et al. [114] with state-of-the-art tools using CryptoGuard [243] as well as a
study on the efficacy of hardened Google Play policies aiming at relieving from the
dramatic state of TLS in Android apps. The corresponding analyses and evaluations
were conducted by the author. Apart from that, Yasemin Acar, Sabrina Amft, Sascha
Fahl and Nicolas Huaman contributed in writing the paper.
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For more than the last decade, the advent and evolution of smart devices has had
huge impact on everyday life of users. From traditional mobile communication and
telephony utilities, smart devices have evolved to become smart personal assistants that
provide an expendable platform and ecosystem, making them indispensable companions
for users’ everyday life, equipped with apps for any use case. The Android platform
introduced in 2007 is the most dominant platform with a market share of more than
87% [26]. All functionality of these devices is presented to the user through apps that
make use of devices’ rich capabilities that they expose to app developers via Application
Programming Interfaces (APIs) (cf. 2.2). Alongside traditional telephony services,
these include, for example, camera functionality for taking pictures or recording videos,
location services, sensor capabilities, mass storage and manifold connectivity capabilities
such as internet access, WiFi or Bluetooth. While, in the beginning, devices provided
storage for address book and Text Messages, nowadays, devices feature storage capacity
comparable to notebooks or desktop computers. This enables users to have all their
personal data such as documents, photos and videos at their fingertips. In addition,
next-generation mobile networks provide increasing bandwidth and shrinking latency
which allows devices to be always connected to internet servers making it user data
being in sync on all their devices. All this together with the rich set of APIs and device
capabilities entailing a great amount of autonomy for apps for any use case. These
conditions enabled mobile app platforms to emerge and grow. The increasing interest led
to a trend of so-called appification which is best described with the slogan "There’s an
app for that" coined and later trademarked by Apple, the creator of Android’s strongest
competitor [158].

In this appified world, which ranges from apps for connecting people to work together
collaboratively, connecting with friends and families in social networks, keeping track of
news, mobile banking, shopping, entertainment, note taking, controlling smart home
devices, or fitness and health tracking, up to even allowing to utilize devices’ sensor and
connectivity capability protect users themselves and others [279]. With so many tasks
and use cases shifting to the appified mobile world follows a massive increase in privacy-
sensitive data that is handled by apps. Furthermore, same as on the internet, privacy-
sensitive data in apps has been increasingly shared online since the increasing availability
and utilization of online shopping, online banking, or social networks. Therefore, network
traffic of apps has become a vivid target for eavesdropping or tampering of network
communication by attackers who manage to successfully mount Man-in-the-Middle-
attacks (MitMAs) (cf. 2.4.2). For protection against MitMAs on the internet, protocols
such as TLS and its predecessor Secure Sockets Layer (SSL) 1 for establishing encrypted
network connections (cf. 2.4). Although essential and unneglectable for modern internet
applications and mobile apps, handling sensitive data, building, maintaining, deploying,
and operating secure systems employing TLS can be highly demanding and many-
faceted topic. Transport Layer Security or topics related have therefore been hotly
debated in the research community up to popular media. Over more than the last two
decades, there have been numerous security incidents and insecurities with respect to
TLS. Root causes are manifold and, among other things, organizational failures such

1We use SSL and its successor TLS as synonyms in this work.
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CHAPTER 1. INTRODUCTION

as mischievous Certificate Authorities (CAs) (cf. Section 2.4.2.2), crypto-algorithmic
insecurities, or flawed server configurations. Another crucial cornerstone lies in the
client-side implementation of certificate validation logic (cf. 2.4.1). Here, the Android
platform forms no exception.

In 2012, Fahl et al. [114] and Georgiev et al. [126] were the first to deal with widespread
erroneous TLS implementations overriding default certificate validation logic in non-
browser software (cf. Section 2.5). Since then, a large body of research on insecurities
pertaining to custom TLS in Android apps has evolved [114, 126, 115, 94, 274, 65,
263, 229, 313, 160, 19, P1, 74, 298, 226, 224, 85, 122, 244, 69, P2, 15, 181, 243, 295,
299, 187, 52, 239, P3]. Here we can find efforts that analyze the state of custom TLS
implementations and risks imposed in apps [114, 115, 126, 263, 229, 313, 160, 85, 122,
244, 69, P2, 15, 181, 243, 295, 299, 187, 52, 239, P3] as well as we also find efforts
that propose enhancements in regard to the contemporary state of custom TLS and
network security on Android [115, 94, 274, 65, 19, P1, 74, 298, 226, 224]. The goal
of this dissertation is to contribute to this line of research. It will extend the state of
research on TLS in the Android ecosystem in multiple dimensions.

Commonly, the dramatic state of TLS on Android has been attributed to developers
being overwhelmed with security settings, complex APIs, lack of training, comprehensive
documentation, limited tool support, and safe defaults. To each of these, there have been
manifold proposals to improve security in prior works (cf. 3.1.2). In contrast, as the main
focus of this dissertation, we measure the effect, applicability, and efficacy of postulated
and deployed measures in regard to improving app security in terms of enhancing TLS.
These include adoption of Hypertext Transfer Protocol Secure (HTTPS), custom TLS
as well as the employment and implementation of pinning. We consider proposals on
different levels and with different actors (Developers [P1, P3], Third Parties [P2], and
the Android Platform [P3]) as follows:

• Developers Means that individual developers can utilize to enhance network
security to limit the attack surface for MitMAs and guard against erroneous
implementations [P1, P3].

• Third Parties Shift away the duty for secure app development from individual
developers and entrusting third party generators to produce secure apps and
facilitating enhance network security [P2].

• Platform Introducing safe defaults and safeguards for enforcing an effortless
baseline state-of-the-art security level instead of requiring developers to do on
their own [P3].

Developers. First, we explore the capabilities of individual developers to upgrade
network security in their apps. For this, we present a large-scale analysis on the
applicability of pinning. In that, we fill the gap of a missing scrutinization of pinning as
a panacea for the permissive default trust model in Android apps. The default TLS
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implementation in Android apps is adopted from web-browsers and trusts a huge list of
CAs which has been subject to criticism as it makes apps suspicious for the weakest
link property of the Public Key Infrastructure (PKI) (cf. 2.4.2, 2.4.2.2 and 2.5) [289,
234]. Pinning has often been intuitively proposed as a panacea for this issue [31, 209,
231, 115]. However, there has not yet been a formalization and systematic evaluation
on the general applicability of pinning in prior research. Therefore, we will elaborate on
this gap. We will further investigate the trade-off between the security enhancement
of pinning and the effort required for maintenance. Pertaining to the applicability of
pinning, our systematization bases on ownership and exclusivity of origin and API calls.
Based on this formalization, we conduct a large-scale analysis that extracts relevant
information from Android apps using static code analysis in order to derive whether
pinning is applicable or not. In addition, to assess the effort required for maintenance,
we investigate the update behaviour of Android apps. For this, we analyze an extensive
set featuring telemetry data collected from real users’ devices in order to calculate the
propagation time needed to maintain embedded certification data used for pinning.
Regarding the power of individual developers, our large-scale results will give important
insights in hindsight to their theoretic ability to deploy pinning as a measure for increase
network security. In addition, based on our formalization, we propose an interactive
tool that assists developers in the decision process and implementation of pinning.
Prior works [114, 126] already thoroughly investigated the disastrous state of custom
TLS implementations and proposed measures to keep app developers from having to
implement their own possibly erroneous solutions [115, 274]. These, however, require
modification of the Android framework and do not support developers in the decision
in regards to whether pinning is applicable.

Third Parties. Second, we investigate third parties and their power for having a
positive impact on network and app security in the Android ecosystem. We present
the first comprehensive classification and security analysis of commonly used Online
Application Generators (OAGs) for Android. We show how to fingerprint uniquely
generated apps to link them back to their generator and thereby quantify the market
penetration of these OAGs in a large-scale analysis. A large record of prior research
has repeatedly uncovered security flaws in Android apps [107, 106, 82, 108, 238, 224].
These are commonly attributed to developers who are often untrained and no security
experts [10, 156, 11]. In this work, we will therefore focus on new development models
where control and decision making for security related aspects is externalized to third
parties. Media already dealt with the emergence of a new trend towards app generators
for so-called citizen developers [125, 164, 123]. This denotes tools that allow the creation
of apps with little or no programming expertise. With an increasing pervasiveness of
such tools, we hypothesize the duty of software quality assurance to shift away from
developers to generators. From this, we derive the assumption for an amplification effect
in regard to ecosystem security. Depending on whether these app generators produce
secure or insecure apps, we hypothesize app generators can have a huge impact on the
security of the ecosystem as vulnerabilities in one generator would, by design, affect
all apps of that generator. Thus, in the positive case, this can be seen as a chance
to increase overall security of the ecosystem. Prior research, however, already hints
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at insecure TLS implementations in apps built using a generator framework for web
developers [115]. Hence, with respect to a lack of systematic research on this topic, it
is crucial to assess the security impact for this class of apps and assess their impact.
Our work aims at closing this gap. In our work, we will focus on Online Application
Generators (OAGs) that allow for complete creation of Android apps without the need
for any programming expertise, which means that the complete responsibility and
control is given to the generator. After assessing their market penetration, we present a
sophisticated in-depth security analysis of apps generated with the most widely used
OAGs. Following a systematization of architectural principles of OAG services and apps
generated by these, we conduct a security a security analysis focusing on state-of-the-art
best practises on Android including TLS development (cf. 3.5). Even more, with a
distinction on network security, we analyze new classes of attacks that are abetted by
the architectural design of apps created by generators and their use of networking APIs.
As for the amplification effect, due to the unique position of OAGs, based on the results
from our analyses, we will theorize on and investigate their opportunity for a large-scale
positive effect on security, especially pertaining to network security.

Platform. Third, in the light of the first discovery on the epidemic pervasiveness of
insecure TLS implementations in Android apps [114, 126], we revisit this topic and
pursue the evolution of TLS on the Android platform since then. To address the problems
of insecure TLS, Google adopted proposals on countermeasures from seminal research
for ongoing development of Android [114, 115, 126, 274]. We present a comprehensive
in-depth effort to assess the efficacy of these measures. This includes the introduction
of Network Security Configuration (NSC) as a configuration approach for custom TLS
such as pinning without the need for custom TLS implementation similar to proposals
from prior research [115, 274]. This also includes a mechanism to enforce HTTPS by
configuration analogous to as postulated before [114]. Further countermeasures were, in
contrast, introduced at the ecosystem-level in the form of new safe defaults for apps
and encompassing new security policies and safeguards for blocking apps with malicious
TLS implementations. To this end, we present three studies. In a large-scale analysis,
we assess the adoption of NSC in Android apps over time and assess the corresponding
impact on network security. We consider safeguards introduced by Google to block
apps with vulnerable TLS implementations and measure their efficacy by conducting an
in-depth penetration testing study. We replicate a 2012 study by Fahl et al. [114] with
state-of-the-art techniques [243] to assess the current state of TLS implementations in
Android.

For each of these perspectives and stakeholders, we will investigate their capabilities
in regard to have a positive impact on network security in Android apps. While our
work largely focuses on network security on the Android platform, we will also deal
with topics pertaining to the evolution of TLS and HTTPS in general and browser
software in particular (cf. 2.4) as the developments in these fields thereby also have
substantial impact on the facilities for enhanced network security on Android apart
from previously discussed stakeholders regarding app development. To this end, for each
discussed perspective in this dissertation, we will align our results also to the evolution
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of the TLS ecosystem and the browser landscape (cf. 2.4).

Outline of this thesis The remainder of this work is structured as follows. Chapter 2
will introduce the necessary concepts and provide background information on Android
and TLS followed by a survey of related work in Chapter 3. In Chapter 4, we study
the applicability of certificate pinning. In Chapter 5, we feature an analysis of the
amplification effect of Online Application Generators (OAGs). We deal with the
evolution of custom TLS on Android in Chapter 6 with an emphasis on introduced
security measures and facilities for hardening network security and guarding against
erroneous custom TLS implementations at a platform level. With Chapter 7, we conclude
the findings of our work and envision future research directions.
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2.1. INTRODUCTION

2.1 Introduction

This chapter introduces general background information relevant to the topics throughout
this thesis. First, we will give a brief introduction to Android and its appified mobile
platform (cf. 2.2). This will give a brief overview of Android’s architecture and character
as app platform, as well as it will describe to what extent this will be relevant for this
thesis. We will also briefly describe the architecture of our app crawler that was used
for analyses throughout this thesis (cf. 2.3). Finally, we will also give a short overview
of TLS in general and TLS on Android in particular regarding aspects that are relevant
in this work (cf. 2.4).

2.2 Android Platform

Android is an open source operating system for mobile and smart devices. First
introduced in November 2007, it is mainly developed by Google and the Open Hand-
held Alliance, a consortium of mobile platform stakeholders such as mobile operators,
handheld manufacturers or software companies. [230]

2.2.1 Architecture

The Android operating system consists of multiple layers. In the following, we give a
brief overview. For more thorough and extensive insights, we refer to further resources
in the Android documentation (cf. [236]).

2.2.1.1 Linux Kernel and Hardware Abstraction Layer

On the lowest level, Android vases on a modified Linux Kernel. From a security
perspective, the Linux Kernel helps to realize several key requirements including access
control, process isolation or Inter-process communication (IPC).

On top of that, a hardware abstraction layer (HAL) exposes hardware functionality
such as Camera, Bluetooth, network access or telephony to upper layers. These are
provided and exposed as native libraries.

2.2.1.2 Android Runtime and API

A key component of the Android operating system is the Android Runtime. The Android
Runtime provides a managed runtime environment for Android apps that are compiled
to Dalvik EXecutable (DEX) code. For Android apps, the Android Runtime exposes
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a rich set of Java APIs to build upon. These APIs bring functionality for core app
components such as Activities, Services, Content Providers or Receivers and the View
System. Apart from these, the Android Runtime exposes a manifold set of other APIs
for Android apps including e.g. internet access.

2.2.1.3 System Apps

At the top level, there are Android apps that run inside the Android Runtime. They
contain all visible artifacts and expose all kinds of device functionality to device users.
The Android system is equipped with a set of system apps featuring core functionality
such as Short Message Service (SMS) messaging, calendar, contacts or web browsing.

2.2.2 Mobile Ecosystems and Appified Platforms

The previously described base system can be arbitrarily modified and extended. Device
manufacturers can selectively pre-install apps and system services on devices. It is
even possible for third party apps to replace system apps if not prohibited by device
manufacturers. These apps can operate on the same APIs and are executed in the same
manner on the Android Runtime as previously described for system apps. To this end,
device manufacturers can choose to include selected apps and services as mandatory
platform components.

2.2.3 Google Play as a Mobile Ecosystem

Most prominently here are the Google Mobile Services (GMS). These provide a set of
apps to be pre-installed on devices including Google Play and Google Chrome. This
makes devices take part in Google’s mobile ecosystem for Android. Android apps can
use additional libraries and platform services e.g. for messaging. Users can install third
party apps from the app store Google Play.

While there are different platforms and app stores, in this thesis we focus on Google
Play. It is the most prominent and widely deployed mobile platform for Android devices,
with a market share of 87% [26]. A majority of prior research efforts on Android
apps has focused on Google Play. Especially the coverage of vulnerable custom TLS
implementations in Android apps has first been uncovered for popular apps on Google
Play [114, 126].

Our work will extend this line of research. In this work, we will therefore focus on Google
Play. All functionality of these devices is presented This also allows us to shed light on
state of network security in Android from different perspectives and at different times.
This will include support for individual developers as well as impact of automation and
standardization on ecosystem security in regards to application generators. Finally, we
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will also elaborate on the impact of the platform itself. Here, we will investigate security
measures, and evolution in tools and safeguards to measure their efficacy in regard to
how these help to address the present state and problems uncovered by research in
Chapter 6.

2.3 An Android Application Crawler

To conduct our analyses for Chapter 5 and Chapter 6, we implemented a crawler effort for
downloading large amounts of Android apps and their contemporary versions. The web
crawler component of our approach for discovering new apps on Google Play similarly
as described by Carbunar et al. [76]. Our work on implementing the crawler started
in 2015. This is before the advent of AndroZoo [17] in 2016. In contrast to AndroZoo,
our crawler’s main goal is not detection of malware and apps from various app stores.
Instead, our approach is limited to Google Play [148] and focuses on extracting metadata
pertaining to Android apps, their version histories and corresponding Android Package
(APK) files for further analysis. The crawler consists of four different components. A
web crawler for discovering new apps. A version checker for discovering new versions
of known apps. A details fetcher to fetch app details and version information. An
app downloader to download APKs for discovered versions. While the first component
is realized as a common web crawler in Python, the other components make use of
an unofficial implementation of the Google Play API [150]. All apps tracked by the
crawling facilities are regularly revisited to keep information up to date.

2.3.1 Web Crawler

The web crawler recursively traverses the Google Play website. It resembles Carbunar
et al.’s [76] approach and analyzes app description pages. From these, metadata such
as application name, category, version name, author, last update, rating are extracted.
Android apps on Google Play can be uniquely identified by their package name that is
encoded in the app page’s Uniform Resource Locator (URL). Extracted information is
written to a database. To discover new apps, the crawler follows the links to related
apps embedded in app pages. The apps to crawl are hold in a job queue. Initially,
the crawler’s queue is seeded with a list of popular apps. From this seed, the Google
Play Store website has been subsequently crawled recursively. Whenever the crawler
encounters a new app, it is added to the job queue. In addition, the app is added to the
version checker’s queue.

2.3.2 Version Checker

The unofficial Play API [150] provides an endpoint for bulk requests for metadata.
Although, the response does not include the full metadata, it includes enough data
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to detect new versions for 1,000 apps at once. For detection of new versions, the
versionCode and date of last update is compared with the metadata already stored in
the database. If a new version is detected, the app is added to the details crawler’s job
queue. Apps are regularly revisited for detection of new versions.

2.3.3 Details Fetcher

The details fetcher loads current metadata using the unofficial Play API [150]. Fetched
details for new app versions are written to a database. Alongside, the tuple (app,
versionCode) is added to the app downloader’s job queue.

2.3.4 App Downloader

The app downloader component downloads APKs for apps based on their versionCode
and writes them to disks. Moreover, after having downloaded an APK it can be added
to further worker queues like e.g. for detection and analysis of NSC usage as needed for
analysis in Chapter 6.

2.3.5 Limitations

The Google Play crawler works on a best-effort basis. We cannot guarantee that we are
able to find all free Google Play applications. However, the behavior of our crawler is
in line with previous work [17]. We also limited our analysis to free apps and ignored
paid apps. Although we cannot generalize our findings to paid Android apps, this is
also in line with previous Android security research [107, 106, 82, 108, 115, 274, 94,
114, 122, S1]. We deployed the crawler at a university in Germany, which might limit
the amount of apps accessible due to geographic restrictions. Similarly, we might not
be able to download apps that were meanwhile removed from Google Play between
crawling metadata and download of APK files.

2.4 Transport Layer Security

For deployment of secure networking, TLS [101] is the most widely used protocol
for secure communication between client and server. It allows to establish secure
connections and provides authentication, confidentiality and integrity. For the first
property, to establish secure TLS connections, certificate validation is important in order
for communication partners to authenticate remote endpoints. Therefore, Android and
most other non-browser software adopted the in-browser certificate validation strategy,
i.e. applications trust a predefined set of root certificate authorities (root CAs) of trusted
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third parties (TTP) that implement a PKI. This makes it possible to establish trust
between unknown entities without prior knowledge. This is the common situation for
client software like browsers when connecting to arbitrary remote servers using HTTPS
employing TLS. Therefore, these TTPs are used to convey trust. When attempting to
establish a secure connection, the server provides the client with a certificate chain.

2.4.1 Default Certificate Validation

Certificate chain validation works as follows:

Chain of Trust. Based on the certificate chain sent by the server, the client tries to
build the chain of trust beginning at the server’s leaf certificate up to one of the root
CA certificates that are trusted by the client. Every certificate in the chain is checked
for validity – i.e. it is not expired and it is signed by its immediate successor in the
chain. The second last certificate in the chain must be signed by one of the root CAs
installed on the user’s device [68]; the last certificate in the chain belongs to the signing
root CA.

Hostname Verification. A certificate is bound to a certain identity – in this case
a particular hostname or a set of hostnames. During hostname verification, a client
verifies this identity by checking whether the hostname can be matched to one of the
identities (i.e. CommonName, SubjectAltName [248]) for which the certificate was
issued.

Further checks and connection negotiation. The complete certificate validation
process is more complex and includes further checks. In addition, after successful
authentication, later stages of the TLS handshake aim to negotiate cryptographic
properties to set up a secure communication channel providing confidentiality and
integrity. These parts, however, are out of scope of this dissertation. For more in-depth
information, we refer to [68] and related work (cf. 3.3).

2.4.2 Man-in-the-Middle-attacks

Adversaries stealing or manipulating sensitive information exchanged via network connec-
tions is a severe danger that TLS aims to protect against. In a Man-in-the-Middle-attack
(MitMA), the attacker is in a position to intercept network communication. A passive
MitMA can only eavesdrop on the communication, while an active MitMA can also
tamper with the communication. Correctly configured TLS together with proper certifi-
cate validation is fundamentally capable of preventing both passive and active attackers
from executing their attacks. There are multiple causes that can facilitate mounting of
MitMAs. In this work, we will on the following:
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Use of cleartext communication: The use of insecure protocols such as Hypertext
Transfer Protocol (HTTP) and absence of TLS does not provide any protection against
MitMAs. There is a long history pertaining to the adoption of HTTPS as a basic mean
for mitigation. Section 2.4.2.1 will give a brief overview.

Mis-issued or mis-used certificates: Certificates play a central role for authenti-
cation during connection establishment. Due to having to rely on TTPs certificates
issued by these trusted CAs to serve as proof of identity for a server to authenticate.
However, if a CA falsely issues a legitimate certificate to an illegitimate entity, this can
be used for mounting MitMAs. Breaches or cases of rogue CAs are a major problem.
Section 2.4.2.2 will give more insights on this.

Erroneous certificate validation logic: Misconfiguration of server software and
erroneous implementation of the certificate validation process in client software can
lead to severe vulnerabilities, making mounting of MitMAs even more feasible. This
is especially a problem in non-browser code such as Android apps. Here, developers’
erroneous custom TLS code can render apps vulnerable to MitMAs accepting arbitrary
certificates. We will further investigate this in Section 2.5 and throughout this thesis.

2.4.2.1 Adoption of HTTPS

Although already introduced in 1995, SSL was only sparsely used by website operators
in the context of banking and credit card companies. Here, we give a brief overview on
the history of TLS and HTTPS adoption in the browser landscape based on broader
overviews that we refer to for more details (e.g. [182] and [276]). In the following
years, HTTP remains the standard protocol for websites with HTTPS usage being
limited to login forms while the rest of a website remains unprotected. The advent of
Firesheep [75] demonstrated the insecurity of this practice by making session hijacking
attacks feasible. This imposed a growing attack surface, especially due to internet
access increasingly shifting from wired to wireless connections including public WiFis.
Wireless internet access especially via public WiFi facilitated mounting of MitMAs for
attackers. Major website operators since then started to offer HTTPS as an option for
better protection. Browser extensions such as HTTPSEverywhere [171] helped users to
automatically enforce the use of HTTPS if possible. Another important event leading
to increasing adoption of HTTPS can be found in the Snowden revelations [157] that
disclosed massive global surveillance efforts of intelligence agencies. These lead to a
change of perspective as a driving force to propose HTTPS to not only being used for
the login process or other security related tasks but actually for the complete traffic of
websites as common practice. Major players like Facebook [111] finalized their transition
to HTTPS by switching from the previous option to use HTTPS to using HTTPS by
default while Google [240] having already switched earlier. Still, for website operators
deployment and use of HTTPS remained cumbersome and costly as certificates needed
to be purchased from CA companies. Correct deployment has been a challenging task
for administrators as found by prior research [112, 186]. For removing these barriers
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hindering a steeper increase in adoption of HTTPS, Let’s Encrypt was founded as an
alternative free CA in 2014 [196]. Fully publicly available starting April 2016 [193] ,
Let’s Encrypt provides free certificates for website operators as well as advanced means
to ease and automate the certification and deployment process [63]. Since then, browser
vendors have continuously worked on encouraging website owners to adopt HTTPS and
protect privacy of users. These efforts include making advanced modern Web-APIs like
WebWorkers [288] or privacy-sensitive APIs like webcam and microphone access [210]
only for available within secure browsing contexts (i.e. websites loaded securely) [256].
Further actions include special HTTP headers due to HTTP Strict Transport Security
(HSTS) [165] for website operators to enforce HTTPS and protect against SSL-Stripping
attacks [206, 257] as well as security indicators in browsers labelling websites loaded
via HTTP as insecure or denial of mixed-content [88] with the long term eventual goal
to overcome usage of HTTP traffic completely [86, 121]. On this path, the adoption
of HTTPS has steadily increased from below 30% in 2014 and approx. 50% in 2017 to
more than 80% in 2020/2021 based on Let’s Encrypt statistics [195, 194] via telemetry
data from Mozilla [264] and Google Transparency Report [170]. In parallel, a similar
path for transformation from HTTP to HTTPS and related challenges have to be taken
by app developers on Android. In this work, we will also cover and investigate the
risks and problems regarding the continuing use of HTTP in Android apps as well as
platform strategies for enforcing the adoption of HTTPS along with assessment of their
efficacy (cf. Chapter 6).

2.4.2.2 Rogue CAs

While the adoption of HTTPS already constitutes a key security measure for protection
against MitMAs, this opens new attack vectors to be addressed. For assuring the
authenticity, clients completely depend on CAs operating correctly as trust for a server
is bound to certificates issued by these authorities. Contemporary operating systems
and browsers usually trust more than 100 CAs [234]. Sections 2.4.1 and 2.4.2 have
already denoted both, the dependency on CAs as well as the massive security impact of
CAs malfunctioning which lead to mis-issuance of certificates. One misbehaving CA
could potentially mis-issue any illegitimate certificate to an adversary putting the whole
TLS ecosystem at risk making the trust in CAs a weakest link property of the CA-PKI
approach. Root causes for such cases are manifold and include insufficient or erroneous
implementation of validation processes as well as human errors. There is a long history of
such incidents. For an overview, we refer to comprehensive compilations such as [77] and
[266] that feature a manifold list of CA breaches and failures affecting several major CAs
including Thawte in 2008 [314], StartCom in 2008 [314], CertStar in 2008 [5], Comodo
in 2011 [93, 92], DigiNotar in 2011 [290, 225], TurkTrust in 2011 [147], TrustWave in
2012 [284], NICCA in 2014 [190], CNNIC in 2015 [191], WoSign in 2015 [173, 253],
Symantec in 2015 [260, 55], StartCom in 2016 [268], Comodo in 2016 [172], Symantec
in 2016 [213], Certinomis in 2018 [4]. For accommodation, the CA/Browser Forum
(CA/B) introduced baseline requirements [64] as minimal security standards for the
operation of CAs and vendors. Furthermore, these events and incidents influenced the
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ongoing evolution of the TLS ecosystem and have inspired and motivated research and
development strategies for mitigation. In the following, we will cover some that are
relevant to topics in this thesis.

2.4.3 Mitigation Strategies

To tackle the security problems related to the CA-PKI approach, various enhancements
have been proposed. Over the years, alternative certificate validation strategies have
come up [192, 301, 207, 208, 166, 231]. While they all provide approaches to check a
certificate chain’s validity, our work in this dissertation focuses on pinning [231] as one
of the most recommended alternative strategies for non-browser software due to the
need for prior knowledge on origins to connect to. In the browser landscape, for Chrome,
Google already made use of pinning for its own domains in 2011 [87]. Section 2.4.3.1
will introduce to pinning followed by the broader approach of pinning called Trust on
First Use (TOFU) in Section 2.4.3.2. In addition, there have been several developments
in the CA-PKI for enhancing security especially in browsers but relevant for the whole
TLS ecosystem (cf. Section 2.4.3.3).

2.4.3.1 Pinning

Pinning is a notion of certificate validation that uses existing knowledge about the
network origin or the certification data presented to protect the TLS connection [231].
Required parameters to be pinned need to be available in an application before the TLS
handshake happens. This aims at decoupling the authentication process from the need
for relying on CAs as TTP and thus protecting against breaches. In Chapter 4 we will
elaborate on the applicability of this strategy in Android apps. Pinning can be achieved
based on different parameters (e.g. public key, whole certificate). Pinning can also be
applied to different subjects:

Leaf Pinning. Leaf pinning includes pinning a single leaf certificate or its public key
or a set of leaf certificates or their public keys and is the most rigorous way of pinning.

CA Pinning. Certificate authority pinning effectively limits the number of trusted
certificate authorities and allows for more flexible reconfiguration of deployed TLS
certificates. This includes both intermediate and root CAs.

2.4.3.2 Trust on First Use (TOFU)

Another notion of pinning is TOFU . Instead of knowing the information to be pinned
in advance, the first certificate (leaf or CA) seen for a TLS connection is stored locally
on the client side and used to validate certificates for further connections. Hence,

18



2.4. TRANSPORT LAYER SECURITY

TOFU can be seen as a mix of conventional pinning (cf. Section 2.4.3.1) and the default
validation strategy. TOFU is used to secure SSH connections and is an opt-in feature
for HTTPS web servers for which it is called HTTP Public Key Pinning (HPKP)
(cf. Section 2.4.3.3) [110, 185].

2.4.3.3 Evolution of the CA-PKI ecosystem

Certificate Revocation. To address mischievous acting CAs browsers’ certificate
validation logic includes further checks to check for revocation of certificates before
opening an authenticated connection. Via Certificate Revocation List (CRL) [68] or
Online Certificate Status Protocol (OCSP) [251] CAs can revoke misused certificates
and notify browsers. However, checking and managing certificate status turned out
to be accompanied by massive performance penalties and organizational overheads as
well as security impacts due to delays and risk of Denial of Service (DoS) and blocking
attacks [189]. As a consequence, in 2012, Chrome stopped checking for certificate
status and instead introduced CRLSets (CRLSets) as an alternative approach. CRLSets
decouples certificate status checking from opening connections by pushing information
for revocation using an update mechanism [189]. While addressing some shortcomings
of revocation, subsequent developments including Certificate Transparency (CT) and
HPKP aim for alleviation and better protection against falsely issued certificates.

HTTP Public Key Pinning. Analogous to previous efforts in Google Chrome to
utilize a notion of pinning (cf. Section 2.4.3.1) by embedding hardcoded pins for selected
domains in 2011 [87], HTTP Public Key Pinning (HPKP) is formed as a new web
standard and as a mean for server operators to make use of pinning to protect against
forged certificates. Chrome Version 46 adds support for HPKP in 2015 [110, 267]. HPKP
operates in a TOFU manner (cf. Section 2.4.3.2). Thus, storing pins on first encounter
and only trust these for a specified time frame. For case of mismatch, server operators
can opt to either only be notified or to halt the connection as protection against MitMAs.
However, following its introduction, HPKP turned out to be cumbersome complex to
maintain [162]. When not configured correctly, it can even cause more risks than it
solved. Lack of setting proper backup pins can lead to sites becoming inaccessible when
the servers’ certificate changes making it possible impossible to issue a certificates for
the respective domain as only the old certificates pin is trusted. In the same manner,
this can even be used as an attack vector if an attacker gains access to a web server’s
configuration. Due to these problems and its low adoption [161, 119] , HPKP got
deprecated in Chrome Version 67 in 2018 [174] and finally removed with Chrome Version
72 in 2019 [247, 163].

Certificate Transparency. Developed by Google, Certificate Transparency (CT) [90,
192] is launched in 2013 with the first log as an alternative approach for detecting and
reacting to mis-issued certificates. CT aims at certificates issued by CAs to be added to
public append-only logs. This way, CT serves to bring accountability to the CA-PKI
trust model by making CAs’ misconduct public. Monitors serve to audit for suspicious
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behaviour making it impossible to hide misbehaviour such as issuing of certificates to
illegitimate entities. After requiring Extended Validation (EV) certificates to be added
to a CT log in 2015, in 2018, Chrome, along with other browser vendors, started to
require all certificates to be added to logs for being trusted by browsers [90].

DNS Certification Authority Authorization. In 2013, DNS Certification Authority
Authorization (CAA) is introduced as another measure against the problem of mis-
issuance of certificates and thus the risk for MitMAs [159]. In contrast to HPKP, CAA
targets CAs. With CAA, website operators can indicate in their Domain Name System
(DNS) record which CAs are allowed to issue certificate for the corresponding domain.
Other CAs honoring CAA are consequently expected not to (mis-)issue certificates for
a given domain that adversaries could use to mount MitMAs. Thus, CAA aims to
function as precaution against failures in the CA-PKI ecosystem. In 2017, the CA/B
voted for CAA to honor [61]. In their study in 2017, however, Scheitle et al. [252] find
that CAs’s implementations of CAA are error-prone. Likewise in 2021, the adoption
of CAA by domain owners is still low with 8.7% which, therefore, limits its effect so
far [241].

Certificate Lifetime. With CT already striving to make CAs’ failures in adhering to
baseline requirements visible to the public and thus allowing for faster awareness and
reaction, Google proposed to reduce the lifetime of a certificate in 2019 [62]. Shorter
lifetimes for certificate help reducing the risk of exposure to the ecosystem, and thus
finally protect users. This serves to address the previously described shortcomings of
certificate revocation. Yet, in the CA/B, no majority for this could be reached among
CAs. However, Apple announced to shrink the maximum lifetime for trusted certificates
to 398 days with other browser vendors following in 2020 [6, 78, 246].

Evolution of TLS ecosystem. All in all, there is a range of measures introduced
in reaction to CA failures (cf. Section 2.4.2.2). Most remarkably, the evolution of
countermeasures for addressing the widespread problems have radically shifted. While
e.g. HPKP can provide effective protection illegitimate certificates, configuration and
maintenance can be challenging and error-prone. Even more, it also introduces new risks.
As it only enhances security when implemented by server operators due to low adoption,
its security impact remained low. In contrast, Certificate Transparency features a
broader approach. Instead of solely relying on servers to protect against attacks, CA
emphasizes the role of CAs and strengthens accountability. The append-only property
and distributed model of CT provides incentives for precaution and early detection in
regards to malicious activity establishes an ecosystem-wide effort to enhance internet
security. Likewise, the reduction of certificate lifetime seconds this by further reducing
the attack surface for MitMAs.
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2.5 TLS on Android

Android’s network stack features a trust model comparable to browsers. Same as modern
websites Android apps handle more and more privacy-sensitive information, network
security is a crucial topic.

Default HTTP and HTTPS Support. Developers can use a variety of protocols
for network communication in their apps. This includes out of the box support for
HTTP and HTTPS. Likewise, in Android apps, this imposes the risk for MitMAs as
an important attack vector especially due to internet access via (open) WiFi access
points (cf. Section 2.4.2). A large portion of this risk can already be mitigated by
using HTTPS. Android’s HTTPS support bases on out of the box support for TLS in a
similar manner as in browser environment (cf. Section 2.4.1). The Android framework
implements a secure default certificate validation logic that resembles same behaviour
as in browser software (cf. Section 2.4). For this, same as in browsers, Android follows
the CA-PKI approach and features an immense set of root CAs that are trusted by
default. Developers can take advantage of common Java APIs [146] to make HTTPS
requests (cf. Listing 2.1).

Listing 2.1: Sample Code for making an HTTPS request

1 URL url = new URL("https://example.com");
2 HttpsURLConnection urlConnection =
3 (HttpsURLConnection)url.openConnection();
4 InputStream in = urlConnection.getInputStream();

Custom TLS. From the adoption of the CA-PKI approach stems the flexibility
to connect to arbitrary hosts without further action needed for most domains. At
the same time, this exposes Android apps and their users to similar insecurities and
limitations as browsers regarding network security even when using HTTPS via TLS
(cf. Section 2.4.2.2). However, the Android framework also allows developers to write
custom TLS code to override the default certificate validation logic and implement their
own. This way, developers can e.g. restrict trust in CAs to protect against malicious
CAs (cf. Section 2.4.2.2) by utilizing pinning (cf. Section 2.4.3.1) similar to HPKP or
by completely quitting trust in the PKI and using self-signed certificates or relying on
private CAs not trusted by default. In contrast to HPKP and the situation in browsers,
here in non-browser software like apps, developers can embed certificate pins in their
app for pinning to check against. To achieve this, developers have to provide custom
TrustManager and HostnameVerifier implementations. However, the implementation
of custom certificate validation requires advanced knowledge to be conducted securely.
As app developers are often no security experts, there is a substantial risk for flaws in
custom implementations. Prior research has uncovered a high prevalence for insecure
custom TLS [114, 126]. Listings B.1 and B.2 feature such insecure implementations. The
effect of these implementations is that certificate validation is completely deactivated
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Listing 2.2: Insecure TrustManager - Accepts all certificates if they are not expired

1 @Override
2 public void checkServerTrusted(X509Certificate[] chain, String authType↷

) throws CertificateException {
3 for (X509Certificate certificate: chain) {
4 certificate.checkValidity();
5 }
6 }

and any certificate is accepted for any hostname. Another dangerous example is shown
in Listing 2.2. Here, for every certificate checkValidity is called. However, this only
checks that a certificate has not yet expired. In addition, it is not checked that the
presented list of certificates forms a proper certificate path [64]. While in these cases,
the transmission remains encrypted, however, mounting MitMAs becomes significantly
more feasible for attackers. Therefore, untrained developer will potential not find a
problem, even when monitoring network traffic [115].

Summary and Outlook. Consequently, the Android framework provides developer
with a large tool set to use network connectivity inside their apps. Likewise, in Android,
app developers and the Android platform have similar challenges to tackle as in the
browser landscape with respect to MitMAs (cf. Section 2.4.2). The Android framework
provides developers with a set of APIs related to network operations and security as
well as it offers them great freedom to change the process of certificate validation. This
gives developers the autonomy for introducing measures for enhanced protection against
MitMAs. Likewise, however, this imposes risks of flawed implementations as well as it
puts developers in charge of maintenance. In this work we explore the ongoing evolution
of network security in apps for the Android platform as well as we cover the impact
and capabilities of developers, third parties and the Android platform itself in regards
to enhancing network security in the Android ecosystem.

22



3
Related Work

23
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The open-source nature of the Android operating system has led to a vibrant body of
research. In this chapter, we will cover related work relevant to topics in this dissertation.
Therefore, we give a comprehensive overview of research on Android and TLS (cf. 3.1)
as well as the broad topic of code reuse in Android apps (cf. 3.2) to put research covered
in this dissertation into perspective. In addition, we will cover further research in regard
to TLS (cf. 3.3), app store analysis (cf. 3.4) and security in Android apps in a broader
sense (cf. 3.5).

3.1 TLS on Android

In this section, we discuss related work regarding measurement studies of insecure TLS
certification validation code in Android apps. First, we will focus on analysis approaches
pertaining to insecure TLS certificate validation including our work in Chapter 5 and 6.
Later on, we will also focus on alternative approaches including our proposal that we
present in Chapter 4.

3.1.1 Insecure TLS certificate validation

In 2012 Fahl et al. [114] analyzed 13,500 popular, free Android apps and found 8% to be
susceptible to MitMAs because of insecure TLS certificate validation code. In follow-up
work in 2013, Fahl et al. [115] extended their previous analysis to iOS and manually
investigated 1,009 applications. They reported that 14% of the apps suffer from similar
issues as apps on Android. Like Fahl et al., Georgiev et al. [126] uncovered a variety of
vulnerabilities in TLS certificate verification logic in non-browser software, including
mobile apps in 2012. As root causes, they identified poorly designed APIs which confused
developers, as well as a lack of safe defaults. In 2014 Sounthiraraj et al. [263] presented
SMV-HUNTER, an automated, large-scale analysis tool utilizing a combination of
static and dynamic analysis to detect vulnerabilities in the certificate validation logic
of Android applications. They performed a study of 23,418 apps, identified 1,453 as
potentially vulnerable, and were able to confirm this for 726. In 2015, Onwuzurike and
De Cristofaro [229] conducted static and dynamic analyses on 100 popular Android
apps and found 32 to implement unsafe TLS certificate validation logic. Furthermore,
91 applications were vulnerable if attackers installed root CAs on a victim’s device. In
2015, Zuo et al. [313] presented a dynamic analysis effort for testing network security in
hybrid Android apps. Their system utilizes static analysis to detect potential erroneous
TLS error handling in WebViews. In an evaluation they analzed 13,820 apps of which
they identified 625 to be vulnerable for MitMAs. In 2015 He et al. [160] presented
SSLINT, a tool to detect incorrect use of TLS APIs. They found 27 previously unknown
TLS-related vulnerabilities in Ubuntu applications. In 2017 Chothia et al. [85] reviewed
15 major UK mobile banking applications for Android and iOS and found that eight
used pinning. However, two of them included incorrect implementations for it. Also
in 2017, Fischer et al. [122] classified security-related code snippets from the platform
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Stack Overflow and assessed their prevalence in Android applications in 2017. They
found the most dominant insecure code to be related to unsafe custom TLS. While
they could not determine whether developers directly copied detected code snippets
from Stack Overflow, the authors argue that the platform has a significant impact and
responsibility due to its popularity. Razaghpanah et al. [244] conducted a dynamic
network traffic analysis with data for 1,364,420 TLS handshakes from 7,258 Android
apps using the Lumen Privacy Monitor framework for 5,000 users in 2017. They find
that 2% of the apps in their data set implement custom certificate validation logic. In
2017, Bojjagani and Sastry [69] present a threat model and also propose a security
testing framework for penetration testing and identification of MitMA vulnerabilities
for mobile banking apps (MBAs) for Android and iOS. In addition, they evaluate eight
MBAs; five for Android and three for iOS.

Presented in 2018, Oltrogge et al. [P2] analyzed 13 online application generators for
Android, of which six failed to implement TLS certificate validation code correctly.
Chapter 5 will be based on this work and will discuss our findings. In 2018, Alghamdi
et al. [15] present IoTVerif, an effort to verify TLS implementations of MQTT client
apps. In 15 client apps, they find 5 to be vulnerable for MitMAs. In 2019 Kafle et
al. [181] conducted a security analysis of the Google Nest and Philips Hue smart home
platforms. They analyzed 761 smart home management apps from Google Play and
Nest and found that 20.61% respectively 19.82% of the apps implemented insecure TLS
certificate validation. Rahaman et al. [243] present the static analysis tool CryptoGuard,
analyzed 6,181 Android apps in 2019 and found insecure TrustManager implementations
in 25.30% of the apps. They conclude that Google Play’s inspection safeguards are
insufficient. In 2019, Wang et al. [295] present DCDroid, a combination of static and
dynamic analysis for detecting vulnerable TLS implementations in Android apps. Using
DCDroid, they tested 2,213 apps. 457 (20.65%) contained vulnerable TLS code. For
more than half (248 apps) they could verify to be truly vulnerable using dynamic
analysis. In addition, they conduct a version evolution analysis for these from which
they derive that TLS related insecurities may be caused by apps becoming increasingly
complex and the use of vulnerable thirdparty libraries (TPLs). This is in line with
our analysis and findings in Chapter 6. In addition, we also conduct version evolution
analyses to assess the adoption of NSC over time. Recently, in 2020, Weir et al. [299]
performed an online survey with Google Play developers about their access to security
experts and developer assurance techniques and analyzed their participants’ apps using
MalloDroid [114], CogniCrypt [187] and FlowDroid [52]. They found SSL issues in
70% of the apps. While previous work found that apps with vulnerable certificate
validation logic have been published after 2016 in Google Play, our work is the first that
conducts controlled experiments to investigate loopholes in Google Play’s safeguard
mechanism. In 2020, Possemato and Fratantonio [239] conducted work concurrent
to ours [P3], in 2021, that we present in Chapter 6. They analyzed the security of
NSC settings in 16,332 apps. They find that many apps do not take full advantage
of the NSC feature and allow insecure network protocols. In a root cause exploration
they discover that developers copy & paste vulnerable settings from online resources
and that several popular third-party libraries require developers to weaken their NSC
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settings. They conclude their work with a novel NSC extension that allows developers to
include insecure libraries without weakening the security of the entire app. In contrast,
in our work in Chapter 6 [P3], our NSC analysis is based on a larger set of Android
apps (99,212 instead of 16,332) and more detailed analyses (e.g. of certificate pinning
issues and across app categories and download counts) and a manual analysis of 40
apps. Additionally, we perform a static code analysis on 15,000 apps and investigate
the efficacy of Google Play’s safeguards against vulnerable certificate validation logic in
apps, providing a more complete picture of the current state of TLS security in Android
apps. Chapter 6 will be based on this work.

3.1.2 Alternative approaches to custom TLS

Previous works suggested alternative approaches to custom TLS to overcome the
disastrous state of network security in Android apps especially regarding custom TLS
implementations. As an example, in 2013, Fahl et al. [115] proposed a configuration
approach to custom TLS behaviour on Android, removing the need for developers to
write any code. Their approach securely covers all certificate-related use-cases found in
applications or requested by developers. It includes the distinction between developer
devices and end-user devices and allows for alternative TLS certificate validation
strategies without developers having to change their applications. In 2013, Conti et
al. [94] proposed MITHYS, a proxy-based approach to protect users from applications
vulnerable to MitMAs, which is also available for Android as MITHYSApp. In 2014,
Tendulkar and Enck [274] suggested a similar scheme with two main objectives to
reduce vulnerabilities in custom TLS solutions: They recommend linking the debug
state to TLS certificate validation as well as stating certificate or CA pinning in the
application manifest. When evaluating 13,000 applications from Google Play, they found
1,889 (14.50%) would benefit from their proposals. With CERTSHIM, Bates et al. [65]
presented a dynamically linked shared library that utilizes binary instrumentation to
layer additional security on top of existing TLS libraries like OpenSSL or GNUTLS.
It adds hooks for TLS handshakes and verification functions to force secure defaults,
to protect against insecure implementations and to enable trust enhancements such as
Convergence, [207] DANE [166] or pinning. CERTSHIM was successfully tested with
94% of the most popular Ubuntu packages without changes to existing applications. In
an effort to provide simpler but more secure APIs, in 2015, Amour and Petullo [19]
introduced libtlssep. This library aims to prevent common mistakes by developers
who write TLS-related code with existing TLS implementations while still being easy
to integrate. Oltrogge et al. [P1] analyzed the applicability of pinning in Android
apps to be less than two percent. Likewise they only found a small fraction of apps
that implement pinning in app code. To understand the knowledge gap of developers
regarding pinning, they conducted a developer study. Based on that, they propose a
tool to support developers in the decision process for and implementation of pinning.
Chapter 4 will be based on this work as part of this dissertation. In 2016, Buhov et
al. [74] strive to tackle the urgent state of erroneous TLS implementations in Android
apps. In contrast to previous strategies for mitigation of vulnerable TLS code e.g.
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by Tendulkar and Enck [274], Fahl et al. [115] or Oltrogge et al. [P1], they propose
a system-based instead of developer-driven approach for certificate pinning. This is
strongly related to our work presented in Chapter 4 [P1]. In addition, as we identify
the challenge to maintain certificate pins due to slow propagation of app updates as a
crucial limiting factor for the adoption of certificate pinning (cf. 4.6.3), they propose a
system-based dynamic instrumentation for maintaining certification data for pinning
and fixing of errors without any dependency on developer action. To accomplish this,
they realize pinning on the basis of TOFU and handling encountering new pins or
certificates respectively in a browser-like fashion in a dialog for users to confirm. While
this shifts responsibility away from developers, it puts an even greater burden on end
users again compared to the already well-studied and researched complexity regarding
TLS warning dialogues in browsers (e.g. [14, 272, 120, 118]). In 2016, Wei et al. [298]
present emphaSSL, a tool to support developers in hardening network security in their
apps. Based on PMD1 [237], emphaSSL employs a rule set for verifying network security
implementations in code to give developers instant feedback on misuse of TLS APIs
during development to allow for immediate fixing and protect against potential risks
for MitMAs. They evaluate 75 open source apps using their effort. In 30 they identify
potential mistakes pertaining to network security of which they deem nine as seriously
and rendering apps vulnerable to MitMAs. This is roughly comparable to Android
Studio’s limited LINTING features regarding TLS (cf. [281, 169]) for which we argue
the need for improvement for better support in Chapter 6. In a more recent approach
in 2017, O’Neill et al. [226] introduced TrustBase, a centralized approach to move
TLS certificate validation to an OS service that intercepts all connections and enforces
policies. They use a plugin infrastructure to provide features such as pinning. They
demonstrate their proposal as a loadable Linux kernel module and describe prototypes
for both Android and Windows. In 2017, Nguyen et al. [224] presented FixDroid.
FixDroid addresses shortcomings in Android’s LINT utilities (e.g. quick fixes soliciting
the use of HTTPS).

3.2 Code Reuse in Android apps

Chapters 4 and 5 will deal with analyses of legitimate reuse of app components in
Android apps. Earlier efforts featuring TPL detection or making use of these rely on
whitelisting approaches to detect libraries based on their package name.

3.2.1 Library Detection

In 2012, Grace et al. [155] presented AdRisk, a system to identify potential risks in
ad libraries. They analzed 100,000 apps and found 52,067 (52.07%) to have at least
one embedded ad library. They searched 100 ad libraries based on package names. In
addition, they used AdRisk to assess the risks introduced by these libraries systematically.

1Programming Mistake Detector
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This includes access dangerous APIs for collection of personal for advertising purposes
ranging from location data to even more sensitive data like phone number, browser
bookmarks and call log information that is sent to the ad providers’ server. For five ad
libraries, they identified the dangerous practise of dynamically fetching and executing
code from remote. Stevens et al. [270] seconded this and analyzed privacy risks imposed
by ad libraries. In 2012, Pearce et al. [233] proposed AdDroid, an extension for the
Android System to separate application and ad library code to address over-privileged
ad libraries and to expose separate APIs related to advertising for ad libraries to
interact with. For evaluation, they split application code into application code and
ad library code by their namespaces. In 2013, Book et al. [70] measured the use of
privacy risky permissions in ad libraries over time. They analzed 116,000 apps and
considered 68 different ad libraries for detection by package name. They extracted the
corresponding library code from apps for which they conduct hashing in order to derive
unique identifiers for different versions of ad library. Based on this, they showed an
increasing use privacy sensitive permissions. Aside from criticizing this evolution, they
stipulated a separation of app code and library code to both limit the permissions as
well as to relieve from the need of having developers embed library code and rely on
them to update for newer versions. Book and Wallach [71] base on [70] and analyzed
privacy leakage of 20 most popular ad libraries in Android apps. In 2013, Gibler et
al. [129] presented AdRob, an analysis on the impact of app plagiarism on ad revenue.
For detection of ad libraries, they searched for client IDs of ad libraries and conducted
network traffic analysis on these to assess impact of app plagiarism. Regarding assessing
original ownership of apps they analyzed signing certificates of apps. Their analysis
accounts for 265,359 free applications from 17 Android markets. As the first efforts
for automatic detection of ad libraries Narayanan et al.’s [218] AdDetect in 2014 and
Liu et al.’s [201] PEDAL in 2015 used machine learning techniques. Most of these
efforts are tightly related to ad libraries. Their motivation spans from privacy risks and
vulnerabilities introduced by ad libraries [155, 270, 70, 71] to detection of app clone with
respect to ad revenue stealing or cloned apps containing malware [129]. In contrast to
detecting TPL-related code for specific libraries as most efforts pursue in regards to ad
libraries, our goal in Chapter 4 is to distinguish custom app code from arbitrary TPLs.
In that, we adapt the approach of white-listing libraries for detection of arbitrary TPLs
by checking for exclusiveness of package names (cf. 4.4.3.3). Since then, there have been
several efforts and advancements in regards to detecting TPL in Android apps. In 2015,
Wang et al. [292] proposed WuKong, a two-phased approach for detection of repackaged
apps. In 2016, Li et al. [197] analyzed 1.5 million apps from Google Play and curated
two white-lists for 1,113 common libraries and 240 common libraries identified as ad
libraries. One important limitation of previous efforts is that these are not resilient to
even basic obfuscation techniques such as renaming of packages, classes or methods.
In 2014, Linares-Vásquez et al. [200] already hint at an impact of obfuscation on the
accuracy of detection of code reuse. Even more, in 2018, Wermke et al. [302] presented
an analysis on prevalence and advancement of obfuscation techniques in apps. Later
research efforts tackle these limitation. In 2016, Ma et al. [204] presented LibRadar,
a tool for detecting TPL based on stable API features derived from one million free
apps relieving from the reliance on limited whitelists of known TPLs. In 2016 Soh et
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al. [261] proposed LibSift. LibSift’s approach for detecting TPLs is bases on package
dependencies. In addition, they compared their approach with LibRadar [204] and Li
et al. [197] in an evaluation of 300 apps and find LibSift to detect even less prominent
TPLs not detected by either of the other two approaches. In 2016, Backes et al. [57]
presented LibScout. LibScout employs a merkle tree-based approach for detection of
arbitrary TPLs with focus on detecting malicious or otherwise outdated TPL versions
and their prevalence in apps which can harm app and user security if not updated by
developers. One particular worrisome example in regards to TLS is a vulnerable version
of OkHttp [99] where use of pinning renders apps vulnerable to MitMAs. Apart from
this, in Chapter 5, we will employ LibScout to explore the extent to which OAGs work
with boilerplate code. The line of research on TPL detection is extended by further
efforts. In 2017, Li et al. [199] presented LibD. In 2018, Zhang et al. [310] proposed
LibPecker. Han et al. [167] proposed a name and feature based approach to detect
libraries in Android apps. Wang et al. [294] presented ORLIS. In 2019, Zhang et al. [309]
presentec LibID. In 2021, Almanee et al. [18] presented LibRARIAN. In 2020, Zhan et
al. [308] conducted a comparison taking several of these efforts into account. From their
results, they derive a further need for enhanced techniques such as to address Inversion
of Control (IOC) patterns like dependency injection (DI), dynamically loaded TPLs or
use of alternative programming languages like Kotlin that feature different semantic
than Java.

3.2.2 App Generators

After giving an overview pertaining to research on TPL detection, we want to focus
on related work concerning our coverage of application generators in Chapter 5. In
2016, Gonzalez et al. [131] presented CodeCheck, a system to analyse code reuse and
uniqueness. They analyzed 60,000 apps. They extract opcodes from DEX codes that
are then hashed with Message-Digest Algorithm 5 (MD5) to be correlated and analyzed
by different categories. These categories also include TPLs and sorts of app generators.
Also, in 2017, Glanz et al. [130] presented LibDetect and CodeMatch as a two step
effort on detecting repackaged apps by first removing library code from obfuscated apps.
In this regard, they identify app generators as a source of legitimately shared code
which therefore poses a challenge for detecting repackaged apps. While these efforts
already recognize app generators, prior work did not thoroughly investigate this topic.
Though, in 2016, Li et al. [198] further motivated research on this as necessary. They
are first to deal with and foresee an emerging trend for app generators by exploring
practises of Software product line (SPL) in software engineering of apps. Regarding this,
they proposed case studies for extractive SPL adoption to explore reuse practices in
app families. This is strongly related to our analysis in Chapter 5. The characteristics
they observed resemble those identified by us regarding the detection of app generators.
However, in contrast to the approach of mining app families by observations on e.g.
similar package names and signing certificates, our effort bases on a comprehensive
market analysis (5.3.1). Moreover, back in 2013, Fahl et al. [115] – in addition to
their proposals (cf. 3.1.2) – also already mentioned application generator frameworks
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Apache Cordova 2 [30] and Appcelerator’s Titanium [35] software development kit (SDK).
They uncover dangerous configuration settings that deactivate proper TLS certificate
validation rendering apps vulnerable to MitMAs even without developers writing any
TLS-related code on their own. This already serves to illustrate the massive impact that
application generators can have on the security of the ecosystem. In Chapter 5, we will
introduce these frameworks as Standalone Frameworks (SAFs). There, we will further
elaborate on application generators and their security impact. We will focus on OAGs
which take full control over the app creation process and thus have complete responsible
for guaranteeing security. Acar et al.’s poster [9] presents preliminary results of our
work and already hints at dangerous security practises of certain OAGs, e.g. regarding
security of custom TLS code and Inter-component communication (ICC).

3.3 Transport Layer Security

Giving a complete and comprehensive overview on TLS, CAs and PKI trust models in
more detail than already introduced in Chapter 2 would be beyond the scope of this
thesis. For a broader overview, we refer to Clark and van Oorschot’s Systemization
of Knowledge (SoK) on SSL and HTTPS. [89] In 2013, Durumeric et al. [103] present
results of 110 scans of IPv4 address space. They use ZMap [104], their internet-wide
scanning approach for surveying the entire IPv4 address space in less than 45 minutes.
From the collected data, they can derive TLS-related information on hosts. This includes
protocol adoption of HTTP or HTTPS and TLS certification data which also allows e.g.
detection of misissued (CA) certificates. In 2014, Perl et al. [234] investigate the root
problem of the weakest-link property of the PKI. In an analysis of over 400 pre-installed
CAs on Windows, Linux, MacOS, Firefox, iOS and Android they check against an
extensive database of 47 million certificates collected from HTTPS servers, they find
only 66% of the CAs to have signed certificates of HTTPS servers. Based on these,
they discuss risks and benefits of removing the other CAs from trust stores especially
as a measure to increasing security of CA-PKI. In 2014, Vallina-Rodriguez et al. [289]
explore the CA trust store on Android and elaborate implications on users. They find a
variance in the set of trusted CAs on users’ devices also depending on manufacturers,
mobile carriers or even apps. In addition, as Android does not differentiate between user
and system trust store, CAs installed by users are trusted same as system CAs and lead
to a bigger attack surface for MitMAs. For mitigation, they recommend an auditioning
for inclusion of CAs in devices’ trust store and question if users awareness regarding
making trust decisions on their own. As part of further development of Android, one
of the changes in Android 7 is such a differentiation. Since then, app developers have
to trust user-installed CAs explicitly. In Chapter 6 we will further investigate this.
In 2017, Felt et al. [119] measure the adoption of HTTPS from a user and developer
perspective. As to the adoption of HTTPS, they find a substantial growth over the
last years. Whereas, they found HTTPS adoption on mobile devices to lag behind.
While, as opposed to our work in regarding network security in apps, their measurement

2Formerly PhoneGap

31



CHAPTER 3. RELATED WORK

deals with adoption of HTTPS in mobile browsers, we, likewise, find a need for steeper
increase. While topics related to cryptography of TLS are out of scope of this thesis,
we refer to Kotzias et al.’s [183] large-scale study on the evolution of TLS deployment
over the last six years with focus on high-profile cryptographic attacks.

3.4 App Market Analysis

There is a variety of efforts on crawling app stores for Android apps. Early works
considered a variety of app store resources for app mining. In our work, however, we
will exclusively focus on Google’s ecosystem for Android (cf. Chapter 2) and present
our own crawling effort (cf. 2.3). Our approach is however vastly comparable to efforts
by Viennot et al. [291] in 2014, Carbunar et al. [76] in 2015 or Allix et al. [17] in 2016
concerning collection of metadata and downloading APKs from Google Play [148]. This
falls in the same time period as the development of our approach.

3.5 Overall security in Android Apps

Apart from the in-depth coverage of related work concerning topics in this thesis,
there is a large and growing body of research pertaining to Android. The focus of
our work lies on TLS development in Android apps. However, our work in Chapter 5
is strongly related to manifold research efforts. Therefore, to give a broad overview
regarding Chapter 5, we refer to seminal work on Overprivileged Apps (e.g. [116, 53]),
ICC Security (e.g. [109, 311, 202, 153]), Cryptographic API Misuse ([106]), TLS APIs
(cf. 3.1) WebView Security (e.g. [127, 83, 203, 293, 277]) and Code Injection (e.g. [238]).
The corresponding sections in Chapter 5 will relate in more detail to these topics. For
more insights, we refer to Acar et al.’s [7] SoK on Android in the context of security
and privacy research.
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4.1 Introduction and Contributions

As already covered in Chapter 3, previous research uncovered security issues with TLS
in mobile apps [114, 115, 126, 65, 263] that highlight that developers have problems with
implementing correct certificate validation while users are challenged by TLS interstitials.
Furthermore, the default TLS implementation on Android receives criticism [289, 234]:
Adopted from web-browsers, default TLS certificate validation relies on a huge number
of root CAs pre-installed on all Android devices [289]. Hence, all Android apps suffer
from the same issues as web-browsers: A single malicious CA is able to conduct MitMAs
against all apps trusting the respective certificate. Chapter 2 already introduced to
this. To make things even worse, Fahl et al. [115] uncovered that in 97% of all cases
where developers implemented their own certificate validation strategy, they turned off
validation entirely and left their apps vulnerable to MitMAs with arbitrary certificates,
i.e. every active network attacker was able to attack successfully.

Pinning is often recommended as a general countermeasure to tackle the weakest link
in the CA-based infrastructure [31, 209, 231, 115]. We use the term pinning in this
work to include both pinning the complete X.509 certificate or only the certificate’s
public key. Instead of trusting a large set of root CAs that come pre-installed with
the operating system, software limits the set of certificates it trusts to pins, which can
be single leaf certificates, single root CA certificates or a set of certificates. Pinning
is a straightforward mechanism and its deployment does not require changes to the
current CA infrastructure. However, pinning has not found widespread adoption yet.
While limiting the number of trusted certificates drastically increases security, pinning
doesn’t come for free: Embedding trusted certificates into an app requires app updates
whenever the pins change. Hence, the decision whether pinning is applicable for a TLS
connection is always a trade-off between increased security and maintenance effort that
is not entirely under the control of an app developer: Whenever users do not update
their app although the pins have changed, the app stops working and users might
uninstall the broken app. Therefore, to pin or not to pin is a critical decision for app
developers, which requires in-depth understanding of the mechanisms behind pinning
and its implications on their apps. This is where our work comes in: To the best of
our knowledge, we are the first to explore the applicability of pinning as an appropriate
alternative certificate validation strategy for non-browser software. In this work, we
focus on individual app developers’ capabilities for enhancements to network security
and make the following contributions:

Status Quo. We evaluate the status quo and analyze 639,283 Android apps to find
that only 45 apps implement pinning.

Formalization. Instead of intuitively recommending pinning, we formalize criteria
that must be considered when the decision is made whether to pin or not to pin.
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Implementation. We apply static code analysis and program slicing to automatically
assess those criteria and obtain an overview of the situation for single apps.

Evaluation. We evaluate our criteria against a set of 639,283 Android apps for an
overview of the applicability of pinning in the Android universe. We find that 223,655
apps establish TLS-secured connections to remote origins; 11,481 (5.13%) of these
223,655 apps are eligible candidates to implement pinning for one or more of their TLS
connections.

App Updates. Since new certificate pins need to be updated on the users’ devices,
the update speed is crucial. Therefore, we instrument telemetry data from a popular
anti-virus software provider. We evaluate the update behaviour of 871,911 unique users
from January 2014 to December 2014 and find that only 50% of the users update to a
new app version within the first week after release.

Developer View. Although pinning is only applicable in relatively few cases, the
nominal-actual comparison leaves room for improvement. We therefore collected feedback
from 45 developers of apps for which we would recommend pinning. We identified the
developers’ major issues with pinning and used their feedback as the foundation to build
an easy-to-use web application that assists developers with securing their apps’ TLS
connections. We offer help on the decision whether to pin or not to pin and support the
implementation of pinning with concrete suggestions and code examples.

Take-aways. We formulate lessons learned during our evaluation to share them with
the research community.

4.2 Background

The Android platform provides built-in functionalities for handling TLS and certificate
validation based on the PKI without further configuration. It comes pre-loaded with an
extensive truststore featuring 140+ root CAs [234]. Additionally, the Android framework
enables developers to provide custom implementations for handling certificate validation.
Chapter 2 already elaborated on these fields of problems and challenges in the TLS
ecosystem (cf. 2.4), in addition to introducing to the situation on Android (cf. 2.5).
There are several reasons for developers to use custom implementations:

• Application developers might want to use a self-signed certificate either for testing,
effort- or economical reasons;

• When a root CA is not in the system-wide list of trusted root CAs, a company
might have an internal CA that issues certificates for use in intranet applications;

• Security can be enhanced by restricting reliance on the PKI to mitigate the
exposure to weaknesses in the PKI (cf. 2.4.2.2)

• and custom implementations are required to implement leaf or CA pinning.
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4.3 An Exit Strategy

Previous work shows that TLS is complex and error-prone (cf. 3.1). Studies imply that
the implementation of client code for correct certificate validation is hard for software
developers. The general trust model received a lot of criticism over the last years and
alternative solutions have not found widespread adoption.

As a general solution for both problems, pinning is often advocated as a secure and
reliable alternative to the default trust model for non-browser software [231, 209, 31,
115]. Pinning can serve two purposes. First, it can mitigate the risk of MitMAs as it
strengthens the validation process. Secondly, pinning allows to overcome limitations of
the current CA infrastructure, e.g. by allowing self-signed certificates.

We challenge the recommendation to use pinning for non-browser software and conduct
a deep analysis on the root causes that hinder its widespread adoption in non-browser
software.

4.3.1 Pinning in Android Apps

Before evaluating the status quo, we give a brief overview of how TLS pinning can
be implemented in Android apps. In general, Android apps can establish low-level
TLS connections via an SSLSocket or an HTTPSUrlConnection object. Using
pinning in these cases requires the developer to implement a custom version of Android’s
TrustManager interface with an appropriate checkServerTrusted method. This
method has to check whether the certificate sent by the remote server matches one
of the given pins. Another option is to use a custom KeyStore in which developers
can store their own certificates. Many Android applications do not make use of such
lower level APIs but use a WebView to display HTML directly. Sadly Android does not
provide an API to implement pinning for WebViews [296]. As a workaround, developers
can download all HTML/JavaScript via the low-level HTTPSUrlConnection, store it
locally and only use the WebView for rendering. However, this is a clear shortcoming
of Android’s API and makes the implementation of pinning unnecessarily hard.

4.3.2 Status Quo

For a better understanding of the current adoption of TLS pinning in Android apps,
we evaluated custom certificate verification strategies for 639,283 Android apps. There-
fore we used MalloDroid [114] and extended the classification feature of custom
verification implementations. We focused on both customized implementations of the
TrustManager interface and the usage of a custom KeyStore for TLS certificates.

Whenever we found that a KeyStore object was created, we conducted a reachability
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analysis [202] for this object. For objects that were reachable from an app’s entry point,
we assume that this app uses pinning. Next, we extracted the keystore file that was
loaded to check whether leaf or CA certificates were pinned. We found 21 apps that
implement pinning using the keystore method. 13 of these apps pin a leaf certificate,
while 8 of them pin a custom root CA certificate.

Whenever we found a TrustManager implementation, we checked whether the chain
parameter of the checkServerTrusted method was accessed by the implementation.
Implementations that do not use this parameter do not verify the remote origin’s
certificate chain and hence were removed from further analyses. In a second step we
conducted a reachability analysis for implemented TrustManager objects and removed
all implementations that were not reachable from an app’s entry point. We found custom
TrustManager implementations in 42,902 apps and could remove 42,042 apps from the
list since they either implemented bypassing TrustManagers or were not reachable.
The remaining 858 apps implemented 189 different TrustManagers. We compared
these implementations with the list provided by Fahl et al. [115] and could filter out
124 implementations that basically add logging for certificate validation. We manually
reviewed the remaining 65 implementations and found that 13 implemented pinning.
Overall, these implementations were used by 24 apps.

Altogether, of the 639,283 apps in our data-set, 45 implement pinning. These numbers
confirm findings already reported by Fahl et al. [115].

4.4 Classification Strategy

The decision whether or not a TLS connection should be secured by pinning depends
on multiple factors and is not trivial in many cases.

Furthermore, whenever we cannot reliably identify the origin string for a TLS connection
endpoint, we cannot assess whether pinning would be a reasonable validation strategy.
Therefore, we report our results for two different scenarios:

Conservative. We report numbers for a conservative scenario. Whenever we cannot
identify the origin string for a TLS connection endpoint, we assume that pinning is
unfeasible. This covers most of our results.

Optimistic. For some of the cases where we could not successfully identify origin
strings, pinning could be applied under certain circumstances. These cases are treated
differently for the optimistic scenario as detailed in Section 4.6.

For our classification, we consider the following properties as high level indicators:

Prior Knowledge of the Target Origin. Prior knowledge about the target origin
is vital: Pinning is only feasible if the developer of an app is able to hard-code target
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origins into their app. This includes adding target origins at compile time as well as
via configuration files before or at run-time. Whenever target origins depend on user-
or external app input – e.g. via an Intent – at run-time, we consider pinning as not
feasible, since web-browsers do not automatically pin certificates for websites for the
same reasons.1. Automatically pinning previously unknown origins would increase the
danger of failed TLS handshakes due to substituted certificates and would decrease
acceptance of pinning for both developers and app users.

In the conservative scenario, we recommend the default validation strategy for all
connections where the origin depends on external input. However, some of these
connections can be pinned in the optimistic scenario (cf. Section 4.6).

Ownership of Relevant API Calls. App development consists of writing one’s own
code and embedding external libraries. All source code that was written by the developer
or the developer’s company is considered owned by the developer. API calls required
for certificate validation during the establishment of TLS-secured network connections
are relevant for this. Relevant API calls might be a HTTPSUrlConnection or an
SSLSocket. Whenever ownership of relevant API calls is given, pinning might be
feasible. Library developers do not own their code when it is included in other apps.
Therefore, we do not recommend pinning for library code. Library developers cannot
control when app developers update their libraries, while app developers can hardly
influence whether library developers keep their certificate pins up to date.

For both the conservative and the optimistic scenario pinning is not recommended in
case API ownership is not given.

TLS Certificate Configuration Responsibility. Being responsible for the TLS
certificate configuration as well as being the owner of relevant API calls eases the
coordinated deployment of pinning in apps. In case developers or their companies
have control over the TLS certificate configuration of origins used in apps, both the
certificate pins in apps and the corresponding server configurations can be coordinated.
In these cases, pinning is feasible. Whenever apps communicate with public origins,
such as public API interfaces or websites, pinning cannot be recommended. Certificate
configurations can change frequently and the responsible administrators only rarely
announce them in advance. Unplanned certificate changes can lead to failing TLS
handshakes and are therefore unacceptable.

For both the conservative and the optimistic scenario pinning is not recommended in
case the developer is not responsible for TLS certificate configuration.

1Administrators can configure HTTP Public Key Pinning to pin TLS certificates in modern web-
browsers. However, this involves heavy manual configuration work on the server side and does not
happen automatically (cf. Section 2.4.3.3).
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4.4.1 Possible Recommendations

The above criteria build the foundation for the decision whether pinning is applicable
for a TLS connection in a given app. The classification algorithm recommends one of
the following strategies:

Leaf Pinning. Leaf pinning limits the number of trusted certificates to the server’s
leaf certificate/public key (cf. Section 2.4.3.1).

CA Pinning. CA pinning effectively limits the number of trusted CAs (cf. Section
2.4.3.1). We treat conventional pinning (cf. Section 2.4.3.1) and TOFU (cf. Sec-

tion 2.4.3.2) equally, since both provide a similar level of security (cf. Section 2.4.3.1)
and require the same maintenance overhead from an app developer’s point of view.

Default. Whenever none of the above criteria applies, pinning is not a recommended
strategy and should not be implemented. This also accounts for cases where external
input – e.g. user input in an address bar or Intent input – influences a TLS connection.

4.4.2 Classification Details

Algorithm 4.1 illustrates the classification process we apply to decide whether pinning
is an advisable verification strategy. In the initial state, the default strategy is assumed
to be the right choice for a TLS connection, since we do not know yet if pinning is
recommendable. First, we check whether the TLS connection is established within a
third party library. In this case classification ends with the recommendation to us

Second, we check whether the remote origin depends on user input, other external
sources such as Intents, or may be configured via a configuration file. In these cases we
recommend the default strategy, since control over the remote origin is not guaranteed.

Third, we check whether the TLS connection’s remote endpoint is a popular origin; in
this case, classification ends with recommending the default strategy, since the TLS
configuration of the remote origin is probably not under the developer’s control. If we
assume that a remote origin is probably under control of the developer, as no other app
accesses it, the classification continues: We check whether the origin’s certificate was
issued by a valid CA or is self-signed. For self-signed certificates and certificates that
were issued by a valid CA, we recommend leaf certificate pinning. For certificates issued
by an untrusted CA, we recommend CA pinning, since the custom CA is probably
under control of the developer.
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Algorithm 4.1: The Classification Process.
for r ∈ results do

dependencies← dependencies(r);
set strategy as default;
if dependencies ≠ ∅ then

if ∃d ∈ dependencies∣d ∈ {exposed intent, UI −Component} then
continue;

else if
∃d ∈ dependencies∣d ∈ {unexposed intent, variable, configuration}
then

continue;

if not callInLibrary(r) and not isPublicHost(r) then
host← host(r);
schema← schema(r);
cert← cert(r);
dependencies← dependencies(r);
if isUnderControl(host) then

if signedByUntrustedCA(cert) then
mark for CA pinning;

else if validCertChain(cert) or isSelfSigned(cert) then
mark for leaf pinning;

4.4.3 Challenges

For our strategy classification, we apply static code analysis on a large set of Android
apps. To work as efficiently as possible, we identified multiple challenges:

4.4.3.1 Relevant API Calls

First, we identify relevant API calls, which means taking remote origins as parameters
and establishing a TLS-secured connection between the app and the origin. The official
Android API documentation identifies relevant API calls in the packages presented in
Table 4.1.

These API calls are the most low-level calls in the API and they implicitly include
higher level APIs such as the HTTPSUrlConnection.
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Package name

org.apache.http.client.methods.*
org.apache.http.HttpHost
android.webkit.WebView.loadUrl
android.webkit.WebView.loadDataWithBaseURL
android.webkit.WebView.loadData
android.webkit.WebView.postUrl
android.net.http.AndroidHttpClient
java.net.Url

Table 4.1: Relevant API Calls.

4.4.3.2 Embedded Static TLS Origins

As described above, knowing remote origins in advance is crucial for pinning. At
this point, we focus on extracting whether a remote origin is embedded in an app or
depends on user input or is injected via an external interface such as an Intent. This
information is supplied via parameters to relevant API calls. Although these mainly
refer to String values, the object-oriented and Java-based nature of the Android
platform introduces complexity:

• Strings may not be constant values but can be composed of numerous substrings.
We identify concatenation of Strings, formatting of Strings and platform-specific
APIs for building URIs as relevant. Therefore, we statically backtrack these and
reproduce String values.

• Values can stem from variables or may be return values of method calls. Therefore,
we account for intra-application method calls as well.

• Values that stem from Resources, Properties or Preferences hint at
configuration parameters.

• Origins can be input parameters for application entrypoints. Entrypoints are
parts of an application that allow either other app components, external apps or
users to interact with an app. Android application entrypoints are Activities,
Services, Receivers, Intents and Bundles. UI-Components in Activities
hint at user input.

4.4.3.3 API Call Ownership

API call ownership is a requirement for pinning. To identify whether an app developer
holds ownership of relevant API calls, we must distinguish relevant API calls that are
accessed by third party libraries and relevant API calls accessed by code that was
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written by the app developer (we call this custom code). Whenever we find relevant
API calls in code that is shared between multiple apps by different authors, we assume
a library that is not under control of an app’s developer.

4.4.3.4 Origin Exclusivity

Whenever the TLS configuration of a remote origin is not in the range of influence of
the developer, pinning is not advisable. We classify origins that are shared between
multiple apps’ authors and connections that access public origins as not under control
of the developer.

4.5 Implementation Details

To decide whether pinning for a TLS connection is advisable and to address the above
challenges (cf. Section 4.4.3), we implement our classification strategy in a multi-step
process. We extend the MalloDroid tool [114, 205] and execute the following steps:

1. Disassemble a given Android application to gain access to the application’s code
and call graph (cf. Section 4.5.1).

2. Identify relevant API calls – i.e. API calls that implement TLS connections in
apps (cf. Sections 4.5.2 and 4.4.3.1).

3. Extract information for remote origins applying program slicing (cf. Sections 4.5.3
and 4.5.3.1).

4. Determine whether API and/or origin ownership for relevant API calls is given
and decide which certificate validation strategy suits best (cf. Sections 4.4.2 and
4.5.4).

4.5.1 Disassembly

In Step 1, we use androguard [22] to disassemble apps and construct call graphs for
further processing.

4.5.2 Relevant API Calls

In Step 2, the call graphs were used to identify apps that make use of API calls in which
origin information for establishing TLS-enabled connections is specified (cf. Section
4.4.3).
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We consider API calls as relevant if they are used during the process of TLS connection
establishment (cf. Table 4.1).

4.5.3 Program Slicing

In Step 3, we apply backwards program slicing [300] to collect method parameters
which we subsequently call slicing criteria. We focus on slicing criteria that represent
remote origins which are used as input for relevant API calls, i. e. we are backtracking
parameters that are URLs or hostnames for TLS connections.

Our approach is similar to the one applied by Poeplau et al. [238], who apply a backward
slicing algorithm to identify security issues with dynamic code loading in Android apps.

In contrast to backwards slicing single and fixed method parameters, our targets are
network origins. A network origin String can be a composition of multiple substrings.
We take this fact into account by applying backwards slicing for multiple parameters.
After backtracking, we join these (multiple) substrings to one origin string whenever
possible. To break cycles, we stop the slicer after 80 iterations, which guarantees that
the algorithm terminates and also makes sure we do not lose data.

4.5.3.1 Extracting Origin Strings

Origin strings can be compositions of multiple substrings (e.g. https:// and www.ex-
ample.com and :443). Thus, reconstructing an origin string might require combining
multiple sliced substrings. Therefore, after program slicing, we apply a combination of
backward and forward analysis. Backwards analysis is used for backtracking constant
register values while forward analysis determines calls of a String instance. Both,
back- and forward analyses are applied multiple times successively as long as we find
new substrings that are part of a final origin string.

Algorithm 4.2 outlines pseudocode for handling StringBuilder objects. The algo-
rithm makes use of the following functions:

methodsOnInstance returns a list of all method invocations on an instance (e.g. calls
to toString, append or the constructor for StringBuilder objects).

backtrack applies the actual backtracking techniques to gather all substrings for the
origin string composition.

add adds one originSubstring to the array of originSubstrings that make
the origin string we are looking for.

join merges all originSubstrings to get the final origin string that is represented
by the given StringBuilder object.
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Algorithm 4.2: StringBuilder Analysis
Data: stringBuilderObjects sbos
Result: new originSubstring O
begin

for sb ∈ sbos do
methodInvocations ← methodsOnInstance(sb);
originSubstrings ← ∅;
origin ← null;
for mi ∈ methodInvocations do

if isAppend(mi) then
originSubstring ← backtrack(mi.regs[1]);
if originSubstring ≠ null then

add(originSubstrings, originSubstring);

else if isToString(mi) then
break;

join(O, originSubstrings);

1. Identify instructions indicating the instantiation of a StringBuilder object (i.e.
a new-instance instruction referring to the StringBuilder constructor) and
store them in sbos.

2. Find all method invocations for each StringBuilder object sb;

3. For calls of the constructor or the append() method, backtrack the regis-
ter value for the String parameter originSubstring and add it to all
originSubstrings.

4. Stop on calls of the toString method and join all collected originSubstrings
to a new originSubstring.

Similarly, we support String concatenation, formatting Strings, UriBuilder
instances, Android UI-Components, Intents, Bundles, Properties, Prefer-
ences and Resources. For Intents and Bundles we identify the source in order
to determine whether the corresponding component is exposed externally, e.g. via a
Service.

4.5.4 Decide on Validation Strategy

In the final Step 4, we assess whether API and/or origin ownership is given (cf. Section
4.4). For pinning candidates, X.509 certificate information is collected and a decision
for or against pinning is made (cf. Section 4.4.2).
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4.5.5 Limitations

The described approach is limited in multiple ways. We decided to reverse engineer
a large sample of free Android apps and analyze the resulting code. This limits the
analysis compared to the analysis of original source code, e.g. we lose variable names
and cannot preclude obfuscation. This is however the state of the art for large scale
app analyses, since reaching out to developers and asking for source code does not scale
well. We apply static code analysis and program slicing to determine the best certificate
validation strategy to secure a TLS connection. Our approach does not consider native
code in Android apps. We cannot track potential TLS connections in code that was
dynamically loaded or when obfuscation was applied.

Since we apply static code analysis techniques, we might report some false positives:
Some of the TLS connections we found and identified as being reachable code might
not be used during real application usage. However, this is not a specific limitation of
our work, but a general limitation of static code analysis.
We might also report some false negatives: Due to the strategy to classify origins to
which apps developed by different developers connect as “not under control of the
developer”, we might miss the scenario that one company has several distinct developers
write apps for them that all access the same domain. However, there exist no criteria
to distinguish these cases from the common scenario that multiple apps by different
developers accessing the same domain means that the domain is not under control of
the developers. Therefore, these cases are included in the group of public origins for
which we do not recommend pinning.

4.6 Evaluation

We applied the classification algorithm (cf. Section 4.4) to a set of 639,283 Android
applications we downloaded from Google Play in October 2014. Our data extraction
showed that of these apps, 573,258 implemented network connections.

In the following, we report details of our automated large-scale analysis. We report
our results on a per-connection base (see Figure 4.2) as well as on a per-app base
(see Figure 4.1), where an app is counted as eligible for pinning if at least one of its
connections can be pinned. We distinguish between a conservative and an optimistic
strategy rating (cf. Section 4.4). Altogether we found 20,020,535 calls to network related
API calls (cf. Table 4.1). For these calls we tried to identify the origin strings. We could
identify 1,062,810 calls as TLS connections due to the fact that the corresponding origin
string’s scheme was HTTPS. 2,420,104 connections were identified as plain HTTP, while
16,537,621 connections did not have a hard-coded origin string in the app’s code. Hence,
for 81% of all connections, it was not directly possible to determine whether TLS was
used. However, a deeper analysis based on our classification criteria (cf. Section 4.4.2)
gives detailed insights into the applicability of pinning. Table 4.2 gives an overview of
the results.
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Overall Con. Apps
Hard-coded HTTPS Origin 1,062,810 229,317
Hard-coded HTTP Origin 2,420,104 414,194
Non-hard-coded Origin 16,537,621 553,399

20,020,535 573,258

Third Party Libraries Con. Apps
Hard-coded HTTPS Origin 917,567 203,159
Hard-coded HTTP Origin 1,659,933 310,331
Non-hard-coded Origin 14,564,581 512,055

17,142,081 517,790

Custom Code Con. Apps
Hard-coded HTTPS Origin 145,243 48,755
Hard-coded HTTP Origin 760,171 184,184
Non-hard-coded Origin 1,973,040 246,636

2,878,454 299,863

Table 4.2: Distribution of Network API Calls.

4.6.1 Library Code

The majority of network connections we identified were made in third party library
code, i. e. users include third party libraries to make use of external functionality. Such
connections can include both plain and TLS-protected connections. As described in
Section 4.4.2, we recommend not to use pinning for those TLS connections, as API
ownership is not given. Of the 20,021,137 TLS connections we could identify, we found
that 17,142,081 (85.6%) connections are embedded in third party libraries.

Table 4.3 gives an overview of the top 10 third party libraries we found in our data-set.

Most of the identified libraries belong to ad networks (e.g. com.google.ads.*), crash
reporting tools or app building kits (e.g. org.apache.cordova.*) that establish
network connections without any interaction with an app’s custom code.

We found the AndroidPinning library [209] to be the only library that supports
pinning as a security feature out of the box. However, in our data-set we found only 14
apps that made use of this library (cf. Section 4.3.2).
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Library Connections
com.google.ads.* 2,535,020
org.apache.cordova.* 1,145,108
com.qbiki.* 977,298
com.millennialmedia.* 730,408
com.facebook.* 551,373
com.Tobit.* 488,143
com.inmobi.* 352,855
com.flurry.* 340,929
com.startapp.* 276,988
com.adsdk.* 234,130

Table 4.3: Top 10 Third Party Libraries.

4.6.2 Custom Code

Next, we identified network connections that were established in code that was actually
written by apps’ developers, i.e. network-related API objects were not instantiated
within third party libraries.

We found 2,878,454 connections in custom code of which we identified 145,243 as TLS
connections. 48,755 apps implemented hard-coded TLS origins as parts of their custom
code. Based on the type of the deployed certificate and depending on whether the origin
is shared, we evaluated which of these TLS connections are candidates for pinning.

For 1,973,040 of the connections that were implemented as part of apps’ custom code, we
could not identify hard-coded origins in apps. Those connections could be either HTTP
or HTTPS and depend on further input available only at run-time, e.g. user input
or Intents. For these connections, we consider a conservative as well as an optimistic
scenario. Based on different assumptions, these scenarios allow us to estimate the
applicability of pinning in Android apps.

4.6.2.1 Hard-coded Origins

Overall, we found 145,243 hard-coded HTTPS connections and 760,171 hard-coded
HTTP connections in our data-set. For the HTTPS connections, we collected further
information such as the number of connections that connect to the same origin and the
origin’s X.509 certificate whenever possible.

The 145,243 TLS connections we found included connections to 11,203 different TLS-
enabled remote origins.

To investigate whether pinning is the recommendable validation strategy, it is important
to know if an origin is shared between multiple apps authored by multiple developers or
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Con. Apps C
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Shared Origin 99,996 40,691 - -
Unique Origin(d.a.b.c) 45,247 11,547 ✓ ✓

145,243 45,549
(a) HTTPS Origins in Custom Code.

Con. Apps C O

Internal Intent 294,846 81,040 - ✓
Public Intent 14,599 8,268 - -
Parcel 5,729 2,883 - -
UI Component 31,266 18,766 - -
Resource 124,356 32,113 - ✓
(Shared) Preference 87,051 31,975 - ✓
Variable 432,985 119,406 - ✓
JSON 96,438 32,200 - ✓

1,973,040 326,651
(b) Dynamic Origins in Custom Code.

Table 4.4: Origins in Custom Code – Connections marked with ✓ can be pinned.

used by apps of a single developer only (cf. Section 4.4).

Shared Origins. 1,301 of the extracted 11,203 hosts were present in multiple apps
that were authored by multiple developers. We assume these hosts not to be under the
control of an app’s developer and hence recommend the default certificate validation
strategy, since host-ownership is not given (cf. Section 4.4). This affects 99,996 of the
TLS connections we identified in our data-set (cf. Table 4.4a).

Table 4.5 lists the top 10 shared origins in custom code we found in our data-set.

Unique Origins. 6,012 origins were unique to one single app while 3,890 origins were
included in no more than five apps owned by a single developer. Hence, we assume
9,902 origins to be under the control of a single developer each. We recommend pinning
for these apps and their connections, since both host- and code-ownership are given (cf.
Section 4.4). This affects 45,247 TLS connections in our data-set (cf. Table 4.4a).

To determine whether leaf pinning or CA pinning is the right choice, we analyzed
the deployed certificates for the respective origins. Overall, we gathered 7,941 unique
certificate chains. We used Androids pre-installed root CA certificates and Androids
certificate validation strategy to verify the validity of the origins’ certificates and found
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Hostname C
on

.

A
pp

s

graph.facebook.com 220,697 111,559
m.facebook.com 110,903 104,745
www.googleapis.com 30,101 20,120
bugsense.appspot.com 18,402 18,285
www.starbucks.com 32,063 16,029
www.facebook.com 39,969 13,923
docs.google.com 29,240 11,872
mobileclient.paypal.com 39,214 10,963
api.twitter.com 34,641 10,551
svcs.paypal.com 38,175 9,999

Table 4.5: Top 10 Remote Origins.

that 7,177 of all chains could be verified successfully, while verification failed for 764
chains. Of these non-validating certificate chains, 182 certificates were self-signed; 170
certificates were issued by an unknown CA; 335 certificates were already expired and for
160 certificates hostname verification failed. Table 4.6 gives an overview of the chains
and the affected connections and apps in our data-set.

Verification Result C
on

.

A
pp

s

Chain Ok 40,433 10,176
Self-Signed 1,966 486
Custom CA 269 81
Expired 1,709 546
Hostname Mismatch 870 258

45,247 11,547

Table 4.6: X.509 Certificates Statistics.

We recommend pinning for all of these connections (cf. Section 4.4). We recommend
leaf pinning for the connections that use a self-signed certificate and CA pinning for all
other connections (cf. Table 4.7).

Type Connections Apps
Leaf Pinning 44,978 11,247
CA Pinning 269 81

Table 4.7: Pinning Statistics (Conservative).
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4.6.2.2 Dynamic Origins

While the unique origins in custom code are good candidates for pinning, the majority
of origins for connections in custom code were not hard-coded into the apps at compile
time (cf. Table 4.4). These connections’ origins can depend on different external factors
such as Intents, UI components etc.

For these connections, we distinguish two scenarios:

Conservative. In the conservative scenario, we assume that connections that use
dynamic origins cannot be pinned. This assumption prevents us from over-reporting the
applicability of pinning, but probably underestimates its applicability as well. Assuming
this scenario, 45,247 of the 1,062,810 TLS connections we found in our data-set would
be good pinning candidates, which makes up 4.25%.

Optimistic. In this scenario, we assume some of the 1,973,040 dynamic origins connec-
tions eligible for pinning. We still assume that connections that get their input from
Public Intents, Parcels and UI Components are no good pinning candidates, since the
app developer probably does not have control over the actual origin strings values. That
leaves some of the remaining 1,921,446 connections that depend on dynamic origin
strings eligible for pinning. We assume that – as for the custom code with hard-coded
origins – 16% of all connections are HTTPS connections (cf. Table 4.4), which leaves
us with 307,431 HTTPS connections. If we again assume that, like for the hard-coded
custom code origins, 31.1% of the HTTPS connections can be pinned (cf. Table 4.4),
we can recommend 95,611 connections for pinning. In combination with the 45,247
connections from the conservative scenario, we recommend to pin 140,858 connections
in the optimistic scenario. However, while only 86.33% of all known HTTPS connec-
tions are implemented in third party library code, but 88.07% of our assumed HTTPS
connections happen via third library code, the connections we optimistically recommend
for pinning make up only 3.8% of all (assumed and definite) HTTPS connections (as
opposed to 4.25% for definite HTTPS connections). We can optimistically pin 140,858
connections as opposed to only 45,247 connections in the conservative case. Naturally,
we are unable to specify which pinning strategy we would suggest, but extrapolating
from the conservative scenario i.e. applying the percentages of which pinning strategy is
applicable in the small conservative data-set to the larger data-set, 140,020 cases would
be eligible for leaf pinning, while we would recommend CA pinning for 838 connections.

4.6.3 Update Frequencies

In addition to the strategy classification, a crucial requirement for pinning to work
properly is the possibility to deploy quick updates for apps to distribute new pins. The
applicability of pinning for Android apps in general depends on how quickly developers
can push new certificate pins to their users’ devices. Hence, we were interested in
assessing the frequency for app updates.
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Figure 4.1: Statistics and Classification Results for Apps; Network Access includes apps
with custom-coded, library- and dynamic HTTPS and HTTP connections.

Figure 4.2: Statistics and Classification Results for Connections.
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Although newer Android versions have an auto update feature for apps, this feature
is opt-in. Furthermore, the default is that app updates are only downloaded in case a
device is connected to a WiFi. Hence, even auto-updates are not guaranteed to happen
instantly.

Information about update frequencies is not easily accessible via Google Play. To gain
insights into users’ update behaviour, we cooperated with a popular anti-virus software
vendor for Android with an install base of 5 million devices. Our cooperation partner
runs a telemetry program and gathers user data for all users that participate in that
program. From January 2014 to December 2014, we collected data for 784,721 unique
apps and 871,911 unique users. The 871,911 users that participated in the telemetry
program and gave their consent to anonymously analyze the data for our research yield
the following meta information:

Pseudonym We assigned a 256-bit random pseudonym to each device to protect the
users’ privacy. The pseudonym did not reveal any private information.

DeviceInfo We collected manufacturer- and device model information as well as the
installed Android version.

DeviceFlags We gathered three different flags for every device: (1) Whether developer
options were enabled, (2) whether app installs from untrusted sources were allowed
and (3) whether USB debugging was enabled.

PackageInfo For every (pre-)installed app we gathered the package name and version
code.

PackageHashes For every (pre-)installed app we gathered SHA256 checksums of the
packages and their corresponding signing keys.

Timestamps We gathered timestamps for when we saw an app version installed on a
device.

Our interest focused on third party apps such as facebook or games, as these apps get
updates pushed via Android’s default update mechanism. We excluded Google apps
and device vendor specific apps from our analysis, since these can be updated through
special update channels provided by Google or the device vendor. We identified Google
apps and device vendor apps based on the keys they have been signed with [113].

For third party apps, we found that on average 40% of all users update to a new version
on the release day. Around half of all app users update within the first week after
release and 70% update within 30 days after release. However, to update all devices, on
average 200 days elapse. Figure 4.3 illustrates the average apps update periods.

These numbers illustrate that app updates are unsuitable for security-critical app
components. In case of pinning, half of all users of an app would be unable to use the
app during the first week after the update is released, since the pinning-secured TLS
handshakes would fail 2.

2We assume that apps use TLS-secured connections for critical components and do not work properly
without Internet access.
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Figure 4.3: Average days between the release of a new app version and its installation.

4.6.4 Discussion

Our results have multiple major implications: The majority of TLS connections happen
in third party libraries (86.33%) and another 68.85% of connections are established with
shared hosts. However, although only 4.25% of all TLS connections seem to be good
candidates for pinning, the current situation of only 45 apps that actually implement
pinning leaves much room for improvement. An additional hurdle for deploying pinning
are the lazy update frequencies of many users; losing half of the users for a total of one
week after a certificate (pin) update is unacceptable for both app developers and their
users. To facilitate the use of pinning for eligible developers, we cannot recommend
to hard-code certificate pins into app binaries. Instead, pins should be included via
configuration files that can easily be updated via a secure remote connection. Such an
update mechanism could be enforced immediately and developers would not depend on
the (lazy) update behaviour of their users. An alternative pinning deployment strategy
would be to use multiple origins for a TLS connection, e. g. having pin1.example.com
for one pin version and pin2.example.com for a second version. Both mechanisms
allow for out-of-band pin updates but come with some extra effort on the developers’
side.
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4.7 Developer Support

After conducting a large scale analysis for real world Android apps and the applicability
of pinning, we were also interested in the developers’ point of view as the actors who
actually implement pinning. First, we collected informative feedback from developers to
learn more about their view on pinning. Second, based on their valuable and constructive
feedback, we built a tool that supports developers in the process of deciding whether to
implement pinning and eases the implementation.

4.7.1 Feedback

We analyzed all apps in our sample set and extracted possible candidates for pinning 3.
For those, we extracted the email addresses of the developers from Google Play, taking
care not to create multiple emails for the same recipient, which left us with roughly 3,200
addresses. We emailed a random sample of 500 developers with an introductory email
and the plea to provide us feedback on their experience with pinning, or, if they were
not the developer, to please forward the email to their app’s developer. Our outreach
to developers was intended for a qualitative analysis of their feedback and comments
to be used as the foundation to build our tool. A quantitative analysis was not our
primary focus. We were able to gather 494 responses, of which we manually removed
4 who had answered in a nonsensical way or who clearly did not understand English.
After we analyzed the 45 responses, we had gained insight into the major problem areas,
a saturation of new input was reached and more responses would probably not have
provided more valuable insights.

To build our tool with the best possible feature set and usability in mind, we were
mainly interested in the following aspects:

Knowledge About Pinning. 15 (a third) of our participants stated they knew what
pinning was. We asked them to explain this knowledge, and their replies varied from
correct mentions of “custom, self-signed certificates”, “reduction of the reliance on
intermediate/root certificates, if a intermediate/root gets compromised you don’t.” and
“mobile apps that talk to the same well known server all the time” over “securing the
communication between the app and the server without needing to pay to issuers out
there” to “i don’t know” and confused and/or wrong answers like “when you change the
servers and/or certificates more often”. We rated 80% of the answers as sensible.

Key Result: Only a quarter of the developers who gave us feedback have a basic
understanding of pinning.

3Here we made conservative choices to prevent unnecessarily bothering developers.
4Given the lack of a platform comparable to Amazon Mechanical Turk for software developer studies,

which also means that they donate their time to our research for free, a response rate of 10% seems
quite reasonable.
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Desired Change: More detailed and critical explanation of what pinning is and how
it works as part of the official Android documentation.

Obstacles. Six participants had considered implementing pinning and decided against
it. The reasons ranged from “laziness” over confusion to complaints about the complexity
and the lack of an “out-of-the-box solution”. To the two thirds of our participants
who didn’t know what pinning was, we showed a short explanatory text 5 and asked
them to rate what they imagined could hypothetically keep them from using pinning or
convince them to stay with the standard solution. We showed the same set of possible
reasons to the developers who were informed about pinning and asked how much these
reasons contributed to their not implementing pinning. They ranked “fear of losing
users with old app versions / due to hard TLS fails” the highest, followed by "updates
required when a certificate changes" and “complexity of the implementation”. They said
the standard solution was preferable, because “it is easier”, they “trust in the existing
CA-ecosystem” and “already own CA-signed certificates”, but rather not because of
“employing several different certificates”.

Key Result: Of those who had heard of pinning, 40% had considered implementing it,
but discounted it for being unusable or hard to implement.

Desired Change: Provide concrete sample code for the specific use case or app.

Wishlist We received wishes for “good tutorials and programming examples”, “example
code”, “libraries across platforms”, a “native Android API”, a “test period and simple
implementations” and the possibility to “do the same for the web front-end”.

Key Result: Developers want better tool support and support in the decision process.

Desired Change: Easy-to-use tool support.

4.7.2 Tool Support

The developer feedback confirmed that more tool support is required and requested.
When offering security solutions, we have to keep in mind that developers usually do
not have a strong security focus and are not TLS experts, therefore, choosing and
implementing secure solutions must be made as easy as possible. To this end, we built a
tool that supports developers with implementing secure certificate validation in general;
it additionally helps to decide whether pinning is the appropriate strategy. We made
a web application publicly accessible at https://pinning.android-ssl.org/6,

5taken and adapted from www.owasp.org
6The infrastructure this work depends on is not available anymore as well as the framework imple-

mentation is no longer functional and not compatible with newer Android versions. Here, we therefore
refer to the source code [228].
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which we base on our classification framework, the evaluation results and the developer
study’s results. We chose to implement our tool as a web application, since it is easily
accessible and allows to keep the data backend up-to-date.

Developers and app users can upload APK files and have results presented to them
in a clear web interface. First of all, the developers need to upload their app’s APK
file, whereupon the web application conducts all required information extraction steps
(cf. Section 4.4) and presents the developer with an overview of relevant API calls and
the corresponding remote origins that could be extracted. To increase accuracy, in the
next step the developers are asked (1) whether they hold ownership for the relevant
API calls and (2) whether they control the TLS configuration for the extracted remote
origins (to keep the workflow as simple as possible and not overcharge the developer
with unnecessary information, we filter out well known libraries and popular origins).
Involving developers into the decision process is especially important in cases where
automatic classification might not reveal accurate results, such as for configured origins
(cf. Section 4.4).

Finally, the strategy classification is conducted and we present the developer with our
recommendation for making their connections as secure as possible. In case the default
strategy was selected, we do not recommend the developer to take further action. In
case leaf or CA pinning is recommended, the developers are encouraged to increase their
app’s security by implementing pinning. However, we also inform the developers about
the downsides of pinning in terms of updatability of certificate pins (cf. Section 4.6.3).
In a last step, the developer is offered support for implementing pinning.

For any given relevant API call and the corresponding remote origin, concrete example
code for pinning is generated over the following steps:

1. The remote origin’s certificate is fetched and the corresponding pin is computed.
2. A PinningTrustManager that uses the pin for certificate validation is gener-

ated.
3. Surrounding code that includes the PinningTrustManager into the relevant

API calls is generated, e.g. for an HTTPSUrlConnection, an SSLContext is
generated that is initialized with the given PinningTrustManager.

The developer can then simply include this scaffold into the app and profit from a higher
level of security. We asked the interested developers who left their contact information
in our developer study to test our web application; 7 participated and gave positive
feedback on its usability.

4.8 Limitations

In addition to the limitations described in Section 4.5.5, our work has three more
limiations.
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First, the update behaviour analysis we conducted for the users that participated in the
AV’s telemetry program might not necessarily represent the global update behaviour.
However, we think that security affine users who install anti-virus software on their
devices have a tendency to update their software more quickly than average users.
Therefore, update frequencies for the global Android user population might be even
worse.

Second, the feedback we got from app developers was based on self-reporting and might
be influenced by a self-selection bias. Since we emailed developers who our classification
framework had identified as good candidates for pinning, but offered them no incentive
for taking part in our survey, we could only work with the developers who responded,
leaving us with an opt-in bias. However, this is best practice for getting feedback from
developers.

Third, our tool is currently implemented as a web service and a standalone command
line tool. In the future, it would be reasonable to include the classification and
recommendation process into the publication process in Google Play: An uploaded
APK file could be run through the tool and unpinned but pinnable connections could
be pointed out to the respective developer or pinned automatically via a library.

4.9 Conclusion

We conducted an extensive analysis on the applicability of pinning as an alternative
and more secure certificate validation mechanism for non-browser software. Therefore,
we analyzed 639,283 Android apps of which 229,317 (35.9%) use TLS to secure network
connections and conservatively recommend pinning for 11,547 (1.8%) of all apps, or
5.0% of the apps that use TLS. This corresponds to 20,020,535 connections, of which
1,062,810 (5.3%) use TLS, of which 45,247 (4.25%) are conservatively recommendable
for pinning. Optimistically, including estimates for unclassified connections as well
as connections depending on dynamic code loading, we are able to suggest 140,858
connections or 58,817 (9.1%) apps to take pinning into consideration.

This contradicts the common assumption that pinning is a widely applicable solution for
making TLS certificate validation in non-browser software more secure. Of the 229,317
apps we analyzed that make use of TLS to secure (some of) their network connections,
203,159 (88.6%) establish TLS connections via third-party libraries.

While we find that pinning is applicable only for relatively few apps and their TLS
connections, a nominal-actual comparison illustrates that there is room for improving
the current situation, as only 45 of the 11,481 apps that could benefit from pinning
actually implement it. To help us understand affected developers and design a solution,
we conducted a qualitative study with 45 developers, where we learned that pinning
is relatively unknown and often neglected due to usability problems. These results
incentivized us to build an easy-to-use web-application to support developers in the
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decision making process and guide them through the implementation of pinning for
appropriate connections.

Our work concludes with the following take-aways:

Poor Support for Pinning. The Android API lacks sufficient support for pinning:
For low-level APIs, developers have to implement their own certificate validation and
need detailed knowledge regarding pinning. For higher level APIs, support for pinning
is missing entirely.

Limited Applicability. The application of pinning in non-browser software such as
apps is very limited: We recommend pinning for only 5.0% of the 229,317 TLS-enabled
Android apps we analyzed.

Developer Education. Developer feedback showed that only a third of the developers
who could have implemented pinning had heard of it before. Pinning seems to be
confusing and developers misinformed. In the future, better developer education is
required as well as better developer support.

Security Updates. Our analysis of update periods for Android apps suggests that
Android requires mechanisms to quickly deploy security updates in the future (cf.
Section 4.6.3).

Pinning Implementation. The current Android documentation recommends to
include pinning information at compile time, i. e. the recommendation is to add pins to
the source code of an app. However, our analysis of the update behaviour of Android
users suggests that developers should not implement certificate pins into an app’s binary.
Instead, we recommend to set pins via configuration files that are only accessible by the
respective app.

4.10 Summary

In this chapter, we investigated to which extent developers of Android apps are suppos-
edly able to implement pinning in their apps. For this we identified and formalized key
requirements for pinning to be applicable. Based on this formalization we conducted a
large scale static analysis. As a result, we, however, only found a limited applicability
for pinning. Reasons for this are most strikingly related to third party ownership of
origins or code. While lack of control over code that initiates an HTTP/HTTPS request
makes it impossible to introduce pinning, lack of control over respective origins’ server
configuration makes it infeasible if or at least harder to maintain certificate pins. But
even with control over both, code and origins, the effort for maintenance required to
keep certificate pins up-to-date on users’ devices is still tremendous, especially in case of
emergency situations such as lost or theft of private key information that make prompt

59



CHAPTER 4. DEVELOPERS: EXPLORING APPLICABILITY OF PINNING

reaction and deployment of updated pinning pin indispensable. This effort required,
of course, increases relative to the number of installations. With telemetry data from
real Android device users, here, we derived an prodigiously long period of time that
is required for successfully deploying changes to users which imposes an additional
challenge that needs to be tackled. Our study underlines previous works’ findings that
developers are no security experts as our results show that only a minority actually
grasps the concept of pinning. This makes pinning a viable choice most likely only for a
rather limited number of developers and apps.

Aligning our results to the state of the TLS ecosystem and strategies for mitigation
in regards to the browser landscape shows that our findings for mobile apps are in
line with these pertaining to pinning. Here, with the introduction of HPKP, a notion
of pinning for server operators was introduced for browsers (cf. 2.4.3.3). However, in
line with our results on a limited applicability of pinning in apps, there is only scarce
adoption of HPKP [161]. Analogue as the obstacles and challenges that we identified, the
configuration and maintenance of HPKP turned out to be similarly cumbersome [162].
Even more, the use of HPKP has been found to cause more severe problems than it
provides protections against MitMAs due to CA breaches. In addition, it can even
lead to hard TLS fails, making website unavailable for users. Therefore, HPKP as a
protection mechanism against MitMAs failed as an effective security measure in browser
software. This led to an early deprecation of HPKP and continuing development on
improvements for security in the CA-PKI system (cf. 2.4.3.3). This is vastly in line
with our findings for the mobile landscape. There is indeed a likewise limited range of
situations that constitute compelling arguments for the use of pinning based on the
imposed complexity to implement pinning and the burden of ongoing maintenance. This
refutes the previous assumption of pinning as a panacea for problems related to the TLS
ecosystem. Moreover, developers, apart from limited knowledge of pinning, miss better
tool support but also abstain from pinning because of usability problems as well as fear of
hard TLS fails for users. Still, however, where applicable, at least a tool as proposed by us
could help to prevent dramatic vulnerabilities as uncovered by previous work [114, 126].
Furthermore, since the time of this analysis, support for pinning has been introduced
as part of third party libraries like e.g. OkHttp [79]. Later on in 2016, however, flaws
have even been found in the pinning implementation of OkHttp [184]. Thus, even with
library support, the usage of pinning can still be error-prone. To address such problems,
in the ongoing evolution of Android, configuration-driven platform support for pinning
is introduced with Android 7 among further security measures for enhancing network
security in Android apps. Chapter 6 will feature an in-depth analysis of these. In
addition, however, apart from pinning and custom TLS, our results also give hints to
the overall adoption of HTTPS in Android apps since we find a majority of extracted
connections to still use HTTP (cf. Table 4.2). Pertaining to the observation that large
amounts of network operations are issued in shared code and relate to shared origins,
we can theorize that developers’ general impact on network security is limited as they
are not able to enhance security for origins and code that they have no control over.

From this, we will next speculate that developers with more control over network
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connections of apps and more power to maintain can have a larger impact in regards to
enhancing network security when being able to upgrade to HTTPS. One particular group
of apps – namely apps created with so-called Online Application Generators (OAGs) –
supposedly features these properties. These services allow their customers to completely
externalize the process of app creation. Especially in hindsight to communication
with back end servers, OAGs have complete control and thus makes deployment and
maintenance of secure solutions including the adoption easier. Therefore, in the following
chapter, we will also elaborate on the role of app generators and their security impact
especially with regard to network security.

61





5
App Generators

Externalizing security decisions to 3rd Parties

63





5.1. INTRODUCTION AND CONTRIBUTIONS

5.1 Introduction and Contributions

The proliferation of online application generators (OAGs) that automate development,
distribution and maintenance of mobile apps significantly lowers the level of technical
skill that is required for application development. As a consequence, creating platform-
specific apps becomes amenable to a wide range of inexperienced developers. This trend
that developers with “little or no coding or software engineering background” [123]
create software with low-code or no-code platforms has become known as citizen
developers [123, 164] and has recently received tremendous momentum across the
industry. Moreover, many OAGs additionally promise to decrease the app’s overall
development and maintenance costs since they offer functionality for taking care of
various tasks across all phases of an app’s life cycle. On our path to assess different
platform actors’ capabilities for enhancing network security, OAGs seem to be predestined
as they relief developers from nearly all responsibilities as related to make security
decisions and make app development far more convenient.

However, this convenience comes at the cost of an opaque generation process in which
the user/developer has to fully trust the generated code in terms of security and
privacy. A large body of literature has revealed various security problems in mobile
apps, such as permission management [116], insecure TLS deployment [114, 238], misuse
of cryptographic APIs [106], and inter-process communication [82]. These flaws could be
attributed to poorly trained app developers that implemented application features in an
insecure manner. With the increasing use of OAGs the duty of generating secure code
shifts away from the app developer to the generator service. This leaves the question
whether OAGs can provide safe and privacy-preserving default implementations of
common tasks to generate more secure apps at an unprecedented scale. However, if
they fail, their amplification effect will have a drastic negative impact on the already
concerning state of security in mobile apps. As of now, the security implications of
OAGs have not been systematically investigated yet, and, in particular, their impact on
the security of the overall app ecosystem remains an open question: “Do online app
generators have a positive or negative impact on the overall app ecosystem?”

Our contribution. In this work, we present the first classification of commonly used
OAGs for Android apps on various characteristics including their supported workflows,
automation of the app development life cycle and multi-platform support. We proceed
by showing how to uniquely fingerprint generated apps in order to link them back to
their generator. We thereby quantify the market penetration of these OAGs based
on a corpus of 2,291,898 free Android apps from Google Play and discover that at
least 11.1% of these apps were created using online services. This noticeable market
penetration already shows that potential security mistakes and misconduct by OAGs
would impact thousands of apps and impose a danger for the overall health of the
Android ecosystem.

Analyzing the security of OAGs is non-trivial due to the absence of a documentation of
the development process. Instead, these services offer a fully-automated, opaque app
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generation process without the possibility to write custom code. App developers have to
fully trust that the generated code follows security best practices and does not violate
the end-users’ privacy. In order to shed light onto the black-box generation process,
we perform a comprehensive security audit on apps created by these services using a
combination of dynamic, static, and manual analysis. This allows us to document their
internal workflow and to discover a new app generation model based on boilerplate
code. We then demonstrate that 7 out of 13 analyzed online application generators
fail to defend against reconfiguration attacks, thus opening new attack surfaces of
their generated apps. We further analyze whether the generated boilerplate code
adheres to Android security best practices and whether it suffers from known security
vulnerabilities identified by prior research. Our results, both on self-generated apps as
well as apps randomly picked from Google Play, suggest that OAGs are responsible for
producing vulnerable code including SSL/TLS verification errors, insecure WebViews,
code injection vulnerabilities and misuse of cryptographic APIs. Within our data set, all
analyzed application generators suffer from at least one of these vulnerabilities, combined
affecting more than 250K apps on Google Play. Finally, we have a dedicated look onto
the services’ infrastructure security. Online service-generated apps are typically bound
to their providers’ backend servers, e.g. for license checks when the service charges
a monthly fee. In addition, some services even provide complete user-management
modules that require connections to backend servers. Any of this functionality requires
a secure client-server communication since either sensitive (user) data is exchanged
or configuration files for the boilerplate code is transmitted. However, our analysis
reveals that many services build on an insecure and vulnerable infrastructure, e.g. by
using insecure TLS server configurations, mixed usage of HTTP/HTTPS and usage of
outdated TLS libraries.

We conclude with a thorough discussion of our findings, including potential alleys
worth pursuing in future research on generating secure code for such module-based app
builders. In summary, we make the following tangible contributions:

• We present the first classification of commonly used OAGs for Android, accounting
for various characteristics such as the supported workflows, automation of the app
development life cycle, multi-platform support, and their boilerplate-based app
generation model.

• We show how to fingerprint generated apps and how to quantify the market
penetration of OAGs by classifying 2,291,898 free apps from Google Play: at least
255,216 apps (11.1%) are generated using OAGs.

• We derive OAG-specific attacks, such as reconfiguration and infrastructure attacks
and show how these services fail in protecting against these attacks.

• We conduct a comprehensive security audit to show that boilerplate code generated
by any of the analyzed services violates security best practices and contains severe
security vulnerabilities. To estimate the real-world impact, we validate our findings
on real, generated apps on Play.
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Figure 5.1: Software development workflow with standalone frameworks.

Outline. This chapter is organized as follows. We give a general overview of mobile app
generators in Section 5.2 and a classification of commonly used OAGs in Section 5.3. We
describe the methodology of our security audit in Section 5.4, present new, OAG-specific
attack classes in Section 5.5 and analyze known security issues in Section 5.6. Finally,
we thoroughly discuss our findings in Section 5.7, before concluding in Section 5.8.

5.2 Overview of Mobile AppGens

Application generators are tools for partially or even completely automating app devel-
opment, distribution, and maintenance. The advantages of using application generators
are manifold. First, they enable developers to abstract away from implementation
aspects and to instead focus only on the conceptual behavior of the application in
terms of high-level functionality. Second, they provide functionality beyond core app
generation, including support for app compilation, app dissemination, and distribution
of patched versions. Third, they offer support for making an app equally applicable
to multiple competing architectures, such as Android and iOS. Finally, they may even
provide support for recurring, extended app functionality such as user management,
user login, and data submission to back-end servers. In this section, we give an overview
of commonly used AppGen types within the Android ecosystem based on their sup-
ported workflows. Our investigation resulted in three distinct categories of application
generators: standalone frameworks, online services, and software development services
that we dub Developer-as-a-Service as explained in the following.
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5.2.1 Standalone frameworks

Standalone Frameworks (SAFs) constitute tools that offer a core set of abstract applica-
tion functionality which are then refined by additional code from the app developer.
These frameworks typically expect a program written in a platform-independent lan-
guage as input, e.g., JavaScript and HTML, or C#, and then package user-provided
code together with an execution engine into a native app. Many of those frameworks
offer plugins that provide commonly used functionality (e.g., in-app browsers or adver-
tisement) or even skeletons for entire apps, which are provided by plugin developers.
While these frameworks assist in the creation of an app, they offer little to no support
for further phases of an app’s life cycle such as app dissemination and distribution of
patched versions. To date, these unsupported tasks are typically performed by the app
developer. Prominent examples of standalone frameworks are Xamarin [307], Apache
Cordova [30], PhoneGap [30], and Titanium SDK [35].

Security responsibilities: In this setting, in contrast to the traditional workflow,
not only the app developer is responsible for adhering to security best practices and
avoiding security vulnerabilities, but also the plugin developer carries responsibility
for the security of offered plugins. Figure 5.1 depicts the developing workflow of SAFs.
While SAFs aim at lowering the entry barriers for mobile app development for developers
with some programming background, prior research and incidents show that some of
these require additional developer action to adhere to safe defaults or offer switches that
allow to deactivate these undiscerningly without further warning. One such example is
the Titanium SDK. Here, in 2012, Fahl et al. [115] uncovered that iOS apps created
with the Titanium SDK have secure certificate validation logic turned off by default
with developers having to activate it on their own. [275, 2] In their interview study with
developers, Fahl et al. [115] found that developers were not of this in order for their app
to adhere to safe defaults. Likewise, a plugin for PhoneGap/Apache Cordova featured a
switch for easily deactivating the correct default certificate validation logic in Android
and iOS as a mean for allowing self-signed certificates during development. [235, 1] This,
however, led to the danger of developers forgetting to remove for production. Both
cases already indicate While targeted at non-experts, these settings introduce severe
risks and dangers that can massively harm network security of apps and render them
vulnerable to MitMAs. Therefore, we cannot derive a pre-assumption as to having
impact regarding enhancing adherence to security best practices and network security
as for these, developers mostly remain in charge for making security decisions. On this,
we already elaborated in Chapter 4.

5.2.2 Online Services

Online services or online application generators (OAGs) enable app development using
wizard-like, point-and-click web interfaces in which developers only need to add and
suitably interconnect UI elements that represent application components (e.g., email or
login forms, in-app browser, QR scanner, social networking widgets, etc.). There is no
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Figure 5.2: Software development workflow with online services.

need and typically also no option to write custom code. For some of these components,
they may even provide the necessary infrastructure such as user management, user login,
and data submission to back-end servers maintained by the service provider. These
online service tools are thus accessible even for laymen developers that lack any prior
experience in app development. Moreover, online services offer support for automatically
distributing apps over popular channels such as the Google Play Store. In addition
to extensively supporting core tasks of the software development life cycle, online
services provide business intelligence and analysis features such as audience reports and
dashboard for analytics. Prominent examples of online services are Andromo [29] and
Biznessapps [67].

Security responsibilities: Figure 5.2 gives an overview of the app creation process. In
the setting of an online service application generator, the customer usually relinquishes
any kind of control over the produced code and outsources the app generation to the
online services. Thus, the online service and by extension its service developers are
responsible for implementing a code generator that produces apps adhering to best
practices and without security vulnerabilities. Even more, app functionality might
also depend on an OAG’s server infrastructure. Hence, assuring network security is
also a principal responsibility of OAGs. Prior work has not yet featured an in-depth
analysis on this development model except for Acar et al.’s [9] Poster which constitutes
preliminary work to what we will present here (cf. 3.2.2). In the remainder of this
work, we will therefore investigate the role of OAGs in the Android ecosystem and their
security impact.
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Figure 5.3: Software development workflow with Developer-as-a-Service.

5.2.3 Developer-as-a-Service

Lastly, Developer-as-a-Service (DaaS) does not even expect developers to contribute to
the technical development of an app. Instead, the developer rather acts as a customer
that orders the whole app creation from a contracted app development service, which
then delegates the app creation to a team of app developers that are expected to
develop the application based on a set of explicitly spelled out customer requirements.
Such requirements are typically collected over the phone or via emails. Widely known
examples are CrowdCompass [96] and QuickMobile [242], services specialized to create
customized event and conference apps.

Security responsibilities: In many aspects this setting is similar to the traditional
workflow in which app developers create an app. Figure 5.3 serves to illustrate this.
However, in order to serve a large number of customers, such app development services
commonly use internally a custom, home-brewed app development frameworks and
templates to better streamline the production of apps. Thus, the app developers of the
development service are primarily responsible for ensuring the security of the produced
app. Likewise, we already elaborated on developers in Chapter 4.

5.3 Online App Generators

This section presents a classification of apps of commonly used OAGs and an analysis
of market penetration and characterization of OAG-generated apps.
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Table 5.1: Classification and fingerprinting of online services sorted by category and
app count. For each AppGen, we found multiple distinguishing fingerprint features,
but, in all cases, a single feature is already sufficient to uniquely classify an application
generator.
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Seattle Cloud [254] 60,314
Andromo [29] 45,850
Apps Geyser [48] 29,190
Biznessapps [67] 27,130
Appinventor [39] 25,338
AppYet [51] 15,281
Como [91] 10,894
Tobit Chayns [278] 8,242
Mobincube [215] 8,074
Appy Pie [50] 4,445
Appmachine [43] 4,409
Good Barber [132] 3,622
Shoutem [259] 2,638
App Yourself [34] 2,273
Mippin [212] 1,785
Apps Builder [47] 1,191
Appmakr [44] 1,058
appery.io [37] 846
Apps Bar [46] 700
Mobile Roadie [214] 581
App Gyver [32] 386
Appconfector [36] 337
Rho Mobile [250] 216
Appsme [49] 158
App Titan [33] 152
Applicationcraft [42] 100
Paradise Apps [232] 3
Eachscape [105] 3

= yes/applies; ; = applies partly; = no/does not apply
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5.3.1 Classification

We used Google search queries to identify a rich set of common application generators.
More concretely, we simulated a user who is searching for an application generator using
search terms including but not limited to: “app maker android”, “android generate app”,
and “{business, free, diy, mobile} (android) app {generator, creator, maker}”. For each
result, we selected the first five entries after removing duplicates. We also issued queries
to online resources that offer technical and popularity reviews of application generators
such as Appindex [38], Werockyourweb [304], Quora [303] , and Businessnewsdaily [258].
We excluded non-online-services and application generators from our analysis, when
we were not able to meaningfully assess their market penetration, i.e., we could not
determine whether any available app was generated using these particular application
generators, see Section 5.3.2.

We have classified all application generators along four dimensions: freeware, multi-
platform support, components, and publishing, see the columns on “Classification” in
Table 5.1.

Freeware. Some application generators can be freely used ( ), while others require a
monetary investment ( ).

Multi-platform support. While traditional app development requires developers to
write distinct apps for each mobile platform like Android, iOS, and Windows Mobile,
many application generators allow developers to develop for one platform and then
automatically generate “native” apps for additional platforms ( ). We write ( ) if this
multi-platform functionality is not provided.

Components. Many application generators offer supplementary components for com-
mon tasks such as ads, app analytics, crash reporting, and user management. We
write ( ) if features can be conveniently added via simple web forms, e.g. by means
of checkboxes; ( ) if users have to rely on visual programming interfaces to add and
remove features; and ( ) if supplementary components are not offered.

Publishing support. Conventional app development requires developers to write
code, compile, and sign an APK, and then distribute it to their users. While writing
code, compiling and signing an APK is arguably a smooth process using dedicated
IDEs (e.g., Android Studio), app distribution usually requires further manual effort:
register a Google Play account (or an account for an alternative market), upload the app,
add description text and publish. Some application generators offer to automate this
complete chain from producing and signing an app to publishing it on one or multiple
markets ( ) , while others only automate parts of this support chain( ) or do not offer
support at all ( ).
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5.3.2 Fingerprinting Application Generators

Once we established and classified our set of online services, we aimed at quantifying the
market penetration of the individual application generators. To do this in a meaningful
manner without relying on bold marketing claims, we identify the number of Android
apps generated by the individual application generators. To this end, we first identified
unique features of application generators as fingerprints, and then used these features to
classify a large corpus of 2,291,898 unique free Android apps. We collected these apps
from the Google Play Store between August 2015 and May 2017 using a crawler. The
crawler starts with a set of URL seeds and subsequently follows the recommendation
links to explore the store. Our crawler revisits previously found apps once per day and
downloads them only if new versions are available. Our analysis considered only the
latest version of each app.

5.3.2.1 Features

We extracted unique features of application generators using differential analysis between
a baseline app1 and sample apps from each application generator. We then manually
reverse-engineered all sample apps and created a diff between our baseline app and the
sample apps based on the components of a typical Android app. To create this diff, we
first analyzed the composition of an Android app, and then identified all parts that
can be used to tell apart generated apps and manually developed apps. Our analysis
resulted in the following four features (the latter two can be sub-classified, totaling six
distinct Fingerprinting Features, see Table 5.1):

App Package Names. The first distinctive feature of apps is the app package
name. Package names are unique text strings that are used by Google Play to
unambiguously identify apps. Application generators often use patterns for gener-
ated apps that in turn can be used as a distinctive feature, e.g., com.Tobit.* or
{com|net}.andromo.dev*.

Code Namespaces. Java code is organized in namespaces and similar to package
names, application generators may use particular namespaces that we can lever-
age for our classification. Andromo apps, for example, include code namespaces
that contain the substring .andromo.dev or the prefix com.andromo. A simi-
lar example are Tobit Chayns apps, which include code namespaces with the pre-
fix com.Tobit.android.slitte.Slitte. In contrast, Apps Geyser apps include
code namespaces with the prefix com.w*, which is not suitable for classification purposes
due to its ambiguity (see Section 5.3.2.2 for further details).

1We used the default Android IDE Android Studio to create a single-activity “Hello World” Android
app that did not include any external third-party library
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Signing Keys. Before uploading an app to Google Play, APKs must be digitally signed.
This is a security mechanism to ensure that app updates are distributed by the same
entity (e.g., developer). A single key is often used to sign multiple apps, e.g., Seattle
Cloud uses a unique key to sign all its apps. We can use this single-key pattern to
fingerprint the application generator. Whenever application generators use distinct keys,
we can still use further information about the certificate to fingerprint the app, e.g., if
all keys have the same subject. AppYet apps, for instance, all share the same certificate
subject /C=CA /ST=ON /L=Oakville /O=AppYet /CN=www.appyet.com.

Files. In addition to an app’s code, apps include a list of files such as images,
CSS, or configuration files. These files can be used for the classification as well.
For example, AppyPie apps include the file appypie.xml in the assets/www app
folder. We moreover use file content for the classification, e.g., we identify AppsGeyser
apps, by verifying whether the elements <webWidget> and <registeredUrl> of
res/raw/configuration.xml contain the URL appgeyser.com.

5.3.2.2 Methodology

We start our classification by extracting the aforementioned features from our set of
sample apps. We discovered that for each AppGen there are multiple distinguishing
features that allow to link the app back to its generator. We further found that in
all cases a single feature would already be sufficient to unambiguously determine the
originating service. The overall classification of application generators with respect to
their features is depicted in Table 5.1 in the “Fingerprinting Features” columns.

As an orthogonal investigation, we also fingerprinted apps that have not been created by
means of application generators. In this analysis, we considered the two major platforms
for Android app development: Eclipse ADT [13]—support ended in August 2015—and
Android Studio [211].We manually investigated apps developed with both IDEs similarly
as described for application generators. Our analysis revealed that Android Studio apps
can reliably be identified based on the files’ structure. Apps developed and compiled
with Android Studio include a folder res/mipmap that stores launcher images. This
folder structure was introduced in Android Studio 1.1 [133].In contrast, we could not
find any reliable identification feature for Eclipse ADT apps. To avoid false positives,
we limited our analyses to application generators apps and Android Studio apps we
could reliably identify.

5.3.3 Market Penetration

Our app corpus currently consists of 2,291,898 free apps from Google Play. We managed
to successfully classify 255,216 (11.14%) of these apps using our feature detection as
generated by OAGs. This is a lower bound based on the OAGs we could reliably identify,
since OAGs not considered in our classification might be responsible for additional apps.
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Figure 5.4: Download counts for all apps from the top 5 OAGs using buckets provided
by Google Play.

Based on meta data from Google Play, these generated apps account for more than
1.14 bn downloads. Detailed app counts per online service can be found in the market
column of Table 5.1. The numbers suggest that the majority of OAGs is responsible
only for a small fraction of the set of generated apps. In contrast, the five most popular
OAGs account for 73% of all generated apps, i.e., 8.12% of our corpus. While the many
OAG-generated apps have a small user base, there is also a larger number (>17k apps )
with a significant number of at least 10,000 downloads (see Figure 5.4). Reasons for
this distribution of download counts originate in the limited set of functionality offered
by these services as opposed to traditional app development. In the following, we
characterize OAG-generated apps based on the offered functionality.
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Figure 5.5: Distribution of OAG generated apps by Google Play store categories. The
Unknown category is for apps that are not classified by the Google Play store

5.3.4 OAG App Characterization

To better understand the potential complexity of the application logic that can be
implemented with OAGs, we inspected online services’ development IDEs to count the
number and types of app components that can be connected to implement the indented
logic. We call component an app element with a UI and that implements a specific task or
functionality. For example, components can be simple UI elements (e.g., buttons, forms,
views) or complex modules/plugins (e.g., QR scanners, calendar views, and login forms).
The number of components varies across OAGs and it ranges from 12 of AppYet to 128
components of Seattle Cloud. This variety indicates the level of customization that each
OAG offers. We also observed a great variety of components. For example, Biznessapps
offers 48 components all suitable for business apps, e.g., membership management,
mortgage calculator, and loyalty program management components. Another interesting
example is Seattle Cloud which provides general-purpose components including simple
UI elements such as menu items and image areas, as well as complex ones such as
complete PDF readers and barcode scanners.

This variety is also reflected in the different app categories on Google Play. The app
category is a string value in the app metadata retrieved by our crawlers that identify

76



5.4. ANALYSIS METHODOLOGY

the type of app 2.The ten most popular categories of OAG-generated apps are shown in
Figure 5.5. These categories cover apps with non-trivial logic such as Business (e.g.,
document editor/reader, email management, or job search apps), Entertainment (e.g.,
streaming video apps), and Games. These categories contain all of the top nine OAG
apps with 5M+ downloads. An interesting aspect is that different OAG dominate
different app categories, thus suggesting product specialization. For example, the most
popular category of Seattle Cloud is Entertainment with 11,073 apps, whereas the most
popular category for Biznessapps is Business with 9,030 apps.

5.4 Analysis Methodology

We now focus on the security of apps generated with OAGs. The naive approach to
analyze the security of our dataset is to test all apps systematically. However, we observe
that OAG apps are produced in a streamlined process in which app developers do not
contribute with source code. We thus hypothesize that the apps share an OAG-specific
boilerplate code and, as a consequence, either all generated apps share a vulnerability or
none. Accordingly, we first identify the app generation model for each OAG, before we
analyze the security of the boilerplate code on both self-generated apps and apps from
Google Play.

5.4.1 Boilerplate App Model

To identify boilerplate apps, we first build the ground truth with self-generated apps
for different OAG. To this end, we select the thirteen most popular OAGs based on
their market penetration in Table 5.1 and register as a customer. Among these, six
online services (Appmachine, Apps Builder, Biznessapps, Como, Seattle Cloud, and
GoodBarber) required us to pay a subscription fee to be able to generate apps and to
rent backend resources, such as user management. For each online service we create the
same three custom apps to test whether targeted code is generated depending on the
selected modules or whether boilerplate code with an app-specific configuration file is
output. We create the three custom apps as follows:

• App1: The first app constitutes the minimal app, i.e. the smallest app that can
be generated in terms of functionality. In most cases, this app just displays a
“Hello World” message to the user.

• App2: Builds on the minimal app but additionally performs web requests to a
web server we control. We perform both HTTP and HTTPS requests to analyze
the transferred plaintext data and to test whether we can inject malicious code
and emulate web-to-app attacks [127, 83, 203].

2A complete list of categories and descriptions can be found at [84]
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• App3: The third app implements either a user login or a form to submit user data
to our server (if the application generator provides modules for such functionality).
We chose such common functionality as it is supported by the majority of AppGens
and because handling user data usually requires special care in terms of security.
In our test set, Appinventor, Biznessapps, and Como did not offer such additional
modules.

To test whether an AppGen generates boilerplate code or module-dependent code we
analyze the bytecode file(s) of App1–App3 as well as 10 randomly selected apps from
Google Play for each service. In the majority of cases, it is sufficient to compare the
hash value of the classes.dex bytecode file to show that different apps have the exact
same code. If the file hash differs we compute a Merkle hash tree over the class hierarchy
including package, class and method instruction information to quickly estimate the code
overlap (thereby following a similar approach to the one to detect third-party libraries
in [57]). The results confirm our observation in which apps generated with OAG are
based on a common boilerplate code. In particular, we can derive two distinct generation
techniques: monolithic boilerplate apps with configuration files and module-dependent
boilerplate code (see Table 5.2).

5.4.1.1 Monolithic Boilerplate Code

All but two online services generate apps with the exact same application bytecode, i.e.
apps include code for all supported modules with additional logic for layout transitions
independent of what the app developer has selected. Apps only differ in a configuration
file that is either statically included in the apk file or dynamically loaded at runtime.
Some OAGs support both options, e.g. to deliver app updates as config file updates
without the need to change the apk file. Further this allows to bind the app to the service
providers’ backend servers. In this scenario, apks only need to be updated when the
online service changes its boilerplate code. Boilerplate apps can be sub-categorized into
pure native applications, i.e., these apps include dex bytecode and optionally libraries
written in C/C++ (see category A.1), and hybrid applications combining bytecode
with HTML/JS (A.2). For HTML/JS apps, bridge code is generated to interact with
the Android middleware, while HTML and Javascript is used to render the apps’ user
interface in a WebView.

5.4.1.2 Module-dependent Boilerplate Code

Two online services, Andromo and Appinventor, generate module-dependent boilerplate
code for apps, i.e., only the boilerplate code for modules enabled/added by the app
developer is stored within the apk file. Hence, apps share the same code for individual
modules, but the set of enabled modules might differ. Module-dependent code requires
a more complex app generation process for the online service provider, however, the
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Table 5.2: OAGs grouped by generation model: Monolithic boilerplate apps with
static/dynamic configuration files and module-dependent boilerplate apps.

A. Monolithic Boilerplate Code
Static config Dynamic config

A.1 Native application
Apps Builder
Appmachine —
Biznessapps —
GoodBarber
Mobincube

A.2 HTML + Native app
Apps Geyser —
Appy Pie
AppYet —
Como
Seattle Cloud
Tobit Chayns —

B. Module-dependent Boilerplate Code
Andromo
Appinventor

= static config in plain / dyn. config loaded via HTTP
= static config decryptable / HTTPS downgrade

= static config encrypted / dyn. config loaded via HTTPS
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generated apk is tailored to the configured modules and the chosen layout. The app
semantics are not controlled by a pre-defined configuration file. While Andromo’s app
assembly is close to those of the other AppGens, Appinventor builds on GNU Kawa
and offers, besides modules, a kind of visual programming to give the app developer
the choice to implement if-then-else conditions and loops on a high-level. This gives
the app developer a bit more freedom in customizing the application but has a slightly
steeper learning curve for citizen developers.

5.4.2 Security Audit

Following the initial analysis of the app generation model, we then conduct a security
audit on the generated boilerplate code. To this end, we follow a dynamic-static
approach. We leverage dynamic testing to monitor the test apps’ runtime behavior, e.g.,
obtain traces of the contacted domains during execution and check the possibility of
eavesdropping or modifying those connections. We complement our tests with static
analysis (e.g., control-flow graphs, program slicing, backtracking) to overcome the
limitations of dynamic analysis, e.g., code coverage. Similar to the analysis of the
boilerplate app model, we start our analysis with the self-generated apps of Section 5.4.1.
To remove any bias from our set of self-generated apps, we cross-validate our findings
with 10 randomly selected apps of the same OAG (=130 apps in total), drawn from
our Google Play app corpus. Finally, as the configuration of apps can be provided
dynamically by OAG’s service, we extend our analysis to the OAG backend servers and
the client-server communication.

Our analysis identifies two new attack vectors which are specific to the OAG generated
apps, specifically reconfiguration and infrastructure attacks. We present these attacks
in Section 5.5. We then test the boilerplate apps for well-known security issues such as
code injection vulnerabilities and insecure WebViews. The results of this analysis are
presented in Section 5.6.

5.5 OAG-specific Attack Vectors

Given the inherently different generation model as compared to traditional app creation,
we now describe new OAG-specific attack vectors—Application infrastructure attacks
that apply to all OAGs and app reconfiguration attacks that apply to OAGs with
monolithic boilerplate code only—and illustrate weaknesses that we found during our
security audit.
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5.5.1 Application Reconfiguration Attacks

In our set of tested OAGs (see Table 5.2), 5/11 services use either static or dynamically
loaded config files exclusively, while the remaining six OAGs use an hybrid approach.
Dynamically loaded configs have the advantage that apps can be updated on-the-fly
without having to download an updated apk file from an app store. Changes are instantly
pushed onto the end-users’ devices on startup. However, two AppGens—Tobit Chayns
and Biznessapps—do not persist their config locally and thus require a permanent
Internet connection to work. As an example, Biznessapps—a paid service—uses this as
a license enforcement mechanism, i.e., app functionality is disabled via the config file as
soon as the app developer no longer holds a valid license. In general, we found that
these configuration files carry any app-specific data, potentially including the entire
business logic of the app and secret credentials. Hence, there is a strong incentive to
carefully protect this file in terms of integrity and confidentiality.

5.5.1.1 Static config files

In our test set, 7/9 static config files are stored in plain and can be read and modified
without effort. Only AppYet encrypts its config file, however, at the same time, the
passphrase is hard-coded in the bytecode and is identical for every AppYet app. This
allows us to write a simple encryption/decryption tool to read and modify the AppYet
config files. The Appmachine config was the only one where we are not able to extract
information. Appmachine is built on top of Mono for Android, thus, most of the app
code is compiled to native code, including the classes that process the non-human-
readable config file 3. As for the integrity protection, we found that in the majority of
cases standard Android APIs are used to read these files directly from assets or the
raw directory. By inspecting the disassembled app code we can, however, not find any
additional integrity checks or obfuscation logic for these config files. This allows, in all
but one case, to trivially extract the config file from an apk. Cloning or repackaging
apps becomes an easy task, since no code has to be reverse engineered, only the app
features and properties within the config file–typically a .xml or .json file—have to be
understood once for each application generator.

5.5.1.2 Dynamically loaded config files

Further, we found that eight out of eleven OAGs (A.1+A.2) load config data dynamically
at runtime. All but Biznessapps and Tobit Chayns use a hybrid model of static and
dynamic config loading. In five cases, the config is requested via HTTP and transmitted
in plain without any protection. Only three OAGs load the config via TLS by default.
For Mobincube, however, it is possible to downgrade the request to HTTP. Moreover,

3While we abstain from reversing this config file, we assume that, with enough effort, it should be
similarly possible to extract information.
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none of these AppGens uses public key pinning to prevent MitMAs. Similar to static
configs, the complete absence of integrity checks and content encryption allows tampering
with the app’s business logic and data. This is fatal, since in our tests we could on-the-fly
re-configure app modules (enabling, disabling, modification), disable advertisements (for
free AppGens), compromise app data (localized strings, about information) or modify
the application’s sync URL (AppYet). Only few settings cannot be compromised when
app content is no longer retrievable from the server due to license expiration (e.g. we
found that 5,137 out of 27,130 Biznessapps in our app set already expired).

Having the full control over the app’s data and business logic as a network attacker
allows a range of different attacks to be mounted with moderate effort. Targeted
phishing attacks may allow stealing user data/credentials. On-the-fly replacement of
API keys for advertisement may allow an attacker to steal ad revenue. Or an attacker
may simply try to deface the application which in turn affects the reputation of the app
developer.

5.5.2 Application Infrastructure Attacks

A large fraction of app generators bind their customers to their web services, e.g., for
user management or license validation. Particularly, hybrid apps that make use of web
technology, like WebViews, to deliver the app’s logic, bind the generated app to the
generator service’s web infrastructure. For instance, in our set of AppGens, Seattle
Cloud, Biznessapps, and Como bind both their clients and end-users to their service’s
infrastructure, e.g., by managing the client’s user data or by delivering the client app’s
content to a generated boilerplate app. Thus, the attack surface of the generated app
inherently increases beyond the app and its network connection to the web service
backend. Consequently, when considering that a single service’s infrastructure can
serve many hundreds or thousands of generated apps, it is paramount that the app
generator service not only follows best practices, such as correctly verifying certificates,
but also that the service’s infrastructure maintains highest security standards for their
web services. Of particular interest is here, whether such services are resilient to remote
attackers, i.e., against state-of-the-art attacks against TLS [102, 216, 54, 12, 66, 98]
that affect content delivery either to generated apps or app data to the service.

We extract the domains of the different services’ backend servers from the generated
apps and use available online analysis sites (e.g., Qualys SSL Labs [265]) to check the
TLS security of respective backend servers. This particularly includes checks for trusted
and valid certificates, support for outdated and weak ciphers and protocols, resilience
against recent TLS vulnerabilities, usage of weak keys, and checks whether any domain
contacted by default by generated apps is known to distribute malware (e.g., using
Google’s SafeBrowsing [151]).

The results of analyzing the communication with the server backend are alarming.
First of all, only Tobit Chayns and Biznessapps use encryption consistently for any
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communication with the backend, while Apps Geyser completely abstains from secure
communication (i.e., HTTP only) and the other services secure their communication
only partially. For instance, both Seattle Cloud and Como send sensitive data from user
input forms like a login form completely in plain text. Moreover, only three services use
a valid and trusted server certificate, while, for instance, Appy Pie uses a self-signed
server certificate and Mobincube uses a certificate that expired seven years ago. From
a cryptographic point of view, all of the services are running an outdated version of
SSL libraries that are prone to one or more recent attacks such as POODLE [216],
BEAST [102], LOGJAM [12], or FREAK [66]. Mobincube’s server was even vulnerable
against all of the tested SSL vulnerabilities.

5.5.2.1 Data leakage and Privacy Violations

OAGs typically offer modules to connect to third-party services, like Google Maps
or social media platforms like Facebook and Twitter. These modules include code to
connect to these services via service-specific APIs. Using these APIs typically requires
an API key (and secret). Since OAGs do not create third-party accounts on behalf of
the application developer, those AppGens provide their own API key (and secret) to
any app created by its service. Some keys require a fee for business/volume usage, like
Google Maps keys, hence it is of interest if the OAG protects these keys from (easy)
eavesdropping. The combination of leaked Twitter key and secret, e.g., hard-coded in
boilerplate code of Biznessapps, allows to send arbitrary authorized requests and in
particular to tamper with the account that is shared across all apps generated with this
AppGens. Although those keys are application-only authentication keys with limited
access rights, the Twitter developer documentation recommends that these "should be
considered as sensitive as passwords, and must not be shared or distributed to untrusted
parties." [41] We found keys and secrets for various different third-party providers
unobfuscated in config files, hardcoded in boilerplate code, in the AndroidManifest file,
and even in the strings.xml. All identified keys were exactly the same across all analyzed
apps, underlining the security impact of boilerplate apps. We could not find a single
attempt to obfuscate or protect these keys/secrets.

Besides paid-only services, a large number of AppGens provide their service for free.
Similar to normal app development they use different approaches to monetize their
apps, such as advertisement and/or tracking. Since the literature has shown that such
third-party libraries often leak sensitive user data [155, 270], we especially checked
outgoing app traffic and compared our findings with the privacy policies provided by
the online service. The results suggest that none of the web domains that the tested
apps contacted during our analyses was known for distributing malware. However, four
application generators (Como, Mobincube, Biznessapps, and Appy Pie) clearly exhibited
questionable tracking behavior. Apps generated with Mobincube sent more than 250
tracking requests within the first minute of execution. In addition, Mobincube includes
the third-party library BeaconsInSpace to perform user tracking via Bluetooth beacons
without the user noticing it. Although BeaconsInSpace strongly recommends updating
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the privacy policy of apps using their library, we could not find any information in
Mobincube’s terms and conditions. Appy Pie apps contacted Google Analytics, Appy
Pie’s backend, and Facebook for tracking. Apps generated by Como automatically
registered with different tracking websites, including Google Analytics, Como-owned
servers, and others. Biznessapps sends device identifier and location to their backend
servers on app launch. While such extensive tracking behavior is already questionable
for the free services of Appy Pie and Mobincube, one would certainly not expect this
for paid services like Como and Biznessapps.

5.6 Evaluating Known Security Issues

In addition to the specific attack vectors of online services discussed in Section 5.4, we
further analyzed the generated apps’ boilerplate code for violations of security best
practices on Android [141] and vulnerabilities identified by prior research on Android
application security and privacy [7], e.g., testing the apps’ device-local attack surfaces,
such as unprotected components. Again, we used our set of self-generated apps as well
as the set of generated apps from Google Play for cross-validation. Whenever feasible
we run static tests against the entire set of generated apps from Google Play. Table 5.3
provides an overview of the security analysis results, which we discuss in more detail in
the remainder of this section. We distinguish apps in vulnerable, non vulnerable, and
risky. We say that an app is vulnerable ( ) when we successfully exploit the flaw. We
say that an app is risky ( ) when an exploitation scenario exists, but we did not (or
could not) reproduce it. Otherwise, we say that the app is not vulnerable ( ).

5.6.1 Best-practice Permission Usage (P1–P3)

Apps may request more permissions than actually needed [116, 53], which unnecessarily
increases the privileges of third-party code, such as ad libs, that have been shown to
actively exploit such inherited privileges and to exhibit questionable privacy-violating
behavior [154, 70, 262, 270]. The Android security best practices also explicitly
recommend developers to request as few permissions as possible to conform to the
principle of least privilege.

Moreover, Android apps are by design allowed to engage in inter-component commu-
nication (ICC [109]). However, apps that (unintentionally) export their components
for access by other applications, but with no or only insufficient protection, may leak
privacy-sensitive data or security-sensitive methods to unprivileged attacker apps [311,
202, 153]—a scenario also warned about in the security best practices. In addition,
for certain components, such as Activities or BroadcastReceivers, the app
developer has only very limited means to identify or authorize the sender app [60].
This opens the opportunity for Intent spoofing attacks [82, 227] and confused deputy
attacks [116], where a vulnerable component acts on behalf of an ICC message from an
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attacker app.

5.6.1.1 Security analysis

To detect whether an application is overprivileged, we identify the permission-protected
API calls in the application (using PScout’s [53] and Axplorer’s [59] permission maps)
and derive from those the set of required permissions. We complement this list with
ContentProvider and Intent permissions necessary for the app to run properly. We
then compare the resulting set with the set of actually requested permissions in the
application’s manifest. If the latter one is a strict superset of the former one, we call
the application overprivileged.

We further check applications for explicitly exported Activity, Service, and Content-/

Provider components or potentially accidentally exported components (e.g., by setting
an intent-filter without manually setting flag android:exported to false). If
any of those exported components is not protected with a permission with at least
signature protection level, we consider this app as exposing an unprotected component.
To also detect receivers potentially prone to Intent spoofing attacks, we conduct the
same analysis as above for BroadcastReceivers , but additionally considering receivers
registered dynamically at runtime via the app’s context.

5.6.1.2 Results

All AppGens that generate monolithic boilerplate code create over-privileged apps by
design (P1 in Table 5.3). As long as an app developer chooses a subset of modules (from
the set of 12–128 modules across AppGens), the resulting app has, with a high percentage,
more permissions than actually necessary. For instance, the simple Hello World app
(App1) has between 7–21 permissions for monolithic boilerplate apps, including camera
access, write/read contacts, audio recording, Bluetooth admin, and location access. At
the same time App1 of Andromo and Appinventor—that generate module-dependent
code—request only a single permission and three permissions, respectively.

Application generators do not satisfactorily protect generated apps’ components from
illicit access (P2). Except for Andromo, AppInventor, and Biznessapps, all tested
generators failed to protect one or more components that we identified through manual
analysis (e.g., using their package and class name) to be intended as internally-accessible
only. This can potentially lead to severe implications for the end-users’ or app generator
clients’ privacy. For example, apps generated with the Seattle Cloud or Mobincube
service expose unprotected components for an InternalFileContentProvider
and AppContentProvider, respectively, through which an attacker can read all files
to which the app’s UID has access, including internal files like databases, private shared
preferences, or in case of Seattle Cloud the asset file app.xml [255] in which Seattle
Cloud apps store, among other things, the user accounts and passwords for logging into
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the app. We statically searched for this vulnerable InternalFileContentProv-
ider in 60,314 apps from Seattle Cloud and found it in 100% of those apps. We
also discovered the vulnerable AppContentProvider in 7,953 (98.5%) of analyzed
8,074 Mobincube apps in our test set.4 This underlines the high security impact of
application generators that are using vulnerable boilerplate code. We also discovered that
unprotected components are not always within the package domain of the application
generator service, but can sometimes be traced back to included third party packages,
e.g., by Radius Networks or ZXing, and it remains to be determined whether the app
generator failed to correctly protect such third party components or whether the design
of those components prohibits a more secure integration.

A particularly worrisome aspect are unprotected BroadcastReceivers and Activity
components that might accept spoofed Intents from untrusted senders and act upon
such received data (P3). Eight of the tested application generators produce code that
is prone to such Intent spoofing attacks. For example, Appinventor apps react to a
fake SMS notification, Mobincube apps can be triggered to interact with the WiFi
service, and Appmachine-generated apps have a remote command receiver exposed that
forwards received Intents unfiltered to a native command for execution.

5.6.2 Insecure Cryptographic API Usage (P4)

App developers might use cryptographic APIs to secure their data on the end-user device.
However, the security that cryptographic APIs can actually deliver, strongly depends
on the correct usage of the cryptographic building blocks (e.g., adequate block cipher
modes, correct salting, etc.). App developers frequently make mistakes when using
those primitives [106], such as using ECB mode for encryption, using a non-random
IV for CBC encryption, or using constant salts/seeds (see also [134]). The Android
security best practices documentation picked up some of these recommendations and, for
instance, advises using SecureRandom instead of Random, initializing cryptographic
keys with KeyGenerator, or using the Cipher class for encryption with AES and
RSA.

5.6.2.1 Security analysis

To detect misuse of cryptographic APIs, we re-apply the analysis methodology pre-
sented in [106] by leveraging R-Droid [58] to search for usage of cryptographic API
methods and then track their parameters. To this end, we focused on APIs in Android’s
javax.crypto package. For symmetric encryption, we analyzed the usage of the
Cipher.getInstance parameter, where developers are expected to specify a sym-
metric encryption algorithm, mode and padding—e.g."AES/CBC/PKCS5Padding".
Similar to related work and security best practices, we rated the use of the ECB mode

4We believe that the 121 apps without this provider are older, discontinued apps, built or last
updated prior to the introduction of the AppContentProvider.
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of operation as insecure and rated, additionally, the following outdated algorithms as
insecure: (3)DES, IDEA, RC4, and Blowfish. Moreover, the use of non-random IVs for
CBC mode or in general the use of a static encryption key is rated as insecure.

To use hash functions, app developers are recommended to use the MessageDigest
class, where the hash function’s algorithm can be chosen via a string parameter—-e.g.
"SHA-256". App developers can include message authentication codes (MACs) into
their apps by using the Mac.getInstance API call. Again, MAC algorithms are
expected to be passed as a string parameter—e.g. "HmacSHA256". For hash functions
and MACs, we consider the use of MD2, MD4, MD5, SHA0, SHA1 and Ripemd128 as
insecure.

Regarding sources of randomness, we consider the usage of Random instead of SecureRandom
as insecure; however, usage of SecureRandom is also rated as insecure when a static
seed is used.

5.6.2.2 Results

Seven out of thirteen tested app generators failed to use Android’s cryptographic APIs
securely. A rather pathological weakness seems to be using an insecure random number
generator. We discovered in five of seven vulnerable AppGens that Random values are
generated with a static initialization vector, and most frequently used when generating
symmetric encryption keys or initialization vectors for CBC-mode symmetric encryption,
rendering the generated apps prone to cryptanalytic attacks. For instance, Biznessapps
creates predictable session identifiers by concatenating the output of Random with the
current system time. Additionally, three of those generators relied on the insecure ECB
mode for encryption.

5.6.3 Insecure WebViews (P5–P8)

App developers frequently fail in validating TLS certificates correctly [114, 115, 263,
126], making their apps vulnerable against man-in-the-middle attacks. The Android
security best practices have a dedicated, extensive section on security with HTTPS and
SSL, explaining the pitfalls and their solutions in implementing a secure SSL connection
and even providing tools for testing the SSL configurations of apps.

Moreover, web utility classes, such as WebView, allow app developers to combine the
features of web apps (e.g., platform independent languages) with those of native Android
apps (e.g., rich access to the device’s resources). However, the access controls that
govern web code (e.g., JavaScript from different web domains) and local code (i.e.,
Android native code) are not properly composed: the bridge code between web code
and local code can interact with the Android system with the same access rights as its
native host application, but does not enforce the same origin policy on calls from the
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web code to the bridge functions, thus opening this dangerous bridge interface to all
loaded web code. The security best practices suggest to enable JavaScript only if really
necessary, to prevent cross-site scripting. In addition, it warns that bridges between web
code and local code should be used only for websites from which all input is trusted, as
it allows fracking attacks [127, 83, 203].

This lack of origin-based protection of the JavaScript bridge also opens the door for
various origin-crossing attacks. A particularly concerning cross-origin attack is based
on the scheme mechanism. Schemes allow apps on the device to be invoked through
URLs whose scheme part equals the scheme registered by the app. However, any
app can register for arbitrary schemes. In combination with WebViews this allows for
unauthorized cross-origin attacks [293], when the user clicks on a malicious link in the
WebView, which refers to a local application that might act on the parameters given by
the URL.

Lastly, Android’s programming model allows app developers to dynamically load code
from different sources, such as public application packages, dex files, or the web via
WebViews. However, if the application does not correctly verify the integrity and authen-
ticity of loaded code, the app becomes vulnerable to be compromised by an attacker that
can modify the loaded (or injected) code. This attack has to be differentiated between
platform native code (i.e., dex or C/C++) [238] and web code (HTML, JavaScript) [178,
217]. In the former attack, the attacker is able to modify the loaded code, e.g., dex
bytecode on the local file system or inject malicious code into the download stream
of such loaded code. In the latter attack, the attacker achieves execution of custom
JavaScript code within a trusted website in a WebView or manages to navigate a WebView

away from a benign, safe website to an attacker-controlled website. As a result, the
attacker can control the web resources within the compromised WebView (e.g., to ex-
filtrate credentials) and further leverage the WebView’s host app’s privileges to the
extent they are exposed through bridge code between host app and WebView instance.
Android’s security best practices strongly discourages app developers from dynamically
loading code from outside of their application for the aforementioned reasons and, again,
recommends only loading web code from trusted websites.

5.6.3.1 Security analysis

We tracked the parameters of the HTTPUrlConnection and HTTPSUrlConnection
classes respectively. We rated plain HTTP URLs as insecure and HTTPS URLs as
secure. Moreover, we investigate the use of non-default TrustManager, SSLSocket-
Factory, or HostnameVerifier implementations with permissive verification strate-
gies, which we deem as insecure. Additionally, for WebViews we search for custom
SSLErrorHandler implementations in the WebViewClient with a permissive or
insecure error handling, which we deem as insecure.

We classify WebViews that enable JavaScript as insecure when the bridge functions
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expose security- and privacy-sensitive functionality, and as secure if those options are
disabled or non-critical functionality is exposed. Since apps with target SDK 19 or higher
reject mixed content by default, we consider those secure, unless developers used the
setMixedContentMode method with the MIXED_CONTENT_ALWAYS_ALLOW param-
eter to deviate from the default; in this case, we consider the app’s behaviour insecure
according to the previously described metrics.

We further investigate the presence and implementation of the shouldOverride-
UrlLoading() method of WebViewClient. We consider the app prone to origin
crossing if the WebViewClient is missing, i.e., the opening of the URL is deferred
to some installed app registered for the URL’s scheme. Additionally, we consider the
app prone to this attack if a WebViewClient is present, but it’s implementation of
the shouldOverrideUrlLoading() defers the URL loading to apps via sending
Intents with the URL as parameter.

To determine whether apps load external code, we check for API calls to DexClass-
Loader and subclasses that load code over (insecure) network connections, which we
consider insecure behavior. Apps that use the URLClassLoader with HTTP URLs are
of particular danger. In case of WebViews, we consider code injection possible if either
the WebView uses insecure Internet connections or if the WebViewClient is present
but does not override the shouldOverrideUrlLoading() function (or implements
a permissive URL overriding that opens attacker provided links in the WebView). In
those cases, an attacker can potentially lure the WebView to an attacker-controlled
website.

5.6.3.2 Results

Six of the tested application generators rely on web technology, i.e., WebViews, to
display their client’s content. Thus, for those app generators it is paramount to prevent
untrusted content from being loaded into the WebView or securely sandboxing the
WebView’s interaction with the Android system and other installed apps. Out of the
thirteen tested app generators, six failed to correctly handle TLS certificate verification
errors and accept any self-signed certificate (P5), which also eases the task of an attacker
to inject code into a WebView by manipulating the download stream (P8). Apps Geyser
catches verification errors, defers the decision about the trustworthiness of the certificate,
however, to the end-user, who has repeatedly been shown in the literature to be unable
to make such trust decisions correctly [117]. At the same time, we found that none of the
investigated online services implemented measures to enhance the TLS security, e.g., by
pinning the certificate. Similarly, we discovered that only about half of the tested apps
correctly limited the scope of navigation inside the WebViews or enforce a same origin
policy on the loaded web content, thus opening the possibility to navigate the WebView
to untrusted web resources that deliver malicious code with full access to the JavaScript
bridge to native platform code. This is particularly worrisome when considering that
almost all of the tested generators with WebViews expose quite substantial JavaScript
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interfaces and hence enable fracking attacks (P6). For instance, Apps Geyser exposes
over 90 JavaScript bridge functions, providing an attacker with all tools needed, such
as camera and microphone access, storage access, or Intent sending. Mobincube and
Appy Pie even exceed this number by exposing more than 100 functions, including
methods such as createCalendarEvent, getCurrentPosition, getGallery-
Image, makeCall, sendSMS, takeCameraPicture, uploadMultipleFiles, or
processHTML. Further noticeable is that several of the tested generators convert the
loading of a custom URL in the WebView (e.g., through a crafted link provided by the
attacker) to an Intent that will be sent by the generated app to other installed apps.
This opens the possibility for cross-origin attacks (P7).

5.7 Discussion

We now interpret the key findings of our online application generator study and propose
some short and long-term actionable items to improve the current status quo.

5.7.1 Citizen App Developers on the Rise

The first key finding of our study is that citizen developers are indeed a growing
phenomenon in the mobile application development ecosystem. As AppGens promise to
decrease the app’s development costs, more and more organizations are interested in
this new development paradigm. Financial reports, already in 2011, expected citizen
developers to build at least 25% of new business applications by 2014 [125], with an
estimated a total revenues of $1.7 Billion in 2015 and an expected growth of +50% per
year [123]. Our analysis is the first to confirm the growth forecast in terms of market
penetration for the mobile ecosystem, showing that at least 11% of free apps in Google
Play (250K apps) are already generated by Online Services.

5.7.2 Pitfalls of the “One Size Fits All” AppGens’ Strategy

Online Services provide simple means of creating apps without requiring any knowledge
about programming or mobile operating systems. This is achieved by abstracting the
implementation task to some kind of drag-and-drop assembly of predefined modules
and by limiting the degree of freedom of app customization. Such a “One Size Fits All”
strategy led to a new paradigm in app generation, distributing an apk file with monolithic
or module-dependent boilerplate code that is statically or dynamically configured with an
app-specific config file. While this provides a convenient way to generate and distribute
applications for a large number of clients, from a security perspective, this creates new
points of failures, that, if not considered carefully, might compromise end-user security
or even online service security.
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The results in Section 5.4 show that the majority of OAGs that base their business
model on monolithic boilerplate apps fail to properly protect config files from tampering
and eavesdropping. Only 2 out 8 OAGs in Table 5.2 correctly use HTTPS to retrieve
config files. Moreover, we found that none of the services applied certificate pinning to
prevent man-in-the-middle attacks. Similarly, only a single service properly protected
its statically included config. However, none of the services checked the integrity of
the config file during app launch. This opens the door for many attacks such as
reconfiguration attacks, ad revenue theft (through replacing API keys), and, in general,
changing arbitrary app-specific data.

Boilerplate apps that use HTML/JS for layouting (see category A2 in Table 5.2) are
additionally prone to code injection and fracking attacks (P6–P8 in Table 5.3). This
is caused by the web-to-app bridge these services use to access the Android API. Due
to the boilerplate app pattern, these bridges expose more functionality than typically
necessary and/or are not properly protected from being misused.

Following the principle of least privilege, Andromo and Appinventor (see category B)
generate targeted boilerplate code based on the modules selected by the app developer.
Since their code generation model follows the traditional app development, they are not
prone to OAG-specific security problems such reconfiguration attacks. However, the
trade-off is an additional code generation effort, when any combination of pre-defined
modules must be flawlessly composable. This is why Andromo, with only 19 available
modules, is at the lower end in terms of available modules, while Appinventor with its
community support offers notable 59 modules.

5.7.3 Amplification of Security Issues

The increasing use of online services has shifted the duty of generating secure code from
app developers to the generator service. Users rarely have options to customize or change
their application beyond the ones provided by the service. As a consequence, users have
to fully trust the service to generate non-vulnerable code and to not include hidden or
non-obvious user tracking or data leakage. Particularly worrisome examples include
the paid service Como, that performs heavy user tracking although its privacy policy
explicitly emphasizes the importance of the security of the users’ personal information
and Mobincube that silently tracks users via BLE beacons without explicitly stating
this in its terms and conditions.

The results of our security evaluation in Section 5.6 suggest that OAG-generated apps
do hardly adhere to security best practices and exhibit common app vulnerabilities that
have been identified by prior research. Although these findings are in line with coding
practices of traditional developers, the worrisome aspect is the amplification effect of
online services, putting millions of users and their private data at risk. Another key
insight is, as opposed to traditional apps, vulnerabilities in unused boilerplate code
can still be exploited when a network attacker is able to compromise the application
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config and re-configure or activate app modules with known security issues or when
ContentProviders can be queried to retrieve internal data (see Section 5.6.1).

We conclude that in the current online service ecosystem the level of security does not
depend on whether it is a free or paid service, but rather on the underlying app generation
model. For the two module-dependent code generators Andromo and Appinventor we
found the least security issues. Particularly for Appinventor this is unsurprising, since
it is open-source and does not follow commercial interests. The boilerplate model is
not generally insecure, however, from a security perspective, server communication and
config protection require a more careful design. This could include certificate pinning for
dynamically retrieved configs, obfuscation or encryption of static configs, and integrity
checks to prevent unauthorized tampering.

5.7.4 Missed Opportunity for a Large-Scale Security Impact

A patch to the current situation is to inform online services about the discovered security
issues to allow them to fix their code generation. We are currently in the process of
a responsible disclosure to allow the respective service providers to fix the security
flaws. However, while this is a short-term mitigation, it does not address the root
cause of these issues, thus not producing more desirable long-lasting effects. In our
opinion, OAG services need a thorough investigation from the research community in
the way AppGens are built. This investigation requires a solid understanding of the
underlying technique in use. Other areas of research from which lessons can be learned or
transferred are tailored software stacks. Prior works have shown that the attack surface
can be considerably reduced by compile-time [188] and run-time configurations [269].

5.8 Conclusion

In this work, we present the first classification of commonly used online services for
Android based on various characteristics and quantify the market penetration of these
AppGens based on a corpus of 2,291,898 free Android apps from Google Play to discover
that at least 11.1% of these apps were created using online services. Based on a
systematic analysis of the new boilerplate app generation model, we show that online
services fall short in protecting against reconfiguration attacks and running a secure
infrastructure. A subsequent security audit of the generated boilerplate code reveals
that OAGs make the same security mistakes as traditional app developers. But in
contrast, they carry the sole responsibility of generating secure and privacy-preserving
code. Due to their amplification effect—a single error by an OAG potentially affects
thousands of generated apps (250K apps in our data set)—we conclude that Online
Services currently have a negative impact on the security of the overall app ecosystem.
But, at the same time, these services are in the unique position to turn these negative
aspects into positive ones through spending more effort into securing their application
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model and infrastructure from which ultimately millions of users benefit.

5.9 Summary

In this Chapter, we presented the first comprehensive classification of commonly used
OAGs for Android and showed how to fingerprint uniquely generated apps to link them
back to their generator. We thereby quantified the market penetration of these OAGs
based on a corpus of 2,291,898 free Android apps from Google Play and discover that
at least 11.1% of these apps were created using OAGs. This hinted at a high potential
of impact that these apps could have on security in the Android ecosystem, especially
pertaining to improving network security e.g. by adoption of HTTPS. However, using a
combination of dynamic, static, and manual analysis, we found that the services’ app
generation model is based on boilerplate code that is prone to reconfiguration attacks
in 7/13 analyzed OAGs. We showed that this boilerplate code includes well-known
security issues such as code injection vulnerabilities and insecure WebViews. Given
the tight coupling of generated apps with their services’ backends, we further identify
security issues in their infrastructure. As root cause, we could identify lack of network
security or improper implementation of certificate validation logic. Most strikingly, we
find that apps that were created with OAGs feature the same kinds of flaws as prior
research has already uncovered in normal apps (e.g. [114, 126]). Due to the blackbox
development approach, here, developers are unaware of these hidden problems that
ultimately put the end-users’ sensitive data and privacy at risk and violate the user’s
trust assumption. A particular worrisome result of our study is that OAGs indeed have
a significant amplification factor for those vulnerabilities, notably harming the health of
the overall Android mobile app ecosystem. Pertaining to the role of OAGs as trusted
third parties and driving force and amplifier for improvement of network and application
security, we find that OAGs – so far at the time of our analysis 5 – miss this chance.

Aligning our findings in this chapter to the evolution of network security in the TLS
ecosystem and in browser landscape, we can derive that OAGs lag behind in adopting
secure networking communication via HTTPS (cf. Section 2.4.2.1). In contrast, in the
browser landscape and the overall TLS ecosystem, we find trends towards a steeper
increase in adoption of TLS and HTTPS fueled e.g. also by the advent of Let’s Encrypt
(cf. Section 2.4.2.1). While being in the unique position to make use of their infrastructure
as a key component for secure handling of user data at a scale by consistently adopting
HTTPS on their server infrastructure and apps, a majority of analyzed OAGs fails in this
regard by relying on insecure server configuration and insecure HTTP protocol making
it feasible for attackers to exploit. These are root causes for OAG-specific attack vectors
(cf. Section 5.5.1). Apart from this, we find OAGs that contain custom TLS code in
their apps. Neither of these , however, constitutes a security enhancing implementation
of pinning. Instead, we find the same kinds of vulnerable certificate validation logic
as already known from prior work [114, 126]. Thus, OAGs are not different in this

5Our analysis was conducted in May 2017
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regard. In addition, it is particular worrisome as end-users are unable to notice (cf. 2.5)
insecurities and developers have no chance to mitigate when they are bound to an OAG’s
server infrastructure and are not able to use their own server as well as they cannot
make changes or enhancements to generates apps but are exposed to vulnerabilities
and misconfigurations stemming from OAGs not adhering to best practices. From
this case study of externalizing key aspects such as control over network security, we
could – besides the chances for a positive amplification effect – highlight corresponding
limitations and risks. While OAGs constitute the most extensive case where control
is completely externalized to a third party, in this work, we already mentioned other
forms of third party code and their capabilities to contribute to enhancing or degrading
network security. Alongside, in Section 5.2.1 we also briefly covered SAFs that allow web
developers to create mobile apps without further expertise. Here, however, previous work
has already covered insecurity pertaining to vulnerable custom TLS implementations
that can render apps vulnerable to MitMAs. Aside from that, here, developers are
fully responsible for network security in contrast to OAGs. Even more, previously in
Section 4.10, we already covered a vulnerability in the implementation of pinning in the
OkHttp library. Taking everything into account, in this and the previous chapter we
found that both, relying on individual developers to take required actions to increase
network security, or externalizing control and responsibility to application generators
or even libraries does not necessarily have a widespread positive effect on the overall
security and also network security of mobile apps and the Android ecosystem. This is
in line with e.g. the case of HPKP (cf. Section 2.4.3.3). The adoption of HPKP was
very low as it could cause more harm than providing providing protection as previously
discussed. Instead, in the TLS ecosystem and browser landscape global platform-wide
measures have been introduced. These either relate to increasing the adoption of HTTPS
by website operators or enhancing security of the TLS ecosystem by introduction of
ecosystem-wide approaches such as e.g. Certificate Transparency (cf. Section 2.4.3.3)
instead of relying on individual website operators, CAs or browsers to protect against
adversaries on their own and potentially exposing users to the risk of MitMAs.

Analogous to this, the ongoing evolution of the Android platform and Google Play
ecosystem led to similar developments. Instead of relying on developers to adhere to
secure best practices and implement these on their own, which turned out to be error-
prone (cf. Section 3.1.1), newer Android versions introduce safe defaults and security
configuration mechanism among platform policies to improve the state of network
security on Android. In the next chapter, we will therefore discuss these measures and
assess their efficacy.
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6.1 Introduction and Contributions

Studying the security of Android applications has a long history [7] and was heavily
influenced by the seminal paper by Enck et al. in 2011 [108]. A myriad of investigations
demonstrated that developers struggle with different aspects of implementing Android
application security mechanisms correctly [107, 106, 82, 108, 238, 224]. The number of
affected users of Android applications vulnerable to different types of attacks due to
incorrect security implementations goes into billions [305].

While developers fight with many different security challenges, custom TLS certificate
validation security received attention early on in 2012 [114, 115] and has become a hotly
debated topic over the years [126, 263, 229, 85, 115, 274, P1, 94, 226]. The problem
not only affects Android applications but turns out to be a broader issue in secure
programming [160, 65, 19]. Researchers proposed different countermeasures which all
focus on simplifying the process of implementing non-standard TLS certificate validation
such as certificate or public key pinning or the secure use of self-signed certificates for
applications under development[P1, 115, 274].

However, the problem not only received attention from academia. Google introduced
countermeasures and novel mechanisms for developers in Android and added further
security policies and safeguards to Google Play (cf. Table 6.1). Their goal was to
establish new and safer defaults such as enforcing TLS for all network connections by
default and blocking vulnerable apps and updates from Google Play.

Therefore, Google introduced a significant change in Android 7 in 2016: The NSC [220]
allows developers to implement custom certificate validation logic using an XML config-
uration file, instead of requiring custom code.

Additionally, Google Play announced novel security policies and safeguards in 2016 and
2017 [135, 137, 136]. They prohibit new apps and updates to include insecure certificate
validation logic. While previous work (e.g. [P2, 299, 181, 243] found vulnerable apps in
Google Play that were published after 2016, our study is the first detailed analysis of
Google Play’s safeguard efficacy.

Although the goal of all introduced changes is to improve TLS security for Android
applications and fix the disastrous circumstances that researchers uncovered in 2012 [114]
and 2013 [115], the efficacy and success of this undertaking has not yet been investigated
in-depth. However, incidents illustrate that Network Security Configuration is not
a guarantee for secure certificate validation logic in Android apps: In 2019, Google’s
official Gmail app for Android had come with an insecure NSC setting that opened the
possibility for a MitMA via user-installed CAs. This vulnerability affected 43% of the
Android ecosystem [21].

While in Chapter 4 and Chapter 5 we already elaborated on developers’ and third parties’
capabilities to enhance network security as well as their this-regarding impact, the
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overall goal of this work is to investigate the current status of TLS certificate validation
security in Android apps and assess the efficacy of new platform-wide measures for
enhancing network security in the Android ecosystem.

To the best of our knowledge, we provide the first large-scale and in-depth evaluation of
the success of Android’s NSC approach combined with an analysis of the new security
policies and safeguards in Google Play. We also revisit the security of custom certificate
validation implementations in Android apps as performed by Fahl et al. [114]. Overall,
we make the following contributions:

NSC adoption and security. We measure the adoption of the NSC in 1,335,322
free current Android apps from Google Play, and find that 99,212 apps include custom
NSC settings. For these apps, we evaluate the security of their custom NSC settings
and find that more than 88.87% of them weaken security by downgrading safe-defaults.
In contrast, only 0.67% implement certificate pinning. Our findings illustrate that
certificate validation remains a challenging task for developers and requires further
attention from the security research community and industry. We report and discuss
this contribution in Sections 6.3 and 6.3.1.

Efficacy of Google Play Safeguards. We perform multiple experiments to evaluate
the efficacy of Google Play TLS security policies and safeguards. We find that Google
Play only catches trivial insecure certificate validation code but still accepts most of
the dangerous code already found in previous work in 2012 [114, 126]. We replicate
work by Fahl et al. [114] and find that out of 15,000 current Android apps in Google
Play more than 5,511 contain custom certificate validation code that is vulnerable to
MitMAs. These findings are in stark contrast with Google’s official statements [135,
137, 136] and demonstrate the importance of further research in this area. We report
and discuss this contribution in Section 6.4.

Discussion and Recommendations. Based on our findings, we provide an in-depth
discussion of the successes and failures of the NSC approach and Google Play’s security
policies and safeguards. We illustrate recommendations to improve TLS certificate
validation security in future Android versions.

6.2 Background on TLS and Android

TLS is the most widely deployed network protocol to secure communication channels
between clients and servers [101, 249, 16]. It provides confidentiality, integrity, and
authenticity for information shared between network end-points and can prevent active
and passive MitMAs. While mutual authentication for clients and servers is supported,
in most cases only the server’s identity is verified. A server is considered trustworthy
if the certificate was issued by a trusted certificate authority (CA) for the correct
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hostname and is still valid 1. Most modern operating systems include a pre-installed
list of trusted root CA certificates. As of June 2020 on Android this list contains
138 entries [27]. While Android correctly validates TLS certificates signed by one
of those 138 CAs by default, developers may choose to create their validation logic
for several reasons, such as using a custom CA [114] or to protect against malicious
activity related to the CA-PKI ecosystem (cf. 2.4 and 2.5). Before the introduction of
NSC, developers had to implement custom certificate validation logic using Android
APIs [306, 168, 297]. However, using custom code commonly leads to vulnerabilities
[114, 126], such as failing to correctly implement practices like certificate pinning or
leaving custom code intended for debugging in production code. Even when putting
considerable effort into secure certificate validation implementations, the Android TLS
API makes it unnecessarily complicated for developers to implement secure certificate
validation (cf. [114]). For example, before Android 4.2, there was no proper API
that returned the trusted certificate chain as constructed by the system’s certificate
validation routines. Hence, attackers were able to manipulate the certificate list as
presented by the server. This shortcoming made the implementation of correct CA
certificate pinning particularly difficult and made many pinning implementations in the
wild vulnerable to MitMAs [184], affecting both app developers as well as libraries such
as OkHttp’s CertificatePinner [80] [99].

To reduce the threats accompanying insecure implementations, Google introduced
significant changes for X.509 certificate validation. We categorize changes into the
introduction and updates of NSC and security policy changes and safeguards in Google
Play. Table 6.1 illustrates important changes in chronological order.

6.2.1 Network Security Configuration

With the release of Android 7, Google introduced the Network Security Configuration
(NSC) [220]. NSC supports certificate pinning, custom CA certificates and debugging
flags, both globally for all network connections or for specific domains [220].

Figure 6.1 gives an overview of the structure of an NSC file and how the different features
can be combined in <base-config>, <domain-config> and <debug-overrides>
sections. Below we provide details for the NSC details that are relevant for our work.

Cleartext Traffic Support. This flag can be used to enforce HTTPS or allow HTTP
for network connections. Developers can make global or domain specific configura-
tions. Starting with Android 9, cleartext traffic via HTTP is not permitted by default
anymore [73]. Instead, HTTPS is used by default [143]. Developers can set the
cleartextTrafficPermitted flag if they want to enable HTTP (cf. Listing B.3
in the Appendix) [222]. Alternatively, developers can configure cleartext traffic sup-
port in the application manifest by setting the android:usesCleartextTraffic

1The entire X.509 certificate validation process is much more complex, but left out here for brevity.
We refer the interested reader to 2.4 and [68].
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Table 6.1: Chronological overview of TLS-related events in the history of Android:

Date Android Version Description

1 2015-10-05 Android 6 (API 23) Android introduces the "android:usesCleartextTraffic" flag
for Manifest files, and removes the Apache HTTP Client
library [144, 138, 25].

2 2016-05-17 Google Play blocks apps containing unsafe implementations
of the X509TrustManager interface [136].

3 2016-08-22 Android 7 (API 24) Android introduces NSC, distrusts user-installed certificates,
and ignores the "android:usesCleartextTraffic" flag in case a
NSC file is available [139, 72].

4 2016-11-25 Google Play blocks apps containing unsafe implementations
of the onReceivedSslError method in WebViews [135].

5 2017-03-01 Google Play blocks apps containing unsafe implementations
of the HostnameVerifier interface [137].

6 2017-08-21 Android 8 (API 26) Android adds support for the "cleartextTrafficPermitted"
flag for the WebView class [140].

7 2018-08-01 New apps need to target at least Android 8; makes new
safe defaults introduced with Android 7 (2016-08-22) and
Android 8 (2017-08-21) [97, 145] available to those apps.

8 2018-08-08 Android 9 (API 28) Sets "cleartextTrafficPermitted" to false; enforces HTTPS
connections by default. Developers can revert this for spe-
cific domains or globally in NSC) settings [143].

9 2018-11-01 App updates need to target at least Android 8; makes new
safe defaults introduced with Android 7 (2016-08-22) and
Android 8 (2017-08-21) [97, 145] available to existing apps.

10 2019-08-01 New apps need to target at least Android 9; makes new safe
defaults introduced with Android 9 (2018-08-08) [97, 145]
available to those apps.

11 2019-11-01 Updates need to target at least Android 9; existing apps
benefit from new safe defaults introduced with Android 9
(2018-08-08) [97, 145].

Affects Android OS & NSC – Affects Google Play security policy & safeguards.

attribute [3]. Since Android 9, the value is true by default. However, it is only honored
if no NSC file is provided by the developer.

Certificate Pinning. Allows developers to implement certificate pinning [110]. Con-
nections can then only be established if at least one certificate from the server’s certificate
chain matches any of the registered pins. In contrast to before Android 7, developers do
not need to write custom Android code. Developers need to specify expected pinning
information inside <pin> tags within the <pin-set> environment.

Custom Trust Anchors. Allows developers to customize the set of trusted CA
certificates – e.g., distrusting pre-installed system CA certificates, introducing additional
CA certificates, or allowing user-installed CA certificates – for production purposes.
As of Android 7, user-installed CA certificates are no longer trusted roots by default.
Trust is instead limited to the set of pre-installed system root CA certificates [139, 72].
However, developers can re-enable user-installed certificates by setting the user flag (cf.
Listing B.4), which is a security downgrade comparable to the situation before Android
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<network-security-config>

<base-config>

<trust-anchors>

<certificates>

<domain-config>

domain <trust-anchors>

<certificates>

<pin-set>

<pin>

<domain-config>

<debug-overrides>

<trust-anchors>

<certificates>

Figure 6.1: NSC files contain <base-config>, <domain-config> and
<debug-overrides> configurations, including custom CA (<trust-anchors>)
and certificate pinning (<pin-sets>) configurations. Cleartext traffic can be
permitted or forbidden using the clearTextTrafficPermitted flag globally for
specific domains.

7.

Debug Settings. Allow developers to configure CA certificates – e.g., locally issued or
self-signed certificates – for debugging purposes. In contrast to manually implemented
code to switch between debug and production logic, it is not possible to have debug
settings active in production when publishing apps in Google Play. [286]

Limits of NSC. The introduction of NSC did not come along with the deprecation,
suspension, or even removal of certificate validation APIs in the Android SDK. Developers
are still allowed to write the same erroneous certificate validation code as in earlier
Android versions. This is particularly critical since custom certificate validation code
overrides NSC settings in some cases (e.g. a vulnerable TrustManager implementation
makes NSC certificate pinning configurations useless).

6.2.2 Google Play

In addition to NSC for Android, Google Play implemented a set of policy changes and
safeguards.

In 2016 and 2017, Google added safeguards that prevented new apps or app up-
dates to include unsafe X509Trustmanager and HostnameVerifier interfaces and
onReceivedSslError methods in WebViews. Google did not provide further details
of the safeguards. However, they are executed as part of an app’s review process before
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publishing the app [142]. Since August 2018, Google Play has only accepted apps and
updates that target Android 8 [97], which enforces that user-installed certificates are
not trusted by default. From late 2019 new apps and updates have been forced to target
Android 9 or higher and therefore enforced HTTPS by default [145].

6.3 NSC Adoption and Security

In this section, we illustrate the methodology of our NSC analyses and report their
findings.
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Figure 6.2: Adoption of NSC over time. The release of Android 9 had a significant
contribution.

Body of Android Applications. We base our research on a body of 1,335,322 free
Android apps available in Google Play that had received at least one update since August
2016 when Google introduced NSC (cf. Section 6.2) for Android 7. We downloaded the
set of Android applications from Google Play using the unofficial Google Play protobuf
API [150]. To grow the number of apps, we added apps from the "similar" apps section
of an app’s details website recursively. Overall, we collected apps between 2016/08/22 2

and 2020/03/18 using Oltrogge et. al’s Android app crawler [P2].

2The release date of Android 7.
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Of the 1,335,322 free Android apps we analyzed, 99,212 implemented custom NSC
settings. We used the OBFUSCAN tool [302] to detect obfuscation and excluded 2,812
(2,83%) obfuscated apps to improve our analysis quality. We conducted further analyses
on the remaining 96,400 apps.3

Table 6.2: Body of Android apps: Total Apps vs. Apps with NSC

Total Apps Apps w. NSC

Target SDK
< Android 7⋆ 236,843 68
>= Android 7 1,098,479 96,332
>= Android 8 963,750 95,826
>= Android 9 565,910 88,854

Total 1,335,322 96,400
⋆Though NSC is only supported for Android 7 and
higher, apps with lower target SDKs can use backport-
libraries (e.g., TrustKit. [282]) to implement NSC.

Table 6.2 gives an overview of the target SDKs and custom NSC settings of the apps.
Figure 6.2 illustrates the adoption of custom NSC settings: We see a significant increase
with the release of Android 9. Similarly, we find that custom NSC settings are more
frequently implemented in popular Android apps (cf. Figure 6.3). Even though Android
rolled out NSC in September 2016 with Android 7 (cf. Table 6.1), widespread adoption
was delayed until early 2019 (cf. Figure 6.2). This correlates with Android 9 introducing
HTTPS as the default protocol for web requests in late 2018 (cf. Table 6.1).

6.3.1 Security Analysis of Custom NSC Settings

Below, we analyze the security of custom NSC settings. Figure 6.3 illustrates our
findings across app categories and download counts.

Measuring the Adoption of Custom NSC Settings: We begin with the de-
tection of apps that include custom NSC settings. If an Android app contains
custom NSC settings, a reference to the respective settings file is included in the
android:networkSecurityConfig property of the AndroidManifest.xml. In cases
of a missing reference, we check for the android:usesCleartextTraffic attribute
to assess whether cleartext traffic is permitted for all network connections without using
NSC. [3]

NSC Settings Analysis: Since we aim to gain insights on how NSC settings are used
by developers 4, we extract and analyze all relevant information from the NSC files.

3We provide the full list of apps on this link.
4Cf. Section 6.2.1 for an overview of all possible NSC settings developers can configure.
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Figure 6.3: Distribution across the features we analyzed, and app categories, and
download counts.
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Table 6.3: Security impact of NSC-settings for <base-config> and <domain-config>.
A ✓denotes that an element or attribute can be used in the respective environment.
The secure and insecure columns show which attribute values are considered (in)secure.
The reason column gives a brief explanation why values are considered insecure.
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✓ ✓ cleartextTrafficPermitted -, false true allows HTTP
without TLS

✓ ✓ <certificates> src -, system user allows user
trusted CAs

overridePins -, false true disables pinning
✓ <pin> always adds a pinned

certificate
✓ <pin-set> expiration >10 daysa <10 daysa pinning not en-

forced after expi-
ration date

a
Recommendation as checked by Android LINT (cf. [223])

First, we examine the high-level NSC features which are used by traversing the NSC
file’s XML document tree, starting with the root tag <network-security-config>.

NSC files with <base-config> elements include global options that affect connections
for all hosts. The presence of <domain-config> elements indicates custom settings
for specific hosts. Each <domain-config> element may include a set of custom
settings for a list of hosts that can each be specified in a particular <domain> element.
Table 6.3 provides an overview of the NSC elements and attributes we analyzed. The
table also illustrates secure and insecure options for each attribute and explains why
the given examples are insecure.

Overall, we analyzed 96,400 apps that included a NSC settings file. 95,940 of these
implemented at least one custom NSC setting, while 460 apps contained an empty
NSC file. Regarding app demographics, we find popular apps with more than 50,000
downloads to be more likely to include a custom NSC file (11-47%, cf. Figure 6.3).
Below, we discuss the results of our analysis for the use of cleartext traffic, certificate
pinning, custom CA certificates and debug configurations. Since apps may contain the
same attributes in both base and domain specific environments, the numbers in the
following sections may not always add up.
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6.3.1.1 Cleartext Traffic

In this section, we analyze all apps that deviate from the standard and explicitly
declare the cleartextTrafficPermitted flag in the NSC file. Since Android 9,
cleartext traffic is disabled by default (cf. Table 6.1). Therefore, we distinguish apps
that target Android 9 or higher from apps that target Android 8 or lower. We also
distinguish apps with global settings from apps with domain-specific settings. In both
<base-config> and <domain-config> environments we check for the presence
of the cleartextTrafficPermitted flag. Depending on the environment, an
application allows HTTP connections for all or only specific domains if this flag is set to
true. Table 6.4 illustrates the frequency the use of the cleartextTrafficPermitted
flag across different Android versions.

Altogether, we found 89,686 apps that used the cleartextTrafficPermitted
flag. This element was present uniformly across all apps that used NSC settings
in our dataset, with 89-97% of apps in all download categories using it. 88,769
(98.98%) used it to re-enable HTTP. However, only 4,093 (4.56%) apps used the
flag to enforce HTTPS by setting cleartextTrafficPermitted="false". In
our dataset, 565,910 apps target Android 9 or higher. Of those, 84,060 (14.85%) –
57,123 globally and 34,246 for specific domains – allow HTTP connections, therefore
downgrading the security for these applications. In 3,908 apps that target Android
9 or higher the cleartextTrafficPermitted flag is set to false, which has no
security benefit, as HTTPS is enforced by default. These configurations have little
impact in 4,804 apps that target Android versions lower than 9 as these can use HTTP
without custom workarounds (cf. 6.2.1) or enforce HTTPS by explicitly setting the
cleartextTrafficPermitted="false" flag. A small number of apps that tar-
get Android 8 or lower (185) does this and enforces HTTPS. We further check if the
android:usesCleartextTraffic flag in the Manifest file was modified, which
is the attribute used to enforce HTTPS traffic by default. Since this option is only
applied if no NSC file was provided, the security downgrade to HTTP only affects
apps without NSC. Within our sample, 196,155 apps explicitly set the flag. Of these,
177,391 apps have no NSC file. 174,369 apps target Android 9 or higher and use the
android:usesCleartextTraffic flag to re-enable HTTP for all hosts.
In contrast, we found only 2,459 apps that use the flag to enforce HTTPS, of which
2,166 apply the setting as they do not utilize NSC. About twice as many apps allow
HTTP for all domains (61,125) as opposed to only specific domains (35,072), while
explicitly enforcing HTTPS is more common for specific domains (1,288 globally, 2,863
for domains). When HTTP is enabled for certain domains, we extract them and
check whether HTTPS would also be available. Altogether, we found 84,060 apps that
featured a HTTP downgrade; this affected 24,653 distinct domains. We find valid
HTTPS connections for 8,935 applications and argue that downgrading safe defaults
was unnecessary. Table B.2 in the appendix gives an overview of the most frequent
domains for which we found downgrades.

Interestingly, the top domain values 127.0.0.1 and localhost seem to have no security
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Table 6.4: Frequency in our
dataset and security impact of
cleartextTrafficPermitted
across Android versions

Target true false

>= Android 9
Global 57,123 1,252
Domain Specific 34,246 2,712

Total 84,060 3,908

< Android 9
Global 4,002 36
Domain Specific 826 151

Total 4,709 185

All Android Versions 88,769 4,093

Negative impact on security; No
impact on security; Positive impact on
security

impact. However, they might result from copy & paste from Facebook’s cache proxy
library that is used in many apps [221] or from debugging configurations developers use
for testing.

Table 6.5 gives an overview of the most popular of these domains. We found 151 NSC
configurations that upgraded to HTTPS; this concerned a total of 133 different domains.

Table 6.5: Top 10 domains where a HTTPS upgrade would be possible. All domains serve
the same content over HTTP and HTTPS and most redirect from HTTP to HTTPS.

Apps Domain Value HTTPS Red. Same Cont.

368 console-forum.net ✓ ✓
294 securenetsystems.net ✓ ✓
240 google.com ✓ ✓
233 fineboost-loghub.ap-southeast-1.log.aliyuncs.com ✓
202 aff.bstatic.com ✓ ✓
202 devel.tripwolf.com ✓ ✓
202 www.tripwolf.com ✓ ✓
190 competition-edge.com ✓
172 facebook.com ✓ ✓
139 clients3.google.com ✓ ✓

Table B.4 in the appendix lists the most frequent domains for which connections were
upgraded to HTTPS. Half of the entries contain invalid values such as URLs and
resource IDs. They might stem from copy & paste events and have no security impact
since domain values are expected.
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It is hard to assess why developers chose HTTP over HTTPS. Reasons might include
lack of knowledge, problems connecting via HTTPS or copying & pasting URLs from
somewhere. Interestingly, in all cases where HTTPS would have been possible, the
hosts serve the same content over HTTP and HTTPS and even redirect from HTTP to
HTTPS in most cases. This is even more alarming: developers seem to suffer from a
misconception and underestimate the threat of a MitMA in the presence of a redirect
from HTTP to HTTPS.

6.3.1.2 Pinning Certificates

In this section, we report details for the certificate pinning analysis. We check if certificate
pinning is used by searching for a <pin-set> element in <domain-config> elements.

Adoption. Overall, we found 663 apps that implement certificate pinning using NSC.
We found 1,121 distinct pins for 2,781 distinct domains of which 998 are valid domains.
Pinning was most common in the finance category (6%). This is in line with the most
frequently pinned domains we found in Table B.3, most of which belong to banking or
mobile money apps.

Pinned Certificates. Our certificate analysis shows that 483 leaf certificates, 542
(intermediate) CA certificates and 289 root CA certificates were pinned. Table B.1 in
the appendix gives an overview of the most popular CA certificates. The majority of
pinned CA certificates affected pre-installed system CAs. We extract the <pin> child
tags and compare them with the certificates from domains we fetch certificate chains for.
To detect root CA pinning, we also match against pins generated from default Android
system trust [27]. For 778 pinned domains we collected the complete certificate chain
for the specified domains and analyzed it. We could not download all certificate chains
due to connection problems or malformed domain names.

Backup Pins. The official Android documentation recommends the use of backup
pins [220]. We found 566 apps that set a backup pin. In 47 cases, the pins were
non-functional, e.g., empty strings were pinned. We discuss these cases in detail
in section 6.3.1.6. For semantically correct pinning configurations, we find possible
misconceptions regarding backup pins. First of all, the Android (Studio) LINT feature
suggests to register two pins instead of one, but does not check for pin correctness
or if both pins are equal [223]. We detect identical or non-functional backup pins by
manual inspection and find cases containing sequences like ’AAAAAA...’, ’BBBBBB...’
as prefix, or instances where only a single character is changed. While this is enough to
address the LINT feature’s warning, it does not enhance the security of the application.
We also find that at least 12 applications used the empty pin hash produced by hashing
an empty string encoded as Base64. This likely happens due to wrong usage of tools or
lack of knowledge.
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Pinning Expiration. The Android documentation suggests to set a pinning expiration
date with the optional expiration parameter. After this date, pinning is no longer
enforced, i.e., setting an expiration date may decrease security, but prevents an app
from breaking when a certificate is replaced with a newer version [220]. Expiration
values in the near future are critical from a security perspective as pinning would only
be enforced for a short period. We read the respective element and found 130 apps that
set a pinning expiration parameter. The mean expiration value was 947 days. Most
apps had an expiration value set that had no negative impact on pinning security.

6.3.1.3 Custom CA Configurations

In both <base-config> and <domain-config> elements we check for <trust-
anchors> elements which indicate modifications to the list of trusted root CAs to
limit or add CAs.

We found custom CA configurations in 38,628 apps 5 (37,562 globally, 1,781 for domains).

759 apps distrusted all pre-installed CAs and added their own set of custom CA
certificates (30 globally, 744 for domains). Furthermore, 123 apps restrict the list of
pre-installed system CAs (14 globally, 112 for domains).

We further found 836 apps that added supplementary certificates (784 globally, 58 for
domains). Table B.6 in the appendix gives an overview of all added certificates and
provides a summary of the most frequent custom CA certificates that apps used for
production.

6.3.1.4 User-Installed Certificates

Based on the nested <certificates> element, we check if the value of the src
property is set to user which enables trust for user-installed CA certificates. Compared
to Android 7 default settings, enabling user-installed CA certificates is a security
downgrade (cf. Section 6.2.1).

Out of 1,098,479 apps targeting Android 7 or higher, we found 8,606 apps that re-enable
trust for user-installed certificates (8.67%) (8,001 globally, 707 for domains).

User-installed certificates are more common in popular apps. We found this issue more
frequently in apps in the categories Art & Design (28%), Books & Reference (16%),
Comics (27%) and Personalization (22%) (cf. Figure 6.3).

Since user-installed certificates increase the attack surface for MitMAs, developers are
encouraged to use debug-overrides instead (cf. Section 6.3.1.5).

5We only discuss custom CA configuration in production code here. Custom CA configurations for
debugging purposes are addressed in Section 6.3.1.5
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6.3.1.5 Debug Overrides

In this section, we present how app developers configured debugging settings.

Correct Use of Debug Overrides. <debug-overrides> can be used to debug
secure network connections, e.g., using self-signed certificates or MitMA tools. The
use of <debug-overrides> is a recommended security best practice, as these cannot
be used in production code and apps with enabled debug flags cannot be published
in Google Play. Overall, we found 10,085 apps with <debug-overrides>. Debug
overrides were most popular among travel & local (46%) and event apps (30%), and
generally among apps with higher download counts of 10,000,000 or more ((21-33%). We
analyze their <trust-anchors> child elements for specific configurations of trusted
roots. These can include user-installed certificates or bundled custom certificates which
might be needed for MitMA proxies and other debugging purposes [100]. We found 318
apps that register custom certificates in <debug-overrides> (cf. Table B.5 in the
appendix). We detected 170 certificates of MitMA tools. 9,904 apps allow user-installed
certificates in <debug-overrides>.

Mis-Use of Debug Overrides. Unfortunately, we also found several configurations
outside the <debug-overrides> environment that we could unambiguously attribute
to debugging purposes. 41 apps in our set use custom CA configurations to use MitMA
certificates for debugging TLS connections. This was identified by observing the CA
certificates’ subject CN, in which popular MitMA proxy tools include the term proxy.
For example, the Charles Proxy [81] MitMA proxy tool was the most popular in our
dataset and included the substring "Charles Proxy Custom Root Certificate". Contrary
to <debug-override> configurations, these are used in production code and can
therefore pose a security threat. Therefore, the Android documentation discourages
their use [27]. While this list is not exhaustive, it shows that developers mis-use NSC
settings for debugging purposes although NSC provides distinct debugging options.

6.3.1.6 Malformed NSC Files

In this section, we investigate faulty NSC files. We distinguish faulty configurations from
configurations with syntax errors as they are simply ignored by Android and therefore
do not negatively contribute to an app’s security. Instead, we focus on configurations
with ambiguous security settings resulting in confusing security implications.

Configurations with Flawed Domain Parameters. In 1,310 apps, we found
<domain> configurations that contained an URL instead of a hostname, e.g., http://ex-
ample.com/ or http://example.com/index.php instead of example.com. In these cases,
no error message is shown and the app compiles successfully. However, during app
execution, such configurations are ignored and the <domain-config> setting becomes
ineffective. We further identified 42 similar cases, where developers gave string resources
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(e.g., @string/host) instead of a hostnames. In 210 configurations, we found wildcard
domain specifications (e.g. *.example.com). These are also non-functional and therefore
make the configurations ineffective.

Ambiguous Pinning Configurations. We analyzed our dataset for apps that include
ambiguous pinning configurations, such as pins specified for the system-certificate with
the overridePins flag, which overrides the pinning security benefits. We found 6,
including two parental control apps and two that explicitly activate override pins for user-
installed certificates, which developers registered as non-default trust anchors. Therefore,
attackers can more easily mount MitMAs using social engineering. We further find all
of these apps to be rather popular with more than 100,000 downloads. In 129 apps
that pin specific domains we also found the permitClearTextTraffic="true"
flag, which overrides pinning if HTTP is used instead of HTTPS.

Copy & Paste of Insecure Configurations. We investigate if apps contain NSC
files that were copied & pasted from the Internet by manually inspecting common NSC
snippets. We found applications that copy NSC snippets from information sources
like library documentations, blog articles or Q&A threads [273, 28, 23]. We find NSC
snippets in 496 apps that solve problems with an exception that requires HTTPS for
specific network connections as HTTP is not sufficient. These snippets can be found
on either StackOverflow [24] or in the MoPub app monetization documentation [128].
Overall, we find 1,609 applications that include a NSC snippet from the MoPub
library documentation that instructs application developers to permit cleartext traffic
globally [128] (cf. Listing B.5 in the appendix). While the snippet permits cleartext
traffic, it also restricts cleartext traffic for the domain example.com. For the cases we
found, developers used the same code without making any changes. Similarly, we found
4 apps that use certificate pinning for the datatheorem.com or subdomains thereof. As
these are related to Trustkit [282] and have no further effects, they are likely copied
from the Trustkit demo application[283].

6.3.1.7 Impact of NSC on Android Ecosystem

Overall, NSC impacts app security on all levels of popularity. While most apps have
less than 1,000 installs, there are numerous top apps with immense popularity. Within
the most popular apps with more than a billion downloads, we find NSC to be mostly
used to circumvent safe defaults, for example, to permit cleartext traffic in Android
9. This is the case for WhatsApp and several Google applications such as Youtube
and GMail [21], all of which had more than five billion downloads. We further find a
popular web browser that uses NSC to re-enable trust for user-installed certificates. We
found all cases of misconfigurations and malformed NSC configurations we described
in Section 6.3.1.6 in popular apps with more than one million downloads. Particularly
interesting, we found one of the few cases where re-enabling trust for user-installed
certificates leads to ineffective pinning. Similarly, we found copied & pasted code in
apps with 100 million downloads. Overall, our findings suggest that the insecure use of
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NSC is not limited to amateur or unpopular apps.

6.3.1.8 Manual Analysis

Static analysis of NSC settings can show the potential for security problems for apps.
However, the fact that NSC settings for insecure TLS certificate validation are present in
an app’s NSC or Manifest file does not necessarily mean that it is used or that sensitive
information is passed along it. Even more detailed automated app analysis techniques
cannot guarantee that all uses are correctly identified. Hence, we decided to conduct
an in-depth manual investigation of affected apps. We aimed to find out what sort of
information is actually sent over potentially insecure network connections. Therefore,
we installed a set of apps that re-enabled HTTP cleartext traffic by installing the apps
on an Android device and executing a passive MitMA against the apps. We focused on
apps that re-enabled cleartext traffic since this vulnerability was widespread and is easy
to exploit by a passive MitMA.

Therefore, we selected two sets of apps that re-enabled cleartext traffic for specific
domains or globally:

Random apps. First, we selected and analyzed 20 random apps. We found 13 of
them to use HTTP to transfer user data. In general, we found that affected apps
use HTTP to transfer ad, tracking and debugging information including personally
identifiable information such as device identifiers. However, we also found a smart
home app that allows users to remotely talk to their doorway devices and a school app
that connects schools, parents and teachers. Both send sensitive account information
including username and passwords from their users’ devices to the service providers.

Privacy sensitive apps. Additionally, we analyzed 20 apps likely to handle sensitive
data. 6 In this set of apps, eleven apps used HTTP. In all eleven apps we found
login-related information, including usernames, emails, passwords, or passcodes. Similar
to the random app set, we found one school for parents and a shopping app that send
login credentials via HTTP.

In conclusion we find that in both sets more than half of the apps we tested manually
used HTTP to transfer sensitive user data including login credentials.

6To identify these apps, we extracted static HTTP URL strings from app apks, tested their availability
on the default HTTP port 80, and selected apps with URLs containing substrings such as ’login’, ’register’
and ’secure’.
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6.4 Google Play Safeguards

In addition to NSC, Google Play changed their TLS policies and implemented new
safeguards. In 2016, they announced to block new Android apps and updates that
include insecure certificate validation code [137, 136].

In particular, Google announced to detect three implementations: TrustManagers
vulnerable to attacks using invalid certificates [136], HostnameVerifiers vulnerable
to malicious domains and hostnames [137], and WebViewClient.onReceivedSSLError
implementations that do not appropriately handle HTTPS errors in a WebView [135].
To investigate root causes for the findings in previous work [P2, 299, 243, 181] and

the efficacy of these safeguards, we conducted multiple controlled experiments. We
aimed to identify under which conditions Google Play still accepts apps with insecure
certificate validation code. Therefore, we simulated a benign Android app developer who
accidentally published vulnerable certificate validation code as part of their app. In each
experiment, we included one or more vulnerable certificate validation implementations.
After submitting each experiment to Google Play, the app went through the Google
Play app review procedure. Once the verification process concluded, we checked for
security alerts in the Google Play Console. 7

Table 6.6 gives an overview of the four categories of experiments we performed: Trust-
Managers (TM), HostnameVerifiers (HV), WebViewClients (WV) and Libraries (LB).
Libraries refer to insecure third party libraries we experimented with, trying to repro-
duce developer complaints we found online on GitHub [285, 280, 179, 149]. We also
distinguish if the faulty code was reachable (R), hidden behind debug options (D), or
unreachable (U).

6.4.1 TrustManager Implementations

We started with investigating insecure TrustManager implementations [114, 126].

Empty TrustManager. First, we conducted experiments on an empty TrustManager
implementation. Therefore, our test app used to download a file from a remote server.
This was one of the most common insecure implementations [114, 126] and is frequently
discussed in online Q&A forums [177, 176]. Given Google Play’s announcement [136], this
insecure implementation should be rejected. For full coverage, we tested multiple different
empty TrustManager implementations: One that could be toggled with a debug flag
(TM-D)8, one that was always used (TM-R) and finally one where the TrustManager code
was unreachable (TM-U). None of these implementations was blocked by Google Play.
Additionally, we renamed the TM-R implementation to TrustAllTrustManager

7In case a vulnerable app was accepted, we removed it immediately to avoid that clueless users would
install vulnerable software on their device. Given Google Play’s download reports, no user installed one
of our vulnerable apps.

8Some apps use such a flag for debugging purposes.
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Table 6.6: Details of our TLS security policy experiments.

Experiment R
ea

ch
ab

ili
ty

P
as

se
d

Validation Logic

TrustManager
TM-U ✓ No Validation at All
TM-R ✓ No Validation at All
TM-D ✓ No Validation at All
TM-R-renamed ✓ No Validation at All, Renamed
TM-R-expired ✓ Cert Is Not Expired
TM-R-selfsigned ✓ Cert Is selfsigned and Not Expired
TM-R-chain ✓ Cert Has a Chain
TM-R-chainexpired ✓ Cert Has a Chain or Is Not Expired

HostnameVerifier
HV-R ✓ No Validation at All
HV-D ✓ No Validation at All, Debug switch
HV-R-global ✓ No Validation at All, Used by Default
HV-R-contains ✓ Verify Hostname Using "string.contains"

WebViewClient
WV-R X always proceed
WV-D ✓ always proceed, Debug switch
WV-wrapped ✓ always proceed, Depend on invariant condition

Library
LB-U-acra X Acra with Insecure TM
LB-U-jsoup ✓ JSoup with Insecure TM and HV
LB-U-asynchttp ✓ async-http with insecure TM

Always (R)eachable; Hidden Using a Debug Flag; (U)nreachable
✓ App was accepted by Google Play; X App was blocked by Google Play

(TM-R-renamed) to match the most common TrustManager name reported by Fahl et
al. [114]. This passed as well, which implies that the verification process employed by
Google does not test for empty TrustManagers.

Non-Empty but Insecure TrustManager. Since not all insecure implementations
reported in previous work [114] and discussed in online developer forums [287] are
empty implementations, we extended the TrustManager experiments from above to
also investigate non-empty but still insecure implementations. First, we implemented
certificate validation logic that only tested for the server’s certificate expiration date (TM-
R-expired, TM-R-chainexpired, TM-R-selfsigned). Second, we tested an implementation
that only checked whether the server sends a certificate chain (TM-R-chain). In both
cases we did not implement secure certificate validation and only tested code that was
always reachable. Again, Google Play accepted both vulnerable implementations.
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6.4.2 HostnameVerifier Implementations

Our second set of experiments investigated the efficacy of Google Play’s safeguards
against insecure hostname verification in apps [114].

Always True Hostname Verification. We started with including HostnameVerifier
implementations that accept any hostname for a certificate. We tested both, a reachable
(HV-R) and a debugging implementation that was protected by a boolean debug flag (HV-
D). These implementations turned off hostname verification. We further investigated
an app that registered a global HostnameVerifier for all TLS connections by calling
the static setDefaultHostnameVerifier method for the HttpsURLConnection
class with the HV-R implementation (HV-R-global). Google Play accepted all vulnerable
implementations.

Insufficient Hostname Verification. Next, we tested a HostnameVerifier implemen-
tation, which included code that did not always return true but only included insufficient
hostname verification logic. As discussed in previous work [114], developers publish
apps with implementations that only check for substring inclusion instead of testing
the entire hostname. Hence, our experiment included a respective implementation
(HV-R-contains). Again, this faulty implementation was accepted.

6.4.3 WebViewClient Implementations

The experiments in this section investigate Google Play’s safeguard efficacy against
insecure HTTPS error handling in WebViewClient implementations.

No Error Handling at All. First, we investigated HTTPS error handling logic
that ignored certificate validation errors entirely and always proceeded with the TLS
handshake. Similar to the experiments above, we tested vulnerable code that was always
reachable (WV-R) and code that was hidden behind a debug flag (WV-D). Google Play
detected WV-R and blocked the app from being published. However, the slightly more
complex implementation WV-D passed without warning.

Obfuscated Error Handling. Motivated by previous work [P1], we included an
experiment that obfuscated insecure error handling. We tested error handling logic
that hides the proceed call behind a boolean expression based on an invariant check
(WV-wrapped). Again, this vulnerable implementation passed the Google Play checks.

6.4.4 Reproducing Complaints of Developers

Finally, we conducted a set of experiments to reproduce complaints of Android developers
we found online [285, 280, 179, 149] concerning problems with specific Android libraries.
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We searched StackOverflow and GitHub issues for Google Play Console warning messages
in the context of vulnerable certificate validation and found three vulnerable versions of
popular android libraries (LB-U-acra, LB-U-jsoup, LB-U-asynchttp).

Acra 4.2.3. We aimed to reproduce the GitHub issue [285] in which a developer reports
that the use of the Acra [40] library that provides application crash reports for Android
in version 4.2.3 was rejected by Google Play on 2019/11/20 (LB-U-acra). We isolated
and tested the vulnerable implementation and were able to confirm this issue as our
app was blocked with this specific version of the library.

JSoup 1.11.1. In this experiment, we aimed to reproduce an error report for the
JSoup [180] library for HTML parsing in version 1.11.1. Developers report that their
apps were rejected because of a vulnerable TrustManager implementation [280, 179]
(LB-U-jsoup). Similar to the experiment above, we used the exact same version of JSoup
in our test app. However, we could not reproduce the error. Our app passed the Google
Play safeguards successfully.

android-sync-http 1.4.9. Finally, we looked at the android-async-http[20] library
providing interfaces for HTTP connections. This library included a vulnerable Trust-
Manager in version 1.4.9 [149] (LB-U-asynchttp) and like previous experiments passed
successfully without warnings.

6.4.5 Insecure Apps in Google Play

Motivated by the experiments above and previous work [P2, 299, 181, 243], we replicated
a study performed by Fahl et al. in 2012 [114]. However, we replaced the outdated
MalloDroid tool [114] with the most currently published tool for vulnerable certificate
validation logic in Android apps CryptoGuard [243] that was released in 2019. Cryp-
toGuard can detect cryptographic vulnerabilities in general and vulnerable certificate
validation code of both Java programs and Android apps. We picked a random set of
15,000 Android apps for the CryptoGuard analysis. Since CryptoGuard does not per-
form reachability analyses, we cannot tell whether vulnerable code is actually executed.
Using CryptoGuard reports we also cannot distinguish developer code from third party
library code. Following Rahaman et. al [243] we terminated app processing after 10
minutes, therefore possibly skipping the analysis of more complex apps.

Overall, we found 2,232 (14.8%) apps with vulnerable HostnameVerifier and 5,202
(34.7%) apps with vulnerable TrustManager implementations. Most of the affected apps
implemented both vulnerabilities, resulting in 5,511 (36.7%) vulnerable apps total.

Surprisingly, these results are in line with reports from Fahl et al. [114] and Georgiev et
al. [126] and show that the Google Play security checks for TLS are inefficient.
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6.5 Limitations

Our work has the following limitations:

Body of Android Apps. The Google Play crawler we used to download apps works
on a best-effort basis. We seeded the crawler with a small list of popular free Google
Play applications and recursively downloaded all available similar apps. Although we
were able to find 1,335,322 free apps that have received an update after Android 7, we
cannot guarantee that we were able to find all free Google Play applications. However,
the behavior of our crawler is in line with previous work [17]. We also limited our
analysis to free apps and ignored paid apps. Although we cannot generalize our findings
to paid Android apps, this is also in line with previous Android security research [107,
106, 82, 108, 115, 274, P1, 94, 114, 122, S1, P2]. We deployed the crawler at a university
in Germany which resulted in 77,676 apps that we could not download due to geographic
restrictions. Similarly, we could not download 264,249 apps that were e.g. removed
from Google Play between crawling meta-data and download of APK files.

NSC Analysis. We identified 99,212 apps with custom NSC files. However, we could
not analyze 2,812 of them due to obfuscation. As for the analysis of NSC files, we
might be limited in our analysis of data related to HTTP(S) origins and certification
data since we downloaded HTTPS certificates from Germany. Hence, the availability of
HTTPS for certain websites, certificate chains and corresponding pins from certificates
might differ from the respective results in other regions. In addition, since we analyze
older versions of applications, servers could have changed their configurations over time
which might not reflect the contents of NSC files anymore. Both limitations might
apply in situations where certificate data is fetched in order to calculate pins we want
to match against either trusted roots or pins specified in NSC files. Likewise, especially
pins for backup that are not yet in use might not be matched by us as they might not
(yet) be visible. As there is only one NSC file per application, there is no distinction
between configuration related to the main application and libraries. This limitation
may also apply for the static code analysis we conducted, which means that our analysis
might not accommodate or might be limited to account for e.g. runtime behavior or
reflection.

6.6 Discussion

In this section, we discuss key takeaways and the lessons we learned from our analysis of
TLS certificate validation security in 1,335,322 free Android applications from Google
Play. We discuss our analysis results and compare the state of certificate validation
security in Android in 2020 with results reported in 2012 [114, 126].

We report positive as well as disappointing trends. Android deployed multiple measures
in response to security vulnerabilities related to certificate validation. The measures
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include the introduction of NSC to support developers in implementing custom certificate
validation logic, the default enforcement of HTTPS in apps targeting Android 9 or
higher, and Google Play safeguards in 2016 and 2017 to prevent the publication of apps
included insecure certificate validation code. While new Android apps benefit from new
secure defaults (e.g., HTTPS by default), our results show the need for further security
improvements. In the following, we will address the problems we found and discuss
possible improvements.

Customization is Harmful. We find that usually, whenever developers configure
NSC files manually to handle TLS certificate validation, security takes a hit. Our results
mirror the 2012 results by Fahl et al. [114] and Georgiev et al. [126] that showed that
custom certificate validation implementations in Android apps lead to vulnerabilities.
In 2012, the underlying problem was insecure code that turns off certificate validation in
95% of apps with custom certificate validation code. Our results show that the problem
persists in customized NSC files. Out of the 99,212 apps with custom NSC files that
we were able to identify in our body of Android applications, 88,174 (88.87%) apps
included configurations that downgrade security compared to default settings, mostly
due to developers re-enabling HTTP traffic. Dramatically, we were able to show that
this is usually unnecessary since the remote servers often supported HTTPS. Similar to
the 2012 results, we were also able to see that developers still tend to roll out debug
configurations in their production apps, unnecessarily leaving users at risk. We also
show that 8.67% of the apps that include custom NSC settings allow user-installed CAs,
which attackers can exploit in MitMAs [229]. This is in line with findings of Possemato
and Fratantonio [239]. While they investigated a smaller app set, our findings supports
theirs in several ways: First, we can confirm NSC’s dominating use to re-enable cleartext
traffic (cf. 6.3.1.1). We report similar findings regarding configurations for 127.0.0.1
(cf. Section 6.3.1.1) and copy paste behavior (cf. Section 6.3.1.6). Furthermore, their
insights extend the investigations regarding the impact of vulnerable library use reported
in our work, but clearly corroborate our findings in a bigger picture. Likewise, we can
support their proposals for extending NSC.

Pinning is Still an Issue. As early as 2012, 2013 and 2015, Fahl et al. [114, 115]
and Oltrogge et al. [P1] showed that only a small portion of developers implement
certificate pinning. In developer interviews and surveys, they found that pinning is too
complicated for most developers to implement and that the implementations are often
faulty. Android has since simplified the use of certificate pinning, which has become
much more straightforward via the configuration of NSC files as compared to the more
complicated implementation via custom code, which was previously necessary. Our
results show that, even though pinning should, in theory, have become more accessible,
the rollout of NSC has not led to increased pinning use. Only 0.67% of the apps we
investigated use NSC’s pinning feature. The (non-)use of pinning seems to, therefore,
not only be caused by the complexity of its implementation. Additionally, pinning seems
to be a feature that is only interesting for a small minority of developers. Our findings
confirm the results of Possemato and Fratantonio [239] on the low occurrence of pinning
in NSC files and unintentional misconfigurations of pins that occurs across their sample
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(cf. Section 6.3.1.2 and 6.3.1.6).

NSC Implementation is Error-Prone. We were able to detect several faulty and
insecure NSC configurations. Even though these are not responsible for a large number
of vulnerabilities, they show systematic weaknesses in the current deployment of NSC.
We were able to find apps that used URLs instead of domain names for domain-specific
configurations. While this type of erroneous configuration does not prevent the app
from working, it ignores the setting for the domain. Similar to our findings, Possemato
and Fratantonio [239] report problematic domain usage, e.g. by developers using both
the dummy domain example.com or invalid parameters for pins or domains (cf. Section
6.3.1.6). However, in addition, we discover cases in which URLs, regular expressions
or other invalid strings are added instead of domains, all of which can lead to apps
becoming less secure despite the use of pinning due to non-functional configurations.

We trace these misconfigurations back to insufficient documentation and lack of support
for the Android Studio IDE. Android Studio only provides basic XML support for
NSC files. There is limited support for tags and attributes (only limited support for
misspelled or wrong tags or attributes (e.g., URLs instead of domains) or duplicates
(e.g., for pins)). Android Studio does not support auto-completion for NSC. Available
Android Studio support is based on LINTING checks [223] for NSC and dates back to
2016. Since then, there were no significant enhancements.

We corroborate findings that resemble vulnerabilities found in 2012, 2013, and 2015 by
Fahl et al., Georgiev et al., and Oltrogge et al. Nguyen et al. [224] showed that better
developer support in the IDE has the potential to lead to significant improvements to
app security. Similar approaches for NSC seem promising.

Google Play Safeguards are Insufficient. Even though Google Play announced
safeguards for vulnerable implementations of certificate validation logic in 2016 and
2017, and the ability of state of the art tools [243, 57] to identify the vulnerabilities
we tested, our findings and previous work [P2, 243, 299, 181] suggest that Google
Play’s present deployment of these checks is insufficient. We were able to publish
simple but vulnerable implementations of TrustManager, HostnameVerifier, and
WebViewClient code to Google Play that, according to Google’s announcements,
should have been detected and prevented. In addition to our experiments with publishing
insecure certificate validation, we were able to use static code analysis to show that a
multitude of newly released apps still contains vulnerable implementations. While we
could not pinpoint the exact technical realization of Google Play’s certificate validation
vulnerability detection safeguards, tools such as CryptoGuard [243] or LibScout [57]
would have detected the vulnerable apps we tested. Hence, we recommend Google Play
to consider the integration of state of the art vulnerability detection mechanisms to
detect and block vulnerable apps in the future.
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6.7 Conclusion

In this paper, we continued the long history of research efforts covering the state of
(custom) TLS certificate validation in Android apps. While earlier studies focused on
dangerous custom TLS code and proposals to prevent this, we focus on the on-going
evolution of Android. New secure defaults lead to better security regarding HTTPS
adoption as well as making MitMA harder to mount. At the same time, NSC, rather
than accelerating wide-spread secure use of pinning, is mostly used for degradation
of security in apps by undermining safe defaults. Also, we find that Google Play’s
safeguards intended to prevent vulnerable TLS implementations in apps being published
do not work as expected. Overall, our results confirm that customization is often
harmful to an application’s security.

6.8 Summary

Android applications have a long history of being vulnerable to MitMAs due to insecure
custom TLS certificate validation implementations. To resolve this, Google deployed
the Network Security Configuration (NSC), a configuration-based approach to increase
custom certificate validation logic security, and implemented safeguards in Google Play
to block insecure applications. In this paper, we performed a large-scale in-depth
investigation of the effectiveness of these countermeasures: First, we investigated the
security of 99,212 NSC settings files in 1,335,322 Google Play apps using static code
and manual analysis techniques. We find that 88.87% of the apps using custom NSC
settings downgrade security compared to the default settings, and only 0.67% implement
certificate pinning. Second, we penetrate Google Play’s protection mechanisms by trying
to publish apps that are vulnerable to MitMAs. In contrast to official announcements
by Google, we found that Play does not effectively block vulnerable apps. Finally,
we performed a static code analysis study of 15,000 apps and find that 5,511 recently
published apps still contain vulnerable certificate validation code. Overall, we attribute
most of the problems we find to insufficient support for developers, missing clarification
of security risks in official documentation, and inadequate security checks for vulnerable
applications in Google Play. Aligning the evolution of the Android platform to that of
the TLS ecosystem and our findings from the previous chapters, we find a range of actions
that have been taken to tackle the problems pertaining to the state of network security
in Android. Most notably, these constitute the introduction of enhanced enhanced
safe defaults. Especially, the enforcement of HTTPS by default which constitutes a
major contribution in regards to enhancing network security in Android apps. While
we find the new network security configuration approach (NSC) is most dominantly
used to allow cleartext transmission via HTTP again, a huge variety of apps profits
from the new safe defaults in regards to network security. To this end, there has been a
steeper growth in adoption of HTTPS same as in the browser landscape (cf. 2.4.2.1)
and in huge contrast to our previous findings in Chapter 5). For those apps that
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still opt-in to cleartext traffic again, however, our manual analysis finds major risks
imposed (cf. Section 6.3.1.8). Thus, we find these new platform-wide safe default to
have a vastly positive impact in contrast to our previous findings on third parties and
their dubious impact (cf. Chapter 5). As to custom TLS, the introduction of NSC
closely relates to prior proposals (e.g. [115, 274]) and integrates these directly into the
operating system, as opposed to our proposal in Chapter 4. Comparing our results,
however, we can likewise derive that the scarce application of pinning is in line with
our previous findings on the applicability of pinning in Chapter 4 and the use of HPKP
in the browser landscape [161]. This confirms our previous conclusion of pinning not
being a panacea for the problems and insecurities related to the CA-PKI trust model.
Even more, the results of our studies clearly underline that relieving developers and
third parties as much as possible from the burden, responsibility and risks pertaining to
having to implement network security on their own is more effective than relying on
each app’s and library’s developer to be able increase the security level. While enhanced
safeguards and policies for prohibiting insecure implementations were deployed, their
efficacy turned out to be too limited to protect against susceptible custom TLS code in
apps.

Following the further developments in the overall TLS ecosystem, we find an ongoing
transformation (cf. 2.4.3.3). For example, the introduction of mechanisms such as CT has
led to protection against MitMAs due mischievous actions of CAs no longer only being
a task on the client side but actually being elevated to a platform wide effort mandatory
for all CAs. This distributed effort for logging and openly tracking every issuance of a
certificate facilitating detection and reaction of misconduct. In addition, although not
widely used yet, CAA even aims at allowing certificate owners to only allow authorized
CAs to issue certificates for their respective domains. On top of that, the reduction of
certificate lifetimes further reduces the impact of potential security incidents. All these
techniques serve to illustrate a sustainable shift of responsibility and accountability
that make pinning increasingly losing importance as only countermeasure against the
risk for MitMAs in non-browser software. To this end, the Android platform – as any
system utilizing TLS and the CA-PKI approach – profits from the developments in the
overall TLS ecosystem. This ranges from the steeper growth in adoption of HTTPS and
the enhanced security level already established with platform-wide deployed techniques.
Also, in the light of the experience regarding the deployment and maintenance of pinning
in the case of HPKP (cf. 2.4.3.3), CAs also mandate against the use of pinning [271].
Still, as enhancements such as CT, CAA and shorter certificate lifetime do not apply
for private CAs and CAA not being mandatory for every domain, there are still viable
reasons for choosing custom TLS behaviour in apps. For that, however, our analysis
indicates a configuration-driven approach like NSC to be a more viable choice for realizing
use cases involving custom certificate validation logic like support for pinning or private
CAs as opposed to developers implementing custom TLS on their own or relying on third
parties to do correctly, since our studies still feature a significant prevalence of insecure
custom TLS code in apps (cf. Section 6.4.5) and limited capabilities of safeguards to
ban insecure implementations. However, in fact, even our analysis on the use of NSC as
a simpler and safer mean for custom TLS uncovered several obstacles and new pitfalls
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in regards to misconceptions that can be harmful. Therefore, in the light of all these
findings and on the effect of platform-wide default measures for improving the state
of network security in Android apps and the Android platform, we derive that safe
default security presets requiring as few developer interventions as possible turn out to
be potentially be the most effective strategy for a sustainably higher level of network
security.
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7.1 Summary

The Android platform bases on a browser-based approach for realizing encrypted
connections via TLS. Likewise, it gives app developers extensive control and freedom
for modification of certificate validation logic. This, however, also abetted a disastrous
state of custom certificate validation implementation in Android apps. This state has
been uncovered in 2012. [114, 126] Since then, a multitude of efforts have elaborated
on this topic (cf. Section 3.1). With this dissertation, we presented a line of research
that explores the state of network security in Android apps based on contributions from
three publications with the author of this dissertation as first author. [P1, P2, P3] In
addition to previous works, each of these works contributed insights in regards to the
state of network and app security in Android apps from a different perspective. On top
of that, we aligned our observations and findings pertaining to the situation on Android
to the overall evolution of the TLS basing on the CA-PKI approach and the browser
landscape. The CA-PKI is the paradigm on which most non-browser software including
Android also rely (cf. Section 2.5). Due to this, the evolution of network security on
Android is also highly dependent on that of the overall TLS ecosystem.

Developers. First, we investigated the role of developers in regards to overcoming
obstacles in the widely deployed CA-PKI-based trust model for TLS with the use of
pinning as an advanced strategy for protection against MitMAs. We proposed a tool to
address the urgent state of vulnerable custom certificate validation implementations in
apps. Therefore, we formalized the applicability of pinning in apps and, in addition,
assessed its prevalence in a large-scale analysis. However, as a result of our investigation,
we find that only a small fraction of cases where developers could be advised to custom
TLS code as a means to harden security. Most important reasons include that developers
only have limited control over third party origins their app interacts with and code
that is part of third party libraries. At the same time, our results already underline the
additional efforts for maintenance required on the developers’ side which might cause
more risk than reward from a network security perspective, even compared to the risk
imposed by the standard CA-PKI trustmodel.

Third Parties. Second, we dealt with app and network security in app development
from a different perspective by focusing on third parties as app developers – namely
Online Application Generators in particular – and their capabilities for security enhance-
ments. The previous observations regarding the limited power of individual developers
to introduce enhanced network security and likewise huge risk to cause more harms than
alleviation to the hazardous state of the CA-PKI lead to the question if fewer developers
with more and wider control over many apps can have a positive impact on security.
Therefore, we focused on apps created by app generators in order to assess their ampli-
fication effect on app and network security at a greater scale due to mass deployment
of shared code in thousands of apps. In theory, their development model could help
overcome the obstacles and the overhead related to deployment and maintenance of
enhanced network security implementations. To investigate we first analyzed the market
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for app generator solutions and estimated their prevalence in the Android ecosystem.
Based on that, we conducted a comprehensive security analysis of the most common
services regarding their adherence to common security best practices including network
security. In our analysis, we found, however, the same sorts of vulnerabilities in apps
created with OAGs have as compared to traditional apps. Even more, we could identify
even new threat models specially related to OAGs. These attack vectors are strongly
related to an insecure use of networking APIs or lack of adoption of secure protocols and
still using HTTP instead of HTTPS which, especially, is in strong contrast to the overall
steeper increase in adoption of HTTPS in the TLS ecosystem and browser landscape.
Thus, we derive that, while being in a unique position to have a positive effect on app
security on a larger scale, so far, OAGs miss their chance of a positive amplification
effect making widespread implementation and deployment especially in regards to net-
work security more secure. Hence, also completely externalizing app development and
security decision making responsibility to third parties did not result in more secure
apps and adoption of enhanced measures for network security and certificate validation.
Even worse, by employing the same vulnerable practices as already uncovered by prior
research, due to the amplification effect of OAGs, their impact can be potential even
more dangerous.

Platform. Third, we, again, changed perspective and shed a light on the role of the
Android platform and Google Play ecosystem in hindsight to the deployment of security
measures and policies to enhance network security on Android. From our previous
analyses, we learned that both individual developers and third party providers lack
either suitable power or qualification to cause improvements regarding network security.
Here, we therefore focused on measures installed at a platform level and analyzed the
efficacy of these. These encompass NSC as new security settings mechanism, safeguards
and new safe defaults. The introduction of NSC aimed at easing the implementation of
custom TLS behaviour such as pinning without developers having to write code, and
thus to protect against potentially erroneous code. However, our analysis showed a
scarce adoption of NSC. Although helping to relieve from the urgent state of custom
TLS code, pinning still imposes a huge management overhead and complexity related to
maintaining certificate pins as well as even the configuration-driven approach provided
by NSC turns out to be error-prone itself as we find several forms of mis-configuration.
Furthermore, we still find only a limited use of pinning which supports our previous
findings in Chapter 4. In addition, new developer policies and safeguards target at
obstruction of apps that contain vulnerable custom TLS implementations. Our analysis
of Google Play safeguards identifies these, however, to only provide sufficient protection
against rather common flaws as we find in our penetration testing efforts for the
enforcement of Google Play developer policies. Also the results of our replication of
Fahl et al. [114] reflect this as we still find a high prevalence for insecure custom TLS
code violating developer policies which is are in line with with findings of prior research
before the introduction of these measures (cf. 3.1.1). Finally, the new safe defaults
and especially the enforcement of HTTPS in apps turn out to be the most promising
measure to improve network security at a global scale. With the new safe defaults we
find a reduced attack surface for MitMAs in apps by default facilitated by an increased
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adoption of HTTPS. Still, we find many apps and their developers to undermine these
new safe defaults which also became apparent as most common use of NSC. Even more,
our manual study of apps adhering to this practice confirms the severe risks for MitMAs
by undermining safe defaults and allowing cleartext traffic transmission – thus the use
of HTTP – again. Especially, as our results indicate a huge security degradation due to
the broad impact of these settings if used undiscerningly. Taking all these measures
into account, we find that all of these aim at improving the state of network security.
While we find the new safe defaults deem to be most effective, the efficacy of NSC and
safeguards is rather limited and accompanied by degradation of network security.

For each of our analyses spanning over more than five years, we also aligned our findings
to the evolution of the overall TLS ecosystem within the same time period. We both find
similarities and discrepancies. For pinning as a panacea for the weakest-link property of
the CA-PKI, we find similarities regarding use of HPKP on the web and in Android apps
in regard to complexity in hindsight to implementation and deployment as well as effort
required for maintenance. We find a similarly scarce usage of pinning techniques. Due to
low acceptance and huge impacts of mis-configurations on the web in browsers, HPKP
was deprecated and removed (cf. 2.4.3.3). However, in Android apps pinning remained
as a viable option notwithstanding the dramatic state of custom TLS code. To alleviate,
tremendous research efforts proposed alternative approaches for custom TLS (cf. 3.1.2)
including ours in Chapter 4 [P1] to avoid risks of erroneous implementations. At last,
the Android platform introduced NSC as a mean to keep developers from implementing
custom TLS code on their own but still being able to address special use cases. On the
other side, in the TLS ecosystem, new developments and innovations have been found.
These led to major upheavals of the ecosystem involving all stake holders and especially
shifting responsibilities to CAs and giving domain owners more control (cf. 2.4.3.3).
In that, also non-browser software such as Android apps indirectly profits from these
enhancements as mischievous behaviour can be detected and resolved earlier.

Concerning the adoption of TLS and HTTPS, the situation is vastly similar. Earlier,
we summarized the challenging path to wide-spread adoption on the web in browsers
(cf. 2.4.2.1). Same as for the problems related to the CA-PKI-based default trust model,
major events also fueled a steeper increase of adoption, there were additional driving
factors. These most notably constituted organizational and technical upheavals to ease
the cost and effort required making deployment TLS feasible. With these, e.g. web
standards and other regulations to further enforce web operators to support HTTPS
and quit use of HTTP. Since the adoption of HTTPS in Android apps tightly depends
on servers’ support for HTTPS, there is a coincidentally high prevalence for insecure
HTTP connections even for apps created by OAGs that have full control over their
infrastructure. However, similar to the adoption of HTTPS in browsers, with deployment
of HTTPS slightly becoming default in browsers, the Android platform finally introduces
enhanced safe defaults enforcing use of HTTPS without developers being in charge to
opt for enhanced network security. While for the vast majority of apps in the Android
platform profits from this and feature enhance networks security, using NSC, developers
are free to opt-out of these safe defaults. Undiscerning use of these tools can therefore
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still cause major harms pertaining to network security and put end users at risks.

7.2 Future Work

Prior research led to manifold discovery of vulnerabilities in software. Here, in the
context of this dissertation, the history of Android app development features a wide
range of drastic examples for insecurities caused by developers or third parties making
security decisions in fields they have no proper expertise for, potentially having bad
impact on network security at a massive scale. Chapter 6 identified stricter safe defaults
as most effective measure for enhancing network security in apps. The results from our
investigations in this dissertation, however, still suggest a need for intensified research
on tool and API support for developers as well as more effective safeguards to address
problems as still identified in Chapter 6.

The author of this dissertation, therefore, envisions different directions for future research
to continue this line of research. Instead of relying on developers and third parties to
adhere to best security practices, Android frameworks and developer tools should enforce
these as effectively as possible. These safe defaults should align to state-of-the-art in the
TLS ecosystem. Therefore, one promising research direction lies in further elaborating
on the enforcement of safe defaults as well as on keeping these up to date relative to up
to date security practices regarding TLS. The results from our investigations in this
work show that the capabilities of developers to have a positive impact on network
security and even enforce a higher level of security than already provided by default are
vastly limited. Even more, custom code e.g. for certificate validation – regardless of
whether by individuals or third parties – poses a great risk to cause even more severe
vulnerabilities when deviating from standard settings. Our work therefore strongly
suggests that a principal measure for better security lies in transforming the need for
manually implementing enhanced security measures into up to date safe defaults making
overwriting of default behaviour as non-essential as possible. Enforcement of safe default
is therefore a key aspect regarding the improvement of security. Future work could
therefore further elaborate on mechanisms to strengthen adherence of developers to safe
defaults.

Pertaining to developer support, efforts like e.g. in Chapter 4 [P1], Wei et al. [298]
and Nguyen et al. [224] already laid groundwork on this as well as in the Android
tool chain, basic LINT features, developer policies and safeguards were implemented.
These either try to make recommendations for improving security by e.g. providing
code samples or spot vulnerabilities in app code. However, on both sides, we find
such efforts to be largely limited either regarding their applicability and soundness of
provided solutions (cf. Chapter 4) or in terms of efficacy due to limits of static code
analysis (cf. Chapter 6). Therefore, in contrast, integrated in developer tools, there
should be better support for developers in adhering to safe defaults such as adoption
of HTTPS. Especially, this should also scrutinize developers’ motivations to change
standard behaviour that might result in the deviation from safe defaults and validate
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their necessity and correctness. Chapter 6 illustrated that with regard to e.g. NSC
there is a substantial need for such improvement in tool support as current LINT
features can only address a mediocre subset of potential problems. The same applies
for custom TLS implementations. From this arises another direction for future work
focusing on the design of more usable TLS-related high-level APIs complementing
NSC as a configuration driven approach. These should be as simple as possible, while
being designed powerful enough to address common in order for constituting a genuine
replacement for the current complex low-level APIs followed by deprecation and removal
of those old APIs at least from the set of interfaces available to app or library developers.
Developer studies regarding usable cryptographic APIs for encryption already hint at
promising results in this direction to address the still urgent state of custom TLS code [8,
152]. Lastly, in this work we find that security decisions are not under developers’
control – in accordance to Possemato and Fratantonio [239] for NSC – and may also
not be driven by security requirements that developers aim to implement but instead
may be functional requirements e.g. for libraries or third parties that apps rely on. This
implies that necessary security downgrades should be at best isolated from the rest
of the application in order to limit the security impact compared to our results from
our NSC analysis. Although already proposed concurrently to our work but not yet
implemented in Android, this is therefore a crucial direction for further research. In
contrast to the rather coarse settings in NSC, these should be more fine-grained in
regards to code origin, especially concerning library code. Also, as our analysis still
revealed an urgent state of custom TLS-related code.

Putting this all together, however, the observations in this dissertation imply that
the creation of an ecosystem with safe defaults that at the same time shift away the
need from developers for making and implementing security decisions on their own or
abolishing these as good as possible. This should reduce the need for developer having
to implement security-critical behaviour on their own, leading to the most promising
direction for future research that aims at software environments that move the task of
network security as far out of the focus of developers as needed to accommodate the
risk of urgent effects possibly related to insecure custom implementations.
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Table A.1: Classification and fingerprinting of SAF (cf. 5.2.1) and Developer-as-a-Service
(DaaS) (cf. 5.2.3) application generators sorted by category and app count. One
single fingerprinting feature suffices to uniquely classify an application generator.
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StandAlone Frameworks
Xamarin [307] 206,433
Apache Cordova [30] 143,464
Crosswalk [95] 18,772
AppMk [45] 15,251
ionic [175] 14,564
Appcelerator [35] 14,227
b4x [56] 9,494
Game Salad [124] 5,677
React Native [245] 3,589
Phonegap [30] 3,297
Native Script [219] 211

Developer-as-a-Service
CrowdCompass [96] V V V 2,726
Quickmobile [242] V V 624

= yes/applies; ; = applies partly; = no/does not apply; V = varies
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Table B.1: Top 10 Root CAs detected in pinning

Apps CAa

44 CN=Amazon Root CA 1
39 CN=Go Daddy Root Certificate Authority - G2
24 CN=Starfield Services Root Certificate Authority - G2
22 CN=DigiCert High Assurance EV Root CA
22 CN=DigiCert Global Root CA
19 CN=DigiCert Global Root G2
17 CN=Entrust Root Certification Authority - G2
16 CN=GlobalSign Root CA
16 CN=Baltimore CyberTrust Root
16 CN=COMODO RSA Certification Authority

a
We use the CAs’ CommonName attribute for brevity here

Table B.2: Top 10 Domains with HTTPS downgrade.

# Apps HTTPS Domain Value

11,689 127.0.0.1
4,290 localhost

740 10.0.2.2
449 localdev.cc
392 amazon-adsystem.com
376 virenter.com
366 10.0.3.2
366 ✓ securenetsystems.net
293 ✓ renweb.com
290 ✓ getfitivity.com

✓ HTTPS would be possible
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Table B.3: Top 10 domains that were used with pinning.

Apps Domain Value Exp Leaf CA

29 ayers.com.hk ✓ ✓
36 subaio.com
24 finopaymentbank.in
23 webmobi.com ✓
12 api.app.olbisoft.de ✓
12 cmtelematics.com ✓
12 info.app.olbisoft.de ✓
11 demo.pay2india.com
11 gmail.com ✓
9 app.sociabble.com ✓ ✓

* We could not find the certificate for the given pinning
value.

Table B.4: Top 10 Domains with HTTPS upgrade

# Apps Domain Value

76 cdn.example2.com
76 example.com
8 horaires-aeroports.appspot.com
7 ayers.com.hk
4 apis.appnxt.net
4 10.0.2.2
4 10.0.3.2
4 http://credu.com
4 http://el.multicampus.com
4 http://www.credu.com

Table B.5: Top custom certificates for debugging

# Apps Certificate

170 /CN=CharlesProxyCustomRootCertificate
65 /C=RU/L=Novosibirsk/O=CFT/CN=dev-new.bankplus.ru
12 /C=DE/O=aktivkonzepte/CN=aktiv-konzepte
9 /C=SI/ST=Slovenija/L=Ljubljana/O=Omsoftd.o.o./OU=Primoz/CN=

OmsoftCA/emailAddress=primoz@omsoft.si
9 /CN=ng_test_ca_2/C=SI/O=Halcom/OU=NG
9 /C=SI/L=Ljubljana/O=Halcomd.d./OU=Corporate/CN=ljvfep3.halcom.

local/emailAddress=sysadmins@halcom.si
8 /C=SI/O=Halcomd.d./OU=servercertificates/CN=fep-r3.halcom.local/

SN=halcom.local/GN=fep-r3
8 /C=US/O=GeoTrustInc./CN=RapidSSLSHA256CA
6 /OU = Createdbyhttp : / / www . fiddler2 . com / O = DO_NOT_TRUST / CN =

DO_NOT_TRUST_FiddlerRoot
4 /C=CA/ST=PrinceEdwardIsland/L=Charlottetown/O=silverorangeInc.

/CN=roble/emailAddress=sysadmin@silverorange.com
* Certificates for Charles Proxy are generated during setup and include individual user and device names.
Therefore, we only used the prefix for aggregation.
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Table B.6: Top custom certificates for production

# Apps Certificate

647 /C=US/ST=NY/L=NY/O=NarviiInc./OU=Aminoapps/CN=https://aminoapps.
com//emailAddress=system@narvii.com

379 /CN=console-forum.net
174 /C = US / ST = CO / L = Denver / O = Zerista / CN = * . zerista . d . dm7 . me /

emailAddress=dushyanth@zerista.com
174 /C = US / ST = CO / L = Denver / O = Zerista / CN = * . zerista . k . dm7 . me /

emailAddress=dushyanth@zerista.com
89 /CN=*.zerista.io
21 /C=AU/ST=Some-State/O=InternetWidgitsPtyLtd/CN=*.zerista.d.dm7.me
21 /C = US / ST = Colorado / L = Denver / O = Zerista,Inc . /OU = Dushyanth / CN =

*.zerista.k.dm7.me/emailAddress=dushyanth@zerista.com
16 /C=US/O=DigiCertInc/OU=www.digicert.com/CN=RapidSSLRSACA2018
16 /CN=CharlesProxyCA(1Jul2019,MacBook-Pro-de-Toni.local)/OU=https:

//charlesproxy.com/ssl/O=XK72Ltd/L=Auckland/ST=Auckland/C=NZ
16 /CN=CharlesProxyCA(20Nov2019,Marc.local)/OU=https://charlesproxy.

com/ssl/O=XK72Ltd/L=Auckland/ST=Auckland/C=NZ

Listing B.1: Empty TrustManager - Accepts all certificates

1 @Override
2 public void checkServerTrusted(X509Certificate[] chain, String /

authType) throws CertificateException {
3 }

Listing B.2: Empty HostnameVerifier - Accepts all hostnames

1 @Override
2 public boolean verify(String host, SSLSession session) {
3 return true;
4 }

Listing B.3: NSC permitting HTTP traffic again

1 <?xml version="1.0" encoding="utf-8"?>
2 <network-security-config>
3 ...
4 <base-config cleartextTrafficPermitted="true">
5 ...
6 </base-config>
7 ...
8 </network-security-config>
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Listing B.4: Reactivating trust for user-installed CAs

1 <?xml version="1.0" encoding="utf-8"?>
2 <network-security-config>
3 ...
4 <base-config>
5 <trust-anchors>
6 <certificates src="system" />
7 <certificates src="user" />
8 </trust-anchors>
9 </base-config>
10 ...
11 </network-security-config>

Listing B.5: Insecure NSC Snippet from the Mopub Library

1 <?xml version="1.0" ?>
2 <network-security-config>
3 ...
4 <base-config cleartextTrafficPermitted="true">
5 <trust-anchors>
6 <certificates src="system"/>
7 </trust-anchors>
8 </base-config>
9 <domain-config cleartextTrafficPermitted="false">
10 <domain includeSubdomains="true">example.com</domain>
11 <domain includeSubdomains="true">cdn.example2.com</domain>
12 </domain-config>
13 </network-security-config>
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