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Abstract

Techniques to evaluate a program’s cache performance fall
into two camps: 1. Traditional trace-based cache simulators
precisely account for sophisticated real-world cache models
and support arbitrary workloads, but their runtime is pro-
portional to the number of memory accesses performed by
the program under analysis. 2. Relying on implicit workload
characterizations such as the polyhedral model, analytical ap-
proaches often achieve problem-size-independent runtimes,
but so far have been limited to idealized cache models.
We introduce a hybrid approach, warping cache simula-

tion, that aims to achieve applicability to real-world cache
models and problem-size-independent runtimes. As prior
analytical approaches, we focus on programs in the poly-
hedral model, which allows to reason about the sequence
of memory accesses analytically. Combining this analytical
reasoning with information about the cache behavior ob-
tained from explicit cache simulation allows us to soundly
fast-forward the simulation. By this process of warping, we
accelerate the simulation so that its cost is often independent
of the number of memory accesses.

CCS Concepts: • Software and its engineering→ Soft-

ware performance; Automated static analysis.
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1 Introduction

Traditionally, the efficiency of an algorithm has been deter-
mined by evaluating its time complexity. Today, evaluating
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an algorithm’s cache performance has become equally im-
portant. Over the past thirty years, the increasing processor-
memory gap has led to the introduction of complex memory
hierarchies consisting, in particular, of multiple cache levels.
As a consequence, a program’s runtime on modern hard-
ware heavily depends on how well it exploits the underlying
memory hierarchy. However, unlike time complexity, cache
performance cannot easily be gauged in a compositional
manner from a program’s parts, i.e., the composition of two
cache-efficient parts may be cache inefficient, and vice versa.

This calls for automatic methods to evaluate a program’s
cache performance, to inform programmers and compilers
so that they can make informed choices about data-locality
transformations. Cache performance analysis has already
received considerable attention. Prior work can roughly be
divided into two camps:
1. Traditional cache simulators, such as Dinero IV [19] or

CASPER [37], simulate a program’s cache behavior by explic-
itly iterating over the trace of memory accesses generated
by the program. The advantage of this approach is that it is
applicable to arbitrary workloads and it is possible to pre-
cisely model modern memory hierarchies, including sophis-
ticated cache replacement policies, such as Pseudo-LRU [3]
or Quad-age LRU [38, 39] found in real-world microarchitec-
tures [2, 65]. The main drawback of traditional simulators is
that their runtime is proportional to the number of memory

accesses a program performs. As a consequence, the simula-
tion of programs operating on large amounts of data may
take weeks or more.

2. Analytical cache models [7, 10, 13, 14, 24, 25, 33, 59, 60],
on the other hand, e.g. PolyCache [7] or HayStack [33], aim
to achieve analysis times that are independent of the number

of memory accesses performed by the program under anal-
ysis. To this end, they rely on implicit representations of
a program’s memory accesses. A prominent such program
representation is the polyhedral model [9, 20], which, loosely
speaking, captures a program’s memory accesses as polyhe-
dra. For such programs, the number of cache misses can be
obtained analytically by applying a sequence of algebraic
operations on the program representation and by apply-
ing symbolic counting techniques. One main drawback of
these analytical models is that they are limited to simplified
cache models: HayStack [33] applies to inclusive hierarchies
of fully-associative caches with least-recently-used (LRU)
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for (int i = 1; i < 999; i++)

B[i-1] = A[i-1] + A[i];
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Figure 1. 1D stencil computation and its warping simulation.
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Figure 2. Symbolic warping cache simulation.

replacement; PolyCache [7] applies to hierarchies of set-
associative caches but is also limited to LRU replacement and
can handle non-write allocate caches only approximately.
In this paper, we introduce a new approach called warp-

ing cache simulation that aims to combine the strengths of
traditional cache simulators and analytical cache models.
Warping cache simulation is applicable to realistic models of
modern memory hierarchies, supporting hierarchical caches
with various write policies and arbitrary replacement poli-
cies, and its runtime is often independent of the number of
memory accesses of a program.
At its core, warping exploits the following data-indepen-

dence property of caches: Assume 𝑐1 and 𝑐2 are two cache
states that are equal up to a renaming of the addresses of the
cached memory blocks, i.e., there is a bijection 𝜋 mapping
the memory blocks of 𝑐1 to those of 𝑐2, such that 𝜋 (𝑐1) = 𝑐2.
Then, an access to 𝑐1 under block𝑏 is a cache hit if and only if
𝜋 (𝑏) hits in state 𝑐2. Similarly, the resulting cache states 𝑐 ′

1
, 𝑐 ′

2

under accesses to 𝑏 and 𝜋 (𝑏) are guaranteed to be related to
each other under the same bijection 𝜋 .

Let us illustrate howwe can exploit this data-independence
property in warping cache simulation at the hand of the 1D
stencil computation in Figure 1, whichwill serve as a running
example throughout the paper. In the example, we assume a
small fully-associative cache of size two with least-recently-
used (LRU) replacement and that each array cell occupies
a full cache line; but the approach equally applies to more
complex real-world caches. In each loop iteration, the pro-
gram accesses𝐴[𝑖], 𝐴[𝑖 −1] and 𝐵 [𝑖 −1]. Thus, after the first
loop iteration, which results in three misses, 𝐵 [0] and 𝐴[1]
are cached. All subsequent iterations will hit on the access to
𝐴[𝑖 − 1] because it was cached in the previous iteration. Iter-
ation 𝑖 results in a cache state containing 𝐵 [𝑖 − 1] and 𝐴[𝑖].
Thus cache states in consecutive iterations are related under
the simple bijection that maps memory block 𝑖 to memory

block 𝑖 + 1. Warping cache simulation detects this relation.
Then, it checks whether the future memory accesses relate
to the past memory accesses in the same way that the match-
ing cache states relate to each other. If that is the case, the
simulation may fast forward, potentially all the way to the
end of the loop, determining the resulting number of cache
misses and the final cache state analytically. In our example,
warping simulation fast forwards through the entire loop
after explicitly simulating the loop for two iterations.
To make this basic idea a reality, we introduce symbolic

cache simulation to efficiently determine whether two cache
states encountered during concrete simulation are related
under a bijection. Figure 2 illustrates the symbolic cache
simulation of the 1D stencil computation. In our example,
symbolic cache simulation determines that the cache states
obtained after the first and the second iteration both contain
𝐴[𝑖] and 𝐵 [𝑖 − 1] for different values of the loop iterator 𝑖 .
Hashing the symbolic cache states obtained in different iter-
ations allows to efficiently detect such a match, also across
several iterations. Further, we employ polyhedral techniques
to check whether future memory accesses satisfy the warp-
ing conditions implied by matching cache states obtained
during simulation. We have implemented our approach and
applied it to the PolyBench [48] benchmark suite. Our exper-
iments show that warping cache simulation may outperform
traditional cache simulation by several orders of magnitude.

To summarize, we make the following contributions:

• We introduce warping cache simulation, the first ap-
proach that is both applicable to real-world cache ar-
chitectures and may achieve simulation times that are
independent of the number of memory accesses per-
formed by the program.
• We implement warping cache simulation and experi-
mentally evaluate its performance, demonstrating that
warping cache simulation may outperform traditional
cache simulation by several orders of magnitude.

2 Caches and Data Independence

Caches are fast but small memories that buffer parts of the
large but slow main memory in order to bridge the speed gap
between the processor and main memory. Caches operate
at the granularity of memory blocks 𝑏 ∈ Block, which are
stored in the cache in cache lines of the same size. In order
to facilitate an efficient cache lookup, the cache is organized
into sets such that eachmemory blockmaps to a unique cache
set. The size 𝑘 of a cache set is called the associativity of the
cache. If an accessed block resides in the cache, the access
hits the cache. Upon a cache miss, the block is loaded from
the next level of the memory hierarchy, e.g. main memory
in case of the last-level cache. If the corresponding cache set
is full, another memory block is evicted to make place for
the newly loaded block. The block to evict is determined by
the replacement policy.
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To ease the formal development, we first formalize the
behavior of individual cache sets, which is already sufficient
to capture fully-associative caches; and then generalize this
formalization to set-associative caches.

2.1 Cache Sets

The state of an individual cache set in a cache of associativ-
ity 𝑘 is a pair

𝑠 ∈ SetState = (Line→ (Block ∪ {𝜖})) × PolicyState,

where Line = {1, . . . , 𝑘}, and thus the first component of the
pair captures thememory blocks stored in the𝑘 cache lines of
the cache set. Empty lines are represented by 𝜖 . The state of
many replacement policies can be fully encoded in the order
in whichmemory blocks occupy a set’s cache lines. Examples
of such policies are least-recently-used (LRU), first-in first-
out (FIFO), and Pseudo-LRU (PLRU) [1]. For such policies, a
separate PolicyState component then becomes unnecessary
and can be omitted. E.g. under LRU, cache lines can be or-
dered from most- to least-recently-used, adapting the order
upon each access. Similarly, under FIFO cache lines can be or-
dered from last- to first-in. Such encodings are slightly more
complicated for PLRU and discussed e.g. in [18, 29]. To model
more complex policies, such as Quad-age LRU [38, 39], the
PolicyState component is used to capture additional state of
the replacement policy. Given a set state 𝑠 = (𝑚, 𝑝𝑠), we refer
to the mapping of 𝑠 by 𝑠 .𝑚 and to the policy state of 𝑠 by 𝑠 .𝑝𝑠 .
Note that this model does not include the data stored in

the cache set as this is not relevant to determine whether a
memory access results in a hit or a miss. For simplicity, we
also do not differentiate between reads and writes, which
may make a difference depending on the write policy. Thus
the formalization applies to write-allocate caches, but our
implementation also supports no write-allocate caches.

We may model the effect of a memory access on the cache
state using the two functions UpSet : SetState × Block →
SetState and ClSet : SetState × Block → B, which take as
input a set state and the accessed memory block and return
the updated set state and the access’s classification as a hit
or a miss, respectively.

The definition of UpSet depends on the particular replace-
ment policy. For LRU, e.g., it is defined as follows:

UpSet𝐿𝑅𝑈 (𝑠, 𝑏) := 𝜆𝑙 ∈ Line.




𝑏 : if 𝑙 = 1

𝑠 (𝑙) : if ∃𝑙 ′ < 𝑙 : 𝑠 (𝑙 ′) = 𝑏

𝑠 (𝑙 − 1) : otherwise

Our approach is applicable to any replacement policy as
long as it satisfies the data-independence property we will
define shortly. In contrast, ClSet can be defined generically
by inspecting the contents of the cache lines:

ClSet(𝑠, 𝑏) :=

{
true : if ∃𝑖 : 𝑠 .𝑚(𝑖) = 𝑏

false : otherwise
(1)

Let Π ⊂ Block → Block be the set of bijections from
memory blocks to memory blocks. A bijection 𝜋 ∈ Π can be
applied to a set state as follows:

𝜋 (𝑠) := (𝜆𝑙 .𝜋 (𝑠 .𝑚(𝑙)), 𝑠 .𝑝𝑠),

where we define 𝜋 (𝜖) = 𝜖 . In other words, the bijection is
applied to the contents of each cache line, mapping empty
lines to empty lines.

Property 1 (Data independence of cache sets).
Let 𝑠 ∈ SetState, 𝑏 ∈ Block, and 𝜋 ∈ Π. Then:

𝜋 (UpSet(𝑠, 𝑏)) = UpSet(𝜋 (𝑠), 𝜋 (𝑏)) (2)

In other words, the cache update is independent of the
particular memory blocks stored in a cache set. To simplify
the following statements, we do not restate Property 1 in the
remainder of the paper, but implicitly assume it holds.

All cache architectures we are aware of satisfy Property 1.
Recent measurement-based approaches [1, 2, 65] to automati-
cally derive cache models are also naturally limited to models
satisfying data independence. Our warping cache simulator
supports LRU, FIFO, PLRU [3], and Quad-age LRU [38, 39],
which allows to model the L1 and L2 caches of most recent
Intel microarchitectures [2, 65]. Other policies can be added
as long as they satisfy data independence.

2.2 Set-associative Caches

Set-associative caches can be seen as the composition of
multiple cache sets. Typically the number of cache sets 𝑠 is
a power of two, so that the cache set that a memory block
maps to is determined by a subset of its address, which is
commonly referred to as the cache index.
In the following, we model the mapping from memory

blocks into cache sets using the function index : Block→ Set,
where Set = {0, . . . , 𝑠 − 1}. Most real-world caches employ
a modulo mapping of blocks to cache sets, i.e., index(𝑏) =
𝑏 mod 𝑠 . Then, the state of a set-associative cache can be
captured simply as a mapping from cache sets to their states:
𝑐 ∈ CacheState = Set→ SetState.

A memory access results in a hit if it hits in the cache set
that it maps to:

ClCache(𝑐, 𝑏) := ClSet(𝑐 (index(𝑏)), 𝑏) (3)

Cache states are updated by updating the cache set the
block maps to:

UpCache(𝑐, 𝑏) := 𝑐 [index(𝑏) ↦→ UpSet(𝑐 (index(𝑏)), 𝑏)] (4)

Thus, cache sets are updated independently of each other,
which implies another source of symmetry we seek to ex-
ploit. To this end, let Πindex= be the set of bijections on blocks
that preserve the partition of blocks into cache sets:

Πindex= := {𝜋 ∈ Π | ∀𝑏,𝑏 ′ ∈ Block : (index(𝑏) = index(𝑏 ′))

⇔ (index(𝜋 (𝑏)) = index(𝜋 (𝑏 ′)))}
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Figure 3. Example illustrating the data independence of set-
associative caches.

A bijection 𝜋 ∈ Πindex= induces a bijection 𝜋Set on cache sets:

𝜋Set := {(index(𝑏), index(𝜋 (𝑏))) | 𝑏 ∈ Block}.

This allows to apply bijections from Πindex= to cache states:

𝜋 (𝑐) := 𝜆𝑠.𝜋 (𝑐 (𝜋−1Set (𝑠))) (5)

Assuming Property 1 holds on the underlying cache sets,
it also holds for the resulting set-associative cache:

Theorem 1 (Data independence of caches).
Let 𝑐 ∈ CacheState, 𝑏 ∈ Block, and 𝜋 ∈ Πindex= . Then:

𝜋 (UpCache(𝑐, 𝑏)) = UpCache(𝜋 (𝑐), 𝜋 (𝑏)), (6)

ClCache(𝑐, 𝑏) = ClCache(𝜋 (𝑐), 𝜋 (𝑏)) . (7)

The proof of this theorem and all other proofs are given
in the extended version of this paper [47].

Example 2.1. Let us illustrate Theorem 1 at the hand of
the 1D stencil code from Figure 1. Assume a set-associative
cache consisting of four cache sets of associativity two with
LRU replacement. Further assume, as in the previous exam-
ples, that each array cell occupies one full cache line and that
the index of both 𝐴[0] and 𝐵 [0] is zero. Then, the execution
reaches cache state 𝑐5 in Figure 3 at the start of loop itera-
tion 5. In the figure, the cache lines within each cache set are
ordered from most-recently-used (MRU) to least-recently-
used (LRU). Performing the accesses of iteration 5 yields
cache state 𝑐6, with 𝑐6 = 𝜋 (𝑐5), where 𝜋 (𝑖) = 𝑖 + 1, and thus
𝜋Set (𝑠) = (𝑠+1) mod 4. As the accesses in iteration 6 relate to
those of the iteration 5 under the same bijection 𝜋 , following
Theorem 1, the next state can be obtained as 𝑐7 = 𝜋 (𝑐6).

2.3 Multi-level Caches

Memory hierarchies of modern multi-core processors con-
tain multiple cache levels. Typically, L1 and L2 caches are
private to a core, while the L3 cache is shared among all of
the processor’s cores.
Cache hierarchies are governed by inclusion policies [54]

that determine how the contents of a given cache level relate
to those of the next level of the hierarchy. In the extended
version [47], we show how tomodel a two-level non-inclusive
non-exclusive cache hierarchy and prove that this model sat-
isfies data independence. We note that inclusive and exclusive
cache hierarchies also satisfy data independence and could
be captured in a similar manner.

3 Polyhedral Program Representation

The polyhedral model [9, 20, 21] is a mathematical frame-
work to succinctly describe and manipulate programs’ con-
trol flow and data-access patterns using Presburger arith-
metic [34]. In this section, we introduce a simple program
representation resembling abstract syntax trees that is tai-
lored to cache simulation.

3.1 Presburger Sets and Maps

To manipulate integer sets and to represent programs in
the polyhedral model, we make use of isl, the integer set

library [61]. Here, we introduce how integer sets can be
defined and some important operations on integer sets pro-
vided by isl. Our presentation loosely follows the tutorial by
Verdoolaege [62]. More details can be found there.

A Presburger set 𝑆 = {(𝑖1, . . . , 𝑖𝑛) | 𝑐} is an integer set, i.e.,

a set of integer tuples (𝑖1, . . . , 𝑖𝑛) = ®𝑖 ∈ Z
𝑛 , whose elements

satisfy the Presburger formula 𝑐 . The only free variables
allowed in 𝑐 are 𝑖1, . . . , 𝑖𝑛 , so that the set 𝑆 corresponds to
the satisfying assignments of 𝑐 .

Presburger formulas are first-order formulas that are lim-
ited to the Presburger language, which allows for addition +,
subtraction −, integer constants𝑑 , floored division by integer
constants ⌊·/𝑑⌋ and the binary predicate ≤.

Example 3.1. The set 𝐸 = {(𝑖, 𝑗) | ∃𝑘 : ⌊𝑖/7⌋ = 𝑘+𝑘∧𝑖 ≤ 𝑗}
consists of all pairs of integers (𝑖, 𝑗), s.t. the floored division
of 𝑖 by seven is even and for which 𝑖 ≤ 𝑗 .

To ease notation, several other operations are supported
as syntactic sugar, in particular multiplication by constants,
modulo with a constant divisor, and comparison of integer
tuples by lexicographic ordering ⪯. It is also convenient
to refer to previously defined Presburger sets within the
definition of a new set: 𝐹 = {(𝑖, 𝑗) | ∃𝑘 : (𝑖, 𝑘) ∈ 𝐸∧ 𝑗+ 𝑗 = 𝑘}.
A Presburger relation 𝑅 = {(𝑖1, . . . , 𝑖𝑛) → ( 𝑗1, . . . , 𝑗𝑚) | 𝑐}

relates integer tuples ®𝑖 ∈ Z𝑛 to integer tuples ®𝑗 ∈ Z𝑚 , where
the constraint 𝑐 has the same restrictions as in the case of
Presburger sets. For a Presburger relation 𝑅, 𝑅dom denotes

its domain, i.e., 𝑅dom = {®𝑖 | ∃®𝑗 : ®𝑖 → ®𝑗 ∈ 𝑅}. Dually, 𝑅ran
denotes its range, i.e., 𝑅ran = {®𝑗 | ∃®𝑖 : ®𝑖 → ®𝑗 ∈ 𝑅}. We
express the lexicographic minimum and maximum of sets

as lexmin(𝑆) = {®𝑖 | ®𝑖 ∈ 𝑆 ∧ �®𝑗 ∈ 𝑆 : ®𝑗 ≺ ®𝑖} and lexmax(𝑆) =
{®𝑖 | ®𝑖 ∈ 𝑆 ∧ �®𝑗 ∈ 𝑆 : ®𝑖 ≺ ®𝑗}, respectively.
Given the definition of a set or relation we may use isl

to check whether the set is empty, and, if not, to extract an
element of this set or relation.

3.2 Static Control Parts

Warping cache simulation applies to static control parts
(SCoPs) of programs. SCoPs are loop nests whose control
flow and memory-access behavior is determined statically,
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for (int i = 0; i < 100; i++) {

c[i] = 0;

for (int j = i; j < 100; j++) {

c[i] = c[i] + A[i][j] * x[j];

}

}

𝐿𝑖

𝐴𝑖 𝐿 𝑗

𝐴𝑖 𝑗,1 𝐴𝑖 𝑗,2 𝐴𝑖 𝑗,3 𝐴𝑖 𝑗,4

Figure 4. Computation of the product of an upper triangular
matrix with a vector and its tree representation.

and thus independent of the program’s inputs. Further re-
strictions apply to the loop bounds and the array index ex-
pressions, which are limited to affine expressions. We also
refer to such loops as polyhedral programs.

For the purpose of cache simulation, it is sufficient to cap-
ture a SCoP’s memory-access behavior. Thus, we can safely
abstract from the computations performed by a SCoP. To
this end, we introduce a tree-structured representation for
SCoPs, which resembles the program’s abstract syntax tree.
This tree representation consists of two types of nodes:

1. Loop nodes correspond to loops in the source program.
2. Access nodes form the leaves of the tree and correspond

to the array accesses1 performed by the program.
Each loop node 𝐿 has the following attributes:
• An iteration domain 𝐿.dom that captures the values
of loop iterators for which the loop is executed. The
dimensionality of 𝐿.dom depends on the nesting level
of the loop node: The root node’s domain is one di-
mensional, and each nesting level adds one dimension,
corresponding to the loop iterator of the loop node.
• A list of children 𝐿.children. Children are either loop
nodes or access nodes. Their order defines the order in
which the children are to be visited during simulation.

By construction, the iteration domain of each loop is tra-
versed in lexicographic order.

Each access node 𝐴 has the following attributes:
• An iteration domain 𝐴.dom that captures the loop iter-
ations in which the access should be performed. This
is required to model memory accesses that are guarded
by a conditional within a loop.
• An access function 𝐴.access that determines the ac-
cessed memory block for each access instance.

Consider the example program implementing a matrix-
vector product computation and its tree representation in
Figure 4. Child nodes are sorted from left to right, corre-
sponding to the execution order.
In our example, the iteration domains are

𝐿𝑖 .dom = 𝐴𝑖 .dom = {(𝑖) ∈ Z1 | 0 ≤ 𝑖 < 100},

𝐿 𝑗 .dom = {(𝑖, 𝑗) ∈ Z2 | 0 ≤ 𝑖 < 100 ∧ 𝑖 ≤ 𝑗 < 100}

= 𝐴𝑖 𝑗,1.dom = 𝐴𝑖 𝑗,2.dom = 𝐴𝑖 𝑗,3.dom = 𝐴𝑖 𝑗,4.dom.

1If necessary, scalar variables can be modeled as zero-dimensional arrays.

Algorithm 1 Non-warping cache simulation

1: procedure LoopNode::Simulate(®𝑗 )

2: ®𝑖 ← this.initial( ®𝑗)

3: ®final← this.final( ®𝑗)

4: while ®𝑖 ⪯ ®final do

5: if ®𝑖 ∈ this.dom then

6: for all 𝑐ℎ𝑖𝑙𝑑 ∈ this.children do

7: 𝑐 ← 𝑐ℎ𝑖𝑙𝑑.Simulate(®𝑖)

8: ®𝑖 ← ®𝑖 + this. ®stride
9: procedure AccessNode::Simulate(®𝑗 )

10: if ®𝑗 ∈ this.dom then

11: 𝑚 ←𝑚 + ClCache(𝑐, this.access( ®𝑗))
12: 𝑐 ← UpCache(𝑐, this.access( ®𝑗))

As none of the access nodes are guarded by a conditional,
their iteration domains are equal to those of their enclosing
loops. The access functions are

𝐴𝑖 .access = {(𝑖) → block(linearize(𝑐 [𝑖]))},

𝐴𝑖 𝑗,1 .access = {(𝑖, 𝑗) → block(linearize(𝑐 [𝑖]))},

𝐴𝑖 𝑗,2 .access = {(𝑖, 𝑗) → block(linearize(𝐴[𝑖] [ 𝑗]))},

𝐴𝑖 𝑗,3 .access = {(𝑖, 𝑗) → block(linearize(𝑥 [ 𝑗]))},

𝐴𝑖 𝑗,4 .access = {(𝑖, 𝑗) → block(linearize(𝑐 [𝑖]))},

where linearize(·) converts an array expression into an ex-
pression capturing the accessed memory address. E.g. assum-
ing a row-major layout and an array 𝐴[23] [42] of 4-byte
integers, linearize(𝐴[𝑖] [ 𝑗]) = start𝐴 + 42 · 4𝑖 + 4 𝑗 . As caches
operate at the granularity of memory blocks, block translates
the accessed address into the corresponding memory block,
i.e., block(𝑥) := ⌊𝑥/64⌋ assuming a block size of 64 bytes.
We use pet, the Polyhedral Extraction Tool [63] to ob-

tain polyhedral representations of SCoPs, which we sub-
sequently transform into the tree representation introduced
above. For convenience during simulation, we also define
the following helper functions, which can be implemented

using isl: 𝐿.initial( ®𝑗) := lexmin(𝐿.dom ∩ ({®𝑗} × Z)), and

𝐿.final( ®𝑗) := lexmax(𝐿.dom ∩ ({®𝑗} × Z)), which provide the
smallest and the largest elements of the iteration domain of 𝐿
for a fixed assignment of the outer dimensions of the iteration

domain. In addition, interval(®𝑖, ®𝑗) := {®𝑘 | ®𝑖 ⪯ ®𝑘 ≺ ®𝑗} captures

the set of integers in the interval between ®𝑖 and ®𝑗 . Similarly,

we may extract the stride 𝐿. ®stride of a loop node, which is
the increment of the iteration variable of loop node 𝐿.

4 Non-Warping Cache Simulation of
Polyhedral Programs

Algorithm 1 shows how to perform non-warping cache simu-
lation on top of the tree representation introduced in the pre-
vious section. The algorithm uses two global variables, 𝑐 and
𝑚, the current cache state and the current cache miss count.
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To analyze a SCoP, the simulation is initiated by invoking
the Simulate procedure of the root node of the tree. The

first parameter, ®𝑗 , is the state of those loop iterators that are
defined in ancestors of a node. Thus, at the top level, the

zero-dimensional tuple ®𝑗 = () can be passed to the procedure.
For a loop node, the simulator steps through the iteration

domain from the initial state this.initial( ®𝑗) to the final state

this.final( ®𝑗). At each point in the iteration domain the simu-
lation of all child nodes is triggered. The check in line 5 is
required to support guarded statements.
Memory accesses are simulated at access nodes. If the

current iterator state ®𝑗 is in the access’s domain, the cache
state is updated and the cache miss count is incremented
based on the classification of the memory access associated

with the current iterator state ®𝑗 .
As the SCoP cache simulation may be initiated with any

cache state and any cache miss count, the SCoP simulation
could be integrated intomore general simulation frameworks
that apply to non-static control parts of a program. This also
applies to the warping cache simulation that we introduce
in the following section. However, experimental evaluation
of such an integration is outside of the scope of this paper
due to the significant required engineering effort.

5 Warping Cache Simulation of Polyhedral
Programs

Wenow show how to exploit the data independence of caches
in order to speed up cache simulation. The basic idea is
to identify recurring patterns of cache states and memory
accesses during the cache simulation and to łwarpž across
these. In Section 5.1 we introduce the warping theorem that
formalizes the above idea. To efficiently determine candidates
for warping, we introduce symbolic cache simulation and
a corresponding symbolic warping theorem in Section 5.2.
Based on these foundations we finally introduce a warping
symbolic cache simulation algorithm in Section 5.3.

5.1 Concrete Cache Warping

Warping is based on the following theorem, which follows
from Theorem 1:

Theorem 2 (Cache warping). Let 𝑐0, 𝑐1 ∈ CacheState,
𝑠0, . . . , 𝑠𝑛 ∈ Block

∗, and 𝜋 ∈ Πindex= , s.t.

𝑐1 = UpCache(𝑐0, 𝑠0) = 𝜋 (𝑐0), (8)

∀𝑖, 0 ≤ 𝑖 < 𝑛 : 𝑠𝑖+1 = 𝜋 (𝑠𝑖 ). (9)

Then:

UpCache(𝑐1, 𝑠1 · . . . · 𝑠𝑛) = 𝜋𝑛 (𝑐1), (10)

ClCache(𝑐1, 𝑠1 · . . . · 𝑠𝑛) = 𝑛 · ClCache(𝑐0, 𝑠0), (11)

where · denotes the concatenation operator on access sequences.

In other words, if, during the simulation we arrive at cache
state 𝑐1 that is equal up to a bijection on the cache contents to

an earlier cache state 𝑐0, i.e., 𝑐1 = 𝜋 (𝑐0), and the subsequent
memory accesses correspond to those observed between 𝑐0
and 𝑐1 under the same bijection 𝜋 , then warping can be ap-
plied, and the final cache state can be computed directly from
𝑐1 solely based on the bijection 𝜋 . Depending on the structure
of 𝜋 , 𝜋𝑛 can be computed efficiently, e.g. if 𝜋 corresponds to
shifting all addresses by a constant.

Example 5.1. Consider again our running example from
Figure 1 and its concrete simulation on a set-associative
cache in Figure 3. After reaching cache state 𝑐6 and observ-
ing that 𝑐6 = 𝜋 (𝑐5) with 𝜋 (𝑖) = 𝑖+1, we can apply Theorem 2
to obtain cache state 𝑐999 at the end of the stencil computation
as 𝑐999 = 𝜋993 (𝑐6). Also, the number of misses on the remain-
ing 993 iterations of the loop can be determined as 2 · 993.

Thus at a high level, a warping-based simulation algo-
rithm could proceed as follows: (i) Simulate cache accesses
concretely, until a cache state is obtained that satisfies the
conditions of Theorem 2. (ii) Analyze the łfuturež memory
accesses to determine up to which point Theorem 2 can be
applied. (iii) Apply warping accordingly and continue at (i).

A naive implementation would compare each cache state
to all cache states encountered before. This would be highly
inefficient. To more efficiently determine matching cache
states, our simulator instead operates on symbolic cache

states. Symbolic cache states express the concrete cache
state in terms of the iterator state. Whenever the simulation
reaches a symbolic cache state that is equal to a symbolic
cache state encountered before, this implies that the corre-
sponding concrete cache states are related by a bijection;
and this bijection can be extracted efficiently from the sym-
bolic cache states. Equality of symbolic cache states can be
detected efficiently via hashing.

5.2 Symbolic Simulation and Symbolic Warping

To efficiently determine candidate pairs of matching states,
we introduce symbolic cache states. In place of concrete mem-
ory blocks, symbolic cache sets and symbolic cache states
associate cache lines with symbolic memory blocks:

sym-s ∈ SymSetState = (Line→ (SymBlock ∪ {𝜖}))

× PolicyState,

sym-c ∈ SymCacheState = Set→ SymSetState.

Symbolic memory blocks correspond to the access functions
of access nodes in our SCoP representation. Thus symbolic
memory blocks represent functions that map the state of the
loop iterators to concrete memory blocks. Due to the restric-
tion to the polyhedral model the expressions used to repre-
sent symbolic memory blocks are always of the form ⌊𝑒/𝑐⌋,
where 𝑐 is a constant corresponding to the block size and 𝑒
is an affine expression in the loop iterators. In the following
we assume an interpretation function J·K that maps symbolic
memory blocks to the functions they represent.
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Figure 5. Example illustrating symbolic equivalence and
symbolic cache warping.

Example 5.2. Consider an access 𝐴[𝑖] [ 𝑗]. As discussed in
Section 3.2, this access would be associated with an expres-
sion representing the function

𝜆(𝑖, 𝑗).block(linearize(𝐴[𝑖] [ 𝑗])) = ⌊(start𝐴+42 ·4𝑖+4 𝑗)/64⌋ .

Symbolicmemory blocks, and by extension symbolic cache
states, represent different concrete cache states depending
on the state of the loop iterators. Symbolic cache simulation
thus maintains a pair of the current symbolic cache state

and the current loop iterator. Such a pair (sym-c, ®𝑖) then con-
cretizes to a concrete cache state by replacing each symbolic

memory block by the concrete block it represents under ®𝑖:

𝛾 (sym-c, ®𝑖) := 𝜆𝑠.𝛾Set (sym-c(𝑠), ®𝑖),

𝛾Set (sym-s, ®𝑖) := (𝜆𝑙 .Jsym-s.𝑚(𝑙)K(®𝑖), sym-s.𝑝𝑠).

Symbolic cache states can be updated and accesses can be
classified so that the following equalities hold:

𝛾 (SymUpCache((sym-c, ®𝑖), sym-b)) =

UpCache(𝛾 (sym-c, ®𝑖), Jsym-bK(®𝑖)),

SymClCache((sym-c, ®𝑖), sym-b) =

ClCache(𝛾 (sym-c, ®𝑖), Jsym-bK(®𝑖)).

(12)

For convenience, SymUpCache returns both the updated
symbolic cache state and the state of the loop iterators. A
constructive definition of SymUpCache achieving the above
equality is given in the extended version [47]. This allows
our simulation to operate on symbolic cache states in place
of concrete ones.
As changes to the loop iterators result in a different con-

cretization of symbolic cache states, these have to be adapted
upon any increment Δ of the loop iterators2. Appropriately
adapting the expressions forming a symbolic cache state al-
lows for an update function SymUpCache that satisfies the
following equality:

SymUpCache((sym-c, ®𝑖),Δ) = (sym-c′, ®𝑖 + Δ),

𝛾 (sym-c′, ®𝑖 + Δ) = 𝛾 (sym-c, ®𝑖).
(13)

Symbolic cache states are useful to detect opportunities
for warping:

Theorem 3 (Symbolic equivalence of cache states).

Let (sym-c0, ®𝑖0), (sym-c1, ®𝑖1) ∈ SymCacheState × Z𝑛 and 𝜋Set

2Our implementation determines the updated symbolic cache state only on

demand, which significantly increases efficiency.

be a bijection on cache sets, s.t.

sym-c1 = sym-c0 ◦ 𝜋Set .

Then there is a 𝜋 ∈ Πindex= , s.t.:

𝛾 (sym-c1, ®𝑖1) = 𝜋 (𝛾 (sym-c0, ®𝑖0)) . (14)

In other words, if the simulation determines two sym-
bolic cache states that are equal up to a permutation of their
cache sets, then their concrete counterparts are also related
to each other by a bijection. To further simplify the search for
matches, in our implementation, we are not looking for arbi-
trary permutations, but only for rotations, i.e., permutations
of the form 𝜋rot (𝑐) = {(𝑖, 𝑖 + 𝑐 mod 𝑠) | 𝑖 ∈ Set}.

Example 5.3. Consider the symbolic cache states sym-c5
and sym-c6 in Figure 5, which are the symbolic counterparts
to the concrete cache states 𝑐5 and 𝑐6 from Figure 3. We
have 𝑐6 = 𝜋rot (1) (𝑐5), and thus the two states are symbol-
ically equivalent, which by Theorem 3 implies that their
concretizations 𝑐5 and 𝑐6 are related by a bijection.

Having found two symbolic cache states sym-c1, sym-c2
that łmatchž does not immediately guarantee that warping
can be applied. This also depends on the accesses between
sym-c1 and sym-c2 and their relation to the subsequent ac-
cesses. The following symbolic warping theorem captures a
sufficient condition for warping on symbolic cache states:

Theorem 4 (Symbolic cache warping). Let (sym-c0, ®𝑖0),

(sym-c1, ®𝑖1) ∈ SymCacheState × Z𝑛 , and 𝜋Set be a bijection on

cache sets, and 𝜎 ∈ SymBlock∗, such that:

SymUpCache((sym-c0, ®𝑖0), 𝜎) = (sym-c1, ®𝑖1)

= (sym-c0 ◦ 𝜋Set, ®𝑖1),
(15)

and let 𝜋 ∈ Πindex= , such that for all 𝑗, 0 ≤ 𝑗 < 𝑛:

𝛾 (𝜎, ®𝑖 𝑗+1) = 𝜋 (𝛾 (𝜎, ®𝑖 𝑗 )), (16)

𝛾 (sym-c0 ◦ 𝜋
𝑗+1
Set

, ®𝑖 𝑗+1) = 𝜋 (𝛾 (sym-c0 ◦ 𝜋
𝑗
Set
, ®𝑖 𝑗 )), (17)

with ®𝑖 𝑗 = ®𝑖0 + 𝑗 · (®𝑖1 − ®𝑖0) for 0 ≤ 𝑗 ≤ 𝑛 + 1. Then:

UpCache(𝛾 (sym-c1, ®𝑖1), 𝛾 (𝜎, ®𝑖1) · . . . · 𝛾 (𝜎, ®𝑖𝑛)) =

𝛾 (sym-c1 ◦ 𝜋
𝑛
Set,
®𝑖𝑛+1), (18)

ClCache(𝛾 (sym-c1, ®𝑖1), 𝛾 (𝜎, ®𝑖1) · . . . · 𝛾 (𝜎, ®𝑖𝑛)) =

𝑛 · SymClCache((sym-c0, ®𝑖0), 𝜎). (19)

Let’s digest this theorem to better understand when and
how it is applicable. Equation (15) captures that the matching
symbolic cache states need to be equal up to a permutation of
their cache sets, and sym-c1 needs to be obtained from sym-c0
on the symbolic access sequence 𝜎 . Regarding (18), observe
that if all conditions apply, we may warp across 𝑛 copies of
the same symbolic access sequence 𝜎 . Note, however, that
the corresponding 𝑛 concrete sequences can be different as
they concretize under different iterator valuations, e.g. if 𝜎
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corresponds to 𝐴[𝑖]; 𝑖++ this would admit warping across
potentially many iterations of a loop traversing an array.
The benefit of sym-c1 = sym-c0 ◦ 𝜋Set is that warping the
symbolic state is achieved by simply applying 𝜋𝑛

Set
to sym-c1.

If 𝜋Set is a rotation 𝜋rot (𝑐) with offset 𝑐 , then 𝜋𝑛
Set

= 𝜋rot (𝑛 · 𝑐).
Once a match is found, checking applicability requires

ensuring that (16) and (17) hold. Here, (16) ensures that the
concrete sequences corresponding to the 𝑛 copies of 𝜎 relate
to each other under the same bijection 𝜋 . In practice, (16) usu-
ally holds, but is not guaranteed to in general. Consider e.g.
the symbolic sequence corresponding to 𝐴[𝑖];𝐴[2 · 𝑖]; 𝑖++.
For many choices of 𝑖 and 𝑛 an appropriate bijection 𝜋 satis-
fying (16) exists, but for 𝑖 = 0 and 𝑛 = 2 this is impossible, as
𝐴[0];𝐴[2 · 0] and 𝐴[1];𝐴[2 · 1] cannot be transformed into
each other by any bijection. Finally, condition (17) ensures
that the bijection 𝜋 is also compatible with the matching
symbolic cache states, and their warped versions.

Example 5.4. In our running example, all conditions of The-
orem 4 hold and thus the final cache state of the loop can be
obtained by applying 𝜋993

rot (1) = 𝜋rot (993 · 1 mod 4) = 𝜋rot (1)
to sym-c6 as shown in the top right corner of Figure 5.

Algorithm 2 Warping symbolic cache simulation

1: procedure LoopNode::WarpingSimulate(®𝑗 )

2: ®𝑖 ← this.initial( ®𝑗)

3: ®final← this.final( ®𝑗)
4: 𝑥 ← 𝑛𝑒𝑤 HashMap()

5: while ®𝑖 ⪯ ®final do
6: if 𝑥 .contains(sym-c) then

7: (®𝑖0,𝑚0, 𝜋rot) ← 𝑥 .𝑔𝑒𝑡 (sym-c)

8: ®Δ← ®𝑖 − ®𝑖0 ⊲ Match delta

9: 𝑛 ← IterationsToWarp(sym-c, ®𝑖0, ®𝑖, ®final, ®Δ, 𝜋rot)

10: ®𝑖 ← ®𝑖 + 𝑛 · ®Δ ⊲ Warp 𝑛 · ®Δ iterations

11: sym-c← sym-c ◦ 𝜋𝑛rot
12: 𝑚 ←𝑚 + 𝑛 · (𝑚 −𝑚0)

13: 𝑥 .put(sym-c, (®𝑖,𝑚))
14: if ¬𝑥 .contains(sym-c) ∨ 𝑛 = 0 then ⊲ Could not warp

15: for all 𝑐ℎ𝑖𝑙𝑑 ∈ this.children do

16: 𝑐ℎ𝑖𝑙𝑑.WarpingSimulate(®𝑖)

17: (sym-c, ®𝑖) ← SymUpCache(sym-c, this. ®stride)

18: procedure AccessNode::WarpingSimulate(®𝑗 )

19: if ®𝑗 ∈ this.dom then

20: 𝑚 ←𝑚 + SymClCache(sym-c, (this.access, ®𝑗)))

21: (sym-c, ®𝑖) ← SymUpCache(sym-c, (this.access, ®𝑗)))

5.3 Warping Symbolic Cache Simulation

Let us now explain the warping symbolic cache simulation
algorithm in Algorithm 2, which is based upon Theorem 4
and applies polyhedral techniques to ensure applicability of
the theorem for warping.

1: procedure IterationsToWarp(sym-c, ®𝑖0, ®𝑖1, ®final, ®Δ, 𝜋rot)

2: ®𝑖 𝑓𝑐 ← FurthestByDomains(®𝑖0, ®𝑖1, ®final, ®Δ)

3: ®𝑖 𝑓𝑎 ← FurthestByOverlap(®𝑖0, ®final)

4: ®𝑖 𝑓 ← lexmin(®𝑖 𝑓𝑎 ,
®𝑖 𝑓𝑐 )

5: if CacheAgrees(sym-c, ®𝑖0, ®𝑖1, ®𝑖 𝑓 , ®Δ, 𝜋rot) then

6: return lexmax{𝑛 | ®𝑖1 + 𝑛 · ®Δ ≺ ®𝑖 𝑓 }

7: return 0

1: procedure FurthestByDomains(®𝑖0, ®𝑖1, ®final, ®Δ)

2: 𝐼𝑚 ← interval(®𝑖0, ®𝑖1) ⊲ Match interval

3: 𝐼𝑤 ← interval(®𝑖1, ®final) ⊲ Max. warp interval

4: 𝐶 ← ∅ ⊲ Conflict set

5: for all AccessNode 𝑎 ∈ this.children∗ do
6: 𝐶𝑎 ← {®𝑖𝑐 | ¬(®𝑖𝑐 ∈ (𝑎.dom ∩ 𝐼𝑤) ⇔

7: (®𝑖0 + ((®𝑖𝑐 − ®𝑖1) mod ®Δ)) ∈ (𝑎.dom ∩ 𝐼𝑚))}
8: 𝐶 ← 𝐶 ∪𝐶𝑎
9: if 𝐶 = ∅ then return ®final

10: return lexmin(𝐶)

1: procedure FurthestByOverlap(®𝑖0, ®final)

2: 𝐼 ← interval(®𝑖0, ®final) ⊲ Access interval

3: 𝐶 ← ∅ ⊲ Conflict set

4: for all AccessNode 𝑎, 𝑏 ∈ this.children∗ do
5: if 𝑎.𝑎𝑐𝑐𝑒𝑠𝑠 and𝑏.𝑎𝑐𝑐𝑒𝑠𝑠 have the same coefficients then

6: continue

7: 𝐶𝑎,𝑏 ← {®𝑖 | ∃®𝑗𝑎 ∈ (𝑎.dom ∩ 𝐼 ) : ∃®𝑗𝑏 ∈ (𝐵.dom ∩ 𝐼 ) :

8: 𝑎.𝑎𝑐𝑐𝑒𝑠𝑠 ( ®𝑗𝑎) = 𝑏.𝑎𝑐𝑐𝑒𝑠𝑠 ( ®𝑗𝑏 ) ∧ ®𝑗𝑎 ⪯ ®𝑖 ∧ ®𝑗𝑏 ⪯ ®𝑖}
9: 𝐶 ← 𝐶 ∪𝐶𝑎,𝑏

10: if 𝐶 = ∅ then return ®final

11: return lexmin(𝐶)

1: procedure CacheAgrees(sym-c, ®𝑖0, ®𝑖1, ®𝑖 𝑓 , ®Δ, 𝜋rot)

2: 𝜋 ← ConstructAccessMapping(®𝑖0, ®𝑖 𝑓 , ®Δ)

3: 𝑐0 ← 𝛾 (sym-c, ®𝑖0)

4: 𝑐1 ← 𝛾 (sym-c, ®𝑖1)
5: for all set 𝑠 , line 𝑙 do

6: 𝑏0 ← 𝑐0 (𝑠) .𝑚(𝑙)
7: 𝑏1 ← 𝑐1 (𝜋rot (𝑠)) .𝑚(𝑙)
8: if 𝑏0 ∈ 𝜋dom ∧ 𝜋 (𝑏0) ≠ 𝑏1 then return false

9: if 𝑏1 ∈ 𝜋ran ∧ 𝜋
−1 (𝑏1) ≠ 𝑏0 then return false

10: return true

11: procedure ConstructAccessMapping(®𝑖0, ®𝑖 𝑓 , ®Δ)

12: 𝐼 ← interval(®𝑖0, ®𝑖 𝑓 ) ⊲ Access interval

13: 𝜋 ← ∅
14: for all AccessNode 𝑎 ∈ this.children∗ do
15: 𝜋𝑎 ← {(𝑏1) → (𝑏2) | ∃®𝑗 ∈ (𝑎.dom ∩ 𝐼 )∧

16: 1 = 𝑎.access( ®𝑗) ∧ 𝑏2 = 𝑎.access( ®𝑗 + ®Δ)}
17: 𝜋 ← 𝜋 ∪ 𝜋𝑎
18: return 𝜋

The algorithm differs from Algorithm 1 in two ways: (i) it
applies symbolic rather than concrete cache simulation, and
(ii) it applies warping.

To find matching symbolic cache states, each loop node
maintains a separate hash map in which it stores symbolic
cache states reached since the last change to an iterator of an
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enclosing loop. Thus warping is only attempted across dif-
ferent iterations of a loop while staying in the same iteration
of all enclosing loops. This is a deliberate choice that slightly
reduces the ability to warp but greatly reduces łspuriousž
matches that do not result in actual warping opportunities.
The hash value of a symbolic cache state is determined

based on the symbolic memory blocks in the cache. To iden-
tify łrotatingž matches, the hash computation does not begin
at a fixed set, but rather starts at the most-recently-accessed
cache set and from there on cycles around the cache sets.
Thus, when a match is determined, the difference between
the indexes of the most-recently-accessed cache sets of the
matching cache states determines the relative rotation.
If a matching cache state is found, IterationsToWarp

determines the number of iterations to warp across. Lines 10
to 12 carry out thewarping and update the number ofmisses𝑚.
In the worst case 𝑛 = 0 and the simulation needs to proceed
via ordinary symbolic cache simulation in lines 14 to 17,
which is also applied if there is no match.

The procedure IterationsToWarp relies on three sub-
procedures to determine howmany iterations to warp across:
(i) FurthestByDomains determines up to which itera-

tion the future symbolic memory accesses are identical to
the symbolic memory accesses in the match interval. This is
determined by separately considering the domains of every
access node that is a descendant of the warping loop node.
The set 𝐶𝑎 is constructed such that it contains all iterator
valuations that conflict with the corresponding iteration in
the match interval, i.e., either the corresponding iteration

was present in the match interval but is missing in ®𝑖𝑐 or
vice versa. Based on Theorem 4 warping is limited to repeti-
tions of the same symbolic access sequence, and so warping
across such conflicts is impossible. Thus the earliest conflict
is determined using lexmin(𝐶).
(ii) To satisfy (16), there needs to be a single bijection 𝜋

that applies to all accesses in 𝛾 (𝜎, ®𝑖𝑖 ) for all 𝑖 . These accesses
may stem from different access nodes, which may each de-
pend differently on loop iterators. Consider for example two
access nodes with access expressions 𝐴[𝑖 + 50] and 𝐴[𝑖 + 𝑗].
Warping in a loop node with loop iterator 𝑗 , where loop
iterator 𝑖 corresponds to an enclosing loop, implies that the
bijection 𝜋 must map 𝐴[𝑖 + 50] to 𝐴[𝑖 + 50] for the first ac-
cess node, and 𝐴[𝑖 + 𝑗] to 𝐴[𝑖 + 𝑗 + 1] for the second access
node (assuming the matching cache states differ by 1 in 𝑗 ).
If 𝑗 may obtain the value 50 this would yield conflicting re-
quirements on the joint bijection 𝜋 . Thus, for any two access
nodes with conflicting coefficients on the warped loop it-
erator, FurthestByOverlap determines the maximal loop
iteration for which the ranges of the iterators do not overlap.
(iii) Finally, CacheAgrees checks whether the relation

induced by the access sequences is compatible with the
matching symbolic cache states. To this end, Construct-
AccessMapping incrementally constructs the minimal re-

quired relation to satisfy (16) and CacheAgrees checks
whether this conflicts with the induced relation between the
concretizations of the matches, which corresponds to (17).

Multi-level Caches. For simplicity, we have presentedwarp-
ing cache simulation for single-level caches. However, it
is equally applicable to multi-level caches, and our imple-
mentation currently supports two-level non-inclusive non-
exclusive cache hierarchies. The simulation then operates on
pairs of symbolic L1 and L2 states and updates the L1 and the
L2 state upon each memory access according to the inclusion
policy. Warping is performed whenever both the L1 and the
L2 cache states satisfy the conditions of Theorem 4.

6 Experimental Evaluation

In our evaluation we aim to answer the following questions:
1. What are the benefits of warping cache simulation in terms
of simulation performance? 2. How does warping cache simu-
lation compare with analytical approaches such as HayStack
and PolyCache? 3. How strong is the influence of different
replacement policies on cache performance?

6.1 Experimental Setup

We implemented our approach as a cache simulation tool
that takes as input the cache parameters and a C program,
and outputs cache access and miss counts. We use pet-0.11
(Polyhedral Extraction Tool) [63] to extract the polyhedral
model from the C source and isl-0.22 (Integer Set Library) [61]
to perform operations on integer sets. A replication package
for our experiments including the source code of our tool is
available [46].

We evaluate our cache simulation tool on PolyBench 4.2.1-

beta [48], a benchmark suite of numerical computations
implemented as SCoPs. PolyBench benchmarks are config-
urable with different problem sizes. The experiments that
we present here are for the large (L) and extra large (XL)
problem sizes; the two largest ones.
We run our experiments single threaded using only one

core on a test system with Intel Core i9-10980XE (Cascade
Lake) processors. Unless stated otherwise, the cache sim-
ulation assumes the cache configuration found in the test
system itself: Each core has an 8-way set-associative 32 KiB
L1 cache with Pseudo-LRU replacement policy and a 16-way
set-associative 1MiB L2 cache with Quad-age LRU replace-
ment policy both with a block size of 64 bytes. Both L1 and L2
caches are write-back write-allocate and the inclusion policy
between L1 and L2 is non-inclusive non-exclusive [54].

6.2 Warping vs Non-Warping Simulation

Warping vs Non-warping Simulation. We first simulate
the L1 cache of the test system for problem size L. To inves-
tigate the effect of the replacement policy on the warping
performance, in addition to the Pseudo-LRU policy of the
test system, we also simulate LRU, FIFO, and Quad-age LRU.

324



PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Canberk Morelli and Jan Reineke

10−1

100

101

102

no
n-

wa
rp

ed
 a

cc
es

se
s [

%
]

he
at

-3
d

se
id

el
-2

d
ja

co
bi

-2
d

fd
td

-2
d

ad
i

do
itg

en
de

ric
he

3m
m

2m
m

ge
m

m
at

ax
bi

cg
ge

m
ve

r
trm

m
m

vt
flo

yd
-w

ar
sh

al
l lu

nu
ss

in
ov

sy
r2

k
sy

m
m

co
rre

la
tio

n
co

va
ria

nc
e

ge
su

m
m

v
sy

rk
ch

ol
es

ky
tri

so
lv

ja
co

bi
-1

d
du

rb
in

lu
dc

m
p

gr
am

sc
hm

id
t

kernel

10−1

100

101

102

103

104

sp
ee

du
p

LRU
FIFO
Pseudo-LRU
Quad-age LRU

Figure 6. Speedup of L1 warping simulation compared to
non-warping simulation (bottom) and share of non-warped
accesses (top) for LRU, FIFO, Pseudo-LRU, and Quad-age
LRU and problem size L.

Figure 6 shows for each benchmark the speedup of warp-
ing simulation compared to the non-warping simulation
(bottom) and the share of non-warped accesses (top). The
reported times correspond to the time spent executing the
implementations of Algorithms 1 and 2, i.e., they do not in-
clude the overhead of extracting the internal representation
of the benchmarks via isl. This overhead, which is identi-
cal for warping and non-warping simulation, lies between
62 and 245 ms depending on the benchmark and is thus
dominated by the simulation time for most benchmarks.
The first observation is that the speedup is roughly in-

versely proportional to the share of non-warped accesses.
For, e.g. adi, about 0.3% of all accesses cannot be warped and
we observe a speedup of about 300x.

The stencil kernels adi, fdtd-2d, heat-3d, jacobi-2d, and
seidel-2d exhibit large speedups. Stencils have uniformly gen-

erated references [22, 66], and thus give rise to recurring
patterns in the cache if there are enough accesses relative
to the cache size. As we discussed earlier, warping aims to
exploit these patterns to accelerate the simulation. The con-
sistent speedups for the stencil kernels show that warping
simulation is indeed able to achieve this. The jacobi-1d kernel
does not benefit from warping since its working set is too
small to fill the cache.
While there are many kernels that benefit from warping,

there are others that do not. We observed that there were
no (or very few) symbolically equivalent cache states during
the simulation of these kernels, and thus, no (or very few)
opportunities for warping. As we show later, some of these
kernels benefit from warping when simulating a different
cache. However, for the current cache configuration, we con-
clude that warping does not decrease the simulation times
of these kernels.
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Figure 7. L1 warping and non-warping simulation times for
problem sizes L and XL.

Overall, the differences between the replacement policies
are fairly small, with LRU, Pseudo-LRU, and FIFO often ex-
hibiting similar speedups. Quad-age LRU is scan- and thrash-
resistant [39], which may result in łoldž memory blocks
remaining in the cache, while scanning through new ones,
which in some cases results in a greater number of classic
simulation steps before detecting warping opportunities.

Impact of Problem Size. Figure 7 shows the change in
warping and non-warping L1 simulation times between prob-
lem sizes L and XL for the configuration of the test system,
i.e., with Pseudo-LRU replacement. We can see that for many
benchmarks the warping simulation times are not propor-
tional to the number of memory accesses while the non-
warping simulation times are. On the other hand, there are
also benchmarks whose warping simulation times change
considerably between L and XL problem sizes. One interest-
ing observation is that there are benchmarks whose simula-
tion is faster with the XL problem size. This is unintuitive at
first but it can happen when the simulator is able to warp
across more accesses. Consider the simulation of a loop that
has 10 iterations left. A matching cache state from 20 itera-
tions ago cannot be used to warp across the last 10 iterations,
as 10 is not a multiple of 20. However, for a larger problem
size with e.g. 1000 iterations left, the analysis could warp to
the end of the loop. This can have a considerable effect on the
simulation time, especially when it applies at the outermost
level of a deeply nested loop.

6.3 Warping Simulation vs Analytical Cache

Modeling Approaches

We compare the performance of warping simulation to the
analytical models PolyCache [7] and HayStack [33].

Warping Simulation vs HayStack. We compare warp-
ing simulation to the analytical cache model HayStack [33].
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Figure 8. Speedup of L1 warping simulation compared to
HayStack for problem sizes L and XL.

HayStack provides a replication package [32], which we
use to replicate their experimental systems on our test sys-
tem. We simulate the fully-associative LRU version of the L1
cache of the test system as HayStack can only model fully-
associative caches with LRU replacement. As the HayStack
experiments do include the overhead of extracting the in-
ternal representation of the benchmarks, we include this
overhead also for warping simulation in this comparison.
Figure 8 shows the speedup of warping simulation com-

pared to HayStack for each kernel for problem sizes L and XL
when the L1 cache is simulated. We can see that HayStack
is faster than warping cache simulation on most, but not
all benchmarks. In particular, warping cache simulation out-
performs HayStack on most stencil benchmarks. On the XL
problem size, HayStack extends its lead on those benchmarks
for which warping simulation is not effective, i.e., where
its runtime is proportional to the number of accesses. Con-
versely, warping remains faster on stencil benchmarks on
the XL problem size.

Warping Simulation vs PolyCache. We compare warping
simulation to the analytical model PolyCache [7] using the
published results, as no replication package is available. For
this purpose, we run warping simulation using the same
PolyBench problem size (L) and cache configuration as Poly-
Cache: a two-level cache with 32 KiB 4-way set-associative
L1 and 256 KiB 4-way set-associative L2 caches. Both caches
employ LRU replacement, write-allocate write-back write
policy, and 64-byte cache blocks.
Figure 9 shows the speedup of warping simulation com-

pared to PolyCache for each benchmark. On the average,
PolyCache outperforms warping cache simulation, but the
relative performance varies greatly across the set of bench-
marks. Note that this experiment is missing some of the
PolyBench kernels as they are not included in the PolyCache
results. We cannot correct for differences in the hardware
on which the simulation is carried out. The simulation times
for our tool include all overheads as in the comparison with
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Figure 9. Speedup of L1-L2 warping simulation compared
to PolyCache for problem size L.

HayStack. It is unclear from the documentation, which over-
heads are included in the PolyCache results. In contrast to
our single-threaded implementation, PolyCache analyzes
each of the 128 cache sets in a separate process. Thus, the
single-thread performance of PolyBench would be expected
to be about 128x slower.

6.4 Influence of Parameters on Cache Performance

Influence of the Replacement Policy. To determine the
influence of the replacement policy, we simulate each bench-
mark, again using problem size L, under the four replacement
policies LRU, FIFO, Pseudo-LRU, and Quad-age LRU on a
32 KiB 8-way set-associative L1 cache with 64-byte cache
blocks. The results of this experiment are depicted in Fig-
ure 10. For most PolyBench benchmarks, cache performance
does not vary dramatically depending on the replacement
policy, but there are notable exceptions. In particular, on a
number of benchmarks, e.g. durbin and doitgen, Quad-age
LRU achieves significant improvements over LRU,while FIFO
sometimes incurs significantly more misses. This demon-
strates that accurately modeling the replacement policy can
be important.

Comparison with Measurements on Actual Hardware.

We also evaluate the accuracy of cache simulation by com-
paring the number of cache misses predicted by the various
simulators to PAPI-C [56] measurements on a real system.
We compile the PolyBench [48] kernels with -O2 GCC op-
timization level and PAPI-C support to measure the cache
misses on the test system. Note that PolyBench flushes the
cache before executing each kernel. To minimize measure-
ment errors, we repeat them 10 times and take the median.
We also disable cache prefetching in our test system.

We compare the cache misses simulated by Dinero IV,
warping simulation, and HayStack to the measured misses
on problem size L. Dinero IV simulates a set-associative LRU
cachewhereasHayStackmodels a same-size fully-associative
LRU cache. Warping simulation simulates the system cache
as it is, set-associative with Pseudo-LRU replacement policy.
Note that as memory accesses, Dinero IV considers both
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array and scalar accesses while warping simulation and
HayStack consider only array accesses.
When comparing the measured misses to the simulated

or modeled cache misses, we consider two main metrics:
1. Absolute error: the absolute value of the difference

between actual and predicted number of cache misses.
2. Relative error: absolute error divided by the actual

number of misses.
The results of this experiment are depicted in Figure 11. For
most benchmarks, all analytical approaches are similarly
accurate, with some exceptions, e.g. on atax and doitgen,
HayStack is significantly less accurate, due to its modeling
of a fully-associative cache. In the extended version [47] we
present additional experimental results for other problem
sizes, where more significant accuracy differences are ob-
served. The main takeaway though is that aspects of modern
microarchitectures not captured by any of the present ap-
proaches, such as memory reordering and speculative execu-
tion, appear to have a strong influence on cache performance.
Future work will have to further investigate this discrepancy.

7 Known Limitations

Our implementation is currently limited to caches withmod-

ulo placement, i.e. to caches in which a memory block 𝑏’s

cache set is determined by index(𝑏) = 𝑏 mod 𝑠 , where 𝑠 is
the cache’s number of sets.

Modulo placement is common in L1 and L2 caches. How-
ever, shared L3 caches are often łslicedž. Sliced L3 caches are
split into equally-sized slices, where each slice is physically
located at one of the processor’s cores. To distribute data
evenly across the slices, pseudo-random hash functions are
used to determine a memory block’s slice [36, 44, 68].
Such pseudo-random hash functions do not violate data

independence. However, their pseudo-random nature will
make it less likely to detect rotating matches that are com-
patible with the induced access mappings. Possibly a more
flexible mechanism to detect matches may remedy this, but
this is left for future work.
Similarly, following Equation 4 and Theorem 1, our im-

plementation currently only applies to caches that treat all
cache sets the same and each cache set independently of
other cache sets. Several mechanisms have been described in
the literature that conflict with these assumptions. Qureshi
et al. [49] propose set dueling, which has subsequently been
implemented in Intel processors [39, 67]. In set dueling, a
small number of dedicated leader cache sets are used to test
two or more competing replacement policies. The remaining
follower sets use the policy that performed best on the leader
sets in the previous epoch. To reduce cache misses, Rolán
et al. [50] propose set-balancing caches in which cache sets
are paired up statically or even dynamically, moving cache
lines from highly saturated to less saturated ones. Skewed-
associative caches [52] and the ZCache [51] even do away
with the notion of cache sets altogether and share a cache’s
lines more flexibly. All these cache designs fundamentally
do satisfy data independence; but they exhibit fewer sym-
metries and may thus offer fewer warping opportunities. It
remains future work to explore the potential of warping for
such designs.

8 Related Work

Traditional Cache Simulators. Cache simulators such as
Dinero IV [19] and CASPER [37] simulate the cache behavior
of a program by explicitly iterating over the memory access
traces that are generated by the program. This approach
applies to arbitrary programs and can model modern mem-
ory hierarchies precisely, including inclusive, non-inclusive
non-exclusive, and exclusive cache hierarchies as well as
sophisticated cache replacement policies such as Pseudo-
LRU [3] and Quad-age LRU [38, 39], which are employed in
recent real-world microarchitectures [2, 65]. The main draw-
back is that the simulation cost is proportional to the number
of memory accesses that the simulated program performs.

Analytical Cache Models. There is a long history of ana-
lytical cache models [7, 10, 13, 14, 24, 25, 33, 59, 60]. Seminal
work by Ghosh et al. [24, 25] introduces cache miss equa-
tions (CMEs), systems of linear Diophantine equations, that
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capture the set of cache misses of a loop nest. Their approach
builds upon Wolf and Lam’s [66] characterization of data
reuse in loop nests via reuse vectors, and its classification into
self-spatial, self-temporal, group-spatial, and group-temporal
reuse. CMEs capture when these different types of reuse do
not result in cache hits in single-level set-associative caches
with LRU replacement. An inherent limitation of reuse vec-
tors is their inability to accurately capture reuse in programs
with conditional statements and between different references
that are not uniformly generated.
Cascaval and Padua [13] present an exact approach to

compute stack histograms [43] of programs at compile time.
Stack histograms immediately reveal the number of cache
misses under single-level fully-associative LRU caches for
any given cache size, thus allowing to gauge the impact
of different cache sizes on a program’s cache performance.
Their work is limited to the same class of programs as Ghosh
et al.’s CMEs [24, 25], but a larger class of programs can
be modeled approximately in this framework, sacrificing
accuracy. We note that, when applied to LRU caches, our
approach could similarly be extended to compute stack his-
tograms rather than the number of misses for a fixed cache
size. Based on prior work by Smith and Hill [35, 53], Cascaval
and Padua [13] also show how to approximate the number
of misses of a program under a set-associative cache based
on its stack histogram.
Vera and Xue [60] extend the applicability of CMEs to a

larger class of programs involving conditional statements,
multiple loop nests, and subroutines by transforming such
projects into a more restricted normal form. Some of these
transformations, however, approximate the original program’s
behavior, rendering the analysis inexact. Vera et al. [59] ap-
ply sampling techniques to efficiently estimate the number
of solutions of CMEs with statistical guarantees, rather than
counting the number of solutions exactly. Similarly, Chen
et al. [16] introduce static sampling of reuse times, where a
random subset of a program’s memory accesses is sampled
and subsequently analyzed. Varying the number of sampled
accesses then allows to trade off performance and accuracy
of the predictions.

Chatterjee et al. [14] introduce a compositional character-
ization of the cache behavior of polyhedral programs [20]
via Presburger formulas [34] for single-level set-associative
caches with LRU replacement. Their approach takes into ac-
count the initial cache state and distinguishes interior misses
and boundarymisses, which allows to analyze sequential pro-
grams in a compositional manner. At the time of publication,
the approach did not scale to realistic levels of associativity.

More recent work by Bao et al. [7] introduces PolyCache,
a tool applicable to polyhedral programs, just like Chat-
terjee et al. [14] and our work. By analytically character-
izing the sequence of cache misses at a given cache level, it
can incrementally handle write-allocate non-inclusive non-

exclusive [54] multi-level set-associative caches with LRU
replacement. Non-write allocate caches are handled approxi-
mately. Similarly to [14] their method constructs an integer
set consisting of a program’s cache misses. Then, isl’s [61]
implementation of Barvinok’s algorithm is used to compute
the integer set’s size, and thus the number of cache misses.
As we have shown in the experimental evaluation, Poly-
Cache outperforms warping cache simulation on the aver-
age, but the relative performance varies greatly across the
set of benchmarks, and unlike our work the approach is not
applicable to replacement policies other than LRU and it
handles non-write allocate caches approximately.

Gysi et al. [33] present HayStack, the most scalable analyti-
cal cache analysis approach to date. Their approach applies to
polyhedral programs, but it is limited to fully-associative LRU
caches and inclusive hierarchies of such caches, which do
not require to model the interaction between different cache
levels. HayStack performs symbolic counting twice: first, a
Presburger relation is constructed that relates each access A
to its łconflict setž, i.e., the set of distinct memory blocks ac-
cessed between the most-recent access to the memory block
accessed byA. The size of this conflict set, is the access’s stack
distance. In a fully-associative LRU cache, an access results
in a cache miss if and only if its stack distance is greater than
the cache’s associativity. In the first step, the stack distances
of all accesses are determined by symbolic counting of the
conflict sets. This step is inspired by prior work of Beyls and
D’Hollander [10]. In the second step, the number of accesses
with a stack distance greater than the cache’s associativity is
determined, again by symbolic counting. This second step is
challenging, as the stack distances are generally non-affine.
Non-affine terms are eliminated by a partially explicit enu-
meration before applying symbolic counting. Thus, as our
work, HayStack can in fact be characterized as a hybrid ap-
proach. HayStack is łanalytical firstž and resorts to explicit
simulation enumeration as a last resort. In contrast, our ap-
proach is łsimulation firstž and applies analytical reasoning
for warping. The experimental evaluation demonstrates that
HayStack is more scalable than our approach on the average,
but it is limited to fully-associative LRU caches.
Both PolyCache and HayStack are currently limited to

LRU caches. Can this restriction be lifted easily? We believe
not, as both approaches deeply rely on the following favor-
able property of LRU that does not hold under any other
policy: To classify a memory access A as a hit or a miss, it is
sufficient to consider the size of A’s łconflict setž, i.e., the set
of distinct memory blocks accessed between the most-recent
access to the memory block accessed by A. Under other
policies it is necessary to take into account (a) the cache
state prior to the most-recent access to the block accessed
by A, and (b) the order of the conflicting memory accesses.
łSimulation-firstž approaches such as ours naturally account
for such state and ordering effects.
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Analytical Program Representations. The polyhedral
model [9, 20, 21] is the basis of our work and many of the re-
cent analytical cache models [7, 14, 33]. One of its original ap-
plications and that of related techniques [40, 41] was to cap-
ture data dependencies to facilitate the automatic generation
of parallel schedules. More recently [6, 12, 64, 66] it has also
been applied to generate schedules that exhibit more locality.

Static Cache Analysis. Static cache analyses [4, 15, 26ś
31, 57, 58] bound a program’s cache behavior for all possible
program executions. This is different from cache simula-
tion, which applies to a particular program execution. For
polyhedral programs, whose data-access behavior is input
independent these goals align. However, existing static cache
analyses do not classify each dynamic memory access sep-
arately, but rather collectively classify sets of accesses, e.g.
all accesses corresponding to a memory reference. Due to
their coarse classification granularity even exact static anal-
yses [15, 57, 58] overapproximate a polyhedral program’s
cachemisses. Existing cache analyses are generally also hand-
crafted to particular replacement policies in contrast to this
work, which applies to arbitrary policies that satisfy the
data-independence property. Most cache analyses are tai-
lored to LRU [4, 15, 57, 58], while some work is dedicated to
FIFO [27, 28, 31], NMRU [30], and Pseudo-LRU [26, 29]. To
our knowledge, there is no static cache analysis for Quad-age
LRU. Monniaux and Touzeau [45] study the complexity of
static cache analysis for different replacement policies. Cache
analysis problems are NP-complete under LRU while they
are PSPACE-complete under FIFO, NMRU, and Pseudo-LRU.

Acceleration Techniques. Warping cache simulation bears
some resemblance of acceleration techniques [5, 8, 11, 17, 23,
42, 55]. Such techniques accelerate the computation of the
reachable set of states of a given model by computing the
exact effect of iterating through a control cycle in the model,
where the control cycle to iterate is determined dynami-
cally during the analysis. In contrast, the cycles that warping
cache simulation iterates across are generated by the com-
position of a polyhedral program and a cache model, and
thus the cycle is not present explicitly in the input to the
analyzer. Nevertheless, further exploring the connection to
acceleration techniques might be fruitful.

9 Conclusions and Future Work

We have introduced warping cache simulation and demon-
strated its benefits experimentally: Warping may speed up
simulation by several orders of magnitude. In contrast to ex-
isting analytical approaches, warping cache simulation can
accurately model replacement policies of real-world cache
architectures. A natural target for future work is to apply
warping to efficiently simulate modern speculative out-of-
order processors core and branch predictionmechanisms and

their interaction with the cache, which promises to increase
the accuracy of the predictions w.r.t. real hardware.
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