
Pulse Propagation, Graph Cover,
and Packet Forwarding

Dissertation zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften

der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

vorgelegt von

Ben Wiederhake

Saarbrücken, 2022

Dean: Univ.-Prof. Dr. Thomas Schuster

Chair: Prof. Dr. Markus Blaeser

Reporters: Dr. Christoph Lenzen
Prof. Dr. Dr. h.c. mult. Kurt Mehlhorn

Academic Assistant: Dr. Rohaani Sharma

Colloquium: February 14, 2022

Acknowledgments

Thank you, Christoph Lenzen, for supervising my years-long journey to my graduation,
and providing so many opportunities to learn and explore. Especially when I took the
scenic route down some rabbit hole1. And last but not least, thank you for organizing so
many and great Board Games Nights!

I would also like to thank Antonios Antoniadis, for having an open ear, giving great
feedback, and introducing me to the topic and fine points of Packet Scheduling.

Thank you so much Attila Kinali for introducing me to the world of Swiss chocolate –
without you I would weigh significantly less. Also, I thoroughly enjoyed talking with
you about all the (un)important things in life; including but not limited to technical
details of IRC, transistors, Quartz oscillators, GPS, the Charly and Dorothy effect, and
several ski huts.

I’m very grateful to Saeed Amiri. It was pure joy to develop and analyze our distance-r
minimum dominating set algorithm and lower bound.ane

I’m also thankful to Matthias Függer, for all the productive discussions, his unique
perspective on life, and excellent recommendations on Viennese cuisine.

I would like to thank Will Rosenbaum, for demonstrating that not all which is JavaScript
is evil, and introducing me to the topic of Packet Forwarding. I am also thankful to him
(and Christoph and Attila and Matthias) for fruitful discussions about the Metastability-
Containing Frequency Adaption Module, which greatly expanded my (still limited)
understanding of electrical engineering.

Also, thank you Corinna Coupette, Nick Fischer, Johannes Bund, Cosmina Croitoru,
André Nusser, and Bhaskar Ray Chaudhury for all the wonderful discussions on
Computer Science, Law, Jazz, Pizza, Jam sessions, hats, and cake.

Next, I would like to thank our Servicedesk, especially Maik Muschter and Andreas
Alzano, for keeping all the infrastructure running, handling the countless tickets I
opened, and keeping calm even after I found the umpteenth way to crash our computing
cluster or bringing in a laptop battery that was about to explode.

Außerdem will ich mich besonders bei Tim, Doris und Wilm bedanken, für all die
Unterstützung, Hilfestellungen, und auch die sprichwörtlichen Arschtritte. Ohne euch
wäre ich nie so weit gekommen.

I would also like to thank Julia, Ferdinand, Max, Nora, and Pascal; it has been a Long
Road with you. I am grateful to Christian, who helped us Find our Path.

Finally, a special thank you to Julius, Andreas, Vladislav, and the silk painting youth
group, who each showed me wonderful aspects of life that I would never want to miss.

1Exercise for the reader: Let X ∼ N(µ, σ2), show that limσ→∞ Var(⌈X⌋) = σ2+1/12, where ⌈ · ⌋ is the function
that rounds to the nearest integer.

Abstract

We study distributed systems, with a particular focus on graph problems and fault
tolerance.

Fault-tolerance in a microprocessor or even System-on-Chip can be improved by using
a fault-tolerant pulse propagation design. The existing design TRIX achieves this goal
by being a distributed system consisting of very simple nodes. We show that even in
the typical mode of operation without faults, TRIX performs significantly better than a
regular wire or clock tree: Statistical evaluation of our simulated experiments show that
we achieve a skew with standard deviation of O(log logH), where H is the height of the
TRIX grid.

The distance-r generalization of classic graph problems can give us insights on how
distance affects hardness of a problem. For the distance-r dominating set problem, we
present both an algorithmic upper and unconditional lower bound for any graph class
with certain high-girth and sparseness criteria. In particular, our algorithm achieves a
O(r · f(r))-approximation in time O(r), where f is the expansion function, which correlates
with density. For constant r, this implies a constant approximation factor, in constant
time. We also show that no algorithm can achieve a (2r+ 1− δ)-approximation for any
δ > 0 in time O(r), not even on the class of cycles of girth at least 5r. Furthermore, we
extend the algorithm to related graph cover problems and even to a different execution
model.

Furthermore, we investigate the problem of packet forwarding, which addresses the
question of how and when best to forward packets in a distributed system. These packets
are injected by an adversary. We build on the existing algorithm OED to handle more
than a single destination. In particular, we show that buffers of size O(logn) are sufficient
for this algorithm, in contrast to O(n) for the naive approach.

Zusammenfassung

Wir untersuchen verteilte Systeme, mit besonderem Augenmerk auf Graphenprobleme
und Fehlertoleranz.

Fehlertoleranz auf einem System-on-Chip (SoC) kann durch eine fehlertolerante Puls-
Weiterleitung verbessert werden. Das bestehende Puls-Weiterleitungs-System TRIX
toleriert Fehler indem es ein verteiltes System ist das nur aus sehr einfachen Knoten
besteht. Wir zeigen dass selbst im typischen, fehlerfreien Fall TRIX sich weitaus besser
verhält als man naiverweise erwarten würde: Statistische Analysen unserer simulierten
Experimente zeigen, dass der Verzögerungs-Unterschied eine Standardabweichung von
lediglich O(log logH) erreicht, wobei H die Höhe des TRIX-Netzes ist.

Das Generalisieren einiger klassischer Graphen-Probleme auf Distanz r kann uns neue
Erkenntnisse bescheren über den Zusammenhang zwischen Distanz und Komplexität
eines Problems. Für das Problem der dominierenden Mengen auf Distanz r zeigen
wir sowohl eine algorithmische obere Schranke als auch eine bedingungsfreie untere
Schranke für jede Klasse von Graphen, die bestimmte Eigenschaften an Umfang und
Dichte erfüllt. Konkret erreicht unser Algorithmus in Zeit O(r) eine Annäherungsgüte
von O(r · f(r)). Für konstante r bedeutet das, dass der Algorithmus in konstanter Zeit
eine Annäherung konstanter Güte erreicht. Weiterhin zeigen wir, dass kein Algorithmus
in Zeit O(r) eine Annäherungsgüte besser als 2r+ 1 erreichen kann, nicht einmal in der
Klasse der Kreis-Graphen von Umfang mindestens 5r.

Weiterhin haben wir das Paketweiterleitungs-Problem untersucht, welches sich mit
der Frage beschäftigt, wann genau Pakete in einem verteilten System idealerweise
weitergeleitet werden sollten. Die Pakete werden dabei von einem Gegenspieler eingefügt.
Wir bauen auf dem existierenden Algorithmus OED auf, um mehr als ein Paket-Ziel
beliefern zu können. Dadurch zeigen wir, dass Paket-Speicher der Größe O(logn) für
dieses Problem ausreichen, im Gegensatz zu den Paket-Speichern der Größe O(n) die
für einen naiven Ansatz nötig wären.

Contents

1. Introduction 1

I. Pulse Propagation 3

2. Introduction 5
2.1. Motivation . 5
2.2. Related Work . 6
2.3. Contribution: Empirical Proof of Quality 8
2.4. Preliminaries and Notation . 10

3. TRIX: Low-Skew, Fault-Tolerant 13
3.1. Delay is Tightly Concentrated . 13

3.1.1. Empiric Analysis . 13
3.1.2. Stochastic Analysis . 15
3.1.3. Asymptotics in Network Depth . 16

3.2. Skew is Tightly Concentrated . 17
3.2.1. Empiric Analysis . 17
3.2.2. Stochastic Analysis . 18
3.2.3. Asymptotics in Network Depth . 19
3.2.4. Asymptotics in Horizontal Distance 19

4. Conclusion 21

ix

II. Distance-r Graph Cover 23

5. Introduction 25
5.1. Motivation . 25
5.2. Related Work . 26

5.2.1. Existing Approaches for Distance-r Dominating Set 28
5.3. Contribution: Algorithmic Upper Bound and Unconditional Lower Bound 28
5.4. Preliminaries and Notation . 30

6. Bounds in the Congest Model 33
6.1. Congest Algorithm . 33
6.2. Distributed Approximation Algorithm for Dominating Set 33

6.2.1. Correctness . 35
6.2.2. Approximation Analysis . 36
6.2.3. Tightness of the Analysis . 40

6.3. Unconditional Lower Bound . 41
6.4. Vertex Cover, Connected Dominating Set, and Connected Vertex Cover . 43

7. Extension to the Port Numbering Model 47
7.1. Algorithm and Proof . 47

8. Conclusion 55

III. Packet Forwarding 57

9. Introduction 59
9.1. Motivation . 59
9.2. Related Work . 61
9.3. Contribution: Generalization to Two Destinations 62
9.4. Preliminaries and Notation . 63

10. Two-Destination Odd-Even Downward 65
10.1. The Swapping Algorithm . 65
10.2. Conclusion . 69

A. TRIX Simulations 71
A.1. Potential Systematic Errors . 71

A.1.1. Bugs . 71
A.1.2. Randomness and Model . 72

A.2. Figure Data . 72

x

Chapter 1
Introduction

This thesis covers distributed systems, with a particular focus on graph problems and
fault tolerance. First, we will analyze a particular family of distributed systems (TRIX)
that provides fault-tolerant pulse propagation, which is useful for real-world hardware.
Second, we examine a generalization of a well-known graph cover problem to gain
insights into how distance affects the difficulty of a graph cover problem. Third, we
revisit an existing packet forwarding algorithm (OED) that can only deliver packets to a
single destination, and use it as a building block to serve two destinations.

Many modern systems run on synchronous hardware, where a single clock signal
is supplied to the entire circuit, and computation progresses in lock-step. One way to
increase reliability is by introducing or improve fault-tolerance. In other words, we want
to make sure that the circuit is still fully operational if any fault of a certain kind occurs.
Fault-tolerant clock generation schemes already exist, i.e., designs that can create a clock
signal even if any single component fails. However, even assuming that these generation
schemes address all potential requirements (e.g., synchronization, type of behavior in
the presence of faults, area and power consumption), a separate pulse propagation
mechanism is still necessary, in order to get the clock signal efficiently to each circuit
element. In particular, neighboring elements must receive a tightly synchronized clock
signal. If the difference in timing, also called skew, is too large, then communication
becomes too difficult or requires expensive and lossy re-synchronization steps, defeating
the point of a common clock signal.

The first part of this thesis is about pulse propagation, beginning with an introduction
to the state of the art, as well as a review of HEX [Dol+16], an existing pulse propagation
scheme. We then introduce TRIX, which uses the same basic idea for fault-tolerance
(using a median signal), but chooses a fundamentally different approach to its topology.
We analyze TRIX’ properties and improvements, and in particular provide strong
experimental evidence that TRIX achieves remarkably low skew (mean 0, standard
deviation roughly O(log logH)). This means that TRIX is significantly better than HEX
at delivering a tightly synchronized clock signal.

1

1. Introduction

This contribution has been presented in a brief announcement [LW20a] at the SSS 2020
conference. A full version [LW20b] is available.

The analysis of classic graph problems enables fascinating insights into how the
structure of a problem or the graph class affects complexity. Recently, the study of the
corresponding distance-r generalizations has received attention, as it seems to reveal
how distance and sparsity influence complexity.

The second part of this thesis considers the distance-r generalization of well-known
graph cover problems, most prominently the dominating set problem. We introduce an
algorithm that computes an approximation, assuming a restricted graph class. In the
analysis, we define a candidate set based on Voronoi cells; this approach may generalize
to further graph classes. This implies the upper bound that a O(r · f(r))-approximation
can be achieved in time O(r), where f is the expansion function, which correlates with
density. We also prove the unconditional lower bound that no algorithm can achieve
a (2r + 1 − δ)-approximation for any δ > 0 in time O(r). Finally, we provide simple
extensions of the distance-r dominating set algorithm to other distance-r graph cover
problems, such as connected dominating set, vertex cover, and connected vertex cover,
as well as the port numbering model.

We find that the presented upper and lower bound do not quite match, and leave a
gap. We are forced to leave this as an open question whether the lower bound can be
raised, or whether a different algorithm finds a good approximation more quickly.

These contributions have been published at CIAC 2021 [AW21] and TCS Special Issue
on Algorithms and Complexity 2021 [AW22].

Many digital protocols are packet-based, and bandwidth-limitations prevent instant
re-transmission. This necessitates packet buffers, in order to minimize packet loss.
Infinitely large buffers would prevent this type of packet loss entirely, but are impractical.
But how large do packet buffers need to be? Even assuming that the routing problem is
already solved, i.e. each packet already knows which route it has to take, the timing and
ordering of the packets has a large impact on the required packet buffer size. This is called
the packet forwarding problem, and the existing OED algorithm (Odd-Even-Downward)
guarantees that small packet buffers (of size O(logn), where n is the number of nodes)
suffice, under a certain packet injection and forwarding model. However, OED assumes
that all packets have all a single, shared destination, and depends crucially on it.

The third part of this thesis addresses the problem of packet forwarding. We introduce
a new algorithm that uses OED as a building block, requiring a slight relaxation of
the communication model, allowing to exchange packets instead of only forwarding
them. OED breaks if even a second destination is introduced. We break this seeming
barrier, as our algorithm can handle two separate destinations, which is a step towards a
general packet forwarding strategy. The fundamental approach is to consider cumulative
destination amounts, instead of individual destination amounts.

This contribution has not yet been published elsewhere.

2

Part I.

Pulse Propagation

3

Chapter 2
Introduction

This chapter introduces the concepts surrounding pulse propagation, and reviews how
it is traditionally solved. We also explain the shortcomings that create a need for a
distributed, fault-tolerant pulse propagation mechanism. Our proposed mechanism TRIX
is a good candidate to fill this need, and we present an outline of how we demonstrate this
in Chapter 3. Finally, we introduce all the notation and precise mathematical definitions
needed to do so.

2.1. Motivation

The vast majority of computational hardware is clocked, meaning that it relies on a single
clock pulse being distributed simultaneously down to all individual building blocks,
like latches, flip-flops, buffers, etc.

In the pursuit of fault-tolerant systems, distributed and fault-tolerant pulse generation
has been studied extensively [SSS07; ST87; WL88]. In the following, we will assume that
this part of the system is already solved.

However, it would be wasteful to scale up the number of generated clocks (which run a
full-blown clock generation algorithm) to the vast amount of building blocks. Traditional
clock-trees cannot accomplish this task, as a single point of failure can permanently
disturb the system.

In this work, we present a simple grid structure as a more reliable clock propagation
method and study it by means of simulation experiments. Fault-tolerance is achieved
by forwarding clock pulses on arrival of the second of three incoming signals from the
previous layer.

A key question is how well neighboring grid nodes are synchronized, even without
faults. Analyzing the clock skew under typical-case conditions is highly challenging.
Because the forwarding mechanism involves taking the median, standard probabilistic
tools fail, even when modeling link delays just by unbiased coin flips. This is precisely
what we will study in this and the following chapter.

5

2. Introduction

2.2. Related Work

When designing high reliability systems, any critical subsystem susceptible to failure
must exhibit sufficient redundancy. Traditionally, clocking of synchronous systems is per-
formed by clock trees or other structures that cannot sustain faulty components [Xan09].
This imposes limits on scalability on the size of clock domains; for instance, in multi-
processor systems typically no or only very loose synchronization is maintained between
different processors [CSG98; PH90]. Arguably, this suggests that fault-tolerant clocking
methods that are competitive – or even better – in terms of synchronization quality
and other parameters (ease of layouting, amount of circuitry, energy consumption, etc.)
would be instrumental in the design of larger synchronous systems.

To the best of our knowledge, at least until 20, or perhaps even 10 years ago, there is
virtually no work on fault-tolerance of clocking schemes beyond production from the
hardware community; due to the size and degree of miniaturization of systems at the
time, clock trees and their derivatives were simply sufficiently reliable in practice. That
this has changed is best illustrated by an upsurge of interest in single event upsets of the
clocking subsystem in the last decade [Abo+15; Chi+11; Chi+12; CK14; Guj+15; Mal+16;
Wan+16; Wis+09]. However, with ever larger systems and smaller components in place,
achieving acceptable trade-offs between reliability, synchronization quality, and energy
consumption requires to go beyond these techniques.

On the other hand, there is a significant body of work on fault-tolerant synchronization
from the area of distributed systems. Classics are the Srikanth-Toueg [ST87] and
Lynch-Welch [WL88] algorithms, which maintain synchronization even in face of a
large minority (strictly less than one third) of Byzantine faulty nodes.1 Going beyond
this already very strong fault model, a line of works [DDP03; DH07; Dol+14; DW04;
LR19] additionally consider self-stabilization, the ability of a system to recover from an
unbounded number of transient faults. The goal is for the system to stabilize, i.e., recover
nominal operation, after transient faults have ceased. Note that the combination makes
for a very challenging setting and results in extremely robust systems: even if some
nodes remain faulty, the system will recover from transient faults, which is equivalent to
recover synchronization when starting from an arbitrary state despite interference from
Byzantine faulty nodes.

While these fault-tolerance properties are highly desirable, unsurprisingly they also
come at a high price. All of the aforementioned works assume a fully connected system,
i.e., direct connections between each pair of nodes. Due to the strong requirements, it is
not hard to see that this is essentially necessary [DHS86]: in order to ensure that each
non-faulty node can synchronize to the majority of correct nodes, its degree must exceed
the number of faults, or it might become effectively disconnected. In fact, it actually must
have more correct neighbors than faulty ones, or a faulty majority of neighbors might
falsely appear to provide the correct time. Note that emulating full connectivity using

1Distributed systems are typically modeled by network graphs, where the nodes are the computational
devices and edges represent communication links. A Byzantine faulty node may deviate from the
protocol in an arbitrary fashion, i.e., it models worst-case faults and/or malicious attacks on the system.

6

2.2. Related Work

a crossbar or some other sparser network topology defeats the purpose, as the system
then will be brought down by a much smaller number of faults in the communication
infrastructure connecting the nodes. Accordingly, asking for such extreme robustness
must result in solutions that do not scale well.

A suitable relaxation of requirements is proposed in [Dol+16]. Instead of assuming
that Byzantine faults are also distributed across the system in a worst-case fashion,
the authors of this work require that faults are “spread out.” More specifically, they
propose a grid-like network they call HEX, through which a clock signal can be reliably
distributed, so long as for each node at most one of its four neighbors from which a
signal is received is faulty. Note that for the purposes of this paper, we assume that the
problem of fault-tolerant clock signal generation has already been sufficiently addressed
(e.g. using [Dol+14]), but the signal still needs to be distributed. Provided that nodes
fail independently, this means that the probability of failure of individual nodes that
can likely be sustained becomes roughly 1/

√
n, where n is the total number of nodes;

this is to be contrasted with a system without fault-tolerance, in which components
must fail with probability at most roughly 1/n. The authors also show how to make
HEX self-stabilizing. Unfortunately, however, the approach has poor synchronization
performance even in face of faults obeying the constraint of at most one fault in each
in-neighborhood. While it is guaranteed that the clock signal propagates through the
grid, nodes that fail to propagate the clock signal cause a “detour” resulting in a clock
skew between neighbors of at least one maximum end-to-end communication delay d.2
This is much larger than the uncertainty u in the end-to-end delay: As clocking systems
can be (and are) engineered for this purpose, the end-to-end delay will vary between
d− u and d for some u ≪ d. To put this into perspective, in a typical system u will be a
fraction of a clock cycle, while d may easily be half of a clock cycle or more.

This is inherent to the structure of the HEX grid, see Fig. 2.1. It seeks to propagate the
clock signal from layer to layer, where each node has two in-neighbors on the preceding
and two in-neighbors on their own layer. Because the possibility of a fault requires nodes
to wait for at least two neighbors indicating a clock pulse before doing so themselves, a
faulty node refusing to send any signal implies that its two out-neighbors on the next
layer need to wait for at least one signal from their own layer. This adds at least one hop
to the path along which the signal is propagated, causing an additional delay of at least
roughly d.

2d includes the wire delay as well as the time required for local computations. As the grid is highly
uniform and links connect close-by nodes, the reader should expect this value to be roughly the same
for all links.

7

2. Introduction

column

la
ye

r

3d 3d 3d 3d

4d 4d E 4d 4d

5d 6d 6d 5d

Figure 2.1.: A crashing node in a HEX grid causes
a large skew between neighbors in the
same layer, even with all links having
exactly the same delay. Thick links
cause nodes to pulse, dotted links
mean that the transmitted pulse was
too late to be considered. Observe
that the faulty node fails to transmit
any pulse at all.

column

la
ye

r

Figure 2.2.: The basic topology of
TRIX. Only wires inci-
dent to the central node
are shown; the same
pattern is applied at
other nodes.

2.3. Contribution: Empirical Proof of Quality

We propose a novel clock distribution topology that overcomes the above shortcoming
of HEX. As in our topology nodes have in- and out-degrees of 3 and it is inspired by
HEX, we refer to it as TRIX; see Fig. 2.2 for an illustration of the grid structure. Similar to
HEX, the clock signal is propagated through layers, but for each node, all of its three in-
neighbors are on the preceding layer. This avoids the pitfall of faulty nodes significantly
slowing down the propagation of the signal. If at most one in-neighbor is faulty, each
node still has two correct in-neighbors on the preceding layer, as demonstrated in Fig. 2.3.
Hence, we can now focus on fault-free executions, because single isolated faults only
introduce an additional uncertainty of at most u ≪ d. Predictions in this model are
therefore still meaningful for systems with rare and non-malicious faults.

The TRIX topology is acyclic, which conveniently means that self-stabilization is trivial
to achieve, as any incorrect state is “flushed out” from the system.

Despite its apparent attractiveness and even greater simplicity, we note that this choice
of topology should not be obvious. The fact that nodes do not check in with their
neighbors on the same layer implies that the worst-case clock skew between neighbors
grows as uH, where H is the number of layers and (for the sake of simplicity) we assume
that the skew on the first layer (which can be seen as the “clock input”) is 0, see Fig. 2.4.
However, reaching the skew of d between neighbors on the same layer, which is necessary
to give purpose to any link between them, takes many layers, at least d/u ≫ 1 many.

8

2.3. Contribution: Empirical Proof of Quality

column

la
ye

r

0d

1d

2d

3d

0d

1d

2d

3d

0d

1d

2d

3d

0d

1d

2d

3d

E

Figure 2.3.: A crashing node in a TRIX
grid causes no significant skew,
compared to Fig. 2.1. In fact,
in absence of uncertainty, iso-
lated crashes can be ignored
entirely.

column

la
ye

r

0d

1d

2d

3d

0d

1d

2d

3d

0ď

1ď

2ď

3ď

0ď

1ď

2ď

3ď

Figure 2.4.: Worst-case assignment of wire
delays causing large skew for
TRIX. Squiggly lines indicate
slow wires, straight ones fast
wires. The symbol ď stands for
d− u.

This is in contrast to HEX, where the worst-case skew is bounded, but more easily
attained. When assuming that delays are chosen in a typical-case manner, our statistical
experiments show that it likely takes much more than d/u layers before this threshold
of is reached. Accordingly, TRIX has no need for links within the same layer, for any
practical height H, resulting in smaller in- and out-degrees compared to HEX.

The main focus of this work lies on statistical experiments with the goal of estimating
the performance of a TRIX grid as clock distribution method3. Note that this is largely4

dominated by the skew between adjacent nodes in the grid, as these will drive circuitry
that needs to communicate. While the worst-case behavior is easy to understand, it
originates from a very unlikely configuration, where one side of the grid is entirely slow
and the other is fast, see Fig. 2.4. In contrast, correlated but gradual changes will also
result in spreading out clock skews – and any change that affects an entire region in
the same way will not affect local timing differences at all. This motivates to study the
extreme case of independent noise on each link in the TRIX grid. Choosing a simple
abstraction, we study the random process in which each link is assigned either delay 0 or
delay 1 by an independent, unbiased coin flip.

3The topology itself was invented by Christoph Lenzen, with whom the corresponding paper [LW20a]
was co-authored. The implementation, simulation, double-checking, statistical and stochastic analysis
are done by Ben Wiederhake.

4Skews over longer distances are relevant for long-range communication, but have longer communication
delays and respective uncertainties. This entails larger buffers even in absence of clock skew. We briefly
show that the TRIX grid appears to behave well also in this regard.

9

2. Introduction

For simplicity, we assume “perfect” input, i.e., each node on the initial layer signals a
clock pulse at time 0, and that the grid is infinitely wide.5 By induction over the layers,
each node is then assigned the second largest value out of the three integers obtained by
adding the respective link delay to the pulse time of each of its in-neighbors. We argue
that this abstraction captures the essence of (independent) noise on the channels.

Due to the lack of applicable concentration bounds for such processes, we study this
random process by extensive numerical experiments. Our results provide evidence that
TRIX behaves surprisingly well in several regards, exhibiting better concentration than
one might expect. First and foremost, the skew between neighbors appears to grow
extremely slowly with the number of layers H. Even for 2000 layers, we never observed
larger differences than 7 between neighbors on the same layer. Plotting the standard
deviation of the respective distribution as a function of the layer, the experiments show
a growth that is slower than doubly logarithmic, i.e. log logH. Second, for a fixed layer,
the respective skew distribution exhibits an exponential tail falling as roughly e−λ|x| for
λ ≈ 2.9. Third, the distribution of pulsing times as a function of the layer (i.e., when a
node pulses, not the difference to its neighbors) is also concentrated around its mean
(which can easily be shown to be H/2), where the standard deviation grows roughly
as H1/4.

To support that these results are not simply artifacts of the simulation, i.e., that we
sampled sufficiently often, we make use of the Dvoretzky-Kiefer-Wolfowitz (DKW)
inequality [DKW56] to show that the underlying ground truth is very close to the
observed distributions. In addition, to obtain tighter error bounds for our asymptotic
analysis of standard deviations as function of H, we leverage the Chernoff bound (as
stated in [MU05]) on individual values. We reach a high confidence that the qualitative
assertion that the TRIX distribution exhibits surprisingly good concentration is well-
founded. We conclude that the simple mechanism underlying the proposed clock
distribution mechanism results in a fundamentally different behavior than existing clock
distribution methods or naive averaging schemes.

2.4. Preliminaries and Notation

Model We model TRIX in an abstract way that is amenable to very efficient simulation
in software. In this section, we introduce this model and discuss the assumptions and
the resulting restrictions in detail.

The network topology is a grid of height H and width W. For finite W, the left- and
rightmost column would be connected, resulting in a cylinder. To simplify, we choose
W = ∞, because we aim to focus on the behavior in large systems. Note that a finite
width will work in our favor, as it adds additional constraints on how skews can evolve
over layers; in the extreme case of W = 3, in absence of faults skews could never become
larger than 1. We refer to the grid nodes by integer coordinates (x, y), where x ∈ Z and
y ∈ N0. Layer 0 ⩽ ℓ ⩽ H consists of the nodes (x, ℓ), x ∈ Z.

5Experiments with grids of bounded width suggest that reducing width only helps, while our goal here is
to study the asymptotic behavior for large systems.

10

2.4. Preliminaries and Notation

Layer 0 is special in that its nodes represent the clock source; they always pulse at
time 0. Again, there are implicit simplifications here. First, synchronizing the layer 0

nodes requires a suitable solution – ideally also fault-tolerant – and cannot be done
perfectly. However, our main goal here is to understand the properties of the clock
distribution grid, so the initial skew is relevant only insofar as it affects the distribution.
Some indicative simulations demonstrate that the grid can counteract “bad” inputs to
some extent, but some configurations do not allow for this in a few layers, e.g. having
all nodes with negative x coordinates pulse much earlier than those with positive ones.
Put simply, this would be a case of “garbage-in garbage-out,” which is not the focus of
this study. A more subtle point is the unrealistic assumption that all layers of the grid
have the same width. If the layer 0 nodes are to be well-synchronized, they ought to be
physically close; arranging them in a wide line is a poor choice. Accordingly, arranging
the grid in concentric rings (or a similar structure) would be more natural. This would,
however, entail that the number of grid nodes per layer should increase at a constant
rate, in order to maintain a constant density of nodes (alongside constant link length,
etc.). However, adding additional nodes permits to distribute skews better, therefore our
simplification acts against us.

All other nodes (x, ℓ) for ℓ > 0 are TRIX nodes. Each TRIX node propagates the
clock signal to the three nodes “above” it, i.e., the vertices (x− 1, y+ 1), (x, y+ 1), and
(x + 1, y + 1). In the case of the clock generators, the signal is just the generated clock
pulse; in case of the TRIX nodes, this signal is the forwarded clock pulse. Each node
(locally) triggers the pulse, i.e., forwards the signal, when receiving the second signal
from its predecessors; this way, a single faulty in-neighbor cannot cause the node’s pulse
to happen earlier than the first correct in-neighbor’s signal arriving or later than the last
such signal.

Pulse propagation over a comparatively long distance involves delays, and our
model focuses on the uncertainty on the wires. Specifically, we model the wire delays
using i.i.d. random variables that are fair coin flips, i.e., attain the values 0 or 1 with
probability 1/2 each.6 This reflects that any (known expected) absolute delay does not
matter, as the number of wires is the same for any path from layer 0 (the clock generation
layer) to layer ℓ > 0; also, this normalizes the uncertainty to 1.

Formalizing the above, for each wire from the nodes (x + c, y) with c ∈ {−1, 0,+1}

to node (x, y + 1), we define wc to be the wire delay. We further define the time
tc

..= d(x+c, y)+wc at which node (x, y+1) receives the clock pulse. Then node (x, y+1)

fires a clock pulse at the median time t ..= median{t−1, t0, t+1}. As we assume that all
clock generators (i.e., nodes with y = 0) fire, by induction on y all d(x, y) are well-defined
and finite.

This model may seem idealistic, especially our choice of the wire delay distribution.
However, in Appendix A.1 we argue that this is not an issue.

6This model choice is restrictive in that it deliberately neglects correlations. A partial justification here is
the expectation that (positive) correlations are unlikely to introduce local “spikes” in pulse times, i.e.,
large skews. However, we acknowledge that this will require further study, which must be based on
realistic models of the resulting physical implementations.

11

2. Introduction

We concentrate on two important metrics to analyze this system: absolute delay and
relative skew. The total delay d(x, y) of a node (x, y) (usually with y = H) is the time at
which this node fires. The relative skew sδ(x, y) in horizontal distance δ is the difference
in total delay; i.e., sδ(x, y) ..= d(x+h, y)−d(x, y). Our main interest lies in the behavior of
the random variables d(H) ..= d(0,H), i.e. the delay at the top of the grid, and the random
variable s(H) ..= s1(0,H), i.e. the relative skew between neighboring nodes.

Further Notation We write N(µ, σ2) to denote the normal distribution with mean µ and
standard deviation σ.

Given the average sample value v̄ =
∑n

i=1 vi/n over a set of n sample values vi, we
compute the empiric standard deviation as (

∑n
i=1(vi − v̄)2/(n− 1))1/2.

We denote the cumulative distribution function of a random variable X as C[X]; e.g. the
term C[X](x) denotes the probability that X ⩽ x. We denote the inverse function by C−1[X].

A quantile-quantile-plot relates two distributions A and B. The simplest definition is
to plot the domain of A against the domain of B, using the function C−1[B](C[A](x)).

We define the sample space Ω as the set of possible specific assignments of wire
delays. If we need to refer to the value of some random variable X in a sample s ∈ Ω, we
write X[s].

12

Chapter 3
TRIX: Low-Skew, Fault-Tolerant

In this chapter we show experimental data and the theory behind it in order to demonstrate
that the TRIX is not only a good candidate pulse propagation mechanism, but also
behaves better than one might reasonably expect.

In particular, we will show that the delay is identically and normally distributed, but
not independently: In fact, the skew (difference of neighboring delays) is surprisingly
small.

This chapter is an extended version of the brief announcement [LW20a] at SSS 2020,
with full proofs, more details about the methodology, and more explanations of the data.
A stand-alone version [LW20b] is available.

3.1. Delay is Tightly Concentrated

3.1.1. Empiric Analysis

In this subsection, we examine d(2000), which we formally defined in Sect. 2.4. Recall
that d(2000) is the delay at layer 2000. The results are similar for other layers and, as we
will show in Sect. 3.1.3, do change slowly with increasing H.

For reference, consider a simpler system consisting of a sequence of nodes arranged
in a line topology, where each node transmits a pulse once receiving the pulse from its
predecessor. In this system, the delay at layer H would follow a binomial distribution
with mean H/2 = 1000 and standard deviation

√
H/2 =

√
2000/2 ≈ 22. Recall that by

the central limit theorem, for large H this distribution will be very close to a normal
distribution with the same mean and standard deviation. In particular, it will have an
exponential tail.

Fig. 3.1 shows the estimated probability mass function of d(2000). The data was
gathered using 25 million independent simulations; in Appendix A.1 we discuss how
we ensured that the simulations are correct.

13

3. TRIX: Low-Skew, Fault-Tolerant

delay

ob
se

rv
ed

 ra
te

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

985 990 995 1000 1005 1010 1015

Figure 3.1.: Estimated probability mass function of d(2000).

TRIX delay

no
rm

al
 o

f s
am

e
qu

an
til

e

985

995

1005

1015

985 995 1005

Figure 3.2.: Quantile-quantile plot of d(2000) against N(1000, 2.7412).

Observe that the shape looks like a normal distribution, as one might expect. However,
it is concentrated much more tightly around its mean than for the simple line topology
considered above: The empiric standard deviation of this sample is only 2.741.

Fig. 3.2 uses a quantile-quantile-plot to show that d(2000) and N(1000, 2.7412) seem to
be close to identical, as indicated by the fact that the plot is close to a straight line. The
extremes are an exception, where numerical and uncertainty issues occur. Of course,
they cannot be truly identical, even if our guess 2.741 was correct: d(2000) is discrete and
has a bounded support, in contrast to N(1000, 2.7412). However, this indicates some kind
of connection we would like to understand better.

The Dvoretzky-Kiefer-Wolfowitz inequality [DKW56] implies that the true cumulative
distribution function must be within 0.0003255 (i.e., 8139 evaluations) of our measurement
with probability 1−α = 99%. For the values with low frequency however, the Dvoretzky-
Kiefer-Wolfowitz inequality yields weak error bounds.

14

3.1. Delay is Tightly Concentrated

Instead, we use that Chernoff bounds can be applied to the random variable Xk given
by sum of variables Xi,k indicating whether the i-th evaluation of the distribution attains
value k. We then vary pk, the unknown probability that the underlying distribution
attains value k, and determine the threshold pmax at which Chernoff’s bound shows that
pk ⩾ pmax implied that our observed sample had an a-priori probability of at most α ′;
the same procedure is used to determine the threshold pmin for which pk ⩽ pmin would
imply that the observed sample has a-priori probability at most α ′. Note that we can also
group together multiple values of k into a single bucket and apply this approach to the
frequency of the overall bucket. This can be used to address all values with frequency 0

together. Finally, we chose α ′ suitably such that a union bound over all buckets1 yields
the desired probability bound of 1 − α = 99% that all frequencies of the underlying
distribution are within the computed error bounds.

Due to our large number of samples, the resulting error bars for the probability mass
function are so small that they cannot be meaningfully represented in Fig. 3.1; in fact,
on the interval [990, 1010] the error bars are at most 8.05% (multiplicative, not additive),
and on the interval [994, 1006] at most 0.93%. On the other hand, data points outside
[990, 1010] in Fig. 3.2 should be taken as rough indication only.

In other words, we have run a sufficient number of simulations to conclude that the
ground truth is likely to be very close to a binomial (i.e., essentially normal) distribution
with mean H/2 = 1000 and standard deviation close to 2.741; the former is easily shown,
which we do next.

3.1.2. Stochastic Analysis

Lemma 1. E[d(H)] = H/2.

Proof. Consider the bĳection f : Ω → Ω on the sample space given by f(s) = s̄, i.e., we
exchange all delays of 0 for delays of 1 and vice versa. We will show that for a sample s

with d(2000)[s] = δ it holds that d(2000)[f(s)] = H − δ. As the wire delays are u.i.d., all
points in Ω have the same weight under the probability measure, implying that this is
sufficient to show that E[d(H)] = H/2.

We prove by induction on y that d(x, y)[f(s)] = y−d(x, y)[s] for all 0 ⩽ y ⩽ H and x ∈ Z;
by the above discussion, evaluating this claim at (x, y) = (0,H) completes the proof. For
the base case of y = 0, recall that d(x, 0)[f(s)] = d(x, 0)[s] = 0 by definition.

For the step from y to y+ 1, consider the node at (x, y+ 1) for x ∈ Z. For c ∈ {−1, 0,+1},
the wire delay wc from (x+ c, y) to (x, y+ 1) satisfies wc[f(s)] = 1−wc[s] by construction.
By the induction hypothesis, d(x + c, y)[f(s)] = y − d(x + c, y)[s]. Together, this yields
that (x, y+ 1) receives the pulse from (x+ c, y) at time

d(x+ c, y)[f(s)] +wc[f(s)] = y+ 1− (d(x+ c, y)[s] +wc[s]).

1That is, the number of non-zero values to which we do not apply Dvoretzky-Kiefer-Wolfowitz plus one
(for values of frequency 0).

15

3. TRIX: Low-Skew, Fault-Tolerant

H

de
la

y
em

pi
ric

 s
td

de
v

0.9

2.0

3.0

100 1000

Figure 3.3.: Log-log plot of the empiric standard deviation of d(H) as a function of H.

We conclude that

d(x, y+ 1)[f(s)] = median
c∈{−1,0,1}

{y+ 1− (d(x+ c, y)[s] +wc[s])}

= y+ 1− median
c∈{−1,0,1}

{d(x+ c, y)[s] +wc[s]}

= y+ 1− d(x, y+ 1)[s].

3.1.3. Asymptotics in Network Depth

As discussed earlier, forwarding the pulse signal using a line topology would result
in d(H) being a binomial distribution with mean H/2 and standard deviation

√
H/2.

For d(2000), we observe a standard deviation that is smaller by about an order of
magnitude.

Running simulations and computing the empiric standard deviation for various
values of H resulted in the data plotted in Fig. 3.3 as a log-log plot. Using the technique
discussed above, we can compute error bars.2 Again, the obtained error bounds cannot be
meaningfully depicted; errors are about 1% (multiplicative, not additive) with probability
1− α = 99%. The largest error margin is at 200 layers, with 1.35%.

Fig. 3.3 suggests a polynomial relationship between standard deviation σ and grid
height H. The slope of the line is close to 1/4, which suggests σ ∼ Hβ with β ≈ 1/4.

This is a quadratic improvement over the reference case of a line topology.

2This relies on the exponential tails demonstrated in Sect. 3.1.1. Without this additional observation, the
error bars for all possible skews (including large skews like H/2) would cause large uncertainty in the
standard deviation.

16

3.2. Skew is Tightly Concentrated

Figure 3.4.: The estimated probability mass function for s(2000), with a logarithmic y-axis.
The error bounds are only visible at the fringes.

3.2. Skew is Tightly Concentrated

3.2.1. Empiric Analysis

In this subsection, we study s(2000), which we formally defined in Sect. 2.4. Recall
that s(2000) is the skew at layer 2000 between neighboring nodes. As we will show in
Sect. 3.2.3, the behavior for other layers is very similar. In particular, the skews increase
stunningly slowly with H.

We gathered data from 20 million simulations3, and see a high concentration around 0

in Fig. 3.4, with roughly half of the probability mass at 0. Note that again the error
bars cannot be represented meaningfully in Fig. 3.4; in fact, on the interval [−3,+3] the
error bars are at most 6.1% (multiplicative, not additive), and on the interval [−2,+2] at
most 1.4%.

Observe that the skew does not follow a normal distribution at all: The probability
mass seems to drop off exponentially like e−λ|x| for λ ≈ 2.9 (where x is the skew), and not
quadratic-exponentially like e−x2/(2σ2), as it would happen in the normal distribution.
The probability mass for 0 is a notable exception, not matching this behavior.

The Dvoretzky-Kiefer-Wolfowitz inequality [DKW56] implies that the true cumulative
distribution function must be within 0.0005147 (i.e., 5147 evaluations) of our measurement
with probability 1− α = 99%. In particular, observing skew 6 twice without observing
skew −6 is well within error tolerance.

3Curiously, we saw skew -7 exactly once, skew -6 never, skew +6 four times. Further investigation showed
this to be a fluke, but we want to avoid introducing bias by picking the “nicest” sample.

17

3. TRIX: Low-Skew, Fault-Tolerant

H

sk
ew

 e
m

pi
ric

 s
td

de
v

0.74

0.75

0.76

0.77

100 1000

Figure 3.5.: Empiric standard deviation of s(H) as a function of H, as a log-lin plot.

3.2.2. Stochastic Analysis

First, we observe that the skew is symmetric with mean 0. This is to be expected, as the
model is symmetric. It also readily follows using the same argument as used in the proof
of Lem. 1.

Corollary 2. s(H) is symmetric with E[s(H)] = 0.

Proof. Consider the bĳection used in the proof of Lem. 1. As shown in the proof, for any
(x, y) ∈ Z× N0 and s ∈ Ω, we have that

d(x, y)[f(s)] − d(x+ 1, y)[f(s)] =y− d(x, y)[s] − (y− d(x+ 1, y)[s])

= − (d(x, y)[s] − d(x+ 1, y)[s]).

Next we prove that the worst-case skew on layer H is indeed H, c.f. Fig. 2.4.

Lemma 3. There is a sample s such that s(H)[s] = H.

Proof. In s, we simply let all wire delays wi of wires leading to a node with positive x be 1,
and let all wire delays wj of wires leading into a node with non-positive x be 0. A simple
proof by induction shows that for positive x we get d(x, y)[s1] = y and for non-positive x

we get d(x, y)[s1] = 0. We conclude that s(H)[s] = d(1, y)[s] − d(0, y)[s] = H.

The constructed sample is not the only one which exhibits large skew. For example,
simultaneously changing the delay of all wires between x = 0 and x = 1 does not affect
times when nodes pulse. Moreover, for all x /∈ {0, 1}, we can concurrently change the
delay of any one of their incoming wires without effect. It is not hard to see that the total
probability mass of the described samples is small. We could not find a way to show that
this is true in general; however, the experiments from Sect. 3.2.1 strongly suggests that
this is the case. (Hence our question: How to approach statistical problems like this?)

18

3.2. Skew is Tightly Concentrated

ln(H)/ln(10)

sk
ew

 e
m

pi
ric

 s
td

de
v

0.74

0.75

0.76

0.77

1 2 3 4

Figure 3.6.: The data of Fig. 3.5 in a loglog-lin plot.

3.2.3. Asymptotics in Network Depth

Again we lack proper models to describe the asymptotic behavior, and instead calculate
the empiric standard deviation from sufficiently many simulations.

Fig. 3.5 shows that the skew remains small even for large values of H.4 Note that
the X-axis is logarithmic. Yet again, showing the error bars calculated using Chernoff
bounds and DKW (Dvoretzky-Kiefer-Wolfowitz) is not helpful, as we get relative errors
of about 0.6% with 99% confidence. The largest error margin is at 100 layers and below,
with an error about 0.95%.

This suggests that the standard-deviation of s(H) grows strongly sub-logarithmically,
possibly even converges to a finite value. In fact, the data indicates a growth that is
significantly slower than logarithmic: in Fig. 3.6, the X-axis is doubly logarithmic. Thus,
the plot suggests that s(H) ∈ O(log logH).

Note that if we pretended that adjacent nodes exhibit independent delays, the skew
would have the same concentration as the delay. In contrast, we see that adjacent nodes
are tightly synchronized, implying strong correlation.5

3.2.4. Asymptotics in Horizontal Distance

So far, we have limited our attention to the skew between neighboring nodes. In contrast,
at horizontal distances δ ⩾ 2H, node delays are independent, as they do not share
any wires on any path to any clock generator. Therefore, the skew would be given by
independently sampling twice from the delay distribution and taking the difference. It
remains to consider how skews develop for smaller horizontal distances.

4A standard deviation below 1 link delay uncertainty is not unreasonable: Two circuits clocked over inde-
pendent links, hop-distance 1 from a perfect clock source, have σ(skew) =

√
E[0.52] = 0.5 uncertainties.

5For the sake of brevity, we do not show respective plots.

19

3. TRIX: Low-Skew, Fault-Tolerant

horizontal hop distance

em
pi

ric
 s

td
de

v

0.7

0.9

2

3

1 10

Figure 3.7.: Empiric standard deviation of sδ(0, 500) as a function of horizontal distance δ

in a log-log plot.

In Fig. 3.7, we see that the skew grows steadily with increasing δ. These simulations
were run with H = 500 for higher precision and execution speed. Note that the standard
deviation of the skew converges to roughly

√
2 · 1.95 ≈ 2.75, i.e.,

√
2 times the standard

deviation of the delay at H = 500, as δ approaches 2 · 500 = 1000. This holds because the
sum of independent random variables has variance equal to the sum of variances of the
variables. As before, depicting the error bars determined by our approach is of no use,
as relative errors are about 1.6%. The largest error margin is at horizontal distance 25,
with 1.79%.

The small relative errors indicate that the log-log representation of the data is mean-
ingful, and suggests that the standard deviation increases roughly proportional to δγ for
γ ≈ 1/3. It is not surprising that the slope falls off towards larger values, as we know that
the curve must eventually flatten and become constant for δ ⩾ 2H = 1000. Overall, we
observe that the correlation of skew at a distance is stronger than expected, specifically
γ ≈ 1/3 instead of the expected γ ≈ 1/2 for small δ.

20

Chapter 4
Conclusion

In this part, we studied the behavior of the TRIX grid under u.i.d. link delays, using
statistical tools. Our results clearly demonstrate that the TRIX grid performs much
better than one would expect from naive solutions, and thus should be considered when
selecting a fault-tolerant clock propagation mechanism.

Concretely, our simulation experiments show that the delay as function of the distanceH
from the clock source layer is close to normally distributed with a standard deviation that
grows only as roughly H1/4, a qualitative change from e.g. a line topology that would not
be achieved by averaging or similar techniques. Moreover, the skew between neighbors
in the same layer is astonishingly small. While not normally distributed, there is strong
evidence for an exponential tail, and the standard deviation of the distribution as function
of H appears to grow as O(log logH). Checking the skew over larger horizontal counts d
(within the same layer) shows a less surprising pattern. However, still the increase as
function of d appears to be slightly slower than

√
d.

These properties render the TRIX grid an attractive candidate for fault-tolerant clock
propagation, especially when compared to clock trees. We argue that our results
motivate further investigation, considering correlated delays based on measurements
from physical systems as well as simulation of frequency and/or non-white phase noise.
In addition, the impact of various other factors need to be studied, such as many isolated
faults, few correlated faults, the physical realization as a less regular grid with a central
cluster of clock sources, and the imperfection of the input provided by the clock source(s).

Last but not least, we would like to draw attention to the open problem of analyzing
the stochastic process we use as an abstraction for TRIX. This is also the reason why we
lack a purely mathematical analysis. While our simulation experiments are sufficient to
demonstrate that the exhibited behavior is highly promising, gaining an understanding
of the underlying cause would allow making qualitative and quantitative predictions
beyond the considered setting. As both the nodes’ decision rule and the topology are
extremely simple, one may hope for a general principle to emerge that can also be applied
in different domains.

21

Part II.

Distance-r Graph Cover

23

Chapter 5
Introduction

In this chapter, we revisit the popularity of sparse graphs and graph cover problems,
how they generalize, and give a summary of preliminaries and our contribution.

5.1. Motivation

Studying sparse graphs is crucial for computer science in several ways. First, many
real networks are sparse. For instance, the recent analysis of Schmid et al. [AFS20] on
the dataset of Rost [Ros19] shows that many real networks have tree-width at most 5,
meaning they are quite sparse and well-structured graphs. Sparse graphs are important
on the theory side, too: In the analysis of dense graphs, we often employ sparsification
techniques and solve the problem on the sparse instance in order to understand how the
dense instances work.

Sparsity is usually measured by means of an edge density of some kind: This can be
the edge density of the entire graph, of certain subgraphs, shallow minors of the graph,
or every minor of the graph, or similar metrics. Sometimes we also consider topological
or combinatorial attributes, famous examples being the classes of planar and bounded
genus graphs. Sometimes, in addition to the edge density requirement, we restrict the
degree of each vertex to get bounded degree graphs. The class of bounded degree graphs
has been studied extensively from the distributed perspective; most prominently in the
form of locally-checkable labeling (LCL) problems [Bal+21; Bra+17].

In the sequential setting, many APX-hard1 covering problems can be well approximated
if they are limited to the class of sparse graphs. Hence, it is interesting to understand
how sparsity enables better distributed algorithms in distributed computing models,
which could mean improving the approximation factor or reducing the number of
communication rounds.

1Loosely speaking, these problems have no PTAS. A PTAS is a family of algorithms that run in polynomial
time and compute an approximation of the optimum solution, where the approximation (“apx.”) factor
is arbitrarily close to 1.

25

5. Introduction

In the distributed setting every node is considered as a processor that can communicate
with its neighbors per synchronized rounds. The aim is to reduce the total number of
such rounds while providing a good solution.

In this work, we continue the line of study on sparse graphs and explore the algorithmic
properties of a wide range of sparse graphs, namely the class of graphs of bounded
expansion, with an extra combinatorial property: sparse graphs of high girth. The girth
of the graph is the length of its shortest cycle, or infinity if no cycle exists.

Girth plays a role in understanding structural properties of graphs. Sparse graphs of
high girth appear in important constructions such as spanner graphs [Alt+93]. Similarly
random graphs have only a few short cycles and at the same time, depending on their
parameters, they could be quite sparse. In such a graph class (we will formally specify
them later) we study several central covering problems in their most generic form:
distance-r covering problems.

As a result, we answer some more cases of the famous question of Naor and Stockmeyer:
“What can be computed locally?” [NS93] More precisely, we show that the problems
1. Distance-r Dominating Set 2. Distance-r Connected Dominating Set 3. Distance-r
Vertex Cover and 4. Distance-r Connected Vertex Cover. on the considered graph class
have constant factor approximation in a constant number of rounds in the CONGEST
model of computation, if r (the distance) is constant. Whenever feasible, we also give the
precise relation to r.

The aforementioned problems are hard in general graphs when it comes to distributed
settings. For instance there is no constant-factor approximation CONGEST algorithm for
the distance-2dominating set even if we let the algorithm to run for o(n2) rounds [Bar+20],
where n is the number of nodes. Observe that in order to exchange information, two
nodes require at most O(n) rounds of communication, however, for such a restricted case
of the problem (only distance-2) the amount of data to be transferred is too big to fit in
one message that respects the bandwidth of the network. Hence it needs Ω(n2) rounds
of computation to merely approximate the optimum solution. Thus, a natural approach
to progress on such problems is to consider them on restricted graph families, as we will
do in the following chapters.

The distance-1 versions of the above problems play important roles in theoretical com-
puter science. They are among Karp’s 21 NP-complete problems. They also have many
other implications: dominating set is one of the base cases to show inapproximability
within ω(logn) factor, and one of the central problems to derive W[2]-hardness results.
Vertex cover is one of the well known APX-hard problems, and a textbook example of
fixed parameter tractability. This raises the question how the more general distance-r
versions behave; we answer this question for the case of a specific, sparse graph class.

5.2. Related Work

In distributed settings, for the dominating set problem on general graphs, Kuhn et
al. [DKM19] provided a (1 + ϵ)(1 + log(∆ + 1))-approximation in f(n) rounds. In this
bound, ∆ is the maximum degree and f : N → N is the number of rounds that is needed

26

5.2. Related Work

to compute the network decomposition [Awe+89; Awe+92; Gha19]. Given the recent
breakthrough result of Rozhon and Ghaffari [RG20], the aforementioned algorithm runs
in a polylogarithmic number of rounds.

For the vertex cover problem, in graphs of bounded degree, the result of Åstrand
and Suomela [AS10] provides a constant factor approximation in a constant number of
rounds, and later, Bar-Yehuda et al. [BCS16] provided a constant factor approximation
in a sublogarithmic number of rounds. This is complemented by the lower bound
of Kuhn, Moscibroda and Wattenhofer (KMW) [KMW16] shows that a logarithmic
approximation in almost sublogarithmic time for the vertex cover problem and the
minimum dominating set (and some other covering problems) is impossible in general
graphs, even in the LOCAL model of computation. Their lower-bound graph for vertex
cover has high girth, but it is also of unbounded arboricity (more generally unbounded
average degree). However, even for the highly restricted class of bounded degree two
colored bipartite graphs, Göös and Suomela [GS14] showed that it is not possible to
provide a (1+ ϵ)-approximation of the vertex cover problem in a sublogarithmic number
of rounds.

We are interested in what happens in between graph classes. If we consider a graph
class of very high girth and very low edge density, e.g. trees, then these problems are easy
to approximate in zero rounds: take all non-leaf vertices. The above observations raise
the questions: In which graph classes does the problem admit a constant approximation
factor in a constant number of rounds? What about distance-r problems?

For the dominating set problem, Lenzen et al. [CHW08; LPW13] provided the first
constant-factor approximation in a constant number of rounds in planar graphs, which
was improved by Czygrinow et al. [CHW08]. Later, Amiri et al. [AS16; ASS16] provided
a new analysis method to extend the result of Lenzen et al. to bounded genus graphs.
This has been gradually generalized to excluded minor graphs [Czy+18] and bounded
expansion [KSV21].

A natural generalization of excluded minor graphs is the class of bounded expansion
graphs. Simply put, bounded expansion graphs only exclude minors on a localized level;
there may still be large clique minors in the graph.

On graphs of bounded expansion, only a logarithmic time constant factor approx-
imation is known for the dominating set problem; however, it seems that one can
extend the algorithm of [Czy+18] to bounded expansion graphs, as they only consider
“local” minors. If we go slightly beyond these graphs, to graphs of bounded arboricity
(where every subgraph has a constant edge density), the situation is worse: only an
O(log∆)-approximation in O(logn) rounds was known. There was a O(logn) round
O(1)-approximation in such graphs; however, this algorithm is randomized [LW10], only
recently it has been proven that it can be performed deterministically [Ami21].

All these results are about the distance-1 dominating set problem. Significantly fewer
work exists on the topic of the distance-r dominating set problem. We are only aware of
the algorithm of Amiri et al. [Ami+18] for bounded expansion graphs that provides a
constant factor approximation in a logarithmic number of rounds.

27

5. Introduction

5.2.1. Existing Approaches for Distance-r Dominating Set

There are several existing approaches one might employ to tackle the problem: 1. Take
the r-th power of the graph and go back to the distance-1 dominating set, 2. Decentralize
existing decomposition methods in the sequential setting and employ them, 3. Use
existing fast distributed graph decomposition methods for sparse graphs. In the
following, we explain how all of the above approaches, without introducing new ideas,
are impractical in providing sublogarithmic round algorithms for distance-r covering
problems.

For the first approach, we lose the sparsity of the graph already on stars. Hence, we
cannot rely on existing algorithms for solving the domination problem in sparse graphs.

Decentralizing the existing sequential decomposition methods does not seem promis-
ing if one hopes to achieve anything better than logarithmic rounds: To the best of our
knowledge, every such sequential decomposition already consumes polylogarithmically
many rounds. Even assuming the decomposition is given in advance, such methods
handle the clusters sequentially; however the number of clusters is usually at least
logarithmic, requiring at least logarithmically many rounds.

For the third approach, these existing fast distributed graph decomposition methods
are mostly inspired by existing methods in classical settings, like Baker’s method [Bak94];
this includes, e.g., the O(log∗

n) round algorithm of [CHS06]. The idea is to partition a
sparse graph into connected clusters such that each cluster has a small diameter and the
number of in-between cluster edges is small. Then, find the optimal solution inside each
cluster efficiently, and because the number of edges between a pair of clusters is small,
we can just ignore conflicts.

However, this fails already for distance-2 domination, since the number of edges
between clusters in the power graph is high. Recent research has shown that there is a
lower bound of Ω̃(n2) for distance-2 dominating set, both for solving it exactly [Bac+19],
and even for constant-factor approximations [Bar+20].

Also, we cannot rely on global properties (such as tree decomposition) like in the
sequential setting, since this increases the number of rounds to the diameter of the graph,
which can easily be superlogarithmic.

Therefore, any distributed algorithm that solves distance-r covering problems has
to exploit special properties of the underlying graph class or problem, motivating our
choice of sparse high-girth graphs.

5.3. Contribution: Algorithmic Upper Bound and Unconditional
Lower Bound

Throughout the paper, we assume that a graph G = (V, E) is given. In the (distance-1)
dominating set problem, we seek a set D ⊆ V such that every other vertex of G is a
neighbor of a vertex in D. In the connected version of the problem, the induced graph of
G on the vertices of D̂ should be connected.

28

5.3. Contribution: Algorithmic Upper Bound and Unconditional Lower Bound

In the vertex cover problem, we seek a set C of vertices of the graph such that every
edge in the graph is incident to at least one of the vertices in C. Similarly, the connected
version of the problem asks for a vertex cover Ĉ such that the induced graph of C on
G is connected. In all of the above problems we would like to minimize the size of the
corresponding set.

The distance-r versions of covering problems are defined similarly to the classic
versions: for the dominating set problem, we consider the distance-r neighborhood. In
the distance-r vertex cover problem, we say that vertex v covers edge e if and only if
vertex v is within distance r of both endpoints. Observe that for r = 1, these distance-r
versions are equivalent to the classic versions.

Our main algorithmic contribution is that for constant r, the distance-r dominating
set problem admits a constant factor approximation in a constant number of rounds in
sparse high-girth graphs. Furthermore, we obtain non-trivial approximation guarantees
for super-constant r (i.e. r ∈ o(log∗

n)).
More specifically, the algorithm we developed for the distance-r dominating set

problem can be boiled down to this: Each vertex chooses its dominator to be the neighbor
that has a maximum degree in the r-th power graph. This is the algorithm that proves the
upper bound Thm. 4. We generalize the algorithm to handle the Distance-r Connected
Dominating Set (proven by Lem. 30), Distance-r Vertex Cover (Lem. 32), and Distance-r
Connected Vertex Cover (Cor. 34) problems.

Theorem 4. Let C be a graph class of bounded expansion f(r) and girth at least 4r+ 3. There is
a CONGEST algorithm that runs in O(r) rounds and provides an O(r · f(r))-approximation of
minimum distance-r dominating set on C, even if r ⩾ 2 is non-constant in n.

Given that the distance-r dominating set problem is equivalent to the dominating
set problem of the r-th power of the input graph, the algorithm can also be used to
provide a constant factor approximation in a non-trivial class of dense graphs for covering
problems. There are very few known algorithms with a constant factor guarantee in a
constant number of rounds on non-trivial dense graphs, e.g., the algorithm of Schneider
et al. [SW08] on graphs of bounded independence number (for the independent set and
the connected dominating set problem) partially falls into this category.

To show that our upper bound is reasonably tight, we provide a lower bound as
well. This we obtain by a reduction from a lower bound for independent set on the
ring [CHW08; LPW13] to the distance-r dominating set on the ring (naturally, a ring
with high girth). More formally we prove Thm. 5.

Theorem 5. Assume an arbitrary but fixed δ > 0 and r > 1, with r ∈ o(log∗
n). Then, there is

no deterministic LOCAL algorithm that finds in O(r) rounds a (2r + 1 − δ)-approximation of
distance-r dominating set for all G ∈ C, where C is the class of cycles of length ≫ 4r+ 3.

29

5. Introduction

5.4. Preliminaries and Notation

We assume basic familiarity with graph theory. In the following, we introduce basic
graph notation to avoid ambiguities. We refer to the book by Diestel [Die12] for further
reading.

Graph, Path, Distance: We only consider simple, connected, undirected graphs
G = (V, E), with n = |V |. A path P = (v0, v1, . . . , vl) in G is a non-empty sequence of
vertices such that no vertex repeats, and for every 0 ⩽ i < l it holds that there is an edge
in {vi, vi+1} ∈ E. We say that path P has length l, i.e. the number of edges.2 For u, v ∈ V ,
define the distance d(u, v) as the length of the shortest path between the vertices u and v.
For a set S ⊆ V , we define d(u, S) as the maximum distance between vertex u and any
vertex in S.

Neighborhood, Distance-r: Two vertices u, v ∈ V are neighbors in G if there is an
edge e = {u, v} ∈ E. We extend this definition to the distance-r neighborhood Nr[v] and
open distance-r neighborhood Nr(v) of a vertex v in the following way:

Nr[v] ..= {u ∈ V | d(u, v) ⩽ r} Nr(v) ..= Nr[v] \ {v}

Similarly for a set S ⊆ V we define:

Nr[S] ..=
⋃
v∈S

Nr[v] Nr(S) ..= Nr[S] \ S

Girth, Radius: The girth g of a graph G is the length of its shortest cycle, or ∞ if
acyclic. The radius R of G is the minimum integer R for which ∃v ∈ V : NR[v] = V .

Distance-r Dominating Set: A set M ⊆ V is a distance-r dominating set if V = Nr[M].
If there is no smaller such set, then M is a minimum distance-r dominating set of G.

Distance-r Connected Dominating Set: A set of vertices D ⊆ V is a distance-r
connected dominating set of G if D is a distance-r dominating set of G and the subgraph
of G induced on vertices in D is connected.

Distance-r Vertex Cover: A set C ⊆ V is a distance-r vertex cover of G if for every
edge e = {u, v}, there exists a vertex w ∈ C such that the distance of both u and v from
w is at most r. The special case of r = 1 is the standard vertex cover problem. Note
that in contrast to dominating set, there is no equivalence for vertex cover between the
distance-r and power graph version.

Distance-r Connected Vertex Cover: Similarly, a set Ĉ is a distance-r connected vertex
cover of G if it is a distance-r vertex cover of G and the induced subgraph of G on vertices
of Ĉ is connected.

Edge Density, r-Shallow Minor, Expansion: Let G = (V, E) be a graph; its edge
density is |E|/|V |. A graph H is an r-shallow minor of G if H can be obtained from G by
the following operations. First, we take a subgraph S of G and then partition the vertices
of S into vertex disjoint connected subgraphs S1, . . . , St of S, each of radius at most r and,
at the end, contract each Si (i ∈ [t]) to a single vertex to obtain H. We denote by ∇r(G)

the maximum edge density among all r-shallow minors of the graph G.
2For this work, it is not relevant whether we allow paths of length 0.

30

5.4. Preliminaries and Notation

Bounded Expansion

Bounded Arboricity

Logarithmic
Girth

Bounded
 Genus

and
 Planar

Excluded
Minor

Bounded
Expansion
High Girth

Bounded
Degree

Figure 5.1.: Diagram of the relation of sparse graph classes. The graph class in the lower
bound construction of Kuhn et al. [KMW16] is a subclass of logarithmic girth
class of unbounded arboricity. The bounded expansion class is a subclass of
bounded arboricity class. Bounded expansion is also a superclass of many
common sparse graph classes: planar, bounded genus, excluded minors, and
bounded degree. The class of bounded expansion with high girth intersects
each of the other four classes, but neither contains nor is fully contained in
any of them.

A graph class C is bounded expansion if there is a function f : N → N such that for
every graph G ∈ C and integer r ∈ N we have ∇r(G) ⩽ f(r); here f is the expansion function.
A class of graphs C has constant expansion if we also have f ∈ O(1).

Every planar, bounded genus, and excluded minor graph is a constant expansion
graph. Every class of bounded degree graphs is also bounded expansion, but not of
constant expansion. For more information on bounded expansion graphs, we refer the
reader to the book by Nešetřil and Ossona de Mendez [ND12]. Also see Fig. 5.1 for an
overview of how various graph classes relate to each other.

LOCAL and CONGEST Model of Computation: The LOCAL model of computation
assumes that the problem is being solved in a distributed manner: Each vertex in the
graph is also a computational node, the input graph is also the communication graph,
and initially, each vertex only knows its own unique identifier and its neighbors. An
algorithm proceeds in synchronous rounds on each vertex in parallel. In each round, the
algorithm can run an arbitrary amount of local computation, send a message of arbitrary
size to its neighboring vertices, and then receive all messages from its neighbors. Each
vertex can decide locally whether it halts with an output or continues. The most common
metric is the number of communication rounds.

This model was first introduced by Linial [Lin92]; later Peleg [Pel00] named it LOCAL
model.

31

5. Introduction

The CONGEST model is very similar to the LOCAL model, except that identifiers can
be represented in O(logn) bits, and each message can only hold O(logn) bits, where n

is the number of vertices in the network.
Finally, the Port numbering model removes the identifiers of vertices, and instead

assigns identifiers to the “ports” of each vertex. For example, each vertex is only aware of
the ports 1, . . . , dv, where dv is the degree of the vertex. This model makes many kinds
of symmetry breaking impossible. We show that in sparse, high-girth graphs, this model
still permits a non-trivial approximation.

32

Chapter 6
Bounds in the Congest Model

This chapter is a combination of our publications [AW21] at CIAC 2021 and TCS Special
Issue on Algorithms and Complexity 2021 [AW22]. Note that the former paper has
already been cited by Czygrinow et al. [CHW22].

This thesis contains in Sect. 6.2.2 a simpler analysis of the approximation, which also
improves the result by factor 2.

6.1. Congest Algorithm

We introduce a new Congest algorithm, and prove that for any high-girth graph class the
algorithm deterministically computes a O(r · f(r))-factor approximation of an optimum
distance-r dominating set, and runs in O(r) rounds. More precisely, this holds for all
graph classes in which all graphs have girth at least 4r+ 3. This improves the state of the
art at least for all r ∈ o(log∗

n) and f ∈ O(1).
This algorithm can be easily, but not trivially, extended to similar graph cover problems

(connected distance-r dominating set, distance-r vertex cover, connected distance-r vertex
cover).

6.2. Distributed Approximation Algorithm for Dominating Set

In this section we prove the following theorem.

Thm. 4 Let C be a graph class of bounded expansion f(r) and girth at least 4r+3. There is a
CONGEST algorithm that runs in O(r) rounds and provides an O(r · f(r))-approximation
of a minimum distance-r dominating set on C, even if r ⩾ 2 is non-constant in n.

We prove this by providing Alg. 1, satisfying all bounds. At its core, the algorithm
is simple: Each vertex computes the size of its distance-r neighborhood, i.e., the
distance-r degree. This degree is propagated so that each vertex selects in its distance-r

33

6. Bounds in the Congest Model

neighborhood the vertex with the highest such degree. The output is the set of all selected
vertices. We expect this to yield a good approximation because only few candidates can
be selected. Alg. 1 defines this formally. The main technical contribution is Lem. 12,
which concludes that Alg. 1 is correct and thus proves Thm. 4.

Algorithm 1: CONGEST computation of r-MDS, on each vertex v in parallel
1: Compute |Nr(v)|, e.g. using Alg. 2
2: // Phase 1: Select the vertex with the highest degree:
3: (priov, selv) ..= (|Nr(v)| , v)

4: for r rounds do
5: Send (priov, selv) to all neighbors
6: Receive (priou, selu) from each neighbor u
7: (priov, selv) ..= maxu∈N1[v]{(priou, selu)}
8: Remember all received messages that contained (priov, selv)
9: end for

10: // Phase 2: Propagate back to the selected vertex:
11: Dv ..= {selv}
12: for r rounds do
13: for each neighbor u ∈ N1(v) do
14: Determine which vertices sent by u in Phase 1 are in Dv

15: Send these to u, encoded as a bitset of size r

16: end for
17: Receive bitsets, extend Dv accordingly
18: end for
19: Join the dominating set if and only if v ∈ Dv, in other words:
20: return v ∈ Dv

We say that Alg. 1 computes a set D by returning ⊤ for all vertices in the set, and ⊥ for
all others. Naturally, messages and comparisons only consider the ID of vertices, and
not the vertices themselves. This abuse of notation simplifies the algorithm and analysis.
In line 7, we order tuples lexicographically: Tuples are ordered by the first element (the
size of the distance-r neighborhood); ties are broken by the second element (the ID of
the vertex).

In lines 15 and 17, we suggest to use “bitsets” to communicate a potentially large
set of nodes efficiently. Here we exploit that vertices v and its neighbor u know which
candidate-vertices were announced by vertex v in Phase 1, and in which order. This
means that vertex v can encode a set of vertices simply by sending e.g. 0 to indicate
absence and 1 to indicate presence in the set. Note that this obeys the message size
restriction of CONGEST if and only if r ∈ O(logn). Observe that this is satisfied for
constant r and r ∈ O(log∗

n). For larger r ∈ ω(logn), this scheme of communication is
not viable. A different scheme could be used, e.g. the one in Alg. 7, where only a single
bit is sent each round. We propose the bitset-approach because it seems easier to explain
and understand, and because r ∈ O(logn) holds for all interesting cases.

34

6.2. Distributed Approximation Algorithm for Dominating Set

Algorithm 2: CONGEST computation of |Nr(v)|, on each vertex v in parallel
1: nu

..= 1 for all u ∈ N1(v)

2: for r rounds do
3: To each vertex u ∈ N1(v), send 1+

∑
w∈N1(v)\{u} nw

4: nu
..= the number received from u, for each u ∈ N1(v)

5: end for
6: return

∑
w∈N1(v) nw

Alg. 2 implements the computation of the distance-r neighborhood. The intuition is to
compute the size of a rooted tree, for all possible roots at once. The high girth of G and
line 3 mean that each vertex is counted only once (if at all).

We will now prove Alg. 1’s correctness and approximation factor.

6.2.1. Correctness

First, we will show basic correctness properties. One can trivially check that all messages
contain only O(logn) many bits. Specifically, the bitsets have only size r ∈ o(log∗

n).

Lemma 6. Alg. 2 computes the size of Nr(v) for each vertex v in parallel.

Proof. First, observe that in only r− 1 rounds of communication, no cycle can be detected,
as the girth is at least 4r+ 3. This means that Ni(v) is a tree for every i ⩽ r− 1 and v ∈ V .
We define the tree T¬v

u,i as the (set of vertices in the) tree of edge-depth i, rooted at vertex
u, excluding the branch to vertex v, where v is a neighbor of vertex u.

We prove by induction: At vertex v, after the i-th round1 (where 0 ⩽ i ⩽ r − 1), nu

stores the size of the tree T¬v
u,i.

For the induction basis i = 0, we know ∀u, v : nu = 1 =
∣∣T¬v

u,0

∣∣ = |{u}|.
This leaves the induction step: At the beginning of the i-th round (for 1 ⩽ i ⩽ r− 1),

we know that nu =
∣∣T¬v

u,i−1

∣∣ by the induction hypothesis, for every u, v. Consider vertex
v. By construction, its distance-i open neighborhood is the union of all edge-depth i− 1

trees of v’s neighbors, so: Ni(v) =
⋃

u∈N1(v) T
¬v
u,i−1. Due to the high girth requirement,

we know that all sets in this union are disjoint. Vertex v can therefore compute
∣∣Ni(v)

∣∣
by summing up all its nus, and can even compute

∣∣T¬u
v,i

∣∣ for an arbitrary vertex u by
subtracting the corresponding nu again. This is exactly what happens in line 3. Then
v sends

∣∣T¬u
v,i

∣∣ to each neighbor u, which stores it in the corresponding variable nv. By
symmetry, this also means that vertex v now has stored

∣∣T¬v
u,i

∣∣ in nu, thus proving the
induction step.

With the meaning of nu established, line 6 of Alg. 2 must compute |Nr(v)|.

1We interpret “after the zeroth round” as “before the first round”

35

6. Bounds in the Congest Model

Next, we show that Alg. 1 selects the maximum degree neighbor:

Lemma 7. In Alg. 1, at the start of Phase 2 (line 10 et seq.), each vertex v has selected a vertex
selv. This is the unique vertex arg maxu∈Nr[v]{(|N

r(u)| , u)}.

Proof. By construction, only tuples of the form (|Nr(w)| , w) with w ∈ V are ever stored.
The max operator is commutative and associative, so it is sufficient to prove that each
vertex v considers precisely the tuples forw ∈ Nr[v]. This can be shown by straightforward
induction: After round i, vertex v considers precisely the tuples for w ∈ Ni[v]. The base
case is i = 0, and the induction step is straight-forward.

Hence, each vertex selects the maximum neighbor. Next, we show that this is
back-propagated:

Lemma 8. If there is a vertex u that selects v (selu = v), then v ∈ Dv.

Proof. Consider the path along which v was forwarded during the selection phase. By
straight-forward induction, one can see that after i rounds of propagation, for all vertices
w on the path with d(w,u) ⩽ i, have v ∈ Dw. The path has length at most r edges, so
v ∈ Dv after r rounds.

And because no further vertices are added into any Dv, we get:

Corollary 9. The selected vertices are precisely the computed set: D = {selv | v ∈ V}

Together with Lem. 7, this shows that Alg. 1 computes a dominating set.

Lemma 10. The computed set D is a distance-r dominating set.

Proof. Assume towards contradiction that a vertex v is not dominated. Lem. 7 shows
that v selected a vertex selv in its distance-r neighborhood. Cor. 9 shows that selv ∈ D,
which distance-r-dominates v, which is a contradiction.

The time complexity analysis is trivial.

Lemma 11. Alg. 1 runs in O(r) rounds.

6.2.2. Approximation Analysis

So far we have seen the correctness of the algorithm and the running time bound. In this
subsection, we prove the approximation bound of Lem. 12. Specifically, we prove that
the size of D, the set of selected vertices, is within factor 1+ 2r · f(r) of |M|, a minimum
distance-r dominating set.

Lemma 12. If the graph class C has expansion f(r) and girth at least 4r + 3, then the set of
vertices D selected by Alg. 1 is small: |D|/|M| ∈ O(r · f(r)).

36

6.2. Distributed Approximation Algorithm for Dominating Set

In the remainder of this subsection, we prove Lem. 12. Note that this means that if r is
constant, then the approximation factor is constant, too.

We now analyze the behavior of Alg. 1 on a particular graph G ∈ C. First, we want to
get rid of an edge-case:

Lemma 13. If |M| = 1, then |D| = 1.

Proof. Let M = {v}. Then |Nr[v]| = |V |. Let u be the vertex with |Nr[u]| = |V | with
maximum ID; this may or may not be different from vertex v. By construction and Lem. 7,
all vertices must select u, therefore D = {u}.

We begin by showing that the optimal solution implies a partition into Voronoi
cells [PS85], which we will use throughout the analysis. First, we define what a covering
vertex is. Note that this can be (and often is) different from the vertex selected by the
algorithm.

Definition 1
Let c : V → M be the mapping from vertices in V to corresponding dominating vertices

in M, breaking ties first by distance and then by ID:

c(v) ..= arg min
u∈Nr[v]∩M

{(d(u, v), u)} (6.1)

We order tuples lexicographically, again. The equivalent term arg minu∈M{(d(u, v), u)}

provides shorter notation: By construction, each vertex v has a vertex in M in its
r-neighborhood, so arg min will select from Nr[v] anyway. Next, we partition V into
Voronoi cells Hm

..= {v ∈ V |c(v) = m} for each m ∈ M.

Corollary 14. Each Hm is connected and has radius at most r.

Proof. As vertex m dominates all vertices in Hm, we know that there is a path of length
at most r from vertex m to each vertex in Hm.

We use the high-girth property to show that the Voronoi cells behave nicely:

Lemma 15. The subgraph induced by Hm in G is a tree.

Proof. Assume towards contradiction that there is a cycle C ′ in Hm. We construct a cycle
that has length at most 2r+ 1, a contradiction.

Specifically, construct a BFS-tree of Hm rooted in m. Then, the cycle C ′ must contain an
edge e between u, v ∈ Hm. Consider the cycle that consists of the path from u to v along
the BFS-tree and the edge {u, v}. This cycle must have length at most r+ r+ 1, because
the BFS-tree has depth at most r. This contradicts G having a girth of at least 4r+ 3.

37

6. Bounds in the Congest Model

Lemma 16. For any two Voronoi cells Hm ̸= Hn, there is at most one edge between them.

Proof. Let {u, v} ∈ E and {s, t} ∈ E be two different edges between Hm and Hn. W.l.o.g. as-
sume c(u) = c(s) = m and c(v) = c(t) = n, and assume v ̸= t (but u = s is possible).

By Cor. 14, we know that the subgraphs induced by Hm and Hn are each connected,
so there must be a path pm entirely in Hm between vertices u and s, possibly of length 0.
Likewise, a path pn must exist entirely in Hn between vertices v and t. The union of the
paths and the assumed edges forms a cycle Cu,v,s,t, as no vertex can be repeated. We
will now prove that Cu,v,s,t is too small.

The paths pm and pn have length at most 2r each. Therefore, we have found the cycle
Cu,v,s,t to have length at most 4r+ 2, in contradiction to the minimum girth 4r+ 3.

Let G ′ = (V ′, E ′) be the result of contracting Hm to a single vertex, for each m ∈ M.

Lemma 17. The edge set E ′ is small: |E ′| ⩽ f(r) · |M|

Proof. Using Cor. 14, we can apply the definition of the function f(r):

∣∣E ′∣∣ = |E ′|

|V ′|
·
∣∣V ′∣∣ ⩽ f(r) · |M|

Next, we construct a set of candidates, based on each Voronoi cell.

Definition 2
For each Voronoi cell Hm, we define the set of vertices Tm as the union of all shortest

paths Pm,u between vertex m and each vertex u on the Voronoi boundary, and we define
T as the union of all Tm:

Tm
..=

⋃
{u,v}∈E

c(u)=m,c(v) ̸=m

Pm,u T ..=
⋃

m∈M

Tm

This is well-defined due to Lem. 15. Observe that Tm is not necessarily equal to Hm:
All leaves in Tm have edges in G that lead outside the Voronoi cell. A leaf-vertex in
Hm that has no such edges will not be in Tm. This reduces the number of candidates
sufficiently:

Lemma 18. The set T is small: |T| ⩽ (1+ 2r · f(r)) |M|

Proof. Consider an arbitrary but fixed {v, u} ∈ E with c(v) ̸= c(u). Each path Pc(v),v has
at most r vertices not in M, because it is a shortest path, and by construction all vertices
are dominated by c(v). Each edge in E ′ corresponds to at most two such paths, due to
Lem. 16. With Lem. 17, this bounds the number of paths to at most 2f(r) |M|.

Therefore, T contains at most 2r · f(r) |M|+ |M| vertices.

Now we can prove in two steps that the algorithm only selects vertices from the
candidate set T:

38

6.2. Distributed Approximation Algorithm for Dominating Set

Hm

H... H...

Tv

m

w

v

Figure 6.1.: Typical vertex layout in proof of Lem. 20. The identity of vertex u does not
matter; hence, it is not shown.

Lemma 19. If |M| > 1, then there is always a vertex just out of reach (i.e. in distance r+ 1):

∀v ∈ V ∃u ∈ V : d(u, v) = r+ 1 (6.2)

Proof. Assume towards contradiction that there is a vertex v for which no such vertex u

exists. Then, there is also no vertex u ′ with d(u ′, v) > r + 1, because one could pick a
shortest path and construct such a u. Therefore, D ′ = {v} would be a dominating set, a
contradiction to |M| > 1.

Lemma 20. Let v be a vertex selected by u. Then v ∈ Tc(v).

Proof. Assume towards contradiction that v /∈ Tc(v). For brevity, let m ..= c(v). Observe
that m ̸= v, because m ∈ Tm. Let w be the next vertex on a shortest path from v towards
m; possibly m itself. We now analyze the properties of vertex w and conclude that vertex
u should not have selected v. Refer to Fig. 6.1 for an overview.

By Lem. 15, the subgraph induced by Hm is a tree. If we root this Hm-tree at vertex m,
we can denote the subtree rooted at v as Tv. This subtree has depth at most r− 1 (because
v ̸= m), so w covers the entire subtree: Tv ⊆ Nr(w). All vertices x ∈ V \ Tv are closer to
w than to v, as all paths from x to v must go through w. So, the neighborhood of v is
included in the neighborhood of w: Nr[v] ⊆ Nr[w].

Now we can use Lem. 19: There must be a vertex t that has distance r + 1 to vertex
v, so t /∈ Nr[v]. This means that t /∈ Nr[v] and t ∈ Nr[w]. Therefore, the degree of w is
strictly larger: |Nr[w]| > |Nr[v]|. Thus, vertex u would prefer selecting w over v, and also
was able to do so (because u ∈ Nr[v] ⊆ Nr[w]).

This leads to a contradiction: Vertex u selected v, although vertexw should be preferred
by the algorithm.

39

6. Bounds in the Congest Model

We can combine the previous lemmas to achieve an exact bound:

Corollary 21. The set D is small: |D| ⩽ (1+ 2r · f(r)) |M|

Proof. Follows from Lems. 18 and 20.

This proves Lem. 12, and thus Thm. 4. More specifically, we have proved the upper
bound (1+ 2r · f(r)) · |M| on |D|.

6.2.3. Tightness of the Analysis

We have seen that the algorithm is an O(r · f(r)) approximation. Is it possible that the
algorithm actually performs significantly better than what the analysis guarantees? This
subsection proves that there are graphs for which the algorithm yields an Ω(r · f(r))
approximation, meaning that the above analysis of the algorithm is asymptotically tight.

We will focus on the tightness of Cor. 21, by constructing a worst-case input graph.
See also Lem. 12.

Lemma 22. For arbitrary but fixed values r ⩾ 2, v ⩾ 2, there is a graph Gr,v such that:

• the singleton graph class Cr,v
..= {Gr,v} has expansion f(r) = v and girth at least 4r + 3,

and

• executing Alg. 1 on Gr,v computes a (r · f(r))-approximation (or worse) of the minimum
distance-r dominating set of Gr,v.

Proof. The remainder of this subsection constructs Gr,v and proves its properties.

The construction is a modified version of the subdivided biclique. Let X and Y be two
disjoint sets of vertices, each of size 2v. For each pair (x, y) ∈ X× Y, create a path Px,y
starting at vertex x and ending in vertex y, with 2r new vertices, such that d(x, y) = 2r+ 1.
This means that no vertex can simultaneously cover x and y, i.e., no vertex is within
distance r of both x and y. In path Px,y, let bx,y be the second vertex (the one after x).
Create a set Bx,y of k = 2rv new vertices, and connect each vertex in Bx,y by a single edge
to the vertex b. Let V be the union of all the sets X, Y, Px,y, Bx,y; and let E be the set of
edges as described. Then Gr,v = (V, E) is the constructed graph.

First, we prove that the graph class satisfies all requirements.

Lemma 23. The graph class Cr,v = {Gr,v} has expansion f(r) = v and girth at least 4r+ 3.

Proof. The girth of Gr,v is at least 4 · (2r+ 1) > 4r+ 3, as a cycle needs to pass through at
least two vertices from X and two vertices from Y.

To prove the low expansion of Cr,v, it suffices to show ∇r(G) = v. This can be shown by
contracting as much as possible around all vertices in X ∪ Y, which results in the biclique
K2v,2v, with 4v vertices and 4v2 edges. Therefore, the constructed graph has ∇r(G) ⩾ v.
This is the contraction choice that maximizes the average degree, as it eliminates all
degree-2 vertices. Therefore ∇r(G) = v, and thus f(r) = v.

40

6.3. Unconditional Lower Bound

Next, we show that the algorithm computes a comparatively large dominating set:

Lemma 24. Alg. 1 computes a (r · f(r))-approximation (or worse) of minimum distance-r
dominating set on Gr,v.

Proof. By construction, X ∪ Y is a dominating set, meaning |M| ⩽ 4f(r). Therefore, it
suffices to show that |D| ⩾ 4r · f(r)2.

We do so by simulating the algorithm on Gr,v. We only need to consider the vertices
selected by vertices on the paths do. Specifically, pick a specific path Px,y between
x ∈ X and y ∈ Y. Vertices vx closer to x than to y cover the attached vertices Bx,y, so
|Nr(vx)| ⩾ 2r + k = 2r + 2r · f(r). The vertices closer to vertex x cover more of the other
paths ending in x, each step increases |Nr(vx)| by at least 2f(r) − 1, and loses at most
1 vertex out of sight in the y direction. Note that we ignore the vertices in Bx,y ′ with
y ′ ̸= y, which would only make this argument stronger. The important property is that
|Nr(vx)| strictly increases towards x, among vertices vx with d(vx, x) < d(vx, y).

Each vertex vy closer to y than to x does not cover the attached vertices Bx,y close
to vertex x, as distance r from them would imply distance r to x. We can compute
|Nr(vy)| ⩽ r + Nr(vr) + 1 − 1 = r + r · 2f(r) < 2r + 2r · f(r) ⩽ |Nr(vx)|, so vertex vy will
choose some vertex vx. As we already established, |Nr(vx)| increases with decreasing
distance to x. Therefore, each vy will select the vertex closest to x, meaning at least half
of each path will be selected, specifically the one on the vl side.

This means the algorithm selects at least r vertices per path, and there is one such
path for each X× Y combination. Hence |D| ⩾ r · 4 · f(r)2. Recall that |M| ⩽ 4f(r), so the
algorithm achieves an approximation factor of at least r · f(r) for the constructed graph.
Compared with the upper bound of 1+ (2r · f(r)) this is asymptotically tight.

This concludes the proof of Lem. 22 (tightness of approximation). Observe that this
result does not imply anything about the problem’s intrinsic hardness, but rather that in
the worst case, the presented algorithm may use up the approximation slack. In other
words, the upper bound in Lem. 12 is asymptotically tight.

6.3. Unconditional Lower Bound

In this section, we prove that computing a significantly better approximation of the
problem is hard. Intuitively speaking, this is because symmetry cannot be broken in
o(log∗

n) rounds, and without that, it is hard to construct any non-trivial distance-r
dominating set.

We show the hardness by a reduction from the “large” independent set problem to the
distance-r dominating set problem, on the graph class of cycles. Intuitively speaking we
find a distance-r dominating set D on cycle C; two consecutive vertices of D on C are
of distance at most 2r + 1 from each other, and hence, these vertices help us to break
the symmetry, and as r ∈ o(log∗

n) it yields an independent set of size O(n) in o(log∗
n)

rounds.

41

6. Bounds in the Congest Model

Thm. 5 Assume an arbitrary but fixed δ > 0 and r > 1, with r ∈ o(log∗
n). Then, there is

no deterministic LOCAL algorithm that finds in O(r) rounds a (2r+1−δ)-approximation
of distance-r dominating set for all G ∈ C, where C is the class of cycles of length ≫ 4r+ 3.

As we will see later, the trivial distance-r dominating set V (i.e., the set of all vertices),
is a (2r+ 1)-approximation in the case of cycles.

This has been proved implicitly in the work of [LPW13]. However, we find it simpler to
provide a new proof tailored for our setting, but only for n being a multiple of 2r+ 1. In
essence, we show a reduction from the “large” independent set problem to the distance-r
dominating set problem, on the graph class of cycles. Intuitively speaking, any algorithm
that does significantly better than the trivial dominating set anywhere on the cycle leads
to a linear sized independent set; and the bound is constructed such that the algorithm
needs to do better than trivial somewhere indeed.

The idea is simple: Find a distance-r dominating set D on cycle C; we know two
consecutive vertices of D on C are of distance at most 2r+ 1 from each other, and hence,
these vertices help us to break the symmetry, and as r ∈ o(log∗

n) it yields an independent
set of size O(n) in o(log∗

n) rounds. In the following, we will formalize this idea into an
proper argument.

Assume towards contradiction that ALG is such a deterministic distributed algorithm,
which finds a distance-r dominating set in G ∈ C of size at most (2r+ 1− δ) |M|, where M

is a minimum distance-r dominating set and r and δ as in Thm. 5.
We show that ALG can be used to construct an algorithm violating known lower

bounds on “large” independent set [CHW08; LPW13]:

Lemma 25 (Lemma 4 of [CHW08]). There is no deterministic distributed algorithm that finds
an independent set of size Ω(n/ log∗

n) in a cycle on n vertices in o(log∗
n) rounds.

We present the reduction algorithm in Alg. 3.

Algorithm 3: CONGEST computation of an IS on a cycle G ∈ C, for each v in
parallel

1: Compute a distance-r dominating set D by simulating ALG.
2: Determine the connected components V \D.
3: for each component Ci do
4: Determine the two adjacent vertices to Ci, i.e. u, v ∈ N(Ci).
5: Let u be the vertex with the lower ID, name it representor of Ci.
6: All vertices of odd distance to u in Ci join I.
7: end for
8: return I

42

6.4. Vertex Cover, Connected Dominating Set, and Connected Vertex Cover

We begin by showing basic correctness:

Lemma 26. Alg. 3 runs in o(log∗
n) rounds.

Proof. By assumption, ALG executes in O(r) rounds. On the other hand, observe that
each vertex in D only covers up to a distance of r. Because D is a dominating set, all
components must have length at most 2r. Hence, discovering the adjacent vertex of
lowest ID can be done in O(r) as well as propagating the distance information. By
construction r ∈ o(log∗

n), so Alg. 3 takes o(log∗
n) rounds.

Lemma 27. Alg. 3 computes set I, which is an independent set.

Proof. For two distinct vertices u, v ∈ I, if they belong to different components, then there
is no edge between them; otherwise, if they are in the same component, their distance is
at least 2, as they are distinct vertices of odd distance from their representor.

Now we can show that this yields a large independent set:

Lemma 28. The dominating set is not too large: |D| ⩽ (1− δ ′)n for some δ ′ > 0.

Proof. By assumption, we know |D| ⩽ (2r+1−δ) |M|, where M is the minimum distance-r
dominating set. Construct M ′ by picking every 2r+ 1-th vertex so that |M ′| = n/(2r+ 1).
Note that M ′ is a distance-r dominating set, so we have |M| ⩽ |M ′|. Together we get
|D| ⩽ (2r+ 1− δ)n/(2r+ 1) = (1− δ ′)n, for δ ′ ..= 1/(2r+ 1) > 0.

Lemma 29. The set I is large: |I| ∈ Ω(n/ log∗
n)

Proof. Many vertices must be part of some component: |V \D| ⩾ δ ′n for some δ ′ > 0 by
Lem. 28. At least half of those vertices are taken into I, thus |I| ⩾ δ ′n/2 ∈ Ω(n/ log∗

n).

Proof of Thm. 5. Lems. 25 and 29 imply that algorithm ALG cannot exist.

Note that this does not preclude randomized algorithms. This is because randomized
algorithms can indeed achieve a better approximation quality, at least on cycles, by
randomly joining the dominating set with sufficiently small probability if necessary, for
several rounds, and finally all uncovered vertices join.

6.4. Vertex Cover, Connected Dominating Set, and Connected
Vertex Cover

In this section, we extend Alg. 1 to solve three other covering problems, namely Distance-r
Vertex Cover, Distance-r Connected Vertex Cover, and Distance-r Connected Dominating
Set; the precise definitions can be found in Sect. 5.4. Again, we assume the input graph
is G = (V, E) so that we can directly refer to its edge and vertex set.

The rough idea for each of these extensions is simple: For the connected sets, we
take the original set and connect two vertices that are within a small distance via short
paths. It is possible to show that due to the structure of bounded expansion graphs, this

43

6. Bounds in the Congest Model

approach does not add much extra overhead and it is a constant factor approximation to
the problem. For vertex cover, observe that every vertex cover is already a dominating
set, to go the other way around we define boundary vertices of each Voronoi cell of the
dominating set, then include them into the solution to vertex cover. It is possible to show
that this approach provides a constant factor approximation for the problem (distance-r
variation).

Lemma 30. There is a CONGEST algorithm that computes an O((r · f(r))2) approximation of
Distance-r Connected Dominating Set in graphs of bounded expansion with high girth in O(r)

rounds.

Proof. We prove this by constructing Alg. 4 as a simple extension of Alg. 1, or any other
appropriate CONGEST distance-r dominating set algorithm.

Algorithm 4: CONGEST computation of connected r-MDS, on each vertex v in
parallel

1: Compute a Distance-r Dominating Set D of the graph
2: Determine the closest dominating vertex selv
3: if any neighbor u has a selu ̸= selv then
4: Call vertex v a border vertex
5: Determine the path Pv from v to selv
6: end if
7: return D̂ as the union of D, all border vertices, and their paths Pv

Alg. 4 is a CONGEST algorithm, as the distance-r dominating set algorithm is
CONGEST, and all other messages only contain a constant amount of identifiers.

Alg. 4 takes O(r) rounds, because the distance-r dominating set algorithm does so,
too, and all other steps also only take O(r) rounds.

D̂ is a dominating set because D ⊆ D̂ is a dominating set.
Define Voronoi cells Hd for each d ∈ D. Note that Cor. 14 and Lem. 15 apply

analogously.
We show that D̂ is connected by construction, if G is connected: Vertices v within a

Voronoi cell Hd ∩ D̂ are connected by construction, as they are all connected to d ∈ D̂.
Furthermore, for every path PG in the input graph G, one can construct a corresponding
walk WH in the Voronoi graph by mapping each vertex to its Voronoi cell (i.e. selv). Thus,
the Voronoi cells are connected.

Finally, we show the approximation quality: Consider the minimal Distance-r Con-
nected Dominating Set M̂. One can easily see that the minimum distance-r dominating
set M is not larger: |M| ⩽

∣∣M̂∣∣. An argument similar to Lem. 17 shows that the number of
border vertices is bounded in |D|; and by construction of D the Voronoi cells have radius
at most r (and therefore so do the paths). By Thm. 4, we can now deduce:∣∣D̂∣∣ ∈ O(r · f(r) · |D|) ⊆ O((r · f(r))2 · |M|) ⊆ O((r · f(r))2 ·

∣∣M̂∣∣)

44

6.4. Vertex Cover, Connected Dominating Set, and Connected Vertex Cover

For constant r, the terms simplify to the following:
Corollary 31. For constant r, there is a CONGEST algorithm that computes a constant factor
approximation of Distance-r Connected Dominating Set for constant r in graphs of bounded
expansion with high girth in constant number of rounds.

Likewise, we can solve the related vertex cover problem. Intuitively speaking, we
can define Voronoi cells according to the computed dominating set, determine borders
between cells, and include all borders into the vertex cover. More formally:
Lemma 32. There is a CONGEST algorithm that computes an O(r · f(r) · f(r)) approximation of
Distance-r Vertex Cover in graphs of bounded expansion with high girth in O(r) rounds.
Proof. We prove this by constructing Alg. 5 as a simple extension of Alg. 1, or any other
appropriate CONGEST distance-r dominating set algorithm.

Algorithm 5: CONGEST computation of distance-r vertex cover, on each vertex
v in parallel

1: Compute a Distance-r Dominating Set D of the graph
2: Determine the closest dominating vertex selv
3: If any neighbor u of vertex v has a selu ̸= selv, call v a border
4: return C as the union of D and all border vertices

Alg. 5 is a CONGEST algorithm as the Distance-r Dominating Set algorithm is
CONGEST, and all other messages only contain a constant amount of identifiers. Alg. 5
takes O(r) rounds, because the Distance-r Dominating Set algorithm does so, too, and all
other steps also only take O(r) rounds.

Define Voronoi cells according to selv for v ∈ V . The set C is a distance-r vertex cover
by simple case distinction: All edges e = u, v that are fully inside a Voronoi cell, i.e., there
is a vertex w ∈ C with w = selu = selv, is covered by vertex w. All edges e = u, v with
selu ̸= selv are covered by vertices u and v, as both vertices were detected as borders.

Finally, we show the approximation quality: Consider the minimal Distance-r Vertex
Cover MVC. One can easily see that the minimum distance-r dominating set M is smaller:
|M| ⩽

∣∣MVC
∣∣. An argument similar to Lem. 17 shows that the number of border vertices

is bounded in |D|. By Thm. 4, we can now deduce:

|C| ∈ O(f(r) · |D|) ⊆ O(r · f(r) · f(r) · |M|) ⊆ O(r · f(r) · f(r) ·
∣∣MVC

∣∣)
Again, for constant r, the terms simplify to the following:

Corollary 33. For constant r, there is a CONGEST algorithm that computes a constant factor
approximation of the minimum Distance-r Vertex Cover in a constant number of rounds.

The arguments in Lem. 30 apply analogously to Cor. 33:
Corollary 34. For constant r, there is a CONGEST algorithm that computes a constant factor
approximation of the minimum Distance-r Connected Vertex Cover in a constant number of
rounds.

This proves that Alg. 1 can be extended to several related graph cover problems.

45

Chapter 7
Extension to the Port
Numbering Model

This unpublished contribution extends the algorithm’s versatility by removing the
dependency on unique vertex identifiers. Although this is in general a desirable property,
it also highlights a weakness regarding symmetry in graphs.

7.1. Algorithm and Proof

We show that the algorithm can be easily, but not trivially, modified to run in the port
numbering model (which provides less abilities to the algorithm, and is thus considered
a weaker model than Congest).

This approach also mostly works in the port numbering model, if we just replace
vertex IDs by port numbers, and replacing N1(v) by P(v) = {1, 2, . . . , dv}, be the set of
ports of a vertex. However, the edge case |M| = 1 causes several complications, which is
why we introduced the Congest algorithm first.

Algorithm 6: Port numbering computation of |Nr(v)|, on each vertex v in parallel
1: nu

..= 1 for all u ∈ P(v)

2: for r rounds do
3: To each vertex u ∈ P(v), send 1+

∑
w∈P(v)\{u} nw

4: nu
..= the number received from u, for each u ∈ P(v)

5: end for
6: return

∑
w∈P(v) nw

47

7. Extension to the Port Numbering Model

Algorithm 7: Port numbering computation of r-MDS, on each vertex v in
parallel

1: // Phase 0: Detect and handle special cases:
2: if degree is 0 then
3: return ⊤
4: end if
5: Test for |M| = 1 case and terminate accordingly, e.g. using Alg. 8
6: Compute |Nr(v)|, e.g. using Alg. 6
7: // Phase 1: Select the vertex with the highest degree:
8: (priov, portv) ..= (|Nr(v)| ,⊥) // round 0
9: for r rounds, in round i = 1, 2, 3, . . . , r do

10: Send (priov) to all neighbors
11: Receive (priou) from each neighbor u ∈ P(v)

12: Set (priov, portv) to (priou, u), if this increases priov
13: Remember all received messages that contained priov
14: end for
15: // Phase 2: Propagate back to the selected vertex:
16: Set I ..= {j} to the set of marked rounds, initially the singleton j, where j is the last

round in which we last updated priov
17: for r rounds, with i = r, r− 1, . . . , 3, 2, 1 do
18: If round i is marked (i ∈ I), recall which port triggered our update of priov earlier,

and notify it.
19: // Note that this can be done using empty messages.
20: If vertex v is notified in round i by any neighbor, recall which priov was advertised

during Phase 1,
and mark round j < i in which this priov was discovered.

21: end for
22: Join the dominating set if and only if 0 ∈ I, in other words:
23: return Round 0 is marked

Compared to Algs. 1 and 2, the algorithms barely changed at all. In fact, only Alg. 8
and the explicit handling of the case n = 1 is really new. In Alg. 7, selv which used to track
vertex IDs has been replaced by port numbers, and a more elaborate yet functionally
identical scheme is used to notify the vertex that was selected. In particular, observe that
the tie-breaking by vertex ID in Alg. 1 no longer happens, and that the analysis does not
use it in any way. Instead, the analysis only compares the values of |Nr(v)| in Lem. 20.
For the Voronoi cells in Definition 1, we can supply any arbitrary tie-breaking, e.g. by
inventing IDs during the analysis.

We will only consider connected graphs. Due to line 3, we only need to consider
graphs of size n ⩾ 2.

We begin with simple observations about the running time of the algorithm and the
arboricity of the graph:

48

7.1. Algorithm and Proof

Algorithm 8: Port numbering detection and (if |M| = 1) selection of an r-MDS
1: For each neighbor u ∈ N(v), let dv

u,0
..= ∞

2: for r rounds, in round i (starting at i = 1) do
3: if v has degree 1 then
4: To the neighbor u, send 1

5: else
6: To each neighbor u, send 1+ maxw∈N(v),w ̸=u{d

v
w,i−1} // May be ∞

7: end if
8: Receive value from each neighbor u ∈ N(v), save as dv

u,i

9: end for
10: Compute lv

..= maxu∈N(v) d
v
u,r

11: Let lmin
..= l

12: for r rounds do
13: Propagate lv and lmin, and update lmin to the minimum of all seen values
14: end for
15: if lmin > r then
16: return |M| ̸= 1 (i.e., no early-termination)
17: else if lmin = lv then
18: return |M| = 1, v ∈ D (i.e., early-termination with v in the dom. set)
19: else
20: return |M| = 1, v /∈ D (i.e., early-termination with v not in the dom. set)
21: end if

Corollary 35. Alg. 8, and therefore also Alg. 7, runs in time O(r).

Lemma 36. If |M| = 1, then G is a tree.

Proof. Follows immediately from the fact that the radius must be at least r, and the
bounded girth g ⩾ 4r+ 3 > 2r+ 1.

Next, observe that each dv
u,i provides some sort of upper bound on distance, which

we need to define first:

Definition 3
Consider a vertex v ∈ V . For each vertex u ∈ N(v), define the directed distance d⃗(v, u)

as the length of the longest path starting with (v, u, . . .).

Observe that d⃗(u, v) is well-defined, as a path cannot visit a vertex more than once.
Therefore, there are only finitely many paths in G. Now we can express the upper bound
provided by dv

u,i:

49

7. Extension to the Port Numbering Model

Lemma 37. Consider a vertex v ∈ V . For each u ∈ N(v) and round i ∈ 0, . . . , r, it holds that:

1. dv
u,i is an upper bound: d⃗(v, u) ⩽ dv

u,i.

2. dv
u,i can be tight: If dv

u,i < ∞, then d⃗(v, u) = dv
u,i ⩽ i.

3. dv
u,i can be an implicit lower bound: If dv

u,i = ∞, then d⃗(v, u) > i.

Proof. By induction on i. First, we show the base case with i = 0. Observe that
d⃗(v, u) < ∞ = dv

u,0 and d⃗(v, u) > 0 hold trivially.
For the induction step with i ⩾ 1, consider a path Pv,u of maximum length starting

with (v, u, . . .). By construction, it has length d⃗(v, u). We distinguish two cases, like in
the algorithm:

• If vertex u has degree 1, then vertex u sends the value 1, and v receives dv
u,i = 1.

Observe that Pv,u = (v, u), d⃗(v, u) = 1, and therefore all points are satisfied.

• If vertex u has degree at least 2, then Pv,u = (v, u,w, . . .) for some vertex w ̸= u, v.
The value sent by u must be equal to du

w,i−1 + 1, therefore dv
u,i = du

w,i−1 + 1. By
construction of path Pv,u and vertex w, we get d⃗(v, u) = d⃗(u,w) + 1. This gives us
the first point:

d⃗(v, u) = d⃗(u,w) + 1 ⩽ du
w,i−1 + 1 = dv

u,i (7.1)

For the second and third point, we need to make another case distinction:

– If du
w,i−1 < ∞, then dv

u,i = du
w,i−1 + 1 < ∞, so point three is trivial, and

point two holds: d⃗(v, u) = d⃗(u,w) + 1 = du
w,i−1 + 1 = dv

u,i, as well as
dv
u,i = du

w,i−1 + 1 ⩽ i− 1+ 1 = i.

– If du
w,i−1 = ∞, then dv

u,i = du
w,i−1 + 1 = ∞, so point two is trivial, and point

three holds: d⃗(v, u) = d⃗(u,w) + 1 > i− 1+ 1 = i.

With this tool, we can show that the algorithm correctly decides whether |M| = 1:

Lemma 38. If |M| ̸= 1, then Alg. 8 returns “|M| ̸= 1”.

Proof. It suffices to show that all vertices compute l = ∞, because then all vertices
compute lmin = ∞ > r.

Let v be any vertex. Because |M| > 1, the set {v} cannot distance-r dominate the entire
graph G. Let w be some vertex that has distance larger than r from vertex v. Take a
shortest path P from v to w, and define vertex u as the vertex adjacent to vertex v. Then,
d⃗(v, u) > r, because the longest path cannot be shorter than P. By Lem. 37 (in particular
points 1 and 2), we can deduce that dv

u,r = ∞, and thus lv = ∞.

50

7.1. Algorithm and Proof

Lemma 39. If |M| = 1, then Alg. 8 returns “|M| = 1”.

Proof. It suffices to show that some vertex computes l ⩽ r, because then all vertices
compute lmin ⩽ r.

Let M = {v} be any optimal solution. Observe that for any neighbor u ∈ N(v), it holds
that d⃗(v, u) ⩽ r. Observe the converse of point 3 of Lem. 37: If d⃗(v, u) ⩽ r (which we have
here), then dv

u,r ̸= ∞. From this we can deduce that dv
u,i = d⃗(v, u) ⩽ r. As this holds for

any u, we can deduce that l ⩽ r for vertex v.

Finally, we want to show that the resulting dominating set D is actually small. We first
define the radius of a vertex:

Definition 4
Let v be any vertex. Then define r(v) as the radius of the graph around v:

r(v) ..= max
u∈V

d(v, u) (7.2)

Observe that on trees, the radius is closely related to the directed distance:

Corollary 40. The radius of a vertex is the maximum of its directed distances:

r(v) = max
u∈N(v)

d⃗(v, u) (7.3)

This relation helps us in the interpretation of l:

Lemma 41. Each vertex v holds in variable l effectively its radius r(v):

lv =

 r(v) if r(v) ⩽ r

∞ otherwise
(7.4)

Proof. If there is any neighboru ∈ N1(v)with d⃗(v, u) > r, then by Lem. 37 we get dv
u,r = ∞

and thus l = ∞. Otherwise, for all u ∈ N1(v) we get dv
u,r = d⃗(v, u), and lv = r(v) by

Cor. 40.

Using the radius, we can define the center of a graph:

Definition 5
For any non-empty graph G, define the center C(G) as the set of vertices of minimum

radius:

C(G) ..=

{
v ∈ V

∣∣∣∣ r(v) = min
u∈V

r(u)

}
(7.5)

51

7. Extension to the Port Numbering Model

m v3

u1

v1u3

Figure 7.1.: Typical vertex layout in proof of Lem. 42. The identity of vertex v2 does not
matter; hence, it is not shown. The dotted edges indicate that the vertices are
connected by some path of unspecified length (at least 1).

This center of a graph is small:

Lemma 42. The center of a non-empty tree always exists and is small: 1 ⩽ |C(G)| ⩽ 2

Proof. For any non-empty graph, minu∈V r(u) is well-defined, and attained by at least
one vertex v. Therefore, it suffices to show that |C(G)| ⩽ 2.

Proof by contradiction of the opposite: Assume there are three distinct vertices
v1, v2, v3 ∈ C(G). Then, because G is a tree, not all are neighbors of each other. Without
loss of generality, assume that v1 and v3 are not neighbors. As such, we can pick any
vertex on the path from v1 to v3 and denote it m. See Fig. 7.1 for a reference figure.

Let u be any vertex. If the path from u to m does not contain any of v1, v3, then d(u,m)

is smaller than r(v1) by construction of m. If the path from u to m contains v1, observe
that d(u,m) < d(u,m) + d(m, v3) = d(u, v3) ⩽ r(v3). Analogously if the path from u to
m contains v3. Therefore, r(m) < r(v1) = r(v3), which contradicts v1, v3 ∈ C(G).

Now we can observe that Alg. 8 computes exactly the center of a graph, and thus the
computed set D is small:

Lemma 43. If |M| = 1, then Alg. 8 returns “v ∈ D” in at most two vertices.

Proof. We have already seen that |M| = 1 implies that G is a tree, so by Lem. 42 and
Definition 5 it suffices to show that exactly the vertices in C(G) return “v ∈ D”.

Because |M| = 1, we can deduce that all vertices compute the same value lmin =

minu∈V lu.
Let c be a vertex in C(G). By Lem. 41 we can deduce lmin ⩽ lc = r(c) ⩽ r must be

finite. (We have already shown something slightly weaker in Lem. 39.) Furthermore,
vertices v /∈ C(G) must compute lv ⩾ r(v) > r(c). Finally, because vertices c in C(G)

all have identical r(c), we get lmin = r(c), and thus exactly the vertices in C(G) return
“v ∈ D”.

Corollary 44. If |M| = 1, then Alg. 7 computes a 2-approximation.

Corollary 45. Alg. 7 provides an Ω(r · f(r))-approximation of minimum distance-r dominating
set on any graph class C of bounded expansion f(r) and girth at least 4r+ 3.

52

7.1. Algorithm and Proof

In conclusion, we see that although the approach can be rather easily made to work in
the port numbering model, the |M| = 1 case causes a lot of headaches. In practice, an
algorithm might execute this “branch” of the algorithm in parallel with the alternative,
thus folding the runtime in half. However, this does not affect asymptotic runtime
behavior, so we chose to keep the test separate, for simplicity.

In the Congest model, we do not need to explicitly detect this case, as the vertex with
maximum neighborhood and maximum ID is chosen. However, the port numbering
model does not offer any IDs, and this is the reason why an alternative tie-breaking
mechanism has to be used: graph centrality, in this case.

53

Chapter 8
Conclusion

We have generalized a well-known problem of distributed systems, and analyzed the
resulting distance-r dominating set problem. Our findings include a simple algorithm,
which yields a constant approximation in constant time (if r is constant; O(r) time and
O(r · f(r)) in general, where f is the expansion function), and only needs the Congest
model. We have also shown that our analysis of the algorithm’s approximation quality
is tight, and show a lower bound of 2r + 1 for any algorithm that runs in O(r) time.
For super-constant r, this leaves a gap, and it remains an open question whether the
algorithm or the analysis can be improved.

Furthermore, we have shown how the algorithm can be made to work for similar
graph cover problems (vertex cover, connected dominating set, connected vertex cover),
and also in the more restrictive port numbering model.

Of course, this result only applies to graph classes satisfying specific conditions;
therefore, many other interesting graph classes remain open. For example, in how far
can the girth requirement be removed? Is there a better parameterization than f(r)?
Clearly, the landscape of distance-r dominating set complexity needs more exploration.

55

Part III.

Packet Forwarding

57

Chapter 9
Introduction

In this chapter, we show the intricacies of “making packets go from here to there”. In
particular, we revisit the history of packet forwarding, and define the formal framework
we need in order to improve the state of the art to cover two packet destinations.

9.1. Motivation

Many processes involve packets being sent through a network. Examples can be as large
as the internet, or as small as a System-on-Chip design. In all real-life scenarios, buffers,
bandwidth, and time budget are never infinite, and packet loss should be reduced or
even avoided entirely.

The problem of packet delivery can be partitioned into routing (path-selection) and
forwarding (or more generally: scheduling) [LMR88]. We will focus on the forwarding
aspect of the problem. In other words, even assuming that we already know what route
a packet is supposed to take, the packet forwarding problem asks in which order and at
which time each packet should be sent. This makes a significant difference, and hence
we would like to determine a good forwarding algorithm.

In order to measure the performance of an algorithm, we need to carefully consider
which injection patterns we want to permit. For example, if we permit arbitrarily many
packets to be injected into the system in each round, the problem might simply be
unsolvable with finite buffers. To handle this issue, we assume that injections happen
according to the “leaky bucket” model [Cru91]: We assume that there is a rate ρ and a
burstiness parameter σ, such that if packets were to drain at rate ρ, the number of packets
in the system would never exceed σ.

With these assumptions in hand, the question becomes: How large do buffer sizes
have to be, in terms of ρ and σ, to guarantee that no packet loss will occur? Observe that
even in a simple scenario, the naive algorithm behaves badly Figs. 9.1 and 9.2. This is the
question we will explore in this and the following chapter.

59

9. Introduction

v1 v2 vn−3 vn−2 vn−1 vn

to vn to vn to vn to vn

Figure 9.1.: Visualization of the trivial algorithm that always forwards packets seemingly
working fine. The graph is just a path, each circle represents a node, each
arrow represents a directed edge of the graph. The dotted line indicates that
part of the path has been omitted for illustration purposes. The adversary
has been injecting a single packet at the first vertex v1, with the last node
as destination, in each round, for Ω(n) rounds. This is represented by a
thick arrow. At this point in time, every buffer contains a single packet,
represented by a box.

v1 v2 vn−3 vn−2 vn−1 vn

to vn

to vn

to vn

to vn

to vn

Ω(n) many packets

Figure 9.2.: Visualization of the trivial algorithm that always forwards packets resulting
in a single buffer storing Ω(n) many packets. After Fig. 9.1, the adversary
proceeded to insert packets at vn−2, one packet per round. However, the
algorithm did not stop forwarding the packets previously in the buffers
to v2, v3, . . . , vn−2. This effectively means that the buffer to vn−1 saw two
incoming and one outgoing packet, for Ω(n) many rounds.
Therefore, the naive algorithm either requires large buffers, or has to suffer
packet loss. It is known [Dob+17; PR17] that this problem can be avoided.

60

9.2. Related Work

9.2. Related Work

Early work on the Adversarial Queuing Theory (AQT) model [Bor+01] focused on the
qualitative measure of stability. Here, a protocol is stable if and only if its maximum
buffer space usage is bounded over all (ρ, σ)-bounded injection patterns (for some
pre-specified ρ which is at most the edge capacity). More recently, Miller and Patt-
Shamir [MP16] initiated the quantitative study of the maximum buffer space usage.
Their work considered the special case where G is a tree and all packets share a common
destination. They showed that buffer space of 2ρ+ σ is necessary and sufficient for all
ρ, σ, so long as ρ ⩽ C (the capacity of all edges in the network). Miller and Patt-Shamir’s
protocol, however, is centralized: the decision of whether or not an individual buffer
forwards a packet may depend on the entire network configuration. They left as an open
question the space complexity of local forwarding in trees with a single destination. That
is, what is the space complexity if the behavior of each node is based only on the current
state of its local (O(1) distance) neighborhood?

This question was answered independently by Dobrev et al. [Dob+17] and Patt-
Shamir and Rosenbaum [PR17]. Both papers show that Θ(ρ · logn + σ) buffer space
is necessary and sufficient for local forwarding in a tree when all packets have the
same destination. The two papers describe essentially the same algorithm that achieves
this complexity, called odd-even downhill (OED) forwarding. The results of [Dob+17;
PR17] were later generalized by Patt-Shamir and Rosenbaum [PR19], who showed
an optimal locality/buffer-space trade-off. Interestingly, this latter work implies that
O(logn) locality is sufficient to achieve the same (asymptotic) space complexity as the
centralized protocol of Miller and Patt-Shamir [MP16].

While the results above settle the space complexity of (local) forwarding in the AQT in
single-destination trees, they do not address the case where packets can have multiple
destinations. In [PR17], Patt-Shamir and Rosenbaum show that if there are d possible
destinations, thenΩ(d+σ) buffer space is required, even for centralized offline algorithms
(i.e., the entire injection pattern is known to the algorithm in advance). This lower bound
was known to be tight for d = Ω(n), as Adler and Rosén proved that a simple greedy
(local) protocol achieves O(n+ σ) buffer space in arbitrary direct acyclic graphs (DAGs)
with arbitrary destinations [AR02]. In [MPR19], Miller et al. prove a tight buffer space
upper bound of O(d+σ) for trees with d possible destinations, although once again their
solution is centralized. They leave open the question of whether a similar result can be
achieved by a local protocol.

Given the results of [Dob+17; PR17] and [AR02], it would be natural to conjecture
that O(d logn) buffer space is achievable by a local protocol. Indeed, [Dob+17; PR17]
and [AR02] show that this is the case for d = 1 and d = Ω(n), respectively. However, we
are unaware of any existing local algorithm that can achieve o(n) buffer space usage even
for two distinct destinations on a path. This is the direction that we want to explore.

61

9. Introduction

9.3. Contribution: Generalization to Two Destinations

We address the open problem of Packet Forwarding with multiple destinations. In
particular, we show that under a mild relaxation of the model in which packets can move
backward and forward in the network,1 O(logn) buffer space is achievable by a local
protocol when packets may have 2 distinct destinations along a path. Specifically, we
show the following:

Theorem 46. Let G = (V, E) be a path of length n and suppose all edges have bi-directional
capacity 1, i.e. for each edge e = (u, v), both from u to v and from v to u a single packet can cross
in each round. There exists a local forwarding protocol such that for all (ρ, σ)-bounded injection
patterns, the maximum buffer space usage is O(logn+ σ).

While this result is only a modest generalization of the results of [Dob+17; PR17], it
requires a nontrivial modification of known techniques (and many “natural” generaliza-
tions of the OED algorithm of [Dob+17; PR17] do not achieve this bound).

The basic idea of our algorithm for two destinations is to simulate two executions
of the OED forwarding algorithm of [Dob+17; PR17]: one for the farther destination,
and one for all packets (with either destination). Suppose the two destinations are s1
and s2, with s2 the farther (i.e., rightmost) destination. Each round, the simulated OED
instances determine for each simulated buffer whether it should forward a packet. Our
algorithm determines the actual packet forwarding according to the following rules:

• if neither simulated instance forwards, no packet is forwarded;

• if both simulated instances forward, a packet with destination s2 is forwarded;

• if only the “destination oblivious” OED instance forwards a packet, then a packet
with destination s1 is forwarded;

• if only the s2 destination OED instance forwards a packet, then the buffer swaps a
packet with its right neighbor—an s2-destined packet is sent forward, while an
s1-destined packet is sent backward across the edge.

Thus, packets are only pushed backwards as the result of “packet swaps” in the last rule.
In our analysis, we show that forwarding according to these rules is always feasible and
that the maximum buffer load is at most the sum of the loads of two single-destination
instances on the path. Theorem 46 then follows from the guarantees for OED forwarding
proven in [Dob+17; PR17].

In Section 9.4, we introduce our computational model more formally. Section 10.1
formalizes the 2 destination algorithm and proves Theorem 46. Finally, we conclude
with open questions in Section 10.2.

1We note that the Ω(logn) space lower bound of [Dob+17; PR17] still applies in this model with
bi-directional packet movement.

62

9.4. Preliminaries and Notation

9.4. Preliminaries and Notation

In this paper, we consider a simple queuing network consisting of a directed path.
We model the network as a (directed) graph G = (V, E) with V = {v1, v2, . . . , vn+1} and
E = {(vi, vi+1)|i ∈ [n]}. Each outgoing edge represents a buffer that stores packets as they
wait to traverse the edge. Each edge has a capacity that designates the number of packets
that may simultaneously cross the edge. For simplicity, we assume that all edges have
capacity 1.

Our execution model proceeds in synchronous rounds. Each round consists of two
steps:

arrival step during which new packets spontaneously arrive via injections into buffers in
the network

forwarding step during which each node/buffer decides which (if any) packets to
forward during the round, and forwards packets.

Packet transmission across an edge is assumed to be faithful. That is, every packet
forwarded during a forwarding step successfully crosses its edge before the beginning of
the next round. After forwarding, a packet is placed in the next buffer along its path, or
removed from the network if the next node is the packet’s destination. This edge-buffered
approach may seem inconvenient on a directed path, but simplifies generalization to
other graphs and comparability to other results.

Packet injections into the network are adversarial, but subject to some constraints.
Each packet arrives with a pre-determined path or route from its source (i.e., injection
site) to its destination, and a packet is only removed from the network upon reaching
its destination. An injection pattern consists of a potentially infinite sequence of packet
injections. We parameterize injection patterns by two parameters, ρ and σ, where ρ is
the average rate of the pattern, and σ is its burstiness. Specifically, an injection pattern is
(ρ, σ)-bounded if for every edge e and any T consecutive rounds r0, r0 + 1, . . . , r0 + T − 1,
the number of packets injected in rounds r0, . . . , r0 + T − 1 whose routes contain e is at
most ρ · T + σ.

A forwarding protocol determines for each configuration (i.e., state of all buffers in the
network) which and how many packets should be forwarded across each edge in the
network. In the AQT model, the quality of a forwarding protocol is determined by the
maximum buffer usage—that is, the maximum load of any buffer taken over all buffers
and rounds—over all (ρ, σ)-bounded injection patterns.

As we want to consider local algorithms, nodes are not informed about these injected
packets. Instead, they must observe their incident buffers, and communicate with their
neighbors during the forwarding step.

In contrast to the previous single destination trees [PR17], we will consider two
destinations, or sink-nodes, and name them s1 and s2 respectively. For simplicity, we
will assume that s2 is reachable from s1 (i.e. s1 appears first in the directed path).

Define the depth as the maximum distance between v ∈ V and w ∈ {s1, s2}, i.e. the
depth.

63

9. Introduction

We define LtX : E → N as a destination-specific configuration at time t, mapping each
edge e to the amount of packets (or “load”) at edge e that needs to be sent across it
towards destination X. Because we only consider two destinations, X is in {s1, s2}, so
we define the short-hand notation Lti

..= Ltsi . We define Lt := (Lt1, L
t
2) as the overall

configuration at time t. Note that Lt describes the entire state at time t.
At time t = 0, no packages are in transit: ∀X : L0X = 0.
Define Lt1+2

..= Lt1 + Lt2 as the total amount of packets waiting on an edge. With this,
we can define the cost of an algorithm F on a specific graph G with a specific adversary
A as cost(F;G,A) ..= sup{Lt1+2(e) | t ∈ N, e ∈ E}. For a class of adversaries A, we denote
cost(F;G,A) ..= sup{cost(F;G,A) | G ∈ G, A ∈ A}. Our goal is to bound the cost for the
class of adversaries A(ρ, σ) respecting the AQT parameters (ρ, σ).

Finally, we define a notational short-hand:

Definition 6
Let OED(L, e, f) be the boolean-valued function that evaluates the OED-criterion on

some configuration L, for a node that forwards from edge e to f:

OED(L, e, f) ..=
(
L(e) > L(f)

)
or

(
L(e) = L(f) and L(f) is odd

)

64

Chapter 10
Two-Destination Odd-Even
Downward

This chapter presents findings that have not been published. These findings are a
non-trivial extension of an already-existing algorithm. This contribution is an important
step towards a fully-generalized result.

10.1. The Swapping Algorithm

We extend the model by permitting the algorithm to swap packets, i.e. send packets
in both directions of a communication link. Using this extension, we can construct an
algorithm OED2

C that uses the single-destination algorithm OED in order to run in the
two destination model.

To this end, we permit a swap action as an alternative that the algorithm may choose
during the forwarding step: If a node v wants to execute a swap action, it does so by for-
warding a packet p1 to the next buffer e towards packet p1’s destination. Simultaneously,
node v takes a packet p2 from buffer e and moves it into its own buffer. Note that this
increases the distance of packet p2 to its destination, yet it proves to be useful. It is the
algorithm’s responsibility to ensure that no conflict arises from this, i.e., the algorithm
must not attempt to remove a packet that does not exist.

In short, our algorithm attempts to run OED(L2) and OED(L1+2) simultaneously, and
resolves conflicts using a case-distinction, sometimes involving the swap action. We
formalize this in Alg. 9.

While this appears simple enough, we need to show that these operations are always
feasible and has the desired effect. In particular, we need to verify that a swap action
will actually have packets to swap available.

65

10. Two-Destination Odd-Even Downward

Algorithm 9: Swapping Algorithm OED2
C at node v ∈ V between edges e and f

1: if v = si and e contains a packet with destination si then
2: Remove the packet with destination v from e

3: else if not OED(L2, e, f) and OED(L1+2, e, f) then
4: e forwards a packet with destination s1 to f

5: else if OED(L2, e, f) and not OED(L1+2, e, f) then
6: // execute a swap action
7: e forwards a packet with destination s2 to f

8: f backwards a packet with destination s1 to e

9: else if OED(L2, e, f) and OED(L1+2, e, f) then
10: // both simulations want to forward a packet
11: e forwards a packet with destination s2 to f

12: end if

Lemma 47. If OED2
C attempts to forward a packet of a specific type out of a buffer e ..= (u, v) to

the next buffer f ..= (v,w), then buffer e contains at least one such packet.

Proof. For lines 7 and 11, this is obvious from the fact that OED(L2, e, f) is true.
For line 4, we can use the fact that OED(L2, e, f) is false, but OED(L1+2, e, f) is true.

• If L2(f) is odd, we can deduce that L2(e) < L2(f) (because equality would make the
OED criterion true), and that L1+2(e) ⩾ L1+2(f). Expanding the terms:

L1(e) + L2(e) = L1+2(e) ⩾ L1+2(f) ⩾ L2(f) > L2(e)

• If L2(f) is even, we can deduce that L2(e) ⩽ L2(f). Observe that L1+2(e) = L2(e)

is impossible, as it would imply L1+2(e) ⩽ L2(f) ⩽ L1+2(f), which cannot satisfy
OED(L1+2, e, f) while being even.

This shows that L1(e) > 0 in both cases.

Lemma 48. If OED2
C tries to remove more than one packet of a specific type from a buffer, then

there are sufficiently many such packets.

Proof. Observe that this can only happen if a node v decides to forward a specific packet
type while the preceding node u executes a swap action, grabbing the same packet type.

As we want to argue about buffers instead of nodes, we will define the shorthand
names d ..= (predu, u), e ..= (u, v), and f ..= (v, succv), where predu is the preceding node
of u, and succv is the succeeding node of v. For a visualization, see Fig. 10.1.

This scenario happens only if OED(L2, d, e) = true and OED(L1+2, d, e) = false (hence
node u’s behavior), and OED(L2, e, f) = false as well as OED(L1+2, e, f) = true (hence
node v’s behavior).

We already know that L1(e) ⩾ 1 from Lem. 47, because node v decided to forward a
packet with destination s1. What we need to show is that L1(e) ̸= 1.

Assume towards contradiction that L1(e) = 1, and distinguish whether L2(e) is even or
odd.

66

10.1. The Swapping Algorithm

predu u v succv
d e f

to s2

to s2

to s2

to s1

to s2

to s2

to s1

to s1

to s2

to s2

L1+2(d)

L2(d)

L1+2(e)

L2(e) L2(f) = L1+2(f)

Figure 10.1.: Visualization of a situation in which two packets of the same type are
removed from the same buffer.

• If L2(e) is odd: From OED(L2, e, f) = false we know that L2(e) + 1 ⩽ L2(f). From
OED(L1+2, e, f) = true (and the fact that L1+2(e) = L2(e)+1 must be even) we know
that L1+2(e) > L1+2(f), implying the contradiction:

L2(e) + 1 = L1+2(e) > L1+2(f) ⩾ L2(f) ⩾ L2(e) + 1.

• If L2(e) is even: FromOED(L2, d, e) = true we know that L2(d) ⩾ L2(e)+1 = L1+2(e),
which implies L1+2(d) ⩾ L2(d) ⩾ L1+2(e). From OED(L1+2, d, e) = false (and the
fact that L1+2(e) = L2(e) + 1 must be odd) we know that L1+2(d) < L1+2(e).

In order to prepare for showing an upper bound on the maximum buffer load, let us
recall the respective bound for the plain OED algorithm.

Theorem 49 (Theorem 3.1 of [PR17]). Let G be the family of single destination trees, and
A = A(ρ, σ) with ρ ⩽ 1. There exists a local protocol OED such that cost(OED,G,A) ⩽
2 log3(depth(G)) + 2σ+ 2.

From this, we immediately get a bound on L2:

Corollary 50. Let G be the family of connected, directed lines with two destinations s1 not
after s2. Furthermore, consider the adversary A = A(ρ, σ) with ρ ⩽ 1. Then OED2

C maintains
∀t ∈ N, e ∈ E : Lt2(e) ⩽ 2 log3 depth(G) + 2σ+ 2.

Proof. Follows directly from the fact that we effectively execute the original OED algorithm
on all packets with destination s2.

For L1+2, matters are not as simple. The adversary is free to insert up to 2 packets
concurrently, without a burst, so long as both of them are routed through disjoint sets of
edges; for example, one packet with destination s1, and one packet injected behind s1
with destination s2. To approach this issue, we first need to find a way to separate the
counting of s1 and s2 packets.

67

10. Two-Destination Odd-Even Downward

Definition 7
Fix an arbitrary number H ⩾ 0 and an adversary A, specified as the sequence of

injected packets or absence thereof. In the context of an execution L, we define topH(A)

as the adversary that inserts packets as specified by A, but only if the target buffer e has
size at least H (i.e. Lt(e) ⩾ H); otherwise, the packet is never inserted.

With this, we can show that ignoring the “bottom part” of the buffers is viable, in the
sense that we can ignore packets that get injected there.

Lemma 51. Fix an arbitrary even number H ⩾ 0, adversary A, and sequence of configurations L
such that all nodes follow the OED algorithm. We can construct an adversary Ǎ and sequence of
configurations Ľ by removing the bottom of each buffer, such that all nodes appear to execute the
OED algorithm:

∀t, e : Ľt(e) ..= max{0, Lt(e) −H} (10.1)

Ǎ ..= topH(A) (10.2)

=⇒ Ľ follows OED (10.3)

Proof. If A injects a packet into a buffer e with L(e) < H, it cannot cause the packet to
“appear” in Ľ. More formally, this never results in Ľ(e) > 0. Therefore, the adversary A is
effectively reduced to topH(A), or fewer packets.

What remains to be shown is that all nodes follow the OED algorithm. Observe that
OED only evaluates basic conditions: comparing buffer sizes and their parity. These
properties are preserved by construction, if at least one buffers satisfies Ľ > 0, therefore
OED must take the same action on Ľ as on L.

This leaves the case in which both buffers satisfy Ľ = 0. Observe that OED will never
forward a packet from a buffer e with Lt(e) ⩽ H into a buffer f with Lt(f) ⩾ H, because H

is even. Thus, in Ľ it appears that the nodes did nothing at all, which is precisely what
the OED algorithm prescribes for the case Ľ(e) = Ľ(f) = 0.

Theorem 52. Let G be the family of connected, directed lines with two destinations s1 not after
s2. Furthermore, consider the adversary A = A(ρ, σ) with ρ ⩽ 1. Then OED2

C achieves, for all
G ∈ G, A ∈ A: cost(OED2

C, G,A) ⩽ 4 log3(depth(G)) + 4σ+ 6

Proof. By Cor. 50, L2 ⩽ 2 log3(depth(G)) + 2σ+ 2.
However, Thm. 49 does not as readily apply to L1+2. We can use the bound on L2 to

choose the size of the “bottom” part:

H ..= 2
⌈

log3(depth(G))
⌉
+ 2σ+ 2 (10.4)

By construction, H is even. This allows us to apply Lem. 51, by which we only need to
consider the adversary topH(A), for a reduced packet load Ľ1+2. For our choice of H, this
adversary only injects packets with destination s1. Since algorithm OED2

C also behaves
as if OED(L1+2) was executed, by Lem. 51 it also behaves as if OED(Ľ1+2) was executed.

68

10.2. Conclusion

Now we can apply Thm. 49 again to conclude that

L1+2 ⩽ H+ Ľ1+2

⩽ H+ 2 log3(depth(G)) + 2σ+ 2

< 4 log3(depth(G)) + 4σ+ 6.

Thm. 46 is an immediate corollary of Thm. 52. In summary: If we permit backwarding
of packets, then we have an algorithm that only needs O(log depth(G)) buffers at each
node, even in face of adversarial injections for two destinations.

10.2. Conclusion

We have presented an algorithm for two destinations that uses a net packet flow of at
most one packet across each edge. In particular, observe that a naive attempt to “run two
OED instances at the same time” fails, as it might attempt to forward two packets at the
same time.

Future work might show that this can be generalized to d many destinations, while
maintaining a net flow of 1; ideally in arbitrary graphs, with arbitrary placement of des-
tinations. This is not trivial, as additional destinations provide additional opportunities
for conflict, i.e. multiple nodes might attempt to remove the same packets.

An open question remains whether some or even all of the backwarding can be
replaced by some kind of virtualization, in order to achieve the desired bandwidth
restriction of one packet per edge and round. We have investigated several schemes but
could find neither an impossibility result nor a promising candidate, so this question
seems to be non-trivial.

69

Appendix A
TRIX Simulations

A.1. Potential Systematic Errors

In this section we discuss possible sources of systematic errors in our simulations and
how we guarded against them.

A.1.1. Bugs

Since all experiments are software simulations, measurements have to be taken to insure
against bugs. In this regard, there are several arguments to be made, some involving the
Random Number Generator (RNG):

• We cross-validated four different implementations: (1) A very simple Python imple-
mentation that uses system randomness; (2) a slightly more involved Python imple-
mentation that exhaustively enumerates all possible wire delay combinations; (3) a
straight-forward C implementation using system randomness; and (4) an optimized
C implementation with the slightly weaker RNG “xoshiro512starstar” [BV18].

• Even though only implementation (4) was fast enough to be used to generate the
bulk of the results, all implementations agree on the probability distributions of
delay and skew for examples they can handle. Implementation (2) can only run up
to layer 3 (H ⩽ 3), implementations (1) and (3) were used up to around layers 100
and 1000, respectively.

• Implementation (4) is short (200 lines, plus about 100 lines for the RNG [BV18]),
and is simple enough to be inspected manually.

• Multiple machines were used, so hardware failure can be ruled out with sufficient
confidence.

71

A. TRIX Simulations

A.1.2. Randomness and Model

• Tests with a number of weak RNGs showed that TRIX seems to be robust against
this kind of deviation.

• Explorative simulations and validation simulations were kept strictly separate.

• For most discussions we assumed H = 2000, because this definitely covers all
practical applications. In fact, we expect that many applications only need H = 200

or even H = 20. In this paper we use a large value for H to show that the observed
behavior is not a fluke that occurs due to low H, but that the growth of delay and
skew as function of H is indeed asymptotically slow.

• Using a larger domain only scales the result linearly, as expected.

• Using different wire delay models (e.g. choosing uniformly from {0, 0.5, 1} instead
of {0, 1}) does not significantly change the result, and in fact improves it slightly, as
expected.

• We only focused on fault-free executions. Observe that single isolated faults only
introduce an additional uncertainty of at most 1 (recall the normalization u = 1).
As faults are (supposed to be) rare and not maliciously placed, this means that the
predictions for fault-free systems have substantial and meaningful implications
also for systems with faults.

A.2. Figure Data

In the following, we provide the data for all graphs.

Fig. 3.1 Fig. 3.2

x (delay) y (rate) x (delay) y (normal)

985 0.00000012 985.5 985.843

986 0.00000040 986.5 986.615

987 0.00000140 987.5 987.338

988 0.00001076 988.5 988.457

989 0.00004740 989.5 989.460

990 0.00019060 990.5 990.462

991 0.00066280 991.5 991.457

992 0.00206788 992.5 992.464

72

A.2. Figure Data

Fig. 3.1 Fig. 3.2

x (delay) y (rate) x (delay) y (normal)

993 0.00561240 993.5 993.470

994 0.01324480 994.5 994.472

995 0.02753772 995.5 995.475

996 0.05006436 996.5 996.479

997 0.08002964 997.5 997.486

998 0.11158960 998.5 998.492

999 0.13625144 999.5 999.498

1000 0.14553656 1000.5 1000.503

1001 0.13611860 1001.5 1001.508

1002 0.11158608 1002.5 1002.515

1003 0.07996644 1003.5 1003.520

1004 0.05016040 1004.5 1004.526

1005 0.02753824 1005.5 1005.531

1006 0.01324832 1006.5 1006.537

1007 0.00557100 1007.5 1007.542

1008 0.00205200 1008.5 1008.545

1009 0.00066300 1009.5 1009.545

1010 0.00018904 1010.5 1010.552

1011 0.00004660 1011.5 1011.556

1012 0.00001044 1012.5 1012.650

1013 0.00000144 1013.5 1013.385

1014 0.00000044 1014.5 1014.363

1015 0.00000008

73

A. TRIX Simulations

Fig. 3.3 Figs. 3.5 and 3.6

x (H) y (stddev delay) y (stddev skew)

20 0.9012352 0.74096549

50 1.1147817 0.75071102

100 1.3166986 0.75573837

200 1.5567596 0.75993333

500 1.9468302 0.76314438

1000 2.3115292 0.76499614

2000 2.7406959 0.76601516

5000 3.4405614 0.76771794

Fig. 3.4

x (skew) lower bound observed rate upper bound

-7 0.0000000 0.0000001 0.0000010

-6 0.0000000 0.0000000 0.0000009

-5 0.0000010 0.0000022 0.0000041

-4 0.0000324 0.0000389 0.0000452

-3 0.0007020 0.0007322 0.0007578

-2 0.0142418 0.0143777 0.0144897

-1 0.2283952 0.2287592 0.2291231

0 0.5120736 0.5124375 0.5128015

1 0.2281477 0.2285116 0.2288756

2 0.0142291 0.0143650 0.0144769

3 0.0007024 0.0007326 0.0007583

4 0.0000343 0.0000410 0.0000475

5 0.0000009 0.0000020 0.0000038

6 0.0000000 0.0000002 0.0000013

74

A.2. Figure Data

Fig. 3.7

hop dist. empiric stddev

1 0.76334

2 0.94346

3 1.11873

4 1.26012

5 1.38309

6 1.49367

7 1.59118

8 1.67803

9 1.75621

10 1.83219

11 1.90233

12 1.96331

13 2.02323

14 2.07683

15 2.12580

16 2.17155

17 2.21355

18 2.25797

19 2.29356

20 2.32732

21 2.35812

22 2.38959

23 2.41912

24 2.44794

25 2.46569

75

Bibliography

[Abo+15] F. Abouzeid et al. “28nm FD-SOI technology and design platform for sub-
10pJ/cycle and SER-immune 32bits processors”. In: ESSCIRC. 2015, pp. 108–
111.

[AFS20] Saeed Akhoondian Amiri, Klaus Foerster, and Stefan Schmid. “Walking
Through Waypoints”. In: Algorithmica (Jan. 2020). doi: 10.1109/TIT.2014.
2339840.

[Alt+93] Ingo Althöfer et al. “On Sparse Spanners of Weighted Graphs”. In: Discrete
& Computational Geometry 9 (1993), pp. 81–100. doi: 10.1007/BF02189308.
url: https://doi.org/10.1007/BF02189308.

[Ami+18] Saeed Akhoondian Amiri et al. “Distributed domination on graph classes of
bounded expansion”. In: Proceedings of the 30th on Symposium on Parallelism
in Algorithms and Architectures. ACM. 2018, pp. 143–151.

[Ami21] Saeed Akhoondian Amiri. “Deterministic CONGEST Algorithm for MDS
on Bounded Arboricity Graphs”. In: CoRR abs/2102.08076 (2021). arXiv:
2102.08076. url: https://arxiv.org/abs/2102.08076.

[AR02] Micah Adler and Adi Rosén. “Tight Bounds for the Performance of Longest-
in-System on DAGs”. In: STACS 2002: 19th Annual Symposium on Theoretical
Aspects of Computer Science, Antibes - Juan les Pins, France, March 14–16, 2002
Proceedings. Ed. by Helmut Alt and Afonso Ferreira. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 88–99. isbn: 978-3-540-45841-8. doi:
10.1007/3-540-45841-7_6. url: http://dx.doi.org/10.1007/3-540-
45841-7_6.

[AS10] Matti Astrand and Jukka Suomela. “Fast distributed approximation algo-
rithms for vertex cover and set cover in anonymous networks”. In: SPAA 2010:
Proceedings of the 22nd Annual ACM Symposium on Parallelism in Algorithms
and Architectures, Thira, Santorini, Greece. 2010, pp. 294–302. doi: 10.1145/
1810479.1810533. url: https://doi.org/10.1145/1810479.1810533.

77

https://doi.org/10.1109/TIT.2014.2339840
https://doi.org/10.1109/TIT.2014.2339840
https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/BF02189308
https://arxiv.org/abs/2102.08076
https://arxiv.org/abs/2102.08076
https://doi.org/10.1007/3-540-45841-7_6
http://dx.doi.org/10.1007/3-540-45841-7_6
http://dx.doi.org/10.1007/3-540-45841-7_6
https://doi.org/10.1145/1810479.1810533
https://doi.org/10.1145/1810479.1810533
https://doi.org/10.1145/1810479.1810533

Bibliography

[AS16] Saeed Akhoondian Amiri and Stefan Schmid. “Brief Announcement: A Log-
Time Local MDS Approximation Scheme for Bounded Genus Graphs”. In:
Proc. 30th International Symposium on Distributed Computing (DISC). Springer.
2016.

[ASS16] Saeed Akhoondian Amiri, Stefan Schmid, and Sebastian Siebertz. “A Local
Constant Factor MDS Approximation for Bounded Genus Graphs”. In: Proc.
ACM Symposium on Principles of Distributed Computing (PODC). 2016.

[AW21] Saeed Akhoondian Amiri and Ben Wiederhake. “Distributed Distance-
r Covering Problems on Sparse High-Girth Graphs”. In: Algorithms and
Complexity - 12th International Conference, CIAC 2021, Virtual Event, May
10-12, 2021, Proceedings. Ed. by Tiziana Calamoneri and Federico Corò.
Vol. 12701. Lecture Notes in Computer Science. Springer, 2021, pp. 37–60. doi:
10.1007/978-3-030-75242-2_3. url: https://doi.org/10.1007/978-3-
030-75242-2_3.

[AW22] Saeed Akhoondian Amiri and Ben Wiederhake. “Distributed distance-r
covering problems on sparse high-girth graphs”. In: Theoretical Computer
Science (2022). issn: 0304-3975. doi: https://doi.org/10.1016/j.tcs.2022.
01.001. url: https://www.sciencedirect.com/science/article/pii/
S0304397522000081.

[Awe+89] Baruch Awerbuch et al. “Network Decomposition and Locality in Distributed
Computation”. In: 30th Annual Symposium on Foundations of Computer Science,
1989. 1989, pp. 364–369.

[Awe+92] Baruch Awerbuch et al. “Fast Network Decomposition”. In: Proceedings of
the Eleventh Annual ACM Symposium on Principles of Distributed Computing.
PODC ’92. ACM, 1992, pp. 169–177.

[Bac+19] Nir Bachrach et al. “Hardness of Distributed Optimization”. In: Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing, PODC
2019. ACM, 2019, pp. 238–247. doi: 10.1145/3293611.3331597.

[Bak94] Brenda S Baker. “Approximation algorithms for NP-complete problems on
planar graphs”. In: Journal of the ACM (JACM) 41.1 (1994), pp. 153–180.

[Bal+21] Alkida Balliu et al. “Locally Checkable Labelings with Small Messages”. In:
35th International Symposium on Distributed Computing, DISC 2021, October
4-8, 2021, Freiburg, Germany (Virtual Conference). Ed. by Seth Gilbert. Vol. 209.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 8:1–8:18.
doi: 10.4230/LIPIcs.DISC.2021.8. url: https://doi.org/10.4230/
LIPIcs.DISC.2021.8.

[Bar+20] Reuven Bar-Yehuda et al. “Distributed Approximation on Power Graphs”. In:
Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing,
PODC 2020. ACM, 2020, pp. 501–510. doi: 10.1145/3382734.3405750.

78

https://doi.org/10.1007/978-3-030-75242-2_3
https://doi.org/10.1007/978-3-030-75242-2_3
https://doi.org/10.1007/978-3-030-75242-2_3
https://doi.org/https://doi.org/10.1016/j.tcs.2022.01.001
https://doi.org/https://doi.org/10.1016/j.tcs.2022.01.001
https://www.sciencedirect.com/science/article/pii/S0304397522000081
https://www.sciencedirect.com/science/article/pii/S0304397522000081
https://doi.org/10.1145/3293611.3331597
https://doi.org/10.4230/LIPIcs.DISC.2021.8
https://doi.org/10.4230/LIPIcs.DISC.2021.8
https://doi.org/10.4230/LIPIcs.DISC.2021.8
https://doi.org/10.1145/3382734.3405750

Bibliography

[BCS16] Reuven Bar-Yehuda, Keren Censor-Hillel, and Gregory Schwartzman. “A
Distributed (2+ϵ)-Approximation for Vertex Cover in O(logδ/ϵ log log
δ) Rounds”. In: Proceedings of the 2016 ACM Symposium on Principles of
Distributed Computing, PODC 2016, Chicago, IL, USA. 2016, pp. 3–8. doi:
10.1145/2933057.2933086. url: https://doi.org/10.1145/2933057.
2933086.

[Bor+01] Allan Borodin et al. “Adversarial Queuing Theory”. In: J. ACM 48.1 (Jan.
2001), pp. 13–38. issn: 0004-5411. doi: 10.1145/363647.363659. url: http:
//doi.acm.org/10.1145/363647.363659.

[Bra+17] Sebastian Brandt et al. “LCL Problems on Grids”. In: Proceedings of the ACM
Symposium on Principles of Distributed Computing, PODC 2017, Washington,
DC, USA, July 25-27, 2017. Ed. by Elad Michael Schiller and Alexander A.
Schwarzmann. ACM, 2017, pp. 101–110. doi: 10.1145/3087801.3087833.
url: https://doi.org/10.1145/3087801.3087833.

[BV18] David Blackman and Sebastiano Vigna. “Scrambled Linear Pseudorandom
Number Generators”. In: CoRR abs/1805.01407 (2018). arXiv: 1805.01407.
url: http://arxiv.org/abs/1805.01407.

[Chi+11] R. Chipana et al. “SET susceptibility analysis in buffered tree clock distribu-
tion networks”. In: RADECS. 2011, pp. 256–261.

[Chi+12] R. Chipana et al. “SET susceptibility estimation of clock tree networks from
layout extraction”. In: LATW. 2012, pp. 1–6.

[CHS06] Andrzej Czygrinow, Michał Hańćkowiak, and Edyta Szymańska. “Dis-
tributed approximation algorithms for planar graphs”. In: Italian Conference
on Algorithms and Complexity. Springer. 2006, pp. 296–307.

[CHW08] Andrzej Czygrinow, Michal Hańćkowiak, and Wojciech Wawrzyniak. “Fast
Distributed Approximations in Planar Graphs”. In: Distributed Computing.
Springer Berlin Heidelberg, 2008, pp. 78–92.

[CHW22] Andrzej Czygrinow, Michał Hanćkowiak, and Marcin Witkowski. “Dis-
tributed distance domination in graphs with no K2,t-minor”. In: arXiv (2022).

[CK14] R. Chipana and F. L. Kastensmidt. “SET Susceptibility Analysis of Clock
Tree and Clock Mesh Topologies”. In: ISVLSI. 2014, pp. 559–564.

[Cru91] Rene L. Cruz. “A calculus for network delay, Part I: Network elements in
isolation”. In: IEEE Trans. Inf. Theory 37.1 (1991), pp. 114–131. doi: 10.1109/
18.61109. url: https://doi.org/10.1109/18.61109.

[CSG98] David Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan Kaufmann Publishers
Inc., 1998.

[Czy+18] Andrzej Czygrinow et al. “Distributed Approximation Algorithms for the
Minimum Dominating Set in K_h-Minor-Free Graphs”. In: 29th International
Symposium on Algorithms and Computation, ISAAC. 2018, 22:1–22:12.

79

https://doi.org/10.1145/2933057.2933086
https://doi.org/10.1145/2933057.2933086
https://doi.org/10.1145/2933057.2933086
https://doi.org/10.1145/363647.363659
http://doi.acm.org/10.1145/363647.363659
http://doi.acm.org/10.1145/363647.363659
https://doi.org/10.1145/3087801.3087833
https://doi.org/10.1145/3087801.3087833
https://arxiv.org/abs/1805.01407
http://arxiv.org/abs/1805.01407
https://doi.org/10.1109/18.61109
https://doi.org/10.1109/18.61109
https://doi.org/10.1109/18.61109

Bibliography

[DDP03] Ariel Daliot, Danny Dolev, and Hanna Parnas. “Self-stabilizing Pulse Syn-
chronization Inspired by Biological Pacemaker Networks”. In: Proc. 6th
International Symposium on Self-Stabilizing Systems (SSS). 2003, pp. 32–48.

[DH07] Danny Dolev and Ezra N. Hoch. “Byzantine Self-stabilizing Pulse in a
Bounded-Delay Model”. In: Proc. 9th International Symposium on Stabilization,
Safety, and Security of Distributed Systems (2007). 2007, pp. 234–252.

[DHS86] Danny Dolev, Joseph Y. Halpern, and H. Raymond Strong. “On the Possibility
and Impossibility of Achieving Clock Synchronization”. In: J. Comput. Syst.
Sci. 32.2 (1986), pp. 230–250.

[Die12] Reinhard Diestel. Graph Theory, 4th Edition. Vol. 173. Graduate texts in
mathematics. Springer, 2012.

[DKM19] Janosch Deurer, Fabian Kuhn, and Yannic Maus. “Deterministic Distributed
Dominating Set Approximation in the CONGEST Model”. In: Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019.
2019, pp. 94–103.

[DKW56] A. Dvoretzky, J. Kiefer, and J. Wolfowitz. “Asymptotic Minimax Char-
acter of the Sample Distribution Function and of the Classical Multino-
mial Estimator”. In: Ann. Math. Statist. 27.3 (Sept. 1956), pp. 642–669. doi:
10.1214/aoms/1177728174.

[Dob+17] Stefan Dobrev et al. “Optimal Local Buffer Management for Information
Gathering with Adversarial Traffic”. In: Proceedings of the 29th ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA 2017, Washington DC,
USA, July 24-26, 2017. 2017, pp. 265–274. doi: 10.1145/3087556.3087577.
url: https://doi.org/10.1145/3087556.3087577.

[Dol+14] Dolev Dolev et al. “Fault-tolerant Algorithms for Tick-generation in Asyn-
chronous Logic”. In: J. ACM 61.5 (2014), 30:1–30:74.

[Dol+16] Danny Dolev et al. “HEX: Scaling honeycombs is easier than scaling clock
trees”. In: J. Comput. Syst. Sci. 82.5 (2016), pp. 929–956. doi: 10.1016/j.jcss.
2016.03.001. url: https://doi.org/10.1016/j.jcss.2016.03.001.

[DW04] S. Dolev and J. L. Welch. “Self-Stabilizing Clock Synchronization in the
Presence of Byzantine Faults”. In: Journal of the ACM 51.5 (2004), pp. 780–799.

[Gha19] Mohsen Ghaffari. “Distributed Maximal Independent Set using Small Mes-
sages”. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019. 2019, pp. 805–820.

[GS14] Mika Göös and Jukka Suomela. “No sublogarithmic-time approximation
scheme for bipartite vertex cover”. In: Distributed Computing 27.6 (Dec. 2014),
pp. 435–443. issn: 1432-0452. doi: 10.1007/s00446- 013- 0194- z. url:
https://doi.org/10.1007/s00446-013-0194-z.

[Guj+15] A. Gujja et al. “Redundant Skewed Clocking of Pulse-Clocked Latches for
Low Power Soft Error Mitigation”. In: RADECS. 2015, pp. 1–7.

80

https://doi.org/10.1214/aoms/1177728174
https://doi.org/10.1145/3087556.3087577
https://doi.org/10.1145/3087556.3087577
https://doi.org/10.1016/j.jcss.2016.03.001
https://doi.org/10.1016/j.jcss.2016.03.001
https://doi.org/10.1016/j.jcss.2016.03.001
https://doi.org/10.1007/s00446-013-0194-z
https://doi.org/10.1007/s00446-013-0194-z

Bibliography

[KMW16] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. “Local Com-
putation: Lower and Upper Bounds”. In: J. ACM 63.2 (Mar. 2016), 17:1–
17:44.

[KSV21] Simeon Kublenz, Sebastian Siebertz, and Alexandre Vigny. “Constant Round
Distributed Domination on Graph Classes with Bounded Expansion”. In:
Structural Information and Communication Complexity - 28th International Collo-
quium, SIROCCO 2021, Proceedings. Vol. 12810. Lecture Notes in Computer
Science. Springer, 2021, pp. 334–351. doi: 10.1007/978-3-030-79527-6_19.
url: https://doi.org/10.1007/978-3-030-79527-6_19.

[Lin92] Nathan Linial. “Locality in Distributed Graph Algorithms”. In: SIAM J.
Comput. 21.1 (1992), pp. 193–201.

[LMR88] Frank Thomson Leighton, Bruce M. Maggs, and Satish Rao. “Universal
Packet Routing Algorithms (Extended Abstract)”. In: 29th Annual Symposium
on Foundations of Computer Science, White Plains, New York, USA, 24-26 October
1988. IEEE Computer Society, 1988, pp. 256–269. doi: 10.1109/SFCS.1988.
21942. url: https://doi.org/10.1109/SFCS.1988.21942.

[LPW13] Christoph Lenzen, Yvonne Anne Pignolet, and Roger Wattenhofer. “Dis-
tributed minimum dominating set approximations in restricted families of
graphs”. In: Distributed Computing 26.2 (2013), pp. 119–137.

[LR19] Christoph Lenzen and Joel Rybicki. “Self-Stabilising Byzantine Clock Syn-
chronisation Is Almost as Easy as Consensus”. In: J. ACM 66.5 (2019), 32:1–
32:56. doi: 10.1145/3339471.

[LW10] Christoph Lenzen and Roger Wattenhofer. “Minimum Dominating Set
Approximation in Graphs of Bounded Arboricity”. In: Proc. 24th International
Conference on Distributed Computing (DISC). 2010, pp. 510–524.

[LW20a] Christoph Lenzen and Ben Wiederhake. “Brief Announcement: TRIX: Low-
Skew Pulse Propagation for Fault-Tolerant Hardware”. In: Stabilization,
Safety, and Security of Distributed Systems - 22nd International Symposium, SSS
2020, Austin, TX, USA, November 18-21, 2020, Proceedings. Ed. by Stéphane
Devismes and Neeraj Mittal. Vol. 12514. Lecture Notes in Computer Science.
Springer, 2020, pp. 295–300. doi: 10.1007/978-3-030-64348-5_23. url:
https://doi.org/10.1007/978-3-030-64348-5_23.

[LW20b] Christoph Lenzen and Ben Wiederhake. “TRIX: Low-Skew Pulse Propagation
for Fault-Tolerant Hardware”. In: CoRR abs/2010.01415 (2020). arXiv: 2010.
01415. url: https://arxiv.org/abs/2010.01415.

[Mal+16] V. Malherbe et al. “Investigating the single-event-transient sensitivity of 65
nm clock trees with heavy ion irradiation and Monte-Carlo simulation”. In:
IRPS. 2016, SE-3-1-SE-3–5.

81

https://doi.org/10.1007/978-3-030-79527-6_19
https://doi.org/10.1007/978-3-030-79527-6_19
https://doi.org/10.1109/SFCS.1988.21942
https://doi.org/10.1109/SFCS.1988.21942
https://doi.org/10.1109/SFCS.1988.21942
https://doi.org/10.1145/3339471
https://doi.org/10.1007/978-3-030-64348-5_23
https://doi.org/10.1007/978-3-030-64348-5_23
https://arxiv.org/abs/2010.01415
https://arxiv.org/abs/2010.01415
https://arxiv.org/abs/2010.01415

Bibliography

[MP16] Avery Miller and Boaz Patt-Shamir. “Buffer Size for Routing Limited-Rate
Adversarial Traffic”. In: DISC 2016: Proceedings of the 30th International
Symposium on Distributed Computing, Paris, France, September 27-29, 2016.
Springer, 2016, pp. 328–341. isbn: 978-3-662-53426-7. doi: 10.1007/978-3-
662-53426-7_24. url: http://dx.doi.org/10.1007/978-3-662-53426-
7_24.

[MPR19] Avery Miller, Boaz Patt-Shamir, and Will Rosenbaum. “With Great Speed
Come Small Buffers: Space-Bandwidth Tradeoffs for Routing”. In: Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing, PODC
2019, Toronto, ON, Canada, July 29 - August 2, 2019. Ed. by Peter Robinson and
Faith Ellen. ACM, 2019, pp. 117–126. doi: 10.1145/3293611.3331614. url:
https://doi.org/10.1145/3293611.3331614.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.

[ND12] Jaroslav Nešetřil and Patrice Ossona De Mendez. Sparsity: graphs, structures,
and algorithms. Vol. 28. Springer Science & Business Media, 2012.

[NS93] Moni Naor and Larry Stockmeyer. “What Can Be Computed Locally?” In:
Proc. ACM 25th Annual ACM Symposium on Theory of Computing (STOC). 1993,
pp. 184–193.

[Pel00] David Peleg. Distributed Computing: A Locality-sensitive Approach. Society for
Industrial and Applied Mathematics, 2000. isbn: 0-89871-464-8.

[PH90] David A. Patterson and John L. Hennessy. Computer Architecture: A Quantita-
tive Approach. Morgan Kaufmann Publishers Inc., 1990.

[PR17] Boaz Patt-Shamir and Will Rosenbaum. “The Space Requirement of Local
Forwarding on Acyclic Networks”. In: Proceedings of the ACM Symposium on
Principles of Distributed Computing, PODC 2017, Washington, DC, USA, July
25-27, 2017. Ed. by Elad Michael Schiller and Alexander A. Schwarzmann.
ACM, 2017, pp. 13–22. doi: 10.1145/3087801.3087803. url: https://doi.
org/10.1145/3087801.3087803.

[PR19] Boaz Patt-Shamir and Will Rosenbaum. “Space-Optimal Nearly-Local For-
warding on Trees”. In: INFOCOM 2019: Proc. 2019 IEEE Conference on Computer
Communications, Paris, France, April 29 – May 2, 2019. To appear. 2019.

[PS85] Franco P. Preparata and Michael Ian Shamos. Computational Geometry - An
Introduction. Texts and Monographs in Computer Science. Springer, 1985.

[RG20] Václav Rozhon and Mohsen Ghaffari. “Polylogarithmic-time deterministic
network decomposition and distributed derandomization”. In: Proc. ACM
52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC). ACM,
2020, pp. 350–363. doi: 10.1145/3357713.3384298.

[Ros19] Matthias Rost. “TopologyZoo Treewidth Analysis”. In: https://github.
com/MatthiasRost/topologyzoo-treewidth-analysis (2019).

82

https://doi.org/10.1007/978-3-662-53426-7_24
https://doi.org/10.1007/978-3-662-53426-7_24
http://dx.doi.org/10.1007/978-3-662-53426-7_24
http://dx.doi.org/10.1007/978-3-662-53426-7_24
https://doi.org/10.1145/3293611.3331614
https://doi.org/10.1145/3293611.3331614
https://doi.org/10.1145/3087801.3087803
https://doi.org/10.1145/3087801.3087803
https://doi.org/10.1145/3087801.3087803
https://doi.org/10.1145/3357713.3384298
https://github.com/MatthiasRost/topologyzoo-treewidth-analysis
https://github.com/MatthiasRost/topologyzoo-treewidth-analysis

Bibliography

[SSS07] Ulrich Schmid, Andreas Steininger, and M. Sust. “FIT-IT-Projekt DARTS:
dezentrale fehlertolerante Taktgenerierung”. In: Elektrotech. Informationstech-
nik 124.1-2 (2007), pp. 3–8. doi: 10.1007/s00502-006-0409-0. url: https:
//doi.org/10.1007/s00502-006-0409-0.

[ST87] T. K. Srikanth and Sam Toueg. “Optimal Clock Synchronization”. In: J. ACM
34.3 (1987), pp. 626–645.

[SW08] Johannes Schneider and Roger Wattenhofer. “A log-star distributed maximal
independent set algorithm for growth-bounded graphs”. In: Proceedings
of the Twenty-Seventh Annual ACM Symposium on Principles of Distributed
Computing, PODC 2008. 2008, pp. 35–44.

[Wan+16] H. B. Wang et al. “Single-Event Transient Sensitivity Evaluation of Clock
Networks at 28-nm CMOS Technology”. In: IEEE Trans. Nucl. Sci. 63.1 (2016),
pp. 385–391.

[Wis+09] L. Wissel et al. “Flip-Flop Upsets From Single-Event-Transients in 65 nm
Clock Circuits”. In: IEEE Trans. Nucl. Sci. 56.6 (2009), pp. 3145–3151.

[WL88] Jennifer Lundelius Welch and Nancy A. Lynch. “A New Fault-Tolerant
Algorithm for Clock Synchronization”. In: Information and Computation 77.1
(1988), pp. 1–36.

[Xan09] Thucydides Xanthopoulos, ed. Clocking in Modern VLSI Systems. Springer,
2009.

83

https://doi.org/10.1007/s00502-006-0409-0
https://doi.org/10.1007/s00502-006-0409-0
https://doi.org/10.1007/s00502-006-0409-0

	Introduction
	Pulse Propagation
	Introduction
	Motivation
	Related Work
	Contribution: Empirical Proof of Quality
	Preliminaries and Notation

	TRIX: Low-Skew, Fault-Tolerant
	Delay is Tightly Concentrated
	Skew is Tightly Concentrated

	Conclusion

	Distance-r Graph Cover
	Introduction
	Motivation
	Related Work
	Contribution: Algorithmic Upper Bound and Unconditional Lower Bound
	Preliminaries and Notation

	Bounds in the Congest Model
	Congest Algorithm
	Distributed Approximation Algorithm for Dominating Set
	Unconditional Lower Bound
	Vertex Cover, Connected Dominating Set, and Connected Vertex Cover

	Extension to the Port Numbering Model
	Algorithm and Proof

	Conclusion

	Packet Forwarding
	Introduction
	Motivation
	Related Work
	Contribution: Generalization to Two Destinations
	Preliminaries and Notation

	Two-Destination Odd-Even Downward
	The Swapping Algorithm
	Conclusion

	TRIX Simulations
	Potential Systematic Errors
	Figure Data

