
INDUCTIVE VERIFICATION
OF CRYPTOGRAPHIC PROTOCOLS
BASED ON MESSAGE ALGEBRAS
– TRACE AND INDISTINGUISHABILITY

PROPERTIES –

LASSAAD CHEIKHROUHOU

A DISSERTATION SUBMITTED TOWARDS THE DEGREE

DOCTOR OF ENGINEERING (DR.-ING.)
OF THE FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

OF SAARLAND UNIVERSITY

SAARBRÜCKEN, 2022

Date of Colloquium: 19 May 2022
Dean of Faculty: Prof. Dr. Jürgen Steimle

Chair of the Committee: Prof. Dr. Sebastian Hack
Reporters
First Reviewer: PD Dr. Werner Stephan
Second Reviewer: Prof. Dr. Christoph Weidenbach
Academic Assistant: Dr. Andreas Nonnengart

To my parents,
Khadija & Mohammed.

Deutsche Zusammenfassung

Seit 1981 wurden zahlreiche formale Methoden zur Analyse kryptographischer Protokolle
entwickelt und erfolgreich angewendet. Trotz vieler Verbesserungen, beschränkt sich
der Anwendungsbereich gerade induktiver Verfahren auf das einfache enc-dec Szenario
(Entschlüsseln hebt Verschlüsseln ab) und auf Standardeigenschaften (Vertraulichkeit und
Authentifizierung).

In dieser Arbeit erweitern wir den Anwendungsbereich der werkzeug-unterstützten
induktiven Methode auf Protokolle mit algebraisch spezifizierten kryptografischen Primi-
tiven und auf Ununterscheidbarkeitseigenschaften wie die Resistenz gegen Offline-Testen.
Eine Axiomatisierung von Nachrichtenstrukturen, abgeleitet aus einem konstruktiven
Modell (Termersetzung), liefert die Basis für die Definition rekursiver Funktionen und in-
duktives Schließen (partielle Ordnungen, Fallunterscheidungen). Eine neue Beweistech-
nik für Vertraulichkeitseigenschaften verwendet rekursive Testfunktionen, die beweisbar
korrekt bzgl. eines induktiv definierten Angreifermodells sind. Die Formalisierung von
Ununterscheidbarkeitseigenschaften durch generische Ableitungen und ein zentrales The-
orem erlauben eine Reduktion auf Trace-Eigenschaften.

Die allgemeinen Aspekte unserer Techniken werden zusammen mit zwei vollständig
ausgearbeiteten realen Fallstudien, PACE und TC-AMP, diskutiert, die für den deutschen
Personalausweis entwickelt wurden. TC-AMP gehört sicher zu den komplexesten alge-
braisch spezifizierten Protokollen, die formal verifiziert wurden. Insbesondere, sind uns
keine Ansätze bekannt, die vergleichbare Fälle behandeln.

i

ii

Abstract

Since 1981, a large variety of formal methods for the analysis of cryptographic protocols has
evolved. In particular, the tool-supported inductive method has been applied to many pro-
tocols. Despite several improvements, the scope of these and other approaches is basically
restricted to the simple enc-dec scenario (decryption reverts encryption) and to standard
properties (confidentiality and authentication).

In this thesis, we broaden the scope of the inductive method to protocols with alge-
braically specified cryptographic primitives beyond the simple enc-dec scenario and to in-
distinguishability properties like resistance against offline testing. We describe an axioma-
tization of message structures, justified by a rewriting-based model of algebraic equations,
to provide complete case distinctions and partial orders thereby allowing for the defini-
tion of recursive functions and inductive reasoning. We develop a new proof technique for
confidentiality properties based on tests of regular messages. The corresponding recursive
functions are provably correct wrt. to an inductively defined attacker model. We introduce
generic derivations to express indistinguishability properties. A central theorem then pro-
vides necessary and sufficient conditions that can be shown by standard trace properties.

The general aspects of our techniques are thoroughly discussed and emphasized, along
with two fully worked out real world case studies: PACE and TC-AMP are (to be) used for
the German ID cards. To the best of our knowledge TC-AMP is among the most complex
algebraically specified protocols that have been formally verified. In particular, we do not
know of any approaches that apply formal analysis techniques to comparable cases.

iii

iv

Acknowledgments

First and foremost, I would like to thank my advisor, Werner Stephan. He continued after
retirement to examine carefully my results. His encouragement and the long phone calls
we spent discussing his feedback made it possible to complete this thesis.

I would also like to thank Christoph Weidenbach for reviewing my thesis, and Sebastian
Hack for acting as the chair of the examination board.

I am grateful to Markus Ullmann and Frank Koob from the Federal Office on Infor-
mation Security (BSI). They have been initiators and reviewers of many BSI projects I was
involved in at the DFKI. This gave me the opportunity to gain expertise in formal analysis
of cryptographic protocols. The topics of this thesis arose from project works on password
protocols developed by the BSI for the German ID card.

I would like to thank Jörg Siekmann. He gave me the chance to do research in the field
of Proof Planning, which facilitated the development of the proof heuristics used in the
VSE tool for protocol verification.

Finally, I would like to thank all my former colleagues at the DFKI in the Safe and
Secure Systems research group (formerly the Deduction and Multiagent Systems research
department), who always provided a good working atmosphere. My special thanks are
to Andreas Nonnengart for proofreading the introduction and for serving as the academic
assistant on my examination board, to Georg Rock for his cooperation in many BSI projects,
to Bruno Langenstein for his extension to the proof data structure of the VSE prover, which
permitted to use control knowledge for the composition of proof heuristics, to Christopher
Krauß, Oliver Keller, Roland Vogt, Carsten Tichy and to Stefan Denne for their excellent
team spirit.

No words are enough to express my gratitude to my father, Mohammed, and my
mother, Khadija, for their kindness, sacrifices, and support. I want also to thank my parents
in law, Abdelwahed and Naima, for their moral support. My particular thanks are to my
family members, my wife Imen and my source of motivation and children Nour, Aymen
and Hedi, for their endless patience and sacrifices. Last but not least, I would like to thank
my siblings, Maher, Fathia, Sonia and Hamadi for their excellent care of our parents.

v

vi

Contents

I Background 1
1 Introduction and Related Works 3

1.1 Assessment of Protocols . 4
1.1.1 DY Models . 4
1.1.2 Scope of Verification . 5

1.1.2.1 Confidentiality . 5
1.1.2.2 Authentication . 5
1.1.2.3 Resistance against Offline Testing Attacks 6
1.1.2.4 Further Indistinguishability Properties 6

1.1.3 Tool Support . 7
1.1.3.1 Automatic Tools . 7
1.1.3.2 Inductive Reasoning . 9

1.2 Contributions and Thesis Outline . 10
1.2.1 Major Contributions . 11
1.2.2 Outline of the Thesis . 13

1.2.2.1 Part II: Handling Trace Properties 13
1.2.2.2 Part III: Handling Indistinguishability Properties 16

2 Protocols Based on Message Algebras 19
2.1 Protocol Notation . 19

2.1.1 Steps, Roles and Participants . 19
2.1.2 Messages and Constituents . 20

2.1.2.1 Atomic Message Parts . 20
2.1.2.2 Arbitrary Message Parts . 21

2.2 Usage of PACE/TC-AMP . 22
2.2.1 Application Scenarios . 22
2.2.2 Security Objectives . 23

2.3 PACE . 23
2.3.1 PACE Steps . 23
2.3.2 PACE Algebra . 25
2.3.3 PACE Security . 25

2.4 TC-AMP . 26
2.4.1 TC-AMP Steps . 26
2.4.2 TC-AMP Algebra . 27
2.4.3 TC-AMP Security . 28

II Handling Trace Properties 29
3 Equational Reasoning and Algebraic Intruder Models 31

3.1 Equational Theories . 31
3.2 Rewriting-based Models . 35

vii

viii CONTENTS

3.3 Message Algebras and Intruder Knowledge . 37

4 From Equations to a Complete (Modular) TRS 39
4.1 Message Algebra Equations and Their Orientation 39
4.2 Rewriting modulo Specific Permutative Equations 40
4.3 Analysis of Local Confluence . 47

4.3.1 Separated Application Scopes: . 47
4.3.2 Overlapping Application Scopes: . 48

4.3.2.1 Same Application Scope . 48
4.3.2.2 Nested Application Scope . 49

4.3.3 Overlap at a Variable Position: . 50
4.4 Completion Procedure . 50

4.4.1 Unification by Decomposition . 52
4.4.2 Dealing with Specific Overlaps . 53

4.4.2.1 Permutative Function Symbols like ∗: 53
4.4.2.2 AC Function Symbols: . 57

4.5 PACE Algebra . 58
4.6 TC-AMP Algebra . 59

5 Message Objects and Operations 61
5.1 Message Structures . 62

5.1.1 Reduced A Classes . 62
5.1.2 Message Structures and the |.|-Measure 64

5.2 Basic Operations . 65
5.2.1 Operation Schemata . 66
5.2.2 Axioms about Basic Operations . 68

5.3 Axiomatization of the PACE Algebra . 70
5.3.1 Message Structures and the |.|-Measure 70
5.3.2 Axioms about Basic Operations . 71

5.3.2.1 Operation Schemata . 71
5.3.2.2 Resulting Axioms . 71

5.4 Axiomatization of the TC-AMP Algebra . 72
5.4.1 Message Structures and the |.|-Measure 72
5.4.2 Operation Schemata . 73

5.4.2.1 Operation Schema for ∗C . 73
5.4.2.2 Operation Schemata for f st, snd, inv and ⊖ 74

5.4.3 Justification of Result Structures in the Operation Schemata 75
5.4.4 Axioms about Basic Operations . 76

5.5 Auxiliary Notions and Short-Cuts . 77
5.5.1 Message substructures and Induction Schemes 77
5.5.2 (In-)equal Messages . 79
5.5.3 Short-cuts and Abbreviations . 80
5.5.4 Definition of uses . 81

6 Inductive Proof Technique 83
6.1 Basic Ideas and General Principles . 83

6.1.1 Basic Ideas . 83
6.1.2 Definition and Use of ccl-Functions . 85

6.2 Basic Check-Function ccl1 in PACE . 87
6.2.1 Characterization of Basic Operations . 87
6.2.2 Definition of ccl1 . 88
6.2.3 Appropriate Sets of Selected Secrets . 89
6.2.4 Correctness of ccl1 as Basic Check-Function 90

6.3 Basic Check-Function ccl1 in TC-AMP . 92

CONTENTS ix

6.3.1 Characterization of Basic Operations . 92
6.3.2 Definition of ccl1 . 94
6.3.3 Appropriate Sets of Selected Secrets . 95
6.3.4 Correctness of ccl1 as Basic Check-Function 96

6.3.4.1 Lemma for the ⊖-case: . 97
6.3.4.2 Lemma for the ⊕-case: . 98
6.3.4.3 Lemma for the ∗-case: . 100

6.4 Check-Function ccl2 for Reduction to Substructures 103
6.4.1 Use and Definition of the ccl-Function ccl2 103
6.4.2 Generic Theorem of Type 1 . 104
6.4.3 Generic Theorem of Type 2 . 105
6.4.4 Generic Theorem of Type 3 . 105
6.4.5 Generic Theorem of Type 4 . 106

6.5 Dealing with Derivations by Merging . 107
6.5.1 Invariants on Derivations by Merging from Protocol Messages 107

6.5.1.1 Used Short-Cuts and ccl-Function 108
6.5.1.2 Invariant and Proof Schema 109
6.5.1.3 Usage Example . 115

6.5.2 A Basic Check-Function Dealing with Derivations by Merging 116
6.5.2.1 A Running Example . 116
6.5.2.2 Basic Check-Function ccl3 . 120
6.5.2.3 Correctness of ccl3 as Basic Check-Function 121

7 Automated Inductive Verification 127
7.1 Protocol Formalization . 127

7.1.1 Agents and Messages . 127
7.1.2 Events and Traces . 129
7.1.3 Observable Message Sets . 130
7.1.4 Initial Knowledge . 131
7.1.5 Freshness . 132
7.1.6 Protocol Traces . 133
7.1.7 Protocol Properties . 134

7.1.7.1 Confidentiality Properties . 135
7.1.7.2 Authentication Properties . 136
7.1.7.3 Structuring Lemmata . 137

7.2 Proof Construction . 137
7.2.1 The Top-Level Proof Scheme . 138
7.2.2 The Proof Heuristics . 140

7.2.2.1 The heuristic emptyTr . 141
7.2.2.2 The heuristic redDif1 . 141
7.2.2.3 The heuristic redDif2 . 141
7.2.2.4 The heuristic applyIH . 142
7.2.2.5 Further Low-Level Heuristics 142

8 Verification of PACE’s Trace Properties 145
8.1 Protocol Model . 145

8.1.1 Initial Knowledge . 145
8.1.2 PACE Rules . 146

8.2 Basic Confidentiality Properties . 148
8.3 Authentication by the Card . 150
8.4 Authentication by the Terminal . 151
8.5 Protection of the MAC Key . 153
8.6 Forward Secrecy of Session Keys . 157

x CONTENTS

9 Verification of TC-AMP’s Trace Properties 159
9.1 Protocol Model . 159

9.1.1 Initial Knowledge . 159
9.1.2 TC-AMP Rules . 160

9.2 Basic Confidentiality Properties . 161
9.3 Authentication by the Terminal . 164
9.4 Authentication by the Card . 164
9.5 Protection of the Third h1-Part . 165

9.5.1 Invariant about Derivable ⊕-Objects . 165
9.5.2 Proof Sketch . 167
9.5.3 Unicity Theorem . 169
9.5.4 Refutation by Confidentiality and Constrained Structures 171

9.5.4.1 Handling of Case (a): . 171
9.5.4.2 Handling of Case (b): . 171
9.5.4.3 Handling of Case (c): . 172

9.6 Protection of the Third h2-Part . 173
9.6.1 Proof Sketch . 173
9.6.2 Unicity Theorem . 175
9.6.3 Refutation by Confidentiality and Structural Constraints 176

9.6.3.1 Handling of Case (b): . 176
9.6.3.2 Handling of Case (c): . 176

9.7 Forward Secrecy of Session Keys . 177

III Handling Indistinguishability Properties 179
10 Dealing with Indistinguishability Properties 181

10.1 Offline Computations . 182
10.2 Proof Technique . 183
10.3 Generic DY Derivations . 184
10.4 Formalization of Generic DY Derivations . 185

11 Proving Indistinguishability Properties (in PACE) 189
11.1 The Building Blocks of Indistinguishability Proofs 189

11.1.1 Defining ; Relations . 190
11.1.1.1 Use of the

;
rec Function . 191

11.1.1.2 Defining the Basis Relations xy 192
11.1.1.3 Basis Simulation Relation Lemma 193

11.1.2 The Central Indistinguishability Theorem 194
11.1.2.1 Algebra-specific Conditions 194
11.1.2.2 Generic Conditions and Theorem 197
11.1.2.3 Structural Mapping Lemma 197
11.1.2.4 Domain Restriction Lemma 198
11.1.2.5 Handling of Proof Obligations 199

11.2 Proof of the Structural Mapping Lemma . 200
11.2.1 Base Case: . 200
11.2.2 Step Case: . 201

11.2.2.1 Handling of enc-Objects: . 201
11.2.2.2 Handling Other Canonical Cases: 202

11.3 Handling of the non-canonical Ξdh Case . 203
11.3.1 Decomposition into dh-Parts in DY(kb) 204

11.3.2 Mapping by
xy7→ using the dh-Parts in DY(kb) 204

11.3.3 Mapping by
xy← [using the dh-Parts in DY(kb′) 206

CONTENTS xi

11.3.4 Auxiliary Lemma on dh-Parts . 209
11.4 Proof of the Central Indistinguishability Theorem 209

11.4.1 Base Case . 210
11.4.2 Step Case . 210

11.4.2.1 Handling the Case for f = enc: 210
11.4.2.2 Handling Other Canonical Cases: 211
11.4.2.3 Handling the Case for f = dh: 212

12 Resistance Proof of PACE 213
12.1 Definition of the Basis Relations . 213
12.2 Employed Regularity Properties . 214

12.2.1 Derivable Atomic Messages . 214
12.2.2 Derivable enc-Messages . 215
12.2.3 Derivable dh-Messages . 216
12.2.4 Derivable mac-Messages . 217
12.2.5 Derivable dec-, f st-, snd- and gen-Messages 218

12.3 Proof of the Basis Simulation Relation Lemma 219
12.4 Handling of the Proof Obligations . 221

12.4.1 Handling of Ψa: . 221
12.4.2 Handling of Ψc: . 222
12.4.3 Handling of Ψb: . 223
12.4.4 Handling of Ψ2

dec and Ψ1
enc: . 224

12.4.5 Proof Obligations Handled by Refutation: 224
12.4.6 Handling of Γ: . 226

13 The Central Indistinguishability Theorem in TC-AMP 229
13.1 The Building Blocks of Indistinguishability Proofs 229
13.2 Algebra-specific Conditions . 231
13.3 Proof of the Structural Mapping Lemma . 233

13.3.1 Proof Task (i): . 234
13.3.2 Proof Task (ii): . 234

13.4 Handling of the non-canonical Ξ⊖ Case . 234
13.4.1 Proof Task (i): . 235
13.4.2 Proof Task (ii): . 236
13.4.3 Proof Task (iii): . 236

13.5 Handling of the non-canonical Ξ∗ Case . 236
13.5.1 Decomposition into ∗-Sub-Messages in DY(kb) 238

13.5.2 Mapping by
xy7→ using the ∗-Sub-Messages in DY(kb) 238

13.5.2.1 Mapping by Decomposition into ∗-Sub-Messages 238
13.5.2.2 Mapping by Decomposition into a ⊖-Sub-Message 239

13.5.3 Mapping by
xy← [using the ∗-Sub-Messages in DY(kb′) 240

13.6 Handling of the non-canonical Ξ⊕ Case . 243
13.6.1 Decomposition into ⊕-Parts in DY(kb) 245

13.6.2 Mapping by
xy7→ using the ⊕-Parts in DY(kb) 245

13.6.2.1 Mapping by Decomposition into ⊕-Parts 246
13.6.2.2 Mapping by Decomposition into ∗-Sub-Messages 246
13.6.2.3 Mapping by Decomposition into a ⊖-Sub-Message 247

13.6.3 Transformation into ⊕-Parts in DY(kb′) 248
13.6.3.1 Lemma on ⊖ Application in Mappings 249
13.6.3.2 Derivations of Θ∗2-Conditions 251

13.6.4 Mapping by
xy← [using the ⊕-Parts in DY(kb′) 253

13.7 Proof of the Central Indistinguishability Theorem 254
13.7.1 Handling of the Canonical Cases: . 255

xii CONTENTS

13.7.1.1 objf-Case: . 255
13.7.1.2 Complementary Case: . 255

13.7.2 Handling the Case for f = ⊖: . 255
13.7.3 Handling the Case for f = ∗: . 255

13.7.3.1 syn∗-Case: . 256
13.7.3.2 Complementary Case: . 256

13.7.4 Handling the Case for f = ⊕: . 257
13.7.4.1 obj⊕-Case: . 258
13.7.4.2 Complementary Case: . 258

14 Resistance Proof of TC-AMP 263
14.1 Formalization and Basis Relations . 263
14.2 Employed Regularity Properties . 267

14.2.1 Derivable Atomic Messages . 267
14.2.2 Derivable ∗-Messages . 267
14.2.3 Derivable ⊕-Messages . 271
14.2.4 Derivable h1- and h2-Messages . 273
14.2.5 Derivable f st- and snd-Messages . 274

14.3 Proof of the Basis Simulation Relation Lemma 275
14.4 Handling of the Proof Obligations . 280

14.4.1 Handling of Ψa: . 280
14.4.2 Handling of Ψc: . 281
14.4.3 Handling of Ψb: . 282

14.4.3.1 Pairs with Atomic Messages: 283
14.4.3.2 Pairs with ∗-Objects: . 283
14.4.3.3 Pairs with ⊕-Objects: . 285
14.4.3.4 Remaining Pairs: . 286

14.4.4 Handling of Ψ1
∗ and Ψ2

∗: . 286
14.4.5 Handling of Ψ1

∗,⊕ and Ψ2
∗,⊕: . 289

14.4.6 Handling of Ψ1
⊕ and Ψ2

⊕: . 291
14.4.7 Handling of Ψ1

⊕,mrg and Ψ2
⊕,mrg: . 293

14.4.8 Handling of Ψ1
inv and Ψ2

inv: . 294
14.4.9 Proof Obligations Handled by Refutation: 294
14.4.10 Handling of Γ: . 295

15 Conclusion and Future Work 297
15.1 Extensions of Equational Systems . 297
15.2 A New Proof Technique for Confidentiality Properties 298
15.3 A Proof Technique for Indistinguishability Properties 298
15.4 Tool-Support and Case Studies . 299

A Completion of the TC-AMP Equations 309
A.1 Adding Rule r11 : ∗(x,∞)→∞ . 309
A.2 Adding Rule r12 : ∗(x,⊖(y))→⊖(∗(x,y)) . 310
A.3 Overlaps of ∗-terms . 311

A.3.1 Superposition of r5 with r5: . 311
A.3.2 Superposition of r5 with r7: . 312
A.3.3 Superposition of r5 with r11: . 313
A.3.4 Superposition of r5 with r12: . 314
A.3.5 Superposition of r7 with r11: . 314
A.3.6 Superposition of r11 with r12: . 315

A.4 Overlaps of ⊕-terms . 315
A.4.1 Superposition of r3 on r7: . 315
A.4.2 Superposition of r4 on r7: . 316

Part I

Background

1

Chapter 1

Introduction and Related Works

In this thesis we present substantial extensions to the inductive verification of crypto-
graphic protocols. They permit for machine-checked security proofs (of protocols) with alge-
braically specified cryptographic primitives beyond the simple encryption-decryption (enc-
dec) scenario. We not only broaden the scope of inductive verification techniques to (more)
involved algebraic properties of cryptographic primitives, but also to indistinguishability
properties like resistance against offline testing attacks, anonymity, and privacy.

The main contributions are

• extension of algebraic specifications of cryptographic primitives to theories that allow
for inductive proofs,

• new recursively defined security check functions that are sound wrt. the given in-
ductive attacker model,

• development of a technique to prove resistance against offline testing attacks and
other indistinguishability properties,

• and application of the general approach to two real-world protocols.

The general methodology described in this thesis resulted from the tool-based verifica-
tion of two protocols, PACE and TC-AMP [101], but applies to a wide range of protocols
and properties. PACE (protocol for Password Authenticated Connection Establishment) and its
fall-back solution TC-AMP (protocol for Terminal-Card Authenticated key agreement via Mem-
orable Passwords) were developed by the (German) Federal Office for Information Security
(BSI) primarily for deployment in electronic identification cards (eIDs), [57]. PACE is rec-
ommended as a substitute for the Basic Access Control (BAC) protocol in machine readable
travel documents (MRTDs), [66], and recently also in the smart metering scenario, [56].

PACE and TC-AMP aim at the strongest security objectives in the family of password pro-
tocols, [17, 69, 105, 73]. Besides mutual-authentication and forward secrecy of session keys,
this includes resistance against offline password testing attacks, [17]. The latter is a typical
indistinguishability property and we achieved its verification with a generic approach, ap-
plicable to all kinds of indistinguishability properties, including

• fairness (no leak of early vote results that may influence subsequent voters) and pri-
vacy (no vote can be linked to a voter) in e-voting protocols, [62],

• and various anonymity properties in

– anonymous routing protocols, [85],

– e-payment protocols (anonymity of payer’s identity), [106],

3

4 CHAPTER 1. INTRODUCTION AND RELATED WORKS

– and in anonymous authentication protocols, [2].

In our verification of PACE and TC-AMP as concrete instantiations of the general ap-
proach we achieved to treat algebraic properties that are to the best of our knowledge out
of scope of state-of-the-art protocol verification approaches. So, we expect that our results
open the door to the verification of many other security protocols that have not yet been
approached because of complex algebraic properties.

Before we outline some more details about the contributions of the thesis in Sec. 1.2,
we relate our work to other approaches in the next section: After a brief description of the
underlying attacker models in Sec. 1.1.1, we provide in Sec. 1.1.2 a more precise description
of the above mentioned protocol properties. We sum up in Sec. 1.1.3 other related tool-
supported protocol analysis approaches before we briefly present our field of inductive
protocol verification.

1.1 Assessment of Protocols

It was pointed out already in 1978 by Needham and Schroeder in [79] that cryptographic
“protocols ... are prone to extremely subtle errors that are unlikely to be detected in normal
operation”. Furthermore, they estimated that “the need for techniques to verify the correct-
ness of such protocols is great”, calling attention to a new research problem. Three years
later, Dolev and Yao published a paper [48], which is perhaps the most cited one in this
research field. It is on the decidability of the verification problem for two families of proto-
cols (“cascade” and “name-stamp”) that aim at the confidential transmission of application
data between two participants using asymmetric encryption. Since then, a large variety
of mathematically sound analysis methods have evolved. The majority of tool-supported
approaches rely on (variants of) the so-called Dolev and Yao (DY) attacker model.

1.1.1 DY Models

DY (attacker) models can be characterized by the following (common) features:

• The messages exchanged are modeled as symbolic expressions representing message
parts and cryptographic primitives.

• The cryptographic primitives are defined as operations that behave according to cer-
tain rules.

• Arbitrary many parallel protocol executions are interleaved with the actions of an
active attacker who controls the network.

• The attacker extracts message parts and fakes new messages using a subset of the
cryptographic primitives.

In an algebraic setting operations are modeled by equations. For instance, standard en-
cryption and decryption primitives are given by function symbols enc and dec that satisfy
the equation

dec(k−1, enc(k,m)) = m, (1.1)

where k−1 denotes the inverse of a key k and m is an arbitrary message.
Equation (1.1) first of all expresses the fact that knowledge of k−1 allows to reveal m

which is meant to be protected. Moreover, in the absence of additional laws, the restriction
(of the attacker) to equational reasoning excludes other ways to obtain m.

Clearly, the choice of equations that give raise to admissible computations is highly
critical. It has to be justified by models where guessing and arbitrary computations are al-
lowed, [11, 43]. Security in these models is investigated relative to probabilistic polynomial-
time bounded Turing (PPT) attacker machines and probability thresholds.

1.1. ASSESSMENT OF PROTOCOLS 5

The major contribution of this thesis is a general approach to inductively verify protocols
in algebraically defined DY-models. State-of-the-art inductive verification techniques, see
Sec. 1.1.3.2, only implicitly use the basic equations and it is hard to see how they could
be easily extended to protocols like PACE and TC-AMP. Our approach goes far beyond
simple equations like (1.1). The specification of TC-AMP is based on 15 equations, where
13 of them are on primitives in elliptic curve cryptography. They in particular include
left distributivity, which cannot be handled by advanced protocol verification approaches
dealing with algebraic properties of cryptographic primitives, [89] (see Sec. 1.1.3.1.2).

1.1.2 Scope of Verification

To demonstrate the scope of our contribution and to compare it to other approaches, we
classify properties handled by state-of-the-art formal analysis techniques. The discussion
is based on trace models, where a trace is an interleaving of (message sending) actions
carried out

• by ordinary participants following the rules of their role,

• and by the attacker according to her ability to generate (faked) messages out of the
knowledge obtained by observing previous traces.

The (immediately) observable intruder knowledge (ik) consists of all messages obtained (with-
out further derivations) from the actions of a trace. For technical reasons we treat ik as a list
of messages.

A thread is a projection to actions originated by a given participant.

Trace models have been used in other areas of formal methods. For example in [58] non-
interference properties in workflow systems are verified in trace models. The distinguish-
ing features of protocol traces are the use of cryptographic primitives and the inclusion of
an explicit attacker whose abilities are defined wrt. assumptions on these cryptographic
primitives.

1.1.2.1 Confidentiality

The vast majority of approaches (only) handles confidentiality and authentication proper-
ties. Confidentiality guarantees that certain (sub-) messages called secrets of a trace cannot
be computed by the attacker from ik. For example, in Paulson’s approach the possible com-
putations are given by analz, [82]. In our algebraic setting computations of the attacker are
given by the application of available operations to elements of ik. A generic derivation or
derivation strategy δ can be seen as a fixed composition of cryptographic primitives applied
to a fixed position selection of elements in a knowledge base ik that is given as an argu-
ment. We denote δ(ik) the result of applying δ to ik. A secret s is confidential if for all traces
tr and all derivation strategies δ the result δ(iktr) cannot be evaluated to s by equational
reasoning, where iktr denotes the immediately observable messages by the attacker from
tr.

Forward secrecy (of session keys) considers the case where a long-term secret used in a
protocol run is disclosed afterwards. It guarantees that the confidentiality of session keys
established before the disclosure of a long-term secret is preserved.

1.1.2.2 Authentication

Authentication properties provide guarantees about the origin of messages received by a
participant at a certain state of her thread. The participant may then safely assume that
these messages are part of the threads of ordinary participants (peers) and that the threads
have reached a certain current state. Authentication properties come as implications where

6 CHAPTER 1. INTRODUCTION AND RELATED WORKS

the premise is about the state of the given participant and where the conclusion describes
the corresponding states of the threads of certain peers.

Authentication implications can be easily extended with application-specific details
about the states of the involved participants. For example, we have achieved the veri-
fication of authentication properties providing guarantees about misuse counters, [31].
This demonstrates that our treatment of authentication implications applies as well to
application-specific properties that are defined from the perspective of particular partici-
pants, providing guarantees about the states of their peers. Such application-specific prop-
erties include for instance, security objectives of e-payment protocols like non-repudiation
(of authorized payments).

1.1.2.3 Resistance against Offline Testing Attacks

Relatively few approaches were extended to properties like resistance against offline testing
attacks. In offline testing attacks, the (active) attacker observes ik in a first step. After that
she uses ik to test candidates for a secret hidden in ik by an offline procedure. Basically, these
attacks use a predicate P on a list ϖ.ik, where

P(ϖ.ik)⇔ ′′The candidate ϖ is the secret hidden in the trace where ik results from′′.

In the algebraic approach the basic constituent of computations of predicates is the com-
parison of the result of (two) derivation strategies. Therefore, if for all derivation strategies
δ,δ′, all observations ik from protocol runs, all secrets of interest π used in ik, and all can-
didates ϖ we have

δ(π.ik) = δ′(π.ik)⇔ δ(ϖ.ik) = δ′(ϖ.ik), (1.2)

then offline testing attacks are excluded. In other words, no knowledge base kb = π.ik with
a genuine secret π can be effectively distinguished from a knowledge base kb′ = ϖ.ik with a
false candidate ϖ.

Resistance against offline testing attacks is relevant for password protocols to protect
the passwords [17, 68, 40], and for e-voting protocols to achieve fairness [72]. In a context
where kb = π.ik and kb′ = ϖ.ik are emitted synchronously by two processes communicat-
ing with some environment, resistance against offline testing attacks is an instance of static
equivalence [40].

1.1.2.4 Further Indistinguishability Properties

In another family of indistinguishability properties, the above equivalence (1.2) is about
knowledge bases kb and kb′ corresponding to the immediately observable messages from
two traces: kb belongs to an arbitrary trace trkb and kb′ to a trace trkb′ that results from a
simulation of tr where certain property-specific parameters are changed or swapped. Except
of sent messages, simulation means that the involved participants and their actions are
preserved, including the generic derivations used by the attacker for the generation of fake
messages.

For instance, privacy in e-voting protocols, i.e. the unlinkability of a voter V and her vote
vo, is defined for arbitrary traces trkb having another voter V′ with a different vote vo′. The
simulation resulting in trkb′ swaps vo and vo′, [72, 10]. Privacy requires that the knowledge
bases kb and kb′ obtained from trkb and respectively trkb′ are indistinguishable.

In process algebras, unlinkability of voter and her vote is an instance of observational
equivalence [41], which is equivalent in the context of protocol verification to trace equivalence
and labeled bi-similarity, [3, 29].

Trace equivalence permits also to formalize anonymity, generally from the perspective
of weaker adversary models. It was used, for instance in [74] to verify two anonymous
routing protocols: Anonymity of the originating sender in the Crowds protocol, [86], (from

1.1. ASSESSMENT OF PROTOCOLS 7

the perspective of the (end) server) and unlinkability of a message and its originator in the
Onion Routing protocol, [98], (from the perspective of a passive DY attacker).

All trace equivalence properties reduce to the indistinguishability of corresponding
knowledge bases kb and kb′, which is clearly defined according to (1.2) in Sec. 1.1.2.3.

1.1.3 Tool Support

Our approach belongs to protocol verification approaches allowing tool support, in order to
ensure soundness and to reach more automatization. The challenge for these approaches is to
deal with infinite sets of traces in trace models mentioned above, consisting of

• an unbounded number of interleaved threads and

• an unbounded number of (faked) attacker messages.

We distinguish two basic approaches:

1. Automatic techniques execute (forward or backward) the protocol rules and intruder
actions. In addition, the reasoning capabilities of the attacker have to be imple-
mented.

2. Interactive deduction techniques reason inductively about possible traces and results of
recursively defined functions that model the ability of the attacker to deduce infor-
mation from a set of (immediate) observations.

1.1.3.1 Automatic Tools

1.1.3.1.1 First Generation Tools: Automatic tools like Casper/FDR [46, 47, 49] and the
back-ends OFMC [14], SAT-MC [5, 6], and CL-AtSe [100] of the AVISPA environment [102,
4], explore a finite search space to find bugs. The finite search space results from bounds
on the number of threads and attacker messages. For real-world protocols, the bounds are
often very restrictive to avoid an explosion of the search space.

In addition to the generation of interleaved threads, these tools often apply imple-
mented rewriting procedures for decidable intruder deduction problems. Only few tools
allow for message algebras beyond the simple enc-dec scenario. There are generic ap-
proaches for the class of subterm-convergent equational theories, [1], with a compile mech-
anism of such given equations in deduction rules. The remaining approaches use built-in
techniques with predefined deduction rules integrating exclusive-or (xor), exponentiation
(for Diffie-Hellman (DH) exchange) and/or associative pairing, [37, 8].

Tools of this category have been applied to confidentiality and certain classes of authen-
tication properties. Some of them implement methods to search for bugs wrt. specific in-
distinguishability properties, [29, 34]. In this context, we mention that the privacy property
in e-voting protocols could be analyzed completely automated only by the tool AKiss, [29].
It is a special-purpose tool that handles exclusively certain kinds of indistinguishability
properties. This tool was applied for the privacy property of two e-voting protocols (FOO
and Okamoto, [62, 81]).

1.1.3.1.2 Second Generation Tools: Automatic tools like NPA-Maude [54] (a successor
of the NRL Protocol Analyser [76]), Athena [96], Scyther [44] and Tamarin [77], rely (more)
on techniques for automated theorem proving. Termination without detecting a bug can
be seen as a verification. However, since they employ techniques to soundly avoid infinite
search paths, termination is not guaranteed.

Regarding message algebras beyond the simple enc-dec scenario, the generic approach
of NPA-Maude is worth mentioning. It is based on the separation of equations into a set
A of axioms with a finitary unification algorithm and a set R of rewrite rules that is both

8 CHAPTER 1. INTRODUCTION AND RELATED WORKS

convergent and satisfies the finite variant property (FVP) modulo A, [38]. FVP is a general-
ization of subterm-convergence, and guarantees for a given term t the existence of a finite
set of term patterns {t1, . . . , tn} that subsume the infinite equivalence class [t]R∪A. The
Maude framework uses built-in procedures to handle several equational theories relevant
for protocol verification. They implement both the computation of the term patterns and
unification modulo A, as required by the inference engine. Yet, the built-in unification pro-
cedure deals only with three theories: C (commutativity), AC (C plus associativity), and
ACU (AC plus identity constant), [52].

Note that FVP is not satisfied by the TC-AMP equations, as these include one-side dis-
tributivity, [89].

Tamarin handles also user-defined cryptographic primitives where it allows for many
(but not all) FVP equational theories, [90, 50]. Furthermore, built-in primitives were suc-
cessively integrated in Tamarin, [99]. This includes the primitives of a multiplicative
abelian group together with exponentiation (for Diffie-Hellman) and with primitives of
bi-linear groups (scalar multiplication of a point and the application of bi-linear map to
two points), [91, 92], xor, [51], and primitives of more refined models of Diffie-Hellman
groups to capture attacks based on small subgroups and invalid curve points, [45]. The
generic and the built-in approaches of Tamarin do/seem not to cover one-side distributiv-
ity, which belongs to the TC-AMP equational theory.

The tools mentioned above have been applied to confidentiality and (certain classes
of) authentication properties. Indistinguishability properties are addressed to the best of
our knowledge only by NPA-Maude and Tamarin, [88, 13]. Both tools have adopted the
approach of ProVerif (see below) to define indistinguishability properties “based on a no-
tion of diff-equivalence, and therefore suffer from the same drawbacks”, [63]. The (first)
case studies by NPA-Maude present only found attacks and no succeeded verifications, be-
cause of “non-termination due to state space explosion”, [88]. This could be noticed also
for Tamarin, [51].

1.1.3.1.3 Automatic Tools based on Approximation: Abstracting protocol rules (and
sometimes also equations in message algebras) leads to over-approximation. In this approach
bugs detected by a terminating computation do not necessarily occur in the original proto-
col, while termination without finding a bug is a verification of the corresponding property.
The most prominent tool is ProVerif, [23], where the approach of Weidenbach, [103], to ver-
ify protocols by resolution on Horn clauses is adopted.

Basically, approximations are tailored for specific kinds of properties: For instance, the
tool TA4SP, [25], used as a back-end in AVISPA, [102, 4], transforms protocol specifications
in HLPSL, [36], to approximations that are suitable only for confidentiality. Similarly, the
first approximation implemented in ProVerif applies only to confidentiality, [20]. To deal
with authentication, ProVerif extended the approximation with new predicates to model
chronological order between events, [21].

To the best of our knowledge, only ProVerif has been applied to indistinguishability
properties, using the so-called diff-equivalence for their definition. For that purpose, the
specification language (a process algebra) was extended with a specific binary function
symbol “diff ” to express twin executions of the protocol with different tuples of parame-
ters, [24]. The over-approximation employ predicates that encode information about the
twin executions using a sequence of quasi twin arguments. This approach implemented
in ProVerif (version 1.85) does not terminate in the verification of the resistance property
for a simplified version of PACE, [78]. Recently, a new version of ProVerif generates a
more adjusted approximation to avoid false attacks due to “else” paths, [35]. This allowed
to prove anonymity for a simplified model of one of the authentication protocols in [2].
“Despite ... improvements on diff-equivalence checking [35] intended to prove unlinkabil-
ity of the BAC protocol (used in e-passport), ProVerif still cannot be used off-the-shelf to
establish unlinkability properties, and therefore cannot conclude on the case studies pre-

1.1. ASSESSMENT OF PROTOCOLS 9

sented in” [63]. These case studies could be handled by a reduction of the corresponding
privacy properties (unlinkability and anonymity) to two sufficient conditions, a kind of an
adjusted diff-equivalence (frame opacity) and well-authentication, which could be verified
by ProVerif, [63]. Noteworthy, the presented approach discussed the verification of PACE
focusing on privacy in the e-passport scenario, without referring to resistance against of-
fline password testing. The verified privacy property requires to distinguish the final mes-
sage of the reader from that of the initiator. This necessitates to extend them with tags, as
we have equally proposed to avoid few anomalies identified in our verification of (the first
version of) PACE, [101].

ProVerif allows for message algebras beyond the simple enc-dec scenario that can be
specified in form of rewrite rules and equations, [22, 23]. The equations are compiled into
specific rewrite rules that are intended to satisfy the FVP. Rewrite rules given in the speci-
fication and those resulting by compilation are translated into Horn clauses as part of the
approximation.

1.1.3.2 Inductive Reasoning

The inductive approach to protocol verification goes back to the pioneering work of L.
Paulson, [82]. The basic technique is induction on the length of traces. In the standard ap-
proach messages are modeled as freely generated data types treating enc as a constructor.
The corresponding selector(s) must not be confused with the dec function in message alge-
bras. Instead, the reasoning abilities of the attacker are given by a function analz defined
recursively. The function analz defines all possible ways the attacker might deduce new
knowledge items from immediate observations. It implicitly models equation (1.1) for de-
cryption, where extraction of the encrypted message makes it necessary to have the right
key at hand.

It is unclear how Paulson’s analz function could be defined for protocols like TC-AMP,
not to speak of a justification for such a new version (of analz). Instead, our approach uses a
sound extension of equational specifications that permits for recursively defined functions
allowing us to do without analz. In particular, they are provably sound wrt. the algebraically
defined intruder knowledge.

Paulson implemented his method in Isabelle/HOL, [80]. Isabelle as well as systems like
KIV, [53], Coq, [67], and VSE, [65], which was used to implement the method described
in this thesis, allow for sound extensions of a basic deduction mechanism. Beyond the
experimental use of tools, this is a crucial issue.

All the above mentioned tools are interactive but allow for an automatic extension of
elementary steps including proof search that can be tailored to specific applications with-
out touching the kernel inference machine. In particular, the major facilities that we imple-
mented in VSE for inductive protocol verification are domain-specific proof heuristics, [30].
These heuristics allow for a relatively high degree of automation: Over 95 % of the required
interactions in a step-by-step mode are saved up in the verification of real-world protocols
based on the simple enc-dec scenario, [31]. Currently, more than 80 % of the required inter-
actions are saved up in the verification of protocols like PACE, where other cryptographic
primitives specified by equations are used, [33].

Fully automatic inductive theorem provers, like CLAM [27], and INKA [7], have not
been applied intensively to protocol verification. The reason for this could be twofold:
Firstly, many protocol properties such as authentication are very complex compared to the
theorems typically handled by these tools. Second, the proofs of the main protocol proper-
ties rely on a relatively high number of lemmas. The majority of these lemmas cannot be
generated automatically without any guidance by a user or by additional domain-specific
knowledge.

The inductive method in the simple enc-dec scenario has been applied to confidentiality,
forward secrecy, and to all kinds of authentication properties [82, 16, 83, 15]. Few works

10 CHAPTER 1. INTRODUCTION AND RELATED WORKS

tried to extend the scope to indistinguishability properties: The approach in [74] on the
verification of anonymity for two routing protocols (see Sec. 1.1.2.4) proposes a formal
definition for sender anonymity and for unlinkability of a message and its originator based
on the notion of trace equivalence. This relies on a tailored definition for indistinguishable
message sequences where failed decryption by analz is incorporated. It does not apply to
resistance against offline testing attacks.

The paper [28] is about the verification of the privacy property in e-voting protocols,
i.e. the unlinkability between voter and her (valid) vote. This property is formalized based
on the association of honest sender and intended receiver with the message and with ev-
ery message part that can be extracted by analz using the available keys. Associations, as
sets containing message parts with associated participants, are gathered through a func-
tion aanalz. They are then extended, based on the transitivity of associations, using an
additional function asynth. Unlinkability is finally defined by asynth(aanalz(spies(tr))). It
is unclear whether and how this definition is related to the indistinguishability notion.

It seems as if there are only a very few approaches that extend the scope of the inductive
method to algebraic protocol specifications. Weeks of Internet search only led to the work,
reported in [12], about the verification of a protocol family for distance bounding, [95].
Here, the authentication of a peer is coupled with the establishment of a distance bound
to her location. The protocol family includes a measurement phase where the response to a
challenge has to be generated by the application of xor. It was therefore necessary to extend
the original protocol theories in Isabelle with lots of additional notions to integrate the
algebraic properties of xor. In particular, message terms are associated with their normal-
forms that are defined based on a reduction function implemented in ML (within Isabelle)
according to xor-equations. Furthermore, analz and synth (for message synthesis using
the output of analz) are replaced with a (predicate) function dm to define the derivable
messages. These and other additional notions make it difficult to verify the main security
property directly in Isabelle. Instead of that, the verification in Isabelle focused on sufficient
conditions of the measurement phase, which are formulated in a meta-theoretical theorem
proven by hand.

1.2 Contributions and Thesis Outline

Prior to our work on this thesis, we have implemented a protocol verification framework
in the VSE tool that provides specification and proof support. The first version adopted
the notions of the inductive method going back to the work of Paulson. During the
verification of real-world protocols like a Chip-Card-Based Biometric Identification Pro-
tocol, [31, 87], and the Protocols for Extended Access Control on Machine Readable Travel
Documents, [61], we added some extensions to the original concepts and implemented
more powerful proof heuristics to enhance the degree of automatization, [30].

The verification of PACE was the starting point of the work whose results are presented
in this thesis since the existing techniques were completely unsuitable for both, the alge-
braic specification of cryptographic primitives and the property of being resistant against
offline password testing. After implementing an initial version of the new approach, [33],
we identified a few anomalies of the PACE protocol, [101]. In a follow up project, we
verified a new version of PACE with additional checks addressing parts of the anoma-
lies, [60, 32], although they were not security-relevant in the eID scenario, [57]. A first
attempt to apply the new techniques to TC-AMP, [101], failed since the complex algebra
of TC-AMP revealed significant shortcomings in the methodology elaborated so far. This
was the motivation for subsequent research work resulting in the general theory presented
below.

The initial plan of the thesis was to present the protocol verification framework in
VSE, [30], and its application to real-world protocols, [31, 87, 32], including only the initial

1.2. CONTRIBUTIONS AND THESIS OUTLINE 11

version of the new approach applied to PACE, [33]. Due to significant progress towards a
general theory that turned out to be appropriate for a treatment of TC-AMP we changed
the structure of the thesis focusing on these recent results. Our previous work on the veri-
fication of real-world protocols in the original VSE framework is not part of this thesis,
except of re-used solutions for the implementation of the new approach.

The basic ideas of our general theory were presented in [33], using PACE as running
example. Results on our verification of PACE and TC-AMP were presented in technical re-
ports, in order to be evaluated and used by the BSI as projects’ partner. Many sections of the
thesis are adopted from these reports and from [32]. The chapter about the implementation
in VSE includes re-used results presented in former works, [31, 87, 30].

1.2.1 Major Contributions

Fig. 1.1 shows the main constituents of the overall method for inductive verification of
protocols based on algebraic specifications. Contributions are marked in blue. They can be
structured in three groups.

Figure 1.1: A method for the inductive verification of protocols based on algebraic specifi-
cations

(1) We present a general method to extend equational systems in a sound way by axioms
that allow for reasoning about the underlying structure of initial models. In particular, this
includes

• derivation of inequalities,

• complete case distinctions,

• well-founded orders,

• recursive definitions based on these, and

12 CHAPTER 1. INTRODUCTION AND RELATED WORKS

• inductive proofs.

The hidden algebraic structure is made explicit by a careful analysis of the execution of
operations in a rewriting based model that is equivalent to the original non-constructive stan-
dard model of equations.

Generally, rewriting techniques are used in deduction systems as part of the inference
engines. In our approach, we employ complete rewriting systems to identify the structure
of objects and to describe and clarify basic operations and types of messages. In particular,
we distinguish between merging operations and different kinds of extraction and compo-
sition operations. Moreover, we classify messages according to their definite top-symbols.
For instance, composed messages ⊕(a,b) for atomic a,b belong to the ⊕-messages.

(2) A simple and straightforward inductive definition of what can be deduced by the at-
tacker from a finite set of immediate observable items ik is given by the so-called Dolev-Yao
closure DY(ik). Such a simple and easy to analyze definition is crucial for an adequate basic
setting. However, inductive proofs heavily rely on arguments about items that cannot be
obtained from ik by the attacker. We present a novel approach to solve this key problem by
two techniques that are basically complementary and based on recursive check-functions.

(A) Basic check-functions take a finite set of secrets S as a parameter. For a given (fixed)
S and a given item m the test of m, check(S,m), is positive (true), if, like in medicine,
m is ”critical” and should not be immediately observable by the attacker. Basic check-
functions can be designed to be pessimistic in the sense that not every item classified
as ”critical” actually permits the derivation of some element in S. But, they have to
be proved correct wrt. the given Dolev-Yao closure, meaning that ”uncritical” items
cannot be used to derive elements of S. One has to show that a negative outcome,
i.e. check(S,m) = f alse for all messages m ∈ ik, allows to conclude that S is actually
secure, i.e. DY(ik) ∩ S = ∅.

The sets S used for confidentiality proofs have to be carefully chosen according
to the protocol messages. If some s ∈ S can be extracted from a protocol message
m, additional items required for this derivation have to be included in S to obtain
check(S,m) = f alse.

This technique is not restricted to atomic secrets. For composed elements S has to
include substructures required for their composition. Note that according to (1) there
is such a notion of substructures.

Basic check-functions ccl1 can be uniformly defined in all message algebras. However,
ccl1 is restricted to sets S where the items cannot be obtained by merging. The prob-
lem with merging is that there are infinitely many items allowing a derivation of a
given secret. This problem can be solved by basic check-functions ccl3 that extend
ccl1 with additional checks to integrate merging. In particular, we consider only the
relevant merging derivations permitted by the protocol. The corresponding items are
provided as an additional argument of ccl3.

(B) The check-functions discussed above cover structured secrets with known structure
but cannot be (directly) used to exclude that certain infinite sets of arbitrary nested
messages can be generated by the attacker. For an infinite set of messages of same type
given by a description D it suffices to show that messages s satisfying D(s)

1. cannot be extracted from elements m ∈ ik even if we assume that all additional
items necessary for the extraction are public, and

2. cannot be composed without using substructures s′ that can be shown to be pro-
tected according to (A) or (B).

1.2. CONTRIBUTIONS AND THESIS OUTLINE 13

Again we use a recursive function ccl2(s,m) to check property (1). The reduction in
(2) is given by a theorem that is generic for each type of messages, except for those
that can be obtained by merging.

Since infinitely many items may be involved in a generation by merging, we took
a different route. We use a protocol-specific invariant I to provide a complete case
distinction on messages m derivable from ik that are of the type given by D. The
conditions provided by I and the description D are then used to show that none of
the derivable messages m satisfies D(m). The use of protocol-specific invariants is
another reduction technique, since parts of the conditions can be shown using the
technique of (A).

(3) Our formalization of indistinguishability properties uses an enumeration of generic
derivation trees representing the derivation strategies δ and δ′ introduced in Sec. 1.1.2.3.
This enumeration is consistent with the sub-tree relation. The reduction to trace proper-
ties is based on a simulation relation, given by a finite set of pairs that is then extended
by composition. A generic central theorem permits to show that the simulation relation
holds between the corresponding nodes of instantiated trees representing δ(kb),δ(kb′) and
δ′(kb),δ′(kb′). The premises of the theorem state the necessary and sufficient conditions
for the indistinguishability property to hold. The conditions include constraints on the ini-
tial set of pairs relative to the intruder knowledge derivable from kb and kb′. They can be
shown by help of typical trace properties on different types of derivable messages and the
protection of their substructures.

The proof of the central theorem is by induction on indices. Moreover it uses two lem-
mata to ensure that the simulation relation is bijective between (and restricted to) DY(kb)
and DY(kb′) where crucial structural properties are preserved by composition of messages.

In all three cases our approach is applicable to a wide range of algebraically specified
protocols. General aspects of our contributions are strongly emphasized and discussed.
Apart from that there are two fully worked out instantiations of the general theory. PACE
and TC-AMP are real world protocols (to be) applied in the context of the German (elec-
tronic) identity cards. The investigation whose results are presented in this thesis started
with a successful inductive verification of PACE. From that starting point it took quite some
time and effort to generalize the underlying theory so that it could be applied to TC-AMP.
To the best of our knowledge TC-AMP is among the most complex algebraically specified
protocols that have been formally verified. In particular we do not know of any approaches
to apply inductive proof techniques to comparable cases.

1.2.2 Outline of the Thesis

The thesis is described in two parts, where PACE and TC-AMP serve as concrete instan-
tiations of the general approach. Both case studies are described in Chap. 2: An adjusted
“Alice-and-Bob” protocol notation is used for the specification of PACE and TC-AMP and
for the introduction of their message algebras (cryptographic primitives and required equa-
tions). Additionally, the protocol properties are discussed in the context of the application
scenarios.

1.2.2.1 Part II: Handling Trace Properties

In this section, we elaborate on the first and second major contribution and outline the
corresponding chapters.

14 CHAPTER 1. INTRODUCTION AND RELATED WORKS

Chap. 3–5 include the theoretical foundations and the used techniques to obtain the
sound extension of equational specifications with appropriate axioms on message struc-
tures and operations:

• Chap. 3: The required notions (initial models, equational derivations, quotient al-
gebras and complete (modular) rewriting systems) are introduced to prove that
rewriting-based models of equational specifications (Σ, E) are initial. Then, message
algebra specifications are defined by extending equational specifications with an enu-
merable set of atomic messages, and their models are defined using the rewriting-
based models of the corresponding equational specifications. The chapter ends with
the definition of DY knowledge, i.e. of the closure operator DY(.).

• Chap. 4: The generation of the axioms about the structure of messages is preceded by
the completion of the equations in E to a corresponding complete (modular) rewrit-
ing system R/A, where R includes the rewrite rules and A the non-orientable equa-
tions. Since available completion tools do not permit to deal with all non-orientable
equations in PACE and TC-AMP, we describe in Chap. 4 an ad hoc completion algo-
rithm applicable for typical non-orientable equations in algebraic protocol specifica-
tions, [42]. Here, the sets A are restricted to permutative equations on same function
symbols f , [26], which we call permutative functions. This restriction not only guar-
antees finite A-equivalence classes, [94], but also allowed us to replace the superpo-
sition on equations in A by superposing appropriately extended rewrite rules. The
completion procedure is as well modular in A, as the extensions to the rewrite rules
and the decompositions in unification are A-specific. It was applied by hand for the
completion of the equations in PACE and TC-AMP.

• Chap. 5: In the rewriting-based model given by a complete modulo rewriting system
R/A, the objects are R-reduced A-equivalence classes. The operations are defined by
the possible transformations to R/A-normal forms after the application of function
symbols to arbitrary terms from R-reduced A-equivalence classes. In case A is de-
fined on permutative functions, the R-reduced A-equivalence classes have nice prop-
erties that permit not only for a uniform generation of the axioms about the types of
messages and their substructures, but also for a relatively simple definition of an ap-
propriate measure function. We use predicates obj f to specify the types of composed
messages as f -objects (also f -messages), meaning that the terms in the correspond-
ing R-reduced A-equivalence classes possess f as top-symbols. For f with arity n,
the predicate obj f has arity n+ 1 and is defined on f -objects together with their direct
substructures, which permit for a derivation of these f -objects by a constructor-type
application of f . We specify the predicates obj f in axioms about the so-called basic
operations. Besides the constructor-type case, an axiom includes all other cases where
the structures of objects resulting by the application of f are specified relative to the
structures of used arguments given by the possible rewrite-based transformations.
The structural conditions are formalized using obj f predicates so that the ensemble
of the axioms provides a mutual recursive specification of these predicates. To justify
(and illustrate) how these axioms cover exactly the basic operations induced by R
and A, we use an intermediate representation of these operations in so-called oper-
ation schemata. They are similar to rewrite rules enriched with labels to distinguish
top-irreducible from arbitrary occurrences of function symbols. The intermediate rep-
resentation in operation schemata is also used for a uniform generation of the axioms,
as demonstrated for PACE and TC-AMP.

As mentioned above, the structure provided by the new axioms permits for the defini-
tion of the recursive check functions used in our proof techniques to deal with the algebraic
intruder reasoning in the verification of trace properties. Chap. 6–9 are mainly reserved for

1.2. CONTRIBUTIONS AND THESIS OUTLINE 15

the description of these proof techniques, their implementation in the VSE tool and for their
application in the verification of the trace properties of PACE and TC-AMP:

• Chap. 6: We describe our technique to show required protocol verification arguments
about items that cannot be obtained by the attacker from immediate observable mes-
sages ik. As introduced above in (2-A), the basic check-functions test that messages in
ik are not critical for given finite sets S of secrets. They permit to prove confidentiality
(using appropriately selected S) just by checking the messages of ik when they are
guaranteed to be correct. This necessitates to adequately embed the effects of the ba-
sic operations in the definition of the basic check-functions and/or in conditions on
the sets S as part of the correctness theorems. Therefore, we characterize seven types
of operations by analyzing the (combined) effects of basic operations in PACE and
TC-AMP. Furthermore, we qualify the constructor-type operations and the elemen-
tary (not composed) extraction operations to be canonical, as these kinds of operations
can be embedded in one uniform basic check-function ccl1. Not only the definition of
this so-called canonical basic check-function but also the required condition on S for
the correctness theorem are formulated according to the same schemata in all mes-
sage algebras. We illustrate this for ccl1 in PACE and TC-AMP.

The check-functions (ccl2) used together with generic reduction theorems as intro-
duced above in (2-B) are also canonical, because they are obtained by a uniform adap-
tation of ccl1. We illustrate this for ccl2 in PACE and TC-AMP and describe the four
typical kinds of the generic reduction theorems, which cover all relevant types of
messages in PACE and TC-AMP.

For ⊕-messages in TC-AMP, which are derivable by merging operations, i.e. using
items different from their substructures, the reduction technique based on ccl2 does
not work. This permits us to exemplify how to formulate and prove a protocol-
specific invariant providing a complete case distinction on the derivable ⊕-messages
and to use this to show confidentiality. In particular, we describe how the function
obtained by an adaptation of ccl2 to express generalized occurrence of ⊕-messages is
used in the invariant and supports its proof.

The use of ccl2 and protocol-specific invariants are complementary to basic check-
functions, required to show the confidentiality of secrets inside protocol messages.
Since the canonical basic check-function is not applicable with sets S including se-
crets derivable by merging, we describe a second basic check-function (ccl3) for this
kind of application scenario. For that purpose, we use an example key distribution
protocol in the TC-AMP algebra. We designed the protocol so that the confidentiality
of the session key is shown using sets S that include⊕-messages. This way, the corre-
sponding proof serves as a running example to describe the adaptation of ccl1 to ccl3
and the additional conditions in the correctness proof of ccl3.

• Chap. 7: The implemented VSE framework for the inductive verification of crypto-
graphic protocols based on message algebras is described in this chapter. It includes
specification facilities in form of abstract data type (ADT) theories and proof con-
struction facilities in form of proof heuristics. The ADT theories originate partly from
the VSE implementation of the inductive method in the simple enc-dec scenario. The
axioms about the underlying message structures and many auxiliary notions are in
algebra-specific ADT theories, which can be adapted to new message algebras. We
explain in this chapter how protocols and their trace properties are specified. Addi-
tionally, we describe the common proof scheme for protocol properties and the proof
heuristics that automatize a very large part of the proof construction steps.

• Chap. 8: The specification of PACE and the verification of its trace properties in the
VSE system are described.

16 CHAPTER 1. INTRODUCTION AND RELATED WORKS

• Chap. 9: The specification of TC-AMP and the verification of its trace properties are
described. The provided verification details are quite sufficient to obtain correspond-
ing machine-checked proofs in VSE.

1.2.2.2 Part III: Handling Indistinguishability Properties

In this section, we elaborate on the third major contribution and outline the corresponding
chapters.

• Chap. 10: We motivate the formal definition of indistinguishability properties, de-
scribe how they are shown with the help of a simulation relation and we provide
our axiomatization for derivation trees that induce an appropriate (level-wise) enu-
meration of their nodes: We first explain that different kinds of indistinguishability
properties are eventually about simultaneously considered message sequences kb and
kb′ that the attacker may not distinguish through offline testing. Then, we motivate
the restriction of testing algorithms to those built from generic derivations and equal-
ity checks. This justifies the definition of resistance against offline guessing attacks
by (1.2) in Sec. 1.1.2.3 and the use of an analog definition for other indistinguishabil-
ity properties as discussed in Sec. 1.1.2.4.
For tool-supported verification (in VSE), we formalize generic derivations as deriva-
tion trees and provide an appropriate axiomatization that enumerates all the deriva-
tion tree nodes. Starting with the leaf nodes, i.e. with the items in the first level kb
(respectively kb′), the enumeration continues successively with the subsequent lev-
els consisting of parent nodes. The axiomatization associates the parent nodes with
labels identifying (applied) function symbols and the positions of the child nodes
from the previous levels whose respective results correspond to the arguments for
the function applications.

• Chap. 11: We present our proof technique for indistinguishability properties using
the resistance of PACE against offline password testing as a running example. The
knowledge bases kb,kb′ to be shown indistinguishable are defined relative to relevant
protocol traces and property-specific parameters x. Indistinguishability for kb,kb′

holds according to Chap. 10, if appropriate simulation relations are provided for all
kb,kb′ fixed relative to relevant protocol traces. As described above in (3), we use
finite sets of message pairs (as basis relations) and extend them uniformly by com-
position to simulation relations. The basis relations are required to be the smallest
sets that fulfill certain inclusion rules relative to the regular messages in ik and to the
property-specific parameters x. These inclusion rules need to be defined carefully as
part of the proof, ensuring that the basis relations are complete. Besides the so-called
basis simulation relation lemma, where we show by trace induction that finite sets
satisfying the inclusion rules without violating minimality exist, we apply the central
indistinguishability theorem that provides sufficient and necessary conditions for the
uniform extension of the considered basis relations to be an appropriate simulation
relation. We describe how these conditions can be shown using regularity properties
of the protocol on different types of derivable messages and the protection of their
substructures.
We identify the conditions of the central indistinguishability theorem in the PACE
algebra during the description of its proof and the used lemmata: The so-called do-
main restriction lemma guarantees that simulation relations are subsets of DY(kb)×
DY(kb′) and the so-called structural mapping lemma ensures that simulation rela-
tions are bijective between DY(kb) and DY(kb′) and respect crucial structural prop-
erties.

• Chap. 12: In this chapter, we apply the proof technique from Chap. 11 to show the re-
sistance of PACE against offline password testing. We provide the inclusion rules for

1.2. CONTRIBUTIONS AND THESIS OUTLINE 17

the definition of the basis relations. We formalize the required regularity properties
and explain how they are shown by trace induction. Then, we describe the proof of
the basis simulation relation lemma and of the proof obligations resulting from the
conditions of the central indistinguishability theorem.

• Chap. 13: We provide a similar central indistinguishability theorem as in Chap. 11
by adapting the theorem conditions to the TC-AMP algebra. We also describe its
proof, using practically the same domain restriction lemma and a similar structural
mapping lemma. The latter is obtained by adapting the structural properties to the
new derivations by composition and in particular by the non-canonical operations.

• Chap. 14: In this chapter, we show the resistance of TC-AMP against offline pass-
word testing describing the same details as in Chap. 12. Clearly, we handle here the
conditions of the central indistinguishability theorem identified in Chap. 13.

Finally, we conclude the thesis in Chap. 15 by a brief summary of the main results and
related future work.

Last but not least, it should be noted that except of the meta-theory justifying the exten-
sion to equational specifications (see Chap. 3, 4 and Sec. 5.1.1), all presented theorems and
verified protocol properties are (respectively can be) proven in the VSE tool and checked by
its kernel inference machine. To make clear where the VSE tool is used, we label the corre-
sponding definitions, axioms, theorems and lemmata with VSE if counterparts already exist
in VSE. We also use the (gray) label VSE if counterparts can be generated in VSE straight-
forwardly by simple adaptations and/or if minor proof checking effort is required.

18 CHAPTER 1. INTRODUCTION AND RELATED WORKS

Chapter 2

Protocols Based on Message
Algebras

Cryptographic primitives with algebraic properties beyond the simple enc-dec scenario
are generally used in protocols that achieve application-specific security objectives. In this
chapter we sketch this issue for our case studies, two protocols that are developed by the
(German) Federal Office for Information Security (BSI) for use in the German ID card and
machine readable travel documents (MRTDs): PACE is deployed since November 2010 to
establish a secure connection between an inspection terminal and the RFID chip implanted
in an ID card (some years later, the RFID chip implanted in a MRTD) using a password. It
aims at the strongest security objectives in the field of password protocols, including the
resistance against offline password testing attacks.

In parallel to the development of PACE, BSI has worked on a second protocol as fall-
back solution for PACE. This work consists in adapting the TP-AMP (Three-Pass Authen-
ticated key agreement via Memorable Passwords) protocol, [73], to the ID card application
scenario. The result is a protocol called TC-AMP, for Terminal-Card AMP, [101]. TC-AMP
is shorter than PACE, since it exploits algebraic properties of elliptic curve cryptography.
For this reason, the TC-AMP algebra is far more involved than the PACE algebra.

After the introduction of an adjusted “Alice-and-Bob” protocol notation for protocols
using cryptographic primitives beyond the simple enc-dec scenario, we describe PACE and
then TC-AMP, discussing their security objectives and the impact of the message algebras.

2.1 Protocol Notation

In the enormous number of publications about (the verification of) cryptographic proto-
cols there are a couple of similar abstract notations that make use of “Alice” and “Bob” to
distinguish the roles of protocol participants in two-party protocols: Alice is typically the
initiator and Bob the responder. For this reason, these notations are referred to in general by
the “Alice-and-Bob” notation. In this section, we describe a (variation of the) “Alice-and-
Bob” notation that allows us to express both the sender’s view and the receiver’s view on
exchanged messages.

2.1.1 Steps, Roles and Participants

Generally, cryptographic protocols are composed out of n steps (where n > 1). The i-th
protocol step is represented in our notation according to the following schema:

i. Role −→ Role′ : Msg % Msg′ & Diseqs. (2.1)

19

20 CHAPTER 2. PROTOCOLS BASED ON MESSAGE ALGEBRAS

“Role” and “Role′” are place holders for the protocol role of the sender and for that of the
intended receiver, respectively. “Msg” and “Msg′” are place holders for message terms that
represent the i-th message from the view of the sender and from that of the receiver, respec-
tively; The sender’s view shows how the message is computed and the receiver’s view how
it is matched (see Sec. 2.1.2). “Diseqs” is a place holder for inequality checks; The receiver
accepts the message only if it matches “Msg′” and the inequalities given by “Diseqs” hold.

Obviously, “&” is simplified in steps where no inequality check is required. Further-
more, the separator “%” and the receiver’s view “Msg′” are simplified in steps where a
single message term “Msg” represents both the sender’s view as well as the receiver’s
view.

The roles in a protocol correspond to the chronological local actions of each protocol par-
ticipant (see Sec. 2.1.2). Note, that roles are equivalent to strands, [55], in case of protocols
with a fixed number of steps and without inequality checks.

As introduced above, we distinguish in two-party protocols, e.g., in PACE and TC-
AMP, two roles: The initiator Alice (abbreviated as A) is the sender in the odd steps and the
receiver in the even steps; The responder Bob (abbreviated as B) is the receiver in the odd
steps and the sender in the even steps.

Actually, the role names in abstract protocol specifications are place holders for iden-
tifiers (names, or addresses) of protocol participants who are able to run the protocol in
the corresponding roles: For each role, the protocol assumes the availability of certain ini-
tial knowledge that is needed during the protocol run. The initial knowledge includes for
instance different kinds of long-term keys.

Basically, the required initial knowledge is made available to protocol participants ac-
cording to the organizational and technical settings of the IT application where the protocol
is deployed. In this context, we distinguish for two-party protocols two alternative models:

• All participants possess the required initial knowledge to run the protocol in roles A
and B. In this case, we denote participant identifiers by ag1, ag2,

• The participants are separated in two groups: A group of participants who possess
just the required initial knowledge to run the protocol in role A. We denote them by
agA1, agA2, The remaining participants possess just the required initial knowledge
to run the protocol in role B. We denote them by agB1, agB2,

2.1.2 Messages and Constituents

The message terms in our notation represent how the protocol messages are computed by
the senders and handled by the receivers. They contain (protocol) variables as place holders
for message parts that are determined successively in the protocol run. The variables are
denoted with capital letters, to distinguish them from the function symbols (cryptographic
primitives) and the constants, if any. Constants are employed generally as keywords, to
distinguish different protocol steps with similar messages.

Before we explain how the instances for protocol variables are determined, we recall
that protocols propagate certain structures in the exchanged messages. This includes con-
catenations (or pairs), which are represented in “Alice-and-Bob” notations with the help of
commas between the parts.

Message structures provide means to encode purposeful information in distinct mes-
sage parts, which occur typically in our protocol notation as different kinds of variables.
We distinguish two groups of variables: (i) place holders for atomic message parts and (ii)
place holders for arbitrary message parts that fit into receiver’s views.

2.1.2.1 Atomic Message Parts

We introduce foremost those variables that are place holders for the mostly used kinds of
atomic message parts.

2.1. PROTOCOL NOTATION 21

• Role Names are instantiated by participant identifiers (see Sec. 2.1.1). They are gen-
erally used in messages to determine the communication partner(s). This could be
necessary for the receiver to select the right initial knowledge in the computation of
the reply message.

The instances for role names are determined according to the following conventions:

– Each participant is assumed to be aware of her role in the protocol: On the side
of the sender (resp. receiver) the corresponding role name is instantiated by the
own identifier.

– The role names that occur first in a sender’s view are generally instantiated in a
preliminary phase of the protocol run.

– The first occurrence of a role name in a receiver’s view yields to the binding of
this role name with the participant identifier in the received message.

• Nonce Variables are denoted by N, N1, N2, They are place holders for random
numbers, which are assumed in protocol design to be used only once. Nonces are used
to identify runs, in order to prevent replay attacks where old messages are re-used.
We denote them by nc1,nc2,

The instances for nonce variables are determined according to the following conven-
tions:

– A variable that occurs first in a sender’s view is instantiated by a newly generated
nonce.

– The first occurrence of a variable in a receiver’s view yields to the binding of this
variable with the corresponding nonce in the received message.

• Parameter Variables are place holders for certain kinds of parameters that belong typ-
ically to the initial knowledge. For instance, PACE and TC-AMP make use of static
generators; Their place holders are denoted by G, G1, and G2 (see below).

These variables are assumed to be instantiated in a preliminary phase of the protocol
run. The instances are assumed to be (encoded in) numbers that differ from nonces.
We denote them by nb1,nb2,

Beside participant identifiers, nonces, numbers and also constants, we consider long-
term keys to be atomic. Often, the long-term keys belong to the initial knowledge and are
used in protocol runs for encryption or decryption. They are attributed to the correspond-
ing participants with the help of certain cryptographic primitives. For instance, we could
use sk(ag) to denote the private keys of participants ag.

Nevertheless, there are (relatively few) protocols where long-term keys occur in the
clear-text content of messages. This is the case when certain long-term keys are distributed
or accessed to during the run. Typical examples are keys that are transferred as parts of cer-
tificates and hence handled as the public keys of given participants. Note that the attribution
of such a long-term key to the corresponding participant is reached indirectly through the
certificate (signature). In such protocols we would use Key Variables, which we denote by
K,K1,K2, . . ., and atomic keys ky1,ky2, . . . as their possible instances.

2.1.2.2 Arbitrary Message Parts

So far, we mentioned all instantiation conventions for the protocol variables that occur first
in a sender’s view. The remaining protocol variables, which occur first in a receiver’s view,
are denoted by M1, M2, . . . , M1,1, M1,2, . . . , M2,1, M2,2, They can be bound to arbitrary mes-
sage parts, which are determined while the receiver’s view is matched to a received mes-
sage:

22 CHAPTER 2. PROTOCOLS BASED ON MESSAGE ALGEBRAS

• A receiver’s view represented by a single variable is directly bound to any received
message.

• The matching of a receiver’s view represented by a concatenation starts by the bind-
ing of the not yet instantiated variables to corresponding message parts in the re-
ceived message. Afterwards, the rest of the concatenation is instantiated and checked
for equality with the corresponding received message parts. This equality check in-
cludes the application of the algebraic equations about the cryptographic primitives.

Note that the receiver’s view can be a single message term where all variables are bound
in previous steps. Here, matching corresponds simply to equality check using the algebraic
equations.

Remark 1.

• Confidential nonces can be used as atomic session keys or as key materials in the
computation of composed session keys.

• Our notation can be extended straightforwardly with more kinds of atomic messages,
e.g., application data, misuse counters, or time stamps.

2.2 Usage of PACE/TC-AMP

Before we describe PACE (in Sec. 2.3) and TC-AMP (in Sec. 2.4) we introduce their applica-
tion scenarios and their security objectives.

2.2.1 Application Scenarios

While MRTDs are generally used for border control, eIDs can be used in much more ap-
plication scenarios, [18]. They can be even used for multiple online functions such as elec-
tronic contracts. Many application scenarios require access to sensitive (personal) data on
the RF chip. For that purpose a password authenticated connection must be established
between the chip and an inspection terminal:

1. First the password is computed by or entered in the terminal: According to the appli-
cation scenario, the terminal computes the password from optical data on the MRZ or
the card bearer enters a 6-digits PIN. The obtained data is handled as the (long-term)
password pwd(A) attributed to the chip A of the eID/MRTD.

2. A authentication protocol (PACE, or TC-AMP in case of a fall-back) is run between
the terminal and the chip based on the password pwd(A). If the password used by the
terminal matches the password stored on the chip, the protocol run succeeds yielding
a new session key.

3. The established session key is used afterwards to protect the integrity and the confi-
dentiality of the transmitted application data from the chip to the terminal.

Running PACE (TC-AMP in case of a fall-back) achieves primarily the following guar-
antees:

• From the perspective of the bearer, the sensitive data on the chip can be only accessed
after handing in the card/MRTD to allow for optical reading of the MRZ or after
entering the right PIN.

• From the perspective of the terminal, the optically read MRZ or the entered PIN be-
longs indeed to the RF chip implanted in the card/MRTD.

2.3. PACE 23

2.2.2 Security Objectives

The above mentioned security guarantees rely on the following security objectives by the
password protocol deployed in phase 2.

1. Mutual Authentication: The exchanged messages allow for A and B to check that the
communication partner acts currently in the run and makes use of A’s password.

2. Confidential Session Key: The exchanged messages allow for A and B to compute a
confidential session key.

3. Forward Secrecy of Session Keys: A successfully guessed password does not reveal
the session keys that had been generated in previous runs.

4. Resistance Against Offline Password Testing: Assuming that the attacker possesses a
finite (relatively small) set of all passwords, the messages that she is able to gather
cannot be exploited offline to identify any password used in any protocol run.

Note that the password protocol deployed in phase 2 is required to satisfy the strongest
form of resistance, where the attacker may use (in her offline test attempts) accidentally
disclosed session keys in addition to the exchanged messages. Together with the forward
secrecy, this form of resistance property exhibits the highest security level of password
protocols, as it was required for the German eIDs. This also explains why the password
protocol deployed in eIDs is proposed for use in MRTDs instead of the Basis Access Control
(BAC) Protocol, [59]. BAC does guarantee neither forward secrecy nor resistance against
offline password testing.

Summing up, PACE and TC-AMP are required to establish password-authenticated ses-
sion keys, for which forward secrecy is guaranteed, and to protect at the same time the used
passwords from offline testing attacks. This heavily influences their design and the choice
of the cryptographic primitives.

2.3 PACE

We foremost describe the protocol idea and steps, then motivate the message algebra, and
we finally discuss the security objectives in this context.

2.3.1 PACE Steps

PACE aims at the establishment of a password-authenticated session key between A and
B. The main idea in its design is to use the password pwd(A) in the encryption (by enc)
of a nonce N1 that is necessary for the computation of the session key. In order to prevent
offline testing attacks, N1 is packed (on B’s side after decryption by dec) together with other
secrets in a fresh generator using practically irreversible functions dh and gen. The secrets
are generated during a first DH exchange based on a static generator G. The obtained fresh
generator must be used together with additional secrets in a second DH exchange, for the
computation of the session key again by dh. This way, the obtained session key is bound to
the password with the intermediate of N1 used in the computation of the fresh generator.

In the following, we consider the specification of PACE in our notation from Sec. 2.1:

24 CHAPTER 2. PROTOCOLS BASED ON MESSAGE ALGEBRAS

1. A −→ B : enc(pwd(A), N1) % M1

2. B −→ A : dh(G, N2) % M2

3. A −→ B : dh(G, N3) % M3

4. B −→ A : dh(gen(dh(G,dec(pwd(A), M1)),dh(M3, N2)), N4) % M4

5. A −→ B : dh(gen(dh(G, N1),dh(M2, N3)), N5) % M5
& M5 ̸= dh(gen(dh(G,dec(pwd(A), M1)),dh(M3, N2)), N4)

6. B −→ A : mac(dh(M5, N4), M5)
% mac(dh(M4, N5),dh(gen(dh(G, N1),dh(M2, N3)), N5))

& M4 ̸= dh(gen(dh(G, N1),dh(M2, N3)), N5)

7. A −→ B : mac(dh(M4, N5), M4)
% mac(dh(M5, N4),dh(gen(dh(G,dec(pwd(A), M1)),dh(M3, N2)), N4))

The protocol can be divided in three phases:

• Steps 1–3 permit the exchange of the data necessary for the computation of a fresh
generator that is bound to the password. In particular, the DH exchange in steps 2 and
3 serves to guarantee the freshness of this generator for B, who brings nonce N2 into
effect.

• Steps 4–5 constitute the second DH exchange, where the fresh generator is used. This
allows A and B, who generate the nonces N4 and N5, respectively, to compute a com-
mon session key.

• Steps 6–7 are necessary to complete the authentication, where each participant veri-
fies that the peer computes the same session key. This is achieved through message
authentication codes (MACs) by mac. Note that sender and receiver compute the
MACs in different ways, as given by their respective views.

Before we introduce the message algebra required to run the protocol, we comment on
the inequality checks in steps 5 and 6.

Remark 2.

• A Previous version of PACE, [101], does not include the inequality checks of steps 5
and 6.

• The inequality checks allow to handle one of the anomalies that we pointed out earlier
in a formal analysis of the first version of PACE. Without inequalities, there can be
successful runs without the participation of a card. The terminal B would then detect
this situation first during the transmission of the application data (see Sec. 2.2.1). In
checking the inequality the terminal detects such a problem in step 5.

• We claim that the inequality check by A (above in step 6) is redundant, since A gener-
ates the public DH value (in step 5) after accepting M4 and the equality of both values
is very unlikely. Furthermore, such a very improbable situation would be detected
due to the inequality check by B. For this reason, we will simplify the inequality
check by A in the rest of the thesis.

2.3. PACE 25

2.3.2 PACE Algebra

For a successful run, both A and B need to compute the same fresh generator by the one-
way function gen. Since gen is injective, the decryption of M1 = enc(pwd(A), N1) by B
in step 4 must result in N1, i.e. dec(pwd(A),enc(pwd(A), N1)) = N1. Additionally, the DH
values dh(M3, N2) and dh(M2, N3), respectively, used as the second argument of gen by B
in step 4 and by A in step 5, respectively, must be equal. This means for M2 = dh(G, N2)
and M3 = dh(G, N3), we have dh(dh(G, N3), N2) = dh(dh(G, N2), N3).

Consequently, the following equations on the cryptographic primitives dec, enc and dh
are necessary to run PACE:

e1 : dec(x, enc(x,y)) = x
e2 : dh(dh(x,y),z) = dh(dh(x,z),y)

Equation e1 is the standard property for symmetric encryption, where each key equals
its inverse.

Property e2 is the essential equation for a DH exchange, since it allows each participant
to compute the common DH value using the public DH value received from the peer and
the own private DH value. This happens twice in PACE: in the first DH exchange of steps
2 and 3 to compute the second argument of the fresh generator and then in the second DH
exchange of steps 4 and 5 to compute the common DH value used (in steps 6 and 7) as
MAC key.

In addition to the primitives described in Sec. 2.3.1, i.e. enc, dec, dh, gen, and mac, three
more primitives will be used in the formal specification:

• pair(., .) for the construction of message pairs that are used to represent initial knowl-
edge,

• and f st(.), respectively snd(.), to select the first, respectively second pair component.

Except of f st and snd which are of arity 1, all other operators are of arity 2.
The operational meaning of f st and snd is given by the following equations:

e3 : f st(pair(x,y)) = x
e4 : snd(pair(x,y)) = y

Furthermore, the following equation is necessary for resistance against offline password
testing.

e5 : enc(x,dec(x,y)) = y

The presence of this equation with the decryption equation e1 prevents offline tests by
decrypting the first message and then encrypting the result. e5 guarantees that the outcome
of the tests is (independent of the used password) in all cases identical with the used first
message.

2.3.3 PACE Security

The security of PACE is based both on the binding of the fresh generator ĝ to the password
of A and on the use of local secrets. The way how ĝ is generated necessitates to employ the
password of A and to participate in the first DH exchange (in steps 2 and 3). The protection
of this password guarantees the confidentiality of ĝ and the use of a common DH value
relative to a static generator g guarantees that ĝ is cryptographically as strong as g.

The confidentiality of ĝ is essential for the authentication guarantee. For the sender
of a DH value dh(ĝ,nc), the receiving of a message composed with the help of a MAC-
key dh(M,nc) after having received M implies that M has been generated using the same

26 CHAPTER 2. PROTOCOLS BASED ON MESSAGE ALGEBRAS

generator ĝ. This is necessary, since the local secret nc cannot be extracted from dh(ĝ,nc).
Its occurrence in dh(M,nc) necessitates to generate M by dh(ĝ,nc′) using ĝ with a second
local secret nc′, and then to compute dh(M,nc) by the application of dh to dh(ĝ,nc) and nc′.
That is, the peer must be also in possession of ĝ and thus of the password of A, which is
necessary for the computation of ĝ.

The necessity to employ one of the local secrets nc or nc′ in the computation of the
MAC-key explains the forward secrecy of the session key, which is generated using the
same confidential key material. The disclosure of the password of A does not allow to
generate dh(M,nc) = dh(dh(ĝ,nc′),nc), as long as nc and nc′ remain confidential.

The resistance against offline password testing relies on a similar argument. The local
secrecy of nc and nc′ prevents the attacker to verify any password candidate through the
decryption of the first message, the use of the result to re-compute a fresh generator, and
finally the use of this generator to compute a DH value for comparison with dh(ĝ,nc) or
dh(ĝ,nc′).

2.4 TC-AMP

We first describe the protocol idea and steps, then motivate the message algebra, and we
finally discuss the security objectives in this context.

2.4.1 TC-AMP Steps

TC-AMP aims at the establishment of a password-authenticated session key between A and
B. It is carried out in three steps according to the challenge and response principle. The
basic idea in its design is to compose each challenge using the password pwd(A) together
with local secrets N1 and N2. The protection of the local secrets is crucial to prevent offline
testing attacks.

In the following, we consider the specification of TC-AMP in our notation from Sec. 2.1:

1. B −→ A : ⊕(∗(N1, G1),⊖(∗(pwd(A), G2))) % M1

2. A −→ B : ⟨∗(N2,∗(pwd(A), G1)),
h1(M1, ∗(N2,∗(pwd(A), G1)),
∗ (N2,⊕(⊕(M1,∗(pwd(A), G2)),∗(M1, G1))))⟩ %

⟨M2,1,
h1(⊕(∗(N1, G1),⊖(∗(pwd(A), G2))), M2,1,
⊕ (∗(inv(pwd(A)),∗(N1, M2,1)),
∗ (inv(pwd(A)),∗(⊕(∗(N1, G1),⊖(∗(pwd(A), G2))), M2,1))))⟩

3. B −→ A : h2(⊕(∗(N1, G1),⊖(∗(pwd(A), G2))), M2,1,
⊕ (∗(inv(pwd(A)),∗(N1, M2,1)),
∗ (inv(pwd(A)),∗(⊕(∗(N1, G1),⊖(∗(pwd(A), G2))), M2,1)))) %

h2(M1, ∗(N2,∗(pwd(A), G1)),
∗ (N2,⊕(⊕(M1,∗(pwd(A), G2)),∗(M1, G1))))

For technical reasons, the terminal B initiates the run. In terms of elliptic curve cryp-
tography, the challenge of the terminal ∗(N1, G1) is generated by the multiplication of a
scalar (a nonce N1) with a base point G1. The binding to the password of A is reached
through composition by (⊕ for) point addition with ⊖(∗(pwd(A), G2)), where the pass-
word pwd(A) is multiplied with a second base point G2.

In step 2, the message of the card A includes its challenge ∗(N2, G1) and its response
to the challenge of B. The challenge of A is generated similarly by the multiplication of a
new scalar (nonce N2) with the same base point G1. Contrarily to the first step, the binding
to the password in the second step is reached directly through scalar multiplication. The

2.4. TC-AMP 27

response to the challenge of B in the second message part cannot be generated without
the extraction of ∗(N1, G1) from the first message. That extraction necessitates to employ
∗(pwd(A), G2) that cannot be generated without possessing the password pwd(A). This
allows B to verify that the response originates from the owner of this password, i.e. from
A.

The third message serves as the response by B to the challenge of A. It allows A to
verify that the peer has extracted ∗(N2, G1) using inv(pwd(A)), which requires to possess
pwd(A).

Finally, we notice that G2 is assumed to be linearly independent from G1. Otherwise, the
resistance against offline testing attacks is violated. The requirement is added to counter
such an attack in a prior version of TC-AMP, where the equality of G2 and G1 is exploited.

2.4.2 TC-AMP Algebra

For a successful run, both A and B need to compute the same hash values by h1 and h2 in
steps 2 and 3, respectively. In particular, they need to use a same third argument. Provided
M1 is, as expected by A of the form ⊕(∗(N1, G1),⊖(∗(pwd(A), G2))), the computation of
this argument by A includes the following algebraic transformations:

1. ∗(N2,⊕(⊕(⊕(∗(N1, G1),⊖(∗(pwd(A), G2))),∗(pwd(A), G2)),
∗ (⊕(∗(N1, G1),⊖(∗(pwd(A), G2))), G1))) equals

∗(N2,⊕(⊕(∗(N1, G1),∗(⊕(∗(N1, G1),⊖(∗(pwd(A), G2))), G1)),
⊕ (⊖(∗(pwd(A), G2)),∗(pwd(A), G2)))),

2. which can be simplified to
∗(N2,⊕(∗(N1, G1),∗(⊕(∗(N1, G1),⊖(∗(pwd(A), G2))), G1))).

These transformations necessitate to apply the equations of an abelian group, where we
use ∞ as identity element:

e6 : ⊕(x,y) = ⊕(y, x)
e7 : ⊕(x,⊕(y,z)) = ⊕(⊕(x,y),z)
e8 : ⊕(x,⊖(x)) = ∞
e9 : ⊕(x,∞) = x

From the point of view of the terminal B the message part M2,1 is expected to be of the
form ∗(N2,∗(pwd(A), G1)) and the computation of the third argument used to obtain the
hash values includes the following algebraic transformations:

1. ⊕(∗(inv(pwd(A)),∗(N1,∗(N2,∗(pwd(A), G1)))),
∗ (inv(pwd(A)),∗(⊕(∗(N1, G1),⊖(∗(pwd(A), G2))),∗(N2,∗(pwd(A), G1)))))

equals
⊕(∗(pwd(A),∗(inv(pwd(A)),∗(N1,∗(N2, G1)))),
∗ (pwd(A),∗(inv(pwd(A)),∗(⊕(∗(N1, G1),⊖(∗(pwd(A), G2))),∗(N2, G1))))),

2. which can be simplified to
⊕(∗(N1,∗(N2, G1)),∗(⊕(∗(N1, G1),⊖(∗(pwd(A), G2))),∗(N2, G1))).

These transformations necessitate to use the following equations:

e10 : ∗(x,∗(y,z)) = ∗(y,∗(x,z))
e11 : ∗(x,∗(inv(x),y)) = y
e12 : inv(inv(x)) = x

28 CHAPTER 2. PROTOCOLS BASED ON MESSAGE ALGEBRAS

For the results of A and B (given above in 2) to be equal we need additionally the
following distributivity equation:

e13 : ∗(x,⊕(y,z)) = ⊕(∗(x,y),∗(x,z))

2.4.3 TC-AMP Security

The security of TC-AMP is based both on the binding of the challenges ∗(nc1, g1) (for A)
and ∗(nc2, g1) (for B) to the password πA of A and on the use of local secrets nc1 and nc2.
The way how the responses to these challenges are generated necessitates to employ the
password πA and the protection of this password guarantees their confidentiality.

For the sender of the challenge ∗(nc1, g1) as part of the first message, the receiving of
a response computed with the help of ∗(nc1, M2) using the attached message part M2 im-
plies that the same base point g1 has been employed to generate M2. This is necessary,
since the local secret nc1 cannot be extracted from ∗(nc1, g1). Its occurrence in ∗(nc1, M2)
necessitates to generate M2 by ∗ using g1 with a second local secret nc2, and then to com-
pute ∗(nc1, M2) also by ∗ using ∗(nc1, g1) and nc2. This must be preceded by the extraction
of ∗(nc1, g1) from the first message ⊕(∗(nc1, g1),⊖(∗(πA, g2))). That is, the peer must be
also in possession of the password πA, which is necessary to compute ∗(πA, g2) required
for the extraction.

The authentication guarantee for the sender of the challenge ∗(nc2, g1) is similar. This
message part is sent in ∗(πA,∗(nc2, g1)) attached with the response to the challenge of B in
step 2. From the point of view of A, the occurrence of the local secret nc2 in the received
response implies that the peer possesses the password πA. It is necessary to compute its
inverse required for the extraction of ∗(nc2, g1) from ∗(πA,∗(nc2, g1)).

The necessity to employ the local secrets nc1 and nc2 in the computation of the (same)
third argument employed to obtain the hash values in steps 2 and 3 explains the forward
secrecy of the session key. The third argument of h1 and h2 constitutes the confidential key
material required for its computation. The disclosure of the password of A would allow to
derive ⊕(∗(inv(πA),∗(nc1, g1)),⊖(g2)), ∗(nc1, g1) and ∗(nc2, g1). But, these do not allow
to compute ∗(nc2,⊕(∗(nc1, g1),∗(M1, g1))), as long as nc1 and nc2 remain confidential.

The resistance against offline password testing relies on a similar argument. The
local secrecy of the nonces nc1 and nc2 prevents the attacker to verify any password
candidate through derivations by ∗ using the first message ⊕(∗(nc1, g1),⊖(∗(πA, g2))),
the message part ∗(πA,∗(nc2, g1)) in step 2 and the accidentally disclosed key material
∗(nc2,⊕(∗(nc1, g1),∗(M1, g1))). Any test using one of the obtained results necessitates to
employ nc1 or nc2.

So far, we discussed informally how potential attacks are thwarted in the design of
PACE and TC-AMP. In particular, our discussion was guided implicitly through certain
attacks, only. A thorough verification necessitates the exclusion of all possible attacks and
this requires a formal attacker model that incorporates the computation capabilities given
by the message algebra. This will be described in the rest of the thesis.

Part II

Handling Trace Properties

29

Chapter 3

Equational Reasoning and
Algebraic Intruder Models

Nowadays, DY-models are represented as algebraic theories, where function symbols are
used for the cryptographic primitives and the equations for their properties. This is in
particular important when dealing with indistinguishability properties, as it is noticed by
Santiago, Escobar, Meadows and Meseguer, [88]:

When a Dolev-Yao tool is used to check for subtle properties such as indistin-
guishability, it is important that it offers as detailed a picture of the properties
of the cryptographic operations as possible. This is done by including infor-
mation about their algebraic properties, that is, the equations obeyed by the
function symbols.

After a general introduction of algebraic specifications and their semantics of interest (in
Sec. 3.1 and 3.2), we define message algebras and the corresponding notion of DY intruder
knowledge (in Sec. 3.3).

3.1 Equational Theories

We start with the definition of equational specifications.

Definition 1 (Signature, Terms, Equational Specification).

1. A signature Σ is a set of function symbols associated with their arities from the set
{0, . . . ,maxΣ} of natural numbers. Σ⟨n⟩ denotes the set of function symbols that are
associated with arity n.

2. For a signature Σ and a set V of variables, the set of terms Ter(Σ,V) is the smallest set
satisfying

(a) Σ⟨0⟩,V ⊆ Ter(Σ,V) and

(b) { f (t0, . . . , tn−1) | t0, . . . , tn−1 ∈ Ter(Σ,V)} ⊆ Ter(Σ,V), where f ∈ Σ⟨n⟩ and n > 0.

For s, t ∈ Ter(Σ,V), we say s is a sub-term of t iff s equals t or t equals f (t0, . . . , tn−1)
and s is a sub-term of ti for 0≤ i < n.

Sub-term positions are sequences of natural numbers, where ϵ denotes the empty se-
quence for the top (sub-term) position and i · p denotes a nested (sub-term) position.
The sub-term of t at position p, denoted by t|p, is defined by

31

32 CHAPTER 3. EQUATIONAL REASONING AND ALGEBRAIC INTRUDER MODELS

(a) t|p equals t, if p equals ϵ, and

(b) t|p equals ti|q, if t equals f (t0, . . . , tn−1) for f ∈ Σ⟨n⟩ with n > 0 and if p equals
i · q for 0≤ i < n.

For a term t with a sub-term position p, we use t[s]p to denote the term that results
by the replacement of the sub-term t|p with a term s.

A (term) substitution σ is a function V→ Ter(Σ,V) and tσ denotes the term that results
by replacing every variable v in t with σ(v).

We use Ter0(Σ) for the set of ground terms, i.e. the terms in Ter(Σ,V) that have no
sub-terms in V.

3. An equational specification is a pair (Σ, E), where

(a) Σ is a signature, and

(b) E is a finite set of equations t = s where t, s ∈ Ter(Σ,V) for a set V of variables.

Next, we define corresponding semantics.

Definition 2 (Interpretation of Equational Specification).
Let (Σ, E) be an equational specification with a given signature Σ and a given set E of

equations t = s where t, s ∈ Ter(Σ,V) for a given set V of variables.

1. A Σ-algebra A is a non-empty set A together with functions fA : An → A for every
function symbol f ∈ Σ⟨n⟩ with 0 ≤ n ≤maxΣ. A is the carrier set and the functions
fA are the interpretation of the symbols f .

2. An assignment for the variables in V to a (Σ-algebraAwith) carrier set A is a function
θ : V→ A. It determines a meaning in A for every term t ∈ Ter(Σ,V) by:

[v]A,θ = θ(v), for v ∈ V, and
[f (t0, . . . , tn−1)]

A,θ = fA([t0]
A,θ , . . . , [tn−1]

A,θ), for f ∈ Σ⟨n⟩.

3. A Σ-algebra A = (A,{ fA : An → A}) satisfies an equation s = t for s, t ∈ Ter(Σ,V), if
for every assignment θ : V→ A we have [s]A,θ = [t]A,θ . This is denoted byA |= s = t.
If A satisfies every equation in E we call A a model of E and denote this by A |= E.

We want to consider the initial models, where the set of satisfied equations is minimal.

Definition 3 (Initial Models).

1. Let A = (A,{ fA | f ∈ Σ}) and B = (B,{ f B | f ∈ Σ}) be Σ-algebras. h : A → B is
a Σ-homomorphism from A to B if for each f ∈ Σ⟨n⟩, with 0 ≤ n ≤ maxΣ, and all
a0, . . . , an−1 ∈ A we have

h(fA(a0, . . . , an−1)) = f B(h(a0), . . . , h(an−1)).

If h is bijective, we say A and B are isomorphic and call h a Σ-isomorphism.

2. LetA |= E for some set E of equations. A is said to be initial in (the class of all models
of) E if for every model B of E, there exists a unique Σ-homomorphism from A to B.

Initial models have in common the feature that they satisfy exactly those equations that
are derivable from E.

3.1. EQUATIONAL THEORIES 33

Definition 4 (Equational Derivation).
Let (Σ, E) be an equational specification and let t, s ∈ Ter(Σ,V).

1. t rewrites according to the term pair (l,r) at the sub-term position p to s, which we denote
by t →p

(l,r) s, if

• (i) l matches the sub-term of t at position p, i.e. there is a substitution σ such that
t|p = lσ, and

• (ii) s = t[rσ]p, i.e. s results from t by the replacement of t|p with rσ.

2. For equation sets E, we define
→
E := {(l,r) | l = r ∈ E} and

←
E := {(r, l) | l = r ∈ E}.

3. We define the binary relation =E on terms by: t =E s iff

• either t ≡ s, i.e. t and s are syntactically equal,

• or we have t1 →
p1
(l1,r1)

t2, . . . , tn →pn
(ln ,rn)

s with

– t1 ≡ t

– pi is a sub-term position of the term ti and (li,ri) ∈
→
E ∪

←
E , for 1≤ i ≤ n.

We say the equation t = s is derivable from E, if t =E s holds.

=E is an equivalence relation that is a congruence.

Definition 5 (Congruence; Quotient Algebra). Let Σ be a signature and A be a Σ-algebra.
An equivalence relation ∼ on the carrier set A is a Σ-congruence, if for each f ∈ Σ⟨n⟩ with
0≤ n ≤maxΣ and any a0, . . . , an−1, a′0, . . . , a′n−1 ∈ A we have

a0 ∼ a′0, . . . , an−1 ∼ a′n−1 ⇒ fA(a0, . . . , an−1) ∼ fA(a′0, . . . , a′n−1) .

The corresponding quotient algebra A/∼ is then given by

• (i) the carrier set A/∼, consisting of the equivalence classes [ai]∼, and

• (ii) by functions fA/∼ where fA/∼([a0]∼, . . . , [an−1]∼) = [fA(a0, . . . , an−1)]∼

The congruence =E provides us with a partition of Ter0(Σ) into subsets of semantically
equivalent terms.

Theorem 6. Let (Σ, E) be an equational specification.

1. Then =E is an equivalence relation on the set Ter0(Σ) and is a Σ-congruence.

2. The algebra I = (Ter0(Σ)/=E ,{ f I | f ∈ Σ}) where

f I ([t0]=E , . . . , [tn−1]=E) = [f (t0, . . . , tn−1)]=E

is an initial model of E.

34 CHAPTER 3. EQUATIONAL REASONING AND ALGEBRAIC INTRUDER MODELS

Proof: First, we prove that =E is an equivalence relation on Ter0(Σ) by showing
straightforwardly that =E is reflexive, symmetric and transitive.

We know that Ter0(Σ) is the carrier set of the ground term algebra T = (Ter0(Σ),Σ),
which is clearly a Σ-algebra. The proof that =E is a Σ-congruence consists in reusing the
equational derivations for t0 =E s0, . . . , tn−1 =E sn−1 to obtain an equational derivation for
f (t0, . . . , tn−1) =E f (s0, . . . , sn−1).

Let B = (B,{ f B | f ∈ Σ}) be an arbitrary model of E and let h : Ter0(Σ)/=E → B defined
by h([t]=E) = [t]B . We first prove that h is a Σ-homomorphism from I to B:

Applying the definition of f I and then that of h, we obtain

h(f I ([t0]=E , . . . , [tn−1]=E)) = h([f (t0, . . . , tn−1)]=E)

= [f (t0, . . . , tn−1)]
B .

Applying the definition of h (n-times), we get

f B(h([t0]=E), . . . , h([tn−1]=E)) = f B([t0]
B , . . . , [tn−1]

B).

As B is a model of E, we have [f (t0, . . . , tn−1)]
B = f B([t0]

B , . . . , [tn−1]
B) and thus h is a

Σ-homomorphism from I to B.
It remains to prove that h is the unique Σ-homomorphism from I to B: Assume that

h′ is another Σ-homomorphism from I to B. Then there must be some t ∈ Ter0(Σ) such
that h([t]=E) ̸= h′([t]=E). Let us consider such a term t so that t does not have any proper
sub-term s where h([s]=E) ̸= h′([s]=E).

If t = f and f ∈ Σ⟨0⟩, then we have h([t]=E) = h([f]=E) = [f]B . Since h′ is a Σ-
homomorphism, we get h′([t]=E) = h′(f I ()) = f B() = [f]B . Thus, we obtain a contra-
diction with h([t]=E) ̸= h′([t]=E).

When t = f (t0, . . . , tn−1) for some f ∈ Σ⟨n⟩ and n > 0, then h([ti]=E) and h′([ti]=E) must
be equal for all i ∈ {0, . . . ,n− 1}. As h′ is a Σ-homomorphism, we obtain

h′([t]=E) = h′([f (t0, . . . , tn−1)]=E)

= h′(f I ([t0]=E , . . . , [tn−1]=E))

= f B(h′([t0]=E), . . . , h′([tn−1]=E))

= f B(h([t0]=E), . . . , h([tn−1]=E))

= f B([t0]
B , . . . , [tn−1]

B)

= [f (t0, . . . , tn−1)]
B

= h([f (t0, . . . , tn−1)]=E)

= h([t]=E).

Thus, we got again a contradiction with h([t]=E) ̸= h′([t]=E). 2

In the rest of the thesis we will use [t]E and often [t] instead of [t]=E .

For our inductive approach we need recursive definitions of auxiliary functions and
predicates. These have to be based on semantic concepts like ”size” and ”substructure”.
The initial model I above gives no hint on how these may be obtained. Nevertheless
in more simple cases as the PACE algebra (see Sec. 2.3.2), the necessary structure can be
”guessed” simply from the equations. A solution for the more complex TC-AMP algebra
became only possible1 by a systematic analysis of an isomorphic semantics that is based on
rewriting.

1after quite some time

3.2. REWRITING-BASED MODELS 35

In contrast to the approach of Bergstra and Tucker, [19], where the focus is on com-
putability results, the rewriting-based algebra is used in our approach to analyze (reduced)
objects and operations on these objects and thus acquire the required structure. Based on
the semantic notions introduced object level axioms are then derived (see Chap. 5).

3.2 Rewriting-based Models

We introduce first the basic notions of (term) rewriting.

Definition 7 (Term Rewriting System).

1. Let B be a binary relation on some set S and let B∗ be the corresponding transitive-
reflexive closure.

(a) Some x ∈ S is B-reducible (a B-redex), if (x,y) ∈ B for some y ∈ S. We say x is a
B-normalform, if it is not reducible. We call y a B-normalform of x, if (x,y) ∈ B∗
and y is a normalform. A unique B-normalform of x is called the B-normalform
of x.

(b) The elements x and y are B-joinable, if there is some z such that (x,z), (y,z) ∈ B∗.
(c) B is local-confluent, if for all x,y1,y2 ∈ S with (x,y1), (x,y2) ∈ B we have y1 and

y2 are B-joinable.

(d) B is terminating, if for all x ∈ S there is no infinite sequence (x,y1), (y1,y2), . . . of
pairs in B.

(e) B is complete, if B is terminating and local-confluent.

2. A rewrite rule l→ r consists of a non-variable term l and a second term r whose vari-
ables occur in l.

3. We call a set R of rewrite rules a term rewriting system (TRS). R induces a binary rela-
tion on terms, denoted by t→R s; We have t→R s iff t →p

(l,r) s for a position p of a
sub-term in t and for some l→ r ∈ R.

We say, R is local-confluent (terminating/complete) if →R is local-confluent (termi-
nating/complete).

4. For a TRS R we define R= := {l = r | l→ r ∈ R}.

A complete TRS R allows us to obtain for each term s a unique t such that

• s→∗R t and

• t is not R-reducible.

t is the R-normalform of s, which we denote by s ↓R.

If a TRS R results by the completion of a given set E of equations, then we may assume
that the completion algorithm guarantees that the binary relations =E and =R= are identi-
cal. For an equational specification (Σ, E) the initial model I of E in Theorem 6 corresponds
then to (Ter0(Σ)/=R= ,{ f I | f ∈ Σ}) and we have

f I ([t0]=R= , . . . , [tn−1]=R=) = [f (t0, . . . , tn−1)]=R= .

That is, any rewriting-based algebra that is isomorphic to the initial model of R= is
clearly an initial model of E, too.

36 CHAPTER 3. EQUATIONAL REASONING AND ALGEBRAIC INTRUDER MODELS

Theorem 8. Let R be a complete TRS and (Σ, R=) be an equational specification. Then the algebra
R = ({t ↓R | t ∈ Ter0(Σ)},{ fR | f ∈ Σ}) where

fR(t0 ↓R, . . . , tn−1 ↓R) = f (t0, . . . , tn−1) ↓R

is isomorphic to the initial model I given in Theorem 6.

Proof: We use the function h : Ter0(Σ)/=R= → {t ↓R | t ∈ Ter0(Σ)} defined by
h([t]R=) := t ↓R. It is easy to show that h is a Σ-homomorphism from I to R and that h
is bijective. 2

Generally, certain equations, such as the commutativity of ⊕ in TC-AMP, are not ori-
entable without signature extension. This means, the introduction of new function symbols
and the definition of operations, such as sorting of lists. All these would change message
algebras by concepts at an implementation level. Instead of rewriting relations as defined
above, we use modular rewriting, [64, 84, 71]. Rewriting will be modulo equivalence classes
induced by the non-orientable equations.

Definition 9 (Modular Term Rewriting System).

1. Let R be a TRS and let A be a set of equations. For s, t ∈ Ter(Σ,V) we define s→R/A t
iff for some s′ and t′ such that s =A s′ and t =A t′ we have s′ →R t′. We call R/A a
modular TRS.

2. For [s], [t] ∈ Ter(Σ,V)/=A we define [s]→RA [t] iff for some s′ ∈ [s] and t′ ∈ [t] we have
s′→R t′. Clearly,→RA is a binary relation on A equivalence classes that determines a
binary relation on terms corresponding to→R/A and vice versa.

3. We say that R/A is a local-confluent/terminating/complete modular TRS iff→RA is
local-confluent/terminating/complete.

A complete modular TRS R/A does not guarantee the existence of unique R/A-
normalforms of terms s. But, it allows us to obtain for each term s a unique equivalence
class [t]A such that

• [s]A→∗RA
[t]A and

• [t]A is not RA-reducible.

[t]A is the RA-normalform of [s]A, which we denote by [s]A ↓RA .

If a modular TRS R/A results by the completion of a given set A ∪ E of equations,
then we assume like above that the equality of the binary relations =A∪E and =A∪R= is
guaranteed by the completion algorithm. For an equational specification (Σ, A ∪ E) the
initial model I of A ∪ E in Theorem 6 corresponds then to (Ter0(Σ)/=A∪R= ,{ f I | f ∈ Σ})
and we have

f I ([t0]=A∪R= , . . . , [tn−1]=A∪R=) = [f (t0, . . . , tn−1)]=A∪R= .

That is, any rewriting-based algebra that is isomorphic to the initial model of A ∪ R= is
clearly an initial model of A∪ E, too. This holds also for the following algebra that is based
on a modular TRS R/A.

Theorem 10. Let R/A be a complete modular TRS and (Σ, A∪ R=) be an equational specification.
Then the algebraRA = ({[t] ↓RA | [t] ∈ Ter0(Σ)/A},{ fRA | f ∈ Σ}) where

fRA([t0]A ↓RA , . . . , [tn−1]A ↓RA) = [f (t0, . . . , tn−1)]A ↓RA

is isomorphic to the initial model I given in Theorem 6.

3.3. MESSAGE ALGEBRAS AND INTRUDER KNOWLEDGE 37

Proof: We prove that the function h : Ter0(Σ)/A∪R= → {[t] ↓RA | [t] ∈ Ter0(Σ)/A}
defined by h([t]A∪R=) := [t]A ↓RA is a Σ-homomorphism from I toRA and h is bijective.

Applying the definition of f I and then that of h, we obtain

h(f I ([t0]A∪R= , . . . , [tn−1]A∪R=)) = h([f (t0, . . . , tn−1)]A∪R=)

= [f (t0, . . . , tn−1)]A ↓RA .

Applying the definition of h (n-times) and then that of fRA , we get

fRA(h([t0]A∪R=), . . . , h([tn−1]A∪R=)) = fRA([t0]A ↓RA , . . . , [tn−1]A ↓RA)

= [f (t0, . . . , tn−1)]A ↓RA .

That is, we have h(f I ([t0]A∪R= , . . . , [tn−1]A∪R=)) = fRA(h([t0]A∪R=), . . . , h([tn−1]A∪R=))
and thus h is a Σ-homomorphism from I toRA.

Next, we prove that h is injective: For t, s ∈ Ter0(Σ) with h([t]A∪R=) = h([s]A∪R=), we
have (by the definition of h) [t]A ↓RA= [s]A ↓RA . Since R/A is a complete modular TRS, we
obtain t =A∪R= s and thus [t]A∪R= = [s]A∪R= .

Finally, the proof that h is surjective is obvious: If we take any RA-reduced A-class
[t]A ↓RA , we know that [t]A ↓RA belongs to Ter0(Σ)/A∪R= and that h([t]A ↓RA) equals
[t]A ↓RA . 2

If A induces finite equivalence classes, the initial algebra RA is constructive. For our
purposes (protocol verification) we may consider sets A as disjoint partitions of permutative
equations on single function symbols, [94]. These do not only induce finite equivalence
classes but additionally allow for simpler definitions of concepts like size (of an object) and
(immediate) substructures.

3.3 Message Algebras and Intruder Knowledge

Inductive approaches to protocol verification consider arbitrary many protocol runs with
arbitrary many protocol agents. This means that we need an infinite repertoire of items
like nonces, passwords, and keys, (see Chap. 7). Therefore we add an enumerable infinite
set of atomic messages At to the basic constructs. As an alternative we might add notions
for numbers as additional message terms. However, this would complicate the message
algebra(s) and cause significant overhead in the proofs. Note that messages are not sorted
in any way. In the actual VSE axiomatisation auxiliary notions, like lists, sets, and numbers
will be given by separate sorts so that there is no interference with messages (see Chap. 7).

Definition 11 (Message Terms). Let Σ be a signature, V a set of variables and At be an
enumerable infinite set of atomic messages, which are disjoint with the function symbols in
Σ and the variables in V. The set of message terms Mes(Σ, At,V) is the smallest set satisfying

1. Σ⟨0⟩, At,V ⊆ Mes(Σ, At,V) and

2. { f (m0, . . . ,mn−1) | m0, . . . ,mn−1 ∈ Mes(Σ, At,V)} ⊆ Mes(Σ, At,V), where f ∈ Σ⟨n⟩
and n > 0.

We use Mes(Σ,V) for message terms without atomic messages and Mes0(Σ, At) for closed
message terms.

In our setting atomic messages as opposed to elements of Σ⟨0⟩ will not satisfy any
particular algebraic properties.

Definition 12 (Message Algebra Specification). Let Σ be a signature, V a set of variables,
At an enumerable infinite set of atomic messages and let E be a set of equations m0 = m1
where m0,m1 ∈ Mes(Σ,V). Then we call ((Σ, At), E) a message algebra specification.

38 CHAPTER 3. EQUATIONAL REASONING AND ALGEBRAIC INTRUDER MODELS

A message algebra specification ((Σ, At), A ∪ R=) where R/A is a complete modular
TRS allows us to define

1. the set C = {[m]A ↓RA | [m]A ∈ Mes0(Σ, At)/ =A}, consisting of the messages, and

2. the set { f C | f ∈ Σ \ Σ⟨0⟩}, consisting of the basic operations defined by

f C([m0]A ↓RA , . . . , [mn−1]A ↓RA) = [f (m0, . . . ,mn−1)]A ↓RA .

In this context, we interpret the message terms

• m ∈ At ∪ Σ⟨0⟩ by [m] = {m}, and

• f (m0, . . . ,mn−1) ∈ Mes0(Σ, At) \ (At ∪ Σ⟨0⟩) by

[f (m0, . . . ,mn−1)] = f C([m0], . . . , [mn−1]).

For all messages m,m′ ∈ Mes0(Σ, At) we have [m] = [m′]⇔ m =A∪R= m′: After fixing
m and m′, it is possible to extend Σ to Σ′ such that

1. Σ′⟨0⟩ extends Σ⟨0⟩ with the atomic messages that occur in m and/or m′, and

2. Σ′⟨i⟩ = Σ⟨i⟩ for all i > 0.

It is clear that [m] = [m]RA and [m′] = [m′]RA for the initial model RA of the equational
specification (Σ′, A∪R=). For that reason, we may employ [m]RA = [m′]RA ⇔m =A∪R= m′

to get the above equivalence.

For an intruder only a subset Op ⊆ (Σ \ Σ⟨0⟩) of function symbols might be avail-
able, which restricts her basic operations to the elements of { f C | f ∈ Op}. The knowl-
edge an intruder is able to gain from an arbitrary but finite set of immediate observations
ik ⊂ Mes0(Σ, At) is then given straightforwardly by an inductive definition.

DefinitionVSE 13 (DY-Knowledge (Intruder Knowledge)):
Let Op ⊆ (Σ \ Σ⟨0⟩) and let ik ⊂ Mes0(Σ, At). The DY-knowledge obtainable from ik using
Op, DYOp(ik), is defined by

m ∈ DYOp(ik)⇔ (∃n ∈N : m ∈ DYlOp(ik,n)), where

1. DYlOp(ik,0) = ik and

2. DYlOp(ik, i + 1) = DYlOp(ik, i)
∪ { f (m0, . . . ,mn−1) | f ∈Op ∩ Σ⟨n⟩,mj(<n) ∈ DYlOp(ik, i)}.

This definition is generic, as it depends only on the considered function symbols in Op.

Note that Op is disjoint with Σ⟨0⟩ and this guarantees that DYOp(∅) = ∅, i.e. the in-
truder is not able to generate any message from scratch.

A major problem in the inductive approach is to show (by induction) that some secret s
does not belong to DYOp(ik) for all observations ik produced by the protocol. For that pur-
pose, we want to ”check” elements of ik whether they are critical for secrets {s, . . .}. From
”∀m ∈ ik : m is not critical for {s, . . .}” should then follow that {s, . . .} ∩ DYOp(ik) = ∅. The
”check” function will be specified recursively on m (see Chap. 6). In order to obtain such
consistent (and suitable) extensions, a thorough analysis of the initial models is indispens-
able (see Chap. 5). This is based on a complete modular TRS R/A, which we obtain from
the equations as described in the next chapter.

Chapter 4

From Equations to a Complete
(Modular) TRS

In this chapter we describe how to obtain appropriate complete rewriting relations R/A
for given equations E of message algebra specifications. This consists principally in

1. fixing a set A ⊆ E of non-orientable equations,

2. choosing an appropriate orientation of the remaining equations to obtain a first set
R0 of rewrite rules, and

3. looking for a final set R of rewrite rules such that R/A is a complete modular TRS
and =A∪R= equals =A∪R=

0
.

Since =E equals =A∪R=
0

, we guarantee in (3) that =E and =A∪R= are equal as required
in Sec. 3.2.

The third step is called completion (of R0) modulo equations (A). The known ap-
proaches are based on algorithms for unification modulo A and expect these algorithms
to return finite unifier sets, [71, 9, 104]. The accessible tools support to the best of our
knowledge only completion modulo associativity and commutativity (AC). For this rea-
son, we propose a completion approach that works for other kinds of modulo theories
used in message algebras (see Sec. 4.1– 4.4). This allows us to obtain the rewriting relations
for the PACE- and the TC-AMP-algebra (see Sec. 4.5 and 4.6).

4.1 Message Algebra Equations and Their Orientation

We start by defining the features of the usual equations in message algebras, [42].

Definition 14.

1. Let E be a set of equations. We call l = r ∈ E a cancellation equation in E, if the right-
hand side r is either a sub-term of the left-hand side l or r ∈ Σ⟨0⟩.

2. We call a set of equations a FEC-theory, if it induces finite equivalence classes. The
elements of this set are said to be FEC-equations.

3. An equation l = r is permutative, if the number of occurrences of the symbols in the
left-hand side l is the same as in the right-hand side r. A set of permutative equations
is called a permutative theory.

4. We call a function symbol f permutative, if f satisfies a permutative equation l = r
where l and r contain no other function symbols.

39

40 CHAPTER 4. FROM EQUATIONS TO A COMPLETE (MODULAR) TRS

Permutative theories are FEC-theories, [94].

Cancellation equations are inherently rewrite rules. They allow us for instance to re-
verse the application of other function symbols, as it is required for decryption of encrypted
messages.

For a given equation set E we determine the sets A and R0 according to the following
principle:

• The set EC of the cancellation equations in E provides us with a first subset
→
EC of R0.

Here, we obtain a first partial order <EC on terms given by the transitive closure of
→
EC (denoted by (

→
EC)

+), i.e. we have

t <EC s iff s→+
→
EC

t.

• The remaining set E \ EC contains generally equations that are known to be non-
orientable. A comprehensive review of equations used in cryptographic protocols
shows that we have to deal with two categories of non-orientable equations:

1. Equations f (f (x,y),z) = f (x, f (y,z)) and f (x,y) = f (y, x) specify that f is asso-
ciative and commutative (AC).

2. Equations f (f (x,y),z) = f (f (x,z),y) (resp. f (x, f (y,z)) = f (y, f (x,z))), specify
that f allows for the permutation of the sub-terms at the positions 1 · 2 and 2
(resp. 2 · 1 and 1).

We include all equations of categories (1) and (2) in A.

• Finally, we appropriately orient the remaining equations in E \ (EC ∪ A) to get the
complementary subset of R0. Hereby, we obtain a partial order <R0 on terms given
(as well) by the transitive closure of R0/A, i.e. we have

t <R0 s iff s→+
→

R0/A
t.

Obviously, we have <EC⊆<R0 .

The rewriting relation R0/A is not necessarily complete. So, we need to check this
property and adapt or extend the rewrite rules if needed. For this purpose we developed a
completion approach where nice features of the considered permutative equations are ex-
ploited: We first introduce the benefit of these features for rewriting modulo the considered
equations (Sec. 4.2), then provide an analysis of local confluence (Sec. 4.3), and we finally
describe the completion procedure (Sec. 4.4).

4.2 Rewriting modulo Specific Permutative Equations

In the rest of this chapter we assume that the permutative theories A are on permutative
function symbols, where equations are defined on single function symbols. Permutative
theories on different function symbols of this kind can be seen as independent. This allows
us to separate the application of the permutative equations in modular rewriting into linked
and decoupled equational derivations. We may thus abstract away from the decoupled ones
during the analysis of local confluence (see Sec. 4.3).

Before we provide the theorem that allows us to separate linked and decoupled equa-
tional derivations, we first introduce underlying notions.

4.2. REWRITING MODULO SPECIFIC PERMUTATIVE EQUATIONS 41

Definition 15.

1. We use p • q to denote the concatenation of two subterm positions: For p = i0 · . . . ·
iN(i)−1 · ϵ and q = j0 · . . . · jN(j)−1 · ϵ, we have p • q = i0 · . . . · iN(i)−1 · j0 · . . . · jN(j)−1 · ϵ.

We use Pos(t) to denote the set of the sub-term positions in t.

We define LPos(t) := {p | p ∈ Pos(t) and t|p is a constant or a variable}, which con-
sists of the positions of the atomic sub-terms of t.

We define FPos(t) := Pos(t) \LPos(t), which consists of the positions of the composed
sub-terms of t.

For p,q ∈ Pos(t), we say p is below q iff p = q • (i0 · . . . · in), i.e. t|p occurs as a proper
subterm in t|q. We say p and q are non-overlapping iff p ̸= q, p is not below q and q is
not below p.

2. Let f be a function symbol in Σ⟨n⟩with n > 0 and let t be an arbitrary term. We define
the f -structure of t, denoted Struct f (t), by:

(a) Struct f (t) = ∅, if t is a constant (resp. a variable) or the top-symbol of t differs
from f ,

(b) and Struct f (t) = {ϵ} ∪ {1 • p | p ∈ Struct f (t|1)} ∪ . . .∪ {n • p | p ∈ Struct f (t|n)},
when f is the top-symbol of t.

We say t is a f -term, if Struct f (t) ̸= ∅.

The subterms of t at positions q ∈ {i • p | 0 < i ≤ n and p ∈ Struct f (t)} are called the
f -subterms of t.

Every f -subterm that is not a f -term is called to be basic.

3. Let p in FPos(t) satisfy

• t|p has a permutative function symbol f as its top-symbol,

• and there is no q ∈ FPos(t) such that q · i = p and t|q has f as top-symbol.

We call {p • q | q ∈ Struct f (t|p)} a non-rigid pattern in t and p its top-position.

We call q ∈ FPos(t) a rigid occurrence of a function symbol if q does not belong to any
non-rigid pattern.

For q ∈ FPos(t), we use q̂ to denote the top-position of the non-rigid pattern q belongs
to, if any, and q itself, otherwise.

As for example, the set A in the TC-AMP algebra will contain equations on ’∗’ and on
’⊕’ (see Sec. 4.6). A term t = f st(∗(c,∗(inv(b),∗(a,∗(b,v))))) contains one non-rigid pattern
(having ∗ as its permutative function symbol). It is given by {1,1 · 2,1 · 2 · 2,1 · 2 · 2 · 2},
where 1 is the corresponding top-position in t. This induces 1̂ · 2 = 1̂ · 2 · 2 = ̂1 · 2 · 2 · 2 = 1.
The sub-term positions ϵ and 1 · 2 · 1 are rigid occurrences.

We have defined non-rigid patterns relative to the permutative function symbols (oc-
curring in A), because the application of equations in A (preceding the rule matching) in a
modular rewrite step permutes sub-terms only at positions below the top-positions of these
patterns. Note that the number of function symbol occurrences (the rigid occurrences as
well as in non-rigid patterns) is preserved.

In every permutative equation l = r, l includes one non-rigid pattern that transforms to
the sole non-rigid pattern of r. There is no rigid occurrence of function symbols.

Since Pos(l) and Pos(r) have the same cardinality, and all symbols in l have the same
number of occurrences in r, there must be a bijective mapping h̄[l,r] ⊂ Pos(l)× Pos(r) that
satisfies the following conditions:

42 CHAPTER 4. FROM EQUATIONS TO A COMPLETE (MODULAR) TRS

1. (ϵ,ϵ) ∈ h̄[l,r] and

2. (p,q) ∈ h̄[l,r]⇔
((p ∈ FPos(l) ∧ q ∈ FPos(r)) ∨ (p ∈ LPos(l) ∧ q ∈ LPos(r) ∧ l|p = r|q).

We associate every permutative equation l = r with such a bijective mapping that we denote
h̄[l,r]. When l = r is defined on a single function symbol, h̄[l,r] permits to characterize any
equational derivation step t →p

(l,r) s as explained below. The inverse mapping (h̄[l,r])−1,
which corresponds clearly to a bijective mapping h̄[r, l] ⊂ Pos(r) × Pos(l) satisfying as
well conditions (1) and (2), permits to characterize similarly any equational derivation step
t →p

(r,l) s.

Definition 16. Let l = r be some permutative equation (on a single function symbol) and
let t be an arbitrary term having a sub-term that matches l. Using the bijective mapping
h̄[l,r] ⊂ Pos(l) × Pos(r) associated with l = r, we define the following function h̄[t, (l,r)]
from {p | p ∈ FPos(t) and t|p matches l} × Pos(t) to a finite set of term positions by:

h̄[t, (l,r)](p,q) =

 p • h̄[l,r](pl) : q = p • pl and pl ∈ Pos(l)
p • h̄[l,r](pl) • pt : q = p • pl • pt and pl ∈ LPos(l)
q : otherwise

If we fix p for some t|p = lσ and we put the top-symbol of every sub-term t|q at the
position h̄[t, (l,r)](p,q), we obtain the term t[rσ]p. As t[rσ]p satisfies t →p

(l,r) t[rσ]p, we
say that the function h̄[t, (l,r)] characterizes any transformation of t by a left-right ap-
plication of l = r (or by an equational derivation step using (l,r)). In fact, the function
q 7→ h̄[t, (l,r)](p,q) is a bijective mapping from Pos(t) to Pos(t[rσ]p), which fulfills the fol-
lowing properties.

Theorem 17. Let A be a set of permutative equations on same function symbols, (l,r) ∈
→
A ∪

←
A

and let t and s satisfy t →p
(l,r) s. Then the mapping h̄[t, (l,r)] satisfies the following properties:

1. For q1,q2 ∈ FPos(t), we have

(a) h̄[t, (l,r)](p, q̂2) is below h̄[t, (l,r)](p, q̂1) if q̂2 is below q̂1, and

(b) h̄[t, (l,r)](p, q̂1) and h̄[t, (l,r)](p, q̂2) are non-overlapping if q̂1 and q̂2 are non-
overlapping.

2. For all q ∈ FPos(t), we have t|q̂ =A s|h̄[t, (l,r)](p, q̂).

3. For q1,q2 ∈ FPos(t) such that q̂1 and q̂2 are non-overlapping, we have
t[., .]q̂1,q̂2 =A s[., .]h̄[t,(l,r)](p,q̂1),h̄[t,(l,r)](p,q̂2)

.

Proof: We start with property (1-a): Since q̂2 is below q̂1, we have q̂2 = q̂1 • q3 for q3 ̸= ϵ.
According to the definition of h̄[t, (l,r)], we distinguish the following cases:

1. q̂1 = p • pl for pl ∈ Pos(l): If pl ∈ FPos(l), q̂1 and p belong to a same non-rigid pattern.
As q̂1 is the top-position of this pattern, we obtain pl = ϵ, q̂1 = p and h̄[t, (l,r)](q̂1) =
q̂1 = p. This means, q̂2 = p • q3 is of the form p • pl or p • pl • pt. That is, h̄[t, (l,r)](q̂2)
equals p • h̄[l,r](pl) or p • h̄[l,r](pl) • pt. Hence, h̄[t, (l,r)](q̂2) is below h̄[t, (l,r)](q̂1),
in both cases.

Otherwise, pl ∈ LPos(l) implies h̄[t, (l,r)](q̂1) = p • h̄[l,r](pl), q̂2 = q̂1 • q3 is of the
form p • pl • q3 and h̄[t, (l,r)](q̂2) = p • h̄[l,r](pl) • q3. Hence, h̄[t, (l,r)](q̂2) is below
h̄[t, (l,r)](q̂1).

4.2. REWRITING MODULO SPECIFIC PERMUTATIVE EQUATIONS 43

2. q̂1 = p • pl • pt for pl ∈ LPos(l): This implies h̄[t, (l,r)](q̂1) = p • h̄[l,r](pl) • pt, q̂2 =
q̂1 • q3 is of the form p • pl • pt • q3 and h̄[t, (l,r)](q̂2) = p • h̄[l,r](pl) • pt • q3. Hence,
h̄[t, (l,r)](q̂2) is below h̄[t, (l,r)](q̂1).

3. q̂1 ̸= p • pl • pt for pl ∈ Pos(l): Here, h̄[t, (l,r)](q̂1) = q̂1.

If q̂2 = q̂1 • q3 is of the form p • pl or p • pl • pt, we obtain p is below q̂1. This implies
h̄[t, (l,r)](q̂2) = p • h̄[l,r](pl) or h̄[t, (l,r)](q̂2) = p • h̄[l,r](pl) • pt. Hence, h̄[t, (l,r)](q̂2)
is below q̂1, i.e. h̄[t, (l,r)](q̂1), as required.

Otherwise, h̄[t, (l,r)](q̂2) = q̂2 and thus h̄[t, (l,r)](q̂2) is trivially below h̄[t, (l,r)](q̂1)

Next, we prove property (1-b) by contraposition: Assuming that h̄[t, (l,r)](p, q̂1) and
h̄[t, (l,r)](p, q̂2) are not non-overlapping, yields to the following cases:

1. h̄[t, (l,r)](p, q̂1) = h̄[t, (l,r)](p, q̂2): Since the function q 7→ h̄[t, (l,r)](p,q) is bijective,
we obtain q̂1 = q̂2. Hence, q̂1 and q̂2 are not non-overlapping.

2. h̄[t, (l,r)](p, q̂1) is below h̄[t, (l,r)](p, q̂2): Focusing on h̄[t, (l,r)](p, q̂2), the definition of
h̄[t, (l,r)] provides three cases:

(a) q̂2 = p • pl , pl ∈ Pos(l) and h̄[t, (l,r)](p, q̂2) = p • h̄[l,r](pl): Similar to the proof
of (1-a), we obtain two cases:

• q̂2 = p and h̄[t, (l,r)](p, q̂2) = p: Since the position h̄[t, (l,r)](p, q̂1) is below
h̄[t, (l,r)](p, q̂2), we obtain h̄[t, (l,r)](p, q̂1) is of the form p • q3 for q3 ̸= ϵ.
According to the definition of h̄[t, (l,r)], we get either (i) q̂1 = p • p′l • p′t for
p′l ∈ Pos(l) or (ii) q̂1 = p • q3. In both cases, q̂1 is below q̂2. Hence, q̂1 and q̂2
are not non-overlapping.

• pl ∈ LPos(l) implies h̄[l,r](pl) = pr for pr ∈ LPos(r): Since h̄[t, (l,r)](p, q̂1)
is below h̄[t, (l,r)](p, q̂2), we obtain h̄[t, (l,r)](p, q̂1) is of the form p • pr • q3
for q3 ̸= ϵ. According to the definition of h̄[t, (l,r)], q̂1 must be of the form
p • pl • q3. This means that q̂1 is below q̂2. Hence, q̂1 and q̂2 are not non-
overlapping.

(b) q̂2 = p • pl • pt, pl ∈ LPos(l) and h̄[t, (l,r)](p, q̂2) = p • h̄[l,r](pl) • pt: As in
the previous case, we have h̄[l,r](pl) = pr for pr ∈ LPos(r) and this yields
h̄[t, (l,r)](p, q̂1) = p • pr • pt • q3 for q3 ̸= ϵ. Similarly, we obtain q̂1 = p • pl • pt •
q3. This means that q̂1 is below q̂2. Hence, q̂1 and q̂2 are not non-overlapping.

(c) q̂2 ̸= p • pl • pt for pl ∈ Pos(l) and h̄[t, (l,r)](p, q̂2) = q̂2: Since h̄[t, (l,r)](p, q̂1) is
below h̄[t, (l,r)](p, q̂2), we obtain h̄[t, (l,r)](p, q̂1) is of the form q̂2 • q3 for q3 ̸= ϵ.
According to the definition of h̄[t, (l,r)], we distinguish the following cases:

• q̂1 = p and h̄[t, (l,r)](p, q̂1) = p: That is, q̂1 = q̂2 • q3. This means that q̂1 is
below q̂2. Hence, q̂1 and q̂2 are not non-overlapping.

• q̂1 = p • pl , pl ∈ LPos(l) and h̄[t, (l,r)](p, q̂1) = p • h̄[l,r](pl): That is, p •
h̄[l,r](pl) = q̂2 • q3. Since q̂2 ̸= p • pl • pt, p must be below q̂2. This means
that q̂1 is below q̂2. Hence, q̂1 and q̂2 are not non-overlapping.

• q̂1 = p • pl • pt, pl ∈ LPos(l) and h̄[t, (l,r)](p, q̂1) = p • h̄[l,r](pl) • pt: That is,
p • h̄[l,r](pl) • pt = q̂2 • q3. Since q̂2 ̸= p • pl • pt, p must be below q̂2. This
means that q̂1 is below q̂2. Hence, q̂1 and q̂2 are not non-overlapping.

• q̂1 ̸= p • pl • pt for pl ∈ Pos(l) and h̄[t, (l,r)](p, q̂1) = q̂1: That is, q̂1 = q̂2 • q3.
This means that q̂1 is below q̂2. Hence, q̂1 and q̂2 are not non-overlapping.

3. h̄[t, (l,r)](p, q̂2) is below h̄[t, (l,r)](p, q̂1): It is similar to case (2).

44 CHAPTER 4. FROM EQUATIONS TO A COMPLETE (MODULAR) TRS

Regarding property (2), the definition of h̄[t, (l,r)] implies t|q′ = s|h̄[t, (l,r)](q′) for all q′

different from p • pl for pl ∈ FPos(l). This means, we have t|q̂ = s|h̄[t, (l,r)](q̂) if q̂ ̸= p • pl
for pl ∈ FPos(l).

In the complementary case, i.e. q̂ ̸= p • pl for pl ∈ FPos(l), we obtain q̂ = p as q̂ and
p belong to the same non-rigid pattern. That is, we have h̄[t, (l,r)](q̂) = p, t|q̂ = lσ and
s|h̄[t, (l,r)](q̂) = rσ. Hence, it follows t|q̂ =A s|h̄[t, (l,r)](q̂), as required.

Finally, we prove property (3) by the following case distinction:

1. q̂1 equals p or p is below q̂1: Here, we have h̄[t, (l,r)](q̂1) = q̂1, t|q̂1 = c1[lσ] and s|q̂1 =
c1[rσ].

Since q̂2 is non-overlapping with q̂1, q̂2 is also non-overlapping with p. This means,
h̄[t, (l,r)](q̂2) = q̂2 and t|q̂2 = s|q̂2.

For c2 = t|q̂2, we obtain t[c1[lσ], c2]q̂1,q̂2 =A t[c1[rσ], c2]q̂1,q̂2 = s[c1[rσ], c2]q̂1,q̂2 . Hence, it
follows t[., .]q̂1,q̂2 =A s[., .]h̄[t,(l,r)](q̂1),h̄[t,(l,r)](q̂2)

.

2. q̂1 is below p with q̂1 = p • pl1 • pt1 for pl1 ∈ LPos(l): Here, we have h̄[t, (l,r)](q̂1) =
p • h̄[l,r](pl1) • pt1 and (lσ)|pl1 = c1[t|q̂1]pt1 = (rσ)|h̄[l,r](pl1).

Since q̂2 is non-overlapping with q̂1, p may not be equal or below q̂2, which yields
two cases:

(a) The position q̂2 is below p with q̂2 = p • pl2 • pt2 for pl2 ∈ LPos(l): This means,
h̄[t, (l,r)](q̂2) = p • h̄[l,r](pl2) • pt2 and (lσ)|pl2 = c2[t|q̂2]pt2 = (rσ)|h̄[l,r](pl2).
That is, we have

t[t|q̂1, t|q̂2]q̂1,q̂2 = t[(lσ)[c1[t|q̂1]pt1 , c2[t|q̂2]pt2]pl1,pl2]p

=A t[(rσ)[c1[t|q̂1]pt1 , c2[t|q̂2]pt2]h̄[l,r](pl1),h̄[l,r](pl2)
]p

= s[s|h̄[t, (l,r)](q̂1), s|h̄[t, (l,r)](q̂2)]h̄[t,(l,r)](q̂1),h̄[t,(l,r)](q̂2)
.

(b) p and q̂2 are non-overlapping: Like in (1), we have h̄[t, (l,r)](q̂2) = q̂2 and t|q̂2 =
s|q̂2. For c2 = t|q̂2, we obtain

t[t|q̂1, c2]q̂1,q̂2 = t[(lσ)[c1[t|q̂1]pt1]pl1 , c2]p,q̂2

=A t[(rσ)[c1[t|q̂1]pt1]h̄[l,r](pl1)
, c2]p,q̂2

= s[s|h̄[t, (l,r)](q̂1), s|h̄[t, (l,r)](q̂2)]h̄[t,(l,r)](q̂1),h̄[t,(l,r)](q̂2)
.

Hence, it follows t[., .]q̂1,q̂2 =A s[., .]h̄[t,(l,r)](q̂1),h̄[t,(l,r)](q̂2)
in (a) and (b).

3. q̂1 and q̂2 are non-overlapping with p: Like in (1), we have h̄[t, (l,r)](q̂1) = q̂1,
t|q̂1 = s|q̂1, h̄[t, (l,r)](q̂2) = q̂2 and t|q̂2 = s|q̂2. For c1 = t|q̂1 and c2 = t|q̂2, we obtain
t[c1, c2]q̂1,q̂2 =A s[c1, c2]q̂1,q̂2 . Hence, it follows t[., .]q̂1,q̂2 =A s[., .]h̄[t,(l,r)](q̂1),h̄[t,(l,r)](q̂2)

. 2

The properties in theorem 17 can be transferred (by induction) to equational derivations
with several steps. For arbitrary t =A s, we obtain thus a bijective mapping from Pos(t) to
Pos(s) that characterizes the transformation of t to s and fulfills the same properties like
h̄[t, (l,r)].

Theorem 18. Let A be a set of permutative equations on same function symbols and let t and s be
two syntactically different terms with t =A s. Then there is a bijective mapping h̄[t, s] from Pos(t)
to Pos(s) fulfilling the following properties:

1. For all q ∈ FPos(t), we have ̂h̄[t, s](q̂) = h̄[t, s](q̂).

4.2. REWRITING MODULO SPECIFIC PERMUTATIVE EQUATIONS 45

2. For q1,q2 ∈ FPos(t), we have

(a) h̄[t, s](q̂2) is below h̄[t, s](q̂1) if q̂2 is below q̂1, and
(b) h̄[t, s](q̂1) and h̄[t, s](q̂2) are non-overlapping if q̂1 and q̂2 are non-overlapping.

3. For all q ∈ FPos(t), we have t|q̂ =A s|h̄[t, s](q̂).

4. For q1,q2 ∈ FPos(t) such that q̂1 and q̂2 are non-overlapping, we have
t[., .]q̂1,q̂2 =A s[., .]h̄[t,s](q̂1),h̄[t,s](q̂2)

.

Proof: The proof is by induction on the number of the equational derivation steps that
transform t to s.

In the base case, we have t →p1
(l1,r1)

s. Here, we define h̄[t, s] : q 7→ h̄[t, (l1,r1)](p1,q).
Properties (2)–(4) hold due to theorem 17. Property (1) is shown by the following case
distinction:

1. q̂ = p • pl for pl ∈ FPos(l1): This holds only when q̂ = p and if p = p1 · i1 then t|p
and t|p1 have different top-symbols. Here, we have h̄[t, (l1,r1)](p, q̂) = p = q̂ and

̂h̄[t, (l1,r1)](p, q̂) = p̂ = q̂, as required.

2. q̂ = p • pl for pl ∈ LPos(l1): This holds only when the top-symbol of t|q̂ differs
from the top-symbol of l1. Here, we have h̄[t, (l1,r1)](p, q̂) = p • h̄[l1,r1](pl). Since
l1|pl = r1|h̄[l1,r1](pl), t|q̂ and s|h̄[t, (l1,r1)](p, q̂) have the same top-symbol. Further-
more, if h̄[l1,r1](pl) = p′l · i

′ then s|(p • p′l) has the same top-symbol like l1. Hence,
̂h̄[t, (l1,r1)](p, q̂) = h̄[t, (l1,r1)](p, q̂), as required.

3. q̂ = p • pl • pt for pl ∈ LPos(l1): The proof is similar to the previous case.

4. q̂ ̸= p • pl • pt for pl ∈ Pos(l1): Here, we have h̄[t, (l1,r1)](p, q̂) = q̂, which trivially

implies ̂h̄[t, (l1,r1)](p, q̂) = h̄[t, (l1,r1)](p, q̂).

In the step case, we have t →p1
(l1,r1)

t2, . . . , tn →pn
(ln ,rn)

s for n > 1. The induction
hypothesis yields h̄[t, tn] with the required properties, which we use to define h̄[t, s] : q 7→
h̄[tn, (ln,rn)](pn, h̄[t, tn](q)), where q 7→ h̄[tn, (ln,rn)](pn,q) characterizes the last derivation
step. The required properties of h̄[t, s] are shown (also based on theorem 17) as follows:

• To show ̂h̄[t, s](q̂) = h̄[t, s](q̂) for property (1), we use ̂h̄[t, tn](q̂) = h̄[t, tn](q̂) (provided
by the induction hypothesis). This permits to reduce the proof goal to the equal-

ity
̂

h̄[tn, (ln,rn)](pn, ̂h̄[t, tn](q̂)) = h̄[tn, (ln,rn)](pn, ̂h̄[t, tn](q̂)). This proof goal can be
shown as in the base case.

• To show property (2-a), we consider arbitrary q1,q2 ∈ FPos(t) such that q̂2 is
below q̂1. By the induction hypothesis, h̄[t, tn](q̂2) must be below h̄[t, tn](q̂1).
Then, theorem 17 and property (1) imply that h̄[tn, (ln,rn)](pn, h̄[t, tn](q̂2)) is below
h̄[tn, (ln,rn)](pn, h̄[t, tn](q̂1)). Hence, h̄[t, s](q̂2) is below h̄[t, s](q̂1), as required.

• Property (2-b) is shown according to the same principle as in the proof of (2-a).

• To show property (3), we use t|q̂ =A tn|h̄[t, tn](q̂) (provided by the induction hypoth-
esis) and tn|h̄[t, tn](q̂) =A s|h̄[tn, (ln,rn)](pn, h̄[t, tn](q̂)) (provided by theorem 17 and
property (1)). This trivially yields t|q̂ =A s|h̄[tn, (ln,rn)](pn, h̄[t, tn](q̂)) = s|h̄[t, s](q̂), as
required.

• To show property (4), we use

46 CHAPTER 4. FROM EQUATIONS TO A COMPLETE (MODULAR) TRS

(a) t[., .]q̂1,q̂2 =A tn[., .]h̄[t,tn](q̂1),h̄[t,tn](q̂2)

(b) and tn[., .]h̄[t,tn](q̂1),h̄[t,tn](q̂2)
=A s[., .]h̄[tn ,(ln ,rn)](pn ,h̄[t,tn](q̂1)),h̄[tn ,(ln ,rn)](pn ,h̄[t,tn](q̂2))

.

(a) is provided by the induction hypothesis and (b) by theorem 17 together with prop-
erty (1). This trivially yields t[., .]q̂1,q̂2 =A s[., .]h̄[t,s](q̂1),h̄[t,s](q̂2)

, as required. 2

The inverse equational derivation of t from s can be characterized the same way with a
bijective mapping h̄[s, t] ⊂ Pos(s)× Pos(t) corresponding to the inverse function of h̄[t, s].
This means, h̄[s, t] = (h̄[t, s])−1.

Theorem 18 allows us to localize the scope of the rule application in every rewriting step
t→R/A s, by identifying a sub-term of t where the application of equations from A might
influence the application of the rule from R.

Theorem 19. Let A be a set of permutative equations on same function symbols, l→ r a rewrite
rule, and let t, t′, s, s′ be terms such that t =A t′, t′→p

l→r s′, s′ =A s. Then we have

1. t′| p̂ =A t|h̄[t′, t](p̂)

2. p = p̂ • q (with q equals ϵ or a position of a proper subterm in t′| p̂) and there is a substitution
σ with (t′| p̂)|q = lσ, (s′| p̂)|q = rσ and (t′| p̂)[.]q = (s′| p̂)[.]q.

If q = q1 . . . qn, i.e. q is a position of a proper subterm in t′| p̂, then p̂ • (q1 · . . . · qj) is in
FPos(t′| p̂) for 1 ≤ j ≤ n. This means, all subterms t′| p̂, t′| p̂ • (q1), . . ., t′| p̂ • (q1 . . . qn−1)
and t′|p have the same top-symbol, which equals the top-symbol of l.

3. s′[.] p̂ = t′[.] p̂ =A t[.]h̄[t′ ,t](p̂), and

s′[.] p̂ =A s[.]h̄[s′ ,s](p̂)

Proof: Properties (1)–(3) can be easily proven using our definition of a rewriting step
(cp. Def. 4-(1)) and the results of Theorem 18. 2

Theorem 19 provides us with a term context (t[.]h̄[t′ ,t](p̂) =A t′[.] p̂ = s′[.] p̂ =A s[.]h̄[s′ ,s](p̂))
where equality modulo A is decoupled from the rewrite step. Contrarily, the rewrite step
in the corresponding subterm t′| p̂ =A t|h̄[t′, t](p̂) could be influenced by equality modulo
A. This means, the rewrite step and equality modulo A are linked in this subterm, which
we call the application scope of the rewrite rule. It is given by the top-symbol of the rule left-
hand side and the subterm position of the (pure) reduction step: When the rewrite rule is
applied to t′ at position p for t =A t′, the application scope of this rewrite rule in t is at
position h̄[t′, t](p̂).

According to property (2), (pure) rewriting replaces a subterm of the application scope
and preserves the corresponding context. We call the former (part of the application scope)
the rewrite scope and the latter the equational context, which can be clearly empty. In this case,
the application scope and the rewrite scope coincide.

Recall the above example t = f st(∗(c,∗(inv(b),∗(a,∗(b,v))))) from the TC-AMP alge-
bra. We will see that the subterm ∗(inv(b),∗(a,∗(b,v))) at position 1 · 2 is reducible with a
rule ∗(x,∗(inv(x),y))→ y to ∗(a,v). The scope of this rule application corresponds to the
subterm ∗(c,∗(inv(b),∗(a,∗(b,v)))), which determines the context f st(.) where the appli-
cation of any equation from A can be decoupled from the considered rule application.

The example makes clear that the application scope of a rule is not limited to the re-
placed subterm (the rewrite scope ∗(inv(b),∗(a,∗(b,v))) =A ∗(b,∗(inv(b),∗(a,v)))). If A
contains equations on the top-symbol of l, the application scope can have additionally a
non-empty equational context. It corresponds to ∗(c, .) in our example.

4.3. ANALYSIS OF LOCAL CONFLUENCE 47

Figure 4.1: Separated Application Scopes

4.3 Analysis of Local Confluence

Based on the results of Sec. 4.2, we want to determine the joining requirements that we may
focus on in our completion procedure.

We consider in the rest of this section two arbitrary reduction steps t →R/A s1 and
t →R/A s2. They provide us with (intermediate) terms t1, s′1, t2, s′2, rules l1 → r1, l2 → r2,
non-variable subterm positions p1, p2, and with substitutions σ1,σ2 such that

(i) t =A t1, t1→
p1
l1→r1

s′1, s′1 =A s1, t1|p1 = l1σ1 and

(ii) t =A t2, t2→
p2
l2→r2

s′2, s′2 =A s2, t2|p2 = l2σ2.

We describe how to join s1 and s2 in case the application scopes are separated (see
Sec. 4.3.1) and in case of an overlap at a variable position (see Sec. 4.3.3). Additionally,
we analyze all possible situations for overlapping application scopes (see Sec. 4.3.2) and
identify corresponding joining requirements to focus on in our completion algorithm.

4.3.1 Separated Application Scopes:

The application scopes of l1→ r1 and l2→ r2 are separated, if the subterm positions p̂1 and
h̄[t2, t1](p̂2) are non-overlapping. Here, s1 and s2 can be joined as depicted in Fig 4.1:

48 CHAPTER 4. FROM EQUATIONS TO A COMPLETE (MODULAR) TRS

We show below how s1 and s2 can be joined based on the following facts:

1. The rewrite step (i) provides s1 =A s′1[s
′
1| p̂1] p̂1 = t1[s′1| p̂1] p̂1 . Since p̂1 and h̄[t2, t1](p̂2)

are non-overlapping, we obtain s1 =A t1[s′1| p̂1, t1|h̄[t2, t1](p̂2)] p̂1,h̄[t2,t1](p̂2)
.

2. t1|h̄[t2, t1](p̂2) =A t2| p̂2 follows from t1 =A t2.

3. In rewrite step (2) we have p2 = p̂2 • q and this yields t2| p̂2→
q2
l2→r2

s′2| p̂2.

By rewriting the subterm t1|h̄[t2, t1](p̂2) (f2(..) in Fig. 4.1) of s1 with l2 → r2, we get
s1→R/A t1[s′1| p̂1, s′2| p̂2] p̂1,h̄[t2,t1](p̂2)

.
Similarly, we apply l1 → r1 to the subterm t2|h̄[t1, t2](p̂1) (f1(..) in Fig. 4.1) of s2 and

obtain s2→R/A t2[s′2| p̂2, s′1| p̂1] p̂2,h̄[t1,t2](p̂1)
.

Since t1 =A t2 and positions p̂1 and h̄[t2, t1](p̂2) are non-overlapping, theorem 18 al-
lows us to use the equality t1[., .] p̂1,h̄[t2,t1](p̂2)

=A t2[., .]h̄[t1,t2](p̂1),h̄[t1,t2](h̄[t2,t1](p̂2))
, which can

be simplified to t1[., .] p̂1,h̄[t2,t1](p̂2)
=A t2[., .]h̄[t1,t2](p̂1),p̂2

. This allows us to conclude with
t1[s′1| p̂1, s′2| p̂2] p̂1,h̄[t2,t1](p̂2)

=A t2[s′2| p̂2, s′1| p̂1] p̂2,h̄[t1,t2](p̂1)
.

4.3.2 Overlapping Application Scopes:

The application scopes of l1 → r1 and l2 → r2 are overlapping, if p̂1 = h̄[t2, t1](p̂2), p̂1 is
below h̄[t2, t1](p̂2) or vice versa. We want to analyze all possible situations and identify
corresponding joining requirements.

4.3.2.1 Same Application Scope

We focus first on the case where p̂1 = h̄[t2, t1](p̂2). This means, t1|p1 and t2|p2 have a same
top-symbol f , which must be as well the top-symbol of l1 and l2. In particular, l1→ r1 and
l2→ r2 have the same application scope modulo A. Since t1[.] p̂1 =A t2[.] p̂2 and the sufficient
conditions (below) for joining s1 and s2 do not depend on these term contexts, we assume
w.l.o.g. that t1[.] p̂1 = t2[.] p̂2 = [.], i.e. p̂1 = p̂2 = ϵ, t1| p̂1 = t1 and t2| p̂2 = t2.

There are mainly four cases regarding the interference of the rewrite scopes of l1 → r1
and l2→ r2, i.e. of l1σ12 and l2σ12 for σ12 = σ1 ∪ σ2:

1. We have two separable rewrite scopes, if t1 =A c[l1σ12, l2σ12] and t2 =A c[l1σ12, l2σ12].

Here, we obtain s1 =A c[r1σ12, l2σ12] and s2 =A c[l1σ12,r2σ12]. This allows us to join s1
and s2 similar to the case of separated application scopes (see Sec. 4.3.1).

2. The rewrite scopes of l1 → r1 and l2 → r2 are equal modulo A. That is, we have
l1σ12 =A l2σ12 and there is a common context c[.]p1 = c[.]p2 with t1 =A c[l1σ12]p1
and t2 =A c[l2σ12]p1 . This means in particular that l1 and l2 are A-unifiable. Let
UA(l1, l2) be a complete, finite set of unifiers. If we make sure that r1σ and r2σ for
all σ ∈ UA(l1, l2) are join-able, then s1 and s2 are join-able, as well1: Since l1 and l2 are
A-unifiable, the rewrite of t1 =A c[l1σ12]p1 to s1 =A c[r1σ12]p1 and of t2 =A c[l2σ12]p1 to
s2 =A c[r2σ12]p1 includes an overlap, in the sense of [9]. It is the overlap of l2→ r2 on
the non-variable position ϵ of l1→ r1 given by the common substitution σ12. Accord-
ing to the extended critical pair lemma, [70, 9], there is σ ∈ UA(l1, l2) and a second
substitution ρ such that xσ12 =A (xσ)ρ for all variables x in l1 → r1 or l2 → r2. En-
suring that r1σ and r2σ are join-able allows us to replay the corresponding rewriting
steps to join r1σ12 and r2σ12. Obviously, we only need to replace the variables x in r1σ
and r2σ with their counterparts in the of ρ, i.e. with xρ.

1The variables in l1 are assumed to be distinct from those in l2. In the general approach, this is obtained by
renaming the variables in l1 to obtain l′1. Furthermore, the superposition of l2 on l′1 is not necessarily at the top-
position ϵ (as in our case), but it is at an arbitrary non-variable sub-term position µ of l′1. So, the most general
unifiers σ must belong to UA(l′1|µ, l2)

4.3. ANALYSIS OF LOCAL CONFLUENCE 49

3. The rewrite scope of l2→ r2 is included in that of l1→ r1, or vice versa.

W.l.o.g., we focus on the former case, where t1 =A c[l1σ12], t2 =A c[c′[l2σ12]] and
l1σ12 =A c′[l2σ12] for a non-empty f -context c′[.]. Here, the basic f -subterms in
l1σ12 are distributed to c′[.] and l2σ12. Furthermore, we distinguish whether there
is l′1 =A l1 and a sub-term position ν of a variable f -subterm in l′1 such that l1σ12 =A
l′1σ12[c′′[l2σ12]]ν holds.

(a) If it is the case, we have an overlap of l2 → r2 on l1 → r1 at a variable position.
Here, the terms s1 and s2 can be joined canonically, as described in Sec. 4.3.3.

(b) For the complementary case, we provide in Sec. 4.4.2 sufficient conditions to join
r1σ12 and c′[r2σ12], which extends clearly to s1 =A c[r1σ12] and s2 =A c[c′[r2σ12]].

4. The rewrite scopes of l1 → r1 and l2 → r2 are partly overlapping, if t1 =A c[c2[l1σ12]]
and t2 =A c[c1[l2σ12]] for non-empty f -contexts c2[.] and respectively c1[.] that are
composed from f -subterms in l2σ12 and l1σ12, respectively. This means, l1σ12 and re-
spectively l2σ12 includes f -subterms (in c1[.] and respectively in c2[.]) outside of l2σ12
and outside of l1σ12, respectively. They can be included into l1σ12 and respectively
into l2σ12 only if f is permutative. Here, we say that we have an equational overlap
between l1 → r1 and l2 → r2, since this overlap is caused by the equational contexts
of these rules.

In Sec. 4.4.2, we provide sufficient conditions to join c2[r1σ12] and c1[l2σ12], which
extends clearly to s1 =A c[c2[r1σ12]] and s2 =A c[c1[r2σ12]].

Note that cases (1) and (4) are obsolete, if f is not permutative.

Recapitulating, the above analysis yields to the following cases to be handled in our
completion algorithm:

• Case (2): For all σ ∈ UA(l1, l2), we have to ensure that r1σ and r2σ are join-able.

• Case (3-b): There is an overlap of l2→ r2 on l1→ r1 at a non-variable position of l1. In
Sec. 4.4.2, we provide sufficient conditions to join r1σ12 and c′[r2σ12] for σ12 = σ1 ∪ σ2.

• Case (4): There is an equational overlap between l1→ r1 and l2→ r2, which is caused
by the equational contexts of these rules. In Sec. 4.4.2, we provide sufficient condi-
tions to join c2[r1σ12] and c1[l2σ12] for σ12 = σ1 ∪ σ2.

4.3.2.2 Nested Application Scope

Next, we analyze the case where h̄[t2, t1](p̂2) is below p̂1. Let f be the head symbol of l1,
then there is a non-variable basic f -subterm t2

1 of t1| p̂1 such that t2
1 =A c2[t2| p̂2]. Here, the

sufficient conditions for joining s1 and s2 do not depend on the term context t1[.] p̂1 . For this
reason, we assume w.l.o.g. that t1[.] p̂1 = [.], i.e. p̂1 = ϵ and t1| p̂1 = t1.

In contrast to the case analyzed in Sec. 4.3.2.1, l2 can have an arbitrary head symbol g.
There are mainly two cases regarding the interference of the rewrite scopes of l1→ r1 and
l2→ r2, i.e. of l1σ12 and l2σ12 for σ12 = σ1 ∪ σ2:

1. We have two separable rewrite scopes, if t1 =A c[l1σ12, l2σ12] and t2 =A c[l1σ12, l2σ12].

This is similar to case (1) in Sec. 4.3.2.1.

2. The rewrite scope of l2→ r2 is included in that of l1→ r1. This means, t1 =A c[l1σ12],
t2 =A c[c′[l2σ12]] and l1σ12 =A c′[l2σ12] for a non-empty context c′[.]. Here, we distin-
guish whether there is l′1 =A l1 and a sub-term position ν of a variable in l′1 such that
l1σ12 =A l′1σ12[c′′[l2σ12]]ν holds.

50 CHAPTER 4. FROM EQUATIONS TO A COMPLETE (MODULAR) TRS

(a) If it is the case, we have an overlap of l2 → r2 on l1 → r1 at a variable position.
We proceed similar to case (3-a) in Sec. 4.3.2.1.

(b) Otherwise, there must be a position µ at or below the position of a basic f -
subterm in l1 such that µ̂ = µ, and l1|µ has the same head symbol g as l2. Re-
garding the occurrence of l2σ12, we distinguish again two alternatives:

i. (l1|µ)σ12 =A l2σ12: Similar to case (2) in Sec. 4.3.2.1, we require that r1σ and
(l1[r2]µ)σ are join-able for all σ ∈ UA((l1|µ), l2). This is sufficient to join s1
and s2.

ii. (l1|µ)σ12 =A c′′[l2σ12] for a non-empty g-context c′′[.]: Similar to case (3-
b), we provide in Sec. 4.4.2 sufficient conditions to join the terms r1σ12
and l1σ12[c′′[r2σ12]]µ, which extends clearly to s1 =A c[r1σ12] and s2 =A
c[c′[r2σ12]].

Note that the occurrence of t2| p̂2 (the application scope of l2→ r2) in a non-variable basic
f -subterm t2

1 of t1| p̂1 (the application scope of l1→ r1) prevents that f -subterms from t1| p̂1
are permuted into t2| p̂2. For that reason, case (4) in Sec. 4.3.2.1 is excluded in case of a
nested application scope.

4.3.3 Overlap at a Variable Position:

In this section, we consider cases (3-a) of Sec. 4.3.2.1 and (2-a) of Sec. 4.3.2.2, where we have
an overlap of l2 → r2 on l1 → r1 at a variable position. This means, t1|p1 =A cl1 σ12[l2σ12]
for a context cl1 σ12[.] that is given by a position ν of a variable in l1. For x = l1|ν, we have
xσ12 =A c′′[l2σ12] =A (l1σ12)|ν and t1[l1σ12]p1 =A t1[l1σ12[c′′[l2σ12]]ν]p1 =A t2[l2σ12]p2 . This
implies in particular that the contexts t1[l1σ12[c′′[.]]ν]p1 and t2[.]p2 are equal modulo A. If
x occurs n-times in l1 for n > 1, there must be n− 1 further positions ν1, . . . ,νn−1 of x in l1
such that (l1σ12)|ν1 = . . . = (l1σ12)|νn−1 =A c′′[l2σ12].

In the following, we prove that s1 and s2 are join-able, for arbitrary n and arbitrary m,
the number of occurrence of x in r1. The basic principle is depicted in Fig 4.2, where the
shown transformations correspond to a l1 → r1 with two occurrences of x in l1 and one
occurrence in r1.

Let µ′1, . . . ,µ′m be the sub-term positions of the variable x in r1. Then, we know
that s1 =A s′1 and s′1 = t1[r1σ12]p1 =A t1[r1σ12[c′′[l2σ12], . . . , c′′[l2σ12]]µ′1,...,µ′m]p1 . This allows
us to apply the rule l2 → r2 below the positions µ′1, . . . ,µ′m and rewrite this way s1 to
t1[r1σ12[c′′[r2σ12], . . . , c′′[r2σ12]]µ′1,...,µ′m]p1 . The same term can be obtained by rewriting s2

as follows:

1. Using s2 =A s′2 = t2[r2σ12]p2 and t2[.]p2 =A t1[l1σ12[c′′[.]]ν]p1 , we deduce
s2 =A t1[l1σ12[c′′[r2σ12]]ν]p1 =A t1[l1σ12[c′′[r2σ12], c′′[l2σ12], . . . , c′′[l2σ12]]ν,ν1,...,νn−1]p1 .
This allows us to rewrite s2 through n − 1 applications of l2 → r2 and obtain
t1[l1σ12[c′′[r2σ12], c′′[r2σ12], . . . , c′′[r2σ12]]ν,ν1,...,νn−1]p1 .

2. It is clear that the term l1σ12[c′′[r2σ12], c′′[r2σ12], . . . , c′′[r2σ12]]ν,ν1,...,νn−1 matches l1
modulo A. The resulting substitution σ′12 maps all variables v that differ from
the variable x to vσ12 and maps x to c′′[r2σ12] (instead of c′′[l2σ12]). This allows
us to rewrite t1[l1σ12[c′′[r2σ12], c′′[r2σ12], . . . , c′′[r2σ12]]ν,ν1,...,νn−1]p1 at position p1 to
t1[r1σ12[c′′[r2σ12], . . . , c′′[r2σ12]]µ′1,...,µ′m]p1 .

4.4 Completion Procedure

In this section, we describe our algorithm on how to check the local confluence of rewrite
rules used for rewriting modulo a set A of permutative equations. Based on the analysis in
Sec. 4.3, we want to determine the pairs of terms that are needed to be joined, in order to

4.4. COMPLETION PROCEDURE 51

Figure 4.2: Overlap at a Variable Position

ensure the local confluence. Like in other completion approaches, certain pairs necessitate
to include new rewrite rules.

For rewrite rules without occurrence of permutative function symbols, equational over-
laps as discussed in case (4) of Sec. 4.3.2.1 are not relevant. Regarding the remaining cases
discussed in Sec. 4.3.2.1 and 4.3.2.2, it is sufficient to ensure the following: For l2→ r2 and
l1 → r1 where the top-symbol of l2 occurs at position µ of l1 and l2σ = (l1|µ)σ holds for a
(syntactic) unifier σ, we need to join r1σ and (l1[r2]µ)σ.

In presence of rewrite rules with function symbols f occurring in A, the restriction to
permutative equations allows us to reach our goal by solving mainly two tasks for everyone
of the permutative theories A f :

1. coming up with a decomposition rule that applies to term pairs f (t1, . . . , tn) and
f (s1, . . . , sn) in a uniform unification algorithm, and

2. providing uniformly sufficient conditions to deal with cases (3-b) and (4) in Sec. 4.3.2.1

52 CHAPTER 4. FROM EQUATIONS TO A COMPLETE (MODULAR) TRS

and with case (2-b-ii) in Sec. 4.3.2.2.

4.4.1 Unification by Decomposition

As in other completion approaches, we also relate on complete sets of unifiers modulo the
equations in A. But, we do not use existing theory-specific unification algorithms. Instead
of that, we compute the unifiers (required for our completion process) by a uniform algo-
rithm that expands the search space by the application of theory-specific decomposition
rules.

The decomposition decisions are based on a partition of the function symbols into

• FA, which includes the function symbols occurring in A,

• and F′, which includes the function symbols non-occurring in A.

The search space is an or-tree, since the decomposition yields in general more than one
alternative. The nodes correspond to sets of term pairs or to ⊥, which signals a failed
search path. The root node contains generally one term pair, which represents the orig-
inal unification problem. The leaf nodes that are different from ⊥ are sets of the form
{(v0, t0), . . . , (vn−1, tn−1)}, where

• v0, . . . ,vn−1 are distinct variables, and

• t0, . . . , tn−1 are terms that do not contain any variable vi.

These leaf nodes are called to be in solved form and provide us with the required complete
set of unifiers.

The expansion of the search space is carried out by interleaving two procedures:

1. SIMPLIFY brings the root node (if not yet) and the nodes resulting by decomposition
into simplified forms:

(a) It checks for clashes: If there is a term pair (v, f (t1, . . . , tn)) with f ∈ Σ⟨n⟩ and
some ti contains v, or there is a term pair (f (t1, . . . , tn), f ′(s1, . . . , sn′)) for two
different function symbols f ∈ Σ⟨n⟩, f ′ ∈ Σ⟨n′⟩, the node is replaced with ⊥.

(b) It applies intermediate substitutions: A node {(v, t)} ∪ S, where v occurs in S
and not in t, is replaced with {(v, t)} ∪ (S[t/v]).

(c) It eliminates trivial pairs (t, t).

2. DECOMPOSE selects a pair (f (t1, . . . , tn), f (s1, . . . , sn)) and generates the successor
nodes in the search space according to the corresponding decomposition rule:

• We first handle the cases where f ∈ F′: Such term pairs are decomposed as in
syntactic unification, i.e. they are replaced by term pairs (t1, s1), . . . , (tn, sn).

• In the complementary cases, i.e. f ∈ FA, we apply corresponding theory-specific
decomposition rules.

For our purpose, i.e. unification in permutative theories used in cryptographic proto-
cols, we assume that each A f is associated with a decomposition rule of the form

f (x1, . . . , xn) = f (y1, . . . ,yn)⇒ ((x1 = y1 ∧ . . . ∧ xn = yn) ∨ ψ
f
1 ∨ . . . ∨ ψ

f
n f),

where ψ
f
1 , . . . ,ψ f

n f are equality constraints, i.e. (existentially quantified) conjunctions of
equations. The implication is supposed to be satisfied in the initial models of A f . It
provides us clearly with a decomposition rule to apply for the unification of term pairs
(f (t1, . . . , tn), f (s1, . . . , sn)).

In the completion of the equations of PACE and TC-AMP we employed decomposition
rules that we obtained as follows:

4.4. COMPLETION PROCEDURE 53

1. For AC-theories A f , similar to A⊕, we obtain the corresponding decomposition rule
from

f (x0, x1) = f (x2, x3)⇒
((x0 = x2 ∧ x1 = x3) ∨
(x0 = x3 ∧ x1 = x2) ∨
(∃x4 : x0 = f (x2, x4) ∧ x3 = f (x4, x1)) ∨
(∃x4 : x0 = f (x3, x4) ∧ x2 = f (x4, x1)) ∨
(∃x4 : x1 = f (x2, x4) ∧ x3 = f (x4, x0)) ∨
(∃x4 : x1 = f (x3, x4) ∧ x2 = f (x4, x0)) ∨
(∃x4, x5, x6, x7 : x0 = f (x4, x5) ∧ x1 = f (x6, x7) ∧

x2 = f (x4, x6) ∧ x3 = f (x5, x7))).

2. For A f = { f (f (x,y),z) = f (f (x,z),y)}, similar to Adh, we obtain the corresponding
decomposition rule from

f (x0, x1) = f (x2, x3)⇒
((x0 = x2 ∧ x1 = x3) ∨
(∃x4 : x0 = f (x4, x3) ∧ x2 = f (x4, x1))).

3. For A f = { f (x, f (y,z)) = f (y, f (x,z))}, similar to A∗, we obtain the corresponding
decomposition rule from

f (x0, x1) = f (x2, x3)⇒
((x0 = x2 ∧ x1 = x3) ∨
(∃x4 : x1 = f (x2, x4) ∧ x3 = f (x0, x4))).

Each decomposition rule is expected to reduce the unification of term pairs back to
unification constraints on their subterms. This is necessary for the termination of the uni-
fication procedure, which we assume at least for the unification problems that arise in the
completion process.

4.4.2 Dealing with Specific Overlaps

In this section, we provide sufficient joining requirements to deal with the overlaps of cases
(3-b) and (4) in Sec. 4.3.2.1 and of case (2-b-ii) in Sec. 4.3.2.2. We first determine the require-
ments for the permutative theory A f = { f (x, f (y,z)) = f (y, f (x,z))} (see Sec. 4.4.2.1) and
then for the AC theory (see Sec. 4.4.2.2). The approach in Sec. 4.4.2.1 can be straightfor-
wardly adapted to the permutative theory A f = { f (f (x,y),z) = f (f (x,z),y)}.

4.4.2.1 Permutative Function Symbols like ∗:

Let A f = { f (x, f (y,z)) = f (y, f (x,z))} be the permutative theory on f ∈ Σ⟨2⟩. We want to
provide the joining requirements to deal with overlaps between two arbitrary rewrite rules
l1→ r1 and l2→ r2 where l2 is an f -term. We focus first on cases (3-b) and (4) in Sec. 4.3.2.1.

4.4.2.1.1 Joining Requirements for Cases (3-b) and (4): In these cases, l1 must be an
f -term, too. Here,

1. case (3-b) corresponds to an overlap of l2 on l1 at a position µ ∈ Struct f (l1) \ {ϵ}

2. and case (4) corresponds to an equational overlap between l1 and l2.

54 CHAPTER 4. FROM EQUATIONS TO A COMPLETE (MODULAR) TRS

The joining requirements for case (4) make use of the set of context pairs Ctxts f (l1, l2),
which we define as follows:

Definition 20. Let l1 = f (l1
1 , . . . , f (l1

n1
, l1) . . .) and l2 = f (l2

1 , . . . , f (l2
n2

, l2) . . .) for n1 ≥ 1,
n2 ≥ 1 and basic f -subterms l1 and l2. Then the set Ctxts f (l1, l2) consists of all context
pairs (f (l2

j1
, . . . , f (l2

jn , .) . . .), f (l1
i1

, . . . , f (l1
im , .) . . .)), where {j1, . . . , jn} is a non-empty subset of

{1, . . . ,n2} and {i1, . . . , im} a non-empty subset of {1, . . . ,n1}.

The overlaps in cases (3-b) and (4) are dealt with by the following joining requirements:

1. For all l′1 =A l1, µ ∈ Struct f (l′1) \ {ϵ} and σ ∈ UA(l′1|µ, l2), ensure that r1σ and
(l′1[r2]µ)σ are join-able. This addresses case (3-b).

2. For all (c2[.], c1[.]) ∈ Ctxts f (l1, l2) and σ ∈ UA(c2[l1], c1[l2]), ensure that c2[r1]σ and
c1[r2]σ are join-able. This addresses case (4).

3. When l1 is a variable, it can match an f -term with arbitrary many f -subterms not
included in the rewrite scope of l2. To ensure local confluence by our approach, we
need to pop up these f -subterms outside the rewrite scope of l1→ r1, too. This yields
to the requirement that for all new variables x1, x2 the equalities l1{ f (x1, x2)/l1} =A
f (x1, l1{x2/l1}) and r1{ f (x1, x2)/l1} =A f (x1,r1{x2/l1}) hold.

Similarly, if l2 is a variable, the equalities l2{ f (x1, x2)/l2} =A f (x1, l2{x2/l2}) and
r2{ f (x1, x2)/l2} =A f (x1,r2{x2/l2}) must hold for new variables x1, x2.

The third requirement means intuitively that the f -subterms of any f -term that matches
l1 (or l2) as a variable are preserved as f -subterms after the reduction step.

4.4.2.1.2 Justification of Joining Requirements for Cases (3-b) and (4): In order to
justify that the given joining requirements are sufficient, we prove the following theo-
rem about the application scope of l1 → r1, given above. Here, f (L, x) is defined by
f (ϵ, x) = x and f (y.L′, x) = f (y, f (L′, x)). Furthermore, we use el = er to abbreviate
f (x, f (y,z)) = f (y, f (x,z)) in A f and their associated mappings h̄[el , er]⊂ Pos(el)× Pos(er)
and h̄[er, el] ⊂ Pos(er)× Pos(el) correspond to

h̄[el , er] = h̄[er, el] = {(ϵ,ϵ), (2,2), (2 · 2,2 · 2), (1,2 · 1), (2 · 1,1)}.

The induced functions h̄[t, (el , er)] and h̄[t, (er, el)] according to Def. 16 correspond to:

(p,q) 7→

 p • (2 · 1) • r : q = p • (1) • r
p • (1) • r : q = p • (2 · 1) • r
q : otherwise

We denote this mapping simply by h̄[t,{el , er}].

Theorem 21. Let t and s be two f -terms and let p1 be in Struct f (t). If t|p1 = l1σ1 and

t =A s, then there is q1 with h̄[t, s](p1) = q1 • (
n×︷ ︸︸ ︷

2 · . . . 2) for 0 ≤ n and s|q1 is of the form
f (L0, f (τi1 , f (L1, . . . , f (Ln1−1, f (τin1

, f (Ln1 ,τ1))) . . .))), where τ1 is not an f -term, τj =A l1
j σ1

for 1≤ j ≤ n1, and

1. either l1 is a variable and l1σ1 =A f (L1,τ1) for a list L1 consisting of elements from
L0# . . . #Ln1

2. or l1 is not a variable, l1σ1 =A τ1, and L0 is empty.

4.4. COMPLETION PROCEDURE 55

Proof: The proof is by induction on the number of the equational derivation steps to
obtain s from t.

In the base case, where t = s, the proof is trivial: We set q1 = p1, L0, . . . , Ln1−1 are empty
and f (Ln1 ,τ1) = l1σ1, where Ln1 can be not empty only if l1 is a variable.

In the step case, we have t =A t′ and t′ →p
(l,r) s for (l,r) ∈

→
A ∪

←
A. Using the induction

hypothesis, we obtain q1 with h̄[t, t′](p1) = q1 • (
n×︷ ︸︸ ︷

2 · . . . 2) for 0 ≤ n and t′|q1 is of the form
f (L0, f (τi1 , f (L1, . . . , f (Ln1−1, f (τin1

, f (Ln1 ,τ1))) . . .)))
If (l,r) /∈ {(el , er), (er, el)}, the form of t′|q1 is preserved, because the last derivation step

is performed inside a basic f -subterm of t′: First, the last derivation step preserves the
positions of the f -subterms of t′. Furthermore, there must be a basic f -subterm τ = t′|(q · 1)
(resp. τ = t′|(q · 2)) for q ∈ Struct f (t′) and p is below or at (q · 1) (resp. (q · 2)). This basic
f -subterm τ corresponds to c[lσl] and rewrites to c[rσl] that occurs as a basic f -subterm of
s at the same position, i.e. at (q · 1) (resp. (q · 2)). All other basic f -subterms of t′ remain
unchanged. This means, h̄[t′, s](q1) = q1 and s|q1 preserves the same form as t′|q1. Only if
t′|p occurs inside one Li, we merely need to replace this with L′i obtained by replacing just
one element in Li with its corresponding pendant (that is equal modulo l = r).

When (l,r) ∈ {(el , er), (er, el)} and p /∈ Struct f (t′), the position p must be below the
position of a basic f -subterm of t′ and we have a similar situation as in case (l,r) /∈
{(el , er), (er, el)}.

When (l,r) ∈ {(el , er), (er, el)} and p ∈ Struct f (t′), we distinguish the following cases:

• If p = q1 • (

np×︷ ︸︸ ︷
2 · . . . 2) for 0≤ np, the equation application yields according to h̄[t′,{el , er}]

to one of the following cases:

1. Two elements in Li switch the positions: Here, we replace Li = Ll
i#[τ

′
1,τ′2]#Lr

i with
L′i = Ll

i#[τ
′
2,τ′1]#Lr

i .

2. Some τij switches the position with the last element in Lj−1: Here, we replace

Lj−1 = Ll
j−1#[τ′] with L′j−1 = Ll

j−1 and replace Lj with L′j = [τ′]#Lj.

3. Some τij switches the position with the first element in Lj: Here, we replace
Lj = [τ′]#Lr

j with L′j = Lr
j and replace Lj−1 with L′j−1 = Lj−1#[τ′], when j− 1 ̸= 0

(case 3-a). In case j− 1 = 0, we preserve L0 as an empty list, if l1 is not a variable
(case 3-b), and we replace L0 with L′0 = L0#[τ′], otherwise (case 3-a).

4. Some τij switches the position with τij+1 : This is only possible when Lj is empty.

Except of case (3-b), where τ′ is pulled out, the whole structure of t′|q1 is preserved in
all other cases. Thus, we set q′1 = q1 • (2) in case (3-b), and q′1 = q1 in the other cases.
Clearly, s|q′1 has the required form (corresponding to the form of t′|(q1 • (2)) in case
(3-b) and of t′|q1 in the other cases).

• If there is q2 ∈ Struct f (t′) with q1 = q2 • (2) and p = q2, the equation application yields
according to h̄[t,{el , er}] to one of the following cases:

1. The sub-term τ′p = t′|(p • (1)) switches the position with the first element in L0:
Here, we replace L0 = [τ′]#Lr

0 with L′0 = [τ′,τ′p]#Lr
0.

2. The sub-term τ′p = t′|(p • (1)) switches the position with τi1 , which holds when
L0 is empty: Here, we replace L1 with L′1 = [τ′p]#L1.

In both cases, we set q′1 = p. Clearly, s|q′1 has the required form, where L0 is non-
empty in case (1) and empty in case (2).

56 CHAPTER 4. FROM EQUATIONS TO A COMPLETE (MODULAR) TRS

• In the complementary case, i.e. p ̸= q1 • (

np×︷ ︸︸ ︷
2 · . . . 2) for 0 ≤ np and q1 = q2 • (2) implies

p ̸= q2, the replacement of t′|p = lσl with s′|p = rσl does not change the order of the
elements in L0#[τi1]# . . . #Ln1#[τ1]. This allows us to set q′1 = q1 and obtain the required
form for s|q′1. 2

We want to justify that the above given joining requirements are sufficient to deal with
the overlaps in cases (3-b) and (4). For that purpose, we assume arbitrary f -terms t1, t2,
s1 and s2 satisfying t1 =A t2, t1→

p1
(l1,r1)

s1 and t2→
p2
(l2,r2)

s2 for p1 ∈ Struct f (t1), to explain
how s1 and s2 can be joined in cases (3-b) and (4).

Using t1|p1 = l1σ1 and t1 =A t2, theorem 21 yields q1 with h̄[t1, t2](p1) = q1 • (
n×︷ ︸︸ ︷

2 · . . . 2) for
0 ≤ n and t2|q1 is of the form f (L0, f (τi1 , f (L1, . . . , f (Ln1−1, f (τin1

, f (Ln1 ,τ1))) . . .))), where
τ1 is not an f -term, τj =A l1

j σ1 for 1≤ j ≤ n1, and

1. either l1 is a variable and l1σ1 =A f (L1,τ1) for a list L1 consisting of elements from
L0# . . . #Ln1

2. or l1 is not a variable, l1σ1 =A τ1, and L0 is empty.

For the positions p2 (with t2|p2 = l2σ2) and q1 of t2, we distinguish the following cases:

• p2 is below q1 and l2σ2 occurs in L0# . . . #Ln1 : Either there is no overlap between l1 and
l2 or the overlap of l2 on l1 is at or below the position of l1, provided l1 is a variable.

• p2 is below q1 and l2σ2 occurs in τij for 1≤ j ≤ n1: Here, we distinguish two cases:

1. l1
ij

is a f -term and l2σ2 occurs at a position µ′ ∈ Struct f (l1
ij
): This corresponds

to case (3-b), as we have l′1 =A l1, µ ∈ Struct f (l′1) \ {ϵ}, (l′1|µ)σ1 =A l2σ2, s1 =

t1[r1σ1]p1 and s2 = t2[r2σ2]p2 =A t1[l′1σ1[r2σ2]µ]p1 . Here, joining requirement (1)
is sufficient to join l′1σ1[r2σ2]µ and r1σ1. Hence, s1 and s2 are join-able, too.

2. Otherwise, l2σ2 occurs below a position µ ∈ Struct f (l1): The overlap of l2 on l1
is at a variable position or corresponds to case (2-b-ii) in Sec. 4.3.2.2.

• p2 is below q1 and l2σ2 occurs in τ1: Here, the overlap of l2 on l1 is at a variable
position or corresponds to case (2-b-ii) in Sec. 4.3.2.2.

• p2 equals or is below q1 and p2 is of the form q1 • (
n2×︷ ︸︸ ︷

2 · . . . 2): Regarding the overlapping
between the rewrite scopes of l1 and l2, we need to take the following issues into
consideration.

1. In case l1σ1 is an f -term, we distinguish whether there is f -subterms of l1σ1
out of the rewrite scope of l2. This is for instance the case when l1σ1 =A
f (L0,τ1), L0 = [τ′1], L1# . . . #Ln1 = ϵ and l2σ2 = f (τi1 , . . . , f (τin1

,τ1) . . .). Here,
σ1 = σ′1 ∪ { f (τ′1,τ1)/l1}, s1 = t1[r1σ1]p1 and s2 =A t1[f (τ′1,r2σ2)]p1 . Since l1→ r1

must satisfy joining requirement (3), we have r1σ1 =A f (τ′1,r1(σ
′
1 ∪ {τ1/l1})).

Hence, joining r1σ and r2σ for all σ ∈ UA(l1, l2) permits to join s1 and s2, in this
case.
W.l.o.g., we assume in the following cases that there is no f -subterms of l1σ1 out
of the rewrite scope of l2.

4.4. COMPLETION PROCEDURE 57

2. In case l2σ2 is an f -term, we distinguish whether there is f -subterms of l2σ2
out of the rewrite scope of l1. This is for instance the case when l2σ2 =A
f (Ln1 ,τ1), Ln1 = [τ′2], L0# . . . #Ln1−1 = ϵ, l2σ2 = f (τi1 , . . . , f (τin1

, f (τ′2,τ1)) . . .) and
l1σ1 =A f (τi1 , . . . , f (τin1

,τ1) . . .). Here, σ2 = σ′2 ∪ { f (τ′2,τ1)/l2}, s2 = t2[r2σ2]p2

and s1 =A t2[f (τ′2,r1σ1)]p2 . Since l2 → r2 must satisfy joining requirement (3),
we have r2σ2 =A f (τ′2,r2(σ

′
2 ∪ {τ1/l2})). Hence, joining r1σ and r2σ for all

σ ∈ UA(l1, l2) permits to join s1 and s2, in this case.
W.l.o.g., we assume in the following cases that there is no f -subterms of l2σ2 out
of the rewrite scope of l1.

3. We distinguish whether there is f -subterms of l1
j σ1 out of the rewrite scope of

l2. This is for instance the case when l2σ2 =A f (L, f (τi2 , . . . , f (τin1
,τ1) . . .)) and

l1σ1 =A f (τi1 , . . . , f (τin1
,τ1) . . .).

If L is empty, l2σ2 occurs at a position µ ∈ Struct f (l′1) \ {ϵ} with l′1 =A l1, and
(l′1|µ)σ1 =A l2σ2. This corresponds to a case (3-b) that can be handled based on
joining requirement (1).
Otherwise, L must include f -subterms of l2. For instance, L = [l2

1σ2] and t2|q1 =

f (τi1 , f (L, f (τi2 , . . . , f (τin1
,τ1) . . .))) correspond to t1|h̄[t2, t1](q1) = f (l2

1σ2, l1σ1)

and t2|q1 =A f (l1
i1

σ1, l2σ2). This yields s1 = t1[f (l2
1σ2,r1σ1)]h̄[t2,t1](q1)

and s2 =A

t2[f (l1
i1

σ1,r2σ2)]q1 . Here, s1 and s2 can be clearly joined based on joining require-
ment (2).

4. In the complementary case to (1), (2) and (3), the overlap of l1 on l2 is at a position
µ ∈ Struct f (l2). This corresponds either to case (2) in Sec. 4.3.2.1 or to case (3-b)
where l1 and l2 are switched.

• q1 is below p2: Here, the overlap of l1 on l2 is at a position µ ∈ Struct f (l2) \ {ϵ} or at
or below the position of l2, provided l2 is a variable.

• q1 and p2 are non-overlapping: Here, there is no overlap between l1 and l2.

4.4.2.1.3 Joining Requirements for Case (2-b-ii): Finally, we provide the joining re-
quirements that are sufficient to deal with the overlaps of case (2-b-ii) in Sec. 4.3.2.2. For
a g-term l1 and a f -term l1|µ given by a subterm position µ below the position of a basic
g-subterm in l1 where µ̂ = µ, there can be a nested overlap of l2→ r2 on l1→ r1 at µ only if
l2 is a f -term. Since µ̂ is below the position of a basic g-subterm in l1, we just need to adapt
joining requirement (1): For all l′ =A l1|µ, µ′ ∈ Struct f (l′) and σ ∈ UA(l′|µ′, l2), ensure that
r1σ and (l1[l′[r2]µ′]µ)σ are join-able.

4.4.2.2 AC Function Symbols:

Let f ∈ Σ⟨2⟩ be a AC function symbol. Focusing on the overlaps introduced in Sec. 4.3.2.1,
we consider arbitrary rewrite rules l1→ r1 and l2→ r2 where l1 and l2 are f -terms.

• It is easy to prove that the equational overlaps can be covered by extending l1 and l2 to
f (x2, l1) and respectively f (x1, l2) for two new variables x1 and x2. The AC property
allows us to gather all basic f -subterms of l2 and l1 that cause the equational overlap
into x2 and respectively x1.

To deal with case (4) in Sec. 4.3.2.1, we require that f (x2,r1)σ and f (x1,r2)σ are join-
able for all σ ∈ UA(f (x2, l1), f (x1, l2)).

• Similarly, the overlaps of l2 on l1 according to case (3-b) in Sec. 4.3.2.1 can be covered
by extending l2 to f (x1, l2) for a new variable x1. The AC property allows us to gather
all basic f -subterms of l1 outside of the rewrite scope of l2 into x1.

58 CHAPTER 4. FROM EQUATIONS TO A COMPLETE (MODULAR) TRS

Accordingly, we require that r1σ and f (x1,r2)σ are join-able for all unifiers σ in
UA(l1, f (x1, l2)).

Regarding the overlaps introduced in Sec. 4.3.2.2, we assume that f is the head symbol
of l2 and of a nested sub-term l1|µ of l1 for µ below the position of a basic g-subterm in l1.

• To cover overlaps of l2 on l1 at position µ, we require that r1σ and (l1[r2]µ)σ are join-
able for all σ ∈ UA(l1|µ, l2).

• To cover overlaps of l2 on l1 at position µ′ ∈ Struct f (l1|µ) \ {ϵ}, we require that r1σ

and (l1[f (x1,r2)]µ)σ are join-able for all σ ∈ UA(l1|µ, f (x1, l2)), where x1 is a new vari-
able.

4.5 PACE Algebra

We describe how we obtained a complete rewriting relation R/A in case of the PACE alge-
bra.

Recall the set of equations Eq = {e1,e2,e3,e4,e5}, which we introduced in Sec. 2.3.2:

e1 : dec(x, enc(x,y)) = x
e2 : dh(dh(x,y),z) = dh(dh(x,z),y)
e3 : f st(pair(x,y)) = x
e4 : snd(pair(x,y)) = y
e5 : enc(x,dec(x,y)) = y

Except of e2, i.e. a permutative equation to permute subterms of dh-terms at their sub-
term positions 1 · 2 and 2, the rest are cancellation equations. We have thus A = {e2} and
R0 = {r1,r2,r3,r4}, where

r1 : dec(x, enc(x,y))→ x
r2 : enc(x,dec(x,y))→ y
r3 : f st(pair(x,y))→ x
r4 : snd(pair(x,y))→ y

Since dh does not occur in R0, we need only syntactic unification in the completion
process. Here, we consider merely two critical pairs of terms:

1. In the superposition of r1 on r2 at subterm position 2 we unify dec(v1, enc(v1,v2))
and dec(v3,v4) and obtain the substitution σ = [v4 7→ enc(v1,v2),v3 7→ v1]. This yields
r2σ = enc(v1,v2) and enc(v1,r1σ) = enc(v1,v2), which are obviously join-able.

2. In the superposition of r2 on r1 at subterm position 2 we unify enc(v3,dec(v3,v4))
and enc(v1,v2) and obtain the substitution σ = [v2 7→ dec(v3,v4),v1 7→ v3]. This yields
r1σ = dec(v3,v4) and dec(v3,r2σ) = dec(v3,v4), which are obviously join-able.

Consequently, R/A = R0/A is local confluent. The induced reduction ordering implies
that it is terminating and thus complete.

4.6. TC-AMP ALGEBRA 59

4.6 TC-AMP Algebra

We describe how we obtained a complete rewriting relation R/A in case of the TC-AMP
algebra.

Recall the set of equations Eq = {e3,e4,e6,e7,e8,e9,e10,e11,e12,e13}, which we intro-
duced in Sec. 2.4.2:

e3 : f st(pair(x,y)) = x
e4 : snd(pair(x,y)) = y
e6 : ⊕(x,y) = ⊕(y, x)
e7 : ⊕(x,⊕(y,z)) = ⊕(⊕(x,y),z)
e8 : ⊕(x,⊖(x)) = ∞
e9 : ⊕(x,∞) = x

e10 : ∗(x,∗(y,z)) = ∗(y,∗(x,z))
e11 : ∗(x,∗(inv(x),y)) = y
e12 : inv(inv(x)) = x
e13 : ∗(x,⊕(y,z)) = ⊕(∗(x,y),∗(x,z))

The equations in A⊕ = {e6,e7} corresponds to an AC theory for ⊕. In addition we
obtain a second permutative theory A∗ = {e10}, which allows us to permute subterms of
∗-terms at the subterm positions 2 · 1 and 1. Hence, A = A⊕ ⊎ A∗. Except of e13, the rest in
Eq \ A are cancellation equations.

We chose to orient e13 from left to right. So, R0 consists of the following rewrite rules:

r1 : f st(pair(x,y))→ x
r2 : snd(pair(x,y))→ y
r3 : ⊕(x,⊖(x))→∞
r4 : ⊕(x,∞)→ x
r5 : ∗(x,∗(inv(x),y))→ y
r6 : inv(inv(x))→ x
r7 : ∗(x,⊕(y,z))→⊕(∗(x,y),∗(x,z))

Before we applied our completion procedure in Sec. 4.4, we added three rules (r8, r9 and
r10) known from rewriting systems for abelian groups, [39].

r8 : ⊖(∞)→∞
r9 : ⊖(⊖(x))→ x

r10 : ⊖(⊕(x,y))→⊕(⊖(x),⊖(y))

Afterwards, we checked the local confluence of the rules r1–r10 (see appendix A). Ac-
cording to the obtained joining requirements, it is necessary to add the following rules

r11 : ∗(x,∞)→∞
r12 : ∗(x,⊖(y))→⊖(∗(x,y))

60 CHAPTER 4. FROM EQUATIONS TO A COMPLETE (MODULAR) TRS

The final set R of rewrite rules and the set A provide us with a confluent (modular)
rewriting relation R/A. The induced reduction ordering implies that it is terminating and
thus complete.

Chapter 5

Message Objects and Operations

As discussed in Sec. 1.1.3.2, it is unclear whether the core structure of a given message alge-
bra like in TC-AMP can be modeled as a freely generated data type permitting appropriate
definitions of recursive functions as required for inductive protocol verification. Instead of
that, we propose another approach: For a given message algebra specification ((Σ, At), E),

1. we first gain a complete (modular) rewriting system R/A equivalent to the equations
in E, to focus on the rewriting-based modelRA = (C,{ f C | f ∈ Σ \ Σ⟨0⟩}), as defined
in Sec. 3.3 by

• C = {[m]A ↓RA | [m]A ∈ Mes0(Σ, At)/ =A} and

• f C([m0]A ↓RA , . . . , [mn−1]A ↓RA) = [f (m0, . . . ,mn−1)]A ↓RA ,

2. and then we provide appropriate axioms about the objects (reduced A equivalence
classes [m]A ↓RA) and the basic operations (f C).

In analogy to the freely generated data type in [75], our axioms

• provide us with a notion of message parts (substructures) and a classification of mes-
sages as a basis for

– complete case distinctions,

– well founded orders and

– inequalities,

• and cover the effects of rewrite-based operations f C defining in particular constructor-
type applications.

Based on these axioms, we are then able to define (recursive) functions and relations that
permit us to reason (inductively) on the derivability of messages (see Chap. 6) and on the
indistinguishability of message sequences (see Chap. 10).

In Chap. 4 we described how to obtain a complete rewriting system R/A from a given
set E of equations, where A is a partition of permutative theories on single function sym-
bols. In this chapter, we describe how to obtain the required axioms for the corresponding
rewriting-based modelRA = (C,{ f C | f ∈ Σ \ Σ⟨0⟩}).

In contrast to a freely generated data type, there is a stronger correspondence between
the given message algebra ((Σ, At), E) and the resulting axioms:

• First, R/A is gained from E uniformly by a sound algorithm (see Chap. 4).

• Second, the axioms providing the case distinction, the substructure relation and the
inequalities are according to uniform schemata, relying on nice properties of permu-
tative theories A on single function symbols (see Sec. 5.1).

61

62 CHAPTER 5. MESSAGE OBJECTS AND OPERATIONS

• Third, the axioms covering the effects of rewrite-based operations f C and defining
constructor-type applications (see Sec. 5.2) are tightly linked to the rules in R and the
equations in A by

1. refining the rules in R (into operation schemata), taking into account the inter-
ference during rewriting between applied rules and with the equations in A,

2. justifying (on the meta-level) that the resulting operation schemata are sound
(justified by rewriting situations) and complete (covering all rewriting situa-
tions),

3. and by transforming uniformly the operation schemata to axioms.

The general axiomatization approach is applied to the message algebras of PACE (Sec. 5.3)
and TC-AMP (Sec. 5.4).

5.1 Message Structures

Our objects (the messages) are reduced A classes [m] ↓RA= {m1, . . . ,mN(m)}. This means,
we have

1. mi =A mj for all mi,mj ∈ {m1, . . . ,mN(m)}, and

2. mi is not R-reducible for all mi ∈ {m1, . . . ,mN(m)}.

Furthermore, we suppose (as in case of the message algebras for PACE and TC-AMP)
that A is a partition of independent permutative theories A f1 ⊎ . . . ⊎ A fN on function sym-
bols f1, . . . , fN . This allows us to base the axiomatization of the message structures on nice
properties, which we introduce in Sec. 5.1.1, together with the axiomatized and defined
notions. The corresponding axioms and definitions (on message structures) are described
in Sec. 5.1.2.

5.1.1 Reduced A Classes

As A is a partition of independent permutative theories A f1 ⊎ . . . ⊎ A fN on single func-
tion symbols f1, . . . , fN , we may base the axiomatization of the message structures on the
following property.

Theorem 22. Let A = A f1 ⊎ . . . ⊎ A fN be a partition of independent permutative theories on dif-
ferent function symbols f1, . . . , fN and let m and m′ be two ground message terms with m =A m′.
Then we have

1. m and m′ have the same top-symbol,

2. and for each function symbol f the number of occurrences of f in m and m′ coincides.

Proof: The proof is by induction on the term-depth of m. The base case is trivial, since
m belongs to Σ⟨0⟩ ∪ At and m′ must be syntactically equal with m.

In the step case, m must be an f -term for f ∈ Σ⟨n⟩ and n > 0. According to theorem 18,
we have a bijection h̄[m,m′] from the subterm positions of m to the subterm positions of m′

that satisfies properties (1)–(4) (see theorem 18). We want to apply property (4) (by induc-

tion on N(m)) of h̄[m,m′] focusing on the positions p f
1 , . . . , p f

N(m)
of the basic f -subterms of

m. By definition,

1. the top-symbol of m|p f
i differs from f , and

5.1. MESSAGE STRUCTURES 63

2. m as well as all non-basic f -subterms of m have f as top-symbol.

It is clear that p f
1 , . . . , p f

N(m)
are non-overlapping. Furthermore, we have p̂ f

1 = p f
1 , . . . , p̂ f

N(m)
=

p f
N(m)

. Using property (4) of h̄[m,m′] (by induction on N(m)), we obtain thus

(a) m|q =A m′|h̄[m,m′](q) for all q ∈ {p f
1 , . . . , p f

N(m)
}, and

(b) m[., . . . , .]
p f

1 ,...,p f
N(m)

=A m′[., . . . , .]
h̄[m,m′](p f

1),...,h̄[m,m′](p f
N(m)

)

Note that m[., . . . , .]
p f

1 ,...,p f
N(m)

is composed merely from the symbol f and from variables

as place-holders for the subterms m|p f
i . This implies that m′[., . . . , .]

h̄[m,m′](p f
1),...,h̄[m,m′](p f

N(m)
)

and hence m′ has the same top-symbol f as m. Furthermore, the derivation of m′ from
m using exclusively permutative equations on single function symbols allows us to show
that f occurs in m[., . . . , .]

p f
1 ,...,p f

N(m)

as many as in m′[., . . . , .]
h̄[m,m′](p f

1),...,h̄[m,m′](p f
N(m)

)
. By the

induction hypothesis, we have additionally that every function symbol in m|q occurs as

many as in m′|h̄[m,m′](q) for all q ∈ {p f
1 , . . . , p f

N(m)
}. This allows us to conclude that every

function symbol in m occurs as many as in m′. 2

Based on property (1) of theorem 22, we characterize the messages as follows:

Definition 23 (Types and Structures of Messages).

1. We say a message [m]∈C to be atomic, if [m] = {m} for some m∈Σ⟨0⟩ ∪ At. Otherwise,
we call [m] a composed message.

2. We distinguish the composed messages according to their top-symbols. The messages
that have f ∈ Σ \ Σ⟨0⟩ as top-symbol are called f -objects.

3. For f -objects [m] and f (m0, . . . ,mn−1) ∈ [m], (it is obvious that) [m] can be composed
by a constructor-type application of f to [m0], . . . , [mn−1]. We represent this relation
between [m] and ([m0], . . . , [mn−1]) using predicates obj f (one, for each f ∈ Σ \ Σ⟨0⟩).
Semantically, [obj f] consists of all tuples ([m], [m0], . . . , [mn−1]) ∈ Cn+1 satisfying
f (m0, . . . ,mn−1) ∈ [m].

4. For an f -object [m] and f (m0, . . . ,mn−1) ∈ [m], we call [m0], . . . , [mn−1] f -parts of [m].

In certain contexts, f -objects are referred to by f -messages.
For f -objects, we clearly may speak about their substructures, which consist of the cor-

responding f -parts and of the substructures belonging to the composed f -parts.

Property (2) of theorem 22 allows us to define a measure |.| on messages by counting
the occurrences of function symbols whose arities are greater than 0.

Definition 24 (|.| on Messages). We define the measure |.| : C→N for arbitrary [m] ∈ C by:

1. |[m]| = 0, if [m] = {m} for m ∈ Σ⟨0⟩ ∪ At.

2. |[m]| = 1 + |[m0]|+ . . . + |[mn−1]|, if f (m0, . . . ,mn−1) ∈ [m], f ∈ Σ⟨n⟩ and n > 0.

64 CHAPTER 5. MESSAGE OBJECTS AND OPERATIONS

It is clear that |.| is well defined, due to property (2) of theorem 22.
The measure |.| induces a well-founded order <|.| on C by

[m] <|.| [m
′]⇔ |[m]| < |[m′]|.

This so-called size order <|.| includes inherently the structural order, which permits us to
apply structural induction. It is furthermore the basis for the definition of other orders if
required by other induction schemes.

5.1.2 Message Structures and the |.|-Measure

In this section, we describe how to reflect the notions in Def. 23 and 24 on the object level.
We start with the axiomatization of the complete case distinction.

Axiom Schema 25 (Complete Case Distinction):
Let Σ⟨0⟩= {c1, . . . , cN′}, Σ⟨1⟩= { f1,1, . . . , f1,n1}, ..., Σ⟨N⟩= { fN,1, . . . , fN,nN}, and let the sets
Σ⟨n⟩ be empty for all n > N. Then, the axiom about the complete case distinction is ob-
tained according to following schema:

m ∈ At∨̇(m = c1∨̇ . . . ∨̇m = cN′)

∨̇(∃m0 : obj f1,1(m,m0)∨̇ . . . ∨̇obj f1,n1 (m,m0))

...
∨̇(∃m0, . . . ,mN−1 : obj fN,1(m,m0, . . . ,mN−1)∨̇ . . . ∨̇obj fN,nN (m,m0, . . . ,mN−1))

In this axiom schema, we abbreviate the mutual exclusive case distinction for the types
of m using ”∨̇” for exclusive or. This implies in particular that messages of different types,
e.g., ⊕(a,b) and ⊖(a), are not equals.

Next, we provide the definition schema for the |.|-measure.

Definition Schema 26 (|.|):
Let Σ⟨0⟩= {c1, . . . , cN′}, Σ⟨1⟩= { f1,1, . . . , f1,n1}, ..., Σ⟨N⟩= { fN,1, . . . , fN,nN}, and let the sets
Σ⟨n⟩ be empty for all n > N. Then, the measure |.| is defined according to the following
schema:

1. |m| = 0⇔ (m ∈ At ∨ (m = c1 ∨ . . . ∨m = cN′))

2. |m| > 0⇔
((∃m0 : (obj f1,1(m,m0) ∨ . . . ∨ obj f1,n1 (m,m0)) ∧ |m| = |m0|+ 1) ∨

...
∨ (∃m0, . . . ,mN−1 : (obj fN,1(m,m0, . . . ,mN−1) ∨ . . . ∨ obj fN,nN (m,m0, . . . ,mN−1))

∧ |m| = 1 + |m0|+ . . . + |mN−1|))

The next axioms are mainly about (the relations represented by) the predicates obj f ,
with f ∈ Σ⟨n⟩ and n > 0. For given arbitrary messages m,m0, . . . ,mn−1 ∈ C, we have
obj f (m,m0, . . . ,mn−1) iff

1. no rewrite rule f (t0, . . . , tn−1)→ r is applicable to f (m0, . . . ,mn−1), and

5.2. BASIC OPERATIONS 65

2. m =A f (m0, . . . ,mn−1).

We postpone the axiomatization of condition (1) to Sec. 5.2, where we formalize in
particular when obj f (f (m0, . . . ,mn−1),m0, . . . ,mn−1) holds. The axiomatization of (2), i.e.
whether two f -objects are equal modulo A, is according to the following schema:

Axiom Schema 27 (Structure of Composed Messages):
Let f ∈ Σ \ Σ⟨0⟩. The axioms about the (dis-)equalities of f -objects are obtained as follows:

1. When f does not occur in A, i.e. f is independent from the permutative equations in
A, then we have:
(obj f (m,m0, . . . ,mn−1) ∧ obj f (m,m′0, . . . ,m′n−1))⇔ (m0 = m′0 ∧ . . . ∧mn−1 = m′n−1)

2. When f is AC, then we have:
(obj f (m,m0,m1) ∧ obj f (m,m′0,m′1))⇔
((m0 = m′0 ∧m1 = m′1) ∨ (m0 = m′1 ∧m1 = m′0)
∨ (∃m2 : obj f (m0,m′0,m2) ∧ obj f (m′1,m2,m1))

∨ (∃m2 : obj f (m0,m′1,m2) ∧ obj f (m′0,m2,m1))

∨ (∃m2 : obj f (m1,m′0,m2) ∧ obj f (m′1,m2,m0))

∨ (∃m2 : obj f (m1,m′1,m2) ∧ obj f (m′0,m2,m0))

∨ (∃m2,m3,m4,m5 : obj f (m0,m2,m3) ∧ obj f (m1,m4,m5)
∧ obj f (m′0,m2,m4) ∧ obj f (m′1,m3,m5)))

3. When f ∈ Σ⟨2⟩ and A f = { f (f (x,y),z) = f (f (x,z),y)}, then we have:
(obj f (m,m0,m1) ∧ obj f (m,m′0,m′1))⇔
((m0 = m′0 ∧m1 = m′1) ∨ (∃m2 : obj f (m0,m2,m′1) ∧ obj f (m′0,m2,m1)))

4. When f ∈ Σ⟨2⟩ and A f = { f (x, f (y,z)) = f (y, f (x,z))}, then we have:
(obj f (m,m0,m1) ∧ obj f (m,m′0,m′1))⇔
((m0 = m′0 ∧m1 = m′1) ∨ (∃m2 : obj f (m1,m′0,m2) ∧ obj f (m′1,m0,m2)))

Axioms 2–4 are adaptations of the decomposition rules (in Sec. 4.4.1) used for unifica-
tion modulo A as part of the completion algorithm.

Note that these axioms are necessary to prove inequalities between different f -objects,
e.g., ⊕(a,b) ̸= ⊕(a, a) for atomic messages a and b.

5.2 Basic Operations

We want to axiomatize when obj f (f (m0, . . . ,mn−1),m0, . . . ,mn−1) holds. For that purpose,
we need to know all complementary cases, i.e. all cases where f (m0, . . . ,mn−1) is reducible
by an outermost rewrite step followed in certain cases by further rewriting steps. Recall, a
reducible f (m0, . . . ,mn−1) yields after finitely many rewrite steps a message in C, which is
not necessary a f -object. The axiomatization of all these cases corresponds to an axiomati-
zation of the basic operations { f C : Cn→ C | f ∈ Σ \ Σ⟨0⟩}, where

f C([m0], . . . , [mn−1]) = [f (m0, . . . ,mn−1)] ↓RA .

It is clear that the resulting axioms have to be complete and sound, in the sense that
all possible reduction cases are covered and that the specified structures are justified by
(applied) corresponding rewrite-rules. Identifying and characterizing all possible reduc-
tion cases necessitates to analyze the interactions between different rewrite rules and per-
mutations by A: Focusing on the question on how [f (m0, . . . ,mn−1)] can be rewritten
to [f (m0, . . . ,mn−1)] ↓RA for arbitrary [m0], . . . , [mn−1] ∈ C, the general purpose is to iden-
tify schemata relating substructures of [f (m0, . . . ,mn−1)] ↓RA with those from [m0], . . . , and

66 CHAPTER 5. MESSAGE OBJECTS AND OPERATIONS

[mn−1]. These so-called operation schemata extend rewrite rules with (additional) struc-
tural information, to refine the relation between [f (m0, . . . ,mn−1)] ↓RA and the arguments
[m0], . . . , [mn−1] into the different cases. Operation schemata are expressed with a relatively
simple and intuitive vocabulary, which we introduce in Sec. 5.2.1. They permit us to pro-
vide for given R/A a list of operation schemata, which covers all rewrite-specific cases of
the basic operations f C . This intermediate step is accompanied with a thorough argumen-
tation that the provided list of operation-schemata is sound and complete (see above and
Sec. 5.3.2.1, 5.4.2 and 5.4.3). After that, the operation schemata are transformed uniformly
to the axioms on the basic operations, as described in Sec. 5.2.2.

5.2.1 Operation Schemata

We want to introduce the notion of “operation schemata” with the help of a running exam-
ple from the TC-AMP algebra. It is clear that the rewrite-specific cases of the basic operation
⊕C heavily depend on the following rewrite-rules:

r3 : ⊕(x,⊖(x))→∞ or r4 : ⊕(x,∞)→ x.

Analyzing the interaction of these rules with the remaining rewrite rules and with the
A equations in Sec. 4.6 (commutativity and associativity of ⊕), we obtain the following
definition of ⊕C :

⊕C([m0], [m1]) =

[m0] : [m1] = {∞}
[m1] : [m0] = {∞}
{∞} : ⊖(m0) ∈ [m1]
{∞} : ⊖(m1) ∈ [m0]
[m3] : ⊕(m2,m3) ∈ [m1], ⊖(m0) ∈ [m2]
[m3] : ⊖(m2) ∈ [m0], ⊕(m2,m3) ∈ [m1]
[m3] : ⊕(m2,m3) ∈ [m0], ⊖(m1) ∈ [m2]
[m3] : ⊕(m2,m3) ∈ [m0], ⊖(m2) ∈ [m1]

⊕C([m3], [m5]) : ⊕(m2,m3) ∈ [m1], ⊖(m4) ∈ [m2],
⊕(m4,m5) ∈ [m0]

⊕C([m3], [m5]) : ⊕(m2,m3) ∈ [m0], ⊖(m4) ∈ [m2],
⊕(m4,m5) ∈ [m1]

[⊕(m0,m1)] : otherwise

We distinguish eleven cases:

1. The first case corresponds to an immediate application of r4, without use of equations
from A.

2. The second case corresponds to an application of r4 after applying the commutativity
of ⊕.

3. The third case corresponds to an immediate application of r3, without use of equa-
tions from A.

4. The fourth case corresponds to an application of r3 after applying the commutativity
of ⊕.

5. The fifth case corresponds to an application of r3, prepared by suitable permutations
based on A, and ended up by an application of r4.

6. The sixth case is similar to the fifth case, but the simplified ⊖-object is the first argu-
ment instead of being a part of the second argument.

5.2. BASIC OPERATIONS 67

7. The seventh case is identical to the fifth case, if we switch the first and the second
argument.

8. The eighth case is identical to the sixth case, if we switch the first and the second
argument.

9. The ninth case corresponds to an application of r3, prepared by suitable permutations
based on A, and followed by an application of r4. Contrary to the previous cases,
there can be further applications of r3 and r4, which yields to the recursive invocation
of ⊕C .

10. The tenth case is identical to the ninth case, if we switch the first and the second
argument.

11. The eleventh case corresponds to a constructor-type application of ⊕C , where neither
r3 nor r4 is applicable.

Basically, these eleven cases can be expressed in a more compact manner as an operation
schema, where the rewrite-specific single cases are rather represented as applications of
rewrite rules, incorporating at the same time the main notions used in our axiomatization.
This can be seen in the following operation schema, representing the above definition of
⊕C :

r′4,1 : ⊕C(m0,∞); m0;

r′4,2 : ⊕C(∞,m1); m1;

r′3,1 : ⊕C(m0,⊖obj(m0)); ∞;

r′3,2 : ⊕C(⊖obj(m1),m1); ∞;

r′3,3 : ⊕C(m0,⊕obj(⊖obj(m0),m2)); m2;

r′3,4 : ⊕C(⊖obj(m2),⊕obj(m2,m3)); m3;

r′3,5 : ⊕C(⊕obj(⊖obj(m1),m2),m1); m2;

r′3,6 : ⊕C(⊕obj(m2,m3),⊖obj(m2)); m3;

r′3,7 : ⊕C(⊕obj(m2,m3),⊕obj(⊖obj(m2),m4));⊕C(m3,m4);

r′3,8 : ⊕C(⊕obj(⊖obj(m2),m3),⊕obj(m2,m4));⊕C(m3,m4);

Note that the labels on the left-side are used just to link each case with the rewrite-rule
applied first in that case. The mentioned cases cover all outermost rewriting cases starting
with the use of the given rewrite rules r3 and r4. Consequently, the given operation schema
is complete. It is also sound, because the specified structures in each case can be justified
by the corresponding application of r3 or r4.

Basically, the operation schema represents explicitly only the rewrite-specific cases (the
first ten cases in the above definition of ⊕C). The case where no rewrite-rule is applicable
(the eleventh case in the above definition of ⊕C) is only implicit.

In operation schemata, the structures of arguments and results are expressed using con-
stants from Σ⟨0⟩ and terms with head-symbols hobj for h ∈ Σ \ Σ⟨0⟩, which are obviously
place-holders for h-objects.

Definition 28 (Operation Schema). Let f ∈ Σ \ Σ⟨0⟩ and let R include rewrite rules of the
form f (t0, . . . , tn−1)→ r. An operation schema for the rewrite-specific cases of the basic oper-
ation f C is a sequence of the form:

f C(α1,0, . . . ,α1,n−1); β1;
...

f C(αn f ,0, . . . ,αn f ,n−1); βn f ;

68 CHAPTER 5. MESSAGE OBJECTS AND OPERATIONS

αi,j-s on the left-side are called α-terms and βk-s on the right-side β-terms, where

• the basic α-terms and β-terms belong to Σ⟨0⟩ ∪MV , for a finite setMV of message
variables that includes m0, . . . ,mn−1,

• the composed α-terms are of the form hobj(α0, . . . ,αn′−1), where h ∈ Σ⟨n′⟩ with n′ > 0
and where α0, . . . ,αn′−1 are α-terms,

• and where the composed β-terms are of two possible forms hobj(β′0, . . . , β′n′−1) or
hC(β′0, . . . , β′n′−1), where h ∈ Σ⟨n′⟩ with n′ > 0 and where β′0, . . . , β′n′−1 are β-terms.

Every message variable in a β-term must occur in the corresponding left-side.

An operation schema is a sequence of distinguished rewrite-specific cases in a basic
operation. In each distinguished case, the arguments of f C (in the left-side) are clearly in
normal-form and can be associated with certain structures as provided by the correspond-
ing rewrite-rule. Contrarily on the right-side, certain results could depend from further (re-
cursive) basic operations, which can be expressed through appropriate composed β-terms.
For that reason, the axioms on basic operations that we obtain systematically from oper-
ation schemata could be seen sometimes as recursive definitions. The base cases, which we
call the recursion-free cases, correspond to the constructor-type case and to the cases where
the structure of the result is definitely given (after a single rewrite step in the rewriting-based
model) from the structure of the arguments. In the recursion cases, several alternatives exist
for the structure of the result relative to the structure of the arguments (according to the
possible subsequent rewriting steps in the rewriting-based model).

For the (operation schemata) axioms that include recursion we will justify that the re-
cursive cases use smaller arguments than in the defined basic operation. In the above op-
eration schema for the basic operation ⊕C , it is obvious that the arguments of ⊕C in the
right-side of cases r′3,7 and r′3,8 are substructures of the respective arguments of ⊕C in the
left-side.

5.2.2 Axioms about Basic Operations

In this section, we exemplify how operation schemata are transformed uniformly to the
axioms on the basic operations. Given an arbitrary operation schema as in Def. 28, the
corresponding axiom is obtained according to the following schema:

((∃mn, . . . ,mn′1
: Φα,1 ∧Ψβ,1) ∨

...∨
(∃mn, . . . ,mn′n f

: Φα,n f ∧Ψβ,n f) ∨

((∀mn, . . . ,mn′1
: ¬Φα,1) ∧ . . . ∧ (∀mn, . . . ,mn′n f

: ¬Φα,n f)

∧ obj f (f (m0, . . . ,mn−1),m0, . . . ,mn−1)),

where Φα,i and respectively Ψβ,i (for 1 ≤ i ≤ n f) are structural propositions according to
the left-side and the right-side, respectively, of the i-th case in the operation schema. In our
running example, the first case (r′4,1) provides us with the structural proposition

(m1 = ∞ ∧⊕(m0,m1) = m0),

where m1 = ∞ corresponds to Φα,1 and the rest to Ψβ,1; According to the third case (r′3,1) we
obtain the structural proposition

(obj⊖(m1,m0) ∧⊕(m0,m1) = ∞),

5.2. BASIC OPERATIONS 69

where obj⊖(m1,m0) corresponds to Φα,3 and the rest to Ψβ,3; The fifth case (r′3,3) provides
us with the structural proposition

(∃m2,m3 : obj⊕(m1,m3,m2) ∧ obj⊖(m3,m0) ∧⊕(m0,m1) = m2),

where obj⊕(m1,m3,m2) ∧ obj⊖(m3,m0) corresponds to Φα,5 and the rest to Ψβ,5; According
to the sixth case (r′3,4) we obtain the structural proposition

(∃m2,m3 : obj⊖(m0,m2) ∧ obj⊕(m1,m2,m3) ∧⊕(m0,m1) = m3),

where obj⊖(m0,m2) ∧ obj⊕(m1,m2,m3) corresponds to Φα,6 and the rest to Ψβ,6; The ninth
case (r′3,7) provides us with the structural proposition

(∃m2,m3,m4,m5 : obj⊕(m0,m2,m3) ∧ obj⊕(m1,m5,m4) ∧ obj⊖(m5,m2) ∧
⊕(m0,m1) = ⊕(m3,m4)),

where obj⊕(m0,m2,m3) ∧ obj⊕(m1,m5,m4) ∧ obj⊖(m5,m2) corresponds to Φα,9 and the rest
to Ψβ,9. Altogether, the operation schema for ⊕C is transformed to the following axiom:

AxiomVSE 29 (Axiom about obj⊕):

((m1 = ∞ ∧⊕(m0,m1) = m0) ∨
(m0 = ∞ ∧⊕(m0,m1) = m1) ∨
(obj⊖(m1,m0) ∧⊕(m0,m1) = ∞) ∨
(obj⊖(m0,m1) ∧⊕(m0,m1) = ∞) ∨
(∃m2,m3 : obj⊕(m1,m3,m2) ∧ obj⊖(m3,m0) ∧⊕(m0,m1) = m2) ∨
(∃m2,m3 : obj⊖(m0,m2) ∧ obj⊕(m1,m2,m3) ∧⊕(m0,m1) = m3) ∨
(∃m2,m3 : obj⊕(m0,m3,m2) ∧ obj⊖(m3,m1) ∧⊕(m0,m1) = m2) ∨
(∃m2,m3 : obj⊕(m0,m2,m3) ∧ obj⊖(m1,m2) ∧⊕(m0,m1) = m3) ∨
(∃m2,m3,m4,m5 : obj⊕(m0,m2,m3) ∧ obj⊕(m1,m5,m4) ∧ obj⊖(m5,m2) ∧
⊕(m0,m1) = ⊕(m3,m4)) ∨

(∃m2,m3,m4,m5 : obj⊕(m0,m5,m3) ∧ obj⊕(m1,m2,m4) ∧ obj⊖(m5,m2) ∧
⊕(m0,m1) = ⊕(m3,m4)) ∨

((m1 ̸= ∞) ∧ (m0 ̸= ∞) ∧ (¬obj⊖(m1,m0)) ∧ (¬obj⊖(m0,m1)) ∧
(∀m2,m3 : ¬obj⊕(m1,m3,m2) ∨ ¬obj⊖(m3,m0)) ∧
(∀m2,m3 : ¬obj⊖(m0,m2) ∨ ¬obj⊕(m1,m2,m3)) ∧
(∀m2,m3 : ¬obj⊕(m0,m3,m2) ∨ ¬obj⊖(m3,m1)) ∧
(∀m2,m3 : ¬obj⊕(m0,m2,m3) ∨ ¬obj⊖(m1,m2)) ∧
(∀m2,m3,m4,m5 : ¬obj⊕(m0,m2,m3) ∨ ¬obj⊕(m1,m5,m4) ∨ ¬obj⊖(m5,m2)) ∧
(∀m2,m3,m4,m5 : ¬obj⊕(m0,m5,m3) ∨ ¬obj⊕(m1,m2,m4) ∨ ¬obj⊖(m5,m2)) ∧
obj⊕(⊕(m0,m1),m0,m1))).

Note that such axioms could be replaced with sets of equivalent axioms that formal-
ize separately the different rewrite-specific cases using explicit predicates f r′-s (one for
each rewriting case) and that include (abbreviated) definitions of obj f -s using the newly
introduced predicates. In our running example, the predicate for the second case would be
⊕ r′4,2 and the corresponding formalization would be

⊕ r′4,2(m,m0,m1)⇔ (m0 = ∞ ∧m = ⊕(m0,m1) = m1);

70 CHAPTER 5. MESSAGE OBJECTS AND OPERATIONS

In the same line, the tenth case would be formalized by

⊕ r′3,8(m,m0,m1)⇔ (∃m2,m3,m4,m5 : obj⊕(m0,m5,m3) ∧ obj⊕(m1,m2,m4) ∧
obj⊖(m5,m2) ∧m = ⊕(m0,m1) = ⊕(m3,m4)).

Using the introduced predicates, we would obtain the following axiom defining obj⊕:

obj⊕(m,m0,m1)⇔ (¬⊕ r′4,1(m,m0,m1) ∧ ¬⊕ r′4,2(m,m0,m1) ∧ ¬⊕ r′3,1(m,m0,m1) ∧
¬⊕ r′3,2(m,m0,m1) ∧ ¬⊕ r′3,3(m,m0,m1) ∧ ¬⊕ r′3,4(m,m0,m1) ∧
¬⊕ r′3,5(m,m0,m1) ∧ ¬⊕ r′3,6(m,m0,m1) ∧ ¬⊕ r′3,7(m,m0,m1) ∧
¬⊕ r′3,8(m,m0,m1) ∧m = ⊕(m0,m1)).

Altogether, the first axiom about obj⊕ would be replaced with eleven axioms intro-
ducing ten new predicates. But, we prefer to do without predicates f r′-s (as in the first
described approach) and thus employ one axiom for each basic operation f C , which serves
as definition for obj f .

5.3 Axiomatization of the PACE Algebra

We start with the axioms about the message structures and the definition of the |.|-measure
(in Sec. 5.3.1), and then we discuss the axiomatization of the basic operations (in Sec. 5.3.2).

5.3.1 Message Structures and the |.|-Measure

The axioms and the definitions in this section are obtained as described in Sec. 5.1.
We start with the axiom generated according to schema 25.

AxiomVSE 30 (Complete Case Distinction; PACE):

m ∈ At∨̇(∃m0 : obj f st(m,m0)∨̇objsnd(m,m0))∨̇
(∃m0,m1 : objpair(m,m0,m1)∨̇objenc(m,m0,m1)∨̇objdh(m,m0,m1)∨̇

objgen(m,m0,m1)∨̇objdec(m,m0,m1)∨̇objmac(m,m0,m1))

Note that the atomic messages in At are as well distinguished into different kinds. The
corresponding specification will be discussed later in Chap. 8.

Next, we provide the definition of |.| following schema 26.

DefinitionVSE 31 (|.|; PACE):

1. |m| = 0⇔ m ∈ At

2. |m| > 0⇔
((∃m0 : (obj f st(m,m0) ∨ objsnd(m,m0)) ∧ |m| = |m0|+ 1) ∨
(∃m0,m1 : (objpair(m,m0,m1) ∨ objenc(m,m0,m1) ∨ objdh(m,m0,m1) ∨

objgen(m,m0,m1) ∨ objdec(m,m0,m1) ∨ objmac(m,m0,m1))

∧ |m| = 1 + |m0|+ |m1|))

5.3. AXIOMATIZATION OF THE PACE ALGEBRA 71

The next axioms are about the structure of enc- and dh-objects and are obtained accord-
ing to the axiom schemata 27-(1) and -(3).

AxiomVSE 32 (Structure of enc- and dh-objects):

1. (objenc(m,m0,m1) ∧ objenc(m,m′0,m′1))⇔ (m0 = m′0 ∧m1 = m′1)

2. (objdh(m,m0,m1) ∧ objdh(m,m′0,m′1))⇔
((m0 = m′0 ∧m1 = m′1) ∨ (∃m2 : objdh(m0,m2,m′1) ∧ objdh(m′0,m2,m1)))

For dec-, pair-, f st-, snd-, mac-, and gen-objects, the corresponding f -parts are identified
with corresponding axioms according to axiom schema 27-(1). This results in six further
axioms similar to 32-(1).

5.3.2 Axioms about Basic Operations

First, we want to provide a complete list of operation schemata that cover the rewrite-specific
cases of the basic operations.

5.3.2.1 Operation Schemata

All rewrite rules in PACE are cancellations that result in a substructure of one argument.
Furthermore, they can be applied without taking the permutative property of dh into con-
sideration, as dh does not occur in any rewrite rule. In such a situation, we know that
f C([m0], . . . , [mn−1]) yields either [f (m0, . . . ,mn−1)] or a substructure [m′i] of a [mi]. Accord-
ing to the fact that all t ∈ [mi] and their sub-terms are irreducible, m′i results just by one
rewriting step. For that reason, each rewrite rule provides a single case in the correspond-
ing operation schema. In case of the rewrite rules r1–r4 in Sec. 4.5, we obtain (through
obvious transformations) the corresponding operation schemata:

1. r′1 : decC(m0, encobj(m0,m2)); m2

2. r′2 : encC(m0,decobj(m0,m2)); m2

3. r′3 : f stC(pairobj(m1,m2)); m1

4. r′4 : sndC(pairobj(m1,m2)); m2

It is clear that the given operation schemata are sound, as each includes a single rewrite-
specific case linked directly to a corresponding rewrite rule.

5.3.2.2 Resulting Axioms

The axioms about the basic operations are obtained by a simple transformation of the op-
eration schemata, as described in Sec. 5.2.2. The following axioms result from the transfor-
mation of r′1–r′4:

AxiomVSE 33 (Axioms about objdec, objenc, objfst and objsnd):

1. ((∃m2 : objenc(m1,m0,m2) ∧ dec(m0,m1) = m2) ∨
((∀m2 : ¬objenc(m1,m0,m2)) ∧ objdec(dec(m0,m1),m0,m1)))

72 CHAPTER 5. MESSAGE OBJECTS AND OPERATIONS

2. ((∃m2 : objdec(m1,m0,m2) ∧ enc(m0,m1) = m2) ∨
((∀m2 : ¬objdec(m1,m0,m2)) ∧ objenc(enc(m0,m1),m0,m1)))

3. ((∃m1,m2 : objpair(m0,m1,m2) ∧ f st(m0) = m1) ∨
((∀m1,m2 : ¬objpair(m0,m1,m2)) ∧ obj f st(f st(m0),m0)))

4. ((∃m1,m2 : objpair(m0,m1,m2) ∧ snd(m0) = m2) ∨
((∀m1,m2 : ¬objpair(m0,m1,m2)) ∧ objsnd(snd(m0),m0)))

For basic operations without rewrite-specific cases the axioms are straightforward. For
instance, we obtain in case of the basic operation dhC the following axiom:

AxiomVSE 34 (Axiom about objdh):

objdh(dh(m0,m1),m0,m1).

Further three similar axioms are about objpair, objmac and objgen.

5.4 Axiomatization of the TC-AMP Algebra

We start with the axioms about the message structures and the definition of the |.|-measure
(in Sec. 5.4.1), then we identify and discuss the operation schemata (in Sec. 5.4.2) and justify
(in Sec. 5.4.3) the conjectured structures of results in certain cases of the identified opera-
tion schemata. Finally, we provide (in Sec. 5.4.4) the axioms (about the basic operations)
resulting by the systematic transformation of the operation schemata.

5.4.1 Message Structures and the |.|-Measure

The axioms and the definitions in this section are obtained as described in Sec. 5.1.
We start with the axiom generated according to schema 25.

AxiomVSE 35 (Complete Case Distinction; TC-AMP):

m ∈ At∨̇m = ∞∨̇(∃m0 : obj f st(m,m0)∨̇objsnd(m,m0)∨̇objinv(m,m0)∨̇obj⊖(m,m0))

∨̇(∃m0,m1 : objpair(m,m0,m1)∨̇obj⊕(m,m0,m1)∨̇obj∗(m,m0,m1))

∨̇(∃m0,m1,m2 : objh1(m,m0,m1,m2)∨̇objh2(m,m0,m1,m2))

Note that the atomic messages in At are as well distinguished into different kinds. The
corresponding specification will be discussed later in Chap. 9.

Next, we provide the definition of |.| following schema 26.

DefinitionVSE 36 (|.|; TC-AMP):

1. |m| = 0⇔ (m ∈ At ∨m = ∞)

5.4. AXIOMATIZATION OF THE TC-AMP ALGEBRA 73

2. |m| > 0⇔
((∃m0 : (obj f st(m,m0) ∨ objsnd(m,m0) ∨ objinv(m,m0) ∨ obj⊖(m,m0))

∧ |m| = |m0|+ 1) ∨
(∃m0,m1 : (objpair(m,m0,m1) ∨ obj⊕(m,m0,m1) ∨ obj∗(m,m0,m1))

∧ |m| = 1 + |m0|+ |m1|) ∨
(∃m0,m1,m2 : (objh1(m,m0,m1,m2) ∨ objh2(m,m0,m1,m2))

∧ |m| = 1 + |m0|+ |m1|+ |m2|))

The next axioms are about the structure of inv-, ⊕- and ∗-objects and are obtained ac-
cording to the axiom schemata 27-(1),-(2) and -(4).

AxiomVSE 37 (Structure of inv-, ⊕- and ∗-objects):

1. (objinv(m,m0) ∧ objinv(m,m′0))⇔ (m0 = m′0)

2. (obj⊕(m,m0,m1) ∧ obj⊕(m,m′0,m′1))⇔
((m0 = m′0 ∧m1 = m′1) ∨ (m0 = m′1 ∧m1 = m′0)
∨ (∃m2 : obj⊕(m0,m′0,m2) ∧ obj⊕(m′1,m2,m1))

∨ (∃m2 : obj⊕(m0,m′1,m2) ∧ obj⊕(m′0,m2,m1))

∨ (∃m2 : obj⊕(m1,m′0,m2) ∧ obj⊕(m′1,m2,m0))

∨ (∃m2 : obj⊕(m1,m′1,m2) ∧ obj⊕(m′0,m2,m0))

∨ (∃m2,m3,m4,m5 : obj⊕(m0,m2,m3) ∧ obj⊕(m1,m4,m5)

∧ obj⊕(m′0,m2,m4) ∧ obj⊕(m′1,m3,m5)))

3. (obj∗(m,m0,m1) ∧ obj∗(m,m′0,m′1))⇔
((m0 = m′0 ∧m1 = m′1) ∨ (∃m2 : obj∗(m1,m′0,m2) ∧ obj∗(m′1,m0,m2)))

For ⊖-, pair-, f st-, snd-, h1-, and h2-objects, the corresponding f -parts are identified
with corresponding axioms according to axiom schema 27-(1). This results in six further
axioms similar to 37-(1).

5.4.2 Operation Schemata

We already gave in Sec. 5.2.1 the operation schema representing the rewrite-specific cases
of ⊕C . In the following, we first provide the operation schema for ∗C (in Sec. 5.4.2.1) and
the operation schemata for the remaining basic operations (in Sec. 5.4.2.2).

5.4.2.1 Operation Schema for ∗C

We consider the case where the (first) rewrite step is carried out using

r5 : ∗(x,∗(inv(x),y))→ y, r7 : ∗(x,⊕(y,z))→⊕(∗(x,y),∗(x,z)),
r11 : ∗(x,∞)→∞ or r12 : ∗(x,⊖(y))→⊖(∗(x,y)).

Taking their interactions with other rewrite-rules and the permutative property of ∗ into
account, these rewrite-rules can be mapped to the following operation schema:

74 CHAPTER 5. MESSAGE OBJECTS AND OPERATIONS

r′5,1 : ∗C(m0,∗obj(invobj(m0),m2)); m2;

r′5,2 : ∗C(invobj(m2),∗obj(m2,m3)); m3;

r′7 : ∗C(m0,⊕obj(m2,m3));⊕obj(∗C(m0,m2),∗C(m0,m3));

r′11 : ∗C(m0,∞); ∞;

r′12 : ∗C(m0,⊖obj(m2));⊖obj(∗C(m0,m2));

The rewrite-rule r5 is mapped to two cases: Either the simplified inv-object is a substruc-
ture of the second argument (r′5,1) or corresponds to the first argument (r′5,2). The remaining
rewrite-rules are mapped to single cases. Note that the axiom obtained by the transforma-
tion of this operation schema includes two recursive cases, r′7 and r′12. In all three recursive
applications of ∗C , the second argument (m2 and m3 in r′7; m2 in r′12) is obviously smaller
than its pendant in the defined situation (⊕obj(m2,m3) in r′7; ⊖obj(m2) in r′12).

The mentioned cases cover all outermost rewriting cases starting with the use of the
given rewrite rules. Consequently, the given operation schema is complete. It is also sound,
because the specified structures in each case can be justified by the corresponding applica-
tion of the mentioned rewrite rule and the conjectured structures of the results in r′7 and r′12
can be justified as described in Sec. 5.4.3.

5.4.2.2 Operation Schemata for f st, snd, inv and ⊖

We consider the case where the (first) rewrite step is carried out using

r1 : f st(pair(x,y))→ x, r2 : snd(pair(x,y))→ y,
r6 : inv(inv(x))→ x, r8 : ⊖(∞)→∞,
r9 : ⊖(⊖(x))→ x or r10 : ⊖(⊕(x,y))→⊕(⊖(x),⊖(y)).

Except of r10, using one of these rules to rewrite m for an arbitrary [m] ∈ C yields directly
(without further rewrite steps) a message in C. In case of r10, successive rewrite steps
could be necessary. Accordingly, these rewrite-rules are mapped to the following operation
schemata:

1. r′1 : f stC(pairobj(m1,m2)); m1;

2. r′2 : sndC(pairobj(m1,m2)); m2;

3. r′6 : invC(invobj(m1)); m1;

4. r′8 : ⊖C(∞); ∞;

r′9 : ⊖C(⊖obj(m1)); m1;

r′10 : ⊖C(⊕obj(m1,m2));⊕obj(⊖C(m1),⊖C(m2));

Note that the axiom obtained by the transformation of the operation schema for ⊖C
includes one recursive case, r′10. In both recursive applications of ⊖C , the argument
(m1 and respectively m2) is obviously smaller than its pendant in the defined situation
(⊕obj(m1,m2)).

The cases in the given operation schemata cover obviously all outermost rewriting cases
starting with the use of the associated rewrite rules. Consequently, the given operation
schemata are complete. They are also sound, because the specified structures in each case
can be justified by the corresponding application of the associated rewrite rule and the
conjectured structure of the result in r′10 can be justified as described in Sec. 5.4.3.

5.4. AXIOMATIZATION OF THE TC-AMP ALGEBRA 75

5.4.3 Justification of Result Structures in the Operation Schemata

In this section, we justify the conjectured structures of the results in the provided operation
schemata.

First, we focus on case r′12 and want to justify that the result is indeed a ⊖-object with
∗(m0,m2) as ⊖-part. This means, the application of ∗ to arbitrary irreducible t0 and ⊖(t2)
must yield a ⊖-term ⊖(∗(t0, t2)) that is irreducible at the top-position. Referring to the
operation schema of ⊖C , ⊖(∗(t0, t2)) is reducible at the top-position only after reducing
∗(t0, t2) to ∞ (cp. case r′8), a ⊖-term ⊖(t3) (cp. case r′9) or to a ⊕-term t3 (cp. case r′10).

1. According to the operation schema of ∗C , ∗(t0, t2) reduces to ∞ only if t2 = ∞. This
does not fit in with the assumption that ⊖(t2), i.e. ⊖(∞), is irreducible.

2. According to the operation schema of ∗C , ∗(t0, t2) reduces to a⊖-term⊖(t3) only if t2
is a ⊖-term ⊖(t4). This does not fit in with the assumption that ⊖(t2), i.e. ⊖(⊖(t4)),
is irreducible.

3. According to the operation schema of ∗C , ∗(t0, t2) reduces to a⊕-term t3 only if t2 is a
⊕-term⊕(t4, t5). This does not fit in with the assumption that⊖(t2), i.e.⊖(⊕(t4, t5)),
is irreducible.

Next, we consider case r′7 to justify that the corresponding result is indeed a ⊕-object
with ∗(m0,m2),∗(m0,m3) as ⊕-parts. This means, the application of ∗ to arbitrary irre-
ducible t0 and ⊕(t2, t3) must yield a ⊕-term ⊕(∗(t0, t2),∗(t0, t3)) that is irreducible at the
top-position. Referring to the operation schema of ⊕C (in Sec. 5.2.1), ⊕(∗(t0, t2),∗(t0, t3))
is reducible at the top-position only after reducing ∗(t0, t2) and/or ∗(t0, t3) transforming
⊕(∗(t0, t2),∗(t0, t3)) to ⊕(t02, t03) and this ⊕-term possesses ∞ as a basic ⊕-subterm (cp.
cases r′4,1 and r′4,2) or two basic ⊕-subterms ⊖(t) and t (cp. cases r′3,1–r′3,8). W.l.o.g., we
focus on the case where ∞ (resp. ⊖(t)) equals or occurs in t02.

1. According to the operation schema of ∗C , ∗(t0, t2) reduces to t02 corresponding to ∞
or to a ⊕-term having ∞ as a basic ⊕-subterm only if t2 = ∞. This does not fit in with
the assumption that ⊕(t2, t3), i.e. ⊕(∞, t3), is irreducible.

2. According to the operation schema of ∗C , ∗(t0, t2) reduces to t02 corresponding to
⊖-term ⊖(t) or to a ⊕-term having ⊖(t) as a basic ⊕-subterm only in the following
cases:

(a) t2 is a⊖-term⊖(∗(t4, t)) such that ∗(t0,∗(t4, t)) reduces to t: Here,⊕(t02, t03), i.e.
⊕(⊖(t), t03), possesses t as a basic ⊕-subterm only if t03 equals t or is a ⊕-term
having t as a basic⊕-subterm. According to the operation schema of ∗C , ∗(t0, t3)
reduces to such t03 only in the following cases:

i. t3 is a ∗-term ∗(t5, t) such that the term ∗(t0,∗(t5, t)) reduces to t: Based on
∗(t0,∗(t4, t)) = ∗(t0,∗(t5, t)), we get t5 = t4.

ii. t3 is a ∗-subterm of t, which corresponds to the ∗-term ∗(t0, t3): Based on
∗(t0,∗(t4, t)) = ∗(t0, t3), we get t3 = ∗(t4, t).

iii. t3 is a ⊕-term having a basic ⊕-subterm t′3 that matches ∗(t5, t) in case (i) or
that is a ∗-subterm of t as in case (ii). In both cases, we deduce that t′3 equals
∗(t4, t).

In all three cases, ⊕(t2, t3) possesses ⊖(∗(t4, t)) and ∗(t4, t) as basic ⊕-subterms,
which does not fit in with the assumption that ⊕(t2, t3) is irreducible.

(b) t2 is a ⊖-term ⊖(t4) such that t corresponds to the ∗-term ∗(t0, t4): Here,
⊕(t02, t03), i.e. ⊕(⊖(t), t03), possesses t as a basic ⊕-subterm only if t03 equals t
or is a⊕-term having t as a basic⊕-subterm. According to the operation schema
of ∗C , ∗(t0, t3) reduces to such t03 only in the following cases:

76 CHAPTER 5. MESSAGE OBJECTS AND OPERATIONS

i. t3 is a ∗-term ∗(t5, t) such that ∗(t0,∗(t5, t)) reduces to t: Based on ∗(t0, t4) =
∗(t0,∗(t5, t)), we get ∗(t5, t) = t4.

ii. t3 is a ∗-subterm of t, which corresponds to the ∗-term ∗(t0, t3): Based on
∗(t0, t4) = ∗(t0, t3), we get t3 = t4.

iii. t3 is a ⊕-term having a basic ⊕-subterm t′3 that matches ∗(t5, t) in case (i) or
that is a ∗-subterm of t as in case (ii). In both cases, we deduce that t′3 equals
t4.

In all three cases, ⊕(t2, t3) possesses ⊖(t4) and t4 as basic ⊕-subterms, which
does not fit in with the assumption that ⊕(t2, t3) is irreducible.

(c) t2 is a ⊕-term with t′2 as a basic ⊕-subterm that matches ⊖(∗(t4, t)) in (a) or
⊖(t4) in (b): Here, ⊕(t02, t03) possesses t as a basic ⊕-subterm only if t occurs in
t02 besides⊖(t), t03 equals t or t03 is a⊕-term having t as a basic⊕-subterm. The
first case does not fit in with the assumption that t02 is irreducible. The second
case is handled similar to case (a) and the third case similar to case (b).

Finally, we consider case r′10 to justify that the result is indeed a ⊕-object with
⊖(m1),⊖(m2) as ⊕-parts. This means, the application of ⊖ to an arbitrary irreducible
⊕(t1, t2) must yield a ⊕-term ⊕(⊖(t1),⊖(t2)) that is irreducible at the top-position. Re-
ferring to the operation schema of ⊕C , ⊕(⊖(t1),⊖(t2)) is reducible at the top-position only
after reducing ⊖(t1) and/or ⊖(t2) transforming ⊕(⊖(t1),⊖(t2)) to ⊕(t3, t4) and this ⊕-
term possesses ∞ as a basic ⊕-subterm (cp. cases r′4,1 and r′4,2) or two basic ⊕-subterms
⊖(t) and t (cp. cases r′3,1–r′3,8). W.l.o.g., we focus on the case where ∞ (resp. ⊖(t)) equals
or occurs in t3.

1. According to the operation schema of ⊖C , ⊖(t1) reduces to t3 corresponding to ∞ or
to a ⊕-term having ∞ as a basic ⊕-subterm only if t1 = ∞. This does not fit in with
the assumption that ⊕(t1, t2), i.e. ⊕(∞, t2), is irreducible.

2. According to the operation schema of ⊖C , ⊖(t1) reduces to t3 corresponding to ⊖-
term ⊖(t) or to a ⊕-term having ⊖(t) as a basic ⊕-subterm only in the following
cases:

(a) t1 is a basic ⊖-subterm of ⊖(t), which means t1 equals t: Here, ⊕(t3, t4), i.e.
⊕(⊖(t), t4), possesses t as a basic ⊕-subterm only if t4 equals t or is a ⊕-term
having t as a basic ⊕-subterm. According to the operation schema of ⊖C , ⊖(t2)
reduces to such t4 only in the following cases:

i. t2 is a ⊖-term ⊖(t).
ii. t2 is a ⊕-term having ⊖(t) as a basic ⊕-subterm.

In both cases,⊕(t1, t2) possesses⊖(t) and t as basic⊕-subterms, which does not
fit in with the assumption that ⊕(t1, t2) is irreducible.

(b) t1 is a ⊕-term with t as a basic ⊕-subterm: Here, ⊕(t3, t4) possesses t as a basic
⊕-subterm only if t occurs in t3 besides ⊖(t), t4 equals t or t4 is a ⊕-term having
t as a basic ⊕-subterm. The first case does not fit in with the assumption that t3
is irreducible. The second and third case are handled similar to case (a).

5.4.4 Axioms about Basic Operations

Besides axiom 29 (in Sec. 5.2.2), we obtain the following axioms by the uniform transfor-
mation of the operation schemata in Sec. 5.4.2:

5.5. AUXILIARY NOTIONS AND SHORT-CUTS 77

AxiomVSE 38 (Axioms about obj∗, objfst, objsnd, objinv and obj⊖):

1. ((∃m2,m3 : obj∗(m1,m3,m2) ∧ objinv(m3,m0) ∧ ∗(m0,m1) = m2) ∨
(∃m2,m3 : objinv(m0,m2) ∧ obj∗(m1,m2,m3) ∧ ∗(m0,m1) = m3) ∨
(∃m2,m3 : obj⊕(m1,m2,m3) ∧ obj⊕(∗(m0,m1),∗(m0,m2),∗(m0,m3))) ∨
(m1 = ∞ ∧ ∗(m0,m1) = ∞) ∨
(∃m2 : obj⊖(m1,m2) ∧ obj⊖(∗(m0,m1),∗(m0,m2))) ∨
((∀m2,m3 : ¬obj∗(m1,m3,m2) ∨ ¬objinv(m3,m0)) ∧
(∀m2,m3 : ¬objinv(m0,m2) ∨ ¬obj∗(m1,m2,m3)) ∧
(∀m2,m3 : ¬obj⊕(m1,m2,m3)) ∧m1 ̸= ∞ ∧
(∀m2 : ¬obj⊖(m1,m2)) ∧ obj∗(∗(m0,m1),m0,m1)))

2. ((∃m1,m2 : objpair(m0,m1,m2) ∧ f st(m0) = m1) ∨
((∀m1,m2 : ¬objpair(m0,m1,m2)) ∧ obj f st(f st(m0),m0)))

3. ((∃m1,m2 : objpair(m0,m1,m2) ∧ snd(m0) = m2) ∨
((∀m1,m2 : ¬objpair(m0,m1,m2)) ∧ objsnd(snd(m0),m0)))

4. ((∃m1 : objinv(m0,m1) ∧ inv(m0) = m1) ∨
((∀m1 : ¬objinv(m0,m1)) ∧ objinv(inv(m0),m0)))

5. ((m0 = ∞ ∧⊖(m0) = ∞) ∨
(∃m1 : obj⊖(m0,m1) ∧⊖(m0) = m1) ∨
(∃m1,m2 : obj⊕(m0,m1,m2) ∧ obj⊕(⊖(m0),⊖(m1),⊖(m2))) ∨
(m0 ̸= ∞ ∧ (∀m1 : ¬obj⊖(m0,m1)) ∧ (∀m1,m2 : ¬obj⊕(m0,m1,m2)) ∧
obj⊖(⊖(m0),m0)))

For basic operations without rewrite-specific cases the axioms are straightforward. For
instance, we obtain in case of the basic operation hC1 the following axiom:

AxiomVSE 39 (Axiom about objh1):

objh1(h1(m0,m1,m2),m0,m1,m2).

Further two similar axioms are about objpair, and objh2 .

5.5 Auxiliary Notions and Short-Cuts

The axiomatization of message structures and basic operations, as described in Sec. 5.1.2
and 5.2, forms the basis for further notions employed in our approach to the inductive
verification of protocols.

5.5.1 Message substructures and Induction Schemes

The complete case distinction according to axiom schema 25 and the |.|-measure according
to definition schema 26 permit us to prove properties on messages by structural induction.

78 CHAPTER 5. MESSAGE OBJECTS AND OPERATIONS

Many properties are about recursively defined notions relative to the structure of f -objects
with arbitrary many f -parts, where f belongs to the permutative function symbols. For
their proofs we prefer to employ more focused induction schemes based on the so-called
f -structure of messages.

In PACE, we define the dh-structure of messages by the following measure:

DefinitionVSE 40 (|.|dh; PACE):

1. |m|dh = 0⇔ (∀m0,m1 : ¬objdh(m,m0,m1))

2. |m|dh > 0⇔ (∃m0,m1 : objdh(m,m0,m1) ∧ |m|dh = 1 + |m0|dh)

In TC-AMP, we define the ⊕-structure (resp. ∗-structure) of messages by the following
measures:

DefinitionVSE 41 (|.|⊕ and |.|∗; TC-AMP):

1. |m|⊕ = 0⇔ (∀m0,m1 : ¬obj⊕(m,m0,m1))

2. |m|⊕ > 0⇔ (∃m0,m1 : obj⊕(m,m0,m1) ∧ |m|⊕ = 1 + |m0|⊕ + |m1|⊕)

1. |m|∗ = 0⇔ ((∀m0,m1 : ¬obj∗(m,m0,m1)) ∧ (∀m0 : ¬obj⊖(m,m0) ∨ |m0|∗ = 0))

2. |m|∗ > 0⇔ ((∃m0,m1 : obj∗(m,m0,m1) ∧ |m|∗ = 1 + |m1|∗)
∨ (∃m0 : obj⊖(m,m0) ∨ |m|∗ = |m0|∗))

The measures |.| f count top occurrences of “ f ” in given m. They implicitly identify
specific message parts in m, as introduced in the following:

• For dh-objects m, the message parts m0 and respectively m1 that are identified by
objdh(m,m0,m1) are called a left and a right dh-part of m, respectively. In general, m
can have arbitrary many permutable right dh-parts. We identify these with the help of
the auxiliary function mapdh, defined for given message m and multiset ms by

mapdh(m,ms) =
{

m : ms = ∅
dh(mapdh(m,ms′),m′) : ms = {m′} ⊎ms′

For a dh-object m, we call m0 and a multiset ms the left dh-part and respectively the
right dh-parts of m when these satisfy

(∀m1,m2 : ¬objdh(m0,m1,m2)) ∧m = mapdh(m0,ms).

• For ⊕-objects m, we distinguish the ⊕-parts that are not ⊕-objects and call them the
basic ⊕-parts of m. We also use the auxiliary function map⊕ for the successive appli-
cation of ⊕, which is defined for given multiset ms of messages by

map⊕(ms) =
{

∞ : ms = ∅
⊕(map⊕(ms′),m′) : ms = {m′} ⊎ms′

5.5. AUXILIARY NOTIONS AND SHORT-CUTS 79

• For ∗-objects m, the message parts m0 and respectively m1 that are identified by
obj∗(m,m0,m1) are called a left and a right ∗-part of m, respectively. Since ⊖-objects
similar to ⊖(∗(a,b)) can be composed from a and ⊖(b) by an application of “∗”, we
generalize the notions “a left and a right ∗-part” to⊖-objects. In general, m (as ∗-object
or ⊖-object) can have arbitrary many permutable left ∗-parts. We identify these with
the help of the auxiliary function map∗, defined for given multiset ms and message m
by

map∗(ms,m) =

{
m : ms = ∅
∗(m′,map∗(ms′,m)) : ms = {m′} ⊎ms′

For a ∗-object m, we call a multiset ms and m0 the left ∗-parts and respectively the right
∗-part of m (and also of ⊖(m)) when these satisfy

(∀m1,m2 : ¬obj∗(m0,m1,m2)) ∧ (m3 ∈ ms⇒ inv(m3) /∈ ms) ∧m = map∗(m0,ms).

To express multiple simplifications of left ∗-parts, we use the auxiliary function
mapinv defined for given multiset ms by

mapinv(ms) =
{

∅ : ms = ∅
{inv(m′)} ⊎mapinv(ms′) : ms = {m′} ⊎ms′

5.5.2 (In-)equal Messages

The majority of our proof tasks consist in (dis-)proving the equality between two messages,
which is carried out by the low-level proof heuristic eqMsg (see Sec. 7.2.2.5). This heuristic
applies axioms and canonically formalized theorems to equalities occurring in the premises
and the conclusions of proof goals. The axioms and theorems that lead to less sub-goals (in
the optimal case to no sub-goals) are tried first.

In addition to axioms about the inequalities of atomic messages, we employ five kinds
of simple theorems that allow us to close proof goals by contradiction:

1. For f ∈ Σ⟨n⟩ where the axiom about the operations of f includes only the obj f -case,
we use theorems of the form

(m ∈ At ∨m ∈ Σ⟨0⟩)⇒ m ̸= f (m0, . . . ,mn−1).

Compare theorem ∞ ̸= h1(m0,m1,m2) in TC-AMP.

2. For different f , g ∈ Σ where the axiom about the operations of f and respectively that
about the operations of g includes only the obj f -case and the objg-case, respectively,
we use theorems of the form

f (m0, . . . ,mn−1) ̸= g(m′0, . . . ,m′n′−1).

Compare theorem dh(m0,m1) ̸= mac(m′0,m′1) in PACE.

3. For f ∈ Σ⟨n⟩ where the axiom about the operations of f includes non-constructor-
type cases, we use theorems of the form

((m ∈ At ∨m ∈ Σ⟨0⟩) ∧ obj f (f (m0, . . . ,mn−1),m0, . . . ,mn−1))

⇒ m ̸= f (m0, . . . ,mn−1).

Compare theorem obj∗(∗(m0,m1),m0,m1)⇒∞ ̸= ∗(m0,m1) in TC-AMP.

80 CHAPTER 5. MESSAGE OBJECTS AND OPERATIONS

4. For f , g ∈ Σ where the axiom about the operations of f includes non-constructor-type
cases and where the axiom about the operations of g includes only the objg-case, we
use theorems of the form

obj f (f (m0, . . . ,mn−1),m0, . . . ,mn−1)⇒ f (m0, . . . ,mn−1) ̸= g(m′0, . . . ,m′n′−1).

Compare theorem objenc(enc(m0,m1),m0,m1)⇒ enc(m0,m1) ̸= mac(m′0,m′1) in PACE.

5. For different f , g ∈ Σ where the axiom about the operations of f and that about the
operations of g include non-constructor-type cases, we use theorems of the form

(obj f (f (m0, . . . ,mn−1),m0, . . . ,mn−1) ∧ objg(g(m′0, . . . ,m′n′−1),m
′
0, . . . ,m′n′−1))

⇒ f (m0, . . . ,mn−1) ̸= g(m′0, . . . ,m′n′−1).

In TC-AMP, we obtain according to this principle for instance theorem

(obj∗(∗(m0,m1),m0,m1) ∧ obj⊕(⊕(m′0,m′1),m
′
0,m′1))⇒ ∗(m0,m1) ̸= ⊕(m′0,m′1).

Note that eqMsg applies theorems of kind (3)–(5) only to proof goals that include corre-
sponding obj f -premises.

If theorems of kind (1)–(5) are not applicable, eqMsg tries to apply the axioms generated
according to schema 27-(1–4). These axioms are applied in a controlled way and only to
proof goals that include corresponding obj f -premises.

Required obj f -premises are included through the application of the axioms about the
operations of f . When such axiom includes non-constructor-type cases, the proof goal is
reduced by the corresponding case distinction. The resulting sub-goals are then simplified
applying equations (the rewrite rules and the permutative equations in one direction).

5.5.3 Short-cuts and Abbreviations

In this section we introduce certain short-cuts and abbreviations that we often use in the
rest of the thesis.

We sometimes use predicates isObj f instead of obj f in contexts where the f -parts can be
abstracted away. isObj f are defined by

isObj f (m)⇔ (∃m0, . . . ,mn−1 : obj f (m,m0, . . . ,mn−1)).

We sometimes use the following short-cuts:

• We use the notations f [m0, . . . ,mn−1] and respectively m = f [m0, . . . ,mn−1] to abbrevi-
ate obj f (f (m0, . . . ,mn−1),m0, . . . ,mn−1) and obj f (m,m0, . . . ,mn−1), respectively.

• We use the notations dh(m,ms), ⊕(ms), ∗(ms,m) and respectively inv(ms) to abbre-
viate mapdh(m,ms), map⊕(ms), map∗(ms,m) and mapinv(ms), respectively.

Similar to the previous abbreviation, we use ⊕[ms], ∗[ms,m] and respectively inv[ms]
to express that these function applications include only constructor-type applications
of “⊕”, “∗” and “inv”, respectively.

• In our formalization tool (VSE), we use lists as multisets, extended clearly with the
required notions of multisets. So, we sometimes denote multisets of the form {m0} ⊎
. . . ⊎ {mn−1} ⊎ms as a list of the form m0.mn−1.ms. We also abbreviate multisets
composed from particular elements m0, . . . mn−1 and from rest multisets ms by m0 ⊎
. . . ⊎mn−1 ⊎ms.

Further short-cuts and auxiliary notions will be introduced in the rest of the thesis.

5.5. AUXILIARY NOTIONS AND SHORT-CUTS 81

5.5.4 Definition of uses

In section 7.1.5 we define freshness with the help of a binary relation uses on messages.
uses(m0,m1) holds iff m1 occurs in m0. This relation is defined recursively based on the
substructure notion induced by the obj f -predicates.

In PACE, we obtain the following definition.

DefinitionVSE 42 (uses ; PACE):

uses(m0,m1)⇔
(m0 = m1 ∨
(∃m2 : (obj f st(m0,m2) ∨ objsnd(m0,m2)) ∧ uses(m2,m1)) ∨
(∃m2,m3 : (objpair(m0,m2,m3) ∨ objgen(m0,m2,m3) ∨ objdh(m0,m2,m3) ∨

objmac(m0,m2,m3) ∨ objenc(m0,m2,m3) ∨ objdec(m0,m2,m3))

∧ (uses(m2,m1) ∨ uses(m3,m1))))

This definition is adapted straightforwardly to obtain the following definition of uses in
TC-AMP.

DefinitionVSE 43 (uses ; TC-AMP):

uses(m0,m1)⇔
(m0 = m1 ∨
(∃m2 : (obj f st(m0,m2) ∨ objsnd(m0,m2) ∨

objinv(m0,m2) ∨ obj⊖(m0,m2))

∧ uses(m2,m1)) ∨
(∃m2,m3 : (objpair(m0,m2,m3) ∨ obj∗(m0,m2,m3) ∨ obj⊕(m0,m2,m3))

∧ (uses(m2,m1) ∨ uses(m3,m1))) ∨
(∃m2,m3,m4 : (objh1(m0,m2,m3,m4) ∨ objh2(m0,m2,m3,m4))

∧ (uses(m2,m1) ∨ uses(m3,m1) ∨ uses(m4,m1))))

According to this definition, uses(⊕(⊖(a),⊖(b)),⊕(a,b)) does not hold, although
⊕(⊖(a),⊖(b)) is derivable from ⊕(a,b) by the application of ⊖. In Chap. 6, we will re-
fer to ⊕(a,b) as an implicit substructure of ⊕(⊖(a),⊖(b)).

For the verification of PACE and TC-AMP, the above definition of uses based on explicit
substructures is sufficient to specify new items, which do not occur before in prior protocol
traces. Theoretically, there can be other protocol settings where the definition of uses needs
to incorporate implicit substructures, too.

82 CHAPTER 5. MESSAGE OBJECTS AND OPERATIONS

Chapter 6

Inductive Proof Technique

The proofs of protocol properties include (eventually) arguments that the attacker is not able
to derive certain messages or message parts s from the (immediately) observable message sets ik.
In this chapter we describe our approach to show these proof arguments by induction on all
(protocol-given) message sets ik. It is based on the observation that the protocol (designer)
aims at the protection of these so-called targeted secrets s through the protection of long-
term secrets from the initial knowledge and of further message parts generated during
protocol runs. Typical secrets from the initial knowledge are private keys, shared keys
and passwords. The protected message parts generated during protocol runs are generally
nonces.

Basically, the protocol security relies on the intention that the attacker is not able to
violate the protection of these basic secrets, despite their occurrence in protocol messages.
We present basic check-functions used to verify this intention. They are used with finite sets
S of selected secrets to check that the protocol messages are not ”critical” for the protection
of S. Basic check-functions must be correct with respect to the DY closure: If the tests of
all protocol messages m ∈ ik are negative, i.e. no m ∈ ik is ”critical” for the protection of S,
then DY(ik) ∩ S is empty.

We start (in Sec. 6.1) with an introduction of the basic ideas and the general principles,
discussing the tackled problems, before we describe the proposed solutions (in Sec. 6.2 –
6.5).

6.1 Basic Ideas and General Principles

Before we discuss the general principles of our approach to verifying confidentiality prop-
erties, we introduce the basic ideas in comparison with Paulson’s approach.

6.1.1 Basic Ideas

During a protocol run the intruder sees the messages that are exchanged between the other
protocol participants. In each protocol step the prior (immediately) observable messages
in ikp are extended to ik = ikp ∪ {m}. Starting with this basic knowledge ik the intruder
derives additional messages according to the inductive definition of DY(ik). To show that
some (targeted) message s is kept confidential we have to prove that s /∈ DY(ik) holds.

Showing that something is not derivable is a notoriously difficult task in most cases.
Without referring to message algebras and DY derivations Paulson has defined a function
analz recursively on ik, [82]. For an atomic secret s, in the induction step, one then has
to show that s /∈ analz(ikp) implies s /∈ analz(ikp ∪ {m}). In case s is a composed mes-
sage, one need to show that ”s cannot be synthesized from analz(ikp)” implies ”s cannot

83

84 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

be synthesized from analz(ikp ∪ {m})”. This task is achieved by reducing the confidential-
ity of s to the confidentiality of its substructures, employing a second (predicate) function
synth. It determines inductively all messages that can be synthesized from any given finite
message set.

The definitions of analz and synth in the original inductive approach are relatively sim-
ple, since only decomposition of message pairs, simple decryption and standard construc-
tor application had to be taken into account. It was for that reason possible to come up
with a general theorem employed in the (fake) case where the arbitrary message m in the
induction step belongs to the intruder knowledge given by synth(analz(ikp)). This theo-
rem permits, in case m ∈ synth(analz(ikp)), to reduce s /∈ synth(analz(ikp ∪ {m})) back to
s /∈ synth(analz(ikp)).

Proofs of confidentiality of targeted (single) secrets using analz and synth necessitate to
reason on how the protocol protects them. This is generally traced back to specific (confi-
dentiality) properties in form of (proof-structuring) lemmas. For instance, long-term pri-
vate keys of non-compromised participants are confidential. A second example are the
so-called session key compromise theorems, [82], which guarantee that secrets are not en-
crypted using compromised session keys.

Instead of adapting analz and synth to other kinds of basic operations, we take a dif-
ferent route. Our approach allows us not only to work directly with the more intuitive
definition of DY-knowledge, but also to do with much less proof-structuring lemmas. For
a targeted secret s, we analyze the regular protocol messages to select message parts that
need to be confidential for the protection of s. The result is a finite set S, including s, which
we call the set of selected secrets. While analz(ik) includes the message parts that are
derivable by extraction from regular protocol messages, the set S contains message parts
that must not be derivable.

For a given set S of selected secrets, we define an extension, denoted by ccl(S), such
that ik ∩ ccl(S) = ∅ guarantees the secrecy of (the elements in) S, i.e. S ∩ DY(ik) = ∅: No
element of ccl(S) may belong to the observable messages, otherwise the confidentiality of
S could be violated.

For S = {a} (containing a as a targeted secret), we immediately see that a ∈ ccl(S) and
pair(a,b) ∈ ccl(S). In the latter case a derivation using f st would yield a in one step. For
enc(b, a) we see that b /∈ ccl(S), since a cannot be derived from b. This means that b is
allowed in ik and consequently enc(b, a) has to be critical by setting enc(b, a) ∈ ccl(S). If we
want to protect a (in enc(b, a)) against decryption we have to add the key b to S as well.
Note that the set of messages for which the protection actually works is ccl(Sik), where Sik
is an appropriate extension of {a} according to the protocol messages in ik.

One may consider ik∩ ccl(S) = ∅ as a generic invariant where the parameter S depends
on the protocol under consideration while the definition of ccl depends only on the under-
lying algebra.

While S is finite, ccl(S) is an infinite extension of S that is closed under a certain “criti-
cal” property relative to S. We define ccl(S) with the help of what we call a “critical” closure
function (ccl-function), where ccl uses technically a predicate that checks candidates m for
being in ccl(S). The predicate checkccl(m,S) is defined recursively on the structure of m. We
have ccl(S) = {m | checkccl(m, s)}. For sake of readability we continue to use m ∈ ccl(S) for
checkccl(m,S) and refer to the predicate checkccl with ccl-function, too.

For our purpose, i.e. proving the confidentiality of s as described above by showing
that ik is disjoint with ccl(S), it is necessary to use a correct ccl-function when checking the
elements in ik relative to S. This means, it must follow, whenever the checks checkccl(m,S)
of all messages m in ik are negative, that S is disjoint with DY(ik).

Clearly, confidentiality proofs necessitate to consider all possible effects of operations
wrt. the derivation of messages. That is, the definition of ccl-functions appropriate for the
above introduced proof technique heavily depends on the basic operations of the under-

6.1. BASIC IDEAS AND GENERAL PRINCIPLES 85

lying message algebra. Nevertheless, we came up with general principles that we applied
in our definition of the ccl-functions used in our verification of PACE and TC-AMP. These
general principles are described in the following section, where we also discuss related
problems together with proposed solutions.

6.1.2 Definition and Use of ccl-Functions

The definition of an appropriate ccl-function that can be used as a basic check-function
to prove confidentiality as described in Sec. 6.1.1 heavily depends on the basic operations
provided by the message algebra. For a given set S of selected secrets, ccl(S) is intuitively
an extension of S with arbitrary messages that might be sources for derivations of messages
in S. Accordingly, an arbitrary given m belongs to ccl(S) iff there is some si ∈ S that can
be derived from m and all additional items m0, . . . ,mn required for this derivation are not
critical for the protection of S. That is, for given m and S we check in the definition of ccl

1. whether m occurs in S, or

2. whether there is a substructure si of m that occurs in S and whether

(a) there is a derivation of si from m without needing additional items, e.g., si is
derivable from pair(si,m′) by applying f st and without using any additional
item,

(b) or there is a derivation of si from m using additional items that are not critical
for the protection of S.

It is clear that obtaining ik ∩ ccl(S) = ∅ with a ccl-function defined according to the
above principles excludes all derivations of selected secrets by extraction. However, ex-
cluding derivations by extraction is not enough as illustrated in the following example: For
S = {mac(a,b)} and ik = {a,b}, we obviously obtain ik ∩ ccl(S) = ∅. Though, we clearly
have mac(a,b) ∈ DY(ik) and thus DY(ik) ∩ S = ∅ does not hold. This example shows that
derivations by composition need to be excluded through additional conditions on S. To
protect mac(a,b) against derivation by composition, we need to include a or b as addi-
tional selected secrets. Using for instance S′ = {mac(a,b), a}, we obtain a ∈ ccl(S′) and thus
ik ∩ ccl(S′) = ∅ does not hold.

Consequently, basic check-functions shall be used only with sets S of selected secrets
that fulfill tailored additional conditions, so that all possible derivations are taken into con-
sideration.

To make sure that a ccl-function can be used correctly as a basic check-function, we have
to prove that

ik ∩ ccl(S) = ∅⇒ DY(ik) ∩ ccl(S) = ∅

holds (under appropriate conditions on S).
Note that the generalized conclusion DY(ik) ∩ ccl(S) = ∅ is stronger than our ultimate

proof goal DY(ik) ∩ S = ∅. This is crucial in our proof technique for two reasons:

• The proof of this correctness theorem is by induction on the DY-levels; Through the
generalized form, we obtain an induction hypothesis that is strong enough, so that
we can handle the step case by a case distinction on the possible basic operations
provided by the message algebra (see Sec. 6.2.4).

• This correctness theorem permits us to apply the ccl-function in confidentiality proofs
only to the regular protocol messages and to handle the faked messages (by the at-
tacker) for free, based on the induction hypothesis. In the fake case, the proof goal
(ikp ∪ {m}) ∩ ccl(S) = ∅ follows immediately (by the correctness theorem) from the
induction hypothesis ikp ∩ ccl(S) = ∅ and from m ∈ DY(ikp).

86 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

As introduced above, the sets of the selected secrets are determined relative to the ob-
servable regular protocol messages. That is, we need to provide for every ik a set Sik sat-
isfying ik ∩ ccl(Sik) = ∅. This existence conjecture is shown by induction on ik. In the
step case, the proof goal consists in providing Sik (by extending Sp from the induction hy-
pothesis) such that (ikp ∪ {m}) ∩ ccl(Sik) = ∅ can be shown with the help of the induction
hypothesis ikp ∩ ccl(Sp) = ∅. Fortunately, Sik equals Sp or is a partition Sp ⊎ Se of Sp and
some set Se.

1. The set Se may not be empty only when the last message m could be used to derive
selected secrets in Sp. New selected secrets are required to prevent that m violates the
protection of Sp.

2. Furthermore, including additional selected secrets in Se is necessary only when these
secrets cannot be fixed before the generation of m. This is usually the case when the
last protocol step giving rise to m generates a fresh message part (generally a new
nonce) m̃.

Making sure that
(∀s ∈ Se : uses(s, m̃)) ∧ (∀s ∈ Sp : ¬uses(s, m̃)) (6.1)

holds, we require that the used ccl-functions fulfill

(¬uses(m, m̃) ∧m ∈ ccl(Sp ⊎ Se))⇒ m ∈ ccl(Sp). (6.2)

Since ¬uses(m′, m̃) holds for all m′ ∈ ikp, conditions (6.1) and (6.2) permit us to use the
induction hypothesis ikp ∩ ccl(Sp) = ∅ to reduce (ikp ∪{m})∩ ccl(Sp ⊎ Se) = ∅ to the check
that the the last message m is not critical, i.e. to m /∈ ccl(Sp ⊎ Se).

Following the above described principles, we came up with a canonical ccl-function ccl1,
which is defined according to the same simple schema in all message algebras, as described
in Sec. 6.2 and 6.3 for ccl1 in PACE and respectively TC-AMP. Our verification of PACE
and TC-AMP makes use of ccl1 as the sole basic check-function in all confidentiality proofs
about the confidential message parts occurring in protocol steps. Besides this kind of what
we call basic confidentiality properties, protocol verification (also of PACE and TC-AMP) in-
cludes proof situations where only partial knowledge about the structure of a targeted se-
cret s is given. In such proof situations, it is (often) not possible to prove the confidentiality
of s by providing finite sets of selected secrets (without the need of auxiliary notions). In-
stead of that, we use generic theorems and a second canonical ccl-function ccl2 to reduce
the protection of s to the protection of substructures of s (see Sec. 6.4). The check-function
ccl2 is defined relative to s only and that by a straightforward adaptation of ccl1, where addi-
tional items in derivations are neglected. By ik∩ ccl2(s) = ∅ we check that s is not derivable
by extraction (en-bloc) from all messages in ik, so that s can be derived only by composition.
The generic theorems are used to reduce s to the message parts required for a composition
of s, according to its top structure.

The reduction theorems and ccl2, which permit for a kind of backward reasoning, do
not apply when s can be composed using items different from its substructures. That is,
the structure of s does not limit the infinite number of such candidate items. This can be
only limited by following a kind of forward reasoning in protocol-specific invariants about
all derivable messages m̂ having the same type like s. In particular, the invariant links
m̂ to basic confidential message parts, so that their occurrence in m̂ shall be shown to be
inconsistent with that in s, which basically forms the main confidentiality argument of s.
The occurrence of an arbitrary but fixed m̂ is generalized in this kind of invariants to an
infinite message set given by a (specific) ccl-function (applied to m̂), in order to support the
invariant verification by nested induction, first on protocol traces and then on DY-levels
(see Sec. 6.5.1).

6.2. BASIC CHECK-FUNCTION CCL1 IN PACE 87

After the description of the ccl-functions used in the verification of PACE and TC-AMP,
we demonstrate (in Sec. 6.5.2) that our proof technique of basic confidentiality properties
can be extended to proof situations where the canonical basic check-function ccl1 does not
apply: Using an example (key establishment) protocol, we argue that the basic confidential-
ity of the session key necessitates sets S of selected secrets that do not satisfy the required
conditions for being correctly used with ccl1 as basic check-function. For the discussed kind
of basic confidentiality proofs, we propose another basic check-function ccl3 and sketch its
correctness proof, including the corresponding additional conditions on these new sets S
of selected secrets.

6.2 Basic Check-Function ccl1 in PACE

The use of basic check-functions heavily depends on the provided operations by the mes-
sage algebra. In case of PACE, we identify the following kinds of basic operations.

6.2.1 Characterization of Basic Operations

Confidentiality proofs necessitate to consider all possible effects of operations wrt. the
derivation of messages. Analyzing the (axioms about) operations in PACE, we come up
with the characterization of their effects, as described below.

To characterize operations f (m0, . . . ,mn−1) resulting in m′, we focus on structural rela-
tions about m0, . . . ,mn−1 and m′ that are crucial in dealing with corresponding derivation
schemata in our proof technique.

Aside from the constructor-type operation, where m0, . . . ,mn−1 are f -parts, i.e. substruc-
tures, of m, we identify the following kinds of operations.

selector-type operation: The application of “ f ” to a g-object m0 is called a selector-type
operation (abbreviated by sel f

g), when the result m = f (m0) is a substructure of m0. We
refer to the result m as a select-part of the g-object m0.

Altogether, the PACE algebra includes two selector-type operations: sel f st
pair and selsnd

pair
(e.g., snd(pair(a,b)) = b). Corresponding predicates can be defined as auxiliary notions,
according to the basic operations. For instance, sel f st

pair(m,m0) can be defined by

sel f st
pair(m,m0)⇔ (∃m1 : objpair(m0,m,m1)).

decrypt-type operation: The application of “ f ” to m0, . . . ,mn−1 where the result m =
f (m0, . . . ,mn−1) is a substructure of a g-object mi and where m0, . . . ,mi−1,mi+1, . . . ,mn−1
can be fixed relative to substructures of mi is called a decrypt-type operation (abbre-
viated by dec f

g). We refer to the result m as a crypt-part of the g-object mi and to
m0, . . . ,mi−1,mi+1, . . . ,mn−1 as the corresponding crypt-keys.

Altogether, the PACE algebra includes two decrypt-type operations: decenc
dec and decdec

enc
(e.g., dec(a, enc(a,b)) = b). Corresponding predicates can be defined as auxiliary notions,
according to the basic operations. For instance, decenc

dec(m,m0,m1) can be defined by

decenc
dec(m,m0,m1)⇔ objenc(m1,m0,m).

When applying the ccl-function ccl1, we want to treat derivations by extraction of ex-
plicit substructures, as permitted by the selector-type and the decrypt-type operations, to-
gether with derivations by composition using as well explicit substructures, as permitted by
the constructor-type operations. So, we refer to these operations by the canonical operations.

88 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

6.2.2 Definition of ccl1
Referring to the general required checks by basic check-functions in Sec. 6.1.2, we define
m ∈ ccl1(S) iff one of the following cases holds:

• m ∈ S (base case corresponding to check (1)),

• there is a select-part mi of m such that mi ∈ ccl1(S) (recursion case(s) corresponding
to check (2-a)), or

• there is a crypt-part mi of m such that mi ∈ ccl1(S) and all required crypt-keys
[m,mi]

key
j satisfy [m,mi]

key
j /∈ ccl1(S) (recursion case(s) corresponding to check (2-b)).

For each f -object and each identified explicit select-part or decrypt-part, we have one re-
cursion case. According to the canonical operations of PACE, we obtain thus the following
definition of ccl1:

DefinitionVSE 44 (ccl1 ; PACE):
For a finite message set S and an arbitrary message m we have

m ∈ ccl1(S)⇔ (m ∈ S ∨
∃m0,m1 : (objpair(m,m0,m1) ∧ (m0 ∈ ccl1(S) ∨m1 ∈ ccl1(S))) ∨
∃m0,m1 : (objenc(m,m0,m1) ∧m1 ∈ ccl1(S) ∧m0 /∈ ccl1(S)) ∨
∃m0,m1 : (objdec(m,m0,m1) ∧m1 ∈ ccl1(S) ∧m0 /∈ ccl1(S))).

Before we discuss the correct use of ccl1 as a basic check-function, we make sure that
ccl1 satisfies condition (6.2) required for proof situations where the set of selected secrets
(from the induction hypothesis) must be extended with other items (see Sec. 6.1.2).

TheoremVSE 45 (Extension Condition of ccl1(S)):
Let m, m̃ be two arbitrary messages and let S, E be two finite sets of messages satisfying

(∀s ∈ S : ¬uses(s, m̃)) ∧ (∀s ∈ E : uses(s, m̃)).

Then we have
¬uses(m, m̃)⇒ (m ∈ ccl1(S ⊎ E)⇔ m ∈ ccl1(S)).

This theorem is identical in all message algebras and it is shown by structural induction,
i.e. by induction on |m|, according to the same proof schema:

Proof (Schema):

Base-Case: Here, m is atomic. In the left-right case, m ∈ ccl1(S⊎ E) implies m ∈ S⊎ E and
the uses-conditions permit us to obtain m ∈ S and thus m ∈ ccl1(S), as required.

In the right-left case, we assume m /∈ ccl1(S ⊎ E) and want to show m /∈ ccl1(S). For an
atomic m, the assumption implies m /∈ S ⊎ E and thus m /∈ S. The latter is sufficient to get
m /∈ ccl1(S), as required.

Step-Case: Here, m is an f -object. In the left-right case, we expand m ∈ ccl1(S⊎ E) by the
definition of ccl1 and the resulting cases can be distinguished as follows:

• In the base case, we get m ∈ S ⊎ E: It is shown as in the Base Case.

6.2. BASIC CHECK-FUNCTION CCL1 IN PACE 89

• In a recursion case corresponding to a selector-type operation, the definition of
ccl1 yields objg(m,m0, . . . ,mn−1) and mi ∈ ccl1(S ⊎ E): Since ¬uses(m, m̃) implies
¬uses(mi, m̃), we may use the induction hypothesis to obtain mi ∈ ccl1(S) and then
employ the definition of ccl1 to show m ∈ ccl1(S), as required.

• In a recursion case corresponding to a decrypt-type operation, the definition of ccl1
yields objg(m,m0, . . . ,mn−1) and mi ∈ ccl1(S ⊎ E), where the corresponding crypt-
keys [m,mi]

key
1 , . . . , [m,mi]

key
n′ are not in ccl1(S ⊎ E): The crypt-keys are expected to

be smaller than m and not to include m̃ as a message part. This permits to apply
the induction hypothesis and obtain that they do not belong to ccl1(S). Additionally,
mi ∈ ccl1(S) is ensued like in the previous case. All these permit us to employ the
definition of ccl1 and obtain m ∈ ccl1(S), as required.

The right-left case is handled as in the base case, by assuming m /∈ ccl1(S ⊎ E) and
showing m /∈ ccl1(S). The assumption m /∈ ccl1(S ⊎ E) yields

1. m /∈ S ⊎ E, and

2. if obj f (m,m0, . . . ,mn−1) holds, then for all i ∈ {0, . . . ,n− 1}

(a) mi /∈ ccl1(S ⊎ E), or

(b) some of the crypt-keys (if any) [m,mi]
key
1 , . . . , [m,mi]

key
n′ belongs to ccl1(S ⊎ E).

(1) implies m /∈ S, as in the base case, and (2) transfers to ccl1(S), by the induction hypothe-
sis and based on the same argument as in the left-right case. This permits us to employ the
definition of ccl1 and obtain m /∈ ccl1(S), as required. 2

In the corresponding proof (for the PACE algebra), we need to consider concrete mes-
sage structures. For instance, the Step-Case includes a case where objenc(m,m0,m1) holds.
Here, the definition of ccl1 provides in the left-right case practically two proof situations:
m ∈ S ⊎ E, which is handled as in the Base-Case, and m1 ∈ ccl1(S ⊎ E) ∧m0 /∈ ccl1(S ⊎ E),
which is handled by the induction hypothesis to get m1 ∈ ccl1(S) ∧m0 /∈ ccl1(S) and then
by the definition of ccl1 to obtain m ∈ ccl1(S).

6.2.3 Appropriate Sets of Selected Secrets

Basically, we want to use ccl1 as basic check-function to reliably exclude derivations of se-
lected secrets by canonical operations. According to the general principles in Sec. 6.1.2,
appropriate sets S of selected secrets used correctly with ccl1 must satisfy an additional
condition that excludes derivations by constructor-type operations. In the light of this re-
quirement, appropriate sets S for the confidentiality of a targeted secret s are obtained by
extending {s} according to the following principles:

1. (“decrypt-prevention” principle): If a regular protocol message m ∈ ik includes a
“public” message part m′ such that some selected secret is crypt-part of m′, then at
least one of the corresponding crypt-keys must belong to the selected secrets.

2. (“ f -part inclusion” principle): If a selected secret is an f -object, then for each tuple of
its f -parts, at least one f -part must belong to the selected secrets.

Contrarily to rule (1), where the added selected secrets generally include new message
parts from regular protocol messages, selected secrets included due to rules (2) correspond
usually to message parts of prior selected secrets. That is, rule (2) can be seen as a necessary
closure property for sets of selected secrets.

Actually, the extension principles (1) and (2) are rather guidance instructions on how to
define the content of S relative to the regular protocol steps: Referring to the general princi-
ples in Sec. 6.1.2, the sets S of selected secrets are provided during the induction proof of a

90 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

protocol invariant. In simple basic confidentiality proofs, one appropriate set S can be fixed
for all protocol traces. Other basic confidentiality proofs necessitate successive extensions
of {s} according to the protocol steps. In such proofs, the sets S are defined as smallest sets
closed under protocol-specific inclusion rules, translating the extension principles (1) and
(2). In the step case of these proofs, S is given by an extension E of a set Sp provided by the
induction hypothesis, i.e. S = Sp ⊎ E. For the last protocol steps where E is not empty, we
need

• to satisfy the protocol-specific inclusion rules defining S,

• paying attention to requirement (6.1) in Sec. 6.1.2.

The cases where E is not empty shall coincide with those protocol steps where new message
parts m̃ are generated. This permits to fulfill requirement (6.1), i.e. to make sure that a
message part m̃ occurs in each selected secret in E and does not occur in any element of Sp.

In Sec. 8.2, we discuss the basic confidentiality properties of PACE, which are shown
using ccl1 as basic check-function. For instance, property 78-(1) is about the confidentiality
of the fresh generator gen(dh(g,nc1),m). It is shown employing

S = {gen(dh(g,nc1),m),dh(g,nc1),nc1, pwd(agA)}
as the set of selected secrets, fixed for all protocol traces containing a first PACE message
enc(pwd(agA),nc1).

It is clear that S is closed under the “ f -part inclusion” principle.
In case of this (simple) confidentiality property, there is no need for extending the fixed

set S: The selected secrets in S do not occur (outside of enc(pwd(agA),nc1) neither as select-
part nor) as crypt-part of other protocol messages.

Using ccl1(S), the checks of the regular protocol messages of PACE show that they are
not critical. For instance, enc(pwd(A),nc1) /∈ ccl1(S) holds, because enc(pwd(A),nc1) /∈ S
and pwd(A) ∈ S. The latter excludes that nc1 (in S) can be derived from enc(pwd(A),nc1).

6.2.4 Correctness of ccl1 as Basic Check-Function

In this section, we prove that ccl1 can be used as basic check-function using sets S of se-
lected secrets that respect the “ f -part inclusion” principle in Sec. 6.2.3. In case of PACE,
this inclusion principle is sufficient to exclude the critical derivations by composition, as
required among the general principles in Sec. 6.1.2. It is simply expressed by a conjunction
of conditions

(m ∈ S ∧ obj f (m,m0, . . . ,mn−1))⇒ (m0 ∈ S ∨ . . . ∨mn−1 ∈ S), (6.3)

one for each f ∈ (Σ \ Σ⟨0⟩).
We use ℜ1(S) in the correctness theorem of ccl1 to denote the condition about S, which

corresponds in the PACE algebra to the conjunction of the above given conditions.

TheoremVSE 46 (Correctness of ccl1(S)):
Let ik be a finite message set, and let S be a finite set of messages such that ℜ1(S) holds.
Then we have

ik ∩ ccl1(S) = ∅⇒ DY(ik) ∩ ccl1(S) = ∅.

Except of ℜ1(S), which consists of the conditions for “ f -part inclusion” and can include
in rich message algebras further conditions to exclude critical derivations by composition,
this theorem is identical in all message algebras. The proof is according to a common
schema, which applies for theorems about ccl-functions shown by induction on DY-levels.

6.2. BASIC CHECK-FUNCTION CCL1 IN PACE 91

Proof

The proof of theorem 46 is by induction on the extension of the DY-knowledge. This means
for ccl1, we show

ik ∩ ccl1(S) = ∅⇒ DYl(ik,n) ∩ ccl1(S) = ∅

by induction on n.

Base Case: It is obvious, since DYl(ik,0) = ik.

Step Case: We assume that some m from DYl(ik,n + 1) belongs to ccl1(S) and try to find
some mi from DYl(ik,n)∩ ccl1(S), which permits us to apply the induction hypothesis and
obtain ik ∩ ccl1(S) ̸= ∅:

First, the definition of DYl provides us with a case distinction on how such a mes-
sage m is obtained. Each case fixes some function symbol f ∈ Op and (candidate) mes-
sages m0, . . . ,mN f−1 (for mi) from DYl(ik,n) with m = f (m0, . . . ,mN f−1). The next step
consists in employing f (m0, . . . ,mN f−1) ∈ ccl1(S) and the axiom about the operations of
f (m0, . . . ,mN f−1) to show that some message from m0, . . . ,mN f−1 belongs to ccl1(S).

Case “f = dh”: The axiom about the operations of dh(m0,m1) provides us only with
the objdh-case, where objdh(dh(m0,m1),m0,m1) holds. Here, the definition of ccl1 applied to
dh(m0,m1) ∈ ccl1(S) yields practically only the base case, i.e. dh(m0,m1) ∈ S. Then, ℜ1(S)
permits to obtain mi ∈ S and thus mi ∈ ccl1(S), for mi ∈ {m0,m1}.

Cases “ f = mac” and “ f = gen” are similar.

Case “f = pair”: The axiom about the operations of pair(m0,m1) provides us only
with the objpair-case, where objpair(pair(m0,m1),m0,m1) holds. Here, the definition of ccl1
applied to pair(m0,m1) ∈ ccl1(S) yields practically three cases:

1. pair(m0,m1) ∈ S: This case is handled based on ℜ1(S) as in the “ f = dh”-case.

2. m0 ∈ ccl1(S): This case is trivial.

3. m1 ∈ ccl1(S): This case is trivial.

Case “f = fst”: The axiom about the operations of f st(m0) provides us with two cases:

1. obj f st(f st(m0),m0): This case is handled by the definition of ccl1 similar to the “ f =
dh”-case.

2. objpair(m0,m′0,m′1) and f st(m0) = m′0: Here, we use f st(m0) ∈ ccl1(S) to deduce
m′0 ∈ ccl1(S). Then, we apply the definition of ccl1 using objpair(m0,m′0,m′1) and
m′0 ∈ ccl1(S) to obtain m0 ∈ ccl1(S).

Case “ f = snd” is similar.

Case “f = enc”: The axiom about the operations of enc(m0,m1) provides us with two
cases:

1. objenc(enc(m0,m1),m0,m1): Here, the definition of ccl1 applied to enc(m0,m1) ∈
ccl1(S) yields practically two cases:

(a) enc(m0,m1) ∈ S: This case is handled based on ℜ1(S) as in the “ f = dh”-case.

92 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

(b) m1 ∈ ccl1(S) and m0 /∈ ccl1(S): This case is trivial.

2. objdec(m1,m0,m2) and enc(m0,m1) = m2: To use the definition of ccl1, we proceed by
a case distinction:

(a) m0 ∈ ccl1(S): This case is trivial.

(b) m0 /∈ ccl1(S): Here, we use enc(m0,m1) ∈ ccl1(S) to deduce m2 ∈ ccl1(S). Then,
we apply the definition of ccl1 using objdec(m1,m0,m2), m2 ∈ ccl1(S) and m0 /∈
ccl1(S) to obtain m1 ∈ ccl1(S).

Case “ f = dec” is similar. 2

6.3 Basic Check-Function ccl1 in TC-AMP

Before we discuss the use of ccl1 in the TC-AMP algebra, we describe the identified kinds
of basic operations.

6.3.1 Characterization of Basic Operations

As in Sec. 6.2.1, we identify the different kinds of operations f (m0, . . . ,mn−1) based
on structural relations about m0, . . . ,mn−1 and the result m = f (m0, . . . ,mn−1). Besides
the constructor-type operations, the TC-AMP algebra includes sel f st

pair, selsnd
pair, sel⊖⊖ (e.g.,

⊖(⊖(a)) = a) and selinv
inv (e.g., inv(inv(a)) = a) as selector-type operations, together with

dec∗∗ (e.g., ∗(a,∗(inv(a),b)) = b) and dec⊕⊕ (e.g., ⊕(a,⊕(⊖(a),b)) = b) as decrypt-type oper-
ations, in the sense of Sec. 6.2.1. The corresponding predicates for dec∗∗ and dec⊕⊕ are defined
by:

dec∗∗(m,m0,m1)⇔ (∃m2 : obj∗(m1,m2,m) ∧m0 = inv(m2))

dec⊕⊕(m,m0,m1)⇔ ((∃m2 : obj⊕(m1,m2,m) ∧m0 = ⊖(m2)) ∨
(∃m2 : obj⊕(m0,m2,m) ∧m0 = ⊖(m1)))

The definition of dec∗∗ incorporates two cases: m0 results from m2 by composition or by
selinv

inv . Similarly, the definition of dec⊕⊕ covers two cases: m is a crypt-part of m1 or of m0.
In addition to the mentioned canonical operations, we identify the following non-

canonical operations.

synthesis operation: A composed operation f (m0, . . . ,mn−1) that results in a g-object m
where all nested recursion-free operations are constructor-type and where m0, . . . ,mn−1 can
be fixed relative to substructures of m is called a synthesis operation (abbreviated by syn f

g).
We refer to m0, . . . ,mn−1 as synth-parts of the g-object m, to emphasize two features:

1. m0, . . . ,mn−1 are uniformly smaller than m, and

2. m is derivable by composition from m0, . . . ,mn−1, besides composition(s) from its g-parts.

Note that composed messages that can be derived by synthesis operations possess the
synth-parts as implicit substructures.

Altogether, the TC-AMP algebra includes three different synthesis operations: syn∗⊖
(e.g., ∗(a,⊖(b)) = ⊖(∗(a,b))), syn⊖⊕ (e.g., ⊖(⊕(a,b)) = ⊕(⊖(a),⊖(b))) and syn∗⊕ (e.g.,

6.3. BASIC CHECK-FUNCTION CCL1 IN TC-AMP 93

∗(a,⊕(b, c)) = ⊕(∗(a,b),∗(a, c))). Their corresponding predicates are defined by:

syn∗⊖(m,m0,m1)⇔ (∃m2 : obj⊖(m1,m2) ∧ obj⊖(m,∗(m0,m2)))

syn⊖⊕(m,m0)⇔ (∃m1,m2 : obj⊕(m0,m1,m2) ∧ obj⊕(m,⊖(m1),⊖(m2)) ∧
obj⊖(⊖(m1),m1) ∧ (obj⊖(⊖(m2),m2) ∨ syn⊖⊕(⊖(m2),m2)))

syn∗⊕(m,m0,m1)⇔ (∃m2,m3 : obj⊕(m1,m2,m3) ∧ obj⊕(m,∗(m0,m2),∗(m0,m3)) ∧
(obj∗(∗(m0,m2),m0,m2) ∨ syn∗⊖(∗(m0,m2),m0,m2)) ∧
(obj∗(∗(m0,m3),m0,m3) ∨ syn∗⊖(∗(m0,m3),m0,m3) ∨

syn∗⊕(∗(m0,m3),m0,m3)))

Note that syn⊖⊕ and syn∗⊕ are defined by recursion, as they are about ⊕-objects with
arbitrary many basic ⊕-parts.

(composed) selector-type operation: A composed operation f (m0) that results in a synth-
part of a g-object m0 is also called a selector-type operation (abbreviated by syn f

g). The re-
sulting synth-part m = f (m0) is also called a select-part of m0.

Altogether, the TC-AMP algebra includes one composed selector-type operation: sel⊖⊕
(e.g., ⊖(⊕(⊖(a),⊖(b))) = ⊕(a,b)). Its corresponding predicate is defined by

sel⊖⊕(m,m0)⇔ syn⊖⊕(m0,m).

(composed) decrypt-type operation: A composed operation f (m0, . . . ,mn−1) that results
in a synth-part of a g-object mi and where m0, . . . ,mi−1,mi+1, . . . ,mn−1 can be fixed relative
to mi is also called a decrypt-type operation (abbreviated by dec f

g). The resulting synth-part
m = f (m0, . . . ,mn−1) is also called a crypt-part of mi and m0, . . . ,mi−1,mi+1, . . . ,mn−1 are the
corresponding crypt-keys.

Altogether, the TC-AMP algebra includes two composed decrypt-type operations: dec∗⊖
(e.g., ∗(inv(a),⊖(∗(a,b))) = ⊖(b)) and dec∗⊕ (e.g., ∗(inv(a),⊕(∗(a,b),∗(a, c))) = ⊕(b, c)).
Their corresponding predicates are defined by

dec∗⊖(m,m0,m1)⇔ (∃m2 : syn∗⊖(m1,m2,m) ∧m0 = inv(m2))

dec∗⊕(m,m0,m1)⇔ (∃m2 : syn∗⊕(m1,m2,m) ∧m0 = inv(m2))

merge operation: The application of “ f ” to m0,m1 resulting in g-object m = f (m0,m1)
where m0 and m have a common substructure and two distinct substructures m2,m3 and
where m1 can be fixed from m2 and m3 is called a merge operation (abbreviated by mrg f

g).
We refer to m0 and m1 as two merge-sides of the g-object m, to emphasize that m is derivable
from m0 necessarily using m1 as additional item.

Here, the substructures of m1 occur in part inside m0 and in the other part inside m. For
that reason, neither m0 (resp. m1) is uniformly smaller than m nor vice versa. Compared to
a decrypt-type operation f (m0,m1), where the result (crypt-part) and the additional item
(crypt-key) are fixed alone by m0 or m1, neither m0 nor m1 in a merge operation is alone
sufficient to fix the derivable message.

Altogether, the TC-AMP algebra includes only one merge operation: mrg⊕⊕ (e.g.,
⊕(⊕(a,b),⊕(c,⊖(b))) = ⊕(a, c)). Its corresponding predicate is defined by

mrg⊕⊕(m,m0,m1)⇔ (∃m2,m3,m4 : obj⊕(m0,m2,m3) ∧
obj⊕(m,m2,m4) ∧ obj⊕(m1,m4,⊖(m3))).

94 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

transform operation: The application of the function “⊖” to ⊕(⊖(a),b) yields a new ⊕-
object ⊕(a,⊖(b)), where no general |.|-size relation between the used message and the
result exists, despite the preservation of message parts (a and b). For that reason, it is called
a transform operation.

More general, a composed operation f (m0) resulting in a g-object m where the nested
recursion-free operations are in part selector-type and in the other part constructor-type is
called a transform operation (abbreviated by trs f

g). We refer to the result m as a trans-message
of m0.

For n > 1, we call a composed operation f (m0, . . . ,mn−1) similarly a transform oper-
ation, when all nested recursion-free operations are applied to substructures of the same
mi where m0, . . . ,mi−1,mi+1, . . . ,mn−1 are used in constructor-type operations and in par-
allel as crypt-keys in decrypt-type operations. We refer to the result m = f (m0, . . . ,mn−1)
by a trans-message of mi and to m0, . . . ,mi−1,mi+1, . . . ,mn−1 by the corresponding trans-keys,
which form the necessary additional items to derive m from mi.

Here, neither the transformed m0 (resp. mi) is universally smaller than m, nor vice versa.
Altogether, the TC-AMP algebra includes two transform operations: trs⊖⊕ and trs∗⊕ (e.g.,

∗(a,⊕(∗(inv(a),b), c)) = ⊕(b,∗(a, c))). Their corresponding predicates are defined by

trs⊖⊕(m,m0)⇔ (∃m1,m2 : obj⊕(m0,m1,m2) ∧ obj⊕(m,⊖(m1),⊖(m2)) ∧
(obj⊖(⊖(m1),m1) ∨ syn⊖⊕(⊖(m1),m1)) ∧
(sel⊖⊖(⊖(m2),m2) ∨ sel⊖⊕(⊖(m2),m2)))

trs∗⊕(m,m0,m1)⇔
(∃m2,m3 : obj⊕(m1,m2,m3) ∧ obj⊕(m,∗(m0,m2),∗(m0,m3)) ∧

(obj∗(∗(m0,m2),m0,m2) ∨ syn∗⊖(∗(m0,m2),m0,m2) ∨ syn∗⊕(∗(m0,m2),m0,m2)) ∧
(dec∗∗(∗(m0,m2),m0,m2) ∨ dec∗⊖(∗(m0,m2),m0,m2) ∨ dec∗⊕(∗(m0,m2),m0,m2)))

redundant operation: An application of “ f ” to m0, . . . ,mn−1 that results in mi is called a
redundant operation (abbreviated by red f). Such an operation is not relevant in confiden-
tiality proofs, as it does not permit to derive any new message.

Similarly, we call an operation f (m0,m1) also redundant, when it results in c from Σ⟨0⟩
and when m1 is derivable from m0 without additional items. The latter condition means that
c is derivable from any message, independent of its content. Such an atomic message c is
always public and may not, for that reason, be considered neither as a selected secret nor as
a critical message. Consequently, its derivation by any redundant operation is not relevant
in confidentiality proofs.

Altogether, the TC-AMP algebra includes three redundant operations: red⊖, red∗ (e.g.,
∗(a,∞) = ∞) and red⊕. Their corresponding predicates are defined by

red⊖(m,m0)⇔ (m0 = ∞ ∧m = ∞)

red∗(m,m0,m1)⇔ (m1 = ∞ ∧m = ∞)

red⊕(m,m0,m1)⇔
((m0 = ∞ ∧m = m1) ∨ (m1 = ∞ ∧m = m0) ∨ (m0 = ⊖(m1) ∧m = ∞))

6.3.2 Definition of ccl1
The ccl-function ccl1 is defined according to the general principle in Sec. 6.2.2. Referring to
the above identified canonical operations, we obtain the following definition:

6.3. BASIC CHECK-FUNCTION CCL1 IN TC-AMP 95

DefinitionVSE 47 (ccl1 ; TC-AMP):
For a finite message set S and an arbitrary message m we have

m ∈ ccl1(S)⇔ (m ∈ S ∨
∃m0 : (obj⊖(m,m0) ∧m0 ∈ ccl1(S)) ∨
∃m0 : (objinv(m,m0) ∧m0 ∈ ccl1(S)) ∨
∃m0,m1 : (objpair(m,m0,m1) ∧ (m0 ∈ ccl1(S) ∨m1 ∈ ccl1(S))) ∨
∃m0,m1 : (obj∗(m,m0,m1) ∧m1 ∈ ccl1(S) ∧ inv(m0) ̸∈ ccl1(S)) ∨
∃m0,m1 : (obj⊕(m,m0,m1) ∧m0 ∈ ccl1(S) ∧⊖(m1) ̸∈ ccl1(S))).

Note that the definition of ccl1 does not include explicit cases for the non-canonical
operations. The integration of derivations by these operations is implicit, which is verified
during the proof of the correctness theorem.

Theorem 45 can be easily shown for ccl1 in TC-AMP, according to the proof schema in
Sec. 6.2.2. Consequently, ccl1 satisfies condition (6.2) required for proof situations where the
set of selected secrets (from the induction hypothesis) must be extended with other items
(see Sec. 6.1.2).

6.3.3 Appropriate Sets of Selected Secrets

The sets S of selected secrets that shall be used correctly with ccl1 as basic check-function are
obtained according to the guidance instructions in Sec. 6.2.3. Besides the closure property of
S implied by the “ f -part inclusion” principle, we have to pay attention to additional condi-
tions as a consequence of possible derivations by non-canonical operations (see Sec. 6.3.1):

• S may not include ∞, as ∞ is derivable from every non-empty ik.

• S may not include ⊕-objects, because they can be composed by merge operations,
where the used items differ from their (implicit) substructures.

In Sec. 9.2, we discuss the basic confidentiality properties of TC-AMP. Properties 90-
(1) and respectively (2) are about the confidentiality of message parts sent in the first and
the second TC-AMP step, respectively, using a non-compromised password πA. They are
shown with the help of ccl1 as basic check-function using identical sets S of selected secrets.
In our proof by induction, S is initialized in the base case with ∅ and then composed in the
step case by Sp ⊎ E for Sp provided by the induction hypothesis and for an appropriate
(possibly empty) extension E. As explained in Sec. 6.2.3, the partition of S in Sp and a
non-empty E has to satisfy the required extension condition (6.1), i.e.

(∀s ∈ E : uses(s, m̃)) ∧ (∀s ∈ Sp : ¬uses(s, m̃)),

for some message part m̃ that is not used in ik, i.e. the set of the observable messages in the
induction hypothesis, (but in the last message m). Guided by this requirement, we define
the set E according to (the occurrence of πA in) the protocol steps as follows:

1. The first occurrence of πA (together with the associated static generators g1 and g2)
is in some protocol event where a honest participant accesses these initial data, to
use them in subsequent protocol steps. Here, Sp is empty and its extension E is set
to {πA,∗(πA, g1),∗(πA, g2)}, where πA corresponds to the message part m̃ that does
not occur in prior observable messages.

2. Next occurrences of the password πA in first TC-AMP steps with messages of the
form ⊕(∗(nc1, g1),⊖(∗(πA, g2))) are accompanied with new nonces nc1, not used be-
fore. This permits us to set E = {nc1,∗(nc1, g1)} and use nc1 as m̃.

96 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

3. Further occurrences of πA are in second TC-AMP steps with “public” message parts
of the form ∗(nc2,∗(πA, g1)), accompanied with new nonces nc2, not used before.
This permits us to include nc2 and ∗(nc2, g1) in E and to use nc2 as m̃.

Since ∗(nc2, g1) could occur as crypt-parts of some messages that represent acci-
dentally lost session keys of the form ⊕(∗(nc2,∗(nc1, g1)),∗(m(πA ,nc1)

,∗(nc2, g1))) for
m(πA ,nc1)

abbreviating a first TC-AMP message, we add ∗(nc2,∗(nc1, g1)) to E (for
every ∗(nc1, g1) ∈ Sp), to prevent the derivation of ∗(nc2, g1) from lost session keys.
Note that we add ∗(nc2,∗(nc1, g1)) already at this stage (before dealing with the oops
step modeling the accidental loss of session keys). This is necessary, in order not to
violate the above mentioned extension condition (if otherwise we would need to add
∗(nc2,∗(nc1, g1)) at the corresponding oops step). The new nonce nc2, which does not
occur neither in ik nor in Sp, is also part of ∗(nc2,∗(nc1, g1)).

4. In all other cases, E is set to ∅.

Note that we extended the set of selected secrets respecting the “decrypt-prevention”
principle, but not exactly as described in Sec. 6.2.3. Instead of adding crypt-keys like
⊖(∗(nc2,∗(nc1, g1))) and respectively inv(nc2), we simply added ∗(nc2,∗(nc1, g1)) and nc2,
respectively. In doing so, we do not change the set ccl1(S) of the critical messages. This is
explained by the fact that inv(m) (resp. ⊖(m)) is critical iff m is critical (cp. lemma 48).

For S = Sp ⊎ E, where E is defined as described above, it is clear that S satisfies the above
mentioned conditions: It does not include neither ∞ nor any⊕-object and it is closed under
the “ f -part inclusion” principle.

Using ccl1(Sp ⊎ E), the checks of the regular protocol messages of TC-AMP show
that they are not critical. For instance, ⊕(∗(nc1, g1),⊖(∗(πA, g2))) /∈ ccl1(S) holds, be-
cause ⊕(∗(nc1, g1),⊖(∗(πA, g2))) /∈ S and ∗(nc1, g1),∗(πA, g2) ∈ S. The latter excludes that
∗(nc1, g1) and ∗(πA, g2) (in S) can be derived from ⊕(∗(nc1, g1),⊖(∗(πA, g2))).

6.3.4 Correctness of ccl1 as Basic Check-Function

In this section, we prove that ccl1 can be used as basic check-function using sets S of selected
secrets that satisfy the above fixed conditions. Accordingly, condition ℜ1(S) used in the
correctness theorem 46 includes the implications (6.3) (for the “ f -part inclusion” principle)
together with the following condition, which forbids ∞ and ⊕-objects as selected secrets:

m ∈ S⇒ (m ̸= ∞ ∧ ¬isObj⊕(m)) (6.4)

Using (the extended) ℜ1(S), we describe how the proof of theorem 46 in Sec. 6.2.4 is
adapted to the TC-AMP algebra. This consists mainly in adapting the step case according to
the possible f -s applied to derive f (m0, . . . ,mn−1) in ccl1(S) from m0, . . . ,mn−1 in DYl(ik,n).
Recall that the proof goal consists in showing mi ∈ ccl1(S) for 0≤ i < n, in order to conclude
with the induction hypothesis.

• Cases “ f = pair”, “ f = f st” and “ f = snd” are mainly identical as in Sec. 6.2.4.

• Cases “ f = h1” and “ f = h2” are handled based on ℜ1(S) as in the “ f = dh”-case in
Sec. 6.2.4.

• In case “ f = inv”, the axiom about the operations of inv(m0) provides us with two
cases:

1. objinv(inv(m0),m0): The definition of ccl1 yields two cases:

(a) inv(m0) ∈ S: This case is handled similar to the “ f = dh”-case.

6.3. BASIC CHECK-FUNCTION CCL1 IN TC-AMP 97

(b) m0 ∈ ccl1(S): This case is trivial.

2. objinv(m0,m′0) and inv(m0) = m′0: Here, inv(m0) ∈ ccl1(S) implies m′0 ∈ ccl1(S).
Then, we apply the definition of ccl1 using objinv(m0,m′0) and m′0 ∈ ccl1(S) to
obtain m0 ∈ ccl1(S).

• Cases “ f =⊖”, “ f =⊕” and “ f = ∗” are closed by the lemmata in Sec. 6.3.4.1–6.3.4.3.
These lemmata are shown by induction appropriate to the recursion-based cases in
the axioms about the operations of ⊖(m0), ⊕(m0,m1) and ∗(m0,m1).

6.3.4.1 Lemma for the ⊖-case:

LemmaVSE 48 (Correctness of ccl1; f = ⊖-case):
Let m be an arbitrary message, and let S be a finite set of messages such that ℜ1(S) holds.
Then we have

⊖(m) ∈ ccl1(S)⇔ m ∈ ccl1(S).

Proof: This lemma is proven by induction on the ⊕-structure of m:

Base Case: m may not be a ⊕-object. That is, case (3) resulting from the axiom about
the operations for ⊖(m) where m is a ⊕-object is closed by refutation. The complementary
cases are handled as follows:

• Case (1), i.e. m = ∞ and ⊖(m) = ∞: In the left-right case and in the right-left case, we
obtain ∞ ∈ ccl1(S) as assumption, which permits us to conclude by refutation.

• Case (2), i.e. obj⊖(m,m0) and ⊖(m) = m0: In the left-right case, we have m0 ∈ ccl1(S).
This permits together with obj⊖(m,m0) to apply the definition of ccl1 and to obtain
m ∈ ccl1(S), as required.

In the right-left case, we assume m ∈ ccl1(S) and want to prove ⊖(m) ∈ ccl1(S), i.e.
m0 ∈ ccl1(S). Here, the definition of ccl1 applied to m ∈ ccl1(S) yields practically two
cases:

– m ∈ S, i.e. ⊖(m0) ∈ S: Using ℜ1(S), we obtain m0 ∈ S and thus m0 ∈ ccl1(S).

– One matching case, where obj⊖(m,m′0) and m′0 ∈ ccl1(S) hold, is handled by
applying the (dis-)equality axiom for ⊖-objects. This yields m0 = m′0, which
permits us to obtain m0 ∈ ccl1(S).

• Case (4), i.e. obj⊖(⊖(m),m): In the left-right case, we assume ⊖(m) ∈ ccl1(S) and
want to prove m ∈ ccl1(S). It is shown similar to the right-left case in case (2).

In the right-left case, we assume m ∈ ccl1(S) and want to prove ⊖(m) ∈ ccl1(S). It is
shown similar to the left-right case in case (2).

Step Case: m must be a⊕-object. That is, cases (1), (2) and (4) resulting from the axiom
about the operations for⊖(m) are closed by refutation. In case (3), we have obj⊕(m,m0,m1)
and obj⊕(⊖(m),⊖(m0),⊖(m1)).

In the left-right case, we assume ⊖(m) ∈ ccl1(S) and want to prove m ∈ ccl1(S). For a
⊕-object ⊖(m), the definition of ccl1 applied to ⊖(m) ∈ ccl1(S) yields obj⊕(⊖(m),m′0,m′1),
m′0 ∈ ccl1(S) and ⊖(m′1) /∈ ccl1(S). By the induction hypothesis, we get ⊖(m′0) ∈ ccl1(S)
from m′0 ∈ ccl1(S) and m′1 /∈ ccl1(S), i.e. ⊖(⊖(m′1)) /∈ ccl1(S), from ⊖(m′1) /∈ ccl1(S). In

98 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

addition, obj⊕(⊖(m),m′0,m′1) implies obj⊕(m,⊖(m′0),⊖(m′1)). Thus, we have two ⊕-parts
⊖(m′0) and ⊖(m′1) of m satisfying the conditions in the matching decrypt-type case of the
definition of ccl1, which permits us to conclude with m ∈ ccl1(S).

In the right-left case, we assume m ∈ ccl1(S) and want to prove ⊖(m) ∈ ccl1(S). For
a ⊕-object m, Def. 47 applied to m ∈ ccl1(S) yields obj⊕(m,m′0,m′1), m′0 ∈ ccl1(S) and
⊖(m′1) /∈ ccl1(S). Similar to the left-right case, we apply the induction hypothesis to
obtain ⊖(m′0) ∈ ccl1(S) and ⊖(⊖(m′1)) /∈ ccl1(S). In addition, obj⊕(m,m′0,m′1) implies
obj⊕(⊖(m),⊖(m′0),⊖(m′1)). Thus, we have two ⊕-parts ⊖(m′0) and ⊖(m′1) of ⊖(m) sat-
isfying the conditions in the matching decrypt-type case of Def. 47, which permits us to
conclude with ⊖(m) ∈ ccl1(S). 2

6.3.4.2 Lemma for the ⊕-case:

LemmaVSE 49 (Correctness of ccl1; f = ⊕-case):
Let m0 and m1 be arbitrary messages, and let S be a finite set of messages such that ℜ1(S)
holds. Then we have

⊕(m0,m1) ∈ ccl1(S)⇒
((m0 ∈ ccl1(S) ∧⊖(m1) ̸∈ ccl1(S)) ∨ (m1 ∈ ccl1(S) ∧⊖(m0) ̸∈ ccl1(S))).

Proof: Taking into account lemma 48, we may focus in the proof of lemma 49 on showing
mi ∈ ccl1(S) and m1−i /∈ ccl1(S) from ⊕(m0,m1) ∈ ccl1(S), where i ∈ {0,1}. This is proven
by induction on the ⊕-structures of m0 and m1, i.e. |m0|⊕ + |m1|⊕, where the induction
hypothesis permits us also to obtain ⊕(m0,m1) /∈ ccl1(S) from m0,m1 ∈ ccl1(S) and from
m0,m1 /∈ ccl1(S).

Base Case: Neither m0 nor m1 may be a ⊕-object. That is, all cases resulting from
the axiom about the operations for ⊕(m0,m1) where m0 or m1 is a ⊕-object are closed by
refutation. The complementary cases are handled as follows:

• Case (1), where m1 = ∞ and⊕(m0,m1) = m0 hold, is obvious: The equality permits us
to obtain m0 ∈ ccl1(S) from ⊕(m0,m1) ∈ ccl1(S); According to ℜ1(S), we have ∞ /∈ S.
This permits us to employ Def. 47 and obtain ∞ /∈ ccl1(S) and thus m1 /∈ ccl1(S), as
required.

• Case (2), where m0 = ∞ and ⊕(m0,m1) = m1 hold, is similar to case (1).

• Case (3), where obj⊖(m1,m0) and ⊕(m0,m1) = ∞ hold, is handled by refutation em-
ploying ∞ /∈ ccl1(S).

• Case (4), where obj⊖(m0,m1) and ⊕(m0,m1) = ∞ hold, is similar to case (3).

• In case (11), where obj⊕(⊕(m0,m1),m0,m1) holds, the application of Def. 47 to
⊕(m0,m1) ∈ ccl1(S) yields mainly two cases:

– ⊕(m0,m1) ∈ S: It is shown by refutation, since S may not include ⊕-objects ac-
cording to ℜ1(S).

– One matching case, where obj⊕(⊕(m0,m1),m′0,m′1), m′0 ∈ ccl1(S) and the condi-
tion⊖(m′1) /∈ ccl1(S) hold: It is handled applying the (dis-)equality axiom for⊕-
objects, which yields five cases closed by refutation to |m0|⊕ = 0 and |m1|⊕ = 0,
and the following two cases:

6.3. BASIC CHECK-FUNCTION CCL1 IN TC-AMP 99

* m0 = m′0 and m1 = m′1: This implies m0 ∈ ccl1(S) and ⊖(m1) /∈ ccl1(S), as
required.

* m0 = m′1 and m1 = m′0: This implies m1 ∈ ccl1(S) and ⊖(m0) /∈ ccl1(S), as
required.

Step Case: m0 or m1 is a ⊕-object. That is, all cases resulting from the axiom about the
operations for⊕(m0,m1) where m0 and m1 do not match⊕-objects are closed by refutation.
The complementary cases are handled as follows:

• Case (5), where obj⊕(m1,m3,m2), obj⊖(m3,m0) and ⊕(m0,m1) = m2 hold, corre-
sponds to a dec⊕⊕-operation: We proceed by a case distinction:

– m0 ∈ ccl1(S): That is, we have m3 ∈ ccl1(S) and m2 ∈ ccl1(S). This permits us to
apply the induction hypothesis and obtain⊕(m3,m2) /∈ ccl1(S), i.e. m1 /∈ ccl1(S),
as required.

– m0 /∈ ccl1(S): That is, we have ⊖(m3) /∈ ccl1(S) and m2 ∈ ccl1(S). Thus, we have
the required conditions to employ the matching decrypt-type case in Def. 47 and
obtain ⊕(m3,m2) ∈ ccl1(S), i.e. m1 ∈ ccl1(S), as required.

• Case (6), where obj⊖(m0,m2), obj⊕(m1,m2,m3), and ⊕(m0,m1) = m3 hold, is handled
similar to case (5).

• Case (7), where obj⊕(m0,m3,m2), obj⊖(m3,m1) and ⊕(m0,m1) = m2 hold, is handled
similar to case (5).

• Case (8), where obj⊖(m1,m2), obj⊕(m0,m2,m3), and ⊕(m0,m1) = m3 hold, is handled
similar to case (5).

• Case (9), where obj⊕(m0,m2,m3), obj⊕(m1,m5,m4), obj⊖(m5,m2) and ⊕(m0,m1) =
⊕(m3,m4) hold: By the induction hypothesis, we obtain from ⊕(m3,m4) ∈ ccl1(S)
w.l.o.g. m3 ∈ ccl1(S) and m4 /∈ ccl1(S). We proceed by a case distinction:

– m2 ∈ ccl1(S): This permits us to apply the induction hypothesis and obtain
⊕(m2,m3) /∈ ccl1(S), i.e. m0 /∈ ccl1(S). In parallel, we apply lemma 48 to obtain
⊖(m2) ∈ ccl1(S), i.e. m5 ∈ ccl1(S), from m2 ∈ ccl1(S) and obtain ⊖(m4) /∈ ccl1(S)
from m4 /∈ ccl1(S). Thus, we have the required conditions to employ the match-
ing decrypt-type case in Def. 47 and obtain⊕(m5,m4) ∈ ccl1(S), i.e. m1 ∈ ccl1(S),
as required.

– m2 /∈ ccl1(S): This yields m5 /∈ ccl1(S), which permits us to apply the induction
hypothesis and obtain ⊕(m5,m4) /∈ ccl1(S), i.e. m1 /∈ ccl1(S). In parallel, we ap-
ply lemma 48 to obtain⊖(m2)∈ ccl1(S) from m2 /∈ ccl1(S). This and consequence
m3 ∈ ccl1(S) provide us with the required conditions to employ the matching
decrypt-type case in Def. 47 and obtain ⊕(m2,m3) ∈ ccl1(S), i.e. m0 ∈ ccl1(S), as
required.

• Case (10), where obj⊕(m0,m5,m3), obj⊕(m1,m2,m4), obj⊖(m5,m2) and ⊕(m0,m1) =
⊕(m3,m4) hold, is handled similar to case (9).

• Case (11), where obj⊕(⊕(m0,m1),m0,m1) holds, is handled similar to its pendant in
the Base Case (see above). Besides two trivial cases (as in the Base Case), resulting
by the application of the (dis-)equality axiom for ⊕-objects, we obtain the following
cases:

– (iii) obj⊕(m0,m′0,m) and obj⊕(m′1,m1,m): Applying the induction hypothesis to
⊖(m′1) /∈ ccl1(S), i.e. m′1 /∈ ccl1(S), we obtain m1,m ∈ ccl1(S) or m1,m /∈ ccl1(S).
We proceed by a case distinction:

100 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

* m1,m ∈ ccl1(S): We want to show m0 /∈ ccl1(S). This is done applying the
induction hypothesis to m,m′0 ∈ ccl1(S), which yields⊕(m′0,m) /∈ ccl1(S), i.e.
m0 /∈ ccl1(S).

* m1,m /∈ ccl1(S): We want to show m0 ∈ ccl1(S). This is done deducing
⊖(m) /∈ ccl1(S) from m /∈ ccl1(S) and then using m′0 ∈ ccl1(S) to employ
the matching decrypt-type case in Def. 47 and obtain⊕(m′0,m) ∈ ccl1(S), i.e.
m0 ∈ ccl1(S).

– (iv) obj⊕(m0,m′1,m) and obj⊕(m′0,m1,m): Applying the induction hypothesis to
m′0 ∈ ccl1(S), i.e. ⊕(m1,m) ∈ ccl1(S) yields two cases:

* m1 ∈ ccl1(S) and m /∈ ccl1(S): We want to show m0 /∈ ccl1(S). This is done
applying the induction hypothesis to m′1 /∈ ccl1(S) (obtained from the condi-
tion ⊖(m′1) /∈ ccl1(S)) and m /∈ ccl1(S), which yields ⊕(m′1,m) /∈ ccl1(S), i.e.
m0 /∈ ccl1(S).

* m1 /∈ ccl1(S) and m ∈ ccl1(S): We want to show m0 ∈ ccl1(S). This is done
using m ∈ ccl1(S) and⊖(m′1) /∈ ccl1(S) to employ the matching decrypt-type
case in Def. 47 and obtain ⊕(m′1,m) ∈ ccl1(S), i.e. m0 ∈ ccl1(S).

– (v) obj⊕(m1,m′0,m) and obj⊕(m′1,m0,m): It is handled similar to case (iii).

– (vi) obj⊕(m1,m′1,m) and obj⊕(m′0,m0,m): It is handled similar to case (iv).

– (vii) obj⊕(m0,m2,m3), obj⊕(m1,m4,m5), obj⊕(m′0,m2,m4) and obj⊕(m′1,m3,m5):
Applying the induction hypothesis to m′1 /∈ ccl1(S), i.e. ⊕(m3,m5) ∈ ccl1(S)
yields m3,m5 ∈ ccl1(S) or m3,m5 /∈ ccl1(S). Combined with both cases result-
ing by the application of the induction hypothesis to the condition m′0 ∈ ccl1(S),
i.e. ⊕(m2,m4) ∈ ccl1(S), we obtain the following cases:

1. m3,m5,m2 ∈ ccl1(S) and m4 /∈ ccl1(S): By the induction hypothesis, we
obtain ⊕(m2,m3) /∈ ccl1(S), i.e. m0 /∈ ccl1(S), and by Def. 47, we obtain
⊕(m4,m5) ∈ ccl1(S), i.e. m1 ∈ ccl1(S).

2. m3,m5,m4 ∈ ccl1(S) and m2 /∈ ccl1(S): We replay the steps in (1) to obtain
m1 /∈ ccl1(S) and m0 ∈ ccl1(S).

3. m3,m5,m4 /∈ ccl1(S) and m2 /∈ ccl1(S): We replay the steps in (1) to obtain
m1 /∈ ccl1(S) and m0 ∈ ccl1(S).

4. m3,m5,m2 /∈ ccl1(S) and m4 /∈ ccl1(S): We replay the steps in (1) to obtain
m0 /∈ ccl1(S) and m1 ∈ ccl1(S). 2

6.3.4.3 Lemma for the ∗-case:

LemmaVSE 50 (Correctness of ccl1; f = ∗-case):
Let m0 and m1 be arbitrary messages, and let S be a finite set of messages such that ℜ1(S)
holds. Then we have

m0 ̸∈ ccl1(S)⇒ (∗(m0,m1) ∈ ccl1(S)⇔ m1 ∈ ccl1(S)).

Proof:
The proof is by induction on the ⊕-structure of m1.

Base Case: m1 may not be a ⊕-object. Since we need to reason on the ∗-parts of m1, we
proceed here by induction on the ∗-structure of m1, i.e. |m1|∗.

(Nested) Base Case: |m1|∗ = 0, i.e. m1 is neither a ∗-object nor a ⊖-object having a
∗-object as a synth-part. The application of the axiom about the operations for ∗(m0,m1)
yields the following cases:

6.3. BASIC CHECK-FUNCTION CCL1 IN TC-AMP 101

• Case (1), where obj∗(m1,m3,m2), objinv(m3,m0) and ∗(m0,m1) = m2 hold, is closed by
refutation, as m1 may not be a ∗-object.

• Case (2), where objinv(m0,m2), obj∗(m1,m2,m3), and ∗(m0,m1) = m3 hold, is closed
by refutation, as m1 may not be a ∗-object.

• Case (3), where obj⊕(m1,m2,m3) and obj⊕(∗(m0,m1),∗(m0,m2),∗(m0,m3)) hold, is
closed by refutation, as m1 may not be a ⊕-object.

• Case (4), where m1 = ∞, and ∗(m0,m1) = ∞ hold, is closed by refutation based on
∞ /∈ ccl1(S).

• Case (6), i.e. obj∗(∗(m0,m1),m0,m1): In the left-right case, the application of Def. 47
to ∗(m0,m1) ∈ ccl1(S) yields mainly two cases:

– ∗(m0,m1) ∈ S: This implies m0 ∈ S or m1 ∈ S, according to ℜ1(S). Due to the
condition m0 /∈ ccl1(S), we obtain m1 ∈ S and thus m1 ∈ ccl1(S), as required.

– The matching decrypt-type case, where obj∗(∗(m0,m1),m′0,m′1), m′1 ∈ ccl1(S) and
inv(m′0) /∈ ccl1(S) hold, is handled by applying the (dis-)equality axiom for ∗-
objects. This yields the injection case, i.e. m0 = m′0 and m1 = m′1, and a second
case where m1 is a ∗-object. The former case is closed immediately using the
condition m′1 ∈ ccl1(S) and m1 = m′1, and the latter case is closed by refutation
using |m1|∗ = 0.

The right-left case is proven using m1 ∈ ccl1(S) and inv(m0) /∈ ccl1(S) (a straightfor-
wardly provable consequence of m0 ̸∈ ccl1(S)) to employ the matching decrypt-type
case in Def. 47 and obtain ∗(m0,m1) ∈ ccl1(S).

• Case (5), where obj⊖(m1,m2) and obj⊖(∗(m0,m1),∗(m0,m2)) hold: Applying the
axiom about the operations for ∗(m0,m2) yields in this situation a sole case, i.e.
obj∗(∗(m0,m2),m0,m2). This case is closed the same way as case (6), after using
lemma 48 to handle ⊖(m2), i.e. m1, and respectively ⊖(∗(m0,m2)), i.e. ∗(m0,m1), like
m2 and ∗(m0,m2), respectively.

(Nested) Step Case: |m1|∗ > 0, i.e. m1 is a ∗-object or a ⊖-object having a ∗-object as
its ⊖-part. Cases (3) and (4), resulting from the axiom about the operations for ∗(m0,m1)
are closed by refutation, and the complementary cases are handled as follows:

• Case (1), where obj∗(m1,m3,m2), objinv(m3,m0) and ∗(m0,m1) = m2 hold, corre-
sponds to a dec∗∗-operation: The left-right case is proven using m2 ∈ ccl1(S) and
inv(m3) /∈ ccl1(S) (a consequence of m0 ̸∈ ccl1(S), m3 = inv(m0) and inv(m3) =
inv(inv(m0)) = m0) to employ the matching decrypt-type case in Def. 47 and obtain
∗(m3,m2) ∈ ccl1(S), i.e. m1 ∈ ccl1(S).

In the right-left case, the application of Def. 47 to the condition m1 ∈ ccl1(S), i.e.
∗(m3,m2) ∈ ccl1(S), yields practically two cases:

– m1 ∈ S: This implies m3 ∈ S or m2 ∈ S, according to ℜ1(S). Due to m0 /∈ ccl1(S),
i.e. m3 /∈ ccl1(S), we obtain m3 /∈ S and thus m2 ∈ S. This implies m2 ∈ ccl1(S),
i.e. ∗(m0,m1) ∈ ccl1(S), as required.

– The matching decrypt-type case, where obj∗(m1,m′0,m′1), m′1 ∈ ccl1(S) and
inv(m′0) /∈ ccl1(S) hold, is handled by applying the (dis-)equality axiom for ∗-
objects, yielding two cases:

* m3 = m′0 and m2 = m′1: Using m′1 ∈ ccl1(S), we obtain immediately the con-
sequence m2 ∈ ccl1(S) and thus ∗(m0,m1) ∈ ccl1(S), as required.

102 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

* obj∗(m2,m′0,m) and obj∗(m′1,m3,m): Using m3 /∈ ccl1(S) (as a consequence
of m0 ̸∈ ccl1(S)), we apply the induction hypothesis to m′1 ∈ ccl1(S), i.e.
∗(m3,m) ∈ ccl1(S), to obtain m ∈ ccl1(S). This permits us together with
inv(m′0) /∈ ccl1(S) to employ the matching decrypt-type case in Def. 47 and
obtain ∗(m′0,m) ∈ ccl1(S), i.e. m2 ∈ ccl1(S), and thus ∗(m0,m1) ∈ ccl1(S), as
required.

• Case (2), where objinv(m0,m2), obj∗(m1,m2,m3), and ∗(m0,m1) = m3 hold, corre-
sponds to a dec∗∗-operation: It is handled replaying the proof steps of case (1) and
using m2 /∈ ccl1(S) as a straightforwardly provable consequence of m0 /∈ ccl1(S).

• Case (6), where obj∗(∗(m0,m1),m0,m1) holds: The left-right case is proven similar to
the same case in the “(Nested) Base Case”, except of the matching decrypt-type case
resulting by the application of Def. 47 to ∗(m0,m1) ∈ ccl1(S). In the proof situation,
where obj∗(∗(m0,m1),m′0,m′1), m′1 ∈ ccl1(S) and inv(m′0) /∈ ccl1(S) hold, the applica-
tion of the (dis-)equality axiom for ∗-objects yields the equally handled injection case
and a complementary case requiring the application of the induction hypothesis. In
this complementary case, where obj∗(m1,m′0,m) and obj∗(m′1,m0,m) hold, we obtain
first m ∈ ccl1(S) from m0 /∈ ccl1(S) and the consequence m′1 ∈ ccl1(S), by the induction
hypothesis. Then, we use obj∗(m1,m′0,m), m ∈ ccl1(S) and inv(m′0) /∈ ccl1(S) to em-
ploy the matching decrypt-type case in Def. 47 and obtain m1 ∈ ccl1(S), as required.

The right-left case is proven similar to the same case in the “(Nested) Base Case”.

• Case (5), where obj⊖(m1,m2) and obj⊖(∗(m0,m1),∗(m0,m2)) hold: Using lemma 48,
we handle m2 ∈ ccl1(S) and respectively ∗(m0,m2) ∈ ccl1(S) like m1 ∈ ccl1(S), i.e.
⊖(m2) ∈ ccl1(S), and ∗(m0,m1) ∈ ccl1(S), i.e. ⊖(∗(m0,m2)) ∈ ccl1(S), respectively.
Then, we apply the axiom about the operations for ∗(m0,m2) and obtain (besides
trivial cases handled by refutation) the following three cases:

– obj∗(m2,m3,m4), objinv(m3,m0) and ∗(m0,m2) = m4: It is handled similar to case
(1) in the “(Nested) Step Case”.

– objinv(m0,m3), obj∗(m2,m3,m4), and ∗(m0,m2) = m4: It is handled similar to case
(2) in the “(Nested) Step Case”.

– obj∗(∗(m0,m2),m0,m2): It is handled similar to case (6) in the “(Nested) Step
Case”.

Step Case: m1 must be a ⊕-object. Except of case (3), all cases resulting from the axiom
about the operations for ∗(m0,m1) yield to m1 differing from ⊕-objects and are thus closed
by refutation.

In case (3), we have obj⊕(m1,m2,m3) and obj⊕(∗(m0,m1),∗(m0,m2),∗(m0,m3)). That is,
the left-right case turns into showing m1 ∈ ccl1(S) from ⊕(∗(m0,m2),∗(m0,m3)) ∈ ccl1(S)
and m0 /∈ ccl1(S). Using lemma 49, we obtain two cases:

• ∗(m0,m2) ∈ ccl1(S) and ⊖(∗(m0,m3)) /∈ ccl1(S): Applying lemma 48 and the induc-
tion hypothesis, we obtain m2 ∈ ccl1(S) and ⊖(m3) /∈ ccl1(S). This permits us to
employ the matching decrypt-type case in Def. 47 and obtain⊕(m2,m3) ∈ ccl1(S), i.e.
m1 ∈ ccl1(S), as required.

• ∗(m0,m3) ∈ ccl1(S) and ⊖(∗(m0,m2)) /∈ ccl1(S): It is handled similar to the previous
case.

The right-left case turns into showing ∗(m0,m1) ∈ ccl1(S) from ⊕(m2,m3) ∈ ccl1(S) and
m0 /∈ ccl1(S). Using lemma 49, we obtain two cases:

6.4. CHECK-FUNCTION CCL2 FOR REDUCTION TO SUBSTRUCTURES 103

• m2 ∈ ccl1(S) and ⊖(m3) /∈ ccl1(S): Applying lemma 48 and the induction hypoth-
esis, we obtain ∗(m0,m2) ∈ ccl1(S) and ⊖(∗(m0,m3)) /∈ ccl1(S). This permits us
to employ the matching decrypt-type case in Def. 47 and obtain the consequence
⊕(∗(m0,m2),∗(m0,m3)) ∈ ccl1(S), i.e. ∗(m0,m1) ∈ ccl1(S), as required.

• m3 ∈ ccl1(S) and ⊖(m2) /∈ ccl1(S): It is handled similar to the previous case. 2

6.4 Check-Function ccl2 for Reduction to Substructures

Targeted secrets s occurring in protocol verification tasks are not restricted to protected
message parts inside protocol messages. It is often needed to prove that the attacker is not
able to derive further targeted secrets s, which are clearly non-atomic. This kind of proof
tasks can be handled with the help of basic check-functions, if appropriate sets S of selected
secrets can be provided without the need of auxiliary notions. Otherwise, e.g., when only
a partially known structure of the targeted secret s is given, we use a second canonical ccl-
function ccl2 to reduce the protection of s to the protection of message parts required for its
derivation by composition.

6.4.1 Use and Definition of the ccl-Function ccl2
We use the check-function ccl2 to test whether a targeted secret s is derivable by extraction
(en-bloc) from immediately observable messages in ik. So, this check-function is defined
relative to a given s only and that by a straightforward adaptation of ccl1, where additional
items in derivations are neglected. By ik ∩ ccl2(s) = ∅ we check that s is not derivable by
extraction from all messages in ik, so that s can be derived only by composition. In such
proof situations, generic theorems are used to reduce s to the message parts required for a
composition of s, according to its top structure.

The slight modification of ccl1 yields to the following definition of ccl2 in PACE:

DefinitionVSE 51 (ccl2 ; PACE):
For a given message s and an arbitrary message m we have

m ∈ ccl2(s)⇔ (m = s ∨
∃m0,m1 : (objpair(m,m0,m1) ∧ (m0 ∈ ccl2(s) ∨m1 ∈ ccl2(s))) ∨
∃m0,m1 : (objenc(m,m0,m1) ∧m1 ∈ ccl2(s)) ∨
∃m0,m1 : (objdec(m,m0,m1) ∧m1 ∈ ccl2(s))).

Analogously, we obtain the following definition of ccl2 in TC-AMP:

DefinitionVSE 52 (ccl2 ; TC-AMP):
For a given message s and an arbitrary message m we have

m ∈ ccl2(s)⇔ (m = s ∨
∃m0 : (obj⊖(m,m0) ∧m0 ∈ ccl2(s)) ∨
∃m0 : (objinv(m,m0) ∧m0 ∈ ccl2(s)) ∨
∃m0,m1 : (objpair(m,m0,m1) ∧ (m0 ∈ ccl2(s) ∨m1 ∈ ccl2(s))) ∨
∃m0,m1 : (obj∗(m,m0,m1) ∧m1 ∈ ccl2(s)) ∨
∃m0,m1 : (obj⊕(m,m0,m1) ∧m0 ∈ ccl2(s))).

104 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

The reduction theorems and ccl2, which permit for a kind of backward reasoning, do
not apply when s can be composed using items different from its substructures. That is,
this reduction technique applies in PACE for all composed messages, but in TC-AMP only
for the composed messages that differ from ⊕-objects.

Principally, reducing the protection of a targeted secret s to the protection of its sub-
structures s1, . . . , sn is based on a generic theorem of the form:

If ik ∩ ccl2(s) = ∅ and not all s1, . . . , sn occur in DY(ik), then DY(ik) ∩ ccl2(s) = ∅.

In proof situations where s is assumed to occur (or occurs) in DY(ik), the generic
theorem of ccl2 implies that ik ∩ ccl2(s) ̸= ∅ holds or that DY(ik) includes correspond-
ing occurrences of s1, . . . , sn permitting the composition of s. The reduction to the occur-
rence of s1, . . . , sn in DY(ik) necessitates to refute ik ∩ ccl2(s) ̸= ∅, which is done in many
proof situations with the help of a corresponding proof structuring lemma (a regularity
property) of the verified protocol. Such a regularity property implies ik ∩ ccl2(s) = ∅
for all observable message sets ik given by the protocol that fulfill certain conditions of
the corresponding proof situations. It is proven by induction on protocol traces, where
(ikp ∪ {m}) ∩ ccl2(s) = ∅ is shown in the step case for each m added by an arbitrary pro-
tocol step, using the induction hypothesis ikp ∩ ccl2(s) = ∅: In case m originates from a
regular protocol step, we simply check m /∈ ccl2(s). But for the fake case, i.e. m ∈ DY(ikp),
we show m /∈ ccl2(s) with the help of the generic theorem of ccl2, which requires the ad-
ditional condition that not all s1, . . . , sn occur in DY(ikp). For that reason, the employed
regularity properties are generally of the form:

If certain conditions on the occurrence of s in ik, e.g., s /∈ ik in the majority of
authenticity proofs, hold and not all s1, . . . , sn occur in DY(ik), then we have
ik ∩ ccl2(s) = ∅.

The function ccl2 and corresponding generic theorem of ccl2(s) are also employed to
reason on the binding of arbitrary message parts of s due to other confidential message
parts in s, as given by the protocol context. This could necessitate induction on (the ar-
bitrary message parts given by) the top-structure of s, where the application of the corre-
sponding induction hypothesis is prepared by a suitable application of the generic theorem
of ccl2(s). Concrete examples are in Chap. 8 and 9.

In the following, we describe the typical types of the generic theorems of ccl2(s), ac-
cording to the structure of s, and their use in some proofs of PACE and TC-AMP.

6.4.2 Generic Theorem of Type 1

In reality, the proof technique using ccl2 is applicable not only for composed targeted se-
crets but also for atomic targeted secrets, provided they do not occur in regular protocol
messages neither in clear-text, nor as a select-part, nor as a crypt-part. Such confidentiality
proofs are straightforward, because we do need to bother about the confidentiality of other
message parts, as can be seen in the following correctness theorem of ccl2.

TheoremVSE 53 (Correctness of ccl2(s) for s ∈ At):
Let ik be a finite message set, and let s be an arbitrary atomic message from At. Then we
have

ik ∩ ccl2(s) = ∅⇒ DY(ik) ∩ ccl2(s) = ∅.

6.4. CHECK-FUNCTION CCL2 FOR REDUCTION TO SUBSTRUCTURES 105

This theorem is identical in all message algebras. It is shown in the PACE and the
TC-AMP algebra by replaying the proof in Sec. 6.2.4 and respectively 6.3.4, where the un-
necessary cases are just abstracted away.

Theorem 53 is employed for instance to prove the confidentiality of local secrets in PACE
and TC-AMP. In case of TC-AMP, the local confidentiality of the nonce nc1 and respectively
nc2 generated in the first and the second TC-AMP step, respectively, is required for the for-
ward secrecy of the session key. Here, we prove nc1,nc2 /∈ DY({πA} ∪ ik) just by showing
({πA} ∪ ik) ∩ ccl2(nc1) = ∅ and ({πA} ∪ ik) ∩ ccl2(nc2) = ∅. This holds, since nc1 and
nc2 occur only as left ∗-parts, which cannot be extracted neither by selector-type nor by
decrypt-type operations.

Next, we describe the use of ccl2 with composed targeted secrets.

6.4.3 Generic Theorem of Type 2

In the authenticity lemmas of PACE, which we use to prove the authentication properties 79
and 80, the targeted message ŝ is a mac-object (ŝ = mac(dh(M4,nc5),dh(ĝA,nc5)) in the
authentication by the card A and ŝ = mac(dh(M5,nc4),dh(ĝB,nc4)) in the authentication by
the terminal B). In Sec. 8.5 we see that the fake case is handled similarly in both proofs.
Referring to the first proof, the assumption that the MAC message could be forged by the
attacker, i.e. the assumption that mac(dh(M4,nc5),dh(ĝA,nc5)) ∈ DY(ik) holds, is reduced
to the occurrence of the MAC key dh(M4,nc5) and the MAC-ed message dh(ĝA,nc5) in the
intruder knowledge DY(ik). This necessitates to employ the following generic theorem of
ccl2:

TheoremVSE 54 (Correctness of ccl2(mac(m0,m1)) ; PACE):
Let ik be a finite message set, and let m0,m1 be two arbitrary messages. Then we have

ik ∩ ccl2(mac(m0,m1)) = ∅⇒
(DY(ik) ∩ ccl2(mac(m0,m1)) = ∅ ∨m0,m1 ∈ DY(ik)).

Intuitively, this theorem means that a mac-object non-occurring (neither as a crypt-part
nor as a select-part) in ik cannot be derived without deriving its mac-parts.

The theorem is shown by replaying the proof in Sec. 6.2.4, with slight adaptations. In
particular, the inclusion condition as part of ℜ1(S) in theorem 46 is substituted in theo-
rem 54 by the proposition m0,m1 ∈ DY(ik) in the conclusion. The inclusion condition in
ℜ1(S) implies that the protection of a mac-object necessitates to protect at least one of its
mac-parts, which is obviously equivalent to the negation of m0,m1 ∈ DY(ik).

The generic theorems about ccl2(f (m0, . . . ,mn−1)) for all f -objects where f is not per-
mutative are similar to theorem 54. An assumption obj f (f (m0, . . . ,mn−1),m0, . . . ,mn−1) is
added, when some applications of f are not constructor-type.

In the above mentioned proof situation, theorem 54 is employed together with the reg-
ularity property 81 of the PACE protocol, which matches the schema described in Sec. 6.4.1
(see Sec. 8.5).

6.4.4 Generic Theorem of Type 3

The obtained proof situation in Sec. 6.4.3 with an occurrence of the MAC-key dh(M4,nc5)
and the MAC-ed message dh(ĝA,nc5) in the intruder knowledge DY(ik) is reduced to a

106 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

proof situation where M4 is of the form dh(. . . ,dh(ĝA, x1), . . . , xn) for x1, . . . , xn in DY(ik).
This is achieved with the help of a binding property of PACE, based on the confidentiality
of nc5 and on the binding of ĝA to nc5 in dh(ĝA,nc5). The binding property on M4 is shown
by nested induction as described in Sec. 8.5, i.e. first on the dh-structure of M4, i.e. |M4|dh,
and then on protocol traces. This includes the reduction of the occurrence of dh(M4,nc5)
to the occurrence of dh(M′4,nc5) with |M′4|dh < |M4|dh, to prepare the application of the
corresponding induction hypothesis. The reduction necessitates to employ the following
generic theorem of ccl2:

TheoremVSE 55 (Correctness of ccl2(dh(m0,m1)) ; PACE):
Let ik be a finite message set, and let m0,m1 be two arbitrary messages. Then we have

ik ∩ ccl2(dh(m0,m1)) = ∅⇒
(DY(ik) ∩ ccl2(dh(m0,m1)) = ∅ ∨
(∃m′0,m′1 : dh(m′0,m′1) = dh(m0,m1) ∧m′0,m′1 ∈ DY(ik))).

This theorem differs from theorem 54 only in the following issue: While a composition of
a mac-object uses necessarily a sole pair of mac-parts, there is basically arbitrary but finitely
many pairs of dh-parts that permit the composition of a same dh-object. All the relevant
pairs of the dh-parts are covered in theorem 55 by the existentially quantified variables
m′0,m′1 in dh(m′0,m′1) = dh(m0,m1), due to the (dis-)equality axiom of h-objects.

Such an adaptation for a correctness theorem of ccl2(f (m0, . . . ,mn−1)) is necessary for
all function symbols f that have permutative equations in A.

The conjectured form of M4 in the above mentioned proof situation permits to deduce
based on the occurrence of M4 in DY(ik) and with the help of a corresponding regularity
property of PACE that ĝA belongs to DY(ik). The employed regularity property (on the
occurrence of dh(. . . ,dh(ĝA, x1), . . . , xn) together with x1, . . . , xn in DY(ik)) is shown with
the help of the correctness theorem 55, too (see Sec. 8.5).

6.4.5 Generic Theorem of Type 4

In the authenticity lemma of TC-AMP, which allows us to prove immediately the au-
thentication property 9.3, the targeted message ŝ as described in Sec. 9.5 is a pair-object
(ŝ = pair(M2, h1(m̂B, M2, k̂B)) where m̂B = ⊕(∗(nc1, g1),∗(⊖(πA), g2)), M2 is arbitrary, and
k̂B = ⊕(∗(inv(πA),∗(nc1, M2)),∗(inv(πA),∗(m̂B, M2)))). In the fake case, the assumption
that the targeted pair-object could be forged by the attacker, i.e. pair(M2, h1(m̂B, M2, k̂B))
belongs to DY(ik), is reduced in prior steps to the occurrence of M2 and of the third h1-
part k̂B in the intruder knowledge DY(ik). Subsequent proof steps ensure that k̂B and re-
spectively M2 are of the form ⊕(∗(nc1, M̂2),∗(m̂B, M̂2)) and ∗(πA, M̂2), respectively. M̂2
is an arbitrary message satisfying obj∗(∗(nc1, M̂2),nc1, M̂2) and obj∗(∗(πA, M̂2),πA, M̂2)
or is an arbitrary ⊕-object ⊕(x1, . . . ,⊕(xn−1, xn)) where all basic ⊕-parts xi-s satisfy
obj∗(∗(nc1, xi),nc1, xi) and obj∗(∗(πA, xi),πA, xi). These proof steps necessitate to employ
the following generic theorem of ccl2:

TheoremVSE 56 (Correctness of ccl2(∗(m0,m1)) ; TC-AMP):
Let ik be a finite message set, and let m0,m1 be two arbitrary messages. Then we have

(obj∗(∗(m0,m1),m0,m1) ∧ ik ∩ ccl2(∗(m0,m1)) = ∅)⇒
(DY(ik) ∩ ccl2(∗(m0,m1)) = ∅ ∨
(∃m′0,m′1 : obj∗(∗(m0,m1),m′0,m′1) ∧m′0 ∈ DY(ik) ∧ DY(ik) ∩ ccl2(m′1) ̸= ∅)).

6.5. DEALING WITH DERIVATIONS BY MERGING 107

This theorem differs from theorems 54 and 55 mainly in the following issue: The
used function symbol “∗” is not only permutative, but it can be also used in decrypt-
type operations dec∗∗, where applications of “∗” result in crypt-parts of ∗-objects. Here,
DY(ik) ∩ ccl2(∗(m0,m1)) ̸= ∅ for ik satisfying ik ∩ ccl2(∗(m0,m1)) = ∅ could be traced
back, for instance, to some ∗-object ∗(x,∗(m0,m1)) that is composed from m0 and ∗(x,m1).
This example shows that m0,m1 ∈ DY(ik) does not cover all cases for the composition
of some message where ∗(m0,m1) occurs as crypt-part (or select-part). For that reason,
DY(ik) ∩ ccl2(m1) ̸= ∅ is used in theorem 56 instead of m1 ∈ DY(ik), which permits to
cover all relevant composition cases, including the most simple case, i.e. m0,m1 ∈ DY(ik).

The conjectured form of k̂B in the above mentioned proof situation is obtained by refut-
ing the occurrence of ∗-objects ∗(inv(πA),m) in k̂B and respectively ∗(inv(nc1),m) in M2
with a left ∗-part inv(πA) and inv(nc1), respectively. For that purpose, correctness theo-
rem 56 is employed with corresponding regularity properties of TC-AMP, which matches
the schema described in Sec. 6.4.1 (see Sec. 9.5.2).

Having k̂B = ⊕(⊕(∗(nc1, x1),⊕(. . . ,∗(nc1, xn))),⊕(∗(m̂B, x1),⊕(. . . ,∗(m̂B, xn)))) in the
above proof situation necessitates further reduction steps to close the original fake case (by
contradiction). Since k̂B is a ⊕-object, the reduction technique with the help of ccl2 and
a corresponding generic theorem is not applicable. Instead of that, we need to employ a
proof technique permitting to deal with derivations by merging, as described in the next
section.

6.5 Dealing with Derivations by Merging

Our proof technique using the canonical ccl-functions is relatively simple and intuitive.
But, it does not deal with targeted or necessary selected secrets s that are derivable by merg-
ing operations, i.e. by composition using items different from their substructures. In our
verification of TC-AMP, it was necessary to deal with proof situations where such targeted
secrets s, like k̂B = ⊕(⊕(∗(nc1, x1),⊕(. . . ,∗(nc1, xn))),⊕(∗(m̂B, x1),⊕(. . . ,∗(m̂B, xn)))) in
the above discussed example, are not derivable by extraction from regular protocol mes-
sages. This makes it possible to prove their confidentiality with the help of protocol-specific
invariants, which permit to delimit the items used in derivations by merging according to
the structure of the regular protocol messages (see Sec. 6.5.1).

In another envisaged kind of confidentiality proofs, there can be regular protocol mes-
sages where message parts are protected with selected secrets derivable by merging. Here,
the canonical ccl-function ccl1 cannot be used as a basic check-function, because the set S
of selected secrets does not fit in with the required additional conditions (see Sec. 6.3.4). So,
our proposed proof technique would necessitate to come up with a basic check-function
that copes with derivations by merging. This issue is discussed in Sec. 6.5.2 with the help
of an example protocol (based on the TC-AMP algebra). We present another basic check-
function that can be used with ⊕-objects as selected secrets and provide a proof sketch for
its correctness.

6.5.1 Invariants on Derivations by Merging from Protocol Messages

It was not possible to come up with a generic theorem applicable with ccl2 to reduce a
targeted secret s derivable by merging to message parts required for its composition. Re-
ferring to the structure of s only, there are an unlimited number of message parts that can be
used to derive s by merging. Fortunately, the number of such candidate message parts can
be limited by following a kind of forward reasoning in protocol-specific invariants about all
derivable messages m̂ having the same type like s. Such an invariant must link m̂ to basic

108 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

confidential message parts, so that their occurrence in m̂ shall be shown to be inconsistent
with that in s, which basically forms the main confidentiality argument of s.

In case of TC-AMP, many protocol properties require to reason on the confidentiality
(derivability) of ⊕-objects with arbitrary large ⊕-structure. For instance, the authenticity
of the second message necessitates that the attacker may not derive a ⊕-object of the form
⊕(⊕(∗(nc1, x1),⊕(. . . ,∗(nc1, xn))),⊕(∗(m̂B, x1),⊕(. . . ,∗(m̂B, xn)))), which could be used as
k̂B to fake a valid second message pair(M2, h1(m̂B, M2, k̂B)). The corresponding assumption
in the fake case of this authenticity property is reduced to the given form of k̂B, as described
in Sec. 6.4.5. The remaining proof steps (in Sec. 9.5.2) consist in tracing back the occurrence
of k̂B as a ⊕-object to proof situations where structural conditions and basic confidentiality
properties can be used to close the fake case by corresponding refutations. This shall be
done, as introduced above, with the help of an invariant that links every derivable m̂ of the
same type like the targeted secret (here k̂B) with regular protocol messages where specific
message parts of m̂ have to originate from. We want to clarify this idea explaining how we
obtain the invariants used in the TC-AMP proof.

Basically, every ⊕-object m̂ with confidential basic ⊕-parts is linked to regular protocol
messages: A basic ⊕-part of m̂ is confidential only if it matches or includes the ⊕-part of a
⊕-object that corresponds to or is extracted from a regular protocol message. Consequently,
every derivable ⊕-object m̂ can be composed from two finite subsets msb and msp of the
intruder knowledge:

• The set msb consists of the non-confidential basic ⊕-parts of m̂.

• The set msp consists of the ⊕-parts of m̂ that are composed from confidential basic
⊕-parts and thus linked to regular protocol messages.

The elements of msp inherit structural conditions and confidential message parts from the
linked regular protocol messages. These form the structural and confidentiality conditions
of the invariant the confidentiality proof of s is based on (see Sec. 9.5.4 and 9.6.3).

Before we describe such invariants and the corresponding proof schema (in Sec. 6.5.1.2),
we introduce the employed short-cuts and ccl-function.

6.5.1.1 Used Short-Cuts and ccl-Function

The invariants about derivable ⊕-objects m̂ are formalized with the help of the following
short-cuts:

syn∗(m,m0,m1)⇔ (obj∗(m,m0,m1) ∨ syn∗⊖(m,m0,m1) ∨ syn∗⊕(m,m0,m1))

syn∗(m,ms, x)⇔ ((ms = ∅ ∧ x = m ∧m ̸= ∞) ∨
(∃m0,ms0 : ms = m0 ⊎ms0 ∧ syn∗(∗(m0, x),m0, x) ∧

syn∗(m,ms0,∗(m0, x))))

syn⊕(m,ms)⇔ ((ms = {m} ∧m ̸= ∞) ∨
(∃m0,m1,ms1 : ms = m0 ⊎ms1 ∧ obj⊕(m,m0,m1) ∧ syn⊕(m1,ms1)))

syn∗(m,ms, x) permits to identify a successive decomposition of m into the so-called left
∗-sub-messages in ms and a corresponding right ∗-sub-message x. Similarly, syn⊕(m,ms)
permits to identify a successive decomposition of m into ⊕-parts in ms.

The invariants about derivable ⊕-objects m̂ are formalized with the help of the ccl-
function ccl⊕2 . Instead fixing one arbitrary⊕-object m̂, we consider an infinite set ccl⊕2 (m̂) of
messages with specific occurrence of a fixed arbitrary⊕-object m̂. This is helpful in the step

6.5. DEALING WITH DERIVATIONS BY MERGING 109

case (from DYl(n, .) to DYl(n + 1, .)), as it permits to focus on derivations by composition
of m̂. Derivations (at level DYl(n + 1, .)) by extraction of an element in ccl⊕2 (m̂) use m
from ccl⊕2 (m̂) (and from level DYl(n, .)) and are thus handled for free by the induction
hypothesis.

DefinitionVSE 57 (ccl⊕2 ; TC-AMP):
For a given message m̂ and an arbitrary message m we have

m ∈ ccl⊕2 (m̂)⇔
((isObj⊕(m) ∧ (m = m̂ ∨⊖(m) = m̂) ∨

(∃m0,m1 : obj⊕(m,m0,m1) ∧ ¬isObj⊕(m0) ∧m0 ∈ ccl⊕2 (m̂)))) ∨
(∃m0,m1 : obj∗(m,m0,m1) ∧m1 ∈ ccl⊕2 (m̂)) ∨
(∃m0 : obj⊖(m,m0) ∧m0 ∈ ccl⊕2 (m̂)) ∨
(∃m0 : objinv(m,m0) ∧m0 ∈ ccl⊕2 (m̂)) ∨
(∃m0,m1 : objpair(m,m0,m1) ∧ (m0 ∈ ccl⊕2 (m̂) ∨m1 ∈ ccl⊕2 (m̂))))

Compared to ccl2, the recursion case of ccl⊕2 for ⊕-objects m is restricted to their basic
⊕-parts: If a ⊕-object m differs from m̂ and ⊖(m̂), either m̂ is derivable by extraction from
a basic ⊕-part of m or m̂ does not belong to ccl⊕2 (m̂). For instance, we have ⊕(a,⊕(b, c)) is
not in ccl⊕2 (⊕(b, c)), although ⊕(b, c) is derivable by extraction from ⊕(a,⊕(b, c)).

6.5.1.2 Invariant and Proof Schema

In the verification of TC-AMP, we will employ two similar invariants about derivable ⊕-
objects m̂: In the invariant used (in Chap. 9) for authenticity proofs, the derivations start
with immediately observable message sequences. This must be adapted (in Chap. 12) to
prove the resistance against offline guessing, where the derivations start with immediately
observable message sequences extended by a candidate password. Both invariants are for-
malized and proven according to a general schema, which we want to describe in this sec-
tion. Focusing on the first invariant, we emphasize in the following the general principles
and postpone the details to Chap. 9. The second invariant is obtained straightforwardly by
simple adaptations, as described in Chap. 12.

First of all, the proof of the invariants by nested induction incorporates a kind of mes-
sage derivations by forward reasoning. This explains, why the available message parts of
m̂ (if any) are defined based on successive applications of DYl (DY-level operator).

In particular, the cases where m̂ is composed exclusively from confidential basic ⊕-
parts are linked to regular protocol messages using protocol-specific predicates: In general,
⊕-objects m̂ can be decomposed in non-confidential basic ⊕-parts (in msb) and in other
⊕-parts (in msp) that are themselves composed from confidential basic ⊕-parts. The latter
are linked (after simplifying the available common ∗-sub-messages) to regular protocol
messages with the help of appropriate predicates. In case of TC-AMP, we use (in the first
invariant)

• TCAMP msg1 for ⊕-objects originating from first messages, which is defined by

TCAMP msg1(m, ik)⇔
(∃nc1, g1, g2, pw(j) : ⊕(∗(nc1, g1),⊖(∗(pw(j), g2))) ∈ ik ∧

g1 ̸= g2 ∧ nc1, pw(j),∗(nc1, g1),∗(pw(j), g2) /∈ DY(ik) ∧
(m = ⊕(∗(nc1, g1),⊖(∗(pw(j), g2))) ∨m = ⊕(⊖(∗(nc1, g1)),∗(pw(j), g2)))),

• TCAMP oops for ⊕-objects originating from oops events,

110 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

• and TCAMP mrg for ⊕-objects resulting by merging.

In general, these predicates specify how arbitrary⊕-objects m without non-confidential
⊕-parts and ∗-sub-messages originate from regular protocol messages. They are expected
to identify not only corresponding structural conditions for m but also their confidential
message parts. For a canonical proof of the invariant as described below, these predicates
have to satisfy two main requirements: Having Pcase1, . . . and PcaseNP as such predicates
defined for m relative to ik, the corresponding requirements are:

ℵ1: When Pcase1(m, ik) ∨ . . . ∨ PcaseNP (m, ik) holds and if there is a basic ⊕-part m0
of m satisfying syn∗(m0, inv(m1),m2) for a non-confidential message part m1, then
Pcase1(∗(m1,m), ik) ∨ . . . ∨ PcaseNP (∗(m1,m), ik) must hold, too.

ℵ2: When we have mrg⊕⊕(⊕(m0,m1),m0,m1), Pcase1(m0, ik) ∨ . . . ∨ PcaseNP (m0, ik) and
Pcase1(m1, ik)∨ . . .∨PcaseNP (m1, ik), then there must be ms01 ⊂ DY(ik) and m01 sat-
isfying syn∗(⊕(m0,m1),ms01,m01) and Pcase1(m01, ik) ∨ . . . ∨ PcaseNP (m01, ik).

For example, having m = ⊕(∗(a,b1),b2) derivable en-bloc from a regular protocol
message m′ where a (and thus inv(a)) is not confidential, then requirement ℵ1 neces-
sitates to link ∗(inv(a),m) = ⊕(b1,∗(inv(a),b2)) to m′, too. Having m0 = ⊕(b0,b) and
m1 = ⊕(b1,⊖(b)) as derivable ⊕-objects linked to regular messages, then requirement ℵ2
needs that the used protocol-specific predicates cover ⊕(m0,m1) = ⊕(b0,b1), too.

In Chap. 9, we explain how the above introduced predicates for TC-AMP satisfy re-
quirements ℵ1 and ℵ2, after providing the corresponding definitions. Using these predi-
cates, we obtain the following invariant about derivable ⊕-objects from immediately ob-
servable messages of TC-AMP.

PropertyVSE 58 (Derivable ⊕-Objects ; TC-AMP):
Let TCAMP be the inductively defined set of TC-AMP traces and let spies(tr) be the message
sequence immediately observable by the attacker from a trace tr. Then, we have

(tr ∈ TCAMP ∧ isObj⊕(m̂) ∧ DY(spies(tr)) ∩ ccl⊕2 (m̂) ̸= ∅)⇒
(∃msb,msp,n : syn⊕(m̂,msb ⊎msp) ∧
(∀m ∈ msb : ¬isObj⊕(m) ∧m ∈ DYl(spies(tr),n)) ∧
(∀m ∈ msp : (∃m′,ms : m′ ∈ DYl(spies(tr),n) ∧ms ⊆ DYl(spies(tr),n) ∧

syn∗(m,ms,m′) ∧ (TCAMP msg1(m′, spies(tr)) ∨
TCAMP mrg(m′, spies(tr)) ∨ TCAMP oops(m′, spies(tr)))))).

In the following, we describe the proof for all similar invariants about ⊕-objects m̂
derivable from ik. For that purpose, we use Pcase1, . . . ,PcaseNP for the protocol-specific
predicates and we assume that they satisfy requirements ℵ1 and ℵ2. Furthermore, we em-
ploy ℑ1(msb,msp,n, ik) to abbreviate the conditions about msb and msp, i.e.

1. msb consists of the non-confidential basic ⊕-parts m of m̂ (in DYl(ik,n)), and

2. msp consists of the⊕-parts m of m̂ (occurring in DYl(ik,n)) that satisfy syn∗(m,ms,m′)
for ms ⊂ DYl(ik,n) and for m′ fulfilling (Pcase1(m′, ik) ∨ . . . ∨ PcaseNP (m

′, ik)).

Proof (Schema):
The proof is by nested induction, first on traces tr from TCAMP and then on the extension of
DY-knowledge. Like in the first part of this chapter, we use ikp for spies(tr) and ikp ∪ {m}
for spies(ev.tr), where m represents the message of the last event ev.

6.5. DEALING WITH DERIVATIONS BY MERGING 111

Base Case: The conjecture about the empty trace is trivial, since the corresponding in-
truder knowledge is empty.

Step Case: In the step case, we need to prove the conjecture for every possible extended
trace ev.tr ∈ TCAMP. The induction hypothesis IHtr states that the conjecture holds for
tr, i.e. for ikp. The proof goal about the extended trace ev.tr, i.e. ikp ∪ {m}, is handled by
induction on the extension of DY-knowledge:

(Nested) Base Case: The third assumption is replaced with (ikp ∪ {m}) ∩ ccl⊕2 (m̂) ̸= ∅, as
DYl(ikp ∪ {m},0) = ikp ∪ {m}. This provides us with two cases:

1. ikp ∩ ccl⊕2 (m̂) ̸= ∅: Here, we apply the induction hypothesis IHtr.

2. ikp ∩ ccl⊕2 (m̂) = ∅: In this case, we obtain m ∈ ccl⊕2 (m̂) for each possible message
m that belongs to the last event ev. Here, the proof work consists in establishing
the corresponding Pcasei-case for the m-s that permit for an en-bloc derivation of m̂
composed from confidential basic ⊕-parts.

In case of TC-AMP, only the first step and the oops case provide m that yields such
a ⊕-object, where m matches m̂ (cp. step 1 and the oops-case in the definition of TC-
AMP steps, described in Sec. 9.1.2). Here, we confirm that m satisfies TCAMP msg1
and respectively TCAMP oops using protocol conditions and basic confidentiality
properties of corresponding message parts.

In the other regular cases, the structure of m permits to show that it does not belong
to ccl⊕2 (m̂).

In the fake case, m is not structured. But, its membership to DY(ikp) allows us to
handle this case with the help of the induction hypothesis IHtr.

(Nested) Step Case: The obtained induction hypothesis IHDYl provides for all ⊕-objects
m̂′ with DYl(ikp ∪ {m},n) ∩ ccl⊕2 (m̂′) ̸= ∅ some ms′b,ms′p, n̂′ such that syn⊕(m̂′,ms′b ⊎ms′p)
and ℑ1(ms′b,ms′p, n̂′, ik) hold.

For the (fixed arbitrary) ⊕-object m̂ with DYl(ikp ∪ {m},n + 1) ∩ ccl⊕2 (m̂) ̸= ∅, the
proof task consists in providing msb,msp and n̂ and establishing syn⊕(m̂,msb ⊎ msp) and
ℑ1(msb,msp, n̂, ik). Here, we proceed similar to the step case in the proof about the correct
use of ccl1, described in Sec. 6.2.4. Except of the cases

1. ∗(m0,m1) ∈ ccl⊕2 (m̂) for m0,m1 ∈ DYl(ikp ∪ {m},n)

2. and ⊕(m0,m1) ∈ ccl⊕2 (m̂) for m0,m1 ∈ DYl(ikp ∪ {m},n),

all other cases are reduced with the help of definition 57 to proof states that can be im-
mediately closed by the application of IHDYl . For instance, the definition of ccl⊕2 satis-
fies ⊖(m0) ∈ ccl⊕2 (m′) ⇒ m0 ∈ ccl⊕2 (m′) for all m0 and all ⊕-objects m′. Thus, we get
in case ⊖(m0) ∈ ccl⊕2 (m̂) for m0 ∈ DYl(ikp ∪ {m},n) immediately m0 ∈ ccl⊕2 (m̂). This
implies DYl(ikp ∪ {m},n) ∩ ccl⊕2 (m̂) ̸= ∅, which permits to apply IHDYl that provides
syn⊕(m̂,ms′b ⊎ms′p) and ℑ1(ms′b,ms′p, n̂′, ik), as required. 2

Handling of Case (1): According to definition 57, ∗(m0,m1) ∈ ccl⊕2 (m̂) holds when

(a) ∗(m0,m1) = m̂,

(b) ∗(m0,m1) = ⊖(m̂)

112 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

(c) or when there is a proper substructure m′ of ∗(m0,m1) with m′ ∈ ccl⊕2 (m̂).

Case (c) corresponds to a recursive case of ccl⊕2 , where ∗(m0,m1) ∈ ccl⊕2 (m̂) reduces to
m1 ∈ ccl⊕2 (m̂). Here, we conclude by the application of IHDYl .

Cases (a) and (b) can be straightforwardly shown equivalent based on the definition of
ccl⊕2 . For that reason, we focus on case (a), which we handle by the following lemma.

LemmaVSE 59 (Generation of ⊕-Objects ; TC-AMP ; ∗-case):
Let m̂ be an arbitrary ⊕-object and let m0 and m1 belong to DYl(ik,n). Then, we have

(∗(m0,m1) = m̂ ∧ syn⊕(m1,ms1
b ⊎ms1

p) ∧ ℑ1(ms1
b,ms1

p, n̂1, ik))⇒

∃msb,msp, n̂ : (syn⊕(m̂,msb ⊎msp) ∧ ℑ1(msb,msp, n̂, ik) ∧
(∀m : m ∈ ms1

b ⊎ms1
p⇔ ∗(m0,m) ∈ msb ⊎msp)).

Proof: The proof is by induction on the length of ms1
b ⊎ms1

p.

In the base case, we have ms1
b = ∅, ms1

p = {m1} and isObj⊕(m1), i.e. m1 in ms1
p: Here,

ℑ1(ms1
b,ms1

p, n̂1, ik) provides syn∗(m1,ms1,m2) for ms1 ⊂ DYl(ik, n̂1) and m2 ∈ DYl(ik, n̂1),
where Pcase1(m2, ik)∨ . . .∨PcaseNP (m2, ik) holds. We set msb = ∅ and msp = {∗(m0,m1)}.
We obviously have syn⊕(m̂,msb ⊎msp) and m ∈ms1

p⇔∗(m0,m) ∈msp. It remains to show
ℑ1(msb,msp, n̂, ik) in the following case distinction:

1. In case inv(m0) ∈ ms1, we have ms1 = inv(m0) ⊎ ms2 and syn∗(∗(m0,m1),ms2,m2).
This implies ℑ1(msb,msp, n̂, ik) for n̂ = n̂1.

2. Otherwise, if there is a basic ⊕-part m3 of m2 satisfying syn∗(m3, inv(m0),m4), then
we obtain Pcase1(∗(m0,m2), ik) ∨ . . . ∨ PcaseNP (∗(m0,m2), ik), according to the re-
quirement ℵ1 on the expected definitions of Pcasei-s (see above). This permits to
get syn∗(∗(m0,m1),ms1,∗(m0,m2)). Hence, there is some n̂ with ℑ1(msb,msp, n̂, ik).

3. If inv(m0) /∈ ms1, i.e. inv(m0) is not in ms1, and there is no basic ⊕-part m3 of m2 sat-
isfying syn∗(m3, inv(m0),m4), then we have syn∗(∗(m0,m1),m0 ⊎ ms1,m2) and thus
ℑ1(msb,msp, n̂, ik) for some n̂.

In the step case, ms1
b ⊎ ms1

p includes an arbitrary complete decomposition of m1 into
⊕-parts and we distinguish the following cases:

1. obj⊕(m1,m2,m3) for arbitrary basic ⊕-parts m2 and m3, ms1
b = {m2,m3} and ms1

p = ∅:
Here, we set msb = {∗(m0,m2),∗(m0,m3)} and msp = ∅.

Since we have m2,m3 ∈ DYl(ik, n̂1) and m0 ∈ DYl(ik,n), there must be some n̂ with
∗(m0,m2),∗(m0,m3) ∈ DYl(ik, n̂). This implies ℑ1(msb,msp, n̂, ik). Furthermore, we
have obj⊕(∗(m0,m1),∗(m0,m2),∗(m0,m3)), otherwise obj⊕(m1,m2,m3) would be re-
futed. Finally, we obviously have m ∈ ms1

b⇔ ∗(m0,m) ∈ msb.

2. ms1
b = m2 ⊎ ms2

b and m3 = ⊕(ms2
b ⊎ ms1

p) is a ⊕-object: Here, we first deduce

syn⊕(m3,ms2
b ⊎ ms1

p) and ℑ1(ms2
b,ms1

p, n̂1, ik) to apply the induction hypothesis. For

m̂′ = ∗(m0,m3), we obtain syn⊕(m̂′,ms′b ⊎ ms′p), ℑ1(ms′b,ms′p, n̂′, ik) and the equiva-
lence m ∈ ms2

b ⊎ms1
p⇔ ∗(m0,m) ∈ ms′b ⊎ms′p.

Here, we set msb = ∗(m0,m2) ⊎ ms′b and msp = ms′p. We obtain immediately
ℑ1(msb,msp, n̂, ik) for some n̂, and m ∈ ms1

b ⊎ ms1
p ⇔ ∗(m0,m) ∈ msb ⊎ msp follows

from m ∈ ms2
b ⊎ms1

p⇔ ∗(m0,m) ∈ ms′b ⊎ms′p and from the equalities ms1
b = m2 ⊎ms2

b

6.5. DEALING WITH DERIVATIONS BY MERGING 113

and msb = ∗(m0,m2) ⊎ ms′b. It remains to show syn⊕(⊕(∗(m0,m2), m̂′),msb ⊎ msp)

by contradiction: The assumed negation of syn⊕(⊕(∗(m0,m2), m̂′),msb ⊎ msp) and
syn⊕(m̂′,ms′b ⊎ms′p) imply that ∗(m0,⊖(m2)) is a basic ⊕-part of ⊕(ms′b ⊎ms′p). Us-
ing the equivalence resulting by the application of the induction hypothesis, we de-
duce that ⊖(m2) is a basic ⊕-part of ⊕(ms2

b ⊎ ms1
p) and this refutes the assumption

syn⊕(m1,m2 ⊎ms2
b ⊎ms1

p).

3. ms1
b = ∅, ms1

p = m2 ⊎ ms2
p and m3 = ⊕(ms2

p) is a ⊕-object: Here, we first deduce

syn⊕(m3,ms1
b ⊎ ms2

p) and ℑ1(ms1
b,ms2

p, n̂1, ik) to apply the induction hypothesis. For

m̂′ = ∗(m0,m3), we obtain syn⊕(m̂′,ms′b ⊎ ms′p), ℑ1(ms′b,ms′p, n̂′, ik) and the equiva-
lence m ∈ ms1

b ⊎ms2
p⇔ ∗(m0,m) ∈ ms′b ⊎ms′p.

Here, we set msb = ms′b and msp = ∗(m0,m2) ⊎ ms′p. We obtain immediately
ℑ1(msb,msp, n̂, ik) for some n̂, and m ∈ ms1

b ⊎ ms1
p ⇔ ∗(m0,m) ∈ msb ⊎ msp follows

from m ∈ ms1
b ⊎ms2

p⇔ ∗(m0,m) ∈ ms′b ⊎ms′p and from the equalities ms1
p = m2 ⊎ms2

p

and msp = ∗(m0,m2) ⊎ ms′p. It remains to show syn⊕(⊕(∗(m0,m2), m̂′),msb ⊎ msp)

by contradiction: The assumed negation of syn⊕(⊕(∗(m0,m2), m̂′),msb ⊎ msp) and
syn⊕(m̂′,ms′b ⊎ms′p) provide a decomposition of m2 into two⊕-parts m4 and m5 such
that ∗(m0,⊖(m4)) is a basic ⊕-part of ⊕(ms′b ⊎ ms′p). Using the equivalence result-
ing by the application of the induction hypothesis, we deduce that ⊖(m4) is a basic
⊕-part of ⊕(ms1

b ⊎ms2
p) and this refutes syn⊕(m1,ms1

b ⊎⊕(m4,m5) ⊎ms2
p). 2

Handling of Case (2): According to definition 57, ⊕(m0,m1) ∈ ccl⊕2 (m̂) holds when

(a) ⊕(m0,m1) = m̂,

(b) ⊕(m0,m1) = ⊖(m̂)

(c) or when there is a proper substructure m′ of ⊕(m0,m1) with m′ ∈ ccl⊕2 (m̂).

Case (c) corresponds to a recursive case of ccl⊕2 , where ⊕(m0,m1) ∈ ccl⊕2 (m̂) reduces to
m0 ∈ ccl⊕2 (m̂) or m1 ∈ ccl⊕2 (m̂). This permits to conclude this case by the application of
IHDYl .

Cases (a) and (b) can be straightforwardly shown equivalent based on the definition of
ccl⊕2 . For that reason, we focus on case (a), which we handle by the following lemma.

LemmaVSE 60 (Generation of ⊕-Objects ; TC-AMP ; ⊕-case):
Let m̂ be an arbitrary ⊕-object and let m0 and m1 belong to DYl(ik,n). Then, we have

(⊕(m0,m1) = m̂ ∧
(¬isObj⊕(m0) ∨ (syn⊕(m0,ms0

b ⊎ms0
p) ∧ ℑ1(ms0

b,ms0
p, n̂0, ik))) ∧

(¬isObj⊕(m1) ∨ (syn⊕(m1,ms1
b ⊎ms1

p) ∧ ℑ1(ms1
b,ms1

p, n̂1, ik))))⇒

∃msb,msp, n̂ : (syn⊕(m̂,msb ⊎msp) ∧ ℑ1(msb,msp, n̂, ik)).

Proof: The proof is by induction on |m0|⊕ + |m1|⊕.

In the base case, m0 and m1 are basic ⊕-parts. This implies obj⊕(m̂,m0,m1), which permits
to conclude using msb = {m0,m1}, msp = ∅ and n̂ = n.

In the step case, m0 or m1 is a ⊕-object and we distinguish the following cases:

114 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

1. m0 is a basic⊕-part, syn⊕(m1,ms1
b ⊎ms1

p) andℑ1(ms1
b,ms1

p, n̂1, ik): We distinguish two
cases:

(a) ⊖(m0) ∈ ms1
b: That is, ms1

b = ⊖(m0) ⊎ ms2
b and syn⊕(⊕(m0,m1),ms2

b ⊎ ms1
p).

Here, ℑ1(ms1
b,ms1

p, n̂1, ik) implies ℑ1(ms2
b,ms1

p, n̂1, ik), which permits to conclude
by setting msb = ms2

b and msp = ms1
p.

(b) ⊖(m0) /∈ms1
b: Asℑ1(ms1

b,ms1
p, n̂1, ik) ensures that⊖(m0) cannot be a basic⊕-part

of any element in ms1
p, we get syn⊕(⊕(m0,m1),m0 ⊎ ms1

b ⊎ ms1
p) and ℑ1(m0 ⊎

ms1
b,ms1

p, n̂, ik) for some n̂. Hence, we conclude by setting msb = m0 ⊎ ms1
b and

msp = ms1
p.

2. m1 is a basic ⊕-part, syn⊕(m0,ms0
b ⊎ms0

p) and ℑ1(ms0
b,ms0

p, n̂0, ik): Here, the proof is
similar to case (1).

3. m0 and m1 satisfy syn⊕(m0,ms0
b ⊎ms0

p), ℑ1(ms0
b,ms0

p, n̂0, ik), syn⊕(m1,ms1
b ⊎ms1

p) and
ℑ1(ms1

b,ms1
p, n̂1, ik): We distinguish the following cases:

(a) ms0
b = m2 ⊎ms2

b, ⊕(ms2
b ⊎ms0

p) = m3 and ⊕(m1,m3) = m4 for a basic ⊕-part m4:
Here, we have obj⊕(⊕(m0,m1),m2,m4) for two basic ⊕-parts m2 and m4. This
permits to proceed as in the base case.

(b) ms0
b = m2 ⊎ ms2

b, ⊕(ms2
b ⊎ ms0

p) = m3 and ⊕(m1,m3) = m̂′ for a ⊕-object m̂′:
Here, the induction hypothesis provides us with ms′b, ms′p and n̂′ satisfy-

ing syn⊕(m̂′,ms′b ⊎ ms′p) and ℑ1(ms′b,ms′p, n̂′, ik). Then, we proceed as in

case (1) to combine m2 with m̂′ and conclude with syn⊕(m̂,msb ⊎ msp) and
ℑ1(msb,msp, n̂, ik) for some n̂.

(c) ms0
b = ∅, ms0

p = m2 ⊎ms2
p and ⊕(m1 ⊎ms2

p) = ∞: Here, ⊕(m0,m1) = m2 and we
conclude by setting msb = ∅ and msp = {m2}.

(d) ms0
b = ∅, ms0

p = m2 ⊎ ms2
p and ⊕(m1 ⊎ ms2

p) = m3 for a basic ⊕-part m3: Here,
obj⊕(⊕(m0,m1),m3,m2) holds and we conclude by setting msb = {m3} and
msp = {m2}.

(e) ms0
b = ∅, ms0

p = m2⊎ms2
p and⊕(m1⊎ms2

p) = m̂′ for a⊕-object m̂′: If ms2
p ̸= ∅, we

have m̂′ = ⊕(⊕(ms2
p),m1) and the induction hypothesis provides us with ms′b,

ms′p and n̂′ satisfying syn⊕(m̂′,ms′b ⊎ ms′p) and ℑ1(ms′b,ms′p, n̂′, ik). Otherwise,
we have m̂′ = m1 and we continue the proof by setting ms′b = ms1

b and ms′p = ms1
p.

The structure of m̂ = ⊕(m2, m̂′) is obtained by combining m2 with the structure
of m̂′ in the following case distinction:

i. syn⊕(⊕(m2, m̂′),ms′b ⊎ m2 ⊎ ms′p): Here, we conclude by setting msb = ms′b
and msp = m2 ⊎ms′p.

ii. ⊖(m2)∈ms′p: Here, we have ms′p =⊖(m2)⊎ms3
p, syn⊕(⊕(m0,m1),ms′b,ms3

p)

andℑ1(ms′b,ms3
p, n̂′, ik). Hence, we conclude by setting msb = ms′b and msp =

ms3
p.

iii. ⊖(m2) /∈ ms′p and there is m3 ∈ ms′p with mrg⊕⊕(⊕(m2,m3),m2,m3): Based
on ℑ1(ms0

b,ms0
p, n̂0, ik) and ℑ1(ms′b,ms′p, n̂′, ik), we obtain syn∗(m2,ms2,m4),

ms2 ⊂ DYl(ik,n2), Pcase1(m4, ik) ∨ . . . ∨ PcaseNP (m4, ik), syn∗(m3,ms3,m5),
ms3 ⊂ DYl(ik,n3), and Pcase1(m5, ik) ∨ . . . ∨ PcaseNP (m5, ik).
W.l.o.g., mrg⊕⊕(⊕(m2,m3),m2,m3), syn∗(m2,ms2,m4) and syn∗(m3,ms3,m5)
imply ms2 = ms23 ⊎ ms′2, ms3 = ms23 ⊎ ms′3, obj⊕(m4,m24,∗(ms′3,m45)) and

6.5. DEALING WITH DERIVATIONS BY MERGING 115

obj⊕(m5,m35,⊖(∗(ms′2,m45))). We are interested in the messages m′4 =

⊕(∗(inv(ms′3),m24),m45) and m′5 = ⊕(∗(inv(ms′2),m35),⊖(m45)), because
tey clearly satisfy mrg⊕⊕(⊕(m′4,m′5),m

′
4,m′5). Furthermore, ℵ1 permits to use

ms3 ⊂ DYl(ik,n3) and ms2 ⊂ DYl(ik,n2) to obtain

Pcase1(m′4, ik) ∨ . . . ∨ PcaseNP (m
′
4, ik) from

Pcase1(m4, ik) ∨ . . . ∨ PcaseNP (m4, ik) and

Pcase1(m′5, ik) ∨ . . . ∨ PcaseNP (m
′
5, ik) from

Pcase1(m5, ik) ∨ . . . ∨ PcaseNP (m5, ik).

Now, we have all we need to use ℵ2 and obtain ms′45 ⊂ DYl(ik,n45)

and m′45 satisfying syn∗(⊕(m′4,m′5),ms′45,m′45) and Pcase1(m′45, ik) ∨ . . . ∨
PcaseNP (m

′
45, ik).

Additionally, the equality ⊕(m2,m3) = ∗(ms23 ⊎ ms′2 ⊎ ms′3 ⊎ ms′45,m′45)
follows from the above transformations and equalities. This allows us
to get ms′23 ⊂ DYl(ik,n23) satisfying syn∗(⊕(m2,m3),ms′23,m′45) and then
ℑ1(∅,{m23},n23, ik) for m23 = ⊕(m2,m3).
Based on⊕(m0,m1) =⊕(m23,⊕(ms′b,ms3

p)) for ms′p = m3 ⊎ms3
p, we proceed

according to the content of ms3
p:

• If ms3
p = ∅, we conclude by setting msb = ms′b and msp = {m23}.

• Otherwise, ℑ1(ms′b,ms′p, n̂′, ik) implies ℑ1(ms′b,ms3
p, n̂3, ik) and we have

ℑ1(∅,{m23},n23, ik) with |⊕(ms′b ⊎ ms3
p)|⊕ + |m23|⊕ < |m0|⊕ + |m1|⊕.

This permits to conclude with the help of the induction hypothesis. 2

6.5.1.3 Usage Example

In this section, we sketch how the invariant 58 permits to show that the attacker is not able
to derive a composed message

k̂B = ⊕(⊕(∗(nc1, x1),⊕(. . . ,∗(nc1, xn))),⊕(∗(m̂B, x1),⊕(. . . ,∗(m̂B, xn)))).

Recall that nc1 and m̂B are left ∗-parts of ∗(nc1, xi) and respectively ∗(m̂B, xi) for 1 ≤ i ≤ n
and that m̂B equals ⊕(∗(nc1, g1),⊖(∗(π, g2))).

Assuming that k̂B belongs to DY(ik), the invariant 58 yields syn⊕(k̂B,msb ⊎ msp) with
ℑ1(msb,msp, n̂, ik) for some msb, msp and n̂. This permits to distinguish the following cases:

• A basic ⊕-part ∗(nc1, xi) of k̂B belongs to msb and thus to DY(ik): This assumption
permits to deduce nc1 ∈ DY(ik) or ∗(nc1, g1) ∈ DY(ik), and both cases are refuted
by the confidentiality of these message parts shown with the help of ccl1 as a basic
check-function.

• The complementary case yields that k̂B matches a ⊕-object ⊕(∗(nc1, x1),m1) or has
this as a ⊕-part in msp: This ⊕-object satisfies syn∗(⊕(∗(nc1, x1),m1),ms1,m2) for
ms1 ⊂ DY(ik) and for m2 fulfilling the protocol-specific cases. Here, we focus on case
TCAMP msg1(m2, ik), where we obtain m2 = ⊕(∗(nc1, g1),⊖(∗(π, g2))), ∗(nc1, x1) =
∗(ms1,∗(nc1, g1)) and thus m1 = ⊖(∗(ms1,∗(π, g2))) for g1 ̸= g2.

In case k̂B = ⊕(∗(nc1, x1),m1), we get ∗(ms1,∗(m̂B, g1)) = ⊖(∗(ms1,∗(π, g2))), which
clearly does not hold.

In case⊕(∗(nc1, x1),m1) is a⊕-part of k̂B, we get⊖(∗(ms1,∗(π, g2))) as a basic⊕-part
of

m3 = ⊕(⊕(∗(nc1, x2),⊕(. . . ,∗(nc1, xn))),⊕(∗(ms1,∗(m̂B, g1)),⊕(. . . ,∗(m̂B, xn)))).

116 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

This implies that the nonce nc1 is in ms1 or this nonce occurs in a basic ⊕-part of the
form ⊖(∗(ms2,∗(nc1,∗(π, g2)))) for ms1 = m̂B ⊎ ms2. The former case is refuted by
the confidentiality of nc1 and the latter case by the binding of nc1 with g1.

6.5.2 A Basic Check-Function Dealing with Derivations by Merging

In this section, we demonstrate how our proof technique of basic confidentiality properties
can be extended to cope with selected secrets that are derivable by merging operations. For
that purpose, we use an example (key establishment) protocol (in Sec. 6.5.2.1) based on the
TC-AMP algebra, so that the confidentiality of the session key necessitates to use ⊕-objects
as selected secrets. In Sec. 6.5.2.2, we propose a ccl-function ccl3 that can be used as a basic
check-function for this kind of basic confidentiality proofs. We sketch the corresponding
correctness proof in Sec. 6.5.2.3, including the main used lemmata and their detailed proofs.

6.5.2.1 A Running Example

To introduce the basic check-function ccl3 that permits to deal with⊕-objects as selected se-
crets, we use the following (factitious) example protocol. It is a key establishment protocol
initiated by a (trusted) server srv, which selects two agents (from a greater set of partici-
pants) to provide them with a session key. The two agents shall use this session key after-
wards, e.g., for an anonymous conversation in a certain dialogue game, where the agent in
role A shall be the initiator of the conversation and the agent in role B the responder.

To exemplify the different kinds of⊕-objects as selected secrets (see below), we use two
kinds of (long-term) shared keys as initial knowledge in this protocol: For each participant
ag, there is a shared key ik(ag), which srv uses to talk to ag in the role A (initiator of the
conversation), and a second shared key rk(ag), which srv uses to talk to ag in the role B
(responder in the conversation).

1. srv −→ A : ⊕(ik(A),⊕(N1, N2)), ∗(⊕(N1, N2), pair(A,⊕(N3,⊖(N2))))
% ⊕ (ik(A), M1), ∗(M1, pair(A, M2))

2. A −→ srv : ⊕(ik(A),⊕(M1, M2)) % ⊕ (ik(A),⊕(N1, N3))

3. srv −→ B : N4, ∗(⊕(rk(B), N4), pair(⊕(N1, N3), B))
% N4, ∗(⊕(rk(B), N4), pair(M3, B))

The protocol consists of the following three steps, in the “Alice-and-Bob” notation as
described in Sec. 2.1:

• In step 1, the server (srv) generates three nonces nc1,nc2,nc3 (for N1, N2, N3) and uses
a shared key, e.g., ik(a), for ik(A) to send a message

pair(⊕(ik(a),⊕(nc1,nc2)),∗(⊕(nc1,nc2), pair(a,⊕(nc3,⊖(nc2)))))

to the owner a of this shared key. This first message permits for instance to ask the
receiver, whether she/he is willing to start a conversation with another party using
the derivable session key.

The receiver (in role) A derives M1 from the first message part by the dec⊕⊕-operation
using ⊖(ik(A)) as crypt-key, obtained from the own shared key ik(A). After that,
A applies the dec∗∗-operation to inv(M1) and to the second message part. Only if
the result is a pair-message containing (the identity of) A as first entry, the receiver
can accept the request of the server srv and uses M1 and the second entry M2 in the
resulting pair-message to compute the session key ⊕(M1, M2).

6.5. DEALING WITH DERIVATIONS BY MERGING 117

• In step 2, A replies with ⊕(ik(A),⊕(M1, M2)) computed using the accepted ses-
sion key and the own shared key ik(A). This permits the server to check a posi-
tive answer of A by comparing the replied message with ⊕(ik(a),⊕(nc1,nc3)) (for
⊕(ik(A),⊕(N1, N3))) that the server computes using the nonces nc1,nc3 generated in
the first step together with the shared key ik(a) of a.

• In step 3, the server (srv) generates a fourth nonce nc4 (for N4) and uses a shared key,
e.g., rk(b), for rk(B) to send a message pair(nc4,∗(⊕(rk(b),nc4), pair(⊕(nc1,nc3),b)))
to the owner b of this shared key. This third message permits for instance to engage
the receiver in participating as responder in some conversation by using the derivable
session key.

The receiver (in role) B uses the first message part as a nonce (N4) and composes this
with the own shared key rk(B) to obtain inv(⊕(rk(B), N4)). After that, B applies the
dec∗∗-operation to the obtained inv-object and to the second message part. Only if the
result is a pair-message containing (the identity of) B as second entry, the receiver will
act as responder in a subsequent conversation using the first entry M3 in the resulting
pair-message as session key.

A successful run of this protocol yields to a new session key⊕(nc1,nc3) (for⊕(N1, N3)),
which shall be known only for the server srv and for the chosen agents a and b (in the roles
A and respectively B).

Independent of the anonymity aspect, we want to discuss in the following how the
confidentiality of the established session key s = ⊕(nc1,nc3) can be shown.

First, the techniques described in the previous sections are not applicable, because of
the following reasons:

• It is not possible to use the canonical basic check-function ccl1, because the sets S of
selected secrets include⊕-objects (s and further selected secrets), which would violate
the necessary condition ℜ1(S) in the correctness theorem.

• Showing the confidentiality of s by reduction with the help of the check-function ccl2
does not work, because s is a ⊕-object.

• Coming up with a protocol-specific invariant providing a complete case distinc-
tion about the derivable ⊕-objects and using this to show that they differ from s
seems complicated without relying on provably confidential basic message parts like
ik(a), rk(b) and the used nonces nc1,nc2,nc3: For instance, without knowing whether
⊕(nc1,nc2) is confidential we will obtain a case where⊕(nc1,nc2) and⊕(nc3,⊖(nc2))
are public, which permits to derive ⊕(nc1,nc3) by merging. Furthermore, the basic
⊕-parts ik(a) and nc1,nc2,nc3 occur protected with⊕-objects⊕(nc1,nc2),⊕(nc1,nc3),
⊕(ik(a),nc2), ⊕(ik(a),nc3) and ⊕(ik(a),nc1), and the use of these ⊕-objects as se-
lected secrets precludes the application of the proof technique by ccl1 as a basic check-
function.

Consequently, we need to come up with a basic check-function that permits the use of
⊕-objects as selected secrets. Before we provide the definition of this check-function (in
Sec. 6.5.2.2), we introduce the different kinds of the relevant ⊕-objects:

1. Following the f -part inclusion principle and selecting additional secrets to preserve
confidentiality protection against derivations by decrypt-type operations (using the
above messages of a complete protocol run), we define the set S of the selected secrets
to include s = ⊕(nc1,nc3), nc1, ⊕(ik(a),nc2), ik(a),nc2, ⊕(ik(a),nc1), ⊕(nc1,nc2),
⊕(ik(a),nc3), nc3, ⊕(rk(b),nc4) and rk(b).

In contrast to ⊕(ik(a),nc2), ⊕(ik(a),nc1), ⊕(nc1,nc2) and ⊕(ik(a),nc3), which occur
as ⊕-parts in public ⊕-objects, ⊕(rk(b),nc4) does not occur as a ⊕-part of a public

118 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

⊕-object. Moreover, none of the basic ⊕-parts of ⊕(rk(b),nc4) occurs as a ⊕-part
of a public ⊕-object. For that reason, the protection of ⊕(rk(b),nc4), contrarily to
⊕(ik(a),nc2), . . . ,⊕(ik(a),nc3), can be checked without incorporating derivations by
merging. So, we distinguish the protected ⊕-parts in S into two sets: S⊕ consists of
the ⊕-parts whose protection needs to involve derivations by merging, and S \ S⊕
includes the protected ⊕-objects and corresponding ⊕-parts whose protection does
not necessitate to involve derivations by merging.

2. In Sec. 6.5.1, we have proved that derivations by merging do not violate the confiden-
tiality of a targeted⊕-object s′ with the help of a protocol-specific invariant providing
a complete case distinction about all derivable⊕-objects m. The provided cases cover
in particular all effective derivations by merging, and the resulting messages neither
match s′ nor violate the protection of its ⊕-parts. For a similar handling in our new
basic check-function, we use a set P including all public ⊕-objects that occur (also
implicitly) as or in regular protocol messages and that can be involved in derivations
by merging relevant for the protection of ⊕-objects in S. This set must be closed under
merging (see below) and disjoint with S.

For example, P includes ⊕(ik(a),⊕(nc1,nc2)), ⊕(ik(a),⊕(nc1,nc3)), ⊕(nc2,⊖(nc3))
and ⊕(nc3,⊖(nc2)). Each of these ⊕-objects is not critical for the protection of S, be-
cause every dec⊕⊕-derivation of some si ∈ S from these ⊕-objects necessitates a crypt-
key corresponding mainly to a selected secret in S.

Note that the elements in P are allowed to appear as public messages. For that reason,
all their ⊕-parts must belong to S. More precisely, the subset S⊕ of S must consist of
the ⊕-parts of the elements in P (see below).

3. In contrast to the ⊕-objects in S⊕, other ⊕-objects in S, e.g., ⊕(rk(b),nc4), are han-
dled like any other selected secret in S whose protection is not affected by merging
derivations. So, it is sufficient to include just rk(b) (without including nc4) as selected
secret. This is in principle permissible only if ⊕(rk(b),nc4) and its protected ⊕-part
rk(b) do not occur as (implicit) ⊕-parts of public message parts of regular messages.

Summing up, the new basic check-function shall be defined relative to three sets S,S⊕, P.
For a session key s =⊕(nc1,nc3) fixed by a first message to an agent a, the contents of these
sets are defined according to the following principles:

• A first protocol message that fixes s = ⊕(nc1,nc3) necessitates to include

1. s, s1, s2, s3, s4,nc1,nc3, ik(a),nc2 in S⊕, for

s1 = ⊕(ik(a),nc2), s2 = ⊕(ik(a),nc1), s3 = ⊕(nc1,nc2), s4 = ⊕(ik(a),nc3),

2. and p1, p2, p3 in P for

p1 = ⊕(ik(a),⊕(nc1,nc2)), p2 = ⊕(ik(a),⊕(nc1,nc3)), p3 = ⊕(nc2,⊖(nc3)).

In particular, s4 in S⊕ (and accordingly p2 and p3 in P) must be included at this first
protocol step, in order to get a negative check for the message of the corresponding
second protocol step. This is required, because the second protocol step does not
include new items unused before.

• A first message

pair(⊕(ik(a),⊕(nc′1,nc′2)),∗(⊕(nc′1,nc′2), pair(a,⊕(nc′3,⊖(nc′2)))))

that includes ik(a) and where the nonces differ from the nonces used at the establish-
ment of s necessitates to include

6.5. DEALING WITH DERIVATIONS BY MERGING 119

1. s5, s6, s7, s8,nc′1,nc′3,nc′2, in S⊕, for

s5 = ⊕(ik(a),nc′2), s6 = ⊕(ik(a),nc′1), s7 = ⊕(nc′1,nc′2), s8 = ⊕(ik(a),nc′3),

2. p4, p5, p6, p7, p8, p9, p10 in P, for

p4 = ⊕(ik(a),⊕(nc′1,nc′2)), p5 = ⊕(ik(a),⊕(nc′1,nc′3)),
p6 = ⊕(nc′2,⊖(nc′3)), p7 = ⊕(⊕(nc1,nc2),⊕(⊖(nc′1),⊖(nc′2))),
p8 = ⊕(⊕(nc1,nc2),⊕(⊖(nc′1),⊖(nc′3))),
p9 = ⊕(⊕(nc1,nc3),⊕(⊖(nc′1),⊖(nc′2))),
p10 = ⊕(⊕(nc1,nc3),⊕(⊖(nc′1),⊖(nc′3))),

3. s9, s10, s11, s12 in S⊕, (as complementary to nc1 in p7, p8, p9, p10), for

s9 = ⊕(nc2,⊕(⊖(nc′1),⊖(nc′2))), s10 = ⊕(nc2,⊕(⊖(nc′1),⊖(nc′3))),
s11 = ⊕(nc3,⊕(⊖(nc′1),⊖(nc′2))), s12 = ⊕(nc3,⊕(⊖(nc′1),⊖(nc′3))),

4. s13, s14 in S⊕, (as complementary to nc2 (resp. nc3) in p7, p8 (resp. p9, p10)), for

s13 = ⊕(nc1,⊕(⊖(nc′1),⊖(nc′2))), s14 = ⊕(nc1,⊕(⊖(nc′1),⊖(nc′3))),

5. s15, s16, s17, s18 in S⊕, (as complementary to ⊖(nc′1) in p7, p8, p9, p10), for

s15 = ⊕(⊕(nc1,nc2),⊖(nc′2)), s16 = ⊕(⊕(nc1,nc2),⊖(nc′3)),
s17 = ⊕(⊕(nc1,nc3),⊖(nc′2)), s18 = ⊕(⊕(nc1,nc3),⊖(nc′3)),

6. s19, s20 in S⊕, (as complementary to ⊖(nc′2) (resp. ⊖(nc′3)) in p7, p8 (resp.
p9, p10)), for

s19 = ⊕(⊕(nc1,nc2),⊖(nc′1)), s20 = ⊕(⊕(nc1,nc3),⊖(nc′1)),

7. and s21, s22, s23, s24, s25, s26, s27, s28, s29, s30 in S⊕ (as all possible ⊕-parts m of
p7, p8, p9, p10 satisfying |m|⊕ = 1), for

s22 = ⊕(nc1,⊖(nc′1)), s23 = ⊕(nc1,⊖(nc′2)), s24 = ⊕(nc1,⊖(nc′3)),
s25 = ⊕(nc2,⊖(nc′1)), s26 = ⊕(nc2,⊖(nc′2)), s27 = ⊕(nc2,⊖(nc′3)),
s28 = ⊕(nc3,⊖(nc′1)), s29 = ⊕(nc3,⊖(nc′2)), s30 = ⊕(nc3,⊖(nc′3)).

Actually, we intended to ensure that P is closed under merging, e.g., p7 results by
merging p1 and ⊖(p4). But, P includes messages like p1 and p10 whose merging
yields a new message (here ⊕(⊕(ik(a),nc2),⊕(⊖(nc3),⊕(nc′1,nc′3)))) that have ⊕-
parts (here p5, p3) in P. That is, P must include only the merging results that do not
possess ⊕-parts in P (see condition ℜ2 below). Merging results like ⊕(p5, p3) must
not be included in P, because otherwise we would need to include p5 or p3 in S and
this violates the necessary condition P ∩ S = ∅.
For the correctness proof, it was necessary to further specify the elements in P whose
merging results possess ⊕-parts in P. This is done by the sole protocol-specific con-
dition ℜP on the set P:

(obj⊕(p1,u,v) ∧ obj⊕(p2,u,w) ∧ obj⊕(⊕(v,⊖(w)), p3, p4) ∧ p1, p2, p3, p4 ∈ P)⇒
((|u|⊕ = 0∧ |v|⊕ = 1∧ |w|⊕ = 2∧ |p3|⊕ = 1∧ |p4|⊕ = 2) ∨
(|u|⊕ = 1∧ |v|⊕ = 1∧ |w|⊕ = 1∧ |p3|⊕ = 1∧ |p4|⊕ = 1))

ℜP mainly limits the ⊕-structure (number of basic ⊕-parts) of the involved elements
in P. So, we expect that such a protocol-specific condition can be abandoned when
dealing (in other message algebras) with merging results having a fixed top-structure,
as opposed to the top-structure of ⊕-objects given by arbitrary many basic ⊕-parts.

120 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

• A third message pair(nc4,∗(⊕(rk(b),nc4), pair(⊕(nc1,nc3),b))) where the nonces
nc1,nc3 belong to S⊕ necessitates to include ⊕(rk(b),nc4) and rk(b) in S only (and
not in S⊕).

After sketching the content of the parameter sets S, S⊕ and P, we describe how they are
used in the definition of the basic check-function ccl3.

6.5.2.2 Basic Check-Function ccl3

For arbitrary given messages m, the function ccl3 checks whether m is “critical” for the
protection of the selected secrets in S, using the auxiliary sets S⊕ and P as described in the
following.

• Except of ⊕-objects m, all other types of messages are checked relative to S as it is
done by ccl1(S).

• In case of a ⊕-object m, the checks performed by ccl3 and the additional conditions
on S, S⊕ and P shall deal with the following derivations.

– In dealing with dec⊕⊕-derivations, ccl3 has to ensure

1. that no (implicit)⊕-part of m occurs in S \ S⊕, because these selected secrets
may not occur as ⊕-parts of public ⊕-objects,

2. and that, in presence of an (implicit) ⊕-part b of m in S⊕, a corresponding
complementary ⊕-part u exists such that ⊕(b,u) is in P and the remaining
⊕-part (if any) is not critical.

– In dealing with sel⊖⊕-, syn⊖⊕- and trs⊖⊕-derivations, ccl3 has to handle⊕-objects m
and ⊖(m) as public variations of each other, as defined below.

– In dealing with dec∗⊕-derivations, ccl3 has to handle for instance ⊕(g1,⊖(g2)) as
a public variation of ⊕(∗(ci, g1),⊖(∗(ci, g2))) when ci is not protected in S.

– In dealing with derivations by trs∗⊕-operations, ccl3 has to handle for instance
⊕(g1,⊖(∗(inv(ci), g2))) as a public variation of ⊕(∗(ci, g1),⊖(g2)) when ci is
not protected in S.

– Protection violation by trs∗⊕-derivations as keyed trans-operations is excluded
by a corresponding additional condition, which ensures for instance in presence
of ⊕(∗(ci, g1),⊖(g2)) in S that either ci or ⊕(g1,⊖(∗(inv(ci), g2))) must be in S
(see ℜ3 below).

– To exclude protection violation by mrg⊕⊕-derivations, the additional conditions
ensure that P and S are disjoint and that P is closed under merging, in the above
discussed sense (see ℜ2 below and the above introduced condition ℜP).

– To exclude protection violation by obj⊕-derivations, the additional conditions
ensure that for each possible pair of ⊕-parts of a ⊕-object in S, at least one of
these ⊕-parts is included in S (see ℜ1 below).

– Protection violation by derivations through syn∗⊕-operations is excluded by a
corresponding additional condition, which ensures for instance in presence of
⊕(∗(ci, g1),⊖(∗(ci, g2))) in S that ci or ⊕(g1,⊖(g2)) must be in S (see ℜ4 below).

• To meet the above introduced principles, the definition of ccl3 is obtained by the fol-
lowing adaptations of ccl1:

– In the base case, we focus on all possible public variations of m relative to S.
The public variations of m (relative to S) are all messages that can result from m
by an application of ⊖ and/or by successive dec∗⊕- and trs∗⊕-derivations where

6.5. DEALING WITH DERIVATIONS BY MERGING 121

the used crypt-keys and trans-keys mk satisfy mk, inv(mk) /∈ S. Examples are
given above.
The check of the public variations is performed with the help of an auxiliary
function ccl⊕3 relative to S,S⊕, P (see below). If a public variation of m is in
ccl⊕3 (S,S⊕, P), the message m is “critical” for the protection of S (in the context
given by S⊕ and P).
ccl⊕3 checks whether the given public variation is in S. In case of a ⊕-object,
it additionally checks the above introduced requirements in dealing with dec⊕⊕-
derivations.

– In the (standard) recursion case, m is checked exactly as in ccl1 if m is not a ⊕-
object. Otherwise, ccl3 simply checks whether a basic ⊕-part of m is critical.

• The auxiliary function ccl⊕3 is defined by

m ∈ ccl⊕3 (S,S⊕, P)⇔
(m ∈ S ∨
(∃m0,m1 : obj⊕(m,m0,m1) ∧m0 ∈ S ∧m0 /∈ S⊕) ∨
(∃b,mb : obj⊕(m,b,mb) ∧ ¬isObj⊕(b) ∧ b ∈ S⊕ ∧m /∈ P ∧

(∀u,mu : obj⊕(mb,u,mu)⇒⊕(b,u) /∈ P)) ∨
(∃u,mu : obj⊕(m,u,mu) ∧ u ∈ P ∧mu ∈ ccl⊕3 (S,S⊕, P))).

The definition of ccl⊕3 includes three base cases and one recursive case:

– Case 1: m ∈ S corresponds to the simple base case.

– Case 2: m has a ⊕-part m0 from S \ S⊕, which may not occur as (implicit) ⊕-part
of a public message part derivable from a regular message.

– Case 3: m has a basic ⊕-part b from S⊕, m is not in P and the complementary
⊕-part mb does not have any ⊕-part u such that ⊕(b,u) ∈ P holds.

– Case 4: m has two complementary ⊕-parts u and mu such that u ∈ P and (recur-
sively) mu ∈ ccl⊕3 (S,S⊕, P) hold.

The recursion in case 4 is wrt. “non-critical” ⊕-parts of m, which belong to P.

6.5.2.3 Correctness of ccl3 as Basic Check-Function

In this section, we prove that ccl3 can be used as basic check-function with sets S of selected
secrets and with sets S⊕, P about the context of merging derivations. The correct use of ccl3
relies on the following additional conditions on S,S⊕ and P, as introduced above.

• First, condition ℜ1 of ccl1 is adapted to permit the occurrence of ⊕-objects in S. Ac-
cordingly, the “ f -part inclusion” principle in ℜ1 applies also to ⊕-objects.

• ℜ2 consists of the following conditions about S, S⊕ and P to enforce a consistent
context for checking ⊕-objects:

1. p ∈ P⇒ (p /∈ S⊕ ∧⊖(p) ∈ P ∧ (obj⊕(p, s0, s1)⇒ s0, s1 ∈ S⊕))

2. (obj⊕(p1,u,v) ∧ obj⊕(p2,u,w) ∧ v ̸= w ∧ p1, p2 ∈ P)⇒
(⊕(v,⊖(w)) ∈ P ∨ (∃p3, p4 ∈ P : obj⊕(⊕(v,⊖(w)), p3, p4)))

3. (s ∈ S \ S⊕ ∧ isObj⊕(s))⇒ (obj⊕(s,u,v)⇒ u,v /∈ S⊕)

Parts 1 and 3 exclude that ⊕-parts of ⊕-objects in S \ S⊕ occur as ⊕-parts of elements
in P. They also ensure that P and S are disjoint. Part 2 ensures that P is closed under
merging, in the above introduced sense.

122 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

• Protection violation by trs∗⊕-derivations as keyed trans-operations is excluded by a
corresponding additional condition ℜ3, which ensures for instance in presence of
⊕(∗(ci, g1),⊖(g2)) in S that either ci or ⊕(g1,⊖(∗(inv(ci), g2))) must be in S.

• Protection violation by syn∗⊕-derivations is excluded by a corresponding additional
condition ℜ4, which ensures for instance in presence of ⊕(∗(ci, g1),⊖(∗(ci, g2))) in S
that ci or ⊕(g1,⊖(g2)) must be in S.

TheoremVSE 61 (Correctness of ccl3):
Let ik, S, S⊕, and P be finite message sets, where the sets S, S⊕, and P fulfill the properties
ℜ1–ℜ4 and ℜP. Then we have

ik ∩ ccl3(S,S⊕, P) = ∅⇒ DY(ik) ∩ ccl3(S,S⊕, P) = ∅.

Proof: The proof is similar to that of theorem 46 in Sec. 6.2.4. In the step case, we consider
the possible f -s (in the TC-AMP algebra) applied to derive f (m0, . . . ,mn−1) in ccl3(S,S⊕, P)
from m0, . . . ,mn−1 in DYl(ik,n). Recall that the proof goal consists in providing some mi for
0 ≤ i < n such that mi ∈ ccl3(S,S⊕, P) holds and allows us to conclude with the induction
hypothesis.

• The cases “ f = h1”, “ f = h2”, “ f = pair”, “ f = f st”, “ f = snd” and “ f = inv” are han-
dled like in the proof of theorem 46 in Sec. 6.3.4, based on the additional conditions
on S and on the ccl1-similar part in the definition of ccl3.

• In case “ f = ⊖”, the proof task consists in showing that m0 ∈ ccl3(S,S⊕, P) follows
from ⊖(m0) ∈ ccl3(S,S⊕, P). The cases where m0 is not a ⊕-object is handled like in
the proof of theorem 46 in Sec. 6.3.4.

The complementary case, where m0 is a ⊕-object, is trivial: Since ⊖(m0) is a ⊕-object,
⊖(m0) ∈ ccl3(S,S⊕, P) yields two cases:

1. There is a public variation m of⊖(m0) (relative to S) such that m∈ ccl⊕3 (S,S⊕, P):
m must be also a public variation of m0, which implies m0 ∈ ccl3(S,S⊕, P).

2. There is a basic ⊕-part m of ⊖(m0) such that m ∈ ccl3(S,S⊕, P): ⊖(m) is a
basic ⊕-part of m0, which permits to ensue ⊖(m) ∈ ccl3(S,S⊕, P) (and thus
m0 ∈ ccl3(S,S⊕, P)) from m ∈ ccl3(S,S⊕, P).

• In case “ f = ∗”, the proof task consists in showing that m1 ∈ ccl3(S,S⊕, P) follows
from ∗(m0,m1) ∈ ccl3(S,S⊕, P). The cases where m1 is not a ⊕-object is handled like
in the proof of theorem 46 in Sec. 6.3.4.

The complementary case, where m1 is a ⊕-object, is trivial: Since ∗(m0,m1) is a ⊕-
object, m0 /∈ ccl3(S,S⊕, P) and ∗(m0,m1) ∈ ccl3(S,S⊕, P) yield two cases:

1. There is a public variation m of ∗(m0,m1) (relative to S) with m ∈ ccl⊕3 (S,S⊕, P):
m0 /∈ ccl3(S,S⊕, P) implies that m0 /∈ S and that m must be also a public variation
of m1, too, which immediately implies m1 ∈ ccl3(S,S⊕, P).

2. There is a basic⊕-part m of ∗(m0,m1) such that m ∈ ccl3(S,S⊕, P): ∗(inv(m0),m)
is a basic ⊕-part of the message m1. Using m0, inv(m0) /∈ ccl3(S,S⊕, P), we
deduce ∗(inv(m0),m) ∈ ccl3(S,S⊕, P) (and thus m1 ∈ ccl3(S,S⊕, P)) as a conse-
quence of m ∈ ccl3(S,S⊕, P).

• In case “ f = ⊕”, the proof task consists in showing that ⊕(m0,m1) ∈ ccl3(S,S⊕, P)
implies m0 ∈ ccl3(S,S⊕, P) ∨ m1 ∈ ccl3(S,S⊕, P). According to the definition of ccl3,
we distinguish two cases:

6.5. DEALING WITH DERIVATIONS BY MERGING 123

1. In the recursion case where ⊕(m0,m1) ∈ ccl3(S,S⊕, P) implies that some basic
⊕-part m of ⊕(m0,m1) satisfies m ∈ ccl3(S,S⊕, P), the same m must be (equal or)
a basic ⊕-part of m0 (respectively m1). This immediately allows us to conclude
with m0 ∈ ccl3(S,S⊕, P) (respectively m1 ∈ ccl3(S,S⊕, P)).

2. A public variation of ⊕(m0,m1) is in ccl⊕3 (S,S⊕, P): According to the notion of
public variation, if m′ is a public variation of⊕(m0,m1) then there must be public
variations m′0 and m′1 of m0 and respectively m1 such that m′ = ⊕(m′0,m′1). This
allows us to handle this case with the help of lemma 63, in Sec. 6.5.2.3.2. 2

6.5.2.3.1 Lemma for⊕-object Case: The lemma described in this section is central in the
proof of lemma 63, applied for case “ f = ⊕” in the proof of theorem 61.

LemmaVSE 62 (ccl⊕3 ; TC-AMP ; ⊕-object case):
Let m0 and m1 be arbitrary messages, and let S, S⊕ and P be finite sets of messages that
fulfill ℜ1–ℜ4 and ℜP. Then we have

(⊕(m0,m1) ∈ ccl⊕3 (S,S⊕, P) ∧ obj⊕(⊕(m0,m1),m0,m1))

⇒ (m0 ∈ ccl⊕3 (S,S⊕, P) ∨m1 ∈ ccl⊕3 (S,S⊕, P)).

Proof: The proof of this lemma is by induction on | ⊕ (m0,m1)|⊕, i.e. on the ⊕-structure
of ⊕(m0,m1).

Base Case: Using the definition of ccl⊕3 , the assumption ⊕(m0,m1) ∈ ccl⊕3 (S,S⊕, P)
yields four cases. Cases 1–3 are handled according to the same principles as in the Step
Case (see below). Case 4 is closed by refutation, because it implies that⊕(m0,m1) possesses
at least three basic ⊕-parts.

Step Case: According to the definition of ccl⊕3 ,⊕(m0,m1) ∈ ccl⊕3 (S,S⊕, P) yields to the
following cases:

1. (Case 1), ⊕(m0,m1) ∈ S: According to ℜ1, we obtain m0 ∈ S or m1 ∈ S, which means
that m0 or m1 is in ccl⊕3 (S,S⊕, P), as required.

2. (Case 2), ⊕(m0,m1) possesses a ⊕-part m2 in S \ S⊕: If m2 = m0 or m2 = m1, m2 ∈ S
permits to conclude as in (1). Otherwise, conditions ℜ1 and ℜ2 allow us to obtain a
⊕-part m3 (of m2 and) of m0 or m1 and to conclude by case 2 in the definition of ccl⊕3 .

3. (Case 3), ⊕(m0,m1) possesses a basic ⊕-part b in S⊕, ⊕(m0,m1) is not in P and the
complementary ⊕-part mb of ⊕(m0,m1) does not possess any ⊕-part u satisfying
⊕(b,u) ∈ P: If b = m0 or b = m1, b ∈ S⊕ and S⊕ ⊆ S permit to conclude as in (1).
Otherwise, b must be a basic ⊕-part of m0 (or m1), which may not be in P and whose
complementary ⊕-part may not possess any ⊕-part u satisfying ⊕(b,u) ∈ P. This
permit to conclude by case 3 in the definition of ccl⊕3 .

4. (Case 4), ⊕(m0,m1) possesses u,mu as complementary ⊕-parts satisfying u ∈ P and
mu ∈ ccl⊕3 (S,S⊕, P): W.l.o.g., we assume that (a ⊕-part of) u matches or occurs in m0.
This provides us with the following case distinction.

(a) m0 = u and m1 = mu: This immediately yields m1 ∈ ccl⊕3 (S,S⊕, P).
(b) m0 = ⊕(u,mu0) and mu = ⊕(mu0,m1): Applying the induction hypothesis to

mu ∈ ccl⊕3 (S,S⊕, P) permits to obtain mu0 ∈ ccl⊕3 (S,S⊕, P) or m1 ∈ ccl⊕3 (S,S⊕, P).
The latter case corresponds to our proof goal. In the former case, u ∈ P permits
to apply case 4 in the definition of ccl⊕3 and to deduce that ⊕(u,mu0), i.e. m0, is
in ccl⊕3 (S,S⊕, P).

124 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

(c) m0 = u0 and m1 = ⊕(u1,mu): ℜ2 ensures that m0 ∈ S⊕ ⊆ S, which permits to
conclude as in (1).

(d) m0 = ⊕(u0,mu0), m1 = ⊕(u1,mu1) and mu1 ̸= ∞ (to exclude a pendant to (c)):
This case is shown by contradiction, assuming that m0 and m1 are not in
ccl⊕3 (S,S⊕, P). According to ℜ2, we have u0 ∈ S⊕, so that m0 /∈ ccl⊕3 (S,S⊕, P)
implies ⊕(u0,mu0) ∈ P or ⊕(u0,v0) ∈ P and mv0 /∈ ccl⊕3 (S,S⊕, P) for mu0 =

⊕(v0,mv0). Similarly, m1 /∈ ccl⊕3 (S,S⊕, P) implies⊕(u1,mu1) ∈ P or⊕(u1,v1) ∈ P
and mv1 /∈ ccl⊕3 (S,S⊕, P) for mu1 =⊕(v1,mv1). This yields (mainly) to the follow-
ing three cases:

(A) ⊕(u0,mu0) ∈ P and ⊕(u1,mu1) ∈ P: According to the additional condition
ℜ2, we deduce ⊕(⊖(u1),mu0) ∈ P or ⊕(⊖(u11),mu01),⊕(⊖(u12),mu02) ∈ P
from ⊕(u0,mu0),⊕(u0,u1) ∈ P. In the latter case, the protocol-specific con-
dition ℜP provides us (mainly) with the following possible structures on the
involved ⊕-objects:

i. u0 = b1,u1 = ⊕(b2,b3),mu0 = ⊕(b4,⊕(b5,b6)) for basic ⊕-parts b1–b6
such that ⊕(b2,⊖(b4)),⊕(b3,⊕(⊖(b5),⊖(b6))) belongs to P: This per-
mits to obtain ⊕(⊕(b2,b3),mu1) ∈ P from ⊕(u1,mu1) ∈ P and to get
mu = ⊕(⊕(b4,⊕(b5,b6)),mu1) from mu = ⊕(mu0,mu1).
First, we use that ⊕(⊕(b2,b3),mu1),⊕(b2,⊖(b4)) are in P to deduce
⊕(⊕(b4,b3),mu1) ∈ P by ℜ2 and ℜP.
Then, we use ⊕(⊕(b4,b3),mu1),⊕(b3,⊕(⊖(b5),⊖(b6))) ∈ P combined
with ℜ2 and ℜP to obtain three possible cases:
– P includes ⊕(b4,b5) and ⊕(b6,mu1).
– mu1 = ⊕(b7,b8) for basic ⊕-parts b7,b8 and P includes ⊕(b7,b5) and
⊕(b6,⊕(b4,b8)).

– P includes ⊕(⊕(b4,mu1),⊕(b5,b6)).
All three cases permit us to show mu /∈ ccl⊕3 (S,S⊕, P) by the definition
of ccl⊕3 . Hence, we conclude by refuting mu ∈ ccl⊕3 (S,S⊕, P).

ii. u0 = b1,mu0 = ⊕(b2,b3),u1 = ⊕(b4,⊕(b5,b6)) for basic ⊕-parts b1–b6
with ⊕(b2,⊖(b4)),⊕(b3,⊕(⊖(b5),⊖(b6))) ∈ P: This permits to obtain
⊕(⊕(b4,⊕(b5,b6)),mu1) ∈ P from ⊕(u1,mu1) ∈ P and to get mu =
⊕(⊕(b2,b3),mu1) from mu = ⊕(mu0,mu1).
First, we use that ⊕(⊕(b4,⊕(b5,b6)),mu1),⊕(b2,⊖(b4)) are in P to de-
duce ⊕(⊕(b2,⊕(b5,b6)),mu1) ∈ P by ℜ2 and ℜP.
Then, we use ⊕(⊕(b2,⊕(b5,b6)),mu1),⊕(b3,⊕(⊖(b5),⊖(b6))) ∈ P com-
bined with ℜ2 and ℜP to obtain ⊕(⊕(b2,b3),mu1) ∈ P, i.e. mu ∈ P. This
allows us to show mu /∈ ccl⊕3 (S,S⊕, P) by the definition of ccl⊕3 . Hence,
we conclude by refuting mu ∈ ccl⊕3 (S,S⊕, P).

iii. u0 = ⊕(b1,b2),u1 = ⊕(b3,b4),mu0 = ⊕(b5,b6) for basic ⊕-parts b1–b6
such that ⊕(b3,⊖(b5)),⊕(b4,⊖(b6)) are in the set P: This permits to
obtain ⊕(⊕(b3,b4),mu1) ∈ P from ⊕(u1,mu1) ∈ P and to get mu =
⊕(⊕(b5,b6),mu1) from mu = ⊕(mu0,mu1).
First, we use that ⊕(⊕(b3,b4),mu1),⊕(b3,⊖(b5)) are in the set P to de-
duce ⊕(⊕(b5,b4),mu1) ∈ P by ℜ2 and ℜP.
Then, we use ⊕(⊕(b5,b4),mu1),⊕(b4,⊖(b6)) ∈ P combined with ℜ2 and
ℜP to obtain ⊕(⊕(b5,b6),mu1) ∈ P, i.e. mu ∈ P. This allows us to show
mu /∈ ccl⊕3 (S,S⊕, P) by the definition of ccl⊕3 . Hence, we conclude by
refuting mu ∈ ccl⊕3 (S,S⊕, P).

In case⊕(⊖(u1),mu0) is in P, we use⊕(u1,mu1) ∈ P and condition ℜ2 to ob-
tain ⊕(mu0,mu1) ∈ P or ⊕(mu01,mu11),⊕(mu02,mu12) ∈ P for mu01,mu02 ⊕-
parts of mu0 and for mu11,mu12 ⊕-parts of mu1. In both cases, the definition of

6.5. DEALING WITH DERIVATIONS BY MERGING 125

ccl⊕3 permits us to obtain⊕(mu0,mu1) /∈ ccl⊕3 (S,S⊕, P) for mu =⊕(mu0,mu1).
Hence, we conclude by refuting mu ∈ ccl⊕3 (S,S⊕, P).

(B) ⊕(u0,mu0) ∈ P, ⊕(u1,v1) ∈ P and mv1 /∈ ccl⊕3 (S,S⊕, P) for mu1 = ⊕(v1,mv1):
According to the additional condition ℜ2, we deduce ⊕(⊖(u1),mu0) ∈ P or
⊕(⊖(u11),mu01),⊕(⊖(u12),mu02) ∈ P from ⊕(u0,mu0),⊕(u0,u1) ∈ P.
First, we proceed as in (A) using v1 for mu1 to get ⊕(mu0,v1) /∈ ccl⊕3 (S,S⊕, P).
Then, we use mu =⊕(⊕(mu0,v1),mv1) together with mu ∈ ccl⊕3 (S,S⊕, P) to apply
the induction hypothesis and obtain that ⊕(mu0,v1) or mv1 is in ccl⊕3 (S,S⊕, P).
This allows us to conclude by refuting ⊕(mu0,v1),mv1 /∈ ccl⊕3 (S,S⊕, P).

(C) ⊕(u0,v0) ∈ P, mv0 /∈ ccl⊕3 (S,S⊕, P) for mu0 = ⊕(v0,mv0), ⊕(u1,v1) ∈ P and such
that mv1 /∈ ccl⊕3 (S,S⊕, P) for mu1 = ⊕(v1,mv1):
According to the additional condition ℜ2, we deduce ⊕(⊖(u1),v0) ∈ P or
⊕(⊖(u11),v01),⊕(⊖(u12),v02) ∈ P from ⊕(u0,v0),⊕(u0,u1) ∈ P.
First, we proceed as in (A) using v0 and v1 instead of mu0 and respectively mu1 to
obtain ⊕(v0,v1) /∈ ccl⊕3 (S,S⊕, P). Then, we use mu = ⊕(⊕(v0,v1),⊕(mv0,mv1))

together with mu ∈ ccl⊕3 (S,S⊕, P) to apply the induction hypothesis and ob-
tain that ⊕(v0,v1) or ⊕(mv0,mv1) is in ccl⊕3 (S,S⊕, P). This allows us to de-
duce ⊕(mv0,mv1) ∈ ccl⊕3 (S,S⊕, P) using ⊕(v0,v1) /∈ ccl⊕3 (S,S⊕, P). Finally, we
again apply the induction hypothesis to ⊕(mv0,mv1) ∈ ccl⊕3 (S,S⊕, P), in order
to get that mv0 or mv1 is in ccl⊕3 (S,S⊕, P). This permits to conclude by refuting
mv0,mv1 /∈ ccl⊕3 (S,S⊕, P). 2

6.5.2.3.2 Lemma for ⊕-case: The lemma described in this section allows us to handle
directly case “ f = ⊕” in the proof of theorem 61.

LemmaVSE 63 (ccl3 ; TC-AMP ; ⊕-case):
Let m0 and m1 be arbitrary messages, and let S, S⊕ and P be finite sets of messages that
fulfill ℜ1–ℜ4 and ℜP. Then we have

⊕(m0,m1) ∈ ccl⊕3 (S,S⊕, P)⇒ (m0 ∈ ccl⊕3 (S,S⊕, P) ∨m1 ∈ ccl⊕3 (S,S⊕, P)).

Proof: The proof is by induction on the ⊕-structure of m0 and m1, i.e. on |m0|⊕ + |m1|⊕.

Base Case: Neither m0 nor m1 is a ⊕-object. Here, almost all cases resulting by the
axiom about the operations of⊕(m0,m1) are closed by refutation (e.g.,⊕(m0,m1) = ∞ is re-
futed by ∞ /∈ ccl⊕3 (S,S⊕, P)). Only case (11), where obj⊕(⊕(m0,m1),m0,m1) holds, is shown
by lemma 62.

Step Case: m0 or m1 is a ⊕-object. After the application of the axiom about the opera-
tions of ⊕(m0,m1), we obtain certain cases ((1)–(4)) handled by refutation, case (11), where
obj⊕(⊕(m0,m1),m0,m1) holds, handled by lemma 62, and six more cases ((5)–(10)).

First, the proof for case (5), which is also replayed for cases (6)–(8), is trivial: In case
(5), where obj⊕(m1,⊖(b),mb), obj⊖(⊖(b),m0) and ⊕(m0,m1) = mb hold, we assume that
m0 /∈ ccl⊕3 (S,S⊕, P) holds and want to show m1 ∈ ccl⊕3 (S,S⊕, P): Since m0, i.e. b, is a basic
⊕-part, b /∈ ccl⊕3 (S,S⊕, P) means according to the definition of ccl⊕3 that b and ⊖(b) are not
in S. This permits to use mb ∈ ccl⊕3 (S,S⊕, P), to transfer all cases obtained by the definition
of ccl⊕3 to ⊕(⊖(b),mb), i.e. m1, and thus to show m1 ∈ ccl⊕3 (S,S⊕, P).

126 CHAPTER 6. INDUCTIVE PROOF TECHNIQUE

Next, we describe the proof for case (9), which is also replayed for case (10). In case (9),
where obj⊕(m0,b,mb0), obj⊕(m1,⊖(b),mb1), obj⊖(⊖(b),b) and ⊕(m0,m1) = ⊕(mb0,mb1)
hold, ⊕(m0,m1) ∈ ccl⊕3 (S,S⊕, P) implies ⊕(mb0,mb1) ∈ ccl⊕3 (S,S⊕, P). We proceed by a
case distinction:

• b /∈ ccl⊕3 (S,S⊕, P): We have as well ⊖(b) /∈ ccl⊕3 (S,S⊕, P). Applying the induction
hypothesis to ⊕(mb0,mb1) ∈ ccl⊕3 (S,S⊕, P), we obtain mb0 ∈ ccl⊕3 (S,S⊕, P) or the con-
sequence mb1 ∈ ccl⊕3 (S,S⊕, P). Replaying the proof of case (5) above, we transfer the
former case to m0 ∈ ccl⊕3 (S,S⊕, P) and the latter case to m1 ∈ ccl⊕3 (S,S⊕, P).

• b ∈ ccl⊕3 (S,S⊕, P): Only case 1 in the definition of ccl⊕3 applies, since b is not a ⊕-
object. If b /∈ S⊕, we trivially show m0 ∈ ccl⊕3 (S,S⊕, P) by case 2 in the definition of
ccl⊕3 . Otherwise, we have b ∈ S⊕ and we handle this case by refuting the assumption
m0,m1 /∈ ccl⊕3 (S,S⊕, P) as described below.

Since b ∈ S⊕, having m0, i.e. ⊕(b,mb0), not in ccl⊕3 (S,S⊕, P) implies ⊕(b,mb0) ∈ P or
⊕(b,u0) ∈ P and mu0 /∈ ccl⊕3 (S,S⊕, P) for mb0 = ⊕(u0,mu0). Similarly, having m1, i.e.
⊕(⊖(b),mb1), not in ccl⊕3 (S,S⊕, P) implies ⊕(⊖(b),mb1) ∈ P or ⊕(⊖(b),u1) ∈ P and
mu1 /∈ ccl⊕3 (S,S⊕, P) for mb1 = ⊕(u1,mu1). This yields (mainly) to the following three
cases:

1. ⊕(b,mb0) ∈ P and ⊕(⊖(b),mb1) ∈ P: According to ℜ2, this permits to obtain
⊕(mb0,mb1) ∈ P or⊕(mb01,mb11),⊕(mb02,mb12) ∈ P for⊕-parts mb01,mb02 of mb0
and for ⊕-parts mb11,mb12 of mb1. In both cases, the definition of ccl⊕3 allows us
to obtain ⊕(mb0,mb1) /∈ ccl⊕3 (S,S⊕, P), which permits to conclude by refuting
⊕(mb0,mb1) ∈ ccl⊕3 (S,S⊕, P).

2. ⊕(b,mb0) ∈ P, ⊕(⊖(b),u1) ∈ P and mu1 /∈ ccl⊕3 (S,S⊕, P) for mb1 = ⊕(u1,mu1):
First, we proceed as in (1) using u1 for mb1 to deduce⊕(mb0,u1) /∈ ccl⊕3 (S,S⊕, P).
Then, we use⊕(mb0,mb1) =⊕(⊕(mb0,u1),mu1) and⊕(mb0,mb1)∈ ccl⊕3 (S,S⊕, P)
to apply the induction hypothesis and obtain that the message⊕(mb0,u1) or mu1
is in ccl⊕3 (S,S⊕, P). Finally, this permits us to deduce mu1 ∈ ccl⊕3 (S,S⊕, P) from
⊕(mb0,u1) /∈ ccl⊕3 (S,S⊕, P) and then to conclude by refuting mu1 /∈ ccl⊕3 (S,S⊕, P).

3. ⊕(b,u0) ∈ P, mu0 /∈ ccl⊕3 (S,S⊕, P) for mb0 = ⊕(u0,mu0), ⊕(⊖(b),u1) ∈ P and
mu1 /∈ ccl⊕3 (S,S⊕, P) for mb1 = ⊕(u1,mu1):
First, we proceed as in case (1) using u0 and u1 for mb0 and respectively
mb1 to deduce that the message ⊕(u0,u1) is not in ccl⊕3 (S,S⊕, P). Then, we
use ⊕(mb0,mb1) = ⊕(⊕(u0,u1),⊕(mu0,mu1)) and ⊕(mb0,mb1) ∈ ccl⊕3 (S,S⊕, P)
to apply the induction hypothesis and deduce that ⊕(u0,u1) or ⊕(mu0,mu1)
is in ccl⊕3 (S,S⊕, P). This permits to obtain ⊕(mu0,mu1) ∈ ccl⊕3 (S,S⊕, P) from
⊕(u0,u1) /∈ ccl⊕3 (S,S⊕, P). Finally, we again apply the induction hypothesis to
⊕(mu0,mu1) ∈ ccl⊕3 (S,S⊕, P) and get that mu0 or mu1 is in ccl⊕3 (S,S⊕, P), which
allows us to conclude by refuting mu0,mu1 /∈ ccl⊕3 (S,S⊕, P). 2

Chapter 7

Automated Inductive Verification

In this chapter, we describe the VSE framework for the inductive verification of crypto-
graphic protocols that are based on message algebras. It includes specification support in
form of re-usable (abstract data type (ADT)) theories and proof construction support in
form of heuristics.

7.1 Protocol Formalization

We formalize protocols in the specification language of VSE (VSE-SL) using abstract data
types (ADTs), where the corresponding axioms and properties are expressed in first order
logic with equality. The VSE tool provides us with means to structure the specification
of ADTs into a development graph of VSE-theories. In particular, “satisfies”-links can be
established between the axioms and the theorems of any ADT yielding two adjoining VSE-
theories. The theorems can thus be proven locally, i.e. relative to the axioms and to the
properties from the imported VSE-theories, if any. These structuring means are important
as they permit us to separate protocol formalizations into

1. common VSE-theories,

2. algebra-specific VSE-theories,

3. and protocol-specific VSE-theories.

The common VSE-theories belong to our implementation of the original inductive
method, [30], and can be re-used independent from the considered message algebra. The
algebra-specific VSE-theories include the axioms about the message structures in Chap. 5
and the corresponding formal notions of the proof techniques in Chap. 6, 10 and 11. They
can be re-used for protocols that are based on the same message algebra.

In this section, we give an overview on the content of these VSE-theories, focusing more
on the first category. Instead of listing the ADTs, we describe the corresponding mathemat-
ical objects.

7.1.1 Agents and Messages

We start with the basic constituents of the events in protocol traces: agents (participants)
and messages. The ADTs for agent identifiers and for messages are declared in the VSE-
theories bagent and tmsg, respectively, which are shown in Fig. 7.1. While the former is
common, the latter is algebra-specific, as it contains the axioms about the message struc-
tures according to the considered equations.

The ADT in bagent provides us with the set of agent identifiers and the ADT in tmsg

fixes the set Mes0(Σ, At) of message terms (see Def. (11)).

127

128 CHAPTER 7. AUTOMATED INDUCTIVE VERIFICATION

Figure 7.1: An excerpt from a development graph enclosing the VSE-theories bagent, tmsg
and tmsglist

DefinitionVSE 64 (Agents, Messages):

1. The set Ags of all agent identifiers is the disjoint union of

(a) {spy}, and
(b) {agt(n) | n ∈N}.

2. We associate every agent identifier with an atomic message ag(i) according to the bijec-
tive relation

{(ag(0), spy)} ∪ {(ag(i + 1), agt(i)) | i ∈N}.
The ag(i)-s are called agent names. They are the counterparts of agent identifiers in
messages.

3. The set {nc(i) | i ∈N} contains the nonces.

4. The set Mes0(Σ, At) of message terms is defined as in Def. 11 relative to a signature Σ
and the set of atomic messages

At = {ag(i) | i ∈N} ⊎ {nc(i) | i ∈N} ⊎ At,

where At contains the atomic messages that differ from nonces, agent names and
from all f ∈ Σ⟨0⟩.

7.1. PROTOCOL FORMALIZATION 129

The distinction between agent identifiers and names is due to the structure of events, as
described in Sec. 7.1.2.

We determine the signature Σ of the function symbols for the cryptographic primitives,
according to the message algebra that the verified protocol is based on. Similarly, we de-
termine the kinds of atomic messages that are used in addition to nonces and agent names
according to the protocol: The set At is supposed to contain infinitely, but countably many
atomic messages for each additional kind.

Except of the function symbols (in Σ) and their associated equations, which constitute in
fact the considered message algebra, the set At of the atomic messages is not really algebra-
specific. The axioms about the message structures are practically the same, independent
from the different kinds of the elements in At. So, it is straightforward to re-use them in the
verification of a new protocol if it makes use of other kinds of atomic messages, provided it
is based on the same cryptographic primitives (in Σ) with the same algebraic equations. For
instance, the axioms of the PACE algebra can be re-used for the verification of any protocol
where no other equations than those for the DH exchange and for the enc/decryption are
necessary.

7.1.2 Events and Traces

Fig. 7.2 shows an excerpt with many common VSE-theories of a development graph. These
include bprotocolevent and bprotocoltrace, where the ADTs for events and traces are
declared, respectively. The latter is extended in (a common VSE-theory) tprotocoltrace
with an append function on traces and with a predicate to express the membership of
events. We will use the mathematical notations “#” and “∈” for the append function and
the membership predicate, respectively.

The ADTs in bprotocolevent and bprotocoltrace provide us with the sets of events
and traces, respectively.

DefinitionVSE 65 (Events, Traces):

1. The set Evs of all protocol events is the disjoint union of

(a) {says(ag, ag′,m) | ag, ag′ ∈ Ags and m ∈ Mes0(Σ, At)},
(b) {gets(ag,m) | ag ∈ Ags and m ∈ Mes0(Σ, At)},
(c) {note(ag,m) | ag ∈ Ags and m ∈ Mes0(Σ, At)}, and
(d) {send(ag, ag′,m0,m1) | ag, ag′ ∈ Ags and m0,m1 ∈ Mes0(Σ, At)}.

2. The set Trs of all protocol traces is defined inductively by

ϵ ∈ Trs
(ev ∈ Evs ∧ tr ∈ Trs)⇒ ev.tr ∈ Trs.

In addition to the standard events, i.e., says, gets and note for message sending, receiv-
ing and recording, respectively, we use send events to represent simultaneous says and note
events. That is, send(ag, ag′,m0,m1) means that ag has sent message m1 to ag′ and has
at the same time recorded message m0. Unlike the loose use of “note” and “says”, where
the recorded message m0 is not necessarily bound to the sent message m1, the use of “send”
binds both messages. This is helpful to model chronological order between different events,
such as m0 is received before sending m1. Examples are in Sec. 8.1.2 and 9.1.2.

We use ϵ and x.l to denote the empty list and a list l extended by an element x, re-
spectively. In lists ev.tr that represent protocol traces the events are listed in the opposite
chronological order. That is, ev is the last event in the trace ev.tr.

130 CHAPTER 7. AUTOMATED INDUCTIVE VERIFICATION

Figure 7.2: An excerpt from a development graph enclosing the VSE-theories tmsgmeta,
bprotocolevent, bprotocoltrace, tprotocoltrace, tindy and tenumdy

7.1.3 Observable Message Sets

The events in a given trace tr determine the messages involved agents and intruder may
observe from this trace. In case of note and send events, the observed messages by the
intruder depend on whether the involved agents are compromised.

We formalized the notions about the immediately observable message sets in the com-
mon VSE-theories tinitstate and ttraceinfo, which are shown in Fig. 7.3. The former
includes the following axioms on static corruption:

AxiomVSE 66 (Static Corruption):

1. bad ⊆ Ags is the set of compromised agents.

2. The intruder belongs to the set of compromised agents, i.e.

spy ∈ bad.

Using the bad set, we are able to incorporate the notion of static corruption in the defi-
nition of the immediately observable messages by the attacker.

7.1. PROTOCOL FORMALIZATION 131

DefinitionVSE 67 (Observable Messages):
The list obset(ag, tr) of (immediately) observable messages for an agent ag and a trace tr is

defined recursively by

obset(ag,ϵ) = ϵ

obset(ag, says(ag′, ag′′,m).tr) =
{

m.obset(ag, tr) : ag = ag′ or ag = spy
obset(ag, tr) : otherwise

obset(ag, gets(ag′,m).tr) =
{

m.obset(ag, tr) : ag = ag′ and ag ̸= spy
obset(ag, tr) : otherwise

obset(ag,note(ag′,m).tr) =
 m.obset(ag, tr) : ag = ag′ or

ag = spy and ag′ ∈ bad
obset(ag, tr) : otherwise

obset(ag,
send(ag′, ag′′,m,m′).tr) =

m.m′.obset(ag, tr) : ag = ag′ or

ag = spy and ag′ ∈ bad

m′.obset(ag, tr) : ag ̸= ag′, ag = spy
and ag′ ̸∈ bad

obset(ag, tr) : otherwise

This definition is contained in the VSE-theory ttraceinfo. obset(ag, tr) results in a
list that represents a finite set of messages. It models the local view of (the immediately
observable messages by) the agent ag on (from) the trace tr. In particular, it does not a
priori include the initial knowledge of ag; obset results in the empty list when the given
trace is empty. It is not possible to include the initial knowledge right from the beginning,
since this can be infinite, as discussed in Sec. 7.1.4. Instead of that, we will have note events
that model an access to initially known information before it is used in protocol messages.

We will use spies(tr) to abbreviate obset(spy, tr). Note that in case of a new gets event,
the list spies(tr) is not extended. It is expected that the received message was sent earlier
in a says or send event, and it is thus already observed by the intruder (see the generic
protocol rules in section 7.1.6).

Finally, we want to point out that the observed messages from a send event are equiva-
lent to those given by a note and a says event.

7.1.4 Initial Knowledge

Protocols are deployed in application scenarios where the participants are assumed to pos-
sess (or to access) certain kinds of initial knowledge before starting any run. This includes
long-term keys and parameters required for use with certain cryptographic primitives like
static generators in DH exchange. The configuration of the initial knowledge determines
the possible roles and communication partners of the participants. Unlike in the bounded
session models where the initial knowledge is given by finite sets, participants are allowed
in the trace models to start unlimited number of sessions and thus possess (or access) as
much initial knowledge items as required. Instead of finite sets, we need for this reason to
associate the participants with their initial knowledge using the predicate initHas(ag,m).
It is declared in the common VSE-theory tinitstate, shown in Fig. 7.3. It allows us to
express that the knowledge items in m are initially known by agents ag.

As it is introduced in Sec 7.1.3, we do not include the entire initial knowledge in the
list of the observable messages. Instead of that, every participant is free to extend her ob-
servable messages with any message part that she initially has. This is carried out through
a note event. Hence, we obtain two generic extension rules for protocol traces, which are
independent from the considered protocol.

132 CHAPTER 7. AUTOMATED INDUCTIVE VERIFICATION

Figure 7.3: An excerpt from a development graph enclosing the VSE-theories tinitstate,
tprotocoltrace, ttraceinfo, tprotocol, tused, ttrace thms, tindy thms and tccl

DefinitionVSE 68 (Access):

Accessreg(ev)⇔ (∃ag,m : initHas(ag,m) ∧ ev = note(ag,m))

Accessbad(ev)⇔ (∃ag,m : ag ∈ bad ∧ initHas(ag,m) ∧ ev = note(spy,m))

This definition is included in the common VSE-theory tprotocol, shown in Fig. 7.3.
Accessreg(ev) and Accessbad(ev) will be used as two additional admissible alternatives for
extending any given protocol trace with an event ev (see Sec. 7.1.6). They represent the
access to the initial knowledge: Every participant may access her own initial knowledge;
The intruder may access additionally the initial knowledge of compromised agents.

Note that the initial knowledge item m in Def. 68 must be further specified according to
the protocol. Simple axioms are used (as part of the protocol model) to fix the content of the
initial knowledge and the corresponding assumptions. Examples are in Sec. 8.1.1 and 9.1.1.

7.1.5 Freshness

The generation of a new nonce (or of another kind of atomic messages) is expressed with
the help of a predicate used, as defined below. A message is used in a trace, iff it occurs
in the initial knowledge of any agent or in some event message of this trace. The algebra-
specific part of the definition is expressed through uses, whose definition belongs to the
algebra-specific VSE-theory tmsgmeta, shown in Fig. 7.2.

7.1. PROTOCOL FORMALIZATION 133

DefinitionVSE 69 (used):
For all messages m and all traces tr we have

used(m, tr)⇔ ((∃ag,m′ : initHas(ag,m′) ∧ uses(m′,m))

∨ (∃ag,m′ : (gets(ag,m′) ∈ tr ∨ note(ag,m′) ∈ tr) ∧ uses(m′,m))

∨ (∃ag, ag′,m′ : says(ag, ag′,m′) ∈ tr ∧ uses(m′,m))

∨ (∃ag, ag′,m′,m′′ : send(ag, ag′,m′,m′′) ∈ tr
∧ (uses(m′,m) ∨ uses(m′′,m)))),

where uses(m0,m1) means that m1 occurs in m0, as defined in Sec. 5.5.4.

This definition is included in the common VSE-theory tused, shown in Fig. 7.3.

7.1.6 Protocol Traces

In this section we describe the specification of the traces given by the possible runs of the
considered protocol. As a convention, we refer to this subset of Trs by the name P of the
protocol. Its definition is included in a VSE-theory named t P . This theory is imported
by a VSE-theory t P properties which we reserve for the protocol properties. Justifiably,
the latter is linked through “satisfies”-link to the former. Both VSE-theories are obviously
protocol-specific and their content is formalized using the available ADTs in tprotocol,
which we introduced in the previous sections. Fig. 7.4 shows all three VSE-theories in case
of the formalization of PACE.

Figure 7.4: An excerpt from the development graph in the verification of PACE, enclosing
the VSE-theories tprotocol, t pace and t pace properties

The set P is defined according to the following schema:

Definition SchemaVSE 70 (P):
The set P of protocol traces is defined by

134 CHAPTER 7. AUTOMATED INDUCTIVE VERIFICATION

ϵ ∈ P , and
ev.tr ∈ P ⇔
(tr ∈ P ∧ (Accessreg(ev) ∨ Accessbad(ev) ∨ P1(ev, tr) ∨ . . .

∨ Pn(ev, tr) ∨Oopsev(ev, tr) ∨ Getsev(ev, tr) ∨ Fakeev(ev, tr))).

The set P contains the empty trace ϵ. It contains inductively any extension of its ele-
ments tr with an admissible event ev. The predicates in the disjunction on the right-hand
side provide us with a complete case distinction on all admissible, alternative extensions.
Their definitions determine the structure of the corresponding events ev and express the
corresponding conditions about prior events from the extended trace tr and about the con-
stituents of ev.

In addition to Accessreg and Accessbad, we have two more generic cases: message receiv-
ing and fake steps. The corresponding definitions are included likewise in the common
VSE-theory tprotocol.

DefinitionVSE 71 (Getsev and Fakeev):

Getsev(ev, tr)⇔
(∃ag, ag′,m : (says(ag, ag′,m) ∈ tr ∨ (∃m′ : send(ag, ag′,m′,m) ∈ tr))

∧ ev = gets(ag′,m))

Fakeev(ev, tr)⇔
(∃ag,m : m ∈ DY(spies(tr)) ∧ ev = says(spy, ag,m))

A message m can be received by some participant, only if she is the intended receiver
(of m) in a prior says or send event. The attacker can send any message from her own
knowledge DY(spies(tr)) to any participant. Our definitions of “DY” and “DYl” in Def. 13
are replaced with equivalent definitions of (set) predicates in the VSE-theory tindy, which
is shown in Fig. 7.2. Only the corresponding predicate to “DYl” is algebra-specific, but its
definition can be adapted straightforwardly to any other set Op of the available function
symbols.

The definitions of the remaining cases in Def. 70 are protocol-specific, since they include
the conditions of the corresponding protocol steps according to the protocol rules. For
a protocol P with n steps, we have to provide the definition of n predicates P1, . . . ,Pn.
There is additionally the predicate Oopsev, which allows us to model dynamic corruption
where certain secrets are disclosed after being used in previous protocol runs or events. The
definition of Oopsev is expected to bind the (dynamically) disclosed secrets with (partial or
completed) prior protocol runs. Examples are in Sec. 8.1.2 and 9.1.2.

The VSE-theory t P includes not only the definitions of P , P1, . . . ,Pn, and Oopsev, but
also axioms about the available initial knowledge items and corresponding assumptions.
Examples are in Sec. 8.1.1 and 9.1.1.

7.1.7 Protocol Properties

As introduced in Sec. 7.1.6, we reserve the VSE-theory t P properties for the protocol
properties that we want to verify. In addition to confidentiality, authentication, and other
trace properties, which serve as (proof-)structuring lemmata, we are also interested in in-

7.1. PROTOCOL FORMALIZATION 135

distinguishability properties. But, we focus in this section on the trace properties. The latter
are discussed in part III of the thesis.

7.1.7.1 Confidentiality Properties

The confidentiality of a message ŝ means that this message does not belong to the intruder
knowledge. It is formalized according to the following schema:

(tr ∈ P ∧Φ(ŝ, tr))⇒ ŝ ̸∈ DY(spies(tr))

The premise Φ(ŝ, tr) puts ŝ into context with protocol runs. It determines the protocol steps
where ŝ or parts of ŝ are exchanged between the regular participants who are intended to
exclusively obtain ŝ. Achieving that ŝ is available during or at the end of the protocol run
only for the intended participants necessitates to protect (at least some of) the transmitted
message parts that are required for its derivation. As mentioned in Chap. 6, the confiden-
tiality proof is conducted according to the structure of ŝ and to the protection of its message
parts in regular protocol messages:

1. When ŝ and its protected substructures are not derivable by merging operations,
we investigate the additional selected secrets that are necessary to protect the confi-
dentiality against derivations by decrypt-type operations from regular protocol mes-
sages. If these additional secrets and their protected substructures are as well not
derivable by merging operations, we are able to provide sets S of selected secrets
satisfying ℜ1(S) for a confidentiality proof by the canonical basic check-function ccl1
(cp. the use of ccl1 in Sec. 6.2 and 6.3). Here, the confidentiality of ŝ is proven by
applying a corresponding lemma, which is of the form

(tr ∈ P ∧Φ(ŝ, tr))⇒ (∃S : ℜ1(S) ∧ spies(tr) ∩ ccl1(S) = ∅),

where ℜ1(S) corresponds to the additional (closure) conditions on S required to em-
ploy the correctness theorem of the used ccl1 (cp. theorem 46 for ccl1 in PACE).

2. For a composed message ŝ that can be derived out of protocol messages only by com-
position, we reduce the confidentiality of ŝ to the confidentiality of message parts
required for its composition. This is done using the canonical check-function ccl2 and
the generic reduction theorem appropriate to the type of ŝ (see Sec. 6.4), together with
a corresponding lemma of the form:

(tr ∈ P ∧Φ(ŝ, tr) ∧Ψ(ŝ, DY(spies(tr))))⇒ spies(tr) ∩ ccl2(ŝ) = ∅

Ψ(ŝ, DY(spies(tr))) expresses that for each alternative to compose ŝ one of the re-
quired message parts is not available in DY(spies(tr)). It is obtained, as described
in Sec. 6.4.1, by a straightforward transformation of the additional condition in the
generic reduction theorem appropriate to the type of ŝ.

If none of the resulting substructures belongs to the basic confidential message parts,
which are already (or can be) shown according to (1), the proof task consists in select-
ing a message part s′ to handle by reduction (if possible) or as described below.

In certain (confidentiality) properties, the handling of ŝ is by induction on the top-
structure of ŝ. Here, the reduction theorem yields in the step case some s′ permitting
to conclude by the induction hypothesis. In the base case, the substructures resulting
by the reduction theorem need to be treated as described above, i.e. by identifying a
basic confidential message part or by selecting some s′ to be handled again by reduc-
tion or as described below.

136 CHAPTER 7. AUTOMATED INDUCTIVE VERIFICATION

3. The mentioned reduction technique in (2) is not applicable when ŝ could be derived
by a merging operation. In this case, we try to prove the confidentiality of ŝ with the
help of a protocol-specific invariant that provides a complete case distinction on all
derivable messages m̂ having the same type like ŝ (see Sec. 6.5.1). In particular, this
invariant links m̂ to the public regular message parts and identifies their confidential
substructures. If all these basic confidential substructures can be established as de-
scribed in (1), the invariant may make use of these properties. Otherwise, we have
basic confidential message parts derivable by merging, which necessitates the use of
another basic check-function for their proof (see below) before using these results as
part of our invariant.

Having an appropriate invariant, the confidentiality of ŝ is proved by showing that
none of the derivable m̂ matches ŝ (cp. the example in Sec. 6.5.1.3).

4. If the confidentiality proof of ŝ necessitates to use selected secrets that are derivable
by merging, we need a new basic check-function permitting such selected secrets.
Here, the use of ccl3 for our example in Sec. 6.5.2 provides good guidance, to define
an analog basic check-function and to prove its correctness in a similar way.

7.1.7.2 Authentication Properties

The authentication by some protocol participant ag is principally formalized from her point
of view. The premise fixes the events by ag in some protocol run until the state is reached
where the authentication guarantee can be checked. It is generally an equality check of a re-
ceived message (part) mag with the corresponding counterpart mag, as can be computed by
ag. It implies the authenticity of the received message mag: The message mag originates from
the peer ag who was somehow involved with ag in the same protocol run. The conclusion
fixes then the events by ag, including the originating event of mag.

Basically, authenticity properties can be distinguished according to the strength of the
corresponding guarantees: The tighter the guarantee, the stronger the authenticity prop-
erty. We want to judge the strength of the considered authenticity properties relative to the
following features:

1. The peer ag equals the protocol partner addressed by ag, or is arbitrary.

2. The peer ag addresses her messages to ag, or to a participant who may be different.

3. The events by the peer ag are associated with the intended protocol role only, or a
second interpretation equivalent with the role of ag is possible.

4. Whether guarantees about the structure and the content of the messages originating
from the peer ag are provided.

An authentication guarantee from the point of view of ag where the peer ag is not arbitrary
and talks to ag in a fixed role is generally formalized according to the schema:

(tr ∈ P ∧Φ(ag, ag,nc, tr) ∧ gets(ag,m[nc]) ∈ tr)⇒
(Ψ(ag, ag,nc, tr) ∧ says(ag, ag,m[nc]) ∈ tr)

Φ(ag, ag,nc, tr) includes prior events by ag where the nonce nc, which identifies a new run,
is transmitted to the peer ag. Similarly, Ψ(ag, ag,nc, tr) includes events by ag where she
receives the message containing nc and uses this to generate the reply message m[nc] for
the (last) says event.

Usually, we prove any authentication property immediately using the corresponding
authenticity property. It is formalized by a simple adaptation of the premise: The occur-
rence of a gets event in the trace (gets(.,m) ∈ tr) is substituted with the occurrence of the

7.2. PROOF CONSTRUCTION 137

received message in the corresponding observable messages (m ∈ spies(tr)). The equiva-
lent authenticity property of the above authentication schema is:

(tr ∈ P ∧Φ′(ag, ag,nc, tr) ∧m[nc] ∈ spies(tr))⇒
(Ψ(ag, ag,nc, tr) ∧ says(ag, ag,m[nc]) ∈ tr)

Φ′(ag, ag,nc, tr) results by the replacement of the gets events in Φ(ag, ag,nc, tr).
Generally, authenticity properties have the most involved proof argument in the class of

the trace properties. It combines (basic) confidentiality properties with other trace proper-
ties that we call structuring lemmata, introduced below. The combination of the mentioned
properties is required in particular to handle the fake case, where we prove that the attacker
is not able to forge the authenticated message.

7.1.7.3 Structuring Lemmata

Except of confidentiality, authentication and authenticity properties all other kinds of trace
properties serve generally to structure the proofs. The original inductive method intro-
duced a categorization of the latter properties. For our purposes we employ mainly (i)
binding (unicity) theorems and (ii) regularity lemmata. Briefly, binding properties are
about the structure and the content of message parts that occur together with secure nonces.
And regularity properties are guarantees about certain message parts that rely on the initial
knowledge of regular protocol participants and on message generation by them.

The separation between binding theorems and regularity lemmata is not strict, and cer-
tain binding theorems can be also interpreted as regularity lemmata. We will provide cer-
tain examples for both kinds of properties in Sec. 8.5, 9.5.2, 9.6, 12.2 and 14.2.

Noteworthy, our implementation of the original inductive method in VSE allows for the
automated transformation of protocol specifications from a specific Alice-and-Bob form
(in a CAPSL-like language, [97]) into VSE-SL. It generates not only the definition of the
protocol rules, but also the formalization of the properties and many structuring lemmata.
But, the very involved lemmata like binding theorems about message parts across several
protocol steps need to be provided during proof construction. Nevertheless, they could be
(partly) speculated through the search for corresponding patterns in proof states.

Structuring lemmata can be also produced as a by-product during the application of cer-
tain proof strategy. This will be the case in our proof technique applied to indistinguisha-
bility properties, where a central theorem provides the necessary and sufficient conditions.
These conditions are then shown with the help of regularity properties on different types
of derivable messages and the protection of their substructures. See Chap. 12 and 14.

7.2 Proof Construction

In order to verify the protocol properties in t P properties, we start the VSE prover by
clicking on the “satisfies”-link to t P . The prover registers these properties as proof obli-
gations, for which complete proofs in the (VSE) sequent calculus have to be constructed.
For that purpose, the VSE prover allows the user

• to select basic inference rules,

• apply lemmata and axioms,

• and to invoke powerful simplification routines.

Simplification routines, e.g., predlogic for bringing proof goals in a canonical form, usu-
ally combine several inference rules in one step. Despite their frequent use proofs of protocol
properties are very large. This fact and the number of the proof obligations definitely show
that the inductive method is only successful in real-world applications if the burden of user

138 CHAPTER 7. AUTOMATED INDUCTIVE VERIFICATION

interaction is lowered drastically. Therefore we extended the VSE prover with proof heuris-
tics exploiting the higher-level knowledge available from a systematic analysis of the given
class of proof obligations.

Our approach is bottom up in the sense that starting with routine tasks whose automa-
tization just saves some clicks we proceed by building heuristics that cover more complex
proof decisions using the lower level ones as primitives. This complies with the tradeoff
between achieving the verification of the protocols within an acceptable period and en-
hancing the automatization degree through the integration of more proof heuristics in the
VSE prover. Hence, our primary goal was not to focus (from the beginning) on the fully
automated verification of certain protocol classes. Instead of that, we integrated as much
heuristics in the VSE prover as timely possible in our verification projects, preferring those
heuristics that are oftener needed.

Except of few protocol properties, which are proven immediately with corresponding
lemmata, the majority are verified by induction on protocol traces. The general scheme
for structural induction on the traces of a particular protocol, shown in Fig. 7.5, is more or
less straightforward. The heuristics discussed in the following implement an application-
specific refinement of this scheme. This refinement takes into account both the type of the
proof goals and the available lemmata and axioms. We want to describe the top-level proof
scheme and some of the often used heuristics.

7.2.1 The Top-Level Proof Scheme

All inductive proofs of protocol properties are structured into the following (proof-) tasks.
For each task there is a collection of heuristics that are potentially applicable in these situa-
tions.

1. Set up a proof by structural induction on traces.

2. Handle the base case.

3. Handle the step case:

(a) Reduce the protocol-independent differences.

(b) Add information about individual protocol steps.

(c) Reduce the remaining differences and apply the induction hypothesis.

An inductive proof about traces of a given protocol is initialized by a heuristic
(traceInd) which selects the induction variable representing the protocol trace. After-
wards, it transforms the proof goals representing the base case and the step case to a canon-
ical form through the application of predlogic and other simplification inference rules.

Base Case: The proof goals of the base case are expected to contain assumptions that con-
tradict properties of the empty trace ϵ. For that reason, we handle the base case by search-
ing for such an assumption and then applying the corresponding lemmata and axioms to
close the proof goal by contradiction. This is carried out by the heuristic emptyTr.

Step Case: Like in all other mechanized induction systems we try to reduce the given
goals to a situation where the inductive hypothesis can be applied. In our proof scheme we
separate the difference reduction to the induction hypothesis in two phases and include the
protocol details in between. To explain this idea, we consider a proof goal

IH,γ1, . . . ,γq ⊢ δ1, . . . ,δr,

in the canonical form as produced by traceInd. We have on the left-hand side the induc-
tion hypothesis IH and further hypotheses as antecedents, and on the right-hand side the

7.2. PROOF CONSTRUCTION 139

⊢ ∀tr : Φ(tr)

traceInd

Φ(tr) ⊢ Φ(ev.tr)

redDif1

Φ(tr) ⊢ Φ′(ev.tr)

protSteps

FakeGetsOopsPn. . .Pi

redDif2

P ′i,n2

applyIH

. . .P ′i,1

applyIH

Pi,n1. . .Pi,1

. . .P1Access

⊢ Φ(ϵ)

emptyTr

Figure 7.5: The top-level proof scheme

possible conclusions as succedents. For such a open goal we need to provide a proof for
a succedent δi out of the antecedents, possibly using negations of the other succedents as
well as available axioms and lemmata.

Reduce Protocol-Independent Differences: Protocol properties include generally
premises that restrict the set of traces under consideration by excluding certain events or
messages. For instance, most of the properties in PACE are defined about traces that do
not include the access to the password of the card by a compromised terminal. This is
formulated by the premise (∀ag : note(ag, ⟨A, pwd(A), G⟩) ∈ tr ⇒ ag ̸∈ bad). We expect
that every premise ϕ(tr) of this kind matches (modulo difference reduction) an antecedent
γi = ϕ(ev.tr) or a negated succedent ¬δj = ϕ(ev.tr). Furthermore, we know that the dif-
ference can be eliminated without considering any details about the event ev added to the
trace (induction variable) tr. For that reason, we start the difference reduction (before in-
cluding the protocol details) focusing on the antecedents with the mentioned features. This
is done by the heuristic redDif1.

Include Protocol Details: In the next steps we exploit the assumptions under which a
certain event ev can be added to a trace tr. This is achieved by a heuristic called protSteps.
It applies first Def. 70 to the assumption (ev.tr) ∈ P , before carrying out the corresponding
case split. Next the conditions for each particular extension, as given by the corresponding
generic or protocol-specific definition, are added to the goals. These are transformed finally

140 CHAPTER 7. AUTOMATED INDUCTIVE VERIFICATION

to a canonical form through the application of predlogic and other simplification inference
rules.

Reduce Remaining Differences and Apply Induction Hypothesis: In each of the re-
sulting proof goals we focus on the antecedents and the succedents that are of the form
ϕ(ev.tr). We expect that every antecedent ϕ(ev.tr) occurs (after difference reduction) as a
premise or in the negated conclusion of the induction hypothesis. For that reason, we elim-
inate first the corresponding differences (by the heuristic redDif2) aiming at antecedents
ϕ(tr) that match their counterparts in the induction hypothesis.

In contrast to the canonical difference reduction before the inclusion of the protocol
details, difference reduction in this phase amounts to two kinds of subgoals:

1. The majority of the resulting subgoals can be immediately handled by the applica-
tion of the induction hypothesis. This is achieved by the heuristic applyIH, which
provides the instantiation for the universally quantified variables. It tries afterwards
to close the subgoal by predlogic and by appropriate lower level heuristics (see
Sec. 7.2.2.4).

2. In the complementary cases it is necessary to apply appropriate structuring lemmata
and to make use of specific goal assumptions. These goal assumptions can originate
from the definition of the corresponding protocol step (by protSteps in (3-b)) or from
the applied lemmata or axioms during the difference reduction by redDef2. The treat-
ment of these subgoals requires user interaction. It often involves proof decisions,
like:

• Which goal assumptions should be considered?

• Which structuring lemmata have to be applied?

• Do we need a new structuring lemma?

However, also in those cases where some user interaction is necessary, heuristics are
available to continue (and complete) the proof afterwards.

7.2.2 The Proof Heuristics

We extended the VSE prover in a first phase progressively with proof heuristics that handle
localized tasks in our proof scheme. From the beginning, we put emphasis on implemen-
tation features that facilitate the composition and adaptation of our heuristics. Due to the
local (wrt. single goals) and global (wrt. the proof tree) information slots provided by the
VSE prover, it was possible to store the intermediate application states of single heuristics
using simple information labels. So, our heuristics have access not only to the purely log-
ical information, but also to the locally and globally stored labels that allow us to decide
about the next step to be performed. This includes also the switch to another heuristic,
which continues the proof construction using corresponding information labels as param-
eters. Thus, we used the information labels to model the internal control flow of a single
heuristic as well as to organize the composition of heuristics.

Meanwhile, we implemented all the heuristics introduced in Sec. 7.2.1 and we com-
posed them in a high-level heuristic commonStps, which constructs the major canonical
proof part. This heuristic saves up in average more than 80 % of the required clicks in a
step-by-step mode. The resulting subgoals require interactions of the user, who continues
the proof construction in a step-by-step mode where further heuristics can be invoked. For
this purpose, all heuristics composed in commonStps and further low-level heuristics are
available for selection. In the rest of this section we give an overview on these low-level
heuristics. Through their rigorous use, we reached an automation degree over 95 %.

7.2. PROOF CONSTRUCTION 141

7.2.2.1 The heuristic emptyTr

It is invoked by commonStps to handle the base case as explained in Sec. 7.2.1. It is composed
(in the time being) out of two low-level heuristics:

1. nullEvt searches for an antecedent of the form ev∈ ϵ, stating that the event ev belongs
to the empty trace. It contradicts obviously an axiom about traces, which belongs to
the VSE-theory tprotocoltrace, shown in Fig. 7.2. Upon matching of ev∈ ϵ, nullEvt
applies this axiom with the corresponding instantiation.

2. nullMsg searches for an antecedent of the form m ∈ spies(ϵ), stating that the message
m occurs in the empty trace. It contradicts obviously the property that x ̸∈ spies(ϵ),
which belongs to the VSE-theory ttrace thms shown in Fig. 7.3. Upon matching of
m ∈ spies(ϵ), nullMsg applies this property with the corresponding instantiation.

Note, that this version of emptyTr is also provided in the VSE framework implementing
the original inductive method.

7.2.2.2 The heuristic redDif1

It is invoked by commonStps in the first difference reduction phase, as explained in Sec. 7.2.1.
The aim of this heuristic is to reduce antecedents and negated succedents to the premises
(of the induction hypothesis) that exclude certain events or messages. If we denote the oc-
currence of an event or a message by ϕ, we want to cover all premises Ψ[ϕ] that correspond
to a negation ¬ϕ, a disjunction (¬ϕ∨Ψ′), or to an implication ϕ⇒Ψ′, possibly preceded by
a universal quantification. This is carried out by the following low-level heuristics, which
are invoked in the given order.

1. evtNotInTr searches for an antecedent or a negated succedent Ψ[ev′ ∈ (ev.tr)] that
can be associated with a premise Ψ[ev′ ∈ tr] of the induction hypothesis. Upon match-
ing, it applies corresponding inference rules (according to Ψ) and an axiom from the
VSE-theory tprotocoltrace, shown in Fig. 7.2, to eliminate the difference.

2. msgNotInTr searches for an antecedent or a negated succedent Ψ[m ∈ spies(ev.tr)]
that can be associated with a premise Ψ[m ∈ spies(tr)] of the induction hypothesis.
Upon matching, it applies corresponding inference rules (according to Ψ) and a theo-
rem from the VSE-theory ttrace thms, shown in Fig. 7.3, to eliminate the difference.

3. The low-level heuristic msgNotInDy searches for an antecedent or a negated succedent
Ψ[m ∈ DY(spies(ev.tr))] that can be associated with a premise Ψ[m ∈ DY(spies(tr))]
of the induction hypothesis. Upon matching, it applies corresponding inference rules
(according to Ψ) and a theorem from the VSE-theory tindy thms, shown in Fig. 7.3,
to eliminate the difference.

7.2.2.3 The heuristic redDif2

It is invoked by commonStps in the second difference reduction phase, as explained in
Sec. 7.2.1. The aim of this heuristic is to reduce the remaining differences in antecedents to
corresponding premises or negated conclusions of the induction hypothesis. For the time
being, we handle three typical kinds of antecedents by corresponding low-level heuristics,
which are invoked in the given order.

1. evtInTr searches for an antecedent ev′ ∈ (ev.tr) that has to be reduced to a premise
ev′ ∈ tr in the induction hypothesis. Upon matching, it applies a corresponding axiom
from the VSE-theory tprotocoltrace, shown in Fig. 7.2. This yields a case split, with
a first subgoal where the difference is eliminated and a second subgoal corresponding
to ev′ = ev. evtInTr tries to close the latter by invoking a corresponding low-level
heuristic.

142 CHAPTER 7. AUTOMATED INDUCTIVE VERIFICATION

2. msgInTr searches for an antecedent m ∈ spies(ev.tr) that has to be reduced to a
premise m ∈ spies(tr) in the induction hypothesis. Upon matching, it applies a corre-
sponding theorem from the VSE-theory ttrace thms, shown in Fig. 7.3. In addition
to a subgoal where the difference is eliminated, this results often in other subgoals
corresponding to m = mev, for an event message mev. They are tried to be closed by
invoking a corresponding low-level heuristic (see below).

3. msgInCcl searches for two antecedents m ∈ spies(ev.tr) and m ∈ ccl(mL) that have to
be reduced to a conclusion ∀m : m ∈ spies(tr)⇒m ̸∈ ccl(mL) in the induction hypoth-
esis. Upon matching, it applies the same theorem from the VSE-theory ttrace thms

as in msgInTr. We obtain a subgoal where the difference is eliminated, and often
other subgoals where the antecedent m ∈ ccl(mL) is replaced with mev ∈ ccl(mL),
for an event message mev. They are tried to be closed by invoking a corresponding
low-level heuristic (see below).

The third heuristic is required in the proof of lemmata employed for confidentiality proper-
ties. The matched propositions originate actually from spies(tr) ∩ ccl(mL) = ∅, which we
usually formalize by ∀m : m ∈ spies(tr)⇒ m ̸∈ ccl(mL).

7.2.2.4 The heuristic applyIH

It is invoked by commonStps in the subgoals of redDif2 where the difference reduction
succeeded. After the application of the induction hypothesis, including the instantiation of
the universally quantified variables, it invokes predlogic. This might result in subgoals
where further difference reduction is required, in particular when the verified property
is existentially quantified. Such subgoals are tried to be closed with one of the following
low-level heuristics:

1. closeEvt searches for an antecedent ev ∈ tr and a succedent ev ∈ (ev′.tr). Upon
matching, it closes the subgoal with the help of a corresponding axiom from the VSE-
theory tprotocoltrace, shown in Fig. 7.2.

2. The low-level heuristic closeMsg searches for an antecedent m ∈ obset(ag, tr) and a
succedent m ∈ obset(ag, ev′.tr). Upon matching, it closes the subgoal with the help of
a corresponding theorem from the VSE-theory ttrace thms, shown in Fig. 7.3.

3. closeMsgDY searches for an antecedent m ∈ DY(obset(ag, tr)) and a corresponding
succedent m ∈ DY(obset(ag, ev′.tr)). Upon matching, it closes the subgoal with the
help of a corresponding theorem from the VSE-theory tindy thms, shown in Fig. 7.3.

7.2.2.5 Further Low-Level Heuristics

The above introduced heuristics are partly composed from other low-level heuristics. For
instance, the heuristic msgInCcl, which is usually applicable in confidentiality lemmata,
obtains subgoals (with an antecedent mev ∈ ccli(mL)) that require the application of the
definition of the ccl-function ccli (see Chap. 6). This is achieved by a heuristic inCcl, which
applies the corresponding definition of ccli from the VSE-theory tccl, shown in Fig. 7.3.
After a case split it handles the obtained subgoals either through a recursive call or by the
invocation of other low-level heuristics. Typical subgoals where other low-level heuristics
are invoked contain antecedents of the form mev ∈ mL or mev = m. In the former case
we invoke the heuristic inLst and in the latter case the heuristic eqMsg. The low-level
heuristic inLst fetches the messages mmL from the list mL successively (by the application
of the corresponding definition from the VSE-theory tmsglist, shown in Fig. 7.1), yielding
subgoals with equalities mev = mmL instead of the antecedent mev ∈ mL. All these subgoals
are then closed or simplified by invoking eqMsg.

7.2. PROOF CONSTRUCTION 143

The low-level heuristic eqMsg is the most used one in the proof construction, usually
within other heuristics. It applies our axioms and derived theorems about message struc-
tures to close or simplify proof goals with equalities as antecedents (see Sec. 5.5.2). It is
parametrized through a list of triples, where each triple associates two term patterns with
an axiom or a theorem. According to the preference fixed by this list, eqMsg searches then
in the antecedents for an equality that matches the term patterns. Afterwards it applies
the axiom or the theorem given by the corresponding triple. Using such a parameter list,
facilitates the adaptation and the (progressive) extension of this central low-level heuristic.

144 CHAPTER 7. AUTOMATED INDUCTIVE VERIFICATION

Chapter 8

Verification of PACE’s Trace
Properties

In this chapter we give an overview on the verification of the trace properties of PACE in
the VSE system. We start with an excerpt from the specification of the protocol model. Then
we describe the proofs of the main protocol properties: the basic confidentiality property,
the mutual authentication, and the forward secrecy of session key. We focus in particular
on the formalization and we sketch the proof ideas as well as the use of our proof technique,
described in Chap. 6.

8.1 Protocol Model

Following the conventions in Sec. 7.1.6, the set PACE, which contains all possible PACE
traces, is defined according to the schema 70. Besides the generic cases, we obtain eight
protocol-specific cases: PACE1(ev, tr)–PACE7(ev, tr) cover the admissible trace extensions
according to PACE and Oopsev(ev, tr) models dynamic corruption. In this section, we dis-
cuss the definition of these predicates. Before that, we describe the protocol-specific details
regarding the initial knowledge.

8.1.1 Initial Knowledge

In Sec. 7.1.4 we introduced the predicate initHas(ag,m) to express what participants ini-
tially know. We already mentioned that further axioms are required to specify the protocol-
specific assumptions about the initial knowledge. In case of PACE, we use the following
axioms.

AxiomVSE 72 (initHas; PACE):

1.

initHas(ag,m)⇒ (∃g : m = ⟨pwd(ag), g⟩
∨ (∃ag′ : ag ̸= ag′ ∧m = ⟨ag′, pwd(ag′), g⟩))

2.
(initHas(ag, ⟨pwd(ag), g⟩) ∧ initHas(ag′, ⟨ag, pwd(ag), g′⟩))⇒ g = g′

3.
∃g : initHas(ag, ⟨pwd(ag), g⟩)

145

146 CHAPTER 8. VERIFICATION OF PACE’S TRACE PROPERTIES

4.
∃ag, ag′, g : ag ̸= ag′ ∧ initHas(ag, ⟨ag′, pwd(ag′), g⟩)

The initial knowledge consists of pairs ⟨pwd(ag), g⟩ and triples ⟨ag′, pwd(ag′), g⟩. To
run PACE in the card role, ag needs to access ⟨pwd(ag), g⟩, i.e. the own password and
generator.

In order to run PACE in the terminal role, ag has to access ⟨ag′, pwd(ag′), g⟩. Note
that the participant ag′ (in the card role) differs from ag. This way, we have a kind of role
separation, in the sense that no agent runs PACE with himself as a partner (see Sec. 8.3 and
8.4).

By the second axiom, every password is associated with the same generator, and that
from the perspective of all agents. Every agent can run PACE in the card role and there is
at least one agent that is able to run PACE in the terminal role. These axioms are needed
to prove that the specification of the PACE rules is not restrictive. That is, complete PACE
runs are not excluded through the conditions used in our formalization of these rules.

8.1.2 PACE Rules

In this section we discuss the specification of the PACE rules. The first rule includes the
condition for initiating a new run by a card.

DefinitionVSE 73 (PACE1):

PACE1(ev, tr)⇔
(∃A, B, g, s : A ̸= B ∧ note(A, ⟨pwd(A), g⟩) ∈ tr
∧¬used(s, tr) ∧ ev = says(A, B, enc(pwd(A), s)))

A accesses the own password and generator before sending message 1.

DefinitionVSE 74 (PACE2, PACE3):

1.

PACE2(ev, tr)⇔
(∃B, A, g,z, x1 : B ̸= A ∧ note(B, ⟨A, pwd(A), g⟩) ∈ tr
∧gets(B,z) ∈ tr ∧ ¬used(x1, tr) ∧ ev = send(B, A, ⟨z, x1⟩,dh(g, x1)))

2.

PACE3(ev, tr)⇔
(∃A, g, B, s, X1,y1 : note(A, ⟨pwd(A), g⟩) ∈ tr ∧ says(A, B, enc(pwd(A), s)) ∈ tr
∧gets(A, X1) ∈ tr ∧ ¬used(y1, tr) ∧ ev = send(A, B, ⟨s,y1⟩,dh(g,y1)))

Before sending message 2, B must have accessed the password and the generator of a
card A and also must have received a message z that is expected to be a nonce encrypted
by A. The recorded information in the send event allows us

1. to express explicitly that B knows the nonce x1, and

2. to bind step 2 with the received message z.

8.1. PROTOCOL MODEL 147

If step 2 were formalized by a says event, the set of observable messages by B would neither
contain x1 nor permit us to derive this nonce by algebraic reasoning.

Similarly, step 3 is described by a send event where the nonce s from step 1 and the new
nonce y1 are recorded. The reasons for binding step 2 with z and step 3 with s are related
to the definitions of steps 4 and 5, respectively.

DefinitionVSE 75 (PACE4, PACE5):

1.

PACE4(ev, tr)⇔
(∃B, A, g,z, x1,Y1, x2 : note(B, ⟨A, pwd(A), g⟩) ∈ tr ∧ gets(B,z) ∈ tr
∧send(B, A, ⟨z, x1⟩,dh(g, x1)) ∈ tr ∧ gets(B,Y1) ∈ tr ∧ ¬used(x2, tr)
∧ev = send(B, A, x2,dh(gen(dh(g,dec(pwd(A),z)),dh(Y1, x1)), x2)))

2.

PACE5(ev, tr)⇔
(∃A, B, s, X1, g,y1, X2,y2 : says(A, B, enc(pwd(A), s)) ∈ tr ∧ gets(A, X1) ∈ tr
∧send(A, B, ⟨s,y1⟩,dh(g,y1)) ∈ tr ∧ gets(A, X2) ∈ tr ∧ ¬used(y2, tr)
∧ev = send(A, B,y2,dh(gen(dh(g, s),dh(X1,y1)),y2)))

In steps 4 and 5, the generator for the second Diffie-Hellman exchange is computed
using the generator g, the nonce s from step 1 and the common Diffie-Hellman value that
is established in steps 2 and 3. Note that B obtains s by decrypting the received z.

Actually, the conditions for step 4 do not impose an explicit chronological order of the
preceding events. Such an order is implicitly given by the content of the events. By record-
ing z in the send event that represents step 2, it follows that gets(B,z) occurred prior to
this step. If step 2 were formalized by a says event, we would not have this implicit order-
ing condition. In this case, the generator could be computed using an out-of-date Diffie-
Hellman value, that is established in (steps 2 and 3 of) a previous PACE run, i.e. before
receiving z. This problem is solved by binding z with step 2. Binding s with step 3 avoids
the same problem from the perspective of the card A.

DefinitionVSE 76 (PACE6, PACE7):

1.

PACE6(ev, tr)⇔
(∃B, A, g,z, x1,Y1, x2,Y2 : note(B, ⟨A, pwd(A), g⟩) ∈ tr ∧ gets(B,z) ∈ tr
∧send(B, A, ⟨z, x1⟩,dh(g, x1)) ∈ tr ∧ gets(B,Y1) ∈ tr
∧send(B, A, x2,dh(gen(dh(g,dec(pwd(A),z)),dh(Y1, x1)), x2)) ∈ tr
∧gets(B,Y2) ∈ tr
∧(∀x : send(B, A, x,dh(gen(dh(g,dec(pwd(A),z)),dh(Y1, x1)), x)) ∈ tr

⇒ Y2 ̸= dh(gen(dh(g,dec(pwd(A),z)),dh(Y1, x1)), x))
∧ev = says(B, A,mac(dh(Y2, x2),Y2)))

148 CHAPTER 8. VERIFICATION OF PACE’S TRACE PROPERTIES

2.

PACE7(ev, tr)⇔
(∃A, B, s, X1, g,y1, X2,y2 : says(A, B, enc(pwd(A), s)) ∈ tr ∧ gets(A, X1) ∈ tr
∧send(A, B, ⟨s,y1⟩,dh(g,y1)) ∈ tr ∧ gets(A, X2) ∈ tr
∧send(A, B,y2,dh(gen(dh(g, s),dh(X1,y1)),y2)) ∈ tr
∧gets(A,mac(dh(X2,y2),dh(gen(dh(g, s),dh(X1,y1)),y2))) ∈ tr
∧ev = says(A, B,mac(dh(X2,y2), X2)))

B rejects the received message Y2 in step 5, if this matches message 4, [60]. Basically, our
formalization of step 4 in axiom 75 does not prevent B to repeat this step several times in
a run. That is, it is possible that message 4 is generated, for instance twice by B using the
same generator but different nonces. This explains the universally quantified form of the
used condition in the definition of PACE6.

In [60], the technical specification of PACE requires that A does not accept the received
message X2 in step 4, if A finds out (in the reply to step 6) that X2 matches message 5. As
pointed out in Sec. 2.3.1, this inequality check by A is redundant, since A generates message
5 after accepting X2 and the equality of both values is excluded using the new nonce y2.
For this reason, we simplify the inequality check in our formalization of step 7. Note that
the corresponding conditions include an explicit verification of the received MAC value in
step 6 (cp. the mac-message in the gets event).

In addition to the regular protocol steps, we model the accidental loss of session keys
for a stronger form of resistance against offline password testing (see Chap. 12).

DefinitionVSE 77 (Oopsev; PACE):

Oopsev(ev, tr)⇔
(∃B, A, x2, g,z,m, x2,y2 : send(B, A, x2,dh(gen(dh(g,dec(pwd(A),z)),m), x2)) ∈ tr
∧send(A, B,y2,dh(gen(dh(g,dec(pwd(A),z)),m),y2)) ∈ tr
∧ev = note(spy,dh(dh(gen(dh(g,dec(pwd(A),z)),m),y2), x2)))

In Sec. 8.4 we will see that there is no guarantee for a terminal B that the communication
partner is running PACE in the card role. Even more, the used message z must not be an
encrypted nonce. Fortunately, this does not violate the confidentiality of the session key
(see Sec. 8.6). Session keys remain confidential also when both communication partners
have run PACE in the terminal role, using any common message z. In the given definition,
the lost session key could be established between two terminals, as well as between a card
and a terminal.

8.2 Basic Confidentiality Properties

The main objective of PACE is the authenticated establishment of a session key between a
card A and a terminal B.

This requires in particular the mutual authentication of both participants, which com-
prises typically one authentication guarantee from the point of view of A (see Sec. 8.3) and
another authentication guarantee from the point of view of B (see Sec. 8.4). Both authenti-
cation guarantees are not identical (in case of our formal model of PACE).

The authentication guarantees in PACE rely on the confidentiality of the fresh generator.
Only the participants that are able to compute the fresh generator can participate in the DH

8.2. BASIC CONFIDENTIALITY PROPERTIES 149

exchange of steps 4 and 5 to obtain the common DH value used as MAC-key in the subse-
quent steps 6 and 7. The fresh generator cannot be composed without obtaining the first
argument of gen. In the authentication guarantee from the point of view of a card A, this
message part is computed by dh(G, N1), where the nonce N1 is sent encrypted to the peer
using the password pwd(A). Whereas in the authentication guarantee from the point of
view of a terminal B, the first argument of gen is computed by dh(G,dec(pwd(A), M1)),
where M1 is an arbitrary message sent by the peer. This includes also the case where M1
differs from any encryption with pwd(A) as a key.

Recapitulating, we need the confidentiality of two kinds of fresh generators for the
proof of the authentication guarantees by PACE:

1. In both authentication guarantees, we will have proof situations where the fresh gen-
erator matches gen(dh(G, N1), M).

2. The proof of the authentication guarantee from the point of view of B comprises ad-
ditional cases where the fresh generator matches gen(dh(G,dec(pwd(A), M1)), M) for
some peer’s message M1 that differs from any encryption with pwd(A).

This yields to the following basic confidentiality property.

PropertyVSE 78 (Basic Confidentiality):

1. (tr ∈ PACE ∧ A ̸∈ bad ∧ (∀ag : note(ag, ⟨A, pwd(A), G⟩) ∈ tr⇒ ag ̸∈ bad)
∧ enc(pwd(A), N1) ∈ spies(tr))
⇒ gen(dh(G, N1), M) ̸∈ DY(spies(tr))

2. (tr ∈ PACE ∧ A ̸∈ bad ∧ (∀ag : note(ag, ⟨A, pwd(A), G⟩) ∈ tr⇒ ag ̸∈ bad)

∧ objdec(dec(pwd(A), M1), pwd(A), M1))

⇒ gen(dh(G,dec(pwd(A), M1)), M) ̸∈ DY(spies(tr))

According to our proof technique from Chap. 6, we prove these properties with the help
of the canonical ccl-function ccl1 and the correctness theorem 46. For that purpose, we have
to provide in each case a set S that fulfillsℜ1(S). And we employ the lemmas obtained from
both confidentiality properties by replacing the conclusions with spies(tr) ∩ ccl1(S) = ∅.

In the proof of the first property, we make use of the set

S = {gen(dh(G, N1), M),dh(G, N1), N1, pwd(A)}.

Note that pwd(A) is required in S, in order to handle enc(pwd(A), N1) as not critical,
i.e. enc(pwd(A), N1) ̸∈ ccl1(S).

The proof of the second property requires to make use of the set

S = {gen(dh(G,dec(pwd(A), M1)), M),dh(G,dec(pwd(A), M1)),
dec(pwd(A), M1), pwd(A)}.

It is easy to check in both cases that ℜ1(S) holds, which allows us to handle the fake cases
in the proofs of the mentioned lemmas simply by theorem 46. The rest of these proofs
consists of ensuring that the protocol messages (and accidentally obtained session keys) do
not belong to ccl1(S). This follows in the second lemma simply from the structure of the
PACE messages, as no message matches any element of S. Contrarily, in the first lemma we
have to deal with the case where a message dh(G′, N′) (in steps 2 and 3) matches dh(G, N1)
from S: The definition of PACE2 and PACE3 (in 74) requires that N′ (matching N1) does not
occur in prior events. This contradicts the assumption that N1 originates in a first PACE
message (cp. enc(pwd(A), N1) ∈ spies(tr) in the premises of (78-1)).

150 CHAPTER 8. VERIFICATION OF PACE’S TRACE PROPERTIES

8.3 Authentication by the Card

The mutual authentication by a two-party protocol consists of two authentication guaran-
tees: authentication of the responder by the initiator and vice-versa. In this section, we
discuss the authentication of the terminal (responder) by the card (initiator).

According to the general principles introduced in Sec. 7.1.7.2, an authentication guaran-
tee for a participant ag relies on the authenticity of a message received and checked by ag.
This requires that ag reaches a corresponding state in the protocol run where the authen-
ticity verification can be carried out. In case of PACE, the card A checks the authenticity
guarantees in step 6 by verifying the equality between the received message and the coun-
terpart, which A computes as given in the receiver’s view (see Sec. 2.3.1).

PropertyVSE 79 (Auth byA):

(tr ∈ PACE ∧ A ̸∈ bad ∧ (∀ag : note(ag, ⟨A, pwd(A), G⟩) ∈ tr⇒ ag ̸∈ bad)
∧ (∀N : note(spy,dh(dh(gen(dh(G, N1),dh(M2, N3)), N5), N)) ̸∈ tr)
∧ says(A, B, enc(pwd(A), N1)) ∈ tr ∧ send(A, B, ⟨N1, N3⟩,dh(G, N3)) ∈ tr
∧ gets(A, M4) ∈ tr ∧ send(A, B, N5,dh(gen(dh(G, N1),dh(M2, N3)), N5)) ∈ tr
∧ gets(A,mac(dh(M4, N5),dh(gen(dh(G, N1),dh(M2, N3)), N5))) ∈ tr)
⇒
(∃B′, N′2, MS, N′4 : note(B′, ⟨A, pwd(A), G⟩) ∈ tr ∧ gets(B′, enc(pwd(A), N1)) ∈ tr
∧ send(B′, A, ⟨enc(pwd(A), N1), N′2⟩,dh(G, N′2)) ∈ tr
∧ gets(B′,mapdh(dh(G, N3), MS)) ∈ tr ∧M2 = mapdh(dh(G, N′2), MS)
∧ send(B′, A, N′4,dh(gen(dh(G, N1),dh(mapdh(dh(G, N3), MS), N′2)), N′4)) ∈ tr
∧M4 = dh(gen(dh(G, N1),dh(mapdh(dh(G, N3), MS), N′2)), N′4)
∧ gets(B′,dh(gen(dh(G, N1),dh(M2, N3)), N5)) ∈ tr
∧ says(B′, A,mac(dh(dh(gen(dh(G, N1),dh(M2, N3)), N5), N′4),

dh(gen(dh(G, N1),dh(M2, N3)), N5))) ∈ tr)

The events by A in tr fixes a PACE run from the point of view of A. In order to authen-
ticate the communication partner of A in this run, the password of A and the MAC key
may not be (accidentally) revealed. For this, A and every participant that has accessed the
password of A may not be bad, and there may not exist an oops event for the MAC key.

The authentication guarantees for A are:

1. There is an agent B′ that has run PACE in the terminal role with A.

That is, the peer is indefinite (any device) from the point of view of A. But, her
protocol role is definite.

2. B′ has received the messages of A.

3. B′ has generated the messages for A.

That is, the peer addresses her messages to A.

Note that both messages in steps 2 and 3 can be modified by the attacker, by arbitrary
many applications of “dh”. This is expressed with the help of the mapdh function and an
arbitrary message list MS: It is possible to modify the DH value dh(G, N3) that is sent by
A in step 3. The peer would then receive mapdh(dh(G, N3), MS) (cp. the fourth event in the
conclusion). In order for this modification to remain undetected, it is necessary to enforce
the same modification for the DH value dh(G, N′2) that is sent to A by the peer in step 2 (cp.
the third event and the first equality in the conclusion).

8.4. AUTHENTICATION BY THE TERMINAL 151

When dh corresponds to exponentiation, MS contains arbitrary many exponents. For-
tunately, the result is again an exponent of the initial generator G, and it is thus crypto-
graphically as strong as G (see section 2.3.3).

Here, we have a typical situation where the guaranteed structure and content of the
peer’s messages M2 and M4 are security-relevant. This confirms the significance of the
fourth feature among the features that we introduced in Sec. 7.1.7.2 to judge the strength of
authenticity properties.

The authentication property 79 is proven immediately with the help of the correspond-
ing authenticity lemma, which we obtain canonically as described in Sec. 7.1.7.2. Hence,
the main effort is spent for the proof of the authenticity lemma, which is carried out by in-
duction on PACE traces. The most involved part belongs to the fake case, where we prove
that the attacker is not able to forge the authenticated message. It belongs to the typical
proof states where we need to apply appropriate structuring lemmata. Before we provide
(in Sec. 8.5) more insight in this central part of the authenticity proofs, we discuss the au-
thenticity guarantees from the point of view of the terminal.

8.4 Authentication by the Terminal

The terminal B checks the authenticity guarantees in step 7 by verifying the equality be-
tween the received message and the counterpart, which B computes as given in the re-
ceiver’s view (see Sec. 2.3.1).

PropertyVSE 80 (Auth byB):

(tr ∈ PACE ∧ A ̸∈ bad ∧ (∀ag : note(ag, ⟨A, pwd(A), G⟩) ∈ tr⇒ ag ̸∈ bad)
∧ (∀N : note(spy,dh(dh(gen(dh(G,dec(pwd(A), M1)),dh(M3, N2)), N4), N)) ̸∈ tr)
∧ (∃tr0, tr1 : tr = tr1#tr0 ∧ note(B, ⟨A, pwd(A), G⟩) ∈ tr0

∧ send(B, A, ⟨M1, N2⟩,dh(G, N2)) ∈ tr1

∧ send(B, A, N4,dh(gen(dh(G,dec(pwd(A), M1)),dh(M3, N2)), N4)) ∈ tr1

∧ gets(B, M5) ∈ tr1

∧ gets(B,mac(dh(M5, N4),dh(gen(dh(G,dec(pwd(A), M1)),dh(M3, N2)), N4)))

∈ tr1)))

⇒
(∃ag1, MS, ag2, M1, N, N̂ : ag1 ̸= B ∧ ⟨pwd(A), G⟩ ∈ DY(got in f o(ag1, tr))
∧ gets(ag1,mapdh(dh(G, N2), MS)) ∈ tr ∧ send(ag1, ag2, ⟨M1, N⟩,dh(G, N)) ∈ tr
∧M3 = mapdh(dh(G, N), MS)
∧M1 ∈ DY({pwd(A), M1}) ∧M1 ∈ DY({pwd(A), M1})
∧ gets(ag1,dh(gen(dh(G,dec(pwd(A), M1)),dh(M3, N2)), N4)) ∈ tr

∧ send(ag1, ag2, N̂, M5) ∈ tr

∧M5 = dh(gen(dh(G,dec(pwd(A), M1)),dh(mapdh(dh(G, N2), MS), N)), N̂)

∧ says(ag1, ag2,mac(dh(dh(gen(dh(G,dec(pwd(A), M1)),dh(M3, N2)), N4), N̂),
dh(gen(dh(G,dec(pwd(A), M1)),dh(M3, N2)), N4))) ∈ tr)

The events by B in tr fixes a PACE run from the point of view of B. To express that the
access to the password pwd(A) and the generator G happens prior to the other events in
tr, we subdivide tr into two chronologically ordered parts tr0 and tr1. The note event that
represents the access to the password and the generator belongs to tr0, and the remaining

152 CHAPTER 8. VERIFICATION OF PACE’S TRACE PROPERTIES

events by B occur in tr1.
Similar to the authentication property in 79, we need that the password and the MAC

key are not (accidentally) revealed.
As it is shown in Fig. 8.1, there is no guarantee for a terminal B that the peer is running

PACE in the card role. In this figure we have a complete PACE run between a terminal B
and a second agent B′ acting also in the terminal role. The used M1 is an arbitrary message,
which is not necessary an encrypted nonce. Fortunately, this does not pose a real secu-
rity threat in the application scenario, since the card will not reach a state where access to
anyone of the terminals is granted (see Sec. 2.2).

z

I A

exch1 x 1

exch1 sk =dh g , sk

exch2 z , pk ,sk 1, sk 2=dh gen dh g , dec pw , z ,dh pk , sk 1 , sk 2

prove n , pk , sk =mac dh pk , sk , pk

B

prove dec pw , z , ... , x 2

exch2 z , ... , x1
' , x2

'

B '
z

exch1 x 1
'

exch1 x1 exch1 x 1
'

exch2 z , ... , x1 , x2

exch2 z , ... , x1
' , x2

'
exch2 z , ... , x1 , x2

prove dec pw , z , ... , x 2
'

prove dec pw , z , ... , x 2
'
prove dec pw , z , ... , x 2

Figure 8.1: False Authentication of a Card

Hence, the authentication guarantees for B include both cases, i.e. the peer has run
PACE in the card role or in the terminal role. This means the following:

1. There is an agent ag1 that has received the messages of B. She is not necessarily the
participant A addressed by B.

2. ag1 has generated the messages that were received by B. But, the messages of ag1 are
not necessarily addressed to B.

3. ag1 and B have used the same password.

These guarantees are given in both cases: (i) ag1 has run PACE in the card role and (ii)
ag1 has run PACE in the terminal role. In the former case, the intended partner of ag1 is

8.5. PROTECTION OF THE MAC KEY 153

any terminal ag2. The message M1 that is recorded in the send event by ag1 is a nonce, and
M1 must be equal to the encryption of this nonce by pwd(A).

In case (ii), the intended partner of ag1 is A. The message M1 that is recorded in the
send event by ag1 equals M1.

In both cases, we have a similar guarantee about the structure and the content of the
peer’s messages M3 and M5 as in property 79.

8.5 Protection of the MAC Key

Both authenticity properties rely on the same central argument, that the peer is not able to
generate the MAC without possessing the fresh generator used in the second DH exchange
(steps 4 and 5). According to PACE, a card A computes the fresh generator ĝA by ĝA =
gen(dh(g,nc1),dh(M2,nc3)), where

• nc1 and nc3 are arbitrary nonces, generated by A in steps 1 and 3, respectively,

• g is the static generator of A,

• and M2 is a arbitrary message received by A in step 2.

Note that nc1, nc3, and g can be seen as arbitrary instances of the variables N1, N3 and G
in 79.

In step 6, A checks the authenticity of the received message M6 by comparison with the
own mac-message mac(dh(M4,nc5),dh(ĝA,nc5)), where

• M4 is a arbitrary message received by A in step 4,

• and nc5 is a arbitrary nonce, generated by A and sent as part of m̂5 = dh(ĝA,nc5) in
step 5.

Here, nc5 can be seen as an arbitrary instance of the variable N5 in 79.
Since nc5 is a local secret of A and was sent bound with the fresh generator ĝA in m̂5,

the only way to embed nc5 in the MAC-key is to use m̂5 in its computation. This implies
that dh(M4,nc5) = dh(. . . ,dh(m̂5, x1), . . . , xn), i.e. M4 = dh(. . . ,dh(ĝA, x1), . . . , xn), and that
the peer has used x1, . . . , xn to compute the MAC-key. According to the regular structure of
the dh-messages in the protocol, anyone who generates M4 and possesses at the same time
all x1, . . . , xn, would need to use ĝA. This entails that the peer was able to compute the fresh
generator ĝA. As ĝA is unknown by the attacker (see Sec. 8.2), the peer is honest and has
participated in the computation of ĝA using the password pwd(A).

The same argumentation applies to the authenticity of message 7, as required for 80.
The considered message parts are obviously from the point of view of a terminal B. For
instance, the fresh generator is computed by ĝB = gen(dh(g,dec(pwd(A), M1),dh(M3,nc2)),
where

• g is the static generator of A and pwd(A) her password,

• M1 and M3 are arbitrary messages received by B in steps 1 and 3, respectively,

• and nc2 is a arbitrary nonce, generated by B in step 2.

Here, nc2 and g can be seen as arbitrary instances of the variables N2 and G in 80.
The above mentioned binding and regularity arguments are in particular required when

handling the fake cases in the authenticity proofs. Considering the authenticity of message
6, the fake case yields to a proof state where

1. the mac-message m̂6 = mac(dh(M4,nc5),dh(ĝA,nc5)) does not belong to the observ-
able messages (m̂6 ̸∈ ik),

154 CHAPTER 8. VERIFICATION OF PACE’S TRACE PROPERTIES

2. and m̂6 is assumed to be forged by the attacker (m̂6 ∈ DY(ik)).

The proof goal is handled then by tracing back the assumption (in 2) to the negation of the
basic confidentiality property. This is done in two major steps where we need to apply our
proof technique from Chap. 6.

Step 1: We reduce the occurrence of the mac-message to the occurrence of the MAC-
key in the intruder knowledge. Following our proof technique, we use ccl2 and apply
theorem 54 in combination with the following regularity lemma. It holds, when the protocol
messages do not include the fixed mac-object (neither as a crypt-part nor as a select-part).

PropertyVSE 81 (Absence of protected mac-Objects):

(tr ∈ PACE ∧mac(m0,m1) ̸∈ spies(tr) ∧ ¬(m0,m1 ∈ DY(spies(tr))))
⇒ spies(tr) ∩ ccl2(mac(m0,m1)) = ∅

It is easy to check that definition 51 (of ccl2), the corresponding correctness theorem 54
and the protocol property 81 allow us to conclude from the assumption in (2) and the hy-
pothesis in (1) that the MAC-key dh(M4,nc5) belongs to DY(ik).

Step 2: We reduce the occurrence of the MAC-key dh(M4,nc5) to the occurrence of the
fresh generator ĝA in the intruder knowledge. This is done by combining the following
propositions on M4, nc5 and ĝA:

1. As M4 is the arbitrary message that is received by A in step 4, it belongs to the in-
truder knowledge.

2. The nonce nc5 is sent bound with the fresh generator ĝA in (the message dh(ĝA,nc5)
of) step 5. It belongs to the local secrets of A.

The key property in this part of the proof is a theorem that enforces a certain structure of
M4 due to the binding of nc5 with ĝA. In fact, the theorem holds not only for the local secret
nc5 and the generator ĝA used in step 5, but also for the local secrets and the generators used
in the other DH steps (2, 3 and 4) of PACE. According to the protocol, the used generators
(m̂) by regular participants (in steps 2–5) are not dh-objects and the generated nonces (N̂)
are local secrets, i.e. confidential. For a public DH value dh(m̂, N̂) that is sent by a regular
participant, the following theorem provides us with all possible alternatives for the attacker
to embed N̂ with an arbitrary message m in a dh-object dh(m, N̂). In the proof of this theorem,
we need to reason on the derivation of dh(m, N̂) by induction on the dh-structure of m. For
this reason, we generalize the occurrence of dh(m, N̂) to the occurrence of some message in
ccl2(dh(m, N̂)). More details are given while sketching the proof of the obtained binding
property:

PropertyVSE 82 (Binding local Secret with Generator):

(tr ∈ PACE ∧ dh(m̂, N̂) ∈ spies(tr) ∧ (∀m1,m2 : ¬objdh(m̂,m1,m2))

∧ N̂ ̸∈ DY(spies(tr)) ∧ DY(spies(tr)) ∩ ccl2(dh(m, N̂)) ̸= ∅)

⇒
((∃MS : m = mapdh(m̂, MS) ∧MS ⊂ DY(spies(tr))) ∨
(∃N, MS : note(spy,dh(dh(m̂, N̂), N)) ∈ tr

∧ dh(m, N̂) = mapdh(dh(dh(m̂, N̂), N), MS)))

8.5. PROTECTION OF THE MAC KEY 155

This property states that there are three alternatives for the attacker to obtain a dh-object
dh(m, N̂):

1. reusing the public DH value dh(m̂, N̂), i.e. m = m̂,

2. computing a common DH value out of the public DH value dh(m̂, N̂) and arbitrary
many private values in a multiset MS = {x1, . . . , xn} that the attacker employed to
generate a public DH value dh(. . . ,dh(m̂, x1), . . . , xn),

3. or computing m out of an accidentally obtained common DH value dh(dh(m̂, N̂), N)
and arbitrary many messages by successive applications of dh.

Note that the first alternative corresponds to the first part of the conclusion (in prop-
erty 82) when MS is empty.

Before we give an overview on the proof of theorem 82, we briefly explain its use in
the fake case of our authenticity proofs: Let us focus on the authenticity by A. Here, we
apply theorem 82 substituting m̂, N̂ and respectively m by ĝA, nc5 and M4, respectively.
The above three cases yields the following proof states:

1. m = m̂ implies M4 = ĝA. The premise (in 1), i.e. M4 belongs to the observable mes-
sages, means then that ĝA belongs to the intruder knowledge. This allows us to close
the goal by contradiction with the confidentiality of ĝA.

2. The generation of a public DH value dh(. . . ,dh(m̂, x1), . . . , xn) using x1, . . . , xn by the
attacker necessitates to use also the generator m̂, which we substituted with ĝA. This
allows us to proceed like in the first case.

3. The accidentally obtained common DH value implies that the trace tr includes the
event note(spy,dh(dh(ĝA,nc5), N)). This allows us to close the goal by contradiction
with the assumption that the MAC-key from the point of view of A is not revealed
accidentally (cp. the fourth premise in 79).

The proof arguments in case (1) and (2) are actually based on a regularity lemma about the
occurrence of dh-values mapdh(ĝ,{x1, . . . , xn}) together with the elements of {x1, . . . , xn} in
the intruder knowledge. The regularity lemma implies that the attacker needs (in such a
case) to possess the generator ĝ, too.

Now, we turn to the proof of theorem 82. This theorem is a typical protocol property that
is proven by nested induction: The first induction is wrt. the dh-structure of m that allows
us to trace back the occurrence of dh(m, N̂) (for all possible messages m) to the occurrence
of smaller dh-objects dh(m′, N̂).

In the base case, we prove the theorem conjecture for all messages m that are not dh-
objects. More details are given below.

In the step case, we consider messages dh(m, N̂) with at least two successive applications
of dh at the top-positions. Such a dh-message does not occur in any protocol step. It matches
only the messages that can be gained by the attacker in oops events. These facts are proven
by induction on PACE traces. In the obtained step case, the conjecture hypothesis includes
one proposition of the form

DY({mPACE} ∪ spies(tr)) ∩ ccl2(dh(m, N̂)) ̸= ∅,

where mPACE originates from the last event in the extended trace.
Applying the correctness theorem 55 of ccl2 wrt. dh-objects to this part of the conjecture

hypothesis, we obtain three cases:

156 CHAPTER 8. VERIFICATION OF PACE’S TRACE PROPERTIES

1. The observable messages allow us to derive dh(m, N̂) by extraction, i.e. they include
dh(m, N̂) in clear-text, as select-part or as crypt-part, as formalized by

{mPACE} ∪ spies(tr) ∩ ccl2(dh(m, N̂)) ̸= ∅.

2. The dh-message dh(m, N̂) is generated by composition out of m and N̂, i.e.

m, N̂ ∈ DY({mPACE} ∪ spies(tr)).

3. The dh-message dh(m, N̂) is generated by composition out of dh(m′, N̂) and some
message mi, i.e.

dh(m′, N̂),mi ∈ DY({mPACE} ∪ spies(tr)) with dh(dh(m′, N̂),mi) = dh(m, N̂).

The first proof state is handled with a further case distinction:

• The observable messages in spies(tr) allow us to derive dh(m, N̂) by extraction, i.e.
spies(tr) ∩ ccl2(dh(m, N̂)) ̸= ∅. This proof goal is closed with the help of the corre-
sponding induction hypothesis.

• The message mPACE, which originates from the last event in the extended trace, allows
us to derive dh(m, N̂) by extraction, i.e. mPACE ∈ ccl2(dh(m, N̂)). Since dh(m, N̂) has at
least two successive applications of dh at the top-positions, only a message mPACE =

dh(dh(Ĝ, N), N′) that originates from a oops event fulfills this property. This provides
us with the second alternative in the conclusion of theorem 82. Here, we have the
specific case where the list MS is empty.

The second proof state above is closed by contradiction with the assumption that N̂ is
confidential, i.e. N̂ ̸∈ DY({mPACE} ∪ spies(tr)).

In the third proof state, the occurrence of a smaller dh-object dh(m′, N̂) in the knowledge
set DY({mPACE} ∪ spies(tr)) allows us to apply the original induction hypothesis (wrt. the
dh-structure). The lists MS in the resulting consequences are then extended with mi.

We terminate this section with an overview on the base case in the proof of our theo-
rem 82. Since m is not a dh-object, we know that dh(m, N̂) can be generated only out of m
and N̂. As N̂ is confidential, the only remaining option for the attacker to derive a mes-
sage of the form dh(m, N̂) is to reuse dh(m̂, N̂). This means, m = m̂, which we prove in the
following unicity theorem by induction on PACE traces.

PropertyVSE 83 (Unicity of DH Generator):

(tr ∈ PACE ∧ N̂ ̸∈ DY(spies(tr)))
⇒
(∃m̂ : (∀m : ((∀m1,m2 : ¬objdh(m,m1,m2)) ∧ spies(tr) ∩ ccl2(dh(m, N̂)) ̸= ∅)

⇒ m = m̂))

This unicity property of PACE, which is fundamental for the authenticity guarantees,
means intuitively the following: Any occurrence of a secret nonce N̂ in dh(m, N̂) with a mes-
sage m that is not a dh-object corresponds to the occurrence of a public DH value dh(m̂, N̂),
where m̂ is used as generator.

8.6. FORWARD SECRECY OF SESSION KEYS 157

8.6 Forward Secrecy of Session Keys

According to the technical document [60] that specifies PACE, the MAC-key is used as
key material to generate the session key used afterwards for the secure transmission of the
application data. Hence, the confidentiality of the session key follows immediately from
the confidentiality of the MAC-key, which belongs in turn to the central arguments of the
authenticity proofs. In this section, we are interested in a stronger confidentiality property,
i.e. the forward secrecy of this key, which implies as well that of the session key.

According to the authentication properties, the MAC-key corresponds to the common
DH value established in the second DH phase, where the public DH values are generated
by two honest participants. Furthermore, it is necessary to assume additionally that the
key is not disclosed accidentally. In this way, we obtain the following formalization for the
intended forward secrecy property:

PropertyVSE 84 (Forward Secrecy):

(tr ∈ PACE ∧ Ag1 ̸∈ bad ∧ Ag2 ̸∈ bad ∧
∧ send(Ag1, Ag, N̂1,dh(gen(M, M̂), N̂1)) ∈ tr

∧ send(Ag2, Ag′, N̂2,dh(gen(M, M̂), N̂2)) ∈ tr

∧ note(spy,dh(dh(gen(M, M̂), N̂1), N̂2)) ̸∈ tr)

⇒ dh(dh(gen(M, M̂), N̂1), N̂2) ̸∈ DY({pwd(A)} ∪ spies(tr))

The premises cover all the possible scenarios given in the authentication properties.
The exclusion of the note event implies that we are dealing with a secret message that

does not occur in any protocol message. According to our proof technique from Chap. 6,
we may then prove the property 84 with the help of the ccl-function ccl2 and its correctness
theorem 55: We assume dh(dh(gen(M, M̂), N̂1), N̂2)∈DY({pwd(A)}∪ spies(tr)) and apply
the correctness theorem 55, which yields two cases:

1. ({pwd(A)} ∪ spies(tr)) ∩ ccl2(dh(dh(gen(M, M̂), N̂1), N̂2)) ̸= ∅

2. N̂2,dh(gen(M, M̂), N̂1) are in DY({pwd(A)} ∪ spies(tr)) or N̂1,dh(gen(M, M̂), N̂2) are
in DY({pwd(A)} ∪ spies(tr)).

In the first case, we apply the definition of ccl2 and a corresponding lemma, where we
simply check that no message in spies(tr) allows us to derive dh(dh(gen(M, M̂), N̂1), N̂2) by
extraction. The second case is refuted by the fact that the nonces N̂2 and N̂1 do not belong
to DY({pwd(A)} ∪ spies(tr)), since they are generated locally by Ag1 and Ag2 and cannot
be extracted from the observable messages.

158 CHAPTER 8. VERIFICATION OF PACE’S TRACE PROPERTIES

Chapter 9

Verification of TC-AMP’s Trace
Properties

In this chapter we give an overview on the verification of the trace properties of TC-AMP.
We start with an excerpt from the specification of the protocol model. Then we describe
the proofs of the main protocol properties: the basic confidentiality property, the mutual
authentication, and the forward secrecy of session key. We focus in particular on the formal-
ization and we sketch the proof ideas as well as the use of our proof technique, described
in Chap. 6.

9.1 Protocol Model

Following the conventions in Sec. 7.1.6, the set TCAMP, which contains all possible TC-
AMP traces, is defined according to schema 70. Besides the generic cases, we obtain four
protocol-specific cases: TCAMP1(ev, tr)–TCAMP3(ev, tr) cover the admissible trace exten-
sions according to TC-AMP and Oopsev(ev, tr) models dynamic corruption. In this section,
we discuss the definition of these predicates. Before that, we describe the protocol-specific
details regarding the initial knowledge.

9.1.1 Initial Knowledge

In Sec. 7.1.4 we introduced the predicate initHas(ag,m) to express what participants ini-
tially know. The protocol-specific assumptions about this initial knowledge are specified
in form of axioms.

AxiomVSE 85 (initHas; TC-AMP):

1.

initHas(ag,m)⇒ (∃g1, g2 : g1 ̸= g2 ∧
(m = ⟨pwd(ag), g1, g2⟩
∨ (∃ag′ : ag ̸= ag′ ∧m = ⟨ag′, pwd(ag′), g1, g2⟩)))

2.

(initHas(ag, ⟨pwd(ag), g1, g2⟩) ∧ initHas(ag′, ⟨ag, pwd(ag), g′1, g′2⟩))⇒
(g1 = g′1 ∧ g2 = g′2)

159

160 CHAPTER 9. VERIFICATION OF TC-AMP’S TRACE PROPERTIES

3.
∃g1, g2 : initHas(ag, ⟨pwd(ag), g1, g2⟩)

4.
∃ag, ag′, g1, g2 : ag ̸= ag′ ∧ initHas(ag, ⟨ag′, pwd(ag′), g1, g2⟩)

The initial knowledge consists of triples of the form ⟨pwd(ag), g1, g2⟩ and quadruplets
of the form ⟨ag′, pwd(ag′), g1, g2⟩, where g1 and g2 are two different atomic bases. To run
TC-AMP in the card role, ag needs to access ⟨pwd(ag), g1, g2⟩, i.e. the own password and
two associated generators.

In order to run TC-AMP in the terminal role, ag has to access ⟨ag′, pwd(ag′), g1, g2⟩. Note
that the participant ag′ (in the card role) differs from ag. This way, we have a kind of role
separation, in the sense that no agent runs TC-AMP with himself as a partner (see Sec. 9.3
and 9.4).

By the second axiom, every password is associated with the same pair of generators,
and that from the perspective of all agents. Every agent can run TC-AMP in the card role
and there is at least one agent that is able to run TC-AMP in the terminal role. These axioms
are needed to prove that the specification of the TC-AMP rules is not restrictive. That is,
complete TC-AMP runs are not excluded through the conditions used in our formalization
of these rules.

9.1.2 TC-AMP Rules

In this section we discuss the specification of the TC-AMP rules. The first rule includes the
condition for initiating a new run by a terminal.

DefinitionVSE 86 (TCAMP1):

TCAMP1(ev, tr)⇔
(∃B, A, g1, g2,nc1 : B ̸= A ∧ note(B, ⟨A, pwd(A), g1, g2⟩) ∈ tr
∧¬used(nc1, tr) ∧ ev = send(B, A,nc1,⊕(∗(nc1, g1),⊖(∗(pwd(A), g2)))))

Before initiating a run, B must have accessed the password and the associated pair of
generators that belong to a card A.

DefinitionVSE 87 (TCAMP2):

TCAMP2(ev, tr)⇔
(∃A, B, g1, g2, M1,nc2 : A ̸= B ∧ note(A, ⟨pwd(A), g1, g2⟩) ∈ tr
∧gets(A, M1) ∈ tr ∧ ¬used(nc2, tr) ∧
ev = send(A, B,nc2, ⟨∗(pwd(A),∗(nc2, g1)),

h1(M1,∗(pwd(A),∗(nc2, g1)),∗(nc2,⊕(M1,⊕(∗(pwd(A), g2),∗(M1, g1)))))⟩))

Before sending message 2, a card A must have accessed the own password and the
associated pair of generators. It also must have received a message M1 that is expected to
be generated by a terminal B using the same password and generators and a new nonce.

9.2. BASIC CONFIDENTIALITY PROPERTIES 161

DefinitionVSE 88 (TCAMP3):

TCAMP3(ev, tr)⇔
(∃B, A, g1, g2,nc1, M2 : send(B, A,nc1,⊕(∗(nc1, g1),∗(pwd(A),⊖(g2)))) ∈ tr ∧

gets(B, ⟨M2, h1(⊕(∗(nc1, g1),∗(pwd(A),⊖(g2))), M2,
⊕(∗(inv(pwd(A)),∗(nc1, M2)),
∗(inv(pwd(A)),∗(⊕(∗(nc1, g1),∗(pwd(A),⊖(g2))), M2))))⟩) ∈ tr ∧

ev = says(B, A, h2(⊕(∗(nc1, g1),∗(pwd(A),⊖(g2))), M2,
⊕(∗(inv(pwd(A)),∗(nc1, M2)),
∗(inv(pwd(A)),∗(⊕(∗(nc1, g1),∗(pwd(A),⊖(g2))), M2))))))

The terminal B gets the response of A in step 2, verifies its content, and sends in step 3
another hash value, which A uses to verify the authentication of B.

In addition to the regular protocol steps, we model the accidental loss of session keys
for a stronger form of resistance against offline password testing (see Chap. 14).

DefinitionVSE 89 (Oopsev; TC-AMP):

Oopsev(ev, tr)⇔
(∃B, A, g1, g2,nc1,nc2 : send(B, A,nc1,⊕(∗(nc1, g1),∗(pwd(A),⊖(g2)))) ∈ tr
∧send(A, B,nc2, ⟨∗(pwd(A),∗(nc2, g1)),

h1(⊕(∗(nc1, g1),∗(pwd(A),⊖(g2))),∗(pwd(A),∗(nc2, g1)),
⊕(∗(nc2,∗(nc1, g1)),∗(nc2,⊕(∗(nc1, g1),∗(pwd(A),⊖(g2))), g1)))⟩) ∈ tr

∧ev = note(spy,
⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(⊕(∗(nc1, g1),∗(pwd(A),⊖(g2))), g1)))))

The first step by B and the second step by A fix the accidentally lost session key (the
third h1- and h2-part) from the perspective of the participants.

9.2 Basic Confidentiality Properties

The main objective of TC-AMP is the authenticated establishment of a session key between
a terminal B and a card A.

This requires in particular the mutual authentication of both participants, which com-
prises typically one authentication guarantee from the point of view of B (see Sec. 9.3) and
another authentication guarantee from the point of view of A (see Sec. 9.4).

The proof of the first authentication guarantee is based on the protection of the third
h1-part in the second message part of step 2, which we describe in Sec. 9.5. This protection
relies on the confidentiality of the message parts nc1, πA, ∗(nc1, g1) and ∗(πA, g2) that occur
in the first message by B.

In parallel, the proof of the second authentication guarantee is based on the protection
of the third h2-part in step 3, which we describe in Sec. 9.6. This protection relies on the
confidentiality of the message parts nc2, πA, ∗(nc2, g1) and ∗(πA, g1) that occur in the first
message by A, i.e. in the second TC-AMP step.

In addition to the mutual authentication, TC-AMP guarantees the forward secrecy of
the established session key (see Sec. 9.7). This property relies primarily on the local secrecy
of the nonces nc1 and nc2 (generated by honest B and A), which are not accessible for the
attacker even when the password πA is disclosed.

162 CHAPTER 9. VERIFICATION OF TC-AMP’S TRACE PROPERTIES

Recapitulating, the proof of the TC-AMP standard properties requires the following
basic confidentiality properties:

PropertyVSE 90 (Basic Confidentiality):

1. (tr ∈ TCAMP ∧ A ̸∈ bad ∧ (∀ag : note(ag, ⟨A, pwd(A), g1, g2⟩) ∈ tr⇒ ag ̸∈ bad)
∧ send(B, A,nc1, (nc1 ∗ g1)⊕ (⊖(pwd(A) ∗ g2))) ∈ tr)
⇒ pwd(A),nc1,∗(nc1, g1),∗(pwd(A), g2) ̸∈ DY(spies(tr))

2. (tr ∈ TCAMP ∧ A ̸∈ bad ∧ (∀ag : note(ag, ⟨A, pwd(A), g1, g2⟩) ∈ tr⇒ ag ̸∈ bad)
∧ send(A, B,nc2, ⟨nc2 ∗ (pwd(A) ∗ g1), h1(m1,nc2 ∗ (pwd(A) ∗ g1),

nc2 ∗ ((pwd(A) ∗ g2)⊕m1 ⊕ (m1 ∗ g1)))⟩) ∈ tr)
⇒ pwd(A),nc2,∗(nc2, g1),∗(pwd(A), g1) ̸∈ DY(spies(tr))

3. (tr ∈ TCAMP ∧ B ̸∈ bad ∧
send(B, A,nc1, (nc1 ∗ g1)⊕ (⊖(pwd(A) ∗ g2))) ∈ tr)
⇒ nc1 ̸∈ DY(spies(tr) ∪ {pwd(A)})

4. (tr ∈ TCAMP ∧ A ̸∈ bad ∧
send(A, B,nc2, ⟨nc2 ∗ (pwd(A) ∗ g1), h1(m1,nc2 ∗ (pwd(A) ∗ g1),

nc2 ∗ ((pwd(A) ∗ g2)⊕m1 ⊕ (m1 ∗ g1)))⟩) ∈ tr)
⇒ nc2 ̸∈ DY(spies(tr) ∪ {pwd(A)})

According to our proof technique from Chap. 6, we prove properties 1 and 2 with the
help of the ccl-function ccl1 and the correctness theorem 46 and properties 3 and 4 with the
help of the ccl-function ccl2 and the correctness theorem 53. We want to focus on the proof
of properties 1 and 2, since the proofs of 3 and 4 are straightforward.

For the use of the ccl-function ccl1 and the corresponding correctness theorem, we have
to provide a set S that fulfills ℜ1(S). Instead of using two tailored sets, one for each prop-
erty, we prefer to use a single set S for both properties. This set is fixed through the non-
compromised password pwd(A). It contains (in addition to pwd(A)) all nonces and all con-
fidential ⊕-parts that are bound with pwd(A), including ⊕-parts in corresponding oops-
events. So, we use ΦTCAMP(S, pwd(A), tr) to express that S is the smallest set that fulfills:

1. if there is some event note(ag, ⟨A, pwd(A), g1, g2⟩) or note(A, ⟨pwd(A), g1, g2⟩) in tr
where the password pwd(A) is not accessed by a bad agent, then the set S includes
pwd(A),∗(pwd(A), g1) and ∗(pwd(A), g2),

2. if there is some event send(B, A,nc1, (nc1 ∗ g1) ⊕ (⊖(pwd(A) ∗ g2))) in tr where the
password pwd(A) is not accessed by a bad agent, then the set S includes nc1 and
∗(nc1, g1), and

3. if there is some event send(A, B,nc2, ⟨nc2 ∗ (pwd(A) ∗ g1), h1(m1,nc2 ∗ (pwd(A) ∗
g1),nc2 ∗ ((pwd(A) ∗ g2)⊕m1⊕ (m1 ∗ g1)))⟩) in tr where the password pwd(A) is not
accessed by a bad agent, then the set S includes nc2, ∗(nc2, g1) and ∗(nc2,∗(nc1, g1))
for each send(B, A,nc1, (nc1 ∗ g1)⊕ (⊖(pwd(A) ∗ g2))) in tr.

Note that ΦTCAMP(S, pwd(A), tr) implies the required condition ℜ1(S) for the applica-
tion of the correctness theorem.

Using ΦTCAMP(S, pwd(A), tr), we formalize the lemma that combines the basic confi-
dentiality properties 1 and 2 as follows:

9.2. BASIC CONFIDENTIALITY PROPERTIES 163

LemmaVSE 91 (Confidentiality of ∗- and ⊕-Parts):

(tr ∈ TCAMP ∧ A ̸∈ bad ∧ (∀ag : note(ag, ⟨A, pwd(A), g1, g2⟩) ∈ tr⇒ ag ̸∈ bad)

⇒ (∃S : ΦTCAMP(S, pwd(A), tr) ∧ spies(tr) ∩ ccl1(S) = ∅)

The proof of this lemma is by induction on TC-AMP traces. The induction hypothesis
provides us with a set Str that fulfills

C1: ΦTCAMP(Str, pwd(A), tr), and

C2: spies(tr) ∩ ccl1(Str) = ∅.

The proof goal in the step case consists in providing an appropriate extension Sev,tr of the
set Str such that we have

G1: ΦTCAMP(Sev,tr ⊎ Str, pwd(A), ev.tr), and

G2: spies(ev.tr) ∩ ccl1(Sev,tr ⊎ Str) = ∅.

In the fake case, where mev the message of the last event ev belongs to DY(spies(tr)),
the set Sev,tr is empty and proof goal G2 follows from C2 (in the induction hypothesis) by
applying the correctness theorem 46 of ccl1.

In the remaining cases, we need the sets Sev,tr and Str to satisfy (as explained in
Sec. 6.1.2) the required extension condition in theorem 45, for some message part m̂ that
is not used in the observable messages from tr (but in the last event ev). This means, Sev,tr
and Str must satisfy

(∀m ∈ Sev,tr : uses(m, m̂)) ∧ (∀m ∈ Str : ¬uses(m, m̂)),

in order to use C2 from the induction hypothesis and reduce the assumed negation of
G2 to mev ∈ ccl2(Sev,tr ⊎ Str), provided m̂ is not used in the observable messages from tr.
Then, we refute this assumption by showing that mev /∈ ccl1(Sev,tr ⊎ Str) holds, (based on
ΦTCAMP(Str, pwd(A), tr)).

To reach our proof goal, we set the set Sev,tr according to the following principle:

1. In case the event ev equals note(ag, ⟨A, pwd(A), g1, g2⟩) or note(A, ⟨pwd(A), g1, g2⟩)
and pwd(A) is non-compromised, we distinguish whether pwd(A) is already in-
cluded in Str.

• If pwd(A) ∈ Str, we set Sev,tr = ∅.

• Otherwise, we set Sev,tr = {pwd(A),∗(pwd(A), g1),∗(pwd(A), g2)}.

2. In case ev = send(B, A,nc1, (nc1 ∗ g1) ⊕ (⊖(pwd(A) ∗ g2))) and pwd(A) is non-
compromised, we set Sev,tr = {nc1,∗(nc1, g1)}.

3. When the last event ev equals

send(A, B,nc2, ⟨∗(nc2,∗(pwd(A), g1)), h1(m1,∗(nc2,∗(pwd(A), g1)),
∗ (nc2,⊕(⊕(∗(pwd(A), g2),m1),∗(m1, g1))))⟩)

and pwd(A) is non-compromised, we set

Sev,tr = {nc2,∗(nc2, g1)} ∪ {∗(nc2,∗(nc1, g1)) | ∗ (nc1, g1) ∈ Str}.

4. In all other cases, we set Sev,tr = ∅.

164 CHAPTER 9. VERIFICATION OF TC-AMP’S TRACE PROPERTIES

The choice of Sev,tr according to this principle implies obviously that ΦTCAMP(Sev,tr ⊎
Str, pwd(A), ev.tr) is a consequence of ΦTCAMP(Str, pwd(A), tr). Furthermore, it permits us
to obtain in each extension case the required conditions:

• In case (1), we use m̂ = pwd(A). Here, ΦTCAMP(Str, pwd(A), tr) and pwd(A) /∈ Str
imply that tr does not include any event note(ag, ⟨A, pwd(A), g1, g2⟩) and any event
note(A, ⟨pwd(A), g1, g2⟩). Thus, the trace tr does not include any subsequent event
where pwd(A) is used. This permits us to show ¬uses(m, pwd(A)) for all m in
spies(tr).

• In case (2), we use m̂ = nc1. Here, the condition ¬used(nc1, tr) of the first TC-AMP
step yields ¬uses(m,nc1) for all m ∈ spies(tr).

• In case (3), we use m̂ = nc2. Here, the condition ¬used(nc2, tr) of the first TC-AMP
step yields ¬uses(m,nc1) for all m ∈ spies(tr).

9.3 Authentication by the Terminal

TC-AMP allows for the terminal B to authenticate the card A upon receiving and checking
message 2. Formalizing this authentication guarantee according to the general principles
introduced in Sec. 7.1.7.2 yields the following property.

PropertyVSE 92 (Auth byB):

(tr ∈ TCAMP ∧ A ̸∈ bad ∧ (∀ag : note(ag, ⟨A, pwd(A), g1, g2⟩) ∈ tr⇒ ag ̸∈ bad)
∧ send(B, A,nc1, (nc1 ∗ g1)⊕ (⊖(pwd(A) ∗ g2))) ∈ tr
∧ gets(B, ⟨m2, h1((nc1 ∗ g1)⊕ (⊖(pwd(A) ∗ g2)),m2,

inv(pwd(A)) ∗ (nc1 ∗m2)⊕
inv(pwd(A)) ∗ (((nc1 ∗ g1)⊕ (⊖(pwd(A) ∗ g2))) ∗m2))⟩) ∈ tr

∧ (∀nc : note(spy,nc ∗ (nc1 ∗ g1)⊕
nc ∗ (((nc1 ∗ g1)⊕ (⊖(pwd(A) ∗ g2))) ∗ g1)) /∈ tr))

⇒
(∃nc2 : m2 = nc2 ∗ pwd(A) ∗ g1 ∧

gets(A, (nc1 ∗ g1)⊕ (⊖(pwd(A) ∗ g2))) ∈ tr ∧
send(A, B,nc2, ⟨m2, h1((nc1 ∗ g1)⊕ (⊖(pwd(A) ∗ g2)),m2,

nc2 ∗ ((nc1 ∗ g1)⊕ ((nc1 ∗ g1)⊕ (⊖(pwd(A) ∗ g2))) ∗ g1))⟩) ∈ tr)

Obviously, we need to exclude oops-events that disclose the third h1-part.
This authenticity guarantee for the terminal B is stronger than that of PACE: The peer

equals the intended partner and participates in the role of the card; She addresses her mes-
sage to B.

Property 92 is proved immediately with the help of the corresponding authenticity
lemma. The proof of the latter is by induction on TC-AMP traces. The most involved
part, described in Sec. 9.5, deals (in the fake case) with the protection of the third h1-part.

9.4 Authentication by the Card

The opposite authentication, i.e. of B by the card A, is ensued after receiving and checking
message 3. Formalizing this authentication guarantee according to the general principles
introduced in Sec. 7.1.7.2 yields the following property.

9.5. PROTECTION OF THE THIRD H1-PART 165

PropertyVSE 93 (Auth byA):

(tr ∈ TCAMP ∧ A ̸∈ bad ∧ (∀ag : note(ag, ⟨A, pwd(A), g1, g2⟩) ∈ tr⇒ ag ̸∈ bad)
∧ send(A, B,nc2, ⟨nc2 ∗ (pwd(A) ∗ g1), h1(m1,nc2 ∗ (pwd(A) ∗ g1),

nc2 ∗ ((pwd(A) ∗ g2)⊕m1 ⊕ (m1 ∗ g1)))⟩) ∈ tr
∧ gets(A, h2(m1,nc2 ∗ (pwd(A) ∗ g1),nc2 ∗ ((pwd(A) ∗ g2)⊕m1 ⊕ (m1 ∗ g1)))) ∈ tr
∧ (∀nc : note(spy,nc2 ∗ (nc ∗ g1)⊕

nc2 ∗ (((nc∗g1)⊕ (⊖(pwd(A) ∗ g2))) ∗ g1)) /∈ tr))
⇒
(∃nc1 : m1 = (nc1 ∗ g1)⊕ (⊖(pwd(A) ∗ g2)) ∧

gets(B, ⟨nc2 ∗ (pwd(A) ∗ g1), h1(m1,nc2 ∗ (pwd(A) ∗ g1),
nc2 ∗ ((pwd(A) ∗ g2)⊕m1 ⊕ (m1 ∗ g1)))⟩) ∈ tr ∧

says(B, A, h2(m1,nc2 ∗ (pwd(A) ∗ g1), (nc1 ∗ (nc2 ∗ g1))⊕ (m1 ∗ (nc2 ∗ g1)))) ∈ tr)

We need to exclude oops-events that disclose the third h2-part.
This authenticity guarantee for the card A is stronger than that of PACE: The peer equals

the intended partner and participates in the role of the terminal; She addresses her message
to A.

Property 93 is proved immediately with the help of the corresponding authenticity
lemma. The proof of the latter is by induction on TC-AMP traces. The most involved
part, described in Sec. 9.6, deals (in the fake case) with the protection of the third h2-part.

9.5 Protection of the Third h1-Part

In this section we describe the main proof arguments to exclude that the h1-message re-
ceived by the terminal in the second TC-AMP step is faked by the attacker. We sketch the
proof idea in Sec. 9.5.2, where the assumed fake message is reduced to available message
parts. In particular, the assumed derivation of the h1-message by the attacker necessitates
to employ a certain ⊕-object (the third h1-part) for its composition. More details to the par-
tial structure of this⊕-object is established with the help of the unicity theorem in Sec. 9.5.3.
To prove that the attacker is not able to derive such a ⊕-object we employ the invariant 58
about the structure and the conditions of all derivable ⊕-objects from the immediately ob-
servable messages. Before we describe the proof steps based on this invariant in Sec. 9.5.4,
we present (in Sec. 9.5.1) more details to the protocol-specific predicates used to link deriv-
able ⊕-objects to regular TC-AMP messages.

9.5.1 Invariant about Derivable ⊕-Objects

In this section, we recall the invariant about the derivable ⊕-objects from TC-AMP mes-
sages, which is introduced in Sec. 6.5.1.2. We start with the definition of the predicates
used to specify the different cases.

First, predicate TCAMP msg1(m, ik) holds for every ⊕-object m that originates from a
first regular TC-AMP step:

TCAMP msg1(m, ik)⇔
(∃nc1, g1, g2, pw(j) : ⊕(∗(nc1, g1),⊖(∗(pw(j), g2))) ∈ ik ∧

g1 ̸= g2 ∧ nc1, pw(j),∗(nc1, g1),∗(pw(j), g2) /∈ DY(ik) ∧
(m = ⊕(∗(nc1, g1),⊖(∗(pw(j), g2))) ∨m = ⊕(⊖(∗(nc1, g1)),∗(pw(j), g2))))

166 CHAPTER 9. VERIFICATION OF TC-AMP’S TRACE PROPERTIES

Second, predicate TCAMP oops(m, ik) holds for all ⊕-objects m originating from oops
events:

TCAMP oops(m, ik)⇔
(∃nc2,nc1, g1, g2, pw(j),m1,m12 : m1 = ⊕(∗(nc1, g1),⊖(∗(pw(j), g2))) ∧

m12 = ∗(nc2,∗(nc1, g1)) ∧ nc1,nc2, pw(j),m12,∗(nc2, g1) /∈ DY(ik) ∧
∗ (nc1, g1),∗(pw(j), g2) /∈ DY(ik) ∧⊕(m12,∗(nc2,∗(m1, g1))) ∈ ik ∧
(m = ⊕(m12,∗(nc2,∗(m1, g1))) ∨m = ⊕(⊖(∗(inv(m1),m12)),⊖(∗(nc2, g1))) ∨
m = ⊕(∗(inv(m1),m12),∗(nc2, g1)) ∨m = ⊕(⊖(m12),⊖(∗(nc2,∗(m1, g1))))))

Third, predicate TCAMP mrg(m, ik) holds for all ⊕-objects m that result by merging
other ⊕-objects originating from regular steps:

TCAMP mrg(m, ik)⇔
(∃nc1,nc3, g1, g2, pw(j) : nc1 ̸= nc3 ∧⊕(∗(nc1, g1),⊖(∗(pw(j), g2))) ∈ ik ∧
⊕ (∗(nc3, g1),⊖(∗(pw(j), g2))) ∈ ik ∧m = ⊕(∗(nc1, g1),⊖(∗(nc3, g1))) ∧
nc1,nc3, pw(j),∗(nc1, g1),∗(nc3, g1),∗(pw(j), g2) /∈ DY(ik))

Using these predicates, we obtain the following invariant:

PropertyVSE 94 (Derivable ⊕-Objects ; TC-AMP):

(tr ∈ TCAMP ∧ isObj⊕(m̂) ∧ DY(spies(tr)) ∩ ccl⊕2 (m̂) ̸= ∅)⇒
(∃msb,msp,n : syn⊕(m̂,msb ⊎msp) ∧
(∀m ∈ msb : ¬isObj⊕(m) ∧m ∈ DYl(spies(tr),n)) ∧
(∀m ∈ msp : (∃m′,ms : m′ ∈ DYl(spies(tr),n) ∧ms ⊆ DYl(spies(tr),n) ∧

syn∗(m,ms,m′) ∧ (TCAMP msg1(m′, spies(tr)) ∨
TCAMP mrg(m′, spies(tr)) ∨ TCAMP oops(m′, spies(tr))))))

In the following, we explain how TCAMP msg1, TCAMP oops and TCAMP mrg sat-
isfy the requirements ℵ1 and ℵ2 necessary for the provided proof of the invariant (in
Sec. 6.5.1.2).

Requirement ℵ1 is about the non-confidential left ∗-parts occurring in the ⊕-objects
that originate from regular messages according to the given predicates. The ⊕-objects
m that satisfy TCAMP msg1(m, ik) or TCAMP mrg(m, ik) include only confidential left ∗-
parts. The ⊕-objects m that satisfy TCAMP oops(m, ik) have just one non-confidential left
∗-part, which corresponds to a first TC-AMP message m1 = ⊕(∗(nc1, g1),⊖(∗(pw(j), g2)))
or to inv(m1). Here, the definition of TCAMP oops(m, ik) satisfies obviously require-
ment ℵ1. Take for instance m = ⊕(m12,∗(nc2,∗(m1, g1))), requirement ℵ1 necessitates
that ∗(inv(m1),m) is covered by one of the given predicates. This is clearly the case, as
TCAMP oops(∗(inv(m1),m), ik) ensues from TCAMP oops(m, ik).

Requirement ℵ2 ensures that all ⊕-objects (mlr) resulting by merging other ⊕-objects
(ml ,mr) linked to regular protocol messages are covered by the protocol-specific predicates
according to this principle: After the simplification of the public common left ∗-sub-messages
of mlr (if any), the resulting m′lr must be covered by the protocol-specific predicates, too.
According to the used predicates, we distinguish the following merge-sides:

9.5. PROTECTION OF THE THIRD H1-PART 167

• m1 equals ⊕(∗(nc1, g1),⊖(∗(π, g2))) and m3 equals ⊕(⊖(∗(nc3, g1)),∗(π, g2)), where
TCAMP msg1(m1, ik) and TCAMP msg1(m3, ik) hold: Here, we obtain the ⊕-object
⊕(m1,m3) = ⊕(∗(nc1, g1),⊖(∗(nc3, g1))) and this resulting message is covered by
TCAMP mrg(⊕(m1,m3), ik). It does not possess any common left ∗-sub-message.

• m12 equals ⊕(∗(nc1, g1),⊖(∗(nc2, g1))) and m2 equals ⊕(∗(nc2, g1),⊖(∗(π, g2))),
where TCAMP mrg(m12, ik) and TCAMP msg1(m2, ik) hold: Here, we obtain the
⊕-object ⊕(m12,m2) = ⊕(∗(nc1, g1),⊖(∗(π, g2))) and this message is covered by
TCAMP msg1(⊕(m12,m2), ik). It does not possess any common left ∗-sub-message.

• m12 equals ⊕(∗(nc1, g1),⊖(∗(nc2, g1))) and m23 equals ⊕(∗(nc2, g1),⊖(∗(nc3, g1))),
where TCAMP mrg(m12, ik) and TCAMP mrg(m23, ik) hold: Here, we obtain the ⊕-
object ⊕(m12,m23) = ⊕(∗(nc1, g1),⊖(∗(nc3, g1))) and this message is covered by
TCAMP mrg(⊕(m12,m23), ik). It does not possess any common left ∗-sub-message.

9.5.2 Proof Sketch

The authenticity of the message in step 2 of TC-AMP relies on the central argument that
the peer is not able to generate the third h1-part without employing the message m̂B =
⊕(∗(nc1, g1),∗(⊖(πA), g2)) (sent by the terminal B in step 1) and the password πA (used in
the generation of this message).

In step 2, B receives pair(M2, H1) and checks its authenticity by the comparison of H1
with the own h1-message h1(m̂B, M2,⊕(∗(inv(πA),∗(nc1, M2)),∗(inv(πA),∗(m̂B, M2)))).

In the following we use k̂B to denote the third h1-part.
The nonce nc1 generated by B in step 1 is a local secret of B and was sent bound

with the generator g1 in m̂B. Thus, the only way to embed nc1 in k̂B is to use m̂B in its
computation. This implies that ∗(inv(πA),∗(nc1, M2)) = ∗(x1, . . . ,∗(xn,∗(nc1, g1)) . . .), i.e.
∗(inv(πA), M2) = ∗(x1, . . . ,∗(xn, g1) . . .), and that the peer has used x1, . . . , xn and has ex-
tracted ∗(nc1, g1) from m̂B to compute k̂B. The latter necessitates to make use of the crypt-
key ∗(πA, g2), which cannot be computed by the peer without employing πA.

The above mentioned binding and regularity arguments are in particular required when
handling the fake case in the authenticity proof. It yields to a proof state where

1. the pair-message m̃2 = pair(M2, h1(m̂B, M2, k̂B)) does not belong to the observable
messages (m̃2 ̸∈ ik),

2. and m̃2 is assumed to be forged by the attacker (m̃2 ∈ DY(ik)).

The proof goal is handled then by contradiction, i.e. tracing back the assumption (in 2) to
proof states where basic confidentiality properties are violated. This is done in two major
steps where we need to apply our proof technique from Chap. 6.

Step 1: The occurrence of the pair-message can be immediately reduced to the occur-
rence of the parts M2 and h1(m̂B, M2, k̂B). Afterwards, we reduce the occurrence of the
h1-object to the occurrence of the h1-parts, in particular the third one. Following our proof
technique, we use ccl2. The applied correctness theorem for h1-objects is similar to theo-
rem 54. It is used in combination with the following regularity lemma. It holds, when the
protocol messages do not allow for the extraction of a fixed h1-object, i.e. when they do not
include a fixed h1-object neither in clear-text, nor as a select-part, nor as a crypt-part.

PropertyVSE 95 (Protected h1-Objects):

(tr ∈ TCAMP ∧ pair(m1, h1(m0,m1,m2)) ̸∈ spies(tr) ∧ ¬(m0,m1,m2 ∈ DY(spies(tr))))
⇒ spies(tr) ∩ ccl2(h1(m0,m1,m2)) = ∅

168 CHAPTER 9. VERIFICATION OF TC-AMP’S TRACE PROPERTIES

It is easy to check that definition 52 (of ccl2), the corresponding correctness theorem for
h1-objects (the counterpart of theorem 54) and the protocol property 95 allow us to conclude
from the assumption in (2) and the hypothesis in (1) that the h1-part k̂B belongs to DY(ik).

Step 2: The proof task in this step is to reduce the occurrence of the h1-part k̂B together
with M2 in the intruder knowledge to proof states where basic confidentiality properties
are violated. This is done in the following successive case distinctions:

First Case Distinction: We consider whether inv(πA) in k̂B can be simplified.

(I) inv(πA) persists in k̂B, i.e. k̂B or a basic ⊕-part of k̂B has inv(πA) as a left ∗-part:
Here, we obtain k̂B ∈ ccl2(∗(inv(πA),m′)) with obj∗(∗(inv(πA),m′), inv(πA),m′) and
¬isObj∗(m′). Since this ∗-object ∗(inv(πA),m′) does not match any message part of
the protocol, its occurrence in k̂B can be simply reduced to the availability of inv(πA)
and thus of πA in the intruder knowledge.

The reduction is carried out with the regularity lemma

(tr ∈ TCAMP ∧ ∗(inv(pwd(ag)),m0) ̸∈ spies(tr) ∧ ¬isObj∗(m0)

∧obj∗(∗(inv(pwd(ag)),m0), inv(pwd(ag)),m0)

∧inv(pwd(ag)) /∈ DY(spies(tr)))
⇒ spies(tr) ∩ ccl2(∗(inv(pwd(ag)),m0)) = ∅.

It is proved similar to property 95 using the correctness theorem 56 (of ccl2 applied to
∗-objects).

(II) inv(πA) does not persist in k̂B, i.e. M2 or every basic ⊕-part of M2 has πA as a left
∗-part, which means that syn∗(M2,πA, M̂2) holds for some M̂2: This allows us to
simplify k̂B to ⊕(∗(nc1, M̂2),∗(m̂B, M̂2)), where M̂2 (and every basic ⊕-part of M̂2)
does not have inv(πA) as a left ∗-part.

Second Case Distinction: It is carried out to continue the proof in case (II). We consider
whether nc1 is (partly) simplified in ∗(nc1, M̂2).

(1) nc1 is (partly) simplified in ∗(nc1, M̂2), i.e. M̂2 or some basic⊕-part of M̂2 has inv(nc1)

as a left ∗-part: Here, M2, which equals ∗(πA, M̂2), belongs to ccl2(∗(inv(nc1),m))
with obj∗(∗(inv(nc1),m),∗inv(nc1),m) and ¬isObj∗(m). This allows us to proceed
as in case (I) and deduce the availability of inv(nc1) and thus of nc1 in the intruder
knowledge. The employed regularity lemma will be about ccl2(∗(inv(nc1),m)).

(2) nc1 is not (partly) simplified in ∗(nc1, M̂2), i.e. nc1 is a left ∗-part of ∗(nc1, M̂2) (and
of all ⊕-parts of ∗(nc1, M̂2)): This means, M̂2 in k̂B = ⊕(∗(nc1, M̂2),∗(m̂B, M̂2)) (and
every basic ⊕-part of M̂2) does not have neither inv(πA) nor inv(nc1) as a left ∗-part.

Third Case Distinction: It is carried out to continue the proof in case (2), where we have
k̂B =⊕(∗(nc1, M̂2),∗(m̂B, M̂2)), M2 = ∗(πA, M̂2) and k̂B, M2 ∈ DY(ik). Here, we apply first
the invariant 94 to reduce k̂B ∈ DY(ik) to the following three complementary cases:

(a) There is a basic ⊕-part ∗(nc1,m1) of k̂B in DY(ik).

(b) The ⊕-object k̂B is composed from two basic ⊕-parts and there is a ms⊂ DY(ik) with
syn∗(k̂B,ms,⊕(∗(nc1,m1),∗(m̂B,m1))) and

9.5. PROTECTION OF THE THIRD H1-PART 169

(i) TCAMP msg1(⊕(∗(nc1,m1),∗(m̂B,m1)), ik),

(ii) TCAMP mrg(⊕(∗(nc1,m1),∗(m̂B,m1)), ik) or

(iii) TCAMP oops(⊕(∗(nc1,m1),∗(m̂B,m1)), ik).

(c) The⊕-object k̂B possesses more than two basic⊕-parts, i.e. we have obj⊕(M̂2,m1,m2)
for a basic ⊕-part m1 and a complementary m2. Furthermore, there is a basic ⊕-part
m3 of ⊕(∗(nc1,m2),⊕(∗(m̂B,m1),∗(m̂B,m2))) such that ⊕(∗(nc1,m1),m3) ∈ DY(ik)
and there is ms ⊂ DY(ik) with syn∗(⊕(∗(nc1,m1),m3),ms,⊕(∗(nc1,m4),m5)) and

(i) TCAMP msg1(⊕(∗(nc1,m4),m5), ik),

(ii) TCAMP mrg(⊕(∗(nc1,m4),m5), ik) or

(iii) TCAMP oops(⊕(∗(nc1,m4),m5), ik).

9.5.3 Unicity Theorem

In Sec. 9.5.4, we describe how cases (a)–(c) are closed by refutation based on basic confi-
dentiality properties or mismatched structures. Many proof situations require to apply the
following key property on the occurrence of arbitrary large ∗-objects that have nc1 as a left
∗-part. It is due to the binding of the nonce nc1 with the right ∗-part g1. The property is
a binding theorem that reminds of theorem 82 in the PACE proof. We consider arbitrary
∗-objects m that are composed (as specified below with syn∗(m,nc1.ms,m′) introduced in
Sec. 6.5.1.1) from nc1.ms and the right ∗-part m′, where nc1 is the nonce generated by a
regular participant in step 1. The following binding theorem provides us with all possible
alternatives for the attacker to embed nc1 with the arbitrary many ∗-parts in ms and the
right ∗-part m′. Like in the proof of theorem 82, we need to reason on the derivation of m
by induction on its ∗-structure. For this purpose, we formulate the occurrence of m with
the help of ccl2(m).

PropertyVSE 96 (Binding the first nonce with the first base):

(tr ∈ TCAMP ∧ send(B, A,nc1, (nc1 ∗ g1)⊕ (⊖(πA ∗ g2))) ∈ tr

∧ nc1 ̸∈ DY(spies(tr)) ∧ isObj∗(m) ∧ syn∗(m,nc1.ms,m′)
∧ ¬isObj∗(m′) ∧ DY(spies(tr)) ∩ ccl2(m) ̸= ∅)

⇒
(m′ = g1 ∧
((∃nc,ms′ :

note(spy,⊕(∗(nc,∗(nc1, g1)),∗(nc,∗(⊕(∗(nc1, g1),∗(πA,⊖(g2))), g1)))) ∈ tr ∧
ms = nc.ms′ ∧ms′ ⊂ DY(spies(tr)))
∨ms ⊂ DY(spies(tr))))

This property states that each ∗-object m having nc1.ms as the left ∗-parts and m′ as the
right ∗-part originates

1. either from an oops event, where ∗(nc1, g1) is extended with another ∗-part nc and
possibly with further ∗-parts from the intruder knowledge,

2. or from the first message possibly using further ∗-parts from the intruder knowledge.

The binding property 96 is proven similar to theorem 82 by nested induction: The first
induction is wrt. the length of ms.

170 CHAPTER 9. VERIFICATION OF TC-AMP’S TRACE PROPERTIES

In the base case, where ms is empty and m = ∗(nc1,m′), we employ property 97 (see
below).

In the step case, where ms is not empty, we consider ∗-objects m with at least two left
∗-parts. Such a message part matches only the message parts that can be gained by the
attacker in oops events. In particular, it does not occur in a second TC-AMP message, as
the used nonce is new and thus differs from nc1. These facts are proven by induction on
TCAMP traces. In the obtained step case, the conjecture hypothesis includes one proposi-
tion of the form

DY({mTcamp} ∪ spies(tr)) ∩ ccl2(∗(nc1.ms,m′)) ̸= ∅,

where mTcamp originates from the last event in the extended trace, ms is not empty and
where syn∗(∗(nc1.ms,m′),nc1.ms,m′) holds.

Applying the correctness theorem 56 of ccl2 to this part of the conjecture hypothesis, we
obtain three cases:

1. There is an observable message that allows us to derive the ∗-object ∗(nc1.ms,m′) by
extraction, i.e. {mTcamp} ∪ spies(tr) ∩ ccl2(∗(nc1.ms,m′)) ̸= ∅.

2. The intruder knowledge includes a message m(nc1,ms,m′) that allows for the deriva-
tion of ∗(nc1.ms,m′) by extraction; This message must be composed out of nc1
and another message m(ms,m′) from DY({mTcamp} ∪ spies(tr)) such that we have
m(ms,m′) ∈ ccl2(∗(ms,m′)).

3. The list ms equals m0.ms0 such that there is a message m(m0,nc1.ms0,m′) in the intruder
knowledge that allows for the derivation of ∗(nc1.ms,m′) by extraction; This mes-
sage must be composed out of m0 and m(nc1.ms0,m′) from DY({mTcamp} ∪ spies(tr))
such that m(nc1.ms0,m′) ∈ ccl2(∗(nc1.ms0,m′)) holds. That is, we get that m0 belongs to
DY({mTcamp} ∪ spies(tr)) and DY({mTcamp} ∪ spies(tr)) ∩ ccl2(∗(nc1.ms0,m′)) ̸= ∅
holds.

The first proof state is handled with a further case distinction:

• There is some message in spies(tr) that allows for the derivation of ∗(nc1.ms,m′) by
extraction, i.e. spies(tr) ∩ ccl2(∗(nc1.ms,m′)) ̸= ∅. This proof goal is closed with the
help of the corresponding induction hypothesis.

• The message mTcamp, which originates from the last event in the extended trace, al-
lows us to derive ∗(nc1.ms,m′) by extraction, i.e. mTcamp ∈ ccl2(∗(nc1.ms,m′)). Since
∗(nc1.ms,m′) has at least two left ∗-parts and nc1 differs from the nonce in the second
TC-AMP step, only a message mTcamp that originates from an oops event fulfills this
property. This provides us with the first alternative in the conclusion of theorem 96.
Here, we have the specific case where the list ms′ is empty.

The second proof state above is closed by contradiction with the assumption that nc1 is
confidential, i.e. nc1 ̸∈ DY({mTcamp} ∪ spies(tr)).

In the third proof state, DY({mTcamp} ∪ spies(tr)) ∩ ccl2(∗(nc1.ms0,m′)) ̸= ∅ where
ms0 is smaller than ms allows us to apply the original induction hypothesis (wrt. the list
length). The message lists in the resulting consequences are then extended with m0 from
DY({mTcamp} ∪ spies(tr)).

We continue this section with an overview on the base case in the proof of our theo-
rem 96. Since the considered ∗-object ∗(nc1,m′) can be composed only out of nc1 and m′

and nc1 is at the same time confidential, the only remaining option for the attacker to de-
rive ∗(nc1,m′) is to reuse ∗(nc1, g1) from the first message. This means, m′ = g1, which we
prove in the following unicity theorem by induction on TCAMP traces.

9.5. PROTECTION OF THE THIRD H1-PART 171

PropertyVSE 97 (Unicity of the right ∗-part associated with a nonce):

(tr ∈ TCAMP ∧ nc ̸∈ DY(spies(tr)))
⇒
(∃ĝ : (∀m : obj∗(∗(nc,m),nc,m)⇒ (spies(tr) ∩ ccl2(∗(nc,m)) ̸= ∅⇒ m = ĝ)))

This unicity property of TCAMP holds not only for the nonce nc1, which is generated
in step 1, but also for the second nonce that is generated in step 2.

9.5.4 Refutation by Confidentiality and Constrained Structures

We continue in the following the proof sketched in Sec. 9.5.2. We describe how cases (a)–(c)
are closed by refutation based on basic confidentiality properties or mismatched structures.

9.5.4.1 Handling of Case (a):

In the corresponding proof state, the basic ⊕-part ∗(nc,m1) in DY(ik) permits to apply
theorem 96, as ∗(nc,m1) is of the form ∗(nc1.ms,m′) or ⊖(∗(nc1.ms,m′)). This yields a
first case that refutes the absence of oops-events (in an assumption of property 92) and a
second case where the considered ms is a subset of DY(ik). Since the right ∗-part of m,
i.e. m′, equals g1, we deduce that ∗(nc1, g1) belongs to DY(ik). This means, we obtain a
contradiction with the basic confidentiality property.

9.5.4.2 Handling of Case (b):

In the corresponding proof state, we have the ⊕-object ⊕(∗(nc1,m1),∗(m̂B,m1)) in DY(ik)
satisfying TCAMP msg1, TCAMP mrg or TCAMP oops, which yields the following cases:

(i) TCAMP msg1(⊕(∗(nc1,m1),∗(m̂B,m1)), ik): According to the definition of predicate
TCAMP msg1, we obtain obj⊕(⊕(∗(nc1,m1),∗(m̂B,m1)),∗(nc′1, g′1),⊖(∗(pw(j), g′2)))
or obj⊕(⊕(∗(nc1,m1),∗(m̂B,m1)),⊖(∗(nc′1, g′1)),∗(pw(j), g′2)). In both cases, we have
mismatched structures, as pw(j) does not match neither nc1 nor m̂B.

(ii) TCAMP mrg(⊕(∗(nc1,m1),∗(m̂B,m1)), ik): According to the above definition of pred-
icate TCAMP mrg, we obtain obj⊕(⊕(∗(nc1,m1),∗(m̂B,m1)),∗(nc′1, g′1),⊖(∗(nc′3, g′1))).
Similarly, we have mismatched structures, as m̂B does not match neither nc′1 nor nc′3.

(iii) TCAMP oops(⊕(∗(nc1,m1),∗(m̂B,m1)), ik): According to TCAMP oops(m1, ik), we
may focus on two cases:

– In case the messages ∗(nc′2,∗(nc′1, g′1)) and ∗(nc′2,∗(m̂1, g′1)) (or respectively
the messages ⊖(∗(nc′2,∗(nc′1, g′1))) and ⊖(∗(nc′2,∗(m̂1, g′1)))) are complemen-
tary ⊕-parts of ⊕(∗(nc1,m1),∗(m̂B,m1)), we obtain nc1 = nc′1, m̂B = m̂1 and
m1 = ∗(nc′2, g′1) or m1 = ⊖(∗(nc′2, g′1)) for m̂1 = ⊕(∗(nc′1, g′1),⊖(∗(pw(j), g′2))).
This refutes (an assumption of property 92 about) the absence of oops-events.

– In case the messages ∗(inv(m̂1),∗(nc′2,∗(nc′1, g′1))) and ∗(nc′2, g′1) (or respectively
⊖(∗(inv(m̂1),∗(nc′2,∗(nc′1, g′1)))) and ⊖(∗(nc′2, g′1))) are complementary ⊕-parts
of ⊕(∗(nc1,m1),∗(m̂B,m1)), we have mismatched structures, as m̂B does not
match neither a nonce, i.e. nc′1 or nc′2, nor inv(m̂1).

172 CHAPTER 9. VERIFICATION OF TC-AMP’S TRACE PROPERTIES

9.5.4.3 Handling of Case (c):

In the corresponding proof state, we have the ⊕-object ⊕(∗(nc1,m1),m3) in DY(ik), where
m3 is a basic ⊕-part of ⊕(∗(nc1,m2),⊕(∗(m̂B,m1),∗(m̂B,m2))). Furthermore, we have
syn∗(⊕(∗(nc1,m1),m3),ms,⊕(∗(nc1,m4),m5)) for ms ⊂ DY(ik) and for ⊕(∗(nc1,m4),m5)
satisfying TCAMP msg1, TCAMP mrg or TCAMP oops, which yields the following cases:

(i) TCAMP msg1(⊕(∗(nc1,m4),m5), ik): According to the above definition of this pred-
icate TCAMP msg1, we obtain obj⊕(⊕(∗(nc1,m4),m5),∗(nc′1, g′1),⊖(∗(pw(j), g′2))) or
obj⊕(⊕(∗(nc1,m4),m5),⊖(∗(nc′1, g′1)),∗(pw(j), g′2)), for generators g′1 ̸= g′2. W.l.o.g.,
we focus on the latter case, which yields the equalities m4 = ⊖(g′1), nc1 = nc′1
and m5 = ∗(pw(j), g′2). This implies the equalities m1 = ⊖(∗(ms, g′1)) and m3 =
∗(ms,∗(pw(j), g′2)). That is, the message part ∗(ms,∗(pw(j), g′2)) is a basic ⊕-part
of ⊕(∗(nc1,m2),⊕(∗(m̂B,⊖(∗(ms, g′1))),∗(m̂B,m2))). Since we have the disequality
∗(ms,∗(pw(j), g′2)) ̸= ⊖(∗(m̂B,∗(ms, g′1))), it follows that ∗(ms,∗(pw(j), g′2)) equals
or is a basic ⊕-part of

1. ∗(nc1,m2)

2. or ∗(m̂B,m2).

In case (1), we deduce nc1 ∈ ms and thus nc1 ∈ DY(ik), which refutes the confiden-
tiality of nc1.

In case (2), we deduce that m2 equals or has ∗(ms2,∗(pw(j), g′2)) as a basic ⊕-part, for
ms = m̂B ⊎ms2. W.l.o.g., we focus on the case where m2 = ∗(ms2,∗(pw(j), g′2)). Here,
we get⊕(∗(nc1,∗(ms2,∗(pw(j), g′2))),∗(m̂B,⊖(∗(ms, g′1)))) ∈ DY(ik) and this implies
DY(ik) ∩ ccl2(∗(nc1,∗(ms2,∗(pw(j), g′2)))) ̸= ∅, which permits to apply theorem 96
and get g′2 = g′1, which refutes g′1 ̸= g′2.

(ii) TCAMP mrg(⊕(∗(nc1,m4),m5), ik): According to the definition of TCAMP mrg, we
obtain obj⊕(⊕(∗(nc1,m4),m5),∗(nc′1, g′1),⊖(∗(nc′3, g′1))), for nonces nc′1 ̸= nc′3. This
yields the equalities ∗(nc1,m4) = ∗(nc′1, g′1) and m5 = ⊖(∗(nc′3, g′1)) or the equalities
m5 = ∗(nc′1, g′1) and ∗(nc1,m4) = ⊖(∗(nc′3, g′1)).

W.l.o.g., we focus on the former case, which implies nc1 = nc′1, m4 = g′1, m1 =
∗(ms, g′1) and m3 = ⊖(∗(ms,∗(nc′3, g′1))). That is, ⊖(∗(ms,∗(nc′3, g′1))) is a basic ⊕-
part of ⊕(∗(nc′1,m2),⊕(∗(m̂B,∗(ms, g′1)),∗(m̂B,m2))). Since, ⊖(∗(ms,∗(nc′3, g′1))) ̸=
∗(m̂B,∗(ms, g′1)), it follows that ⊖(∗(ms,∗(nc′3, g′1))) equals or is a basic ⊕-part of

1. ∗(nc′1,m2)

2. or ∗(m̂B,m2).

In case (1), we deduce based on nc′3 ̸= nc′1 that nc′1 must be in ms. This refutes the
confidentiality of nc′1, as ms is a subset of DY(ik).

In case (2), we deduce that message m2 equals or has ⊖(∗(ms2,∗(nc′3, g′1))) as a ba-
sic ⊕-part, for ms = m̂B ⊎ ms2. This implies that message ∗(nc′1,m2) equals or has
⊖(∗(ms3,∗(nc′1,∗(nc′3, g′1)))) as a basic ⊕-part, for ms2 = nc′1 ⊎ms3. Hence, the confi-
dentiality of nc′1 is refuted, because ms2 is a subset of DY(ik).

(iii) TCAMP oops(⊕(∗(nc1,m4),m5), ik): According to TCAMP oops, we have for some
m̂′B = ⊕(∗(nc′1, g′1),⊖(∗(pw(j), g′2))) two couples of cases:

1. obj⊕(⊕(∗(nc1,m4),m5),∗(nc′2,∗(nc′1, g′1)),∗(nc′2,∗(m̂′B, g′1)))
or obj⊕(⊕(∗(nc1,m4),m5),⊖(∗(nc′2,∗(nc′1, g′1))),⊖(∗(nc′2,∗(m̂′B, g′1))))

2. and obj⊕(⊕(∗(nc1,m4),m5),∗(inv(m̂′B),∗(nc′2,∗(nc′1, g′1))),∗(nc′2, g′1))
or obj⊕(⊕(∗(nc1,m4),m5),⊖(∗(inv(m̂′B),∗(nc′2,∗(nc′1, g′1)))),⊖(∗(nc′2, g′1))).

9.6. PROTECTION OF THE THIRD H2-PART 173

W.l.o.g., we focus in case (1) on the second alternative, which yields two cases:

(1-a) ∗(nc1,m4) = ⊖(∗(nc′2,∗(nc′1, g′1))) and m5 = ⊖(∗(nc′2,∗(m̂′B, g′1))): Here, nc1
matches nc′2 or nc′1.
When nc1 = nc′2, the oops message ⊕(∗(nc1,∗(nc′1, g′1)),∗(nc1,∗(m̂′B, g′1))) in ik
permits to apply theorem 96 where ms = {nc′1}. This yields a first case that re-
futes the absence of oops-events (in an assumption of property 92) and a second
case where the considered ms is a subset of DY(ik). Hence, we get nc′1 ∈ DY(ik),
which refutes the confidentiality of nc′1 guaranteed by TCAMP oops.
When nc1 = nc′1, we proceed similarly. Here, we get nc′2 ∈ DY(ik), which refutes
the confidentiality of nc′2 guaranteed by TCAMP oops.

(1-b) ∗(nc1,m4) = ⊖(∗(nc′2,∗(m̂′B, g′1))) and m5 = ⊖(∗(nc′2,∗(nc′1, g′1))): Here, nc1
matches nc′2 as in the first alternative of case (1-a). The proof is similar.

W.l.o.g., we focus in case (2) on the first alternative, which yields two cases:

(2-a) ∗(nc1,m4) = ∗(inv(m̂′B), (∗(nc′2,∗(nc′1, g′1)))) and m5 = ∗(nc′2, g′1)): Here, nc1
matches nc′2 or nc′1, as in case (1-a). The proof is similar.

(2-b) ∗(nc1,m4) = ∗(nc′2, g′1) and m5 = ∗(inv(m̂′B),∗(nc′2,∗(nc′1, g′1))): Here, the nonce
nc1 matches nc′2 as in case (1-b). The proof is similar.

9.6 Protection of the Third h2-Part

In this section we describe the main proof arguments to exclude that the h2-message re-
ceived by the card in the third TC-AMP step is faked by the attacker.

9.6.1 Proof Sketch

The authenticity of the message in step 3 relies on the central argument, that the peer is not
able to generate the third h2-part without employing the message m̂A = ∗(nc2,∗(πA, g1))
(sent by the card A as the first message part in step 2) and the password πA (used in the
generation of this message).

In step 3, A receives an arbitrary message m̂3 and checks its authenticity by the compar-
ison with the own h2-message h2(m̂1, m̂A,∗(nc2,⊕(⊕(∗(πA, g2), m̂1),∗(m̂1, g1)))), where m̂1
is received by A in the first TC-AMP step.

In the following we use k̂A to denote the third h2-part.
The nonce nc2 generated by A in step 2 is a local secret of A and was sent bound with the

generator g1 in m̂A. Thus, the only way to embed nc2 in k̂A is to use m̂A in its computation.
In particular, k̂A contains the message part ∗(nc2,∗(m̂1, g1)) and this implies that the peer
has used m̂1 and has extracted ∗(nc2, g1) from m̂A to compute k̂A. The latter necessitates
to make use of the crypt-key inv(πA), which cannot be computed by the peer without
employing πA.

The above mentioned binding and regularity arguments are in particular required when
handling the fake case in the authenticity proof. It yields to a proof situation where

1. m̂3 = h2(m̂1, m̂A, k̂A) does not belong to the observable messages (m̂3 ̸∈ ik),

2. and m̂3 is assumed to be forged by the attacker (m̂3 ∈ DY(ik)).

The proof goal is handled then by contradiction, i.e. tracing back the assumption (in 2) to
proof states where basic confidentiality properties are violated. This is done in two major
steps where we need to apply our proof technique from Chap. 6.

174 CHAPTER 9. VERIFICATION OF TC-AMP’S TRACE PROPERTIES

Step 1: We reduce the occurrence of the h2-object to the occurrence of the h2-parts,
in particular the third one. Following our proof technique, we use ccl2. The applied cor-
rectness theorem for h2-objects is similar to theorem 54. It is used in combination with
the following regularity lemma. It holds, when the protocol messages do not allow for the
extraction of a fixed h2-object.

PropertyVSE 98 (Absence of protected h2-Objects):

(tr ∈ TCAMP ∧ h2(m0,m1,m2) ̸∈ spies(tr) ∧ ¬(m0,m1,m2 ∈ DY(spies(tr))))
⇒ spies(tr) ∩ ccl2(h2(m0,m1,m2)) = ∅

It is easy to check that definition 52 (of ccl2), the corresponding correctness theorem for
h2-objects (the counterpart of theorem 54) and the protocol property 98 allow us to conclude
from the assumption in (2) and the hypothesis in (1) that the h2-part k̂A belongs to DY(ik).

Step 2: The proof task in this step consists in reducing the occurrence of the h2-part
k̂A = ⊕(∗(nc2,∗(πA, g2)),⊕(∗(nc2, m̂1),∗(nc2,∗(m̂1, g1)))) together with m̂1 in the intruder
knowledge to proof states where basic confidentiality properties are violated. This is done
in the following successive case distinctions:

First Case Distinction: We consider whether ∗(πA, g2) in k̂A can be simplified.

(I) The message part ∗(nc2,∗(πA, g2)) persists as a ⊕-part in k̂A, which equally means
that obj⊕(k̂A,∗(nc2,∗(πA, g2)),⊕(∗(nc2, m̂1),∗(nc2,∗(m̂1, g1)))) holds: Here, k̂A be-
longs to ccl2(∗(nc2,∗(πA, g2))). Since there is no message part of the protocol that
matches this ∗-object, we proceed similar to case (I) in Sec. 9.5.2 and deduce the avail-
ability of nc2 or πA in the intruder knowledge. In both cases, we obtain a contradic-
tion with the basic confidentiality property.

The employed regularity lemma will be clearly about ccl2(∗(nc2,∗(πA, g2))).

(II) The message part ∗(nc2,∗(πA, g2)) does not persist as a ⊕-part in k̂A, that is,
obj⊕(k̂A,∗(nc2,∗(πA, g2)),⊕(∗(nc2, m̂1),∗(nc2,∗(m̂1, g1)))) does not hold. In this set-
ting, m̂1 either equals ⊖(∗(πA, g2)) or must be a ⊕-object composed out of the ba-
sic ⊕-part ⊖(∗(πA, g2)) and a complementary ⊕-part m̃1. The former case yields
that k̂A equals ∗(nc2,∗(m̂1, g1)) with m̂1, k̂A ∈ DY(ik) and this refutes the confi-
dentiality of ∗(nc2, g1). In the latter case, we have obj⊕(m̂1,⊖(∗(πA, g2)), m̃1),
where the message ∗(πA, g2) is not a ⊕-part of m̃1. The third h2-part k̂A equals
⊕(∗(nc2, m̃1),∗(nc2,∗(⊕(⊖(∗(πA, g2)), m̃1), g1))).

Second Case Distinction: It is carried out to continue the proof in case (II). We consider
whether nc2 persists in ∗(nc2, m̃1).

(1) nc2 does not persist in ∗(nc2, m̃1), i.e. inv(nc2) is a left ∗-part of m̃1 or m̃1 pos-
sesses a basic ⊕-part having inv(nc2) as a left ∗-part: Here, m̂1, which equals
⊕(⊖(∗(πA, g2)), m̃1), belongs to ccl2(∗(inv(nc2),m)) for m as the right ∗-part of
∗(inv(nc2),m). This allows us to proceed as in case (I) and deduce the availability of
inv(nc2) and thus of nc2 in the intruder knowledge. The employed regularity lemma
will be about ccl2(∗(inv(nc2),m)).

(2) nc2 persists in ∗(nc2, m̃1), i.e. nc2 is a left ∗-part of ∗(nc2, m̃1) or ∗(nc2, m̃1) corresponds
to a ⊕-object where all basic ⊕-parts possess nc2 as a left ∗-part: This means, all basic
⊕-parts of k̂A = ⊕(∗(nc2, m̃1),∗(nc2,∗(m̂1, g1))) possess nc2 as a left ∗-part.

9.6. PROTECTION OF THE THIRD H2-PART 175

Since m̂1 is in the knowledge set DY(ik), we focus in the rest of the proof on k̂′A =
⊕(∗(nc2,∗(inv(m̂1), m̃1)),∗(nc2, g1)).

Third Case Distinction: It is carried out to continue the proof in case (2). Here, we apply
first the invariant 94 about the derivation of ⊕-objects and then reduce k̂′A ∈ DY(ik) to the
following three complementary cases:

(a) The basic⊕-part ∗(nc2, g1) of k̂′A is in DY(ik). This case is refuted immediately by the
basic confidentiality property.

(b) k̂′A is composed from two basic ⊕-parts with syn∗(k̂′A,∅, k̂′A) and

(i) TCAMP msg1(k̂′A, ik),

(ii) TCAMP mrg(k̂′A, ik) or

(iii) TCAMP oops(k̂′A, ik).

(c) k̂′A possesses more than two basic ⊕-parts, i.e. we have obj⊕(∗(inv(m̂1), m̃1),m1,m2)
for a basic ⊕-part m1. Furthermore, we have ⊕(∗(nc2, g1),∗(nc2,m1)) ∈ DY(ik),
syn∗(⊕(∗(nc2, g1),∗(nc2,m1)),∅,⊕(∗(nc2, g1),∗(nc2,m1))) and

(i) TCAMP msg1(⊕(∗(nc2, g1),∗(nc2,m1)), ik),
(ii) TCAMP mrg(⊕(∗(nc2, g1),∗(nc2,m1)), ik) or

(iii) TCAMP oops(⊕(∗(nc2, g1),∗(nc2,m1)), ik).

9.6.2 Unicity Theorem

In Sec. 9.6.3, we describe how cases (b) and (c) are closed by refutation based on basic confi-
dentiality properties and structural constraints. Many proof situations require to apply the
following key property on the occurrence of arbitrary large ∗-objects that have nc2 as a left
∗-part. It is a binding theorem that reminds of theorem 82 in the PACE proof and of theo-
rem 96. For a ∗-object ∗(ms,∗(m′,∗(nc2, g1))), which contains a left ∗-part nc2 (generated by
a regular participant in step 2) together with a second confidential left ∗-part m′, our theo-
rem provides us with all possible alternatives for the attacker to embed nc2 and m′ with the
arbitrary many left ∗-parts in ms and the right ∗-part g1. Like in the proofs of theorems 82
and 96, we need to reason on the derivation of ∗(ms,∗(m′,∗(nc2, g1))) by induction on its
∗-structure. For this purpose, we formulate the occurrence of m = ∗(ms,∗(m′,∗(nc2, g1)))
with the help of ccl2(m).

PropertyVSE 99 (Binding the second nonce with another secret ∗-part):

(tr ∈ TCAMP ∧ send(A, B,nc2, pair(∗(nc2,∗(πA, g1)),
h1(m1,∗(nc2,∗(πA, g1)),∗(nc2,⊕(⊕(∗(πA, g2),m1),∗(m1, g1)))))) ∈ tr
∧ nc2,m′ ̸∈ DY(spies(tr)) ∧ isObj∗(m) ∧ DY(spies(tr)) ∩ ccl2(m) ̸= ∅

∧ (∃m′′ : syn∗(m,ms ⊎ {m′,nc2},m′′) ∧ ¬isObj∗(m′′)))
⇒
(ms ⊂ DY(spies(tr)) ∧
((∃nc :

note(spy,⊕(∗(nc2,∗(nc, g1)),∗(nc2,∗(⊕(∗(nc, g1),∗(πA,⊖(g2))), g1)))) ∈ tr ∧
m′ = nc) ∨

m′ = πA))

176 CHAPTER 9. VERIFICATION OF TC-AMP’S TRACE PROPERTIES

This property states that ∗(m′,∗(nc2, g1)) in the ∗-object ∗(ms,∗(m′,∗(nc2, g1))) origi-
nates

1. from an oops event,

2. or from the first part of a second message.

In both cases, the set ms includes only left ∗-parts from the intruder knowledge.
The proof of theorem 99 is by nested induction, similar to the proofs of theorems 96

and 82. The first induction is wrt. the length of ms. The base case as well as the step case
are proven by induction on TC-AMP traces.

9.6.3 Refutation by Confidentiality and Structural Constraints

We continue in the following the proof sketched in Sec. 9.6.1. We describe how cases (b)
and (c) are closed by refutation based on basic confidentiality properties or mismatched
structures.

9.6.3.1 Handling of Case (b):

In the corresponding proof state, we have the⊕-object⊕(∗(nc2, g1),∗(nc2,∗(inv(m̂1), m̃1)))
in DY(ik) satisfying TCAMP msg1, TCAMP mrg or TCAMP oops, which yields the following
cases:

(i) TCAMP msg1(⊕(∗(nc2, g1),∗(nc2,∗(inv(m̂1), m̃1))), ik): According to TCAMP msg1,
we obtain obj⊕(⊕(∗(nc2, g1),∗(nc2,∗(inv(m̂1), m̃1))),∗(nc′1, g′1),⊖(∗(pw(j), g′2))) or
obj⊕(⊕(∗(nc2, g1),∗(nc2,∗(inv(m̂1), m̃1))),⊖(∗(nc′1, g′1)),∗(pw(j), g′2)). In both cases,
we have mismatched structures, as pw(j) does not match nc2.

(ii) TCAMP mrg(⊕(∗(nc2, g1),∗(nc2,∗(inv(m̂1), m̃1))), ik): According to TCAMP mrg, we
obtain obj⊕(⊕(∗(nc2, g1),∗(nc2,∗(inv(m̂1), m̃1))),∗(nc′1, g′1),⊖(∗(nc′3, g′1))) for nc′1 ̸=
nc′3. The structural constraints imply nc′1 = nc2 and nc′3 = nc2 and this refutes nc′1 ̸=
nc′3.

(iii) TCAMP oops(k̂′A, ik) for k̂′A = ⊕(∗(nc2, g1),∗(nc2,∗(inv(m̂1), m̃1))): According to the
definition of TCAMP oops(m1, ik), we may focus on two cases:

– In case the messages ∗(nc′2,∗(nc′1, g′1)) and ∗(nc′2,∗(m̂′1, g′1)) (or respectively
⊖(∗(nc′2,∗(nc′1, g′1))) and ⊖(∗(nc′2,∗(m̂′1, g′1)))) are complementary ⊕-parts of
k̂′A, we have mismatched structures, as ∗(nc2, g1) does not match any candidate
basic ⊕-part.

– In case the messages ∗(inv(m̂1),∗(nc′2,∗(nc′1, g′1))) and ∗(nc′2, g′1) (or respec-
tively ⊖(∗(inv(m̂1),∗(nc′2,∗(nc′1, g′1)))) and ⊖(∗(nc′2, g′1))) are complementary
⊕-parts of k̂′A, we obtain the equality nc2 = nc′2. That is, the oops message
⊕(∗(nc2,∗(nc′1, g′1)),∗(nc2,∗(m̂′B, g′1))) in ik permits to apply theorem 99 where
m′ = nc′1 and ms = ∅. This yields a first case that refutes the absence of oops-
events (in an assumption of property 93) and a second case where m′ = πA, i.e.
nc′1 = πA, refutes nc′1 ̸= πA.

9.6.3.2 Handling of Case (c):

In the corresponding proof state, we have the ⊕-object ⊕(∗(nc2, g1),∗(nc2,m1)) in DY(ik)
satisfying TCAMP msg1, TCAMP mrg or TCAMP oops. Here, ∗(nc2,m1) is handled similar
to ∗(nc2,∗(inv(m̂1), m̃1)), as nc2 cannot be simplified in both cases. For that reason, case (c)
is handled the same way as case (b).

9.7. FORWARD SECRECY OF SESSION KEYS 177

9.7 Forward Secrecy of Session Keys

The authentication guarantees of TC-AMP imply that the participants A and B share (al-
ready in step 2) the third h1- and h2-part, which we denote by k̂AB. Due to its confidentiality,
k̂AB can be used as key material to generate the session key used afterwards for the secure
transmission of the application data between A and B. Hence, the confidentiality of the ses-
sion key follows immediately from the confidentiality of k̂AB, which belongs in turn to the
central arguments of the authenticity proofs. In this section, we are interested in a stronger
confidentiality property, i.e. the forward secrecy of k̂AB, which implies as well that of the
session key.

According to the authentication properties, k̂AB is uniquely determined through the first
message by B and the response of A. Furthermore, it is necessary to assume additionally
that the key is not disclosed accidentally. In this way, we obtain the following formalization
for the intended forward secrecy property:

PropertyVSE 100 (Forward Secrecy):

(tr ∈ TCAMP ∧ A, B ̸∈ bad ∧
send(B, A,nc1,⊕(∗(nc1, g1),∗(pwd(A),⊖(g2)))) ∈ tr ∧
send(A, B,nc2, ⟨∗(nc2,∗(pwd(A), g1)),

h1(⊕(∗(nc1, g1),∗(pwd(A),⊖(g2))),∗(nc2,∗(pwd(A), g1)),
⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(⊕(∗(nc1, g1),∗(pwd(A),⊖(g2))), g1))))⟩) ∈ tr

∧ note(spy,⊕(∗(nc2,∗(nc1, g1)),
∗(nc2,∗(⊕(∗(nc1, g1),∗(pwd(A),⊖(g2))), g1)))) /∈ tr)

⇒⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(⊕(∗(nc1, g1),∗(pwd(A),⊖(g2))), g1))

̸∈ DY({pwd(A)} ∪ spies(tr))

The exclusion of the note event implies that we are dealing with a secret ⊕-object hav-
ing a basic⊕-part ∗(nc2,∗(nc1, g1)) that does not occur in any protocol message. According
to our proof technique from Chap. 6, we may then prove the property 100 with the help
of the ccl-function ccl2 and the correctness theorem 56: Abbreviating pwd(A) with πA,
we assume k̂AB ∈ DY({πA} ∪ spies(tr)). This permits to obtain DY({πA} ∪ spies(tr)) ∩
ccl2(∗(nc2,∗(nc1, g1))) ̸= ∅ and to apply the correctness theorem 56, which yields two
cases:

1. ({πA} ∪ spies(tr)) ∩ ccl2(∗(nc2,∗(nc1, g1))) ̸= ∅

2. nc2 ∈ DY({πA} ∪ spies(tr)) and DY({πA} ∪ spies(tr)) ∩ ccl2(∗(nc1, g1)) ̸= ∅ or
nc1 ∈ DY({πA} ∪ spies(tr)) and DY({πA} ∪ spies(tr)) ∩ ccl2(∗(nc2, g1)) ̸= ∅.

Both cases are refuted based on the (forward) secrecy of nc1 and nc2, as formulated in
properties 90-(3) and (4). In contrast to the second case, the first case necessitates to employ
a corresponding regularity property of TC-AMP, where the absence of the oops-event and
nc1,nc2 /∈ DY({πA} ∪ spies(tr)) imply ({πA} ∪ spies(tr)) ∩ ccl2(∗(nc2,∗(nc1, g1))) = ∅.

178 CHAPTER 9. VERIFICATION OF TC-AMP’S TRACE PROPERTIES

Part III

Handling Indistinguishability Properties

179

Chapter 10

Dealing with Indistinguishability
Properties

In general, cryptographic protocols based on (non-trivial) message algebras aim at secu-
rity goals that can be only defined in terms of indistinguishability properties. For instance,
the resistance against offline testing attacks of PACE and TC-AMP is a typical indistin-
guishability property. It means that the attacker is not able to distinguish (through offline
computations) between the extension of the observable messages with a correct password
(πA belonging to a participant A) and that with a false password (π′ non-used by any par-
ticipant). That is, the knowledge bases πA.ik and π′.ik look equivalent to (are indistinguishable
by) the attacker, for any list ik of observable messages.1

Basically, all indistinguishability properties, including those introduced in Sec. 1.1.2.4,
are defined in terms of associated knowledge bases kb (with the genuine information) and kb′

(with the false or changed information). They require that kb and kb′ may not be distinguish-
able through offline computations. For the verification of these properties we thus need to
reason on all relevant offline computations and to link the use of kb and kb′. In this chapter,
we first motivate the restriction of the relevant offline computations to DY derivations and
equality checks (Sec. 10.1). Then, we describe how the use of kb and kb′ can be linked based
on the notion of generic DY derivations. This allows us to prove the indistinguishability of
kb and kb′ through a tailored bijective relation (a simulation relation) from DY(kb) to DY(kb′)
(Sec. 10.2).

In order for the tailored relation to imply the indistinguishability, it has to map the
result of each generic derivation using kb to the result of the same generic derivation using
kb′. For an inductive proof of this property, we come up with an appropriate enumeration
of the generic derivations (Sec. 10.3). This yields to an extensional definition of the DY
knowledge, which enriches derivable messages with corresponding derivation trees. Like
the intentional definition (cp. Def. 13 in Sec. 3.3), the extensional definition is specific to the
algebra and can be defined according to the same schema (Sec. 10.4). The definition of the
extensional DY knowledge forms the algebra-specific formal framework for the inductive
proof of the mentioned necessary property of the used simulation relation. This framework
allows us to explore (by case distinctions on the possible operations) how this property
is (can be) enforced. In doing so, we acquire as described in Chap. 11 and 13 general,
necessary and sufficient conditions. These are then proven employing regularity properties
of the protocol, which are separately verified by induction on protocol traces, as described
in Part II.

1We use the notation ik and π′.ik to emphasize that ik and π′.ik are the list representations of the finite message
sets ik and {π′} ⊎ ik. Furthermore, we denote (message lists handled as) general knowledge bases simply by kb,
kb′ and the like.

181

182 CHAPTER 10. DEALING WITH INDISTINGUISHABILITY PROPERTIES

10.1 Offline Computations

Indistinguishability properties allow us to express the security of some hidden informa-
tion (within a protocol trace) in situations where partial knowledge (despite the observable
messages) about this information is (supposed to be) public. They mean that a DY attacker
is not able to learn the hidden information through the use of the additional knowledge
and the observable messages.

In case of resistance against offline password testing, the protocol is required to hide
every password π used by any honest participant ag. Here, it is assumed that the used pass-
words are chosen from a relatively small set of values. The property aims at the protection
of the passwords in situations where the DY attacker knows the set of the password candidates.
Offline testing in such a situation consists in trying the password candidates using the ob-
servable messages ik. It fails if trying a genuine password π and a false password candidate
π′ (in combination with ik) yields the same result. That is, the knowledge bases kb = π.ik
and kb′ = π′.ik are indistinguishable.

For anonymous authentication, the protocol is required to hide that some participant ag
has been successfully authenticated. This should hold, although the DY attacker trivially knows
both possible outcomes of authentication attempts. For that purpose, the protocol messages that
are generated after the authentication check may not allow for an attacker to learn the
result. This means, we need to contrast observable messages kb = ik with a succeeded
authentication of ag and the associated knowledge base kb′ where the same authentication
attempt is enforced to fail. We have anonymity if kb and kb′ are indistinguishable.

The privacy property in voting protocols means that the protocol is required to hide
that some participant ag has committed to a vote v. This holds, even if the DY attacker knows
the voting result. This property makes sense, only if at least two voters ag and ag′ has parti-
cipated and they have committed to different votes v and v′. Here, we contrast observable
messages kb = ik (with the genuine votes) and the associated knowledge base kb′ where the
votes of ag and ag′ are switched. We have the privacy if kb and kb′ are indistinguishable.

In all three properties, the attacker tries to distinguish the considered knowledge bases
kb and kb′ through offline computations. Actually ”distinction” means in this context rather
classification, as the actual goal is to know that one of the knowledge bases (either kb or kb′)
contains the genuine information. Thus, the offline computations serve to decide some
predicate P, which holds either for kb or for kb′. The predicate P(ms) in the resistance prop-
erty expresses that ”the first item in ms is a password used in the rest of ms by some partic-
ipant ag”. In case of anonymous authentication, P(ms) expresses that ”the authentication
attempt in ms of some participant ag succeeded”. Considering the privacy of voting, P(ms)
expresses that ”the participants ag and ag′ committed in ms to the different votes v and v′,
respectively”.

In the rest of this section, we motivate our restriction of the relevant offline computa-
tions to the application of the available function symbols in Op (cp. Def. 13) and to equality
checks.

Assume that there is a program progP that allows the attacker to decide P(ms). Recall
that we are interested only in deterministic programs that do not make use of any precom-
puted constant, as these would be called by a DY attacker. We thus expect the program
progP to return upon inputs ms, ”yes” if P(ms) holds, and ”no” otherwise.

In the initial state of progP, the only alternative to proceed the computation is to call a
first subroutine proc1 and compute m1 = proc1(ms). Since no precomputed constant is used
in progP, the next relevant step is also the call of a second subroutine proc2 to compute
a second value m2. Here, we can use ms and/or m1 as arguments for proc2. Knowing
that m1 can be recomputed out of ms, we restrict the arguments of proc2 (and similarly
of all subroutines called in successor states) to the input ms of progP. That is, we have
m2 = proc2(ms).

10.2. PROOF TECHNIQUE 183

After the computation of m1 and m2, there are principally two relevant alternatives on
how to continue the program: (i) compute the next value m3 = proc3(ms) independent of
the previous results (ii) or carry out an equality check between m1 and m2 to decide what
to do next. The equality check permits us then either to output a result or to choose the
next action between computing the next value and carrying out the next equality check.

Basically, any state of progP after the third computation step includes values m1 =
proc1(ms), . . . ,mn = procn(ms) and the results of 0 up to (n− 1)! equality checks between
mi and mj with i ̸= j. In the final states where ”yes” or ”no” is returned, we may assume
that the number of equality checks differs from 0.

Our analysis shows that the progP does not terminate or returns the same output upon
inputs kb and kb′, when all pairs proci and procj of the possible subroutines satisfy

proci(kb) = procj(kb)⇔ proci(kb′) = procj(kb′).

Recall that the distinction between kb and kb′ should be carried out through offline com-
putations by a DY attacker. This means, the program progP and the possible subroutines
proci are confined through the corresponding computation capabilities. We may thus re-
strict the subroutines to arbitrary algorithms that apply available function symbols from
Op to selected items of the given knowledge base and to intermediate results of these func-
tion applications. We call these algorithms generic DY derivations.

For kb and kb′ to be indistinguishable we need to exclude any program for the compu-
tation of P that does not satisfy the above equivalence. For that purpose, we require that
the equivalence holds for all generic DY derivations proci and procj. In the next section, we
describe how this can be proved.

10.2 Proof Technique

To verify that two different knowledge bases kb and kb′ are indistinguishable, we need to
prove that the above equivalence holds for all pairs proci and procj of generic DY deriva-
tions. Because of the difference between kb and kb′, the equality procl(kb) = procl(kb′)
does not hold for all generic DY derivations. For that reason, we prove the required
equivalence through a tailored simulation relation ; from DY(kb) to DY(kb′), which
maps procl(kb) to procl(kb′) for all generic DY derivations procl . This relation is bijective
and provides us with two functions lr; : DY(kb)→ DY(kb′) and (the inverse function)
rl; : DY(kb′)→ DY(kb) that fulfill

1. lr;(procl(kb)) = procl(kb′) and

2. rl;(procl(kb′)) = procl(kb)

for all generic DY derivations procl . This permits us to prove the above equivalence as
follows:

⇒: Assume proci(kb) = procj(kb), combining this equality and property (1) allows us to
obtain proci(kb′) = lr;(proci(kb)) = lr;(procj(kb)) = procj(kb′).

⇐: Assume proci(kb′) = procj(kb′), combining this equality and property (2) allows us to
obtain similarly proci(kb) = rl;(proci(kb′)) = rl;(procj(kb′)) = procj(kb).

Although the appropriate relation ; is specific both to the protocol and to the con-
sidered indistinguishability property, we managed to provide a common schema for its
definition with the help of a recursive function (using a finite set of message pairs as a basis
relation, see Chap. 11). Furthermore, we systematically prove that the defined relation ;

184 CHAPTER 10. DEALING WITH INDISTINGUISHABILITY PROPERTIES

is bijective and that the induced functions lr; and rl; satisfy the above properties (1) and
(2). In the latter proof task, we cover all possible generic DY derivations procl by induction
(on the indexes l). For that purpose, we come up with an appropriate enumeration of the
generic DY derivations. Before we describe the corresponding definitions in Sec. 10.4, we
introduce the underlying principles in the following section.

10.3 Generic DY Derivations

Properties (1) and (2) of the functions lr; : DY(kb)→DY(kb′) and rl; : DY(kb′)→DY(kb)
are not just about arbitrary elements in DY(kb) and DY(kb′) but also about the way how
they are derived using kb and kb′, respectively. They mean that the results of the l-th generic
DY derivations using kb are mapped (through lr; and rl;) to their results using kb′. For
their proof by induction we come up with an enumeration of the generic DY derivations
including their results relative to an arbitrary finite list ms of messages. This corresponds to
an extensional definition of the DY knowledge DY(ms), which enriches derivable messages
with corresponding derivation trees.

We use the function DY : MsgList,Nat→Msg to denote the result of the i-th generic DY
derivation using an arbitrary message list ms, i.e. proci(ms), by DY(ms, i).

Starting from a list representation ms of an arbitrary finite message set ms the sets
DYlOp(ms, i) are sequentially generated by an arbitrary but fixed strategy. See Fig. 10.1.
This strategy induces a derivation tree for each element (index) of the enumeration. Typical
examples can be found in Fig. 10.2 and 10.3.

m0 m1 m2.
i0 i1 i2

pair

Figure 10.1: Enumeration of DY(ms) by DY

The second argument of DY is the index in the enumeration. This means that DY(ms, i)
is the message at position (index) i in the given enumeration.

The additional function orig : MsgList,Nat→NatList determines the tree structure on the
enumeration in terms of indexes. It uses a fixed encoding of the available function symbols
(f ∈ Op) as natural numbers. These symbols determine the semantics of derivation steps
given in the definition of orig.

orig(ms, i) provides us with information about how the message at position i has been
derived (in the derivation tree). For example in Fig. 10.3 orig(ms, i3) = (2,npair, i4, i5), where
ms is a fixed enumeration of the elements in ms, 2 is the arity of “pair”, npair is a repre-
sentative of this function symbol, and i4, i5 are the indexes of the ancestor messages of the
message at i3.

In general, there are two kinds of (alternating) nodes in such derivation trees: They are
either messages that are labeled with a unique identifier (like i1 : enc(c0, c1) in Fig. 10.2)

or a grey circle labeled with function names taken from the message algebra (like
dec

in
Fig. 10.2). Root and leaf nodes are (labeled) messages and the function symbols in the
gray circles tell us which function application led to the result message given the ancestor
messages as arguments.

For instance, Fig. 10.2 shows a successful and a failing decryption step. Both correspond
to the same function application, but with different arguments (messages in the ancestor

10.4. FORMALIZATION OF GENERIC DY DERIVATIONS 185

i0 : c1

dec

i2 : c0i1 : enc(c0, c1)

i0 : dec(c2,enc(c0, c1))

dec

i2 : c2i1 : enc(c0, c1)

Figure 10.2: Successful versus failed decryption step

nodes). The derivation step on the left-hand side allows us to extract the crypt-part of
the first argument, whereas the derivation step on the right-hand side corresponds to the
constructor-type application of “dec” yielding to a dec-object (at index i0).

i0 : m1

dec

i2 : m0
i1 : enc(m0,m1)

fst

i3 : ⟨enc(m0,m1),m3⟩

pair

i5 : m3i4 : enc(m0,m1)

Figure 10.3: A reversing derivation step

Obviously, a message composition (by a constructor-type operation) may reverse a sub-
structure extraction (for instance, by a decrypt-type operation) and vice versa, as illustrated
in Fig. 10.3. We thus get trees that are different although not essentially different.

The functions DY and orig are defined non-constructively, embedding arbitrary enu-
merations that respect the above requirements about the numbers and the order of the
derivation steps: Except of the starting enumeration defined by the used message list ms
(DY level 0), the enumeration of the subsequent messages (in DY levels 1, 2, a.s.f. result-
ing by effective derivation steps) is formalized by axioms on DY and orig that impose the
inherent order of the DY levels. The obtained formalization guarantees the soundness and
the completeness of the enumeration. That is, every result of DY belongs to the intruder’s
knowledge, and every intruder’s message occurs in the enumeration.

10.4 Formalization of Generic DY Derivations

We want to enumerate the elements of DY(ms) in an arbitrary order and fix at the same
time how every message in the sequence is generated from afore given messages. For this

186 CHAPTER 10. DEALING WITH INDISTINGUISHABILITY PROPERTIES

we use the function DY which maps a message list ms and a natural number i to the i-th
message in the enumeration.

The enumeration by the function DY is not exactly defined, e.g., constructively by a
(deterministic) algorithm. It is any message sequence that lists the elements of the sets
DYlOp(ms,0), DYlOp(ms,1), DYlOp(ms,2), . . . from definition 13 in succession. If m2 from
DYlOp(ms, lv + 1) is generated, for instance, by the application of “pair” to m0 and m1 from
DYlOp(ms, lv), then m2 is listed after m0 and m1, as it is shown in Fig. 10.1. This requirement
is expressed with the help of a function LV that maps the given message list ms and a
natural number lv to a natural number, i.e., the limit for the enumeration of DYlOp(ms, lv).

By DY we obtain only the enumeration without the information on how the messages
are derived. For this purpose we want to express how the i-th message is generated, i.e.
which f ∈Op is applied and what are the (indexes of the) used arguments. The application
of a function symbol f ∈ (Op ∩ Σ⟨n⟩) to messages with indexes i0, . . . , in−1 can be repre-
sented by the list (f , i0, . . . , in−1) (see Fig. 10.1, 10.2 and 10.3). For technical reasons, we use
instead of the function symbol f the arity n followed by a number n f that identifies f in an
enumeration of Op ∩ Σ⟨n⟩. Then the derivation step by the application of f is represented
by (n,n f , i0, . . . , in−1). For every message DY(ms, i) in the enumeration we have a list of nat-
ural numbers that represents the last derivation step yielding this message. In correlation
with DY we use the function orig which maps a message list ms and a natural number i to
the list of natural numbers that represent the last derivation step of DY(ms, i).

In order to enumerate all the messages in DY(ms) by DY, we have to cover all possible
derivations by orig. We start with the enumeration of DYlOp(ms,0).

AxiomVSE 101 (LV, DY,orig, Level 0):
Let len(l) denote the length of a list l and sel(i, l) the i + 1-th element of l, if any. Then we
require the following properties on the functions LV, DY and orig, for arbitrary message
lists ms and arbitrary natural numbers i:

LV(ms,0) = len(ms)

i < LV(ms,0)⇒ (DY(ms, i) = sel(i,ms) ∧ orig(ms, i) = ϵ)

The enumeration of DYlOp(ms,0) = ms by DY is given by the list representation ms.
Since the elements of ms are obtained without derivations, orig maps the indexes of these
elements to the empty list ϵ.

On the other hand, for the elements of DY(ms) \ms we require orig to map their indexes
to non-empty lists of natural numbers. These lists encode all possible derivations that result
in the elements of DYlOp(ms,1) \ms, then of DYlOp(ms,2) \ DYlOp(ms,1) and so forth.

AxiomVSE 102 (orig, Next Levels):

Let l1#l2 denote the concatenation of two lists l1 and l2 and let Nn =

n times︷ ︸︸ ︷
N× . . .×N. Let

every function symbol f ∈ Op be associated with a pair of natural numbers (n,n f) where
n is the arity of f and n f is the position of f in (Op ∩ Σ⟨n⟩), a fixed list representation of
(Op ∩ Σ⟨n⟩). Then, for all these pairs (n,n f), we require the following properties on the
functions LV and orig, for arbitrary message lists ms:

∀il ∈Nn : ((∀j ∈ il : j < LV(ms,0))⇒
(∃i < LV(ms,1) : orig(ms, i) = (n,n f)#il))

10.4. FORMALIZATION OF GENERIC DY DERIVATIONS 187

∀lv ∈N, il ∈Nn : (((∀j ∈ il : j < LV(ms, lv + 1)) ∧ (∃j ∈ il : LV(ms, lv) ≤ j))
⇒ (∃i < LV(ms, lv + 2) : orig(ms, i) = (n,n f)#il))

The next enumerated messages in the DY knowledge are obtained by the application of
functions f ∈Op to messages resulting from previous derivations. By orig we first associate
every derivation step by a function f using arguments from ms with an index on level 1.
Every subsequent derivation step, i.e. the application of a function f using arguments from
level lv + 1 is associated by orig with an index on level lv + 2, when some of the used
arguments do not already occur on level lv.

So far it is guaranteed by orig that all derivation steps (yielding level lv + 1) are
completely associated with indexes (smaller than LV(ms, lv + 1)). It remains to associate
these derivation steps, represented by orig(ms, i), with the corresponding results, given by
DY(ms, i).

AxiomVSE 103 (DY and orig):
We require the following property on the functions DY, LV and orig, for arbitrary message
lists ms, and arbitrary numbers lv, i ∈N:

LV(ms, lv) ≤ i < LV(ms, lv + 1)⇒
∃n > 0, f ∈Op ∩ Σ⟨n⟩,n f , i0, . . . , in−1 ∈N :

(orig(ms, i) = (n,n f , i0, . . . , in−1) ∧
(∀j ∈ {i0, . . . , in−1} : j < LV(ms, lv)) ∧
sel(n f ,Op ∩ Σ⟨n⟩) = f ∧
DY(ms, i) = f (DY(ms, i0), . . . , DY(ms, in−1)))

The enumeration of level 0, given by ms through axiom 101, is extended by DY accord-
ing to the derivation steps that are provided by orig. The elements on level lv + 1 that
are not already present on level lv are enumerated as given by the derivation information
encoded by orig.

The above axioms are specified in VSE with minor technical differences. For instance,
we use ap(n,n f , (DY(ms, i0), . . . , DY(ms, in−1))) instead of f (DY(ms, i0), . . . , DY(ms, in−1))
in axiom 103. The function ap : Nat, Nat, MsgList→Msg⊥ determines the function symbol
f ∈ Op from n and n f and applies this to the given message list. Here, the type Msg⊥ =
Msg ∪ {⊥} extends Msg with ⊥ for the undefined results of ap. Such an undefined result
is obtained, for instance, when the length of the given message list differs from the first
argument. The definition of ap handles all the undefined, as well as the defined cases. The
defined cases are given by the association of the function symbols f ∈ (Op∩Σ⟨n⟩) to n and
n f .

Our formalization of DY allows us to obtain the following property on DY and DY:

TheoremVSE 104 (DY and DY):
For all finite message sets ms and all list representations ms of ms, we have

DY(ms) = {DY(ms, i) | i ∈N}.

This theorem is immediately proven using the lemma

DYlOp(ms,n) ⊆ {DY(ms, i) | i ∈ {0, . . . , LV(ms,n)− 1}}
∧{DY(ms, i) | i ∈ {0, . . . , LV(ms,n)− 1}} ⊆ DYlOp(ms,n).

188 CHAPTER 10. DEALING WITH INDISTINGUISHABILITY PROPERTIES

The lemma is proved by induction on n.

This formalization of the generic DY derivations is carried out in VSE for the PACE
algebra. The corresponding VSE-Theory tenumdy is shown in Fig. 7.2, together with the
VSE-theory tindy, where DY and DYl are defined in a slightly but equivalent way as in
Def. 13. The union of both VSE-theories provides the VSE-theory tenumdy dy shown in
Fig. 7.2, which defines the local context for theorem 104. This theorem is included in the
VSE-theory tenumdy thms, shown in Fig. 7.3 with a satisfies-link to the mentioned VSE-
theory tenumdy dy.

The formalization of the generic DY derivations in all these mentioned VSE-theories can
be straightforwardly adapted to any message algebra.

Chapter 11

Proving Indistinguishability
Properties (in PACE)

In this chapter we describe our proof technique for indistinguishability properties. Using
generic DY derivations defined in Sec. 10.4, the indistinguishability of knowledge bases
kb,kb′ is formalized by

∀i, j : DY(kb, i) = DY(kb, j)⇔ DY(kb′, i) = DY(kb′, j). (11.1)

This property is simply shown according to the proof in Sec. 10.2, if we provide a bijective
(simulation) relation ; that satisfies

∀l : DY(kb, l); DY(kb′, l). (11.2)

Since the knowledge bases kb,kb′ vary with the considered protocol traces, the defini-
tion of ; and the proof of its properties are specific to the protocol. Nevertheless, our
proof technique described in this chapter permits to handle the majority of the proof work only
once for each message algebra: We prove the existence of the appropriate simulation relations
by providing basis relations in form of finite sets xy of message pairs. They are extended
uniformly through composition to infinite relations ;. The needed properties of ; follow
by a generic central theorem that fixes corresponding necessary and sufficient conditions on
xy, DY(kb) and DY(kb′). This way, indistinguishability properties are reduced to protocol-
independent proof obligations that are verified using typical trace properties (regularity prop-
erties) of the protocol.

Before we describe the proof of the central theorem, we give more details to the intro-
duced proof method using the resistance of PACE against password testing as a running
example.

11.1 The Building Blocks of Indistinguishability Proofs

In indistinguishability properties, the knowledge bases kb,kb′ for which property (11.1)
must be shown are fixed relative to protocol traces and according to the corresponding
kind of security objectives. For instance, resistance against offline password testing is de-
fined for all protocol traces tr, passwords π,π′ and knowledge bases1 kb,kb′ that satisfy the
following assumptions:

1. π is confidential, i.e. π /∈ DY(spies(tr)),

2. π′ does not occur in tr, i.e. ∀m ∈ spies(tr) : ¬uses(m,π′),

1Knowledge bases are lists of messages, although they are used in certain contexts as finite sets.

189

190 CHAPTER 11. PROVING INDISTINGUISHABILITY PROPERTIES (IN PACE)

3. kb and kb′ are obtained by adding π and respectively π′ to spies(tr), i.e. kb =
π.spies(tr) and kb′ = π′.spies(tr),

4. and tr includes a regular occurrence of π.

The instantiation in case of PACE is as follows:

PropertyVSE 105 (Resistance against Offline Password Guessing; PACE):

(tr ∈ PACE ∧ π ̸∈ DY(spies(tr)) ∧ (∀m ∈ spies(tr) : ¬uses(m,π′)) ∧
((∃nc : enc(π,nc) ∈ spies(tr)) ∨
(∃g,m1,m2,nc : objdec(dec(π,m1),π,m1) ∧

dh(gen(dh(g,dec(π,m1)),m2),nc) ∈ spies(tr))))
⇒
∀i, j : DY(π.spies(tr), i) = DY(π.spies(tr), j)⇔

DY(π′.spies(tr), i) = DY(π′.spies(tr), j)

Except of the fourth assumption, which is specified using the protocol messages with
occurrences of the protected password π, the remaining part (assumptions 1–3 and the
conclusion) are property-specific. The formalization of resistance against offline password
guessing of other protocols requires just to adapt assumption 4. See property 138 of TC-
AMP in Sec. 14.1.

In case of PACE, we formalize the use of a protected password π in some protocol run
through the occurrence in a first or in a fourth message. The latter situation covers the runs
where both participants act as terminals (cp. the authentication property 8.4).

Indistinguishability property 105 illustrates how the knowledge bases kb,kb′ are fixed
by relevant protocol traces tr and by a tuple x of parameters that are specific to the corre-
sponding kind of security objectives (x = (π,π′) in case of resistance against offline pass-
word guessing). In our discussion, we abbreviate the conjunction of assumptions that fix
kb,kb′ by Ω(tr, x,kb,kb′).

Basically, such a conjunction of assumptions Ω(tr, x,kb,kb′) exists in all kinds of in-
distinguishability properties. In contrast to static equivalence properties, e.g., resistance
against offline guessing, where kb and kb′ are given by tr and x, trace equivalence proper-
ties require to provide (as part of the proof), based on tr and x, an equivalent protocol trace
tr′ used as a source for kb′ like tr for kb. In both kinds of indistinguishability properties,
the main proof work consists in showing the proof goal in (11.1) for all knowledge bases kb
and kb′ in the proof situations given by the assumptions in Ω(tr, x,kb,kb′).

Referring to the proof of indistinguishability properties with the help of a bijective (sim-
ulation) relation ; satisfying property (11.2), we need (i) to provide such a relation for each
pair of knowledge bases kb,kb′ (see Sec. 11.1.1) and (ii) to prove property (11.2) for this re-
lation (see Sec. 11.1.2).

11.1.1 Defining ; Relations

The proof of indistinguishability using simulation relations requires to ensure for all
protocol traces tr, corresponding parameters x and knowledge bases kb,kb′ fulfilling
Ω(tr, x,kb,kb′) the existence of a bijective relation ; that satisfies property (11.2). This
means, we are dealing with a (second order) conjecture where the relation ; is existen-
tially quantified. Instead of using an existentially quantified variable for the relation ;,

11.1. THE BUILDING BLOCKS OF INDISTINGUISHABILITY PROOFS 191

we use that for a finite set xy of message pairs, employed as a basis relation to define the
relation ; as described in the following.

11.1.1.1 Use of the
;
rec Function

For given finite sets xy of message pairs, we define the relations
xy
; (abbreviated by ;) with

the help of a (recursive) function
;
rec:

m
xy
; m′ :⇔ m′ ∈;

rec (xy,m)

The range of
;
rec consists of finite sets of messages, permitting to define relations

xy
; that

extend given basis relations in form of finite sets xy of message pairs. The basis relation
xy is used in the definition of

;
rec like a look-up table: If m belongs to the domain of xy,

;
rec returns the set of all messages associated to m by xy. Otherwise, m is expected to be
a composed message, i.e. some f -object. In this case, each possible derivation of m by
composition, i.e. by a constructor-type operation or by a synthesis operation, provides an
alternative tuple of direct substructures or synth-parts of m, which we call the (composition)
sub-messages of m. For each alternative sub-messages m0, . . . ,mn−1,

;
rec identifies recursively

the Cartesian product of the sets
;
rec (xy,m0), . . . ,

;
rec (xy,mn−1) and then uses the resulting

tuples if any to derive messages applying the same function symbol like in the derivation of m
from m0, . . . ,mn−1. The message sets resulting from all alternative sub-messages are finally
combined by union to define (the result of)

;
rec (xy,m) (for an f -object m). Note that the

application of function symbols in the recursive case is not restricted to constructor-type
and respectively synthesis operations.

In the PACE algebra, we obtain the following definition of
;
rec.

DefinitionVSE 106 (
;
rec; PACE):

Let xy be a finite set of message pairs. Then, we have for two arbitrary messages m and m′:

m′ ∈;
rec (xy,m)⇔

((m,m′) ∈ xy ∨
((∀z : (m,z) ̸∈ xy) ∧
((∃m0,m′0 : m′0 ∈

;
rec (xy,m0) ∧

((obj f st(m,m0) ∧m′ = f st(m′0)) ∨ (objsnd(m,m0) ∧m′ = snd(m′0)))) ∨
(∃m0,m1,m′0,m′1 : m′0 ∈

;
rec (xy,m0) ∧m′1 ∈

;
rec (xy,m1) ∧

((objpair(m,m0,m1) ∧m′ = pair(m′0,m′1)) ∨ (objenc(m,m0,m1) ∧m′ = enc(m′0,m′1)) ∨
(objdec(m,m0,m1) ∧m′ = dec(m′0,m′1)) ∨ (objdh(m,m0,m1) ∧m′ = dh(m′0,m′1)) ∨
(objgen(m,m0,m1) ∧m′ = gen(m′0,m′1)) ∨ (objmac(m,m0,m1) ∧m′ = mac(m′0,m′1))))))).

Note that the recursive case of
;
rec considers for dh-objects m implicitly several alterna-

tives of sub-messages, as they are composed by constructor-type applications of the per-
mutative function symbol dh. Contrarily to the other composed messages, the handling of
dh-objects will necessitate for that reason (a kind of an) additional induction (dimension)
on the number of sub-message alternatives (see Sec. 11.3).

Having the function
;
rec, we describe in the following section how to define suitable sets

xy of message pairs (as basis relations) to use
xy
; (defined above) as simulation relations. In

192 CHAPTER 11. PROVING INDISTINGUISHABILITY PROPERTIES (IN PACE)

particular, the bijection property for a relation
xy
; is shown below by considering in parallel

the (inverse) relation
xy
;, which we define by

m
xy
;m′ :⇔ m ∈;

rec (rev(xy),m′),where

m
xy
;m′ denotes (m′,m) ∈ xy

;and where rev(xy) equals the set {(m2,m1) | (m1,m2) ∈ xy}.
We denote the bijection property of

xy
; with the help of the following abbreviations:

m
xy7→ m′ :⇔;

rec (xy,m) = {m′}

m
xy← [m′ :⇔;

rec (rev(xy),m′) = {m}

m
xy↔ m′ :⇔ (m

xy7→ m′ ∧m
xy← [m′)

11.1.1.2 Defining the Basis Relations xy

A crucial part of the proof work consists in identifying the contents of the sets xy that are
used as basis relations. This is done taking into consideration the items in kb,kb′, which are
themselves defined relative to ik (the immediately observable messages of the protocol) and
the property-specific parameters x (π,π′ in resistance against offline password guessing).

The contents of xy must be carefully identified, considering two issues:

1. In order for
xy
; to be total, i.e. to have DY(kb) as domain and DY(kb′) as codomain,

the basis relations xy must cover all derivable atomic messages (Ψa) and all deriv-
able composed messages that cannot be derived by composition because of missed sub-
messages (Ψc):

Ψa : ((m ∈ At ∧m ∈ DY(kb))⇒ (∃m′ : (m,m′) ∈ xy)) ∧
((m ∈ At ∧m ∈ DY(kb′))⇒ (∃m′ : (m′,m) ∈ xy))

Ψc : ((m /∈ At ∧m ∈ DY(kb) ∧ ¬isObjpair(m)

∧ ((obj f st(m,m0) ∨ objsnd(m,m0))⇒ m0 /∈ DY(kb))

∧ ((objenc(m,m0,m1) ∨ objdec(m,m0,m1) ∨ objdh(m,m0,m1) ∨
objgen(m,m0,m1) ∨ objmac(m,m0,m1))⇒¬(m0,m1 ∈ DY(kb))))

⇒ (∃m′ : (m,m′) ∈ xy)) ∧
((m /∈ At ∧m ∈ DY(kb′) ∧ ¬isObjpair(m)

∧ ((obj f st(m,m0) ∨ objsnd(m,m0))⇒ m0 /∈ DY(kb′))

∧ ((objenc(m,m0,m1) ∨ objdec(m,m0,m1) ∨ objdh(m,m0,m1) ∨
objgen(m,m0,m1) ∨ objmac(m,m0,m1))⇒¬(m0,m1 ∈ DY(kb′))))

⇒ (∃m′ : (m′,m) ∈ xy))

2. Besides Ψa and Ψc, we identify below further conditions on xy, DY(kb) and DY(kb′)
necessary to prove that

xy
; correspond to appropriate simulation relations (see for in-

stance Ψ2
mac in Sec. 11.1.2.1). All these conditions form the proof obligations, which

shall be shown with the help of regularity properties of the protocol on the different
types of the derivable messages and the protection of their substructures (see for in-
stance the regularity property 118 in Sec. 12.2.4). To simplify matters, we use sets xy
that include as few pairs as possible. This permits to get rid of many proof obligations
(by revoking their assumptions) due to the absence of redundant pairs in the basis
relations xy.

11.1. THE BUILDING BLOCKS OF INDISTINGUISHABILITY PROOFS 193

To reach both purposes (coverage and minimality), we define the basis relations xy
as the smallest sets of message pairs that satisfy tailored inclusion rules. With these
rules, we identify the pairs that shall be included in xy at the protocol steps and un-
der certain conditions. For instance, the inclusion of the pair (π,π′) in xy for the resis-
tance proof of PACE is defined by a rule that requires the occurrence of a enc(π,nc) or
dh(gen(dh(g,dec(π,m1)),m2),nc) in the observable messages ik, for some nc, g,m1,m2 (see
rule Φ1 in Sec. 12.1).

Note that certain inclusion rules make use of negative conditions to exclude pairs
(m,m′) where m and m′ are derivable by composition from other items in DY(kb) and
respectively DY(kb′). For instance, the inclusion of pairs (mac(m1,m2),mac(m1,m2)) in xy
for the resistance proof of PACE is defined by a rule that requires mac(m1,m2) ∈ ik and the
(negative) condition m1 /∈ DY(ik) (see rule Φ5 in Sec. 12.1).

Like the contents of kb and kb′, the content of xy is also defined (by the inclusion rules)
relative to the observable messages ik and the parameters x (π,π′ in resistance against
offline password guessing). So, we use Φ(xy, ik, x) to denote in our discussion the formula
defining basis relations xy.

Technically, we use the fixed definition Φ(xy, ik, x) of basis relations xy in two lemmata,
which provide us with a bijective (simulation) relation to use in the proof of indistinguisha-
bility as described in Sec. 10.2.

1. The first lemma Ω(tr, x,kb,kb′)⇒ ∃xy : Φ(xy, ik, x), which we call basis simulation re-
lation lemma, provides the sets xy for the definition of

xy
;. It is verified by induction

on protocol traces (see Sec. 11.1.1.3).

2. The second lemma (Ω(tr, x,kb,kb′) ∧Φ(xy, ik, x))⇒ (∀l : DY(kb, l)
xy↔ DY(kb′, l)) en-

sures the required properties of
xy
;. It is handled by the so-called central indistinguisha-

bility theorem (see Sec. 11.1.2) to obtain the proof obligations shown using (besides
Ω(tr, x,kb,kb′) and Φ(xy, ik, x)) regularity properties verified by induction on proto-
col traces.

11.1.1.3 Basis Simulation Relation Lemma

In the basis simulation relation lemma, we provide for every considered pair of knowledge
bases kb and kb′ a set xy of message pairs that corresponds to the required basis relation
as stated in the conjectured definition Φ. Afterwards, we show that the corresponding

relations
xy
; are bijective and satisfy property (11.2).

Using a definition Φ(xy, spies(tr),π,π′) for the basis relation sets in the resistance proof
of PACE, we obtain the following basis simulation relation lemma:

PropertyVSE 107 (Basis Simulation Relation Lemma; PACE):

(tr ∈ PACE ∧ π ̸∈ DY(spies(tr)) ∧ (∀m ∈ spies(tr) : ¬uses(m,π′)) ∧
((∃nc : enc(π,nc) ∈ spies(tr)) ∨
(∃g,m1,m2,nc : objdec(dec(π,m1),π,m1) ∧

dh(gen(dh(g,dec(π,m1)),m2),nc) ∈ spies(tr))))
⇒ (∃xy : Φ(xy, spies(tr),π,π′))

The proof of this property is by induction on all PACE traces. The base case is trivial.
In the step case, the induction hypothesis provides xyp that satisfies Φ(xyp, ikp,π,π′).

For the extended intruder knowledge ik = ikp ⊎ ike, we need to provide xy relative to xyp,

194 CHAPTER 11. PROVING INDISTINGUISHABILITY PROPERTIES (IN PACE)

ikp and ike and show that Φ(xy, ikp ⊎ ike,π,π′) holds. For that purpose, we analyze how
the new items in ike contribute to the derivation of elements in DY(kb) \ DY(kbp) and
DY(kb′) \ DY(kb′p) (for kb = kbp ⊎ ike and kb′ = kb′p ⊎ ike). In most cases of the regular pro-
tocol steps, the new items permit the derivation of new atomic messages or new composed
messages with protected sub-messages. Here, xy is obtained by extending xyp with pairs
for these new atomic or composed messages. For instance, in the sixth and seventh steps
of PACE, we obtain ike = {mac(m1,m2)} with m2 ∈ ikp and distinguish the case where m1
is protected, where xy is then set to xyp ∪ {(mac(m1,m2),mac(m1,m2))} (see Sec. 12.3).

In few cases of the regular protocol steps, the new items permit the derivation of sub-
messages of composed messages mc occurring in pairs of xyp, such that mc becomes deriv-
able by composition. For xy to be minimal, xy must be obtained from xyp by removing
the mc-pairs and adding pairs for corresponding sub-messages and possibly for other new
items (as above, in the simple extension case). For instance, in the oops case of PACE, the
lost key in ike can be the MAC-key in some pair (mac(m1,m2),mac(m1,m2)) in xyp, which
necessitates to set xy to the result of replacing this pair in xyp with (m1,m1) (see Sec. 12.3).
Note that m1 possesses protected sub-messages ((m1,m1) cannot be substituted with pairs
for sub-messages of m1) and that m2 occurs in ikp (no need to include (m2,m2) or pairs for
sub-messages of m2).

In the fake case, we need to set xy = xyp as the attacker should not be able to derive
new sensitive messages, which can be used to violate the indistinguishability property. This
is verified (foremost at this phase) with the help of the above mentioned regularity prop-
erties of the protocol. Whenever m in ike (and from DY(ikp)) matches a message that fires
an inclusion rule, the regularity properties shall imply that this specific message must be
already considered when building xyp. In case for instance m = mac(m1,m2) with a pro-
tected m1, the regularity property about derivable mac-objects implies mac(m1,m2) ∈ ikp
and m1 /∈ DY(ikp), which yielded to the inclusion of (mac(m1,m2),mac(m1,m2)) in xyp (see
property 118 in Sec. 12.2.4).

In all (above mentioned) cases, property Φ(xy, ikp ⊎ ike,π,π′) shall be simply shown
from Φ(xyp, ikp,π,π′) and the assumptions yielding to the corresponding definition of xy
relative to xyp (see Sec. 12.3).

11.1.2 The Central Indistinguishability Theorem

The central indistinguishability theorem is used to prove the required properties of the

relations
xy
; for given basis relations xy (cp. step 2 in the proof plan for indistinguishabil-

ity properties, described in Sec. 11.1.1.2). Its premise provides the necessary and sufficient
conditions, which form the proof obligations that we show with the help of regularity prop-
erties of the protocol verified by trace induction (see Sec. 11.1.2.5).

The necessary and sufficient conditions can be distinguished as follows:

• Ψa and Ψc in Sec. 11.1.1.2 ensure that
xy
; is total.

• Two further generic conditions (Ψb and Γ) used to ensure that bijective basis relations

xy ⊂ DY(kb)× DY(kb′) are used and that
xy
; correctly maps the first DY-level kb to

kb′ (see Sec. 11.1.2.2).

• Additional algebra-specific conditions on xy ensure that derivations by (single) appli-
cations of function symbols do not violate indistinguishability (see Sec. 11.1.2.1).

11.1.2.1 Algebra-specific Conditions

In this section, we present the algebra-specific conditions for indistinguishability in the
PACE algebra, emphasizing their different types to support adaptations to other message
algebras.

11.1. THE BUILDING BLOCKS OF INDISTINGUISHABILITY PROOFS 195

The generation of the conditions follows two general principles:

• If the f -parts m0, . . . ,mn−1 of m that is mapped by xy (resp. rev(xy)) are public,
then these f -parts must be mapped to m′0, . . . ,m′n−1 such that the image of m equals
f (m′0, . . . ,m′n−1).

• When f has algebraic effects, additional conditions are used to capture the allowed
effects and exclude the critical ones.

We start with the most simple conditions, where algebraic effects of f (if any) are not
(explicitly) handled.

Ψ1
mac : ((mac(mx1,mx2),my) ∈ xy ∧mx1,mx2 ∈ DY(kb))⇒

(∃my1,my2 ∈ DY(kb′) : (mx1,my1), (mx2,my2) ∈ xy ∧my = mac(my1,my2))

Ψ2
mac : ((mx,mac(my1,my2)) ∈ xy ∧my1,my2 ∈ DY(kb′))⇒

(∃mx1,mx2 ∈ DY(kb) : (mx1,my1), (mx2,my2) ∈ xy ∧mx = mac(mx1,mx2))

Ψ1
gen : ((gen(mx1,mx2),my) ∈ xy ∧mx1,mx2 ∈ DY(kb))⇒

(∃my1,my2 ∈ DY(kb′) : (mx1,my1), (mx2,my2) ∈ xy ∧my = gen(my1,my2))

Ψ2
gen : ((mx, gen(my1,my2)) ∈ xy ∧my1,my2 ∈ DY(kb′))⇒

(∃mx1,mx2 ∈ DY(kb) : (mx1,my1), (mx2,my2) ∈ xy ∧mx = gen(mx1,mx2))

Ψ1
dh : ((dh(mx1,mx2),my) ∈ xy ∧mx1,mx2 ∈ DY(kb))⇒

(∃my1,my2 ∈ DY(kb′) : (mx1,my1), (mx2,my2) ∈ xy ∧my = dh(my1,my2))

Ψ2
dh : ((mx,dh(my1,my2)) ∈ xy ∧my1,my2 ∈ DY(kb′))⇒

(∃mx1,mx2 ∈ DY(kb) : (mx1,my1), (mx2,my2) ∈ xy ∧mx = dh(mx1,mx2))

Ψ1
pair : (pair(mx1,mx2),my) ∈ xy⇒

(∃my1,my2 ∈ DY(kb′) : (mx1,my1), (mx2,my2) ∈ xy ∧my = pair(my1,my2))

Ψ2
pair : (mx, pair(my1,my2)) ∈ xy⇒

(∃mx1,mx2 ∈ DY(kb) : (mx1,my1), (mx2,my2) ∈ xy ∧mx = pair(mx1,mx2))

The following conditions integrate the allowed reversing effects of enc and dec.

Ψ1
enc : (objenc(mx,mx1,mx2) ∧ (mx,my) ∈ xy ∧mx1 ∈ DY(kb))⇒

(∃my1 ∈ DY(kb′) : (mx1,my1), (mx2,dec(my1,my)) ∈ xy)

Ψ2
enc : (objenc(my,my1,my2) ∧ (mx,my) ∈ xy ∧my1 ∈ DY(kb′))⇒

(∃mx1 ∈ DY(kb) : (mx1,my1), (dec(mx1,mx),my2) ∈ xy)

Ψ1
dec : (objdec(mx,mx1,mx2) ∧ (mx,my) ∈ xy ∧mx1 ∈ DY(kb))⇒

(∃my1 ∈ DY(kb′) : (mx1,my1), (mx2, enc(my1,my)) ∈ xy)

196 CHAPTER 11. PROVING INDISTINGUISHABILITY PROPERTIES (IN PACE)

Ψ2
dec : (objdec(my,my1,my2) ∧ (mx,my) ∈ xy ∧my1 ∈ DY(kb′))⇒

(∃mx1 ∈ DY(kb) : (mx1,my1), (enc(mx1,mx),my2) ∈ xy)

A composition by enc (resp. dec) on one side may have a decrypt-type effect on the other
side, only if the left part in the composition is mapped to the crypt-key.

The following conditions integrate the excluded effects of f st and dec on pair-objects.

Ψ1
f st : (obj f st(mx,mx1) ∧ (mx,my) ∈ xy ∧mx1 ∈ DY(kb))⇒

(∃my1 ∈ DY(kb′) : (mx1,my1) ∈ xy ∧ obj f st(my,my1))

Ψ2
f st : (obj f st(my,my1) ∧ (mx,my) ∈ xy ∧my1 ∈ DY(kb′))⇒

(∃mx1 ∈ DY(kb) : (mx1,my1) ∈ xy ∧ obj f st(mx,mx1))

Ψ1
snd : (objsnd(mx,mx1) ∧ (mx,my) ∈ xy ∧mx1 ∈ DY(kb))⇒

(∃my1 ∈ DY(kb′) : (mx1,my1) ∈ xy ∧ objsnd(my,my1))

Ψ2
snd : (objsnd(my,my1) ∧ (mx,my) ∈ xy ∧my1 ∈ DY(kb′))⇒

(∃mx1 ∈ DY(kb) : (mx1,my1) ∈ xy ∧ objsnd(mx,mx1))

An application of f st (resp. snd) is not allowed to extract the select-part of a pair-object
that is mapped to a f st-part (resp. snd-part). For instance, obj f st(my,my1) in Ψ1

f st, where
the mapped message mx is a f st-object, excludes that my1, mapped to the f st-part of mx, is
a pair-object.

The following conditions would not be identified without a thorough proof of the cen-
tral indistinguishability theorem (see Sec. 11.2–11.4). They are specific to the algebraic ef-
fects of dh. Except that multiple right dh-parts can be switched, there are no other algebraic
effects of dh and dh-objects. These features necessitate the use of Ψ1,2

dh and Ψ2,2
dh to exclude

critical effects of dh, as illustrated by this example: The set xy can include (dh(a,b),yb) and
(dh(a, c),yc) with b, c ∈ DY(kb) and a /∈ DY(kb). Here, dh(dh(a,b), c) is derivable by the
application of dh using (dh(a,b), c) as well as (dh(a, c),b). For that reason, the same deriva-
tions on the other side, i.e. dh(yb,mc) for mc mapped to c and dh(yc,mb) for mb mapped
to b, must provide the same result, i.e. dh(yb,mc) = dh(yc,mb). This justifies the necessary
condition Ψ1,2

dh .

Ψ1,2
dh : ((dh(mz,msx1),my1), (dh(mz,msx2),my2) ∈ xy ∧mz /∈ DY(kb) ∧

msx1 ̸= msx2 ∧msx1,msx2 ⊂ DY(kb))⇒
(∃msy1,msy2 ⊂ DY(kb′),mu /∈ DY(kb′) : ℘(msx1,msy1),℘(msx2,msy2) ⊆ xy ∧

my1 = dh(mu,msy1) ∧my2 = dh(mu,msy2))

Ψ2,2
dh : ((mx1,dh(mz,msy1)), (mx2,dh(mz,msy2)) ∈ xy ∧mz /∈ DY(kb′) ∧

msy1 ̸= msy2 ∧msy1,msy2 ⊂ DY(kb′))⇒
(∃msx1,msx2 ⊂ DY(kb),mu /∈ DY(kb) : ℘(msx1,msy1),℘(msx2,msy2) ⊆ xy ∧

mx1 = dh(mu,msx1) ∧mx2 = dh(mu,msx2))

In Ψ1,2
dh , ℘(msx1,msy1) denotes a finite set of pairs mapping each element in msx1 to a unique

element in msy1. According to Ψ1,2
dh , if xy maps two dh-objects having a same protected left

11.1. THE BUILDING BLOCKS OF INDISTINGUISHABILITY PROOFS 197

dh-part mz, their images must be also dh-objects with a same protected left dh-part mu.
These images must result by successive applications of dh to mu and to the images of msx1
and msx2, respectively.

11.1.2.2 Generic Conditions and Theorem

Besides Ψa and Ψc in Sec. 11.1.1.2, two further generic conditions are used.
First, Ψb ensures that a finite set xy of message pairs corresponds to a bijective relation

between a subset of DY(kb) and a subset of DY(kb′).

Ψb : (m,m′) ∈ xy⇒
(m ∈ DY(kb) ∧m′ ∈ DY(kb′) ∧
((m,m′′) ∈ xy⇒ m′′ = m′) ∧ ((m′′,m′) ∈ xy⇒ m′′ = m))

In the following, we use Ψ(xy,kb,kb′) to denote the conjunction of Ψa, Ψc, Ψb and the
algebra-specific conditions (in Sec. 11.1.2.1).

Besides Ψ(xy,kb,kb′), the following condition

Γ : 0≤ l < len(kb)⇒ sel(l,kb)
xy
; sel(l,kb′)

ensures that
xy
; maps the first DY-level relative to kb to the first DY-level relative to kb′,

as required for the base case of the theorem’s proof (see Sec. 11.4). Using the mentioned
conditions, the central indistinguishability theorem is formalized by:

TheoremVSE 108 (DY(kb, l)
xy↔ DY(kb′, l)):

Let xy be a finite set of message pairs and let kb,kb′ be two equally-long lists of message
items. Then, we have

(Ψ(xy,kb,kb′) ∧ Γ(xy,kb,kb′))⇒ (∀l : DY(kb, l)
xy↔ DY(kb′, l)).

The theorem permits to prove that the relations
xy
; correspond to specific bijective func-

tions. They map each generic derivation applied to kb to its result when applied to kb′.
The proof of this property is by induction on the successive enumeration of the generic
derivations, which is compatible with a natural order of the DY-levels as described in
Sec. 10.3 and 10.4. We describe this proof in Sec. 11.4, where we make use of two lemmata
(Structural Mapping Lemma introduced in Sec. 11.1.2.3 and Domain Restriction Lemma in
Sec. 11.1.2.4).

11.1.2.3 Structural Mapping Lemma

According to the properties of
xy
; in theorem 108, the binary relation

xy
; corresponds to a

(one-to-one) mapping between DY(kb, l) and DY(kb′, l). For the proof of this mapping (in
Sec. 11.4), we need an appropriate reduction of the mapping between composed messages in
DY(kb) and those in DY(kb′) to the mapping between their sub-messages. This is provided
by the so-called structural mapping lemma introduced in this section. It does not only con-

jectures that
xy
; is a bijective relation between DY(kb) and DY(kb′), but it also provides the

so-called structural condition on the mapping of composed messages relative to the map-
pings of their sub-messages. Mapped messages m,m′ for which no pair (m,m′) exists in xy
satisfy the structural condition abbreviated by Ξ(m,m′, xy,kb,kb′).

In Ξ(m,m′, xy,kb,kb′), we define how m′ are obtained from messages m′0, . . . ,m′n−1

mapped by
xy↔ to composition sub-messages m0, . . . ,mn−1 of m. The definition of Ξ must

be a complete case distinction, which covers all composition alternatives of f -objects m. It

198 CHAPTER 11. PROVING INDISTINGUISHABILITY PROPERTIES (IN PACE)

includes canonical cases for f -objects that can be composed only by a unique constructor-
type application of f using a definite tuple of f -parts. We abbreviate such a case with a
predicate Ξ f , defined according to the following schema:

Ξ f (m,m′, xy,kb,kb′)⇔

(∃m0, . . . ,mn−1 ∈ DY(kb),m′0, . . . ,m′n−1 ∈ DY(kb′) : obj f (m,m0, . . . ,mn−1) ∧

m0
xy↔ m′0 ∧ . . . ∧mn−1

xy↔ m′n−1 ∧ obj f (m′,m′0, . . . ,m′n−1))

For instance, the case for enc-objects is defined by

Ξenc(m,m′, xy,kb,kb′)⇔
(∃m0,m1 ∈ DY(kb),m′0,m′1 ∈ DY(kb′) : objenc(m,m0,m1) ∧

m0
xy↔ m′0 ∧m1

xy↔ m′1 ∧ objenc(m′,m′0,m′1)).

For f -objects m that do not fit in with the canonical cases, the definition of Ξ will in-
clude additional non-canonical predicates covering the (multiple) composition alternatives
of m. In PACE, we use a predicate Ξdh for the case of dh-objects m (see Sec. 11.3), to spec-
ify derivations by composition through successive applications of dh. This supports the
handling of multiple decomposition alternatives of dh-objects (in

;
rec).

Using Ξdh and the canonical predicates Ξenc,Ξdec,Ξ f st,Ξsnd,Ξpair,Ξmac,Ξgen, we obtain
the following structural mapping lemma:

LemmaVSE 109 (DY(kb)
xy↔ DY(kb′); PACE):

(Ψ(xy,kb,kb′) ∧m ∈ DY(kb))⇒

(∃m′ ∈ DY(kb′) : m
xy↔ m′ ∧ ((m,m′) ∈ xy ∨

Ξenc(m,m′, xy,kb,kb′) ∨ Ξdec(m,m′, xy,kb,kb′) ∨
Ξ f st(m,m′, xy,kb,kb′) ∨ Ξsnd(m,m′, xy,kb,kb′) ∨
Ξpair(m,m′, xy,kb,kb′) ∨ Ξmac(m,m′, xy,kb,kb′) ∨
Ξgen(m,m′, xy,kb,kb′) ∨ Ξdh(m,m′, xy,kb,kb′)))

The proof of this lemma (in Sec. 11.2) is by induction on the (decomposition) structure of
the messages m in DY(kb), i.e. on |m|. The handling of the non-canonical decomposition
case by Ξdh is described in Sec. 11.3.

11.1.2.4 Domain Restriction Lemma

The central indistinguishability theorem and the structural mapping lemma rely on the

property
xy
;⊂ DY(kb) × DY(kb′), i.e. the domain of

xy
; is a subset of DY(kb) and its

codomain a subset of DY(kb′). This property permits to get rid of mapping alternatives
by recursive calls of

;
rec where non-derivable sub-messages are used: If a sub-message re-

quired for a composition of m ∈ DY(kb) is protected, i.e. does not belong to DY(kb), all
composition alternatives using this sub-message do not lead (in the recursive call of

;
rec) to

images of m in DY(kb′). The property
xy
;⊂ DY(kb)×DY(kb′) is conjectured in lemma 110,

which we call the domain restriction lemma. It makes use only of the generic condition Ψb

(see Sec. 11.1.2.2)

11.1. THE BUILDING BLOCKS OF INDISTINGUISHABILITY PROOFS 199

LemmaVSE 110 (
xy
;⊆ DY(kb)× DY(kb′)):

Ψb(xy,kb,kb′)⇒ ((m ̸∈ DY(kb)⇒;
rec (xy,m) = {}) ∧

(m ̸∈ DY(kb′)⇒;
rec (rev(xy),m) = {}))

Proof: The proof is by induction on |m| and it is identical in all message algebras, pro-
vided the recursive case of

;
rec covers all composition alternatives of f -objects, i.e. by

constructor-type applications of f and by corresponding synthesis operations if any.

Base Case: We consider an arbitrary m ∈ At (m ∈ At ∪ Σ⟨0⟩ in message algebras with
function symbols in Σ⟨0⟩).

We first assume
;
rec (xy,m) ̸= {} and want to show m ∈ DY(kb). By the definition of

;
rec, we obtain (m,m′) ∈ xy from

;
rec (xy,m) ̸= {}. This permits to employ Ψb and conclude

with m ∈ DY(kb).
Similarly, we assume

;
rec (rev(xy),m) ̸= {} and want to show m ∈ DY(kb′). By the

definition of
;
rec, we obtain (m′,m) ∈ xy from

;
rec (rev(xy),m) ̸= {}. This permits to employ

Ψb and conclude with m ∈ DY(kb′).

Step Case: We consider an arbitrary composed message m.
We first assume m /∈ DY(kb) and want to show

;
rec (xy,m) = {} by contradiction. By

the definition of
;
rec, we have

;
rec (xy,m) ̸= {} only if either xy includes at least one pair

(m,m′) or m can be composed from sub-messages m1, . . . ,mn such that
;
rec (xy,mi) ̸= {}

for 1 ≤ i ≤ n. In the former case, Ψb yields to m ∈ DY(kb), which refutes the assumption
m /∈ DY(kb). In the latter case, the induction hypothesis yields to mi ∈ DY(kb) for 1≤ i≤ n.
Using m1, . . . ,mn from DY(kb), we are then able to compose m in DY(kb), which refutes the
assumption m /∈ DY(kb).

The second proof task, i.e. proving
;
rec (rev(xy),m) = {} from m /∈ DY(kb′), is also by

contradiction, replaying mainly the same proof plan as in the first proof task. 2

11.1.2.5 Handling of Proof Obligations

The application of the central indistinguishability theorem yields four categories of proof
obligations:

• The proof obligations resulting from Ψa and Ψc, which ensure that
xy
; are total, are

shown by the application of regularity properties followed by inclusion rules in Φ.

For instance, Ψa requires that each password pw(j) in DY(π′.ik) must occur in the
codomain of xy. This is shown with the help of a regularity property that identifies
(besides the case pw(j) = π′) the regular messages where pw(j) is derived from (see
property 115-(3) in Sec. 12.2.1). For each case, an inclusion rule in Φ applies to deduce
a pair (π, pw(j)) or (pw(j), pw(j)) in xy (see Sec. 12.4.1).

Similarly, Ψc requires for instance that each mac(m1,m2) in DY(π.ik) must occur in
the domain of xy if m1 or m2 is not in DY(π.ik). This is shown with the help of
two regularity properties that imply mac(m1,m2) ∈ ik and m1 /∈ DY(ik) (see proper-
ties 118-(1) and -(2) in Sec. 12.2.4). After that an inclusion rule in Φ applies to deduce
a pair (mac(m1,m2),mac(m1,m2)) in xy (see Sec. 12.4.2).

For types of composed messages without protected sub-messages, the corresponding
regularity properties permit to conclude by refutation (cp. the proof of Ψc for gen-
messages (in Sec. 12.4.2) using regularity property 119-(4) in Sec. 12.2.5).

200 CHAPTER 11. PROVING INDISTINGUISHABILITY PROPERTIES (IN PACE)

• The proof obligation resulting from Ψb, which ensures that the basis relations xy are
subsets of DY(π.ik)× DY(π′.ik) and are bijective, is shown based on the definition
of Φ. The bijection property additionally requires to consider the context of the in-
distinguishability property, i.e. the Ω assumption, together with confidentiality and
unicity properties of the protocol (see Sec. 12.4.3).

• The proof obligations resulting from the rest of Ψ, e.g. Ψ2
dec and Ψ1

mac, which ensures
that the basis relations xy are complete, are shown starting with the application of Φ.
Being complete means, if a composed message m in a pair of xy possesses derivable
sub-messages that could be involved with m in certain derivations, then xy must
include corresponding pairs to cover these derivations.

For instance, Ψ2
dec (in Sec. 11.1.2.1) requires in case (mx,dec(my1,my2)) in xy and

my1 in DY(π′.ik) that xy includes pairs (mx1,my1), (enc(mx1,mx),my2). All three
pairs cover the derivation of dec(my1,my2) by composition and that of my2 by ex-
traction. By the minimality of Φ, the pair (mx,dec(my1,my2)) matches (as sketched
in Sec. 12.4.4) just the case where my1 = π′,my2 = enc(π,nc(j)),mx = nc(j) and
enc(π,nc(j)) ∈ ik hold. This permits to set mx1 = π and then to obtain the required
pairs (π,π′), (enc(π,nc(j)), enc(π,nc(j))) by corresponding inclusion rules of Φ.

In general, most proof obligations are shown by refutation due to the minimality prin-
ciple of Φ. For example Ψ1

mac (in Sec. 11.1.2.1) requires in case (mac(mx1,mx2),my)
in xy and mx1,mx2 in DY(π.ik) that xy includes pairs (mx1,my1), (mx2,my2) such
that my = mac(my1,my2) holds. All these conditions cover a derivation by compo-
sition on both sides, i.e. from π.ik and from π′.ik. By the minimality of Φ, the
pair (mac(mx1,mx2),my) matches (as sketched in Sec. 12.4.5) just the case where
my = mac(m1,m2),mac(m1,m2) ∈ ik and m1 /∈ DY(ik) hold. This permits to apply a
regularity property (see property 118-(2) in Sec. 12.2.4) to obtain m1 /∈ DY(π.ik) and
conclude by refutation using mx1 ∈ DY(π.ik) and mx1 = m1.

• The proof obligation resulting from Γ, which ensures that every element in π.ik is

mapped by
xy
; to the element in π′.ik at the same position, is shown using (π,π′)∈ xy

and the lemma that m
xy
; m holds for all m ∈ DY(ik) (see property 120 in Sec. 12.4.6).

Note that the proof obligation is handled the same way in all resistance against offline
password testing properties, i.e. independent of the considered password protocol.

The proof of the mentioned lemma is by structural induction on m using in particular
the structural mapping lemma 109. The proof steps can be translated to the following
properties regarding the mapping of the items in DY(ik) (in case of resistance against
password testing, in general):

1. For atomic messages ci ∈ DY(ik), the pairs (ci, ci) must be included in the basis
relations xy.

2. For composed messages m ∈ DY(ik), if m can be derived by composition using

sub-messages in DY(ik) then
xy
; must map these sub-messages to themselves,

otherwise the pairs (m,m) must be included in the basis relations xy.

11.2 Proof of the Structural Mapping Lemma

In this section, we describe the proof of lemma 109. It is by induction on the structure of m,
i.e. on |m|.

11.2.1 Base Case:

The base case is shown employing Ψa, Ψb and the definition of
;
rec.

11.2. PROOF OF THE STRUCTURAL MAPPING LEMMA 201

Proof of the Base Case: Let m be an atomic message in DY(kb). Then, condition Ψa

provides (at least) one pair (m,m′) in xy. Using Ψb and the definition of
;
rec, we obtain

m′ ∈ DY(kb′) and m
xy7→ m′. For the proof of m

xy↔ m′, it remains to show m
xy← [m′.

Since (m,m′) ∈ xy, we have (m′,m) ∈ rev(xy), which implies m
xy
;m′. To get m

xy← [m′,
we assume m′′

xy
;m′ and then show m′′ = m: According to the definition of

;
rec, m′′

xy
;m′

and m′ ∈ dom(rev(xy)) imply (m′′,m′) ∈ xy. This permits to use (m,m′), (m′′,m′) ∈ xy and
apply Ψb to obtain m′′ = m, as required. 2

11.2.2 Step Case:

To emphasize the general proof idea, we refer sometimes to synthesis operations to cover
message algebras with this kind of composition operations.

In the step case of lemma 109, we consider an arbitrary f -object, i.e. composed message,
m in DY(kb). The proof is by case distinction:

• m ∈ dom(xy): The proof is similar to the Base Case.

• m /∈ dom(xy): According to Ψc, there is a possible composition of m by a constructor-
type application of f (or by a synthesis operation of some g) using sub-messages
m0, . . . ,mn−1 ∈ DY(kb), where n is the arity of f (or respectively g). Applying the
definition of

;
rec and lemma 110, we obtain m′0, . . . ,m′n−1,m′ ∈ DY(kb′), satisfying

m0
xy
; m′0, . . . ,mn−1

xy
; m′n−1,m

xy
; m′ and the equality m′ = f (m′0, . . . ,m′n−1) (or respec-

tively m′ = g(m′0, . . . ,m′n−1)). Due to |m0|, . . . , |mn−1| < |m|, the induction hypothesis

applies to m0, . . . ,mn−1. This implies m0
xy↔ m′0, . . . ,mn−1

xy↔ m′n−1, in particular.

So, if m can be composed by a unique constructor-type application of its head-symbol
f , as for example in the case of mac-objects (in PACE and inv-objects in TC-AMP),
then we have obj f (m,m0, . . . ,mn−1) and the definition of

;
rec provides us with the map-

ping m
xy7→m′, for m′ = f (m′0, . . . ,m′n−1). It remains to show m

xy← [m′ and the other part
of the structural condition on the mapped messages m and m′. We want to describe
this proof for the case of f = enc (in Sec. 11.2.2.1). This proof plan can be adapted
straightforwardly for all other canonical cases, i.e. all other f -objects that can be com-
posed only by a unique constructor-type application of f (see Sec. 11.2.2.2).

For the non-canonical cases, which necessitate to treat arbitrary many decompositions
of m, substantial adaptations are necessary. The proof of these cases is quasi con-
ducted by the definition of the corresponding used predicates: For the non-canonical
cases in PACE, we use Ξdh as described in Sec. 11.3. The non-canonical cases in the
TC-AMP algebra are handled with the help of three predicates Ξ⊖, Ξ∗ and Ξ⊕, as
described in Chap. 13.

11.2.2.1 Handling of enc-Objects:

In this section, we describe the proof steps to handle enc-objects, which can be straightfor-
wardly adapted (see below) for the handling of f -objects that have single decomposition
alternatives.

The proof task consists in showing Ξenc(m,m′, xy,kb,kb′) in the proof situation where

m,m0,m1 ∈ DY(kb), m /∈ dom(xy), objenc(m,m0,m1), m′,m′0,m′1 ∈ DY(kb′), m0
xy↔ m′0, m1

xy↔
m′1, m

xy7→m′ and m′ = enc(m′0,m′1) hold. The remaining conjectures (i) objenc(m′,m′0,m′1) and

(ii) m
xy← [m′ are shown as described below.

202 CHAPTER 11. PROVING INDISTINGUISHABILITY PROPERTIES (IN PACE)

11.2.2.1.1 Proof Task (i): We prove objenc(enc(m′0,m′1),m
′
0,m′1) by contradiction, where

its negation yields to the assumption objdec(m′1,m′0,m′2).
We have (m1,m′1) ∈ xy or Ξ(m1,m′1, xy,kb,kb′) according to the induction hypothesis.

This permits to proceed by the following case distinction:

1. (m1,m′1) ∈ xy: We first apply Ψ2
dec using (m1,dec(m′0,m′2)) ∈ xy and m′0 ∈ DY(kb′)

to obtain (mx1,m′0), (enc(mx1,m1),m′2) ∈ xy. Then, we combine m0
xy↔ m′0 with

(mx1,m′0) ∈ xy to get mx1 = m0. This yields (enc(m0,m1),m′2) ∈ xy, which refutes
the assumption enc(m0,m1) /∈ dom(xy).

2. (m1,m′1) /∈ xy: Here, we want to base the proof on the structure of m′1, being a dec-
object. For that purpose, we require the definition of Ξ to respect a certain mutual-
exclusion principle so that Ξ(m1,m′1, xy,kb,kb′) for a dec-object m′1 can be reduced
to the canonical case Ξdec. That is, we obtain m3,m4 ∈ DY(kb), objdec(m1,m3,m4),

m′3,m′4 ∈ DY(kb′), m3
xy↔m′3, m4

xy↔m′4 and objdec(m′1,m′3,m′4). Using objdec(m′1,m′3,m′4)

and objdec(m′1,m′0,m′2), we get m′3 = m′0 and then m3
xy↔ m′0 (from the mapping

m3
xy↔ m′3). Then, we combine m3

xy↔ m′0 with m0
xy↔ m′0 to obtain the equality

m3 = m0. Thus, objdec(m1,m3,m4) is equivalent to objdec(m1,m0,m4), which refutes
objenc(enc(m0,m1),m0,m1). 2

11.2.2.1.2 Proof Task (ii): After having shown objenc(enc(m′0,m′1),m
′
0,m′1), we want to

show the mapping enc(m0,m1)
xy← [enc(m′0,m′1). This follows by the induction hypothesis

and the definition of
;
rec, provided enc(m′0,m′1) ∈ dom(rev(xy)) does not hold. That is, we

proceed by assuming (mx, enc(m′0,m′1)) ∈ xy and aim at a contradiction.

Due to m0
xy↔ m′0, we know that the crypt-key m′0 of enc(m′0,m′1) is in DY(kb′) and

this permits to apply condition Ψ2
enc for (mx, enc(m′0,m′1)) ∈ xy. The application of

Ψ2
enc yields the pairs (mx1,m′0), (dec(mx1,mx),m′1) ∈ xy. Combining m0

xy↔ m′0 with the

pair (mx1,m′0) in xy implies mx1 = m0. Similarly, combining m1
xy↔ m′1 with the pair

(dec(mx1,mx),m′1) in xy implies m1 = dec(mx1,mx). The obtained equalities permit to de-
duce enc(m0,m1) = enc(mx1 ,dec(mx1,mx)) = mx and thus (mx, enc(m′0,m′1)) ∈ xy refutes the
assumption enc(m0,m1) /∈ dom(xy). 2

Note that this application of Ψ2
enc permits to instantiate mx according to the structure of

(its mapped message) enc(m′0,m′1) substituting m′0 and m′1 with their mapped messages. In
the following, we often abbreviate such an application of a necessary condition focusing
on the instantiation effect. Here, Ψ2

enc is applied to instantiate mx with enc(m0,m1).

11.2.2.2 Handling Other Canonical Cases:

All other canonical cases are handled by replaying the proof steps in Sec. 11.2.2.1. For the
handling of dec-objects, the proof steps are adapted by switching “enc” and “dec”, also in
the used necessary conditions.

11.2.2.2.1 Proof Task (i): This proof task is relevant only for the f -objects where appli-
cations of function symbols f are not always constructor-type. It is handled by assuming
¬obj f (f (m′0, . . . ,m′n−1),m

′
0, . . . ,m′1−n) and using that to obtain the structure for some m′i. Af-

ter that, the structural condition for the mapping mi
xy↔ m′i permits to propagate the struc-

ture of m′i to mi and then to refute one of the assumptions on f (m0, . . . ,mn−1). This is done
with the help of an appropriate inclusion condition in case (mi,m′i) ∈ xy (cp. situation (1))
and with the help of the Ξ-definition in the complementary case (cp. situation (2)).

11.3. HANDLING OF THE NON-CANONICAL ΞDH CASE 203

Proof Details: For the handling of f st-objects, the assumption ¬obj f st(f st(m′0),m
′
0)

yields objpair(m′0,m′1,m′2) and this permits to apply Ψ2
pair in situation (1). This yields m0 =

pair(mx1,mx2), which refutes obj f st(f st(m0),m0).
The handling of snd-objects is similar, based also on Ψ2

pair. 2

11.2.2.2.2 Proof Task (ii): The handling of this task is mainly by assuming the pair
(mx, f (m′0, . . . ,m′n−1)) in xy and then using an appropriate necessary condition to instan-
tiate mx with f (m0, . . . ,mn−1), which permits to refute f (m0, . . . ,mn−1) /∈ dom(xy).

The handling of pair-objects is based on Ψ2
pair. For the handling of f st-, snd-, gen- and

respectively mac-objects, we use the necessary conditions Ψ2
f st, Ψ2

snd, Ψ2
gen and respectively

Ψ2
mac.

11.3 Handling of the non-canonical Ξdh Case

The Ξdh-case in lemma 109 defines the mapping of dh-objects by decomposition. Since
multiple decomposition alternatives are possible, we use a definition of Ξdh that covers
also nested dh-parts obtained by successive decomposition. This definition employs the
Θdh

1 predicate to qualify the sub-message where the successive decomposition halts.

Θdh
1 (m, ik)⇔ ∀m0,m1 ∈ DY(ik) : m ̸= dh(m0,m1)

Accordingly, Θdh
1 (x,kb) means in the following definition of Ξdh that x does not possess

available dh-parts in DY(kb).

Ξdh : ∃ms ⊂ DY(kb), x ∈ DY(kb),ms′ ⊂ DY(kb′), x′ ∈ DY(kb′) :

m = dh(x,ms) ∧ms ̸= ∅ ∧Θdh
1 (x,kb) ∧ ℘(ms,ms′) ⊂ xy↔∧

x
xy↔ x′ ∧m′ = dh(x′,ms′)

The predicate Ξdh defines the mapped message m′ to a dh-object m (with available dh-
parts) relative to arbitrarily many sub-messages (x and the elements of ms) of m obtained by
successive decomposition into available also nested dh-parts: m′ is the result of successive
applications of dh using the messages mapped to x and to the elements of ms.

Before we use the predicate Ξdh in the proof of theorem 108 (see Sec. 11.4), we describe
the handling of dh-objects, i.e. the Ξdh-case, in the step case of lemma 109: For m ∈ DY(kb),
m /∈ dom(xy) and isObjdh(m), we need to provide m′ ∈ DY(kb′) satisfying m

xy↔ m′ and
Ξdh(m,m′, xy,kb,kb′).

The proof starts by applying lemma 111 for a successive decomposition of m into available
dh-parts in DY(kb). It provides ms ⊂ DY(kb) and x ∈ DY(kb) with m = dh(x,ms), ms ̸= ∅
and Θdh

1 (x,kb). Since all elements in ms and x are smaller than m, the induction hypoth-

esis provides x′ ∈ DY(kb′) and ms′ ⊂ DY(kb′) with x
xy↔ x′ and ℘(ms,ms′) ⊂ xy↔, where

℘(ms,ms′) denotes a finite set of pairs mapping each element in ms to a unique element in
ms′.

We continue the proof by setting m′ = dh(x′,ms′) and showing m
xy↔ m′ as follows:

• First, we apply lemma 112 to obtain the mapping of m by
xy7→ using the available dh-parts.

It permits to show dh(x,ms)
xy7→ dh(x′,ms′), i.e. m

xy7→ dh(x′,ms′).

• Then, we refute dh(x′,ms′) ∈ codom(xy), i.e. (mx,dh(x′,ms′)) ∈ xy, with the help of
the necessary condition Ψ2

dh: Using Ψ2
dh, we instantiate mx with dh(x,ms), i.e. m, to

refute m /∈ dom(xy).

204 CHAPTER 11. PROVING INDISTINGUISHABILITY PROPERTIES (IN PACE)

The instantiation of mx with dh(x,ms) is by successive applications of Ψ2
dh permitting

to obtain ℘(msx2,ms′) ⊂ xy, (mx1, x′) ∈ xy and mx = dh(mx1,msx2). Then, we use

℘(ms,ms′)⊂ xy↔ and x
xy↔ x′ to deduce msx2 = ms and mx1 = x and thus mx = dh(x,ms).

• Finally, we use dh(x′,ms′) /∈ codom(xy) and apply lemma 113 to obtain the mapping of
dh(x′,ms′) by

xy← [using the available dh-parts. It permits to show dh(x,ms)
xy← [dh(x′,ms′),

i.e. dh(x,ms)
xy← [m′.

11.3.1 Decomposition into dh-Parts in DY(kb)

For dh-objects, the following lemma permits to identify the result of a successive decompo-
sition into available dh-parts.

LemmaVSE 111 (Decomposition into dh-Parts in DY(kb)):
Let m be a dh-object in DY(kb) that can be decomposed in two dh-parts in DY(kb). Then, it
exists ms ⊂ DY(kb) and x ∈ DY(kb) satisfying

m = dh(x,ms) ∧ms ̸= ∅ ∧Θdh
1 (x,kb).

Proof: The proof (by induction on |m|) is trivial. In the base case, m is of the form dh(ci, cj)

for atomic messages ci, cj ∈DY(kb). So, we have Θdh
1 (ci,kb) and this permits to set ms= {cj}

and x = ci.
In the step case, we consider arbitrary m0,m1 ∈ DY(kb) satisfying m = dh(m0,m1) and

continue by a case distinction:

1. In case m0 is not a dh-object or m0 is a dh-object without a pair of dh-parts in DY(kb),
we have Θdh

1 (m0,kb) and this permits to set ms = {m1} and x = m0.

2. In the complementary case, i.e. m0 is a dh-object with a pair of dh-parts in DY(kb), the
induction hypothesis provides x0 and ms0 satisfying m0 = dh(x0,ms0), ms0 ̸= ∅ and
Θdh

1 (x0,kb). This permits to set x = x0 and ms = ms0 ⊎m1, where ms0 ⊎m1 abbreviates
ms0 ⊎ {m1}, i.e. the extension of the multiset ms0 with the message m1. 2

11.3.2 Mapping by
xy7→ using the dh-Parts in DY(kb)

For dh-objects that are not mapped in xy, the following lemma provides the mapping by
xy7→ relative to the mappings of the available dh-parts.

LemmaVSE 112 (Mapping of dh-Objects by
xy7→):

Let ms ⊂ DY(kb), x ∈ DY(kb), ms′ ⊂ DY(kb) and x′ ∈ DY(kb) satisfy ms ̸= ∅, Θdh
1 (x,kb),

℘(ms,ms′) ⊂ xy↔, x
xy↔ x′ and dh(x,ms) /∈ dom(xy). Let (the induction hypothesis of)

lemma 109 hold for all m̂ with |m̂| < |dh(x,ms)|. Then, we have

dh(x,ms)
xy7→ dh(x′,ms′).

Proof: Since dh(x,ms) /∈ dom(xy) and ms ̸= ∅ hold, we prove dh(x,ms)
xy7→ dh(x′,ms′) by

considering arbitrary m0,m1 ∈ DY(kb) with dh(m0,m1) = dh(x,ms) and showing that m′0
and m′1 in the mappings m0

xy↔ m′0 and m1
xy↔ m′1, which are provided by (the induction

hypothesis of) lemma 109, satisfy the equality dh(m′0,m′1) = dh(x′,ms′).
For dh(m0,m1) = dh(x,ms) and ms ̸= ∅, we distinguish two cases:

11.3. HANDLING OF THE NON-CANONICAL ΞDH CASE 205

1. In case m1 ∈ ms, we have ms = m1 ⊎ ms1 and m0 = dh(x,ms1). Furthermore,
℘(ms,ms′) ⊂ xy↔ means that there is ms′1 with ms′ = m′1 ⊎ ms′1 and ℘(ms1,ms′1) ⊂

xy↔.
In the following, we want to show that m′0 = dh(x′,ms′1) to prove the required equal-
ity by

dh(m′0,m′1) = dh(dh(x′,ms′1),m
′
1)

= dh(x′,ms′1 ⊎m′1)

= dh(x′,ms′).

If ms1 = ∅, we obtain m0 = x, m′0 = x′, and ms′1 = ∅. This permits to show the required
equality by dh(x′,ms′1) = dh(x′,∅) = x′ = m′0.

In the complementary case, i.e. ms1 ̸= ∅, m0 is a dh-object and this permits to show

m′0 = dh(x′,ms′1) based on the structural condition for m0
xy↔ m′0 by the following case

distinction:

(a) When (m0,m′0) ∈ xy, i.e. (dh(x,ms1),m′0) ∈ xy, we apply Ψ1
dh to instantiate m′0

with dh(x′,ms′1).

(b) When Ξ(m0,m′0, xy,kb,kb′), the structure of m0 = dh(x,ms1) permits to reduce
this to the Ξdh-case. That is, we get m0 = dh(x0,ms0), ms0 ̸= ∅, Θdh

1 (x0,kb),

℘(ms0,ms′0) ⊂
xy↔, x0

xy↔ x′0 and m′0 = dh(x′0,ms′0).

Based on m0 = dh(x,ms1) = dh(x0,ms0), x, x0 ∈ DY(kb), ms1,ms0 ⊂ DY(kb),
Θdh

1 (x,kb) and Θdh
1 (x0,kb), we obtain two cases:

• x = x0 and ms1 = ms0: Here, m′0 = dh(x′0,ms′0) rewrites immediately to the
equality m′0 = dh(x′,ms′1).

• x = dh(u,mx), x0 = dh(u,mx0), ms1 = ms01 ⊎ mx0 and ms0 = ms01 ⊎ mx
for mx,mx0 ̸= ∅ satisfying mx ̸= mx0: Based on Θdh

1 (x,kb), the struc-

ture of x = dh(u,mx) and on mx ⊂ DY(kb), the mapping x
xy↔ x′ im-

plies (dh(u,mx), x′) ∈ xy with u /∈ DY(kb). Similarly, x0
xy↔ x′0 implies

(dh(u,mx0), x′0) ∈ xy with u /∈ DY(kb).
This proof situation is handled with the help of the necessary condition
Ψ1,2

dh : The application of Ψ1,2
dh for (dh(u,mx), x′), (dh(u,mx0), x′0) ∈ xy yields

℘(mx,mx′),℘(mx0,mx′0) ⊆ xy, x′ = dh(z,mx′) and x′0 = dh(z,mx′0) for some
z /∈ DY(kb′). Taking all equalities and mappings into consideration, we
show m′0 = dh(x′,ms′1) as follows:

m′0 = dh(x′0,ms′0)

= dh(dh(z,mx′0),ms′01 ⊎mx′)

= dh(dh(z,mx′),ms′01 ⊎mx′0)

= dh(x′,ms′1).

2. In case m1 /∈ ms, we have x = dh(x1,m1) and m0 = dh(x1,ms). Based on Θdh
1 (x,kb),

the structure of x = dh(x1,m1) and on m1 ∈ DY(kb), the mapping x
xy↔ x′ implies

(dh(x1,m1), x′) ∈ xy with x1 /∈ DY(kb). Then, we proceed by case distinction accord-

ing to the structural condition for the mapping m0
xy↔ m′0:

206 CHAPTER 11. PROVING INDISTINGUISHABILITY PROPERTIES (IN PACE)

(a) When (m0,m′0) ∈ xy, i.e. (dh(x1,ms),m′0) ∈ xy, we employ ms ̸= {m1} and
x1 /∈ DY(kb) to apply Ψ1,2

dh for (dh(x1,ms),m′0) ∈ xy and (dh(x1,m1), x′) ∈ xy and
obtain m′0 = dh(z,ms′) and x′ = dh(z,m′1) for some z /∈ DY(kb′). Hence, the re-
quired equality can be shown by

dh(m′0,m′1) = dh(dh(z,ms′),m′1)

= dh(dh(z,m′1),ms′)

= dh(x′,ms′1).

(b) When Ξ(m0,m′0, xy,kb,kb′), the structure of m0 = dh(x1,ms) permits to focus
on the Ξdh-case, where we obtain m0 = dh(x0,ms0), ms0 ̸= ∅, Θdh

1 (x0,kb),

℘(ms0,ms′0) ⊂
xy↔, x0

xy↔ x′0 and m′0 = dh(x′0,ms′0). Based on m0 = dh(x0,ms0) =

dh(x1,ms), x0 ∈ DY(kb), x1 /∈ DY(kb), ms0 ̸= ∅, ms ̸= ∅, and ms0 ⊂ DY(kb),
we deduce the equalities ms0 = ms01 ⊎ mx1, ms = ms01 ⊎ mx0, x0 = dh(u,mx0)

and x1 = dh(u,mx1) for mx0 ̸= ∅. Then, the structure of x0 = dh(u,mx0) in
x0

xy↔ x′0, mx0 ̸= ∅ and mx0 ⊂ DY(kb) permit to obtain (dh(u,mx0), x′0) ∈ xy with
u /∈ DY(kb). After that, we use x1 = dh(u,mx1) to rewrite (dh(x1,m1), x′) ∈ xy
to (dh(u,mx1 ⊎m1), x′) ∈ xy. Since m1 /∈ ms and ms = ms01 ⊎mx0, the obtained
pairs (dh(u,mx0), x′0)∈ xy and (dh(u,mx1 ⊎m1), x′)∈ xy satisfy mx0 ̸= mx1 ⊎m1.
This permits, together with u /∈ DY(kb), to apply Ψ1,2

dh and obtain x′0 = dh(z,mx′0)
and x′ = dh(z,mx′1 ⊎ m′1) for z /∈ DY(kb′). Taking all equalities and mappings
into consideration, we show dh(m′0,m′1) = dh(x′,ms′) as follows:

dh(m′0,m′1) = dh(dh(x′0,ms′0),m
′
1)

= dh(dh(dh(z,mx′0),ms′01 ⊎mx′1),m
′
1)

= dh(dh(z,mx′1 ⊎m′1),mx′0 ⊎ms′01)

= dh(x′,ms′)

2

11.3.3 Mapping by
xy← [using the dh-Parts in DY(kb′)

For dh-objects that do not occur in codom(xy), the following lemma provides the mapping

by
xy← [relative to the mappings of the available dh-parts.

LemmaVSE 113 (Mapping of dh-Objects by
xy← [):

Let ms ⊂ DY(kb), x ∈ DY(kb), ms′ ⊂ DY(kb) and x′ ∈ DY(kb) satisfy ms ̸= ∅, Θdh
1 (x,kb),

℘(ms,ms′) ⊂ xy↔, x
xy↔ x′ and dh(x′,ms′) /∈ codom(xy). Let (the induction hypothesis of)

lemma 109 hold for all m̂ with |m̂| < |dh(x,ms)|. Then, we have

dh(x,ms)
xy← [dh(x′,ms′).

Proof: Since dh(x′,ms′) /∈ codom(xy) and ms′ ̸= ∅ hold, we prove dh(x,ms)
xy← [dh(x′,ms′)

by considering arbitrary m′0,m′1 ∈ DY(kb) with dh(m′0,m′1) = dh(x′,ms′), providing m0 and
m1 uniquely mapped to m′0 and respectively m′1 and showing that m0 and m1 satisfy the
equality dh(m0,m1) = dh(x,ms).

For dh(m′0,m′1) = dh(x′,ms′) and ms′ ̸= ∅, we distinguish two cases:

11.3. HANDLING OF THE NON-CANONICAL ΞDH CASE 207

1. In case m′1 ∈ ms′, the multiset ms′ equals m′1 ⊎ ms′1 and m′0 equals dh(x′,ms′1). Fur-

thermore, ℘(ms,ms′) ⊂ xy↔ means that there is ms1 with ms = m1 ⊎ms1, m1
xy↔ m′1 and

℘(ms1,ms′1) ⊂
xy↔. In the following, we want to show that dh(x,ms1)

xy↔ m′0 holds to
set m0 = dh(x,ms1) and prove dh(m0,m1) = dh(x,ms) by

dh(m0,m1) = dh(dh(x,ms1),m1) = dh(x,ms1 ⊎m1) = dh(x,ms).

If ms1 = ∅, we obtain dh(x,ms1) = x, ms′1 = ∅ and m′0 = dh(x′,ms′1) = x′. This permits

to rewrite x
xy↔ x′ to dh(x,ms1)

xy↔ m′0.

In the complementary case, i.e. ms1 ̸= ∅, dh(x,ms1) is a dh-object that is smaller than

dh(x,ms). Thus, (the induction hypothesis of) lemma 109 provides dh(x,ms1)
xy↔ m′

and it remains to show m′ = m′0 = dh(x′,ms′1) based on the structural condition for

dh(x,ms1)
xy↔ m′ by the following case distinction:

(a) When (dh(x,ms1),m′) ∈ xy, we use Ψ1
dh to instantiate m′ with dh(x′,ms′1).

(b) When Ξ(dh(x,ms1),m′, xy,kb,kb′), the structure of dh(x,ms1) permits to re-
duce this to the Ξdh-case. That is, we get dh(x,ms1) = dh(x0,ms0), ms0 ̸= ∅,

Θdh
1 (x0,kb), ℘(ms0,ms′0) ⊂

xy↔, x0
xy↔ x′0 and m′ = dh(x′0,ms′0).

Based on dh(x,ms1) = dh(x0,ms0), x, x0 ∈ DY(kb), ms1,ms0 ⊂ DY(kb), Θdh
1 (x,kb)

and Θdh
1 (x0,kb), we obtain two cases:

• x = x0 and ms1 = ms0: Here, m′ = dh(x′0,ms′0) rewrites immediately to the
equality m′ = dh(x′,ms′1).

• x = dh(u,mx), x0 = dh(u,mx0), ms1 = ms01 ⊎ mx0 and ms0 = ms01 ⊎ mx
for mx,mx0 ̸= ∅ satisfying mx ̸= mx0: Based on Θdh

1 (x,kb), the struc-

ture of x = dh(u,mx) and on mx ⊂ DY(kb), the mapping x
xy↔ x′ im-

plies (dh(u,mx), x′) ∈ xy with u /∈ DY(kb). Similarly, x0
xy↔ x′0 implies

(dh(u,mx0), x′0) ∈ xy with u /∈ DY(kb). This permits to use Ψ1,2
dh and obtain

the instantiations x′= dh(z,mx′) and x′0 = dh(z,mx′0) for z /∈DY(kb′). Taking
all equalities and mappings into consideration, we show m′ = dh(x′,ms′1) by

m′ = dh(x′0,ms′0)

= dh(dh(z,mx′0),ms′01 ⊎mx′)

= dh(dh(z,mx′),ms′01 ⊎mx′0)

= dh(x′,ms′1).

2. In case m′1 /∈ ms′, we have x′ = dh(x′1,m′1) and m′0 = dh(x′1,ms′). Based on Θdh
1 (x,kb),

the structure of x′ = dh(x′1,m′1), the mapping x
xy↔ x′ implies (x,dh(x′1,m′1)) ∈ xy and

Θdh
1 (dh(x′1,m′1),kb′). The latter holds, because (x,dh(x′1,m′1)) ∈ xy permits to map any

assumed available dh-parts of dh(x′1,m′1) by Ψ2
dh to available dh-parts of x, refuting

Θdh
1 (x,kb). Using Θdh

1 (dh(x′1,m′1),kb′), dh(x′1,m′1) ∈ DY(kb′) and m′1 ∈ DY(kb′), we
deduce x′1 /∈ DY(kb′). This, together with dh(x′1,ms′) ∈ DY(kb′), i.e. m′0 ∈ DY(kb′),
permits to employ lemma 114 and obtain x′1 = dh(z, xs′), ms′ = zs′ ⊎ us′, zs′ ̸= ∅,
dh(z,zs′) ∈ DY(kb′), z /∈ DY(kb′), xs′ ⊎ us′ ⊂ DY(kb′), and Θdh

1 (dh(z,zs′),kb′). That
is, dh(z,zs′) ∈ DY(kb′), zs′ ̸= ∅ and Θdh

1 (dh(z,zs′),kb′) imply (xz,dh(z,zs′)) ∈ xy
for some xz ∈ DY(kb). Furthermore, the equality x′1 = dh(z, xs′) permits to rewrite

208 CHAPTER 11. PROVING INDISTINGUISHABILITY PROPERTIES (IN PACE)

(x,dh(x′1,m′1)) ∈ xy to (x,dh(z, xs′ ⊎m′1)) ∈ xy. Here, zs′ ̸= xs′ ⊎m′1, because m′1 /∈ zs′

ensues from m′1 /∈ ms′. This, together with zs′, xs′ ⊎ m′1 ⊂ DY(kb′) and z /∈ DY(kb′),
permits to use the pairs (x,dh(z, xs′ ⊎ m′1)), (xz,dh(z,zs′)) ∈ xy and apply Ψ2,2,

dh . The
application of Ψ2,2

dh provides ℘(xs ⊎ m1, xs′ ⊎ m′1),℘(zs,zs′) ⊂ xy, xz = dh(u,zs) and

x = dh(u, xs ⊎ m1), for u /∈ DY(kb): Due to ms′ = zs′ ⊎ us′ and ℘(ms,ms′) ⊂ xy↔, we
have ℘(us,us′),℘(zs,zs′) ⊂ xy↔ and zs ⊎ us = ms, for some us.

All these allow us to set m0 = dh(u,zs ⊎ xs ⊎ us) = dh(xz,msz) for msz abbreviat-
ing xs ⊎ us, and then to show m0

xy↔ m′0, i.e. m0
xy↔ dh(x′1,ms′), before we prove

dh(m0,m1) = dh(x,ms) below.

First, x = dh(u, xs⊎m1) and zs⊎ us = ms permit to show that m0 = dh(u,zs⊎ xs⊎ us)
is smaller than dh(x,ms). Thus, (the induction hypothesis of) lemma 109 provides a

mapping m0
xy↔m′ whose structural condition permits to show m′ = dh(x′1,ms′) in the

following case distinction:

(a) When (m0,m′) ∈ xy, we apply condition Ψ1
dh for (dh(xz,msz),m′) ∈ xy to obtain

℘(msz, xs′ ⊎ us′)⊂ xy, (xz,dh(z,zs′)) ∈ xy and m′ = dh(dh(z,zs′), xs′ ⊎ us′). This
permits to show m′ = dh(x′1,ms′) by

m′ = dh(dh(z,zs′), xs′ ⊎ us′) = dh(dh(z, xs′),zs′ ⊎ us′) = dh(x′1,ms′).

(b) When Ξ(dh(xz,msz),m′, xy,kb,kb′), the structure of dh(xz,msz) permits to reduce
this to the Ξdh-case. This means, dh(xz,msz) = dh(x0,ms0), ms0 ̸= ∅, Θdh

1 (x0,kb),

℘(ms0,ms′0) ⊂
xy↔, x0

xy↔ x′0 and m′ = dh(x′0,ms′0).
Recall, xz is mapped to dh(z,zs′) in (xz,dh(z,zs′)) ∈ xy, where Θdh

1 (dh(z,zs′),kb′)
holds. This permits to deduce Θdh

1 (xz,kb) based on Ψ2
dh.

Based on xz, x0 ∈ DY(kb), msz,ms0 ⊂ DY(kb), Θdh
1 (xz,kb) and Θdh

1 (x0,kb), the
equality dh(xz,msz) = dh(x0,ms0) yields two cases:

• xz = x0 and msz = ms0: In this case, m′ = dh(x′0,ms′0) rewrites to the equality
m′ = dh(dh(z,zs′), xs′ ⊎ us′), which permits to show m′ = dh(x′1,ms′) as in
(2-a), above.

• xz = dh(xz0,mxz), x0 = dh(xz0,mx0), msz = msz0 ⊎mx0 and ms0 = msz0 ⊎mxz
for mxz,mx0 ̸= ∅ satisfying mxz ̸= mx0: Here, xz0 /∈ DY(kb) holds, oth-
erwise Θdh

1 (xz,kb) would be refuted. Additionally, Θdh
1 (x0,kb) and the

structure of x0 = dh(xz0,mx0) permit to deduce (dh(xz0,mx0), x′0) ∈ xy

from x0
xy↔ x′0. That is, we have the required conditions to apply Ψ1,2

dh
for (dh(xz0,mxz),dh(z,zs′)), (dh(xz0,mx0), x′0) ∈ xy and obtain the equalities
dh(z,zs′) = dh(v,mx′z) and x′0 = dh(v,mx′0), for v /∈ DY(kb′).
Taking all equalities and mappings into consideration, we show m′ =
dh(x′1,ms′) as follows:

m′ = dh(x′0,ms′0)

= dh(dh(v,mx′0),ms′z0 ⊎mx′z)

= dh(dh(v,mx′z),ms′z0 ⊎mx′0)

= dh(dh(z,zs′),ms′z)

= dh(dh(z,zs′), xs′ ⊎ us′)

= dh(dh(z, xs′),zs′ ⊎ us′)

= dh(x′1,ms′).

11.4. PROOF OF THE CENTRAL INDISTINGUISHABILITY THEOREM 209

Having m0
xy↔ dh(x′1,ms′) for m0 = dh(u,zs ⊎ xs ⊎ us) and the above assumed or

shown equalities and mappings, we want to conclude with the proof of dh(m0,m1) =

dh(x,ms) as follows:

dh(m0,m1) = dh(dh(u,zs ⊎ xs ⊎ us),m1)

= dh(dh(u, xs ⊎m1),zs ⊎ us)

= dh(x,ms).

2

11.3.4 Auxiliary Lemma on dh-Parts

For a dh-message dh(x,ms) with a protected left dh-part x, the following lemma permits to
identify a sub-message satisfying Θdh

1 . It is composed from (a protected left dh-part of) x
and right dh-parts from ms.

LemmaVSE 114 (Lemma on Protected dh-Parts):
Let ik be an arbitrary finite message set, ms an arbitrary non-empty multiset of messages,
and let x be an arbitrary message. Then, we have

(dh(x,ms) ∈ DY(ik) ∧ x /∈ DY(ik))⇒
(∃z, xs,zs : x = dh(z, xs) ∧ z /∈ DY(ik) ∧ xs ⊂ DY(ik) ∧

zs ̸= ∅ ∧ zs ⊆ ms ∧ dh(z,zs) ∈ DY(ik) ∧Θdh
1 (dh(z,zs), ik)).

Proof: The proof of this lemma is by induction on |dh(x,ms)|:

• In the base case, we have dh(x,ms) = dh(ci, cj) for atomic messages ci and cj. This
means, x = ci and ms = {cj}. Since x is not a dh-object, x /∈ DY(kb) implies
Θdh

1 (dh(x,ms), ik) and this permits to conclude by setting z = x, xs = ∅ and zs = ms.

• In the step case, the proof is similar to the base case when dh(x,ms) does not possess
any tuple of available dh-parts.

For the complementary case, let dh(x,ms) = dh(m0,m1) where (m0,m1) is an arbitrary
tuple of available dh-parts in DY(ik). We distinguish two cases:

1. In case m1 ∈ ms, we have ms = ms0 ⊎m1 and m0 = dh(x,ms0). Furthermore, ms0
may not be empty, because otherwise m0 and x would be equal and this refutes
x /∈ DY(ik). All these permit to conclude immediately applying the induction
hypothesis to dh(x,ms0) ∈ DY(ik).

2. In case m1 /∈ ms, we have x = dh(x1,m1) and m0 = dh(x1,ms). Here, x1
must not be in DY(ik), because otherwise it can be used with the available
m1 to derive x (and this refutes the assumption x /∈ DY(ik)). Due to x1 /∈
DY(ik), the induction hypothesis applies to dh(x1,ms) ∈ DY(ik) and yields x1 =

dh(z1, xs1), z1 /∈ DY(ik), xs1 ⊂ DY(ik), zs1 ̸= ∅, zs1 ⊆ ms, dh(z1,zs1) ∈ DY(ik)
and Θdh

1 (dh(z1,zs1), ik). This, together with m1 ∈ DY(ik), allows us to conclude
by setting z = z1, xs = xs1 ⊎m1 and zs = zs1. 2

11.4 Proof of the Central Indistinguishability Theorem

In this section, we describe the proof of (the central indistinguishability) theorem 108. The
proof is by induction on the indexes of the generic derivations provided by their enumera-
tion.

210 CHAPTER 11. PROVING INDISTINGUISHABILITY PROPERTIES (IN PACE)

11.4.1 Base Case

In the base case, we show DY(kb, l)
xy↔DY(kb′, l) for the indexes l that satisfy 0≤ l < len(kb).

Using DY(kb, l) = sel(l,kb) and DY(kb′, l) = sel(l,kb′), our proof goal can be proven
straightforwardly with the help of lemma 109 and based on Γ(xy,kb,kb′): Lemma 109 al-

lows us to transform sel(l,kb)
xy
; sel(l,kb′) to sel(l,kb)

xy↔ sel(l,kb′), as required.

11.4.2 Step Case

In the step case, we need to show DY(kb, l)
xy↔ DY(kb′, l) for the l-th generic derivations

DY(., l) where l ≥ len(kb). Here, the function “orig” (formalized in Sec. 10.4) fixes the
last applied function symbol f ∈ Σ⟨n⟩ and the indexes i0, . . . , in−1 < l of the arguments
used in the derivation of DY(kb, l) and DY(kb′, l) by the application of f . These arguments
correspond to DY(kb, i0), . . . , DY(kb, in−1) and DY(kb′, i0), . . . , DY(kb′, in−1), respectively. In
the rest of the proof, we set

ml = DY(kb, l), mj = DY(kb, ij), m′l = DY(kb′, l) and m′j = DY(kb′, ij) for 0≤ j < n.

We have thus ml = f (m0, . . . ,mn−1) and m′l = f (m′0, . . . ,m′n−1) and the induction hypothesis

provides us with mj
xy↔ m′j. The proof task consists then in showing ml

xy↔ m′l using the

mappings mj
xy↔ m′j and considering the application effects of f . The effects of f permit to

obtain a case distinction on the structures of ml and/or m0, . . . ,mn−1. In each case, we apply
lemma 109 focusing on the corresponding structured message (ml or mi ∈ {m0, . . . ,mn−1})
to use the obtained mapping and structural condition for providing the appropriate m′l and
showing the equality m′l = f (m′0, . . . ,m′n−1).

In the following, we start with the canonical proof situations, where composed mes-
sages have unique decomposition alternatives and where the possible non-constructor type
operations can be only decrypt-type or selector-type. We first describe (in Sec. 11.4.2.1)
the proof plan for ml = enc(m0,m1) and then discuss how this proof plan can be straight-
forwardly adapted to other canonical cases (see Sec. 11.4.2.2). Finally, we describe (in
Sec. 11.4.2.3) the handling of the sole non-canonical proof situation, i.e. case f = dh.

11.4.2.1 Handling the Case for f = enc:

In this section, we describe the proof steps for handling the case where ml = enc(m0,m1).
They can be straightforwardly adapted (see below) for the handling of other canonical
cases: The proof plan for the objenc-case applies to other constructor-type cases and that
for the decenc

dec-case is adapted to other decrypt-type or selector-type cases.

In the rest of this section, we assume the proof situation where m0
xy↔ m′0, m1

xy↔ m′1 and

m′l = enc(m′0,m′1) hold. We need to show enc(m0,m1)
xy↔ m′l .

11.4.2.1.1 objenc-Case: The obj f -case is a typical canonical proof situation that is shown
with the help of lemma 109 as described below.

Proof Details: Since the message enc(m0,m1) belongs to the set DY(kb), lemma 109

provides us with enc(m0,m1)
xy↔m′ for some m′ in DY(kb′) satisfying (enc(m0,m1),m′) ∈ xy

or Ξ(enc(m0,m1),m′, xy,kb,kb′). This yields the unique mapping of enc(m0,m1) with m′ and
permits us to show enc(m′0,m′1) = m′ by case distinction:

1. Case (enc(m0,m1),m′) ∈ xy is handled by applying Ψ1
enc to instantiate m′ with

enc(m′0,m′1) (cp. the use of Ψ2
enc in Sec. 11.2.2.1.2).

11.4. PROOF OF THE CENTRAL INDISTINGUISHABILITY THEOREM 211

2. In case (enc(m0,m1),m′) /∈ xy and Ξ(enc(m0,m1),m′, xy,kb,kb′), the definition of Ξ
and the assumption objenc(enc(m0,m1),m0,m1) permit to focus on the canonical case

for enc-objects. That is, we obtain m0
xy↔ m′′0 , m1

xy↔ m′′1 and objenc(m′,m′′0 ,m′′1). These

mappings combined with m0
xy↔ m′0 and m1

xy↔ m′1 yield the equalities m′′0 = m′0 and
m′′1 = m′1, which permit to use objenc(m′,m′′0 ,m′′1) and deduce the required equality
enc(m′0,m′1) = m′. 2

11.4.2.1.2 decenc
dec-Case: In case of the decrypt-type application of enc to m0 and m1,

where objdec(m1,m0,ml) holds, we apply lemma 109 focusing on the structured message

m1. This yields together with m1
xy↔ m′1 to (m1,m′1) ∈ xy or Ξ(m1,m′1, xy,kb,kb′). Accord-

ingly, we proceed by the following case distinction:

1. Case (m1,m′1) ∈ xy is handled by applying condition Ψ1
dec to obtain the pairs

(m0,my1), (ml , enc(my1,m′1)) ∈ xy. This permits to map ml to enc(my1,m′1), as indi-
cated in (ml , enc(my1,m′1)) ∈ xy. Then, we show enc(m′0,m′1) = enc(my1,m′1), using
the equality m′0 = my1, which ensues from the combination of (m0,my1) ∈ xy and

m0
xy↔ m′0.

2. In case (m1,m′1) /∈ xy and Ξ(m1,m′1, xy,kb,kb′), the definition of Ξ and the assumption
objdec(m1,m0,ml) permit to focus on the canonical case for dec-objects. That is, we

obtain m0
xy↔ m′′0 , ml

xy↔ m′′1 and objdec(m′1,m′′0 ,m′′1).

As indicated in ml
xy↔ m′′1 , we map ml to m′′1 and want to show enc(m′0,m′1) = m′′1 .

For that purpose, we combine m0
xy↔ m′′0 and m0

xy↔ m′0 to obtain the equality m′0 =

m′′0 . Then, we employ this equality and objdec(m′1,m′′0 ,m′′1) to deduce enc(m′0,m′1) =
enc(m′′0 ,dec(m′′0 ,m′′1)) = m′′1 , as required. 2

11.4.2.2 Handling Other Canonical Cases:

All other canonical cases are handled by replaying the proof steps in Sec. 11.4.2.1. For
case f = dec, the proof steps are adapted by switching “enc” and “dec”, also in the used
necessary conditions.

11.4.2.2.1 objf-Case: When ml = f (m0, . . . ,mn−1) is an f -object, the proof steps in

Sec. 11.4.2.1.1 apply: Lemma 109 provides the required mapping f (m0, . . . ,mn−1)
xy↔ m′

with its structural condition that we use to show f (m′0, . . . ,m′n−1) = m′. This is done based
on a corresponding necessary condition in case (f (m0, . . . ,mn−1),m′) ∈ xy (cp. situation (1))
and with the help of the Ξ-definition in the complementary case (cp. situation (2)).

The handling of the cases f = f st, f = snd, f = pair, f = mac and f = gen, respectively,
is based on the necessary conditions Ψ1

f st, Ψ1
snd, Ψ1

pair, Ψ1
mac and respectively Ψ1

gen.

11.4.2.2.2 Complementary Case: When the application of f in ml = f (m0, . . . ,mn−1) is
decrypt-type or selector-type, the proof situation is handled by replaying the proof steps in
Sec. 11.4.2.1.2. The decrypt-type or selector-type operation implies generally some struc-
ture for a mi relative to ml . This permits to expand the structural condition for the mapping

mi
xy↔ m′i given by lemma 109. It is done with the help of a corresponding necessary con-

dition in case (mi,m′i) ∈ xy (cp. situation (1)) and with the help of the Ξ-definition in the
complementary case (cp. situation (2)). In both cases, we shall obtain a mapped message
to ml that can be shown equal to f (m′0, . . . ,m′n−1).

212 CHAPTER 11. PROVING INDISTINGUISHABILITY PROPERTIES (IN PACE)

Proof Details: In case f = f st, the non-constructor-type application of f st in ml =

f st(m0) is selector-type. It implies objpair(m0,ml ,m2) and the structural condition for m0
xy↔

m′0 is expanded in case (m0,m′0) ∈ xy with the help of Ψ1
pair. This permits to obtain a pair-

structure for m′0 and a mapped message to ml that is a pendant of f st(m′0).
The complementary case, i.e. (m0,m′0) /∈ xy, is handled similarly based on the canonical

case for pair-objects in Ξ.

Case f = snd is handled similarly. 2

11.4.2.3 Handling the Case for f = dh:

For case f = dh, we assume ml = dh(m0,m1), m0
xy↔ m′0, m1

xy↔ m′1 and m′l = dh(m′0,m′1),
for ml ,m0,m1 ∈ DY(kb) and m′l ,m

′
0,m′1 ∈ DY(kb′). The proof consists then in providing

ml
xy↔ m′ and showing m′ = m′l , i.e. m′ = dh(m′0,m′1).

Since ml ∈ DY(kb), lemma 109 provides us with ml
xy↔ m′ for m′ ∈ DY(kb′), where

(ml ,m′) ∈ xy or Ξdh(ml ,m′, xy,kb,kb′) holds.

1. In case (ml ,m′) ∈ xy, i.e. (dh(m0,m1),m′) ∈ xy, we show m′ = dh(m′0,m′1) with the
help of Ψ1

dh.

2. In case Ξdh(ml ,m′, xy,kb,kb′) holds, we have ml = dh(x,ms), ms ̸= ∅, Θdh
1 (x,kb),

℘(ms,ms′)⊂ xy↔, x
xy↔ x′ and m′ = dh(x′,ms′). Here, dh(m0,m1) = dh(x,ms) yields two

cases:

(a) m1 ∈ ms, ms = m1 ⊎ms1 and m0 = dh(x,ms1).

(b) m1 /∈ ms, x = dh(x1,m1) and m0 = dh(x1,ms).

Both cases are handled as in the proof of lemma 112 (see Sec. 11.3.2) for the proof of
dh(m′0,m′1) = dh(x′,ms′), permitting to obtain m′ = dh(m′0,m′1), as required.

Chapter 12

Resistance Proof of PACE

The resistance of PACE against offline password testing is formalized in property 105 (see
Sec. 11.1). In this chapter, we provide the details to its proof applying the proof technique
from Chap. 11: After the definition of the basis relations (in Sec. 12.1), we present the re-
quired regularity properties (in Sec. 12.2), then we describe the proof of the basis simulation
relation lemma (in Sec. 12.3). Finally, we show (in Sec. 12.4) the proof obligations resulting
from the conditions of the central indistinguishability theorem 108.

12.1 Definition of the Basis Relations

According to the formalization in 105, the relevant traces tr in the resistance of PACE
against offline password guessing include a first or a fourth PACE message with an oc-
currence of a confidential password π. Furthermore, the indistinguishability is needed to
be shown for knowledge bases kb,kb′ defined by adding π respectively π′ (non-occurring
in tr) to ik = spies(tr). The mentioned assumptions for this proof goal are abbreviated by
Ω(tr,π,π′,kb,kb′) (Ω assumption).

The first proof task consists in identifying the contents of the sets xy that are used as ba-
sis relations. These sets are defined relative to ik and to the parameters π,π′. As described
in Sec. 11.1.1.2, we define the sets xy to be the smallest sets of message pairs that satisfy the
(protocol- and property-specific) inclusion rules Φ1–Φ5, below. With these rules, we ensure
that the domains and codomains of the basis relations xy include all derivable composed
messages that possess protected sub-messages (cp. Ψc). Additionally, the domains and
codomains of xy include all derivable atomic messages (cp. Ψa).

Φ1 If there is a nonce nc with enc(π,nc) ∈ ik or there is g,m1,m2 and a nonce nc with
objdec(dec(π,m1),π,m1) and dh(gen(dh(g,dec(π,m1)),m2),nc) ∈ ik, then the set xy in-
cludes the pair (π,π′).

Φ2 If there exists pw(i) and num(j) with pair(ag(i), pair(pw(i),num(j))) ∈ ik, then xy
includes (ag(i), ag(i)).

If there is ag(j) and pw(j) with pair(ag(j), pair(pw(j),num(i))) ∈ ik or there is pw(j)
with pair(pw(j),num(i)) ∈ ik, then xy includes (num(i),num(i)).

If there is ag(i) and num(j) with pair(ag(i), pair(pw(i),num(j))) ∈ ik or there is
num(j) with pair(pw(i),num(j)) ∈ ik, then xy includes (pw(i), pw(i)).

Φ3 If nc(i) ∈ ik or there is m with pair(m,nc(i)) ∈ ik or there exists pw(j) ∈ DY(ik) with
enc(pw(j),nc(i)) ∈ ik, then xy includes (nc(i),nc(i)).

Φ4 If enc(π,nc) ∈ ik, then xy includes (nc,dec(π′, enc(π,nc))).

213

214 CHAPTER 12. RESISTANCE PROOF OF PACE

Φ5 If enc(pw(j),nc(i)) ∈ ik with pw(i) /∈ DY(ik), then the set xy includes the pair
(enc(pw(j),nc(i)), enc(pw(j),nc(i))).

If dh(m1,m2) ∈ ik with ¬isObjdh(m1) and m2 /∈ DY(ik), then the set xy includes the
pair (dh(m1,m2),dh(m1,m2)).

If dh(dh(m1,m2),m3) ∈ ik with ¬isObjdh(m1) and m2,m3 /∈ DY(ik), then xy includes
(dh(dh(m1,m2),m3),dh(dh(m1,m2),m3)).

If mac(m1,m2) ∈ ik with m1 /∈ DY(ik), then xy includes (mac(m1,m2),mac(m1,m2)).

According to Φ1, the presence of a first or a fourth PACE message with an occurrence
of π necessitates to include the pair (π,π′).

Φ2 states when pairs (ci, ci) are included for public atomic messages ci. Φ3 is similar
but focuses on the public nonces.

Φ4 covers the case where the added π permits to extract protected nonces in first PACE
messages.

Φ5 ensures the inclusion of pairs for the four possible composed messages with pro-
tected sub-messages. This includes the first PACE messages where the added π is used as
the first enc-part.

In the following, we use Φ(xy, ik,π,π′) (as in the basis simulation relation lemma 107)
to abbreviate the definition of xy being the smallest set that satisfies the inclusion rules
Φ1–Φ5.

12.2 Employed Regularity Properties

Besides the formalization of the required regularity properties, we explain how they are
shown by trace induction.

12.2.1 Derivable Atomic Messages

In this section, we describe the employed regularity properties about the derivable atomic
messages. They state where these atomic messages originate from.

In PACE, atomic messages are distinguished in agent names (ag(j)), nonces (nc(j)),
passwords (pw(j)) and numerical data (num(j)) used as static DH generators. So, we obtain
four regularity properties on the derivable, atomic messages.

PropertyVSE 115 (Derivable Atomic Messages):

1. (tr ∈ PACE ∧ ag(j) ∈ DY(pw(i).spies(tr)))⇒
(∃k : pair(ag(j), pair(pw(j),num(k))) ∈ spies(tr))

2. (tr ∈ PACE ∧ num(j) ∈ DY(pw(i).spies(tr)))⇒
(∃k : pair(ag(k), pair(pw(k),num(j))) ∈ spies(tr) ∨

pair(pw(k),num(j)) ∈ spies(tr))

3. (tr ∈ PACE ∧ pw(j) ∈ DY(pw(i).spies(tr)))⇒
(pw(j) = pw(i) ∨
(∃k : pair(ag(j), pair(pw(j),num(k))) ∈ spies(tr) ∨

pair(pw(j),num(k)) ∈ spies(tr)))

12.2. EMPLOYED REGULARITY PROPERTIES 215

4. (tr ∈ PACE ∧ nc(j) ∈ DY(pw(i).spies(tr)))⇒
(enc(pw(i),nc(j)) ∈ spies(tr) ∨ nc(j) ∈ spies(tr) ∨
(∃m ∈ DY(spies(tr)) : pair(m,nc(j)) ∈ spies(tr)) ∨
(∃k : enc(pw(k),nc(j)) ∈ spies(tr) ∧ pw(k) ∈ DY(spies(tr))))

Properties 1–3 are shown according to a similar proof plan, with the help of ccl2 and its
correctness theorem 53. For instance, property 3 is shown by contradiction: We assume the
negated conclusion and refute the assumption pw(j)∈DY(pw(i).spies(tr)), employing the
following property together with the correctness theorem 53:

(tr ∈ PACE ∧ pw(j) ̸= pw(i) ∧
(∀k : pair(ag(j), pair(pw(j),num(k))) /∈ spies(tr) ∧ pair(pw(j),num(k)) /∈ spies(tr)))
⇒ (pw(i).spies(tr)) ∩ ccl2(pw(j)) = ∅

The proof of property 4 is slightly different, because nonces nc(j) can occur as a pro-
tected crypt-part of a regular message enc(pw(k),nc(j)). So, we need to handle the case
where nc(j) could originate from such a regular message separately from the complemen-
tary case:

• There is k such that enc(pw(k),nc(j)) belongs to spies(tr): Relying on property 3,
which defines where pw(k) for decrypting nc(j) originates from, we distinguish the
following cases:

– pw(k) = pw(i): This yields obviously to enc(pw(i),nc(j))∈ spies(tr), i.e. case (1).

– pair(ag(k), pair(pw(k),num(l))) or pair(pw(k),num(l)) is in spies(tr)): This
yields clearly to pw(k) ∈ DY(spies(tr)), i.e. case (4).

– The negation of the previous cases permits to prove nc(j) /∈ DY(pw(i).spies(tr))
with the help of ccl1 using S = {pw(k),nc(j)}:

(tr ∈ PACE ∧ enc(pw(k),nc(j)) ∈ spies(tr) ∧ pw(k) ̸= pw(i) ∧
(∀l : pair(ag(k), pair(pw(k),num(l))), pair(pw(k),num(l)) /∈ spies(tr)))
⇒ (pw(i).spies(tr)) ∩ ccl1({pw(k),nc(j)}) = ∅

The confidentiality of nc(j) permits to close this case by refuting the assumption
nc(j) ∈ DY(pw(i).spies(tr)).

• enc(pw(k),nc(j)) does not belong to spies(tr) for all k: We proceed like in properties
1–3, employing the following property:

(tr ∈ PACE ∧ (∀k : enc(pw(k),nc(j)) /∈ spies(tr)) ∧ nc(j) /∈ spies(tr) ∧
(∀m ∈ DY(spies(tr)) : pair(m,nc(j)) /∈ spies(tr)))
⇒ (pw(i).spies(tr)) ∩ ccl2(nc(j)) = ∅

12.2.2 Derivable enc-Messages

In this section, we describe the employed regularity properties about the derivable enc-
messages. They permit to identify the derivable enc-messages whose enc-parts are confi-
dential.

216 CHAPTER 12. RESISTANCE PROOF OF PACE

PropertyVSE 116 (Derivable enc-Messages):

1. (tr ∈ PACE ∧m ∈ DY(pw(i).spies(tr)) ∧ objenc(m,m1,m2))⇒
((m1,m2 ∈ DY(pw(i).spies(tr))) ∨m ∈ DY(spies(tr)))

2. (tr ∈ PACE ∧m ∈ DY(spies(tr)) ∧ objenc(m,m1,m2))⇒
((m1,m2 ∈ DY(spies(tr))) ∨
(∃j,k : m = enc(pw(j),nc(k)) ∧m ∈ spies(tr)))

These properties are shown by contradiction, according to a similar proof plan as in
Sec. 12.2.1. For property (1), the case with an assumed negated conclusion is handled by
refuting the assumption m ∈ DY(pw(i).spies(tr)), employing the following property to-
gether with a correctness theorem of ccl2 similar to 54:

(tr ∈ PACE ∧ objenc(m,m1,m2) ∧
¬(m1,m2 ∈ DY(pw(i).spies(tr))) ∧m /∈ DY(spies(tr)))
⇒ (pw(i).spies(tr)) ∩ ccl2(m) = ∅

For property (2), the case with an assumed negated conclusion is handled by refuting
the assumption m ∈ DY(spies(tr)), employing the following property:

(tr ∈ PACE ∧ objenc(m,m1,m2) ∧
¬(m1,m2 ∈ DY(spies(tr))) ∧ (∀j,k : m ̸= enc(pw(j),nc(k)) ∨m /∈ spies(tr)))
⇒ spies(tr) ∩ ccl2(m) = ∅

12.2.3 Derivable dh-Messages

In this section, we describe the employed regularity properties about the derivable dh-
messages. They permit to identify the derivable dh-messages having confidential dh-parts.

PropertyVSE 117 (Derivable dh-Messages):

1. (tr ∈ PACE ∧ dh(m1,m2) ∈ DY(pw(i).spies(tr)))⇒
((∃m′1,m′2 ∈ DY(pw(i).spies(tr)) : dh(m′1,m′2) = dh(m1,m2)) ∨
dh(m1,m2) ∈ DY(spies(tr)))

2. (tr ∈ PACE ∧ dh(m1,m2) ∈ DY(spies(tr)))⇒
((∃m′1,m′2 ∈ DY(spies(tr)) : dh(m′1,m′2) = dh(m1,m2)) ∨
(dh(m1,m2) ∈ spies(tr) ∧
((¬isObjdh(m1) ∧m2 /∈ DY(pw(i).spies(tr))) ∨
(∃m3,m4 : m1 = dh(m3,m4) ∧ ¬isObjdh(m3) ∧m2,m4 /∈ DY(pw(i).spies(tr))))))

The proof of property (1) is similar to that of property 116-(1). The refutation of the as-
sumption dh(m1,m2) ∈ DY(pw(i).spies(tr)) is performed employing the following prop-
erty together with the correctness theorem 55:

12.2. EMPLOYED REGULARITY PROPERTIES 217

(tr ∈ PACE ∧ dh(m1,m2) /∈ DY(spies(tr)) ∧
¬(∃m′1,m′2 ∈ DY(pw(i).spies(tr)) : dh(m′1,m′2) = dh(m1,m2))))

⇒ (pw(i).spies(tr)) ∩ ccl2(dh(m1,m2)) = ∅

Property (2) is shown by case distinction: If dh(m1,m2) can be derived from dh-parts in
DY(ik), the proof is trivial. Otherwise, we distinguish again two complementary cases:

• In case dh(m1,m2) ∈ ik holds, we use the following PACE property to obtain the re-
quired cases:

(tr ∈ PACE ∧ ¬(∃m′1,m′2 ∈ DY(ik) : dh(m′1,m′2) = dh(m1,m2)) ∧
spies(tr) ∩ ccl2(dh(m1,m2)) ̸= ∅)⇒
((¬isObjdh(m1) ∧m2 /∈ DY(pw(i).spies(tr))) ∨
(∃m3,m4 : m1 = dh(m3,m4) ∧ ¬isObjdh(m3) ∧

m2,m4 /∈ DY(pw(i).spies(tr))))

In PACE, regular dh-messages occur in steps 2–5 and in the oops-case. While the
former dh-messages have unique right dh-parts, the latter dh-message has exactly two
permutable right dh-parts. In particular, all these right dh-parts remain confidential
also in case ik is extended (by the attacker) with a genuine password pw(i).

• In case dh(m1,m2) /∈ ik holds, we refute the assumption dh(m1,m2)∈DY(ik), employ-
ing the following property:

(tr ∈ PACE ∧ ¬(∃m′1,m′2 ∈ DY(ik) : dh(m′1,m′2) = dh(m1,m2)) ∧
dh(m1,m2) /∈ spies(tr))
⇒ spies(tr) ∩ ccl2(dh(m1,m2)) = ∅

12.2.4 Derivable mac-Messages

In this section, we describe the employed regularity properties about the derivable mac-
messages. They permit to identify the derivable mac-messages having confidential mac-
parts.

PropertyVSE 118 (Derivable mac-Messages):

1. (tr ∈ PACE ∧mac(m1,m2) ∈ DY(pw(i).spies(tr)))⇒
((m1,m2 ∈ DY(pw(i).spies(tr))) ∨mac(m1,m2) ∈ DY(spies(tr)))

2. (tr ∈ PACE ∧mac(m1,m2) ∈ DY(spies(tr)))⇒
((m1,m2 ∈ DY(spies(tr))) ∨
(mac(m1,m2) ∈ spies(tr) ∧m1 /∈ DY(pw(i).spies(tr))))

The proof of property (1) is similar to that of property 116-(1). The refutation of the as-
sumption mac(m1,m2) ∈ DY(pw(i).spies(tr)) is performed employing the following prop-
erty together with the correctness theorem 54:

(tr ∈ PACE ∧ ¬(m1,m2 ∈ DY(pw(i).spies(tr))) ∧mac(m1,m2) /∈ DY(spies(tr)))
⇒ (pw(i).spies(tr)) ∩ ccl2(mac(m1,m2)) = ∅

218 CHAPTER 12. RESISTANCE PROOF OF PACE

Property (2) is shown by case distinction: If mac(m1,m2) can be derived from mac-parts
in DY(ik), the proof is trivial. Otherwise, we distinguish again two complementary cases:

• In case mac(m1,m2) ∈ ik holds, we use the following PACE property to obtain the
premises of the forward secrecy property (of m1):

(tr ∈ PACE ∧ ¬(m1,m2 ∈ DY(spies(tr))) ∧
spies(tr) ∩ ccl2(mac(m1,m2)) ̸= ∅)⇒
(∃ag1, ag2, ag, ag′,nc1,nc2,m3 : ag1 /∈ bad ∧ ag2 /∈ bad ∧ isObjgen(m3) ∧

m2 = dh(m3,nc2) ∧m1 = dh(m2,nc1) ∧
send(ag1, ag,nc1,dh(m3,nc1)) ∈ tr ∧
send(ag2, ag′,nc2,m2) ∈ tr ∧ note(spy,dh(m2,nc1)) /∈ tr)

Applying the forward secrecy property permits to obtain m1 /∈ DY(pw(i).spies(tr)),
as required.

• In case mac(m1,m2) /∈ ik holds, we refute the assumption mac(m1,m2) ∈ DY(ik), em-
ploying the following property:

(tr ∈ PACE ∧ ¬(m1,m2 ∈ DY(spies(tr))) ∧mac(m1,m2) /∈ spies(tr))
⇒ spies(tr) ∩ ccl2(mac(m1,m2)) = ∅

12.2.5 Derivable dec-, f st-, snd- and gen-Messages

In this section, we describe the employed regularity properties about the derivable com-
posed messages that can be derived only by composition.

According to the regular messages in PACE, the derivable dec-, f st-, snd- and gen-
objects do not possess confidential dec-, f st-, snd- and respectively gen-parts:

PropertyVSE 119 (Trivial Composed Messages):

1. (tr ∈ PACE ∧ objdec(m,m1,m2) ∧m ∈ DY(pw(i).spies(tr)))⇒
m1,m2 ∈ DY(pw(i).spies(tr))

2. (tr ∈ PACE ∧ objdec(m,m1,m2) ∧m ∈ DY(spies(tr)))⇒ m1,m2 ∈ DY(spies(tr))

3. (tr ∈ PACE ∧ obj f st(m,m1) ∧m ∈ DY(pw(i).spies(tr)))⇒ m1 ∈ DY(pw(i).spies(tr))

4. (tr ∈ PACE ∧ obj f st(m,m1) ∧m ∈ DY(spies(tr)))⇒ m1 ∈ DY(spies(tr))

5. (tr ∈ PACE ∧ objsnd(m,m1) ∧m ∈ DY(pw(i).spies(tr)))⇒ m1 ∈ DY(pw(i).spies(tr))

6. (tr ∈ PACE ∧ objsnd(m,m1) ∧m ∈ DY(spies(tr)))⇒ m1 ∈ DY(spies(tr))

7. (tr ∈ PACE ∧ gen(m1,m2) ∈ DY(pw(i).spies(tr)))⇒ m1,m2 ∈ DY(pw(i).spies(tr))

8. (tr ∈ PACE ∧ gen(m1,m2) ∈ DY(spies(tr)))⇒ m1,m2 ∈ DY(spies(tr))

12.3. PROOF OF THE BASIS SIMULATION RELATION LEMMA 219

The proof of properties 1–8 is similar to that of property 116-(1). In the proof of property
(1), for instance, the case with an assumed negated conclusion is handled by refuting the
assumption m ∈ DY(pw(i).spies(tr)), employing the following property together with a
correctness theorem of ccl2 similar to 54:

(tr ∈ PACE ∧ objdec(m,m1,m2) ∧ ¬(m1,m2 ∈ DY(pw(i).spies(tr))))
⇒ (pw(i).spies(tr)) ∩ ccl2(m) = ∅

Accordingly, the proof of property (2) employs the following similar property and the
same correctness theorem:

(tr ∈ PACE ∧ objdec(m,m1,m2) ∧ ¬(m1,m2 ∈ DY(spies(tr))))
⇒ spies(tr) ∩ ccl2(m) = ∅

12.3 Proof of the Basis Simulation Relation Lemma

The basis simulation relation lemma 107 is shown by induction on PACE traces.
The base case is trivial: The empty trace does not belong to the relevant traces, because

it does not include neither a first nor a fourth PACE message.

In the step case, we distinguish whether there is a regular occurrence of π in ik.

Case I: If there is a regular occurrence of π in ik, the induction hypothesis provides xyik
that satisfies Φ(xyik, ik,π,π′). For the extended observable messages ikex = ik ∪ ikev, we
need to define xyex relative to ik and ikev and show that Φ(xyex, ik ∪ ikev,π,π′) holds:

1. In case ev = note(ag′, pair(ag(i), pair(pw(i),num(j)))) and ag′ ∈ bad, this event yields
ikev = {pair(ag(i), pair(pw(i),num(j)))} and we distinguish two cases:

(a) If pw(i) /∈ DY(ik), we define xyex by

xyex := (xyik \ {(m,m) | m = enc(pw(i),nc) ∧m ∈ ik})
∪ {(nc,nc) | enc(pw(i),nc) ∈ ik}
∪ {(pw(i), pw(i)), (ag(i), ag(i)), (num(j),num(j))}.

(b) Otherwise, we define xyex by

xyex := xyik ∪ {(ag(i), ag(i))}.

Note that the pairs (enc(pw(i),nc), enc(pw(i),nc)) in xyik must be replaced with
(nc,nc), in order not to violate Φ3 and the first rule in Φ5 (while preserving the mini-
mality of xyex).

In case ev = note(ag, pair(pw(i),num(j))) and ag ∈ bad, we proceed according to the
same principle.

2. In case ev = says(ag, ag′, enc(pw(i),nc(j))), we have ikev = {enc(pw(i),nc(j))} and we
distinguish three cases:

(a) If pw(i) = π, we define xyex by

xyex := xyik ∪ {(enc(π,nc(j)), enc(π,nc(j))), (nc(j),dec(π′, enc(π,nc(j))))}.

220 CHAPTER 12. RESISTANCE PROOF OF PACE

(b) Otherwise, if pw(i) /∈ DY(ik), we define xyex by

xyex := xyik ∪ {(enc(pw(i),nc(j)), enc(pw(i),nc(j)))}.

(c) Else, we define xyex by

xyex := xyik ∪ {(nc(j),nc(j))}.

3. In case ev = send(ag, ag′, pair(m1,nc(i)),dh(num(j),nc(i))), we have
ikev = {pair(m1,nc(i)),dh(num(j),nc(i))}, if ag ∈ bad and ikev = {dh(num(j),nc(i))},
otherwise. In the former case, we define xyex by

xyex := xyik ∪ {(nc(i),nc(i))}.

In the latter case, we define xyex by

xyex := xyik ∪ {(dh(num(j),nc(i)),dh(num(j),nc(i)))}.

In case ev = send(ag, ag′,nc(i),dh(gen(m1,m2),nc(i))), we proceed according to the
same principle.

4. In case ev = says(ag, ag′,mac(dh(m1,nc(i)),m1)), we have
ikev = {mac(dh(m1,nc(i)),m1)}.
We set

xyex = xyik ∪ {(mac(dh(m1,nc(i)),m1),mac(dh(m1,nc(i)),m1))}

if dh(m1,nc(i)) /∈ DY(ik), and xyex = xyik otherwise.

5. In case ev = note(spy,dh(dh(gen(m1,m2),nc(i)),nc(j))), we have
ikev = {dh(dh(gen(m1,m2),nc(i)),nc(j))} and we distinguish two cases:

(a) If nc(i),nc(j) /∈ DY(ik), then we define xyex by

xyex := (xyik \ {(m,m) | m ∈ ik∧
m = mac(dh(dh(gen(m1,m2),nc(i)),nc(j)),dh(gen(m1,m2),nc(i)))})
∪ {(dh(dh(gen(m1,m2),nc(i)),nc(j)),

dh(dh(gen(m1,m2),nc(i)),nc(j)))}.

(b) Otherwise, we set xyex = xyik.

Note that the pairs in xyik that include the matching mac-messages must be removed,
in order not to violate the fourth rule in Φ5 (while preserving the minimality of xyex).

6. In the fake case, i.e. ikev = {m} for m ∈ DY(ik), we set xyex = xyik.

In all these cases, we prove that Φ(xyex, ik∪ ikev,π,π′) ensues from Φ(xyik, ik,π,π′) and
the corresponding case context. In particular, we have to show Φ(xyik, ik ∪ {m},π,π′) in
the fake case, which is mainly done with the help of the regularity properties (in Sec. 12.2)
and the definition of Φ: We consider the cases where m matches any assumption of the
rules Φ1–Φ5; Then, we apply in every case a corresponding regularity property permitting
to obtain an equivalent message in ik; This implies that each pair that shall be added due
to m (from DY(ik)) is already in xyik, as required.

For instance, the first case of Φ1 provides m = enc(π,nc). Using m ∈ DY(ik) and π /∈
DY(ik) from the assumption Ω, regularity property 116-(2) permits to obtain m ∈ ik, as
required.

Similarly, the second case of Φ5 provides m = dh(m1,m2) together with the conditions
¬isObjdh(m1) and m2 /∈ DY(ik). Using these conditions and m ∈ DY(ik), regularity prop-
erty 117-(2) permits to obtain m ∈ ik, as required.

12.4. HANDLING OF THE PROOF OBLIGATIONS 221

Case II: In the complementary case, i.e. ik does not include neither a first nor a fourth
PACE message using π, we proceed as follows:

1. There is nc with ikev = {enc(π,nc)}: First, we use a lemma that provides a set xyin
containing (π,π′) and all pairs obtained according to Φ2, Φ3 and Φ5 relative to ik.
Then, we set xyex = xyin ∪ {(enc(π,nc), enc(π,nc)), (nc,dec(π′, enc(π,nc)))}

2. There is g,m1,m2,nc with objdec(dec(π,m1),π,m1) and
ikev = {dh(gen(dh(g,dec(π,m1)),m2),nc)}: We use the same lemma as in the previous
case to obtain a set xyin containing (π,π′) and all pairs obtained according to Φ2, Φ3
and Φ5 relative to ik. Then, we set

xyex = xyin ∪ {(dh(gen(dh(g,dec(π,m1)),m2),nc),
dh(gen(dh(g,dec(π,m1)),m2),nc))}.

3. The complementary case is handled similar to the base case. In the fake case, we
need additionally to show that m (from DY(ik)) does not match the previous cases
(1) and (2). This is done with help of the regularity properties 116-(2) and 117-(2).
They permit to deduce m ∈ ik when m matches a first or a fourth PACE message with
a protected occurrence of π. This permits to conclude by refutation, as ik does not
include neither a first nor a fourth PACE message using π.

In cases (1) and (2), we prove that Φ(xyex, ik∪ ikev,π,π′) ensues from the applied lemma
and the corresponding case context.

12.4 Handling of the Proof Obligations

In this section, we describe how the proof obligations are shown from the assumption
Ω, the definition Φ of the basis relations (in Sec. 12.1) and the regularity properties (in
Sec. 12.2).

12.4.1 Handling of Ψa:

Proof obligation Ψa requires that all derivable atomic messages ci occur in the domain (resp.
codomain) of the basis relation xy. It is shown with the help of the regularity properties
in 115. They provide for each kind of ci in DY(π.ik) (resp. DY(π′.ik)) the premises for
the inclusion rules of Φ, which in turn imply the occurrence of ci in the domain (resp.
codomain) of xy.

• The case for agent names ag(j) is handled as sketched in the following table:

ag(j) ∈ DY(π.ik) ⊢? ag(j) ∈ dom(xy) and ag(j) ∈ DY(π′.ik) ⊢? ag(j) ∈ codom(xy)
Property 115-(1) yields one case:

pair(ag(j), pair(pw(j),num(k))) ∈ ik ⊢Φ2 (ag(j), ag(j)) ∈ xy

• The case for numerical data num(j) is handled as sketched in the following table:

num(j) ∈ DY(π.ik) ⊢? num(j) ∈ dom(xy)
and num(j) ∈ DY(π′.ik) ⊢? num(j) ∈ codom(xy)

Property 115-(2) yields two cases:
(1) pair(ag(k), pair(pw(k),num(j))) ∈ ik ⊢Φ2 (num(j),num(j)) ∈ xy
(2) pair(pw(k),num(j)) ∈ ik ⊢Φ2 (num(j),num(j)) ∈ xy

• The case for passwords pw(j) is handled as sketched in the following table:

222 CHAPTER 12. RESISTANCE PROOF OF PACE

pw(j) ∈ DY(π.ik) ⊢? pw(j) ∈ dom(xy)
Property 115-(3) yields three cases:
(1) pw(j) = π ⊢Ω,Φ1 (pw(j),π′) ∈ xy
(2) pair(ag(j), pair(pw(j),num(k))) ∈ ik ⊢Φ2 (pw(j), pw(j)) ∈ xy
(3) pair(pw(j),num(k)) ∈ ik ⊢Φ2 (pw(j), pw(j)) ∈ xy

pw(j) ∈ DY(π′.ik) ⊢? pw(j) ∈ codom(xy)
Property 115-(3) yields three cases:
(1) pw(j) = π′ ⊢Ω,Φ1 (π, pw(j)) ∈ xy
(2) pair(ag(j), pair(pw(j),num(k))) ∈ ik ⊢Φ2 (pw(j), pw(j)) ∈ xy
(3) pair(pw(j),num(k)) ∈ ik ⊢Φ2 (pw(j), pw(j)) ∈ xy

In case pw(j) = π (resp. pw(j) = π′), the assumption Ω ensures that ik includes the
regular messages necessary for the application of Φ1.

• The case for nonces nc(j) is handled as sketched in the following table:

nc(j) ∈ DY(π.ik) ⊢? nc(j) ∈ dom(xy)
Property 115-(4) yields four cases:
(1) enc(π,nc(j)) ∈ ik ⊢Φ4 (nc(j),dec(π′, enc(π,nc(j)))) ∈ xy
(2) nc(j) ∈ ik ⊢Φ3 (nc(j),nc(j)) ∈ xy
(3) pair(m,nc(j)) ∈ ik ⊢Φ3 (nc(j),nc(j)) ∈ xy
(4) enc(pw(k),nc(j)) ∈ ik, pw(k) ∈ DY(ik) ⊢Φ3 (nc(j),nc(j)) ∈ xy

nc(j) ∈ DY(π′.ik) ⊢? nc(j) ∈ codom(xy)
Property 115-(4) yields four cases:
(1) enc(π′,nc(j)) ∈ ik ⊢Ω ⊥
(2) nc(j) ∈ ik ⊢Φ3 (nc(j),nc(j)) ∈ xy
(3) pair(m,nc(j)) ∈ ik ⊢Φ3 (nc(j),nc(j)) ∈ xy
(4) enc(pw(k),nc(j)) ∈ ik, pw(k) ∈ DY(ik) ⊢Φ3 (nc(j),nc(j)) ∈ xy

The case where π′ occurs in enc(π′,nc(j)) from ik is closed by refutation based on the
assumption Ω, which excludes any occurrence of π′ in ik.

12.4.2 Handling of Ψc:

According to proof obligation Ψc, all derivable composed messages that cannot be derived
by composition must occur in the domain (resp. codomain) of the basis relation xy. This is
shown with the help of the regularity properties about the derivable composed messages.

The regularity properties about enc-, dh- and mac-messages provide the premises for
the inclusion rule Φ5, which in turn imply the occurrence of these composed messages in
the domain (resp. codomain) of xy.

• The proof for enc(m1,m2) ∈ dom(xy) with the help of the regularity properties in 116
is sketched in the following table:

enc(m1,m2) ∈ DY(π.ik),¬(m1,m2 ∈ DY(π.ik)) ⊢? enc(m1,m2) ∈ dom(xy)
Property 116-(1) yields:

enc(m1,m2) ∈ DY(ik),¬(m1,m2 ∈ DY(ik)) ⊢? enc(m1,m2) ∈ dom(xy)
Property 116-(2) yields:

m1 = pw(i),m2 = nc(j), enc(m1,m2) ∈ ik,m1 /∈ DY(ik) ⊢Φ5

(enc(m1,m2), enc(m1,m2)) ∈ xy

• The proof for dh(m1,m2) ∈ codom(xy) with the help of the regularity properties in 117
is sketched in the following table:

12.4. HANDLING OF THE PROOF OBLIGATIONS 223

dh(m1,m2) ∈ DY(π′.ik),Θdh
1 (dh(m1,m2),π′.ik) ⊢? dh(m1,m2) ∈ codom(xy)

Property 117-(1) yields:
dh(m1,m2) ∈ DY(ik),Θdh

1 (dh(m1,m2),π′.ik) ⊢? dh(m1,m2) ∈ codom(xy)
Property 117-(2) yields two cases:
(1) dh(m1,m2) ∈ ik,¬isObjdh(m1),m2 /∈ DY(pw(i).ik)
⊢Φ5 (dh(m1,m2),dh(m1,m2)) ∈ xy

(2) dh(m1,m2) ∈ ik,m1 = dh(m3,m4),¬isObjdh(m3), (m2,m4 /∈ DY(pw(i).ik))
⊢Φ5 (dh(m1,m2),dh(m1,m2)) ∈ xy

Recall, Θdh
1 (dh(m1,m2),π′.ik) means that dh(m1,m2) does not possess any pair of dh-

parts in DY(π′.ik).
• The proof for mac(m1,m2) ∈ dom(xy) with the help of the regularity properties in 118

is sketched in the following table:

mac(m1,m2) ∈ DY(π.ik),¬(m1,m2 ∈ DY(π.ik)) ⊢? mac(m1,m2) ∈ dom(xy)
Property 118-(1) yields:

mac(m1,m2) ∈ DY(ik),¬(m1,m2 ∈ DY(π.ik)) ⊢? mac(m1,m2) ∈ dom(xy)
Property 118-(2) yields:

mac(m1,m2) ∈ ik,m1 /∈ DY(pw(i).ik) ⊢? mac(m1,m2) ∈ dom(xy)
DY(ik) ⊆ DY(pw(i).ik) yields:

mac(m1,m2) ∈ ik,m1 /∈ DY(ik) ⊢Φ5 (mac(m1,m2),mac(m1,m2)) ∈ xy

The regularity properties about dec-, f st-, snd- and gen-messages, which do not possess
confidential dec-, f st-, snd- and respectively gen-parts, permit to handle the corresponding
cases in the proof of Ψc by refutation. For instance, the proof for gen(m1,m2) /∈ dom(xy)
with the help of the regularity property 119-(4) is sketched in the following table:

gen(m1,m2) ∈ DY(π.ik),¬(m1,m2 ∈ DY(π.ik)) ⊢? gen(m1,m2) ∈ dom(xy)
Property 119-(4) yields:
(m1,m2 ∈ DY(π.ik)),¬(m1,m2 ∈ DY(π.ik)) ⊢! ⊥

12.4.3 Handling of Ψb:

The proof of Ψb consists in showing xy ⊂ DY(π.ik)× DY(π′.ik) and that the restriction of
xy on its domain and codomain is bijective. The former trivially ensues from the definition
of Φ. The latter proof task is handled as follows:

• According to Φ, all pairs in xy match (m,m), (nc,dec(π′, enc(π,nc))) or (π,π′).

• First, we show (m,my), (m,mz) ∈ xy⇒ my = mz by contradiction. For that purpose,
we assume (m,my), (m,mz) ∈ xy with my ̸= mz, which yields three cases closed by
refutation as follows:

1. (m,my) = (m,m) and (m,mz) = (nc,dec(π′, enc(π,nc))): This yields my = m, m =
nc and mz = dec(π′, enc(π,nc)), and thus (nc,nc), (nc,dec(π′, enc(π,nc))) ∈ xy.
On the one side, (nc,nc) ∈ xy and Φ3 imply nc ∈ DY(ik). On the other side,
(nc,dec(π′, enc(π,nc))) ∈ xy, Φ4 and Ω imply nc /∈ DY(ik).

2. (m,my) = (m,m) and (m,mz) = (π,π′): This yields my = m, m = π and mz = π′,
and thus (π,π), (π,π′) ∈ xy. On the one side, (π,π) ∈ xy and Φ2 imply π ∈
DY(ik). On the other side, (π,π′) ∈ xy, Φ1 and Ω imply π /∈ DY(ik).

3. (m,my) = (nc,dec(π′, enc(π,nc))) and (m,mz) = (π,π′): This yields m = nc and
m = π, and thus nc = π. But, nonces differ from passwords.

224 CHAPTER 12. RESISTANCE PROOF OF PACE

• Next, we show (my,m), (mz,m) ∈ xy⇒ my = mz by contradiction. For that purpose,
we assume (my,m), (mz,m) ∈ xy with my ̸= mz, which yields three cases closed by
refutation as follows:

1. (my,m) = (m,m) and (mz,m) = (nc,dec(π′, enc(π,nc))): This case yields the
equalities my = m, m = dec(π′, enc(π,nc)) and mz = nc, and thus we obtain
the pair (dec(π′, enc(π,nc)),dec(π′, enc(π,nc))) ∈ xy. But, Φ excludes any pair
(m,m) in xy where m is a dec-object.

2. (my,m) = (m,m) and (mz,m) = (π,π′): This yields my = m, m = π′ and mz = π,
and thus (π′,π′) ∈ xy. But, Ω and Φ exclude any pair (π′,π′) in xy.

3. (my,m) = (nc,dec(π′, enc(π,nc))) and (mz,m) = (π,π′): This case yields the
equalities m = dec(π′, enc(π,nc)) and m = π′, and thus dec(π′, enc(π,nc)) = π′.
But, dec-objects differ from passwords.

12.4.4 Handling of Ψ2
dec and Ψ1

enc:

The remaining conditions of Ψ are inclusion rules where the premises require a composed
message in the domain or the codomain of xy that is derivable by composition. According
to Φ, this requirement holds for dec-messages in the codomain of xy and for certain enc-
messages in the domain of xy.

The corresponding proof obligation Ψ2
dec for dec-messages is shown with the help of Φ

and Ω, as sketched in the following table:

(mx,dec(m1,m2)) ∈ xy,m1 ∈ DY(π′.ik) ⊢? (mx1,m1), (enc(mx1,mx),m2) ∈ xy
Φ yields:

m1 = π′,m2 = enc(π,nc(j)),mx = nc(j), enc(π,nc(j)) ∈ ik,π′ ∈ DY(π′.ik)
⊢? (mx1,π′), (enc(mx1,nc(j)), enc(π,nc(j))) ∈ xy

Setting mx1 = π, yields:
enc(π,nc(j)) ∈ ik ⊢Ω,Φ1,Φ5 (π,π′), (enc(π,nc(j)), enc(π,nc(j))) ∈ xy

The assumptions of Ψ2
dec and Φ imply enc(π,nc(j)) ∈ ik. This permits to set mx1 = π and

then prove the required pairs in xy based on Ω,Φ1 and Φ5.

The proof obligation Ψ1
enc for enc-messages is shown with the help of Φ and prop-

erty 115-(3), as sketched in the following table:

(enc(m1,m2),my) ∈ xy,m1 ∈ DY(π.ik) ⊢? (m1,my1), (m2,dec(my1,my)) ∈ xy
Φ yields:

m1 = pw(i),m2 = nc(j),my = enc(pw(i),nc(j)),my ∈ ik, pw(i) /∈ DY(ik),
pw(i) ∈ DY(π.ik) ⊢? (pw(i),my1), (nc(j),dec(my1, enc(pw(i),nc(j)))) ∈ xy

Property 115-(3) yields:
π = pw(i), enc(π,nc(j)) ∈ ik ⊢? (π,my1), (nc(j),dec(my1, enc(π,nc(j)))) ∈ xy
enc(π,nc(j)) ∈ ik ⊢Φ1,Φ4 (π,π′), (nc(j),dec(π′, enc(π,nc(j)))) ∈ xy

Given an arbitrary (enc(m1,m2),my) ∈ xy, the definition of Φ binds enc(m1,m2) and my
to a message enc(pw(i),nc(j)) ∈ ik with pw(i) /∈ DY(ik). Then, m1 ∈ DY(π.ik) rewrites
to pw(i) ∈ DY(π.ik) and this permits to use property 115-(3) and bind pw(i) to π, due to
pw(i) /∈DY(ik). Hence, enc(pw(i),nc(j)) ∈ ik rewrites to enc(π,nc(j)) ∈ ik, used as premise
for Φ1 and Φ4 to obtain the required pairs in xy.

12.4.5 Proof Obligations Handled by Refutation:

Except of Ψa, Ψc, Ψb, Ψ1
enc and Ψ2

dec, all other conditions of Ψ are handled by refutation.
They correspond to inclusion rules where the premises require a composed message in the

12.4. HANDLING OF THE PROOF OBLIGATIONS 225

domain or the codomain of xy that is derivable by composition. Except of enc-messages in
the domain of xy and dec-messages in the codomain of xy, Φ ensures for all other occur-
rences of composed messages that these cannot be derived by composition. Furthermore,
Φ restricts the occurrences of composed messages to enc-, dh-, and mac-objects both in the
domain and codomain of xy and to dec-messages only in the codomain of xy.

Consequently, the proof obligations Ψi
f st, Ψi

snd and Ψi
gen for i ∈ {1,2}, together with Ψ1

dec
are shown immediately by Φ, which excludes pairs in xy with a corresponding occurrence
of f st-, snd-, gen- and respectively dec-objects. Contrarily, the refutation proofs of Ψi

dh, Ψi,2
dh

and Ψi
mac for i ∈ {1,2}, together with Ψ2

enc, are based not only on Φ but also on Ω and
corresponding regularity properties.

The proof of Ψ1
dh is based on Φ and the regularity property 117-(2), as sketched in the

following table:

(dh(m1,m2),my) ∈ xy, (m1,m2 ∈ DY(π.ik))
⊢? (m1,my1), (m2,my2) ∈ xy ∧my = dh(my1,my2)

Φ yields two cases:
(1) ¬isObjdh(m1),my = dh(m1,m2),my ∈ ik,m2 /∈ DY(ik), (m1,m2 ∈ DY(π.ik))
⊢? (m1,my1), (m2,my2) ∈ xy ∧ dh(m1,m2) = dh(my1,my2)

(2) m1 = dh(m3,m4),¬isObjdh(m3),my = dh(m1,m2),my ∈ ik,
(m4,m2 /∈ DY(ik)), (m1,m2 ∈ DY(π.ik)) ⊢?
(m1,my1), (m2,my2) ∈ xy ∧ dh(m1,m2) = dh(my1,my2)

Property 117-(2) yields:
(1) dh(m1,m2) ∈ ik,¬isObjdh(m1),m2 /∈ DY(pw(k).ik), (m1,m2 ∈ DY(π.ik)) ⊢! ⊥
(2) dh(dh(m3,m4),m2) ∈ ik,¬isObjdh(m3), (m4,m2 /∈ DY(pw(k).ik)),

(m1,m2 ∈ DY(π.ik)) ⊢! ⊥
Given an arbitrary (dh(m1,m2),my) ∈ xy, the definition of Φ binds dh(m1,m2) and my

to dh-messages in ik having either unique right dh-parts or exactly two permutable right
dh-parts. These right dh-parts do not belong to DY(ik), which permits to deduce by prop-
erty 117-(2) that they cannot occur in DY(pw(k).ik) for all passwords pw(k). Hence, this
allows us to conclude by refuting the assumption m2 ∈ DY(π.ik), as m2 matches one of
these protected right dh-parts.

The proof obligations Ψ2
dh, Ψ1,2

dh and Ψ2,2
dh are shown similar to Ψ1

dh, by refutation after
the use of Φ and property 117-(2). The common proof argument relies on the protection of
the right dh-parts in all regular PACE messages. If they are not compromised, there is no
way for the attacker to derive them also when ik is extended with a genuine password.

The proof of Ψ1
mac is based on Φ and the regularity property 118-(2), as sketched in the

following table:

(mac(m1,m2),my) ∈ xy, (m1,m2 ∈ DY(π.ik))
⊢? (m1,my1), (m2,my2) ∈ xy ∧my = mac(my1,my2)

Φ yields:
my = mac(m1,m2),my ∈ ik,m1 /∈ DY(ik), (m1,m2 ∈ DY(π.ik))
⊢? (m1,my1), (m2,my2) ∈ xy ∧mac(m1,m2) = mac(my1,my2)

Property 118-(2) yields:
mac(m1,m2) ∈ ik,m1 /∈ DY(pw(k).ik), (m1,m2 ∈ DY(π.ik)) ⊢! ⊥

Given an arbitrary (mac(m1,m2),my) ∈ xy, the definition of Φ binds mac(m1,m2) and my
to mac-messages in ik having confidential first mac-part m1. This permits to deduce by
property 118-(2) that m1 cannot occur in DY(pw(k).ik) for all passwords pw(k). Hence,
this allows us to conclude by refuting the assumption m1 ∈ DY(π.ik).

226 CHAPTER 12. RESISTANCE PROOF OF PACE

The proof obligation Ψ2
mac is shown similar to Ψ1

mac.

Finally, the proof of Ψ2
enc is based on Φ, Ω and the regularity property 115-(3), as

sketched in the following table:

(mx, enc(m1,m2)) ∈ xy,m1 ∈ DY(π′.ik) ⊢? (mx1,m1), (dec(mx1,mx),m2) ∈ xy
Φ yields:

m1 = pw(i),m2 = nc(j),mx = enc(pw(i),nc(j)),mx ∈ ik, pw(i) /∈ DY(ik),
pw(i) ∈ DY(π′.ik) ⊢? (mx1, pw(i)), (dec(mx1, enc(pw(i),nc(j))),nc(j)) ∈ xy

Property 115-(3) yields:
π′ = pw(i), enc(π′,nc(j)) ∈ ik ⊢Ω ⊥

The assumptions of Ψ2
enc are reduced using the definition of Φ and property 115-(3) to

enc(π′,nc(j)) ∈ ik. This permits to conclude by refutation based on the assumption Ω,
which excludes any occurrence of π′ in ik.

12.4.6 Handling of Γ:

Proof obligation Γ requires that every element in kb = π.ik is mapped by
xy
; to the element

in kb′ = π′.ik at the same position. This holds obviously for the first elements π and π′, as
Φ ensures (π,π′) ∈ xy. For the remaining elements, the proof is by the following lemma:

PropertyVSE 120 (Γ Property of
xy
;):

(tr ∈ PACE ∧ π ̸∈ DY(spies(tr)) ∧ (∀m ∈ spies(tr) : ¬uses(m,π′)) ∧
((∃nc : enc(π,nc) ∈ spies(tr)) ∨
(∃g,m1,m2,nc : objdec(dec(π,m1),π,m1) ∧

dh(gen(dh(g,dec(π,m1)),m2),nc) ∈ spies(tr))) ∧
Φ(xy, spies(tr),π,π′) ∧m ∈ DY(spies(tr)))

⇒ m
xy
; m

This lemma is shown by induction on |m|.

Base Case: For m = ci and ci ∈ DY(ik), lemma 109 provides ci
xy↔ m′ with (ci,m′) ∈ xy.

According to Φ, we distinguish mainly three cases:

• (ci,m′) = (π,π′): This yields ci = π and thus π ∈ DY(ik), which permits to conclude
by refutation based on Ω.

• (ci,m′) = (nc,dec(π′, enc(π,nc))), for enc(π,nc) ∈ ik: This yields ci = nc and conse-
quently nc ∈ DY(ik), which permits to conclude by refutation based on the basic
confidentiality property of PACE (If π is not compromised, then nc is confidential,
i.e. π /∈ DY(ik)⇒ nc /∈ DY(ik)).

• (ci,m′) is of the form (ag(j), ag(j)), (num(j),num(j)), (nc(j),nc(j)) or (pw(j), pw(j)):
This yields m′ = ci, as required.

12.4. HANDLING OF THE PROOF OBLIGATIONS 227

Step Case: For an arbitrary composed message m ∈ DY(ik), we show m
xy
; m simply

by Φ when m ∈ dom(xy): According to Φ, xy includes only pairs of the form (π,π′),
(nc,dec(π′, enc(π,nc))) and (m′,m′). As a composed message, m occurs only in a pair

(m′,m′) with m′ = m, which implies m
xy↔ m, as required.

In the complementary case, Ψc ensures that m can be composed from sub-messages in
DY(π.ik). We want to show (in the following case distinction) that these sub-messages

belong to DY(ik), in order to obtain m
xy
; m by the induction hypothesis.

• In case objenc(m,m1,m2), the regularity property 116-(2) yields m1,m2 ∈DY(ik) or m =
enc(pw(i),nc(j)) and enc(pw(i),nc(j)) ∈ ik. Using enc(pw(i),nc(j)) /∈ dom(xy) and
Φ, we show that m1,m2 ∈ DY(ik) holds in both cases: For enc(pw(i),nc(j)) ∈ ik and
enc(pw(i),nc(j)) /∈ dom(xy), it follows pw(i) ∈ DY(ik) by Φ and thus pw(i),nc(j) ∈
DY(ik), i.e. m1,m2 ∈ DY(ik).

• In case m = dh(m1,m2), the regularity property 117-(2) provides m′1,m′2 ∈DY(ik) with
m = dh(m′1,m′2), because otherwise m must belong to dom(xy).

• In case m = mac(m1,m2), the regularity property 118-(2) implies m1,m2 ∈ DY(ik),
because otherwise m must belong to dom(xy).

• In case objdec(m,m1,m2), the regularity property 119-(2) yields m1,m2 ∈ DY(ik).

• All other cases are similar to the previous case, employing corresponding regularity
properties in 119.

That is, we have in all cases sub-messages m1,m2 ∈DY(ik) (or m1 ∈DY(ik) for f st- and snd-

messages), satisfying m1
xy
; m1 and m2

xy
; m2 based on the induction hypothesis. Hence, the

definition of
;
rec permits to obtain a mapping m

xy
; m, as required.

228 CHAPTER 12. RESISTANCE PROOF OF PACE

Chapter 13

The Central Indistinguishability
Theorem in TC-AMP

In this chapter, we present the central indistinguishability theorem in the TC-AMP alge-
bra. We recall the proof plan for indistinguishability properties (in Sec. 13.1) and introduce
the algebra-specific conditions (in Sec. 13.2). After that, we describe the handling of the
structural mapping lemma (the canonical cases in Sec. 13.3 and the non-canonical cases in
Sec. 13.4– 13.6) and then the proof of the central indistinguishability theorem (in Sec. 13.7).

13.1 The Building Blocks of Indistinguishability Proofs

The proof plan for indistinguishability properties in Sec. 11.1 applies also to the TC-AMP
algebra. Similarly, we use a recursive function

;
rec for the definition of simulation relations

; relative to finite sets xy of message pairs. The following definition of
;
rec is obtained by

simple adaptations of Def. 106.

DefinitionVSE 121 (
;
rec; TC-AMP):

Let xy be a finite set of message pairs. Then, we have for two arbitrary messages m and m′:

m′ ∈;
rec (xy,m)⇔

((m,m′) ∈ xy ∨
((∀z : (m,z) ̸∈ xy) ∧
((∃m0,m′0 : m′0 ∈

;
rec (xy,m0) ∧

((obj f st(m,m0) ∧m′ = f st(m′0)) ∨ (objsnd(m,m0) ∧m′ = snd(m′0)) ∨
(objinv(m,m0) ∧m′ = inv(m′0)) ∨ ((obj⊖(m,m0) ∨ syn⊖⊕(m,m0)) ∧m′ = ⊖(m′0)))) ∨

(∃m0,m1,m′0,m′1 : m′0 ∈
;
rec (xy,m0) ∧m′1 ∈

;
rec (xy,m1) ∧

((objpair(m,m0,m1) ∧m′ = pair(m′0,m′1)) ∨ (obj⊕(m,m0,m1) ∧m′ = ⊕(m′0,m′1)) ∨
((obj∗(m,m0,m1) ∨ syn∗⊖(m,m0,m1) ∨ syn∗⊕(m,m0,m1)) ∧m′ = ∗(m′0,m′1)))) ∨

(∃m0,m1,m2,m′0,m′1,m′2 : m′0 ∈
;
rec (xy,m0) ∧m′1 ∈

;
rec (xy,m1) ∧m′2 ∈

;
rec (xy,m2) ∧

((objh1(m,m0,m1,m2) ∧m′ = h1(m′0,m′1,m′2)) ∨
(objh2(m,m0,m1,m2) ∧m′ = h2(m′0,m′1,m′2))))))).

The recursive case of
;
rec considers for ∗-objects m implicitly several alternatives of sub-

messages, as they are composed by constructor-type applications of the permutative func-

229

230 CHAPTER 13. THE CENTRAL INDISTINGUISHABILITY THEOREM IN TC-AMP

tion symbol ∗. In case of ⊖-objects m, two composition alternatives are considered, i.e. by
constructor-type application of ⊖ and by the synthesis operation syn∗⊖. For ⊕-objects m,
we consider several composition alternatives by constructor-type applications of the per-
mutative function symbol ⊕, and by synthesis operations syn∗⊕ and syn⊖⊕. For that reason,
the structural mapping lemma includes three non-canonical cases for the handling of these
composition operations (see Sec. 13.4, 13.5 and 13.6).

For instance, in case of a ⊕-object m = ⊕(∗(a,b1),∗(a,b2)) with m /∈ dom(xy), the func-
tion

;
rec is invoked recursively for the ⊕-parts (∗(a,b1),∗(a,b2)) and (∗(a,b2),∗(a,b1)), cor-

responding to two obj⊕-cases, and for the ∗-sub-messages (a,⊕(b1,b2)), corresponding to
one syn∗⊕-case.

The function
;
rec is used to extend given basis relations xy to simulation relations ;.

For ; to be total, the used finite sets xy of message pairs need to satisfy the following
conditions, obtained by simple adaptations of Ψa and Ψc in Sec. 11.1.1.2 to the TC-AMP
algebra.

Ψa : ((m ∈ At ∪ Σ⟨0⟩ ∧m ∈ DY(kb))⇒ (∃m′ : (m,m′) ∈ xy)) ∧
((m ∈ At ∪ Σ⟨0⟩ ∧m ∈ DY(kb′))⇒ (∃m′ : (m′,m) ∈ xy))

Ψc : ((m /∈ At ∪ Σ⟨0⟩ ∧m ∈ DY(kb) ∧ ¬isObjpair(m) ∧ ¬isObjinv(m) ∧ ¬isObj⊖(m)

∧ (∀m0 : ¬syn⊖⊕(m,m0)) ∧ ((obj f st(m,m0) ∨ objsnd(m,m0))⇒ m0 /∈ DY(kb))

∧ ((obj⊕(m,m0,m1) ∨ obj∗(m,m0,m1) ∨
syn∗⊖(m,m0,m1) ∨ syn∗⊕(m,m0,m1))⇒¬(m0,m1 ∈ DY(kb)))

∧ ((objh1(m,m0,m1,m2) ∨ objh2(m,m0,m1,m2))⇒¬(m0,m1,m2 ∈ DY(kb))))
⇒ (∃m′ : (m,m′) ∈ xy)) ∧

((m /∈ At ∪ Σ⟨0⟩ ∧m ∈ DY(kb′) ∧ ¬isObjpair(m) ∧ ¬isObjinv(m) ∧ ¬isObj⊖(m)

∧ (∀m0 : ¬syn⊖⊕(m,m0)) ∧ ((obj f st(m,m0) ∨ objsnd(m,m0))⇒ m0 /∈ DY(kb′))

∧ ((obj⊕(m,m0,m1) ∨ obj∗(m,m0,m1) ∨
syn∗⊖(m,m0,m1) ∨ syn∗⊕(m,m0,m1))⇒¬(m0,m1 ∈ DY(kb′)))

∧ ((objh1(m,m0,m1,m2) ∨ objh2(m,m0,m1,m2))⇒¬(m0,m1,m2 ∈ DY(kb′))))
⇒ (∃m′ : (m′,m) ∈ xy))

As defined in Sec. 11.1, we prove indistinguishability properties by

1. providing a definition Φ(xy, ik, x) of the basis relations xy being the smallest sets that
satisfy protocol- and property-specific inclusion rules,

2. showing (in the basis relation lemma) that the property contexts Ω(tr, x,kb,kb′) imply
the existence of xy satisfying Φ(xy, ik, x),

3. applying the central indistinguishability theorem (similar to) 108 to reduce the re-
quired properties of ; to proof obligations,

4. and proving the proof obligations using regularity properties on derivable composed
messages and the protection of their sub-messages.

In the proof of the central indistinguishability theorem, we apply the domain restriction
lemma (similar to) 110 and the following structural mapping lemma, which is obtained by
slight adaptations of its pendant 109 in PACE:

13.2. ALGEBRA-SPECIFIC CONDITIONS 231

LemmaVSE 122 (DY(kb)
xy↔ DY(kb′); TC-AMP):

(Ψ(xy,kb,kb′) ∧m ∈ DY(kb))⇒

(∃m′ ∈ DY(kb′) : m
xy↔ m′ ∧ ((m,m′) ∈ xy ∨

Ξinv(m,m′, xy,kb,kb′) ∨ Ξ f st(m,m′, xy,kb,kb′) ∨
Ξsnd(m,m′, xy,kb,kb′) ∨ Ξpair(m,m′, xy,kb,kb′) ∨
Ξh1(m,m′, xy,kb,kb′) ∨ Ξh2(m,m′, xy,kb,kb′) ∨
Ξ⊖(m,m′, xy,kb,kb′) ∨ Ξ∗(m,m′, xy,kb,kb′) ∨
Ξ⊕(m,m′, xy,kb,kb′)))

Besides six canonical cases given by Ξinv–Ξh2 , we distinguish three non-canonical cases
(the Ξ⊖-, Ξ∗- and the Ξ⊕-case) for the handling of f -objects that can be composed by ⊖, ∗
and/or ⊕. The existence of arbitrary many decomposition alternatives for these f -objects
necessitates a non-canonical definition for the used predicates Ξ⊖, Ξ∗ and Ξ⊕ (see Sec. 13.4–
13.6).

Before we describe the proof of the structural mapping lemma 122 (the handling of the
canonical cases in Sec. 13.3 and of the non-canonical cases in Sec. 13.4–13.6), we introduce
the algebra-specific necessary conditions.

13.2 Algebra-specific Conditions

In this section, we present the algebra-specific conditions for indistinguishability in the
TC-AMP algebra.

The equational theory on pair, f st and snd is the same as in PACE, which yields to the
same conditions Ψ1

pair, Ψ2
pair, Ψ1

f st, Ψ2
f st, Ψ1

snd and Ψ2
snd.

The additional conditions are generated based on the general principles in Sec. 11.1.2.1.
Recall that the first principle is about the mapping of the items involved in a constructor-
type application of function symbols f . It is generalized below to synthesis operations. The
second principle is about the use of additional conditions to capture the allowed algebraic
effects of f and exclude the critical ones.

We start with the most simple conditions, which are similar to Ψ1
mac and Ψ2

mac in PACE.

Ψ1
h1

: ((h1(mx1,mx2,mx3),my) ∈ xy ∧mx1,mx2,mx3 ∈ DY(kb))⇒
(∃my1,my2,my3 ∈ DY(kb′) : (mx1,my1), (mx2,my2), (mx3,my3) ∈ xy

∧my = h1(my1,my2,my3))

Ψ2
h1

: ((mx, h1(my1,my2,my3)) ∈ xy ∧my1,my2,my3 ∈ DY(kb′))⇒
(∃mx1,mx2,mx3 ∈ DY(kb) : (mx1,my1), (mx2,my2), (mx3,my3) ∈ xy

∧mx = h1(mx1,mx2,mx3))

Ψ1
h2

: ((h2(mx1,mx2,mx3),my) ∈ xy ∧mx1,mx2,mx3 ∈ DY(kb))⇒
(∃my1,my2,my3 ∈ DY(kb′) : (mx1,my1), (mx2,my2), (mx3,my3) ∈ xy

∧my = h2(my1,my2,my3))

232 CHAPTER 13. THE CENTRAL INDISTINGUISHABILITY THEOREM IN TC-AMP

Ψ2
h2

: ((mx, h2(my1,my2,my3)) ∈ xy ∧my1,my2,my3 ∈ DY(kb′))⇒
(∃mx1,mx2,mx3 ∈ DY(kb) : (mx1,my1), (mx2,my2), (mx3,my3) ∈ xy

∧mx = h2(mx1,mx2,mx3))

The next conditions are specific to function symbols f that are self-reversing.

Ψ1
inv : (objinv(mx,mx1) ∧ (mx,my) ∈ xy)⇒

(∃my1 ∈ DY(kb′) : (mx1,my1) ∈ xy ∧my = inv(my1))

Ψ2
inv : (objinv(my,my1) ∧ (mx,my) ∈ xy)⇒

(∃mx1 ∈ DY(kb) : (mx1,my1) ∈ xy ∧mx = inv(mx1))

Ψ1
⊖ : (isObj⊖(mx) ∧ (mx,my) ∈ xy)⇒ (⊖(mx),⊖(my)) ∈ xy

Ψ2
⊖ : (isObj⊖(my) ∧ (mx,my) ∈ xy)⇒ (⊖(mx),⊖(my)) ∈ xy

Ψ1
⊖,∗ : (isObj∗(mx) ∧ (mx,my) ∈ xy)⇒ (⊖(mx),⊖(my)) ∈ xy

Ψ2
⊖,∗ : (isObj∗(my) ∧ (mx,my) ∈ xy)⇒ (⊖(mx),⊖(my)) ∈ xy

Ψ1
⊖,⊕ : (isObj⊕(mx) ∧ (mx,my) ∈ xy)⇒ (⊖(mx),⊖(my)) ∈ xy

Ψ2
⊖,⊕ : (isObj⊕(my) ∧ (mx,my) ∈ xy)⇒ (⊖(mx),⊖(my)) ∈ xy

These conditions ensure that if an application of inv (resp. ⊖) reverses a previous applica-
tion on one side of a mapping, the same effect happens on the other side. That is, the image
of an inv-object can be obtained by a constructor-type or a selector-type application of inv
to the image of its inv-part. The images of a ⊖-object and its ⊖-part are related equally by
an application of ⊖. Similarly, the images of a ∗-object (resp. of a ⊕-object) and its pendant
resulting by an application of ⊖ are related equally by an application of ⊖.

The following conditions restrict the allowed mappings of constants that are derivable
by function symbols independent of used items.

Ψ1
∞ : (∞,my) ∈ xy⇒ my = ∞

Ψ2
∞ : (mx,∞) ∈ xy⇒ mx = ∞

The constant ∞ must be mapped to itself.

The following conditions integrate allowed reversing effects of ∗ and ⊕.

Ψ1
∗ : (syn∗(mx,mx1,mx2) ∧ (mx,my) ∈ xy ∧mx1 ∈ DY(kb))⇒

(∃my1 ∈ DY(kb′) : (mx1,my1), (mx2,∗(inv(my1),my)) ∈ xy)

Ψ2
∗ : (syn∗(my,my1,my2) ∧ (mx,my) ∈ xy ∧my1 ∈ DY(kb′))⇒

(∃mx1 ∈ DY(kb) : (mx1,my1), (∗(inv(mx1),mx),my2) ∈ xy)

13.3. PROOF OF THE STRUCTURAL MAPPING LEMMA 233

Ψ1
⊕ : (obj⊕(mx,mx1,mx2) ∧ (mx,my) ∈ xy ∧mx1 ∈ DY(kb))⇒

(∃my1 ∈ DY(kb′) : (mx1,my1), (mx2,⊕(⊖(my1),my)) ∈ xy)

Ψ2
⊕ : (obj⊕(my,my1,my2) ∧ (mx,my) ∈ xy ∧my1 ∈ DY(kb′))⇒

(∃mx1 ∈ DY(kb) : (mx1,my1), (⊕(⊖(mx1),mx),my2) ∈ xy)

A composition by ∗ on one side may have a decrypt-type or a key-ed transformation effect
on the other side, only if the left part in the composition is mapped (using additionally inv)
to the crypt-key or respectively the trans-key. A composition by ⊕ on one side may have
a decrypt-type effect on the other side, only if the left part in the composition is mapped
(using additionally ⊖) to the crypt-key.

The following conditions are partly redundant with Ψ1
∗ and Ψ2

∗, but cover additional
transform operations by ∗.

Ψ1
∗,⊕ : (obj⊕(mx,mx1,mx2) ∧ syn∗(mx1,mx3,mx4) ∧ (mx,my) ∈ xy ∧

mx3 ∈ DY(kb))⇒
(∃my1 ∈ DY(kb′) :

(mx3,my1), (⊕(mx4,∗(inv(mx3),mx2)),∗(inv(my1),my)) ∈ xy)

Ψ2
∗,⊕ : (obj⊕(my,my1,my2) ∧ syn∗(my1,my3,my4) ∧ (mx,my) ∈ xy ∧

my3 ∈ DY(kb′))⇒
(∃mx1 ∈ DY(kb) :

(mx1,my3), (∗(inv(mx1),mx),⊕(my4,∗(inv(my3),my2))) ∈ xy)

These conditions ensure that if an application of ∗ reverses a previous application on one
side of a mapping, the same effect happens on the other side. The used left ∗-sub-message,
crypt-key or trans-key on the one-side must be mapped to a pendant on the other side,
which can be independently left ∗-sub-message, crypt-key or trans-key.

The following conditions cover the merging effect by ⊕.

Ψ1
⊕,mrg : (obj⊕(mx0,mx2,mx) ∧ obj⊕(mx1,mx3,⊖(mx)) ∧

(mx0,my0), (mx1,my1) ∈ xy)
⇒ (⊕(mx2,mx3),⊕(my0,my1)) ∈ xy

Ψ2
⊕,mrg : (obj⊕(my0,my2,my) ∧ obj⊕(my1,my3,⊖(my))

∧ (mx0,my0), (mx1,my1) ∈ xy)
⇒ (⊕(mx0,mx1),⊕(my2,my3)) ∈ xy

If two mapped⊕-objects have inverse⊕-parts, the result of their merging must be mapped
to the result of ⊕ applied to their images.

13.3 Proof of the Structural Mapping Lemma

The structural mapping lemma 122 is shown practically the same way as described in
Sec. 11.2. The proof is by induction on the structure of m, where the base case and most
proof situations in the step case are almost identical. Clearly, the necessary and sufficient
conditions in Ψ that we employ in case m /∈ dom(xy) of the step case must be adapted to

234 CHAPTER 13. THE CENTRAL INDISTINGUISHABILITY THEOREM IN TC-AMP

the type of messages in the TC-AMP algebra (see Sec. 13.2). In this section, we focus on
the handling of the canonical cases. The handling of the non-canonical cases is described
in Sec. 13.4–13.6.

Cases Ξ f st, Ξsnd and Ξpair are handled the same way as in the PACE algebra. For the
remaining canonical cases, we proceed as described in Sec. 11.2.2.2.

13.3.1 Proof Task (i):

According to the proof plan in Sec. 11.2.2.2.1, this proof task is relevant only for inv-objects.
It is handled by assuming ¬objinv(inv(m′0),m

′
0) and using that to obtain the structure for

m′0. After that, the structural condition for the mapping m0
xy↔ m′0 permits to propagate the

structure of m′0 to m0 and then to refute one of the assumptions on inv(m0). This is done
with the help of the necessary condition Ψ2

inv.

Proof Details: We have (m0,m′0) ∈ xy or Ξ(m0,m′0, xy,kb,kb′) according to the induc-
tion hypothesis. This permits to proceed by the following case distinction:

1. (m0,m′0) ∈ xy: We first apply Ψ2
inv using (m0, inv(m′1)) ∈ xy to obtain m0 = inv(mx1)

and (mx1,m′1) ∈ xy. This implies inv(m0) = inv(inv(mx1)) = mx1 and (inv(m0),m′1) ∈
xy, which refutes inv(m0) /∈ dom(xy).

2. (m0,m′0) /∈ xy: Here, we base the proof on the structure of m′0, being an inv-object. For
that purpose, we require the definition of Ξ to respect a certain mutual-exclusion principle
so that Ξ(m0,m′0, xy,kb,kb′) for an inv-object m′0 can be reduced to the canonical case

Ξinv. That is, we obtain m2 ∈ DY(kb), objinv(m0,m2), m′2 ∈ DY(kb′), m2
xy↔ m′2 and

objinv(m′0,m′2). This permits to refute objinv(inv(m0),m0). 2

13.3.2 Proof Task (ii):

According to the proof plan in Sec. 11.2.2.2.2, the handling of this task is mainly by as-
suming (mx, f (m′0, . . . ,m′n−1)) ∈ xy and then using an appropriate necessary condition to
instantiate mx with f (m0, . . . ,mn−1), which permits to refute f (m0, . . . ,mn−1) /∈ dom(xy).

The handling of inv-objects is based on Ψ2
inv. For the handling of h1- and h2-objects, we

use the necessary conditions Ψ2
h1

and respectively Ψ2
h2

.

Proof Details: For inv-objects, we use Ψ2
inv and (mx, inv(m′0)) ∈ xy to get (mx1,m′0)

and mx = inv(mx1). Combining m0
xy↔ m′0 with the pair (mx1,m′0) in xy implies mx1 = m0,

mx = inv(m0) and thus (inv(m0), inv(m′0)) ∈ xy, which refutes the assumption inv(m0) /∈
dom(xy).

For h1- and h2-objects, we proceed the same way using Ψ2
h1

and respectively Ψ2
h2

. 2

13.4 Handling of the non-canonical Ξ⊖ Case

The Ξ⊖-case defines the mapping by decomposition for ⊖-objects. To simplify matters, we
exclude the case where ⊖-objects result by synthesis operations (syn∗⊖). The mappings for
such ⊖-objects are covered in the Ξ∗-case or by appropriate inclusion rules (cp. Ψ1

⊖,∗ and
Ψ2
⊖,∗ in Sec. 13.2).

13.4. HANDLING OF THE NON-CANONICAL Ξ⊖ CASE 235

The predicate Ξ⊖ is defined by a slight adaptation of the canonical definition (for Ξ f) in
Sec. 11.1.2.3:

Ξ⊖ : ∃m0 ∈ DY(kb),m′0 ∈ DY(kb′) :

obj⊖(m,m0) ∧ ¬isObj∗(m0) ∧m0
xy↔ m′0 ∧ ¬isObj∗(m′0) ∧ obj⊖(m′,m′0)

The use of ¬isObj∗(m0), which excludes further compositions of m0 (and m) by ∗, allows
us to handle the Ξ⊖-case in the step case of lemma 122 like a canonical case: For m∈DY(kb)
and m /∈ dom(xy), the proof consists in providing m′ ∈ DY(kb′) where m

xy↔ m′ and one of
the Ξ-cases hold. We focus on the Ξ⊖-case when m is a ⊖-object and its ⊖-part m0 is not a
∗-object. Since m0 is smaller than m, the induction hypothesis provides m′0 ∈ DY(kb′) with

m0
xy↔m′0. Using m /∈ dom(xy), we thus apply the definition of

;
rec to obtain m

xy7→ ⊖(m′0) and
set m′ = ⊖(m′0).

For m
xy↔⊖(m′0) it remains to show m

xy← [⊖(m′0). To have a practically the same proof as
in a canonical case, we use the condition ¬isObj∗(m′0) (in addition to obj⊖(m′,m′0)). So, this

proof consists in showing obj⊖(m′,m′0), ¬isObj∗(m′0) and m
xy← [⊖(m′0), based in particular

on the structural condition of m0
xy↔ m′0.

13.4.1 Proof Task (i):

First, we prove obj⊖(m′,m′0), i.e. obj⊖(⊖(m′0),m′0), as described in Sec. 11.2.2.1.1 by contra-
diction, based on the necessary conditions Ψ2

∞, Ψ2
⊖ and Ψ2

⊖,⊕.

Proof Details: We need to refute the following cases resulting from the expansion of
¬obj⊖(⊖(m′0),m′0):

1. m′0 = ∞ and ⊖(m′0) = ∞: In case (m0,m′0) ∈ xy, we have thus (m0,∞) ∈ xy and the
application of Ψ2

∞ yields m0 = ∞. This permits to refute obj⊖(m,m0).

The complementary case, i.e. Ξ(m0,m′0, xy,kb,kb′), must not hold for m′0 = ∞.

2. obj⊖(m′0,m′1) and ⊖(m′0) = m′1: In case (m0,m′0) ∈ xy, the application of Ψ2
⊖ yields

(⊖(m0),⊖(m′0)) ∈ xy, i.e. (m,⊖(m′0)) ∈ xy, which permits to refute m /∈ dom(xy).

In the second case for m0
xy↔ m′0, i.e. Ξ(m0,m′0, xy,kb,kb′), the structure of m′0 excludes

all cases, except of the Ξ⊖-, Ξ∗ and the Ξ⊕-case. In all three cases, the obtained con-
ditions on m0 permit to refute obj⊖(m,m0) and/or ¬isObj∗(m0), as explained in the
following:

• In the Ξ⊖-case, we obtain property obj⊖(m0,m1) and this can be used to show
¬obj⊖(⊖(m0),m0), i.e. ¬obj⊖(m,m0).

• In the Ξ∗-case (see below), the message m0 satisfies isObj∗(m0), syn∗⊖(m0,m1,m2)
or syn∗⊕(m0,m1,m2), which refutes ¬isObj∗(m0) and/or obj⊖(m,m0).

• In the Ξ⊕-case (see below), m0 satisfies isObj⊕(m0), which refutes obj⊖(m,m0).

3. obj⊕(m′0,m′1,m′2) and obj⊕(⊖(m′0),⊖(m′1),⊖(m′2)): In case (m0,m′0) ∈ xy, the applica-
tion of Ψ2

⊖,⊕ permits to refute m /∈ dom(xy), as in (2).

In the second case for m0
xy↔ m′0, i.e. Ξ(m0,m′0, xy,kb,kb′), the structure of m′0 excludes

all cases, except of the Ξ⊖-, Ξ∗- and Ξ⊕-case. In all three cases, the obtained conditions
on m0 permit to refute obj⊖(m,m0) and/or ¬isObj∗(m0) as explained above in (2). 2

236 CHAPTER 13. THE CENTRAL INDISTINGUISHABILITY THEOREM IN TC-AMP

13.4.2 Proof Task (ii):

Next, we prove ¬isObj∗(m′0) by assuming isObj∗(m′0) and refuting this assumption, based
on the necessary condition Ψ2

⊖,∗.

Proof Details: The assumption isObj∗(m′0) permits to reduce the structural condition

on m0
xy↔ m′0 to (m0,m′0) ∈ xy. The alternative case Ξ(m0,m′0, xy,kb,kb′) can be excluded

based on the same arguments as in proof situations (2) and (3) above (in Sec. 13.4.1). This
permits to handle our proof task by the application of Ψ2

⊖,∗, which yields (⊖(m0),⊖(m′0))
in xy. Hence, m /∈ dom(xy) is refuted as in proof situation (2) above (in Sec. 13.4.1). 2

13.4.3 Proof Task (iii):

Finally, we prove ⊖(m0)
xy← [⊖(m′0), i.e. m

xy← [⊖(m′0), with the help of obj⊖(⊖(m′0),m′0) and
¬isObj∗(m′0), as in Sec. 11.2.2.1.2: Since⊖(m′0) can be decomposed only by⊖, the definition

of
;
rec yields ⊖(m0)

xy← [⊖(m′0), provided we refute ⊖(m′0) ∈ codom(xy). Here, we assume
(mx,⊖(m′0)) ∈ xy and apply Ψ2

⊖ to obtain (⊖(mx),⊖(⊖(m′0))) ∈ xy, i.e. (⊖(mx),m′0) ∈ xy.
This allows us to deduce ⊖(mx) = m0, i.e. mx = ⊖(m0) = m, and thus (m,⊖(m′0)) ∈ xy,
which refutes m /∈ dom(xy). 2

13.5 Handling of the non-canonical Ξ∗ Case

The Ξ∗-case defines the mapping by decomposition for messages that can be composed by
“∗”, i.e. for ∗-objects as well as for ⊖- and ⊕-objects, which could also result by synthesis
operations syn∗⊖ and syn∗⊕. To simplify matters, we restrict the Ξ∗-case to messages whose
sub-messages required for a composition by “⊕” are not available in DY(kb) (see the Θ⊕1
predicate). Since multiple decomposition alternatives (into ∗-sub-messages) are possible,
we use a definition of Ξ∗ that covers also nested ∗-sub-messages obtained by successive
decomposition. This definition employs the Θ∗1 predicate, introduced below, to qualify the
sub-message where the successive decomposition halts.

Before we define the Ξ∗ predicate, we introduce further predicates used as short-cuts.

isSyn∗(m)⇔ (∃m0,m1 : syn∗(m,m0,m1))

syn⊖(m,m0)⇔ (obj⊖(m,m0) ∨ syn⊖⊕(m,m0))

isSyn⊖(m)⇔ (∃m0 : syn⊖(m,m0))

Θ∗1(m, ik)⇔ ∀m0,m1 ∈ DY(ik) : ¬syn∗(m,m0,m1)

Θ⊕1 (m, ik)⇔ ∀m0,m1 ∈ DY(ik) : ¬obj⊕(m,m0,m1)

Recall the predicates syn∗ and syn∗ introduced in Sec. 6.5.1.1: syn∗(m,m0,m1) holds
when m results by a constructor-type application or a synthesis operation of ∗ using m0
and m1 as arguments. syn∗(m,ms, x) holds when m results by such successive applications
of ∗ using the elements in ms and starting with x. Accordingly, syn∗(m,ms, x) identifies in
the following definition of Ξ∗ all decompositions of m, which result in a left ∗-sub-message
from ms and in a right ∗-sub-message given by the rest of ms and x.

13.5. HANDLING OF THE NON-CANONICAL Ξ∗ CASE 237

Ξ∗ : ∃ms ⊂ DY(kb), x ∈ DY(kb),ms′ ⊂ DY(kb′), x′ ∈ DY(kb′) :
syn∗(m,ms, x) ∧ms ̸= ∅ ∧Θ∗1(x,kb) ∧Θ⊕1 (x,kb) ∧

℘(ms,ms′) ⊂ xy↔∧x
xy↔ x′ ∧m′ = ∗(ms′, x′) ∧ isSyn∗(m′)

The predicate Ξ∗ defines the mapped message m′ to a syn∗-message m relative to the
arbitrarily many available ∗-sub-messages (the elements of ms and x): m′ is the result of
successive applications of ∗ using the messages mapped to the elements of ms and to x.

Before we use the predicate Ξ∗ in the proof of theorem 108 in TC-AMP (see Sec. 13.7),
we describe the handling of syn∗-messages, i.e. the Ξ∗-case, in the step case of lemma 122:
For m ∈ DY(kb), m /∈ dom(xy), ¬Θ∗1(m,kb) and Θ⊕1 (m,kb), we must provide m′ ∈ DY(kb′)

satisfying m
xy↔ m′ and Ξ∗(m,m′, xy,kb,kb′).

The proof starts by applying lemma 123 for a successive decomposition of m into the
available ∗-sub-messages in DY(kb). It provides ms ⊂ DY(kb) and x ∈ DY(kb) such that
syn∗(m,ms, x), ms ̸= ∅ and Θ∗1(x,kb) hold. The additional condition Θ⊕1 (x,kb) ensues im-
mediately from Θ⊕1 (m,kb). Since all elements in ms and x are smaller than m, we may

apply the induction hypothesis to obtain x′ ∈ DY(kb′) and ms′ ⊂ DY(kb′) with x
xy↔ x′ and

℘(ms,ms′) ⊂ xy↔.

We continue the proof by setting m′ = ∗(ms′, x′) and showing m
xy↔ m′ as follows:

• First, we apply lemma 124 to obtain the mapping of m by
xy7→ using the available ∗-sub-

messages. It permits to show ∗(ms, x)
xy7→ ∗(ms′, x′), i.e. m

xy7→ ∗(ms′, x′).

• Next, we want to show the mapping ∗(ms, x)
xy← [∗(ms′, x′), i.e. m

xy← [∗(ms′, x′), and
property isSyn∗(∗(ms′, x′)). Here, we distinguish two complementary cases accord-
ing to the possible structures of ∗(ms′, x′), x′ and of x.

1. If syn∗(∗(ms′, x′),ms′, x′) holds and if x′ and x satisfy Θ∗1(x′,kb′), Θ⊕1 (x′,kb′) and
isSyn⊖(x′)⇒ isSyn⊖(x), then we use lemma 125.
In this case, ∗(ms′, x′) can be composed by ∗ using left ∗-sub-messages from ms′.
It can be composed by ⊖ only when this holds for m = ∗(ms, x), too.

2. Otherwise, i.e. when syn∗(∗(ms′, x′),ms′, x′) does not hold or x′ and x satisfy
¬Θ∗1(x′,kb′), ¬Θ⊕1 (x′,kb′) or isSyn⊖(x′) ∧ ¬isSyn⊖(x), the structural condition

of x
xy↔ x′ allows us to link m and ∗(ms′, x′) to an appropriate pair in xy that

permits to use lemma 128. So, we use the following predicate to define how
mc ∈ DY(kb) and m′c ∈ DY(kb′) are linked to an appropriate (xc, x′c) ∈ xy:

Θ∗2(mc,m′c, xy,kb,kb′)⇔
(∃msc ⊂ DY(kb), xc ∈ DY(kb),ms′c ⊂ DY(kb′), x′c ∈ DY(kb′) :

mc = ∗(msc, xc) ∧ ℘(msc,ms′c) ⊂
xy↔∧(xc, x′c) ∈ xy ∧ syn∗(m′c,ms′c, x′c))

Note that Θ∗2 is similar but not the same as the Ξ∗ predicate. While Ξ∗ decom-
poses mc until a right ∗-sub-message without available ∗-sub-messages is ob-
tained, Θ∗2 decomposes m′c until a right ∗-sub-message x′c mapped by a pair in
xy is obtained. So, non-constructor-type applications of ∗ are embedded in Ξ∗
on the right-side, but in Θ∗2 on the left-side.

In case (1), isSyn∗(∗(ms′, x′)) ensues from syn∗(∗(ms′, x′),ms′, x′) and ms′ ̸= ∅.

238 CHAPTER 13. THE CENTRAL INDISTINGUISHABILITY THEOREM IN TC-AMP

In case (2), where ¬syn∗(∗(ms′, x′),ms′, x′), isSyn⊖(x′) ∧ ¬isSyn⊖(x), ¬Θ∗1(x′,kb′)
or ¬Θ⊕1 (x′,kb′) holds, we obtain property Θ∗2(∗(ms, x),∗(ms′, x′), xy,kb,kb′) with the
help of lemma 126. The application of this lemma reduces the structural differ-
ences between ∗(ms, x) (resp. x) and ∗(ms′, x′) (resp. x′) to some pair in xy used
to obtain the mapping of these messages. It is based on the structural condition of

x
xy↔ x′, Θ∗1(x,kb), Θ⊕1 (x,kb) and ℘(ms,ms′) ⊂ xy↔. Here, isSyn∗(∗(ms′, x′)) follows

from Θ∗2(∗(ms, x),∗(ms′, x′), xy,kb,kb′) and the assumption m /∈ dom(xy): The defini-

tion of Θ∗2 could not provide syn∗(∗(ms′, x′),ms′c, x′c), ℘(msc,ms′c) ⊂
xy↔, (xc, x′c) ∈ xy

and ∗(ms, x) = ∗(msc, xc) with ms′c = ∅, as this implies msc = ∅, ∗(ms, x) = xc
and thus (∗(ms, x), x′c) ∈ xy, which refutes m /∈ dom(xy). That is, we only obtain
syn∗(∗(ms′, x′),ms′c, x′c) with ms′c ̸= ∅, which implies isSyn∗(∗(ms′, x′)).

13.5.1 Decomposition into ∗-Sub-Messages in DY(kb)

For syn∗-messages, the following lemma permits to identify the result of a successive de-
composition into available ∗-sub-messages.

LemmaVSE 123 (Decomposition into ∗-Sub-Messages in DY(kb)):
Let m satisfy syn∗(m,m0,m1) for m0 and m1 in DY(kb). Then, it exists ms ⊂ DY(kb) and
x ∈ DY(kb) satisfying

syn∗(m,ms, x) ∧ms ̸= ∅ ∧Θ∗1(x,kb).

The proof (by induction on |m|) is similar to the proof of lemma 111.

13.5.2 Mapping by
xy7→ using the ∗-Sub-Messages in DY(kb)

For syn∗-messages that are not mapped in xy, the following lemma provides the mapping

by
xy7→ relative to the mappings of the available ∗-sub-messages.

LemmaVSE 124 (Mapping of syn∗-Messages by
xy7→):

Let ms ⊂ DY(kb), x ∈ DY(kb), ms′ ⊂ DY(kb) and x′ ∈ DY(kb) satisfy syn∗(∗(ms, x),ms, x),
ms ̸= ∅, Θ∗1(x,kb), Θ⊕1 (x,kb), ℘(ms,ms′) ⊂ xy↔, x

xy↔ x′ and ∗(ms, x) /∈ dom(xy). Let (the
induction hypothesis of) lemma 122 hold for all m̂ with |m̂| < |∗(ms, x)|. Then, we have

∗(ms, x)
xy7→ ∗(ms′, x′).

Since ∗(ms, x) /∈ dom(xy) and ms ̸= ∅ hold, we prove ∗(ms, x)
xy7→ ∗(ms′, x′) by showing

that for any decomposition of m into ∗-sub-messages m0,m1 ∈ DY(kb) and possibly into
a ⊖-sub-message m0 the composition of the corresponding mapped messages (by ∗ and
respectively ⊖) yields ∗(ms′, x′).

13.5.2.1 Mapping by Decomposition into ∗-Sub-Messages

We start with decompositions into ∗-sub-messages. That is, we assume m0,m1 ∈ DY(kb)
with syn∗(∗(ms, x),m0,m1) and want to show that m′0 and m′1 in the mappings m0

xy↔ m′0
and m1

xy↔ m′1, which are provided by (the induction hypothesis of) lemma 122, satisfy the
equality ∗(m′0,m′1) = ∗(ms′, x′).

13.5. HANDLING OF THE NON-CANONICAL Ξ∗ CASE 239

Based on syn∗(∗(ms, x),m0,m1), syn∗(∗(ms, x),ms, x), ms ⊂ DY(kb), ms ̸= ∅, Θ∗1(x,kb)
and x,m0,m1 ∈ DY(kb), we obtain m0 ∈ ms, ms = m0 ⊎ms0 and syn∗(m1,ms0, x). Further-

more, ℘(ms,ms′) ⊂ xy↔ means that there is ms′0 with ms′ = m′0 ⊎ ms′0 and ℘(ms0,ms′0) ⊂
xy↔.

In the following, we want to show that m′1 = ∗(ms′0, x′) to prove the required equality by

∗(m′0,m′1) = ∗(m′0,∗(ms′0, x′))

= ∗(m′0 ⊎ms′0, x′)

= ∗(ms′, x′).

• If ms0 = ∅, we obtain m1 = x, m′1 = x′, and ms′0 = ∅. This permits to show the required
equality by ∗(ms′0, x′) = ∗(∅, x′) = x′ = m′1.

• In the complementary case, i.e. ms0 ̸= ∅, m1 is a syn∗-message and this permits to

show m′1 = ∗(ms′0, x′) based on the structural condition for m1
xy↔ m′1 by the following

case distinction:

1. When (m1,m′1) ∈ xy, i.e. (∗(ms0, x),m′1) ∈ xy, we apply condition Ψ1
∗ to instanti-

ate m′1 with ∗(ms′0, x′).

2. When Ξ(m1,m′1, xy,kb,kb′), structural properties on m1 such as syn∗(m1,ms0, x),
ms0 ̸= ∅ and Θ⊕1 (x,kb) permit to reduce this to the Ξ∗-case. That is, we get

syn∗(m1,ms1, x1), ms1 ̸= ∅, Θ∗1(x1,kb), Θ⊕1 (x1,kb), ℘(ms1,ms′1) ⊂
xy↔, x1

xy↔ x′1
and m′1 = ∗(ms′1, x′1). Based on syn∗(m1,ms0, x), syn∗(m1,ms1, x1), Θ∗1(x,kb) and
Θ∗1(x1,kb), we obtain x = x1 and ms1 = ms0. This yields x′1 = x′ and ms′1 = ms′0,
permitting to rewrite m′1 = ∗(ms′1, x′1) to m′1 = ∗(ms′0, x′), as required. 2

13.5.2.2 Mapping by Decomposition into a ⊖-Sub-Message

We continue the proof with a possible decomposition into a ⊖-sub-message. That is, we
assume m0 ∈ DY(kb) with syn⊖(∗(ms, x),m0) and want to show that m′0 in the mapping

m0
xy↔m′0, which is provided by (the induction hypothesis of) lemma 122, satisfies the equal-

ity ⊖(m′0) = ∗(ms′, x′).
Based on the structural properties syn⊖(∗(ms, x),m0), syn∗(∗(ms, x),ms, x) and ms ̸= ∅,

we obtain syn∗(m0,ms, x0) and syn⊖(x, x0) for x0 ∈ DY(kb). Then, we use syn⊖(x, x0),

Θ∗1(x,kb), Θ⊕1 (x,kb) and the structural condition for x
xy↔ x′ to deduce x0

xy↔⊖(x′):

• When (x, x′) ∈ xy, we get (⊖(x),⊖(x′)) ∈ xy, i.e. (x0,⊖(x′)) ∈ xy, by case distinction
and with the help of the necessary conditions Ψ1

⊖, Ψ1
⊖,∗ and Ψ1

⊖,⊕.

• When Ξ(x, x′, xy,kb,kb′), the structural properties on x permit to reduce this to the

Ξ⊖-case. This yields x0
xy↔ x′0 and obj⊖(x′, x′0). Hence, we have x′ = ⊖(x′0) and thus

⊖(x′) = x′0, permitting to rewrite x0
xy↔ x′0 to x0

xy↔⊖(x′).

Finally, we use x0
xy↔⊖(x′) to show m′0 = ∗(ms′,⊖(x′)) and hence ⊖(m′0) = ∗(ms′, x′),

based on the structural condition for m0
xy↔ m′0:

• When (m0,m′0) ∈ xy, i.e. (∗(ms, x0),m′0) ∈ xy holds, we employ condition Ψ1
∗ to ob-

tain (x0,∗(inv(ms′),m′0)) ∈ xy and use that to deduce ⊖(x′) = ∗(inv(ms′),m′0), which
transforms obviously to the required equality ∗(ms′,⊖(x′)) = m′0.

• When Ξ(m0,m′0, xy,kb,kb′), the structural properties on m0 permit to reduce this to
the Ξ∗-case. That is, we get the structural properties syn∗(m0,ms1, x1), ms1 ̸= ∅,

Θ∗1(x1,kb), Θ⊕1 (x1,kb), ℘(ms1,ms′1) ⊂
xy↔, x1

xy↔ x′1 and m′0 = ∗(ms′1, x′1). Based on

240 CHAPTER 13. THE CENTRAL INDISTINGUISHABILITY THEOREM IN TC-AMP

syn∗(m0,ms, x0), syn∗(m0,ms1, x1), Θ∗1(⊖(x0),kb) and Θ∗1(x1,kb), we obtain x0 = x1
and ms1 = ms. This yields x′1 = ⊖(x′) and ms′1 = ms′, permitting to rewrite m′0 =
∗(ms′1, x′1) to m′0 = ∗(ms′,⊖(x′)), as required. 2

13.5.3 Mapping by
xy← [using the ∗-Sub-Messages in DY(kb′)

In this section, we describe the lemmata used in the Ξ∗-case for the proof of the mapping

by
xy← [. The first lemma provides the mapping of syn∗-messages for which only available

∗-sub-messages and possibly a ⊖-sub-message with known mappings exist.

LemmaVSE 125 (Mapping of syn∗-Messages by
xy← [, Case 1):

Let ms⊂ DY(kb), x ∈ DY(kb), ms′ ⊂ DY(kb′) and x′ ∈ DY(kb′) satisfy syn∗(∗(ms, x),ms, x),
ms ̸= ∅, Θ∗1(x,kb), Θ⊕1 (x,kb), ℘(ms,ms′) ⊂ xy↔ and x

xy↔ x′. Let (the induction hypothesis of)
lemma 122 hold for all m̂ with |m̂| < |∗(ms, x)|. Then, we have

(syn∗(∗(ms′, x′),ms′, x′) ∧Θ∗1(x′,kb′) ∧
Θ⊕1 (x′,kb′) ∧ (isSyn⊖(x′)⇒ isSyn⊖(x)))

⇒ ∗(ms, x)
xy← [∗(ms′, x′).

Proof Details: The proof is simple when ∗(ms′, x′) ∈ codom(xy) holds: Having the
pair (mx,∗(ms′, x′)) ∈ xy, we use condition Ψ2

∗ to instantiate mx with ∗(ms, x) and this im-

mediately implies ∗(ms, x)
xy← [∗(ms′, x′).

In the complementary case, i.e. ∗(ms′, x′) /∈ codom(xy), we prove ∗(ms, x)
xy← [∗(ms′, x′)

by showing that for any decomposition of ∗(ms′, x′) into ∗-sub-messages m′0,m′1 ∈ DY(kb′)
and possibly into the ⊖-sub-message m′0 the composition of the corresponding mapped
messages (by ∗ and respectively ⊖) yields ∗(ms, x). Recall, Θ⊕1 (x′,kb′) excludes any de-
composition of ∗(ms′, x′) into ⊕-parts from DY(kb′).

• Based on syn∗(∗(ms′, x′),ms′, x′), Θ∗1(x′,kb′) and syn∗(∗(ms′, x′),m′0,m′1), the ∗-sub-
messages m′0 and m′1 yield a partition ms′ = m′0 ⊎ ms′0 with m′1 = ∗(ms′0, x′). Us-

ing ℘(ms,ms′) ⊂ xy↔, we identify some m0 ∈ ms satisfying m0
xy↔ m′0, a correspond-

ing partition m0 ⊎ms0 = ms and m1 = ∗(ms0, x). Then, (the induction hypothesis of)

lemma 122 permits to show m1
xy↔∗(ms′0, x′), i.e. m1

xy↔m′1, as described in Sec. 13.5.2.1.
This allows us to prove the required equality by ∗(m0,m1) = ∗(m0,∗(ms0, x)) =
∗(ms, x).

• Based on (isSyn⊖(x′) ⇒ isSyn⊖(x)), the ⊖-sub-message m′0 yields x′0 satisfying
syn⊖(x′, x′0) with m′0 = ∗(ms′, x′0) and x0 satisfying syn⊖(x, x0). Using x0 and ms,
we identify m0 = ∗(ms, x0) as the⊖-sub-message of ∗(ms, x). Then, (the induction hy-

pothesis of) lemma 122 permits to show m0
xy↔∗(ms′, x′0), i.e. m0

xy↔m′0, as described in
Sec. 13.5.2.2. This allows us to prove the required equality by⊖(m0) =⊖(∗(ms, x0)) =
∗(ms,⊖(x0)) = ∗(ms, x). 2

When the required structural conditions on the mapped messages by lemma 125 do
not hold, we prepare the application of lemma 128 by deducing the Θ∗2 condition. This is
carried out by the following lemma.

LemmaVSE 126 (Θ∗2 for Mapping of syn∗-Messages by
xy← [):

Let ms ⊂ DY(kb), ms′ ⊂ DY(kb′), x ∈ DY(kb) and x′ ∈ DY(kb′) satisfy ℘(ms,ms′) ⊂ xy↔,

13.5. HANDLING OF THE NON-CANONICAL Ξ∗ CASE 241

x
xy↔ x′ and (x, x′) ∈ xy or Ξ(x, x′, xy,kb,kb′). Furthermore, let ¬syn∗(∗(ms′, x′),ms′, x′),

isSyn⊖(x′) ∧ ¬isSyn⊖(x), ¬Θ∗1(x′,kb′) or ¬Θ⊕1 (x′,kb′) hold. Then, we have

Θ∗2(∗(ms, x),∗(ms′, x′), xy,kb,kb′).

Proof Details: First, Θ∗1(x,kb) and Θ⊕1 (x,kb) reduce Ξ(x, x′, xy,kb,kb′) to a canoni-
cal case Ξ f or to the Ξ⊖-case. Then, we want to show that the structural conditions on
∗(ms′, x′), x′ and on x falsify the canonical cases Ξ f and the Ξ⊖-case:

1. If syn∗(∗(ms′, x′),ms′, x′) does not hold, it exists m′0 ∈ms′ with syn∗(x′, inv(m′0), x′0) or
obj⊕(x′, x′0, x′1), syn∗(x′0, inv(m′0), x′2) and syn∗(∗(m′0, x′1),m

′
0, x′1). Hence, the structure

of x′ does not match neither any canonical case nor the Ξ⊖-case.

2. When isSyn⊖(x′)∧¬isSyn⊖(x) holds, the structures of x and x′ do not match neither
any canonical case nor the Ξ⊖-case.

3. When ¬Θ∗1(x′,kb′) or ¬Θ⊕1 (x′,kb′) holds, the structure of x′ does not match neither
any canonical case nor the Ξ⊖-case.

Consequently, Ξ(x, x′, xy,kb,kb′) does not hold and we have (x, x′) ∈ xy.
In case syn∗(∗(ms′, x′),ms′, x′), we trivially have Θ∗2(∗(ms, x),∗(ms′, x′), xy,kb,kb′) by

definition.
In the complementary case, i.e. in case (1), we use (x, x′) ∈ xy and deduce that the pair

(∗(m0, x),∗(m′0, x′0)) is in xy, based on Ψ2
∗ or Ψ2

∗,⊕.
In case property syn∗(x′, inv(m′0), x′0) holds, the application of condition Ψ2

∗ yields the

pairs (mx1, inv(m′0)), (∗(inv(mx1), x), x′0) ∈ xy. Using m0
xy↔ m′0 and its structural condi-

tion, lemma 127 permits to get mx1 = inv(m0) and then to rewrite (∗(inv(mx1), x), x′0) ∈ xy
to (∗(inv(inv(m0)), x), x′0) ∈ xy, i.e. (∗(m0, x), x′0) ∈ xy for x′0 = ∗(m′0, x′). Similarly, we
apply condition Ψ2

∗,⊕ in the second case, where obj⊕(x′, x′0, x′1), syn∗(x′0, inv(m′0), x′2) and
syn∗(∗(m′0, x′1),m

′
0, x′1) hold, to deduce (∗(m0, x),∗(m′0, x′0)) ∈ xy.

In general, there can be a non-empty ms′0 ⊆ ms′ containing messages that are sim-
plified like m′0. So, the derivation of (∗(m0, x),∗(m′0, x′0)) ∈ xy is generalized (by induc-
tion) to the derivation of (∗(ms0, x),∗(ms′0, x′0)) ∈ xy. For our proof, we need to identify
the non-simplified elements of ms′ by providing ms′1 ⊂ ms′ with ms′ = ms′1 ⊎ ms′0 and
syn∗(∗(ms′, x′),ms′1,∗(ms′0, x′0)). Such ms′1 exists by construction. Hence, we have all we
need to show Θ∗2(∗(ms, x),∗(ms′, x′), xy,kb,kb′) by definition. 2

The next lemma, used in particular in the above proof, permits to transfer a mapping to
an application of inv.

LemmaVSE 127 (
xy↔, inv):

For mx,m ∈ DY(kb) and m′ ∈ DY(kb′), we have

(m
xy↔ m′ ∧ ((m,m′) ∈ xy ∨ Ξ(m,m′, xy,kb,kb′)))

⇒ ((mx, inv(m′)) ∈ xy⇒ mx = inv(m)).

Proof Details: The proof is by case distinction on the structure of inv(m′):

• In case objinv(inv(m′),m′) holds, we apply Ψ2
inv to (mx, inv(m′)) ∈ xy and obtain

(mx1,m′) ∈ xy and mx = inv(mx1). This permits to deduce mx1 = m and hence
mx = inv(m)

• In case property selinv
inv(inv(m′),m′) holds, we have objinv(m′,m′1) and inv(m′) =

inv(inv(m′1)) = m′1, which permits to rewrite (mx, inv(m′)) ∈ xy to (mx,m′1) ∈ xy.
Then, we proceed by case distinction:

242 CHAPTER 13. THE CENTRAL INDISTINGUISHABILITY THEOREM IN TC-AMP

1. When (m,m′) ∈ xy, i.e. (m, inv(m′1)) ∈ xy, we apply Ψ2
inv to (m, inv(m′1)) ∈ xy

and obtain (mx1,m′1) ∈ xy and m = inv(mx1). Using (mx,m′1) ∈ xy, we obtain
thus mx = mx1, m = inv(mx) and hence mx = inv(m).

2. When Ξ(m,m′, xy,kb,kb′), the structure of m′ reduces this to the Ξinv-case.
That is, objinv(m,m0), m0

x↔ m′0 and objinv(m′,m′0). Using objinv(m′,m′1) and
(mx,m′1) ∈ xy, we obtain m′1 = m′0, m0 = mx, m = inv(mx) and hence the required
equality mx = inv(m). 2

The fourth lemma provides the mapping of syn∗-messages by
xy← [in case the mapping

for one (possibly nested) right ∗-sub-message is given by a pair in xy.

LemmaVSE 128 (Mapping of syn∗-Messages by
xy← [, Case 2):

For m ∈ DY(kb) and m′ ∈ DY(kb′), we have

Θ∗2(m,m′, xy,kb,kb′)⇒ m
xy← [m′.

Proof Details: The proof of this lemma is by induction on |m′|.
In the base case, where |m′| = 0, we have m′ = ci and (m, ci) ∈ xy, by the definition of

Θ∗2 . This trivially implies m
xy← [m′.

In the step case, the definition of Θ∗2 provides m = ∗(ms, x), ℘(ms,ms′)⊂ xy↔, (x, x′) ∈ xy
and syn∗(m′,ms′, x′).

If ms′ = ∅, we have m′ = x′, m = x and (m,m′) ∈ xy, which trivially implies m
xy← [m′.

Otherwise, if m′ ∈ codom(xy), we have (mx,∗(ms′, x′)) ∈ xy and we use Ψ2
∗ to instantiate

mx with ∗(ms, x), i.e. m, and this immediately implies m
xy← [m′.

In the complementary case, where ms′ ̸= ∅ and m′ /∈ codom(xy) hold, we prove m
xy← [m′

by providing the mapped messages for the available ∗-sub-messages, ⊕-parts and ⊖-sub-
message of m′ and then showing that their composition with ∗,⊕ and respectively⊖ yields
∗(ms, x), i.e. m.

• Let syn∗(m′,m′0,m′1) hold for two arbitrary available ∗-sub-messages of m′. Then, we
distinguish two cases:

1. When m′0 ∈ms′ holds, we have the multiset ms′= m′0⊎ms′0 and syn∗(m′1,ms′0, x′).

Here, ℘(ms,ms′) ⊂ xy↔ permits to identify m0
xy↔ m′0 and ms = m0 ⊎ ms0 with

℘(ms0,ms′0) ⊂
xy↔. Since inv(m0) and m belong to DY(kb) and ∗(ms0, x) =

∗(inv(m0),m), we have ∗(ms0, x) ∈ DY(kb) and Θ∗2(∗(ms0, x),m′1, xy,kb,kb′), by

definition. This permits to obtain ∗(ms0, x)
xy← [m′1 by the induction hypothesis.

Hence, we show the required equality by ∗(m0,∗(ms0, x)) = ∗(m0 ⊎ ms0, x) =
∗(ms, x).

2. When m′0 /∈ ms′, we have syn∗(x′,m′0, x′0) and syn∗(m′1,ms′, x′0). First, we use
condition Ψ2

∗ with (x,∗(m′0, x′0)) ∈ xy to get (mx1,m′0), (∗(inv(mx1), x), x′0) ∈ xy.
Since inv(mx1) and m belong to DY(kb) and ∗(ms, x) = m, we are able to have
∗(ms,∗(inv(mx1), x)) ∈ DY(kb) and Θ∗2(∗(ms,∗(inv(mx1), x)),m′1, xy,kb,kb′), by

definition. This permits to obtain the mapping ∗(ms,∗(inv(mx1), x))
xy← [m′1 by

the induction hypothesis. Hence, we show the required equality by

∗(mx1,∗(ms,∗(inv(mx1), x))) = ∗(ms, x).

13.6. HANDLING OF THE NON-CANONICAL Ξ⊕ CASE 243

• Let obj⊕(m′,m′0,m′1) hold for two arbitrary available ⊕-parts of m′. Based on
syn∗(m′,ms′, x′) and ms′ ⊂ DY(kb), it follows obj⊕(x′, x′0, x′1), syn∗(m′0,ms′, x′0) and
syn∗(m′1,ms′, x′1) for x′0, x′1 ∈ DY(kb′).

First, we want to use (x, x′) ∈ xy to deduce corresponding pairs as mappings for x′0
and x′1. This is done with the help of the necessary condition Ψ2

⊕.

Using Ψ2
⊕ for (x,⊕(x′0, x′1)) ∈ xy yields (mx1, x′0), (⊕(⊖(mx1), x), x′1) ∈ xy. This per-

mits to have Θ∗2(∗(ms,mx1),m′0, xy,kb,kb′) and Θ∗2(∗(ms,⊕(⊖(mx1), x)),m′1, xy,kb,kb′)

by definition, and then to obtain the mapping ∗(ms,mx1)
xy← [m′0 and respectively

∗(ms,⊕(⊖(mx1), x))
xy← [m′1 by the induction hypothesis. Hence, we show the required

equality by

⊕(∗(ms,mx1),∗(ms,⊕(⊖(mx1), x))) = ∗(ms,⊕(mx1,⊕(⊖(mx1), x))) = ∗(ms, x).

• Let property syn⊖(m′,m′0) hold. Then, syn∗(m′,ms′, x′) implies syn⊖(x′, x′0) and
syn∗(m′0,ms′, x′0) for some x′0.

First, we use (x, x′) ∈ xy and Ψ2
⊖, Ψ2

⊖,∗ or Ψ2
⊖,⊕ to deduce (⊖(x),⊖(x′)) ∈ xy, i.e.

(⊖(x), x′0) ∈ xy. This permits to have Θ∗2(∗(ms,⊖(x)),m′0, xy,kb,kb′) by definition,

and then to get ∗(ms,⊖(x))
xy← [m′0 by the induction hypothesis. Hence, we show the

required equality by ⊖(∗(ms,⊖(x))) = ∗(ms, x). 2

13.6 Handling of the non-canonical Ξ⊕ Case

The Ξ⊕-case in lemma 122 defines the mapping by decomposition for ⊕-objects that have
available ⊕-parts in DY(kb). Since multiple decomposition alternatives (into ⊕-parts) are
possible, we use a definition of Ξ⊕ that covers also nested ⊕-parts obtained by successive
decomposition. This definition employs the Θ⊕1 predicate to qualify the ⊕-parts where the
successive decomposition halts.

In addition to Θ⊕1 and above introduced predicates, we use predicate syn⊕(m,ms) in-
troduced in Sec. 6.5.1.1 to identify a successive decomposition of m into ⊕-parts in ms.
Furthermore, we employ the following predicate as short-cut:

Θ⊕2 (ms, ik)⇔ ∀m ∈ ms : Θ⊕1 (m, ik)

Accordingly, syn⊕(m,ms) and Θ⊕2 (ms,kb) identify in the following definition of Ξ⊕ all
successive decompositions of m into available ⊕-parts, i.e. the elements of ms. At the same
time, all decompositions by ⊕ are given by a proper partition ms0 ⊎ms1 of ms.

Ξ⊕ : ∃ms ⊂ DY(kb),ms′ ⊂ DY(kb′) :

syn⊕(m,ms) ∧ len(ms) > 1∧Θ⊕2 (ms,kb) ∧

℘(ms,ms′) ⊂ xy↔∧m′ = ⊕(ms′) ∧m′ ̸= ∞

The predicate Ξ⊕ defines the mapped message m′ to a ⊕-message m (with available ⊕-
parts) relative to the arbitrarily many available ⊕-parts (the elements of ms): m′ is the result
of successive applications of ⊕ using the messages mapped to the elements of ms.

Before we use the predicate Ξ⊕ in the proof of theorem 108 in TC-AMP (see Sec. 13.7),
we describe the handling of ⊕-messages, i.e. the Ξ⊕-case, in the step case of lemma 122:

244 CHAPTER 13. THE CENTRAL INDISTINGUISHABILITY THEOREM IN TC-AMP

For m ∈ DY(kb), m /∈ dom(xy) and ¬Θ⊕1 (m,kb), we must provide m′ ∈ DY(kb′) satisfying

m
xy↔ m′ and Ξ⊕(m,m′, xy,kb,kb′).
The proof starts by applying lemma 129 for a successive decomposition of m into its available

⊕-parts in DY(kb). It provides ms⊂DY(kb) with syn⊕(m,ms), len(ms)> 1 and Θ⊕2 (ms,kb).
Since all elements in ms are smaller than m, we may apply the induction hypothesis to

obtain ms′ ⊂ DY(kb′) with ℘(ms,ms′) ⊂ xy↔.
We continue the proof by setting m′ = ⊕(ms′) and showing m

xy↔ m′ as follows:

• First, we apply lemma 130 to obtain the mapping of m by
xy7→ using the available ⊕-parts in

ms ⊂ DY(kb). It permits to show ⊕(ms)
xy7→ ⊕(ms′), i.e. m

xy7→ ⊕(ms′).

• Next, we aim at the mapping of⊕(ms′) by
xy← [using the⊕-parts of⊕(ms′) in DY(kb′).

Since the multiset ms′ does not necessarily include only ⊕-parts of ⊕(ms′), we ap-
ply lemma 131 to obtain an equivalent multiset with the required property. For

℘(ms,ms′) ⊂ xy↔, this lemma provides ℘(ms1,ms′1) ⊂
xy↔ such that syn⊕(⊕(ms′),ms′1),

and syn⊕(⊕(ms),ms1) hold and all mappings m0
xy↔m′0 in ℘(ms1,ms′1) fulfill the prop-

erty Θ⊕1 (m0,kb) or Θ∗2(m0,m′0, xy,kb,kb′). For the mappings m0
xy↔ m′0 where m0 pos-

sesses non-confidential ⊕-parts in DY(kb), i.e. where Θ⊕1 (m0,kb) does not hold, the
mapped messages m0 and m′0 can be linked to a pair in xy used as the basis for their
mapping according to the definition of Θ∗2 .

Note that syn⊕(⊕(ms′),ms′1) ensues the required condition ⊕(ms′) ̸= ∞.

After obtaining ms1 and ms′1 by lemma 131, we check whether len(ms1) = 1 holds. In

this case, the proof is trivially closed, as ℘(ms1,ms′1) = {m
xy↔ m′}.

If len(ms1)> 1, we prove m
xy← [m′, i.e.⊕(ms1)

xy← [⊕(ms′1), with the help of lemma 136,
which requires a multiset consisting of all non-confidential nested⊕-parts of⊕(ms′1).
Since ms′1 could include ⊕-objects with non-confidential ⊕-parts, i.e. Θ⊕2 (ms′1,kb′)
could not hold, we need to identify equivalent multisets for ms′1 (and ms1) according
to the following principle:

1. Define ms′2 to be the greatest subset of ms′1 fulfilling Θ⊕2 (ms′2,kb′). This permits

to identify ms2 ⊆ ms1 with ℘(ms2,ms′2) ⊂
xy↔.

2. For the remaining mappings mu
xy↔ m′u in ℘(ms1,ms′1) \ ℘(ms2,ms′2), we know

that Θ⊕1 (m
′
u,kb′) does not hold. So, we derive for everyone of these map-

pings corresponding multisets msu and ms′u that satisfy Θ⊕2 (ms′u,kb′), ⊕(msu) =

mu, syn⊕(m′u,ms′u), ℘(msu,ms′u) ⊂
xy← [and so that all mappings m0

xy← [m′0 in
℘(msu,ms′u) fulfill Θ∗2(m0,m′0, xy,kb,kb′):

We first use the structural condition of the mapping mu
xy↔ m′u, i.e. (mu,m′u) ∈ xy

or Ξ(mu,m′u, xy,kb,kb′), in case Θ⊕1 (mu,kb) to deduce Θ∗2(mu,m′u, xy,kb,kb′), by
lemma 133. This allows us to focus on one case, i.e. Θ∗2(mu,m′u, xy,kb,kb′), which

yields syn∗(m′u,ms′x, x′), ℘(msx,ms′x)⊂
xy↔, a pair (x, x′) ∈ xy and mu = ∗(msx, x).

W.l.o.g., let x′ satisfy obj⊕(x′,{x′0, x′1}) with Θ⊕2 ({x′0, x′1},kb′). Then, we apply
condition Ψ2

⊕ to the pair (x, x′) ∈ xy and derive (mx0, x′0) and (⊕(⊖(mx0), x), x′1)
in xy. Using the resulting pairs, we get Θ∗2(∗(msx,mx0),∗(ms′x, x′0), xy,kb,kb′)
together with Θ∗2(∗(msx,⊕(⊖(mx0), x)),∗(ms′x, x′1), xy,kb,kb′), by definition, and

thus ∗(msx,mx0)
xy← [∗(ms′x, x′0) and ∗(msx,⊕(⊖(mx0), x))

xy← [∗(ms′x, x′1), with the
help of lemma 128. This permits to set

(a) msu = {∗(msx,mx0),∗(msx,⊕(⊖(mx0), x))}

13.6. HANDLING OF THE NON-CANONICAL Ξ⊕ CASE 245

(b) and ms′u = {∗(ms′x, x′0),∗(ms′x, x′1)}.
If x′ possesses n > 2 available ⊕-parts, (n − 1) successive applications of Ψ2

⊕
starting as well with (x, x′) ∈ xy permit clearly to gain n corresponding pairs in
xy, which we use the same way to construct msu and ms′u.

3. Define ms′3 and ms3 to be the union of all multisets ms′u and respectively msu

obtained in (2). Obviously, we have ℘(ms3,ms′3) ⊂
xy← [, ⊕(ms1) = ⊕(ms2 ⊎ms3),

syn⊕(⊕(ms′1),ms′2 ⊎ms′3) and Θ⊕2 (ms′2 ⊎ms′3,kb′).

Note that the transformation of ℘(ms1,ms′1) \ ℘(ms2,ms′2) to ℘(ms3,ms′3) yields to a
new proof situation where syn⊕(⊕(ms),ms2 ⊎ ms3) does not necessarily hold. For
that reason, we are not able to use (the induction hypothesis of) lemma 122 at least
for decompositions into ⊕-parts. But, (the induction hypothesis of) lemma 122 still
applies for the common left ∗-sub-messages of ⊕(ms2 ⊎ ms3), since these are also
common left ∗-sub-messages of the elements in ms.
Recapitulating, the obtained ms2 ⊎ms3 and ms′2 ⊎ms′3 permit to apply lemma 136 to

obtain the mapping of ⊕(ms′2 ⊎ ms′3), i.e. ⊕(ms′), by
xy← [using the identified mappings of

the nested ⊕-parts in DY(kb′). It permits to show ⊕(ms2 ⊎ms3)
xy← [⊕(ms′2 ⊎ms′3), and

this means m
xy← [⊕(ms′) because m =⊕(ms) =⊕(ms1) =⊕(ms2 ⊎ms3) and⊕(ms′) =

⊕(ms′1) = ⊕(ms′2 ⊎ms′3).

13.6.1 Decomposition into ⊕-Parts in DY(kb)

For ⊕-objects, the following lemma permits to identify the result of a successive decompo-
sition into available ⊕-parts.

LemmaVSE 129 (Decomposition into ⊕-Parts in DY(kb)):
Let m satisfy obj⊕(m,m0,m1) for m0 and m1 in DY(kb). Then, it exists ms⊂ DY(kb) satisfy-
ing

syn⊕(m,ms) ∧ len(ms) > 1∧Θ⊕2 (ms,kb).

The proof (by induction on |m|) is similar to the proof of lemma 111.

13.6.2 Mapping by
xy7→ using the ⊕-Parts in DY(kb)

For ⊕-objects that are not mapped in xy, the following lemma provides the mapping by
xy7→

relative to the mappings of the available ⊕-parts.

LemmaVSE 130 (Mapping of ⊕-Objects by
xy7→):

Let ms ⊂ DY(kb) and ms′ ⊂ DY(kb) satisfy syn⊕(⊕(ms),ms), len(ms) > 1, Θ⊕2 (ms,kb),

℘(ms,ms′) ⊂ xy↔ and ⊕(ms) /∈ dom(xy). Let (the induction hypothesis of) lemma 122 hold
for all m̂ with |m̂| < |⊕(ms)|. Then, we have

⊕(ms)
xy7→ ⊕(ms′).

Since ⊕(ms) /∈ dom(xy) and len(ms) > 1 hold, we prove ⊕(ms)
xy7→ ⊕(ms′) by showing

that for any decomposition of m into ⊕-parts, ∗-sub-messages m0,m1 ∈ DY(kb) and possi-
bly into a ⊖-sub-message m0 the composition of the corresponding mapped messages (by
⊕, ∗ and respectively ⊖) yields ⊕(ms′).

246 CHAPTER 13. THE CENTRAL INDISTINGUISHABILITY THEOREM IN TC-AMP

13.6.2.1 Mapping by Decomposition into ⊕-Parts

We start with decompositions into ⊕-parts. That is, we assume m0,m1 ∈ DY(kb) with

obj⊕(⊕(ms),m0,m1) and want to show that m′0 and m′1 in the mappings m0
xy↔ m′0 and

m1
xy↔m′1, which are provided by (the induction hypothesis of) lemma 122, satisfy the equal-

ity ⊕(m′0,m′1) = ⊕(ms′).
Based on obj⊕(⊕(ms),m0,m1), syn⊕(⊕(ms),ms), ms⊂DY(kb), len(ms)> 1, Θ⊕2 (ms,kb)

and m0,m1 ∈ DY(kb), we obtain ms = ms0 ⊎ms1, Θ⊕2 (ms0,kb), Θ⊕2 (ms1,kb), syn⊕(m0,ms0)

and syn⊕(m1,ms1). Furthermore, ℘(ms,ms′) ⊂ xy↔ means that there is a partition ms′ =
ms′0 ⊎ms′1 with ℘(ms0,ms′0),℘(ms1,ms′1)⊂

xy↔. In the following, we want to show that m′0 =
⊕(ms′0) and m′1 = ⊕(ms′1) to prove the required equality by

⊕(m′0,m′1) = ⊕(⊕(ms′0),⊕(ms′1))

= ⊕(ms′0 ⊎ms′1)

= ⊕(ms′).

1. If ms0 = {m2} and ms1 = {m3}, we obtain m0 = m2, m1 = m3, ms′0 = {m′2} and ms′1 =

{m′3} for m2
xy↔ m′2 and m3

xy↔ m′3. This permits to deduce m′0 = m′2 and m′1 = m′3
and then to show the required equalities by ⊕(ms′0) = ⊕({m′2}) = m′2 = m′0 and by
⊕(ms′1) = ⊕({m′3}) = m′3 = m′1.

2. If ms0 = {m2} and len(ms1) > 1, we first obtain m0 = m2, ms′0 = {m′2} for m2
xy↔ m′2,

permitting to show ⊕(ms′0) = m′0 as in (1).

len(ms1) > 1, syn⊕(m1,ms1), ℘(ms1,ms′1) ⊂
xy↔ and ms1 ⊂ DY(kb) permit to show

⊕(ms′1) = m′1 based on the structural condition for m1
xy↔ m′1 by the following case

distinction:

(a) Case (m1,m′1) ∈ xy, i.e. (⊕(ms1),m′1) ∈ xy, is handled based on condition Ψ1
⊕:

For ms1 = m2 ⊎ ms2, we successively apply condition Ψ1
⊕ to obtain the pair

(m2,⊕(⊖(⊕(ms′2)),m
′
1)) ∈ xy for ms′1 = m′2 ⊎ ms′2, and then the equality m′2 =

⊕(⊖(⊕(ms′2)),m
′
1). This permits to show m′1 =⊕(m′2,⊕(ms′2)) =⊕(m′2 ⊎ms′2) =

⊕(ms′1), as required.

(b) When Ξ(m1,m′1, xy,kb,kb′), structural properties on m1 such as syn⊕(m1,ms1),
and len(ms1) > 1 permit to reduce this to the Ξ⊕-case. That is, we get

syn⊕(m1,ms2), Θ⊕2 (ms2,kb), ℘(ms2,ms′2) ⊂
xy↔ and m′1 = ⊕(ms′2). Based on

syn⊕(m1,ms1), syn⊕(m1,ms2), Θ⊕2 (ms1,kb) and Θ⊕2 (ms2,kb), we obtain ms1 =
ms2. This yields ms′1 = ms′2, permitting to rewrite m′1 =⊕(ms′2) to m′1 =⊕(ms′1),
as required.

3. The case where ms1 = {m2} and len(ms0) > 1 is similar to (2).

4. If len(ms0), len(ms1) > 1, the second proof part in (2) applies. 2

13.6.2.2 Mapping by Decomposition into ∗-Sub-Messages

Next, we consider arbitrary decompositions into ∗-sub-messages. That is, we assume
m0,m1 ∈ DY(kb) with syn∗(⊕(ms),m0,m1) and want to show that m′0 and m′1 in the

mappings m0
xy↔ m′0 and m1

xy↔ m′1, which are provided by (the induction hypothesis of)
lemma 122, satisfy the equality ∗(m′0,m′1) = ⊕(ms′).

• First, syn∗(⊕(ms),m0,m1) implies that all messages m2 ∈ ms satisfy syn∗(m2,m0,m3)

for m3 ∈ ms1 and syn⊕(m1,ms1).

13.6. HANDLING OF THE NON-CANONICAL Ξ⊕ CASE 247

• Then, we show (by induction on the length of ms1) that there is ℘(ms1,ms′1) ⊂
xy↔

such that ⊕(ms′) = ∗(m′0,⊕(ms′1)) and the mappings m2
xy↔ m′2 in ℘(ms,ms′) with

syn∗(m2,m0,m3) transfer to mappings m3
xy↔∗(inv(m′0),m

′
2) in ℘(ms1,ms′1). The latter

is based on the structural condition of m2
xy↔ m′2:

– When (m2,m′2) ∈ xy, i.e. (∗(m0,m3),m′2) ∈ xy, we apply condition Ψ1
∗ to deduce

(m3,∗(inv(m′0),m
′
2)) ∈ xy and thus m3

xy↔ ∗(inv(m′0),m
′
2).

– In case Ξ(m2,m′2, xy,kb,kb′), we may focus on the Ξ∗-case due to the structure

of m2, and this provides syn∗(m2,ms2, x2), ℘(ms2,ms′2) ⊂
xy↔, x2

xy↔ x′2 and m′2 =
∗(ms′2, x′2). Since syn∗(m2,m0,m3) holds, we have ms2 = {m0} and x2 = m3 or
the complementary case with ms2 = m0 ⊎ms3 and syn∗(m3,ms3, x2) for ms3 ̸= ∅.
In the former case, m3 = x2 and m′2 = ∗({m′0}, x′2) = ∗(m′0, x′2) permit to rewrite

x2
xy↔ x′2 to m3

xy↔ ∗(inv(m′0),m
′
2). In the latter case, the structural condition of

the mapping m3
xy↔ m′3, i.e. ∗(ms3, x2)

xy↔ m′3, permits to show m′3 = ∗(ms′3, x′2)
with ms′2 = m′0 ⊎ms′3 and thus ∗(m′0,m′3) = ∗(m′0,∗(ms′3, x′2)) = m′2, which implies

m3
xy↔ ∗(inv(m′0),m

′
2):

* If (∗(ms3, x2),m′3)∈ xy, we apply Ψ1
∗ to obtain (x2,∗(inv(ms′3),m

′
3))∈ xy and

then deduce x′2 = ∗(inv(ms′3),m
′
3) and thus m′3 = ∗(ms′3, x′2).

* Otherwise, Ξ(∗(ms3, x2),m′3, xy,kb,kb′) is traced back to the Ξ∗-case, which
permits to show m′3 = ∗(ms′3, x′2).

• Next, syn⊕(m1,ms1), len(ms1)> 1 and ℘(ms1,ms′1)⊂
xy↔ permit to obtain the mapping

m1
xy↔⊕(ms′1) as described in Sec. 13.6.2.1, case (2).

• Hence, we show the required equality by ∗(m′0,m′1) = ∗(m′0,⊕(ms′1)) = ⊕(ms′). 2

13.6.2.3 Mapping by Decomposition into a ⊖-Sub-Message

We continue the proof with a possible decomposition into a ⊖-sub-message. That is, we
assume m0 ∈ DY(kb) with syn⊖(⊕(ms),m0) and want to show that m′0 in the mapping

m0
xy↔m′0, which is provided by (the induction hypothesis of) lemma 122, satisfies the equal-

ity ⊖(m′0) = ⊕(ms′).

• First, syn⊖(⊕(ms),m0) implies that all messages m1 ∈ ms satisfy syn⊖(m1,m2) for
m2 ∈ ms0 and syn⊕(m0,ms0).

• Then, we show (by induction on the length of ms0) that there is ℘(ms0,ms′0) ⊂
xy↔

such that ⊕(ms′) = ⊖(⊕(ms′0)) and the mappings m1
xy↔ m′1 in ℘(ms,ms′) with

syn⊖(m1,m2) transfer to mappings m2
xy↔ ⊖(m′1) in ℘(ms0,ms′0). The latter is based

on the structural condition of m1
xy↔ m′1:

– When (m1,m′1) ∈ xy, i.e. (⊖(m2),m′1) ∈ xy, we deduce (⊖(⊖(m2)),⊖(m′1)) ∈ xy,

i.e. (m2,⊖(m′1)) ∈ xy, and thus m2
xy↔⊖(m′1), with the help of Ψ1

⊖, Ψ1
⊖,∗ or Ψ1

⊖,⊕.

– In case Ξ(m1,m′1, xy,kb,kb′), the syn⊖-structure of m1 and Θ⊕1 (m1,kb) (ensued
from Θ⊕2 (ms,kb)) reduces this to the Ξ⊖- or the Ξ∗-case.

In the Ξ⊖-case, we get obj⊖(m1,m3), m3
xy↔m′3 and obj⊖(m′1,m′3), i.e. m′1 =⊖(m′3).

Based on syn⊖(m1,m2), we deduce m2 = m3 and m2
xy↔⊖(m′1).

248 CHAPTER 13. THE CENTRAL INDISTINGUISHABILITY THEOREM IN TC-AMP

In the Ξ∗-case, we get the corresponding structural properties syn∗(m1,ms1, x1),

℘(ms1,ms′1) ⊂
xy↔, x1

xy↔ x′1 and m′1 = ∗(ms′1, x′1). Since syn⊖(m1,m2) holds, we
obtain syn⊖(x1, x2) and syn∗(m2,ms1, x2). Then, we expand the structural con-

dition of x1
xy↔ x′1 to obtain x2

xy↔ ⊖(x′1). After that, the structural condition of

m2
xy↔ m′2, i.e. ∗(ms1, x2)

xy↔ m′2, permits to show m′2 = ∗(ms′1,⊖(x′1)) and thus

m′2 = ⊖(∗(ms′1, x′1)) = ⊖(m′1), which implies m2
xy↔⊖(m′1):

* If (∗(ms1, x2),m′2)∈ xy, we apply Ψ1
∗ to obtain (x2,∗(inv(ms′1),m

′
2))∈ xy and

then deduce ⊖(x′1) = ∗(inv(ms′1),m
′
2) and thus m′2 = ∗(ms′1,⊖(x′1)).

* Otherwise, Ξ(∗(ms1, x2),m′2, xy,kb,kb′) is traced back to the Ξ∗-case, which
permits to show m′2 = ∗(ms′1,⊖(x′1)).

• Next, syn⊕(m0,ms0), len(ms0)> 1 and ℘(ms0,ms′0)⊂
xy↔ permit to obtain the mapping

m0
xy↔⊕(ms′0) as described in Sec. 13.6.2.1, case (2).

• Hence, we show the required equality by ⊖(m′0) = ⊖(⊕(ms′0)) = ⊕(ms′). 2

13.6.3 Transformation into ⊕-Parts in DY(kb′)

Given ℘(ms,ms′) ⊂ xy↔ with syn⊕(⊕(ms),ms), the following lemma permits to check
whether ms′ fulfills syn⊕(⊕(ms′),ms′). Otherwise, it permits to successively transform

mapping pairs m0
xy↔ m′0 and m1

xy↔ m′1 where obj⊕(⊕(m′0,m′1),m
′
0,m′1) does not hold to

composed mappings ⊕(m0,m1)
xy↔ ⊕(m′0,m′1) satisfying the Θ∗2 condition. Recall that Θ∗2

links the mapping to a pair in the basis relation xy, which is useful to derive further related
mappings if required in the rest of the (main) proof.

We use lemma 131 in the main proof to transform ℘(ms,ms′)⊂ xy↔ into ℘(ms1,ms′1)⊂
xy↔

such that syn⊕(⊕(ms′),ms′1), and syn⊕(⊕(ms),ms1) hold and all mappings m0
xy↔ m′0 in

℘(ms1,ms′1) fulfill Θ⊕1 (m0,kb) or Θ∗2(m0,m′0, xy,kb,kb′).
As reflected in the induction proof of the lemma, the transformation procedure is recur-

sive, where the very first transformed mappings m0
xy↔ m′0 and m1

xy↔ m′1 satisfy Θ⊕1 (m0,kb)
and Θ⊕1 (m1,kb). In subsequent transformations, used mappings could result from previous
transformations and could for that reason satisfy the Θ∗2-predicate.

LemmaVSE 131 (Transformation into ⊕-Parts in DY(kb′)):
Let ms⊂ DY(kb) and ms′ ⊂ DY(kb′) satisfy len(ms)> 1, syn⊕(⊕(ms),ms), ℘(ms,ms′)⊂ xy↔
and ⊕(ms)

xy7→ ⊕(ms′). Let every mapping m
xy↔ m′ in ℘(ms,ms′) fulfill Θ⊕1 (m,kb) or

Θ∗2(m,m′, xy,kb,kb′). And let (the induction hypothesis of) lemma 122 hold for all m ∈ ms
and for all m̂ with |m̂|< |⊕(ms)|. Then, there exists ms1 ⊂ DY(kb) and ms′1 ⊂ DY(kb′) such
that

℘(ms1,ms′1) ⊂
xy↔∧syn⊕(⊕(ms),ms1) ∧ syn⊕(⊕(ms′),ms′1) ∧

(∀m
xy↔ m′ ∈ ℘(ms1,ms′1) : Θ⊕1 (m,kb) ∨Θ∗2(m,m′, xy,kb,kb′)).

Proof: The proof is by induction on len(ms).

Base Case: For ms = {m0,m1}, we obtain ms′ = {m′0,m′1}with m0
xy↔m′0 and m1

xy↔m′1.
If syn⊕(⊕(ms′),ms′) holds, we conclude by setting ms1 = ms and ms′1 = ms′.

13.6. HANDLING OF THE NON-CANONICAL Ξ⊕ CASE 249

Otherwise, we have ¬obj⊕(⊕(m′0,m′1),m
′
0,m′1) and ⊕(m′0,m′1) ̸= ∞. The latter holds,

because ⊕(m′0,m′1) = ∞ permits to refute obj⊕(⊕(m0,m1),m0,m1), i.e. syn⊕(⊕(ms),ms):

Assuming ⊕(m′0,m′1) = ∞ yields m′1 = ⊖(m′0) and thus m1
xy↔⊖(m′0), which permits to get

⊖(m1)
xy↔ m′0 with the help of lemma 132 and then to deduce m0 = ⊖(m1).

That is, ¬obj⊕(⊕(m′0,m′1),m
′
0,m′1) reduces to two cases:

1. obj⊕(m′0,m′2,m′) and m′1 = ⊖(m′): We first use the structural condition of the map-

ping m0
xy↔ ⊕(m′2,m′) in case Θ⊕1 (m0,kb) to deduce Θ∗2(m0,⊕(m′2,m′), xy,kb,kb′), by

lemma 133. This permits to focus on one case, i.e. Θ∗2(m0,⊕(m′2,m′), xy,kb,kb′). After

that, we first apply lemma 132 to deduce⊖(m1)
xy↔m′ from m1

xy↔⊖(m′), i.e. m1
xy↔m′1,

and then employ lemma 134 to obtain Θ∗2(⊕(m0,m1),m′2, xy,kb,kb′).

2. obj⊕(m′0,m′2,m′) and obj⊕(m′1,m′3,⊖(m′)): We first use the structural conditions of

the mapping m0
xy↔ ⊕(m′2,m′) in case Θ⊕1 (m0,kb) and then of the mapping m1

xy↔
⊕(m′3,⊖(m′)) in case Θ⊕1 (m1,kb) to deduce Θ∗2(m0,⊕(m′2,m′), xy,kb,kb′) and respec-
tively Θ∗2(m1,⊕(m′3,⊖(m′)), xy,kb,kb′), by lemma 133. This permits to focus on one
case, i.e. Θ∗2(m0,⊕(m′2,m′), xy,kb,kb′) and Θ∗2(m1,⊕(m′3,⊖(m′)), xy,kb,kb′), and to ap-
ply lemma 135 to obtain Θ∗2(⊕(m0,m1),⊕(m′2,m′3), xy,kb,kb′).

In both cases, we apply lemma 128 using the obtained Θ∗2 property to get a corresponding

mapping by
xy← [, i.e. ⊕(m0,m1)

xy← [m′2 in case (1) and ⊕(m0,m1)
xy← [⊕(m′2,m′3) in case (2).

These, together with⊕(ms)
xy7→⊕(ms′) yield⊕(m0,m1)

xy↔m′2 and respectively⊕(m0,m1)
xy↔

⊕(m′2,m′3).
Hence, we conclude by setting ms1 = {⊕(m0,m1)} together with ms′1 = {m′2} in case (1)

and ms′1 = {⊕(m′2,m′3)} in case (2). Here, the Θ∗2 property for the element of ms′1 implies
syn⊕(⊕(ms′),ms′1).

Step Case: For multiset ms that satisfies len(ms) > 2, we proceed as in the Base Case
if syn⊕(⊕(ms′),ms′) holds.

Otherwise, we have ¬obj⊕(⊕(m′0,m′1),m
′
0,m′1) for m′0,m′1 ∈ ms′ and m0,m1 ∈ ms with

m0
xy↔ m′0 and m1

xy↔ m′1. Since ⊕(m0,m1) is smaller than ⊕(ms), we apply (the induction

hypothesis of) lemma 122 to get⊕(m0,m1)
xy↔⊕(m′0,m′1). The properties about the structure

of ⊕(m′0,m′1) are shown similar to the Base Case: That is, ⊕(m′0,m′1) ̸= ∞ holds and we
distinguish two cases:

1. In case obj⊕(m′0,m′2,m′) and m′1 =⊖(m′) hold, we obtain the equality⊕(m′0,m′1) = m′2
and property Θ∗2(⊕(m0,m1),m′2, xy,kb,kb′).

2. In case obj⊕(m′0,m′2,m′) and obj⊕(m′1,m′3,⊖(m′)), we obtain ⊕(m′0,m′1) = ⊕(m′2,m′3)
and Θ∗2(⊕(m0,m1),⊕(m′2,m′3), xy,kb,kb′).

In both cases, we use ms01 and ms′01 satisfying ms = {m0,m1} ⊎ms01 and ms′ = {m′0,m′1} ⊎
ms′01 to obtain ℘(⊕(m0,m1) ⊎ms01,⊕(m′0,m′1) ⊎ms′01)⊂

xy↔ where len(⊕(m0,m1) ⊎ms01)<

len(ms) and in particular syn⊕(⊕(ms),⊕(m0,m1) ⊎ ms01) allow us to conclude by the in-
duction hypothesis. 2

13.6.3.1 Lemma on ⊖ Application in Mappings

The following lemma lifts the inclusion principle by Ψ2
⊖ to mappings where the right-side

results by an application of ⊖: Having m
xy↔⊖(m′), we also have ⊖(m)

xy↔ m′.
This lemma is employed in particular in the proof of lemma 131.

250 CHAPTER 13. THE CENTRAL INDISTINGUISHABILITY THEOREM IN TC-AMP

LemmaVSE 132 (
xy↔ and ⊖):

Let m be in DY(kb) \ {∞} and m′ in DY(kb′) \ {∞} and let (the induction hypothesis of)
lemma 122 hold for all m̂ with |m̂| ≤ |m|, | ⊖ (m)|. Then, we have

m
xy↔⊖(m′)⇒⊖(m)

xy↔ m′.

Proof: The proof is based on lemma 122, which provides the structural conditions for

the assumed mapping m
xy↔ ⊖(m′) and for a mapping ⊖(m)

xy↔ m′⊖ that we use to show
m′⊖ = m′:

1. In case (⊖(m),m′⊖) ∈ xy, we proceed by the following case distinction:

(a) If isObj⊖(⊖(m)), isObj∗(⊖(m)) or isObj⊕(⊖(m)) holds, we use Ψ1
⊖, Ψ1

⊖,∗ or re-
spectively Ψ1

⊖,⊕ to obtain (⊖(⊖(m)),⊖(m′⊖)) ∈ xy, i.e. (m,⊖(m′⊖)) ∈ xy, and
then deduce ⊖(m′⊖) = ⊖(m′), which implies m′⊖ = m′, as required.

(b) Otherwise, m ̸= ∞ implies isObj⊖(m) and the structural condition of m
xy↔⊖(m′)

yields three cases:

i. In case (m,⊖(m′)) ∈ xy, we use Ψ1
⊖ to obtain (⊖(m),⊖(⊖(m′))) ∈ xy, i.e.

(⊖(m),m′) ∈ xy, which implies m′ = m′⊖, as required.

ii. In the Ξ⊖-case, we have obj⊖(m,m0), m0
xy↔ m′0 and obj⊖(⊖(m′),m′0). This

implies m0 = ⊖(m), m′0 = m′⊖ and ⊖(m′) = ⊖(m′⊖), which rewrites to the
required equality m′ = m′⊖.

iii. In the Ξ∗-case, we have syn∗(m,ms, x), Θ∗1(x,kb), Θ⊕1 (x,kb), ℘(ms,ms′)⊂ xy↔,

x
xy↔ x′ and ⊖(m′) = ∗(ms′, x′). Furthermore, isObj⊖(m) implies isObj⊖(x),

which we use to deduce obj⊖(x, x0), x0
xy↔ x′0 and x′ = ⊖(x′0). Based

on syn∗(m,ms, x) and obj⊖(x, x0), we get syn∗(⊖(m),ms, x0). After that,
we want to deduce m′⊖ = ∗(ms′, x′0), which permits to show m′⊖ = m′ by
∗(ms′, x′0) = ∗(ms′,⊖(x′)) = ⊖(∗(ms′, x′)) = ⊖(⊖(m′)) = m′:

• When (⊖(m),m′⊖) ∈ xy, i.e. (∗(ms, x0),m′⊖) ∈ xy, we use Ψ1
∗ to instanti-

ate m′⊖ with ∗(ms′, x′0), as required.
• Otherwise, the Ξ∗-case applies, which yields the structural properties

syn∗(⊖(m),ms⊖, x⊖), Θ∗1(x⊖,kb), Θ⊕1 (x⊖,kb), ℘(ms⊖,ms′⊖) ⊂
xy↔, x⊖

xy↔
x′⊖ and m′⊖ = ∗(ms′⊖, x′⊖). This implies ms⊖ = ms and x⊖ = x0, based
on syn∗(⊖(m),ms, x0), obj⊖(x, x0) and Θ∗1(x,kb). That is, ms′⊖ = ms′,
x′⊖ = x′0 and thus m′⊖ = ∗(ms′, x′0), as required.

2. When any Ξ f -case applies for ⊖(m)
xy↔ m′⊖ with f /∈ {⊖,∗,⊕}, we have isObj⊖(m).

This permits to show m′ = m′⊖ as in case (1-b).

3. When the Ξ⊖-case applies for ⊖(m)
xy↔ m′⊖, we have obj⊖(⊖(m),m0), m0

xy↔ m′0 and
obj⊖(m′⊖,m′0). Since m0 must equal m, we deduce m′0 = ⊖(m′) and thus m′⊖ =
⊖(m′0) = ⊖(⊖(m′)) = m′, as required.

4. When the Ξ∗-case applies for⊖(m)
xy↔m′⊖, we have syn∗(⊖(m),ms⊖, x⊖), Θ∗1(x⊖,kb),

Θ⊕1 (x⊖,kb), ℘(ms⊖,ms′⊖) ⊂
xy↔, x⊖

xy↔ x′⊖, m′⊖ = ∗(ms′⊖, x′⊖) and isSyn∗(m′⊖). This
implies x′⊖ ̸= ∞, which permits to provide u ∈ DY(kb′) \ {∞} such that x′⊖ = ⊖(u)
and then to rewrite x⊖

xy↔ x′⊖ to x⊖
xy↔⊖(u). Based on Θ∗1(x⊖,kb) and Θ⊕1 (x⊖,kb), we

may ensue ⊖(x⊖)
xy↔ u from x⊖

xy↔⊖(u), replaying the proofs in (1)–(3), because the

Ξ∗- and the Ξ⊕-case do not apply for ⊖(x⊖)
xy↔ u.

13.6. HANDLING OF THE NON-CANONICAL Ξ⊕ CASE 251

Based on syn∗(⊖(m),ms⊖, x⊖), we have syn∗(m,ms⊖,⊖(x⊖)). We want to deduce
⊖(m′) = ∗(ms′⊖,u), which permits to show the required equality m′⊖ = m′ by m′⊖ =
∗(ms′⊖, x′⊖) = ∗(ms′⊖,⊖(u)) = ⊖(∗(ms′⊖,u)) = ⊖(⊖(m′)) = m′:

• When (m,⊖(m′)) ∈ xy, i.e. (∗(ms⊖,⊖(x⊖)),⊖(m′)) ∈ xy, we use Ψ1
∗ to instanti-

ate ⊖(m′) with ∗(ms′⊖,u), as required.

• Otherwise, the Ξ∗-case applies, where we use the corresponding structural

properties syn∗(m,ms⊖,⊖(x⊖)), ℘(ms⊖,ms′⊖) ⊂
xy↔ and ⊖(x⊖)

xy↔ u to deduce
⊖(m′) = ∗(ms′⊖,u), as in case (1-(b)-iii).

5. When the Ξ⊕-case applies for ⊖(m)
xy↔ m′⊖, we have syn⊕(⊖(m),ms), Θ⊕2 (ms,kb),

℘(ms,ms′)⊂ xy↔ and m′⊖ =⊕(ms′). Based on syn⊕(⊖(m),ms), we get syn⊕(m,⊖(ms))

and all mappings mx
xy↔ m′x in ℘(ms,ms′) satisfy mx ̸= ∞ and m′x ̸= ∞ and associate

to mappings ⊖(mx)
xy↔ ⊖(m′x) in ℘(⊖(ms),⊖(ms′)): For a given mx

xy↔ m′x, it exists

m′u ∈ DY(kb′) \ {∞} such that m′x = ⊖(m′u) and mx
xy↔ m′x rewrites to mx

xy↔ ⊖(m′u).
Based on Θ⊕2 (ms,kb), which implies Θ⊕1 (mx,kb), we may ensue ⊖(mx)

xy↔ m′u from

mx
xy↔⊖(m′u), replaying the proofs in (1)–(4), because the Ξ⊕-case does not apply for

⊖(mx)
xy↔ m′u. The set ℘(⊖(ms),⊖(ms′)) consists obviously of the ensued mappings

⊖(mx)
xy↔ m′u, where m′u = ⊖(m′x) follows from m′x = ⊖(m′u).

Now, we want to deduce ⊖(m′) = ⊕(⊖(ms′)), which permits to show the required
equality m′⊖ = m′ by m′⊖ = ⊕(ms′) = ⊖(⊕(⊖(ms′))) = ⊖(⊖(m′)) = m′:

• When (m,⊖(m′)) ∈ xy, i.e. (⊕(⊖(ms)),⊖(m′)) ∈ xy, we use Ψ1
⊕ to instantiate

⊖(m′) with ⊕(⊖(ms′)), as required.

• Otherwise, the Ξ⊕-case applies, which yields the corresponding structural prop-

erties syn⊕(m,ms1), Θ⊕2 (ms1,kb), ℘(ms1,ms′1) ⊂
xy↔ and ⊖(m′) = ⊕(ms′1). This

implies ms1 = ⊖(ms), based on syn⊕(m,⊖(ms)) and Θ⊕2 (ms,kb). That is, ms′1 =
⊖(ms′) and thus ⊖(m′) = ⊕(⊖(ms′)), as required. 2

13.6.3.2 Derivations of Θ∗2-Conditions

The proof of lemma 131 mainly transforms pairs of mappings where the application of ⊕
is not constructor-type to single mappings. The transformation is based on derivations for
the Θ∗2-condition, using lemmata described in this section.

The first lemma permits to ensue the Θ∗2-condition for mappings where the left side
satisfies the Θ⊕1 -condition and the right side is a ⊕-object.

LemmaVSE 133 (Θ⊕1 and isObj⊕ implies Θ∗2):

Let m ∈ DY(kb) and m′ ∈ DY(kb′) satisfy m
xy↔ m′, Θ⊕1 (m,kb) and isObj⊕(m′). And let (the

induction hypothesis of) lemma 122 hold for all m̂ with |m̂| ≤ |m|. Then, we have

Θ∗2(m,m′, xy,kb,kb′).

Proof: The proof is by case distinction:

• If (m,m′) ∈ xy, we just need to have syn∗(m′,∅,m′), which holds due to isObj⊕(m′).

• Otherwise, Ξ(m,m′, xy,kb,kb′) reduces to the Ξ∗-case, based on Θ⊕1 (m,kb) and

isObj⊕(m′). This provides syn∗(m,ms, x), Θ∗1(x,kb), ℘(ms,ms′) ⊂ xy↔, x
xy↔ x′ and

m′ = ∗(ms′, x′). Based on isObj⊕(m′), we obtain isObj⊕(x′) and this permits to reduce

252 CHAPTER 13. THE CENTRAL INDISTINGUISHABILITY THEOREM IN TC-AMP

the structural condition of x
xy↔ x′ to (x, x′) ∈ xy. After that, we are able to provide a

(not necessarily proper) partition ms′ = ms′x ⊎ms′y satisfying syn∗(m′,ms′x,∗(ms′y, x′))
and (∗(msy, x),∗(ms′y, x′)) ∈ xy (cp. the proof of lemma 126). Hence, we have all we
need to show Θ∗2(m,m′, xy,kb,kb′) by definition. 2

The next lemma permits to derive the Θ∗2-condition for a transformation by a decrypt-
type simplification.

LemmaVSE 134 (Θ∗2 for dec⊕⊕):
Let xy be a finite set of message pairs representing a relation between DY(kb) and DY(kb′)
that satisfies Ψ. For m0,m1 ∈ DY(kb) and m′0,m′ ∈ DY(kb′), we have

(Θ∗2(m0,⊕(m′0,m′), xy,kb,kb′) ∧ obj⊕(⊕(m′0,m′),m′0,m′) ∧⊖(m1)
xy↔ m′)

⇒ Θ∗2(⊕(m0,m1),m′0, xy,kb,kb′).

Proof: The proof starts by expanding the above definition of Θ∗2(m0,⊕(m′0,m′), xy,kb,kb′)

to obtain syn∗(⊕(m′0,m′),ms′,⊕(x′0, x′)), ℘(ms,ms′) ⊂ xy↔, (x0,⊕(x′0, x′)) ∈ xy and m0 =

∗(ms, x0). Then, we employ condition Ψ2
⊕ to deduce (mx1, x′0), (⊕(x0,⊖(mx1)), x′) ∈ xy

from (x0,⊕(x′0, x′)) ∈ xy. Since syn∗(⊕(m′0,m′),ms′,⊕(x′0, x′)) implies syn∗(m′,ms′, x′), we
can show Θ∗2(∗(ms,⊕(x0,⊖(mx1))),m′, xy,kb,kb′), by definition. This permits to obtain

∗(ms,⊕(x0,⊖(mx1)))
xy← [m′ with the help of lemma 128. After that, we use ⊖(m1)

xy↔ m′

to deduce ∗(ms,⊕(x0,⊖(mx1))) = ⊖(m1) and thus mx1 = ⊕(x0,∗(inv(ms),m1)). This
permits to rewrite (mx1, x′0) ∈ xy to (⊕(x0,∗(inv(ms),m1)), x′0) ∈ xy. Since ⊕(m0,m1) =

∗(ms,⊕(x0,∗(inv(ms),m1))), m′0 = ∗(ms′, x′0) and syn∗(∗(ms′, x′0),ms′, x′0) ensues from
syn∗(⊕(m′0,m′),ms′,⊕(x′0, x′)), we have Θ∗2(⊕(m0,m1),m′0, xy,kb,kb′), by definition. 2

The last lemma permits to derive the Θ∗2-condition for a transformation by a merge
simplification.

LemmaVSE 135 (Θ∗2 for mrg⊕):
Let xy be a finite set of message pairs representing a relation between DY(kb) and DY(kb′)
that satisfies Ψ. For m0,m1 ∈ DY(kb) and ⊕(m′0,m′),⊕(m′1,⊖(m′)) ∈ DY(kb′), we have

(Θ∗2(m0,⊕(m′0,m′), xy,kb,kb′) ∧ obj⊕(⊕(m′0,m′),m′0,m′) ∧
Θ∗2(m1,⊕(m′1,⊖(m′)), xy,kb,kb′) ∧ obj⊕(⊕(m′1,⊖(m′)),m′1,⊖(m′)))
⇒ Θ∗2(⊕(m0,m1),⊕(m′0,m′1), xy,kb,kb′).

Proof: The proof starts by expanding the above definition of Θ∗2(m0,⊕(m′0,m′), xy,kb,kb′)

to obtain these structural properties syn∗(⊕(m′0,m′),ms′0,⊕(x′0, x′2)), ℘(ms0,ms′0) ⊂
xy↔,

(x0,⊕(x′0, x′2)) ∈ xy and m0 = ∗(ms0, x0). Next, we expand Θ∗2(m1,⊕(m′1,⊖(m′)), xy,kb,kb′)

to get syn∗(⊕(m′1,⊖(m′)),ms′1,⊕(x′1,⊖(x′3))), ℘(ms1,ms′1)⊂
xy↔, (x1,⊕(x′1,⊖(x′3))) ∈ xy and

the equality m1 = ∗(ms1, x1).
W.l.o.g., we assume ms′0 = ms′01 ⊎ ms′2, ms′1 = ms′01 ⊎ ms′3, x′2 = ∗(ms′3, x′23) and x′3 =

∗(ms′2, x′23). If ms′3 ̸= ∅ holds, we deduce (∗(inv(ms3), x0),⊕(∗(inv(ms′3), x′0), x′23)) ∈ xy
from (x0,⊕(x′0, x′2)) ∈ xy, i.e. (x0,⊕(x′0,∗(ms′3, x′23))) ∈ xy, based on Ψ2

∗ and/or Ψ2
∗,⊕.

Similarly, if ms′2 ̸= ∅, we deduce (∗(inv(ms2), x1),⊕(∗(inv(ms′2), x′1),⊖(x′23))) ∈ xy from
(x1,⊕(x′1,⊖(x′3))) ∈ xy, i.e. (x1,⊕(x′1,∗(ms′2,⊖(x′23)))) ∈ xy, based on Ψ2

∗ and/or Ψ2
∗,⊕.

Then, we use the obtained pairs and apply the necessary condition Ψ2
⊕,mrg.

13.6. HANDLING OF THE NON-CANONICAL Ξ⊕ CASE 253

Applying this condition for the pair (∗(inv(ms3), x0),⊕(∗(inv(ms′3), x′0), x′23)) ∈ xy to-
gether with the pair (∗(inv(ms2), x1),⊕(∗(inv(ms′2), x′1),⊖(x′23))) ∈ xy, we obtain the
pair (⊕(∗(inv(ms3), x0),∗(inv(ms2), x1)),⊕(∗(inv(ms′3), x′0),∗(inv(ms′2), x′1))) ∈ xy. After
that, we deduce the pair (⊕(∗(ms2, x0),∗(ms3, x1)),⊕(∗(ms′2, x′0),∗(ms′3, x′1))) ∈ xy with
the help of the condition Ψ2

∗ and/or Ψ2
∗,⊕. Based on syn∗(⊕(m′0,m′),ms′0,⊕(x′0, x′2)),

ms′0 = ms′01 ⊎ ms′2, syn∗(⊕(m′1,⊖(m′)),ms′1,⊕(x′1,⊖(x′3))) and ms′1 = ms′01 ⊎ ms′3, we ob-
tain syn∗(⊕(m′0,m′1),ms′01,⊕(∗(ms′2, x′0),∗(ms′3, x′1))). Furthermore, the equalities m0 =
∗(ms0, x0) and m1 = ∗(ms1, x1), together with the mappings in ℘(ms0,ms′0) and ℘(ms1,ms′1),
permit to deduce ⊕(m0,m1) = ∗(ms01,⊕(∗(ms2, x0),∗(ms3, x1))). Using these structures
of ⊕(m0,m1) and ⊕(m′0,m′1) together with the last derived pair in xy, it is easy to show
Θ∗2(⊕(m0,m1),m′0, xy,kb,kb′), by definition. 2

13.6.4 Mapping by
xy← [using the ⊕-Parts in DY(kb′)

In this section, we describe the lemma employed in the Ξ⊕-case for the proof of the map-

ping by
xy← [, whose application is prepared by the derivation of appropriate ⊕-parts in

DY(kb′). This lemma is applied in the last proof step of the Ξ⊕-case to deduce the mapping

⊕(ms2 ⊎ms3)
xy← [⊕(ms′2 ⊎ms′3) after having obtained the mappings in ℘(ms2,ms′2)⊂

xy↔ and

℘(ms3,ms′3) ⊂
xy← [with the required properties.

LemmaVSE 136 (Mapping of ⊕-Objects by
xy← [):

Let ms = ms2 ⊎ ms3 ⊂ DY(kb) and ms′ = ms′2 ⊎ ms′3 ∈ DY(kb′) satisfy len(ms) > 1,

syn⊕(⊕(ms′),ms′), ℘(ms2,ms′2) ⊂
xy↔ and ℘(ms3,ms′3) ⊂

xy← [. Additionally, let all mappings

m
xy↔ m′ in ℘(ms2,ms′2) fulfill Θ⊕1 (m,kb) or Θ∗2(m,m′, xy,kb,kb′) and all mappings m

xy← [m′
in ℘(ms3,ms′3) fulfill Θ∗2(m,m′, xy,kb,kb′) . Then, we have

Θ⊕2 (ms′,kb′)⇒⊕(ms)
xy← [⊕(ms′).

Proof: The proof of this lemma is by induction on |⊕(ms′)|.
In the base case, we have ms′ = {ci, cj} for atomic messages ci and cj different from ∞.

Then, ℘(ms2,ms′2) and ℘(ms3,ms′3) provide m0
xy↔ ci or m0

xy← [ci and m1
xy↔ ci or m1

xy← [ci and

we prove ⊕(ms)
xy← [⊕(ms′) by the following case distinction:

• If ⊕(ms′) ∈ codom(xy), i.e. (mx,⊕(ci, cj)) ∈ xy, holds, we use Ψ2
⊕ to instantiate mx

with ⊕(m0,m1), i.e. ⊕(ms), and this immediately implies ⊕(ms)
xy← [⊕(ms′).

• Otherwise, the proof of ⊕(ms)
xy← [⊕(ms′) is trivial: Since ⊕(ms) can be decomposed

only to the ⊕-parts ci and cj (modulo commutativity of ⊕), which are mapped to m0

and m1, the definition of
;
rec provides ⊕(m0,m1)

xy← [⊕(ci, cj) .

In the step case, the proof is analog by a similar case distinction. In particular, case
⊕(ms′) ∈ codom(xy) is handled as in the base case with the help of Ψ2

⊕, which is applied
(len(ms)− 1)-times.

In case ⊕(ms′) /∈ codom(xy), we prove ⊕(ms)
xy← [⊕(ms′) by providing the mapped mes-

sages for the available ⊕-parts, ∗-sub-messages and ⊖-sub-message of ⊕(ms′) and then
showing that their composition with ⊕, ∗ and respectively ⊖ yields ⊕(ms).

• Let obj⊕(⊕(ms′),m′0,m′1) and m′0,m′1 ∈ DY(kb′) hold for two arbitrary ⊕-parts of
⊕(ms′). Based on syn⊕(⊕(ms′),ms′) and Θ⊕2 (ms′,kb′), we get a proper partition

254 CHAPTER 13. THE CENTRAL INDISTINGUISHABILITY THEOREM IN TC-AMP

ms′ = ms′0 ⊎ms′1 satisfying m′0 =⊕(ms′0) and m′1 =⊕(ms′1). Furthermore, ℘(ms2,ms′2)
and ℘(ms3,ms′3) are also partitioned into ℘(ms02,ms′02), ℘(ms03,ms′03), ℘(ms12,ms′12)
and ℘(ms13,ms′13) for ms2 = ms02 ⊎ms12 and ms3 = ms03 ⊎ms13. We emphasize that
ms0 = ms02 ⊎ms03, ms′0 = ms′02 ⊎ms′03, ms1 = ms12 ⊎ms13 and ms′1 = ms′12 ⊎ms′13 are
not empty.

If len(ms′0) = 1 or len(ms′1) = 1, we deduce ⊕(ms0)
xy↔m′0 and respectively ⊕(ms1)

xy↔
m′1 using the corresponding sole mapping (in ℘(ms02,ms′02) or ℘(ms03,ms′03) and re-
spectively ℘(ms12,ms′12) or ℘(ms13,ms′13)).

When len(ms′0) > 1 or len(ms′1) > 1, we deduce ⊕(ms0)
xy← [m′0 and respectively

⊕(ms1)
xy← [m′1 by the induction hypothesis.

In the four possible combinations, we show the required equality by

⊕(⊕(ms0),⊕(ms1)) = ⊕(ms0 ⊎ms1) = ⊕(ms).

• Let syn∗(⊕(ms′),m′0,m′1) and m′0,m′1 ∈DY(kb′) hold for two arbitrary ∗-sub-messages
of ⊕(ms′). First, this means that for all m′ ∈ ms′ we have some m′∗ ∈ DY(kb′)
that satisfies syn∗(m′,m′0,m′∗). Then, we use that for every mapping m

xy↔ m′ in
℘(ms2,ms′2) to obtain in both cases, i.e. Θ⊕1 (m,kb) and Θ∗2(m,m′, xy,kb,kb′), the

condition Θ∗2(∗(inv(m0),m),m′∗, xy,kb,kb′) with the (same) mapping m0
xy↔ m′0. We

also use syn∗(m′,m′0,m′∗) for every mapping m
xy← [m′ in ℘(ms3,ms′3) together with

Θ∗2(m,m′, xy,kb,kb′) to deduce the condition Θ∗2(∗(inv(m0),m),m′∗, xy,kb,kb′) with

the (same) mapping m0
xy↔ m′0. This permits to define ms′∗2 = {m′∗ | m′ ∈ ms′2},

ms′∗3 = {m′∗ | m′ ∈ ms′3}, ms′∗ = ms′∗2 ⊎ ms′∗3, ms∗2 = {∗(inv(m0),m) | m ∈ ms2},
ms∗3 = {∗(inv(m0),m) | m ∈ ms3} and ms∗ = ms∗2 ⊎ ms∗3 satisfying m′1 = ⊕(ms′∗)
and ⊕(ms∗) = ∗(inv(m0),⊕(ms)). Thus, we have all we need to apply the induction

hypothesis and get ⊕(ms∗)
xy← [⊕(ms′∗), i.e. ⊕(ms∗)

xy← [m′1. This permits to show the
required equality by ∗(m0,⊕(ms∗)) = ∗(m0,∗(inv(m0),⊕(ms))) = ⊕(ms).

• Let syn⊖(⊕(ms′),m′0) hold for the ⊖-sub-message of ⊕(ms′). First, this means that
for all m′ ∈ ms′ we have some m′⊖ ∈ DY(kb′) that satisfies syn⊖(m′,m′⊖). Then,

we use that for every mapping m
xy↔ m′ in ℘(ms2,ms′2) to obtain in both cases,

i.e. Θ⊕1 (m,kb) and Θ∗2(m,m′, xy,kb,kb′), the condition Θ∗2(⊖(m),m′⊖, xy,kb,kb′). We

also use syn⊖(m′,m′⊖) for every mapping m
xy← [m′ in ℘(ms3,ms′3) together with

Θ∗2(m,m′, xy,kb,kb′) to deduce the condition Θ∗2(⊖(m),m′⊖, xy,kb,kb′). This permits
to define ms′⊖2 = {m′⊖ | m′ ∈ ms′2}, ms′⊖3 = {m′⊖ | m′ ∈ ms′3}, ms′⊖ = ms′⊖2 ⊎ ms′⊖3,
ms⊖2 = {⊖(m) | m ∈ ms2}, ms⊖3 = {⊖(m) | m ∈ ms3} and ms⊖ = ms⊖2 ⊎ms⊖3 satis-
fying m′0 = ⊕(ms′⊖) and ⊕(ms⊖) = ⊖(⊕(ms)). Thus, we have all we need to apply

the induction hypothesis and get⊕(ms⊖)
xy← [⊕(ms′⊖), i.e.⊕(ms⊖)

xy← [m′0. This permits
to show the required equality by ⊖(⊕(ms⊖)) = ⊖(⊖(⊕(ms))) = ⊕(ms). 2

13.7 Proof of the Central Indistinguishability Theorem

The central indistinguishability theorem 108 in TC-AMP is shown the same way as in
Sec. 11.4. In particular, the base case is trivial (see Sec. 11.4.1). The step case is handled
according to the same proof plan as described in Sec. 11.4.2. In the following, we describe
the concrete cases in the TC-AMP algebra.

13.7. PROOF OF THE CENTRAL INDISTINGUISHABILITY THEOREM 255

13.7.1 Handling of the Canonical Cases:

Cases f = f st, f = snd and f = pair are handled as described in Sec. 11.4.2.2. That is, it
remains to replay the same proof plan for cases f = inv, f = h1 and f = h2.

13.7.1.1 objf-Case:

According to the proof plan in Sec. 11.4.2.2.1, the necessary conditions Ψ1
inv, Ψ1

h1
and Ψ1

h2
permit to achieve the proof task in cases f = inv, f = h1 and respectively f = h2 based on
lemma 122.

13.7.1.2 Complementary Case:

According to the proof plan in Sec. 11.4.2.2.2, we just need to consider case f = inv.

Proof Details: In case f = inv, the non-constructor-type application of inv in ml =

inv(m0) is selector-type. It implies objinv(m0,ml) and the structural condition for m0
xy↔ m′0

is expanded in case (m0,m′0) ∈ xy with the help of Ψ1
inv. This permits to obtain an inv-

structure for m′0 and a mapped message to ml that is a pendant of inv(m′0).
The complementary case, i.e. (m0,m′0) /∈ xy, is handled similarly based on the canonical

case for inv-objects in Ξ. 2

13.7.2 Handling the Case for f = ⊖:

In the corresponding proof situation, we have ml = ⊖(m0), m0
xy↔ m′0 and m′l = ⊖(m

′
0), for

ml ,m0 ∈DY(kb) and m′l ,m
′
0 ∈DY(kb′). The proof consists then in providing m′ that satisfies

ml
xy↔ m′ and m′ = m′l , i.e. m′ = ⊖(m′0).

Proof Details: To employ lemma 132, we distinguish two cases:

1. In case m0 = ∞ and ⊖(m0) = ∞, we set m′ = ∞, as ml
xy↔ m′ ensues trivially from

(∞,∞) ∈ xy. We prove the required equality ⊖(m′0) = ∞ using Ψ1
∞:

First, the structural condition for m0
xy↔ m′0, i.e. ∞

xy↔ m′0, reduces to (∞,m′0) ∈ xy,
as Ξ(∞,m′, xy,kb,kb′) does not hold by definition. Then, the application of Ψ1

∞ to
(∞,m′0) ∈ xy yields m′0 = ∞ and thus ⊖(m′0) = ∞.

2. In the complementary case, i.e. m0 ̸= ∞ and ⊖(m0) ̸= ∞, we know that for every
m′0 there exists m′1 satisfying m′0 = ⊖(m′1) and m′1 = ⊖(m′0). This permits to rewrite

m0
xy↔ m′0 to m0

xy↔⊖(m′1) and then to deduce ⊖(m0)
xy↔ m′1 by lemma 132. Hence, we

have all we need to conclude by setting m′ = m′1. 2

13.7.3 Handling the Case for f = ∗:

In the corresponding proof situation, we have ml = ∗(m0,m1), m0
xy↔ m′0, m1

xy↔ m′1 and
m′l = ∗(m

′
0,m′1), for ml ,m0,m1 ∈ DY(kb) and m′l ,m

′
0,m′1 ∈ DY(kb′). The proof consists then

in providing m′ that satisfies ml
xy↔ m′ and m′ = m′l , i.e. m′ = ∗(m′0,m′1). We proceed by a

case distinction, according to the alternative structures of ∗(m0,m1) given by the operations
of ⊖, ∗ and ⊕:

256 CHAPTER 13. THE CENTRAL INDISTINGUISHABILITY THEOREM IN TC-AMP

13.7.3.1 syn∗-Case:

In case syn∗(∗(m0,m1),m0,m1), lemma 122 provides ∗(m0,m1)
xy↔m′, i.e. ml

xy↔m′, for some
m′ ∈ DY(kb′), where (ml ,m′) occurs in xy or it satisfies the Ξ∗- or the Ξ⊕-case. For our
proof, it remains to show m′ = ∗(m′0,m′1).

1. In case (∗(m0,m1),m′) ∈ xy, we use Ψ1
∗ to get m′ = ∗(m′0,m′1), as required.

2. In case Ξ∗(ml ,m′, xy,kb,kb′), we get syn∗(ml ,ms, x), Θ∗1(x,kb), ℘(ms,ms′)⊂ xy↔, x
xy↔ x′

and m′ = ∗(ms′, x′). Using syn∗(ml ,m0,m1), the mappings m0
xy↔ m′0 and m1

xy↔ m′1
together with the structural condition of the latter, we prove ∗(m′0,m′1) = ∗(ms′, x′),
i.e. ∗(m′0,m′1) = m′, in a similar way as in Sec. 13.5.2.1.

3. In case Ξ⊕(ml ,m′, xy,kb,kb′), we get syn⊕(ml ,ms), Θ⊕2 (ms,kb), ℘(ms,ms′) ⊂ xy↔ and

m′ = ⊕(ms′). Using syn∗(ml ,m0,m1), the mappings m0
xy↔ m′0 and m1

xy↔ m′1 together
with their structural conditions, we prove ∗(m′0,m′1) =⊕(ms′, x′), i.e. ∗(m′0,m′1) = m′,
in a similar way as in Sec. 13.6.2.2. 2

13.7.3.2 Complementary Case:

When syn∗(∗(m0,m1),m0,m1) does not hold, we distinguish mainly the following three
cases:

1. In case m1 = ∞ and ∗(m0,m1) = ∞, we set m′ = ∞ and we prove the required equality

∗(m′0,m′1) = ∞ by showing m′1 = ∞: The structural condition for m1
xy↔ m′1 reduces to

(∞,m′1) ∈ xy, because Ξ(∞,m′1, xy,kb,kb′) does not hold. This permits to apply Ψ1
∞

and obtain m′1 = ∞, as required.

2. In case sel∗∗(∗(m0,m1),m0,m1), sel∗⊖(∗(m0,m1),m0,m1) or sel∗⊕(∗(m0,m1),m0,m1), we

have syn∗(m1, inv(m0),m2) with m2 = ∗(m0,m1). lemma 122 provides m2
xy↔ m′2, per-

mitting to set m′ = m′2. It remains to show m′2 = ∗(m′0,m′1), based on the structural

condition for m1
xy↔ m′1, which provides the following three cases:

(a) When (m1,m′1) ∈ xy holds, we first apply condition Ψ1
∗ to obtain that the pairs

(inv(m0),my1), (m2,∗(inv(my1),m′1)) are in xy. Then, we employ a pendant
of lemma 127 to deduce my1 = inv(m′0), (m2,∗(m′0,m′1)) ∈ xy and thus m′2 =
∗(m′0,m′1), as required.

(b) In case Ξ∗(m1,m′1, xy,kb,kb′), we get the structural properties syn∗(m1,ms1, x),

Θ∗1(x,kb), ℘(ms1,ms′1) ⊂
xy↔, x

xy↔ x′ and m′1 = ∗(ms′1, x′). Based on property
syn∗(m1, inv(m0),m2), we obtain ms1 = inv(m0)⊎ms2 and syn∗(m2,ms2, x). Fur-

thermore, it is obvious to show that m0
xy↔ m′0 implies inv(m0)

xy↔ inv(m′0). That

is, we have ms′1 = inv(m′0) ⊎ms′2 with ℘(ms2,ms′2) ⊂
xy↔.

We want to show m′2 = ∗(ms′2, x′), in order to prove the required equality by
∗(m′0,m′1) = ∗(m′0,∗(ms′1, x′)) = ∗(m′0,∗(inv(m′0) ⊎ms′2, x′)) = ∗(ms′2, x′) = m′2.
If ms2 = ∅, we have m2 = x, ms′2 = ∅ and m′2 = x′ = ∗(ms′2, x′), as required.

Otherwise, the structural condition of m2
xy↔ m′2 reduces to two cases:

• When (m2,m′2) ∈ xy, i.e. (∗(ms2, x),m′2) ∈ xy, we use Ψ1
∗ to get m′2 =

∗(ms′2, x′), as required.
• When Ξ∗(m2,m′2, xy,kb,kb′), we use in particular syn∗(m2,ms2, x) to show

m′2 = ∗(ms′2, x′), as required.

13.7. PROOF OF THE CENTRAL INDISTINGUISHABILITY THEOREM 257

(c) In case Ξ⊕(m1,m′1, xy,kb,kb′), we get syn⊕(m1,ms1), len(ms1) > 1, Θ⊕2 (ms1,kb),

℘(ms1,ms′1) ⊂
xy↔ and m′1 = ⊕(ms′1). Based on syn∗(m1, inv(m0),m2), there is

ms2 such that all messages m in ms1 satisfy syn∗(m, inv(m0),m3) for m3 ∈ ms2

and such that syn⊕(m2,ms2) holds. Then, we show (by induction on the

length of ms2, as described in Sec. 13.6.2.2) that there is ℘(ms2,ms′2) ⊂
xy↔ such

that ⊕(ms′1) = ∗(inv(m′0),⊕(ms′2)) and the mappings m
xy↔ m′ in ℘(ms1,ms′1)

with syn∗(m, inv(m0),m3) transfer to mappings m3
xy↔ ∗(m′0,m′) in ℘(ms2,ms′2).

Next, syn⊕(m2,ms2), len(ms2) > 1 and ℘(ms2,ms′2) ⊂
xy↔ permit to obtain the

mapping m2
xy↔ ⊕(ms′2) as described in Sec. 13.6.2.1, case (2). Hence, we

prove the required equality by m′2 = ⊕(ms′2) = ∗(m′0,∗(inv(m′0),⊕(ms′2))) =
∗(m′0,⊕(ms′1)) = ∗(m′0,m′1).

3. In case trs∗⊕(∗(m0,m1),m0,m1), we have obj⊕(∗(m0,m1),m2,m3), syn∗(m2,m0,m4),
syn∗(∗(inv(m0),m3), inv(m0),m3) and obj⊕(m1,m4,∗(inv(m0),m3)). lemma 122 pro-

vides ∗(m0,m1)
xy↔ m′ and it remains to show m′ = ∗(m′0,m′1), based on the structural

condition of this mapping, which provides the following three cases:

(a) When (∗(m0,m1),m′)∈ xy, i.e. (⊕(∗(m0,m4),m3),m′)∈ xy, we employ condition
Ψ1
∗,⊕.

The application of condition Ψ1
∗,⊕ to (⊕(∗(m0,m4),m3),m′) ∈ xy permits to

obtain (m0,my1), (⊕(m4,∗(inv(m0),m3)),∗(inv(my1),m′)) ∈ xy and then to de-
duce my1 = m′0 and m′1 = ∗(inv(m′0),m

′). Using the latter equality, we show
∗(m′0,m′1) = m′, as required.

(b) In the Ξ∗-case, the definition of predicate Ξ∗ provides the structural properties

syn∗(∗(m0,m1),ms,⊕(∗(m0, x1), x2)), ℘(ms,ms′) ⊂ xy↔, ⊕(∗(m0, x1), x2)
xy↔ x′ and

m′ = ∗(ms′, x′). This permits to obtain syn∗(m1,ms,⊕(x1,∗(inv(m0), x2))).

First, we focus on the mappings ⊕(∗(m0, x1), x2)
xy↔ x′ and m0

xy↔ m′0 to deduce

⊕(x1,∗(inv(m0), x2))
xy↔ ∗(inv(m′0), x′). Then, we use the structural condition

for m1
xy↔ m′1 and syn∗(m1,ms,⊕(x1,∗(inv(m0), x2))) to show that m′1 equals

∗(ms′,∗(inv(m′0), x′)). Finally, we prove the required equality by

∗(m′0,m′1) = ∗(m′0,∗(ms′,∗(inv(m′0), x′))) = ∗(ms′, x′) = m′.

(c) In the Ξ⊕-case, the definition of Ξ⊕ provides syn⊕(∗(m0,m1),ms), len(ms) >
1, Θ⊕2 (ms,kb), ℘(ms,ms′) ⊂ xy↔ and m′ = ⊕(ms′). First, we provide a mul-
tiset ms1 such that all messages m in the multiset ms transfer to messages
∗(inv(m0),m) in ms1 and such that syn⊕(m1,ms1) holds. Then, we show (by

induction on the length of ms) that there is ℘(ms1,ms′1)⊂
xy↔ such that ⊕(ms′1) =

∗(inv(m′0),⊕(ms′)) and the mappings m
xy↔ m′ in ℘(ms,ms′) transfer to corre-

sponding mappings ∗(inv(m0),m)
xy↔ ∗(inv(m′0),m

′) in ℘(ms1,ms′1). After that,

syn⊕(m1,ms1), len(ms1)> 1 and ℘(ms1,ms′1)⊂
xy↔ permit to obtain the mapping

m1
xy↔⊕(ms′1) as described in Sec. 13.6.2.1, case (2). Hence, we prove the required

equality by ∗(m′0,m′1) = ∗(m′0,⊕(ms′1)) = ∗(m′0,∗(inv(m′0),⊕(ms′))) =⊕(ms′) =
m′. 2

13.7.4 Handling the Case for f = ⊕:

In the corresponding proof situation, we have ml = ⊕(m0,m1), m0
xy↔ m′0, m1

xy↔ m′1 and
m′l = ⊕(m

′
0,m′1), for ml ,m0,m1 ∈ DY(kb) and m′l ,m

′
0,m′1 ∈ DY(kb′). The proof consists then

258 CHAPTER 13. THE CENTRAL INDISTINGUISHABILITY THEOREM IN TC-AMP

in providing ml
xy↔ m′ and showing m′ = m′l , i.e. m′ = ⊕(m′0,m′1). We proceed by a case

distinction, according to the alternative structures of ⊕(m0,m1) given by the operations of
⊕:

13.7.4.1 obj⊕-Case:

In case obj⊕(⊕(m0,m1),m0,m1), lemma 122 provides ⊕(m0,m1)
xy↔ m′, i.e. ml

xy↔ m′, for
some m′ ∈ DY(kb′), where (ml ,m′) occurs in xy or it satisfies the Ξ⊕-case. For our proof, it
remains to show m′ = ⊕(m′0,m′1).

1. In case (⊕(m0,m1),m′) ∈ xy, we use Ψ1
⊕ to get m′ = ⊕(m′0,m′1), as required.

2. In case Ξ⊕(ml ,m′, xy,kb,kb′), we get syn⊕(ml ,ms), Θ⊕2 (ms,kb), ℘(ms,ms′) ⊂ xy↔ and

m′ = ⊕(ms′). Using obj⊕(ml ,m0,m1), the mappings m0
xy↔ m′0 and m1

xy↔ m′1 together
with their structural conditions, we prove ⊕(m′0,m′1) = ⊕(ms′), i.e. ⊕(m′0,m′1) = m′,
in a similar way as in Sec. 13.6.2.1. 2

13.7.4.2 Complementary Case:

When obj⊕(⊕(m0,m1),m0,m1) does not hold, we apply lemma 122 to obtain ⊕(m0,m1)
xy↔

m′, i.e. ml
xy↔ m′, and prove m′ = ⊕(m′0,m′1) using the following lemma:

LemmaVSE 137 (¬obj⊕(., ., .) and
xy↔):

Let m0,m1 ∈ DY(kb) and m′0,m′1 ∈ DY(kb′) satisfy ¬obj⊕(⊕(m0,m1),m0,m1), m0
xy↔ m′0 and

m1
xy↔ m′1. Then, we have

⊕(m0,m1)
xy↔⊕(m′0,m′1).

Proof: The proof is by induction on |m0|+ |m1|.

Base Case: For |m0| + |m1| = 0 and ¬obj⊕(⊕(m0,m1),m0,m1), we distinguish two
cases:

1. m0 = m1 = ∞: Here, we have ⊕(m0,m1) = ∞ and thus ⊕(m0,m1)
xy↔ ∞. That is, it

remains to prove ⊕(m′0,m′1) = ∞.

Since m0 = m1 = ∞, we have m0
xy↔∞ and m1

xy↔∞, which permits to deduce m′0 = ∞
and m′1 = ∞. This allows us to show ⊕(m′0,m′1) = ∞, as required.

2. W.l.o.g., m0 = ∞ and m1 = ci for ci ∈ At: Here, we have⊕(m0,m1) = ci = m1 and thus

⊕(m0,m1)
xy↔ m′1. That is, it remains to prove ⊕(m′0,m′1) = m′1.

Since m0 = ∞, we have m0
xy↔ ∞, which permits to deduce m′0 = ∞ and then

⊕(m′0,m′1) = ⊕(∞,m′1) = m′1, as required.

Step Case: For |m0|+ |m1| > 0 and ¬obj⊕(⊕(m0,m1),m0,m1), we distinguish mainly
four cases:

1. W.l.o.g., m0 = ∞ and |m1| > 0: Here, we proceed as in (2) from the Base Case.

13.7. PROOF OF THE CENTRAL INDISTINGUISHABILITY THEOREM 259

2. |m0|, |m1| > 0 and m1 = ⊖(m0): Here, we have ⊕(m0,m1) = ∞ and consequently

⊕(m0,m1)
xy↔∞. That is, it remains to prove ⊕(m′0,m′1) = ∞.

Based on the proof in Sec. 13.7.2, we know that m0
xy↔ m′0 implies ⊖(m0)

xy↔ ⊖(m′0).
Furthermore, m1 = ⊖(m0) permits to rewrite m1

xy↔ m′1 to ⊖(m0)
xy↔ m′1. This allows

us to deduce m′1 = ⊖(m′0) and then ⊕(m′0,m′1) = ⊕(m′0,⊖(m′0)) = ∞, as required.

3. W.l.o.g., obj⊕(m1,m2,⊖(m0)): Here, we have ⊕(m0,m1) = m2 and the structural con-

dition of m1
xy↔ m′1 reduces to two cases:

(a) In case (m1,m′1) ∈ xy, i.e. (⊕(m2,⊖(m0)),m′1) ∈ xy, we use condition Ψ1
⊕ to de-

duce (m2,my1), (⊖(m0),⊕(⊖(my1),m′1)) ∈ xy. That is, we have m2
xy↔ my1, i.e.

⊕(m0,m1)
xy↔ my1, and it remains to prove ⊕(m′0,m′1) = my1.

As explained in (2), m0
xy↔ m′0 implies ⊖(m0)

xy↔ ⊖(m′0) and this allows us to
deduce ⊕(⊖(my1),m′1) = ⊖(m′0), then ⊖(my1) = ⊕(⊖(m′0),⊖(m′1)) and finally
my1 = ⊕(m′0,m′1), as required.

(b) In the Ξ⊕-case, the definition of Ξ⊕ provides syn⊕(m1,ms), len(ms) > 1,

Θ⊕2 (ms,kb), ℘(ms,ms′) ⊂ xy↔ and m′1 = ⊕(ms′). Based on obj⊕(m1,m2,⊖(m0))
and m0 ∈ DY(kb), we provide a proper partition ms2 ⊎ ms⊖ = ms such that
syn⊕(m2,ms2) and syn⊕(⊖(m0),ms⊖) hold. This yields equally to a proper par-

tition ms′2 ⊎ ms′⊖ = ms′ such that ℘(ms2,ms′2),℘(ms⊖,ms′⊖) ⊂
xy↔ holds. After

that, syn⊕(m2,ms2) and ℘(ms2,ms′2) ⊂
xy↔ permit to obtain the mapping m2

xy↔
⊕(ms′2) as described in Sec. 13.6.2.1. That is, we have ⊕(m0,m1)

xy↔⊕(ms′2), and
it remains to prove ⊕(m′0,m′1) = ⊕(ms′2).

First, syn⊕(⊖(m0),ms⊖) permits to obtain a non-empty multiset ms0 satisfying
syn⊕(m0,ms0) and m ∈ ms⊖ ⇔ ⊖(m) ∈ ms0. Then, we show (by induction on

the length of ms⊖) that there is ℘(ms0,ms′0)⊂
xy↔ such that⊕(ms′0) =⊖(⊕(ms′⊖))

and the mappings m
xy↔ m′ in ℘(ms⊖,ms′⊖) transfer to corresponding mappings

⊖(m)
xy↔⊖(m′) in ℘(ms0,ms′0). After that, syn⊕(m0,ms0) and ℘(ms0,ms′0) ⊂

xy↔
permit to obtain the mapping m0

xy↔ ⊕(ms′0) as described in Sec. 13.6.2.1. This
allows us to deduce m′0 = ⊕(ms′0) and then to show the required equality by
⊕(m′0,m′1) = ⊕(⊕(ms′0),⊕(ms′)) = ⊕(⊖(⊕(ms′⊖)),⊕(ms′2 ⊎ms′⊖)) = ⊕(ms′2).

4. W.l.o.g., obj⊕(m0,m2,m), obj⊕(m1,m3,⊖(m)) and obj⊕(⊕(m2,m3),m2,m3): Here, we
have ⊕(m0,m1) = ⊕(m2,m3) and we need to proceed by a case distinction (mainly

six cases) induced by combining the structural conditions of m0
xy↔ m′0 and m1

xy↔ m′1:

(a) In case (m0,m′0), (m1,m′1) ∈ xy, i.e. (⊕(m2,m),m′0), (⊕(m1,⊖(m)),m′1) ∈ xy, we
apply condition Ψ1

⊕,mrg to obtain the pair (⊕(m2,m3),⊕(m′0,m′1)) ∈ xy and thus

⊕(m0,m1)
xy↔⊕(m′0,m′1), as required.

(b) In case (m0,m′0) ∈ xy and Ξ∗(m1,m′1, xy,kb,kb′) hold, we want to proceed as in
the proof of lemma 131 (cp. case (2) in the Base Case), to derive the mapping

⊕(m0,m1)
xy↔ ⊕(m′0,m′1) with the help of the following predicate (as a pendant

of Θ∗2):

Θ∗3(mc,m′c, xy,kb,kb′)⇔
(∃msc ⊂ DY(kb), xc ∈ DY(kb),ms′c ⊂ DY(kb′), x′c ∈ DY(kb′) :

syn∗(mc,msc, xc) ∧ ℘(msc,ms′c) ⊂
xy↔∧(xc, x′c) ∈ xy ∧m′c = ∗(ms′c, x′c))

260 CHAPTER 13. THE CENTRAL INDISTINGUISHABILITY THEOREM IN TC-AMP

Based on the properties (m0,m′0) ∈ xy, isObj⊕(m0) and Ξ∗(m1,m′1, xy,kb,kb′), we
trivially have Θ∗3(m0,m′0, xy,kb,kb′) and Θ∗3(m1,m′1, xy,kb,kb′). Then, we use in
particular obj⊕(m0,m2,m) and obj⊕(m1,m3,⊖(m)) to obtain

Θ∗3(⊕(m2,m3),⊕(m′0,m′1), xy,kb,kb′)

with the help of a lemma that is a pendant of lemma 135. Afterwards, we derive

⊕(m2,m3)
xy↔ ⊕(m′0,m′1) and hence ⊕(m0,m1)

xy↔ ⊕(m′0,m′1) with the help of a
lemma that can be shown according to the proof principle of lemma 128.

(c) In case (m0,m′0) ∈ xy and Ξ⊕(m1,m′1, xy,kb,kb′) hold, we have syn⊕(m1,ms),

len(ms) > 1, ℘(ms,ms′) ⊂ xy↔ and m′1 = ⊕(ms′). We consider a proper parti-
tion ms4 ⊎ ms5 = ms and a corresponding proper partition ms′4 ⊎ ms′5 = ms′

such that ℘(ms4,ms′4),℘(ms5,ms′5) ⊂
xy↔ holds. Then, we derive the mappings

⊕(ms4)
xy↔ ⊕(ms′4) and ⊕(ms5)

xy↔ ⊕(ms′5), as described in Sec. 13.6.2.1. After-
wards, obj⊕(⊕(m3,⊖(m)),⊕(ms4),⊕(ms5)) provides the following cases:

• ⊕(ms4) = ⊖(m) and ⊕(ms5) = m3: Focusing on the mappings m0
xy↔

m′0, i.e. ⊕(m2,m)
xy↔ m′0, and ⊕(ms4)

xy↔ ⊕(ms′4), i.e. ⊖(m)
xy↔ ⊕(ms′4),

we have ¬obj⊕(⊕(m0,⊖(m)),m0,⊖(m)) and this permits to apply the in-

duction hypothesis and obtain ⊕(m0,⊖(m))
xy↔ ⊕(m′0,⊕(ms′4)), i.e. m2

xy↔
⊕(m′0,⊕(ms′4)). After that, we use m2

xy↔ ⊕(m′0,⊕(ms′4)) and ⊕(ms5)
xy↔

⊕(ms′5), i.e. m3
xy↔⊕(ms′5), together with obj⊕(⊕(m2,m3),m2,m3), to prove

⊕(m2,m3)
xy↔⊕(⊕(m′0,⊕(ms′4)),⊕(ms′5)), as described in Sec. 13.7.4.1. Since

⊕(⊕(m′0,⊕(ms′4)),⊕(ms′5)) = ⊕(m′0,⊕(ms′)) = ⊕(m′0,m′1),

the latter mapping rewrites to ⊕(m2,m3)
xy↔ ⊕(m′0,m′1), i.e. ⊕(m0,m1)

xy↔
⊕(m′0,m′1), as required.

• obj⊕(⊖(m),⊕(ms4),m5) and obj⊕(⊕(ms5),m3,m5): Here,⊕(m2,m) rewrites
to ⊕(m2,⊖(m5),⊖(⊕(ms4))) and this permits to apply the induction hy-

pothesis for ⊕(m2,m)
xy↔ m′0 and ⊕(ms5)

xy↔⊕(ms′5) and deduce

⊕(m2,⊕(m3,⊖(⊕(ms4))))
xy↔⊕(m′0,⊕(ms′5)).

After that, we use the obtained mapping and ⊕(ms4)
xy↔ ⊕(ms′4) to apply

the induction hypothesis and deduce the following mapping

⊕(⊕(m2,⊕(m3,⊖(⊕(ms4)))),⊕(ms4))
xy↔⊕(⊕(m′0,⊕(ms′5)),⊕(ms′4)),

i.e. ⊕(m2,m3)
xy↔⊕(m′0,m′1), as required.

• obj⊕(⊕(ms4),⊖(m),m3,4) and obj⊕(m3,⊕(ms5),m3,4): Here, we first deduce

⊕(m2,m3,4)
xy↔ ⊕(m′0,⊕(ms′4)) with the help of the induction hypothesis.

Then, we use the obtained mapping together with ⊕(ms5)
xy↔ ⊕(ms′5) to

prove ⊕(⊕(m2,m3,4),⊕(ms5))
xy↔ ⊕(⊕(m′0,⊕(ms′4)),⊕(ms′5)), as described

in Sec. 13.7.4.1. The latter mapping rewrites to ⊕(m2,m3)
xy↔⊕(m′0,m′1), as

required.
• obj⊕(⊕(ms4),m4,m3,4), obj⊕(m3,m3,4,m3,5) and obj⊕(⊕(ms5),m5,m3,5):

Here, we first deduce

⊕(⊕(m2,⊖(m5)),m3,4)
xy↔⊕(m′0,⊕(ms′4))

13.7. PROOF OF THE CENTRAL INDISTINGUISHABILITY THEOREM 261

with the help of the induction hypothesis. Afterwards, we use the obtained

mapping together with ⊕(ms5)
xy↔⊕(ms′5) to get

⊕(⊕(⊕(m2,⊖(m5)),m3,4),⊕(m5,m3,5))
xy↔⊕(⊕(m′0,⊕(ms′4)),⊕(ms′5))

with the help of the induction hypothesis. The latter mapping rewrites to

⊕(m2,m3)
xy↔⊕(m′0,m′1), as required.

(d) In case Ξ∗(m0,m′0, xy,kb,kb′) and Ξ∗(m1,m′1, xy,kb,kb′), the proof is performed
mainly as in (b).

(e) In case Ξ∗(m0,m′0, xy,kb,kb′) and Ξ⊕(m1,m′1, xy,kb,kb′), the proof is performed
mainly as in (c).

(f) In case Ξ⊕(m0,m′0, xy,kb,kb′) and Ξ⊕(m1,m′1, xy,kb,kb′), the proof is performed
mainly as in (c). 2

262 CHAPTER 13. THE CENTRAL INDISTINGUISHABILITY THEOREM IN TC-AMP

Chapter 14

Resistance Proof of TC-AMP

In Chap. 13, we described the proof of the central indistinguishability theorem in the TC-
AMP algebra, identifying the necessary and sufficient conditions. In this chapter, we apply
the proof technique introduced in Chap. 11 to show the resistance of TC-AMP against of-
fline password testing: After the formalization of this property and the definition of the
basis relations (in Sec. 14.1), we present the required regularity properties (in Sec. 14.2),
then we describe the proof of the basis simulation relation lemma (in Sec. 14.3). Finally,
we show (in Sec. 14.4) the proof obligations resulting from the conditions of the central
indistinguishability theorem 108, which are identified in Chap. 13.

14.1 Formalization and Basis Relations

The resistance of TC-AMP against offline password testing is formalized by a simple adap-
tation of PACE’s property 105. As described in Sec. 11.1, we need just to adapt the set
of traces (TCAMP instead of PACE) and the regular messages with an occurrence of a pro-
tected password π. In case of TC-AMP, a protected password π occurs in a first or a second
TC-AMP message. Thus, we obtain the following formalization of the resistance property:

PropertyVSE 138 (Resistance against Offline Password Guessing; TC-AMP):

(tr ∈ TCAMP ∧ π ̸∈ DY(spies(tr)) ∧ (∀m ∈ spies(tr) : ¬uses(m,π′)) ∧
((∃g1, g2,nc1 : ⊕(∗(nc1, g1),⊖(∗(π, g2))) ∈ spies(tr)) ∨
(∃g1,nc2,m2,2 : pair(∗(nc2,∗(π, g1)),m2,2) ∈ spies(tr))))
⇒
∀i, j : DY(π.spies(tr), i) = DY(π.spies(tr), j)⇔

DY(π′.spies(tr), i) = DY(π′.spies(tr), j)

According to the proof plan in Sec. 11.1, the first proof task consists in identifying the
contents of the sets xy that are used as basis relations. These sets are defined relative to ik
and to the parameters π,π′. As described in Sec. 11.1.1.2, we define the sets xy to be the
smallest sets of message pairs that satisfy the (protocol- and property-specific) inclusion
rules Φ0–Φ8, below. With these rules, we aim at basis relations xy that satisfy in particular
Ψc and Ψa.

Φ0 If (m,m′) ∈ xy and m or m′ is a ⊖-, ∗- or a ⊕-object, then xy includes (⊖(m),⊖(m′))

263

264 CHAPTER 14. RESISTANCE PROOF OF TC-AMP

Φ1 If there is g1, g2 and nc1 with ⊕(∗(nc1, g1),⊖(∗(π, g2))) ∈ ik or there is g1, nc2 and m2
with pair(∗(nc2,∗(π, g1)),m2) ∈ ik, then xy includes (π,π′) and (∞,∞).

Φ2 If there exists a password pw(i) and two numerical atomic messages num(j) and
num(k) with pair(ag(i), pair(pw(i), pair(num(j),num(k)))) ∈ ik holds, then xy in-
cludes (ag(i), ag(i)).

If there is ag(j) and pw(j) with pair(ag(j), pair(pw(j), (pair(num(i),num(k))))) ∈ ik
or there is pw(j) with pair(pw(j), (pair(num(i),num(k)))) ∈ ik, then xy includes
(num(i),num(i)) and (num(k),num(k)).

If there is ag(i), num(j) and num(k) with
pair(ag(i), pair(pw(i), pair(num(j),num(k)))) ∈ ik or there is num(j) and num(k)
with pair(pw(i), pair(num(j),num(k))) ∈ ik, then xy includes (pw(i), pw(i)).

Φ3 If nc(i) ∈ ik, then xy includes (nc(i),nc(i)).

Φ4 % regular msg1-1: --> (4.1)

If ⊕(∗(nc1, g1),⊖(∗(pw, g2))) ∈ ik with nc1 /∈ DY(ik) and pw, g2 ∈ DY(ik), then xy
includes (∗(nc1, g1),∗(nc1, g1)).

% regular msg1-2: --> (4.2)

If ⊕(∗(nc1, g1),⊖(∗(pw, g2))) ∈ ik with nc1, pw /∈ DY(ik), then xy includes
(⊕(∗(nc1, g1),⊖(∗(pw, g2))),⊕(∗(nc1, g1),⊖(∗(pw, g2)))).

% regular msg1-3: (4.2) & pi [*,plu]--> (pi,pi’) & (4.3)

If ⊕(∗(nc1, g1),⊖(∗(π, g2))) ∈ ik, then xy includes
(⊕(∗(inv(π),∗(nc1, g1)),⊖(g2)),⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(π, g2)))))
and (inv(π), inv(π′)).

% regular msg1-4: (4.2) & mns(*(pi,g2)) [plu]--> (4.6) & (4.8)

If ⊕(∗(nc1, g1),⊖(∗(π, g2))) ∈ ik with g2 ∈ DY(ik), then xy includes (⊖(g2),⊖(g2)),
(⊖(∗(π, g2)),⊖(∗(π′, g2))),
(∗(inv(π),∗(nc1, g1)),⊕(⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(π, g2)))), g2))
and (∗(nc1, g1),⊕(⊕(∗(nc1, g1),⊖(∗(π, g2))),∗(π′, g2))).

Φ5 % regular msg2-1:

If pair(∗(pw,∗(nc2, g1)), h1(m1,∗(pw,∗(nc2, g1)),m3)) ∈ ik with nc2 /∈ DY(ik) and
pw ∈ DY(ik), then xy includes (∗(nc2, g1),∗(nc2, g1)).

% regular msg2-2:

If pair(∗(pw,∗(nc2, g1)), h1(m1,∗(pw,∗(nc2, g1)),m3)) ∈ ik such that nc2, pw /∈ DY(ik)
holds, then xy includes (∗(pw,∗(nc2, g1)),∗(pw,∗(nc2, g1))).

% regular msg2-3:

If pair(∗(pw,∗(nc2, g1)), h1(m1,∗(pw,∗(nc2, g1)),m3)) ∈ ik with m3 /∈ DY(ik), then xy
includes (h1(m1,∗(pw,∗(nc2, g1)),m3), h1(m1,∗(pw,∗(nc2, g1)),m3)).

% regular msg2-4:

If we have a message pair(∗(π,∗(nc2, g1)), h1(m1,∗(π,∗(nc2, g1)),m3)) ∈ ik, then xy
includes (∗(nc2, g1),∗(inv(π′),∗(π,∗(nc2, g1)))) and (inv(π), inv(π′)).

Φ6 % regular msg3:

If we have a third TC-AMP message h2(m1,m2,m3) ∈ ik such that m3 /∈ DY(ik) holds,
then xy includes (h2(m1,m2,m3), h2(m1,m2,m3)).

Φ7 % regular oops-1: --> (7.1)

If we have the oops message ⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[g2, pw], g1))) ∈ ik such
that m[g2, pw] =⊕(∗(nc1, g1),⊖(∗(pw, g2))), nc1,nc2 /∈DY(ik) and pw∈DY(ik) hold,
then xy includes (∗(nc2,∗(nc1, g1)),∗(nc2,∗(nc1, g1))).

14.1. FORMALIZATION AND BASIS RELATIONS 265

% regular oops-2: --> (7.2),(7.3),(7.4)

If we have the oops message ⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[g2, pw], g1))) ∈ ik such
that m[g2, pw] = ⊕(∗(nc1, g1),⊖(∗(pw, g2))) and nc1,nc2, pw /∈ DY(ik) hold, then xy
includes
(inv(m[g2, pw]), inv(m[g2, pw])),
(⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[g2, pw], g1))),
⊕ (∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[g2, pw], g1)))) and

(⊕(∗(inv(m[g2, pw]),∗(nc2,∗(nc1, g1))),∗(nc2, g1)),
⊕ (∗(inv(m[g2, pw]),∗(nc2,∗(nc1, g1))),∗(nc2, g1))).

% regular oops-3:

% (7.3) & plu-part2 [plu]--> (7.5) & (7.6)

% (7.6) & inv(pi’) [*]--> (inv(pi),inv(pi’)) & (7.7)

% (7.5) & m[pi] [*,plu]--> (m[pi],m[pi]) & (7.8)

% (7.5) & inv(pi’) [*,plu]--> (inv(pi),inv(pi’)) & (7.9)

% (7.8) & inv(pi’) [*,plu]--> (inv(pi),inv(pi’)) & (7.10)

% (7.9) & plu-part [plu]--> (7.7) & (7.11)

% (7.10) & plu-part [plu]--> (reg-msg2) & (7.12)

If we have the oops message ⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[g2,π], g1))) ∈ ik with
m[g2,π] = ⊕(∗(nc1, g1),⊖(∗(π, g2))), then xy includes
(∗(nc2,∗(nc1, g1)),⊕(⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[g2,π], g1))),
⊖ (∗(m[g2,π],∗(inv(π′),∗(π,∗(nc2, g1))))))),

(∗(m[g2,π],∗(nc2, g1)),∗(m[g2,π],∗(inv(π′),∗(π,∗(nc2, g1))))),
% % % %

(∗(m[g2,π],∗(π,∗(nc2, g1))),∗(m[g2,π],∗(π,∗(nc2, g1)))),
% % % %

(∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1))),
⊕ (⊕(∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1))),∗(nc2, g1)),
⊖ (∗(inv(π′),∗(π,∗(nc2, g1)))))),

% % % %

(∗(π,∗(nc2,∗(nc1, g1))),⊕(⊕(∗(π′,∗(nc2,∗(nc1, g1))),∗(π′,∗(nc2,∗(m[g2,π], g1)))),
⊖ (∗(m[g2,π],∗(π,∗(nc2, g1)))))),

% % % %

(∗(π,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),
⊕ (⊕(∗(π′,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),∗(π′,∗(nc2, g1))),
⊖ (∗(π,∗(nc2, g1))))),

% % % %

(⊕(∗(π,∗(nc2,∗(nc1, g1))),∗(m[g2,π],∗(π,∗(nc2, g1)))),
⊕ (∗(π′,∗(nc2,∗(nc1, g1))),∗(π′,∗(nc2,∗(m[g2,π], g1))))) and

% % % %

(⊕(∗(π,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),∗(π,∗(nc2, g1)))
⊕ (∗(π′,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),∗(π′,∗(nc2, g1)))).

Φ8 % merge-1: --> (8.1)

If we have ⊕(∗(nc1, g1),⊖(∗(pw, g2))),⊕(∗(nc3, g1),⊖(∗(pw, g2))) ∈ ik such that
nc1 ̸= nc3, nc1,nc3, pw /∈ DY(ik) hold, then xy includes
(⊕(∗(nc1, g1),⊖(∗(nc3, g1))),⊕(∗(nc1, g1),⊖(∗(nc3, g1)))).

% merge-2: --> (8.2)

If ⊕(∗(nc1, g1),⊖(∗(π, g2))),⊕(∗(nc3, g1),⊖(∗(π, g2))) ∈ ik with nc1,nc3 /∈ DY(ik)
and nc1 ̸= nc3, then xy includes
(⊕(∗(inv(π),∗(nc1, g1)),⊖(∗(inv(π),∗(nc3, g1)))),
⊕ (∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(nc3, g1))))).

The inclusion rule Φ0 is used to fulfill Ψ1
⊖, Ψ2

⊖, Ψ1
⊖,⊕, Ψ2

⊖,⊕, Ψ1
⊖,∗ and Ψ2

⊖,∗.

266 CHAPTER 14. RESISTANCE PROOF OF TC-AMP

According to Φ1, the presence of a first or a second TC-AMP message with an occur-
rence of π necessitates to include the pair (π,π′) together with the pair (∞,∞), which
permits to fulfill Ψ1

∞ and Ψ2
∞.

Φ2 states when pairs (ci, ci) are included for public atomic messages ci. Φ3 is similar
but focuses on the public nonces.

Φ4 covers the pairs that can be included when a first TC-AMP message is generated
by a non-compromised agent (excluding derivations by merging). The following cases are
distinguished:

• msg1-1: The sender has used a compromised password pw, which is accessible to-
gether with g2 and g1.

• msg1-2: The sender has used a non-compromised password pw, which could equal
π.

• msg1-3: msg1-2 yields to a pair that includes a ⊕-object with π as a public left ∗-part.

• msg1-4: msg1-2 yields to a pair that includes a ⊕-object with ⊖(∗(π, g2)) as a public
⊕-part, if g2 is public.

Φ5 covers the pairs that can be included when a second TC-AMP message is generated
by a non-compromised agent. The following cases are distinguished:

• msg2-1: The sender has used a compromised password pw.

• msg2-2: The sender has used a non-compromised password pw, which could equal
π.

• msg2-3: The third h1-part in the second message part is not public.

• msg2-4: msg2-2 yields to a pair that includes a ∗-object with π as a public left ∗-part.

According to Φ6, corresponding pairs are included when the third h2-part in the third
TC-AMP message is not public.

Φ7 covers the pairs that can be included in the oops case of TC-AMP where the nonces
are protected. The following cases are distinguished:

• oops-1: The password pw is public.

• oops-2: The password pw is not compromised and could equal π.

• oops-3: Eight further pairs are included because of the following reasons:

– (7-5), (7-6): oops-2 yields to a pair that includes some ⊕-object possessing
the ∗-object ∗(m[g2,π],∗(nc2, g1)) as a public ⊕-part.

– (7-7): The pair (7-6) includes a ∗-object with inv(π′) as a public left ∗-part.

– (7-8): The pair (7-5) includes a ⊕-object with m[g2,π] as a public left ∗-part.

– (7-9): The pair (7-5) includes a ⊕-object with inv(π′) as a public left ∗-part.

– (7-10): The pair (7-8) includes a ⊕-object with inv(π′) as a public left ∗-part.

– (7-11): The pair (7-9) includes a ⊕-object with ∗(m[g2,π],∗(π,∗(nc2, g1))) as
a public ⊕-part.

– (7-12): The pair (7-10) includes a⊕-object with⊖(∗(π,∗(nc2, g1))) as a public
⊕-part.

Φ8 covers the pairs that can be included because of merging derivations. The following
cases are distinguished:

14.2. EMPLOYED REGULARITY PROPERTIES 267

• merge-1: First messages generated using a non-compromised password pw are sub-
ject to merging because of the ⊕-part ∗(pw, g2).

• mserge-2: First messages generated using π yield to pairs with ⊕-objects extended
with inv(π) and respectively inv(π′) that are subject to merging because of the⊕-part
g2 (and other common ⊕-parts).

In the following, we use Φ(xy, ik,π,π′) to abbreviate the definition of xy being the
smallest set that satisfies the inclusion rules Φ0–Φ8.

14.2 Employed Regularity Properties

We formalize the required regularity properties and explain how they are shown by trace
induction.

14.2.1 Derivable Atomic Messages

In this section, we provide the employed regularity properties about the derivable atomic
messages.

PropertyVSE 139 (Derivable Atomic Messages):

1. (tr ∈ TCAMP ∧ ag(i) ∈ DY(pw(k).spies(tr)))⇒
(∃j, j′ : pair(ag(i), pair(pw(i), pair(num(j),num(j′)))) ∈ spies(tr))

2. (tr ∈ TCAMP ∧ num(i) ∈ DY(pw(k).spies(tr)))⇒
(∃j, j′ : pair(ag(j), pair(pw(j), pair(num(i),num(j′)))) ∈ spies(tr) ∨

pair(ag(j), pair(pw(j), pair(num(j′),num(i)))) ∈ spies(tr) ∨
pair(pw(j), pair(num(i),num(j′))) ∈ spies(tr) ∨
pair(pw(j), pair(num(j′),num(i))) ∈ spies(tr))

3. (tr ∈ TCAMP ∧ pw(i) ∈ DY(pw(k).spies(tr)))⇒
(pw(k) = pw(i) ∨
(∃j, j′ : (pair(ag(i), pair(pw(i), pair(num(j),num(j′)))) ∈ spies(tr) ∨

pair(pw(i), pair(num(j),num(j′))) ∈ spies(tr))

4. (tr ∈ TCAMP ∧ nc(i) ∈ DY(pw(k).spies(tr)))⇒ nc(i) ∈ spies(tr)

Properties 1–4 are shown similar to properties 1–3 in Sec. 12.2.1.

14.2.2 Derivable ∗-Messages

In this section, we describe the employed regularity property about the derivable syn∗-
messages that are not ⊕-objects (simple syn∗-messages). Simple syn∗-messages having
only confidential ∗-sub-messages are linked to regular TC-AMP messages, where the dif-
ferent cases are distinguished with the help of the following predicates:

268 CHAPTER 14. RESISTANCE PROOF OF TC-AMP

1. TCAMP 3msg1,1 and TCAMP msg1,1 link a simple syn∗-message to a first TC-AMP
message:

TCAMP 3msg1,1(m, ik, pw(i))⇔
(∃nc1, g1, g2, pw(j) : ⊕(∗(nc1, g1),⊖(∗(pw(j), g2))) ∈ ik ∧ nc1 /∈ DY(pw(i).ik) ∧

pw(j), g2 ∈ DY(pw(i).ik) ∧ (m = ∗(nc1, g1) ∨m = ⊖(∗(nc1, g1))))

TCAMP msg1,1(m, ik)⇔
(∃nc1, g1, g2, pw(j) : ⊕(∗(nc1, g1),⊖(∗(pw(j), g2))) ∈ ik ∧ nc1 /∈ DY(ik) ∧

pw(j), g2 ∈ DY(ik) ∧ (m = ∗(nc1, g1) ∨m = ⊖(∗(nc1, g1)))).

2. TCAMP 3msg2,1 and TCAMP msg2,1 link a simple syn∗-message to a second TC-AMP
message:

TCAMP 3msg2,1(m, ik, pw(i))⇔
(∃nc2, g1, pw(j),m1 : pair(∗(nc2,∗(pw(j), g1)),m1) ∈ ik ∧ nc2 /∈ DY(pw(i).ik) ∧

((pw(j) ∈ DY(pw(i).ik) ∧ (m = ∗(nc2, g1) ∨m = ⊖(∗(nc2, g1)))) ∨
(pw(j) /∈ DY(pw(i).ik) ∧ (m = ∗(nc2,∗(pw(j), g1)) ∨m = ⊖(∗(nc2,∗(pw(j), g1)))))))

TCAMP msg2,1(m, ik)⇔
(∃nc2, g1, pw(j),m1 : pair(∗(nc2,∗(pw(j), g1)),m1) ∈ ik ∧ nc2 /∈ DY(ik) ∧

((pw(j) ∈ DY(ik) ∧ (m = ∗(nc2, g1) ∨m = ⊖(∗(nc2, g1)))) ∨
(pw(j) /∈ DY(ik) ∧ (m = ∗(nc2,∗(pw(j), g1)) ∨m = ⊖(∗(nc2,∗(pw(j), g1))))))).

3. TCAMP 3oops1 and TCAMP oops1 link a simple syn∗-message to a lost session key of
some TC-AMP run:

TCAMP 3oops1(m, ik, pw(i))⇔
(∃nc2,nc1, g1, g2, pw(j) : nc1,nc2 /∈ DY(pw(i).ik) ∧ pw(j) ∈ DY(pw(i).ik) ∧
⊕ (∗(nc2,∗(nc1, g1)),∗(nc2,∗(⊕(∗(nc1, g1),⊖(∗(pw(j), g2))), g1))) ∈ ik ∧
(m = ∗(nc2,∗(nc1, g1)) ∨m = ⊖(∗(nc2,∗(nc1, g1)))))

TCAMP oops1(m, ik)⇔
(∃nc2,nc1, g1, g2, pw(j) : nc1,nc2 /∈ DY(ik) ∧ pw(j) ∈ DY(ik) ∧
⊕ (∗(nc2,∗(nc1, g1)),∗(nc2,∗(⊕(∗(nc1, g1),⊖(∗(pw(j), g2))), g1))) ∈ ik ∧
(m = ∗(nc2,∗(nc1, g1)) ∨m = ⊖(∗(nc2,∗(nc1, g1))))).

In contrast to TCAMP msg1,1, TCAMP msg2,1 and TCAMP oops1, where the derivabil-
ity is defined relative to the immediately observable messages ik only, the derivability in
TCAMP 3msg1,1, TCAMP 3msg2,1 and TCAMP 3oops1 is defined relative to ik extended with
some password as needed for the resistance proof.

Using the above predicates, we obtain the following regularity properties:

PropertyVSE 140 (Derivable ∗-Messages):

1. (tr ∈ TCAMP ∧ isSyn∗(m) ∧ ¬isObj⊕(m) ∧m ∈ DY(pw(i).spies(tr)))⇒
((∃m1,m2 : syn∗(m,m1,m2) ∧m1 ∈ DY(pw(i).spies(tr))) ∨
TCAMP 3msg1,1(m, spies(tr), pw(i)) ∨ TCAMP 3msg2,1(m, spies(tr), pw(i)) ∨
TCAMP 3oops1(m, spies(tr), pw(i)))

14.2. EMPLOYED REGULARITY PROPERTIES 269

2. (tr ∈ TCAMP ∧ isSyn∗(m) ∧ ¬isObj⊕(m) ∧m ∈ DY(spies(tr)))⇒
((∃m1,m2 : syn∗(m,m1,m2) ∧m1 ∈ DY(spies(tr))) ∨
TCAMP msg1,1(m, spies(tr)) ∨ TCAMP msg2,1(m, spies(tr)) ∨
TCAMP oops1(m, spies(tr)))

The proof of both regularity properties is similar. It is by contradiction, as described in
the following for property 140-(1): Using the corresponding negated conclusion, we aim at
a refutation of the assumption m ∈ DY(pw(i).spies(tr)).

The assumed negated conclusion provides:

1. ∀m1,m2 : syn∗(m,m1,m2)⇒ m1 /∈ DY(pw(i).ik)
2. For all messages ⊕(∗(nc1, g1),⊖(∗(pw(j), g2))) ∈ ik with nc1 /∈ DY(pw(i).ik) and

with pw(j), g2 ∈ DY(pw(i).ik), we have m ̸= ∗(nc1, g1) and m ̸= ⊖(∗(nc1, g1)).

3. For all pair(∗(nc2,∗(pw(j), g1)),m1) ∈ ik where nc2 is not in DY(pw(i).ik) and pw(j)
in DY(pw(i).ik), we have m ̸= ∗(nc2, g1) and m ̸= ⊖(∗(nc2, g1)).

4. For all pair(∗(nc2,∗(pw(j), g1)),m1) ∈ ik with nc2, pw(j) /∈ DY(pw(i).ik), we have
m ̸= ∗(nc2,∗(pw(j), g1)) and m ̸= ⊖(∗(nc2,∗(pw(j), g1))).

5. For all

⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(⊕(∗(nc1, g1),⊖(∗(pw(j), g2))), g1))) ∈ ik

such that nc2,nc1 /∈ DY(pw(i).ik) and pw(j) ∈ DY(pw(i).ik) hold, we have m ̸=
∗(nc2,∗(nc1, g1)) and m ̸= ⊖(∗(nc2,∗(nc1, g1))).

To simplify matters, we focus w.l.o.g. on the case where m is a ∗-object. In case m is a
⊖-object with a ∗-object as a ⊖-part, m ∈ DY(pw(i).ik) yields ⊖(m) ∈ DY(pw(i).ik) with
⊖(m) is a ∗-object.

For a ∗-object m, the above assumptions are simplified to:

1. ∀m1,m2 : obj∗(m,m1,m2)⇒ m1 /∈ DY(pw(i).ik)
2. For all messages ⊕(∗(nc1, g1),⊖(∗(pw(j), g2))) ∈ ik with nc1 /∈ DY(pw(i).ik) and

with pw(j), g2 ∈ DY(pw(i).ik), we have m ̸= ∗(nc1, g1).

3. For all pair(∗(nc2,∗(pw(j), g1)),m1) ∈ ik where nc2 is not in DY(pw(i).ik) and pw(j)
in DY(pw(i).ik), we have m ̸= ∗(nc2, g1).

4. For all pair(∗(nc2,∗(pw(j), g1)),m1) ∈ ik with nc2, pw(j) /∈ DY(pw(i).ik), we have
m ̸= ∗(nc2,∗(pw(j), g1)).

5. For all

⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(⊕(∗(nc1, g1),⊖(∗(pw(j), g2))), g1))) ∈ ik

such that nc2,nc1 /∈ DY(pw(i).ik) and pw(j) ∈ DY(pw(i).ik) hold, we have m ̸=
∗(nc2,∗(nc1, g1)).

The above assumptions (1), (2) and m ∈ DY(pw(i).ik) allow us to deduce for all
⊕(∗(nc1, g1),⊖(∗(pw(j), g2))) ∈ ik that m differs from ∗(nc1, g1) and ∗(pw(j), g2):

• In case this first TC-AMP message is sent by a compromised agent, nc1 and pw(j)
belong to DY(ik). If m were equal ∗(nc1, g1) or ∗(pw(j), g2), assumption (1) would be
refuted.

270 CHAPTER 14. RESISTANCE PROOF OF TC-AMP

• Otherwise, we have nc1 /∈ DY(pw(i).ik) according to the basic confidentiality prop-
erty 90-(3). In case pw(j) ∈ DY(pw(i).ik), the equality m = ∗(pw(j), g2) permits
to refute assumption (1). Regarding m ̸= ∗(nc1, g1), we distinguish two cases: If
g2 ∈ DY(pw(i).ik) holds, m ̸= ∗(nc1, g1) follows from assumption (2). Otherwise,
g2 /∈ DY(pw(i).ik) can be used to prove ∗(nc1, g1),nc1, g2 /∈ DY(pw(i).ik) in a similar
way as it is done for the basic confidentiality property 90-(1). That is, the equality
m = ∗(nc1, g1) permits to refute m ∈ DY(pw(i).ik).

The above assumptions (1), (3), (4) and m ∈ DY(pw(i).ik) allow us to deduce for all
pair(∗(nc2,∗(pw(j), g1)),m1) ∈ ik that m differs from ∗(nc2,∗(pw(j), g1)), ∗(nc2, g1) and
∗(pw(j), g1):

• In case this second TC-AMP message is sent by a compromised agent, nc2 and pw(j)
belong to DY(ik). If m were equal ∗(nc2,∗(pw(j), g1)), ∗(nc2, g1) or ∗(pw(j), g1), as-
sumption (1) would be refuted.

• Otherwise, we have nc2 /∈ DY(pw(i).ik) according to the basic confidentiality prop-
erty 90-(4). In case pw(j) is in DY(pw(i).ik), the equalities m = ∗(nc2,∗(pw(j), g1))
and m = ∗(pw(j), g1) permit to refute assumption (1). The negation of the equality
m = ∗(nc2, g1) follows from assumption (3). In case pw(j) /∈ DY(pw(i).ik), we prove
∗(nc2, g1),∗(pw(j), g1),nc2, pw(j) /∈ DY(pw(i).ik) in a similar way as it is done for
the basic confidentiality property 90-(2). That is, the equalities m = ∗(nc2, g1) and
m = ∗(pw(j), g1) permit to refute m ∈ DY(pw(i).ik). The negation of the equality
m = ∗(nc2,∗(pw(j), g1)) follows from assumption (4).

The above assumptions (1)–(5) and m ∈ DY(pw(i).ik) allow us to deduce for all
⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(⊕(∗(nc1, g1),⊖(∗(pw(j), g2))), g1))) ∈ ik that m differs from
∗(nc2,∗(nc1, g1)), ∗(nc2, g1), ∗(nc1, g1) and ∗(nc2,∗(⊕(∗(nc1, g1),⊖(∗(pw(j), g2))), g1)):

• In the oops-case of TC-AMP, ∗(nc1, g1) occurs in a first TC-AMP message and
∗(nc2, g1) in a second TC-AMP message. That is, we can derive m ̸= ∗(nc1, g1),
nc1,nc2 /∈ DY(pw(i).ik), and m ̸= ∗(nc2, g1) as explained above.

• If the password pw(j) belongs to DY(pw(i).ik), the negation of m = ∗(nc2,∗(nc1, g1))
follows from assumption (5). Otherwise, pw(j) /∈ DY(pw(i).ik) allows us to prove
∗(nc2,∗(nc1, g1)),∗(nc2, g1),∗(nc1, g1),∗(pw(j), g1),nc2,nc1, pw(j) /∈ DY(pw(i).ik) in
a similar way as it is done for the basic confidentiality property 90-(2). That is, the
equality m = ∗(nc2,∗(nc1, g1)) permits to refute m ∈ DY(pw(i).ik).

• The equality m = ∗(nc2,∗(⊕(∗(nc1, g1),⊖(∗(pw(i), g2))), g1)) permits to refute as-
sumption (1), as ∗(⊕(∗(nc1, g1),⊖(∗(pw(i), g2))) is in ik.

Recapitulating, the above derived dis-equalities of m allow us to refute the assumption
m ∈ DY(pw(i).spies(tr)) employing the following property together with the correctness
theorem 56:

(tr ∈ TCAMP ∧ isObj∗(m) ∧
(∀m1,m2 : obj∗(m,m1,m2)⇒ m1 /∈ DY(pw(i).spies(tr))) ∧
(∀nc1, pw(j), g1, g2 : ⊕(∗(nc1, g1),⊖(∗(pw(j), g2))) ∈ spies(tr)⇒

(m ̸= ∗(pw(j), g2) ∧m ̸= ∗(nc1, g1))) ∧
(∀nc2, pw(j), g1,m1 : pair(∗(nc2,∗(pw(j), g1)),m1) ∈ spies(tr)⇒

(m ̸= ∗(nc2,∗(pw(j), g1)) ∧m ̸= ∗(nc2, g1) ∧m ̸= ∗(pw(j), g1))) ∧
(∀nc2,nc1, g1, g2, pw(j) :
⊕ (∗(nc2,∗(nc1, g1)),∗(nc2,∗(⊕(∗(nc1, g1),⊖(∗(pw(j), g2))), g1))) ∈ spies(tr)
⇒ (m ̸= ∗(nc2,∗(nc1, g1)) ∧m ̸= ∗(nc2,∗(⊕(∗(nc1, g1),⊖(∗(pw(j), g2))), g1)))))

⇒ (pw(i).spies(tr)) ∩ ccl2(m) = ∅

14.2. EMPLOYED REGULARITY PROPERTIES 271

14.2.3 Derivable ⊕-Messages

In this section, we describe the employed regularity property about the derivable⊕-objects.
The⊕-objects with confidential⊕-parts are linked to regular TC-AMP messages, where

the different cases are distinguished with the help of dedicated predicates. We use
TCAMP msg1, TCAMP oops and TCAMP mrg, defined in Sec. 9.5.1, when the derivability
is defined relative to immediately observable messages ik only. For the regularity property
where derivability is defined relative to ik extended with some password, we use the fol-
lowing predicates. We require that the password pw(i) added to ik either does not occur in
DY(ik) or within any message in ik, to avoid the handling of cases that are obsolete due to
the Ω assumption of the resistance property.

1. TCAMP 3msg1 links a ⊕-object to a first TC-AMP message:

TCAMP 3msg1(m, ik, pw(i))⇔
((∃nc1, g1, g2 : ⊕(∗(nc1, g1),⊖(∗(pw(i), g2))) ∈ ik ∧

nc1, g2 /∈ DY(pw(i).ik) ∧
(m = ⊕(∗(nc1, g1),⊖(∗(pw(i), g2))) ∨m = ⊕(∗(inv(pw(i)),∗(nc1, g1)),⊖(g2)) ∨
m = ⊕(⊖(∗(nc1, g1)),∗(pw(i), g2)) ∨m = ⊕(⊖(∗(inv(pw(i))),∗(nc1, g1)), g2))) ∨

(∃nc1, pw(j), g1, g2 : ⊕(∗(nc1, g1),⊖(∗(pw(j), g2))) ∈ ik ∧ nc1, pw(j) /∈ DY(pw(i).ik) ∧
(m = ⊕(∗(nc1, g1),⊖(∗(pw(j), g2))) ∨m = ⊕(⊖(∗(nc1, g1)),∗(pw(j), g2))))).

2. TCAMP 3mrg links a ⊕-object to two merged first TC-AMP messages:

TCAMP 3mrg(m, ik, pw(i))⇔
(∃nc1,nc3, g1, g2, pw(j) : nc1 ̸= nc3 ∧ nc1,nc3 /∈ DY(pw(i).ik) ∧
⊕ (∗(nc1, g1),⊖(∗(pw(j), g2))),⊕(∗(nc3, g1),⊖(∗(pw(j), g2))) ∈ ik ∧
((pw(j) = pw(i) ∧ g2 /∈ DY(pw(i).ik)) ∨ pw(j) /∈ DY(pw(i).ik)) ∧
m = ⊕(∗(nc1, g1),⊖(∗(nc3, g1)))).

3. TCAMP 3oops links a ⊕-object to a lost session key of some TC-AMP run:

TCAMP 3oops(m, ik, pw(i))⇔
(∃nc2,nc1, g1, g2, pw(j) : nc1,nc2 /∈ DY(pw(i).ik) ∧ pw(j) /∈ DY(pw(i).ik) ∧
⊕ (∗(nc2,∗(nc1, g1)),∗(nc2,∗(⊕(∗(nc1, g1),⊖(∗(pw(j), g2))), g1))) ∈ ik ∧
(m = ⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(⊕(∗(nc1, g1),⊖(∗(pw(j), g2))), g1))) ∨
m = ⊕(∗(inv(⊕(∗(nc1, g1),⊖(∗(pw(j), g2)))),∗(nc2,∗(nc1, g1))),∗(nc2, g1)) ∨
m = ⊕(⊖(∗(nc2,∗(nc1, g1))),⊖(∗(nc2,∗(⊕(∗(nc1, g1),⊖(∗(pw(j), g2))), g1)))) ∨
m = ⊕(⊖(∗(inv(⊕(∗(nc1, g1),⊖(∗(pw(j), g2)))),∗(nc2,∗(nc1, g1)))),⊖(∗(nc2, g1))))).

Using the above predicates, we obtain the following regularity properties:

PropertyVSE 141 (Derivable ⊕-Messages):

1. (tr ∈ TCAMP ∧ isObj⊕(m) ∧m ∈ DY(pw(i).spies(tr)) ∧ pw(i) /∈ DY(spies(tr)))⇒
((∃m1,m2 : (obj⊕(m,m1,m2) ∨ syn∗(m,m1,m2)) ∧m1,m2 ∈ DY(pw(i).spies(tr))) ∨
TCAMP 3msg1(m, spies(tr), pw(i)) ∨ TCAMP 3mrg(m, spies(tr), pw(i)) ∨
TCAMP 3oops(m, spies(tr), pw(i)))

272 CHAPTER 14. RESISTANCE PROOF OF TC-AMP

2. (tr ∈ TCAMP ∧ isObj⊕(m) ∧m ∈ DY(spies(tr)))⇒
((∃m1,m2 : (obj⊕(m,m1,m2) ∨ syn∗(m,m1,m2)) ∧m1,m2 ∈ DY(spies(tr))) ∨
TCAMP msg1(m, spies(tr)) ∨ TCAMP mrg(m, spies(tr)) ∨
TCAMP oops(m, spies(tr)))

The proofs of these regularity properties are similar and are based on two similar invari-
ants about the derivable ⊕-objects. For the proof of property (2) we use the invariant 94,
which is adapted to obtain the following invariant employed for the proof of property (1).

PropertyVSE 142 (Derivable ⊕-Objects ; TC-AMP):

(tr ∈ TCAMP ∧ isObj⊕(m̂) ∧ pw(i) /∈ DY(spies(tr)) ∧
DY(pw(i).spies(tr)) ∩ ccl⊕2 (m̂) ̸= ∅)⇒
(∃msb,msp,n : syn⊕(m̂,msb ⊎msp) ∧
(∀m ∈ msb : ¬isObj⊕(m) ∧m ∈ DYl(pw(i).spies(tr),n)) ∧
(∀m ∈ msp : (∃m′,ms :

m′ ∈ DYl(pw(i).spies(tr),n) ∧ms ⊆ DYl(pw(i).spies(tr),n) ∧
syn∗(m,ms,m′) ∧ (TCAMP 3msg1(m′, spies(tr), pw(i)) ∨

TCAMP 3mrg(m′, spies(tr), pw(i)) ∨ TCAMP 3oops(m′, spies(tr), pw(i))))))

Before we discuss the proof of this invariant, we describe how it permits to prove prop-
erty 141-(1).

• For m in DY(pw(i).spies(tr)), the invariant provides two sets msb and msp where
msb ⊎msp represents a decomposition of m into non-confidential ⊕-parts if any.

• If len(msb ⊎ msp) > 1, the elements of msb ⊎ msp allow us to obtain obj⊕(m,m1,m2)
with m1,m2 ∈ DY(pw(i).spies(tr)).

• Otherwise, we necessarily have msb = ∅ and msp = {m}. Additionally, we obtain
syn∗(m,ms,m3) for ms ⊆ DYl(pw(i).spies(tr),n) and for m3 ∈ DYl(pw(i).ik,n) ful-
filling case TCAMP 3msg1(m3, spies(tr), pw(i)), TCAMP 3mrg(m3, spies(tr), pw(i)) or
TCAMP 3oops(m3, spies(tr), pw(i)).

If the multiset ms is not empty, i.e. ms = m4 ⊎ ms1, we obviously have property
syn∗(m,m4,∗(ms1,m3)) with m4,∗(ms1,m3) ∈ DY(pw(i).spies(tr)). Otherwise, we
clearly have m3 = m and this permits to obtain TCAMP 3msg1(m, spies(tr), pw(i)),
TCAMP 3mrg(m, spies(tr), pw(i)) or TCAMP 3oops(m, spies(tr), pw(i)), as required.

Finally, the used invariant is shown similar to the invariant 94, as described in
Sec. 6.5.1.2. The same proof schema applies, because the protocol-specific predicates
TCAMP 3msg1, TCAMP 3mrg and TCAMP 3oops fulfill the requirements ℵ1 and ℵ2.

Requirement ℵ1 is about the non-confidential left ∗-parts occurring in the ⊕-objects
that originate from regular messages according to the given predicates. It is fulfilled as
described in the following:

• The ⊕-objects m that satisfy TCAMP 3mrg(m, ik, pw(i)) include only confidential left
∗-parts.

• The ⊕-objects m that satisfy predicate TCAMP 3msg1(m, ik, pw(i)) have just one non-
confidential left ∗-part, which corresponds to the employed password pw(i) or to

14.2. EMPLOYED REGULARITY PROPERTIES 273

its inverse inv(pw(i)). Here, the definition of TCAMP 3msg1(m, ik, pw(i)) satisfies
obviously requirement ℵ1. Take for instance m = ⊕(∗(nc1, g1),⊖(∗(pw(i), g2))), re-
quirement ℵ1 necessitates that ∗(inv(pw(i)),m) is covered by one of the given pred-
icates. This is clearly the case, as TCAMP 3msg1(∗(inv(pw(i)),m), ik, pw(i)) ensues
from TCAMP 3msg1(m, ik, pw(i)).

• Similarly, the ⊕-objects m that satisfy predicate TCAMP 3oops(m, ik, pw(i)) have
just one non-confidential left ∗-part, which corresponds to a first TC-AMP mes-
sage m1 = ⊕(∗(nc1, g1),⊖(∗(pw(j), g2))) or to inv(m1). Here, the definition of
TCAMP 3oops(m, ik, pw(i)) satisfies obviously requirement ℵ1. Take for instance
m =⊕(m12,∗(nc2,∗(m1, g1))) for m12 = ∗(nc1,∗(nc2, g1)), requirement ℵ1 necessitates
that ∗(inv(m1),m) is covered by one of the given predicates. This is clearly the case,
as TCAMP 3oops(∗(inv(m1),m), ik, pw(i)) ensues from TCAMP 3oops(m, ik, pw(i)).

Requirement ℵ2 ensures that all ⊕-objects (mlr) resulting by merging other ⊕-objects
(ml ,mr) linked to regular protocol messages are covered by the protocol-specific predi-
cates according to this principle: After the simplification of the public common left ∗-sub-
messages of mlr (if any), the resulting m′lr must be covered by the protocol-specific predi-
cates, too. According to the used predicates, we distinguish the following merge-sides:

• m1 = ⊕(∗(nc1, g1),⊖(∗(pw(j), g2))), m3 = ⊕(⊖(∗(nc3, g1)),∗(pw(j), g2)) and such
that TCAMP 3msg1(m1, ik, pw(i)) and TCAMP 3msg1(m3, ik, pw(i)) hold: Here, we
have ⊕(m1,m3) = ⊕(∗(nc1, g1),⊖(∗(nc3, g1))) and this message is covered by predi-
cate TCAMP 3mrg(⊕(m1,m3), ik, pw(i)). It does not possess any common left ∗-sub-
message.

• m1 = ⊕(∗(inv(pw(i)),∗(nc1, g1)),⊖(g2)), m3 = ⊕(⊖(∗(inv(pw(i)),∗(nc3, g1))), g2)
and such that TCAMP 3msg1(m1, ik, pw(i)) and TCAMP 3msg1(m3, ik, pw(i)) hold:
Here, we have⊕(m1,m3) =⊕(∗(inv(pw(i)),∗(nc1, g1)),⊖(∗(inv(pw(i)),∗(nc3, g1))))
and this message possesses inv(pw(i)) as non-confidential common left ∗-sub-
message and m′13 = ⊕(∗(nc1, g1),⊖(∗(nc3, g1))) as the corresponding right ∗-sub-
message. m′13 is covered by TCAMP 3mrg(⊕(m1,m3), ik, pw(i)) and does not possess
any common left ∗-sub-message.

• Messages m12 = ⊕(∗(nc1, g1),⊖(∗(nc2, g1))) and m2 = ⊕(∗(nc2, g1),⊖(∗(pw(j), g2)))
satisfying TCAMP 3mrg(m12, ik, pw(i)) and TCAMP 3msg1(m2, ik, pw(i)): Here, we
have ⊕(m12,m2) = ⊕(∗(nc1, g1),⊖(∗(pw(j), g2))) and this message is covered by
TCAMP 3msg1(⊕(m12,m2), ik, pw(i)). It does not possess any common left ∗-sub-
message.

• Messages m12 = ⊕(∗(nc1, g1),⊖(∗(nc2, g1))) and m23 = ⊕(∗(nc2, g1),⊖(∗(nc3, g1)))
satisfying TCAMP 3mrg(m12, ik, pw(i)) and TCAMP 3mrg(m23, ik, pw(i)): Here, we
have ⊕(m12,m23) = ⊕(∗(nc1, g1),⊖(∗(nc3, g1))) and this message is covered by
TCAMP 3mrg(⊕(m12,m23), ik, pw(i)). It does not possess any common left ∗-sub-
message.

14.2.4 Derivable h1- and h2-Messages

In this section, we describe the employed regularity properties about the derivable h1- and
h2-messages.

PropertyVSE 143 (Derivable h1- and h2-Messages):

1. (tr ∈ TCAMP ∧ h1(m1,m2,m3) ∈ DY(pw(i).spies(tr)))⇒
((m1,m2,m3 ∈ DY(pw(i).spies(tr))) ∨ h1(m1,m2,m3) ∈ DY(spies(tr)))

274 CHAPTER 14. RESISTANCE PROOF OF TC-AMP

2. (tr ∈ TCAMP ∧ h1(m1,m2,m3) ∈ DY(spies(tr)))⇒
((m1,m2,m3 ∈ DY(spies(tr))) ∨
(pair(m2, h1(m1,m2,m3)) ∈ spies(tr) ∧m3 /∈ DY(pw(i).spies(tr))))

3. (tr ∈ TCAMP ∧ h2(m1,m2,m3) ∈ DY(pw(i).spies(tr)))⇒
((m1,m2,m3 ∈ DY(pw(i).spies(tr))) ∨ h2(m1,m2,m3) ∈ DY(spies(tr)))

4. (tr ∈ TCAMP ∧ h2(m1,m2,m3) ∈ DY(spies(tr)))⇒
((m1,m2,m3 ∈ DY(spies(tr))) ∨
(h2(m1,m2,m3) ∈ spies(tr) ∧m3 /∈ DY(pw(i).spies(tr))))

The proof of property (1) is similar to that of property 118-(1). The refutation of the
assumption h1(m1,m2,m3) ∈ DY(pw(i).spies(tr)) is performed employing the following
property together with a correctness theorem similar to 54:

(tr ∈ TCAMP ∧ ¬(m1,m2,m3 ∈ DY(pw(i).spies(tr))) ∧
h1(m1,m2,m3) /∈ DY(spies(tr)))
⇒ (pw(i).spies(tr)) ∩ ccl2(h1(m1,m2,m3)) = ∅

Property (2) is shown by case distinction: If h1(m1,m2,m3) can be derived from h1-parts
in DY(ik), the proof is trivial. Otherwise, we distinguish again two complementary cases:

• In case pair(m2, h1(m1,m2,m3)) ∈ ik holds, the assumption ¬(m1,m2,m3 ∈ DY(ik))
permits to deduce the required events in tr and the required conditions on the in-
volved agents for the application of the forward secrecy 100. It allows us to obtain
m3 /∈ DY(pw(i).ik), as required.

• In case pair(m2, h1(m1,m2,m3)) /∈ ik holds, we refute the assumption h1(m1,m2,m3) ∈
DY(ik), employing the following property:

(tr ∈ TCAMP ∧ ¬(m1,m2,m3 ∈ DY(spies(tr))) ∧
pair(m2, h1(m1,m2,m3)) /∈ spies(tr))
⇒ spies(tr) ∩ ccl2(h1(m1,m2,m3)) = ∅

Properties (3) and (4) are shown similar to properties (1) and (2), respectively.

14.2.5 Derivable f st- and snd-Messages

In this section, we describe the employed regularity properties about the derivable com-
posed messages that can be derived only by composition.

According to the regular messages in TC-AMP, the derivable f st- and snd-objects do
not possess confidential f st- and respectively snd-parts:

PropertyVSE 144 (Trivial Composed Messages):

1. (tr ∈ TCAMP ∧ obj f st(m,m1) ∧m ∈ DY(pw(i).spies(tr)))
⇒ m1 ∈ DY(pw(i).spies(tr))

2. (tr ∈ TCAMP ∧ obj f st(m,m1) ∧m ∈ DY(spies(tr)))⇒ m1 ∈ DY(spies(tr))

14.3. PROOF OF THE BASIS SIMULATION RELATION LEMMA 275

3. (tr ∈ TCAMP ∧ objsnd(m,m1) ∧m ∈ DY(pw(i).spies(tr)))
⇒ m1 ∈ DY(pw(i).spies(tr))

4. (tr ∈ TCAMP ∧ objsnd(m,m1) ∧m ∈ DY(spies(tr)))⇒ m1 ∈ DY(spies(tr))

Properties 1–4 are shown similar to properties 3–6 in Sec. 12.2.5.

14.3 Proof of the Basis Simulation Relation Lemma

The basis simulation relation lemma is shown (similarly to 107) by induction on TC-AMP
traces.

The base case is trivial: The empty trace does not belong to the relevant traces, because
it does not include neither a first nor a second TC-AMP message.

In the step case, we distinguish whether there is a regular occurrence of π in ik.

Case I: If there is a regular occurrence of π in ik, the induction hypothesis provides xyik
that satisfies Φ(xyik, ik,π,π′). For the extended observable messages ikex = ik ∪ ikev, we
need to define xyex relative to ik and ikev and show that Φ(xyex, ik ∪ ikev,π,π′) holds:

1. In case ev = note(ag′, pair(ag(i), pair(pw(i), pair(num(j),num(k))))) and ag′ ∈ bad,
this event yields ikev = {pair(ag(i), pair(pw(i), pair(num(j),num(k))))} and we dis-
tinguish two cases:

(a) If pw(i) /∈ DY(ik), we define xyex by adapting xyik through

• removing all pairs (m,m) for all m =⊕(∗(nc1, g1),⊖(∗(nc3, g1))) and all first
messages ⊕(∗(nc1, g1),⊖(∗(pw(i), g2))),⊕(∗(nc3, g1),⊖(∗(pw(i), g2))) ∈ ik
with g1 = num(j) and g2 = num(k),

• replacing all pairs (m,m) and (⊖(m),⊖(m)) for all first messages m =
⊕(∗(nc1, g1),⊖(∗(pw(i), g2))), generator g1 = num(j) and g2 = num(k) with
(∗(nc1, g1),∗(nc1, g1)) and (⊖(∗(nc1, g1)),⊖(∗(nc1, g1))),

• replacing every (m,m) and (⊖(m),⊖(m)) for m = ∗(pw(i),∗(nc2, g1)) and
g1 = num(j) with (∗(nc2, g1),∗(nc2, g1)) and (⊖(∗(nc2, g1)),⊖(∗(nc2, g1))),

• removing every (inv(m), inv(m)), (m1,m1) and every (⊖(m1),⊖(m1)) for
m = ⊕(∗(nc1, g1),⊖(∗(pw(i), g2))), g1 = num(j), g2 = num(k) and m1 =
⊕(∗(inv(m),∗(nc2,∗(nc1, g1))),∗(nc2, g1)),

• replacing every (m,m) and (⊖(m),⊖(m)) for

m = ⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(⊕(∗(nc1, g1),⊖(∗(pw(i), g2))), g1))),

g1 = num(j) and g2 = num(k) with (∗(nc2,∗(nc1, g1)),∗(nc2,∗(nc1, g1))) and
(⊖(∗(nc2,∗(nc1, g1))),⊖(∗(nc2,∗(nc1, g1)))),

• adding for every (m,m) with m = ⊕(∗(nc1, g1),⊖(∗(π, g2))) and g2 =
num(j) or g2 = num(k) the pairs

– (⊖(g2),⊖(g2)), (⊖(∗(π, g2)),⊖(∗(π′, g2))), (∗(π, g2),∗(π′, g2)),
– (∗(inv(π),∗(nc1, g1)),
⊕(⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(π, g2)))), g2)),

– (⊖(∗(inv(π),∗(nc1, g1))),
⊕(⊕(⊖(∗(inv(π′),∗(nc1, g1))),∗(inv(π′),∗(π, g2))),⊖(g2))),

– (∗(nc1, g1),⊕(⊕(∗(nc1, g1),⊖(∗(π, g2))),∗(π′, g2))) and

276 CHAPTER 14. RESISTANCE PROOF OF TC-AMP

– (⊖(∗(nc1, g1)),⊕(⊕(⊖(∗(nc1, g1)),∗(π, g2)),⊖(∗(π′, g2)))),
• and finally including (ag(i), ag(i)), (pw(i), pw(i)), (num(j),num(j)) and

(num(k),num(k)).

(b) Otherwise, we define xyex by adapting xyik through including (ag(i), ag(i)), if
not any.

In case ev = note(ag, pair(pw(i), pair(num(j),num(k)))) and ag ∈ bad, we proceed ac-
cording to the same principle.

2. In case
ev = send(ag, ag′,nc1,⊕(∗(nc1, g1),⊖(∗(pw, g2)))),

we have

ikev = {nc1,⊕(∗(nc1, g1),⊖(∗(pw, g2)))}, if ag ∈ bad
ikev = {⊕(∗(nc1, g1),⊖(∗(pw, g2)))}, otherwise.

In the former case, we define xyex by

xyex := xyik ∪ {(nc1,nc1)}.

In the latter case, we distinguish the following cases:

(a) If pw = π, we define xyex by adapting xyik through

• adding the pairs (m1,m1), (⊖(m1),⊖(m1)), (m2,m3) and (⊖(m2),⊖(m3))
for every (m,m) in xyik with m = ⊕(∗(nc3, g1),⊖(∗(π, g2))) and for m1 =
⊕(∗(nc1, g1),⊖(∗(nc3, g1))), m2 = ∗(inv(π),m1) and m3 = ∗(inv(π′),m1),

• adding (m,m) and (⊖(m),⊖(m)) for m = ⊕(∗(nc1, g1),⊖(∗(π, g2))),
• adding (inv(π), inv(π′)), (m1,m2) and (⊖(m1),⊖(m2)) for

m1 = ⊕(∗(inv(π),∗(nc1, g1)),⊖(g2)),
m2 = ⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(π, g2)))),

• and when g2 ∈DY(ik), adding the pairs (⊖(g2),⊖(g2)), (∗(π, g2),∗(π′, g2)),
(⊖(∗(π, g2)),⊖(∗(π′, g2))), together with (m1,m2) and (⊖(m1),⊖(m2)) for

m1 = ∗(inv(π),∗(nc1, g1))

m2 = ⊕(⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(π, g2)))), g2)

and together with (m3,m4) and (⊖(m3),⊖(m4)) for

m3 = ∗(nc1, g1)

m4 = ⊕(⊕(∗(nc1, g1),⊖(∗(π, g2))),∗(π′, g2)).

(b) If pw ̸= π and pw /∈ DY(ik), we define xyex by adapting xyik through

• adding (m1,m1) and (⊖(m1),⊖(m1)) for every (m,m) in xyik with m =
⊕(∗(nc3, g1),⊖(∗(pw, g2))) and for m1 = ⊕(∗(nc1, g1),⊖(∗(nc3, g1))),

• and adding (m,m) and (⊖(m),⊖(m)) for m = ⊕(∗(nc1, g1),⊖(∗(pw, g2))).

(c) If pw ̸= π and pw, g2 ∈ DY(ik), we define xyex by

xyex := xyik ∪ {(∗(nc1, g1),∗(nc1, g1)), (⊖(∗(nc1, g1)),⊖(∗(nc1, g1)))}.

14.3. PROOF OF THE BASIS SIMULATION RELATION LEMMA 277

3. In case

ev = send(ag, ag′,nc2, pair(∗(nc2,∗(pw, g1)), h1(m1,∗(nc2,∗(pw, g1)),m3))),

we have ikev = {nc2, pair(∗(nc2,∗(pw, g1)), h1(m1,∗(nc2,∗(pw, g1)),m3))}, if ag ∈ bad
and ikev = {pair(∗(nc2,∗(pw, g1)), h1(m1,∗(nc2,∗(pw, g1)),m3))}, otherwise. In the
former case, we define xyex by

xyex := xyik ∪ {(nc2,nc2)}.

In the latter case, we distinguish the following cases:

(a) If pw = π, we define xyex by adapting xyik through

• adding (m,m) and (⊖(m),⊖(m)) for m = ∗(nc2,∗(pw, g1)),
• adding (inv(π), inv(π′)), (m1,m2) and (⊖(m1),⊖(m2)) for m1 = ∗(nc2, g1)

and m2 = ∗(inv(π′),∗(π,∗(nc2, g1))),
• and, if m3 /∈ DY(ik), adding (m,m) for m = h1(m1,∗(nc2,∗(pw, g1)),m3).

(b) If pw ̸= π and pw /∈ DY(ik), we define xyex by adapting xyik through

• adding (m,m) and (⊖(m),⊖(m)) for m = ∗(nc2,∗(pw, g1)),
• and, if m3 /∈ DY(ik), adding (m,m) for m = h1(m1,∗(nc2,∗(pw, g1)),m3).

(c) If pw ̸= π and pw ∈ DY(ik), we define xyex by adapting xyik through

• adding (m,m) and (⊖(m),⊖(m)) for m = ∗(nc2, g1),
• and, if m3 /∈ DY(ik), adding (m,m) for m = h1(m1,∗(nc2,∗(pw, g1)),m3).

4. In case ev = says(ag, ag′, h2(m1,m2,m3)), we have
ikev = {h2(m1,m2,m3)}. Here, we distinguish two cases:

(a) If m3 /∈ DY(ik), we define xyex by

xyex := xyik ∪ {(h2(m1,m2,m3), h2(m1,m2,m3))}.

(b) Otherwise, we set xyex = xyik.

5. In case ev = note(spy,⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[pw, g2], g1)))) for m[pw, g2] =
⊕(∗(nc1, g1),⊖(∗(pw, g2))), we have
ikev = {⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[pw, g2], g1)))}.
If nc1 or nc2 is not confidential, then we set xyex = xyik. Otherwise, we distinguish
two cases:

(a) If pw ∈ DY(ik), we define xyex by adapting xyik through

• removing (m,m) for m = h1(m1,m2,m3) or m = h2(m1,m2,m3) with m3 =
⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[pw, g2], g1))),

• and adding (m,m) and (⊖(m),⊖(m)) for m = ∗(nc2,∗(nc1, g1)).

(b) If pw /∈ DY(ik), we define xyex by adapting xyik through

• removing (m,m) for m = h1(m1,m2,m3) or m = h2(m1,m2,m3) with m3 =
⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[pw, g2], g1))),

• adding (inv(m[pw, g2]), inv(m[pw, g2])), (m,m) and (⊖(m),⊖(m)) for the
message m = ⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[pw, g2], g1))) and for the mes-
sage m = ⊕(∗(inv(m[pw, g2]),∗(nc2,∗(nc1, g1))),∗(nc2, g1)),

278 CHAPTER 14. RESISTANCE PROOF OF TC-AMP

• and, if pw = π, by adding (m1,m2) and (⊖(m1),⊖(m2)) for

m1 = ∗(nc2,∗(nc1, g1)) and
m2 = ⊕(⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[π, g2], g1))),

⊖(∗(m[π, g2],∗(inv(π′),∗(π,∗(nc2, g1)))))),
m1 = ∗(m[π, g2],∗(nc2, g1)) and
m2 = ∗(m[π, g2],∗(inv(π′),∗(π,∗(nc2, g1)))),
m1 = ∗(m[π, g2],∗(π,∗(nc2, g1))) and
m2 = ∗(m[π, g2],∗(π,∗(nc2, g1))),
m1 = ∗(inv(m[π, g2]),∗(nc2,∗(nc1, g1))) and
m2 = ⊕(⊕(∗(inv(m[π, g2]),∗(nc2,∗(nc1, g1))),∗(nc2, g1)),

⊖(∗(inv(π′),∗(π,∗(nc2, g1))))),
m1 = ∗(π,∗(nc2,∗(nc1, g1))) and
m2 = ⊕(⊕(∗(π′,∗(nc2,∗(nc1, g1))),∗(π′,∗(nc2,∗(m[π, g2], g1)))),

⊖(∗(m[π, g2],∗(π,∗(nc2, g1))))),
m1 = ∗(π,∗(inv(m[π, g2]),∗(nc2,∗(nc1, g1)))) and
m2 = ⊕(⊕(∗(π′,∗(inv(m[π, g2]),∗(nc2,∗(nc1, g1)))),∗(π′,∗(nc2, g1))),

⊖(∗(π,∗(nc2, g1)))),
m1 = ⊕(∗(π,∗(nc2,∗(nc1, g1))),∗(m[π, g2],∗(π,∗(nc2, g1)))) and
m2 = ⊕(∗(π′,∗(nc2,∗(nc1, g1))),∗(π′,∗(nc2,∗(m[π, g2], g1)))), and for
m1 = ⊕(∗(π,∗(inv(m[π, g2]),∗(nc2,∗(nc1, g1)))),∗(π,∗(nc2, g1))) and
m2 = ⊕(∗(π′,∗(inv(m[π, g2]),∗(nc2,∗(nc1, g1)))),∗(π′,∗(nc2, g1))).

6. In the fake case, i.e. ikev = {m} for m ∈ DY(ik), we set xyex = xyik.

In all these cases, we prove that Φ(xyex, ik∪ ikev,π,π′) ensues from Φ(xyik, ik,π,π′) and
the corresponding case context. In particular, we have to show Φ(xyik, ik ∪ {m},π,π′) in
the fake case, which is mainly done with the help of the regularity properties (in Sec. 14.2)
and the definition of Φ: We consider the cases where m matches any assumption of the
rules Φ1–Φ8; Then, we apply in every case a corresponding regularity property permitting
to obtain an equivalent message in ik; This implies that each pair that shall be added due
to m (from DY(ik)) is already in xyik, as required.

For instance, the first rule of Φ4 provides the message m = ⊕(∗(nc1, g1),⊖(∗(pw, g2)))
with nc1 /∈ DY(ik ∪ {m}) and pw, g2 ∈ DY(ik ∪ {m}) and necessitates to show that
(∗(nc1, g1),∗(nc1, g1)) and (⊖(∗(nc1, g1)),⊖(∗(nc1, g1))) are in xyex, i.e. in xyik. Since
m ∈ DY(ik) we have nc1 /∈ DY(ik), pw, g2 ∈ DY(ik) and ∗(nc1, g1) ∈ DY(ik). This permits
to apply the regularity property 140-(2) about the occurrence of ∗-objects in DY(spies(tr)).
Here, ∗(nc1, g1) matches only the cases for the first and the second TC-AMP steps:

• For the first TC-AMP step, we obtain ⊕(∗(nc1, g1),⊖(pw′, g′2)) ∈ ik where pw′ and g′2
are in DY(ik). This permits to get (∗(nc1, g1),∗(nc1, g1)) ∈ xyik with the help of Φ4
and then (⊖(∗(nc1, g1)),⊖(∗(nc1, g1))) ∈ xyik with the help of Φ0.

• For the second TC-AMP step, we obtain

pair(∗(nc2,∗(pw′, g1)), h1(m1,∗(nc2,∗(pw′, g1)),m3)) ∈ ik ∧ pw′ ∈ DY(ik).

This permits to get (∗(nc1, g1),∗(nc1, g1)) ∈ xyik with the help of Φ5 and then
(⊖(∗(nc1, g1)),⊖(∗(nc1, g1))) ∈ xyik with the help of Φ0.

14.3. PROOF OF THE BASIS SIMULATION RELATION LEMMA 279

Case II: In the complementary case, i.e. ik does not include neither a first nor a second
TC-AMP message using π, we proceed as follows:

1. There is nc1, g1, g2 with ikev = {⊕(∗(nc1, g1),⊖(∗(pw, g2)))}: First, we use a lemma
that provides a set xyin containing (π,π′), (∞,∞) and all pairs obtained according
to the inclusion rules Φ2, Φ3, Φ4 (msg1-1 and msg1-2), Φ5–Φ8 and Φ0 relative to ik.
Then, we set xyex = xyin ∪ xyl1 ∪ xyl2, where

xyl1 = {(⊕(∗(nc1, g1),⊖(∗(pw, g2))),⊕(∗(nc1, g1),⊖(∗(pw, g2)))),
(⊕(⊖(∗(nc1, g1)),∗(pw, g2)),⊕(⊖(∗(nc1, g1)),∗(pw, g2))),
(⊕(∗(inv(π),∗(nc1, g1)),⊖(g2)),⊕(∗(inv(π′),∗(nc1, g1)),
⊖ (∗(inv(π′),∗(π, g2))))),

(⊕(∗(inv(π),∗(nc1, g1)),⊖(g2)),⊕(∗(inv(π′),∗(nc1, g1)),
⊖ (∗(inv(π′),∗(π, g2))))),

(⊕(⊖(∗(inv(π),∗(nc1, g1))), g2),⊕(⊖(∗(inv(π′),∗(nc1, g1))),
∗ (inv(π′),∗(π, g2)))),

(inv(π), inv(π′))},

xyl2 = ∅, if g2 /∈ DY(ik), and

xyl2 = {(⊖(g2),⊖(g2)), (∗(π, g2)),∗(π′, g2)), (⊖(∗(π, g2)),⊖(∗(π′, g2))),
(∗(inv(π),∗(nc1, g1)),
⊕ (⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(π, g2)))), g2)),

(⊖(∗(inv(π),∗(nc1, g1))),
⊕ (⊕(⊖(∗(inv(π′),∗(nc1, g1))),∗(inv(π′),∗(π, g2))),⊖(g2))),

(∗(nc1, g1),⊕(⊕(∗(nc1, g1),⊖(∗(π, g2))),∗(π′, g2))),
(⊖(∗(nc1, g1)),⊕(⊕(⊖(∗(nc1, g1)),∗(π, g2)),⊖(∗(π′, g2))))}, otherwise.

2. There is g1, nc2, m1 and m2 with
ikev = {pair(∗(nc2,∗(π, g1)), h1(m1,∗(nc2,∗(π, g1)),m2))}: First, we use a lemma that
provides a set xyin containing (π,π′), (∞,∞) and all pairs obtained according to Φ2–
Φ4, Φ5 (msg2-1, msg2-2 and msg2-3), Φ6–Φ8 and Φ0 relative to ik. Then, we set xyex =
xyin ∪ xyl1 ∪ xyl2, where

xyl1 = {(∗(π,∗(nc2, g1)),∗(π,∗(nc2, g1))),
(⊖(∗(π,∗(nc2, g1))),⊖(∗(π,∗(nc2, g1)))),
(∗(nc2, g1),∗(inv(π′),∗(π,∗(nc2, g1)))),
(⊖(∗(nc2, g1)),⊖(∗(inv(π′),∗(π,∗(nc2, g1))))), (inv(π), inv(π′))},

xyl2 = ∅, if m2 ∈ DY(ik), and

xyl2 = {(h1(m1,∗(π,∗(nc2, g1)),m2), h1(m1,∗(π,∗(nc2, g1)),m2))}, otherwise.

3. The complementary case is handled similar to the base case. In the fake case, we
need additionally to show that m (from DY(ik)) does not match the previous cases
(1) and (2). This is done with help of the regularity properties 141-(2) and 140-(2).
They permit to obtain a first or a second TC-AMP message in ik with a protected
occurrence of π, in case m (from DY(ik)) matches a similar TC-AMP message. This

280 CHAPTER 14. RESISTANCE PROOF OF TC-AMP

permits to conclude by refutation, as ik does not include neither a first nor a second
TC-AMP message using π.

In cases (1) and (2), we prove that Φ(xyex, ik∪ ikev,π,π′) ensues from the applied lemma
and the corresponding case context.

14.4 Handling of the Proof Obligations

In this section, we describe how the proof obligations are shown from the assumption
Ω, the definition Φ of the basis relations (in Sec. 14.1) and the regularity properties (in
Sec. 14.2).

14.4.1 Handling of Ψa:

Proof obligation Ψa is shown with the help of the regularity properties in 139. They provide
for each kind of atomic messages ci in DY(π.ik) (resp. DY(π′.ik)) the premises for the in-
clusion rules of Φ, which in turn imply the occurrence of ci in the domain (resp. codomain)
of xy.

• The case for agent names ag(j) is handled as sketched in the following table:

ag(j) ∈ DY(π.ik) ⊢? ag(j) ∈ dom(xy) and ag(j) ∈ DY(π′.ik) ⊢? ag(j) ∈ codom(xy)
Property 139-(1) yields one case:

pair(ag(j), pair(pw(j), pair(num(k),num(k′)))) ∈ ik ⊢Φ2 (ag(j), ag(j)) ∈ xy

• The case for numerical data num(j) is handled as sketched in the following table:

num(j) ∈ DY(π.ik) ⊢? num(j) ∈ dom(xy)
and num(j) ∈ DY(π′.ik) ⊢? num(j) ∈ codom(xy)

Property 139-(2) yields four cases:
(1) pair(ag(k), pair(pw(k), pair(num(j),num(j′)))) ∈ ik ⊢Φ2 (num(j),num(j)) ∈ xy
(2) pair(ag(k), pair(pw(k), pair(num(j′),num(j)))) ∈ ik ⊢Φ2 (num(j),num(j)) ∈ xy
(3) pair(pw(k), pair(num(j),num(j′))) ∈ ik ⊢Φ2 (num(j),num(j)) ∈ xy
(4) pair(pw(k), pair(num(j′),num(j))) ∈ ik ⊢Φ2 (num(j),num(j)) ∈ xy

• The case for passwords pw(j) is handled as sketched in the following table:

pw(j) ∈ DY(π.ik) ⊢? pw(j) ∈ dom(xy)
Property 139-(3) yields three cases:
(1) pw(j) = π ⊢Ω,Φ1 (pw(j),π′) ∈ xy
(2) pair(ag(j), pair(pw(j), pair(num(k),num(k′)))) ∈ ik ⊢Φ2 (pw(j), pw(j)) ∈ xy
(3) pair(pw(j), pair(num(k),num(k′))) ∈ ik ⊢Φ2 (pw(j), pw(j)) ∈ xy

pw(j) ∈ DY(π′.ik) ⊢? pw(j) ∈ codom(xy)
Property 139-(3) yields three cases:
(1) pw(j) = π′ ⊢Ω,Φ1 (π, pw(j)) ∈ xy
(2) pair(ag(j), pair(pw(j), pair(num(k),num(k′)))) ∈ ik ⊢Φ2 (pw(j), pw(j)) ∈ xy
(3) pair(pw(j), pair(num(k),num(k′))) ∈ ik ⊢Φ2 (pw(j), pw(j)) ∈ xy

In case pw(j) = π (resp. pw(j) = π′), the assumption Ω ensures that ik includes the
regular messages necessary for the application of Φ1.

• The case for nonces nc(j) is handled as sketched in the following table:

14.4. HANDLING OF THE PROOF OBLIGATIONS 281

nc(j) ∈ DY(π.ik) ⊢? nc(j) ∈ dom(xy) and nc(j) ∈ DY(π′.ik) ⊢? nc(j) ∈ codom(xy)
Property 139-(4) yields one case:

nc(j) ∈ ik ⊢Φ3 (nc(j),nc(j)) ∈ xy

14.4.2 Handling of Ψc:

According to proof obligation Ψc, all derivable composed messages that cannot be derived
by composition must occur in the domain (resp. codomain) of the basis relation xy. This is
shown with the help of the regularity properties about the derivable composed messages.

The regularity properties about ∗-, ⊕-, h1- and h2-messages provide the premises for
corresponding inclusion rules in Φ4–Φ8, which in turn imply the occurrence of these com-
posed messages in the domain (resp. codomain) of xy.

• The proof for m ∈ dom(xy) where m is a ∗-object is reduced with the help of the
regularity property 140-(1) to the cases given by the definitions of TCAMP 3msg1,1,
TCAMP 3msg2,1 and TCAMP 3oops1.

The proof for the TCAMP 3msg1,1-case (using in particular Φ4) is sketched in the fol-
lowing table:

isObj∗(m),m ∈ DY(π.ik), (obj∗(m,m1,m2)⇒ m1 /∈ DY(π.ik)) ⊢? m ∈ dom(xy)
Property 140-(1) and TCAMP 3msg1,1 yield:
⊕(∗(nc1, g1),⊖(∗(pw, g2))) ∈ ik,nc1 /∈ DY(π.ik), (pw, g2 ∈ DY(π.ik)),

m = ∗(nc1, g1) ⊢
? m ∈ dom(xy)

Properties 139-(3) and -(2) yield two cases:
(1) ⊕(∗(nc1, g1),⊖(∗(pw, g2))) ∈ ik,nc1 /∈ DY(ik), (pw, g2 ∈ DY(ik)),

m = ∗(nc1, g1) ⊢
Φ4 (m,m) ∈ xy

(2) ⊕(∗(nc1, g1),⊖(∗(π, g2))) ∈ ik,nc1 /∈ DY(ik), g2 ∈ DY(ik),
m = ∗(nc1, g1) ⊢

Φ4 (m,⊕(⊕(m,⊖(∗(π, g2))),∗(π′, g2))) ∈ xy

The proof for the TCAMP 3msg2,1-case (using in particular Φ5) is sketched in the fol-
lowing table:

isObj∗(m),m ∈ DY(π.ik), (obj∗(m,m1,m2)⇒ m1 /∈ DY(π.ik)) ⊢? m ∈ dom(xy)
Property 140-(1) and TCAMP 3msg2,1 yield two cases:
(1) pair(∗(nc2,∗(pw, g1)),m1) ∈ ik,nc2 /∈ DY(π.ik), pw ∈ DY(π.ik),

m = ∗(nc2, g1) ⊢
? m ∈ dom(xy)

(2) pair(∗(nc2,∗(pw, g1)),m1) ∈ ik,nc2, pw /∈ DY(π.ik),m = ∗(nc2,∗(pw, g1))

⊢? m ∈ dom(xy)
Property 139-(3) transforms (1) into two cases:
(1.1) pair(∗(nc2,∗(pw, g1)),m1) ∈ ik,nc2 /∈ DY(ik), pw ∈ DY(ik),

m = ∗(nc2, g1) ⊢
Φ5 (m,m) ∈ xy

(1.2) pair(∗(nc2,∗(π, g1)),m1) ∈ ik,m = ∗(nc2, g1)

⊢Φ5 (m,∗(inv(π′),∗(π,m))) ∈ xy
(2) pair(∗(nc2,∗(pw, g1)),m1) ∈ ik,nc2, pw /∈ DY(ik),m = ∗(nc2,∗(pw, g1))

⊢Φ5 (m,m) ∈ xy

The proof for the TCAMP 3oops1-case (using in particular Φ7) is sketched in the fol-
lowing table:

282 CHAPTER 14. RESISTANCE PROOF OF TC-AMP

isObj∗(m),m ∈ DY(π.ik), (obj∗(m,m1,m2)⇒ m1 /∈ DY(π.ik)) ⊢? m ∈ dom(xy)
Property 140-(1) and TCAMP 3oops1 yields:
⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(⊕(∗(nc1, g1),⊖(∗(pw, g2))), g1))) ∈ ik,
(nc1,nc2 /∈ DY(π.ik)), pw ∈ DY(π.ik),m = ∗(nc2,∗(nc1, g1)) ⊢

? m ∈ dom(xy)
Property 139-(3) yields two cases:
(1) ⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(⊕(∗(nc1, g1),⊖(∗(pw, g2))), g1))) ∈ ik,

(nc1,nc2 /∈ DY(ik)), pw ∈ DY(ik),m = ∗(nc2,∗(nc1, g1)) ⊢
Φ7 (m,m) ∈ xy

(2) ⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(⊕(∗(nc1, g1),⊖(∗(π, g2))), g1))) ∈ ik,
m = ∗(nc2,∗(nc1, g1)) ⊢

Φ7 (m,⊕(⊕(m,∗(nc2,∗(⊕(∗(nc1, g1),⊖(∗(pw, g2))), g1))),
⊖(∗(⊕(∗(nc1, g1),⊖(∗(pw, g2))),∗(inv(π′),∗(π,∗(nc2, g1))))))) ∈ xy

• The proof for m ∈ dom(xy) where m is a ⊕-object is reduced with the help of the
regularity property 141-(1) to the cases given by the definitions of TCAMP 3msg1,
TCAMP 3mrg and TCAMP 3oops.

For instance, the proof for the TCAMP 3mrg-case (using in particular Φ8) is sketched
in the following table:

isObj⊕(m),m ∈ DY(π.ik), (obj∗(m,m1,m2)⇒ m1 /∈ DY(π.ik)),
(obj⊕(m,m1,m2)⇒ m1 /∈ DY(π.ik)) ⊢? m ∈ dom(xy)

Property 141-(1) and TCAMP 3mrg yield:
⊕(∗(nc1, g1),⊖(∗(pw, g2))),⊕(∗(nc3, g1),⊖(∗(pw, g2))) ∈ ik,nc1 ̸= nc3,
(nc1,nc3 /∈ DY(π.ik)), ((pw = π ∧ g2 /∈ DY(π.ik)) ∨ pw /∈ DY(π.ik)),
m = ⊕(∗(nc1, g1),⊖(∗(nc3, g1))) ⊢

? m ∈ dom(xy)
Confidentiality of π (by Ω) yields:
⊕(∗(nc1, g1),⊖(∗(pw, g2))),⊕(∗(nc3, g1),⊖(∗(pw, g2))) ∈ ik,nc1 ̸= nc3,
(nc1,nc3, pw /∈ DY(ik)),m = ⊕(∗(nc1, g1),⊖(∗(nc3, g1))) ⊢

Φ8 (m,m) ∈ xy

• The proof for h2(m1,m2,m3) ∈ dom(xy) with the help of the regularity properties
in 143 is sketched in the following table:

h2(m1,m2,m3) ∈ DY(π.ik),¬(m1,m2,m3 ∈ DY(π.ik)) ⊢? h2(m1,m2,m3) ∈ dom(xy)
Property 143-(3) yields:

h2(m1,m2,m3) ∈ DY(ik),¬(m1,m2,m3 ∈ DY(π.ik)) ⊢? h2(m1,m2,m3) ∈ dom(xy)
Property 143-(4) yields:

h2(m1,m2,m3) ∈ ik,m3 /∈ DY(pw(i).ik) ⊢? h2(m1,m2,m3) ∈ dom(xy)
DY(ik) ⊆ DY(pw(i).ik) yields:

h2(m1,m2,m3) ∈ ik,m3 /∈ DY(ik) ⊢Φ6 (h2(m1,m2,m3), h2(m1,m2,m3)) ∈ xy

The proofs for the cases h2(m1,m2,m3) ∈ codom(xy), h1(m1,m2,m3) ∈ dom(xy) and
for h1(m1,m2,m3) ∈ codom(xy) are similar.

The regularity properties (in 144) about f st- and snd-messages, which do not possess
confidential f st- and respectively snd-parts, permit to handle the corresponding cases in
the proof of Ψc by refutation as described for similar proof situations in Sec. 12.4.2.

14.4.3 Handling of Ψb:

The proof of Ψb consists in showing xy ⊂ DY(π.ik)× DY(π′.ik) and that the restriction of
xy on its domain and codomain is bijective. The former ensues trivially from the definition
of Φ. The latter is proven by showing the following conjectures:

1. For all (m,m) ∈ xy and (mx,my) ∈ xy with mx ̸= my, we have mx,my ̸= m.

14.4. HANDLING OF THE PROOF OBLIGATIONS 283

2. For all (mx,my), (mz,mu) ∈ xy with mx ̸= my and mz ̸= mu, we have mx ̸= mz ∨my =
mu and my ̸= mu ∨mx = mz.

We show these conjectures by case distinctions on the structure of messages that occur
in the pairs of xy, according to Φ.

14.4.3.1 Pairs with Atomic Messages:

We start with the pairs that have atomic messages at the first or second position. These
pairs are of the form (ci, ci) with ci ∈ DY(ik) or (π,π′) with π,π′ /∈ DY(ik) and π ̸= π′, as
ensued from the property Ω. This permits clearly to show conjectures (1) and (2) for all
pairs of xy that map atomic messages. Furthermore, conjectures (1) and (2) hold for any
pair of this first group and any other pair of xy, which maps some f -object to some g-object.

14.4.3.2 Pairs with ∗-Objects:

In the second part of our proof, we focus on the pairs of xy that have ∗-objects at the first
or second position. According to Φ, the pairs belonging to this second group are of the
following forms:

1. (∗(nc1, g1),∗(nc1, g1)), where nc1 is from a 1-st message using pw ∈ DY(ik).

2. (∗(nc2, g1),∗(nc2, g1)), where nc2 is from a 2-nd message using pw ∈ DY(ik).

3. (∗(pw,∗(nc2, g1)),∗(pw,∗(nc2, g1))), where nc2 is from a 2-nd message.

4. (∗(nc2,∗(nc1, g1)),∗(nc2,∗(nc1, g1))), where nc1 and nc2 are from a 1-st and respec-
tively a 2-nd message using pw ∈ DY(ik).

5. (∗(m[g2,π],∗(π,∗(nc2, g1))),∗(m[g2,π],∗(π,∗(nc2, g1)))), where m[g2,π] abbreviates
a 1-st message ⊕(∗(nc1, g1),⊖(∗(π, g2))).

6. (∗(π,∗(nc2,∗(nc1, g1))),⊕(⊕(∗(π′,∗(nc2,∗(nc1, g1))),∗(π′,∗(nc2,∗(m[g2,π], g1)))),
⊖(∗(m[g2,π],∗(π,∗(nc2, g1)))))).

7. (∗(π, g2),∗(π′, g2)).

8. (∗(inv(π),∗(nc1, g1)),⊕(⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(π, g2)))), g2)).

9. (∗(nc1, g1),⊕(⊕(∗(nc1, g1),⊖(∗(π, g2))),∗(π′, g2))).

10. (∗(nc2, g1),∗(inv(π′),∗(π,∗(nc2, g1)))).

11. (∗(nc2,∗(nc1, g1)),⊕(⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[g2,π], g1))),
⊖(∗(m[g2,π],∗(inv(π′),∗(π,∗(nc2, g1))))))).

12. (∗(m[g2,π],∗(nc2, g1)),∗(m[g2,π],∗(inv(π′),∗(π,∗(nc2, g1))))).

13. (∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1))),
⊕(⊕(∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1))),∗(nc2, g1)),⊖(∗(inv(π′),∗(π,∗(nc2, g1)))))).

14. (∗(π,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),
⊕(⊕(∗(π′,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),∗(π′,∗(nc2, g1))),
⊖(∗(π,∗(nc2, g1))))).

We first describe the handling of the first proof task:

284 CHAPTER 14. RESISTANCE PROOF OF TC-AMP

• For (∗(nc1, g1),∗(nc1, g1)) in (1), the required ∗(nc1, g1) ̸= mx and ∗(nc1, g1) ̸= my hold
for the pairs (mx,my) in cases (6)–(8) and (11)–(14), as these messages have different
structures.

Regarding (mx,my) in case (9), the structure of my differs from the structure of
∗(nc1, g1) and the nonce in mx = ∗(nc1, g1) can be shown to differ from the nonce
used in case (1), as the former is generated in a 1-st message using π /∈ DY(ik) and
the latter in a 1-st message using pw ∈ DY(ik).

Regarding (mx,my) in case (10), the structure of my differs from the structure of
∗(nc1, g1) and the nonce in mx = ∗(nc2, g1) can be shown to differ from the nonce
used in case (1), as the former is generated in a 2-nd message using π /∈ DY(ik) and
the latter in a 1-st message using pw ∈ DY(ik).

• For (∗(nc2, g1),∗(nc2, g1)) in (2), we use simlar proof arguments as in the previous
case.

• For (∗(pw,∗(nc2, g1)),∗(pw,∗(nc2, g1))) in (3), the required ∗(pw,∗(nc2, g1)) ̸= mx
and ∗(pw,∗(nc2, g1)) ̸= my hold for the pairs (mx,my) in cases (6)–(14), as these mes-
sages have different structures.

• For (∗(nc2,∗(nc1, g1)),∗(nc2,∗(nc1, g1))) in (4), the required ∗(nc2,∗(nc1, g1)) ̸= mx
and ∗(nc2,∗(nc1, g1)) ̸= my hold for the pairs (mx,my) in cases (6)–(10) and (12)–(14),
as these messages have different structures.

Regarding (mx,my) in case (11), the structure of my differs from the structure of
∗(nc2,∗(nc1, g1)) and the nonces in mx = ∗(nc2,∗(nc1, g1)) can be shown to differ
from the nonces used in case (4), as the former are generated in a TC-AMP run using
π /∈ DY(ik) and the latter in a TC-AMP run using pw ∈ DY(ik).

• For pairs
(∗(m[g2,π],∗(π,∗(nc2, g1))),∗(m[g2,π],∗(π,∗(nc2, g1))))

in (5), we have ∗(m[g2,π],∗(π,∗(nc2, g1))) ̸=mx and ∗(m[g2,π],∗(π,∗(nc2, g1))) ̸=my
for the pairs (mx,my) in cases (6)–(14), as these messages have different structures.

The second proof task is handled as follows:

• For (mx,my) in case (6) and the pairs (mz,mu) in cases (7)–(14), we have mx ̸= mz and
my ̸= mu, as these messages have different structures.

• For (∗(π, g2),∗(π′, g2)) in case (7) and the pairs (mz,mu) in cases (8)–(14), we have
∗(π, g2) ̸= mz and ∗(π′, g2) ̸= mu, as these messages have different structures.

• For (mx,my) in case (8) and the pairs (mz,mu) in cases (9)–(14), we have mx ̸= mz and
my ̸= mu, as these messages have different structures.

• For (mx,my) in case (9) and the pairs (mz,mu) in cases (11)–(14), we have mx ̸= mz
and my ̸= mu, as these messages have different structures.

Regarding (mz,mu) in case (10), the structure of mu differs from the structure of my
and the nonce in mz = ∗(nc2, g1) can be shown to differ from the nonce used in case
(9), as the former is generated in a 2-nd message while the latter is generated in a 1-st
message.

• For (mx,my) in case (10) and the pairs (mz,mu) in cases (11)–(14), we have mx ̸= mz
and my ̸= mu, as these messages have different structures.

• For (mx,my) in case (11) and the pairs (mz,mu) in cases (12)–(14), we have mx ̸= mz
and my ̸= mu, as these messages have different structures.

14.4. HANDLING OF THE PROOF OBLIGATIONS 285

• For (mx,my) in case (12) and the pairs (mz,mu) in cases (13) and (14), we have mx ̸= mz
and my ̸= mu, as these messages have different structures.

• For (mx,my) in case (13) and the pair (mz,mu) in case (14), we have mx ̸= mz and
my ̸= mu, as these messages have different structures.

14.4.3.3 Pairs with ⊕-Objects:

In the third part of our proof, we focus on the pairs of xy that have ⊕-objects at the first
or second position. According to Φ, the pairs belonging to this second group are of the
following forms:

1. (⊕(∗(nc1, g1),⊖(∗(pw, g2))),⊕(∗(nc1, g1),⊖(∗(pw, g2)))).

2. (⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[g2, pw], g1))),
⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[g2, pw], g1)))).

3. (⊕(∗(inv(m[g2, pw]),∗(nc2,∗(nc1, g1))),∗(nc2, g1)),
⊕(∗(inv(m[g2, pw]),∗(nc2,∗(nc1, g1))),∗(nc2, g1))).

4. (⊕(∗(nc1, g1),⊖(∗(nc3, g1))),⊕(∗(nc1, g1),⊖(∗(nc3, g1)))).

5. (∗(π,∗(nc2,∗(nc1, g1))),⊕(⊕(∗(π′,∗(nc2,∗(nc1, g1))),∗(π′,∗(nc2,∗(m[g2,π], g1)))),
⊖(∗(m[g2,π],∗(π,∗(nc2, g1)))))).

6. (∗(inv(π),∗(nc1, g1)),⊕(⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(π, g2)))), g2)).

7. (∗(nc1, g1),⊕(⊕(∗(nc1, g1),⊖(∗(π, g2))),∗(π′, g2))).

8. (∗(nc2,∗(nc1, g1)),⊕(⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[g2,π], g1))),
⊖(∗(m[g2,π],∗(inv(π′),∗(π,∗(nc2, g1))))))).

9. (∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1))),
⊕(⊕(∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1))),∗(nc2, g1)),⊖(∗(inv(π′),∗(π,∗(nc2, g1)))))).

10. (∗(π,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),
⊕(⊕(∗(π′,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),∗(π′,∗(nc2, g1))),
⊖(∗(π,∗(nc2, g1))))).

11. (⊕(∗(inv(π),∗(nc1, g1)),⊖(g2)),⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(π, g2))))).

12. (⊕(∗(π,∗(nc2,∗(nc1, g1))),∗(m[g2,π],∗(π,∗(nc2, g1)))),
⊕(∗(π′,∗(nc2,∗(nc1, g1))),∗(π′,∗(nc2,∗(m[g2,π], g1))))).

13. (⊕(∗(π,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),∗(π,∗(nc2, g1)))
⊕(∗(π′,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),∗(π′,∗(nc2, g1)))).

14. (⊕(∗(inv(π),∗(nc1, g1)),⊖(∗(inv(π),∗(nc3, g1)))),
⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(nc3, g1))))).

Note that cases (5)–(10) are already considered in Sec. 14.4.3.2, as they have ∗-objects at the
first position.

We first describe the handling of the first proof task:

• For pairs
(⊕(∗(nc1, g1),⊖(∗(pw, g2))),⊕(∗(nc1, g1),⊖(∗(pw, g2))))

in (1), we have ⊕(∗(nc1, g1),⊖(∗(pw, g2))) ̸= mx and ⊕(∗(nc1, g1),⊖(∗(pw, g2))) ̸=
my for the pairs (mx,my) in cases (5)–(14), as these messages have different structures.

286 CHAPTER 14. RESISTANCE PROOF OF TC-AMP

• For (m,m) in (2), where m equals ⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[g2, pw], g1))), the
required m ̸= mx and m ̸= my hold for the pairs (mx,my) in cases (5)–(14), as these
messages have different structures.

• For (m,m) in (3), where m equals ⊕(∗(inv(m[g2, pw]),∗(nc2,∗(nc1, g1))),∗(nc2, g1)),
the required m ̸= mx and m ̸= my hold for the pairs (mx,my) in cases (5)–(14), as these
messages have different structures.

• For pairs
(⊕(∗(nc1, g1),⊖(∗(nc3, g1))),⊕(∗(nc1, g1),⊖(∗(nc3, g1))))

in (4), we have ⊕(∗(nc1, g1),⊖(∗(nc3, g1))) ̸= mx and ⊕(∗(nc1, g1),⊖(∗(nc3, g1))) ̸=
my for the pairs (mx,my) in cases (5)–(14), as these messages have different structures.

The second proof task is handled as follows:

• The pairs (mx,my) in cases (5)–(10) are already shown in Sec. 14.4.3.2 to mutually
fulfill the second proof task. Furthermore, they have ∗-objects as first message mx
and⊕-objects with three basic⊕-parts as second message my. Since the pairs (mz,mu)
in cases (11)–(14) have ⊕-objects with two basic ⊕-parts as first message mz and as
second message mu, we have mx ̸= mz and my ̸= mu. That is, we may focus on cases
(11)–(14), only.

• For (mx,my) in case (11) and the pairs (mz,mu) in cases (12)–(14), we have mx ̸= mz
and my ̸= mu, as these messages have different structures.

• For (mx,my) in case (12) and the pairs (mz,mu) in cases (13) and (14), we have mx ̸= mz
and my ̸= mu, as these messages have different structures.

• For (mx,my) in case (13) and the pair (mz,mu) in case (14), we have mx ̸= mz and
my ̸= mu, as these messages have different structures.

14.4.3.4 Remaining Pairs:

In the rest of our proof, we focus on the remaining pairs of xy according to Φ, which are of
the following forms:

1. (h1(m1,∗(pw,∗(nc2, g1)),∗(nc2,⊕(m1,⊕(∗(pw, g2),∗(m1, g1))))),
h1(m1,∗(pw,∗(nc2, g1)),∗(nc2,⊕(m1,⊕(∗(pw, g2),∗(m1, g1)))))).

2. (h2(⊕(∗(nc1, g1),⊖(∗(pw, g2))),m2,⊕(∗(inv(pw),∗(nc1,m2)),
∗(inv(pw),∗(⊕(∗(nc1, g1),⊖(∗(pw, g2))),m2)))),
h2(⊕(∗(nc1, g1),⊖(∗(pw, g2))),m2,⊕(∗(inv(pw),∗(nc1,m2)),
∗(inv(pw),∗(⊕(∗(nc1, g1),⊖(∗(pw, g2))),m2))))).

3. (inv(m[g2, pw]), inv(m[g2, pw])).

4. (inv(π), inv(π′)).

The required dis-equalities for the first and the second proof task are shown trivially, as
the compared messages have different structures.

14.4.4 Handling of Ψ1
∗ and Ψ2

∗:

The remaining conditions of Ψ are inclusion rules where the premises require a composed
message in the domain or the codomain of xy that is derivable by composition. According
to Φ, this requirement holds only for ∗-, ⊕-, ⊖-, inv-, h1- and h2-objects. In this section, we
consider the pairs that include ∗- or ⊕-objects that are relevant for the proof of Ψ1

∗ and Ψ2
∗.

14.4. HANDLING OF THE PROOF OBLIGATIONS 287

We first describe the handling of Ψ1
∗. Since the relevant pairs (mx,my) for Ψ1

∗ satisfy
isSyn∗(mx), we may focus on the cases (1)–(14) in Sec. 14.4.3.2 and the cases (2), (3) and
(12)–(14) in Sec. 14.4.3.3. In cases (1), (2), (4), and (9)–(11) from Sec. 14.4.3.2 and in cases
(2) and (3) from Sec. 14.4.3.3, all left (common) ∗-sub-messages of mx are confidential. This
permits to show Ψ1

∗ by refuting its assumption. For the remaining cases, we have to provide
for every left ∗-sub-message mx1 of mx that belongs to DY(π.ik) the corresponding pairs
required for fulfilling Ψ1

∗. We first handle the cases from Sec. 14.4.3.2.

• For (∗(pw,∗(nc2, g1)),∗(pw,∗(nc2, g1))) in case (3), we have nc2, pw /∈ DY(ik). This
implies nc2 /∈ DY(π.ik) and pw ∈ DY(π.ik)⇒ pw = π. That is, we need to identify
further included pairs only when pw = π. In this case, the pair (π,π′) and case (10)
from Sec. 14.4.3.2 permit to show the conclusion of Ψ1

∗.

• For pais
(∗(m[g2,π],∗(π,∗(nc2, g1))),∗(m[g2,π],∗(π,∗(nc2, g1))))

in case (5), where m[g2,π] abbreviates a 1-st message ⊕(∗(nc1, g1),⊖(∗(π, g2))), we
get nc2 /∈ DY(π.ik). Here, we have m[g2,π],π ∈ DY(π.ik). For the ∗-sub-message
m[g2,π], case (1) from Sec. 14.4.3.3 and case (3) from Sec. 14.4.3.2 permit to show
the conclusion of Ψ1

∗; For the ∗-sub-message π, the pair (π,π′) and case (12) from
Sec. 14.4.3.2 are used to show the conclusion of Ψ1

∗.

• (∗(π,∗(nc2,∗(nc1, g1))),⊕(⊕(∗(π′,∗(nc2,∗(nc1, g1))),∗(π′,∗(nc2,∗(m[g2,π], g1)))),
⊖(∗(m[g2,π],∗(π,∗(nc2, g1)))))) is the pair of case (6), where nc2,nc1 /∈ DY(π.ik)
holds. For the non-confidential ∗-sub-message π, the pair (π,π′) and case (11) from
Sec. 14.4.3.2 permit to show the conclusion of Ψ1

∗.

• For (∗(π, g2),∗(π′, g2)) in case (7), we have g2 ∈ DY(ik). That is, (g2, g2) is in xy and
this together with the pair (π,π′) permit to show the conclusion of Ψ1

∗.

• For pairs

(∗(inv(π),∗(nc1, g1)),⊕(⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(π, g2)))), g2))

in case (8), we have nc1 /∈ DY(π.ik). Case (4) from Sec. 14.4.3.4 and case (9) from
Sec. 14.4.3.2 permit to show the conclusion of Ψ1

∗.

• For (∗(m[g2,π],∗(nc2, g1)),∗(m[g2,π],∗(inv(π′),∗(π,∗(nc2, g1))))) in case (12), we
have nc2 /∈ DY(π.ik). Case (1) from Sec. 14.4.3.3 and case (10) from Sec. 14.4.3.2 per-
mit to show the conclusion of Ψ1

∗.

• For pairs

(∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1))),
⊕(⊕(∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1))),∗(nc2, g1)),
⊖(∗(inv(π′),∗(π,∗(nc2, g1))))))

in case (13), we have nc2,nc1 /∈ DY(π.ik). Case (3) from Sec. 14.4.3.4 and case (11)
from Sec. 14.4.3.2 permit to show the conclusion of Ψ1

∗.

• For pairs

(∗(π,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),
⊕(⊕(∗(π′,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),∗(π′,∗(nc2, g1))),
⊖(∗(π,∗(nc2, g1)))))

in case (14), we have nc2,nc1 /∈ DY(π.ik). Focusing on π, the pair (π,π′) and case
(13) from Sec. 14.4.3.2 permit to show the conclusion of Ψ1

∗. For inv(m[g2,π]), case (3)
from Sec. 14.4.3.4 and case (6) from Sec. 14.4.3.2 are used to show the conclusion of
Ψ1
∗.

288 CHAPTER 14. RESISTANCE PROOF OF TC-AMP

Next, we handle the cases from Sec. 14.4.3.3.

• For pairs

(⊕(∗(π,∗(nc2,∗(nc1, g1))),∗(m[g2,π],∗(π,∗(nc2, g1)))),
⊕(∗(π′,∗(nc2,∗(nc1, g1))),∗(π′,∗(nc2,∗(m[g2,π], g1)))))

in case (12), we have nc2 /∈ DY(π.ik). The pair (π,π′) and case (2) from Sec. 14.4.3.3
permit to show the conclusion of Ψ1

∗.

• (⊕(∗(π,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),∗(π,∗(nc2, g1)))⊕(∗(π′,∗(inv(m[g2,π]),
∗(nc2,∗(nc1, g1)))),∗(π′,∗(nc2, g1)))) in case (13) implies nc2 /∈ DY(π.ik). The pair
(π,π′) and case (3) from Sec. 14.4.3.3 permit to show the conclusion of Ψ1

∗.

• For pairs

(⊕(∗(inv(π),∗(nc1, g1)),⊖(∗(inv(π),∗(nc3, g1)))),
⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(nc3, g1)))))

in case (14), we have nc1 ̸= nc3. Case (4) from Sec. 14.4.3.4 and case (4) from
Sec. 14.4.3.3 permit to show the conclusion of Ψ1

∗.

Similarly, the relevant pairs (mx,my) for Ψ2
∗ satisfy isSyn∗(my). So, we may focus on the

cases (1)–(7) and (10)–(14) in Sec. 14.4.3.2 and the cases (2), (3) and (11)–(14) in Sec. 14.4.3.3.
In cases (1)–(4), (6), (11), (13) and (14) from Sec. 14.4.3.2 and in cases (2) and (3) from
Sec. 14.4.3.3, all left (common) ∗-sub-messages of my are confidential. This permits to show
Ψ2
∗ by refuting its assumption. For the remaining cases, we have to provide for every left
∗-sub-message my1 of my that belongs to DY(π′.ik) the corresponding pairs required for
fulfilling Ψ2

∗. We first handle the cases from Sec. 14.4.3.2.

• (∗(m[g2,π],∗(π,∗(nc2, g1))),∗(m[g2,π],∗(π,∗(nc2, g1)))) in case (5), where m[g2,π]
abbreviates a 1-st message ⊕(∗(nc1, g1),⊖(∗(π, g2))), implies nc2,π /∈ DY(π′.ik).
Case (1) from Sec. 14.4.3.3 and case (3) from Sec. 14.4.3.2 permit to show the con-
clusion of Ψ2

∗.

• For (∗(π, g2),∗(π′, g2)) in case (7), the handling of Ψ2
∗ is similar to Ψ1

∗ (see above).

• For (∗(nc2, g1),∗(inv(π′),∗(π,∗(nc2, g1)))) in case (10), we have nc2,π /∈ DY(π′.ik).
Case (4) from Sec. 14.4.3.4 and case (3) from Sec. 14.4.3.3 permit to show the conclu-
sion of Ψ2

∗.

• (∗(m[g2,π],∗(nc2, g1)),∗(m[g2,π],∗(inv(π′),∗(π,∗(nc2, g1))))) in case (12) implies
nc2,π /∈ DY(π′.ik). For m[g2,π], case (1) from Sec. 14.4.3.3 and case (10) from
Sec. 14.4.3.2 permit to show the conclusion of Ψ2

∗. For inv(π′), Case (4) from
Sec. 14.4.3.4 and case (5) from Sec. 14.4.3.3 are used to show the conclusion of Ψ2

∗.

Next, we handle the cases from Sec. 14.4.3.3.

• The pair

(⊕(∗(inv(π),∗(nc1, g1)),⊖(g2)),⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(π, g2)))))

in case (11) is handled with case (4) from Sec. 14.4.3.4 and case (1) from Sec. 14.4.3.3,
which permit to show the conclusion of Ψ2

∗.

14.4. HANDLING OF THE PROOF OBLIGATIONS 289

• For pairs

(⊕(∗(π,∗(nc2,∗(nc1, g1))),∗(m[g2,π],∗(π,∗(nc2, g1)))),
⊕(∗(π′,∗(nc2,∗(nc1, g1))),∗(π′,∗(nc2,∗(m[g2,π], g1)))))

in case (12), we have nc2 /∈ DY(π′.ik). The pair (π,π′) and case (2) from Sec. 14.4.3.3
permit to show the conclusion of Ψ2

∗.

• (⊕(∗(π,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),∗(π,∗(nc2, g1)))⊕(∗(π′,∗(inv(m[g2,π]),
∗(nc2,∗(nc1, g1)))), ∗(π′,∗(nc2, g1)))) in case (13) implies nc2 /∈ DY(π′.ik). The pair
(π,π′) and case (3) from Sec. 14.4.3.3 permit to show the conclusion of Ψ2

∗.

• For pairs

(⊕(∗(inv(π),∗(nc1, g1)),⊖(∗(inv(π),∗(nc3, g1)))),
⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(nc3, g1)))))

in case (14), we use case (4) from Sec. 14.4.3.4 and case (4) from Sec. 14.4.3.3 to show
the conclusion of Ψ2

∗.

14.4.5 Handling of Ψ1
∗,⊕ and Ψ2

∗,⊕:

In this section, we consider the pairs in xy that include ⊕-objects relevant for the proof of
Ψ1
∗,⊕ and Ψ2

∗,⊕.
We first describe the handling of Ψ1

∗,⊕. Since the relevant pairs (mx,my) for Ψ1
∗,⊕ include

⊕-objects mx with non-common left ∗-parts, we may focus on the cases (1)–(4) and (11)–(14)
in Sec. 14.4.3.3. In cases (4) and (14) from Sec. 14.4.3.3, all left non-common ∗-parts of mx
are confidential. This permits to show Ψ1

∗,⊕ by refuting its assumption. For the remaining
cases, we have to provide for every non-common left ∗-part mx1 of mx that belongs to
DY(π.ik) the corresponding pairs required for fulfilling Ψ1

∗,⊕.

• For (⊕(∗(nc1, g1),⊖(∗(pw, g2))),⊕(∗(nc1, g1),⊖(∗(pw, g2)))) in case (1), we have
nc1 /∈ DY(π.ik) and pw ∈ DY(π.ik)⇒ pw = π. For π ∈ DY(π.ik), the pair (π,π′)
and case (11) from Sec. 14.4.3.3 are used to show the conclusion of Ψ1

∗,⊕.

• For pairs

(⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[g2, pw], g1))),
⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[g2, pw], g1))))

in case (2), we have nc1 /∈ DY(π.ik). Considering m[g2, pw] ∈ DY(π.ik), cases (1) and
(3) from Sec. 14.4.3.3 are used to show the conclusion of Ψ1

∗,⊕.

• For pairs

(⊕(∗(inv(m[g2, pw]),∗(nc2,∗(nc1, g1))),∗(nc2, g1)),
⊕(∗(inv(m[g2, pw]),∗(nc2,∗(nc1, g1))),∗(nc2, g1)))

in case (3), we have nc1 /∈ DY(π.ik). Considering inv(m[g2, pw]) ∈ DY(π.ik), case (3)
from Sec. 14.4.3.4 and case (2) from Sec. 14.4.3.3 are used to show the conclusion of
Ψ1
∗,⊕.

• For pairs

(⊕(∗(inv(π),∗(nc1, g1)),⊖(g2)),⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(π, g2)))))

in case (11), we have nc1 /∈ DY(π.ik). For inv(π) ∈ DY(π.ik), case (4) from
Sec. 14.4.3.4 and case (1) from Sec. 14.4.3.3 are used to show the conclusion of Ψ1

∗,⊕.

290 CHAPTER 14. RESISTANCE PROOF OF TC-AMP

• For pairs

(⊕(∗(π,∗(nc2,∗(nc1, g1))),∗(m[g2,π],∗(π,∗(nc2, g1)))),
⊕(∗(π′,∗(nc2,∗(nc1, g1))),∗(π′,∗(nc2,∗(m[g2,π], g1)))))

in case (12), we have nc1 /∈ DY(π.ik). For m[g2, pw] ∈ DY(π.ik), cases (1) and (13)
from Sec. 14.4.3.3 are used to show the conclusion of Ψ1

∗,⊕.

• For pairs

(⊕(∗(π,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),∗(π,∗(nc2, g1))),
⊕(∗(π′,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),∗(π′,∗(nc2, g1))))

in case (13), we have nc1 /∈ DY(π.ik). For inv(m[g2, pw]) ∈ DY(π.ik), case (3) from
Sec. 14.4.3.4 and case (12) from Sec. 14.4.3.3 are used to show the conclusion of Ψ1

∗,⊕.

Similarly, the relevant pairs (mx,my) for Ψ2
∗,⊕ include ⊕-objects my with non-common

left ∗-parts. So, we may focus on the cases (1)–(14) in Sec. 14.4.3.3. In cases (1), (4), (11)
and (14) from Sec. 14.4.3.3, all left non-common ∗-parts of my are confidential. This permits
to show Ψ2

∗,⊕ by refuting its assumption. For the remaining cases, we have to provide for
every non-common left ∗-part my1 of my that belongs to DY(π′.ik) the corresponding pairs
required for fulfilling Ψ2

∗,⊕.

• Cases (2), (3), (12) and (13) are handled as described for the proof of Ψ1
∗,⊕.

• For pairs

(∗(π,∗(nc2,∗(nc1, g1))),
⊕(⊕(∗(π′,∗(nc2,∗(nc1, g1))),∗(π′,∗(nc2,∗(m[g2,π], g1)))),
⊖(∗(m[g2,π],∗(π,∗(nc2, g1))))))

in case (5), we have nc1,π /∈ DY(π.ik). For m[g2, pw] ∈ DY(π′.ik), cases (1) and (10)
from Sec. 14.4.3.3 are used to show the conclusion of Ψ2

∗,⊕. For π′ ∈ DY(π′.ik), the
pair (π,π′) and case (8) from Sec. 14.4.3.3 permit to show the conclusion of Ψ2

∗,⊕.

• For pairs

(∗(inv(π),∗(nc1, g1)),⊕(⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(π, g2)))), g2))

in case (6), we have nc1,π /∈ DY(π.ik). For inv(π′) ∈ DY(π′.ik), case (4) from
Sec. 14.4.3.4 and case (7) from Sec. 14.4.3.3 permit to show the conclusion of Ψ2

∗,⊕.

• For pairs (∗(nc1, g1),⊕(⊕(∗(nc1, g1),⊖(∗(π, g2))),∗(π′, g2))) in case (7), we have
nc1,π /∈ DY(π.ik). Considering π′ ∈ DY(π′.ik), the pair (π,π′) and case (6) from
Sec. 14.4.3.3 permit to show the conclusion of Ψ2

∗,⊕. .

• For pairs

(∗(nc2,∗(nc1, g1)),
⊕(⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[g2,π], g1))),
⊖(∗(m[g2,π],∗(inv(π′),∗(π,∗(nc2, g1)))))))

in case (8), we have nc1,π /∈ DY(π.ik). Considering m[g2, pw] ∈ DY(π′.ik), cases (1)
and (9) from Sec. 14.4.3.3 are used to show the conclusion of Ψ2

∗,⊕. For inv(π′) ∈
DY(π′.ik), case (4) from Sec. 14.4.3.4 and case (5) from Sec. 14.4.3.3 permit to show
the conclusion of Ψ2

∗,⊕.

14.4. HANDLING OF THE PROOF OBLIGATIONS 291

• For pairs

(∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1))),
⊕(⊕(∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1))),∗(nc2, g1)),
⊖(∗(inv(π′),∗(π,∗(nc2, g1))))))

in case (9), we have nc1,π /∈ DY(π.ik). For inv(m[g2, pw]) ∈ DY(π′.ik), case (3) from
Sec. 14.4.3.4 and case (8) from Sec. 14.4.3.3 are used to show the conclusion of Ψ2

∗,⊕.
For inv(π′) ∈ DY(π′.ik), case (4) from Sec. 14.4.3.4 and case (10) from Sec. 14.4.3.3
permit to show the conclusion of Ψ2

∗,⊕.

• For pairs

(∗(π,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),
⊕(⊕(∗(π′,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),∗(π′,∗(nc2, g1))),
⊖(∗(π,∗(nc2, g1)))))

in case (10), we have nc1,π /∈DY(π.ik). Considering inv(m[g2, pw])∈DY(π′.ik), case
(3) from Sec. 14.4.3.4 and case (5) from Sec. 14.4.3.3 are used to show the conclusion
of Ψ2

∗,⊕. For π′ ∈ DY(π′.ik), the pair (π,π′) and case (9) from Sec. 14.4.3.3 permit to
show the conclusion of Ψ2

∗,⊕.

14.4.6 Handling of Ψ1
⊕ and Ψ2

⊕:

In this section, we consider the pairs in xy that include ⊕-objects relevant for the proof of
Ψ1
⊕ and Ψ2

⊕.
We first describe the handling of Ψ1

⊕. Since the relevant pairs (mx,my) for Ψ1
⊕ include

⊕-objects mx, we may focus on the cases (1)–(4) and (11)–(14) in Sec. 14.4.3.3. In cases (1),
(4), (11) and (14) from Sec. 14.4.3.3, all ⊕-parts of mx are confidential. This permits to show
Ψ1
⊕ by refuting its assumption. For the remaining cases, we have to provide for every
⊕-part mx1 of mx that belongs to DY(π.ik) the corresponding pairs required for fulfilling
Ψ1
⊕.

• For pairs

(⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[g2, pw], g1))),
⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[g2, pw], g1))))

in case (2), the⊕-parts of the 1-st message are in DY(π.ik) only if pw = π. Here, cases
(12) and (11) from Sec. 14.4.3.2 permit to show the conclusion of Ψ1

⊕.

• For pairs

(⊕(∗(inv(m[g2, pw]),∗(nc2,∗(nc1, g1))),∗(nc2, g1)),
⊕(∗(inv(m[g2, pw]),∗(nc2,∗(nc1, g1))),∗(nc2, g1)))

in case (3), the⊕-parts of the 1-st message are in DY(π.ik) only if pw = π. Here, cases
(10) and (13) from Sec. 14.4.3.2 permit to show the conclusion of Ψ1

⊕.

• For pairs

(⊕(∗(π,∗(nc2,∗(nc1, g1))),∗(m[g2,π],∗(π,∗(nc2, g1)))),
⊕(∗(π′,∗(nc2,∗(nc1, g1))),∗(π′,∗(nc2,∗(m[g2,π], g1)))))

in case (12), the ⊕-parts of the 1-st message are in DY(π.ik). Here, cases (5) and (6)
from Sec. 14.4.3.2 permit to show the conclusion of Ψ1

⊕.

292 CHAPTER 14. RESISTANCE PROOF OF TC-AMP

• For pairs

(⊕(∗(π,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),∗(π,∗(nc2, g1))),
⊕(∗(π′,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),∗(π′,∗(nc2, g1))))

in case (13), the ⊕-parts of the 1-st message are in DY(π.ik). Here, cases (3) and (14)
from Sec. 14.4.3.2 permit to show the conclusion of Ψ1

⊕.

Similarly, the relevant pairs (mx,my) for Ψ2
⊕ include ⊕-objects my. So, we may focus

on the cases (1)–(14) in Sec. 14.4.3.3. In cases (1)–(4) and (11)–(14) from Sec. 14.4.3.3, all ⊕-
parts of my are confidential. This permits to show Ψ2

⊕ by refuting its assumption. For the
remaining cases, we have to provide for every ⊕-part my1 of mx that belongs to DY(π′.ik)
the corresponding pairs required for fulfilling Ψ2

⊕.

• For the pairs

(∗(π,∗(nc2,∗(nc1, g1))),
⊕(⊕(∗(π′,∗(nc2,∗(nc1, g1))),∗(π′,∗(nc2,∗(m[g2,π], g1)))),
⊖(∗(m[g2,π],∗(π,∗(nc2, g1))))))

in case (5), the 2-nd message has one pair of⊕-parts in DY(π′.ik). Here, case (5) from
Sec. 14.4.3.2 and case (12) from Sec. 14.4.3.3 permit to show the conclusion of Ψ2

⊕.

• For the pairs

(∗(inv(π),∗(nc1, g1)),⊕(⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(π, g2)))), g2))

in case (6), the 2-nd message has one pair of ⊕-parts in DY(π′.ik). Here, the pair
(g2, g2) and case (11) from Sec. 14.4.3.3 permit to show the conclusion of Ψ2

⊕.

• For (∗(nc1, g1),⊕(⊕(∗(nc1, g1),⊖(∗(π, g2))),∗(π′, g2))) in case (7), the 2-nd message
has one pair of ⊕-parts in DY(π′.ik). Here, case (7) from Sec. 14.4.3.2 and case (1)
from Sec. 14.4.3.3 permit to show the conclusion of Ψ2

⊕.

• For the pairs

(∗(nc2,∗(nc1, g1)),
⊕(⊕(∗(nc2,∗(nc1, g1)),∗(nc2,∗(m[g2,π], g1))),
⊖(∗(m[g2,π],∗(inv(π′),∗(π,∗(nc2, g1)))))))

in case (8), the 2-nd message has one pair of ⊕-parts in DY(π′.ik). Here, case (12)
from Sec. 14.4.3.2 and case (2) from Sec. 14.4.3.3 permit to show the conclusion of Ψ2

⊕.

• For the pairs

(∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1))),
⊕(⊕(∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1))),∗(nc2, g1)),
⊖(∗(inv(π′),∗(π,∗(nc2, g1))))))

in case (9), the 2-nd message has one pair of ⊕-parts in DY(π′.ik). Here, case (10)
from Sec. 14.4.3.2 and case (3) from Sec. 14.4.3.3 permit to show the conclusion of Ψ2

⊕.

• For the pairs

(∗(π,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),
⊕(⊕(∗(π′,∗(inv(m[g2,π]),∗(nc2,∗(nc1, g1)))),
∗(π′,∗(nc2, g1))),⊖(∗(π,∗(nc2, g1)))))

in case (10), the 2-nd message has one pair of ⊕-parts in DY(π′.ik). Here, case (3)
from Sec. 14.4.3.2 and case (13) from Sec. 14.4.3.3 permit to show the conclusion of
Ψ2
⊕.

14.4. HANDLING OF THE PROOF OBLIGATIONS 293

14.4.7 Handling of Ψ1
⊕,mrg and Ψ2

⊕,mrg:

In this section, we consider the pairs in xy that include ⊕-objects relevant for the proof of
Ψ1
⊕,mrg and Ψ2

⊕,mrg.
The relevant couples of pairs (mx,my) and (mz,mu) for Ψ1

⊕,mrg (resp. Ψ2
⊕,mrg) include⊕-

objects mx and mz (resp. my and mu) with common⊕-parts, modulo application of⊖. Thus,
we may focus on the cases (1)–(14) in Sec. 14.4.3.3. In cases (2), (3), (5), (8)–(10), (12) and (13),
the 1-st and 2-nd messages do not have common ⊕-parts with other 1-st respectively 2-nd
messages in other (different) cases. This permits to show Ψ1

⊕,mrg and Ψ2
⊕,mrg by refuting its

assumption. For the remaining cases, we explain below for every ⊕-part of a 1-st or a 2-nd
message that occurs in several cases how the corresponding pairs required for fulfilling
Ψ1
⊕,mrg and/ or Ψ2

⊕,mrg are obtained.

• For (⊕(∗(nc1, g1),⊖(∗(pw, g2))),⊕(∗(nc1, g1),⊖(∗(pw, g2)))) in case (1), message
∗(nc1, g1) occurs in a first TC-AMP message either with pw /∈ DY(π.ik) or with
pw = π and g2 /∈ DY(ik). Such ∗(nc1, g1) occurs again in pairs

(⊕(∗(nc1, g1),⊖(∗(nc3, g1))),⊕(∗(nc1, g1),⊖(∗(nc3, g1))))

from case (4). It does not fit with the occurrence of similar ⊕-parts in pairs of case
(7), as these are used in first TC-AMP messages with g2 ∈ DY(ik). Here, case (1) itself
implies the required pair

(⊕(∗(nc3, g1),⊖(∗(pw, g2))),⊕(∗(nc3, g1),⊖(∗(pw, g2))))

to fulfill Ψ1
⊕,mrg and Ψ2

⊕,mrg.

In the same context, ∗(pw, g2) occurs again in pairs

(⊕(∗(nc3, g1),⊖(∗(pw, g2))),⊕(∗(nc3, g1),⊖(∗(pw, g2))))

from case (1), (but not in pairs from case (7)). Here, case (4) implies the required pair

(⊕(∗(nc1, g1),⊖(∗(nc3, g1))),⊕(∗(nc1, g1),⊖(∗(nc3, g1))))

to fulfill Ψ1
⊕,mrg and Ψ2

⊕,mrg.

• For (⊕(∗(nc1, g1),⊖(∗(nc3, g1))),⊕(∗(nc1, g1),⊖(∗(nc3, g1)))) in case (4), ∗(nc1, g1)
occurs in a first TC-AMP message fulfilling the conditions either of case (1) or of
case (7). The former case is handled above. For the latter case, case (7) implies the
required pair (∗(nc3, g1),⊕(⊕(∗(nc3, g1),⊖(∗(π, g2))),∗(π′, g2))) to fulfill Ψ2

⊕,mrg.

In the same context, ⊕(⊖(∗(π, g2)),∗(π′, g2)) from pairs

(∗(nc1, g1),⊕(⊕(∗(nc1, g1),⊖(∗(π, g2))),∗(π′, g2)))

in case (7) occurs again in other pairs of the same case together with ∗(nc3, g1). Here,
case (4) implies the required pair

(⊕(∗(nc1, g1),⊖(∗(nc3, g1))),⊕(∗(nc1, g1),⊖(∗(nc3, g1))))

to fulfill Ψ2
⊕,mrg.

• For (∗(inv(π),∗(nc1, g1)),⊕(⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(π, g2)))), g2))
in case (6), g2 is in DY(ik). Thus, ∗(inv(π′),∗(nc1, g1)) does not fit with similar ⊕-
parts in case (11), where g2 is confidential. It occurs again only in pairs

(⊕(∗(inv(π),∗(nc1, g1)),⊖(∗(inv(π),∗(nc3, g1)))),
⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(nc3, g1)))))

294 CHAPTER 14. RESISTANCE PROOF OF TC-AMP

from case (14). Here, case (6) itself implies the required pair

(∗(inv(π),∗(nc3, g1)),⊕(⊕(∗(inv(π′),∗(nc3, g1)),⊖(∗(inv(π′),∗(π, g2)))), g2))

to fulfill Ψ2
⊕,mrg.

In the same context, ⊕(⊖(∗(inv(π′),∗(π, g2))), g2) from case (6) can occur in two
different pairs, e.g., with ∗(inv(π′),∗(nc1, g1)) and with ∗(inv(π′),∗(nc3, g1)). Here,
case (14) implies the required pair (⊕(∗(inv(π),∗(nc1, g1)),⊖(∗(inv(π),∗(nc3, g1)))),
⊕(∗(inv(π′),∗(nc1, g1)), ⊖(∗(inv(π′),∗(nc3, g1))))) to fulfill Ψ2

⊕,mrg.

• (⊕(∗(inv(π),∗(nc1, g1)),⊖(g2)),⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(π, g2)))))
in case (11) includes a confidential atomic g2. Thus, this g2 (resp. ∗(inv(π′),∗(π, g2)))
occurs again in other pairs of the same case, e.g., with ∗(inv(π),∗(nc3, g1)) (resp.
∗(inv(π′),∗(nc3, g1))). Here, case (14) implies the required pair

(⊕(∗(inv(π),∗(nc1, g1)),⊖(∗(inv(π),∗(nc3, g1)))),
⊕(∗(inv(π′),∗(nc1, g1)),⊖(∗(inv(π′),∗(nc3, g1)))))

to fulfill Ψ1
⊕,mrg and Ψ2

⊕,mrg.

In the same context, message ∗(inv(π),∗(nc1, g1)) (resp. ∗(inv(π′),∗(nc3, g1))) from
case (11) occurs in pairs from case (14). Here, case (11) itself implies the required pair

(⊕(∗(inv(π),∗(nc3, g1)),⊖(g2)),⊕(∗(inv(π′),∗(nc3, g1)),⊖(∗(inv(π′),∗(π, g2)))))

to fulfill Ψ1
⊕,mrg and Ψ2

⊕,mrg.

14.4.8 Handling of Ψ1
inv and Ψ2

inv:

In this section, we consider the pairs in xy that have inv-objects as 1-st or 2-nd messages,
which are relevant for the handling of the proof obligations Ψ1

inv and Ψ2
inv. According to

the definition of Φ, all these pairs are of the form

• (inv(π), inv(π′)) or

• (inv(⊕(∗(nc1, g1),⊖(∗(pw, g2)))), inv(⊕(∗(nc1, g1),⊖(∗(pw, g2))))).

Hence, conditions Ψ1
inv and Ψ2

inv are clearly satisfied by the pair (π,π′) and the pairs
(⊕(∗(nc1, g1),⊖(∗(pw, g2))),⊕(∗(nc1, g1),⊖(∗(pw, g2)))) in case (1) from Sec. 14.4.3.3.

14.4.9 Proof Obligations Handled by Refutation:

The proof obligations Ψi
f st, Ψi

snd, Ψi
h1

and Ψi
h2

for i ∈ {1,2} are shown by refutation as
described in Sec. 12.4.5.

The proof of Ψ1
h2

is based on Φ and the regularity property 143-(4), as sketched in the
following table:

(h2(m1,m2,m3),my) ∈ xy, (m1,m2,m3 ∈ DY(π.ik))
⊢? (m1,my1), (m2,my2), (m3,my3) ∈ xy ∧my = h2(my1,my2,my3)

Φ yields:
my = h2(m1,m2,m3),my ∈ ik,m3 /∈ DY(ik), (m1,m2,m3 ∈ DY(π.ik))
⊢? (m1,my1), (m2,my2), (m3,my3) ∈ xy ∧ h2(m1,m2,m3) = h2(my1,my2,my3)

Property 143-(4) yields:
h2(m1,m2,m3) ∈ ik,m3 /∈ DY(pw(k).ik), (m1,m2,m3 ∈ DY(π.ik)) ⊢! ⊥

14.4. HANDLING OF THE PROOF OBLIGATIONS 295

Given an arbitrary (h2(m1,m2,m3),my) ∈ xy, the definition of Φ binds h2(m1,m2,m3) and
my to h2-messages in ik having confidential third h2-part m3. This permits to deduce by
property 143-(4) that m3 cannot occur in DY(pw(k).ik) for any password pw(k). Hence,
this allows us to conclude by refuting the assumption m3 ∈ DY(π.ik).

The proof obligations Ψ1
h2

, Ψ1
h1

and Ψ2
h1

are shown similar to Ψ1
h2

.

14.4.10 Handling of Γ:

Proof obligation Γ requires that every element in kb = π.ik is mapped by
xy
; to the element

in kb′ = π′.ik at the same position. This holds obviously for the first elements π and π′, as
Φ ensures (π,π′) ∈ xy. For the remaining elements, the proof is by the following lemma:

PropertyVSE 145 (Γ Property of
xy
;):

(tr ∈ TCAMP ∧ π ̸∈ DY(spies(tr)) ∧ (∀m ∈ spies(tr) : ¬uses(m,π′)) ∧
((∃g1, g2,nc1 : ⊕(∗(nc1, g1),⊖(∗(π, g2))) ∈ spies(tr)) ∨
(∃g1,nc2,m2,2 : pair(∗(nc2,∗(π, g1)),m2,2) ∈ spies(tr))) ∧

Φ(xy, spies(tr),π,π′) ∧m ∈ DY(spies(tr)))

⇒ m
xy
; m

Similar to property 120, this lemma is shown by induction on |m|.

Base Case: For m = ci and ci ∈ DY(ik), lemma 122 provides ci
xy↔ m′ with (ci,m′) ∈ xy.

According to Φ, we distinguish mainly two cases:

• (ci,m′) = (π,π′): This yields ci = π and thus π ∈ DY(ik), which permits to conclude
by refutation based on Ω.

• (ci,m′) is of the form (ag(j), ag(j)), (num(j),num(j)), (nc(j),nc(j)) or (pw(j), pw(j)):
This yields m′ = ci, as required.

Step Case: For an arbitrary composed m ∈ DY(ik), we show m
xy
; m simply by Φ when

m ∈ dom(xy): According to Φ, xy includes pairs (m1,m2) with m1 ̸= m2 only if m1 /∈ DY(ik)
holds. This can be simply shown with the help of the basic and other dedicated confiden-
tiality properties. Consequently, m ∈ DY(ik) and (m,m′) ∈ xy imply m′ = m, as required.

In the complementary case, Ψc ensures that m can be composed from sub-messages in
DY(π.ik). We want to show (in the following case distinction) that these sub-messages

belong to DY(ik), in order to obtain m
xy
; m by the induction hypothesis.

• In case isObj⊕(m), we apply the regularity property 141-(2). This yields four cases:

– There is m1,m2 ∈ DY(ik) with obj⊕(m,m1,m2) or syn∗(m,m1,m2): Here, the in-
duction hypothesis applies.

– Three further cases bind m to regular messages in ik. For instance, we obtain a
case where m = ⊕(∗(nc1, g1),⊖(∗(pw, g2))), m ∈ ik and nc1, pw /∈ DY(ik) hold.
This implies (m,m)∈ xy, according to the second rule of Φ4. Hence, we conclude
this case by refutation using m /∈ dom(xy).

• In case isObj∗(m), we apply the regularity property 140-(2). This yields four cases:

296 CHAPTER 14. RESISTANCE PROOF OF TC-AMP

– There is m1,m2 ∈ DY(ik) with obj∗(m,m1,m2): Here, the induction hypothesis
applies.

– Three further cases bind m to regular messages in ik. For instance, we obtain a
case where m = ∗(nc1, g1), ⊕(m,⊖(∗(pw, g2))) ∈ ik, pw, g2 /∈ DY(ik) and nc1 /∈
DY(ik) hold. This implies (m,m) ∈ xy, according to the first rule of Φ4. Hence,
we conclude this case by refutation using m /∈ dom(xy).

• In case m = h1(m1,m2,m3) (resp. m = h2(m1,m2,m3)), the regularity property 143-(2)
(resp. 143-(4)) provides m1,m2,m3 ∈ DY(ik), because otherwise m must belong to
dom(xy).

• All other cases are trivially reduced (using corresponding regularity properties
in 144) to sub-messages in DY(ik), permitting to conclude with the induction hy-
pothesis.

Chapter 15

Conclusion and Future Work

The formal analysis of cryptographic protocols is a very active research area. Various ap-
proaches have been published in the last three decades. The focus was first on the (auto-
mated) verification of standard protocol properties, i.e. confidentiality and authentication.
Later it moved to application-specific protocol properties relying also on cryptographic
primitives beyond the simple enc-dec scenario. Coping with these (new) algebraic proper-
ties is therefore crucial for future work in this field.

In this thesis, we presented a comprehensive approach for the inductive verification of
cryptographic protocols based on complex algebraic specifications. Besides the verification
of standard properties as well as other kinds of trace properties, our approach includes a
(new) proof technique for indistinguishability properties. This allows to verify properties,
like resistance against offline testing, anonymity, and fairness in e-voting.

In addition, our approach combines tool-support with the flexibility to add new con-
cepts and enhance the degree of automatization. For that reason, it promises to broaden
the scope of formal protocol verification to many new protocol families and security prop-
erties. With respect to this goal, we provide a brief summary of our contributions and
propose related future work.

15.1 Extensions of Equational Systems

We have presented an approach to extend general equational specifications with concepts
that permit the definition of recursive functions and proofs by induction. In cases where
no explicit constructors for freely generated structures are given, the implicit structures are
made explicit by predicates obj f (one for each function symbol f with arity n > 0). obj f

expresses a relation between composed objects and their direct substructures, meaning that the
objects are result of a constructor-type application of f to the direct substructures. Based
on these predicates we describe the effect of basic operations. This extension is gained by
analyzing the operational effects of an equivalent (modular) rewriting system.

Our approach is an important contribution to inductive theorem proving in general, in
the same direction as [93].

Future Work: In the axiomatization schemata we use the fact that the non-orientable
equations can be partitioned into permutative theories on same function symbols. We
expect that our axiomatization approach can be straightforwardly adapted to the more
general case where the non-orientable equations are finite equivalence class theories. It
is worth to investigate and pursue this idea with further case studies from other fields
of formal methods, where the models are based on more general algebraic specifications.
Furthermore, the systematic generation of our axioms from a complete modular rewriting
system can be exploited to implement more tool-support (see Sec. 15.4).

297

298 CHAPTER 15. CONCLUSION AND FUTURE WORK

15.2 A New Proof Technique for Confidentiality Properties

To support confidentiality proofs we have introduced recursive check-functions that test
single immediately observable messages (in ik) to protect given sets S of secrets. The check-
functions are shown to be correct with respect to an inductively defined attacker model.
They can be pessimistic, in the sense that not every item classified as ”critical” actually
permits the derivation of some element in S.

Our proof technique makes use of canonical basic check-functions (ccl1) that are defined
the same way in all message algebras. Additional techniques are necessary to cope with
situations where ccl1 cannot be applied directly.

• Secrets outside, i.e. without any protected occurrence inside, protocol messages can be
partially known (by a description). In these cases the set S cannot be given explicitly
as required by ccl1. To solve this problem, we prove confidentiality of a secret s by re-
duction to substructures required for its composition. Their confidentiality is shown
according to the applicable technique. For the necessary checks and the reduction
theorems, we use a simplified variant of ccl1 (ccl2).
The functions ccl1 and ccl2 are uniform, but restricted to secrets that cannot be obtained
by merging.

• The problem with merging is that there are infinitely many items allowing a derivation
of s. For s outside protocol messages, we dealt with this problem by a protocol-specific
invariant that permits to get rid of irrelevant merging operations. It provides a com-
plete case distinction on the derivable messages from ik that are of the same type as s.
This is used to show that none of the derivable messages matches s.
Appropriate invariants identify the secrets inside protocol messages and these are
shown confidential using either ccl1 or ccl3 (see below).

• The problem with merging of secrets inside protocol messages is even more com-
plicated because they are protected by other secrets to prevent their derivation by
extraction. Therefore, we adapted our testing approach relative to sets S of secrets
using a new check-function ccl3 that extends ccl1 with additional checks to integrate
merging. In particular, we use just the relevant results of merging operations given
by an additional argument P. The corresponding correctness proof of ccl3 requires
additional conditions for S and P.

As the verification of PACE and TC-AMP does not require a check-function ccl3, we
demonstrated the corresponding technique with a devised example protocol. We expect
that the proposed solutions are complete, in the sense that confidentiality properties in other
case studies and other message algebras can be verified using these techniques. We claim
that new kinds of operations (if any) that pose a similar problem like merging can be han-
dled following these lines.

Future Work: More case studies are clearly of interest to confirm our claim and to further
develop our techniques.

In addition, the critical operation effects are identified by a systematic analysis of the
basic operations and provide guidance for the instantiation of the schemata in the definition
of the check-functions and their corresponding proofs. These proofs including the protocol-
specific invariants follow a common proof schema. This can be exploited to implement
stronger tool-support (see Sec. 15.4).

15.3 A Proof Technique for Indistinguishability Properties

Indistinguishability properties are defined for given pairs of knowledge bases kb,kb′ using
generic derivations δ and δ′. The equivalence δ(kb) = δ′(kb)⇔ δ(kb′) = δ′(kb′) ensures that

15.4. TOOL-SUPPORT AND CASE STUDIES 299

all algorithms using equality checks for the computation of a property-specific predicates
yield same result for kb and kb′.

We have developed techniques to prove this equivalence using an appropriate simula-
tion relation ; satisfying δ(kb); δ(kb′) for all generic derivations δ.

Our axiomatization is based on an enumeration of generic derivations applied to inputs
(kb/kb′). Required properties of simulation relations are proved by induction on the indices
of the enumeration. This is done only once for each message algebra in a corresponding central
theorem. This theorem reduces the required property to necessary and sufficient conditions
on a finite set of message pairs, used to define infinite simulation relations by composition,
and on the knowledge the attacker is able to obtain from kb and kb′, respectively. They can
be established by help of regularity properties verified by trace induction.

Noteworthy, our central theorem applies to all kinds of indistinguishability properties
achieved by cryptographic protocols.

Future Work: We applied our proof technique to show resistance against offline password
testing (of PACE and TC-AMP). It is worth to consider further case studies, in particular
security protocols aiming at anonymity in various application contexts and fairness in e-
voting.

We developed the above techniques for the PACE and the TC-AMP algebra. The parts
dealing with derivations by canonical operations (constructor-type and extraction oper-
ations) are uniform, i.e. handled according to a same schema. Only the parts dealing
with derivations by non-canonical operations need to be handled by more or less algebra-
specific adaptations. Again, the majority of the proof steps are carried out according to
same schemata and this can be for sure exploited to implement more tool-support (see
Sec. 15.4).

15.4 Tool-Support and Case Studies

We applied our inductive method for the verification of PACE in the VSE tool. For that pur-
pose, we added a second branch to the protocol verification framework of VSE which we
had previously implemented for the enc-dec scenario. This framework includes specifica-
tion facilities in form of (re-usable) abstract data type (ADT) theories and proof construction
facilities in form of proof heuristics.

The re-use of ADT theories and specification schemes from the previous VSE frame-
work allowed us to re-use many domain-specific proof heuristics. Additionally, we added
frequently used proof heuristics for our new proof techniques, in order to achieve the veri-
fication of PACE with acceptable proof effort. The proof heuristics of the second branch
permitted us to save up in average more than 80 % of the required interactions in a step-
by-step mode.

In the thesis, we also described our proof techniques in the context of the TC-AMP alge-
bra together with their applications to the TC-AMP protocol. The result is a fully worked
out security proof. The presented specification and verification details are quite sufficient to
obtain corresponding machine-checked proofs in VSE, by re-using and adapting the above
mentioned new branch in the VSE tool to the TC-AMP algebra and protocol.

Future Work: Our presentation of the new techniques emphasized the generic parts and
described how to deal with the algebra-specific parts by appropriate adaptations. Addi-
tionally, we structured our implementation of the second branch in VSE based on the lo-
cality feature of the VSE tool. These aspects are expected to support the adaptation of the
algebra-specific ADT theories and of proof heuristics to new message algebras.

300 CHAPTER 15. CONCLUSION AND FUTURE WORK

Clearly, more tool-support in VSE facilitates the replay of our verification of TC-AMP
in VSE to obtain a machine-checked security proof and the application of our approach
to further case studies. Support for specification tasks and more proof heuristics can be
implemented based on the described specification and proof schemata. Additionally, it is
worth to investigate whether domain-specific reformulation and analogy-driven adapta-
tion techniques are helpful.

Our approach is not VSE-specific. The described general methodology provides the ba-
sis for an implementation in similar tools like Isabelle/HOL, [80], KIV, [53], and Coq, [67],
where extensions do not as in VSE change the kernel inference machine.

Finally, the flexibility of the inductive method regarding extensions with fully new con-
cepts, as demonstrated in this thesis, can be confirmed by trying the verification of new
protocol classes and their application-specific properties.

Bibliography

[1] Martı́n Abadi and Véronique Cortier. Deciding knowledge in security protocols un-
der equational theories. Theor. Comput. Sci., 367(1-2):2–32, 2006.

[2] Martı́n Abadi and Cédric Fournet. Private authentication. Theor. Comput. Sci.,
322(3):427–476, September 2004.

[3] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. Analysing unlinkabil-
ity and anonymity using the applied pi calculus. 2010 23rd IEEE Computer Security
Foundations Symposium, pages 107–121, 2010.

[4] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes
Drielsma, P. C. Heám, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Ohe-
imb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The avispa
tool for the automated validation of internet security protocols and applications. In
Kousha Etessami and Sriram K. Rajamani, editors, Computer Aided Verification, pages
281–285, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[5] Alessandro Armando, Roberto Carbone, and Luca Compagna. Satmc: A sat-based
model checker for security-critical systems. In Erika Ábrahám and Klaus Havelund,
editors, Tools and Algorithms for the Construction and Analysis of Systems, pages 31–45,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[6] Alessandro Armando and Luca Compagna. Sat-based model-checking for security
protocols analysis. In D. Gollmann, J. Lopez, C.A. Meadows, and E. Okamoto, edi-
tors, International Journal of Information Security. Springer, September 2007.

[7] Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer. System description:
Inka 5.0 - a logical voyager. In H.Ganzinger, editor, Proceedings 16th International
Conference on Automated Deduction, CADE-16. Springer-Verlag, LNAI 1632, 1999.

[8] F. Baader and K. U. Schulz. Unification in the union of disjoint equational theories:
Combining decision procedures. J. Symbolic Computation, 21:211–243, 1996.

[9] Leo Bachmair and Nachum Dershowitz. Completion for rewriting modulo a congru-
ence. Theor. Comput. Sci., 67(2&3):173–201, 1989.

[10] Michael Backes, Catalin Hritcu, and Matteo Maffei. Automated verification of remote
electronic voting protocols in the applied pi-calculus. In Computer Security Founda-
tions Symposium, 2008. CSF’08. IEEE 21st, pages 195–209. IEEE, 2008.

[11] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable crypto-
graphic library with nested operations. In CCS ’03: Proceedings of the 10th ACM con-
ference on Computer and communications security, pages 220–230, New York, NY, USA,
2003. ACM.

301

302 BIBLIOGRAPHY

[12] David A. Basin, Srdjan Capkun, Patrick Schaller, and Benedikt Schmidt. Let’s get
physical: Models and methods for real-world security protocols. In Theorem Proving
in Higher Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany,
August 17-20, 2009. Proceedings, pages 1–22, 2009.

[13] David A. Basin, Jannik Dreier, and Ralf Sasse. Automated symbolic proofs of obser-
vational equivalence. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, Denver, CO, USA, October 12-6, 2015, pages 1144–1155,
2015.

[14] David A. Basin, Sebastian Mödersheim, and Luca Viganò. Ofmc: A symbolic model
checker for security protocols. Int. J. Inf. Sec., 4(3):181–208, 2005.

[15] Giampaolo Bella, Fabio Massacci, and Lawrence C. Paulson. Verifying the SET regis-
tration protocols. IEEE Journal on Selected Areas in Communications, 21(1):77–87, 2003.

[16] Giampaolo Bella and Lawrence C. Paulson. Kerberos version 4: Inductive analysis
of the secrecy goals. In Computer Security - ESORICS 98, 5th European Symposium on
Research in Computer Security, Louvain-la-Neuve, Belgium, September 16-18, 1998, Pro-
ceedings, pages 361–375, 1998.

[17] Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based
protocols secure against dictionary attacks. In SP ’92: Proceedings of the 1992 IEEE
Symposium on Security and Privacy, page 72, Washington, DC, USA, 1992. IEEE Com-
puter Society.

[18] Jens Bender, D. Kügler, M. Margraf, and I. Naumann. Privacy-friendly revocation
management without unique chip identifiers for the german national id card. Com-
puter Fraud and Security, 2010:14–17, 2010.

[19] J. A. Bergstra and J. V. Tucker. Equational specifications, complete term rewriting
systems, and computable and semicomputable algebras. Journal of the Association for
Computing Machinery, 42:1194–1230, 1995.

[20] Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In 14th IEEE Computer Security Foundations Workshop (CSFW-14), pages 82–96, Cape
Breton, Nova Scotia, Canada, June 2001. IEEE Computer Society.

[21] Bruno Blanchet. Automatic verification of correspondences for security protocols.
Journal of Computer Security, 17(4):363–434, July 2009.

[22] Bruno Blanchet. Using Horn clauses for analyzing security protocols. In Véronique
Cortier and Steve Kremer, editors, Formal Models and Techniques for Analyzing Security
Protocols, volume 5 of Cryptology and Information Security Series, pages 86–111. IOS
Press, MAR 2011.

[23] Bruno Blanchet. Modeling and verifying security protocols with the applied pi calcu-
lus and ProVerif. Foundations and Trends in Privacy and Security, 1(1–2):1–135, October
2016.

[24] Bruno Blanchet, Martı́n Abadi, and Cédric Fournet. Automated verification of se-
lected equivalences for security protocols. Journal of Logic and Algebraic Programming,
75(1):3–51, 2008.

[25] Yohan Boichut, Nikolai Kosmatov, Laurent Vigneron, Y. Boichut, N. Kosmatov, and
L. Vigneron. Validation of prouvé protocols using the automatic tool ta4sp. In 3rd
Taiwanese-French Conference on Information Technology, pages 467–480, 2006.

BIBLIOGRAPHY 303

[26] Thierry Boy de la Tour and Mnacho Echenim. Permutative rewriting and unification.
Inf. Comput., 205(4):624–650, April 2007.

[27] Alan Bundy, Frank van Harmelen, Christian Horn, and Alan Smaill. The oyster-
clam system. In Mark E. Stickel, editor, 10th International Conference on Automated
Deduction, Kaiserslautern, FRG, July 24-27, 1990, Proceedings, volume 449 of Lecture
Notes in Computer Science, pages 647–648. Springer, 1990.

[28] Denis Butin, David Gray, and Giampaolo Bella. Towards verifying voter privacy
through unlinkability. In Proceedings of the 5th International Conference on Engineer-
ing Secure Software and Systems, ESSoS’13, pages 91–106, Berlin, Heidelberg, 2013.
Springer-Verlag.

[29] Rohit Chadha, Ştefan Ciobâcă, and Steve Kremer. Automated verification of equiv-
alence properties of cryptographic protocols. In Helmut Seidl, editor, Programming
Languages and Systems —Proceedings of the 21th European Symposium on Programming
(ESOP’12), volume 7211 of Lecture Notes in Computer Science, pages 108–127, Tallinn,
Estonia, March 2012. Springer.

[30] Lassaad Cheikhrouhou, Andreas Nonnengart, Werner Stephan, Frank Koob, and
Georg Rock. Automating interactive protocol verification. In KI 2008: Advances in
Artificial Intelligence, 31st Annual German Conference on AI, KI 2008, Kaiserslautern, Ger-
many, September 23-26, 2008. Proceedings, volume 5243 of Lecture Notes in Computer
Science, pages 30–37. Springer, 2008.

[31] Lassaad Cheikhrouhou, Georg Rock, Werner Stephan, Matthias Schwan, and Gunter
Lassmann. Verifying a chip-card-based biometric identification protocol in VSE.
In Janusz Górski, editor, Proceedings of the 25th International Conference on Computer
Safety, Security and Reliability (SAFECOMP 2006), volume 4166 of Lecture Notes in Com-
puter Science, pages 42–56. Springer-Verlag, 2006.

[32] Lassaad Cheikhrouhou, Werner Stephan, Özgür Dagdelen, Marc Fischlin, and
Markus Ullmann. Merging the cryptographic security analysis and the algebraic-
logic security proof of PACE. In Neeraj Suri and Michael Waidner, editors, Sicherheit
2012: Sicherheit, Schutz und Zuverlässigkeit, Beiträge der 6. Jahrestagung des Fachbereichs
Sicherheit der Gesellschaft für Informatik e.V. (GI), 7.-9. März 2012 in Darmstadt, volume
P-195 of LNI, pages 83–94. GI, 2012.

[33] Lassaad Cheikhrouhou, Werner Stephan, and Markus Ullmann. A new approach to
the inductive verification of cryptographic protocols based on message algebras. In
Marek Kosta and Thomas Sturm, editors, MACIS 2013 –Fifth International Conference
on Mathematical Aspects of Computer and Information Sciences, 2013.

[34] Vincent Cheval. Apte: an algorithm for proving trace equivalence. In Erika Ábrahám
and JKlaus Havelund, editors, Proceedings of the 20th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’14), volume 8413
of Lecture Notes in Computer Science, pages 587–592, Grenoble, France, April 2014.
Springer Berlin Heidelberg.

[35] Vincent Cheval and Bruno Blanchet. Proving more observational equivalences with
proverif. In Proceedings of the Second International Conference on Principles of Security
and Trust, POST’13, pages 226–246, Berlin, Heidelberg, 2013. Springer-Verlag.

[36] Yannick Chevalier, Luca Compagna, Jorge Cuellar, Paul Hankes Drielsma, Jacopo
Mantovani, Sebastian Moedersheim, and Laurent Vigneron. A High Level Protocol
Specification Language for Industrial Security-Sensitive Protocols. In Workshop on
Specification and Automated Processing of Security Requirements - SAPS’2004, page 13 p,

304 BIBLIOGRAPHY

Linz, Austria, 2004. Austrian Computer Society. Colloque avec actes et comité de
lecture. internationale.

[37] Yannick Chevalier, Ralf Küsters, Michaël Rusinowitch, and Mathieu Turuani. An
NP decision procedure for protocol insecurity with XOR. Theor. Comput. Sci., 338(1-
3):247–274, 2005.

[38] Hubert Comon-Lundh and Stéphanie Delaune. The finite variant property: How to
get rid of some algebraic properties. In Proceedings of the 16th International Conference
on Term Rewriting and Applications, RTA’05, pages 294–307, Berlin, Heidelberg, 2005.
Springer-Verlag.

[39] Hubert Comon-Lundh and Stéphanie Delaune. The finite variant property: How
to get rid of some algebraic properties. In Jürgen Giesl, editor, Proceedings of the
16th International Conference on Rewriting Techniques and Applications (RTA’05), volume
3467 of Lecture Notes in Computer Science, pages 294–307, Nara, Japan, April 2005.
Springer.

[40] Ricardo Corin, Jeroen Doumen, and Sandro Etalle. Analysing password protocol
security against off-line dictionary attacks. Electr. Notes Theor. Comput. Sci., 121:47–
63, 2005.

[41] Véronique Cortier and Stéphanie Delaune. A method for proving observational
equivalence. In Proceedings of the 22nd IEEE Computer Security Foundations Symposium,
CSF 2009, Port Jefferson, New York, USA, July 8-10, 2009, pages 266–276, 2009.

[42] Véronique Cortier, Stéphanie Delaune, and Pascal Lafourcade. A survey of algebraic
properties used in cryptographic protocols. Journal of Computer Security, 14(1):1–43,
2006.

[43] Véronique Cortier and Bogdan Warinschi. Computationally sound, automated
proofs for security protocols. In Shmuel Sagiv, editor, Programming Languages and
Systems, 14th European Symposium on Programming,ESOP 2005, volume 3444 of Lec-
ture Notes in Computer Science, pages 157–171. Springer, 2005.

[44] Cas J. Cremers. The scyther tool: Verification, falsification, and analysis of security
protocols. In Proceedings of the 20th International Conference on Computer Aided Verifica-
tion, CAV ’08, pages 414–418, Berlin, Heidelberg, 2008. Springer-Verlag.

[45] Cas J. F. Cremers and Dennis Jackson. Prime, order please! revisiting small subgroup
and invalid curve attacks on protocols using diffie-hellman. 2019 IEEE 32nd Computer
Security Foundations Symposium (CSF), pages 78–7815, 2019.

[46] Casper: A Compiler for the Analysis of Security Protocols. http://www.cs.ox.ac.

uk/people/gavin.lowe/Security/Casper/index.html. visited on 2022-01-30.

[47] FDR2 User Manual. http://www.cs.ox.ac.uk/projects/concurrency-tools/fdr

-2.94-html-manual/index.html. visited on 2022-01-29.

[48] D. Dolev and A. C. Yao. On the security of public key protocols. In SFCS ’81: Proceed-
ings of the 22nd Annual Symposium on Foundations of Computer Science, pages 350–357,
Washington, DC, USA, 1981. IEEE Computer Society.

[49] Ben Donovan, Paul Norris, and Gavin Lowe. Analyzing a library of security pro-
tocols using Casper and FDR. In Proceedings of the Workshop on Formal Methods and
Security Protocols, 1999.

BIBLIOGRAPHY 305

[50] Jannik Dreier, Charles Duménil, Steve Kremer, and Ralf Sasse. Beyond subterm-
convergent equational theories in automated verification of stateful protocols. In
Matteo Maffei and Mark Ryan, editors, Principles of Security and Trust, pages 117–140,
Berlin, Heidelberg, 2017. Springer Berlin Heidelberg.

[51] Jannik Dreier, Lucca Hirschi, Saša Radomirović, and Ralf Sasse. Verification of state-
ful cryptographic protocols with exclusive or. Journal of Computer Security, 28(1),
February 2020.

[52] Francisco Durán, Steven Eker, Santiago Escobar, José Meseguer, and Carolyn L. Tal-
cott. Variants, unification, narrowing, and symbolic reachability in maude 2.6. In
Proceedings of the 22nd International Conference on Rewriting Techniques and Applications,
RTA 2011, May 30 - June 1, 2011, Novi Sad, Serbia, pages 31–40, 2011.

[53] Gidon Ernst, Jörg Pfähler, Gerhard Schellhorn, Dominik Haneberg, and Wolfgang
Reif. KIV: overview and verifythis competition. Int. J. Softw. Tools Technol. Transf.,
17(6):677–694, 2015.

[54] Santiago Escobar, Catherine A. Meadows, and José Meseguer. State space reduction
in the maude-nrl protocol analyzer. In Computer Security - ESORICS 2008, 13th Eu-
ropean Symposium on Research in Computer Security, Málaga, Spain, October 6-8, 2008.
Proceedings, pages 548–562, 2008.

[55] F. Javier Thayer Fábrega. Strand spaces: Proving security protocols correct. J. Comput.
Secur., 7(2-3):191–230, March 1999.

[56] Kryptographische Vorgaben für Projekte der Bundesregierung, Teil 3: Intelligente
Messsysteme. BSI TR-03116, 3. March 2021.

[57] The electronic ID card. https://www.bsi.bund.de/EN/Topics/ElectrIDDocuments
/eIDcard/eIDcard_node.html. visited on 2022-01-30.

[58] Bernd Finkbeiner, Christian Müller, Helmut Seidl, and Eugen Zălinescu. Verifying
security policies in multi-agent workflows with loops. Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, Oct 2017.

[59] Federal Office for Information Security (BSI). Advanced Security Mechanisms for
Machine Readable Travel Documents and eIDAS Token – Part 1 – eMRTDs with
BAC/PACEv2 and EACv1, BSI TR-03110-1, Version 2.20, 26. February 2015. https:
//www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Standards-

und-Zertifizierung/ Technische-Richtlinien/ TR-nach-Thema-sortiert/

tr03110/TR-03110_node.html. visited on 2022-01-30.

[60] Federal Office for Information Security (BSI). Advanced Security Mechanisms for
Machine Readable Travel Documents and eIDAS Token – Part 2 – Protocols for elec-
tronic IDentification, Authentication and trust Services (eIDAS), BSI TR-03110-2, Ver-
sion 2.21. https://www.bsi.bund.de/DE/Themen/Unternehmen-und-
Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-

nach-Thema-sortiert/tr03110/TR-03110_node.html. visited on 2022-01-30.

[61] Federal Office for Information Security (BSI). Technical Guideline: Advanced Secu-
rity Mechanisms for Machine Readable Travel Documents – Extended Access Con-
trol (EAC), BSI TR-03110, Version 1.0. https://www.befreite-dokumente.de/www.

befreite-dokumente.de/eingereichte-akten/tr-03110-eac-1.0/attachment_

download/publication_download.pdf. visited on 2022-01-20.

306 BIBLIOGRAPHY

[62] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting
scheme for large scale elections. In Proceedings of the Workshop on the Theory and Ap-
plication of Cryptographic Techniques: Advances in Cryptology, ASIACRYPT ’92, pages
244–251, London, UK, UK, 1993. Springer-Verlag.

[63] Lucca Hirschi, David Baelde, and Stéphanie Delaune. A method for unbounded
verification of privacy-type properties. J. Comput. Secur., 27(3):277–342, 2019.

[64] Gerard Huet. Confluence reductions: Abstract properties and applications to term
rewriting systems. J. ACM, 1980.

[65] Dieter Hutter, Bruno Langenstein, Georg Rock, Jörg H. Siekmann, Werner Stephan,
and Roland Vogt. Formal software development in the verification support envi-
ronment (vse). Journal of Experimental and Theoretical Artificial Intelligence, 12:383–406,
2000.

[66] Doc 9303: Machine Readable Travel Documents, Eighth Edition, 2021, Part 11: Se-
curity Mechanisms for MRTDs. https://www.icao.int/publications/Documents/
9303_p11_cons_en.pdf. visited on 2022-01-30.

[67] The Coq Proof Assistant. https://coq.inria.fr/. visited on 2022-01-30.

[68] David P. Jablon. Strong password-only authenticated key exchange. SIGCOMM Com-
put. Commun. Rev., 26(5):5–26, 1996.

[69] David P. Jablon. Extended password key exchange protocols immune to dictionary
attack. In Proceedings of the WETICE’97 Workshop on Enterprise Security, Cambridge,
MA, USA, 1997.

[70] Jean-Pierre Jouannaud. Confluent and coherent equational term rewriting systems:
... SIAM J. Comput., 15(4):1155–1194, November 1986.

[71] Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a set of rules modulo a
set of equations. SIAM J. Comput., 15(4):1155–1194, November 1986.

[72] Steve Kremer and Mark Ryan. Analysis of an electronic voting protocol in the ap-
plied pi calculus. In Programming Languages and Systems, 14th European Symposium on
Programming,ESOP 2005, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings, pages
186–200, 2005.

[73] Taekyoung Kwon. Practical authenticated key agreement using passwords. In the 7th
Information Security Conference (ISC, pages 1–12. Springer-Verlag, 2004.

[74] Yongjian Li and Jun Pang. Formalizing provable anonymity in isabelle/hol. Form.
Asp. Comput., 27(2):255–282, March 2015.

[75] Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf. Specification of abstract data
types. Wiley, 1996.

[76] Catherine A. Meadows. The NRL protocol analyzer: An overview. J. Log. Program.,
26(2):113–131, 1996.

[77] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The tamarin prover
for the symbolic analysis of security protocols. In Proceedings of the 25th International
Conference on Computer Aided Verification, CAV’13, pages 696–701, Berlin, Heidelberg,
2013. Springer-Verlag.

[78] Markus Müller. A Comparison of Tools for Cryptographic Protocol Analysis. Mas-
ter’s thesis, Saarland University, Germany, 2012.

BIBLIOGRAPHY 307

[79] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication
in large networks of computers. Commun. ACM, 21(12):993–999, December 1978.

[80] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science.
Springer, 2002.

[81] Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale elections. In
Proceedings of the 5th International Workshop on Security Protocols, pages 25–35, London,
UK, UK, 1998. Springer-Verlag.

[82] Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6(1-2):85–128, 1998.

[83] Lawrence C. Paulson. Inductive analysis of the internet protocol TLS. ACM Trans.
Inf. Syst. Secur., 2(3):332–351, 1999.

[84] Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions for some equa-
tional theories. J. ACM, 28(2):233–264, April 1981.

[85] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous connections and
onion routing. IEEE Journal on Selected Areas in Communications, 16(4):482–494, May
1998.

[86] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web transactions.
ACM Trans. Inf. Syst. Secur., 1(1):66–92, November 1998.

[87] Georg Rock, Gunter Lassmann, Mathias Schwan, and Lassaad Cheikhrouhou.
Verisoft–secure biometric identification system. In Digital Excellence, pages 83–97.
Springer, 2008.

[88] Sonia Santiago, Santiago Escobar, Catherine A. Meadows, and José Meseguer. A
formal definition of protocol indistinguishability and its verification using maude-
npa. In Sjouke Mauw and Christian Damsgaard Jensen, editors, Security and Trust
Management - 10th International Workshop, STM 2014, Wroclaw, Poland, September 10-
11, 2014. Proceedings, volume 8743 of Lecture Notes in Computer Science, pages 162–177.
Springer, 2014.

[89] Ralf Sasse, Santiago Escobar, Catherine Meadows, and José Meseguer. Protocol anal-
ysis modulo combination of theories: A case study in maude-npa. In Proceedings of the
6th International Conference on Security and Trust Management, STM’10, pages 163–178,
Berlin, Heidelberg, 2011. Springer-Verlag.

[90] Benedikt Schmidt, Simon Meier, Cas Cremers, and David Basin. Automated analy-
sis of diffie-hellman protocols and advanced security properties. In 2012 IEEE 25th
Computer Security Foundations Symposium, pages 78–94, 2012.

[91] Benedikt Schmidt, Simon Meier, Cas J. F. Cremers, and David A. Basin. Automated
analysis of diffie-hellman protocols and advanced security properties. 2012 IEEE 25th
Computer Security Foundations Symposium, pages 78–94, 2012.

[92] Benedikt Schmidt, Ralf Sasse, Cas J. F. Cremers, and David A. Basin. Automated
verification of group key agreement protocols. 2014 IEEE Symposium on Security and
Privacy, pages 179–194, 2014.

[93] Claus Sengler. Induction on non-freely generated data types. Technical report, DFKI,
1996.

[94] Jörg H. Siekmann. Unification theory. J. Symb. Comput., 7(3-4):207–274, March 1989.

308 BIBLIOGRAPHY

[95] D. Singelee and B. Preneel. Location verification using secure distance bounding
protocols. In Mobile Adhoc and Sensor Systems Conference, 2005. IEEE International Con-
ference on, pages 7 pp.–840, Nov 2005.

[96] Dawn Xiaodong Song. Athena: A new efficient automatic checker for security proto-
col analysis. In Proceedings of the 12th IEEE Workshop on Computer Security Foundations,
CSFW ’99, pages 192–, Washington, DC, USA, 1999. IEEE Computer Society.

[97] Common Authentication Protocol Specification Language (CAPSL). http://www.

csl.sri.com/projects/capsl/. visited on 2022-01-30.

[98] Paul F. Syverson, David M. Goldschlag, and Michael G. Reed. Anonymous connec-
tions and onion routing. In Proceedings of the 1997 IEEE Symposium on Security and
Privacy, SP ’97, pages 44–, Washington, DC, USA, 1997. IEEE Computer Society.

[99] Tamarin-Prover Manual, Security Protocol Analysis in the Symbolic Model. https:

//tamarin-prover.github.io/manual/tex/tamarin-manual.pdf. visited on 2022-
01-30.

[100] Mathieu Turuani. The cl-atse protocol analyser. In Frank Pfenning, editor, Term
Rewriting and Applications, pages 277–286, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[101] Markus Ullmann, Dennis Kügler, Heike Neumann, Sebastian Stappert, and Vögeler
Matthias. Password authenticated key agreement for contactless smart cards. In
Proceedings of the 4-th Workshop on RFID Security, Budapest, pages 140–161, 2008.

[102] Luca Viganò. Automated security protocol analysis with the avispa tool. Electronic
Notes in Theoretical Computer Science, 155:61–86, 2006.

[103] Christoph Weidenbach. Towards an automatic analysis of security protocols in first-
order logic. In CADE, 1999.

[104] Sarah Winkler and Aart Middeldorp. Normalized completion revisited. In Femke
van Raamsdonk, editor, Proceedings of the 24th International Conference on Rewriting
Techniques and Applications, volume 21 of Leibniz International Proceedings in Informat-
ics, pages 319–334, 2013.

[105] Thomas Wu. The secure remote password protocol. In Internet Society Symposium on
Network and Distributed System Security, pages 97–111, 1998.

[106] F. Zamanian and H. Mala. A new anonymous unlinkable mobile payment protocol.
In 2016 6th International Conference on Computer and Knowledge Engineering (ICCKE),
pages 117–122, 2016.

Appendix A

Completion of the TC-AMP
Equations

In this appendix we give an excerpt about the completion of the equations in the TC-AMP
algebra. As explained in Sec. 4.6 we start the completion with the following 10 rewrite
rules:

r1 : f st(pair(x,y))→ x
r2 : snd(pair(x,y))→ y
r3 : ⊕(x,⊖(x))→∞
r4 : ⊕(x,∞)→ x
r5 : ∗(x,∗(inv(x),y))→ y
r6 : inv(inv(x))→ x
r7 : ∗(x,⊕(y,z))→⊕(∗(x,y),∗(x,z))
r8 : ⊖(∞)→∞
r9 : ⊖(⊖(x))→ x

r10 : ⊖(⊕(x,y))→⊕(⊖(x),⊖(y))

Applying our completion procedure in Sec. 4.4 (by hand), we added two rewrite rules:

r11 : ∗(x,∞)→∞
r12 : ∗(x,⊖(y))→⊖(∗(x,y))

In the following we explain how rules r11–r12 are obtained and give an excerpt about
the confluence check of the resulting rewrite system.

A.1 Adding Rule r11 : ∗(x,∞)→∞

In the superposition of r4 : ⊕(u,∞)→ u on r7 : ∗(x,⊕(y,z))→⊕(∗(x,y),∗(x,z)), the unifi-
cation ⊕(u,∞) =u ⊕(y,z) yields

1. σ1 = {y 7→ u,z 7→∞} and

2. σ2 = {y 7→ ⊕(∞, x1),u 7→ ⊕(z, x1)}.

In case (1), we need to join ⊕(∗(x,u),∗(x,∞)) and ∗(x,u).
In case (2), we need to join the terms ⊕(∗(x,⊕(∞, x1)),∗(x,z)) and ∗(x,⊕(z, x1)), i.e. the
terms ⊕(⊕(∗(x,∞),∗(x, x1)),∗(x,z)) and ⊕(∗(x,z),∗(x, x1)).

309

310 APPENDIX A. COMPLETION OF THE TC-AMP EQUATIONS

This requires to add a first intermediate rule r′1 : ⊕(∗(x,u),∗(x,∞))→ ∗(x,u).

In the superposition of r5 : ∗(x,∗(inv(x),y))→ y on r′1 : ⊕(∗(u,v),∗(u,∞))→ ∗(u,v),
the unification ∗(x,∗(inv(x),y)) =u ∗(u,v) yields

1. σ1 = {u 7→ x,v 7→ ∗(inv(x),y)},

2. σ2 = {v 7→ ∗(x, x1),u 7→ inv(x),y 7→ x1}, and

3. σ3 = {v 7→ ∗(x,∗(inv(x), x2)),y 7→ ∗(u, x2)}.

In case (1), we need to join ∗(x,∗(inv(x),y)), i.e. y, and ⊕(y,∗(x,∞)).
In case (2), we need to join ∗(inv(x),∗(x, x1)), i.e. x1, and ⊕(x1,∗(inv(x),∞)).
In case (3), we need to join ∗(u,∗(x,∗(inv(x), x2))), i.e. ∗(u, x2), and ⊕(∗(u, x2),∗(u,∞)).

This requires to add a second intermediate rule r′2 : ⊕(y,∗(x,∞))→ y.

In the superposition of r4 : ⊕(x,∞) → x with r′2 : ⊕(u,∗(v,∞)) → u, the unification
⊕(x,∞) =u ⊕(u,∗(v,∞)) yields

• σ1 = {u 7→∞, x 7→ ∗(v,∞)}, and

• σ2 = {x 7→ ⊕(∗(v,∞), x1),u 7→ ⊕(∞, x1)}.

In case (1), we need to join ∞ and ∗(v,∞).
In case (2), we need to join ⊕(∞, x1), i.e. x1, and ⊕(∗(v,∞), x1).

This requires to add rule r11 : ∗(v,∞)→ ∞. Afterwards, rules r′1 and r′2 become redun-
dant.

A.2 Adding Rule r12 : ∗(x,⊖(y))→⊖(∗(x,y))

In the superposition of r3 :⊕(u,⊖u)→∞ on r7 : ∗(x,⊕(y,z))→⊕(∗(x,y),∗(x,z)), the uni-
fication ⊕(u,⊖u) =u ⊕(y,z) yields

1. σ1 = {y 7→ u,z 7→ ⊖(u)} and

2. σ2 = {y 7→ ⊕(⊖(⊕(z, x1)), x1),u 7→ ⊕(z, x1)}.

In case (1), we need to join ∗(x,∞), i.e. ∞, and ⊕(∗(x,u),∗(x,⊖(u))).
In case (2), we need to join ∗(x,∞) and ⊕(∗(x,⊕(⊖(⊕(z, x1)), x1)),∗(x,z)), i.e. ∞ and
⊕(⊕(⊕(∗(x,⊖(z)),∗(x,⊖(x1))),∗(x, x1)),∗(x,z)).

This requires to add a first intermediate rule r′1 : ⊕(∗(x,u),∗(x,⊖(u)))→∞

In the superposition of r′1 :⊕(∗(u,v),∗(u,⊖(v)))→∞ and r3 :⊕(x,⊖x)→∞, the unifi-
cation ⊕(x1,⊕(x,⊖(x))) =u ⊕(x2,⊕(∗(u,v),∗(u,⊖(v)))) yields

1. σ1 = {x1 7→ ⊕(∗(u,v),∗(u,⊖(v))), x2 7→ ⊕(x,⊖(x))},

2. σ2 = {x1 7→ ⊕(⊕(∗(u,v),∗(u,⊖(v))), x3), x2 7→ ⊕(x3,⊕(x,⊖(x)))},

3. σ3 = {x1 7→ ∗(u,⊖(v)), x2 7→ ⊖(∗(u,v))},

4. σ4 = {x1 7→ ∗(u,⊖(v)), x2 7→ ⊕(x4,⊖(⊕(∗(u,v), x4)))},

5. σ5 = {x1 7→ ∗(u,v), x2 7→ ⊖(∗(u,⊖(v)))},

6. σ6 = {x1 7→ ∗(u,v), x2 7→ ⊕(x4,⊖(⊕(∗(u,⊖(v)), x4)))},

7. σ7 = {x2 7→ ⊕(⊖(⊕(∗(u,v),∗(u,⊖(v)))), x1)},

A.3. OVERLAPS OF ∗-TERMS 311

8. σ8 = {x2 7→ ⊕(⊕(x4,⊖(⊕(⊕(∗(u,v),∗(u,⊖(v))), x4))), x1)},

9. σ9 = {x1 7→ ⊕(x3,∗(u,v)), x2 7→ ⊕(x3,⊖(∗(u,⊖(v))))},

10. σ10 = {x1 7→ ⊕(x3,∗(u,v)), x2 7→ ⊕(x3,⊕(x7,⊖(⊕(∗(u,⊖(v)), x7))))},

11. σ11 = {x1 7→ ⊕(x3,∗(u,⊖(v))), x2 7→ ⊕(x3,⊖(∗(u,v)))}, and

12. σ12 = {x1 7→ ⊕(x3,∗(u,⊖(v))), x2 7→ ⊕(x3,⊕(x7,⊖(⊕(∗(u,v), x7))))}.

Cases (1) and (2) do not really correspond to overlaps.
In case (3), we need to join ∗(u,⊖(v)) and ⊖(∗(u,v)).
In case (4), we need to join ∗(u,⊖(v)) and ⊕(x4,⊖(⊕(∗(u,v), x4))), i.e. ⊖(∗(u,v)).
In case (5), we need to join ∗(u,v) and ⊖(∗(u,⊖(v))).
In case (6), we need to join ∗(u,v) and ⊕(x4,⊖(⊕(∗(u,⊖(v)), x4))), i.e. ⊖(∗(u,⊖(v))).
In case (7), we need to join x1 and ⊕(⊖(⊕(∗(u,v),∗(u,⊖(v)))), x1), i.e. x1.
In case (8), we need to join x1 and ⊕(⊕(x4,⊖(⊕(⊕(∗(u,v),∗(u,⊖(v))), x4))), x1), i.e. x1.
In case (9), we need to join ⊕(x3,∗(u,v)) and ⊕(x3,⊖(∗(u,⊖(v)))).
In case (10), we need to join ⊕(x3,∗(u,v)) and ⊕(x3,⊕(x7,⊖(⊕(∗(u,⊖(v)), x7)))), i.e.
⊕(x3,⊖(∗(u,⊖(v)))).
In case (11), we need to join ⊕(x3,∗(u,⊖(v))) and ⊕(x3,⊖(∗(u,v))).
In case (12), we need to join ⊕(x3,∗(u,⊖(v))) and ⊕(x3,⊕(x7,⊖(⊕(∗(u,v), x7)))), i.e.
⊕(x3,⊖(⊕(∗(u,v)))).

This requires to add rule r12 : ∗(u,⊖(v)) → ⊖(∗(u,v)). Afterwards, rule r′1 becomes
redundant.

A.3 Overlaps of ∗-terms

A.3.1 Superposition of r5 with r5:

r5 : ∗(x,∗(inv(x),y))→ y and r5 : ∗(u,∗(inv(u),v))→ v

Overlap at Top Position:

The unification ∗(x,∗(inv(x),y)) =u ∗(u,∗(inv(u),v)) yields

1. σ1 = {u 7→ x,y 7→ v}, and

2. σ2 = {u 7→ inv(x),y 7→ ∗(inv(inv(x)),w),v 7→ ∗(x,w)}.

Case (1) is trivial.
In case (2), we obtain ∗(inv(inv(x)),w) and ∗(x,w), where the former reduces to ∗(x,w).

Overlap at Position 2:

In overlap of ∗(x,∗(inv(x),y)) on ∗(u,∗(inv(u),v)), the unification ∗(x,∗(inv(x),y)) =u
∗(inv(u),v) yields

1. σ1 = {x 7→ inv(u),v 7→ ∗(inv(inv(u)),y)}, and

2. σ2 = {x 7→ u,v 7→ ∗(u,y)}.

In case (1), we obtain ∗(inv(inv(u)),y) and ∗(u,y), where the former reduces to ∗(u,y).
In case (2), we obtain ∗(u,y) and ∗(u,y), which are equal.

In overlap of ∗(x,∗(inv(x),y)) on ∗(inv(u),∗(u,v)), the unification ∗(x,∗(inv(x),y)) =u
∗(u,v) yields

1. σ1 = {u 7→ x,v 7→ ∗(inv(x),y)}, and

312 APPENDIX A. COMPLETION OF THE TC-AMP EQUATIONS

2. σ2 = {u 7→ inv(x),v 7→ ∗(x,y)}.

In case (1), we obtain ∗(inv(x),y) and ∗(inv(x),y), which are equal.
In case (2), we obtain ∗(x,y) and ∗(inv(inv(x)),y), where the latter reduces to ∗(x,y).

Equational Overlap:

2-2 contexts: The unification

∗(v1,∗(v2,∗(x,∗(inv(x),y)))) =u ∗(v3,∗(v4,∗(u,∗(inv(u),v)))),

where {v1,v2} = {u, inv(u)} and {v3,v4} = {x, inv(x)} hold, yields one case (modulo the
switch of vi-s)

1. σ1 = {v1 7→ u,v2 7→ inv(u),v3 7→ x,v4 7→ inv(x),y 7→ v}.

Here, we obtain ∗(u,∗(inv(u),v)) and ∗(x,∗(inv(x),v)), which are reducible to v.

1-2 contexts: The unification ∗(v1,∗(x,∗(inv(x),y))) =u ∗(v2,∗(v3,∗(u,∗(inv(u),v)))),
where v1 ∈ {u, inv(u)} and {v2,v3}= {x, inv(x)} hold, yields two cases (modulo the switch
of v2 and v3)

1. σ1 = {v1 7→ u,v2 7→ x,v3 7→ inv(x),y 7→ ∗(inv(u),v)} and

2. σ2 = {v1 7→ inv(u),v2 7→ x,v3 7→ inv(x),y 7→ ∗(u,v)}.

In case (1), we obtain ∗(u,∗(inv(u),v)) and ∗(x,∗(inv(x),v)), which are reducible to v. In
case (2), we obtain ∗(inv(u),∗(u,v)) and ∗(x,∗(inv(x),v)), which are reducible to v.

1-1 contexts: The unification ∗(v1,∗(x,∗(inv(x),y))) =u ∗(v2,∗(u,∗(inv(u),v))), where
v1 ∈ {u, inv(u)} and v2 ∈ {x, inv(x)} hold, yields four cases (modulo the switch of v2 and
v3)

1. σ1 = {v1 7→ u,v2 7→ x, x 7→ u,y 7→ v},

2. σ2 = {v1 7→ u,v2 7→ inv(x), x 7→ inv(u),y 7→ v},

3. σ3 = {v1 7→ inv(u),v2 7→ x,u 7→ inv(x),y 7→ v} and

4. σ4 = {v1 7→ inv(u),v2 7→ inv(x),u 7→ x,y 7→ v}.

In case (1), we obtain ∗(u,v) and ∗(u,v).
In case (2), we obtain ∗(u,v) and ∗(inv(inv(u)),v), where the latter reduces to ∗(u,v).
In case (3), we obtain ∗(inv(inv(x)),v) and ∗(x,v), where the former reduces to ∗(x,v).
In case (4), we obtain ∗(inv(x),v) and ∗(inv(x),v).

A.3.2 Superposition of r5 with r7:

r5 : ∗(x,∗(inv(x),y))→ y and r7 : ∗(u,⊕(v,w))→⊕(∗(u,v),∗(u,w))

Overlap at Top Position:

The unification ∗(x,∗(inv(x),y)) =u ∗(u,⊕(v,w)) fails.

A.3. OVERLAPS OF ∗-TERMS 313

Overlap of r7 on Position 2 of r5:

In overlap of r7 on ∗(x,∗(inv(x),y)), the unification ∗(u,⊕(v,w)) =u ∗(inv(x),y) yields

1. σ1 = {u 7→ inv(x),y 7→ ⊕(v,w)}.

We obtain ⊕(v,w) and ∗(x,⊕(∗(inv(x),v),∗(inv(x),w))), where the latter is reducible to
⊕(v,w).

In overlap of r7 on ∗(inv(x),∗(x,y)), the unification ∗(u,⊕(v,w)) =u ∗(x,y) yields

1. σ1 = {u 7→ x,y 7→ ⊕(v,w)}.

We obtain ⊕(v,w) and ∗(inv(x),⊕(∗(x,v),∗(x,w))), where the latter is reducible to
⊕(v,w).

Equational Overlap:

1-2 contexts: The unification ∗(v1,∗(x,∗(inv(x),y))) =u ∗(v2,∗(v3,∗(u,⊕(v,w)))), where
v1 ∈ {u} and {v2,v3} = {x, inv(x)} hold, yields one case (modulo the switch of v2 and v3)

1. σ1 = {v1 7→ u,v2 7→ x,v3 7→ inv(x),y 7→ ⊕(v,w)}.

Here, we obtain ∗(u,⊕(v,w)) and ∗(x,∗(inv(x),⊕(∗(u,v),∗(u,w)))), which are reducible
to ⊕(∗(u,v),∗(u,w)).

1-1 contexts: The unification ∗(v1,∗(x,∗(inv(x),y))) =u ∗(v2,∗(u,⊕(v,w))) fails.

A.3.3 Superposition of r5 with r11:

r5 : ∗(x,∗(inv(x),y))→ y and r11 : ∗(u,∞)→∞

Overlap at Top Position:

The unification ∗(x,∗(inv(x),y)) =u ∗(u,∞) fails.

Overlap of r11 on Position 2 of r5:

In overlap of r11 on ∗(x,∗(inv(x),y)), the unification ∗(u,∞) =u ∗(inv(x),y) yields

1. σ1 = {u 7→ inv(x),y 7→∞}.

We obtain ∞ and ∗(x,∞), where the latter is reducible to ∞.

In overlap of r11 on ∗(inv(x),∗(x,y)), the unification ∗(u,∞) =u ∗(x,y) yields

1. σ1 = {u 7→ x,y 7→∞}.

We obtain ∞ and ∗(inv(x),∞), where the latter is reducible to ∞.

Equational Overlap:

1-2 contexts: The unification ∗(v1,∗(x,∗(inv(x),y))) =u ∗(v2,∗(v3,∗(u,∞))), where v1 ∈
{u} and {v2,v3} = {x, inv(x)} hold, yields one case (modulo the switch of v2 and v3)

1. σ1 = {v1 7→ u,v2 7→ x,v3 7→ inv(x),y 7→∞}.

Here, we obtain ∗(u,∞) and ∗(x,∗(inv(x),∞)), which are reducible to ∞.

314 APPENDIX A. COMPLETION OF THE TC-AMP EQUATIONS

1-1 contexts: The unification ∗(v1,∗(x,∗(inv(x),y))) =u ∗(v2,∗(u,∞)) fails.

A.3.4 Superposition of r5 with r12:

r5 : ∗(x,∗(inv(x),y))→ y and r12 : ∗(u,⊖(v))→⊖(∗(u,v))

Overlap at Top Position:

The unification ∗(x,∗(inv(x),y)) =u ∗(u,⊖(v)) fails.

Overlap of r12 on Position 2 of r5:

In overlap of r12 on ∗(x,∗(inv(x),y)), the unification ∗(u,⊖(v)) =u ∗(inv(x),y) yields

1. σ1 = {u 7→ inv(x),y 7→ ⊖(v)}.

We obtain ⊖(v) and ∗(x,⊖(∗(inv(x),v))), where the latter is reducible to ⊖(v).

In overlap of r12 on ∗(inv(x),∗(x,y)), the unification ∗(u,⊖(v)) =u ∗(x,y) yields

1. σ1 = {u 7→ x,y 7→ ⊖(v)}.

We obtain ⊖(v) and ∗(inv(x),⊖(∗(x,v))), where the latter is reducible to ⊖(v).

Equational Overlap:

1-2 contexts: The unification ∗(v1,∗(x,∗(inv(x),y))) =u ∗(v2,∗(v3,∗(u,⊖(v)))), where
v1 ∈ {u} and {v2,v3} = {x, inv(x)} hold, yields one case (modulo the switch of v2 and
v3)

1. σ1 = {v1 7→ u,v2 7→ x,v3 7→ inv(x),y 7→ ⊖(v)}.

Here, we obtain ∗(u,⊖(v)) and ∗(x,∗(inv(x),⊖(∗(u,v)))), and these are reducible to the
term ⊖(∗(u,v)).

1-1 contexts: The unification ∗(v1,∗(x,∗(inv(x),y))) =u ∗(v2,∗(u,⊖(v))) fails.

A.3.5 Superposition of r7 with r11:

r7 : ∗(x,⊕(y,z))→⊕(∗(x,y),∗(x,z)) and r11 : ∗(u,∞)→∞

Overlap at Top Position:

The unification ∗(x,⊕(y,z)) =u ∗(u,∞) fails.

Equational Overlap:

1-1 contexts: The unification ∗(v1,∗(x,⊕(y,z))) =u ∗(v2,∗(u,∞)) fails.

Superposition of r7 with r12:

r7 : ∗(x,⊕(y,z))→⊕(∗(x,y),∗(x,z)) and r12 : ∗(u,⊖(v))→⊖(∗(u,v))

Overlap at Top Position:

The unification ∗(x,⊕(y,z)) =u ∗(u,⊖(v)) fails.

A.4. OVERLAPS OF ⊕-TERMS 315

Equational Overlap:

1-1 contexts: The unification ∗(v1,∗(x,⊕(y,z))) =u ∗(v2,∗(u,⊖(v))) fails.

A.3.6 Superposition of r11 with r12:

r11 : ∗(x,∞)→∞ and r12 : ∗(u,⊖(v))→⊖(∗(u,v))

Overlap at Top Position:

The unification ∗(x,∞) =u ∗(u,⊖(v)) fails.

Equational Overlap:

1-1 contexts: The unification ∗(v1,∗(x,∞)) =u ∗(v2,∗(u,⊖(v))) fails.

A.4 Overlaps of ⊕-terms

Referring to [39], we have a complete modular rewriting system R′/A⊕ where R′ =
{r3,r4,r8,r9,r10} and A⊕ corresponds to commutativity and associativity of ⊕. For that
reason, we investigate only the overlaps of r3 and r4 on r7.

A.4.1 Superposition of r3 on r7:

r3 : ⊕(x,⊖(x))→∞ and r7 : ∗(u,⊕(v,w))→⊕(∗(u,v),∗(u,w))

Overlap on Position 2 (without extension):

The unification ⊕(x,⊖(x)) =u ⊕(v,w) (excluding redundancy by distinction of v and w)
decomposes to:

1. {v =u x,w =u ⊖(x)}
This yields σ1 = {v 7→ x,w 7→ ⊖(x)}.

2. {v =u ⊕(⊖(x),v1), x =u ⊕(v1,w)}
This yields σ2 = {v 7→ ⊕(⊖(⊕(v1,w)),v1), x 7→ ⊕(v1,w)}.

In case (1), we obtain ∗(u,∞) and ⊕(∗(u, x),∗(u,⊖(x))), which are reducible to ∞.
In case (2), we obtain ∗(u,∞) and⊕(∗(u,⊕(⊖(⊕(v1,w)),v1)),∗(u,w)). The former reduces
to ∞ and the latter reduces to ⊕(⊕(⊕(⊖(∗(u,v1)),⊖(∗(u,w))),∗(u,v1)),∗(u,w)) and fi-
nally to ∞.

Overlap on Position 2 (with extension):

The unification ⊕(v1,⊕(x,⊖(x))) =u ⊕(v,w) (excluding redundancy by distinction of v
and w and excluding the cases where v1 ∈ {v,w}) decomposes to:

1. {v =u ⊕(⊖(x),v1),w =u x}
This yields σ1 = {v 7→ ⊕(⊖(x),v1),w 7→ x}.

2. {v =u ⊕(⊖(x),v2),v1 =u ⊕(v2,v3),w =u ⊕(x,v3)}
This yields σ2 = {v 7→ ⊕(⊖(x),v2),v1 7→ ⊕(v2,v3),w 7→ ⊕(x,v3)}.

In case (1), we obtain ∗(u,⊕(v1,∞)) and ⊕(∗(u,⊕(⊖(x),v1)),∗(u, x)). The former reduces
to ∗(u,v1); The latter reduces to ⊕(⊕(⊖(∗(u, x)),∗(u,v1)),∗(u, x)) and finally to ∗(u,v1).
In case (2), we obtain ∗(u,⊕(⊕(v2,v3),∞)) and ⊕(∗(u,⊕(⊖(x),v2)),∗(u,⊕(x,v3))), on the
other side. The former reduces to the term ⊕(∗(u,v2),∗(u,v3)); The latter reduces to the
term ⊕(⊕(⊖(∗(u, x)),∗(u,v2)),⊕(∗(u, x),∗(u,v3))) and finally to ⊕(∗(u,v2),∗(u,v3)).

316 APPENDIX A. COMPLETION OF THE TC-AMP EQUATIONS

A.4.2 Superposition of r4 on r7:

r4 : ⊕(x,∞)→ x and r7 : ∗(u,⊕(v,w))→⊕(∗(u,v),∗(u,w))

Overlap on Position 2 (without extension):

The unification ⊕(x,∞) =u ⊕(v,w) (excluding redundancy by distinction of v and w) de-
composes to:

1. {v =u x,w =u ∞}
This yields σ1 = {v 7→ x,w 7→∞}.

2. {v =u ⊕(∞,v1), x =u ⊕(v1,w)}
This yields σ2 = {v 7→ ⊕(∞,v1), x 7→ ⊕(v1,w)}.

In case (1), we obtain ∗(u, x) and⊕(∗(u, x),∗(u,∞)), where the latter is reducible to ∗(u, x).
In case (2), we obtain ∗(u,⊕(v1,w)) and ⊕(∗(u,⊕(∞,v1)),∗(u,w)). The former reduces to
the term ⊕(∗(u,v1),∗(u,w)) and the latter reduces to ⊕(⊕(∗(u,∞),∗(u,v1)),∗(u,w)) and
finally to ⊕(∗(u,v1),∗(u,w)).

Overlap on Position 2 (with extension):

The unification ⊕(v1,⊕(x,∞)) =u ⊕(v,w) (excluding redundancy by distinction of v and
w and excluding the cases where v1 ∈ {v,w}) decomposes to:

1. {v =u ⊕(∞,v1),w =u x}
This yields σ1 = {v 7→ ⊕(∞,v1),w 7→ x}.

2. {v =u ⊕(∞,v2),v1 =u ⊕(v2,v3),w =u ⊕(x,v3)}
This yields σ2 = {v 7→ ⊕(∞,v2),v1 7→ ⊕(v2,v3),w 7→ ⊕(x,v3)}.

In case (1), we obtain ∗(u,⊕(v1, x)) and ⊕(∗(u,⊕(∞,v1)),∗(u, x)). The former reduces to
the term ⊕(∗(u,v1),∗(u, x)); The latter reduces to ⊕(⊕(∗(u,∞),∗(u,v1)),∗(u, x)) and fi-
nally to ⊕(∗(u,v1),∗(u, x)).
In case (2), we obtain the terms ∗(u,⊕(⊕(v2,v3), x)) and ⊕(∗(u,⊕(∞,v2)),∗(u,⊕(x,v3))).
The former reduces to the term ⊕(⊕(∗(u,v2),∗(u,v3)),∗(u, x)); The latter reduces to
⊕(⊕(∗(u,∞),∗(u,v2)),⊕(∗(u, x),∗(u,v3))) and finally to ⊕(∗(u,v2),⊕(∗(u, x),∗(u,v3))).

