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Abstract
This paper develops new solution procedures for the order picker routing problem 
in U-shaped order picking zones with a movable depot, which has so far only been 
solved using simple heuristics. The paper presents the first exact solution approach, 
based on combinatorial Benders decomposition, as well as a heuristic approach 
based on dynamic programming that extends the idea of the venerable sweep algo-
rithm. In a computational study, we demonstrate that the exact approach can solve 
small instances well, while the heuristic dynamic programming approach is fast and 
exhibits an average optimality gap close to zero in all test instances. Moreover, we 
investigate the influence of various storage assignment policies from the literature 
and compare them to a newly derived policy that is shown to be advantageous under 
certain circumstances. Secondly, we investigate the effects of having a movable 
depot compared to a fixed one and the influence of the effort to move the depot.
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1 Introduction

The management of warehouse operations has received ample attention over many 
years. Especially order picking, which is commonly described as the retrieval of 
products from storage locations to fulfill customer orders, is on the top of many 
research agendas (Van Gils et al. 2018). This is because of, firstly, the high amount 
of manual human labor that is usually associated with picking orders (Grosse et al. 
2015), and, secondly, the fact that order picking is a very time-intensive activity 
with direct impact on customer service (De Koster et al. 2007). For example, in the 
United States, more than 3.7 million people are employed in warehousing as manual 
laborers and material movers (Bureau of Labor Statistics 2016). In the European 
Union’s warehousing and transport support sector, 2.6 million persons are employed 
(Eurostat 2016). These facts render order picking one of the most important cost fac-
tors in warehousing (Tompkins et al. 2010; Rushton et al. 2014).

To reduce the cost of order picking, researchers have developed various mathe-
matical models in the past that support warehouse managers in assigning products to 
shelf locations, in restructuring incoming orders and in routing order pickers through 
the warehouse (Van Gils et al. 2018). It is usually advisable to adapt planning proce-
dures to the specific layout of the warehouse (Roodbergen et al. 2015). Warehouse 
layouts that have been studied in research on order picking in the past include lay-
outs of rectangular shape, which are often denoted as conventional warehouses, 
either with a single block (e.g., Petersen et al. (2005); Grosse et al. (2014)) or with 
two or more blocks (e.g., Roodbergen and Koster 2001a; Roodbergen et al. 2015). 
Non-conventional warehouses, such as leaf, chevron or flying-V, are employed less 
frequently in practice but still play a significant role (e.g., Masae et al. 2020b, 2021).

U-shaped layouts of warehouse zones, which are sometimes also referred to as 
“picker nests”, can be observed quite often in practice, but have not received much 
attention in the literature so far. Glock and Grosse (2012), for example, studied order 
picking in a U-shaped zone and developed procedures for assigning products to shelf 
locations, for finding a location for the depot of the order picker, and for routing 
the order picker through the U-zone. Inspired by a practical case in automotive part 
picking, the authors also introduced the concept of a movable depot: the depot from 
which the picker sets off and to which she returns need not be at a fixed location, but 
can be moved within certain limits, potentially shortening pick tours. Put differently, 
the depot location becomes itself a variable to be optimized. Given the special struc-
ture of the pick zone, the authors used a simple sweep algorithm to solve the routing 
problem. Diefenbach and Glock (2019) also studied a U-shaped warehouse and opti-
mized the layout and item assignment for single command picking with regard to 
two different objectives, namely pick efficiency and ergonomics. They did, however, 
not study the routing problem since it is not relevant for single command picking.

The paper at hand revisits the setting studied by Glock and Grosse (2012) and 
extends the existing work by the following contributions:
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• We develop the first exact solution procedure for the picker routing problem in 
U-shaped order picking zones, namely an algorithm based on combinatorial 
Benders decomposition.

• In a comprehensive numerical study, we compare the solutions of our newly 
developed exact procedure to the solutions of the sweep algorithm developed by 
Glock and Grosse (2012) to analyze the latter’s solution quality, which had not 
been done yet.

• We develop a new heuristic approach extending the idea of the sweep algorithm, 
based on dynamic programming. The newly developed procedure compares 
favorably in theory and in our numerical experiments.

• In addition, we derive some managerial insights from our numerical experi-
ments. We propose a new radial storage assignment policy that better matches 
the specific characteristics of a U-shaped order picking zone, compare it to stor-
age assignment policies from the literature, and demonstrate its advantage in cer-
tain situations. Furthermore, we investigate the effects of having a movable com-
pared to a fixed depot and the influence of the effort for moving the depot.

The remainder of this paper is structured as follows: Sect. 2 discusses the related lit-
erature. Section 3 formally defines the picker routing problem studied in this paper, 
while Sect. 4 presents exact and heuristic solution methods. Section 5 presents the 
results of numerical experiments, and Sect. 6 concludes the paper.

2  Literature review

Researchers have developed numerous mathematical models and algorithms to pro-
vide managerial decision support in planning manual order picking operations. The 
aim of these works has mainly been the reduction of order picking time or travel dis-
tance and thus the minimization of costs (see, for reviews, Gu et al. 2007; De Koster 
et  al. 2007; Grosse et  al. 2017; Masae et  al. 2020a)). To reach this goal, several 
planning problems have to be addressed. These include layout design, routing, stor-
age assignment, and order batching. The reader is referred to the review of Van Gils 
et al. (2018) for a detailed overview of order picking planning models.

Works on layout design mostly deal with the definition of a suitable warehouse 
layout, which includes decisions about the number of storage blocks, cross aisles, 
parallel aisles, as well as height and depth of racks (e.g., Vaughan 1999; Rood-
bergen and Vis 2006; Roodbergen et al. 2008, 2015). Here, it is important to keep 
space requirements and other types of restrictions in mind when determining the 
width of aisles, which can be narrow, wide or mixed (Mowrey and Parikh 2014). 
The majority of works studies rectangular/conventional layouts, whereas alterna-
tive layouts for manual order picking areas are rather rare (Masae et al. 2020a). 
However, alternative layouts for order picking areas are quite common in prac-
tice. These include U-shaped layouts, where shelves or pallets are arranged in 
the shape of a U within the order picking area (Glock and Grosse 2012; Diefen-
bach and Glock 2019). We note that Henn et  al. (2013) also refer to their con-
sidered layout as U-shaped. It is, however, fundamentally different from the one 
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considered in this paper as it resembles a more conventional warehouse layout, 
where the cross aisles are arranged in the shape of an H or U. Other alternative 
layouts such as fishbone (Gue and Meller 2009) or flying-V designs (Öztürköğlu 
et al. 2014) are proposed for unit-load warehouses, where products are picked in 
pallet quantities.

Routing methods that guide order pickers through the warehouse on preferably 
shortest routes are mainly developed for conventional warehouses. An exact algo-
rithm that calculates shortest routes exists for one-block warehouses, solving a spe-
cial case of the traveling salesman problem (Ratliff and Rosenthal 1983; Scholz 
et al. 2016; Lu et al. 2016; Chabot et al. 2017; Masae et al. 2020a). Although this 
exact algorithm exists, many authors studied simple routing heuristics (such as 
the well-known s-shape heuristic) because these easy-to-follow patterns are often 
applied in practice (Petersen and Aase 2004; Glock et al. 2017). For special cases 
of rectangular warehouses with more cross aisles, extensions of this exact algorithm 
(Roodbergen and Koster 2001a; Pansart et  al. 2018) as well as heuristic solution 
approaches exist (Roodbergen and Koster 2001b; Theys et al. 2010; Çelik and Süral 
2019; Chen et al. 2019). For alternative layouts, Masae et al. (2020b), for example, 
propose an exact algorithm to solve the picker routing problem in the chevron lay-
out as well as in the leaf warehouse (Masae et al. 2021), and Çelk and Süral (2014) 
for the fishbone layout. In U-shaped order picking areas, Glock and Grosse (2012) 
propose a sweep algorithm to calculate order picking routes. In a similar setting, 
Glock et al. (2019) assume a sufficient capacity of the order picker to transport all 
requested items in a single tour, which simplifies the routing problem.

Storage assignment methods assign items to storage positions (Reyes et al. 2019). 
This can either be random or according to some criteria, such as item demand or 
volume (Füßler et al. 2019). Common advice for practitioners is to assign frequently 
requested items to storage locations close to the depot (also denoted as pick-up/
drop-off point, see Petersen and Aase (2004)). In rectangular warehouses, a common 
approach is to define item classes (typically A, B, and C items according to demand 
frequency), which are then assigned to specific aisles or zones (De Koster et  al. 
2007). Petersen et al. (2004) propose several patterns for class-based storage to clas-
sify aisles, e.g., within-aisle, diagonal or rectangular strategies. Several algorithms 
for class-based storage assignment exist (Muppani and Adil 2008). For U-shaped 
layouts, Glock and Grosse (2012) propose dedicated storage assignment methods 
(i.e. horizontal, vertical, and upper/lower assignments). Moreover, further factors 
can be considered for storage assignment models, such as precedence constraints, 
item weight (Žulj et al. 2018a), or other objectives than the minimization of travel 
distance, for example, the minimization of human energy expenditure (Battini et al. 
2016; Calzavara et al. 2017, 2019) or workload (Otto et al. 2017; Glock et al. 2019).

Consolidating or splitting up orders, which is commonly denoted as order batch-
ing, can save on travel distance (Cergibozan and Tasan 2019). Only small instances 
of order batching problems can be solved optimally in reasonable time (Gademann 
and Velde 2005), which is why many researchers propose heuristic or metaheuris-
tic approaches to address this problem (Hong et al. 2012; Henn and Wäscher 2012; 
Matusiak et  al. 2014; Pan et  al. 2015; Žulj et  al. 2018b). Other authors develop 
metaheuristic algorithms to solve the combined order batching and picker routing 
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problems in an integrated fashion (Kulak et al. 2012; Grosse et al. 2014; Van Gils 
et al. 2019).

This paper addresses two out of the discussed four planning problems, contrib-
uting new insights in this research field, namely developing a new heuristic and 
an exact algorithm based on combinatorial Benders decomposition for the picker-
routing problem within the U-zone and proposing a new radial storage assignment 
method for this special layout.

3  Problem description

This paper studies order picking in a U-shaped order picking area as outlined in 
Glock and Grosse (2012). In the considered warehouse setting, items are stored in 
stillages (i.e., large boxes that can be accessed from the front), with two rows of 
stillages stacked one atop the other. Each U-zone consists of two horizontal and one 
vertical shelf as illustrated in Fig. 1. The depot, where each order picking tour starts 
and ends, is also a stillage that is brought to and removed from the U-zone by a 
forklift truck, and it is represented by the black box in Fig. 1a. The picker travels on 
foot along the shelves of the U-zone, possibly pushing or pulling a cart or a related 
device. U-shaped order picking areas, as the one studied in this paper, can frequently 
be observed in practice, for example in the automotive or chemical industries (Glock 
and Grosse 2012; Glock et al. 2019).

In these industries, it is common to prepare so-called kits to supply assembly 
workplaces with the required materials. For preparing the kits, compact work zones 
are established in the warehouse that contain the items required at one or more 
assembly workplaces (e.g., Hanson et  al. 2017). Especially in cases where only a 
small number of items is stored in the kitting zones, U-zones are beneficial because 
of a clear separation of items and good item accessibility.

3.1  Formal description of the picker routing problem

To model the problem concisely, we make the same assumptions as in Glock and 
Grosse (2012) and assume a U-zone arranged as in Fig. 1:

• We consider a picker processing a single order in a single U-zone. An order con-
stitutes a set Ω of items that need to be collected and placed together in the depot 
– for example, a kit destined for a single production station. During a shift, a 
picker processes multiple orders. We assume orders are planned beforehand and 
given from the perspective of our problem, such that order picker routing for a 
single order is independent from other orders.

• The U-zone’s coordinate system is two-dimensional, and the depot can be placed 
anywhere on the center line of the U-zone (i.e., the y-coordinate of the depot is 
always 0). The location of the depot has to be fixed before the order picker starts 
processing the order. Moving the depot from the open end of the U deeper into 
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the zone consumes a certain amount of time proportional to the distance that the 
depot is moved.

• Euclidean distances are used to calculate the travel distance of the order picker, 
as we assume that this is the most intuitive way to travel through the pick zone. 
Formally, we define the Euclidean distance between two points P1 =

(
x
p

1
, y

p

1

)
 and 

P2 =
(
x
p

2
, y

p

2

)
 as De

(
P1,P2

)
=

√(
x
p

1
− x

p

2

)2
+
(
y
p

1
− y

p

2

)2 . The distance between 
stillages is calculated to the center of each stillage or the depot.

• We do not consider service/picking times because they can be considered con-
stant for a given picklist and are therefore not affected by the picker routes. 
Moreover, we equate travel distances with travel times. Note that, given a fixed 
average movement speed of the picker, distances can be transformed into dura-
tions by simple multiplication with a constant factor.

• Stillages are numbered in a clockwise manner starting at the upper left corner 
(see Fig. 1).

• The storage assignment policy is selected prior to the start of the order picking 
process (see Sect. 5.4). Once items have been assigned to storage locations, the 
assignment is kept constant until all orders have been completed. Each kind of 
item is stored in a single stillage and each stillage contains only one kind of item. 
This implies that items have to fit in a single stillage, which is usually the case in 
practice for U-shaped order picking zones.

• The order picker must return to the depot when he/she has finished his/her order 
or when the transport capacity of his/her picking device has been reached. In the 
latter case, after returning to the depot to drop off items there, he/she can con-
tinue picking items. After an order has been completed, the depot is removed, 
and a new depot is brought to the U-zone together with a new order (pick-by-
order).

• The demand of any item does not exceed the carrying capacity of the picker.

We consider a pick area with a layout as depicted in Fig. 1, where stillages are arranged 
in a U-shape around a picking station (depot). The width of a stillage is w, and to facili-
tate picking/exchanging stillages, the gap between them is s. The entire length of a zone 
can then be determined as l = n ⋅ w + (n − 1) ⋅ s , where n is the number of horizontal 
stillages in the zone. The width of the zone is b = m ⋅ w + (m + 1) ⋅ s , where m is the 
number of vertical shelves in the zone. The coordinates of the depot are (� , 0) . For the 
first 1 to 2 ⋅ n stillages, the coordinates of the I-th stillage are 

�
⌈ i−1

2
⌉ ⋅ (w + s),

b

2

�
 . For 

stillages numbered I = 2 ⋅ n + 1,… , 2 ⋅ n + m , the coordinates are 
�
l −

w

2
, ⌈ 2⋅n+m−i

2
⌉

⋅(w + s)) for uneven values of m, and 
�
l −

w

2
,
�
⌈ 2⋅n+m−i−1

2
⌉ + 1

2

�
⋅ (w + s)

�
 for even val-

ues of m. Stillages with index numbers i = 2 ⋅ n + m + 1,… , 4 ⋅ n are mirror images of 
the first 2 ⋅ n stillages along the x-axis. The distance between any two locations i and i′ is

Let I = {1,… , |I|} be the set of stillages, and let Ω = {1,… , |Ω|} be the set of 
items that need to be picked for a given order with |Ω| items. Let �(j) be the stillage 

(1)di,i�= De
(
(xi, yi), (xi� , yi� )

)
=

√
(xi − xi� )

2 + (yi − yi� )
2.
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i where item j is stored, and let the items be indexed in the same clockwise order as 
their respective stillages, i.e., let �(j) ≤ �(j�) , ∀j, j� ∈ Ω ∶ j < j� , be true. Then, item 
j is located at coordinates (x�(j), y�(j)) . To shorten notation, we define x̃j = x𝜄(j) and 
ỹj = y𝜄(j) as well as d𝜄(j),𝜄(j�) = d̃j,j� . Moreover, let Q be the limited carrying capacity of 
the picker, and let qj be the weight of item j ∈ Ω.

We look for a partition of Ω into r subsets {�1,… ,�r} such that the total weight 
of the items in each set �k does not exceed the carrying capacity of the picker, i.e., ∑

j∈�k
qj ≤ Q , ∀k = 1,… , r . Note that the number r of pick tours is not given in 

advance. Each �k stands for one pick tour the picker makes, starting from the depot, 
visiting all stillages implied by �k , and returning to the depot. For brevity of nota-
tion, we introduce sets �̃�k = {𝜄(j) ∣ j ∈ 𝜔k} , ∀k = 1,… , r , to denote the stillages to 
be visited to pick the items in �k.

Furthermore, we look for a position � of the depot. The depot can be moved 
along the center line of the U-zone with the default position located at the open 
end of the U-zone with � = 0 (see Fig. 1a). If the depot is moved along the aisle, 
the warehouse worker transporting the depot has to travel an extra distance into the 
U-zone both when bringing and removing the depot, which leads to a time penalty 
that has to be considered in the model and which depends on the extra travel dis-
tance equaling 2 ⋅ � . Assuming that the picker can walk 2 ⋅ v times faster (or slower, 
as the case may be) when placing the depot than his/her speed during the order pick-
ing process, the additional distance that has to be covered just to move the depot is 
1

v
⋅ � . All symbols are summarized in Table 1.
A solution to our picker routing problem thus consists of a partition {�1,… ,�r} 

of Ω and the depot position 0 ≤ � ≤ l−
w

2
 . Among all feasible solutions we seek one 

where the total distance travelled by the picker – including the penalty distance to 
move the depot and the distance to visit the stillages – is minimal.

Routing the picker for a given set of stillages �̃�k is technically a travelling sales-
man problem, which is well-known to be strongly NP-hard (Garey and Johnson 
1979). However, due to the special structure of the U-shaped pick area, the routing 
problem is actually tractable.

Proposition 3.1 For a given set �̃�k of stillages to be visited, an optimal route (i.e., 
sequence of visits) with regard to total travel distance is to move through the still-
ages in �̃�k in clockwise order in the shape of a polygon without intersecting edges.

Proof Barachet (1957) shows that, in a Euclidean TSP, an optimal TSP tour never 
crosses itself. Hence, the optimal tour is in the shape of a polygon without intersect-
ing edges, where an edge touching another edge (at a vertex) counts as an intersec-
tion as well. Moreover, this polygon is contained within the convex hull around all 
points to be visited.

Let the points that lie on the convex hull be labeled in clockwise order. Two 
points i and i′ , where i� ≥ i + 2 , can never be connected directly in the optimal route. 
This is because a connection between i and i′ would separate the convex hull into 
two parts, where one contains the points i�� ∈ {i + 1,… , i� − 1} and the other con-
tains the remaining points. Since the optimal route does not cross itself, there exists 
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no optimal route that connects the points from the separate parts, because it would 
intersect the connection between i and i′ . It follows that in the optimal route, each 
point i on the convex hull can only be connected with its neighboring points i − 1 
and i + 1 on the convex hull or with points that do not lie on the convex hull.

Clearly, all stillages in a U-shaped picking zone lie on a convex polygon, which 
also constitutes the convex hull. The only point that can possibly not lie on the con-
vex hull is the depot. Hence, in the optimal route, every stillage must be connected 
to its neighboring stillages (i.e., its predecessor and successor in a clockwise order) 
or to the depot. Furthermore, the optimal route has only two connections to the 
depot, one outgoing and one incoming. If the depot lies on the convex hull, it must 
be connected to its neighboring stillages. If not, the depot must be connected to two 
consecutive stillages, due to the same argument as before. If the depot would not be 
connected to two consecutive stillages, the connection would separate the convex 
hull into two parts that cannot be connected by a route without an intersection. Con-
sequently, the optimal route is to move from the depot to a stillage, move through 
the stillages in �̃�k in clockwise (or counter-clockwise) order in the shape of a poly-
gon without intersecting edges, and move back to the depot.   ◻

Table 1  Notation for the picker routing problem

Sets

I Set of stillages
Ω Set of items to be picked (indices i, j)
�k variable: set of items to be picked on tour k ∈ {1,… , r}

�̃�k Auxiliary variable: set of stillages to be visited on tour 
k ∈ {1,… , r}

Parameters

dii′ Distance from stillage i to stillage i′ (meters)
d̃jj′ Distance between the stillage containing item j and the still-

age containing item j′

Q Maximum carrying capacity of the order picker (kilograms)
qj Weight of item j (kilograms)
v Penalty distance factor for moving the depot
b Width of the aisle (meters)
l Length of the aisle (meters)
n Number of stillages in one row of horizontal shelves
m Number of stillages in the vertical shelf
s Distance/gap between two adjacent stillages (meters)
w Width of a stillage (meters)
xi x-coordinate of stillage i (meters)
yi y-coordinate of stillage i (meters)
x̃j x-coordinate of the stillage containing item j (meters)
ỹj y-coordinate of the stillage containing item j (meters)



544 H. Diefenbach et al.

1 3

Let the pair (j, j�) denote an edge between stillages �(j) and �(j�) and let �k =
{
(j, j�) ∈

𝜔k × 𝜔k ∶ 𝜄(j) ≤ 𝜄(j�) ∧
{
j�� ∈ 𝜔k ∣ 𝜄(j) < 𝜄(j��) < 𝜄(j�)

}
= �

}
∪
{
(max{𝜔k}, min{𝜔k})

}
 

be the set of all edges of the convex polygon spanned by the stillages in �̃�k . The 
optimal route’s length can then be formalized as

where we define 𝛾j,j� (𝜒) = −d̃j,j� +
√

(x̃j − 𝜒)2 + ỹ2
j
+
√

(x̃j� − 𝜒)2 + ỹ2
j�
 for ease of 

notation. Note that the first term of Eq. (2) stands for the travel distance of the picker 
along the U, while the second term is the distance from and to the depot, where, by 
Proposition 3.1, it is optimal to insert the depot visit in-between the two neighboring 
stillages from �̃�k that minimize the total distance.

The total objective value of a solution consists of the travel distance of the pick 
tours plus the time to position the depot in the first place, and it is hence

Among all feasible solutions consisting of partition {�1,… ,�r} and depot location 
� , we seek one which minimizes G(�1,… ,�r,�) . We refer to this problem as the 
picker routing problem in a U-shaped pick area (PRP-UA).

3.2  Computational complexity

Given that, by Proposition 3.1, routing in a U-shaped pick zone is computationally 
easier than on general graphs, it may seem that picker routing in U-shaped zones 
may not be a hard problem at all. However, PRP-UA is intractable as can be seen by 
the following proposition.

Proposition 3.2 Solving PRP-UA is NP-hard in the strong sense.

Proof We prove Proposition 3.2 by reduction from bin packing, which is well known 
to be strongly NP-hard (Garey and Johnson 1979).

The decision version of bin packing is concerned with the following question. 
Given a set S of items i with associated weight wi and bins with capacity C, does 
there exists a partition of items into bins such that no subset of items assigned to the 
same bin exceeds the bin’s capacity C and at most k bins are used?

We propose the following transformation from an instance of bin pack-
ing to an instance of PRP-UA. Firstly, we set the measurements l and b 
of the U-zone such that 2 ⋅ k ⋅ l < b holds (i.e., we set n and m such that 
2 ⋅ k ⋅ (n ⋅ w + (n − 1) ⋅ s) < m ⋅ w + (m + 1) ⋅ s holds). Secondly, we associate each 
item i ∈ S of the bin packing instance with an item j ∈ Ω of the PRP-UA instance (with 

(2)

g(𝜔k,𝜒) =
∑

(j,j�)∈𝜂k

d̃j,j� + min
(j,j�)∈𝜂k

{
−d̃j,j� +

√
(x̃j − 𝜒)2 + ỹ2

j
+
√

(x̃j� − 𝜒)2 + ỹ2
j�

}

=
∑

(j,j�)∈𝜂k

d̃j,j� + min
(j,j�)∈𝜂k

{
𝛾j,j� (𝜒)

}
,

(3)G(�1,… ,�r,�) =
∑

k∈{1,…,r}

g(�k,�) +
1

v
⋅ � .



545

1 3

New solution procedures for the order picker routing problem…

wi = qj for each associated pair of items) and assign the items j ∈ Ω to (arbitrary) stil-
lages in the upper row (i.e., in positive y-direction, cf., Fig. 1a) of the U-layout. Finally, 
we set Q = C and v → ∞ (i.e., 1

v
→ 0).

A solution of an instance of PRP-UA corresponds to a solution of an instance 
of bin packing if and only if the objective value is less than (k + 1) ⋅ b , as is shown 
in the following. Clearly, each route cannot contain a subset of items that exceeds 
the maximum capacity Q, such that we can associate routes with bins. For PRP-
UA, by Proposition 3.1, the length of a single optimal route is bounded from above 
by b + 2 ⋅ l , i.e., the length of the route if the picker visits every single stillage in 
the upper row on one tour cannot be longer than this. Likewise, a route’s minimum 
length is b, i.e., visiting only a single stillage directly above the depot cannot be 
shorter than this. Hence, a solution using k + 1 tours or more has at least an objec-
tive value of (k + 1) ⋅ b and a solution using at most k tours has at most an objective 
value of k ⋅ (b + 2 ⋅ l) < k ⋅ b + b (since we set 2 ⋅ k ⋅ l < b ). Hence, if and only if the 
objective value of a solution to PRP-UA is less than (k + 1) ⋅ b , it contains no more 
than k tours, which corresponds to a solution for the corresponding instance of bin 
packing with at most k bins.

Since the decision version of PRP-UA is strongly NP-complete, the correspond-
ing optimization version is NP-hard in the strong sense, which completes the proof.  
 ◻

4  Algorithms

In the following, we present new algorithms to solve PRP-UA. Section 4.1 presents 
the first exact solution approach based on combinatorial Benders decomposition. 
With PRP-UA being NP-hard, we can expect that larger problem instances cannot be 
solved exactly, as is also shown in our computational study later on (cf. Sect. 5.2). 
We therefore present a new heuristic solution approach based on the concept of 
dynamic programming in Sect. 4.2.

4.1  Logic‑based Benders decomposition for the picker routing problem

In addition to being NP-hard, PRP-UA is further complicated by the presence of 
non-linear (Euclidean) distances, which depend on a variable, namely the position of 
the depot. There is therefore no obvious way of formulating a compact (mixed-inte-
ger) linear programming model without discretization of the depot location � . For 
discrete depot locations, the problem would become a capacitated vehicle routing 
problem. If we disregard the routing aspect and the moveable depot, the remaining 
problem, i.e., batching items on tours such that the picker capacity is not violated, is 
a bin packing problem. To avoid making a heuristic choice regarding discretization 
intervals, in the following, we focus on an exact approach where we consider the 
depot location � as a continuous variable.
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To make the problem more tractable, we propose a decomposition scheme in the 
spirit of logic-based and combinatorial Benders decomposition (Codato and Fis-
chetti 2006; Hooker 2007), which has seen success dealing with difficult combina-
torial optimization problems (e.g., Kress et al. 2019; Tadumadze et al. 2020; Fang 
et  al. 2021; Huang et  al. 2021). The general idea consists of splitting the original 
problem into a master and a slave component. The master problem is modeled as a 
mixed-integer linear programming model that is solved by an off-the-shelf default 
solver. Whenever the solver finds a candidate integer solution for this model, the 
solution is passed to the slave problem, which calculates the optimal objective value 
for the given master solution. From the slave solution, combinatorial cuts are gener-
ated, which remove suboptimal solutions from the master model. The solver then 
continues working on the master model with the newly added cuts, passing candi-
date solutions to the slave problem until no more feasible, undiscarded solutions 
remain. The best incumbent solution at this point is optimal. For brevity, we refer to 
this algorithm as CBD (combinatorial Benders decomposition).

In Sect. 4.1.1, we describe the master model for our picker routing problem in 
detail. In Sect.  4.1.2 we present the slave model and describe how it can be effi-
ciently solved. Section 4.1.3 describes how we generate cuts from solutions of the 
slave problem.

4.1.1  Master problem

The master problem (MP) consists of batching items on tours, i.e., effectively, deter-
mining sets �k , ∀k . For a given batching, the exact objective value and optimal depot 
location are then determined by solving the slave problem described in Sect. 4.1.2. 
We use binary variables zj,j′ , which have value 1 if and only if item j′ is on the same 
tour as item j and j′ is the item with the greatest index on that tour. Formally, the 
feasible search space of the master model is described by the following constraints.

Constraints (4) ensure that each item is on exactly one pick tour. If some item j′ is 
on the same tour as item j such that j′ has the highest index in that tour, then zj,j′ = 
is forced to 1, as ensured by Inequalities (5). Inequalities (6) ensure that the picker’s 

(4)

∑

j� ∈ Ω ∶

j ≤ j�

zj,j� = 1 ∀j ∈ Ω

(5)zj,j� ≤ zj�,j� ∀j, j� ∈ Ω ∶ j < j�

(6)

∑

j ∈ Ω ∶

j ≤ j�

qj ⋅ zj,j� ≤ Q ∀j� ∈ Ω

(7)zj,j� ∈ {0, 1} ∀j, j� ∈ Ω ∶ j ≤ j�
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carrying capacity is not exceeded, while Constraints (7) define the domain of the 
decision variables.

While the master model can be solved as a pure feasibility problem, this may 
not be advisable from a performance viewpoint. Without any objective to guide the 
search, we can expect many mediocre solutions to be evaluated. We therefore use a 
lower bound on the objective value as a subproblem relaxation (Hooker 2007) based 
on the following idea.

Proposition  3.1 states that the optimal route to visit a set �̃�k of stillages and 
the depot is in the form of a polygon without crossing edges. Clearly, the edge 
length of the convex polygon spanned by the stillages in �̃�k and the depot is a 
lower bound on the optimal tour length. Given the non-linear Euclidean dis-
tances, there is no easy method to calculate the respective convex polygon’s edge 
length in a compact linear model. However, we can calculate lower bounds on the 
edge length in two ways: first, by using the rectilinear metric (Manhattan metric) 
and, second, by using the maximum metric (Chebyshev distance). Formally, for 
two points P1 =

(
x
p

1
, y

p

1

)
 and P2 =

(
x
p

2
, y

p

2

)
 , we define the rectilinear metric dis-

tance as Dr
(
P1,P2

)
= |xp

1
− x

p

2
| + |yp

1
− y

p

2
| and the maximum metric distance as 

Dm
(
P1,P2

)
= max

{
|xp

1
− x

p

2
|, |yp

1
− y

p

2
|
}
.

For the first bound, we apply Proposition 4.1.

Proposition 4.1 A convex polygon’s Euclidean (i.e., actual) circumference is at 
least its rectilinear metric circumference divided by 

√
2.

Proof The proof is based on the labeling in Fig. 2a. The circumference of a polygon 
with E vertices is given by Cpoly =

∑E−1

i=1
De(Pi,Pi+1) + De(PE,P1) . In two-dimen-

sional space, the distance between two points measured in the rectilinear metric is at 
most 

√
2 times greater than the distances measured in the Euclidean metric, i.e., 

De(P
i
,P

i�
) ≥

1√
2
⋅ Dr(P

i
,P

i�
) holds (cf., Proposition A.1 in the Appendix). It follows that 

Cpoly ≥
∑E−1

i=1
1√
2
⋅ Dr(Pi,Pi+1) +

1√
2
⋅ Dr(PE ,P1) ⇒ C

poly ≥
1√
2
⋅

�∑E−1

i=1
D

r(P
i
,P

i+1) + D
r(P

E
,P1)

�
 

⇒ Cpoly ≥
1√
2
⋅ Crect , where Crect is the polygon’s circumference in the rectilinear met-

ric.   ◻

Hence, we can calculate the convex polygon’s edge length in the rectilinear met-
ric and divide it by 

√
2 to attain a lower bound for the actual length. For the second 

bound, we apply Proposition 4.2.

Proposition 4.2 A convex polygon’s Euclidean (i.e., actual) circumference is at 
least two times its length in the maximum metric.

Proof The proof is based on the labeling in Fig.  2a. Assume any diagonal of the 
polygon connecting the two shorter sides of its rectilinear circumference. Such a 
diagonal always exists, since each side of the polygon’s rectilinear circumference is 
connected to at least one of the polygon’s vertices. The diagonal splits the polygon 
into two parts, which we label upper part and lower part in the following. By the 
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triangle inequality, the polygon’s upper part edge length is longer than the diagonal. 
The same applies for the lower part’s edge length. Therefore, the polygon’s Euclid-
ean circumference is at least two times the length of the diagonal. Again by the 
triangle inequality, the diagonal length is never less than the polygon’s maximum 
length, which is equal to the longer side of the polygon’s rectilinear circumference. 
Hence, two times the polygon’s maximum length is never greater than its Euclidean 
circumference.   ◻

Therefore, two times the convex polygon’s length in the maximum metric is 
also a lower bound for the actual (Euclidean) circumference.

To calculate the bounds, we introduce four sets of auxiliary continuous vari-
ables to the master model. Variables x̌j ( ̌yj ) denote the distance from the depot to 
the leftmost (bottommost) stillage on the tour that contains item j. Analogously, 
variables x̂j ( ̂yj ) denote the distance from the depot to the rightmost (topmost) 
stillage on the tour that contains item j. Moreover, we introduce auxiliary variable 
�̄� to denote the position of the movable depot. An illustrative example is given 
in Fig. 2b. We consider the bounds by adding the following objective and valid 
inequalities to the master model:

subject to (4)–(7) and

(8)[MP] Minimize G =
∑

j∈Ω

d̂j +
1

v
⋅ �̄�

(9)x̂j ≥ x̃j� ⋅ zj�,j − �̄� ∀j, j� ∈ Ω ∶ j� ≤ j

(a) Concept of using the rectilinear and max-

imum metric to formulate lower bounds

on a convex polygon’s circumference.

(b) Illustration of the variables ˇ xj , y̌j , x̂ j , and ŷj being

used to calculate lower bounds on a route’s length.

Fig. 2  Lower bounds on a picking route’s length
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Objective (8) minimizes the sum of the distance approximations of the routes plus 
the cost to move the depot. For each route, Inequalities (9) determine the distance 
between the depot and the polygon’s rightmost vertex. If the depot is to the right of 
the polygon’s rightmost vertex, x̂j assumes 0. Similarly, Inequalities (10) calculate 
the distance between the depot and the polygon’s leftmost vertex. If the depot is to 
the left of the polygon’s leftmost vertex, x̌j assumes 0. Inequalities (11) and (12) cal-
culate the respective distances on the y-axis for every tour. Constraints (13) calculate 
lower bounds on the tour length based on the rectilinear metric. Constraints (14) 
and (15) determine respective lower bounds based on the maximum metric. Finally, 
Constraints (16) through (19) define the domain of the auxiliary variables.

4.1.2  Slave problem

Solving the master model generates feasible item batches, which may, however, 
not be optimal. Let z̄ be a candidate integer solution of the master model, defining 
r =

∑
j∈Ω z̄j,j pick tours. Each pick tour k = 1,… , r consists of picking the items in 

set �̄�k = {j ∈ Ω ∣ z̄j,j� = 1} , where j� ∈ Ω is the k-th item for which z̄j�j� = 1 . We refer 

(10)x̌j ≥ �̄� −
((
x̃j� − l

)
⋅ zj�,j + l

)
∀j, j� ∈ Ω ∶ j� ≤ j

(11)ŷj ≥ ỹj� ⋅ zj�,j ∀j, j� ∈ Ω ∶ j� ≤ j

(12)y̌j ≥ −ỹj� ⋅ zj�,j ∀j, j� ∈ Ω ∶ j� ≤ j

(13)d̂j ≥ 2 ⋅
1√
2
⋅

�
x̂j + x̌j + ŷj + y̌j

�
∀j ∈ Ω

(14)d̂j ≥ 2 ⋅
(
x̂j + x̌j

)
∀j ∈ Ω

(15)d̂j ≥ 2 ⋅
(
ŷj + y̌j

)
∀j ∈ Ω

(16)x̂j, x̌j ∈
[
0,max

i∈I

{
xi
}]

∀j ∈ Ω

(17)ŷj, y̌j ∈
[
0,max

i∈I

{
|yi|

}]
∀j ∈ Ω

(18)d̂j ∈ [0, 2 ⋅ l + 4 ⋅ b] ∀j ∈ Ω

(19)�̄� ∈
[
0, l−

w

2

]
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to the set of pick tours derived from the current master solution as Φ̄ = {�̄�1,… , �̄�r} , 
where we use bars to indicate that the sets �̄�k and Φ̄ are fixed within the slave problem.

Given an item batching z̄ , two problems remain to be solved: First, we must decide 
on the location � of the depot, and second, we need to determine the optimal picker 
route for each �̄�k . As soon as the first problem is solved, the second becomes trivial. 
Hence, we begin with the former. Note that auxiliary variable �̄� in the master model 
does not necessarily correspond to the optimal depot location because the distance val-
ues d̂j are only lower bounds. Instead, the best depot location � for a given set Φ̄ of 
tours can be found by minimizing G(�̄�1,… , �̄�r,𝜒) (cf., Eq. (3)) for the given candidate 
integer solution z̄ , which can be done as follows.

The term 𝜕G(�̄�1,…,�̄�r ,𝜒)

𝜕𝜒
 is not continuous because of the minimum term in each 

g(�̄�k,𝜒) (cf., Eq. (2)). However, for a fixed set Φ̄ , it is piece-wise continuous in every 
interval where argmin (j,j�)∈�k

{
�j,j� (�)

}
 is constant, ∀k ∈ {1,… , r} . Hence, to mini-

mize G(�̄�1,… , �̄�r,𝜒) , three steps are necessary. First, we need to determine every 
interval, in which G(�̄�1,… , �̄�r,𝜒) has a constant derivative. Second, for each interval, 
we need to determine the minimum of G(�̄�1,… , �̄�r,𝜒) separately. Third, out of all 
intervals’ minima, we need to select the one that is minimal overall. The last step is 
trivial. In the following, we discuss the first two steps, where we label the minimal 
value for G(�̄�1,… , �̄�r,𝜒) as G∗(�̄�1,… , �̄�r,𝜒) and the respective depot location 
𝜒∗(�̄�1,… , �̄�r).

Starting from the second step, the minimum within an interval can be determined by 
finding the root of 𝜕G(�̄�1,…,�̄�r ,𝜒)

𝜕𝜒
 within that interval. The root within a continuous inter-

val can be determined with arbitrary precision using a gradient descent method (e.g., 
Newton’s method). Note that finding the root of the derivative within each interval is 
sufficient, since 𝜕

2
(
−dj,j� +𝛾j,j� (𝜒)

)

𝜕𝜒2
= ỹ2

j
⋅

((
x̃j − 𝜒

)2
+ ỹ2

j

)−
3

2
+ ỹ2

j�
⋅

((
x̃j� − 𝜒

)2
+ ỹ2

j�

)−
3

2
> 0 , hence, 

in a given interval, G(�̄�1,… , �̄�r,𝜒) is convex and only has a single minimum. For the 
same reason, if the root lies outside of the interval, the interval’s minimum is equal to 
one of its boundaries.

It remains to discuss the first step, i.e., to determine the borders of the intervals in 
which argmin (j,j�)∈�k

{
�j,j� (�)

}
 is constant. The edge argmin (j,j�)∈�k

{
�j,j� (�)

}
 , which 

we call dominant edge in the following, can only change at values � where the func-
tions �j,j� (�) and �j��,j��� (�) intersect, for two edges (j, j�), (j��, j���) ∈ �k ∶ (j, j�) ≠ (j��, j���) . 
This leads to the following iterative procedure. Initially, we determine 
(ĵ, ĵ�) = argmin (j,j�)∈𝜂k

{
𝛾j,j� (0)

}
 as the dominant edge for � = 0 and we initialize 

�̂� ∶= 0 . In each iteration, we determine the consecutive dominant edge. The dominant 
edge (ĵ, ĵ�) changes, when

assumes zero, approaching from a negative value with increasing � , for any 
(j, j�) ∈ 𝜂k ∶ (j, j�) ≠ (ĵ, ĵ�) and l−w

2
≥ 𝜒 > �̂� . Let � ′ be the smallest value of � 

for which c((ĵ, ĵ�), (j, j�),𝜒) assumes zero approaching from a negative value, 
∀(j, j�) ∈ 𝜂k ∶ (j, j�) ≠ (ĵ, ĵ�) , and let (j��, j���) be the respective edge. Then we update 
�̂� ∶= 𝜒 � and (ĵ, ĵ�) = (j��, j���) and start the next iteration. The values of �̂� found 

c((ĵ, ĵ�), (j, j�),𝜒) = 𝛾ĵ,ĵ� (𝜒) − 𝛾j,j� (𝜒)
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during the iterations mark the intervals’ borders. The procedure terminates as soon 
as no � � ≤ l−

w

2
 can be found anymore.

During the iterative procedure, we solve c((ĵ, ĵ�), (j, j�),𝜒) = 0 as follows. At first 
glance, we cannot rule out that function c((ĵ, ĵ�), (j, j�),𝜒) has none, one or multiple 
roots, such that we cannot use a gradient descent approach, since it may overshoot if 
there are multiple roots or not terminate if there are none. However, we can con-

clude that |||
�c((j,j�),(j��,j���),�)

��

||| ≤ 4 because 0 ≤

�����

𝜕
√

(x̃j−𝜒)
2+ỹ2

j

𝜕𝜒

�����
=
�����
−

x̃j−𝜒√
(x̃j−𝜒)

2+ỹ2
j

�����
≤ 1 , 

∀j ∈ Ω (cf. Eq.  (2)). This means that if � changes by a step size of � , 
c((j, j�), (j��, j���),�) changes by no more than 4 ⋅ � , which leads to the following itera-
tive sub-routine. Starting from 𝜒 ∶= �̂� , we determine a step size 
𝜇 ∶= max

{
1

4
⋅ |c((j, j�), (j��, j���),𝜒)|,𝜇min

}
 , where �min is the arbitrarily small 

numerical precision. We update 𝜒 ∶= 𝜒 + 𝜇 and evaluate c((j, j�), (j��, j���),𝜒) . We 
repeat this process until c((j, j�), (j��, j���),𝜒) changes from a negative value to a posi-
tive value between two iterations or until we reach 𝜒 > l−

w

2
 and return 𝜒 as the solu-

tion. The complete procedure to solve the slave problem is summarized in pseudo-
code in Algorithm 1.

Example For additional clarification, in the following, we exemplary demon-
strate how we determine the borders of the intervals in which g

(
�̄�k,𝜒

)
 has a con-

tinuous derivative. Consider a U-zone as depicted in Fig.  1a, where the items 
j ∈ �k = {1, 8, 12, 30} should be picked on the same tour. To keep the example 
simple, we assume every item is stored in stillage i with the same respective index 
and set w = 1.3 m and s = 0.05 m (cf., Sect. 5). The set of edges is then given as 
�k = {(1, 8), (8, 12), (12, 30), (30, 1)} . Figure  3a depicts the functions �j,j� (�) , 
∀(j, j�) ∈ �k.

The procedure starts by determining the dominant edge at � = 0 , which is 
(ĵ, ĵ�) = argmin (j,j�)∈𝜂k

 
{
�j,j� (0)

}
= (30, 1) . Starting with edge (1, 8) and with � = 0 , 

we iteratively increase � to determine a possible intersection between �30,1(�) and 
�1,8(�) , which is schematically shown in Fig. 3b. Since there is no intersection, for 
� ≤ l−

w

2
 , we continue with the next edge, i.e., (8, 12). Here, we find an intersection 

at � = 6.77 (cf., Fig. 3). We save �̂� ∶= 6.77 and select the next edge (12, 30) to look 
for intersections between �30,1(�) and �12,30(�) . We find an intersection at � = 4.85 
and overwrite �̂� ∶= 4.85 . At this point, we have checked for intersections between 
�30,1(�) and �j,j� (�) for all other edges (j, j�) ∈ �k ∶ (j, j�) ≠ (30, 1) and found the 
intersection closest to 0 at �̂� ∶= 4.85 . Hence, the fist interval where g

(
�̄�k,𝜒

)
 has a 

constant derivative is [0, 4.85). To determine the next interval, we set the dominant 
edge to (ĵ, ĵ�) = (12, 30) and try to find intersections for 𝜒 > 4.85 in the same way as 
before. Since there are no more intersections, we determine the second (and in this 
case final) interval as [4.85, l−w

2
].

Determining these intervals not only for �̄�k but for all �̄�1,… , �̄�r gives the inter-
vals in which G

(
�̄�1,… , �̄�r,𝜒

)
 has a continuous derivative. To solve the slave prob-

lem, the final step is then to determine the root of G
(
�̄�1,… , �̄�r,𝜒

)
 within every 

such interval and to select the one that is minimal overall.
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Once the optimal depot location 𝜒∗(�̄�1,… , �̄�r) has been deter-
mined, the optimal route for each set �̄�k , ∀k = {1,… , r} , follows immedi-
ately from the continuous interval in which 𝜒∗(�̄�1,… , �̄�r) lies. We define 
(j∗
k
(�̄�1,… , �̄�r), j

�∗
k
(�̄�1,… , �̄�r)) = argmin (j,j�)∈𝜂k

{
𝛾j,j�

(
𝜒∗(�̄�1,… , �̄�r)

)}
 . Then the 

optimal route for the set �̄�k visits items j∗
k
(�̄�1,… , �̄�r) and j�∗

k
(�̄�1,… , �̄�r) directly 

before returning to and after leaving from the depot, respectively. All other items 
j ∈ �̄�k⧵{j

∗
k
(�̄�1,… , �̄�r), j

�∗
k
(�̄�1,… , �̄�r)} are visited in clockwise order in-between 

(cf., Proposition 3.1).

4.1.3  Combinatorial cuts

Let UB be the objective value of the current best known solution (i.e., the best currently 
known upper bound on the optimal objective value). If no feasible solution is known 
yet, let UB = ∞ . If G∗ < UB , a new best solution has been found, which is stored, and 
UB is updated to G∗ . If UB is updated, we add the following cut, which we call an opti-
mality cut, to the constraint set of the master model:

where � is a sufficiently small positive number and G is the objective function of the 
master model. This equation cuts off all solutions whose lower bound is not better 
than the current upper bound.

(20)G ≤ G∗(�̄�1,… , �̄�r,𝜒
∗(z̄)) − 𝜖

(a) (b) (c)

Fig. 3  Exemplary determination of intervals where g
(
�k ,�

)
 has a continuous derivative
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Regardless of whether a new upper bound has been found, we make use of the 
following observation to generate further cuts. To find a better solution, the dura-
tion of at least one of the r tours must be made shorter, or one of the tours must 
be dissolved altogether. A tour can only become shorter if the polygon constitut-
ing the tour changes its form. The polygon can only change its form if a stillage 
lying at a vertex changes, but the polygon stays unchanged if a stillage lying on 
(the middle of) an edge changes. There are two general possibilities where the 
former is the case.

The first possibility is that either the first or the last stillage to be visited per face 
of the U-shaped picking area changes. Adding or removing stillages that lie in-
between two other stillages on the same face (and that are not visited directly before 
or after the depot) cannot reduce the duration of the tour because the picker passes 
by that stillage in any case. The second possibility is that a stillage changes that is 
visited either directly after leaving or before returning to the depot. For additional 
clarification, Fig. 4 provides an example.

Let T =
{
j ∈ Ω ∣ ỹj = maxi∈I

{
yi
}}

 be the set of items on the top face of 
the U-shaped picking area. Analogously, let B be the set of items on the bot-
tom face, and R be the  set of items on the perpendicular face. For nota-
tional convenience, we define the set T

k
=
{
j ∈ T ∩ 𝜔k ∣ x̃j = minj∈T∩𝜔k

{x̃j}
}
 

and Tk =
{
j ∈ T ∩ 𝜔k ∣ x̃j = maxj∈T∩𝜔k

{x̃j}
}
 as well as, 
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analogously, B
k
 , Bk , Rk

 and Rk as the extreme items on each face. Then the 
set of all items that could be changed to alter the route of tour k is given as 
Λk = T

k
∪ Tk ∪ B

k
∪ Bk ∪ R

k
∪ Rk ∪

{
j∗
k
(�̄�1,… , �̄�r), j

�∗
k
(�̄�1,… , �̄�r)

}
.

Using these definitions, we add the following cut, which we call a progression 
cut, to the master model:

Inequality (21) enforces that at least one stillage at a polygon’s vertex of one of the 
r tours is reassigned. Note that this always makes the current solution infeasible. 
The solver thus continues solving the master model with the newly added cut(s), 
intermittently calling the slave problem whenever a new candidate integer solution 
is found until the search space is empty.

4.2  Heuristic solution approaches

While the proposed CBD is able to solve problem instances of smaller sizes in 
acceptable runtime, its runtime gets excessively long when working on larger 
sized instances (cf., Sect.  5.2). Therefore, we also consider heuristic solution 
approaches in the following.

Glock and Grosse (2012) propose a heuristic sweep algorithm (SA) for the 
picker routing problem in U-shaped pick areas. In our computational experi-
ments (cf., Sect. 5), the SA produces good results on average. However, for some 
instances, the optimality gaps can be substantial. Inspired by these findings, we 
propose a heuristic solution procedure using the concept of dynamic program-
ming (DP) that expands on the idea of the SA. In the following, we briefly review 
the SA of Glock and Grosse (2012) before discussing our DP approach.

(21)1 ≤

r∑

k=1

∑

j∈Λk

(
1 − zj,max{�̄�k}

)

Fig. 4  Example of which stillages are considered in the progression cut 
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4.2.1  Sweep algorithm

The SA starts by assuming a fixed depot position �̄� . Its basic idea is to assign 
items to sets �k in clockwise order. Starting from an initial item, the SA assigns 
items to the same set �k , until the next item would exceed the picker’s capacity 
Q. In that case, the next item is assigned to a new set �k+1 and the previous set is 
closed. For each closed set of items �k , g(𝜔k, �̄�) is derived (cf. Eq.   2). Since �̄� 
is given, g(𝜔k, �̄�) can be easily calculated. Once all items have been assigned to 
sets, the objective value is given by G(𝜔1,… ,𝜔r, �̄�) (cf. Eq.  3). The fixed depot 
position �̄� and the starting item are varied over multiple iterations of the algo-
rithm. Using � step-size as an arbitrarily small step-size to increment �̄� , the algo-
rithm can be formally described as follows. 

1. Set �̄� ∶= 0 , G∗ = ∞ and �∗ = 0.
2. Set jstart ∶= 1.
3. Set j ∶= jstart and k ∶= 1.
4. Set �k = {j}.
5. Increment j ∶= j + 1 . If j > |Ω| set j ∶= 1 , i.e., after the U-zone’s final item has 

been reached, proceed with the first item to continue the clockwise sweeping. If 
j = jstart , i.e., if item j has already been considered in the beginning, go to Step 
7.

6. If 
∑

j�∈�k
qj� + qj ≤ Q , add �k ∶= �k ∪ {j} and go to Step 5. Else, increment 

k ∶= k + 1 and go to Step 4.
7. C a l c u l a t e  G(𝜔1,… ,𝜔k, �̄�)  .  I f  G(𝜔1,… ,𝜔r, �̄�) < G∗  ,  u p d a t e 

G∗ ∶= G(𝜔1,… ,𝜔r, �̄�) and 𝜒∗ ∶= �̄� . Increment jstart ∶= jstart + 1 . If jstart ∈ Ω , 
go to Step 3.

8. Increment �̄� ∶= �̄� + 𝜒 step-size . If �̄� ≤ l−
w

2
 , go to Step 2. Else, terminate the pro-

cedure.

Example Consider a U-zone as depicted in Fig.  1a, where the items 
j ∈ {1, 6, 28, 30, 33} should be picked. To keep the example simple, we assume 
every item is stored in stillage i with the same respective index and set w = 1.3 m 
and s = 0.05 m (cf., Sect. 5). The weights of the items are given in Fig. 5a and the 
picker has a capacity of Q = 5 . For the given initial item jstart = 1 and the depot loca-
tion �̄� ∶= 0 , the solution as determined by the SA is given in Fig. 5b with an objec-
tive value of 29.43.

4.2.2  Heuristic dynamic programming algorithm

In the SA, items are always added to the currently “open” set �k until adding 
another item would exceed the capacity (cf., Step 6). However, we notice in our 
computational experiments that this is not always a good choice (see Sect.  5). 
Instead, sometimes it is better to “close” a set �k before the capacity is reached, 
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and add the next item to the consecutive set �k+1 . The following DP approach 
takes this observation into consideration.

Similar to the SA, the DP procedure assumes a fixed depot position �̄� and an 
initial start item jstart at the beginning of each iteration and considers items in a 
clockwise order. The solution is then constructed piece-wise using a DP scheme, 
based on the general idea formulated by Bellman (1954).

For given values of �̄� and jstart , the DP consists of |Ω| + 1 stages p = 0,… , |Ω| , 
each containing one state Θ

p
=
{
j ∈ J ∶ j

start ≤ j < j
start + p ∨ 1 ≤ j < p + j

start − |Ω|
} , denoting 

the set of items that have already been considered in the partial solution. Starting 
from initial stage p = 0 with state Θp = � , a successor stage p′ > p is reached by 
adding the set Θp� ⧵ Θp to Θp , indicating that items j ∈ Θp�⧵Θp are picked in the 
same tour �p′ . A transition is only feasible if 

∑
j∈Θp�⧵Θp

qj ≤ Q , i.e., if the capacity 
is not exceeded.

Let V(Θp) be the set of states from which a feasible transition to state Θp exists. 
The optimal objective value h∗(Θp) of the partial solution in state Θp can then be 
calculated recursively as

with h∗(�) = 0 . The objective value of a complete solution in final state Θ|Ω| is also 
the best objective value for the given values of �̄� and jstart . We can obtain the cor-
responding assignment by backward recovery along the best path. To complete the 
proposed DP, we increment �̄� and jstart in the same manner as for the SA and save 
the overall best obtained solution.

The way the DP is set up, it is guaranteed to always find a solution that is at 
least as good as the sweep algorithm’s solution. Concerning the time complexity, 
for given values of �̄� and jstart , there are O(n2) transitions. Note that, by careful 
implementation, it is possible to calculate the objective contribution of all O(n) 
successors of a state in O(n) time. Let � =

l−
w

2

� step-size
 be the number of increments 

h∗(Θp) = min
Θ�∈V(Θp)

{
h∗(Θ�) + g

(
Θp ⧵ Θ

�, �̄�
)}

,

j qj

1 1

6 2

28 2

30 1

33 2

(a) Example item weights. (b) Solution found by the SA.

Fig. 5  Example solved by the the SA
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considered for �̄� . Then the asymptotic runtime of the complete procedure (includ-
ing varying �̄� and jstart ) is bounded by O(� ⋅ n3).

Example Consider the same example as for the SA in Sect. 4.2.1. For the given ini-
tial item jstart = 1 and the depot location �̄� ∶= 0 , Fig.  6 depicts the dynamic pro-
gramming graph including the optimal path recovered from backtracking. The 
objective of the DP’s solution is 22.63, which is 23.10 % below the one of the SA’s 
solution.

5  Numerical experiments and analysis

5.1  Generating instances for the computational tests

To evaluate our proposed solution procedures and gain some managerial insights, we 
generate problem instances based on our observations in practice and the assump-
tions presented by Glock and Grosse (2012). The following section describes how 
the instances are generated.

We consider U-layouts with two different capacities, either 44 stillages (cf., 
Glock and Grosse 2012) or 88 stillages. The layout of an instance is defined by 
setting n and m, the number of stillages in one horizontal and in one vertical row. 
Since both Glock and Grosse (2012) and Diefenbach and Glock (2019) found that 
narrow U-shapes are advantageous, we consider the layouts of (n,m) = (10, 2) , 
(n,m) = (9, 4) , and (n,m) = (8, 6) if the U contains 44 stillages, and the layouts of 
(n,m) = (21, 2) , (n,m) = (20, 4) , and (n,m) = (19, 6) if the U contains 88 stillages. 
In accordance with Glock and Grosse (2012), we set the measurements of the still-
ages to w = 1.3 m and the gap between the stillages to s = 0.05 m.

For the item demands, we assume a 20/60-Pareto distribution (cf., Bender 1981), 
i.e., 20% of the items are responsible for 60% of demand. Based on the distribution, 
we randomly draw |Ω| items to be picked for each instance. For the instances with 
44 stillages, we set either |Ω| = 10 or |Ω| = 15 ; for the instances with 88 stillages, 

Fig. 6  Dynamic programming graph for the example of Sect. 4.2.1
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we set either |Ω| = 30 or |Ω| = 60 . Items weights qj are drawn randomly from the 
set {1,… , 5} and the picker capacity is set to Q = 15 (cf., Glock and Grosse 2012). 
Finally, we assign the items to stillages in a random manner, and set v = 3 (cf., 
Glock and Grosse 2012) as the default value for the penalty to move the depot. Note 
that we will deviate from the default settings for v and the default item assignment in 
later experiments.

We generate ten instances for each setting. All instances are labeled as follows: 
“number of stillages”-(n, m)-|Ω|-running index. All instances are available for down-
load at https:// doi. org/ 10. 5281/ zenodo. 46718 70.

5.2  Computational performance

This section investigates the performance of the three proposed solution procedures, 
namely CBD, SA, and DP. All testing is performed on an Intel Core i7-3631QM 
CPU @ 2.20 GHz and with 8 GB of RAM. All algorithms are implemented in C#, 
and CPLEX (version 12.10) is used as a default solver for the master model of the 
proposed CBD at default settings. The maximum runtime is set to 3600 s (1 h). The 
numerical precision is set to � = � = � step-size = 0.01 for all procedures and respec-
tive parameters.

In a preliminary test we found that the influence of the exact layout (i.e., the val-
ues of n and m for a given number of stillages) on the algorithmic performance is 
negligible. We therefore restrict the performance tests to the instances with m = 4 . 
The results of the performance test are summarized in Table 2.

The computational experiments show that the exact CBD is able to solve all 
instances with |Ω| ≤ 15 in acceptable runtime. However, not surprisingly given the 
NP-hard, non-linear nature of the problem, for instances with |Ω| ≥ 30 the procedure 
does not terminate within the maximum runtime of 3600 s and the gaps to the lower 
bounds of the MP (as reported by CPLEX) remain high at the point of termination. 
Furthermore, both heuristic approaches yield better solutions for |Ω| ≥ 30 . Espe-
cially for larger instances, the time share spent solving the MP (which is above 97% 
for |Ω| ≥ 30 ) indicates that the MP is the procedure’s bottleneck; the SP appears to 
be sufficiently fast to solve.

The SA runs very fast with a runtime of below 1  s even for |Ω| = 60 . For 
|Ω| ≥ 15 , where we know the optimum thanks to CBD, the optimality gaps are gen-
erally low. For most instances, the optimality gaps are even zero. However, for five 
instances they are above 2% and can be as high as about 5% . Nonetheless, we can 
draw the conclusion that the relatively simple sweep algorithm works quite well for 
U-shaped picking areas. This is certainly good news for practitioners, who may find 
it easy to implement such a routing scheme.

To further improve the SA, our approach based on dynamic programming yields 
even better solutions. It completely closes the optimality gap in all small and most 
medium size instances. Even though the DP is a little slower than the SA, it sill runs 
fast, with a runtime of at most 10 s for |Ω| = 60 , which is clearly sufficient for prac-
tical application.

https://doi.org/10.5281/zenodo.4671870
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5.3  Effects of having a movable depot

In our default settings, we assume a movable depot that can be positioned at any 
position 0 ≤ � ≤ l and set v = 3 , which means that moving the depot is six times 
faster than travel during order picking (cf., Sect. 3.1). However, in practice, com-
panies may find it easier to define a fixed position for the depot. Furthermore, the 
depot could be set up and moved in a different way. For example, the depot could be 
moved by a forklift or a manual hand lift truck. Depending on this, the factor v may 
vary.

This section investigates the effects of having a movable or fixed depot as well as 
the effects of different values for v. For the experiment, we use the same instances 
as in the performance evaluation (cf., Table 2). We solve these instances using the 
DP approach assuming either a movable or a fixed depot. We test four different fixed 
depot positions at � ∈ {0, 0.25 ⋅ l, 0.5 ⋅ l, 0.75 ⋅ l} . Furthermore, we test eight differ-
ent values v ∈ {1, 3, 5, 7, 9, 11, 13, 15} . Figure 7 shows the mean results summarized 
for each instance size.

Obviously, having a stationary depot can never be better than having a mov-
able depot, since the movable depot can always assume the position of the station-
ary depot. However, the benefits of having a movable depot strongly depend on the 
size of the U-zone and the length of the picklist, as the results in Fig. 7 show. For 
larger U-zones and picklists, a stationary depot at � = 0.5 ⋅ l is almost as efficient 
as a movable one. For smaller U-zones and picklists, the benefits of the movable 
depot are more significant. For the 44-(n, m)-10-instances, the gap in the objective 
value between the movable depot case and the best fixed depot case was on average 
(over all different values of v) 6.37 %. For the 44-(n, m)-15-instances, the 88-(n, m)-
30-instances, and 88-(n, m)-60-instances, the gaps were 3.05 %, 1.60 %, and 0.78 %, 
respectively.

Given these finding, a practically relevant approach might be to limit possible 
depot positions to a few discrete locations. As indicated in Sect.  4.1, this would 
make PRP-UA non-exact and turn it into a type of capacitated vehicle routing prob-
lem. While the problem remains NP-hard, the capacitated vehicle routing problem 
is well researched with various exact and heuristic solution procedures being read-
ily available (cf., Ralphs et al. 2003). Such an approach is beyond the scope of this 
paper, but may be interesting to investigate for future research.

Overall, � = 0.5 ⋅ l , i.e., placing the depot in the middle of the U, performs best 
if a stationary position is enforced; only for the 44-(n, m)-10-instances, � = 0.75 ⋅ l 
is better. Fixing the depot at the entrance of the U-zone, i.e., at � = 0 , is the worst 
option according to our experiments and results in objective values that are signifi-
cantly higher than for a movable depot or any of the other fixed positions.

Except for the case where the depot is fixed at � = 0 , the objective values 
decrease with increasing values of v. They do, however, not decrease linearly but 
asymptotically approach a constant value due to the fact that v influences the objec-
tive anti-proportionally. Hence, there are diminishing returns for increasing v.

For the movable depot, not only does v affect the objective value, but also the 
optimized depot position. Figure 8 shows how the mean, maximum and minimum 
depot positions vary with the value of v. Comparing the sub-figures of the different 
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instance sizes shows that the ideal depot position varies less for bigger U-zones and 
larger picklists (i.e., the maximum and minimum positions are closer to each other). 
The effect of v on the spread is negligible. Furthermore, with increasing values of 
v, the ideal depot position increases, asymptotically approaching a constant value. 
Again, this can be explained by the anti-proportional effect of v in the objective 
function. For increasing values of v, the effort to move the depot approaches zero, 
such that � approaches the value that would be ideal to solely minimize the tour 
length during order picking.

5.4  Effects of storage assignment policies

So far, we have only considered instances with a random assignment of items to 
stillages. However, the allocation of items to stillages significantly influences the 
performance of a warehouse with regard to the order picking process. Furthermore, 
in practice, the (time-)effort associated with exchanging stillages on different lev-
els (upper and lower) needs to be considered in addition to travel distances. Pick-
ing items from stillages requires replenishments of empty stillages over time. In the 
industry case described in Glock and Grosse (2012), stillages are stacked one atop 
the other, and exchanging stillages in the upper row is less time-consuming than 
exchanging stillages on the lower level.

Typically, this problem is addressed with simple rules-of-thumb in both practice 
and research (cf., Sect.  2). Among various storage assignment methods that have 
been discussed in the literature, Glock and Grosse (2012) use a dedicated storage 
assignment policy where each item has a dedicated location in the U-zone, which is 
kept constant for a set of orders. In this paper, we develop a new assignment policy 
that we term “radial assignment” and compare this new policy to the four storage 
assignment policies developed by Glock and Grosse (2012). The storage assignment 
policies studied in this paper are briefly explained in the following: 

(a) 44-(n,m )-10-

instances

(b) 44-(n,m )-15-

instances

(c) 88-(n,m )-30-

instances

(d) 88-(n,m )-60-

instances

Fig. 7  Best found objective values for different values of v 
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1. Random assignment: Items are assigned randomly to the stillages. Previous work 
used this policy as a benchmark for evaluating other assignments, which is also 
done in this paper. It was found that the random storage assignment usually leads 
to the highest average travel distance.

2. Horizontal assignment: First, items are sorted in descending order of their pick 
frequency. More frequently requested items are assigned to locations along the 
stillages on the left side of the zone referred to as zone A in Fig. 9a. Once the 
stillages in zone A have been filled, items are assigned to zone B, then to zone C 
etc. Glock and Grosse (2012) showed that a horizontal assignment is especially 
beneficial for wide aisles, as it helps to avoid unproductive crossings of the aisle.

3. Vertical assignment: Items are again sorted in descending order of their pick 
frequency. Items are then assigned to both parallel aisles from left to right, as 
can be seen in Fig. 9b. First, stillages in zone A are filled, followed by zones B, 
C etc. This type of assignment was found to produce better results for longer and 
narrower zones in earlier research. In such cases, the picker saves more travel 
distance by crossing the zone to pick items, instead of continuing along the same 
row of stillages.

4. Upper/Lower assignment: This storage assignment policy exploits the difference 
in the effort associated with exchanging upper and lower level stillages by assign-
ing frequently-required products (that are assumed to result in frequent exchanges 
of stillages) to upper level stillages (Sect. 5.4). Therefore, items are again sorted in 
descending order of their pick frequency and then assigned to the upper level first 
before the lower level stillages are filled. Figure 9c illustrates the preference of 
item allocation following the order: A,B,..,E,F. Glock and Grosse (2012) reported 
that this policy is especially beneficial in case the effort of exchanging stillages 
differs strongly between upper and lower level stillages.

5. Radial assignment: This new storage assignment policy is introduced in this 
paper, where again items are sorted in decreasing order of pick frequency. Fre-
quently required items are allocated radially closer to the depot location. How-
ever, the optimal depot location is usually unknown when items are assigned. 
Therefore, we must assume a given depot location for the radial assignment 
policy. In this paper, we will investigate four alternative assumed depot loca-
tions � ∈ {0, 0.25 ⋅ l, 0.5 ⋅ l, 0.75 ⋅ l} . We emphasize that the depot location is 

(a) 44-(n,m )-10-

instances

(b) 44-(n,m )-15-

instances

(c) 88-(n,m )-30-

instances

(d) 88-(n,m )-60-

instances

Fig. 8  Best found depot positions for different values of v 
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only assumed to determine the assignment; for the optimization, � is still freely 
adjustable. Figure 9d depicts the alphabetical sequence of filling the stillages for 
the assumed depot location � = 0 . It is expected that this will reduce the distance 
covered at the beginning and end of each tour, and should lead to good results for 
larger zones.

In the following, we investigate the effects of these storage assignment policies. We 
generate new instances based on the default instances of the performance evaluation 
(cf., Table 2), by assigning the items according to the presented storage assignment 
policies instead of randomly. I.e., we neither change the picklists nor the item weights, 
but only the assignment of items to stillages. Furthermore, we investigate the effect of 
different layouts, namely (n,m) ∈ {(10, 2), (9, 4), (8, 6)} for the instances with 44 still-
ages and (n,m) ∈ {(21, 2), (20, 4), (19, 6)} for the instances with 88 stillages.

To evaluate the effort for exchanging stillages, we assume exchanging an upper 
stillage takes 3 min and exchanging a lower stillage takes 5 min. Assuming a 
picker has a travel speed of 1.2 m

s
 , this means that exchanging an upper (a lower) 

stillage causes an increase in the objective of 3 ⋅ 60 ⋅ 1.2 =216 ( 5 ⋅ 60 ⋅ 1.2 =360 ), 
since the objective value is measured in the normalized time the picker requires 
to travel 1 m. However, stillages only need to be exchanged once they are empty. 
To account for this, we assume all stillages have an equal capacity of Qstillage and 
need to be exchanged once the capacity is depleted. We can then calculate the 
time-share per picklist to exchange a stillage. For example, assume a given pick-
list where item j is required with qj and item j is stored in an upper stillage. Based 
on our assumptions, this would result in an additional objective value of 

qj

Qstillage
⋅ 216 for the respective item. We evaluate the exchange effort for two differ-

ent stillage capacities Qstillage ∈ {50, 100} and solve all instances with the pro-
posed DP approach. The results of the experiment are summarized in Fig. 10.

Figure 10 shows the mean objective values for (a) the 44-(n, m)-10-, (b) the 
44-(n, m)-15-, (c) the 88-(n, m)-30-, and (d) the 88-(n, m)-60-instances in sepa-
rate bar charts. Each bar consists of three stacked bars. The lowest bar shows the 
objective value if the exchange effort is not considered, the middle bar shows the 
objective value if Qstillage = 100 , and the top bar if Qstillage = 50 . Note that all bars 
are measured form the bottom line (i.e., 0).

Concerning the efficiency of different layouts, our results confirm the findings 
of Glock and Grosse (2012) and Diefenbach and Glock (2019) in that narrow lay-
outs are beneficial. This is the case for all tested instances. For the most effi-
cient storage assignment policies, the results show that the upper/lower assign-
ment is best if the exchange effort is taken into account. This is already true for 
Qstillage = 100 but especially evident for Qstillage = 50 , the reason being that upper/
lower assignment is especially designed to minimize the exchange effort. Interest-
ingly, upper/lower assignment is the worst assignment policy (except for random 
storage) if solely the pick effort is considered. In that case, the newly proposed 
radial assignment with � ∈ {0.5 ⋅ l, 0.75 ⋅ l} performs best.

Concerning the efficiency of the upper/lower assignment if the exchange effort is 
considered, we note that the objective value is strongly dependent on the effort for 
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exchanging stillages and the stillage capacity Qstillage , where higher capacities cause 
lower exchange efforts. While we only considered Qstillage ∈ {50, 100} in our experi-
ment, higher capacities are also possible. By extrapolating our results, we can cal-
culate the theoretical break-even stillage capacities, from where on the upper/lower 
assignment is outperformed by the (former) second best assignment policy, namely 
radial assignment with � = 0.5 ⋅ l or � = 0.75 ⋅ l . These break-even stillage capaci-
ties are given in Table 3.

Finally, we investigate the influence of the items’ demand skewness on the stor-
age assignment policies’ efficiency. For the previous experiments, we assumed that 
item demand follows a 20/60-Pareto distribution (cf., Sect. 5.1). However, more and 
less skewed demand distributions are also common in practice. Therefore, we also 
consider a 20/80- and a 20/40-Pareto distribution in the following. For each demand 
distribution and instance size, we generated ten new instances, which we solved for 
all layout options and storage assignment policies (except for random storage, where 
the item demand distribution is insignificant). The results are given in Table  4, 
which shows the relative change (in %) of the mean objective value (including the 
exchange effort for stillages, where we set Qstillage = 100 ) compared to the default 
20/60-Pareto distribution. The results are summarized over all layout options.

Table 4 generally indicates that more skewed demand distributions result in lower 
objective values for all storage assignment policies. This was to be expected due to 
all considered storage assignment policies being demand-based, meaning they are 
specifically designed to make use of a skewed item demand distribution. The benefits 

(a) Horizontal assignment (b) Vertical assignment

(c) Upper/Lower assignment (d) Radial assignment for χ = 0

Fig. 9  Storage assignment policies for U-shaped order picking zones
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of a more skewed demand distribution are primarily relevant if the U-zone’s capacity 
is large compared to the order size |Ω| . Otherwise, the effect is marginal. Moreover, 
if we compare the best storage assignment policies from the previous tests, namely 
upper/lower assignment and radial assignment with � ∈ {0.5 ⋅ l, 0.75 ⋅ l} , we gain an 
interesting insight. The demand skewness has a much lower influence for the former 
than for the latter. This indicates that for highly skewed demand, the radial assign-
ment with � ∈ {0.5 ⋅ l, 0.75 ⋅ l} becomes more beneficial, while for lower demand 
skewness, the upper/lower assignment is superior.

6  Conclusion

This paper considers the order picker routing problem in U-shaped order picking 
zones. The assumed order picking zones are built from stillages stacked one atop 
another and arranged in a U-shape with a movable depot at its center-line, where 
items are dropped off during order picking. We show that the problem is NP-hard 
and develop the first exact solution procedure, which is based on combinatorial 
Benders decomposition. Furthermore, we develop a new heuristic solution proce-
dure based on dynamic programming by expanding the concept of a heuristic sweep 
algorithm from the literature, such that the new heuristic is guaranteed to find solu-
tions that are at least as good as the ones of the sweep algorithm.

(a) 44-(n,m )-10-instances (b) 44-(n,m )-15-instances

(c) 88-(n,m )-30-instances (d) 88-(n,m )-60-instances

Fig. 10  Effects of different storage and layouts on the efficiency of U-shaped order picking zones
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In a computational study, we compare the performance and runtime of our two 
newly proposed algorithms and the sweep algorithm. We find that the exact proce-
dure is sufficiently fast to solve small problem instances in acceptable runtime but 
struggles with larger ones. Both the sweep algorithm and the dynamic programming 
approach run very fast with at most ten seconds runtime even for large instances. 
Comparing the results of the two heuristics to the exact solutions, we find the opti-
mality gaps are very small at below 1% on average and zero for many instances. 
Comparing both heuristics, we find that the results of the newly developed dynamic 
programming approach are on average 0.55% better than the ones of the sweep 
algorithm.

Beyond that, we investigate the effects of having a movable depot compared to 
a static depot and the influence of different storage assignment policies, where we 
suggest a new policy, called radial assignment, and compare it to various policies 
from the literature. We derive the following managerial insights:

• A movable depot is always favorable compared to a stationary depot. However, 
for larger U-zones and longer picklists, a stationary depot in the middle of the 
U-zone is almost as beneficial as having a movable one. In our experiments, 
objective values were between 0.78% (for large U-zones) and 6.37% (for small 
U-zones) higher if the depot was fixed compared to the movable depot case.

• Having a stationary depot directly at the entrance of the U-zone is the worst 
option by a large margin in all of our experiments. It is therefore not advisable.

• In our experiments, the newly proposed radial assignment policy minimizes the 
effort for order picking, while the upper/lower assignment policy minimizes the 
combined effort for order picking and exchanging empty stillages. However, the 
latter is strongly dependent on the assumed stillage capacities. For high still-
age capacities, radial assignment remains the best policy even if the effort for 
exchanging empty stillages is considered. Moreover, radial assignment appears 
superior for highly skewed item demand distributions, while upper/lower assign-
ment is beneficial for lower demand skewness.

• In our experiments, narrow U-zones are advantageous, which validates the 
results from the literature.

• The relatively simple sweep algorithm, adapted to U-shaped picking zones with 
a movable depot, performs quite well. This may be good news for practitioners 
who do not wish to implement complicated optimization logic.

We base our problem definition on some assumptions. Among the more critical ones 
are the assumption that the depot is point-like and that pickers travel in Euclidean 
paths, while actual human walk paths often resemble an elongated S-shape (cf., Die-
fenbach and Glock 2019). We regard the resulting errors to be comparatively small. 
Nevertheless, future research may aim to improve or refine our assumptions.

Furthermore, we consider storage assignment only in a rudimentary way by 
comparing various assignment policies. However, as our computational study 
shows, storage assignment can greatly influence a U-zone’s efficiency. Future 
research may investigate the possibility to store multiple kinds of items per stil-
lage, which is sometimes found in practice. Our solution procedures are already 
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suited for such scenarios, but we did not consider suitable storage assignment 
policies. Moreover, it could be advisable to consider a combined storage assign-
ment and routing problem in the future. As the performance of our exact solu-
tion approach suggests, this is most likely only possible with heuristic solution 
approaches, although investigating stronger cuts might also present an interest-
ing and promising opportunity to improve our BD’s performance further in the 
future.

In this paper, we considered a fully manual system, as currently automation 
plays a subordinate role for U-shaped order picking zones. However, automa-
tion becomes increasingly important for order picking in general, where it has 
achieved significant performance increases in recent years (Jaghbeer et al. 2020). 
Looking into future developments for U-shaped picking areas, a logical step 
would be to automate depots, enabling them to (autonomously) relocate while 
the picker processes pick tours. Future research may investigate the benefits of 
such (semi-)automated systems and thereby encourage the development of suit-
able technologies.

With this paper being the most recent addition, U-shaped order picking zones 
have been increasingly studied in recent years, since they were first introduction 
by Glock and Grosse (2012). However, there has not yet been a comprehensive 
comparison between U-shaped layouts and conventional layouts with parallel 
shelves. Especially from a practical point of view, it might be desirable to have 
some guidelines about when which layout poses which benefits. The insight gath-
ered in previous works and in this paper may spark future research into this topic.

Appendix

Proposition A.1 Given two points P1 =
(
x
p

1
, y

p

1

)
 and P2 =

(
x
p

2
, y

p

2

)
 with Cartesian 

coordinates, the inequality 
√
2 ⋅ De(P1,P2) − Dr(P1,P2) ≥ 0 always holds true.

Proof To simplify notation, we define l
p
x = |xp

1
− x

p

2
| and l

p
y = |yp

1
− y

p

2
| and 

l
p
y

l
p
x

= � ⇔ l
p
y = � ⋅ l

p
x . Using these definitions and the definitions of De(P1,P2) and 

Dr(P1,P2) , it follows that 
√
2 ⋅

�
(1 + �2) ⋅

�
l
p
x

�2
− (1 + �) ⋅ l

p
x ≥ 0 must hold in 

order for Property A.1 to be true. Rearranging yields 
√
2 ⋅

√
(1 + �2) − (1 + �) ≥ 0 

⇒

√
2 ⋅

√
(1 + �2) ≥ (1 + �) ⇒ 2 ⋅ (1 + �2) ≥ (1 + �)2 ⇒ �2 − 2 ⋅ � + 1 ≥ 0 . 

Applying the binomial theorem finally yields the inequality (� − 1)2 ≥ 0 , which is 
always true, since the left side is a quadratic term that cannot be smaller than zero.  
 ◻
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