
Vol.:(0123456789)

OR Spectrum (2022) 44:535–573
https://doi.org/10.1007/s00291-021-00663-8

1 3

ORIGINAL ARTICLE

New solution procedures for the order picker routing
problem in U‑shaped pick areas with a movable depot

Heiko Diefenbach1 · Simon Emde2 · Christoph H. Glock1 · Eric H. Grosse3

Received: 30 April 2021 / Accepted: 16 November 2021 / Published online: 7 December 2021
© The Author(s) 2021

Abstract
This paper develops new solution procedures for the order picker routing problem
in U-shaped order picking zones with a movable depot, which has so far only been
solved using simple heuristics. The paper presents the first exact solution approach,
based on combinatorial Benders decomposition, as well as a heuristic approach
based on dynamic programming that extends the idea of the venerable sweep algo-
rithm. In a computational study, we demonstrate that the exact approach can solve
small instances well, while the heuristic dynamic programming approach is fast and
exhibits an average optimality gap close to zero in all test instances. Moreover, we
investigate the influence of various storage assignment policies from the literature
and compare them to a newly derived policy that is shown to be advantageous under
certain circumstances. Secondly, we investigate the effects of having a movable
depot compared to a fixed one and the influence of the effort to move the depot.

Keywords Order picking · Routing · Storage assignment · U-shaped pick area ·
Benders decomposition · Dynamic programming

 * Heiko Diefenbach
 diefenbach@pscm.tu-darmstadt.de

 Simon Emde
 siem@econ.au.dk

 Christoph H. Glock
 glock@pscm.tu-darmstadt.de

 Eric H. Grosse
 eric.grosse@uni-saarland.de

1 Institute of Production and Supply Chain Management, Technical University of Darmstadt,
Hochschulstraße 1, Darmstadt 64289, Germany

2 CORAL - Cluster for Operations Research, Analytics, and Logistics, Aarhus University,
Fuglesangs Allé 4, Aarhus V 8210, Denmark

3 Juniorprofessorship of Digital Transformation in Operations Management, Saarland University,
Saarbruecken, Germany

http://orcid.org/0000-0001-6932-0166
http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-021-00663-8&domain=pdf

536 H. Diefenbach et al.

1 3

1 Introduction

The management of warehouse operations has received ample attention over many
years. Especially order picking, which is commonly described as the retrieval of
products from storage locations to fulfill customer orders, is on the top of many
research agendas (Van Gils et al. 2018). This is because of, firstly, the high amount
of manual human labor that is usually associated with picking orders (Grosse et al.
2015), and, secondly, the fact that order picking is a very time-intensive activity
with direct impact on customer service (De Koster et al. 2007). For example, in the
United States, more than 3.7 million people are employed in warehousing as manual
laborers and material movers (Bureau of Labor Statistics 2016). In the European
Union’s warehousing and transport support sector, 2.6 million persons are employed
(Eurostat 2016). These facts render order picking one of the most important cost fac-
tors in warehousing (Tompkins et al. 2010; Rushton et al. 2014).

To reduce the cost of order picking, researchers have developed various mathe-
matical models in the past that support warehouse managers in assigning products to
shelf locations, in restructuring incoming orders and in routing order pickers through
the warehouse (Van Gils et al. 2018). It is usually advisable to adapt planning proce-
dures to the specific layout of the warehouse (Roodbergen et al. 2015). Warehouse
layouts that have been studied in research on order picking in the past include lay-
outs of rectangular shape, which are often denoted as conventional warehouses,
either with a single block (e.g., Petersen et al. (2005); Grosse et al. (2014)) or with
two or more blocks (e.g., Roodbergen and Koster 2001a; Roodbergen et al. 2015).
Non-conventional warehouses, such as leaf, chevron or flying-V, are employed less
frequently in practice but still play a significant role (e.g., Masae et al. 2020b, 2021).

U-shaped layouts of warehouse zones, which are sometimes also referred to as
“picker nests”, can be observed quite often in practice, but have not received much
attention in the literature so far. Glock and Grosse (2012), for example, studied order
picking in a U-shaped zone and developed procedures for assigning products to shelf
locations, for finding a location for the depot of the order picker, and for routing
the order picker through the U-zone. Inspired by a practical case in automotive part
picking, the authors also introduced the concept of a movable depot: the depot from
which the picker sets off and to which she returns need not be at a fixed location, but
can be moved within certain limits, potentially shortening pick tours. Put differently,
the depot location becomes itself a variable to be optimized. Given the special struc-
ture of the pick zone, the authors used a simple sweep algorithm to solve the routing
problem. Diefenbach and Glock (2019) also studied a U-shaped warehouse and opti-
mized the layout and item assignment for single command picking with regard to
two different objectives, namely pick efficiency and ergonomics. They did, however,
not study the routing problem since it is not relevant for single command picking.

The paper at hand revisits the setting studied by Glock and Grosse (2012) and
extends the existing work by the following contributions:

537

1 3

New solution procedures for the order picker routing problem…

• We develop the first exact solution procedure for the picker routing problem in
U-shaped order picking zones, namely an algorithm based on combinatorial
Benders decomposition.

• In a comprehensive numerical study, we compare the solutions of our newly
developed exact procedure to the solutions of the sweep algorithm developed by
Glock and Grosse (2012) to analyze the latter’s solution quality, which had not
been done yet.

• We develop a new heuristic approach extending the idea of the sweep algorithm,
based on dynamic programming. The newly developed procedure compares
favorably in theory and in our numerical experiments.

• In addition, we derive some managerial insights from our numerical experi-
ments. We propose a new radial storage assignment policy that better matches
the specific characteristics of a U-shaped order picking zone, compare it to stor-
age assignment policies from the literature, and demonstrate its advantage in cer-
tain situations. Furthermore, we investigate the effects of having a movable com-
pared to a fixed depot and the influence of the effort for moving the depot.

The remainder of this paper is structured as follows: Sect. 2 discusses the related lit-
erature. Section 3 formally defines the picker routing problem studied in this paper,
while Sect. 4 presents exact and heuristic solution methods. Section 5 presents the
results of numerical experiments, and Sect. 6 concludes the paper.

2 Literature review

Researchers have developed numerous mathematical models and algorithms to pro-
vide managerial decision support in planning manual order picking operations. The
aim of these works has mainly been the reduction of order picking time or travel dis-
tance and thus the minimization of costs (see, for reviews, Gu et al. 2007; De Koster
et al. 2007; Grosse et al. 2017; Masae et al. 2020a)). To reach this goal, several
planning problems have to be addressed. These include layout design, routing, stor-
age assignment, and order batching. The reader is referred to the review of Van Gils
et al. (2018) for a detailed overview of order picking planning models.

Works on layout design mostly deal with the definition of a suitable warehouse
layout, which includes decisions about the number of storage blocks, cross aisles,
parallel aisles, as well as height and depth of racks (e.g., Vaughan 1999; Rood-
bergen and Vis 2006; Roodbergen et al. 2008, 2015). Here, it is important to keep
space requirements and other types of restrictions in mind when determining the
width of aisles, which can be narrow, wide or mixed (Mowrey and Parikh 2014).
The majority of works studies rectangular/conventional layouts, whereas alterna-
tive layouts for manual order picking areas are rather rare (Masae et al. 2020a).
However, alternative layouts for order picking areas are quite common in prac-
tice. These include U-shaped layouts, where shelves or pallets are arranged in
the shape of a U within the order picking area (Glock and Grosse 2012; Diefen-
bach and Glock 2019). We note that Henn et al. (2013) also refer to their con-
sidered layout as U-shaped. It is, however, fundamentally different from the one

538 H. Diefenbach et al.

1 3

considered in this paper as it resembles a more conventional warehouse layout,
where the cross aisles are arranged in the shape of an H or U. Other alternative
layouts such as fishbone (Gue and Meller 2009) or flying-V designs (Öztürköğlu
et al. 2014) are proposed for unit-load warehouses, where products are picked in
pallet quantities.

Routing methods that guide order pickers through the warehouse on preferably
shortest routes are mainly developed for conventional warehouses. An exact algo-
rithm that calculates shortest routes exists for one-block warehouses, solving a spe-
cial case of the traveling salesman problem (Ratliff and Rosenthal 1983; Scholz
et al. 2016; Lu et al. 2016; Chabot et al. 2017; Masae et al. 2020a). Although this
exact algorithm exists, many authors studied simple routing heuristics (such as
the well-known s-shape heuristic) because these easy-to-follow patterns are often
applied in practice (Petersen and Aase 2004; Glock et al. 2017). For special cases
of rectangular warehouses with more cross aisles, extensions of this exact algorithm
(Roodbergen and Koster 2001a; Pansart et al. 2018) as well as heuristic solution
approaches exist (Roodbergen and Koster 2001b; Theys et al. 2010; Çelik and Süral
2019; Chen et al. 2019). For alternative layouts, Masae et al. (2020b), for example,
propose an exact algorithm to solve the picker routing problem in the chevron lay-
out as well as in the leaf warehouse (Masae et al. 2021), and Çelk and Süral (2014)
for the fishbone layout. In U-shaped order picking areas, Glock and Grosse (2012)
propose a sweep algorithm to calculate order picking routes. In a similar setting,
Glock et al. (2019) assume a sufficient capacity of the order picker to transport all
requested items in a single tour, which simplifies the routing problem.

Storage assignment methods assign items to storage positions (Reyes et al. 2019).
This can either be random or according to some criteria, such as item demand or
volume (Füßler et al. 2019). Common advice for practitioners is to assign frequently
requested items to storage locations close to the depot (also denoted as pick-up/
drop-off point, see Petersen and Aase (2004)). In rectangular warehouses, a common
approach is to define item classes (typically A, B, and C items according to demand
frequency), which are then assigned to specific aisles or zones (De Koster et al.
2007). Petersen et al. (2004) propose several patterns for class-based storage to clas-
sify aisles, e.g., within-aisle, diagonal or rectangular strategies. Several algorithms
for class-based storage assignment exist (Muppani and Adil 2008). For U-shaped
layouts, Glock and Grosse (2012) propose dedicated storage assignment methods
(i.e. horizontal, vertical, and upper/lower assignments). Moreover, further factors
can be considered for storage assignment models, such as precedence constraints,
item weight (Žulj et al. 2018a), or other objectives than the minimization of travel
distance, for example, the minimization of human energy expenditure (Battini et al.
2016; Calzavara et al. 2017, 2019) or workload (Otto et al. 2017; Glock et al. 2019).

Consolidating or splitting up orders, which is commonly denoted as order batch-
ing, can save on travel distance (Cergibozan and Tasan 2019). Only small instances
of order batching problems can be solved optimally in reasonable time (Gademann
and Velde 2005), which is why many researchers propose heuristic or metaheuris-
tic approaches to address this problem (Hong et al. 2012; Henn and Wäscher 2012;
Matusiak et al. 2014; Pan et al. 2015; Žulj et al. 2018b). Other authors develop
metaheuristic algorithms to solve the combined order batching and picker routing

539

1 3

New solution procedures for the order picker routing problem…

problems in an integrated fashion (Kulak et al. 2012; Grosse et al. 2014; Van Gils
et al. 2019).

This paper addresses two out of the discussed four planning problems, contrib-
uting new insights in this research field, namely developing a new heuristic and
an exact algorithm based on combinatorial Benders decomposition for the picker-
routing problem within the U-zone and proposing a new radial storage assignment
method for this special layout.

3 Problem description

This paper studies order picking in a U-shaped order picking area as outlined in
Glock and Grosse (2012). In the considered warehouse setting, items are stored in
stillages (i.e., large boxes that can be accessed from the front), with two rows of
stillages stacked one atop the other. Each U-zone consists of two horizontal and one
vertical shelf as illustrated in Fig. 1. The depot, where each order picking tour starts
and ends, is also a stillage that is brought to and removed from the U-zone by a
forklift truck, and it is represented by the black box in Fig. 1a. The picker travels on
foot along the shelves of the U-zone, possibly pushing or pulling a cart or a related
device. U-shaped order picking areas, as the one studied in this paper, can frequently
be observed in practice, for example in the automotive or chemical industries (Glock
and Grosse 2012; Glock et al. 2019).

In these industries, it is common to prepare so-called kits to supply assembly
workplaces with the required materials. For preparing the kits, compact work zones
are established in the warehouse that contain the items required at one or more
assembly workplaces (e.g., Hanson et al. 2017). Especially in cases where only a
small number of items is stored in the kitting zones, U-zones are beneficial because
of a clear separation of items and good item accessibility.

3.1 Formal description of the picker routing problem

To model the problem concisely, we make the same assumptions as in Glock and
Grosse (2012) and assume a U-zone arranged as in Fig. 1:

• We consider a picker processing a single order in a single U-zone. An order con-
stitutes a set Ω of items that need to be collected and placed together in the depot
– for example, a kit destined for a single production station. During a shift, a
picker processes multiple orders. We assume orders are planned beforehand and
given from the perspective of our problem, such that order picker routing for a
single order is independent from other orders.

• The U-zone’s coordinate system is two-dimensional, and the depot can be placed
anywhere on the center line of the U-zone (i.e., the y-coordinate of the depot is
always 0). The location of the depot has to be fixed before the order picker starts
processing the order. Moving the depot from the open end of the U deeper into

540 H. Diefenbach et al.

1 3

(a
)
T
w
o
-d
im

en
si
o
n
al

re
p
re
se
n
ta
ti
o
n
.

(b
)
T
h
re
e-
d
im

en
si
o
n
al

re
p
re
se
n
ta
ti
o
n
.

Fi
g.

 1

La
yo

ut
 o

f o
ne

 U
-z

on
e

w
ith

 3
8

sti
lla

ge
s (

 n
=
8
 , m

=
3
) a

nd
 o

ne
 d

ep
ot

541

1 3

New solution procedures for the order picker routing problem…

the zone consumes a certain amount of time proportional to the distance that the
depot is moved.

• Euclidean distances are used to calculate the travel distance of the order picker,
as we assume that this is the most intuitive way to travel through the pick zone.
Formally, we define the Euclidean distance between two points P1 =

(
x
p

1
, y

p

1

)
 and

P2 =
(
x
p

2
, y

p

2

)
 as De

(
P1,P2

)
=

√(
x
p

1
− x

p

2

)2
+
(
y
p

1
− y

p

2

)2 . The distance between
stillages is calculated to the center of each stillage or the depot.

• We do not consider service/picking times because they can be considered con-
stant for a given picklist and are therefore not affected by the picker routes.
Moreover, we equate travel distances with travel times. Note that, given a fixed
average movement speed of the picker, distances can be transformed into dura-
tions by simple multiplication with a constant factor.

• Stillages are numbered in a clockwise manner starting at the upper left corner
(see Fig. 1).

• The storage assignment policy is selected prior to the start of the order picking
process (see Sect. 5.4). Once items have been assigned to storage locations, the
assignment is kept constant until all orders have been completed. Each kind of
item is stored in a single stillage and each stillage contains only one kind of item.
This implies that items have to fit in a single stillage, which is usually the case in
practice for U-shaped order picking zones.

• The order picker must return to the depot when he/she has finished his/her order
or when the transport capacity of his/her picking device has been reached. In the
latter case, after returning to the depot to drop off items there, he/she can con-
tinue picking items. After an order has been completed, the depot is removed,
and a new depot is brought to the U-zone together with a new order (pick-by-
order).

• The demand of any item does not exceed the carrying capacity of the picker.

We consider a pick area with a layout as depicted in Fig. 1, where stillages are arranged
in a U-shape around a picking station (depot). The width of a stillage is w, and to facili-
tate picking/exchanging stillages, the gap between them is s. The entire length of a zone
can then be determined as l = n ⋅ w + (n − 1) ⋅ s , where n is the number of horizontal
stillages in the zone. The width of the zone is b = m ⋅ w + (m + 1) ⋅ s , where m is the
number of vertical shelves in the zone. The coordinates of the depot are (� , 0) . For the
first 1 to 2 ⋅ n stillages, the coordinates of the I-th stillage are

�
⌈ i−1

2
⌉ ⋅ (w + s),

b

2

�
 . For

stillages numbered I = 2 ⋅ n + 1,… , 2 ⋅ n + m , the coordinates are
�
l −

w

2
, ⌈ 2⋅n+m−i

2
⌉

⋅(w + s)) for uneven values of m, and
�
l −

w

2
,
�
⌈ 2⋅n+m−i−1

2
⌉ + 1

2

�
⋅ (w + s)

�
 for even val-

ues of m. Stillages with index numbers i = 2 ⋅ n + m + 1,… , 4 ⋅ n are mirror images of
the first 2 ⋅ n stillages along the x-axis. The distance between any two locations i and i′ is

Let I = {1,… , |I|} be the set of stillages, and let Ω = {1,… , |Ω|} be the set of
items that need to be picked for a given order with |Ω| items. Let �(j) be the stillage

(1)di,i�= De
(
(xi, yi), (xi� , yi�)

)
=

√
(xi − xi�)

2 + (yi − yi�)
2.

542 H. Diefenbach et al.

1 3

i where item j is stored, and let the items be indexed in the same clockwise order as
their respective stillages, i.e., let �(j) ≤ �(j�) , ∀j, j� ∈ Ω ∶ j < j� , be true. Then, item
j is located at coordinates (x�(j), y�(j)) . To shorten notation, we define x̃j = x𝜄(j) and
ỹj = y𝜄(j) as well as d𝜄(j),𝜄(j�) = d̃j,j� . Moreover, let Q be the limited carrying capacity of
the picker, and let qj be the weight of item j ∈ Ω.

We look for a partition of Ω into r subsets {�1,… ,�r} such that the total weight
of the items in each set �k does not exceed the carrying capacity of the picker, i.e., ∑

j∈�k
qj ≤ Q , ∀k = 1,… , r . Note that the number r of pick tours is not given in

advance. Each �k stands for one pick tour the picker makes, starting from the depot,
visiting all stillages implied by �k , and returning to the depot. For brevity of nota-
tion, we introduce sets �̃�k = {𝜄(j) ∣ j ∈ 𝜔k} , ∀k = 1,… , r , to denote the stillages to
be visited to pick the items in �k.

Furthermore, we look for a position � of the depot. The depot can be moved
along the center line of the U-zone with the default position located at the open
end of the U-zone with � = 0 (see Fig. 1a). If the depot is moved along the aisle,
the warehouse worker transporting the depot has to travel an extra distance into the
U-zone both when bringing and removing the depot, which leads to a time penalty
that has to be considered in the model and which depends on the extra travel dis-
tance equaling 2 ⋅ � . Assuming that the picker can walk 2 ⋅ v times faster (or slower,
as the case may be) when placing the depot than his/her speed during the order pick-
ing process, the additional distance that has to be covered just to move the depot is
1

v
⋅ � . All symbols are summarized in Table 1.
A solution to our picker routing problem thus consists of a partition {�1,… ,�r}

of Ω and the depot position 0 ≤ � ≤ l−
w

2
 . Among all feasible solutions we seek one

where the total distance travelled by the picker – including the penalty distance to
move the depot and the distance to visit the stillages – is minimal.

Routing the picker for a given set of stillages �̃�k is technically a travelling sales-
man problem, which is well-known to be strongly NP-hard (Garey and Johnson
1979). However, due to the special structure of the U-shaped pick area, the routing
problem is actually tractable.

Proposition 3.1 For a given set �̃�k of stillages to be visited, an optimal route (i.e.,
sequence of visits) with regard to total travel distance is to move through the still-
ages in �̃�k in clockwise order in the shape of a polygon without intersecting edges.

Proof Barachet (1957) shows that, in a Euclidean TSP, an optimal TSP tour never
crosses itself. Hence, the optimal tour is in the shape of a polygon without intersect-
ing edges, where an edge touching another edge (at a vertex) counts as an intersec-
tion as well. Moreover, this polygon is contained within the convex hull around all
points to be visited.

Let the points that lie on the convex hull be labeled in clockwise order. Two
points i and i′ , where i� ≥ i + 2 , can never be connected directly in the optimal route.
This is because a connection between i and i′ would separate the convex hull into
two parts, where one contains the points i�� ∈ {i + 1,… , i� − 1} and the other con-
tains the remaining points. Since the optimal route does not cross itself, there exists

543

1 3

New solution procedures for the order picker routing problem…

no optimal route that connects the points from the separate parts, because it would
intersect the connection between i and i′ . It follows that in the optimal route, each
point i on the convex hull can only be connected with its neighboring points i − 1
and i + 1 on the convex hull or with points that do not lie on the convex hull.

Clearly, all stillages in a U-shaped picking zone lie on a convex polygon, which
also constitutes the convex hull. The only point that can possibly not lie on the con-
vex hull is the depot. Hence, in the optimal route, every stillage must be connected
to its neighboring stillages (i.e., its predecessor and successor in a clockwise order)
or to the depot. Furthermore, the optimal route has only two connections to the
depot, one outgoing and one incoming. If the depot lies on the convex hull, it must
be connected to its neighboring stillages. If not, the depot must be connected to two
consecutive stillages, due to the same argument as before. If the depot would not be
connected to two consecutive stillages, the connection would separate the convex
hull into two parts that cannot be connected by a route without an intersection. Con-
sequently, the optimal route is to move from the depot to a stillage, move through
the stillages in �̃�k in clockwise (or counter-clockwise) order in the shape of a poly-
gon without intersecting edges, and move back to the depot. ◻

Table 1 Notation for the picker routing problem

Sets

I Set of stillages
Ω Set of items to be picked (indices i, j)
�k variable: set of items to be picked on tour k ∈ {1,… , r}

�̃�k Auxiliary variable: set of stillages to be visited on tour
k ∈ {1,… , r}

Parameters

dii′ Distance from stillage i to stillage i′ (meters)
d̃jj′ Distance between the stillage containing item j and the still-

age containing item j′

Q Maximum carrying capacity of the order picker (kilograms)
qj Weight of item j (kilograms)
v Penalty distance factor for moving the depot
b Width of the aisle (meters)
l Length of the aisle (meters)
n Number of stillages in one row of horizontal shelves
m Number of stillages in the vertical shelf
s Distance/gap between two adjacent stillages (meters)
w Width of a stillage (meters)
xi x-coordinate of stillage i (meters)
yi y-coordinate of stillage i (meters)
x̃j x-coordinate of the stillage containing item j (meters)
ỹj y-coordinate of the stillage containing item j (meters)

544 H. Diefenbach et al.

1 3

Let the pair (j, j�) denote an edge between stillages �(j) and �(j�) and let �k =
{
(j, j�) ∈

𝜔k × 𝜔k ∶ 𝜄(j) ≤ 𝜄(j�) ∧
{
j�� ∈ 𝜔k ∣ 𝜄(j) < 𝜄(j��) < 𝜄(j�)

}
= �

}
∪
{
(max{𝜔k}, min{𝜔k})

}

be the set of all edges of the convex polygon spanned by the stillages in �̃�k . The
optimal route’s length can then be formalized as

where we define 𝛾j,j� (𝜒) = −d̃j,j� +
√

(x̃j − 𝜒)2 + ỹ2
j
+
√

(x̃j� − 𝜒)2 + ỹ2
j�
 for ease of

notation. Note that the first term of Eq. (2) stands for the travel distance of the picker
along the U, while the second term is the distance from and to the depot, where, by
Proposition 3.1, it is optimal to insert the depot visit in-between the two neighboring
stillages from �̃�k that minimize the total distance.

The total objective value of a solution consists of the travel distance of the pick
tours plus the time to position the depot in the first place, and it is hence

Among all feasible solutions consisting of partition {�1,… ,�r} and depot location
� , we seek one which minimizes G(�1,… ,�r,�) . We refer to this problem as the
picker routing problem in a U-shaped pick area (PRP-UA).

3.2 Computational complexity

Given that, by Proposition 3.1, routing in a U-shaped pick zone is computationally
easier than on general graphs, it may seem that picker routing in U-shaped zones
may not be a hard problem at all. However, PRP-UA is intractable as can be seen by
the following proposition.

Proposition 3.2 Solving PRP-UA is NP-hard in the strong sense.

Proof We prove Proposition 3.2 by reduction from bin packing, which is well known
to be strongly NP-hard (Garey and Johnson 1979).

The decision version of bin packing is concerned with the following question.
Given a set S of items i with associated weight wi and bins with capacity C, does
there exists a partition of items into bins such that no subset of items assigned to the
same bin exceeds the bin’s capacity C and at most k bins are used?

We propose the following transformation from an instance of bin pack-
ing to an instance of PRP-UA. Firstly, we set the measurements l and b
of the U-zone such that 2 ⋅ k ⋅ l < b holds (i.e., we set n and m such that
2 ⋅ k ⋅ (n ⋅ w + (n − 1) ⋅ s) < m ⋅ w + (m + 1) ⋅ s holds). Secondly, we associate each
item i ∈ S of the bin packing instance with an item j ∈ Ω of the PRP-UA instance (with

(2)

g(𝜔k,𝜒) =
∑

(j,j�)∈𝜂k

d̃j,j� + min
(j,j�)∈𝜂k

{
−d̃j,j� +

√
(x̃j − 𝜒)2 + ỹ2

j
+
√

(x̃j� − 𝜒)2 + ỹ2
j�

}

=
∑

(j,j�)∈𝜂k

d̃j,j� + min
(j,j�)∈𝜂k

{
𝛾j,j� (𝜒)

}
,

(3)G(�1,… ,�r,�) =
∑

k∈{1,…,r}

g(�k,�) +
1

v
⋅ � .

545

1 3

New solution procedures for the order picker routing problem…

wi = qj for each associated pair of items) and assign the items j ∈ Ω to (arbitrary) stil-
lages in the upper row (i.e., in positive y-direction, cf., Fig. 1a) of the U-layout. Finally,
we set Q = C and v → ∞ (i.e., 1

v
→ 0).

A solution of an instance of PRP-UA corresponds to a solution of an instance
of bin packing if and only if the objective value is less than (k + 1) ⋅ b , as is shown
in the following. Clearly, each route cannot contain a subset of items that exceeds
the maximum capacity Q, such that we can associate routes with bins. For PRP-
UA, by Proposition 3.1, the length of a single optimal route is bounded from above
by b + 2 ⋅ l , i.e., the length of the route if the picker visits every single stillage in
the upper row on one tour cannot be longer than this. Likewise, a route’s minimum
length is b, i.e., visiting only a single stillage directly above the depot cannot be
shorter than this. Hence, a solution using k + 1 tours or more has at least an objec-
tive value of (k + 1) ⋅ b and a solution using at most k tours has at most an objective
value of k ⋅ (b + 2 ⋅ l) < k ⋅ b + b (since we set 2 ⋅ k ⋅ l < b). Hence, if and only if the
objective value of a solution to PRP-UA is less than (k + 1) ⋅ b , it contains no more
than k tours, which corresponds to a solution for the corresponding instance of bin
packing with at most k bins.

Since the decision version of PRP-UA is strongly NP-complete, the correspond-
ing optimization version is NP-hard in the strong sense, which completes the proof.
 ◻

4 Algorithms

In the following, we present new algorithms to solve PRP-UA. Section 4.1 presents
the first exact solution approach based on combinatorial Benders decomposition.
With PRP-UA being NP-hard, we can expect that larger problem instances cannot be
solved exactly, as is also shown in our computational study later on (cf. Sect. 5.2).
We therefore present a new heuristic solution approach based on the concept of
dynamic programming in Sect. 4.2.

4.1 Logic‑based Benders decomposition for the picker routing problem

In addition to being NP-hard, PRP-UA is further complicated by the presence of
non-linear (Euclidean) distances, which depend on a variable, namely the position of
the depot. There is therefore no obvious way of formulating a compact (mixed-inte-
ger) linear programming model without discretization of the depot location � . For
discrete depot locations, the problem would become a capacitated vehicle routing
problem. If we disregard the routing aspect and the moveable depot, the remaining
problem, i.e., batching items on tours such that the picker capacity is not violated, is
a bin packing problem. To avoid making a heuristic choice regarding discretization
intervals, in the following, we focus on an exact approach where we consider the
depot location � as a continuous variable.

546 H. Diefenbach et al.

1 3

To make the problem more tractable, we propose a decomposition scheme in the
spirit of logic-based and combinatorial Benders decomposition (Codato and Fis-
chetti 2006; Hooker 2007), which has seen success dealing with difficult combina-
torial optimization problems (e.g., Kress et al. 2019; Tadumadze et al. 2020; Fang
et al. 2021; Huang et al. 2021). The general idea consists of splitting the original
problem into a master and a slave component. The master problem is modeled as a
mixed-integer linear programming model that is solved by an off-the-shelf default
solver. Whenever the solver finds a candidate integer solution for this model, the
solution is passed to the slave problem, which calculates the optimal objective value
for the given master solution. From the slave solution, combinatorial cuts are gener-
ated, which remove suboptimal solutions from the master model. The solver then
continues working on the master model with the newly added cuts, passing candi-
date solutions to the slave problem until no more feasible, undiscarded solutions
remain. The best incumbent solution at this point is optimal. For brevity, we refer to
this algorithm as CBD (combinatorial Benders decomposition).

In Sect. 4.1.1, we describe the master model for our picker routing problem in
detail. In Sect. 4.1.2 we present the slave model and describe how it can be effi-
ciently solved. Section 4.1.3 describes how we generate cuts from solutions of the
slave problem.

4.1.1 Master problem

The master problem (MP) consists of batching items on tours, i.e., effectively, deter-
mining sets �k , ∀k . For a given batching, the exact objective value and optimal depot
location are then determined by solving the slave problem described in Sect. 4.1.2.
We use binary variables zj,j′ , which have value 1 if and only if item j′ is on the same
tour as item j and j′ is the item with the greatest index on that tour. Formally, the
feasible search space of the master model is described by the following constraints.

Constraints (4) ensure that each item is on exactly one pick tour. If some item j′ is
on the same tour as item j such that j′ has the highest index in that tour, then zj,j′ =
is forced to 1, as ensured by Inequalities (5). Inequalities (6) ensure that the picker’s

(4)

∑

j� ∈ Ω ∶

j ≤ j�

zj,j� = 1 ∀j ∈ Ω

(5)zj,j� ≤ zj�,j� ∀j, j� ∈ Ω ∶ j < j�

(6)

∑

j ∈ Ω ∶

j ≤ j�

qj ⋅ zj,j� ≤ Q ∀j� ∈ Ω

(7)zj,j� ∈ {0, 1} ∀j, j� ∈ Ω ∶ j ≤ j�

547

1 3

New solution procedures for the order picker routing problem…

carrying capacity is not exceeded, while Constraints (7) define the domain of the
decision variables.

While the master model can be solved as a pure feasibility problem, this may
not be advisable from a performance viewpoint. Without any objective to guide the
search, we can expect many mediocre solutions to be evaluated. We therefore use a
lower bound on the objective value as a subproblem relaxation (Hooker 2007) based
on the following idea.

Proposition 3.1 states that the optimal route to visit a set �̃�k of stillages and
the depot is in the form of a polygon without crossing edges. Clearly, the edge
length of the convex polygon spanned by the stillages in �̃�k and the depot is a
lower bound on the optimal tour length. Given the non-linear Euclidean dis-
tances, there is no easy method to calculate the respective convex polygon’s edge
length in a compact linear model. However, we can calculate lower bounds on the
edge length in two ways: first, by using the rectilinear metric (Manhattan metric)
and, second, by using the maximum metric (Chebyshev distance). Formally, for
two points P1 =

(
x
p

1
, y

p

1

)
 and P2 =

(
x
p

2
, y

p

2

)
 , we define the rectilinear metric dis-

tance as Dr
(
P1,P2

)
= |xp

1
− x

p

2
| + |yp

1
− y

p

2
| and the maximum metric distance as

Dm
(
P1,P2

)
= max

{
|xp

1
− x

p

2
|, |yp

1
− y

p

2
|
}
.

For the first bound, we apply Proposition 4.1.

Proposition 4.1 A convex polygon’s Euclidean (i.e., actual) circumference is at
least its rectilinear metric circumference divided by

√
2.

Proof The proof is based on the labeling in Fig. 2a. The circumference of a polygon
with E vertices is given by Cpoly =

∑E−1

i=1
De(Pi,Pi+1) + De(PE,P1) . In two-dimen-

sional space, the distance between two points measured in the rectilinear metric is at
most

√
2 times greater than the distances measured in the Euclidean metric, i.e.,

De(P
i
,P

i�
) ≥

1√
2
⋅ Dr(P

i
,P

i�
) holds (cf., Proposition A.1 in the Appendix). It follows that

Cpoly ≥
∑E−1

i=1
1√
2
⋅ Dr(Pi,Pi+1) +

1√
2
⋅ Dr(PE ,P1) ⇒ C

poly ≥
1√
2
⋅

�∑E−1

i=1
D

r(P
i
,P

i+1) + D
r(P

E
,P1)

�

⇒ Cpoly ≥
1√
2
⋅ Crect , where Crect is the polygon’s circumference in the rectilinear met-

ric. ◻

Hence, we can calculate the convex polygon’s edge length in the rectilinear met-
ric and divide it by

√
2 to attain a lower bound for the actual length. For the second

bound, we apply Proposition 4.2.

Proposition 4.2 A convex polygon’s Euclidean (i.e., actual) circumference is at
least two times its length in the maximum metric.

Proof The proof is based on the labeling in Fig. 2a. Assume any diagonal of the
polygon connecting the two shorter sides of its rectilinear circumference. Such a
diagonal always exists, since each side of the polygon’s rectilinear circumference is
connected to at least one of the polygon’s vertices. The diagonal splits the polygon
into two parts, which we label upper part and lower part in the following. By the

548 H. Diefenbach et al.

1 3

triangle inequality, the polygon’s upper part edge length is longer than the diagonal.
The same applies for the lower part’s edge length. Therefore, the polygon’s Euclid-
ean circumference is at least two times the length of the diagonal. Again by the
triangle inequality, the diagonal length is never less than the polygon’s maximum
length, which is equal to the longer side of the polygon’s rectilinear circumference.
Hence, two times the polygon’s maximum length is never greater than its Euclidean
circumference. ◻

Therefore, two times the convex polygon’s length in the maximum metric is
also a lower bound for the actual (Euclidean) circumference.

To calculate the bounds, we introduce four sets of auxiliary continuous vari-
ables to the master model. Variables x̌j (̌yj) denote the distance from the depot to
the leftmost (bottommost) stillage on the tour that contains item j. Analogously,
variables x̂j (̂yj) denote the distance from the depot to the rightmost (topmost)
stillage on the tour that contains item j. Moreover, we introduce auxiliary variable
�̄� to denote the position of the movable depot. An illustrative example is given
in Fig. 2b. We consider the bounds by adding the following objective and valid
inequalities to the master model:

subject to (4)–(7) and

(8)[MP] Minimize G =
∑

j∈Ω

d̂j +
1

v
⋅ �̄�

(9)x̂j ≥ x̃j� ⋅ zj�,j − �̄� ∀j, j� ∈ Ω ∶ j� ≤ j

(a) Concept of using the rectilinear and max-

imum metric to formulate lower bounds

on a convex polygon’s circumference.

(b) Illustration of the variables ˇ xj , y̌j , x̂ j , and ŷj being

used to calculate lower bounds on a route’s length.

Fig. 2 Lower bounds on a picking route’s length

549

1 3

New solution procedures for the order picker routing problem…

Objective (8) minimizes the sum of the distance approximations of the routes plus
the cost to move the depot. For each route, Inequalities (9) determine the distance
between the depot and the polygon’s rightmost vertex. If the depot is to the right of
the polygon’s rightmost vertex, x̂j assumes 0. Similarly, Inequalities (10) calculate
the distance between the depot and the polygon’s leftmost vertex. If the depot is to
the left of the polygon’s leftmost vertex, x̌j assumes 0. Inequalities (11) and (12) cal-
culate the respective distances on the y-axis for every tour. Constraints (13) calculate
lower bounds on the tour length based on the rectilinear metric. Constraints (14)
and (15) determine respective lower bounds based on the maximum metric. Finally,
Constraints (16) through (19) define the domain of the auxiliary variables.

4.1.2 Slave problem

Solving the master model generates feasible item batches, which may, however,
not be optimal. Let z̄ be a candidate integer solution of the master model, defining
r =

∑
j∈Ω z̄j,j pick tours. Each pick tour k = 1,… , r consists of picking the items in

set �̄�k = {j ∈ Ω ∣ z̄j,j� = 1} , where j� ∈ Ω is the k-th item for which z̄j�j� = 1 . We refer

(10)x̌j ≥ �̄� −
((
x̃j� − l

)
⋅ zj�,j + l

)
∀j, j� ∈ Ω ∶ j� ≤ j

(11)ŷj ≥ ỹj� ⋅ zj�,j ∀j, j� ∈ Ω ∶ j� ≤ j

(12)y̌j ≥ −ỹj� ⋅ zj�,j ∀j, j� ∈ Ω ∶ j� ≤ j

(13)d̂j ≥ 2 ⋅
1√
2
⋅

�
x̂j + x̌j + ŷj + y̌j

�
∀j ∈ Ω

(14)d̂j ≥ 2 ⋅
(
x̂j + x̌j

)
∀j ∈ Ω

(15)d̂j ≥ 2 ⋅
(
ŷj + y̌j

)
∀j ∈ Ω

(16)x̂j, x̌j ∈
[
0,max

i∈I

{
xi
}]

∀j ∈ Ω

(17)ŷj, y̌j ∈
[
0,max

i∈I

{
|yi|

}]
∀j ∈ Ω

(18)d̂j ∈ [0, 2 ⋅ l + 4 ⋅ b] ∀j ∈ Ω

(19)�̄� ∈
[
0, l−

w

2

]

550 H. Diefenbach et al.

1 3

to the set of pick tours derived from the current master solution as Φ̄ = {�̄�1,… , �̄�r} ,
where we use bars to indicate that the sets �̄�k and Φ̄ are fixed within the slave problem.

Given an item batching z̄ , two problems remain to be solved: First, we must decide
on the location � of the depot, and second, we need to determine the optimal picker
route for each �̄�k . As soon as the first problem is solved, the second becomes trivial.
Hence, we begin with the former. Note that auxiliary variable �̄� in the master model
does not necessarily correspond to the optimal depot location because the distance val-
ues d̂j are only lower bounds. Instead, the best depot location � for a given set Φ̄ of
tours can be found by minimizing G(�̄�1,… , �̄�r,𝜒) (cf., Eq. (3)) for the given candidate
integer solution z̄ , which can be done as follows.

The term 𝜕G(�̄�1,…,�̄�r ,𝜒)

𝜕𝜒
 is not continuous because of the minimum term in each

g(�̄�k,𝜒) (cf., Eq. (2)). However, for a fixed set Φ̄ , it is piece-wise continuous in every
interval where argmin (j,j�)∈�k

{
�j,j� (�)

}
 is constant, ∀k ∈ {1,… , r} . Hence, to mini-

mize G(�̄�1,… , �̄�r,𝜒) , three steps are necessary. First, we need to determine every
interval, in which G(�̄�1,… , �̄�r,𝜒) has a constant derivative. Second, for each interval,
we need to determine the minimum of G(�̄�1,… , �̄�r,𝜒) separately. Third, out of all
intervals’ minima, we need to select the one that is minimal overall. The last step is
trivial. In the following, we discuss the first two steps, where we label the minimal
value for G(�̄�1,… , �̄�r,𝜒) as G∗(�̄�1,… , �̄�r,𝜒) and the respective depot location
𝜒∗(�̄�1,… , �̄�r).

Starting from the second step, the minimum within an interval can be determined by
finding the root of 𝜕G(�̄�1,…,�̄�r ,𝜒)

𝜕𝜒
 within that interval. The root within a continuous inter-

val can be determined with arbitrary precision using a gradient descent method (e.g.,
Newton’s method). Note that finding the root of the derivative within each interval is
sufficient, since 𝜕

2
(
−dj,j� +𝛾j,j� (𝜒)

)

𝜕𝜒2
= ỹ2

j
⋅

((
x̃j − 𝜒

)2
+ ỹ2

j

)−
3

2
+ ỹ2

j�
⋅

((
x̃j� − 𝜒

)2
+ ỹ2

j�

)−
3

2
> 0 , hence,

in a given interval, G(�̄�1,… , �̄�r,𝜒) is convex and only has a single minimum. For the
same reason, if the root lies outside of the interval, the interval’s minimum is equal to
one of its boundaries.

It remains to discuss the first step, i.e., to determine the borders of the intervals in
which argmin (j,j�)∈�k

{
�j,j� (�)

}
 is constant. The edge argmin (j,j�)∈�k

{
�j,j� (�)

}
 , which

we call dominant edge in the following, can only change at values � where the func-
tions �j,j� (�) and �j��,j��� (�) intersect, for two edges (j, j�), (j��, j���) ∈ �k ∶ (j, j�) ≠ (j��, j���) .
This leads to the following iterative procedure. Initially, we determine
(ĵ, ĵ�) = argmin (j,j�)∈𝜂k

{
𝛾j,j� (0)

}
 as the dominant edge for � = 0 and we initialize

�̂� ∶= 0 . In each iteration, we determine the consecutive dominant edge. The dominant
edge (ĵ, ĵ�) changes, when

assumes zero, approaching from a negative value with increasing � , for any
(j, j�) ∈ 𝜂k ∶ (j, j�) ≠ (ĵ, ĵ�) and l−w

2
≥ 𝜒 > �̂� . Let � ′ be the smallest value of �

for which c((ĵ, ĵ�), (j, j�),𝜒) assumes zero approaching from a negative value,
∀(j, j�) ∈ 𝜂k ∶ (j, j�) ≠ (ĵ, ĵ�) , and let (j��, j���) be the respective edge. Then we update
�̂� ∶= 𝜒 � and (ĵ, ĵ�) = (j��, j���) and start the next iteration. The values of �̂� found

c((ĵ, ĵ�), (j, j�),𝜒) = 𝛾ĵ,ĵ� (𝜒) − 𝛾j,j� (𝜒)

551

1 3

New solution procedures for the order picker routing problem…

during the iterations mark the intervals’ borders. The procedure terminates as soon
as no � � ≤ l−

w

2
 can be found anymore.

During the iterative procedure, we solve c((ĵ, ĵ�), (j, j�),𝜒) = 0 as follows. At first
glance, we cannot rule out that function c((ĵ, ĵ�), (j, j�),𝜒) has none, one or multiple
roots, such that we cannot use a gradient descent approach, since it may overshoot if
there are multiple roots or not terminate if there are none. However, we can con-

clude that |||
�c((j,j�),(j��,j���),�)

��

||| ≤ 4 because 0 ≤

�����

𝜕
√

(x̃j−𝜒)
2+ỹ2

j

𝜕𝜒

�����
=
�����
−

x̃j−𝜒√
(x̃j−𝜒)

2+ỹ2
j

�����
≤ 1 ,

∀j ∈ Ω (cf. Eq. (2)). This means that if � changes by a step size of � ,
c((j, j�), (j��, j���),�) changes by no more than 4 ⋅ � , which leads to the following itera-
tive sub-routine. Starting from 𝜒 ∶= �̂� , we determine a step size
𝜇 ∶= max

{
1

4
⋅ |c((j, j�), (j��, j���),𝜒)|,𝜇min

}
 , where �min is the arbitrarily small

numerical precision. We update 𝜒 ∶= 𝜒 + 𝜇 and evaluate c((j, j�), (j��, j���),𝜒) . We
repeat this process until c((j, j�), (j��, j���),𝜒) changes from a negative value to a posi-
tive value between two iterations or until we reach 𝜒 > l−

w

2
 and return 𝜒 as the solu-

tion. The complete procedure to solve the slave problem is summarized in pseudo-
code in Algorithm 1.

Example For additional clarification, in the following, we exemplary demon-
strate how we determine the borders of the intervals in which g

(
�̄�k,𝜒

)
 has a con-

tinuous derivative. Consider a U-zone as depicted in Fig. 1a, where the items
j ∈ �k = {1, 8, 12, 30} should be picked on the same tour. To keep the example
simple, we assume every item is stored in stillage i with the same respective index
and set w = 1.3 m and s = 0.05 m (cf., Sect. 5). The set of edges is then given as
�k = {(1, 8), (8, 12), (12, 30), (30, 1)} . Figure 3a depicts the functions �j,j� (�) ,
∀(j, j�) ∈ �k.

The procedure starts by determining the dominant edge at � = 0 , which is
(ĵ, ĵ�) = argmin (j,j�)∈𝜂k

{
�j,j� (0)

}
= (30, 1) . Starting with edge (1, 8) and with � = 0 ,

we iteratively increase � to determine a possible intersection between �30,1(�) and
�1,8(�) , which is schematically shown in Fig. 3b. Since there is no intersection, for
� ≤ l−

w

2
 , we continue with the next edge, i.e., (8, 12). Here, we find an intersection

at � = 6.77 (cf., Fig. 3). We save �̂� ∶= 6.77 and select the next edge (12, 30) to look
for intersections between �30,1(�) and �12,30(�) . We find an intersection at � = 4.85
and overwrite �̂� ∶= 4.85 . At this point, we have checked for intersections between
�30,1(�) and �j,j� (�) for all other edges (j, j�) ∈ �k ∶ (j, j�) ≠ (30, 1) and found the
intersection closest to 0 at �̂� ∶= 4.85 . Hence, the fist interval where g

(
�̄�k,𝜒

)
 has a

constant derivative is [0, 4.85). To determine the next interval, we set the dominant
edge to (ĵ, ĵ�) = (12, 30) and try to find intersections for 𝜒 > 4.85 in the same way as
before. Since there are no more intersections, we determine the second (and in this
case final) interval as [4.85, l−w

2
].

Determining these intervals not only for �̄�k but for all �̄�1,… , �̄�r gives the inter-
vals in which G

(
�̄�1,… , �̄�r,𝜒

)
 has a continuous derivative. To solve the slave prob-

lem, the final step is then to determine the root of G
(
�̄�1,… , �̄�r,𝜒

)
 within every

such interval and to select the one that is minimal overall.

552 H. Diefenbach et al.

1 3

Once the optimal depot location 𝜒∗(�̄�1,… , �̄�r) has been deter-
mined, the optimal route for each set �̄�k , ∀k = {1,… , r} , follows immedi-
ately from the continuous interval in which 𝜒∗(�̄�1,… , �̄�r) lies. We define
(j∗
k
(�̄�1,… , �̄�r), j

�∗
k
(�̄�1,… , �̄�r)) = argmin (j,j�)∈𝜂k

{
𝛾j,j�

(
𝜒∗(�̄�1,… , �̄�r)

)}
 . Then the

optimal route for the set �̄�k visits items j∗
k
(�̄�1,… , �̄�r) and j�∗

k
(�̄�1,… , �̄�r) directly

before returning to and after leaving from the depot, respectively. All other items
j ∈ �̄�k⧵{j

∗
k
(�̄�1,… , �̄�r), j

�∗
k
(�̄�1,… , �̄�r)} are visited in clockwise order in-between

(cf., Proposition 3.1).

4.1.3 Combinatorial cuts

Let UB be the objective value of the current best known solution (i.e., the best currently
known upper bound on the optimal objective value). If no feasible solution is known
yet, let UB = ∞ . If G∗ < UB , a new best solution has been found, which is stored, and
UB is updated to G∗ . If UB is updated, we add the following cut, which we call an opti-
mality cut, to the constraint set of the master model:

where � is a sufficiently small positive number and G is the objective function of the
master model. This equation cuts off all solutions whose lower bound is not better
than the current upper bound.

(20)G ≤ G∗(�̄�1,… , �̄�r,𝜒
∗(z̄)) − 𝜖

(a) (b) (c)

Fig. 3 Exemplary determination of intervals where g
(
�k ,�

)
 has a continuous derivative

553

1 3

New solution procedures for the order picker routing problem…

Regardless of whether a new upper bound has been found, we make use of the
following observation to generate further cuts. To find a better solution, the dura-
tion of at least one of the r tours must be made shorter, or one of the tours must
be dissolved altogether. A tour can only become shorter if the polygon constitut-
ing the tour changes its form. The polygon can only change its form if a stillage
lying at a vertex changes, but the polygon stays unchanged if a stillage lying on
(the middle of) an edge changes. There are two general possibilities where the
former is the case.

The first possibility is that either the first or the last stillage to be visited per face
of the U-shaped picking area changes. Adding or removing stillages that lie in-
between two other stillages on the same face (and that are not visited directly before
or after the depot) cannot reduce the duration of the tour because the picker passes
by that stillage in any case. The second possibility is that a stillage changes that is
visited either directly after leaving or before returning to the depot. For additional
clarification, Fig. 4 provides an example.

Let T =
{
j ∈ Ω ∣ ỹj = maxi∈I

{
yi
}}

 be the set of items on the top face of
the U-shaped picking area. Analogously, let B be the set of items on the bot-
tom face, and R be the set of items on the perpendicular face. For nota-
tional convenience, we define the set T

k
=
{
j ∈ T ∩ 𝜔k ∣ x̃j = minj∈T∩𝜔k

{x̃j}
}

and Tk =
{
j ∈ T ∩ 𝜔k ∣ x̃j = maxj∈T∩𝜔k

{x̃j}
}
 as well as,

554 H. Diefenbach et al.

1 3

analogously, B
k
 , Bk , Rk

 and Rk as the extreme items on each face. Then the
set of all items that could be changed to alter the route of tour k is given as
Λk = T

k
∪ Tk ∪ B

k
∪ Bk ∪ R

k
∪ Rk ∪

{
j∗
k
(�̄�1,… , �̄�r), j

�∗
k
(�̄�1,… , �̄�r)

}
.

Using these definitions, we add the following cut, which we call a progression
cut, to the master model:

Inequality (21) enforces that at least one stillage at a polygon’s vertex of one of the
r tours is reassigned. Note that this always makes the current solution infeasible.
The solver thus continues solving the master model with the newly added cut(s),
intermittently calling the slave problem whenever a new candidate integer solution
is found until the search space is empty.

4.2 Heuristic solution approaches

While the proposed CBD is able to solve problem instances of smaller sizes in
acceptable runtime, its runtime gets excessively long when working on larger
sized instances (cf., Sect. 5.2). Therefore, we also consider heuristic solution
approaches in the following.

Glock and Grosse (2012) propose a heuristic sweep algorithm (SA) for the
picker routing problem in U-shaped pick areas. In our computational experi-
ments (cf., Sect. 5), the SA produces good results on average. However, for some
instances, the optimality gaps can be substantial. Inspired by these findings, we
propose a heuristic solution procedure using the concept of dynamic program-
ming (DP) that expands on the idea of the SA. In the following, we briefly review
the SA of Glock and Grosse (2012) before discussing our DP approach.

(21)1 ≤

r∑

k=1

∑

j∈Λk

(
1 − zj,max{�̄�k}

)

Fig. 4 Example of which stillages are considered in the progression cut

555

1 3

New solution procedures for the order picker routing problem…

4.2.1 Sweep algorithm

The SA starts by assuming a fixed depot position �̄� . Its basic idea is to assign
items to sets �k in clockwise order. Starting from an initial item, the SA assigns
items to the same set �k , until the next item would exceed the picker’s capacity
Q. In that case, the next item is assigned to a new set �k+1 and the previous set is
closed. For each closed set of items �k , g(𝜔k, �̄�) is derived (cf. Eq. 2). Since �̄�
is given, g(𝜔k, �̄�) can be easily calculated. Once all items have been assigned to
sets, the objective value is given by G(𝜔1,… ,𝜔r, �̄�) (cf. Eq. 3). The fixed depot
position �̄� and the starting item are varied over multiple iterations of the algo-
rithm. Using � step-size as an arbitrarily small step-size to increment �̄� , the algo-
rithm can be formally described as follows.

1. Set �̄� ∶= 0 , G∗ = ∞ and �∗ = 0.
2. Set jstart ∶= 1.
3. Set j ∶= jstart and k ∶= 1.
4. Set �k = {j}.
5. Increment j ∶= j + 1 . If j > |Ω| set j ∶= 1 , i.e., after the U-zone’s final item has

been reached, proceed with the first item to continue the clockwise sweeping. If
j = jstart , i.e., if item j has already been considered in the beginning, go to Step
7.

6. If
∑

j�∈�k
qj� + qj ≤ Q , add �k ∶= �k ∪ {j} and go to Step 5. Else, increment

k ∶= k + 1 and go to Step 4.
7. C a l c u l a t e G(𝜔1,… ,𝜔k, �̄�) . I f G(𝜔1,… ,𝜔r, �̄�) < G∗ , u p d a t e

G∗ ∶= G(𝜔1,… ,𝜔r, �̄�) and 𝜒∗ ∶= �̄� . Increment jstart ∶= jstart + 1 . If jstart ∈ Ω ,
go to Step 3.

8. Increment �̄� ∶= �̄� + 𝜒 step-size . If �̄� ≤ l−
w

2
 , go to Step 2. Else, terminate the pro-

cedure.

Example Consider a U-zone as depicted in Fig. 1a, where the items
j ∈ {1, 6, 28, 30, 33} should be picked. To keep the example simple, we assume
every item is stored in stillage i with the same respective index and set w = 1.3 m
and s = 0.05 m (cf., Sect. 5). The weights of the items are given in Fig. 5a and the
picker has a capacity of Q = 5 . For the given initial item jstart = 1 and the depot loca-
tion �̄� ∶= 0 , the solution as determined by the SA is given in Fig. 5b with an objec-
tive value of 29.43.

4.2.2 Heuristic dynamic programming algorithm

In the SA, items are always added to the currently “open” set �k until adding
another item would exceed the capacity (cf., Step 6). However, we notice in our
computational experiments that this is not always a good choice (see Sect. 5).
Instead, sometimes it is better to “close” a set �k before the capacity is reached,

556 H. Diefenbach et al.

1 3

and add the next item to the consecutive set �k+1 . The following DP approach
takes this observation into consideration.

Similar to the SA, the DP procedure assumes a fixed depot position �̄� and an
initial start item jstart at the beginning of each iteration and considers items in a
clockwise order. The solution is then constructed piece-wise using a DP scheme,
based on the general idea formulated by Bellman (1954).

For given values of �̄� and jstart , the DP consists of |Ω| + 1 stages p = 0,… , |Ω| ,
each containing one state Θ

p
=
{
j ∈ J ∶ j

start ≤ j < j
start + p ∨ 1 ≤ j < p + j

start − |Ω|
} , denoting

the set of items that have already been considered in the partial solution. Starting
from initial stage p = 0 with state Θp = � , a successor stage p′ > p is reached by
adding the set Θp� ⧵ Θp to Θp , indicating that items j ∈ Θp�⧵Θp are picked in the
same tour �p′ . A transition is only feasible if

∑
j∈Θp�⧵Θp

qj ≤ Q , i.e., if the capacity
is not exceeded.

Let V(Θp) be the set of states from which a feasible transition to state Θp exists.
The optimal objective value h∗(Θp) of the partial solution in state Θp can then be
calculated recursively as

with h∗(�) = 0 . The objective value of a complete solution in final state Θ|Ω| is also
the best objective value for the given values of �̄� and jstart . We can obtain the cor-
responding assignment by backward recovery along the best path. To complete the
proposed DP, we increment �̄� and jstart in the same manner as for the SA and save
the overall best obtained solution.

The way the DP is set up, it is guaranteed to always find a solution that is at
least as good as the sweep algorithm’s solution. Concerning the time complexity,
for given values of �̄� and jstart , there are O(n2) transitions. Note that, by careful
implementation, it is possible to calculate the objective contribution of all O(n)
successors of a state in O(n) time. Let � =

l−
w

2

� step-size
 be the number of increments

h∗(Θp) = min
Θ�∈V(Θp)

{
h∗(Θ�) + g

(
Θp ⧵ Θ

�, �̄�
)}

,

j qj

1 1

6 2

28 2

30 1

33 2

(a) Example item weights. (b) Solution found by the SA.

Fig. 5 Example solved by the the SA

557

1 3

New solution procedures for the order picker routing problem…

considered for �̄� . Then the asymptotic runtime of the complete procedure (includ-
ing varying �̄� and jstart) is bounded by O(� ⋅ n3).

Example Consider the same example as for the SA in Sect. 4.2.1. For the given ini-
tial item jstart = 1 and the depot location �̄� ∶= 0 , Fig. 6 depicts the dynamic pro-
gramming graph including the optimal path recovered from backtracking. The
objective of the DP’s solution is 22.63, which is 23.10 % below the one of the SA’s
solution.

5 Numerical experiments and analysis

5.1 Generating instances for the computational tests

To evaluate our proposed solution procedures and gain some managerial insights, we
generate problem instances based on our observations in practice and the assump-
tions presented by Glock and Grosse (2012). The following section describes how
the instances are generated.

We consider U-layouts with two different capacities, either 44 stillages (cf.,
Glock and Grosse 2012) or 88 stillages. The layout of an instance is defined by
setting n and m, the number of stillages in one horizontal and in one vertical row.
Since both Glock and Grosse (2012) and Diefenbach and Glock (2019) found that
narrow U-shapes are advantageous, we consider the layouts of (n,m) = (10, 2) ,
(n,m) = (9, 4) , and (n,m) = (8, 6) if the U contains 44 stillages, and the layouts of
(n,m) = (21, 2) , (n,m) = (20, 4) , and (n,m) = (19, 6) if the U contains 88 stillages.
In accordance with Glock and Grosse (2012), we set the measurements of the still-
ages to w = 1.3 m and the gap between the stillages to s = 0.05 m.

For the item demands, we assume a 20/60-Pareto distribution (cf., Bender 1981),
i.e., 20% of the items are responsible for 60% of demand. Based on the distribution,
we randomly draw |Ω| items to be picked for each instance. For the instances with
44 stillages, we set either |Ω| = 10 or |Ω| = 15 ; for the instances with 88 stillages,

Fig. 6 Dynamic programming graph for the example of Sect. 4.2.1

558 H. Diefenbach et al.

1 3

we set either |Ω| = 30 or |Ω| = 60 . Items weights qj are drawn randomly from the
set {1,… , 5} and the picker capacity is set to Q = 15 (cf., Glock and Grosse 2012).
Finally, we assign the items to stillages in a random manner, and set v = 3 (cf.,
Glock and Grosse 2012) as the default value for the penalty to move the depot. Note
that we will deviate from the default settings for v and the default item assignment in
later experiments.

We generate ten instances for each setting. All instances are labeled as follows:
“number of stillages”-(n, m)-|Ω|-running index. All instances are available for down-
load at https:// doi. org/ 10. 5281/ zenodo. 46718 70.

5.2 Computational performance

This section investigates the performance of the three proposed solution procedures,
namely CBD, SA, and DP. All testing is performed on an Intel Core i7-3631QM
CPU @ 2.20 GHz and with 8 GB of RAM. All algorithms are implemented in C#,
and CPLEX (version 12.10) is used as a default solver for the master model of the
proposed CBD at default settings. The maximum runtime is set to 3600 s (1 h). The
numerical precision is set to � = � = � step-size = 0.01 for all procedures and respec-
tive parameters.

In a preliminary test we found that the influence of the exact layout (i.e., the val-
ues of n and m for a given number of stillages) on the algorithmic performance is
negligible. We therefore restrict the performance tests to the instances with m = 4 .
The results of the performance test are summarized in Table 2.

The computational experiments show that the exact CBD is able to solve all
instances with |Ω| ≤ 15 in acceptable runtime. However, not surprisingly given the
NP-hard, non-linear nature of the problem, for instances with |Ω| ≥ 30 the procedure
does not terminate within the maximum runtime of 3600 s and the gaps to the lower
bounds of the MP (as reported by CPLEX) remain high at the point of termination.
Furthermore, both heuristic approaches yield better solutions for |Ω| ≥ 30 . Espe-
cially for larger instances, the time share spent solving the MP (which is above 97%
for |Ω| ≥ 30) indicates that the MP is the procedure’s bottleneck; the SP appears to
be sufficiently fast to solve.

The SA runs very fast with a runtime of below 1 s even for |Ω| = 60 . For
|Ω| ≥ 15 , where we know the optimum thanks to CBD, the optimality gaps are gen-
erally low. For most instances, the optimality gaps are even zero. However, for five
instances they are above 2% and can be as high as about 5% . Nonetheless, we can
draw the conclusion that the relatively simple sweep algorithm works quite well for
U-shaped picking areas. This is certainly good news for practitioners, who may find
it easy to implement such a routing scheme.

To further improve the SA, our approach based on dynamic programming yields
even better solutions. It completely closes the optimality gap in all small and most
medium size instances. Even though the DP is a little slower than the SA, it sill runs
fast, with a runtime of at most 10 s for |Ω| = 60 , which is clearly sufficient for prac-
tical application.

https://doi.org/10.5281/zenodo.4671870

559

1 3

New solution procedures for the order picker routing problem…

Ta
bl

e
2

 C
om

pu
ta

tio
na

l p
er

fo
rm

an
ce

 te
sts

In
st

an
ce

s
B

en
de

rs
 d

ec
om

po
si

tio
n

Sw
ee

p
al

go
rit

hm
D

yn
am

ic
 p

ro
gr

am
m

in
g

la
be

l
Va

lu
e

LB
C

hi
Ru

nt
im

e
Ti

m
e

M
P

Ti
m

e
SP

O
pt

Pr
og

Va
lu

e
C

hi
G

ap
Ru

nt
im

e
Va

lu
e

C
hi

G
ap

ru
nt

im
e

C
PL

EX
(in

 s)
(in

 %
)

(in
 %

)
cu

ts
cu

ts
(in

 %
)

(in
 s)

(in
 %

)
(in

 s)

44
-(

9x
4)

-1
0-

01
34

.3
4

34
.3

4
3.

87
0.

58
75

.2
2

24
.7

8
3

34
34

.3
4

3.
87

0.
00

0.
01

34
.3

4
3.

87
0.

00
0.

76
44

-(
9x

4)
-1

0-
02

37
.4

0
37

.4
0

9.
13

0.
30

80
.2

0
19

.8
0

10
23

37
.4

0
9.

13
0.

00
0.

01
37

.4
0

9.
13

0.
00

0.
29

44
-(

9x
4)

-1
0-

03
44

.5
5

44
.5

5
10

.8
3

1.
40

60
.7

3
39

.2
7

12
10

5
45

.5
0

10
.1

0
2.

13
0.

01
44

.5
5

10
.8

3
0.

00
0.

19
44

-(
9x

4)
-1

0-
04

37
.2

6
37

.2
6

8.
75

0.
45

90
.2

2
9.

78
5

18
37

.2
6

8.
75

0.
00

0.
01

37
.2

6
8.

75
0.

00
0.

22
44

-(
9x

4)
-1

0-
05

32
.7

2
32

.7
2

1.
74

0.
30

79
.8

7
20

.1
3

6
25

32
.7

2
1.

74
0.

00
0.

01
32

.7
2

1.
74

0.
00

0.
66

44
-(

9x
4)

-1
0-

06
38

.9
9

38
.9

9
3.

07
0.

68
57

.4
6

42
.5

4
7

66
38

.9
9

3.
07

0.
00

0.
01

38
.9

9
3.

07
0.

00
0.

58
44

-(
9x

4)
-1

0-
07

43
.1

1
43

.1
1

5.
47

1.
10

58
.0

0
42

.0
0

11
13

0
43

.9
9

6.
54

2.
04

0.
01

43
.1

1
5.

47
0.

00
0.

35
44

-(
9x

4)
-1

0-
08

37
.4

5
37

.4
5

9.
80

0.
58

75
.5

6
24

.4
4

6
55

37
.9

1
9.

56
1.

23
0.

01
37

.4
5

9.
80

0.
00

0.
42

44
-(

9x
4)

-1
0-

09
34

.4
0

34
.4

0
11

.6
9

0.
42

81
.6

7
18

.3
3

5
24

35
.6

3
11

.5
5

3.
58

0.
01

34
.4

0
11

.6
9

0.
00

0.
28

44
-(

9x
4)

-1
0-

10
34

.3
5

34
.3

5
8.

19
0.

72
61

.4
2

38
.5

8
8

79
34

.3
5

8.
19

0.
00

0.
01

34
.3

5
8.

19
0.

00
0.

19
M

ea
n

37
.4

6
37

.4
6

7.
25

0.
65

72
.0

4
27

.9
7

7.
3

55
.9

37
.8

1
7.

25
0.

90
0.

01
37

.4
6

7.
25

0.
00

0.
39

44
-(

9x
4)

-1
5-

01
52

.4
2

52
.4

2
9.

67
39

.2
7

83
.8

4
16

.1
6

12
12

39
52

.4
2

9.
67

0.
00

0.
02

52
.4

2
9.

67
0.

00
0.

64
44

-(
9x

4)
-1

5-
02

57
.4

3
57

.4
3

5.
12

54
.7

5
85

.4
2

14
.5

8
19

11
63

57
.4

3
5.

12
0.

00
0.

03
57

.4
3

5.
12

0.
00

0.
35

44
-(

9x
4)

-1
5-

03
53

.8
1

53
.8

1
6.

84
99

.4
8

87
.2

1
12

.7
9

12
20

96
56

.4
1

6.
98

4.
83

0.
02

56
.4

1
6.

98
4.

83
0.

57
44

-(
9x

4)
-1

5-
04

47
.4

2
47

.4
2

5.
75

12
.6

6
84

.2
8

15
.7

2
9

38
1

47
.4

2
5.

75
0.

00
0.

02
47

.4
2

5.
75

0.
00

0.
88

44
-(

9x
4)

-1
5-

05
42

.4
7

42
.4

7
3.

85
8.

07
72

.5
9

27
.4

1
7

47
2

42
.4

7
3.

85
0.

00
0.

02
42

.4
7

3.
85

0.
00

1.
38

44
-(

9x
4)

-1
5-

06
49

.3
5

49
.3

5
6.

00
19

.1
4

94
.2

5
5.

75
10

22
0

49
.3

5
6.

00
0.

00
0.

03
49

.3
5

6.
00

0.
00

0.
44

44
-(

9x
4)

-1
5-

07
43

.6
7

43
.6

7
3.

75
13

.1
4

82
.6

9
17

.3
1

10
41

2
43

.6
7

3.
75

0.
00

0.
02

43
.6

7
3.

75
0.

00
1.

03
44

-(
9x

4)
-1

5-
08

46
.9

8
46

.9
8

6.
59

7.
54

95
.0

8
4.

92
7

78
46

.9
8

6.
59

0.
00

0.
02

46
.9

8
6.

59
0.

00
0.

58
44

-(
9x

4)
-1

5-
09

53
.0

1
53

.0
1

7.
96

79
.9

1
91

.1
3

8.
87

15
10

80
53

.0
1

7.
96

0.
00

0.
02

53
.0

1
7.

96
0.

00
0.

40
44

-(
9x

4)
-1

5-
10

45
.7

5
45

.7
5

10
.0

6
16

.8
2

69
.3

8
30

.6
2

9
82

9
46

.8
5

10
.0

3
2.

40
0.

02
45

.7
5

10
.0

6
0.

00
0.

99
M

ea
n

49
.2

3
49

.2
3

6.
56

35
.0

8
84

.5
9

15
.4

1
11

.0
79

7.
0

49
.6

0
6.

57
0.

72
0.

02
49

.4
9

6.
57

0.
48

0.
73

88
-(

20
x4

)-
30

-0
1

14
8.

87
84

.9
7

16
.2

3
–

96
.7

9
3.

21
19

27
32

14
5.

65
16

.3
2

−
 2

.1
6

0.
17

14
4.

03
16

.3
1

−
 3

.2
5

4.
73

88
-(

20
x4

)-
30

-0
2

14
8.

01
84

.0
1

17
.2

4
–

97
.6

7
2.

33
21

17
50

14
0.

87
17

.4
2

−
 4

.8
2

0.
20

14
0.

87
17

.4
2

−
4.

82
2.

94

560 H. Diefenbach et al.

1 3

va
lu

e
=

 o
bj

ec
tiv

e
va

lu
e;

 L
B

 C
PL

EX
 =

 lo
w

er
 b

ou
nd

 a
s r

ep
or

te
t b

y
C

PL
EX

 a
t t

he
 p

oi
nt

 o
f t

er
m

in
at

io
n;

 c
hi

 =
 d

ep
ot

 p
os

iti
on

 o
f t

he
 b

es
t s

ol
ut

io
n;

 ru
nt

im
e

=
ru

nt
im

e
un

til
 te

rm
in

at
io

n;
 ti

m
e

M
P

=
sh

ar
e

of
 th

e
ru

nt
im

e
sp

en
t s

ol
vi

ng
 th

e
m

as
te

r p
ro

bl
em

; t
im

e
SP

 sh
ar

e
of

 th
e

ru
nt

im
e

sp
en

t s
ol

vi
ng

 th
e

sl
av

e
pr

ob
le

m
; o

pt
cu

ts
 =

 n
um

be
r o

f a
dd

ed
 o

pt
im

al
ity

 c
ut

s;
 p

ro
g

cu
ts

 =
 n

um
be

r o
f a

dd
ed

 p
ro

gr
es

si
on

 c
ut

s;
 g

ap
 =

 re
la

tiv
e

ga
p

to
 th

e
B

en
de

rs
 D

ec
om

po
si

tio
n’

s b
es

t u
pp

er
 b

ou
nd

–
=

 th
e

pr
oc

ed
ur

e
w

as
 te

rm
in

at
ed

 b
ec

au
se

 th
e

ru
nt

im
e

lim
it

of
 3

60
0

s h
ad

 b
ee

n
re

ac
he

d

Ta
bl

e
2

 (c
on

tin
ue

d)

In
st

an
ce

s
B

en
de

rs
 d

ec
om

po
si

tio
n

Sw
ee

p
al

go
rit

hm
D

yn
am

ic
 p

ro
gr

am
m

in
g

la
be

l
Va

lu
e

LB
C

hi
Ru

nt
im

e
Ti

m
e

M
P

Ti
m

e
SP

O
pt

Pr
og

Va
lu

e
C

hi
G

ap
Ru

nt
im

e
Va

lu
e

C
hi

G
ap

ru
nt

im
e

C
PL

EX
(in

 s)
(in

 %
)

(in
 %

)
cu

ts
cu

ts
(in

 %
)

(in
 s)

(in
 %

)
(in

 s)

88
-(

20
x4

)-
30

-0
3

14
6.

74
82

.4
4

14
.0

7
–

98
.2

7
1.

73
14

17
03

13
9.

27
14

.1
0

−
 5

.0
9

0.
16

13
9.

27
14

.1
0

−
 5

.0
9

3.
54

88
-(

20
x4

)-
30

-0
4

17
7.

22
93

.2
4

16
.8

4
–

97
.1

7
2.

83
28

21
47

16
7.

76
15

.7
8

−
 5

.3
4

0.
22

16
6.

42
16

.5
8

−
 6

.0
9

2.
18

88
-(

20
x4

)-
30

-0
5

14
5.

45
79

.0
7

11
.9

0
–

98
.2

1
1.

79
20

14
40

14
2.

00
10

.9
0

−
 2

.3
7

0.
20

13
8.

11
11

.8
0

−
 5

.0
5

2.
49

88
-(

20
x4

)-
30

-0
6

17
1.

98
86

.0
4

12
.4

6
-

98
.4

0
1.

60
15

12
61

15
9.

75
12

.9
4

−
 7

.1
1

0.
20

15
9.

75
12

.9
4

−
 7

.1
1

2.
70

88
-(

20
x4

)-
30

-0
7

14
3.

08
81

.3
1

12
.7

8
–

98
.1

0
1.

90
32

16
99

13
4.

48
12

.9
7

−
 6

.0
1

0.
17

13
4.

48
12

.9
7

−
 6

.0
1

6.
72

88
-(

20
x4

)-
30

-0
8

15
1.

92
97

.9
9

13
.4

4
–

99
.2

3
0.

77
9

66
5

14
7.

22
13

.5
3

−
 3

.0
9

0.
17

14
7.

22
13

.5
3

−
 3

.0
9

4.
02

88
-(

20
x4

)-
30

-0
9

15
4.

80
93

.2
1

15
.4

8
–

97
.8

5
2.

15
26

17
04

14
8.

02
14

.3
5

−
 4

.3
8

0.
19

14
8.

02
14

.3
5

−
 4

.3
8

2.
83

88
-(

20
x4

)-
30

-1
0

14
4.

04
77

.7
0

13
.8

1
–

99
.4

2
0.

58
18

45
7

13
7.

94
13

.5
4

−
 4

.2
3

0.
19

13
7.

94
13

.5
4

−
 4

.2
3

3.
52

M
ea

n
15

3.
21

86
.0

0
14

.4
3

–
98

.1
1

1.
89

20
.2

15
55

.8
14

6.
30

14
.1

9
−

 4
.4

6
0.

19
14

5.
61

14
.3

5
−

 4
.9

1
3.

57
88

-(
20

x4
)-

60
-0

1
29

7.
23

82
.2

8
14

.8
6

–
98

.3
1

1.
69

11
38

8
25

5.
57

15
.8

4
−

 1
4.

02
0.

74
25

5.
55

15
.8

3
−

 1
4.

02
6.

24
88

-(
20

x4
)-

60
-0

2
30

5.
78

74
.8

3
15

.1
2

–
99

.3
3

0.
67

9
13

2
23

7.
18

15
.2

0
−

 2
2.

43
0.

72
23

4.
57

15
.2

1
−

 2
3.

29
8.

32
88

-(
20

x4
)-

60
-0

3
28

8.
54

69
.7

1
10

.5
6

–
96

.2
0

3.
80

14
34

5
23

4.
99

11
.6

7
−

 1
8.

56
0.

72
23

1.
58

11
.9

7
−

 1
9.

74
10

.4
3

88
-(

20
x4

)-
60

-0
4

37
6.

85
89

.0
0

12
.9

7
–

96
.5

6
3.

44
16

64
5

28
5.

32
15

.2
0

−
 2

4.
29

0.
76

28
3.

06
14

.8
1

−
 2

4.
89

6.
31

88
-(

20
x4

)-
60

-0
5

30
9.

40
83

.2
8

9.
66

–
93

.5
3

6.
47

14
11

24
23

9.
07

12
.2

5
−

 2
2.

73
0.

68
23

7.
95

12
.6

5
−

 2
3.

09
6.

20
88

-(
20

x4
)-

60
-0

6
34

1.
57

94
.2

0
13

.4
1

–
99

.7
1

0.
29

17
67

26
6.

08
15

.1
2

−
 2

2.
10

0.
76

26
3.

65
15

.5
8

−
 2

2.
81

5.
77

88
-(

20
x4

)-
60

-0
7

33
9.

56
98

.1
9

12
.6

9
–

98
.2

9
1.

71
10

10
6

27
0.

38
14

.1
5

−
 2

0.
37

0.
75

26
8.

30
14

.2
8

−
 2

0.
99

5.
05

88
-(

20
x4

)-
60

-0
8

33
4.

89
94

.8
3

13
.4

1
–

97
.6

0
2.

40
15

53
3

27
5.

25
15

.1
4

−
 1

7.
81

0.
84

27
4.

08
14

.8
6

−
 1

8.
16

5.
17

88
-(

20
x4

)-
60

-0
9

31
0.

37
79

.7
3

12
.3

5
–

98
.1

5
1.

85
16

41
4

24
0.

26
13

.2
7

−
 2

2.
59

0.
78

23
9.

94
13

.2
4

−
 2

2.
69

5.
98

88
-(

20
x4

)-
60

-1
0

29
3.

21
77

.7
6

13
.1

9
–

98
.7

3
1.

27
25

23
6

25
2.

90
13

.9
5

−
 1

3.
75

0.
74

25
1.

66
13

.6
9

−
 1

4.
17

9.
40

M
ea

n
31

9.
74

84
.3

8
12

.8
2

–
97

.6
4

2.
36

14
.7

39
9.

0
25

5.
70

14
.1

8
−

 1
9.

86
0.

75
25

4.
03

14
.2

1
−

 2
0.

39
6.

89

561

1 3

New solution procedures for the order picker routing problem…

5.3 Effects of having a movable depot

In our default settings, we assume a movable depot that can be positioned at any
position 0 ≤ � ≤ l and set v = 3 , which means that moving the depot is six times
faster than travel during order picking (cf., Sect. 3.1). However, in practice, com-
panies may find it easier to define a fixed position for the depot. Furthermore, the
depot could be set up and moved in a different way. For example, the depot could be
moved by a forklift or a manual hand lift truck. Depending on this, the factor v may
vary.

This section investigates the effects of having a movable or fixed depot as well as
the effects of different values for v. For the experiment, we use the same instances
as in the performance evaluation (cf., Table 2). We solve these instances using the
DP approach assuming either a movable or a fixed depot. We test four different fixed
depot positions at � ∈ {0, 0.25 ⋅ l, 0.5 ⋅ l, 0.75 ⋅ l} . Furthermore, we test eight differ-
ent values v ∈ {1, 3, 5, 7, 9, 11, 13, 15} . Figure 7 shows the mean results summarized
for each instance size.

Obviously, having a stationary depot can never be better than having a mov-
able depot, since the movable depot can always assume the position of the station-
ary depot. However, the benefits of having a movable depot strongly depend on the
size of the U-zone and the length of the picklist, as the results in Fig. 7 show. For
larger U-zones and picklists, a stationary depot at � = 0.5 ⋅ l is almost as efficient
as a movable one. For smaller U-zones and picklists, the benefits of the movable
depot are more significant. For the 44-(n, m)-10-instances, the gap in the objective
value between the movable depot case and the best fixed depot case was on average
(over all different values of v) 6.37 %. For the 44-(n, m)-15-instances, the 88-(n, m)-
30-instances, and 88-(n, m)-60-instances, the gaps were 3.05 %, 1.60 %, and 0.78 %,
respectively.

Given these finding, a practically relevant approach might be to limit possible
depot positions to a few discrete locations. As indicated in Sect. 4.1, this would
make PRP-UA non-exact and turn it into a type of capacitated vehicle routing prob-
lem. While the problem remains NP-hard, the capacitated vehicle routing problem
is well researched with various exact and heuristic solution procedures being read-
ily available (cf., Ralphs et al. 2003). Such an approach is beyond the scope of this
paper, but may be interesting to investigate for future research.

Overall, � = 0.5 ⋅ l , i.e., placing the depot in the middle of the U, performs best
if a stationary position is enforced; only for the 44-(n, m)-10-instances, � = 0.75 ⋅ l
is better. Fixing the depot at the entrance of the U-zone, i.e., at � = 0 , is the worst
option according to our experiments and results in objective values that are signifi-
cantly higher than for a movable depot or any of the other fixed positions.

Except for the case where the depot is fixed at � = 0 , the objective values
decrease with increasing values of v. They do, however, not decrease linearly but
asymptotically approach a constant value due to the fact that v influences the objec-
tive anti-proportionally. Hence, there are diminishing returns for increasing v.

For the movable depot, not only does v affect the objective value, but also the
optimized depot position. Figure 8 shows how the mean, maximum and minimum
depot positions vary with the value of v. Comparing the sub-figures of the different

562 H. Diefenbach et al.

1 3

instance sizes shows that the ideal depot position varies less for bigger U-zones and
larger picklists (i.e., the maximum and minimum positions are closer to each other).
The effect of v on the spread is negligible. Furthermore, with increasing values of
v, the ideal depot position increases, asymptotically approaching a constant value.
Again, this can be explained by the anti-proportional effect of v in the objective
function. For increasing values of v, the effort to move the depot approaches zero,
such that � approaches the value that would be ideal to solely minimize the tour
length during order picking.

5.4 Effects of storage assignment policies

So far, we have only considered instances with a random assignment of items to
stillages. However, the allocation of items to stillages significantly influences the
performance of a warehouse with regard to the order picking process. Furthermore,
in practice, the (time-)effort associated with exchanging stillages on different lev-
els (upper and lower) needs to be considered in addition to travel distances. Pick-
ing items from stillages requires replenishments of empty stillages over time. In the
industry case described in Glock and Grosse (2012), stillages are stacked one atop
the other, and exchanging stillages in the upper row is less time-consuming than
exchanging stillages on the lower level.

Typically, this problem is addressed with simple rules-of-thumb in both practice
and research (cf., Sect. 2). Among various storage assignment methods that have
been discussed in the literature, Glock and Grosse (2012) use a dedicated storage
assignment policy where each item has a dedicated location in the U-zone, which is
kept constant for a set of orders. In this paper, we develop a new assignment policy
that we term “radial assignment” and compare this new policy to the four storage
assignment policies developed by Glock and Grosse (2012). The storage assignment
policies studied in this paper are briefly explained in the following:

(a) 44-(n,m)-10-

instances

(b) 44-(n,m)-15-

instances

(c) 88-(n,m)-30-

instances

(d) 88-(n,m)-60-

instances

Fig. 7 Best found objective values for different values of v

563

1 3

New solution procedures for the order picker routing problem…

1. Random assignment: Items are assigned randomly to the stillages. Previous work
used this policy as a benchmark for evaluating other assignments, which is also
done in this paper. It was found that the random storage assignment usually leads
to the highest average travel distance.

2. Horizontal assignment: First, items are sorted in descending order of their pick
frequency. More frequently requested items are assigned to locations along the
stillages on the left side of the zone referred to as zone A in Fig. 9a. Once the
stillages in zone A have been filled, items are assigned to zone B, then to zone C
etc. Glock and Grosse (2012) showed that a horizontal assignment is especially
beneficial for wide aisles, as it helps to avoid unproductive crossings of the aisle.

3. Vertical assignment: Items are again sorted in descending order of their pick
frequency. Items are then assigned to both parallel aisles from left to right, as
can be seen in Fig. 9b. First, stillages in zone A are filled, followed by zones B,
C etc. This type of assignment was found to produce better results for longer and
narrower zones in earlier research. In such cases, the picker saves more travel
distance by crossing the zone to pick items, instead of continuing along the same
row of stillages.

4. Upper/Lower assignment: This storage assignment policy exploits the difference
in the effort associated with exchanging upper and lower level stillages by assign-
ing frequently-required products (that are assumed to result in frequent exchanges
of stillages) to upper level stillages (Sect. 5.4). Therefore, items are again sorted in
descending order of their pick frequency and then assigned to the upper level first
before the lower level stillages are filled. Figure 9c illustrates the preference of
item allocation following the order: A,B,..,E,F. Glock and Grosse (2012) reported
that this policy is especially beneficial in case the effort of exchanging stillages
differs strongly between upper and lower level stillages.

5. Radial assignment: This new storage assignment policy is introduced in this
paper, where again items are sorted in decreasing order of pick frequency. Fre-
quently required items are allocated radially closer to the depot location. How-
ever, the optimal depot location is usually unknown when items are assigned.
Therefore, we must assume a given depot location for the radial assignment
policy. In this paper, we will investigate four alternative assumed depot loca-
tions � ∈ {0, 0.25 ⋅ l, 0.5 ⋅ l, 0.75 ⋅ l} . We emphasize that the depot location is

(a) 44-(n,m)-10-

instances

(b) 44-(n,m)-15-

instances

(c) 88-(n,m)-30-

instances

(d) 88-(n,m)-60-

instances

Fig. 8 Best found depot positions for different values of v

564 H. Diefenbach et al.

1 3

only assumed to determine the assignment; for the optimization, � is still freely
adjustable. Figure 9d depicts the alphabetical sequence of filling the stillages for
the assumed depot location � = 0 . It is expected that this will reduce the distance
covered at the beginning and end of each tour, and should lead to good results for
larger zones.

In the following, we investigate the effects of these storage assignment policies. We
generate new instances based on the default instances of the performance evaluation
(cf., Table 2), by assigning the items according to the presented storage assignment
policies instead of randomly. I.e., we neither change the picklists nor the item weights,
but only the assignment of items to stillages. Furthermore, we investigate the effect of
different layouts, namely (n,m) ∈ {(10, 2), (9, 4), (8, 6)} for the instances with 44 still-
ages and (n,m) ∈ {(21, 2), (20, 4), (19, 6)} for the instances with 88 stillages.

To evaluate the effort for exchanging stillages, we assume exchanging an upper
stillage takes 3 min and exchanging a lower stillage takes 5 min. Assuming a
picker has a travel speed of 1.2 m

s
 , this means that exchanging an upper (a lower)

stillage causes an increase in the objective of 3 ⋅ 60 ⋅ 1.2 =216 (5 ⋅ 60 ⋅ 1.2 =360),
since the objective value is measured in the normalized time the picker requires
to travel 1 m. However, stillages only need to be exchanged once they are empty.
To account for this, we assume all stillages have an equal capacity of Qstillage and
need to be exchanged once the capacity is depleted. We can then calculate the
time-share per picklist to exchange a stillage. For example, assume a given pick-
list where item j is required with qj and item j is stored in an upper stillage. Based
on our assumptions, this would result in an additional objective value of

qj

Qstillage
⋅ 216 for the respective item. We evaluate the exchange effort for two differ-

ent stillage capacities Qstillage ∈ {50, 100} and solve all instances with the pro-
posed DP approach. The results of the experiment are summarized in Fig. 10.

Figure 10 shows the mean objective values for (a) the 44-(n, m)-10-, (b) the
44-(n, m)-15-, (c) the 88-(n, m)-30-, and (d) the 88-(n, m)-60-instances in sepa-
rate bar charts. Each bar consists of three stacked bars. The lowest bar shows the
objective value if the exchange effort is not considered, the middle bar shows the
objective value if Qstillage = 100 , and the top bar if Qstillage = 50 . Note that all bars
are measured form the bottom line (i.e., 0).

Concerning the efficiency of different layouts, our results confirm the findings
of Glock and Grosse (2012) and Diefenbach and Glock (2019) in that narrow lay-
outs are beneficial. This is the case for all tested instances. For the most effi-
cient storage assignment policies, the results show that the upper/lower assign-
ment is best if the exchange effort is taken into account. This is already true for
Qstillage = 100 but especially evident for Qstillage = 50 , the reason being that upper/
lower assignment is especially designed to minimize the exchange effort. Interest-
ingly, upper/lower assignment is the worst assignment policy (except for random
storage) if solely the pick effort is considered. In that case, the newly proposed
radial assignment with � ∈ {0.5 ⋅ l, 0.75 ⋅ l} performs best.

Concerning the efficiency of the upper/lower assignment if the exchange effort is
considered, we note that the objective value is strongly dependent on the effort for

565

1 3

New solution procedures for the order picker routing problem…

exchanging stillages and the stillage capacity Qstillage , where higher capacities cause
lower exchange efforts. While we only considered Qstillage ∈ {50, 100} in our experi-
ment, higher capacities are also possible. By extrapolating our results, we can cal-
culate the theoretical break-even stillage capacities, from where on the upper/lower
assignment is outperformed by the (former) second best assignment policy, namely
radial assignment with � = 0.5 ⋅ l or � = 0.75 ⋅ l . These break-even stillage capaci-
ties are given in Table 3.

Finally, we investigate the influence of the items’ demand skewness on the stor-
age assignment policies’ efficiency. For the previous experiments, we assumed that
item demand follows a 20/60-Pareto distribution (cf., Sect. 5.1). However, more and
less skewed demand distributions are also common in practice. Therefore, we also
consider a 20/80- and a 20/40-Pareto distribution in the following. For each demand
distribution and instance size, we generated ten new instances, which we solved for
all layout options and storage assignment policies (except for random storage, where
the item demand distribution is insignificant). The results are given in Table 4,
which shows the relative change (in %) of the mean objective value (including the
exchange effort for stillages, where we set Qstillage = 100) compared to the default
20/60-Pareto distribution. The results are summarized over all layout options.

Table 4 generally indicates that more skewed demand distributions result in lower
objective values for all storage assignment policies. This was to be expected due to
all considered storage assignment policies being demand-based, meaning they are
specifically designed to make use of a skewed item demand distribution. The benefits

(a) Horizontal assignment (b) Vertical assignment

(c) Upper/Lower assignment (d) Radial assignment for χ = 0

Fig. 9 Storage assignment policies for U-shaped order picking zones

566 H. Diefenbach et al.

1 3

of a more skewed demand distribution are primarily relevant if the U-zone’s capacity
is large compared to the order size |Ω| . Otherwise, the effect is marginal. Moreover,
if we compare the best storage assignment policies from the previous tests, namely
upper/lower assignment and radial assignment with � ∈ {0.5 ⋅ l, 0.75 ⋅ l} , we gain an
interesting insight. The demand skewness has a much lower influence for the former
than for the latter. This indicates that for highly skewed demand, the radial assign-
ment with � ∈ {0.5 ⋅ l, 0.75 ⋅ l} becomes more beneficial, while for lower demand
skewness, the upper/lower assignment is superior.

6 Conclusion

This paper considers the order picker routing problem in U-shaped order picking
zones. The assumed order picking zones are built from stillages stacked one atop
another and arranged in a U-shape with a movable depot at its center-line, where
items are dropped off during order picking. We show that the problem is NP-hard
and develop the first exact solution procedure, which is based on combinatorial
Benders decomposition. Furthermore, we develop a new heuristic solution proce-
dure based on dynamic programming by expanding the concept of a heuristic sweep
algorithm from the literature, such that the new heuristic is guaranteed to find solu-
tions that are at least as good as the ones of the sweep algorithm.

(a) 44-(n,m)-10-instances (b) 44-(n,m)-15-instances

(c) 88-(n,m)-30-instances (d) 88-(n,m)-60-instances

Fig. 10 Effects of different storage and layouts on the efficiency of U-shaped order picking zones

567

1 3

New solution procedures for the order picker routing problem…

In a computational study, we compare the performance and runtime of our two
newly proposed algorithms and the sweep algorithm. We find that the exact proce-
dure is sufficiently fast to solve small problem instances in acceptable runtime but
struggles with larger ones. Both the sweep algorithm and the dynamic programming
approach run very fast with at most ten seconds runtime even for large instances.
Comparing the results of the two heuristics to the exact solutions, we find the opti-
mality gaps are very small at below 1% on average and zero for many instances.
Comparing both heuristics, we find that the results of the newly developed dynamic
programming approach are on average 0.55% better than the ones of the sweep
algorithm.

Beyond that, we investigate the effects of having a movable depot compared to
a static depot and the influence of different storage assignment policies, where we
suggest a new policy, called radial assignment, and compare it to various policies
from the literature. We derive the following managerial insights:

• A movable depot is always favorable compared to a stationary depot. However,
for larger U-zones and longer picklists, a stationary depot in the middle of the
U-zone is almost as beneficial as having a movable one. In our experiments,
objective values were between 0.78% (for large U-zones) and 6.37% (for small
U-zones) higher if the depot was fixed compared to the movable depot case.

• Having a stationary depot directly at the entrance of the U-zone is the worst
option by a large margin in all of our experiments. It is therefore not advisable.

• In our experiments, the newly proposed radial assignment policy minimizes the
effort for order picking, while the upper/lower assignment policy minimizes the
combined effort for order picking and exchanging empty stillages. However, the
latter is strongly dependent on the assumed stillage capacities. For high still-
age capacities, radial assignment remains the best policy even if the effort for
exchanging empty stillages is considered. Moreover, radial assignment appears
superior for highly skewed item demand distributions, while upper/lower assign-
ment is beneficial for lower demand skewness.

• In our experiments, narrow U-zones are advantageous, which validates the
results from the literature.

• The relatively simple sweep algorithm, adapted to U-shaped picking zones with
a movable depot, performs quite well. This may be good news for practitioners
who do not wish to implement complicated optimization logic.

We base our problem definition on some assumptions. Among the more critical ones
are the assumption that the depot is point-like and that pickers travel in Euclidean
paths, while actual human walk paths often resemble an elongated S-shape (cf., Die-
fenbach and Glock 2019). We regard the resulting errors to be comparatively small.
Nevertheless, future research may aim to improve or refine our assumptions.

Furthermore, we consider storage assignment only in a rudimentary way by
comparing various assignment policies. However, as our computational study
shows, storage assignment can greatly influence a U-zone’s efficiency. Future
research may investigate the possibility to store multiple kinds of items per stil-
lage, which is sometimes found in practice. Our solution procedures are already

568 H. Diefenbach et al.

1 3

Ta
bl

e
3

 S
til

la
ge

 c
ap

ac
ity

 fr
om

 w
he

re
 o

n
th

e
ra

di
al

 a
ss

ig
nm

en
t i

s m
or

e
effi

ci
en

t t
ha

n
th

e
up

pe
r/l

ow
er

 a
ss

ig
nm

en
t

In
st

an
ce

s
44

-(
n,

m
)-

10
-in

st
an

ce
s

44
-(

n,
m

)-
15

-in
st

an
ce

s
88

-(
n,

m
)-

30
-in

st
an

ce
s

88
-(

n,
m

)-
60

-in
st

an
ce

s

La
yo

ut
(1

0,
2)

(9
,4

)
(8

,6
)

(1
0,

2)
(9

,4
)

(8
,6

)
(2

1,
2)

(2
0,

4)
(1

9,
6)

(2
1,

2)
(2

0,
4)

(1
9,

6)

B
re

ak
-e

ve
n

at
22

3.
60

19
7.

03
13

7.
96

47
5.

29
48

7.
81

28
1.

00
19

9.
37

21
7.

00
22

5.
37

15
1.

62
18

3.
70

21
1.

81
B

re
ak

-e
ve

n
w

ith
R

ad
ia

l
R

ad
ia

l
R

ad
ia

l
R

ad
ia

l
R

ad
ia

l
R

ad
ia

l
R

ad
ia

l
R

ad
ia

l
R

ad
ia

l
R

ad
ia

l
R

ad
ia

l
R

ad
ia

l
0
.5
0
⋅
l

0
.7
5
⋅
l

0
.7
5
⋅
l

0
.5
0
⋅
l

0
.7
5
⋅
l

0
.7
5
⋅
l

0
.5
0
⋅
l

0
.7
5
⋅
l

0
.7
5
⋅
l

0
.5
0
⋅
l

0
.5
0
⋅
l

0
.5
0
⋅
l

569

1 3

New solution procedures for the order picker routing problem…

Ta
bl

e
4

 In
flu

en
ce

 o
f t

he
 d

em
an

d
sk

ew
ne

ss
 o

n
th

e
sto

ra
ge

 a
ss

ig
nm

en
t p

ol
ic

ie
s’

 e
ffi

ci
en

cy

In
st

an
ce

s
44

-(
n,

m
)-

10
-in

st
an

ce
s

44
-(

n,
m

)-
15

-in
st

an
ce

s
88

-(
n,

m
)-

30
-in

st
an

ce
s

88
-(

n,
m

)-
60

-in
st

an
ce

s

D
em

an
d

sk
ew

ne
ss

80
/2

0
60

/2
0

40
/2

0
80

/2
0

60
/2

0
40

/2
0

80
/2

0
60

/2
0

40
/2

0
80

/2
0

60
/2

0
40

/2
0

St
or

ag
e

as
si

gn
m

en
t p

ol
ic

y
H

or
iz

on
ta

l
−

 4
.6

0.
0

4.
8

1.
7

0.
0

2.
6

−
 3

.2
0.

0
2.

5
−

 0
.1

0.
0

0.
2

Ve
rti

ca
l

−
 3

.3
0.

0
8.

9
−

 0
.2

0.
0

2.
0

−
 3

.1
0.

0
1.

8
0.

1
0.

0
1.

4
U

pp
er

/lo
w

er
−

 2
.5

0.
0

1.
7

2.
6

0.
0

0.
2

−
 2

.2
0.

0
0.

4
0.

7
0.

0
0.

0
R

ad
ia

l 0
−

 4
.9

0.
0

10
.1

0.
4

0.
0

1.
3

−
 4

.3
0.

0
2.

0
−

 0
.5

0.
0

0.
9

R
ad

ia
l 0

.2
5

−
 2

.4
0.

0
9.

5
0.

4
0.

0
1.

3
−

 3
.3

0.
0

4.
8

−
 0

.5
0.

0
1.

1
R

ad
ia

l 0
.5

−
 2

.5
0.

0
8.

1
−

 0
.5

0.
0

1.
2

−
 4

.4
0.

0
3.

6
0.

1
0.

0
1.

6
R

ad
ia

l 0
.7

5
−

 4
.0

0.
0

8.
7

0.
6

0.
0

2.
3

−
 4

.5
0.

0
3.

7
−

 0
.2

0.
0

0.
3

570 H. Diefenbach et al.

1 3

suited for such scenarios, but we did not consider suitable storage assignment
policies. Moreover, it could be advisable to consider a combined storage assign-
ment and routing problem in the future. As the performance of our exact solu-
tion approach suggests, this is most likely only possible with heuristic solution
approaches, although investigating stronger cuts might also present an interest-
ing and promising opportunity to improve our BD’s performance further in the
future.

In this paper, we considered a fully manual system, as currently automation
plays a subordinate role for U-shaped order picking zones. However, automa-
tion becomes increasingly important for order picking in general, where it has
achieved significant performance increases in recent years (Jaghbeer et al. 2020).
Looking into future developments for U-shaped picking areas, a logical step
would be to automate depots, enabling them to (autonomously) relocate while
the picker processes pick tours. Future research may investigate the benefits of
such (semi-)automated systems and thereby encourage the development of suit-
able technologies.

With this paper being the most recent addition, U-shaped order picking zones
have been increasingly studied in recent years, since they were first introduction
by Glock and Grosse (2012). However, there has not yet been a comprehensive
comparison between U-shaped layouts and conventional layouts with parallel
shelves. Especially from a practical point of view, it might be desirable to have
some guidelines about when which layout poses which benefits. The insight gath-
ered in previous works and in this paper may spark future research into this topic.

Appendix

Proposition A.1 Given two points P1 =
(
x
p

1
, y

p

1

)
 and P2 =

(
x
p

2
, y

p

2

)
 with Cartesian

coordinates, the inequality
√
2 ⋅ De(P1,P2) − Dr(P1,P2) ≥ 0 always holds true.

Proof To simplify notation, we define l
p
x = |xp

1
− x

p

2
| and l

p
y = |yp

1
− y

p

2
| and

l
p
y

l
p
x

= � ⇔ l
p
y = � ⋅ l

p
x . Using these definitions and the definitions of De(P1,P2) and

Dr(P1,P2) , it follows that
√
2 ⋅

�
(1 + �2) ⋅

�
l
p
x

�2
− (1 + �) ⋅ l

p
x ≥ 0 must hold in

order for Property A.1 to be true. Rearranging yields
√
2 ⋅

√
(1 + �2) − (1 + �) ≥ 0

⇒

√
2 ⋅

√
(1 + �2) ≥ (1 + �) ⇒ 2 ⋅ (1 + �2) ≥ (1 + �)2 ⇒ �2 − 2 ⋅ � + 1 ≥ 0 .

Applying the binomial theorem finally yields the inequality (� − 1)2 ≥ 0 , which is
always true, since the left side is a quadratic term that cannot be smaller than zero.
 ◻

Funding Open Access funding enabled and organized by Projekt DEAL.

Data Availibility Statement The test data that support the findings of this study are openly available in
Zenodo at https:// doi. org/ 10. 5281/ zenodo. 46718 70.

https://doi.org/10.5281/zenodo.4671870

571

1 3

New solution procedures for the order picker routing problem…

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

Barachet L (1957) Letter to the editor-graphic solution of the traveling-salesman problem. Oper Res
5(6):841–845

Battini D, Glock CH, Grosse EH, Persona A, Sgarbossa F (2016) Human energy expenditure in order
picking storage assignment: a bi-objective method. Comput Ind Eng 94:147–157

Bellman R (1954) The theory of dynamic programming. Bull Am Math Soc 60:503–515
Bender PS (1981) Mathematical modeling of the 20/80 rule: theory and practice. J Bus Logist

2(2):139–157
Bureau of Labor Statistics, U. D. o. L. (2016). Occupational outlook handbook, hand laborers and

material movers. http:// www. bls. gov/ ooh/ trans porta tion- and- mater ial- moving/ hand- labor ers-
and- mater ial- movers. htm

Calzavara M, Glock CH, Grosse EH, Persona A, Sgarbossa F (2017) Analysis of economic and ergo-
nomic performance measures of different rack layouts in an order picking warehouse. Comput
Ind Eng 111:527–536

Calzavara M, Glock CH, Grosse EH, Sgarbossa F (2019) An integrated storage assignment method
for manual order picking warehouses considering cost, workload and posture. Int J Prod Res
57(8):2392–2408

Çelik M, Süral H (2019) Order picking in parallel-aisle warehouses with multiple blocks: complexity
and a graph theory-based heuristic. Int J Prod Res 57(3):888–906

Çelk M, Süral H (2014) Order picking under random and turnover-based storage policies in fishbone
aisle warehouses. IIE Trans 46(3):283–300

Cergibozan Ç, Tasan AS (2019) Order batching operations: an overview of classification, solution
techniques, and future research. J Intell Manuf 30(1):335–349

Chabot T, Lahyani R, Coelho LC, Renaud J (2017) Order picking problems under weight, fragility
and category constraints. Int J Prod Res 55(21):6361–6379

Chen F, Xu G, Wei Y (2019) Heuristic routing methods in multiple-block warehouses with ultra-
narrow aisles and access restriction. Int J Prod Res 57(1):228–249

Codato G, Fischetti M (2006) Combinatorial Benders’ cuts for mixed-integer linear programming.
Oper Res 54(4):756–766

De Koster R, Le-Duc T, Roodbergen K (2007) Design and control of warehouse order picking: a lit-
erature review. Eur J Oper Res 182(2):481–501

Diefenbach H, Glock CH (2019) Ergonomic and economic optimization of layout and item assign-
ment of a u-shaped order picking zone. Comput Ind Eng 138:106094

Eurostat (2016). Warehousing and transport support services statistics - nace rev. 2. http:// ec. europa.
eu/ euros tat/ stati stics- expla ined/ index. php/ Busin ess_ econo my_ by_ secto r_-_ NACE_ Rev._2

Fang K, Wang S, Pinedo ML, Chen L, Chu F (2021) A combinatorial Benders decomposition
algorithm for parallel machine scheduling with working-time restrictions. Eur J Oper Res
291(1):128–146

Füßler D, Boysen N, Stephan K (2019) Trolley line picking: storage assignment and order sequencing to
increase picking performance. OR Spectrum 41(4):1087–1121

Gademann N, Velde S (2005) Order batching to minimize total travel time in a parallel-aisle warehouse.
IIE Trans 37(1):63–75

Garey M, Johnson D (1979) Computers and intractability: a guide to the theory of NP-hardness. WH
Freeman, San Fransisco

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.bls.gov/ooh/transportation-and-material-moving/hand-laborers-and-material-movers.htm
http://www.bls.gov/ooh/transportation-and-material-moving/hand-laborers-and-material-movers.htm
http://ec.europa.eu/eurostat/statistics-explained/index.php/Business_economy_by_sector_-_NACE_Rev._2
http://ec.europa.eu/eurostat/statistics-explained/index.php/Business_economy_by_sector_-_NACE_Rev._2

572 H. Diefenbach et al.

1 3

Glock CH, Grosse EH (2012) Storage policies and order picking strategies in u-shaped order-picking sys-
tems with a movable base. Int J Prod Res 50(16):4344–4357

Glock CH, Grosse EH, Abedinnia H, Emde S (2019) An integrated model to improve ergonomic and eco-
nomic performance in order picking by rotating pallets. Eur J Oper Res 273(2):516–534

Glock CH, Grosse EH, Elbert RM, Franzke T (2017) Maverick picking: the impact of modifications in
work schedules on manual order picking processes. Int J Prod Res 55(21):6344–6360

Grosse EH, Glock CH, Ballester-Ripoll R (2014) A simulated annealing approach for the joint order
batching and order picker routing problem with weight restrictions. Int J Oper Quant Manag
20(2):65–83

Grosse EH, Glock CH, Jaber M, Neumann W (2015) Incorporating human factors in order picking plan-
ning models: framework and research opportunities. Int J Prod Res 53(3):695–717

Grosse EH, Glock CH, Neumann WP (2017) Human factors in order picking: a content analysis of the
literature. Int J Prod Res 55(5):1260–1276

Gu J, Goetschalckx M, McGinnis L (2007) Research on warehouse operation: a comprehensive review.
Eur J Oper Res 177(1):1–21

Gue K, Meller R (2009) Aisle configurations for unit-load warehouses. IIE Trans 41(3):171–0182
Hanson R, Falkenström W, Miettinen M (2017) Augmented reality as a means of conveying picking

information in kit preparation for mixed-model assembly. Comput Ind Eng 113:570–575
Henn S, Koch S, Gerking H, Wäscher G (2013) A u-shaped layout for manual order-picking systems.

Logist Res 6(4):245–261
Henn S, Wäscher G (2012) Tabu search heuristics for the order batching problem in manual order picking

systems. Eur J Oper Res 222(3):484–494
Hong S, Johnson AL, Peters BA (2012) Large-scale order batching in parallel-aisle picking systems. IIE

Trans 44(2):88–106
Hooker JN (2007) Planning and scheduling by logic-based Benders decomposition. Oper Res

55(3):588–602
Huang D, Mao Z, Fang K, Yuan B (2021) Combinatorial Benders decomposition for mixed-model two-

sided assembly line balancing problem. Int J Prod Res 1–27
Jaghbeer Y, Hanson R, Johansson MI (2020) Automated order picking systems and the links between

design and performance: a systematic literature review. Int J Prod Res 58(15):4489–4505
Kress D, Müller D, Nossack J (2019) A worker constrained flexible job shop scheduling problem with

sequence-dependent setup times. OR Spectrum 41(1):179–217
Kulak O, Sahin Y, Taner M (2012) Joint order batching and picker routing in single and multiple-cross-

aisle warehouses using cluster-based tabu search algorithms. Flex Serv Manuf J 24(1):52–80
Lu W, McFarlane D, Giannikas V, Zhang Q (2016) An algorithm for dynamic order-picking in warehouse

operations. Eur J Oper Res 248(1):107–122
Masae M, Glock CH, Grosse EH (2020a) Order picker routing in warehouses: a systematic literature

review. Int J Prod Econ 224:107564
Masae M, Glock CH, Vichitkunakorn P (2020b) Optimal order picker routing in the chevron warehouse.

IISE Trans 52(6):665–687
Masae M, Glock CH, Vichitkunakorn P (2021) A method for efficiently routing order pickers in the leaf

warehouse. Int J Prod Econ 234:108069
Matusiak M, de Koster R, Kroon L, Saarinen J (2014) A fast simulated annealing method for batching

precedence-constrained customer orders in a warehouse. Eur J Oper Res 236(3):968–977
Mowrey C, Parikh P (2014) Mixed-width aisle configurations for order picking in distribution centers.

Eur J Oper Res 232(1):87–97
Muppani V, Adil G (2008) A branch and bound algorithm for class based storage location assignment.

Eur J Oper Res 189(2):492–507
Otto A, Boysen N, Scholl A, Walter R (2017) Ergonomic workplace design in the fast pick area. OR

Spectrum 39(4):945–975
Öztürköğlu Ö, Gue K, Meller R (2014) A constructive aisle design model for unit-load warehouses with

multiple pickup and deposit points. Eur J Oper Res 236(1):382–394
Pan JC-H, Shih P-H, Wu M-H (2015) Order batching in a pick-and-pass warehousing system with group

genetic algorithm. Omega 57:238–248
Pansart L, Catusse N, Cambazard H (2018) Exact algorithms for the order picking problem. Comput

Oper Res 100:117–127
Petersen C, Aase G (2004) A comparison of picking, storage, and routing policies in manual order pick-

ing. Int J Prod Econ 92(1):11–19

573

1 3

New solution procedures for the order picker routing problem…

Petersen C, Aase G, Heiser DR (2004) Improving order-picking performance through the implementation
of class-based storage. Int J Phys Distrib Logist Manag 34(7):534–544

Petersen C, Siu C, Heiser DR (2005) Improving order picking performance utilizing slotting and golden
zone storage. Int J Oper Prod Manag 25(10):997–1012

Ralphs TK, Kopman L, Pulleyblank WR, Trotter LE (2003) On the capacitated vehicle routing problem.
Math Program 94(2–3):343–359

Ratliff H, Rosenthal A (1983) Order-picking in a rectangular warehouse: a solvable case of the traveling
salesman problem. Oper Res 31(3):507–521

Reyes J, Solano-Charris E, Montoya-Torres J (2019) The storage location assignment problem: a litera-
ture review. Int J Ind Eng Comput 10(2):199–224

Roodbergen K, Koster R (2001a) Routing methods for warehouses with multiple cross aisles. Int J Prod
Res 39(9):1865–1883

Roodbergen K, Koster R (2001b) Routing order pickers in a warehouse with a middle aisle. Eur J Oper
Res 133(1):32–43

Roodbergen K, Sharp G, Vis I (2008) Designing the layout structure of manual order picking areas in
warehouses. IIE Trans 40(11):1032–1045

Roodbergen K, Vis I (2006) A model for warehouse layout. IIE Trans 38(10):799–811
Roodbergen K, Vis I, Taylor G Jr (2015) Simultaneous determination of warehouse layout and control

policies. Int J Prod Res 53(11):3306–3326
Rushton A, Croucher P, Baker P (2014) The handbook of logistics and distribution management: under-

standing the supply chain. Kogan Page Publishers, New York
Scholz A, Henn S, Stuhlmann M, Wäscher G (2016) A new mathematical programming formulation for

the single-picker routing problem. Eur J Oper Res 253(1):68–84
Tadumadze G, Emde S, Diefenbach H (2020) Exact and heuristic algorithms for scheduling jobs with

time windows on unrelated parallel machines. OR Spectrum 42(2):461–497
Theys C, Bräysy O, Dullaert W, Raa B (2010) Using a tsp heuristic for routing order pickers in ware-

houses. Eur J Oper Res 200(3):755–763
Tompkins J, White J, Bozer Y, Tanchoco J (2010) Facilities planning. Wiley, New York
Van Gils T, Caris A, Ramaekers K, Braekers K (2019) Formulating and solving the integrated batch-

ing, routing, and picker scheduling problem in a real-life spare parts warehouse. Eur J Oper Res
277(3):814–830

Van Gils T, Ramaekers K, Caris A, de Koster RB (2018) Designing efficient order picking systems
by combining planning problems: State-of-the-art classification and review. Eur J Oper Res
267(1):1–15

Vaughan T (1999) The effect of warehouse cross aisles on order picking efficiency. Int J Prod Res
37(4):881–897

Žulj I, Glock CH, Grosse EH, Schneider M (2018a) Picker routing and storage-assignment strategies for
precedence-constrained order picking. Comput Ind Eng 123:338–347

Žulj I, Kramer S, Schneider M (2018b) A hybrid of adaptive large neighborhood search and tabu search
for the order-batching problem. Eur J Oper Res 264(2):653–664

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	New solution procedures for the order picker routing problem in U-shaped pick areas with a movable depot
	Abstract
	1 Introduction
	2 Literature review
	3 Problem description
	3.1 Formal description of the picker routing problem
	3.2 Computational complexity

	4 Algorithms
	4.1 Logic-based Benders decomposition for the picker routing problem
	4.1.1 Master problem
	4.1.2 Slave problem
	4.1.3 Combinatorial cuts

	4.2 Heuristic solution approaches
	4.2.1 Sweep algorithm
	4.2.2 Heuristic dynamic programming algorithm

	5 Numerical experiments and analysis
	5.1 Generating instances for the computational tests
	5.2 Computational performance
	5.3 Effects of having a movable depot
	5.4 Effects of storage assignment policies

	6 Conclusion
	References

