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A B S T R A C T

Markovian population models are a powerful paradigm to de-
scribe processes of stochastically interacting agents. Their dy-
namics is given by a continuous-time Markov chains over the
population sizes. Such large state-spaces make their analysis
challenging.

In this thesis, we develop methods for this problem class lever-
aging their structure. We derive linear moment constraints on
the expected occupation measure and exit probabilities. In com-
bination with semi-definite constraints on moment matrices, we
obtain a convex program. This way, we are able to provide bounds
on mean first-passage times and reaching probabilities. We fur-
ther use these linear constraints as control variates to improve
Monte Carlo estimation of different quantities. Two different algo-
rithms for the construction of efficient variate sets are presented
and evaluated.

Another set of contributions is based on a state-space lumping
scheme that aggregates states in a grid structure. Based on the
probabilities of these approximations we iteratively refine rele-
vant and truncate irrelevant parts of the state-space. This way,
the algorithm learns a well-justified finite-state projection for
different scenarios.
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Z U S A M M E N FA S S U N G

Markowsche Populationsmodelle sind ein leistungsfähiges Pa-
radigma zur Beschreibung von Prozessen stochastisch interagie-
render Akteure. Ihre Dynamik ist durch eine zeitkontinuierliche
Markow-Kette über die Populationsgrößen gegeben. Solch große
Zustandsräume machen ihre Analyse zu einer Herausforderung.

In dieser Arbeit entwickeln wir Methoden für diese Problem-
klasse, indem wir ihre Struktur nutzen. Wir leiten lineare Mo-
mentbeschränkungen für das erwartete Besetzungsmaß und die
Austrittswahrscheinlichkeiten ab. In Kombination mit semide-
finiten Nebenbedingungen für Momentmatrizen erhalten wir
ein konvexes Programm. Auf diese Weise sind wir in der Lage,
Schranken für mittlere Erstdurchlaufzeiten und Erreichbarkeits-
wahrscheinlichkeiten zu setzen. Außerdem verwenden wir diese
linearen Nebenbedingungen als Kontrollvariablen, um die Monte-
Carlo-Schätzung verschiedener Größen zu verbessern. Es werden
zwei verschiedene Algorithmen für die Konstruktion effizienter
Variablensätze vorgestellt und bewertet.

Eine weitere Gruppe von Beiträgen basiert auf einem Aggre-
gationsschema, das Zustände in einer Gitterstruktur zusammen-
fasst. Auf der Grundlage der Wahrscheinlichkeiten dieser Nä-
herungen verfeinern wir iterativ relevante und schneiden irrele-
vante Teile des Zustandsraums ab. Auf diese Weise erlernt der
Algorithmus eine gut begründete endliche Zustandsprojektion
für verschiedene Szenarien.
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Part I

P R E L I M I N A R I E S





1
I N T R O D U C T I O N

Any model is an abstraction of reality. Often this abstraction
aims to capture a few aspects of interest while ignoring others.
Modeling often is a delicate balance of adequate representation
and abstraction. The goal of the former is to capture all the
relevant behaviors and effects in a model. Useful Abstractions
benefit both explainability and analysis. This balance between
faithfully capturing reality and enabling an analysis is at the core
of all modeling efforts.

In the natural sciences, we often deal with concentrations of
different “things”. This could be the amount of some substance
or the number of agents waiting for some service. Traditionally,
ordinary differential equations are the most popular paradigm
for dynamical models. Ordinary differential equations have two
inherent simplifications: Firstly, they impose a continuous state
space and, secondly, they are deterministic.

The first assumption is appropriate in many circumstances.
For example, chemical concentrations can usually be treated as
continuous if the number of molecules in a given volume is large. In many chemical

experiments, for
example, huge
numbers of
molecules are
present.

With large populations, the influence of discrete effects decreases.
In such cases, mean-field analyses are an adequate and efficient
tool (Bortolussi et al., 2013). However, this simplification fails if
discrete effects are central to the model. Consider, for example,
the extinction of a species in the classical Lotka-Volterra predator-
prey model (Lotka, 1925). In this case, the distinction between
a low concentration and a zero concentration becomes relevant

3



4 introduction

again: If the predator, e.g. the foxes, becomes extinct the model’s
dynamic changes dramatically. Such an event can be missed
by the deterministic model which instead gives a population
size larger than zero but much smaller than a single individual.
Mollison calls this problem humorously the atto-fox problem
(Mollison, 1991).

The second issue, i.e. the issue of determinism, is often closely
connected to the first. While the issue of a deterministic vs. a
stochastic world is more an issue of philosophy and physics,
stochasticity undoubtedly provides an excellent abstraction for
many phenomena. Staying with the previous example, it makes
sense to consider the dying out of the predatory species to be
stochastic. That means, there is a non-zero probability for both,
survival and extinction. Answering questions about such proba-
bilities would be one of the central functions of such a model.

The previous example falls in the realm of systems biology.
There are numerous applications in systems biology that benefit
from a discrete and stochastic description (Ullah and Wolken-
hauer, 2009; Wilkinson, 2018). Many biological processes such
as cell functions are driven by stochastic effects. Consider for
example the oscillatory processes such as the circadian cycle
(Asgari-Targhi and Klerman, 2019) or even classical models such
as the famous predator-prey model (Lotka, 1925). Another phe-
nomenon central to many biological functions is a switch-like
behavior.

Markovian population models (MPMs) are a versatile frame-
work capturing stochastic interactions between groups of iden-
tical agents. States are discrete counts of agents and reaction
events stochastically change these counts. Interactions between
agents commonly referred to as reactions, happen at exponen-
tially distributed random times. Their rate depends only on the
current system state, i.e. the population sizes. This kind of pop-
ulation model introduces the major assumption that all agents
behave similarly. Similarity entails both similar behavior of each
agent and a homogenous mixture of all agents. This feature isOften the term

well-stirredness is
used to express this.

a Markov property and therefore MPMs form a special class of
structured continuous-time Markov chains (CTMCs) (Anderson,
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2012). Accordingly, the Kolmogorov equations describes the time-
evolution of the corresponding probability distribution. For small In the context of

(bio-)chemistry this
is often called the
chemical master
equation.

finite chains it is easy to compute accurate transient probabilities
using the Kolmogorov equation. The CTMCs underlying most
population models, however, can have large and often unbound
populations. That makes their numerical solution extremely chal-
lenging. Many problems occuring in a wide range of areas such
as chemistry (Gillespie, 1977), epidemiology (Mode and Sleeman,
2000), queuing systems (Breuer, 2003), finance (Pardoux, 2008),
and performance analysis (Bortolussi et al., 2013; Gast, Bortolussi,
and Tribastone, 2019) can be described using this formalism.

Typical research questions when using such models target the
forward behavior. That is the problem of looking into the future
given a starting distribution. For example, consider determining
the probability that a system stays in some subset of the state
space for a fixed amount of time. Mainly, we target these kinds
of questions, but in Chapter 7 we look at a closely related class of
problems – the bridging problem. In this problem, both the initial
and the terminal distribution are fixed. Such questions are of par- This scenario is akin

to the smoothing
problem from
stochastic filtering.

ticular interest in multimodal models to determine the switching
behavior between different attracting regions. A third area is the
question of long-term behavior. In ergodic models, the forward
probabilities converge to a stable equilibrium distribution which
is independent of the initial distribution.

1 .1 contributions

The goal of this thesis is to develop methods to analyze MPMs.
A particular focus of these methods is scalability. All methods
developed in this thesis aim to provide means to more efficiently
analyze such systems – or at least uncover paths that can lead to
scalable methodologies. Importantly, these methods are reliable
approximations: There are no ad-hoc approximations influencing
estimates. The methodological theme is to leverage (approximate)
distributional information such as moment equations and state-
space aggregation to obtain good approximations.
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The first contribution proposes an augmentation scheme for
simple Lyapunov functions in Section 2.8. Therein we suggest
locally altering valid proposal Lyapunov functions. Such local
alterations are subject to very few constraints and Thus methods
such as neural networks are applicable. The resulting sets can be
much smaller.

In Part ii we focus on moment-based techniques. Methods to
analyze such models without ignoring their inherent stochastic-
ity received much attention in recent years. When facing state
spaces that are too large to handle using the Kolmogorov equa-
tion directly, stochastic simulations (Gillespie, 1977) provide an
alternative path. Such simulations have the advantage of pro-
viding an accurate approximation of the process. That is, they
converge in the limit of simulation runs. Many extensions of
stochastic simulations and Monte Carlo estimation have been
proposed. In Chapter 4 we develop such an extension for vari-
ance reduction of stochastic estimates. This variance reduction
exploits moment dynamics to derive constraints on population
averages. These constraints are a correction to the estimate. The
corrected estimator is unbiased and has a variance lower or equal
to the one of the uncorrected estimator.

We use similar moment constraints – in combination with
general moment constraints – to formulate convex optimization
problems. This way, we compute rigorous bounds on reaching
probabilities and mean first-passage times. This approach is
developed in Chapter 3. Fortunately, both of these moment-based
approaches can do without any moment closures and thereby
avoid any ad-hoc approximations.

In Part iii we use a hyper cube state-space aggregation scheme
to gain a rough understanding of the dynamics. The aggregation
is then further refined (Chapter 6 and Chapter 7) or used to guide
stochastic simulations (Chapter 8).

1 .2 organization

Figure 1.1 provides an overview of the dependencies between
chapters. All contributions presented in this thesis are related to
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Markovian population models. Therefore the background chapter,
i.e. Chapter 2 is relevant to all later parts of the thesis. In Part ii,
we present methods based on moment constraints. There is a
connection between Chapter 3 and Chapter 4 in their shared
linear constraints on temporal moments. The prerequisite for
Chapter 6 and Chapter 7 is the aggregation technique presented
in Chapter 5. The conceptual connection between the bridging
problem (Chapter 7) and the rare event sampling (Chapter 8) lies
in both, its setting and the utilization of backwards probabilities.

Chapter 2

Markovian
population

models

Chapter 5

Aggregation

Chapter 6

Stationary
behavior

Chapter 7

Bridging
problem

Chapter 8

Rare
events

Chapter 4

Control
variates

Chapter 3

Bounding
MFPTs

Figure 1.1: Chapter dependencies.

1 .3 previous publications

The ideas and much of the presented results have appeared
previously in the following publications. As such, the content of
most chapters has undergone peer-review and been published
in various conference proceedings. The publications and their
respective sections are as indicated below.
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• Chapter 3 has with minor differences been published as

Michael Backenköhler, Luca Bortolussi, and Ver-
ena Wolf (2020). “Bounding Mean First Passage
Times in Population Continuous-Time Markov
Chains.” In: 17th International Conference on Quan-
titative Evaluation of SysTems. Vol. 12289. Lecture
Notes in Computer Science. Springer, pp. 155–
174.

The approach was conceived by M. B. Author M. B. per-
formed the implementation and evaluation with feedback
from the other authors. All authors contributed to the text.
The Hausdorff moments, presented in Section 3.8, provide
alternative moment constraints. This method was not sub-
ject of the above publication.

• Chapter 4 has with minor differences been published as

Michael Backenköhler, Luca Bortolussi, and Ver-
ena Wolf (2019). “Control Variates for Stochas-
tic Simulation of Chemical Reaction Networks.”
In: 17th International Conference on Computational
Methods in Systems Biology. Vol. 11773. Lecture
Notes in Computer Science. Springer, pp. 42–59.

The control variate approach was conceived by M. B. and V.
W. The refinement algorithm was developed during discus-
sions of all authors. Author M. B. performed the implemen-
tation and evaluation with feedback from the other authors.
All authors contributed to the text.

The contents of Section 4.5 have been published in the
article

Michael Backenköhler, Luca Bortolussi, and Ver-
ena Wolf (2022). “Variance Reduction in Stochas-
tic Reaction Networks using Control Variates.”
In: Principles of Systems Design – Essays Dedicated
to Thomas A. Henzinger on the Occasion of His 60th
Birthday. Vol. 13660. Lecture Notes in Computer
Science. Springer.
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The prior content of the chapter also includes minor changes
based on this extension. The idea of the resampling algo-
rithm was developed during discussions of all authors.
Author M. B. performed the implementation and evalu-
ation with feedback from the other authors. All authors
contributed to the text.

• Chapter 6 has with minor differences been published as

Michael Backenköhler, Luca Bortolussi, Gerrit
Großmann, and Verena Wolf (2021). “Abstraction-
Guided Truncations for Stationary Distributions
of Markov Population Models.” In: 18th Inter-
national Conference on Quantitative Evaluation of
SysTems. Vol. 12846. Lecture Notes in Computer
Science. Springer, pp. 351–371.

The lumping approach was conceived by M. B. All authors
contributed to the text.

• Chapter 7 has with minor differences been published as

Michael Backenköhler, Luca Bortolussi, Gerrit
Großmann, and Verena Wolf (2021). “Analysis
of Markov Jump Processes under Terminal Con-
straints.” In: 27th International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems. Vol. 12651. Lecture Notes in Computer
Science. Springer, pp. 210–229.

The lumping approach was conceived by M. B. All authors con-
tributed to the text. Chapter 5 is in large part based on this and
the latter two publication above. Chapter 2 contains introductory
material and examples from the two publications above.





2
B A C K G R O U N D

2 .1 continuous-time markov chains

A stochastic process is a parameterized collection of random vari-
ables {Xt}t∈T defined on some probability space (Ω,F,P) and
takes values in complete metric space (S, r). In most contexts See Feller (1971) for

stoch. processes in
general.

the index set T models time. In a discrete setting T = N, while
T = [0,∞) in the continuous setting, which we consider in this
thesis. We observe the values X(t,ω) for some fixed, but un-
known ω ∈ Ω. The information of the process up to time t is
given by the σ-algebra Ft ⊂ F. The increasing family of sigma
algebras, i.e. Fs ⊆ Ft for s 6 t is called a filtration.

More specifically, we study with models having continuous-
time Markov chain (CTMC) semantics — a type of Markov pro-
cess. Such processes satisfy the Markov property: For all Borel-
measurable functions f

E (f(Xt+s) | Ft) = E (f(Xt+s) | X(t)) . (2.1)

Intuitively, this property expresses that the future of the process
depends only on the latest condition, i.e. Xt and not earlier
conditions (Ft). A CTMC is a Markov process, that takes discrete
values S = {s0, s1, . . . } over continuous time T = [0,∞). If further The time-discrete

analogue is the
DTMC.

Pr (Xt = s1 | X0 = s0) = Pr (Xt+h = s1 | Xh = s0) (2.2)

for all t,h > 0 and s0, s1 ∈ S the chain is time-homogenous: The
absolute time point is irrelevant, and the dynamics do not change

11



12 background

if we shift in time. In this thesis we are only interested in tim-
homogenous CTMCs, but most techniques developed should carry
over. We define transition probabilities

pij(h) = Pr(Xh = sj | X0 = si) . (2.3)

Accordingly, the transition matrix is given by P(h)ij = pij(h) for
all indices i and j. The Chapman-Kolmogorov equation

P(s+ t) = P(s)P(t) (2.4)

follows directly from the law of total probability and the Markov
property (2.1). (2.4) directly tells us that the transition probabil-
ities from a semigroup. Studying Markov processes from this
direction is a popular approach (Ethier and Kurtz, 2009).

The standard method of specifying a Markov process, and
CTMCs in particular, is is the generator. In general, this is an
operator A on some class of functions and

E (f(Xt+h) − f(Xt) | Ft) = Af(Xt)h+ o(h) , (2.5)

where Ft is the filtration up to time t. This equation can be
interpreted as the requirement, that

f(Xt) − f(X0) −

∫t
0

Af(xs)ds

is a martingale (see Kurtz, 1981, p. 5). We will use this in Chap-
ter 3 to derive bounds on mean first-passage times.

In CTMCs the generator is defined by giving the intensities or
rates of transitions. Such a rate qij > 0 between state si and sj
impliesThis is congruent

with (2.5) under
application the

Markov property.
Pr(Xh = sj | X0 = si) = qijh+ o(h) . (2.6)

Due to the discrete nature, the generator is a matrix, usually
called the Q-matrix,

Q = lim
h↓0

1

h
(P(h) − I) . (2.7)
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As such the change of the state probability distribution over time
is fully characterized by the Kolmogorov forward equation

d

dt
P(t) = P(t)Q . (2.8)

Analogously, the Kolmogorov backward equation is

d

dt
P(t) = QP(t)T . (2.9)

Distributions in the context of Markov chains are typically in
row-vector form

π(t) := (π(x1, t),π(x2, t), . . . ) ,

where we define

π(xi, t) := Pr(Xt = xi), ∀xi ∈ S,∀t > 0 .

Often, (2.8) and (2.9) are used in the context of an distributions.
In this case it makes more sense to right-multiply the unit vector
to these equations such that

d

dt
π(t) = π(t)Q (2.10)

and

d

dt
π(t) = Qπ(t)T . (2.11)

Given some initial distribution

π0 := π(0) ,

the distribution π(t) is given by give simple initial value problems
(IVPs) of (2.10).

2 .1 .1 Computing Transient Distributions

Stewart (1994) provides a comprehensive overview of solution
methods. Here, we only provide a basic overview and intuition
relevant for the rest of this thesis.
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matrix exponential The transition probability matrix P(t)
is the solution of (2.8)

P(t) = exp(Qt) ,

where the matrix exponential for a square matrix M

exp(M) :=

∞∑
k=0

1

k!
Mk .

Due to the factor hk/k!, the sum of the matrix exponential
can be truncated to get an estimate of high quality. In prac-
tice, this method is unsuited to many problems, because
the factor Qk becomes incurs a prohibitive cost, especially
if the state space is large.

numerical integration The Kolmogorov equations (2.8),
(2.9) provide us with an IVP that can be solved numerically.The matrix

exponential is the
analytical solution.

This method scales much better than the matrix exponential
method, especially if the whole time-series is of interest. If
an initial distribution π0 is fixed, the ordinary differential
equation (ODE) simplify further, such that we only have
one equation per state. The drawback to this method is the
error inherent to numerical integration schemes.

uniformization Uniformization is an elegant algorithm to
compute transient solutions. Here, the CTMC is transformed
into a discrete-time Markov chain (DTMC). Using a uni-
formization rate

λ0 > max
i

|qii|

the transition probabilities of the DTMC become

Pij =

Qij/λ0 , if i 6= j

1−
∑
kQik/λ0 , otherwise

.

The transient distribution at t can be obtained, by weighting
the k-step probabilities of the DTMC by a Poisson distribu-
tion with rate λ0t:

π(t) =

∞∑
k=0

π0P
k (λ0t)

k

k!
exp (λ0t) .
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Truncation of this series clearly gives an underapproxima-
tion.

monte carlo simulation A simple way is estimation using
Monte Carlo methods. This entails stochastic simulation of
many trajectories of the CTMC. Generating a trajectory is
straightforward: Given that the process is in a particular
state si the a transition has to be sampled along with the
residence time in state si. The naive approach is to sample
an exponential random variable for each qij and choose
the one firing first. This algorithm can be improved by
sampling a reaction directly and sampling the residence
time separately. This algorithm will be shown later in the
context of MPMs.

2 .2 markovian population models

An Markovian population model (MPM) among agents of nS
distinct types in a well-stirred system. Other names for this
model class are population CTMC (pCTMC), chemical reaction net-
work (CRN), and stochastic reaction network (SRN). The system is
given by a continuous-time stochastic process {Xt}t>0. It models
only the number of agents according to their type. Therefore
the process takes nS-dimensional vectors of natural numbers as
values, i.e. the state-space is S ⊆ NnS . By only considering the “The secret to

modeling is not
being perfect.”

— Karl Lagerfeld

number of agents, we are neglecting factors such as spatial vari-
ations in agent density or other factors influencing interactions.
The assumption of all agents being equally distributed in space
is called the well-stirredness assumptions.

These assumptions bring with them, the convenience of con-
sidering populations as a whole. The single agent is of no im-
portance to the dynamics of the process. Just the overall size
of each population determines the stochastic evolution of the
process. Another consequence of this assumption is the limiting
behavior. If all populations are proportionally scaled to infinity, Other assumptions,

such as
exponentially
distributed firing
times, are discussed
below.

their concentrations can be accurately described by deterministic
ODEs. In fact, this is the most widely used paradigm to analyze
this kind of reaction networks. However this methodology may
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by widely inaccurate. Consider, for example, an epidemic process.
Typically individuals are not well-stirred in a societal context
and the influence of specific contact structures is crucial to the
process’ dynamics (Großmann, Backenköhler, and Wolf, 2020;
Großmann, Backenköhler, and Wolf, 2021). Furthermore such
a process typically exhibits discrete stochastic effects, such as
the epidemic dying out. While the latter effect is retained in an
MPM, the former is already lost. Therefore, a great deal of care
has to be taken by the modeller which kinds of abstractions are
appropriate for the chosen abstraction.

Interactions between agents are expressed as reactions. These
reactions have associated gains and losses of agents, given by non-
negative integer vectors v−j and v+j for reaction j, respectively. The
overall change by a reaction is given by the vector vj = v+j − v−j .
A reaction between agents of types S1, . . . ,SnS is specified in the
following form:

nS∑
`=1

v−j`S`
αj(x)−−−→

nS∑
`=1

v+j`S` . (2.12)

The propensity function αj gives the rate of the exponentially
distributed firing time of the reaction as a function of the current
system state x ∈ S. Thus, for reaction j we have the intensity

Pr
(
Xt+h = x+ vj | Xt = x

)
= αj(x) + o(ht) . (2.13)

In most physical models, mass-action propensities are most com-
mon. These model combinatorial nature of well-mixed molecules
moving randombly through space: In a reaction

A+B
cx(A)x(B)−−−−−−→ C

two molecules hit eachother with a probability, proportional to
the product of their counts

cX
(A)
t X

(B)
t .

In general such rates are given by the product of the number of
reactant combinations in x and a rate constant cj, i.e.

αj(x) := cj

nS∏
`=1

(
x(S`)

v−j`

)
. (2.14)
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In this case, we give the rate constant in (2.12) instead of the
function αj. We use the superscript notation x(A) to denote the This notation avoids

conflicts, when we
use the subscript for
time or as an index.

index corresponding to species A in some vector of length nS.
According to (2.13) the stochastic process {Xt}t>0 describing

the evolution of the population sizes over time t is a continuous-
time Markov chain (CTMC). The infinitesimal generator matrix Q
has the entries

Qx,y =


∑
j:x+vj=y

αj(x) , if x 6= y,

−
∑nR
j=1 αj(x) , otherwise.

(2.15)

Note that in addition mild regularity assumptions are necessary
for the existence of a unique CTMC X, such as non-explosiveness
(Anderson, 2012). These assumptions are typically valid for real-
istic reaction networks. The probability distribution over time is
given by an initial value problem. Given an initial state x0, the
probabilities

π(xi, t) := Pr(Xt = xi | X0 = x0), t > 0, x ∈ S (2.16)

evolve according to the Kolmogorov forward equation

d

dt
π(t) = π(t)Q , (2.17)

where π(t) is an arbitrary vectorization

(π(x1, t),π(x2, t), . . . ,π(x|S|, t))

of the state probabilities. Often (2.17) is given for a single state.
In this form – due to its usage in quantitative biology – it is
commonly referred to as the chemical master equation (CME)

dπ

dt
(x, t) =

nR∑
j=1

(
αj(x− vj)π(x− vj, t) −αj(x)π(x, t)

)
. (2.18)

example Consider the following simple MPM with non-linear
propensities as an example.
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Model 1 (Dimerization). We first examine a simple dimerization
model on an unbounded state-space with reactions

∅ λ−→M, 2M
δ−→ D

and initial condition X(M)
0 = X

(D)
0 = 0.

The semantics is given by a CTMC Xt = (X
(M)
t ,X(D)

t )T , where
(S1,S2) = (M,D). The reaction propensities according to (2.14)
are

α1(x) = λ and α2(x) = δ x
(M)(x(M) − 1)/2 .

The change vectors for the first reaction are

v−1 = (0, 0)T and v+1 = (1, 0)T .

For the second reaction the change vectors are

v−2 = (2, 0)T and v+2 = (0, 1)T .

Consequently, v1 = (1, 0)T and v2 = (−2, 1)T .
The generator matrix

Q =



−λ λ 0 · · ·
0 −λ λ 0 · · ·
2δ 0 −(λ+ 2δ) λ 0 · · ·
0 6δ 0 −(λ+ 6δ) λ 0 · · ·
...

...
...

...
...

...
. . .


.

Often it is a good idea to visualize the state-space and transitions
as a graph. This graph is constructed by interpreting theQ-matrix
as an adjacency matrix for some subset of states.

0 1 2 3 4 · · ·
λ λ λ λ λ

2δ 6δ 12δ 20δ
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For a state (x(M), x(D)) ∈N2, where x(M) > 2, the CME (2.18)
becomes

d

dt
π((x(M), x(D)), t)

=
δ

2
(x(M) + 2)(x(M) + 1)π((x(M) + 2, x(D) − 1), t)

− (λ+
δ

2
x(M)(x(M) − 1))π((x(M), x(D)), t)

+ λπ((x(M) − 1, x(D)), t)

�
The explicit representation of all state probabilities is often not

possible, because there are infinitely many states. Usually the
state-space is truncated to contain all relevant states (Andrey-
chenko et al., 2011) or one switches to an approximation such as
the mean-field (Bortolussi et al., 2013)

2 .3 state-space truncation

A complete solution of (2.18) is usually not possible. If the state-
space with non-negligible probability is suitably small, a state
space truncation can be performed. That is, (2.18) is integrated on
a possibly time-dependent subset Ŝt ⊆ S (Henzinger, Mateescu,
and Wolf, 2009; Munsky and Khammash, 2006; Spieler, 2014).
Transitions to states, that are not part of this subset are typically
re-directed to a introduced sink-state. This state captures the
mass “lost” by the approximation and gives the error up to the
numerical integration scheme. Munsky and Khammash (2006) Uniformization can

give a lower bound
on the error.

coined the term of finite state projection (FSP) for such a method.
To analyze the stationary distribution (Section 2.6) the redirec-

tion scheme needs to be altered (Kuntz et al., 2021b): Instead of a
re-redirection into a sink-state, transitions are redirected in some
fashion back into the truncation set.

example Consider a birth-death process as a simple example.
This model is used to describe a wide variety of phenomena and
often constitutes a sub-module of larger models. For example,
it represents an M/M/1 queue with service rates being linearly
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dependent on the queue length. Note that even for this simple
model, the state-space is countably infinite.This process occurs

in many different
varieties. For
example, the

state-space may be
finite and

propensities are
non-polynomial (see

Backenköhler and
Großmann, 2020).

Model 2 (Birth-Death Process). The model consists of exponentially
distributed arrivals and service times proportional to queue length. It
can be expressed using two mass-action reactions:

∅ µ−→ S and S
γ−→ ∅ .

The initial condition X0 = 0 holds with probability one.

The underlying CTMC has the following infinite structure.

0 1 2 3 4 · · ·
µ µ µ µ µ

γ 2γ 3γ 4γ

The change of probability mass in a single state x > 0 is described
by expanding (2.18) and

d

dt
πt(x) = µπ(x− 1, t) + γ(x+ 1)π(x+ 1, t)

− (µ+ γx)π(x, t) . (2.19)

A typical truncation scheme to [0,N] would use (2.19) for x ∈
[0, . . . ,N− 1] and for x = N the transition to N+ 1 via the first
reaction is re-directed into a sink state. We can drop the sink
state because of the invariant

∑
x πt(x) = 1, ∀t > 0. The ODE forIn general, we can

drop one equation in
the CME system

because of this
invariant.

the boundary state would consequently read

d

dt
πt(N) = µπ(N− 1, t) − (γN+ µ)π(N, t) .

Visualizing the resulting CTMC and letting N = 3.

0 1 2 3 sink

µ µ µ µ

γ 2γ 3γ
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In a forward analysis, the sink state accumulates mass “lost” by
the approximation. This provides a good practical error bound The accuracy of the

bound is dependent
on the specific
method of the
forward analysis.
Numerical
integration, for
example, it is less
strict.

for the chosen truncation.
If one is interested in the stationary probability distribution

(Section 2.6), a sink state is not practical, since – in the long
run – the process will usually enter such a state. Instead, the cut
transitions are re-directed back into the truncation. A plethora of
re-directions is possible (Gupta, Mikelson, and Khammash, 2017;
Kuntz et al., 2021b; Spieler, 2014), but in general it is reasonable to
re-direct to states with cut incoming transitions. In this example, Such re-directions

are used in
Chapter 6.

this is equivalent to cutting the transition, because the truncation
has only this border state.

0 1 2 3

µ µ µ

γ 2γ 3γ

Thus, the ODE for state N here reads

d

dt
πt(N) = µπ(N− 1, t) − γNπ(N, t) .

�

2 .4 stochastic simulations

We can generate trajectories of this model using the stochastic
simulation algorithm (SSA) (Algorithm 1) (Gillespie, 1977). The
simulation algorithm consists of repeatedly evaluating the race
condition and jump times induced by (2.15) until some terminal
criterion such as a maximum simulation time T is reached (line 2).
In particular, the algorithm iteratively chooses a reaction, with a
probability that is proportional to its rate given the current state
s (line 4). The jump time tj − tj+1 is determined by sampling
from an exponential distribution with rate

∑
i αi(s) (line 5).
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Algorithm 1: Sample a trajectory
input :π0,A
output : trajectory τ

1 τ← empty list, s← sample from π0, t← 0;
2 while t < T do
3 τ← append(τ, (s, t));
4 k← sample reaction i with probability αi(s)/

∑
i αi(s);

5 δ ∼ Exp (
∑
i αi(s));

6 s← s+ vk;
7 t← t+ δ;

8 return τ;

The output of Algorithm 1 is an alternating sequence of states
and jump times

τ = s0t0s1t1 . . . tnsn, t ∈ [0, T ]

called a trajectory.
Monte Carlo estimation requires a sufficiently large number of

such trajectories to be generated. This collection of realizations
facilitates a statistical estimate of a wide range of quantities such
as expected values and probabilities. The main benefit of this
approach is its flexibility. It can solve essentially all relevant tasks.
The main drawback is the cost associated with the generation of a
sufficiently large trajectory ensemble. This problem becomes very
pronounced in case of rare event probability estimation and stiff
systems. Furthermore, the results only provide – by their veryBespoke techniques

for these scenarios
are available (Cao,

Gillespie, and
Petzold, 2005;

Daigle Jr et al.,
2011).

nature – statistical guarantees. Other methods such as explicit
state-space representations can give stronger guarantees.

2 .5 moment dynamics

Often times, the moments of a stochastic process provide suffi-
cient information for its analysis. The mean-field analysis (Borto-
lussi, Hillston, and Loreti, 2020) can be considered an instance
of a moment closure. In this analysis only means are considered
while, while covariances are assumed to be zero. It is possible to
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derive the moment dynamics of population models. In particular,
ODEs for the expected values of an MPM can be derived using its
generator. We can apply Q to a polynomial f such that This is called the

drift (see
Section 2.7).

Qf(x) =

nR∑
j=1

(
f(x+ vj) − f(x)

)
αj(x) . (2.20)

By definition of the generator (2.5)

d

dt
E (f(Xt)|Xt = x) = Qf(x) .

Left-multiplying the probability of a given state and summing
up over all states, we obtain the time derivative of the expected
value E(f(Xt)). Written as a matrix vector product

d

dt
(πf) = πQf .

For MPMs, in particular, we arrive at the functional form

d

dt
E (f(Xt)) =

nR∑
j=1

E
((
f(Xt + vj) − f(Xt)

)
αj(Xt)

)
. (2.21)

This equation is used to analyse (raw) moments of the process. A Centered moments
(e.g. variance) are
equivalent via the
binomial transform.

raw moment is

E (Xm) = E

(
nS∏
i=1

Xmi

i

)
, m ∈NnS

with respect to some probability measure. An ODE is given by
(2.21), setting f(x) = xm. The order of a moment E(Xm) is given
by the sum of its exponents, i.e.

∑
imi. Note that the notion

of expected value can be generalized to any measure µ on a
Borel-measurable space (E,B(E)), where the m-th raw moment
is
∫
E x
m dµ(x). Throughout we assume that moments of arbitrary

order remain finite over time, i.e. E(|Xmt |) <∞, t > 0. In Gupta,
Briat, and Khammash (2014) the authors propose a framework to
verify this property for a given model.
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example Let us express the dynamics of the first two uncen-
tered moments for Model 2 using (2.21).

d

dt
E (Xt) = µ− γE (Xt)

d

dt
E
(
X2t
)
= µ(2E (Xt) + 1) − γ(2E

(
X2t
)
− E (Xt))

(2.22)

Setting initial moments these equations give as an IVP, we can
solve (see Figure 2.1). This, however, is more an exception than
the norm: Unless all ractions have linear or constant rate functions
αi(·), ∀i, we would not end up with a closed system of ODEs as
in (2.22). To illustrate, let us pretend the reaction (S

γ−→ ∅) would
become this non-linear reactionThe model is then the

same as Model 1.
2S

γ−→ ∅ .

Accordingly, due to mass-action (2.14)

α2(x) = γ(x
2 − x) .

Therefore the first moment’s derivative becomes
d

dt
E (Xt) = µ− γ

(
E
(
X2t
)
− E (Xt)

)
.

Note, that now the right-hand side of the derivative in the exam-
ple depends on the value of the second moment E

(
X2t
)
. �

If we consider the general expression (2.21) for the moment
of order k clearly a term of order k+ 1 occurs, that does (usu-
ally) not cancel out if a propensity function is at least quadratic.
Therefore, researches commonly rely on ad-hoc approximations
to truncate this infinite system of ODEs (Hespanha, 2008; Sch-
noerr, Sanguinetti, and Grima, 2014, 2015). Unfortunately such
schemes have typically no guarantees to converge – or even im-
prove – with increasing truncation order (Schnoerr, Sanguinetti,
and Grima, 2014) or increasing system size. Furthermore, fairlyThis finite moment

problem could also be
posed as a

generalized moment
problem. The

resulting
semi-definite

program (SDP) can
be solved

numerically
(Lasserre, 2010).

involved numerical schemes have to be employed to recover dis-
tributional approximations (Andreychenko et al., 2017). The only
scheme with a convergence guarantee in the system size limit
is the mean-field approximation (Bortolussi et al., 2013). Therein
zero-covariances are assumed, i.e. the system is truncated at the
first oder equations using the approximation E

(
X2t
)
= E (Xt)

2.
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time t

0
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#X

Moments and Simulations

0 10 20 30 40 50
time t

Probabilities (t)

Figure 2.1: The expected value ± a standard deviation along with a
sampled trajectory (left) and the probability distribution
over time (right) of Model 2 with µ = 10 and γ = 0.1.

2 .5 .1 Hybrid Representations

Especially in biological applications ithe abundancies of individ-
ual species vary by orders of magnitude within one model. A
canonical example of this fact are classic gene expression mod-
els, where proteins are expressed conditional on a binary gene
state. To approximate such variables using a moment approxi-
mation, or even mean-field, does not make too much sense since
such approximations either hinge on the high abundancy of the
species or try to alleviate state-space explosion stemming from it.
Hybrid methods leverage the best of both worlds by approximat-
ing larger populations using continuous approximations such as
moment closures, while small popuations are modeled discretely.

An example of such an approach is the method of conditional
moments (MCM) presented in Hasenauer et al. (2014) and Kaze-
roonian, Theis, and Hasenauer (2014). In this approach species
are split into a high-count component X̃t and a low-count com-
ponent X̂t. Then the partial expectations

E
(
X̃t | X̂t = x̂

)
Pr(X̂t = x̂) (2.23)

are approximated for all or some valuations x̂ using a standard
moment closure (Andreychenko, Mikeev, and Wolf, 2015). Equiv-
alent results for (2.23) can be achieved by using that E

(
X̂
)
=

E
(
X̂m
)
, m > 1 for a Bernoulli random variable.
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2 .6 stationary distribution

Assuming ergodicity of the underlying chain, a stationary distri-
bution π∞ is an invariant distribution, namely a fixed point of
the Kolmogorov forward equation (2.17). Let π∞ be the vector
description of a stationary distribution. It then satisfies

0 = π∞Q (2.24)

as a fixed point of the Kolmogorov equation (2.17). Furthermore,
the solution is constrained, to form a probability distribution, i.e.
a measure with unit mass. Thus,

1 =
∑
x∈S

π∞(x) . (2.25)

Stationary distributions are connected to the long-run behavior
of an MPM (Dayar et al., 2011), as the system’s distribution will
converge to the (unique) stationary distribution. The connection
of the stationary distribution to the long-run behavior becomes
clear when considering the ergodic theorem. For some A ⊆ S,

lim
T→∞ 1T

∫T
0

1A(Xt)dt =
∑
x∈A

π∞(x) . (2.26)

Thus, the mean occupation time for set A over infinite trajectories
is the stationary measure for A. Eq. (2.26) shows that we can
assess long-run behavior using the stationary distribution and
vice-versa.

example Returning to the example of Model 2 it is obvious
that the state-space is irreducible. Further, we can easily show,
that the stationary distribution is Poissonian with rate µ/γ:

π∞(x) = (µ/γ)x exp(−µ/γ)
x!

.

�
For simplicity, we assume throughout that the state-space is

composed of a single communicating class. Checking ergod-
icity given a countably infinite number of states is achieved
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by providing a suitable Foster-Lyapunov function (Meyn and
Tweedie, 2012). Some automated techniques have been proposed
for this task (Dayar et al., 2011; Gupta, Briat, and Khammash,
2014; Milias-Argeitis and Khammash, 2014).

2 .7 foster-lyapunov bounds

It is well-known that for a CTMC X, ergodicity can be proven
by a Foster-Lyapunov function g : S → R (Dayar et al., 2011;
Meyn and Tweedie, 1993). This is the stochastic analogue of the
Lyapunov functions, used to prove convergence of ODEs. The
function g is required to have finite level sets:

|{x ∈ S | g(x) < l}| <∞, ∀l > 0.

Typical choices for g are linear (Gupta, Briat, and Khammash,
2014; Milias-Argeitis and Khammash, 2014) or quadratic (Spieler,
2014). Given the g, we define its drift d as its average infinitesimal
change, which is obtained applying the generator Q to g. Intuitively, g is

interpreted as a
vector with the
values f(xi)i = fi
with the same
ordering as in Q.

d(x) = Qg(x) =

nR∑
j=1

αj(x)(g(x+ vj) − g(x)) (2.27)

As such the drift can be interpreted as the expected local tendency
of change of a scalar valued function g, i.e. Note that we end up

with (2.21) taking
the expectation.

d(x) =
d

dt
E (g(Xt) | Xt = x) .

A Lyapunov function can be used to prove ergodicity of a CTMC:
If there is a finite subset C ⊂ S such that

Qg(x) 6 −1, ∀x ∈ S \C , (2.28)

Qg(x) <∞, ∀x ∈ C , and (2.29)

‖x‖ →∞⇒ g(x)→∞ , where ‖x‖ =
∑
i

xi , (2.30)

then the chain is non-explosive and ergodic (Milias-Argeitis and
Khammash, 2014; Tweedie, 1975). Intuitively, g(Xt) should be a
supermartingale outside C and a submartingale inside. Since the
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g is norm-like due to (2.30) this entails that the process tends
towards C when outside, and out of from C when inside.

Given the above requirements

Cε` =
{
x ∈ S |

ε`
c
d(x) > ε` − 1

}
(2.31)

is finite, where

∞ > c > sup
x∈S

d(x) .

In this case, Cε` contains at least 1− ε` of stationary probability
mass for any ε` ∈ (0, 1) (Spieler, 2014, Thm. 8). Given that Cε` is
finite, the chain is ergodic and∑

x∈Cε`

π(x) > 1− ε` (2.32)

bounding the stationary probability mass contained within Cε` .

example We return to Model 2 and choose g(x) = x. Then

d(x) = µ− γx .

The requirements (2.28), (2.29), and (2.30) are fulfilled for

C =

{
0, . . . ,

1+ µ

γ
− 1

}
and the underlying chain is ergodic. We can further bound the
stationary distribution. Letting c = µ,

ε`
µ
d(x) = ε` −

ε`γ

µ
x

and following (2.31) the states

0 6 x <
µ

ε`γ

have at least 1− ε` stationary mass. �
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2 .8 augmented foster-lyapunov bounds

The use of Foster-Lyapunov approaches, is often two-fold: They
are used to prove ergodicity and to provide sets with a lower
bound 1− ε on their stationary probability mass. Often practical
methods focus on proving global properties of their associated
drift (Gupta, Briat, and Khammash, 2014; Spieler, 2014). In many
models, simple affine functions (Gupta, Mikelson, and Kham-
mash, 2017) and even the identity (Spieler, 2014) is sufficient.
While such simple forms provide some of the necessary ease of a
global analysis, the task of optimizing them with performance
in mind, is much more difficult (Milias-Argeitis and Khammash,
2014). Performance in this

context means least
states to cover most
stationary
probability mass.

Ideally, one would have the best of both worlds: The ease
of working with simple forms for the global guarantees of the
Foster-Lyapunov criteria and the freedom of choice to fit effi-
cient functions and get sets that are as small as possible. The
approach presented here achieves this by locally altering a pro-
posal Foster-Lyapunov function. The presence of such a valid
proposal function is necessarcy for this method. Such a function
can be identified by convex analysis, for example (Gupta, Briat,
and Khammash, 2014) or using the approach described by Spieler
(2014). Using a set of probability > 1− ε is identified using such
a functional. On this set, the original function is then replaced
by any other lower bounded function. At the set boundary this
supplementary function is phased out and we switch back to the
original function using some smooth step function. The choice
of such a supplementary function offers much room for experi-
mentation since all the necessary global criteria. For this function
we can, for example, use any polynomial or even more variable
models such as neural networks.

The procedure to identify an efficient function is thereby re-
duced to a simple machine learning problem. The objective ex-
ponentially rewards negative drift yielding tight sets. Its com-
putation needs, in principle, all points in a sufficiently large set.
For optimization however, we switch to an approach of sampling
uniformly from the augmentation set.
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This method yields sets that are smaller on the order of 103

for a fixed probability bound over a simple linear functional. We
study neural networks and polynomial templates as candidates
for local augmentation.

2 .8 .1 The Drift and its Properties

The drift (2.27) plays a central role in this chapter.We explain the
interpretation and

give some basic use
of the drift in

Section 2.7 on
page 27.

d(x;g) = Qg(x) =
nR∑
j=1

αj(x)(g(x+ vj) − g(x)) (2.33)

An interesting fact about the drift is, that it is invariant to linear
transforms to g. That is, for a constant b ∈ R, we can define
h(x) = g(x) + b and Qh(x) = Qg(x). Clearly, a positive linear
factorm to g factors out, i.e.Q(f ◦g)(x) = mQg(x) for f(x) = mx,
m > 0. Consequently, if the drift is scaled by its maximum value,
the scaled version is invariant to linear transforms of g:

Q(f ◦ g)(x)
maxx∈SQ(f ◦ g)(x)

=
Qg(x)

maxx∈SQg(x)
(2.34)

Since the probability bounded sets Cε` depend on the scaled
drift. Therefore invariance under linear transformation implies
that we cannot change – especially improve – the tightness of the
sets by such a transform.

2 .8 .2 Local Substitution

We use a proved Foster-Lyapunov function as a starting point.
For many relevant reaction networks, simple choices such as L1

or L2 norms are sufficient choices (Spieler, 2014). The resulting
sets, however, are typically very large. Tasks such as computing
approximate stationary distributions on truncations set up ac-
cording to these sets can be very costly. This cost is exacerbated
when a system has to be solved for a lot of different reentry
matrices, which is necessary when state-wise bounds on the
probability conditioned on a truncation are desired (Dayar et al.,
2011).
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We propose to augment the proposal function by a function,
that is limited to local influence guided by the initial set. This
supplementary function is phased out asymptotically using a
simple sigmoid threshold function

γk,z(x) =
1

1+ k exp(−x− z)
. (2.35)

Thus, in a one-dimensional model the augmented Lyapunov g ′

function becomes

g ′(x) = γk,z(x)g(x) + (1− γk,z(x))g
∗(x) . (2.36)

The threshold function γ guarantees that g∗ vanishes asymptoti-
cally. The drifts d ′ and d∗ are defined accordingly.

2 .8 .3 Illustrating Example

Consider the example of Model 2. The question is: What makes
the perfect Foster-Lyapunov function? Here, we are interested in
the smalled set of states containing the largest amount of station-
ary probability mass. Since we know the stationary distribution The beauty standard

may vary for other
applications.

to be Poissonian, its standard confidence intervals can be used as
a reference. The confidence interval for level 1−α of a Poisson
with rate µ is

1

2
P−1(α/2; 2k) 6 µ 6

1

2
P−1(1−α/2; 2k+ 2) .

where P−1( · ; l) is the inverse cumulative density function (CDF)
of a χ2l distribution. Thus, its the inverse of the regularized
gamma function

1

Γ(k/2)

∫x/2
0

tk/2−1e−t dt

w.r.t. x. This gives us the “ideal” intervals [lε,hε], (lε,hε) ∈N2

such that π∞([lε,hε]) = 1− ε. These sets are given as the dark
area in Figure 2.3. Therefore, the perfect Lyapunov function
would coincide with those sets. That is, a function g such that

Cε = [lε,hε] , ∀ε > 0 .
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Using a simple L2 norm as an initially, i.e. g(x) = x2, we
obtain a fairly large set. In Figure 2.2, we contrast this result to
the solution given by the choice of g∗(x) = (x− 250)2, which
gives a much tighter subset with the same guarantees. In this
case, the guarantee is that the sets contain at least 0.9 stationary
probability mass. We further demonstrate how the incorporation
g∗ into g significantly tightens the set proposed initially.
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Figure 2.2: Different example Lyapunov functions for Model 2. The
drifts d, d∗, and d ′ are scaled and the appropriate threshold
for ε = 0.1 is given.

The benefit of the threshold-based construction (2.36) is that
we only require g∗ to be non-negative. All other properties are
inherited from the proposal function. This freedom enables the
use of flexible machine learning models to search an efficient g∗.

neural augmentation The characteristics of the augmen-
tation function g∗ are typically not known beforehand. The for-
mulation of augmented Foster-Lyapunov functions only places
basic constraints on the function used: The function needs to be
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non-negative and an upper bound of the drift has to be known.
Neural networks lend themselves naturally as an extremely flexi-
ble functional family.

The central piece of fitting g∗ is an objective function. Since the
actual sets, bounded in probability, are defined in terms of their
drift, this objective needs to be a function of this drift. A desirable
augmented drift has tight level sets with more emphasis placed
on its peak regions. A natural way to express this prioritization
is the objective∑

x∈S

∫d∗(x)
−∞ exp(y)dy =

∑
x∈S

exp(d ′(x))

based on the scaled augmented drift.
In Figure 2.3 we give an example of different subsets |Cε| across

different thresholds ε. For the augmentation we use a minimal
neural network consisting of four radial basis functions and a
threshold function with z = 1500 and k = 0.01. While such a
simple model performs well in this example, larger and higher-
dimensional augmentation areas may require a more complex
model. Considering the results, we observe a marked improve-
ment over the proposal functions performance.
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Figure 2.3: Lyapunov sets for the birth-death process for different prob-
ability thresholds ε for the augmented function (orange)
and the proposal (green). The “perfect” sets are computed
using the confidence interval (red).

In Figure 2.4, we compare the sets of Lyapunov subsets for
varying thresholds ε for the proposal and the augmented func-
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tion. We observe a consistent improvement that is the strongest
for smaller ε. The overall improvement is significantly better us-
ing the linear proposal function. This is mainly due to the better
performance of the quadratic proposal compared to the linear.
The subset sizes using the augmented function is qualitatively
similar for both choices of proposal function.
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Figure 2.4: The sizes of the reference Lyapunov sets compared to the
sizes of the augmented Lyapunov sets along with the im-
provement given by the augmentation. Results are shown
for both, a linear and a quadratic proposal function.

2 .8 .4 Concluding Remarks

The local augmentation of simpler proposal Lyapunov func-
tions is promising. To achieve more scalability and flexibility
the method has some points that need refinement. The most
obvious aspect is the optimization of the local augmentation. The
evaluation of the objective necessitates the computation of the
maximum drift. In previous works this has also been directly
used as an objective (Milias-Argeitis and Khammash, 2014). This
entails the evluation of the drift across the entire augmentation
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region (and some global reasoning). Here, this issue has largely
been ignored, but especially in higher dimensional models this
may cause issues. There it might be better, to estimate the maxi-
mal drift using a – possibly random – grid of states instead of a
dense state-space region.

Furthermore the design-space of augmentations is huge. More
conventional models may prove to be easier to handle, especially
with respect to the objective computation. Symbolic regression
(Cranmer, 2020), for example, may be a useful alternative to
derive more explainable Lyapunov functions.





Part II

M O M E N T- B A S E D M E T H O D S

We use moment properties to provide bounds on
mean first-passage times and to improve statistical
estimation of different quantities.





3
B O U N D I N G M E A N F I R S T- PA S S A G E T I M E S

For the quantitative analysis of CTMCs, many approaches have
been developed, where properties of interest are often expressed
in terms of temporal logics such as CSL (Aziz et al., 1996; Baier et
al., 2000, 2003; Spieler, Hahn, and Zhang, 2014), MTL (Chen et al.,
2011), and specifications for timed-automata (Chen et al., 2009;
Mikeev et al., 2013). In addition, there exist efficient software
tools (Dehnert et al., 2017; Hinton et al., 2006; Kwiatkowska,
Norman, and Parker, 2011) that can be used to analyze and verify
system properties. The computation of reachability probabilities
is a central problem in this context.

Popular exact methods for CTMCs rely on numerical approaches
that explicitly consider each system state individually. A major
problem is that these methods cannot scale in the context of popu-
lation models with large copy numbers of agents. A popular alter-
native to tackle this problem is statistical model checking, which
is based on stochastic simulation (David et al., 2015). For MPMs

arising in the context of chemical reaction networks, trajectories
of the process are usually generated using the SSA (Gillespie,
1977). However, since the number of possible interactions grows
with the number of agents, stochastic simulations of MPMs are
time-consuming. Moreover, they are subject to inherent statistical
uncertainty and give only statistically estimated bounds.

As an alternative, recent work concentrates on numerical meth-
ods that approximate the statistical moments of the system with-
out the need to compute the probability of each state. For groups

39
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of identically behaving agents, it is possible to derive systems
of differential equations for the evolution of the statistical pop-
ulation moments (Bogomolov et al., 2015; Bortolussi and Lan-
ciani, 2013; Engblom, 2006; Gast, Bortolussi, and Tribastone, 2019;
Schnoerr, Sanguinetti, and Grima, 2015, 2017). However, as the
system of exact moment equations is infinite-dimensional, ap-
proximation schemes typically rely on certain assumptions about
the underlying probability distribution to truncate it. For exam-
ple, one might employ a “low dispersion closure” which assumes
that higher-order moments are the same as those of a normal dis-
tribution (Hespanha, 2008). Such approximations are, by nature,
ad-hoc and do not come with any guarantees.

Moment-based methods often scale well in terms of popula-
tion sizes. However, it is not possible to control the effects of
the introduced approximations, which in some cases can lead to
large errors (Schnoerr, Sanguinetti, and Grima, 2015). This issue
reverberates on the application of these methods to compute
reachability probabilities and mean first-passage times (Borto-
lussi and Lanciani, 2013, 2014; Hayden, Stefanek, and Bradley,
2012). Moreover, they can suffer from numerical instabilities, in
particular, when the maximum order of the considered moments
has to be increased to more appropriately describe the underlying
distribution.

Here, we put forward a method based solely on moments
that gives exact bounds for mean first-passage times (MFPTs) and
reachability probabilities in MPMs. For a set of states B and a
time-horizon T , the first-passage time (FPT)

τ = inf{t > 0 | Xt ∈ B} ∧ T .

This mean of this stopping time E (τ), i.e. the mean first-passage
time, directly characterizes the probability of reaching set B
within T time units. Thus, safe upper and lower bounds on MFPTs

can constitute a core component for the verification of proper-
ties in MPMs. Our approach extends recent work on moment
bounds (Dowdy and Barton, 2018b; Sakurai and Hori, 2017) and
it is based on a martingale formulation of the stopped process
that we derive from the exact moment equations. From this for-
malization, we deduce a set of linear moment constraints from
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which we derive upper and lower moment bounds using semi-
definite program (SDP). Monotone sequences of both upper and
lower bounds can be obtained by increasing the order of the
relaxation. Crucially, no closure approximations are introduced.
Therefore the bounds are exact up to the numerical accuracy of
the SDP solver.

To experimentally validate our method in terms of accuracy
and feasibility, we run some tests on examples from biology, lever-
aging an existing SDP solver and obtaining encouraging results.
Comparing with other moment-based methods, our approach is
not based on approximations due to closure schemes, thus pro-
viding guarantees on the bounds up to the numerical accuracy
of the computations. However, similarly to other moment-based
methods, we also found the insurgence of numerical instabili-
ties because moments of higher order tend to span over many
orders of magnitude. We ameliorate this problem by considering
scaling strategies that reduce such variability. We also extend
our approach to deal with MPMs exhibiting strong multimodal
behavior, due to the presence of populations having low copy
numbers. This extension exploits some ideas from hybrid mom-
ent closures (Kazeroonian, Theis, and Hasenauer, 2014).
In summary, this chapter presents the following novel contribu-
tions:

• the derivation of moment constraints, based on a martin-
gale formulation, for bounding mean first-passage times
and reachability probabilities using a convex programming
scheme;

• the extension of this scheme using hybrid moment condi-
tions to systems exhibiting multimodal behavior;

3 .1 related work

truncations and analytic solutions Considerable
effort has been directed at the analysis of first-passage time dis-
tributions in MPMs. Most works can either focus on an explicit
state-space analysis (Barzel and Biham, 2008; Kuntz et al., 2019,
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2021a; Munsky, Nemenman, and Bel, 2009) or employ approx-
imation techniques for which, in general, no error bounds can
be given (Bortolussi and Lanciani, 2014; Hayden, Stefanek, and
Bradley, 2012; Schnoerr et al., 2017). For some model classes
such as kinetic proofreading, analytic solutions are possible (Bel,
Munsky, and Nemenman, 2009; Iyer-Biswas and Zilman, 2016;
Munsky, Nemenman, and Bel, 2009).

Barzel and Biham (2008) propose a recursive scheme that con-
sists of one equation for each state, expressing the average time
the system needs to transition from that state to the target state.
Kuntz et al. (2021a) propose to employ moment bounds in a
linear programming approach to compute exit time distribution
using state-space truncation schemes. In Kuntz et al. (2019) the
authors propose a finite state-space projection scheme to bound
first-passage time distributions

moments approximations In Hayden, Stefanek, and Brad-
ley (2012), the authors use moment closure approximations and
Chebychev’s inequality to gain an understanding of first-passage
time dynamics. Schnoerr et al. (2017) also employ a moment
closure approximation and further approximate threshold func-
tions to derive an approximate first-passage time distribution.
Bortolussi and Lanciani (2014) use a mean-field approximation
which is required to reach the target region.

moment bounds Recently, several groups independently
suggested the use of semi-definite optimization for the computa-
tion of moment bounds for the limiting distribution (Dowdy and
Barton, 2018a; Ghusinga et al., 2017; Kuntz, Juan and Thomas,
Philipp and stan and Barahona, 2019; Sakurai and Hori, 2017).
In this approach, the differential equations describing the mom-
ent dynamics are set to zero and form linear constraints (Back-
enköhler, Bortolussi, and Wolf, 2018). Alongside, semi-definite
constraints can be placed on the moment matrices. These give a
semi-definite program (SDP) that can be solved efficiently. Previ-
ously, SDPs have been used in the deterministic setting (Hasenauer
et al., 2009).
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This approach has been extended to the transient case (Dowdy
and Barton, 2018b; Holtorf and Barton, 2021; Sakurai and Hori,
2019). The approach is similar in both works and is a cornerstone
of the MFPT analysis presented here. They differ mainly by the fact
that Sakurai and Hori (2019) apply a polynomial time-weighting,
while Dowdy and Barton (2018b) use an exponential one. We
adopt the former approach because it can be naturally adapted
to the description of densities over time. The resulting forms can
also be adapted to statistical estimation problems (Backenköhler,
Bortolussi, and Wolf, 2019).

Semi-definite programming has been applied to a wide range
of problems, including stochastic processes in the context of fi-
nancial mathematics (Kashima and Kawai, 2009; Lasserre, Prieto-
Rumeau, and Zervos, 2006). For a comprehensive introduction of
SDP and its application areas, we refer the reader to Parrilo (2003)
and, more recently, Lasserre (2010).

For the mean-field ODE model tropical analysis has been used
to derive bounds on species using dominant terms (Beica, Feret,
and Petrov, 2020).

bounding mftps using optimization Particularly rele-
vant for this work is the application of convex optimization to
FPT. Helmes, Röhl, and Stockbridge (2001) formulated a linear
program (LP) using the Hausdorff moment conditions (Hausdorff,
1921) to bound moments of the FPT distribution in Markovian
processes. Semi-definite optimization has been successfully ap-
plied in financial mathematics by Kashima and Kawai (2009), as
well as Lasserre, Prieto-Rumeau, and Zervos (2006) to bound
prices of exotic options.

3 .2 preliminaries

In this work, we are interested in first-passage times (FPTs) of
such processes. That is the time, the process first enters a set of
target states B ⊆ S. Naturally, the analysis of FPTs is equivalent to
the analysis of times at which the process exits the complement
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S \B. More formally, the first-passage time τ for some target set
B is defined as the random variable

τ = inf{t > 0 | Xt ∈ B} . (3.1)

In this example, we are interested in the time at which the
number of type M agents exceed some threshold H. With the
framework presented in the sequel, one can bound the expected
value of this time using semi-definite programming. Further, it
is possible to impose a time-horizon T , and find bounds on the
probability of X(M)

t > H for some 0 6 t 6 T . The employed
framework is centered around semi-definite relaxations of the
generalized moment problem (GMP) (Lasserre, 2010). These re-
quire linear constraints on the moments of measures. In the
following section, we derive such constraints.

3 .3 martingale formulation

Next, we will discuss the ordinary differential equations for the
evolution of the statistical moments of the process. The moments
over the state-space are then used to derive temporal moments,
i.e. moments of measures over both the state-space and the time.
This extended description results in a process with the martin-
gale property. This property can be used to formulate linear con-
straints on the temporal moments and, as a special case, the mean
first-passage time. In combination with semi-definite properties
of moment matrices, we can formulate mathematical programs
that yield upper and lower bounds on mean first-passage times.

Let f be a polynomial function, t > 0. Using the CME (2.18), we
can derive ODEs describing the dynamics of E(f(Xt)) (Engblom,
2006). Specifically,More details on the

derivation of the
moment ODEs is

given in Section 2.5.
d

dt
E (f(Xt)) =

nR∑
j=1

E
((
f(Xt + vj) − f(Xt)

)
αj(Xt)

)
. (3.2)

example Let us consider Model 1 and agent type M as an
example. Further, let Xt = X

(M)
t for ease of exposition. When



3 .3 martingale formulation 45

choosing f(Xt) = Xmt , m = 1 and m = 2 we obtain two differen-
tial equations describing the change of the first two moments of
species M, E (Xt) and E

(
X2t
)
, respectively.

d

dt
E (Xt) = λE

(
X0t
)
− 2δ

(
E
(
X2t
)
− E (Xt)

)
d

dt
E
(
X2t
)
= λ(2E (Xt) + 1)

− 4δ
(
E
(
X3t
)
− 2E

(
X2t
)
+ E (Xt)

)
.

(3.3)

Fixing initial moments, the ODE system describes the moments
over time exactly. However, these ODEs cannot be integrated
because the system is not closed. The right-hand side for moment
E (Xmt ) always contains E(Xm+1

t ). �
To solve the IVP, one typically resorts to ad-hoc approximations

of the highest order moments to close the system. Here we do
not need such approximations because we do not numerically
integrate the moment equations. Instead we adopt an approach
(Dowdy and Barton, 2018b; Sakurai and Hori, 2019) that extends
the description of state-space moments to a temporal one.

This is achieved by the introduction of a time-dependent poly-
nomial w(t) that is multiplied to (3.2). An integration by parts on
[0, T ] yields (Dowdy and Barton, 2018b; Sakurai and Hori, 2019)

w(T)E (f(XT )) −w(t0)E (f(Xt0)) −

∫T
t0

dw(t)

dt
E (f(Xt)) dt

=

nR∑
j=1

∫T
t0

w(t)E
((
f(Xt + vj) − f(Xt)

)
αj(Xt)

)
dt . (3.4)

Starting from this equation, it is possible to derive a martingale
process, i.e. a process that has an expected value equal to 0,
regardless of time.

We now want to interchange the order of integration and the
summation due to the expected value. To this end, we have
to assume the absolute convergence of the integrals. On finite
time intervals [0, T ] this holds because w is polynomial and we
assumed finite moments for all t > 0. Interchanging the summa-
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tion and integral of a monomial xm, i.e. pulling all expectation
operators outside∫T

0

g(t)E (Xmt ) dt

=

∫T
0

∑
x∈S

g(t)Pr(Xs = x)xm dt

=

∫T
0

∫
Ω

g(t)Xs(ω)m dP(ω)dt

=

∫
Ω

∫T
0

g(t)Xs(ω)m dtdP(ω)

= E

(∫T
0

g(t)Xmt dt

)
.

Hence, we are able to to pull out the expectation operator in (3.4).

0 =w(T)E (f(XT )) −w(0)E (f(X0)) − E

(∫T
0

dw(t)

dt
f(Xt)dt

)

−

nR∑
j=1

E

(∫T
0

w(t)(f(Xt + vj) − f(Xt))αj(Xt)dt

)
,

(3.5)

This gives us the expected value of a time-dependent function of
the original process. The function can be viewed as a stochastic
process of its own where the time-horizon T is the index variable.
A key property of this process is also illustrated by (3.5): The
process’ expected value remains zero, regardless of the choice
of T . This martingale property is particularly useful because it
can be used to formulate linear constraints on stopping times
of the process. Explicitly, we can define this process {ZT }T>0
parameterized by the time-weighting w and polynomial f.

ZT :=w(T)f(XT ) −w(0)f(X0) −

∫T
0

dw(t)

dt
f(Xt)dt

−

nR∑
j=1

∫T
0

w(t)(f(Xt + vj) − f(Xt))αj(Xt)dt .
(3.6)
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A useful choice for f and w are monomials. When choosing
w(t) = tk with k ∈N and f(X) = Xm the process takes the form In Chapter 4 we use

an exponential
weighting.Z

(m,k)
T = TkXmT − 0kXm0 +

∑
i

ci

∫T
0

tkiXmi
t dt (3.7)

where (mi)i, (ki)i, and (ci)i are finite sequences resulting from
the substitution of f and w and expansion of (3.6).

When choosing w(t) = tk with k ∈ N and f(X) = Xm this
process takes the form

Z
(m,k)
T = TkXmT − 0kXm0 +

∑
i

ci

∫T
0

tkiXmi
t dt (3.8)

where (mi)i, (ki)i, and (ci)i are finite sequences resulting from
the substitution of f and w. This choice allows to naturally char-
acterize the behavior in time and state-space as moments, be-
cause the expected value of (3.8) then becomes a linear form of
moments. We will use these as constraints in the semi-definite
program used to bound MFPTs.

example If we apply this to our previous example (cf. (3.3)),
letting m = 1 and k = 1 we obtain the following process for
Model 1.

Z
(1,1)
T = TXT −

∫T
0

Xt dt− λ

∫T
0

t dt

− 2δ

∫T
0

tXt dt+ 2δ

∫T
0

tX2t dt,

where the sequences according to (3.8) are (mi)i = (1, 0, 1, 2),
(ki)i = (0, 1, 1, 1), and (ci)i = (−1,−λ,−2δ, 2δ). �

We now turn to the analysis of first passage times within some
time-bound T > 0. Given some subset of the state-space B ⊆ S

the first passage time is given by the continuous random variable

τ = inf{t > 0 | Xt ∈ B} ∧ T

where a∧ b := min{a,b}. For this chapter, we only look at thresh-
old hitting times, i.e. we set a threshold H for species S and
thus

B = {x | x(S) > H} .
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Note, that this framework allows for a more general class of
target sets, which are discussed in Section 3.6.1. In the sequel, we
will use τ as a stopping time in our martingale formulation and
consider Z(m,k)

τ instead of Z(m,k)
T . Since (3.8) defines a martin-

gale, Z(m,k)
τ remains a martingale by Doob’s optional sampling

theorem (Gihman and Skorohod, 1975). In particular, this implies
that

E(Z
(m,k)
τ ) = 0 (3.9)

for all moment orders m and degrees k in the weighting function
w(t).

3 .4 linear model constraints

To simplify our presentation, we fix an initial state x0, i.e. P(X0 =
x0) = 1. Expanding (3.9) using (3.8) for Z(m,k)

τ yields the follow-
ing linear constraint on expected values.

0 = E
(
τkXmτ

)
− 0kxm0 +

∑
i

ciE

(∫τ
0

tkiXmi
t dt

)
, (3.10)

where 00 = 1. Hence, we have established a relationship between
the process dynamics up to the hitting time via expected values
of the time-integrals and the final process state at the hitting time
via E

(
τkXmτ

)
.

For the ease of exposition, we now turn to the analysis of
first passage times in one-dimensional processes w.r.t. an upper
threshold H. In particular, we will consider moments E(Xm),m =

0, 1, 2, . . . , of a one-dimensional process. The approach proposed
in the sequel, however, can be extended to multi-dimensional
processes and more complex target sets B.

example Consider again Model 1 and assume that we are
interested in the time at which species M exceeds threshold H
while fixing the considered time-horizon to T = 4. That is, we are
interested in the stopping time

τ = inf{t > 0 | Xt > 10} ∧ 4 .
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Since the abundance of D does not influence M, we can ignore
species D and treat the process as one-dimensional. Figure 3.1
shows three example trajectories: Two reach an upper threshold
H = 10, while one reaches the final time-horizon T = 4. The
figure also illustrates another aspect present in (3.10). It gives a
connection between the terminal distribution, i.e. the distribution
of Xτ, and the dynamic behavior up to τ. The statistics at τ are
described by a distribution whose moments are represented by
the E(τkXτm) term in (3.10). This distribution corresponding two
moments encompasses both cases of how τ can be reached. In the
first case threshold H is reached and the second case the process
reaches the time-horizon T . In the following we will define the
interplay between these measures more formally. �
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Figure 3.1: The relationship between the occupation measure ξ and the
exit location probability measures ν1 and ν2. The shaded
area indicates the structure of the occupation measure.
Three example trajectories are additionally plotted with
their exit location highlighted. The plots are based on 10,000
sample trajectories.

Equation (3.10) describes a relationship between two mea-
sures (Lasserre, 2010, Chapter 9.2):



50 bounding mean first-passage times

expected occupation measure ξ describes the expected
residence time inside a subset of the state-space and time.
As such it is supported on [0,H]× [0, T ]:

ξ(A×C) := E
(∫

[0,τ]∩C
1∈A(Xt)dt

)
, (3.11)

exit location probability ν gives the state probability as-
sociated with the stopping time τ. Therefore it is supported
on ({H}× [0, T ])∪ ([0,H]× {T }):

ν(A×C) := Pr((Xτ, τ) ∈ A×C), (3.12)

where A×C is a measurable set, i.e. A and C are elements of the
Borel σ-algebras on [0,H] and [0, T ], respectively.

Using Figure 3.1, one can gain an intuition for these two mea-
sures. The expected occupation measure is shaded in blue. As
the name implies ξ(A×C) tells us how much time the process
spends in A up to τ restricting to the time instants belonging
to C. In particular, ξ([0,H] × [0, T ]) = E (τ). The exit location
probability ν, while being a two-dimensional distribution, can
be viewed as a composition of a density describing the time at
which the process reaches H (if it does) and a probability mass
function on the states of the process if the time-horizon is reached
without exceeding H. We partition the measure ν into ν1 and ν2
by conditioning on τ = T . Thus,

ν1(C) := Pr(τ ∈ C, τ < T)

and

ν2(A) := Pr(XT ∈ A, τ = T)

and hence ν(A×C) = ν1(C) + ν2(A). To refer to the moments
of these measures, we define partial moments

E (g(X); f(Y) = y) := E (g(X) | f(Y) = y)Pr(f(Y) = y) ,

for some polynomial g and some indicator function f. Then

E
(
τkXmτ

)
= TkE (Xmτ ; τ = T) +HmE

(
τk; τ < T ,Xτ = H

)
.
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Therefore the linear moment constraints are

0 = TkE (Xmτ ; τ = T) +HmE
(
τk; τ < T ,Xτ = H

)
− 0kxm0 +

∑
i

ciE

(∫τ
0

tkiXmi
t dt

)
. (3.13)

Next, we consider infinite sequences of partial moments y1 =

(y1k)k∈N, y2 = (y2m)m∈N, and z = (zmk)(m,k)T∈N2 of ν1, ν2,
and ξ, respectively. In particular,

y1k := E
(
τk; τ < T

)
,

y2m := E (Xmτ ; τ = T) ,

and

zkm := E

(∫τ
0

tkXmt dt

)
.

3 .5 objective

Given the above measures and their corresponding moments,
we can now identify the moments we are particularly interested
in. We formulate an optimization problem with variables corre-
sponding to the moments defined above. The MFPT is exactly the
zeroth moment of ξ,

z00 = E

(∫τ
0

16H(Xt)dt

)
= E (τ) .

Therefore z00 corresponds to the objective of the optimization
problem that gives bounds for the MFPT. Furthermore, we can
easily change the objective to the zeroth moment of ν1,

y10 = E
(
τ0; τ < T

)
= Pr(τ < T) .

This moment is the probability of reaching threshold H before
reaching time-horizon T . Since the target set can be more complex,
this formulation can be used to perform model checking on a
wide variety of properties.

Moreover, it is possible to formulate objectives not directly
corresponding to a raw moment such as the variance (Dowdy
and Barton, 2018a; Sakurai and Hori, 2019).
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3 .6 semi-definite constraints

The linear constraints alone are not sufficient to identify moment
bounds. We further leverage the fact that a necessary condition
for a positive measure that the moment matrices are positive semi-
definite. A matrix M ∈ Rn×n is positive semi-definite, denoted
by M � 0 if and only if

vTMv > 0 ∀v ∈ Rn .

example As an example, let us consider a one-dimensional
random variable Z with moment sequence z. For moment order
r, the entries of the (r+ 1)× (r+ 1) moment matrix Mr(x) are
given by the raw moments. In particular,

(Mr(z))ij = zi+j−2 = E
(
Zi+j−2

)
for i, j ∈Nr where Nr = {0, 1, . . . , r} and the maximum order in
the matrix is 2r. For instance,

M1(x) =

[
x0 x1

x1 x2

]
(3.14)

needs to be positive semi-definite. By Sylvester’s criterion this
means detM1 > 0 and x0 > 0. We can easily see that in this case
this entails

detM1 = x0x2 − x
2
1 = E

(
X2
)
− E (X)2 = Var(X) > 0 .

This restriction is natural since the variance cannot be negative.
�

The restriction of the non-negative variance we saw in the
example generalizes to moment matrices in form of a positive
semi-definite constraint (Parrilo, 2003). This gives us the follow-This constraint is

valid for general
positive measures —

even if they do not
model probabilities.

ing restrictions on the moment matrices.

Mr(z) � 0, Mr(y1) � 0, and Mr(y2) � 0 (3.15)

for arbitrary orders r, providing a first tranche of moment con-
straints.

Furthermore, we need to enforce the restriction of the measures
ξ, ν1, and ν2 to their supports. This can be done, by defining non-
negative polynomials on the intended support of the measure.
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example The exit location probability ν2 has support [0,H].
We can now define

uH(t, x) = Hx− x2, x ∈ R

as a polynomial that is non-negative on [0,H]. Using such poly-
nomials, we can construct localizing matrices, which have to be
positive semi-definite (Lasserre, 2010). Applying uH to the mom-
ent matrix of measure ν2, i.e. M1(y2)

M1(uH,y2) =

[
Hy21 − y22 Hy22 − y23

Hy22 − y23 Hy23 − y24

]

with the constraint M1(uH,y2) � 0, where the application of
a polynomial such as uH to a moment matrix is formally de-
fined for the multidimensional case in Section 3.6.1. Similarly, let
uT (t, x) = Tt− t2 to restrict ν1 to [0, T). The expected occupation
measure ξ is constrained similarly to its domain [0,H]× [0, T ].
This gives us the following restrictions on the moment matrices.

Mr(uT , z) � 0 , Mr(uT ,y1) � 0 ,

Mr(uH, z) � 0 , Mr(uH,y2) � 0 .
(3.16)

�

3 .6 .1 Multi-Dimensional Generalization

For a general multi-dimensional moment sequence

y = (E (Xm))m∈Nns ,

the moment matrix is (Lasserre, 2010)

Mr(y)(α,β) = yα+β, ∀α,β ∈Nn
r (3.17)

where row and column indices, α and β, are ordered according
to the canonical basis

vr(x) = (1, x1, x2, . . . , xn, x21, x1x2, . . .

. . . , x1xn, . . . , xr1, . . . , xrn)
T . (3.18)
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Equivalently to (3.17),

Mr(y) = E
(
vr(x)vr(x)

T
)

.

For a moment sequence the semi-definite restriction Mr(y) � 0
must hold.

Measures can be restricted to semi-algebraic sets

{x ∈ Rn | uj(x) > 0, j = 1, . . . ,m} ,

where uj, j = 1, . . . ,m are polynomials (Lasserre, 2010). This is
done by placing restrictions on the localizing matrices. For each
polynomial ui ∈ R[x] with coefficient vector u = {uγ}, i.e.

u(x) =
∑
γ∈Nn

uγx
γ ,

the localizing matrix is

Mr(u,y)(α,β) =
∑
γ∈Nn

uγyγ+α+β, ∀α,β ∈Nn
r .

Requiring that this matrix is positive semi-definite restricts the
measure to {x | ui(x) > 0}. This way we can, for example, restrict
the moment sequence y to measures that are positive w.r.t. di-
mension j. Simply letting u(x) = xj and requiring M1(u,y) � 0
for i = 1, . . . ,nS gives us this restriction.

3 .6 .2 A Semi-Definite Program

With the linear constraints given in (3.10) and the semi-definite
constraints (3.15) and (3.16) discussed in the previous sections,
we can now formulate a semi-definite program (SDP) for any
relaxation order 0 < r < ∞. An SDP is a convex optimization
problem over the set of positive semi-definite n×n-matrices X

under linear constraints:

min
X∈X

∑
i,j

A
(0)
ij Xij

such that X � 0∑
i,j

A
(k)
ij Xij 6 bk, k = 1, . . . ,m

(3.19)
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with constant matrices A(i) ∈ Rn×n, i = 0, . . . ,m and constants
bk ∈ R, k = 1, . . . ,m to define a set of m linear constraints.
Such a problem is convex and can be solved efficiently using
off-the-shelf solvers (Vandenberghe, 2010).

With each moment sequence x we associate a sequence proxy
variables x ′ used in the optimization problem.

min/max z′00

such that Mr(z
′) � 0,Mr(uT , z ′) � 0,Mr(uH, z ′) � 0,

Mr(y
′
1) � 0,Mr(uT ,y ′1) � 0,

Mr(y
′
2) � 0,Mr(uH,y ′2) � 0,

0 = y ′1kH
m − y ′2mT

k − 0kxm0

+
∑
i

ciz
′
kimi

, ∀m,k .

(3.20)

This SDP can be compiled to the canonical form. To this end, the
moment matrices can be arranged in a block-diagonal form and
the localizing constraints (3.16) can be encoded by the introduc-
tion of new variables and appropriate equality constraints. This
transformation can be done automatically using modeling frame-
works such as CVXPY (Diamond and Boyd, 2016). We therefore
only give the SDP in the more intuitive format. This problem can
be solved using off-the-shelf SDP solvers such as MOSEK (MOSEK

ApS, 2018), CVXOPT (Vandenberghe, 2010), or SCS (O’Donoghue
et al., 2017).

In principle, we can choose an arbitrarily large order r for the
moment matrices and their corresponding constraints, because
there are infinitely many moments. In practice, however, the order
is bounded by practical issues such as the program size (number
of constraints and variables) and numerical issues. These issues
are discussed in Section 3.7 in more detail. Choosing a finite r is
a relaxation of the problem since it removes constraints regarding
higher-order moments.

3 .7 implementation & evaluation

The implementation of the SDP (3.20) is straightforward using
modeling frameworks and off-the-shelf solvers. However, as
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noted in previous work (Dowdy and Barton, 2018a,b; Sakurai
and Hori, 2017, 2019) on moment-based SDPs the direct imple-
mentation of the problem may lead to difficulties for the solver.
A source of these is that moments of various orders by nature
may differ by many orders of magnitude. A re-scaling of the
moments (Dowdy and Barton, 2018a; Sakurai and Hori, 2019)
such that moments only vary by few orders of magnitude may
alleviate this problem. In other scenarios such as the bounding
of general transient or steady-state moments, the scaling can
be particularly difficult, because the magnitude of moments is
generally not known a priori. In the context of MFPTs with a finite
time-horizon moments are trivially bounded.

3 .7 .1 Moment Scaling

Using the fact that S \B is often finite, it is possible to derive triv-
ial bounds, which can be used to scale moments. If, for example,
we have a one-dimensional process Xt with X0 = 0 a.s. and are
interested in the hitting time of an upper threshold H > 0 until
time T > 0 for i,k ∈N

zik = E

(∫τ
0

tiXkt dt

)
6 E

(∫T
0

tiXkt dt

)

6 Hk
∫T
0

ti dt =
T i+1Hk

i+ 1
.

Thus, we fix a scaling vector d with entries dik = T i+1Hk in
the same order as the canonical base vector (3.18). Using this
scaling vector, we can define a scaling matrix D = ddT . Clearly,
D � 0. Now we can formulate the optimization (3.20) over a
scaled version D−1M(z ′) instead of M(z ′). The moment matrices
of the exit location probabilities are scaled in the same way.
Alternatively, one could use approximations such as momentThese scaling

strategies have not
been evluated so far.

closures or bounds obtained by lower-order relaxations or solve a
sequence of problems, incrementally increasing the time-horizon,
and adjust the scaling accordingly (suggested in Dowdy and
Barton (2018b)).
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In Figure 3.2 we illustrate the influence the scaling has on the
optimization variables. While the unscaled version shows large
differences between values, these differences become significantly
smaller in the scaled version of the problem.
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Figure 3.2: The unscaled and scaled value of the moment matrix proxy
variable M(z ′) after optimization using MOSEK. The indices
are given along the logarithmic (base 10) values. The un-
scaled version (left) shows large differences in magnitudes,
while on the scaling suppresses these large variations (right).
The case study used here is Model 1, with a threshold
H = 25 for species M and a time-horizon T = 1. The relax-
ation order r = 2. Therefore moments of orders up to 2r = 4
appear.

3 .7 .2 Case Studies

The model constraints are derived using the symbolic math
toolkit Sympy (Meurer et al., 2017). We implemented and solved
the SDP programs described above using optimization suite
MOSEK version 9.1.2 (MOSEK ApS, 2018). Both optimizers are used
through the CVXPY interface (Diamond and Boyd, 2016).

Dimerization

As a first case study, we use Model 1 with parameters λ = 100

and δ = 0.2. In this model, we are interested in the time at which
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Figure 3.3: First-passage time characterisitics for Model 1 with τ =

inf{t > 0 | Xt > 10} ∧∞. The dashed red line denotes the
sampled MFPT based on 100,000 SSA samples. Bounds are
based on the SDP (3.20) with different moment orders

the number of agents of type M surpasses a threshold of 25
before some time-horizon T , i.e.

τ = inf{t > 0 | Xt > 25} ∧ T .

First, we set no finite time-horizon T , i.e. T =∞. This is achievedWe can let T →∞
because this system

is ergodic and
therefore τ <∞ a.s.

by dropping the moments y2 of measure ν2 in the linear con-
straints (3.20). This can be done because the threshold on M
makes the state-space finite and therefore the first passage time
distribution is a phase-type distribution which possesses finite
moments (Stewart, 2009, Chapter 7.6).

The empirical FPT distribution based on 100,000 SSA simula-
tions is given in Figure 3.3a and the bounds, given different
moment orders, are given in Figure 3.3b. As we can see in Fig-
ure 3.3b, the bounds capture the MFPT precisely for orders 5
and 6. The difference between upper and lower bound decreases
roughly exponentially with increasing relaxation order r. We
found that this trend was consistent among the case studies
presented here (cf. Figure 3.5).

Next, we look at first passage times within a finite time-horizon
T . In Figure 3.4a we summarize the bounds obtained for the
MFPT over T . While low-order relaxations (light) give rather loose
bounds, the bounds are already fairly tight when using r = 4.
In many cases, hitting probabilities, that is, the probability of
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Figure 3.4: MFPTs and reaching probability bounds for the dimerization
model with τ = inf{t > 0 | Xt > 25} ∧ T and varying T . The
results for SDP relaxations of orders 1 (light) to 6 (dark) are
shown.

reaching the threshold before time T , are of particular interest.
This is done by switching the optimization objective in (3.20)
from the mass of the expected occupation measure ξ to the mass
of ν1. In terms of moments, the objective changes from z00 to
y10. The need for such a scenario often arises in the context of
model checking, where one might be interested in the probability
of a population exceeding a critical threshold. By varying the
time-horizon, we are able to recover bounds on the cumulative
density

F(t) = Pr(Xs = H | s < t)

of the first passage time (Figure 3.4b).
Finally, we look at turn to the dimer species D that is synthe-

sized by the combination of two monomers M. Here, we look
at the time until the agents of type D exceed a threshold of five
with a time-horizon T = 1. Note that we do not limit the number
of M agents. Therefore the analyzed state-space is countably
infinite. As in the previous two examples, we observe a roughly
exponential decrease in interval size with increasing relaxation
order r (cf. Figure 3.5 and Table 3.1).
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Parallel Dimerizations

As a second study, we consider a two-dimensional model by
combining two independent dimerizations.

Model 3 (Parallel Independent Dimerizations). This model consists
of two independent versions of Model 1. The reactions are

∅ 104−−→M1 , 2M1
0.1−−→ D1 , ∅ 104−−→M2 , 2M2

0.1−−→ D2 .

Initially,

0 = X
(M1)
0 = X

(M2)
0 = X

(D1)
0 = X

(D2)
0 .

As a FPT we consider the time at which either M1 or M2

surpasses a threshold of 200 or a time-horizon of T = 10 is
reached, i.e.

τ = inf{t > 0 | X(M1)
t > 200} ∧ inf{t > 0 | X(M2)

t > 200} ∧ 10 .

As before, we ignore the product species D1 and D2 since they
do not influence τ. The SSA (using n = 10,000 runs) gives the
estimate E (τ) ≈ 0.028378 which is captured tightly by the SDP

bounds (cf. Table 3.1). For higher relaxation orders r > 5 numeri-
cal issues prevented the solution of the corresponding SDPs.

3 .7 .3 Hybrid Models & Multi-Modality

The analysis of switching times is a particularly interesting case
of FPTs that arises in many contexts. Often mode switching in
such systems can be described a modulating Markov process
whose switching rates may depend on the system state (e.g. the
population sizes). In biological applications, mode switching
often describes a change of the DNA state (Hasenauer et al., 2014;
Stekel and Jenkins, 2008) and the analysis of switching time
distribution is of particular interest (Barzel and Biham, 2008;
Spieler, Hahn, and Zhang, 2014).

In the context of MPMs, typically the state-space S = NñS ×
{0, 1}n̂S . This state is modeled by n̂S population variables with
binary domains. Therefore, at each time point, the state of these
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modulator variables is given by a set of Bernoulli random vari-
ables. When considering the moments of such a variable X, clearly

E (Xm) = E (X) = Pr(X = 1) , ∀m > 1

We can use this fact two ways: We could use the same moment
constraints as above and impose additional equality constraints
on the moments matrices to ensure E (Xm) = E (X), m > 1.
Alternatively, we can apply this simplification to the moment
equation, which we choose here.

We apply a split of variables Xt into the high count part X̃t
and the binary part X̂t to the expectations in (3.2). Similarly, we
split vj and with a case distinction over the mode variable, we
arrive at a similar result as in (Hasenauer et al., 2014):

d

dt
E
(
X̃mt 1=y(X̂t)

)
=

nR∑
j=1

E
(((

X̃t + ṽj
)m
1=y(X̂t + v̂j) − X̃

m
t 1=y(X̂t)

)
α(Xt)

)

=

nR∑
j=1

E
((
X̃t + ṽj

)m
αj(X̃t,y− v̂j)1=y−v̂j(X̂t)

)

−

nR∑
j=1

E
(
X̃mt αj(X̃t,y)1=y(X̂t)

)
.

(3.21)

Similarly to the general moment case, we can derive a constraint,
by multiplying with a time-weighting factor and integrating.

For simplicity, here we assume ñS = n̂S = 1. Fixing appropri-
ate sequences (ci)i, (mi)i, (ki)i, and (yi)i the constraint has the
following form. We fix 00 = 1.∑

y∈{0,1}

HmE
(
τk; X̂τ = y, τ < T

)
+ TkE

(
X̃mT ; X̂T = y, τ = T

)
= 0kx̃m0 1=y(x̂0) +

∑
i

ciE

(∫τ
0

tkiX̃mi
t dt; X̂t = yi

) (3.22)

This way we can decompose the moment matrices such that for
each mode y ∈ {0, 1}, we have moment matrices composed of the
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Table 3.1: MFPT bounds on Model 1 for Xt > 5 and T = 1, Model 3 for
X
(M1)
t > 200 or X(M2)

t > 200 and T = 10, and Model 4 for
X
(P)
t > 5 and T = 10.

relaxation order r

1 2 3 4 5

Model 1 lower 0.0909 0.2661 0.2845 0.2867 0.2871

upper 1.0000 0.3068 0.2932 0.2886 0.2875

Model 3 lower 0.0010 0.0250 0.0275 0.0280 0.0280

upper 10.0000 0.0575 0.0323 0.0299 0.0290

Model 4 lower 4.0000 6.0028 6.2207 6.3377 6.3772

upper 10.7179 6.4619 6.4079 6.4004 6.3835

respective partial moments. To this end, let z(y)m be the partial
moment w.r.t. X̂ = y. The moment constraint over the partial
moments has a linear structure:

0 = y1kH
m − y2mT

k − 0kxm0 +
∑
i

ciz
(yi)
kimi

. (3.23)

Gene Expression with Negative Feedback

As an instance of a multi-modal system, we consider a simple
gene expression with self-regulating negative feedback which is
a common pattern in many genetic circuits (Stekel and Jenkins,
2008).

Model 4 (Negative Self-Regulated Gene Expression). This model
consists of a gene state that is either on or off, i.e. XDon

t + X
Doff
t = 1,

∀t > 0. Therefore the system has two modes.

Don
τ0−→ Doff , Doff

τ1−→ Don , Don
ρ−→ Don + P ,

P
δ−→ ∅ , P+Don

γ−→ Doff .
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Figure 3.5: The interval width, i.e. the difference between upper and
lower bound, for different case studies and targeted first
passage times against the order r of the SDP relaxation.

The model parameters are (τ0, τ1, ρ, δ,γ) = (10, 10, 2, 0.1, 0.1) and

X
(Doff)

0 = 1, X(P)
0 = 0 a.s.

As a first passage time we consider

τ = inf{t > 0 | X(P)
t > 5} ∧ 20 .

The results are summarized in Table 3.1. The estimated MFPT

based on 100,000 SSA samples is E (τ) ≈ 6.37795± 0.02847 at 99%
confidence level. Note that our SDP solution for r = 5 yields
tighter moment bounds than the statistical estimation.

In Figure 3.5 we summarize our results about the decrease of
the interval widths for increasing relaxation order r by plotting
them on a log-scale. We see an approximately exponential de-
crease with increasing r. The SDPs above were all solved within
at most a few seconds.

3 .8 linear hausdorff constraints

Before closing this chapter, we will briefly discuss the Hausdorff
moment constraints. These constraints offer linear constraints on
moments of bounded measures. As such they can – in principle –
be used as both, a replacement and an addition to the semi-
definite constraints discussed above.
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The Hausdorff moment problem is the question whether an infi-
nite sequence (m0,m1, . . . ) is a sequence of moments

mk =

∫1
0

xk dµ(x), ∀k ∈N

for some Borel-measure supported on the unit interval [0, 1].
Hausdorff (1921) came up with a necessary condition thatSee also Feller (1971)

for additional details. ∫1
0

x`(1− x)k dµ(x) > 0, ∀`,k ∈N . (3.24)

The validity of this condition is easy to see since

x`(1− x)k > 0, ∀x ∈ [0, 1] . (3.25)

Expanding this term yields a polynomial, which – by integration –
provides a linear constraint on the moments. This moment con-
dition has been used by Helmes, Röhl, and Stockbridge (2001) to
bound MFPTs in a variety of stochastic processes. In Helmes and
Röhl (2008) the authors provide an extension taking into account
the geometry of the Hausdorff polytope. With this extension the
method was competitive with the SDP approach on their selection
of case studies. Since these conditions are linear in the moments
they can solve LPs instead of the semi-definite programs shown
below.

example Let ` = 2, k = 2. Then the (3.24) becomes∫1
0

x(1− x)2 dµ(x) = m2 − 2m3 +m4 > 0

constraining the moments on [0, 1]. �
Since the Hausdorff moment problem is defined on [0, 1], we

need to adjust accordingly. Let the interval be [0,H], H > 0 then
we can simply change the variables. That means considering
y = x/H instead of x. Equivalently, we can apply this rescaling
in (3.24) such that∫H

0

x`(H− x)k dµ(x) > 0, ∀`,k ∈N (3.26)
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remains a valid constraint on [0,H].
Generalizing (3.24) to multiple dimensions can be done by

simply multiplying terms for each dimension in a similar manner.
For n dimensions∫

[0,1]n

n∏
i=0

x`ii (1− xi)
ki dµ(x) > 0

Using multi-index notation∫
[0,1]n

x`(1− x)k dµ(x) > 0

for all `,k ∈Nn. We treat the time horizon T exactly the same as
the other bounds Hi here. With arbitrary positive upper bounds
H = (H1,H2, . . . ,Hn)T this becomes∫

×ni=1[0,Hi]
x`(H− x)k dµ(x) > 0 (3.27)

This equation can simply be expanded using the multi-binomial
theorem. This is just a vector version of the regular binomial
theorem That is, given n-dimensional vectors k, x, and y

(y+ x)k =
∑
j6k

(
k

j

)
yjxk−j .

Thus, (3.27) becomes the linear moment constraint∑
j6k

(
k

j

)
Hj(−1)k−j

∫
xk−j+` dµ(x) > 0 . (3.28)

We can interchange the integrals since all measures have finite
support and mass.
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3 .8 .1 A Linear Program

Combining the model constraints (3.13) and the linear Hausdorff-
type constraints (3.28) for both expected occupation and the exit
location measure yields a LP.

min/max z′00

such that for all measures and bounds

(3.28) holds ∀m,k,

0 = y ′1kH
m − y ′2mT

k − 0kxm0

+
∑
i

ciz
′
kimi

, ∀m,k ,

1 = y ′10 + y
′
20 .

(3.29)

Using a framework such as CVXPY, this convex program can
easily be coded and solved using various state-of-the-art solvers.

3 .8 .2 Case Studies

The LP in (3.29) is encoded using CVXPY, as well. The resulting
LPs are solved using the Gurobi (Gurobi Optimization, LLC, 2021)
solver. For a fixed moment order k the following constraints are
used:

1. model constraints corresponding to moments E
(
X`τm

)
where `, τ < k and

2. Hausdorff constraints (3.28) for all moments smaller and
equal k in each dimension.

As a simple example we consider a Poisson process with rate

100, i.e. ∅ 100−−→ X. We are interested in the threshold event of
reaching 25 before a time-horizon of T = 10, i.e.

τ = inf{t > 0 | Xt > 25} ∧ 10 .

The results are given in Table 3.2. We can see, that the interval
quickly converges to the actual value of 0.25. Even for relatively
small orders (2 or 3) the intervals are very tight. Furthermore
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order 2 3 4 5

lower 0.2438 0.2500 0.2500 0.2500

upper 0.2500 0.2500 0.2500 0.2500

width 6.1×10−3 4.8×10−5 8.0×10−7 8.9×10−10

# constr. 140 299 792 1395

Table 3.2: MFPT bounds for a Poisson process and τ = inf{t > 0 | Xt >
25} ∧ 10 using LP.

the interval width descreases by orders of magnitudes with each
increase in relaxation order.

As a second example we consider a birth-death model (Model 2)
with rates µ = 100 and γ = 0.1. We are interested in the threshold
event of reaching 25 before a time-horizon of T = 1, i.e.

τ = inf{t > 0 | Xt > 25} ∧ 1 .

The results are given in Table 3.3. Here, too, the interval converges
quickly, abeit not as fast as in the first example.

order 2 3 4 5

lower 0.2000 0.2742 0.2836 0.2850

upper 0.3333 0.2895 0.2857 0.2852

width 1.3×10−1 1.5×10−2 2.1×10−3 1.6×10−4

# constraints 140 299 792 1395

Table 3.3: MFPT bounds for a birth-death process and τ = inf{t > 0 |

Xt > 25} ∧ 1 using LP.

As a third example we consider a dimerization model (Model 1)
the threshold event

τ = inf{t > 0 | Xt > 25} ∧ 1 .

The results are given in Table 3.4. Convergence for this case study
was slightly slower than in the examples above. For order 6 and
larger, the solver showed signs of numerical instability.
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order 2 3 4 5

lower 0.2000 0.2736 0.3884 0.4935

upper 1.0000 1.0000 1.0000 0.5777

width 8.00×10−1 7.3×10−1 6.1×10−1 8.4×10−2

# constraints 140 299 792 1395

Table 3.4: MFPT bounds for Model 1 and τ = inf{t > 0 | Xt > 25} ∧ 1

using LP.

The inclusion of the linear constraints into the SDP did not yield
any improvement of the bounds. This, of course, may be specific
to this problem setting and the inclusion of linear inequalities
may lead to improvements on other models and stopping times.

In the above experiment the moment order was not increased
above 5. For some of these examples this is possible, but high
moment orders tend to cause numerical issues. The reasons for
these problems are analogue to the SDP formulation: Moments
tend to get exponentially larger with order. Therefore the con-
straints couple values varying by multiple orders of magnitude.
Similar stiffness originates from the Hausdorff constraints (3.28)
where terms such as Hj may cause coupling of vastly different
magnitudes of coefficients. It is possible, that some sort of scaling
approach similar to the one used before might mitigate these
problems at least partially.Note, that the above

experiments were
performed without

any scaling.

Overall the LP formulation has the advantage of being easier
to formulate and implement than the SDP approach. However,
as it is based on the Hausdorff moment problem, the domain
needs to be finite. Thus, infinite state-spaces cannot directly be
analyzed. In case of infinite state-spaces truncations such as the
one presented in Kim et al. (2020) could be a viable option.

3 .9 conclusion

Numerical methods to compute reachability probabilities and
first passage times for continuous-time Markov chains that are
based on an exhaustive exploration of the state-space are ex-
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act up to numerical precision. Such methods, however, do not
scale and cannot be efficiently applied to models with large or
infinite state-spaces, an issue exacerbated in population models.
Moment-based methods offer an alternative analysis approach
for MPMs, which scales with the number of different populations
in the system but are approximations with little or no control
of the error. In this work, we bridge this gap by proposing a
rigorous approach to derive bounds on first passage times and
reachability probabilities, leveraging a semi-definite program-
ming formulation based on appropriate moment constraints.

The method we propose is shown to be accurate in several
examples. It does, however, suffer, like all moment-based meth-
ods, from numerical instabilities in the SDP solver, caused by
the fact that moments typically span several orders of magni-
tude. We proposed a scaling of moments to mitigate this effect.
However, the scaling only addresses the moment matrices but
not the linear constraints which still contain values with vary-
ing orders of magnitudes. Therefore, we plan as future work to
investigate an appropriate scaling for the linear constraints or
to redefine the moment constraints (e.g. using an exponential
time weighting (Dowdy and Barton, 2018b)). Based on this in-
vestigation, we expect to make this approach applicable to more
problems including, for example, the computation of bounds of
rare event probabilities. We also expect that the development of
more sophisticated scaling techniques will improve approximate
moment-based methods.

Furthermore, moment-based analysis approaches have shown
to be successful in a wide range of applications such as optimal
control problems or the estimation of densities (Lasserre, 2010).
We expect that our proposed ideas can be adapted to a wider
range of stochastic models such as stochastic hybrid systems,
exhibiting partly deterministic dynamics.





4
L I N E A R C O N T R O L VA R I AT E S F O R

M O N T E C A R L O E S T I M AT I O N

Analysis approaches based on sampling, such as the stochastic
simulation algorithm (SSA) (Gillespie, 1977), can be applied inde-
pendent of the size of the model’s state-space. However, statistical
approaches are costly since a large number of simulation runs is
necessary to reduce the statistical inaccuracy of estimators. This
problem is particularly severe if reactions occur on multiple time
scales or if the event of interest is rare. A particularly popular
technique to speed up simulations is τ-leaping which applies
multiple reactions in one step of the simulation. However, such
multi-step simulations rely on certain assumptions about the
number of reactions in a certain time interval. These assumptions
are typically only approximately fulfilled and therefore introduce
approximation errors on top of the statistical uncertainty of the
considered point estimators.

Moment-based techniques offer a fast approximation of the sta-
tistical moments of the model. The exact moment dynamics can
be expressed as an infinite-dimensional system of ODEs, which
cannot be directly integrated for a transient analysis. Hence, ad-
hoc approximations need to be introduced, expressing higher
order moments as functions of lower-order ones (Ale, Kirk,
and Stumpf, 2013; Engblom, 2006). However, moment-based
approaches rely on assumptions about the dynamics that are
often not even approximately fulfilled and may lead to high
approximation errors. Recently, equations expressing the mom-

71
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ent dynamics have also been used as constraints for parameter
estimation (Backenköhler, Bortolussi, and Wolf, 2018) and for
computing moment bounds using semi-definite programming
(Dowdy and Barton, 2018b; Ghusinga et al., 2017).

Variance reduction techniques are an alternative to approaches
that decrease the computational costs of each SSA run. Instead
of focusing on making sample generation more efficient, most
variance reduction methods modify the estimator. The modified
estimate has the same expected value as the original one. How-
ever its variance is (hopefully) equal or lower than the original
estimator’s variance. This means, that “better” estimates with
comparable confidence are possible at lower cost. For control
variates this means, that the estimation of the expected value
E (X) of some random variable X is replaced. If another corre-
lated random variable with E (Y) = 0, i.e. a control variate, is
known we are in luck. Then, we can estimate E (X+ bY) instead
which is more efficient because the variance of X+ bY is lower
when choosing b wisely. By reducing the variance of the estima-
tors, these methods need fewer runs to achieve high statistical
accuracy.

In this work, we propose a combination of such moment con-
straints with the SSA approach. Specifically, we interpret these
constraints as random variables that are correlated with the
estimators of interest usually given as functions of chemical pop-
ulation variables. These constraints can be used as (linear) control
variates (CVs) in order to improve the final estimate and reduce
its variance (Lavenberg, Moeller, and Welch, 1982; Szechtman,
2003). The method is easy on an intuitive level: If a control variate
is positively correlated with the function to be estimated then we
can use the estimate of the variate to adjust the target estimate.

The incorporation of control variates into the SSA introduces
additional simulation costs for the calculation of the constraint
values. These values are integrals over time, which we accumulate
based on the piece-wise constant trajectories. This introduces a
trade-off between the variance reduction that is achieved by using
control variates versus the increased simulation cost. This trade-
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off is expressed as the product of the variance reduction ratio
and the cost increase ratio.

For a good trade-off, it is crucial to find an appropriate set of
control variates. Here we propose a class of constraints which is
parameterized by a moment vector and a weighting parameter,
resulting in infinitely many choices. We present an algorithm that
samples from the set of all constraints and proceeds to remove
constraints that are either only weakly correlated with the target
function or are redundant in combination with other constraints.

In a case study, we explore different variants of this algorithm
both in terms of generating the initial constraint set and of remov-
ing weak or redundant constraints. We find that the algorithm’s
efficiency is superior to a standard estimation procedure using
stochastic simulation alone in almost all cases.

Although in this work we focus on estimating first order mo-
ments at fixed time points, the proposed approach can in prin-
ciple deal with any property that can be expressed in terms of
expected values such as probabilities of complex path proper-
ties. Another advantage of our technique is that an increased
efficiency is achieved without the price of an additional approx-
imation error as it is the case for methods based on moment
approximations or multi-step simulations.

4 .1 related work

state-space truncations If the state-space is finite and
small enough one can deal with the underlying Markov chain
directly. But there are also cases where the transient distribution
has an infinitely large support and one can still deal with explicit
state probabilities. To this end, one can fix a finite state-space,
that should contain most of the probability (Munsky and Kham-
mash, 2006). Refinements of the method work dynamically and
adjust the state-space according to the transient distributions (An-
dreychenko et al., 2011; Henzinger, Mateescu, and Wolf, 2009;
Mateescu et al., 2010).
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moment approximations On the other end of the spec-
trum there are mean-field approximations, which model the
mean densities faithfully in the system size limit (Bortolussi et al.,
2013). In between there are techniques such as moment closure
(Singh and Hespanha, 2006), that not only consider the mean,
but also the variance and other higher order moments. These
methods depend on ad-hoc approximations of higher order mo-
ments to close the ODE system given by the moment equations.
Yet another class of methods approximate molecular counts con-
tinuously and approximate the dynamics in such a continuous
space, e.g. the system size expansion (Kampen, 1992) and the
chemical Langevin equation (Gillespie, 2000).

While the moment closure method uses ad-hoc approximations
for high order moments to facilitate numerical integration, they
can be avoided in some contexts. For the equilibrium distribution,
for example, the time-derivative of all moments is equal to zero.
This directly yields constraints that have been used for parameter
estimation at steady-state (Backenköhler, Bortolussi, and Wolf,
2018) and bounding moments of the equilibrium distribution
using semi-definite programming (Ghusinga, Lamperski, and
Singh, 2018; Ghusinga et al., 2017; Kuntz, Juan and Thomas,
Philipp and stan and Barahona, 2019). The latter technique of
bounding moments has been successfully adapted in the context
of transient analysis (Dowdy and Barton, 2018b; Sakurai and
Hori, 2017, 2019). We adapt the constraints proposed in these
works to improve statistical estimations via stochastic simulation
(cf. Section 4.2).

monte carlo simulation While the above techniques give
a deterministic output, stochastic simulation generates single
executions of the stochastic process (Gillespie, 1977). This necessi-
tates accumulating large numbers of simulation runs to estimate
quantities. This adds a significant computational burden. Con-
sequently, considerable effort has been directed at lowering this
cost. A prominent technique is τ-leaping (Gillespie, 2001), which
in one step performs multiple instead of only a single reaction.
Another approach is to find approximations that are specific to



4 .2 moment constraints 75

the problem at hand, such as approximations based on time-
scale separations (Bortolussi, Milios, and Sanguinetti, 2015; Cao,
Gillespie, and Petzold, 2005).

Recently, multilevel Monte Carlo methods have been applied in
to time-inhomogenous MPM (Anderson and Yuan, 2018). In this
techniques estimates are combined using estimates of different
approximation levels.

The most prominent application of a variance reduction tech-
nique in the context of stochastic reaction networks is importance
sampling (Kuwahara and Mura, 2008). This technique relies on
an alteration of the process and then weighting samples using
the likelihood-ratio between the original and the altered process.

We refer the reader to Beentjes (2021) for a recent survey of
variance reduction methods applied to MPMs.

4 .2 moment constraints

The time-evolution of the expected value E (f(Xt)) of some func-
tion f is given by (2.21). The integration of (2.21) with such func-
tions f is well-known in the context of moment approximations
of MPM. For most models the arising ODE system is infinitely
large, because the time-derivative of low order moments usually
depends on the values of higher order moments. To close this
system, moment closures, i.e. ad-hoc approximations of higher
order moments are applied (Schnoerr, Sanguinetti, and Grima,
2015). The main drawback of this kind of analysis is that it is
not known whether the chosen closure gives an accurate ap-
proximation for the case at hand. Here, such approximations
are not necessary, since we will apply the moment dynamics in
the context of stochastic sampling instead of trying to integrate
(2.21).

Apart from integration strategies, setting (2.21) to zero has
been used as a constraint for parameter estimation at steady-
state (Backenköhler, Bortolussi, and Wolf, 2018) and bounding
moments at steady-state (Dowdy and Barton, 2018a; Ghusinga
et al., 2017; Kuntz, Juan and Thomas, Philipp and stan and
Barahona, 2019). The extension of the latter has recently lead to
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the adaption of these constraints to a transient setting (Dowdy
and Barton, 2018b; Sakurai and Hori, 2019). These two transient
constraint variants are analogously derived by multiplying (2.21)
by a time-dependent, differentiable weighting function w(t) and
integrating

As in the previous chapter, multiplication with w(t) and inte-
gration on [t0, T ] yields (Dowdy and Barton, 2018b; Sakurai and
Hori, 2019)

w(T)E (f(XT )) −w(t0)E (f(Xt0)) −

∫T
t0

dw(t)

dt
E (f(Xt)) dt

=

nR∑
j=1

∫T
t0

w(t)E
((
f(Xt + vj) − f(Xt)

)
αj(Xt)

)
dt (4.1)

While many choices of f are possible, for this work we will
restrict ourselves to monomial functions f(x) = xm, m ∈ NnS

i.e. the non-central or raw moments of the process. In the context
of computing moment bounds via semi-definite programming
the polynomial w(t) = ts (Sakurai and Hori, 2019) and theIn Chapter 3 we

chose the monomial,
such that (4.1)

would admit the
interpretation of

temporal moments.
Here the exponential

is a good choice,
because it can model
both increasing and

decreasing
weighting.

exponential w(t) = eλ(T−t) (Dowdy and Barton, 2018b) have
been proposed. While both choices proved to be effective in
different case studies, relying solely on the latter choice, i.e.

w(t) = eλ(T−t)

was sufficient.
For this chapter, we assume that propensity functions αi are

polynomial. This restriction is only due to the simplification of
only having to record one value for each tuple of moment vector
m and weighting coefficient λ. Given more complex propensity
functions, we would need to accumulate other terms during
simulation accordingly. By expanding the rate functions and fContrary to the

claim in Beentjes
(2021, Ch. 2.4.2), the

approach is not
restricted to

mass-action kinetics.

in (4.1) and substituting the exponential weight function we can
re-write (4.1) as

0 = E (f(XT )) − e
λTE (f(Xt0))

+
∑
k

ck

∫T
t0

eλ(T−t)E (Xmk
t ) dt (4.2)
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with coefficients ck and vectors mk defined accordingly. Assum-
ing the moments remain finite on [0, T ], we can define the random
variable

Z = f(XT ) − e
λT f(Xt0) +

∑
k

ck

∫T
t0

eλ(T−t)Xmk
t dt (4.3)

with E (Z) = 0.

example For Model 2 the moment equation for f(x) = x

becomes

d

dt
E (Xt) = γ− δE (Xt) .

The corresponding constraint (4.2) with λ = 0 gives

0 = E (XT ) − E (X0) − γT + δ

∫T
0

E (Xt) dt .

In this instance the constraint leads to an explicit function of the
moment over time. If X0 = 0 w.p. 1, then (4.2) becomes

E (XT ) =
γ

δ

(
1− e−δT

)
(4.4)

when choosing λ = −δ. �
In general, a realization of Z depends on the whole trajectory

τ = x0t1x1t2 . . . tnxn over [t0, T ]. Thus, for the integral terms in
(4.3) we have to compute sums

1

λ

n∑
i=1

(
eλ(T−ti+1) − eλ(T−ti)

)
xmk

i (4.5)

over a given trajectory. This accumulation is best done during
the simulation to avoid storing the whole trajectory. Still, the cost
of a simulation run increases. For the method to be efficient, the
variance reduction (Section 4.3) needs to overcompensate for this
increased cost of a simulation run.
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Algorithm 2: SSACV: SSA with accumulator updates
input :π0, T ,P,n
output : trajectory τ

1 initialize accumulator map A for P;
2 for i = 1, . . . ,n do
3 τ← empty list, s← sample from π0, t← 0;
4 while t < T do
5 τ← append(τ, (s, t));
6 k← sample reaction i with probability ∝ αi(s);
7 δ ∼ Exp (

∑
i αi(s));

8 for (m, λ) ∈ keys(A) do
9 A[(m, λ)]← A[(m, λ)]
10 +1λ

(
eλ(t+δ) − eλt

)
xm;

11 s← s+ vk;
12 t← t+ δ;

13 update means V̂ , Ẑ and covariances Σ̂ using A;
14 for (m, λ) ∈ keys(A) do
15 A[(m, λ)]← 0

16 return (Σ̂, V̂ , Ẑ);
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4 .3 control variates

Before using the moment constraints derived above, we now
discuss control variates in general. To this end let V be some
random variable with finite moments. We are interested in the
estimation of some quantity E (V) by stochastic simulation. Let
V1, . . . ,Vn be independent samples of V . Then the sample mean

V̂n =
1

n

n∑
i=1

Vk

is an estimate of E (V). By the central limit theorem

√
nV̂n

d−→ N(E (V) ,σ2V) .

Now suppose, we know of a random variable Z with 0 = E (Z).
The variable Z is called a control variate (CV). If a control variate
Z is correlated with V , we can use it to reduce the variance of
V̂n (Glasserman and Yu, 2005; Nelson, 1990; Szechtman, 2003;
Wilson, 1984). For example, consider we are running a set of
simulations and consider a single constraint. If the estimated
value of this constraint is larger than zero and we estimate a
positive correlation between the constraint Z and V , we would,
intuitively, like to decrease our estimate V̂n accordingly. This
results in an estimation of the mean of the random variable

Yβ = V −βZ

instead of V . The variance

σ2Yβ = σ2V − 2βCov(V ,Z) +β2σ2Z .

The optimal choice β can be computed by considering the mini-
mum of σ2Yβ . Then

β∗ = Cov(V ,Z)/σ2Z .

Therefore

σYβ∗ = σ
2
Z(1− ρ

2
VZ) ,
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where ρVZ is the correlation of Z and V .
If multiple control variates are available, we can proceed in a

similar fashion. Now, let Z denote a vector of d control variates
and let

Σ =

[
ΣZ ΣVZ

ΣZV σ2V

]

be the covariance matrix of (Z,V). As above, we estimate the
mean of

Yβ = V −βTZ .

The ideal choice of β is the result of an ordinary least squares
regression between V and Zi, i = 1, . . . ,n. Specifically,

β∗ = ΣZ
−1ΣZV .

Then, asymptotically the variance of the estimator

Ŷβ∗ = V̂ −β∗>Ẑ (4.6)

is (Szechtman, 2003),

σ2
Ŷβ∗

= (1− R2ZV)σ
2
V̂

, (4.7)

where

R2ZV = ΣZVΣ
−1
Z ΣZV/σ

2
V .

This is commonly known as the fraction of variance unexplained
(Freedman, 2009). In practice, however, β∗ is unknown and needs
to be replaced by an estimate β̂. Then the estimator

Ŷβ̂ = V̂ − β̂>Ẑ . (4.8)

This leads to an increase in the estimator’s variance. Under the
assumption of Z and V having a multivariate normal distribu-
tion (Cheng, 1978; Lavenberg, Moeller, and Welch, 1982), the
variance of the estimator is

σ2
Ŷβ̂

=
n− 2

n− 2− d
(1− R2ZV)σ

2
V̂

. (4.9)
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Clearly, a control variate is “good” if it is highly correlated with
V . The constraint in (4.4) is an example of the extreme case. When
we use this constraint as a control variate for the estimation of
the mean at some time point t, it has a correlation of ±1 since it
describes the mean at that time precisely. Therefore the variance
is reduced to zero. We thus aim to pick control variates that are
highly correlated with V .

example Consider, for example, the above case of the birth-
death process. If we choose (4.4) as a constraint, it would always
yield the exact difference of the exact mean to the sample mean
and therefore have a perfect correlation. Clearly, β̂ reduces to 1
and Ŷ1 = E (Xt). �

4 .4 moment-based variance reduction

We propose an adaptive estimation algorithm (Algorithm 3) that
starts out with an initial set of control variates and periodically
removes potentially inefficient variates. The “accumulator set” A
represents the time-integral terms (4.5). The size of A has the
most significant impact on the overall speed of the algorithm
since it represents the only factor incurring a direct cost increase
in the SSA itself (line 4).

The algorithm consists of a main loop which performs n simu-
lation runs (line 3). Between each run the mean and covariance
estimates of [Z, V] are updated (line 5). Every d < n iterations,
the control variates are checked for efficiency and redundancy (lines
6–9).

Checking both conditions is based on the correlation ρij be-
tween the i-th and j-th control variate and the correlation ρiv
of a control variate i to V . These are elements of the correlation
matrix

C =


1 . . . ρ1k ρ1v
...

. . .
...

...

ρk1 . . . 1 ρkv

ρv1 . . . ρvk 1

 .
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Figure 4.1: The absolute correlation of different constraints to V arising
from different choices of λ. The blue dots represent con-
straints based on first order moments, while the orange re-
fers to control variates derived from second order moments.
In both cases 10,000 samples were used with 30 initial sam-
ples for λ from N(0, 1) and kmin = 2. A quadratic decision
bound was used for the redundancy removal. Furthermore,
a histogram of control variates selected by Algorithm 3 is
given. In (a) E

(
XA2
)

in the dimerization model was esti-
mated. In (b) E

(
XX50

)
in the distributive modification model

was estimated.

The first condition is a simple lower threshold ρmin for a correla-
tion ρiv. This condition aims to remove those variates from the
control variate set that are only weakly correlated to V (line 7).
The rationale is that, if variate i has a low correlation with the
variable of interest V , its computation may not be worth the costs.
Here, we propose to set ρmin heuristically as

ρmin = min
(
0.1,

maxi ρiv
kmin

)
,

where kmin > 1 is an algorithm parameter.
The second condition aims to remove redundant conditions.

This is not only beneficial for the efficiency of the estimator, but
also necessary for the matrix inversion (4.7) because perfectly
and highly correlated constraints will make the covariance matrix
estimate Σ̂Z (quasi-) singular. For all considered criteria we iterate
over all tuples (i, j) ∈ {1, . . . ,k}2, i 6= j, removing the weaker of
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the two, i.e. arg mink∈{i,j} ρkv, if the two control variates are
considered redundant (line 8).

There are many ways to define such a redundancy criterion.
Here, we focus on criteria that are defined in terms of the average
correlation

ρ̄ij = (ρiv + ρjv)/2 .

For two variates i and j we then check if their mutual correlation
ρij exceeds a some function φ of ρ̄ij, i.e. we check the inequality

φ(ρ̄ij) 6 ρij .

If this inequality holds, constraint arg mink∈{i,j} ρkv is removed.
Naturally, there are many possible choices for the above decision
boundary φ (cf. Figure 4.2).

The simplest choice is to ignore ρ̄ij and just fix a constant close
to 1 as a threshold, e.g.

φc(ρ̄ij) = 0.99 .

While this often leads to the strongest variance reduction and
avoids numerical issues in the control variate computation, it
turns out that the computational overhead is not as well-compen-
sated as by other choices of φ (see Section 4.4.1).

Another option is to fix a simple linear function, i.e.

φ`(ρ̄ij) = ρ̄ij .

For this choice the intuition is, that one of two constraints is
removed if their mutual correlation exceeds their average correla-
tion with V .

Here, we also assess two quadratic choices for φ. The first
choice of

φq(ρ̄) = 1− (1− ρ̄)2

is more tolerant than the linear function and more strict than a
threshold function, except for highly correlated control variates.
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Another variant of φ is given by including the lower bound ρmin

and scaling the quadratic function accordingly:

φsq(ρ̄) = 1− ((1− ρ̄)/(1− ρmin))
2 .

The different choices of φ considered here are plotted in Fig-
ure 4.2.

Algorithm 3: Estimate the mean of species i at time T
input :n,d,nmax,nλ,kmin

output : an estimate using linear control variates
1 L← {λi ∼ πλ | 1 6 i < nλ}∪ {0};
2 P ← {(m, λ)|1 6 |m| 6 nmax, λ ∈ L};
3 for i = 1, . . . , bn/dc do
4 (Σ̂i, V̂i, Ẑi)← SSACV(π0, T ,P,d);
5 update Σ̂, V̂ , and Ẑ;
6 ρmin ← min (0.1, maxi ρiv/kmin);
7 P ← P \ {(mk, λk) | ρkv < ρmin};
8 P ← P \ {(mk, λk) | ∃i, j.i 6= j,φ(ρ̄ij) < ρij,
9 k = arg mink∈{i,j} ρkv};

10 return V̂ − (Σ̂−1
Z Σ̂ZV)

>
Ẑ;

Now, we discuss the choice of the initial control variates. We
identify control variate k by a tuple (mk, λk) of a moment vector
mk and a time-weighting parameter λk. That is, we use w(t) =
eλk(T−t) and f(x) = xmk in (4.1). For a given set of parameters
L, we use all moments up to some fixed order nmax (line 2). The
ideal set of parameters L is generally not known. For certain
choices the correlation of the control variates and the variable
of interest is higher then for others. To illustrate this, consider
the above example of the birth-death process. Choosing λ = −δ

leads to a control variate that has a correlation of ±1 with V .
Therefore, the ideal choice of initial values for would be L = {−δ}.
This, however, is generally not known. Therefore, we sample a
set of λ’s from some fixed distribution πλ (line 1).



4 .4 moment-based variance reduction 85

0.0 0.5 1.0
ij

0.0
0.2
0.4
0.6
0.8
1.0

ij

boundary 

sq( ) = 1 ( 1
1 min )2

c( ) = . 99

q( ) = 1 (1 )2

( ) = ij

Figure 4.2: Different decision functions used in the redundant control
variate removal. The weaker of any two control variates is
removed if the pair (ρ̄ij, ρij) belongs to the shaded area of
the considered function. The vertical dashed line indicates
ρmin.

4 .4 .1 Case Studies

We first define a criterion of efficiency in order to estimate whether
the reduction in variance is worth the increased cost. A natural
baseline of a variance reduction is, that it is more efficient to pay
for the computational overhead of the reduction than to generate
more samples to achieve a similar reduction of variance. Let σ2Y
be the variance of Y. The efficiency of the method is the ratio of the
necessary cost to achieve a similar reduction with the CV estimate
YCV compared to the standard estimate Y (L’Ecuyer, 1994), i.e.

E =
c0σ

2
Y

c1σ
2
YCV

. (4.10)

This is the ratio between slowdown c0/c1 and variance reduction
σ2Y/σ

2
YCV

. That ratio c0/c1 depends heavily on both the specific
implementation and the technical setup. The cost increase is
mainly due to the computation of the integrals in (4.2). But the
repeated checking of control variates for efficiency also increases
the cost. The accumulation over the trajectory directly increases
the cost of a single simulation which is the critical part of the
estimation. To estimate the base-line cost c0, 2000 estimations
were performed without considering any control variates.
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Figure 4.3: The effect of including CVs on the mean estimates Ê(XM2 ) in
the dimerization case study. Parameters were πλ = N(0, 1),
nλ = 30, kmin = 4, φ(ρ̄) = 1− (1− ρ̄)2.

The simulation is implemented in the Rust programming lan-
guage. The model description is parsed from a high level speci-www.rust-lang.org

fication. Rate functions are compiled to stack programs for fast
evaluation. Code is made available online (Backenköhler, 2019).

We consider four non-trivial case studies. Three models exhibit
complex multi-modal behavior. We now describe the models and
the estimated quantities in detail.

The first model is a simple dimerization on a countably infiniteThis model appeared
earlier as Model 1 on

page 18.
state-space.

Model 5 (Dimerization). We first examine a simple dimerization
model on an unbounded state-space.

∅ 10−→M , 2M
0.1−−→ D

with initial condition XM0 = 0.

Despite the models simplicity, the moment equations are not
closed for this system due to the second reaction which is non-
linear. Therefore a direct analysis of the expected value would
require a closure. For this model we will estimate E

(
XM2

)
.

The following two models are bimodal, i.e. they each posses
two stable regimes among which they can switch stochastically.

www.rust-lang.org
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For both models we choose the initial conditions such that the
process will move towards either attracting region with equal
probability.

Model 6 (Distributive Modification). The distributive modification
model was introduced in (Cardelli and Csikász-Nagy, 2012). It consists
of the reactions

X+ Y
0.001−−−→ B+ Y , B+ Y

0.001−−−→ 2Y

Y +X
0.001−−−→ B+X , B+X

0.001−−−→ 2X

with initial conditions XX0 = XY0 = XB0 = 100.

Model 7 (Exclusive Switch). The exclusive switch model consists of
5 species, 3 of which are typically binary (activity states of the genes)
(Loinger et al., 2007).

D+ P1
β−→ D.P1 , D.P1

γ1−→ D+ P1 ,

D+ P2
β−→ D.P2 , D.P2

γ2−→ D+ P2 ,

D.P1
ρ1−→ D.P1 + P1 , D.P2

ρ2−→ D.P2 + P2 ,

D
ρ1−→ D+ P1 , D

ρ2−→ D+ P2 , P1
λ−→ ∅ , P2

λ−→ ∅

with initial conditions

XD0 = 1 and XD.P1
0 = XD.P2

0 = XP10 = XP20 = 0 .

We evaluate the influence of algorithm parameters, choices of
distributions to sample λ from, and the influence of the sample
size on the efficiency of the proposed method. Note that the
implementation does not simplify the constraint representations
or the state space according to stoichiometric invariants or limited
state spaces. Model 6, for example has the invariant

XXt +XYt +X
B
t = const., ∀t > 0 ,

which could be used to reduce the state-space dimensionality to
two. In Model 7 the invariant

∀t > 0.XDt ,XD.P1
t ,XD.P2

t ∈ {0, 1}
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could be used to optimize the algorithm by eliminating redun-
dant moments, e.g. E((XD)2) = E

(
XD
)
. Such an optimization

would further increase the efficiency of the algorithm.
We first turn to the choice of the λ sampling distribution. Here

we consider two choices:

1. a standard normal distribution N(0, 1),

2. a uniform distribution on [−5, 5].

We deterministically include λ = 0 in the constraint set, as this
parameter corresponds to a uniform weighting function. We per-
formed estimations on the case studies using different valuations
of the algorithm parameters of the minimum threshold kmin and
the number of λ-samples nλ. We used samples size n = 10,000
and checked the control variates every d = 100 iterations for
the defined criteria. For each valuation 1000 estimations were
performed. In Figure 4.4, we summarize the efficiencies for the
arising parameter combinations on the three case studies. Most
strikingly, we can note that the efficiency was consistently larger
than one in all cases. Generally, the normal sampling distribution
out-performed the alternative uniform distribution, except in
case of the dimerization. The reason for this becomes apparent,
when examining Figure 4.1: In case of the dimerization model
the most efficient constraints are found for λ ≈ −3, while in case
of the distributive modification they are located just above 0 (we
observe a similar pattern for the exclusive switch case study).
Therefore the sampling of efficient λ values is more likely using a
uniform distribution for the dimerization case study, than it is for
the others. Given that larger absolute values for λ seem unreason-
able due their exponential influence on the weighting function
and the problem of fixing a suitable interval for a uniform sam-
pling scheme, the choice of a standard normal distribution for
πλ seems superior.

In Figure 4.5 we compare efficiencies for different maximum
orders of constraints nmax. This comparison is performed for
different choices of the redundancy rule and initial λ sample
sizes nλ. Again, for each parameter valuation 1000 estimations
were performed. With respect to the maximum constraints order
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Figure 4.4: The efficiencies for different valuations of nλ and kmin and
choices of πλ. The sample size was n = 10,000 in all cases
with d = 100. The bars give the bootstrapped (1000 itera-
tions) standard deviations.

nmax we see a clear tendency, that the inclusion of second order
constraints lessens the efficiency of the method. In case of a con-
stant redundancy threshold it even dips below break-even for the
distributive modification case study. This is not surprising, since
the inclusion of second order moments increases the number of
initial constraints quadratically and the incurred cost, especially
of the first iterations, lessens efficiency.

Figure 4.7 depicts the trade-off between the variance reduction
σ20/σ

2
1 versus the cost ratio c0/c1. Comparing the redundancy

criterion based on a constant threshold φc to the others, we
observe both a larger variance reduction and an increased cost.
This is due to the fact, that more control variates are included
throughout the simulations (Table A.1, Table A.2, Table A.3).
Depending on the sample distribution πλ and the case study, this
permissive strategy may pay off. In case of the dimerization, for
example, it pays off, while in case of the distributive modification
it leads to a lower efficiency ratio. In the latter case the model
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Figure 4.5: The efficiency for different redundancy policies φ and max-
imal moment orders nmax. The sample size was n = 10,000
in all cases with d = 100. Furthermore, kmin = 3, πλ =

N(0, 1), and nmax = 1. The bars give the bootstrapped (1000
iterations) standard deviations.

is more complex, and therefore the set of initial control variates
is larger. With a more permissive redundancy strategy, more
control variates are kept (ca. 10 when using φc vs. ca. 2 to 3 for
the others). The other redundancy boundaries move the results
further in the direction of less variance reduction while keeping
the cost increase low. On the opposite end is the linear φ`. The
quadratic versions φq and φsq can be found in the middle of this
spectrum.

We also observe, that an increase of nλ is particularly beneficial,
if the sampling distribution πλ does not capture the parameter
region of the highest correlations well. This can be seen for the
Dimerization case study, where the variance reduction increases
strongly with increasing sample size (Figure 4.6, Table A.1, Ta-
ble A.2, Table A.3). Since πλ = N(0, 1), more samples are needed
to sample efficient λ-values (cf. Figure 4.1).

In Figure 4.6 we give detailed information on the influence of
algorithm parameters kmin, the number of initial λ values, and
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Figure 4.6: The empirical efficiencies for different nλ and kmin. On the
considered case studies. The sample size was n = 10,000 in
all cases with d = 100. 1000 estimations were performed for
each case. The bars give the bootstrapped (1000 iterations)
standard deviations. The break-even E = 1 is marked by the
dotted red line.

different redundancy rules. The λ sampling distribution πλ is a
standard normal.

Finally, we discuss the effect of the sample size n on the ef-
ficiency E. In Figure 4.8 we give both the efficiencies and the
slowdown for different sample sizes. As a redundancy rule we
used the unscaled quadratic function, 30 initial values of λ, and
kmin = 3. With increasing sample size, the efficiency usually ap-
proaches an upper limit. This is due to the fact that most control
variates are dropped early on and the control variates often re-
main the same for the rest of the simulations. If we assume there
are no helpful control variates in the initial set and all would be
removed at iteration 100, the efficiency would converge to 1 for
n→∞.
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Figure 4.7: A visualisation of the trade-off between variance reduction
σ20/σ

2
1 and cost ratio c0/c1. Isolines for efficiencies are given

in grey. The break-even is marked by the dashed red line.
Markers of the same kind differ in nλ and shift with increas-
ing value upwards in variance reduction and lower in c0/c1,
i.e. the shift is to the left and upwards with increasing nλ.
The sample size was n = 10,000 in all cases with d = 100.
Furthermore, kmin = 3 and πλ = N(0, 1).

4 .5 resampling algorithm

In previous work (Backenköhler, Bortolussi, and Wolf, 2019), we
have proposed an algorithm that learns a set of control variates
through refinement of an initial set. This initial set of control
variates is based on samples of the time-weighting λ. Each control
variate is then checked for effectiveness in isolation. Furthermore
the set is refined by considering variable pairwise to determine
redundancies.

In this work, we improve on the initial selection of control
variates. The initial set of control variates is build using a splitting
approach akin to sequential Monte Carlo methods: Over multiple
rounds, new control variates are samples based on performance
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Figure 4.8: The effect of sample size on the efficiency E and slowdown
in the different case studies. The break-even E = 1 is marked
by the dashed red line. The cost increase due to the variance
reduction over different sample sizes.

in prior rounds. That way, a set of variates is build up. This
set is then refined in a greedy manner, taking into account the
correlation between variates. This algorithm has the main benefit
of needing less sensitive to user input. In particular, no heuristic
redundancy threshold has to be fixed, making this approach
more flexible.

As we have seen in the previous section, effective control
variates have a high correlation with the target random variable.
In the case of a single variate, the variance reduction is directly
proportional to 1− ρ2, where ρ is the correlation. In our case,
infinitely many choices of Z are available. Our goal is to choose a
subset that satisfies two objectives: Firstly, every selected control
variate should reduce the estimator’s variance. Secondly, the
subset should not be too large, i.e. we want to avoid redundancies
to achieve a good overall computational efficiency of the variance
reduction.

If the computation of a variate does not adequately compensate
for its computation with variance reduction, we do not want to in-
clude it. Balancing both objectives is challenging because control
variates often correlate with each other. Such correlations expose
redundancy between different variates. This also becomes clear,
when considering that the overall variance reduction depends on
the coefficient of multiple correlation.
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Figure 4.9: An illustration of the resampling procedure for the time-
weighting parameter λ using Model 6. Areas giving higher
correlations are resampled through multiple rounds. The
newly sampled values are given in blue. In each round only
the new candidates are evaluated.

Here we follow a resampling paradigm: We start by building
up a set of candidates using a particle splitting approach. After
each splitting step, we generate a small number of SSA samples
to estimate correlations. Promising candidates are chosen based
on the improvement they provide and their time-weighting pa-
rameter λ is resampled (see Figure 4.9). The main benefit of this
bottom-up approach is its lower dependence on the initial sam-
pling distribution of λ. Moreover, the procedure spends less time
evaluating unpromising candidates. After generating a set of
control variates, the overall covariance matrix is estimated using
stochastic simulations. Using this information, we construct an
efficient subset using a greedy scheme, taking into account the
redundancies between control variates. We discuss Algorithm 4

in more detail below.

initialization A tuple (mk, λk) of a moment vector mk
and a time-weighting parameter λk uniquely identifies a control
variate k. The algorithm starts out with an initial small set of
control variates. That is, we use w(t) = eλkt and f(x) = xmk

in (4.1). For a given set of time-weighting parameters L, we use
all moments up to some fixed order nmax (line 2). For a fixed
moment vector mk the time-weighting parameter λk can lead to
vastly different correlations ρkv with the quantity of interest. The
best choices of λ are usually not known beforehand. Therefore,
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Algorithm 4: Estimate the mean of species i at time T
input :n,d,nmax,nλ,nc,ns,nr
output : estimate using linear control variates

1 L← {λi ∼ πλ | 1 6 i < nλ}∪ {0}; /* initialization */

2 P ← {(m, λ)|1 6 |m| 6 nmax, λ ∈ L};
3 Pall = ∅ for i = 1, . . . ,nr ; /* resampling */

4 do
5 (Σ̂, V̂ , Ẑ)← SSACV(π0, T ,P,d);
6 Pall ← Pall ∪ P;
7 Icands ← {k ∼ γ̂kv/

∑
` γ̂`v | 1 6 k 6 |Pall|, j = 1, . . . ,nc};

8 P ←
⋃
k∈Icands

⋃ns
l=1{(mk, λ ′k) | λ

′
k ∼ N(λk, 0.5)};

9 (Σ̂, V̂ , Ẑ)← SSACV(π0, T ,Pall, 5d); /* covariance */

10 P∗ = ∅;
11 while ∃i : (mi, λi) ∈ Pall \ P

∗∧

12 γ̂iv
∏|Pall|

j=1;(mj,λj)∈P∗ γ̂
−1
ij > ε; /* selection */

13 do
14 k← arg maxi γ̂iv

∏|Pall|

j=1;(mj,λj)∈P∗ γ̂
−1
ij ;

15 P∗ ← P∗ ∪ {(mk, λk)};

16 (Σ̂, V̂ , Ẑ)← SSACV(π0, T ,P∗,n); /* estimation */

17 return V̂ − (Σ̂−1
Z Σ̂ZV)

>
Ẑ

we sample an initial set of λ’s from a fixed distribution πλ (line 1).
Here, we use a standard normal distribution because its mean is
the neutral weighting of λ = 0 and extreme values are unlikely.

resampling Promising candidates are chosen from all con-
trol variates based on the estimated improvement ratio they pro-
vide, i.e.

γ̂kv = (1− ρ̂2kv)
−1 (4.11)

following (4.9). Specifically, control variate k is chosen with prob-
ability proportional to γ̂kv (line 7). The covariances of (only) the
new variates are roughly estimated using very few (e.g., d = 10)
SSA samples. For the selected variates Icands, the time-weighting
parameter is resampled using a step distribution. There is some
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freedom in the specifics of this resampling procedure. In par-
ticular, the number of splits nc and descendants ns for each
candidate control the number of additional candidates. The algo-
rithm performs nr rounds of resampling. Figure 4.9 illustrates
this part of the algorithm.

covariance estimation After sampling a set of candidates
this way, we need to select the most promising ones. For this, we
are interested in covariances between all control variates, as well.
Since the resampling does not provide us with such estimates, we
evaluate all candidates together for a fixed number of simulations
(line 9).

selection The selection part of the algorithm (line 12) pro-
ceeds in a greedy fashion wrt. the potential estimated improve-
ment γ̂iv given by any variate. However, covariates often have
high mutual correlations. For example, Zλ and Zλ+ε for a small ε
are typically highly correlated — often more with each other than
with the objective. We want to avoid this unnecessary computa-
tional overhead from computing nearly redundant information
and numerical problems due to the covariance matrix inversion
(see (4.7)). As a solution, we normalize the estimated improve-
ment vector (γ̂iv)i by the product of the fractions of explained
variances by the already selected covariates. Therefore we choose
the most promising candidate given a selection P∗ as

arg max
16i6|Pall|

γ̂iv
∏

16j6|Pall|
(mj,λj)∈P∗

γ̂−1ij (4.12)

in line 14. This selection is done, until some lower threshold ε isHere, ε = 0.1.

reached (line 12).

estimation Finally, we simulate the model n times (line 16).
The resulting information enables an LCV estimation (line 17).



4 .5 resampling algorithm 97

4 .5 .1 Case Studies

We executed the presented estimation algorithm for 1000 times
using n = 10,000 simulations. Initially nλ = 10 samples for the
time-weighting parameter were drawn from a standard normal
distribution (πλ = N(0, 1)). Constraints corresponding to each
first-order moment, i.e. the process’ expectations were generated
(nmax = 1). For this study we did not consider higher order
moments because their inclusion led to worse results in most
examples of our previous study (cf. Section 4.4.1). The covariance
estimation during resampling used d = 10 samples.

We evaluated the algorithm both with and without resampling
for these first two case studies. The algorithm without resampling
leaves out lines 3–8 from Algorithm 4. The evaluation without
resampling provides a good point of comparison to our previous
heuristics performance on these cases. In the case of dimerization
we observe a variance reduction of ≈ 27.67 compared to a best
case reduction of ≈ 28.75 in our previous work. This close perfor-
mance however has to balance very different slowdown factors.
With our new heuristic the slowdown is a factor of ≈ 1.34 while
in the previous case it was ≈ 1.95. Therefore the new method
clearly outperforms in terms of efficiency (≈ 20.5 (new) versus
≈ 14.86 (old)). This is mainly due to the higher number of covari-
ates used by the simple threshold heuristic. In contrast the new
method takes into account redundancies between covariances
while still retaining good performance. This becomes apparent
when comparing the average number of used variates (≈ 3.34
(old) versus ≈ 1.98 (new)).

The variance reduction factor for the distributive modification
model is similar at ≈ 2.63 (old) versus ≈ 2.66 (new). Noticeably,
the new method uses on average fewer CVs (≈ 2.74) than the
previous heuristic with the best efficiency (≈ 3.23). The overall
efficiency of the new algorithm with 1.72 is slightly lower than
the previous best value of 1.77, due to a higher slowdown. It is
however important to note, that the trade-off differs significantly
between different heuristics used in the previous algorithm. Fur-
thermore, the lower average number of control variates would
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reduce the slowdown factor further, if more trajectories are gen-
erated.
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Figure 4.10: The variance reduction factor σ2Y/σ
2
YLCV

over different
numbers of selected covariates with and without the re-
sampling procedure.

In Figure 4.10 we contrast the variance improvement ratio
with and without the resampling algorithm. For the dimerization
model, we see a clear improvement of variance reduction. This
improvement is due to the fact that the strongest correlations
are present for λ ≈ 2.5 (cf. Figure 4.9). This region of the time-
weighting parameter space is less likely to be sampled by the
initial samples from the standard normal distribution. Therefore
the resampling procedure is especially beneficial if the better pa-
rameters λ are farther from the origin. In case of the distributive
modification case study, we see a slight improvement. Here, the
best parameters λ are close to zero and thereby more likely to be
sampled by a standard normal. Still, the resampling improves co-
variate performance for the most frequent cases of 2–4 covariates
being selected (the case of 5 covariates has only a few instances).
Note, that the additional cost incurred by the resampling proce-
dure is comparatively small, because at most 4 candidates are
evaluated in each iteration.

Next, we turn to the estimation of probabilities. In particular,
we consider the event of a species being below a threshold ` at
time t (species M for the dimerization and X for the distribu-
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tive modification). In Figure 4.11 we summarize the results of
this study for varying levels `. In both case studies we observe
that control variates are efficient for probabilities not close to
either zero or one. In this case control variates are able to reduce
the variance of the estimated probabilities whilst maintaining
a beneficial reduction-slowdown trade-off. This region is larger
for the distributive modification model because of its bimodal
behavior. If the probability to be estimated is close to either one
or zero, the event occurs too rarely or too often, respectively, to
adequately explain variance using linear correlations. We note,
that the worst case efficiency is close to one. This is due to the
algorithm throwing out all covariate candidates leaving us with
a standard estimation. Only the initial covariate evaluation and
resampling causes a slowdown, driving efficiency slightly below
one. Naturally this cost decreases with more samples n.

slowdown variance reduction efficiency
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Figure 4.11: The methods efficiency for the estimation of threshold
probabilities. For each threshold ` at least 200 estimations
were performed.

Control variates based on test functions restricted to intervals
did not lead to an improvement (data not shown).

Finally, with the lac operon model we consider a larger case
study. This model consists of 11 species and 25 – partly non-
linear – reactions.
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Model 8 (Lac operon). This is a well-known model of genetic reg-
ulation with positive feedback (Stamatakis and Mantzaris, 2009). Its
reactions are

∅
k1−−⇀↽−−
k19

MR , MR
k2−→MR + R , 2R

k3−⇀↽−
k4

R2 ,

R2 + O
k5−⇀↽−
k6

R2O , 2I + R2

k7−⇀↽−
k8

I2R2 ,

2I + R2O
k9−−⇀↽−−
k10

I2R2 + O , O k11−−→ O + MY ,

R2O k12−−→ R2O + MY , MY
k13−−→MY + Y ,

Y + Iex
k14−−⇀↽−−
k15

YIex , YIex
k16−−→ Y + I , Iex

k17−−⇀↽−−
k18

I ,

MY
k20−−→ ∅ , R k21−−→ ∅ , R2

k22−−→ ∅ , Y k23−−→ ∅ ,

YIex
k24−−→ I , I2R2

k25−−→ 2I .

Initially, X(O)
0 = 1 and X(Iex) = 48,177 while all other abundancies are

zero. The parameters are k1 = 0.111, k2 = 15.0, k3 = 103.8, k4 =

0.001, k5 = 1992.7, k6 = 2.4, k7 = k9 = 1.293× 10−7 k8 = 12,
k10 = 9963.2, k11 = 0.5, k12 = 0.01, k13 = 30.0, k14 = 0.249,
k15 = 0.1, k16 = 6.0× 104, k17 = k18 = 0.92, k19 = k20 = 0.462,
k21 = k22 = k23 = k24 = k25 = 0.2.

We estimate the abundancy of LacY after one time unit, i.e.
E(X

(Y)
1 ). It is encoded by Y and facilitates the lactose import via

reactions 14 and 16. A typical simulation of the system up to time-
horizon T = 1 takes well above one minute of computational
time. Therefore we reduce the number of used trajectories to
n = 1000. The other settings remain as above.

Despite the high dimensionality, we observe a good efficiency
value of E ≈ 4.85. The slowdown caused by the method is ap-
proximately 1.98. A big part of this slowdown is due to the initial
search of covariates. Initially 10 covariates are generated for each
first order moment, i.e. each of the 11 species. The number of
additionally resampled covariates is similar to previous case stud-
ies. Thus the main cost of the initial resampling and selection
is due to the first iteration of the resampling loop and the sim-
ulation loop of the selection procedure. This part naturally has
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still potential for optimization: Not all known covariates need
to be reconsidered at the selection stage. Instead, unpromising
candidates could be discarded prior to that stage.

Still, the high variance reduction by a factor of approx. 9.64−1

more than compensates for this increase in computational cost,
leading to the good overall efficiency. This shows that, even
for more complex models, the method is applicable and can
extremely beneficial for Monte Carlo estimation.

4 .6 conclusion

In the context of Monte Carlo simulation, variance reduction
techniques offer an elegant way of improving the performance
without introducing approximation errors in addition to the sta-
tistical uncertainty. In this work we have shown that known
constraints on the moment dynamics can be successfully lever-
aged in simulation-based estimation of expected values. The
empirical results indicate that the supplementing a standard SSA

estimation with moment information can drastically reduce the
estimators’ variance. This reduction is paid for by accumulating
information on the trajectory during simulation. However, the
reduction is able to compensate for this increase. This means
that for fixed costs, using estimates with control variates is more
beneficial than using estimates without control variates.

In particular, we improve an initial subset by selecting par-
ticularly effective variates and removing redundant variates. By
resampling the time-weighting parameter λwe ensure that appro-
priate values are flexibly explored. In the worst case, all variates
are dropped and the performance approaches the standard SSA.
In most cases, however, a suitable subset is found together with
the corresponding choices of λ.

We analyze the performance of the method when estimating
event probabilities and not only average molecule counts. Our
largest case study has 11 species and 24 reactions.

Another open question regarding this work is its performance
when multiple quantities instead of a single quantity are to
be estimated. In such a case, constraints would be particularly



102 linear control variates for monte carlo estimation

beneficial, if they lead to improvements as many estimation
targets as possible.

In the future, we will further explore the algorithmic design
space. For example, the resampling distribution could be ad-
justed using decaying standard deviations. Furthermore, we will
look at different test functions weighting the state space more
flexibly. Different choices of f and w in (4.1) may improve ef-
ficiency further. These choices become particularly interesting
when moving from the estimation of simple first order moments
to more complex queries such as probabilities. In such cases,
one might even attempt to find efficient control variate functions
using machine learning methods.

Another worthwhile direction is the combination of CV with
other Monte Carlo techniques. In particular, importance sampling
might benefit from this. Control variates of the biased process
could be used to improve estimation of the likelihood ratio.



Part III

A G G R E G AT I O N & R E F I N E M E N T

We present a state-space lumping scheme that aggre-
gates states in a grid structure. Approximations based
on this lumping are used to iteratively refine relevant
and truncate irrelevant parts of the state-space. This
way, the algorithm learns a well-justified finite-state
projection for different scenarios.





5
S TAT E - S PA C E A G G R E G AT I O N

In this part, we propose a method to identify a truncation that
optimizes the trade-off between the size of the considered state-
space and the approximation error due to the finite state projec-
tion (FSP). To this end, we start with a very coarse-grained model
abstraction that we refine iteratively. The coarse-grained model is
based on an grid-shaped aggregation (i.e. lumping) scheme that
identifies a set of macro-states. These macro-states can be used to
compute an interim model solution that guides the refinement in
the next step. We perform refinements until the approximation ar-
rives at the resolution of the original model (i.e. each macro-state
has only one constituent) such that the aggregation introduces
no approximation error.

5 .1 related work

Aggregation-based numerical methods for the analysis of discrete
or continuous-time Markov chains have been studied in previous
work. Popular approaches rely on an alternation of aggregation
and disaggregation of the state-space (Schweitzer, 1991; Stewart,
1994). In the case of stiff chains, such aggregations are typically
based on a separation of time-scales (Cao and Stewart, 1985).
However, these methods have been developed for finite chains
with arbitrary structure and are motivated by numerical issues of
standard methods such as the power method or Jacobi iteration
(Stewart, 1994). They do not consider a truncation of irrelevant
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states, while here our aggregation approach is used to determine
the most relevant states under stationary conditions in large or
infinite chains with population structure.

More recently, a scheme based on the Kullback-Leibler diver-
gence between the approximate and the original system has been
proposed for DTMCs (Geiger et al., 2014).

5 .2 macro-states

A macro-state is a collection of micro-states (or simply states)
treated as one state in the aggregated model, which can be seen
as an abstraction of the original model. The aggregation scheme
defines a partitioning of the state-space. We choose a scheme
based on a grid structure. That is, each macro-state is a hypercube
in Z

nS
>0.

Hence, each macro-state x̄i(`(i),u(i)) (denoted by x̄i for nota-
tional ease) can be identified using two vectors `(i) and u(i). The
vector `(i) gives the corner closest to the origin, while u(i) gives
the corner farthest from the origin. Formally,

x̄i = x̄i(`
(i),u(i)) = {x ∈NnS | `(i) 6 x 6 u(i)}, (5.1)

where ’6’ denotes element-wise comparison.
In order to solve the aggregated model, we need to define

transition rates between macro-states. Therefore, we assume that,
given that the system is in a particular macro-state, all constituent
states are equally likely (uniformity assumption). This assump-
tion is the reason why the aggregated model provides only a
coarse-grained approximation.

The uniformity assumption is a modeling choice yielding sig-
nificant advantages. Firstly, it eases the computation of the rates
between macro-states and, therefore, makes a fast solution of
the aggregated model possible. Secondly, even though it induces
an approximation error, it provides suitable guidance as unifor-
mity assumption spreads out the probability mass conservatively.
Hence, it becomes less likely that regions of interest are disre-
garded. Lastly, the uniformity assumption is theoretically well-
founded, as it stems from the maximum entropy principle: In the
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absence of concrete knowledge about the probability distribution
inside a macro-state, we assume the distribution with the highest
uncertainty, i.e., the uniform distribution.

5 .3 construction

The grid structure makes the computation of transition rates be-
tween macro-states particularly convenient and computationally
simple. Mass-action reaction rates can be given in a closed-form,
due to the Faulhaber formulae (Knuth, 1993) and more compli-
cated rate functions such as Hill-functions can often be handled
as well by taking appropriate integrals (see page 145).

Suppose, we are interested in the transition rate from macro-
state x̄i to macro-state x̄k according to reaction j. Using the
uniformity assumption, this is simply the mean rate of the states
in x̄i that go to x̄k using j. However, only a small subset of
constituents in x̄i are actually relevant for this transition. Hence,
we identify the subset of states of x̄i that lie at the border to x̄k
and in such a way that applying reaction j shifts them to a state
in x̄k. Then, we sum up the corresponding rates of these states.
Lastly, we normalize according to the number of states inside of
x̄i.

It is easy to see that the relevant set of border states is itself an
interval-defined macro-state x̄

i
j−→k. To compute this macro-state

we can simply shift x̄i by vj, take the intersection with x̄k and
project this set back. Formally,

x̄
i
j−→k = ((x̄i + vj)∩ x̄k) − vj , (5.2)

where the additions are applied element-wise to all states making
up the macro-states. For ease of notation, we also define a general
exit state

x̄
i
j−→ = ((x̄i + vj) \ x̄i) − vj. (5.3)

This state captures all micro-states inside x̄i that can leave the
state via reaction j.

A particularly convenient feature of the transition states is, that
they also are macro-states. That means, they also are specified
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by independent intervals in each dimension as in (5.1). This
holds because all operations in both (5.2) and (5.3) preserve this
structure.

example In Figure 5.1 we give an example of two adjacentModel 9 on page 122
gives this structure. macro states and the transition state from the left to the right via

one reaction. As such it illustrates the result of the computation
given in (5.2): The left state is shifted along the reaction vector,
intersected with the right macro-state, and finally shifted back. �

Figure 5.1: Two macro-states and a transition state from the left to the
right.

This uniformity assumption gives rise to the following Q-
matrix of the aggregated model:

Q̄x̄i,x̄k =


∑nR
j=1 ᾱj

(
x̄
i
j−→k

)
/ |x̄i| , if x̄i 6= x̄k

−
∑nR
j=1 ᾱj

(
x̄
i
j−→

)
/|x̄i| , otherwise

(5.4)

where

ᾱj(x̄) =
∑
x∈x̄

αj(x). (5.5)

is the sum of all rates belonging to reaction j in x̄. In particular,
the division by |x̄i| in (5.4) is due to the uniformity assumption:
According to the assumption, given the process is in x̄i it is in
each constituent micro-state of the transition state x̄

i
j−→k with
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probability 1/|x̄i|. Therefore, each of the added micro-state rates
in (5.5) is divided by the state volume |x̄i|.

The aggregated CME becomes

d

dt
π̂(x̄i, t) =

nR∑
j=1

∑
ij

ᾱj(x̄ij→i)π̂(x̄ij , t)/
∣∣x̄ij∣∣


− ᾱj(x̄i→)π̂(x̄i, t)/ |x̄i| (5.6)

and the associated backwards equation

d

dt
β̂(x̄i, t) =

nR∑
j=1

β̂(x̄i, t)

∑
ij

ᾱj(x̄ij→i)β̂(x̄ij , t)/
∣∣x̄ij∣∣


− ᾱj(x̄i→)β̂(x̄i, t)/ |x̄i| (5.7)

Under the assumption of polynomial rates, as is the case for
mass-action systems, we can compute the sum of rates over this
transition set efficiently using Faulhaber’s formula.

example Consider the following mass-action reaction 2X c−→
∅ . For macro-state x̄ = {0, . . . ,n} we can compute the correspond-
ing lumped transition rate

ᾱ(x̄) =
c

2

n∑
i=1

i(i− 1) =
c

2

(
n∑
i=1

i2 −

n∑
i=1

i

)

=
c

2

(
2n3 + 3n2 +n

6
−
n2 +n

2

)
eliminating the explicit summation in the lumped propensity
function. �

Interestingly, the lumped distribution tends to be less concen-
trated. This is due to the assumption of a uniform distribution
inside macro-states. This effect is illustrated by the example
of a birth-death process below. Due to this effect, an iterative
refinement typically keeps an over-approximation in terms of
state-space area. This is a desirable feature since relevant regions
are less likely to be pruned due to lumping approximations.
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example We illustrate the scheme on the birth-death process,
i.e. Model 2. Its CTMC has the following generator matrix

Q =



−µ µ 0 · · ·
γ −(µ+ γ) µ 0 · · ·
0 2γ −(µ+ 2γ) µ 0 · · ·
0 0 3γ −(µ+ 3γ) µ 0 · · ·
...

...
...

...
...

...
. . .


The structure is more obvious in the graph visualization:

0 1 2 3 4 · · ·
µ µ µ µ µ

γ 2γ 3γ 4γ

Now we lump states in groups of 5 states. The states are con-
structed asWe omit the vector

notation here for
clarity because the

process has a single
dimension.

x̄k(5k, (5+ 1)k− 1)

The transition states for the birth reaction ∅→ S is

x̄
k
1−→k+1 = {5(k+ 1) − 1} .

The lumped transition rate

ᾱ1

(
x̄
k
1−→k+1

)
= µ .

Similarly, the transition states for the death reaction S→ ∅ is

x̄
k
2−→k+1 = {5(k+ 1)} .

The lumped transition rate

ᾱ2

(
x̄
k+1

1−→k

)
= 5kγ .

Using (5.4) the aggregated transitions are as follows.
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[0, 4] [5, 9] [10, 14] [15, 19] [20, 24] · · ·

µ/5 µ/5 µ/5 µ/5
µ/5

γ 2γ 3γ 4γ

In this example the rates remain in effect the same. But the same
number of macro-states covers more micro-states.

A forward integration of both, the model at original granularity The integration is
done using an ad-hoc
FSP on [0, 200].

and the aggregated version is shown in Figure 5.2. �

0
50

100
150

#X

original version

0 10 20 30 40 50
time

0
50

100
150
200

#X

lumped version

Figure 5.2: A lumping approximation of Model 2 on the state-space
truncation to [0, 200] on t ∈ [0, 50]. On the left-hand side so-
lutions of a regular truncation approximation and a lumped
truncation (macro-state size is 5) are given.

5 .4 approximation features

Considering the previous example, we observe that the lumped
version shows a similar temporal dynamic, but the distributions
are spread out more. This is a desirable feature because it indi-
cates the location of the main probability mass with significantly
less states.

These features are not valid in general and the aggregation
scheme remains a heuristic approach. This is partly due to the
MPM formalism allowing for arbitrary propensity functions. One
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can construct a process such that a significant change in dynamics
inside a macro-state would be missed. Mostly we encounter this
phenomenon in models that exhibit a significant change near the
zero-boundary for some species. Examples include the toggle
switch with Hill-functions (Model 14) and die-out in epidemics
models (Model 15). Other cases are rather rare in the standard
model repertoire, but some awareness is necessary.

Fortunately, by refining the aggregation down to “full resolu-
tion”, we can gain the guarantees inherent to FSP.



6
T R U N C AT I O N S F O R S TAT I O N A RY

D I S T R I B U T I O N S

An important part of the analysis of such models concerns their
long-run behavior. Given an ergodic underlying Markov chain,
the chain’s stationary distribution characterizes this behavior. For
some special model classes, such as zero-deficiency networks (An-
derson and Kurtz, 2011), analytical solutions for the stationary
distribution are known. However, most models require numerical
approaches, often based on some form of approximation to guar-
antee tractability. Those approaches can be based on stochastic
simulation (Gillespie, 1977) (which for steady-state analysis tends
to be slow and inaccurate) or moment-bounds via mathemati-
cal programming (Kuntz, Juan and Thomas, Philipp and stan
and Barahona, 2019). Here, we draw on numerical approaches
based on state-space truncation, which represent a viable op-
tion to approximate stationary distributions (Kuntz et al., 2021a).
Truncation-based approaches have the benefit of describing the
complete dynamics within a finite subset of the typically very
large or infinite state-space. As such, they enable the approxi-
mation of complex distributions that are not well-described by
low-order moments.

The main step in the computation of such an approximation
is the identification of a suitable truncation, i.e. a subset of the
state-space encompassing most of the stationary probability mass.
Existing methods typically rely on Foster-Lyapunov drift con-
ditions to define such subsets (Dayar et al., 2011). While these

113
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truncations come with bounds on the contained stationary prob-
ability mass, they typically are far larger than necessary. The
truncation is usually strongly constrained by the form of the
chosen Lyapunov function (Dayar et al., 2011; Gupta, Briat, and
Khammash, 2014). Optimizing over possible functions to iden-
tify efficient truncations is technically challenging and, to our
knowledge, has not been demonstrated for general reaction net-
works (Milias-Argeitis and Khammash, 2014).

In this work, we address the identification of suitable trun-
cations by using an aggregation-refinement scheme. Initially, a
Lyapunov analysis yields a set containing at least 1− ε of the
stationary probability mass. On this subset of the state-space,
we apply an aggregation scheme that groups together states in
hypercube macro-states. Throughout each of these macro-states,
we assume a uniform distribution among its constituent micro-
states. This allows us to roughly analyze large portions of the
state-space with exponentially fewer variables. We then iteratively
truncate and refine the approximation based on the stationary
distribution of this aggregated Markov chain. We keep only the
most relevant macro-states and continue this scheme until the
macro-states contain a single original state. In this way, we arrive
at an effective truncation to compute an approximation of the
stationary distribution.

We investigate the approximation results on case studies with
known stationary distributions and complex models with intri-
cate stationary distributions. We evaluate the truncation quality
by assessing the stationary probability mass captured. To this
end, we use analytical solutions and bounds given by a Lya-
punov analysis. Further, we explore the control of the truncation
size through the truncation parameter. Finally, we demonstrate
the method on the p53 oscillator model exhibiting a complex
stationary distribution.

6 .1 related work

analytical solutions For some specific models, analyt-
ical solutions for the stationary distribution have been found
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(Kurasov et al., 2018; Mélykúti, Hespanha, and Khammash, 2014).
For the class of zero-deficiency networks, the stationary distri-
bution is known to have a Poisson product form (Anderson,
Craciun, and Kurtz, 2010). Monomolecular reaction networks can
be solved explicitly, as well (Jahnke and Huisinga, 2007).

truncation-based analysis The analysis of countably
infinite-sized state-spaces is often handled by pre-defined trunca-
tions (Kwiatkowska, Norman, and Parker, 2011). Sophisticated
state-space truncations for the (unconditioned) forward analy-
sis have been developed that give lower bounds. They typically
provide a trade-off between computational load and tightness of
the bound (Andreychenko et al., 2011; Henzinger, Mateescu, and
Wolf, 2009; Lapin, Mikeev, and Wolf, 2011; Mikeev et al., 2013;
Munsky and Khammash, 2006). Such methods cannot be directly
applied to the estimation of stationary distributions because the
approximation usually introduces a sink-state.

Truncations for stationary distributions often involve re-direc-
tion schemes for transitions leaving and entering the subset. A
comprehensive survey of such state-space truncation methods
can be found in (Kuntz et al., 2021b). A popular method of iden-
tifying truncations is the construction of a suitable Lyapunov
function. Beyond their use for establishing ergodicity (Dayar et
al., 2011; Gupta, Briat, and Khammash, 2014; Meyn and Tweedie,
1993), these functions can be used to obtain truncations, guaran-
teed to contain a certain amount of stationary probability mass
(Dayar et al., 2011). Using Lyapunov functions for the construc-
tion of truncations often leads to very conservative sets (Milias-
Argeitis and Khammash, 2014). Different approaches have been
employed to find truncations: In Gupta, Mikelson, and Kham-
mash (2017) SSA estimates are used to set up an increasing family
of truncations.

moment-based approximation Apart from approaches
based on state-space truncations, moment-based approaches have
been particularly popular recently (Dowdy and Barton, 2018a;
Ghusinga et al., 2017; Kuntz, Juan and Thomas, Philipp and stan
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and Barahona, 2019; Sakurai and Hori, 2017). Such approaches
are based on the fact that particular matrices of distributional
moments such as mean and variance are positive semi-definite.
Along with linear constraints stemming from the Kolmogorov
equations (Backenköhler, Bortolussi, and Wolf, 2016), a semi-
definite program can be formulated and solved using existing
tools. While this method is suited to compute bounds on both
moments and subsets of the state-space, its application is limited,
due to numerical issues inherent in the formulation (Dowdy and
Barton, 2018a).

An approach where quantities are only described in terms
of their magnitude has been proposed in Češka and Kretínský
(2019). This allows for an efficient qualitative analysis of both
dynamic and transient behavior.

6 .2 truncation-based approximation

In many relevant cases, the state-space is huge or infinite and
therefore the stationary solution cannot be computed directly. To
make such a computation possible we have to restrict ourselves
to a finite manageable subset of the state-space and assume the
majority of the probability mass is concentrated within that finite
subset. The main problem is to deal with the transitions leading
to and from the truncated set (cf. Figure 6.2). In forward analysis,
the outgoing transitions are simply redirected into a sink-state.
This way, a forward analysis provides lower bounds since mass
leaving the truncation does not re-enter. This approach, however,
is unsuitable for the computation of stationary distributions
because mass would accumulate in the sink-state leading to a
distribution assigning all mass to it. Therefore, transitions leaving
the truncation need to be redirected back into the truncation.

The process’ dynamics outside the truncation are defined by
the stochastic complement (Spieler, 2014). If its behavior was known,
one could redirect outgoing to incoming transitions optimally
and preserve the correct stationary distribution. However, this
reentry distribution is typically unknown in most relevant cases.
Many different reentry distributions have been used, such as
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redirecting to some internal state or states with incoming transi-
tion from outside the truncation. Kuntz et al. (2021a) provides a
comprehensive review of such methods.

The most natural choice is to pick a reentry distribution that
redirects mass to states with incoming transitions from truncated
states (cf. Figure 6.2 (center)).

Using varying redirections, we can compute bounds on the
stationary probability conditioned on a truncation (Spieler, 2014,
Thm. 14). To do this, one has to compute the stationary distri-
bution for every possible way of connecting all outgoing to a
single incoming transition. Naturally, such an algorithm is rather
expensive since one has to solve a linear system for each com-
bination. Therefore this method of computing bounds is costly
on very large truncations, often given by Lyapunov functions. In
Figure 6.1 an enumeration of all such redirections is shown on a
small 3× 3-truncation.

Figure 6.1: Enumeration and solution of all single-state redirections
yields upper and lower bounds on the stationary distribu-
tion, conditioned on being inside the truncation.

When computing an approximation instead of bounds, we em-
ploy a uniform redirection scheme: Outgoing transitions are split
uniformly among incoming transitions. Due to the threshold-
based truncation scheme, we are likely to end up with a some-
what uniform distribution over in-boundary states (see Sec-
tion 6.2.2).

The identification of good truncations remains a major task
in such approximations. Using approaches such as Lyapunov
functions (Section 2.7) (Dayar et al., 2011) or moment-bounds
(Kuntz et al., 2021a) can provide a good initial estimate, but typi-
cally the resulting truncations are far larger than necessary. This
leads to dramatically increased computational costs, especially
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Figure 6.2: (left) A countably infinite state-space. (center) Outgoing
transitions are re-directed (according to the reentry distribu-
tion) to states that have incoming transitions from outside
the truncation. (right) A comparison of the area prescribed
by a Lyapunov analysis using Geobound and threshold 0.1
and the minimal area containing 0.9 stationary probability
mass. The model is a parallel birth-death process (Model 9).

when bounding methods mentioned above are performed. Until
a system for a larger truncation is solved, the precise location of
most of the probability mass is often unknown. Instead of solving
the full system for such a large space, we employ an aggregation
scheme to cover large areas of the state-space with exponentially
fewer variables.

Error bounds have been derived for increasing truncation sets
in the case of linear Lyapunov functions (Gupta, Mikelson, and
Khammash, 2017). However, until now it has not been shown
that these bounds are applicable in practice (Meyn, Tweedie,
et al., 1994). Alternatively, one can monitor the product of the
probability-ouflow rate and the maximum L1-norm. This bounds
the approximation error up to a constant M > 0, assuming a lin-
ear Lyapunov function exists (Gupta, Mikelson, and Khammash,
2017).

6 .2 .1 Initial Aggregation

The initial aggregated space Ŝ(0) should encompass all regions
of the state-space that could contain significant mass because
states outside this initial area will not be refined. In principle,
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multiple approaches could be used to identify such a region.
One possibility is the computation of moment bounds for the
stationary distribution (Dowdy and Barton, 2018a; Ghusinga et
al., 2017). Based on these bounds on expectations and covari-
ances, an initial truncation could be fixed. The approach we use
here is to identify such a region by a Lyapunov analysis (Da-
yar et al., 2011). This way, we obtain a polynomial describing a
semi-algebraic subset of the entire state-space containing 1− ε`
of the mass, where ε` > 0 can be fixed arbitrarily. These sets
usually are far larger than a minimal set containing 1− ε` of
stationary probability mass would be. As an initial aggregation,
we build an aggregation on a subset [0..n]nS ⊂ S containing the
set prescribed by the Lyapunov analysis. We also employ this
approach to estimate errors in the evaluation. Specifically, we em-
ploy the tool Geobound (Spieler, 2010) with L2-norm as function
g implementing techniques presented in Dayar et al. (2011).

In many cases, simple choices of g such as the L1- or L2- norm
are sufficient. However, the sets resulting from such functions are
often very conservative. Consider Figure 6.2 (right) as an example,
where the Lyapunov truncation with ε` = 0.1 for two parallel
birth-death processes (Model 9) is compared to the smallest set
containing 0.9 of stationary probability. Clearly, the area given
by the Lyapunov function is magnitudes larger than necessary to
capture probability mass consistent with ε`.

6 .2 .2 Iterative Refinement Algorithm

The refinement algorithm (Algorithm 5) starts with a set of large
macro-states that are iteratively refined, based on approximate
stationary distributions. We start by constructing square macro-
states of size 2m in each dimension for some m ∈ N such that
they form a large-scale grid S(0). Hence, each initial macro-state
has a volume of (2m)nS . This choice of grid size is convenient
because we can halve states in each dimension. Moreover, this
choice ensures that all states have an equal volume and we end
up with unit-sized macro-states, equivalent to a truncation of the
original non-lumped state-space.
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Figure 6.3: The state-space refinement algorithm on a birth-death pro-
cess. From left to right the state size is halved and states
with low probability are removed from the truncation. The
final truncation is a typical truncation with states of size 1

and the initial states are of size 24.

Algorithm 5: Approximating the stationary distribution

input : Initial partitioning S(0), truncation threshold ε
output : approximate stationary distribution π̂∞

1 for i = 1, . . . ,m do
2 π̂

(i)∞ ← approximate stationary distribution on S(i);

3 R← smallest R ′ ⊆ S(i) s. t.
∑
x̄∈R ′ π̂

(i)∞ (x̄) > 1− ε;
4 S(i+1) ←

⋃
x̄∈R split(x̄);

5 update Q̂-matrix;

6 return π̂(m)∞ ;

An iteration of the state-space refinement starts by computing
the stationary distribution, using the lumped Q̂-matrix. Based
on a threshold parameter ε > 0 states are either removed or split
(line 4), depending on the mass assigned to them by the approxi-
mate stationary probabilities π̂(i)∞ . Thus, each macro-state is either
split into 2nS new states or removed entirely. The result forms the
next lumped state-space S(i+1). The Q̂-matrix is updated (line 5)
using (5.4) to calculate the transition rates of the next aggregated
truncation S(i+1). Entries of truncated states are removed from
the updated transition matrix. Transitions leading to them are
re-directed according to the re-entry matrix (Section 6.2). After
m iterations (we started with states of side lengths 2m) we have a
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standard FSP scheme on the original model tailored to computing
an approximation of the stationary distribution.

This way, the refinement algorithm focuses only on those parts
of the state-space contributing most to the stationary distribution.
For instance, in Figure 6.3 the stationary probability mass mostly
concentrates around #S = 200. Therefore, states that are further
away from this area can be dropped in further refinement. This
filtering (line 3 in Algorithm 5) ensures that states contributing
significantly to π̂(i)∞ will be kept and refined in the next iteration.
The selection of states is done by sorting states in descending
order according to their approximate probability mass. This en-
sures the construction of the smallest possible subset chosen
for refinement according to the approximation. Then states are
collected until their overall approximate mass is above 1− ε.

An interesting feature of the aggregation scheme is that the
distribution tends to spread out more. This is due to the assump-
tion of a uniform distribution inside macro-states. To gain an
intuition, consider a macro-state that encompasses a peak of the
stationary distribution. If we re-distribute the actual probability
mass inside this macro-state uniformly, a higher probability is
assigned to states at the macro-state’s border. When plugging
such macro-states together, this increased mass away from the
peak will increase the mass assigned to adjacent macro-states.
This effect is illustrated by the example of a birth-death process
in Figure 6.3. Due to this effect, an iterative refinement typically
keeps an over-approximation in terms of state-space area. This
is a desirable feature since relevant regions are less likely to be
pruned due to lumping approximations.

6 .3 results

A prototype was implemented in Rust 1.50 and Python 3.8. The
linear systems were solved either using Numpy (Harris et al.,
2020) for up to 5000 states, or the sparse linear solver as available
through Scipy (Virtanen et al., 2020), or the iterative biconjugate
gradient stabilized algorithm (Van der Vorst, 1992) (up to 10,000
iterations and absolute tolerance 10−16).
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The examples that we consider in the sequel are typical bench-
marks for the analysis of MPMs. For most of them, appropri-
ate Lyapunov functions have been determined using Geobound
(Spieler, 2010, 2014). However, the corresponding Lyapunov sets
containing at least 1− ε` of the stationary probability mass are
very large for typical choices of ε` (e.g. ε` ∈ {0.1, 0.05, 0.001}).
Even for extremely large ε`, say ε` = 0.8, the remaining state-
space may still be huge (e.g, 15,198 states).

6 .3 .1 Parallel Birth-Death Process

We first examine the algorithm on the simple example of two
parallel, uncoupled birth-death processes.

Model 9 (Parallel Birth-Death Process). Two uncoupled parallel
birth-death processes result in a simple stationary distribution that is
given by a product of two Poisson distributions.

∅ ρ−→ A , A
δ−→ ∅ , ∅ ρ−→ B , B

δ−→ ∅ .

As a parameterization we choose ρ = 100 and δ = 1.

For this model, the stationary distribution is known to be the
product of two Poisson distributions with rate ρ/δ.

According to the Lyapunov analysis with a 1×10−4 bound,
we fix the initial truncation to a 70 × 70 grid of macro-states
with size 27 in each dimension. This implies 8 iterations of the
algorithm to arrive at a truncation with the original granularity.
In Figure 6.4, we illustrate the truncations of different iterations.
Over the iterations, the covered area decreases, while the aggre-
gation granularity increases. The final truncation distribution
approximation is also depicted and covers 1− 1.27×10−2 of the
true stationary distribution (cf. Table 6.1).

For this case study, we also compute state-wise bounds on
the probabilities conditioned on the truncation as discussed in
Section 6.2. In Figure 6.5, we present the difference between
upper and lower bound for ε = 0.1. We observe intervals that are
narrowest in the truncation’s interior near the distribution’s mode.
The largest intervals or the largest absolute uncertainty is present
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Figure 6.4: Truncations of different iterations are layered on top of each
other. At higher iterations, truncations cover less area but
increase in detail, due to the refinement of macro-states.
The final approximation is indicated by its approximate
probabilities.

in the boundary states. This indicates, that the specific reentry
distribution has little effect on the main approximate stationary
mass. More detailed results on the intervals’ magnitudes are
given in Table 6.1.

6 .3 .2 Exclusive Switch

The exclusive switch (Barzel and Biham, 2008) has three different
modes of operation, depending on the DNA state, i.e. on whether
a protein of type one or two is bound to the DNA.

Model 10 (Exclusive Switch). The exclusive switch model consists
of a promoter region that can express both proteins P1 and P2. Both
can bind to the region, suppressing the expression of the other protein.
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threshold parameter ε

1×10−1 1×10−2 1×10−3 1×10−4

total width 1.2336 3.09×10−2 5.39×10−4 8.12×10−6

max. width 3.47×10−3 9.29×10−5 4.04×10−7 4.65×10−9

outside mass 1.27×10−2 1.05×10−4 1.05×10−6 1.06×10−8

Table 6.1: Results for Model 9 : The characteristics of the lower-upper
bound intervals on the conditional probability and the mass
not contained in the truncation are given.
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Figure 6.5: Results for Model 9 with truncation threshold ε = 0.1. The
difference between the upper and lower bounds on the
probability conditioned on the truncation.

For certain parameterizations, this leads to a bi-modal or even tri-modal
behavior.

D+ P1
β−→ D.P1 , D.P1

γ1−→ D+ P1 ,

D+ P2
β−→ D.P2 , D.P2

γ2−→ D+ P2 ,

D.P1
ρ1−→ D.P1 + P1 , D.P2

ρ2−→ D.P2 + P2 ,

D
ρ1−→ D+ P1 , D

ρ2−→ D+ P2 , P1
λ−→ ∅ , P2

λ−→ ∅

We choose parameter values ρ1 = 0.7, ρ2 = 0.6, λ = 0.02, β = 0.005,
γ1 = 0.06, and γ2 = 0.05.
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Figure 6.6: Errors of the stationary distribution (Model 9) approxima-
tions for increasing (1×10−1, 1×10−2, 1×10−3, 1×10−4)
truncation thresholds.

Since the exclusive switch models mutually exclusive binding
of proteins to a single genetic locus, we know a priori that there
are exactly three distinct operating modes. In particular are D,
D.P1, and D.P2 mutually exclusive such that

XD(t) +XD.P1(t) +XD.P2(t) = 1, ∀t > 0 .

This model characteristic often leads to bi-modal stationary dis-
tributions, where one or the other protein is more abundant
depending on the genetic state.

Accordingly, we adjust the initial truncation: The state-space
for the DNA states is not lumped. Instead we “stack” lumped
approximations of the P1-P2 plane upon each other. Such special
treatment of DNA states is common for such models (Lapin,
Mikeev, and Wolf, 2011). Using Lyapunov analysis for threshold
0.001, we fix an initial state-space of 63× 63 macro-states with
size 27. Detailed results for different parameters ε are presented
Table A.5. We compute error bounds using a worst-case analysis
based on reference solutions provided by Geobound with ε` =
0.01. We observe a strong decrease in both upper bounds on the
total absolute and maximal absolute error in the final iteration.
Interestingly, the errors between different thresholds are very
close in earlier iterations. This is mainly due to the usage of
absolute errors which causes probabilities close to the mode
dominate.

Using Geobound we observe that our final truncation captures
the stationary mass very well (cf. Table 6.2 and Figure 6.7). We
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Figure 6.7: The approximate stationary distribution of the exclusive
switch (Model 10) obtained with ε = 1×10−4.

use the Geobound’s lower bounds with ε` = 1×10−2 and find
that the uncovered mass by the aggregation-based truncation
is magnitudes lower than ε or close to it (for ε = 0.1). While
they capture the mass well, they are much smaller than the
Geobound truncation (ε` = 0.1) with 16,780 states, regardless of
the threshold parameter ε.

threshold parameter ε

1×10−1 1×10−2 1×10−3 1×10−4

total width 5.5171 1.5559 2.89×10−2 3.71×10−4

max. width 1.58×10−1 3.30×10−3 3.47×10−5 3.84×10−7

outside mass 6 1.52×10−1 1.29×10−3 2.02×10−5 2.72×10−7

Table 6.2: Results for Model 10: The characteristics of the lower-upper
bound intervals on the conditional probability and the upper
bound on mass not contained in the truncation are given.

In Figure 6.8, we show the effect of the threshold parameter ε
on the size of the final truncation. We observe a roughly linear
increase in size with an exponential decrease of ε.

6 .3 .3 p53 Oscillator

We now consider a model of the interactions of the tumor sup-
pressor p53 (Geva-Zatorsky et al., 2006). The system describes the
negative feedback loop between p53 and the oncogene Mdm2.
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Figure 6.8: The sizes of the final truncation vs. the threshold parameter
ε (Model 2 and Model 10).

Species pMdm2 models a precursor to Mdm2. This model is
particularly interesting due to its complex three-dimeansional os-
cillatory behavior. The model is ergodic with a unique stationary
distribution (Gupta, Briat, and Khammash, 2014).
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Figure 6.9: A sample trajectory of Model 11 illustrating the oscillatory
long-run behavior.

Model 11 (p53 Oscillator).

∅ k1−→ p53 , p53
k2−→ ∅ , p53

k4−→ p53 + pMdm2 ,

p53

α4(·)−−−→ ∅ , pMdm2
k5−→Mdm2 , Mdm2

k6−→ ∅ .

The non-polynomial degradation reaction rate

α4(x) = k3xMdm2

xp53

xp53 + k7
.

The parameterization based on (Ale, Kirk, and Stumpf, 2013) is k1 = 90,
k2 = 0.002, k3 = 1.7, k4 = 1.1, k5 = 0.93, k6 = 0.96, and k7 = 0.01.
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With the exception of propensity function α4, we can com-
pute the transition rates ᾱi using the Faulhaber formulae, as
discussed in Chapter 5. We consider α4 separately, because it is
non-polynomial and therefore, we have to make an approxima-
tion. The fraction occurring in the non-linear propensity function
α4 can roughly be characterized as an activation function: Due
to the low value of parameter k7 = 0.01 we can approximateNote, that∑n

i=0 i/(i+ k7)

can be solved
analytically.

However, the
approximation

presented above is
much simpler to

compute.

xp53

xp53 + k7
≈

0 if xp53 = 0

1 otherwise
.

We use this approximation at the coarser levels of aggregation
to efficiently compute the approximate transition rate ᾱ4. At the
finest granularity we switch back to exact propensity function
α4.

We now derive Lyapunov-sets for the p53 oscillator case study
(Model 11). Let the Lyapunov function

g(x) = 120xp53 + 0.2xpMdm2
+ 0.1xMdm2

. (6.1)

Then the drift

d(x) =−
k3xMdm2

xp53

xp53 + k7
− 0.1k6xMdm2

+ 120k1

− 120k2xp53 + 0.2k4xp53 − 0.1k5xpMdm2

=−
204xMdm2

xp53

xp53 + 0.01
− 0.096xMdm2

− 0.02xp53

− 0.0093xpMdm2
+ 10,800 .

(6.2)

Clearly, c = supx∈S d(x) = 10,800. In particular, the supremum
c is at the origin since all non-constant terms are negative. The
slowest rate of decrease for (6.2) is xp53 with xMdm2

= xpMdm2
= 0.

We are content with a superset of a Lyapunov set (2.31) for some
threshold ε`. Therefore taking (2.31), we can solve the inequality

ε`
c
(c− 0.02xp53) > ε` − 1

for xp53 and

c

0.02ε`
< xp53 .
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Therefore

π∞
({
x ∈ S |

c

0.2ε`
< ‖x‖

})
> 1− ε` .
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Figure 6.10: The final truncation at original granularity derived for the
p53 oscillator.

Due to the exponential increase stemming from the three-di-
mensional nature of this model, we only evaluated with parame-
ter ε = 0.1. According to the Lyapunov analysis shown above, the
area covered by an 6× 6× 6 macro-states with size 220, covers 0.9
of stationary mass. A truncation of this same area would consist
of 226,492,416 states instead of the 216 macro-states. The model
has a striking oscillatory behavior (cf. Figure 6.9) that is reflected
in its stationary distribution. This feature is well-captured in the
approximate distribution, where the oscillatory behavior leads
to a complex stationary distribution (cf. Figure 6.11). This distri-
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bution leads to a non-trivial truncation (357,488 states) which is
tailored to the main stationary mass (Figure 6.10).
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Figure 6.11: The approximate marginal distributions of the stationary
distribution based on the truncation derived with ε = 0.1.

6 .4 conclusion

State-of-the-art methods for numerically calculating the station-
ary distribution of Markovian population models rely on coarse
truncations of irrelevant parts of large or infinite discrete state-
spaces. These truncations are either obtained from the stationary
statistical moments of the process or from Lyapunov theory. They
are limited in shape because these methods do not take into
account the detailed steady-state flow within the truncated state-
space but only consider the average drift or stationary moments.

Here, we propose a method to find a tight truncation that is
not limited in its shape and iteratively optimizes the set based
on numerically cheap solutions of abstract intermediate models.
It captures the main portion of probability mass even in the
case of complex behaviors efficiently. In particular, the method
represents another option, where Lyapunov analysis leads to
forbiddingly large truncations.
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A N A LY S I S U N D E R T E R M I N A L C O N S T R A I N T S

Many tasks, such as the analysis of rare events or the inference
of agent counts under partial observations naturally introduce
terminal constraints on the system. In these cases, the system’s
initial state is known, as well as the system’s (partial) state at
a later time-point. The probabilities corresponding to this so-
called bridging problem are often referred to as bridging probabilities
(Golightly and Sherlock, 2019; Golightly and Wilkinson, 2011).
For instance, if the exact, full state of the process Xt has been
observed at time t = 0 and t = T , the bridging distribution is
given by

Pr(Xt = x | X0 = x0,XT = xg)

for all states x and times t ∈ [0, T ]. Often, the condition is more
complex, such that in addition to an initial distribution, a ter-
minal distribution is present. Such problems typically arise in
a Bayesian setting, where the a priori behavior of a system is
filtered such that the posterior behavior is compatible with noisy,
partial observations (Broemeling, 2017; Huang et al., 2016). For
example, time-series data of protein levels is available while the
mRNA concentration is not (Adan et al., 2017; Huang et al., 2016).
In such a scenario our method can be used to identify a good
truncation to analyze the probabilities of mRNA levels.

Bridging probabilities also appear in the context of rare events.
Here, the rare event is the terminal constraint because we are only
interested in paths containing the event. Typically researchers

131



132 analysis under terminal constraints

have to resort to Monte Carlo simulations in combination with
variance reduction techniques in such cases (Daigle Jr et al., 2011;
Kuwahara and Mura, 2008).

Efficient numerical approaches that are not based on sampling
or ad-hoc approximations have rarely been developed.

Here, we combine state-of-the-art truncation strategies based
on a forward analysis (Andreychenko et al., 2011; Lapin, Mikeev,
and Wolf, 2011) with a refinement approach that starts from an
abstract MPM with lumped states. We base this lumping on a grid-
like partitioning of the state-space. Throughout a lumped state,
we assume a uniform distribution that gives an efficient and con-
venient abstraction of the original MPM. Note that the lumping
does not follow the classical paradigm of Markov chain lumpa-
bility (Buchholz, 1994) or its variants (Dayar and Stewart, 1997).
Instead of an approximate block structure of the transition-matrix
used in that context, we base our partitioning on a segmentation
of the molecule counts. Moreover, during the iterative refinement
of our abstraction, we identify those regions of the state-space
that contribute most to the bridging distribution. In particular,
we refine those lumped states that have a bridging probability
above a certain threshold δ and truncate all other macro-states.
This way, the algorithm learns a truncation capturing most of the
bridging probabilities. This truncation provides guaranteed lower
bounds because it is at the granularity of the original model.

7 .1 related work

terminal constraints The problem of endpoint constrain-
ed analysis occurs in the context of Bayesian estimation (Särkkä,
2013). For MPMs, this problem has been addressed by Huang et al.
(2016) using moment closure approximations and by Wildner
and Koeppl (2019) further employing variational inference. Go-
lightly and Sherlock modified stochastic simulation algorithms
to approximatively augment generated trajectories (Golightly
and Sherlock, 2019). Since a statistically exact augmentation is
only possible for few simple cases, diffusion approximations
(Golightly and Wilkinson, 2005) and moment approximations
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(Milner, Gillespie, and Wilkinson, 2013) have been employed.
Such approximations, however, do not give any guarantees on
the approximation error and may suffer from numerical instabili-
ties (Schnoerr, Sanguinetti, and Grima, 2014).

Another manifestation of the bridging problem is found dur-
ing the estimation of first passage times and rare event analysis.
Approaches for first-passage times are often of heuristic nature
(Bortolussi and Lanciani, 2014; Hayden, Stefanek, and Bradley,
2012; Schnoerr et al., 2017). Rigorous approaches yielding guar-
anteed bounds are currently limited by the performance of state-
of-the-art optimization software (Backenköhler, Bortolussi, and
Wolf, 2020).

rare event probabilities The analysis of rare events is a
special case of the terminal constrained Markov processes con-
sidered in this chapter. Most methods for the estimation of rare
event probabilities rely on importance sampling (Daigle Jr et
al., 2011; Kuwahara and Mura, 2008). For other queries, alterna-
tive variance reduction techniques such as control variates are
available (Backenköhler, Bortolussi, and Wolf, 2019). Apart from
sampling-based approaches, dynamic finite-state projections have
been employed by Mikeev, Sandmann, and Wolf (2013), but are
lacking automated truncation schemes.

state-space truncation The analysis of countably in-
finite state-spaces is often handled by a pre-defined trunca-
tion (Kwiatkowska, Norman, and Parker, 2011). Sophisticated
state-space truncations for the (unconditioned) forward analysis
have been developed to give lower bounds and rely on a trade-off
between computational load and tightness of the bound (Andrey-
chenko et al., 2011; Henzinger, Mateescu, and Wolf, 2009; Lapin,
Mikeev, and Wolf, 2011; Mikeev et al., 2013; Munsky and Kham-
mash, 2006).

verification The problem considered in this chapter can be
interpreted as an instance of a model checking problem (Bentriou,
Ballarini, and Cournède, 2021; Brim, Češka, and Šafránek, 2013).



134 analysis under terminal constraints

Reachability – relevant in the context of probabilistic verifica-
tion (Bortolussi and Lanciani, 2014; Neupane et al., 2019) – is a
bridging problem where the endpoint constraint is the visit of
a set of goal states. Backward probabilities are commonly used
to compute reachability likelihoods (Amparore and Donatelli,
2013; Zapreev and Katoen, 2006). Approximate techniques for
reachability, based on moment closure and stochastic approxima-
tion, have also been developed in (Bortolussi and Lanciani, 2014;
Bortolussi, Lanciani, and Nenzi, 2018), but lack error guarantees.

hidden markov models There is also a conceptual sim-
ilarity between computing bridging probabilities and the forward-
backward algorithm for computing state-wise posterior marginals
in hidden Markov models (HMMs) (Rabiner and Juang, 1986). Like
MPMs, HMMs are a generative model that can be conditioned on
observations. We only consider two observations (initial and ter-
minal state) that are not necessarily noisy but the forward and
backward probabilities admit the same meaning.

7 .2 backward probabilities

Let xg ∈ S be a fixed goal state. Given the terminal constraint

Pr(XT = xg) = 1 for some T > 0 ,

we are interested in the so-called backward probabilities

β(xi, t) = Pr(XT = xg | Xt = xi), t 6 T . (7.1)

Note that β(·, t) is a function of the conditional event and thus
is no probability distribution over the state-space. Instead β(·, t)
gives the reaching probabilities for all states over the time span
of [t, T ]. To compute these probabilities, we can employ the Kol-
mogorov backward equation

d

dt
β(t) = Qβ(t) , (7.2)

where we use the same vectorization to construct β(t) as we used
for π(t). The above equation is integrated backwards in time and
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yields the reachability probability for each state xi and time t < T
of ending up in xg at time T . Similar to the CME (2.18), we can
state a backward chemical master equation

dβ

dt
(x, t) =

nR∑
j=1

(
β(x, t) −β(x+ vj, t)

)
αj(x) . (7.3)

The state-space of many MPMs, even simple ones, is countably
infinite. In this case, we have to truncate the state-space to a
reasonable finite subset. The choice of this truncation heavily de-
pends on the goal of the analysis. If one is interested in the most
“common” behavior, for example, a dynamic mass-based trunca-
tion scheme is most appropriate (Mikeev and Sandmann, 2019).
Such a scheme truncates states with small probability during the
numerical integration. However, common mass-based truncation
schemes are not as useful for the bridging problem. This is be-
cause trajectories that meet the specific terminal constraints can
be far off the main bulk of the probability mass. We solve this
problem by a state-space lumping in connection with an iterative
refinement scheme.

7 .3 bridging distribution

The process’ probability distribution given both initial and termi-
nal constraints is formally described by the conditional probabili-
ties

γ(xi, t) = Pr(Xt = xi | X0 = x0,XT = xg) , (7.4)

for 0 6 t 6 T . for fixed initial state x0 and terminal state xg.
We call these probabilities the bridging probabilities. It is straight-
forward to see that γ admits the factorization

γ(xi, t) = π(xi, t)β(xi, t)/π(xg, T) (7.5)

due to the Markov property. The normalization factor, given by
the reachability probability

π(xg, T) = β(x0, 0) ,
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ensures that γ(·, t) is a distribution for all time points t ∈ [0, T ].
We call each γ(·, t) a bridging distribution. From the Kolmogorov
equations (2.17) and (7.2) we can obtain both the forward proba-
bilities π(·, t) and the backward probabilities β(·, t) for t < T .

We can easily extend this procedure to deal with hitting times
constrained by a finite time-horizon by making the goal state xg
absorbing.

example In Figure 7.1 we plot the forward, backward, and
bridging probabilities for Model 2. The probabilities are com-
puted on a [0, 100] state-space truncation. The approximate for-
ward solution π̂ shows how the probability mass drifts upwards
towards the stationary distribution Poisson(100). The backward
probabilities are highest for states below the goal state xg = 40.
This is expected because upwards drift makes reaching xg more
probable for “lower” states. Finally, the approximate bridging
distribution γ̂ can be recognized to be proportional to the product
of forward π̂ and backward probabilities β̂. �
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Figure 7.1: Forward, backward, and bridging probabilities for Model 2

with initial constraint X0 = 0 and terminal constraint X10 =

40 on a truncated state-space. Probabilities over 0.1 in π̂
and β̂ are given full intensity for visual clarity. The lightly
shaded area (> 60) indicates a region being more relevant
for the forward than for the bridging probabilities.

7 .4 bridge truncation via lumping approximation

We first discuss the truncation of countably infinite state-spaces
to analyze backward and forward probabilities (Section 7.4.1).
To identify effective truncations we employ a lumping scheme.
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Finally, in Section 7.4.2 we present an iterative refinement algo-
rithm yielding a suitable truncation for the bridging problem.

7 .4 .1 Finite State Projection

Even in simple models such as a birth-death Process (Model 2),
the reachable state-space is countably infinite. Direct analyzes of
backward (7.1) and forward equations (2.16) are often infeasible.
Instead, the integration of these differential equations requires
working with a finite subset of the infinite state-space (Munsky
and Khammash, 2006). If states are truncated, their incoming
transitions from states that are not truncated can be re-directed to
a sink state. The accumulated probability in this sink state is then
used as an error estimate for the forward integration scheme.
Consequently, many truncation schemes, such as dynamic trun-
cations (Andreychenko et al., 2011), aim to minimize the amount
of “lost mass” of the forward probability. We use the same trun-
cation method but base the truncation on bridging probabilities
rather than the forward probabilities.

7 .4 .2 Iterative Refinement Algorithm

The iterative refinement algorithm (Algorithm 6) starts with
a set of large macro-states that are iteratively refined, based
on approximate solutions to the bridging problem. We start by
constructing square macro-states of size 2m in each dimension
for some m ∈ N such that they form a large-scale grid S(0).
Hence, each initial macro-state has a volume of (2m)nS . This
choice of grid size is convenient because we can halve states
in each dimension. Moreover, this choice ensures that all states
have equal volume and we end up with states of volume 20 = 1
which is equivalent to a truncation of the original non-lumped
state-space.

An iteration of the state-space refinement starts by comput-
ing both the forward and backward probabilities (line 2 and
line 3) via integration of (2.17) and (7.2), respectively, using the
lumped Q̂-matrix. Based on the resulting approximate forward
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and backward probabilities, we compute an approximation of
the bridging distributions (line 4). This is done for each time-
point in an equispaced grid on [0, T ]. The time grid granularity
is a hyper-parameter of the algorithm. If the grid is too fine,
the memory overhead of storing backward β̂(i) and forward
solutions π̂(i) increases. We denote the approximations with a
hat (e.g. π̂) rather than a bar (e.g. π̄) to indicate that not only
the lumping approximation but also a truncation is applied and
similarly for the Q-matrix. If, on the other hand, the granular-
ity is too low, too much of the state-space might be truncated.
Based on a threshold parameter δ > 0 states are either removed
or split (line 7), depending on the mass assigned to them by
the approximate bridging probabilities γ̂(i)t . A state can be split
by the split-function which halves the state in each dimension.
Otherwise, it is removed. Thus, each macro-state is either split
into 2nS new states or removed entirely. The result forms the
next lumped state-space S(i). The Q-matrix is adjusted (line 10)
such that transition rates for S(i) are calculated according to
(5.4). Entries of truncated states are removed from the transi-
tion matrix. Transitions leading to them are re-directed to a sink
state (Section 7.4.1). After m iterations (we started with states of
side lengths 2m) we have a standard FSP scheme on the original
model tailored to computing an approximation of the bridging
distribution.

In Figure 7.2 we give a demonstration of how Algorithm 6

works to refine the state-space iteratively. Starting with an initial
lumped state-space S(0) covering a large area of the state-space,
repeated evaluations of the bridging distributions are performed.
After five iterations the remaining truncation includes all states
that significantly contribute to the bridging probabilities over the
times [0, T ].

It is important to realize that determining the most relevant
states is the main challenge. The above algorithm solves this
problem by considering only those parts of the state-space that
contribute most to the bridging probabilities. The truncation is
tailored to this condition and might ignore regions that are likely
in the unconditioned case. For instance, in Figure 7.1 the bridging
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Algorithm 6: Iterative refinement for the bridging problem

input : initial partitioning S(0), truncation threshold δ
output : approximate bridging distribution γ̂

1 for i = 1, . . . ,m do
2 π̂

(i−1)
t ← approximate forward equation on S(i);

3 β̂
(i−1)
t ← approximate backward equation on S(i);

4 γ̂
(i)
t ← β̂(i)π̂(i)/π̂(xg, T); /* approx. bridging */

5 S(i) ← ∅;
6 foreach x̄ ∈ S(i) do
7 if ∃t.γ̂(i)t (x̄) > δ; /* refinement */

8 then
9 S(i) ← S(i) ∪ split(x̄);

10 update Q̂-matrix;

11 return γ̂(i);

probabilities mostly remain below a population threshold of
#X = 60 (as indicated by the lighter/darker coloring), while the
forward probabilities mostly exceed this bound. Hence, in this
example a significant portion of the forward probabilities π̂(i)t is
captured by the sink state. However, the condition in line 7 of
Algorithm 6 ensures that states contributing significantly to γ̂(i)t
will be kept and refined in the next iteration.

7 .5 results

We present four examples in this section to evaluate our proposed
method. A prototype was implemented in Python 3.8. For numer-
ical integration we used the Scipy implementation (Virtanen et al.,
2020) of the implicit method based on backward-differentiation
formulas (Byrne and Hindmarsh, 1975). The analysis as a Jupyter
notebook is made available online (Backenköhler, 2020).
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Figure 7.2: The state-space refinement algorithm on two parallel unit-
rate arrival processes. The bridging problem from (0, 0) to
(64, 64) and T = 10 and truncation threshold δ = 5×10−3.
States with a bridging probability below δ are light grey.
The macro-state containing the goal state is marked in black.
The initial macro-states are of size 16× 16.

7 .5 .1 Bounding Rare Event Probabilities

We consider a simple model of two parallel Poisson processes
describing the production of two types of agents. The corre-
sponding probability distribution has Poisson product form at
all time points t > 0 and hence we can compare the accuracy of
our numerical results with the exact analytic solution. We use
the proposed approach to compute lower bounds for rare event
probabilities. These bounds are rigorous up to the approximation
error of the numerical integration scheme. However, the forward
solution could be replaced by an uniformization approach for a
more rigorous error control.

Model 12 (Parallel Poisson Processes). The model consists of two
parallel independent Poisson processes with unit rates.

∅ 1−→ A and ∅ 1−→ B .

The initial condition X0 = (0, 0) holds with probability one. After
t time units each species abundance is Poisson distributed with rate
λ = t.

We consider the final constraint of reaching a state where both
processes exceed a threshold of 64 at time 20. Without prior
knowledge, a reasonable truncation would have been 160× 160.
But our analysis shows that just 20% of the states are necessary
to capture over 99.6% of the probability mass reaching the target
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Figure 7.3: State-space truncation for varying values of the threshold
parameter δ: Two parallel Poisson processes under terminal
constraints X(A)

20 > 64 and X
(B)
20 > 64. The initial macro-

states are 16× 16 such that the final states are regular micro
states.

threshold δ

1×10−2 1×10−3 1×10−4 1×10−5

|S(m)| 1154 2354 3170 3898∑
m |S(m)| 2074 3546 4586 5450

estimate 8.88×10−30 1.85×10−29 1.86×10−29 1.86×10−29

rel. error 5.22×10−1 3.66×10−3 3.74×10−5 9.52×10−8

Table 7.1: Estimated reachability probabilities based on varying trun-
cation thresholds δ: The true probability is 1.8625×10−29.
We also report the size of the final truncation |S(m)| and
the accumulated size of all truncations during refinement
iterations (overall states)

∑
m |S(m)|.

event (cf. Table 7.1). Decreasing the threshold δ leads to a larger
set of states retained after truncation as more of the bridging
distribution is included (cf. Figure 7.3). We observe an increase
in truncation size that is approximately logarithmic in δ, which,
in this example, indicates robustness of the method with respect
to the choice of δ.

comparison to other methods The truncation approach
that we apply is similar to the one used by Mikeev, Sandmann,
and Wolf (2013) for rare event estimation. However, they used a
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given linearly biased MPM model to obtain a truncation. A general
strategy to compute an appropriate biasing was not proposed.
It is possible to adapt our truncation approach to the dynamic
scheme in Mikeev, Sandmann, and Wolf (2013) where states are
removed in an on-the-fly fashion during numerical integration.

A finite state-space truncation covering the same area as the
initial lumping approximation would contain 25,600 states. TheThe goal is not

treated as a single
state. Otherwise, it
consisted of 24,130

states.

standard approach would be to build up the entire state-space for
such a model (Kwiatkowska, Norman, and Parker, 2011). Even us-
ing a conservative truncation threshold δ = 1×10−5, our method
yields an accurate estimate using only about a fifth (5450) of this
accumulated over all intermediate lumped approximations.

7 .5 .2 Mode Switching

Mode switching occurs in models exhibiting multi-modal behavior
when a trajectory traverses a potential barrier from one mode
to another. Often, mode switching is a rare event and occursThis often is an

instance of
rare-event analysis.

in the context of gene regulatory networks where a mode is
characterized by the set of genes being currently active (Loinger
et al., 2007). Similar dynamics also commonly occur in queuing
models where a system may for example switch its operating
behavior stochastically if traffic increases above or decreases
below certain thresholds. Using the presented method, we can get
both a qualitative and quantitative understanding of switching
behavior without resorting to Monte-Carlo methods such as
importance sampling.

Exclusive Switch

The exclusive switch (Barzel and Biham, 2008) has three different
modes of operation, depending on the DNA state, i.e. on whether
a protein of type one or two is bound to the DNA.

Model 13 (Exclusive Switch). The exclusive switch model consists
of a promoter region that can express both proteins P1 and P2. Both
can bind to the region, suppressing the expression of the other protein.
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For certain parameterizations, this leads to a bi-modal or even tri-modal
behavior.

D+ P1
β−→ D.P1 , D.P1

γ1−→ D+ P1 ,

D+ P2
β−→ D.P2 , D.P2

γ2−→ D+ P2 ,

D.P1
ρ1−→ D.P1 + P1 , D.P2

ρ2−→ D.P2 + P2 ,

D
ρ1−→ D+ P1 , D

ρ2−→ D+ P2 , P1
λ−→ ∅ , P2

λ−→ ∅

The parameter values are ρ = 1×10−1, λ = 1×10−3, β = 1×10−2,
and γ = 8×10−3.

Since we know a priori of the three distinct operating modes,
we adjust the method slightly: The state-space for the DNA states
is not lumped. Instead we “stack” lumped approximations of
the P1-P2 phase space upon each other. Special treatment of DNA

states is common for such models (Lapin, Mikeev, and Wolf,
2011).

To analyze the switching, we choose the transition from Variable order: P1,
P2, D, D.P1, D.P2.

x1 = (32, 0, 0, 0, 1) to x2 = (0, 32, 0, 1, 0)

over the time interval t ∈ [0, 10]. The initial lumping scheme
covers up to 80 molecules of P1 and P2 for each mode. Macro-
states have size 8× 8 and the truncation threshold is δ = 1×10−4.

In the analysis of biological switches, not only the switching
probability but also the switching dynamics is a central part of
understanding the underlying biological mechanisms. In Fig-
ure 7.4, we therefore plot the time-varying probabilities of the
gene state conditioned on the mode. We observe a rapid unbind-
ing of P2, followed by a slow increase of the binding probability
for P1. These dynamics are already qualitatively captured by the
first lumped approximation (dashed lines).

Toggle Switch

Next, we apply our method to a toggle switch model exhibiting
non-polynomial rate functions. This well-known model considers
two proteins A and B inhibiting the production of the respective
other protein (Lipshtat et al., 2006).
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Figure 7.4: Mode probabilities of the exclusive switch bridging problem
over time for the first lumped approximation (dashed lines)
and the final approximation (solid lines) with constraints
X0 = (32, 0, 0, 1, 0) and X10 = (0, 32, 0, 0, 1).
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Figure 7.5: The expected occupation time (excluding initial and termi-
nal states) for the switching problem of the toggle switch
using Hill-type functions. The bridging problem is from
initial (0, 120) to a first passage of (120, 0) in t ∈ [0, 10].
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Model 14 (Toggle Switch using Hill functions). We have population
types A and B with the following reactions and reaction rates.

∅ α1(·)−−−→ A , where α1(x) =
ρ

1+ xB
, A

λ−→ ∅

∅ α1(·)−−−→ B , where α1(x) =
ρ

1+ xA
, B

λ−→ ∅

The parameterization is ρ = 10, λ = 0.1.

Due to the non-polynomial rate functions α1 and α2, the tran-
sition rates between macro-states are approximated by using the
continuous integral

ᾱ1(x̄) ≈
∫b+0.5

a−0.5

ρ

1+ x
dx = ρ (log (b+ 1.5) − log (a+ 0.5))

for a macro-state x̄ = {a, . . . ,b}.
We analyze the switching scenario from (0, 120) to the first visit

of state (120, 0) up to time T = 10. The initial lumping scheme
covers up to 352 molecules of A and B and macro-states have size
32× 32. The truncation threshold is δ = 1×10−4. The resulting
truncation is shown in Figure 7.5. It also illustrates the kind of
insights that can be obtained from the bridging distributions. For
an overview of the switching dynamics, we look at the expected
occupation time under the terminal constraint of having entered
state (120, 0). Letting the corresponding hitting time be

τ = inf{t > 0 | Xt = (120, 0)} ,

the expected occupation time for some state x is

E

(∫τ
0

1=x(Xt)dt | τ 6 10

)
.

We observe that in this example the switching behavior seems
to be asymmetrical. The main mass seems to pass through an
area where initially a small number of A molecules is produced
followed by a total decay of B molecules.
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7 .5 .3 Recursive Bayesian Estimation

We now turn to the method’s application in recursive Bayesian
estimation. This is the problem of estimating the system’s past,
present, and future behavior under given observations. Thus, the
MPM becomes a hidden Markov model (HMM). The observations
in such models are usually noisy, meaning that we cannot infer
the system state with certainty.

This estimation problem entails more general distributional
constraints on terminal β(·, T) and initial π(·, 0) distributions than
the point mass distributions considered up until now. We can
easily extend the forward and backward probabilities to more
general initial distributions and terminal distributions β(T). For
the forward probabilities we get

π(xi, t) =
∑
j

Pr(Xt = xi | X0 = xj)π(xj, 0), (7.6)

and similarly the backward probabilities are given by

β(xi, t) =
∑
j

Pr(XT = xj | Xt = xi)βT (xj) . (7.7)

We apply our method to an susceptible-exposed-infected-removed
(SEIR) model. This is widely used to describe the spreading of
an epidemic such as the current COVID-19 outbreak (Großmann,
Backenköhler, and Wolf, 2020; He, Peng, and Sun, 2020). Tempo-
ral snapshots of the epidemic spread are mostly only available
for a subset of the population and suffer from inaccuracies of
diagnostic tests. Bayesian estimation can then be used to infer
the spreading dynamics given uncertain temporal snapshots.

Model 15 (Epidemic Spread). A population of susceptible individuals
can contract a disease from infected agents. In this case, they are exposed,
meaning they will become infected but cannot yet infect others. After
being infected, individuals change to the removed state. The mass-action
reactions are as follows.

S+ I
λ−→ E+ I , E

µ−→ I , I
ρ−→ R .
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The parameter values are λ = 0.5, µ = 3, ρ = 3. Due to the stoichiomet-
ric invariant X(S)

t +X
(E)
t +X

(I)
t +X

(R)
t = const., we can eliminate R

from the system.

We consider the following scenario: There are N individuals.
We know that initially (t = 0) one individual is infected and the
rest is susceptible. At time t = 0.3 all individuals are tested for
the disease. The test, however, only identifies infected individ-
uals with probability ptp = 0.99. Moreover, the probability of a
false positive is pfp = 0.05. The random variable Yt models the The false positive

probability is the
same for all
non-infected
invididuals.

measurement likelihood at time t. Based on the description above

Pr(Yt = n̂I | X
(I)
t = nI)

=

n̂I∑
k=0

B(k;nI,ptp)B(n̂I − k;N−nI,pfp)

where B is the binomial probability mass function and

B(k;n,p) =
(
n

k

)
pk(1− p)n−k .

We like to identify the distribution given both the initial state and
the measurement at time t = 0.3. In particular, we want to infer
the distribution over the latent counts of S and E by recursive
Bayesian estimation.

The posterior for nI infected individuals at time t, given mea-
surement Yt = n̂I can be computed using Bayes’ rule

Pr(X(I)
t = nI | Yt = n̂I,X0 = x0)

∝ Pr(Yt = n̂I | X
(I)
t = nI)Pr(X(I)

t = nI | X0 = x0) . (7.8)

This problem is an extension of the bridging problem discussed
up until now. The difference is that the terminal posterior is
estimated it using the result of the lumped forward equation and
the measurement distribution using (7.8). Based on this estimated
terminal posterior, we compute the bridging probabilities and
refine the truncation tailored to the location of the posterior
distribution. In Figure 7.6a, we illustrate the bridging distribution
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Figure 7.6: (a) A comparison of the prior dynamics and the posterior
smoothing (bridging) dynamics. (b) The prior, likelihood,
and posterior of the number of infected individuals nI at
time t = 0.3 given the measurement n̂I = 30.

between the terminal posterior and initial distribution. In the
context of filtering problems this is commonly referred to as
smoothing. Using the learned truncation, we can obtain the
posterior distribution for the number of infected individuals at
t = 0.3 (Figure 7.6b). Moreover, can we infer a distribution over
the unknown number of susceptible and exposed individuals
(Figure 7.7).
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Figure 7.7: The prior and posterior distribution over the latent types E
and S at time t = 0.3.
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7 .6 conclusion

The analysis of MPMs with constraints on the initial and terminal
behavior is an important part of many probabilistic inference
tasks such as parameter estimation using Bayesian or maximum
likelihood estimation, inference of latent system behavior, the
estimation of rare event probabilities, and reachability analysis
for the verification of temporal properties. If endpoint constraints
correspond to atypical system behaviors, standard analysis meth-
ods fail as they have no strategy to identify those parts of the
state-space relevant for meeting the terminal constraint.

Here, we proposed a method that is not based on stochastic
sampling and statistical estimation but provides a direct numer-
ical approach. It starts with an abstract lumped model, which
is iteratively refined such that only those parts of the model are
considered that contribute to the probabilities of interest. In the
final step of the iteration, we operate at the granularity of the
original model and compute lower bounds for these bridging
probabilities that are rigorous up to the error of the numerical
integration scheme.

Our method exploits the population structure of the model,
which is present in many important application fields of MPMs.
Based on experience with other work based on truncation, the
approach can be expected to scale up to at least a few million
states (Mikeev, Sandmann, and Wolf, 2011). Compared to pre-
vious work, our method neither relies on approximations of
unknown accuracy nor additional information such as a suit-
able change of measure in the case of importance sampling. It
only requires a truncation threshold and an initial choice for the
macro-state sizes.

In future work, we plan to extend our method to hybrid ap-
proaches, in which a moment representation is employed for
large populations while discrete counts are maintained for small
populations. Moreover, we will apply our method to model check-
ing where constraints are described by some temporal logic (Haj-
nal et al., 2019).





8
R A R E E V E N T P R O B A B I L I T I E S

Rare events are events that occur with very low probability. Such
events can be, for example, the die-out of some population or the
switching of a multimodal system across some potential barrier.
In biological applications, rare events of interest are typically re-
lated to the reachability of certain thresholds on molecule counts
or mode switching (Strasser, Theis, and Marr, 2012). By their
nature, most standard methods focus on regions with high prob-
ability. As an example consider the standard SSA: Trajectories are
generated according to the processes’ density. Therefore unlikely
events are exactly as unlikely to be sampled using the direct
method. Accordingly, lots of samples are necessary to even sam-
ple a rare event at all and many more to get an estimator with a
reasonable variance. Therefore, standard Monte Carlo estimation
falls short for such use cases and typically analysis is done using
variance reduction methods tailored to them.

The arguably most widely used method for rare event analysis
is importance sampling (IS). This variance reduction method is
very well-suited to the analysis of such events. In a nutshell,
this method alters the model’s dynamics and keeps track of the
likelihood ratio between this altered and the original model. The
alteration of the model is referred to as the change of measure. The
ratio between the changed and the original measure can be used
to correct the weight of each run. The main challenge is to find
a “good” way to alter the model. Ideally, such an altered model
should generate trajectories conditioned on the rare event with

151
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the same distribution found in the original model. At the same
time, finding such a change of measure should be sufficiently
convenient.

A popular approach is found in dwSSA (Daigle Jr et al., 2011;
Kuwahara and Mura, 2008). Therein each reaction rate is alteredIn Backenköhler

(2019), we provide
an implementation.

by some constant scalar factor. These biasing values are identified
by using SSA pilot runs and adjusting biases to according to a
cross-entropy objective. We iterate on that approach by changing
constant biases across fixed time-intervals. Additionally, these
constant biases are state-dependent.

If the complete backward probabilities are available, we would
have the optimal biasing. Since they are not known in mostIf the backward

probabilities are
known, the event

probability is known.

interesting cases, we use the aggregation-based approximation
discussed in the previous chapters. Here, we study using the
approximate backward probabilities studies in the previous chap-
ter as a proxy for the optimal change of measure. In particular,
the ratios of adjacent macro-states act as a bias for the respec-
tive reaction propensities. To deal with continuous time, we
record backward probabilities at a pre-determined number of
time points. This way, the biases remain constant within the
resulting time-intervals and sampling the jump time becomes
easier. We illustrate the method and its characteristics on a set of
case studies along with a comparison to the dwSSA method.

8 .1 related work

importance sampling Most methods for the estimation
of rare event probabilities rely on importance sampling using
constant reaction biases (Chong, Saglam, and Zuckerman, 2017;
Daigle Jr et al., 2011; Kuwahara and Mura, 2008). This method
has been extended to be state-dependent in Roh et al. (2011).

importance splitting Importance Splitting is an alterna-
tive Monte Carlo estimation strategy. In this setting promising
paths are split – initiating new simulation runs. These runs are
then reweighted according to the specific splitting algorithm.
An early proposal of the splitting technique is the repetitive
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simulation trials after reaching thresholds (RESTART) algorithm
(Villén-Altamirano and Villén-Altamirano, 1994). Further popu-
lar iterations of this idea are, for example, fixed effort and fixed
success splitting (Garvels and Kroese, 1998). For more recent
developments, we refer to (Budde, D’Argenio, and Hartmanns,
2017; Jégourel, Legay, and Sedwards, 2013). A central problem in
importance splitting is determining what constitutes a promising
path. Algorithms rely on an importance function as an oracle. The
(approximate) backward probabilities presented here could be
used as such an importance function, as well.

finite state projection Apart from sampling-based ap-
proaches, dynamic finite-state projections have been employed by
Mikeev, Sandmann, and Wolf (2013), but are lacking automated
truncation schemes. In Chapter 7, we presented a solution to this
shortcoming.

8 .2 importance sampling

Importance sampling (IS) is a popular variance reduction tech-
nique. Typically it is applied for the Monte Carlo estimation This explanation

follows Kroese,
Taimre, and Botev
(2011, Chapter 9.7).

of rare event probabilities. The main idea is to sample from a
different distribution, the IS density, and adjust samples using
the likelihood ratio. Let f be the original density and the goal is
to estimate

E (θ(X)) =

∫
θ(x)f(x)dx .

Now let g be another density, dominating θf, i.e.

g(x)⇒ θ(x)f(x) = 0 .

Then we can re-write the above as

Ef(θ(X)) =

∫
θ(x)f(x)dx =

∫
θ(x)

f(x)

g(x)
g(x)dx = Egθ(X)

f(X)

g(X)
.

Therefore, we can replace the estimate using sampling from f

by an estimate using the density g instead. According to the
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right-hand side of this equation, the estimate using i.i.d. samples
Xi, 1 6 i 6 N

Ê(θ(X)) = N−1
N∑
k=1

θ(Xk)
f(Xk)

g(Xk)
. (8.1)

The term factor

W(x) =
f(x)

g(x)

is called the likelihood ratio.
Thus, the method hinges on finding a density g∗, that has a

computable likelihood ratio and minimizes the variance of the
estimator (8.1). If θ(x) is an event, the perfect IS (Kroese, Taimre,
and Botev, 2011, Chapter 9.7.1)

g∗(x) =
θ(x)f(x)

E (θ(x))
.

Therefore the ideal IS distribution is the conditional density

g∗(x) = f(x | θ(X) = 1) .

8 .3 near-optimal biasing

An MPM can be modified to fulfill terminal constraints. Previ-
ously, in Section 7.3, we have seen how the endpoint constrained
process can be described using the backward probabilities β. The
bridging distribution can be either computed using both back-
ward and forward probabilities, but for us, it is more instructive
to consider the bridging CME. This is the endpoint constrained
version of the CME. It depends on ratios of the backward proba-
bilities which act as factors to the propensity values. Taking the
derivative of γ(x, t) = π(x, t)β(x, t), yields the bridging CME (see
also Huang et al. (2016))

dγ

dt
(x, t) =

nR∑
j=1

(
α̃j(x− vj)γ(x− vj, t) − α̃j(x)γ(x, t)

)
, (8.2)
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where the propensities

α̃j(x, t) = αj(x)φj(x, t) . (8.3)

The time-dependent predilection factor

φj(x, t) = β(x+ vj, t)/β(x, t) . (8.4)

Equation (8.2) reveals the optimal biasing scheme for IS. Since we
know that the ideal IS distribution is the conditional distribution
γ, the ratios give a perfect biasing. We use approximations of
these ratios as time and state-dependent predilection functions
φj during the stochastic simulation.

Naturally, computing (8.2) requires full knowledge of all back-
ward probabilities β(x, t) for all states x and times t. In particular,
the event probability is precisely β(x0, 0). To make this approach
feasible, we will use the aggregation-based approximation β̂ of
the backward probabilities β. Thus, we will compute and store
backward probabilities for the aggregated system for discrete
time points up to T .

φ̄(i, j; t) = β̂
(
x̄j,∆

⌊
t

∆

⌋)
/β̂

(
x̄i,∆

⌊
t

∆

⌋)
The biases of the aggregated system serve as a basis for the bi-
ases at the original state granularity. To transfer the macro-state
biases, we again employ the assumption of a uniform distribu-
tion. Under the assumption, it is reasonable to take the average
approximate bias weighted according to the size of the transition
states. Therefore

φ̂j(x, t) =
∣∣∣x̄
i
j−→

∣∣∣−1∑
k

φ̄(i, j; t)
∣∣∣x̄
i
j−→k

∣∣∣ ,

where x ∈ x̄i. Accordingly, we can define the biased propensity
function

ˆ̃αj = αj(x)φ̂j(x, t) .

The discrete steps in the time domain are kept. This enables
the application of an adjusted SSA that can deal with piecewise



156 rare event probabilities

Figure 8.1: The approximate dynamic biasing (values cut to [e−2, e2])
illustrated for a birth death process with macro-state size 8
and target state [24, 31] at T = 10 for 10 time points.

constant rate functions in the waiting time distributions. This
algorithm is discussed in the following section.

In Figure 8.1, we illustrate this scheme for a birth-death process
(Model 2) with goal macro-state [24, 31] at T = 10 and X0 = 0.
Figure 8.1 clearly illustrates how the biases increase towards
the end increasing the push towards the goal state the farther
time progresses. Since by the approximation assumption, all
constituent states of a macro-state are treated as equivalent, the
macro-state biases are transferred to the micro-states. DependingIn fact, such an

approach might be
better suited in the

example above,
where we aim to

push the process to a
specific micro-state.

on the scenario, this interpolation could be replaced by other
schemes, such as nearest neighbor interpolations.

8 .4 non-homogeneous stochastic simulation

We are changing the rate bias dynamically over fixed intervals of
the time-domain. Therefore we cannot use the default SSA. With
Algorithm 7 we present a version of the stochastic simulation
algorithm that simulates trajectories of a system with such dy-
namically changing biases. The main change is the handling of
the time-discrete changes in the loop in line 8. Here it is tested, in
which time interval the sampled jump will take place. Therefore
rates are recomputed each time the algorithm jumps forward one
time-interval.
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Let us first consider how exactly the jump time distribution
changes. A time-inhomogeneous exponential has the cdf

F(t) = 1− exp
(
−

∫t
0

λ(s)ds

)
.

Accordingly, the pdf

f(t) = λ(t) exp
(
−

∫t
0

λ(s)ds

)
.

Since we compute the biases for fixed intervals, we have an ex-
ponential model with a piecewise constant rate function. In Fig-
ure 8.2a, we give an example of such a distribution. Assume, we
have an increasing sequence of time points τ0 = 0, τ1, τ2, τ3, . . .
with corresponding rates λi > 0. The piecewise constant hazard
function

λ(t) =



λ1, if τ0 6 t 6 τ1

λ2, if τ1 < t 6 τ2

λ3, if τ2 < t 6 τ3
...

.

We can give the pdf using a case distinction as

f(t) =



f1(t), if τ0 6 t 6 τ1

f2(t), if τ1 < t 6 τ2

f3(t), if τ2 < t 6 τ3
...

, (8.5)

where, letting ∆k = τk − τk−1, the piecewise densities

fk(t) = λk exp

(
−

k−1∑
i=1

∆iλi − λk (t− τk−1)

)
.



158 rare event probabilities

Similarly, the cdf

F(t) = 1−



S1(t), if τ0 6 t 6 τ1

S2(t), if τ1 < t 6 τ2

S3(t), if τ2 < t 6 τ3
...

, (8.6)

where the component survival functions

Sk(t) = exp

(
−

k−1∑
i=1

∆iλi − λk (t− τk−1)

)
.

The sampling from this density – necessary in the stochastic
simulation – uses an inverse transform. This transform is most
concisely expressed in lines 3–22 of the pseudocode in Algo-
rithm 7. The uniform random sample X is checked against the
probability mass of the current time interval. The mass follows
an exponential distribution with the current exit rate a0. In each
iteration, we recompute the rate a0 and advance the time until
the correct interval is identified. Finally, in line 22 the jump time
is computed. In Figure 8.2a, we illustrate the probability density
function of an exponential distribution with a piecewise constant
rate function. Along with the pdf, an empirical distribution is
presented, from which samples were generated by the algorithm
described here.

Since the jump time is determined after this part, the reaction
selection uses the rates of this time-interval. The probability of
a reaction j being selected is proportional to its biased reaction
rate ˆ̃αi (line 18).

The sampling of successive reactions is performed until the
predefined termination function Θ is true. Typically this means
reaching some time-horizon T > 0, i.e. Θ(s, t) = t > T .

In Figure 8.2b, we illustrate the algorithms result using the
biases discussed in the previous section.
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Algorithm 7: A weighted sample of the rare event
input :π0, θ,Θ
output : sample weighted by the likelihood ratio

1 s ∼ π0; t← 0; j← 1; w← 1;
2 loop
3 X ∼ U[0, 1];
4 a0 ←

∑
j

ˆ̃αj(s); /* exit rate */

5 δ← tj+1 − t; /* rest of time interval */

6 ∆← 0; /* time offset */

7 τ← t; /* start of the current component */

8 while X > 1− exp(−a0δ−∆); /* find interval */

9 do
10 ∆← ∆+ a0δ;
11 τ← τ+ δ;
12 j← j+ 1;
13 δ← time-interval width;
14 a0 ←

∑
j

ˆ̃αj(s); /* exit rate */

15 δ← −(log(1−X) +∆)/a0;
16 if Θ(s, τ+ δ) then
17 return θ(s, τ)w

18 k← sample j with probability ˆ̃αj(s)/
∑
i

ˆ̃αi(s);
19 `1 ← ˆ̃αk(s) exp (−∆− δa0);
20 `0 ← αk(s) exp (−(τ+ δ− t)

∑
i αi(s));

21 w← w `0/`1; /* update likelihood ratio */

22 t← τ+ δ; /* update time */

23 s← s+ vk; /* update state */
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Figure 8.2: Importance Sampling using piecewise constant jump distri-
butions: (a) A piecewise constant rate function is induced
by the biases changing at discrete time points. (b) We can
simulate the system using piecewise constant biases.

8 .5 case studies

We implemented the methods in Python and evaluated the
method on three case studies. The first two are rather simple, but
have the advantage of a known analytical distribution. Thus, we
have a reference to compare the Monte Carlo results. In the sec-
ond part, we take a look at a more challenging model – the toggle
switch. In this example, we face non-polynomial rate functions
and a bimodal behavior.

8 .5 .1 Two Simple Examples

For the Poisson process we look at the event of exceeding a
threshold of 150 before a time-horizon of T = 10. The aggregation
scheme groups 10 states together and records the approximate
backward probabilities for 10 time points. In Figure 8.3a, we
summarize the estimates for different sample sizes. In this study,
we observe no finite sample bias and a quick convergence to the
analytical result.

In case of the birth-death process, we focus on the event of
being in state 30 at time T = 10. The aggregation scheme groups
10 states together and records the approximate backward prob-
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abilities for 10 time points. In Figure 8.3b, we summarize the
estimates for different sample sizes. In this study observe no fi-
nite sample bias and a quick convergence to the analytical result.
The switching between the two distinct meta-stable regions is of
particular interest. At the same time, it is hard to analyze using
standard Methods because this event typically is rare.
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10 6

10 5

es
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at
es

(a) Poisson process
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10 5
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tim

at
es

(b) Birth-death bridge

Figure 8.3: Estimate distribution for different sample sizes.

8 .5 .2 Toggle Switch

We return to the example of the toggle switch, known from
Chapter 7. It notably includes two non-polynomial propensity
functions. This model exhibits a bimodal behavior. Either mostly
agents of type A are produced while the counts of B-type agents
remains low or vice versa.

Model 16 (Toggle Switch using Hill functions (Lipshtat et al.,
2006)). We have population types A and B with the following reactions
and reaction rates.

∅ α1(·)−−−→ A , where α1(x) =
ρ

1+ kxB
, A

λ−→ ∅

∅ α1(·)−−−→ B , where α1(x) =
ρ

1+ kxA
, B

λ−→ ∅

The parameterization is ρ = 10, λ = 0.1, and k = 1.5.



162 rare event probabilities

The sums of non-polynomial propensity functions have no
simple analytical solution as the Faulhaber formulae. Instead, we
approximate the discrete sums via an integral:This approximation

is different from the
previous version on

page 145, because we
previously had

k = 1.

ᾱ1(x̄) ≈
∫b+0.5

a−0.5

ρ

1+ kx
dx

=
ρ

k

(
log
(
k

(
b−

1

2

)
+ 1

)
− log

(
k

(
a+

1

2

)
+ 1

))
In this case study, we use both, a aggregation of 5× 5 and 10× 10
states. As an initial state we fix (100, 0) and the target event is
{X

(B)
t > 100 | t 6 10}. In Figure 8.4, we illustrate the sample

trajectories and their mean under the biasing of the approximate
backward probabilities. On the left-hand side, the mean bias is
given over time and per reaction. The biasing strength increases
towards the time-horizon.
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Figure 8.4: The dynamic biasing of a toggle switch based on a aggrega-
tion of 10× 10 states.

In Figure 8.5, we provide estimates for this case study using
the aggregation-based approach presented here and the popular
dwSSA method as a point of comparison. dwSSA (Daigle Jr et
al., 2011) essentially derives a constant bias coefficient for each
reaction. The biases are optimized using a cross-entropy objective.
This optimization, however, needs a large number of runs in each
iteration. We used ensemble sizes of 1000 and 10,000 for each
iteration. This imposes a large additional cost, since in almost all
instances more than 10 optimization iterations were necessary
until a fraction of 0.1 ensemble trajectories reached the rare event
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region. In some instances, no change of measure was found using
the cross-entropy optimization.

dwSSA k = 103

dwSSA k = 104

agg. 10x10
agg. 5x5

method

10 140

10 122

10 104

10 86

10 68

es
tim

at
e

STAR

Figure 8.5: Rare event estimates (toggle switch with Hill functions)
using different methods and sample sizes. For each scenario
10 estimations were performed. To the left are the dwSSA

results for comparison. We provide results for estimates
using 1000 and 10,000 estimates in each iteration of the
prior parameter optimization rounds. On the right, the
results for the aggregation method presented in this chapter
are given for grids with 5× 5 and 10× 10 macro states.

With both methods, we observe that with smaller sample sizes,
the estimate tends to be smaller as well, regardless of the method.
This is due to the (non-zero) weights not being normally dis-
tributed. There tend to be more samples with lower weights,
which are compensated by a few samples with larger weights.
In other words, there seems to be a long tail towards higher
weights in most cases. The theoretical estimate is still unbiased.
But the estimates which are much larger (“correcting” the low
estimates) are very infrequent. These long-tailed distributions
are illustrated in Figure 8.6. This issue is present regardless of
the chosen method. The clearer difference is that the estimates
using aggregation are spread less. This effect is likely due to the
aggregation-based biasing steering the process with more detail.
Therefore trajectories tend to be more similar — an effect that is
also apparent in the samples of Figure 8.7.

As a reference and baseline we consider the dynamic trun-
cation result obtained by the STAR tool (Lapin, Mikeev, and
Wolf, 2011). We ran the analysis using a relative tolerance of mosi.uni-saarland.

de/tools/shave/

mosi.uni-saarland.de/tools/shave/
mosi.uni-saarland.de/tools/shave/
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Figure 8.6: Comparison of 100 non-zero weights using impotance sam-
pling based on aggregation and on dwSSA. On the left, the
samples are plotted on a log-scale and on the right on a
linear scale.

1× 10−15 and an absolute tolerance of 1× 10−90. This yielded
Pr(X(B)

10 > 100) ≈ 4.64× 10−60. Note, that this is a lower bound
to the probability since we only consider the probability at t = 10,
whereas the stopping time above considers all t 6 10. Consider-
ing this baseline, it is clear, that both methods have only slowly
approached the probability’s true magnitude with increasing
sample size.

In Figure 8.7, we compare sample paths using the technique
presented here with a constant biasing scheme. The constant
biases are obtained using a cross-entropy optimization using
104 SSA simulations in each iteration until 0.1 of the trajectories
reach the rare event region. It is immediately clear, that the
sampled trajectories differ in the paths that are sampled. We
further observe a far larger range of likelihood ratios in the
constant biasing case.

This case study illustrates how finite sample behavior can
significantly deviate from a normal distribution. The estimate
distribution tends to be asymmetrical with most samples being
below the true mean, while few samples are larger. Ideally, sam-
pled trajectories should follow the original process, conditioned
on the rare event. As in this example, constant biases might not
be enough to reliably alter the dynamics in this way. However,
the approximate biasing scheme presented in this chapter, while
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Figure 8.7: Biased sample paths of the toggle switch using (left)
the aggregation based sampling and (right) a con-
stant biasing, determined by cross-entropy optimization
(Daigle Jr et al., 2011). The constant bias vector is ≈
(0.873, 26.248, 2.751, 0.00159)>. The path color represents
the relative log-weights of each trajectory (darker – higher
weight).

being based on an approximation of the ideal biasing, seems to
over-constrain the process and thus not explore the trajectory
space sufficiently. Consequently, both methods tend to underesti-
mate in a majority of cases.

8 .6 conclusion

In this chapter, we presented a novel change of measure using
approximate backward probabilities. This approach avoids the
necessity of a significant number of pilot runs. In the last example,
the number of these pilot runs often exceeded the number of runs
used for the actual estimation. Therefore, the approach presented
is a feasible alternative for cases in which the state-space size
allows for an approximate solution.

We further showcased a challenge that is often ignored. This
is the issue of changes of measures, that steer the process to the
target region along trajectories that are significantly less likely in
the original system than the conditioned paths would be. This
leads to a case where the estimate distribution is very different
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from a normal distribution. Consequently, the estimates are too
low in most cases, and a lot too large in very few cases.

This issue might be tackled by, using state space refinement,
similar to the previous chapter. Also, combining backward prob-
ability approximations of differing granularity might be a viable
strategy.
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C O N C L U S I O N

While Markovian population models are a versatile modeling
framework, their analysis – especially wrt. their stochasticity –
poses a significant challenge. The most pressing issue is the large
state space that needs to be considered. This thesis has proposed The large state-space

is often exacerbated
by the curse of
dimensionality.

several techniques to tackle some parts of this challenge. The
main advantage of CTMCs underlying MPMs is their structured
nature due to the typically simple propensity functions. The first
set of methods uses moment constraints which can be directly
given in terms of stoichiometry and propensity functions. The
second set of approaches is more heuristic in nature. Here, we
leverage the typically smooth structure of propensity functions to
derive an aggregation scheme on the state-space. In this way, both
method classes demonstrated in this thesis rely on the structure
induced by the MPM formalism.

The derivation of moment equations yields constraints that
have shown to be useful in two contexts. In the context of mean
first-passage time bounds, they formed linear constraints on the
moments of the process and the exit location measure. Together
with semi-definite constraints, this yields a hierarchy of convex
optimization problems. This hierarchy yields convergent bounds
on the reaching probability and the mean first-passage time on
a large class of problems. While this approach still has limita-
tions in scalability due to its stiffness, it opens up new and more
rigorous applications for moment-based approaches. Typically,
moment-based analysis is associated with ad-hoc approxima-

169
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tions that are necessary to obtain a closed ODE system. With
approaches based on mathematical optimization the problem we
can elegantly evade the problem of infinite moment equation
hierarchies. This enables an analysis of the moments as a true
approximation with reliable results.

Another use of the unclosed moment equations has been
demonstrated in the context of Monte Carlo estimation. Here too,
we do not need to apply a closure scheme. When used as control
variates such constraints yield an alternative unbiased estima-
tor with lower variance. Using heuristics and sequential Monte
Carlo methods, we demonstrated methods to construct efficient
constraint sets. Often stochastic simulation and moment-driven
analysis are seen as competing methods. This work marries the
insights of moment dynamics with the statistical guarantees of
Monte Carlo estimation using the SSA.

The aggregation approach takes advantage of the fact that
often propensity functions result in a smooth “landscape of
transition rates” across the state-space. This motivates an aggre-
gation scheme that approximates a uniform distribution inside
macro-states. Deriving closed forms for the transition rates be-In particular,

polynomial
propensity functions

are often suited to
this approach.

tween those states significantly reduces the computational load
compared to the original model. We have demonstrated the use-
fulness of this aggregation scheme in the domains of stationary
distributions, bridging distributions, and the use in rare event
sampling. The first two methods are use a refinement algorithm
that splits macro-states based on a target distribution. This target
distribution is the approximate stationary and the bridging dis-
tribution, respectively. The ultimate goal of both methods is the
identification of a truncation on the original, non-approximated
state-space tailored to the task at hand. Thus both approaches
start out with an ad-hoc approximation and result in a truncation
suited for rigorous analysis. In the final contribution, we com-
bine the approximation with importance sampling. Despite the
approximative nature of the aggregation, the resulting estimate
retains its properties.
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9 .1 outlook

All ideas presented in this thesis provide starting points for
further research and development.

mean first-passage times via semi-definite program-
ming The SDP approach for MFPTs presented in Chapter 3

improved in terms of scalability. Here, scalability mainly refers to
the problem of large populations (or time horizons). Such large
values increase the moments which tend to grow exponentially
with their order. The resulting stiffness can be problematic for
off-the-shelf SDP solvers. Better performance could be achieved
by a suitable re-scaling of the model or stronger cooperation with
domain experts in mathematical optimization to pinpoint prob-
lems more precisely. Another interesting direction is the study
of Hausdorff constraints sketched in Section 3.8. Since these are
linear moment constraints, they can easily be incorporated into
the SDP formulation.

control variates Control variates for Monte Carlo (Chap-
ter 4 estimation offer a tremendous design space, both algorith-
mically and in terms of the constraints themselves. Depending on
the quantity of interest, non-polynomial test functions might pro-
vide better correlations. The control variate optimization, based
on sequential Monte Carlo, could perhaps be replaced by a search
using approximations such as moment closures. A challenge in
designing CVs and their algorithmic optimization is always ele-
gance. Keeping the algorithm flexible, while keeping the number
of parameters low is difficult, but crucial.

aggregation Similarly to the control variates, the aggrega-
tion scheme offers quite a few possibilities for further experi-
mentation. For example, a dynamic aggregation-disaggregation
scheme could be used for forward analysis similar to dynamic
truncations (Andreychenko et al., 2011). Based on the approxi-
mate probability distribution states could be either aggregated or
disaggregated. This splitting could be based on how how flat the
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distribution is locally, i.e. how close it is to a uniform distribution
in some region. Another possible modification would be to define
states more flexible than hyper cubes. While this likely would
make finding a closed-form expression of transition rates harder
or impossible, it might be a useful trade. For both of these points
the design space is quite large.

The main challenge in the study of stochastic reaction networks
today is the connection of methods to practitioners and their
problems. A large area body of research is devoted to methods
precisely analyzing SRNs. It is a danger that the practical value
of proposed methods is a secondary concern. For these methods
to be useful, more dialog is needed with domain experts to
understand the challenges. Only then can the new approaches
– such as the ones presented in this thesis – develop practical
uses.
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a .1 control variate results

Detailed results for control variate presented in Chapter 4 are
given in Table A.1, Table A.2, and Table A.3.
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Figure A.1: The slowdown c0/c1 v. the number of control variates |P|.

a .2 aggregation for stationary distributions

Experimental results of aggregation for stationary distribution
approximation presented in Chapter 6 are given in Table A.4 and
Table A.5.
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nmax nλ φ 1−
σ21
σ20

slowdown efficiency |P|

1 10 φsq 0.807184 1.227471 4.239255 2.536479

φc 0.880285 1.633530 5.135205 7.411732

φq 0.849082 1.312416 5.067770 3.639250

φ` 0.783459 1.195821 3.874778 2.090101

20 φsq 0.856593 1.263340 5.539683 2.206154

φc 0.910480 1.864405 6.011256 9.441336

φq 0.867987 1.317958 5.765884 3.140806

φ` 0.825518 1.243075 4.627662 1.981143

30 φsq 0.869165 1.298893 5.905196 2.059415

φc 0.921019 1.966191 6.461331 9.928998

φq 0.876822 1.340409 6.079876 2.762449

φ` 0.843288 1.288925 4.968796 1.983174

2 10 φsq 0.811956 1.505521 3.544783 2.323999

φc 0.916866 4.507566 2.681363 21.692390

φq 0.868874 1.776190 4.309354 4.739893

φ` 0.795802 1.466579 3.353046 2.016196

20 φsq 0.832562 1.657484 3.617313 2.085711

φc 0.934280 6.348223 2.406431 29.976320

φq 0.878944 1.879341 4.416281 3.990881

φ` 0.837922 1.647329 3.759896 1.978017

30 φsq 0.829427 1.844766 3.190308 2.043201

φc 0.947324 7.130628 2.673225 32.513670

φq 0.878830 2.053317 4.034987 3.611746

φ` 0.824936 1.838879 3.118728 1.978836

Table A.1: Variance reduction results for up to second order moments
with parameters nmax = 2, n = 10,000, d = 100, kmin = 3.
Exclusive switch.
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nmax nλ φ 1−
σ21
σ20

slowdown efficiency |P|

1 10 φsq 0.619560 1.488483 1.770218 3.232575

φc 0.700255 2.241695 1.492171 8.008607

φq 0.643550 1.613001 1.743500 3.817641

φ` 0.596650 1.459405 1.703170 2.657000

20 φsq 0.697414 1.519425 2.181687 2.631677

φc 0.713445 2.706546 1.292838 10.295856

φq 0.697654 1.585313 2.092817 3.398235

φ` 0.695846 1.473976 2.235418 2.226530

30 φsq 0.712941 1.543068 2.263644 2.378037

φc 0.721354 2.874249 1.252541 10.910880

φq 0.711877 1.607712 2.164485 2.979704

φ` 0.669963 1.522184 1.996300 2.085473

2 10 φsq 0.619450 1.734737 1.519168 3.148184

φc 0.665361 3.301159 0.909443 13.456259

φq 0.680592 1.840457 1.705876 3.864240

φ` 0.612674 1.662962 1.556868 2.659592

20 φsq 0.684789 1.811408 1.755652 2.687379

φc 0.689835 4.455005 0.726640 17.609554

φq 0.687665 1.901258 1.688449 3.413595

φ` 0.651262 1.770238 1.623924 2.266729

30 φsq 0.690602 1.922217 1.686011 2.375455

φc 0.649191 4.837419 0.591701 19.145054

φq 0.701253 2.001179 1.677062 3.007525

φ` 0.639123 1.894074 1.467403 2.086275

Table A.2: Variance reduction results for up to second order moments
with parameters nmax = 2, n = 10,000, d = 100, kmin = 3.
Distributive modification.
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nmax nλ φ 1−
σ21
σ20

slowdown efficiency |P|

1 10 φsq 0.881641 1.530137 5.558692 1.621917

φc 0.965224 1.945588 14.859417 3.338501

φq 0.916445 1.625232 7.409904 1.997045

φ` 0.868288 1.380344 5.529745 1.081152

20 φsq 0.941153 1.637272 10.437978 1.842971

φc 0.964204 1.907999 14.747328 2.915082

φq 0.947984 1.747519 11.072422 2.227250

φ` 0.931030 1.433401 10.169570 1.088572

30 φsq 0.959517 1.723449 14.404936 1.972426

φc 0.962514 1.770936 15.142156 2.216103

φq 0.966216 1.847441 16.117387 2.446661

φ` 0.945724 1.456432 12.710196 1.084188

2 10 φsq 0.905254 1.659799 6.402491 2.388472

φc 0.987526 2.474939 33.074955 6.501180

φq 0.923063 1.822654 7.195544 3.179257

φ` 0.878232 1.415909 5.830248 1.092264

20 φsq 0.949038 1.831995 10.797164 2.890898

φc 0.985710 2.391457 29.704344 5.450299

φq 0.968076 2.021487 15.662368 3.681229

φ` 0.925413 1.449386 9.298961 1.072761

30 φsq 0.964855 1.924268 14.911787 3.026275

φc 0.981507 2.144089 25.520987 4.179125

φq 0.973902 2.095985 18.507746 3.685851

φ` 0.948349 1.507425 12.904707 1.074538

Table A.3: Variance reduction results for up to second order moments
with parameters nmax = 2, n = 10,000, d = 100, kmin = 3.
Dimerization.
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Table A.4: Detailed results for Model 9. The errors are computed wrt.
the reference Poissonian product. The total absolute error
and the maximum absolute errors are given.
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Table A.5: Detailed results for Model 10. Upper bounds on the total ab-
solute error and the maximum absolute error are given. The
worst-case errors are computed wrt. the reference Geobound
solution with ε` = 1×10−2.



B I B L I O G R A P H Y

Adan, Aysun, Günel Alizada, Yağmur Kiraz, Yusuf Baran, and
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