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Phonetic structures expand temporally and spectrally when they are difficult to predict from
their context. To some extent, effects of predictability are modulated by prosodic structure.
So far, studies on the impact of contextual predictability and prosody on phonetic
structures have neglected the dynamic nature of the speech signal. This study
investigates the impact of predictability and prominence on the dynamic structure of
the first and second formants of German vowels. We expect to find differences in the
formant movements between vowels standing in different predictability contexts and a
modulation of this effect by prominence. First and second formant values are extracted
from a large German corpus. Formant trajectories of peripheral vowels are modeled using
generalized additive mixed models, which estimate nonlinear regressions between a
dependent variable and predictors. Contextual predictability is measured as biphone
and triphone surprisal based on a statistical German language model. We test for the
effects of the information-theoretic measures surprisal and word frequency, as well as
prominence, on formant movement, while controlling for vowel phonemes and duration.
Primary lexical stress and vowel phonemes are significant predictors of first and second
formant trajectory shape. We replicate previous findings that vowels are more dispersed in
stressed syllables than in unstressed syllables. The interaction of stress and surprisal
explains formant movement: unstressed vowels show more variability in their formant
trajectory shape at different surprisal levels than stressed vowels. This work shows that
effects of contextual predictability on fine phonetic detail can be observed not only in
pointwise measures but also in dynamic features of phonetic segments.

Keywords: information theory, surprisal, predictability, formant trajectories, German, read speech, prominence

1 INTRODUCTION

Probabilistic reduction of predictable words and subword units has been observed in many languages
(e.g., Gahl, 2008; Bell et al., 2009; Biirki et al., 2011; Kuperman et al., 2007; Pellegrino et al., 2011;
Pluymaekers et al., 2005a, b). Specifically, vowels are more reduced in their spectral distinctiveness
when they are difficult to predict from their context compared to easily predictable vowels (Jurafsky
et al., 2001; Wright, 2004; Aylett and Turk, 2006; Clopper and Pierrehumbert, 2008; Scarborough,
2010). This effect of contextual predictability (henceforth, for brevity—predictability) on segmental
properties prevails even after controlling for known prosodic effects on phonetic structures, such as
lexical stress (Brandt, 2019). For instance, stressed vowels that are difficult to predict tend to be more

Frontiers in Communication | www.frontiersin.org 1

June 2021 | Volume 6 | Article 643528


http://crossmark.crossref.org/dialog/?doi=10.3389/fcomm.2021.643528&domain=pdf&date_stamp=2021-06-21
https://www.frontiersin.org/articles/10.3389/fcomm.2021.643528/full
https://www.frontiersin.org/articles/10.3389/fcomm.2021.643528/full
https://www.frontiersin.org/articles/10.3389/fcomm.2021.643528/full
http://creativecommons.org/licenses/by/4.0/
mailto:brandt@leibniz-zas.de
https://doi.org/10.3389/fcomm.2021.643528
https://www.frontiersin.org/journals/communication
www.frontiersin.org
https://www.frontiersin.org/journals/communication#articles
https://www.frontiersin.org/journals/communication
https://www.frontiersin.org/journals/communication#editorial-board
https://doi.org/10.3389/fcomm.2021.643528

Brandt et al.

dispersed, that is, distant from the center of the vowel space, than
unstressed vowels that are easily predictable, beyond the extent to
which the dispersion would be predicted by stress alone (Brandt
et al, 2019). Conversely, the degree of dispersion will be
attenuated for stressed vowels in high-predictability contexts
and enlarged for unstressed vowels that are hard to predict.
Predictability thus affects form encoding. The smooth signal
redundancy (SSR) hypothesis (Aylett and Turk, 2004, 2006)
proposes that the impact of the predictability of linguistic
events on the phonetic encoding of these events is mediated
by the prosodic structure, in particular by lexical stress. An
alternative interpretation is that the assignment of the
prosodic structure is conditioned by predictability (Tang and
Shaw, 2020). Both perspectives entail that predictability is tightly
interwoven with the prosodic structure.

Aylett and Turk (2006) investigated the effects of predictability
and stress on the first and second formants of American English
vowels and observed a large amount of shared contribution of
predictability and stress to explaining the formant patterns,
generally supporting the SSR hypothesis. Crucially, they also
found an unexpected unique contribution of predictability in
their statistical models. On average, however, prominence is
found to be more effective in explaining variability in F1/F2
patterns than predictability. Malisz et al. (2018) analyzed the
sensitivity of different prosodic characteristics to predictability
and prominence in six languages: American English, Czech,
Finnish, French, German, and Polish. They observed a positive
interaction effect of these two factors on the segmental duration
and the consonantal center of gravity (COG): stressed segments
in low-predictability contexts are longer and show higher mean
COG than unstressed segments in high-predictability contexts.
There was no significant interaction effect between predictability
and prominence on vowel dispersion.

Taken together, there is evidence that the mediation of the
effects of predictability on the segmental structure by the prosodic
structure is not comprehensive and that predictability effects are
not entirely consumed by prosodic prominence (Malisz et al.,
2018).

However, research so far has neglected the impact of
information-theoretic factors on the dynamic characteristics of
vowels. The present study therefore focuses on the effect of
predictability on formant dynamics using generalized additive
mixed models (GAMM:s) while controlling for known effects of
prosodic prominence on vocalic characteristics. Most literature
on predictability effects on segmental properties of speech has
focused on (American) English. It is important to replicate results
for other languages because of the implications they may have for
explaining the production and perception of the phonetic
structure. This work investigates dynamic formant trajectory
patterns in German vowels in different predictability contexts.

1.1 Dynamic Structure of German Vowels

The German vowel inventory consists of a rather large number of
monophthongs with seven tense/lax vowel phoneme pairs [/i-1,
y-Y, e(e)-¢, o-ce, a-a, 0-0, and u-0/] (Pitzold and Simpson,
1997). In contrast to American or Canadian English, German
does not use diphthongization, that is, significant formant change
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over time within vowels considered as monophthongs (Nearey
and Assmann, 1986), to distinguish between tense and lax
monophthongs (Strange et al., 2004).

There is, however, still considerable formant movement in
German monophthongs, with distinct patterns for tense and lax
pairings (Strange and Bohn, 1998). Most of the variance in
dynamic formant changes in German monophthongs reflects
formant movement toward the place of articulation of
neighboring consonants. This coarticulatory effect is observed
throughout the entire duration of the vowel and therefore is not
restricted to the beginning or end of the vowel (Mdbius, 1999).
Lax vowels are more strongly influenced by context than tense
vowels. Alveolar contexts induce stronger coarticulatory behavior
in German vowels than labial contexts. Also, low and back vowels
show more contextual variation than front vowels (Strange et al.,
2007).

Although formant movement in German monophthongs, and
especially in tense vowels, may be more subtle than that in English
varieties, native German listeners show the same performance in
vowel identification when listening to vocalic nuclei from CVC
sequences as they do when hearing silent center syllables with
only the onset and offset of the vowel being presented. Additional
information about intrinsic vowel length reduces the error rate in
identification and discrimination tasks (Strange and Bohn, 1998;
Bohn and Polka, 2001). This indicates that German listeners rely
on information about formant movement similarly to English
natives, who use diphthongization as a cue to differentiate tense
and lax monophthongs.

Vowel phonemes may show more or less variability and
movement in their formants depending on the denseness of
the vowel space in their direct vicinity (Wedel et al, 2018).
This idea of competition between neighboring vowel
phonemes has the following implications for German. Here,
the front, close to mid-close vowel space is rather dense with a
high number of vowel phonemes, while the open, mid vowels and
the close, back vowels have considerably less competition from
neighboring vowel phonemes (Mdobius, 2001).

1.2 Information-Theoretic Measures
Information-theoretic measures (Shannon, 1948), such as
frequency or predictability, have been linked to the realization
of linguistic structures (for review, see Hale, 2016; Jaeger and Buz,
2017). In this context, surprisal S (unit;), which estimates the
predictability of local structures, has been shown to correlate with
human processing difficulty pertaining to linguistic units at
different levels (Demberg et al., 2012; Levy, 2008; Hale, 2001;
Levy, 2011). Surprisal is measured in bits of information and
calculated as the negative log to the base two of the probability (P)
of a linguistic unit (unit;) appearing in a specific context (context),
which can be the preceding or following context of that unit or
both (Eq. 1).

S(unit;) = —log, P (unit;|context). (1)

The surprisal measure reflects the intuition that linguistic
units that are difficult to predict from context are more
surprising when they occur, and conversely, the occurrence of
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easily predictable units is less surprising. Surprisal quantifies the
predictability of local structures and is usually estimated from
language models (LMs) based on large text corpora. In this study,
we measure predictability as surprisal based on phoneme-level
LMs because we investigate phonetic structures whose variability
is thought to be best reflected by predictability estimated at the
phoneme level (Oh et al, 2015). Hierarchical structural
information, such as syllable or word boundaries, which also
affect segmental properties, is implicitly reflected in sequences of
phones (Raymond et al., 2006).

When investigating the impact of information-theoretic
measures on linguistic structures, it is important to distinguish
predictability from pure frequency effects, although frequency
and predictability are not independent measures (Cohen Priva
and Jaeger, 2018). Frequently used linguistic elements are under
greater pressure to be efficient than less frequent ones (Zipf,
1949). More recent crosslinguistic studies have found that it is not
frequency of occurrence but contextual predictability that is more
efficient in explaining variability in word length, especially for
lower-frequency words (Dautriche et al., 2017; Piantadosi et al.,
2011). This line of research suggests that the effect of frequency is
subordinate to that of predictability.

In studies on predictability effects on phonetic structures,
word frequency is usually included as a control variable to
tease apart effects of the two information-theoretic measures,
viz. predictability and word frequency, on linguistic variability
(e.g., Bell et al., 2009; Gahl et al., 2012; Jurafsky et al., 2001). On
average, low-frequency words include vowels with increased
dispersion, or distance from the center of the vowel space,
compared to high-frequency words (Jurafsky et al., 2001; Zhao
and Jurafsky, 2009). Vowels in frequent syllables have been
shown to have faster formant transitions, that is, to show
stronger coarticulatory influences, than vowels in infrequent
syllables (Benner et al., 2007). This frequency effect has been
found to be consistent in different lexical stress conditions. In
accordance with the current literature, we therefore include word
frequency as an additional information-theoretic measure in our
models.

1.3 Research Questions and Hypotheses
The main aim of this study is to investigate whether German
formant trajectories differ in their curvature when vowels stand in
different surprisal contexts or appear in words with different
frequencies of occurrence. We test for the effect of surprisal on
formant movement by including the factor in interaction with the
measurement point in the nonparametric part of our statistical
model (Section 2.2.4). Given our previous findings that vowel
dispersion in German is significantly affected by surprisal and
word frequency (Brandt et al., 2019), we expect to find differences
in formant trajectories between vowels in these different
contexts, too.

Following the SSR hypothesis (Aylett and Turk, 2004, 2006),
we investigate whether the effect of predictability on formant
movement is modulated by a word-level effect of prominence,
that is, primary lexical stress. We also control for the known effect
of the place of articulation of directly preceding and following
speech sounds on formant movements in the statistical models.

Dynamic Formant Trajectories in German

Moreover, our models take into account that vowels located in
less densely populated regions of the German vowel space are
more variable in their formants, especially in F1 (Mdbius, 2001),
by including vowel phonemes as a predictor. We predict that the
information-theoretic measure of surprisal affects formant
trajectories above and beyond the effects of stress and
coarticulation captured by the control factors.

2 MATERIALS AND METHODS

2.1 Materials

2.1.1 Speech Corpus

The Siemens Synthesis corpus (SI1000P) (Schiel, 1997) is used as
speech material. These recordings were done to provide high-
quality material for concatenative speech synthesis. The corpus
contains audio recordings from two professional, middle-aged,
male speakers of Standard German. Both speakers are trained and
experienced broadcast announcers who worked at a German local
state broadcasting station (BR) at the time of the recording. They
were asked to read as if in a broadcasting setting. Both speakers
read the same speech material. Each speaker recorded 992
sentences selected from the Frankfurter Allgemeine newspaper
corpus (SI1000) in an echo-canceling studio using a Sennheiser
MKH20 omnidirectional microphone with a controlled distance
of 30 cm to the mouth, at a sampling rate of 48 kHz and 16 bits,
filtered and down-sampled to 16 kHz. Canonical transcriptions
and automatic word and phoneme segmentations are available.

2.1.2 Language Modeling Corpus

For the purpose of language modeling and extraction of word
frequency values, we used a large text corpus with a sufficient
amount of data. A German language model was trained using the
web-crawled DeWaC corpus (Baroni et al., 2009), which
comprises 1.2 billion running words and 9.3 million lexical
types from a diverse range of genres.

2.2 Data Analysis

2.2.1 Speech Data Analysis

The automatic annotations provided in the speech corpus were
manually verified by two phonetically trained annotators in the
Phonetics laboratory at Saarland University who showed a very
strong inter-rater agreement in the choice of their segment
boundaries based on a Spearman’s rho correlation test
(p=0.93,S = 1427500000, p < 0.001). The beginning of vowels
was marked when F1 is clearly visible in the broadband
spectrogram, and ends of vowels were marked at the end of a
visible F2 structure.

The first and second formants were extracted using the Burg
algorithm in Praat using a time step of 0.0ls, a maximum
number of five formants, a ceiling of 5,000 Hz for the formant
search range which is the default for adult male speakers, a
window length of 25 ms, and preemphasis from 50 Hz at every
10% of the time-normalized vowel duration, yielding a formant
trajectory defined by 11 samples for each vowel. The number of
measurement points is sufficient for formant trajectory
estimation since male speakers produce speech at an average
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TABLE 1 | Number of tokens per vowel phoneme and primary lexical stress
position in the dataset.

Vowel Tokens Stressed Unstressed
N 4,470 1,905 2,565

I 5,650 1,965 3,685

e: 3,753 1,941 1,812

a 3,040 1,808 1,232

a 5,964 2,859 3,105

o: 3,160 1,387 1,773

u: 1,176 480 696

0 3,288 930 2,358

fundamental frequency of about 100-120 Hz, which means that
formant values change at about every 8-10 ms. The average vowel
duration in our data is 77 ms (SD = 33 ms), yielding a sufficiently
dense sample of formant measurements per vowel.

Vowels in function words were excluded from the analysis
following Bell et al. (2009). We also excluded diphthongs from the
dataset because they inherently show more movement in their
formants than monophthongs. The starting point at 0% and the
end point at 100% of the vowel duration were discarded in the
analysis because here formant extraction is potentially heavily
influenced by the preceding or following speech sound. Formant
values were cleaned using the interquartile ranges for F1 and F2
for German male speakers in the study by Pitzold and Simpson
(1997) as a guideline. Since we model formant trajectories and are
not limited to formant values at the temporal midpoint, we used
more generous ranges for F1 (200-700Hz) and F2
(450-2,400 Hz). Vowel tokens with formant values outside of
these ranges were excluded from the analysis (n = 195, 0.34%).
Formant values were not normalized because the statistical
analysis applied here incorporates smoothing (see Section 2.2.4).

Only a subset of the German vowels was used in the modeling
of German formant movement: front, close vowels: /i, I, e/; open,
mid vowels: /a, a/; and back, close vowels: /u, U, o/. This strategy
allowed us to make inferences about vowel-specific formant
movement depending on the placement in the vowel space.
We decided to focus on peripheral vowels because they span
the entirety of the German vowel space and are possibly very
different in the extent of their formant movement and variability
of their formant values in general. We analyzed a total of 30,501
vowel tokens, with 13,275 in stressed and 17,226 in unstressed
positions (Table 1).

2.2.2 Language Modeling Procedure

Data preprocessing of the DeWaC corpus included lowercasing,
punctuation removal, and grapheme-to-phoneme (g2p)
conversion (Mohler et al, 2000). The transcriptions of the
most frequent 1,000 words in the corpus were manually
verified by the first author. Systematic errors in the g2p
conversion were identified and corrected.

The training corpus (80% of the data) was used to train
n-phone LMs using the SRILM toolkit (Stolcke, 2002). All
LMs include sentence and word boundary markers and are
based on both function and content words. By default, SRILM
calculates the conditional probability of a linguistic unit based on
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its preceding context. In order to calculate conditional
probabilities based on the following context, we used the built-
in SRILM function reverse-text, which reverses the order of the
linguistic units in each sentence. Models were smoothed using
Witten-Bell smoothing. Because of the limited lexicon of the LM,
count-of-counts statistics, such as Kneser-Ney, produced
erroneous output.

The output for contextual predictability of the n-phone LMs
was then transferred into surprisal (Eq. 1). We also extracted
word frequency. Surprisal and word frequency were log-
transformed because of their pronounced positive skewness.
Surprisal values based on small n-phone sizes, as used in this
study, express the probability of the phonotactic structure of a
language, rather than simply giving information about preceding
or following speech sounds. When segments are in word-initial or
-final positions, the surprisal values reflect the word boundary
marker. Other linguistic levels that potentially affect acoustic
variability, even on the subword level, are only implicitly
expressed in the surprisal values used here. We aimed to
control for these effects by including word identity in the
random structure of the statistical models.

We limit our investigation of formant movement to bi- and
triphone surprisal for several reasons. First, the statistical models
calculated in Section 3 explain a large quantity of deviance in the
formant trajectory data (about 85%). Second, the increasing
n-phone size leads to higher sparsity in the data, that is,
vowels that are close to the beginning or end of a sentence are
not matched with a respective surprisal value (sentences were
read as separate prompts), and certain unusual combinations of
longer n-phone strings are not represented in the language model.
Third, in a different investigation of the effect of surprisal on
vowel dispersion, we have tested different n-phone sizes up to six
and shown that the correlation between these two measures drops
distinctively from the triphone level to the six-phone level
(Brandt, 2018).

The bi- and triphones that are used for surprisal extraction are
based on a transcription of the actual produced utterance, in
contrast to using the normative, dictionary forms. We follow
Tucker et al. (2019) in this approach, who found that the
prediction accuracy of vowel duration decreases when using
diphones based on dictionary transcriptions compared to
using diphones based on transcriptions of actual productions.

In addition, it should be noted that higher order n-phones
always contain the string of their respective lower order
n-phones, that is, the information of the biphone is contained
within the triphone. For that reason, we expect biphone and
triphone surprisal values that share the same context direction to
be correlated to some extent.

2.2.3 Primary Lexical Stress

Prominence was coded as a binary factor based on primary lexical
stress (levels: stressed vs. unstressed) in the corpus text.
Monosyllabic content words were classified as stressed.

2.2.4 Generalized Additive Mixed Modeling
We used generalized additive mixed models (GAMMs) to
investigate dynamic changes in the formant trajectories of F1

Frontiers in Communication | www.frontiersin.org

June 2021 | Volume 6 | Article 643528


https://www.frontiersin.org/journals/communication
www.frontiersin.org
https://www.frontiersin.org/journals/communication#articles

Brandt et al.

and F2 as provided by the R package mgcv (R Development Core
Team, 2008; Wood, 2011, 2017), visualized with itsadug (van Rij
et al,, 2017). GAMMs combine parametric terms and smooth
terms in their structure, that is, they allow investigation of the
relations between a response and one or more covariates in
average values and also in nonlinear terms. In addition, they
incorporate random effects, that is, random intercepts, slopes,
and smooths. Random smooths allow us to model nonlinear by-
group variation in the response variable (Soskuthy, 2017).
Recently, GAMM:s have gained popularity in phonetic studies
with a focus on speech articulation (Tomaschek et al., 2018b;
Carignan et al., 2020) and acoustic—phonetic measures (Kirkham
etal, 2019). In addition to their advantage of modeling nonlinear
data, GAMMs are also able to capture interaction effects of two
continuous variables by means of tensor product interaction
[ti ()]. In the field of phonetics, this is particularly useful for
modeling articulatory or acoustic data because they are
conditioned by the interaction of time (temporal dimension or
duration) and other continuous dimensions, such as space or
measurement points.

Prior to model fitting, we checked for collinearity between the
variables by using the pairs. panels () function of the psych
package (Revelle, 2021). As expected, surprisal values that
share the same context direction were moderately correlated
(preceding context: r = 0.47, following context: r = 0.62),
which was why we decided to calculate separate models for
each surprisal variable. Word frequency and surprisal values,
however, only showed a very weak (surprisal (X|X-1): r = —0.08,
surprisal (X|X+1): r = —0.09, surprisal (X|X+2): 7 = —0.1) or weak
(surprisal (X|X-2): r = —0.2) negative relationship, that is, vowels
in high surprisal contexts show a slight tendency to appear in low-
frequency words.

Surprisal values and word frequency were log-transformed.
Vowel phonemes with three factor levels, front (/i, I, /), mid (/a,
a/), and back (/u, U, of), were deviation-coded, comparing each
level to the grand mean. The two-level factor stress (levels:
unstressed and stressed) was treatment-coded.

We followed the modeling approach presented in the GAMM
tutorial article by Wieling (2018). The model structure is given in
listing 1. GAMMs were fitted using the bam () function of the
mgcv package (Wood, 2019) because our dataset has more than
10,000 data points. Autocorrelation in the formant values can be
expected for the temporal dimension vowel duration and also for
the measurement point. Therefore, we included the
autoregression function provided in the mgcv package. An AR
(1) autoregressive error model for the residuals in a Gaussian
model was included by using the rho parameter and setting the
start event as 10% of the normalized vowel duration on an
ordered dataset.

The smooth terms were fit with ‘thin plate regression splines’
(bs = ’tp”) (Wood, 2003). The interaction of the measurement
point and duration and the interaction of surprisal and stress
were fitted with “tensor product smooths” [ti ()], and we used
“factor smooth interactions” (bs = “fs”) to fit random effects. The
smoothing parameter (k) for each smooth was set via model
diagnosis [gam.check ()]. Since there are less than 10 unique
values for the response variable, smooths for the measurement
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point were set at k = 9 to avoid overfitting of the data. This
approach allowed for the right amount of wiggliness in the data.

Model comparison was performed using the itsadug function
compareML (), which compares two models that vary in one term
using the Akaike information criterion (AIC). Models with
significantly lower AIC value were preferred. Concurvity of
smooth terms was checked [concurvity ()] looking at pairwise
concurvity between the terms.

We included fixed effects for deviation-coded vowel phonemes
(levels: front, mid, and back), treatment-coded stress (levels: yes
and no), and an interaction between both terms. Smooth terms
[s ()] for the measurement point were included in the model using
ordered by-terms (by =) for stress and vowel phonemes as
ordered factors (oVowel, oStress). We were also interested in
differences in formant trajectory shape due to different surprisal
values by stress and vowel phonemes. Additionally, we included a
smooth for word frequency by ordered vowel phonemes. The
smooth for word frequency by stress did not increase model
performance significantly.

In addition, the smooth term for the measurement point, the
smooth of duration, and a tensor product interaction (ti) for the
measurement point and duration were added to account for the
influence of the temporal structure on the trajectories (Soskuthy,
2017). Another tensor product interaction for the measurement
point and surprisal and a smooth term for surprisal were added to
capture how the measurement point and surprisal interact in
their effect on first and second formant trajectory. We also tested
the tensor product interaction of the measurement point and
word frequency, but it did not increase model performance.
Including the smooth term for word frequency increased
model performance.

To capture the speaker and vowel phoneme variation as well as
the effect of following and preceding context on formant
trajectory shape, random smooths were included in the model
(bs = “fs”). The order of the nonlinearity penalty (m) for the
random smooths was set to 1.

3 RESULTS

The results of the GAMM:s for F1 and F2 trajectories are presented
by the terms in the models, providing a cohesive summary of the
effects of surprisal and primary lexical stress and their interaction,
word frequency, and the smooth terms on average formant values
and the formant trajectory shapes. The GAMM output for each
model is given in the supplementary material (Supplementary
Tables S1-S8). Significant effects are reported when the
significance level reaches p < 0.001. Since formant movement is
heavily influenced by vowel duration, the average formant
trajectory shapes are plotted for the mean vowel duration.
Differences in formant movement are visualized using
difference smooth plots using the R package itsadug (van Rij
et al., 2017). These plots convey the difference in formant
trajectory shape between two factor levels (e.g., estimated
difference of formant movement between unstressed and
stressed vowels). Time windows with significant difference in
trajectory shape are marked red and with dashed vertical lines,
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LISTING 1 | Structure of generalized additive mixed models used to model response variable (F1/F2) trajectory.

#Main effect
#stress
F1/F2 ~

(levels: unstressed ,
Vowel = Stress

#Separate smooth terms for measurement point,

#word frequency ,
+ s(Percentage ,

and surprisal
k=9) + s(Duration ,

of deviation coded vowel (levels: front,
stressed ),

mid, back),

and their interaction on FI[F2

duration ,

k=4)

+ s(WordFrequency, k=4) + s(Surprisal, k=4)

#Smooth terms for measurement point and word frequency

#by ordered vowel

+ s(Percentage , by=oVowel, k=9) + s(Percentage, by=oStress, k=9)
#Smooth terms for surprisal by ordered stress and by ordered vowel
+ s(Surprisal , by=oStress, k=4) + s(Surprisal , by=oVowel, k=4)
#Smooth term for word frequency by ordered vowel

+ s(WordFrequency, by=oVowel, k=4)

#Tensor product smooths for the
#duration ,

+ ti(Percentage ,

#Random smooths

to account for variability

interaction measurement point and
and measurement point and surprisal
Duration) + ti(Percentage,

Surprisal)

in formant movement per

#measurement point and speaker/preceding context/following context

+ s(Percentage ,
+ s(Percentage ,
+ s(Percentage ,

Speaker,
Following ,
Preceding ,

bs="fs”, m=1)
bs="fs”, m=1)
bs="fs”, m=1)

#Restricted maximum likelihood approach for model fitting

method = 'REML',

#Rho value is set as to
#starting point for formant
rho =

while those parts of the trajectory with no significant difference in
shape are left unmarked. If the estimated difference with a 95%
confidence interval of the dependent variable, that is, the first or
second formant, is below zero in the difference smooth plot, the
dependent variable in the reference level has higher values than
the factor level that the reference level is compared to, and vice
versa. The difference smooth plot only shows the difference
between two levels of a factor, that is, multiple plots are
needed if the factor has more than two levels.

the autocorrelation at lag 1, AR. start to set
trajectory
rhoval , AR.start=df$start.event,

data = df)

3.1 Vowel Phonemes
In our analysis of formant movement in German vowels, we focus

on vowel phonemes in the periphery of the vowel space. We define
three levels for the factor vowel: front: /i;, I, e:/; mid: /a:, a/:, and back
vowels: /u:, U, o:/. This factor is deviation-coded, which allows us to
compare each level to the grand mean (see Section 2.2.4).

As can be seen in Figure 1, F1 is lower in back and front vowels
compared to the grand mean, and F2 is lower in back vowels and
higher in front vowels compared to the grand mean. Including an
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FIGURE 1 | Mean first (A) and second (B) formant trajectories per vowel phoneme category (front, mid, and back) and primary lexical stress (unstressed and
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FIGURE 4 | Vowel chart of the subset of peripheral vowels with
frequency of vowel tokens in the three bins of high, mid, and low biphone
surprisal of the preceding context.

interaction between vowel phonemes and stress improves the
model performance of all GAMMs tested in the current study.
This interaction effect is also visualized in the average first and
second formant trajectories given per stress condition and vowel
phoneme in Figure 1. According to the GAMM output, F2 in
stressed back vowels is significantly lower than in unstressed back
vowels. For front vowels, F2 is higher in stressed than in
unstressed vowels. F1 is lower in back and front vowels that
stand in the stressed position than in those in the unstressed
position, that is, these stressed vowels are more close and
dispersed in the vowel space than their unstressed counterparts.

The vowel is then also included as an ordered factor in a smooth
term with the measurement point to compare first and second
formant movement between the three factor levels. Here, “back” is

Dynamic Formant Trajectories in German

set as the reference level. According to the GAMM output, both F1
and F2 formant movements differ significantly between mid and
back vowels and between front and back vowels. The first formant
trajectory in German open, mid /a, a/ is significantly more concave
with a steeper increase and fall than in back or front vowels
throughout almost the entire normalized duration of the vowel
(Figures 2A,D,E,F). The estimated difference in F1 movement
between front and back vowels is smaller than the difference in
F1 between mid and back vowels or mid and front vowels but still
statistically significant. Front vowels have higher F1 values in the first
half of the normalized vowel duration than back vowels and higher
F1 values in the second half of the vowel (Figure 2C). The F2
trajectory is shaped convex in mid and back vowels, while front
vowels, on average, are produced with a concave F2 trajectory. These
significant differences in F2 formant movement per vowel category
are visualized in the difference smooth plots in Figure 2B.

3.2 Stress

The main effect of stress on average F1 and F2 reaches the
significance level in almost all models calculated in the current
study. Mean F1 and F2 are slightly lower in stressed vowels than
in unstressed vowels. Stress is also included in the smooth term
for the measurement point, accounting for variability in F1 or F2
movement in different stress conditions. This smooth term
reaches the significance level in all models. However, it can be
seen in Figure 3 that only a section of the formant trajectories
(marked with vertical, dashed lines) in unstressed vowels is
significantly different from that in stressed vowels: F1
movement differs significantly as a function of stress from
around 25-50% of the normalized vowel duration
(Figure 3A); F2 movement in unstressed vowels is different
from that in stressed vowels only in the first part of the vowel
up to 40% of its normalized duration (Figure 3B).

mid /a:, a/
°
H
o
- front /i, e:, 1/

back /u:, o, v/

B

YN

1 2
log Surprisal (X|X-1)

mid /a:, a/

Vowel

front/i:, e, 1/

back /u:, o:, u/

-5.0 -2.5 0.

0 25
log Surprisal (X|X-2)

1 2
log Surprisal (X|X+1)

FIGURE 5 | Density plot of front, mid, and back vowels in different surprisal conditions of the preceding (A,B) or following (C,D) contexts.
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FIGURE 6 | Stressed vowels: heatmap of the interaction of biphone surprisal of the preceding context (log Surprisal (X|X-1)) and the measurement point on the
trajectory of the first formant (A) and the second formant (B) per the vowel categories front (C), mid (D,E), and back (F).
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FIGURE 7 | Stressed vowels: heatmap of the interaction of triphone surprisal of the preceding context (log Surprisal (X|X-2)) and the measurement point on the
trajectory of the first formant (A) and the second formant (B) per the vowel categories front (C), mid (D,E), and back (F).

3.3 Surprisal sized categories of “low,” “mid,” and “high” and plot the
We present the results for the effect of surprisal on the first and  frequency of the peripheral German vowels used in our subset
second formant trajectories of peripheral German vowels.  per surprisal category (Figure 4).

Surprisal values are based on bi- and triphones of the Although Figure 4 only shows the frequency of vowel tokens
preceding and following contexts of the vowel. in different categories of biphone surprisal of the preceding

For the purpose of visual inspection of our data, we bin  context and does not allow for general statements about the
biphone surprisal of the preceding context into three equally  distribution of vowel phonemes in different surprisal contexts,
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there are two general observations that can be made. First, the
average position of the vowel phoneme in the vowel space
changes with regard to surprisal. Second, vowel phonemes are
not equally distributed in the range of surprisal values observed in
our data.

The second observation becomes even more apparent when
investigating the distribution of vowel phonemes per bi- and
triphone surprisal of the preceding or following context
(Figure 5). On average, German back vowels have higher
surprisal values, irrespective of n-phone order or direction,
than mid or front vowels. Front vowels show slightly higher
surprisal values than mid vowels. The difference between the
distributions is more pronounced for biphone surprisal values
than for triphone surprisal values.

All GAMMs calculated here include a tensor product
interaction [ti ()] of the measurement point and surprisal, as
well as two separate, simple smooth terms of the measurement
point and surprisal, in order to tease apart the interaction effect
from the main effect of the two smooth terms. The interaction of
the measurement point and surprisal on the first formant
trajectory reaches the significance level in all GAMMs. This
means that first and second formant movement in German
vowels is significantly impacted by the interaction of the bi-
and triphone surprisal of both context directions and the
measurement point for formant extraction in the normalized
vowel duration.

Figure 6 shows how F1 and F2 trajectory shapes for stressed
vowels in the front, mid, and back positions vary. We observe
that F1 shows the lowest values for all vowels in the data with
high surprisal values (> 2.5), that is, stressed front and back
vowels are more close in high surprisal contexts than in low
surprisal contexts, and stressed mid vowels show more

pronounced F1 movement in their previously observed
concave trajectory shape due to distinctly low F1 values
(around 500 Hz) in the first and last third of the normalized
vowel duration.

When we plot the GAMM heatmaps (Figure 7) for the
interaction of the measurement point and triphone
surprisal of the preceding context for all stressed vowels in
the corpus, we find quite different patterns in the formant
trajectories from those observed for biphone surprisal of the
preceding context (Figure 6). Stressed high surprisal (> -1.5)
front, mid, and back vowels have lower F1 values than
stressed low surprisal vowels. For F2, however, high
surprisal vowels (> —2) overall have higher formant values
than low surprisal vowels, again irrespective of their position
in the vowel space. This means that high surprisal vowels are
produced with more frontness than low surprisal vowels. It
should be noted that triphone surprisal values of the
preceding context (R = —4.5-2.8) have a larger range than
biphone surprisal values of the same context direction (R =
0.4-3.1). Judging from visual inspection alone, the average
first and second formant trajectories per vowel category
(Figure 1) seem to be better presented by the interaction
plots for the measurement point and biphone surprisal
(Figure 6) than by the heatmaps displaying the interaction
effect of triphone surprisal and the measurement point
(Figure 7).

Since we control for stress in the GAMMSs, we can also
investigate the impact of stress on the interaction between
surprisal and the measurement point for different vowel
phonemes, n-phone sizes, and forward and backward
contextual predictability. For instance, Supplementary
Figure S2 shows the GAMM heatmaps of the interaction of
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biphone surprisal of the preceding context and the measurement
point for unstressed vowels. When comparing these heatmaps to
their counterparts for stressed vowels (Figure 6), we see that F1 in
front and back vowels has overall lower values for higher surprisal
contexts in unstressed vowels compared to stressed vowels. F1 in
unstressed mid vowels shows more pronounced movement than in
stressed conditions, that is, lower F1 values, at the edges of the vowel.
F2 values in unstressed high surprisal (> 2.5) vowels, especially in the
beginning of the vowel, are much lower than the F2 trajectories for
stressed vowels.

We proceed to make the same comparative analysis between the
GAMM heatmaps of unstressed and stressed vowels for the
interaction effect of triphone surprisal of the preceding context
and measurement on formant movement in order to investigate
potential influences of the n-phone size. Overall, we find that the
relationship between the two factors surprisal and measurement
point shows a higher degree of variability in formant movement in
the GAMM heatmaps for unstressed vowels than that for stressed
vowels. Interestingly, for stressed vowels, we observe that average
first and second formant values are closely related to the triphone
surprisal level (X|X-2). In the unstressed condition, however, vowel
frontness, expressed by F2, shows less of a clear-cut relationship to
the surprisal level. Close unstressed vowels are produced with a more
pronounced close articulatory setting at lower levels of triphone
surprisal of the preceding context than stressed vowels.

We test for surprisal with preceding and following context
direction. The GAMM heatmaps for the interaction between
surprisal and the measurement point look quite different when
comparing different context directions (Supplementary Figures
$1-S7). For instance, average formant values in stressed vowels
are strongly influenced by biphone surprisal of the preceding context
but less by the temporal domain expressed by the measurement
point, while unstressed vowels in the same surprisal condition show
more variability in their formant movement depending on surprisal
and the measurement point. We saw a similar pattern for formant
trajectories in unstressed vs. stressed vowels in models with triphone
surprisal of the preceding context.

3.4 Word Frequency

During the modeling procedure, we excluded a tensor product
interaction of the measurement point and word frequency and a
smooth of word frequency by ordered stress from the model because
they did not add to model performance. However, the simple
smooth term for word frequency and the smooth for word
frequency by ordered vowel added to the model. This means that
F1 and F2 movements do not vary significantly per measurement
point in vowels occurring in words with different frequencies, nor do
they vary as a function of differences in word frequencies in stressed
and unstressed vowels. The model output does, however, show that
formant movement is explained by differences in word frequencies
and differences in word frequencies by vowel phoneme.

3.5 Interaction Between Duration and

Percentage
The interaction term between the vowel duration and
measurement point adds to the explained variance in the F1

Dynamic Formant Trajectories in German

and F2 data modeled here. Formant movement is heavily
influenced by the duration of the vowel and the measurement
point during vowel duration.

Figure 8 shows GAMM heatmaps for the first and second
formant trajectories in stressed German vowels as an interaction
between the vowel duration and measurement point which is
modeled by the tensor product interaction of the measurement
point and duration.'

In the GAMM heatmaps (Figure 8), we can observe the same
overall formant trajectory shape for each vowel category that is given in
Figure 1. The heat maps allow us to make more detailed observations
about this overall shape, depending on vowel duration. Longer vowels
above 0.25s appear to show more pronounced first and second
formant movement with lower minima than vowels with average
or short duration. The peak of the F1 trajectory appears earlier in the
vowel as a function of vowel duration when the vowel is longer than
0.25 5. We can also see that the average concave F2 trajectory shape for
front vowels is mainly due to movement in long vowels, again above
0.25 s, while shorter front vowels show very little F2 movement. Very
short vowels show surprisingly low F2 values for mid (around
1,100 Hz) and back (around 850 Hz) vowels.

3.6 Random Effects

The random smooths for the measurement point per speaker and
the preceding and following contexts significantly add to the
explained variability in F1 and F2 movement in all models.

4 DISCUSSION

This study investigated whether variability in German formant
trajectories can be explained by contextual predictability,
measured as surprisal, and prominence, that is, primary lexical
stress, as well as an interaction of both factors. We also include
word frequency as an additional information-theoretic measure in
our models. We use generalized additive mixed models (GAMMs) to
compare the shape of formant trajectories in different surprisal
contexts. Surprisal values are based on the biphone or triphone of the
preceding or following context of the vowel. Only monophthongs in
content words were considered in the study.

For average F1 and F2, we find expected results for different
vowel phonemes that determine the position of the vowel within
the acoustic vowel space. The significant interaction effect
between the factors vowel and stress in the F1 and F2 models
confirms that vowels in the stressed position are more dispersed
in the vowel space than vowels in the unstressed position.

For the purpose of the study, we are particularly interested in the
results of the smooth terms including surprisal. The GAMM output
shows that the first and second formant trajectories in German are

"The equivalent GAMM heatmaps for the first and second formant trajectories in
unstressed German vowels as an interaction between vowel duration and the
measurement point can be found in Supplementary Figure S1. This allows us to
investigate differences in formant trajectory due to the temporal domain. We
include separate heatmaps of this interaction per vowel category since this factor
significantly impacts formant movements (Section 3.1).
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affected by surprisal in both context directions, that is, forward and
backward, and by the interaction of surprisal and stress. We analyze
these results in more detail via visual inspection of GAMM heatmaps
that show the interaction effect of surprisal per measurement point
(temporal domain) on the formant trajectory. We plot these
heatmaps per vowel phoneme and stress condition because we
find that these additional factors impact formant movement
significantly. This procedure shows that the interaction effects of
these factors on formant movement are highly complex. However,
there are some general observations that we can make: unstressed
vowels seem to show higher variability in their formant trajectory at
different surprisal levels than stressed vowels. Differences in average
formant values are also more readily expressed as a function of
surprisal in stressed vowels than in unstressed vowels.

Our results show that effects of contextual predictability on
formant variability are not limited to pointwise measurements of
the vowel, as seen in studies on the effect of predictability on vowel
dispersion (Malisz et al., 2018), but affect the dynamics throughout
the entire vowel duration. When interpreted against the background
of the uniform information density (UID) hypothesis (Levy and
Jaeger, 2007), our findings add to the concept that the rational
speaker uses optimization strategies in speech production
throughout the entire utterance to ensure successful
communication. This strategic behavior of the speaker also has
an effect on the characteristics of formant movement and is observed
while controlling for linguistic factors that are known to affect
formant movement, such as vowel duration or phonetic context.

We proceed by further discussing our results with respect to
the relation of prosodic prominence and predictability, especially
in light of the smooth signal redundancy (SSR) hypothesis (Aylett
and Turk, 2004, 2006). In addition, possible accounts of the effect
of predictability on the phonetic structure are discussed.

4.1 Prosodic Prominence and Predictability

Based Formant Movement

We test interaction effects between prosodic prominence and
predictability on average first and second formant values and on
formant movement in German vowels to investigate the effect of
predictability and the prosodic structure, here primary lexical stress,
on phonetic variability. This research goal is motivated by the
smooth signal redundancy hypothesis (Aylett and Turk, 2004,
2006), which postulates that the effects of language redundancy
or predictability on phonetic structures are moderated by the
prosodic structure (prosodic prominence), that is, there are no
independent or additive effects of predictability on phonetic
variability. We can confirm this expected interaction -effect
between stress and surprisal on first and second average formant
values and on formant trajectories.

Since German vowels in the stressed position and under high
surprisal are known to be more dispersed in the vowel space
(Malisz et al., 2018; Schulz et al., 2016), we would expect higher
average F2 and lower average F1 values for front vowels in the
stressed position and under high surprisal than for those in the
unstressed position. Judging from the GAMM heatmaps for
biphone surprisal of the preceding context, that is, the same
surprisal measure as that used in our previous studies, we find the
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predicted pattern for front vowels. For back vowels, on the other
hand, we expect lower average F1 and F2 values for stressed
vowels in high surprisal contexts than for unstressed vowels.
From visual inspection of the GAMM heatmaps in Figure 6 and
Supplementary Figure S2, we cannot confirm this expectation
for back vowels. For mid vowels /a, a/, we find that they are
produced with more frontness in the unstressed condition under
high surprisal than in stressed and high surprisal contexts.

We include an analysis of the impact of the temporal domain
(interaction of the vowel duration and measurement point) on first
and second formant trajectories, again distinguishing stress
condition and vowel phoneme. While there are vast differences
in formant movement depending on vowel duration, with longer
vowels showing more formant movement than shorter vowels, the
effect of stress on this relation appears to be small. This observation is
partially in line with work that highlights the importance of time as a
crucial factor for articulatory effort (Xu and Prom-on, 2010). The
authors found that time constraints determine how much
information speakers can convey in a conversational turn and
hypothesized that speakers maximize their articulatory effort in
unstressed vs. stressed vowels, which can also lead to increased
dynamics for unstressed vowels compared to stressed vowels. Tang
and Shaw (2020) noted that this principle applies to their findings on
word duration as a function of predictability in Mandarin Chinese.
The amount of time speakers allocate to a linguistic unit is a function
of its importance, that is, less predictable words are produced with
longer durations. In our study, we find more pronounced formant
movement in unstressed vowels when investigating formant
movement as a function of the surprisal and measurement point.
Vowel duration and surprisal are, however, known to be correlated
(Malisz et al., 2018).

Prosodic prominence, here estimated as primary lexical stress,
was found to have a significant impact on the mean values of the
first and second formants in German vowels in almost all
GAMMs. In our models, the average F1 and F2 in stressed
vowels are lower than those in unstressed vowels.

Lexically stressed American English vowels that are perceived as
prominent are produced with a more open vocal tract than those
vowels that are not perceived as prominent, resulting in higher F1
values for these vowels (Mo et al., 2009). Speakers are assumed to use
this strategy to increase the sonority of prominent syllables
(Beckman et al, 1992). For F2, or vowel frontness, vowels are
hyperarticulated when they stand in a prominent position (Mo
et al,, 2009), supporting the hypo- and hyperarticulation hypothesis
(Lindblom, 1996). This means that prominent back vowels are
produced with lower F2 values and prominent front vowels are
produced with higher F2 values than their non-prominent
counterparts. This effect is captured by expanded vowel
dispersion for stressed vowels in German (Schulz et al, 2016)
and could also be replicated in our study.

The German vowel system, however, differentiates between
tense and lax vowels, which can both stand in stressed or
unstressed positions. German formant movement is largely
influenced by vowel tenseness and frontness, that is, vowel
identity. There are also known effects of stress on German
tense vs. lax vowels: stressed tense vowels are longer and more
peripheral in their position in the vowel space than unstressed
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tense vowels. Lax vowels, however, are not significantly affected
by stress in their length or average formant values (Jessen, 1995;
Mooshammer et al., 1999). Therefore, stress alone is possibly not
an ideal factor to predict formant movement in German.

4.2 Accounts of the Effect of Predictability
on Speech Variability

This study adds to previous accounts of predictability-based
variability in the speech signal at the subword level. There are
different accounts of these observed effects: the production ease
account and the listener-oriented communicative account.
Seminal work advocating the production ease account (e.g.,
Gahl, 2008; Bell et al., 2009) demonstrated the effect of
frequency and predictability on word duration. The
production planning hypothesis (Kilbourn-Ceron et al., 2020)
views predictability as one of the factors that impact speech
planning. Easily predictable phonological information in an
upcoming word can facilitate the speech production process of
pronunciation variants. The production ease account therefore
relies on the contextual predictability of a linguistic structure
based on both context directions, as it is known that
coarticulatory processes have an effect on preceding and
following neighboring phonemes. An alternative, but
compatible, explanation has been offered by Tomaschek and
others (Tomaschek et al., 2018a, b), who proposed that it is
linguistic experience and articulation practice, rather than
predictability as such, that shape articulatory trajectories.

The listener-oriented or communicative account, on the other
hand, proposes that communication is a balancing act for the speaker
between making the least possible amount of effort and attending to
the listener’s need. As a result, predictable linguistic structures can be
reduced because they are easily retrievable from their context, while
structures that are difficult to predict from their context must be
preserved. Therefore, both context directions (backward and forward)
of contextual predictability play a role in this account. A strong
interpretation of listener orientation in speech production is
challenged by the finding that the speaker’s capacity to attribute
mental states to others, also known as theory of mind (ToM)
(Premack and Woodruff, 1978), does not necessarily lead to the
phonetic reduction of predictable linguistic structures (Turnbull,
2019). It should be kept in mind however that high scores in
ToM ability, as tested in the study by Turnbull (2019), estimate
the speaker’s capacity of ToM but not their willingness to apply
their ability to attribute mental states to others in a specific
communicative setting. In our interpretation of these two
accounts of the effect of predictability on speech variability,
we note that both the listener-oriented and the production ease
accounts rely on contextual predictability of linguistic
structures that is based on the preceding and following
contexts. There is also evidence from perception studies that
listeners do not only utilize preceding information for word
recognition in running speech but also following contextual
information (Szostak and Pitt, 2013). This process seems to be
modulated by contextual predictability in both directions.
Listeners pay less attention to the phonetic details of easily
predictable words (Manker, 2017).

Dynamic Formant Trajectories in German

With regard to our findings, surprisal based on the
following context significantly explains the formant
trajectory shape in German. This result is not necessarily
expected since we also know from previous work that the
effect of surprisal in different context directions depends on
which acoustic measure is investigated. Segment duration can
be explained by surprisal of the preceding and following
contexts, whereas vowel dispersion is only predicted by
surprisal of the preceding context (Malisz et al., 2018).
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