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ABSTRACT

The flow of viscoelastic polymer solutions and their use as displacing agents in porous media are important for industrial applications, such
as enhanced oil recovery and soil remediation. The complexity of flow and high elasticity of conventionally used viscoelastic polymer
solutions can lead to purely elastic instability in porous media. In this study, we investigate the impact of this instability on displacing
capillary entrapments at low Reynolds numbers using a microfluidic approach. Our unique design consists of a single-capillary entrapment
connected to two symmetric serpentine channels. This design excludes the effect of viscous forces and enables a direct focus on displacement
processes driven solely by elastic forces. After the onset of purely elastic instability, an unstable base flow is observed in the serpentine chan-
nels. We discuss that the pressure fluctuations caused by this unstable flow create an instantaneous non-equilibrium state between the two
ends of the capillary entrapment. This provides the driving pressure to overcome the capillary threshold pressure and eventually displace the
entrapped oil. In our geometry, we observe that the displacement coincides with the emergence of a fully developed elastic turbulent state.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0071556

I. INTRODUCTION

The addition of high molecular weight polymers to a Newtonian
solvent results in a viscoelastic fluid, i.e., a fluid with intermediate
mechanical properties between viscous fluids and elastic solids. Large
elastic stresses induced during the flow of viscoelastic fluids lead to
purely elastic instability even in the absence of inertia, i.e., at low
Reynolds numbers.1,2 As the polymers approach their maximum
capacity for alignment with the flow and reach a so-called stretched
state, they exert a significant back reaction to the flow above a critical
shear rate, _ccrit .

3 In other words, purely elastic instability occurs when
the polymer relaxation time exceeds its transit time and elastic stresses
are no longer fully dissipated.4 The excessive elastic stresses elicit an
unstable base flow. This unstable flow resembles inertia-induced
hydrodynamic turbulent flow below the dissipation scale
(Kolmogorov length), which is known as the “Batchelor regime.”5,6

This regime is characterized by spatially smooth, temporary random
instabilities that cover a wide range of frequencies.5,7,8 This is reflected
as a power-law decay �f �b of the power spectral density (PSD) of
kinetic energy with a characteristic exponent b > 3.2,7,9–13 The occur-
rence of purely elastic instability during the flow of viscoelastic fluids

in various geometries has been extensively studied in the litera-
ture.2,7,14–17 Elastic instability is known to improve the efficiency of
heat transfer18–22 and microfluidic mixing.23–26 Recently, it has been
observed in enhancement oil recovery that purely elastic instability
might play a crucial role in capillary entrapments (ganglia) displace-
ment in porous media.27–29

Several experimental and numerical studies have focused on basic
designs to study the microscopic behavior of viscoelastic fluids and
elastic instability in porous media. A few basic geometries are com-
monly considered to mimic porous media flow characteristics at the
microscale including straight channels embedded with uniform or
randomized post arrays;30–40 a single pore formed by four disks;41,42

and converging and diverging channels.43–45 All of these geometries
have a curved streamline component in common. In fact, the stream-
line curvature of viscoelastic fluid flows can amplify the normal stress
differences that lead to unstable flow.17,46–48

Purely elastic instability in porous media is commonly associated
with increased flow resistance, i.e., an increased apparent viscosity
even at low Reynolds numbers.7,14,49–52 However, this increased
apparent viscosity is not per se large enough to explain the improved
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displacement efficiency of capillary entrapments in porous media.
Displacement experiments performed using polymers with different
molecular weights suggest that the mobilization of capillary entrap-
ments is in fact caused by the unstable nature of flow.27,49,53 The
unstable flow induces fluctuations of the fluid–fluid interface in
between the viscoelastic invading fluid and the trapped oil ganglia.53–56

These fluctuations can lead to breakup of large ganglia into smaller
droplets and eventually complete removal of the trapped defending
phase.57

In this study, we use a microfluidic approach to investigate the
mechanism by which a single-capillary entrapment is displaced by
viscoelastic polymer solutions in the semi-dilute regime. We use
serpentine channels with constant cross section to mimic the shear-
dominated, curved (tortuous) nature of flow in porous media. We
focus on the underlying elasticity-induced phenomena to establish a
link with the displacement of capillary entrapment. To exclude inertial
effects and evaluate the observations as purely elasticity-induced
effects, we conduct microfluidic experiments at small Reynolds num-
bers Re < oð100Þ in the creeping flow regime. This paper is structured
as follows: the methods utilized including the experimental setup, sam-
ple preparation, and fundamentals of the relevant fluid model are
described in Sec. II; in Sec. III, we provide rheological characterizations
of the polymer solutions and present and discuss the results of the
microfluidic experiments; and we conclude the paper in Sec. IV.

II. METHODS
A. Microfluidic geometry

The microfluidic geometry employed in this work consisted of
two identical serpentine channels of width wmc ¼ 0:125 mm that were
connected by a perpendicular side channel of width wsc ¼ 0:05 mm
and length lsc ¼ 1 mm [Fig. 1(a)]. The inner and outer radii of curva-
ture of the serpentine channels were ri ¼ 0:125 mm and ro ¼ 0:25
mm, respectively. The height h of the microfluidic channels was
approximately 0.045mm. Serpentine channels were ideally suited for
mimicking tortuous flow in porous media, whereas the perpendicular
side channel provided the possibility of capillary entrapment of the oil
phase. This geometry resembled a capillary entrapment between two
grains, where fluid interfaces are in contact with more than one active
pathway of the invading phase [Fig. 1(b)]. Together with a common
inlet and outlet, the symmetry of serpentine channels provided an
equal viscous pressure at both ends of the side channel. Hence, our
microfluidic geometry served as a model system that isolated the effect
of elastic stresses on the fluid–fluid interfaces and consequently on the
mechanism of oil displacement from the side channel.

B. Experimental protocol

The microfluidic devices were fabricated following a standard soft-
lithographic procedure.58 The positive master for microfluidic device
production was fabricated via standard photolithographic protocols: a
SU-8 (Kayaku Advanced Materials, Inc.) layer was spin coated onto a
silicon wafer and then exposed to UV light through a transparent pho-
tomask. A negative of such a master was replicated in polydimethylsi-
loxane (PDMS, Sylgard 184 Dow Corning). The final microfluidic
device was molded from this PDMS replicate using the stiff, oil resistant
photo-reactive resin NOA 83H (Norland optical adhesives). The devices
were sealed with a microscopy glass slide and sandwiched with a cover-
slip to further increase the sample stability and avoid deformation of the
channel at higher pressures. Such deformations are a typical problem
among conventionally used PDMS devices.15 The inlet of the microflui-
dic device was connected to a high-precision, pulsation-free syringe
pump (neMESYS, Cetoni GmbH) that enabled fluid injection at a con-
trolled volumetric flow rate. The outlet was connected to a liquid reser-
voir at the same height as the microfluidic device to avoid gravitational
counter pressure. A board-mounted differential pressure sensor (26PC
series, Honeywell) was installed between the inlet and outlet of the
microfluidic device to measure the hydrodynamic pressure drop inside
the microfluidic channel. Prior to the measurements, the pressure sensor
was calibrated using a pressure-controlled pump (MFCS-EZ, Fluigent).
The microfluidic device was placed on an inverted MeF3 microscope
(Reichert-Jung) illuminated by a light-emitting diode (LED) light source
in transmission and images were captured using a 16 Bit-sCMOS cam-
era (PCO Panda 4.2) at a frame rate of 40 fps and a pixel resolution of
(2048� 2048) pixels. The microfluidic experiments were conducted at
room temperature of (20 6 1) �C. The microfluidic geometry was ini-
tially fully saturated with dodecane. Subsequently, dodecane was flushed
out of the main channels by the respective invading phase at the lowest
applied flow rate of 0:5l l/min but remained entrapped in the side
channel. For each set of experiments, the flow rate of the invading phase
was gradually increased in steps of 0:5 ll/min until it reached a critical
flow rate where fluctuation of the fluid–fluid interface could be detected.
The flow rate was increased further in steps of 1:0ll/min until complete
desaturation of the side channel. To ensure a fully developed steady-
state flow while recording fluid-fluid interface fluctuations, we used the
simultaneously measured pressure signal as a reference and started
recording at each flow rate after the pressure reached a stable plateau.

C. Preparation and physical properties of working
fluids

We used viscoelastic aqueous solutions that contained 1000ppm
(0.1 w%) or 2000ppm (0.2 w%) of partially hydrolyzed polyacrylamide

FIG. 1. Sketches of the microfluidic geom-
etry (a) and a typical oil entrapment in a
porous medium (b).
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(HPAM) Flopaam 3630 (SNF Floerger) and 1300 ppm (0.13 w%) or
2500 ppm (0.25 w%) Flopaam 3330 (SNF Floerger) as invading flu-
ids in our microfluidic experiments. The molecular weights of the
HPAM polymers Flopaam 3630 and 3330 are (18.76 2.0) and
(6.56 2.0) MDa, respectively, according to the manufacturer. The
concentrations of the respective polymer solutions were adjusted to
provide similar shear viscosities despite their different degrees of
elasticity (Figs. 2 and 3). Following a standard protocol,59 we ini-
tially prepared a stock solution with 5000 ppm of the appropriate
polymer in a “brine” solution composed of ultrapure water with
1000 ppm NaCl and 100 ppm CaCl2. The stock solution was filtered
to avoid the presence of any undissolved polymer or salt particles
and subsequently diluted to the desired concentration by adding

brine solution. To avoid degradation of the polymer solutions, the
diluted solutions were renewed every three days and the respective stock
solution every four weeks. By applying the Huggins–Kraemer method60

using rotational shear rate ramp measurement results (data not shown),
we determined the critical overlap concentrations to be c�3630 � 82 ppm
and c�3330 � 137 ppm and the corresponding radii of gyration to be
Rg3630 � 441 nm and Rg3330 � 266 nm for Flopaam 3630 and Flopaam
3330, respectively. Because the polymer concentrations used in our
microfluidic experiments were at least ten times greater than c�, we
could safely presume to be in the semi-dilute regime. A characteristic
exponent of 3/2 calculated by scaling the respective zero-shear viscosity
as a function of the polymer concentration (data not shown) confirmed
that we remained in the entangled regime for all utilized polymer solu-
tions.61 As a Newtonian reference case, an aqueous glycerin solution
was prepared by adding 67 w% glycerin (Gr€ussing GmbH) to ultrapure
water. The defending phase in all experiments was dodecane (Merck)
with a constant dynamic viscosity gdodecane ¼ 1:4 mPa�s. First, dodecane
was filtered three times in a column of aluminum oxide powder (Al2O3,
Sigma Aldrich) to remove any potential surface-active contaminants. To
increase the optical contrast of the fluids in the microfluidic setup,
0.5w% of the non-surface-active dye oil-red-o (Sigma Aldrich) was
added to the purified dodecane. For the visualization of path lines,
0.01w% green fluorescent particles (2lm, FluoroMax, Thermo Fisher)
were added to the respective polymer solution and imaged via fluores-
cence microscopy. We confirmed that neither of these additives altered
the physical or rheological properties of the utilized fluids. We measured
densities of qP ¼ ð1:006 0:01Þ g=cm3 and qG¼ð1:1860:01Þg=cm3,
respectively, for the aqueous polymer and glycerin solutions using a pyc-
nometer. The respective interfacial tensions against dodecane were
determined to be rP¼ð5061Þ mN/m and rG¼ð3261Þ mN/m via
the pendant drop method using a contact angle measurement device
(OCA 25, DataPhysics). The advancing and receding contact angles of
the aqueous polymer and glycerin solutions on glass and the NOA
83H-surface in a surrounding dodecane phase were in all cases deter-
mined to be hadv¼ð12564Þ� and hrec¼ð5966Þ�, respectively, via the
sessile drop needle-in method using the contact angle measurement
device (OCA 25, DataPhysics).

FIG. 2. The (shear) viscosity gð_cÞ measured using a rheometer (filled symbols)
and apparent viscosities calculated from in situ pressure measurements (open sym-
bols). Lines are fits to the Carreau–Yasuda model. Dashed lines indicate the critical
shear rates _ccrit , where the viscosities calculated from in situ pressure measure-
ments deviate from the bulk values.

FIG. 3. The (a) first normal stress difference N1 and (b) relaxation time k as functions of the shear rate _c. The lines in figures (a) and (b) are extrapolated power-law fits of N1
and extrapolated Carreau fits of k.
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D. Viscoelastic fluid model

A representative fluid model was needed to describe the specific
rheological properties of our viscoelastic polymer solutions in the semi-
dilute regime and to provide quantitative interpretation of the experi-
mental results. The general approach of describing viscoelastic fluids is
to include viscoelastic properties via a total stress tensor T ¼ T1 þ T2,
where the index “1” identifies a viscoelastic component and the index
“2” a purely viscous component.62 After defining a total viscosity
g ¼ g1 þ g2 and a deformation rate tensor D ¼ 1=2ð�uþ ½�u	TÞ
derived from the velocity tensor u,we can estimate the solvent contribu-
tion to the total stress in a viscoelastic solution, i.e., the stress response
that corresponds to the flow at vanishing degrees of elasticity, as
T2 ¼ 2 g2 D. The viscoelastic contribution T1 is defined for each type
of viscoelastic fluid model. In this work, we used the White–Metzner
fluid constitutive model63–65 as a representative framework for our poly-
mer solutions. We chose this model because it is suitable for describing
the non-quadratic first normal stress difference N1ð _cÞ and the strong
shear thinning viscosities of the HPAM solutions used in our experi-
ments.66–68 TheWhite–Metzner fluid model computes T1 from

T1 þ kT1

r
¼ 2 g1 _cð ÞD; (1)

where k and g1 are the relaxation time and the viscosity of the polymer

contribution, respectively; T1

r
is the upper convected time derivative;

and _c is the shear rate [defined as _c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 trðD2Þ

p
] that can be calcu-

lated from the velocity field and the rate of deformation tensorD.69

To represent the shear-dependent total viscosities gð _cÞ of the
HPAM solutions, we applied the Carreau–Yasuda model, which is
commonly utilized for this type of polymer,67 i.e.,

gð _cÞ � g1 ¼ ðg0 � g1Þ 1þ ðK _cÞa
� �n�1

a : (2)

Here, g0 and g1 are the zero-shear viscosity and viscosity at infi-
nite shear rates, respectively; K is the characteristic time; n is the
power-law exponent associated with the degree of shear thinning; and
a is a transition control factor.

The shear-dependent relaxation time kð _cÞ is calculated from the
shear viscosity, gð _cÞ, and the first normal stress difference, N1, as
follows:

kð _cÞ ¼ N1=2 gð _cÞ � g0½ 	 _c2: (3)

The shear-dependent behavior of the relaxation time is described by
the Careau model with k0 as the longest relaxation time as follows:

kð _cÞ ¼ k0

1þ ðK _cÞ2
� �n�1

2

: (4)

III. RESULTS AND DISCUSSION

With our microfluidic experiments, we sought to understand the
role of the elasticity of a viscoelastic polymer solution in the enhanced
mobilization of capillary entrapments in porous media. To understand
the effects of rheological properties on the flow and displacement pro-
cesses, we first characterized our polymer solutions.

A. Rheological characterization

The polymer solutions selected in this work are known to exhibit
strong shear rate dependence in the semi-dilute regime with regard to
both the viscosity and relaxation time. To characterize their rheologi-
cal properties, we conducted a set of rheological measurements to
determine the shear-dependent viscosity gð _cÞ) (Fig. 2) and first nor-
mal stress difference N1ð _cÞ [Fig. 3(a)] using a Haake Mars 40 rheome-
ter. Further details on the experimental measurement protocols can be
found in the Appendix as well as the results of the frequency sweep
tests.

The viscosity measurements in Fig. 2 are fitted to the Carreau
model according to Eq. (2). The fitting parameters are summarized in
Table I. The value of g1 was set to zero in all four fits. The shear-
dependent relaxation time kð _cÞ, plotted in Fig. 3(b), is calculated
according to Eq. (3) using the viscosity data gð _cÞ (Fig. 2) and the first
normal stress difference N1 [Fig. 3(a)]. The relaxation time kð _cÞ is fit-
ted to the Carreau model [Eq. (4)]. The maximum relaxation times are
k0 � 1:2 s (2000 ppm 3630), k0 � 1:2 s (1000 ppm 3630), k0 � 0:4 s
(2500 ppm 3330), and k0 � 0:5 s (1300 ppm 3330).

B. Interfacial fluctuations and mobilization of capillary
entrapment

The unique design of our microfluidic geometry [Fig. 1(a)] and
high spatiotemporal optical resolution enabled us to focus on the
interactions between the flow in the serpentine channel and the fluid–
fluid interface of oil entrapped at the side channel, as depicted in
Fig. 4(a) (Multimedia view). To this end, fluid–fluid interface time
series were captured at various shear rates. The shear rate in serpentine
channels is approximated by _c ¼ 4Q=ðp r3Þ with the equivalent radius
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwmc hÞ=p

p
,70 where wmc and h are the width and height of the

serpentine channels, respectively. The saturation S of the oil in the side
channel and the fluctuating motion of the fluid–fluid interface could
be acquired from the recorded time series. The saturation S was
defined as the area of the oil column at the end of each step, normal-
ized by the area of the oil column in the first step. Desaturation was
initiated once the fluid–fluid interface was depinned from the edges of
the side channel and S< 1. Interfacial motion was described quantita-
tively based on the motion of the center of mass, dY, of the entrapped

TABLE I. Fitting parameters of the Carreau–Yasuda model for viscosity: g0 is the zero-shear viscosity; K is the characteristic
time; a is a transition control factor; and n is the power-law exponent associated with the degree of shear thinning.

Polymer g0 (Pa�s) K (s) a n

2000 ppm 3630 1.5356 0.011 9.456 0.81 1.076 0.05 0.416 0.02
1000 ppm 3630 0.2846 0.004 6.896 0.32 1.036 0.06 0.526 0.01
2500 ppm 3330 0.6126 0.003 2.436 0.16 0.996 0.06 0.486 0.01
1300 ppm 3330 0.1096 0.001 0.816 0.03 0.906 0.02 0.566 0.01
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oil column. To quantify the strength of interfacial motion, we calcu-
lated the root mean square dYrms for each shear rate and plotted the
results in Fig. 4(b). As shown in the inset of Fig. 4(b), for dYrms

> 0:015 lm (i.e., for dYrms values exceeding the noise level of the
experimental setup), optically visible motion of the fluid–fluid inter-
face that increases with the shear rate is clearly detectable. At the low-
est applied shear rate of _c � 72 s�1, the fluid–fluid interface is
stationary for all utilized invading fluids. When glycerin solution is the
invading phase, the fluid–fluid interface remains stationary across the
full range of applied shear rates. Despite the rather high glycerin solu-
tion viscosity, no oil displacement is observed from the side channel
[Fig. 4(c)]. However, when a viscoelastic polymer solution is the invad-
ing phase, the fluid–fluid interface begins to wobble above a certain
shear rate. The intensity of this wobbling motion increases

monotonically as the shear rate increases further. The higher the poly-
mer molecular weight and concentration, i.e., the higher the degree of
elasticity, the smaller the corresponding shear rate at which wobbling is
initially detected. Eventually, the displacement of the entrapped oil
phase from the side channel is initiated for all utilized polymer solutions
when the fluid–fluid interface fluctuations are sufficiently intense [Fig.
4(c)]. As with the onset of interfacial fluctuations, the higher the elastic-
ity of the polymer solution, the lower the critical shear rate at which dis-
placement initiates. The large values of dYrms and their respective error
bars after the onset of displacement stem from the fact that two different
types of motions contribute to dYrms at this stage. These motions are the
fluctuation of the fluid–fluid interface that is already visible at lower
flow rates and the back-and-forth motion of the remaining oil column
in the side channel that contributes at larger flow rates.

FIG. 4. (a) Optical image of microfluidic geometry. (b) Root-mean square (rms) of dYrms The inset shows a magnified view of the initial values above dYrms � 0:015 lm
(marked by the red box). [(c) and (d)] Remaining oil saturation S in the side channel as a function of the applied flow at various (c) shear rates and (d) Weissenberg numbers.
The vertical dashed lines in figures (b) and (c) as well as the green area in figure (d) indicate the onset of purely elastic instability. The symbols in figures (b)–(d) represent the
experimental data for 67 w% glycerin ($), 2000 ppm Flopaam 3630 (�), 1000 ppm Flopaam 3630 (
), 2500 ppm Flopaam 3330 (�), and 1300 ppm Flopaam 3330 (�).
Multimedia view: https://doi.org/10.1063/5.0071556.1
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The dashed vertical lines in Figs. 4(b) and 4(c) correspond to the
critical shear rates _ccrit that indicate the onset of increased flow resistance,
as determined from the deviation of the apparent viscosity from the bulk
shear viscosity in Fig. 2. Here, the apparent viscosity of each invading
fluid is estimated from pressure drop measurements made between the
inlet and outlet of the microfluidic device, �Pin�out , using the
Hagen–Poiseuille equation for channels with rectangular cross sections.
Because the maximum Reynolds number in our experiments is on the
order of Re � oð100), potential inertial contributions to the observed
increase in flow resistance can be neglected safely and it can be associated
with so-called purely elastic instability at low Reynolds numbers.14,50

For the two Flopaam 3330 solutions, the wobbling motion starts
at shear rates well below _ccrit [Fig. 4(b)]. This suggests that these initial
fluctuations may have different physical origins than the purely elastic
instability. The onset of elastic instability appears at similar critical
Weissenberg numbers (the ratio of elastic and viscous forces)
Wicrit ¼ kð _ccritÞ _ccrit , as noted in Table II. This suggests that a certain
ratio of elastic to viscous forces must be achieved in a given geometry
to initiate purely elastic instability, independent of the molecular
weight and polymer concentration. However, the desaturation curves
plotted as functions of the Weissenberg number in Fig. 4(d) do not
collapse, and no consistent Weissenberg number can be assigned to
the onset of displacement. In particular, the respective onsets of dis-
placement for the two polymer solutions that include Flopaam 3630
(high molecular weight) are shifted remarkably toward higher
Weissenberg numbers than the two Flopaam 3330 solutions. These
observations imply a more complex displacement mechanism with
respect to the elasticity of the invading fluids.

Because there is no displacement in the case of a fully laminar
flow of the glycerin solution, during the entire range of the experi-
ments, it is evident that the magnitude of pressure, �Pin�out , cannot
drive displacement. Indeed, the displacement mechanism can be
explained with respect to the fluctuating component of pressure, P0ðtÞ,
in serpentine channels. These fluctuations occur because of the unsta-
ble nature of viscoelastic flow driven by the elasticity-induced instabil-
ity at high shear rates. At any position in the channel, the
instantaneous pressure, P(t), can be treated as PðtÞ ¼ hPit þ P0ðtÞ,
where hPit is the time-averaged steady-state mean value of the pres-
sure at this position. Due to a common inlet and outlet and the sym-
metry of our microfluidic geometry, hPit cancels out, leaving the
difference in fluctuating pressure components between both ends of
the side channel to overcome the capillary pressure that traps the oil in
place. Because there is no direct access to the local instantaneous pres-
sure, P(t), in our experimental setup, P0ðtÞ cannot be evaluated

directly. Instead, we can hypothesize that the local pressure fluctua-
tions correlate directly with the corresponding time averaged steady-
state mean pressure, i.e., P0ðtÞ / hPit . Assuming a constant pressure
gradient along the microfluidic geometry, hPit can be assessed directly
from the experimentally measured pressure difference �Pin�out .
Furthermore, the fluctuating component, P0ðtÞ, is reflected directly by
the intensity of the observed interfacial fluctuations. Our hypothesis is
supported by the fact that the intensity of interfacial fluctuations
increases in proportion with the average pressure difference between
the inlet and outlet, �Pin�out , of the microfluidic geometry [Fig. 5(a)].
Hence, we can consider �Pin�out as a measure of hPit and the dYrms val-
ues as a measure of pressure fluctuation intensities at both ends of the
side channel. The plot of saturation as a function of �Pin�out shown in
Fig. 5(b) shows that the remaining saturations of all invading polymer
solutions collapse into a single curve and displacement of the entrap-
ment occurs within a narrow pressure range (indicated by the red area
in Fig. 5). A comparison of the data shown in Figs. 4(b) and 4(c) indi-
cates that the displacement starts at a fluctuation intensity larger than
dYrms � 3 lm, as shown via the dashed lines in Fig. 5(a) and in the
inset of Fig. 5(b), respectively. In fact, as indicated in the inset of Fig.
5(b), when saturation is plotted as a function of dYrms, the displace-
ment starts at similar fluctuation intensities dYrms � 3lm, i.e., in a
similar range of pressure fluctuations, regardless of the polymer con-
centration and molecular weight. It can therefore be concluded that
due to the unstable nature of the flow, the pressure fluctuations pro-
vide the pressure required to overcome the capillary threshold of the
entrapment once they are strong enough.

C. Elasticity-induced phenomena in serpentine
channels

To illustrate the underlying elasticity-induced flow features that
cause the observed unstable flow and motion of the fluid–fluid inter-
face, we visualized flow path lines by adding fluorescent particles to
the invading polymer phase. Figure 6 (Multimedia view) shows the
viscoelastic flow path lines for 2500 ppm Flopaam 3330, as visualized
using fluorescence imaging. At _c � 143 s�1 < _ccrit in Fig. 6(a), we
observe a laminar flow, in which the flow path lines follow the curva-
ture of the channel. At increased _c but below _ccrit � 1576 s�1, in Figs.
6(b) and 6(c), the path lines become slightly asymmetric with reference
to a central vertical line. At this stage, visible but mild fluid–fluid inter-
face fluctuations occur [Fig. 6(c)]. After the onset of purely elastic
instability, _c > _ccrit , the base flow exhibits characteristics of turbulent
flow such as chaotic motion of fluorescent particles and semi-3D
effects in the form of crossing path lines [Figs. 6(d)–6(f)]. With further
increase in _c, the intensity of the turbulent flow is amplified and
accompanied by eventual displacement of oil from the side channel
[Figs. 6(e) and 6(f)]. As indicated in Fig. 6(f), no steady path line is
established in the perpendicular side channel and only random particle
motion is observed temporarily. The latter observation confirms the
presence of an instantaneous pressure difference between the two ends
of the side channel.

Figure 7(a) illustrates an example PSD analysis of dY extracted
from the optical images of 2500 ppm Flopaam 3330. We observe a
rather flat plateau at the lowest shear rate _c � 72 s�1 s, where the
fluid–fluid interface remains stationary. At _c � 716 s�1, i.e., below
_ccrit , the PSD curve continues to be a rather flat plateau even though
interfacial fluctuations are detected optically at this shear rate

TABLE II. Overview of the experimentally preset flow rate Qcrit, the approximate
shear rate _ccrit , and the Weissenberg number Wicrit at the onset of purely elastic
instability. The specified error margins are determined based on the nominal preci-
sion of the microfluidic pump and rheometer, as well as dimensional uncertainty
within the microfluidic device.

Polymer Qcrit (ll/min) _ccrit (s
�1) Wicrit

2000 ppm 3630 1:56 0:2 2156 30 12:86 2:9
1000 ppm 3630 2:06 0:2 2876 21 11:26 1:8
2500 ppm 3330 11:06 0:2 15766 139 13:06 0:1
1300 ppm 3330 14:06 0:2 20066 192 13:06 0:1
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[Fig. 4(b)]. This suggests an additional phenomenon induced by poly-
mer solution elasticity prior to the onset of purely elastic instability. At
further increased shear rates, close to _ccrit � 1576 s�1 and above,
power-law decay is observed with an exponent b > 3. In general, at
shear rates above the respective critical values for the various polymer
types and concentrations, power-law decay with an exponent within
3:3 � b � 3:8 is detected in Figs. 7(b)–7(d). This is also in agreement
with the exponent b � 3:4 reported by Mitchell et al.,54 who per-
formed a similar analysis. Based on this, we can conclude that above
the respective values of _ccrit , as identified in Fig. 2, the characteristic

features of purely elastic instability are indeed reflected in the observed
fluctuating motion of the fluid–fluid interface.

The observed interfacial fluctuations, out of plane particle motion,
and slight flow path line asymmetry in Fig. 6(c) prior to the onset of
purely elastic instability (more visible for Flopaam 3330) may be associ-
ated with elastic secondary flows, i.e., flows in the cross-stream direction
that are much weaker than the flow in the main flow direction.16,71,72

These types of secondary flows result from a difference between the cur-
vatures of inner and outer bends of the serpentine channel, where the
gradient of the first normal stress difference N1 arises [Fig. 8(a)].
Consequently, the so-called “Hoop stress” emerges and drives the visco-
elastic fluid toward inner bends at the top and bottom of the serpentine
channel, where N1 is the largest. The fluid is then pushed back to the
outer part of the serpentine channel at the center plane to complete the
formation of counter-rotating vortices in the out-of-plane cross section
of the channel, as indicated by the dashed contours of potential second-
ary flow vortices in Fig. 8(a). Values of N1 as a function of the normal-
ized lateral distance along the dashed central line in Fig. 8(a) are shown
in Fig. 8(b). As indicated in this figure, the N1 difference between the
inner and outer bends is continuously increased by increasing the shear
rate, respectively, the Weissenberg number. However, due to the diffi-
culty of solving the flow equation including the White–Metzger fluid
model after the onset of purely elastic instability, the computational
fluid dynamics (CFD) simulations are limited to lowWeissenberg num-
bers. The out-of-plane moving particles, and thus the path lines
deformed in the direction of flow toward the inner bend in the consecu-
tive stacks of images observed experimentally in Figs. 6(b) and 6(c), are
consistent with the direction of counter-rotating secondary flow vorti-
ces in the upper half of the channel [Fig. 8(a)] with the assumption that
the focal plane of the objective is set slightly above the midplane with
respect to the z-direction. Therefore, we can conclude that the visible
but mild fluctuations of the fluid–fluid interfaces in Fig. 4(b) and the
deviations from the laminar path lines in Fig. 6(c) occur because of
the secondary flows. Such elastic secondary flows are present for all

FIG. 6. [(a)–(f)] Stacks of 32 consecutive path line images of flow in the serpentine
channel. The fluid is 2500 ppm Flopaam 3330 and the images are obtained via fluo-
rescence microscopy. The flow direction is from left to right. The dashed blue line in
figure (a) is a guide for the eye and marks the radius of curvature of the serpentine
channel. The white vertical dashed lines in figures (b) and (c) are references for
symmetry. The entrapped oil phase is colored red artificially for easier identification.
The pink area in figures (c)–(e) indicates the moving fluid–fluid interface.
Multimedia view: https://doi.org/10.1063/5.0071556.2

FIG. 5. (a) The fluctuation intensity dYrms and (b) remaining oil saturation S as functions of the measured pressure difference �Pin�out . The inset in figure (b) shows the satura-
tion S as function of dYrms. The horizontal dashed lines in figure (a) and the inset in figure (b) indicate dYrms � 3lm, where we observe the onset of displacement in Fig.4(b).
The red areas in figures (a) and (b) refer to the pressure ranges associated with the onset of displacement. The symbols in figures (a) and (b) represent the experimental data
for 67 w% glycerin ($), 2000 ppm Flopaam 3630 (�), 1000 ppm Flopaam 3630 (�), 2500 ppm Flopaam 3330 (�), and 1300 ppm Flopaam 3330 (�).
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applied shear rates in the case of viscoelastic flow and their strength
intensifies as theWeissenberg number increases.17

To study the evolution of flow toward a fully developed elastic
turbulent state, the experimentally measured pressure drops were nor-
malized using the corresponding values of a laminar reference flow
and plotted as functions of the shear rate _c in Figs. 9(a) and 9(b) and
as a function of the Weissenberg numberWi in Fig. 9(c). The pressure
drops of the corresponding laminar reference flows were calculated
using CFD simulations of imaginary fluids with the same shear

thinning properties as the polymer solutions defined by the
Carreau–Yasuda model, i.e., with no elastic component attributed to
the total stress tensor. The normalized pressure is close to unity at
lower shear rates, respectively, at Wi <Wicrit . This verifies the
laminar-flow regime at this stage. A steep monotonic increase is
observed for all solutions above the onset of purely elastic instability.
After this onset, the normalized pressure follows a convex shape in the
case of Flopaam 3630 and a concave shape in the case of Flopaam
3330. The curve flattens slowly at the highest applied shear rates for all

FIG. 7. PSD analysis of vertical fluctuation of the center position dY of (a) 2500 ppm Flopaam 3330 for various shear rates above and below the critical shear rate; (b)
2000 ppm Flopaam 3630; (c) 1000 ppm Flopaam 3630; and (d) 1300 ppm Flopaam 3330. The shear rates in figures (b)–(d) are selected to ensure that the flow is safely above
the onset of purely elastic instability _ccrit.

FIG. 8. (a) Sample distribution of the first normal stress difference N1 within a vertical cross section of the serpentine channel obtained via CFD simulations using the
White–Metzner model for 2500 ppm Flopaam 3330 at _c � 143 s�1 and corresponding Wi � 5:4. The contours of potential secondary flow vortices are indicated by dashed
lines, which are intended as guides to the eye. (b) N1 at the central line of the cross section for increasing shear rates _c � 72 s�1 s (Wi � 4:2), _c � 143 s�1 (Wi � 5:4), and
_c � 215 s�1 (Wi � 6:3).
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the polymer solutions [Figs. 9(a) and 9(b)]. The latter behavior is inter-
preted in the literature as an indication of transition toward a fully
developed turbulent regime.7,16,73 The different curvatures of the
evolving normalized pressures after the onset of purely elastic instabil-
ity can be explained with respect to the relaxation time, i.e., degree of
elasticity of polymer coils in the solutions. Larger polymer coils, i.e.,
Flopaam 3630, are more elastic and therefore stretch more easily dur-
ing flow. This leads to an immediate and steep increase in normalized
pressure, after the onset of purely elastic instability. Higher elasticity of
polymers in the solution also leads to a fully developed turbulent state
already at lower shear rates [Figs. 9(a) and 9(b)]. In the case of
Flopaam 3630, the transition from laminar to fully developed turbu-
lence occurs in the range of _c � 200 s�1 to _c � 2000 s�1, whereas
transition for Flopaam 3330 occurs between _c � 2000 s�1 and
_c � 6000 s�1. Comparing these shear rates to the shear rate range
where we detect displacement of the capillary entrapment in our
geometry, in Fig. 4(d), we note that the displacement coincides with
transition toward the fully developed turbulent regime.

IV. CONCLUSION AND OUTLOOK

A single-entrapment microfluidic geometry was designed based
on serpentine channels to mimic the essential features of flow in
porous media, i.e., shear-dominated tortuous pathways. The unique
microfluidic geometry and high optical and temporal resolution of our
experiments allowed us to focus on the displacement of capillary
entrapments (exclusively) by elastic stresses. We confirmed that the
presence of purely elastic instabilities is reflected by the statistics of the
interfacial fluctuations. Based on the power spectral density analysis, a
characteristic exponent b � 3:5 was detected for shear rates that
exceeded the onset of elastic instability. This led us to conclude that
the mild interfacial fluctuations observed prior to the onset of purely

elastic instability have a different origin and could be attributed to sec-
ondary flows induced by the gradient of the first normal stress difference
due to the curvature of the serpentine channel. It was evident that a cer-
tain fluctuation intensity is required to overcome the capillary pressure
threshold and initiate desaturation. The results of our experiments con-
firmed that displacement of the capillary entrapment is governed pri-
marily by the randomness of base flow that arises from elastic instability.
The results of our research show that, in our specific design, the displace-
ment coincides with transition toward a fully developed turbulent regime
regardless of the polymer molecular weight and concentration.

Displacement processes in actual porous media are more com-
plex. Flow asymmetry in randomized porous media and heteroge-
neous pore-throat distributions lead to a wide range of capillary
entrapment sizes as well as broad distributions of in situ flow veloci-
ties. This produces non-uniform viscous pressure fields. Therefore, a
synergic effect of different elasticity-induced phenomena coupled with
viscous forces can be expected to contribute to the mobilization of
capillary entrapments. Thus, decoupling of these components requires
further in-depth investigation into more complex model systems.
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FIG. 9. The ratio of experimentally measured pressures to the computed steady-state pressure drops of imaginary fluids with the same shear thinning properties, as defined
by the Carreau–Yasuda model. Evolution of flow from a laminar to a fully developed turbulent regime for the polymers (a) Flopaam 3630 and (b) Flopaam 3330 as function of
the shear rate, and Weissenberg number (c). The symbols in figure (a) represent data for 2000 ppm Flopaam 3630 (�), and 1000 ppm Flopaam 3630 (
), while the symbols
in (b) represent 2500 ppm Flopaam 3330 (�), and 1300 ppm Flopaam 3330 (�). The horizontal rectangle indicates the laminar regime, the vertical rectangle marks the onset
of purely elastic instabilities.
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APPENDIX: RHEOLOGY PROTOCOLS

1. Rotational test

Shear viscosity of all polymer solutions and dynamic viscosity of
the glycerin solution as shown in Fig. 2 of the main text were deter-
mined through a steady shear step test applying a standard protocol in
stress-controlled mode using HAAKE MARS 40 rheometer and 60mm
cone plate geometry with 1

�
angle. To avoid air bubbles when placing

the respective fluids between the cone and plate, we placed a small
droplet at the tip of the cone to create a wetting film when bringing the
cone and plate in contact. The temperature was set to ð206 0:2Þ

�
C

for all measurements to match the lab temperature.

2. First normal stress difference

The measurements of the first normal stress difference N1 are
shown in Fig. 10(a). At each step, first the normal force value is set

to zero. To account for the drift caused by relaxation of the solution
as well as the force measuring sensor in the device, the measuring
geometry stays for 300 s at rest, followed by a constant rotation at
fixed applied stress for 300 s. The respective polymer solution in the
measuring geometry was surrounded by mineral oil to avoid inertial
instabilities at the edges at higher rotation rates. The normal force
values measured by the rheometer were corrected for inertia,
Ninertia ¼ �0:075pqX2R4, and drift and converted to the first nor-
mal stress difference using N1corr ¼ 2Fn

pR2 in which Fn is the normal
force measured by the rheometer; X, q, and R are the angular rota-
tion, density, and the radius of the measuring geometry, respec-
tively. An exemplary plot (four times repetitions) of first normal
stress difference as a function of shear rate for 2000 ppm Flopaam
3630 is shown in Fig. 10(b).

3. Frequency sweep test

The small amplitude frequency sweep tests were performed
using a standard protocol in stress-controlled mode. The stress
amplitude was acquired priorly from a deformation amplitude
sweep test to be safely in the linear viscoelastic range. To ensure
minimum measurement error, the duration of measurements at
each point was automatically adjusted based on the frequency. The
results are shown in Fig. 11.
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