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Scaling purely elastic instability of strongly shear thinning polymer solutions
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Flow of viscoelastic polymer solutions in curved channels exhibits instability caused by the elastic nature
of polymers even at low Reynolds numbers. However, scaling of the onset of this purely elastic instability in
semidilute polymer solutions has not been previously reported. Here we experimentally investigate the flow of
highly elastic polymer solutions above their overlap concentrations using pressure measurements and particle
image velocimetry. We demonstrate that the onset of instability can be scaled by including shear dependent
rheological properties of the polymer solutions in the nonlinear stability analysis. As a result, a universal criterion
as function of normalized polymer concentration is provided for scaling the onset of purely elastic instability in
the semidilute regime regardless of the type and molecular weight of the polymer.

DOI: 10.1103/PhysRevE.105.L052501

Purely elastic instability is a well-known phenomenon oc-
curring during the flow of viscoelastic polymer solutions and
melts at vanishing Reynolds numbers Re. This instability
can be attributed to nonlinear elastic stresses, arising from
the stretching and relaxing of flexible polymers, which do
not fully dissipate beyond a critical shear rate [1–6]. The
occurrence of purely elastic instability can be beneficial for
practical applications such as microfluidic mixing, heat trans-
fer, and mobilization of capillary entrapments [7–9]. However,
in multiple processes in food and cosmetics industry [10,11],
as well as polymer extrusion [12], the occurrence of purely
elastic instability is undesirable. Therefore, it is crucial to
estimate the conditions under which the purely elastic insta-
bility occurs, in terms of the rheology of the fluid and the
geometrical properties of the flow.

Polymers are inherently nonuniformly stretched during
flow, resulting in an anisotropic distribution of three-
dimensional stresses. The difference between the stress
component in the flow direction and the stress component in
the transverse direction is called the first normal stress differ-
ence N1. In curved geometries when N1 becomes substantially
larger than the shear stress τ , elastic stresses dominate,
and polymers are pulled toward regions with higher stream-
line curvature [4,9]. As a result, the laminar flow paths
are disturbed and the polymers are spatially and temporally
subjected to different shear rates. Consequently, the polymers
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repeatedly store and release elastic stresses during flow, which
leads to the emergence of an unstable flow above a certain
threshold. Pakdel and McKinley observed that in a curved ge-
ometry the onset of this instability can be scaled with respect
to the ratio of the first normal stress difference N1 to the shear
stress τ and the curvature of the streamline [13,14]. Thus, the
criteria for scaling the onset of pure elastic instability can be
formulated as in Eq. (1) [4]:√

l

R
|N1|
|τ | � Mcrit, (1)

where l is a characteristic length scale and R is the radius of
streamline curvature. Since, for a given geometry, the onset
of instability is governed merely by the stress ratio, Mcrit

can be considered as a critical stress factor. However, it is
essential to notice that this approach does not provide a uni-
versal numerical value for Mcrit, but rather describes how the
onset of nonlinearity scales with respect to the rheological and
geometrical properties [15]. The value of Mcrit depends on the
type and concentration of the polymer and salt in the solution,
as well as on the type of solvent, and is commonly in the range
of 1 to 6 [4,16].

This scaling is often used for polymer solutions in the di-
lute regime, i.e., for polymer concentrations below the overlap
concentration c∗, in which the viscosity η, and the relaxation
time λ can be assumed to be independent on the shear rate
γ̇ . Here, the ratio of |N1| to |τ | is linearly dependent on the
shear rate, and the characteristic length can be estimated by
l = U λ0, where U is the average flow velocity and λ0 is the
longest polymer relaxation time [4,16–20]. However, above
the overlap concentration c∗ the polymer behavior during flow
is more complicated. Both η(γ̇ ) and λ(γ̇ ) show significant
nonlinear dependency on the shear rate [21,22]. Using the
longest polymer relaxation time λ0 to estimate the charac-
teristic length, as commonly done in literature [23–25], leads
to unrealistically large timescales which do not represent the
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actual dynamics of the polymers in flow in this concentration
regime [25]. Moreover, unlike the dilute regime, the ratio
of the first normal stress difference to the shear stress in
Eq. (1) is not linearly dependent on the shear rate due to
the nonquadratic dependence of N1 on the shear rate, and
the nonlinear dependence of |τ | on the shear rate. Therefore,
the assumption of a constant relaxation time is not reasonable,
and it is necessary to adopt a realistic approach for scaling the
onset of purely elastic instability in the semidilute regime that
faithfully reflects the rheological properties of the polymers.

In this paper, we present a practical scaling of the onset of
purely elastic instability for strongly shear thinning, highly
elastic polymer solutions in the semidilute regime. To this
aim, we determine the onset of purely elastic instability of
various polymer solutions in a microfluidic serpentine channel
via pressure measurements and particle image velocimetry
(μPIV). We scale the onset of the observed instability in our
experiments by considering the White-Metzner fluid model to
account for the shear dependence of the rheological properties
of the polymer solutions. Applying this scaling, the onset of
purely elastic instability as function of normalized polymer
concentration collapses into a universal master curve indepen-
dent of polymer type and molecular weight, confirming the
suggested approach.

The microfluidic channel used in our experiments is fab-
ricated from UV-curable glue NOA 83H (Norland optical
adhesives) by soft lithography using standard protocols [9,26].
The microfluidic serpentine channel consisting of 33 con-
secutive half-loops has the total length of l ≈ 26 mm, width
of w ≈ 0.125 mm, height of h ≈ 0.036 mm, and an inner
bend radius of curvature of ri ≈ 0.125 mm. The inlet of
the microfluidic channel is connected to a high-precision,
pulsation-free syringe pump (neMESYS, Cetoni GmbH) that
enables fluid injection at a controlled volumetric flow rate.
The outlet is connected to a liquid reservoir at the same height
as the microfluidic device to avoid additional hydrostatic pres-
sure difference. The hydrodynamic pressure drop �P inside
the serpentine channel is measured by a differential pressure
sensor (26PC series, Honeywell) mounted between inlet and
outlet. A sketch of the microfluidic channel is provided in the
inset of Fig. 1(a).

To represent a wide range of common polymer types
that are prone to purely elastic instability, we use two com-
mercial polyelectrolytes, the partially hydrolyzed polyacry-
lamides (HPAM, 30% hydrolysis) Flopaam 3630 (Mw,3630 ≈
18.7 MDa) and Flopaam 3330 (Mw,3330 ≈ 6.5 MDa) dissolved
in 17 mM NaCl solution as well as polyethylene oxide (PEO,
Mw,PEO ≈ 8.0 MDa) dissolved in ultrapure water. The sample
solutions with different concentrations are prepared follow-
ing standard protocols [9]. It should be mentioned that the
salt concentration in case of the HPAM solutions is rather
in the low-salt limit and not sufficient to screen all charges
of the polyelectrolyte [27]. The densities of all utilized so-
lutions were determined to � = (1.00 ± 0.01) g/cm3 by a
pycnometer. A full rheological characterization including
steady shear step measurements to determine η(γ̇ ) and N1(γ̇ )
as well as small amplitude frequency sweep tests to de-
termine the storage modulus G′(ω) and the loss modulus
G′′(ω) are performed using a rotational rheometer (HAAKE
MARS 40, Thermo Scientific). The data are presented in the

FIG. 1. (a) The shear viscosity η(γ̇ ) measured using a rheome-
ter (filled symbols) and apparent viscosity ηapp(γ̇ ) (open symbols)
calculated from the pressure difference �P along the serpentine
channel (sketch in the inset) for 0.200 wt% Flopaam 3630. The line
is a fit to the Carreau-Yasuda model [Eq. (3)]. The dashed vertical
line indicates the critical shear rates γ̇crit. (b) Reduced viscosity
ηr (γ̇ ) = ηapp(γ̇ )/η(γ̇ ) as function of the shear rate γ̇ for Flopaam
3630 and 3330. The inset shows the respective data for PEO 8MDa.
The shaded area indicates the initial plateau within the experimental
accuracy.

Supplemental Material (SM) [28]. The critical overlap con-
centrations c∗ of the respective polymer types was determined
using the Huggins-Kraemer method [29] to be c∗

3630 ≈
0.0082 wt%, c∗

3330 ≈ 0.0137 wt%, and c∗
PEO ≈ 0.0375 wt% in

agreement with literature values [9,30,31]. To be safely in
the semidilute regime for each polymer type, the concentra-
tions are chosen to cover the range from 5 × c∗ to 30 × c∗.
Comparison of the power-law exponents of the respective zero
shear viscosity (data in SM [28]) as function of concentration
with literature values [25,27,30,32] confirms that the polymer
chains remain unentangled below 10 × c∗ and become entan-
gled at higher polymer concentrations.
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TABLE I. Overview of the critical shear rate γ̇crit, and Mcrit at the onset of purely elastic instability for the utilized polymer solutions.

Flopaam 3630 c/c∗ γ̇c [s−1] Mc Flopaam 3330 c/c∗ γ̇c [s−1] Mc PEO 8 MDa c/c∗ γ̇c[s−1] Mc

0.050 wt% 6 783 ± 39 9.9 ± 0.6 0.075 wt% 5 3100 ± 39 12.9 ± 0.8 0.188 wt% 5 1566 ± 39 18.3 ± 1.2
0.100 wt% 12 587 ± 39 7.5 ± 0.5 0.140 wt% 10 2741 ± 39 10.6 ± 0.7 0.375 wt% 10 1468 ± 39 6.3 ± 0.4
0.150 wt% 18 587 ± 39 6.9 ± 0.5 0.280 wt% 20 2741 ± 39 5.1 ± 0.3 0.750 wt% 20 1417 ± 39 4.8 ± 0.3
0.200 wt% 24 391 ± 39 3.7 ± 0.2 0.350 wt% 25 2349 ± 39 4.3 ± 0.3 0.938 wt% 25 1370 ± 39 4.5 ± 0.3
0.250 wt% 30 391 ± 39 4.3 ± 0.3 0.420 wt% 30 1566 ± 39 3.5 ± 0.2 1.250 wt% 30 1175 ± 39 3.6 ± 0.2

In our microfluidic experiment, we stepwise increase the
flow rate and measure the corresponding pressure drop �P
across the serpentine channel. This pressure drop can be
converted to an apparent viscosity ηapp(γ̇ ) = τ (γ̇ )/γ̇ , where
the shear stress in a serpentine channel is approximated by
τ = (�P H W )/[2L(W + H )] [33], while the shear rate is
approximated by γ̇ = 4Q/(π r3) with the equivalent radius
of r = √

(W H )/π [34]. It should be noted that this approx-
imation of apparent shear rate γ̇ is commonly recommended
for aspect ratios H/W ≈ 1. For smaller aspect ratios, Hartnett
and Kostic [35] proposed a correction that also includes the
Rabinowitch relation [36] to account for the shear thinning of
polymer solution and nonparabolic velocity profile. However,
we have confirmed that for the aspect ratio H/W ≈ 0.3 used
in this work, the apparent viscosity ηapp(γ̇ ) exhibits a good
agreement with the bulk viscosity values (see the Supplemen-
tal Material [28]). Thus, the given approximation is reliable,
and the corrections are not essential. Furthermore, it is impor-
tant to note that we employ a “point-wise” method and assume
that for a particular flow rate the corresponding apparent shear
rate, viscosity, and relaxation time can be described by con-
stant values.

Comparison of the apparent viscosity ηapp(γ̇ ) with the ex-
trapolated bulk viscosity values η(γ̇ ) in Fig. 1(a) reveals that
above a critical shear rate, ηapp(γ̇ ) deviates from η(γ̇ ). Fig-
ure 1(b) shows the reduced viscosity ηr (γ̇ ) = ηapp(γ̇ )/η(γ̇ ) as
function of the shear rate γ̇ for all studied polymer solutions.
We identify the critical shear rate γ̇crit , listed in Table I, at the
onset of instability when the reduced viscosity exceeds 1.15.
For a given polymer type, γ̇crit decreases only slightly with
increasing concentration. These observations are in agreement
with those of Howe et al. [30] who have reported that γ̇crit is
independent of polymer concentration above c ≈ 10 × c∗ and
is inversely proportional to M2

w.
The serpentine geometry with rectangular cross section re-

quires the consideration of two Reynolds numbers to ensure
that inertial forces are negligible throughout the geometry.
For channel flows, the Reynolds number is usually defined as
Rec = �U r/η with the equivalent radius r as the character-
istic length, whereas the average velocity is approximated by
U = Q/(W H ). To account for centrifugal inertia in curvilin-
ear flow, the radius of curvature of the serpentine channel ri

is used as the characteristic length and thus Res = �U ri/η.
The maximum Reynolds numbers of our presented experi-
ments are Rec ≈ 1 and Res ≈ 4. Therefore, we can conclude
that the contribution of inertia to the flow is negligible. To
verify the purely elastic origin of the observed instability, we
perform μPIV (LaVison) measurements by adding 0.05 wt%
1-μm red fluorescent particles (FluoroMax, Thermo Fisher)
to the polymer solution. The particles are excited with a laser

wavelength of 532 nm. Double-frame images with short time
differences (0.1 ms < dt < 0.8 ms), depending on the flow
velocity, are recorded from the light emitted by the particles.
Cross correlating these double frames, we obtain the velocity
field in the serpentine channel. Figure 2(a) demonstrates the
velocity fields at the middle half-bend of the serpentine chan-
nel averaged over 50 s for two different shear rates. Below the
onset of purely elastic instability (left side), a laminar flow is
observed whereas above the onset of purely elastic instability
the velocity field (right side) deviates from a laminar flow.
In the latter stage, unlike the laminar velocity profile, the
maximum velocity is shifted toward the outer bend, i.e., to-
ward the larger radius of curvature. The power spectra density
of the local velocity fluctuations at the center of the middle
half-bend of the serpentine channel [indicated by a (+) sign in
Fig. 2(a)] are shown for four shear rates below and above the
onset of flow instability in Figs. 2(b)–2(e) (further details in
the Supplemental Material [28]). Indeed, the power-law decay
∼ f −β with a characteristic exponent β ≈ 2, in the range of
1 to 10 Hz at sufficiently high flow rates, is larger than the Kol-
mogorov scale of 5/3 associated with the inertial turbulence,
suggesting that the mechanism of turbulence is not associated
with inertia [37]. Similar exponents of β in the range of 2 to
3 have been reported in the literature for semidilute polymer
solutions at highly elastic turbulent stage [23,38,39].

In order to scale the onset of the instability observed in
our experiments, we require both a rheological description
of the fluids as well as geometrical properties of the flow
channel, as suggested by Eq. (1). The polymer solutions used
in our experiments exhibit strongly shear-dependent viscosity
as well as a nonquadratic first normal stress difference (data
in the Supplemental Material [28]). The behavior of such
polymer solutions is described based on the White-Metzner
constitutive fluid model [9,19,25,40]. The basic concept of
this model is to define a total stress tensor τ = τ1 + τ2, and a
total viscosity η = η1 + η2 that are related by the deformation
rate tensor D [21,41,42]. The pure viscous component of the
stress tensor τ2 is defined as τ2 = 2 η2 D, where η2 is the
solvent viscosity. τ1 is defined by

τ1 + [η(γ̇ )/G0]
�
τ 1 = 2 η1(γ̇ ) D, (2)

where
�
τ 1 is the upper convected time derivative. The shear

rate is defined as γ̇ =
√

2 tr(D2) and the total shear stress is
given by τ = 2 η(γ̇ ) γ̇ . The shear-dependent total viscosity of
the polymer solution η(γ̇ ) is described by the Carreau-Yasuda
model [21,22]:

η(γ̇ ) − η∞ = (η0 − η∞)[1 + (�γ̇ )a]
n−1

a . (3)
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FIG. 2. (a) Time averaged velocity and streamlines obtained
from μPIV for 0.200 wt% Flopaam 3630. [(b)–(e)] PSD analysis
of velocity fluctuations at the center of serpentine channel indicated
by a (+) sign in panel (a) for 0.200 wt% Flopaam 3630 at various
shear rates below and above the critical shear rate. The dashed line
indicates an exponential scaling with β = 2, and the dotted line
represents the Kolmogorov scaling (β = 5/3) for comparison.

η0 and η∞ are the zero-shear viscosity and viscosity at
infinite shear rates, � is a characteristic time, n is the power
law exponent associated with the degree of shear thinning,
and a is a transition control factor. In Eq. (2), the ratio of
the shear-dependent viscosity η(γ̇ ) to the shear modulus G0

is equivalent to the relaxation time λ(γ̇ ) [41,42]. The shear
modulus G0 is taken as the largest shear mode obtained from
the generalized Maxwell model fitted to the small amplitude
frequency sweep test results (data in the Supplemental Ma-
terial [28]). This is a reasonable approximation of the shear
modulus at relatively fast flows, corresponding to the range of
shear rate at which purely elastic instability is observed in our
experiments. To this end, G(ω) = G′(ω) + iG′′(ω) is fitted
to the frequency sweep test results with the least number of

relaxation elements required for a proper fit (typically N = 4),
where G′(ω) and G′′(ω) are given by Eqs. (4) and (5):

G′(ω) =
N∑

k=1

Gk
(λk · ω)2

1 + (λk · ω)2
, (4)

G′′(ω) =
N∑

k=1

Gk
λk · ω

1 + (λk · ω)2
. (5)

Shear modulus G in general describes the elastic component
of a viscoelastic material under shear in the viscoelastic fluid
model, and is defined as G = τ/γe, where γe is the deforma-
tion of the elastic component.

In the following, we adapt the scaling of the nonlinear
instability of the polymer solutions in the semidilute regime
according to the White-Metzner fluid model. Since the re-
laxation time is shear dependent in the semidilute regime,
the characteristic length nonlinearly increases with γ̇ and
is approximated by l (γ̇ ) = λ(γ̇ )U = (η(γ̇ )U )/G0. Stream-
lines of polymer flow in the serpentine channel obtained from
μPIV generally follow the geometrical curvature of the chan-
nel [Fig. 2(a)]. Therefore, the minimum radius of the curved
streamlines R in our experiments is approximated by the inner
radius of the serpentine ri. Thus, within the framework of
the White-Metzner model, the threshold of the critical stress
factor Mcrit at the onset of purely elastic instability in Eq. (1)
is approximated by√

η(γ̇ )U

G0 R
N1(γ̇ )

2 η(γ̇ ) γ̇
� Mcrit. (6)

The average velocity in the serpentine channel is expressed
as U = Q/(W H ). Since we consider the shear rate γ̇ to de-
pend linearly on the flow rate Q and η(γ̇ ) is canceled out,
we approximate the critical stress factor Mcrit by Eq. (7). As
previously mentioned, according to our point-wise approach,
we obtain the relevant rheological properties of the polymer
solution corresponding to the apparent shear rate γ̇crit at onset
of purely elastic instability:

C

√
N1(γ̇crit )

G0
≈ Mcrit. (7)

Here, C is a geometry constant computed as C =
(W H )/(64π R2) for a serpentine channel with rectangular
cross section. Equation (7) suggests that, for a given geom-
etry, Mcrit correlates solely with the ratio between the first
normal stress difference at the onset of purely elastic insta-
bility, N1(γ̇crit ), and the shear modulus G0 corresponding to
the smallest relaxation mode. As explained earlier, the first
normal stress difference is responsible for destabilizing the
polymer flow in a curved geometry. On the other hand, the
capacity of polymers to deform, i.e., their degree of elasticity
is characterized by the value of the shear modulus. Therefore,
the ratio of N1 to G0 is expected to be the decisive factor for
the onset of instability.

Higher normalized concentration of a polymer solution
correlates to higher degree of elasticity, and thus higher value
of G0. This means that the onset of purely elastic instabil-
ity at higher normalized concentrations requires a larger N1.
Applying Eq. (7), we estimate Mcrit for our experiments as

L052501-4
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FIG. 3. Threshold value Mcrit calculated from Eq. (7) as func-
tion of c/c� for all utilized polymer solutions. The dashed curve is
a power-law fit Mcrit = A (c/c∗)−b, where A = (25.28 ± 3.87) and
b = (0.56 ± 0.05).

summarized in Table I and plotted in Fig. 3 as function of the
normalized concentration c/c∗ for all polymer solutions used
in this work. In fact, the estimated values for Mcrit collapse
into a single master curve following a power law with an
exponent of about −0.56. Qualitatively, this trend can be
understood in view of the rheological differences observed in
frequency sweep test between polymers below and above the
entanglement concentration 10 × c∗. For unentangled poly-
mer solutions, i.e., at c/c∗ < 10 the loss modulus G′′(ω) is
always larger than the storage modulus G′(ω) for the en-
tire range of frequencies [28]. This suggests that despite a
significant elastic component in the fluid, viscous behavior

during flow is likely to dominate in this concentration regime,
resulting in retardation of purely elastic instability. This means
that purely elastic instability for c/c∗ < 10 occurs at relatively
higher shear rates, and thus Mcrit is relatively larger. The above
argument is consistent with the discussion of Morozov et al.,
who suggest that the Pakdel and McKinley criterion should
be considered as a suitable asymptotic rule that is accurate
only at sufficiently large degree of elasticity [4]. Indeed, for
concentrations c/c∗ > 10, i.e., in the semidilute entangled
regime where the elastic component is entirely dominant, Mcrit

approaches an asymptotic value of approximately 3.7.
In summary, we have studied the flow of semidilute

polymer solutions in a geometrically well-defined serpentine
channel and detected the occurrence of purely elastic insta-
bility via pressure measurement and μPIV. We have adapted
the traditional scaling of the onset of purely elastic instability
for polymer solutions in the semidilute regime by respecting
the shear dependency of their rheological properties. As a
consequence, our approach provides a realistic representation
of the actual polymer behavior with respect to the flow by
taking the rheological properties at the onset of instability
into account. This, indeed, leads to a universal scaling as
function of normalized concentration depending only on the
ratio between the first normal stress difference N1(γ̇crit ) and
the shear modulus G0 regardless of the type of the polymer.
As demonstrated, this scaling allows quantitative prediction
of the onset of purely elastic instability for a wide range of
high molecular weight polymer solutions.
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