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Abstract
Background An exaggerated exercise blood pressure (BP) is associated with a reduced exercise capacity. However, its con-
nection to physical performance during competition is unknown.
Aim To examine BP responses to ischaemic handgrip exercise in Master athletes (MA) with and without underlying morbidi-
ties and to assess their association with athletic performance during the World Master Track Cycling Championships 2019.
Methods Forty-eight Master cyclists [age 59 ± 13yrs; weekly training volume 10.4 ± 4.1 h/week; handgrip maximum vol-
untary contraction (MVC) 46.3 ± 11.5 kg] divided into 2 matched groups (24 healthy MA and 24 MA with morbidity) and 
10 healthy middle-aged non-athlete controls (age 48.3 ± 8.3 years; MVC 40.4 ± 14.8 kg) performed 5 min of forearm occlu-
sion including 1 min handgrip isometric contraction (40%MVC) followed by 5 min recovery. Continuous beat-by-beat BP 
was recorded using finger plethysmography. Age-graded performance (AGP) was calculated to compare race performances 
among MA. Healthy Master cyclists were further grouped into middle-age (age 46.2 ± 6.4 years; N:12) and old-age (age 
65.0 ± 7.7 years; N:12) for comparison with middle-aged non-athlete controls.
Results Healthy and morbidity MA groups showed similar BP responses during forearm occlusion and AGP (90.1 ± 4.3% and 
91.0 ± 5.3%, p > 0.05, respectively). Healthy and morbidity MA showed modest correlation between the BP rising slope for 
40%MVC ischaemic exercise and AGP (r = 0.5, p < 0.05). MA showed accelerated SBP recovery after cessation of ischaemic 
handgrip exercise compared to healthy non-athlete controls.
Conclusion Our findings associate long-term athletic training with improved BP recovery following ischaemic exercise 
regardless of age or reported morbidity. Exaggerated BP in Master cyclists during ischaemic exercise was associated with 
lower AGP during the World Master Cycling Championships.
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AGP  Age-Graded Performance
ANOVA  Analysis of Variance
BP  Blood Pressure
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CPET  Cardiopulmonary Exercise Test
DBP  Diastolic Blood Pressure
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MA  Master Athletes
MSNA  Muscle Sympathetic Nerve Activity
MVC  Maximal Voluntary Contraction
PEO  Post-Exercise Occlusion
SBP  Systolic Blood Pressure

Introduction

Elevated exercise blood pressure (BP) is a prevalent risk 
factor for cardiovascular (CV) diseases in sedentary indi-
viduals (Schultz et al. 2012) and elite athletes (Berge et al. 
2015). Regular moderate exercise can maintain healthy 
vascular function (Maron et al. 2001; Montero et al. 2015; 
Pollock et al. 2018), and reduce the risk of hypertension 
(Fagard 2001; Mora et al. 2007). However, there is a con-
troversy about the impact of lengthy and intense training 
on cardiovascular health and the incidence of hypertension 
(Kujala et al. 1999; Kim et al. 2012; Andersen et al. 2013, 
2020; Schwartz et al. 2014; Eijsvogels and Maessen 2017). 
Master athletes provide an opportunity to study vascular 
function and BP responses of exceptionally active indi-
viduals, since they typically train regularly and compete in 
athletic events at very high intensity (Tanaka et al. 2019). 
Middle-aged and elderly master athletes show improved 
vascular function with optimized blood flow and BP regu-
lation at rest and during exercise (Montero et al. 2015). 
However, some vulnerable master athletes are at risk of 
developing adverse cardiovascular morbidity (Andersen 
et al. 2013). Indeed, a prevalence of 10% with established 
respiratory and cardiovascular diseases was found in a 
master athletes’ cohort (Shapero et al. 2016). These mor-
bidities are often connected to an impaired BP regulation 
during exercise despite a normotensive status at rest (Cur-
rie et al. 2017), indicating an early state of hypertensive 
disease.

The increase in BP during exercise is regulated through 
a feed-forward central command mechanism (Goodwin 
et al. 1972) and affected by the baroreflex (Bristow et al. 
1971), and the exercise pressor reflex (EPR) (McCloskey 
and Mitchell 1972) feedback mechanisms. Activation of 
muscle afferents (III–IV) by mechanical and metabolic 
stimuli evoke EPR which increases sympathetic outflow to 
the heart and resistance vessels (Seals et al. 1988; Rowell 
and O'Leary 1990; Amann et al. 2011; Sidhu et al. 2015). 
The magnitude of EPR during fatiguing isometric exer-
cise increases with aging and cardiovascular morbidity 
(Petrofsky and Lind 1975; Delaney et al. 2010). Endurance 
training showed blunted EPR (Somers et al. 1992; Mos-
toufi-Moab et al. 1998) and long-term endurance athletes 
exhibit lower EPR than untrained individuals (Kölegård 
et al. 2013). Nevertheless, susceptible master athletes are 
at risk of an exaggerated BP response during exercise 

(Pressler et al. 2018). An elevated BP during a progressive 
maximal cardiopulmonary exercise test (CPET) was asso-
ciated with a decreased exercise capacity in elite young 
athletes with autonomic dysfunction (Mazic et al. 2015). 
However, the connection of an elevated exercise BP with 
sport performance is not well documented.

Forearm occlusion, ischaemic isometric exercise and 
post-exercise circulatory occlusion have shown to elevate 
the muscle III/IV afferent feedback and exaggerate the BP 
response (Papelier et al. 1997; Fisher et al. 2007; Faisal 
et al. 2010). These interventions induce minimum changes 
in muscle metabolism (i.e.  O2 stores and phosphocreatine) 
during occlusion and fully return to base line state with 
5 min of recovery (Hampson and Piantadosi 1988; Blei et al. 
1993; Boushel et al. 1998). Therefore, the aim of the present 
study was to examine the BP response to a fatiguing occlu-
sion protocol in Master cyclists presenting with- and without 
morbidities and its impact on their sport performance during 
World Master Track Cycling Championships. Our hypoth-
esis was that Master athletes with morbidity would experi-
ence an exaggerated EPR and BP response to the fatiguing 
occlusion protocol compared to Master athletes without 
morbidity, and that these athletes would have a lower per-
formance during the competition.

Methods

Participants

Forty-eight non-smokers master athletes (F:13) competing 
at the 2019 World Master Track Cycling Championships in 
Manchester (UK) were recruited to participate in this study 
along with a healthy non-athletic control group (N:10). 
All participants completed a general health questionnaire 
and provided detailed medical history and use of medica-
tions. MA were divided into two matched groups (N:24), 
healthy MA or MA with reported morbidity based on the 
presence or history of cardiovascular diseases (N:9), res-
piratory diseases (N:4) or any other pathology (N:11) that 
may alter BP at rest and during exercise (Souza et al. 2015; 
Christiansen et al. 2016; Sumner et al. 2016; Berta et al. 
2019; Leeman and Kestelyn 2019). Reported comorbidities 
included hypertension, hypotension, blood clot, iliac arte-
rial occlusive disease, thrombosis, myocarditis and cardiac 
arrythmias (atrial fibrillation), asthma, hypothyroidisms, 
history of breast, skin and prostate cancer, cox-arthritis, 
glaucoma, post-traumatic syndrome disorder (details of 
medications are shown in Table E1—Online Supplement). 
The healthy and morbidity MA groups were matched for 
age, sex, self-reported weekly training volume over the last 
year of training before competition (average: 11 h/week), 
and handgrip maximum voluntary contraction (MVC) 
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(48.3 ± 10.3; 44.2 ± 12 kg, p > 0.05, respectively). Subse-
quently, the healthy MA group was divided into sub-groups 
of middle-aged MA (48.9 ± 9.2 years, N:12) and older MA 
(65.8 ± 10.2 years, N:12) and were compared with a healthy 
middle-aged non-athlete controls (48.3 ± 8.3 years, N:10). 
This study was approved by Manchester Metropolitan Uni-
versity Ethics committee (Approval ID: 11704). Participants 
provided written, informed consent and were requested to 
avoid caffeine intake for 12 h prior to participation in the 
study.

Experimental design and procedures

All participants completed a fatiguing occlusion protocol in 
one session at least 24 h prior to or following participation 
in the cycling competition. Following 15 min of comfort-
able upright sitting, participants performed three handgrip 
maximal voluntary contractions (MVC) with a 1-min recov-
ery period between contractions. MVC was assessed with 
a grip force transducer attached to data acquisition system 
(Power lab—ADI Instruments Systems, Oxford, UK) and 
calculated as the average of 1-s peak strength in the best two 
trials. The fatiguing occlusion protocol was adapted from 
previous studies on BP response and metabo-receptors activ-
ity to ischemia (Fisher and White 1999; Faisal et al. 2010; 
Delaney et al. 2010; Currie et al. 2017). It included 5 min of 
resting, 5 min of forearm occlusion including 1 min of iso-
metric contraction at 40% MVC and 5 min recovery (Fig. 1). 
Participants sat in an upright position using the dominant 
arm extended at the heart level. Circulatory occlusion of 
the brachial artery distal to the elbow was achieved by rapid 
inflation of a standard blood pressure cuff to 220–250 mmHg 
(Elite BFR Occlusion Cuffs, © The Occlusion Cuff). Exer-
cise ischemia was assessed by the absence of the radial 
artery pulse during the occlusion protocol (Crenshaw et al. 
1988; Patterson et al. 2019), and the occlusion period was 
terminated by rapid deflation of the occlusion cuff. Beat-
by-beat BP was measured throughout the testing protocol 
using finger plethysmography (Human NIBP nano, ADI 
Instruments Systems, Oxford, UK). Finger plethysmography 

Table 1  Subject characteristics in healthy and morbidity Master ath-
letes

Values are means ± SD
BMI body mass index, DBP diastolic blood pressure, MAP mean 
arterial pressure, MVC maximal voluntary contraction, SBP systolic 
blood pressure

Group Healthy MA (24) Morbidity MA (24)

Age (y) 57.2 ± 12.6 60.7 ± 12.5
Height (cm) 172.5 ± 6.9 169.4 ± 6.3
Weight (kg) 75.7 ± 11.3 76.8 ± 12.7
BMI (kg/m2) 25.3 ± 2.7 25.3 ± 3.4
Training (h/week) 11.1 ± 4.6 9.8 ± 3.3
MVC 40% (kg) 19.5 ± 4.3 17.7 ± 4.8
Resting SBP (mmHg) 131.3 ± 12.6 133.1 ± 12.7
Resting MAP (mmHg) 94.7 ± 7.8 94.4 ± 7.8
Resting DBP (mmHg) 77.1 ± 7.3 77.5 ± 7.7

Resting 

MVC Assessment

5 min 5 min2 min 2 min1 min

RecoveryPEO40
%

 
M

VCOcclusion

Fatiguing Occlusion Protocol 

220-250 mmHg

Blood Pressure Monitoring (15min)

Fig. 1  Experimental testing protocol on top and a representative recordings of blood pressure using finger plethysmography at the bottom. MVC 
maximal voluntary contraction, PEO post-exercise occlusion
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has been shown to be a valid and reliable tool for assessing 
blood pressure during hemodynamic changes (Waldron et al. 
2017). Participants were asked to rate the intensity of pain 
discomfort using a 0–10 Numeric Rating Scale (Haefeli and 
Elfering 2006), throughout the 5 min fatiguing occlusion 
protocol (at 2, 3 and 5 min). The fatiguing occlusion proto-
col was completed in full by all participants, except for two 
participants who both reported light-headedness and nausea 
impairing their ability to complete the contraction, so their 
data were excluded from further analysis.

Data analysis

Systolic blood pressure (SBP), mean arterial pressure (MAP) 
and diastolic blood pressure (DBP) values were calculated 
as a mean of each phase of the fatiguing occlusion protocol 
[occlusion, ischaemic exercise (MVC40% during occlusion), 
post-exercise occlusion (PEO)], and at the last min of resting 
and recovery periods before and after the fatiguing occlu-
sion protocol (Fig. 1). Delta BP among phases of the test-
ing protocol were calculated as the differences between BP 
means. Beat-by-beat SBP and MAP dynamics were assessed 
by slope analysis throughout ischaemic isometric exercise, 
PEO phases and during the first 2 min of recovery after 
cuff release. Age-graded performance (AGP) analysis was 
used to calculate the race performances of the MA cohort 
with respect of their specific age groups and race events, 
expressed as a percentage of the corresponding age-group 
world records for that particular race event (Bird et al. 2003). 
Some Master athletes were competing in different events 
(200–500 m and/or 2000 m), and in these cases, AGP was 
recorded for the individual athlete as the highest AGP from 
any of the race events they competed in. Official race results 
were obtained from the 2019 World Master Track Cycling 
Championships website.

Statistical analysis

All variables met the parametric assumption for normal-
ity of distribution and the homogeneity of variance using 
Shapiro–Wilk and Leaven’s tests. A sample size of 24 was 
estimated to provide 80% power to detect differences in BP 
responses between Master cyclists with or without morbid-
ity, based on a SD of one unit, α of 0.05, and a two-tailed 
test of significance. An unpaired T test was performed for 
all the participants’ characteristics, pain, AGP, BP slopes 
between healthy and morbidity MA groups. A one-way 
repeated measure ANOVA with Bonferroni post hoc analy-
sis was performed to examine differences in mean and delta 
SBP, MAP, DBP responses at different phases of the testing 
protocol between healthy MA and morbidity MA, as well as 
between old and middle-aged MA, and healthy middle-aged 

controls. A simple linear regression analysis was performed 
on the MA cohort to examine correlation between the raising 
slope of SBP and MAP during ischaemic isometric hand-
grip contraction and AGP. All the statistical analysis were 
performed using the GraphPad Prism 8 statistical analysis 
software. Data are reported as mean ± SD with statistically 
significance accepted at p < 0.05.

Results

Morbidity effect in Master athletes

The healthy and morbidity MA groups were of similar age, 
height, weight, MVC, and weekly training volume (Table 1). 
Both groups showed similar changes in BP responses (mean, 
delta and slope) (Fig. 1, Tables E2, E3—Online Supplement) 
and reported similar pain discomfort during the three phases 
of the fatiguing occlusion protocol (Table E4—Online Sup-
plement). Within the morbidity MA group, there were no dif-
ferences in BP responses between MA with cardiovascular 
diseases and MA with other reported conditions (Fig. 1E—
Online Supplement). There were no significant differences in 
AGP between healthy and morbidity MA groups (90.13 ± 4.26 
and 90.98 ± 5.33%, p > 0.05).

An inverse correlation was found between the slope of 
increased SBP and MAP during ischaemic exercise and AGP 
(r = 0.50, r = 0.46, p < 0.05 for both- Fig. 3a, b).

Aging and training effect in healthy Master athletes

Based on the inclusion criteria of the healthy non-athletes 
control group, there was a significant difference in age with 
older MA and significant difference in weekly training volume 
with both middle-aged and older MA (Table 2). Old and mid-
dle-aged MA showed similar changes in SBP, MAP, DBP at 
rest, occlusion, ischaemic exercise, PEO and recovery phases 
(p > 0.05 for all, Fig. 4; Table E5, E6—Online Supplement). 
There were no differences between MA groups and middle-
aged healthy controls in the rise of slope of SBP or MAP dur-
ing ischaemic exercise. However, compared to the healthy 
middle-age group, both old and middle-age MA groups 
showed a steeper decrease in SBP and MAP slopes over 1 
and 2 min of PEO (i.e. SBP 1 min: 0.38 ± 0.23, 0.35 ± 0.20 vs. 
0.15 ± 0.10, p < 0.05 for both) with larger delta (Table E6—
Online Supplement). There was a faster BP recovery from the 
fatiguing occlusion protocol in the MA groups with a steeper 
decrease in SBP during 1 and 2 min of recovery compared to 
the healthy middle-aged controls (p < 0.05, Fig. 4; Table E6—
Online Supplement). Moreover, the middle-aged healthy 
MA group showed a lower SBP at the end of recovery phase 
compared to the middle-aged healthy controls (132.3 ± 8.2 
vs. 143.0 ± 14.1 mmHg, p < 0.05, Fig. 4; Table E5—Online 
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Supplement). All groups reported similar pain discomfort 
during the three phases of the fatiguing occlusion protocol 
(Table E6 E7—Online Supplement).

Discussion

To the best of our knowledge, this is the first study of exer-
cise-related BP dynamics in MA with and without morbidity 
during an international competition. The main findings of 
this study are as follows: 1) In contrast to our hypothesis, 
MA with underlying morbidity showed similar BP responses 
at rest, occlusion, ischaemic exercise, post-ischaemic exer-
cise and recovery phases as healthy MA, 2) the slope of 
SBP rise during ischaemic isometric exercise was inversely 
correlated with AGP during the cyclist competition, and 3) 
older MA showed similar BP responses compared to healthy 
middle-age non-athletes and both older and middle-aged 
MA showed a faster BP recovery during PEO and following 
the fatiguing occlusion protocol compared to middle-aged 
healthy controls.

Impact of underlying morbidity on BP regulation 
in MA

Our findings associate athletic training with improved BP 
regulation under occlusion, ischaemic exercise and during 
recovery after exercise occlusion, regardless of underly-
ing morbidity in our MA participants. The link between 
altered BP responses to exercise and underlying morbidity 
has been studied in detail amongst the general population 
(Mundal et al. 1994; Kjeldsen et al. 2001) and patient groups 
(Schultz et al. 2012; Grotle and Stone 2019; Downey et al. 
2017; Delaney et al. 2010; Piepoli and Coats 2007), but 
less is known about BP responses for athletic populations 

(Andersen et al. 2020). Master athletes are characterised 
by very high levels of exercise training and they typically 
present with fewer underlying health conditions compared 
with non-athletic individuals of the same age (Tanaka et al. 
2019). However, long-term strenuous exercise could poten-
tially lead to cardiovascular dysfunction (O'Keefe et al. 
2012; Stergiou and Duncan 2018) and masked hypertension 
with altered cardiac function being a highlighted risk among 
master athletes (Trachsel et al. 2015).

The increases of blood pressure during isometric exer-
cise are linked to the activation of peripheral mechano- and 
metabo-receptors (groups III and IV afferents) in muscu-
lature which activate central sympathetic outflow driving 
generalised arterial constriction (Goodwin et  al. 1972; 
McCloskey and Mitchell 1972; Kaufman et al. 1983). Car-
diovascular diseases are characterized by altered functional-
ity of peripheral or central influences on sympathetic out-
flow, which is associated with exaggerated increases of BP 
and vascular resistance during exercise (Murphy et al. 2011; 
Mitchell 2017; Aoki et al. 1983). Overactivation of sympa-
thetic outflow and pressor responses during post-exercise 
ischemia, mediated by the muscle metaboreflex, was linked 
to an increased BP in hypertensive individuals (Delaney 
et al. 2010). However, Currie et al. reported similar arterial 
stiffness and sympathetic reactivity during isometric hand-
grip exercise and post-exercise muscle ischemia in healthy 
endurance MA with and without exaggerated BP to graded 
dynamic exercise (Currie et al. 2017).

A proportion of the master athletes in our study reported 
underlying medical conditions, albeit controlled and without 
any symptoms that interrupted their ability to compete in 
world championship events. Despite the presence of mor-
bidity, we did not find differences in BP responses during 
occlusion, IE or during post-exercise cessation compared 
to master cyclists free from morbidity (Fig. 2). Therefore, 

Table 2  Subject characteristics 
in middle-aged and older MA 
and middle-aged non-athlete 
controls

Values are means ± SD
BMI body mass index, DBP diastolic blood pressure, MAP mean arterial pressure, MVC maximal voluntary 
contraction, SBP systolic blood pressure
*p < 0.05 old MA vs. middle-age MA vs and none-athlete controls

Group Middle-aged non-athlete 
controls (10)

Middle-aged master 
athletes (12)

Older master 
athletes (12)

Age (y) 48.3 ± 8.3 48.9 ± 9.1 65.8 ± 10.2*
Height (cm) 172.4 ± 6.4 175.5 ± 7.4 169.8 ± 6.1
Weight (kg) 77.2 ± 9.6 77.4 ± 11.3 70.2 ± 11.2
BMI (kg/m2) 25.9 ± 3.0 25.0 ± 2.3 23.8 ± 3.2
Training (h/week) 3.7 ± 1.5* 10.5 ± 2.8 11.6 ± 6.2
MVC (kg) 40.4 ± 14.8 49.7 ± 11.3 46.9 ± 10.9
Resting SBP (mmHg) 136.9 ± 11.6 129.4 ± 8.4 133.2 ± 16.4
Resting MAP (mmHg) 98.6 ± 11.59 94.9 ± 6.4 94.5 ± 9.7
Resting DBP (mmHg) 79.4 ± 11.9 77.5 ± 6.1 76.6 ± 8.8
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there may be a possible protective effect of long-term intense 
exercise on BP regulation even in the presence of morbidity 
within elite master athletes.

While an exaggerated exercise BP in MA is considered 
a compensatory mechanism to maintain adequate perfusion 
for active muscles (Currie et al. 2017), increased BP dur-
ing dynamic exercise was associated with lower exercise 
capacity in hypertensive patients (Fagard et al. 1988; Pick-
ering 1987; Lim et al.1996) and elite young athletes (Mazic 
et al. 2015). Among over 200,000 recreational to elite ski-
ers, including 8% with morbidity, higher performance in a 

Nordic skiing race at the Vasaloppet Swedish competition 
was strongly associated with a lower incidence of hyperten-
sion (Andersen et al. 2020). In MA (cyclists), we found an 
inverse correlation between the rise in BP during ischaemic 

Fig. 2  Blood Pressure responses in healthy and Master cyclists with 
morbidity groups at resting, occlusion, ischaemic exercise (IE), post-
exercise occlusion (PEO), and recovery. Values are means ± SE

Fig. 3  Linear regression of age-graded performance and the slopes of SBP rises (a) and MAP rises slope (b) during ischaemic handgrip isomet-
ric exercise in Master athletes cohort [healthy (solid circles) and Master athletes with morbidity (open circles)]

Fig. 4  Blood Pressure responses in healthy middle-aged and older 
Master cyclists’ groups and healthy middle-aged non-athletic controls 
at rest, occlusion, ischaemic exercise (IE), post-exercise occlusion 
(PEO), and recovery. Values are means ± SE. *p < 0.05 for Middle-
age MA vs. non-athlete controls; #p < 0.05 for middle-age and old 
MA vs. non-athlete controls in SBP and MAP slopes
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isometric exercise and AGP regardless of the underlying 
morbidity in our MA groups (Fig. 3). In approximately 
10% with hypertensive resting BP of our MA population, 
exaggerated blood BP responses during IE (above 190 and 
210 mmHg for women and men, respectively) was associ-
ated with lower AGP in the world cycling competition.

Impact of age and training on BP regulation

Age-associated changes in vascular structure and loss of 
central arteries elasticity (Kelly et al. 1989; Vaitkevicius 
et al. 1993; Franklin et al. 1997; McEniery et al. 2005), 
and chronic elevation of muscle sympathetic nerve activ-
ity (MSNA) (Ng et al. 1993; Studinger et al. 2009) are 
key determinants for impaired BP responses in sedentary 
aging. In contrast, endurance master athletes (cyclists, 
runners and swimmers, triathletes) show improved vascu-
lar function compared to sedentary healthy age-matched 
controls (DeVan and Seals 2012). This includes increased 
conduit artery cross-sectional area (Montero et al. 2015) 
higher arterial compliance (Tanaka et al. 2000; Mona-
han et al. 2001; Nualnim et al. 2011), less hypertrophy of 
the arterial wall (DeVan and Seals 2012), lower arterial 
stiffness (Vaitkevicius et al. 1993; Tanaka et al. 1998), 
enhanced endothelial function and improved blood flow 
circulation (Montero et al. 2015) to optimize blood flow 
and BP regulation at rest and during exercise (Montero 
et al. 2015). Exaggerated BP responses (EBPR) with age-
ing were reported during dynamic exercise (Fisher et al. 
2010a, 2007), but still controversial during isometric exer-
cise (Houssiere et al. 2006; Lalande et al. 2014; Sidhu 
et al. 2015). Our results showed that BP responses were 
comparable in older MA, middle-aged MA and middle-
aged healthy non-athletic controls during occlusion and 
IE (Fig. 4). It can be assumed that the stimulus of the 
mechano- or metabo-receptors was similar for all groups. 
This may decrease the ageing effect on the contribution of 
muscle III/IV afferents to stimulate BP under ischaemic 
or isometric exercise conditions (Sidhu et al. 2015). The 
impact of lifetime training on vascular sympathetic activity 
in master athletes remains unclear and showed inconsistent 
findings of higher (Ng et al. 1993; Wakeham et al. 2019) 
or no changes (Studinger et al. 2009) in resting MSNA 
compared to healthy untrained individuals. However, it is 
noteworthy that increased BP during occlusion or ischae-
mic exercise does not necessarily follow elevated vascular 
sympathetic activity at rest (Taylor and Tan 2014).

The accelerated decrease of BP during PEO in middle-
aged and older MA compared to middle-aged healthy non-
athletic controls (Fig. 4) may suggest robust reactivation of 
cardiac parasympathetic tone and increased cardiac barore-
flex sensitivity in our MAs following the inhibition of cen-
tral command and removal of mechano-reflex stimulation 

(O’Leary, 1993; Carrington and White 2001; Fisher et al. 
2010b), causing a rapid reduction of BP despite sustained 
high MSNA due to muscle metaboreflex activation (Fadel 
2015; Mark et al. 1985; Ichinose et al. 2006; Ng et al. 1994). 
Moreover, the accelerated recovery of BP in the master 
cyclists post-fatiguing occlusion protocol could be related 
to enhanced vasodilatory capacity (Ferguson and Brown 
1997; Wakeham et al. 2019) and/or increased cardiovagal 
baroreflex sensitivity (Monahan et al. 2000), that led to a 
rapid decrease of BP. However, further and detailed meas-
urement should be implemented in the future to clarify the 
contribution of chronic training on the interaction between 
muscle metaboreflex with arterial and cardiac baroreflex to 
the neural control of BP during PEO and recovery in MA 
populations.

Study limitations

A possible limitation of this study was that the data from 
Master cyclists were collected during World Champion-
ships, which may have elevated BP responses due to antic-
ipation, excitement, dehydration, or prior exercise. How-
ever, steps were taken to avoid strenuous exercise prior to 
testing and to ensure hydration before testing. Addition-
ally, there were no differences in baseline BP in Master 
cyclists compared to middle-aged healthy non-athletic 
controls who did the measurements in a quiet laboratory 
setting. Our main finding of similar BP responses between 
healthy MA and those with underlying morbidity is likely 
to be influenced by medication. The morbidity MA group 
has been screened and their medications were eligi-
ble to be used during international events (Maron et al. 
2001; Van Hare et al. 2015). More invasive techniques of 
microneurography were not possible due to testing con-
straints, but these would have provided greater insights 
into the possible mechanisms influencing BP responses 
during IE, PEO and recovery. In addition, only 25% of the 
MA were female due to lower participation of females in 
the events compared to male athletes. More female ath-
letes should be studied in the future as endurance training 
showed only higher resting MSNA mainly in women MA 
(Ng et al. 1993).

Conclusion

These findings of accelerated blood pressure recovery after 
cessation of ischaemic hand grip exercise in MA associate 
long-term athletic training with improved blood pressure 
dynamics regardless of age or underlying morbidity. Mid-
dle-aged and older MA showed accelerated BP recovery 
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after cessation of ischaemic hand grip exercise compared 
with non-athletic middle-aged adults. This response was 
similar between MA with and without underlying morbid-
ity. Exaggerated BP in MA during ischaemic exercise was 
associated with lower AGP during the World Master Track 
Cycling Championships.
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