
STOCHASTIC SPREADING ON
COMPLEX NETWORKS

zur Erlangung des Grades des Doktors der
Naturwissenschaften der Fakultät für
Mathematik und Informatik der
Universität des Saarlandes

Saarbrücken
2022

G Gß

D

Tag des Kolloquiums: 12.12.2022

Dekan: Prof. Dr. Jürgen Steimle

Prüfungsausschuss: Prof. Dr. Verena Wolf
Prof. Dr. Luca Bortolussi
Prof. Dr. Tatjana Petrov
Prof. Dr. Holger Hermanns
Dr. Michael Backenköhler

© Gerrit Großmann, 2022

An electronic version of this dissertation is available at:

github.com/gerritgr/phd

i

Abstract

Complex interacting systems are ubiquitous in nature and society.
Computational modeling of these systems is, therefore, of great rele-
vance for science and engineering. Complex networks are common
representations of these systems (e.g., friendship networks or road
networks). Dynamical processes (e.g., virus spreading, traffic jams)
that evolve on these networks are shaped and constrained by the
underlying connectivity.

This thesis provides numerical methods to study stochastic spreading
processes on complex networks. We consider the processes as inher-
ently probabilistic and analyze their behavior through the lens of
probability theory. While powerful theoretical frameworks (like the
SIS-epidemic model and continuous-time Markov chains) already ex-
ist, their analysis is computationally challenging. A key contribution
of the thesis is to ease the computational burden of these methods.

Particularly, we provide novel methods for the efficient stochastic
simulation of these processes. Based on different simulation studies,
we investigate techniques for optimal vaccine distribution and criti-
cally address the usage of mathematical models during the Covid-19
pandemic. We also provide model-reduction techniques that trans-
late complicated models into simpler ones that can be solved without
resorting to simulations. Lastly, we show how to infer the underlying
contact data from node-level observations.

iii

Zusammenfassung

Komplexe, interagierende Systeme sind in Natur und Gesellschaft
allgegenwärtig. Die computergestützte Modellierung dieser Systeme
ist daher von immenser Bedeutung für Wissenschaft und Technik.
Netzwerke sind eine gängige Art, diese Systeme zu repräsentieren
(z. B. Freundschaftsnetzwerke, Straßennetze). Dynamische Prozesse
(z. B. Epidemien, Staus), die sich auf diesen Netzwerken ausbreiten,
werden durch die spezifische Konnektivität geformt.

In dieser Arbeit werden numerische Methoden zur Untersuchung
stochastischer Ausbreitungsprozesse in komplexen Netzwerken ent-
wickelt. Wir betrachten die Prozesse als inhärent probabilistisch
und analysieren ihr Verhalten nach wahrscheinlichkeitstheoretischen
Fragestellungen. Zwar gibt es bereits theoretische Grundlagen und
Paradigmen (wie das SIS-Epidemiemodell und zeitkontinuierliche
Markov-Ketten), aber ihre Analyse ist rechnerisch aufwändig. Ein
wesentlicher Beitrag dieser Arbeit besteht darin, die Rechenlast dieser
Methoden zu verringern.

Wir erforschen Methoden zur effizienten Simulation dieser Prozesse.
Anhand von Simulationsstudien untersuchen wir außerdem Tech-
niken für optimale Impfstoffverteilung und setzen uns kritisch mit der
Verwendung mathematischer Modelle bei der Covid-19-Pandemie
auseinander. Des Weiteren führen wir Modellreduktionen ein, mit
denen komplizierte Modelle in einfachere umgewandelt werden kön-
nen. Abschließend zeigen wir, wie man von Beobachtungen einzelner
Knoten auf die zugrunde liegende Netzwerkstruktur schließt.

iv

Acknowledgement

I wish to express my sincere gratitude to Verena Wolf, who has
nurtured my scientific advancement since I was a Bachelor’s student,
and provided a wonderful and inspiring working atmosphere in her
group. She always provided direction, expertise, and the freedom to
discover my own path. I also wish to thank Jilles Vreeken and Luca
Bortolussi for putting so many exciting ideas, topics, and challenges
in my head and who greatly sharpened my scientific thinking. I
am also immensely grateful to Tatjana Petrov, who said yes without
hesitation when I asked her if she would be interested in reviewing
my dissertation.

Special thanks go to my colleagues, collaborators, friends, and men-
tors, Charalampos Kyriakopoulos and Michael Backenköhler, for
countless insightful discussions, passionate participation, and pro-
vision of expertise. Furthermore, I want to thank the whole Model-
ing and Simulation gang—namely, Thilo, Timo, Alexander, Joschka,
Paula—and also my students Julian, Jonas, Yan Yan, and Lisa for all
their valuable comments and interesting ideas.

I also want to express my very profound gratitude to my wonderful
family for providing me with continuous encouragement and care
throughout my studies. Last but not least, I want to thank all the
people who made the last four years in Saarbrücken so vivid and
joyful by filling the nearby bars, cafés, and parks with so many
beautiful memories.

v

Contents

I Preliminaries 1

1 Introduction 3

1.1 Networks Are Everywhere 4

1.2 There Are No Networks 6

1.3 About the Thesis . 11

2 Background 17

2.1 General Notation . 17

2.2 Graphs and Networks 18

2.3 Labeled Networks . 22

2.4 Stochastic Dynamics on Networks 24

2.5 CTMC Semantics of Spreading Dynamics 33

II Simulation and Control 39

3 Simulation of Markovian Spreading 41

3.1 Introduction . 42

3.2 Methods in Literature 43

3.3 Our Method: CORAL 50

3.4 Case Studies . 61

3.5 Conclusions . 65

4 Simulation of non-Markovian Spreading 67

4.1 Introduction . 68

4.2 Multi-Agent Model 71

vii

4.3 Semantics of the Multi-Agent Model 76

4.4 Related Work . 84

4.5 Our Method: RED . 86

4.6 Case Studies . 95

4.7 Conclusions . 101

5 Vaccine Allocation Optimization 103

5.1 Introduction . 104

5.2 Related Work . 105

5.3 Problem Statement 106

5.4 Our Method: SEPIA 108

5.5 Experimental Results 116

5.6 Implications and Future Work 118

6 Covid-19 and the Limitations of Modeling 121

6.1 Introduction . 121

6.2 A Tale of Three Models 125

6.3 Method . 132

6.4 Experiments . 140

6.5 Conclusions . 150

III Reduction and Inference 151

7 Birth-Death Process Abstraction 153

7.1 Problem Setting . 154

7.2 Method . 155

7.3 Results . 165

7.4 Related Work . 166

8 From Networks to Population Models 167

8.1 Introduction . 167

8.2 Related Work . 168

8.3 Our Method: BLUE 170

8.4 Markov Population Models 177

viii

8.5 Numerical Results . 185
8.6 Conclusions and Future Work 187

9 Neural Relational Inference 189
9.1 Introduction . 189
9.2 Foundations and Problem Formulation 194
9.3 Our Method: TEAL 199
9.4 Testing TEAL . 203
9.5 Related Work . 213
9.6 Conclusions and Future Work 215

IV Concluding Remarks 217

10 Conclusion 219
10.1 Future Work . 221

Bibliography 223

List of Algorithms 251

List of Models 253

List of Figures 255

V Appendix 257

A Brightening BLUE 259
A.1 Direct MPM Construction 259

B Technicalities of TEAL 265
B.1 TEAL’s Training . 265
B.2 Dynamical Models 266
B.3 Random Graphs Generation 268

ix

Part I

Preliminaries

Introduction 1
Imagine it is the beginning of 2020, you are a politician and you hear
about a novel SARS-like disease emerging in China. What do you
do? most likely, questions like How bad is it going to be?, Should we
try to prevent the virus outbreak?, and, if so, How could we possibly do
that? will come to mind. Fortunately, you have a compelling idea:
Can we use a computer simulation of the outbreak and see how it turns
out?

Three years into a global pandemic, and we know: We cannot. Part
of this work is devoted to the challenges and caveats of epidemic
forecasting. Therefore, we need to understand why a thesis on
stochastic processes on complex networks cares about a global health
crisis.

In short, epidemics are the quintessential example of a stochastic
spreading process on complex networks. The spread of a pathogen
results both from the properties of the pathogen itself (e.g., the
number of days one is infectious) and from the characteristics of peo-
ple’s interactions. These interactions are commonly represented as a
human-to-human contact network (complex refers to size and hetero-
geneity). This thesis adopts a stochastic modeling paradigm (instead
of a deterministic one) to express the natural randomness and unpre-
dictability of macroscopic systems (such as social environments) as
well as the uncertainty in our knowledge.

To study stochastic spreading processes on complex networks, we
need to understand their three main ingredients:

3

• A system of interacting agents (e.g., humans) forming the
nodes of a network;

• A (more-or-less fixed) relationship among them (e.g., friend-
ships, co-workers) forming the edges; and

• A process that propagates over the network (e.g., a pathogen)
that changes the properties or labels of the nodes (e.g., healthy
humans become infected).

Nodes, edges, and node-labels are the fundamental building blocks
of our research. They allow us to write down formal specifications
of a spreading process that we can study computationally. Typically,
specific details of such a specification are encoded as parameters. A
potential parameter in an epidemic model is the time it takes for
an infected individual to recover. Parameters can be estimated from
literature or calibrated using real-world observational data. Often,
one is interested in how the emergent spreading dynamics changes
as a function of the parameters.

It is also worth noting that networks naturally change over time
(e.g., friendships are formed and broken). However, in this work, we
consider the network structure to be static (only the labels change
over time). A generalization to time-varying or adaptive networks is
often (but not always) straightforward.

1.1 Networks Are Everywhere

Networks are ubiquitous. They can be found virtually everywhere in
nature, society, science, and technology, as they naturally arise when
entities or agents interact. This interaction is often characterized by
sharing energy, mass, information, or other resources.

4 Chapter 1

Introduction

Networks we are all familiar with are typically networks that have
a direct physical manifestation, like road networks, electrical trans-
mission lines, the internet, or biological neural networks. Online
social networks only exist in the virtual space but are still easily
recognizable as networks.

On the contrary, some networks are more descriptive in nature, such
as the international air traffic network, supply chain networks, the
food web, or protein-protein interaction networks. Other networks
are even more abstract. In the actor-network, actors are connected
when they participated in the same movie, and the stock market
network connects two companies when their stocks are highly cor-
related. Sometimes, describing something as a network might feel
counter-intuitive, for instance, when considering bird flocks [Huepe
et al., 2011; Young et al., 2013]. However, it can provide surprising
insights, especially in these cases. For example, network analysis
showed that the formation of a bird flock is a form of information
processing [Moussaid et al., 2009].

1.1.1 Everything that Spreads Is an Epidemic

Networks—physical and abstract ones alike—form the substrate on
which things can spread. Fake news and political polarization spread
on (online and offline) social networks [Raponi et al., 2022; Campan
et al., 2017], malware spreads on computer networks [Cheng et al.,
2010; Hosseini and Azgomi, 2016], blackouts spread on power-grids
[Koç et al., 2014], antibiotic resistance spreads among bacteria (via
horizontal gene transfer) [Gehring et al., 2010], traffic jams spread
on road networks [J. Lu and D. Lu, 2022], and contamination spreads
in the water supply network [Davidson et al., 2005].

Other words for spreading, with sometimes slightly different conno-
tations, are diffusion, propagation, cascading, and contagion.

1.1 Networks Are Everywhere 5

One of the foundational concepts of network science was to discover
that all these spreadings exhibit significant similarities (sometimes
even referred to as a universality [Piet Van Mieghem, 2016]). In fact,
for the sake of mathematical formalization, they are essentially the
same. Epidemic spreading is not only the prime example but so much
the default case that, in network science, anything that spreads is col-
loquially referred to as an epidemic. Even in mathematical notation,
we often use the terms from epidemiology: An overloaded airport, a
congested road, or a polarized Twitter influencer is considered to be
infected.

1.2 There Are No Networks

With all these networks everywhere, it is essential to remember that
networks are not natural entities. Like numbers, they are abstractions
invented by humans to make life easier. It is not always apparent
whether it is desirable to consider a system as a network. Generally
speaking, a network is a neat abstraction if a particular behavior or
property of a system is fundamentally characterized by the connec-
tivity of individual components or agents—and not so much by the
components individually. This property is commonly referred to as
emergent behavior.

1.2.1 Modeler’s Choices

When we want to consider a system as a network, there are still many
design choices that the modeler is faced with, importantly: What are
the nodes? and How do we connect them?

6 Chapter 1

Introduction

Brain Networks

The human brain is an excellent example of how different networks
can be built from the same system. The most direct translation is to
consider each neuron as a node and connect these nodes if there is an
anatomical (axonal) connection between two neurons. This results in
a biological neural network and is useful for tiny model organisms like
the nematode Caenorhabditis elegans [Yan et al., 2017]. However,
the size of the human brain makes it infeasible to observe and study
the neural connections of the whole brain.

Alternatively, one can group all neurons of a specific brain region
and consider the entire region as a single node in the brain network
[Fornito, Zalesky, and Bullmore, 2016; Lynn and Bassett, 2019].
One possibility is the brain atlas proposed by Desikan et al. (2006)
that identifies 68 large-scale cortical and subcortical regions of in-
terest. Two nodes (corresponding to two regions) can then be con-
nected if the amount of nerve fiber between them exceeds a thresh-
old (to this end, so-called diffusion tractography techniques can
be used). This results in what is called a structural brain network
[Sporns, 2013]. Structural brain networks are useful to understand
the anatomical organization of the human connectome and observe
the effects of the aging process and neurodegenerative disorders such
as Alzheimer’s.

In addition, brain regions can be connected when they exhibit some
form of statistical correlation in their activation patterns. This results
in so-called functional brain networks [Sporns, 2013]. They are use-
ful for investigating the brain’s information processing, for instance,
when studying intelligence or reactions to certain stimuli [Langer et
al., 2012]. A myriad of methods and metrics exist to detect statistical
associations, all resulting in (slightly) different networks.

Moreover, effective brain networks aim to describe causal relation-
ships; we omit them here for brevity [Sporns, 2013]. The relationship

1.2 There Are No Networks 7

between different types of brain networks is also an exciting research
area. However, the large number of design choices already poses a
problem for replicating neuroscientific results [Buchanan et al., 2014;
Welton et al., 2015; Liang et al., 2012; Fingelkurts et al., 2005].

Different types of networks are associated with their own spread-
ing characteristics. For instance, epidemic-type spreading on the
functional brain network can help to understand the emergence of
epileptic seizures [Millán et al., 2022]. Spreading on the structural
brain network helps to explain observed pattern in the information
flow in human brains [Meier et al., 2017]. Spreading networked
neurons provides potential explanations for peculiar synchronization
patterns called neuronal avalanches [Benayoun et al., 2010].

Epidemics

Similar choices emerge in epidemiology, where a network can be
constructed based on individuals and their connections, or by group-
ing geographical regions into nodes and connecting nodes based on
the transfer between these regions. In this so-called meta-population
model, labels do not indicate the state (infected, healthy) of an indi-
vidual, but the fraction of infected individuals in a region [Murphy
et al., 2021].

In summary, we note that networks are not natural objects but are
subject to design choices. This construction is already part of the
scientific process. Besides defining nodes and edges, there are many
degrees of freedom (e.g., whether the directing or strength of the
interaction has to be considered). However, in most cases, this thesis
assumes that the network is already provided and focuses on their
analysis.

We provide a brief overview of the historical influences of this work
in Excursus 1.

8 Chapter 1

Introduction

Excursus 1: On the Shoulders of Giants

The study of spreading dynamics and the networks on which
they unfold is a highly multidisciplinary research area. Here,
we want to lay out some of the larger influences. A more
detailed review can be found in [Barabási, 2013; Estrada and
Knight, 2015; Fennell, 2015].

Epidemiology. Mathematical epidemiology originated in the
seminal work of Kermack and McKendrick (1927) who were
the first to describe the evolution of an epidemic with a math-
ematical equation system: the Susceptible-Infected-Recovered
(SIR) model. Later, stochastic models were adopted, for in-
stance by Bartlett (1960) and Bailey (1964) (cf. Held et al.
(2019)). Similar models were developed in other branches
of theoretical biology to study interacting (groups of) agents.
For example, the Lotka-Volterra equations describe the popula-
tion dynamics of two interacting species (predator and prey)
[Lotka, 1925].

Statistical Physics. Statistical physics studies the interac-
tions of atoms and molecules through a statistical lens. Lud-
wig Boltzmann championed it in the 19th century [Boltzmann,
2012]. It describes a system (e.g., a gas) using a joint probabil-
ity over the properties of the particles such that it favors low-
energy states. Mean-field equations were developed to make
the equations amenable to mathematical analysis by averaging
the effects of neighboring molecules. The field put much effort
into studying phase transitions (e.g., matter changes from the
fluid state to a gas). The underlying framework was adopted
in computational epidemiology (e.g., a pathogen becoming
endemic can be seen as a phase transition) [Castellano et al.,
2009].

1.2 There Are No Networks 9

Graph Theory. The roots of graph theory can be traced back
to Leonhard Euler, who, in 1736, analyzed a peculiar infras-
tructure network: the bridges of Königsberg. He showed that
it was impossible to walk across all seven bridges and never
cross the same one twice. Thereby, he invented what we now
call a graph by leaving out unnecessary details (cf. [Estrada
and Knight, 2015]). Seminal work in modern graph theory
emerged during the study of random graphs by Erdős, Rényi,
et al. (1960). Many concepts of graph theory became relevant
to network science. For instance, spectral graph theory studies
the eigenvalues of (a matrix representation of) a graph and
can be used to predict if a pathogen will become endemic or
not [Prakash, Chakrabarti, et al., 2012]. Likewise, it carries
information about the communities in a graph or network
(i.e., densely connected substructures that are only loosely
connected to other communities) [Piet Van Mieghem, 2010].

Stochastic Processes. Notable influences are drawn from
the science of stochastic processes, specifically the study of
Markov chains. Seminal work was done in the area of queuing
theory by Jackson (1957) where customers in a network of
waiting lines are modeled using random service times. Of sim-
ilar importance was the interpretation of chemical reactions
as a stochastic system by Gillespie (1977); related concepts
were developed even earlier by Doob (1945). Kingman (1969)
proposed a Markov chain semantics of population dynamics. A
technique that became extremely useful for many application
areas (see Goutsias and Jenkinson (2013) for an overview).
Probability theory and stochastic process provide the under-
lying mathematical theory and make the description of such
systems and the formalization of their properties rigorous.

10 Chapter 1

Introduction

1
Introduction

2
Background

3
Simulation of

Markovian Spreading

4
Simulation of Non-

Markovian Spreading

5
Vaccine Allocation

Optimization

6
Covid-19 and

the Limitations
of Modeling

7
Birth-Death-

Process Abstraction

8
From Networks to
Population Models

9
Neural

Relational
Inference

Part I
Preliminaries

Part II
Simulation &

Control

Part III
Reduction &

Inference

Fig. 1.1.: Thesis structure and recommended reading order.

1.3 About the Thesis

The thesis consists of various contributions that have been previously
published as scientific articles or poster abstracts. Altogether, there
are nine peer-reviewed publications (and one publication currently
under review), grouped into seven chapters (3 to 9). The chapters
are loosely grouped into two parts: Part II: Simulation and Con-
trol deals with the simulation of spreading processes and results
from simulation studies, Part III: Reduction and Inference studies
simulation-free model reduction techniques and methods for analyz-
ing observational data. The remaining parts (Part I: Preliminaries
and Part IV: Concluding Remarks) encapsulate the thesis for the
sake of clarity and self-sufficiency. While each chapter identifies a
unique idea, all are based on the notation and formalism introduced
in Chapter 2 (Background). Figure 1.1 provides a suggested reading
order.

1.3 About the Thesis 11

Naturally, the thesis largely overlaps with formal publications. Some
details are left out or added, and some parts are restructured to avoid
redundancy and create consistency. Thus, a considerable amount of
the thesis consists of self-citations (which are not explicitly mentioned
each time). This is standard practice and is in compliance with
current copyright law and university regulations.

A comprehensive list of the publications and the corresponding con-
tributions is given below. In all cases, all authors provided critical
feedback, reviewed the final manuscript, and provided at least mi-
nor edits. All publications were supervised by Verena Wolf (V.W.).
These contributions are not repeated below for each manuscript
individually.

Chapter 3
is based on the paper

• Rejection-Based Simulation of Stochastic Spreading Processes
on Complex Networks [Großmann and Wolf, 2019];

published in the 2019 Hybrid Systems and Biology proceedings.

Contribution. Gerrit Großmann (G.G.) conceived the main concep-
tual ideas, carried out the implementation, performed the numerical
experiments, and wrote the main part of the manuscript. V.W. con-
tributed to the design and presentation of the case studies.

Chapter 4
is based on the two papers

• Rejection-Based Simulation of Non-Markovian Agents on Com-
plex Networks [Großmann, Bortolussi, and Wolf, 2019];

• Efficient simulation of non-Markovian dynamics on complex
networks [Großmann, Bortolussi, and Wolf, 2020];

12 Chapter 1

Introduction

published in the 2019 International Conference on Complex Networks
and Their Applications conference proceedings and in PLOS ONE,
respectively. The latter is a follow-up paper and extends the ideas of
the former.

Contribution. G.G. conceived the main conceptual ideas, carried
out the implementation, performed the numerical experiments, and
wrote the main part of the manuscript. V.W. contributed to the
correctness proofs. Luca Bortolussi (L.B.) wrote large parts of the
abstract.

Chapter 5
is based on the paper

• Learning Vaccine Allocation from Simulations [Großmann,
Backenköhler, Klesen, et al., 2020];

published in the 2020 International Conference on Complex Networks
and Their Applications conference proceedings.

Contribution. G.G. conceived the main conceptual ideas, carried
out the implementation, performed the main part of the numerical
experiments, and wrote the main part of the manuscript. Michael
Backenköhler (M.B.) provided insights into ranking methods and con-
tributed to the presentation of the results. Jonas Klesen contributed
to the review of the literature and the numerical evaluation and pro-
vided an independent examination of the results. V.W. contributed
to the presentation of the results.

Chapter 6
is based on two papers

• Importance of interaction structure and stochasticity for epi-
demic spreading: A COVID-19 case study [Großmann, Back-
enköhler, and Wolf, 2020];

1.3 About the Thesis 13

• Heterogeneity matters: Contact structure and individual varia-
tion shape epidemic dynamics [Großmann, Backenköhler, and
Wolf, 2021b];

published in the 2020 International Conference on Quantitative Evalu-
ation of Systems conference proceedings and in PLOS ONE, respec-
tively.

Contribution. G.G. conceived the main conceptual ideas, carried
out the implementation, performed the numerical experiments, and
wrote the main part of the manuscript. All authors contributed to
the concrete realization of the method and to the decision of what
experiments to carry out. V.W. contributed to the literature review
and to theoretical insights of branching processes.

Chapter 7
introduces a model-reduction technique using a very simple abstrac-
tion scheme. Parts of this chapter are published as

• Birth-Death Processes Reproduce the Infection Footprint of
Complex Networks [Backenköhler and Großmann, 2020];

• Birth-Death Processes Reproduce the Infection Footprint [Groß-
mann and Backenköhler, 2022].

The former contribution was submitted as a poster abstract to the
2020 Hybrid Systems and Biology conference. It was peer-reviewed
and accepted but was never formally published. The latter contribu-
tion is published as an extended abstract in the 2022 International
Conference on Complex Networks and Their Applications conference
proceedings.

Contribution. G.G. wrote the larger part of the manuscript and
provided the implementation and numerical evaluation. The main

14 Chapter 1

Introduction

method resulted from discussions between M.B. and G.G. Addi-
tionally, M.B. also wrote significant parts of the manuscript, con-
tributed to the literature review and provided theoretical insights
into graph relaxation. He also helped to improve the figures of the
manuscript.

Chapter 8
explains how to analyze spreading models by

• Reducing Spreading Processes on Networks to Markov Popula-
tion Models [Großmann and Bortolussi, 2019];

published in the 2018 International Conference on Quantitative Evalu-
ation of Systems proceedings.

Contribution. G.G. conceived the main conceptual ideas, carried
out the implementation, performed the numerical experiments, and
wrote the main part of the manuscript. L.B. corrected technical
details and contributed a paragraph explaining specific formulas.

Chapter 9
presents the inference part of the thesis:

• Unsupervised Relational Inference Using Masked Reconstruc-
tion [Großmann, Zimmerlin, et al., 2021];

where we assume that the network structure is not given, but we re-
construct it from observational data of a stochastic process. The work
is currently under review at Applied Network Science (Springer).

Contribution. G.G. wrote the main manuscript text, devised the main
idea, provided the implementation, and conducted the experiments.
Julian Zimmerlin edited the manuscript text, implemented a previous
version of a related model, supported the conceptualization, and con-
tributed to the literature review. M.B. wrote parts of the manuscript,
reviewed the literature, and created figures. V.W. wrote parts of the
manuscript.

1.3 About the Thesis 15

Background 2
This chapter introduces the notation we use in the course of the thesis
and provides the necessary background knowledge. In particular,
we define stochastic spreading processes, illustrate how they can be
simulated, and explain their relationship to so-called continuous-time
Markov chains (CTMCs). For a comprehensive overview of network
science, we refer the reader to M. Newman (2018) and Barabási
(2013); for a deeper dive into the mathematics and proofs, we refer
the reader to István Z Kiss et al. (2017).

2.1 General Notation

We use N and R to denote the set of natural and real numbers,
respectively. Functions are easily recognizable by a placeholder dot,
e.g., f(·), g(·), L(·). Scalars are written in the default math-font,
e.g., x, y ∈ R. Vectors are lowercased and bold-faced, e.g., x ∈ R2.
Matrices and tensors are in uppercase (A, B, . . .). To avoid confusion,
we typically do not use subscripts as indices, instead we use a[i] or
A[i, j] to refer to specific elements. Subscripts are, however, often
used to specify time-steps.

Specific node-states are in typewriter font (A, B). The set of node-
states is denoted S, often S = {S, I} for infected and susceptible nodes.
Finite sets and tuples are often written in calligraphy, such as the set
of nodes V or the set of edges E of a graph G = (V,E)

17

We use Cat(n) to denote the set of all probability vectors of size n:

Cat(n) =
{

x ∈ Rn
⩾0

∣∣ ∑
i

x[i] = 1.0
}
.

Likewise, for a countable set X, we use Cat(X) to denote the set of
all probability distributions over X (typically assuming an implicit
enumeration).

2.2 Graphs and Networks

The fundamental objects of network science are graphs. A graph
G = (V,E) consists of a finite1 set of nodes (or vertices) V and a set
of edges E ⊆ V × V. Two nodes vi, vj ∈ V are called neighbors (or
adjacent/connected) if and only if there is an edge connecting them,
that is, (vi, vj) ∈ E. We use nV = n = |V| to denote the number of
nodes. We use nV only in special cases to avoid confusion. Moreover,
we typically assume that:

• Graphs are undirected: when (vi, vj) ∈ E, we (sometimes
implicitly) assume that (vj, vi) ∈ E;

• Graphs contain no self-loops: for all vi ∈ V, (vi, vi) /∈ E;

• Graphs are strongly connected: All nodes are reachable from
all other nodes.

Degree and Degree Distribution. The degree of a node is the number
of its neighbors. We use ki = |{vj | (vi, vj) ∈ E}| to denote the degree
of vi. The degree distribution, P(·), represents the frequency of each
degree in a given graph. That is, P(K = k) is the probability that a
node (that is chosen uniformly at random) has degree k.

1The set of nodes and edges can be countably infinite, but this thesis only deals
with finite graphs.

18 Chapter 2

Background

\begin{bmatrix}

0 & 1 & 1 & 0 & 0\\

1 & 0 & 1 & 1 & 0\\

1 & 1 & 0 & 0 & 1\\

0 & 1 & 0 & 0 & 1\\

0 & 0 & 1 & 1 & 0

\end{bmatrix}

\begin{bmatrix}

0 & 1 & 1 & 0 & 0\\

1 & 0 & 1 & 0 & 0\\

1 & 1 & 0 & 0 & 0\\

0 & 0 & 0 & 0 & 1\\

0 & 0 & 0 & 1 & 0

\end{bmatrix}

\begin{bmatrix}

0 & 1 & 0 & 0 & 0\\

0 & 0 & 0 & 0 & 0\\

1 & 1 & 0 & 0 & 0\\

0 & 1 & 0 & 0 & 0\\

0 & 0 & 1 & 1 & 0

\end{bmatrix}

\begin{bmatrix}

0 & 6 & 3 & 0 & 0\\

6 & 0 & 1 & 2 & 0\\

3 & 1 & 0 & 0 & 9\\

0 & 2 & 0 & 0 & 5\\

0 & 0 & 9 & 5 & 0

\end{bmatrix}

54

2 3

1

54

2 3

1

54

2 3

1

54

2 3

1

54

2 3

1

normal not strongly

connected

with self-loops directed weighted

Fig. 2.1.: Different graph types with their corresponding adjacency matrix.

Adjacency matrix. Assume an enumeration of the (finite number
of) nodes of a graph v1, v2, . . . , vn. We can represent G as a so-called
adjacency matrix A of dimension nV × nV. The entries in A are
defined as:

A[i, j] =

1 (vi, vj) ∈ E

0 (vi, vj) /∈ E .

In an undirected graph, A will be symmetric and, when self-loops are
absent, all diagonal entries will be zero. The degree of vi, is the sum
of the i-th column (or equivalent row) in A. A graph is connected if
An only has non-zero entries (a non-zero entry in Ak indicates that
there is a path of length ⩽ k connecting the two nodes). Adjacency
metrics also make it easy to encode weighted graphs, where an entry
aij encodes the strength of an interaction.

Example 2.1: Graphs and Matrices

Graph visualizations are shown in Figure 2.1 of a graph with
V = {1, . . . , 6} and different edge sets. We typically assume
that the graph is of the leftmost type (normal).

2.2 Graphs and Networks 19

2.2.1 Random Graph Models

Random graph models provide recipes for generating graphs. Typi-
cally, these mimic or highlight specific properties of some real-world
networks. Famous examples are the Erdős–Rényi model, where each
pair of nodes is connected by an edge with some probability p. This
model is characterized by its simplicity and can serve as a baseline.
In the geometric random graph model, nodes are randomly placed in
a Euclidean space. Two nodes are connected if their distance is below
a certain threshold r (called radius). Geometric graphs exhibit some
properties similar to those of real-world contact networks. In the
Barabási–Albert model, a graph is created node-by-node. Each new
node is connected to m of the already existing nodes. Importantly,
the m nodes are not chosen uniformly. The probability of choosing
vi is proportional to its current degree ki. This mechanism is called
preferential attachment. It results in a degree distribution that follows
a power-law [Barabási, 2013].

20 Chapter 2

Background

Erdős–Rényi

Geometric

Barabási–Albert

A B C

D E F

G H I

Fig. 2.2.: Samples of three different random graph models with varying
parameters.

Example 2.2: Random Graph Models

We generate networks with 100 nodes. For the Erdős–Rényi
graph, we use a connection probability of (A): 0.05 (|E| = 224);
(B): 0.1 (|E| = 474), and (C): 0.15 (|E| = 730). Geomet-
ric graphs are constructed by sampling 100 points (nodes)
in [0, 1]2 and using a radius of (D): 0.14 (|E| = 248), (E):
0.17 (|E| = 338), and (F): 0.23 (|E| = 627). To generate
Barabási–Albert graphs, we use a preferentially attachment
parameter m of (G): 2 (|E| = 196), (H): 3 (|E| = 291), and (J):
4 (|E| = 475).
Visualizations are provided in Figure 2.2.

2.2 Graphs and Networks 21

2.3 Labeled Networks

We are mostly interested in a special form of graphs called labeled
graphs, where each node is associated with a label (e.g., infected
or susceptible). The label stems from a (typically finite) label set
denoted S (e.g., S = {S, I} for infected and susceptible). A labeling-
function L : V → S maps each node to its corresponding label. We say
that L(vi) is the node-state of vi. In the context of epidemic modeling,
the node-state is also called compartment. We also call it the internal
or local state of a node.

Given a node-enumeration, we can represent L(·) as a labeling-vector
x ∈ Sn, where the entry corresponding to the i-th node is defined as
x[i] = L(vi). We call x a network-state, as it describes the superposi-
tion of all node-states.

2.3.1 Trajectories

When we talk about processes unfolding on networks, we usually
mean that the graph is fixed and the node-states change over time
and influence each other. That is, for a static graph G with n nodes,
we look at a sequence of time-annotated network-states. Such a
sequence is also called trajectory and is denoted τ. We start at
time t = 0 and assume a real-valued time-horizon, h, is specified
upfront.

Continuous-Time Trajectory. In this thesis, we typically assume that
time is continuous, allowing us to keep track of time in a refined way
and providing flexibility. The process can stay in a specific network-
state for an arbitrary amount of time called residence time. Thus, we
annotate a network-state with the timepoint when it is entered. Let
xj denote the j-th network-state. Then, (xj, tj) means that at time

22 Chapter 2

Background

t0 = 0.0 t1 = 0.7 t2 = 1.5 t3 = 2.3 t4 = 2.9 t5 = 3.9 H = 4.5

infection infection infectioninfectionrecovery

residence time

Fig. 2.3.: Example of continuous-time trajectory. The two node-states are
indicated by color and filling. Network-states are illustrated
together with the contact network.

tj the system jumps from xj−1 to xj. The residence time in xj is
tj+1 − tj.

Intuitively, we start with t0 = 0 and increase t until the predefined
time-horizon h is reached. The network-state changes at timepoints
t1 < t2 < . . . tm < h < tm+1 (with ti ∈ R>0). We define a trajectory
as a sequence

τ = [(0, x0), (t1, x1), . . . , (tm, xm)] .

Example 2.3: Trajectory

An example continuous-time trajectory with two node-states
is provided in Figure 2.3. The trajectory reaches six different
network-states until a time horizon (h = 4.5) is reached.

In an abstract perspective, we can assume that a process is a black
box that generates a trajectory when given a graph and an initial
network-state. A stochastic process uses randomness to generate a
variety of different trajectories from the same initial state. In the next
section, we will explicitly explain how to generate such trajectories
for typical spreading models. Thereby, we define a family of useful
stochastic processes on networks.

2.3 Labeled Networks 23

2.4 Stochastic Dynamics on Networks

The quintessential example of spreading on networks is the Susceptible-
Infected-Susceptible (SIS) model. Next, we introduce the SIS model
as a concrete example of a stochastic spreading process. Then we
generalize the possible dynamical laws to a more expressive class
called multi-state models.

2.4.1 SIS Model

In the SIS model, nodes are either infected (I) or susceptible (S)
(healthy but not immune). Thus, the set of node labels is S = {I, S}.
Two laws govern the stochastic behavior of the system:

• Recovery: Each I-node can spontaneously recover (i.e., be-
come susceptible again) with recovery rate α ∈ R>0.

• Infection: Each SI-edge transmits an infecting (turns into an
II-edge) with the infection rate β ∈ R>0.

The model is parametrized by two variables α and β called (reaction)
rates (or rate constants to be more precise). Colloquially, they specify
the speed of the reactions. If β is large compared to α then infections
happen faster (i.e., more often) and most nodes tend to be infected.
When recoveries happen faster, most nodes are susceptible.

The first rule specifies that each I-node turns into an S-node at a cer-
tain speed. We call this a spontaneous (or independent) rule because
the behavior does not depend on interactions with neighboring nodes.
Conversely, the second rule depends on an interaction between two
nodes and is called a contact or interaction rule.

24 Chapter 2

Background

Model Assumptions. The SIS model is extremely simple. Notable
model simplifications are that nodes are either infected or susceptible,
and do not receive immunity after an infection. They can also not be
vaccinated or die. Moreover, all connections have the same strength,
and the time a node is infected/susceptible follows an exponential
distribution (more on this in the next section). However—even
with all these simplifications—solving the model mathematically is
infeasible for realistic networks (e.g., more than 20 nodes). As we
shall see, this simple model is already quite powerful and is now
arguably the de facto standard to model information diffusion on
networks.

Generating SIS Trajectories. We generate trajectories in a sequen-
tial way. That is, for a given trajectory:

τ = [(0, x0), (t1, x1), . . . , (tj, xj)]

we generate the next entry (tj+1, xj+1). Note that we assume that
the initial (first) network-state at t = 0 is given. Furthermore, we
assume that both the residence time in xj (that is, tj+1 − tj) and the
successor state xj+1 depend only on the current network-state xj,
not on previous network states and not on the absolute time that has
passed already. This is called a Markov property and we investigate it
in more detail in the simulation chapters.

2.4 Stochastic Dynamics on Networks 25

2.4.2 Naïve SIS Simulation

Given a network-state and time (tj, xj), we generate the next network-
state with steps described in Algorithm 1.

Algorithm 1: Naïve SIS Simulation

Input: Rates α,β; Graph G; Network-state xj; Time tj.
Output: Successor network-state xj+1; tj+1.

1. Initialize an empty list L and xj+1 := xj.

2. For each I-node vi: Generate an exponentially dis-
tributed random variate with rate α, i.e., t ∼ Exp(α),
representing the node’s recovery time (candidate).

⇒ Store (t, vi, S) in L.

3. For each SI-edge (vi, vj): Generate an exponentially
distributed random variate with rate β, i.e., t ∼ Exp(β),
representing the timepoint (candidate) when vj infects
vi (each edge is considered only once).

⇒ Store (t, vi, I) in L.

4. Identify the triplet (t̂, v̂i, ŝ) with the shortest jump time
candidate t from L and:

⇒ Set xj+1[î] := ŝ and tj+1 := tj + t̂.

The method is naïve in the sense that it is statistically correct but
computationally expensive. Other methods, discussed in Chapter
3 (Simulation of Markovian Spreading), minimize the number of
generated random variates and do not clear the event list L in each
step.

26 Chapter 2

Background

Exponential Distribution. We use Exp(λ) to denote the exponential
probability distribution with rate λ ∈ R>0 (not to be confused with
the exponential function ex = exp(x)). To sample a random variate
y ∼ Exp(λ). One can use y = − ln(u)/λ, where u is a random sample
from the uniform distribution over [0, 1] and ln(·) is the natural
logarithm. The probability density of Exp(λ) is:

fλ(x) =

{
λe−λx x ⩾ 0

0 otherwise.

Race Condition. We generate jump-time candidates for each possi-
ble reaction (infection or recovery) and only care about the smallest
one. All other variates are discarded. This is called a race condition.

2.4.3 Family of Multi-State Models

Following Fennell and Gleeson (2019), we now introduce a general
class of spreading models called multi-state processes. A similar
model class is studied under the name of Stochastic Automata Net-
works (SANs) [Plateau and W. J. Stewart, 2000].

Consider a graph G = (V,E), a finite set of node-states
S = {s1, s2, . . . , s|S|}, and a network-state x. For a given node vi ∈ V,
we use N(i, sj) to denote the number of neighbors in state sj ∈ S.
Moreover, we define the neighborhood-counting vector

mi ∈ Z|S|
⩾0 = [N(i, s1), N(i, s2), . . . , N(i, s|S|)] .

The sum over the neighborhood-counting vector is always the node’s
degree:

∑
j mi[j] = ki. In an abuse of notation, for an arbitrary

node-state sj, we often use sj directly as an index, that is, we write
m[sj] instead of m[j].

2.4 Stochastic Dynamics on Networks 27

Example 2.4: Neighborhood Vectors

Assume that S = {A, B, C} and that v1 has three neighbors, one
in node-state A and two in C. Then, m1 = (1, 0, 2) (assuming
alphabetical ordering). We might write m1[C], not m1[3], to
denote the number of neighbors of v1 in node-state C.

Rules. In the multi-state paradigm a reaction rule is a triplet sin
f(·)−−→

sout (or (sin, f(·), sout)) where:

• sin ∈ S is the initial node-state of a node (before the rule is
applied).

• f : Z|S|
⩾0 → R⩾0 is a rate function operating on neighborhood-

counting vectors.

• sout ∈ S is the output node-state of a node (after the rule is
applied).

For each node vi in state sin, the rate f(mi) denotes how quickly this
node turns into sout. Typically, we only allow rules with sin ̸= sout.

Example 2.5: Rules

Assume that S = {A, B}. A rule

A
f(m)=m[B]−−−−−−−→ B

turns A-nodes into B-nodes. The higher the number of B-
neighbors, the faster an A-node will flip. If a node has zero
B-neighbors, its rate will be zero, thus, the node will stay in A
(until at least one of its neighbors changes to B).
Notationally, we typically omit the left side of the rate-equation

and write A
m[B]−−−→ B.

28 Chapter 2

Background

Naïve Multi-State Simulation. Again, we define the stochastic se-
mantics of a multi-state model in a generative manner. A multi-state
model consists of an ordered set of node-states, an ordered set of
rules, and the underlying graph. Starting with an initial network-
state, we generate trajectories step-by-step. Assume the current
network-state is xj. The successor network-state (xj+1) and the
jump-time of the current network-state (tj+1) are generated follow-
ing Algorithm 2.

Algorithm 2: Naïve Multi-State Simulation

Input: Rules; Graph G; Network-state xj; Time tj.
Output: Successor network-state xj+1; tj+1.

1. Initialize an empty list L and xj+1 := xj.

2. For each node vi and each applicable rule sin
f(·)−−→ sout

(applicable means sin = xj[i]):

⇒ Sample a candidate jump-time t ∼ Exp(f(mi)).

⇒ Store (t, vi, sout) in L.

3. Among all triples in L, identify (t̂, v̂i, ŝout) with the small-
est time and:

⇒ Set xj+1[î] := ŝout and tj+1 := tj + t̂.

We can generate successor states until the time horizon is reached.
Similar to the SIS simulation, all pairs of nodes and rules compete
in a race condition.

2.4 Stochastic Dynamics on Networks 29

Model 1: Susceptible-Infected-Susceptible (SIS)

In the SIS model, infected (I) nodes infect their susceptible
(S) neighbors. Infected nodes can also recover, that is, they
become susceptible again (no immunity is gained).

States: S = {S, I}

Parameters: Recovery rate: α ∈ R>0

Infection rate: β ∈ R>0

Rules: Recovery: I α−→ S

Infection: S
βm[S]−−−−→ I

Examples: Figure 2.3 (p. 23) shows a trajectory of an SIS-like
process (infected nodes are shown to be filled and susceptible
nodes are empty). Figure 2.5 (p. 34) shows the Markov graph
(all network-states and their relation) on a toy model.

From SIS to Multi-State. The SIS model can be defined as a multi-
state process as seen in Model 1. The equivalence to the rules in
Section 2.4.1 is not completely obvious, because in the SIS simulation
(cf. Algorithm 1), we compute an individual jump-time candidate
for each SI-edge (with rate β). Now we compute for each S-node
vi a single infection time with rate N(i, I)β. The reason for the
equivalence lies in the properties of the exponential distribution.
Specifically, the minimum of N(i, I) random variates with rate β
follows the same distribution as a single random variate with rate
N(i, I)β [A. O. Allen, 1990]. This property is important and we will
exploit it in the following chapters.

30 Chapter 2

Background

A B CA B C

Fig. 2.4.: Summary statistics on an ER-graph: (a): ER-graph. (b): all indi-
vidual trajectories. (c): the aggregated mean (with bootstrapped
95% confidence intervals).

Global Summary Statistics. Often, we are only interested in the
high-level behavior of a system, for instance, the overall number
of infected nodes over time. Therefore, for a given trajectory τ,
we define Sτ(t, s) as the fraction of nodes in node-state s ∈ S at
timepoint t; Sτ(t, s) is often referred to as prevalence (of state s at t).
Note that, timepoint t corresponds to the network-state xj such that
tj+1 > t > tj. For a set of trajectories, we can consider the empirical
mean of S (or other useful statistical quantities).

Example 2.6: Global Summary Statistics

We simulate SIS dynamics on an ER graph with 100 nodes
and generate 100 trajectories {τ}i. Starting with 10 infected
nodes, one can clearly see how the infection spreads, so that
eventually half of the nodes are infected. The function Sτ(t, s)
is visualized in Figure 2.4.

2.4.4 Properties of Trajectories

Now we know how to generate different trajectories. Here, we want
to recap some of their properties. The description is colloquial and
will be elucidated in the course of the thesis.

2.4 Stochastic Dynamics on Networks 31

1. A trajectory always starts in a fixed initial state; after that, the
behavior is governed by randomness.

2. Jump times happen consecutively in time. Only a finite number
of jumps are possible in a finite amount of time.

3. Exactly one node changes its node-state at each step.

4. At any given timepoint, the future behavior only depends on
the current network-state (following from the Markov-property
in time and time-homogeneity).

5. The behavior of a node only depends on the node itself and its
immediate neighborhood (Markov-property in space).

6. All nodes are equivalent and can, when considered in isolation,
only be distinguished by their node-state (network homogene-
ity).

7. The jump-time of each network-state follows an exponential
distribution.

8. The probability of a future network-state does not depend on
the jump-time of the current state.

The properties (1) to (6) follow directly from the generation method
(cf. Algorithm 2) and from our definition of rules. We further discuss
these properties in Section 2.5 in the context of Markov chains. Prop-
erty (7) follows from the fact that the minimum of n independent ex-
ponentially distributed random variables also follows an exponential
distribution. Property (8) follows from the fact that the probability
that a specific node “wins” the race condition is constant over time.
In the course of the thesis, we relax some of these properties. For
instance, in Chapter 4 (Simulation of non-Markovian Spreading), we
consider cases where the properties (7) and (8) are not satisfied. In
Chapter 9 (Neural Relational Inference), we also study trajectories of
deterministic systems.

32 Chapter 2

Background

2.5 CTMC Semantics of Spreading Dynamics

Continuous-time Markov chains (CTMCs) are a well-known formal-
ism for describing stochastic processes [W. J. Anderson, 2012]. We
can specify the semantics of a multi-state process by translating it to
a CTMC. This is a viable alternative to specifying the semantics in
terms of a generative simulation algorithm, as seen in the previous
sections. The equivalence between CTMCs and multi-state processes
was first noticed by Piet Van Mieghem et al. (2008).

A CTMC is typically specified by state space X and state transitions
T (and an initial CTMC-state). State transitions are directed edges
between elements of the state space. Each transition is annotated
with a rate. That is T ⊆ X× R>0 × X. We use λx,y ∈ R>0 to denote
the corresponding transition-rate between two CTMC-states.

CTMC Construction. We transform a multi-state process into a
(time-homogeneous) CTMC in the following way:

• The state space is the set of network-states. That is X = Sn (n
is the number of nodes, S is the set of node-states).

• A transition (x, λx,y, y) ∈ T exists iff at least one2 rule r =

sin
f(·)−−→ sout exists such that applying r to any node in x leads

to y. Let vz denote this node, then λx,y = f(mz).

We call this graph-based CTMC-specification Markov graph.

2In the somewhat pathological case that two (or more) rules have the same sin

and sout, we need to sum up the corresponding rates to obtain λx,y.

2.5 CTMC Semantics of Spreading Dynamics 33

I

I

I

I

I

I

I

I

I I

I

I

II

I

I

I

II

I I

I

I

II

I I

I

I I

II

α

β

2β

Fig. 2.5.: Markov graph induced by the SIS model (S : blue, I : pink, filled)
for a 4-node contact network.

Example 2.7: Markov Graph

The complete Markov graph of a simple contact network and
SIS dynamics (Model 1) is given in Figure 2.5.

Building a CTMC is useful in many ways:

• It rigorously specifies a probability density over the set of tra-
jectories (formally, we can deduce a probability space (Ω,F, P)

over the trajectories [Vardi, 1985; Baier, Haverkort, Hermanns,
and Katoen, 2003]).

• It provides us with a (Monte-Carlo) sampling algorithm (via a
random walk on the state space).

• There is a rich pool of tools and theorems for their theoretical
and numerical analysis, to name a few: [Bortolussi and Hillston,
2012; Baier, Haverkort, Hermanns, and Joost-Pieter Katoen,
2000; Derisavi et al., 2003; Joost-Pieter Katoen et al., 2001].

34 Chapter 2

Background

Curse of Dimensionality. The size of the CTMC state space increases
exponentially with the number of nodes. For two node-states and
280 nodes, this already means that the cardinality of X is higher
than the number of atoms in the observable universe. Realistic
networks can have millions of nodes. This means that methods that
rely on numerically enumerating all CTMC-states (like the ones in
Excursus 2) are only feasible for small toy examples).

CTMC Properties. The semantics of the CTMC itself is a stochastic
process, that is, a family of random variables {Xt}t∈[0,h] where Xt(·)
maps a trajectory to the CTMC-state at time t. We consider time-
homogeneous CTMCs, that is:

P(Xt = x1 | X0 = x0) = P(Xt+t ′ = x1 | Xt ′ = x0) ,

where xi is a CTMC-state (network-state) and t, t ′ ⩾ 0, t + t ′ < h.
Intuitively, this means that the absolute timepoint is irrelevant (the
probabilities are invariant to time translations).

The Markov property of a CTMC is given by the constraint:

P(Xtn = xn | Xtn−1
= xt−1)

=P(Xtn = xn | Xtn−1
= xt−1, . . . , Xt0 = x0)

for 0 ⩽ t0 ⩽ t1 ⩽ · · · ⩽ tn ⩽ h ∈ R and where each xi denotes a
CTMC-state. Intuitively, this means that the history of a trajectory
does not matter, only the current system state is relevant for the
future evolution.

2.5 CTMC Semantics of Spreading Dynamics 35

2.5.1 CTMC Simulation

Simulating a multi-state process using Algorithm 2 and simulating
the corresponding CTMC using Algorithm 3 is statistically equivalent.
This means that all trajectories have the same likelihood of being
generated. This is not surprising as the algorithms are very similar,
except that now all outgoing transitions compete in a race condition
and not all node-rule pairs.

Algorithm 3: Naïve CTMC Simulation

Input: CTMC-state x ∈ X; Time ti.
Output: Successor CTMC-state y ∈ X; ti+1.

1. Initialize an empty list L.

2. For each outgoing transition from x (i.e., (x, λx,y ′ , y ′) ∈
T for some y ′ ∈ X):

⇒ Sample a candidate jump-time t ∼ Exp(λx,y ′).

⇒ Store (t, y ′) in L.

3. Among all tuples in L, identify (t̂, ŷ) with the shortest
time and:

⇒ Return y := ŷ and ti+1 := ti + t̂.

36 Chapter 2

Background

Excursus 2: Solving CTMCs

Apart from stochastic simulations, one can numerically solve
the CTMC, either in terms of its transient or its steady-state
behavior.

Transient Analysis. In the transient case, we start with an
initial CTMC-state and evaluate how the probability mass
moves through the CTMC over time. The solution provides us
with a probability distribution over all CTMC-states for each
point in time. The default way to do this is to solve a system
of ordinary differential equations (ODEs); one ODE for each
CTMC-state. Alternatives are uniformization (where the CTMC
is turned into a discrete-time process) and solving the matrix
exponential (which contains the transition rates). We refer to
[Trivedi, 2008] for an overview. We use transient analysis in
Chapter 8 (From Networks to Population Models).

Steady-State Analysis. Steady-state analysis aims at finding
the distribution over CTMC-states in the long-term limit t→∞. This equilibrium distribution is not necessarily unique
(it could depend on the initial CTMC-state). In this thesis,
we do not have this problem by construction of the CTMC.
Yet, some spreading models yield a single absorbing (or trap)
state that cannot be left (e.g., all nodes are susceptible); more
on this in Chapter 7 (Birth-Death Process Abstraction). In
equilibrium, the inflow of probability mass of each CTMC-state
equals its outflow (global balance condition). This gives rise
to an equation system (number of equations is the number of
CTMC states), which can be solved using Gaussian elimination
or alternative methods (with more numerical stability and
resource efficiency) [Trivedi, 2008].

2.5 CTMC Semantics of Spreading Dynamics 37

Part II

Simulation and Control

Simulation of Markovian
Spreading

3
Sampling stochastic spreading processes (i.e., generating trajectories
via simulation) is the simplest and most obvious way to study their
behavior and identify global properties.

In this chapter, we present CORAL ([Co]ntagion [r]ejection simula-
tion [al]gorithm). CORAL combines the advantages of event-based
simulation and rejection sampling. The method outperforms state-of-
the-art methods in terms of absolute runtime and scales significantly
better with the network size while being statistically equivalent to Al-
gorithm 1. CORAL is implemented in Rust and publicly available1.

Our key idea is to over-approximate the instantaneous rate at which
infected nodes infect their neighbors: We assume that all neighbors
of all infected nodes are susceptible and correct for this with rejection
events. The over-approximations drastically reduce the number of
generated events during the simulation, allowing us to generate
successor network-states in near-constant time (w.r.t. the network
size).

1github.com/gerritgr/Rejection-Based-Epidemic-Simulation

41

3.1 Introduction

Until now, we have only discussed simple algorithms (Algorithm 2
and Algorithm 3) that are not suitable for large networks. Specifically,
the following problems occur as the networks become larger:

1. The number of reactions in a fixed time interval increases (the
residence time in each network-state decreases).

2. The computational cost of each single reaction increases.

This chapter is only concerned with the second problem. Moreover,
we focus on the SIS epidemic model (Model 1), not on general multi-
state models. We discuss possible generalizations at the end of the
chapter.

The reason for the increased number of reactions is the race condition.
We generate jump time candidates for all nodes and the one with the
smallest jump time “wins” (cf. item (3) in Algorithm 2). Naturally,
this minimum tends to be smaller as the number of nodes increases.
Thus, to generate a trajectory until a fixed time horizon is reached,
we need more reactions.

The increased costs of each reaction are due to the fact that we
have to iterate over all the nodes. Moreover, for each node, we
have to scan the whole neighborhood of the node (e.g., identify
the number of infected neighbors). The costs for this depend on
the concrete graph representation (e.g., adjacency matrix or edge
list) but increase either way. Reducing the number of reactions in a
trajectory (i.e., approaching the first problem) is not possible when
we aim for statistical equivalence.

Next, we present methods from the literature that can be used to
simulate SIS processes. After that, we present our method and
demonstrate its effectiveness in three case studies.

42 Chapter 3

Simulation of Markovian Spreading

3.2 Methods in Literature

In this section, we briefly review techniques that have been previously
suggested for the simulation of SIS-type processes. For a more
comprehensive description, we refer the reader to [István Z Kiss
et al., 2017; Cota and Ferreira, 2017].

A common way to reduce computational complexity when simula-
tion Markovian systems is the so-called Gillespie algorithm (GA) or
Gillespie’s direct method. It was proposed by Gillespie (1977) (and
partially before that by Doob (1945)) in order to simulate stochastic
chemical reaction networks.

Algorithm 4: Gillespie-Based SIS Simulation (Ga)

Input: Rates α, β; List of infected nodes LI; List of SI-edges
LSI, Time tj.
Output: Time tj+1; Updated LI, LSI.

1. Compute λall := α|LI|+ β|LSI|.

2. Sample t ∼ Exp(λall), set ti+1 := ti + t.

3. Sample u ∼ U(0, 1).

4. If u < α|LI|
λall

: ▷ Recovery

⇒ Sample a recovering node vi from LI (uniformly).

⇒ Update LI and LSI to account for vi being suscep-
tible.

Else: ▷ Infection

⇒ Sample an edge that transmits an infection (vi, vj)

from LSI (uniformly).

⇒ Update LI, LSI to account for vj being infected.

3.2 Methods in Literature 43

3.2.1 Standard Gillespie Algorithm (Ga)

Idea. The key idea is to reduce the number of random samples
necessary to generate a reaction. Instead of generating a jump time
candidate for each I-node and SI-edge (as in Algorithm 1), we
directly sample the residence time (i.e., the minimum of all jump
time candidates). This is only possible when we know the exact
number of I-nodes and SI-edges in the network. We adjust the data
structures accordingly. Consequently, this allows us to update the
network-state without iterating over the whole contact network.

Method. We use as key data structures two lists that are constantly
updated: a list of all infected nodes (LI) and a list of all SI-edges
(LSI).

In each simulation step, we first draw an exponentially distributed
delay for the time until the next rule is invoked (“fires”). For this,
we compute an aggregated rate λall = α|LI|+ β|LSI| (where α and
β denote the recovery and infection rate, respectively). Then we
randomly decide if an infection or a recovery event is happening. The
probability of the latter is proportional to its rate, i.e. 1

λall
α|LI|, and

thus, the probability of an infection is 1
λall
β|LSI|. After that, we pick

an infected node (in case of a recovery) or an SI-edge (in case of an
infection) uniformly at random. We update the two lists accordingly
(cf. Algorithm 4).

Runtime. The expensive part of each step is keeping LSI updated.
For this, we iterate over the whole neighborhood of the changing
node, and for each susceptible neighbor, we remove (after a curing)
or add (after an infection) the corresponding edge to/from the edge
list. Thus, we need one add/remove operation on the list for each
susceptible neighbor.

44 Chapter 3

Simulation of Markovian Spreading

Correctness. The correctness follows from the properties of the ex-
ponential distribution. Consider m random variables; each following
an exponential distribution with rate λ1, . . . , λm, respectively. Their
minimum also follows an exponential distribution with rate

∑
i λi

[A. O. Allen, 1990]. Thus, we can use λall to sample the residence
time. The probability that the random variable j wins the race is
proportional to λj (i.e., λj/

∑
i λi). Likewise, the cumulative proba-

bility that a recovery (resp. infection) events “fires” first is 1
λall
α|LI|

(resp. 1
λall
β|LSI|). We can then pick the specific node (resp. edge)

uniformly at random because all recovery (resp. infection) events
have the same rate and, therefore, equal probability of “winning” the
race.

3.2.2 Optimized Gillespie Algorithm (Oga)

The Optimized Gillespie Algorithm (OGA) was introduced by Cota and
Ferreira (2017) as a rejection-based extension of GA. Here, we only
discuss the basic version of the algorithms.

Idea. The idea is to forget about LSI and only store a list of LI.
To sample infection events, one samples the starting point of the
infection directly from LI. Thus, to generate an infection event, we
first sample an infected node from LI and then we (uniformly) sam-
ple a susceptible neighbor, which becomes infected. Since infected
nodes with many susceptible neighbors have a higher probability of
being the starting point of infection (i.e., they have more SI-edges
associated with them), we cannot sample uniformly. Instead, we
sample from LI so that the probability of picking an infected node is
proportional to its number of susceptible neighbors.

This is a problem because non-uniform sampling from LI is expensive.
Particularly, because after each reaction, the number of susceptible

3.2 Methods in Literature 45

5

1

3 42

5

1

3 42

<latexit sha1_base64="NzKe/lkMvokFMlkGvHyf0O0lRVM=">AAAC3HichVE9bxNBEH05EojzATaR0tCcsJBSWXcRAhokyxCUJpItxXGkOLH2zmuz8n3pbh0SrHTpIlo6WqjyL/gTUOSXpODd+hwJIuQ97c3smzdvZ2a9JFCZdpxfC9aDxaWHj5ZLK6tr64+flCtPD7J4nPqy7cdBnB56IpOBimRbKx3IwySVIvQC2fFG7/J451SmmYqjfX2eyONQDCM1UL7QhHrlyqg36Wp5pu1QnF3Yb+2XvXLVqTlm2fcdt3Cq9c3Wjbpu/GzG5d/ooo8YPsYIIRFB0w8gkPE7ggsHCbFjTIil9JSJS1xghbljsiQZguiI/yFPRwUa8ZxrZibb5y0Bd8pMGy+4PxhFj+z8Vkk/o73l/myw4X9vmBjlvMJzWo+KJaO4R1zjIxnzMsOCOatlfmbelcYAb0w3ivUlBsn79O903jOSEhuZiI0dwxxSwzPnU04gom2zgnzKMwXbdNynFcZKoxIVioJ6KW0+fdbDZ3b/fdT7zsF2zX1Vc1tutd7AdC3jGZ5ji6/6GnXsosk6fHzCN3zHD+vEurSurC9TqrVQ5Gzgr2V9/QN/WJkA</latexit>

kmax = 4

Node 1 infects
node 4.

<latexit sha1_base64="3KbP/bEg5/wSwJ2AlP91KUKk844=">AAAC63ichVHPSxtBFP6y2mpsrVGPvSwNQg8l7CqoFyFULRYqpNCokIQwu06SJfuL3Yk0Lrnq0UNv0qu3Xuv/on9LD347rkIrxVlm35vvfe+b9944se+lyrJuSsbU9IuXM7PluVev598sVBaXDtJolLiy6UZ+lBw5IpW+F8qm8pQvj+JEisDx5aEz3M7jhycySb0o/KbGsewEoh96Pc8VilC3YrYDoQau8LMvk27WVvK7Uir7PJmYW2bL/rDW6VaqVs3Sy3zq2IVTrVcveleN81IjqtyijWNEcDFCAIkQir4PgZRfCzYsxMQ6yIgl9Dwdl5hgjrkjsiQZguiQ/z5PrQINec41U53t8hafO2GmiRXuT1rRITu/VdJPaf9wn2qs/98bMq2cVzimdahY1or7xBUGZDyXGRTMh1qez8y7UuhhU3fjsb5YI3mf7qPODiMJsaGOmNjVzD41HH0+4QRC2iYryKf8oGDqjo9phbZSq4SFoqBeQptPn/Xwme1/H/Wpc7Bas9dr9le7Wv+I+zWLt3iH93zVDdSxhwbrcHGGX/iNayMwfhiXxs97qlEqcpbx1zKu7gCvAZ6w</latexit>

LI = [1, 3]
<latexit sha1_base64="92RGOk7JZcDCWxSepEeqOEqaIMU=">AAAC7XichVFNSxtRFD0ZbRvTr2iX3QwJhS4kzNSi3QhBW6mgkEKjQhLCm/ElDpkvZl6COmStu67cle5Kd271r+hvcdEzz7HQSvENb+5955573r33ObHvpcqyrkrGzOyjx0/Kc5Wnz56/eFmdX9hJo3HiyrYb+VGy54hU+l4o28pTvtyLEykCx5e7zmg9j+9OZJJ6UfhVHcWyF4hh6A08VyhC/WqtGwh14Ao/25r2s66Sh0qpbHM6NVfNjr24tPi+16/WrYall3nfsQun3qx/G/xsnZRaUfUaXewjgosxAkiEUPR9CKT8OrBhISbWQ0YsoefpuMQUFeaOyZJkCKIj/oc8dQo05DnXTHW2y1t87oSZJt5wb2hFh+z8Vkk/pb3hPtbY8L83ZFo5r/CI1qHinFbcJq5wQMZDmUHBvKvl4cy8K4UBPuhuPNYXayTv0/2j85GRhNhIR0x80swhNRx9nnACIW2bFeRTvlMwdcf7tEJbqVXCQlFQL6HNp896+Mz2v49639l517CXG/YXu95cw+0q4zVqeMtXXUETn9FiHS5OcY4LXBqRcWZ8N37cUo1SkfMKfy3j12/5Kp8k</latexit>

LI = [1, 3, 4]
<latexit sha1_base64="K7nXLJwQHzR/9hg15EU0kzNONi4=">AAAC63ichVFNT9tAEH0YWj5aikuPvVhElSoVRXaQoJdKEbQVFyRQmw8piSLb2YRV/CV7gxqiXPkD7anqtTeu8F/gt/TQ58Ug0ajKWuuZefPm7cyulwQyU7Z9s2AsLj15uryyuvbs+fqLDfPlZj2LR6kvan4cxGnTczMRyEjUlFSBaCapcEMvEA1veJDnG2cizWQcfVXjRHRCdxDJvvRdRahrWlZbiW/K60/CaVe2dKDU5Mu088FqVbZ3Ol2zZJdtvaxZxymcUnWr/e7HTXV8HJu3aKOHGD5GCCEQQdEP4CLj14IDGwmxDibEUnpS5wWmWGPtiCxBhkt0yP+AUatAI8a5ZqarfZ4ScKestPCG+7NW9MjOTxX0M9o/3OcaG/z3hIlWzjsc03pUXNWKR8QVTsmYVxkWzPte5lfmUyn08V5PI9lfopF8Tv9B5yMzKbGhzlj4pJkDang6PuMNRLQ1dpDf8r2CpSfu0braCq0SFYou9VLa/PbZD5/Z+fdRZ516pezslp0Tp1Tdx91awWts4S1fdQ9VHOKYffi4wCWucG2Exnfjp/HrjmosFDWv8GgZv/8CPU2e8g==</latexit>

mi[S] = [2, 3]
<latexit sha1_base64="u85BwfEcE9otNnJeK9rbbZ3Nzpo=">AAAC7XichVFNT9tAEH24tA30A7ccuViJKlUqimwOpZdKES2ICxII8iElUWSbTbqKv2RvItIo9/4AuCGu3HotfwV+CweeFwepRRVrrWfmzZu3M7teEshM2fb1gvFs8fmLl6Wl5Vev37xdMd+9b2TxKPVF3Y+DOG15biYCGYm6kioQrSQVbugFoukNv+X55likmYyjIzVJRDd0B5HsS99VhHpm2eoocaK8/jSc9WRbB0pND2fdr1bbWd9Yd7o9s2JXbb2sx45TOJVaufPp9Lo22Y/NG3RwjBg+RgghEEHRD+Ai49eGAxsJsS6mxFJ6UucFZlhm7YgsQYZLdMj/gFG7QCPGuWamq32eEnCnrLTwgXtHK3pk56cK+hntLfdPjQ3+e8JUK+cdTmg9Ki5pxT3iCj/IeKoyLJjzXp6uzKdS6OOLnkayv0Qj+Zz+g853ZlJiQ52xsK2ZA2p4Oh7zBiLaOjvIb3muYOmJj2ldbYVWiQpFl3opbX777IfP7Pz7qI+dxkbV+Vx1DpxKbQv3q4Q1lPGRr7qJGnaxzz58/MJv/MGVERtnxrlxcU81FoqaVfy1jMs7e32fYQ==</latexit>

mi[S] = [1, 2, 1]

Fig. 3.1.: OGA: Example of an infection event starting from node 1. We
sample from LI proportional to mi[S]. To this end, we first
sample uniformly at random from LI. Then we correct for the
uniformity assumption using a rejection step. The rejection
probability in the depicted step for node 1 is 4−2

4
= 50%. The

rejection probability for node 3 would be 4−3
4

= 25%.

neighbors (determining the probability to be picked) changes. Thus,
annotating LI with non-uniform weights and keeping this annotation
updated is impractical.

Method. OGA samples nodes from LI uniformly at random. There-
fore, it uses the maximum degree, kmax, of the network and assumes
each infected node has kmax susceptible neighbors. The maximal
degree is a trivial upper bound for the maximal possible number
of susceptible neighbors. After sampling an infected node vi, OGA

rejects the node with probability kmax−ki

kmax
. If the node is not rejected,

OGA uniformly chooses a neighbor of that node that becomes infected
(if possible). If this neighbor is already infected, a rejection event is
triggered: Nothing happens except that the global clock is updated.
This yields an overall rejection probability of kmax−mi[S]

kmax
where mi[S]

is the number of susceptible neighbors of vi (following notation from
Section 2.4.3). Note that the rejection probability exactly corrects
for the over-approximation of using kmax instead of mi[S]. This is
illustrated in Figure 3.1 and in Algorithm 5.

46 Chapter 3

Simulation of Markovian Spreading

Algorithm 5: Optimized Gillespie Algorithm (Oga)

Input: Rates α, β; Lists LI; Time tj.
Output: Time tj+1; Updated LI.

1. Compute λall := α|LI|+ βkmax|LI|.

2. Sample t ∼ Exp(λall), set ti+1 := ti + t.

3. Sample u ∼ U(0, 1).

4. If u < α|LI|
λall

: ▷ Recovery

⇒ Sample a recovering node vi from LI (uniformly).

⇒ Remove vi from LI.

Else: ▷ Infection

⇒ Sample a node from LI (uniformly).

⇒ Return (reject) with probability kmax−ki

kmax
.

⇒ Sample a neighbor vj from vi (uniformly at ran-
dom).

⇒ If vj is susceptible: add vj to LI.

Runtime. Compared to the GA, updating the list of infected nodes
becomes cheaper because only the node that actually changes its state
is added to (or removed from) LI. Naturally, the speed-up in each
step comes at the cost (of a potentially enormous amount) of rejection
events. Even a single high-degree node will continuously lead to
rejected events. Cota and Ferreira (2017) propose the algorithm for
simulations close to the epidemic threshold, where the number of
infected nodes is typically small.

In OGA, we have two rejection steps, first based on the degree of
a node and second based on the number of susceptible neighbors.
St-Onge et al. (2018) point out that in the case of heterogeneous

3.2 Methods in Literature 47

networks, a binary tree can be used to optimize the first rejection step
and speed up the sampling significantly. This allows them to derive
an upper bound for the rejection probability. However, this does not
help when most neighbors of infected nodes are also infected. In this
case, most of the events will still be rejection events, which slows
down the simulation.

Correctness. Cota and Ferreira show the correctness of their method
based on so-called phantom processes. We utilize a similar technique
later in this chapter.

3.2.3 Event-Based Simulation

In the event-driven approach, the primary data structure is an event
queue, in which events are sorted and executed according to the
timepoints at which they will occur. This eliminates the costly process
of randomly selecting a node for each step (popping the first element
from the queue has constant time complexity). Events refer to either
the recovery of a specific node or an infection through a specific
edge. Moreover, it is easy to adapt the event-driven approach to
rules with non-Markovian waiting times or to a network where each
node has individual recovery and infection rates [István Z Kiss et al.,
2017]. A variant of this algorithm can also be found in [Sahneh et al.,
2017].

Method. Event-based simulation of an SIS process is done as fol-
lows: For the initialization, we draw for each infected node an
exponentially distributed time until recovery with rate α and add
the respective curing event to the queue. Likewise, for each suscep-
tible node vi (with at least one infected neighbor), we generate an
infection event with rate βmi[I]. During the simulation, we always

48 Chapter 3

Simulation of Markovian Spreading

take the earliest event from the queue, change the network state
accordingly, and update the global clock t. After a node vi becomes
infected, the infection rates of its susceptible neighbors increase.
Thus, it is necessary to iterate over all (susceptible) neighbors of vi,
draw renewed waiting times for their infection events, and update
the event queue accordingly. Although improvements have been
suggested [István Z Kiss et al., 2017], these queue updates are rather
costly.

Runtime. Since each step requires an iteration over all neighbors
of the current node, the worst-case runtime depends on the maxi-
mal degree of the network. Moreover, for each neighbor, it might
be necessary to reorder the event queue. The time complexity of
reordering the queue depends (typically logarithmically) on the num-
ber of elements in the queue and adds high additional costs to each
step.

Correctness. Trajectories generated using the event-driven approach
are statistically equivalent to those generated with O(GA). Here, we
give a short intuition and refer to [István Z Kiss et al., 2017]. We can
think of this method as a version of Algorithm 2 where we do not
clear the event list after every single step. We only generate new jump
time candidates for nodes whose neighborhood has changed. This is
possible because—due to the memoryless property of the exponential
distribution—re-sampling the waiting times (jump-time candidates)
yields the same probability density as using the old ones.

3.2 Methods in Literature 49

3.3 Our Method: Coral

In this section, we propose our method, CORAL, for the simulation
of SIS-type processes. The key idea is to combine an event-driven
approach with rejection sampling while keeping the number of rejec-
tions to a minimum. First, we introduce the main data structures:

Event Queue
It stores all future (infection and curing) events generated so
far. Each event is associated with a timepoint and the affected
node(s). Curing events contain a reference to the recovering
node. Infection events refer to an infected (source) node and a
susceptible (target) node.

Graph
In the graph data structure, each node is associated with a list
of neighbors, its current node-state, a degree, and, if infected,
a prospective recovery time.

We also keep track of the time in a global clock. We assume that an
initial network-state, a time horizon (or any other stopping criterion),
and the rate parameters (α,β) are given as input. In Alg. 1-4 (p. 53),
we provide pseudocode for the detailed steps of the method.

Initialization

Initially, we iterate over the network and sample a recovery time
(exponentially distributed with rate α) for each infected node (Line
2, Alg. 1). We push the recovery event to the queue and annotate
each infected node with its recovery time (Line 5, Alg. 2). Next, we
iterate over the network a second time and generate an infection
event for each infected node (Line 5, Alg. 1). The procedure for
generating infection events is explained later.

50 Chapter 3

Simulation of Markovian Spreading

We need two iterations because each infected node’s recovery time
must be available for the infection events. These events identify the
earliest infection attempt of each node.

Iteration

The main procedure of the simulation is illustrated in Alg. 4. We
schedule events until the global clock reaches the specified time
horizon (Line 9). In each step, we take the earliest event from the
queue (Line 7) and set the global clock to the event time (Line 8).
Then we apply the event (Line 11-20).

In case of a recovery event, we simply change the state of the cor-
responding node from I to S and are done (Line 12). Note that
we always generate (exactly) one recovery event for each infected
node. Thus, each recovery event is always consistent with the current
network-state. Note that the queue always contains precisely one
recovery event for each infected node.

If the event is an infection event, we apply it if possible (Line 14-18)
and reject it otherwise (Line 19-20). We update the global clock
either way. Each infection event is associated with a source node and
a target node. The infection event is applicable if the current state
of the target node is S (which might not be the case anymore) and
the current state of the source node is I (which will always be the
case). After a successful infection event, we generate a new recovery
event for the target node (Line 16) and two novel infection events:
one for the source node (Line 17) and one for the target node that is
now also infected (Line 18). If the infection attempt was rejected,
we only generate a new infection event for the source node (Line
20). Thus, we always have precisely one infection event in the queue
for each infected node.

3.3 Our Method: Coral 51

Generating Infection Events

The generation of infection events and the distinction between unsuc-
cessful and potentially successful infection attempts are an essential
part of the algorithm.

In Alg. 3, for each infected node, we only generate the earliest
infection attempt and add it to the queue. Therefore, we first sample
the exponentially distributed waiting time for node vi with rate kiβ
(ki is the degree of vi) and compute the timepoint of infection (Line
5). If the timepoint of the infection attempt is after its recovery
event, we stop, and no infection event is added to the queue (Lines
6-7). Note that in the graph structure, each node is annotated
with its recovery time (node.recovery_time) to have it immediately
available.

Next, we uniformly select a random neighbor that will be attacked
(Line 8). If the neighbor is currently susceptible, we add the event to
the event queue and the current iteration step ends (Lines 9-12).

If the neighbor is currently infected, we check the recovery time
of the neighbor (Line 9). If the infection attempt occurs before
the recovery timepoint, we already know that the infection attempt
will fail (already infected nodes cannot become infected). Thus,
we perform an early reject (Lines 10-12 are not executed). That
is, instead of pushing the surely unsuccessful infection event to the
queue, we directly generate another infection attempt, i.e., we re-
enter the while-loop in Lines 4-12. We repeat the above procedure
until the recovery time of the current node is reached or the infection
can be added to the queue (i.e., no early rejection is happening).

Figure 3.3 (p. 54) provides a basic example of a possible execution
of our method.

52 Chapter 3

Simulation of Markovian Spreading

Algorithm6:SISSimulationwithCoral.

Algorithm 1 Graph Initialization

1: procedure INITGRAPH(G, α, β, Q)
2: for each node in G do
3: if node.state = I then
4: GENERATERECOVERYEVENT(node, µ, 0, Q)
5: for each node in G do ▷ recovery times are available now
6: if node.state = I then
7: GENERATEINFECTIONEVENT(node, β, 0, Q)

Algorithm 2 Generation of a Recovery Event

1: procedure GENERATERECOVERYEVENT(node, α, tglobal, Q)
2: tevent = tglobal + draw_exp(µ)
3: e = Event(src_node = node, t=tevent, type=recovery)
4: node.recovery_time = tevent
5: Q.push(e)

Algorithm 3 Generation of an Infection Event

1: procedure GENERATEINFECTIONEVENT(node, β, tglobal, Q)
2: tevent = tglobal
3: rate = β∗node.degree
4: while true do
5: tevent += draw_exp(rate)
6: if node.recovery_time < tevent then ▷ no event is generated
7: break
8: attacked_node = draw_uniform(node.neighbor_list)
9: if attacked_node.state = S

or attacked_node.recovery_time < tevent then ▷ check for early reject
10: e = Event(src_node=node, target=attacked_node,

time=tevent, type=infection)
11: Q.push(e) ▷ was successful
12: break

Algorithm 4 SIS Simulation
Input: Graph (G) with initial states, time horizon (h), recovery rate (α), infection rate (β)
Output: Graph at time h ▷ or any other measure of interest

1: Q = EMPTYQUEUE() ▷ sorted w.r.t. time
2: INITGRAPH(G, α, β, Q)
3: tglobal = 0
4: while true do
5: if Q.is_empty() then
6: break
7: e = Q.pop()
8: tglobal = e.time
9: if tglobal > h then

10: break
11: if e.type = recovery then
12: G[e.src_node].state = S
13: else
14: if G[e.target_node].state = S then
15: G[e.target_node].state = I
16: GENERATERECOVERYEVENT(e.target_node, α, tglobal, Q)
17: GENERATEINFECTIONEVENT(e.src_node, β, tglobal, Q)
18: GENERATEINFECTIONEVENT(e.target_node, β, tglobal, Q)
19: else ▷ late reject
20: GENERATEINFECTIONEVENT(e.src_node, β, tglobal, Q)

Fig. 3.2.: Pseudocode for our event-based rejection sampling method
CORAL.

3.3 Our Method: Coral 53

3 42

1

5

t Event
0.4 Infection Edge: 3 4
0.5 Recovery Node: 4
1.6 Recovery Node: 1
1.7 Recovery Node: 3

t Event
0.4 Infection Edge: 3 4
0.5 Recovery Node: 4
0.7 Infection Edge: 1 2
1.6 Recovery Node: 1
1.7 Recovery Node: 3

t Event
0.9 Infection Edge: 4 5

3 42

1

5
t Event

1.6 Recovery Node: 1
1.7 Recovery Node: 3

t Event
0.3 Infection Edge: 1 4
0.4 Infection Edge: 3 4
1.6 Recovery Node: 1
1.7 Recovery Node: 3

t Event
0.1 Infection Edge: 1 3

3 42

1

5

t Event
0.4 Infection Edge: 3 4
0.5 Recovery Node: 4
0.7 Infection Edge: 1 2
1.6 Recovery Node: 1
1.7 Recovery Node: 3

t Event
0.5 Recovery Node: 4
0.6 Infection Edge: 3 4
0.7 Infection Edge: 1 2
1.6 Recovery Node: 1
1.7 Recovery Node: 3

3 42

1

5

t Event
0.6 Infection Edge: 3 4
0.7 Infection Edge: 1 2
1.6 Recovery Node: 1
1.7 Recovery Node: 3

A

B

C

D

Fig. 3.3.: First four steps of our method for a toy example (I: magenta, S:
blue). (a): Initialization, generate recovery events (left queue),
and infection event for each infected node (right queue). The
first infection attempt from node 1 is an early reject. (b): The
infection from 1 to 4 was successful, we generate a recovery
event for 4 and two new infection events for 1 and 4. The
infection event of node 4 is rejected directly because it occurs
after recovery. (c): (Late) Reject of the infection attempt from 3
to 4 as 4 is already infected. A new infection event starting from
3 is inserted into the queue. (d): Node 4 recovers, the remaining
queue is shown.

54 Chapter 3

Simulation of Markovian Spreading

3.3.1 Analysis

Our approach combines the advantages of an event-based simula-
tion with the advantages of rejection sampling. In contrast to the
Optimized Gillespie Algorithm, finding the node for the next event
can be done in constant time. More importantly, the number of
rejection events is dramatically minimized because the queue only
contains realistically possible events. Therefore, it is crucial that each
node “knows” its own recovery time and that recovery events are
always generated before infection events. In contrast to traditional
event-based simulation, we do not have to iterate over all neigh-
bors of a newly infected node followed by a potentially costly queue
reordering.

Runtime

For the runtime analysis, we assume that a binary heap is used to
implement the event queue and that the graph structure is imple-
mented using a hashmap. Each simulation step starts by taking an
element from the queue (cf. Line 7, Alg. 4), which can be done in
constant time. Applying the change of state to a particular node has
constant time complexity on average and linear time complexity (in
the number of nodes) in the worst case, as it is based on lookups in
the hashmap.

Generating a waiting time (Line 3, Alg. 3) can be done in constant
time because we know the degree (and therefore the rate) of each
node. Likewise, sampling a random neighbor (Line 8) is constant in
time (assuming the number of neighbors fits in an integer). Checking
for an early reject (Line 9) can also be done in constant time because
each neighbor is sampled with the same (uniform) probability and
is annotated with its recovery time. Although each early rejection
can be computed in constant time, the number of early rejections

3.3 Our Method: Coral 55

can increase with the mean (and maximum) degree of the network.
Inserting the newly generated infection event(s) into the event queue
(Line 11) has a worst-case time complexity of O(lognH), where nH

is the number of elements in the heap. In our case, nH is bounded
by twice the number of infected nodes. However, we can expect
constant insertion costs on average [Hayward and McDiarmid, 1991;
Porter and I. Simon, 1975].

Correctness

Here, we argue that our method generates correct sample trajectories
of the underlying Markov model. To see this, we assume some
hypothetical changes to our method that do not change the sampled
trajectories but make it easier to reason about the correctness. First,
assume that we abandon early rejects and insert all events into the
event queue regardless of their possibility of success. Second, assume
that we change the generation of infection events such that we do
not only generate the earliest attempt but all infection attempts until
recovery of the node. Note that we do not do this in practice, as this
would lead to more rejections (less early rejections).

Similar to Cota and Ferreira (2017), we find that our algorithm is
equivalent to the direct event-based implementation of the following
spreading process:

I
µ−→ S S + I

β−→ I + I I + I
β−→ I + I .

In [Cota and Ferreira, 2017], I + I
β−→ I + I is called a shadow

process, because the application of this rule does not change the
network-state. Hence, rejections of infections in the SIS model can
be interpreted as applications of the shadow process. Note that
the rate at which this rule is applied to the network is the rate of
the rejection events. Hence, the rate at which an infected node vi

56 Chapter 3

Simulation of Markovian Spreading

attacks its neighbors (no matter whether it is in I or S) is exactly
βki. Our method includes the shadow process in our simulation in
the following way: For each SI-edge and II-edge, an infection event
is generated with rate β and inserted into the queue. The decision if
this event will be a real or a “shadow infection” is postponed until
the event is applied. This is possible because both rules have the
same rate.

Model 2: SIRS

In the SIRS model, infected (I) nodes infect their susceptible
(S) neighbors. Infected nodes can also recover and gain tem-
poral immunity. That is, they become recovered (R) before
they become susceptible again.

States: S = {S, I, R}

Parameters: Recovery rate: α1 ∈ R⩾0

Infection rate: β ∈ R⩾0

Immunity loss rate: α2 ∈ R⩾0

Rules: Recovery: I
α1−→ R

Infection: S
βm[S]−−−−→ I

Immunity loss: R
α2−→ S

3.3.2 Generalizations

So far, we have only considered SIS processes on static and un-
weighted networks. This section discusses how to generalize our
simulation method to SIS-type processes on temporal and weighted
networks.

3.3 Our Method: Coral 57

General Epidemic Models

A key ingredient to our algorithm is the early rejection of infection
events. This is possible because we can compute a node’s curing
time already when the node gets infected. In particular, we exploit
that there is only one way to leave state I, that is, by applying a
node-based rule. This gives us a guarantee about the remaining
time in state I. Other epidemic models have a similar structure. For
instance, consider the Susceptible-Infected-Recovered-Susceptible
(SIRS) model (Model 2), where infected nodes first become recov-
ered (immune), before entering state I again.

We also consider the competing pathogens model of Masuda and
Konno (2006) (Model 3), where two infectious diseases compete
over the susceptible nodes.

Model 3: Competing Pathogens

Two pathogens I and J compete over the susceptible nodes. A
similar model can be found in [Masuda and Konno, 2006].

States: S = {S, I, J}

Parameters: Recovery rate I: αI ∈ R⩾0

Recovery rate J: αJ ∈ R⩾0

Infection rate I: βI ∈ R⩾0

Infection rate J: βJ ∈ R⩾0

Rules: Recovery I: I
αI−→ S

Recovery J: J
αJ−→ S

Infection I: S
βIm[I]−−−−→ I

Infection J: S
βJm[J]−−−−→ J

58 Chapter 3

Simulation of Markovian Spreading

In both cases, we can exploit that certain states (I, J, R) can only
be left under node-based rules, and thus their residence time is
independent of their neighborhood. This makes it simple to annotate
each node in any of these states with their exact residence time
and perform early rejections accordingly. Early rejections cannot be
applied if we do not have these guarantees.

Weighted Networks

In weighted networks, each edge e ∈ E is associated with a positive
real-valued weight w(e) ∈ R>0. Each edge-based rule of the form

A + C λ−→ B + C

fires on this particular edge with rate w(e) · λ. Applying our method
to weighted networks is simple: During the generation of infection
events, instead of sampling the waiting time with rate λki, we now
use λ

∑
vj∈N(vi)

w(vi, vj) as the rate (N(vi) is the set of neighbors of
vi). Moreover, instead of choosing a neighbor that will be attacked
with uniform probability, we choose them with a probability propor-
tional to their edge weight. This can be done by rejection sampling,
or in O(log(ki)) time complexity using a binary tree, or in constant
time by pre-computing an inverse-transform for all nodes.

Temporal Networks

Temporal (time-varying, adaptive, dynamic) networks are an intrigu-
ing generalization of static networks, which generally complicates
the analysis of their spreading behavior [Vestergaard and Génois,
2015; Masuda and Holme, 2017; Holme and Saramäki, 2012; Holme,
2015a]. Generalizing the Gillespie algorithm for Markovian epidemic-
type processes is not always trivial [Vestergaard and Génois, 2015].

3.3 Our Method: Coral 59

In order to keep our model as general as possible, we assume here
that an external process governs the temporal changes in the network.
This process runs simultaneously with our simulation and might or
might not depend on the current network-state. It changes the
current graph by adding or removing edges, one edge at a time. For
instance, after processing one event, the external process could add
or remove an arbitrary number of edges at specific timepoints until
the time of the next event is reached. It is simple to integrate this
into our simulation.

Given that the external process removes an edge, we can update the
neighbor list and the degrees. For each infection event that reaches
the top of the queue, we first check if the corresponding edge is
still present and reject the event otherwise. This is possible because
removing edges decreases infection rates which we can correct by
using rejections. When an edge is added to the graph, the infection
rate might increase. Thus, it is not sufficient to only update the
graph. We also generate an infection event which accounts for the
new edge. In order to minimize the number of generated events,
we change the algorithm such that each infected node is annotated
with the timepoint of its subsequent infection attempt. Now consider
an infected node. When it obtains a new edge, we generate an
exponentially distributed waiting time with rate β modeling the
infection attempt through this specific link. We only generate a new
event (and remove the old one) if this timepoint lies before the
timepoint of the subsequent infection attempt.

Since most changes in the graph do not require changes to the event
queue (and those that do only cause two operations at maximum),
we expect our method to handle temporal networks very efficiently.
In the case that a vast number of edges in the graph change at once,
we can always decide to iterate over the whole network and newly
initialize the event queue.

60 Chapter 3

Simulation of Markovian Spreading

3.4 Case Studies

We demonstrate the effectiveness of our approach on three classical
epidemic-type processes.

Setup. We use synthetically generated networks following the con-
figuration model [Fosdick et al., 2018] with a truncated power-law
degree distribution, that is, P(k) ∝ k−γ for 3 ⩽ k ⩽ 1000. We com-
pare the performance using degree distributions with γ ∈ {2, 3}. This
yields a mean degree around 30 (γ = 2) and 10 (γ = 3). We use
models from the literature but adapt rate parameters freely to gener-
ate interesting dynamics. Nevertheless, we find that our observations
generalize to a wide range of parameters that yield networks with
realistic degree distributions and spreading dynamics.

We also report how the number of nodes in a network is related to
the CPU time of a single step. This is more informative than using the
total runtime of a simulation because the number of steps obviously
increases with the number of nodes when the time horizon is fixed.
The CPU time per step is defined as the total runtime of the simulation
divided by the number of steps; only counting the steps that actually
change the network-state (i.e., excluding rejections). We do not
count rejection events because that would give unfair advantages
to rejection-based approaches. The evaluation was performed on a
2017 MacBook Pro with a 3.1 GHz Intel Core i5 CPU and 16 GB of
RAM.

Baseline. We compared the performance of our method with the
Standard Gillespie Algorithm (GA) and the Optimized Gillespie Algo-
rithm (OGA) for different network sizes. Note that an implementation
of the OGA was only available for the SIS model, and the comparison
is therefore not available for other models. Due to the high number

3.4 Case Studies 61

CP
U
Ti
m
e
pe

rS
te
p
(se

c)

Time

Pr
ev
ale

nc
e

Number of Nodes
A BA B

Fig. 3.4.: SIS model (a): [Lower is better.] Average CPU time for a single
step (i.e., change of network-state) for different networks. reject
refers to CORAL. The GA method run out of memory for γ = 2.0,
n = 107. (b): Example dynamics for a network with γ = 3.0 and
105 nodes.

of rejection steps in all models, we expect a similar difference in the
performance between our approach and OGA for other models.

Experiment 1: SIS Model

For the SIS model (Model 1) we used rate parameters of (α,β) =
(1.0, 0.6) and an initial distribution of 95% susceptible nodes and 5%
infected nodes. CPU times are reported in Figure 3.4a. For a sample
trajectory, we plot the fraction of nodes in each state w.r.t. time
(Figure 3.4b). To compare with OGA, we used the official Fortran
implementation from [Cota and Ferreira, 2017] and estimated the
average CPU time per step based on the absolute runtime. Note that
the comparison is not perfectly fair due to implementation differences
and additional input/output of the OGA code. It is not surprising
that OGA performs comparably poorly, as the method is suited for
simulations close to the epidemic threshold. Moreover, our maximum
degree is huge, which negatively affects the performance of OGA.

We also carried out experiments on models closer to the epidemic
threshold (i.e., where the number of infection events is very small,
e.g., β = 0.1) and with smaller maximal degree (e.g., kmax = 100).

62 Chapter 3

Simulation of Markovian Spreading

CP
U
Ti
m
e
pe

rS
te
p
(se

c)

Time

Pr
ev
ale

nc
e

Number of Nodes
A BA B

Fig. 3.5.: SIR model (a): [Lower is better.] Average CPU time for a single
step (i.e., change of network-state) for different networks. reject
refers to CORAL. (b): Example dynamics for a network with
γ = 2.0 and 105 nodes.

The relative speed-up to GA increased slightly compared to the results
in Figure 3.4 (p. 62). The performance of OGA improved significantly,
leading to similar performance as our method (results not shown).

Experiment 2: SIRS Model

Next, we considered the SIRS model (Model 2), which admits
more complex dynamics. We used rate parameters of (α,α2, β) =

(1.1, 0.3, 0.6) and an initial distribution of 96% susceptible nodes and
2% infected and recovered nodes, respectively. As above, CPU times
and example dynamics are reported in Figure 3.5. We see that the
run-time behavior is almost the same as in the SIS model.

3.4 Case Studies 63

CP
U
Ti
m
e
pe

rS
te
p
(se

c)

Time

Pr
ev
ale

nc
e

Number of Nodes
A BA B

Fig. 3.6.: Competing pathogens model (a): [Lower is better.] Average
CPU time for a single step (i.e., change of network-state) for
different networks. reject refers to CORAL. (b): Mean fractions
and standard deviations of a network with γ = 2.0 and n = 104.

Experiment 3: Competing Pathogens Model

Finally, we considered the Competing Pathogens model (Model 3).
We used rate parameters of (βI, βJ, α1, α2) = (0.6, 0.63, 0.6, 0.7) and
an initial distribution of 96% susceptible nodes and 2% infected
nodes for both pathogens I and J, respectively. CPU times and net-
work dynamics are reported in Figure 3.6. The model is interesting
because we see that in the beginning J dominates I due to its higher
infection rate. However, nodes infected with pathogen J recover
faster than those infected with I. This gives the I pathogen the ad-
vantage that infected nodes have more time to attack their neighbors.
In the limit, I takes over and J dies out. For this model, stochas-
tic noise has a significant influence on the macroscopic dynamics.
Therefore, we also reported the standard deviation of the fractions.
Note that the fraction of susceptible nodes is almost deterministic.
Performance-wise, our rejection method performs slightly worse than
in the previous models (w.r.t. the baseline). We believe this is due to
the even greater number of infection events and rejections.

64 Chapter 3

Simulation of Markovian Spreading

3.5 Conclusions

This chapter presented a novel rejection algorithm for the simulation
of epidemic-type processes. We combined the advantages of rejection
sampling and event-driven simulation. In particular, we exploited
that nodes can only leave certain states using node-based rules, which
made it possible to pre-compute their residence times, allowing us to
perform early rejection of certain events.

Our numerical results show that our method outperforms previous
approaches, especially for network dynamics that is not close to the
epidemic threshold. In particular, the speed-up increases with the
maximum degree of the network.

In future work, we plan to extend the method to compartment models
with arbitrary rules, including an automated decision for which states
early rejections can be computed and are useful.

3.5 Conclusions 65

Simulation of
non-Markovian
Spreading

4

The last chapter discussed how to simulate Markovian spreading
processes on networks. Here, we propose a rejection-based algorithm
for non-Markovian spreading called RED1 ([R]ejection-based [E]vent-
[D]riven simulation algorithm). Non-Markovian means that we do
not restrict ourselves to exponentially distributed residence times.

Our key idea is to encode the probability density between node
events as a rate function. The rate function gives us a memoryless-
like interpretation and makes rejection sampling possible. In turn,
rejection sampling allows over-approximating the rate function. We
can exploit this to drastically reduce the number of required updating
steps similar to the previous chapter.

RED scales exceptionally well with the size and connectivity of the un-
derlying contact network and produces statistically correct samples.
Moreover, we develop a powerful formalism to model non-Markovian
interactions between nodes. Therefore, we equip each node with an
internal clock and allow rules to take the local time into account. This
is the only chapter that covers non-Markovian processes. Conceptu-
ally, we also adjust our perspective on nodes and consider them as
agents that actively change their node-state instead of being passively
changed by a set of rules.

1github.com/gerritgr/non-markovian-simulation

67

4.1 Introduction

In the Markovian models from the last chapters, the following proper-
ties hold (giving rise to the CTMC semantics, cf. Section 2.5, p. 33):

• Nodes have exponentially distributed residence times.

• The instantaneous rate at which a node changes (f(mi) in
Algorithm 2) is constant over time (as long as the neighborhood
does not change).

• The successor node-state is independent of the jump time
(cf. Section 3.2.1).

The three properties are related to the specifics of the exponential
distribution.

Instantaneous Rates and Memorylessness

Consider an exponentially distributed random variable with rate λ.
This rate is also called instantaneous (reaction) rate and is directly
related to the memorylessness of each node. This makes sense when
we consider the x axis as time and a variate as the specific firing time
(or jump time). Then, the instantaneous rate λ is proportional to the
probability that the process fires in the next infinitesimal time unit.
Particularly, the instantaneous rate is constant (independent of the
time that has already passed). Hence, nodes or agents in Markovian
models are called memoryless, because they do not “remember” how
much time they have already spent in their internal state. Likewise,
when events compete in a race condition, the probability that a
particular event “wins” is also independent of the time that has
already passed when the event happens.

68 Chapter 4

Simulation of non-Markovian Spreading

Non-Markovian Dynamics

Consider the case that recovered nodes (which we call agents from
now on) become susceptible after a uniformly distributed residence
time; or the case that infections happen after waiting times that fol-
low a Weibull distribution. This chapter deals with the simulation of
stochastic spreading processes where inter-event times are specified
by arbitrary probability distributions.

It is long known that it is unrealistic to assume exponentially dis-
tributed inter-event times in many real-world scenarios. As em-
pirical results show, this holds, for instance for the spread of epi-
demics [Lloyd, 2001; Yang, 1972; Blythe and R. Anderson, 1988;
Hollingsworth et al., 2008; Feng and Thieme, 2000], opinions in
online social networks [Barabasi, 2005; Vázquez et al., 2006], and
neural spike trains [Softky and Koch, 1993]. Unfortunately, inter-
event times that can follow arbitrary distributions complicate the
analysis of such processes.

Often Monte-Carlo simulations are the only feasible way to investi-
gate the emerging dynamics, but even these suffer from high com-
putational costs. Specifically, they often scale poorly with the size
of the contact networks. Recently, Masuda and Rocha (2018) in-
troduced the Laplace-Gillespie algorithm (LGA) for the simulation
of non-Markovian dynamics on networks. Their work is based on
an earlier approach, the non-Markovian Gillespie algorithm (NMGA)
developed by Boguná et al. (2014). We will explain both methods in
more detail later.

4.1 Introduction 69

4.1.1 Contribution

This work extends the idea of rejection-based simulation to net-
worked systems that admit non-Markovian behavior.

We propose RED based on three main ideas:

1. We express the distributions of inter-event times as time-varying
instantaneous rates (referred to as intensity or rate functions).

2. We sample inter-event times based on an over-approximation
of the intensity function, which we counter-balance by using a
rejection step.

3. We utilize a priority (resp. event) queue to decide which agent
fires next.

Combining these ideas reduces the computational costs of each simu-
lation step. More precisely, if an agent transitions from one local state
to another, no update of neighboring agents is required, even though
their instantaneous rates might change due to the event. In short,
the reason for that is that (by using the rate over-approximation),
we always assume the “worst-case” behavior of an agent. If a neigh-
boring agent is updated, the (actual) instantaneous rate of an agent
might change, but it will never exceed the rate over-approximation,
which was used to sample the firing time. Hence, the sampled firing
time is always an under-approximation of the true one, regardless of
what happens to adjacent agents.

Naturally, this comes with a cost, in our case rejection (or null)
events. Rejection events counter-balance the over-approximation of
the instantaneous rate. The larger the difference between the actual
rate and the over-approximated rate, the more rejection events will
occur. Hence, in combination, rejections and over-approximations
yield a statistically correct algorithm.

70 Chapter 4

Simulation of non-Markovian Spreading

Differences to Coral

For clarity, we briefly point out the differences and similarities be-
tween RED and CORAL from the previous chapter. Both methods

• use a priority queue to store future events;

• use rejection events to counter-balance over-approximations;

• minimize the computational costs of updating neighboring
nodes after each event.

However, RED

• is not limited to SIS-type models;

• does not use early rejections (they are SIS-specific);

• generates events only for the currently active agent.

Most importantly, RED allows arbitrary inter-event time distribu-
tions.

4.2 Multi-Agent Model

Here, we introduce our formalism for agent-based dynamics on
complex networks. Our goal is to have a framework that is as
expressive as possible while remaining intuitive. In particular, we
want to allow interactions as complex as in the multi-state formalism
from Section 2.4.3, but inject it with the possibility for arbitrary
inter-event time distributions.

Next, we specify the network-state. After that, we explain how the
dynamics can be formalized.

4.2 Multi-Agent Model 71

Network State

At any given timepoint, the current network-state is described by two
functions:

Local State
L : V → S assigns to each agent vi a local state (node-state)
L(vi) ∈ S.

Local Clock
R : V → R⩾0 equips each agent with a local clock. R(vi)

describes the current residence time of each agent (the time
elapsed since the agent changed its local state the last time).

The definition is analogous to Section 2.3 but adds the local clock.

Neighborhood State. Analog to the neighborhood-counting vector
in the Markovian case, we define the neighborhood state. At any
point in time, the neighborhood state M(vi) of an agent vi ∈ V is
a multiset (denoted by double brackets) containing the local states
and residence times of all neighboring agents:

M(vi) =
{{(

L(vj), R(vj)
) ∣∣ (vi, vj) ∈ E

}}
.

We use M to denote the set of all possible neighborhood-states in a
given model.

Network Dynamics

We say an agent fires when it transitions from one local state to
another. The time between two firings of an agent is called inter-
event time. Moreover, we refer to the remaining time until it fires as
its time delay. The firing time of an agent vi depends on its direct
neighborhood M(vi).

72 Chapter 4

Simulation of non-Markovian Spreading

Next, we specify how the network-state evolves over time. There-
fore, we assign to each agent vi ∈ V two functions ϕi(·) and ψi(·).
The intensity function ϕi(·) governs when vi fires and the selection
function ψi(·) defines its successor state. Both functions depend on
the local state of vi (first parameter), the local clock of vi (second
parameter), and the neighborhood M(vi) (third parameter).

Intensity Function
ϕi : S × R⩾0 × M → R⩾0 defines the instantaneous rate of
vi. If λ = ϕi

(
L(vi), R(vi),M(vi)

)
, then the probability that vi

fires in the next infinitesimal time interval t∆ is λt∆ (assuming
t∆ → 0).

Selection Function
ψi : S× R⩾0 ×M → Cat(S) determines which successor state
to choose. Here, Cat(S) denotes the set of all probability dis-
tributions over S. If p = ψi

(
L(vi), R(vi),M(vi)

)
, then the next

local state of vi is s ∈ S with probability p[s]. We evaluate ψi(·)
at the timepoint when the agent fires.

Typically, ψi(·) and ψi(·) are the same for all agents, and we can
omit their index.

Note that we assume that these functions have no pathological be-
havior. That is, we exclude the cases in which ϕi(·) is defined such
that it is not integrable or where some intensity function ϕi(·) would
cause an infinite number of simulation steps in finite time (cf. Section
4.2.1).

Putting Everything Together. A multi-agent network model is fully
specified by a tuple (G, S, {ϕi}, {ψi}, L0(·)), where S is the set of local
states and L0(·) specifies the initial state of each agent.

4.2 Multi-Agent Model 73

4.2.1 Examples

We provide three examples, from simple to pathological.

Example 4.1: SIS Model in Multi-Agent Framework

Consider the classical (Markovian) SIS model. ϕ(·) and ψ(·)
are the same for all agents:

ϕ(s, t,m) =


α if s = I

β
∑

(s ′,t ′)∈m

1(s ′ = I) if s = S .

Note that we use an indicator function 1(·) to count the num-
ber of infected neighbors. Moreover,

ψ(s, t,m) =

I → 0 S → 1 if s = I

I → 1, S → 0 if s = S .

The model is Markovian as neither ϕ(·) nor ψ(·) depend on
the local clock of any agent. Moreover, ψ(·) is deterministic in
the sense that an agent in state I always transitions to S with
probability one and vice versa.

Example 4.2: Complex Cascade Model

Consider a modification of the independent cascade model
[D’Angelo et al., 2016] where agents are susceptible (S), in-
fected (I), or immune/removed (R). Infected nodes try to
infect their susceptible neighbors. The infection attempts can
be successful (turning the neighbor from S to I) or unsuccess-
ful (turning the neighbor from S to R). Agents that are in I or
R remain there.

74 Chapter 4

Simulation of non-Markovian Spreading

The model can, for instance, describe fake news propagation.
Infected agents are the ones who re-tweeted misleading infor-
mation. Someone exposed to the tweed decides if they want to
share it. Seeing it multiple times or from multiple sources does
not increase the chances of re-tweeting. However, multiple
infected friends decrease the time until the tweet is seen.

ϕ(s, t,m) =


e−tdist if s = S and

∑
(s ′,t ′)∈m

1(s ′ = I) > 0

0 otherwise .

Here, tdist denotes the time elapsed since the latest infected
neighbor became infected. Thus, the intensity at which agents
“attack” their neighbors decreases exponentially and only the
most recently infected neighbor counts. We use pi ∈ [0, 1] to
denote the probability of a successful infection (ψ(·) is only
relevant for susceptible nodes):

ψ(s, t,m) = {I → pi, R → 1− pi, S → 0} .

This example is both: non-Markovian, because the residence
times of the neighbors influence the rate, and non-linear, be-
cause the individual effects from neighboring agents do not
simply add up.

Example 4.3: Pathological Behavior

Consider two connected agents. Agent v1 always stays in state
I. Agent v2 switches between states R and S. The frequency
at which v2 alternates increases with the local clock of v1
(denoted by R(v1)). Let the rate to jump from S to R (and
vice versa) be 1

1−R(v1)
for R(v1) < 1. Assume that we want to

4.2 Multi-Agent Model 75

perform a simulation for the time interval [0, 1]. It is easy to
see that the instantaneous rate of v2 approaches infinity and
that the number of simulation steps (state transitions) does
not converge.
Generally speaking, pathological behavior may occur if
ϕi(s, t,m) approaches infinity with growing R(vj) (within
the simulation time), where vj is a neighbor of vi. However, it
is allowed that ϕi(s, t,m) approaches infinity with increasing
t (t = R(vi)) because the agent will eventually fire, and the
local clock will be set to zero again.

4.3 Semantics of the Multi-Agent Model

This section specifies the semantics of a multi-agent model in a gen-
erative matter (using a simulation algorithm). We start by exploring
the intensity function ψ(·).

4.3.1 Intensities and Densities

We used the exponential distribution in the last chapter to compute
firing times (with a fixed rate). In the multi-agent framework, we
specify our system using time-varying rates. This is advantageous
for the combination with rejection sampling. Before we define a first
simulation algorithm, we want to establish the relationship between
probability densities (here, denoted ν(·)) and intensity functions
(here, denoted λ(·)). Therefore, we leverage the theory of renewal
processes [D. R. Cox, 1962; Daley and D. V. Jones, 2003; D. Ma,
2011] and refer the reader to Excursus 3. Some examples of intensity
functions λ(·) for their corresponding PDFs ν(·) are shown in Table
4.1 (p. 77).

76 Chapter 4

Simulation of non-Markovian Spreading

Tab. 4.1.: Schematic illustration of intensity functions and inter-event time
densities.

Exponential Uniform Weibull

y-axis:
ν(t) (dashed),
λ(t) (solid)

x-axis:
time

Parameters λ ∈ R>0

a, b ∈ R>0

a < b c, u ∈ R>0

Intensity λ(t) λ
1t∈[a,b]

1− t
b−a

cu(tu)c−1

PDF ν(t) λe−λt
1t∈[a,b] cu(tu)c−1e−(tu)c

Rayleigh Power law

σ ∈ R>0

α, tmin ∈ R>0

α > 1

t
σ2 1t⩾tmin

α−1
t

t
σ2 e

− t2

2σ2 1t⩾tmin
α−1
tmin

(t
tmin

)−α

4.3 Semantics of the Multi-Agent Model 77

Excursus 3: From Intensities to Densities to Intensities

Consider the survival function S(t) of a probability. For a
timepoint t, it describes the likelihood that the process has not
fired within [0, t]. For a probability density ν(·) (defined over
non-negative values), we find that:

S(t) = P(T > t) = 1−

∫t
0

ν(t ′)dt ′ .

Recall that the intensity function (λ(·)) determines the instan-
taneous rate at each point in time. In other words, it is the
density, conditioned on the fact that the process has not fired
yet. Hence:

λ(t) =
ν(t)

S(t)
.

Consequently, we find:

ν(t) = λ(t)S(t) .

To translate intensities to densities, we define S(t) in terms of
λ(t) using the following intuition: The intensity function de-
termines the firing probability in an infinitesimal time interval.
Hence, the integral over the intensity function determines the
probability of firing within a time interval.
If we now consider an exponential distribution with rate
1, the probability that the process does not fire in [0, t] is
S(t) = exp(−t), where t is exactly the integral of the intensity
function (λ = 1) from [0, t]. When we now consider a time-
varying λ(t), we can also express the survival function using
an exponential by plugging in the corresponding integral λ(t)
for t, yielding:

S(t) = P(T > t) = exp
(
−

∫t
0

λ(t ′)dt ′
)
.

78 Chapter 4

Simulation of non-Markovian Spreading

Putting everything together, we find the relationship:

λ(t) =
ν(t)

S(t)
=

ν(t)

1−
∫t
0 ν(t

′)dt ′
,

and

ν(t) = λ(t)S(t) = λ(t)exp
(
−

∫t
0

λ(t ′)dt ′
)
.

(4.1)

Using this equation, we can derive intensity functions from any
inter-event time distribution (uniform, log-normal, gamma,
power-law, . . .). In cases where it is impossible to derive λ(·)
analytically, we can still compute it numerically. All density
functions of time delays can be expressed as time-varying rates
(i.e., intensities). However, only intensity functions with an
infinite integral can be expressed as a PDF. If

∫∞
0 λ(t)dt is

finite, the process might not fire at all.

4.3.2 Naïve Simulation Algorithm

Now we specify a naïve simulation algorithm to define the semantics.
Recall that the network-state is specified by the mappings L(·) and
R(·). Let tglobal denote the global simulation time (initialized with
zero).

The simulation is based on a race condition among all agents: each
agent picks a random firing time candidate, but only the one with
the shortest time wins and fires (i.e., changes its local state). The
global clock only increases by that amount of time. The algorithm
initializes a trajectory with L0(·) and performs steps until a stopping
criterion is reached. The computation of the next step is provided in
Algorithm 7 and is very similar to Algorithm 2.

4.3 Semantics of the Multi-Agent Model 79

This simulation approach is, while being intuitive, very inefficient.
Our approach, RED, will be statistically equivalent while being much
faster.

Algorithm 7: Naïve non-Markovian Multi-Agent Simulation

Input: Graph G; Network-state (L(·), R(·)); Dynamics {ϕ(·)}i,
{ψ(·)}i; Global clock tglobal.
Output: Successor network-state (L ′(·), R ′(·)); Time t ′global.

1. Generate a random jump time candidate ti for each
agent vi. ▷ Cf. Section 4.3.3.

2. Identify the agent vj with the shortest time tj.

3. Select a successor state s ′ for vj based on p =

ψj

(
L(vj), R(vj) + tj,M(vj)

)
.

4. Update

⇒ L ′(vj) := s
′ (and L ′(vi) = L(vi) for all i ̸= j),

⇒ R ′(vj) := 0, ▷ Reset local clock.

⇒ R ′(vi) := R(vi) + tj (for all i ̸= j),

⇒ t ′global := tglobal + tj.

4.3.3 Generating Jump Times

This section describes how to generate a jump time candidate ti for
an agent vi (as used in Line 1 of Algorithm 7). Recall that we encode
inter-event time distributions using intensity functions. Thus, we use
the intensity function of agent vi (provided by ϕi(·)) to generate
the jump time candidate. There are several ways to do this. For an
overview, we refer to [Keeler, 2019; Pasupathy, 2011; Gerhard and
Gerstner, 2010; Daley and D. V. Jones, 2003]. Here, we explain three

80 Chapter 4

Simulation of non-Markovian Spreading

A B CA B C

Fig. 4.1.: Sampling event times with an intensity function λ(t) = 1t∈[1,2]

2−t
.

(a): Generate a random variate from the exponential distribution
with rate λ(t) = 1 and PDF ν(t) = exp(−t), the sample here is
0.69. (b): We integrate the intensity function until the area of
0.69 is reached, here tn = 1.5. (c): This is the intensity function
corresponding to the uniform distribution in ν(t) = 1t∈[1,2].

Fig. 4.2.: Rejection sampling example: Sampling ti from a time-varying
intensity function λ(t) = sin2(2t) using an upper bound of c = 1.
Two iterations are shown with rejection probabilities shown in
red. After one rejection step, the method accepts in the second
iteration and returns ti = 1.3.

4.3 Semantics of the Multi-Agent Model 81

efficient and straightforward ways. We always assume that the local
states of neighboring agents remain the same. This is valid because
we only consider the shortest jump time candidate.

Possibility 1: PDFs. An obvious way is to turn the intensity function
induced by ϕi(·) into a PDF (cf. Section 4.3.1) and sample from it
using inverse transform sampling.

Possibility 2: Numerical Integration. A more direct way is to per-
form numerical integration on ϕi(·). Let us, therefore, define for
each vi the effective rate λi(·) which is the evolution of the intensity
ϕi(·) starting from the current timepoint, assuming no changes in
the local states of the neighboring agents:

λi(t∆) = ϕi

(
L(vi), R(vi) + t∆,Mt∆(vi)

)
,

where Mt∆(vi) =
{{(

L(vj), R(vj) + t∆
) ∣∣ (vi, vj) ∈ E

}}
.

Here, t∆ denotes the time evolution “from now on”.

The effective rate makes it possible to sample the time delay ti after
which agent vi fires (if it wins the race), using the inversion trans-
form method. First, we sample an exponentially distributed random
variate x ∼ Exp(1), then we integrate λi(·) to find ti. Formally, ti is
chosen such that the equation∫ti

0

λi(t∆)dt∆ = x (4.2)

is satisfied. The idea is the following: We first sample a random
variate x assuming a fixed rate (intensity function) of 1. The cor-
responding density is exp (−x) = S(t). Next, we consider the “real”
time-varying intensity function λi(·) and choose [0, ti] such that

82 Chapter 4

Simulation of non-Markovian Spreading

the area under the time-varying intensity function is equal to x
(cf. Eq. (4.2)). We know that

P(X > x) = exp (−x) = exp
(
−

∫ti
0

λi(t∆)dt∆

)
= P(Y > ti) .

Hence, if x follows an exponential distribution, then ti is distributed
according to the time-varying rate λi(·) (the corresponding random
variable is denoted Y here). In other words, the area under the curve
of λ(t∆) = 1 (from 0 to ti) follows the same distribution as the area
under the curve of λi(t∆).

Intuitively, by sampling the integral, we a priori define the number of
infinitesimal time-steps we take until the agent eventually fires. This
number naturally depends on the rate function. If the rate decreases,
more steps will be taken. We refer the reader to Pasupathy (2011)
for a proof.

Possibility 3: Rejection Sampling. An alternative approach to sam-
ple time delays is to use rejection sampling (this is not the rejection
sampling, which is the key of the RED method, though) which is
illustrated in Figure 4.2 (p. 81). Assume that we have c ∈ R⩾0 with
λi(t∆) ⩽ c for all t∆. We start with ti = 0. Next, we sample a ran-
dom variate t ′i, which is exponentially distributed with rate c. Next,
we set ti = ti + t ′i and accept ti with probability λi(ti)

c . Otherwise,
we reject t ′i and repeat the process. Rejection sampling is much faster
than numerical integration if a reasonably tight over-approximation
can be found. The correctness can be shown similarly to the correct-
ness of RED (Section 4.5.4). That is, one creates a complementing-
(or shadow-process) which accounts for the difference between the
upper bound c and λ(t).

4.3 Semantics of the Multi-Agent Model 83

4.4 Related Work

Most recent work on non-Markovian dynamics studies formal models
of such processes and their analysis [I. Z Kiss et al., 2015; Pellis
et al., 2015; Jo, Perotti, et al., 2014; Sherborne et al., 2016; Starnini
et al., 2017]. Research has focused primarily on how specific distri-
butions (e.g., uniformly distributed curing times) alter the behavior
of the epidemic spreading, for instance, the epidemic threshold (see
[Pastor-Satorras, Castellano, et al., 2015; István Z Kiss et al., 2017]
for an overview). Most of this work is, however, rather limited in
scope: Only certain distributions or networks with infinite nodes
or specific properties are considered, not the emerging dynamics.
Even though substantial effort was dedicated to using rejection sam-
pling in the context of Markovian stochastic processes on networks
(cf. Chapter 3), only a few approaches are known to us that focus on
non-Markovian dynamics. We present an adaptation of the classical
Gillespie method called non-Markovian Gillespie algorithm (NMGA)
and its adaptation, the Laplace-Gillespie algorithm (LGA).

Non-Markovian Gillespie Algorithm (Nmga)

Boguná et al. (2014) propose a modification of the Gillespie algo-
rithm for non-Markovian systems, NMGA. Their method is statistically
exact but computationally expensive. Conceptually, NMGA is similar
to the baseline in Section 4.3.2 but computes the firing times using
the survival function (cf. Section 4.3.1). Specifically, they utilize the
joint survival function of all agents.

Unfortunately, in NMGA, it is necessary to iterate over all agents in
each simulation step to construct the joint survival function. The
authors also propose a fast approximation where only the current
instantaneous rate (at the beginning of each step) is used. They
assume that all instantaneous rates remain constant until the next

84 Chapter 4

Simulation of non-Markovian Spreading

event. This is reasonable when the number of agents is very high
and the time delay of the fastest agent becomes very small.

Laplace-Gillespie Algorithm (Lga)

Masuda and Rocha (2018) introduced the LGA. The method reduces
the computational costs of finding the next event time compared
to NMGA. They only consider inter-event time densities that can be
expressed as a continuous mixture of exponentials:

γi(t) =

∫∞
0

pi(λ)λe
−λtdλ . (4.3)

Here, pi(·) is a PDF over the rate λ ∈ R⩾0, encoding a continuous
mixture of exponentials. The restriction of inter-event times limits
the scope of the method to survival functions which are completely
monotone [Masuda and Rocha, 2018]. The advantage is that we can
sample the time delay ti of an agent vi by first sampling λi according
to pi(·) and then sampling from an exponential distribution with rate
λi.

4.4 Related Work 85

4.5 Our Method: Red

We propose the RED algorithm for generating statistically correct
trajectories of non-Markovian spreading models on networks.

4.5.1 Rate Over-Approximation

Recall that we use the effective rate λi(·) to express how the instan-
taneous rate of vi changes over time, assuming that no neighboring
agent changes its state (colloquially, we extrapolate the rate into
the future). A key ingredient of our approach is the construction of
λ̂i(·) which upper-bounds the instantaneous rate of vi, taking into
consideration all possible state changes of vi’s neighboring agents.
That is, at all times λ̂i(t) is larger than (or equal to) λi(t) while we
allow that arbitrary state changes of neighbors occur at arbitrary
times in the future.

Formally, the upper bound always satisfies:

λ̂i(t∆) ⩾ sup
M ′∈Mv,t∆

ϕi

(
S(n), R(n) + t∆,M

′
)
, (4.4)

where Mi,t∆ denotes the set of reachable neighborhoods of agent vi
after t∆ time units. Sometimes λ̂i(·) is referred to as dominator of
λi(·) [Gerhard and Gerstner, 2010].

Note that it is not feasible to compute the over-approximation algo-
rithmically, so we have to derive it analytically. Upper-bounds can
be constant or dependent on time. For multi-agent models (with a
finite number of local states) time-dependent upper bound exists for
all practically relevant intensity functions since we can derive the
maximal instantaneous rate w.r.t. all reachable neighborhood states.
It does not work in some pathological cases (cf. Section 4.5.5).

86 Chapter 4

Simulation of non-Markovian Spreading

Example 4.4: Upper Bounds of an Intensity

Consider again the Markovian SIS example from earlier (Ex-
ample 4.1). The recovery of an infected agent does not depend
on its neighborhood. Hence, the rate is always α, which is
also a trivial upper bound. The rate at which a susceptible
agent, vi, becomes infected is β

∑
(s ′,t ′)∈M(vi)

1(s ′ = I). This

means that the instantaneous infection rate can be bounded
by λ̂i(t∆) = βki. Note that this upper bound does not depend
on t∆. When we use this upper bound to sample the time
delay candidate of an agent, this timepoint will always be
an under-approximation, even when more neighbors become
infected.
However, consider, for instance, a recovery time that is uni-
formly distributed on [1, 2]. In this case, λi(·) approaches in-
finity (cf. Figure 4.1b, p. 81) making a constant upper bound
impossible (even without considering any changes in the neigh-
borhood).

4.5 Our Method: Red 87

4.5.2 The Red Algorithm

As input, our algorithm takes a multi-agent model specification
(G, S, {ϕ}i, {ψ}i, L0(·)) and corresponding upper-bounds {̂λ}i. As out-
put, the method produces statistically exact trajectories (samples)
following the earlier semantics. RED is based on two main data
structures:

Labeled graph
A graph represents the contact network. Each agent vi is
annotated with its current state L(vi) and the timepoint of its
last state transition T(vi) (similar to R(vi), more on this later).

Event queue
The event queue stores all (potential) future events (i.e. firings).
An event is encoded as a tuple (vi, µ̂, t̂i), where vi is the agent
that wants to fire, t̂i the prospective absolute timepoint of firing,
and µ̂ ∈ R⩾0 is an over-approximation of the true effective rate
(at the future timepoint t̂i). The queue is sorted according to
t̂i.

A global clock, tglobal, keeps track of the elapsed time since the
simulation started. We initialize the simulation by setting tglobal = 0

and generating one event per agent. Using T(vi) (as in Line 2) is a
viable alternative to using R(vi) in order to encode residence times
since R(vi) = tglobal − T(vi). Practically, T(vi) is more convenient, as
it avoids explicit updates of R(vi) for all agents after each event. We
perform simulation steps following Algorithm 8 until some stopping
criterion is fulfilled. The main difference from previous approaches
is that, traditionally, the rate has to be updated for all neighbors of
a firing agent. In RED, only the rate of the firing agent has to be
updated.

88 Chapter 4

Simulation of non-Markovian Spreading

Algorithm 8: Non-Markovian Simulation with Red

Input: Labeled graph; Event queue; tglobal.
Output: Updated labeled graph; event queue; tglobal.

1. Take the first event (vi, µ̂, t̂i) from the event queue.

⇒ Update tglobal := t̂i.

2. Evaluate the true instantaneous rate
µ = ϕi

(
L(vi), tglobal − T(vi),M(vi)

)
of vi at the current

system state.

3. With probability 1− µ
µ̂ , reject the firing and go to 5.

4. Randomly choose the next state s ′ of vi according to the
distribution p = ψi

(
L(vi), tglobal − T(vi),M(vi)

)
.

⇒ If L(vi) ̸= s ′: set L(vi) := s ′, T(vi) := tglobal.

5. Generate a new event for agent vi and push it to the
event queue.

Event Generation. Here, we specify how the event generation in
Line 5 is done. We sample a random time delay ti according to λ̂i(·)
and set t̂i = tglobal + ti (because the event contains the absolute
time). To sample ti according to the over-approximated rate, we
either use the numerical integration of Eq. (4.2) or sample directly
from an exponential distribution which upper-bounds the intensity
function (cf. Figure 4.1d, p. 81). Finally, we set µ̂ = λ̂i(ti).

4.5.3 Asymptotic Time Complexity

Here, we discuss how the runtime of RED scales with the number of
agents. Assume that a binary heap is used to implement the event

4.5 Our Method: Red 89

queue and that the graph structure is implemented using a hashmap.
Each step starts by popping an element from the queue, which has
constant time complexity. Next, we compute µ. Therefore, we have
to look up all neighbors of vi in the graph structure and iterate over
them. We also have to look up all states and residence times. This
step has linear time-complexity in the number of neighbors. More
precisely, lookups in the hashmaps have constant time-complexity
on average and are linear in the number of agents in the worst case.
Computing the rejection probability has constant time complexity.
When no rejection events occur, we update L(vi) and T(vi). Again,
this has constant time-complexity on average. Generating a new
event does not depend on the neighborhood of an agent and has,
therefore, constant time-complexity. Note that this step can still be
somewhat expensive when it requires integration to sample ti but
not in an asymptotic sense. Thus, a step in the simulation is linear in
the number of neighbors of the agent under consideration.

In contrast, previous methods require that, after each update, the
rate of each neighbor vj is re-computed. A particular disadvantage is
that the rate of vj depends on the entire neighborhood of vj. Hence,
it is necessary to iterate over all neighbors vk of every single neighbor
vj of vi (2-hop neighborhood).

90 Chapter 4

Simulation of non-Markovian Spreading

4.5.4 Correctness

As in the previous chapter, the correctness of RED can be shown
similarly to [Cota and Ferreira, 2017]. Here, we provide a proof
sketch. First, consider the rejection-free version of the method in
Algorithm 9.

Algorithm 9: Rejection-Free non-Markovian Simulation

Input: Labeled graph; Event queue; tglobal.
Output: Updated labeled graph; Event queue; tglobal.

1. Take the first event (vi, µ, t̂i) from the event queue.

⇒ Update tglobal := t̂i.

2. Randomly choose the next state s ′ of vi according to the
distribution p = ψi

(
L(vi), tglobal − T(vi),M(vi)

)
.

3. If L(vi) = s ′: ▷ Null event.

⇒ Generate a new event for vi, push it to the event
queue.

Else:

⇒ Set L(v) := s ′, generate a new event for vi and add
it to the event queue.

⇒ For each neighbor vj of vi: ▷Expensive!

Remove the event corresponding to vj and generate
a new one (using the new state of vi).

Rejection events are unnecessary for this version of the algorithm
because all events in the queue are generated using the “real” rate
and, therefore, are consistent with the current system state. In other
words, the rejection probability would always be zero. It is easy
to see that Algorithm 9 is a direct event-driven implementation of

4.5 Our Method: Red 91

Algorithm 7. Therefore, it suffices to show that Algorithm 9 and
Algorithm 8 are statistically equivalent.

First, note that it is possible to include self-loop events to our model
without changing the underlying dynamics (resp. statistical proper-
ties). These are events where an agent fires but transitions into the
same internal state it already occupies. Until now, we did not allow
such self-loop behavior. In the algorithm, self-loop events correspond
to the condition L(vi) = s ′ in the third step. Such events do not
alter the network-state and, therefore, do not change the statistical
properties of the generated trajectories. The key idea is now to
change ϕi(·) and ψi(·) to ϕ̂i(·) and ψ̂i(·), respectively, such that the
events related to ϕ̂i(·) and ψ̂i(·) also admit self-loop events with a
certain probability. Specifically, self-loops have the same probability
as rejection events in the RED method but, apart from that, ϕ̂i(·)
and ψ̂i(·) induce the same dynamical evolution as ϕi(·) and ψi(·).
Formally, this is achieved by using the shadow-processes; sometimes
also referred to as complementing process [Gerhard and Gerstner,
2010] (see also Chapter 3). A shadow-process does not change the
state of the corresponding agent but still fires at a specific rate. In
the end, we can interpret the rejection events not as rejections but as
the statistically necessary application of the shadow-process.

We define the rate of the shadow-process, denoted by λ̃(·), to be the
difference between the rate over-approximation and the true rate.
For all vi, t, this gives rise to the invariance:

λ̂i(t) = λi(t) + λ̃i(t) .

We define ϕ̂i(·) such that it includes the shadow-process and use µ̂
to denote the samples from ϕ̂i(·).

The only remaining task is to define ψ̂i(·) so that the shadow-process
does not influence the network-state. Therefore, we trigger a null
event (or self-loop) with the probability given by the proportion of

92 Chapter 4

Simulation of non-Markovian Spreading

the shadow process of ϕ̂i(·). Consequently, if ψi(s, t,m) = p, we
define ψ̂i(s, t,m) = p̂ with

p̂(s ′) =


µ̂−µ
µ̂ if s ′ = s (null event)(
1− µ̂−µ

µ̂

)
p(s ′) otherwise.

W.l.o.g., we assume that the original system has no inherent self-
loops. Using shadow processes, we can now omit the generation of
new events for neighboring agents vj of the firing node vi. This is
because the firing time densities no longer depend on the local state
of vi and are, therefore, not affected by the firing.

In summary, we find that:

1. Adding a shadow process to a multi-agent system does not
change its semantics.

2. The rejection-free method (Algorithm 9) generates statistically
correct samples.

3. Simulating Algorithm 9 including the shadow-process directly
leads to RED (Algorithm 8).

We can conclude the correctness of RED.

4.5.5 Limitations

Our approach’s practical and theoretical applicability depends on
how well the intensity function of an agent can be over-approximated.
The larger the difference between λ(·) and λ̂(·) becomes, the more
rejection events occur and the slower our method becomes. In gen-
eral, since rejection events are extremely cheap, it is not a problem
for our method when most of the events in the event queue will be
rejected.

4.5 Our Method: Red 93

However, it is easy to think of examples in which RED will perform
exceptionally poorly. For instance, consider an SIS-type model, but
agents can only become infected if exactly half of their neighbors
are infected. In this case, the over-approximation would assume that
for all susceptible nodes this is always the case, causing too many
rejection events. Likewise, the problem can also occur in the time
domain. Consider the case where infected nodes only infect their
susceptible neighbors in the first t∆ time-units of their infection with
rate λ, where t∆ is extremely short (e.g., 0.001) and λ is extremely
high (e.g., 1000). Given a susceptible node, we do not know how
many of its neighbors will be newly infected in the future, so we
have to assume that all neighbors are always infectious.

Moreover, finding a theoretical upper bound for the rate might not be
possible. Consider the case where an infected agent with residence
time t “attacks” its neighbors at rate | − log(t)| (which converges
to infinity for t → 0). Interestingly, this still gives rise to a well-
defined stochastic process because the integration of |− log(t)| leads
to non-zero inter-event times, and it is, therefore, possible to sample
inter-event times even though the rate starts at infinity. However, we
cannot build an upper bound because, again, we have to assume that
all neighbors of a susceptible node are always newly infected.

There are also more practical examples, such as special cases of
networked (self-exiting) Hawkes processes [Farajtabar et al., 2015].
Here, a neighbor’s firing increases an agent’s instantaneous rate. As
it is not possible to bound (in advance) the number of times the
neighbors fire (at least not without additional assumptions), it is not
possible to construct an upper bound for the intensity function for
any future point in time.

94 Chapter 4

Simulation of non-Markovian Spreading

Number of Nodes Number of Nodes Number of NodesCP
U
Ti
m
e
pe

rS
te
p
(se

c)

Fig. 4.3.: Results: [Lower is better.] Computation time of a single sim-
ulation step w.r.t. network size and connectivity (smaller β ⇒
higher connectivity). We measure the CPU time per simulation
step by dividing the simulation time by the number of successful
(i.e., non-rejection) steps.

4.6 Case Studies

We demonstrate the effectiveness of RED in three case studies.

Setup. We use synthetic graphs as contact networks using the con-
figuration model where the degree distribution is specified by a
truncated power-law [Fosdick et al., 2018]. That is, for a degree k,
P(k) ∝ k−γ for 3 ⩽ k ⩽ |n|. We use γ ∈ {2, 2.5} (a smaller value for
γ leads to a larger average degree and higher connectivity).

The evaluation was performed on a 2017 MacBook Pro with a 3.1
GHz Intel Core i5 CPU. Runtime results for different models are
shown in Figure 4.3. To compute the step-wise CPU time, we ignore
the rejection steps for a fair comparison. We remark that RED and
Baseline are both statistically correct, meaning that they sample
from the correct distribution specified by the model semantics, while
NMGA provides an approximation.

Baseline. We compare the performance of RED with a rejection-free
algorithm (simply called BASELINE) and and an NMGA-type approach.
BASELINE is the rejection-free variant of the algorithm where, when
an agent fires, all of its neighbors are updated (Algorithm 9). In

4.6 Case Studies 95

the Voter model, the baseline uses an LGA-type approach to sample
inter-event times (following Eq. (4.3)). In the other experiments, we
sample inter-event times using the rejection-based approach from
Figure 4.2 (p. 81). We do note that LGA and RED are not directly
comparable, as they are associated with different objectives. In short,
LGA focuses on optimizing the generation of inter-event times while
RED aims at reducing the number of times that inter-event times need
to be generated. We want to emphasize that the reason we include
an LGA-type and NMGA-type sampling approach is to highlight that
our performance gain is not part of the specifics of how inter-event
times are generated.

We use an NMGA-type method as a second comparison. It is a re-
implementation of the approximate version of NMGA. The method
stores all agents with their associated residence times in a list. In
each step, we iterate over the list and generate a new firing time
(candidate) for each agent, assuming that the instantaneous rate
remains constant (note that assuming a constant rate means sampling
an exponentially distributed time delay). Then, the agent with the
shortest time delay candidate fires, and the residence times of all
agents are updated. The approximation error decreases with an
increasing network size because the time periods between events
become smaller.

Model4:SISwithDecliningInfectiousness.

Experiment 1: SIS Model

As our first test case, we use a non-Markovian modification of the
classical SIS model. Specifically, we assume that infected nodes
become (exponentially) less infectious over time. That is, the rate at
which an infected agent with residence time t “attacks” its susceptible
neighbors is ue−ut for u = 0.4. This does not directly relate to a

96 Chapter 4

Simulation of non-Markovian Spreading

probability density because the infection event might not happen at
all. Empirically, we choose parameters that ensure that the infection
spreads over the network. We upper bound the rate at which a
susceptible agent vi (with degree ki) gets infected with λ̂i(t) = uki.
The upper bound is constant in time and conceptually similar to the
earlier example (cf. Section 4.5.1). We sample ti using an expo-
nential distribution (i.e., without numerical integration). The time
until an infected agent recovers is independent from its neighbor-
hood and uniformly distributed in [0, 1] (similar to Röst et al. (2016)).
Hence, we can sample it directly. We start with 5% randomly selected
infected agents.

Model5:Non-MarkovianVoter.

Experiment 2: Voter Model

The voter model describes the spread of two competing opinions,
denoted as A and B. Agents in state A switch to B and vice versa, thus
ψ(·) is deterministic.

In this experiment, we use an inter-event time that can be sampled
using an LGA-type approach (cf. Eq. (4.3)). Moreover, to take full
advantage of the LGA-formulation, we assume that the neighborhood
of an agent modulates the PDF pi(·) which specifies the continuous
mixture of rates (otherwise, we could simply pre-compute it). Here,
we choose pi(·) to be a uniform distribution in [0, oi], where oi is the
fraction of opposing neighbors of agent vi. That is, if vi is in state A
(resp. B), then oi is the number of neighbors in B (resp. A) divided
by the degree ki.

Hence, we can sample a firing time candidate by sampling a uni-
formly distributed random variate λi ∈ [0, oi] and then sampling the
firing time candidate ti ∼ Exp(λi). The resulting inter-event time
distribution resembles a power-law with a slight exponential cut-off

4.6 Case Studies 97

[Masuda and Rocha, 2018]. The cut-off becomes more dominant for
larger oi. Formally,

γj(t) =

∫oi

0

1

oi
λe−λtdλ =

1− e−oit(1+ oit)

oit2
and

λj(t) =
1

t
−

oi
eoit − 1

t ⩾ 0 .

To upper-bound the instantaneous rate, we set oi = 1. To sample ti
in RED, we use rejection sampling (Figure 4.2, p. 81). BASELINE uses
the LGA-based approach, but changing to rejection sampling does
not noticeably change the performance. We initialize the simulation
with 50% of agents in A and B, respectively.

Model6:Non-MarkovianNeuralSpiking.

Experiment 3: Neural Spiking

To model neural spiking behavior, we propose a networked (i.e.,
multivariate) temporal point-processes [W. Wu et al., 2019]. In tem-
poral point-processes, agents are naturally excitable (S) and can get
activated (I) for an infinitesimally short period of time. After that,
they become immediately excitable again. Point-processes model
scenarios where one is only interested in the firing times of an agent,
not in their local state. They are commonly used to model the spiking
behavior of neurons [Truccolo, 2010] and for information propaga-
tion in social networks (like re-tweeting) [Farajtabar et al., 2015].
A random trajectory of a system identifies each agent vi with a list
of timepoints Hi of its activations. Here, we consider multivariate
point-process, where each agent represents one point-processes and
neighboring agents influence each other by inhibition or excitement.
Therefore, we identify each (undirected) edge (vi, vj) with a weight
wi,j of either 1 (excitatory connection) or −1 (inhibitory connection).

98 Chapter 4

Simulation of non-Markovian Spreading

We modify the neighborhood M(vi) to also contain the target node
of an edge. Note that adding edge weights to RED is straightforward.
Moreover, neurons can spontaneously fire with a baseline intensity
of α ∈ R⩾0. Formally,

ϕi(s, t,m) = f
(
α+

∑
s ′,t ′,vj∈M(vi)

wi,j

1+ t ′

)
with f(x) = max

(
0, tanh(x)

)
.

The function f(·) is called a response function, it converts the synaptic
input into the actual firing rate. We use the same as Benayoun et al.
(2010). Without f(·), the intensity could become negative. Note that
ψi(·) is deterministic. Our model can be seen as a non-Markovian
modification of the spiking neuron model proposed by Benayoun
et al. (2010). Contrary to Benayoun et al., we do not assume that
active neurons stay in their active state for a specific (in their case,
exponentially distributed) amount of time. Instead, we assume that
they become immediately excitable again and that an activation
affects the neighboring neurons through a kernel function 1/(1+ t ′).
The kernel ensures that neighbors who fired more recently (i.e., have
a smaller residence time t ′) have a more significant influence on an
agent.

The residence time of an agent itself does not influence its rate. In
contrast to multivariate self-exiting Hawkes processes, only the most
recent firing—and not the whole event history Hv—contributes to
the intensity of neighboring agents [Farajtabar et al., 2015; Dassios,
Zhao, et al., 2013]. Taking the whole history into account is not
easily possible with a finite amount of local states and introduces
intensity functions that cannot be upper-bounded (cf. Section 4.5.5).
For our experiments, we set α = 0.01, define 20% of the edges to be
inhibitory, and use the trivial upper bound of one (induced by the
response function).

4.6 Case Studies 99

4.6.1 Discussion

Our experimental results clearly indicate that rejection-based sim-
ulation (and the corresponding over-approximation of the instan-
taneous rate) can dramatically reduce the computational costs of
stochastic simulation in the context of non-Markovian simulation on
networks.

As expected, we see that the runtime behavior is influenced by
the number of agents (nodes) and the number of interconnections
(edges). Interestingly, for RED, the number of edges seems to be
much more relevant than the number of agents. Most noticeably,
the CPU time of each simulation step practically does not increase
(beyond statistical noise) with the number of nodes. Moreover, one
can clearly see that RED consistently outperforms BASELINE up to
several orders of magnitude (Figure 4.3 (p. 95)), while the gain in
computational time (i.e., RED’s CPU time by BASELINE’s CPU time)
ranges from 10.2 (103 nodes, voter model, β = 2.5) to 674 (105

nodes, SIS model, β = 2.0).

Note that we only compared an LGA-type sampling approach with our
method in the voter model experiment. The other case-studies could
not straightforwardly be simulated with LGA due to its constraints
on the time delays. However, we still assume that the rejection-free
baseline algorithm is comparable with LGA in the other experiments,
as both update the rates of the relevant agents only after an event. We
also tested an Nmga-like implementation where rates are considered
to remain constant until the next event. However, the method scales—
albeit it is only approximate—worse than the baseline.

Note that the SIS model is somewhat unfavorable for RED as it leads
to the generation of a large number of rejection events, especially
when only a small fraction of agents are overall infected. For concrete-
ness, consider an agent with many neighbors of which only very few
are infected. The over-approximation assumes that all neighboring

100 Chapter 4

Simulation of non-Markovian Spreading

agents are infected all the time. Nevertheless, the low computational
costs of each rejection event seem to easily atone for their large
number. In contrast, the neural spiking model is very favorable for
our method as the tanh(·) response function provides a global upper
bound for the instantaneous rate of each agent. Performance-wise,
the differences between the two models are, surprisingly, pretty
slight.

4.7 Conclusions

We proposed RED, a rejection-based algorithm for the simulation of
non-Markovian agent models on networks. The key advantage and
most significant contribution of our method is that it is no longer re-
quired to update the instantaneous rates of the whole neighborhood
in each simulation step. This practically and theoretically reduces
the time complexity of each step compared to previous simulation
approaches and makes our method viable for the simulation of dy-
namical processes on real-world networks, which often have millions
of nodes. In addition, rejection steps are a fast alternative to integrat-
ing the intensity function (for suitable inter-event time distributions).
Currently, the most notable downside of the method is that the over-
approximations λ̂(·) have to be constructed manually. It remains to
be determined if it is possible to automate the construction of λ̂ in an
efficient way as the trivial way of searching in the state space of all
reachable neighborhoods is not feasible. We also plan to investigate
how correlated events (as in [Jo, Lee, et al., 2019; Masuda and
Rocha, 2018]) can be integrated into RED.

4.7 Conclusions 101

Vaccine Allocation
Optimization

5
This chapter addresses the problem of mitigating the spread of an
epidemic over a contact network by vaccinating a limited number of
nodes.

Our key idea is to study simulated trajectories to estimate a node’s
impact on an epidemic. For better efficiency, we analyze the “empiri-
cal” trajectories and the static contact network simultaneously. This
results in cheap scores that act as a surrogate for the true impact of
each node.

We propose SEPIA 1 ([S]imulation-based [epi]demic mitig[a]tion), a
combination of (i) numerous simulation runs, (ii) a PageRank-type in-
fluence analysis on an empirical transmission graph which is learned
from the simulations, and (iii) discrete stochastic optimization.

SEPIA scales very well with the size of the network and proposes a
vaccination strategy that considers specific clinical and transmission
parameters of the epidemic.

1SEPIA is implemented in Rust and Python and available at
github.com/gerritgr/Simba

103

5.1 Introduction

Vaccine allocation strategies can help design complex systems to
make them more resilient against (cascading) failures. This is par-
ticularly relevant regarding infrastructure networks where a “vacci-
nation” might represent the installation of a protective safeguard.
Another example is the mitigation of fake news in online social
networks, which can be achieved by removing the accounts of partic-
ularly relevant and malicious influencers or by providing warnings
and fact-checking. In the context of infectious diseases, vaccination
strategies are necessary for prioritization.

Generally speaking, the vaccine allocation problem is computation-
ally challenging. Intuitively, it is often reasonable to vaccinate those
nodes with many neighbors (or with a high centrality in the network)
and those close to the initially infected nodes. If possible, it is even
better to identify the nodes that lie between the initially infected
nodes and many susceptible nodes. If we represent the spreading
process by a transmission tree (cf. Figure 5.1 (p. 106)), in which the
direct children of a node vi correspond to those nodes that were
infected by vi, the size of a vi’s subtree gives the number of multi-hop
infections that originated from vi. The premise of our work is that a
node’s number of multi-hop infections is a good indicator of whether
that node is a suitable vaccination candidate.

To this end, we propose SEPIA, a method that relies on the efficient
rejection-based simulation form Chapter 3 (Simulation of Markovian
Spreading). Based on many simulations, SEPIA constructs a general-
ization of the transmission tree called transmission graph. By analyz-
ing this graph, we obtain an impact score for every node. Repeated
evaluation of the current vaccination strategy and re-computation of
the impact scores yields an iterative optimization procedure. The cor-
responding objective is to maximize the expected number of nodes
that remain healthy.

104 Chapter 5

Vaccine Allocation Optimization

The key methodological novelty of our proposed vaccination strat-
egy is constructing and analyzing an empirical transmission graph.
Using this graph, our vaccination strategy can take the dynamics of
the epidemic into account. The transmission graph potentially has
many more use cases in assessing network dynamics, such as influ-
ence maximization, controllability of networks, impact or centrality
quantification, and flow prediction. We also provide a numerical
evaluation and compare SEPIA to several baselines from the litera-
ture.

5.2 Related Work

Most methods that suggest nodes for vaccination use static analysis
of the contact network, for instance, by looking at the betweenness
centrality of nodes [Schneider et al., 2011] or their degree [Prakash,
Tong, et al., 2010]. Likewise, NETSHIELD tries to minimize the
epidemic threshold of the contact graph (i.e., its general ability to
support epidemics) [Tong et al., 2010]. A more advanced method
is GRAPHSHIELD which starts with degree centrality, but then takes
the flow of information in the contact graph into account [Wijayanto
and Murata, 2017]. Eventually, researchers focused more on the
dynamical aspects, for instance, by utilizing linear programming
[Sambaturu and Vullikanti, 2019] or reinforcement learning [Wi-
jayanto and Murata, 2018; Wijayanto and Murata, 2019]. For an
overview, we refer the reader to Nowzari et al. (2016).

Conceptually most relevant for us is the work of Yao Zhang and
Prakash (2015) who propose DAVA and Song et al. (2015) who pro-
pose NIIP. Both methods are based on a dominator tree architecture
that tries to capture the direction of the epidemic. DAVA merges all
initially infected nodes and analyzes the paths from this node to all
other nodes. Nodes that block a large number of paths are suitable

5.2 Related Work 105

4

2 5

1

1

2 3

4 5

contact network single simulation run

!

! ! !

!
!

!

terminal

network state

initial network
state Linit

transmission tree

A B C

Fig. 5.1.: (a): Example contact network with possible SIR dynamics (S:
blue line; I: red, filled; R: green, shaded). (b): The firing
node/edge is annotated with an exclamation mark. (c): The
trajectory results in a transmission tree.

vaccination candidates. NIIP focuses on a problem setting where not
all vaccination units are distributed simultaneously. Therefore, NIIP

extracts a maximum DAG from the contact graph, uses Monte-Carlo
simulation to find the best nodes to vaccinate and combines this
with a greedy simulation-based approach; the simulation’s goal is to
determine when to distribute a vaccination dose.

5.3 Problem Statement

As a dynamical model, we consider SIR dynamics (Model 7). W.l.o.g.
we typically assume α = 1 and only vary β as the spreading dynamics
is determined by the fraction β

α and that there is at least one infected
node (called patient zero) in the initial network-state Linit(·).

106 Chapter 5

Vaccine Allocation Optimization

Model 7: SIR

The SIR model is a version of the SIRS model (Model 2) where
immunity loss is not happening.

States: S = {S, I, R}

Parameters: Recovery rate: α ∈ R>0

Infection rate: β ∈ R>0

Rules: Recovery: I α−→ R

Infection: S
βm[S]−−−−→ I

Simulating SIR dynamics will eventually lead to a terminal labeling
or network state where all nodes are either recovered or susceptible.
Given a random simulation run, we use the term transmission tree
(cf. Figure 5.1, p. 106) to describe a tree where patient zero is the
root (if there are more than one infected nodes in the beginning,
we merge them) and every node that became infected during the
epidemic is connected to the node which infected it. Thus, all nodes
in the subtree of a node are called its children. That is, that node
directly or indirectly infected them.

5.3.1 Vaccination Allocation Problem

We are given a finite contact network G with corresponding initial
labeling Linit(·), a vaccination budget k ∈ Z>0, as well as the recovery
and infection rate constants α and β. Let Sinit denote the set of nodes
that are initially susceptible.

We want to find a set X of nodes to be vaccinated, where

X ⊂ Sinit and |X| = k . (5.1)

5.3 Problem Statement 107

Moreover, for a given G, Linit(·), k, α, β, we use F(X) to denote
the objective function which we define as the expected number of
susceptible nodes in the terminal network-state (when initially all
nodes in X are vaccinated). We define the Vaccine Allocation Problem
as:

Find a set X that maximizes F(X) such that Eq. (5.1) holds.

In practice, we approximate F(·) based on many Monte-Carlo sim-
ulation runs. We assume that at least k nodes exist that can be
vaccinated and that there is at least one infected node in the initial
network-state. We model the vaccination by setting Linit(vi) = R for
all vi ∈ X at the beginning of the simulation. Note that (assuming
the vaccination works perfectly) recovered, deceased, and vaccinated
nodes do not differ from the simulation’s point of view.

Complexity. The problem is computationally difficult because there
are

(
n
k

)
possibilities to distribute k vaccines to n nodes. The cor-

responding decision problem is NP-hard. Specifically, for a given
input G, Linit(·), β, α, and threshold τ, it is NP-hard (in n) to de-
cide if a solution X exists, s.t. F(X) > τ. It can be shown that for
this type of problem, NP-hardness holds for any propagation model
that can mimic an independent cascade (IC) model [Yao Zhang and
Prakash, 2015]. We can do this by making α (resp. β) arbitrary small
(resp. large).

5.4 Our Method: Sepia

We first explain the main ingredients of SEPIA: the rejection-based
simulation method and the transmission graph construction for iden-
tifying high-impact nodes.

108 Chapter 5

Vaccine Allocation Optimization

5.4.1 Ingredient 1: Rejection-Based Simulation

Our rejection-based SIR simulation is based on CORAL from Chapter
3. That is, we perform event-driven simulations using a priority
queue. For the initialization, we create one recovery event and one
infection event for each infected node and push them into the queue.
The firing time of node vi is exponentially distributed with rate α
(recovery event) or β · ki (infection event). In each simulation step,
we take the first event from the queue. If it is a recovery event, we
simply set the corresponding node to state R. If it is an infection
event, we first check if the corresponding node is still in state I; if not,
we reject the event and proceed with the next step. If it is, we pick a
random neighbor that will be the target of the infection. We check
if the random neighbor is susceptible. If this is the case, we set the
neighbor to I and create two events (recovery and infection) for the
newly infected neighbor. We also create a new infection event for the
source node. Then, we proceed with the next step. The simulation
ends when there are no more nodes in state I.

We store the number of susceptible nodes when the simulation ends.
Moreover, each time a node gets infected, we store from which
(infected) neighbor the infection originated (or all nodes it could
have originated from; cf. Section 5.4.2).

5.4.2 Ingredient 2: Impact Score Estimation

To estimate each node’s impact, we build an empirical transmission
graph (Figure 5.2 (p. 110)), an extension of the transmission tree
from Figure 5.1 (p. 106) to multiple simulation runs. The transmis-
sion graph is directed, and one can perform a random walk on the
graph which (on average) visits nodes with higher impact more often.
In the end, we determine the impact of each node in Sinit by ranking
the nodes similar to the well-known PAGERANK-score developed by

5.4 Our Method: Sepia 109

vD 0.13

0.36 0.23

0.28

1

8
24

4
24

5
24

1
4

6
7

1
7

3
5

2
5

6
8

1
8

7
24

1
8

3
4

transmission graph

4

8 5

10 76

13

2

6 1

1 0

3 1

transmission graph

(intermediate step)

multiple simulation runs

…

…

…

…

A B C

Fig. 5.2.: Transmission graph construction based on the same setting as
Figure 5.1. (a): We consider 10 simulation runs. (b): Contact
graph with Ii as node labels and I(i,j) as edge labels. (c): Adding
the dummy node and normalizing outgoing weights yields a
discrete-time Markov chain (DTMC). Nodes in Sinit are annotated
with their impact score based on the equilibrium of the DTMC.

Page et al. (1999) (i.e., we use the equilibrium of the corresponding
Markov chain).

Given a set of simulated trajectories, let Ii denote the number of
trajectories in which node vi became infected. Furthermore, let I(j,i)
denote the number of trajectories in which vj directly infected vi.
Note that Ii =

∑
j I(j,i).

Transmission Graph

Consider the contact network G = (V,E). We construct the corre-
sponding transmission graph GT = (VT ,WT) (WT ∈ R(n+1)×(n+1)

⩾0

being a weight matrix) as follows: We start with a dummy node vD
as a sink, that is, VT = V ∪ {vD} (we can remove unreachable nodes

110 Chapter 5

Vaccine Allocation Optimization

later), and add an edge from each initially infected node with weight
one, i.e., for all vi ∈ V:

WT [i,D] =

{
1 if vi ∈ Iinit,

0 otherwise,

where Iinit denotes the set of nodes that are initially infected. Then
we add an edge from vD to each vi ∈ Sinit with a weight proportional
to the estimated probability of that node becoming infected, i.e., for
all i:

WT [D, i] =


Ii∑

vj∈Sinit
Ij

if vi ∈ Sinit,

0 otherwise.

Moreover, for all nodes vi ̸= vD (we consider 0/0 as 0):

WT [i, j] =
I(j,i)

Ii
.

Note that, by construction, the outgoing weights in GT are nor-
malized and, therefore, represent a discrete-time Markov chain. A
random walk in the chain will preferably visit nodes of high impact
on the epidemic as the transition probabilities are proportional to the
estimated infection probabilities. We compute the equilibrium distri-
bution of the corresponding Markov chain using the power iteration
method [G. Stewart and J. Miller, 1975]. We call the equilibrium
probability of a node normalized over Sinit its impact score. We only
consider the impact score for nodes in Sinit because only those are
eligible for vaccination. Note that a transmission graph for a single
simulation run is equivalent to the transmission tree where all edges
have weight one.

We can make the transmission graph even more accurate with a
variance reduction trick. During the simulation, instead of only stor-
ing the node that actually transmitted the infection, we store all
neighbors that could potentially have been the source of the infec-

5.4 Our Method: Sepia 111

tion. Typically, each infected neighbor is the source of transmission
with equal probability. It is straightforward to adapt the construc-
tion of the transmission graph accordingly, even in non-Markovian
settings.

5.4.3 Introducing Sepia

We combine rejection-based simulations and the transmission graph
analysis with an iterative optimization scheme to arrive at SEPIA.

Greedy Initialization. We use Ci to denote the set of vaccinated
nodes in iteration i. We start with an empty set, C0, of nodes to be
vaccinated. Until |Ci| = k, we compute the impact score for all nodes
vi ∈ Sinit (assuming nodes in Ci are vaccinated) and add the node
with the highest impact to Ci, leading to Ci+1.

Optimization. In each optimization step i, we randomly remove
one node (with equal probability) from Ci (leading to set Bi) and
compute the impact score of all nodes vi ∈ Sinit \Ci (assuming nodes
in Bi are vaccinated). Then we add one of the nodes with the highest
impact to Bi (nodes with higher impact are more likely to be chosen),
leading to Ci+1. We estimate F(Ci) in each iteration step and repeat
until some stopping criterion is reached. Then, we return the set that
yielded the highest estimated score.

112 Chapter 5

Vaccine Allocation Optimization

5.4.4 Discussion

Here, we want to address three non-obvious questions: (i) Why build
a transmission graph?, (ii) How is the graph related to the objective?,
and (iii) Why is it necessary to consider the dynamics at all?

Q.1: Building a Transmission Graph. Using the transmission graph
has multiple advantages. Most importantly, transmission trees only
mimic a subset of possible infection flows. In contrast, transmission
graphs allow to aggregate information over many runs in a principled
manner (cf. Figure 5.3, p. 114). This way, they capture the interplay
between connectivity and infection flow more precisely. Moreover,
computing the equilibrium of the Markov chain is computationally
fast and theoretically well principled. It is also possible to efficiently
build the transmission graph on-the-fly during the simulations.

Example 5.1: Transmission Graph

Consider Figure 5.3 (p. 114). Assume we want to estimate
the impact of the two successor nodes of patient zero based
on two simulation runs. Using, for example, the size of their
corresponding subtree in the transmission tree leads to mis-
leading results in this case. Specifically, both nodes would be
assigned drastically different values. Combining the two runs
in a transmission graph yields a more realistic impact score
than considering both runs separately. Note that edges point
to the origin of the infection, and the transmission graph is
shown without its dummy node.

Q.2: Impact Score and Objective. Note that we handle two different
problems. The impact score quantifies the question “How many nodes
became infected as a direct (‘multi-hop’) consequence from each node?”
However, the objective F(·) is concerned with “How many nodes will

5.4 Our Method: Sepia 113

contact network
with patient zero

1

1
1/2

1/2

transmission tree

1st run

transmission tree

2nd run

transmission graph

1st + 2nd run

Fig. 5.3.: Using the transmission graph (shown without dummy node)
leads to more realistic impact scores compared to considering
both simulations separately.

(on average) not become infected if a specific set of nodes is vaccinated?”
The latter question is notoriously more difficult to answer. They differ
because if we vaccinate a node, all of its children in the transmission
tree can still become infected via alternative paths. In this sense, the
impact score gives an over-approximation of the effect of vaccinating
a node. Colloquially, if we vaccinate a node with m children (on
average), then the best we can hope for is that these m nodes do not
become infected. Our optimization procedure picks nodes depending
on their theoretical (and over-approximated) capability to reduce
the spreading.

Q.3: Importance of Dynamics. The goal is to vaccinate nodes such
that the network becomes less “supportive” of epidemics spreading
in it. But why should the specific dynamics matter? In other words,
how can vaccinating a specific node be the right decision for some
infection rate constants and the wrong decision for other ones? We
give an example for this in Figure 5.4 where we have a single patient
zero and a budget of k = 1. We can either vaccinate the node to the
“right” to protect the fully connected component (FCC) with six nodes
or we can vaccinate the node to the “left” to protect the line-graph
with nine nodes. If the epidemic is “weak”, it will die out anyway
over the line graph, so it makes sense to protect the FCC. In contrast,
protecting the line-graph “saves” more nodes if the epidemic is strong
enough to conquer the whole graph.

114 Chapter 5

Vaccine Allocation Optimization

2 3

1 4

6 5

9 810

711

12 13 14 15

9 10

3 11

13 12

4 25

16

7 8 14 15

contact network
with patient zero

low infectiousness

α = 1, β = 1

high infectiousness

α = 1, β = 20

Fig. 5.4.: Assume k = 1. The best node to vaccinate depends on the
dynamics. If β is small, the infection will die out on its own in
the line graph, and it makes more sense to protect the FCC even
though it contains fewer nodes. The opacity illustrates a node’s
probability of becoming infected. The nodes are numbered in
decreasing order of their impact scores.

5.4.5 Generalizations

Our framework can easily be extended to various epidemic-type
models. The only necessity is that (i) the model can be simulated
(efficiently), (ii) there is a clear objective (e.g., maximize suscepti-
ble nodes in terminal states), and (iii) the transmission graph can
capture a direction of the information flow. Potential generalizations
include models with more disease stages (like SEIR), non-Markovian
dynamics (e.g., where the infectiousness of nodes changes over time),
weighted and directed networks, as well as temporal or adaptive
networks and time-discrete models. SEPIA can also be adapted to
different objectives. For instance, in the SIS model (where infected
nodes become susceptible again) the goal is typically to minimize
the number of infected nodes in the equilibrium. In that case, our
method would identify the nodes that are generally most impactful
for the epidemic spreading and not only with regards to a specific
initial set of infected nodes. Likewise, we could optimize the time-
points of vaccine distribution [Song et al., 2015]. When the rate
parameters are unknown, we suggest using an infection rate slightly
higher than the epidemic threshold.

5.4 Our Method: Sepia 115

(n = 1000, k = 3, | Iinit |= 1)
<latexit sha1_base64="XhwHu/G4GwN2Y/xCoMRy6cmh96o=">AAAC+3ichVFNSxxBEH2OSfzIhxs95jJkCSiEpSc5KISFhURJDoKBrAquLDOz7drsTM8w0yvRZSG/wj/gTbx682p+gZfklB+SQ173rgEVsYeeV/2q6nVVdZQnqjRC/JrwJh89fjI1PTP79NnzF3OVl/ObZdYvYtmMsyQrtqOwlInSsmmUSeR2XsgwjRK5FfU+Wv/WgSxKlelv5jCXu2nY1WpPxaEh1a6IRV0PhBBvWx/8Xv29hVaqOv6X9qBl5HczUFqZ4XBE1v1gqV2pippwy79rBGOj2vCvjv4A2Mgqv9FCBxli9JFCQsPQThCi5LeDAAI5uV0MyBW0lPNLDDHL3D6jJCNCsj3+uzztjFnNs9UsXXbMWxLugpk+3nCvOcWI0fZWSbsk/uU+clz33hsGTtlWeEiMqDjjFNfJG+wz4qHMdBx5XcvDmbYrgz2suG4U68sdY/uM/+t8oqcg13MeH6suskuNyJ0POAFNbLICO+VrBd913CGGDqVT0WPFkHoF0U6f9fCZg9uPetfYfFcLRC34GlQbjR9waxqv8BqLfNVlNPAZG6wjxjEucImf3tA78U69s1GoNzFCLODG8s7/AVmGooY=</latexit><latexit sha1_base64="+Ptf8aI8Do5vAVzfwPyM7zIhGGA=">AAAC+3ichVFNaxRBEH0ZNd8mq/GWy+AiRJClJzlEkIUFjdGDECGbBLJhmZntbJqd6RlmeoPJspBfkT/gTcRbbl7jL/CiN/+HB1/3bgQNIT30vOpXVa+rqqM8UaUR4seEd+fuvcmp6ZnZufn7C4uVBw93yqxfxLIZZ0lW7EVhKROlZdMok8i9vJBhGiVyN+q9tP7dY1mUKtPb5iSXB2nY1epQxaEh1a6IFV0PhBDPWi/8Xn3NQitVHf9te9Ay8oMZKK3McDgi637wtF2pippwy79uBGOj2vC/n/7a/PJoK6v8RAsdZIjRRwoJDUM7QYiS3z4CCOTkDjAgV9BSzi8xxCxz+4ySjAjJ9vjv8rQ/ZjXPVrN02TFvSbgLZvp4wv3aKUaMtrdK2iXxN/ep47o33jBwyrbCE2JExRmn+I68wREjbstMx5FXtdyeabsyOMRz141ifbljbJ/xX51X9BTkes7jY8NFdqkRufMxJ6CJTVZgp3yl4LuOO8TQoXQqeqwYUq8g2umzHj5z8P+jXjd2VmuBqAXvg2qjcQa3prGMx1jhq66jgTfYYh0xzvEVl/jmDb2P3ifv8yjUmxghlvDP8i7+AKgJo5A=</latexit><latexit sha1_base64="+Ptf8aI8Do5vAVzfwPyM7zIhGGA=">AAAC+3ichVFNaxRBEH0ZNd8mq/GWy+AiRJClJzlEkIUFjdGDECGbBLJhmZntbJqd6RlmeoPJspBfkT/gTcRbbl7jL/CiN/+HB1/3bgQNIT30vOpXVa+rqqM8UaUR4seEd+fuvcmp6ZnZufn7C4uVBw93yqxfxLIZZ0lW7EVhKROlZdMok8i9vJBhGiVyN+q9tP7dY1mUKtPb5iSXB2nY1epQxaEh1a6IFV0PhBDPWi/8Xn3NQitVHf9te9Ay8oMZKK3McDgi637wtF2pippwy79uBGOj2vC/n/7a/PJoK6v8RAsdZIjRRwoJDUM7QYiS3z4CCOTkDjAgV9BSzi8xxCxz+4ySjAjJ9vjv8rQ/ZjXPVrN02TFvSbgLZvp4wv3aKUaMtrdK2iXxN/ep47o33jBwyrbCE2JExRmn+I68wREjbstMx5FXtdyeabsyOMRz141ifbljbJ/xX51X9BTkes7jY8NFdqkRufMxJ6CJTVZgp3yl4LuOO8TQoXQqeqwYUq8g2umzHj5z8P+jXjd2VmuBqAXvg2qjcQa3prGMx1jhq66jgTfYYh0xzvEVl/jmDb2P3ifv8yjUmxghlvDP8i7+AKgJo5A=</latexit><latexit sha1_base64="oGkj1fSjMcAXtiNy7WilTBpYdVY=">AAAC+3ichVJdaxNBFD1dW+2njfroy9JQqFDCrH1oQQKBVtEHoYJpC00Ju5tpHLI7u+xOgm0I9Ff4B3yTvvatr/U/6G/xwTOTraBFOmFy7px775l7526UJ6o0QvyY8R7Mzj18NL+wuLS88ni19uTpQZkNi1i24yzJiqMoLGWitGwbZRJ5lBcyTKNEHkaDXes/HMmiVJn+aM5yeZKGfa1OVRwaUt2a2NDNQAix2XnlD5pbFjqp6vnvuuOOkZ/NWGllJpMp2fSDF91aXTSEW/5dI6iMOqq1n9V+ooMeMsQYIoWEhqGdIETJ3zECCOTkTjAmV9BSzi8xwSJzh4ySjAjJDvjf5+m4YjXPVrN02TFvSbgLZvpY537jFCNG21sl7ZL4i/vccf3/3jB2yrbCM2JExQWn+J68wSdG3JeZVpG3tdyfabsyOMWO60axvtwxts/4j84ePQW5gfP4eO0i+9SI3HnEF9DENiuwr3yr4LuOe8TQoXQqulIMqVcQ7euzHo45+Heod42Dl41ANIIPQb3VupgOfB7PsYYNTnUbLbzFPuuI8QXXuMF3b+J99b55l9NQb6b6SJ7hr+Vd/Qalfp/4</latexit>

Erdős–Rényi
<latexit sha1_base64="aENbWfOfVZhA7egPjneHOQXtAvo=">AAAC73ichVFNTxRBEH07Kp+KKxzhMHFD4mkz4wWPG1HjxYQlLpAAMT2zzdrZ2Z6xp5e4bvYP+Ae8Ea7ePIr/RE5e+Q8ceN0MJEAMPemp7levXlV1JUWmShtFf2vBg4ePpqZnZufmHz9ZeFp/trhV5kOTyk6aZ7nZSUQpM6VlxyqbyZ3CSDFIMrmd9Nedf/tQmlLl+qMdFXJ/IHpaHahUWEJ5fRF7sJD4yv8Yb2HQrbVRhkvYxBk0RlCYfKo3ombkV3j3EFeHRmvld/sfgI28fkrZLnKkGGJAeU35FBkESn67iBGhILbPpIJJLdM4v8QEc4wdkiXJEET7/Pd4261QzbvTLH10yiwZt2FkiFXud14xIVv71gyZFufc3zzW+2+GsVd2FY5oEyrOesUPxC0+k3Ff5KBiXtVyf6TryuIAr3w3ivUVHnF9ptc6b+gxxPreE3JQynciWKW7H/IFNG2HFbhXvlIIfcddWuGt9Cq6UhTUM7Tu9VkPxxzfHurdw9bLZhw143bcaL3G5ZrBMp7jBae6hhbeY4N1pPiOXzjBn+BL8CM4Co4vqUGtilnCjRX8vAC9e5oX</latexit><latexit sha1_base64="3qJao9mCYSAP9Tz/zuPJP9puxhc=">AAAC73ichVHBThRBEH07IgIKrHDUmIkbE0+bGS9y3AASLiSscYEECemZbZbOzvaMPb3EhXDk4g94I1y9eUT+BP/A+AseeN0MJkoIPemp7levXlV1JUWmShtFl7XgwdjD8UcTk1OPn0zPzNafzm2U+dCkspPmWW62ElHKTGnZscpmcqswUgySTG4m/SXn3zyQplS5/mBHhdwZiJ5WeyoVllBen8NHWEh85v8I72DQrbVRhvN4j1/QGEHheLfeiJqRX+HtQ1wdGq3n5+3fJy/O1/P6T8p2kSPFEAPKa8qnyCBQ8ttGjAgFsR0mFUxqmcb5JY4xxdghWZIMQbTPf4+37QrVvDvN0kenzJJxG0aGeMW94hUTsrVvzZBp8Yf70GO9OzMceWVX4Yg2oeKkV1wjbrFPxn2Rg4p5U8v9ka4riz0s+G4U6ys84vpM/+os02OI9b0n5KCU70SwSnc/4Ato2g4rcK98oxD6jru0wlvpVXSlKKhnaN3rsx6OOf5/qLcPG2+acdSM23GjtYjrNYFneInXnOpbtLCKddaR4gu+4wcugk/B1+A0OLumBrUqZh7/rODbFdfbm30=</latexit><latexit sha1_base64="3qJao9mCYSAP9Tz/zuPJP9puxhc=">AAAC73ichVHBThRBEH07IgIKrHDUmIkbE0+bGS9y3AASLiSscYEECemZbZbOzvaMPb3EhXDk4g94I1y9eUT+BP/A+AseeN0MJkoIPemp7levXlV1JUWmShtFl7XgwdjD8UcTk1OPn0zPzNafzm2U+dCkspPmWW62ElHKTGnZscpmcqswUgySTG4m/SXn3zyQplS5/mBHhdwZiJ5WeyoVllBen8NHWEh85v8I72DQrbVRhvN4j1/QGEHheLfeiJqRX+HtQ1wdGq3n5+3fJy/O1/P6T8p2kSPFEAPKa8qnyCBQ8ttGjAgFsR0mFUxqmcb5JY4xxdghWZIMQbTPf4+37QrVvDvN0kenzJJxG0aGeMW94hUTsrVvzZBp8Yf70GO9OzMceWVX4Yg2oeKkV1wjbrFPxn2Rg4p5U8v9ka4riz0s+G4U6ys84vpM/+os02OI9b0n5KCU70SwSnc/4Ato2g4rcK98oxD6jru0wlvpVXSlKKhnaN3rsx6OOf5/qLcPG2+acdSM23GjtYjrNYFneInXnOpbtLCKddaR4gu+4wcugk/B1+A0OLumBrUqZh7/rODbFdfbm30=</latexit><latexit sha1_base64="Kke4aT55lEoVynxhMfxdEEV45S8=">AAAC73ichVHBThsxEH1ZCiVpoQGOXFaNKvUU7fZSjqgtiEslQE2CBKjybkywsvFuvQ4iIH6AH+it6pUbV/gT+IP+Qw99dpdKgCq88o795s2bGU9SZKq0UXRTC6aeTc88n603Xrycm3/VXFjslvnYpLKT5lludhJRykxp2bHKZnKnMFKMkkz2kuFH5+8dSVOqXH+xk0Luj8RAqwOVCksoby5iDxYSx/yfYg0G/doWynAJ2/gFjQkUzr42W1E78it8fIirQwvV2sybt5TtI0eKMUaU15RPkUGg5LeLGBEKYvtMKpjUMo3zS5yhwdgxWZIMQXTI/4C33QrVvDvN0kenzJJxG0aGeMO97hUTsrVvzZBp8Zv7xGOD/2Y49cquwgltQsW6V/xM3OKQjKciRxXzrpanI11XFgdY8d0o1ld4xPWZ/tP5RI8hNvSekINSvhPBKt39iC+gaTuswL3ynULoO+7TCm+lV9GVoqCeoXWvz3o45vjhUB8fuu/acdSOt+LW6odq4LNYxmu85VTfYxUb2GQdKc5xiStcB9+C78GP4OdfalCrYpZwbwUXfwCseZfS</latexit>

Geometric
<latexit sha1_base64="C9RPNEJrkx6vw4U1cqkvhoPLBeA=">AAAC23ichVHLLgRBFD3ae7waS5uJicRq0m3DRoj3RkJikDCR7lZGZfqV6hrBRCKxE1s7W37FN/AtFk6XJkFEdarvrXPPPXXvLT8NZaYd56XD6uzq7unt6y8NDA4Nj9ijY7tZ0lKBqAVJmKh938tEKGNR01KHYj9Vwov8UOz5zeU8vncmVCaTeEdfpKIeeY1YnsjA04SObPtQi3PdXhdJJLSSwdWRXXGqjlnl345bOJWF59L8NYCtxH7FIY6RIEALEQRiaPohPGT8DuDCQUqsjjYxRU+auMAVSsxtkSXI8Ig2+W/wdFCgMc+5ZmayA94ScitmljHFvWYUfbLzWwX9jPaN+9JgjT9vaBvlvMILWp+K/UZxk7jGKRn/ZUYF87OW/zPzrjROMGe6kawvNUjeZ/Cls8KIItY0kTJWDbNBDd+czziBmLbGCvIpfyqUTcfHtJ6xwqjEhaJHPUWbT5/18Jndn4/629mdqbpO1d12K4tL+Fh9mMAkpvmqs1jEBrZYR8CaHvCIJ6tu3Vi31t0H1eoocsbxbVn37w1ol9o=</latexit><latexit sha1_base64="9wnfBOJbQfw6Uc9x7uNhYrAsaxk=">AAAC23ichVFLS8NAEJ7GV42vqEcvwSJ4KokXvYjF90VQsA+wRZK4rUvzYrMVtfTkTbx68yb6V/wJor/Fg1+2qaAibtjM7DfffDsz68Y+T6RlveW0oeGR0bH8uD4xOTU9Y8zOVZKoIzxW9iI/EjXXSZjPQ1aWXPqsFgvmBK7Pqm57K41XL5hIeBQey6uYNQKnFfIm9xwJ6NQw6pJdyu4eiwImBfd6p0bBKlpqmb8dO3MKGy/6evz4qh9GxjvV6Ywi8qhDATEKScL3yaEE3wnZZFEMrEFdYAIeV3FGPdKR2wGLgeEAbePfwukkQ0OcU81EZXu4xccWyDRpCXtXKbpgp7cy+AnsB/a1wlp/3tBVymmFV7AuFMeV4gFwSedg/JcZZMxBLf9npl1JatKa6oajvlghaZ/el842IgJYW0VM2lHMFjRcdb7ABELYMipIpzxQMFXHZ7COskyphJmiAz0Bm04f9eCZ7Z+P+tuprBRtq2gf2YXSJvVXnhZokZbxqqtUon06RB0eanqgJ3rWGtqNdqvd9alaLsuZp29Lu/8ER26ZTg==</latexit><latexit sha1_base64="9wnfBOJbQfw6Uc9x7uNhYrAsaxk=">AAAC23ichVFLS8NAEJ7GV42vqEcvwSJ4KokXvYjF90VQsA+wRZK4rUvzYrMVtfTkTbx68yb6V/wJor/Fg1+2qaAibtjM7DfffDsz68Y+T6RlveW0oeGR0bH8uD4xOTU9Y8zOVZKoIzxW9iI/EjXXSZjPQ1aWXPqsFgvmBK7Pqm57K41XL5hIeBQey6uYNQKnFfIm9xwJ6NQw6pJdyu4eiwImBfd6p0bBKlpqmb8dO3MKGy/6evz4qh9GxjvV6Ywi8qhDATEKScL3yaEE3wnZZFEMrEFdYAIeV3FGPdKR2wGLgeEAbePfwukkQ0OcU81EZXu4xccWyDRpCXtXKbpgp7cy+AnsB/a1wlp/3tBVymmFV7AuFMeV4gFwSedg/JcZZMxBLf9npl1JatKa6oajvlghaZ/el842IgJYW0VM2lHMFjRcdb7ABELYMipIpzxQMFXHZ7COskyphJmiAz0Bm04f9eCZ7Z+P+tuprBRtq2gf2YXSJvVXnhZokZbxqqtUon06RB0eanqgJ3rWGtqNdqvd9alaLsuZp29Lu/8ER26ZTg==</latexit><latexit sha1_base64="NcRW74K1VFhLnqLI/+dsOas/QTY=">AAAC23ichVFLS8NAEJ7GV1tfUY9eikXwVBIveiy+L0IF+4C2lCTdxqV5sdkWa+nJm3j15lX/k/4WD35Zo6BFumEzs9988+3Mjh15PJaG8ZbR5uYXFpeyufzyyuraur6xWYvDgXBY1Qm9UDRsK2YeD1hVcumxRiSY5dseq9v94yReHzIR8zC4lqOItX3LDXiPO5YE1NH1lmS3cnzOQp9JwZ1JRy8aJUOtwrRjpk6R0lUJ9XdqUZdCcmhAPjEKSML3yKIYX5NMMigC1qYxMAGPqzijCeWROwCLgWEB7ePv4tRM0QDnRDNW2Q5u8bAFMgu0i32mFG2wk1sZ/Bj2A/tOYe6/N4yVclLhCNaGYk4pXgKXdAPGrEw/ZX7XMjsz6UpSjw5VNxz1RQpJ+nR+dE4QEcD6KlKgU8V0oWGr8xAvEMBWUUHyyt8KBdVxF9ZSlimVIFW0oCdgk9dHPRiz+Xeo005tv2QaJfPKLJaP0oFnaZt2aA9TPaAyXVAFdTio6Zle6FVra/fag/b4RdUyac4W/Vra0ycHGJYN</latexit>

(n = 100, k = 2, | Iinit |= 5)
<latexit sha1_base64="oAUgU2GOXRB3ARi5+hJ42ePUmVk=">AAAC+nichVFNSxxBEH2OJn7ka9VjLoNLwEDYzCyIgiwsqEEPAQNZFVxZZmbbTbMzPcNMr6jrgn/CP5Bb8OrNq/kHucSTPySHvO5dA4kEe+h51a+qXldVh1ksC+15P8ec8YknTyenpmeePX/x8lVpdm6nSHt5JBpRGqf5XhgUIpZKNLTUsdjLchEkYSx2w+6a8e8eibyQqfqsTzJxkAQdJQ9lFGhSrdL7RVXzPe9dc9Xt1qoGmolsu1utflOLY92XSurBYEjW3KW3rVLZq3h2uQ8Nf2SU6+6P0zsA22npFk20kSJCDwkEFDTtGAEKfvvw4SEjd4A+uZyWtH6BAWaY22OUYERAtst/h6f9Eat4NpqFzY54S8ydM9PFG+4PVjFktLlV0C6Iv7hPLdf57w19q2wqPCGGVJy2ih/Ja3xhxGOZySjyvpbHM01XGodYsd1I1pdZxvQZ/dFZpycn17UeFxs2skON0J6POAFFbLACM+V7Bdd23CYGFoVVUSPFgHo50Uyf9fCZ/X8f9aGxU634XsX/5Jfr9XPYNYXXWMAiX3UZdWxim3VEuMA1bvDdOXO+Ot+cy2GoMzZEzOOv5Vz9Br4Wok8=</latexit><latexit sha1_base64="heEtHP/OZFdFYgXMaN/FY5+KXrE=">AAAC+nichVFNSxxBEH2OiV+JuibechlcAgbCOiOIQlhYSMzHIaDgquDKMjPbrs3O9AwzvaJuFvIn8ge8SSCn3HLVf5BLcvN/ePB17xpIJNhDz6t+VfW6qjrMYlloz/s14ow+eDg2PjE59ejx9Mxsae7JdpF280jUozRO890wKEQslahrqWOxm+UiSMJY7ISd18a/cyTyQqZqS59kYj8J2koeyCjQpJqlpUVV9T3vZeOV26kuG2gksuV+aPYaWhzrnlRS9/sDsuquvGiWyl7Fs8u9a/hDo1xzf55evfs2v5GWfqOBFlJE6CKBgIKmHSNAwW8PPjxk5PbRI5fTktYv0McUc7uMEowIyHb4b/O0N2QVz0azsNkRb4m5c2a6eM791iqGjDa3CtoF8Zr71HLt/97Qs8qmwhNiSMVJq/iRvMYhI+7LTIaRt7Xcn2m60jjAmu1Gsr7MMqbP6I/OG3pych3rcbFuI9vUCO35iBNQxDorMFO+VXBtxy1iYFFYFTVUDKiXE830WQ+f2f/3Ue8a28sV36v4m365VvsMuybwDAtY5Kuuoob32GAdEb7gBy5w6Xxyzpxz5+sg1BkZIJ7ir+V8vwEMqKNZ</latexit><latexit sha1_base64="heEtHP/OZFdFYgXMaN/FY5+KXrE=">AAAC+nichVFNSxxBEH2OiV+JuibechlcAgbCOiOIQlhYSMzHIaDgquDKMjPbrs3O9AwzvaJuFvIn8ge8SSCn3HLVf5BLcvN/ePB17xpIJNhDz6t+VfW6qjrMYlloz/s14ow+eDg2PjE59ejx9Mxsae7JdpF280jUozRO890wKEQslahrqWOxm+UiSMJY7ISd18a/cyTyQqZqS59kYj8J2koeyCjQpJqlpUVV9T3vZeOV26kuG2gksuV+aPYaWhzrnlRS9/sDsuquvGiWyl7Fs8u9a/hDo1xzf55evfs2v5GWfqOBFlJE6CKBgIKmHSNAwW8PPjxk5PbRI5fTktYv0McUc7uMEowIyHb4b/O0N2QVz0azsNkRb4m5c2a6eM791iqGjDa3CtoF8Zr71HLt/97Qs8qmwhNiSMVJq/iRvMYhI+7LTIaRt7Xcn2m60jjAmu1Gsr7MMqbP6I/OG3pych3rcbFuI9vUCO35iBNQxDorMFO+VXBtxy1iYFFYFTVUDKiXE830WQ+f2f/3Ue8a28sV36v4m365VvsMuybwDAtY5Kuuoob32GAdEb7gBy5w6Xxyzpxz5+sg1BkZIJ7ir+V8vwEMqKNZ</latexit><latexit sha1_base64="iIBvquuuay0nw1SVW6j2jtH0BjA=">AAAC+nichVJdSxtBFD1urV+1NtZHXxZDQaGku4GiIIFAW9GHgoJRwUjY3YxxyO7ssjsRbRrwT/QP9K30tW++2h/R/hYfPDNZC60UJ0zOnXPvPXPv3A2zWBba835NOE8mn05Nz8zOPZt/vvCisvjyoEgHeSRaURqn+VEYFCKWSrS01LE4ynIRJGEsDsP+O+M/PBd5IVO1ry8zcZIEPSVPZRRoUp3Km1XV8D3vdXvT7TfqBtqJ7Lo7nWFbiws9lErq0WhMNty3a51K1at5drkPDb80qijXblr5jTa6SBFhgAQCCpp2jAAFf8fw4SEjd4IhuZyWtH6BEeaYO2CUYERAts//Hk/HJat4NpqFzY54S8ydM9PFK+4tqxgy2twqaBfEW+5Pluv994ahVTYVXhJDKs5axY/kNc4Y8VhmUkbe1/J4pulK4xQbthvJ+jLLmD6jPzrv6cnJ9a3HxQcb2aNGaM/nfAFFbLEC88r3Cq7tuEsMLAqrokrFgHo50bw+6+GY/X+H+tA4qNd8r+bv+dVm82o88BksYwWrnOo6mtjGLuuI8AXXuMFP57Pz1fnmfB+HOhPlR7KEv5bz4w4KHZ/B</latexit>

BA
<latexit sha1_base64="lJyzOjOFAXKO4dcaWEcJwvPKQ28=">AAAC0nichVFNS8NAEH2N3/Wr6tFLsQieSuJFL2KtH3gRFGyttEWSdFtD0yQk26IWQfHqzav+Hn+D/hYPvqxR0CLdsJnZN2/ezsxagetEUtffUtrI6Nj4xORUenpmdm4+s7BYjvxuaIuS7bt+WLHMSLiOJ0rSka6oBKEwO5Yrzqz2bhw/64kwcnzvVF4Hot4xW57TdGxTEjqvSXEl+8Wd24tMTs/ramUHHSNxctuv6a07AMd+5h01NODDRhcdCHiQ9F2YiPhVYUBHQKyOPrGQnqPiArdIM7dLliDDJNrmv8VTNUE9nmPNSGXbvMXlDpmZxSr3gVK0yI5vFfQj2g/uG4W1/r2hr5TjCq9pLSpOKcUj4hKXZAzL7CTM71qGZ8ZdSTSxqbpxWF+gkLhP+0dnj5GQWFtFsthXzBY1LHXucQIebYkVxFP+Vsiqjhu0prJCqXiJokm9kDaePuvhMxt/H3XQKa/nDT1vnBi5QhFfaxLLWMEaX3UDBRzimHXYrOQJz3jRTrUb7V57+KJqqSRnCb+W9vgJ2GOURw==</latexit><latexit sha1_base64="PnsyNuurE1yrfFExwTmnZIEfSiA=">AAAC0nichVFLT8JAEB7qC+oL9eilkZh4Iq0XvRgRH/FiggkvA8S0ZcGGvtIuRCAcjFdvXvXkj/EnGP0tHvy6FBMlxm22M/vNN9/OzBq+bYVcVd8T0szs3PxCMiUvLi2vrKbX1suh1w1MVjI92wuqhh4y23JZiVvcZlU/YLpj2KxidI6jeKXHgtDy3CLv+6zh6G3XalmmzgFd1Tm75cP80eg6nVGzqljKtKPFTubwVT7wX97kgpf+oDo1ySOTuuQQI5c4fJt0CvHVSCOVfGANGgIL4FkizmhEMnK7YDEwdKAd/Ns41WLUxTnSDEW2iVts7ACZCm1jnwlFA+zoVgY/hP3EHgis/ecNQ6EcVdiHNaCYEooXwDndgPFfphMzJ7X8nxl1xalF+6IbC/X5Aon6NL91ThAJgHVERKFTwWxDwxDnHibgwpZQQTTliYIiOm7C6sIyoeLGijr0Atho+qgHz6z9ftRpp7yb1dSsdqllcnkaryRt0hbt4FX3KEfnVEAdJip5pCd6lorSQLqT7sdUKRHnbNCPJT18ARJ4lbs=</latexit><latexit sha1_base64="PnsyNuurE1yrfFExwTmnZIEfSiA=">AAAC0nichVFLT8JAEB7qC+oL9eilkZh4Iq0XvRgRH/FiggkvA8S0ZcGGvtIuRCAcjFdvXvXkj/EnGP0tHvy6FBMlxm22M/vNN9/OzBq+bYVcVd8T0szs3PxCMiUvLi2vrKbX1suh1w1MVjI92wuqhh4y23JZiVvcZlU/YLpj2KxidI6jeKXHgtDy3CLv+6zh6G3XalmmzgFd1Tm75cP80eg6nVGzqljKtKPFTubwVT7wX97kgpf+oDo1ySOTuuQQI5c4fJt0CvHVSCOVfGANGgIL4FkizmhEMnK7YDEwdKAd/Ns41WLUxTnSDEW2iVts7ACZCm1jnwlFA+zoVgY/hP3EHgis/ecNQ6EcVdiHNaCYEooXwDndgPFfphMzJ7X8nxl1xalF+6IbC/X5Aon6NL91ThAJgHVERKFTwWxDwxDnHibgwpZQQTTliYIiOm7C6sIyoeLGijr0Atho+qgHz6z9ftRpp7yb1dSsdqllcnkaryRt0hbt4FX3KEfnVEAdJip5pCd6lorSQLqT7sdUKRHnbNCPJT18ARJ4lbs=</latexit><latexit sha1_base64="I0v9/1vKrCNsViMua549/kyaj/8=">AAAC0nichVFLT8JAEB7qC/CFevTSSEw8kdaLHhEf8WKCCS8DxGzLghv6SrsQgXAwXr151R+mv8WDX9diosS4zXZmv/nm25kdK3BEJA3jLaUtLC4tr6Qz2dW19Y3N3NZ2LfIHoc2rtu/4YcNiEXeEx6tSSIc3gpAz13J43eqfxvH6kIeR8L2KHAW87bKeJ7rCZhLQTUvyezkpnUxvc3mjYKilzztm4uQpWWU/904t6pBPNg3IJU4eSfgOMYrwNckkgwJgbZoAC+EJFec0pSxyB2BxMBjQPv49nJoJ6uEca0Yq28YtDnaITJ32sS+UogV2fCuHH8F+YI8V1vvzholSjiscwVpQzCjFK+CS7sD4L9NNmLNa/s+Mu5LUpWPVjUB9gULiPu1vnTNEQmB9FdHpXDF70LDUeYgX8GCrqCB+5ZmCrjruwDJluVLxEkUGvRA2fn3UgzGbv4c679QOC6ZRMK/NfLGUDDxNu7RHB5jqERXpksqow0Ylz/RCr1pFG2sP2uMXVUslOTv0Y2lPn9ITkno=</latexit>

(n = 10000, k = 10, | Iinit |= 10)
<latexit sha1_base64="9kUZsse1JQp0I9xssAvPLzWcvtk=">AAAC/nichVFNSxxBEH2OMX4nazzmMrgICrLMmEMCIixEQzwIClkVXFlmZtu12ZmeYaZX1GXBv+Ef8BZyzS3XePeiJ3+Ih7zuXQMqYg09r/pV1euq7jCLZaE972bIGX4z8nZ0bHxicmr63fvSzIedIu3kkahFaZzme2FQiFgqUdNSx2Ivy0WQhLHYDdtfTXz3WOSFTNUPfZqJgyRoKXkoo0CTapQ+LahV36Mt1VfcNl2D9UQ23Y1Gt67Fie5KJXWv1ydXXd9bbJTKXsWz5j53/IFTrrrXZ3cAttLSLepoIkWEDhIIKGj6MQIU/Pbhw0NG7gBdcjk9aeMCPUywtsMswYyAbJv/Fnf7A1ZxbzQLWx3xlJgrZ6WLea5vVjFktjlV0C+I91xnlmu9eELXKpsOT4khFcet4iZ5jSNmvFaZDDIfenm90kylcYgvdhrJ/jLLmDmj/zprjOTk2jbiYt1mtqgR2v0xb0ARa+zA3PKDgmsnbhIDi8KqqIFiQL2caG6f/fCZ/aeP+tzZWa74XsXf9svV6jmsjeEj5rDAV/2MKr5ji31EuMAf/MWVc+5cOj+dX/1UZ6iPmMUjc37/A0MxozI=</latexit><latexit sha1_base64="6zUNpegOpYs9irJbMDIvMcoNP7g=">AAAC/nichVFNSxxBEH2OmviRxFVz8zJkCSiEZUYPBkRYUPNxEAy4KriyzMy2a7MzPcNMr6jLgn/DP5Bb9JpbrubuRW/+jxzyuncNJBKsoedVv6p6XdUdZrEstOfdDjnDI6PPno+NT0y+ePlqqjQ9s1OknTwStSiN03wvDAoRSyVqWupY7GW5CJIwFrthe83Ed49FXshUbevTTBwkQUvJQxkFmlSjtDSvVn2P9q6+4rbpGqwnsul+bnTrWpzorlRS93p9ctX1vYVGqexVPGvuY8cfOOWqe3N2//Hy9VZaukMdTaSI0EECAQVNP0aAgt8+fHjIyB2gSy6nJ21coIcJ1naYJZgRkG3z3+Juf8Aq7o1mYasjnhJz5ax08Zbrg1UMmW1OFfQL4i+uM8u1/ntC1yqbDk+JIRXHreImeY0jZjxVmQwyH3p5utJMpXGI93Yayf4yy5g5oz8664zk5No24mLDZraoEdr9MW9AEWvswNzyg4JrJ24SA4vCqqiBYkC9nGhun/3wmf1/H/Wxs7NY8b2K/8UvV6vnsDaGObzBPF91GVV8whb7iHCBH7jGT+fc+ep8c676qc5QHzGLv8z5/huRtKQ8</latexit><latexit sha1_base64="6zUNpegOpYs9irJbMDIvMcoNP7g=">AAAC/nichVFNSxxBEH2OmviRxFVz8zJkCSiEZUYPBkRYUPNxEAy4KriyzMy2a7MzPcNMr6jLgn/DP5Bb9JpbrubuRW/+jxzyuncNJBKsoedVv6p6XdUdZrEstOfdDjnDI6PPno+NT0y+ePlqqjQ9s1OknTwStSiN03wvDAoRSyVqWupY7GW5CJIwFrthe83Ed49FXshUbevTTBwkQUvJQxkFmlSjtDSvVn2P9q6+4rbpGqwnsul+bnTrWpzorlRS93p9ctX1vYVGqexVPGvuY8cfOOWqe3N2//Hy9VZaukMdTaSI0EECAQVNP0aAgt8+fHjIyB2gSy6nJ21coIcJ1naYJZgRkG3z3+Juf8Aq7o1mYasjnhJz5ax08Zbrg1UMmW1OFfQL4i+uM8u1/ntC1yqbDk+JIRXHreImeY0jZjxVmQwyH3p5utJMpXGI93Yayf4yy5g5oz8664zk5No24mLDZraoEdr9MW9AEWvswNzyg4JrJ24SA4vCqqiBYkC9nGhun/3wmf1/H/Wxs7NY8b2K/8UvV6vnsDaGObzBPF91GVV8whb7iHCBH7jGT+fc+ep8c676qc5QHzGLv8z5/huRtKQ8</latexit><latexit sha1_base64="ri6llxR+x1EfUbwFBm+Qh8d+VKk=">AAAC/nichVJNSxxBEH1ONH4mbszRy+AiGAjLjB4UgrBgInoQFFwVXFlmZtu12ZmeYaZXYpYF/0b+QG7i1ZtX/Qnmt+Tg695RSCRYQ09Vv6p6XdXVYRbLQnvew4jzZnTs7fjE5NT0zLv3s5UPcwdF2ssj0YjSOM2PwqAQsVSioaWOxVGWiyAJY3EYdjeM//Bc5IVM1b6+yMRJEnSUPJVRoAm1KitLat33KJ+bX9wuTaObiWy7261+U4vvui+V1IPBEFx3fe9Tq1L1ap4V96Xhl0YVpeymld9ooo0UEXpIIKCgaccIUPA7hg8PGbET9InltKT1CwwwxdweowQjAqJd/jvcHZeo4t5wFjY74ikxV85MF4tcm5YxZLQ5VdAuqP9w/bBY578n9C2zqfCCOiTjpGXcIa5xxojXMpMy8qmW1zNNVxqnWLPdSNaXWcT0GT3zfKUnJ9a1HhffbGSHHKHdn/MGFHWDFZhbfmJwbcdt6sBqYVlUyRiQL6c2t896OGb/36G+NA6Wa75X8/f8ar1+ORz4BOaxgCVOdRV1bGGXdUT4iVvc4d65dH45V871MNQZKR/JR/wlzs0jjymgpA==</latexit>

Sepia

Fig. 5.5.: [Higher is better.] Optimization of F(X) (terminal fraction of
expected susceptible nodes) on three sample networks.

CP
U
Ti
m
e
(se

c)

Number of Nodes

Fig. 5.6.: [Lower is better.] Runtime of 103 simulations and solution of the
corresponding transmission graph based on random d-regular
graphs.

5.5 Experimental Results

We compare different vaccine allocation methods on synthetic contact
networks.

Baseline. The following baselines are used: RANDOM (expected
F(X) when random nodes are vaccinated), DAVA, and DAVA-FAST

[Yao Zhang and Prakash, 2015], PAGERANK, PERS. PAGERANK (per-
sonalized PageRank) [Jeh and Widom, 2003; Yao Zhang and Prakash,
2015], and DEGREE (pick nodes with highest degree).

116 Chapter 5

Vaccine Allocation Optimization

Setup. We used synthetic networks following three random graph
models (Erdős-Rényi, Geometric, and Barabási-Albert (BA)) with
102, 103, and 104 nodes, respectively. The corresponding budgets
are k = 2, k = 3, and k = 10. We use 103 simulation runs for each
construction of the transmission tree.

Results. We analyze the runtime of a complete construction and
solution of a transmission graph based on d-regular random graphs
(i.e., all nodes have precisely d neighbors) with varying degree d and
n. Practically, the runtime is almost linear in n. Theoretically, the
number of simulation steps in each run increases linearly. The costs
of each simulation step increase sub-linearly. The costs of solving the
DTMC also increase linearly. We see that, even though the number
of iteration steps is relatively small, SEPIA is superior to or (almost)
on par with the baselines in the experiments (Figure 5.5, p. 116).
SEPIA struggles the most with BA graph, which is a special case that
highlights potential problems. It seems that the general strategy of
SEPIA to separate the initially infected from the susceptible nodes
does not work better than identifying the nodes, which are generally
crucial for the graph’s resilience against epidemics. This is because
BA graphs typically possess a small subset of nodes that are highly
effective candidates for vaccination regardless of the infection source.
Note that DAVA also struggles in this case while DEGREE and both
PAGERANK methods shine. Runtime results are reported in Figure
5.5 (p. 116).

5.5 Experimental Results 117

5.6 Implications and Future Work

This chapter presented a novel technique to find a network’s most
suitable vaccination candidates. Unlike other methods, our approach
is based on statistically correct simulations, which are analyzed using
the transmission graph. The transmission graph represents the flow
of a pathogen in the network as a directed weighted graph and
provides a principled over-approximation of the node’s impact on an
epidemic. The method is suitable for all epidemic models that can be
efficiently simulated. An interesting extension would be to perform
different types of information flow analysis (and ranking methods)
on the transmission graph, not only random walks. It remains to
be determined which flow analysis is most useful for which type of
objective (e.g., vaccination, control, influence maximization).

Implications. That this chapter is a highly theoretical work that
cannot—and should not—be taken as a directive to act in the event
of a real-world pandemic. The assumption that we have perfect
knowledge of the underlying contact network and the transmission
parameters of the pathogen is unrealistic for real-world applications
(at least for epidemic spreading). Accounting for dynamics through
simulation is particularly useful in the early stages of a pandemic.
However, often no vaccine is available at this point (the 2022 mon-
keypox outbreak might be an exception).

In the Covid-19 pandemic, most countries prioritized health care
workers in the vaccination order. This can be seen as a basic form of
impact score estimation. Health care workers are close to infected
individuals/nodes and have, therefore, a high chance of becoming
infected themselves. Moreover, their high degree (many contacts) in-
creases their impact. In contrast, prioritizing elderly people assumes
heterogeneity in the population (where the infection of vulnerable
individuals is particularly costly) that we did not model in this work.

118 Chapter 5

Vaccine Allocation Optimization

Some researchers also advocated for a more DEGREE-like vaccination
order [C. Cox, 2020]. While DEGREE provides an intuitive and simple
baseline, it should be pointed out that the performance of DEGREE

on synthetic static networks might not be directly translatable to
dynamic real-world networks. A DEGREE-based policy would also
raise ethical concerns. For instance, it could lead to a situation where
people would be “punished” for following social distancing and hav-
ing few contacts. Meanwhile, others would be rewarded with early
vaccination for having many contacts and posing a greater threat to
society. Further discussions on the ethical implications of vaccination
prioritization cannot be made here but are essential to consider for
real-world decision making.

5.6 Implications and Future Work 119

Covid-19 and the
Limitations of Modeling

6
In the course of the Covid-19 pandemic, mathematical modeling
quickly became a topic of public interest and a controversial asset in
the increasingly polarized social discourse. This chapter identifies
misconceptions and limitations of common computational epidemic
modeling techniques. Particularly, we highlight the importance of
population heterogeneity and explain why many models used in the
current Covid-19 pandemic cannot adequately capture it. Code is
made available1.

Our key idea is to synchronize the rate parameters of different
epidemiological models to compare their dynamics in a principled
way. In addition, we use node-level infection parameters, allowing us
to control and study (variations in) connectivity and infectiousness
separately.

6.1 Introduction

At the beginning of 2020, the world was hit by the coronavirus (SARS-
CoV-2) pandemic. Faced with the approaching overload of healthcare
systems, the international community turned to non-pharmaceutical
interventions (NPIs) in an attempt to contain the spread of the
pathogen [Brauner et al., 2020]. Computational epidemiological
modeling became a vital asset to predict the propagation and to

1github.com/gerritgr/Covid19Dispersion

121

evaluate the prospective effectiveness of various measures such as
school closures and travel restrictions [David Adam, 2020; Bui et
al., 2020]. For an overview of Covid-19 models and their successes
and failures, we refer the reader to Kuhl (2020) and Holmdahl and
Buckee (2020).

This chapter discusses the consequence of population heterogeneity
for computational epidemiology. We study two types of heterogeneity
and their influence on the emerging pandemic:

Individual Variations in Contact Numbers
As in all previous chapters, we assume a contact network that
specifies the interaction structure. Individual connectivity vari-
ations naturally follow from this.

Individual Variations in Infectiousness
Infectiousness describes how infectious an individual becomes
when infected (e.g., how much viral load the subject emits).
Unlike the previous chapters, this chapter assumes variations
among nodes/individuals.

Note that we use the term infectiousness as a property of the host. It
denotes the probability of passing a pathogen over an edge.

We qualitatively study the dynamical evolution based on different
properties, such as the height of the infection peak and the fluctu-
ations of the effective reproduction number Rt (average number of
secondary infections at timepoint t). Furthermore, we study how
this heterogeneity influences the dispersion during an epidemic’s evo-
lution. Covid-19 is associated with an exceptional high dispersion
and understanding how it emerges is a crucial asset in controlling
the pandemic [Althouse et al., 2020].

122 Chapter 6

Covid-19 and the Limitations of Modeling

Terminology and Concepts

A noticeable example of heterogeneity in a population’s interac-
tion structure are individuals with extraordinarily many contacts,
so-called hubs. Similarly, super-spreader events refer to temporary
gatherings where a single infected individual (potentially) infects
many others. The evidence for the importance of hubs and super-
spreader events became increasingly conclusive over time [Cave,
2020; Riou and Althaus, 2020; Dillon Adam et al., 2020; Hasan et al.,
2020]. It was pointed out early in the pandemic that many models
do not accurately capture them [Shen et al., 2020].

The concept of (over-)dispersion is closely related [Lloyd-Smith et al.,
2005; Lloyd-Smith, 2007; Müller and Hösel, 2020] and is consistently
reported for the Covid-19 pandemic [Cevik et al., 2020; Endo et al.,
2020; Tariq et al., 2020; Hébert-Dufresne et al., 2020; K. Sun et al.,
2020]. In short, this concept reflects that a small number of infected
individuals infect many others, while most infected individuals infect
no one or only very few. Overdispersion can be caused by hubs (many
contacts, average transmission probability) but also by individuals
with high infectiousness (average contact number, high transmission
probability).

Viral load levels (and other properties that determine a host’s infec-
tiousness) differ between individuals and within individuals over
time [T. C. Jones et al., 2020; Walker et al., 2020; Goyal et al., 2020;
Walsh et al., 2020]. While many models include the temporal aspect,
the effects of individual variations are not well explored.

6.1.1 Method Overview

To study the effects of heterogeneity, we translate a typical ODE
model for the spread of Covid-19 to a stochastic network-based

6.1 Introduction 123

model. Then, we modulate the connectivity (by looking at different
contact networks) and the infectiousness (by sampling the infection
rate parameters from a distribution). We study how this modulation
alters the dynamical evolution. The critical part of the comparison
is that we keep population averages fixed. For instance, we only
compare networks with the same overall connectivity (mean degree).
We also only compare epidemic models with the same mean infection
rate parameters and study different degrees of deviation. Hence,
we can study the effects of variations, not the effects of different
population averages.

Our contributions are as follows:

1. We give an overview of popular Covid-19 models based on
ODEs, branching processes, and networks and discuss their
(implicit) assumptions about a population’s heterogeneity.

2. We show that imposing common interaction structures (i.e.,
using a graph to determine how infections can propagate)
drastically changes an epidemic’s evolution.

3. We analyze the additional effects of individual viral load varia-
tions.

4. We propose a novel method for quantifying time-dependent
dispersion based on an empirical analysis of simulation runs.

6.1.2 Descriptive Statistics

Here, we briefly summarize the three new aspects used in this chapter
to characterize epidemic processes.

Basic Reproduction Number R0
R0 describes how many susceptible individuals are (on average)

124 Chapter 6

Covid-19 and the Limitations of Modeling

infected by a single infectious individual in a completely suscep-
tible population (i.e., expected number of secondary infections
of patient zero).

Effective Reproduction Number Rt
Describes the average number of secondary infections of a
random infected individual at timepoint t.

Dispersion
Dispersion is a way to quantify the variance in the number of
secondary infections. Overdispersed epidemics admit a high
variance in the number of secondary infections (w.r.t. some
baseline).

Typically, Rt decreases over time due to the increase in immunity in
the population. In theoretical models, we can analytically derive R0
from the model parameters. To study Rt, we typically resort to the
analysis of simulation runs.

In branching processes, dispersion can be described in terms of a
dispersion parameter k when using a negative binomial distribution
to generate offspring. The probability mass functions can be re-
parametrized in terms of the dispersion k and the mean offspring
number [Lloyd-Smith, 2007]). (Over-)dispersion is then measured
compared to the Poisson offspring distribution. This chapter proposes
alternative methods (cf. Section 6.3.4).

6.2 A Tale of Three Models

We follow the network-based spreading paradigm and study its re-
lation to other model types. In particular, we study which types of
population heterogeneity can be expressed and how models are used
in the current Covid-19 pandemic. We focus on the three model

6.2 A Tale of Three Models 125

SIR ODE

Offspring Distribution

Secondary Cases

Sample

Sample Next State

Branching Process Network

<latexit sha1_base64="WK2iPdrJjNXXniXmAk81BVr9Goc=">AAAFbXiclVJdT9RAFL2srEL9Ao1PGjORoEAi6bLEJSYmfMMDRCR8JZSQaXu3NHS7tZ0SsOlP8FV/m7/CP+CDp0M3wu4CcZqZ3rn3nHPv3Bk7CvxEmeavgcq9wer9B0PDxsNHj588HRl9tpe009jhXacdtOMDWyYc+CHvKl8FfBDFLFt2wPv26VIR3z/jOPHb4Y66iPioJb3Qb/qOVHAdj1ZoXESpEn4oAqn43FcCfG7ZHBjjVppwJJ1T6fGhe+ZHSShbnBxl5zpvDoDLTSTW22wxSDnP1nc2N/KsbjbMheVuxDa7HcBSfdacq3UD1pA67EBMs7FaX8kNw7Bs9vwwk4HvhVO5FUhUl/HXj5+XVwqFy2iCdqncEBhWM5ZOhlyuykVmXSlPJBNqMhfi7SfxHhGblcSuL6bjK4oWvnZZVo98HxS0/0n3Ue5DQTGWDKIT+Z9ZL/sl4gJXpL1ZBW3i0O00SdtlO49HxsxpUw/Ra9RKY4zKsdUeHZgii1xqk0MptYgpJAU7IEkJvkOqkUkRfEeUwRfD8nWcKScD3BQoBkLCe4rVw+6w9IbYF5qJZjvIEmDGYAoax1zVijbQRVaGneD/B/Ob9nk3Zsi0clHhBf42FIe14ib8ik6AuIvZKpGdWu5mFqdS1KQ5fRof9UXaU5zT0TrGLVyXzsCJELvelfNrfTH0bTCyFPp8JZbRIqxU9z2jddpBxRvaruOGGpgLtHyHwjb2bg9/CQqz4M/hrm/nr2Flfd5uDVPXsAqllUID77DW/ep6jb2Z6dqH6dqXmbH5xfJFDtFLekMTqKRB88iwRbvkVLzK98qPys/B39UX1VfV15fQykDJeU7XRvXdX4wbYNo=</latexit>

d

dt
s(t) = ��s(t)i(t)

d

dt
i(t) = �s(t)i(t)� ↵i(t)

d

dt
r(t) = ↵i(t)

S I R

<latexit sha1_base64="OO0X16FKW7vBP7366wNT3vZHCYc=">AAADcHichVJNT9tAEH2JCw0p5asXJA5NG1Wqcojstiq5EUgJPYBEEUmQCKpsZ5O4OLZlO1EhqtSf0Cv8pvYH9G/0zKHPQ5AIEclY452dmfdmZnetwHWiWNf/ptLak7n5p5mF7LPF50vLK6tr9cjvh7aq2b7rhyeWGSnX8VQtdmJXnQShMnuWqxrWeSWJNwYqjBzfO44vAnXWMzue03ZsM6ar3jTdoGt+XcnrRV0kN2kYIyO/9Vvkz6G/miqgiRZ82OijBwUPMW0XJiJ+pzCgI6DvDEP6QlqOxBV+IEtsn1mKGSa95/x3uDsdeT3uE85I0DaruNSQyBzeUKvCaDE7qapoR1xvqJfi6zxaYSjMSYcXXC0yLgjjAf0xusyYheyNMu96mY1MporRRkmmcdhfIJ5kTlt4slOwLQyICRgbP5XvY+eSldtQrJLwq3uxIXZo9eXch/iMY3a8L/Z73tAmdRufZjAccd+awFfI8IH4Eu96On6PfyXzPuTQpYcqmXYTDr5D4+GrmzTq74rGx6LxxciXqz8hksEGXuMtO9lEmRUOUWMH3/ALV7hO/9PWtZfaq9vUdOp2xQuMiVb4D2txs3o=</latexit>↵
<latexit sha1_base64="gZAKQMXPIeOOd05cx1YMAws/0+A=">AAADb3ichVJBTxNBFP7aVaEVhMKhB42pNCbAodkFAj1WqtWDJtW0hQQI2d0OZdLt7mZ32lAaE+If8OJBf5o/w3j14LfTmlga6Gxm55v33ve992bGCT0ZK9P8mUobDx4+WljMZB8vLT9ZWc2tteKgH7mi6QZeEB07diw86YumksoTx2Ek7J7jiSOnW038RwMRxTLwG2oYirOe3fHlhXRtRVPz1BHKPl8tmiVTj8IssCagWHnx2/z27Eu+HuRS2zhFGwFc9NGDgA9F7MFGzO8EFkyEtJ1hRFtEJLVf4DOy5PYZJRhh09rlv8PdycTqc59oxprtMovHGZFZwEvOmlZ0GJ1kFcQx1z+c19rWuTPDSCsnFQ65OlTMaMUPtCtcMmIeszeJ/FfLfGbSlcIFyrobyfpCbUn6dLVO9h5uGwNyQvqmT+Vq6lyy+jYEsyT64j/fCIdEfX3uI7xDgxW/13iXN3TA+Qqv5yh84r49w69SYY/8Mu/6fv5b/oXu97aGqWuoUelNosF3aN1+dbOgtVOy9kvWR6tYqd1Aj0U8xQY2WckBKsxQR5MVSHzFd/xI/zLyxnOjMA5Np8Yr1jE1jK2/XZyv/w==</latexit>

�

Fig. 6.1.: Schematic overview of epidemic model types.

types that we consider most relevant for epidemiological modeling
in general. While ODE models and network-based models are di-
rectly relevant for the evaluation, we include branching processes in
this section because they are the de facto standard for formalizing
and studying dispersion in epidemics. For a comparative analysis
of models specific to Covid-19, we refer the reader to Adiga et al.
(2020) and Kuhl (2020). Note that all models that study Covid-19
quantitatively suffer from poor data quality and uncertainty about
parameters [Ioannidis, 2020; Sanguinetti, 2020].

ODE Models

The most widespread epidemiological model type is based on a
system of ordinary differential equations (ODEs) in which coupled
fractions of individuals in disease compartments change deterministi-
cally and continuously over time [Roy M Anderson et al., 1992]. For
an overview on various applications, we refer the reader to [Nelson
and Williams, 2014; Frauenthal, 2012; S. Ma and Xia, 2009; Brauer
et al., 2008]. Compartments refer to different disease stages (e.g.,
susceptible (S), infected (I), recovered (R), exposed (E), dead (D)).
Most commonly used is the three-compartment SIR-model (cf. Figure
6.1). Note that ODE models use a single parameter (β) to model the

126 Chapter 6

Covid-19 and the Limitations of Modeling

chance of meeting someone (interaction structure) and the probabil-
ity of transmitting the infection.

Population Heterogeneity. Expressing population heterogeneity is
only possible to a minimal degree. The typical way is to introduce
additional compartments that encode a membership in a certain
group (e.g., susceptible and “younger than 20”). These extended
models are often referred to as meta-population models [Watts et
al., 2005]. Apart from that, a homogeneous interaction structure
is assumed. Effects such as super-spreaders (or overdispersion)
are practically not expressible. The same holds for local die-outs.
Moreover, the deterministic nature makes it difficult to conceptualize
risk and uncertainty. ODE models arise as the mean-field limit of a
well-mixed Markov population model corresponding to a complete
graph in the network-based paradigm (cf. Chapter 8 (From Networks
to Population Models) and Excursus 5).

Covid-19. Literature abounds with ODE-based Covid-19 models,
some methods and applications are summarized in [Tang et al.,
2020; Mello et al., 2021]. For instance, Dehning et al. (2020) use a
model where the infection rate may change over time to predict a
suitable timepoint to loosen NPIs in Germany. Lourenço et al. (2020)
infer epidemiological parameters. Khailaie et al. (2020) analyze how
changes in the reproduction number affect the epidemic dynamics.
Stutt et al. (2020) evaluate the effectiveness of NPIs. The spread of
Covid-19 was studied for many more countries and settings [M. S.
Boudrioua and A. Boudrioua, 2020; De Visscher, 2020; Barbarossa
et al., 2020; Dolbeault and Turinici, 2020; Wilson et al., 2020].
Other studies use a meta-population approach and group individuals
according to age [R. Singh and Adhikari, 2020; Ellison, 2020; Prem
et al., 2020; Klepac et al., 2020] or region [Afshordi et al., 2020;
Humphries et al., 2020; Cooper et al., 2020]. Moreover, Neipel et al.

6.2 A Tale of Three Models 127

(2020) and Gomes et al. (2020) modify ODE models to account for
individual variation in susceptibility.

Roda et al. (2020) use an ODE model to illustrate the general diffi-
culty of predicting the spread of Covid-19 data. Limitations in the
applicability of ODE models regarding data from Italy are reported
by Comunian et al. (2020). Similar results are found by Castro et
al. (2020) using Covid-19 data from Spain. General concerns are
articulated by Bertozzi et al. (2020).

Branching Processes

Stochastic branching processes operate in discrete or continuous-
time and are useful when studying the underlying stochastic nature
of an epidemic. They are based on a tree that grows over time and
represents the infected individuals. The children (offspring) of each
node represent an individual’s secondary infections, and the number
of children is drawn from an offspring distribution with mean R0 that
is provided by the modeler [L. J. Allen, 2015; Farrington et al., 2003;
Harris et al., 1963; Müller and Hösel, 2020].

Population heterogeneity. The offspring distribution makes it straight-
forward to encode individual variations in infectiousness or connec-
tivity. The paradigm allows studying random extinction probabilities
of the epidemic and the effects of super-spreaders/overdispersion
[Lloyd-Smith et al., 2005]. However, branching processes do not
admit a (model intrinsic) saturation due to growing immunity in the
population. Moreover, the high level of abstraction makes it difficult
to study the effects of NPIs and the characteristics of the spatial
diffusion of the pathogen.

128 Chapter 6

Covid-19 and the Limitations of Modeling

Covid-19. Yunjun Zhang et al. (2020) use a branching process to
measure the dispersion of Covid-19 within China and Endo et al.
(2020) estimate the dispersion based on local clusters outside China.
Moreover, Tuite and Fisman (2020) use a branching process to infer
epidemiological values and Goyal et al. (2020) study the influence of
temporal viral load variation. Alternative model types that are used
to study dynamical properties specific to Covid-19 were proposed
in [Slavtchova-Bojkova, 2020; Yanev et al., 2020; Levesque et al.,
2020].

Network-Based Models

Network-based epidemic models use graphs to express interactions
(edges) among individuals (nodes). They are stochastic in nature
and can be formulated in discrete or continuous time (cf. Chapter 2
(Background)).

Population heterogeneity. The network-based paradigm decouples
the population’s connectivity from the virus’s infectiousness. More-
over, each individual is represented by an autonomous agent, which
adds flexibility and makes it straightforward to include individual
variations of the population. The key advantage of networks is
that they represent a universal way of encoding different types of
complex interaction structures like hubs, communities, households,
small-worldness, mixing within in population-groups, etc. The con-
tact network can also represent spatial or geographical constraints.
Network-based models relate to ODE models in the sense that the
ODE model represents the mean propagation of an epidemic on an
infinite complete graph (all nodes are directly connected), assuming
that all nodes are attributed with exponentially distributed jump
times. Conceptually, the completeness “removes” the heterogene-

6.2 A Tale of Three Models 129

ity from the interaction structure, and the infinite size eliminates
artifacts due to randomness.

Covid-19. Effects of different contact networks were studied in
[Wolfram, 2020; Reich et al., 2020; C. Liu et al., 2020]. Contact
networks are being used to build realistic simulations of a society, for
instance, by creating household-structures with various types of inter-
household connections [Munday et al., 2020; Nande et al., 2021; Kerr
et al., 2020; Aleta et al., 2020]. The flexibility of networks makes it
easy to model NPIs [Nande et al., 2021; Karaivanov, 2020; Kerr et al.,
2020; Nielsen and Sneppen, 2020]. Moreover, [Silva et al., 2020;
Biswas et al., 2020; Pujari and Shekatkar, 2020] use a network-based
approach for spatial properties (e.g., flow between geographical
regions). Although the importance of hubs was recognized very
early, for instance by Pastor-Satorras and Vespignani (2001), the
concrete relation to overdispersion as it is studied in branching
processes remains under-explored. Networks, where the contact
structure changes over time, are particularly well-suited to study
quarantine measures and social distancing [Mancastroppa et al.,
2020; Horstmeyer et al., 2020; Fagiolo, 2020].

130 Chapter 6

Covid-19 and the Limitations of Modeling

Model8:Covid-19.

S E I1
Susceptible

(healthy)
Exposed

(but not infectious)
Mild

Infection

I2
Severe

Infection

I3
Critical

Infection

R
Removed

(recovered + immune

or dead)

S
<latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit>

R
<latexit sha1_base64="X6CXZysm5IckU4mqXOr9bGtqhsU=">AAAEunichVPNbtNAEJ4UA234aQoXJC4WERKnyI7jJJWQaAptOYAIUdMWNVVlO9tgxbEte1NarPA0XOEZuPAO8C4c+HaSINooyVremfl25tuZ2V03DvxUGsbv3MoN7eat26tr+Tt3791fL2w8OEijYeKJthcFUXLkOqkI/FC0pS8DcRQnwhm4gTh0+y/V+uG5SFI/CvflZSxOBk4v9M98z5GATguPOsyR7SVChKN8R4oLKWXWGp0WikZps16xzIpulMxaxapVoZQty6rYulkyeBRf/CIezWgj95M61KWIPBrSgASFJKEH5FCK75hMMigGdkIZsASaz+uCRpRH7BBeAh4O0D7mHqzjCRrCVpwpR3vYJcCfIFKnp/h3mdGFt9pVQE8h/+D/zFhv7g4ZM6sMLyFdMK4x41vgkj7CY1nkYOI5zWV5pKpK0hnVuRof+cWMqDq9fzyvsJIA6/OKTjvs2QOHy/Y5OhBCtpGB6vKUQeeKu5AOS8Es4YTRAV8Cqbqv8pmfYxc7+EDTa92/uNL/PJ+6QDUqO/HfWkbb0IZ8vhm9pn105g3rNlWohtvQgMdihhbs7kz8NiLLYKhiXhy/x7Wr6q9zVMHRwFxFXxdzfIAdsPVphmUXt7qBvtpLK3mH2eHzm+3HDqJtZGKTtYSlyVh/hqHOvdjEV1P3B693+kT1+cpBuWTibb83i1utH+N3vEqP6Qk9Q1U12sIOTdwuj77QV/pG37Xnmqv5Wn/supIbS3pIV4Ym/wIN4/FW</latexit><latexit sha1_base64="X6CXZysm5IckU4mqXOr9bGtqhsU=">AAAEunichVPNbtNAEJ4UA234aQoXJC4WERKnyI7jJJWQaAptOYAIUdMWNVVlO9tgxbEte1NarPA0XOEZuPAO8C4c+HaSINooyVremfl25tuZ2V03DvxUGsbv3MoN7eat26tr+Tt3791fL2w8OEijYeKJthcFUXLkOqkI/FC0pS8DcRQnwhm4gTh0+y/V+uG5SFI/CvflZSxOBk4v9M98z5GATguPOsyR7SVChKN8R4oLKWXWGp0WikZps16xzIpulMxaxapVoZQty6rYulkyeBRf/CIezWgj95M61KWIPBrSgASFJKEH5FCK75hMMigGdkIZsASaz+uCRpRH7BBeAh4O0D7mHqzjCRrCVpwpR3vYJcCfIFKnp/h3mdGFt9pVQE8h/+D/zFhv7g4ZM6sMLyFdMK4x41vgkj7CY1nkYOI5zWV5pKpK0hnVuRof+cWMqDq9fzyvsJIA6/OKTjvs2QOHy/Y5OhBCtpGB6vKUQeeKu5AOS8Es4YTRAV8Cqbqv8pmfYxc7+EDTa92/uNL/PJ+6QDUqO/HfWkbb0IZ8vhm9pn105g3rNlWohtvQgMdihhbs7kz8NiLLYKhiXhy/x7Wr6q9zVMHRwFxFXxdzfIAdsPVphmUXt7qBvtpLK3mH2eHzm+3HDqJtZGKTtYSlyVh/hqHOvdjEV1P3B693+kT1+cpBuWTibb83i1utH+N3vEqP6Qk9Q1U12sIOTdwuj77QV/pG37Xnmqv5Wn/supIbS3pIV4Ym/wIN4/FW</latexit><latexit sha1_base64="X6CXZysm5IckU4mqXOr9bGtqhsU=">AAAEunichVPNbtNAEJ4UA234aQoXJC4WERKnyI7jJJWQaAptOYAIUdMWNVVlO9tgxbEte1NarPA0XOEZuPAO8C4c+HaSINooyVremfl25tuZ2V03DvxUGsbv3MoN7eat26tr+Tt3791fL2w8OEijYeKJthcFUXLkOqkI/FC0pS8DcRQnwhm4gTh0+y/V+uG5SFI/CvflZSxOBk4v9M98z5GATguPOsyR7SVChKN8R4oLKWXWGp0WikZps16xzIpulMxaxapVoZQty6rYulkyeBRf/CIezWgj95M61KWIPBrSgASFJKEH5FCK75hMMigGdkIZsASaz+uCRpRH7BBeAh4O0D7mHqzjCRrCVpwpR3vYJcCfIFKnp/h3mdGFt9pVQE8h/+D/zFhv7g4ZM6sMLyFdMK4x41vgkj7CY1nkYOI5zWV5pKpK0hnVuRof+cWMqDq9fzyvsJIA6/OKTjvs2QOHy/Y5OhBCtpGB6vKUQeeKu5AOS8Es4YTRAV8Cqbqv8pmfYxc7+EDTa92/uNL/PJ+6QDUqO/HfWkbb0IZ8vhm9pn105g3rNlWohtvQgMdihhbs7kz8NiLLYKhiXhy/x7Wr6q9zVMHRwFxFXxdzfIAdsPVphmUXt7qBvtpLK3mH2eHzm+3HDqJtZGKTtYSlyVh/hqHOvdjEV1P3B693+kT1+cpBuWTibb83i1utH+N3vEqP6Qk9Q1U12sIOTdwuj77QV/pG37Xnmqv5Wn/supIbS3pIV4Ym/wIN4/FW</latexit><latexit sha1_base64="orSvGfWWuroXx2SX88SCeHy2aaY=">AAAEunichVPNbtNAEJ4UA234aQoXJC4WERKnyI7tJJU4NIW2HECEqGmLmqqynW2w4tiWvSktVngarvAMXHgI3oUD304TRBslWcs7M9/OfDszu+slYZBJw/hdWLml3b5zd3WteO/+g4frpY1HB1k8Sn3R8eMwTo88NxNhEImODGQojpJUuEMvFIfe4JVaPzwXaRbE0b68TMTJ0O1HwVnguxLQaelJlznyvVSIaFzsSnEhpczb49NS2ahsNmzLtHWjYtZtq16DUrUsy3Z0s2LwKNNktOKNwi/qUo9i8mlEQxIUkYQekksZvmMyyaAE2AnlwFJoAa8LGlMRsSN4CXi4QAeY+7COJ2gEW3FmHO1jlxB/ikidnuPfZUYP3mpXAT2D/IP/C2P9uTvkzKwyvIT0wLjGjO+AS/oEj2WRw4nnNJflkaoqSWfU4GoC5Jcwour0//G8xkoKbMArOu2wZx8cHtvn6EAE2UEGqstTBp0r7kG6LAWzRBNGF3wppOq+ymd+jj3sEADNbnT/4lr/i3zqAtWo7MR/azltQxvx+eb0hvbRmbesO2RTHbehCY/FDG3YvZn4bURWwVDDvDh+j2tX1d/kqIGjibmGvi7m+Ag7ZOvzDMsubnUTfXWWVvIes8vnN9uPHUQ7yMQhawlLi7HBDEODe7GJr67uD17v9Inq85WDasXE2/5glrfaP6/e8So9pWf0AlXVaQs7tHC7fPpK3+g7/dBeap4WaIMr15XC5O0/pmtDk38Bm43wPw==</latexit>

E
<latexit sha1_base64="mfjyGMMMuBxw59LUf78r/RK0fFo=">AAAE9nichVTNbtNAEJ4UA234aQoSFy4WERKnKI7jJD3RFFI4QAlV0xY1VWU722DFsSN706aYvAoHJMQBDjwCjwF3HoMD304SRBuS7Gp3/r+dmV3b6fleLPP5n6mlK9rVa9eXV9I3bt66vZpZu7MXh/3IFQ039MPowLFj4XuBaEhP+uKgFwm76/hi3+k8Ufb9UxHFXhjsyvOeOOra7cA78VxbQnWcuddkjGQ7PBumm1IMpJRJbXicyeZz65WiaRT1fM4oF81yCUzBNM2ipRu5PI/s4x/Eox6upX5Rk1oUkkt96pKggCR4n2yKMQ/JoDz1oDuiBLoInMd2QUNKI7YPLwEPG9oO9jakw7E2gKwwY452cYqPFSFSp4dYW4zowFudKsDHoL+x3rGuPfOEhJFVhuegDhBXGPEl9JLewmNRZHfsOcllcaSqStIJVbgaD/n1WKPqdP/iPIUlgq7DFp1q7NkGhsPyKToQgDaQgeryBEHnilugNlPBKMEY0QZeBKq6r/KZnWMLJ3jQxpe6P7jQ/zTfukA1Kjvxjy2hTXB9vt+EntMuOvOCeYuKVMZrqMJjPsIO5NZU/CYiC0AoYZ8f/4xrV9VfxigBo4q9hL7Ox3gD2WfpbAplC6+6ir5aCyt5hd3m+5vuRw3RFjKxyFyAUmddZwqhwr1YxywvQNj+bx0VRKpKLEz17U8+cH02s1fIGfgzvDayGzvfR3+BZbpPD+gRkMq0Afw63qZL7+kjfaGv2kD7oH3SPo9cl1IjSnfpwtC+/QEnv/07</latexit><latexit sha1_base64="mfjyGMMMuBxw59LUf78r/RK0fFo=">AAAE9nichVTNbtNAEJ4UA234aQoSFy4WERKnKI7jJD3RFFI4QAlV0xY1VWU722DFsSN706aYvAoHJMQBDjwCjwF3HoMD304SRBuS7Gp3/r+dmV3b6fleLPP5n6mlK9rVa9eXV9I3bt66vZpZu7MXh/3IFQ039MPowLFj4XuBaEhP+uKgFwm76/hi3+k8Ufb9UxHFXhjsyvOeOOra7cA78VxbQnWcuddkjGQ7PBumm1IMpJRJbXicyeZz65WiaRT1fM4oF81yCUzBNM2ipRu5PI/s4x/Eox6upX5Rk1oUkkt96pKggCR4n2yKMQ/JoDz1oDuiBLoInMd2QUNKI7YPLwEPG9oO9jakw7E2gKwwY452cYqPFSFSp4dYW4zowFudKsDHoL+x3rGuPfOEhJFVhuegDhBXGPEl9JLewmNRZHfsOcllcaSqStIJVbgaD/n1WKPqdP/iPIUlgq7DFp1q7NkGhsPyKToQgDaQgeryBEHnilugNlPBKMEY0QZeBKq6r/KZnWMLJ3jQxpe6P7jQ/zTfukA1Kjvxjy2hTXB9vt+EntMuOvOCeYuKVMZrqMJjPsIO5NZU/CYiC0AoYZ8f/4xrV9VfxigBo4q9hL7Ox3gD2WfpbAplC6+6ir5aCyt5hd3m+5vuRw3RFjKxyFyAUmddZwqhwr1YxywvQNj+bx0VRKpKLEz17U8+cH02s1fIGfgzvDayGzvfR3+BZbpPD+gRkMq0Afw63qZL7+kjfaGv2kD7oH3SPo9cl1IjSnfpwtC+/QEnv/07</latexit><latexit sha1_base64="mfjyGMMMuBxw59LUf78r/RK0fFo=">AAAE9nichVTNbtNAEJ4UA234aQoSFy4WERKnKI7jJD3RFFI4QAlV0xY1VWU722DFsSN706aYvAoHJMQBDjwCjwF3HoMD304SRBuS7Gp3/r+dmV3b6fleLPP5n6mlK9rVa9eXV9I3bt66vZpZu7MXh/3IFQ039MPowLFj4XuBaEhP+uKgFwm76/hi3+k8Ufb9UxHFXhjsyvOeOOra7cA78VxbQnWcuddkjGQ7PBumm1IMpJRJbXicyeZz65WiaRT1fM4oF81yCUzBNM2ipRu5PI/s4x/Eox6upX5Rk1oUkkt96pKggCR4n2yKMQ/JoDz1oDuiBLoInMd2QUNKI7YPLwEPG9oO9jakw7E2gKwwY452cYqPFSFSp4dYW4zowFudKsDHoL+x3rGuPfOEhJFVhuegDhBXGPEl9JLewmNRZHfsOcllcaSqStIJVbgaD/n1WKPqdP/iPIUlgq7DFp1q7NkGhsPyKToQgDaQgeryBEHnilugNlPBKMEY0QZeBKq6r/KZnWMLJ3jQxpe6P7jQ/zTfukA1Kjvxjy2hTXB9vt+EntMuOvOCeYuKVMZrqMJjPsIO5NZU/CYiC0AoYZ8f/4xrV9VfxigBo4q9hL7Ox3gD2WfpbAplC6+6ir5aCyt5hd3m+5vuRw3RFjKxyFyAUmddZwqhwr1YxywvQNj+bx0VRKpKLEz17U8+cH02s1fIGfgzvDayGzvfR3+BZbpPD+gRkMq0Afw63qZL7+kjfaGv2kD7oH3SPo9cl1IjSnfpwtC+/QEnv/07</latexit><latexit sha1_base64="gLj0Z45k9O9AjPPVScx+QbakRMA=">AAAE9nichVTNbtNAEJ4UA234aQoSFy4WERKnyI7jJL01hRQOUELVtEVNVdnONlhx7MjetCkmr8IBCXGAA4/Aa3DnMTjw7TRBtCHJrnbnZ2e+nZn9cfuBn0jD+JlZuqZdv3FzeSV76/adu6u5tXt7STSIPdH0oiCKD1wnEYEfiqb0ZSAO+rFwem4g9t3uU7W+fyrixI/CXXneF0c9pxP6J77nSKiOcw9ajJFuR2ejbEuKoZQyrY+Oc3mjsF4tWWZJNwpmpWRVymCKlmWVbN0sGNzyNG6NaC3zi1rUpog8GlCPBIUkwQfkUIJ+SCYZ1IfuiFLoYnA+rwsaURa+A1gJWDjQdjF3IB2OtSFkhZmwt4ddAowYnjo9xthiRBfWalcBPgH9jfGedZ2ZO6SMrCI8B3WBuMKIr6CX9A4Wizx7Y8tJLIs9VVaSTqjK2fiIr88alaf3F+cZVmLouryiU50tO8BwWT5FBULQJiJQVZ4g6JxxG9RhKhglHCM6wItBVfVVPLNjbGMHH9rkSvWHl+qf5VMXyEZFJ/5ZS2kT3IDPN6UXtIvKvGTephJVcBtqsJiPsAO5PeW/Cc8iEMqY5/s/59xV9lcxysCoYS6jrvMx3kIOWDqbQtnCra6hrvbCTF5jdvj8putRh7eNSGyyFqA0WNedQqhyLdbRKwsQtv+bRxWeKhMbXb39yQPXZzN7xYKJn+GNmd/Y+XHxCyzTQ3pET4BUoQ3gN3A3PfpAn+grfdOG2kfts/blwnQpM/457tOlpn3/A3HX/CQ=</latexit>

I1
<latexit sha1_base64="g0uYzm2358lZjAK2uFxXbaFp05A=">AAAE+HichVTLbtNAFL0pBtrwSmGDxMYiQrCK7DivrkgKLSBBCVVfqKki25kGK44d2ZO+rPAtLJAQC1jwBfwGez6AD2DBmdsEkYYkY3nuY+49c++ZsZ2e78XSMH6kFi5pl69cXVxKX7t+4+atzPLtnTjsR67YdkM/jPYcOxa+F4ht6Ulf7PUiYXcdX+w6nSdqffdIRLEXBlvytCcOunY78A4915ZwNTN3G4yRbITHg3RDihMpZfJi0DSbmayRW6kULLOgGzmzXLDKJSh5y7IKRd3MGTyy1YePf1WJqB4up35Sg1oUkkt96pKggCR0n2yK8eyTSQb14DugBL4ImsfrggaURm4fUQIRNrwdzG1Y+0NvAFthxpztYhcfb4RMnR7gXWdEB9FqVwE9hvyN94x97ak7JIysKjyFdIC4xIiv4Jf0DhHzMrvDyFEt8zNVV5IOqcLdeKivxx7Vp/sX5ylWIvg6vKLTGke2geGwfQQGAshtVKBYHiHo3HEL0mYpGCUYItrAiyAV+6qe6TW2sIMHb3yB/ZMx/tN86gLdqOrEP2sJrULr8/km9Jy2wMxL1otUoDJuQw0RsxE2Ybcm8leRmQdCCfPs/Gfcu+r+IkYJGDXMJfA6G+MtbJ+t4wmUddzqGngtzu3kNWabz2+SjzVkF1FJkaw5KHX2dSYQKszFCp7yHISN//Yxxii+/dEHrk9XdvI5E3+GN2a2uvmdeCzSPbpPj8BJmarAr+NuuvSePtIX+qqdaR+0T9rn89CF1LmkOzQ2tG9/AFwz/qk=</latexit><latexit sha1_base64="r78QdgZ41XMxJmMA29eCt2KD4AE=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctjUm6m0llkv5Qw9p2oZvZgzigUoWcMwcnlVz2g80uVHT35VB+f1mr+W+EkNapFPNvWpS4I8ktBdMinEc0A6adSD75Ai+AJoDq8LGlISuX1ECUSY8HYwt2EdjLwe7Bgz5Gwbu7h4A2Sq9BDvJiNaiI53FdBDyN94z9jXnrlDxMhxhaeQFhBXGPE1/JLeI2JRZncUOa5lcWbclaQjKnE3DurrsSfu0/6L8wwrAXwdXlGpypFtYFhsH4MBD7KOCmKWxwgqd9yCNFkKRvFGiCbwAsiY/bie2TW2sIMDb3iJ/ZMJ/pN86gLdxNWJf9Yi2oDW5/ON6AXtgJlXrOcpR0Xchgoi5iNsw25N5W8gMwuEAub5+c+597j7yxgFYFQwF8DrfIx3sF22BlMom7jVFfCaX9jJG8wmn980H1Vk51FJnowFKDX2daYQSszFOp7iAoSt//YxwSi+/fEHrs5WdrMZHX+Gt3q6vP2DeCzTfXpAj8FJkcrAr+Fu2vSBPtFX+qacKR+Vz8qXi9ClxIWkuzQxlO9/AITqAGI=</latexit><latexit sha1_base64="r78QdgZ41XMxJmMA29eCt2KD4AE=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctjUm6m0llkv5Qw9p2oZvZgzigUoWcMwcnlVz2g80uVHT35VB+f1mr+W+EkNapFPNvWpS4I8ktBdMinEc0A6adSD75Ai+AJoDq8LGlISuX1ECUSY8HYwt2EdjLwe7Bgz5Gwbu7h4A2Sq9BDvJiNaiI53FdBDyN94z9jXnrlDxMhxhaeQFhBXGPE1/JLeI2JRZncUOa5lcWbclaQjKnE3DurrsSfu0/6L8wwrAXwdXlGpypFtYFhsH4MBD7KOCmKWxwgqd9yCNFkKRvFGiCbwAsiY/bie2TW2sIMDb3iJ/ZMJ/pN86gLdxNWJf9Yi2oDW5/ON6AXtgJlXrOcpR0Xchgoi5iNsw25N5W8gMwuEAub5+c+597j7yxgFYFQwF8DrfIx3sF22BlMom7jVFfCaX9jJG8wmn980H1Vk51FJnowFKDX2daYQSszFOp7iAoSt//YxwSi+/fEHrs5WdrMZHX+Gt3q6vP2DeCzTfXpAj8FJkcrAr+Fu2vSBPtFX+qacKR+Vz8qXi9ClxIWkuzQxlO9/AITqAGI=</latexit><latexit sha1_base64="VaAAPAsfCIWLIq91yNLiwr2MTVA=">AAAE+HichVTNbtNAEJ60Btrw07RckLhYREicIjvOX29NoQUkKKFq2qKmimxnG6w4dmRv+meFZ+GAhDjAgSfgNbjzGBz4dpog0pBkrd2ZnZ35dubb9To934ulYfxMLSxqN27eWlpO375z995KZnVtPw77kSvqbuiH0aFjx8L3AlGXnvTFYS8SdtfxxYHTearWD05FFHthsCcveuK4a7cD78RzbQlTM/OgwRjJTng2SDekOJdSJi8HTbOZyRq59UrBMgu6kTPLBatcgpK3LKtQ1M2cwS1Lw1YLV1O/qEEtCsmlPnVJUEASuk82xfiOyCSDerAdUwJbBM3jdUEDSiO2Dy8BDxvWDsY2ZkdDa4C5wow52sUuPnqESJ0eo28zogNvtauAHkP+Rr9kW3vqDgkjqwwvIB0gLjPia9glvYfHvMju0HOUy/xIVZWkE6pwNR7y67FF1en+xXmGlQi2Dq/otMWebWA4PD8FAwFkHRkolkcIOlfcgrRZCkYJhog28CJIxb7KZ3qOLezgwRpfY/98jP80n7pANSo78c9aQpvQ+ny+Cb2gPTDzivUiFaiM21CFx2yEXcxbE/GbiMwDoYRxdvxzrl1Vfx2jBIwqxhJ4nY3xDnOfZ2cTKNu41VXwWpxbyRuMNp/fJB9biC4ikyJZc1BqbOtMIFSYi3V85TkIO/+tY4xR/PujH1yfruzncyZehrdmdmP3x9UrsEQP6RE9ASdl2gB+DXfTpQ/0ib7SN+1S+6h91r5cuS6khi/HfRpr2vc/b8780w==</latexit>

I2
<latexit sha1_base64="LuyHU7DtRzkJ2MxBqXplNR1tjC4=">AAAE+HichVTLbtNAFL0pBtrwSmGDxMYiQrCK7DivrkgKLSBBCVVfqKki25kGK44d2ZO+rPAtLJAQC1jwBfwGez6AD2DBmdsEkYYkY3nuY+49c++ZsZ2e78XSMH6kFi5pl69cXVxKX7t+4+atzPLtnTjsR67YdkM/jPYcOxa+F4ht6Ulf7PUiYXcdX+w6nSdqffdIRLEXBlvytCcOunY78A4915ZwNTN3G4yRbITHg3RDihMpZfJi0Mw3M1kjt1IpWGZBN3JmuWCVS1DylmUVirqZM3hkqw8f/6oSUT1cTv2kBrUoJJf61CVBAUnoPtkU49knkwzqwXdACXwRNI/XBQ0ojdw+ogQibHg7mNuw9ofeALbCjDnbxS4+3giZOj3Au86IDqLVrgJ6DPkb7xn72lN3SBhZVXgK6QBxiRFfwS/pHSLmZXaHkaNa5meqriQdUoW78VBfjz2qT/cvzlOsRPB1eEWnNY5sA8Nh+wgMBJDbqECxPELQueMWpM1SMEowRLSBF0Eq9lU902tsYQcP3vgC+ydj/Kf51AW6UdWJf9YSWoXW5/NN6DltgZmXrBepQGXchhoiZiNswm5N5K8iMw+EEubZ+c+4d9X9RYwSMGqYS+B1NsZb2D5bxxMo67jVNfBanNvJa8w2n98kH2vILqKSIllzUOrs60wgVJiLFTzlOQgb/+1jjFF8+6MPXJ+u7ORzJv4Mb8xsdfM78Vike3SfHoGTMlWBX8fddOk9faQv9FU70z5on7TP56ELqXNJd2hsaN/+AGCu/qo=</latexit><latexit sha1_base64="LP6dc6k+oJDBJJvGQiHpMwuM2i4=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctjMNlNpLbNeyhl6TtUyejFnFAtQsoZh5PKqntF4pMuPnvyqDs7rNX8t8ZMa1CKfbOpTlwR5JKG7ZFKI54B00qgH3yFF8AXQHF4XNKQkcvuIEogw4e1gbsM6GHk92DFmyNk2dnHxBshU6SHeTUa0EB3vKqCHkL/xnrGvPXOHiJHjCk8hLSCuMOJr+CW9R8SizO4oclzL4sy4K0lHVOJuHNTXY0/cp/0X5xlWAvg6vKJSlSPbwLDYPgYDHmQdFcQsjxFU7rgFabIUjOKNEE3gBZAx+3E9s2tsYQcH3vAS+ycT/Cf51AW6iasT/6xFtAGtz+cb0QvaATOvWM9Tjoq4DRVEzEfYht2ayt9AZhYIBczz859z73H3lzEKwKhgLoDX+RjvYLtsDaZQNnGrK+A1v7CTN5hNPr9pPqrIzqOSPBkLUGrs60whlJiLdTzFBQhb/+1jglF8++MPXJ2t7GYzOv4Mb/V0efsH8Vim+/SAHoOTIpWBX8PdtOkDfaKv9E05Uz4qn5UvF6FLiQtJd2liKN//AIllAGM=</latexit><latexit sha1_base64="LP6dc6k+oJDBJJvGQiHpMwuM2i4=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctjMNlNpLbNeyhl6TtUyejFnFAtQsoZh5PKqntF4pMuPnvyqDs7rNX8t8ZMa1CKfbOpTlwR5JKG7ZFKI54B00qgH3yFF8AXQHF4XNKQkcvuIEogw4e1gbsM6GHk92DFmyNk2dnHxBshU6SHeTUa0EB3vKqCHkL/xnrGvPXOHiJHjCk8hLSCuMOJr+CW9R8SizO4oclzL4sy4K0lHVOJuHNTXY0/cp/0X5xlWAvg6vKJSlSPbwLDYPgYDHmQdFcQsjxFU7rgFabIUjOKNEE3gBZAx+3E9s2tsYQcH3vAS+ycT/Cf51AW6iasT/6xFtAGtz+cb0QvaATOvWM9Tjoq4DRVEzEfYht2ayt9AZhYIBczz859z73H3lzEKwKhgLoDX+RjvYLtsDaZQNnGrK+A1v7CTN5hNPr9pPqrIzqOSPBkLUGrs60whlJiLdTzFBQhb/+1jglF8++MPXJ2t7GYzOv4Mb/V0efsH8Vim+/SAHoOTIpWBX8PdtOkDfaKv9E05Uz4qn5UvF6FLiQtJd2liKN//AIllAGM=</latexit><latexit sha1_base64="Sen8VnCxhFLaELyr70rcj8tmZig=">AAAE+HichVTNbtNAEJ60Btrw07RckLhYREicIjvOX29NoQUkKKFq2qKmimxnG6w4dmRv+meFZ+GAhDjAgSfgNbjzGBz4dpog0pBkrd2ZnZ35dubb9To934ulYfxMLSxqN27eWlpO375z995KZnVtPw77kSvqbuiH0aFjx8L3AlGXnvTFYS8SdtfxxYHTearWD05FFHthsCcveuK4a7cD78RzbQlTM/OgwRjJTng2SDekOJdSJi8HzXwzkzVy65WCZRZ0I2eWC1a5BCVvWVahqJs5g1uWhq0WrqZ+UYNaFJJLfeqSoIAkdJ9sivEdkUkG9WA7pgS2CJrH64IGlEZsH14CHjasHYxtzI6G1gBzhRlztItdfPQIkTo9Rt9mRAfealcBPYb8jX7JtvbUHRJGVhleQDpAXGbE17BLeg+PeZHdoecol/mRqipJJ1Thajzk12OLqtP9i/MMKxFsHV7RaYs928BweH4KBgLIOjJQLI8QdK64BWmzFIwSDBFt4EWQin2Vz/QcW9jBgzW+xv75GP9pPnWBalR24p+1hDah9fl8E3pBe2DmFetFKlAZt6EKj9kIu5i3JuI3EZkHQgnj7PjnXLuq/jpGCRhVjCXwOhvjHeY+z84mULZxq6vgtTi3kjcYbT6/ST62EF1EJkWy5qDU2NaZQKgwF+v4ynMQdv5bxxij+PdHP7g+XdnP50y8DG/N7Mbuj6tXYIke0iN6Ak7KtAH8Gu6mSx/oE32lb9ql9lH7rH25cl1IDV+O+zTWtO9/AHRJ/NQ=</latexit>

I3
<latexit sha1_base64="DqDYkkSlEdvVfT9gGqwPXw1bIPc=">AAAE+HichVTLbtNAFL0pBtrwSmGDxMYiQrCK7DivrkgKLSBBCVVfqKki25kGK44d2ZO+rPAtLJAQC1jwBfwGez6AD2DBmdsEkYYkY3nuY+49c++ZsZ2e78XSMH6kFi5pl69cXVxKX7t+4+atzPLtnTjsR67YdkM/jPYcOxa+F4ht6Ulf7PUiYXcdX+w6nSdqffdIRLEXBlvytCcOunY78A4915ZwNTN3G4yRbITHg3RDihMpZfJi0LSamayRW6kULLOgGzmzXLDKJSh5y7IKRd3MGTyy1YePf1WJqB4up35Sg1oUkkt96pKggCR0n2yK8eyTSQb14DugBL4ImsfrggaURm4fUQIRNrwdzG1Y+0NvAFthxpztYhcfb4RMnR7gXWdEB9FqVwE9hvyN94x97ak7JIysKjyFdIC4xIiv4Jf0DhHzMrvDyFEt8zNVV5IOqcLdeKivxx7Vp/sX5ylWIvg6vKLTGke2geGwfQQGAshtVKBYHiHo3HEL0mYpGCUYItrAiyAV+6qe6TW2sIMHb3yB/ZMx/tN86gLdqOrEP2sJrULr8/km9Jy2wMxL1otUoDJuQw0RsxE2Ybcm8leRmQdCCfPs/Gfcu+r+IkYJGDXMJfA6G+MtbJ+t4wmUddzqGngtzu3kNWabz2+SjzVkF1FJkaw5KHX2dSYQKszFCp7yHISN//Yxxii+/dEHrk9XdvI5E3+GN2a2uvmdeCzSPbpPj8BJmarAr+NuuvSePtIX+qqdaR+0T9rn89CF1LmkOzQ2tG9/AGUp/qs=</latexit><latexit sha1_base64="Gkm/UFkEI1O1XbdqH5kMP9GRfSA=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctg0mqm0llkv5Qw9p2oZvZgzigUoWcMwcnlVz2g80uVHT35VB+f1mr+W+EkNapFPNvWpS4I8ktBdMinEc0A6adSD75Ai+AJoDq8LGlISuX1ECUSY8HYwt2EdjLwe7Bgz5Gwbu7h4A2Sq9BDvJiNaiI53FdBDyN94z9jXnrlDxMhxhaeQFhBXGPE1/JLeI2JRZncUOa5lcWbclaQjKnE3DurrsSfu0/6L8wwrAXwdXlGpypFtYFhsH4MBD7KOCmKWxwgqd9yCNFkKRvFGiCbwAsiY/bie2TW2sIMDb3iJ/ZMJ/pN86gLdxNWJf9Yi2oDW5/ON6AXtgJlXrOcpR0Xchgoi5iNsw25N5W8gMwuEAub5+c+597j7yxgFYFQwF8DrfIx3sF22BlMom7jVFfCaX9jJG8wmn980H1Vk51FJnowFKDX2daYQSszFOp7iAoSt//YxwSi+/fEHrs5WdrMZHX+Gt3q6vP2DeCzTfXpAj8FJkcrAr+Fu2vSBPtFX+qacKR+Vz8qXi9ClxIWkuzQxlO9/AI3gAGQ=</latexit><latexit sha1_base64="Gkm/UFkEI1O1XbdqH5kMP9GRfSA=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctg0mqm0llkv5Qw9p2oZvZgzigUoWcMwcnlVz2g80uVHT35VB+f1mr+W+EkNapFPNvWpS4I8ktBdMinEc0A6adSD75Ai+AJoDq8LGlISuX1ECUSY8HYwt2EdjLwe7Bgz5Gwbu7h4A2Sq9BDvJiNaiI53FdBDyN94z9jXnrlDxMhxhaeQFhBXGPE1/JLeI2JRZncUOa5lcWbclaQjKnE3DurrsSfu0/6L8wwrAXwdXlGpypFtYFhsH4MBD7KOCmKWxwgqd9yCNFkKRvFGiCbwAsiY/bie2TW2sIMDb3iJ/ZMJ/pN86gLdxNWJf9Yi2oDW5/ON6AXtgJlXrOcpR0Xchgoi5iNsw25N5W8gMwuEAub5+c+597j7yxgFYFQwF8DrfIx3sF22BlMom7jVFfCaX9jJG8wmn980H1Vk51FJnowFKDX2daYQSszFOp7iAoSt//YxwSi+/fEHrs5WdrMZHX+Gt3q6vP2DeCzTfXpAj8FJkcrAr+Fu2vSBPtFX+qacKR+Vz8qXi9ClxIWkuzQxlO9/AI3gAGQ=</latexit><latexit sha1_base64="zufzy4jndgqPNyq/9Vrhadt5CFU=">AAAE+HichVTNbtNAEJ60Btrw07RckLhYREicIjvOX29NoQUkKKFq2qKmimxnG6w4dmRv+meFZ+GAhDjAgSfgNbjzGBz4dpog0pBkrd2ZnZ35dubb9To934ulYfxMLSxqN27eWlpO375z995KZnVtPw77kSvqbuiH0aFjx8L3AlGXnvTFYS8SdtfxxYHTearWD05FFHthsCcveuK4a7cD78RzbQlTM/OgwRjJTng2SDekOJdSJi8HTauZyRq59UrBMgu6kTPLBatcgpK3LKtQ1M2cwS1Lw1YLV1O/qEEtCsmlPnVJUEASuk82xfiOyCSDerAdUwJbBM3jdUEDSiO2Dy8BDxvWDsY2ZkdDa4C5wow52sUuPnqESJ0eo28zogNvtauAHkP+Rr9kW3vqDgkjqwwvIB0gLjPia9glvYfHvMju0HOUy/xIVZWkE6pwNR7y67FF1en+xXmGlQi2Dq/otMWebWA4PD8FAwFkHRkolkcIOlfcgrRZCkYJhog28CJIxb7KZ3qOLezgwRpfY/98jP80n7pANSo78c9aQpvQ+ny+Cb2gPTDzivUiFaiM21CFx2yEXcxbE/GbiMwDoYRxdvxzrl1Vfx2jBIwqxhJ4nY3xDnOfZ2cTKNu41VXwWpxbyRuMNp/fJB9biC4ikyJZc1BqbOtMIFSYi3V85TkIO/+tY4xR/PujH1yfruzncyZehrdmdmP3x9UrsEQP6RE9ASdl2gB+DXfTpQ/0ib7SN+1S+6h91r5cuS6khi/HfRpr2vc/eMT81Q==</latexit>

A

B

<latexit sha1_base64="kVYryRetdj3dOCFPyNcsotS1Wqw=">AAAD53ichVJNb9NAEB3XQFvzlbRHLhYxEgIU7BTRHguFABJIBTVtpbqKbGeSrrqxLXtTtbUq8Q+4Ia78LI78Dw48b10JNyJZa9Yzb+e9mf0IUyly5bq/jAXzxs1bi0vL1u07d+/dbzRXdvNkkkXcixKZZPthkLMUMfeUUJL304yDcSh5LzzeKtf3TjjLRRLvqLOUD8fBKBZDEQUKUL9ROH7IKugLxx4mmR1IaccsRkdhkuW2A1TEtuMrPlVKFR8u+p7j+9ZT+4r1/HwGr0bsOM9q8ZrT7jdabtvVw552vMppUTW2k6bxhHwaUEIRTWhMTDEp+JICyvEdkEcupcAOqQCWwRN6nemCLHAnyGJkBECPMY8QHVRojLjUzDU7QhUJy8C06RGsqxVDZJdVGX6O/x/YucZG/61QaOWywzP8Qygua8VPwBUdIWMec1xlXvUyn1nuStGQNvRuBPpLNVLuM9I61gzugE7ASbFWP5XT2rlY+jYYVUp9/metoNfwJvrcC3pPO+j4o/bXcEPrsFf0Zo7CF8SDKf4WFF6Av4G7ns1/h5n1fq9ruLqHLpTelhp4h971Vzft7Hba3su297nT2ux+vXyRS/SAHtJjdLJOm6iwTT108NtYNBpG0xTmN/O7+eMydcGoXvEq1Yb58y/UatTn</latexit>

�i for all neighbors i in I1
+ �i/z for all neighbors i in I2, I3.

<latexit sha1_base64="tZt9NcMEoe98jffPyTnwIw8OxAE=">AAADdHichVJNT8JAEH1QP/Fbj3owIonxQFo06tFP9KCJGhCjENKWFRtL27TFqMTEH+FV/5d/xJMHX9eaCETYZrazM/PezOyO4dlWEKrqRyKpDAwODY+MpsbGJyanpmdmLwK36ZuiaLq2618aeiBsyxHF0Aptcen5Qm8YtigZd3uRv3Qv/MBynUL46IlKQ6871o1l6iFNV8tl3fZu9aq2XJ1Oq1lVrsVuRYuVNOJ16s4kVlFGDS5MNNGAgIOQug0dAb9raFDh0VZBizafmiX9As9IEdtklGCETusd9zpP17HV4TniDCTaZBab4hO5iAwlLxkNRkdZBfWA/y/Kk7TV/83QksxRhY/8G2QclYwntIe4ZUQ/ZCOO/K2lPzLqKsQNtmQ3FuvzpCXq05Q8qR7YGu6J8ehrv5WHtntJydcQzBLxiz++FnapNeW9t3CEAis+lvoaX2iTsoP9PgznPNe68HtkWCd+i2/dG3/IXch+OzlUWUOeTAcRB+dQ65y6buUil9U2stpZLr2df/mZyBHMYwkrrGQT28xwiiIrcPCKN7wnP5UFJa1kfkKTiXiK59C2lOw39quupw==</latexit>↵1

<latexit sha1_base64="GOQaQiY7Mg67LR8dzLiPibhDWxA=">AAADdHichVJNT8JAEH1QP/Fbj3owAonxQFo06tFP9KAJGgGjEtKWFRtL27TFqMTEH+FV/5d/xJMHX5eaiETZZrazM/PezOyO4dlWEKrqeyKpDAwODY+MpsbGJyanpmdmy4Hb8k1RMl3b9c8NPRC25YhSaIW2OPd8oTcNW1SM293IX7kTfmC5zln44IlqU2841rVl6iFNF5kr3fZu9Fo+U5tOqzlVrsVeRYuVNOJVdGcSK7hCHS5MtNCEgIOQug0dAb9LaFDh0VZFmzafmiX9Ak9IEdtilGCETust9wZPl7HV4TniDCTaZBab4hO5iCylIBkNRkdZBfWA/0/Ko7Q1/szQlsxRhQ/8G2QclYzHtIe4YUQ/ZDOO/K6lPzLqKsQ1NmU3FuvzpCXq05Q8qX+wddwR49HXfSv3XfeSkq8hmCXiFz98bexQa8l7b+MQZ6z4SOqrfKENyjb2+jCc8lzvwe+SYY34Tb71//gD7kL2+5tDlTUUyLQfcXAOtd9T16uU8zltPaed5NNbhefORI5gHktYZiUb2GKGIkqswMELXvGW/FAWlLSS7YQmE/EUz6FrKbkv+bOuqA==</latexit>↵2

<latexit sha1_base64="zbCIXL8s2T410acYjx1+j+P/H2U=">AAADdHichVLLTsJQED1Qn/gCXerCiCTGBWnRCEuf6EITNYLGR0xbrtBQ2qYtRiUmfoRb/S9/xJULT681EYlym7mdOzPnzMy9Y3i2FYSq+pZIKgODQ8Mjo6mx8YnJqXRmuhq4bd8UFdO1Xf/M0ANhW46ohFZoizPPF3rLsMWp0dyK/Ke3wg8s1zkJ7z1x1dLrjnVjmXpI0/nipW57Df16ZfE6nVXzqlzzvYoWK1nE69DNJJZxiRpcmGijBQEHIXUbOgJ+F9CgwqPtCh3afGqW9As8IkVsm1GCETqtTe51ni5iq8NzxBlItMksNsUnch45SlkyGoyOsgrqAf8flAdpq/+ZoSOZowrv+TfIOCoZD2gP0WBEP2QrjvyupT8y6irEDUqyG4v1edIS9WlKntQ/2BpuifHo676Vu657ScnXEMwS8Ysfvg42qbXlvXewhxNWvC/1Fb5QkbKB7T4MxzzXevBbZFglvsS3/h+/y13Ifn9zqLKGMpl2Ig7OofZ76nqVaiGvreW1o0J2vfz0NZEjmMUCllhJEevMcIgKK3DwjBe8Jt+VOSWr5L5Ck4l4imfQtZT8J/y7rqk=</latexit>↵3
<latexit sha1_base64="u04eM31XZGqpWGfK99B6fuKDq1g=">AAADcXichVLLSsNAFD1tfNZndSVuilUQhZKoqEuf1YWCirWCiiTptIbmRR6iFsFfcKtf5ne4deHJGMFatBNmcufee859zDV82wojVX3LZJWe3r7+gcHc0PDI6Nh4fuIs9OLAFBXTs73g3NBDYVuuqERWZItzPxC6Y9iiajS3E3v1VgSh5bmn0b0vrhy94Vp1y9Qjqqqzl058rc1ejxfVkipXoVPQUqGIdB15+cwCLlGDBxMxHAi4iCjb0BHyu4AGFT51V2hRF1CypF3gETliY3oJeujUNnk2eLtItS7vCWco0Saj2NwBkQXMcZclo0HvJKqgHPL/wf0gdY0/I7Qkc5LhPf8GGQcl4yH1EW7o0Q3ppJ7fuXRHJlVFqGNdVmMxP19qkjpNyZP7B1vDLTE+be1duWvrS06+hmCUhF/8sLWwRSmWfW9hH6fM+EDKy3yhNe5N7HRhOOG91oHfJsMK8et86//xezyFrPc3hypzKJNpN+HgHGq/p65TOFsqaasl7XipuFF++prIAUxjBvPMZA0bjHCEiuziM17wmn1XppSCMvPlms2kUzyJtqUsfgIGlK1l</latexit>µ1

<latexit sha1_base64="ozNFw6zwb5ZHgsValEpU7BuY9U4=">AAADcXichVLLSsNAFD1tfNa3rsRNsQqiUJIqtkuf1YWCirWCiiTpWIN5kYeoRfAX3OqX+R1uXXgyRrAW7YSZ3Ln3nnMfcw3ftsJIVd8yWaWnt69/YDA3NDwyOjY+MXkSenFgiprp2V5wauihsC1X1CIrssWpHwjdMWxRN242E3v9VgSh5bnH0b0vLhy96VpXlqlHVNXnzp34sjR3OV5Qi6pc+U5BS4UC0nXgTWQWcY4GPJiI4UDARUTZho6Q3xk0qPCpu0CLuoCSJe0Cj8gRG9NL0EOn9oZnk7ezVOvynnCGEm0yis0dEJnHPHdVMhr0TqIKyiH/H9wPUtf8M0JLMicZ3vNvkHFQMu5TH+GaHt2QTur5nUt3ZFJVhCtUZDUW8/OlJqnTlDy5f7AN3BLj09belbu2vuTkawhGSfjFD1sLG5Ri2fcWdnHMjPekvMwXKnOvY6sLwxHvjQ78JhlWiK/wrf/H7/AUst7fHKrMoUqm7YSDc6j9nrpO4aRU1FaL2mGpsFZ9+prIAcxgFgvMpIw1RjhATXbxGS94zb4r00pemf1yzWbSKZ5C21KWPgEJnK1m</latexit>µ2
<latexit sha1_base64="TB2njFkAVUPcuto99QpUn8LH6Rc=">AAADcXichVLbLgNRFF3tuNateBIvjZIISTOD4NG1PJAgqhJEZqanNencMhdBI/ELXvky3+HVgzXHSFRDz+Sc2Wfvvda+nG34thVGqvqWySo9vX39A4O5oeGR0bH8+MRZ6MWBKSqmZ3vBuaGHwrZcUYmsyBbnfiB0x7BF1WhuJ/bqrQhCy3NPo3tfXDl6w7XqlqlHVFVnL534enn2Ol9US6pchU5BS4Ui0nXkjWcWcIkaPJiI4UDARUTZho6Q3wU0qPCpu0KLuoCSJe0Cj8gRG9NL0EOntsmzwdtFqnV5TzhDiTYZxeYOiCxgjrssGQ16J1EF5ZD/D+4HqWv8GaElmZMM7/k3yDgoGQ+pj3BDj25IJ/X8zqU7MqkqQh3rshqL+flSk9RpSp7cP9gabonxaWvvyl1bX3LyNQSjJPzih62FLUqx7HsL+zhlxgdSXuYLrXFvYqcLwwnvtQ78NhlWiF/nW/+P3+MpZL2/OVSZQ5lMuwkH51D7PXWdwtlSSVstacdLxY3y09dEDmAaM5hnJmvYYIQjVGQXn/GC1+y7MqUUlJkv12wmneJJtC1l8RMMpK1n</latexit>µ3

<latexit sha1_base64="7aIHAd6FIBQKM4wPoffib7rCBmQ=">AAAFmXicrVLbbtNAEJ0YAm24tIHHvlhERaGlke0g2hek3igVAqlA01aqq2jtbByrvsl2KlrLX8HX8Apfwb/wwPHGLrmRvLDWrmdn5pwzs7tG4NhRrCi/StKdu+V79xcWKw8ePnq8tFx9chL5/dDkLdN3/PDMYBF3bI+3Yjt2+FkQcuYaDj81Lvey+OkVDyPb947j64BfuMzy7K5tshiudlV6qRvcsr2EObblraV6RcZY1bshM5NOmnTiVI7q8Qv5+Rt5Qxj6rm3VdYu5LpPttpq51uVB/sCbJjcpItrsSEaDdZoez/X+v9yGrLv9tjpQmKqdS0B9KBMw5gQ9hn0ez7FjUG0IqhWpA81mEb7l0m5Lm8rVHOKaBDeLjGlgvRcFzOSJ0lBNNw0LorEW1uWJSv66Cn7Q69zrFK+jvVxTGooY8qSh5kaN8nHkV0trpFOHfDKpTy5x8iiG7RCjCN85qaRQAN8FJfCFsGwR55RSBdg+sjgyGLyXWC3sznOvh33GGQm0CRUHMwRSplXMA8FoIDtT5bAj/H9j3gif9U+FRDBnFV7jb4BxUTB+hD+mHjLmId08s6hlPjLrKqYubYlubNQXCE/Wpyl4KjOwHboCJkBs9FS+jpxLRdwGh0rGz4diCe3C6otzT+iQjlHxB2E3cUObmDu0P4fhM/adCfweGF4Bv4W7no1/h5WLfsc5FFHDAZjeZhx4h+r4q5s0TrSG+rqhftJq2/v5i1ygFXpGdVSySdtQOKIWmdI36bv0Q/pZXinvlA/L7wepUinHPKWRUf7yB3HvV88=</latexit>

d

dt
i2(t) = µ2i1(t)� µ3i2(t)� ↵2i2(t)

d

dt
i3(t) = µ3i2(t)� ↵3i3(t)

d

dt
r(t) = ↵1i1(t) + ↵2i2(t) + ↵3i3(t)

<latexit sha1_base64="f6z+kFZnt6r8NEco21ZH1Mhb6Kg=">AAAFt3icrVJNb9NAEJ0YDG34auDIxSIqCq0a2Q6i5YBU2lIQAqmgpq1UV9Ha3jhWbcfYTkVr+UfxaxA3+B8ceN7YJV8kF9ba9ezMvPdmdtcMPTdOVPVHRbpxU751e2m5eufuvfsPVmoPj+L+ILJ42+p7/ejEZDH33IC3Ezfx+EkYceabHj82z3fz+PEFj2K3HxwmlyE/85kTuF3XYglcnZr03jC54wYp81wnWMuMqoJhdCNmpXaW2kmmGL04ZBZP1aZm+ZkSN5JnytNXyoYwjB3XaRgO832muB0td60X8KE3S68yRPT5kZwG62J1Xqj/f/ENxfAHHW2oMKuSQgHiI4lAMS/sMeyLeAFdncDqI1i9zB1qtsrwNZl+XdpsstYI2TS6VWbMRI8faFQyTXSxrkzV8tdVCoDf4IFdvp3OSl1tqmIo04ZWGHUqxkG/Vlkjg2zqk0UD8olTQAlsjxjF+E5JI5VC+M4ohS+C5Yo4p4yqwA6QxZHB4D3H6mB3WngD7HPOWKAtqHiYEZAKrWLuC0YT2bkqhx3j/xvzSvicfyqkgjmv8BJ/E4zLgvEj/An1kLEI6ReZZS2LkXlXCXVpS3Tjor5QePI+LcFTnYO16QKYELHxU/k6di5VcRscKjk/H4mltANrIM49pXd0iIo/CLuFG9rEfE17Cxg+Y29P4XfB8Bz4Ldz1fPxbrFz0O8mhihr2wfQm58A71CZf3bRxpDe1F03tk17f3ite5BI9pifUQCWbtA2FA2qTJX2Tvks/pV/yS7kjd+XeMFWqFJhHNDbkL38ACZxjiQ==</latexit>

d

dt
s(t) = �s(t)

⇣
�i1(t) +

�

z
i2(t) +

�

z
i2(t)

⌘

d

dt
e(t) = s(t)

⇣
�i1(t) +

�

z
i2(t) +

�

z
i2(t)

⌘
� µ1e(t)

d

dt
i1(t) = µ1e(t)� ↵1i1(t)

Fig. 6.2.: Covid-19 model. (a) Transitioning system of the network model
with subject-level infectiousness (βi for subject i). The transition
rates refer to exponentially distributed residence times. (b) Cor-
responding ODE model with infection rate γ, where γ encodes
connectivity and infectiousness.

Tab. 6.1.: Model parameters. We refer to Nande et al. (2021) for clinical
justification of µj, βj.

Parameter Value Meaning

β 0.0706 Infection rate (fixed, R0 = 2.5, kmean = 8)
βi − Infection rate (variable) of subject i, βi ∼ ν(·)
ν(·) − Density of βi with E[βi] = β. E.g., ν = Exp(β−1)
z 5.0 Reduction in infectivity in disease stages I2, I3
R0 2.5 Basic reproduction number (for fixed β)
kmean ≈ 8 Mean number of neighbors (by construction)
µ1 1/5 Disease progression rate in E
µ2 0.2/6 Disease progression rate in I1
µ3 0.25/6 Disease progression rate in I2
α1 0.8/6 Recovery rate in I1
α2 0.75/6 Recovery rate in I2
α3 1/8 Recovery/death rate in I3
γ ≈ 0.394 Infection/connectivity for ODE (R0 = 2.5)

6.2 A Tale of Three Models 131

6.3 Method

In this section, we show how to translate an ODE model to a network-
based model in order to impose variation in connectivity and in-
fectiousness while keeping the population averages of clinical and
transmission parameters fixed. We use a Covid-19 ODE model that is
heavily inspired by the SIR-extension of Nande et al. (2021). A sum-
mary of the model is depicted in Figure 6.2 and Table 6.1 (p. 131).
We note upfront that we are only interested in qualitative results and
do not rely on exact parameter values.

6.3.1 ODE Model

Our model contains six disease stages or compartments (cf. Figure 6.2,
p. 131): susceptible (S), exposed (E) (infected but not yet infectious),
removed (R) (immune or dead), as well as mild, severe, and critical
infection stages (I1, I2, I3). In contrast to Nande et al. (2021), we
merge dead and recovered stages into a single removed stage, as
both do not influence the infection dynamics further (we assume
immunity after recovery). Note that perfect and permanent immunity
is not given for Covid-19. We ignore the impact of re-infections. The
fraction of individuals in each compartment evolves according to
a system of ODEs given in Figure 6.2b. Because ODE models are
invariant to the population size, we assume that the population is
normalized. A further difference to Nande et al. (2021) is that we
only have a single infection parameter γ. All other parameters have
a meaningful clinical interpretation and can be specified accordingly
(cf. Table 6.1).

The set of transition parameters γ, µj, αj gives rise to a specific R0.
Hence, we can fix R0 and thereby control γ (Excursus 4). We use
R0 = 2.5 which leads to γ ≈ 0.394.

132 Chapter 6

Covid-19 and the Limitations of Modeling

Excursus 4: Basic Reproduction Number of our Covid-19 Model

In an SIR ODE model (Figure 6.1, p. 126) with infection rate
γ and recovery rate α, we find that

R0 =
γ

α
.

We can compute R0 by assuming that an infinitesimal fraction
ϵ (representing patient zero in an infinitely large population)
is infected (I) and that the rest of the population (1 − ϵ)
is susceptible. Thus, we can naturally interpret R0 as the
slope of i(t) (representing the fraction of the population in
(I)). The slope of i(t) is the ratio of inflow and outflow. The
outlaw (αi(t)) is proportional to the recovery rate, the inflow
is proportional to the infection rate (γs(t)i(t) ≈ γi(t)).
In the extended SIR ODE model, we, therefore, consider the
outflow from S to E caused by the initially infected fraction ϵ
while this fraction passes the three disease stages (taking into
consideration that only a small part of ϵ reaches I2 and even
smaller part reaches I3):

R0 =
γ

µ2 + α1
+

µ2
µ2 + α1

· γ/z

α2 + µ3
+

µ2
µ2 + α1

· µ3
µ3 + α2

· γ/z
α3

.

For instance, µ2

µ2+α1
refers to the fraction of ϵ that reaches I2

and γ/z
α2+µ3

corresponds to the outflow of S attributed to this
fraction.

6.3 Method 133

RR<latexit sha1_base64="X6CXZysm5IckU4mqXOr9bGtqhsU=">AAAEunichVPNbtNAEJ4UA234aQoXJC4WERKnyI7jJJWQaAptOYAIUdMWNVVlO9tgxbEte1NarPA0XOEZuPAO8C4c+HaSINooyVremfl25tuZ2V03DvxUGsbv3MoN7eat26tr+Tt3791fL2w8OEijYeKJthcFUXLkOqkI/FC0pS8DcRQnwhm4gTh0+y/V+uG5SFI/CvflZSxOBk4v9M98z5GATguPOsyR7SVChKN8R4oLKWXWGp0WikZps16xzIpulMxaxapVoZQty6rYulkyeBRf/CIezWgj95M61KWIPBrSgASFJKEH5FCK75hMMigGdkIZsASaz+uCRpRH7BBeAh4O0D7mHqzjCRrCVpwpR3vYJcCfIFKnp/h3mdGFt9pVQE8h/+D/zFhv7g4ZM6sMLyFdMK4x41vgkj7CY1nkYOI5zWV5pKpK0hnVuRof+cWMqDq9fzyvsJIA6/OKTjvs2QOHy/Y5OhBCtpGB6vKUQeeKu5AOS8Es4YTRAV8Cqbqv8pmfYxc7+EDTa92/uNL/PJ+6QDUqO/HfWkbb0IZ8vhm9pn105g3rNlWohtvQgMdihhbs7kz8NiLLYKhiXhy/x7Wr6q9zVMHRwFxFXxdzfIAdsPVphmUXt7qBvtpLK3mH2eHzm+3HDqJtZGKTtYSlyVh/hqHOvdjEV1P3B693+kT1+cpBuWTibb83i1utH+N3vEqP6Qk9Q1U12sIOTdwuj77QV/pG37Xnmqv5Wn/supIbS3pIV4Ym/wIN4/FW</latexit><latexit sha1_base64="X6CXZysm5IckU4mqXOr9bGtqhsU=">AAAEunichVPNbtNAEJ4UA234aQoXJC4WERKnyI7jJJWQaAptOYAIUdMWNVVlO9tgxbEte1NarPA0XOEZuPAO8C4c+HaSINooyVremfl25tuZ2V03DvxUGsbv3MoN7eat26tr+Tt3791fL2w8OEijYeKJthcFUXLkOqkI/FC0pS8DcRQnwhm4gTh0+y/V+uG5SFI/CvflZSxOBk4v9M98z5GATguPOsyR7SVChKN8R4oLKWXWGp0WikZps16xzIpulMxaxapVoZQty6rYulkyeBRf/CIezWgj95M61KWIPBrSgASFJKEH5FCK75hMMigGdkIZsASaz+uCRpRH7BBeAh4O0D7mHqzjCRrCVpwpR3vYJcCfIFKnp/h3mdGFt9pVQE8h/+D/zFhv7g4ZM6sMLyFdMK4x41vgkj7CY1nkYOI5zWV5pKpK0hnVuRof+cWMqDq9fzyvsJIA6/OKTjvs2QOHy/Y5OhBCtpGB6vKUQeeKu5AOS8Es4YTRAV8Cqbqv8pmfYxc7+EDTa92/uNL/PJ+6QDUqO/HfWkbb0IZ8vhm9pn105g3rNlWohtvQgMdihhbs7kz8NiLLYKhiXhy/x7Wr6q9zVMHRwFxFXxdzfIAdsPVphmUXt7qBvtpLK3mH2eHzm+3HDqJtZGKTtYSlyVh/hqHOvdjEV1P3B693+kT1+cpBuWTibb83i1utH+N3vEqP6Qk9Q1U12sIOTdwuj77QV/pG37Xnmqv5Wn/supIbS3pIV4Ym/wIN4/FW</latexit><latexit sha1_base64="X6CXZysm5IckU4mqXOr9bGtqhsU=">AAAEunichVPNbtNAEJ4UA234aQoXJC4WERKnyI7jJJWQaAptOYAIUdMWNVVlO9tgxbEte1NarPA0XOEZuPAO8C4c+HaSINooyVremfl25tuZ2V03DvxUGsbv3MoN7eat26tr+Tt3791fL2w8OEijYeKJthcFUXLkOqkI/FC0pS8DcRQnwhm4gTh0+y/V+uG5SFI/CvflZSxOBk4v9M98z5GATguPOsyR7SVChKN8R4oLKWXWGp0WikZps16xzIpulMxaxapVoZQty6rYulkyeBRf/CIezWgj95M61KWIPBrSgASFJKEH5FCK75hMMigGdkIZsASaz+uCRpRH7BBeAh4O0D7mHqzjCRrCVpwpR3vYJcCfIFKnp/h3mdGFt9pVQE8h/+D/zFhv7g4ZM6sMLyFdMK4x41vgkj7CY1nkYOI5zWV5pKpK0hnVuRof+cWMqDq9fzyvsJIA6/OKTjvs2QOHy/Y5OhBCtpGB6vKUQeeKu5AOS8Es4YTRAV8Cqbqv8pmfYxc7+EDTa92/uNL/PJ+6QDUqO/HfWkbb0IZ8vhm9pn105g3rNlWohtvQgMdihhbs7kz8NiLLYKhiXhy/x7Wr6q9zVMHRwFxFXxdzfIAdsPVphmUXt7qBvtpLK3mH2eHzm+3HDqJtZGKTtYSlyVh/hqHOvdjEV1P3B693+kT1+cpBuWTibb83i1utH+N3vEqP6Qk9Q1U12sIOTdwuj77QV/pG37Xnmqv5Wn/supIbS3pIV4Ym/wIN4/FW</latexit><latexit sha1_base64="orSvGfWWuroXx2SX88SCeHy2aaY=">AAAEunichVPNbtNAEJ4UA234aQoXJC4WERKnyI7tJJU4NIW2HECEqGmLmqqynW2w4tiWvSktVngarvAMXHgI3oUD304TRBslWcs7M9/OfDszu+slYZBJw/hdWLml3b5zd3WteO/+g4frpY1HB1k8Sn3R8eMwTo88NxNhEImODGQojpJUuEMvFIfe4JVaPzwXaRbE0b68TMTJ0O1HwVnguxLQaelJlznyvVSIaFzsSnEhpczb49NS2ahsNmzLtHWjYtZtq16DUrUsy3Z0s2LwKNNktOKNwi/qUo9i8mlEQxIUkYQekksZvmMyyaAE2AnlwFJoAa8LGlMRsSN4CXi4QAeY+7COJ2gEW3FmHO1jlxB/ikidnuPfZUYP3mpXAT2D/IP/C2P9uTvkzKwyvIT0wLjGjO+AS/oEj2WRw4nnNJflkaoqSWfU4GoC5Jcwour0//G8xkoKbMArOu2wZx8cHtvn6EAE2UEGqstTBp0r7kG6LAWzRBNGF3wppOq+ymd+jj3sEADNbnT/4lr/i3zqAtWo7MR/azltQxvx+eb0hvbRmbesO2RTHbehCY/FDG3YvZn4bURWwVDDvDh+j2tX1d/kqIGjibmGvi7m+Ag7ZOvzDMsubnUTfXWWVvIes8vnN9uPHUQ7yMQhawlLi7HBDEODe7GJr67uD17v9Inq85WDasXE2/5glrfaP6/e8So9pWf0AlXVaQs7tHC7fPpK3+g7/dBeap4WaIMr15XC5O0/pmtDk38Bm43wPw==</latexit> SS<latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit>

SS<latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit>I1I1<latexit sha1_base64="g0uYzm2358lZjAK2uFxXbaFp05A=">AAAE+HichVTLbtNAFL0pBtrwSmGDxMYiQrCK7DivrkgKLSBBCVVfqKki25kGK44d2ZO+rPAtLJAQC1jwBfwGez6AD2DBmdsEkYYkY3nuY+49c++ZsZ2e78XSMH6kFi5pl69cXVxKX7t+4+atzPLtnTjsR67YdkM/jPYcOxa+F4ht6Ulf7PUiYXcdX+w6nSdqffdIRLEXBlvytCcOunY78A4915ZwNTN3G4yRbITHg3RDihMpZfJi0DSbmayRW6kULLOgGzmzXLDKJSh5y7IKRd3MGTyy1YePf1WJqB4up35Sg1oUkkt96pKggCR0n2yK8eyTSQb14DugBL4ImsfrggaURm4fUQIRNrwdzG1Y+0NvAFthxpztYhcfb4RMnR7gXWdEB9FqVwE9hvyN94x97ak7JIysKjyFdIC4xIiv4Jf0DhHzMrvDyFEt8zNVV5IOqcLdeKivxx7Vp/sX5ylWIvg6vKLTGke2geGwfQQGAshtVKBYHiHo3HEL0mYpGCUYItrAiyAV+6qe6TW2sIMHb3yB/ZMx/tN86gLdqOrEP2sJrULr8/km9Jy2wMxL1otUoDJuQw0RsxE2Ybcm8leRmQdCCfPs/Gfcu+r+IkYJGDXMJfA6G+MtbJ+t4wmUddzqGngtzu3kNWabz2+SjzVkF1FJkaw5KHX2dSYQKszFCp7yHISN//Yxxii+/dEHrk9XdvI5E3+GN2a2uvmdeCzSPbpPj8BJmarAr+NuuvSePtIX+qqdaR+0T9rn89CF1LmkOzQ2tG9/AFwz/qk=</latexit><latexit sha1_base64="r78QdgZ41XMxJmMA29eCt2KD4AE=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctjUm6m0llkv5Qw9p2oZvZgzigUoWcMwcnlVz2g80uVHT35VB+f1mr+W+EkNapFPNvWpS4I8ktBdMinEc0A6adSD75Ai+AJoDq8LGlISuX1ECUSY8HYwt2EdjLwe7Bgz5Gwbu7h4A2Sq9BDvJiNaiI53FdBDyN94z9jXnrlDxMhxhaeQFhBXGPE1/JLeI2JRZncUOa5lcWbclaQjKnE3DurrsSfu0/6L8wwrAXwdXlGpypFtYFhsH4MBD7KOCmKWxwgqd9yCNFkKRvFGiCbwAsiY/bie2TW2sIMDb3iJ/ZMJ/pN86gLdxNWJf9Yi2oDW5/ON6AXtgJlXrOcpR0Xchgoi5iNsw25N5W8gMwuEAub5+c+597j7yxgFYFQwF8DrfIx3sF22BlMom7jVFfCaX9jJG8wmn980H1Vk51FJnowFKDX2daYQSszFOp7iAoSt//YxwSi+/fEHrs5WdrMZHX+Gt3q6vP2DeCzTfXpAj8FJkcrAr+Fu2vSBPtFX+qacKR+Vz8qXi9ClxIWkuzQxlO9/AITqAGI=</latexit><latexit sha1_base64="r78QdgZ41XMxJmMA29eCt2KD4AE=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctjUm6m0llkv5Qw9p2oZvZgzigUoWcMwcnlVz2g80uVHT35VB+f1mr+W+EkNapFPNvWpS4I8ktBdMinEc0A6adSD75Ai+AJoDq8LGlISuX1ECUSY8HYwt2EdjLwe7Bgz5Gwbu7h4A2Sq9BDvJiNaiI53FdBDyN94z9jXnrlDxMhxhaeQFhBXGPE1/JLeI2JRZncUOa5lcWbclaQjKnE3DurrsSfu0/6L8wwrAXwdXlGpypFtYFhsH4MBD7KOCmKWxwgqd9yCNFkKRvFGiCbwAsiY/bie2TW2sIMDb3iJ/ZMJ/pN86gLdxNWJf9Yi2oDW5/ON6AXtgJlXrOcpR0Xchgoi5iNsw25N5W8gMwuEAub5+c+597j7yxgFYFQwF8DrfIx3sF22BlMom7jVFfCaX9jJG8wmn980H1Vk51FJnowFKDX2daYQSszFOp7iAoSt//YxwSi+/fEHrs5WdrMZHX+Gt3q6vP2DeCzTfXpAj8FJkcrAr+Fu2vSBPtFX+qacKR+Vz8qXi9ClxIWkuzQxlO9/AITqAGI=</latexit><latexit sha1_base64="VaAAPAsfCIWLIq91yNLiwr2MTVA=">AAAE+HichVTNbtNAEJ60Btrw07RckLhYREicIjvOX29NoQUkKKFq2qKmimxnG6w4dmRv+meFZ+GAhDjAgSfgNbjzGBz4dpog0pBkrd2ZnZ35dubb9To934ulYfxMLSxqN27eWlpO375z995KZnVtPw77kSvqbuiH0aFjx8L3AlGXnvTFYS8SdtfxxYHTearWD05FFHthsCcveuK4a7cD78RzbQlTM/OgwRjJTng2SDekOJdSJi8HTbOZyRq59UrBMgu6kTPLBatcgpK3LKtQ1M2cwS1Lw1YLV1O/qEEtCsmlPnVJUEASuk82xfiOyCSDerAdUwJbBM3jdUEDSiO2Dy8BDxvWDsY2ZkdDa4C5wow52sUuPnqESJ0eo28zogNvtauAHkP+Rr9kW3vqDgkjqwwvIB0gLjPia9glvYfHvMju0HOUy/xIVZWkE6pwNR7y67FF1en+xXmGlQi2Dq/otMWebWA4PD8FAwFkHRkolkcIOlfcgrRZCkYJhog28CJIxb7KZ3qOLezgwRpfY/98jP80n7pANSo78c9aQpvQ+ny+Cb2gPTDzivUiFaiM21CFx2yEXcxbE/GbiMwDoYRxdvxzrl1Vfx2jBIwqxhJ4nY3xDnOfZ2cTKNu41VXwWpxbyRuMNp/fJB9biC4ikyJZc1BqbOtMIFSYi3V85TkIO/+tY4xR/PujH1yfruzncyZehrdmdmP3x9UrsEQP6RE9ASdl2gB+DXfTpQ/0ib7SN+1S+6h91r5cuS6khi/HfRpr2vc/b8780w==</latexit> EE<latexit sha1_base64="mfjyGMMMuBxw59LUf78r/RK0fFo=">AAAE9nichVTNbtNAEJ4UA234aQoSFy4WERKnKI7jJD3RFFI4QAlV0xY1VWU722DFsSN706aYvAoHJMQBDjwCjwF3HoMD304SRBuS7Gp3/r+dmV3b6fleLPP5n6mlK9rVa9eXV9I3bt66vZpZu7MXh/3IFQ039MPowLFj4XuBaEhP+uKgFwm76/hi3+k8Ufb9UxHFXhjsyvOeOOra7cA78VxbQnWcuddkjGQ7PBumm1IMpJRJbXicyeZz65WiaRT1fM4oF81yCUzBNM2ipRu5PI/s4x/Eox6upX5Rk1oUkkt96pKggCR4n2yKMQ/JoDz1oDuiBLoInMd2QUNKI7YPLwEPG9oO9jakw7E2gKwwY452cYqPFSFSp4dYW4zowFudKsDHoL+x3rGuPfOEhJFVhuegDhBXGPEl9JLewmNRZHfsOcllcaSqStIJVbgaD/n1WKPqdP/iPIUlgq7DFp1q7NkGhsPyKToQgDaQgeryBEHnilugNlPBKMEY0QZeBKq6r/KZnWMLJ3jQxpe6P7jQ/zTfukA1Kjvxjy2hTXB9vt+EntMuOvOCeYuKVMZrqMJjPsIO5NZU/CYiC0AoYZ8f/4xrV9VfxigBo4q9hL7Ox3gD2WfpbAplC6+6ir5aCyt5hd3m+5vuRw3RFjKxyFyAUmddZwqhwr1YxywvQNj+bx0VRKpKLEz17U8+cH02s1fIGfgzvDayGzvfR3+BZbpPD+gRkMq0Afw63qZL7+kjfaGv2kD7oH3SPo9cl1IjSnfpwtC+/QEnv/07</latexit><latexit sha1_base64="mfjyGMMMuBxw59LUf78r/RK0fFo=">AAAE9nichVTNbtNAEJ4UA234aQoSFy4WERKnKI7jJD3RFFI4QAlV0xY1VWU722DFsSN706aYvAoHJMQBDjwCjwF3HoMD304SRBuS7Gp3/r+dmV3b6fleLPP5n6mlK9rVa9eXV9I3bt66vZpZu7MXh/3IFQ039MPowLFj4XuBaEhP+uKgFwm76/hi3+k8Ufb9UxHFXhjsyvOeOOra7cA78VxbQnWcuddkjGQ7PBumm1IMpJRJbXicyeZz65WiaRT1fM4oF81yCUzBNM2ipRu5PI/s4x/Eox6upX5Rk1oUkkt96pKggCR4n2yKMQ/JoDz1oDuiBLoInMd2QUNKI7YPLwEPG9oO9jakw7E2gKwwY452cYqPFSFSp4dYW4zowFudKsDHoL+x3rGuPfOEhJFVhuegDhBXGPEl9JLewmNRZHfsOcllcaSqStIJVbgaD/n1WKPqdP/iPIUlgq7DFp1q7NkGhsPyKToQgDaQgeryBEHnilugNlPBKMEY0QZeBKq6r/KZnWMLJ3jQxpe6P7jQ/zTfukA1Kjvxjy2hTXB9vt+EntMuOvOCeYuKVMZrqMJjPsIO5NZU/CYiC0AoYZ8f/4xrV9VfxigBo4q9hL7Ox3gD2WfpbAplC6+6ir5aCyt5hd3m+5vuRw3RFjKxyFyAUmddZwqhwr1YxywvQNj+bx0VRKpKLEz17U8+cH02s1fIGfgzvDayGzvfR3+BZbpPD+gRkMq0Afw63qZL7+kjfaGv2kD7oH3SPo9cl1IjSnfpwtC+/QEnv/07</latexit><latexit sha1_base64="mfjyGMMMuBxw59LUf78r/RK0fFo=">AAAE9nichVTNbtNAEJ4UA234aQoSFy4WERKnKI7jJD3RFFI4QAlV0xY1VWU722DFsSN706aYvAoHJMQBDjwCjwF3HoMD304SRBuS7Gp3/r+dmV3b6fleLPP5n6mlK9rVa9eXV9I3bt66vZpZu7MXh/3IFQ039MPowLFj4XuBaEhP+uKgFwm76/hi3+k8Ufb9UxHFXhjsyvOeOOra7cA78VxbQnWcuddkjGQ7PBumm1IMpJRJbXicyeZz65WiaRT1fM4oF81yCUzBNM2ipRu5PI/s4x/Eox6upX5Rk1oUkkt96pKggCR4n2yKMQ/JoDz1oDuiBLoInMd2QUNKI7YPLwEPG9oO9jakw7E2gKwwY452cYqPFSFSp4dYW4zowFudKsDHoL+x3rGuPfOEhJFVhuegDhBXGPEl9JLewmNRZHfsOcllcaSqStIJVbgaD/n1WKPqdP/iPIUlgq7DFp1q7NkGhsPyKToQgDaQgeryBEHnilugNlPBKMEY0QZeBKq6r/KZnWMLJ3jQxpe6P7jQ/zTfukA1Kjvxjy2hTXB9vt+EntMuOvOCeYuKVMZrqMJjPsIO5NZU/CYiC0AoYZ8f/4xrV9VfxigBo4q9hL7Ox3gD2WfpbAplC6+6ir5aCyt5hd3m+5vuRw3RFjKxyFyAUmddZwqhwr1YxywvQNj+bx0VRKpKLEz17U8+cH02s1fIGfgzvDayGzvfR3+BZbpPD+gRkMq0Afw63qZL7+kjfaGv2kD7oH3SPo9cl1IjSnfpwtC+/QEnv/07</latexit><latexit sha1_base64="gLj0Z45k9O9AjPPVScx+QbakRMA=">AAAE9nichVTNbtNAEJ4UA234aQoSFy4WERKnyI7jJL01hRQOUELVtEVNVdnONlhx7MjetCkmr8IBCXGAA4/Aa3DnMTjw7TRBtCHJrnbnZ2e+nZn9cfuBn0jD+JlZuqZdv3FzeSV76/adu6u5tXt7STSIPdH0oiCKD1wnEYEfiqb0ZSAO+rFwem4g9t3uU7W+fyrixI/CXXneF0c9pxP6J77nSKiOcw9ajJFuR2ejbEuKoZQyrY+Oc3mjsF4tWWZJNwpmpWRVymCKlmWVbN0sGNzyNG6NaC3zi1rUpog8GlCPBIUkwQfkUIJ+SCYZ1IfuiFLoYnA+rwsaURa+A1gJWDjQdjF3IB2OtSFkhZmwt4ddAowYnjo9xthiRBfWalcBPgH9jfGedZ2ZO6SMrCI8B3WBuMKIr6CX9A4Wizx7Y8tJLIs9VVaSTqjK2fiIr88alaf3F+cZVmLouryiU50tO8BwWT5FBULQJiJQVZ4g6JxxG9RhKhglHCM6wItBVfVVPLNjbGMHH9rkSvWHl+qf5VMXyEZFJ/5ZS2kT3IDPN6UXtIvKvGTephJVcBtqsJiPsAO5PeW/Cc8iEMqY5/s/59xV9lcxysCoYS6jrvMx3kIOWDqbQtnCra6hrvbCTF5jdvj8putRh7eNSGyyFqA0WNedQqhyLdbRKwsQtv+bRxWeKhMbXb39yQPXZzN7xYKJn+GNmd/Y+XHxCyzTQ3pET4BUoQ3gN3A3PfpAn+grfdOG2kfts/blwnQpM/457tOlpn3/A3HX/CQ=</latexit>I1I1<latexit sha1_base64="g0uYzm2358lZjAK2uFxXbaFp05A=">AAAE+HichVTLbtNAFL0pBtrwSmGDxMYiQrCK7DivrkgKLSBBCVVfqKki25kGK44d2ZO+rPAtLJAQC1jwBfwGez6AD2DBmdsEkYYkY3nuY+49c++ZsZ2e78XSMH6kFi5pl69cXVxKX7t+4+atzPLtnTjsR67YdkM/jPYcOxa+F4ht6Ulf7PUiYXcdX+w6nSdqffdIRLEXBlvytCcOunY78A4915ZwNTN3G4yRbITHg3RDihMpZfJi0DSbmayRW6kULLOgGzmzXLDKJSh5y7IKRd3MGTyy1YePf1WJqB4up35Sg1oUkkt96pKggCR0n2yK8eyTSQb14DugBL4ImsfrggaURm4fUQIRNrwdzG1Y+0NvAFthxpztYhcfb4RMnR7gXWdEB9FqVwE9hvyN94x97ak7JIysKjyFdIC4xIiv4Jf0DhHzMrvDyFEt8zNVV5IOqcLdeKivxx7Vp/sX5ylWIvg6vKLTGke2geGwfQQGAshtVKBYHiHo3HEL0mYpGCUYItrAiyAV+6qe6TW2sIMHb3yB/ZMx/tN86gLdqOrEP2sJrULr8/km9Jy2wMxL1otUoDJuQw0RsxE2Ybcm8leRmQdCCfPs/Gfcu+r+IkYJGDXMJfA6G+MtbJ+t4wmUddzqGngtzu3kNWabz2+SjzVkF1FJkaw5KHX2dSYQKszFCp7yHISN//Yxxii+/dEHrk9XdvI5E3+GN2a2uvmdeCzSPbpPj8BJmarAr+NuuvSePtIX+qqdaR+0T9rn89CF1LmkOzQ2tG9/AFwz/qk=</latexit><latexit sha1_base64="r78QdgZ41XMxJmMA29eCt2KD4AE=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctjUm6m0llkv5Qw9p2oZvZgzigUoWcMwcnlVz2g80uVHT35VB+f1mr+W+EkNapFPNvWpS4I8ktBdMinEc0A6adSD75Ai+AJoDq8LGlISuX1ECUSY8HYwt2EdjLwe7Bgz5Gwbu7h4A2Sq9BDvJiNaiI53FdBDyN94z9jXnrlDxMhxhaeQFhBXGPE1/JLeI2JRZncUOa5lcWbclaQjKnE3DurrsSfu0/6L8wwrAXwdXlGpypFtYFhsH4MBD7KOCmKWxwgqd9yCNFkKRvFGiCbwAsiY/bie2TW2sIMDb3iJ/ZMJ/pN86gLdxNWJf9Yi2oDW5/ON6AXtgJlXrOcpR0Xchgoi5iNsw25N5W8gMwuEAub5+c+597j7yxgFYFQwF8DrfIx3sF22BlMom7jVFfCaX9jJG8wmn980H1Vk51FJnowFKDX2daYQSszFOp7iAoSt//YxwSi+/fEHrs5WdrMZHX+Gt3q6vP2DeCzTfXpAj8FJkcrAr+Fu2vSBPtFX+qacKR+Vz8qXi9ClxIWkuzQxlO9/AITqAGI=</latexit><latexit sha1_base64="r78QdgZ41XMxJmMA29eCt2KD4AE=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctjUm6m0llkv5Qw9p2oZvZgzigUoWcMwcnlVz2g80uVHT35VB+f1mr+W+EkNapFPNvWpS4I8ktBdMinEc0A6adSD75Ai+AJoDq8LGlISuX1ECUSY8HYwt2EdjLwe7Bgz5Gwbu7h4A2Sq9BDvJiNaiI53FdBDyN94z9jXnrlDxMhxhaeQFhBXGPE1/JLeI2JRZncUOa5lcWbclaQjKnE3DurrsSfu0/6L8wwrAXwdXlGpypFtYFhsH4MBD7KOCmKWxwgqd9yCNFkKRvFGiCbwAsiY/bie2TW2sIMDb3iJ/ZMJ/pN86gLdxNWJf9Yi2oDW5/ON6AXtgJlXrOcpR0Xchgoi5iNsw25N5W8gMwuEAub5+c+597j7yxgFYFQwF8DrfIx3sF22BlMom7jVFfCaX9jJG8wmn980H1Vk51FJnowFKDX2daYQSszFOp7iAoSt//YxwSi+/fEHrs5WdrMZHX+Gt3q6vP2DeCzTfXpAj8FJkcrAr+Fu2vSBPtFX+qacKR+Vz8qXi9ClxIWkuzQxlO9/AITqAGI=</latexit><latexit sha1_base64="VaAAPAsfCIWLIq91yNLiwr2MTVA=">AAAE+HichVTNbtNAEJ60Btrw07RckLhYREicIjvOX29NoQUkKKFq2qKmimxnG6w4dmRv+meFZ+GAhDjAgSfgNbjzGBz4dpog0pBkrd2ZnZ35dubb9To934ulYfxMLSxqN27eWlpO375z995KZnVtPw77kSvqbuiH0aFjx8L3AlGXnvTFYS8SdtfxxYHTearWD05FFHthsCcveuK4a7cD78RzbQlTM/OgwRjJTng2SDekOJdSJi8HTbOZyRq59UrBMgu6kTPLBatcgpK3LKtQ1M2cwS1Lw1YLV1O/qEEtCsmlPnVJUEASuk82xfiOyCSDerAdUwJbBM3jdUEDSiO2Dy8BDxvWDsY2ZkdDa4C5wow52sUuPnqESJ0eo28zogNvtauAHkP+Rr9kW3vqDgkjqwwvIB0gLjPia9glvYfHvMju0HOUy/xIVZWkE6pwNR7y67FF1en+xXmGlQi2Dq/otMWebWA4PD8FAwFkHRkolkcIOlfcgrRZCkYJhog28CJIxb7KZ3qOLezgwRpfY/98jP80n7pANSo78c9aQpvQ+ny+Cb2gPTDzivUiFaiM21CFx2yEXcxbE/GbiMwDoYRxdvxzrl1Vfx2jBIwqxhJ4nY3xDnOfZ2cTKNu41VXwWpxbyRuMNp/fJB9biC4ikyJZc1BqbOtMIFSYi3V85TkIO/+tY4xR/PujH1yfruzncyZehrdmdmP3x9UrsEQP6RE9ASdl2gB+DXfTpQ/0ib7SN+1S+6h91r5cuS6khi/HfRpr2vc/b8780w==</latexit>

I2I2<latexit sha1_base64="LuyHU7DtRzkJ2MxBqXplNR1tjC4=">AAAE+HichVTLbtNAFL0pBtrwSmGDxMYiQrCK7DivrkgKLSBBCVVfqKki25kGK44d2ZO+rPAtLJAQC1jwBfwGez6AD2DBmdsEkYYkY3nuY+49c++ZsZ2e78XSMH6kFi5pl69cXVxKX7t+4+atzPLtnTjsR67YdkM/jPYcOxa+F4ht6Ulf7PUiYXcdX+w6nSdqffdIRLEXBlvytCcOunY78A4915ZwNTN3G4yRbITHg3RDihMpZfJi0Mw3M1kjt1IpWGZBN3JmuWCVS1DylmUVirqZM3hkqw8f/6oSUT1cTv2kBrUoJJf61CVBAUnoPtkU49knkwzqwXdACXwRNI/XBQ0ojdw+ogQibHg7mNuw9ofeALbCjDnbxS4+3giZOj3Au86IDqLVrgJ6DPkb7xn72lN3SBhZVXgK6QBxiRFfwS/pHSLmZXaHkaNa5meqriQdUoW78VBfjz2qT/cvzlOsRPB1eEWnNY5sA8Nh+wgMBJDbqECxPELQueMWpM1SMEowRLSBF0Eq9lU902tsYQcP3vgC+ydj/Kf51AW6UdWJf9YSWoXW5/NN6DltgZmXrBepQGXchhoiZiNswm5N5K8iMw+EEubZ+c+4d9X9RYwSMGqYS+B1NsZb2D5bxxMo67jVNfBanNvJa8w2n98kH2vILqKSIllzUOrs60wgVJiLFTzlOQgb/+1jjFF8+6MPXJ+u7ORzJv4Mb8xsdfM78Vike3SfHoGTMlWBX8fddOk9faQv9FU70z5on7TP56ELqXNJd2hsaN/+AGCu/qo=</latexit><latexit sha1_base64="LP6dc6k+oJDBJJvGQiHpMwuM2i4=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctjMNlNpLbNeyhl6TtUyejFnFAtQsoZh5PKqntF4pMuPnvyqDs7rNX8t8ZMa1CKfbOpTlwR5JKG7ZFKI54B00qgH3yFF8AXQHF4XNKQkcvuIEogw4e1gbsM6GHk92DFmyNk2dnHxBshU6SHeTUa0EB3vKqCHkL/xnrGvPXOHiJHjCk8hLSCuMOJr+CW9R8SizO4oclzL4sy4K0lHVOJuHNTXY0/cp/0X5xlWAvg6vKJSlSPbwLDYPgYDHmQdFcQsjxFU7rgFabIUjOKNEE3gBZAx+3E9s2tsYQcH3vAS+ycT/Cf51AW6iasT/6xFtAGtz+cb0QvaATOvWM9Tjoq4DRVEzEfYht2ayt9AZhYIBczz859z73H3lzEKwKhgLoDX+RjvYLtsDaZQNnGrK+A1v7CTN5hNPr9pPqrIzqOSPBkLUGrs60whlJiLdTzFBQhb/+1jglF8++MPXJ2t7GYzOv4Mb/V0efsH8Vim+/SAHoOTIpWBX8PdtOkDfaKv9E05Uz4qn5UvF6FLiQtJd2liKN//AIllAGM=</latexit><latexit sha1_base64="LP6dc6k+oJDBJJvGQiHpMwuM2i4=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctjMNlNpLbNeyhl6TtUyejFnFAtQsoZh5PKqntF4pMuPnvyqDs7rNX8t8ZMa1CKfbOpTlwR5JKG7ZFKI54B00qgH3yFF8AXQHF4XNKQkcvuIEogw4e1gbsM6GHk92DFmyNk2dnHxBshU6SHeTUa0EB3vKqCHkL/xnrGvPXOHiJHjCk8hLSCuMOJr+CW9R8SizO4oclzL4sy4K0lHVOJuHNTXY0/cp/0X5xlWAvg6vKJSlSPbwLDYPgYDHmQdFcQsjxFU7rgFabIUjOKNEE3gBZAx+3E9s2tsYQcH3vAS+ycT/Cf51AW6iasT/6xFtAGtz+cb0QvaATOvWM9Tjoq4DRVEzEfYht2ayt9AZhYIBczz859z73H3lzEKwKhgLoDX+RjvYLtsDaZQNnGrK+A1v7CTN5hNPr9pPqrIzqOSPBkLUGrs60whlJiLdTzFBQhb/+1jglF8++MPXJ2t7GYzOv4Mb/V0efsH8Vim+/SAHoOTIpWBX8PdtOkDfaKv9E05Uz4qn5UvF6FLiQtJd2liKN//AIllAGM=</latexit><latexit sha1_base64="Sen8VnCxhFLaELyr70rcj8tmZig=">AAAE+HichVTNbtNAEJ60Btrw07RckLhYREicIjvOX29NoQUkKKFq2qKmimxnG6w4dmRv+meFZ+GAhDjAgSfgNbjzGBz4dpog0pBkrd2ZnZ35dubb9To934ulYfxMLSxqN27eWlpO375z995KZnVtPw77kSvqbuiH0aFjx8L3AlGXnvTFYS8SdtfxxYHTearWD05FFHthsCcveuK4a7cD78RzbQlTM/OgwRjJTng2SDekOJdSJi8HzXwzkzVy65WCZRZ0I2eWC1a5BCVvWVahqJs5g1uWhq0WrqZ+UYNaFJJLfeqSoIAkdJ9sivEdkUkG9WA7pgS2CJrH64IGlEZsH14CHjasHYxtzI6G1gBzhRlztItdfPQIkTo9Rt9mRAfealcBPYb8jX7JtvbUHRJGVhleQDpAXGbE17BLeg+PeZHdoecol/mRqipJJ1Thajzk12OLqtP9i/MMKxFsHV7RaYs928BweH4KBgLIOjJQLI8QdK64BWmzFIwSDBFt4EWQin2Vz/QcW9jBgzW+xv75GP9pPnWBalR24p+1hDah9fl8E3pBe2DmFetFKlAZt6EKj9kIu5i3JuI3EZkHQgnj7PjnXLuq/jpGCRhVjCXwOhvjHeY+z84mULZxq6vgtTi3kjcYbT6/ST62EF1EJkWy5qDU2NaZQKgwF+v4ynMQdv5bxxij+PdHP7g+XdnP50y8DG/N7Mbuj6tXYIke0iN6Ak7KtAH8Gu6mSx/oE32lb9ql9lH7rH25cl1IDV+O+zTWtO9/AHRJ/NQ=</latexit> SS<latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit> I2I2<latexit sha1_base64="LuyHU7DtRzkJ2MxBqXplNR1tjC4=">AAAE+HichVTLbtNAFL0pBtrwSmGDxMYiQrCK7DivrkgKLSBBCVVfqKki25kGK44d2ZO+rPAtLJAQC1jwBfwGez6AD2DBmdsEkYYkY3nuY+49c++ZsZ2e78XSMH6kFi5pl69cXVxKX7t+4+atzPLtnTjsR67YdkM/jPYcOxa+F4ht6Ulf7PUiYXcdX+w6nSdqffdIRLEXBlvytCcOunY78A4915ZwNTN3G4yRbITHg3RDihMpZfJi0Mw3M1kjt1IpWGZBN3JmuWCVS1DylmUVirqZM3hkqw8f/6oSUT1cTv2kBrUoJJf61CVBAUnoPtkU49knkwzqwXdACXwRNI/XBQ0ojdw+ogQibHg7mNuw9ofeALbCjDnbxS4+3giZOj3Au86IDqLVrgJ6DPkb7xn72lN3SBhZVXgK6QBxiRFfwS/pHSLmZXaHkaNa5meqriQdUoW78VBfjz2qT/cvzlOsRPB1eEWnNY5sA8Nh+wgMBJDbqECxPELQueMWpM1SMEowRLSBF0Eq9lU902tsYQcP3vgC+ydj/Kf51AW6UdWJf9YSWoXW5/NN6DltgZmXrBepQGXchhoiZiNswm5N5K8iMw+EEubZ+c+4d9X9RYwSMGqYS+B1NsZb2D5bxxMo67jVNfBanNvJa8w2n98kH2vILqKSIllzUOrs60wgVJiLFTzlOQgb/+1jjFF8+6MPXJ+u7ORzJv4Mb8xsdfM78Vike3SfHoGTMlWBX8fddOk9faQv9FU70z5on7TP56ELqXNJd2hsaN/+AGCu/qo=</latexit><latexit sha1_base64="LP6dc6k+oJDBJJvGQiHpMwuM2i4=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctjMNlNpLbNeyhl6TtUyejFnFAtQsoZh5PKqntF4pMuPnvyqDs7rNX8t8ZMa1CKfbOpTlwR5JKG7ZFKI54B00qgH3yFF8AXQHF4XNKQkcvuIEogw4e1gbsM6GHk92DFmyNk2dnHxBshU6SHeTUa0EB3vKqCHkL/xnrGvPXOHiJHjCk8hLSCuMOJr+CW9R8SizO4oclzL4sy4K0lHVOJuHNTXY0/cp/0X5xlWAvg6vKJSlSPbwLDYPgYDHmQdFcQsjxFU7rgFabIUjOKNEE3gBZAx+3E9s2tsYQcH3vAS+ycT/Cf51AW6iasT/6xFtAGtz+cb0QvaATOvWM9Tjoq4DRVEzEfYht2ayt9AZhYIBczz859z73H3lzEKwKhgLoDX+RjvYLtsDaZQNnGrK+A1v7CTN5hNPr9pPqrIzqOSPBkLUGrs60whlJiLdTzFBQhb/+1jglF8++MPXJ2t7GYzOv4Mb/V0efsH8Vim+/SAHoOTIpWBX8PdtOkDfaKv9E05Uz4qn5UvF6FLiQtJd2liKN//AIllAGM=</latexit><latexit sha1_base64="LP6dc6k+oJDBJJvGQiHpMwuM2i4=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctjMNlNpLbNeyhl6TtUyejFnFAtQsoZh5PKqntF4pMuPnvyqDs7rNX8t8ZMa1CKfbOpTlwR5JKG7ZFKI54B00qgH3yFF8AXQHF4XNKQkcvuIEogw4e1gbsM6GHk92DFmyNk2dnHxBshU6SHeTUa0EB3vKqCHkL/xnrGvPXOHiJHjCk8hLSCuMOJr+CW9R8SizO4oclzL4sy4K0lHVOJuHNTXY0/cp/0X5xlWAvg6vKJSlSPbwLDYPgYDHmQdFcQsjxFU7rgFabIUjOKNEE3gBZAx+3E9s2tsYQcH3vAS+ycT/Cf51AW6iasT/6xFtAGtz+cb0QvaATOvWM9Tjoq4DRVEzEfYht2ayt9AZhYIBczz859z73H3lzEKwKhgLoDX+RjvYLtsDaZQNnGrK+A1v7CTN5hNPr9pPqrIzqOSPBkLUGrs60whlJiLdTzFBQhb/+1jglF8++MPXJ2t7GYzOv4Mb/V0efsH8Vim+/SAHoOTIpWBX8PdtOkDfaKv9E05Uz4qn5UvF6FLiQtJd2liKN//AIllAGM=</latexit><latexit sha1_base64="Sen8VnCxhFLaELyr70rcj8tmZig=">AAAE+HichVTNbtNAEJ60Btrw07RckLhYREicIjvOX29NoQUkKKFq2qKmimxnG6w4dmRv+meFZ+GAhDjAgSfgNbjzGBz4dpog0pBkrd2ZnZ35dubb9To934ulYfxMLSxqN27eWlpO375z995KZnVtPw77kSvqbuiH0aFjx8L3AlGXnvTFYS8SdtfxxYHTearWD05FFHthsCcveuK4a7cD78RzbQlTM/OgwRjJTng2SDekOJdSJi8HzXwzkzVy65WCZRZ0I2eWC1a5BCVvWVahqJs5g1uWhq0WrqZ+UYNaFJJLfeqSoIAkdJ9sivEdkUkG9WA7pgS2CJrH64IGlEZsH14CHjasHYxtzI6G1gBzhRlztItdfPQIkTo9Rt9mRAfealcBPYb8jX7JtvbUHRJGVhleQDpAXGbE17BLeg+PeZHdoecol/mRqipJJ1Thajzk12OLqtP9i/MMKxFsHV7RaYs928BweH4KBgLIOjJQLI8QdK64BWmzFIwSDBFt4EWQin2Vz/QcW9jBgzW+xv75GP9pPnWBalR24p+1hDah9fl8E3pBe2DmFetFKlAZt6EKj9kIu5i3JuI3EZkHQgnj7PjnXLuq/jpGCRhVjCXwOhvjHeY+z84mULZxq6vgtTi3kjcYbT6/ST62EF1EJkWy5qDU2NaZQKgwF+v4ynMQdv5bxxij+PdHP7g+XdnP50y8DG/N7Mbuj6tXYIke0iN6Ak7KtAH8Gu6mSx/oE32lb9ql9lH7rH25cl1IDV+O+zTWtO9/AHRJ/NQ=</latexit> EE<latexit sha1_base64="mfjyGMMMuBxw59LUf78r/RK0fFo=">AAAE9nichVTNbtNAEJ4UA234aQoSFy4WERKnKI7jJD3RFFI4QAlV0xY1VWU722DFsSN706aYvAoHJMQBDjwCjwF3HoMD304SRBuS7Gp3/r+dmV3b6fleLPP5n6mlK9rVa9eXV9I3bt66vZpZu7MXh/3IFQ039MPowLFj4XuBaEhP+uKgFwm76/hi3+k8Ufb9UxHFXhjsyvOeOOra7cA78VxbQnWcuddkjGQ7PBumm1IMpJRJbXicyeZz65WiaRT1fM4oF81yCUzBNM2ipRu5PI/s4x/Eox6upX5Rk1oUkkt96pKggCR4n2yKMQ/JoDz1oDuiBLoInMd2QUNKI7YPLwEPG9oO9jakw7E2gKwwY452cYqPFSFSp4dYW4zowFudKsDHoL+x3rGuPfOEhJFVhuegDhBXGPEl9JLewmNRZHfsOcllcaSqStIJVbgaD/n1WKPqdP/iPIUlgq7DFp1q7NkGhsPyKToQgDaQgeryBEHnilugNlPBKMEY0QZeBKq6r/KZnWMLJ3jQxpe6P7jQ/zTfukA1Kjvxjy2hTXB9vt+EntMuOvOCeYuKVMZrqMJjPsIO5NZU/CYiC0AoYZ8f/4xrV9VfxigBo4q9hL7Ox3gD2WfpbAplC6+6ir5aCyt5hd3m+5vuRw3RFjKxyFyAUmddZwqhwr1YxywvQNj+bx0VRKpKLEz17U8+cH02s1fIGfgzvDayGzvfR3+BZbpPD+gRkMq0Afw63qZL7+kjfaGv2kD7oH3SPo9cl1IjSnfpwtC+/QEnv/07</latexit><latexit sha1_base64="mfjyGMMMuBxw59LUf78r/RK0fFo=">AAAE9nichVTNbtNAEJ4UA234aQoSFy4WERKnKI7jJD3RFFI4QAlV0xY1VWU722DFsSN706aYvAoHJMQBDjwCjwF3HoMD304SRBuS7Gp3/r+dmV3b6fleLPP5n6mlK9rVa9eXV9I3bt66vZpZu7MXh/3IFQ039MPowLFj4XuBaEhP+uKgFwm76/hi3+k8Ufb9UxHFXhjsyvOeOOra7cA78VxbQnWcuddkjGQ7PBumm1IMpJRJbXicyeZz65WiaRT1fM4oF81yCUzBNM2ipRu5PI/s4x/Eox6upX5Rk1oUkkt96pKggCR4n2yKMQ/JoDz1oDuiBLoInMd2QUNKI7YPLwEPG9oO9jakw7E2gKwwY452cYqPFSFSp4dYW4zowFudKsDHoL+x3rGuPfOEhJFVhuegDhBXGPEl9JLewmNRZHfsOcllcaSqStIJVbgaD/n1WKPqdP/iPIUlgq7DFp1q7NkGhsPyKToQgDaQgeryBEHnilugNlPBKMEY0QZeBKq6r/KZnWMLJ3jQxpe6P7jQ/zTfukA1Kjvxjy2hTXB9vt+EntMuOvOCeYuKVMZrqMJjPsIO5NZU/CYiC0AoYZ8f/4xrV9VfxigBo4q9hL7Ox3gD2WfpbAplC6+6ir5aCyt5hd3m+5vuRw3RFjKxyFyAUmddZwqhwr1YxywvQNj+bx0VRKpKLEz17U8+cH02s1fIGfgzvDayGzvfR3+BZbpPD+gRkMq0Afw63qZL7+kjfaGv2kD7oH3SPo9cl1IjSnfpwtC+/QEnv/07</latexit><latexit sha1_base64="mfjyGMMMuBxw59LUf78r/RK0fFo=">AAAE9nichVTNbtNAEJ4UA234aQoSFy4WERKnKI7jJD3RFFI4QAlV0xY1VWU722DFsSN706aYvAoHJMQBDjwCjwF3HoMD304SRBuS7Gp3/r+dmV3b6fleLPP5n6mlK9rVa9eXV9I3bt66vZpZu7MXh/3IFQ039MPowLFj4XuBaEhP+uKgFwm76/hi3+k8Ufb9UxHFXhjsyvOeOOra7cA78VxbQnWcuddkjGQ7PBumm1IMpJRJbXicyeZz65WiaRT1fM4oF81yCUzBNM2ipRu5PI/s4x/Eox6upX5Rk1oUkkt96pKggCR4n2yKMQ/JoDz1oDuiBLoInMd2QUNKI7YPLwEPG9oO9jakw7E2gKwwY452cYqPFSFSp4dYW4zowFudKsDHoL+x3rGuPfOEhJFVhuegDhBXGPEl9JLewmNRZHfsOcllcaSqStIJVbgaD/n1WKPqdP/iPIUlgq7DFp1q7NkGhsPyKToQgDaQgeryBEHnilugNlPBKMEY0QZeBKq6r/KZnWMLJ3jQxpe6P7jQ/zTfukA1Kjvxjy2hTXB9vt+EntMuOvOCeYuKVMZrqMJjPsIO5NZU/CYiC0AoYZ8f/4xrV9VfxigBo4q9hL7Ox3gD2WfpbAplC6+6ir5aCyt5hd3m+5vuRw3RFjKxyFyAUmddZwqhwr1YxywvQNj+bx0VRKpKLEz17U8+cH02s1fIGfgzvDayGzvfR3+BZbpPD+gRkMq0Afw63qZL7+kjfaGv2kD7oH3SPo9cl1IjSnfpwtC+/QEnv/07</latexit><latexit sha1_base64="gLj0Z45k9O9AjPPVScx+QbakRMA=">AAAE9nichVTNbtNAEJ4UA234aQoSFy4WERKnyI7jJL01hRQOUELVtEVNVdnONlhx7MjetCkmr8IBCXGAA4/Aa3DnMTjw7TRBtCHJrnbnZ2e+nZn9cfuBn0jD+JlZuqZdv3FzeSV76/adu6u5tXt7STSIPdH0oiCKD1wnEYEfiqb0ZSAO+rFwem4g9t3uU7W+fyrixI/CXXneF0c9pxP6J77nSKiOcw9ajJFuR2ejbEuKoZQyrY+Oc3mjsF4tWWZJNwpmpWRVymCKlmWVbN0sGNzyNG6NaC3zi1rUpog8GlCPBIUkwQfkUIJ+SCYZ1IfuiFLoYnA+rwsaURa+A1gJWDjQdjF3IB2OtSFkhZmwt4ddAowYnjo9xthiRBfWalcBPgH9jfGedZ2ZO6SMrCI8B3WBuMKIr6CX9A4Wizx7Y8tJLIs9VVaSTqjK2fiIr88alaf3F+cZVmLouryiU50tO8BwWT5FBULQJiJQVZ4g6JxxG9RhKhglHCM6wItBVfVVPLNjbGMHH9rkSvWHl+qf5VMXyEZFJ/5ZS2kT3IDPN6UXtIvKvGTephJVcBtqsJiPsAO5PeW/Cc8iEMqY5/s/59xV9lcxysCoYS6jrvMx3kIOWDqbQtnCra6hrvbCTF5jdvj8putRh7eNSGyyFqA0WNedQqhyLdbRKwsQtv+bRxWeKhMbXb39yQPXZzN7xYKJn+GNmd/Y+XHxCyzTQ3pET4BUoQ3gN3A3PfpAn+grfdOG2kfts/blwnQpM/457tOlpn3/A3HX/CQ=</latexit>

I3I3<latexit sha1_base64="DqDYkkSlEdvVfT9gGqwPXw1bIPc=">AAAE+HichVTLbtNAFL0pBtrwSmGDxMYiQrCK7DivrkgKLSBBCVVfqKki25kGK44d2ZO+rPAtLJAQC1jwBfwGez6AD2DBmdsEkYYkY3nuY+49c++ZsZ2e78XSMH6kFi5pl69cXVxKX7t+4+atzPLtnTjsR67YdkM/jPYcOxa+F4ht6Ulf7PUiYXcdX+w6nSdqffdIRLEXBlvytCcOunY78A4915ZwNTN3G4yRbITHg3RDihMpZfJi0LSamayRW6kULLOgGzmzXLDKJSh5y7IKRd3MGTyy1YePf1WJqB4up35Sg1oUkkt96pKggCR0n2yK8eyTSQb14DugBL4ImsfrggaURm4fUQIRNrwdzG1Y+0NvAFthxpztYhcfb4RMnR7gXWdEB9FqVwE9hvyN94x97ak7JIysKjyFdIC4xIiv4Jf0DhHzMrvDyFEt8zNVV5IOqcLdeKivxx7Vp/sX5ylWIvg6vKLTGke2geGwfQQGAshtVKBYHiHo3HEL0mYpGCUYItrAiyAV+6qe6TW2sIMHb3yB/ZMx/tN86gLdqOrEP2sJrULr8/km9Jy2wMxL1otUoDJuQw0RsxE2Ybcm8leRmQdCCfPs/Gfcu+r+IkYJGDXMJfA6G+MtbJ+t4wmUddzqGngtzu3kNWabz2+SjzVkF1FJkaw5KHX2dSYQKszFCp7yHISN//Yxxii+/dEHrk9XdvI5E3+GN2a2uvmdeCzSPbpPj8BJmarAr+NuuvSePtIX+qqdaR+0T9rn89CF1LmkOzQ2tG9/AGUp/qs=</latexit><latexit sha1_base64="Gkm/UFkEI1O1XbdqH5kMP9GRfSA=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctg0mqm0llkv5Qw9p2oZvZgzigUoWcMwcnlVz2g80uVHT35VB+f1mr+W+EkNapFPNvWpS4I8ktBdMinEc0A6adSD75Ai+AJoDq8LGlISuX1ECUSY8HYwt2EdjLwe7Bgz5Gwbu7h4A2Sq9BDvJiNaiI53FdBDyN94z9jXnrlDxMhxhaeQFhBXGPE1/JLeI2JRZncUOa5lcWbclaQjKnE3DurrsSfu0/6L8wwrAXwdXlGpypFtYFhsH4MBD7KOCmKWxwgqd9yCNFkKRvFGiCbwAsiY/bie2TW2sIMDb3iJ/ZMJ/pN86gLdxNWJf9Yi2oDW5/ON6AXtgJlXrOcpR0Xchgoi5iNsw25N5W8gMwuEAub5+c+597j7yxgFYFQwF8DrfIx3sF22BlMom7jVFfCaX9jJG8wmn980H1Vk51FJnowFKDX2daYQSszFOp7iAoSt//YxwSi+/fEHrs5WdrMZHX+Gt3q6vP2DeCzTfXpAj8FJkcrAr+Fu2vSBPtFX+qacKR+Vz8qXi9ClxIWkuzQxlO9/AI3gAGQ=</latexit><latexit sha1_base64="Gkm/UFkEI1O1XbdqH5kMP9GRfSA=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctg0mqm0llkv5Qw9p2oZvZgzigUoWcMwcnlVz2g80uVHT35VB+f1mr+W+EkNapFPNvWpS4I8ktBdMinEc0A6adSD75Ai+AJoDq8LGlISuX1ECUSY8HYwt2EdjLwe7Bgz5Gwbu7h4A2Sq9BDvJiNaiI53FdBDyN94z9jXnrlDxMhxhaeQFhBXGPE1/JLeI2JRZncUOa5lcWbclaQjKnE3DurrsSfu0/6L8wwrAXwdXlGpypFtYFhsH4MBD7KOCmKWxwgqd9yCNFkKRvFGiCbwAsiY/bie2TW2sIMDb3iJ/ZMJ/pN86gLdxNWJf9Yi2oDW5/ON6AXtgJlXrOcpR0Xchgoi5iNsw25N5W8gMwuEAub5+c+597j7yxgFYFQwF8DrfIx3sF22BlMom7jVFfCaX9jJG8wmn980H1Vk51FJnowFKDX2daYQSszFOp7iAoSt//YxwSi+/fEHrs5WdrMZHX+Gt3q6vP2DeCzTfXpAj8FJkcrAr+Fu2vSBPtFX+qacKR+Vz8qXi9ClxIWkuzQxlO9/AI3gAGQ=</latexit><latexit sha1_base64="zufzy4jndgqPNyq/9Vrhadt5CFU=">AAAE+HichVTNbtNAEJ60Btrw07RckLhYREicIjvOX29NoQUkKKFq2qKmimxnG6w4dmRv+meFZ+GAhDjAgSfgNbjzGBz4dpog0pBkrd2ZnZ35dubb9To934ulYfxMLSxqN27eWlpO375z995KZnVtPw77kSvqbuiH0aFjx8L3AlGXnvTFYS8SdtfxxYHTearWD05FFHthsCcveuK4a7cD78RzbQlTM/OgwRjJTng2SDekOJdSJi8HTauZyRq59UrBMgu6kTPLBatcgpK3LKtQ1M2cwS1Lw1YLV1O/qEEtCsmlPnVJUEASuk82xfiOyCSDerAdUwJbBM3jdUEDSiO2Dy8BDxvWDsY2ZkdDa4C5wow52sUuPnqESJ0eo28zogNvtauAHkP+Rr9kW3vqDgkjqwwvIB0gLjPia9glvYfHvMju0HOUy/xIVZWkE6pwNR7y67FF1en+xXmGlQi2Dq/otMWebWA4PD8FAwFkHRkolkcIOlfcgrRZCkYJhog28CJIxb7KZ3qOLezgwRpfY/98jP80n7pANSo78c9aQpvQ+ny+Cb2gPTDzivUiFaiM21CFx2yEXcxbE/GbiMwDoYRxdvxzrl1Vfx2jBIwqxhJ4nY3xDnOfZ2cTKNu41VXwWpxbyRuMNp/fJB9biC4ikyJZc1BqbOtMIFSYi3V85TkIO/+tY4xR/PujH1yfruzncyZehrdmdmP3x9UrsEQP6RE9ASdl2gB+DXfTpQ/0ib7SN+1S+6h91r5cuS6khi/HfRpr2vc/eMT81Q==</latexit> SS<latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit> I3I3<latexit sha1_base64="DqDYkkSlEdvVfT9gGqwPXw1bIPc=">AAAE+HichVTLbtNAFL0pBtrwSmGDxMYiQrCK7DivrkgKLSBBCVVfqKki25kGK44d2ZO+rPAtLJAQC1jwBfwGez6AD2DBmdsEkYYkY3nuY+49c++ZsZ2e78XSMH6kFi5pl69cXVxKX7t+4+atzPLtnTjsR67YdkM/jPYcOxa+F4ht6Ulf7PUiYXcdX+w6nSdqffdIRLEXBlvytCcOunY78A4915ZwNTN3G4yRbITHg3RDihMpZfJi0LSamayRW6kULLOgGzmzXLDKJSh5y7IKRd3MGTyy1YePf1WJqB4up35Sg1oUkkt96pKggCR0n2yK8eyTSQb14DugBL4ImsfrggaURm4fUQIRNrwdzG1Y+0NvAFthxpztYhcfb4RMnR7gXWdEB9FqVwE9hvyN94x97ak7JIysKjyFdIC4xIiv4Jf0DhHzMrvDyFEt8zNVV5IOqcLdeKivxx7Vp/sX5ylWIvg6vKLTGke2geGwfQQGAshtVKBYHiHo3HEL0mYpGCUYItrAiyAV+6qe6TW2sIMHb3yB/ZMx/tN86gLdqOrEP2sJrULr8/km9Jy2wMxL1otUoDJuQw0RsxE2Ybcm8leRmQdCCfPs/Gfcu+r+IkYJGDXMJfA6G+MtbJ+t4wmUddzqGngtzu3kNWabz2+SjzVkF1FJkaw5KHX2dSYQKszFCp7yHISN//Yxxii+/dEHrk9XdvI5E3+GN2a2uvmdeCzSPbpPj8BJmarAr+NuuvSePtIX+qqdaR+0T9rn89CF1LmkOzQ2tG9/AGUp/qs=</latexit><latexit sha1_base64="Gkm/UFkEI1O1XbdqH5kMP9GRfSA=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctg0mqm0llkv5Qw9p2oZvZgzigUoWcMwcnlVz2g80uVHT35VB+f1mr+W+EkNapFPNvWpS4I8ktBdMinEc0A6adSD75Ai+AJoDq8LGlISuX1ECUSY8HYwt2EdjLwe7Bgz5Gwbu7h4A2Sq9BDvJiNaiI53FdBDyN94z9jXnrlDxMhxhaeQFhBXGPE1/JLeI2JRZncUOa5lcWbclaQjKnE3DurrsSfu0/6L8wwrAXwdXlGpypFtYFhsH4MBD7KOCmKWxwgqd9yCNFkKRvFGiCbwAsiY/bie2TW2sIMDb3iJ/ZMJ/pN86gLdxNWJf9Yi2oDW5/ON6AXtgJlXrOcpR0Xchgoi5iNsw25N5W8gMwuEAub5+c+597j7yxgFYFQwF8DrfIx3sF22BlMom7jVFfCaX9jJG8wmn980H1Vk51FJnowFKDX2daYQSszFOp7iAoSt//YxwSi+/fEHrs5WdrMZHX+Gt3q6vP2DeCzTfXpAj8FJkcrAr+Fu2vSBPtFX+qacKR+Vz8qXi9ClxIWkuzQxlO9/AI3gAGQ=</latexit><latexit sha1_base64="Gkm/UFkEI1O1XbdqH5kMP9GRfSA=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctg0mqm0llkv5Qw9p2oZvZgzigUoWcMwcnlVz2g80uVHT35VB+f1mr+W+EkNapFPNvWpS4I8ktBdMinEc0A6adSD75Ai+AJoDq8LGlISuX1ECUSY8HYwt2EdjLwe7Bgz5Gwbu7h4A2Sq9BDvJiNaiI53FdBDyN94z9jXnrlDxMhxhaeQFhBXGPE1/JLeI2JRZncUOa5lcWbclaQjKnE3DurrsSfu0/6L8wwrAXwdXlGpypFtYFhsH4MBD7KOCmKWxwgqd9yCNFkKRvFGiCbwAsiY/bie2TW2sIMDb3iJ/ZMJ/pN86gLdxNWJf9Yi2oDW5/ON6AXtgJlXrOcpR0Xchgoi5iNsw25N5W8gMwuEAub5+c+597j7yxgFYFQwF8DrfIx3sF22BlMom7jVFfCaX9jJG8wmn980H1Vk51FJnowFKDX2daYQSszFOp7iAoSt//YxwSi+/fEHrs5WdrMZHX+Gt3q6vP2DeCzTfXpAj8FJkcrAr+Fu2vSBPtFX+qacKR+Vz8qXi9ClxIWkuzQxlO9/AI3gAGQ=</latexit><latexit sha1_base64="zufzy4jndgqPNyq/9Vrhadt5CFU=">AAAE+HichVTNbtNAEJ60Btrw07RckLhYREicIjvOX29NoQUkKKFq2qKmimxnG6w4dmRv+meFZ+GAhDjAgSfgNbjzGBz4dpog0pBkrd2ZnZ35dubb9To934ulYfxMLSxqN27eWlpO375z995KZnVtPw77kSvqbuiH0aFjx8L3AlGXnvTFYS8SdtfxxYHTearWD05FFHthsCcveuK4a7cD78RzbQlTM/OgwRjJTng2SDekOJdSJi8HTauZyRq59UrBMgu6kTPLBatcgpK3LKtQ1M2cwS1Lw1YLV1O/qEEtCsmlPnVJUEASuk82xfiOyCSDerAdUwJbBM3jdUEDSiO2Dy8BDxvWDsY2ZkdDa4C5wow52sUuPnqESJ0eo28zogNvtauAHkP+Rr9kW3vqDgkjqwwvIB0gLjPia9glvYfHvMju0HOUy/xIVZWkE6pwNR7y67FF1en+xXmGlQi2Dq/otMWebWA4PD8FAwFkHRkolkcIOlfcgrRZCkYJhog28CJIxb7KZ3qOLezgwRpfY/98jP80n7pANSo78c9aQpvQ+ny+Cb2gPTDzivUiFaiM21CFx2yEXcxbE/GbiMwDoYRxdvxzrl1Vfx2jBIwqxhJ4nY3xDnOfZ2cTKNu41VXwWpxbyRuMNp/fJB9biC4ikyJZc1BqbOtMIFSYi3V85TkIO/+tY4xR/PujH1yfruzncyZehrdmdmP3x9UrsEQP6RE9ASdl2gB+DXfTpQ/0ib7SN+1S+6h91r5cuS6khi/HfRpr2vc/eMT81Q==</latexit> EE<latexit sha1_base64="mfjyGMMMuBxw59LUf78r/RK0fFo=">AAAE9nichVTNbtNAEJ4UA234aQoSFy4WERKnKI7jJD3RFFI4QAlV0xY1VWU722DFsSN706aYvAoHJMQBDjwCjwF3HoMD304SRBuS7Gp3/r+dmV3b6fleLPP5n6mlK9rVa9eXV9I3bt66vZpZu7MXh/3IFQ039MPowLFj4XuBaEhP+uKgFwm76/hi3+k8Ufb9UxHFXhjsyvOeOOra7cA78VxbQnWcuddkjGQ7PBumm1IMpJRJbXicyeZz65WiaRT1fM4oF81yCUzBNM2ipRu5PI/s4x/Eox6upX5Rk1oUkkt96pKggCR4n2yKMQ/JoDz1oDuiBLoInMd2QUNKI7YPLwEPG9oO9jakw7E2gKwwY452cYqPFSFSp4dYW4zowFudKsDHoL+x3rGuPfOEhJFVhuegDhBXGPEl9JLewmNRZHfsOcllcaSqStIJVbgaD/n1WKPqdP/iPIUlgq7DFp1q7NkGhsPyKToQgDaQgeryBEHnilugNlPBKMEY0QZeBKq6r/KZnWMLJ3jQxpe6P7jQ/zTfukA1Kjvxjy2hTXB9vt+EntMuOvOCeYuKVMZrqMJjPsIO5NZU/CYiC0AoYZ8f/4xrV9VfxigBo4q9hL7Ox3gD2WfpbAplC6+6ir5aCyt5hd3m+5vuRw3RFjKxyFyAUmddZwqhwr1YxywvQNj+bx0VRKpKLEz17U8+cH02s1fIGfgzvDayGzvfR3+BZbpPD+gRkMq0Afw63qZL7+kjfaGv2kD7oH3SPo9cl1IjSnfpwtC+/QEnv/07</latexit><latexit sha1_base64="mfjyGMMMuBxw59LUf78r/RK0fFo=">AAAE9nichVTNbtNAEJ4UA234aQoSFy4WERKnKI7jJD3RFFI4QAlV0xY1VWU722DFsSN706aYvAoHJMQBDjwCjwF3HoMD304SRBuS7Gp3/r+dmV3b6fleLPP5n6mlK9rVa9eXV9I3bt66vZpZu7MXh/3IFQ039MPowLFj4XuBaEhP+uKgFwm76/hi3+k8Ufb9UxHFXhjsyvOeOOra7cA78VxbQnWcuddkjGQ7PBumm1IMpJRJbXicyeZz65WiaRT1fM4oF81yCUzBNM2ipRu5PI/s4x/Eox6upX5Rk1oUkkt96pKggCR4n2yKMQ/JoDz1oDuiBLoInMd2QUNKI7YPLwEPG9oO9jakw7E2gKwwY452cYqPFSFSp4dYW4zowFudKsDHoL+x3rGuPfOEhJFVhuegDhBXGPEl9JLewmNRZHfsOcllcaSqStIJVbgaD/n1WKPqdP/iPIUlgq7DFp1q7NkGhsPyKToQgDaQgeryBEHnilugNlPBKMEY0QZeBKq6r/KZnWMLJ3jQxpe6P7jQ/zTfukA1Kjvxjy2hTXB9vt+EntMuOvOCeYuKVMZrqMJjPsIO5NZU/CYiC0AoYZ8f/4xrV9VfxigBo4q9hL7Ox3gD2WfpbAplC6+6ir5aCyt5hd3m+5vuRw3RFjKxyFyAUmddZwqhwr1YxywvQNj+bx0VRKpKLEz17U8+cH02s1fIGfgzvDayGzvfR3+BZbpPD+gRkMq0Afw63qZL7+kjfaGv2kD7oH3SPo9cl1IjSnfpwtC+/QEnv/07</latexit><latexit sha1_base64="mfjyGMMMuBxw59LUf78r/RK0fFo=">AAAE9nichVTNbtNAEJ4UA234aQoSFy4WERKnKI7jJD3RFFI4QAlV0xY1VWU722DFsSN706aYvAoHJMQBDjwCjwF3HoMD304SRBuS7Gp3/r+dmV3b6fleLPP5n6mlK9rVa9eXV9I3bt66vZpZu7MXh/3IFQ039MPowLFj4XuBaEhP+uKgFwm76/hi3+k8Ufb9UxHFXhjsyvOeOOra7cA78VxbQnWcuddkjGQ7PBumm1IMpJRJbXicyeZz65WiaRT1fM4oF81yCUzBNM2ipRu5PI/s4x/Eox6upX5Rk1oUkkt96pKggCR4n2yKMQ/JoDz1oDuiBLoInMd2QUNKI7YPLwEPG9oO9jakw7E2gKwwY452cYqPFSFSp4dYW4zowFudKsDHoL+x3rGuPfOEhJFVhuegDhBXGPEl9JLewmNRZHfsOcllcaSqStIJVbgaD/n1WKPqdP/iPIUlgq7DFp1q7NkGhsPyKToQgDaQgeryBEHnilugNlPBKMEY0QZeBKq6r/KZnWMLJ3jQxpe6P7jQ/zTfukA1Kjvxjy2hTXB9vt+EntMuOvOCeYuKVMZrqMJjPsIO5NZU/CYiC0AoYZ8f/4xrV9VfxigBo4q9hL7Ox3gD2WfpbAplC6+6ir5aCyt5hd3m+5vuRw3RFjKxyFyAUmddZwqhwr1YxywvQNj+bx0VRKpKLEz17U8+cH02s1fIGfgzvDayGzvfR3+BZbpPD+gRkMq0Afw63qZL7+kjfaGv2kD7oH3SPo9cl1IjSnfpwtC+/QEnv/07</latexit><latexit sha1_base64="gLj0Z45k9O9AjPPVScx+QbakRMA=">AAAE9nichVTNbtNAEJ4UA234aQoSFy4WERKnyI7jJL01hRQOUELVtEVNVdnONlhx7MjetCkmr8IBCXGAA4/Aa3DnMTjw7TRBtCHJrnbnZ2e+nZn9cfuBn0jD+JlZuqZdv3FzeSV76/adu6u5tXt7STSIPdH0oiCKD1wnEYEfiqb0ZSAO+rFwem4g9t3uU7W+fyrixI/CXXneF0c9pxP6J77nSKiOcw9ajJFuR2ejbEuKoZQyrY+Oc3mjsF4tWWZJNwpmpWRVymCKlmWVbN0sGNzyNG6NaC3zi1rUpog8GlCPBIUkwQfkUIJ+SCYZ1IfuiFLoYnA+rwsaURa+A1gJWDjQdjF3IB2OtSFkhZmwt4ddAowYnjo9xthiRBfWalcBPgH9jfGedZ2ZO6SMrCI8B3WBuMKIr6CX9A4Wizx7Y8tJLIs9VVaSTqjK2fiIr88alaf3F+cZVmLouryiU50tO8BwWT5FBULQJiJQVZ4g6JxxG9RhKhglHCM6wItBVfVVPLNjbGMHH9rkSvWHl+qf5VMXyEZFJ/5ZS2kT3IDPN6UXtIvKvGTephJVcBtqsJiPsAO5PeW/Cc8iEMqY5/s/59xV9lcxysCoYS6jrvMx3kIOWDqbQtnCra6hrvbCTF5jdvj8putRh7eNSGyyFqA0WNedQqhyLdbRKwsQtv+bRxWeKhMbXb39yQPXZzN7xYKJn+GNmd/Y+XHxCyzTQ3pET4BUoQ3gN3A3PfpAn+grfdOG2kfts/blwnQpM/457tOlpn3/A3HX/CQ=</latexit>

Start Target

<latexit sha1_base64="Cd4Jq/0YOg/GA8b0QYrlNemdoqY=">AAADcnichVJNTxNRFD3tKEJRoLqDDdqYGGOaGTXCsvJRXGjSGgpN2obMTF/LpPOV+SBiQ0LCP3ArP8K/44Ktv8AlC85cSmJpbN/kzbvv3HvOvfe9Z4WuEye6/juX1x48nHs0v1BYfPxkaXml+PQgDtLIVg07cIOoaZmxch1fNRIncVUzjJTpWa46tAbbmf/wREWxE/j7yWmoOp7Z952eY5sJoWbbdMNj88g4WinpZV3G+qRhjIxSZe1P3ft1dVELirnXaKOLADZSeFDwkdB2YSLm14IBHSGxDobEIlqO+BXOUCA3ZZRihEl0wH+fu9YI9bnPNGNh28zickZkruMlZ1UULUZnWRXtmOs153fB+v/NMBTlrMJTrhYVF0TxC/EEx4yYxfRGkXe1zGZmXSXoYVO6cVhfKEjWpy06hSncLk7ICekbP5VvY+dSkNtQzJLpq398Q2zRSuXch/iEfVb8Wex3vKENzo/YmaHwlfvuBH+bCu/J3+RdT+fv8a+k3/sautRQpdJupsF3aNx/dZPGwduy8aFs1I1SpXoOGfNYwwu8YiUbqDBDDQ15bT/wE5f5v9qq9lwr3Ybmc7crnmFsaG9uAGI2slk=</latexit>↵1

<latexit sha1_base64="CMDa/FtRJ5Gnol4lLIbIr4/e6nU=">AAADcnichVJNT9tAEH2J2wKhtEBvzSUlqlRVKLIpAo4BSuihSKHKlxQQsp0lWPhLtoOgEVKl/gOu8CP4Oxy49hf02EOfJ0FqiErWWu/sm3lvZnbXCl0nTnT9LpPVnj1/MTU9k5t9Offq9fzCYiMOepGt6nbgBlHLMmPlOr6qJ07iqlYYKdOzXNW0TrdTf/NMRbET+LXkIlSHntn1nWPHNhNCrQPTDU/Mo5Wj+aJe0mUUxg1jaBTL+V/73u39z2qwkPmIA3QQwEYPHhR8JLRdmIj5tWFAR0jsEH1iES1H/AqXyJHbY5RihEn0lP8ud+0h6nOfasbCtpnF5YzILOA9Z0UULUanWRXtmOsfzu+Cdf+boS/KaYUXXC0qzojiHvEEJ4yYxPSGkQ+1TGamXSU4xoZ047C+UJC0T1t0ck9wOzgjJ6Rv9FTOR84lJ7ehmCXVV//4+tii1ZNz7+MLaqz4q9ifeEPrnJv4PEHhG/edMf42FVbJ3+BdP83f5V9Jv481dKmhQqWdVIPv0Hj86saNxkrJWCsZ+0axXPkBGdPIYwkfWMk6ysxQRV1e2xWucZP9rb3V3mnFQWg2M1jxBiNDW/4LZT2yWg==</latexit>↵2

<latexit sha1_base64="p+DVj59Yu9KOAdNvCqW2XcRUXB8=">AAADcnichVJNT9tAEH2J2wKhtEBvzSUlqlRVKLILAo4BSuihSKHKlxQQsp0lWPhLtoOgEVKl/gOu8CP4Oxy49hf02EOfJ0FqiErWWu/sm3lvZnbXCl0nTnT9LpPVnj1/MTU9k5t9Offq9fzCYiMOepGt6nbgBlHLMmPlOr6qJ07iqlYYKdOzXNW0TrdTf/NMRbET+LXkIlSHntn1nWPHNhNCrQPTDU/Mo5Wj+aJe0mUUxg1jaBTL+V/73u39z2qwkPmIA3QQwEYPHhR8JLRdmIj5tWFAR0jsEH1iES1H/AqXyJHbY5RihEn0lP8ud+0h6nOfasbCtpnF5YzILOA9Z0UULUanWRXtmOsfzu+Cdf+boS/KaYUXXC0qzojiHvEEJ4yYxPSGkQ+1TGamXSU4xoZ047C+UJC0T1t0ck9wOzgjJ6Rv9FTOR84lJ7ehmCXVV//4+tii1ZNz7+MLaqz4q9grvKF1zk18nqDwjfvOGH+bCqvkb/Cun+bv8q+k38cautRQodJOqsF3aDx+deNG41PJWCsZ+0axXPkBGdPIYwkfWMk6ysxQRV1e2xWucZP9rb3V3mnFQWg2M1jxBiNDW/4LaESyWw==</latexit>↵3

<latexit sha1_base64="gdMp1uUdkHBq14grdiAX6mFcEQI=">AAADb3ichVLLThtBECx7E7AdnsnBh0TIYEUCDtYuQZijwcTkkEhOhAEJENpdD86IfWkfCGMhofwAFw7k0/IZUa45pHbsSBgLPKvZqenuqu6eGStwZBTr+q9MVnvxcmIyly+8mpqemZ2bf70f+Uloi5btO354aJmRcKQnWrGMHXEYhMJ0LUccWOf11H9wIcJI+t5e3A3EiWt2PHkmbTOmqXXsJqdrp3NlvaKrURoFxgCUa4t/9Lt3P4pNfz6zimO04cNGAhcCHmJiByYifkcwoCOg7QQ92kIiqfwC1yiQmzBKMMKk9Zz/DndHA6vHfaoZKbbNLA5nSGYJ7zkbStFidJpVEEdc/3JeKVvnyQw9pZxW2OVqUTGvFL/QHuM7I8Yx3UHk/1rGM9OuYpxhU3UjWV+gLGmfttIpPMNt44KcgL7hU7kcOpeCug3BLKm+eODrYZsoUefewyfsseLPCn/gDVU5t7AzRuEb9+0Rfp0K6+Rv8q6f5+/yL1S/jzV0VUODSh9TDb5D4/GrGwX7axVjo2J8Ncq1xg3UyOEtlrDMSqqoMUMTLVYgcYt7/Mz+1oraglbqh2Yz/RVvMDS0lX/hmq/W</latexit>µ2

<latexit sha1_base64="XflfSF8D5XDtLKRhc44yA4Z7DFU=">AAADb3ichVLLThtBECx7E7AdnsnBh0TIYEUCDtZuQJijwcTkkEhOhAEJENpdD86IfWkfCGMhofwAFw7k0/IZUa45pHbsSBgLPKvZqenuqu6eGStwZBTr+q9MVnvxcmIyly+8mpqemZ2bf70f+Uloi5btO354aJmRcKQnWrGMHXEYhMJ0LUccWOf11H9wIcJI+t5e3A3EiWt2PHkmbTOmqXXsJqdrp3NlvaKrURoFxgCUa4t/9Lt3P4pNfz6zimO04cNGAhcCHmJiByYifkcwoCOg7QQ92kIiqfwC1yiQmzBKMMKk9Zz/DndHA6vHfaoZKbbNLA5nSGYJ7zkbStFidJpVEEdc/3JeKVvnyQw9pZxW2OVqUTGvFL/QHuM7I8Yx3UHk/1rGM9OuYpxhU3UjWV+gLGmfttIpPMNt44KcgL7hU7kcOpeCug3BLKm+eODrYZsoUefewyfsseLPCq/xhqqcW9gZo/CN+/YIv06FdfI3edfP83f5F6rfxxq6qqFBpY+pBt+h8fjVjYL9DxVjo2J8Ncq1xg3UyOEtlrDMSqqoMUMTLVYgcYt7/Mz+1oraglbqh2Yz/RVvMDS0lX/koa/X</latexit>µ3

<latexit sha1_base64="gZAKQMXPIeOOd05cx1YMAws/0+A=">AAADb3ichVJBTxNBFP7aVaEVhMKhB42pNCbAodkFAj1WqtWDJtW0hQQI2d0OZdLt7mZ32lAaE+If8OJBf5o/w3j14LfTmlga6Gxm55v33ve992bGCT0ZK9P8mUobDx4+WljMZB8vLT9ZWc2tteKgH7mi6QZeEB07diw86YumksoTx2Ek7J7jiSOnW038RwMRxTLwG2oYirOe3fHlhXRtRVPz1BHKPl8tmiVTj8IssCagWHnx2/z27Eu+HuRS2zhFGwFc9NGDgA9F7MFGzO8EFkyEtJ1hRFtEJLVf4DOy5PYZJRhh09rlv8PdycTqc59oxprtMovHGZFZwEvOmlZ0GJ1kFcQx1z+c19rWuTPDSCsnFQ65OlTMaMUPtCtcMmIeszeJ/FfLfGbSlcIFyrobyfpCbUn6dLVO9h5uGwNyQvqmT+Vq6lyy+jYEsyT64j/fCIdEfX3uI7xDgxW/13iXN3TA+Qqv5yh84r49w69SYY/8Mu/6fv5b/oXu97aGqWuoUelNosF3aN1+dbOgtVOy9kvWR6tYqd1Aj0U8xQY2WckBKsxQR5MVSHzFd/xI/zLyxnOjMA5Np8Yr1jE1jK2/XZyv/w==</latexit>

�

<latexit sha1_base64="iJWW15aTiUHimQ3N2Q3tvYaF2po=">AAADcXichVJNT9tAEH2JoYVAWygnxCUiokJUSm2oCsfwFXooElSEIAGqbGcJFo5t2RsEREj9C73CL+N3cOXA2yFIhKhkrPXOzsx787HrJWGQadu+y+WtoeF370dGC2PjHz5+mpj8vJ/F7dRXNT8O4/TAczMVBpGq6UCH6iBJldvyQlX3ztaNv36u0iyIoz19majjltuMgpPAdzVN9SNPaffb1Z+Jkl22RYr9itNVSpUv90tGduLJ3AKO0EAMH220oBBBUw/hIuN3CAc2EtqO0aEtpRaIX+EaBWLbjFKMcGk947/J02HXGvFsODNB+8wScqVEFjHHVRVGj9Emq6KecX/guhJb878ZOsJsKrzk7pFxVBi3adc4ZcQgZKsb+VzLYKTpSuMEK9JNwPoSsZg+feEpvIFt4JyYhL7eqVz0zKUgt6GYxfCrF74O1qi1Ze4d/MQeK/4l+hJvaJlrFRsDGH7z3OjDr5PhO/ErvOu38Vv8K+n3NYctNVTJtGk4+A6d16+uX9lfLDs/ys6uU6pU/0JkBDOYxTwrWUaFGXZQkyn+ww1u8/fWtFW0Zp9C87mnHVPoEevrI2B3sEc=</latexit>

�/z

<latexit sha1_base64="iJWW15aTiUHimQ3N2Q3tvYaF2po=">AAADcXichVJNT9tAEH2JoYVAWygnxCUiokJUSm2oCsfwFXooElSEIAGqbGcJFo5t2RsEREj9C73CL+N3cOXA2yFIhKhkrPXOzsx787HrJWGQadu+y+WtoeF370dGC2PjHz5+mpj8vJ/F7dRXNT8O4/TAczMVBpGq6UCH6iBJldvyQlX3ztaNv36u0iyIoz19majjltuMgpPAdzVN9SNPaffb1Z+Jkl22RYr9itNVSpUv90tGduLJ3AKO0EAMH220oBBBUw/hIuN3CAc2EtqO0aEtpRaIX+EaBWLbjFKMcGk947/J02HXGvFsODNB+8wScqVEFjHHVRVGj9Emq6KecX/guhJb878ZOsJsKrzk7pFxVBi3adc4ZcQgZKsb+VzLYKTpSuMEK9JNwPoSsZg+feEpvIFt4JyYhL7eqVz0zKUgt6GYxfCrF74O1qi1Ze4d/MQeK/4l+hJvaJlrFRsDGH7z3OjDr5PhO/ErvOu38Vv8K+n3NYctNVTJtGk4+A6d16+uX9lfLDs/ys6uU6pU/0JkBDOYxTwrWUaFGXZQkyn+ww1u8/fWtFW0Zp9C87mnHVPoEevrI2B3sEc=</latexit>

�/z

<latexit sha1_base64="Lbt+psG3K8ZvPAomLJnuCP6U0ow=">AAAIT3iczVRbT9RAFD4g60K9gT76MpGFcDHLXowgiQmIoCSaIPeEkmbane1OaDt1OotA0x/po6/+CV+M8XS2wF5kVx5M7KadM2e+71y+mVk79HikSqVvQ8N3RnJ386Njxr37Dx4+Gp94vB+JpnTYniM8IQ9tGjGPB2xPceWxw1Ay6tseO7BP1tL1g1MmIy6CXXUesmOfugGvc4cqdFkTI99Nm7k8iKnH3WAuMT1qMy9mn5dDnhjZWoSVqMSYNhU7U/GWFDa1ObrOiagT1WAkpKpBEjKjAUrFm4lVfk4uZzvJLDEldxuKSim+3ARbT2ZbCZYTYpoGCa24HZiQ6dfErEvqxFiWoklrmCem37QqBEfqhQ2aApFOpnhQtyRVjCyQGV62lLB4irpyo6m9ctYwkRco4cfFBBP/izYrHbC/QPUXo9IuRtp+XzGcmlCkXTqU5CK5NkmLVr2mVXTS/0WW6m1R3eJ1qVe9hXqd4qUqDRSuxWjXe+GCJFfWFbY6WGTUWAniClKXwicm88NGvIO9qyT1t+a7VLoMHXUhCSURD1yPkcLNm1EgrOay5aTnVGlVei7dfLd6ldTXIyjeuD92shpFTR9rwntXYyHDT+Cw9OAEDLfRFjJKO3GEHzbxTha2rVKhVRpaZNqkYSjFGTmxWtF8RoMrhbuKJ4aJ4S//q7Sd/adZ45OlYkk/pNcoZ8YkZM+WmBiaAxNqIMCBJvjAIACFtgcUIvwdQRlKEKLvGGL0SbS4XmeQgIHcJqIYIih6T/Dr4uwo8wY4T2NGmu1gFg9fiUwCU/hu6Ig2otOsDO0Ix5/4Xmife2OGWEdOKzzH0caIYzriR/QraCBiENPPkJe1DGamXSmow5LuhmN9ofakfTo6jtGHW4NT5IS41qnKWYcuht4NhlnS+KxtLYY3aDW17jG8h12s+IO2q7hDi/iuwtsBEbZxXuvhr2GEF8hfwr3uz3+HX6b77Y5R0jVsYKT1NAaew3L3qes19ivF8sti+VNlcuVVdiJH4Sk8gxmsZBFWMMMW7IGT28yJ3FnuPP81/yP/azSDDg9lxhPoeEbHfgOEA3Aw</latexit>

Probability of the path (I1, S) ! (I1, E):

pI1 =
�

� + µ2 + ↵1

Probability of the path (I1, S) ! (I2, S) ! (I2, E):

pI2 =
µ2

� + µ2 + ↵1
· �/z

�/z + µ3 + ↵2

Probability of the path (I1, S) ! (I2, S) ! (I3, S) ! (I3, E):

pI3 =
µ2

� + µ2 + ↵1
· µ3

�/z + µ3 + ↵2
· �/z

�/z + ↵3

Probabilty to go from Start to Target for a single (I1, S) edge:

pI = pI1 + pI2 + pI3

Assuming independence of neighbors to compute R0:

R0 ⇡ kmean · pI

A BA B

Fig. 6.3.: Computation of R0 for fixed β. (a): Representation of pI as a
reachability probability (from Start to Target) in a CTMC. (b):
The probability that an I1-S edge transmits the infection, pI, is
the sum of pI1

: probably that the infection is transmitted while
the infected node is in I1; pI2

: Probability that I1 transitions to
I2 (before transmitting the infection) and transmits while in I2;
and pI3

: probability that the infection happens in I3 (and not
earlier). For individually varying βi, R0 ≈ kmeanE[pI] is based on
an integral over ν(·).

6.3.2 Network-Based Dynamics

We use the compartments described in Figure 6.2 (p. 131). Nodes
change their compartment following exponentially distributed resi-
dence times corresponding to specific instantaneous rates. For the
transition from susceptible to exposed, the rate depends on the neigh-
borhood of the node (cf. Figure 6.2a). We consider two cases: (i) all
nodes have the same infection rate β and (ii): each node vi has an
individual infection rate βi, sampled from a probability distribution
with density ν(·). We start with the former case. The relationship
between γ and β is further discussed in Excursus 5.

134 Chapter 6

Covid-19 and the Limitations of Modeling

Excursus 5: ODE Models and Networks

We use a simple SIR model to elucidate the relationship be-
tween γ (ODE model) and β (network model). The general
form of the ODE model (assuming a population of N) is

d

dt
s(t) = −

γ

N
s(t)i(t)

d

dt
i(t) =

γ

N
s(t)i(t) − βi(t)

d

dt
r(t) = βi(t),

(6.1)

where s(t) determines the (real-valued) number of individ-
uals in compartment S at time t. Typically, we can assume
N = 1 and speak of fractions in each compartment because
the population size is irrelevant (only determines the curves’
scaling).
Computing R0 using same idea as in Figure 6.3 (p. 134) yields:

R0 = kmean
β

α+ β

which we can reorder as follows:

β =
βR0

kmean − R0
.

However, βR0 = γ (following from Excursus 4). Hence, we
can express β in terms of γ:

β =
γ

kmean − R0
,

Complete Graph. Consider the complete graph with n nodes
in the limit of n→ ∞, then

lim
n→∞β =

γ

n

6.3 Method 135

which is equivalent to the effective infection rate in the ODE
model γ

N for population size N (cf. Eq. (6.1)).
This means that fixing R0 yields the same rate for the ODE
model and for the limit of the complete graph. This car-
ries over to the (expected) trajectory of the dynamics. Thus,
we can even go one step further and consider the ODE as a
mean-field approximation of the complete graph CTMC. In
our results (Figure 6.6, p. 142), we already see a considerable
similarity between the complete graph and the ODE for only
103 nodes.

Case (i): Homogeneous Infectiousness

Each S-I1 pair transmits an infection with rate β. If the infected
node is in compartment I2 or I3, the infectiousness decreases and
is given by β/z. Note that we use exponentially distributed resi-
dence times which are potentially less realistic than, for instance,
beta-distributions [Nande et al., 2021], but these relate directly to
ODE models. Hence, observed differences in the dynamics can be at-
tributed to the connectivity/stochasticity, not to the residence time’s
shape.

R0 is defined as the expected number of neighbors that patient zero
infects in a susceptible population. Thus, R0 cannot be larger than
the mean degree. In the case of a fixed infection rate β, fixing kmean

also determines R0. We can approximate R0 as shown in Figure 6.3.
We use that each infection happens independently and approximate
R0 ≈ pIkmean where pI denotes the probability that patient zero
infects a random neighbor (while potentially transitioning to I2, I3).
The approximation comes from the fact that an already infected
neighbor can infect another neighbor of patient zero, violating the
independence assumption, rendering this an over-approximation.

136 Chapter 6

Covid-19 and the Limitations of Modeling

Note that pI is conceptually similar to the secondary attack rate in a
completely susceptible population. We construct the networks such
that kmean = 8 (except for the complete graph where kmean is the
number of nodes minus one). Like in the ODE-approach, we fix
R0 = 2.5 and determine β = 0.0706 (cf. Figure 6.3 (p. 134)).

Case (ii): Individual Differences in Infectiousness

In the case of individually varying infectiousness, we associate each
node vi with infection rate βi that is drawn from a distribution
with density ν(·). Again, our goal is to introduce variation while
keeping the population mean unchanged. Hence, we construct ν(·)
such that E[βi] = 0.0706. We define Ri0 as the node-dependent basic
reproduction number when the infection starts in node i. Moreover,
we define the node-independent basic reproduction number as the
corresponding unweighted mean R0 = E[Ri0]. Interestingly, different
ν(·) (with the same mean) can lead to different R0. Theoretically,
this follows from the computation of pI which is now based on an
integral over ν(·). In the next section, we set ν(·) to an exponential
distribution and study the resulting changes in the dynamics. A key
takeaway of our study is that increasing the variance in the degree
distribution does not change R0. Increasing the variance in individual
infectiousness does so (in fact, it decreases R0). For the evaluation,
we use an exponentially distributed βi with an expected value of
0.0706. That is,

ν(x) = β−1e−β−1x

with β−1 = 1/0.0706 (recall that β = 0.0706 lead to R0 = 2.5 if no
population heterogeneity is present).

6.3 Method 137

Power-law Household Watts–StrogatzPower-law Household Watts-Strogatz

Fig. 6.4.: Schematic visualizations of random graph models with 80 nodes
and kmean = 8.

6.3.3 Human-to-Human Contact Networks

We test different types of contact networks that highlight different
characteristics of real-world human-to-human connectivity. To this
end, we describe the contact networks using random graph models.
We create a specific realization (variate) of such a random graph
model in each simulation run. A schematic visualization of exam-
ple networks is provided in Figure 6.4. We use a complete graph
(each possible pair of nodes is connected) as a baseline to study
the evolution of the epidemic when no contact structure is present.
Thereby, we can mimic the effects of stochasticity and variation
in infectiousness while keeping the simulation as close as possible
to the assumptions underlying the ODE. We use Power-law Con-
figuration Model networks to study the effects of hubs (potential
super-spreaders). These networks are—apart from being constrained
on having power-law degree distribution—completely random. The
power-law degree distribution is omnipresent in real-world networks
and entails a small number of nodes with a very high degree. We fix
the minimum degree to be two and choose the power-law parameter
numerically so that the network admits the desired mean degree.
We also test a synthetically generated Household network that was
loosely inspired by Ball et al. (2010). Each household is a clique.
The edges between households represent connections due to work,

138 Chapter 6

Covid-19 and the Limitations of Modeling

education, shopping, leisure, etc. We use a geometric network to
generate the global inter-household structure. The household size is
4. In the case of kmean = 8, each node has 3 edges within its house-
hold and (on average) 5 outgoing edges. We also compute results
for Watts–Strogatz (WS) random networks. They are based on a
ring topology with random re-wiring. Each node has exactly kmean

neighbors. We use a small re-wiring probability of 5% to highlight
the locality of real-world epidemics.

Apart from the baseline (complete graph), we specifically use these
three network models because they are well-studied in literature and
very different in their respective global properties. Moreover, they all
encode important properties of human-to-human connectivity like
hubs (power-law), small-worldness (power-law and WS), and tightly
connected household structures.

6.3.4 Dispersion in Networks

Given independent simulation runs, we measure dispersion by ana-
lyzing the empirical offspring distribution at day t. Specifically, we
consider the offspring distributions of the nodes that were exposed
within day t (the actual secondary infections may happen later). We
also perform a discretization of time over intervals of one day. We
quantify dispersion in three ways:

Coefficient of variation (CoV)
Together with the mean of the offspring distribution Rt, we
report the CoV, the ratio of standard deviation to mean. The
CoV is a widely-used measure of dispersion of a probability
distribution.

Top-k
We explicitly report how many new infections within day t are

6.3 Method 139

• Deterministic
• Homogeneous

Interaction Structure
• Homogeneous

Infectiousness

• Stochastic
• Homogeneous

Interaction Structure
• Homogeneous

Infectiousness

• Stochastic
• Heterogeneous

Interaction Structure
• Homogeneous

Infectiousness

• Stochastic
• Heterogeneous

Interaction Structure
• Heterogeneous

Infectiousness

SS
<latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit>

RR<latexit sha1_base64="X6CXZysm5IckU4mqXOr9bGtqhsU=">AAAEunichVPNbtNAEJ4UA234aQoXJC4WERKnyI7jJJWQaAptOYAIUdMWNVVlO9tgxbEte1NarPA0XOEZuPAO8C4c+HaSINooyVremfl25tuZ2V03DvxUGsbv3MoN7eat26tr+Tt3791fL2w8OEijYeKJthcFUXLkOqkI/FC0pS8DcRQnwhm4gTh0+y/V+uG5SFI/CvflZSxOBk4v9M98z5GATguPOsyR7SVChKN8R4oLKWXWGp0WikZps16xzIpulMxaxapVoZQty6rYulkyeBRf/CIezWgj95M61KWIPBrSgASFJKEH5FCK75hMMigGdkIZsASaz+uCRpRH7BBeAh4O0D7mHqzjCRrCVpwpR3vYJcCfIFKnp/h3mdGFt9pVQE8h/+D/zFhv7g4ZM6sMLyFdMK4x41vgkj7CY1nkYOI5zWV5pKpK0hnVuRof+cWMqDq9fzyvsJIA6/OKTjvs2QOHy/Y5OhBCtpGB6vKUQeeKu5AOS8Es4YTRAV8Cqbqv8pmfYxc7+EDTa92/uNL/PJ+6QDUqO/HfWkbb0IZ8vhm9pn105g3rNlWohtvQgMdihhbs7kz8NiLLYKhiXhy/x7Wr6q9zVMHRwFxFXxdzfIAdsPVphmUXt7qBvtpLK3mH2eHzm+3HDqJtZGKTtYSlyVh/hqHOvdjEV1P3B693+kT1+cpBuWTibb83i1utH+N3vEqP6Qk9Q1U12sIOTdwuj77QV/pG37Xnmqv5Wn/supIbS3pIV4Ym/wIN4/FW</latexit><latexit sha1_base64="X6CXZysm5IckU4mqXOr9bGtqhsU=">AAAEunichVPNbtNAEJ4UA234aQoXJC4WERKnyI7jJJWQaAptOYAIUdMWNVVlO9tgxbEte1NarPA0XOEZuPAO8C4c+HaSINooyVremfl25tuZ2V03DvxUGsbv3MoN7eat26tr+Tt3791fL2w8OEijYeKJthcFUXLkOqkI/FC0pS8DcRQnwhm4gTh0+y/V+uG5SFI/CvflZSxOBk4v9M98z5GATguPOsyR7SVChKN8R4oLKWXWGp0WikZps16xzIpulMxaxapVoZQty6rYulkyeBRf/CIezWgj95M61KWIPBrSgASFJKEH5FCK75hMMigGdkIZsASaz+uCRpRH7BBeAh4O0D7mHqzjCRrCVpwpR3vYJcCfIFKnp/h3mdGFt9pVQE8h/+D/zFhv7g4ZM6sMLyFdMK4x41vgkj7CY1nkYOI5zWV5pKpK0hnVuRof+cWMqDq9fzyvsJIA6/OKTjvs2QOHy/Y5OhBCtpGB6vKUQeeKu5AOS8Es4YTRAV8Cqbqv8pmfYxc7+EDTa92/uNL/PJ+6QDUqO/HfWkbb0IZ8vhm9pn105g3rNlWohtvQgMdihhbs7kz8NiLLYKhiXhy/x7Wr6q9zVMHRwFxFXxdzfIAdsPVphmUXt7qBvtpLK3mH2eHzm+3HDqJtZGKTtYSlyVh/hqHOvdjEV1P3B693+kT1+cpBuWTibb83i1utH+N3vEqP6Qk9Q1U12sIOTdwuj77QV/pG37Xnmqv5Wn/supIbS3pIV4Ym/wIN4/FW</latexit><latexit sha1_base64="X6CXZysm5IckU4mqXOr9bGtqhsU=">AAAEunichVPNbtNAEJ4UA234aQoXJC4WERKnyI7jJJWQaAptOYAIUdMWNVVlO9tgxbEte1NarPA0XOEZuPAO8C4c+HaSINooyVremfl25tuZ2V03DvxUGsbv3MoN7eat26tr+Tt3791fL2w8OEijYeKJthcFUXLkOqkI/FC0pS8DcRQnwhm4gTh0+y/V+uG5SFI/CvflZSxOBk4v9M98z5GATguPOsyR7SVChKN8R4oLKWXWGp0WikZps16xzIpulMxaxapVoZQty6rYulkyeBRf/CIezWgj95M61KWIPBrSgASFJKEH5FCK75hMMigGdkIZsASaz+uCRpRH7BBeAh4O0D7mHqzjCRrCVpwpR3vYJcCfIFKnp/h3mdGFt9pVQE8h/+D/zFhv7g4ZM6sMLyFdMK4x41vgkj7CY1nkYOI5zWV5pKpK0hnVuRof+cWMqDq9fzyvsJIA6/OKTjvs2QOHy/Y5OhBCtpGB6vKUQeeKu5AOS8Es4YTRAV8Cqbqv8pmfYxc7+EDTa92/uNL/PJ+6QDUqO/HfWkbb0IZ8vhm9pn105g3rNlWohtvQgMdihhbs7kz8NiLLYKhiXhy/x7Wr6q9zVMHRwFxFXxdzfIAdsPVphmUXt7qBvtpLK3mH2eHzm+3HDqJtZGKTtYSlyVh/hqHOvdjEV1P3B693+kT1+cpBuWTibb83i1utH+N3vEqP6Qk9Q1U12sIOTdwuj77QV/pG37Xnmqv5Wn/supIbS3pIV4Ym/wIN4/FW</latexit><latexit sha1_base64="orSvGfWWuroXx2SX88SCeHy2aaY=">AAAEunichVPNbtNAEJ4UA234aQoXJC4WERKnyI7tJJU4NIW2HECEqGmLmqqynW2w4tiWvSktVngarvAMXHgI3oUD304TRBslWcs7M9/OfDszu+slYZBJw/hdWLml3b5zd3WteO/+g4frpY1HB1k8Sn3R8eMwTo88NxNhEImODGQojpJUuEMvFIfe4JVaPzwXaRbE0b68TMTJ0O1HwVnguxLQaelJlznyvVSIaFzsSnEhpczb49NS2ahsNmzLtHWjYtZtq16DUrUsy3Z0s2LwKNNktOKNwi/qUo9i8mlEQxIUkYQekksZvmMyyaAE2AnlwFJoAa8LGlMRsSN4CXi4QAeY+7COJ2gEW3FmHO1jlxB/ikidnuPfZUYP3mpXAT2D/IP/C2P9uTvkzKwyvIT0wLjGjO+AS/oEj2WRw4nnNJflkaoqSWfU4GoC5Jcwour0//G8xkoKbMArOu2wZx8cHtvn6EAE2UEGqstTBp0r7kG6LAWzRBNGF3wppOq+ymd+jj3sEADNbnT/4lr/i3zqAtWo7MR/azltQxvx+eb0hvbRmbesO2RTHbehCY/FDG3YvZn4bURWwVDDvDh+j2tX1d/kqIGjibmGvi7m+Ag7ZOvzDMsubnUTfXWWVvIes8vnN9uPHUQ7yMQhawlLi7HBDEODe7GJr67uD17v9Inq85WDasXE2/5glrfaP6/e8So9pWf0AlXVaQs7tHC7fPpK3+g7/dBeap4WaIMr15XC5O0/pmtDk38Bm43wPw==</latexit>EE<latexit sha1_base64="mfjyGMMMuBxw59LUf78r/RK0fFo=">AAAE9nichVTNbtNAEJ4UA234aQoSFy4WERKnKI7jJD3RFFI4QAlV0xY1VWU722DFsSN706aYvAoHJMQBDjwCjwF3HoMD304SRBuS7Gp3/r+dmV3b6fleLPP5n6mlK9rVa9eXV9I3bt66vZpZu7MXh/3IFQ039MPowLFj4XuBaEhP+uKgFwm76/hi3+k8Ufb9UxHFXhjsyvOeOOra7cA78VxbQnWcuddkjGQ7PBumm1IMpJRJbXicyeZz65WiaRT1fM4oF81yCUzBNM2ipRu5PI/s4x/Eox6upX5Rk1oUkkt96pKggCR4n2yKMQ/JoDz1oDuiBLoInMd2QUNKI7YPLwEPG9oO9jakw7E2gKwwY452cYqPFSFSp4dYW4zowFudKsDHoL+x3rGuPfOEhJFVhuegDhBXGPEl9JLewmNRZHfsOcllcaSqStIJVbgaD/n1WKPqdP/iPIUlgq7DFp1q7NkGhsPyKToQgDaQgeryBEHnilugNlPBKMEY0QZeBKq6r/KZnWMLJ3jQxpe6P7jQ/zTfukA1Kjvxjy2hTXB9vt+EntMuOvOCeYuKVMZrqMJjPsIO5NZU/CYiC0AoYZ8f/4xrV9VfxigBo4q9hL7Ox3gD2WfpbAplC6+6ir5aCyt5hd3m+5vuRw3RFjKxyFyAUmddZwqhwr1YxywvQNj+bx0VRKpKLEz17U8+cH02s1fIGfgzvDayGzvfR3+BZbpPD+gRkMq0Afw63qZL7+kjfaGv2kD7oH3SPo9cl1IjSnfpwtC+/QEnv/07</latexit><latexit sha1_base64="mfjyGMMMuBxw59LUf78r/RK0fFo=">AAAE9nichVTNbtNAEJ4UA234aQoSFy4WERKnKI7jJD3RFFI4QAlV0xY1VWU722DFsSN706aYvAoHJMQBDjwCjwF3HoMD304SRBuS7Gp3/r+dmV3b6fleLPP5n6mlK9rVa9eXV9I3bt66vZpZu7MXh/3IFQ039MPowLFj4XuBaEhP+uKgFwm76/hi3+k8Ufb9UxHFXhjsyvOeOOra7cA78VxbQnWcuddkjGQ7PBumm1IMpJRJbXicyeZz65WiaRT1fM4oF81yCUzBNM2ipRu5PI/s4x/Eox6upX5Rk1oUkkt96pKggCR4n2yKMQ/JoDz1oDuiBLoInMd2QUNKI7YPLwEPG9oO9jakw7E2gKwwY452cYqPFSFSp4dYW4zowFudKsDHoL+x3rGuPfOEhJFVhuegDhBXGPEl9JLewmNRZHfsOcllcaSqStIJVbgaD/n1WKPqdP/iPIUlgq7DFp1q7NkGhsPyKToQgDaQgeryBEHnilugNlPBKMEY0QZeBKq6r/KZnWMLJ3jQxpe6P7jQ/zTfukA1Kjvxjy2hTXB9vt+EntMuOvOCeYuKVMZrqMJjPsIO5NZU/CYiC0AoYZ8f/4xrV9VfxigBo4q9hL7Ox3gD2WfpbAplC6+6ir5aCyt5hd3m+5vuRw3RFjKxyFyAUmddZwqhwr1YxywvQNj+bx0VRKpKLEz17U8+cH02s1fIGfgzvDayGzvfR3+BZbpPD+gRkMq0Afw63qZL7+kjfaGv2kD7oH3SPo9cl1IjSnfpwtC+/QEnv/07</latexit><latexit sha1_base64="mfjyGMMMuBxw59LUf78r/RK0fFo=">AAAE9nichVTNbtNAEJ4UA234aQoSFy4WERKnKI7jJD3RFFI4QAlV0xY1VWU722DFsSN706aYvAoHJMQBDjwCjwF3HoMD304SRBuS7Gp3/r+dmV3b6fleLPP5n6mlK9rVa9eXV9I3bt66vZpZu7MXh/3IFQ039MPowLFj4XuBaEhP+uKgFwm76/hi3+k8Ufb9UxHFXhjsyvOeOOra7cA78VxbQnWcuddkjGQ7PBumm1IMpJRJbXicyeZz65WiaRT1fM4oF81yCUzBNM2ipRu5PI/s4x/Eox6upX5Rk1oUkkt96pKggCR4n2yKMQ/JoDz1oDuiBLoInMd2QUNKI7YPLwEPG9oO9jakw7E2gKwwY452cYqPFSFSp4dYW4zowFudKsDHoL+x3rGuPfOEhJFVhuegDhBXGPEl9JLewmNRZHfsOcllcaSqStIJVbgaD/n1WKPqdP/iPIUlgq7DFp1q7NkGhsPyKToQgDaQgeryBEHnilugNlPBKMEY0QZeBKq6r/KZnWMLJ3jQxpe6P7jQ/zTfukA1Kjvxjy2hTXB9vt+EntMuOvOCeYuKVMZrqMJjPsIO5NZU/CYiC0AoYZ8f/4xrV9VfxigBo4q9hL7Ox3gD2WfpbAplC6+6ir5aCyt5hd3m+5vuRw3RFjKxyFyAUmddZwqhwr1YxywvQNj+bx0VRKpKLEz17U8+cH02s1fIGfgzvDayGzvfR3+BZbpPD+gRkMq0Afw63qZL7+kjfaGv2kD7oH3SPo9cl1IjSnfpwtC+/QEnv/07</latexit><latexit sha1_base64="gLj0Z45k9O9AjPPVScx+QbakRMA=">AAAE9nichVTNbtNAEJ4UA234aQoSFy4WERKnyI7jJL01hRQOUELVtEVNVdnONlhx7MjetCkmr8IBCXGAA4/Aa3DnMTjw7TRBtCHJrnbnZ2e+nZn9cfuBn0jD+JlZuqZdv3FzeSV76/adu6u5tXt7STSIPdH0oiCKD1wnEYEfiqb0ZSAO+rFwem4g9t3uU7W+fyrixI/CXXneF0c9pxP6J77nSKiOcw9ajJFuR2ejbEuKoZQyrY+Oc3mjsF4tWWZJNwpmpWRVymCKlmWVbN0sGNzyNG6NaC3zi1rUpog8GlCPBIUkwQfkUIJ+SCYZ1IfuiFLoYnA+rwsaURa+A1gJWDjQdjF3IB2OtSFkhZmwt4ddAowYnjo9xthiRBfWalcBPgH9jfGedZ2ZO6SMrCI8B3WBuMKIr6CX9A4Wizx7Y8tJLIs9VVaSTqjK2fiIr88alaf3F+cZVmLouryiU50tO8BwWT5FBULQJiJQVZ4g6JxxG9RhKhglHCM6wItBVfVVPLNjbGMHH9rkSvWHl+qf5VMXyEZFJ/5ZS2kT3IDPN6UXtIvKvGTephJVcBtqsJiPsAO5PeW/Cc8iEMqY5/s/59xV9lcxysCoYS6jrvMx3kIOWDqbQtnCra6hrvbCTF5jdvj8putRh7eNSGyyFqA0WNedQqhyLdbRKwsQtv+bRxWeKhMbXb39yQPXZzN7xYKJn+GNmd/Y+XHxCyzTQ3pET4BUoQ3gN3A3PfpAn+grfdOG2kfts/blwnQpM/457tOlpn3/A3HX/CQ=</latexit> I1I1
<latexit sha1_base64="g0uYzm2358lZjAK2uFxXbaFp05A=">AAAE+HichVTLbtNAFL0pBtrwSmGDxMYiQrCK7DivrkgKLSBBCVVfqKki25kGK44d2ZO+rPAtLJAQC1jwBfwGez6AD2DBmdsEkYYkY3nuY+49c++ZsZ2e78XSMH6kFi5pl69cXVxKX7t+4+atzPLtnTjsR67YdkM/jPYcOxa+F4ht6Ulf7PUiYXcdX+w6nSdqffdIRLEXBlvytCcOunY78A4915ZwNTN3G4yRbITHg3RDihMpZfJi0DSbmayRW6kULLOgGzmzXLDKJSh5y7IKRd3MGTyy1YePf1WJqB4up35Sg1oUkkt96pKggCR0n2yK8eyTSQb14DugBL4ImsfrggaURm4fUQIRNrwdzG1Y+0NvAFthxpztYhcfb4RMnR7gXWdEB9FqVwE9hvyN94x97ak7JIysKjyFdIC4xIiv4Jf0DhHzMrvDyFEt8zNVV5IOqcLdeKivxx7Vp/sX5ylWIvg6vKLTGke2geGwfQQGAshtVKBYHiHo3HEL0mYpGCUYItrAiyAV+6qe6TW2sIMHb3yB/ZMx/tN86gLdqOrEP2sJrULr8/km9Jy2wMxL1otUoDJuQw0RsxE2Ybcm8leRmQdCCfPs/Gfcu+r+IkYJGDXMJfA6G+MtbJ+t4wmUddzqGngtzu3kNWabz2+SjzVkF1FJkaw5KHX2dSYQKszFCp7yHISN//Yxxii+/dEHrk9XdvI5E3+GN2a2uvmdeCzSPbpPj8BJmarAr+NuuvSePtIX+qqdaR+0T9rn89CF1LmkOzQ2tG9/AFwz/qk=</latexit><latexit sha1_base64="r78QdgZ41XMxJmMA29eCt2KD4AE=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctjUm6m0llkv5Qw9p2oZvZgzigUoWcMwcnlVz2g80uVHT35VB+f1mr+W+EkNapFPNvWpS4I8ktBdMinEc0A6adSD75Ai+AJoDq8LGlISuX1ECUSY8HYwt2EdjLwe7Bgz5Gwbu7h4A2Sq9BDvJiNaiI53FdBDyN94z9jXnrlDxMhxhaeQFhBXGPE1/JLeI2JRZncUOa5lcWbclaQjKnE3DurrsSfu0/6L8wwrAXwdXlGpypFtYFhsH4MBD7KOCmKWxwgqd9yCNFkKRvFGiCbwAsiY/bie2TW2sIMDb3iJ/ZMJ/pN86gLdxNWJf9Yi2oDW5/ON6AXtgJlXrOcpR0Xchgoi5iNsw25N5W8gMwuEAub5+c+597j7yxgFYFQwF8DrfIx3sF22BlMom7jVFfCaX9jJG8wmn980H1Vk51FJnowFKDX2daYQSszFOp7iAoSt//YxwSi+/fEHrs5WdrMZHX+Gt3q6vP2DeCzTfXpAj8FJkcrAr+Fu2vSBPtFX+qacKR+Vz8qXi9ClxIWkuzQxlO9/AITqAGI=</latexit><latexit sha1_base64="r78QdgZ41XMxJmMA29eCt2KD4AE=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctjUm6m0llkv5Qw9p2oZvZgzigUoWcMwcnlVz2g80uVHT35VB+f1mr+W+EkNapFPNvWpS4I8ktBdMinEc0A6adSD75Ai+AJoDq8LGlISuX1ECUSY8HYwt2EdjLwe7Bgz5Gwbu7h4A2Sq9BDvJiNaiI53FdBDyN94z9jXnrlDxMhxhaeQFhBXGPE1/JLeI2JRZncUOa5lcWbclaQjKnE3DurrsSfu0/6L8wwrAXwdXlGpypFtYFhsH4MBD7KOCmKWxwgqd9yCNFkKRvFGiCbwAsiY/bie2TW2sIMDb3iJ/ZMJ/pN86gLdxNWJf9Yi2oDW5/ON6AXtgJlXrOcpR0Xchgoi5iNsw25N5W8gMwuEAub5+c+597j7yxgFYFQwF8DrfIx3sF22BlMom7jVFfCaX9jJG8wmn980H1Vk51FJnowFKDX2daYQSszFOp7iAoSt//YxwSi+/fEHrs5WdrMZHX+Gt3q6vP2DeCzTfXpAj8FJkcrAr+Fu2vSBPtFX+qacKR+Vz8qXi9ClxIWkuzQxlO9/AITqAGI=</latexit><latexit sha1_base64="VaAAPAsfCIWLIq91yNLiwr2MTVA=">AAAE+HichVTNbtNAEJ60Btrw07RckLhYREicIjvOX29NoQUkKKFq2qKmimxnG6w4dmRv+meFZ+GAhDjAgSfgNbjzGBz4dpog0pBkrd2ZnZ35dubb9To934ulYfxMLSxqN27eWlpO375z995KZnVtPw77kSvqbuiH0aFjx8L3AlGXnvTFYS8SdtfxxYHTearWD05FFHthsCcveuK4a7cD78RzbQlTM/OgwRjJTng2SDekOJdSJi8HTbOZyRq59UrBMgu6kTPLBatcgpK3LKtQ1M2cwS1Lw1YLV1O/qEEtCsmlPnVJUEASuk82xfiOyCSDerAdUwJbBM3jdUEDSiO2Dy8BDxvWDsY2ZkdDa4C5wow52sUuPnqESJ0eo28zogNvtauAHkP+Rr9kW3vqDgkjqwwvIB0gLjPia9glvYfHvMju0HOUy/xIVZWkE6pwNR7y67FF1en+xXmGlQi2Dq/otMWebWA4PD8FAwFkHRkolkcIOlfcgrRZCkYJhog28CJIxb7KZ3qOLezgwRpfY/98jP80n7pANSo78c9aQpvQ+ny+Cb2gPTDzivUiFaiM21CFx2yEXcxbE/GbiMwDoYRxdvxzrl1Vfx2jBIwqxhJ4nY3xDnOfZ2cTKNu41VXwWpxbyRuMNp/fJB9biC4ikyJZc1BqbOtMIFSYi3V85TkIO/+tY4xR/PujH1yfruzncyZehrdmdmP3x9UrsEQP6RE9ASdl2gB+DXfTpQ/0ib7SN+1S+6h91r5cuS6khi/HfRpr2vc/b8780w==</latexit>

I2I2
<latexit sha1_base64="LuyHU7DtRzkJ2MxBqXplNR1tjC4=">AAAE+HichVTLbtNAFL0pBtrwSmGDxMYiQrCK7DivrkgKLSBBCVVfqKki25kGK44d2ZO+rPAtLJAQC1jwBfwGez6AD2DBmdsEkYYkY3nuY+49c++ZsZ2e78XSMH6kFi5pl69cXVxKX7t+4+atzPLtnTjsR67YdkM/jPYcOxa+F4ht6Ulf7PUiYXcdX+w6nSdqffdIRLEXBlvytCcOunY78A4915ZwNTN3G4yRbITHg3RDihMpZfJi0Mw3M1kjt1IpWGZBN3JmuWCVS1DylmUVirqZM3hkqw8f/6oSUT1cTv2kBrUoJJf61CVBAUnoPtkU49knkwzqwXdACXwRNI/XBQ0ojdw+ogQibHg7mNuw9ofeALbCjDnbxS4+3giZOj3Au86IDqLVrgJ6DPkb7xn72lN3SBhZVXgK6QBxiRFfwS/pHSLmZXaHkaNa5meqriQdUoW78VBfjz2qT/cvzlOsRPB1eEWnNY5sA8Nh+wgMBJDbqECxPELQueMWpM1SMEowRLSBF0Eq9lU902tsYQcP3vgC+ydj/Kf51AW6UdWJf9YSWoXW5/NN6DltgZmXrBepQGXchhoiZiNswm5N5K8iMw+EEubZ+c+4d9X9RYwSMGqYS+B1NsZb2D5bxxMo67jVNfBanNvJa8w2n98kH2vILqKSIllzUOrs60wgVJiLFTzlOQgb/+1jjFF8+6MPXJ+u7ORzJv4Mb8xsdfM78Vike3SfHoGTMlWBX8fddOk9faQv9FU70z5on7TP56ELqXNJd2hsaN/+AGCu/qo=</latexit><latexit sha1_base64="LP6dc6k+oJDBJJvGQiHpMwuM2i4=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctjMNlNpLbNeyhl6TtUyejFnFAtQsoZh5PKqntF4pMuPnvyqDs7rNX8t8ZMa1CKfbOpTlwR5JKG7ZFKI54B00qgH3yFF8AXQHF4XNKQkcvuIEogw4e1gbsM6GHk92DFmyNk2dnHxBshU6SHeTUa0EB3vKqCHkL/xnrGvPXOHiJHjCk8hLSCuMOJr+CW9R8SizO4oclzL4sy4K0lHVOJuHNTXY0/cp/0X5xlWAvg6vKJSlSPbwLDYPgYDHmQdFcQsjxFU7rgFabIUjOKNEE3gBZAx+3E9s2tsYQcH3vAS+ycT/Cf51AW6iasT/6xFtAGtz+cb0QvaATOvWM9Tjoq4DRVEzEfYht2ayt9AZhYIBczz859z73H3lzEKwKhgLoDX+RjvYLtsDaZQNnGrK+A1v7CTN5hNPr9pPqrIzqOSPBkLUGrs60whlJiLdTzFBQhb/+1jglF8++MPXJ2t7GYzOv4Mb/V0efsH8Vim+/SAHoOTIpWBX8PdtOkDfaKv9E05Uz4qn5UvF6FLiQtJd2liKN//AIllAGM=</latexit><latexit sha1_base64="LP6dc6k+oJDBJJvGQiHpMwuM2i4=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctjMNlNpLbNeyhl6TtUyejFnFAtQsoZh5PKqntF4pMuPnvyqDs7rNX8t8ZMa1CKfbOpTlwR5JKG7ZFKI54B00qgH3yFF8AXQHF4XNKQkcvuIEogw4e1gbsM6GHk92DFmyNk2dnHxBshU6SHeTUa0EB3vKqCHkL/xnrGvPXOHiJHjCk8hLSCuMOJr+CW9R8SizO4oclzL4sy4K0lHVOJuHNTXY0/cp/0X5xlWAvg6vKJSlSPbwLDYPgYDHmQdFcQsjxFU7rgFabIUjOKNEE3gBZAx+3E9s2tsYQcH3vAS+ycT/Cf51AW6iasT/6xFtAGtz+cb0QvaATOvWM9Tjoq4DRVEzEfYht2ayt9AZhYIBczz859z73H3lzEKwKhgLoDX+RjvYLtsDaZQNnGrK+A1v7CTN5hNPr9pPqrIzqOSPBkLUGrs60whlJiLdTzFBQhb/+1jglF8++MPXJ2t7GYzOv4Mb/V0efsH8Vim+/SAHoOTIpWBX8PdtOkDfaKv9E05Uz4qn5UvF6FLiQtJd2liKN//AIllAGM=</latexit><latexit sha1_base64="Sen8VnCxhFLaELyr70rcj8tmZig=">AAAE+HichVTNbtNAEJ60Btrw07RckLhYREicIjvOX29NoQUkKKFq2qKmimxnG6w4dmRv+meFZ+GAhDjAgSfgNbjzGBz4dpog0pBkrd2ZnZ35dubb9To934ulYfxMLSxqN27eWlpO375z995KZnVtPw77kSvqbuiH0aFjx8L3AlGXnvTFYS8SdtfxxYHTearWD05FFHthsCcveuK4a7cD78RzbQlTM/OgwRjJTng2SDekOJdSJi8HzXwzkzVy65WCZRZ0I2eWC1a5BCVvWVahqJs5g1uWhq0WrqZ+UYNaFJJLfeqSoIAkdJ9sivEdkUkG9WA7pgS2CJrH64IGlEZsH14CHjasHYxtzI6G1gBzhRlztItdfPQIkTo9Rt9mRAfealcBPYb8jX7JtvbUHRJGVhleQDpAXGbE17BLeg+PeZHdoecol/mRqipJJ1Thajzk12OLqtP9i/MMKxFsHV7RaYs928BweH4KBgLIOjJQLI8QdK64BWmzFIwSDBFt4EWQin2Vz/QcW9jBgzW+xv75GP9pPnWBalR24p+1hDah9fl8E3pBe2DmFetFKlAZt6EKj9kIu5i3JuI3EZkHQgnj7PjnXLuq/jpGCRhVjCXwOhvjHeY+z84mULZxq6vgtTi3kjcYbT6/ST62EF1EJkWy5qDU2NaZQKgwF+v4ynMQdv5bxxij+PdHP7g+XdnP50y8DG/N7Mbuj6tXYIke0iN6Ak7KtAH8Gu6mSx/oE32lb9ql9lH7rH25cl1IDV+O+zTWtO9/AHRJ/NQ=</latexit>

I3I3
<latexit sha1_base64="DqDYkkSlEdvVfT9gGqwPXw1bIPc=">AAAE+HichVTLbtNAFL0pBtrwSmGDxMYiQrCK7DivrkgKLSBBCVVfqKki25kGK44d2ZO+rPAtLJAQC1jwBfwGez6AD2DBmdsEkYYkY3nuY+49c++ZsZ2e78XSMH6kFi5pl69cXVxKX7t+4+atzPLtnTjsR67YdkM/jPYcOxa+F4ht6Ulf7PUiYXcdX+w6nSdqffdIRLEXBlvytCcOunY78A4915ZwNTN3G4yRbITHg3RDihMpZfJi0LSamayRW6kULLOgGzmzXLDKJSh5y7IKRd3MGTyy1YePf1WJqB4up35Sg1oUkkt96pKggCR0n2yK8eyTSQb14DugBL4ImsfrggaURm4fUQIRNrwdzG1Y+0NvAFthxpztYhcfb4RMnR7gXWdEB9FqVwE9hvyN94x97ak7JIysKjyFdIC4xIiv4Jf0DhHzMrvDyFEt8zNVV5IOqcLdeKivxx7Vp/sX5ylWIvg6vKLTGke2geGwfQQGAshtVKBYHiHo3HEL0mYpGCUYItrAiyAV+6qe6TW2sIMHb3yB/ZMx/tN86gLdqOrEP2sJrULr8/km9Jy2wMxL1otUoDJuQw0RsxE2Ybcm8leRmQdCCfPs/Gfcu+r+IkYJGDXMJfA6G+MtbJ+t4wmUddzqGngtzu3kNWabz2+SjzVkF1FJkaw5KHX2dSYQKszFCp7yHISN//Yxxii+/dEHrk9XdvI5E3+GN2a2uvmdeCzSPbpPj8BJmarAr+NuuvSePtIX+qqdaR+0T9rn89CF1LmkOzQ2tG9/AGUp/qs=</latexit><latexit sha1_base64="Gkm/UFkEI1O1XbdqH5kMP9GRfSA=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctg0mqm0llkv5Qw9p2oZvZgzigUoWcMwcnlVz2g80uVHT35VB+f1mr+W+EkNapFPNvWpS4I8ktBdMinEc0A6adSD75Ai+AJoDq8LGlISuX1ECUSY8HYwt2EdjLwe7Bgz5Gwbu7h4A2Sq9BDvJiNaiI53FdBDyN94z9jXnrlDxMhxhaeQFhBXGPE1/JLeI2JRZncUOa5lcWbclaQjKnE3DurrsSfu0/6L8wwrAXwdXlGpypFtYFhsH4MBD7KOCmKWxwgqd9yCNFkKRvFGiCbwAsiY/bie2TW2sIMDb3iJ/ZMJ/pN86gLdxNWJf9Yi2oDW5/ON6AXtgJlXrOcpR0Xchgoi5iNsw25N5W8gMwuEAub5+c+597j7yxgFYFQwF8DrfIx3sF22BlMom7jVFfCaX9jJG8wmn980H1Vk51FJnowFKDX2daYQSszFOp7iAoSt//YxwSi+/fEHrs5WdrMZHX+Gt3q6vP2DeCzTfXpAj8FJkcrAr+Fu2vSBPtFX+qacKR+Vz8qXi9ClxIWkuzQxlO9/AI3gAGQ=</latexit><latexit sha1_base64="Gkm/UFkEI1O1XbdqH5kMP9GRfSA=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctg0mqm0llkv5Qw9p2oZvZgzigUoWcMwcnlVz2g80uVHT35VB+f1mr+W+EkNapFPNvWpS4I8ktBdMinEc0A6adSD75Ai+AJoDq8LGlISuX1ECUSY8HYwt2EdjLwe7Bgz5Gwbu7h4A2Sq9BDvJiNaiI53FdBDyN94z9jXnrlDxMhxhaeQFhBXGPE1/JLeI2JRZncUOa5lcWbclaQjKnE3DurrsSfu0/6L8wwrAXwdXlGpypFtYFhsH4MBD7KOCmKWxwgqd9yCNFkKRvFGiCbwAsiY/bie2TW2sIMDb3iJ/ZMJ/pN86gLdxNWJf9Yi2oDW5/ON6AXtgJlXrOcpR0Xchgoi5iNsw25N5W8gMwuEAub5+c+597j7yxgFYFQwF8DrfIx3sF22BlMom7jVFfCaX9jJG8wmn980H1Vk51FJnowFKDX2daYQSszFOp7iAoSt//YxwSi+/fEHrs5WdrMZHX+Gt3q6vP2DeCzTfXpAj8FJkcrAr+Fu2vSBPtFX+qacKR+Vz8qXi9ClxIWkuzQxlO9/AI3gAGQ=</latexit><latexit sha1_base64="zufzy4jndgqPNyq/9Vrhadt5CFU=">AAAE+HichVTNbtNAEJ60Btrw07RckLhYREicIjvOX29NoQUkKKFq2qKmimxnG6w4dmRv+meFZ+GAhDjAgSfgNbjzGBz4dpog0pBkrd2ZnZ35dubb9To934ulYfxMLSxqN27eWlpO375z995KZnVtPw77kSvqbuiH0aFjx8L3AlGXnvTFYS8SdtfxxYHTearWD05FFHthsCcveuK4a7cD78RzbQlTM/OgwRjJTng2SDekOJdSJi8HTauZyRq59UrBMgu6kTPLBatcgpK3LKtQ1M2cwS1Lw1YLV1O/qEEtCsmlPnVJUEASuk82xfiOyCSDerAdUwJbBM3jdUEDSiO2Dy8BDxvWDsY2ZkdDa4C5wow52sUuPnqESJ0eo28zogNvtauAHkP+Rr9kW3vqDgkjqwwvIB0gLjPia9glvYfHvMju0HOUy/xIVZWkE6pwNR7y67FF1en+xXmGlQi2Dq/otMWebWA4PD8FAwFkHRkolkcIOlfcgrRZCkYJhog28CJIxb7KZ3qOLezgwRpfY/98jP80n7pANSo78c9aQpvQ+ny+Cb2gPTDzivUiFaiM21CFx2yEXcxbE/GbiMwDoYRxdvxzrl1Vfx2jBIwqxhJ4nY3xDnOfZ2cTKNu41VXwWpxbyRuMNp/fJB9biC4ikyJZc1BqbOtMIFSYi3V85TkIO/+tY4xR/PujH1yfruzncyZehrdmdmP3x9UrsEQP6RE9ASdl2gB+DXfTpQ/0ib7SN+1S+6h91r5cuS6khi/HfRpr2vc/eMT81Q==</latexit>

Pr
ev
ale

nc
e

Time Time Time Time

Fig. 6.5.: Overview of how population heterogeneity shapes an epidemic.
f.l.t.r.: ODE model, a complete graph, a power-law network, and
a power-law network with exponentially distributed infectious-
ness. The mean fraction of the population in each compartment
at each point in time is shown. Shaded areas indicate standard
deviations, not confidence intervals.

caused by which fraction of infected nodes (e.g., 80% of the
new infections are caused by 20% of the nodes). We report
which fraction of new infections can be traced back to (the
most harmful) 10%, 20%, and 30% of infected nodes.

Offspring
We report the fraction of nodes (that were infected within day
t) that lead to 0, 1, 2, . . . children.

Note that overdispersion inevitably indicates not only the existence
of super-spreaders but also the existence of nodes that are unlikely
to pass the infection at all.

6.4 Experiments

We compare the evolution and dispersion of the four network models.
We have two main experiments. In the first experiment (overview
in Figure 6.7, p. 144), we study a fixed infection rate (mimicking

140 Chapter 6

Covid-19 and the Limitations of Modeling

the case that there is only variation in connectivity). In the second
experiment (Figure 6.8, p. 145), we additionally impose individ-
ual variation in infectiousness βi. Recall that the networks (aside
from the complete graph) have approximately the same number of
edges and that nodes approximately admit the same mean infec-
tiousness, thereby ensuring that the resulting differences are solely a
consequence of the corresponding variation.

Figures Figure 6.5 (p. 140) and Figure 6.6 (p. 142) summarize some
of our key findings. Figure 6.5 visualizes the effects of adding stochas-
ticity and individual variation to a population. Figure 6.6 highlights
the different dynamics emerging on different contact networks.

Setup. For each network, we perform 103 simulation runs on a
network with 103 nodes. Networks are generated such that the
mean degree is approximately eight. For network models where we
cannot directly control kmean, we start by generating sparse networks
and increase the density until kmean has the desired value. In each
simulation run, we start with three randomly chosen infected nodes
in I1 (to reduce the likelihood of instantaneous initial die-outs). The
ODE (cf. Figure 6.6, p. 142) starts with a value of 3/1000 in I1. The
number of simulation runs is enough to estimate the mean fractions
(and the standard deviations) corresponding to each compartment
with high accuracy (confidence intervals are not shown, but would
be barely visible anyway). The number of 103 nodes was used for
practical reasons, however, increasing the network size preserves the
qualitative characteristics of the dynamics.

Quantities of Interest. We characterize epidemics in terms of the
evolution of population fractions, that is, mean fraction (prevalence)
of nodes in compartment S , I1, R for each timepoint t (the remain-
ing compartments evolve approximately proportional to I1, thus,

6.4 Experiments 141

Homogeneous Infectiousness Heterogeneous Infectiousness

Time Time

In
fe

ct
io

n
Cu

rv
e

Homogeneous

Infectiousness

Heterogeneous

Infectiousness

BAA B

Fig. 6.6.: Fraction of nodes in I1 (y-axis) over time (a): Fixed infection
rate β. (b): Node-based infection rate βi drawn from an expo-
nential distribution. Note the large difference between the two
evolutions on the Watts–Strogatz (WS) networks.

we leave them out for clarity). This evolution informs about the
timepoint and the height of the infection peak and the final epidemic
size (or herd immunity threshold) that is equivalent to the (mean)
fraction of recovered nodes when the epidemic is over (which is
mostly the case at 200 time units). Note that the final death toll is
proportional to the final epidemic size.

Moreover, we study the effective reproduction number Rt (2nd row
in Figure 6.7 and Figure 6.8, p. 145). We define Rt as the average
number of secondary infections for a node exposed at day t ∈ N⩾0.
We also report an empirical R0 based on the three initially infected
nodes that diverges slightly from the theoretical R0 in Table 6.1.
Dispersion is quantified using the three techniques explained in
Section 6.3.4 (2nd to 4th row in Figure 6.7 and Figure 6.8, p. 145).

6.4.1 Experiment 1: Connectivity Heterogeneity

Results for a fixed β on different network types are shown in Figure
6.7 (p. 144). In most simulation runs, the power-law dynamics

142 Chapter 6

Covid-19 and the Limitations of Modeling

admits a very early peak, and the epidemic dies out early with a
comparably small final epidemic size. This effect can directly be
attributed to the hubs that get infected very early and jump-start the
epidemic. In contrast, in household networks—and even more so
in WS networks—the infection peak is lower and happens at a later
timepoint. This is no surprise as the connectivity in both networks
imposes a level of locality that slows down the propagation. For
better visibility, the differences in the infection curve (based on I1)
are summarized in Figure 6.6 (p. 142). We also see that the complete
graph behaves similarly to the ODE model.

The effective reproduction number Rt starts from around 2.5 (the
theoretical over-approximation) and decreases in most cases mono-
tonically. The exception is again the power-law network where hubs
cause a massive jump of Rt in the first day from 2.5 to around 12.
This jump is also reflected in the dispersion measure, most noticeable
in the offspring plot (4th row). The power-law topology generally
admits a higher dispersion than the other networks. For instance,
the fraction of nodes with zero offspring is much higher. Moreover,
on most days, the top 20% of the infected nodes account for more
than 80% of the new infections, roughly fitting the estimations for
Covid-19 in a typical population. In the other network types, there is
less temporal variation in the dispersion. The dispersion is the lowest
in the WS networks, which is unsurprising as all nodes have degree
8 (providing an upper bound to the offspring number). Generally
speaking, we see that dispersion can be robustly measured using the
empirical offspring distribution.

Note that measuring the dispersion becomes increasingly difficult
over time for the power-law network. This is because the epidemic
tends to die out early with a high probability. Thus, the dispersion is
estimated on a relatively small amount of samples. At the same time,
the variance of the distribution is comparably high. This leads to a
noticeable amount of noise.

6.4 Experiments 143

Complete Household Watts–StrogatzPower-law

SS
<latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit>

RR
<latexit sha1_base64="X6CXZysm5IckU4mqXOr9bGtqhsU=">AAAEunichVPNbtNAEJ4UA234aQoXJC4WERKnyI7jJJWQaAptOYAIUdMWNVVlO9tgxbEte1NarPA0XOEZuPAO8C4c+HaSINooyVremfl25tuZ2V03DvxUGsbv3MoN7eat26tr+Tt3791fL2w8OEijYeKJthcFUXLkOqkI/FC0pS8DcRQnwhm4gTh0+y/V+uG5SFI/CvflZSxOBk4v9M98z5GATguPOsyR7SVChKN8R4oLKWXWGp0WikZps16xzIpulMxaxapVoZQty6rYulkyeBRf/CIezWgj95M61KWIPBrSgASFJKEH5FCK75hMMigGdkIZsASaz+uCRpRH7BBeAh4O0D7mHqzjCRrCVpwpR3vYJcCfIFKnp/h3mdGFt9pVQE8h/+D/zFhv7g4ZM6sMLyFdMK4x41vgkj7CY1nkYOI5zWV5pKpK0hnVuRof+cWMqDq9fzyvsJIA6/OKTjvs2QOHy/Y5OhBCtpGB6vKUQeeKu5AOS8Es4YTRAV8Cqbqv8pmfYxc7+EDTa92/uNL/PJ+6QDUqO/HfWkbb0IZ8vhm9pn105g3rNlWohtvQgMdihhbs7kz8NiLLYKhiXhy/x7Wr6q9zVMHRwFxFXxdzfIAdsPVphmUXt7qBvtpLK3mH2eHzm+3HDqJtZGKTtYSlyVh/hqHOvdjEV1P3B693+kT1+cpBuWTibb83i1utH+N3vEqP6Qk9Q1U12sIOTdwuj77QV/pG37Xnmqv5Wn/supIbS3pIV4Ym/wIN4/FW</latexit><latexit sha1_base64="X6CXZysm5IckU4mqXOr9bGtqhsU=">AAAEunichVPNbtNAEJ4UA234aQoXJC4WERKnyI7jJJWQaAptOYAIUdMWNVVlO9tgxbEte1NarPA0XOEZuPAO8C4c+HaSINooyVremfl25tuZ2V03DvxUGsbv3MoN7eat26tr+Tt3791fL2w8OEijYeKJthcFUXLkOqkI/FC0pS8DcRQnwhm4gTh0+y/V+uG5SFI/CvflZSxOBk4v9M98z5GATguPOsyR7SVChKN8R4oLKWXWGp0WikZps16xzIpulMxaxapVoZQty6rYulkyeBRf/CIezWgj95M61KWIPBrSgASFJKEH5FCK75hMMigGdkIZsASaz+uCRpRH7BBeAh4O0D7mHqzjCRrCVpwpR3vYJcCfIFKnp/h3mdGFt9pVQE8h/+D/zFhv7g4ZM6sMLyFdMK4x41vgkj7CY1nkYOI5zWV5pKpK0hnVuRof+cWMqDq9fzyvsJIA6/OKTjvs2QOHy/Y5OhBCtpGB6vKUQeeKu5AOS8Es4YTRAV8Cqbqv8pmfYxc7+EDTa92/uNL/PJ+6QDUqO/HfWkbb0IZ8vhm9pn105g3rNlWohtvQgMdihhbs7kz8NiLLYKhiXhy/x7Wr6q9zVMHRwFxFXxdzfIAdsPVphmUXt7qBvtpLK3mH2eHzm+3HDqJtZGKTtYSlyVh/hqHOvdjEV1P3B693+kT1+cpBuWTibb83i1utH+N3vEqP6Qk9Q1U12sIOTdwuj77QV/pG37Xnmqv5Wn/supIbS3pIV4Ym/wIN4/FW</latexit><latexit sha1_base64="X6CXZysm5IckU4mqXOr9bGtqhsU=">AAAEunichVPNbtNAEJ4UA234aQoXJC4WERKnyI7jJJWQaAptOYAIUdMWNVVlO9tgxbEte1NarPA0XOEZuPAO8C4c+HaSINooyVremfl25tuZ2V03DvxUGsbv3MoN7eat26tr+Tt3791fL2w8OEijYeKJthcFUXLkOqkI/FC0pS8DcRQnwhm4gTh0+y/V+uG5SFI/CvflZSxOBk4v9M98z5GATguPOsyR7SVChKN8R4oLKWXWGp0WikZps16xzIpulMxaxapVoZQty6rYulkyeBRf/CIezWgj95M61KWIPBrSgASFJKEH5FCK75hMMigGdkIZsASaz+uCRpRH7BBeAh4O0D7mHqzjCRrCVpwpR3vYJcCfIFKnp/h3mdGFt9pVQE8h/+D/zFhv7g4ZM6sMLyFdMK4x41vgkj7CY1nkYOI5zWV5pKpK0hnVuRof+cWMqDq9fzyvsJIA6/OKTjvs2QOHy/Y5OhBCtpGB6vKUQeeKu5AOS8Es4YTRAV8Cqbqv8pmfYxc7+EDTa92/uNL/PJ+6QDUqO/HfWkbb0IZ8vhm9pn105g3rNlWohtvQgMdihhbs7kz8NiLLYKhiXhy/x7Wr6q9zVMHRwFxFXxdzfIAdsPVphmUXt7qBvtpLK3mH2eHzm+3HDqJtZGKTtYSlyVh/hqHOvdjEV1P3B693+kT1+cpBuWTibb83i1utH+N3vEqP6Qk9Q1U12sIOTdwuj77QV/pG37Xnmqv5Wn/supIbS3pIV4Ym/wIN4/FW</latexit><latexit sha1_base64="orSvGfWWuroXx2SX88SCeHy2aaY=">AAAEunichVPNbtNAEJ4UA234aQoXJC4WERKnyI7tJJU4NIW2HECEqGmLmqqynW2w4tiWvSktVngarvAMXHgI3oUD304TRBslWcs7M9/OfDszu+slYZBJw/hdWLml3b5zd3WteO/+g4frpY1HB1k8Sn3R8eMwTo88NxNhEImODGQojpJUuEMvFIfe4JVaPzwXaRbE0b68TMTJ0O1HwVnguxLQaelJlznyvVSIaFzsSnEhpczb49NS2ahsNmzLtHWjYtZtq16DUrUsy3Z0s2LwKNNktOKNwi/qUo9i8mlEQxIUkYQekksZvmMyyaAE2AnlwFJoAa8LGlMRsSN4CXi4QAeY+7COJ2gEW3FmHO1jlxB/ikidnuPfZUYP3mpXAT2D/IP/C2P9uTvkzKwyvIT0wLjGjO+AS/oEj2WRw4nnNJflkaoqSWfU4GoC5Jcwour0//G8xkoKbMArOu2wZx8cHtvn6EAE2UEGqstTBp0r7kG6LAWzRBNGF3wppOq+ymd+jj3sEADNbnT/4lr/i3zqAtWo7MR/azltQxvx+eb0hvbRmbesO2RTHbehCY/FDG3YvZn4bURWwVDDvDh+j2tX1d/kqIGjibmGvi7m+Ag7ZOvzDMsubnUTfXWWVvIes8vnN9uPHUQ7yMQhawlLi7HBDEODe7GJr67uD17v9Inq85WDasXE2/5glrfaP6/e8So9pWf0AlXVaQs7tHC7fPpK3+g7/dBeap4WaIMr15XC5O0/pmtDk38Bm43wPw==</latexit>

I1I1
<latexit sha1_base64="g0uYzm2358lZjAK2uFxXbaFp05A=">AAAE+HichVTLbtNAFL0pBtrwSmGDxMYiQrCK7DivrkgKLSBBCVVfqKki25kGK44d2ZO+rPAtLJAQC1jwBfwGez6AD2DBmdsEkYYkY3nuY+49c++ZsZ2e78XSMH6kFi5pl69cXVxKX7t+4+atzPLtnTjsR67YdkM/jPYcOxa+F4ht6Ulf7PUiYXcdX+w6nSdqffdIRLEXBlvytCcOunY78A4915ZwNTN3G4yRbITHg3RDihMpZfJi0DSbmayRW6kULLOgGzmzXLDKJSh5y7IKRd3MGTyy1YePf1WJqB4up35Sg1oUkkt96pKggCR0n2yK8eyTSQb14DugBL4ImsfrggaURm4fUQIRNrwdzG1Y+0NvAFthxpztYhcfb4RMnR7gXWdEB9FqVwE9hvyN94x97ak7JIysKjyFdIC4xIiv4Jf0DhHzMrvDyFEt8zNVV5IOqcLdeKivxx7Vp/sX5ylWIvg6vKLTGke2geGwfQQGAshtVKBYHiHo3HEL0mYpGCUYItrAiyAV+6qe6TW2sIMHb3yB/ZMx/tN86gLdqOrEP2sJrULr8/km9Jy2wMxL1otUoDJuQw0RsxE2Ybcm8leRmQdCCfPs/Gfcu+r+IkYJGDXMJfA6G+MtbJ+t4wmUddzqGngtzu3kNWabz2+SjzVkF1FJkaw5KHX2dSYQKszFCp7yHISN//Yxxii+/dEHrk9XdvI5E3+GN2a2uvmdeCzSPbpPj8BJmarAr+NuuvSePtIX+qqdaR+0T9rn89CF1LmkOzQ2tG9/AFwz/qk=</latexit><latexit sha1_base64="r78QdgZ41XMxJmMA29eCt2KD4AE=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctjUm6m0llkv5Qw9p2oZvZgzigUoWcMwcnlVz2g80uVHT35VB+f1mr+W+EkNapFPNvWpS4I8ktBdMinEc0A6adSD75Ai+AJoDq8LGlISuX1ECUSY8HYwt2EdjLwe7Bgz5Gwbu7h4A2Sq9BDvJiNaiI53FdBDyN94z9jXnrlDxMhxhaeQFhBXGPE1/JLeI2JRZncUOa5lcWbclaQjKnE3DurrsSfu0/6L8wwrAXwdXlGpypFtYFhsH4MBD7KOCmKWxwgqd9yCNFkKRvFGiCbwAsiY/bie2TW2sIMDb3iJ/ZMJ/pN86gLdxNWJf9Yi2oDW5/ON6AXtgJlXrOcpR0Xchgoi5iNsw25N5W8gMwuEAub5+c+597j7yxgFYFQwF8DrfIx3sF22BlMom7jVFfCaX9jJG8wmn980H1Vk51FJnowFKDX2daYQSszFOp7iAoSt//YxwSi+/fEHrs5WdrMZHX+Gt3q6vP2DeCzTfXpAj8FJkcrAr+Fu2vSBPtFX+qacKR+Vz8qXi9ClxIWkuzQxlO9/AITqAGI=</latexit><latexit sha1_base64="r78QdgZ41XMxJmMA29eCt2KD4AE=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctjUm6m0llkv5Qw9p2oZvZgzigUoWcMwcnlVz2g80uVHT35VB+f1mr+W+EkNapFPNvWpS4I8ktBdMinEc0A6adSD75Ai+AJoDq8LGlISuX1ECUSY8HYwt2EdjLwe7Bgz5Gwbu7h4A2Sq9BDvJiNaiI53FdBDyN94z9jXnrlDxMhxhaeQFhBXGPE1/JLeI2JRZncUOa5lcWbclaQjKnE3DurrsSfu0/6L8wwrAXwdXlGpypFtYFhsH4MBD7KOCmKWxwgqd9yCNFkKRvFGiCbwAsiY/bie2TW2sIMDb3iJ/ZMJ/pN86gLdxNWJf9Yi2oDW5/ON6AXtgJlXrOcpR0Xchgoi5iNsw25N5W8gMwuEAub5+c+597j7yxgFYFQwF8DrfIx3sF22BlMom7jVFfCaX9jJG8wmn980H1Vk51FJnowFKDX2daYQSszFOp7iAoSt//YxwSi+/fEHrs5WdrMZHX+Gt3q6vP2DeCzTfXpAj8FJkcrAr+Fu2vSBPtFX+qacKR+Vz8qXi9ClxIWkuzQxlO9/AITqAGI=</latexit><latexit sha1_base64="VaAAPAsfCIWLIq91yNLiwr2MTVA=">AAAE+HichVTNbtNAEJ60Btrw07RckLhYREicIjvOX29NoQUkKKFq2qKmimxnG6w4dmRv+meFZ+GAhDjAgSfgNbjzGBz4dpog0pBkrd2ZnZ35dubb9To934ulYfxMLSxqN27eWlpO375z995KZnVtPw77kSvqbuiH0aFjx8L3AlGXnvTFYS8SdtfxxYHTearWD05FFHthsCcveuK4a7cD78RzbQlTM/OgwRjJTng2SDekOJdSJi8HTbOZyRq59UrBMgu6kTPLBatcgpK3LKtQ1M2cwS1Lw1YLV1O/qEEtCsmlPnVJUEASuk82xfiOyCSDerAdUwJbBM3jdUEDSiO2Dy8BDxvWDsY2ZkdDa4C5wow52sUuPnqESJ0eo28zogNvtauAHkP+Rr9kW3vqDgkjqwwvIB0gLjPia9glvYfHvMju0HOUy/xIVZWkE6pwNR7y67FF1en+xXmGlQi2Dq/otMWebWA4PD8FAwFkHRkolkcIOlfcgrRZCkYJhog28CJIxb7KZ3qOLezgwRpfY/98jP80n7pANSo78c9aQpvQ+ny+Cb2gPTDzivUiFaiM21CFx2yEXcxbE/GbiMwDoYRxdvxzrl1Vfx2jBIwqxhJ4nY3xDnOfZ2cTKNu41VXwWpxbyRuMNp/fJB9biC4ikyJZc1BqbOtMIFSYi3V85TkIO/+tY4xR/PujH1yfruzncyZehrdmdmP3x9UrsEQP6RE9ASdl2gB+DXfTpQ/0ib7SN+1S+6h91r5cuS6khi/HfRpr2vc/b8780w==</latexit>

Det ohne geo

Power-law Household Watts-StrogatzComplete

Fig. 6.7.: Experiment 1: Epidemic dynamics of different network types.
Row 1: Evolution in terms of mean fractions (and standard
deviation) in each compartment over time. Row 2: Effective
reproduction number Rt (the empirical R0 is shown as a black
triangle) and coefficient of variation of the offspring distribution
(with 95% CI, note the significant amount of noise in the power-
law case). Row 3: Top-k plots: The fraction of new infections
that can be attributed to a particular fraction of infected nodes.
Row 4: Characterization of the offspring distribution in terms of
the fraction of nodes that cause a specific number of secondary
infections.

144 Chapter 6

Covid-19 and the Limitations of Modeling

Complete Household Watts–StrogatzPower-law

SS
<latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit><latexit sha1_base64="eFuYgDoudcdEXpo57h8zzRifbg8=">AAAFUniclVPbbtNAEB2nCbQmQAOCF15WpEUFichJg4uQkNrQUh5AlNKbVEfV2t4Gq44d7E3VYln8Gh/BCz/ARyAeOLtNql6SVmzk3ZkzM2cuu3F7YZBKy/plFCaKpRs3J6fMW+Xbd+5OV+5tpXE/8cSmF4dxsuPyVIRBJDZlIEOx00sE77qh2HYP3ij79qFI0iCONuRxT7S7vBMF+4HHJaC9ivHd0SRZK+yL3JxxpDiSUmaf8xnTnHVc0QmijIdBJ3qWOyF3RZiJr68+Lq/kp9YUdUqoDMvZT7iX+Xnmy5xlZ6lZOief5ow9ec2ewxKiRJ9DH+k1xNaFn7NAQ45zOcMIN9CfZR9BPiIIFaEXyf8372oiRJSzRDmqxGNZMCsR+aeT0spgqHvTVavWmLebjXlm1eZtq7nQhGA37GbdYvWapVeVBmstrhhtcsinmDzqU5cERSQhh8QpxW+X6mRRD1ibMmAJpEDbBeVkIrYPLwEPDvQAewfa7gCNoCvOVEd7yBLiSxDJaBbfW83owltlFZBTnH/xfdNYZ2yGTDOrCo9xumCc0owfgEv6Ao/rIrsDz2Et10eqriTt00vdTYD6ehpRfXqnPMuwJMAOtIXRivbsgMPV+iEmEOHcRAVqykMGpjv2cXJ9Cs0SDRg5+BKcavqqnvE1+sgQAE0vTP/o3PxNfesC3ajqxBlbRi1IfX2/Gb2jDUzmvZZfUJMW8BqW4HE1wzp0/1J8C5ENMNjYr45f1b2r7i9y2OBYwm5jruq1D580Gy9sNWp1q1b/1Kgurv84efeT9Ige0xze9gItgn8Nt+EZvwvlwoPCw+LP4p+SUZo4cS0Yg//KfTq3SuV/zLJGBw==</latexit>

RR
<latexit sha1_base64="X6CXZysm5IckU4mqXOr9bGtqhsU=">AAAEunichVPNbtNAEJ4UA234aQoXJC4WERKnyI7jJJWQaAptOYAIUdMWNVVlO9tgxbEte1NarPA0XOEZuPAO8C4c+HaSINooyVremfl25tuZ2V03DvxUGsbv3MoN7eat26tr+Tt3791fL2w8OEijYeKJthcFUXLkOqkI/FC0pS8DcRQnwhm4gTh0+y/V+uG5SFI/CvflZSxOBk4v9M98z5GATguPOsyR7SVChKN8R4oLKWXWGp0WikZps16xzIpulMxaxapVoZQty6rYulkyeBRf/CIezWgj95M61KWIPBrSgASFJKEH5FCK75hMMigGdkIZsASaz+uCRpRH7BBeAh4O0D7mHqzjCRrCVpwpR3vYJcCfIFKnp/h3mdGFt9pVQE8h/+D/zFhv7g4ZM6sMLyFdMK4x41vgkj7CY1nkYOI5zWV5pKpK0hnVuRof+cWMqDq9fzyvsJIA6/OKTjvs2QOHy/Y5OhBCtpGB6vKUQeeKu5AOS8Es4YTRAV8Cqbqv8pmfYxc7+EDTa92/uNL/PJ+6QDUqO/HfWkbb0IZ8vhm9pn105g3rNlWohtvQgMdihhbs7kz8NiLLYKhiXhy/x7Wr6q9zVMHRwFxFXxdzfIAdsPVphmUXt7qBvtpLK3mH2eHzm+3HDqJtZGKTtYSlyVh/hqHOvdjEV1P3B693+kT1+cpBuWTibb83i1utH+N3vEqP6Qk9Q1U12sIOTdwuj77QV/pG37Xnmqv5Wn/supIbS3pIV4Ym/wIN4/FW</latexit><latexit sha1_base64="X6CXZysm5IckU4mqXOr9bGtqhsU=">AAAEunichVPNbtNAEJ4UA234aQoXJC4WERKnyI7jJJWQaAptOYAIUdMWNVVlO9tgxbEte1NarPA0XOEZuPAO8C4c+HaSINooyVremfl25tuZ2V03DvxUGsbv3MoN7eat26tr+Tt3791fL2w8OEijYeKJthcFUXLkOqkI/FC0pS8DcRQnwhm4gTh0+y/V+uG5SFI/CvflZSxOBk4v9M98z5GATguPOsyR7SVChKN8R4oLKWXWGp0WikZps16xzIpulMxaxapVoZQty6rYulkyeBRf/CIezWgj95M61KWIPBrSgASFJKEH5FCK75hMMigGdkIZsASaz+uCRpRH7BBeAh4O0D7mHqzjCRrCVpwpR3vYJcCfIFKnp/h3mdGFt9pVQE8h/+D/zFhv7g4ZM6sMLyFdMK4x41vgkj7CY1nkYOI5zWV5pKpK0hnVuRof+cWMqDq9fzyvsJIA6/OKTjvs2QOHy/Y5OhBCtpGB6vKUQeeKu5AOS8Es4YTRAV8Cqbqv8pmfYxc7+EDTa92/uNL/PJ+6QDUqO/HfWkbb0IZ8vhm9pn105g3rNlWohtvQgMdihhbs7kz8NiLLYKhiXhy/x7Wr6q9zVMHRwFxFXxdzfIAdsPVphmUXt7qBvtpLK3mH2eHzm+3HDqJtZGKTtYSlyVh/hqHOvdjEV1P3B693+kT1+cpBuWTibb83i1utH+N3vEqP6Qk9Q1U12sIOTdwuj77QV/pG37Xnmqv5Wn/supIbS3pIV4Ym/wIN4/FW</latexit><latexit sha1_base64="X6CXZysm5IckU4mqXOr9bGtqhsU=">AAAEunichVPNbtNAEJ4UA234aQoXJC4WERKnyI7jJJWQaAptOYAIUdMWNVVlO9tgxbEte1NarPA0XOEZuPAO8C4c+HaSINooyVremfl25tuZ2V03DvxUGsbv3MoN7eat26tr+Tt3791fL2w8OEijYeKJthcFUXLkOqkI/FC0pS8DcRQnwhm4gTh0+y/V+uG5SFI/CvflZSxOBk4v9M98z5GATguPOsyR7SVChKN8R4oLKWXWGp0WikZps16xzIpulMxaxapVoZQty6rYulkyeBRf/CIezWgj95M61KWIPBrSgASFJKEH5FCK75hMMigGdkIZsASaz+uCRpRH7BBeAh4O0D7mHqzjCRrCVpwpR3vYJcCfIFKnp/h3mdGFt9pVQE8h/+D/zFhv7g4ZM6sMLyFdMK4x41vgkj7CY1nkYOI5zWV5pKpK0hnVuRof+cWMqDq9fzyvsJIA6/OKTjvs2QOHy/Y5OhBCtpGB6vKUQeeKu5AOS8Es4YTRAV8Cqbqv8pmfYxc7+EDTa92/uNL/PJ+6QDUqO/HfWkbb0IZ8vhm9pn105g3rNlWohtvQgMdihhbs7kz8NiLLYKhiXhy/x7Wr6q9zVMHRwFxFXxdzfIAdsPVphmUXt7qBvtpLK3mH2eHzm+3HDqJtZGKTtYSlyVh/hqHOvdjEV1P3B693+kT1+cpBuWTibb83i1utH+N3vEqP6Qk9Q1U12sIOTdwuj77QV/pG37Xnmqv5Wn/supIbS3pIV4Ym/wIN4/FW</latexit><latexit sha1_base64="orSvGfWWuroXx2SX88SCeHy2aaY=">AAAEunichVPNbtNAEJ4UA234aQoXJC4WERKnyI7tJJU4NIW2HECEqGmLmqqynW2w4tiWvSktVngarvAMXHgI3oUD304TRBslWcs7M9/OfDszu+slYZBJw/hdWLml3b5zd3WteO/+g4frpY1HB1k8Sn3R8eMwTo88NxNhEImODGQojpJUuEMvFIfe4JVaPzwXaRbE0b68TMTJ0O1HwVnguxLQaelJlznyvVSIaFzsSnEhpczb49NS2ahsNmzLtHWjYtZtq16DUrUsy3Z0s2LwKNNktOKNwi/qUo9i8mlEQxIUkYQekksZvmMyyaAE2AnlwFJoAa8LGlMRsSN4CXi4QAeY+7COJ2gEW3FmHO1jlxB/ikidnuPfZUYP3mpXAT2D/IP/C2P9uTvkzKwyvIT0wLjGjO+AS/oEj2WRw4nnNJflkaoqSWfU4GoC5Jcwour0//G8xkoKbMArOu2wZx8cHtvn6EAE2UEGqstTBp0r7kG6LAWzRBNGF3wppOq+ymd+jj3sEADNbnT/4lr/i3zqAtWo7MR/azltQxvx+eb0hvbRmbesO2RTHbehCY/FDG3YvZn4bURWwVDDvDh+j2tX1d/kqIGjibmGvi7m+Ag7ZOvzDMsubnUTfXWWVvIes8vnN9uPHUQ7yMQhawlLi7HBDEODe7GJr67uD17v9Inq85WDasXE2/5glrfaP6/e8So9pWf0AlXVaQs7tHC7fPpK3+g7/dBeap4WaIMr15XC5O0/pmtDk38Bm43wPw==</latexit>

I1I1
<latexit sha1_base64="g0uYzm2358lZjAK2uFxXbaFp05A=">AAAE+HichVTLbtNAFL0pBtrwSmGDxMYiQrCK7DivrkgKLSBBCVVfqKki25kGK44d2ZO+rPAtLJAQC1jwBfwGez6AD2DBmdsEkYYkY3nuY+49c++ZsZ2e78XSMH6kFi5pl69cXVxKX7t+4+atzPLtnTjsR67YdkM/jPYcOxa+F4ht6Ulf7PUiYXcdX+w6nSdqffdIRLEXBlvytCcOunY78A4915ZwNTN3G4yRbITHg3RDihMpZfJi0DSbmayRW6kULLOgGzmzXLDKJSh5y7IKRd3MGTyy1YePf1WJqB4up35Sg1oUkkt96pKggCR0n2yK8eyTSQb14DugBL4ImsfrggaURm4fUQIRNrwdzG1Y+0NvAFthxpztYhcfb4RMnR7gXWdEB9FqVwE9hvyN94x97ak7JIysKjyFdIC4xIiv4Jf0DhHzMrvDyFEt8zNVV5IOqcLdeKivxx7Vp/sX5ylWIvg6vKLTGke2geGwfQQGAshtVKBYHiHo3HEL0mYpGCUYItrAiyAV+6qe6TW2sIMHb3yB/ZMx/tN86gLdqOrEP2sJrULr8/km9Jy2wMxL1otUoDJuQw0RsxE2Ybcm8leRmQdCCfPs/Gfcu+r+IkYJGDXMJfA6G+MtbJ+t4wmUddzqGngtzu3kNWabz2+SjzVkF1FJkaw5KHX2dSYQKszFCp7yHISN//Yxxii+/dEHrk9XdvI5E3+GN2a2uvmdeCzSPbpPj8BJmarAr+NuuvSePtIX+qqdaR+0T9rn89CF1LmkOzQ2tG9/AFwz/qk=</latexit><latexit sha1_base64="r78QdgZ41XMxJmMA29eCt2KD4AE=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctjUm6m0llkv5Qw9p2oZvZgzigUoWcMwcnlVz2g80uVHT35VB+f1mr+W+EkNapFPNvWpS4I8ktBdMinEc0A6adSD75Ai+AJoDq8LGlISuX1ECUSY8HYwt2EdjLwe7Bgz5Gwbu7h4A2Sq9BDvJiNaiI53FdBDyN94z9jXnrlDxMhxhaeQFhBXGPE1/JLeI2JRZncUOa5lcWbclaQjKnE3DurrsSfu0/6L8wwrAXwdXlGpypFtYFhsH4MBD7KOCmKWxwgqd9yCNFkKRvFGiCbwAsiY/bie2TW2sIMDb3iJ/ZMJ/pN86gLdxNWJf9Yi2oDW5/ON6AXtgJlXrOcpR0Xchgoi5iNsw25N5W8gMwuEAub5+c+597j7yxgFYFQwF8DrfIx3sF22BlMom7jVFfCaX9jJG8wmn980H1Vk51FJnowFKDX2daYQSszFOp7iAoSt//YxwSi+/fEHrs5WdrMZHX+Gt3q6vP2DeCzTfXpAj8FJkcrAr+Fu2vSBPtFX+qacKR+Vz8qXi9ClxIWkuzQxlO9/AITqAGI=</latexit><latexit sha1_base64="r78QdgZ41XMxJmMA29eCt2KD4AE=">AAAE+HichVTNbtNAEJ4UA234aQoXJC4WEYJTZMf564mkkAISlFA1bVFTRbazDVYcO7I3TVsrPAsHJMQBDjwBr9E7D8ADcODzNEGkIcla3vnZmW9nvl3b6rlOKDXtPLF0Rbl67frySvLGzVu3V1Nrd3ZDvx/Yom77rh/sW2YoXMcTdelIV+z3AmF2LVfsWZ2n8fresQhCx/d25GlPHHbNtuccObYp4Wqm7jUYI9ryB8NkQ4oTKWX0ctjUm6m0llkv5Qw9p2oZvZgzigUoWcMwcnlVz2g80uVHT35VB+f1mr+W+EkNapFPNvWpS4I8ktBdMinEc0A6adSD75Ai+AJoDq8LGlISuX1ECUSY8HYwt2EdjLwe7Bgz5Gwbu7h4A2Sq9BDvJiNaiI53FdBDyN94z9jXnrlDxMhxhaeQFhBXGPE1/JLeI2JRZncUOa5lcWbclaQjKnE3DurrsSfu0/6L8wwrAXwdXlGpypFtYFhsH4MBD7KOCmKWxwgqd9yCNFkKRvFGiCbwAsiY/bie2TW2sIMDb3iJ/ZMJ/pN86gLdxNWJf9Yi2oDW5/ON6AXtgJlXrOcpR0Xchgoi5iNsw25N5W8gMwuEAub5+c+597j7yxgFYFQwF8DrfIx3sF22BlMom7jVFfCaX9jJG8wmn980H1Vk51FJnowFKDX2daYQSszFOp7iAoSt//YxwSi+/fEHrs5WdrMZHX+Gt3q6vP2DeCzTfXpAj8FJkcrAr+Fu2vSBPtFX+qacKR+Vz8qXi9ClxIWkuzQxlO9/AITqAGI=</latexit><latexit sha1_base64="VaAAPAsfCIWLIq91yNLiwr2MTVA=">AAAE+HichVTNbtNAEJ60Btrw07RckLhYREicIjvOX29NoQUkKKFq2qKmimxnG6w4dmRv+meFZ+GAhDjAgSfgNbjzGBz4dpog0pBkrd2ZnZ35dubb9To934ulYfxMLSxqN27eWlpO375z995KZnVtPw77kSvqbuiH0aFjx8L3AlGXnvTFYS8SdtfxxYHTearWD05FFHthsCcveuK4a7cD78RzbQlTM/OgwRjJTng2SDekOJdSJi8HTbOZyRq59UrBMgu6kTPLBatcgpK3LKtQ1M2cwS1Lw1YLV1O/qEEtCsmlPnVJUEASuk82xfiOyCSDerAdUwJbBM3jdUEDSiO2Dy8BDxvWDsY2ZkdDa4C5wow52sUuPnqESJ0eo28zogNvtauAHkP+Rr9kW3vqDgkjqwwvIB0gLjPia9glvYfHvMju0HOUy/xIVZWkE6pwNR7y67FF1en+xXmGlQi2Dq/otMWebWA4PD8FAwFkHRkolkcIOlfcgrRZCkYJhog28CJIxb7KZ3qOLezgwRpfY/98jP80n7pANSo78c9aQpvQ+ny+Cb2gPTDzivUiFaiM21CFx2yEXcxbE/GbiMwDoYRxdvxzrl1Vfx2jBIwqxhJ4nY3xDnOfZ2cTKNu41VXwWpxbyRuMNp/fJB9biC4ikyJZc1BqbOtMIFSYi3V85TkIO/+tY4xR/PujH1yfruzncyZehrdmdmP3x9UrsEQP6RE9ASdl2gB+DXfTpQ/0ib7SN+1S+6h91r5cuS6khi/HfRpr2vc/b8780w==</latexit>

Expo
 ohne geo

Power-law Household Watts-StrogatzComplete

Fig. 6.8.: Experiment 2: Epidemic dynamics with individual infectious-
ness βi Row 1: Evolution in terms of mean fractions in each
compartment over time Row 2: Effective reproduction number
Rt and coefficient of variance of the offspring distribution. Row
3: Top-k plots: what fraction of new infection can be attributed
to which fraction of infected nodes. Row 4: Characterization of
the offspring distribution in terms of what fraction of nodes has
how many offspring (infect how many neighbors).

6.4 Experiments 145

6.4.2 Experiment 2: Infectiousness Heterogeneity

In this experiment, we draw in each simulation run for each node
vi, a random βi that is distributed according to ν(·). Here we use an
exponential distribution. The effects on the evolution and dispersion
are reported in Figure 6.8 (p. 145). In all networks, the epidemic
becomes “weaker” in terms of final epidemic size and infection peak
height (see also Figure 6.6, p. 142). This effect is strongest in the
WS network (where the epidemic dies out almost immediately) and
weakest in the complete graph. This is also mirrored in the difference
of R0 compared to Experiment 1 (as explained in Figure 6.3 (p. 134),
the relationship between β and R0 is now non-linear). The complete
graph leaves R0 almost unchanged (i.e., around 2.5) while it goes
down to around 2.0 in the WS network. Effects on the household
and power-law network are less drastic but still evident.

Regarding the dispersion, the differences to Experiment 1 are ex-
pected. The variance in the empirical offspring distribution generally
increases. Interestingly, this happens in all networks by roughly the
same amount, regardless of whether the dispersion was high or low
in the first case. We can also consistently see the change in the
dispersion in all three dispersion measures, but the differences are
especially evident in the top-k plots (3rd row). It is also interesting to
see that all networks admit a characteristic signature in the histogram
of the offspring distribution (4th row). The infection rate variation
shifts these plots (in particular because the number of nodes without
offspring increases), but they still entail a clear distinction between
networks.

We also tested uniform and gamma distributions for ν(·) (results not
shown), and found that the epidemic generally becomes weaker with
higher variance. We expect this to be due to an increased likelihood
of local and global die-outs.

146 Chapter 6

Covid-19 and the Limitations of Modeling

6.4.3 Discussion

The two experiments show that population heterogeneity strongly
influences the fundamental quantities of an epidemic. However,
there are important differences between the sources of variations:

• The existence of hubs in the network can cause Rt to increase,
but individual variations in infectiousness cannot.

• Different networks with the same kmean and a fixed β will
approximately admit the same R0. A variable β (with a fixed
mean) will change R0 depending on the shape of the underlying
density.

• Individual variations in the infectiousness generally weaken the
epidemic’s impact. However, individual variations in connectiv-
ity may worsen some aspects (e.g., the height of the infection
peak).

• β has the weakest influence when the interaction structure is
homogeneous (i.e., on a complete graph) and the strongest
when the interaction structure is based on locality (the average
distances in the graph increase) as in the WS network.

• Varying the infectiousness increases the stochasticity (e.g., the
variance of the number of infected nodes at any given time).

• The interaction structure has a large influence on the dispersion.
Individual variations in infectiousness induce a smaller but
consistent increase in dispersion.

• Hubs influence how the dispersion changes over time. In-
dividual variations in infectiousness increase the dispersion
consistently for all timepoints.

6.4 Experiments 147

Our results underline that networks are a feasible tool to encode
various features of a population’s interaction structure. Generally
speaking, it is not surprising that some networks support the for-
mation of epidemics better than others. To some extent, this has
been studied in terms of the epidemic threshold of graphs [Prakash,
Chakrabarti, et al., 2012]. However, the variety of the influence
of the networks and the interplay between heterogeneity in the
infectiousness and dispersion is remarkable. There are even fur-
ther possibilities to adjust population heterogeneity, e.g., by adding
non-Markovian residence times in the compartments, varying the
remaining transition rates, or by imposing more temporal variability
in infectiousness. Our results show that models based on point esti-
mators of population averages (i.e., most mean-field ODE models)
are not adequate for analyzing or predicting the dynamics of an
epidemic.

Regarding the dispersion, we see that none of the considered net-
work structures by itself leads to a dispersion where 80% of the
infections are caused by only 15% of the infected nodes as it is re-
ported for Covid-19 [K. Sun et al., 2020] (at least not right from
the beginning). From branching process theory, it is known that
a higher dispersion increases the die-out probability [Lloyd-Smith
et al., 2005]. Generally, this effect also holds for networks. For a
fixed network, increasing dispersion by using a probabilistic infection
rate does increase the die-out probability. However, the network
topology strongly modulates the strength of this effect.

In conclusion, we find that, in most cases, population diversity makes
an epidemic less harmful but increases the dispersion and the vari-
ability of the evolution. Hubs in contact networks are a notable
exception to this rule.

148 Chapter 6

Covid-19 and the Limitations of Modeling

Hubs vs. Highly Infectious Subjects. Hubs (high-degree individu-
als) and individuals that are very infectious (but with an average
degree) are both drivers of the epidemic. However, hubs are a special
case because they infect many others and also become infected very
early. Hence, they can cause an explosive surge at the epidemic’s
beginning. In contrast, high infectiousness alone does not make
individuals more likely to be infected earlier than others. Hubs
also highlight that the effective reproduction number can change
significantly while the environmental conditions remain the same
simply because in the beginning the prevalence shifts towards highly
connected individuals.

Implications. Considering that an exponentially distributed βi can
be regarded as a fairly strong assumption about individual differ-
ences, our work can—with necessary caution—be seen as further
evidence that the network structure plays a more critical role in the
dispersion than individual viral load variability. Transferring these
characteristics to NPIs, our work indicates that reducing long-range
connections (e.g., by corresponding mobility restrictions) and keep-
ing degree-variability small (to avoid hubs) are particularly effective
control strategies. Reducing mobility seems to be especially effective
for overdispersed epidemics. We further investigate the relation-
ship between overdispersion and mobility restrictions in [Großmann,
Backenköhler, and Wolf, 2021a].

6.4 Experiments 149

6.5 Conclusions

We tested the influence of heterogeneity in the population’s inter-
action structure and degree of individual infectiousness on the dy-
namical evolution of an epidemic. We find that the dynamics depend
strongly on these properties and witness an intriguing interplay be-
tween these two sources of variation. Our work also highlights the
role of small-worldness, local die-outs, and super-spreaders in an
epidemic.

Naturally, mathematical modeling is based on assumptions and ab-
stractions. However, heterogeneity seems particularly crucial, and
excluding it should only be done with great caution. It is particularly
challenging to capture population heterogeneity in the widely-used
class of ODE models. Due to their inherent homogeneity assumptions
w.r.t. each compartment, the complex interplay of varying infectious-
ness and connectivity remains elusive for such models. Discussing
epidemics in terms of population averages may not adequately reflect
the complexity of the emerging dynamics.

At a broader level, this work highlights limitations of certain model
classes and shows that subtle differences in assumptions can make
substantial differences. This simulation study is a reminder that
models are prone to hidden assumptions and that we should be
cautious with their interpretation.

150 Chapter 6

Covid-19 and the Limitations of Modeling

Part III

Reduction and Inference

Birth-Death Process
Abstraction

7
Until now, we have used stochastic simulations to explore spreading
processes on networks. These are particularly useful when one is
interested in descriptive statistics on mean behavior, but are limited
in scope otherwise. Unfortunately, the direct computational analysis
of these processes (i.e., of the induced CTMC of Section 2.5) is
hindered by the enormous size of the underlying state space.

This chapter studies the SIS epidemic model (Model 1) and its
induced CTMC. We propose using lumping to reduce the original
dynamics to a parameterized birth-death process. Building and
solving the reduced model is computationally efficient even for large-
scale contact networks. The chapter also acts as an introduction to
key CTMC concepts. Julia code is made available1.

Our key idea is to exploit that the infection rate of a network-state
only depends on the number of SI-edges. Given a contact network
and the number of infected nodes, we bound this number using
graph analysis. Their over- and under-approximation of SI-edges
translate to the over- and under-approximation of the prevalence of
infected nodes.

1github.com/gerritgr/BD-Reduction

153

7.1 Problem Setting

A crucial value for any SIS model is the effective infection rate β
α

[Prakash, Chakrabarti, et al., 2012], defined as the ratio between
infection and recovery rate. It determines the epidemics’ character-
istics, such as their long-time behavior. For simplicity, we typically
assume a recovery rate of α = 1 and consider β to be the effective in-
fection rate. We define the infection footprint τ(β) to be the expected
fraction of infected nodes in equilibrium (of the induced CTMC) as
our value of interest. Let X denote the set of network-states for a
given contact network and let πβ ∈ Cat(X) denote the equilibrium
(we discuss its existence and uniqueness later) distribution over the
network-states of the CTMC for infection rate β. We define

τ(β) =
∑

xi∈X

πβ[i] ·NI(xi) , (7.1)

where NI(xi) denotes the number of infected nodes in network-state
xi (and we assume an implicit enumeration over X).

The goal of this study is to estimate τ(·) efficiently.

We could approximate τ(·) using simulations. However, we would
need (i) a massive number of (ii) very long (to reach equilibrium)
simulation runs for (iii) each potential value of β. This makes
simulation-based approaches unsuitable. Solving the CTMC (us-
ing numeral integration) is also intractable due to the enormous size
of its state space (2n network-states).

Trap State. The original SIS model admits what is called extinction
or die-out behavior [Bovenkamp and P. Van Mieghem, 2014]. That
is, the Markov chain will eventually reach a network-state where

154 Chapter 7

Birth-Death Process Abstraction

all nodes are susceptible. In CTMC terminology, this is called a trap
state because it cannot be left. The trap state renders the analysis of
the equilibrium meaningless. To circumvent this problem, we always
ensure that at least one node is infected (formally, we set the recovery
rate to zero if precisely one node is infected). Thus, we obtain a
meaningful equilibrium distribution (technically, we translate the
meta-stable macro-state into an equilibrium). Another viable method
would be to include self-infections (S → I) with a small rate ϵ, which
leads to comparable results.

7.2 Method

Given a contact network and β ∈ R⩾0, we build two parametrized
birth-death processes, denoted BDmin and BDmax. A birth-death
process is a continuous-time Markov chain that represents the current
population size of infected agents. BDmin aims to under-approximate
and BDmax aims to over-approximate the infection footprint.

7.2 Method 155

I

II

I I

I

I

II

I I

I

I

I

I

I

I

I

I

I

I I

I

I

II

I

I

I I

II

1

β

2β

0 1 2 33 4

[β, 2β] [β, 3β] [β, 2β]

1 2 3 4

Markov Graph

Birth-Death Approximation

Fig. 7.1.: Original and reduced SIS model. Top: Original Markov graph
(S: blue, I: pink, filled) for a 4-node contact network. The com-
plete Markov graph is shown without self-infections and includ-
ing the trap state with all susceptible nodes (left). Bottom:
Birth-death model abstraction with minimal and maximal birth
rates. The state identifies the number of infected nodes. The
reduction is shown in green.

156 Chapter 7

Birth-Death Process Abstraction

Sparse Graph Dense Graph

min max

A

B

Fig. 7.2.: (a): Highest (top row) and lowest (bottom row) possible number
of SI-edges (bold) on a sparse (left) and dense (right) contact
network for 5 infected nodes. (b): Highest and lowest possible
number of SI-edges as a function of the number of infected
nodes. The symmetry of the curve emerges from the fact that
opposite points relate to networks where the S and I labels are
switched. The shaded area indicates the case of 5 infected nodes,
as shown in (a).

7.2 Method 157

7.2.1 Birth-Death Process Construction

The birth-death-processes have n states (or n + 1 states when we
include the case of zero infected nodes) (cf. Figure 7.1, p. 156). The
state space is denoted

Zmin = Zmax = {1, . . . , n}

for BDmin and BDmax, respectively.

In each step, one can only go from state i to i + 1 (infection) or
to i − 1 (recovery). We use λmin and λmax to denote the rates of
BDmin and BDmax, respectively. The recovery rate is equal in both
birth-death processes and (using α = 1) is given by

λmin
i→i−1 = λmax

i→i−1 = i .

In the original CTMC, the joint rate for a new infection is determined
by the number of SI-edges of the current network-state. In the BD-
process, we only know the number of infected nodes, which might
correspond to a wide range of possible SI-edge counts (cf. Exam-
ple 7.1).

Thus, we use the approximations:

λmin
i→i+1 = βSImin(G, i) and

λmax
i→i+1 = βSImax(G, i)

where SImin(G, i) denotes the minimum number of SI-edges for
a given graph G assuming that i nodes are infected. Likewise,
SImax(G, i) denotes the maximum number of SI-edges. Note that
birth rates (i→ i + 1) are parameterized by the effective infection
rate β.

158 Chapter 7

Birth-Death Process Abstraction

Example 7.1: Number of SI-Edge Counts

Consider a graph with 15 nodes, where 5 nodes are infected
(cf. Figure 7.2a, p. 157). The joint recovery rate (from i to
i− 1) will always be 5 (regardless of which nodes are actually
infected). In contrast, the joint infection rate depends on
the number of SI-edges which may vary depending on which
nodes are infected. For sparse graphs, the range of possible
SI-edge counts is particularly large (cf. Figure 7.2b, p. 157).

We can efficiently determine the equilibria of those two processes and
compute the induced footprint analogously to Eq. (7.1), yielding

τmin(β) ⩽ τ(β) ⩽ τmax(β) ∀β > 0 .

However, while solving the birth-death processes is cheap, we first
need to compute SImin(G, i) and SImax(G, i) in order to identify the
rates. Computing the exact values is, however, intractable. Specifi-
cally, due to the non-monotonicity of the problem, we would need
to solve an intractable problem for each i (cf. Excursus 6). To make
our method computationally efficient, we use a simple heuristic. Em-
pirically, we observe that the approximate bounds capture τ(·) very
well.

7.2 Method 159

Excursus 6: Cutting Graphs and Counting Edges

To determine the rate in the birth-death process, we need to
identify the minimum (and maximum) number of SI-edges,
given the number of infected nodes. The problem is related
to the well-known maximum cut (max-cut) and minimum cut
(min-cut) problems in graph theory, where a graph is split into
two partitions. The two partitions encode the infected and
susceptible nodes, respectively. The size (i.e., the boundary) of
the cut represents the number of SI-edges. The decision prob-
lem corresponding to max-cut is known to be NP-complete
[Karp, 1972]. Min-cut can be solved efficiently (for instance,
following the work of Orlin (2013) that is based on the famous
max-flow min-cut theorem [Gomory and T. C. Hu, 1961]. We
refer to Gawrychowski et al. (2019) for an overview).
However, in contrast to standard max-cut and min-cut, we
have the additional constraint that one of the two partitions
has size i (and we need to compute the cut size for each i).
The given number of infected nodes i makes even the exact
computation of the minimum SI-edge count much harder.
Specifically, W. Chen et al. (2016) show that this is NP-hard
(denoted the minimum s–t cut with exactly k vertices problem).
Similar problems are studied by Ji (2004) and Devriendt and
Piet Van Mieghem (2019).

160 Chapter 7

Birth-Death Process Abstraction

7.2.2 Our Method: Magenta

We propose MAGENTA ([Ma]ximal Disa[g]r[e]eme[nt] [A]lgorihtm)
to efficiently approximate SImin(G, i) (resp. SImax(G, i)), the min-
imum (resp. maximum) number of SI-edges for a given contact
network and number of infected nodes. We apply two tricks:

1. Formulate a surrogate problem that is monotone.

2. Use an efficient greedy method to approximate the surrogate
problem.

We use the term monotone to indicate that a solution to SImax(G, i)

is a subset of the solution to SImax(G, i + 1) (and analogously for
SImin(G, i)). Generally, this is not the case. For instance, assume we
want to maximize the number of SI-edges. The set of infected nodes
for i = 1 might be disjunct with the set of infected nodes for i = 2.

We consider a monotone surrogate because we do not want to solve
an independent problem for each i.

Surrogate Problem

We optimize a ranking r(·) over the nodes. A ranking is a bijective
mapping

r : {1, . . . , n} → {1, . . . , n} ,

where node vi is mapped to position r(i). We measure the quality of
a ranking by evaluating its “(dis)agreement” over edges:

S(r) =
∑

(i,j)∈E

∣∣r(i) − r(j)∣∣ .

7.2 Method 161

Node Ranking

Minimize SI-edges Maximize SI-edges

Fig. 7.3.: Node ranking according to our greedy approach on a 15 × 15
grid graph. The position r(i) of node vi is indicated by its color
(light to dark).

To approximate the maximum (resp. maximum) number of SI-edges,
we then try to find a ranking r that minimizes (resp. maximizes) the
disagreement score S(r).

Solving the Surrogate. We use a simple greedy algorithm to find
a solution for S(r). We start with an empty set (representing zero
infected nodes). In each step, we add one node to this set and
assume all nodes in the set are infected. We always add the node to
the set that minimizes (maximizes) the current number of SI-edges.
To make the algorithm efficient, we use a priority queue to decide
which node to choose next. Figure 7.3 depicts the node rankings on
two small graphs.

There are many other viable ways to approach this problem. For
instance, discrete optimization (like simulated annealing) could be
used to improve the ranking w.r.t. S(r). Relaxation of the problem is
also possible. Notably, the Laplacian matrix of the contact network
[Piet Van Mieghem, 2010] can be used to score and optimize a
(relaxed) node ranking. Moreover, we could use the so-called Fiedler
vector. That is the eigenvector of the second-smallest eigenvalue of
the Laplacian matrix of the contact network (named based on the

162 Chapter 7

Birth-Death Process Abstraction

seminal work of Fiedler (1973)). It directly provides a node ranking
for SI-edge minimization (the corresponding optimization problem is
similar to S(r)). Likewise, the eigenvector of the largest eigenvalue of
the Laplacian matrix can be used for SI-edge maximization. However,
using spectral approaches or discrete optimization, we found only
minor improvements over the greedy method (results not shown).

Applying the Surrogate

We denote the final rankings rmin(·) and rmax(·), respectively. For a
given i, we can then define the corresponding partitions:

Vmin(i) = {vj ∈ V | rmin(j) ⩽ i} and

Vmax(i) = {vj ∈ V | rmax(j) ⩽ i} .

Hence, SImin(G, i) is the number of edges between Vmin(i) and V\Vmin(i)

(and SImax(G, i) is the number of edges between Vmax(i) and V\Vmax(i)).
Furthermore, we can exploit the symmetry of the problem (cf. Figure
7.2b, p. 157) and consider:

SI
sym
min(G, i) = min

(
SImin(G, i), SImin(G, n− i)

)
SI

sym
max(G, i) = max

(
SImin(G, i), SImax(G, n− i)

)
.

The key advantage of MAGENTA is that we only need to optimize two
rankings (one for minimization and one for maximization). While
this is only an approximation without formal guarantees, it works
well in practice. We believe that the reason for that lies in the fact
that the dynamics of the SIS model is such that the extreme values
do not affect the mean behavior of the process significantly.

7.2 Method 163

7.2.3 Solving the Birth-Death Process

Finally, we need to find the equilibrium of the birth-death-processes.
At equilibrium, the probabilities of a CTMC satisfy the global-balance
equation, that is, the outflow of probability mass of each state needs
to be equal to its inflow. Hence, the equilibrium distribution π ∈
Cat(n) needs all i to satisfy:

(λi→i+1 + λi→i−1)π[i]︸ ︷︷ ︸
outflow of i

= λi+1→iπ[i+ 1] + λi−1→iπ[i− 1]︸ ︷︷ ︸
inflow towards i

.

We can do this by solving a corresponding equation system with n
equations (cf. Excursus 2, p. 37). However, there is a more elegant
way. For birth-death processes, the balance condition also holds
when we consider only the state to the left, leading to the detailed
balance equation [Whitt, 2006]:

λi→i−1π[i]︸ ︷︷ ︸
outflow of i
(to the left)

= λi−1→iπ[i− 1]︸ ︷︷ ︸
inflow towards i

(from the left)

,

reordering leads to:

π[i] = π[i− 1]
λi−1→i

λi→i−1
. (7.2)

This equation can be solved easily in two steps. First, we compute
the unnormalized equilibrium probability π̂[i] ∈ Rn

⩾0 in an iterative
fashion (starting from state i = 1 and assuming π̂[0] = 1). Second,
we normalize π̂[i] to form a probability distribution:

π[i] =
π̂[i]∑n
j=0 π̂[j]

.

164 Chapter 7

Birth-Death Process Abstraction

Effective Rate Effective Rate Effective Rate

Pr
ev

ale
nc

e
Pr

ev
ale

nc
e

Pr
ev

ale
nc

e

ER

BA

WS

n = 102 n = 104 n = 106

Simulation

BD Bounds

Fig. 7.4.: Results for: Erdős-Rényi, Barabási–Albert, Watts-Strogatz ran-
dom graphs (top to bottom). Networks become larger and denser
f.l.t.r.

Putting Things Together. Given a contact network, we first use
MAGENTA to approximate the minimum (maximal) number of SI-
edges (for any given number of infected nodes). Then, we construct
BDmin and BDmax (which contain transitions that are parametrized by
β). We use Eq. (7.2) to compute πmin and πmax for all relevant values
of β and compute τmin(β) and τmax(β) analogously to Eq. (7.1).

7.3 Results

We tested many different synthetic contact networks. Specifically, we
investigated how network size and density influence the quality of
the approximated bounds. Results are shown in Figure 7.4. Generally
speaking, we see that dense networks have much tighter bounds,
but even for sparse networks, the bounds move closer to each other
when the network size is increased.

7.3 Results 165

7.4 Related Work

The presented reduction method can be seen as a form of state space
lumping. We discuss lumping in more detail in the next chapter and
refer the reader to the literature referenced therein. The reduction
also highlights the importance of interaction topology in general. In
particular, this is a nice illustration that the complexity of a contact
network depends on the range of possible SI-edges. Consequently,
contact networks, like the complete graph, where the number of
infected nodes determine the number of SI-edges are simpler to
handle analytically and computationally (as we already saw in the
last chapter).

Particularly exciting applications of birth-death processes were intro-
duced by Di Lauro et al. (2020) where a birth-death approximation
was used to infer the underlying network type, and by Devriendt and
Piet Van Mieghem (2017) where a birth-death approximation was
used as a part of deriving mean-field approximation approaches.

166 Chapter 7

Birth-Death Process Abstraction

From Networks to
Population Models

8

This chapter investigates the relationship between spreading models
and the class of Markov Population Models (MPMs). We demon-
strate that lumping can be used to reduce any epidemic model to an
MPM.

Therefore, we propose BLUE1 (Partition-[b]ased [lu]mping m[e]thod),
a novel lumping scheme based on a partitioning of the contact net-
work.

Our key idea is to partition the contact network into regions and
assume uniform connectivity within each region. The size of the
regions gives us control over the resolution at which the Markov
graph is analyzed. Conveniently, the reduced model falls into a
well-studied class of MPMs for which already many approximation
techniques exist.

8.1 Introduction

In the last chapter, we lumped (aggregated) network-states based
on their corresponding number of infected nodes. Here, we consider
a more general lumping scheme. For instance, instead of looking
at the number of infected nodes in the entire contact network, we
can partition the contact network and count the number of infected

1Code is available at github.com/gerritgr/Reducing-Spreading-Processes.

167

nodes in each partition. The more partitions we use, the better our
approximation becomes.

To be more general, we first partition the network nodes. Second,
we impose a counting abstraction on each partition. Last, we (only)
lump two network-states together when their corresponding counting
abstractions coincide on each partition.

Markov Population Models. As we will see, the counting abstraction
induces a natural representation of the lumped CTMC as an MPM.
In an MPM, the CTMC states are vectors that, for different types of
species, count the number of entities of each species. The dynamics
can be elegantly represented as species interactions. More impor-
tantly, a rich pool of approximation techniques has been developed
based on MPMs, which can now be applied to the lumped model.
These include efficient simulation techniques [Cao et al., 2006; G. E.
Allen and Dytham, 2009; Sanft et al., 2011], dynamic state space
truncation [Henzinger et al., 2009; Mateescu et al., 2010], moment-
closure approximations [Soltani et al., 2015; Ramon Grima, 2012],
linear noise approximation [Van Kampen, 1992; R. Grima, 2010],
and hybrid approaches [Bortolussi, 2016; A. Singh and Hespanha,
2010].

8.2 Related Work

The general idea behind lumping is to reduce a system’s complexity
by aggregating the system’s individual components. Lumping is a
popular model reduction technique that has been used to reduce the
number of equations in a system of ODEs and the number of states
in a Markov chain, particularly in the context of biochemical reaction
networks [Wei and Kuo, 1969; Cardelli et al., 2017; Ganguly et al.,

168 Chapter 8

From Networks to Population Models

2014]. Generally speaking, one can distinguish between exact and
approximate lumping [Li and Rabitz, 1990; Buchholz, 1994].

Most work on the lumpability of epidemic models has been done in
the context of exact lumping [István Z Kiss et al., 2017; P. L. Simon
et al., 2011; Ward and Evans, 2018]. The general idea is typically to
reduce the state space by identifying symmetries in the CTMC, which
can be found using symmetries (i.e., automorphisms) in the contact
network. However, those methods are limited in scope because
these symmetries are infeasible to find in real-world networks, and
the state space reduction is insufficient to make realistic models
tractable.

This work proposes an approximate lumping scheme. Approximate
lumping has been shown to be useful when applied to mean-field
approximation approaches of epidemic models such as the degree-
based mean-field and pair approximation equations [Kyriakopoulos
et al., 2018], as well as the approximate master equation [Großmann,
Kyriakopoulos, et al., 2018]. However, mean-field equations are
inflexible as they do not take topological properties into account or
make unrealistic independence assumptions between neighboring
nodes. Moreover, Petrov and Tognazzi (2021) use lumped model
representations for stochastic simulation.

KhudaBukhsh et al. (2019) proposed using local symmetries in the
contact network instead of automorphisms to construct a lumped
Markov chain. This scheme seems promising, particularly on larger
graphs, where automorphisms often do not exist. However, the
limitations for real-world networks due to a limited amount of state
space reduction and high computational costs seem to persist.

Conceptually similar to this work is also the unified mean-field frame-
work (UMFF) proposed by Devriendt and Piet Van Mieghem (2017).
Devriendt et al. also partition the nodes of the network but directly
derive a mean-field equation from it. In contrast, this work focuses

8.2 Related Work 169

on analyzing the lumped CTMC and its relation to MPMs. More-
over, we investigate different types of counting abstractions, not only
node-based ones.

8.3 Our Method: Blue

BLUE is composed of three basic ingredients:

Node Partitioning
The partitioning over the nodes V that the modeler provides.

Counting Pattern
The type of features that we count, i.e., nodes or edges.

Implicit State Space Partitioning
The CTMC state space is implicitly partitioned by counting
nodes (or edges) using the node partitioning.

Example 8.1: Blue’s Ingredients

Jumping ahead, we can see a node partitioning in Figure
8.1a (p. 172) and the induced state space partitions as shaded
areas in Figure 8.1b. Using node-based or edge-based counting
abstractions results in different state space partitions.

Overview

We start by discussing the partitioning of the state space. Then we
show how to obtain it from a given node partitioning and counting
pattern. Consider a spreading model with an induced CTMC (cf. Sec-
tion 2.5). Let X denote the state space of the CTMC (we call this the
original CTMC). That is, elements x ∈ X denote network-states. We

170 Chapter 8

From Networks to Population Models

use Y to denote the new lumped state space. Their relationship is
given by a surjective2 lumping function

L : X → Y .

Two network-states x, x ′ are lumped, iff L(x) = L(x ′). Later in this
section, we will construct L(·) based on a node partitioning and a
counting pattern of our choice.

We construct the transition rates t(y, y ′) (where y, y ′ ∈ Y, y ̸= y ′)
between the states of the lumped Markov chain:

t(y, y ′) =
1

|L−1(y)|

∑
x∈L−1(y)

∑
x ′∈L−1(y ′)

q(x, x ′) . (8.1)

This is simply the mean transition rate from a random network-state
belonging to y to any network-state belonging to y ′.

Technically, Eq. (8.1) corresponds to the following lumping assump-
tion:

We assume that, at each point in time, all network-states belonging to
a lumped state y are equally likely.

8.3.1 Partition-Based Lumping

Next, we construct the lumping function L(·). Because we want to
make our lumping aware of the contact network’s topology, we as-
sume a given partitioning P over the nodes V of the contact network.
That is,

P ⊂ 2V,
⋃
P∈P

P = V , and all P ∈ P are disjoint and non-empty.

2If L is not surjective, we enforce it by removing all elements from Y that have no
counterpart in X.

8.3 Our Method: Blue 171

Original Markov Graph

Edge-Based

Node-Based

P1 2 0

P2 2 0

2 0

1 1

2 0

0 2

P1 1 1

P2 2 0

1 1

1 1

1 1

0 2

P1 0 2

P2 2 0

0 2

1 1

0 2

0 2

Rate

1

2

1.5

Lumped Markov Model (Node-Based)

B C

Partitioning

Graph Partitioning SI Rule

β

P1 P2

AA

B

C

Graph Partitioning SI Rule

Original Markov Graph

Lumped Markov Model (Node-Based)

Original Markov Graph

Partitioning

Edge-Based

Node-Based

Rate

1
2

Fig. 8.1.: Simple example. (a): We use a simple SI model with β = 1.
The 4-node contact graph is divided into two partitions. (b):
The original 24 = 16 states. The graph partition induces the
edge-based and node-based lumping. The edge-based lumping
refines the node-based lumping and generates one partition
more (center). (c): The lumped CTMC using the node-based
abstraction with only 9 states. The rates are the averages from
the original CTMC.

172 Chapter 8

From Networks to Population Models

We use nP to denote the number of partitions and assume an implicit
enumeration {P1, . . . , PnP

}.

Based on the node partitioning, we can now impose different count-
ing abstractions on the network-state. This work considers two types:
counting nodes and counting edges. A full example of how a lumped
CTMC of an SI model is constructed using the node-based counting
abstraction is given in Figure 8.1 (p. 172). The counting abstractions
are visualized on a larger contact network in Figure 8.2 (p. 174).

Possibility 1: Node-Based Counting

We count the number of nodes in each state and partition. Therefore,
we use nS = |S| to denote the number of node-states and L(vi) to
denote the node-state of node vi in a given network-state.

Hence, for a given network-state x ∈ X, we use a matrix to store the
number of nodes in state s ∈ S for each partition P ∈ P. The lumping
function L(·) projects x to the corresponding counting abstraction.
Formally (we drop the node-index for clarity):

Y = ZnS×nP

⩾0

L(x) = Y

with: Y[i, j] =
∣∣{v ∈ V

∣∣ x[v] = si, v ∈ Pj
}∣∣ . (8.2)

Here, x[v] denotes the node-state of v, given the network-state x.
Abusing notation in a familiar way, we might write Y[s, P] instead of
Y[i, j] (where s is the i-th node-state and P is the j-th partition).

8.3 Our Method: Blue 173

Partitioned Network Node-Based Edge-Based

A B
A B

Fig. 8.2.: (a): A partitioned network (Zachary’s Karate Club graph from
Girvan and M. E. Newman (2002)) (S: blue, I: magenta, filled).
The network is partitioned into P1 (#-nodes) and P2 (2-nodes).
(b): The corresponding counting abstractions.

Possibility 2: Edge-Based Counting

Instead of counting nodes for each partition, we now count edges.
We store the counts in a 4-dimensional counting tensor. Thus,

Y = ZnS×nP×nS×nP

⩾0

L(x) = Y

with: Y[s, P, s ′, P ′] =
∣∣{(v, v ′) ∈ E

∣∣ x[v] = s, v ∈ P, x[v ′] = s ′, v ′ ∈ P ′}∣∣
Intuitively, for each pair of node-states s, s ′ ∈ S and pair of partitions
P, P ′ ∈ P, we count Y[s, P, s ′, P ′], which is the number of edges from
nodes of state s in one partition to nodes in state s ′ in the other
partition. This includes cases where P = P ′ and s = s ′.

However, only counting the edges does not determine how many
nodes there are in each state (cf. Figure 8.3, p. 175). To encode
this information, we modify the network structure by adding a new
dummy node v⋆ and connecting it to each node. The dummy node

174 Chapter 8

From Networks to Population Models

Without
Dummy

With
Dummy ⭑⭑⭑ ⭑⭑

4

4
1
4

4

4
4
1

(indistinguishable)

(distinguishable)

Fig. 8.3.: By adding the dummy-node, the edge-based abstraction can dif-
ferentiate the two graphs. Adding the dummy-node ensures that
the nodes in each state are counted in the edge-based abstraction.

has a dummy state denoted by ⋆, which never changes, and it can be
assigned to a new dummy partition P⋆. Formally,

V := V ∪ {v⋆} S := S ∪ {⋆} L(v⋆) = ⋆ P := P ∪ {P⋆}

E := E ∪ {(v, v⋆) | v ∈ V, v ̸= v⋆} .

The dummy node does not influence the transition rates. Figure
8.1 (p. 172) illustrates how a given partitioning and the node-based
counting approach induce a lumped CTMC. We illustrate an SI model
(an SIS model where α = 0). The partitions induced by the edge-
based counting abstracting are also shown. In this example, the
edge-based lumping aggregates only isomorphic network-states.

8.3 Our Method: Blue 175

8.3.2 Graph Partitioning

Broadly speaking, we have three options to partition nodes: accord-
ing to (i) local features (e.g., its degree), (ii) global features (e.g.,
communities in the graph), or (iii) randomly. As a baseline, we use
random node partitioning. Therefore, we fix the number of partitions
and randomly assign each node to a partition while enforcing that
all partitions contain roughly the same number of elements.

Moreover, we investigate a degree-based partitioning, where we
define the distance between nodes v, v ′ as their relative degree dif-
ference (similar to Kyriakopoulos et al. (2018)):

dk(v, v
′) =

|kv − kv ′ |

max(kv, kv ′)
.

We can then use any reasonable clustering algorithm and build par-
titions (i.e., clusters) with the distance function. In this work, we
focus on bottom-up hierarchical clustering as it provides the most
principled way of precisely controlling the number of partitions. As
always (in particular, to avoid infinite distances), we only consider
contact networks where each node is reachable from every other
node. We break ties arbitrarily.

To get a clustering considering global features, we use a spectral em-
bedding of the contract network. Specifically, we use the spectral_
layout function from the NetworkX Python-package [Hagberg, Swart,
et al., 2008] with three dimensions and perform hierarchical cluster-
ing on the embedding. In future research, it would be interesting to
compute node distances based on more sophisticated graph embed-
ding. Note that in the border cases |P| = 1 and |P| = n all methods
yield the same partitioning.

176 Chapter 8

From Networks to Population Models

8.4 Markov Population Models

Next, we explain MPMs. Later, we illustrate the construction of
MPMs given lumped CTMCs.

Species. MPMs are a special form of CTMCs where each CTMC
state is a population vector over a set of species. We use Z to denote
the finite set of species (again, with an implicit enumeration) and
y ∈ Z|Z|

⩾0 to denote the population vector. We use y[z] to identify the
population counts of species z ∈ Z.

Dynamics. In spreading processes, we used a set of rules to specify
the dynamics. Similarly, in MPMs, we use a set of reactions A.
Each reaction, (α(·),b) ∈ A, is comprised of a propensity function
α : Z|Z|

⩾0 → R⩾0 and a change vector b ∈ Z|Z|. When reaction
(α,b) is applied, the system moves from state y to state y + b. The
propensity function gives the corresponding rate.

CTMC Semantics. The transition rates of the induced CTMC are
given as3:

t(y, y ′) =

{
α(y) if ∃(α,b) ∈ A, y ′ = y + b

0 otherwise
.

Next, we show that the counting abstractions from the previous
section have a natural interpretation as MPMs.

3Without loss of generality, we assume that different reactions have different
change vectors. If this is not the case, we can merge reactions with the same
update by summing their corresponding rate functions.

8.4 Markov Population Models 177

8.4.1 Node-Based Abstraction

Species. We use the species to encode the entries in the counting
matrix. This gives rise to the set of species:

Z = {(s, P) | s ∈ S, P ∈ P} .

Again, we assume an implicit enumeration of Z. We use z.s and z.P
to denote the components of a given species z. Note hat representing
the system state as a population count vector y ∈ ZnS·nP

⩾0 instead of
a matrix Y ∈ ZnS×nP

⩾0 is simply a matter of re-ordering.

Reactions. Next, we express the dynamics by translating rules into

reactions. For each rule r = s1
f(·)−−→ s2 and each partition P ∈ P, we

define a reaction (αr,P(·),br,P) with propensity function as:

αr,P : ZnS×nP

⩾0 → R⩾0

αr,P(y) =
1

|L−1(y)|

∑
x∈L−1(y)︸ ︷︷ ︸
all aggregated
network-states

∑
v∈P︸︷︷︸

all nodes in
the partition

f(mx,v) 1x[v]=s1︸ ︷︷ ︸
Consider only if
node-state is s1

,

where mx,v denotes the neighborhood vector of node v in network-
state x and x[v] ∈ S is the node-state of v in x. Note that this equation
is just the instantiation of Eq. (8.1).

The change vector br,P ∈ Z|Z| is defined element-wise as:

br,P[z] =


1 if z.s = s2, P = z.P

−1 if z.s = s1, P = z.P

0 otherwise.

Note that s1, s2 refer to the current rule and z.s to the entry of
br,P.

178 Chapter 8

From Networks to Population Models

<latexit sha1_base64="H1uvD6HHhFdwzdYIDrrlErUDJYo=">AAAC03ichVFLS8NAEJ7GV1tfVY9egkXwVBIR9WbBB16ECqYttkU26TYNzYtkW6ihF/Hqzav+L/0tHvyypoIWccNmZr+Z+eZlhq4TC017yylz8wuLS/lCcXlldW29tLFZj4NhZHHDCtwgapos5q7jc0M4wuXNMOLMM13eMAenqb0x4lHsBP6NGIe84zHbd3qOxQSg27bHRN/sJePJXamsVTR51FlFz5QyZacWlN6pTV0KyKIhecTJJwHdJUYxvhbppFEIrEMJsAiaI+2cJlRE7BBeHB4M6AB/G69Whvp4p5yxjLaQxcWNEKnSLu6FZDThnWbl0GPID9x7idl/Zkgkc1rhGNIEY0EyXgEX1IfHf5Fe5jmt5f/ItCtBPTqW3TioL5RI2qf1zXMGSwRsIC0qnUtPGxymfI8wAR/SQAXplKcMquy4C8mk5JLFzxgZ+CLIdPqoB2vWfy91VqnvV/TDin59UK6eZAvP0zbt0B62ekRVuqQa6rCQ5Zle6FUxlER5UB6/XJVcFrNFP47y9AmEZpMt</latexit>y <latexit sha1_base64="H1uvD6HHhFdwzdYIDrrlErUDJYo=">AAAC03ichVFLS8NAEJ7GV1tfVY9egkXwVBIR9WbBB16ECqYttkU26TYNzYtkW6ihF/Hqzav+L/0tHvyypoIWccNmZr+Z+eZlhq4TC017yylz8wuLS/lCcXlldW29tLFZj4NhZHHDCtwgapos5q7jc0M4wuXNMOLMM13eMAenqb0x4lHsBP6NGIe84zHbd3qOxQSg27bHRN/sJePJXamsVTR51FlFz5QyZacWlN6pTV0KyKIhecTJJwHdJUYxvhbppFEIrEMJsAiaI+2cJlRE7BBeHB4M6AB/G69Whvp4p5yxjLaQxcWNEKnSLu6FZDThnWbl0GPID9x7idl/Zkgkc1rhGNIEY0EyXgEX1IfHf5Fe5jmt5f/ItCtBPTqW3TioL5RI2qf1zXMGSwRsIC0qnUtPGxymfI8wAR/SQAXplKcMquy4C8mk5JLFzxgZ+CLIdPqoB2vWfy91VqnvV/TDin59UK6eZAvP0zbt0B62ekRVuqQa6rCQ5Zle6FUxlER5UB6/XJVcFrNFP47y9AmEZpMt</latexit>y

<latexit sha1_base64="Wh6gfr+o/4VF4ghBoSPjdzdt6uY=">AAAC03ichVFLS8NAEJ7GV1tfVY9egkXwVBIR9WbBB16ECqYttkU26bYNzYtkW6mhF/Hqzav+L/0tHvyypoIW6YbNzH4z883LDBw7Epr2nlHm5hcWl7K5/PLK6tp6YWOzGvmD0OKG5Tt+WDdZxB3b44awhcPrQciZazq8ZvZPE3ttyMPI9r0bMQp4y2Vdz+7YFhOAbpsuEz2zE9+P7wpFraTJo04reqoUKT0Vv/BBTWqTTxYNyCVOHgnoDjGK8DVIJ40CYC2KgYXQbGnnNKY8Ygfw4vBgQPv4d/FqpKiHd8IZyWgLWRzcEJEq7eJeSEYT3klWDj2C/MR9kFj33wyxZE4qHEGaYMxJxivggnrwmBXppp6TWmZHJl0J6tCx7MZGfYFEkj6tH54zWEJgfWlR6Vx6dsFhyvcQE/AgDVSQTHnCoMqO25BMSi5ZvJSRgS+ETKaPerBm/e9Sp5Xqfkk/LOnXB8XySbrwLG3TDu1hq0dUpkuqoA4LWV7old4UQ4mVR+Xp21XJpDFb9Osoz19/mJMr</latexit>w

Fig. 8.4.: Example of how the neighborhood w influences the update in
the edge-based counting abstraction on an example graph. Here,
all nodes belong to the same partition and the node-states are
ordered [S, I, ⋆]. The population vector y is given in matrix form
for ease of presentation. The center node changes from S to I.
Therefore, we subtract w from the first line in y and add it to the
second line.

8.4.2 Edge-Based Counting Abstraction

Representing the edge-based abstraction in terms of population
counts and reactions is more technical but follows the same princi-
ple.

Species. Again, we use the species to encode the entries in the
counting tensor. However, the 4D tensor Y contains symmetries. To
get rid of them, we assume an arbitrary ordering of pairs (s, p) ∈ S×P

and construct the set of species as:

Z =
{
(ssrc, Psrc, stgt, Ptgt) |ssrc, stgt ∈ S, Psrc, Ptgt ∈ P,

(ssrc, Psrc) ⩽ (stgt, Ptgt)
}
.

Again, we assume an arbitrary ordering of species and find that y
is just a flattened (non-redundant) representation of the counting
tensor. We use y[z] to denote the population number of species
z ∈ Z.

Reactions. Next, we need to establish some technical details. We
start by defining a (sP-)species neighborhood. The species neighbor-

8.4 Markov Population Models 179

hood of a node v is a vector wv ∈ ZnS·nP

⩾0 , where wv[s, P] denotes4

the number of neighbors in node-state s and partition P. We define
Wv as the set of possible species neighborhoods for a node v, given
a fixed contact network and partitioning. Note that we still assume
that a dummy node is used to encode the number of states in each
partition.

Let us define WP to be the set of all possible species neighborhoods
the nodes in P can have:

WP =
⋃
v∈P

Wv .

For each rule r = s1
f(·)−−→ s2, and each partition P ∈ P, and each

w ∈ WP, we define a reaction (αr,P,w(·),br,P,w), where:

αr,P,w : Z|Z|
⩾0 → R⩾0

αr,P,w(y) =
1

L−1(y)

∑
x∈L−1(y)

∑
v∈P

f(mx,v) 1x[v]=s1,wv=w︸ ︷︷ ︸
Consider nodes in s1 that
have a sp. neighborhood

matching α

.

Counterintuitively, the propensity is individually defined for each
possible w, but the propensity values do not take w into account.
This is because the change vector depends on w. To see this, consider
a species z = (ssrc, Psrc, stgt, Ptgt), corresponding to edges connecting
a node in state ssrc and partition Psrc to a node in state stgt and
partition Ptgt. There are two scenarios in which the corresponding
counting variable has to change: (a) when the node changes its state
due to an application of rule r is the source node and (b) when it
is the target node. Consider case (a): we need to know how many

4We continue our notational pattern and write wv[s, P] instead of wv[i] where i is
the index of (s, P), assuming an implicit enumeration over S× P.

180 Chapter 8

From Networks to Population Models

edges are connecting the updated node (which was in state s1 and
partition P) to a node in state stgt and partition Ptgt. This information
is stored in the vector w, specifically in position w[stgt, Ptgt]. The case
in which the updated node is the target node is treated symmetrically.
This gives rise to the following definition:

br,P,w[z] =



w[z.stgt, z.Ptgt] if s2 = z.ssrc, P = z.Psrc

−w[z.stgt, z.Ptgt] if s1 = z.ssrc, P = z.Psrc

w[z.ssrc, z.Psrc] if s2 = z.stgt, P = z.Ptgt

−w[z.ssrc, z.Psrc] if s1 = z.stgt, P = z.Ptgt

0 otherwise.

The first two lines of the definition handle cases where the node
changing state is the source node, while the following two lines
deal with the case in which the node changing state appears as the
target. Figure 8.4 (p. 179) illustrates how a lumped network-state is
influenced by the application of an infection rule.

8.4.3 Direct Construction of the MPM

Approximating the solution of a spreading process on a contact net-
work by lumping the CTMC first already reduces the computational
costs by many orders of magnitude. However, this scheme is still only
applicable when it is possible to construct the full CTMC in the first
place. Recall that the number of network-states is exponential in the
number of nodes of the contact network. That is, |X| = |S||V| = nn

S .

However, in recent years, substantial effort has been dedicated to
the analysis of very small networks [Ward and Evans, 2018; Holme,
2015b; Moslonka-Lefebvre et al., 2009; Pautasso et al., 2010]. One
reason is that stochastic effects are more dominant in small net-
works.

8.4 Markov Population Models 181

However, it would still be great if we could construct the reduced
MPM without building the original CTMC first. Luckily, this can be
done for the node counting abstraction exactly. Unfortunately, for the
edge counting, we need to introduce an additional approximation in
the definition of the rate function. Roughly speaking, we introduce
an approximate probability distribution over neighboring vectors, as
knowing how many nodes have a specific neighboring vector requires
full knowledge of the original CTMC. We present full details of such
direct construction in Appendix A.1 and illustrate the relationship to
chemical reaction networks (CRNs).

8.4.4 MPM Complexity

The size of the lumped MPM is critical for our method, as it deter-
mines which solution techniques are computationally tractable and
provides guidelines on how many partitions to choose. There are two
notions of size to consider: (a) the number of population variables
and (b) the number of states of the reduced CTMC. The latter governs
the applicability of numerical solutions that build the reduced state
space. The former controls the complexity of many approximation
techniques, like mean-field methods or moment closure.

Node-Based Abstraction

The population vector is of length |S| · |P|, i.e., there is a variable
for each node-state and each partition. Note that the sum over the
population variables for each partition P is |P|, the number of nodes
in the partition. This allows us to count the number of states of the
CTMC of the population model easily: For each partition, we need
to subdivide |P| different nodes into |S| different classes, which can
be done in

(
|P|+|S|−1

|S|−1

)
ways, giving a number of CTMC states that

182 Chapter 8

From Networks to Population Models

is exponential in |S| and |P|, but only polynomial in the number of
nodes:

|Y| =
∏
P∈P

(
|P|+ |S|− 1

|S|− 1

)
.

Edge-Based Abstraction

There is one population variable for each edge-type connecting two
different partitions and additional population variables accounting
for the dummy state. In total, we have q(q−1)

2 + q population
variables, with q = |S| · |P|.

In order to count the number of CTMC states, we start by observing
that the sum of all variables for a given pair of partitions P ′, P ′′ is
the number of edges connecting such partitions in the graph. We use
ϵ(P ′, P ′′) to denote the number of edges between P ′, P ′′ (resp. the
number of edges inside P ′ if P ′ = P ′′). Thus,

|Y| ⩽
∏

P ′,P ′′∈P2

P ′⩽P ′′

(
ϵ(P ′, P ′′) + S2 − 1

S2 − 1

)
·
∏
P∈P

(
|P|+ |S|− 1

|S|− 1

)
.

This is an over-approximation because not all combinations are con-
sistent with the graph topology. For example, a high number of
infected nodes in a partition might not be consistent with a small
number of II-edges inside the partition. Note that this upper bound
is exponential in |S| and |P|, but still only polynomial in the number
of nodes nV.

The exponential dependency on the number of species (i.e., dimen-
sions of the population vector) makes the explicit construction of
the lumped state space feasible only for small networks with a small
number of node-states. However, this is typically the case for spread-
ing models like SIS or SIR. Yet, also the number of partitions has

8.4 Markov Population Models 183

to be kept small. We expect that the partitioning is especially useful
for networks showing a small number of large-scale homogeneous
structures, as it is the case for many real-world networks [Girvan
and M. E. Newman, 2002].

An alternative strategy for analysis is to derive mean-field [Bortolussi,
Hillston, et al., 2013] or moment closure equations [Schnoerr et al.,
2018] for MPMs, which can be done without explicitly constructing
the lumped (and the original) state space. These are sets of ODEs
describing the evolution of (moments of) the population variables.
We refer the reader to Devriendt and Piet Van Mieghem (2017) for a
similar approach regarding the node-based abstraction.

184 Chapter 8

From Networks to Population Models

0 2000 4000 6000 8000
Number of CTMC states

0.0

0.1

0.2

0.3

0.4

0.5

E
rr
or

Spectral Partitioning

Node max
Node avg
Edge max
Edge avg

0 2000 4000 6000 8000
Number of CTMC states

0.0

0.1

0.2

0.3

0.4

0.5

E
rr
or

Degree Partitioning

Node max
Node avg
Edge max
Edge avg

E
rr
or

Number of CTMC States

Er
ro

r

Degree Spectral Random

Number of CTMC States Number of CTMC States

Fig. 8.5.: [Lower is better.] Trade-off between accuracy and state space
size for the node-based (blue) and edge-based (magenta, filled)
counting abstraction. Results are shown for node partitions
based on the degree (l.), spectral embedding (c.), and random
partitioning (r.). The accuracy is measured as the mean (△)
and maximal (▽) difference between the original and lumped
solution over all timepoints.

8.5 Numerical Results

In this section, we compare the numerical solution of the original
model—referred to as baseline model—with different lumped MPMs.
This comparison aims to provide evidence supporting the claim that
the lumping preserves the dynamics of the original system, with
accuracy increasing with the resolution of the MPM.

Setup. We perform the comparison by solving the original and the
lumped system numerically and comparing each state’s probability
at each timepoint (cf. Excursus 2). Because we solve the original
CTMC, the size of the contact network (and number of node-states)
is strongly limited.

Let P(X(t) = x) denote the probability that the original CTMC occu-
pies network-state x ∈ X at time t. Let P(Y(t) = y), for y ∈ Y, denote
the same probability for a lumped MPM. To measure their difference,
we approximate the probability distribution of the original model
from the lumped solution. Hence, we invoke the lumping assump-
tion, which states that all network-states that are lumped together

8.5 Numerical Results 185

have the same probability mass. We use PL(·) to denote the lifted
probability distribution over the original state space given a lumped
solution. Formally,

PL
(
Y(t) = x

)
=
P
(
Y(t) = y

)
|L−1(y)|

where y is s.t. L(x) = y.

We measure the difference between the original and a lumped so-
lution at a specific time point by summing up the difference in
probability mass of each state, then take the maximum error in
time:

d(P, PL) = max
t

∑
x∈X

∣∣PL(Y(t) = x) − P(X(t) = x
)∣∣ .

In our experiments, we used a small toy network with 13 nodes and 2
states (213 = 8192 network-states). We generated a synthetic contact
network following the Erdős–Rényi graph model with a connection
probability of 0.5. We use an SIS model with an infection rate of
β = 1.0 and a recovery rate of α = 1.3. Initially, we assign an equal
amount of probability mass to all network-states.

Discussion. Figure 8.5 (p. 185) shows the relationship between
the error of the lumped MPM, the type of counting abstraction, and
the method used for node partitioning. We also report the mean
difference together with the maximal difference over time.

From our results, we conclude that the edge-based counting abstrac-
tion yields a significantly better trade-off between state space size
and accuracy. However, it generates larger MPM models than the
node-based abstraction when adding a new partition. We also find
that spectral and degree-based partitioning yield similar results for
the same number of CTMC states. Random partitioning performed

186 Chapter 8

From Networks to Population Models

noticeably worse for both edge-based and node-based counting ab-
stractions. For larger networks with actual components, we expect
that the spectral-based method performs significantly better.

8.6 Conclusions and Future Work

This work developed the first steps in unifying the analysis of stochas-
tic spreading processes on networks and Markov population models.
Since the obtained MPM can become very large in terms of its species,
it is crucial to be able to control the trade-off between state space
size and accuracy.

However, there are still many open research problems to be solved.
Most evidently, it remains to be determined which of the many
techniques developed for the analysis of MPMs (e.g., linear noise,
moment closure) work best on our proposed epidemic-type MPMs
and how they scale with increasing size of the contact network. We
also expect that these reduction methods can provide a good start-
ing point for deriving advanced mean-field equations, similar to the
ones in Devriendt and Piet Van Mieghem (2017). Moreover, the
literature is very rich in proposed moment-closure-based approxima-
tion techniques for MPMs, which can now be utilized [Soltani et al.,
2015; Ramon Grima, 2012]. Finally, we expect that there are many
more possibilities of partitioning the contact network that remain to
be investigated, which might have a significant impact on the final
accuracy of the abstraction.

8.6 Conclusions and Future Work 187

Neural Relational
Inference

9
In this chapter, we explore the problem of inferring (reconstructing)
the unknown contact network (or interaction graph) of a complex
dynamical system from node-level observations (the nodes represent
agents or components). We consider a setting where the underlying
dynamical model is unknown and where different measurements
(i.e., snapshots) may be independent (e.g., may stem from different
experiments).

Our key idea is to utilize the concept of masked reconstruction for
graph inference: We mask (erase) node-states and hypothesize that
the true interaction graph provides the best basis to recover the
node-states from the states of adjacent vertices.

We propose TEAL1 (Ne[t]work R[e]construction [Al]gorithm), a
graph neural network to simultaneously learn the latent interaction
graph and, conditioned on the interaction graph, the prediction of a
node’s state based on its immediate neighborhood.

9.1 Introduction

Stochastic dynamical systems in which local interactions give rise
to complex emerging phenomena are ubiquitous in nature and so-
ciety (cf. Chapter 2). However, their analysis remains challenging.

1PyTorch code is available at github.com/GerritGr/GINA.

189

Inferring the functional organization of a complex system from mea-
surements is relevant for its analysis [Fornito, Zalesky, and Breaks-
pear, 2015; Prakash, Vreeken, et al., 2012; Amini et al., 2016; Finn
et al., 2019], design [Zitnik et al., 2018; Hagberg and Schult, 2008;
Memmesheimer and Timme, 2006], control [Gu et al., 2015; Groß-
mann, Backenköhler, Klesen, et al., 2020], and prediction [Kipf et al.,
2018; Z. Zhang et al., 2019].

In this chapter, we focus on the internal interaction structure (i.e.,
graph or network) of a complex system. We propose a machine
learning approach to infer this structure based on observational data
from the nodes (i.e., components or constituent agents). We refer
to these observations as snapshots and assume that the observable
states of all components are measured simultaneously. However, we
make no prior assumption about the relationship between snapshots.
Specifically, snapshots are not labeled with time stamps. They may
be taken from different experiments with varying initial conditions
(see Figure 9.1, p. 191, for an overview).

For instance, in the SIS model, a snapshot could assign each node
to a disease stage (infected or susceptible), and the goal would be
to reconstruct the unknown set of edges, E, from many different
(uncorrelated) snapshots. However, by doing so, we would not know
that the SIS model was used to generate the data in the first place.

Most recent work on graph inference focuses on time series data,
where observations are time-correlated and the interaction graph is
inferred from the joint time evolution of the node-states [Z. Zhang
et al., 2019; Kipf et al., 2018]. Naturally, time series data contains
more information on the system’s internal interactions than snapshot
data. However, in many cases, such data is not available: In some
cases, one has to destroy a system to access its components (e.g., slice
a brain [Rossini et al., 2019], observe a quantum system [Martinez
et al., 2019], or terminate a cell [Chan et al., 2017]). Sometimes, the
relevant time scale of the system is too small (e.g., in particle physics)

190 Chapter 9

Neural Relational Inference

Model

Interaction Graph

Independent Observations/
Snapsots

Reconstructed
Interaction Graph

Graph
Layer

Prediction
Layer

<latexit sha1_base64="DB1jF85wzgydkkatwtmBHS4gnus=">AAAC1nichVFNS8NAEH3Gr9bPqkcvxSJ4KomIehT8QA9CBVsLtcgm3dbQNInJVqyl3sSrN6/6s/S3ePBljYIWccNmZt+8eTuzY4eeGyvTfB0xRsfGJyYz2anpmdm5+dzCYiUOupEjy07gBVHVFrH0XF+Wlas8WQ0jKTq2J8/s9m4SP7uWUewG/qnqhbLeES3fbbqOUITq50reqNjpn0rhDS5yBbNo6pUfdqzUKSBdpSD3hnM0EMBBFx1I+FD0PQjE/GqwYCIkVkefWETP1XGJAaaY2yVLkiGItvlv8VRLUZ/nRDPW2Q5v8bgjZuaxyn2gFW2yk1sl/Zj2nftWY60/b+hr5aTCHq1NxaxWPCaucEnGf5mdlPlVy/+ZSVcKTWzrblzWF2ok6dP51tljJCLW1pE89jWzRQ1bn6/5Aj5tmRUkr/ylkNcdN2iFtlKr+KmioF5Em7w+6+GYrd9DHXYq60Vrs2idbBR2jtKBZ7CMFaxxqlvYwSFKrMPBFZ7wjBejatwZ98bDJ9UYSXOW8GMZjx/vFJSL</latexit>

Teal
Independent Observations/

Snapshots

Fig. 9.1.: Schematic illustration of the problem setting. We are interested
in inferring the latent (unweighted and undirected) interaction
graph from observational data of the process.

or too large (e.g., in evolutionary dynamics) to be observed. Often,
there is a trade-off between the spatial and temporal resolution of
a measurement [Sarraf and J. Sun, 2016]. Finally, measurements
may be temporally decoupled due to large observation intervals
and thus become unsuitable for methods that exploit correlations
in time. It is also known that, generally speaking, many different
graph typologies can be used to predict the same dynamics [Prasse
and Piet Van Mieghem, 2020b]. Yet, machine learning techniques for
graph inference from independent data remain underexplored in the
literature.

In contrast to many state-of-the-art approaches, our method is model-
free and makes no prior assumptions about the dynamical laws.
Conceptually, our analysis is based on identifying patterns within the
snapshots. These patterns are spatial manifestations of the temporal
co-evolution of neighboring nodes. Thus, they carry information
about the underlying connectivity.

We propose an approach inspired by ideas recently popularized for
time series-based network inference [H.-F. Zhang et al., 2018; Kipf et
al., 2018]. It provides an elegant way of formalizing graph inference
problem with minimal parametric assumptions on the underlying
dynamical model:

The key hypothesis is that the interaction graph “best describing” the
observed data is the ground truth.

9.1 Introduction 191

In the time series setting, we can operationalize “best describing” by
assuming that it provides the best grounds for time series forecast-
ing.

This chapter assumes that time series data is not available. Hence,
we aim to find the graph that best enables us to predict a node’s
state based on its immediate neighborhood within a snapshot (not
at future times). This technique is commonly referred to as masking
[Mishra et al., 2020]. That is, we mask (i.e., erase) the state of
a node and then try to recover it by looking at its neighbors. To
this end, we use a prediction model to learn a node’s observable
state (i.e., the node-state) given the joint state of all adjacent nodes.
Then we maximize the prediction accuracy by jointly optimizing the
interaction graph and the prediction model:

We assume that the information shared between a node and its
complete neighborhood is higher in the ground truth graph than in

other potential graphs.

However, in a trivial implementation, the network that enables the
best node-state prediction is the complete graph, because it provides
all information available in a given snapshot. This necessitates a
form of regularization in which edges that are present—but not
necessary—reduce prediction quality. We do this using a counting-
based neighborhood aggregation scheme that acts as a bottleneck of
information flow.

Therefore, we use a simple counting abstraction over the neighbor-
hood, corresponding to a sum-aggregation in a graph neural network
(GNN) architecture. Thus, this task can be framed as a simple single-
layer GNN combined with a node-specific multi-layer perceptron
(MLP) that predicts node-states from neighborhood aggregations.
The node-states can directly relate to the measurements or be the
result of an embedding or a discretization.

192 Chapter 9

Neural Relational Inference

For an efficient solution to the graph inference problem, we propose
TEAL.

TEAL tackles this problem by simultaneously learning the interaction
graph and the dynamics. The approach employs a computationally
simple neighborhood aggregation and an efficient weight-sharing
mechanism between nodes. Combined with a differentiable graph
representation, our method can be applied to systems with hundreds
of nodes. TEAL is model-free (it can learn arbitrary patterns in snap-
shots) and threshold-free (no arbitrary edge binarization is needed
afterward).

While we make only minimal parametric assumptions about the dy-
namical process itself, we assume that the model can be expressed
(or approximated) using the class of multi-state processes on graphs
(cf. Section 2.4.3). This means that a node only directly communi-
cates with its immediate neighborhood and that the underlying graph
is homogeneous. That is, all nodes are equivalent and can only be
differentiated by their corresponding node-state or node attribute.

In this contribution, we conceptualize and test the hypothesis that
network reconstruction can be formulated as a prediction task. Specif-
ically:

1. We propose a masking technique to formalize the prediction
problem;

2. We derive a suitable neighborhood aggregation mechanism
that automatically acts as a regularization mechanism;

3. We develop the neural architecture TEAL to efficiently solve the
prediction and reconstruction task;

4. We test our hypothesis using synthetically generated snapshots
using various combinations of graphs and diffusion models.

9.1 Introduction 193

Input Graph Layer Prediction Layer

<latexit sha1_base64="b2xl95nR10Y8/9XxTbOhpc4pDKU=">AAACznichVFLS8NAEJ7GV1tf9XHzEixCBSmJiHos+MCLUMHYQi2ySbc1NC82aaGW4tWbV/1p+ls8+O02FbRIJ2xm9ptvvp3ZtSPPjRPD+Mhoc/MLi0vZXH55ZXVtvbCxeReHPeFwywm9UNRtFnPPDbiVuInH65HgzLc9XrO7ZzJf63MRu2Fwmwwi3vRZJ3DbrsMSQFbJODD3HwpFo2wo06cDMw2Kle22smpY+KR7alFIDvXIJ04BJYg9YhTja5BJBkXAmjQEJhC5Ks9pRHnU9sDiYDCgXfw72DVSNMBeasaq2sEpHpZApU57WJdK0QZbnsoRx/BfWE8K6/x7wlApyw4H8DYUc0rxGnhCj2DMqvRT5qSX2ZVyqoTadKqmcdFfpBA5p/Ojc46MANZVGZ0uFLMDDVvt+7iBAN5CB/KWJwq6mrgFz5TnSiVIFRn0BLy8ffSDZzb/Pup0cHdYNo/L5o1ZrBzR2LK0Q7tUwqueUIWuqIo+HGi+0hu9a1Wtr4205zFVy6Q1W/TLtJdvpXmSRA==</latexit>

(0, 1)

<latexit sha1_base64="b2xl95nR10Y8/9XxTbOhpc4pDKU=">AAACznichVFLS8NAEJ7GV1tf9XHzEixCBSmJiHos+MCLUMHYQi2ySbc1NC82aaGW4tWbV/1p+ls8+O02FbRIJ2xm9ptvvp3ZtSPPjRPD+Mhoc/MLi0vZXH55ZXVtvbCxeReHPeFwywm9UNRtFnPPDbiVuInH65HgzLc9XrO7ZzJf63MRu2Fwmwwi3vRZJ3DbrsMSQFbJODD3HwpFo2wo06cDMw2Kle22smpY+KR7alFIDvXIJ04BJYg9YhTja5BJBkXAmjQEJhC5Ks9pRHnU9sDiYDCgXfw72DVSNMBeasaq2sEpHpZApU57WJdK0QZbnsoRx/BfWE8K6/x7wlApyw4H8DYUc0rxGnhCj2DMqvRT5qSX2ZVyqoTadKqmcdFfpBA5p/Ojc46MANZVGZ0uFLMDDVvt+7iBAN5CB/KWJwq6mrgFz5TnSiVIFRn0BLy8ffSDZzb/Pup0cHdYNo/L5o1ZrBzR2LK0Q7tUwqueUIWuqIo+HGi+0hu9a1Wtr4205zFVy6Q1W/TLtJdvpXmSRA==</latexit>

(0, 1)

<latexit sha1_base64="F58ePoW8anNfwZZFJT1EntAmd7Q=">AAACznichVFLS8NAEJ7GV1tf9XHzEixCBSmJiHos+MCLUMHYQi2ySbc1NC82aaGW4tWbV/1p+ls8+O02FbRIJ2xm9ptvvp3ZtSPPjRPD+Mhoc/MLi0vZXH55ZXVtvbCxeReHPeFwywm9UNRtFnPPDbiVuInH65HgzLc9XrO7ZzJf63MRu2Fwmwwi3vRZJ3DbrsMSQFbJPDD2HwpFo2wo06cDMw2Kle22smpY+KR7alFIDvXIJ04BJYg9YhTja5BJBkXAmjQEJhC5Ks9pRHnU9sDiYDCgXfw72DVSNMBeasaq2sEpHpZApU57WJdK0QZbnsoRx/BfWE8K6/x7wlApyw4H8DYUc0rxGnhCj2DMqvRT5qSX2ZVyqoTadKqmcdFfpBA5p/Ojc46MANZVGZ0uFLMDDVvt+7iBAN5CB/KWJwq6mrgFz5TnSiVIFRn0BLy8ffSDZzb/Pup0cHdYNo/L5o1ZrBzR2LK0Q7tUwqueUIWuqIo+HGi+0hu9a1Wtr4205zFVy6Q1W/TLtJdvpXuSRA==</latexit>

(1, 0)

<latexit sha1_base64="F58ePoW8anNfwZZFJT1EntAmd7Q=">AAACznichVFLS8NAEJ7GV1tf9XHzEixCBSmJiHos+MCLUMHYQi2ySbc1NC82aaGW4tWbV/1p+ls8+O02FbRIJ2xm9ptvvp3ZtSPPjRPD+Mhoc/MLi0vZXH55ZXVtvbCxeReHPeFwywm9UNRtFnPPDbiVuInH65HgzLc9XrO7ZzJf63MRu2Fwmwwi3vRZJ3DbrsMSQFbJPDD2HwpFo2wo06cDMw2Kle22smpY+KR7alFIDvXIJ04BJYg9YhTja5BJBkXAmjQEJhC5Ks9pRHnU9sDiYDCgXfw72DVSNMBeasaq2sEpHpZApU57WJdK0QZbnsoRx/BfWE8K6/x7wlApyw4H8DYUc0rxGnhCj2DMqvRT5qSX2ZVyqoTadKqmcdFfpBA5p/Ojc46MANZVGZ0uFLMDDVvt+7iBAN5CB/KWJwq6mrgFz5TnSiVIFRn0BLy8ffSDZzb/Pup0cHdYNo/L5o1ZrBzR2LK0Q7tUwqueUIWuqIo+HGi+0hu9a1Wtr4205zFVy6Q1W/TLtJdvpXuSRA==</latexit>

(1, 0)
<latexit sha1_base64="F58ePoW8anNfwZZFJT1EntAmd7Q=">AAACznichVFLS8NAEJ7GV1tf9XHzEixCBSmJiHos+MCLUMHYQi2ySbc1NC82aaGW4tWbV/1p+ls8+O02FbRIJ2xm9ptvvp3ZtSPPjRPD+Mhoc/MLi0vZXH55ZXVtvbCxeReHPeFwywm9UNRtFnPPDbiVuInH65HgzLc9XrO7ZzJf63MRu2Fwmwwi3vRZJ3DbrsMSQFbJPDD2HwpFo2wo06cDMw2Kle22smpY+KR7alFIDvXIJ04BJYg9YhTja5BJBkXAmjQEJhC5Ks9pRHnU9sDiYDCgXfw72DVSNMBeasaq2sEpHpZApU57WJdK0QZbnsoRx/BfWE8K6/x7wlApyw4H8DYUc0rxGnhCj2DMqvRT5qSX2ZVyqoTadKqmcdFfpBA5p/Ojc46MANZVGZ0uFLMDDVvt+7iBAN5CB/KWJwq6mrgFz5TnSiVIFRn0BLy8ffSDZzb/Pup0cHdYNo/L5o1ZrBzR2LK0Q7tUwqueUIWuqIo+HGi+0hu9a1Wtr4205zFVy6Q1W/TLtJdvpXuSRA==</latexit>

(1, 0)
<latexit sha1_base64="XFGa3n1f97109uQPd8CaCs6XwBM=">AAACznichVFLS8NAEJ7GV1tf9XHzEixCBSlJEfVY8IEXoYJpC7VIkm5jaF5s0kItxas3r/rT9Ld48NttKmiRTtjM7DfffDuza0WeGyea9pFRFhaXlleyufzq2vrGZmFrux6HfW4zww69kDctM2aeGzAjcROPNSPOTN/yWMPqnYt8Y8B47IbBXTKMWNs3ncDturaZADJK+lHl8KFQ1MqaNHU20NOgWN3tSquFhU+6pw6FZFOffGIUUILYI5NifC3SSaMIWJtGwDgiV+YZjSmP2j5YDAwTaA9/B7tWigbYC81YVts4xcPiqFTpAOtKKlpgi1MZ4hj+C+tJYs6/J4yksuhwCG9BMScVb4An9AjGvEo/ZU57mV8ppkqoS2dyGhf9RRIRc9o/OhfIcGA9mVHpUjIdaFhyP8ANBPAGOhC3PFVQ5cQdeFN6JlWCVNGEHocXt49+8Mz630edDeqVsn5S1m/1YvWYJpalPdqnEl71lKp0TTX0YUPzld7oXakpA2WsPE+oSiat2aFfprx8A6pJkkY=</latexit>

(1, 2)

<latexit sha1_base64="fuvMbbgrSQefOXpFdiMPW+d3dWw=">AAACznichVFLS8NAEJ7GV1tf9XHzEixCBSlZEfVY8IEXoYKxhVokSbc1NC8220Itxas3r/rT9Ld48Ms2FbRIJ2xm9ptvvp3ZtSPPjaVhfGS0ufmFxaVsLr+8srq2XtjYvIvDnnC46YReKOq2FXPPDbgpXenxeiS45dser9ndsyRf63MRu2FwKwcRb/pWJ3DbrmNJQGaJHbD9h0LRKBvK9OmApUGxst1WVg0Ln3RPLQrJoR75xCkgidgji2J8DWJkUASsSUNgApGr8pxGlEdtDywOhgW0i38Hu0aKBtgnmrGqdnCKhyVQqdMe1qVStMFOTuWIY/gvrCeFdf49YaiUkw4H8DYUc0rxGrikRzBmVfopc9LL7MpkKkltOlXTuOgvUkgyp/Ojc46MANZVGZ0uFLMDDVvt+7iBAN5EB8ktTxR0NXEL3lKeK5UgVbSgJ+CT20c/eGb291Gng7vDMjsusxtWrBzR2LK0Q7tUwqueUIWuqIo+HGi+0hu9a1Wtr4205zFVy6Q1W/TLtJdvp+KSRQ==</latexit>

(1, 1)

<latexit sha1_base64="gw2dRIlUAiK4XU1AE5O6PxlIAIs=">AAACznichVFLS8NAEJ7GV1tf9XHzEixCBSlJEfVY8IEXoYJpC7XIJt3GpXmRpIVaildvXvWn6W/x4JdtKmiRTtjM7DfffDuzawaOiGJN+8goC4tLyyvZXH51bX1js7C1XY/8fmhxw/IdP2yaLOKO8LgRi9jhzSDkzDUd3jB750m+MeBhJHzvLh4GvO0y2xNdYbEYkFGqHGmHD4WiVtakqbOBngbF6m5XWs0vfNI9dcgni/rkEiePYsQOMYrwtUgnjQJgbRoBCxEJmec0pjxq+2BxMBjQHv42dq0U9bBPNCNZbeEUBytEpUoHWFdS0QQ7OZUjjuC/sJ4kZv97wkgqJx0O4U0o5qTiDfCYHsGYV+mmzGkv8yuTqWLq0pmcRqC/QCLJnNaPzgUyIbCezKh0KZk2NEy5H+AGPHgDHSS3PFVQ5cQdeCY9lypeqsigF8Int49+8Mz630edDeqVsn5S1m/1YvWYJpalPdqnEl71lKp0TTX0YUHzld7oXakpA2WsPE+oSiat2aFfprx8A6fkkkU=</latexit>

(2, 0)

Adjacency Matrix: Snapshot:
Neighborhood

Counting Vector: Node-State Prediction:

<latexit sha1_base64="Oaj+66jsZS5eaok/RAJaBfG8WDs=">AAADM3ichVE7b9RAEP5iXol5HVDSWJxAVCebgkeBCOIhGqQgcUmkOIp2fXvO6uy1Ze9FCaf7WfT8AnqgQ7R0lID4duOLIBHKWuOZ+Wbm25kdWRe6tXH8aSk4c/bc+QvLK+HFS5evXO1du77eVtMmU8OsKqpmU4pWFdqoodW2UJt1o0QpC7UhJ89cfGNPNa2uzFt7UKvtUuRGj3UmLKGd3m5q1b6V49nTefQ4SqXKtZnJUthG78/DOLoTJRSn4zQNF7bTCf2/48f9OEyVGR1x7fT68SD2JzppJJ3Rf/IB/qxVvc9IMUKFDFOUUDCwtAsItPy2kCBGTWwbM2INLe3jCnOErJ0ySzFDEJ3wn9Pb6lBD33G2vjrjLQWlYWWE25SXnlEy292qaLfUPynvPJb/94aZZ3YdHlBLMq54xtfELXaZcVpl2WUuejm90k1lMcZDP41mf7VH3JzZEc9zRhpiEx+J8MJn5uSQ3t/jCxjqITtwr7xgiPzEI2rhtfIspmMU5Guo3euzH645Ob7Uk8b6vUFyf5C8Sfqrjw73jWXcxC3c5VYfYBWvsMY+MnzED/zC7+B98CX4Gnw7TA2Wupob+OcE3/8AoLyuWw==</latexit>

A =

2

664

0 1 0 0
1 0 1 1
0 1 0 1
0 1 0 0

3

775

<latexit sha1_base64="d82OmwdoZmuUEMt0sWz4NH9INKA=">AAADE3ichVHLbtQwFD0Nrza8BliyiRiBWI0SFjwWVSvxUDdIRWLakZqqsjOeYE3iRI6nahnNZ/Ab/AAbhNiyYwMSfAkLTty0AipUR869Pvfc43t9ZV3oxsXxt6Xg3PkLFy8tr4SXr1y9dr134+ZWU81spoZZVVR2JEWjCm3U0GlXqFFtlShlobbl9Gkb395XttGVee0Oa7Vbitzoic6EI7TX20idOnByMh8totUolSrXZi5L4aw+WIRxdC9K0jRMaOM/rMfDVJnxCXev148HsV/RaSfpnP7aR/i1WfW+I8UYFTLMUELBwNEvINDw20GCGDWxXcyJWXraxxUWCJk7I0uRIYhO+c952ulQw3Or2fjsjLcU3JaZEe5yv/CKkuz2VkW/of3F/dZj+X9vmHvltsJDWknFFa/4krjDGzLOyiw75nEtZ2e2XTlM8Nh3o1lf7ZG2z+xE5xkjltjURyI898ycGtKf9/kChnbICtpXPlaIfMdjWuGt8iqmUxTUs7Tt67Mejjn5d6inna0Hg+ThIHmV9NefHM0by7iNO7jPqT7COjawyToyvMdX/MDP4F3wIfgUfD6iBktdzi38tYIvvwFA5ah/</latexit>

X =

2

664

0 1
1 0
1 0
0 1

3

775

<latexit sha1_base64="4FB/MRrzhtX/GtDTBtuhAq7zP8w=">AAADIXichVFNb9NAEJ2aj7bhK5QjF4sIxCmycwB6QLTiQ71UKhJJI9VVtets3FXstbXeVC1Rfg1/gwNXbogb5cYVfgIH3k6dSlChrrV+M29m3s7uyCrXtYuib0vBlavXri+vrLZu3Lx1+0777tqgLqc2Vf20zEs7lKJWuTaq77TL1bCyShQyV7ty8tLHd4+UrXVp3rmTSu0XIjN6rFPhQB20B4lTx06OZ9vz8Hm4cDaH7EmVaTOThXBWH89bcfgojJKEsddgDOx5vpUoMzrPPWh3om7EK7xoxI3RefGJeO2U7VNKaEQlpTSlghQZcrBzElTj26OYIqrA7dMMnIWlOa5oTi3UTpGlkCHATvDP4O01rIHvNWuuTnFKjm1RGdJD7DesKJHtT1Wwa+Bv7PfMZf89YcbKvsMToITiKitug3d0iIzLKosmc9HL5ZX+Vo7G9Ixvo9FfxYy/Z3qu8woRC27CkZBec2YGDcn+EV7AAPvowL/yQiHkG4+AglGximkUBfQs0L8++sGY43+HetEY9Lrxk278Nu5srJ/Nm1boPj2gx5jqU9qgLdpBHyl9pB/0k34FH4LPwZfg61lqsNTU3KO/VvD9D7zwrfs=</latexit>

M = AX =

2

664

1 0
1 2
1 1
2 0

3

775

<latexit sha1_base64="NjpWss0thULksRm8u3Yj1YjiKT0=">AAADyHichVHbbtNAEB3XXNpwaaCPvBgiUIKQZadV2zxUigRUCKlSkUhbqa4ir7NxV/FN9qY0RHnhjVf4Cv6C34BvAYnjSVpKU9S11jNzzsyZ2V2RRarQjvPDWDBv3Lx1e3GpcufuvfvL1QcP94p0mAeyE6RRmh8Iv5CRSmRHKx3JgyyXfiwiuS8GL0t+/0TmhUqT93qUyaPYDxPVV4GvAXWrv714aHlChfXt7tjTx1L7k7qn5akW/fHOpMFcw9qyKp6QoUrGIvZ1rk4nlQuFbt194TSmmZ53kWmCaV7JrIJxr2TW6s1ztYonk97fnltzUzh203pmOfYmNBzbcTlotTha42Cd/Q32Vy/pdas1FPGy5h135tTaj7+vfHvudHbT6k/yqEcpBTSkmCQlpOFH5FOB75BccigDdkRjYDk8xbykCVVQO0SWRIYPdIB/iOhwhiaIS82CqwN0ibBzVFr0FHubFQWyy64SfgH7C/sjY+F/O4xZuZxwBCuguMSKO8A1HSPjusp4lnk2y/WV5ak09WmTT6MwX8ZIec7gXOcVmBzYgBmLXnNmCA3B8QluIIHtYILyls8ULD5xD9ZnK1klmSn60Mthy9vHPHhm9/Kjzjt7Tdtdt913bq3doulapEf0hOp41Q1q0xvaxRyBERifjS/GV/OtmZkfzNE0dcGY1azQP8v89Ad+bd37</latexit>

µ
�
F✓(M)

�
=

2

664

µ
�
F1(1, 0)

�

µ
�
F2(1, 2)

�

µ
�
F3(1, 1)

�

µ
�
F4(2, 0)

�

3

775 =

2

664

0.2 0.8
0.01 0.99
0.4 0.6
0.7 0.3

3

775

Fig. 9.2.: Schematic architecture using 4-node graph with S =
{(0, 1), (1, 0)}. Nodes are color-coded, node-states are indicated
by the shape (filled: I, blank: S). First, we compute mi for each
node vi (stored as M), then we feed each mi into a predictor
that predicts the original state.

9.2 Foundations and Problem Formulation

The goal is to find the latent interaction graph of a complex system
with n agents/nodes.

Notational Refresher

We follow the notation from Chapter 2. That is, a graph is represented
as an adjacency matrix A of size n×n (with node set {vi | 1 ⩽ i ⩽ n}).
An entry aij ∈ {0, 1} indicates the presence (aij = 1) or absence
(aij = 0) of an edge between node vi and vj. We assume that A is
symmetric (the graph is undirected), and the diagonal entries are all
zero (the graph has no self-loops). We use A∗ to denote the ground
truth matrix.

Each snapshot (similarly to a graph labeling) assigns a node-state
to each node. The finite set of possible node-states is denoted S.
For convenience, we assume that the node-states are represented
using one-hot encodings. For instance, in an epidemic model, a

194 Chapter 9

Neural Relational Inference

node might be susceptible or infected. Since there are two node-
states, we use S = {(0, 1), (1, 0)}. Each snapshot X ∈ {0, 1}n×|S| can
then conveniently be represented as a matrix with n rows, each row
describing the corresponding one-hot encoded node-state (cf. Figure
9.2, p. 194). We use X to denote the set of independent snapshots.
We make no specific assumption about the underlying distribution
or process behind the snapshots or their relationship to one another.
For a node vi (and fixed snapshot), we use mi ∈ Z|S|

⩾0 to denote the
(element-wise) sum of all neighboring node-states, referred to as
neighborhood counting vector (cf. Section 2.4.3). Let’s return to our
previous example, where S = {(1, 0), (0, 1)}. The state mi = (10, 13)

tells us that node vi has 10 susceptible ((1, 0)) and 13 infected ((0, 1))
neighbors. The set of all possible neighborhood counting vectors is
denoted by M ⊂ Z|S|

⩾0.

Idea

Assuming we know the adjacency matrix A and have a given snapshot
X. We can then compute the neighborhood counting vectors of all
nodes using M = AX, where the i-th row of M equals mi (cf. Figure
9.2, p. 194, center).

In the next step, we feed each counting vector mi into a machine
learning model that predicts (resp. recovers) the original state of vi
in that snapshot. Specifically, for each node vi, we learn a function:

FWi
: M → Cat(S) ,

where Cat(S) denotes the set of all probability distributions over S
(in the sequel, we make the mapping to a probability distribution
explicit by adding a Softmax(·) function). To evaluate FWi

(·), we use
some loss function to quantify how well the distribution predicts the
true state and minimize this prediction loss. We assume that FWi

(·)

9.2 Foundations and Problem Formulation 195

is fully parameterized by a node-dependent parameter matrix Wi

(e.g., in a NN, Wi contains the weights and biases of all layers). The
weights for a set of vertices are given by the list W = {W1, . . . ,Wn}.
We define FW(·) as a node-wise application of FWi

(·), that is,

FW(m1,m2, . . . ,mn) =
(
FW1

(m1), FW2
(m2), . . . , FWn

(mn)
)
.

The hypothesis is that the ground truth adjacency matrix A∗ provides
the best foundation for FWi

, ultimately leading to the smallest predic-
tion loss. Under this hypothesis, we can use the loss as a surrogate for
the accuracy of candidate A (compared to the ground truth graph).

9.2.1 Graph Neural Network

Next, we formulate the graph inference problem using a very ele-
mentary graph neural network (GNN), denoted NN(·), that loosely
resembles an autoencoder architecture: For each snapshot X, we
predict the node-state of each node using only the neighborhood of
that node. Then, we compare the prediction with the actual (known)
node-state.

For a given adjacency matrix (graph) A ∈ {0, 1}n×n and list of weight
matrices W, we define the GNN NN(·), applied to a snapshot X ∈
{0, 1}n×|S| as:

NNW,A : {0, 1}n×|S| → Rn×|S|

NNW,A : X 7→ Softmax
(
FW(AX)

)
,

where Softmax(·) is applied row-wise. Thus, NNW,A(X) results in a
matrix where each row corresponds to a node and models a distribu-
tion over node-states. Like in the auto-encoder paradigm, input and
output are of the same form, and the network learns to minimize
the difference (note that the one-hot encoding can also be viewed

196 Chapter 9

Neural Relational Inference

as a valid probability distribution over node-states). The absence of
self-loops in A is critical as it means that the actual node-state of a
node is not part of its own neighborhood aggregation. As we want
to predict a node’s state, the state itself cannot be part of the input.
We say the node itself is masked.

We will refer to the matrix multiplication AX as graph layer and
to the application of Softmax(FW(·)) as prediction layer. We only
perform a single application of the graph layer on purpose, which
means that only information from the immediate neighborhood
can be used to predict a node-state. While using n-hop (n > 1)
neighborhoods would increase the network’s predictive power, it
would be detrimental to graph reconstruction.

Most modern GNN architectures follow the message-passing scheme,
where each layer performs an aggregate(·) and a combine(·) step. The
aggregate(·) step computes a neighborhood embedding based on a
permutation-invariant function of all neighboring nodes. The com-
bine(·) step combines this embedding with the actual node-state. In
our architecture, aggregation is the element-wise sum. The combina-
tion, however, needs to purposely ignore the node-state (in order for
the prediction task to make sense) and applies Softmax(FW(·)). Thus,
our method can be seen as the application of a single GNN-layer.

9.2.2 Prediction Loss

We assume a loss function2 L(·) that is applied independently to each
snapshot:

L : {0, 1}n×|S| × Rn×|S| → R

2A labeling function, L(·), does not exist in this chapter, so no confusion should
arise.

9.2 Foundations and Problem Formulation 197

The prediction loss L(·) compares the input (actual node-states) and
output (predicted node-states) of the NN(·). We define the loss on
a set of independent snapshots X as the sum over all constituent
snapshots:

L
(
X,NNW,A(X)

)
:=

∑
X∈X

L
(
X,NNW,A(X)

)
.

In our experiments, we use row-wise MSE-loss.

Note that, in the above sum, all snapshots are treated equally inde-
pendent of their corresponding initial conditions or time points at
which they were made (which we do not know anyway). Formally,
this is reflected in the fact that the loss function is invariant with
respect to the snapshot order.

9.2.3 Graph Inference Problem

We define the graph inference problem for an interacting system with
n components as follows:

For given set of snapshots X = {X1, . . . ,Xm}, find an adjacency matrix
A ′ ∈ {0, 1}n×n and NN-parameterization W ′ minimizing the

prediction loss:

(W ′,A ′) := argminW,AL
(
X,NNW,A(X)

)
.

Thus, solving the graph inference problem requires simultaneously
optimizing over a discrete space (graphs) and a continuous space
(NN-weights). The subsequent section explains how to achieve this
by relaxing the discrete space.

Note that, in general, we cannot guarantee that A ′ is equal to the
ground truth matrix A∗. Prasse and Piet Van Mieghem (2018) show

198 Chapter 9

Neural Relational Inference

Input Output

Prediction Layer

Compute

Loss

Graph Layer

C

B

Â

Final Result
<latexit sha1_base64="DB1jF85wzgydkkatwtmBHS4gnus=">AAAC1nichVFNS8NAEH3Gr9bPqkcvxSJ4KomIehT8QA9CBVsLtcgm3dbQNInJVqyl3sSrN6/6s/S3ePBljYIWccNmZt+8eTuzY4eeGyvTfB0xRsfGJyYz2anpmdm5+dzCYiUOupEjy07gBVHVFrH0XF+Wlas8WQ0jKTq2J8/s9m4SP7uWUewG/qnqhbLeES3fbbqOUITq50reqNjpn0rhDS5yBbNo6pUfdqzUKSBdpSD3hnM0EMBBFx1I+FD0PQjE/GqwYCIkVkefWETP1XGJAaaY2yVLkiGItvlv8VRLUZ/nRDPW2Q5v8bgjZuaxyn2gFW2yk1sl/Zj2nftWY60/b+hr5aTCHq1NxaxWPCaucEnGf5mdlPlVy/+ZSVcKTWzrblzWF2ok6dP51tljJCLW1pE89jWzRQ1bn6/5Aj5tmRUkr/ylkNcdN2iFtlKr+KmioF5Em7w+6+GYrd9DHXYq60Vrs2idbBR2jtKBZ7CMFaxxqlvYwSFKrMPBFZ7wjBejatwZ98bDJ9UYSXOW8GMZjx/vFJSL</latexit>

Teal

<latexit sha1_base64="gRhrJNWX1XHDOc5i9nV2ioUsvww=">AAAC33ichVFLT8JAEB7qC/CFj5sXIjHxRFpj1COJj+iBBBN5JEDItiywobRNu6BIOHszXr151X+kv8WDX9diosQwzXZmv5n5dh6mZ4tA6vp7TJubX1hciieSyyura+upjc1S4PZ9ixct13b9iskCbguHF6WQNq94Pmc90+Zls3sa+ssD7gfCdW7k0OP1Hms7oiUsJgE1Utu1W9HkHSZHNcnvpNka5cfjRiqjZ3Ul6WnDiIwMRVJwUx9Uoya5ZFGfesTJIQnbJkYBvioZpJMHrE4jYD4sofycxpREbh9RHBEMaBf/Nm7VCHVwDzkDlW3hFRvHR2aa9nAuFKOJ6PBVDjuA/sS5V1j73xdGijmscAhtgjGhGPPAJXUQMSuzF0VOapmdGXYlqUUnqhuB+jyFhH1aPzxn8PjAusqTpnMV2QaHqe4DTMCBLqKCcMoThrTquAnNlOaKxYkYGfh86HD6qAdrNv4uddooHWSNo6xxfZjJXUULj9MO7dI+tnpMObqkAuqwMO0XeqU3jWkP2qP29B2qxaKcLfol2vMXzUCX9Q==</latexit>

cM

Fig. 9.3.: Illustration of TEAL. Snapshots are processed independently.
Each input/snapshot associates each node with a node state
(blue, pink). The output is a distribution over states for each
node. During training, this distribution is optimized w.r.t the
input. The output is computed based on a multiplication with
the current adjacency matrix candidate (stored as C) and the
application of a node-wise MLP. Ultimately, we are interested in a
binarized version of the adjacency matrix. Color/filling indicates
the state; shape identifies nodes.

that network reconstruction for epidemic models based on time series
data is NP-hard when formulated as a decision problem. We believe
this carries over to our setting but leave a proof for future work.

9.3 Our Method: Teal

As explained in the previous section, it is infeasible to solve the
graph inference problem by iterating over all possible graphs/weights.
Hence, we propose TEAL to search the vast space of possible graphs
(and weights) efficiently. TEAL approximates the graph inference
problem by jointly optimizing the graph A and the prediction layer
weights W.

9.3 Our Method: Teal 199

Therefore, we adopt two tricks: First, we impose a relaxation on
the graph adjacency matrix representing its entries as real-valued
numbers. Second, we use shared weights in the weight matrices
belonging to different nodes. Specifically, each node vi gets its
custom MLP, but weights of all layers, except the last one, are shared
among nodes. This allows us to simultaneously optimize the graph
and the weights using back-propagation. Apart from that, we still
follow the architecture from the previous section. That is, a graph
layer maps a snapshot to neighborhood counting vectors, and each
neighborhood counting vector is pushed through a node-wise MLP.

9.3.1 Graph Layer

Internally, we store the interaction graph as an upper triangular
matrix C. In each step, we (i) compute B = C + C⊤ to enforce
symmetry, (ii) compute A ′ = µ(B) to enforce a reasonable range, and
(iii) set all diagonal entries of A ′ to zero, yielding Â = mask(A ′).

Here, µ(·) is a differential function that is applied element-wise and
maps real-valued entries to the interval [0, 1]. It ensures that Â ap-
proximately behaves like a binary adjacency matrix while remaining
differentiable (the hat-notation indicates relaxation). Specifically,
we use a nested Sigmoid-type function f(·) that is parametrized by a
sharpness parameter v:

µ : R → [0, 1]

µ : x 7→ f
((
f(x) − 0.5

)
· v
)
,

where we choose f(x) = 1/(1+ exp(−x)) and increase the sharpness
(by increasing v) over the course of the training. Note that the
masking is done implicitly if we ensure that diagonal entries in C are
zero and µ(0) = 0.

200 Chapter 9

Neural Relational Inference

Finally, the graph layer matrix is multiplied with the snapshot, which
yields a relaxed version of the neighborhood counting abstractions.
In summary, for a snapshot X, the graph layer computes:

M̂ = ÂX = mask
(
µ(C + C⊤)

)
X ,

where C is optimized during training.

9.3.2 Prediction Layer

In M̂, each row corresponds to one node. Thus, we apply the MLPs
independently to each row. We use m̂i to denote the row correspond-
ing to node vi (i.e., the neighborhood counting relaxation). Let FCi,o

denote a fully-connected (i.e., linear) layer with input (resp. output)
dimension i (resp. o). We use ReLu and Softmax activation functions.
The whole prediction layer MLP contains four sub-layers and is given
as:

o1i = ReLu
(
FC|S|,10(m̂i)

)
o2i = ReLu

(
FC10,10(o

1)
)

o3i = Softmax
(
FC10,|S|(o

2)
)

o4i = Softmax
(
FC|S|,|S|(o

3)
)
.

In our implementation, only the last sub-layer (o4i) contains node-
specific weights. This enables a node-specific shift of the probability
computed in the previous layer. All other weights are shared among
nodes which results in strong regularization. In summary, FWi

(·)
applies the MLP of node vi and Wi contains the weights and biases
from all layers j in oji.

Note that we use a comparably small dimension (i.e., 10) for internal
embeddings, which has shown to be sufficient in our experiments.

9.3 Our Method: Teal 201

The node-specific weights lead to a slight but consistent improvement
of the graph reconstruction. All node-specific weights can be updated
efficiently in parallel in a single forward-backward pass.

9.3.3 Training

We empirically find that over-fitting is not a problem and, therefore,
do not use a test set. However, a natural approach would be to
split the snapshots into a training and test set and optimize Â and
W on the training set until the loss reaches a minimum on the test
set. Another important aspect during training is the usage of mini-
batches. For ease of notation, we have ignored batches so far. In
practice, mini-batches of snapshots are crucial for fast and robust
training. A mini-batch of size b can be created by concatenating b
snapshots (in the graph layer) and re-ordering the rows accordingly
(in the prediction layer).

9.3.4 Limitations

There are some relevant limitations to TEAL. First, we cannot guaran-
tee that the ground truth graph is actually the solution to the graph
inference problem. In particular, simple patterns in the time domain
(that enable trivial graph inference using time series data) might
correspond to highly non-linear patterns inside a single snapshot.
Secondly, TEAL is only applicable if statistical associations among
adjacent nodes manifest themselves in a way that renders the count-
ing abstraction meaningful. Statistical methods are more robust in
the way they can handle different types of pair-wise interactions but
less powerful regarding non-linear combined effects of the complete
neighborhood. Another relevant design decision is to use one-hot
encoding, which renders the forward pass extremely fast but will

202 Chapter 9

Neural Relational Inference

Model9:ForestFire.Model10:GameofLife.Model11:Rock-Paper-Scissors.Model12:CoupledMapLattice.Model13:InvertedVoter.

S I A B A D

R P S E T F 0.0 1.0

SIS Inverted Voter Game of Life

Rock-Paper-Scissors Forest Fire CMP

Fig. 9.4.: Examples of typical equilibrium snapshots on a 10 × 10 grid
graph. Different dynamics give rise to different types of cluster
formations.

reach limitations when the node-state domain becomes very com-
plex. Lastly, together with relational homogeneity, we also assume
that all agents behave reasonably similarly, enabling weight sharing,
increasing training efficiency, and reducing the number of required
samples.

9.4 Testing Teal

We conduct four experiments using synthetically generated snap-
shots. In Experiment 1, we analyze the underlying hypothesis that
the ground truth graph enables the best node-state prediction. In
Experiment 2, we study the importance of sample size for the re-
construction accuracy, and in Experiment 3, we compare TEAL to
statistical baselines. Finally, in Experiment 4, we compare TEAL with
machine learning baselines on time series data.

9.4 Testing Teal 203

Setup. Our prototype of TEAL is implemented using PyTorch [Paszke
et al., 2019] and is executed on a standard desktop computer with
32 GB of RAM and an Intel i9-10850K CPU.

Accuracy and Loss. We quantify the performance of TEAL using the
graph loss and the prediction loss. The graph loss measures the quality
of an inferred graph. It is defined as the L1 (Manhattan) distance of
the upper triangular parts of the two adjacency matrices (i.e., the
number of edges to add/remove). We always use a binarized version
of inferred graph Ĉ for comparison with the ground truth A∗. The
prediction loss measures how well TEAL predicts masked node-states
and follows the definition in Section 9.2.2. All results are based on a
single run of TEAL. Performing multiple runs and using the result with
the lowest prediction loss might further improve TEAL’s performance.
For more details on the architecture and hyperparameters of TEAL,
we refer the reader to Appendix B.1.

Dynamical Models

We study six models. A precise description of the dynamics and
parameters is provided in Appendix B.2. We focus on stochastic
processes, since probabilistic decisions and interactions are essential
for modeling uncertainty in real-world systems. The models include
a simple SIS-epidemic model where infected nodes can randomly
infect susceptible neighbors or become susceptible again. In this
model, susceptible nodes tend to be close to other susceptible nodes
and vice versa. This renders network reconstruction comparably sim-
ple. In contrast, we also propose an Inverted Voter model (InvVoter)
where nodes tend to maximize their disagreement with their neigh-
borhood (influenced by the original Voter model by Campbell et al.
(1954)). Nodes have one of two opinions (A or B), and nodes in
A tend to move to B faster the higher their number of A neighbors

204 Chapter 9

Neural Relational Inference

and vice versa. For investigating even more complex emerging dy-
namics, we study a system loosely inspired by Conway’s Game of
Life. Nodes (cells) are either dead (D) or alive (A). Living conditions
are good (i.e., nodes tend to stay alive or be born) when roughly
half of a node’s neighbors are alive. Likewise, they tend to die (or
stay dead) when the neighborhood is highly unbalanced. That is,
almost all neighboring cells are either dead (underpopulation) or
alive (overpopulation). We also examine a rock-paper-scissors (RPS)
model to study evolutionary dynamics [Szabó and Fath, 2007] and
the well-known Forest Fire model [Bak et al., 1990] where a node
(spot) can be empty (E), occupied by a tree (T), or occupied by fire
(F) induced by stochastic lightning. Finally, we test a deterministic
discrete-time dynamical model: a coupled map lattice model (CML)
[Garcia et al., 2002; Kaneko, 1992; Z. Zhang et al., 2019] to study
graph inference in the presence of chaotic behavior. As the CML
model admits real node-values in [0, 1], we performed discretization
into 10 equally-spaced bins.

For the stochastic models, we use numerical simulations to sample
from the equilibrium distribution of the systems. For CML, we ran-
domly sample an initial state and simulate it for a random period.
Note that we do not explicitly add measurement errors, but all nodes
are subject to internal noise (i.e., they spontaneously flip with a small
probability).

Figure 9.4 (p. 203) provides visualizations of typical equilibrium
samples from the dynamical models.

9.4 Testing Teal 205

Pr
ed

ict
io

n
Lo

ss
SIS Inverted Voter Game of Life

Rock-Paper-Scissors Forest Fire CMP

Graph Distance Graph Distance Graph Distance

Fig. 9.5.: Exp. 1: [Lower is better.] Computing the loss landscape based
on all possible 5-node graphs. x-axis: Graph distance to ground
truth adjacency matrix. y-axis: Mean prediction loss of corre-
sponding graph candidates. Error bars denote min/max-loss.

9.4.1 Experiment 1: Loss Landscape

For this experiment, we generated 5000 snapshots for all dynami-
cal models on the so-called bull graph (as illustrated in Figure 9.1,
p. 191). We then trained TEAL and measured the prediction loss
for all potential 5 × 5 adjacency matrices representing connected
graphs. Note that the ground truth graph has a graph distance of
zero. During training, we fixed the graph layer and only optimized
the prediction layer. We observe a large dependency between the pre-
diction loss of a candidate graph and the corresponding graph loss.
We conclude that the hypothesis that graphs closer to the ground
truth yield a better predictive performance is reasonable. The Game
of Life dynamical model provides the only example of graph candi-
dates that allow a better prediction than the ground truth graph (by
a minimal amount). Interestingly, this is one of the graph candidates
furthest from the ground truth.

206 Chapter 9

Neural Relational Inference

Fig. 9.6.: Exp. 2: [Lower is better.] Influence of snapshot number on
training convergence (SIS-dynamics). x-axis: Epoch number.
y-axis: Graph distance between ground truth graph and the state
of TEAL. Clearly, a higher sample size yields better performance.
95% CIs are based on ten independent training runs.

9.4.2 Experiment 2: Sample Size

We tested the effect of the number of snapshots on the graph loss
using SIS-dynamics. For this experiment, we used a L × L grid
graph with L ∈ {5, 7, 10} and compared results based on 102, 103, 104

snapshots. It can be clearly seen that the higher the number of
snapshots, the faster the training procedure converges. In the case of
104 snapshots, TEAL already converges after a few epochs. This is a
natural consequence of each epoch containing more forward passes.
More interesting is that a larger sample size yields a better graph loss
(reconstruction accuracy). It shows that TEAL can, in fact, absorb
the additional information provided by the entirety of the training
data. Specifically, 100 snapshots do not contain enough information
to approximately solve the graph inference problem. Results are
shown in Figure 9.6.

9.4 Testing Teal 207

Tab. 9.1.: Exp. 3: [Lower is better.] Results of different graph inference
methods.

Graph Loss Runtime (sec)

Model Graph TEAL Corr MI ParCorr TEAL Corr MI ParCorr

SIS

ER 19 0 0 0 890 < 1 < 1 8

Geom 50 88 141 54 1366 < 1 2 126

Grid 12 0 0 0 2131 < 1 9 1862

WS 0 0 0 0 109 < 1 1 22

InvVoter

ER 1 66 24 66 96 < 1 < 1 8

Geom 0 556 38 556 167 < 1 2 125

Grid 0 360 90 360 754 < 1 10 1861

WS 0 138 2 138 110 < 1 1 21

Game of Life

ER 44 48 20 54 599 < 1 < 1 7

Geom 0 554 104 556 152 < 1 2 132

Grid 10 360 20 360 2181 < 1 10 1901

WS 0 138 22 138 111 < 1 1 21

RPS

ER 0 0 0 0 114 < 1 < 1 8

Geom 1 76 74 2 317 < 1 3 129

Grid 72 0 0 0 2445 < 1 10 1873

WS 0 4 4 0 128 < 1 1 21

Forest Fire

ER 13 0 0 6 1030 < 1 < 1 8

Geom 19 320 130 326 1486 < 1 2 127

Grid 30 0 0 0 2520 < 1 9 1892

WS 0 2 0 4 131 < 1 1 22

CML

ER 0 0 4 0 156 < 1 < 1 7

Geom 0 0 46 2 316 < 1 3 125

Grid 8 0 0 0 5569 < 1 11 1874

WS 0 0 4 0 192 < 1 < 1 22

9.4.3 Experiment 3: Independent Snapshots

Next, we compare TEAL with statistical baselines.

Ground Truth Graphs. To generate ground truth graphs we use
Erdős-Renyi (ER) (N = 22), Geometric (Geom) (N = 50), and
Watts–Strogatz (WS) (N = 30). Moreover, we use a 2D-grid graph
with 10×10 nodes (N = 100, |E| = 180). We use 50 thousand samples.
Graphs were generated the using networkX package [Hagberg, Swart,
et al., 2008] (cf. Appendix B.3 for details).

208 Chapter 9

Neural Relational Inference

SIS

Ne

ig
hb

or
s

in
 S

Neighbors in I

Inverted Voter

Ne

ig
hb

or
s

in
 A

Neighbors in B

Game of Life

Ne

ig
hb

or
s

De
ad

Neighbors Alive Pr
ob

ab
ilit

y
of

 S
/A

/D
ea

d

0.0

1.0

0.5

Fig. 9.7.: Output of the prediction layer for a random node in the
Watts–Strogatz network. We map neighborhood counting vectors
to the probability of the node being in state S (SIS), A (InvVoter),
or D (Game of Life).

Baselines. As statistical baselines, we use the Python package netrd
[Hartle et al., 2020]. Specifically, we use the correlation (Corr),
mutual information (MI), and partial correlation (ParCorr) methods.
The baselines only return weighted matrices. Hence, they need to
be binarized using a threshold. To find the optimal threshold, we
provide them with the number of edges of the ground truth graph.
Notably, especially in sparse graphs, this leads to unfair advantage
and renders the results not directly comparable. Furthermore, netrd
only accepts binary or real-valued node-states. This is a problem for
the categorical models RPS and FF. As a solution, we simply map
the three node-states to real values (1, 2, 3), breaking statistical
convention. Interestingly, the baselines handle this well and, in
most cases, identify the ground truth graph nevertheless. Results are
shown in Table 9.1 (p. 208).

Prediction Layer Visualization. We can visualize the prediction layer
for the 2-state models. It encodes the conditional probability to be in
a specific node-state given the 2-dimensional neighborhood counting
vector mi. Figure 9.7 illustrates this conditional probability as a
function of each possible neighborhood counting vector. The results
are given for a Watts–Strogatz graph (where each node has approxi-
mately degree 4). The prediction layer belonging to the same node

9.4 Testing Teal 209

was used for all three models. We observe that the prediction layer
finds conditional probability distributions that capture the specific
characteristics of the dynamical models. It also generalizes well
(beyond degree 4).

9.4.4 Experiment 4: Time Series Data

In contrast to approaches for network inference based on time se-
ries data, TEAL can be used when there is no (known) temporal
relationship between snapshots. However, we can still apply TEAL

when time series data is available. In this experiment, we generate a
single trajectory of a stochastic process and observe it at an interval
x (x ∈ {1, 5, 10, 20}), e.g., x = 1 means that we observe the process
after every jump in the underlying stochastic process. The reason
to test different intervals between observations is that time series
analysis methods are, in principle, sensitive to the time resolution of
the observations. If too many (or too few) nodes change their state
from one observation to another, this could hinder these approaches’
capability of finding and exploiting temporal patterns. In practice,
we, however, observe little dependence on the temporal resolution.

Baseline. We compare TEAL with the previous statistical baselines
and with the machine learning approaches Automated Interactions
and Dynamics Discovery (AIDD) [Yan Zhang et al., 2021] and Gumbel
Graph Network (GGN) [Z. Zhang et al., 2019] which are both general
frameworks to infer the network structure based on time series data
(cf. Section 9.5 for more details).

Setup. We used 6000 samples (fewer were not possible without
further adapting the GGN code) and a simple 5× 5 grid graph (larger
graphs made the GGN application too expensive). We used binary

210 Chapter 9

Neural Relational Inference

Tab. 9.2.: Exp. 4: [Lower is better.] Results of different graph inference
methods on time series data.

Graph Loss Runtime (sec)

Model Interval TEAL AIDD GGN Corr MI ParCorr TEAL AIDD GGN

SIS

1 8 42 179 4 4 2 62 2163 4382

5 0 28 179 0 0 0 62 2318 4396

10 1 29 85 0 0 0 62 2192 4432

20 1 36 83 0 0 0 62 2222 4402

InvVoter

1 0 18 73 80 22 80 44 2224 4358

5 0 28 31 80 16 80 37 2318 4395

10 0 24 66 80 16 80 37 2181 4432

20 0 27 80 80 16 80 37 2172 4419

GoL

1 13 42 199 80 52 80 62 2172 4443

5 4 42 208 80 22 80 62 2166 4353

10 4 40 190 80 26 80 61 2224 4354

20 9 42 163 80 22 80 62 2218 4391

state dynamics because we could only apply the baseline code off-
the-shelf to this format. We trained AIDD for 400 epochs and GGN for
40 epochs (we found that accuracy would not improve after that).
For comparison, we made the results of the baselines symmetric and
binary.

Results. Generally, we find that TEAL outperforms the methods
based on time series analysis (AIDD and GGN). This is surprising, as,
in principle, the temporal data should contain significantly more
information on the connectivity than the individual snapshots. We
can only speculate why GGN performs poorly, but we hypothesize that
the method is conceptually unsuited for stochastic dynamics of jump
processes where only a single agent changes at a time (and not all
agents at once). Less surprisingly, we find that TEAL is many orders
of magnitude faster than AIDD and GGN (ca. 40 to 70 times) while
still processing many more epochs (up to 5000 in TEAL vs 400 and 40
in AIDD and GGN, respectively).

9.4 Testing Teal 211

Moreover, we find that TEAL performs slightly better than the statisti-
cal methods. Interestingly, Mutual Information is the only baseline
that performs well on all dynamical models. Corr and ParCorr fail
on the InvVoter and GoL model (this happens consistently even when
increasing the number of snapshots). Using automated thresholding
(instead of providing netrd with the number of edges) prevents the
“collapse” of the statistical methods but leads to a larger graph loss
in general. Detailed results are shown in Table 9.2 (p. 211).

9.4.5 Discussion

The results show that graph inference based on independent snap-
shots is possible and that TEAL is a viable alternative to statistical
methods. Compared to the baselines, TEAL yielded the highest accu-
racy in most of the cases, although we gave the (statistical) baseline
methods the advantage of knowing the ground truth number of
edges. TEAL performed particularly well in challenging cases where
neighboring nodes do not tend to be in the same (or in similar)
node-states. TEAL even performed acceptably in the case of CML
dynamics despite the discretization of the data and the chaotic and
deterministic nature of the process.

212 Chapter 9

Neural Relational Inference

9.5 Related Work

Literature abounds with methods to infer the (latent) functional orga-
nization of complex systems that is often expressed using (potentially
weighted, directed, temporal, multi-) graphs.

Most relevant for this work are previous approaches that use deep
learning on time series data to learn the interaction dynamics and
the interaction structure. Zhang et al. designed a two-component
GNN architecture where a graph generator network proposes interac-
tion graphs and a dynamics learner learns to predict the dynamical
evolution using the interaction graph [Z. Zhang et al., 2019; Yan
Zhang et al., 2021]. Both components are trained alternately. Simi-
larly, Kipf et al. (2018) learn the dynamics using an encoder-decoder
architecture that is constrained by an interaction graph which is
optimized simultaneously. Huang et al. (2020) use a compression-
based method for this purpose. Another state-of-the-art approach for
this problem, based on regression analysis instead of deep learning,
is the ARNI framework by Casadiego et al. (2017). However, this
method requires time series data and hinges on a good choice of
basis functions.

Other methods to infer interaction structures aim at specific dynami-
cal models and applications. Examples include epidemic contagion
[M. E. Newman, 2018; Di Lauro et al., 2020; Prasse and Piet Van
Mieghem, 2020a], gene networks [Kishan et al., 2019; Omranian
et al., 2016], functional brain network organization [Abril et al.,
2018], and protein-protein interactions [Hashemifar et al., 2018]. In
contrast, our approach assumes no prior knowledge about the laws
that govern the system’s (co-)evolution.

Statistical methods provide an equally viable and often very robust
alternative. These can be based on partial correlation, mutual infor-
mation, or graphical lasso [Tibshirani, 1996; Friedman et al., 2008].

9.5 Related Work 213

Here, we not only rely on pairwise correlations among components
but also on the joint impact of all neighboring components, which is
necessary in the presence of non-linear dynamical laws governing the
system. Moreover, we directly infer binary (i.e., unweighted) graphs
in order to not rely on (often unprincipled) threshold mechanisms.

Our method is also related to self-supervised machine learning, partic-
ularly masking. Masking, in the form of masked language modeling,
was popularized for pre-training transformer-based models like BERT,
proposed by Devlin et al. (2018). Masking image patches also results
in state-of-the-art pre-training for image recognition [J. Chen et al.,
2022].

Likewise, node-attribute masking was successfully used as a GNN
pre-training technique by W. Hu et al. (2019) and to improve the
ability of a network to generalize by Mishra et al. (2020). This work
uses masking to establish the general optimization objective (not for
pre-training).

Another relevant research area is optimizing discrete structures (like
graphs). While traditional methods use gradient-free techniques such
as greedy optimization [Netrapalli et al., 2010], genetic [Barman
and Kwon, 2018], or memetic [K. Wu et al., 2019] algorithms, SGD-
based approaches have gained popularity. For instance, Paulus et
al. (2020) apply the Gumble-softmax-trick. Fu et al., 2020 use
iterative refinement using a differential (GNN-based) loss function,
and Bengio et al., 2021 directly predict a sample from a distribution
over discrete objects that is implicitly specified by a reward signal.

214 Chapter 9

Neural Relational Inference

9.6 Conclusions and Future Work

We proposed TEAL, a model-free and threshold-free approach to
infer the underlying graph structure of a dynamical system from
independent observations. TEAL is based on the principle that lo-
cal interactions among agents manifest themselves in specific local
patterns. These patterns can be found and exploited.

More generally, this study confirms that the underlying hypothesis—
that the ground truth graph best describes a set of snapshots—gives
rise to a promising graph inference paradigm. We also show that
node-attribute masking is a principled and practical approach to
operationalizing and measuring what it means to “best describe”
the observational data. For small graphs, we demonstrated this by
enumerating the whole search space (Experiment 1). For larger
graphs, we demonstrated this by showing that TEAL beats baselines
in many cases (Experiment 3 and 4).

TEAL is only one possibility to explore the vast space of all possible
graphs by utilizing a relaxation of the adjacency matrix. This makes
the problem amenable to gradient-based methods. Other methods
(e.g., based on genetic algorithms or Gumbel-softmax-based opti-
mization) are also possible and worth exploring. We believe that the
main challenge for future work is to find ways of inferring graphs
when the types of interaction differ considerably among edges. More-
over, a deeper theoretical understanding of which processes lead to
meaningful statistical associations, not only over time but also within
snapshots, would be desirable.

9.6 Conclusions and Future Work 215

Part IV

Concluding Remarks

Conclusion 10
Network science and computational modeling of epidemics are both
exciting research topics in their own. However, exploring emerging
phenomena when spreading is constrained by a network topology re-
veals compelling universalities and enables an intriguing unification
of different research areas. Properties of a network—like hubs and
small-worldness—are the drivers of emergent dynamical patterns.

This thesis contributed to two relevant techniques for the compu-
tational analysis of spreading dynamics on networks: simulation
and model reduction. We also presented applications, like vaccine
distribution, and—using Covid-19 as an example—discussed pitfalls
when applying such models to the real world.

Simulation methods and model-reduction techniques can be used to
distill high-level properties from model specifications. Simulation-
based methods are easy to apply and very flexible. This thesis con-
tributed to the scope of simulation-based methods by reducing their
asymptotic run-time and increasing their flexibility to a new model
class of non-Markovian dynamics. Model-reduction approaches pro-
vide the modeler with more responsibility. Ideally, they offer precise
control over the trade-off between accuracy and computational costs.
This is particularly true for the translation method to Markov Popula-
tion Models developed in this thesis. They can also be used when the
summary statistics obtained from simulation runs are not the central
area of interest. We also showed how to use a simple reduction to
simultaneously study a whole family of models (relating to different
rates).

219

An intriguing property of spreading dynamics is the emergence of
spatial correlations that are manifestations of the joint time evolu-
tion of the nodes. This thesis showed that neighboring nodes form
patterns that are so characteristic and informative that they can be
found and used to infer the underlying network structure.

One theme that constantly accompanied us was identifying the cor-
rect level of abstraction. This challenge is at the heart of all modeling,
and networks are no exception. While adding complexity (weights,
temporal features, and node-level variety) to networks is generally
straightforward, it is easy to misjudge the implications. We extended
the standard SIS model, for instance, in order to capture the progres-
sion of a Covid-19 disease more accurately and to study the effects
of heterogeneity in a society. However, complexity is not an end in
itself. Careful consideration must be given to the question whether
the complexity of the model is useful or whether, in the worst case,
it could obscure important relationships.

All this becomes even more relevant when mathematical models are
applied to the real world. The Covid-19 pandemic has revealed to
us that the applicability and interpretation of computational models
are not an abstract issue but carry real-world responsibilities. Un-
fortunately, the Covid-19 pandemic was not a shining moment for
mathematical modeling, but brought many problems to light. This
includes improper use of modeling techniques without discussing
their limitations or communicating their underlying assumptions. It
became abundantly clear that simulations can never fully capture
the diversity of the natural world. Statements derived from models
should always be scrutinized for their (implicit) assumptions and the
quality of their parameters.

220 Chapter 10

Conclusion

10.1 Future Work

Spreading on networks is far from being solved. While specific per-
spectives are given in each chapter separately, we want to take this
opportunity to provide a broader overview. On a technical level,
finding high-level (potentially semi-quantitative) descriptions of the
emerging dynamics is still an open problem. Global summary statis-
tics are undoubtedly helpful in many cases, but generating a more
informative representation would also be intriguing. Visualizations
that indicate dynamic pathways of an infection or modes in the under-
lying distribution in networks with millions of nodes could provide
new insights, especially when they can be linked to graph-theoretical
properties.

On a more general level, the messiness of real-world data still hinders
many tools. This is especially true for the lack of actual connectivity
data. Often, only small subsets of the contact network are known,
and providing robust analysis despite this is an open problem.

Another exciting research area is the study of adaptive networks,
where the feedback loop between network connectivity and dynamics
is investigated. Most work of this thesis could be re-thought in these
terms and may contribute to discovering surprising relationships and
patterns.

10.1 Future Work 221

Bibliography

Abril, Ildefons Magrans de, Junichiro Yoshimoto, and Kenji Doya (2018).
“Connectivity inference from neural recording data: Challenges, mathe-
matical bases and research directions”. In: Neural Networks 102, pp. 120–
137 (cit. on p. 213).

Adam, David (2020). “Special report: The simulations driving the world’s
response to COVID-19.” In: Nature 580.7803, p. 316 (cit. on p. 122).

Adam, Dillon, Peng Wu, Jessica Wong, et al. (2020). “Clustering and su-
perspreading potential of severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) infections in Hong Kong”. In: PREPRINT (Version 1)
available at Research Square (cit. on p. 123).

Adiga, Aniruddha, Devdatt Dubhashi, Bryan Lewis, et al. (2020). “Math-
ematical models for covid-19 pandemic: a comparative analysis”. In:
Journal of the Indian Institute of Science, pp. 1–15 (cit. on p. 126).

Afshordi, Niayesh, Benjamin Holder, Mohammad Bahrami, and Daniel
Lichtblau (2020). “Diverse local epidemics reveal the distinct effects of
population density, demographics, climate, depletion of susceptibles, and
intervention in the first wave of COVID-19 in the United States”. In: arXiv
preprint arXiv:2007.00159 (cit. on p. 127).

Aleta, Alberto, Guilherme Ferraz de Arruda, and Yamir Moreno (2020).
“Data-driven contact structures: from homogeneous mixing to multilayer
networks”. In: arXiv preprint arXiv:2003.06946 (cit. on p. 130).

Allen, Arnold O (1990). Probability, statistics, and queueing theory. Gulf
Professional Publishing (cit. on pp. 30, 45).

Allen, George Edward and Calvin Dytham (2009). “An efficient method for
stochastic simulation of biological populations in continuous time”. In:
Biosystems 98.1, pp. 37–42 (cit. on p. 168).

Allen, Linda JS (2015). “Stochastic population and epidemic models”. In:
Mathematical biosciences lecture series, stochastics in biological systems
(cit. on p. 128).

223

Althouse, Benjamin M, Edward A Wenger, Joel C Miller, et al. (2020).
“Superspreading events in the transmission dynamics of SARS-CoV-2:
Opportunities for interventions and control”. In: PLoS biology 18.11,
e3000897 (cit. on p. 122).

Amini, Hamed, Rama Cont, and Andreea Minca (2016). “Resilience to
contagion in financial networks”. In: Mathematical finance 26.2, pp. 329–
365 (cit. on p. 190).

Anderson, Roy M, B Anderson, and Robert M May (1992). Infectious diseases
of humans: dynamics and control. Oxford university press (cit. on p. 126).

Anderson, William J (2012). Continuous-time Markov chains: An applications-
oriented approach. Springer Science & Business Media (cit. on p. 33).

Backenköhler, Michael and Gerrit Großmann (2020). “Poster: Birth-Death
Processes Reproduce the Infection Footprint of Complex Networks”. In:
(cit. on p. 14).

Baier, Christel, Boudewijn Haverkort, Holger Hermanns, and J-P Katoen
(2003). “Model-checking algorithms for continuous-time Markov chains”.
In: IEEE Transactions on software engineering 29.6, pp. 524–541 (cit. on
p. 34).

Baier, Christel, Boudewijn Haverkort, Holger Hermanns, and Joost-Pieter
Katoen (2000). “Model checking continuous-time Markov chains by tran-
sient analysis”. In: International Conference on Computer Aided Verification.
Springer, pp. 358–372 (cit. on p. 34).

Bailey, Norman TJ (1964). “Some stochastic models for small epidemics in
large populations”. In: Applied Statistics, pp. 9–19 (cit. on p. 9).

Bak, Per, Kan Chen, and Chao Tang (1990). “A forest-fire model and some
thoughts on turbulence”. In: Physics letters A 147.5-6, pp. 297–300 (cit.
on p. 205).

Ball, Frank, David Sirl, and Pieter Trapman (2010). “Analysis of a stochastic
SIR epidemic on a random network incorporating household structure”.
In: Mathematical Biosciences 224.2, pp. 53–73 (cit. on p. 138).

Barabasi, Albert-Laszlo (2005). “The origin of bursts and heavy tails in
human dynamics”. In: Nature 435.7039, p. 207 (cit. on p. 69).

224 Bibliography

Barabási, Albert-László (2013). “Network science”. In: Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 371.1987, p. 20120375 (cit. on pp. 9, 17, 20).

Barbarossa, Maria Vittoria, Jan Fuhrmann, Jan H Meinke, et al. (2020).
“Modeling the spread of COVID-19 in Germany: Early assessment and
possible scenarios”. In: Plos one 15.9, e0238559 (cit. on p. 127).

Barman, Shohag and Yung-Keun Kwon (2018). “A Boolean network infer-
ence from time-series gene expression data using a genetic algorithm”.
In: Bioinformatics 34.17, pp. i927–i933 (cit. on p. 214).

Bartlett, MS (1960). “Monte Carlo studies in ecology and epidemiology”. In:
Proc. Fowth Berkeley Symp. Math. Statist. Prob. Vol. 4, pp. 39–56 (cit. on
p. 9).

Benayoun, Marc, Jack D Cowan, Wim van Drongelen, and Edward Wallace
(2010). “Avalanches in a stochastic model of spiking neurons”. In: PLoS
computational biology 6.7 (cit. on pp. 8, 99).

Bengio, Emmanuel, Moksh Jain, Maksym Korablyov, Doina Precup, and
Yoshua Bengio (2021). “Flow Network based Generative Models for
Non-Iterative Diverse Candidate Generation”. In: Advances in Neural
Information Processing Systems 34 (cit. on p. 214).

Bertozzi, Andrea L, Elisa Franco, George Mohler, Martin B Short, and Daniel
Sledge (2020). “The challenges of modeling and forecasting the spread
of COVID-19”. In: arXiv preprint arXiv:2004.04741 (cit. on p. 128).

Biswas, Kathakali, Abdul Khaleque, and Parongama Sen (2020). “Covid-
19 spread: Reproduction of data and prediction using a SIR model on
Euclidean network”. In: arXiv preprint arXiv:2003.07063 (cit. on p. 130).

Blythe, SP and RM Anderson (1988). “Variable infectiousness in HFV trans-
mission models”. In: Mathematical Medicine and Biology: A Journal of the
IMA 5.3, pp. 181–200 (cit. on p. 69).

Boguná, Marian, Luis F Lafuerza, Raúl Toral, and M Ángeles Serrano (2014).
“Simulating non-Markovian stochastic processes”. In: Physical Review E
90.4, p. 042108 (cit. on pp. 69, 84).

Boltzmann, Ludwig (2012). Lectures on gas theory. Courier Corporation
(cit. on p. 9).

Bibliography 225

Bortolussi, Luca (2016). “Hybrid behaviour of Markov population models”.
In: Information and Computation 247, pp. 37–86 (cit. on p. 168).

Bortolussi, Luca and Jane Hillston (2012). “Fluid model checking”. In:
International Conference on Concurrency Theory. Springer, pp. 333–347
(cit. on p. 34).

Bortolussi, Luca, Jane Hillston, Diego Latella, and Mieke Massink (2013).
“Continuous approximation of collective system behaviour: A tutorial”.
In: Performance Evaluation 70.5, pp. 317–349 (cit. on p. 184).

Boudrioua, Mohamed Samir and Abderrahmane Boudrioua (2020). “Pre-
dicting the COVID-19 epidemic in Algeria using the SIR model”. In:
medRxiv (cit. on p. 127).

Bovenkamp, R. van de and P. Van Mieghem (2014). “Time to metastable
state in SIS epidemics on graphs”. In: Signal-Image Technology and
Internet-Based Systems. IEEE, pp. 347–354 (cit. on p. 154).

Brauer, Fred, PV den Driessche, and Jianhong Wu (2008). “Lecture notes in
mathematical epidemiology”. In: Berlin, Germany. Springer 75.1, pp. 3–
22 (cit. on p. 126).

Brauner, Jan M., Sören Mindermann, Mrinank Sharma, et al. (2020). “Infer-
ring the effectiveness of government interventions against COVID-19”. In:
Science. eprint: https://science.sciencemag.org/content/early/
2020/12/15/science.abd9338.full.pdf (cit. on p. 121).

Buchanan, Colin R, Cyril R Pernet, Krzysztof J Gorgolewski, Amos J Storkey,
and Mark E Bastin (2014). “Test–retest reliability of structural brain
networks from diffusion MRI”. In: Neuroimage 86, pp. 231–243 (cit. on
p. 8).

Buchholz, Peter (1994). “Exact and ordinary lumpability in finite Markov
chains”. In: Journal of applied probability 31.1, pp. 59–75 (cit. on p. 169).

Bui, Quoctrung, Josh Katz, Alicia Parlapiano, and Margot Sanger-Katz
(2020). “What 5 coronavirus models say the next month will look like”.
In: New York Times (cit. on p. 122).

Campan, Alina, Alfredo Cuzzocrea, and Traian Marius Truta (2017). “Fight-
ing fake news spread in online social networks: Actual trends and future
research directions”. In: 2017 IEEE International Conference on Big Data
(Big Data). IEEE, pp. 4453–4457 (cit. on p. 5).

226 Bibliography

Campbell, Angus, Gerald Gurin, and Warren E Miller (1954). “The voter
decides.” In: (cit. on p. 204).

Cao, Yang, Daniel T Gillespie, and Linda R Petzold (2006). “Efficient step
size selection for the tau-leaping simulation method”. In: The Journal of
chemical physics 124.4, p. 044109 (cit. on p. 168).

Cardelli, Luca, Mirco Tribastone, Max Tschaikowski, and Andrea Vandin
(2017). “ERODE: a tool for the evaluation and reduction of ordinary
differential equations”. In: International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. Springer, pp. 310–328
(cit. on p. 168).

Casadiego, Jose, Mor Nitzan, Sarah Hallerberg, and Marc Timme (2017).
“Model-free inference of direct network interactions from nonlinear col-
lective dynamics”. In: Nature communications 8.1, pp. 1–10 (cit. on
p. 213).

Castellano, Claudio, Santo Fortunato, and Vittorio Loreto (2009). “Statisti-
cal physics of social dynamics”. In: Reviews of modern physics 81.2, p. 591
(cit. on p. 9).

Castro, Mario, Saúl Ares, José A Cuesta, and Susanna Manrubia (2020).
“The turning point and end of an expanding epidemic cannot be precisely
forecast”. In: Proceedings of the National Academy of Sciences 117.42,
pp. 26190–26196 (cit. on p. 128).

Cave, Emma (2020). “COVID-19 super-spreaders: Definitional quandaries
and implications”. In: Asian Bioethics Review, p. 1 (cit. on p. 123).

Cevik, Muge, Julia Marcus, Caroline Buckee, and Tara Smith (2020). “SARS-
CoV-2 transmission dynamics should inform policy”. In: Available at SSRN
3692807 (cit. on p. 123).

Chan, Thalia E, Michael PH Stumpf, and Ann C Babtie (2017). “Gene
regulatory network inference from single-cell data using multivariate
information measures”. In: Cell systems 5.3, pp. 251–267 (cit. on p. 190).

Chen, Jun, Ming Hu, Boyang Li, and Mohamed Elhoseiny (2022). “Efficient
Self-supervised Vision Pretraining with Local Masked Reconstruction”.
In: arXiv preprint arXiv:2206.00790 (cit. on p. 214).

Bibliography 227

Chen, Wenbin, Nagiza F Samatova, Matthias F Stallmann, William Hendrix,
and Weiqin Ying (2016). “On size-constrained minimum s–t cut problems
and size-constrained dense subgraph problems”. In: Theoretical Computer
Science 609, pp. 434–442 (cit. on p. 160).

Cheng, Shin-Ming, Weng Chon Ao, Pin-Yu Chen, and Kwang-Cheng Chen
(2010). “On modeling malware propagation in generalized social net-
works”. In: IEEE Communications Letters 15.1, pp. 25–27 (cit. on p. 5).

Comunian, Alessandro, Romina Gaburro, and Mauro Giudici (2020). “In-
version of a SIR-based model: A critical analysis about the application to
COVID-19 epidemic”. In: Physica D: Nonlinear Phenomena 413, p. 132674
(cit. on p. 128).

Cooper, Ian, Argha Mondal, and Chris G Antonopoulos (2020). “A SIR
model assumption for the spread of COVID-19 in different communities”.
In: Chaos, Solitons & Fractals 139, p. 110057 (cit. on p. 127).

Cota, Wesley and Silvio C Ferreira (2017). “Optimized Gillespie algorithms
for the simulation of Markovian epidemic processes on large and hetero-
geneous networks”. In: Computer Physics Communications 219, pp. 303–
312 (cit. on pp. 43, 45, 47, 56, 62, 91).

Cox, Christopher (Nov. 2020). The Vulnerable Can Wait. Vaccinate the Super-
Spreaders First Who gets priority when Covid-19 shots are in short supply?
Network theorists have a counterintuitive answer: Start with the social
butterflies. https : / / www . wired . com / story / covid - 19 - vaccine -
super-spreaders/. Online; accessed May 24, 2022 (cit. on p. 119).

Cox, David Roxbee (1962). “Renewal theory”. In: (cit. on p. 76).

D’Angelo, Gianlorenzo, Lorenzo Severini, and Yllka Velaj (2016). “Influence
Maximization in the Independent Cascade Model.” In: ICTCS, pp. 269–
274 (cit. on p. 74).

Daley, Daryl J and D Vere Jones (2003). An Introduction to the Theory of
Point Processes: Elementary Theory of Point Processes. Springer (cit. on
pp. 76, 80).

Dassios, Angelos, Hongbiao Zhao, et al. (2013). “Exact simulation of
Hawkes process with exponentially decaying intensity”. In: Electronic
Communications 18 (cit. on p. 99).

228 Bibliography

Davidson, James, François Bouchart, Stephen Cavill, and Paul Jowitt (2005).
“Real-time connectivity modeling of water distribution networks to pre-
dict contamination spread”. In: Journal of Computing in Civil Engineering
19.4, pp. 377–386 (cit. on p. 5).

De Visscher, Alex (2020). “The COVID-19 pandemic: model-based evalua-
tion of non-pharmaceutical interventions and prognoses”. In: Nonlinear
dynamics 101.3, pp. 1871–1887 (cit. on p. 127).

Dehning, Jonas, Johannes Zierenberg, F Paul Spitzner, et al. (2020). “In-
ferring COVID-19 spreading rates and potential change points for case
number forecasts”. In: arXiv preprint arXiv:2004.01105 (cit. on p. 127).

Derisavi, Salem, Holger Hermanns, and William H Sanders (2003). “Opti-
mal state-space lumping in Markov chains”. In: Information processing
letters 87.6, pp. 309–315 (cit. on p. 34).

Desikan, Rahul S, Florent Ségonne, Bruce Fischl, et al. (2006). “An au-
tomated labeling system for subdividing the human cerebral cortex on
MRI scans into gyral based regions of interest”. In: Neuroimage 31.3,
pp. 968–980 (cit. on p. 7).

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).
“Bert: Pre-training of deep bidirectional transformers for language under-
standing”. In: arXiv preprint arXiv:1810.04805 (cit. on p. 214).

Devriendt, Karel and Piet Van Mieghem (2019). “Tighter spectral bounds
for the cut size, based on Laplacian eigenvectors”. In: Linear Algebra and
its Applications 572, pp. 68–91 (cit. on p. 160).

– (2017). “Unified mean-field framework for susceptible-infected-susceptible
epidemics on networks, based on graph partitioning and the isoperimet-
ric inequality”. In: Physical Review E 96.5, p. 052314 (cit. on pp. 166,
169, 184, 187).

Di Lauro, F, J-C Croix, M Dashti, L Berthouze, and IZ Kiss (2020). “Network
inference from population-level observation of epidemics”. In: Scientific
Reports 10.1, pp. 1–14 (cit. on pp. 166, 213).

Dolbeault, Jean and Gabriel Turinici (2020). “Heterogeneous social inter-
actions and the COVID-19 lockdown outcome in a multi-group SEIR
model”. In: arXiv preprint arXiv:2005.00049 (cit. on p. 127).

Bibliography 229

Doob, Joseph L (1945). “Markoff chains–denumerable case”. In: Transac-
tions of the American Mathematical Society 58.3, pp. 455–473 (cit. on
pp. 10, 43).

Ellison, Glenn (2020). Implications of heterogeneous SIR models for analyses
of COVID-19. Tech. rep. National Bureau of Economic Research (cit. on
p. 127).

Endo, Akira, Sam Abbott, Adam J Kucharski, Sebastian Funk, et al. (2020).
“Estimating the overdispersion in COVID-19 transmission using outbreak
sizes outside China”. In: Wellcome Open Research 5.67, p. 67 (cit. on
pp. 123, 129).

Erdős, Paul, Alfréd Rényi, et al. (1960). “On the evolution of random
graphs”. In: Publ. Math. Inst. Hung. Acad. Sci 5.1, pp. 17–60 (cit. on
p. 10).

Estrada, Ernesto and Philip A Knight (2015). A first course in network theory.
Oxford University Press, USA (cit. on pp. 9, 10).

Fagiolo, Giorgio (2020). “Assessing the Impact of Social Network Structure
on the Diffusion of Coronavirus Disease (COVID-19): A Generalized Spa-
tial SEIRD Model”. In: arXiv preprint arXiv:2010.11212 (cit. on p. 130).

Farajtabar, Mehrdad, Yichen Wang, Manuel Gomez Rodriguez, et al. (2015).
“Coevolve: A joint point process model for information diffusion and
network co-evolution”. In: Advances in Neural Information Processing
Systems, pp. 1954–1962 (cit. on pp. 94, 98, 99).

Farrington, CP, MN Kanaan, and NJ Gay (2003). “Branching process models
for surveillance of infectious diseases controlled by mass vaccination”.
In: Biostatistics 4.2, pp. 279–295 (cit. on p. 128).

Feng, Z and HR Thieme (2000). “Endemic models for the spread of in-
fectious diseases with arbitrarily distributed disease stages I: General
theory”. In: SIAM J. Appl. Math 61.3, pp. 803–833 (cit. on p. 69).

Fennell, Peter G (2015). “Stochastic processes on complex networks: tech-
niques and explorations”. In: (cit. on p. 9).

Fennell, Peter G and James P Gleeson (2019). “Multistate dynamical pro-
cesses on networks: analysis through degree-based approximation frame-
works”. In: SIAM Review 61.1, pp. 92–118 (cit. on p. 27).

230 Bibliography

Fiedler, Miroslav (1973). “Algebraic connectivity of graphs”. In: Czechoslo-
vak mathematical journal 23.2, pp. 298–305 (cit. on p. 163).

Fingelkurts, Andrew A, Alexander A Fingelkurts, and Seppo Kähkönen
(2005). “Functional connectivity in the brain—is it an elusive concept?”
In: Neuroscience & Biobehavioral Reviews 28.8, pp. 827–836 (cit. on p. 8).

Finn, Kelly R, Matthew J Silk, Mason A Porter, and Noa Pinter-Wollman
(2019). “The use of multilayer network analysis in animal behaviour”.
In: Animal behaviour 149, pp. 7–22 (cit. on p. 190).

Fornito, Alex, Andrew Zalesky, and Michael Breakspear (2015). “The con-
nectomics of brain disorders”. In: Nature Reviews Neuroscience 16.3,
pp. 159–172 (cit. on p. 190).

Fornito, Alex, Andrew Zalesky, and Edward Bullmore (2016). Fundamentals
of brain network analysis. Academic Press (cit. on p. 7).

Fosdick, Bailey K, Daniel B Larremore, Joel Nishimura, and Johan Ugander
(2018). “Configuring random graph models with fixed degree sequences”.
In: SIAM Review 60.2, pp. 315–355 (cit. on pp. 61, 95).

Frauenthal, James C (2012). Mathematical modeling in epidemiology. Springer
Science & Business Media (cit. on p. 126).

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani (2008). “Sparse
inverse covariance estimation with the graphical lasso”. In: Biostatistics
9.3, pp. 432–441 (cit. on p. 213).

Fu, Tianfan, Cao Xiao, Xinhao Li, Lucas M Glass, and Jimeng Sun (2020).
“Mimosa: Multi-constraint molecule sampling for molecule optimization”.
In: arXiv preprint arXiv:2010.02318 (cit. on p. 214).

Ganguly, Arnab, Tatjana Petrov, and Heinz Koeppl (2014). “Markov chain
aggregation and its applications to combinatorial reaction networks”. In:
Journal of mathematical biology 69.3, pp. 767–797 (cit. on p. 168).

Garcia, P, A Parravano, MG Cosenza, J Jiménez, and A Marcano (2002).
“Coupled map networks as communication schemes”. In: Physical Review
E 65.4, p. 045201 (cit. on p. 205).

Gawrychowski, Paweł, Shay Mozes, and Oren Weimann (2019). “Mini-
mum Cut in O(m2n) Time”. In: arXiv preprint arXiv:1911.01145 (cit. on
p. 160).

Bibliography 231

Gehring, Ronette, Phillip Schumm, Mina Youssef, and Caterina Scoglio
(2010). “A network-based approach for resistance transmission in bac-
terial populations”. In: Journal of theoretical biology 262.1, pp. 97–106
(cit. on p. 5).

Gerhard, Felipe and Wulfram Gerstner (2010). “Rescaling, thinning or
complementing? On goodness-of-fit procedures for point process models
and Generalized Linear Models”. In: Advances in neural information
processing systems, pp. 703–711 (cit. on pp. 80, 86, 92).

Gillespie, Daniel T (1977). “Exact stochastic simulation of coupled chemical
reactions”. In: The journal of physical chemistry 81.25, pp. 2340–2361
(cit. on pp. 10, 43).

Girvan, Michelle and Mark EJ Newman (2002). “Community structure in
social and biological networks”. In: Proceedings of the national academy
of sciences 99.12, pp. 7821–7826 (cit. on pp. 174, 184).

Gomes, M Gabriela M, Ricardo Aguas, Rodrigo M Corder, et al. (2020).
“Individual variation in susceptibility or exposure to SARS-CoV-2 lowers
the herd immunity threshold”. In: medRxiv (cit. on p. 128).

Gomory, Ralph E and Tien Chung Hu (1961). “Multi-terminal network
flows”. In: Journal of the Society for Industrial and Applied Mathematics
9.4, pp. 551–570 (cit. on p. 160).

Goutsias, John and Garrett Jenkinson (2013). “Markovian dynamics on
complex reaction networks”. In: Physics reports 529.2, pp. 199–264 (cit.
on p. 10).

Goyal, Ashish, Daniel B Reeves, E Fabian Cardozo-Ojeda, Joshua T Schiffer,
and Bryan T Mayer (2020). “Wrong person, place and time: viral load
and contact network structure predict SARS-CoV-2 transmission and
super-spreading events”. In: Medrxiv (cit. on pp. 123, 129).

Grima, R. (2010). “An effective rate equation approach to reaction kinetics
in small volumes: Theory and application to biochemical reactions in
nonequilibrium steady-state conditions”. In: The Journal of Chemical
Physics 133.3, p. 035101 (cit. on p. 168).

Grima, Ramon (2012). “A study of the accuracy of moment-closure approx-
imations for stochastic chemical kinetics”. In: The Journal of chemical
physics 136.15, 04B616 (cit. on pp. 168, 187).

232 Bibliography

Großmann, Gerrit and Michael Backenköhler (2022). “Birth-Death Pro-
cesses Reproduce the Epidemic Footprint”. In: International Conference
on Complex Networks and Their Applications (Book of Abstracts). Springer
(cit. on p. 14).

Großmann, Gerrit, Michael Backenköhler, Jonas Klesen, and Verena Wolf
(2020). “Learning Vaccine Allocation from Simulations”. In: Interna-
tional Conference on Complex Networks and Their Applications. Springer,
pp. 432–443 (cit. on pp. 13, 190).

Großmann, Gerrit, Michael Backenköhler, and Verena Wolf (2021a). “Epi-
demic overdispersion strengthens the effectiveness of mobility restric-
tions”. In: Proceedings of the 24th International Conference on Hybrid
Systems: Computation and Control, pp. 1–2 (cit. on p. 149).

– (2021b). “Heterogeneity matters: Contact structure and individual vari-
ation shape epidemic dynamics”. In: Plos one 16.7, e0250050 (cit. on
p. 14).

– (2020). “Importance of interaction structure and stochasticity for epi-
demic spreading: A COVID-19 case study”. In: International Conference
on Quantitative Evaluation of Systems. Springer, pp. 211–229 (cit. on
p. 13).

Großmann, Gerrit and Luca Bortolussi (2019). “Reducing spreading pro-
cesses on networks to Markov population models”. In: International
Conference on Quantitative Evaluation of Systems. Springer, pp. 292–309
(cit. on p. 15).

Großmann, Gerrit, Luca Bortolussi, and Verena Wolf (2020). “Efficient
simulation of non-Markovian dynamics on complex networks”. In: Plos
one 15.10, e0241394 (cit. on p. 12).

– (2019). “Rejection-based simulation of non-Markovian agents on complex
networks”. In: international conference on complex networks and their
applications. Springer, pp. 349–361 (cit. on p. 12).

Großmann, Gerrit, Charalampos Kyriakopoulos, Luca Bortolussi, and Verena
Wolf (2018). “Lumping the approximate master equation for multistate
processes on complex networks”. In: International Conference on Quanti-
tative Evaluation of Systems. Springer, pp. 157–172 (cit. on p. 169).

Großmann, Gerrit and Verena Wolf (2019). “Rejection-based simulation of
stochastic spreading processes on complex networks”. In: International
Workshop on Hybrid Systems Biology. Springer, pp. 63–79 (cit. on p. 12).

Bibliography 233

Großmann, Gerrit, Julian Zimmerlin, Michael Backenköhler, and Verena
Wolf (2021). “GINA: Neural Relational Inference From Independent
Snapshots”. In: arXiv preprint arXiv:2105.14329 (cit. on p. 15).

Gu, Shi, Fabio Pasqualetti, Matthew Cieslak, et al. (2015). “Controllability
of structural brain networks”. In: Nature communications 6.1, pp. 1–10
(cit. on p. 190).

Hagberg, Aric and Daniel A Schult (2008). “Rewiring networks for synchro-
nization”. In: Chaos: An interdisciplinary journal of nonlinear science 18.3,
p. 037105 (cit. on p. 190).

Hagberg, Aric, Pieter Swart, and Daniel S Chult (2008). Exploring network
structure, dynamics, and function using NetworkX. Tech. rep. Los Alamos
National Lab.(LANL), Los Alamos, NM (United States) (cit. on pp. 176,
208, 268).

Harris, Theodore Edward et al. (1963). The theory of branching processes.
Vol. 6. Springer Berlin (cit. on p. 128).

Hartle, Harrison, Brennan Klein, Stefan McCabe, et al. (2020). “Network
comparison and the within-ensemble graph distance”. In: Proceedings of
the Royal Society A 476.2243, p. 20190744 (cit. on p. 209).

Hasan, Agus, Hadi Susanto, Muhammad Kasim, et al. (2020). “Superspread-
ing in Early Transmissions of COVID-19 in Indonesia”. In: medRxiv (cit.
on p. 123).

Hashemifar, Somaye, Behnam Neyshabur, Aly A Khan, and Jinbo Xu (2018).
“Predicting protein–protein interactions through sequence-based deep
learning”. In: Bioinformatics 34.17, pp. i802–i810 (cit. on p. 213).

Hayward, Ryan and Colin McDiarmid (1991). “Average case analysis of
heap building by repeated insertion”. In: J. Algorithms 12.1, pp. 126–153
(cit. on p. 56).

Hébert-Dufresne, Laurent, Benjamin M Althouse, Samuel V Scarpino, and
Antoine Allard (2020). “Beyond R0: Heterogeneity in secondary infec-
tions and probabilistic epidemic forecasting”. In: medRxiv (cit. on p. 123).

Held, Leonhard, Niel Hens, Philip D O’Neill, and Jacco Wallinga (2019).
Handbook of infectious disease data analysis. CRC Press (cit. on p. 9).

234 Bibliography

Henzinger, Thomas A, Maria Mateescu, and Verena Wolf (2009). “Sliding
window abstraction for infinite Markov chains”. In: International Con-
ference on Computer Aided Verification. Springer, pp. 337–352 (cit. on
p. 168).

Hollingsworth, T D., R. M Anderson, and C. Fraser (2008). “HIV-1 transmis-
sion, by stage of infection”. In: The Journal of infectious diseases 198.5,
pp. 687–693 (cit. on p. 69).

Holmdahl, Inga and Caroline Buckee (2020). “Wrong but useful—what
covid-19 epidemiologic models can and cannot tell us”. In: New England
Journal of Medicine (cit. on p. 122).

Holme, Petter (2015a). “Modern temporal network theory: a colloquium”.
In: The European Physical Journal B 88.9, p. 234 (cit. on p. 59).

– (2015b). “Shadows of the susceptible-infectious-susceptible immortality
transition in small networks”. In: Physical Review E 92.1, p. 012804 (cit.
on p. 181).

Holme, Petter and Jari Saramäki (2012). “Temporal networks”. In: Physics
reports 519.3, pp. 97–125 (cit. on p. 59).

Horstmeyer, Leonhard, Christian Kuehn, and Stefan Thurner (2020). “Bal-
ancing quarantine and self-distancing measures in adaptive epidemic
networks”. In: arXiv preprint arXiv:2010.10516 (cit. on p. 130).

Hosseini, Soodeh and Mohammad Abdollahi Azgomi (2016). “A model for
malware propagation in scale-free networks based on rumor spreading
process”. In: Computer Networks 108, pp. 97–107 (cit. on p. 5).

Hu, Weihua, Bowen Liu, Joseph Gomes, et al. (2019). “Strategies for pre-
training graph neural networks”. In: arXiv preprint arXiv:1905.12265
(cit. on p. 214).

Huang, Keke, Shuo Li, Penglin Dai, Zhen Wang, and Zhaofei Yu (2020).
“SDARE: A stacked denoising autoencoder method for game dynamics
network structure reconstruction”. In: Neural Networks 126, pp. 143–152
(cit. on p. 213).

Huepe, Cristián, Gerd Zschaler, Anne-Ly Do, and Thilo Gross (2011).
“Adaptive-network models of swarm dynamics”. In: New Journal of Physics
13.7, p. 073022 (cit. on p. 5).

Bibliography 235

Humphries, Rory, Mary Spillane, Kieran Mulchrone, et al. (2020). “A
metapopulation network model for the spreading of SARS-CoV-2: Case
study for Ireland”. In: medRxiv (cit. on p. 127).

Ioannidis, John PA (2020). “Coronavirus disease 2019: the harms of exag-
gerated information and non-evidence-based measures”. In: European
journal of clinical investigation (cit. on p. 126).

Jackson, James R (1957). “Networks of waiting lines”. In: Operations re-
search 5.4, pp. 518–521 (cit. on p. 10).

Jeh, Glen and Jennifer Widom (2003). “Scaling personalized web search”.
In: Proceedings of the 12th international conference on World Wide Web,
pp. 271–279 (cit. on p. 116).

Ji, Xiaoyun (2004). Graph partition problems with minimum size constraints.
Rensselaer Polytechnic Institute (cit. on p. 160).

Jo, Hang-Hyun, Byoung-Hwa Lee, Takayuki Hiraoka, and Woo-Sung Jung
(2019). “Copula-based algorithm for generating bursty time series”. In:
arXiv preprint arXiv:1904.08795 (cit. on p. 101).

Jo, Hang-Hyun, Juan I Perotti, Kimmo Kaski, and János Kertész (2014).
“Analytically solvable model of spreading dynamics with non-Poissonian
processes”. In: Physical Review X 4.1, p. 011041 (cit. on p. 84).

Jones, Terry C, Barbara Mühlemann, Talitha Veith, et al. (2020). “An analy-
sis of SARS-CoV-2 viral load by patient age”. In: medRxiv (cit. on p. 123).

Kaneko, Kunihiko (1992). “Overview of coupled map lattices”. In: Chaos:
An Interdisciplinary Journal of Nonlinear Science 2.3, pp. 279–282 (cit. on
pp. 205, 268).

Karaivanov, Alexander (2020). “A Social Network Model of COVID-19”. In:
Available at SSRN 3584895 (cit. on p. 130).

Karp, Richard M (1972). “Reducibility among combinatorial problems”.
In: Complexity of computer computations. Springer, pp. 85–103 (cit. on
p. 160).

Katoen, Joost-Pieter, Marta Kwiatkowska, Gethin Norman, and David Parker
(2001). “Faster and symbolic CTMC model checking”. In: Joint Interna-
tional Workshop von Process Algebra and Probabilistic Methods, Perfor-
mance Modeling and Verification. Springer, pp. 23–38 (cit. on p. 34).

236 Bibliography

Keeler, Paul (Mar. 2019). Simulating an inhomogeneous Poisson point pro-
cess. https://hpaulkeeler.com/simulating- an- inhomogeneous-
poisson - point - process/. Online; accessed 19-May-2020 (cit. on
p. 80).

Kermack, William Ogilvy and Anderson G McKendrick (1927). “A contri-
bution to the mathematical theory of epidemics”. In: Proceedings of the
royal society of london. Series A, Containing papers of a mathematical and
physical character 115.772, pp. 700–721 (cit. on p. 9).

Kerr, Cliff C, Robyn M Stuart, Dina Mistry, et al. (2020). “Covasim: an agent-
based model of COVID-19 dynamics and interventions”. In: medRxiv (cit.
on p. 130).

Khailaie, Sahamoddin, Tanmay Mitra, Arnab Bandyopadhyay, et al. (2020).
“Estimate of the development of the epidemic reproduction number Rt
from Coronavirus SARS-CoV-2 case data and implications for political
measures based on prognostics”. In: medRxiv (cit. on p. 127).

KhudaBukhsh, Wasiur R, Arnab Auddy, Yann Disser, and Heinz Koeppl
(2019). “Approximate lumpability for Markovian agent-based models
using local symmetries”. In: Journal of Applied Probability 56.3, pp. 647–
671 (cit. on p. 169).

Kingman, John FC (1969). “Markov population processes”. In: Journal of
Applied Probability 6.1, pp. 1–18 (cit. on p. 10).

Kipf, Thomas, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard
Zemel (2018). “Neural relational inference for interacting systems”. In:
International Conference on Machine Learning. PMLR, pp. 2688–2697
(cit. on pp. 190, 191, 213).

Kishan, KC, Rui Li, Feng Cui, Qi Yu, and Anne R Haake (2019). “GNE: a deep
learning framework for gene network inference by aggregating biological
information”. In: BMC systems biology 13.2, p. 38 (cit. on p. 213).

Kiss, I. Z, G. Röst, and Z. Vizi (2015). “Generalization of pairwise models to
non-Markovian epidemics on networks”. In: Physical review letters 115.7,
p. 078701 (cit. on p. 84).

Kiss, István Z, Joel C Miller, Péter L Simon, et al. (2017). “Mathematics of
epidemics on networks”. In: Cham: Springer 598 (cit. on pp. 17, 43, 48,
49, 84, 169).

Bibliography 237

Klepac, Petra, Adam J Kucharski, Andrew JK Conlan, et al. (2020). “Contacts
in context: large-scale setting-specific social mixing matrices from the
BBC Pandemic project”. In: medRxiv. eprint: https://www.medrxiv.
org/content/early/2020/03/05/2020.02.16.20023754.full.pdf
(cit. on p. 127).

Koç, Yakup, Martijn Warnier, Piet Van Mieghem, Robert E Kooij, and Frances
MT Brazier (2014). “The impact of the topology on cascading failures in a
power grid model”. In: Physica A: Statistical Mechanics and its Applications
402, pp. 169–179 (cit. on p. 5).

Kuhl, Ellen (2020). “Data-driven modeling of COVID-19—Lessons learned”.
In: Extreme Mechanics Letters, p. 100921 (cit. on pp. 122, 126).

Kyriakopoulos, Charalampos, Gerrit Grossmann, Verena Wolf, and Luca Bor-
tolussi (2018). “Lumping of degree-based mean-field and pair-approximation
equations for multistate contact processes”. In: Physical Review E 97.1,
p. 012301 (cit. on pp. 169, 176).

Langer, Nicolas, Andreas Pedroni, Lorena RR Gianotti, et al. (2012). “Func-
tional brain network efficiency predicts intelligence”. In: Human brain
mapping 33.6, pp. 1393–1406 (cit. on p. 7).

Levesque, Jérôme, David W Maybury, and RHA David Shaw (2020). “A
model of COVID-19 propagation based on a gamma subordinated neg-
ative binomial branching process”. In: Journal of Theoretical Biology,
p. 110536 (cit. on p. 129).

Li, Genyuan and Herschel Rabitz (1990). “A general analysis of approximate
lumping in chemical kinetics”. In: Chemical engineering science 45.4,
pp. 977–1002 (cit. on p. 169).

Liang, Xia, Jinhui Wang, Chaogan Yan, et al. (2012). “Effects of different
correlation metrics and preprocessing factors on small-world brain func-
tional networks: a resting-state functional MRI study”. In: PloS one 7.3,
e32766 (cit. on p. 8).

Liu, Congying, Xiaoqun Wu, Riuwu Niu, Xiuqi Wu, and Ruguo Fan (2020).
“A new SAIR model on complex networks for analysing the 2019 novel
coronavirus (COVID-19)”. In: Nonlinear Dynamics 101.3, pp. 1777–1787
(cit. on p. 130).

Lloyd, Alun L (2001). “Realistic distributions of infectious periods in epi-
demic models: changing patterns of persistence and dynamics”. In: Theo-
retical population biology 60.1, pp. 59–71 (cit. on p. 69).

238 Bibliography

Lloyd-Smith, James O (2007). “Maximum likelihood estimation of the
negative binomial dispersion parameter for highly overdispersed data,
with applications to infectious diseases”. In: PloS one 2.2, e180 (cit. on
pp. 123, 125).

Lloyd-Smith, James O, Sebastian J Schreiber, P Ekkehard Kopp, and Wayne
M Getz (2005). “Superspreading and the effect of individual variation on
disease emergence”. In: Nature 438.7066, pp. 355–359 (cit. on pp. 123,
128, 148).

Lotka, Alfred James (1925). Elements of physical biology. Williams & Wilkins
(cit. on p. 9).

Lourenço, José, Robert Paton, Mahan Ghafari, et al. (2020). “Fundamental
principles of epidemic spread highlight the immediate need for large-
scale serological surveys to assess the stage of the SARS-CoV-2 epidemic”.
In: medRxiv (cit. on p. 127).

Lu, Jian and Dengtian Lu (2022). “Modelling traffic congestion propagation
based on data analysis method”. In: Sixth International Conference on
Electromechanical Control Technology and Transportation (ICECTT 2021).
Vol. 12081. SPIE, pp. 959–964 (cit. on p. 5).

Lynn, Christopher W and Danielle S Bassett (2019). “The physics of brain
network structure, function and control”. In: Nature Reviews Physics 1.5,
pp. 318–332 (cit. on p. 7).

Ma, Dan (July 2011). Applied Probability and Statistics - The hazard rate
function. http://statisticalmodeling.wordpress.com/tag/non-
homogeneous-poisson-process/. Online; accessed 10-February-2020
(cit. on p. 76).

Ma, Stefan and Yingcun Xia (2009). Mathematical understanding of infec-
tious disease dynamics. Vol. 16. World Scientific (cit. on p. 126).

Mancastroppa, Marco, Raffaella Burioni, Vittoria Colizza, and Alessandro
Vezzani (2020). “Active and inactive quarantine in epidemic spreading on
adaptive activity-driven networks”. In: arXiv preprint arXiv:2004.07902
(cit. on p. 130).

Martinez, J Arjona, Olmo Cerri, Maria Spiropulu, JR Vlimant, and M Pierini
(2019). “Pileup mitigation at the Large Hadron Collider with graph
neural networks”. In: The European Physical Journal Plus 134.7, p. 333
(cit. on p. 190).

Bibliography 239

Masuda, Naoki and Petter Holme (2017). Temporal Network Epidemiology.
Springer (cit. on p. 59).

Masuda, Naoki and Norio Konno (2006). “Multi-state epidemic processes
on complex networks”. In: Journal of Theoretical Biology 243.1, pp. 64–75
(cit. on p. 58).

Masuda, Naoki and Luis EC Rocha (2018). “A Gillespie algorithm for non-
Markovian stochastic processes”. In: SIAM Review 60.1, pp. 95–115 (cit.
on pp. 69, 85, 98, 101).

Mateescu, M, V Wolf, F Didier, and TA Henzinger (2010). “Fast adaptive
uniformisation of the chemical master equation”. In: IET systems biology
4.6, pp. 441–452 (cit. on p. 168).

May, Robert M (2004). “Simple mathematical models with very complicated
dynamics”. In: The Theory of Chaotic Attractors, pp. 85–93 (cit. on p. 268).

Meier, Jil, X Zhou, Arjan Hillebrand, et al. (2017). “The epidemic spreading
model and the direction of information flow in brain networks”. In:
NeuroImage 152, pp. 639–646 (cit. on p. 8).

Mello, Isys F, Lucas Squillante, Gabriel O Gomes, Antonio C Seridonio, and
Mariano de Souza (2021). “Epidemics, the Ising-model and percolation
theory: a comprehensive review focussed on Covid-19”. In: Physica A:
Statistical Mechanics and its Applications, p. 125963 (cit. on p. 127).

Memmesheimer, Raoul-Martin and Marc Timme (2006). “Designing com-
plex networks”. In: Physica D: Nonlinear Phenomena 224.1-2, pp. 182–
201 (cit. on p. 190).

Millán, Ana P, Elisabeth CW van Straaten, Cornelis J Stam, et al. (2022).
“Epidemic models characterize seizure propagation and the effects of
epilepsy surgery in individualized brain networks based on MEG and
invasive EEG recordings”. In: Scientific reports 12.1, pp. 1–20 (cit. on
p. 8).

Mishra, Pushkar, Aleksandra Piktus, Gerard Goossen, and Fabrizio Silvestri
(2020). “Node masking: Making graph neural networks generalize and
scale better”. In: arXiv preprint arXiv:2001.07524 (cit. on pp. 192, 214).

Moslonka-Lefebvre, Mathieu, Marco Pautasso, and Mike J Jeger (2009).
“Disease spread in small-size directed networks: epidemic threshold,
correlation between links to and from nodes, and clustering”. In: Journal
of theoretical biology 260.3, pp. 402–411 (cit. on p. 181).

240 Bibliography

Moussaid, Mehdi, Simon Garnier, Guy Theraulaz, and Dirk Helbing (2009).
“Collective information processing and pattern formation in swarms,
flocks, and crowds”. In: Topics in Cognitive Science 1.3, pp. 469–497 (cit.
on p. 5).

Müller, Johannes and Volker Hösel (2020). “Contact Tracing & Super-
Spreaders in the Branching-Process Model”. In: arXiv preprint arXiv:2010.04942
(cit. on pp. 123, 128).

Munday, James D, Katharine Sherratt, Sophie Meakin, et al. (2020). “Im-
plications of the school-household network structure on SARS-CoV-2
transmission under different school reopening strategies in England”. In:
medRxiv (cit. on p. 130).

Murphy, Charles, Edward Laurence, and Antoine Allard (2021). “Deep
learning of contagion dynamics on complex networks”. In: Nature Com-
munications 12.1, pp. 1–11 (cit. on p. 8).

Nande, Anjalika, Ben Adlam, Justin Sheen, Michael Z Levy, and Alison L
Hill (2021). “Dynamics of COVID-19 under social distancing measures
are driven by transmission network structure”. In: PLOS Computational
Biology 17.2. See also for the computation of R0: alhill.shinyapps.
io/COVID19seir/, e1008684 (cit. on pp. 130–132, 136).

Neipel, Jonas, Jonathan Bauermann, Stefano Bo, Tyler Harmon, and Frank
Jülicher (2020). “Power-law population heterogeneity governs epidemic
waves”. In: PloS one 15.10, e0239678 (cit. on p. 127).

Nelson, Kenrad E and Carolyn Masters Williams (2014). Infectious disease
epidemiology: theory and practice. Jones & Bartlett Publishers (cit. on
p. 126).

Netrapalli, Praneeth, Siddhartha Banerjee, Sujay Sanghavi, and Sanjay
Shakkottai (2010). “Greedy learning of Markov network structure”. In:
2010 48th Annual Allerton Conference on Communication, Control, and
Computing (Allerton). IEEE, pp. 1295–1302 (cit. on p. 214).

Newman, Mark (2018). Networks. Oxford university press (cit. on p. 17).

Newman, Mark EJ (2018). “Estimating network structure from unreliable
measurements”. In: Physical Review E 98.6, p. 062321 (cit. on p. 213).

Nielsen, Bjarke Frost and Kim Sneppen (2020). “COVID-19 superspreading
suggests mitigation by social network modulation”. In: medRxiv (cit. on
p. 130).

Bibliography 241

Nowzari, Cameron, Victor M Preciado, and George J Pappas (2016). “Analy-
sis and control of epidemics: A survey of spreading processes on complex
networks”. In: IEEE Control Systems Magazine 36.1, pp. 26–46 (cit. on
p. 105).

Omranian, Nooshin, Jeanne MO Eloundou-Mbebi, Bernd Mueller-Roeber,
and Zoran Nikoloski (2016). “Gene regulatory network inference using
fused LASSO on multiple data sets”. In: Scientific reports 6.1, pp. 1–14
(cit. on p. 213).

St-Onge, Guillaume, Jean-Gabriel Young, Laurent Hébert-Dufresne, and
Louis J Dubé (2018). “Efficient sampling of spreading processes on
complex networks using a composition and rejection algorithm”. In:
arXiv preprint arXiv:1808.05859 (cit. on p. 47).

Orlin, James B (2013). “Max flows in O (nm) time, or better”. In: Proceedings
of the forty-fifth annual ACM symposium on Theory of computing, pp. 765–
774 (cit. on p. 160).

Page, Lawrence, Sergey Brin, Rajeev Motwani, and Terry Winograd (Nov.
1999). The PageRank Citation Ranking: Bringing Order to the Web. Techni-
cal Report 1999-66. Previous number = SIDL-WP-1999-0120. Stanford
InfoLab (cit. on p. 110).

Pastor-Satorras, Romualdo, Claudio Castellano, Piet Van Mieghem, and
Alessandro Vespignani (2015). “Epidemic processes in complex net-
works”. In: Reviews of modern physics 87.3, p. 925 (cit. on p. 84).

Pastor-Satorras, Romualdo and Alessandro Vespignani (2001). “Epidemic
spreading in scale-free networks”. In: Physical review letters 86.14, p. 3200
(cit. on p. 130).

Pasupathy, Raghu (2011). “Generating nonhomogeneous poisson processes”.
In: (cit. on pp. 80, 83).

Paszke, Adam, Sam Gross, Francisco Massa, et al. (2019). “Pytorch: An im-
perative style, high-performance deep learning library”. In: arXiv preprint
arXiv:1912.01703 (cit. on p. 204).

Paulus, Max, Dami Choi, Daniel Tarlow, Andreas Krause, and Chris J Mad-
dison (2020). “Gradient estimation with stochastic softmax tricks”. In:
Advances in Neural Information Processing Systems 33, pp. 5691–5704
(cit. on p. 214).

242 Bibliography

Pautasso, Marco, Mathieu Moslonka-Lefebvre, and Michael J Jeger (2010).
“The number of links to and from the starting node as a predictor of
epidemic size in small-size directed networks”. In: Ecological Complexity
7.4, pp. 424–432 (cit. on p. 181).

Pellis, Lorenzo, Thomas House, and Matt J Keeling (2015). “Exact and
approximate moment closures for non-Markovian network epidemics”.
In: Journal of theoretical biology 382, pp. 160–177 (cit. on p. 84).

Petrov, Tatjana and Stefano Tognazzi (2021). “Lumping Reductions for
Multispread in Multi-Layer Networks”. In: International Conference on
Complex Networks and Their Applications. Springer, pp. 289–300 (cit. on
p. 169).

Plateau, Brigitte and William J Stewart (2000). “Stochastic automata net-
works”. In: Computational Probability. Springer, pp. 113–151 (cit. on
p. 27).

Porter, Thomas and Istvan Simon (1975). “Random insertion into a pri-
ority queue structure”. In: IEEE Transactions on Software Engineering 3,
pp. 292–298 (cit. on p. 56).

Prakash, B Aditya, Deepayan Chakrabarti, Nicholas C Valler, Michalis Falout-
sos, and Christos Faloutsos (2012). “Threshold conditions for arbitrary
cascade models on arbitrary networks”. In: Knowledge and information
systems 33.3, pp. 549–575 (cit. on pp. 10, 148, 154).

Prakash, B Aditya, Hanghang Tong, Nicholas Valler, Michalis Faloutsos, and
Christos Faloutsos (2010). “Virus propagation on time-varying networks:
Theory and immunization algorithms”. In: Joint European Conference
on Machine Learning and Knowledge Discovery in Databases. Springer,
pp. 99–114 (cit. on p. 105).

Prakash, B Aditya, Jilles Vreeken, and Christos Faloutsos (2012). “Spotting
culprits in epidemics: How many and which ones?” In: 2012 IEEE 12th
International Conference on Data Mining. IEEE, pp. 11–20 (cit. on p. 190).

Prasse, Bastian and Piet Van Mieghem (2018). “Maximum-likelihood net-
work reconstruction for SIS processes is NP-hard”. In: arXiv preprint
arXiv:1807.08630 (cit. on p. 198).

– (2020a). “Network reconstruction and prediction of epidemic outbreaks
for general group-based compartmental epidemic models”. In: IEEE Trans-
actions on Network Science and Engineering (cit. on p. 213).

Bibliography 243

Prasse, Bastian and Piet Van Mieghem (2020b). “Predicting dynamics on net-
works hardly depends on the topology”. In: arXiv preprint arXiv:2005.14575
(cit. on p. 191).

Prem, Kiesha, Yang Liu, Timothy W Russell, et al. (2020). “The effect of
control strategies to reduce social mixing on outcomes of the COVID-19
epidemic in Wuhan, China: a modelling study”. In: The Lancet Public
Health (cit. on p. 127).

Pujari, Bhalchandra S and Snehal M Shekatkar (2020). “Multi-city modeling
of epidemics using spatial networks: Application to 2019-nCov (COVID-
19) coronavirus in India”. In: medRxiv (cit. on p. 130).

Raponi, Simone, Zeinab Khalifa, Gabriele Oligeri, and Roberto Di Pietro
(2022). “Fake News Propagation: A Review of Epidemic Models, Datasets,
and Insights”. In: ACM Transactions on the Web (TWEB) (cit. on p. 5).

Reich, Ofir, Guy Shalev, and Tom Kalvari (2020). “Modeling COVID-19 on a
network: super-spreaders, testing and containment”. In: medRxiv (cit. on
p. 130).

Riou, Julien and Christian L Althaus (2020). “Pattern of early human-to-
human transmission of Wuhan 2019 novel coronavirus (2019-nCoV),
December 2019 to January 2020”. In: Eurosurveillance 25.4 (cit. on
p. 123).

Roda, Weston C, Marie B Varughese, Donglin Han, and Michael Y Li (2020).
“Why is it difficult to accurately predict the COVID-19 epidemic?” In:
Infectious Disease Modelling (cit. on p. 128).

Rossini, PM, Riccardo Di Iorio, M Bentivoglio, et al. (2019). “Methods for
analysis of brain connectivity: An IFCN-sponsored review”. In: Clinical
Neurophysiology 130.10, pp. 1833–1858 (cit. on p. 190).

Röst, Gergely, Zsolt Vizi, and István Z Kiss (2016). “Impact of non-Markovian
recovery on network epidemics”. In: BIOMAT 2015: International Sym-
posium on Mathematical and Computational Biology. World Scientific,
pp. 40–53 (cit. on p. 97).

Sahneh, Faryad Darabi, Aram Vajdi, Heman Shakeri, Futing Fan, and Cate-
rina Scoglio (2017). “GEMFsim: a stochastic simulator for the generalized
epidemic modeling framework”. In: Journal of computational science 22,
pp. 36–44 (cit. on p. 48).

244 Bibliography

Sambaturu, Prathyush and Anil Vullikanti (2019). “Designing Robust Inter-
ventions to Control Epidemic Outbreaks”. In: International Conference on
Complex Networks and Their Applications. Springer, pp. 469–480 (cit. on
p. 105).

Sanft, Kevin R, Sheng Wu, Min Roh, et al. (2011). “StochKit2: software for
discrete stochastic simulation of biochemical systems with events”. In:
Bioinformatics 27.17, pp. 2457–2458 (cit. on p. 168).

Sanguinetti, Guido (2020). “Systematic errors in estimates of R_t from
symptomatic cases in the presence of observation bias”. In: arXiv preprint
arXiv:2012.02105 (cit. on p. 126).

Sarraf, Saman and Jian Sun (2016). “Advances in functional brain imag-
ing: a comprehensive survey for engineers and physical scientists”. In:
International Journal of Advanced Research 4.8, pp. 640–660 (cit. on
p. 191).

Schneider, Christian M, Tamara Mihaljev, Shlomo Havlin, and Hans J Her-
rmann (2011). “Suppressing epidemics with a limited amount of immu-
nization units”. In: Physical Review E 84.6, p. 061911 (cit. on p. 105).

Schnoerr, David, Guido Sanguinetti, and Ramon Grima (2018). “Approx-
imation and inference methods for stochastic biochemical kinetics - a
tutorial review”. In: Journal of Physics A 51, p. 169501 (cit. on p. 184).

Shen, Chen, Nassim Nicholas Taleb, and Yaneer Bar-Yam (2020). “Review
of Ferguson et al “Impact of nonpharmaceutical interventions..”” In: New
England Complex Systems Institute (cit. on p. 123).

Sherborne, N, JC Miller, KB Blyuss, and IZ Kiss (2016). “Mean-field models
for non-Markovian epidemics on networks: from edge-based compart-
mental to pairwise models”. In: arXiv preprint arXiv:1611.04030 (cit. on
p. 84).

Silva, Cristiana J, Guillaume Cantin, Carla Cruz, et al. (2020). “Complex
network model for COVID-19: human behavior, pseudo-periodic solutions
and multiple epidemic waves”. In: arXiv preprint arXiv:2010.02368 (cit.
on p. 130).

Simon, Péter L, Michael Taylor, and Istvan Z Kiss (2011). “Exact epidemic
models on graphs using graph-automorphism driven lumping”. In: Jour-
nal of mathematical biology 62.4, pp. 479–508 (cit. on p. 169).

Bibliography 245

Singh, Abhyudai and João P Hespanha (2010). “Stochastic hybrid sys-
tems for studying biochemical processes”. In: Royal Society A 368.1930,
pp. 4995–5011 (cit. on p. 168).

Singh, Rajesh and Ronojoy Adhikari (2020). “Age-structured impact of
social distancing on the COVID-19 epidemic in India”. In: arXiv preprint
arXiv:2003.12055 (cit. on p. 127).

Slavtchova-Bojkova, M. (2020). “Branching processes modelling for coro-
navirus (COVID’19) pandemic”. In: 13th International Conference on
Information Systems and Grid Technologies, ISGT 2020 2656 (cit. on
p. 129).

Softky, William R and Christof Koch (1993). “The highly irregular firing of
cortical cells is inconsistent with temporal integration of random EPSPs”.
In: Journal of Neuroscience 13.1, pp. 334–350 (cit. on p. 69).

Soltani, Mohammad, Cesar Augusto Vargas-Garcia, and Abhyudai Singh
(2015). “Conditional moment closure schemes for studying stochastic
dynamics of genetic circuits”. In: IEEE transactions on biomedical circuits
and systems 9.4, pp. 518–526 (cit. on pp. 168, 187).

Song, Chonggang, Wynne Hsu, and Mong Li Lee (2015). “Node immuniza-
tion over infectious period”. In: Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management, pp. 831–840
(cit. on pp. 105, 115).

Sporns, Olaf (2013). “Structure and function of complex brain networks”.
In: Dialogues in clinical neuroscience 15.3, p. 247 (cit. on p. 7).

Starnini, Michele, James P Gleeson, and Marián Boguñá (2017). “Equiv-
alence between non-Markovian and Markovian dynamics in epidemic
spreading processes”. In: Physical review letters 118.12, p. 128301 (cit. on
p. 84).

Stewart, GW and JH Miller (1975). “Methods of simultaneous iteration for
calculating eigenvectors of matrices”. In: Topics in Numerical Analysis II,
pp. 169–185 (cit. on p. 111).

Stutt, Richard OJH, Renata Retkute, Michael Bradley, Christopher A Gilli-
gan, and John Colvin (2020). “A modelling framework to assess the likely
effectiveness of facemasks in combination with ‘lock-down’in managing
the COVID-19 pandemic”. In: Proceedings of the Royal Society A 476.2238,
p. 20200376 (cit. on p. 127).

246 Bibliography

Sun, Kaiyuan, Wei Wang, Lidong Gao, et al. (2020). “Transmission hetero-
geneities, kinetics, and controllability of SARS-CoV-2”. In: Science. eprint:
https://science.sciencemag.org/content/early/2020/11/23/
science.abe2424.full.pdf (cit. on pp. 123, 148).

Szabó, György and Gabor Fath (2007). “Evolutionary games on graphs”. In:
Physics reports 446.4-6, pp. 97–216 (cit. on p. 205).

Tang, Lu, Yiwang Zhou, Lili Wang, et al. (2020). “A Review of Multi-
Compartment Infectious Disease Models”. In: International Statistical
Review 88.2, pp. 462–513 (cit. on p. 127).

Tariq, Amna, Yiseul Lee, Kimberlyn Roosa, et al. (2020). “Real-time monitor-
ing the transmission potential of COVID-19 in Singapore, March 2020”.
In: BMC Medicine 18, pp. 1–14 (cit. on p. 123).

Tibshirani, Robert (1996). “Regression shrinkage and selection via the
lasso”. In: Journal of the Royal Statistical Society: Series B (Methodological)
58.1, pp. 267–288 (cit. on p. 213).

Tong, Hanghang, B Aditya Prakash, Charalampos Tsourakakis, et al. (2010).
“On the vulnerability of large graphs”. In: 2010 IEEE International Confer-
ence on Data Mining. IEEE, pp. 1091–1096 (cit. on p. 105).

Trivedi, Kishor S (2008). Probability & statistics with reliability, queuing and
computer science applications. John Wiley & Sons (cit. on p. 37).

Truccolo, Wilson (2010). “Stochastic models for multivariate neural point
processes: Collective dynamics and neural decoding”. In: Analysis of
parallel spike trains. Springer, pp. 321–341 (cit. on p. 98).

Tuite, Ashleigh R and David N Fisman (2020). “Reporting, epidemic growth,
and reproduction numbers for the 2019 novel coronavirus (2019-nCoV)
epidemic”. In: Annals of Internal Medicine 172.8, pp. 567–568 (cit. on
p. 129).

Van Kampen, Nicolaas Godfried (1992). Stochastic processes in physics and
chemistry. Vol. 1. Elsevier (cit. on p. 168).

Van Mieghem, Piet (2010). Graph spectra for complex networks. Cambridge
University Press (cit. on pp. 10, 162).

– (2016). “Universality of the SIS prevalence in networks”. In: arXiv
preprint arXiv:1612.01386 (cit. on p. 6).

Bibliography 247

Van Mieghem, Piet, Jasmina Omic, and Robert Kooij (2008). “Virus spread
in networks”. In: IEEE/ACM Transactions On Networking 17.1, pp. 1–14
(cit. on p. 33).

Vardi, Moshe Y (1985). “Automatic verification of probabilistic concurrent
finite state programs”. In: 26th Annual Symposium on Foundations of
Computer Science (SFCS 1985). IEEE, pp. 327–338 (cit. on p. 34).

Vázquez, Alexei, Joao Gama Oliveira, Zoltán Dezsö, et al. (2006). “Modeling
bursts and heavy tails in human dynamics”. In: Physical Review E 73.3,
p. 036127 (cit. on p. 69).

Vestergaard, Christian L and Mathieu Génois (2015). “Temporal gillespie
algorithm: Fast simulation of contagion processes on time-varying net-
works”. In: PLoS computational biology 11.10, e1004579 (cit. on p. 59).

Walker, Ann Sarah, Emma Pritchard, Thomas House, et al. (2020). “Viral
load in community SARS-CoV-2 cases varies widely and temporally”. In:
medRxiv (cit. on p. 123).

Walsh, Kieran A, Karen Jordan, Barbara Clyne, et al. (2020). “SARS-CoV-
2 detection, viral load and infectivity over the course of an infection:
SARS-CoV-2 detection, viral load and infectivity”. In: Journal of Infection
(cit. on p. 123).

Ward, Jonathan A and John Evans (2018). “A General Model of Dynamics
on Networks with Graph Automorphism Lumping”. In: International
Workshop on Complex Networks and their Applications. Springer, pp. 445–
456 (cit. on pp. 169, 181).

Watts, Duncan J, Roby Muhamad, Daniel C Medina, and Peter S Dodds
(2005). “Multiscale, resurgent epidemics in a hierarchical metapopula-
tion model”. In: Proceedings of the National Academy of Sciences 102.32,
pp. 11157–11162 (cit. on p. 127).

Wei, James and James CW Kuo (1969). “Lumping analysis in monomolec-
ular reaction systems. Analysis of the exactly lumpable system”. In:
Industrial & Engineering chemistry fundamentals 8.1, pp. 114–123 (cit. on
p. 168).

Welton, Thomas, Daniel A Kent, Dorothee P Auer, and Robert A Dineen
(2015). “Reproducibility of graph-theoretic brain network metrics: a
systematic review”. In: Brain connectivity 5.4, pp. 193–202 (cit. on p. 8).

248 Bibliography

Whitt, Ward (2006). “Continuous-time Markov chains”. In: Dept. of Indus-
trial Engineering and Operations Research, Columbia University, New York
(cit. on p. 164).

Wijayanto, Arie Wahyu and Tsuyoshi Murata (2019). “Effective and scalable
methods for graph protection strategies against epidemics on dynamic
networks”. In: Applied Network Science 4.1, p. 18 (cit. on p. 105).

– (2017). “Flow-aware vertex protection strategy on large social networks”.
In: 2017 IEEE/ACM International Conference on Advances in Social Net-
works Analysis and Mining (ASONAM). IEEE, pp. 58–63 (cit. on p. 105).

– (2018). “Learning adaptive graph protection strategy on dynamic net-
works via reinforcement learning”. In: 2018 IEEE/WIC/ACM International
Conference on Web Intelligence (WI). IEEE, pp. 534–539 (cit. on p. 105).

Wilson, Nick, Lucy Telfar Barnard, Amanda Kvalsvig, and Michael Baker
(2020). “Potential Health Impacts from the COVID-19 Pandemic for New
Zealand if Eradication Fails: Report to the NZ Ministry of Health”. In:
Government Report (cit. on p. 127).

Wolfram, Christopher (2020). “An agent-based model of Covid-19”. In:
Complex Syst 29, pp. 87–105 (cit. on p. 130).

Wu, Kai, Jing Liu, and Dan Chen (2019). “Network reconstruction based
on time series via memetic algorithm”. In: Knowledge-Based Systems 164,
pp. 404–425 (cit. on p. 214).

Wu, Weichang, Huanxi Liu, Xiaohu Zhang, Yu Liu, and Hongyuan Zha
(2019). “Modeling Event Propagation via Graph Biased Temporal Point
Process”. In: arXiv preprint arXiv:1908.01623 (cit. on p. 98).

Yan, Gang, Petra E Vértes, Emma K Towlson, et al. (2017). “Network
control principles predict neuron function in the Caenorhabditis elegans
connectome”. In: Nature 550.7677, pp. 519–523 (cit. on p. 7).

Yanev, Nikolay M, Vessela K Stoimenova, and Dimitar V Atanasov (2020).
“Branching stochastic processes as models of Covid-19 epidemic develop-
ment”. In: arXiv preprint arXiv:2004.14838 (cit. on p. 129).

Yang, GL (1972). “Empirical study of a non-Markovian epidemic model”.
In: Mathematical Biosciences 14.1-2, pp. 65–84 (cit. on p. 69).

Bibliography 249

Young, George F, Luca Scardovi, Andrea Cavagna, Irene Giardina, and
Naomi E Leonard (2013). “Starling flock networks manage uncertainty
in consensus at low cost”. In: PLoS computational biology 9.1, e1002894
(cit. on p. 5).

Zhang, Hai-Feng, Fang Xu, Zhong-Kui Bao, and Chuang Ma (2018). “Re-
constructing of networks with binary-state dynamics via generalized
statistical inference”. In: IEEE Transactions on Circuits and Systems I:
Regular Papers 66.4, pp. 1608–1619 (cit. on p. 191).

Zhang, Yan, Yu Guo, Zhang Zhang, et al. (2021). “Automated Discovery of
Interactions and Dynamics for Large Networked Dynamical Systems”. In:
arXiv preprint arXiv:2101.00179 (cit. on pp. 210, 213).

Zhang, Yao and B Aditya Prakash (2015). “Data-aware vaccine allocation
over large networks”. In: ACM Transactions on Knowledge Discovery from
Data (TKDD) 10.2, pp. 1–32 (cit. on pp. 105, 108, 116).

Zhang, Yunjun, Yuying Li, Lu Wang, Mingyuan Li, and Xiaohua Zhou (2020).
“Evaluating transmission heterogeneity and super-spreading event of
COVID-19 in a metropolis of China”. In: International Journal of Environ-
mental Research and Public Health 17.10, p. 3705 (cit. on p. 129).

Zhang, Zhang, Yi Zhao, Jing Liu, et al. (2019). “A general deep learn-
ing framework for network reconstruction and dynamics learning”. In:
Applied Network Science 4.1, pp. 1–17 (cit. on pp. 190, 205, 210, 213,
268).

Zitnik, Marinka, Monica Agrawal, and Jure Leskovec (2018). “Modeling
polypharmacy side effects with graph convolutional networks”. In: Bioin-
formatics 34.13, pp. i457–i466 (cit. on p. 190).

250 Bibliography

List of Algorithms

1 Naïve SIS Simulation 26

2 Naïve Multi-State Simulation 29

3 Naïve CTMC Simulation 36

4 Gillespie-Based SIS Simulation (GA) 43

5 Optimized Gillespie Algorithm (OGA) 47

6 SIS Simulation with CORAL 53

7 Naïve non-Markovian Multi-Agent Simulation 80

8 Non-Markovian Simulation with RED 89

9 Rejection-Free non-Markovian Simulation 91

251

List of Models

1 Susceptible-Infected-Susceptible (SIS) 30

2 SIRS . 57

3 Competing Pathogens 58

4 SIS with Declining Infectiousness 96

5 Non-Markovian Voter 97

6 Non-Markovian Neural Spiking 98

7 SIR . 107

8 Covid-19 . 131

9 Forest Fire . 203

10 Game of Life . 203

11 Rock-Paper-Scissors 203

12 Coupled Map Lattice 203

13 Inverted Voter . 203

253

List of Figures

1.1 Thesis structure. 11

2.1 Graph types. 19

2.2 Samples of random graph models. 21

2.3 Continuous-time trajectory. 23

2.4 Summary statistics of trajectories. 31

2.5 State space of SIS model. 34

3.1 Rejection of an infection event. 46

3.2 Rejection sampling. 53

3.3 Example run SIS simulation. 54

3.4 Results SIS simulation. 62

3.5 Results SIRS simulation. 63

3.6 Results competing pathogen simulation. 64

4.1 Sampling event times. 81

4.2 Rejection sampling example. 81

4.3 Computation time of a step w.r.t. network size. 95

5.1 Example SIR dynamics. 106

5.2 Transmission graph construction. 110

5.3 Impact score computation. 114

5.4 Example transmission parameter importance. 115

5.5 Results for vaccine allocation optimization. 116

5.6 Runtime of vaccine allocation optimization. 116

6.1 Schematic overview of epidemic model types. 126

255

6.2 Covid-19 model specification. 131
6.3 Computation of R0. 134
6.4 Random graph models for Covid-19. 138
6.5 Population heterogeneity shapes an epidemic. 140
6.6 Prevalence over time in a Covid-19 model. 142
6.7 Experimental results for varying connectivity. 144
6.8 Experimental results for varying infectiousness. 145

7.1 State space SIS model. 156
7.2 Minimal/maximal number of SI-edges. 157
7.3 Node ranking on a grid graph. 162
7.4 Upper and lower prevalence bound. 165

8.1 Overview lumping. 172
8.2 Partitioned Zachary’s Karate Club network. 174
8.3 Adding a dummy node for node counting. 175
8.4 Example neighborhood species vector. 179
8.5 Accuracy vs state space size. 185

9.1 Illustration of the graph inference problem. 191
9.2 Architecture of the graph inference problem. 194
9.3 Architecture of Teal. 199
9.4 Equilibrium snapshots of different dynamics. 203
9.5 Landscape of the prediction loss. 206
9.6 Training convergence depends on snapshot number. . . 207
9.7 Prediction layer of TEAL. 209

256 List of Figures

Part V

Appendix

Brightening BLUE A
A.1 Direct MPM Construction

Here, we propose a way to directly derive the lumped MPMs from
the contact network without building the original CTMC first. Con-
sider Figure 8.1 (p. 172) again. The goal is to go from (a) (model
specification) directly to (c) (lumped MPM) and to skip (b) (full
CTMC).

A.1.1 Node-Based Abstraction with General Rate
Functions

We start with the node-based counting abstraction. Consider a given
contact network, partitioning, and rules. Constructing the reduced
state space Y is straight-forward (cf. Eq. (8.2)). The non-obvious part
is the computation of the rates (without iterating over the original
CTMC states).

Assume we are interested in the rates of a specific lumped state
y ∈ Y. Our general strategy is to iterate over the nodes in the contact
network and to compute the mean rate attributed to that node over
all x ∈ X that belong to y. Therefore, we consider the possible states
of each node together with all possible species neighborhoods. The
probability of a node v being in state s and having species neighbor-
hood w is denoted as P

(
X(v) = s,W(v) = w

)
(cf. Example A.1).

259

Example A.1: Computation of Neighborhood Probabilities

Consider again Figure 8.1 (p. 172). Assume y tells us that
two nodes in P1 and zero nodes in P2 are infected. We want
to compute the infection rate belonging to P2. Both nodes in
P2 will have exactly one infected (in P1) and one susceptible
neighbor (in P2), and the probability that the node itself is
susceptible is 1.
In contrast, when both partitions contain exactly one infected
node, we have four possible network-states that follow this
description. When we fix a node v, the node-state and the
immediate neighborhood of that node can be described as a
probability distribution (over S and w, respectively), assuming
uniformity over the four network-states.

For a specific rule r = s1
f(·)−−→ s2 and partition P, we can then

re-write Eq. (8.2) such that the propensity becomes:

αr,P(y) =
∑
v∈P

∑
w∈Wv

f(mw)P
(
X(v) = s1,W(v) = w

)
,

where mw is the neighborhood vector induced by w, which we receive
by grouping all partitions together1. Note that it is not computation-
ally necessary to iterate over all nodes in the partition. Instead, we
can group all nodes with the same partition neighborhood together,
that is, all nodes v ′, v ′′ ∈ P with Wv ′ =Wv ′′ as the probability only
depends on w.

The calculation of the probability is the interesting part. We start by
establishing that

P
(
X(v) = s1, V(v) = w

)
=P

(
X(v) = s1

)
· P

(
V(v) = w

∣∣ X(v) = s1) .
1For instance, in Figure 8.1c (p. 172), we would sum up each column.

260 Appendix A

Brightening Blue

The first term in the product can be described simply by dividing the
number of s1-nodes in P by the total number of nodes in P.

P
(
X(v) = s1

)
=

y[s1, P]
|P|

where: v ∈ P .

The conditional probability can be calculated for each partition in-
dependently. This is because we know the number of nodes in each
state in each partition (cf. Example A.2).

We also know that in partition P, the current node is already in
state s1, which we must consider. First, we define yP ∈ Z|S|

⩾0 as the
projection from y to P. Thus, each entry is defined by:

yP[s] = y[s, P] .

Likewise, we define vP ∈ Z|S|
⩾0, such that vP[s] = v[s, P]. We also

define W(v)P ∈ Z|S|
⩾0 to be the number of neighbors of node v in

partition P for each state. Finally, we define ys
−
1

P to be the same vector
as yP except that the entry corresponding to state s1 is subtracted
by one (and truncated at zero). We can now rewrite the probability
as:

P
(
W(v) = w | X(v) = s1

)
=

∏
P ′∈P

P
(
W(v)P ′ = vP ′

∣∣ X(v) = s1)
=P

(
W(v)P = vP

∣∣ X(v) = s1) ∏
P ′∈P\{P}

P
(
W(v)P ′ = vP ′

∣∣ X(v) = s1)
=ph

(
vP; ys

−
1

P

)
·

∏
P ′∈P\{P}

ph

(
vP ′; yP ′

)
.

(A.1)

We use ph(k; K) to denote the probability mass function of the multi-
variate hypergeometric distribution, where k,K denote vectors over

A.1 Direct MPM Construction 261

non-negative integers of the same length. That is, if K denotes the
number of nodes in each state in a partition (resp., the number of
marbles in an urn with different colors), then ph(k; K) denotes the
probability of drawing exactly k[s] nodes (resp. marbles) of each
state (resp. color).

Example A.2: Drawing Neighborhood Probabilities

Consider again Figure 8.1 (p. 172). Assume P1 has one in-
fected and one susceptible node. When we know that a node
v ∈ P1 is infected (X(v) = S), then the other node in P1 has to
be susceptible. However, conditioning on X(v) = S does not
change the probability that a neighboring node in P2 occupies
a particular node-state. This is why we factor out the current
partition in Eq. (A.1).

A.1.2 Reaction Networks and Linear Models

A special case of MPMs are biochemical reaction networks, where the
species represent different types of molecules. The change vectors
and corresponding propensity functions can elegantly be expressed
as monomolecular (A → B) and bimolecular (A+ B → C+ D) reaction
rules (A, B, C, D ∈ Z).

Reduction to Biochemical Reaction Networks

Most classical models in computational epidemiology are composed
solely of node-based rules (like the curing rule) and edge-based rules
(like the infection propagation rule). We call these linear models.
Node-based rules, also known as spontaneous or independent rules,
have a constant rate function, i.e., f(m) = µ. Edge-based rules, also

262 Appendix A

Brightening Blue

referred to as contact rules, are linear in exactly one dimension, i.e.,
they have the form f(m) = λm[s].

Linear models are special because it is not the whole neighborhood
that is important for the rate of a rule but only the expected number
of neighbors in a particular state. This makes the rule very similar to
monomolecular and bimolecular reaction rates in MPMs. In fact, we
can model the whole dynamics as a set of reactions over the species
Z.

Chemical reaction networks are a subclass of MPMs. In a chemical
reaction network the state space is given by population vectors over
species, and molecular reactions have the form A a−→ C or A+B b−→ C+D,
where A,B,C,D denote species and a, b ∈ R⩾0 are reaction rate
constants.

For each node-based rule s1
µ−→ s2, we construct the reactions

(s1, P)
µ−→ (s2, P) ∀P ∈ P

For each edge-based rule s1
f(·)−−→ s1, f(m) = λm[s ′], we construct

the reactions

(s1, P) + (s ′, P ′)
λwP,P ′−−−−→ (s2, P) + (s ′, P ′) ∀P, P ′ ∈ P

where wP,P ′ denotes the mean number of edges of a random node
in P with nodes in P ′, that is2:

wP,P ′ =


ϵ(P,P)

|P|
1

|P|−1 if P = P ′

ϵ(P,P ′)
|P|

1
|P ′| otherwise

.

with
ϵ(P, P ′) = |{(n1, v2) ∈ E | v1 ∈ P, v2 ∈ P ′}| . (A.2)

2Note that, despite the tuple notation, we only count edges once

A.1 Direct MPM Construction 263

A.1.3 Edge-Based Counting Abstraction

For each rule r = s1
f(·)−−→ s2, and each partition P ∈ P, and each

w ∈ WP, we define a propensity function αr,P,w(·) with:

αr,P,w(y) =
∑
v∈P

f(mw)P
(
X(v) = s1,W(v) = w

)
.

Again, we use:

P
(
X(v) = s1,W(v) = w

)
= P

(
X(v) = s1

)
· P

(
W(v) = w | X(v) = s1

)
to compute this probability, where we can solve P

(
X(v) = s1

)
exactly

as before.

Since we now have information about the edges, we can derive the
probability of neighborhoods more precisely. In fact, we can directly
construct the set of candidate neighbors from y. Therefore, we define
a vector ys,P,P ′ ∈ Z|S|

⩾0, where entry ys,P,P ′ [s ′] specifies the number
of neighbors of a random node in state s and partition P, which lie
in partition P ′ and occupy state s ′. Formally:

ys,P,P ′ [s ′] =

{
y[s, P, s ′, P ′] if (s, P) ⩽ (s ′, P ′)

y[s ′, P ′, s, P] otherwise
.

This gives rise to the final approximation of the probability of neigh-
borhood species:

P
(
W(v) = w

∣∣ X(v) = s1) ≈
∏
P ′∈P

ph
(
wP; ys1,P,P ′

)
(where v ∈ P.)

264 Appendix A

Brightening Blue

Technicalities of TEAL B
B.1 Teal’s Training

We start with a sharpness parameter v = 5.0 and increase v after
50 epochs by 0.3. We train (maximally) for 5000 epochs, but we
employ early stopping if the underlying (binarized) graph does not
change for 500 epochs (measured each 50 epochs). Moreover, we use
Pytorch’s Adam optimizer with an initial learning rate of 10−3.

We use a mini-batch size of 100. For an efficient forward pass, we first
stack the 100 snapshots horizontally, yielding a n× 100|S| matrix. We
push it through the graph layer and get another n×100|S| matrix. We
then reshape it, yielding a 100n× |S| matrix, and apply the prediction
layer row-wise.

In Experiment 1, we use a fixed (pre-defined) binarized adjacency
matrix and optimize only the weights of the prediction layer during
training.

In contrast to standard GNN software (like Pytorch Geometric), we
do not use a sparse representation of the underlying graph because
we optimize over all entries in the adjacency matrix. Moreover, our
training set consists of snapshots rather than graphs, so we do not
use any sort of graph batching as it is common in GNN training.

We did not utilize hyperparameter optimization. Using a validation
set to optimize the aforementioned parameters would likely increase
the performance of TEAL.

265

B.2 Dynamical Models

Except for the CML, we use continuous-time stochastic processes
with a discrete state space to generate snapshots. Specifically, these
models have a CTMC semantics and can be formulated using the
multi-state process family (cf. Chapter 2.4.3).

SIS. We test a classical SIS model. For all models, we add a small
amount of stochastic noise ϵ to the dynamics. The noise not only
mimics measurement errors but also prevents the system from getting
stuck in trap state where no rule is applicable (cf. Section 7.1).

In the sequel, we use the corresponding notation:

I α+ϵ−−−→ S S
βm[I]+ϵ−−−−−−→ I .

The parameterization is α = 2.0, β = 1.0, and ϵ = 0.1.

Inverted Voter. This model describes two competing opinions (A
and B) while nodes always tend to maximize their disagreement with
their neighbors.

A
m[A]+ϵ−−−−−→ B B

m[B]+ϵ−−−−−→ A .

We use ϵ = 0.01.

Game of Life. Nodes represent cells (resp. areas) that are either
dead (D) (resp. unpopulated) or alive (A) (resp. populated). Living
conditions are good when roughly half of the neighboring cells are

266 Appendix B

Technicalities of Teal

alive. Otherwise, a cell tends to die due to either over- or underpop-
ulation.

A
|m[A]−m[D]|+ϵ−−−−−−−−−→ D D

k−|m[A]−m[D]|+ϵ−−−−−−−−−−−→ A ,

where k = m[A] + m[D] is the degree of the node. We use ϵ = 0.01.

Rock Paper Scissors. This model mimics a simple evolutionary
process where three species compete and defeat each other in a
ring-like relationship.

R
m[P]+ϵ−−−−−→ P P

m[S]+ϵ−−−−−→ S S
m[R]+ϵ−−−−−→ R .

We use ϵ = 0.01.

Forest Fire. Spots/nodes are either empty (E), on fire (F), or have
a tree on them (T). Trees grow at a growth rate g. Random lightning
starts a fire on tree-nodes with rate fstart. The fire on a node goes
extinct with rate fend, leaving the node empty. Finally, fire spreads to
neighboring tree-nodes with rate fspread.

T
fstart+m[F]fspread+ϵ
−−−−−−−−−−−−−→ F F

fend+ϵ−−−−→ E E
g+ϵ−−−→ T .

The parameterization is g = 1.0, fstart = 0.1, fend = 2.0, fspread =

2.0, and ϵ = 0.1.

Coupled Map Lattice. Let xi be the value of node vi at time-step i.
Each node starts with a random value (uniform in [0, 1]). At each
time step, all nodes are updated based on a linear combination of

B.2 Dynamical Models 267

their node-value and the node-values of neighboring nodes [Kaneko,
1992]:

xi+1 = (1.0− s)f(xi) +
s

ki

∑
j∈N(i)

f(xj) ,

where ki is the degree of vi, N(i) denotes the set of (indices of)
nodes adjacent to vi, s is the coupling strength and f(·) is the local
map. Like [Z. Zhang et al., 2019], we use the logistic function [May,
2004]:

f(x) = r · x · (1.0− x) .

where r modulates the complexity of the dynamics.

We use s = 0.1 and r = 3.57.

B.3 Random Graphs Generation

We use the Python NetworkX package [Hagberg, Swart, et al., 2008]
to generate a single instance (variate) of a random graph model and
test TEAL and the baselines on a large number of snapshots generated
using this graph. In particular, we use Erdős-Renyi (ER) (N = 22,
|E| = 33) graph model with connection probability 0.15:

nx.erdos_renyi_graph(22, 0.15, seed=42).

We also use a Geometric graph (N = 50, |E| = 278):

nx.random_geometric_graph(50, 0.3, seed=42)

and a Watts–Strogatz graph (N = 30, |E| = 69) where each node has
4 neighbors and the re-wiring probability is 0.15:

nx.newman_watts_strogatz_graph(30, 4, 0.15, seed=42).

268 Appendix B

Technicalities of Teal

After generation, the node-ids are randomly shuffled in order to
guarantee that they do not leak information about connectivity to
the training model.

B.3 Random Graphs Generation 269

G Gß
Saarbrücken
2022

