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S H O RT S U M M A RY

Nowadays, molecular profiling techniques, like high-throughput se-
quencing, microarrays, or mass spectrometry, are routinely applied
to generate detailed multi-omics profiles of cells. Since the resulting
data sets are high-dimensional and often noisy, powerful and robust
computational methods are necessary to enable their analysis.
In this thesis, we present a comprehensive framework of algorithms,
tools, and databases to analyze molecular high-throughput profiles.
We developed this framework to explore deregulated biological pro-
cesses involved in the pathogenesis of complex diseases, like cancer,
and to detect driving molecules within those processes.
Moreover, we evaluate the capabilities of our tool suite through sev-
eral case studies that highlight the versatility and potential of our
framework. For this purpose, we in particular conducted a detailed
study of Wilms’ tumors. Here, we identified various regulatory mech-
anisms, including new potential biomarkers, that might contribute to
increased malignancy of the blastemal subtype. These findings could
even lead to new therapeutic strategies for Wilms’ tumors.
The presented results showcase that our framework is well equipped
for the analysis of molecular high-throughput profiles and can help
elucidate complex pathogenic mechanisms in cancer and other dis-
eases.
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Z U S A M M E N FA S S U N G

Heutzutage werden molekulare Hochdurchsatzmessverfahren, wie
Hochdurchsatzsequenzierung, Microarrays, oder Massenspektrome-
trie, regelmäßig angewendet, um Zellen im großen Stil und auf ver-
schiedenen molekularen Ebenen zu charakterisieren. Die dabei gener-
ierten Datensätze sind in der Regel hochdimensional und oft ver-
rauscht. Daher werden leistungsfähige computergestützte Anwendun-
gen benötigt, um deren Analyse zu ermöglichen.
In dieser Arbeit präsentieren wir eine Reihe von effektiven Algorith-
men, Programmen, und Datenbaken für die Analyse von moleku-
laren Hochdurchsetzdatensätzen. Diese Ansätze wurden entwickelt,
um deregulierte biologische Prozesse zu untersuchen und in diesen
wichtige Schlüsselmoleküle zu identifizieren.
Zusätzlich wurden eine Reihe von Analysen durchgeführt um die
verschiedenen Methoden zu evaluieren. Zu diesem Zweck haben wir
insbesondere eine Wilmstumor Studie durchgeführt, in der wir ver-
schiedene regulatorische Mechanismen und dazugehörige Biomarker
identifizieren konnten, die für die erhöhte Malignität von Wilmstu-
moren mit blastemreichen Subtyp verantwortlich sein könnten. Diese
Erkenntnisse könnten in der Zukunft zu einer verbesserten Behand-
lung dieser Tumore führen.
Diese Ergebnisse zeigen eindrucksvoll, dass unsere Ansätze in der
Lage sind, verschiedene molekulare Hochdurchsatzmessungen auszu-
werten und dabei helfen können pathogene Mechanismen im Zusam-
menhang mit Krebs oder anderen komplexen Krankheiten aufzuklären.
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A B S T R A C T

Over the last three decades, high-throughput techniques, such as next-
generation sequencing, microarrays, or mass spectrometry, have rev-
olutionized biomedical research by enabling scientists to generate de-
tailed molecular profiles of biological samples on a large scale. These
profiles are usually complex, high-dimensional, and often prone to
technical noise, which makes a manual inspection practically impos-
sible. Hence, powerful computational methods are required that en-
able the analysis and exploration of these data sets and thereby help
researchers to gain novel insights into the underlying biology.
In this thesis, we present a comprehensive collection of algorithms,
tools, and databases for the integrative analysis of molecular high-
throughput profiles. We developed these tools with two primary goals
in mind. The detection of deregulated biological processes in complex
diseases, like cancer, and the identification of driving factors within
those processes.
Our first contribution in this context are several major extensions of
the GeneTrail web service that make it one of the most comprehen-
sive toolboxes for the analysis of deregulated biological processes and
signaling pathways. GeneTrail offers a collection of powerful enrich-
ment and network analysis algorithms that can be used to examine
genomic, epigenomic, transcriptomic, miRNomic, and proteomic data
sets. In addition to approaches for the analysis of individual -omics
types, our framework also provides functionality for the integrative
analysis of multi-omics data sets, the investigation of time-resolved
expression profiles, and the exploration of single-cell experiments.
Besides the analysis of deregulated biological processes, we also fo-
cus on the identification of driving factors within those processes, in
particular, miRNAs and transcriptional regulators. For miRNAs, we
created the miRNA pathway dictionary databasemiRPathDB, which
compiles links between miRNAs, target genes, and target pathways.
Furthermore, it provides a variety of tools that help to study associa-
tions between them.
For the analysis of transcriptional regulators, we developed REGGAE,
a novel algorithm for the identification of key regulators that have a
significant impact on deregulated genes, e.g., genes that show large
expression differences in a comparison between disease and control
samples. To analyze the influence of transcriptional regulators on
deregulated biological processes„ we also created the RegulatorTrail
web service. In addition to REGGAE, this tool suite compiles a range
of powerful algorithms that can be used to identify key regulators in
transcriptomic, proteomic, and epigenomic data sets.
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Moreover, we evaluate the capabilities of our tool suite through sev-
eral case studies that highlight the versatility and potential of our
framework. In particular, we used our tools to conducted a detailed
analysis of a Wilms’ tumor data set. Here, we could identify a cir-
cuitry of regulatory mechanisms, including new potential biomark-
ers, that might contribute to the blastemal subtype’s increased malig-
nancy, which could potentially lead to new therapeutic strategies for
Wilms’ tumors.
In summary, we present and evaluate a comprehensive framework
of powerful algorithms, tools, and databases to analyze molecular
high-throughput profiles. The provided methods are of broad inter-
est to the scientific community and can help to elucidate complex
pathogenic mechanisms.
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1
I N T R O D U C T I O N

The study of cells, their structure, and function has fascinated hu-
mans for centuries [343]. Over time, major scientific breakthroughs in
cell biology have often been initiated by technological advancements
that allowed scientists to get a more comprehensive and detailed view
of cells. This development started with the invention of microscopes,
which allowed scientists to identify microorganisms like protozoa or
bacteria [343]. The term “cell” itself was first used in the book “Mi-
crographia” by Robert Hooke in 1665, where he used it to describe
pores in a piece of cork [219].
With better microscopes, biologists discovered that the tissues of ani-
mals [481] and plants [471] are composed of cells. Both observations
inspired the original formulation of “cell theory”, which inter alia pro-
poses that cells are the basic building blocks of all organisms [343,
481]. Over the years, scientists were able to refine and expand our
knowledge of cells, such that by the end of the 19th century their
general structure and many organelles had been described, e.g., nu-
cleus [76], endoplasmatic reticulum [171], or mitochondria [42].
In the 20th century, the research focus shifted from the characteri-
zation of cells on a higher level to molecular characterization of in-
dividual components and contained macromolecules, mainly DNA
and proteins. These efforts, amongst others, led to the identification
of DNA as the carrier of the genetic information [26]. Moreover, tech-
nologies like X-ray diffraction crystallography allowed determining
the structure of proteins [407] and DNA [566].
At the same time, researchers started to study links and relationships
between the different macromolecules in cells. These efforts led to
several groundbreaking discoveries, such as the “central dogma of
molecular biology”, which states that the sequence information is
passed from DNA to protein [105], or the discovery of the “genetic
code” that defines how the DNA is translated into a corresponding
amino acid sequence [106].
With the knowledge that the DNA is the carrier of the genetic infor-
mation, researchers also started to study the DNA sequence itself. Dif-
ferent technologies like “DNA sequencing with chain-terminating in-
hibitors” [465] made it possible to sequence genomes of small viruses,
like the φX174 bacteriophage [464], the lambda bacteriophage [463],
or the DNA of human mitochondria [21]. These projects showed that
it is possible to assemble whole genomes from small fragments and
highlighted the potential of cataloging and annotating the complete
genomic landscape of organisms.

1
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The success of DNA sequencing and the emergence of new sequenc-
ing strategies, such as random shotgun sequencing [360, 423], which
allowed to sequence larger genomes, inspired the launch of the Hu-
man Genome Project (HGP) in 1990, a huge research program with
the goal to sequence and annotate the entire human DNA and thereby
to accelerate biomedical research. To this end, the research group col-
lected DNA samples of multiple donors to create a consensus and
reference sequence. In 1998, Craig Venter founded the biotechnology
company Celera Genomics to initiate a competing project with the
goal to generate the first human genome sequence at a faster pace
and at a much lower cost than the HGP. Both groups independently
published the first versions of the human genome sequence in 2001
[288, 550].
Since then, sequencing technologies have made tremendous progress.
The generation of the full human genome sequence by the HGP
took multiple years and had an estimated cost up to $1 billion1

[576]. Nowadays, modern high-throughput sequencing techniques
can achieve this task with only a fraction of the time and cost (around
$700 [575]).
The success of high-throughput DNA sequencing also inspired the
development of further related sequencing protocols that not only al-
low to determine the DNA sequence of a certain sample (cell mixture),
but also epigenetic modifications of the chromatin [500], gene expres-
sion [562], or the location of DNA binding proteins on the genome
[405].
In the last few years, advancements in single cell isolation techniques
such as “laser capture microdissection (LCM)” [140] or “flow-activated
cell sorting (FACS)” [65] even allow DNA and RNA sequencing of in-
dividual cells instead of cell mixtures [81, 245, 450, 460].

1.1 motivation

Today, next-generation sequencing (NGS) approaches as well as other
high-throughput methods such as mass-spectrometry, or microarrays
are routinely applied to profile cells on a large scale, both at bulk and
single-cell level.
The wide availability of molecular high-throughput methods also
motivated the formation of huge international research projects that
try to catalog the molecular markup of healthy as well as diseased
cells. Two essential projects that have been the foundation for a large
number of significant scientific publications over the last decade are
ENCODE [99, 366] and GTEx [314]. The ENCODE project is a re-
source of various (epi-)genetic data sets for human and mouse. It was

1 The total cost of the HGP was around $2.7 billion. The estimated cost for the gen-
eration of the final genome sequence itself was estimated to be in the range of $500
million to $1 billion [576].
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created to annotate functional elements in the DNA, to identify and
characterize chromatin states in different tissues and cell types, and
to locate binding sites of a diverse set of DNA binding proteins. The
GTEx project is a repository of tissue-specific gene expression, genetic
variants, and epigenetic modifications of 54 tissues and nearly 1, 000
individuals. This project aims to study the tissue-specific regulation
of gene expression and the influence of (epi-)genetic alterations.
In contrast to ENCODE and GTEx, which have mainly been devel-
oped for the pursuit of understanding the general molecular mech-
anisms, other projects (e.g., [332, 536, 606]) focus more on uncov-
ering pathogenic mechanisms that are responsible for the develop-
ment of certain diseases. One of them is The Cancer Genome Atlas
(TCGA) [536], a comprehensive database containing molecular pro-
files of more than 20, 000 primary cancer samples for 33 different can-
cer types and matched controls. For each cancer sample, TCGA pro-
vides high-throughput measurements of the (epi-)genome, transcrip-
tome, and proteome, as well as clinical information, like treatment
strategies or survival times. These efforts already resulted in various
discoveries that help to explain the development and progression of
different cancer types [382–384].
Due to their popularity and wide availability, high-throughput pro-
filing techniques have even become essential tools in non-research
settings, such as forensics [77] or even clinical applications [308].
Nowadays, the biggest challenge no longer seems to be the molecu-
lar profiling of cells, but rather the processing of the resulting data
to gain new biological insights. Since the size, complexity, and high-
dimensionality of the data sets makes a manual inspection impossi-
ble, automatic computational resources are required that enable the
assessment and exploration of underlying molecular mechanisms.

1.2 contributions

This thesis presents algorithms, tools, and databases that facilitate the
integrative analysis of molecular high-throughput profiles. The major
goal of our tools is to gain novel insights into biological processes
that are deregulated in diseases like cancer. Here, we focus on two
essential questions: (1) the identification and analysis of deregulated
biological processes, and (2) the detection of driving factors in the un-
derlying natural or pathogenic processes. The following paragraphs
describe the different scientific contributions discussed in this work.

Our first contributions are several major the GeneTrail web service
[176, 177, 510] that make it one of the most powerful toolboxes for
the analysis of biological processes available today. GeneTrail offers
solutions for two crucial tasks in this context, i.e., enrichment analysis



4 introduction

and network analysis.

Enrichment analysis methods are statistical tests that can be applied
to determine if predefined functional categories, e.g., gene sets with a
common biological function, are significantly up- or down-regulated
in an investigated data set. For this purpose, we built an extensive
collection of functional categories from 40 external databases. For
the analysis of these categories, GeneTrail offers a comprehensive
framework of statistical tests that can be applied to a broad range of
application scenarios. This includes (1) classical enrichment analysis
of genomic, proteomic, miRnomic, and transcriptomic data sets, (2)
integrative analysis of different data types, and (3) specialized work-
flows for the assessment of epigenetic modifications, time-series data,
and single-cell expression profiles.
Besides set-based enrichment analysis approaches, which do not con-
sider interactions between the individual molecular entities, our web
service also offers network analysis methods that utilize the graph
topology provided by some of the incorporated databases. For this
purpose, we combined GeneTrail with our NetworkTrail web ser-
vice [509] to offer graph-based algorithms that analyze the topol-
ogy of the provided networks to detect substantially altered paths,
subgraphs, or signaling cascades. An advantage of network analysis
approaches is that these methods can also highlight key molecules
within those networks, e.g., the root of identified subgraphs.

In addition to the detection of deregulated biological processes, a fur-
ther important task in the analysis of molecular high-throughput pro-
files is the identification of driving factors within those processes.
Important molecular factors in this context are so-called miRNAs.
These small, non-coding RNAs bind to the untranslated region (UTR)
on the 3 ′ end of their target mRNAs and thereby inhibit the expres-
sion of the corresponding gene [392]. Although their modes of action
are well studied, some key questions remain. For example, which
miRNA regulates a particular pathway or conversely, which biologi-
cal processes are controlled by a selected miRNA. In order to study
both questions, we created miRPathDB [33, 529, 530], a database that
offers information about miRNAs, their target genes, and pathways
for human and mouse. On top of this, miRPathDB provides several
interactive tools for the analysis and comparison of miRNA-pathway
interactions.
Further crucial factors in the control of nearly all cellular processes
are transcriptional regulators like transcription factors, chromatin mod-
ifiers, or co-factors. Alterations in their functions are related to dis-
ruptions of critical biological processes [546] and, consequently, have
been observed in various diseases [293]. To analyze the influence of
transcriptional regulators on deregulated biological processes, we de-
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veloped the RegulatorTrail web service [533]. It offers nine methods
to investigate the effects of regulators based on transcriptomic, pro-
teomic, or epigenomic data sets. Moreover, we developed REGGAE
[531], a novel enrichment-based algorithm for the identification and
prioritization of regulators with essential roles in pathological pro-
cesses.

Throughout this thesis, we demonstrate the capabilities of our tool
suite with several analyses that highlight the versatility and poten-
tial of our framework. In particular, we used the functionality out-
lined above to conduct a Wilms’ tumor study [532]. Wilms’ tumors or
nephroblastomas are a type of pediatric kidney tumors. While they
generally have a good prognosis, tumors that predominantly consist
of blastemal cells after neoadjuvant chemotherapy have a much more
unfavorable course of disease than other tumors. Using our tool suite,
we were able to detect several properties of blastemal tumors and key
transcriptional regulators that might be involved in the increased ma-
lignancy of blastemal tumors. These insights could potentially lead
to new strategies in the diagnosis and therapy of Wilms’ tumors.

An overview of the tools and databases presented in this dissertation
is depicted in Figure 1.

1.3 thesis outline

This dissertation consists of ten chapters that are structured as de-
scribed in this section:
In Chapter 2 important concepts of molecular cell biology are intro-
duced. In particular, we present the central biological mechanisms of
cells that are relevant for this dissertation. Additionally, we describe
how alterations in those mechanisms might be involved in the initia-
tion or progression of cancer.
In Chapter 3, we describe the materials and methods used through-
out this thesis. First, the concepts of different high-throughput profil-
ing techniques are explained that were used to gather the data sets
analyzed in this thesis. Then we describe the third-party resources
that build the data foundation of all our tools. Finally, we introduce
important mathematical concepts that are needed in the remaining
chapters.
All tools and databases presented in this thesis are implemented as
web services using a common framework described in Chapter 4. In
particular, we introduce the design and some basic functionality that
is shared by all our tools.
In the following chapters, we then describe the individual web ser-
vices, databases, and algorithms to analyze molecular high-throughput
data sets.
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GeneTrail 2 + 3 

miRPathDB 1 + 2

Analysis of miRNA target
genes and pathways

RegulatorTrail

+

Identification of influential 
transcriptional regulators 

Analysis of deregulated
biological processes

High-throughput 
measurements

REGGAE

Figure 1: Overview of the algorithms, tools, and databases presented in this
thesis.

An overview of the different enrichment and network analysis work-
flows we created for GeneTrail and NetworkTrail is presented in Chap-
ter 5. In addition to an in-depth discussion of the individual analysis
steps, we also show-case the potential of all workflows on real world
examples.
Subsequently, we outline how our enrichment analysis framework
was used to build miRPathDB and we demonstrate some key aspects
of our database (cf. Chapter 6).
In Chapter 7, we introduce, evaluate, and discuss our REGGAE algo-
rithm for the identification of influential regulators.
This is then followed by a description of our RegulatorTrail web ser-
vice and the different workflows for the investigation of influential
regulators in Chapter 8.
In Chapter 9, we describe our study of Wilms tumors, where our tools
were used to investigate regulatory mechanisms that may contribute
to the increased malignancy of predominantly blastemal tumors.
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Finally, in Chapter 10 we summarize and discuss all our contributions
and conclude with possible directions of future research.

Author contributions

The research projects described in this work are often based on joint
efforts from different research groups across several scientific areas
and most of them have already been published in peer-reviewed sci-
entific journals. For this purpose, all chapters contain boxes that ref-
erence respective publications and that briefly summarize my contri-
butions.





2
B I O L O G I C A L B A C K G R O U N D

In this chapter, we introduce fundamental biological concepts that
are needed to understand the remaining chapters of this thesis. First,
some basics of molecular cell biology are presented (cf. Section 2.1).
Afterward, we discuss several important biological processes. In par-
ticular, we provide a brief description of the immune system (cf. Sec-
tion 2.2) and an overview of processes involved in the development
and progression of cancer (cf. Section 2.3).

2.1 molecular biology of cells

The average human body consists of approximately 37.2 trillion cells Approximation for a
30-year-old person
with a height of
1.72m and a weight
of 70kg.

[59] with various specialized functions.1 All human cells in an indi-
vidual’s body originate from a single cell, the zygote, which is formed
via the fusion of an egg cell and a sperm cell. After fertilization, the
zygote proliferates and divides into many daughter cells, which then
form the so-called blastocyst [601]. The inner wall of this structure
consists of embryonic stem cells (ESCs) that have the ability to trans-
form into any of the three germ layers of the embryonic development
(ectoderm, endoderm, mesoderm) and subsequently into any adult
cell type [601].
Although all cells of human tissues originate from the same zygote
and with some exceptions, e.g., mature erythrocytes2, also contain the
same genetic information, they can fulfill a large spectrum of differ-
ent functions. This diversity is mainly defined by the number of active
genes and the number of functional gene products, such as proteins
and non-coding RNAs (cf. Section 2.1.3), but can also be influenced
by external stimuli and nutrient supply. In the following sections, we
describe the structure of the human genome and various molecular
mechanisms that control which genes are active and at which rate
gene products are produced.

Most of the information in the following sections is based on the book
‘Molecular Biology of the Cell’ by Bruce Alberts and colleagues [14].
Other sources are indicated as additional citations.

1 Here, only human cells are considered, not the microbiome.
2 Mature erythrocytes or red blood cells have no nucleus and no DNA.

9
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2.1.1 The human genome

The human genome is a set of long double-stranded deoxyribonucleic
acid (DNA) molecules that encode the complete hereditary informa-
tion. It consists of 23 chromosome pairs that are located in the cell
nuclei. One copy of each chromosome is inherited from the father
and one from the mother. Additionally, a small amount of DNA can
also be found in mitochondria. This mitochondrial DNA is solely in-
herited from the mother.

The double-stranded DNA molecules consist of two unbranched and
complementary sequences composed of the same four monomers,
called nucleotides. Each nucleotide is composed of a five-carbon sugar
in the form of 2-deoxyribose, a phosphate residue, and one out of four
nucleobases: adenine (A), cytosine (C), guanine (G), and thymine (T).
These nucleotides are covalently bound through the sugar-phosphates
and form a single DNA strand. In particular, the fifth carbon of the 2-
deoxyribose of one nucleotide is connected to the third carbon of the
2-deoxyribose of the neighboring nucleotide via a phosphate group.
This orientation also defines how a strand of DNA is described in the
literature, i.e., from the 5 ′ end to the 3 ′ end. Finally, two complemen-
tary and antiparallel DNA strands are coiled around each other and
generate a DNA double helix. The helix structure is stabilized via hy-
drogen bonding between complementary bases in the two strands. In
particular, A always forms base pairs with T and C with G. In Figure
2, the individual components of the DNA double-strand are depicted.

G
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4
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5’ 3’
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Figure 2: DNA double strand consisting of two complementary, antiparallel
DNA chains. Individual components are marked in blue.
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2.1.2 Chromatin structure

The human DNA contains specific regions, called genes that consti-
tute the blueprint to synthesize thousands of macromolecules, i.e.,
proteins and non-coding RNA. However, since cells typically only re-
quire a subset of the encoded information, only some parts of the
DNA are accessible at a given time. The remaining regions are typi-
cally condensed into more compact structures. To this end, the DNA
double-strand is wrapped around proteins that help organize and
condense the DNA. The resulting protein-DNA complex is called
chromatin.
The chromatin complex is defined by small subunits, called nucleo-
somes. Each nucleosome consists of 147bp of DNA that is 1.7 times
wrapped around a protein polymer with two copies of each of the
following histone proteins: H2A, H2B, H3, and H4 (cf. Figure 3 C).
Consecutive nucleosomes are connected by DNA linker regions with
a length of 10-80 bp and stabilized by an additional histone (H1) [147].
The arrangement of the nucleosomes on the DNA defines the so
called chromatin structure that can range from a very loose repre-
sentation (euchromatin) to very compact ones (heterochromatin). An
overview of the chromatin structure is shown in Figure 3 A+B.

(B) Heterochromatin

(A) Euchromatin

NucleosomeLinker region Nucleosome-free region

(C) Histone octamer

H2A

H2BH4

H3

Histone tails

Figure 3: Chromatin structure. (A) Loosely packed euchromatin including a
nucleosome-free region. (B) Densely packed heterochromatin. (C)
Building blocks of the histone octamer.
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2.1.2.1 Histone modifications

A shared feature among the four core histones is that they have an un-
structured domain at their N-terminal end, which is called the “tail”
[60]. This tail is often modified by reversible post-translational mod-
ifications (PTMs)[37, 60] (cf. Figure 4). These dynamic modifications
change how the histones within and between nucleosomes interact
and thereby influence the chromatin structure [60].
Regularly occurring PTMs are methylations, acetylations, phospho-
rylations, and ubiquitinations. Although several amino acids can be
modified, they mainly seem to occur at lysines and arginines [37]. On
the one hand, these histone modifications influence the chromatin
structure and thereby make the DNA more or less accessible to other
proteins. On the other hand, specific combinations also seem to facili-
tate the interaction of different proteins with the DNA and even large
protein complexes that regulate various biological processes, most no-
tably the expression of genes.
We use the following commonly used trilateral notation throughout
this thesis to denote specific histone modifications, e.g., H3K4me3.
The first part indicates which histone is affected (H3), the second part
denotes the one-letter code of the modified amino acid and the po-
sition (K4 ⇒ fourth lysine), and the last part specifies the type of
modification. (me3⇒ trimethylation).

(A) Chromatin modifications

methylation acetylation phosphorylation ubiquitination

Histone modifications Cytosine methylation

methylated unmethylated

CpG island

Figure 4: Overview of possible chromatin modifications, i.e., post-
translational modification of histones and cytosine methylations.

2.1.2.2 DNA methylation

Another factor that can influence the chromatin structure and the ac-
cessibility of the DNA are methylations of nucleobases3, in particularFor mammals,

non-CpG
methylations are
mainly found in

stem cells and seem
to disappear in

mature tissues [310,
428].

cytosines [367]. While cytosine methylations can occur in different
sequence contexts, it mainly occurs in regions where cytosine (C) is
succeeded by guanine (G), i.e., CpG (or CG) sites [310, 428]. Genomic
regions with an enrichment of CpG sites are often referred to as CpG
islands (CGI).

3 DNA methylation has been identified for adenine and cytosine bases [431, 587].
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Similar to histone modifications, DNA methylation, can also influ-
ence the accessibility of the DNA and is an essential factor in the
control of developmental processes, tissue-specific gene activity, and
X chromosome inactivation [367]. While patterns of histone marks
can change rapidly, DNA methylation patterns seem to be more sta-
ble chromatin modifications [411]. They even have been shown to be
heritable [215].

2.1.3 Genes, gene products, and genomic regions

The genome of living organisms contains the information to produce
other macromolecules, i.e., RNAs and proteins, needed to control the
development, characteristics, and functions of a cell. This informa-
tion is encoded in special genomic regions, called genes. In this sec-
tion, we first briefly introduce different gene products and genomic
regions associated with a gene. The synthesis and regulation of the
gene products are then described in subsequent sections.
Each gene represents a template to produce a complementary RNA
molecule (cf. Section 2.1.4.1). Like DNA, RNA or ribonucleic acid is
composed of covalently bound nucleotides that form a single strand.
However, RNA differs from DNA in two key points. Namely, the
sugar-phosphate backbone is formed using ribose instead of deoxyri-
bose, and thymine is replaced by uracil. In general there are two dis-
tinct classes of RNA molecules: (1) coding RNA molecules that rep-
resent a blueprint to create proteins (cf. Section 2.1.4.2) and (2) func-
tional RNAs, such as miRNAs or tRNAs (cf. Section 2.1.4.3 + 2.1.4.2),
that are actively involved in cellular processes .
Proteins are polymers consisting of unbranched sequences of mono-
mers, called amino acids, that are linked by covalent peptide bonds.
Thereby, each amino acid sequence or polypeptide is encoded by a
corresponding RNA (cf. Section 2.1.4.2). After their synthesis, the
polypeptide chain folds into a three-dimensional structure that de-
fines the function of a protein (cf. Section 2.1.4.2).
In addition to genes, the genome of most organisms also contains sev-
eral gene regulatory regions (promoter, enhancer, silencer, and insula-
tor) that are used to control the amount of synthesized gene product
(cf. Section 2.1.4). The structure and function of the different regula-
tory regions are further discussed in Section 2.1.5.3. An overview of
the most relevant genomic regions associated with a gene is shown
in Figure 5.
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Figure 5: Overview of the genomic regions associated with a gene.
This figure was adapted from “Eukaryotic and Prokaryotic
Gene Structure”, by BioRender.com (2022). Retrieved from
https://app.biorender.com/biorender-templates.

2.1.4 Gene expression

Gene expression is the process of synthesizing functional gene prod-
ucts, such as proteins or non-coding RNAs, based on the sequence of
nucleotides that belong to the encoding gene. For the different classes
of gene products, distinct processing steps are required. In the fol-
lowing paragraphs, we briefly describe the essential steps needed to
synthesize proteins and miRNAs in eukaryotic cells (cf. Figure 6).

DNA 

mRNA 

Protein 

Codons 

3' 

Tyr Ser Gly Ser 

5' 

3' 5' Transcription 

Translation 

3' 5' 

Amino acids 

Figure 6: General overview of the flow of genetic information from
a gene to a functional gene product. The DNA sequence
is transcribed to the corresponding RNA and then trans-
lated to the encoded protein. This figure was adapted from
“Central Dogma”, by BioRender.com (2022). Retrieved from
https://app.biorender.com/biorender-templates.

https://app.biorender.com/biorender-templates
https://app.biorender.com/biorender-templates
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2.1.4.1 Transcription

The first step in the gene expression process for all functional gene
products is transcription. In this process, the DNA sequence of the
gene is copied or transcribed into a complementary RNA strand.
Transcription is catalyzed by an RNA polymerase and further regu-
lated by transcription factors and cofactors (cf. Section 2.1.5, Figure 7).

P 

P 
ATP ADP 

Mediator 

Activator 

TATA Box 

IIF 
IIE 

IIH 

Enhancer 

mRNA 

TBP TFIID IIB IIA Pol II 

Complex assembly: 

IIF 

IIH 

IIE 
Assembled complex 

Figure 7: Overview of the transcription initiation process for a specific gene.
The (pre-)initiation complex consisting of the polymerase (Pol II)
and general transcription factors (TBP, TFIID, IIB, IIA,IIF,IIE,IIIH)
is assembled at the promoter region of a gene. The transcrip-
tion is additionally controlled by an activator protein bound to
an associated enhancer region that is looped into the proximity
of the polymerase complex. The activation signal from the en-
hancer is transmitted by the mediator complex (cf. Section 2.1.5.3).
This figure was adapted from “Eukaryotic Gene Regulation - Tran-
scriptional Initiation”, by BioRender.com (2022). Retrieved from
https://app.biorender.com/biorender-templates.

The transcription is initiated at the promoter region of a gene, where
the RNA polymerase binds with the help of general transcription
factors to specific sequences on the DNA. Here, the (pre-)initiation
complex consisting of the RNA polymerase and further transcription
factors and cofactors is assembled. This complex first separates the
two complementary DNA strands and creates a transcription bubble.
Additionally, the RNA polymerase is guided to the transcription start
site (TSS), where it binds to the single-stranded DNA.

https://app.biorender.com/biorender-templates
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The RNA polymerase now reads the DNA sequence base-by-base
from 5 ′ to 3 ′ end and at the same time synthesizes a complemen-
tary RNA strand (3 ′ to 5 ′). After this elongation process has started,
the general transcription factors are released to assemble a new
(pre-)initiation complex. The RNA polymerase continues to traverse
over the template DNA and further extends the complementary RNA
strand until the transcription end site (TES) is reached, and the elon-
gation step terminates. Here, the RNA is cleaved, and the polymerase
is released from the DNA.
Eukaryotes usually have three different RNA polymerases that cat-
alyze the synthesis of specific RNA molecules. Both mRNAs, which
act as templates for protein production, and miRNAs are synthesized
by RNA polymerase II. The resulting transcripts for both RNA classes
are additionally modified during or after the actual transcription. For
mRNA, this entails that (1) a modified nucleotide is added to the
5 ′ end (capping), (2) the 3 ′ end is extended with multiple adenines
(polyadenylation), and (3) intron sequences (cf. Figure 5) are removed
from the sequence (splicing). For miRNAs, several synthesis path-
ways exist that require different processing steps (cf. Section 2.1.4.3).
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2.1.4.2 Translation and protein folding

After the transcription process is finished, the resulting mRNA
molecule is transported from the nucleus to the cytoplasm of the
cell. Here, the nucleotide sequence of the mRNA is translated into
a corresponding amino acid sequence of the protein. This process is
catalyzed by RNA-protein complexes called ribosomes, that are com-
posed of two subunits (small and large). The ribosomes map three
consecutive and non-overlapping nucleotides (codon) of the mRNA
sequence to one specific amino acid. To this end, they utilize tRNA
molecules that have complementary bases (anticodon) and carry the
corresponding amino acid.
The translation is initiated by the small ribosomal subunit that at-
taches to the start codon of the mRNA (AUG) via complementary
base pairs of a tRNA molecule. In the next step, the large riboso-
mal subunit also attaches and completes the ribosome. The ribosome
then traverses the RNA molecule (5 ′ to 3 ′), recruits for every codon
an associated tRNA, and attaches the corresponding amino acid to
the C terminal end of the polypeptide chain. As soon as one of the
stop codons (UAA, UAG, UGA) is reached, the translation is stopped,
and the amino acid sequence is released. An overview of this process
is shown in Figure 8.

A C G 

G A A A A A A A U U U U U U U C C C C C G G G G 

A U C 

A A U U C G 

Figure 8: Overview of the translation process. The ribosome traverses a tem-
plate mRNA and continuously attaches a further amino acid for
every three bases to the peptide chain. This figure was created us-
ing BioRender.com.

After the translation process, we obtain a chain of amino acids that
define the primary structure of the protein. Interactions between the
amino acid then cause the protein to fold into a compact three-dimen-
sional conformation. During this process, the protein adopts an ener-

https://app.biorender.com/
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getically favorable structure, i.e., its native conformation. The differ-
ent levels of the protein structure are depicted in Figure 9.
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Figure 9: Overview of the different levels of the protein structure. This figure
was adapted from “Protein Structure ”, by BioRender.com (2022).
Retrieved from https://app.biorender.com/biorender-templates.

In some cases, the protein folding is also assisted by proteins, called
chaperones. The proteins aid in the folding process and help to pre-
vent misfolding and the creation of incorrect conformations.

2.1.4.3 miRNA biogenesis

MicroRNAs (miRNAs) are regulatory RNAs with a length between
21-25 nucleotides that fulfill key functions in gene regulation [392,
555]. Each miRNA can repress the expression of a specific set of tar-
get genes. To this end, the miRNA binds to the 3 ′ untranslated region
(UTR) of a particular mRNA, which either promotes the degradation
of corresponding mRNA molecules or inhibits their translation (cf.
Section 2.1.5.4). Here, we briefly describe different ways in which
miRNAs can be synthesized [392], i.e., the canonical way and sev-
eral non-canonical ones.

https://app.biorender.com/biorender-templates
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In the canonical way, genes that encode the miRNA are transcribed
from the DNA and then further processed. Here, one typically gene
encodes for two mature miRNAs that are named according to their
position in the gene body (3p and 5p, cf. Figure 5C). Apart from
that, some miRNAs form clusters in the genome, where sequences
of multiple miRNAs are grouped and transcribed as one long RNA
transcript [522].
After transcription, the primary miRNA transcript (pri-miRNA) is fur-
ther processed. First, the transcript is processed by a microprocessor
protein complex consisting of the two enzymes DGCR8 and Drosha
to create the characteristic hairpin structure (pre-miRNA) [117] (cf.
Figure 10). The pre-miRNA is then exported to the cytoplasm by a
protein called Exportin-5 and subsequently processed by the endonu-
clease Dicer to create the two mature miRNAs [117, 395].
Additionally, there are several non-canonical ways either independent
of Drosha and DGCR8 or independent of Dicer [27, 392]. One exam-
ple forDGCR8/Drosha independent miRNA biogenesis are mirtrons
that are produced from introns of mRNAs via splicing [27, 453]. Ex-
amples for Dicer independent biogenesis are miRNAs generated from
short hairpin RNAs (shRNAs) by Drosha.

5’ 3’ 
pri-miRNA

AAAAA

Nucleus

Cytoplasm

pre-miRNA

Drosha / DGCR8

pre-miRNA

Exportin5
Dicer

mature miRNAs

3p 5p 

Figure 10: Overview of the canonical miRNA biogenesis pathway. First,
the pri-miRNA transcript is processed by Drosha and DGCR8.
The resulting stem-loop is then exported to the cytoplasm. Here,
Dicer cuts the stem-loop to create two mature miRNAs, which
are named according to their position in the primary transcript.



20 biological background

2.1.5 Mechanisms of gene regulation

Gene expression can be controlled at nearly all processing steps in
the flow of genetic information from DNA to functional gene prod-
ucts (cf. Figure 6). For most genes, the final expression rate is defined
by the interplay of different types of regulation. In the following sec-
tions, we briefly describe different regulatory mechanisms relevant to
the work presented in this thesis. In particular, we focus on transcrip-
tional regulation and gene regulation by miRNAs.

2.1.5.1 Transcriptional regulation via chromatin remodeling

Epigenetic modifications of the chromatin constitute the first layer of
gene expression control. They define the structure of the chromatin
and, hence, regulate if the RNA polymerase complex is able to access
the DNA and to initiate the transcription of a gene. Consequently,
epigenetic modifications of histones or cytosines have important reg-
ulatory roles in many biological processes, e.g., cell development [556,
607].
The chromatin structure in eukaryotic cells is primarily orchestrated
by different families of proteins or protein complexes that either mod-
ify the chromatin modification patterns [244, 458], or that remodel
the chromatin structure by adding, rearranging, or removing nucleo-
somes [458].
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Figure 11: Overview of the epigenetic marks and their association with the
activity of a gene. Green arrows indicate a positive, and red ar-
rows a negative association. The information depicted in this plot
was extracted from different scientific publications [268, 270, 367].
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Regulatory effects of histone modification patterns

Post-translational modifications of histones have two major modes
of action [37]. On the one hand, specific modifications influence the
packing of nucleosomes and, hence, the accessibility of specific ge-
nomic regions. On the other hand, combinations of histone marks
define specific chromatin states that facilitate or impede interactions
of regulators and DNA [37, 139]. For example, distinct combinations
of histone marks in the different regulatory regions of a gene are as-
sociated with different stages of activity [139, 268]. An overview of
different histone modifications and their association with gene activ-
ity are depicted in Figures 11 and 12.

(A) Active promoter (H3K4me3+ H3K27ac) (B) Inactive promoter (H3K27me3)

Promoter Promoter

H3K4me3

H3K27ac H3K27me3

trimethylation acetylation

Figure 12: Regulatory effects of histone modification patterns. (A) Combi-
nations of different marks (H3K4me3 and H3K27ac) in the pro-
moter regions indicate an active transcription state. (B) Patterns
of H3K27me3 marks in the promoter indicates a silenced state.

Regulatory effects of DNA methylation patterns

Similar to the modification of histones, DNA methylation patterns
can influence the expression of genes in two ways.
First of all, the methylation of transcription factor binding sites can
prevent them from binding to the DNA [367]. Depending on the af-
fected genomic region and regulator, this can have an activating and
a repressing effect on the expression of a gene [247](cf. Figure 11).
In general, a high degree of methylation in the promoter region of a
gene is associated with transcriptional silencing, while high methy-
lation levels in repressive elements can inhibit their effect [247] (cf.
Figure 13).
Additionally, methylation patterns can constitute signals that pro-
mote the recruitment of specific protein complexes that then, in turn,
mediate the gene expression process [206, 367].
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Figure 13: Regulatory effects of DNA methylation patterns. (A) Methylation
of promoter regions can repress or silence the expression of genes.
(B) Methylation of silencers can reduce/negate their effect.

2.1.5.2 Gene regulation via transcription factors and cofactors

The expression of a gene is not only controlled by the accessibility of
the DNA to the transcription machinery but also by proteins called
transcription factors (TFs). These proteins bind to regulatory regions
of a gene and influence the rate at which this gene is transcribed.
In the following paragraphs, we describe the different types of reg-
ulatory regions and essential properties of TFs that allow them to
influence the expression of their target genes.

2.1.5.3 Gene regulatory regions (GRR)

Gene regulatory regions (or cis-regulatory regions) are intervals in
the genome that are involved in gene expression or the regulation of
this process (cf. Figure 5A). They are enriched with binding sites of
transcription regulators that can control the expression of associated
genes [438]. In the following paragraphs, we briefly describe some of
the core regulatory regions.

core promoter The core promoter is defined as the regions
around the transcriptional start sites (TSS) of a gene [438, 494]. It
contains various binding motifs of general transcription factors that
facilitate the formation of the pre-initiation complex, e.g., the TATA
box that can be found in around 24% of human promoters [494, 591].

proximal promoter The proximal promoter is located upstream
of the core promoter. It also contains binding motifs of transcriptional
regulators. Besides binding sites of activators and repressors, they
also often contain tethering elements that enable long-range interac-
tions between the promoter and other regulatory elements, such as
distal enhancers [83, 438].

enhancer Enhancers are regions enriched with transcription fac-
tor motifs that increase the rate at which a specific gene is transcribed
[340, 438]. Unlike promoters that are always located near the respec-
tive TSS, enhancers can also be located hundreds of kilobases away
from the regulated gene [340]. To unfold their effect, these distal en-
hancers are looped into the close proximity of the corresponding pro-
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moter region (cf. Figure 7). This loop formation is mediated by a
large protein complex, called the Mediator complex, which transmits
the signal of bound regulators to the transcription machinery [503].

silencer Silencers are the counterpart to enhancer regions as they
generally have a negative effect on the expression of their associated
target gene [438].

insulator Insulators are genomic regions that can block inter-
actions between a gene and distal regulatory elements [340]. In this
context, they have two main functions. First of all, they can block the
communication between a promoter and distal regulatory regions,
such as enhancer or silencer, by creating a physical barrier that inter-
feres with the loop formation [173]. Additionally, they can prevent
euchromatin domains from being silenced by blocking the spread of
repressive heterochromatin [340].

Transcription factors are characterized by their DNA-binding domains

In general, each transcription factor has a specific DNA-binding do-
main that allows them to recognize certain DNA motifs. The occur-
rence of these motifs in the regulatory regions of a gene is one impor-
tant factor that defines if the expression of a gene is influenced by a
transcription factor.

Transcription factors act in large protein complexes

Most eukaryotic TFs bind cooperatively to the DNA and assemble
complexes with other transcription factors or cofactors. The composi-
tion of such complexes defines if and how each regulator contributes
to the final function and subsequently how a target gene is regulated.

The activity of each gene is defined by the combined effect of all regulators

If a particular gene is expressed and at which rate is defined by the
combined effect of all involved regulators and associated complexes
on the RNA polymerase (cf. Figure 14). In this context, the different
regulators can fulfill various functions that regulate every step of the
transcription process. For example, they can enable, block, or influ-
ence the (pre-)initiation complex assembly or the rate at which the
polymerase is released from the start site. Additionally, regulators
can also affect the expression of a gene by recruiting other protein
complexes, such as repressor complexes.
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Figure 14: Overview of the transcriptional regulation by DNA binding pro-
teins and associated cofactors. The final gene activity is defined
by the combined effect of all regulators that bind to the regulatory
region associated with that gene.

2.1.5.4 Gene regulation via miRNAs

The gene expression process can also be controlled by miRNAs. For
this purpose, they form the so-called RNA-induced silencing com-
plex (RISC) with different proteins, most notably members of the arg-
onaute (AGO) family [555]. In this complex, the miRNAs guide the
complex to a specific mRNA molecule that is then silenced. To this
end, the miRNA binds to its target mRNA, mostly at the 3 ′ UTR. This
is achieved via the complementary base pairing of the target mRNA
and the seed sequence of the miRNA, i.e., bases 2-7 from the 5 ′ end of
the mature miRNA. The RISC then mediates gene silencing in two dif-
ferent ways, either by translational inhibition or by mediating mRNA
decay (cf. Figure 15). For both modes of actions, different mechanisms
have been described [370]. In this manner, each miRNA can control a
variety of target genes.
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(A) mRNA cleavage, degradation,
or destabilization

(B) Inhibition of translation

Figure 15: Regulatory effects of the RNA-induced silencing complex (RISC)
formed by a miRNA and a member of the argonaute (AGO) fam-
ily. (A) mRNA cleavage and (B) translation inhibition.
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2.2 immune system

The immune system is a complex network of molecular processes
that combat infections, foreign particles, pathogens, or that destroy
aberrant cells, e.g., cancer cells [116]. Most of these processes are gov-
erned and executed by different immune cells in close collaboration
with specialized molecules. The majority of these cells are derived
from hematopoietic stem cells in the bone marrow [373] (cf. Figure
16). However, some already develop during embryogenesis, in partic-
ular tissue-specific macrophage populations, like microglia [373].
Generally, the immune system is orchestrated in a layered hierarchy
that, with each level, increases in specificity against pathogens [116].
The first layer of defense consists of (1) physical barriers that impede
foreign particles, microorganisms, and viruses from entering the host
organism, and (2) chemical compounds that combat pathogens, in-
cluding antimicrobial peptides, like defensins [170]. The second layer
is the innate or natural immune system that carries out an immediate
but unspecific response. Cells and molecules belonging to this class
always have a generic response to pathogens, independent of how of-
ten they are encountered. In contrast, cells of the adaptive immune
system, which make up the third layer, can recognize and memo-
rize specific pathogens. If these cells are presented with a known
pathogen, they can initiate a strong and specific defense response. In
the following paragraphs, we describe the function of molecules and
different immune cells, i.e., leukocytes, in the innate or adaptive im-
mune response.

Most information in the following paragraphs is based on the book
‘Janeway Immunologie’ by Kenneth Murphy and Casey Weaver [373]
and supplemented with additional sources.

2.2.1 Mechanisms of the innate immune system

After pathogens have successfully breached the physical and chemi-
cal barriers of the first layer of defense, they are confronted with cells
and associated molecules of the innate immune system. These leuko-
cytes carry out various specialized functions to identify infections,
alert other immune cells, and destroy pathogens or aberrant cells. In
the subsequent paragraphs, we describe essential mechanisms of the
innate immune system. Although most of the presented processes
can be used to categorize the associated leukocytes, nearly all cells
are directly or indirectly involved in multiple mechanisms.
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Figure 16: Overview of blood cells, including leukocytes (white blood cell),
derived from hematopoietic stem cells. Cells of the adaptive im-
mune system are marked with a black star. This figure was cre-
ated using BioRender.com.

2.2.1.1 The complement system

The complement system is a central part of the innate immune sys-
tem and plays a major role in inflammation and the defense against
pathogens [242, 354]. It consists of a class of plasma proteins that cir-
culate through the blood and other body fluids in an inactive state
and act as a “surveillance system”[242, 354, 355]. Upon activation,
they interact with each other to trigger a series of immune reactions
that help to battle infection [242, 354, 355]. Amongst others, they pro-
mote inflammation, and they can destroy the membranes of microor-
ganisms. Moreover, they cover and mark pathogens (opsonization),
which facilitates their ingestion phagocytes [242, 354, 355].

2.2.1.2 Phagocytosis and antigen presentation

Phagocytes are a group of immune cells that monitor the bloodstream
and tissues in the search for pathogens and diseased or damaged cells.
Cells with primarily phagocytic activity are, for example, dendritic
cells, neutrophils, and macrophages. Most phagocytes recognize for-
eign particles or cells via receptors on their surface that detect foreign
particles. After phagocytes have recognized a foreign body, they can
engulf and destroy them.
Some phagocytes, such as dendritic cells or macrophages, can also
present small pieces of dismantled pathogens, i.e., epitopes, as anti-
gens on their surface to alert or activate lymphocytes (cf. Section

https://app.biorender.com
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2.2.2). Thereby, these antigen-presenting cells (APC) constitute a bridge
between adaptive and innate immune processes.

2.2.1.3 Promoting inflammation through chemical signals

Many leukocytes can also produce and secrete chemicals that alert
and attract other immune cells. These chemicals include cytokines
that transmit signals between different leukocytes and chemokines
that promote chemotaxis and, hence, facilitate the migration of cells
towards the site of inflammation.

2.2.1.4 Degranulation

Certain types of leukocytes have granules, i.e., vesicles filled with
enzymes or toxins, in their cytoplasm, for example, basophils,
eosinophils, mast cells, or natural killer cells (NK cells). Upon acti-
vation, the granules are secreted, and the contained substances are
dispersed. Depending on the substance, this can have different ef-
fects. For example, granules of NK cells, amongst others, contain
antimicrobial agents like defensins and cytotoxins like perforin or
granzymes. While perforin (PRF1) destroys the cell walls of neighbor-
ing cells, granzymes, e.g., GZMB, induce apoptosis in target cells.

2.2.2 Mechanisms of the adaptive immune response

Unlike innate immune cells, which have a general response indepen-
dent of the encountered pathogens, adaptive immune cells, such as B
and T lymphocytes, have a highly specific response to one particular
antigen.
In general, an organism has many different adaptive immune cells
that are either already specialized to respond to particular antigens
or naive cells that have not yet encountered a pathogen.
After these naive lymphocytes are activated by a particular antigen,
they go through a differentiation process, in which they divide into
many daughter cells with specialized receptors that are able to recog-
nize the respective antigen.
In this context, both types of lymphocytes can differentiate in ei-
ther effector or memory cells. Effector cells can directly combat the
pathogen but are short-lived, while memory cells last longer and pre-
pare the organism for a future infection. In the following paragraphs,
we will briefly discuss the different effector functions of B and T lym-
phocytes.
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2.2.2.1 Effector mechanisms of B cells

Upon activation through their antigen receptor or T cells, B lympho-
cytes start to proliferate and develop into memory B cells or plasma
cells, i.e., effector B cells (cf. Figure 17). The plasma cells can produce
antigen-specific proteins, called antibodies. These antibodies bind to
corresponding antigens and combat them through different mecha-
nisms. Some antigens, such as toxins, can directly be neutralized by
preventing them from affecting body cells. Additionally, antibodies
can mark pathogens, like bacteria and viruses, for innate immune
mechanisms such as phagocytes or the complement system.
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Figure 17: Overview of the B differentiation process. This figure was
adapted from “Steps in B cell Differentiation”, by BioRender.com
(2022). Retrieved from https://app.biorender.com/biorender-
templates.

2.2.2.2 Effector mechanisms of T cells

T cells are activated by small peptides, called epitopes that are amongst
others created by antigen-presenting cells (APCs), like phagocytes (cf.
Section 2.2.1.2), and presented via MHC receptors on their surface (cf.
Figure 18). In particular, there are two types of MHC receptors: (1)
type I receptors, which are expressed in nearly all cells, and (2) type
II receptors, which are mainly expressed in APCs. Different types of
T cells recognize the two classes of MHC molecules. These lympho-
cytes express certain co-receptors (CD4 or CD8), which help their T
cell receptor (TCR) bind the respective MHC molecules.
The co-receptors are also used to categorize the different T lympho-
cytes. CD8+ T lymphocytes are cytotoxic cells that recognize MHC
type I molecules and kill all cells which present the respective epitope.

https://app.biorender.com/biorender-templates
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CD4+ T lymphocytes recognize epitopes presented by the MHC II re-
ceptor on APCs. Upon activation, CD4+ T cells produce cytokines
that are secreted to alert or activate other leukocytes (cf. Figure 17)
and to initiate or enhance their immune reactions.
CD4+ T cells can also be further divided into various subtypes that
produce different sets of cytokines and fulfill different tasks (cf. Fig-
ure 18).
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Figure 18: Overview of the CD4+ T cell activation and differentiation
process. The functional characterization was obtained from
[174] and the figure was adapted from “T cell activation
and differentiation”, by BioRender.com (2022). Retrieved from
https://app.biorender.com/biorender-templates.
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2.3 cancer

Cancer is a heterogeneous class of diseases that are characterized by
abnormal cells with the ability to proliferate uncontrollably and the
potential to invade other tissues. In the following sections, we briefly
describe the mechanisms and characteristics of cancer cells that con-
tribute to their development, progression, and malignancy.

Most information in the following sections is based on the book’ The
biology of cancer’ by Robert A. Weinberg [569], the two landmark
papers by Hanahan and Weinberg [201, 202], and supplemented with
additional sources.

2.3.1 Cancer development and hallmark properties

The development of cancer cells is a continuous process in which
healthy cells accumulate genetic and epigenetic alterations. In gen-
eral, this is a natural process that automatically occurs over time.
However, the emergence of new alterations can also be influenced
by a manifold of external factors such as nutrition, infections, expo-
sure to pathogens, or radiation [586]. In healthy cells, various de-
fense mechanisms counteract this process and identify and repair
these alterations [214, 492]. However, if these alterations are not cor-
rected, they could cause disruptions in molecular mechanisms and
ultimately lead to an acquisition of new traits that may alter the phys-
iology, structure, or function of the affected cell and all descendants.
While those new traits could be benign, they can also be responsible
for cancer initiation or progression. Hanahan and Weinberg described
several molecular characteristics, called the hallmarks of cancer, that
are often acquired by cancer cells and contribute to their develop-
ment and malignancy [201, 202]. In the following section, we provide
a brief overview of these properties.

2.3.1.1 The hallmarks of cancer

In their landmark papers from 2000 [201] and 2011 [202] Hanahan
and Weinberg describe eight hallmark characteristics of cancer cells
and two enabling factors. An overview of these traits and examples
for molecular factors that contribute to these capabilities are depicted
in Figure 19 + 20.

sustaining proliferative signaling In normal cells, the pro-
liferation is controlled via (external) signals that initiate or promote
cell growth or division. These signals ensure that the number of cells
and the structure of normal tissue is balanced. One property of many
cancer cells is that they can sustain or even enhance this signal and
thereby increase their proliferation activity. Examples of such alter-
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ations are activating mutations of PI3KCA that transform this gene
into an oncogene that promotes the proliferation of cancer cells [597].
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Figure 19: Examples of traits that contribute to the hallmark capabilities of
cancer cells proposed by Hanahan and Weinberg [201, 202]

evading growth suppressors In general, the cell cycle is con-
trolled by growth suppressors that can induce growth arrest or even
apoptosis. These genes actively repress an uncontrolled proliferation
of cells and inhibit the formation of cancerous cells. Due to this prop-
erty, they are referred to as tumor suppressor genes (TSG). Conse-
quently, in order to increase their rate of proliferation, cancer cells
often exhibit loss-of-function mutations in TSG, which circumvents
their regulatory role in this process. One prime example is the tran-
scription factor TP53 that is regularly mutated in cancer cells [164,
194].

resisting cell death Normal cells, in general, have several
mechanisms that prevent or counteract the development of cancer
cells. A critical mechanism is the controlled induction of apoptosis,
e.g., for cells with aberrant proliferation [315]. This process is regu-
lated by an interplay of different transcription factors that balance
the apoptotic and anti-apoptotic mechanisms in a cell. Cancer cells
often exhibit disruptions of this regulatory circuitry and thereby pre-
vent apoptosis. Examples for this are alterations that either increase
the activity or expression of anti-apoptotic regulators such as BCL2
family members or suppress the activity or expression of apoptosis-
inducing regulators, like BAK or BAX [4, 202, 315].

enabling replicative immortality Another property that
many cancerous cells acquire is replicative immortality. This means
that they can go through an unlimited amount of cell divisions with-
out becoming senescent. To achieve this, cancer cells often show in-
creased activity of the telomerase complex, which is typically not or
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nearly not detectable in most mature cell types [267, 341, 584]. The
telomerase adds repeat sequences to the end of chromosomes (telom-
eres), which protects them from erosion during cell division.
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Figure 20: Examples of traits that contribute to the hallmark capabilities of
cancer cells proposed by Hanahan and Weinberg [201, 202]

inducing angiogenesis To increase the rate of proliferation
and to ensure their survival, cancer cells need an increased amount of
oxygen and nutrients and an effective method to get rid of metabolic
waste. For this purpose, cancer cells often induce angiogenesis, i.e.,
the extension of the vascular system to develop new blood vessels.
This process is often facilitated by alterations that enhance the activity
of associated activators such as VEGFA or, conversely, the repression
of corresponding inhibitors like THBS1 [47].

activating invasion and metastasis One property that heav-
ily contributes to the malignancy of cancer is the invasion into other
tissues and the formation of metastases. This is normally prevented
by different protein families that help to tether cells to their surround-
ings [201]. Amongst those proteins are cell adhesion molecules, like
CDH1 (E-cadherin), that are located on the cell surface and control
the binding of a cell to its neighbors or the extracellular matrix. Hence,
cancer cells often exhibit alterations in these molecules that suppress
or inhibit their activity.

reprogramming energy metabolism A further characteristic
of cancer cells is that they often reprogram the energy metabolism. It
has been shown that many cancer cells restrict their energy metabolism
to glycolysis (Warburg effect), which in normal cells only occurs un-
der anaerobic conditions [563]. While, on the one hand, this reduces
the efficiency of ATP synthesis, it is hypothesized to facilitate the
production of other macromolecules such as nucleosides and amino
acids that are also required for the proliferation [544]. To compen-
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sate for the energy metabolisms inefficiency, cancer cells often exhibit
upregulation of the glucose transporter GLUT1, which increases the
glucose uptake in the cell [202].

evading immune destruction One crucial factor that counter-
acts cancer development is the immune system, which is in general
able to recognize and destroy abnormal cells [477]. In order to evade
this immune destruction, cancer cells often exhibit alterations that
counteract this process, e.g., an increased expression of ligands for
immune checkpoint proteins on the surface of immune cells [130].
If immune checkpoint proteins are activated, they negatively regu-
late the immune response, allowing cancer cells to evade immune
destruction [477].

enabling factors In addition to the eight hallmark characteris-
tics, Hanahan and Weinberg also describe two enabling factors that
help cancer cells to acquire the hallmark properties. The first one is
genome instability, which facilitates the emergence of new alterations
in the genome and thereby accelerates cancer development. The sec-
ond enabling factor is tumor-promoting inflammation. While the im-
mune system, on the one hand, combats cancer cells, it can also in-
fluence the tumor microenvironment and thereby promote the emer-
gence of hallmark properties, e.g., by releasing growth factors that
can boost the proliferation [202].





3
M AT E R I A L S A N D M E T H O D S

The major goal of all tools presented in this thesis is the analysis of
deregulated biological processes and the identification of driving fac-
tors within those processes. To this end, our tools process and analyze
molecular high-throughput measurements of different omics1 types,
e.g., genomics, transcriptomics, or proteomics.
In this chapter, we first introduce the principles of several widely
used experimental high-throughput techniques that can be applied
for the molecular characterization of cells (cf. Section 3.1). Then, we
describe the different data resources that can be used to annotate
molecular measurements and facilitate their interpretation (cf. Sec-
tion 3.2). Subsequently, we introduce some basics of hypothesis test-
ing (cf. Section 3.3), and finally we provide a detailed description of
different concepts for the computational analysis of molecular high-
throughput profiles that are required for the remaining chapters of
this thesis: (1) feature selection and group comparison (cf. Section
3.4 + 3.5), (2) enrichment analysis (cf. Section 3.6), (3) network analy-
sis (cf. Section 3.7), and (4) regulator impact analysis (cf. Section 3.8).
Additional methods can be found in Appendix B.

Molecular profiles

Sample preparation

High-throughput 
measurements

Computational analysis

External data resources

>_

Figure 21: Overview of the Materials and Methods chapter. We first intro-
duce the principles of several high-throughput assays that can be
used to generate molecular high-throughput profiles. Then, we
describe the external resources required for the analysis of these
data sets. Finally, we discuss the computational approaches used
throughout this thesis.

1 The term omics refers to different branches of biology that end in “omics”, e.g.,
genomics, transcriptomics, or proteomics.
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3.1 high-throughput assays

In this section, the principles of several high-throughput methods are
presented that are used for the molecular characterization of cells.
Here, we especially focus on technologies that were applied to gen-
erate the data sets analyzed throughout this thesis: high-throughput
sequencing (cf. Subsection 3.1.1) and DNA microarrays (cf. Subsec-
tion 3.1.2). However, the functionality presented in the following
chapters can also be applied to analyze measurements of other high-
throughput platforms, such as mass spectrometry (see, e.g., [125,
179]).

3.1.1 High-throughput sequencing

High-throughput sequencing (HTS) assays are the most versatile and
widely used of the high-throughput technologies. Data produced by
these approaches builds the foundation of some of the biggest and
most ambitious projects in current biological research, e.g., ENCODE
[99], GTEx [314], TCGA [536], or The 100, 000 Genomes Project [409].
Additionally, HTS assays are regularly applied in non-research set-
tings, such as forensics [77] or even clinical applications [308].
There are currently a variety of widely used HTS platforms available,
e.g., Illumina HiSeq [234], BGISEQ-500 [55], PacBio Sequel Systems
[402], or Oxford Nanopore Technologies MinION [525].
In the following sections, first the principles of the Illumina sequenc-
ing by synthesis approach are introduced. Then different adaptations
of the DNA sequencing protocol are presented that not only allow to
sequence DNA, but also to measure epigenetic modifications or gene
expression.

3.1.1.1 Sequencing by synthesis

The general workflow of this process is divided into four basic steps
[93, 233, 436]: library preparation, cluster amplification, sequencing,
and data analysis. In the following paragraphs, an overview of the
different steps is provided.

Library preparation

In this step, the purified DNA is prepared for the subsequent sequenc-
ing procedure. First, the DNA is fragmented to generate small DNA
pieces, which can then be sequenced in parallel. The fragmentation
can either be accomplished by sonication [461] or tagmentation [93].
In both cases, sequencing adapters are ligated to both ends. Each
adapter is a nucleotide oligomer (oligo) that consists of three distinct
parts. The first part is used to fixate the DNA fragments on a glass
slide, called the flow cell (cf. next section). The second part of the
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adapter is a barcode that can be used to identify the sample the DNA
fragment originated from. The barcode makes it possible to run mul-
tiple samples simultaneously. The third part is the binding site for the
sequencing primer.

Cluster amplification

After the preparation step, the resulting DNA library is loaded onto a
sequencing flow cell. The flow cell is a glass slide coated with oligos
that are complementary to the two adapters at the end of each DNA
piece. As the library is loaded onto the surface of this glass slide,
the DNA fragments randomly hybridize to these oligos (cf. Figure 22

A). Next, an amplification step is conducted that creates a cluster of
identical copies for each DNA fragment, i.e., clonal clusters. To this
end, the adapter on the opposite side of each DNA strand is also
hybridized to an oligo on the flow cell and builds a "bridge". Then a
DNA polymerase is attached and synthesizes a complementary DNA
strand (cf. Figure 22 B). Afterwards, the DNA double strands are
denatured and the process is repeated until dense clusters of identical
copies are formed. Finally, all reverse strands are removed, such that
all DNA fragments in a cluster point to the same direction (cf. Figure
22 C).

(B) Bridge amplification

(C) Reverse strand removal

(A) Flow cell hybridization

Figure 22: Cluster amplification steps of the Illumina sequencing pipeline.
(A) Hybridization of the DNA fragments to the flow cell. (B) Am-
plification of DNA fragments (bridge amplification). (C) Removal
of reverse strand to create clusters of unidirectional replicated
DNA fragments.
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Sequencing

The DNA fragments in each cluster are then processed simultane-
ously. In the sequencing step, for each DNA fragment a complemen-
tary strand is synthesized in a step-wise fashion. In each step, a flu-
orescently labeled nucleotide is incorporated. Each of the four nu-
cleotides emits light with a specific wavelength that can be used to
identify, which base was added. For each cluster, the incorporated nu-
cleotide is then recorded to get the sequence of the DNA. This process
is repeated until a read of a specific length is generated. An example
of this workflow with five sequencing cycles is shown in Figure 23.

A
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ATGC
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ATGCG

GACGT

CATCA

(A)

(B)

(C)

Figure 23: Example of five sequencing cycles of the illumina pipeline.
(A) Step-wise integration of complementary nucleotides labelled
with fluorescent die. (B) Image of the flow cell to record light
emission. (C) Reads for each cluster.

The workflow outlined above describes the single-end sequencing
protocol, where each DNA sequence is only sequenced from one end,
the forward strand. However, for many applications the DNA frag-
ments are sequenced from both sides, which is called paired-end se-
quencing. For this approach, additional steps are conducted. First, the
newly synthesized DNA strand is removed and washed away. Then
the forward strand, i.e., the original template strand, is used to syn-
thesize its reverse complement analogously to the bridge amplifica-
tion step. To this end, the DNA template (forward strand) folds over
and binds the second type of oligo on the surface of the flow cell to
form a bridge. In the next step, a DNA polymerase extends this oligo
and synthesizes the reverse complement of the original template se-
quence. Finally, the forward strand is cleaved off and the sequencing
steps are repeated for the reverse strand.
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Data processing

One run of current Illumina sequencing platforms can produce up
to 1 billion reads2 with read length between 50 and 300 bp3 [235].
After an initial filtering step that removes low quality reads, there
are several options to process the remaining ones, including de novo
assembly and alignment to a known reference genome.
In a de novo assembly, the genome is reconstructed based on the
millions of generated short reads. To this end, overlapping reads
are combined to continuous DNA sequences, called contigs. Based
on additional information, e.g., provided by paired-end sequencing,
contigs with matching orientation are then combined to larger scaf-
folds. For both tasks, various approaches have been proposed, e.g.,
EULER [410], MEGAHIT [297] or SOAPdenovo [302]. Most of them
use the reads to generate a spectrum of k-mers that are used to
build a de Bruijn graph [410]. This graph is then searched for Euler
paths that can be used to construct contigs and scaffolds respectively
[410]. Genome assembly approaches are often applied in microbiol-
ogy, where the genome of the investigated bacteria or virus might
not be known [276], or in metagenomics applications, where samples
might contain genomes of multiple organisms [297].
In applications where a reference genome is available, the reads can
also be aligned to this sequence. Most tools for this purpose build
an index of the reference sequence that can then be used to find the
best matches for each read. The most popular approaches use indices
based on hash tables [218] or the Borrows-Wheeler Transformation
(BWT) [289, 299]. Usually, after all reads are aligned to the reference
sequence, a pileup4 for each position in the reference genome is gener-
ated (cf. Figure 24). This data structure can then be used to analyze if
and where the genome of the sequenced sample differs from the refer-
ence sequence. Using this technique, it is possible to deduce a variety
of genomic aberrations, e.g., base substitutions, insertions, deletions,
or even copy number variations (cf. Figure 24).

3.1.1.2 Extensions, variations and modifications

While DNA sequencing has been an invaluable tool in biology and
medicine, there are several extensions, variations, and modifications
of the previously described protocol that make these assays even
more versatile and powerful. In the following paragraphs, we de-
scribe how standard HTS can be adapted to study not only the se-
quence of the DNA, but also epigenetic modifications of the DNA,

2 Maximum output of the Illumina NextSeq 2000 platform.
3 Maximum read length of the Illumina MiSeq platform.
4 A pileup is a data structure that maps sequence reads to the corresponding position

of the genome.
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Figure 24: Overview of mutations that can be detected in a DNA sequencing
experiment: (A) base substitution, (B) insertion, (C) deletion and
(D) copy number alteration.

the location of DNA binding proteins on the genome, or even the
amount of gene expression.

ChIP-seq

Chromatin immunoprecipitation followed by sequencing (ChIP-seq)
[405] is an experimental technique to assess and catalog DNA bind-
ing sites of specific proteins, such as a particular transcription factor
or even a specific histone variant. To this end, a variety of processing
steps have to be conducted. First, the sample is treated with formalde-
hyde to cross-link the DNA and all associated proteins in order to pre-
serve the structure of DNA-protein interactions. In the second step,
the DNA is fragmented to obtain DNA sequences that are suitable
for the subsequent sequencing procedure. In the third step, the pro-
tein of interest is marked with a specific anti-body. Marked DNA-
protein complexes can then be isolated (or purified). This process
is called chromatin immunoprecipitation. The purified DNA-protein
complexes are then heated to remove the cross-linking and to sepa-
rate proteins and DNA. In the next step, extracted DNA fragments
are sequenced and the resulting reads are aligned to the reference
genome. Finally, the pileup of the mapped read is analyzed to iden-
tify genomic regions that show a significant enrichment, i.e., peaks.
The peaks correspond to binding sites of the investigated protein. An
overview of the protocol is shown in Figure 25.
For the identification of peaks a variety of methods have been de-
veloped [534, 542, 611]. All of them use statistical models to identify
genomic regions that have significantly more mapped reads than con-
trol samples or a specific background window.
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(A) (B) (C) (D)

Cross-linking of DNA
and binding proteins 
+ Fragmentation

Chromatin 
Immunoprecipitation
of a specific protein

Alignment +
Peak calling

DNA extraction + 
Sequencing

Figure 25: Overview of the ChIP-seq protocol. (A) DNA and associated pro-
teins are cross-linked and the DNA is fragmented. (B) Chromatin
immunoprecipitation is used to isolate DNA fragments that bind
to the investigated protein. (C) DNA and proteins are then sepa-
rated and the extracted DNA is sequenced. (D) Genomic regions
that show a significant enrichment of aligned reads (peaks) corre-
spond to binding sites of the investigated protein.

DNase-seq

The DNase-seq protocol can be used to analyze open or accessible
regions of the chromatin [500]. To this end, the sample is treated
with DNase I, an endonuclease that is able to cleave the chromatin
at regions that are open (cf. Section 2.1.2) and not occupied by any
DNA binding proteins. In the next step, the DNA is extracted and se-
quenced. The pileup of aligned reads can then be analyzed to identify
regions that are significantly enriched with DNase I cut sites (DNase
I hypersensitive sites). Accordingly, these peaks correspond to acces-
sible or open chromatin regions. An overview of the protocol is de-
picted in Figure 26.
However, the read coverage of a DNase I hypersensitive site allows
not only to analyze if the respective region is open, but also to identify
so called footprints of DNA binding proteins [75, 131]. Footprints are
narrow regions that are partially protected from DNA cleavage. They
can be detected as indentations in the coverage of DNA (cf. Figure
26C). Several tools for this purpose have been proposed [196]. While
footprints have successfully been used to identify the corresponding
DNA-binding proteins [71], it has to be noted that not all proteins
leave footprints when interacting with DNA [516]. Sung et al. [516,
517] successfully showed that the footprint depth is correlated with
the residence time5 of these proteins. It has also been reported that
for dynamic proteins, i.e., proteins with small residence times, no
footprints could be detected [209, 517].

5 The residence time indicates how long a protein is usually connected to the DNA.
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(A)

Cleavage of accessible DNA 
by deoxyribonucleases (DNase)

Sequencing + Alignment +
Peak calling

(B) (C)

Regulator footprint 
detection

Figure 26: Overview of the DNase-seq protocol. (A) The chromatin is
cleaved in regions that are accessible to the DNase I endonucle-
ase. (B) The resulting DNA fragments can then be sequenced and
aligned to the reference genome. Identified peaks correspond to
open chromatin regions. (C) The pileup of aligned reads can also
be analyzed to identify footprints of DNA binding proteins.

RNA-seq

In a RNA-seq experiment, the RNA contained in the cells is sequenced
instead of the DNA [562]. This not only allows to determine the nu-
cleotide sequence, but also to quantify the amount of different RNA
molecules, i.e., the gene expression. To this end, the library construc-
tion protocol has to be adapted. Depending on the use case, either
all RNA molecules or a specific subset (miRNAs, piRNAs, polyA,
etc.) are extracted from the analyzed cells [562]. The extracted RNAs
are then converted into cDNA. While small RNAs (e.g., miRNA) can
directly be sequenced, larger RNAs need to be fragmented [562] to
account for the used sequencing platform. This can either be done
directly on the RNA level (e.g., using RNA hydrolysis or nebuliza-
tion) or on the corresponding cDNA (e.g., using DNase I treatment or
sonication) [562]. The resulting cDNA fragments are then sequenced
using any of the modern high-throughput sequencing platforms. Fi-
nally, the resulting reads are aligned to the reference genome and sub-
sequently assigned to genes in order to obtain expression estimates.
Common scenarios for the analysis of RNA-seq data are the compar-
ison of expression values between different sample groups, e.g., dis-
ease vs. control, or between genes within the same sample. In both
cases, expression values need to be normalized in order to avoid bi-
ases introduced during library preparation. Since samples may vary
in the RNA content or sequencing depth, all expression values need
to be scaled with respect to the library size in order to make them
comparable. For the comparison between genes in the same sample,
expression values need to be adjusted according to their length.6 This
is especially important for the analysis of mRNA, where the fragmen-
tation step might result in more sequencing reads for longer tran-
scripts. An example is depicted in Figure 27.

6 The length normalization can be avoided, when the fragmentation is omitted, e.g.,
for small RNAs or adapted RNA-seq protocols that only sequence the 3 ′ or 5 ′ ends
of transcripts [364]
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Figure 27: Example of the RNA-seq workflow for mRNAs. (A+B) Here, two
transcripts with different lengths are sequenced. (C+D) Since
more reads are produced from the longer transcripts, they need
to be adjusted accordingly.

One method that is often used to account for both biases is the tran-
script per million (TPM) measure proposed by Wagner et al. [554].
For a set of genes (G), it can be calculated in a two-step approach.
First, for each gene (g ∈ G), the number of mapped reads per gene
(R(g)) is adjusted by the respective gene length (l(g)) in kilobases:

El(g) =
R(g)∗1000
l(g)

The length normalized expression values El(g) are then used to scale
gene values with respect to the library size in each sample:

TPM(g) =
El(g)∑
g̃∈G El(g̃)

× 106

While the ’per million’ scaling factor is appropriate for library sizes
in standard bulk RNA-seq data sets, it is sometimes adapted for alter-
native assays. For single cell RNA-seq experiments, a smaller scaling
factor might be more appropriate. In this context, the expression val-
ues of single cells are often scaled to the median library size of all
cells in the data set [320]. After the normalization, TPM(g) values are
usually log2 transformed:

logTPM(g) = log2(TPM(g) + 1)

Here, the 1 is added as a pseudo-count to avoid problems with 0 val-
ues. There are also a variety of approaches that can be used instead
of TPMs, such as TMM [444] or GeTMM [495]. More information on
these methods can be found in the respective publications.

In order to avoid the fragmentation bias concerning the transcript
length, alternative experimental protocols have been proposed that
omit the fragmentation step and instead only sequence the 3 ′-end
[322, 357, 364] or 5 ′-end [5, 372] of each transcript. In particular 5 ′-
end RNA-sequencing methods have the additional advantage that
they can help to identify the correct transcription start site of each
transcript. However, both approaches only provide limited sequence
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information. Hence, depending on the use case it is crucial to select
the correct protocol.

3.1.1.3 Single-cell sequencing

Conventional bulk-sequencing experiments, as described in the pre-
vious sections, measure the average signal in a population of cells.
However, a sample might contain sub-populations of cells with a
completely different phenome, genome, transcriptome, or epigenome.
This means that information could potentially be lost or that a signal
might be distorted in a certain direction depending on the cell com-
position. For gene expression measurements it has been shown that
a few cells can have a strong influence on the mean expression level
in a population [43, 585]. Variances between cells have even been de-
tected for immortalized cell lines that are used as gold standard for
somatic mutation calling or drug screening (e.g., COLO− 829 [548]).
To this end, single cell sequencing approaches have been developed.
These allow to analyze the signals of individual cells, to detect differ-
ent sub-populations such as cell types and to investigate variations
between the cells in a sample.

Suspension 
of individual cells

A B C

Single cell isolation +
Library preparation +

Barcoding

ACCA

ACCG

ACCG

ACCA

ACCT

ACCC

ACCT

ACCC

Pooled Sequencing Library

Figure 28: Overview of single cell isolation and library preparation step. (A)
The protocol starts with a suspension of individual cells. (B) Each
single cell is then isolated, the target DNA is extracted and bar-
coded. (C) Finally, the target DNA of all cells is pooled to create
the single cell sequencing library.

Workflow Overview

The first step in most single cell protocols is the preparation and isola-
tion of single cells. To this end, a variety of techniques have been pro-
posed: flow-activated cell sorting (FACS) [65], laser capture microdis-
section (LCM) [140], microfluidics- [577] or split-pool approaches[401].
The choice depends on the experiment design and the amount of cells
that should be sequenced [224]. After the cells are isolated, modified
versions of the library preparation protocols described in the previ-
ous paragraphs can be applied: scRNA-seq [460], scDNAse-seq[245],
scATAC-seq [81], or scChIP-seq [450]. One important modification in
nearly all single-cell protocols is that the resulting cDNA is barcoded
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such that the originating cell can be identified (cf. Figure 28). The bar-
coded DNA of all cells is then combined and sequenced as described
before (cf. Section 3.1.1).

Dropout rate

While single-cell technologies provide a previously unmet resolution
of the amount of biomolecules (DNA, RNA, protein, ...) in a cell, they
also create various new computational challenges that make the anal-
ysis of single-cell data more complex. In particular, this is caused by
the high sparsity of the generated data sets. Depending on the used
technology and throughput of experiments overall dropout rates7

between 82% and 97.41% have been reported for scRNA-seq exper-
iments [425].

Single-cell multi-omics protocols

Recent advancements make it possible to measure multiple omics
types simultaneously (cf. Table 1). This creates new possibilities for re-
search in biology and medicine at a resolution that was formerly not
possible [62]. These approaches bare the potential to uncover new
links between the different omics types and even promise to reveal
new insights into complex diseases, such as cancer [62]. For this rea-
son, the editors of the journal “Nature Methods” have elected single-
cell multimodal omics technologies as the method of the year 2019
[527].
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10x Multiome i* x x

CITE-seq [511] i* x x

Methyl-HiC [298] i* x x

scNMT-seq [95] i* x x x

scTrio-seq [220] x i x x

Table 1: Overview of single-cell multimodal omics protocols. Cells marked
with ’x’ specify omics types that were measured directly. Cells
marked with ’i’/’i*’ indicate omics types that are not directly mea-
sured, but can be inferred genome wide / partially.

7 The dropout rate defines the number of zeros in a single-cell experiment.
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3.1.2 Microarrays

Next to modern sequencing techniques, further very popular high-
throughput assays are so called microarrays or biochips. In general,
microarrays are slides made out of glass, polymer, or nitrocellulose
that are coated with thousands of specific DNA or protein probes
[39]. These probes can be used to measure the amount of hybridized
complementary DNA in case of DNA microarrays or the amount of
bound proteins in case of protein arrays. Consequently, a variety of
microarrays have been developed that can be used to measure differ-
ent omics types, e.g., epignomics [236], genomics [7], transcriptomics
[9], or proteomics [433, 528].
In this section, we focus on DNA microarrays [470] that are used to
measure the expression of miRNAs and mRNAs. In both cases the
probes are small DNA fragments that are highly specific for certain
genes or even transcripts. Multiple copies of each probe are attached
on the slide and form spots. Usually, each gene (or mature miRNA) is
represented by several spots with different probes that are distributed
over the glass slide [282].
The first step in a microarray experiment is either the isolation of all
RNA molecules (total RNA) or a specific group of RNAs (e.g., mRNA
or miRNA) in the analyzed sample. The extracted RNA is then con-
verted into cDNA using a reverse transcriptase, labelled using a flu-
orescent dye (e.g., Cy3 or Cy5), and amplified. In the next step, the
cDNA molecules are loaded onto the microarray slide, where they hy-
bridize to complementary probes (Figure 29). After the hybridization,
unbound molecules are washed away. In the last experimental step,
each spot is scanned with a laser and the intensity of the light signal
is recorded.

(A) (B) (C)

Expression measurements

3 -
2 -
1 -

1 2 3

4 5 6
1 2 3 4 5 6

Scanning of signal intensityHybridization of labelled cDNA

Figure 29: Overview of the Microarray workflow. (A) Hybridization of fluo-
rescent labelled cDNAs (red). (B) Scanning of emitted signal in-
tensity. (C) Extracted gene expression measurements.

The raw expression values need to be normalized in order to ensure
comparability between different probes and different arrays. For the
former, a background correction is performed that removes the ef-
fects of unhybridized cDNA molecules that are not properly washed
away. For the latter, different techniques have been developed that
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transform the expression values of each considered array into the
same range. Two very popular approaches for this purpose are quan-
tile normalization as for example implemented in the limma package
[498] or variance stabilizing normalization [229].
Similar to RNA-seq experiments, normalized expression values are
usually log2-transformed. Hoyle et al. [221] have shown that the dis-
tribution of microarray expression values can be approximated with a
log2-normal distribution although the tail is more similar to a power
law distribution. This means that logarithmized expression values are
approximately normally distributed and statistical methods that as-
sume this distribution can be applied.

3.2 third-party resources

Many tools for the analysis of molecular high-throughput profiles,
including the ones described in this thesis, rely on prior knowledge
of the measured features to improve or augment the analysis, or to
facilitate the interpretation of computational results.
In this section, we describe data types and databases we have utilized
to build our web services.

3.2.1 Identifier

Each biological feature, e.g., gene, protein, or miRNA, measured in
a high-throughput experiment is typically characterized by a unique
identifier. Depending on the used platform, manufacturer, or database,
different IDs are used to denote a specific molecular entity.
Hence, one of the first steps in all our workflows is the validation and
standardization of the used identifier types. To this end, we extracted
reference lists and mapping tables from several databases: NCBI Gene
[326], UniProtKB [68], Ensembl [12], miRBase [281], miRCarta [28],
and miRTarBase [228]. These are saved in an in-memory database
that can be utilized to map between the different annotations. All
supported identifier types are listed in Appendix G.2 and our map-
ping procedure is described in Section 4.3.2.

3.2.2 Reference sets

Depending on the used protocol or platform, high-throughput exper-
iments can measure a different number of molecular features. For ex-
ample, RNA-seq experiments are often restricted to a particular sub-
set of RNAs (miRNA, non-coding RNA or poly-A; cf. Section 3.1.1.2)
and microarrays per definition only measure a preselected subset that
is specified by the manufacturer.
Hence, we collected a variety of reference sets that compile all fea-
tures measured for a given experimental protocol. These include mi-
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croarrays from manufacturers like Affymetrix and Agilent that were
extracted using the Ensembl BioMart tool [269], as well as genomic
regions for genes and associated regulatory regions from Gencode
[207], RefSeq [421], and Genehancer [154].

3.2.3 Biological processes, signaling pathways, and functional categories

An important type of information for each molecular feature is if it
contributes to particular biological processes or signaling pathways.
For our framework, we collected a variety of databases that assign
molecular features to a particular biological function, e.g., signaling
pathways from KEGG [394], Wikipathways [256], or Reactome [142],
and biological processes, cellular components, and molecular func-
tions from the Gene Ontology [100]. A complete list of the integrated
resources can be found in Appendix G.3.

Most databases define biological processes or molecular functions as
sets of features, we call categories (cf. Figure 30A). Other databases,
in particular KEGG, also provide interactions of features as a directed
network, where vertices represent features and edges specific interac-
tions among them (cf. Figure 30B).

Biological category Biological network

FOXOMAPK1

MAPK CCNDSTAT1 IL7R

HSPB2

+p

+p+p

+p

p53 signaling pathway

STEAP3CDKN1A

CD82 GORAB

SERPINE1

(A) (B)

…

Figure 30: Examples of biological categories and regulatory networks. (A)
Feature subset of the KEGG p53 signaling pathway and (B) sub-
graph of the KEGG regulatory network.

3.2.4 Binding sites of transcriptional regulators

In order to analyze the effects of transcription factors, chromatin mod-
ifiers, and co-factors we rely on different types of binding information
discussed in the following paragraphs.

3.2.4.1 Regulator-target interactions (RTIs)

The first type of binding sites are regulator-target interactions (RTIs).
We define a RTI as an experimentally determined binding site of a
specific regulator within a regulatory region of a gene (cf. Figure 31).
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Figure 31: Examples of regulator-target interactions (RTIs).

For our framework, we collected binding sites from several databases:
ChEA [286], ChipAtlas [396], ChipBase [592], ENCODE [99], JASPAR
[158], Signalink [146], and TRANSFAC [342]. These databases either
contain manually curated RTIs from literature or binding sites ex-
tracted from ChIP-seq experiments. Depending on the database, the
binding sites are either reported as raw peaks or directly as RTIs. For
raw peaks, we utilize BEDTools [426] to determine if any binding
site of a regulator overlaps with the promoter region of a gene. For
this purpose, the promoter of a gene is defined as a window around
the transcription start site (TSS). For the RegulatorTrail web service,
we use the following windows: TSS -/+ 1000, TSS -/+ 5000, TSS -/+
10000, TSS -10000 / +1000. An overview of the information provided
by the individual databases is shown in Appendix G.4.

3.2.4.2 Transcription factor motifs

Besides experimentally validated binding sites, we also use sequence
motifs to study the binding patterns of regulators. A motif constitutes
enriched sequence patterns at binding sites of a regulator (cf. Figure
32 A). Amongst others, they can be extracted from sequences of ChIP-
seq peaks of the respective regulator [36].
Sequence motifs are often represented as position count matrices
(PCM) or position weight matrices (PWM) that for each position of
the motif indicate the frequency of the different bases (cf. Figure 32

B). Binding motifs can be utilized to predict binding sites of a regula-
tor. This is for example useful for cell types where no experimentally
validated binding sites are available. Different approaches for this
purpose are discussed in Section 3.8.2.
For RegulatorTrail (cf. Chapter 8), we collected PWMs from several
data sources: HOCOMOCO [283], JASPAR [158], Kellis Lab ENCODE
Motif Database [265], and TRANSFAC [342].
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Figure 32: Binding motif of the transcription factor SPI1 extracted from the
JASPAR database [158]. (A) Sequence logo and (B) Position count
matrix.

3.2.5 miRNA-target interactions (MTIs)

Next to transcriptional regulators, we are also interested in the analy-
sis of miRNAs and their target genes. For this purpose, we collected
two different types of miRNA-target interactions (MTIs): (1) Experi-
mentally validated miRNA targets from miRTarBase [228] and (2) pre-
dicted miRNA targets generated using MiRanda [53] and TargetScan
[8].
The different MTI sets build the foundation of the miRPathDB database
(cf. Chapter 6). The experimentally validated targets sets are also used
in the GeneTrail web service (cf. Chapter 5).

3.2.6 Drug- and disease-related resources

For DrugTargetInspector [474] and ClinOmicsTrail [475] (cf. Chapter
C), we gathered drug- and disease-related annotations of molecular
features, especially in the context of cancer. These include cancer
driver genes from IntOGen [185], functional annotation for genetic
variants from COSMIC [157] or dbSNP [484], molecular drug targets
from DrugBank [582], molecular features that influence the efficacy
of specific drugs from PharmGKB [211] or GDSC [238]. Additionally,
our tools rely on clinical practice guidelines from the American Can-
cer Society (ACS) [3] and European Society for Medical Oncology
(ESMO) [348, 482].
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3.3 fundamentals of hypothesis testing

In this section, we introduce several mathematical concepts that are
required for the subsquent sections. In particular, we introduce the
concept of hypothesis testing and we discuss the multiple testing
problem.

3.3.1 Hypothesis tests

A hypothesis test is a statistical inference method that tests an as-
sumption about a population parameter based on a random sample
[386, 446]. The following formal definition is based on the fourth edi-
tion of the book “Probability and Statistics” by Morris DeGroot and
Mark Schervish [112].
Given a statistical problem involving an unknown parameter θ that
is part of a parameter space Ω. Additionally, suppose Ω can be parti-
tioned into two disjoint subsets Ω0 and Ω1 = Ω \Ω0. Based on this
information, we can define two hypotheses:

H0 : θ ∈ Ω0 (null hypothesis) (1)

and

H1 : θ ∈ Ω1 (alternative hypothesis) (2)

SinceΩ0 andΩ1 are disjoint, θ can only be part of one of the two sets
and either H0 or H1 must be true. In the hypothesis testing problem,
we now try to decide if θ is part of Ω0 or Ω1. When we decide that
θ ∈ Ω1, we reject the null hypothesis. Otherwise, we do not reject H0
(cf. Figure 33).

Depending on the task for which a hypothesis test should be applied,
the null and the alternative hypothesis can be formulated one-sided
or two-sided. In a one-sided case, the assumptions of both hypotheses
include directions:

H0 : θ 6 θ0 and H1 : θ > θ0 (3)

H0 : θ > θ0 and H1 : θ < θ0 (4)

Accordingly, the hypotheses of two-sided tests are of the form:

H0 : θ = θ0 and H1 : θ 6= θ0 (5)

In a hypothesis test, we base the decision if H0 should be rejected on
information we obtain from a random sample X = {x1, ..., xn} drawn
from a distribution that involves θ. To this end, we use a testing pro-
cedure δ that divides the sample space S of X into two disjoint sets
S1 ⊂ S and its complement S0 = S \ S1, such that if X ∈ S1, we reject
the null hypothesis. We refer to S1 as the “critical region”.
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This critical region is often defined in terms of a test statistic T : S →
R, i.e., a function that assigns a real value to each possible sample in
S. Additionally, let R ⊂ R be the set of all possible values of T(X) for
which we reject H0, which we call the rejection region. Based on R,
we can now define S1 as:

S1 = {x : T(X) ∈ R} (6)

In practice, the rejection region is a fixed interval in the value range of
the test statistic, e.g., we might reject H0 for all values of T(x) that are
larger or equal than a constant c (T(X) > c). In this case, the interval
[c,∞) would be our rejection region.

Given a test procedure δc with test statistic T(x) that rejects H0 if
T(X) > c, we can define a power-function π(θ, δc) that specifies the
probability that δ will reject H0 for a given θ ∈ Ω:

π(θ, δc) = P(X ∈ S1|θ) (7)

= P(T(X) ∈ R|θ) (8)

= P(T(X) > c|θ) (9)

Accordingly, 1 − π(θ, δc) gives us the probability that δc does not
reject the null hypothesis.
By using any test δc, we can make two kinds of errors: (1) a type
I error when δc wrongfully rejects H0, and (2) a type II error when
δc does not reject a false H0. The probabilities for these errors are
denoted with α(δc) and β(δc) respectively:

α(δc) = supθ∈Ω0(π(θ, δc)) (10)

β(δc) = supθ∈Ω1(1− π(θ, δc)) (11)

Suppose, we have the choice between multiple tests, then we need to
select a test δc that balances between α(δc) and β(δc). To this end,
α(δc) is typically set to a fixed upper-bound α0, which is called the
significance level. For the testing problem this means that we try to
find the best test procedure δc with the following constraint:

supθ∈Ω0(π(θ, δc)) 6 α0 (12)

Now, given a test procedure δc with test statistic T(X), a random
sample X = {x1, ..., xn} drawn from a distribution that involves θ, and
a significance level α0. In order to test if we can reject H0 based on
the test value t = T(X), we need to compare t and α0. To this end,
we use a measure called p-value that is defined as the probability to
obtain a test value at least as extreme as t, assuming H0 is true:

p = supθ∈Ω0(π(θ, δt)) (13)

If the obtained value is smaller than the significance level α0, we reject
H0.
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In accordance with the H0 and H1, the p-value can be calculated
one-sided or two-sided. For a one-sided, upper-tailed test with test
statistic t = T(X), the p-value is defined as:

p = supθ∈Ω0(P(T > t|θ)) (14)

(A)

𝐻! is true 𝐻! is false

𝐻! not rejected

𝐻! rejected

1 − 𝛼

𝛼
𝛽

1 − 𝛽

(B)

−2 0 2
x

𝛼

𝑐
𝑋

𝑌

Figure 33: (A) Table summarizing the decisions that can be made in a hy-
pothesis test. (B) Illustration of a critical region in a hypothesis
test.

3.3.2 Multiple testing correction

In practical applications, such as the analysis of high-throughput ex-
periments discussed in this thesis, multiple hypothesis tests are often
conducted simultaneously, e.g., to infer which biological pathways
are significantly deregulated in an analyzed data set (cf. Section 3.6
or Chapter 5).
From the last section, we know that for each test δc a predefined sig-
nificance level (α0) is used to judge if a result significantly deviates
from the null hypothesis. This means that in each test, we also have
the probability α0 to get a false positive result (type I error). For k
conducted tests, the probability accumulates and we get the follow-
ing probability to make at least one false positive decision, which is
called the family-wise error rate (FWER):

pFWER = 1− (1−α)k (15)

Over the years, different methods have been proposed to control the
FWER [152, 217, 487]. Here, one of the most popular methods is the
Bonferroni correction [63, 64]. Assuming we have conducted n sta-
tistical tests with the p-values p1,p2, ...,pn. Then each p-value pi is
adjusted with the number of tested hypotheses:

p̃i = pi ∗n (16)

The null hypothesis of a test is only rejected if (p̃ < α). Hence, an-
other common usage of this method is that the significance level is
adjusted, i.e., we test if p < α

n .
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Another popular approach to reduce the number of false decisions in
a multiple testing scenario is to control the false discovery rate (FDR)
[44]. It is defined as the expected proportion of discoveries that are
falsely rejected [44, 278]. The most popular approach to control the
FDR is the correction method proposed by Benjamini and Hochberg
[44]. In contrast to the Bonferroni correction, this method adjusts each
p-value with a specific correction factor rather than processing all in
the same manner. Assuming we have n independent p-values that
are sorted increasingly, then the p-values are adjusted in descending
order as follows:

qi =

pi if i = n

min{qi+1, ni pi} ∀ i ∈ {n− 1, ..., 1}
(17)

The individual qi can be interpreted as the expected FDR for tests
with this value. Hence, the null hypothesis is rejected if qi < α, where
α in this case is the accepted FDR.
The Benjamini-Hochberg method is proven to have a much higher
statistical power than many methods controlling the FWER, but only
for independent tests [45]. However, the method can be adapted, such
that it can also be applied if the conducted tests are statistically de-
pendent. To this end, Benjamini and Yekutieli proposed an extension
of this approach that uses an additional correction factor γ to adjust
p-values [45].

γ =

n∑
i=1

1

i
(18)

qi =

γpi if i = n

min{qi+1,γni pi} ∀ i ∈ {n− 1, ..., 1}
(19)
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3.4 statistical feature selection and group comparison

One of the most fundamental tasks in the analysis of molecular high-
throughput data sets is the identification of features that show sig-
nificant differences between two groups. For example, genes with a
much higher expression in samples of a diseased group compared to
corresponding controls. While group comparison alone is a valuable
tool in computational biology, it additionally forms the basis of many
downstream analyses, such as the identification of deregulated pro-
cesses (cf. Section 3.6 + 3.7) or key regulators (cf. Section 3.8). In the
following, we introduce several statistical measures and hypothesis
tests for this purpose.

3.4.1 General notation

All tests in the following paragraph try to determine if two random
samples X = {x1, ..., xn} ∈ Rn and Y = {y1, ...,ym} ∈ Rm belong to
the same or different populations. To this end, they compare differ-
ent statistical properties of these samples. Here, we introduce several
commonly used sample statistics. The definitions and notations are
based on the books “Biostatistical analysis” by Jerrold Zar [603], “100

Statistical Tests” by Gopal K. Kanji [252], “Probability and Statistics”
by Morris DeGroot and Mark Schervish [112], and additional sources
that are referenced accordingly.

3.4.1.1 Sample mean

The arithmetic mean or sample mean of a random sample X = {x1, ..., xn}
is an unbiased estimator of the population mean µ [604]. It is denoted
as either µ̂X or x̄ and can be calculated as follows:

µ̂X = x̄ =
1

n

n∑
i=1

xi (20)

3.4.1.2 Sample median

The sample median of a random sample X = {x1, ..., xn} is a measure
that describes the central value in the sample and that divides all
values into an upper half and a lower half. Assuming the sample is
sorted, it is defined as:

median(X) = x̃ =

xn+12 if n is odd

1
2(xn2 + x

n
2+1

) if n is even
(21)
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3.4.1.3 Sample variance and standard deviation

The unbiased variance of a random sample X = {x1, ..., xn} measures
how much the measurements deviate from the sample mean µ̂X. It
is an unbiased estimator of the population variance σ2 and can be
calculated as follows:

σ̂2X = V̂ar(X) =
1

n− 1

n∑
i=1

(xi − µ̂X)
2 (22)

Since the variance measures deviation from the sample mean with a
squared contribution, it is often replaced by the standard deviation,
which can be calculated as:

σ̂X = sX =
√
σ̂2X (23)

3.4.1.4 Sample covariance

The covariance of two random samples X = {x1, ..., xn} and Y =

{y1, ...,yn} is a statistical measure describing their linear relationship.
The unbiased estimate of the sample covariance is defined as:

Ĉov(X, Y) =
1

n− 1

n∑
i=1

(xi − µ̂X)(yi − µ̂Y) (24)

3.4.2 Fold-changes

One of the most popular measures to determine the differences be-
tween two measurements x and y in high-throughput experiments is
the fold-change. It is generally calculated as the ratio between the two
values:

fold− change =
x

y
(25)

It can be interpreted as the increase (fold− change > 1) or decrease
(fold− change < 1) of x when compared to y. Since values for in-
crease and decrease are on a different value range, they are hard to
compare. For this reason, in practice, a log-ratio is often used instead
of the standard ratio:

log− fold− change = log(
x

y
) (26)

= log(x) − log(y) (27)

This transformation has the advantage that the value ranges for in-
crease and decrease are symmetrical and centered around 0, which
facilitates their comparison.
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3.4.3 Parametric tests

Parametric tests are a class of hypothesis tests that assume the data
points have a certain underlying distribution.

3.4.3.1 Welch t-test

The Welch t-test is a parametric hypothesis test to analyze differ-
ences in the mean of two populations with gaussian distribution
and unequal variances [571, 572]. Given two independent samples
X = {x1, ..., xn} and Y = {y1, ...,ym} with sample means µ̂X and µ̂Y
and sample standard deviations σ̂X and σ̂Y respectively. Then H0 and
H1 for a two-sided test are defined as follows:

H0 : µX = µY (28)

H1 : µX 6= µY (29)

The test statistic tν for the Welch t-test is defined as:

tν =
µ̂X − µ̂Y√
σ̂2X
n +

σ̂2Y
m

(30)

A p-value for tν can be derived from a t-distribution with ν degrees
of freedom. Here, ν can be estimated using the Welch- Saitterthwaite
equation [467, 468, 572]:

ν̂ =
(
σ̂X
n +

σ̂Y
m )

(
σ̂X
n )2/(n− 1) + (

σ̂Y
m )2/(m− 1)

(31)

3.4.3.2 Shrinkage t-test

The Shrinkage t-test proposed by Opgen-Rhein and Strimmer [398] is
a regularized version of the Welch t-test that can be applied if multi-
ple tests are performed simultaneously on a data set, e.g., one test per
gene in a gene expression matrix. The main idea of this method is that
the individual variance estimates are regularized by shrinking them
towards the median. This reduces the effect of outliers and makes the
tests more stable. For this reason, the Shrinkage t-test is also suited
for data sets with small sample sizes.

Given a data set with p variables and the respective unbiased esti-
mates of the standard deviation S = {σ̂1, ..., σ̂p}. Then the shrinkage
estimator can be defined as:

σ̂∗k = (λ̂∗)median(S) + (1− λ̂∗)σ̂k (32)
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Here λ̂∗ is the optimal pooling parameter:

λ̂∗ = min{1,
∑p
k=1 V̂ar(σ̂k)∑p

k=1(σ̂k −median(S))
2
} (33)

V̂ar(σ̂k) is an estimator for the variance of the sample standard de-
viations. It can be computed using the unbiased variance estimator
[398]. Let xik be the measured value for sample i and variable k and
x̄.k the mean value of variable k across all samples. For each xik the
deviation from the mean can then be calculated as:

wik = (xik − x̄.k)
2 (34)

Accordingly, let w̄.k be the average deviation from x̄.k

w̄.k =
1

n

n∑
i=1

wik (35)

Since, σ̂k = n
n−1w̄.k, we have:

V̂ar(σ̂k) =
1

(n− 1)3

n∑
i=1

(wik − w̄.k)
2 (36)

3.4.3.3 Tests for discrete data

While t-tests are commonly used to analyze microarray data sets, they
are not well suited for RNA-Seq experiments, where raw measure-
ments are discrete counts. Hence a variety of methods have been pro-
posed that are based on discrete probability distributions, like the
Poisson distribution (e.g., PoissonSeq[301]) or the negative binomial
distribution (e.g., DESeq [20], edgeR [443], and RUVSeq [441]). More
information on these methods can be found in the respective publica-
tions.

3.4.4 Non-parametric tests

In contrast to parametric tests, non-parametric tests make no assump-
tion about the distribution of the analyzed data. Hence, they are more
flexible and can be applied in cases where the assumptions of para-
metric tests, such as t-tests, are violated. However, if the assumptions
of parametric tests are met, they can have a higher statistical power
than non-parametric ones [98].

3.4.4.1 Wilcoxon rank-sum test

The Wilcoxon rank-sum test [440] (WRS test) is a non-parametric
hypothesis test that evaluates if two independent random samples
are drawn from populations with the same underlying distribution
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function. Given two independent samples X = {x1, ..., xn} and Y =

{y1, ...,ym}. Let FX and FY be the distribution functions from which
X and Y are drawn. Accordingly, the H0 and H1 for a two-sided test
can be formulated as follows:

H0 : FX = FY (37)

H1 : FX 6= FY (38)

Scores

Ranks
8

X

Y

1 2 3 4 5 6 7 9 10 11 12

Figure 34: Illustrative example of a Wilcoxon rank-sum test. Shown are the
data points of sample X in blue and Y in red. The position of each
data point indicates the associated score. In the WRS test the data
points are combined and ranked. These ranks are then used to
calculate the respective test statistic.

In order to conduct a WRS test, the data points for x and y are com-
bined and sorted increasingly (cf. Figure 34). The test statistic then
sums up all ranks of sample x:

Wn,m =

n∑
i=1

R(xi), (39)

where R is a function that assigns the rank to each data point.

For large sample sizes (n > 10 and m > 10) Wn,m is approximately
normal distributed. Hence, the test statistic is often standardized:

Z =
Wn,m − µ̂W

σ̂W
∼ N(0, 1) (40)

Here, µ̂W and σ̂W are estimators for the mean and standard deviation,
which are derived from the sample sizes n and m:

µ̂W =
n(n+m+ 1)

2
(41)

σ̂W =

√
n ·m(n+m+ 1)

12
(42)

While for larger sample sizes p-values can directly derived from a
standard normal distribution, they have to be looked up in a precom-
puted table for smaller ones.
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3.5 correlation and distance measures

A common task in the analysis of molecular high-throughput profiles
is to test how similar or dissimilar (or distant) two variables are. In
this section, we introduce different statistical measures for this pur-
pose that are used throughout this thesis.

3.5.1 Distance measures

Popular approaches to describe if two samples are similar are dis-
tance metrics. Given two samples X = {x1, ..., xn} and Y = {y1, ...,yn},
these metrics interpret the samples as points in an n-dimensional Eu-
clidean space and then use different measures to describe their dis-
tance:

The Euclidean distance is defined as the length of a straight line be-
tween the two points X and Y:

d(X, Y) =

√√√√ n∑
i=1

(xi − yi)2 (43)

For convenience purposes, the square root is in practice sometimes
omitted and the squared distance is used instead [505]:

d2(X, Y) =
n∑
i=1

(xi − yi)
2 (44)

In contrast to this, the Manhattan distance describes the difference
between two points X and Y as the sum of absolute differences in
each coordinate:

d(X, Y) =
n∑
i=1

|xi − yi| (45)
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3.5.2 Correlation coefficients

Correlation coefficients are statistical measures that describe the asso-
ciation or relationship between two random variables. The absolute
value of a correlation coefficient ρ ∈ [0, 1] indicates the strength of as-
sociation, where ρ = 1 can be interpreted as perfect correspondence
and ρ = 0 as no relationship. The sign of a ρ indicates the direction
of the association: same (ρ > 0) or inverse (ρ < 0). The different types
of correlation coefficients are distinguished by the type of functional
relationship they are able to capture.

3.5.2.1 Pearson’s correlation coefficient

Pearson’s correlation coefficient (PCC or Pearson’s r) [167, 408] is a
statistical measure to quantify the linear dependency between two
random samples X = {x1, ..., xn} and Y = {y1, ...,yn}. It is defined as a
normalized version of the sample covariance (cf. Section 3.4.1.4):

ρ̂X,Y = Ĉor(X, Y) =
Ĉov(X, Y)
σ̂Xσ̂Y

(46)

=
1

n− 1

n∑
i=1

(
xi − µ̂X
σ̂X

)(
yi − µ̂Y
σ̂Y

) (47)

3.5.2.2 Spearman rank correlation coefficient

The Spearman rank correlation coefficient (rs) [504] for two samples
X = {x1, ..., xn} and Y = {y1, ...,yn} is defined as the Pearson correla-
tion between the ranks of the data points instead of their score. Due to
the rank transformation step, rs is able to describe monotone relation-
ships rather then strictly linear ones. Formally, it can be calculated as
follows:

ρ̂R(X),R(Y) = Ĉor(R(X),R(Y)) =
Ĉov(R(X),R(Y))
σ̂R(X)σ̂R(Y)

(48)

where R(X) and R(Y) define the ranks of X and Y.

In case the ranks of all elements in the sample are different, i.e., there
are no tied values, it can also be defined as:

ρ̂R(X),R(Y) = 1−

6
n∑
i=1

(R(xi) − R(yi))
2

n(n2 − 1)
(49)
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3.5.2.3 Distance correlation

The distance correlation is a statistical measure that describes lin-
ear and non-linear relationships between two paired vectors X =

{X1, ...,Xn} and Y = {Y1, ...,Yn} with arbitrary and potentially unequal
dimensions [133, 519, 520]. To this end, the calculation of the distance
correlation is based on pairwise distances between the data points in
each vector and not the points directly.
Hence, in a first step, both vectors are individually transformed into
n by n matrices that contain all pairwise distances. Accordingly, let
aij and bij be the distances between data points i and j in vector X
and Y respectively.

aij = ||Xj −Xi|| (50)

bij = ||Yj − Yi|| (51)

Here, ||.|| denotes the Euclidean norm.

Next, the pairwise distances are double centered:

Aij = aij − ai. − a.j + a.. (52)

Bij = bij − bi. − b.j + b.. (53)

Here, ai.,bi. denote the means of row i, a.j,b.j the means of column
j, and a..,b.. the mean across all pairwise distances in sample x and y.

Using the double centered distances, we can now define the following
estimator for the squared distance covariance [519, 520]:

d̂Cov
2
(X, Y) =

1

n2

n∑
i=1

n∑
j=1

AijBij (54)

Analogously, the distance variance can be calculated as the distance
covariance of two identical vectors:

d̂Var(X) = d̂Cov(X,X) (55)

Finally, the distance correlation is defined as the distance covariance
scaled by the individual distance variances [133]:

d̂Cor(X, Y) =
d̂Cov(X, Y)√

d̂Var(X)d̂Var(Y)

(56)
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3.6 enrichment analysis

After normalization and quality control, one of the next steps in the
analysis of molecular high-throughput data is generally some sort of
feature selection or feature prioritization. To this end, researchers usu-
ally identify biological features that either differentiate between two
groups (cf. Section 3.4), or that correlate with a phenotype (cf. Section
3.5), such as the disease status or treatment response. Hereafter, we
call these features test set.

A very popular next step is to investigate if the features in our test
set are involved in deregulated biological processes or signaling path-
ways. For this purpose, various methods have been proposed that
test if predefined sets of features, i.e., biological categories, are signif-
icantly enriched in a test set. We refer to this process as “enrichment
analysis”, although other terms are also regularly used in literature,
such as “gene set analysis”, “gene set enrichment analysis”, or “path-
way analysis”.

In the following paragraphs, we first describe the general structure
of an enrichment analysis workflow as described by Ackermann and
Strimmer [2]. Subsequently, we give an overview of different enrich-
ment analysis approaches that are relevant for this thesis.

3.6.1 General structure of an enrichment analysis workflow

Due to their popularity, enrichment analysis methods have been ex-
tensively studied and many studies review, compare and discuss
properties, performance, and challenges of the different approaches
(see e.g., [2, 226, 231, 264, 374, 376, 501]). Here, we give an overview
of the work by Ackermann and Strimmer [2]. In their paper, the au-
thors compare and discuss the theoretical properties of different ap-
proaches and develop a “general modular framework for enrichment
analysis” [2]. Within this framework, they describe two distinct strate-
gies: modular workflows and global tests. Both start with a matrix of
measured features in different samples. In global approaches, a mul-
tivariate statistic is applied to the entire input matrix at once, while
in the modular strategy different processing steps are performed to
identify enriched biological processes. In this section, we focus on the
latter, since this is the main use case of our GeneTrail web service (cf.
Chapter 5).

In general, the modular strategy is divided into four distinct steps
that are described in the following: (1) feature-level statistic, (2) score
transformation, (3) set-level statistic, and (4) significance assessment.
An overview of this workflow is depicted in Figure 35.



64 materials and methods

Feature-level statistic1

vs.

Score transformation (optional)2

Fold-change

T-test

Correlation

…

𝑥
𝑙𝑜𝑔!(𝑥)

𝑥
…

𝑓 𝑥 =

Set-level statistic3

Significance assessment4

+
…Pathway 1

GSEA

T-test

Max-Mean
3.94

Score transformation2

Set-level statistic3

3.94

3.94

…

feature-based

sample-based

Permutation test

0.000041

Figure 35: General modular structure of an enrichment analysis workflow
as described by Ackermann and Strimmer [2]. (1) Feature-level
statistic, (2) score transformation (optional), (3) set-level statistic,
and (4) significance assessment via permutation test.

3.6.1.1 Feature-level statistic and score transformation

The goal of the feature-level statistic (or “gene-level statistic” [2]) is to
identify molecular features that show significant differences between
two sample groups, e.g., disease and control. To this end, any method
for group comparison can be applied, such as the statistical tests de-
scribed in Section 3.4.

In the next step, the resulting scores can optionally be transformed,
e.g., by using logarithmized values to reduce the effect of outliers,
or by using absolute values to ignore the sign of the feature-level
statistic.
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3.6.1.2 Set-level statistic and significance assessment

The score list is then used to analyze the enrichment of a predefined
biological category, such as biological processes from GO [100] or sig-
naling pathways from KEGG [394] (cf. Section 3.2.3). For this purpose,
a “set-level statistic” is applied that for each biological category tests
if it is significantly enriched or depleted in the analyzed score list. To
this end, various statistical tests can be used. An overview is provided
in the Sections 3.6.2-3.6.3.3.

In order to assess if the set-level statistic is statistically significant a p-
value is calculated. To this end, Ackermann and Strimmer describe
three different strategies: a feature-based strategy, a sample-based
one, and a combination of both called restandardization [136].
In the sample-based strategy, a p-value for a test statistic t is defined
as the proportion of randomly permuted sample labels that lead to
equal or more extreme values.
For the restandardization approach, both types of permutations are
combined and the resulting test values are normalized with respect to
the mean and standard deviations across all conducted permutations
runs before a p-value is estimated [136].
For the feature-level strategy, the p-values can either be calculated ex-
actly (see e.g., [259]), by an approximation of the probability distribu-
tion (cf. Section 3.4), or by using a permutation test (see subsequent
paragraph). For both, the sample-based strategy and restandardiza-
tion approach, a p-value can only be calculated using a permutation
test.

Permutation test

Given a test statistic t and a number of random permutations t̂1, ..., t̂n
generated using either strategy, an empirical upper-tailed p-value can
be calculated as:

P(T > t) =

n∑
i=1

I(t̂i > t)

n
, (57)

where I is an indicator function that determines if a logic expression
b is true or false and returns the values 1 and 0 respectively:

I(b) =

1 if b

0 else
(58)
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In practice, a pseudo-count is often added to the above formula to
avoid zero values, which might cause problems for a small number
of permutations [271].

P(T > t) =

1+
n∑
i=1

I(t̂i > t)

n
(59)

Empirical lower-tailed and two-sided p-values can be calculated by
modifying the inequality accordingly.

3.6.2 Over-representation analysis (ORA)

One of the most general enrichment analysis methods is the so-called
over-representation analysis (ORA) [127]. This method checks for any
given biological category if a test set has more entries in this cate-
gory than expected based on a reference (or background) set. In this
context, the background set usually includes all features that are mea-
sured, or could potentially be measured in a high-throughput exper-
iment, while the test set often only comprises a small subset, such as
the most up-regulated genes.

An ORA is often modelled as a standard urn experiment that tests if
a certain biological category is over-represented (enriched) or under-
represented (depleted) in the test set. An example for this model is
shown in Figure 36.

Reference set with𝒎 balls 
of which 𝒍 are blue

Test set with 𝒏 balls 
of which 𝒌 are blue

𝑚
𝑛 possibilities 

: 𝑙
𝑘 possibilities 

: 𝑚 − 𝑙
𝑛 − 𝑘 possibilities 

Figure 36: Model used for the over-representation analysis (ORA). We have
an urn (reference set) with m balls of which l are blue and the
rest are red. From the urn we draw n balls of which k are blue.

Here, we describe the version of ORA that was proposed by Backes et
al. for the original GeneTrail web service [29]. Assume we are given
a test set T = {t1, ..., tn}, a reference set R = {r1, ..., rm} and a biologi-
cal category C = {c1, ..., cl} ⊂ R with k entries in T . Then, we would
expect to find k ′ = n·l

m entries of category C in our test set. To judge,
if the difference between k and k ′ is significant, we can calculate an
one-sided p-value for C. If k > k ′ a upper-tailed p-value is calculated
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and otherwise a lower-tailed one.

If T ⊂ R, the p-value kmatches is calculated using the hypergeometric
test:

PC =


n∑
i=k

(li)(
m−l
n−i)

(mn)
if k ′ < k

k∑
i=0

(li)(
m−l
n−i)

(mn)
if k ′ > k

(60)

If T 6⊂ R, the Fisher’s exact test is used instead:

PC =


n∑
i=k

(ni)(
m

l+k−i)
(m+n
l+k )

if k ′ < k

k∑
i=0

(ni)(
m

l+k−i)
(m+n
l+k )

if k ′ > k
(61)

3.6.3 Functional class scoring (FCS)

In contrast to ORA-based approaches that consider only a subset of
the measured features, e.g., the features with the highest degree of
deregulation, Functional Class Scoring (FCS) methods [264] use all
measured features to analyze if a biological category C is significantly
enriched or depleted.

3.6.3.1 Gene set enrichment analysis (GSEA)

One of the most popular functional class scoring method is the gene
set enrichment analysis (GSEA) [29, 514]. This method is based on the
Kolmogorov-Smirnov test, which analyzes if two populations have
the same distribution [274, 496]. In the context of enrichment analy-
sis, this test can be employed to determine if a biological category is
significantly enriched in the beginning or the end of a sorted feature
list.

Over the years, two different versions of GSEA have been established:
a weighted version [514] and an unweighted one [29, 259]. Both are
described in the following paragraphs.

Weighted GSEA

The weighted version of GSEA tests for a decreasingly sorted list
L = [l1, ..., ln], if the entries of a biological category C = {c1, ..., cj} ⊂ L
are significantly enriched in the beginning or end of L, i.e., if they are
enriched or depleted. To this end, a running-sum statistic RS is calcu-
lated by iterating through the sorted list, from the largest element to
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the smallest, and if the list element at position i belongs to C, RS is
increased, otherwise RS is reduced:

RS[i] =


0 if i = 0

RS[i− 1] +
|w(li)|

P

NR
if li in C

RS[i− 1] − 1
(n−j) else

(62)

Here, w(li) is the score of the ith element in l, NR =
∑
li∈C |w(li)|

P

the sum of all elements in l that belong to C, and P is a parameter
that controls the influence of the used scores. By using this weighting
scheme, the running-sum statistic starts and ends at 0.

The test statistic (enrichment score ESC) is then defined as the ele-
ment in RS with the maximum deviation from 0:

ESC = max
i∈[1,n]

{|RS[i]|} (63)

Finally, a p-value for ESC is calculated using a permutation test.

Unweighted GSEA

In contrast to the weighted version, the unweighted GSEA solely re-
lies on the order of a sorted list L = [l1, ..., ln] in order to determine
the score for a category C = {c1, ..., cj} ⊂ L. A huge advantage of the
unweighted version is that we do not need to perform a permutation
test to calculate a p-value. Instead, we can use a dynamic program-
ming approach to calculate an exact p-value [259].
Analogously to the weighted GSEA, a running-sum statistic is em-
ployed to calculate the final test statistic ESC:

RS[i] =


0 if i = 0

RS[i− 1] + (n− j) if li in C

RS[i− 1] − j else

(64)

ESC = max
i∈[1,n]

{|RS[i]|} (65)

In this approach, the value of RS[i] is j times increased by n− j and
n − j times decreased by j. Hence, similar to the weighted version,
the running-sum statistic RS[i] starts and ends at 0. Since the values
in which RS[i] is modified in each step are constant, the final score
of ESC is only determined based on the sequence of increases and
decreases, i.e., a particular permutation of list L. It has even been
observed that all values of RS[i] can be calculated using a grid of
size (n− j)× j, where the points in the grid determine all possible
values of RS[i] [259] (cf. Figure 37). Accordingly, each path in this grid
constitutes one possibility to calculate a particular enrichment score.
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Consequently, the p-value for ESC can be defined as the proportion
of paths in the grid, i.e. the proportion of permutations of L, that have
a score of at least ESC [259].

𝐸𝑆!( )

𝑗

𝑛 − 𝑗

Figure 37: Example of a running-sum statistic. Red balls indicate genes that
belong to a biological category. The points in the grid indicate all
possible values that can be achieved by the running sum statistic,
and the arrows mark all possible paths in this grid. Red arrows
mark the path of the running sum for this example. Arrows with
a solid line represent all possible paths with the same or a higher
deviation from zero.

Based on these observations, Keller et al. [259] developed an algo-
rithm that calculates the exact p-value for an enrichment score ESC
via the complement of this event:

p = 1−
X

Y
(66)

Here, X is defined as the number of paths in the grid with a score
smaller than ESC, and Y =

(
n
j

)
as the total number of paths. Conse-

quently, 1− X
Y denotes the probability to obtain a score of at least ESC.

For the calculation of X, Keller et al. [259] propose the following dy-
namic programming algorithm over a matrix M(j+1)x(n−j+1). Each
entry M[i,k] of M indicates the number of paths with i members of
a biological category and k− i non-members that have an absolute
enrichment score smaller than |ESC|.
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The first row and column of M are initialized with:

M[i, 0] =

1 if − |ESC| < i · (n− j) < |ESC|

0 else
(67)

M[0,k] =

1 if − |ESC| < −k · j < |ESC|

0 else
(68)

For i ∈ [1, j] and k ∈ [1, (n− j)] the remaining entries M[i,k] can then
be computed using the following recurrence:

M[i,k] =

M[i− 1,k] +M[i,k− 1] if − |ESC| < (∗) < |ESC|

0 else
,

(69)

where (∗) is defined as i · (n− j) − k · j.

The dynamic programming approach described above is used to cal-
culate two-sided p-values. For the calculation of one-sided p-values,
the inequalities need to be restricted to one side.

3.6.3.2 Further hypothesis tests for group comparison

In addition to the Kolmogorov-Smirnov test (GSEA), many other hy-
pothesis tests for group comparison can also be applied to detect
deregulated biological categories, such as the Wilcoxon rank-sum test
and the Welch t-test (cf. Section 3.4).
Given a sorted list L = [l1, ..., ln] with n entries of which j belong to
a biological category C = {c1, ..., cj} ⊂ L, these methods are applied
to compare the category members in the list against the non-category
members.

3.6.3.3 Averaging methods

Next to hypothesis tests, a further class of enrichment analysis ap-
proaches are so called averaging methods [2]. These approaches cal-
culate a sample statistic, such as the mean or median (cf. Section 3.4),
for all features in the test set that belong to a specific category. The
significance of these scores is assessed via a permutation test.

However, this can be problematic if a category contains both posi-
tive an negative scores that might cancel each other out. To address
this issue, Efron and Tibshirani propose a new sample statistic called
max-mean, which calculates the mean of positive and negative val-
ues separately and then uses the absolute maximum of both as a test
statistic [136].
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Ackermann and Strimmer have shown that averaging methods have
a similar and in some instances better performance than the methods
described in the previous sections [2].

3.7 network analysis

The enrichment analysis methods described in the last section utilize
predefined sets of biological features (genes, proteins, or miRNAs)
to identify deregulated biological processes. However, some of the
databases, from which these categories are extracted, provide addi-
tional information about the relationship between the different fea-
tures. In order to make use of this information, network-based (or
topology-based) methods have been developed that utilize the graph
structure provided by databases like KEGG [394] to infer deregulated
biological processes.
To this end, the graph topology is usually combined with molecular
measurements from high-throughput experiments that are processed
to obtain weights for vertices or edges of the analyzed network. The
general structure of a network analysis workflow is depicted in Fig-
ure 38.

vs.

Feature-level statistic
+

Score transformation

Graph-based algorithm1

2

3

Figure 38: General structure of a network analysis workflow. Scores ob-
tained from a group comparison (1+2) are mapped onto the net-
work structure. (3) A graph-based algorithm is applied to identify
deregulated subgraphs.

3.7.1 Subgraph ILP

For the identification of deregulated pathways in a biological net-
work, Backes et al. propose an integer linear-programming (ILP) al-
gorithm [32]. Next to the graph topology, this approach also requires
scores for the molecular features in the graph, e.g., gene expression
differences obtained from a group comparison of diseased and healthy
samples. These scores are then used as vertex weights in the network.
Given the weighted network, the method searches for the heaviest
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connected subnetwork that can be reached from a designated root
node. Here, the root is assumed to be a key player in the identified
network, e.g., a potential cause or regulator for the observed alter-
ations. A formal definition of the problem is described in the follow-
ing section.

ILP formulation

Given a directed and weighted graph G = (V ,E) with n vertices
{v1, ..., vn} ∈ V , the ILP searches for the connected subgraph S ⊂ V of
size k that has the highest (absolute) weight and can be reached from
one designated root node.
Let xi ∈ B and yi ∈ B be two binary decision variables for each node
vi, where xi specifies if a vertex is selected for the final solution and
yi indicates if vi is the root of the selected subgraph. Additionally, let
wi be the weight of a vertex vi. Then the objective function of the ILP
can be defined as:

max
x∈B

n∑
i=1

wixi (70)

Additionally, various constraints are required to find a correct solu-
tion. The first constraint makes sure that only subgraphs of size k are
selected.

n∑
i=1

xi = k (71)

The next two inequalities guarantee that only one root is selected and
that it is part of the selected solution.

n∑
i=1

yi = 1 (72)

yi 6 xi ∀i ∈ [1,n] (73)

Moreover, we need to ensure that the selected subgraph is connected,
i.e., that a vertex is either the root or the target of a vertex in our
solution. Let In(i) define the indices of all nodes that target vi. Then,
we can define the new constraint as:

xi − yi −
∑

j∈In(i)

xj 6 0 ∀i ∈ [1,n] (74)

Since this constraint is also satisfied by multiple disconnected cycles,
an additional inequality is necessary to exclude this case. Let C be
the node indices of a particular cycle and In(i) the indices of all ver-
tices with outgoing edges that target any vertex in cycle C, then the
additional constraint can be formulated as follows:∑

i∈C
(xi − yi) −

∑
j∈In(C)

xj 6 |C|− 1 ∀C (75)
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3.8 regulator impact analysis

In the previous sections, we presented different methods for the anal-
ysis of differentially expressed genes as well as deregulated biological
processes. A logical next step is the identification of the key regula-
tory factors that might control these processes.

In this context, especially algorithms for the analysis of transcrip-
tional regulators like transcription factors, co-factors and chromatin
modifiers have been discussed. These methods can be categorized
into two classes: RTI-based approaches and Motif-based ones. Exam-
ples for both are presented in the following.

3.8.1 RTI-based approaches

The first class of approaches uses experimentally determined
regulator-target gene interactions (RTIs, cf. 3.2.4.1) to score regula-
tors either solely based on the used collection of RTIs or additionally
using different molecular measurements.

3.8.1.1 Correlation set analysis (CSA)

Huang et al. presented a method, called correlation set analysis
(CSA) [225], that determines the effect of regulators based on the
co-expression of their target genes. To this end, for each regulator,
the absolute pairwise correlations between its target genes are
investigated.

The inputs for CSA are (1) a set T of genes we are interested in, e.g,
the most deregulated genes in a group comparison, (2) a matrix X
containing gene expression measurements of multiple samples for all
genes in T , and (3) a set R of regulators with at least two targets in T .

Given a regulator Ri ∈ R with n target genes in T and the correspond-
ing gene expression measurements X = {X1, ...,Xn} the following test
statistic can be defined:

CSA(Ri,X) =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

|ρ̂Xi,Xj | (76)

Here, the authors make the assumption that all target genes are simi-
larly affected by a regulator and that the expression measurements of
each target pair should either be correlated or anti-correlated. Hence,
a large value of CSA(Ri,X) should indicate a large influence of Ri
on the expression of the analyzed genes. The significance of each re-
sult is assessed via a permutation test that randomly permutes the
assigned target genes of each regulator.
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3.8.1.2 Regulatory impact factors (RIF1 + RIF2)

Further approaches are the regulatory impact factors (RIF1 and RIF2)
proposed by Reverter et al. [437] that determine transcriptional regu-
lators with different effects in two biological conditions, e.g., regula-
tors that are affected by a mutation in one of the groups [230]. To this
end, both RIF1 and RIF2 analyze the influence of regulators using (1)
the expression values of regulators and target genes in two groups,
and (2) the correlation of regulators and their target genes.

Given gene expression measurements for two groups G1 and G2,
where aj is the average expression of a gene j across both groups
(abundance), e1j and e2j constitute the average expression of gene j
in group G1 or G2 respectively, dj is the difference in expression be-
tween G1 an G2 for gene j, and ρ̂1ij and ρ̂2ij represent the correlation
between a regulator i and its target j in the respective group. Based
on this information, Reverter et al. define two measures for scoring
regulators with altered co-expression patterns.

RIF1 assigns high scores to regulators with highly abundant and
highly deregulated target genes that additionally exhibit large dif-
ferences in co-expression between the two groups.

RIF1(i) =
1

n

n∑
j=1

aj × dj × (ρ̂1ij − ρ̂2ij)
2 (77)

RIF2 assigns high scores to the regulators with the most altered co-
expression in the two groups.

RIF2(i) =
1

n

n∑
j=1

[
(e1j × ρ̂1ij)2 − (e2j × ρ̂2ij)2

]
(78)

3.8.1.3 ORA-based approaches

Over the years, different approaches have been proposed that investi-
gate if the target genes of a certain regulator are over-represented or
enriched in a given test set. Hence, we refer to them as ORA-based
approaches.

These approaches can be formulated similar to the over-representation
analysis described in Section 3.6.2. Assume we are given a regulator
with l targets in a background set R = {r1, ..., rm} and k targets in a
test set T = {t1, ..., tn}, then different measures can be applied:

Essaghir et al. [141] use a method called TFactS to identify influential
regulators with more targets then expected using the hypergeometric
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distribution:

P(K > k) =
n∑
i=k

(
l
i

)(
m−l
n−i

)(
m
n

) ( assuming T ⊂ R ) (79)

In cases where T 6⊂ R, the Fisher’s exact test (cf. Section 3.6.2) can also
be applied.

In a similar approach, Yang et al. [593] propose to use a binomial
distribution model:

P(K > k) =
l∑
i=k

(
l

i

)( n
m

)i (
1−

n

m

)n−i
(80)

Additionally, Yang et al. [593] use a clustering coefficient based mea-
sure to calculate the ratio of targets in the test set compared to the
targets in the reference:

TDD(i) =
2k

n(n− 1)
(81)

Heat diffusion
Normalization 

+ 
Scoring

A

C D

B

B

Inversion of 
edge directions

Input gene set Output Regulator Target gene

Figure 39: Overview of the TFRank algorithm. (A→B) The network is ini-
tialized with scores for each gene in the test set and the edges of
the network are inverted. (B→C) Heat diffusion is applied to the
inverted RTI network to propagate the scores from target genes
(circles) to regulators (squares). (C→D) The regulators are then
normalized and ranked.
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3.8.1.4 TFRank

Regulator-target interactions (RTIs) can also be interpreted as a net-
work, where regulators and target genes represent vertices and each
RTI represents a directed edge from the regulator to the target gene.
Based on this idea, Goncalves et al. [184] present TFRank, a graph-
based algorithm to prioritize transcriptional regulators using heat dif-
fusion (cf. Figure 39).

The inputs for TFRank are a collection of RTIs and a set of relevant
genes with corresponding scores, e.g., the most upregulated genes in
a comparison between diseased and healthy samples.
For this approach, the collection of RTIs is interpreted as a directed
graph G = (V ,E), where nodes constitute regulators and genes, and
edges a regulator-target interactions. However, the direction of each
RTI is inverted, such that it points from the target to the regulator.
Moreover, the scores of the test set are used as vertex weights in the
graph. The goal of TFRank is now to explore all paths in the net-
work that involve the genes of our test set. To this end, the scores are
propagated from the genes of interest to their putative regulators in
a process called heat diffusion [184], which formally can be defined
as follows.
Let A|V |×|V | be the adjacency matrix representing the inverted graph,
I a unit matrix with the same dimensions, and D a corresponding
diagonal matrix, where each diagonal entry specifies the number of
outgoing edges. Additionally, let T ⊂ V be the test set, and p0 a vec-
tor that contains the initial scores for each vertex in the network, such
that all vertices that are part of T are assigned the respective score
and all others are set to 0.
The heat diffusion is defined iteratively, where in each step the vertex
scores are partially transmitted to their direct neighbors. In the first
step the initial weights p0 are propagated as follows:

p1 = p0
(
I− t(I−D−1A)

)
(82)

Here, t is the heat diffusion coefficient that controls how much in-
formation is transmitted. The matrix D−1A describes the transition
probability for a random walk in G [184].
A general version of this formula can be defined accordingly:

pn+1 = pn
(
I− t(I−D−1A)

)
(83)

Finally, the regulators are ranked based on their vertex score. To this
end, the heat diffusion scores can either be used directly or normal-
ized, for example by scaling the score for each regulator based on its
number of target genes.
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3.8.2 Motif-based approaches

The RTI-based approaches described in the previous paragraphs rely
on experimentally determined binding sites of transcriptional regu-
lators. These binding sites are often only available for well-studied
tissue types and, hence, might be incomplete. To overcome this issue,
different methods have been proposed that use DNA binding motifs
of regulators, e.g., extracted from associated ChIP-seq experiments, to
estimate potential binding sites (cf. Section 3.2.4.2). In the following
sections, we assume that all motifs are provided as position weight
matrices (PWM, cf. Section 3.2.4.2) and that a pseudo-count (π = 1) is
added to each matrix element to avoid values of zero [79, 447].

3.8.2.1 TRAP

TRAP uses a biophysical model to estimate the binding affinity of a
transcription factor to a specific DNA sequence [329, 447].

For this purpose, the authors assume the binding of a regulator R to
any sequence S takes place at an equilibrium R+ S ⇔ R · S. Under
this assumption, the affinity that R binds to S can be defined as the
fraction of bound sites:

a =
[R · S]

[S][R · S]
=

R0 · e−βE(S)

1+ R0 · e−βE(S)
, (84)

where R0 is a motif-specific constant and βE(S) is the mismatch en-
ergy at site S [46].

Given a motif-matrix M with W columns and an arbitrary sequence
with the same length (SW). ThenM[i,αi] denotes the entry in column
i that corresponds nucleotide αi ∈ [A,C,G, T ] in SW . Accordingly,
M[i,max] indicates the nucleotide with the largest score in column i.
Then the mismatch energy βE for sequence SW can be calculated as:

βE(SW) =
1

λ

W∑
i=1

log

(
M[i,max]
M[i,αi]

bi,αi

)
, (85)

where λ is a scale parameter and bi,αi is the relative background fre-
quency of αi with respect to most frequent base at position i [46, 447].

For a motif M of length W and a sequence S of length L > W the
affinity can then be calculated as:

ã(S,M) =

L−W∑
i=1

R0 · e−βE(S[i,i+W−1])

1+ R0 · e−βE(S[i,i+W−1])
(86)
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Finally, for double stranded DNA, the total affinity is calculated as
the sum of the individual affinities for S and its reverse complement
S̄:

aS = ã(S,M) + ã(S̄,M) (87)

Based on ChIP-Seq experiments, Roider et al. [447] screened the pa-
rameter space for both λ and R0. They found that λ = 0.7 and R0 =

0.58 ·W − 5.66 are good estimates that are suitable for most practical
applications [447].

3.8.2.2 TEPIC + INVOKE

Building upon the idea of TRAP, Schmidt et al. [472] created the
TEPIC framework, which combines the transcription factor affinities
with epigenetic measurements, such as open-chromatin data, to im-
prove the prediction of gene expression.

To this end, the authors extend the definition of affinities with fea-
tures extracted from open-chromatin regions. First of all, the binding
affinity of a regulator for a specific gene g is only calculated based
on the sequence of all open-chromatin regions assigned to this g. For
this purpose, Schmidt et al. distinguish between two approaches. In
the first approach, the TRAP affinities for all open-chromatin region
within a 3, 000bp (3kbp) window around the transcription start site
(TSS) are summed up:

a3kbg =
∑

p∈Pg,3000

ap, (88)

where Pg,3,000 is the set of all open chromatin regions within the
3, 000bp window.

For the second approach, a 50, 000 bp window is used, but the affinity
of each open-chromatin region is weighted with the distance to the
TSS using an exponential decay function:

a50kbg =
∑

p∈Pg,50,000

ap · e
−
dp,g
d0 , (89)

where dp,g is the mean distance from the middle of the open-chromatin
region to the TSS and d0 = 5, 000bp a normalization factor.
Additionally, in both approaches the affinity of each open-chromatin
region can additionally be weighted with the abundance sp of each
peak p ∈ Pg.

a3kb−Sg =
∑

p∈Pg,3,000

sp · ap (90)

a50kb−Sg =
∑

p∈Pg,5,0000

sp · ap · e
−
dp,g
d0 (91)

An overview of the whole approach is depicted in Figure 40.
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Figure 40: Overview of the TEPIC algorithm. Affinities for a specific regu-
lator are only calculated for open-chromatin regions assigned to
a gene (marked in red). The affinities of each open-chromatin re-
gion is optionally weighted with the signal abundance of the peak
as well as the weighted distance to the TSS (exponential decay).

INVOKE

Schmidt et al. showed that the calculated affinities can also be used to
predict gene expression [472]. Hence, in addition to open-chromatin
regions of a particular biological sample, this approach also requires
corresponding gene expression values as input. Using both data types,
the authors use the following approach to find the set of regula-
tors that are good predictors for the provided gene expression val-
ues. First, TEPIC is applied to the open-chromatin regions to calcu-
late binding affinity scores for each regulator and target gene, as de-
scribed in the previous section. Then, given the expression values as
our response y and the predicted affinity of all regulators and genes
as feature matrix X, the following linear regression model with elastic
net penalty can be trained:

β̂ = arg min
β

||y−Xβ||2 +α||β||22 + (1−α)||β||1, (92)

where β are the feature coefficients and α ∈ [0, 1] a weight to control
the ratio between ridge and lasso penalty. For a detailed description
of the elastic net regularization, see [208].

In the end, each β̂[i] indicates the importance of regulator i in the
model. Hence, they can directly be used to identify and prioritize the
most influential ones. The elastic net penalty in the model helps to
control the influence of highly correlated regulators.
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G R AV I T O N

The analysis of molecular high-throughput profiles often is a multi-
step process that involves different computational tools and a variety
of external databases. Hence, all resources for the pipeline have to be
carefully selected. Computational approaches must be adapted to the
properties of the analyzed data set, external databases must be care-
fully curated, and identifiers for genes or proteins for all data sets
need to be sanitized and mapped into a uniform representation (cf.
Section 4.3.2). On top of this, these workflows often are computation-
ally expensive and require efficient algorithms as well as powerful
hardware with sufficient resources that might not be accessible to ev-
erybody.
For these reasons, bioinformatics pipelines are often implemented as
web services. For users, this ensures that all components are com-
patible, and it removes all technical challenges, like installing depen-
dencies or processing third-party databases. Consequently, they can
spend more time on the analysis of their data set.
In this chapter, we first introduce the technologies that build the foun-
dations of modern web services. Subsequently, we introduce the gen-
eral framework that we developed to implement all web services dis-
cussed in this thesis (cf. Figure 41).

GeneTrail (2 + 3) GeneTrail Atlas DrugTargetInspector

NetworkTrail

RegulatorTrail

ClinOmicsTrail

miRPathDB (1 + 2)

Figure 41: Overview of web services and databases build using the Gravi-
ton framework. GeneTrail, RegulatorTrail, and miRPathDB are de-
scribed in this thesis, see Chapters 5, 8, and 6. DrugTargetInspec-
tor [474] and ClinomicsTrail [475] are described in Appendix C.

81



82 graviton

4.1 the fundamentals of modern web applications

The foundations of most modern web services are interactions be-
tween client devices and a web server via standardized protocols. In
general, a web service manages different resources that the client can
address, query, or modify. For this purpose, web services often pro-
vide an application programming interface (API) that defines a set of
available operations for external users.
In the following paragraphs, we introduce the web technologies used
to create our web services. First, we define how information provided
by web services on the internet can be addressed (cf. Section 4.1.1).
Then, we describe the communication protocols that are supported
by our server (cf. 4.1.2). Finally, we introduce the REST architectural
style that was used as a guideline to create our web framework (cf.
4.1.3).

4.1.1 Resources and Uniform Resource Identifier (URI)

A resource in the context of the World Wide Web (WWW) [49] is any
abstract or physical object that can be addressed via the internet, e.g.,
documents, websites, or even actions performed by a server. To this
end, each resource is clearly defined by a unique Uniform Resource
Identifier (URI) [48, 49].
URIs are short strings that uniquely encode resources on a network,
such as the internet [48]. In general, a URI consists of five distinctIn case a URI

additionally
provides information
about the location of

a resource on the
server, it is referred

to as a Uniform
Resource Locator

(URL) [51].

parts [50]: (1) The scheme, which defines the method that should be
used to address the resource, e.g., the network protocol (cf. Section
4.1.2). (2) The authority that manages the resource, i.e., the host. (3+4)
A path of text segments, which are separated by “/”, and a query
string that both identify the resource. (5) The fragment that refer-
ences a specific part of a resource, like a paragraph on a website. The
generic structure of a URI and a real-world example are depicted in
Listing 1.

Listing 1: Generic structure of a URI adapted from [580] and real world ex-
ample. Elements in brackets are optional.

scheme:[//authority]path[/?query][/#fragment]

scheme:[//[user@]host:port]path[/?query][/#fragment]

http://dti.bioinf.uni-sb.de/help?topic=p_value_adjustments/#FDR
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4.1.2 The Internet Protocol Suite (TCP/IP)

The communications between different devices on the internet are
enabled by a set of highly standardized protocols, called the internet
protocol suite (TCP/IP), which specifies how data on the internet is
addressed, transferred, and received [72, 73, 87]. Here, we focus on
the application layer protocols HTTP and HTTPS that are used for
the client-server communications with our web services.

4.1.2.1 Hypertext Transfer Protocol (HTTP)

The Hypertext Transfer Protocol (HTTP) [149] is a request-response
protocol for the stateless data transfer on a network, such as the in-
ternet. In general, the client sends a specific request to the server and
receives a corresponding response. “Stateless” in this case means that
each request is independent of previous ones and contains all infor-
mation needed in order to be processed by the client or server.

Method Description

POST Creates a new resource

GET Receives a representation of the specified resource

PUT Updates or replaces the specified resource

DELETE Deletes the specified resource

Table 2: Overview of HTTP request methods (CRUD operations).

4.1.2.1.1 Request methods

The HTTP protocol specifies different methods or verbs for requests
that constitute actions that should be applied to the specified resource.
The actual availability of a particular endpoint and the implementa-
tion details are defined by the server. Table 2 contains an overview
of the verbs to create, receive, update, and delete resources (CRUD
operations).

4.1.2.1.2 Request messages

HTTP request messages consist of four parts: a request line, several
header lines, an empty line, and an optional body. The request line
defines the HTTP request method, the endpoint, and the version of
the HTTP protocol. The header contains the host and a variety of op-
tional header fields such as the accepted format or the used language.
The body contains the data that should be transmitted.
Listing 2 depicts an example of a GET request.
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Listing 2: Request line and header of an HTTP GET request for the genetrail
math api. In particular, the server is asked to calculate the square
root of 16.

GET /api/math/sqrt/16 HTTP/1.1

Host: genetrail.bioinf.uni-sb.de

Accept: application/json

4.1.2.1.3 Response messages

HTTP response messages have a similar structure as requests. The
first line of the header is a status line that contains the version of
the protocol, a status code, and a status message that indicates if the
request was successful. The response message then contains several
header fields, followed by an empty line and an optional body. The
body contains the representation of the requested resource.

Listing 3: Header and body of the HTTP response for the request in Listing
2. The body contains the response in json format.

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

{

"result" : 4

}

4.1.2.2 Hypertext Transfer Protocol Secure (HTTPS)

The Hypertext Transfer Protocol Secure (HTTPS) [435] is an extension
of the standard HTTP, where the communication is encrypted using
Transport Layer Security (TLS) [539].

4.1.3 Representational State Transfer (REST) and RESTful APIs

Representational State Transfer (REST) is an architectural style for
web applications that was developed as part of the doctoral disserta-
tion of Roy Fielding [150]. The goal of REST is to provide guidelines
for the implementation of web services that, amongst others, ensure
good performance, scalability, and flexibility. To this end, Fielding de-
fines six properties web services and APIs must fulfill in order to be
considered RESTful.
Roy Fielding was also part of the development teams for the URI
standard [50] as well as the HTTP/1.1 protocol [149]. Although REST
constitutes a general design pattern of web interfaces, which is inde-
pendent of the used protocol and implementation details, it shares
common ideas and design principles with both standards. Hence, an
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implementation of RESTful APIs using those standard web technolo-
gies has the advantage that they automatically fulfill some of the re-
quired properties.

4.1.3.1 Client-server

The first property of RESTful interfaces is that they have to imple-
ment the client-server model (cf. Figure 42). In this model, the user
interface is separated from the data storage and implementation de-
tails of the server. In order to communicate, the client sends a request
for a resource to the server. The server then processes this request
and responds with a representation of the requested resource.

Web server

Client(s)

Request

Response

HTTP or HTTPS
Resource 1

Resource 2

GET /resource/1/value HTTP/1.1 
Host: genetrail.bioinf.uni-sb.de
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json

{
”Value” : 5

}

Value:5

Value:7

Figure 42: Example of a client-server architecture. Clients can send an HTTP
request to query a specific resource on the server and receive a
representation of this resource as response.

4.1.3.2 Stateless

The communication between client and server is additionally required
to be stateless, which means that each message must contain all infor-
mation to be processed by the client and the server, i.e., a message can
not be split into multiple parts. This property ensures the reliability
of the communications since all requests are self-contained and do
not rely on previous requests. In case of a system failure or a signifi-
cant time difference between two requests, this property also ensures
that the communication can quickly be restored.

4.1.3.3 Cacheable

Response messages from the server are required to indicate in the
header if they are cacheable (cf. Listing 3). In case of cacheable re-
sponse messages, caching layers on the server, a proxy, or the client
are allowed to save the response for later identical requests. This prop-
erty of RESTful services has the potential to reduce network usage
and improve performance.
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Listing 4: Header and body of the HTTP response for the request in Listing
2. The header line colored in red indicates that the response can
be cached and is valid for 1200 seconds.

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Cache-Control: public, max-age=1200

{

"result" : 4

}

4.1.3.4 Uniform interface

RESTful web services are required to provide a uniform interface
with the following four properties:

1. All information managed by the web service is encoded as a
resource with a unique identifier (e.g., a unique URI).

2. Different parts of the web server can then perform actions on a
resource, and clients can receive a representation as a response
that describes the complete state of that resource. The repre-
sentation contains the data and metadata in the form of (key,
value) pairs that are sufficient to create, query, update, or delete
the addressed resource.

3. All messages sent between client and server have to be self-
descriptive, which means they contain all information needed
to understand and process the request or response.

4. Clients should be able to navigate the REST interface using hy-
perlinks provided by the server. This concept is called hyperme-
dia.

Layered system

RESTful systems should also be implemented using a layered archi-
tecture (cf. Figure 43). Here, different functional components are en-
capsulated into individual levels that generally communicate through
well-defined interfaces. This makes it possible to exchange implemen-
tation details without affecting the communication between different
levels of the architecture or between client and server.

Code on demand (optional)

The last (optional) property of RESTful web services is that source
code (e.g., scripts or applets) can be transmitted to the client. This
property can reduce the computational burden of the server and the
network load.
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4.2 architecture

Author contributions

The first version of the Graviton framework was developed for the
NetworkTrail web service and implemented by Oliver Müller, Daniel
Stöckel, and me [509]. The current multi-layer architecture described
in this chapter was initially developed for the GeneTrail2 web ser-
vice, mainly implemented by Daniel Stöckel and me [510]. Since
then, the framework has been continuously maintained, extended,
and improved. Currently, it forms the basis for seven web services
or databases and for which I was one of the leading developers. The
following chapters of this thesis contain further “Author contribu-
tion” boxes with more specific information on each web service, and
the complete list of contributors can be found in the author list of the
respective publications [33, 177, 474, 475, 509, 510, 530, 533].

For the implementation of all our web services, we created a common
framework, called Graviton, that was designed using the REST de-
sign principles as guideline (cf. Section 4.1.3). Accordingly, our frame-
work is built using a layered architecture (cf. Figure 43) with seven
distinct layers that are divided into three modules: (1) The front end
with two layers on the client-side, (2) the back end with four layers
on the server-side, and (3) a database layer. In the following sections,
the individual components are described from top to bottom.

Data set layer

Compute layer

API layer
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Database

Website layer

Python 2.7 + 3.X

Julia
Binding layer

JavaScript
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HTML

CSS

JavaEE

Thymeleaf JAX-RS

PostgreSQL

C++ libraries

R packages Python packages

In-memory
Database

MapDB

Swagger
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RTIs, MTIs

Gene sets …

Pathways

Control layer
JavaEE

Additional API bindings

Web interface

Figure 43: Different layers of the Graviton architecture.
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4.2.1 Front end

The front end of our framework has two basic modes of operation.
It can be accessed via an interactive web interface or programmed
using an API.

4.2.1.1 Web interface

The web interface is the default mode of operation for all our web ser-
vices. Here, users are guided through interactive interfaces, which al-
low them to upload data sets, select the parameters for their analysis,
and visualize the results. All web interfaces are implemented using
HTML [427, 553] and CSS [66, 552] with a custom layout created with
the Bootstrap toolkit [523]. All computations on the client-side are im-
plemented using JavaScript [132]. For the visualization of results, we
also rely on several third-party JavaScript libraries: DataTables [316]
to create interactive tables and Highcharts [24], D3 [67], and Plotly
[413] for interactive plots. The individual web sites use JQuery [161]
or AJAX [172] bindings to communicate and interact with the API
layer of our web server. A screenshot of the web interface is depicted
in Figure 44.

Figure 44: Screenshot of the RegulatorTrail start page.
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4.2.1.2 API bindings

Apart from the web interface, users can also directly interact with
our API. This is possible for all programming languages that support
HTTP or HTTPS requests (cf. Section 4.1.2.1). Through interactions
with the API, the web service can be controlled remotely. Hence, this
feature allows to easily integrate our web services into third-party
pipelines, such as Galaxy [181] or Taverna [583] workflows. In order
to facilitate this process, we have already created Python and Julia
packages that offer methods for the communication with our web
services. These can be applied to run analyses on our web service,
query corresponding results within the source code of these program-
ming languages, and process the associated results. Additionally, we
created a comprehensive documentation for all API endpoints using
Swagger [499], which helps to create and test custom bindings.

4.2.2 Back end

The back end of our framework consists of four hierarchical layers
with different levels of abstraction that are executed on the server-
side.

4.2.2.1 API layer

The first layer in the back end is an application programming in-
terface (API) that manages the client-server communication on the
server side. To this end, it defines a set of operations that can be
performed by our framework, such as uploading a microarray data
set, conducting a group comparison, or creating a visualization of a
particular result. Independent of the actual task, each operation is
implemented as a specific API endpoint that processes the request,
verifies all parameters, and then performs a specific action on the
server. In our framework, we use two distinct types of endpoints:
Jakarta Servlets [160] for web sites and Jakarta RESTful Web Services
(JAX-RS) [159] based endpoints for the remaining API operations.
A Jakarta Servlet [160] is a Java class that processes HTTP requests
for a specific URI. Based on this request and the submitted parame-
ters, the servlet generates dynamic HTML pages that are then sent
to the client. In our case, the HTML pages are generated using the
Thymeleaf [524] template engine.
All remaining API endpoints are implemented as Java classes that
use the JAX-RS specifications and annotations to handle specific API
operations. These classes process HTTP-specific requests, verify the
parameters and return the associated HTTP response in the requested
format, e.g., JSON [74] or plain text. Here, the actual functionality is
encapsulated in Java classes in the control layer (cf. Section 4.2.2.2)
that provide a well-defined interface for the communication between
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API and programs in the compute layer. This abstraction ensures that
the API and the implementation of a particular task are independent
and strictly separated. Hence, both layers can be modified or even
exchanged without affecting the other one, which makes them easy
to maintain.

Compute Service

+setup()
+run()
+status()
+results()

<<interface>>

ORA

+setup()
+run()
+status()
+results()

GSEA

+setup()
+run()
+status()
+results()

ContextA B :Context :GSEA

setup()

… Success …

run()

:Process

status()

… Still running …

… Finished …

status()

Results

results()

Results

Figure 45: UML diagrams for an example compute service (GSEA). (A)
UML class diagram depicting the strategy pattern implemented
for compute services (GSEA and ORA). (B) UML sequence dia-
gram for an asynchronous execution of a GSEA. From a specific
context, i.e., our API, the GSEA compute service can be set up,
started, and the results can be queried.

4.2.2.2 Control layer

The control layer of our framework consists of a collection of Java
classes, hereafter called compute services, that encapsulate a particu-
lar task provided by any of our web services. These jobs can either
be an individual program, several consecutive steps of a pipeline, or
in some cases complete workflows, such as all steps of an enrichment
analysis (cf. Section 3.6). Each of these Java classes provides a uni-
form interface that is shared amongst all compute services (Strategy
design pattern [168]; cf. Figure 45). This interface allows the respec-
tive job to be set up and controlled by other classes in the control
layer or associated API endpoints. The actual programs are executed
as an asynchronous process that is monitored by the corresponding
compute service. The current status of this process (e.g., the progress),
exit codes, and all associated results can then be queried via the in-
terface of this compute service. The execution as an asynchronous
process ensures that clients that interact with an API endpoint re-
ceive immediate feedback about the status of a job and do not have
to wait for the computation to finish, which frees up computational
resources that would be otherwise wasted. Each compute service ad-



4.2 architecture 91

ditionally interacts with our SQL database to log the metadata of all
computations, e.g., inputs, parameters, and provided outputs.

4.2.2.3 Compute layer

The compute layer of our framework contains the actual implemen-
tation of all tasks performed by our web services. Here, each task is
implemented as an individual program that is controlled by the com-
pute services in the control layer. In the following paragraphs, we give
a brief overview of how the different programs are implemented.

GeneTrail2 C++ library

Most programs are implemented in a C++ library we initially created
for the GeneTrail2 web service. This library consists of different mod-
ules:

1. The core module contains classes that implement hypothesis
tests, statistical measures, parsers for various input formats, and
data structures to represent the different data types.

2. The enrichment module builds upon the core functionality and
provides the implementation of all supported enrichment algo-
rithms (cf. Chapter 5).

3. The regulation module extends the core functionality with im-
plementations of many different approaches to analyze the in-
fluence of transcriptional regulators. (cf. Chapter 8).

The library was created using a custom CMake build system [335,
336] and depends on several third-party libraries: (1) The Eigen li-
brary for matrix and vector operations [241], (2) the Boost library, e.g.,
for file handling and mathematical distributions [469], (3) OpenMP
for parallel computation [108], and (4) GoogleTest for unit testing
[312].

C++ libraries for integer linear programs (ILPs)

Our web services also offer a variety of integer linear programs (ILPs):
(1) Subgraph ILP (cf. Section 3.7.1), (2) Transitivity Clustering ILP
(cf. Section 5.5.2.2), (3) Maximum targetome coverage ILP (cf. Sec-
tion 6.3.2.1). We implemented all of them as C++ programs using the
ILOG CPLEX Optimization Studio [330].

TEPIC

For the RegulatorTrail, we additionally use the TEPIC framework
developed by Schmidt et al. [472] to calculate transcription factor
affinities based on position-weight matrices and to infer the influence
of transcription factors using linear regression (cf. Chapter 8).
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R and Python scripts

Some of the tasks are also implemented as Python or R scripts, such
as hierarchical clustering or dimension reduction.

4.2.2.4 Data set layer

The last layer in the back end represents our large collection of third-
party data sets (cf. Section 3.2) that are the basis for all our workflows.
All contained data sets are carefully selected, curated, and sanitized.
This ensures that the data sets of the different workflows are compat-
ible with each other.

4.2.3 Database layer

Our framework also uses two databases: One in-memory database
that handles identifier mapping and one SQL database that manages
the data sets and results for all analyses.

4.2.3.1 In-memory database

The in-memory database is implemented using MapDB [280]. It con-
tains mapping tables for the most common identifier types for genes,
proteins, and miRNAs, as well as conversions between them. All map-
ping tables are directly stored in the main memory, which eliminates
disk access and improves the response time for requests. How this
database is used to sanitize all uploaded data sets is described in
Section 4.3.2.

4.2.3.2 SQL database

Our framework additionally employs a traditional SQL database (i.e.,
PostgreSQL) to manage the analyses and results of all users. For each
data set, this databases documents metadata such as the type of the
data set, the format, the organism, or the identifier type. This informa-
tion is then analyzed to determine which analyses can be performed
using this file (cf. Section 4.3.1). For all analyses, the configured pa-
rameters and the produced results (including intermediate ones), the
status codes (e.g., error messages), and timestamps are saved. This
ensures transparency and reproducibility of all analyses and allows
to verify the parameters of all computations.
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4.3 general functionality

Our framework also provides general functions for the validation and
management of the different input files that are shared amongst all
our tools.

4.3.1 File type validation and sanity checks

Graviton provides several routines that automatically analyze and val-
idate all input files uploaded by a user. For each file, sanity checks are
performed that verify the format and that determine and normalize
the encodings. These checks ensure that the uploaded files are valid
and can be properly analyzed in subsequent steps.
Additionally, these routines extract meta information from the data
set to select suitable parameters for the analysis automatically. The ex-
tracted metadata contains properties like the dimensions of the data,
gene or protein identifier, organism, as well as numerical properties.
This information is then examined to check if a specific analysis step
can or needs to be performed. For example, if the uploaded file is
a matrix with different sample groups, a group comparison is per-
formed that is omitted for different file types (e.g., score list or iden-
tifier list). The dimensions of the data and the numerical properties
additionally define which statistical tests can be applied, e.g., if nega-
tive values are present, all methods that include logarithm cannot be
applied.

4.3.2 Identifier mapping

Depending on the experimental technique applied to generate a par-
ticular data set, the repository where a data set is deposited, or the
age of the experiment, different identifiers (ids) are used to denote
a certain molecular feature. On the one hand, these ids distinguish
different aspects or states of a feature (cf. Figure 46). For example,
a gene may be referred to by its gene symbol (e.g., PDCD1), the id
of a particular transcript (e.g., ENST00000334409), or the functional
gene product (e.g., protein Q15116). On the other hand, data sources
like large repositories or large research projects often employ other
standards to define a particular feature. For example, genome an-
notations for the human genome are, amongst others, provided by
NCBI [420], Ensembl [595], or the HAVANA project [203]. All adopt
different guidelines to define genes or transcripts, and as a conse-
quence, all projects provide custom identifier types for each feature.
Although there already have been efforts to define a common stan-
dard for human and mouse genomes (CCDS [410, 419]), there is still
a large number of identifier types that are regularly used.
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Gene

Transcripts

Proteins

• PDCD1 (HGNC Symbol)
• 5133 (Entrez Gene ID)
• ENSG00000188389 

(Ensembl Gene ID)
• CCDS33428 (CCDS)

• ENST00000334409,
• ENST00000343705,
• ENST00000418831

(Ensembl Transcript ID)

• Q15116,
• H0Y2W6,
• E7ER21

(UniProtKB ID)

Figure 46: Overview of different identifier types for the Gene PDCD1. This
figure was created using icons from BioRender.com.

Hence, for most computational analyses, data sets need to be care-
fully curated and sanitized before they can be combined with other
data sources. For the most part, the ids of different annotations are
compatible, but there are exceptions where features are only part of
one annotation. Moreover, the different databases are regularly up-
dated, and features might be replaced or renamed. In the following,
we briefly describe the different procedures that automatically detect
the provided identifier type or convert them into a uniform repre-
sentation that is compatible with all data sets in collection. For this
purpose, we utilize an in-memory database (cf. Section 4.2.3.1) that
contains reference lists and mapping tables for gene, protein, SNP,
and miRNA identifiers from well-curated databases (cf. Section 3.2.1).
The in-memory database is used in a three-step mapping approach.
In the first step, the reference lists are examined to detect the organ-
ism and identifier type of each uploaded data set. To this end, we
check for each identifier in the data set in which reference sets it is
contained. By default, we assign the organism and identifier type us-
ing majority voting. Alternatively, users can select, verify, or change
this information manually.
In a second step, the identifiers of all uploaded data sets are mapped
from the assigned id type to “Official Gene Symbols” in order to be
compatible with all internal databases of our framework. To this end,
we process all ids individually. First, we verify if a considered id is
contained in the mapping table, i.e., whether it is a valid identifier. In
this case, the identifier is directly mapped. In case it is not contained
in the mapping table, we check if the id is a known alias or belongs
to a previous version of the annotation, if corresponding mappings

https://app.biorender.com/
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exist, and if we can map the id. In instances where no valid mapping
is found, the respective entry is removed from the data set.
During this mapping procedure, we could potentially introduce du-
plicates that need to be removed before the file is further processed.
To this end, our framework provides four different methods that can
be applied to aggregate the values of duplicate entries, i.e., mean,
median, max, or min.
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G E N E T R A I L W E B S E RV I C E

Author contributions

In this chapter, we describe GeneTrail, a web service for enrichment
and network analysis of molecular high-throughput profiles. The orig-
inal version of this tool was developed by Christina Backes, Andreas
Keller, and Hans-Peter Lenhof [29, 257]. Here, we describe the sec-
ond and third versions of the web service, for which I was one of
the leading developers [176, 177, 509, 510]. This chapter consists of
several parts that contain further “Author contribution” boxes with
specific information on each part. The complete list of contributors
can be found in the author list of the respective publications [29, 176,
177, 257, 509, 510].

In current biomedical research, experimental high-throughput tech-
niques, such as high-throughput sequencing or microarray experi-
ments, are regularly applied to profile cells on a large scale, both on
a bulk and single-cell level (see, e.g., [101, 207]). Independent of the
used protocol, the resulting data sets are usually high-dimensional
and often prone to technical noise [35, 294, 547].
Hence, powerful computational analysis methods are required that
facilitate the exploration of these data sets and that help researchers
to gain novel insights into the underlying biology.
In this context, one important task is the identification and analysis
of deregulated biological processes and, in particular, processes that
show significant differences between two sample groups, e.g., disease
vs. control. Amongst the most important methods for this purpose are
enrichment or network analysis algorithms as discussed in Sections
3.6 and 3.7.
Due to their popularity, a variety of tools have been published
that implement respective approaches, both as stand-alone tools and
web services. In general, they can be distinguished based on the
supported algorithms, data types, databases, or organisms (cf. Fig-
ure 47). For example, both LOLAweb [375] and miEAA [30] fo-
cus on specific data types. LOLAweb analyzes (epi-)genomic re-
gions, and miEAA performs enrichment analysis for miRNAs. Fur-
ther tools, such as DAVID [227], Enrichr [284], GSEA-P [513], or
RegulatorySnapshots [183], focus solely on enrichment analysis,
while others, like Babelomics [16], iPEAP [515], Paintomics [120],
RAMONA [466], and WebGestalt [305], additionally offer network
analysis procedures.
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Figure 47: Comparison between GeneTrail and other enrichment or network
analysis toolboxes.

In this chapter, we describe GeneTrail, a web service for integrative
analysis of (epi-)genomic, miRNomic, proteomic, and transcriptomic
data sets [29, 176, 177, 257, 509, 510]. The rich functionality of our
web service can be applied to study deregulated biological processes
in bulk, time-series, and single-cell data sets. To this end, we created
a powerful framework of enrichment and network analysis methods
that can be used to explore our comprehensive collection of prede-
fined biological categories for 15 different organisms (cf. Appendix G).
GeneTrail was built using our Graviton web framework described
in Section 4.2. All algorithms are implemented as highly optimized
C++ programs that are also available as stand-alone applications on
GitHub.
In the following sections, we describe the different application areas
of our web service and demonstrate some of the key aspects based
on real-world data sets.
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5.1 standard enrichment analysis

Author contributions

The standard enrichment analysis functionality of GeneTrail is a
complete redesign and major extension of the original GeneTrail
web service [29, 257]. It was introduced with the second version
of GeneTrail and mainly developed by Daniel Stöckel, Hans-Peter
Lenhof, and me. All contributors are listed in the author section of our
publication “Multi-omics enrichment analysis using the GeneTrail2
web service” [510].

The core of the GeneTrail web server are the standard enrichment
analysis workflows for genomic, proteomic, transcriptomic, and miR-
nomic data sets. For each of these omics types, users can upload
molecular measurements in various formats. After file upload, they
are guided through an intuitive step-by-step interface, which helps
them to build customized pipelines and to choose appropriate pa-
rameters for the analysis. Here, automatic routines, like the ones de-
scribed in Chapter 4, analyze the uploaded data and preselect suitable
algorithms and parameter combinations.
In the following paragraphs, we describe the input formats, the gen-
eral workflow, and the different visualization types for enriched bio-
logical categories. An overview of all possible workflows is depicted
in Figure 48.

Identifier list

Matrix
Group 

comparison

Score 
transformation

Filtering
Over-

representation 
analysis (ORA)

Enrichment 
analysis

Network 
analysis

Score list

NetworkTrail

Figure 48: Overview of the GeneTrail standard workflow. The different in-
put types are marked in blue. Intermediate processing steps are
shown in grey, and the different analysis types are depicted in
white. The arrows mark all possible workflows provided by our
framework. This figure was adapted from Stoeckel et al. [510].
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5.1.1 Input data

The input data for the standard enrichment analysis workflow can
be uploaded in three different ways: (1) Feature lists, (2) score lists,
and (3) feature matrices. All of them can be uploaded as whitespace-
separated files that contain one line per feature.

All uploaded files are automatically sanitized, and the identifier for
all features are mapped to a uniform representation (e.g., HGNC sym-
bols for genes, cf. Section 4.3.2).

5.1.1.1 Feature lists

Feature lists can either contain unordered sets of molecular features
that should be used in an over-representations analysis or a sorted
list of features for which we can also apply non-parametric enrich-
ment analysis methods, such as the gene set enrichment analysis (cf.
Section 3.6.3.1).

5.1.1.2 Score lists

In addition to the feature name, score lists additionally contain a
weight per feature that should reflect its importance, such as a score
from a group comparison. This allows users to apply scoring methods
that might not be supported by our framework.

5.1.1.3 Feature matrices

Feature matrices contain different sample measurements for each fea-
ture. Hence, matrices are required to contain a header field that con-
tains a unique identifier for each sample. An example is shown in
Listing 5.

Listing 5: Example of a feature matrix with measurements for three genes
in the samples.

Sample1 Sample2 Sample3

Gene1 0.0 0.1 3.4

Gene2 4.0 4.1 3.9

Gene3 5.7 6.5 1.2
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5.1.2 Workflow

Similar to the “general modular framework for gene set enrichment
analysis” proposed by Ackermann and Strimmer [2] (cf. Section 3.6),
each enrichment analysis workflow in GeneTrail is divided into dif-
ferent processing steps:

1. Group comparison (or feature-level statistic)

2. Score transformation

3. Enrichment analysis (Set-level statistic + P-value strategy)

4. Multiple-testing correction

For each step, our framework offers different methods that can be
combined to create customized pipelines that are tailored to the ana-
lyzed data set. In the following paragraphs, we give a brief overview
of the individual steps and the provided methods.

5.1.2.1 Group comparison

While feature lists and score lists can directly be used for enrichment
analysis, matrices need to be processed first. To this end, GeneTrail
provides a variety of methods for the comparison of two sample
groups within this matrix.

Gene 1            -3.2
Gene 2             1.5
Gene 3             3.1
Gene 4            -3.1
Gene 5            -2.5
Gene 6             2.9
Gene 7             0.8
Gene 8             2.7
Gene 9            -0.1
Gene 10          -1.1

Gene 1
Gene 2
Gene 3
Gene 4
Gene 5
Gene 6
Gene 7
Gene 8
Gene 9
Gene 10

Group 1 Group 2

vs.

Gene 3            3.1
Gene 6            2.9
Gene 8            2.7
Gene 2            1.5
Gene 7            0.8
Gene 9           -0.1
Gene 10         -1.1
Gene 5           -2.5
Gene 4           -3.1
Gene 1           -3.2

Figure 49: Overview of the group comparison step of GeneTrail. Here, a
test statistic is applied to calculate scores that distinguish the two
sample groups.

In addition to standard (log2-)fold-changes (cf. Section 3.4), these can
be divided into three groups that are presented in the following.

Parametric tests

GeneTrail offers various parametric tests that can be applied to com-
pare two sample groups. For microarray analysis, we implemented
several methods assuming the samples are drawn from a normal dis-
tribution, in particular, members of the t-test family, such as the de-
pendent t-test for paired samples [252], the Welch’s t-test [572], and
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the Shrinkage t-test [398] (cf. Section 3.4). For the analysis of count
data, e.g., from RNA-Seq experiments, GeneTrail also provides spe-
cialized methods, like DESeq [20], edgeR [443], and RUVSeq [441].

Non-parametric tests

Besides parametric tests that assume a specific underlying distribu-
tion, our web service also offers non-parametric alternatives that can
be applied to all data sets without any restrictions on the distribution
of the data, e.g., the Wilcoxon rank-sum test [440] and the Wilcoxon
matched-pairs signed-ranks test [440].

Correlation coefficients

In addition to typical group comparison methods, our framework
also provides correlation coefficients that can be applied for this pur-
pose. To this end, we a calculate the correlation between the molecular
measurements of each feature and a binary vector that indicates the
group assignment of the respective samples, e.g., disease and control.

5.1.2.2 Score transformation (optional)

The next step in the standard enrichment analysis workflow is the
transformation of uploaded or computed score lists (cf. Figure 50).
For this purpose, our framework offers five different strategies: (1) no
transformation, (2) square root, (3) logarithm, (4) squared, or (5) ab-
solute values.

In the context of enrichment analysis, the square root and the loga-
rithm can help to reduce the effect of outliers, while squared values
and absolute values can facilitate the detection of biological categories
that contain both up- and down-regulated features.

Gene 3            3.1
Gene 6            2.9
Gene 8            2.7
Gene 2            1.5
Gene 7            0.8
Gene 9           -0.1
Gene 10         -1.1
Gene 5           -2.5
Gene 4           -3.1
Gene 1           -3.2

Gene 3            3.1
Gene 6            2.9
Gene 8            2.7
Gene 2            1.5
Gene 7            0.8
Gene 9            0.1
Gene 10          1.1
Gene 5            2.5
Gene 4            3.1
Gene 1            3.2

𝑓 𝑥 =

𝑥

𝑙𝑜𝑔!(𝑥)

𝑥!

|𝑥|

Figure 50: Overview of the score transformation step in the GeneTrail work-
flow.
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5.1.2.3 Enrichment analysis

The next step in our workflow is the actual enrichment analysis. Here,
we distinguish between two distinct strategies: Over-representation
analysis (ORA, cf. Section 3.6.2) or functional class scoring (FCS, cf.
Section 3.6.3). An overview of both strategies is depicted in Figure 51.

Gene 3
Gene 6
Gene 8
Gene 2

Gene 3            3.1
Gene 6            2.9
Gene 8            2.7
Gene 2            1.5
Gene 7            0.8
Gene 9           -0.1
Gene 10         -1.1
Gene 5           -2.5
Gene 4           -3.1
Gene 1           -3.2

Signaling Pathway 3
Biological Process 2
Molecular Function 4
Biological Process 1
Cellular Component 2
Signaling Pathway 1

2.19e-10
7.20e-08
3.56e-05
1.44e-04
9.10e-03
0.0010

Biological categories

Filtering

Gene 3            3.1
Gene 6            2.9
Gene 8            2.7
Gene 2            1.5
Gene 7            0.8
Gene 9           -0.1
Gene 10         -1.1
Gene 5           -2.5
Gene 4           -3.1
Gene 1           -3.2

Gene 3
Gene 6
Gene 8
Gene 2

Over-representation analysis

Functional class scoring

Figure 51: Overview of the enrichment analysis step in the GeneTrail work-
flow. The input score list can either be used directly in an en-
richment analysis, or filtered and used in an over-representation
analysis (ORA).

5.1.2.4 Over-representation analysis

The input for an ORA is a small feature set, such as the most up-
regulated genes. The feature set can either be created by filtering a
score list or directly uploaded by the user. Our web service then tests
if the feature set contains significantly more (or less) elements of a
biological category than expected based on a reference set (cf. Section
3.6.2).

5.1.2.5 Functional class scoring

Unlike ORA, the FCS methods utilize all measured features to de-
tect deregulated biological categories. To this end, they compare all
features in the input list that belong to a certain category with all oth-
ers. GeneTrail provides several methods that employ this strategy
(cf. Section 3.6.3). In general, they can be divided into three classes:
parametric tests, non-parametric tests, and averaging methods.
As parametric tests, we implemented the one-sample t-test [603] and
the Welch t-test [572]. Both tests use the actual scores to compare the
distribution of the features in the category to all other features. To
this end, they assume that both groups are drawn from Gaussian dis-
tributions.



104 genetrail web service

In contrast, non-parametric tests make no assumptions about the dis-
tribution of the scores and compare the two groups based on their
ranks in the sorted score list. For this class, we implemented three
methods: the Wilcoxon rank-sum test [440] and both the weighted
[514] and the unweighted [259] version of the gene set enrichment
analysis (GSEA, cf. Section 3.6.3.1).
Moreover, our framework also offers several averaging methods (cf.
Section 3.6.3.3). These approaches calculate a sample statistic for all
elements in a biological category and then assess the significance of
this score via a permutation test. GeneTrail offers four such sample
statistics: mean, median, sum, and max-mean [136].
For bothORA and FCS approaches, our framework provides different
strategies to calculate p-values. For all methods, p-values can be es-
timated using either the sample- or feature-based strategy proposed
by Ackermann and Strimmer ([2], cf. Section 3.6.1). For the sample-
based strategy, all p-values are calculated via permutation tests. For
the feature-based strategy, p-values can also be derived from the ap-
proximated probability distribution of the test statistic or even calcu-
lated exactly (cf. Table 3).
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ORA x x x

Parametric One sample t-test x x x

Welch t-test x x x

Non-parametric Unweighted GSEA x x x

Weighted GSEA x x

Wilcoxon rank-sum test x x x

Averaging Max-mean x x

Mean x x

Median x x

Sum x x

Table 3: Overview of p-values strategies available for the enrichment meth-
ods implemented in GeneTrail.
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5.1.2.6 Multiple testing corrections

In general, the enrichment analysis workflow is applied to multiple
biological categories simultaneously. Since we use a predefined signif-
icance level to assess if a biological category is significantly enriched
or depleted, we run into the multiple testing problem, as described
in Section 3.3.2. Hence, GeneTrail provides a variety of methods that
either control the family-wise error rate (e.g., Bonferroni [63, 64]) or
the false discovery rate (e.g., Benjamini-Hochberg [44] or Benjamini-
Yekutieli [45]).

5.1.3 Visualization of results

On top of the rich functionality described in the previous paragraphs,
GeneTrail also creates different visualization of the computed results.
These range from a general overview of enriched biological categories
to an in-depth characterization of individual ones, as well as relation-
ships between them. Examples for the different types of visualiza-
tions can be found in Figure 53.

5.1.4 Integrative analysis

Besides the standard workflow that can be applied to examine the
results of one analysis, our web service additionally offers function-
ality to integrate and combine the results of different analyses. To
this end, users can select multiple enrichment results and view them
side-by-side as a single table. In general, our web service offers two
options to combine enrichment results, the intersection or the union
of all significantly enriched or depleted categories. This functionality
can be used to quickly compare similarities and differences between
different analyses, or to study how pathway activity patterns change
across multiple data sets. An example for this is depicted in Figure
52.

Figure 52: Comparison between GSEA results of the tumors of three differ-
ent patients. This table was created using a hepatocellular carci-
noma data set (GSE64041; cf. Section E.1).
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Figure 53: Overview of the different types of visualizations available for enrichment results.
(A) Volcano plot where each category is represented as a point in the scatter
plot. (B) Table depicting significantly enriched/depleted categories for a specific
database. (C) GSEA running-sum plot (red), density plot of gene scores (blue),
and positions of genes in ranked list (black) for category “DNA metabolic pro-
cess”. (D) Heatmap depicting the gene set overlap between the genes of “DNA
metabolic process”. The plots were created using a hepatocellular carcinoma
data set (GSE64041; cf. Section E.1).
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5.2 network analysis

Author contributions

The network analysis functionality of our web service was originally
developed for the NetworkTrail web service that was implemented
by Daniel Stöckel, Oliver Müller, and me [509]. With the introduction
of the layered architecture of our framework and the corresponding
modular web interface (cf. Section 4.2, [510]), we migrated the com-
plete functionality into the updated framework. This was mostly done
by Daniel Stöckel and me. The complete list of contributors can be
found in the author section of the respective publications [509, 510].

In addition to the classical enrichment analysis workflows described
in the previous section, our framework also offers network analysis
algorithms. Instead of biological categories that represent feature sets
with a particular annotation, network analysis methods examine the
topology of interaction networks to identify deregulated subgraphs
or even signaling cascades (cf. Section 3.7). These methods cannot
only be used to study deregulated biological processes, but also to
identify important elements within them, such as the root.
The workflows described in this section were initially developed for
the NetworkTrail web service [509], but are also part of the Gene-
Trail web service [177, 510]. An overview of the different processing
steps is shown in Figure 54.

Gene 3            3.1
Gene 6            2.9
Gene 8            2.7
Gene 2            1.5
Gene 7            0.8
Gene 9           -0.1
Gene 10         -1.1
Gene 5           -2.5
Gene 4           -3.1
Gene 1           -3.2

(A) (B) (C)

Figure 54: Overview of the NetworkTrail workflow. (A) The input for the
network analysis workflows is a score list (cf. Section 5.1.1), where
each score indicates the importance of a specific feature. (B) The
scores in this list are used as weights for corresponding vertices
in the interaction network. (C) Both ILP and FiDePa analyze the
topology of the resulting network to identify the most deregu-
lated subgraphs.
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5.2.1 Workflow

The input for all our network analysis algorithms is a score list, where
each entry represents the importance of a specific feature, e.g., the
degree of deregulation. This score list can either be uploaded by a
user or be calculated based on a given gene expression matrix with
two sample groups, e.g., disease vs. control. Since these processing
steps (group comparison and score transformation) are identical to
our enrichment analysis workflow, they are skipped in this section
(cf. Figure 48).
In addition to the score list, the different algorithms also require an
interaction network as input, where each vertex represents a feature
and each edge an interaction between two features (cf. Section 3.2.3).
The uploaded scores are then used as vertex weights in this graph.
Our framework offers two methods for the identification of the most
deregulated subgraphs in the given network: FiDePa [258] and the
ILP approach described in Section 3.7.1 [32]. FiDePa applies a dy-
namic programming approach to examine which paths (linear sub-
graphs) of a given length are significantly enriched in the score list.
To this end, the Kolmogorov-Smirnov statistic (unweighted GSEA)
is employed (cf. Section 3.6.3.1). In addition to linear subgraphs, the
ILP is also able to assess branched subnetworks of predefined size (cf.
Section 3.7.1). Both methods are usually applied to analyze different
sizes of subgraphs, which are then combined for the final results.
Finally, our web service provides different ways to visualize the re-
sulting graphs, i.e., either using the BiNA visual analytics tool [175]
or directly in the browser using a custom Cytoscape.js plugin [162]
(cf. Figure 55).

Figure 55: Example visualization of a subgraph with 10 nodes. The size and
color indicate the degree of deregulation of each gene. The shape
indicates if a node is a protein (round), protein family (rectangle),
or protein complex (diamond; not shown). The plot was created
using a hepatocellular carcinoma data set (GSE64041; cf. Section
E.1).
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5.3 epigenomics workflow

Author contributions

The epigenomics workflow was mainly developed by Nico Gerstner
and Hans-Peter Lenhof. I assisted with the design and implemented
the parallel version of the underlying ORA. The complete list of con-
tributors can be found in the author section of the respective publica-
tions [177].

The chromatin structure in a cell is a crucial factor in the control of
the transcription process (cf. Section 2.1.5). It defines if the DNA and
in particular genes or gene regulatory regions (GRR) are accessible
to DNA-binding proteins, such as transcription factors or the poly-
merase complex. The chromatin structure is induced and influenced
by specific epigenetic modifications of the DNA or histone proteins,
i.e., cytosine methylations or histone marks. Hence, the assessment
of chromatin states in a biological sample provides important infor-
mation about the gene expression and, subsequently, the activity of
biological processes.
In the third version of GeneTrail, we introduced a specialized work-
flow for the integrative analysis of epigenetic modification patterns
in different sample groups and their putative effect on biological pro-
cesses and signaling pathways [176, 177].
The input for this workflow is a collection of epigenetic modification
patterns for each analyzed sample, e.g., open-chromatin regions, hi-
stone marks, or DNA methylation patterns. These can be uploaded
in different standardized file formats, which include “BED”, “VCF”,
or “IDAT”. All of them are described in Appendix F. Our web ser-
vice then conducts the following processing steps to find genes that
have a different chromatin state in two analyzed samples, e.g., dis-
ease vs. control, and subsequently which biological processes might
be affected by these differences.

5.3.1 Chromatin state assignment

In the first step, GeneTrail investigates the chromatin structure of each
sample to assign one of the following functional states to each gene:
“active”, “poised”, “repressed”, or “no information”. To this end, our
web service evaluates the chromatin modification patterns in the reg-
ulatory regions of all transcripts individually. This is done using man-
ually curated rules that assess the combination of epigenetic marks in
these regions to estimate the chromatin state of each transcript. The
rules were either extracted from databases, i.e., Histome [262] and
HHMD [610], or manually derived from literature (cf. Section 2.1.5.1).
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In general, our data collection contains two types of rules. The first
type are combinations of epigenetic modifications that are well-studied
and clearly define a specific chromatin state. Examples for such rules
are the occurrence of H3K4me1 and H3K27ac in the enhancer region
or H3K4me3 and H3K27ac in the promoter region, which mark ac-
tively transcribed genes. The second type of rule are more general
associations of a specific mark and the activity of a gene, such as
the H3K4ac mark, which is enriched in the promoter of actively tran-
scribed genes.
In order to combine both types of information, we employ an eval-
uation scheme that first assesses specific rules that provide strong
evidence. If none of the specific rules are met, we check if the if the
regulatory regions of a transcript predominantly contain marks that
are associated with a given chromatin state.
Finally, we obtain one of the four chromatin states for each transcript.
However, since we require gene-level information for most down-
stream applications, we have to aggregate the transcript information
for each gene. To this end, we currently assign each gene to the func-
tional state of its most active transcript.

5.3.2 Identification of chromatin state transitions

In a second analysis step, GeneTrail searches for genes with differ-
ent functional states in two analyzed sample groups. Genes with the
same behavior are then clustered to create “transition groups”, e.g.,
all genes with a poised state in the first sample group and an active
state in the second one. An overview of this procedure is shown in
Figure 56.

Epigenetic marks Assignment of chromatin states per gene

Poised

No information

Poised

No information

Active Active

Repressed Repressed

(A) (B)Sample1 Sample2 Sample1 Sample2

Figure 56: Overview of the GeneTrail epigenomics workflow (Part1). The
combination of epigenetic modifications in the regulatory regions
of each gene define one of four chromatin states for each sam-
ple (active, poised, repressed, no information). This figure was
adapted from [177].
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5.3.3 Enrichment analysis

In the final analysis step, we conduct over-representation analyses for
the genes of each transition group (cf. Figure 57). This can be used
to investigate which biological processes might be affected by the
respective changes.

Identification of altered chromatin states
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Figure 57: Overview of the GeneTrail epigenomics workflow (Part2). All
genes that are assigned to a specific transition group (e.g.,
“poised” to “active”) are used to conduct over-representation
analyses. This figure was adapted from [177].
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5.4 single-cell analysis

Author contributions

The single-cell analysis functionality of GeneTrail was mainly de-
signed and developed by Nico Gerstner, Hans-Peter Lenhof, and me.
The front end was mainly implemented by Nico Gerstner, and the
back end was implemented by Nico Gerstner and me. The complete
list of contributors can be found in the author section of the respective
publications [177].

Over the last years, single-cell RNA sequencing (scRNA-seq; cf. Sec-
tion 3.1.1.3) technology has become a major focus in biomedical re-
search. The measurements of expression levels on a single-cell basis
instead of a cell mixture not only allow studyng biological systems at
a previously unmet resolution but also to examine the different cell
types in a sample. Hence, scRNA-seq has already successfully been
used in many research projects. Amongst others, this technology was
applied to catalog and study gene expression levels in many tissues
and cell types of different organs in various organisms, e.g., mouse
[101], fruit fly [456], or human [416]. In this context, researchers were
even able to identify previously unknown cell populations [365]. Fur-
thermore, single cell techniques have also been used to study expres-
sion differences between diseased and normal cells, e.g., for COVID-
19 [581] or cancer [291, 422].
Modern scRNA-seq data sets can provide measurements for hun-
dreds of thousands of single cells. Consequently, a manual inspection
of the data is completely impossible, and highly efficient computa-
tional tools are required that help to process and explore the con-
tained information.
For this purpose, we extended GeneTrail with powerful single-cell
functionality [176, 177]. This toolbox provides several workflows for
the analysis and exploration of huge scRNA-seq data sets. An overview
of these workflows is provided in Figure 58.
Our web service was designed to assess active biological processes in
individual cells and to examine functional differences between differ-
ent cell groups, e.g., cell types or clusters. In order to efficiently han-
dle the huge amount of data, we carefully revised, optimized, and
parallelized all processing steps. We even developed a new index-
based ORA approach that conducts an enrichment analysis in con-
stant time. In the following, we first describe each processing step
and then demonstrate our single-cell functionality using a COVID-
19 data set (cf. Section 5.6.1).
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Figure 58: Overview of the GeneTrail single-cell analysis workflows. The
different input types are marked in blue. Intermediate process-
ing steps are shown in grey, and the different analysis types are
depicted in white. The arrows mark all possible workflows pro-
vided by our framework.

5.4.1 Preprocessing

The input for our single-cell workflow is either a normalized gene ex-
pression matrix or a raw count matrix. These can be uploaded in our
standard matrix format (cf. Section 5.1.1) or in special sparse formats
that are described in Appendix F. While normalized expression matri-
ces can directly be used for the analyses described in the subsequent
sections, raw count matrices need to be processed first. This includes
multiple quality control and normalization steps that are described
in the following.

5.4.1.1 Quality control and filtering

In current research, a variety of experimental techniques can be used
to isolate single cells and to generate associated expression profiles (cf.
Section 3.1.1.3). Typically, the resulting data sets are represented as a
count matrix, where each row represents expression measurements
for one gene and each column a specific barcode. Here, we use the
term barcode instead of cell because due to technical problems dur-
ing the single-cell isolation, library preparation, or sequencing steps,
reads assigned to one barcode may not necessarily originate from
one single cell [320]. Instead, depending on the used protocol, one
barcode might mistakenly denote measurements of two or even more
cells that were not properly separated, i.e., doublet or multiplets. In
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some protocol, we could also obtain no measurements at all, e.g., if
barcodes are assigned to empty droplets or wells [320]. Furthermore,
during the single-cell isolation step, it is also possible that cells are
damaged and that only a part of the RNA can be measured.
In all cases, the values of these barcodes might influence and distort
specific analyses, and, as a consequence, the respective outliers need
to be removed.
Hence, the first preprocessing step in our single-cell workflow is a
filtering procedure that identifies and removes barcodes with no or
biased information, e.g., multiplets or damaged cells (cf. Figure 59A).
To this end, we employ different quality control criteria that are based
on the best practices guide by Luecken and Theis [320].
In general, measurements of multiple cells, such as doublets, can be
identified by much higher counts or a larger fraction of expressed
genes. Analogously, barcodes that represent damaged cells or empty
droplets are often denoted by a small number of counts or a small
fraction of expressed genes. Additionally, a high percentage of mito-
chondrial genes might also indicate damaged cells with broken mem-
branes whose mRNA might have leaked out.
For all the described criteria, we provide filter procedures that can be
applied to detect and remove outliers. The thresholds for the individ-
ual criteria depend on the experimental protocol and the analyzed
cell types. For example, methods based on unique molecular identi-
fiers (UMIs) often have smaller read counts than other approaches.
Additionally, cells with a certain type, function, or state might nat-
urally differ from other cells, e.g., cells involved in respiratory pro-
cesses usually have a higher amount of mitochondrial genes [320].
For these reasons, it is mandatory to carefully select the thresholds for
the different filter criteria. As default options, we employ permissive
thresholds that are adapted to the different protocols. Additionally,
we save the different quality metrics for each cell, such that users can
assess them manually to identify further biases.
After the quality control steps, we assume that each barcode repre-
sents exactly one cell. Hence, both terms are used interchangeably in
the following sections.
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Figure 59: (A) Potential biases that can occur in a single-cell experiment:
doublets, damaged cells, incomplete information, or no cell, e.g.,
due to empty droplets. (B) Overview of the filtering procedure.
Cells that fail quality control checks are removed from the matrix.

5.4.1.2 Normalization

After quality control, the next preprocessing step in our single-cell
analysis workflow is the normalization of the raw count values. This
step is needed to ensure that expression values are comparable be-
tween and within samples. The choice of an appropriate normaliza-
tion method depends on the sequencing protocol used. In general, the
sequencing protocols can be categorized into two distinct strategies:
methods that sequence the full length of a transcript and methods
that only sequence the 3’ or 5’ end [518, 615]. In full length based
approaches, multiple reads are usually generated from one transcript
due to fragmentation. Generally, this means that longer transcripts
produce more reads than shorter ones, and we need to apply normal-
ization methods that account for this problem. For this purpose, we
provide two approaches that adapt the raw counts by gene length
and library size: TPM [554] (cf. Section 3.1.1.2) and GeTMM [495].
Since the length normalization step for both methods is optional, they
can also be applied to normalize reads from protocols that only se-
quence the 3’ or 5’ end of transcripts and usually generate unique
molecular identifiers (UMIs), i.e., only one read per transcript.
In all cases, we transform the normalized expression values by adding
a pseudo-count and taking the logarithm (log2).
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5.4.2 Single-cell enrichment analysis

In the next step, the normalized expression values can be used to
conduct enrichment analyses for each cell (barcode). To this end, we
select the most expressed genes for each cell, e.g., the 500 genes
with the highest expression. For the selected genes, we calculate over-
representation analyses (ORA) to detect active biological processes of
each cell. In a subsequent step, the calculated enrichment results can
be used to compare different groups of cells, such as disease and con-
trol. These groups can either be defined via annotations uploaded by
the user or clusters calculated by our web service.
Since modern single-cell data sets regularly contain measurements
for tens of thousands of cells, these steps can be very compute-intensive.
Hence, we created an adapted ORA approach that utilizes an index
structure containing p-values for predefined parameters instead of
calculating the p-values from scratch. While this requires the creation
of several specific indices, which is only possible for a small restricted
parameter space, it reduces the total runtime drastically and facili-
tates the processing of huge data sets with the web service.
In general, this ORA approach is divided into two steps. In the first
step, we precompute and save all p-values for the required test set
and reference set sizes in a matrix. In the second step, this matrix is
then used as a reference to obtain p-values in constant time.

5.4.2.1 Calculation of p-value matrices

Given a test set of size n, a reference set of size m, and a maximum
category size lmax, we can calculate a matrix P(lmax+1)×(lmax+1) that
contains all p-values for categories of size l ∈ [1, lmax] and k ∈
[0, lmax] category members in the test set. Each entry P[l,k] in this
matrix represents the p-value for a category of size l and k test set
members that belong to this category.
Instead of calculating all entries of this matrix independently, we em-
ploy a new dynamic programming approach. This is possible because
the p-values for both Hypergeometric test and Fisher’s exact test can be
calculated recursively, i.e., P(X > k) = P(X = k) + P(X > k+ 1).

proof The proof for this observation can directly be derived from
the definition of P(X > k):

P(X > k) =
min(n,l)∑
i=k

P(X = i) (93)

⇔ P(X > k) = P(X = k)+

min(n,l)∑
i=k+1

P(X = i) (94)

⇔ P(X > k) = P(X = k)+ P(X > k+ 1) � (95)
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Based on this observation, we can then use the following dynamic
programming procedure to calculate a matrix containing all upper-
tailed p-values efficiently. First, each row is initialized at position
P[l,d = min(n, l)] with the probability P(X = d|m;n; l). The remain-
ing entries in each row, are then calculated with the following recur-
rence formula:

P[l,k] = P[l,k+ 1] + P(k|m;n; l), (96)

where k ∈ [d− 1, 0].

The pseudo-code for this algorithm is shown in Algorithm 1.
A dynamic programming approach for lower-tailed p-values can be
derived accordingly.

Algorithm 1 Precomputation of upper-tailed p-values for an over-
representation analysis with fixed reference and test set size.

1: Given the size of the reference set m, the size of the test set n, and the
maximal category size lmax.

2: procedure precompute-p-values(m,n, lmax)
3: P[0..lmax, 0..lmax] = 1.0
4: for l=0 to lmax do
5: d = min(n, l)
6: P[l,d] = P(d|m;n; l)
7: for k=d-1 to 0 do
8: P[l,k] = P[l,k+ 1] + P(k|m;n; l)

9: return P

5.4.2.2 Index-based over-representation analysis (ORA)

In a second step, the p-value matrix generated with the approach
outlined above can now be utilized in an index-basedORA procedure.
Here, the initial processing steps are equivalent to our original ORA
approach (cf. Section 3.6.2), but instead of calculating a p-value for
each test, we can extract the corresponding value from the reference
matrix. The remaining processing steps stay the same.
In order to enable an efficient processing of hundreds of thousands of
single-cells, we make sure that the same number of cells are used as a
test set for each cell and the the same reference set is used for all over-
representation analyses. Hence, we can use the same pre-computed
p-value matrix for all computations. While these adjustments make
the new ORA procedure less flexible than the standard approach, it
improves the performance and makes the results of all cells better
comparable. An overview of this method is depicted in Figure 60.
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Figure 60: Overview of the index-based ORA approach. For a given refer-
ence set of size m and a test set of size n, the matrix P contains
the p-values for all possible combinations of reference set and test
set sizes. In particular, the entry P[l,k] contains the pre-computed
p-value for a category of size l and k test set members in this cat-
egory.

5.4.2.3 Enrichment-based group comparison

In addition to the gene expression matrix, users can also upload a
meta-data file containing annotations for each cell, such as cell type,
tissue type, cluster assignments, or disease status. These annotations
can be used to define groups and to assess if there are functional dif-
ferences between the cells assigned to these groups.
For this purpose, we conduct a χ2-test [440] that checks for each
group and each biological category if the category is significantly
more active in the investigated group than in all other cells. Each
χ2 test consists of two processing steps that are described in the fol-
lowing.
First, we have to define a 2× 2 contingency table for each biological
category. To this end, we divide the enrichment results for the pro-
cessed category into four distinct classes that represent the entries
of this table. Each entry represents the number of cells that belong
to this class. Here, the rows divide the cells based on the group as-
signment, and the columns denote if the category was significantly
enriched or not. An overview of this procedure is shown in Figure 61.

In the second step, we can then perform the χ2-test to examine if
group assignment and enrichment are independent or if the investi-
gated group contains more cells with significant enrichment results
than expected by chance:

χ2 =

2∑
i=1

2∑
j=1

(nij −n
∗
ij)
2

n∗ij
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Here, nij indicates the number of cells and n∗ij the expected frequency
of this class based on the global distribution:

n∗ij =
(
∑
k nik) · (

∑
l nlj)

n
,

Finally, a p-value for this test statistic can then be obtained from a
χ2-Distribution with 1 degree of freedom.
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Figure 61: Creation of a contingency table for the χ2-Test. (A) For each cat-
egory in our single-cell enrichment results, we create one 2 by
2 contingency table. To this end, the cells are grouped based on
two criteria, i.e., if a cell belongs to group G1 and if the consid-
ered category is significantly enriched. (B) The contingency table
is then complemented by calculating the row and column sums.

5.4.3 Group comparison and downstream analyses

In addition to the new functionality for single-cells described in the
previous sections, our framework offers different types of pseudo-
bulk analyses for single-cell data. Here, instead of analyzing the mea-
surements of each cell individually, cell groups with the same anno-
tation are aggregated to so-called pseudo-bulks and then further pro-
cessed. In the following, different analyses are described that follow
this approach.

5.4.3.1 Group comparison and enrichment analysis

One of the most popular analyses in this context is the comparison of
two cell groups of interest, e.g., disease vs. control. In order to com-
pare these groups, our web service first aggregates the expression
measurements in each group by calculating the mean expression val-
ues of each gene. Subsequently, our framework applies a fold-change
to determine differences between the two considered groups. This
analysis results in a score list that can directly be used in our stan-
dard enrichment analysis workflow (cf. Section 5.1).
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In general, GeneTrail offers two different ways to access this func-
tionality. Users can either upload the pseudo-bulk data directly to
the standard analysis workflow or access the functionality via our
single-cell toolbox.
Here, in order to conduct a group comparison, a user first has to
select among the different cell annotations. Based on the selected an-
notation, the user can then define two cell groups that should be com-
pared. After the groups have been selected, GeneTrail automatically
conducts a group comparison and over-representation analyses for
both the most over- and under-expressed genes. The results can then
either directly be accessed on the single-cell page or via our detailed
enrichment view (cf. Figure 53).

5.4.3.2 Cell type prediction

A special use-case of the workflow described in the previous section
is that it can be applied for cell type prediction. For this purpose, a
user has to select a cell annotation, e.g., a provided clustering. For
each of the clusters, our web service then conducts a group compari-
son against the remaining cells. The resulting score list is then used in
an enrichment analysis using the Wilcoxon rank-sum test (cf. Section
3.4.4.1 + 3.6). In this enrichment analysis, instead of biological pro-
cesses, we utilize marker genes for known cell types, e.g., from The
Human Protein Atlas [415]. Based on the most enriched categories,
we can then estimate the underlying predominant cell type of each
cluster. An overview of this approach is depicted in Figure 62.
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Figure 62: Overview of our cell type prediction approach. (A) Based on a
given annotation, each group of cells is compared against all
other groups. (B) We then apply a Wilcoxon rank-sum test to
check if marker genes of a particular cell type are significantly
enriched in the resulting list. (C) The enrichment results are then
used to rank all cell types and to select the most likely one.
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5.5 time-series workflow

Author contributions

The time-series workflow was mainly designed and developed by
Hans-Peter Lenhof and me. Anne Müller assisted with the implemen-
tation of the workflow. The complete list of contributors can be found
in the author list of the respective publications [176, 177].

With the third version of GeneTrail, we also introduced the possibil-
ity to analyze time-resolved gene expression measurements. Here, we
especially focus on the identification of biological processes whose
activity changes over time. For this purpose, we developed a new
pipeline that analyzes and compares the time courses of all features.
First, a feature selection is conducted to remove features with no ex-
pression change in the analyzed time frame. For the remaining fea-
tures, a clustering approach is applied that groups features with very
similar expression curves. In the last step, an enrichment analysis is
performed for each cluster to find the biological categories that are
affected by the corresponding expression pattern.

In the following paragraphs, we first discuss the new methodology
created for this pipeline. In Section 5.6.2, we then apply our tool to
time-resolved transcriptomic and miRnomic profiles of CD4+ T cells
to study processes with altered activity after T cell activation.

5.5.1 Step 1 - Feature selection

The goal of the time-series workflow is the identification of biolog-
ical processes or signaling pathways whose activity changes during
the analyzed time frame. To this end, the first step in our pipeline is
the identification of interesting features. For this purpose, we employ
several measures that assess the amount of fluctuation in a time in-
terval. Only features that exceed a user-defined threshold for these
measures are considered for subsequent analysis steps.

Maximum increase/decrease(A)
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Mean absolute change(B)

Figure 63: Feature selection measures for time-resolved expression data.
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Given a series of expression measurements for a specific feature x =

{x1, ..., xn}. The first measure calculates the maximum overall increase
(or decrease) in expression.

d(x) = max(x) −min(x) (97)

Similarly, we can define the maximum deviation from the first time
point.

d(x) = max

|max(x) − x1|,

|min(x) − x1|
(98)

Both measures are well suited for cases, where we expect large changes
in one direction.

In contrast to this, interesting curves could also be characterized by a
high fluctuation. Hence, we can define a third measure as:

d(x) =
1

n− 1

n−1∑
i=1

|xi+1 − xi| (99)

Examples for both approaches are illustrated in Figure 63

5.5.2 Step 2 - Clustering of time-resolved expression measurements

The next step in our workflow is the identification of gene groups
with very similar expression curves in the analyzed time frame. To
this end, we use a two-stage clustering approach. In the first stage, we
conduct a very strict clustering that creates many small groups with
very similar expression patterns. In the second stage, the small clus-
ters are further combined into larger groups, called “super-clusters”.
This approach structures the data into a hierarchy, where the super-
clusters provide a general overview of expression trends in the data
and the smaller clusters enable users to get a more in-depth view. An
overview of the approach is shown in Figure 64.

5.5.2.1 Distance and similarity measures

One essential part of every clustering algorithm is the selection of a
suitable distance or similarity measure. For time-resolved expression
profiles, these measures need to consider the curve characteristics in
the analyzed time frame and not only the distance of individual data
points. In fact, for some analyses, we might want to group genes with
a parallel time course even if they have a different expression level.
Hence, in addition to standard measures such as correlation coeffi-
cients or the Euclidean distance (cf. Section 3.5 or Figure 65A), we im-
plemented specialized measures for this purpose that are described
in the following sections.
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Figure 64: Overview of the two-stage clustering approach in the GeneTrail
time-series workflow. In the first stage (A→ B), a very strict clus-
tering is applied to identify small and very similar clusters. In
the second step (B → C), the clusters are further combined into
super-clusters.

5.5.2.1.1 Adaptations of the Euclidean distance

According to Section 3.5, the Euclidean distance for two series of time-
resolved measurements p = (p1, ...,pn) and q = (q1, ...,qn) is defined
as:

d(p,q) =

√√√√ n∑
i=1

(qi − pi)2 (100)

Since the standard definition uses the expression differences in each
time point, it is not well suited to find curves with similar shapes that
start on different expression levels (cf. Figure 65A). To overcome this,
we propose the following two adaptations.

Shifted Euclidean distance

The first measure shifts the curves, such that the distance between
them is minimized (cf. Figure 65B):

d(p,q) =

√√√√ n∑
i=1

(qi − s− pi)2, (101)

where the optimal value for s is defined as:

s =
1

n

n∑
i=1

(qi − pi) (102)

The proof that s gives us the optimal value can be found in Appendix
D.1.



124 genetrail web service

Euclidean distance(A) Euclidean distance (minimized)(B)

(C)Euclidean distance (gradients) (D) Angle distance

Figure 65: Overview of distance measures used to compare time courses: (A)
Standard Euclidean distance, (B) Shifted Euclidean distance, (C)
Euclidean distance between gradients, (D) Angle distance.

Euclidean distance between gradients

Alternatively, we can define the distance between p and q based on
the gradient differences of all consecutive time points instead of the
times directly (cf. Figure 65C):

d(p,q) =

√√√√n−1∑
i=1

((qi+1 − qi) − (pi+1 − pi))2 (103)

5.5.2.1.2 Angle distance

The distance between two series of time-resolved measurements p =

(p1, ...,pn) and q = (q1, ...,qn) can also be defined based on the angle
differences of two consecutive points in the time series (cf. Figure
65D):

d(p,q) =
n−1∑
i=1

θ((1,pi+1 − pi), (1,qi+1 − qi)), (104)

Here the two points (1,pi+1 − pi) and (1,qi+1 − qi) define two vec-
tors −→u and −→u that start in the origin (0, 0), and θ calculates the angle
between these two vectors:

θ(−→u ,−→v ) = arccos
( −→u · −→v
||−→u || · ||−→v ||

)
, (105)
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5.5.2.2 Clustering

Based on the statistical measures described in the previous section,
we can then perform our two-stage clustering to identify gene groups
with similar time courses. In the first stage, we apply a very strict clus-
tering to identify small gene groups with very similar curve shapes.
Since this usually results in many clusters that are hard to analyze
manually, we conduct a second clustering that groups the initial clus-
ters into larger classes, called “super-clusters”. To this end, we first
calculate the average (mean) time course of each initial cluster. For
these aggregated time courses, we then conduct a second less strin-
gent clustering to find the super-clusters. In practice, the super-clusters
provide a general overview of the expression trends in the data. These
can then be used as entry points for a more in-depth examination of
the small clusters (cf. Figure 66).
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Figure 66: Screenshots of the GeneTrail time-series result visualization for
the T cell activation data set (cf. Section 5.6.2). Depicted are the
time points after T cell activation stimulus. (A) Average expres-
sion time course of super cluster SC1. (B) Average expression time
courses of all clusters that belong to SC1.
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In the current version of GeneTrail, both clustering stages can be con-
ducted using any of the hierarchical clustering approaches described
in Section B.1. However, instead of hierarchical clustering, alternative
methods could also be applied, such as our clique partitioning ap-
proach described in the following paragraph [121].

Clique partitioning ILP

Author contributions

The ILP described in this paragraph was mainly developed by Kerstin
Lenhof, Hans-Peter Lenhof, and me. It was applied in our publication
“Quantitative and time-resolved miRNA pattern of early human T
cell activation” [121] to study miRNA expression patterns during the
T cell activation process. The complete list of contributors for this
study can be found in the author list of the respective publication
[121].

Besides standard hierarchical clustering, we additionally developed
a graph-based approach that searches for an optimal clustering with
a high similarity amongst all members [121]. This algorithm is an
adaptation of the cutting plane clustering method by Grötschel and
Wakabayashi [192].

Similarity graph (𝐺)

(A)

Identification of the optimal 
clique partitioning of 𝐺

(B) (C)

Cluster detection

Figure 67: Overview of the clique partitioning approach. (A) The input of
the clustering algorithm is a graph G, where each node repre-
sents a feature and each edge is weighted by similarity of the two
connected features. (B) Our ILP then identifies the optimal set of
edges that need to be removed from G to obtain the best clique
partitioning. (C) The cliques then represent the final clusters.

The input of our algorithm is a similarity matrix S and a pre-defined
threshold δS. Both S and δS are used to build an undirected graph
G = (V ,E), where each vertex vi ∈ V represents a feature and each
edge (eij ∈ E) represents an entry sij ∈ S iff sij > δS. The goal of
our method is to find the best possible clique partitioning of G, i.e.,
the set of fully connected subgraphs that have the highest total edge
weight (similarity). This is achieved by removing the edge set with
the smallest possible weight and simultaneously producing a valid
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clique partitioning of G. An overview of this approach is shown in
Figure 67.
We formulate this clustering approach as an integer linear program
(ILP). For this purpose, we first define a binary decision variable yij
that specifies if an edge belongs to the edge set that is removed from
the graph (Ecut).

yij =

1, if eij ∈ Ecut

0
(106)

Based on this, we can define an objective function that minimizes the
weight of Ecut.

min
∑
eij∈E

sijyij (107)

Next, we need to make sure that the selected solution is a valid clique
partitioning of the graph, i.e., that each connected component is a
fully connected subgraph. To this end, we first define an auxiliary
variable zij that specifies edges that remain part of the graph.

zij =

1− yij, if eij ∈ E

0
(108)

For all edges with zij = 1, we now need to ensure that they are part
of a clique. We can achieve this by verifying the clique property for
all triplets of vertices. To this end, we need to consider four differ-
ent cases (cf. Figure 68). However, we only need to add additional
constraints for the first two (A + B). The two remaining cases cannot
break the clique property and, hence, can be neglected.
In the first case, all three vertices are connected and form a cycle. In
the following, we denote the set of all cycles with three vertices as
C3 (cf. Figure 68A). For each cycle in C3, we have to make sure that
all three edges remain part of the graph or at most one. This can be
guaranteed by the following constraints:

zij + zjk − zki 6 1 ∀i, j,k ∈ C3 (109)

zij + zki − zjk 6 1 ∀i, j,k ∈ C3 (110)

zjk + zki − zij 6 1 ∀i, j,k ∈ C3 (111)

Additionally, we need to add a similar constraint for all triplets that
represent a path of length two, which we denote P2 (cf. Figure 68B).
In this case, at least one has to be removed, since they cannot be part
of the same clique.

zij + zjk 6 1 ∀i, j,k ∈ P2 (112)
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Cycle with three vertices (𝐶!)

(A)

Path with two consecutive edges (𝑃")

(B)

Only one edge

(C)

Not connected

(D)

Figure 68: Examples of the four cases that need to be considered to ensure
the clique property in our approach. However, since (C) and (D)
cannot break this property, they can be neglected.

Our ILP formulation differs from the original one by Grötschel and
Wakabayashi [192] in the way the clique partitioning is ensured for
edges that are part of the final solution. In both approaches, all pos-
sible triplets of vertices are considered to ensure the clique property.
However, in our case, constraints are only added to the ILP if a ver-
tex triplet forms a cycle (C3) or a path (P2). In contrast, the original
ILP uses the three cycle constraints for all possible triplets of vertices.
While, in theory, this achieves the same goal, without the need to dis-
tinguish the different cases depicted in Figure 68, it results in much
more inequalities that need to be considered to solve the optimiza-
tion problem than the explicit definition. Hence, one advantage of
our adapted formulation is that this often reduces the required com-
putation time. Moreover, our approach makes it much easier to run
the algorithm iteratively, e.g., by adding additional edges to the graph
and resolving the ILP based on the previous solution.
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5.6 results

In this section, we present the results of two studies we conducted
to highlight the capabilities of GeneTrail. Thereby, we focus on the
single-cell and time-series functionality of our web service. Addition-
ally, the standard functionality is demonstrated in our Wilms’ tumor
study (cf. Chapter 9).

5.6.1 Single cell analysis of monocytes from peripheral blood of COVID−

19 patients

Author contributions

The analysis described in this section is based on our publication
“GeneTrail: A Framework for the Analysis of High-Throughput Pro-
files” [176]. The data analysis was mainly conducted by Nico Gerstner,
Hans-Peter Lenhof, and me. The complete list of contributors can be
found in the author list of the respective publications [176].

Since the beginning of the year 2020, the coronavirus disease 2019

(COVID-19) has become a global pandemic. This highly contagious
respiratory illness is caused by the coronavirus SARS-CoV-2 [399,
598]. According to the World Health Organization, nearly 250 mil-
lion people were infected by October 2021 [578]. The fast spread of
this disease was possible since asymptotic or presymptomatic cases
are postulated to have been the driver of the epidemic [169, 362]. A
study in the Chinese population showed that around 80% of peo-
ple only have mild or moderate symptoms, while the remaining 20%
seem to have severe or critical courses of the disease [589]. Many of
the severe critical cases exhibit a highly deregulated activity of the im-
mune system [178], which amongst others includes highly increased
concentrations of pro-inflammatory cytokines [145]. In current litera-
ture, several putative causes for the heavily altered immune activity
are actively discussed, such as pathogenic T cells [614], inflammatory
monocytes [195], or myeloid-derived suppressor cells [10].
In this section, we demonstrate the capabilities of GeneTrail’s single-
cell workflow by analyzing a single-cell RNA-seq data set of CD14
monocytes from peripheral blood of COVID-19 patients and healthy
controls [581]. This data set contains gene expression profiles of 10, 339
cells from blood samples of seven hospitalized patients with COVID-
19 and six healthy controls. Of the seven hospitalized patients, four
were diagnosed with acute respiratory distress syndrome (ARDS)
and required mechanical ventilation.
Here, we use GeneTrail to find biological processes that distinguish
COVID-19 patients with ARDS (ARDS group) from patients that re-
quired no mechanical ventilation (NoVent group) and healthy con-
trols (Healthy group). To this end, we calculated ORAs for the 500
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most expressed genes in each cell and then compared the three groups
using a χ2-Test as described in Section 5.4. A description of all pro-
cessing steps and the complete list of parameters can be found in
Appendix E.3. In the subsequent paragraphs, we discuss some of the
most striking differences between the three analyzed groups: ARDS,
NonVent, and Healthy. This may help to elucidate putative causes
or contributing factors of the more severe courses of disease in the
ARDS group.

Disease status Defense response to virus

0.05 10!"P-value:Healthy ARDSNonVent

ARDS

Figure 69: Screenshot of the GeneTrail single-cell result page. On the bot-
tom, the most significantly enriched biological processes in the
NonVent group of our COVID-19 analysis are depicted. The ta-
ble depicts the results the χ2-tests used for group comparison and
the background color indicates if the corresponding p-value is sig-
nificantly enriched (red) or depleted (green). On the top, UMAP
representations of the data set are plotted. The figure on the left
is colored according to the group assignment, and the figure on
the right is colored with respect to the p-value of the category
“defense response to virus”. This figure is adapted from [176].

Amongst the top results in our analyses, we obtain the process “de-
fense response to virus” as well as further related categories. As de-
picted in Figure 69, these processes seem to be highly active in cells
of the NonVent group, less active in cells of the ARDS group, and
inactive in Healthy cells. In general, we would expect that the im-
mune response to a virus infection is much more active in COVID-19
patients compared to healthy controls. However, the decreased activ-
ity of these processes in the ARDS could be an indicator that the
adaptive immune response might be impeded in these patients. Sim-
ilar observations have been frequently reported in severe cases [23,
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243]. In this context, it has also been discussed that an impaired an-
tiviral response causes a higher virus load in the blood of respective
patients [198]. Hence, building upon these results, we focus in the
following discussions on other critical immune-related processes that
might help us to further elucidate the status of the adaptive and the
innate immune system in the different groups.
First, we analyzed biological categories associated with interferon sig-
naling or the response to interferons (IFNs) of type I, II, and III. Here,
especially IFNs of type I and corresponding interferon-stimulated
genes (ISGs) have important roles in the antiviral response. Analo-
gously to our previous observations, the respective processes are sig-
nificantly more active in the NonVent group. This phenomenon has
also been repeatedly observed in severe cases of COVID-19 [1, 198,
292]. Here, a deficiency of type I IFNs in severe cases is also often ob-
served in concordance with elevated activities of the TNF and NFκB
signaling pathways. Corresponding categories show the expected be-
havior in our enrichment result list.
We also detected several other processes that confirm our observation
about the reduced adaptive immunity in patients of the ARDS group.
This includes biological categories involved in antigen presentation
via MHC class II, which are also significantly depleted in cells of pa-
tients with ARDS. Recent studies also discussed this as a potential
indicator of disease severity [303, 502]. Accordingly, we also observe
a reduced expression of several MHC class II member genes, in partic-
ular, HLA-DRA, which has been reported as a marker for respiratory
failure in severe cases of COVID-19 [178].
With respect to the innate immune system, we identified an elevated
macrophage activity in the ARDS group. This is further confirmed
by an enriched endocytosis and phagocytosis function in cells of pa-
tients with ARDS. An increased macrophage activity in COVID-19
patients also seems to be linked to a higher mortality [38]. Our re-
sult also indicated that cells from patients with ARDS might show
a significant enrichment of processes related to motility, migration,
and chemotaxis. This could potentially also be associated with the in-
creased TNF activity in those cells [361].
In summary, our results suggest that the innate immune system is
much more active in cells of patients with ARDS compared to cells
of patients that did not require mechanical ventilation and healthy
controls, while the adaptive immune system might potentially be im-
paired. Similar conclusions have been drawn by several studies that
compared mild and severe cases of COVID-19 [23, 243].
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5.6.2 Time series analysis of the T cell activation process

Author contributions

The data set analyzed in this section was published as part of our
publication “Quantitative and time-resolved miRNA pattern of early
human T cell activation” [121]. The analysis described in this section
is based on our publication “GeneTrail 3: advanced high-throughput
enrichment analysis” [177]. It was mainly conducted by Hans-Peter
Lenhof and me. The complete list of contributors can be found in the
author list of the respective publications [177].

T-helper cells or CD4+ cells are a group of lymphocytes that control
the adaptive immune response. CD4+ can recognize specific antigens
via the MHC class II receptors on the surface of antigen-presenting
cells (APCs). After activation, CD4+ cells secrete different types of
cytokines to coordinate the response of other immune cells, such as
cytotoxic T cells or macrophages.
In this section, we demonstrate the capabilities of our time-series
workflow by analyzing a data set of time-resolved gene expression
profiles of CD4+ cells that were in vitro activated [121]. In total, the
data set consists of 39 microarrays that measure the gene expression
of 13 different time points in a 24 hour period after the T cell acti-
vation signal. For each time point, three replicates were created. The
initial time points (T0) represent the expression before the cells were
in vitro activated. Subsequently, the expression was measured after
two-hour intervals, from 2 to 24 hours, after the initial activation sig-
nal. Here, we use the GeneTrail time-series functionality to analyze
biological processes and signaling pathways that are induced by the
T cell activation process. To this end, we first aggregated the repli-
cates for each time point using the median of the three microarrays.
Subsequently, we applied a hierarchical clustering with complete link-
age and Euclidean distance between the gradients of consecutive time
points to the genes with the overall highest increase in expression (cf.
Section 5.5). All processing steps and the complete list of parameters
can be found in Appendix E.4.
In total, we obtained 422 clusters that are grouped in 21 super-clusters.
From the 21 super-clusters, we selected three that have different re-
sponse to the T cell activation stimulus and, hence, have different
expression time curves, i.e, SC1, SC7, and SC16 (cf. Figure 70A).
In the following paragraphs, we first discuss the biological processes
and corresponding genes that are associated with each super-cluster
individually, and then we use the associated expression time curves to
examine the chronological order in which biological processes seem
to be executed.
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Figure 70: Screenshots of the GeneTrail time-series result visualization for
the T cell activation data set. Depicted are the time points after
T cell activation stimulus. (A) Three of the 21 super-clusters de-
tected by GeneTrail. (B) Three of the 42 clusters that belong to
SC16. (C) Member genes of cluster C269.
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Super-cluster SC1 contains the genes with the highest overall increase
in expression after two hours: CSF2, EGR2, IFNG, IL2, IL3, and TNF.
After the initial increase, the overall expression level is slightly de-
creasing, although it stays constantly high. Most of these genes are
known products of the “T cell receptor signaling pathway” (cf. KEGG
[394], hsa04660) and directly involved in T cell activation. Moreover,
we found various enriched categories that are directly associated with
early immune response processes, including T cell costimulation or T
cell differentiation. Additionally, we observe an enrichment of T cell
activation directly, including several known hallmarks of this process,
e.g., cytokine signaling, proliferation, and metabolic processes [89].
Among the top results, we also find categories that indicate a phos-
phorylation of STAT proteins and the positive regulation of the JAK/-
STAT pathway.

The second super-cluster SC7 contains genes with a direct increase
in expression that continues until 8 hours after the activation stimu-
lus (cf. Figure 70A). It contains many cytokines (e.g., IL10, IL22, or
LIF), transcriptional regulators with important roles in T cells (e.g.,
IRF4, TBX21, or VDR), and several members of the solute carrier fam-
ily of vesicular transporter (e.g., SLC32A1, SLC3A2, or SLC7A1). Ac-
cordingly, amongst the most significant processes in our enrichment
results, we found several processes related to the cytokine-mediated
signaling pathway, leukocyte migration, chemotaxis, regulation of cy-
tokine production, and transmembrane transporter activity.

In contrast to super-clusters SC1 and SC7, which seem to feature bi-
ological processes with an immediate increase in expression, SC16
shows a delayed response that starts after 4 hours and has a peak
after 12 hours. The cluster contains many members of the interferon
(IFN) family, i.e., 21 type I IFNs and 8 type II IFNs (cf. Figure 70C).
Consequently, we observe an enrichment of the interferon signaling
pathways as well as many processes involved in the activation of
other leukocytes (e.g., B cells, T cells, or NK cells), or the defense
response to external stimuli (e.g., dsRNA, virus, organic compounds,
etc.).

Based on the enrichment results for each cluster discussed above and
the corresponding expression time courses, we can now also infer pu-
tative chronological orders in which biological processes are executed.
It seems that in general, the initial activation of the T cell receptor
causes a highly elevated production of several key cytokines (e.g.,
IFNG, IL10, or TNF) and regulators of the early immune response
(e.g., IRF4 or TBX21) that immediately stimulate key signaling path-
ways and the production of further cytokines and vesicle transporter
which can help to secrete them. For example, it is established that ele-

https://www.genome.jp/pathway/hsa04660
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vated levels of IFNGmight stimulate interferon type II production (cf.
WikiPathway [256], WP619) and that IL10 induces Jak-STAT signal-
ing pathways which then promotes interferon type I production (cf.
WikiPathway [256]). Finally, the production of the different interferon
types seems to initiate an immune response to the provided activa-
tion stimulus.

In conclusion, the analysis described above demonstrates that our
web service is well equipped for the identification of genes with sim-
ilar expression time courses, the assessment of corresponding biolog-
ical processes, and their chronological order.

5.7 summary, discussion, and conclusion

In this chapter, we presented the GeneTrail web service, a power-
ful toolbox for enrichment and network analysis. Compared to other
tools (cf. Figure 47), our framework stands out by providing a rich
functionality with highly efficient C++ implementations and interac-
tive visualizations that can be used to analyze our comprehensive
collections of biological categories for 15 organisms (cf. Appendix G).
Moreover, our web service is the only one of the discussed tools that
can directly be applied to analyze both time series and single-cell ex-
periments.
Furthermore, GeneTrail is closely integrated with its sister projects
DrugTargetInspector [474] and ClinOmicsTrail [475], which provide
rich functionality for the analysis of molecular profiles of tumors.
They were designed to support clinicians in the selection of personal-
ized therapies for cancer patients (cf. Appendix C).
Nevertheless, there are still elements that can be improved or ex-
tended. For example, we plan to extend the support for additional
omics types, e.g., glycomic, lipidomic, or metabolomic measurements.
Accordingly, the functionality for the integrative analysis of multiple
data types could also be extended. Here, in particular, single-cell mul-
timodal omics data, where different data types are measured in the
same cells, seem to have a high potential to gain novel insights into
cell biology [527].
However, the rich functionality that can be applied in various applica-
tion scenarios already makes GeneTrail one of the most comprehen-
sive tool suites for the analysis of molecular high-throughput profiles
and set it apart from other approaches.

https://www.wikipathways.org/index.php/Pathway:WP619
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Author contributions

This chapter describes the miRNA and pathway dictionary miR-
PathDB and is based on the respective publications [31, 33, 529, 530].
The original dictionary of miRNAs and their putative target path-
ways was created by Christina Backes, Andreas Keller, and Hans-
Peter Lenhof in 2010 [31]. miRPathDB is an updated web-based ver-
sion of this database. It was mainly developed by Christina Backes,
Andreas Keller, Fabian Kern, Hans-Peter Lenhof and me. The data
processing was conducted by Christina Backes, Fabian Kern and me.
The web application was mainly implemented by me with further
contributions by Daniel Stöckel and Lara Schneider. The complete
list of contributors can be found in the author list of the respective
publications [31, 33, 529, 530].

The analysis of signaling pathways is a crucial task in biomedical re-
search that can help to advance our understanding of cellular mech-
anisms or even pathological processes. Key elements in the control
of many biological processes are small regulatory RNA molecules,
called miRNAs (cf. Section 2.1.4.3). These non-coding RNAs have
been shown to orchestrate many important cellular functions by in-
hibiting the expression of their target genes in many different organ-
isms [40, 246] (cf. Section 2.1.5.4). Due to their potential to control
nearly all biological processes they are intensively studied and the
total number of discovered miRNAs and available target genes is con-
stantly increasing [15, 253].
One crucial task in current miRNA research is the functional anal-
ysis of these regulators. In particular, two important questions are
often studied: (1) which set of miRNAs is involved in the regulation
of a particular biological process (pathway-centric view) or (2) which
biological processes are controlled by one specific miRNA (miRNA-
centric view) [530]. To answer both questions, a variety of tools and
databases have been proposed. Amongst the miRNA-centric resources
are the databases miRTar [222] and miRSystem [317] that link miR-
NAs to signaling pathways, the miRNet web service that provides a
network-based approach to study the function of miRNAs [143], and
miTALOS, a tool for tissue-specific regulation of biological pathways
[418].

137
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Amongst the primarily pathway-centric resources are enrichment-
based tools like the miRNApath R-package [96] and BUFET [600]
that use the target genes of a miRNA set to identify associated cellu-
lar processes, and PolymiRTS, which assigns SNPs in target genes to
associated pathways of disease phenotypes [57]. There are also sev-
eral resources that can be used to investigate both questions, like
miRNApath database [91], the CORNA R-package [588], and the
DIANA-miRPath web service [551].
In this chapter, we present miRPathDB [33, 529, 530] a web-based
dictionary on miRNAs, target genes, and target pathways for human
and mouse. In addition to experimentally validated miRNAs that are
supported by all tools described above, our database also contains
information about putative miRNA candidates from the miRCarta
database [28].miRPathDB not only compiles the data from a miRNA-
as well as pathway-centric view, but also provides several interactive
analysis tools that can be used to evaluate the database content in
a user-specific context. In the following sections, we describe the re-
sources and methodology used to createmiRPathDB (cf. Section 6.1),
the database content (cf. Section 6.2), and analysis tools (cf. Section
6.3).

6.1 materials and methods

miRPathDB depends on several third-party resources that were pro-
cessed to create our database. These resources and the different pro-
cessing steps are described in the following paragraphs.

6.1.1 miRNA and miRNA candidates

Our database uses genomic positions and sequence information in
form of primary transcripts, mature sequences, and seed sequences
for all human and mouse miRNAs from miRBase (V22) [281] and
all human miRNAs and putative miRNA candidates from miRCarta

[28] (V1.1). In the following, we use the term miRNA to refer to both
validated miRNAs and miRNA candidates.

6.1.2 Target genes and miRNA-target interactions (MTIs)

In order to obtain the target genes of each miRNA, we used both
experimentally validated target genes from miRTarBase [228] (Ver-
sion 7) and predicted target genes. For the former, we created two
target gene sets for each miRNA: (1) target genes with strong experi-
mental evidence and (2) target genes with any experimental evidence.
To predict the target genes for all miRNAs and miRNA candidates,
we used TargetScan (Version 7.1) [8] and MiRanda (Version 3.3a)
[138]. We applied both algorithms with default parameters to scan
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the 3 ′ untranslated regions (UTRs) of all target genes using the seed
sequences of all miRNAs. As UTRs, we use the curated annotations
from targetscan.org. We then combined the predictions of both algo-
rithms to create two consensus sets: (1) the intersection and (2) the
union of all predictions. This is a common strategy to balance sensi-
tivity and specificity of the predictions [56].
In the end, we obtained up to four target gene sets for each miRNA
that were further processed:

• Validated targets with strong experimental evidence

• Validated targets with any experimental evidence

• The intersection of all target predictions

• The union of all target predictions

6.1.3 Target pathways

The target gene sets for each miRNA were used to identify putative
target pathways. To this end, we employed the enrichment analysis
functionality of GeneTrail (cf. Section 5). For each biological cate-
gory from Gene Ontology [100], KEGG [394], Reactome [142], and
WikiPathways [256], we conducted an over-representation analysis to
check if there is a significant overlap with the target genes of a partic-
ular miRNA. As a reference set, we used all genes for which miRNA
target information was available. All resulting p-values were adjusted
using the method proposed by Benjamini and Hochberg [44] (cf. Sec-
tion 3.3.2). Finally, we assumed that a biological category is controlled
by a specific miRNA if the adjusted p-value of the corresponding
ORA is below 0.05.

6.1.4 Comparison between miRNAs

In general, the miRNA sequences are highly conserved [390], and
miRNAs derived from a common ancestor can even be grouped into
larger miRNA families that often have similar sequences and similar
molecular functions [616]. Accordingly, miRNA with similar (seed-)-
sequences often share similar target genes and target pathways [529].
Consequently, this information can also help to study putative func-
tions of miRNA candidates.
Hence, in addition to sequence, target gene, and target pathway in-
formation, miRPathDB also provides similarity information for all
miRNA pairs. To this end, we analyzed and compared the mature
sequence, seed sequence, target gene sets, target categories, and ge-
nomic positions of all miRNA pairs. In the following, we describe the
measures we used for this purpose.
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6.1.4.1 Sequence similarity

For both, seed and mature sequence of all miRNA pairs, we use a
similarity measure that is based on the hamming distance. Given the
alphabet Σ = {A,C,G, T } and two sequences s, t ∈ Σn, it can be calcu-
lated as the number of positions with different letters [200, 579].

DHamming(s, t) = |{i ∈ {1, ...,n}|si 6= ti}| (113)

Based on this distance, we then defined the following similarity:

Similarity(s, t) = 1− (
DHamming

n
) (114)

6.1.4.2 Similarity of target genes and target pathways

For the different sets of target genes and target pathways, we use the
Jaccard coefficient (JCC) [240]. For two sets X and Y, it can be defined
as:

JCC(X, Y) =
|X∩ Y|
|X∪ Y|

(115)

6.1.4.3 Genomic distance

For all miRNA pairs located on the same chromosome, we also cal-
culated the genomic distance as the number of bases between their
loci.
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6.2 database content

We designedmiRPathDB as a web resource for biomedical researchers
that are interested in links between miRNA, their target genes, and
target pathways. The data can be accessed in three different ways:
(1) by downloading raw or processed data in different text-based for-
mats, (2) by using our web-based API, or (3) by using our interactive
web interface. The latter compiles the provided information either
from a miRNA-centric or a pathway-centric point of view. Both view-
points are described in the following sections.

6.2.1 miRNA-centric view

The miRNA-centric view of our database provides different levels of
information for individual miRNAs. The page of a particular miRNA
can either be accessed via the overview page or queried in one of the
search bars. Most information is provided as responsive, searchable,
and interactive tables that can be downloaded in different formats
(Excel, PDF, CSV).

6.2.1.1 General information and links to external resources

On top of each page, general information about the miRNA is dis-
played. This includes information about the miRNA family, precur-
sor, and sequence information (cf. Figure 71). Additionally, links to
external resources are provided, such as miRBase [281], miRCarta
[28], the miRNA tissue atlas [318], and miRTargetLink [261].

Figure 71: Screenshot ofmiRPathDB: Information about stem-loop, mature,
and seed sequences of hsa-miR-29b-3p.
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6.2.1.2 Target gene sets

Below the general information, miRPathDB contains a table that lists
all target genes and the respective evidence, i.e., if the target was
experimentally validated or predicted (cf. Figure 72).

Figure 72: Screenshot of miRPathDB: Information about target genes of
hsa-miR-29b-3p.

6.2.1.3 Target pathways

The main focus of our database is to provide putative links between
miRNAs and associated biological processes or signaling pathways.
As shown in Figure 73, this information is provided as an interactive
table that provides custom filter procedures for each column. In the
text box below each column, users can type text or simple equations
to select subsets of the data or to search for specific target genes or
pathways.

Figure 73: Screenshot of miRPathDB: Information about target pathways
of hsa-miR-29b-3p. The results are filtered with respect to three
filter criteria: (1) experimental evidence, (2) more then 20 target
genes, and (3) a p-value smaller than 0.0001. On the miRPathDB
website, this table also depicts the target genes. Here, due to space
constraints, this columns was removed.
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6.2.1.4 Similarity to other miRNAs

At the bottom of each page, miRPathDB contains an additional table
that compares the miRNA to all other miRNAs and miRNA candi-
dates in our database. Each column contains the information about
a different comparison (cf. Figure 74). This can be used to study re-
lationships between miRNA pairs and the different types of informa-
tion, i.e., sequence similarity, genomic positions, similarities between
target gene sets, or target pathways (cf. Section 6.1).

Figure 74: Screenshot of miRPathDB: Similarities between hsa-miR-29b-3p
and all other miRNAs.

6.2.2 Pathway-centric view

The data contained in our database can also be accessed from a pathway-
centric point of view. Here, each biological category has its own web
page. These pages consist of a single table that contains all miRNAs
with a significant enrichment of the respective biological process or
signaling pathway (cf. Figure 75).

Figure 75: Screenshot of miRPathDB: Overview of all miRNAs that control
the “PI3K-Akt signaling pathway” from the KEGG database.
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6.3 analysis tools and example applications

Apart from the database content itself, we also created interactive
analysis tools that are described in the following paragraphs.

6.3.1 Custom pathway heatmaps

As shown in the previous section, miRPathDB provides links be-
tween individual miRNAs and putative target pathways. This is valu-
able information to study which molecular functions are controlled
by a particular miRNA or vice versa. Building on this, a logical next
step is to consider more than one miRNA and to assess if they might
be involved in common biological functions. For this purpose, we cre-
ated an interactive pathway heatmap visualization that can be used
to investigate this question.
The input for this tool is a set of user-defined miRNAs that should
be compared. miRPathDB then queries our database to find all bio-
logical categories that are significantly enriched for the target genes
of at least one of the input miRNAs. Next, the p-values of the respec-
tive categories are used to create a miRNA × category matrix, where
each entry represents the log10-transformed p-values. Our database
then conducts a hierarchical clustering with Ward’s method (cf. Sec-
tion B.1) and Euclidian distance (cf. Section 3.5) for both rows and
columns of the matrix to group similar miRNAs and pathways re-
spectively. The final matrix is then visualized in the browser as an
interactive heatmap plot (cf. Figure 76).
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Figure 76: Screenshot ofmiRPathDB: Pathway heatmap of hsa-miR-18b-5p,
hsa-miR-135a-5p, hsa-miR-200a-3p, and hsa-let-7a-3p and bio-
logical categories from KEGG with strong experimental evidence.
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6.3.2 Maximum targetome coverage analysis

A further interesting task in functional miRNA research is the identifi-
cation of a small number of miRNAs that are sufficient to completely
regulate a given biological process or signaling pathway. To study this
issue, we created a new tool that is based on the maximum coverage
problem. In the following, we first define the theoretical problem and
then discuss its application to miRNA-target interactions (MTIs).

6.3.2.1 Maximum coverage problem

Given a set of l miRNAs M = {m1, ...,ml} and n target genes G =

{g1, ...,gn} of which a subset Ti ⊆ G is regulated by a specific miRNA
mi ∈ M. Then the maximum coverage problem searches for a set of
k miRNAs that target the maximal number of genes in G. It can be
formulated as an integer linear problem (ILP). To this end, we first
define two binary variables xi and yj.

xi specifies for each miRNA if it is selected or not.

xi =

1 if miRNA mi is selected

0
(116)

yj indicates for any gene gj ∈ G if it is targeted by any of the k
selected miRNAs.

yj =

1 if gj is targeted

0
(117)

Based on these variables, we can define an objective function that
maximizes the number of selected genes.

max
∑
gj∈G

yj (118)

Apart from this, we also need two constraints, which ensure that a
valid solution is selected. The first constraint makes sure that only
solution with at most k miRNAs are selected.

n∑
i=1

xi 6 k (119)

The second constraint ensures that each gene gj ∈ G is only selected
(yj = 1) iff it is targeted by at least one miRNA.∑

∀mi∈M:gj∈Ti

xi > yj (120)

We implemented the ILP in C++ using the ILOG CPLEX Optimization
Studio [330] (cf. Chapter 4).
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6.3.2.2 Application to MTIs

Based on the optimization problem described above, we created a
small web application that for a user-defined gene set searches the
optimal miRNA set with a size in the range of {1, ...,k}. For each size
k ′ ∈ {1, ...,k}, we solve the implemented ILP to find the best miRNA
set of size k ′ whose combined targetome covers the maximal num-
ber of genes in the input. Finally, we list the resulting miRNA set
and the corresponding target genes. Additionally, for each analysis,
miRPathDB creates an interactive visualization that illustrates the
fraction of the input gene list that can be targeted by a particular
number of target genes (cf. Figure 77).

Figure 77: Screenshot ofmiRPathDB: Results of the maximum coverage ILP
for an example gene set.

6.4 discussion and conclusion

In this chapter, we presented miRPathDB an intuitive web-based
dictionary that provides easy access to information about miRNAs,
target genes, and target pathways. Compared to other resources (cf.
Figure 78), our database not only focuses on miRNAs from miRBase
[281], but also miRNAs and miRNA candidates from its sister project
miRCarta [28]. This increases the available data by a ten-fold. Addi-
tionally,miRPathDB also provides functionality to compare miRNAs
based on sequence, target genes, target pathways, and genomic loca-
tion. This makes is possible to study similarities and differences of
miRNA pairs and to assess associations between the different types of
information, e.g., position of the genome, sequence similarity, or over-
lap of target genes [529]. Although, the main focus of our database
is the web interface, the available information can also be accessed
via our API (cf. Chapter 4), or downloaded in different text-based
formats, such as the GMT format (cf. Section F.2.6). This makes it pos-
sible to directly integrate miRNA-pathway links into enrichment anal-
ysis tools like GeneTrail [177], GSEA-P [514], or miEAA [30]. Apart
from the corresponding data collection, our database also offers inter-
active analysis tools with which users can study associations between
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miRNAs and target pathways from a miRNA- and pathway-centric
point of view.
Although miRPathDB is already a valuable resource for the scien-
tific community, there are still some improvements that could be
made in future versions of the database. For example, further data
sources could be integrated to create biological categories for enrich-
ment analysis. In this context, interesting additions could be marker
genes for tissue types, cell types, or even disease phenotypes. Addi-
tionally, the support for further species would increase the visibility
of our database.
Nevertheless, miRPathDB currently is one of the most comprehen-
sive publicly available resources to study relationships between miR-
NAs, target genes, and target pathways.
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Figure 78: Comparison between miRPathDB and related tools and
databases.
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Author contributions

This chapter is based on our publication “REGGAE: a novel approach
for the identification of key transcriptional regulators” [531]. The
REGGAE algorithm was mainly developed by Hans-Peter Lenhof and
me. The different analyses for this manuscript and their evaluation
were conducted by Hans-Peter Lenhof, Lara Schneider, and me. The
complete list of contributors can be found in the author list of our
publication [531].

In previous chapters, we discussed different approaches for the anal-
ysis of deregulated biological processes based on molecular high-
throughput profiles. A logical next step is the search for factors that
might control or even cause the alterations in these processes. Crucial
elements in this context are transcriptional regulators, like transcrip-
tion factors, co-factors, and chromatin modifiers. These proteins not
only have essential functions in most cellular processes [546], but dis-
ruptions in their activities have also been observed in a plethora of
diseases [293], including heart disease [344, 404], neurodegenerative
disorders [381], or cancer [110, 380].
Hence, a crucial task is to assess and evaluate the effects of influential
transcriptional regulators in pathological processes. Consequently, a
variety of approaches have already been proposed for this purpose.
Many of these methods use experimentally validated regulator-target
interactions (RTIs), e.g., extracted from ChIP-Seq experiments, to find
key regulators. These include (1) ORA-based methods, e.g., TFactS
[141] and TED [593], (2) correlation-based methods, like RIF1, RIF2
[437], or CSA [225], and (3) network based methods, such as TFRank
[184]. A complete description of all mentioned methods can be found
in Section 3.8.1.
In this chapter, we introduce a novel algorithm for the detection
of influential transcriptional regulators, called REGGAE (REGulator-
Gene Association Enrichment). Our method integrates association
measures between regulators and their target genes with a non-para-
metric enrichment approach to rank key regulators. We demonstrate
the capabilities of REGGAE using two application scenarios. The cor-
responding results prove that our algorithm has a superior perfor-
mance compared to the approaches listed above and constitutes a
powerful tool for uncovering complex regulatory mechanisms.

149
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7.1 algorithm

We designed the REGGAE (REGulator-Gene Association Enrichment)
algorithm to identify and prioritize transcriptional regulators that
strongly influence the expression of a given gene list, i.e., the most
deregulated genes identified in a group comparison.
Our algorithm depends on two types of inputs. First, a matrix contain-
ing normalized gene expression measurements for n samples that are
assigned to different sample groups, such as disease and control. Ad-
ditionally, REGGAE requires a set of experimentally validated regula-
tor binding sites (i.e., RTIs, cf. Section 3.2.4.1). Based on these inputs,
the following processing steps are conducted to identify the most in-
fluential regulators.

7.1.1 Group comparison and feature selection

The first step of each REGGAE analysis is comparing gene expres-
sion values between the two given sample groups. For this step, any
statistical measure described in Section 3.4 can be used, e.g., log-fold-
changes.
We then select the most up- or down-regulated genes from the re-
sulting score list, i.e., the genes for which we want to identify the
most influential regulators. To this end, our framework offers differ-
ent strategies. Users can select (i) the number of genes that should be
used, (ii) all genes with scores above or below a certain threshold, or
(iii) genes that are contained within a specified quantile of the ranked
list, e.g., the upper 10% quantile. An overview of this step is depicted
in Figure 79.
While REGGAE can be applied to assess the impact of regulators for
both the most up- and downregulated genes, we restrict the descrip-
tion of the subsequent paragraphs to up-regulated ones. We denote
the respective gene set as D = {g1,g2, ...,gm}. Finally, we sort D with
respect to their gene score.

g1
g2
g3
g4
g5
g6
g7
g8
g9
g10

Group 1 Group 2

g3            3.1

g6 2.9

g8 2.7

g2 1.5

g7            0.8

g9 -0.1
g10 -1.1

g5 -2.5
g4 -3.1

g1 -3.2

g3 3.1
g6 2.9
g8           2.7
g2           1.5

𝑫 = {𝑔!, 𝑔", 𝑔#, 𝑔$}
(sorted)

g3            3.1
g6 2.9
g8 2.7
g2 1.5

g7            0.8
g9 -0.1
g10 -1.1
g5 -2.5
g4 -3.1
g1 -3.2

Figure 79: Overview of the group comparison and feature selection step
of the REGGAE algorithm. First, the expression differences be-
tween the two sample groups are calculated. Then, the most up-
regulated features are selected.
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7.1.2 Association analysis

For each gene gi ∈ D, the next step in our workflow is to evaluate
which regulators might have the biggest influence on gi. To this end,
we calculate an association score between gi and each regulator from
our RTI collection that targets gi. Subsequently, we sort the regulators
according to their (absolute) association with gi. We denote the result-
ing list Rgi = {ri1, ri2, ...}. An overview of this procedure is shown in
Figure 80.
Our framework offers different statistical measures to calculate the
association between genes and regulators. These include Pearson’s
correlation coefficient [408], Spearman’s rank correlation coefficient
[504], and distance correlation [279] (cf. Section 3.5).

gi

Group 1 Group 2

Gene

Regulator

RegA
RegB

RegC

RegB 0.83
RegA 0.79
RegC 0.76

…gi

+RegA

RegB

RegC

(A)

(B)
(C) (D)

𝑅!! = 𝑅𝑒𝑔", 𝑅𝑒𝑔#, 𝑅𝑒𝑔$

= {𝑟%&, 𝑟%', 𝑟%(}

(sorted)

Group 1 Group 2

Figure 80: Overview of the association analysis step of the REGGAE al-
gorithm. (A) Given expression values for gene gi and (B) cor-
responding expression values for all regulators from our RTI
database that target gi: RegA,RegB, and RegC. (C) We can then
calculate an association measure to assess the strength of their
relationship. (D) We denote the resulting (sorted) list Rgi =

{ri1, ri2, ri3}.

7.1.3 Data integration

Our final goal is to assess the total impact of each regulator. For this
purpose, we have to combine the list of deregulated genes D with
the results of the association analysis, while retaining the order in the
gene and regulator lists. To this end, we use a non-parametric encod-
ing that creates a new ordered list of regulators, where each regulator
is contained up to m times depending on the number of target genes
in D. This list can then be used in an enrichment analysis to assess
the overall impact of each regulator (cf. Section 7.1.4).
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Given the sorted gene list D = {g1, ...,gm} and for each gene gi the
corresponding regulators Rgi = {ri1, ri2, ...}, sorted according to their
association score, we can now define a new List L = {r11, r21, ..., rm1,
r12, r22, ...} that contains all rij ordered in a column-wise fashion. For
each gene in D, we first add the regulators with the highest associa-
tion, then the ones with the next highest association and so on. An
overview of this approach is shown in Figure 81.
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Figure 81: Data integration step of the REGGAE algorithm. (A) Given the
gene list D = {g1, ...,g6}, which is sorted with respect to the de-
gree of deregulation of each gene, and for each gi a regulator list
that is sorted according to their influence on gi. The blue circles
represent one specific regulator with five target genes in D. (B)
The new list L is created by sorting the regulators in a column-
wise fashion. This figure was adapted from [531].

7.1.4 Enrichment analysis

After the data integration step, we obtain an ordered list L of regula-
tors. In this list, each regulator with m target genes is contained up
to m times in the list of deregulated genes (D), for example, the blue
regulator in Figure 81B has five targets.
We assume that regulators with a strong influence on their respective
target genes in D are enriched at the beginning of L, i.e., that for each
target gi ∈ D it was one of the regulators with the highest association
score in the respective regulator list Rgi .
In order to test this hypothesis, we conduct a non-parametric en-
richment analysis for each regulator. To this end, our framework of-
fers two methods: (i) the Kolmogorov-Smirnov (KS) test and (ii) the
Wilcoxon rank-sum (WRS) test (cf. Section 3.4 + 3.6). This is depicted
in Figure 82.
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Finally, the p-values for all regulators are adjusted to account for the
multiple testing problem. This can be done by any of the methods
described in Section 3.3.2.

ESReg(   )

r31 r61 r12 r22 r42 r52 r63 r13 r23 r33 r63 r14r11 r21 r41 r51 r32

r31 r61 r12 r22 r42 r52 r63 r13 r23 r33 r63 r14

r11 r21 r41 r51 r32

(A)

Kolmogorov-Smirnov test

Wilcoxon rank-sum test

(B)

Figure 82: Enrichment analysis step of the REGGAE algorithm. Illustra-
tion of the two available enrichment analysis procedures (A)
Kolmogorov-Smirnov test and (B) Wilcoxon rank-sum test. The
blue circles represent one specific regulator with five target genes.
This figure was adapted from [531].

7.1.5 Bootstrapping

High-throughput measurements can contain technical noise that might
affect the different processing steps of REGGAE and, consequently,
impede the final regulator ranking. In order to account for potential
biases in our results and to increase the general robustness of our
method, we have developed a bootstrapping [135] approach that can
optionally be applied.
This resampling procedure includes all processing steps described in
the previous sections except group comparison and feature selection,
i.e., the list of deregulated genes D remains constant.
All remaining processing steps are repeated B ∈ [1, 000, 10, 000] times
using the following bootstrapping strategy [531]:

1. Create a resampled matrix E by selecting n random samples
with replacements from the original gene expression matrix.
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2. Repeat the association analysis, data integration, and enrich-
ment analyses steps using E as input.

In the end, we obtain one result list for each of the B bootstrapping
runs. These lists are then combined to a final result. To this end, we
assign the median unadjusted p-value of all B replicated results to
each regulator. The final p-values for all regulators are then adjusted
as described above. Additionally, we can use the different replications
to calculate standard deviations and confidence intervals [134] that
can help to evaluate the significance and robustness of the results.

g1
g2
g3
g4
g5

…

Reg28 2.31×10!"#
Reg2  1.09×10!$%
Reg48 7.25×10!%
Reg12 5.27×10!&
Reg4  6.13×10!'

D

Group comparison

(A) (B)

(C)g1
g2
g3
g4
g5 …

(D)

(E)

(F)

Confidence intervalRandomly select 𝒏 columns
(with replacements) Association analysis

(C)

Figure 83: Bootstrapping replication step of the REGGAE algorithm. (A) The
original gene expression matrix is used to calculate (B) the most
deregulated genes. This list remains unchanged. (C) For the re-
maining steps, we use bootstrapping to create B ∈ [1, 000, 10, 000]
resampled gene expression matrices. (D+E) Each of these matri-
ces is then used to conduct all remaining processing steps of the
REGGAE algorithm. (F) The replicated results can then be used to
obtain more stable p-values, standard deviations, and confidence
intervals.

7.1.6 Aggregating REGGAE results

In addition to the bootstrapping strategy described in the last para-
graph, we also offer the possibility to combine the results of several
REGGAE analyses, e.g., for a different number of deregulated genes.
This can also help to improve the final regulator ranking. The differ-
ent results can either be aggregated via their rank or via their p-value.
For ranks, we use the sum of all ranks, and for p-values we either use
the maximum or the second-order statistic [123].
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7.2 results

In the following sections, we present and compare the results of REG-
GAE and the alternative approaches described in Section 3.8. To this
end, we applied all methods in two distinct application scenarios.
First, we analyzed breast cancer cell lines to identify transcription
factors and chromatin modifying proteins that could be responsible
for expression changes between two clinically relevant subtypes, i.e.,
tumor cells that express the estrogen receptor on their surface (ER-
positive) and tumor cells that do not express them (ER-negative).
In the second scenario, we applied all methods to expression profiles
in which the activity of one specific transcription factor is perturbed,
i.e., artificially induced or repressed. We then evaluated which ap-
proaches are able to successfully detect the influence of the disrupted
transcription factors.

7.2.1 Comparison of ER-positive and ER-negative breast cancer cells

Breast cancer is, with around 30% of all diagnosed cancer cases, the
most abundant cancer type among women [489]. One of the most im-
portant clinical marker for breast cancer is the availability of hormone
receptors on the surface of cells, especially the estrogen receptor (ER).
ER-positive (ER+) tumors make up around 70% of all cases [151] and
seem to have a better prognosis than ER-negative (ER-) tumors [34].
In the following, we analyzed a data set of 37 breast cancer cell lines
[385] to identify transcriptional regulators that may cause expression
differences between ER+ and ER- tumors.

7.2.1.1 Data set and processing steps

The data set by Neve et al. contains gene expression profiles of 16 ER+
and 21 ER- breast cancer cell lines. To calculate expression differences
between the two classes, we applied the Shrinkage t-test (cf. Section
3.4.3.2). From the sorted result list, we created five different test sets.
First, we selected the 250, 500, 750, and 1000 genes with the highest t-
score. Additionally, we created a gene list with the most significantly
up-regulated genes (P < 0.01) in the ER+ group, i.e., 1719 genes. We
then applied REGGAE and the competing methods to all five test sets.
Finally, we aggregated the five result lists for each method. For the
for methods that calculate p-values, i.e., CSA, REGGAE, TED, and
TFactS, we used the largest of the five p-values for each regulator.
For the remaining methods, i.e., RIF1, RIF2, TDD, and TFRank, we ap-
plied rank aggregation. In order to compare the final result lists, we
use all significant results for all approaches that calculate p-values
and the 200 most highly ranked regulators for the remaining ones.
The complete set of parameters for all methods can be found in Ap-
pendix E.2.
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7.2.1.2 Robustness of REGGAE

First, we analyzed the robustness of REGGAE with respect to the
number of bootstrap replications and test set size. In order to find the
number of bootstrap replications needed to obtain stable results, we
applied our method to each of the five test sets and saved the results
after each iteration of the bootstrapping approach. In order to assess
the robustness, we calculated the sum of regulator pairs that swap
positions after each iteration. Given two regulators a and b and their
ranks in the sorted result list after iteration i: ri(a) and ri(b). We say
a and b change their order iff ri−1(a) < ri−1(b) and ri(a) > ri(b) or
vice versa.
The results for the test set with 1, 000 genes are depicted in Figure
84A. As illustrated, the number of fluctuating regulator pairs rapidly
decreases with increasing number of iterations and converges after
approximately 1, 000.
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Figure 84: Robustness of the REGGAE algorithm. (A) Scatterplot depicting
the dependency between the number of bootstrap replications
and the position changes in the REGGAE result list for the boot-
strapped input matrix and the test set of length 1000. (B) Overlap
of the REGGAE results for the test sets of different lengths. This
figure was adapted from [531].

We also tested how the length of the input list affects the REGGAE re-
sults. For this purpose, we analyzed the overlap of significant regula-
tors for all five gene lists. The corresponding Venn diagram is shown
in Figure 84B. As depicted in this plot, the resulting set of regulators
remains highly stable, although the number of significant regulators
increases with larger test set sizes. We observe the largest increase (42
new regulators) when 500 genes are considered instead of 250. The
analysis of even longer lists only identified a few additional signifi-
cant regulators.
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7.2.1.3 General comparison of REGGAE and alternative approaches

We also used the breast cancer data set by Neve et al. to evaluate the
performance of REGGAE in comparison to the approaches discussed
in Section 3.8.
Since many of the used approaches employ statistical tests that in part
have very distinct null hypotheses, the results of all analyses need to
be interpreted with utmost caution.
Nevertheless, the following analyses assess if the different approaches
can detect relevant regulators that might contribute to expression dif-
ferences between ER+ and ER- cancer cells. First, we analyzed if the
different approaches produce similar results, i.e., if the identified reg-
ulators have a significant overlap. To this end, we compare the aggre-
gated result lists using the hypergeometric test (cf. Section 3.6.2). The
corresponding Venn diagrams are depicted in Figure 85.
Five of the seven tested algorithms (CSA, RIF1, RIF2, TFactS, and
TFRank) have a highly significant overlap with the REGGAE result
list. The remaining methods (TED and TDD) have minimal overlap.
REGGAE and TED even have no joint results in this analysis.

REGGAE TED

40291

1173

p-value = 0.58

REGGAE CSA REGGAE TFactS

231133158

946

p-value < 2.2 x 10-308

REGGAE RIF1

12674217

1051

p-value = 2.27 x 10-10

REGGAE RIF2

11981210

1058

REGGAE TFRank

11387204

1064

p-value < 2.2 x 10-308

REGGAE TDD

18812279

989

p-value = 0.99

p-value < 2.2 x 10-308

41028011

767

p-value = 5.97 x 10-14

Figure 85: Overlap between the aggregated result lists of REGGAE and all
other methods. P-values were calculated using the hypergeomet-
ric distribution. This figure was adapted from [531].
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Although the results of most methods have a significant overlap with
REGGAE, the actual rankings of the regulators in the result lists are
different. The five most significant regulators identified by REGGAE
are depicted in the first column of Table 4. The remaining columns of
Table 4 and 5 show if other algorithms have also detected the regula-
tors and at which position in the ranked list. In general, we observe
that CSA and TFRank also detect all five regulators. TFRank even
identifies all five amongst the most important ones, which is not the
case for the other methods. RIF1 and RIF2 only identified four of the
five genes among its top 200 results, TFactS only two, and TDD and
TED none.

Regulator REGGAE CSA TED TFactS

FOXA1 6.34× 10−141(1) 9.76× 10−6(359) 1.0(843) 1.0(953)

GATA3 3.23× 10−137(2) 9.76× 10−6(421) 1.0(681) 0.05(369)

ESR1 6.52× 10−129(3) 9.76× 10−6(509) 1.0(440) 1.0(790)

MYB 6.34× 10−125(4) 9.76× 10−6(262) 1.0(6) 0.31(519)

SPDEF 2.60× 10−118(5) 9.76× 10−6(40) 1.0(892) 3.6× 10−19(32)

Table 4: Comparison of the top 5 candidates in the REGGAE result list and
alternative approaches (Part 1): CSA, TED, and TFactS. For all meth-
ods, FDR-adjusted p-values are shown. Additionally, the rank of
each regulator in the sorted result list of each method is depicted in
parentheses. This figure was adapted from [531].

Regulator RIF1 RIF2 TDD TFRank

FOXA1 −2.87(116) 8.34(18) 8.4× 10−6(956) 6.92(2)

GATA3 −2.73(113) 5.16(62) 8.7× 10−6(747) 6.56(3)

ESR1 −1.93(229) −0.10(915) 8.4× 10−6(949) 10.28(1)

MYB −2.07(130) 4.14(75) 8.4× 10−6(878) 5.45(6)

SPDEF −3.05(32) 8.54(15) 1.4× 10−5(434) 6.44(4)

Table 5: Comparison of the top 5 candidates in the REGGAE result list and
alternative approaches (Part 2): RIF1, RIF2, TDD, and TFRank. For
all methods, the test statistics are shown. Additionally, The rank of
each regulator in the sorted result list of each method is depicted in
parentheses. This figure was adapted from [531].
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7.2.1.4 REGGAE identified key regulators of estrogen signaling

Next, we investigated if the five most significant regulators in the
aggregated REGGAE result list (ESR1, FOXA1, GATA3, MYB, and
SPDEF) can help to explain the gene expression differences between
ER+ and ER- breast cancer cells and might even be involved in the
increased malignancy of the ER- group.
Most notably, we observe that one of the two human estrogen recep-
tors ESR1, was identified as one of the most important factors in our
analysis. Since the availability of ESR1 on the surface of the tumor
cells is amongst the key distinguishing features of the two analyzed
groups, this is a strong indicator that REGGAE produces biologically
relevant results.
Furthermore, a close inspection of each candidate revealed that all
of the five regulators are well-known prognostic markers of breast
cancer and that their expression is directly associated with a more
favorable outcome of the disease [351, 352, 545, 574]. ESR1, FOXA1,
GATA3, and MYB are also regularly mutated in breast cancer [273].
Moreover, we found that the different regulators are involved in sev-
eral relevant biological processes in breast cancer and often work to-
gether. For example, FOXA1, ESR1, and GATA3 have been described
to be co-expressed [457] and co-localized [275] in breast cancer cells.
This indicates that these proteins could interact or might even be-
long to the same regulator complex. Indeed, Kong et al. present evi-
dence that they are part of an enhanceosome that directly controls the
estrogen receptor signaling cascade [275]. Moreover, ESR1, FOXA1,
GATA3, and SPDEF have been discussed as master regulators in the
fibroblast growth factor receptor 2 (FGFR2) signaling pathway, which
is strongly related to breast cancer risk [156].

7.2.2 Perturbation signatures

One interesting way to study the effects of a transcriptional regula-
tor is to analyze gene expression profiles in which the activity of a
certain regulator is artificially perturbed. Different kinds of perturba-
tions can be used to simulate specific genetic or molecular events, e.g.,
a regulator’s knock-out can mimic loss-of-function mutations, while
induced over-expression of a regulator can simulate activating modi-
fications.
In this section, we present results based on four gene expression data
sets that contain perturbed samples and corresponding unaffected
controls. In the first data set the expression of the transcription fac-
tor MYC is artificially overexpressed and in the remaining three data
sets one particular regulator is knocked out, i.e., NANOG, POU5F1,
and SOX2. In the following, we applied REGGAE and the competing
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approaches to each of the four data sets in order to evaluated if the
different methods were able to detect the perturbed regulator.

7.2.2.1 Overexpression of MYC in mouse lymphoma cells

First, we analyzed a mouse lymphoma data set with artificially in-
duced overexpression of the MYC proto-oncogene. MYC is an im-
portant regulator of cell growth, proliferation, and pluripotency [109].
The overexpression of MYC is often associated with the malignancy
of the disease. In particular, B cell lymphomas are characterized by
high levels ofMYC [490]. Eµ−Myc transgenic mice contain a genetic
alteration that resembles MYC activation in B cells [70, 205]. Hence,
it is often used to study MYC-controlled lymphoma development.
Here, we compared gene expression profiles of 50 B cell lymphoma
samples from Eµ−Myc transgenic mice and ten samples of lymph
nodes from healthy wild-type mice [369]. As in the first application
scenario, we used the Shrinkage t-test to compare the expression be-
tween the two sample groups (cf. Section 3.4.3.2). From the resulting
list, we then created two different test sets: the 250 most up-regulated
and the 250 most down-regulated genes. Finally, we applied the dif-
ferent approaches to find the most influential regulators for both lists.
All processing steps and parameters are described in Section E.5.
The results of all algorithms are shown in column (A) of Table 6.
As depicted, CSA, REGGAE, RIF1, and TFRank successfully identi-
fied MYC as important regulators for both up- and down-regulated
genes. RIF2 and TFactS detected the proto-oncogene only for the test
set with up-regulated genes. TDD and TED could not retrace the ef-
fect of MYC. While most methods, were able to detect MYC, only
REGGAE and TFRank could successfully rank the gene amongst the
top candidates in both lists.

Additional regulators identified by REGGAE

Apart from the proto-oncogene itself, REGGAE was able to detect
many regulators directly controlled by MYC (cf. Supplementary Ta-
ble 38). In particular, REGGAE identified many chromatin modifiers,
for example KAT2A, SMC3, SUZ12, RCOR, SMC1A, SCMARCA4,
SCMARCA5. This emphasizes the well-established role of MYC in
chromatin remodeling in general [272] and especially in B cells [266].
Additionally, the list also contains several genes directly involved in
MYC signaling, such as E2F1 and E2F4 [295, 434], and also MYC hall-
mark genes, like RAD23B and TRIM28.
In summary, the above results further emphasize the ability of our
algorithm not only to detect important regulators directly but also
downstream effects.
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7.2.2.2 Knock-outs of NANOG, POU5F1, and SOX2

Pluripotency factors, such asNANOG, POU5F1 (OCT4), or SOX2, are
essential transcription factors in human embryonic development. As
the name suggests, these elements control mechanisms that maintain
pluripotency in human embryonic stem cells (ESCs), but are also in-
volved in cell fate determination or self-renewal of these cells [313].
In this section, we analyzed a data set from Wang et al. [561] that
contains gene expression profiles of normal ESCs and samples with
knock-outs of NANOG, POU5F1, or SOX2. For each pluripotency fac-
tor, we compared knock-out and control samples to evaluate if all
approaches can retrace the effects of the respective regulator.

(A) (B)

Method MYC NANOG POU5F1 SOX2

CSA 281|126 574|571 510|273 510|259

REGGAE 1|1 1|91 1|1 6|4

RIF1 126|186 791|148 795|171 285|555

RIF2 8|251 114|193 762|190 332|34

TDD 466|492 815|771 822|800 467|523

TED 208|225 567|501 683|588 682|682

TFactS 404|528 318|308 531|319 170|99

TFRank 1|3 113|2 200|1 499|1

Table 6: Comparison of REGGAE and the alternative methods based on dif-
ferent perturbation signatures: (A) Over-expression of MYC, and
(B) knock-outs of NANOG, POU5F1, and SOX2. The numbers de-
pict the rank of the analyzed regulator in the respective result list.
Blue numbers indicate if the corresponding result is considered sig-
nificant. This figure was adapted from [531].

In order to calculate gene expression differences between knock-out
experiments and controls, we use the Shrinkage t-test (cf. Section
3.4.3.2). From the resulting lists, we picked both the 250 genes with
the highest and lowest scores. We then applied all algorithms to both
test sets to find the most relevant regulators. All processing steps and
parameters are described in Section E.6. A summary of the results is
shown in Table 6B.

As depicted, REGGAE and TFactS are the only methods that could
identify the perturbed transcription factor in all six cases. Of the re-
maining methods, TFRank detected five correctly, RIF1 four, CSA
three, and RIF2 two. As in our MYC perturbation example, REGGAE
and TFRank are by far the best methods in terms of ranking.
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REGGAE found the perturbed transcription factor in five out of six
cases amongst the top ranked results and TFRank in three.

7.3 discussion and conclusion

In this chapter, we presented REGGAE, a novel method for the identi-
fication of influential regulators that may be involved in deregulated
processes. Our algorithm incorporates association scores between reg-
ulators and corresponding targets into an enrichment-based scoring
scheme that is used to rank regulators. The combination of the two
approaches significantly improves the prioritization of the regulators
and set REGGAE apart from competing algorithms.
Although REGGAE was able to outperform alternative methods in
the described application scenarios, there are still some extensions or
modifications of the approach that could potentially further improve
the results.
One of these extension is the utilization of additional association mea-
sures. Currently, we mainly use Pearson’s and Spearman’s correlation
coefficients (cf. Section 3.5), as both measure the relationship between
regulators and target genes as well as the direction of the relationship.
Additionally, we also implemented the distance correlation that can
be applied to study arbitrary relationships, but has no information
about the association direction. Apart from these methods, alterna-
tive measures could potentially be applied, such as entropy based
methods like mutual information, maximum information coefficient
(MIC) [223], or the universal dependency score (UDS) [389].
Moreover, all approaches discussed in this chapter rely on experi-
mentally validated RTIs. Most RTIs are defined by ChIP-Seq peaks of
a specific regulator in a predefined window around the TSS. While
this covers the promoter region and depending on the window size
proximal enhancers, information about distal regulatory elements is
currently missing. Although it has been shown that enhancers often
have the strongest effect on the nearest genes [139], the inclusion of
additional distal regulatory regions, e.g., enhancer regions from Gene-
Hancer [154] might further improve the results. While the biggest ad-
vantage of using RTIs is that these are supported by experimental
evidence, there are also some disadvantages. In particular, that ex-
perimental binding information is often only available for certain cell
types. Hence, in the best case the respective interactions should only
be used to analyze data sets with the same cell type. However, cur-
rently there are not enough data sets available to create such cell type
specific analyses. To overcome this problem, we had to combine the
information for different cell types to create our RTI collection. Con-
sequently, this can lead to false positive or false negative interactions.
However, we assume that a small number of false RTIs only has mod-
erate influence on the REGGAE results.
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Alternatively, it might also be possible to use predicted binding sites
instead of experimentally validated ones, e.g., produces by FIMO

[190]. This approach seems to deliver relative accurate results if bind-
ing site predictions are combined with epigenetic signals, like open-
chromatin regions [412, 472]. However, in this case further experimen-
tal data sets would be required.
Moreover, all methods discussed in this thesis currently analyze the
effect of regulators individually. However, regulators are often part
of protein families with similar function or form large complexes
that have a joint influence on the expression of specific target genes.
Hence, it might also be beneficial to incorporate information about
protein families or complexes into future analyses.
Nevertheless, the analyses conducted in this chapter show that
REGGAE is already well equipped for the analysis of influential regu-
lators and outperforms most of the competing methods. While most
approaches detect overlapping feature sets, REGGAE and TFRank

produce by far the best rankings. Furthermore, REGGAE stands out
by providing confidence measures, like confidence intervals and p-
values, that help to evaluate the robustness and significance of the
results. On top of this, the utilized association measure can be used
to estimate if a specific regulator has an activating or repressing effect.
In summary, our results demonstrate that REGGAE is a powerful tool
for the elucidation of deregulated regulatory mechanisms.
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Author contributions

This chapter is based on our publication “RegulatorTrail: a web ser-
vice for the identification of key transcriptional regulators” [533].
The RTI-based workflows described in this chapter were designed
by Hans-Peter Lenhof and me. The Motif-based workflows were de-
signed by Florian Schmidt and Marcel Schulz. The web service was
mainly implemented by me with further contributions by Lara Schnei-
der and Florian Schmidt. The complete list of contributors can be
found in the author list of the manuscript [533].

Due to the inherit importance of transcription factors and chromatin
modifying proteins in the control of nearly all biological processes,
many approaches have been developed to study their effects based
on molecular high-throughput profiles.
One essential class of approaches are the RTI-based methods dis-
cussed in the last chapter (cf. Chapter 7). These use experimentally
validated binding sites of regulators to assess their influence on a
given set of target genes. In general, RTI-based methods can be di-
vided into different categories that require different input types and
that employ different analysis strategies.
The first category are ORA-based approaches, like TED [593] and
TFactS [141]. The input for these methods is an unordered set of
input genes that is used study significant overlaps with regulator tar-
gets. The next category are network-based approach, such as TFRank
[184], that interpret the RTIs as a directed graph, where nodes con-
stitute regulators and target genes, and each edge a specific RTI. In
addition to this graph, TFRank requires importance scores for each
analyzed target gene that are used as vertex weights in the graph.
These weights are then propagated through the network to find the
most important regulators (cf. Section 3.8.1.4). The last category are
correlation-based approaches, like CSA [225], REGGAE [531], RIF1,
and RIF2 [437]. The input for these methods is a expression matrices
with multiple samples that belong to two groups, e.g., disease vs. con-
trol. The expression measurements are then employed to assess the
relationship between regulators and target genes.
Another class of methods predicts the binding patterns of transcrip-
tion factors based on the DNA sequence and epigenetic modification
patterns [197, 412], e.g., BinDNase [249], CENTIPEDE [412], HINT -
BC [196], MILLIPEDE [321], PIQ [485], or TEPIC [472]. The input
for these methods are DNA binding motifs and epigenetic measure-
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ments, such as open-chromatin regions. First, these measurements are
used to identify genomic regions that are accessible to DNA binding
proteins. The obtained regions are then scanned using the DNA bind-
ing motifs to identify potential regulator binding sites. The resulting
predictions are then often used in downstream applications. For ex-
ample, the PASTAA web service conducts enrichment analyses for
the targets of each regulator to identify potentially affected biolog-
ical categories [448]. Many authors also used the regulator binding
predictions as features in machine learning applications, such as pre-
dictive models of gene expression [80, 103, 347, 377, 472].
Most of the methods described above are available as stand-alone
applications that need to be installed or even R-packages that re-
quire programming experience. Additionally, some approaches are
also available as web services, e.g., Enrichr [284], PASTAA [448],
Regulatory Snapshots [183], or TFactS [141]. While these web ser-
vices are more accessible to non-expert users, they are often restricted
to one application scenario. Hence, a user friendly solution is re-
quired that allows both expert and non-expert users to conduct pow-
erful analyses of influential regulators in different application scenar-
ios.
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Figure 86: General overview of RegulatorTrail. (A) Our web service offers
both motif-based and RTI-based approaches for the identification
of key regulators. (B) The result list of all workflows can be used
in a downstream enrichment or network analysis. This figure has
been adapted from [533]
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8.1 the RegulatorT rail web service

Here, we present the RegulatorTrail web service, a comprehensive
toolbox for the analysis of transcription factors, co-factors, and chro-
matin modifiers. Our web service offers various methods for the iden-
tification and prioritization of influential regulators that combine bind-
ing information of regulators with transcriptomic, proteomic, or epige-
nomic data sets. In contrast to other approaches that focus on one
specific task, we designed RegulatorTrail as a general framework for
the analysis of influential regulators in a broad range of application
scenarios and a diverse set of input types. In particular, we ensured
that the provided methods cover at least one approach from each of
the categories mentioned above.
In total, our web service offers seven RTI-based approaches and two
motif-based methods that can be applied to analyze data sets for five
different organisms: Caenorhabditis elegans, Drosophila melanogaster,
Homo sapiens, Mus musculus, and Rattus norvegicus. The result of all
analyses is a sorted list of transcriptional regulators. These lists can
either be downloaded by the user, visualized and inspected in the
browser, or even directly be used in a downstream enrichment or net-
work analysis (cf. Figure 86B). In the following sections, we describe
the different workflows of our web service in more detail.

Identifier list

Matrix

Group 
comparison

Score 
transformation Filtering

Over-
representation 
analysis (ORA)

Score list

REGGAE,
RIF1, or RIF2

Association 
analysis

TFRank

Figure 87: Overview of the RTI-based RegulatorTrail workflows.



168 the regulatortrail web service

8.1.1 RTI-based workflows

RegulatorTrail offers seven methods for the analysis of influential
regulators based on our large collection of experimentally validated
RTIs (cf. Section 3.2.4.1). These can be applied in three distinct ap-
plication scenarios that require different input types to identify key
regulators. An overview of all RTI-based workflows of our framework
is depicted in Figure 87.

8.1.1.1 Scenario 1: Regulator target over-representation analysis (ORA)

The first class of approaches are ORA-based methods that analyze for
all regulators in the considered RTI collection if their respective target
genes have a significant overlap with a given test set. Consequently,
the input of this scenario is a set of gene or protein identifiers and
a corresponding reference set, e.g., all protein coding genes. For the
ORA-based identification of the most relevant transcriptional regula-
tors, our framework offers three statistical tests: the binomial test as
proposed by Yang et al. [593], the hypergeometric test as presented
by Essaghir et al. [141], and Fisher’s exact test (cf. Section 3.8.1.3).
Since one statistical test is applied for each regulator, we run into
the multiple-testing problem and all resulting p-values need to be
adjusted. To this end, any method described in Section 3.3.2 can be
applied. An overview of the described approach is depicted in Figure
88A.

8.1.1.2 Scenario 2: Network-based analysis

The input for the second scenario is a gene list with associated scores,
e.g., the most deregulated genes in a group comparison. In contrast to
Scenario 1, where the input is an unordered score list, here, each score
indicates the importance of a gene, e.g., the degree of deregulation.
In addition to ORA-based methods that can also be applied,
RegulatorTrail also offers a network-based heat diffusion approach
that is based on TFRank (cf. Section 3.8.1.4, [184]). For this purpose,
the RTIs are interpreted as a directed graph, where vertices repre-
sent regulators and target genes and edges interactions between them.
The scores from the uploaded test set are then used as initial vertex
weights. To find the most influential regulators, the heat diffusion al-
gorithm described in Section 3.8.1.4 is applied to propagate the initial
weights through the inverted network, i.e., from target genes to the
associated regulators. Finally, all regulators are sorted based on the
assigned scores. This approach is illustrated in Figure 88B.
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Figure 88: RTI-based application scenarios: (A) ORA-based analysis for
gene sets, (B) Network-based analysis for score lists, and (C)
Association-based analysis for expression matrices.

8.1.1.3 Scenario 3: Association-based analysis

The input for the third application scenario is a matrix with gene ex-
pression measurements from two groups of samples, e.g., disease vs.
control. The availability of multiple data points per gene makes it pos-
sible to estimate the association between regulators and their target
genes.
Hence, in addition to the methods described in Scenario 1 and 2,
RegulatorTrail provides further approaches that can be applied if
gene expression matrices are uploaded by a user: REGGAE (cf. Chap-
ter 7, [531]), and the regulatory impact factors RIF1 and RIF2 (cf. Sec-
tion 3.8.1.2, [437]). All three methods combine both gene expression
differences between the two groups (cf. Section 3.4) and association
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measures, e.g., correlation coefficients, to prioritize all regulators.
An overview of this scenario is depicted in Figure 88C.

8.1.2 Example applications of RTI-based workflows

Applications of RTI-based methods have already been discussed as
part of the REGGAE chapter of this thesis (cf. Chapter 7). Apart from
these analyses, we also used REGGAE to conduct a comprehensive
analysis of a Wilms’ tumor (WT) data set that revealed several regula-
tory mechanisms, which may contribute to the elevated malignancy
of a particular WT subtype. The results of this study are presented in
Chapter 9.

8.1.3 Motif-based workflows

RegulatorTrail also offers two workflows for the analysis of tran-
scriptional regulators based on our collection of DNA binding motifs
(cf. Section 3.2.4.2). For this purpose, we utilized the TEPIC frame-
work developed by Schmidt et al. that provides implementations for
the functions described in the following paragraphs [472, 473].

8.1.3.1 Scenario 4: Estimating transcription factor binding affinities using
TEPIC

The inputs for the fourth scenario are open-chromatin regions in stan-
dard BED format (cf. Section F.2.1), i.e., genomic regions that are
accessible to DNA binding proteins. These can, for example, be ob-
tained from DNase-seq (cf. Section 3.1.1.2) or histone ChIP-seq (cf.
Section 3.1.1.2) experiments.
The uploaded regions are then used to calculate binding affinity scores
for each gene and all considered motifs (cf. Figure 89). To this end, our
web service applies the following method for each gene individually.
First, we select all open-chromatin regions that overlap with a user-
defined window around the transcription start site of the considered
gene. In the next step, the DNA sequence of the resulting genomic
regions are scanned using DNA binding motifs to find potential reg-
ulator binding sites. To this end, our framework applies TEPIC’s bio-
physical model with exponential decay function to estimate binding
affinity scores of each regulator in our collection (cf. Section 3.8.2.2).
The resulting affinity scores can then be downloaded by the user or
processed in two different ways. On the one hand, the affinity scores
of one particular regulator and corresponding target genes can be
used in an enrichment analysis to detect biological processes that
might be affected by this regulator. On the other hand, the affinity
scores can be combined with gene expression data to find the regula-
tors that might explain these expression values (cf. Section 8.1.3.2).
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Figure 89: Overview of the TEPIC workflow.

8.1.3.2 Scenario 5: Predicting gene expression values using INVOKE

The inputs for Scenario 5 are paired open-chromatin regions and gene
expression values. These can then be used to conduct the INVOKE
(identification of key regulators) analysis of the TEPIC framework.
This analysis consists of two steps. First, TEPIC is applied to the
open-chromatin regions to calculate binding affinity scores for each
regulator and target gene, as described in Section 8.1.3.1.
The resulting affinity scores are then used as features in a linear
model with elastic net regularization to predict the provided gene
expression values (cf. Section 3.8.2.2). To train the model, we first
conduct a nested cross-validation procedure that evaluates the pre-
dictive performance. Here, the inner cross-validation is used to find
the best the ratio between ridge and lasso penalty (cf. Section 3.8.2.2).
The outer cross-validation is used to evaluate the performance of the
model. For this purpose, we report three performance measures that
are averaged across the folds of the outer cross-validation, i.e., Pear-
son’s correlation coefficient [408], Spearman’s rank correlation coef-
ficient [504], and the mean squared error (MSE). All three measures
can be used assess the validity of the results.
Additionally, our web service trains a new model on the entire data
set, which is then used to produce the final results. Here, we consider
all regulators with regression coefficient unequal to zero as influential
regulators.
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Figure 90: Overview of the INVOKE workflow.
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8.1.4 Analyzing key regulators in macrophages

In this section, we evaluate the motif-based functionality of
RegulatorTrail by analyzing a data set with paired chromatin ac-
cessibility (DNAse-seq) and gene expression (RNA-seq) profiles of
macrophages from venous blood. The data set was obtained from the
BLUEPRINT project [334] (Accession: S001S7).
Macrophages are phagocytes with many important roles in both the
innate and adaptive immune system (cf. Section 2.2). In addition to
their phagocytic activity, they are key players in antigen presentation
[541] and even produce many essential cytokines [22, 86]. Due to their
involvement in crucial immune processes, it is important to study reg-
ulatory mechanisms in these leukocytes.
In order to detect key regulators in the investigated macrophage sam-
ple, we uploaded both open chromatin regions and gene expression
data to our web service and then conducted the following processing
steps (Scenario 5). First, we used TEPIC to calculate affinity scores for
each gene and all regulators based on the chromatin accessibility data
and our complete set of transcription factor motifs (cf. Section 3.2.4.2).
For the predicted affinity scores, we then trained a linear model with
elastic net penalty to predict the provided gene expression values and
to find the most influential regulators.
All parameters of the analysis are described in Section E.7. By com-
paring predicted and measured expression values, the best model in
the outer cross-validation achieved a mean-squared error (MSE) of
0.623, a Pearson correlation of 0.616, and a Spearman correlation of
0.666.
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Figure 91: Barplot illustrating the INVOKE results for the analyzed
macrophage sample. Each bar represents the regression coeffi-
cient for the respective regulator in the elastic net model. This
Figure was adapted from [533].

The INVOKE analysis resulted in 13 transcription factors with a re-
gression coefficient of at least 0.025 (cf. Figure 91). All 13 have already
been discussed in the context of macrophages. Links to the respective
publications are shown in Supplementary Table 48. In the following,
we briefly discuss some of the key results.
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The regulator with the highest score in our analysis is HOXA3. This
transcription factor is known to promote maturation of macrophages
[13]. Additionally, it has been shown that deregulated development in
human macrophages of diabetic patients can be repaired by transduc-
tion of HOXA3 [17]. A further important transcription factor is ETS2,
which is known to suppress inflammatory cytokines [323] and has
been shown to promote metastasis in tumor-associated macrophages
[599]. Another key regulator is the zinc finger protein KLF4, which
seems to have essential functions in differentiation [480] and polar-
ization [304] of macrophages.

8.2 discussion and conclusion

In this chapter, we presented the RegulatorTrail web service, a com-
prehensive tool suite for the evaluation and assessment of transcrip-
tion factors, co-factors, and chromatin modifying proteins. In contrast
to other tools, which are often created for one specific task, we de-
signed our web service as a modular framework with various meth-
ods that can be applied to a broad range of application scenarios and
input data types. A comparison of RegulatorTrail and other related
web services is shown in Figure 92. As depicted, our web service pro-
vides not only more functionality, but also supports more databases
and organisms than any of the other web services.
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The modularity of our framework allows us to easily extend the
web service with additional methods and new features, such as the
network-based approach (Scenario 3) that was not part of the origi-
nal web service. Furthermore, we developed RegulatorTrail as part
of the Graviton framework (cf. Chapter 4), which allows for a seam-
less integration with its sister projects GeneTrail and NetworkTrail
that can directly be used in downstream analyses.
While RegulatorTrail already is one of the most powerful tools for
the analysis of transcriptional regulators, there are still elements that
can be improved or extended. In particular, our framework currently
does not cover the full spectrum of possible application scenarios,
like the analysis of genetic variations that effect binding patterns of
transcription factors [388, 535, 612]. Additionally, neither RTI-based
nor motif-based methods currently support information from distal
enhancer regions. Instead regulators are assigned to a target gene if
it has a binding site in a window around the TSS, which includes the
promoter and proximal enhancers. While regulatory elements often
strongly affect the nearest gene [139], it is still a simplified approach
that could potentially be improved, e.g., by incorporating additional
databases, like GeneHancer [154], or by using further data sources,
such as Hi-C [543].
Nevertheless, the rich functionality of our framework combined with
the flexibility and user-friendly web interface make RegulatorTrail
one of the most comprehensive tools for the detection of influential
transcription factors, chromatin modifying proteins, and associated
biological mechanisms and set it apart from other approaches.
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Author contributions

This chapter is based on our publication “The role of TCF3 as po-
tential master regulator in blastemal Wilms tumors” [532]. The wet
lab experiments were conducted by Kathrin Katter, Nicole Ludwig,
and Jenny Wegert. The computational analysis described in this chap-
ter and the interpretation of the corresponding results has mainly
been conducted by Hans-Peter Lenhof and me with additional con-
tributions by Norbert Graph and Eckart Meese. The complete list of
contributors can be found in the author list of the manuscript [532].

Wilms’ tumors (WTs) are the most abundant type of kidney tumors in
children [111]. While they generally have a good prognosis, around
13% of affected patients show a relapse within two years [166].
Over the years, two distinct treatment schemes have been devel-
oped [124]. The Children’s Oncology Group (COG) prefers a nephrec-
tomy followed by potential chemotherapy. In contrast, the Interna-
tional Society of Pediatric Oncology (SIOP) advocates for neoadjuvant
chemotherapy before the actual surgery to reduce the tumor size. This
facilitates the surgical removal of the tumor and also reduces the risk
of tumor spillage during the procedure [124, 188].

After the nephrectomy, both SIOP and COG assess a variety prog-
nostic markers to stratify patients concerning their risk of relapse [90].
The patients then receive a therapy that is adapted according to this
risk assessment. This is a crucial step, because it has been shown
that an intensive treatment regimen after surgery can have severe late
effects [90]. In this context, it has been observed that an reduction
of therapy for most patient subgroups can lead to more and health-
ier survivors [90]. Consequently, both protocols include clinical and
molecular markers into risk assessment after surgery, which allows
for a “risk-directed therapy” [124]. An overview of the different prog-
nostic markers is shown in Figure 93.
In the following, we focus on prognostic markers that are relevant for
cancers that are treated according to the SIOP protocol. Here, the pre-
operative chemotherapy is known to impact the histology patterns of
Wilms’ tumors, which generally consists of blastemal, epithelial, and
stromal cells [570]. The composition of residual cells after neoadju-
vant chemotherapy seems to be associated with the malignancy of the
disease [570]. In this context, especially tumors that mainly persist of
blastemal cells after chemotherapy seem to have a more adverse prog-
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nosis. Consequently, the absolute volume of residual blastemal cells
is discussed as a putative prognostic marker in future risk stratifica-
tion schemes [124]. In order to further our understanding of blastema
as a putative prognostic marker, it is crucial to study cellular pro-
cesses that differentiate blastemal from non-blastemal components of
tumors after the preoperative chemotherapy. For simplicity reasons,
we hereafter refer to these tumors as either blastemal WTs or the
blastemal subtype.

SIOP

• tumor stage 
• histology 
• age of the patient 
• weight of the tumor
• completeness of lung nodule 

response 
• loss of heterozygosity at 

chromosome 1p and 16q

• tumor stage
• histology
• tumor volume
• responsiveness to therapy

COG

Prognostic markers

Nephrectomy

Wilms’ tumor

Figure 93: Overview of prognostic markers used for risk stratification of
Wilms’ tumors. The prognostic markers were obtained from [124]
and the figure was created using BioRender.com.

In this context, several studies investigated molecular factors that con-
tribute to the elevated malignancy of WTs with blastemal subtype.
For example, although WTs rarely exhibit genetic alterations, Wegert
et al. identified several mutations that occurred in around 18% of
profiled blastemal WTs. Among them are mutations in transcription
factors involved in developmental processes SIX1, SIX2, and MYCN,
as well as miRNA-processing genes DGCR8 and DROSHA [568]. Ad-
ditionally, it has been shown that the expression patterns of various
miRNAs are altered in blastemal WTs compared to normal tissue
[319].
Moreover, Wilms’ tumors have also been used to study differences
between tumor cells and healthy cells in the fetal kidney developmen-
tal process [296]. The corresponding results show that the blastemal
component of WTs has expression patterns similar to cells in an early
stage of metanephric kidney development, which suggests that the
differentiation process in the corresponding cells might be impeded
[296]. This observation is further supported by studies that analyzed
WTs to investigate the roles of different stem cell factors during kid-
ney development [114, 356]. Furthermore, using human xenografts of
WTs, a subpopulation of blastemal cells has been observed that ex-
hibit stem cell properties [414, 486].
The results of the previously described studies already indicate that

https://app.biorender.com
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several (epi)genetic regulators and different stem cell factors might
contribute to the elevated malignancy of blastemal subtype WTs. How-
ever, a systematic evaluation of transcriptional regulators that might
drive the pathogenesis of the respective WT subtype had not yet been
conducted. For this purpose, we analyzed gene expression profiles of
33WT biopsies (17 blastemal and 16 non-blastemal) after neoadjuvant
chemotherapy to study regulatory mechanisms that are characteristic
for the blastemal subtype and that might be involved in the aggres-
siveness and resistance to chemotherapy of these tumors (cf. Section
9.1). Additionally, since many of our results indicate an essential role
of transcriptional regulators involved in chromatin signaling, we also
compared histone modification patterns of two cell cultures, one orig-
inating from blastemal and one from stromal subtype WTs, to study
differences in their chromatin structure (cf. Section 9.2).

9.1 analysis of gene expression profiles

For the gene expression analysis, we collected 33 Wilms tumor biop-
sies from patients that underwent neoadjuvant chemotherapy (SIOP
treatment regimen). In total, the data set contains microarray pro-
files of 17 blastemal and 16 non-blastemal tumors. Both groups are
matched in age (57 vs. 61.4 months) and gender (70% vs. 69% fe-
males). All processing steps, parameters, clinical details of patients,
and ethics statements can be found in Appendix E.8.

9.1.1 Influential regulators in blastemal Wilms’ tumors

First, we analyzed transcriptional regulators that might contribute
to the increased malignancy of Wilms’ tumors with predominantly
blastemal subtype. To this end, we first used the Shrinkage t-test (cf.
Section 3.4.3.2) to calculate expression differences between the two
groups. We then created ten test sets from the resulting score list, i.e.,
all significantly up- and downregulated genes (P < 0.01), and the 250,
500, 750, and 1, 000 genes with highest and lowest t-scores, respec-
tively. For all gene lists, we then carried out a REGGAE analysis (cf.
Chapter 7) to identify the most influential transcriptional regulators.
We aggregated the result lists of the five upregulated and the five
downregulated gene lists using the second-order statistic [123]. The
aggregated p-values were then FDR-adjusted using the method pro-
posed by Benjamini and Yekutieli (cf. Section 3.3.2).
In total, we analyzed 1, 076, transcriptional regulators. Of these, 138
regulators seem to have a significant influence on upregulated genes
and 112 on downregulated genes. The top 50 candidates of both anal-
yses are shown in Table 7 and 8.
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(A) (B)

Regulator P-value Regulator P-value

RUNX1 (-) 1.22× 10−180 NR2F2 (-) 7.83× 10−116

TCF3 (+) 5.96× 10−163 MAX (+) 3.27× 10−105

NR2F2 (+) 6.19× 10−163 TCF3 (-) 3.12× 10−95

MAX (-) 3.54× 10−157 RUNX1 (+) 1.78× 10−94

SFPQ (+) 1.06× 10−136 CREBBP (-) 8.51× 10−78

ELF1 (-) 4.60× 10−134 ELF1 (+) 1.09× 10−76

KDM5B (+) 1.68× 10−131 SUMO2 (-) 4.03× 10−74

HDAC1 (+) 9.85 ×10−125 CREB1 (-) 4.42 ×10−70

SIN3A (+) 2.90 ×10−123 SMC3 (-) 8.33 ×10−70

CREB1 (+) 5.84 ×10−123 UBTF (-) 9.24 ×10−61

SMC3 (+) 9.37 ×10−120 RAD21 (-) 4.72 ×10−65

CREBBP (+) 7.36 ×10−119 HDAC1 (-) 1.03 ×10−61

SUMO2 (+) 5.37 ×10−115 SMARCC2 (-) 3.84 ×10−61

RAD21 (+) 7.93 ×10−113 SFPQ (-) 5.60 ×10−60

FOXP1 (-) 3.66 ×10−104 FOXP1 (+) 8.87 ×10−59

STAT1 (-) 8.03 ×10−104 KDM5B (-) 5.10 ×10−56

UBTF (+) 5.37 ×10−102 STAT1 (+) 2.86 ×10−55

ZNF384 (+) 2.97 ×10−101 SMAD3 (-) 1.13 ×10−50

SMARCC2 (+) 1.08 ×10−94 SIN3A (-) 1.99 ×10−50

ERG (-) 2.55 ×10−90 TAF7 (-) 1.78 ×10−49

TAF7 (+) 6.93 ×10−90 ZNF384 (-) 2.22 ×10−49

SPI1 (-) 4.17 ×10−84 SPI1 (+) 6.10 ×10−47

HDAC2 (+) 4.41 ×10−82 CEBPB (+) 1.22 ×10−46

SMAD3 (+) 1.26 ×10−79 ERG (+) 2.65 ×10−38

HOXA4 (+) 2.65 ×10−75 RUNX3 (+) 9.67 ×10−37

SIX5 (+) 3.44 ×10−75 CTCF (-) 3.51 ×10−35

CEBPB (-) 2.90 ×10−70 SIX5 (-) 2.60 ×10−33

WDR5 (+) 3.43 ×10−66 HOXA4 (+) 5.38 ×10−33

KDM4A (+) 1.07 ×10−64 FOSL1 (+) 9.67 ×10−37

BMI1 (+) 1.94 ×10−64 STAT5A (+) 3.04 ×10−31

SP4 (+) 2.06 ×10−60 GABPA (-) 4.81 ×10−31

YY1 (+) 3.37 ×10−60 BATF (+) 8.99 ×10−31

BATF (-) 1.39 ×10−54 HDAC2 (-) 2.48 ×10−30

CTCF (+) 2.68 ×10−53 YY1 (-) 5.81 ×10−30

RUNX3 (-) 3.57 ×10−51 VDR (+) 1.56 ×10−29

STAT5A (-) 7.98 ×10−51 NR2F1 (-) 2.12 ×10−29

HOXA6 (+) 1.82 ×10−50 NFATC1 (+) 1.25 ×10−28

MTA3 (+) 8.70 ×10−49 IKZF1 (+) 7.73 ×10−28

GABPA (+) 4.30 ×10−46 FOSL2 (+) 5.29 ×10−26

CTBP2 (+) 8.20 ×10−46 CTBP2 (-) 1.48 ×10−24

SMARCC1 (+) 3.08 ×10−45 PPARD (+) 3.03 ×10−24

FOSL2 (-) 2.21 ×10−44 KDM4A (-) 4.07 ×10−24

KLF1 (-) 6.81 ×10−44 MTA3 (-) 9.88 ×10−24

NFATC1 (-) 8.68 ×10−44 EP300 (-) 1.23 ×10−23

MAFK (-) 2.56 ×10−43 HOXA6 (-) 2.32 ×10−23

Table 7: The top 50 transcriptional regulators obtained by REGGAE (Rank 1 to 45) for (A)
the most upregulated and (B) the most downregulated genes (blastemal vs. non-
blastemal WTs). Both colors of regulators and the sign in parentheses indicate if the
regulator has a positive or negative correlation with its target genes. This table was
adapted from [532].
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9.1.1.1 The top regulators

Amongst the top four regulators in both analyses, we identifiedNR2F2,
TCF3, RUNX1, and MAX. NR2F2 and TCF3 have a positive correla-
tion with upregulated genes in blastemal WTs and RUNX1 and MAX
a negative one. In the following paragraphs, we briefly describe their
general function and, in particular, if they have already been dis-
cussed in the context of stem cell development, cancer initiation, or
cancer progression.

NR2F2 (or COUP− TF2) is a family member of the “steroid thyroid
hormone superfamily of nuclear receptors” [379]. Amongst others,
this transcription factor is known to be involved in the regulation of
embryonic stem cell (ESC) differentiation [449]. Furthermore, it has
been shown that this nuclear receptor can directly promote cancer
hallmarks, such as angiogenesis (cf. Section 2.3.1.1) or metastasis (cf.
Section 2.3.1.1) [424].

TCF3 is part of the TCF/LEF family of transcription factors. These
regulators are involved in the Wnt signaling pathway, which plays
important roles in embryogenesis [19] and cancer development [605].
Moreover, the activation of this pathway is regularly observed in
Wilms’ tumors [102] and, in particular, in the blastemal subtype [510].
Additionally, TCF3 has been discussed as one of the central regulators
in embryonic stem cells [97]. Besides TCF3 itself, our results list also
contains CREBBP and EP300, which are known coactivators of TCF3
[82].

RUNX1 (or AML1) is a transcription factor that controls the devel-
opment and maintenance of blood cells [232] as well as their differen-
tiation into myeloid or lymphoid cells. [391]. Mutations of this regu-
lator are associated with the aggressiveness of multiple cancer types
[353, 429]. Moreover, RUNX1 has been described as tumor suppressor
gene in acute lymphoblastic leukemia [115] and breast cancer [559].

MAX is a member of the “basic helix-loop-helix leucine zipper
(bHLHZ) family of transcription factors” [378]. Generally, it forms ho-
modimers or heterodimers with other members of the bHLHZ family,
e.g., MYC, MXI, and MNT , which can associate with both coacti-
vator and corepressor complexes to control a diverse set of cellular
functions, including cell proliferation, differentiation, and apoptosis
[189]. MAX itself has been discussed as a tumor suppressor gene in
different cancer types [277, 328].
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(A) (B)

Regulator P-value Regulator P-value

VDR (-) 6.54 ×10−43 KLF1 (+) 3.00 ×10−23

EP300 (+) 7.79 ×10−43 SP4 (-) 6.82 ×10−23

ZBTB33 (+) 2.59 ×10−39 MAFK (+) 1.17 ×10−22

NR2F1 (+) 5.83 ×10−39 WDR5 (-) 1.80 ×10−22

DUX4 (-) 4.33 ×10−37 IRF4 (+) 1.38 ×10−21

Table 8: The top 50 transcriptional regulators obtained by REGGAE (Rank 46 to 50) for (A)
the most upregulated and (B) the most downregulated genes (blastemal vs. non-
blastemal WTs). Both colors of regulators and the sign in parenthesees indicate if the
regulator has a positive or negative correlation with its target genes. This table was
adapted from [532].

9.1.1.2 Regulators involved in cancer development and progression

Amongst the top candidates in our REGGAE results, we also iden-
tified several other transcriptional regulators that are directly asso-
ciated with oncogenesis in different cancer types and, hence, might
help to explain the elevated malignancy of blastemal WTs. These in-
clude regulators with known roles in tumor initiation (e.g., ERG5
[113] and FOXP1 [199]), transcription factors associated with tumor
progression (e.g., ELF1 [565] and STAT1 [263]), proteins that may
contribute to the development of metastases (e.g., CREB1 [560] and
KDM5B [521]), or the resistance to chemotherapy (e.g., SFPQ [406]
and BMI1 [488]).

Furthermore, we identified several regulators that promote epithelial-
to-mesenchymal transition (EMT) in different cancer types, such as
KDM5B [521], or SMAD3 [590]. EMT is a process during normal
embryogenesis that is essential for tissue development [250, 445]. It
allows epithelial cells to transform into a mesenchymal phenotype
[250]. Mesenchymal cells are multipotent cells that can differentiate
into various cell types [250]. Hence, respective cells exhibit an in-
creased resistance to apoptosis, reduced cell adhesion, and gain the
ability to migrate [250, 445]. Accordingly, this process is also regularly
be found to be active in cancer cells [250, 445].

Moreover, we also find many transcriptional regulators that are in-
volved in chromatin signaling or remodeling, such as SIN3A [193],
HDAC1, and HDAC2 [455]. Chromatin remodeling complexes are es-
sential regulatory components in embryonic stem cells that mediate
between differentiation and pluripotency [255]. Disruptions in chro-
matin signaling are regularly linked to oncogenesis [557, 558].
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9.1.2 Influential regulator complexes

Generally, transcriptional regulators do not work alone. Instead, they
cooperate with other regulators or cofactors to form larger protein
complexes to control the expression of their target genes. In order
to incorporate complex information in our analysis, we examined if
regulators that belong to certain protein complexes are significantly
enriched in the sorted REGGAE result lists. To this end, we applied
gene set enrichment analyses for biological categories extracted from
protein complex databases (i.e., CORUM [454] and EpiFactors [350])
as well as custom gene sets derived from literature.
Since many of the identified regulators in our REGGAE analysis are
involved in chromatin signaling, developmental processes, the regu-
lation of stem cells, or stem cell properties in cancer cells, we focused
on gene sets that represent regulatory functions in ESCs, i.e., chro-
matin signaling [248], pluripotency states [526], and the occupation
of known super-enhancers [212]. All processing steps and the com-
plete set of parameters can be found in Appendix E.8.5.

9.1.2.1 Regulator complexes involved in chromatin signaling

Indeed, the GSEA results confirm our observations that chromatin-
modifying proteins could play an important role in blastemal sub-
type WT. We identified several enriched categories associated with
chromatin remodeling complexes. Amongst others, these include the
ATP-dependent chromatin remodeling complexes, such members of
the SWI/SNF family or the NuRD complex. SWI/SNF (switch/su-
crose non-fermentable) complexes are involved in the repositioning,
ejecting, and incorporation of nucleosomes [94]. The NuRD (nucle-
osome remodeling and deacetylation complex) complex couples the
nucleosome remodelling activity of the SWI/SNF proteins CHD3 and
CHD4 with the histone deacetylases HDAC1 and HDAC2 [119].
Our observations are further supported by our analysis of the chro-
matin signaling network discussed by Juan et al. [248]. This network
contains regulators that control essential functions in the develop-
ment and maintenance of ESC, such as chromatin remodeling, dif-
ferentiation, pluripotency, or stemness [248]. The corresponding gene
set is highly enriched in both REGGAE results lists with a p-value
of 7.34× 10−4 for down-regulated genes and 8.49× 10−5 for upregu-
lated ones. Accordingly, it contains many top candidates of our anal-
ysis, in particular, TCF3 seems to be one of the central regulators in
this context.

In order to further elucidate the impact of TCF3 in this communica-
tion network, we collected binding sites of this regulator from our
RTI database and Chip-seq experiments in mouse ESCs [97, 333].
These were then used to study putative regulatory interactions be-
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tween TCF3 and other genes in this network presented by Juan et
al [248]. Interestingly, of the 49 genes, all seem to have respective
binding sites, and 35 additionally have a high correlation with the ex-
pression of TCF3 in our microarray profiles (|ρ| > 0.5). The respective
genes are depicted in Figure 94. In summary, these results provide
further evidence that chromatin signaling plays an important role in
blastemal WTs and that TCF3 might be one of the key regulators in
this context.
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Figure 94: Putative TCF3 target genes in the chromatin signaling network of
ESCs [248]. Each vertex represents putative TCF3 targets in this
network, and edges indicate if these genes have TCF3 binding
sites and a strong absolute correlation (|ρ| > 0.5) with the regu-
lator. The color of each gene represents its assignment to certain
protein complex, and the color of its border indicates the cor-
responding t-score (blastemal vs. non-blastemal WT). The edge
color depicts the source of respective binding site. This figure
was adapted from [532]

9.1.2.2 Further relevant regulator complexes

Besides the many regulators involved in chromatin signaling, our
results also feature additional significantly enriched functional cat-
egories. This includes complexes that are involved in the regulation
of developmental processes in ESCs, such as SIN3 [193] and SMAD
[325]. Additionally, we analyzed proteins that mediate pluripotency
states in ESCs. This analysis revealed that regulators that promote a
poised state of developmental genes are significantly enriched. Fur-
thermore, our results also highlight that many of the top-ranked
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regulators are known to occupy super-enhancers in embryonic stem
cells, like EP300, CREBBP, CTCF, HDAC1, HDAC2, RAD21, SMC3,
SMAD3, STAT3, and TCF3.

9.1.3 Analysis of kidney developmental genes

The results of previous studies show that the triphasic histology pat-
terns of Wilms’ tumors is shared by different cells in early stages of
kidney development [442]. Since our analysis of the most influential
regulators also highlighted the role of different components associ-
ated with the control of developmental processes, we conducted fur-
ther experiments in this direction.
For this purpose, we analyzed if biological categories directly in-
volved in kidney development or associated biological processes are
significantly enriched amongst the 100 top-ranked regulators in our
REGGAE analysis and the 1, 000most upregulated genes in blastemal
WTs. To this end, we conducted over-representation analysis for cus-
tom gene sets extracted from literature [78, 512], and categories from
the GeneTrail collection, i.e., GO [100], KEGG [394], and WikiPath-
ways [256]. All processing steps and the complete set of parameters
can be found in Appendix E.8.5.
Our enrichment analysis for the most upregulated genes in blastemal
WTs identified a significant enrichment of genes involved in the de-
velopment, differentiation, and morphogenesis of kidney cells. In this
context, we especially found an enrichment of genes that are active in
specific components of embryonic kidneys, i.e., the cap mesenchyme
or the metanephric mesenchyme [78]. Accordingly, we identified var-
ious enriched biological categories that are associated with different
stages of kidney development and morphogenesis. These observa-
tions confirm results obtained by Li et al., suggesting that retained
blastemal cells after neoadjuvant chemotherapy could potentially
resemble cells in an early stage of the metanephric mesenchymal-
epithelial transition [296]. Additionally, we also detected an enrich-
ment of the non-canonical Wnt pathway, which is an important sig-
naling pathway in blastemal WTs and WTs in general [165, 510].
In our analysis of the most influential regulators, we identified a
significant enrichment of the TGF-beta receptor signaling pathway,
which inter alia is involved in cell growth and differentiation. In ac-
cordance with the results for the most upregulated genes, we also
identified an enrichment of the Wnt signaling pathway and especially
sub-components that control pluripotency and self-renewal in ESCs.
In summary, both analyses support previous observations suggest-
ing that cells of the blastemal subtype seem to resemble cells during
early kidney developmental stages and could potentially have stem
cell properties.
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9.2 analysis of histone marks

Many of our results indicate an important role of chromatin remod-
eling complexes and stem cell factors in blastemal cells that survive
the chemotherapy. This is in line with previous studies that observed
subpopulations of cells in blastemal WTs that might have cancer stem
cell characteristics [414, 486]. These results suggest that the chromatin
structure in the blastemal subtype could be altered compared to other
subtypes. In order to further elucidate this assumption, we measured
histone modification patterns, i.e., H3K4me3 and H3K27ac marks, in
two cell cultures that were created from primary WT cells. One cell
culture exhibited mesenchymal characteristics and was derived from
a tumor with predominantly stromal histology (ws568li) [567], and
the second cell culture has blastemal characteristics and was derived
from a mouse xenograft of a WT with triphasic histology pattern
(ws998M18). The processing steps for the respective ChIP-seq exper-
iments and all parameters can be found in Appendix E.9. For com-
parison, we also use ChIP-seq experiments of human ESCs from the
Roadmap Epigenomics Mapping Consortium (Epigenome E015) [52].

9.2.1 Comparison of histone marks in human ESCs and WT cells

In order to compare the histone modification patterns across the three
cell types, we analyzed if the promoter regions of genes that carry the
respective epigenetic marks, i.e., H3K4me3 and H3K27ac. To this end,
we define promoter regions as a window around the transcription
start site (TSS) of a gene (TSS +/- 5kb). For each promoter region, we
checked if it overlaps with both analyzed histone marks. All process-
ing steps and parameters of this analysis are described in Appendix
E.9. An overview of the results is depicted in Figure 95.
First, we analyzed theH3K4 trimethylation patterns across all protein-
coding genes in our data set. Here, we detected 19, 532 genes that
carried this histone mark in all three cell lines (cf. Figure 95A). Of
these, 11, 886 also contain H3K27 acetylations in all samples, while
3, 845 are only available in ESCs and blastemal cells (cf. Figure 95B).
For the latter group, we conducted an over-representation analysis to
identify significantly enriched biological processes. The respective re-
sults show that the genes seem to be associated with proliferation
or important signaling pathways, most notably the Wnt-signaling
pathway. Additionally, we observe an enrichment of categories with
marker genes of specific cancer types, e.g., gastric cancer, glioblas-
toma, retinoblastoma.
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Figure 95: Comparison of histone marks in the promoter regions of (1) hu-
man embryonic stem cells (ESC), (2) blastemal WT cells, and (3)
mesenchymal WT cells. (A) Heatmap depicting H3K4me3 pat-
terns across known promoter regions of all genes annotated in
the GENCODE database [207]. (B) Heatmap illustrating H3K27ac
patterns in the promoter region of genes with H3K4me3 marks
across all samples. (C) Heatmap with combined H3K4me3 and
H3K27ac marks in ESCs and blastemal WTs that are not present
in mesenchymal cells. This figure was adapted from [532].

Additionally, we identified 4, 643 genes that carry H3K4me3 modifi-
cations in ESCs and blastemal cells, but not in mesenchymal cells. As
shown in Figure 95C most of these regions do not contain a H3K27ac
mark, which indicates that these promoter regions could be in a pu-
tative poised chromatin state. An over-representation analysis of af-
fected genes showed an enrichment of cell fate, cell specification, de-
velopment, and differentiation processes.
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Figure 96: Venn diagrams depicting the overlaps between (1) TCF3 binding
sites, (2) genes with active chromatin state, and (3) the most up-
regulated genes in blastemal WTs. This figure was adapted from
[532]

9.2.2 Integrative analysis of epigenomic and transcriptomic data

Many of the results presented in the previous sections indicate that
WTs with blastemal subtype could have retained stem cell proper-
ties. We even identified TCF3 as one of the key regulatory elements
in this context. In order to further support these assumptions, we
analyzed if there are significant overlaps between (1) the most upreg-
ulated genes in blastemal WTs (top 10%), (2) genes with an active
chromatin state, and (3) genes with TCF3 binding sites. For this pur-
pose, we conducted ChIP-seq experiments for TCF3 in our cell line
with blastemal characteristics.
Although we repeated this experiment with different antibodies, the
respective results were extremely noisy and could unfortunately not
be utilized to examine TCF3 binding sites. Instead, we decided that
the best alternatives are TCF3 ChIP-seq experiments in mouse ESCs
[97, 333], which we then mapped to human orthologs.
To study the overlaps between the three gene sets, we applied a hy-
pergeometric test. For this purpose, we used all genes measured in
our gene expression analysis as reference. As depicted in Figure 96,
all pairwise comparisons, as well as the intersection of all three data,
types provided highly significant overlaps.
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9.3 discussion and conclusion

While the majority of children diagnosed with nephroblastoma have
a good prognosis, approximately 13% exhibit a relapse within two
years. One important risk factor that indicates an unfavorable prog-
nosis are blastemal cells that resist the preoperative chemotherapy.
For this reason, it is crucial to understand the role of these cells and,
in particular, to identify potential biomarkers that could improve di-
agnosis, risk assessment, and therapy of Wilms’ tumors.

In this chapter, we described a study in which we compared blastemal
tumors and other subtypes to identify influential regulators and as-
sociated mechanisms that might control the increased aggressiveness
and resistance to chemotherapy of blastemal WTs [532].

In our analyses, we identified many influential regulators involved in
processes like chromatin remodeling, embryonic development, and
the orchestration of pluripotency. Here, especially, regulators that are
contained in the chromatin signaling network of ESCs described by
Juan et al. [248] seem to play an important role. In particular, our anal-
yses provide strong evidence that the transcription factor TCF3 is one
of the central regulators in this context. TCF3 is also a key regulator
of the Wnt signaling pathway, which has been identified as a crucial
process in blastemal WTs [165, 338, 510]. Here, it interacts with cen-
tral pluripotency factors POU5F1, NANOG, and SOX2 to control cell
growth and self-renewal [493]. This is also confirmed by our ORA re-
sults that highlight significantly enriched categories associated with
the Wnt pathway and pluripotency.

Additionally, our results confirm observations of previous studies
indicating that blastemal WTs resemble cells in early stages of the
kidney development [114, 296, 356] or might even exhibit stem cell
properties [414, 486]. Although previous results already highlighted
that blastemal WTs exhibit stem cell-like properties when compared
to normal kidney cells [11], we compared histone modification pat-
terns of two cell lines derived from primary tumors and embryonic
stem cells to reinforce these observations. These analyses revealed
that blastemal cells indeed share characteristics of stem cells that are
not present in other subtypes, which could potentially contribute to
their elevated malignancy. A comparison of genes with activating his-
tone marks in their promoter regions, the most upregulated genes in
blastemal WT, and target genes of TCF3 further confirmed the role of
TCF3 as a crucial regulator in these cells.



188 tcf3 as master regulator in blastemal wilms tumors

In conclusion, our study confirms and reinforces previous observa-
tions about blastemal cells that survive neoadjuvant chemotherapy.
The presented results clearly emphasize that developmental processes
in blastemal WTs seem to be impeded and that respective cells exhibit
essential stem cell characteristics that are not present in other WT sub-
types. We also identified a circuitry of regulatory mechanisms that
seem to control these properties and that could even be involved in
the elevated malignancy and resistance to chemotherapy of blastemal
WTs. As a central component in this context, we identified and dis-
cussed the crucial role of TCF3. Besides TCF3, our analysis revealed
other putative marker genes of WTs with blastemal subtype. In the
future, our insights could potentially lead to an improved risk assess-
ment and therapy stratification for Wilms’ tumors patients.
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S U M M A RY, D I S C U S S I O N , A N D C O N C L U S I O N

In the last three decades, high-throughput techniques, such as next-
generation sequencing, microarrays, or mass spectrometry, have revo-
lutionized biomedical research by generating detailed molecular pro-
files of biological samples. Furthermore, they have become essential
tools in non-research settings, such as forensics [77] or clinical appli-
cations [308].
The data sets created by the different high-throughput platforms are
typically high-dimensional and noisy, making manual inspections im-
possible. Hence, powerful computational methods are required to an-
alyze these complex data sets.
In this thesis, we presented a comprehensive framework of algorithms,
tools, and databases that facilitate an integrative analysis of molecu-
lar high-throughput profiles. We developed these tools with the ma-
jor goal to investigate biological processes that are deregulated in
complex diseases like cancer and to identify potential driving factors
within those processes.
In the following sections, we summarize and discuss the presented
work and highlight possible directions for future research.

Figure 97: Combined geolocation data of users of all web services presented
in this work. The data was collected between May 2016 and Ja-
nunary 2022.
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10.1 summary

All tools and databases presented in this work were developed as web
services. To make this possible, we created a web framework called
Graviton that builds the basis of all our tools (cf. Chapter 4). By us-
ing a common framework, we reduced the overhead associated with
the development and maintenance of different web applications. For
example, we can easily share source code between our tools, which
helps avoid unnecessary code duplication and makes updating and
maintaining the individual tools much easier. For users, the usage
of our web service ensures that all software components are compat-
ible and that all data resources are properly curated and sanitized.
Additionally, the usage of a web service removes or facilitates many
technical challenges for users, such as the installation of third-party
applications or the processing of external databases. Consequently,
users can spend more time on the analysis of their data set. In the
subsequent paragraphs, we shortly review and discuss the different
algorithms, tools, and databases that were presented in this work. Ad-
ditionally, we summarize the most important results of the conducted
case studies.
First, we presented the GeneTrail web service, one of the most pow-
erful enrichment and network analysis toolboxes available today (cf.
Chapter 5). In comparison to other web services, GeneTrail excels
in various aspects. First of all, our web service provides a power-
ful framework of enrichment and network analysis algorithms with
highly efficient C++ implementations. The different approaches can
be applied to explore our comprehensive collection of biological cat-
egories that incorporates 40 external data sources for 15 prevalent
organisms. However, unlike most competing methods, GeneTrail can-
not only be applied to analyze deregulated biological processes in
traditional bulk data sets, but also to explore time-series experiments
or single-cell data. To complement the rich functionality of our tool-
box, we also created an intuitive web interface with many interactive
visualizations. These range from a general overview of the computed
enrichment results to an in-depth characterization of individual cate-
gories or signaling pathways.
In Chapter 5, we also presented the results of two studies that high-
lighted the capabilities of GeneTrail. First, we analyzed a single-cell
RNA-seq data set of CD14 monocytes from the peripheral blood of
COVID-19 patients and healthy controls [581]. Here, our results indi-
cate that in patients with acute respiratory distress syndrome (ARDS),
the activity of the adaptive immune system might be impeded, while
processes of the innate immune system seem to be overactive. In a
second study, we analyzed time-resolved gene expression profiles of
CD4+ cells that were in vitro activated [121]. In particular, we inves-
tigated and discussed biological processes and associated genes with



10.1 summary 191

distinct time courses after T cell activation. Both analyses successfully
demonstrate that our web service can uncover relevant biological in-
formation from molecular high-throughput experiments that might
help to gain novel insights into complex pathogenic mechanisms.
Using the enrichment analysis functionality of GeneTrail, we were
also able to create miRPathDB, a web-based dictionary that com-
piles information about miRNAs, their target genes, and putative
target pathways (cf. Chapter 6). Our database stands out by provid-
ing a tenfold increase of information compared to any competing
resource. This was achieved by the integration of novel miRNAs and
miRNA candidates from our miRCarta database [28]. Additionally,
miRPathDB also offers different analysis tools that can be used to
compare similarities between different miRNAs and to explore asso-
ciations between miRNAs and target pathways.
Besides the identification of deregulated biological processes, we also
focused on the detection of transcriptional regulators that might drive
these deregulations. Here, our first contribution was REGGAE, a novel
algorithm for the identification of key transcriptional regulators that
have a significant effect on deregulated processes (cf. Chapter 7).
REGGAE uses an enrichment-based method to identify and rank reg-
ulators based on associations between regulators and differentially ex-
pressed target genes. We evaluated REGGAE and related algorithms
in two different application scenarios. First, we compared expression
profiles of estrogen receptor-positive (ER+) and estrogen receptor-
negative (ER−) breast cancer cells to identify factors that might be
responsible for gene expression differences between the two subtypes
and that could contribute to the increased malignancy of ER− tumors.
Secondly, we analyze perturbation signatures of specific regulators to
examine if the considered methods could detect the perturbed regula-
tors. The results of all conducted analyses demonstrate that REGGAE
could outperform competing methods. In fact, our algorithm was the
only approach that was able to uncover the most influential regula-
tors in all cases. Furthermore, our approach provides supplemental
information that facilitates the analysis and interpretation of the ob-
tained results and sets REGGAE further apart from other approaches.
This includes estimates whether the identified regulators might act
as activators or repressors and different confidence measures, like P-
values or confidence intervals, which help to assess the validity of the
results.
For the analysis of influential transcriptional regulators, we also cre-
ated the RegulatorTrail web service, one of the most comprehen-
sive toolboxes for this purpose (cf. Chapter 8). In contrast to other
tools that often only focus on one specific application, our web ser-
vice offers various methods for identifying key regulators that can be
applied in a broad range of application scenarios to analyze transcrip-
tomic, proteomic, or epigenomic data sets.
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In Chapter 9, we demonstrated the capabilities of our tools suite by
conducting a detailed analysis of our Wilms’ tumor (WT) data set.
While WTs typically have a good prognosis, tumors that have a pre-
dominantly blastemal histology after neoadjuvant chemotherapy of-
ten seem to have a much more unfavorable outcome. In our study,
we compared WTs with a blastemal subtype and tumors with differ-
ent histology to identify factors that might drive the increased malig-
nancy of blastemal tumors. In particular, our results confirm previ-
ous observations suggesting that blastemal WTs exhibit stem cell-like
properties. Hence, we set out to find potential key players in this con-
text. Indeed, we identified several putative biomarkers that are dis-
tinctive for the blastemal subtype. Many of them have essential roles
in epigenetic processes that are already associated with increased ma-
lignancy in different cancer types. Among the top candidates, we
identified TCF3 as one of the key regulators of these mechanisms.
In the future, we hope that many of these insights can be utilized to
improve therapy for Wilms’ tumors.
Interestingly, our results were also discussed in a recent study by
Zhou et al. that investigated if TCF3 could be a suitable therapeutic
target for WTs [613]. To this end, the group silenced the regulator in
G401 kidney tumor cells and assessed the viability of the tumor cells.
Corresponding results showed that a knock-out of TCF3 reduces the
activity of the Wnt pathway, significantly inhibits cell viability, re-
duces migration, and accelerates apoptosis in respective cells. Con-
sequently, these results confirm our observations that TCF3 plays a
crucial role in the malignancy of WTs and might even be a suitable
candidate for future therapies.

10.2 perspectives

The algorithms and tools discussed in this work already build a com-
prehensive framework for the analysis of molecular high-throughput
profiles that is employed by many research groups around the globe
(cf. Figure 97). However, several challenges remain that could be ad-
dressed in future research.
For example, while molecular profiling techniques, like high-through-
put sequencing, have revolutionized biomedical research over the last
two decades, their development is an ongoing process. New or up-
dated protocols are emerging regularly, and computational approaches
need to be adapted to support them. Here, one of the most promis-
ing developments is the increasing availability of single-cell multi-
modal omics protocols that make it possible to measure different
omics types in the same cells [527]. While this poses new compu-
tational challenges, it also offers new possibilities, such as the ability
to analyze biological processes using multiple measurement types si-
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multaneously and to study interactions between them.
Moreover, our tool suite could be extended with workflows for addi-
tional omics types that are currently not supported. Promising can-
didates in this context would be long non-coding RNAs or metabo-
lites. Both data types could provide additional insights into molecular
mechanisms. Long non-coding RNAs can interact with DNA, RNA,
or proteins to regulate gene expression [507]. Consequently, they have
essential roles in many biological processes [92, 507]. Some of them
have been associated with diseases like Alzheimer’s, cancer, or dia-
betes [122, 144]. Furthermore, an inclusion of metabolic data could
also provide additional information about the state of cells that is
currently missing in our tool suite. These molecules constitute the
substrate, products, or intermediates of many molecular reactions in
the cell and, hence, an inclusion of metabolic measurements could
further advance our understanding about cellular mechanisms [216,
311].
Although our web service are already highly interconnected such that
users can seemlessly transition between different workflows, there are
still places where the interoperability of our tools could be further ex-
panded. For example, in the GeneTrail single-cell workflow, after
a user has identified an interesting biological category, it might be
helpful to investigate potential transcriptional regulators of the mem-
ber genes using RegulatorTrail or even putative drug targets using
DrugTargetInspector.

10.3 conclusion

In conclusion, we presented a comprehensive tool suite with rich func-
tionality for the analysis of molecular high-throughput profiles. The
outlined methods can be applied to assess deregulated biological pro-
cesses and driving factors across a wide range of application scenar-
ios, which sets it apart from other approaches. Moreover, the pre-
sented case studies demonstrate that our framework can help eluci-
date complex pathogenic mechanisms and, hence, might be of broad
interest to the scientific community.
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A D D I T I O N A L M E T H O D S

In this chapter additional methods are described that are used in this
thesis, i.e., clustering methods (cf. Section B.1) and dimension reduc-
tion techniques (cf. Section B.2).

b.1 clustering

Clustering is a common but very important task in the analysis of
many high-throughput data sets and especially large single-cell data
sets. Due to the size of the data sets alone, it is often required to par-
tition samples (or features) into groups, which can then be compared.

In this section, we introduce different clustering techniques that are
relevant for the work described in this thesis.

b.1.1 Hierarchical clustering

Hierarchical clustering is a class of algorithms that build a hierarchy
of clusters using greedy approaches. In general there are two iterative
strategies: agglomerative (bottom-up) and divisive (top-down) [387].
Agglomerative strategies start with each data point in an individual
cluster and in each step try to merge the most similar (or least
distant) ones. In contrast, divisive strategies start with all data points
in one cluster and in each iteration identify the best split.

In the following, we focus on the agglomerative strategy [387].

b.1.1.1 Agglomerative hierarchical clustering

The individual clustering methods for the agglomerative strategy
can be distinguished by the way they determine which two clusters
should be merged. To this end, they use so called linkage criteria. In
general, these measures define the distance of two clusters based on
the distances of the contained points. For this purpose, any distance
or similarity measure can be applied, e.g., all methods presented in
Section 3.5. Examples for the linkage of two clusters using different
criteria are depicted in Figure 98 A.
In the following paragraphs, we introduce some of the measures that
can be used as linkage criteria. For simplicity, all definitions are based
on distance metrics. However, equivalent formulations can be derived
for similarity measures.
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Figure 98: Overview of linkage criteria for hierarchical clustering and den-
drogram. Examples for (A) single-linkage, (B) complete-linkage,
(C) average-linkage, and (D) centroid-based linkage distance be-
tween two clusters. (E) Dendrogram of a single-linkage clustering.
The height of the dendrogram indicates the distance between the
points. The dotted line marks the threshold used to create the two
marked clusters.

b.1.1.2 Point-based linkage criteria

Many linkage criteria define the distance between two clusters A and
B based on the pairwise distance between all points. Popular func-
tions in this group are:

Single-linkage

The single-linkage strategy defines the distance between two clusters
A and B as the minimal pairwise distance between members of cluster
A and members of cluster B (cf. Figure 98 A).

D(A,B) = min
a∈A,b∈B

{d(a,b)} (121)

Complete-linkage

The complete-linkage measure determines the distance between two
clusters as maximum pairwise distance between members of cluster
A and members of cluster B (cf. Figure 98 B).

D(A,B) = max
a∈A,b∈B

{d(a,b)} (122)
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Average-linkage

The average-linkage criterion defines the distance between two clus-
ters A and B as the average distance between members of cluster A
and members of cluster B (cf. Figure 98 C).

D(A,B) =
1

|A|× |B|

∑
a∈A,b∈B

d(a,b) (123)

b.1.1.3 Centroid-based linkage criteria

In contrast to the previously described measures that determine the
distance between two clusters based on the contained points directly,
other approaches define the distance between two clusters using the
centroids of each cluster. The centroid of a cluster is a new point
defined by the average position of all member genes (cf. Figure 98 D).

D(A,B) = d(ā, b̄) (centroid method) (124)

or

D(A,B) =
d(ā, b̄)2
1
|A|

+ 1
|B|

(Ward’s method [564]) (125)

Here ā and b̄ are defined as the centroids of cluster A and B respec-
tively.

b.1.1.4 General agglomerative clustering algorithm

The agglomerative clustering approach starts with each point in its
own cluster. Then, an iterative greedy approach is used that in each
step merges the two clusters with the smallest distance according to
the selected linkage strategy. This process is repeated until all points
are merged. The created cluster hierarchy is often illustrated as a
dendrogram depicting the order in which the clusters are merged and
which distance they had (cf. Figure 98 E). The dendrogram is then cut
at a certain level to retrieve a final cluster composition. The runtime
for this approach is in O(n3), where n is the number of points. The
pseudocode for this strategy is depicted in Algorithm 2.
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Algorithm 2 Agglomerative hierarchical clustering

1: Given n initial clusters C = {C1, ...,Cn} and a
2: linkage-criterion D(Ci,Cj).
3: procedure hclust

4: while |C| > 1 do
5: //Find cluster pair with minimal distance
6: Ci,Cj = arg min

∀(Ci,Cj):Ci 6=Cj
{D(Ci,Cj)}

7:

8: //Update clusters
9: C = C \Ci

10: C = C \Cj
11: C = C∪ {Ci,Cj}
12:

13: //Save the cluster composition and distance to build dendrogram
14: save(C, Ci,Cj,D(Ci,Cj))

b.1.2 Community clustering

Another class of clustering algorithms are community detection
methods, such as Louvain [61] and Leiden [537]. Especially in the
context of single-cell analysis they are widely used [320].

In these approaches, the similarity between the different points is
modelled as a weighted graph G = (E,V), where each data point rep-
resents a node and weighted edges the similarity between them. The
clusters are defined as local subgraphs, i.e., communities, in which
the member nodes have a higher similarity to other members than
to nodes outside the community. For the detection of these commu-
nities, a modularity score Q is optimized that compares the sum of
edge weights in each community to the remaining edges in the graph.
An overview of this approach is depicted in Figure 99.
Given an undirected weighted graph G = (E,V) with n nodes and a
similarity matrix Anxn, which for each pair of nodes (vi, vj) contains
the edge weight Aij. Let additionally ki be the total edge weights for
node vi and 2m the sum of all edge weights inG. Then the modularity
is defined as:

Q =
1

2m

∑
ij

[Aij −
kikj

2m
]δ(ci, cj), (126)

where ci and cj are the assigned communities of nodes vi and vj
respectively, and δ(ci, cj) is the Kronecker delta function:

δ(ci, cj) =

1, if ci = cj

0, if ci 6= cj
(127)
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Q △Q

Figure 99: Overview of the community clustering strategy. In this approach,
all points are interpreted as nodes in a graph and edges between
them are weighted with the similarity between two points. For
simplicity, only edges above a certain similarity threshold are de-
picted. The different clustering algorithms then try to identify
clusters as communities in the graph by optimizing the modular-
ity function Q.

Both the Louvain and the Leiden method use greedy approaches that
try to maximize Q. In the following paragraphs, both methods are
briefly summarized.

b.1.2.1 Louvain

The Louvain algorithm [61] usually starts with each vertex in its own
cluster. Then, the following two-step approach is applied iteratively
to optimize Q.

Step 1: local community optimization

In the first step, all nodes are processed in an arbitrary order to
optimize the local modularity score. For each node vi and each
community cn that contains a neighbour nodes of vi, we calculate
how the modularity score would change if we remove v from it
current community and add it to cn. The node v is then assigned
to the neighboring community that leads to the largest increase in
modularity. If none of these assignments leads to an increase in Q
the node stays in its original cluster.
After all nodes have been processed sequentially, this procedure is
repeated in the same order until a local maximum of Q is reached.

According to the authors, the order in which the nodes are processed
influences the outcome only slightly and mainly affects the runtime
of the algorithm [61].

Step 2 - network aggregation

In the second step, we use the community assignment obtained in
Step 1 to build a new graph. To this end, nodes in the same commu-
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nity are merged into one node in the new graph. All edges between
nodes in the same community are converted into self edges, and all
edges between nodes of two different communities remain weighted
edges between the corresponding nodes in the new graph.
After the newly build graph is completed, Step 1 is repeated for the
aggregated network.

b.1.2.2 Leiden

The Leiden algorithm by Traag et al. is an adaptation of the Lou-
vain algorithm, which ensures that all found communities are well
connected, e.g., that a community does not contain any disconnected
components [537]. This is achieved by introducing a new step in be-
tween the local community optimization and the network aggrega-
tion, which refines the community assignment [537].
On top of this, the Leiden algorithm also uses an adapted approach
for the local community optimization that only reiterates over nodes
that have been assigned to new communities. This leads to an im-
proved runtime [537].

b.2 dimension reduction

The visualization of molecular high-throughput data sets is a crucial,
but often challenging task. The high dimensionality of the data makes
it hard to get an overview or to highlight important aspects.
For this purpose, researchers often rely on dimension reduction tech-
niques that project the data into two or three dimensions, which are
then easier to visualize (cf. Figure 100).
In the following paragraphs, we present an overview of the most
popular techniques.

b.2.1 Principal component analysis (PCA)

A principle components analysis (PCA) is a transformation that
projects data points into a subspace with lower dimension, while
retaining as much information as possible. In this context, the
principle components are a series of uncorrelated, orthogonal projec-
tions ordered by variance [163]. The principle components constitute
an orthonormal basis that can be utilized to conduct a change of basis.

Given a matrix Xn×p with n rows and p columns, the PCA can be
formulated as a minimization problem, in which we find the best
fitting orthogonal matrix Vn×qq that satisfies [163]:

min
Vq

n∑
i=1

||(xi − x̄)VqV
T
q (xi − x̄)||

2 (128)
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Using Vq, we can project any (centered) point x̃i = xi − x̄ into a q-
dimensional subspace (VqVTq x̃i) defined by the columns of Vq.
Solutions for this problem can be obtained in various ways, e.g., using
singular value decomposition [163] or autoencoder neural networks
[128].

b.2.2 t-distributed Stochastic Neighbor Embedding (t-SNE)

t − SNE is a non-linear dimensional reduction technique that was
designed to visualize high-dimensional data sets in two or three
dimensions [324]. In this approach, the original high-dimensional
representation of the data is converted into a low-dimensional one
that retains as much of the distance information as possible.
To this end, both representations are modelled as neighborhood
graphs, i.e., undirected and weighted graphs, in which each vertex
represents a data point and each edge the similarity between two
points. Here, each data point belongs to one specific vertex in both
graphs. To obtain the best dimensional reduction, the positions of the
vertices in the low dimensional representation are then optimized
such that they reflect the high-dimensional structure of the data.

Given n data points x1, ..., xn in high-dimensional space and corre-
sponding data points in low-dimensional space y1, ...,yn. The similar-
ity of a point xi and a point xj in high-dimensional space is defined
using a gaussian kernel that is centered around xi:

vi|j = e

−||xi−xj||
2

2σ2
i , (129)

where σi is the standard deviation of the kernel. How the value for
σi can be determined, is discussed later in this section.
For each vi|j, we can now define a probability pi|j:

pi|j =
vi|j∑
k6=i vi|k

(130)

pi|j determines how likely it is that xj is selected as a neighbor of xi
compared to all other points. Finally this probability is symmetrized
and normalized over all data points:

pij =
pi|j + pj|i

2n
, (131)

As indicated previously, each pi|j depends on the standard deviation
σi, and each value of σi defines a different probability distribution Pi
that is centered around xi. Accordingly, the value σi influences the
number of effective neighbors (vij � 0) that are considered. Hence,
their values need to be carefully selected.
In the t-SNE algorithm, the value for each σi is selected via a binary
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search that ensures the following constraint about a user defined pa-
rameter “Perplexity” is satisfied:

Perplexity(Pi) = 2
−

∑
j pj|ilog2(pj|i) (132)

Intuitively, the perplexity is a measure that loosely defines the
number of effective neighbors that should be considered for each
point.

Next, we can define the low-dimensional embedding. Here, the simi-
larity of two points yi and yj is modelled accordingly, however, using
a Student t-distribution:

qij =
wik∑
k6=iwik

(133)

wij = (1+ ||yi − yj||
2
2)

−1 (134)

Finally, the locations for the points in a two- or three-dimensional em-
bedding are optimized by a gradient descent algorithm that uses the
Kullback–Leibler divergence between the two probabilities pij and
qij as a loss function:

KL(P||Q) =
∑
i 6=j

pijlog2(
pij

qij
) (135)

b.2.3 Uniform Manifold Approximation and Projection (UMAP)

Uniform Manifold Approximation and Projection (UMAP) [345] is
an alternative method for dimension reduction that uses a similar
strategy as t − SNE. First, it models the data as two neighborhood
graphs. One in high-dimensional and one in low-dimensional space.
Then, the coordinates of all points in the low-dimensional space are
optimized such that is reflected the high-dimensional structure of the
data. It can be defined analogously to t− SNE [345]:
Given n data points x1, ..., xn in high-dimensional space and corre-
sponding data points y1, ...,yn in low-dimensional space. The similar-
ity of a point xi and a point xj in high-dimensional space is defined
as:

vi|j = e
−
d(xi ,xj)−ρi

σi , (136)

where d is an arbitrary distance function, ρi the distance to the closest
neighbor of xi and σi a normalization factor. In the UMAP algorithm
vi|j is only calculated for the k closest neighbors of i and all others
are set to 0 [345]. The value for k is a user-defined parameter.
Next, the similarities are symmetrized as follows[345]:

vij = vi|j + vj|i − vi|j · vj|i (137)
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Like in the t− SNE approach, the value of each vi|j depends on the
normalization factor σi. Similarly, they are selected using a binary
search that ensures the following constraint about the number of
neighbors k is satisfied:

log2(k) = −

n∑
i=1

vij (138)

The similarities for two points yi and yj in low-dimensional space
are defined as follows:

wij = (1+ a · ||yi − yj||2b2 )−1, (139)

where a and b are positive values defined by the user.
The positions of all points in the low-dimensional embedding are
then optimized by a stochastic gradient descent algorithm that uses
the cross-entropy loss function:

H(V ,W) =
∑
i 6=j

vij · log2(
vij

wij
) − (1− vij) · log2(

1− vij
1−wij

) (140)
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Figure 100: Example of a scatterplot depicting 2D coordinates of a tSNE
dimension reduction. The data points are colored according
to a cluster assignment. This figure was created using BioRen-
der.com.
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Cancer is a class of diseases that are characterized by cells that have
the ability to proliferate uncontrollably and the potential to invade
surrounding tissues. In 2019, around 231, 000 people in Germany
died of cancer, which makes it the second leading cause of death
overall and the most frequent cause of death for people with an age
between 45 to 65 [393]. While extensive medical research over the last
decades has significantly improved the treatment of cancer, the selec-
tion of suitable therapy options for a patient is still a major challenge.
One reason for this is the high heterogeneity of cells within a tumor,
which is enabled by hallmark characteristics, like genetic instability
and high proliferation rates that drive the malignancy of the disease
[337] (cf. Section 2.3). The genetic diversity of tumors cells can also
often lead to phenotypic differences that can impact therapeutic out-
comes [337]. For example, it has been shown that specific molecular
events can heavily affect the efficiency of certain treatments [153], e.g.,
activating mutations of the KRAS proto-oncogene in colorectal cancer
can potentially cause an resistance to the drug cetuximab [307].
Since high-throughput techniques have the potential to identify such
molecular markers, one major goal in current clinical research is to
evaluate if the incorporation of these technologies into clinical decision-
making can improve assessment of therapy options [308, 452].
As a result, cancer centers started to implement molecular tumor
boards (MTBs), where an interdisciplinary team of medical profes-
sionals evaluates the best possible therapy options for cancer patients.
In addition to clinical information and the patient’s treatment history,
these MTBs already consider genetic aberrations for the treatment
stratification process [549].
Accordingly, over the last few years, different tools have been pro-
posed that combine clinical information of patients with molecular
measurements to support clinicians and molecular tumor boards in
their quest to find the best possible care for a patient. These include
commercially available testing kits, tools, and services that evalu-
ate treatment options based on clinical characteristics and molecular
measurements, e.g., offered by Agendia BV (MammaPrint) [491],
CeGaT [180], Foundation Medicine (FoundationOne CDx) [349],
or Genomic Health (Oncotype DX) [403]. Additionally, various com-
putational tools have been developed that analyze clinical informa-
tion of molecular measurements to predict the survival time of pa-
tients or to evaluate specific therapy options, e.g., Adjuvant! Online
[58], CancerMath [359], and PREDICT [126]. A comparison of tools
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and services for this purpose is shown in Figure 101.
Here, we present DrugTargetInspector and ClinOmicsTrailbc, two
web services for clinical cancer decision support. Both tools are de-
signed to help clinicians with the assessment of potential treatment
strategies based on the molecular characteristics of a tumor. To this
end, they provide rich functionality for the integrative analysis of dif-
ferent high-throughput measurements of a cancer sample. These mea-
surements can help to identify important molecular characteristics of
an investigated tumor that might help to assess if certain therapeutic
approaches might be applicable.
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Figure 101: Overview of tools and services for clinical decision support.
Green checkmarks indicate that this feature is supported by the
tool, and red crosses that the feature is not available. This table
is adapted from [475].
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c.1 drugtargetinspector (dti)

Author contributions

This section is based on our publication “DrugTargetInspector: An
assistance tool for patient treatment stratification” [474]. DrugTar-
getInspector was mainly developed by Lara Schneider and Hans-
Peter Lenhof. I was involved in the website design, integration of
downstream functionality, and maintenance of the tool. The complete
list of contributors can be found in the author section of the respective
publication [474].

DrugTargetInspector (DTI) is an assistance tool for cancer treatment
stratification. Our web service analyzes multi-omics measurements
of a tumor to assess if molecular drug targets are altered, how these
alterations might affect down-stream processes, and if this could im-
pact the efficacy of the respective drug. To this end, our web service
offers functionality for the identification of deregulated or mutated
drug targets, associated pharmacogenomic effects, and their influence
on biological processes. A general overview of the DTI workflow is
presented in Figure 102.

Gene expression 
measurements

Genetic alterations

Information about drugs, drug targets, 
pharmacological effects, 

and clinical decision guidelines for cancer

Feature 
selection

Variant 
annotation

Data 
integration

Identification of altered drug 
targets and pharmacological 

effects

Analysis of active biological 
processes in the tumor sample

Analysis of highly deregulated 
subgraphs up- or downstream 
of an investigated drug target

Input

Drug information

Data preprocessing Analysis functionality

Figure 102: Overview of the DrugTargetInspector workflow. The different
input data types are processed individually and then integrated
with drug information from external resources. From here, dif-
ferent computational analyses can be performed.
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c.1.1 Identification of altered drug targets and their impact on biological
processes

The inputs for DrugTargetInspector are mutations and gene expres-
sion measurements for a tumor sample and a corresponding control
or panel of controls. The provided measurements are then used to
investigate altered drug targets and associated biological processes.
To this end, the data types are first processed individually and then
combined in an integrative view that provides an in-depth characteri-
zation of a tumor’s genetic and molecular profile (cf. Figure 103A). In
the following paragraphs, we first describe the processing steps for
the input data and then discuss how DTI uses the provided informa-
tion to evaluate treatment options.

c.1.1.1 Data processing and integration

The gene expression data can be uploaded as a matrix containing nor-
malized expression measurements for both tumor sample and corre-
sponding control(s) (cf. Section F.1.1.3). After the file upload, the two
groups are compared to identify differentially expressed genes. To
this end, users select any of the methods available in GeneTrail (cf.
Chapter 5). Alternatively, users can directly upload a score list to our
web server.
The mutation data can be provided as a text file in VCF format, see
Section F.2.3. The uploaded genetic variants are then processed using
the Ensembl Variant Effect Predictor (VEP) [346]. Amongst others,
this step identifies genes and proteins that are affected by a particu-
lar alteration. Additionally, each variant is annotated with its conse-
quences on the protein sequence, e.g., frameshift, missense, or start
lost. Based on this information, the variants are filtered and only
protein-altering variants are retained for further processing.
After gene expression measurements and genetic variants are pro-
cessed, they are used to identify all drug targets that contain mu-
tations or that are differentially expressed between the tumor and
associated controls. For each drug with a target in the resulting list,
we also compile additional information from our data collection (cf.
Section 3.2.6), such as links to external databases or known pharma-
cogenomic events, i.e., alterations of molecular features that influence
the effectiveness of the considered drug.

c.1.1.2 Identification of altered drug targets and pharmacogenomic effects

After data processing, we obtain a compact interactive table that con-
tains all genes that are targeted by at least one drug (cf. Figure 103A).
Here, users can select if the drug information should be restricted to
recommended drugs for the investigated cancer type (on-label drugs)
or contain all available information (on-label and off-label drugs).
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(A)

(B)

(C) (D)

Figure 103: Overview of the different results provided by
DrugTargetInspector for the colon adenocarcinoma sam-
ple TCGA-AA-3542.
(A) Table with differentially expressed or mutated drug targets.
Recommended drugs for colon cancer are highlighted in green.
(B) Predicted consequences of the identified EGFR mutation on
the protein sequence. (C) Summary of enrichment biological
categories that contain EGFR. (D) BiNA [175] visualization of
the most deregulated subgraph downstream of EGFR.
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Each line in the resulting table depicts information about a specific
drug target, all protein-altering mutations within the respective gene,
and all drugs that target this molecule. From here, users have differ-
ent options. On the one hand, they can obtain additional information
about the identified mutations or the considered drugs. For muta-
tions, DTI offers a compact table that summarizes the consequence
the mutation has on the respective gene and different measures that
assess the severity of the alteration, i.e., SIFT [285] and PolyPhen [6]
(cf. Figure 103B). For drugs,DTI provides pharmacogenomic informa-
tion from the Genomics of Drug Sensitivity in Cancer (GDSC) project
[594]. This database contains a list of alterations in molecular features
that affect the efficacy of cancer drugs, such as mutations in specific
genes cause a resistance to a certain drug. Hence, the provided infor-
mation can be used to assess if the mode of action of individual drugs
could be impeded and should not be part of the treatment regimen.

c.1.1.3 Analysis of altered target pathways

The research in the last decades has shown that an increased activ-
ity of several key signaling pathways is directly connected with the
malignancy of various cancer types [339, 368, 430]. For example, ele-
vated levels ofHIF−1α pathway seem to be associated with tumor an-
giogenesis, tumor metastasis, and resistance to cancer therapy [339].
Consequently, central genes those pathways are extensively studied
as novel targets for anti-cancer agents.
Hence, our web service also provides functionality for the analysis
of altered signaling pathways that are associated with a specific drug
target. To this end, DrugTargetInspector offers two different analy-
ses that presented in the following paragraphs.

Analysis of enriched biological processes

Starting with a drug target of interest, our web service can be applied
to examine which signaling pathways might be affected by the corre-
sponding gene. To this end, we conducted Gene Set Enrichment Anal-
yses for all KEGG pathways [394] that contain the analyzed target. In
order to inspect these results, DTI offers two ways. An overview of
the most significant categories that involve the examined target genes
is directly shown on the mainDTI result page (cf. Figure 103C). Addi-
tionally, a detailed view of the results is provided. To this end, users
are redirected to the GeneTrail result visualization (cf. Figure 53).
The described enrichment analysis functionality is especially useful
to determine if the target pathway of a particular drug is active or
inactive in the investigated tumor sample. This information provides
evidence if the drug’s mode of action might be impeded and could
affect a putative therapy.
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Detection of deregulated signaling cascades

In addition to the pathway activity patterns, DTI can also be applied
to study up- and downstream effects of a specific drug target in the
KEGG network [394]. To this end, we use a rooted version of the sub-
graph ILP described in Section 3.7.1. For this purpose, we extended
the ILP with an additional constraint that fixes the investigated drug
target as the root in the selected subnetwork. Starting from this root,
the ILP identifies the most deregulated subgraph in the analyzed net-
work that is located directly upstream or downstream of the specified
root. For both tasks, we use the same approach. However, for the for-
mer, we reverse the edge directions in the optimization problem.

c.1.2 Example application: Colon adenocarcinoma (TCGA-AA-3542)

In order to demonstrate the capabilities of our tool, we analyzed ge-
netic variations and gene expression measurements of a colon adeno-
carcinoma sample obtained from The Cancer Genome Atlas (TCGA-
AA-3542). In particular, we used DrugTargetInspector to evaluate
and compare different targeted therapy options for colon cancer. First,
we discuss drugs that are recommended for colon cancer via clinical
decision guidelines provided by the European Society for Medical On-
cology (ESMO). These are Bevacizumab, Cetuximab, Panitumumab,
and Regorafenib.
For our analysis, we first uploaded gene expression measurements for
the tumor sample and a panel of nine control samples. To compare
both groups, we calculated a Z-score for each gene. In the second step,
we uploaded genetic variants in VCF format. These alterations were
then processed using VEP and subsequently filtered, such that only
protein-altering variants remain. The complete list of parameters can
be found in Appendix E.10. An excerpt of the result table is shown in
Figure 103A.
As depicted, we see that the epidermal growth factor receptor (EGFR),
the target molecule for both Cetuximab and Panitumumab, is highly
downregulated in the tumor and additionally contains a missense
mutation (Figure 103B). Both Cetuximab and Panitumumab are
antibodies that inhibit EGFR. Since we assume that inhibitors are
more effective of their target is highly expressed, a downregulation
of EGFR in the tumor suggests that a treatment with either one of the
drugs could be compromised. Next, we conducted a subgraph analy-
sis based on the KEGG network with EGFR as the root. The resulting
subnetwork is shown in Figure 103D. Here, we observe that many
genes that are located downstream of EGFR in the KEGG network
are also downregulated. This provides further evidence that a ther-
apy with either Cetuximab and Panitumumab might be ineffective
for the investigated tumor.
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For Bevacizumab, we observe that its molecular target VEGFA is up-
regulated in the tumor and not mutated. This suggests that this drug
might work as expected and could potentially be considered to be
part of a treatment regimen (cf. Figure 104A). We obtain similar re-
sults for some target molecules of Regorafenib. However this kinase
inhibitor has several targets genes, some of which are also downreg-
ulated, which could potentially impede its efficacy. Hence, based on
our analysis Bevacizumab seems to be the best candidate amongst
the four recommended drugs for colon cancer.

(A)

(B)

Figure 104: Overview ofDrugTargetInspector results for different targeted
drugs. (A) Target molecules for Bevacizumab and Regorafenib.
For Regorafenib only upregulated target genes are shown. (B)
The most upregulated target molecules in our DTI analysis. The
corresponding drugs Cytarabine and Marimastat could be
interesting options for an off-label use case.

Besides the recommended drugs, we also used DTI to assess puta-
tive off-label drugs that could be considered. Figure 104A depicts
the most upregulated target genes in our analysis and the corre-
sponding drugs Cytarabine and Marimastat. Cytarabine is an
antimetabolic agent with on-label use for different types of leukemia
[137]. Additionally, it can be used as off-label drug for non-Hodgkin’s
lymphoma and primary central nervous system (CNS) lymphoma
[137]. Hence it is most likely not a suitable option for the analyzed
colon adenocarcinoma. The second candidate, Marimastat is an an-
timetastatic agent that targets matrix metalloproteinases, like MMP3
and MMP7. So far various clinical trials have been conducted that an-
alyzed the efficacy of this drug in cancer patients [483, 617]. However,
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a treatment with Marimastat did not improve the survival time of
the respective patients and even had a negative influence on their
quality of life. Hence, this drug would also not be a suitable option
for the investigated tumor.

c.2 clinomicstrail
bc

Author contributions

This section is based on our publication “ClinOmicsTrailbc: a vi-
sual analytics tool for breast cancer treatment stratification” [475].
ClinOmicsTrailbc was mainly designed by Lara Schneider and
Hans-Peter Lenhof. I was involved in the implementation and data
integration of the web service. The complete list of contributors can
be found in the author section of the respective publication [475].

ClinOmicsTrailbc is an assistance tool for clinicians or molecular tu-
mor boards that can be used to assess putative treatment options for
breast cancer patients based on clinical markers and molecular char-
acteristics of a tumor. To this end, our web service analyzes molecular
high-throughput profiles of this tumor and corresponding controls to
identify (epi-)genetic alterations in tumor biomarkers, such as driver
genes, relevant cancer pathways, or molecular drug targets. These
alterations can then be used to assess the suitability of different treat-
ment options, i.e., on- and off-label drugs, or immunotherapeutic ap-
proaches.

c.2.1 Input data and initial processing steps

The inputs for ClinOmicsTrailbc are molecular profiles and clini-
cal information of the considered tumor and at least one associated
control sample. The controls can either be healthy samples or other
tumor samples that can help to identify important molecular traits of
the sample of interest. In general, ClinOmicsTrailbc can be applied
to analyze gene expression profiles, genetic variants, copy number
alterations, and cytosine methylation patterns. While all data types
provide valuable insights into cellular mechanisms and can help in
the treatment selection process, only gene expression values are re-
quired to start an analysis using our toolbox.
In the following, we briefly discuss the different input types and the
initial processing steps conducted by our tool.

c.2.1.1 Clinical markers

Clinical markers of the tumor under investigations are some of the
most important features used to select a suitable therapy for a breast
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cancer patient. These markers include patient-specific information
such as the menopausal status, and tumor-specific markers like the
grade, size, sample origin, lymph node status, metastasis status, pres-
ence of hormone receptors on the surface, the histopathological sub-
type, amplification of the HER2 receptor, and information about the
growth rate (Ki-67 staining, S-phase fraction).
If available, the clinical markers can directly be entered into the web
interface.

c.2.1.2 Gene expression values

Gene expression values can either be uploaded as a score list or a
matrix containing normalized expression values for both the tumor
and matched controls. For matrices, our web service applies a group
comparison step to calculate gene expression differences. To this end,
either fold-changes or Z-scores are applied for all genes.

c.2.1.3 Copy number variations (CNVs)

In breast cancer, copy number variations (CNVs) seem to be respon-
sible for up to 85% of deregulated genes [506]. Hence, it is helpful to
directly incorporate CNVs into a ClinOmicsTrailbc analysis. To this
end, users can upload CNVs for genomic regions in SEG format that
contain log-ratios between copy numbers in the tumor and normal tis-
sues (cf. Section F.2.4). In our web service, the uploaded regions that
overlap with gene annotations are aggregated for each gene using
BEDTools [426].

c.2.1.4 Genetic alterations

During their development, cancer cells often accumulate a large num-
ber of genetic alterations that enable or facilitate the acquisition of
cancer hallmarks (cf. Section 2.3). Additionally, certain mutations are
also known to affect cancer treatment. Here, in particular, alterations
in target molecules of a particular drug can heavily influence their
effectiveness.
To incorporate genetic variations in a ClinOmicsTrailbc analysis,
users can upload them as text file in VCF format (cf. Section F.2.3).
The uploaded genetic variants are then processed using the Ensembl
Variant Effect Predictor (VEP) [346] and filtered to identify all protein
altering mutations. The resulting variants are further annotated using
external databases from our data collection (cf. Section 3.2.6), such as
pharmacogenomic information from the GDSC database [238], or can-
cer driver information from the IntOGen database [185]



C.2 clinomicstrail
bc

221

c.2.1.5 DNA methylation patterns

Further factors contributing to tumor initiation and progression are
epigenetic changes, such as DNA methylation patterns.
Similar to gene expression values, these can be provided as text files
containing pre-computed scores or normalized measurements for the
tumor and matched controls. Here, we assume that all values are
already aggregated on a gene level. If multiple samples are provided,
our web service automatically conducts a group comparison using
either fold-changes or Z-scores.

c.2.2 Identification of tumor characteristics

Based on the clinical information and molecular profiles provided,
our web service conducts further analyses that highlight molecular
characteristics of the investigated tumors and help to assess treatment
options.
For all analyses in this context, we focus on essential tumor driver
genes relevant for the therapy stratification of breast cancer patients.
This enables clinicians to get a comprehensive, yet compact overview
of a tumor’s molecular makeup.

c.2.2.1 Overview of tumor driving alterations

In a first step, ClinOmicsTrailbc combines the information provided
by the user to create several intuitive representations that help to
analyze the molecular characteristics of an investigated tumor.
To this end, our web server generates several tables that indicate if
cancer driver genes, molecular drug targets, or other relevant genes
are altered in any of the provided data types. Moreover, an interactive
sunburst chart is created that combines all information for relevant
driver genes in a circular fashion (cf. Figure 105). In this plot, breast
cancer marker genes are arranged in concentric circles that represent
different types of information available for the respective genes.
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Figure 105: Overview of a tumor sample’s molecular characteristics (TCGA-
BH-A0DT ). In this plot, relevant cancer driver genes are de-
picted as a sunburst chart. Each slice represents a particular gene
and each ring a specific data type. The genes are grouped based
on their associated pathway. This figure was retrieved from the
original ClinOmicsTrailbc publication [475]

.
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c.2.2.2 Analysis of pathway activities

Altered signaling pathways are an important factor in the develop-
ment and progression of cancer and often drive the hallmark char-
acteristics of tumors [462]. Due to their crucial role in oncogenesis,
they are becoming increasingly important targets in the therapy of
cancer [462, 596]. For example, tumors with elevated activity of the
PIK3/AKT/mTOR signaling seem to be more receptive for mTOR in-
hibitors like Everolimus [417].
For this reason, we try to provide a comprehensive overview of al-
tered signaling pathways in our web service. To this end, we first
merged annotations for 20 breast cancer-relevant pathways from the
different databases in our data collections, i.e., GO [100], KEGG [394],
Reactome [142], and WikiPathways [256].
For the resulting gene sets, we created a custom measure that evalu-
ates the activity of those pathways in a given tumor. Our approach
is based on the assumption that a targeted treatment is more effec-
tive if the corresponding target pathway is highly active [18]. In or-
der to incorporate this information into our approach, we combine
the uploaded gene scores with drug sensitivity information from the
GDSC database to estimate pathway activities. A detailed description
of the methods can be found in previous publications [475, 476]. In
this section, we focus on the different applications of this method in
ClinOmicsTrailbc.
In our web service, the calculated pathway activities for a given tu-
mor are used in different ways: they are depicted as the most inner
ring in our sunburst chart (cf. Figure 105), they are used to assess tar-
geted therapy options (cf. Section C.2.3), and they can be examined
on their own.
For the latter, we created an interactive radar chart, where the path-
way activities of the uploaded tumor can be compared against breast
cancer cell lines or tumors of the TCGA cohort (cf. Figure. 106). This
makes it possible to identify cell lines that show activity patterns sim-
ilar to the investigated sample. Since we assume that the activity of
specific pathways is directly associated with the tumor’s response
to certain treatments, this information can be used to check which
drugs were effective or ineffective in similar reference samples. For
this purpose, we list all available clinical marker and pharmacologi-
cal information of the incorporated reference samples.
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Figure 106: Comparison of pathway activity patterns of three breast cancer
cell lines: CAMA1 (uploaded sample, blue), ZRF75B (brown),
andMCD10F (green). This figure was retrieved from the original
ClinOmicsTrailbc publication [475]

c.2.3 Assessment of therapy options

The clinical and molecular characteristics of an investigated tumor
cannot only help clinicians and molecular tumor boards to assess
the molecular makeup of a tumor, but the provided information can
also be utilized to evaluate different treatment options. To this end,
ClinOmicsTrailbc integrates and processes the previously described
data to extract molecular markers that can influence the efficacy of
different therapeutic approaches for breast cancer. Our web service
then compiles this information such that clinicians can easily assess
if a particular treatment should be considered for a given tumor or if
there are any impediments.

c.2.3.1 Targeted therapy

In a first analysis, our web service evaluates if the different molecular
characteristics of a tumor could potentially influence the efficacy of 17
FDA-approved breast cancer drugs. To this end, ClinOmicsTrailbc

analyzes a range clinical and molecular markers for each drug that
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indicate if a drug is a suitable therapy option or if its mode of action
could be impeded (cf. Figure 107). In this context, our web service
first assesses the state of predictive biomarkers, such as the pres-
ence of absence of hormone receptors on the surface of the tumor
cells that are prerequisite for certain drugs [540]. For example, aro-
matase inhibitors are usually only administered if the tumor cells
are estrogen and progesterone positive [540]. A further factor that
can heavily influence the efficacy of a drug are mutations in drug-
processing enzymes that can compromise their ability to metabolize
the considered drug and, hence, might render a drug inactive. Con-
sequently, ClinOmicsTrailbc also evaluates if drug-processing en-
zymes contain any genetic alterations that could alter their function.
Moreover, our web service assesses if molecular drug targets and
associated signaling pathways are active and not affected by any
(epi)genetic alteration, which could impede the efficacy of a drug.
Finally, ClinOmicsTrailbc also lists alterations in known resistance-
promoting factors that could render a drug ineffective.
In summary, this functionality can help clinicians assess the suitabil-
ity of a specific drug or drug combination and identify potential prob-
lems that could interfere with a drug’s mode of action.
In addition to the assessment of on-label drugs approved for breast
cancer (cf. Figure 107), our web service can also be used to evaluate
a collection of “driver targeting drugs”, i.e., off-label drugs approved
for cancer in general that can be considered if a specific genetic alter-
ation is present.

c.2.3.2 Immunotherapy

Besides on- and off-label drugs, ClinOmicsTrailbc can also be ap-
plied to assess different cancer immunotherapy options. Here, the
goal is to increase the immune system’s ability to recognize and de-
stroy cancerous cells [104]. An important feature that is linked to the
efficacy of many cancer immunotherapies, e.g., checkpoint inhibitors
or antigen vaccination, is the mutational load of a tumor, which is also
called the tumor’s mutational burden (TMB) [186, 290]. We determine
the TMB as the number of somatic mutations that were identified per
1, 000, 000 bases in the exome of a given tumor. As a reference, this
value is then compared to TMB values for the entire TCGA cohort.
Additionally, our web service can also be used to evaluate the status
of other relevant markers for cancer immunotherapies, such as DNA
repair genes, members of the human leukocyte antigen (HLA) family,
or known biomarkers for checkpoint blockade immunotherapy.
In addition to usage of checkpoint inhibitors, another popular ap-
proach for cancer immunotherapy are tumor-specific cancer vaccines
[400, 459]. The basis of such vaccines are tumor-specific neoepitopes,
i.e., short DNA sequences that distinguish the tumor from respective
controls. The neoepitopes can then be used to train T cells that should
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be able to recognize these epitopes and the corresponding cancer cells
to initiate an immune reactions that destroys them.
For the identification of such neoepitopes, we connected our web ser-
vice with the ImmunoNodes toolbox [479], which provides several
immunoinformatics tools that can be applied for HLA genotyping or
the design tumor-specific epitope-based cancer vaccines.

c.2.4 Example application: Hormone receptor-positive,HER2-negative breast
tumor (TCGA-BH-A0DT )

In order to demonstrate how ClinOmicsTrailbc can assist in clinical
decision making, we are analyzing molecular measurements of a tu-
mor sample from TCGA. The tumor sample was obtained from a 41-
year-old woman with a stage II, estrogen and progesterone receptor-
positive, HER2-negative breast cancer (TCGA-BH-A0DT ).
All processing steps, and the complete set of parameters are described
in Appendix E.11. An overview of the results is depicted in Figures
105 and 107.
Based on the clinical markers of the tumor (hormone receptor-positive,
HER2-negative), a typical treatment regimen might include the estro-
gen receptor modifier tamoxifen, which is one of the most commonly
prescribed breast cancer drugs [478]. However, around 30−50% of pa-
tients with adjuvant tamoxifen treatment exhibit a relapse [478]. One
reason for this could be tamoxifen resistance alterations that have
been acquired by the tumor. Here, we use the “drug view” provided
by our web service to evaluate if tamoxifen is a suitable option for
the treatment of this tumor (cf. Figure 107).
A closer inspection of molecular markers associated with tamoxifen
shows several alterations in key molecules that might impede or re-
duce the efficacy of the drug. In particular, we observe a frameshift
mutation in CYP2D6, a member of the cytochrome P450 family. This
enzyme is required to transform tamoxifen into its active form [182].
The frameshift mutation is likely to affect this process and could
contribute to potential resistance. Additionally, we also identified a
frameshift variant in one of the molecular targets of the drug, namely
ESR2, which can also drastically reduce affinity to this receptor. More-
over, we also see an elevated activity of the MAPK signaling pathway
and upregulation of HER2/neu (ERBB2). Both alterations could po-
tentially cause a reduced efficacy or even resistance against endocrine
therapy by contributing to ligand-independent activation of the estro-
gen receptor through ERK [439].
In summary, this analysis showed that the investigated tumor carries
several alterations that might reduce or impede the function of tamox-
ifen, which suggests that this drug should not used as a treatment.
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c.2.5 Discussion and conclusion

In this chapter, we presented two web services for cancer treatment
stratification, DrugTargetInspector and ClinOmicsTrailbc. Both
web services are designed to assist clinicians with the evaluation of
different treatment strategies based on the molecular characteristics
of a tumor. For this purpose, our tools offer powerful methods for
analyzing high-throughput data sets that can help identify molecular
traits of a tumor that are relevant for therapy selection. All results
generated by our web services are provided as intuitive and inter-
active visualizations that facilitate their interpretation. This enables
clinicians to evaluate different treatment strategies, to check if a par-
ticular drug might be a suitable candidate, or if a drugs mechanisms
of action could be impaired.
AlthoughDrugTargetInspector and ClinOmicsTrailbc are currently
in a “proof-of-principle” stage, which means they can only be used
in a research setting, they already provide powerful functionality that
complements existing clinical support tools and that has the potential
to improve the treatment stratification process in the future. However,
there are still extensions that could further improve their functional-
ity.
For example, in their current form, both tools can assist clinicians
to select the targeted drug that seems best suited for the given tu-
mor sample. However, a common problem in cancer therapies that
are based on one drug is that eventually patients can develop a resis-
tance to this particular drug, which can even cause a therapy to be
ineffective [155]. In order to overcome this problem, several studies
suggest using drug combinations instead [107, 155, 363]. Hence, an
interesting extension of our web service would be to not only evalu-
ate individual drugs, but also drug combinations that are tailored to
a specific patient.
Furthermore, both web services could also be extended with other
databases that provide information about disease biomarkers, drug
targets, or pharmacogenomic effects, e.g., CIViC [191] or OncoKB
[88].
Nevertheless, in conclusion, our web services can already assist clin-
icians and molecular tumor boards in creating treatment strategies
that are specifically tailored to a specific tumor and, hence, constitute
valuable tools in the treatment decision-making process for cancer
patients.
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Figure 107: Assessment of standard-of-care breast cancer drugs for TCGA
sample “TCGA− BH−A0DT”. For each drug, our web server
evaluates if predictive biomarkers, molecular drug targets, drug-
processing enzymes, resistance-promoting factors, or associated
signaling pathways are affected by any (epi)genetic alterations
that can influence the efficacy of a drug. Indicator signs show if
the different features might have a positive or negative influence
on the drug’s mode of action. This figure was retrieved from the
original ClinOmicsTrailbc publication [475].
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d.1 shifted euclidean distance

In Section 5.5, we introduced an adapted version of the Euclidean
distance called shifted Euclidean distance. For two samples p and q
it is defined as follows:

dshift(p,q) =

√√√√ n∑
i=1

(qi − s− pi)2, (141)

where the optimal value for s is defined as:

s =
1

n

n∑
i=1

(qi − pi) (142)

Here, we provide the proof that s is the optimal value.

Since the square root is a monotonic function, it has no effect on the
minimal value and we can omit it to find the optimal value for s. To
find the best s, we first determine the critical value of our function:

0 =
d

ds

n∑
i=1

(qi − s− pi)
2 (143)

⇔ 0 = −2

n∑
i=1

(qi − s− pi) (144)

⇔ 0 = −2
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(qi − pi) + 2ns (145)

⇔ −2ns = −2

n∑
i=1

(qi − pi) (146)

⇔ s =
1

n

n∑
i=1

(qi − pi) (147)

Since the second derivative ( d
2

ds2
= 2n) is always positive, this is the

minimum of d(p,q). �
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E
A N A LY Z E D D ATA S E T S , P R O C E S S I N G S T E P S , A N D
PA R A M E T E R S

In this chapter, we describe the data sets that are analyzed through-
out this thesis as well as the processing steps for all analyses and
associated parameters. For some analyses, this chapter also contains
additional results and supplementary information that could not be
presented, but are referred to, in the main manuscript.

e.1 hepatocellular carcinoma (hcc) - gse64041

To demonstrate the capabilities of the GeneTrail standard enrich-
ment analysis functionality, we analyze microarray (Affymetrix Hu-
man Gene ST 1.0 arrays) data sets of hepatocellular carcinoma (HCC)
patients, control tissue samples, and healthy controls provided by
Makowska et al. [327]. This data set contains gene expression mea-
surements of 125 samples from 60 HCC patients and 5 healthy donors.
From each patient, two samples were obtained: a tumor biopsy and a
paired non-tumor liver biopsy.

e.1.1 Preprocessing steps

We downloaded normalized gene expression measurements from the
NCBI GEO web server (Accession: GSE64041). To this end, we used
the GEO binding integrated in GeneTrail. For normalization the au-
thors used RMA algorithm [239] implementation of oligo package
[84]. After the download, the used identifiers were validated and
mapped to "Official Gene Symbols" using the mapping strategy out-
lined in Section 4.3.2. Duplicated entries were replaced by the median
value.

e.1.2 Enrichment analyses

We used this data set to create the example visualizations of the Gen-
eTrail standard enrichment analysis framework (cf. Section 3.6.1).
For Figure 53, we first compared the gene expression measurements
of the tumor biopsis against their paired non-tumor liver samples
using the Shrinkage t-test (cf. Section 3.4.3.2). The resulting score list
was then used to conduct a GSEA analysis (cf. Section 3.6.3.1). The
complete list of parameters can be found in Table 9.

231
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Parameter Value

Method used for group compari-
son

Independent shrinkage t-test

Transformation no transformation

Enrichment analysis method Kolmogorov-Smirnov test
(unweighted GSEA)

Order in which the score list is pro-
cessed

decreasing

Minimum category size 2

Maximum category size 700

Strategy to calculate p-values row-wise (exact)

Method used for multiple testing
correction

Benjamini-Yekutieli

Table 9: Parameters used for group comparison and subsequent enrichment
analysis of the hepatocellular carcinoma (HCC) - GSE64041.

For Figure 52, we first compared the gene expression measurements
of three individual tumor biopsis against their paired non-tumor liver
sample using log2-fold-changes. The resulting score list was then
used to conduct a GSEA analysis (cf. Section 3.6.3.1). The complete
list of parameters can be found in Table 10.

Parameter Value

Method used for group compari-
son

log2 fold-change

Transformation no transformation

Enrichment analysis method Kolmogorov-Smirnov test
(unweighted GSEA)

Order in which the score list is pro-
cessed

decreasing

Minimum category size 2

Maximum category size 700

Strategy to calculate p-values row-wise (exact)

Method used for multiple testing
correction

Benjamini-Yekutieli

Table 10: Parameters used to create the result in Figure 52.
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e.1.3 Network analysis

We used this data set to create the example visualizations of the Gen-
eTrail network analysis framework (cf. Section 3.6.1). To this end, we
first compared the gene expression measurements of the tumor biop-
sis against their paired non-tumor liver samples using the Shrinkage
t-test (cf. Section 3.4.3.2). The resulting score list was then used to
conduct a subgraph analysis (cf. Section 3.7.1). The complete list of
parameters can be found in Table 11.

Parameter Value

Method used for group compari-
son

Independent shrinkage t-test

Transformation no transformation

Network analysis method Subgraph ILP

Subgraph size 10

Scoring mode absolute value

Node mapping (Complexes) Minimum

Node mapping (Family) Minimum

Table 11: Parameters used for group comparison and subsequent network
analysis of the hepatocellular carcinoma (HCC) - GSE64041.
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e.2 comparison of er+ and er- breast cancer cell lines

Author contributions

The processing steps described in this section are based on our publi-
cation ’REGGAE: a novel approach for the identification of key tran-
scriptional regulators’ [531].

In this section, we describe the breast cancer data set that was used
to compare our REGGAE algorithm to alternative methods in Section
7.2.1. This analysis was part our our publication ’REGGAE: a novel
approach for the identification of key transcriptional regulators [531]’.
All information in the following paragraphs, was adopted from the
respective manuscript or supplementary material.
The gene expression profiles of the breast cancer cell lines were origi-
nally published by Heiser et al. [210]. In total, it contains microarray
measurements of 46 breast cancer cell lines (Affymetrix GeneChip
Human Gene 1.0 ST exon). The ER status of each cell lines was ex-
tracted from a study by Neve et al. [385]. Based on the ER status,
the cell lines can be categorized into five distinct groups, which are
shown in Table 12. For all analyses described in Section 7.2.1, we used
all cell lines assigned to Group 1 (ER+) and Group 2 (ER-).

e.2.1 General processing

We downloaded the quantile normalized and logarithmized (log2)
data set from ArrayExpress (Accession: E-MTAB-181). After the down-
load, the used identifiers were validated and mapped to "Official
Gene Symbols" using the mapping strategy outlined in Section 4.3.2.
Duplicated entries were replaced by the median value.

e.2.2 Group comparison and feature selection

The group comparison (ER+ vs. ER-) was conducted using the Shrink-
age t-test (cf. Section 3.4.3.2). Based on the resulting list of differen-
tially expressed genes, we create five test sets for the subsequent anal-
ysis: all significantly upregulated genes in ER+ cells (P < 0.01) and
four sets the most upregulated genes in ER+ cells (250, 500, 750, and
1,000).
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Group ER status Samples

Group 1 Estrogen-receptor
positive (ER+):

600MPE, BT474, BT483,
CAMA1, HCC1428, LY2,
MCF7, MDAMB134VI,
MDAMB175VII, MDAMB361,
MDAMB415, T47D, UACC812,
ZR751, ZR7530, ZR75B

Group 2 Estrogen-receptor
negative (ER-):

AU565, BT20, BT549, HCC38,
HCC70, HCC202, HCC1143,
HCC1187, HCC1937,
HCC1954, HCC2185,
HCC3153, HS578T, MCF10A,
MCF12A, MDAMB157,
MDAMB231, MDAMB453,
SKBR3, SUM225CWN,
SUM1315MO2

Group 3 Presumably
estrogen-receptor
positive (ER[+])

SUM52PE

Group 4 Presumably
estrogen-receptor
negative (ER[-])

SUM149PT, SUM159PT

Group 5 No information
available (NA):

184B5, HCC1395, HCC1419,
HCC1806, MCF10F,
SUM185PE

Table 12: The different sample groups of the data set.

e.2.3 Regulator effect analyses

For each method, we carried out an analysis for every test set indi-
vidually using our entire collection of human RTIs (Version 2, Regu-
latorTrail). We then aggregated, the five result lists of each method.
To this end, we selected the maximum of all p-values and the sum
of all ranks. In the last step, the final p-values were FDR adjusted
(Benjamini-Yekutieli). In the following paragraphs, we summarize the
remaining parameters for each method individually.
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Parameter Value

Implementation RegulatorTrail

P-value strategy Permutation test with
pseudo-count

Number of permutations 1,000,000

Table 13: Parameters used for the correlation set analysis (CSA).

Parameter Value

Implementation RegulatorTrail

Order of test set decreasingly with respect to
signed t-score

Order of each regulator list decreasingly with respect to
the absolute association score

Association measure Pearson’s correlation coeffi-
cient

Enrichment method Wilcoxon rank-sum test

Number of bootstrap replications 1,000

Table 14: Parameters used for the REGGAE analysis.

Parameter Value

Implementation RegulatorTrail

Association measure Pearson’s correlation coeffi-
cient

Table 15: Parameters used for the RIF1 and RIF2 analyses.

Parameter Value

Implementation RegulatorTrail

Reference set All possible target genes in
our RTI database

Table 16: Parameters used for the TFactS and TED analyses.

Parameter Value

Implementation custom Python script

Table 17: Parameters used for the TSS analyses.
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Parameter Value

Implementation Prototype implemen-
tation provided on
the authors’ web site
(http://web.tecnico.ulisboa.pt
/aplf/code/tfrank/).

Table 18: Parameters used for the TFRank analyses.

Method Runtime (s)

CSAA 450.27 (±78.76)
REGGAEB 174.98 (±1.69)
REGGAE (without bootstrapping) 23.40 (±60.36)
RIF1 23.60 (±0.28)
RIF2 23.85 (±0.10)
TSS 14.86 (±0.63)
TED 658.20 (±29.80)
TFactS 42.37 (±0.23)
TFRank 116.74 (±4.22)

Table 19: Runtime comparison of the different methods. Individual runtimes
were obtained on an Intel Core i7-3770 processor using a test set
of size 250 and the entire collection of RTIs. (A) CSA analysis for
1, 000, 000 random permutations. (B) REGGAE analysis with 1, 000
bootstrap replications. This Table was adapted from [531].

http://web.tecnico.ulisboa.pt/aplf/code/tfrank/
http://web.tecnico.ulisboa.pt/aplf/code/tfrank/
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e.3 cd14 monocytes from peripheral blood of covid-19

patients

Author contributions

The processing steps described in this section are based on our
publication “GeneTrail: A Framework for the Analysis of High-
Throughput Profiles” [176].

To demonstrate the capabilities of the GeneTrail single-cell workflow,
we analyzed a single-cell RNA-seq data set of CD14 monocytes from
peripheral blood of COVID-19 patients and healthy controls. The data
set contains gene expression profiles of 10, 339 cells from blood sam-
ples of seven hospitalized patients with COVID-19 and six healthy
controls. Of the seven hospitalized patients four were diagnosed with
with acute respiratory distress syndrome (ARDS) and required me-
chanical ventilation.
In this section, we describe the processing steps and parameters used
to generate the single-cell enrichment analysis results described in
Section 5.6.1. For all analysis we used Version V3.2 of GeneTrail and
Version V3 of our database.

e.3.1 Data download and preprocessing steps

We downloaded the prefiltered count matrix and associated metadata
for each cell from the COVID-19 Cell Atlas [25](“Peripheral Blood
MononuclearCells (PBMCs)”). For our analysis, we only consider the
subset of CD14 monocytes, which consists of 10, 339 cells. The data
set was then processed as follows. First, we mapped the provided
identifiers to Official gene symbols.

Parameter Value

Method to remove duplicates median

Table 20: Method used to remove duplicates after id mapping.
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e.3.1.1 Quality control

We then applied several filter to remove cells with insufficient quality
from the data set.

Parameter Value

Minimum number of UMIs 500

Minimum number of expressed
genes

500

duplicateMethod median

Table 21: Parameters used to filter the single-cell data set.

e.3.1.2 Normalization

For cells that pass the quality filters, we normalized the expression of
all genes.

Parameter Value

Normalization method log2(RPM+1)

Table 22: Parameters used to normalize the single-cell data set.

e.3.1.3 Feature selection

From the normalized expression matrix, we then selected the most
expressed genes for each cell.

Parameter Value

Selection method The X most highly expressed
genes

Number of selected genes per
cell

500

Table 23: Parameters used to normalize the single-cell data set.
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e.3.2 Enrichment analysis

After quality control and normalization, we conducted a over-
representation analysis for each remaining cell (cf. Section 5.4.2)
and subsequently a enrichment-based group comparison (cf. Section
5.4.2.3).

Parameter Value

Test statistic Hypergeometric test

Method for multiple testing cor-
rection

Benjamini-Yekutieli

Minimum number of category
members

0

Maximum number of category
members

700

Null hypothesis upper-tailed

Significance level 0.05

Table 24: Parameters used for the single-cell enrichment analysis.

Parameter Value

Test statistic χ2-test

Significance level 0.05

Table 25: Parameters used for the enrichment-based group comparison.

e.3.3 Dimension reduction

For the visualization of the results, we calculated UMAP coordinates
using the Seurat R package [204].

Parameter Value

Most variable genes 2000

Table 26: Parameters used for dimension reduction.
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e.4 time resolved expression profiles of early t cell ac-
tivation

Author contributions

The processing steps described in this section are based on our publi-
cation “GeneTrail 3: advanced high-throughput enrichment analysis”
[177].

To demonstrate the capabilities of our time-series workflow, we an-
alyzed a data set of time-resolved gene expression profiles of CD4+
cells that were in vitro activated [121]. The data set consists of 3× 13
mRNA expression profiles that were measured in two hour intervals,
from 0 to 24 hours, after initial activation.
Here, we desribe the processing steps and parameters used to create
the results in Section 5.6.2.

e.4.1 Microarray experiments (GSE136625)

RNA isolation and microarray experiments (Agilent-039494 SurePrint
G3 Human GE v2 8x60K Microarrays, Cat. no. G4851B, Agilent Tech-
nologies, Santa Clara, CA) were conducted by Caroline Diener ac-
cording to manufacturer instructions and are described in our pub-
lication “Quantitative and time-resolved miRNA pattern of early hu-
man T cell activation” [121]. In order to process the raw expression
values, we used the following processing steps. First, we extracted the
raw expression values using the Agilent Feature Extraction Software.
For background correction and quantile normalization, we used the
limma R-package [498]. After the normalization, the expression val-
ues were logarithmized (log2). In a final processing step, we aggre-
gated the three replicates of each time point to reduce the variance.

Parameter Value

Background correction method = normexp

offset = 16

Normalization between the arrays quantile

Aggregation of technical replicates median

Table 27: Parameters for the limma normalization and aggregation of the
replicates.



242 analyzed data sets , processing steps , and parameters

e.4.2 Feature selection and clustering

To analyze the normalized and aggregated expression values, we con-
ducted the following processing steps. First, we applied a filter step
to remove features with no expression change in the analyzed time
frame. Next, we applied the two-stage clustering approach described
in Section 5.5.

Parameter Value

Difference between minimal
and maximal time points

2.0

Table 28: Parameters used for feature selection.

Parameter Value

Distance measure Euclidean distance for gradients

Linkage method Complete linkage

Threshold for cluster 0.8

Minimum number of genes for
each cluster

1

Table 29: Parameters used for the first stage of the clustering.

Parameter Value

Distance measure Euclidean distance for gradients

Linkage method Complete linkage

Threshold for super-cluster 0.95

Table 30: Parameters used for the second stage of the clustering.
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e.4.3 Over-representation analysis (ORA)

For each cluster, we then applied an over-representation analysis to
identify associated deregulated biological processes.

Parameter Value

Minimum number of hits 1

Maximum number of hits 700

Method Hypergeometric test

P-value strategy upper-tailed

P-value adjustment Benjamini-Hochberg

Significance level 0.05

Table 31: Parameters used for the over-representation analysis.
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e.5 expression profiles of b cell lymphomas in eµ-myc

transgenic mice

Author contributions

The processing steps described in this section are based on our publi-
cation ’REGGAE: a novel approach for the identification of key tran-
scriptional regulators’ and the respective supplemental material [531].

In order to evaluate the performance of REGGAE (cf. Chapter 7) and
alternative approaches (cf. Section 3.8) , we compared microarray ex-
pression profiles (Affymerix Mouse Genome 430 2.0 array) of 50 B cell
lymphoma samples from Eµ-Myc transgenic mice and 10 healthy lym-
phnode samples from wild-type mice as a control [369]. The microar-
rays were processed by the authors using the Affymetrix Microarray
Suite version 5.0 (MAS 5.0) with default parameters. The ’global scal-
ing’ setting was used to normalize the data set with trimmed mean
target intensity of 100 for each sample.

e.5.1 General processing

We downloaded the normalized data set from the NCBI GEO repos-
itory (Accession: GSE7897). After the download, the used identifiers
were validated and mapped to "Official Gene Symbols" using the
mapping strategy outlined in Section 4.3.2. Duplicated entries were
replaced by the median value.

e.5.2 Group comparison and feature selection

The group comparison (lymphoma vs. control) was conducted using
the Shrinkage t-test (cf. Section 3.4.3.2). From the resulting score list,
we the top 250 most up- and down-regulated genes.

e.5.3 Regulator effect analyses

We applied each method to both test sets using the entire collec-
tion of human RTIs (Version 2, RegulatorTrail). In the last step, the
final p-values were FDR adjusted (Benjamini-Yekutieli). In the follow-
ing paragraphs, we summarize the remaining parameters for each
method individually.
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Parameter Value

Implementation RegulatorTrail

P-value strategy Permutation test with
pseudo-count

Number of permutations 1,000,000

Table 32: Parameters used for the correlation set analysis (CSA).

Parameter Value

Implementation RegulatorTrail

Order of test set decreasingly with respect to
absolute t-score

Order of each regulator list decreasingly with respect to
the absolute association score

Association measure Pearson’s correlation coeffi-
cient

Enrichment method Wilcoxon rank-sum test

Number of bootstrap replications 1,000

Table 33: Parameters used for the REGGAE analysis.

Parameter Value

Implementation RegulatorTrail

Association measure Pearson’s correlation coeffi-
cient

Table 34: Parameters used for the RIF1 and RIF2 analyses.

Parameter Value

Implementation RegulatorTrail

Reference set All possible target genes in
our RTI database

Table 35: Parameters used for the TFactS and TED analyses.

Parameter Value

Implementation custom Python script

Table 36: Parameters used for the TSS analyses.
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Parameter Value

Implementation Prototype implemen-
tation provided on
the authors’ web site
(http://web.tecnico.ulisboa.pt
/aplf/code/tfrank/).

Table 37: Parameters used for the TFRank analyses.

e.5.4 Top 25 regulators identified by REGGAE

The most significant results of REGGAE for the top 250 most up-
regulated genes can be found in Table 38. It contains various genes
that are known tobe. regulated by MYC (cf. Section 7.2.2.1).

Regulator Targets Q-value

MYC 243 8.22× 10−145

KAT2A 239 8.66× 10142

UBTF 239 1.11× 10130

HCFC1 239 5.29× 10−128

MBD3 228 5.01× 10−126

TFAP4 225 1.57× 10−119

RAD23B 221 1.61× 10−116

SMC3 239 7.60× 10−112

DPY30 189 4.81× 10−110

E2F1 231 2.88× 10−108

SUZ12 171 8.74× 10−101

RCOR2 239 7.87× 10−100

SMC1A 225 3.33× 10−98

GABPA 239 4.60× 10−98

SMARCA5 193 1.41× 10−97

MAZ 239 8.97× 10−97

SMARCA4 231 3.40× 10−94

NELFA 227 1.17× 10−92

E2F4 239 2.39× 10−92

TBP 239 2.95× 10−90

CTCF 239 3.94× 10−89

RAD21 239 1.10× 10−88

GTF2E2 161 1.57× 10−84

TRIM28 136 1.38× 10−82

MYB 239 3.05× 10−82

Table 38: Excerpt of the REGGAE results for the top 250 up-regualted genes
in Eµ-Myc transgenic mice compared to wild-type mice.

http://web.tecnico.ulisboa.pt/aplf/code/tfrank/
http://web.tecnico.ulisboa.pt/aplf/code/tfrank/
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e.6 knock-out of pluripotency factors in human escs

Author contributions

The processing steps described in this section are based on our publi-
cation ’REGGAE: a novel approach for the identification of key tran-
scriptional regulators’ [531].

In order to evaluate the performance of REGGAE (cf. Chapter 7) and
competing approaches (cf. Section 3.8), we compared perturbed gene
expression profiles of human embryonic stem cells (ESCs) with un-
treated controls from a data set of Wang et al. [561]. In total, the data
set contains 69 microarray profiles (Illumina HumanHT-12 V4.0 ex-
pression beadchip). The probe intensities were quantile normalized
using the beadarray R package (v1.6) [129]. Of the 69 samples, we
used 32: 8 with NANOG knock-out, 8 with POU5F1 (OCT4) knock-
out, 8 with SOX2 knock-out, and 8 controls. The respective IDs are
listed in Table 39.

e.6.1 General processing

We downloaded the quantile normalized data set from the NCBI GEO
repository (Accession: GSE34921). After the download, the used iden-
tifiers were validated and mapped to "Official Gene Symbols" using
the mapping strategy outlined in Section 4.3.2. Duplicated entries
were replaced by the median value. We then divided the data set
into three subsets that were processed individually: NANOG knock-
out + Control, POU5F1 knock-out + Control, and SOX2 knock-out +
Control.

e.6.2 Group comparison and feature selection

The group comparison (knock-out vs. control) was conducted using
the Shrinkage t-test (cf. Section 3.4.3.2). From the resulting score list,
we then selected the top 250 most up- and down-regulated genes.

e.6.3 Regulator effect analyses

We applied each method to all 6 test sets using the entire collection
of human RTIs (Version 2, RegulatorTrail). The resulting p-values of
all analyses were FDR adjusted (Benjamini-Yekutieli). In the follow-
ing paragraphs, we summarize the remaining parameters for each
method individually.
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GSM number Sample ID Group

GSM857336 H1P1 Control

GSM857337 H1P2 Control

GSM857338 H1P3 Control

GSM857339 H1P4 Control

GSM857340 H1P5 Control

GSM857341 H1P6 Control

GSM857342 H1P7 Control

GSM857343 H1P8 Control

GSM857344 shNANOG1 NANOG knock-out

GSM857345 shNANOG2 NANOG knock-out

GSM857346 shNANOG3 NANOG knock-out

GSM857347 shNANOG4 NANOG knock-out

GSM857348 shNANOG5 NANOG knock-out

GSM857349 shNANOG6 NANOG knock-out

GSM857350 shNANOG7 NANOG knock-out

GSM857351 shNANOG8 NANOG knock-out

GSM857352 shOCT41 POU5F1 knock-out

GSM857353 shOCT42 POU5F1 knock-out

GSM857354 shOCT43 POU5F1 knock-out

GSM857355 shOCT44 POU5F1 knock-out

GSM857356 shOCT45 POU5F1 knock-out

GSM857357 shOCT46 POU5F1 knock-out

GSM857358 shOCT47 POU5F1 knock-out

GSM857359 shOCT48 POU5F1 knock-out

GSM857360 shSOX21 SOX2 knock-out

GSM857361 shSOX22 SOX2 knock-out

GSM857362 shSOX23 SOX2 knock-out

GSM857363 shSOX24 SOX2 knock-out

GSM857364 shSOX25 SOX2 knock-out

GSM857365 shSOX26 SOX2 knock-out

GSM857366 shSOX27 SOX2 knock-out

GSM857367 shSOX28 SOX2 knock-out

Table 39: Samples used for the analysis.
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Parameter Value

Implementation RegulatorTrail

P-value strategy Permutation test with
pseudo-count

Number of permutations 1,000,000

Table 40: Parameters used for the correlation set analysis (CSA).

Parameter Value

Implementation RegulatorTrail

Order of test set decreasingly with respect to
absolute t-score

Order of each regulator list decreasingly with respect to
the absolute association score

Association measure Pearson’s correlation coeffi-
cient

Enrichment method Wilcoxon rank-sum test

Number of bootstrap replications 1,000

Table 41: Parameters used for the REGGAE analysis.

Parameter Value

Implementation RegulatorTrail

Association measure Pearson’s correlation coeffi-
cient

Table 42: Parameters used for the RIF1 and RIF2 analyses.

Parameter Value

Implementation RegulatorTrail

Reference set All possible target genes in
our RTI database

Table 43: Parameters used for the TFactS and TED analyses.

Parameter Value

Implementation custom Python script

Table 44: Parameters used for the TSS analyses.
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Parameter Value

Implementation Prototype implemen-
tation provided on
the authors’ web site
(http://web.tecnico.ulisboa.pt
/aplf/code/tfrank/).

Table 45: Parameters used for the TFRank analyses.

http://web.tecnico.ulisboa.pt/aplf/code/tfrank/
http://web.tecnico.ulisboa.pt/aplf/code/tfrank/
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e.7 key regulators in macrophages

Author contributions

The processing steps described in this section are based on our pub-
lication ’RegulatorTrail: a web service for the identification of key
transcriptional regulators’ [533].

In order to showcase the capabilities of the RegulatorTrail motif work-
flow, we analyzed paired chromatin accessibility and gene expression
data of macrophages extracted from venous blood. This data set is
part of the BLUEPRINT project [334].

e.7.1 General processing

We downloaded the processed data set from BLUEPRINT data portal
(Accession: S001S745 (DNAse-seq) and S001S712 (RNA-seq)). No fur-
ther processing was conducted. We uploaded both open chromatin
regions and gene expression data directly to RegulatorTrail.

e.7.2 TEPIC analysis

The parameters for the TEPIC analysis are summarized in Table 46.

Parameter Value

Reference genome GRCh38

Window size around 5’-TSS 50 kbp

Table 46: Parameters used for TEPIC.

e.7.3 INVOKE analysis

We then used the affinity scores predicted by TEPIC to build a linear
model with elastic net penalty (INVOKE, cf. Section 8.1.3.2). To train
the model, we used a nested cross-validation with grid search for the
parameter α, which balances the lasso and ridge penalty terms. The
respective parameters are shown in Table 47. The most influential
regulators are shown in Table 48.

Parameter Value

outer cross-validation 6-fold

inner cross-validation 6-fold

step size for α 0.1

Table 47: Parameters used for the INVOKE analysis.
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HOXA3 0.148367202 [13, 17, 148]

HLTF 0.089891363 [287]

ETV5 0.078639561 [451]

GMEB1 0.045548794 [254]

HOXA5 0.04494131 [187]

NRF1 0.039230003 [54, 309, 608]

PAX2 (paralog of PAX5) 0.038496525 [213]

ETS2 0.034375522 [323, 599]

ELF5 0.033069267 [538]

NFATC1 0.032528012 [602]

KLF4 0.025539592 [304, 480]

NKX2.5 0.025418796 [432]

RAD21 -0.052709626 [69]

Table 48: Influential transcription factors identified by INVOKE. Depicted
are all regulators with regression coefficient of at least 0.025 and
references to publications discussing the respective regulators in
the context of macrophages. This Figure was adapted from [533].
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e.8 wilms’ tumor study (expression profiles)

Author contributions

The processing steps described in this section are based on our pub-
lication “The role of TCF3 as potential master regulator in blastemal
Wilms tumors.” [532]. The wet lab experiments were performed by
Nicole Ludwig and the data processing was conducted by me.

For our Wilms’ tumor study (cf. Chapter 9), we analyzed gene expres-
sion profiles from 33 tumor biopsies of patients treated with neoad-
juvant chemotherapy according to the SIOP treatment regimen. The
therapy consisted of actinomycin-D, vincristine and, in the case of
metastases, doxorubicin [532]. An overview of the clinical character-
istics of each sample are shown in Table 50.

e.8.1 Ethics statement

“Our study was approved by the ethics committee of the Saarland
Medical Council (Ethikkommision der Ärztekammer des Saarlandes,
No. 136/01; 09/16/2010). Written informed consent was obtained
from the parents of all patients.” [532]

e.8.2 Microarray experiments (GSE98334)

RNA isolation and microarray experiments (Agilent-039494 SurePrint
G3 Human GE v2 8x60K Microarrays, Cat. no. G4851B, Agilent Tech-
nologies, Santa Clara, CA) were conducted by Nicole Ludwig accord-
ing to manufacturer instructions and are described in our publication
’ The role of TCF3 as potential master regulator in blastemal Wilms
tumors’ [532]. Here, we describe the data processing steps used to
create the results described in Chapter 9.
In order to process the raw expression values, we used the following
processing steps. First, we extracted the raw expression values using
the Agilent Feature Extraction Software. For background correction
and quantile normalization, we used the limma R-package [498]. Fi-
nally, we logarithmized (log2) the normalized expression values.

Parameter Value

Background correction method = normexp

offset = 16

Normalization between the arrays quantile

Table 49: Parameters for the limma normalization.
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GEO
sample

Histology Degree of
malignity

Age in
months

Gender

WT1 Blastemal subtype high risk 20 M

WT2 Blastemal subtype high risk 82 F

WT3 Blastemal subtype high risk 26 F

WT4 Blastemal subtype high risk 97 F

WT5 Blastemal subtype high risk 7 F

WT6 Blastemal subtype high risk 104 F

WT7 Blastemal subtype high risk 55 F

WT8 Blastemal subtype high risk 41 M

WT9 Blastemal subtype high risk 41 M

WT10 Blastemal subtype high risk 78 F

WT11 Blastemal subtype high risk 8 M

WT12 Blastemal subtype high risk 146 F

WT13 Blastemal subtype high risk 44 F

WT14 Blastemal subtype high risk 44 F

WT15 Blastemal subtype high risk 87 F

WT16 Blastemal subtype high risk 43 F

WT17 Blastemal subtype high risk 46 M

WT18 Completely necrotic low risk 101 F

WT19 Completely necrotic low risk 42 F

WT20 Diffuse anaplasia high risk 92 F

WT21 Diffuse anaplasia high risk 92 F

WT22 Epithelial subtype intermediate risk 6 M

WT23 Focal anaplasia intermediate risk 22 M

WT24 Regressive subtype intermediate risk 64 F

WT25 Regressive subtype intermediate risk 58 M

WT26 Regressive subtype intermediate risk 60 F

WT27 Regressive subtype intermediate risk 116 M

WT28 Regressive subtype intermediate risk 148 F

WT29 Stromal subtype intermediate risk 41 F

WT30 Triphasic subtype intermediate risk 28 F

WT31 Triphasic subtype intermediate risk 51 F

WT32 Triphasic subtype intermediate risk 35 F

WT33 Triphasic subtype intermediate risk 27 M

Table 50: Clinical details for all Wilms’ tumor samples in our study. This
table was obtained from the supplement of [532].
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e.8.3 Group comparison

We used the Shrinkage t-test (cf. Section 3.4.3.2) to calculate gene
expression differences between blastemal and non-blastemal Wilms
tumors. The group assignments of the different samples is shown in
Table 50.
Based on the resulting t-score, we created ten sorted score lists. Five
lists for the most up-regulated genes, i.e., all significantly upregulated
genes (P(T > t) < 0.01) and the 250, 500, 750, and 1000 genes with
the highest t-score, and five lists for the most downregulated genes
that were created analogously.

e.8.4 REGGAE analysis

For each of the ten score lists, described in the previous section, we
conducted a REGGAE analysis. The p-values for the five lists of up-
regulated genes were then aggregated using the second order statistic
[123] and FDR adjusted [45]. The five lists of downregulated genes
were proceessed accordingly.

Parameter Value

Implementation RegulatorTrail

Order of test set decreasingly with respect to
absolute t-score

Order of each regulator list decreasingly with respect to
the absolute association score

Association measure Pearson’s correlation coeffi-
cient

Enrichment method Wilcoxon rank-sum test

Number of bootstrap replications 1,000

Table 51: Parameters used for the REGGAE analysis.

e.8.5 Enrichment analyses

All enrichment analyses in this study were performed using version
2 of the GeneTrail web service [510].

e.8.5.1 GSEA of regulator complexes

For the analysis of regulator complexes, we used gene sets provided
by EpiFactors [350] and CORUM [454], as well as custom gene sets of
regulators with specific epigenetic functiosn, i.e., regulation of chro-
matin signaling [248], pluripotency states in ESCs [526], and regula-
tors that occupy super-enhancers in ESCs [212]. The resulting cate-
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gories were then used to conduct unweighted gene set enrichment
analyses for the most influential regulators obtained in our REGGAE
analysis.

Parameter Value

Minimum number of hits 1

Maximum number of hits 700

Method Unweighted GSEA with exact p-
value

P-value strategy row-wise (exact)

P-value adjustment Benjamini-Hochberg

Significance level 0.05

Table 52: Parameters used for the unweighted GSEA of regulator complexes
in blastemal Wilm’s tumors.

e.8.5.2 ORA of kidney developmental genes

For the analysis of kidney developmental genes, we used associated
gene sets from our data collection 3.2.3 and custom gene sets from
literature [296, 442]. The resulting categories were then used to con-
duct over-representation analyses for (1) the top 100 regulators in our
REGGAE analysis and (2) the top 1000 most upregulated genes in the
comparison between blastemal and non-blastemal Wilmstumors. .

Parameter Value

Minimum number of hits 1

Maximum number of hits 700

Method Hypergeometric test

P-value strategy row-wise (exact)

P-value adjustment Benjamini-Hochberg

Significance level 0.05

Table 53: Parameters used for the ORA of kidney developmental genes in
blastemal Wilm’s tumors.
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e.9 wilms’ tumor study (histone marks)

Author contributions

The processing steps described in this section are based on our pub-
lication “The role of TCF3 as potential master regulator in blastemal
Wilms tumors” [532]. The wet lab experiments were conducteed by
Kathrin Kattler, Jenny Wegert, and Nicole Ludwig. The data process-
ing was conducted by Kathrin Kattler and me.

For our Wilms’ tumor study (cf. Chapter 9), we also analyzed his-
tone marks (H3K4me3 + H3K27ac) of two Wilms’ tumor cell lines
ws568li and ws998M18. ws568li was derived from an originally stro-
mal Wilm’s tumor. The creation and the establishment of this cell line
has been described by Wegert et al. [567]. ws998M18 was derived
from a blastemal xenograft tumor the characterization of this cell cul-
ture has been described in Kehl et al. [532].
Chromatin preparation, Immunoprecipitation, ChIPmentation, library
preparation, and sequencing have also been described in Kehl et al.
[532]. Here, we only summarize the computational processing steps.
The processed data sets can be downloaded from the GEO repository
(Accession: GSE98721).

e.9.1 Data processing

The raw sequencing reads were processed as follows. First, we re-
moved low quality ends (phred score = 20) and the adapters of all
reads. To this end, we used the Trim Galore software (Version 0.3.3).
Next, we used the GEM mapper ([331], Version 1.376 beta) to align
the trimmed reads to the human reference genome (Versoin hs37d5).
We then converted the alignment from SAM to BAM format using
Samtools ([300], Version 1.3). Subsequently, we marked PCR duplica-
tions using the MarkDuplicate command from Picard tools (Version
1.115). Finally, we called the peaks using the narrow option of MACS2

([609], Version 2.1.1) using a minimum FDR cutoff for peak detection
(Threshold 0.05).

e.9.1.1 Comparison of histone marks

For our manuscript, we compared histone modification patterns
(H3K4me3 + H3K27ac) of the two described cell cultures and embry-
onic stem cells from the Roadmap Epigenomics Mapping Consortium
(Epigenome E015). To this end, we first analyzed each sample individ-
ually and then compared the results. For this purpose, we assessed
for all genes annotated in GENCODE (V27) if their respective pro-
moter regions are affected by one, both, or none of the considered
histone modifications in each sample.
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We then conducted multiple analysis to identify gene sets with sim-
ilarities or differences between the investigated samples, cf. Section
9.2.1. For the resulting gene lists, we performed over-representation
analysis to identify enriched biological categories.

Parameter Value

Minimum number of hits 1

Maximum number of hits 700

Method Hypergeometric test

P-value strategy row-wise (exact)

P-value adjustment Benjamini-Hochberg

Significance level 0.05

Reference set All genes annotated in GEN-
CODE release 27 of GRCH37

Table 54: Parameters used for the ORA of kidney developmental genes in
blastemal Wilm’s tumors.

e.9.1.2 Integrative analysis of epigenomic and transcriptomic data

In our study, we also compared genes with H3K4me3 and H3K27ac
marks in their promoter region, the most highly expressed genes in
blastemal tumors, and target genes of TCF3. For the latter, we used
ChIP-Seq experiments of mouse ESCs [97, 333] and mapped them to
human orthologs. To compare the different gene sets, we conducted
a over-representation analysis using GeneTrail.

Parameter Value

Minimum number of hits 1

Maximum number of hits 700

Method Hypergeometric test

P-value strategy row-wise (exact)

P-value adjustment Benjamini-Hochberg

Significance level 0.05

Reference set All genes annotated in GEN-
CODE release 27 of GRCH37

Table 55: Parameters used for the ORA of kidney developmental genes in
blastemal Wilm’s tumors.
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e.10 colon adenocarcinoma analysis (tcga-aa-3542)

Author contributions

The processing steps described in this section are based on our publi-
cation “DrugTargetInspector: An assistance tool for patient treatment
stratification” [474].

In order to demonstrated the capabilities of ourDrugTargetInspector
web service, we analyzed a colon adenocarcinoma sample (TCGA-
AA-3542) from The Cancer Genome Atlas (TCGA) [536]. Here, we
describe the general processing steps. These have also been described
in our DrugTargetInspector publication [474].

e.10.1 Download

We used the TCGA data portal to download normalized expression
values (level 3) and processed mutation data (level 2) for the investi-
gated colon adenocarcinoma sample (TCGA-AA-3542) and nine con-
trol samples:

Control samples

TCGA-A6-2678-11

TCGA-A6-2683-11

TCGA-AA-3514-11

TCGA-AA-3517-11

TCGA-AA-3520-11

TCGA-AA-3522-11

TCGA-AA-3527-11

TCGA-AA-3531-11

TCGA-AA-3534-11

e.10.2 Data processing

For the gene expression data, we calculated a Z-score to calculate the
differences between the tumor sample and the panel of controls. The
mutation data was downloaded and then converted into VCF format
(cf., Section F.2.3). We then used the Ensembl Variant Effect Predic-
tor [346] to annotate all genetic variations for the GRCh37 genome
assembly. For the remaining processing steps, we used the default
parameters of DrugTargetInspector.
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e.11 breast cancer analysis (tcga-bh-a0dt)

Author contributions

The processing steps described in this section are based on our pub-
lication “ClinOmicsTrailbc: a visual analytics tool for breast cancer
treatment stratification” [475].

In order to demonstrate the capabilities of our ClinOmicsTrailbc

web service, we analyzed a colon adenocarcinoma sample (TCGA−

BH−A0DT ) from The Cancer Genome Atlas (TCGA) [536]. Here, we
describe the general processing steps. These have also been described
in our ClinOmicsTrailbc publication [475].

e.11.1 Clinical details

Age 41

Cancer type Breast cancer

Cancer stage Stage II

TNM stage T1 / N1 / M0

Hormone receptor status ER positive

PR positive

HER2 negative

Cancer subtype (PAM50) luminal A

e.11.2 Download

We used the TCGA data portal to download clinical information, ex-
pression measurements, copy number variations, and mutations from
the primary tumor as well as corresponding controls.

e.11.3 Data processing

We used the default parameters of ClinOmicsTrailbc to conduct all
processing steps.



F
S U P P O RT E D F I L E F O R M AT S

f.1 file formats for molecular measurements

Our web services provide a variety of file formats in which molecular
measurements can be supplied.

f.1.1 Plain text files

Most measurements can be supplied as plain text files in any whites-
pace separated format (txt, tsv, ...). All of them assume that each row
represents a specific feature.

f.1.1.1 Feature lists

Feature list can either contain unordered sets of molecular features or
a sorted list of features. While the web services can handle the two
cases, they cannot distinguish between them and we rely on the user
to select the parameters accordingly.

Listing 6: Example of an unordered feature list.

1 BRCA1

2 TCF3

3 SUZ12

f.1.1.2 Score lists

In addition to the feature name, score lists additionally contain a
weight per feature that should reflect its importance, such as a score
from a group comparison. This allows users to perform a custom
scoring, which might not be supported by our framework.

Listing 7: Example of a score list.

1 FOS 3.5

2 JUN 4.5

3 NFKB1 2.2

4 ...

f.1.1.3 Feature matrices

Feature matrices contain different sample measurements for each fea-
ture. Hence, matrices are required to contain a header field that con-
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tains a unique identifier for each samples. An example is shown in
Listing 5.

Listing 8: Example of a feature matrix with measurements for three genes
in the samples.

1 Sample1 Sample2 Control1

2 CXCL2 0.0 0.1 3.4

3 IFNG 4.0 4.1 3.9

4 TNF 5.7 6.5 1.2

5 ...

f.1.2 Sparse matrix formats

Single-cell data sets often have a large number of samples, but are
very sparse. Hence, they are often stored in special matrix formats to
save storage space and to reduce network traffic.

f.1.2.1 Matrix market exchange format (.mtx)

The Matrix market exchange format is a class of coordinate based file
formats, where each file consists of four distinct parts:

1. A header line indicated with %%. This line specifies the format
data type.

2. One or multiple comment lines indicated with %

3. One line with three integer values that specify the number of
rows, the number of columns, and the number of non-zero en-
tries.

4. Multiple data lines that each represent a coordinate in the ma-
trix (row index, column index, value).

Listing 9: The first few lines of a matrix in matrix market exchange format.

1 %%MatrixMarket matrix coordinate integer general

2 %metadata_json: {"software_version": "cellranger-arc-1.0.0", "

format_version": 2}

3 113843 3012 19472856

4 25 1 1

5 63 1 2

6 100 1 1

7 169 1 1

8 ...

The .mtx format does not support annotations such as row and col-
umn names of matrix, hence, they are often provided as additional
feature lists (cf. Section F.1.1.1).
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f.2 file formats for genomic intervals

Our framework also supports several file formats to store genetic in-
formation that are described in the following sections.

f.2.1 BED format

The BED format [260] is a whitespace separated text format used to
save genomic regions. It consists of two parts the (optional) header
and the body. The format of the header is not clearly defined and de-
pending on the application can fulfill different roles, such as general
descriptions of the file (indicated by ’#’ at the beginning of a line) or
instructions for a genome viewer (indicated by ’track’ or ’browser’ at
the beginning of a line). In the body, each line represents a genomic
region that is represented by three obligatory columns and up to nine
optional ones that can be used to provide additional information, e.g.,
the name of the region, or the orientation on the genome (’+’ or ’-’
strand).

1. Chromosome identifier (e.g, chr1 or 1)

2. Start coordinate of the interval (inclusive, index starts at 0)

3. End coordinate of the interval (non-inclusive)

Listing 10: Example of a BED file.

1 chr1 2140321 2141319

2 chr1 2391041 2392195

3 ...
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f.2.2 GFF format

The general feature format (GFF) is a tab-separated column-based file
format used to describe feature annotations of DNA, RNA, or protein
sequences, such as the position of genes in a genome. Currently, there
are several versions of this format that have slightly different specifi-
cations. Here, we focus on version 3 [508].
GFF files contain two parts: an optional header and a body section.
The header contains several lines with comments of metadata that
are indicated with “##”. Each line in the body defines one feature
in a given sequence. The features are specified by nine mandatory
columns that are described in Table 56.

Column Description

seqid The name of the sequence in which the feature occurs.

source Keyword describing the source of the annotation, e.g.,
the name of a database.

type The feature type, e.g., “gene”.

start The start position of the feature in the given sequence
(starting with index 1).

end The end position of the feature in the given sequence.

score A score for the feature.

strand A flag (“+” or “-”) indicating on which strand the fea-
ture is located.

phase A flag (“0”, “1”, or “2”) that indicates the reading
frame of coding sequence (CDS) features, i.e., if the
first codon starts at the position 0,1, or 2 of the fea-
ture.

attributes A flag (“0”, “1”, or “2”) that indicates the reading
frame of coding sequence (CDS) features, i.e., if the
first codon starts at the position 0,1, or 2 of the fea-
ture.

Table 56: Mandatory columns in a GFF file (Version 3).
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f.2.3 VCF format

The Variant Call Format (VCF) is a column-based text format that is
used to save genetic variations. It consists of three parts, i.e., multiple
metadata lines, a header line, and multiple lines in the body. Each
metadata line starts with “##” and contains one key-value pair that
describe the file format, metadata of the analyzed sample, or process-
ing steps used to create the file, e.g., applied filters.
The header line starts with “#” and contains the names for the columns
in the body. Each line in the body represents one genetic variant. Each
line contains eight mandatory fields that describe the associated vari-
ant and an arbitrary number fields that represent information about
samples. The mandatory fields are:

Column Description

CHROM The identifier of the chromosome or contig in
which the variant was found.

POS Position of the first base that is affected by the vari-
ant.

ID A list of unique identifiers for the variant (sepa-
rated by “;”). Missing values are indicated by “.”.

REF The reference allele, i.e, the base or bases that can
be found at the given position at the reference se-
quence.

ALT A comma-separated list of alternative allele start-
ing at the given position.

QUAL A quality score for the variant, i.e., the negative
logarithm of the probability that the alternative al-
lele is wrong. Missing values are indicated by “.”.

FILTER A semicolon-separated list of filters that failed
when processing the variant, or “PASS” if all fil-
ters were passed.

INFO A list of key-value pairs that provide additional
information for the variant.

Table 57: Mandatory columns in a VCF file.
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f.2.4 SEG format

The segmented data or SEG format is a tab-separated file format for
genomic regions and associated scores [397]. It is typically used to
represent copy number variations in a genome [397].
A SEG file starts with one header line that specifies thee column
names. Each subsequent line represents one genomic region and con-
tains up to six entries (cf. Table 58).

Column Description

ID The sample or track name.

chrom Name of the chromosome or contig that contains
the region.

loc.start Start position of the genomic region.

loc.end End position of the genomic region.

num.mark Number of bins covered by the genomic region.
(optional)

seg.mean Average value of the segment. The values are typ-
ically in a logarithmic scale.

Table 58: Mandatory columns in a SEG file.

f.2.5 IDAT format

Intensity Data (or IDAT) format is an proprietary file format used
to save methylation data provided by Illumina Methylation Assays
[236]. It contains methylation values for all measured CpGs. To parse
those values, specialized tools are required. For all our tools, we use
illuminaio [497] to read the data files and RnBeads [371] to calculate
the average methylation signal in predefined genomic regions.
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f.2.6 GMT format

The Gene Matrix Transposed (GMT) format is a text-based file format
used to store a collection of biological categories [237, 513]. Each line
in a GMT file contains multiple columns that define one specific cate-
gory. The first column in each row contains the name of the category,
the second column contains an information field, and all remaining
columns contain the biological entities that belong to this category.
The information field can either be a description of the category, am
identifier, or a hyperlink to the source. In case of GeneTrail, we often
provide a JSON field that contains all available information.

Listing 11: Example of a GMT file containg two categories from the KEGG
database. In this case, the information field contains the respec-
tive KEGG ids.

1 mTOR signaling pathway hsa04150 IRS1 FZD10 TNF ...

2 Phagosome hsa04145 SCARB1 CLEC4M TFRC ...





G
O V E RV I E W O F E X T E R N A L R E S O U R C E S

g.1 supported organisms

Latin name Common name Taxon ID

Arabidopsis thaliana Thale cress 3702

Bos taurus Cow (cattle) 9913

Caenorhabditis elegans Roundworm 6239

Canis familiaris Domestic dog 9615

Danio rerio Zebrafish 7955

Drosophila melanogaster Fruit fly 7227

Gallus gallus Chicken 9031

Homo sapiens Modern human 9606

Mus musculus House mouse 10090

Pan troglodytes Common chimpanzee 9598

Rattus norvegicus Brown rat 10116

Sus scrofa Domestic pig 9823

Table 59: Overview of supported organisms. This table is adapted from
[177].
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g.2 supported identifier types

Identifier Example

Ensembl transcript ENST00000264227

NCBI GI RNA 221041195

RefSeq transcript XM_005259129

Vega RNA OTTHUMT00000322976

Table 60: Overview of supported identifier types for transcripts. This table
is adapted from [177].

Identifier Example

Ensembl gene ENSG00000012048

Entrez gene 602

Gene alias BCL4

Gene symbol (official) BCL3

NCBI GI gene 148151281

RefSeq gene NC_000019

UniGene Hs.31210

Vega gene OTTHUMG00000151517

Table 61: Overview of supported identifier types for genes. This table is
adapted from [177].

Identifier Example

Ensembl protein ENSP00000164227

NCBI GI protein 578822694

UniParc UPI0000D4AF29

UniProtKB AC/ID P20749

UniRef50 UniRef50_P20749

UniRef90 UniRef90_P20749

UniRef100 UniRef100_P20749

Vega protein OTTHUMP00000200151

Table 62: Overview of supported identifier types for proteins. This table is
adapted from [177].
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Identifier Example

miRBase Accession MIMAT0004585

miRBase (V14 - V21) hsa-miR-15b-3p

miRCarta m-204

Table 63: Overview of supported identifier types for miRNAs. This table is
adapted from [177].

Identifier Example

dbSNP rs34039386

Table 64: Overview of supported identifier types for SNPs. This table is
adapted from [177].

g.3 databases

Omics Database

mRNA + Protein ConsensusPathDB [251], CORUM [454],
EpiFactors [350], GO [100], HumanCyc [85],
HumanProteinAtlas [415], KEGG [394],
miRTarBase [228], MSigDB [306], PAN-
THER [358], Pfam [41], PharmGKB [211],
Reactome [142], RefSeq [421], TRANS-
FAC [342], WikiPathways [256]

miRNA GO [100], miRTarBase [228], mirPathDB [530]

SNPs GWAS Catalog [573], PheWAS Catalog [118]

Table 65: Overview of biological categories for the different omics- types.



g.4 regulator target-intersections (rtis)

Database Predefined TSS
+/-
1000

TSS
+/-
5000

TSS
+/-
10000

TSS
+1000/
-10000

ChEA[286] x

ChipAtlas[396] x x x

ChipBase[592] x x x x

ENCODE[99] x x x x

Jaspar[158] x x x x

Signalink[146] x

TRANSFAC[342] x x

Table 66: Overview of the RTIs provided by RegulatorTrail. This table is
adapted from [533]



B I B L I O G R A P H Y

[1] Dhiraj Acharya, GuanQun Liu, and Michaela U Gack. “Dys-
regulation of type I interferon responses in COVID-19.” In:
Nature Reviews Immunology 20.7 (2020), pp. 397–398.

[2] Marit Ackermann and Korbinian Strimmer. “A general mod-
ular framework for gene set enrichment analysis.” In: BMC
bioinformatics 10.1 (2009), pp. 1–20.

[3] American Cancer Society (ACS). American Cancer Society (ACS)
[Website]. url: https://www.cancer.org/cancer.html (visited
on 04/30/2021).

[4] Jerry M Adams and Suzanne Cory. “The Bcl-2 apoptotic
switch in cancer development and therapy.” In: Oncogene 26.9
(2007), pp. 1324–1337.

[5] Xian Adiconis, Adam L Haber, Sean K Simmons, Ami Levy
Moonshine, Zhe Ji, Michele A Busby, Xi Shi, Justin Jacques,
Madeline A Lancaster, Jen Q Pan, et al. “Comprehensive com-
parative analysis of 5´-end RNA-sequencing methods.” In: Na-
ture methods 15.7 (2018), pp. 505–511.

[6] Ivan Adzhubei, Daniel M Jordan, and Shamil R Sunyaev. “Pre-
dicting functional effect of human missense mutations using
PolyPhen-2.” In: Current protocols in human genetics 76.1 (2013),
pp. 7–20.

[7] Affymetrix (Thermo Fisher Scientific Inc.) Genome-Wide Hu-
man SNP Array 5.0. 2022. url: https://www.affymetrix.com/
products_services/arrays/specific/genome_wide/genome_

wide_snp_5.affx (visited on 07/17/2022).

[8] Vikram Agarwal, George W Bell, Jin-Wu Nam, and David P
Bartel. “Predicting effective microRNA target sites in mam-
malian mRNAs.” In: elife 4 (2015), e05005.

[9] Agilent. SurePrint G3 Human CGH Microarray 8x60K. 2022. url:
https : / / www . agilent . com / en / product / cgh - cgh - snp -

microarray- platform/cgh- cgh- snp- microarrays/human-

microarrays/sureprint-g3-human-cgh-microarray-8x60k-

228417 (visited on 07/17/2022).

[10] Chiara Agrati, Alessandra Sacchi, Veronica Bordoni, Eleonora
Cimini, Stefania Notari, Germana Grassi, Rita Casetti,
Eleonora Tartaglia, Eleonora Lalle, Alessandra D’Abramo, et
al. “Expansion of myeloid-derived suppressor cells in patients
with severe coronavirus disease (COVID-19).” In: Cell Death &
Differentiation 27.11 (2020), pp. 3196–3207.

273

https://www.cancer.org/cancer.html
https://www.affymetrix.com/products_services/arrays/specific/genome_wide/genome_wide_snp_5.affx
https://www.affymetrix.com/products_services/arrays/specific/genome_wide/genome_wide_snp_5.affx
https://www.affymetrix.com/products_services/arrays/specific/genome_wide/genome_wide_snp_5.affx
https://www.agilent.com/en/product/cgh-cgh-snp-microarray-platform/cgh-cgh-snp-microarrays/human-microarrays/sureprint-g3-human-cgh-microarray-8x60k-228417
https://www.agilent.com/en/product/cgh-cgh-snp-microarray-platform/cgh-cgh-snp-microarrays/human-microarrays/sureprint-g3-human-cgh-microarray-8x60k-228417
https://www.agilent.com/en/product/cgh-cgh-snp-microarray-platform/cgh-cgh-snp-microarrays/human-microarrays/sureprint-g3-human-cgh-microarray-8x60k-228417
https://www.agilent.com/en/product/cgh-cgh-snp-microarray-platform/cgh-cgh-snp-microarrays/human-microarrays/sureprint-g3-human-cgh-microarray-8x60k-228417


274 bibliography

[11] Aviva Presser Aiden, Miguel N Rivera, Esther Rheinbay,
Manching Ku, Erik J Coffman, Thanh T Truong, Sara O Var-
gas, Eric S Lander, Daniel A Haber, and Bradley E Bernstein.
“Wilms tumor chromatin profiles highlight stem cell proper-
ties and a renal developmental network.” In: Cell stem cell 6.6
(2010), pp. 591–602.

[12] Bronwen L Aken, Sarah Ayling, Daniel Barrell, Laura Clarke,
Valery Curwen, Susan Fairley, Julio Fernandez Banet, Kon-
stantinos Billis, Carlos García Girón, Thibaut Hourlier, et al.
“The Ensembl gene annotation system.” In: Database 2016

(2016).

[13] Hadeel Al Sadoun, Matthew Burgess, Kathryn E Hentges, and
Kimberly A Mace. “Enforced expression of Hoxa3 inhibits clas-
sical and promotes alternative activation of macrophages in
vitro and in vivo.” In: The Journal of Immunology 197.3 (2016),
pp. 872–884.

[14] Bruce Alberts, Alexander Johnson, Julian Lewis, David Mor-
gan, Martin Raff, Peter Walter Keith Roberts, et al. “Molecular
biology of the cell.” In: (2018).

[15] Julia Alles, Tobias Fehlmann, Ulrike Fischer, Christina Backes,
Valentina Galata, Marie Minet, Martin Hart, Masood Abu-
Halima, Friedrich A Grässer, Hans-Peter Lenhof, et al. “An
estimate of the total number of true human miRNAs.” In: Nu-
cleic acids research 47.7 (2019), pp. 3353–3364.

[16] Roberto Alonso, Francisco Salavert, Francisco Garcia-Garcia,
Jose Carbonell-Caballero, Marta Bleda, Luz Garcia-Alonso,
Alba Sanchis-Juan, Daniel Perez-Gil, Pablo Marin-Garcia,
Ruben Sanchez, et al. “Babelomics 5.0: functional interpreta-
tion for new generations of genomic data.” In: Nucleic acids
research 43.W1 (2015), W117–W121.

[17] Salma Alrdahe, Hadeel Al Sadoun, Tanja Torbica, Edward A
McKenzie, Frank L Bowling, Andrew JM Boulton, and Kim-
berly A Mace. “Dysregulation of macrophage development
and phenotype in diabetic human macrophages can be res-
cued by Hoxa3 protein transduction.” In: PloS one 14.10 (2019),
e0223980.

[18] Alicia Amadoz, Patricia Sebastian-Leon, Enrique Vidal, Fran-
cisco Salavert, and Joaquin Dopazo. “Using activation status
of signaling pathways as mechanism-based biomarkers to pre-
dict drug sensitivity.” In: Scientific reports 5.1 (2015), pp. 1–14.

[19] Renée van Amerongen and Roel Nusse. “Towards an inte-
grated view of Wnt signaling in development.” In: Develop-
ment 136.19 (2009), pp. 3205–3214.



bibliography 275

[20] Simon Anders and Wolfgang Huber. “Differential expression
analysis for sequence count data.” In: Nature Precedings (2010),
pp. 1–1.

[21] Sharon Anderson, Alan T Bankier, Bart G Barrell, Maarten HL
de Bruijn, Alan R Coulson, Jacques Drouin, Ian C Eperon, Don-
ald P Nierlich, Bruce A Roe, Frederick Sanger, et al. “Sequence
and organization of the human mitochondrial genome.” In:
Nature 290.5806 (1981), pp. 457–465.

[22] Guillermo Arango Duque and Albert Descoteaux.
“Macrophage cytokines: involvement in immunity and
infectious diseases.” In: Frontiers in immunology 5 (2014),
p. 491.

[23] Prabhu S Arunachalam, Florian Wimmers, Chris Ka Pun Mok,
Ranawaka APM Perera, Madeleine Scott, Thomas Hagan, Na-
talia Sigal, Yupeng Feng, Laurel Bristow, Owen Tak-Yin Tsang,
et al. “Systems biological assessment of immunity to mild
versus severe COVID-19 infection in humans.” In: Science
369.6508 (2020), pp. 1210–1220.

[24] Highsoft AS. HighCharts. url: https://www.highcharts.com/
(visited on 03/11/2021).

[25] Wellcome Trust Human Cell Atlas. COVID-19 Cell Atlas. 2022.
url: https : / / www . covid19cellatlas . org/ (visited on
01/08/2022).

[26] Oswald T Avery, Colin M MacLeod, and Maclyn McCarty.
“Studies on the chemical nature of the substance inducing
transformation of pneumococcal types: induction of transfor-
mation by a desoxyribonucleic acid fraction isolated from
pneumococcus type III.” In: The Journal of experimental medicine
79.2 (1944), pp. 137–158.

[27] Joshua E Babiarz, J Graham Ruby, Yangming Wang, David
P Bartel, and Robert Blelloch. “Mouse ES cells express
endogenous shRNAs, siRNAs, and other Microprocessor-
independent, Dicer-dependent small RNAs.” In: Genes & de-
velopment 22.20 (2008), pp. 2773–2785.

[28] Christina Backes, Tobias Fehlmann, Fabian Kern, Tim Kehl,
Hans-Peter Lenhof, Eckart Meese, and Andreas Keller. “miR-
Carta: a central repository for collecting miRNA candidates.”
In: Nucleic acids research 46.D1 (2018), pp. D160–D167.

[29] Christina Backes, Andreas Keller, Jan Kuentzer, Benny Kneissl,
Nicole Comtesse, Yasser A Elnakady, Rolf Müller, Eckart
Meese, and Hans-Peter Lenhof. “GeneTrail—advanced gene
set enrichment analysis.” In: Nucleic acids research 35.suppl_2

(2007), W186–W192.

https://www.highcharts.com/
https://www.covid19cellatlas.org/


276 bibliography

[30] Christina Backes, Qurratulain T Khaleeq, Eckart Meese, and
Andreas Keller. “miEAA: microRNA enrichment analysis and
annotation.” In: Nucleic acids research 44.W1 (2016), W110–
W116.

[31] Christina Backes, Eckart Meese, Hans-Peter Lenhof, and An-
dreas Keller. “A dictionary on microRNAs and their puta-
tive target pathways.” In: Nucleic acids research 38.13 (2010),
pp. 4476–4486.

[32] Christina Backes, Alexander Rurainski, Gunnar W Klau,
Oliver Müller, Daniel Stöckel, Andreas Gerasch, Jan Küntzer,
Daniela Maisel, Nicole Ludwig, Matthias Hein, et al. “An in-
teger linear programming approach for finding deregulated
subgraphs in regulatory networks.” In: Nucleic acids research
40.6 (2012), e43–e43.

[33] Christina Backes, Tim Kehl, Daniel Stöckel, Tobias Fehlmann,
Lara Schneider, Eckart Meese, Hans-Peter Lenhof, and An-
dreas Keller. “miRPathDB: a new dictionary on microRNAs
and target pathways.” In: Nucleic acids research (2016), gkw926.

[34] Soo Youn Bae, Sangmin Kim, Jun Ho Lee, Hyun-chul Lee, Se
Kyung Lee, Won Ho Kil, Seok Won Kim, Jeong Eon Lee, and
Seok Jin Nam. “Poor prognosis of single hormone receptor-
positive breast cancer: similar outcome as triple-negative
breast cancer.” In: BMC cancer 15.1 (2015), pp. 1–9.

[35] Yu-Long Bai, Melody Baddoo, Erik K Flemington, Hani N
Nakhoul, and Yao-Zhong Liu. “Screen technical noise in single
cell RNA sequencing data.” In: Genomics 112.1 (2020), pp. 346–
355.

[36] Timothy L Bailey. “DREME: motif discovery in transcription
factor ChIP-seq data.” In: Bioinformatics 27.12 (2011), pp. 1653–
1659.

[37] Andrew J Bannister and Tony Kouzarides. “Regulation of
chromatin by histone modifications.” In: Cell research 21.3
(2011), pp. 381–395.

[38] Nehla Banu, Sandeep Surendra Panikar, Lizbeth Riera Leal,
and Annie Riera Leal. “Protective role of ACE2 and its down-
regulation in SARS-CoV-2 infection leading to macrophage ac-
tivation syndrome: therapeutic implications.” In: Life sciences
256 (2020), p. 117905.

[39] Irena Barbulovic-Nad, Michael Lucente, Yu Sun, Mingjun
Zhang, Aaron R Wheeler, and Markus Bussmann. “Bio-
microarray fabrication techniques—a review.” In: Critical re-
views in biotechnology 26.4 (2006), pp. 237–259.

[40] David P Bartel. “Metazoan micrornas.” In: Cell 173.1 (2018),
pp. 20–51.



bibliography 277

[41] Alex Bateman, Lachlan Coin, Richard Durbin, Robert D Finn,
Volker Hollich, Sam Griffiths-Jones, Ajay Khanna, Mhairi Mar-
shall, Simon Moxon, Erik LL Sonnhammer, et al. “The Pfam
protein families database.” In: Nucleic acids research 32.suppl_1

(2004), pp. D138–D141.

[42] Carl Benda. “Ueber die spermatogenese der vertebraten und
höherer evertebraten, II. Theil: Die histiogenese der sper-
mien.” In: Arch. Anat. Physiol 73 (1898), pp. 393–398.

[43] Martin Bengtsson, Anders Ståhlberg, Patrik Rorsman, and
Mikael Kubista. “Gene expression profiling in single cells
from the pancreatic islets of Langerhans reveals lognormal dis-
tribution of mRNA levels.” In: Genome research 15.10 (2005),
pp. 1388–1392.

[44] Yoav Benjamini and Yosef Hochberg. “Controlling the false
discovery rate: a practical and powerful approach to multi-
ple testing.” In: Journal of the Royal statistical society: series B
(Methodological) 57.1 (1995), pp. 289–300.

[45] Yoav Benjamini and Daniel Yekutieli. “The control of the false
discovery rate in multiple testing under dependency.” In: An-
nals of statistics (2001), pp. 1165–1188.

[46] Otto G Berg and Peter H von Hippel. “Selection of DNA bind-
ing sites by regulatory proteins: Statistical-mechanical theory
and application to operators and promoters.” In: Journal of
molecular biology 193.4 (1987), pp. 723–743.

[47] Gabriele Bergers and Laura E Benjamin. “Tumorigenesis and
the angiogenic switch.” In: Nature reviews cancer 3.6 (2003),
pp. 401–410.

[48] Tim Berners-Lee. Universal resource identifiers in WWW. 1994.

[49] Tim Berners-Lee, Robert Cailliau, Ari Luotonen, Henrik
Frystyk Nielsen, and Arthur Secret. “The world-wide web.”
In: Communications of the ACM 37.8 (1994), pp. 76–82.

[50] Tim Berners-Lee, Roy Fielding, Larry Masinter, et al. Uniform
resource identifiers (URI): Generic syntax. 1998.

[51] Tim Berners-Lee, Larry Masinter, Mark McCahill, et al. “Uni-
form resource locators (URL).” In: (1994).

[52] Bradley E Bernstein, John A Stamatoyannopoulos, Joseph
F Costello, Bing Ren, Aleksandar Milosavljevic, Alexander
Meissner, Manolis Kellis, Marco A Marra, Arthur L Beaudet,
Joseph R Ecker, et al. “The NIH roadmap epigenomics
mapping consortium.” In: Nature biotechnology 28.10 (2010),
pp. 1045–1048.



278 bibliography

[53] Doron Betel, Anjali Koppal, Phaedra Agius, Chris Sander,
and Christina Leslie. “Comprehensive modeling of microRNA
targets predicts functional non-conserved and non-canonical
sites.” In: Genome biology 11.8 (2010), pp. 1–14.

[54] TA Beyer, Ulrich Auf dem Keller, S Braun, M Schäfer, and
S Werner. “Roles and mechanisms of action of the Nrf2 tran-
scription factor in skin morphogenesis, wound repair and skin
cancer.” In: Cell death and differentiation 14.7 (2007), p. 1250.

[55] BGI. BGISEQ. 2020. url: https : / / www . bgi . com / dev / wp -

content / uploads / sites / 19 / 2017 / 04 / BGISEQ - 500 - WGS -

Technical-Note-Flyer_20180223A4\%E5\%87\%BA\%E8\%A1\

%80.pdf (visited on 12/26/2020).

[56] Anindya Bhattacharya and Yan Cui. “miR2GO: comparative
functional analysis for microRNAs.” In: Bioinformatics 31.14

(2015), pp. 2403–2405.

[57] Anindya Bhattacharya, Jesse D Ziebarth, and Yan Cui.
“PolymiRTS Database 3.0: linking polymorphisms in microR-
NAs and their target sites with human diseases and biological
pathways.” In: Nucleic acids research 42.D1 (2014), pp. D86–D91.

[58] Nirmala Bhoo-Pathy, Cheng-Har Yip, Mikael Hartman, Nakul
Saxena, Nur Aishah Taib, Gwo-Fuang Ho, Lai-Meng Looi,
Awang M Bulgiba, Yolanda van der Graaf, and Helena M
Verkooijen. “Adjuvant! Online is overoptimistic in predicting
survival of Asian breast cancer patients.” In: European Journal
of Cancer 48.7 (2012), pp. 982–989.

[59] Eva Bianconi, Allison Piovesan, Federica Facchin, Alina Be-
raudi, Raffaella Casadei, Flavia Frabetti, Lorenza Vitale, Maria
Chiara Pelleri, Simone Tassani, Francesco Piva, et al. “An esti-
mation of the number of cells in the human body.” In: Annals
of human biology 40.6 (2013), pp. 463–471.

[60] Mithun Biswas, Karine Voltz, Jeremy C Smith, and Jörg Lan-
gowski. “Role of histone tails in structural stability of the nu-
cleosome.” In: PLoS computational biology 7.12 (2011), e1002279.

[61] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte,
and Etienne Lefebvre. “Fast unfolding of communities in large
networks.” In: Journal of statistical mechanics: theory and experi-
ment 2008.10 (2008), P10008.

[62] Christoph Bock, Matthias Farlik, and Nathan C Sheffield.
“Multi-omics of single cells: strategies and applications.” In:
Trends in biotechnology 34.8 (2016), pp. 605–608.

[63] Carlo Bonferroni. “Teoria statistica delle classi e calcolo delle
probabilita.” In: Pubblicazioni del R Istituto Superiore di Scienze
Economiche e Commericiali di Firenze 8 (1936), pp. 3–62.

https://www.bgi.com/dev/wp-content/uploads/sites/19/2017/04/BGISEQ-500-WGS-Technical-Note-Flyer_20180223A4\%E5\%87\%BA\%E8\%A1\%80.pdf
https://www.bgi.com/dev/wp-content/uploads/sites/19/2017/04/BGISEQ-500-WGS-Technical-Note-Flyer_20180223A4\%E5\%87\%BA\%E8\%A1\%80.pdf
https://www.bgi.com/dev/wp-content/uploads/sites/19/2017/04/BGISEQ-500-WGS-Technical-Note-Flyer_20180223A4\%E5\%87\%BA\%E8\%A1\%80.pdf
https://www.bgi.com/dev/wp-content/uploads/sites/19/2017/04/BGISEQ-500-WGS-Technical-Note-Flyer_20180223A4\%E5\%87\%BA\%E8\%A1\%80.pdf


bibliography 279

[64] Carlo E Bonferroni. “Il calcolo delle assicurazioni su gruppi
di teste.” In: Studi in onore del professore salvatore ortu carboni
(1935), pp. 13–60.

[65] WA Bonner, HR Hulett, RG Sweet, and LA Herzenberg. “Flu-
orescence activated cell sorting.” In: Review of Scientific Instru-
ments 43.3 (1972), pp. 404–409.

[66] Bert Bos, Tantek Çelik, Ian Hickson, and Håkon Wium Lie.
“Cascading style sheets level 2 revision 1 (css 2.1) specifica-
tion.” In: W3C working draft, W3C, June (2005).

[67] Mike Bostock. D3. url: https : / / d3js . org/ (visited on
03/11/2021).

[68] Emmanuel Boutet, Damien Lieberherr, Michael Tognolli,
Michel Schneider, and Amos Bairoch. “Uniprotkb/swiss-
prot.” In: Plant bioinformatics. Springer, 2007, pp. 89–112.

[69] Sarion R Bowers, Fabio Mirabella, Fernando J Calero-Nieto,
Stephanie Valeaux, Suzana Hadjur, Euan W Baxter, Matthias
Merkenschlager, and Peter N Cockerill. “A conserved in-
sulator that recruits CTCF and cohesin exists between the
closely related but divergently regulated interleukin-3 and
granulocyte-macrophage colony-stimulating factor genes.” In:
Molecular and cellular biology 29.7 (2009), pp. 1682–1693.

[70] Linda M Boxer and Chi V Dang. “Translocations involving c-
myc and c-myc function.” In: Oncogene 20.40 (2001), pp. 5595–
5610.

[71] Alan P Boyle, Lingyun Song, Bum-Kyu Lee, Darin London,
Damian Keefe, Ewan Birney, Vishwanath R Iyer, Gregory E
Crawford, and Terrence S Furey. “High-resolution genome-
wide in vivo footprinting of diverse transcription factors in
human cells.” In: Genome research 21.3 (2011), pp. 456–464.

[72] Robert Braden et al. “Requirements for internet hosts–
communication layers.” In: (1989).

[73] Robert Braden et al. “Requirements for Internet hosts-
application and support.” In: (1989).

[74] Tim Bray et al. “The javascript object notation (json) data inter-
change format.” In: (2014).

[75] Michael Brenowitz, Donald F Senear, and Robert E Kingston.
“DNase I footprint analysis of protein-DNA binding.” In: Cur-
rent protocols in molecular biology 7.1 (1989), pp. 12–4.

[76] Robert Brown. Observations on the organs and mode of fecundation
in Orchideae and Asclepiadeae. Taylor, 1833.

[77] Brigitte Bruijns, Roald Tiggelaar, and Han Gardeniers. “Mas-
sively parallel sequencing techniques for forensics: a review.”
In: Electrophoresis 39.21 (2018), pp. 2642–2654.

https://d3js.org/


280 bibliography

[78] Eric W Brunskill, Bruce J Aronow, Kylie Georgas, Bree Rum-
balle, M Todd Valerius, Jeremy Aronow, Vivek Kaimal, Anil
G Jegga, Jing Yu, Sean Grimmond, et al. “Atlas of Gene Ex-
pression in the Developing Kidney at Microanatomic Resolu-
tion (vol 15, pg 781, 2008).” In: DEVELOPMENTAL CELL 16.3
(2009), pp. 482–482.

[79] Philipp Bucher. “Weight matrix descriptions of four eukary-
otic RNA polymerase II promoter elements derived from 502

unrelated promoter sequences.” In: Journal of molecular biology
212.4 (1990), pp. 563–578.

[80] David M Budden, Daniel G Hurley, Joseph Cursons, John F
Markham, Melissa J Davis, and Edmund J Crampin. “Predict-
ing expression: the complementary power of histone modifi-
cation and transcription factor binding data.” In: Epigenetics &
chromatin 7.1 (2014), pp. 1–12.

[81] Jason D Buenrostro, Beijing Wu, Ulrike M Litzenburger, Dave
Ruff, Michael L Gonzales, Michael P Snyder, Howard Y Chang,
and William J Greenleaf. “Single-cell chromatin accessibility
reveals principles of regulatory variation.” In: Nature 523.7561

(2015), pp. 486–490.

[82] Ken M Cadigan and Marian L Waterman. “TCF/LEFs and
Wnt signaling in the nucleus.” In: Cold Spring Harbor perspec-
tives in biology 4.11 (2012), a007906.

[83] Vincent C Calhoun, Angelike Stathopoulos, and Michael
Levine. “Promoter-proximal tethering elements regulate
enhancer-promoter specificity in the Drosophila Antennape-
dia complex.” In: Proceedings of the National Academy of Sciences
99.14 (2002), pp. 9243–9247.

[84] Benilton S Carvalho and Rafael A Irizarry. “A framework for
oligonucleotide microarray preprocessing.” In: Bioinformatics
26.19 (2010), pp. 2363–2367.

[85] Ron Caspi, Richard Billington, Hartmut Foerster, Carol A
Fulcher, Ingrid Keseler, Anamika Kothari, Markus Krummen-
acker, Mario Latendresse, Lukas A Mueller, Quang Ong, et al.
“Biocyc: Online resource for genome and metabolic pathway
analysis.” In: The FASEB Journal 30 (2016), lb192–lb192.

[86] JM Cavaillon. “Cytokines and macrophages.” In: Biomedicine
& pharmacotherapy 48.10 (1994), pp. 445–453.

[87] Vinton G Cerf and Edward Cain. “The DoD internet architec-
ture model.” In: Computer Networks (1976) 7.5 (1983), pp. 307–
318.



bibliography 281

[88] Debyani Chakravarty, Jianjiong Gao, Sarah Phillips, Ritika
Kundra, Hongxin Zhang, Jiaojiao Wang, Julia E Rudolph,
Rona Yaeger, Tara Soumerai, Moriah H Nissan, et al. “OncoKB:
a precision oncology knowledge base.” In: JCO precision oncol-
ogy 1 (2017), pp. 1–16.

[89] Nicole M Chapman and Hongbo Chi. “Hallmarks of T-cell Exit
from Quiescence.” In: Cancer immunology research 6.5 (2018),
pp. 502–508.

[90] Jocelyn Charlton, Vesna Pavasovic, and Kathy Pritchard-Jones.
“Biomarkers to detect Wilms tumors in pediatric patients:
where are we now?” In: Future Oncology 11.15 (2015), pp. 2221–
2234.

[91] AO Chiromatzo, TYK Oliveira, G Pereira, AY Costa, CAE Mon-
tesco, DE Gras, F Yosetake, JB Vilar, M Cervato, PRR Prado,
et al. “miRNApath: a database of miRNAs, target genes and
metabolic pathways.” In: Genetics and Molecular Research (2007),
pp. 859–865.

[92] Anshika Chowdhary, Venkata Satagopam, and Reinhard
Schneider. “Long non-coding RNAs: mechanisms, experimen-
tal, and computational approaches in identification, character-
ization, and their biomarker potential in cancer.” In: Frontiers
in Genetics 12 (2021), p. 770.

[93] Jared M Churko, Gary L Mantalas, Michael P Snyder, and
Joseph C Wu. “Overview of high throughput sequencing tech-
nologies to elucidate molecular pathways in cardiovascular
diseases.” In: Circulation research 112.12 (2013), pp. 1613–1623.

[94] Cedric R Clapier, Janet Iwasa, Bradley R Cairns, and Craig
L Peterson. “Mechanisms of action and regulation of ATP-
dependent chromatin-remodelling complexes.” In: Nature re-
views Molecular cell biology 18.7 (2017), pp. 407–422.

[95] Stephen J Clark, Ricard Argelaguet, Chantriolnt-Andreas
Kapourani, Thomas M Stubbs, Heather J Lee, Celia Alda-
Catalinas, Felix Krueger, Guido Sanguinetti, Gavin Kelsey,
John C Marioni, et al. “scNMT-seq enables joint profiling of
chromatin accessibility DNA methylation and transcription in
single cells.” In: Nature communications 9.1 (2018), pp. 1–9.

[96] John P Cogswell, James Ward, Ian A Taylor, Michelle Waters,
Yunling Shi, Brian Cannon, Kevin Kelnar, Jon Kemppainen,
David Brown, Caifu Chen, et al. “Identification of miRNA
changes in Alzheimer’s disease brain and CSF yields putative
biomarkers and insights into disease pathways.” In: Journal of
Alzheimer’s disease 14.1 (2008), pp. 27–41.



282 bibliography

[97] Megan F Cole, Sarah E Johnstone, Jamie J Newman, Michael H
Kagey, and Richard A Young. “Tcf3 is an integral component
of the core regulatory circuitry of embryonic stem cells.” In:
Genes & development 22.6 (2008), pp. 746–755.

[98] David Colquhoun. Lectures on biostatistics: an introduction
to statistics with applications in biology and medicine. David
Colquhoun, 1971, pp. 96–97.

[99] ENCODE Project Consortium et al. “The ENCODE (ENCyclo-
pedia of DNA elements) project.” In: Science 306.5696 (2004),
pp. 636–640.

[100] Gene Ontology Consortium. “The Gene Ontology (GO)
database and informatics resource.” In: Nucleic acids research
32.suppl_1 (2004), pp. D258–D261.

[101] Tabula Muris Consortium et al. “Single-cell transcriptomics of
20 mouse organs creates a Tabula Muris.” In: Nature 562.7727

(2018), pp. 367–372.

[102] Marie Corbin, Aurélien de Reyniès, David S Rickman, Do-
minique Berrebi, Liliane Boccon-Gibod, Sarah Cohen-Gogo,
Monique Fabre, Francis Jaubert, Marine Faussillon, Funda Yil-
maz, et al. “WNT/β-catenin pathway activation in Wilms tu-
mors: A unifying mechanism with multiple entries?” In: Genes,
Chromosomes and Cancer 48.9 (2009), pp. 816–827.

[103] IG Costa, HG Roider, and TG do Rego. “F. d. A. de Car-
valho,“Predicting gene expression in t cell differentiation from
histone modifications and transcription factor binding affini-
ties by linear mixture models,”” in: BMC bioinformatics 12.1
(2011), S29.

[104] Jennifer Couzin-Frankel. Cancer immunotherapy. 2013.

[105] Francis HC Crick. “On protein synthesis.” In: Symp Soc Exp
Biol. Vol. 12. 138-63. 1958, p. 8.

[106] Francis HC Crick, Leslie Barnett, Sydney Brenner, and Richard
J Watts-Tobin. “General nature of the genetic code for pro-
teins.” In: Nature 192.4809 (1961), pp. 1227–1232.

[107] Adam S Crystal, Alice T Shaw, Lecia V Sequist, Luc Friboulet,
Matthew J Niederst, Elizabeth L Lockerman, Rosa L Frias,
Justin F Gainor, Arnaud Amzallag, Patricia Greninger, et al.
“Patient-derived models of acquired resistance can identify
effective drug combinations for cancer.” In: Science 346.6216

(2014), pp. 1480–1486.

[108] Leonardo Dagum and Ramesh Menon. “OpenMP: an indus-
try standard API for shared-memory programming.” In: IEEE
computational science and engineering 5.1 (1998), pp. 46–55.



bibliography 283

[109] Chi V Dang. “MYC on the path to cancer.” In: Cell 149.1 (2012),
pp. 22–35.

[110] James E Darnell. “Transcription factors as targets for cancer
therapy.” In: Nature Reviews Cancer 2.10 (2002), pp. 740–749.

[111] Andrew M Davidoff. “Wilms tumor.” In: Advances in Pediatrics
59.1 (2012), pp. 247–267.

[112] Morris H DeGroot and Mark J. Schervish. Probability and statis-
tics. Pearson Education, 2012.

[113] Scott M Dehm. “A causal role for ERG in neoplastic transfor-
mation of prostate epithelium: Klezovitch O, Risk M, Coleman
I, Lucas JM, Null M, True LD, Nelson PS, Vasioukhin V, Di-
vision of Human Biology, Fred Hutchinson Cancer Research
Center, Seattle, WA.” In: Urologic Oncology: Seminars and Origi-
nal Investigations. Vol. 26. 6. Elsevier. 2008, p. 688.

[114] Benjamin Dekel, Sally Metsuyanim, Kai M Schmidt-Ott,
Edi Fridman, Jasmin Jacob-Hirsch, Amos Simon, Jehonathan
Pinthus, Yoram Mor, Jonathan Barasch, Ninette Amariglio, et
al. “Multiple imprinted and stemness genes provide a link be-
tween normal and tumor progenitor cells of the developing
human kidney.” In: Cancer research 66.12 (2006), pp. 6040–6049.

[115] Giusy Della Gatta, Teresa Palomero, Arianne Perez-Garcia, Al-
berto Ambesi-Impiombato, Mukesh Bansal, Zachary W Car-
penter, Kim De Keersmaecker, Xavier Sole, Luyao Xu, Elis-
abeth Paietta, et al. “Reverse engineering of TLX oncogenic
transcriptional networks identifies RUNX1 as tumor suppres-
sor in T-ALL.” In: Nature medicine 18.3 (2012), pp. 436–440.

[116] Peter J Delves and Ivan M Roitt. “The immune system.” In:
New England journal of medicine 343.1 (2000), pp. 37–49.

[117] Ahmet M Denli, Bastiaan BJ Tops, Ronald HA Plasterk, René
F Ketting, and Gregory J Hannon. “Processing of primary mi-
croRNAs by the Microprocessor complex.” In: Nature 432.7014

(2004), pp. 231–235.

[118] Joshua C Denny, Lisa Bastarache, Marylyn D Ritchie, Robert
J Carroll, Raquel Zink, Jonathan D Mosley, Julie R Field,
Jill M Pulley, Andrea H Ramirez, Erica Bowton, et al. “Sys-
tematic comparison of phenome-wide association study of
electronic medical record data and genome-wide association
study data.” In: Nature biotechnology 31.12 (2013), pp. 1102–
1111.

[119] SA Denslow and PA Wade. “The human Mi-2/NuRD complex
and gene regulation.” In: Oncogene 26.37 (2007), pp. 5433–5438.



284 bibliography

[120] Rafael Hernández-de Diego, Sonia Tarazona, Carlos Martínez-
Mira, Leandro Balzano-Nogueira, Pedro Furió-Tarí, Georgios J
Pappas Jr, and Ana Conesa. “PaintOmics 3: a web resource for
the pathway analysis and visualization of multi-omics data.”
In: Nucleic acids research 46.W1 (2018), W503–W509.

[121] Caroline Diener, Martin Hart, Tim Kehl, Stefanie Rhein-
heimer, Nicole Ludwig, Lena Krammes, Sarah Pawusch, Ker-
stin Lenhof, Tanja Tänzer, David Schub, et al. “Quantitative
and time-resolved miRNA pattern of early human T cell acti-
vation.” In: Nucleic Acids Research (2020).

[122] Johanna K DiStefano. “The emerging role of long noncoding
RNAs in human disease.” In: Disease Gene Identification (2018),
pp. 91–110.

[123] Marcus T Dittrich, Gunnar W Klau, Andreas Rosenwald,
Thomas Dandekar, and Tobias Müller. “Identifying func-
tional modules in protein–protein interaction networks: an
integrated exact approach.” In: Bioinformatics 24.13 (2008),
pp. i223–i231.

[124] Jeffrey S Dome, Elizabeth J Perlman, and Norbert Graf. “Risk
stratification for wilms tumor: current approach and future
directions.” In: American Society of Clinical Oncology Educational
Book 34.1 (2014), pp. 215–223.

[125] Bruno Domon and Ruedi Aebersold. “Mass spectrometry and
protein analysis.” In: science 312.5771 (2006), pp. 212–217.

[126] Francisco J Candido Dos Reis, Gordon C Wishart, Ed M Dicks,
David Greenberg, Jem Rashbass, Marjanka K Schmidt, Alexan-
dra J van den Broek, Ian O Ellis, Andrew Green, Emad Rakha,
et al. “An updated PREDICT breast cancer prognostication
and treatment benefit prediction model with independent val-
idation.” In: Breast Cancer Research 19.1 (2017), pp. 1–13.
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