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The coordination number rule and its implications –
a review
Horst P. Beck*[a]

In memoriam Rudolf Hoppe on the occasion of his 100th birthday

We give a review on the coordination number rule and its
implications. We demonstrate how even rather complex (non-
molecular) structures can be rationalized and sometimes even
predicted starting from primary coordination numbers of
cations only, and we show how connectivity formulas of a
Niggli-type can be inferred from such a simple starting point.
Furthermore, we derive a measure to describe the segregation
of different ions within the general matrix and we point out
that it can be due not only to chemical disparities of the

components but also to simple numerical relations between
stoichiometric coefficients and coordination numbers. It can be
shown that Pauling's electrostatic valence rule must sometimes
necessarily be violated depending on such numerical relations.
We finally address the principle of electrostatic balance as a
driving force for creating certain topologies which seem
surprising at first glance, and we may thereby help to
“reconcile” with the “violations” of Pauling's rule.

Introduction

“Sizes” of atomic and molecular species, their dependence on
the type of interaction with other ones and on their general
embedment in a structured collective have ever been important
topoi of scientific debate in crystal chemistry. Going along with
various definitions of size different views on its effect on
structuring the surroundings of an atom or ion have developed
which were biased by the “parentage” of the scientists from a
particular field of their scientific discipline. Even the description
of “surroundings” was ambiguous in many cases, the question
“who is neighbour or not” or “who interacts with a central atom
and to which degree” has led to many debates in literature of
which we may mention only one as a representative.[1] Rudolf
Hoppe has contributed to this discussion in a beneficial way by
denominating the ambiguities[2] and by giving help to over-
come them.[3] The concept of “coordination” has been of
greatest importance in his theoretical work but also in the vast
output of his synthetical achievements. As another highlight we
may remember his efforts to study the interdependency of
topology and energy by bringing Madelung – type contribu-
tions into closer attention of crystal chemists. And there too
coordination numbers and their definition have played a
decisive role in some of his “shortcut” approaches to calculate

the electrostatic part of lattice energy.[4] He has even used such
calculations to point at possible errors in structure determina-
tions, though this has not always helped him to avoid some
shortcomings in the crystallographic work on his compounds.

In honour of his achievement in crystal chemistry we would
like to take over the baton from him and present a review on
some aspects and consequences of coordination numbers.
However, other than in his approach, we do not discuss
differences in coordination power as explained by a detailed
study of cation-anion distances. Our definition of coordination
is rather a topological one. Howsoever the coordination is
defined, it be by Brunner's largest gap[17] or by Wigner-Seitz-like
considerations, we then take each neighbour as given to define
the type of a coordination polyhedron, and we then discuss
how this polyhedron is embedded in the total crystal structure
and catenated with the other ones. A polyhedron with “more or
less strong corners” cannot be fancied nor can its catenation
with adjacent moieties be envisaged. The following treatment
will only make sense in this restricted definition of coordination.

The coordination number rule and its implications

The interpretation of inorganic crystal structures in crystal
chemistry is mostly based on rules which have been put up in
an analysis of many structure types and on simple assumptions
such as size relations of the atoms or ions and on concepts
such as the drive for electrostatic balance. Seeming violations of
such rules were sometimes found to be puzzling and the search
for alternative explanations has filled many a line in publica-
tions sometimes ending up wearily with the insight that rules
are not laws. We must remind that there is something like a
rank in our rules which must be respected, and that the
coordination number rule has “a higher rank” than some other
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ones. In the following we will try to define its rank in more
detail.

It is trivial to note that the number of contacts of the
cations to the anions in a solid-state structure is the same as
those of the anions to the cations. It was perhaps O'Keeffe and
Hyde[5] who first pointed out some consequences of this simple
statement in defining the so-called “coordination number rule”.
In an earlier paper[6] we have examined the outcome of this rule
in more detail in order to show that it may be used as a
powerful tool to rationalize inorganic coordination structures
and that even very complex topologies can easily be explained
as the result of specific ratios and relations between coordina-
tion numbers and stoichiometric coefficients.

Theoretical background and mathematical description of
the coordination number rule

Let A p½ �
a B

q½ �
b X

r½ �
c be a ternary compound with two different cationic

components (A, B) in an anionic matrix (X) where p, q and r are
the respective coordination numbers of the A-, B- and X-type
components.

The coordination number rule expresses the simple fact that
the number of coordination-contacts (cc) of the anions equals
those of the cations.
* Coordination number rule: ap+bq=cr
* The contribution of the different cations to the coordination

of the anions is given by: r= rA+ rB, where rA=ap/c and rB=

bq/c
The general “principle of symmetry” and the “principle of

simplicity” seemingly play an important role in the formation of
crystal structures. They both illustrate the tendency to create
like interactions and surroundings for like atomic species and
they impose that the topology of the structure will meet the
“simplest solution” in the numerical relations between coordina-
tion numbers and stoichiometric coefficients. (When speaking
of such “principles” or “rules” we may not misunderstand this
terminology in a way as to reverse cause-effect relationships.
“High symmetry” or “simplest solutions” are the result of special
bonding interactions in a high dimensional force field. However,
in an analysis of crystal structures we often tend to extract
some “principles governing the topology”.)

The calculation of r from the coefficients p and q may lead
to non-integer numbers. However, in this topological context
coordination numbers (cc) are defined as integers (cc2Z),
therefore the principle of simplicity asking for the simplest
numerical solution will require that r, rA and rB must be
expressed by a number of integers adjoining these non-integer
values given as bnc and dme with m=n+1 of which their
arithmetic mean gives the respective values.

Therefore, we denominate such integers as
* brc= r0 brAc= rA0

brBc= rB0

* dre= r1 drAe= rA1
drBe= rB1

(Gauss brackets indicate lower or higher integer values next
to the rational non-integer numbers (Q) resulting from the
calculation of r, rA and rB)

The respective number of coordination contacts will then
be
* v0 rA0

+v1rA1
=ap and w0rB0

+w1rB1
=bq

where vi and wi are the numbers of adjoining lower or higher
integers needed to sum up to the non-integer values of r, rA
and rB. This also yields the following simple linear equations:
* v0 +v1 =c and w0 +w1 =c

Under such mathematical conditions we will encounter
three different cases:
(1) rA and rB2Z gives the simple numerical solution X ½rAþrB �c (for

the last part of the general formula Aa
[p]Bb

[q]Xc
[r]). An example

for such a case will be the perovskite type Ba[12] Ti[6] O½4þ2�
3 .

(2)
rA2Z, rB2Z or rA2Z, rB2Z: X ½rAþ

w0 rB0
þw1 rB1
c �

c or X ½
v0 rA0

þv1 rA1
c þ rB �

c

We give Th 8½ �Ti 6½ �
2 O½

8
6þ2�
6 as an example for the latter case

where rB=2, v0=4, rA0
=1, v1=2 and rA1

=2.

(3)
rA, rB2Z: X

v0 rA0
þv1 rA1 þw0 rB0

þw1 rB1
c

� �

c

This general case may be exemplified by the topology of
the K2NiF4-type. A first coordinative information is given by
K 9½ �

2 Ni 6½ �F 6½ �
4 leaving open how many K and Ni cations contribute

to the coordination of F. The total coordination number of 6
must be split up in a 18 :6 relation giving 4.5 and 1.5 as the
respective coordination numbers. In this case rA0

=4, rA1
=5,

v0=2, v1=2 and rB0
=1, rB1

=2, w0=2, w1=2. Filling in these
numbers into the general formula will give the superscript [(2×
4+2×5+2×1+2×2)/4] (where the coordination numbers
themselves are given in italics). We have then to group these
products in such a way as to have pairs amounting to the value
of r= rA + rB=6, i. e. twice [4+2] and twice [5+1].This means
that there must be at least two crystallographically different
anions F(1) and F(2) with an integer number of the correspond-
ing cations surrounding them to give a full coordination
description as K 9½ �

2 Ni 6½ �F 1ð Þ½4þ2�
2 F 2ð Þ½5þ1�

2 . (In a very general case
this could also require up to four separate Wyckoff sites for the
anions in the lattice.)

Outcome and earnings of applying the coordination
number rule

This general overview should emphasize that even though we
postulate the application of the simplest numerical solutions
according to the principles of symmetry and simplicity we will
find rather complex constellations in many cases even for
“seemingly simple sets” of coordination numbers. Certain
combinations of cation coordination numbers together with
their stoichiometric coefficients will necessarily imply a distribu-
tion of the corresponding anions on several independent sites
in the unit cell depending on the overall symmetry of the
structure as represented in its space-group. Indeed, these
simple calculations may already help to understand why some
space-group types which seem possible at first hand will not
offer the necessary type and number of Wyckoff sites to “host”
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the respective number of equivalent or non-equivalent groups
of anions.

Given the whole set of individual coordination contacts of
cations and anions we can even envisage a total topology of
the kind of the different coordination polyhedra and their
catenation. This set of contacts may be transposed into a
Niggli-type connectivity formula[7] which depicts the coordina-
tion around the ions and the catenation of the respective
polyhedra with other ones, i. e. the sharing of common corners,
edges and faces, and this may be done for the partial structures
as well as for the connectivity within the total lattice.

We again recur to the example of K2NiF4 to demonstrate the
procedure. Given the coordination description as developed
above, K 9½ �

2 Ni 6½ �F 1ð Þ½4þ2�
2 F 2ð Þ½5þ1�

2 , we can describe the connectivity
within the partial structure of the polyhedron around K by
using the first numbers in the square brackets separately which
give the ccs between K and F to formulate a Niggli-type
connectivity formula for this part of the structure as: [KF(1)4/

4F(2)5/5]. There are 8 K� F(1) contacts in all and 10 K� F(2) contacts
which have to be split up among 2 K atoms. So, the first
(numerator) part of the index gives the number of neighbours
of this kind around K and the second (denominator) part
indicates within how many polyhedra this species is shared. In a
similar way the connectivity within the Ni� F partial structure is
given as [NiF(1)4/2F(2)2/1] since there are 4 Ni� F(1) and 2 Ni� F(2)
contacts while the former anion is shared by two octahedra and
the second one coordinates only one Ni ion. We at once have
the typical picture in mind of the layer of corner sharing
octahedra in this structure type. Figure 1 gives a presentation of
this structure type where the partial structures are presented
separately.

The true Niggli notation contains even more information to
unambiguously describe a structure. It denotes also the way the
ligands are shared between connected polyhedra by additional

upper indices such as c(orner), e(dge and f(ace). Such
information is unfortunately missing in our “Niggli-type”
notations which we derive from the coordination number rule,
so we can only make “intelligent” guesses using additional
arguments such as the electrostatic repulsion (favouring corner
vs. edge or even face sharing) or the increase of cell volume
(which can be avoided by changing from corner to edge or
even face sharing).

In a foregoing paper[6] we have presented this procedure of
transformation to a Niggli-type connectivity notation in more
detail. We have shown how even very complex notations of this
kind may automatically be derived from the a, b, c and p, q, r
values given in the formula for ternary compounds, and we
have also shown how this works for binaries and quaternaries
and for compounds with mixed anion types. We repeat a table
given there which combines all this information in Table 1. An
algorithm can easily be envisaged to deliver Niggli-type
formulas from these inputs.

In this table we also show how connectivity formulas may
be derived for so-called “reverse structures”, i. e. with anion-
centred polyhedra, which also give valuable insights into the
topological system of a crystal structure. We have dwelled on
this subject in more detail in the foregoing publication where
we have also described how segregation mechanisms (see
below) in the anionic sublattice can better be visualized. We
will therefore not address this topic further in this paper.
Figure 2 gives such a plot for our example.

Figure 1. The structure of K2NiF4 showing the Ni� F� and the K� F
partial structures in the upper and lower half respectively as well as
the total catenation in the middle part. K polyhedra yellow, Ni
polyhedra gree.

Figure 2. The “reverse structure” for K2NiF4, polyhedra around F(1)
are given in yellow, those around F(2) in green.
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We now see the two crystallographically different anions
F(1) and F(2) coordinated by cations, the former having 4 K and
2 Ni atoms as neighbours and F(2) is in contact with 5 K and 1
Ni atom. We can again write out a Niggli-type formula [F(1)K4/

4Ni2/4]2 for the F(1) and [F(2)K5/5Ni1/2] for the F(2) partial structure
when keeping in mind that each K “belongs” also to 4 F(1) and
5 F(2) ions and Ni being neighbour to 4 F(1) and 2 F(2). By
adding the denominators in the indices we arrive at the formula
[F(1)K4/9Ni2/6]2[F(2)K5/9Ni1/6]2 for the total lattice. (As a test for
such calculations we notice that the relation between atom
pairs in such partial formulas is the reciprocal of the one in the
corresponding formula of the “direct structure”.)

To end up this first part let us try and see whether this
formal mathematical procedure could even help to predict
possible structures or to anticipate at least certain features of
their topology. We take a compound having the composition
ABX5 where we expect the cations to be sixfold coordinated.
This will give A 6½ �B 6½ �X½12=5�

5 in a first step which can be unravelled

to A 6½ �B 6½ �X 1ð Þ 3½ �
2 X 2ð Þ 2½ �

3 , i. e. we need at least two different types[2]

of anions to satisfy this combination of numbers. Now, X(2) can
well have 1 A and 1 B around it, but X(1) will have 11=2 of each
as neighbours. So, this example belongs to the category rA2Z,
rB2Z given in the first paragraph of this article. This can be
represented by splitting up this anion type into two different
ones of which one has [1+2] and the other one [2+1] A and B
ions respectively in its coordination. So the total coordination
formula would be: A 6½ �B6X 1ð Þ½1þ2�X 2ð Þ½2þ1�X 3ð Þ½1þ1�

3 and a Niggli-
type formula for the partial structures would then be [AX(1)X-
(2)2/2X(3)3] and [BX(1)2/2X(2)X(3)3] giving a description for the
total structure as [AX(1)1/3X(2)2/3X(3)3/2] [BX(1)2/3X(2)1/3X(3)3/2]. We
can “read” this formula by calculating the difference between
the notation for the partial structures and that of the total
structure showing us that both chains are connected closely as
double chains. We can then depict this arrangement in an
idealized form as given in Figure 3. (By the way, this is just the

Table 1. Development of coordination formulas and their extension to Niggli type connectivity notations.

Stoichiometry and “primary” coordination Quaternaries
Ap

aBq
bXr

cY
s
d

Binaries
Ap

aXr
c

Ternaries
Ap

a Xr
cY

s
d

Ternaries
Ap

a Bq
bXr

c

Sum of ccs for
cations/anions

ap+bq=cr+ds ap=cr ap=cr+ds ap+bq=cr

ratio of contribution
of the different constituents
to the total of ccs

A: ap/(ap+bq)
B: bq/(ap+bq)
X: cr/(cr+ds)
Y: ds/(cr+ds)

A: ap

X: cr

A: ap

X: cr/(cr+ds)
Y: ds/(cr+ds)

A: ap/(ap+bq)
B: bq/(ap+bq)
X: cr

cc contribution of A, B, X, Y to
p, q, r, s The distribution of ccs among

A, B, X, Y is not defined
uniquely for such quaternaries.

rA: ap/c

pX: cr/a

rA: (ap� ds)/c
sA: (ap� cr)/d

pX: cr/a
pY: ds/a

rA: ap/c
rB: bq/c

pX: (cr� bq)/a
qX: (cr� ap)/b

Example for the derivation
of coordination formulas
from incomplete information

A single missing parameter
can be calculated by
ap+bq=cr+ds.
Only the mean of two
stoichiometric indices or two
coordination numbers can be
calculated.

Ap
aXr

c!

ap/c= r

Ap
aXap=c

c

Ap
a Xr

cY
s
d!

(ap� cq)/d= s

Ap
a Xq

c Yðap� cqÞ=d
d

for unknown q
accordingly

Ap
a Bq

bXr
c!

(ap+bq)/c= r

Ap
a Bq

bXðapþbqÞ=c
c

Niggli type notation for simple
systems derived from:
Apxþpy
a Bqxþqy

b XrAþrB
c YsAþsB

d Ap
aXr

c Apxþpy
a Xr

cY
s
d Ap

a Bq
bXrAþrB

c

for direct partial structures [AXððcrAÞ=aÞ=rAYððdsAÞ=aÞ=sA ]
[BXððcrBÞ=bÞ=rBYððdsBÞ=bÞ=sB ]

[AðcrA=aÞ=rA ] [BXðcrB=bÞ=rB ]

for reverse partial structures [XAðapx=cÞ=pxBðbqx=cÞ=qx ]
[YAðapy=dÞ=pyBðbqy=dÞ=qy ]

[XAðapx=cÞ=px ]
[YAðapy=dÞ=py ]

[XAðap=cÞ=pBðbp=cÞ=q]

for total direct structure [AXððcrAÞ=aÞ=ðrAþrBÞYððdsAÞ=aÞ=ðsAþsBÞ]a
[BXððcrBÞ=bÞ=ðrBþrAÞYððdsBÞ=bÞ=ðsBþsAÞ]b

[AXðcr=aÞ=r] [AXðcr=aÞ=rYðds=aÞ=s] [AXðcrA=aÞ=ðrAþrBÞ]

for total reverse structure [XAðapx=cÞ=ðpxþpyÞBðbqx=cÞ=ðqxþqyÞ]c
[YAðapy=dÞ=ðpxþpyÞBðbqy=dÞ=ðqxþqyÞ]d

[XAðap=cÞ=p] [XAðapx=cÞ=ðpxþpyÞ]c
[YAðapy=dÞ=ðpxþpyÞ]d

[XAðap=cÞ=pBðbp=cÞ=q]
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topology found in one of the Nb2O5 polymorphs (R modifica-
tion) where Nb formally Figures as A and B cation as well.)

So far, it seems possible to predict structures, we can at
least develop a kind of algorithm to arrive at suitable top-
ologies. However, we do not know whether this principle of
simplicity will always be followed (see below) and – what is
most important – we do not know the coordination numbers
beforehand (see below). In the end we can rather discuss a
“why” a posteriori than a “how” a priori!

Special cases (“Misfits”)

The “numerical” solution given above results when we apply
the procedure used so far – which we call “the principle of
simplicity” – trying to use only adjacent integer numbers in
balancing the number of coordination contacts (ccs) according
to the stoichiometry of the compound, i. e. avoiding what we
may call “segregation of the cations” (see below). There are
many cases where this principle is violated and where “the scale
of coordination numbers is spread”. We take the structure of
Cr2F5 as an example where Cr is in sixfold coordination but has
two oxidation states, CrIICrIII

2F5. When looking at its structure we
find a coordination notation as
Cr 1ð Þ 6½ �Cr 2ð Þ 6½ �F 1ð Þ½2þ0�

2 F 2ð Þ½1þ2�F 3ð Þ½1þ1�
2 , and unravelling this nota-

tion in the same way we see why this “real” solution of the
numerical problem is “better” (see Figure 4).

In contrast to the “numerical” solution presented above for
an ABX5-type we see chains of Cr(1)F6 moieties which are
connected via corners and chains of Cr(2)F6 octahedra con-
nected via two opposite edges. The two types of chains are
then connected by sharing corners. This avoids many short
distances between the cations resulting in a weaker CrII� CrIII

repulsion within the cation substructure, and – what is even
more important – it matches two kinds of octahedra with
different size, a larger one around Cr2+ and the other one with
Cr3+ in it by arranging the equatorial edge of the first kind of
octahedra parallel to the diagonal of the other ones. Both
“reasons” are the influence of other than purely mathematical

needs. We will address them in the following as “chemical
effects”.

To make our point we may follow a series of such A2X5

compounds in comparing this structure with that of CaCrF5 and
BaCrF5. In the former compound the coordination number of Ca
is now 7 giving a “numerical” full co-ordination formula
Ca 7½ �Cr 6½ �F 1ð Þ½1þ2�F 2ð Þ½2þ1�

2 F 3ð Þ½1þ1�
2 which is just the one which we

find for the real structure, the “principle of simplicity” holds in
this case.

In the case of Ba[12] Cr[6] F5 the coordination of the alkaline
earth cation has again increased. The “numerical” solution for a
co-ordination formula Ba[12] Cr[6] F(1)[2+1]F(2)[2+1]F(3)[2+2]F(4)[3+1]F-
(5)[3+1] is again different from that of the real structure,
Ba[12] Cr[6] F(1)[2+1]F(2)[3+1]F(3)[3+1]F(4)[3+1]F(5)[1+2]. In both cases
there are chains of CrF6 octahedra connected via opposite
corners, but the large coordination polyhedra around Ba are

Figure 3. Idealized ABX5 structure (see text), polyhedra around A grey, around B green.

Figure 4. The structure of Cr2F5, polyhedra around Cr(1) green,
around Cr(2) light brown.
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connected differently via corners, edges and even faces (see
Figure 5, partial structures at the sides, complete structure in
the middle). We see that the connectivity of the polyhedra is
smaller in the numerical case, and this would result in a much
larger volume per formula unit. Again this may be termed as
“chemical effect“.

To give an intermediate summary we make a note of the
fact that the numerical solutions derived from the general
formulas Ap

aBq
bXr

cY
s
d very often allow good guesses of at least

parts of the structures. However, in some cases the real
structures represent other possibilities of combining the
numbers for a, b, c, p, q and r where the principle of simplicity is
violated. In the following paragraphs we will deal with such
“violations” and offer further explanations for them.

Segregation effects in crystal structures

The analysis of crystal structures in relation to the coordination
number rule may also help to understand the reason for either
a uniform distribution or a rather segregated one of different
types of cations in an anion matrix.[8,9] To make our point we
present the structures of CaAs2O6 and FeNb2O6 in comparison in
Figure 6.

In CaAs2O6 there are alternating layers of CaO6 and AsO6

octahedra, the former being thinned out and separated and the
latter arranged in zig-zag chains via edge sharing. The
distribution in space is as homogeneous as possible according
to the stoichiometric relation. In the structure of FeNb2O6 we
find the minority component in zig-zag chains in one layer and
the majority component in such chains within a double layer.
Fe and Nb have clearly segregated into different sections within
the structure.

Figure 5. The structure of BaCrF5, polyhedra around Ba yellow, around Cr green, left only Ba� F partial structure, right only Cr� F part.

Figure 6. The structure of CaAs2O6 (left) and FeNb2O6 (right).
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The coordination formulas for these compounds differ,
Ca 6½ �As 6½ �

2 O½1þ2�
6 and Fe 6½ �Nb 6½ �

2 O 1ð Þ½1þ2�
2 O 2ð Þ½2þ1�

2 O 3ð Þ½0þ3�
2 . The former

complies well with what we would expect according to the rule
of simplicity, rA and rB2Z giving the simple numerical solution
X ½rAþrB �c , whereas the latter does not! The scale of numbers is
spread beyond the adjacent ones for the O(3) anion which is
the one connecting two layers of FeO6 octahedra. In general,
reducing rA in X ½rAþrB �c means that the A cation “avoids” this anion
type and by increasing rB the cation B will “prefer” this anion as
neighbour, this is a clear “segregation movement”! In Figures 7
we give other examples where the “segregation” into separate
blocks is clearly seen, and the visual aspect is documented in a
scientific notation in the coordination formulas. We will discuss
possible reasons for such segregation effects in the following.

As said before, “spreading the scale” to realize the mean
non integer r value will separate different cations within the
anion matrix. This separation is evidently due to a partial
“incompatibility of their chemical character” which may also be
described as differences in bonding types. Coming back to our
first example, K2NiF4, our chemical intuition tells us that
interactions in the Ni� F partial structure may be different –
more covalent – as compared to the more ionic ones between
K and F, and the same is true for the other examples given
above. Bi3+ with its lone pair character will tend to cluster
within the oxide matrix, and the Mo� O moieties will tend to

arrange as in most other sublattices in molybdates in the form
of corner-sharing octahedra.

In order to approach a better understanding of such
structural effects we have tried to quantify this “segregation” in
a two-step procedure. We will show that a partial segregation
may result not only from the “chemical facts” just mentioned
but also already from the given combinations of the parameters
a, b, c and p, q and r. We will call the latter a “numerical
segregation Σnum ” and assign the term “chemical segregation
Σchem” to the former aspect. A measure of segregation may be
defined as

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=zÞ
Xn

1

ci½ðDrAiÞ2 þ DrBiÞ2ð �

s

where z is the number of formula units in the total formula, ci is
the number of equivalent anions of which there are n different
sets. For our example K 9½ �

2 Ni 6½ �F 1ð Þ½4þ2�
2 F 2ð Þ½5þ1�

2 we find 2 different
F-anions, F(1) and F(2), n=2, and each of them has the
stoichiometric coefficient 2, ci =2. The ~ values give the
deviation of the actual individual coordination from the mean
values (e.g. rA and rB in the case of ternary AaBbXc compounds).
We use their squared values to include positive and negative
deviations likewise and the root to reduce the values again. (For
more details for the calculation see refs [6,9]). This is only one

Figure 7. BaTiOF4 (upper part) and MoBi2O6 (lower part) as examples for a “spread scale of coordination numbers”.
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approach of several others one may think of, but it offers a
“scale”, there is a “more” and a “less” to compare.

We come back to our first example where the coordination
number rule may be written in a first step as K 9½ �

2 Ni 6½ �F½24=4�
4 , i. e.

rA=18/4=4.5 and rB=6/4=1.5. We have shown why this
implies two different F anions giving the coordination formula
K 9½ �

2 Ni 6½ �F 1ð Þ½4þ2�
2 F 2ð Þ½5þ1�

2 . rA' for F(1) now amounts to 4 which is
less than the average rA (~rA= � 0.5) and rB'=2, is more than the
average rB (~rB = +0.5). The same calculations for F(2) give
~rA= +0.5 and ~rB = � 0.5. The number of formula units z=1,
and the numbers of equivalent anions F(1) and F(2) are both
ci =2. Applying the formula given results in Σ=1.41, so the
simplest numerical solution following the rule of simplicity may
already result in a segregation, we quantify it as Σnum.

A similar calculation for CaAs2O6 will give Σ=0 while that
for FeNb2O6 results in Σ=2.83, which is quite different though
the cation coordination numbers are equal ([6]). We recall that
following the rule of simplicity we arrive at the solution found
for CaAs2O6 (where Σnum=0) and that the real structure of
FeNb2O6 is different due to “chemical” driving forces. We
therefore define this as Σchem. So, the segregation values found
will be the sum of these two possible components and we
define a total segregation as Σtot=Σnum+Σchem. (A similar
calculus for the example Cr2F5 discussed above with both Cr in
[6] coordination is described by:
Cr 1ð Þ 6½ �Cr 2ð Þ 6½ �F 1ð Þ½2þ0�F 2ð Þ½1þ2�

2 F 3ð Þ½1þ1�
2 with 1.90 1.26 0.64 as

�tot,num,chem).
We may deepen this fundamental statement by a final

example. For an AB2O6 compound where A is sixfold and B
fivefold coordinated our general rule of simplicity results in the
coordination formula A 6½ �B 5½ �

2 X 1ð Þ½1þ2�
4 X 2ð Þ½1þ1�

2 as “numerical sim-
ple solution”. The segregation value calculated as given above
yields �num=1.15. The compound CaV2O6 has just this combina-
tion of cation coordination numbers, however, the anion
coordination is not as expected. We find
Ca 6½ �V5

2X 1ð Þ½1þ1�
2 X 2ð Þ½2þ1�

2 X 3ð Þ½0þ3�
2 giving �tot=3.06.

We therefore distinguish between a total segregation and a
numerical one and attribute the difference �chem=1.91 to „other
than numerical contributions“.

There are examples where:
�num=0 rA and rB2Z giving the simple numerical solution

X ½rAþrB �c . The anion coordination numbers coincide with the rA, rB
expected values.

�num=0 rA2Z, rB2Z or rA2Z, rB2Z or rA, rB2Z. Non-integer
mean values rA, rB are “mimicked” by several integer ones.

�chem=0 The structure complies with the numerical “simple”
solution.

�chem¼6 0 There is segregation for other than numerical
reasons.

In the following we venture to trace some further “non-
numerical reasons”.

Effects of electrostatic imbalance – thwarting Pauling's
electrostatic rule

In 1929, Linus Pauling published a series of five empirical rules
rationalising inorganic crystal structures.[10] They apply to ionic
compounds and describe the preferred local environments of a
cation and how these environments connect to each other.
These rules have become a cornerstone of solid-state chemistry
even though many examples have been found where they do
not hold. So, they are rules but not laws of nature, they have
nevertheless helped to rationalize crystal structures.

The second rule says: “In a stable coordination structure the
electric charge of each anion tends to compensate the strength
of the electrostatic valence bonds reaching to it from the
cations at the centres of the polyhedra of which it forms a
corner”. This rule has also been addressed in many papers
during the ages since it was defined to show up deviations and
possible extensions.[11,12] On the one hand it has helped to trace
consequences of an “electrostatic misfit” in details of a structure
leading to Baur's valuable rules[13] showing how distortions of
chemical environments could compensate deviations from local
charge sums. On the other hand, it has led to many puzzling
comments in papers describing a newly found structure. Lately
there has even been laborious statistical work to investigate the
percentage of hits or fails on thousands of crystal structures.[14]

Such tedious efforts seem unnecessary since an extension of
the coordination number rule can clearly show why and what
structural topologies cannot be balanced electrostatically
according to Pauling's second rule. We will demonstrate this in
the following passage.

We can define “values of electrostatic imbalance” (Y)
quantifying the deviations of the formal ion charges of the
anions from Pauling's electrostatic valence rule. We calculate
such Y values in a similar was as the Σ values using the formula

Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=zð Þ
Xn

1

ck½ðDrkÞ2�

s

where again z is the number of formula units in the total
formula, ck is the number of equivalent anions of which there
are n different sets, and the ~ values give the deviation of the
actual valence sum around each anion from its formal valency
(see above). We again use their squared values to include
positive and negative deviations likewise and the root to reduce
the values again. As for the Σ values we distinguish between a
“numerical effect” and a “chemical” one by computing these
values for the respective structure (Ytot) and for the possible
“simplest solution” where non-integer r values are matched
only by a mean of neighbouring integer values for the
coordination (Ynum). Ychem is then again the difference between
these two values.

We first recur to some examples which have already been
used for our segregation studies. In Ca 6½ �As 6½ �

2 O½1þ2�
6 all anions are

surrounded by 1 Ca and 2 As offering 2/6 and 5/6 positive
charge equivalents each respectively giving 12/6 in all. The
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structure is electrostatically balanced, Ytot=0, i. e. Ynum=Ychem=

0. We remember that in this case Σtot=Σnum=Σchem=0.
A similar analysis of K 9½ �

2 Ni 6½ �F 1ð Þ½4þ2�
2 F 2ð Þ½5þ1�

2 results in Ytot=
Ynum=0.22 and Ychem=0. The slight imbalance is only due to the
“awkward” numerical problem from the beginning on. Σtot=

Σnum=1.41
For Fe[6] Nb2

[6] O(1)2
[1+2]O(2)2

[2+1]O(3)2
[0+3] we find Ytot=1.0,

Ynum=0 and Ychem=1.0. Here the imbalance is created by the
segregation movement. Σtot=Σchem=2.83 and Σnum=0

The third example is shown in Figure 8,
Ba 12½ �Ti 6½ �O½2þ2�F 1ð Þ½3þ1�

2 F 2ð Þ½1þ1�F 3ð Þ½3þ1�. We find the values Σtot=

1.99, Σnum=1.41, Σchem=0.58 and Ytot=0.47, Ynum=1.22, Ychem=

� 0.75. The additional “chemical” segregation beyond the
numerical one has helped to reduce the electrostatic imbalance.
We see that the minimization of electrostatic imbalance is a
major driving force for “segregation movements”. La2MoO6 (in
its I-centred tetragonal modification modification) is another
good representative for such a structural compensation of an
otherwise large electrostatic imbalance. Its full formula is
La 1ð Þ 8½ �

2 La 2ð Þ 8½ �
2 Mo 1ð Þ 4½ �Mo 2ð Þ 4½ �O 1ð Þ½4þ0�

4 O 2ð Þ½2þ2�
4 O 3ð Þ½2þ1�

4 .
We show this structure in Figure 8. The segregation is quite

extreme, Σtot=6.66, Σnum=2.67, Σchem=3.99, starting with an
unfavourable numerical solution further “chemical reasons”
even aggravate the situation. But this helps to compensate an
extreme electrostatic imbalance, Ytot=0.75, Ynum=2.44, and
Σchem is now even negative (� 1.69).

We could extend this list by many examples, but the ones
given here demonstrate all relevant cases and they also show
relations between Σ and Y values.

We may summarize:

* We see that any of the Σ values marked as 0 will be mirrored
alike in the concordant Y=0 value. We could even formulate
another rule saying that “ideal representations of the coordina-
tion need of the cations according to the numerical calculus
without further clustering (Σchem=0) will result in a complete
electrostatic balance in the structure”. The opposite is not true.

* There are cases where a strong segregation (high Σtot value)
more or less compensates the electrostatic imbalance of a
“numerical solution” in the real structure.

* Negative Σ values are not possible by definition.
* In all cases where Σtot equals Σnum there is no “chemically

induced” electrostatic imbalance.
* Integer r values do not automatically give an electrostatic

balance.
* The calculation of Y may result in negative values meaning

that an electrostatic imbalance resulting from an unfavoura-
ble Σnum and consequently large Ynum is at least partially
“corrected by some segregation displacement”.

* There are values which often occur (e.g.
p

2 and its multi-
ples). This results from the mathematical definition of Σ an Y.

* The Y values depend necessarily on the charges of the ions.
Therefore, they will be different for the same structure type
but different ionic charges (e.g. K2NiF4 and Sr2TiO4). Dividing
them by the charges would give values representative for a
specific structure topology. However, keeping the different
values for isotypic structures will better reflect the “internal
tension” which will then relax more or less as described by
the rules of Baur.

* The Σ values of compounds containing ns2 cations are mostly
large reflecting the fact that such cations tend to segregate
in the structures leading to channels or layers where they
accumulate. Nevertheless, except for rare cases, the Y values
are still very moderate and Ychem sometimes even negative
indicating that the structural segregation does not go along
with a strong electrostatic imbalance. It may even reduce it!
The main effect of ns2 cations is to increase the volume and
the coordination number of these cations leading to the
accordant catenation consequences.

* It is interesting to note that in polymorphic forms of the
compounds those found at higher temperatures are more
strongly segregated. The degree of clustering of like cations
increases with the dilatation of the structures. However, this
tendency is reversed when high temperatures induce a
statistical distribution of different cations. The “individuality”
of the cations is thereby blurred out by their thermal
vibration, and the drive to segregate is weakened. Such
effects are well understood in the application of Gold-
schmidt's rules describing the tendency of ions to substitute
for other ones.
So, as said before, we should not “complain” that Pauling's

electrostatic rule is violated in many cases and even try to
“soothe the pain” by alluding to statistics to show how much
hits are nevertheless found. Our calculus given here explains
why it cannot hold for certain combinations of coordination
numbers and stoichiometric coefficients. Such detailed studies
of segregation coefficients in comparison with the electrostatic
imbalance give valuable insights into the mechanisms of

Figure 8. The structure of La2MoO6, sequence of layers along [001],
La polyhedra light blue, Mo polyhedra red.
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structural organisation. Baur's rules have shown how local
“movements” decrease the electrostatic imbalance by adjusting
bond lengths according to different coordination numbers. Our
approach adds a further important fact, it shows how a
complete topological reorganisation helps to avoid an other-
wise too large electrostatic imbalance.

Conclusion

The coordination number rule expresses the very trivial fact
that the number of coordination contacts (cc) of the cations
equals those of the anions. There are corollaries of this
statement such as “the ratio of the average coordination number
of the cations to the average coordination number of the anions
is the same as the ratio of the number of anions to the number of
cations” and another one saying: “compounds with high anion
content will stabilize high cation coordination numbers”. This
implies that stoichiometric relations play a decisive role. In our
teaching we often recur to sizes as main cause for the formation
of a specific coordination, and we even discuss structure field
diagrams showing the stability fields of certain structure types
in relation to ion sizes.

However, seeming “sizes” of the ions in a structure are never
fixed properties, they depend on the type of interacting
components in a structure and on the stoichiometric relations.
They cannot be looked up in tables! We can exemplify this
important fact by the plot of coordination numbers found in a
set of potassium titanates (Figure 9). Depending on its
“stoichiometric weight” the coordination numbers of the K ion
will range from above 10 down to 4 in K2O, and the type of
counterions will furthermore play a decisive role. (In this plot it
does makes sense to use “effective coordination numbers” as
described by Hoppe and others. I repeat that we don't do so
when applying the coordination number rule where only
integer numbers are possible.)

An analysis of crystal structures in the light of the
coordination number rule as presented here in a refined
approach gives insight into very complex structural arrange-
ments. We have mostly taken ternary compounds A p½ �

a B q½ �
b X r½ �

c as
examples where we can show the outcome of this rule better
than for binary or even quaternary compounds where we arrive
either at simpler statements or where the result is sometimes
ambiguous as in the latter case (see Table 1). We have shown
how the rule ap+bq=cr and the contribution of the different
cations to the coordination of the anions is given by r= rA+ rB,
where rA=ap/c and rB=bq/c, “is mapped into” the topology of
a crystal structure. A crucial point comes up when rA and/or rB,
which are both a mean coordination number of the anions, are
not integers. Since coordination numbers must be integers in
this topological approach, we can mimic non-integer mean
coordination numbers by an average of some other integers
leading to several crystallographically different anions. This
average may be produced by diverse combinations of integers.
However, we have first chosen to follow another main principle
of structural chemistry, the principle of simplicity where we
form such averages by using only adjoining integers. This will
tend to make at least similar surroundings for all participants in
the game of neighbourhood and therefore also helps to
approach the principle of maximal symmetry which has long
been upheld as a decisive factor of structure formation.[15–17] We
have termed such constellations as “numerical solutions” and
have explained the ones deviating from such principles as
driven by “chemical effects”. Moving away from adjoining
integers will forcibly lead to some segregation effects, one
anion type being “preferred” by one kind of cation and the
other loosing this kind of neighbourhood. There is much
chemical sense also in such solutions of the numerical problem.
In such ternary systems (and of course even more in any
multinary one) we combine several cationic (or anionic) species
with quite different “properties” such as redox potential,
electropositivity or electronegativity, charge or general electron

Figure 9. Coordination numbers for K in a series of K-titanates.
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density, more ionic or covalent “character” and so on in one
stable compound. They will forcibly tend to separate when they
differ too much in such properties, and this is realized just by
breaking this principle of simplest numerical solution or
maximum symmetry. We have also addressed the principle of
electrostatic balance as a driving force for creating a topology
more or less way off from these principles and could thereby
“reconcile” with the “violations” of Pauling's electrostatic rule.

Summarizing we can say that an analysis of structures in the
light of the coordination rule can help to rationalize even very
complex crystal structures. Findings of other authors also prove
that the crystal chemical indicators presented along this
coordination number rule are very useful tools in crystal
chemistry even beyond typical ionic compounds such as oxides
and fluorides. They have been applied successfully also to
structures of hydride compounds.[18] The crystal structures obey
these rules even in complex transition-metal hydrides where
bonds are considered to be mainly covalent, and the notion of
ion segregation and electrostatic imbalance can nicely explain
the observed structures. Furthermore, we may even use them –
to a certain extent – as a tool to predict structures or at least
important features of them once we have clear indications how
to choose coordination numbers of the component atoms.
Future work should focus on finding a way to complete the
Niggli-notations by the missing indices as mentioned above
which will then define the catenation of all polyhedra in a
definite way and lead to good predictions of structures. We
doubt that ML or KI approaches will be successful to further
develop these ideas. They could create perhaps large “tool-
boxes” containing many possible structural configurations
among which to choose in view of further parameters defining
the optimal arrangement of atoms in a given compound. A
comparison of formation energies from quantum chemical
calculations may then decide the game in the end.
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