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Abstract
Aims: We studied the effect of choline and folate deficiencies on levels of predeter-
mined placental proteins during early development.
Methods: We incubated HTR-8/SVneo cells under choline and folate deficiency
conditions and measured levels of some placental proteins using ELISA methods.
Results: Concentrations of LRP2 protein in cell lysates were higher in cells incubated
in choline and folate deficient media compared to the control media (mean
[SD] = 2.95 [1.30] vs. 1.65 [0.27] ng/mg protein, p = 0.004). The levels of LRP2 pro-
tein in lysates of cells incubated in choline and folate deficient media were signifi-
cantly higher than the concentrations in lysates of cells incubated in choline deficient
but folate sufficient media (1.96 [0.28] ng/mg protein) or those incubated in choline
sufficient but folate deficient media (1.77 [0.24] ng/mg protein) (p < 0.05 for both).
The cellular levels of CDX2 protein were significantly higher in cells incubated in
choline and folate deficient media compared to the control media (1.78 [0.60] vs. 0.99
[0.42] pg/mg protein, p = 0.002); and compared to CDX2 levels in cells incubated in
choline deficient but folate sufficient media (0.87 [0.13] pg/mg protein, p < 0.001) or
in choline sufficient but folate deficient media (0.96 [0.16] pg/mg protein, p < 0.001).
The levels of sFLT-1 and IGF1 in culture media and that of EOMES in HTR-8/
SVneo cell lysates remained unchanged under all deficiency conditions.
Discussion: LRP2 and CDX2 are likely to be molecular targets for early choline
and folate deficiencies in human trophoblast cells. The results should be con-
firmed in animal models and in other models of placental cells.
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INTRODUCTION

The requirements of the nutrients choline and folate
increase during pregnancy to support cell metabolism
and proliferation.1 Adequate maternal choline during
early pregnancy is necessary for development of the
fetus,2 the retina,3 and the brain4–6 possibly by mecha-
nisms related to DNA synthesis and methylation.7 Cho-
line (via betaine) and folate are key methyl donors in
one-carbon metabolism. In addition, choline is a source
of acetylcholine and phosphatidylcholine. Phosphatidyl-
choline is used for synthesis of cell membranes.

Choline is taken up by the placenta by saturable8 and
non-saturable9 mechanisms. The placenta accumulates
choline during early pregnancy and placental tissues con-
tain higher choline levels than the liver of the mother or
the liver of non-pregnant rats.10 Maternal choline supple-
mentation has been shown to influence fatty acids and
glucose transporters in the placenta of pregnant mice.11,12

In humans, higher maternal choline intake (�4-fold)
reduced placental inflammation and apoptosis and
enhanced placental vascular development.13 Thus, cho-
line deficiency during pregnancy could affect placental
vascularization and functions.
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Supplementation of 930 mg/d choline to third trimes-
ter pregnant women (vs. 480 mg/d) lowered plasma
concentrations of soluble fms-like tyrosine kinase 1 (sFLT-
1).14 sFLT-1 is antiangiogenic factor that is released from
the placenta leading to raised levels of this protein in plasma
of women with preeclampsia.15 The release of sFLT-1 is
regulated by epidermal growth factor receptor (EGFR)16

that is important for early embryogenesis.17

Placental low-density lipoprotein receptor-related
protein 2 (LRP2, also called megalin) is a potential target
of methyl donors insufficiency. LRP2 plays a role in
endocytosis and trafficking of ligands.18 The insulin-like
growth factor (IGF-1) has growth promoting effects and
its gene expression and protein levels were found to be
higher in liver and muscles of pigs from methyl deficient
mothers compared to offspring from mothers on a con-
trol diet.19 Moreover, methyl donors insufficiency could
affect transcription factors such as eomesodermin homo-
log (EOMES, also known as Tbr2) that is involved in tro-
phoblast differentiation and gastrulation and neuronal
division20 or the caudal-related homeobox 2 (CDX2) that
preferably binds to methyl-containing CpG sequences on
DNA21 and thereby regulates the transcription of intesti-
nal epithelium genes.

Choline and folate deficiency in early pregnancy
could cause inadequate trophoblastic invasion and pla-
cental endothelial dysfunction and could alter levels of
placental proteins necessary for fetal development. We
studied the effect of choline deficiency and simultaneous
choline and folate deficiencies on levels of placental pro-
teins in a model of human trophoblast cells (HTR-8/
SVneo cells).

MATERIALS AND METHODS

HTR-8/SVneo cells were obtained from ECACC (Lot
Nr. 70014079). This cell line is derived by transfecting the
cells that grew out of chorionic villi explants of human
first trimester placenta with the gene encoding for simian
virus 40 large T antigen. The cells were cultured in
advanced RPMI1640 (Gibco 12633, Life Technologies)
in the presence of 2 mM glutamine, 5% fetal bovine
serum (FBS) and 1% penicillin/streptomycin.

We used a choline and folate deficient medium
(a modified RPMI1640) that was completely free of the
nutrients (Modified Gibco 12633, without choline, folic
acid, and L-glutamine; REF ME 19630L1, Lot
11930501, Life Technologies).

For the control medium, we added choline bitartrate
(obtained via P&G Health, Lot 14486/19, 161U176049)
and calcium methylfolate (Metafolin, obtained via P&G
Health, Lot 14898/19, LMCM067501) each at concentra-
tions of 50 μmol/L in addition to 2 mmol/L glutamine
and 1.25% FBS. The concentrations of L-glutamine and
FBS were stable in all of the experiments. In the defi-
ciency conditions, either choline or folate or both of them

were not added to the medium. The selection of
choline22–24 and folate25 concentrations in the medium
was in line with earlier studies using different cell models
and aimed at avoiding supraphysiological concentrations
of the two nutrients. We verified concentrations of cho-
line in all media using UPLC-MS/MS method that was
described earlier.26

The HTR-8/SVneo cells were seeded at a density of
2.0 � 106 cells/plate in 100 mm petri dishes. Cells were
cultured for 96 h in the control medium (with 50 μmol/L
choline and folate) or the media that were deficient in
choline and/or folate. Afterwards, the culture media were
collected and stored at �80�C until analysis. The media
were used to measure concentrations of sFLT-1, IGF-1,
and sEGFR using commercially available ELISA
reagents (Table S1). The remaining cells were washed
using phosphate buffered saline and harvested by using a
rubber policeman. After centrifugation, supernatant was
discarded, and cells were lysed using cell extraction buffer
(CellLytic M; Sigma Adrich). The cell lysates were used
to measure concentrations of total proteins by using
Pierce 660 nm Protein Assay (ThermoFisher). Concen-
trations of LRP2, EOMES, and CDX2 were measured in
cell lysates by using commercially available ELISA
methods (Table S1). All measurements in media and cell
lysates were corrected for total protein levels in the cells.

Organic cations such as hemicholinium-3 (HC-3) have
been shown to inhibit up to 75% of choline uptake into
human term placenta.27–29 In addition to using choline
deficient media, we incubated the cells for 3 h with
5 μmol/L HC-3 to prevent choline uptake into the cells. In
a subset of the experiments, we verified the choline concen-
trations in the cell pellets to ensure that the cells incubated
in choline deficient media or with HC-3 contained lower
choline compared to the control cells that were incubated
at 50 μmol/L choline. Each experiment was repeated twice
independently (i.e., on Day 1 and Day 2).

The ELISA methods were checked in a series of pre-
liminary experiments to verify that the levels are within
the measurement ranges of the ELISAs. The protein con-
centrations were measured in duplicate samples of
medium or cell lysate and a mean value was calculated.
The ranges of the measured concentrations of each pro-
tein marker (without adjustment for total cell proteins)
are shown in (Table S1). Table S2 shows method perfor-
mance shown as the mean and range of deviations of the
duplicate measurements of the concentrations of the bio-
markers in the same medium or cell lysate.

The concentrations of choline were verified in the
media. We measured 19.2 μmol/L choline concentrations
in the standard medium (Advanced RPMI1640; Life
Technologies) that was used to propagate the cells. This
medium contains 20 μmol/L choline according to the
manufacturer. The control medium with sufficient cho-
line contained approximately 60 μmol/L choline, and the
choline deficient medium contained approximately
1.5 μmol/L (samples were measured in duplicates).
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The experiments were conducted at BioTeSys GmbH
Lab, Esslingen, Germany.

Statistical analyses were conducted using Prism
5 (GraphPad Software, Inc.). ANOVA and the Tukey’s
multiple comparison test post-hoc test were used to com-
pare different incubation conditions. A p value < 0.05
was considered statistically significant.

RESULTS

Concentrations of sFLT-1 in culture media did not differ
significantly when cells were incubated in choline and
folate deficient media compared to choline and folate suf-
ficient media (mean [SD] = 174.62 [112.49] vs. 129.49
[35.74] pg/mg protein; p = 0.2146) (Table 1). The concen-
tration of sFLT-1 in the culture medium did not differ
significantly between any of the four different incubation

conditions (Tukey’s multiple comparison test). The con-
centrations of IGF-1 in culture media did not differ sig-
nificantly between cells incubated in choline and folate
sufficient media versus those incubated in choline and
folate deficient media (8.63 [5.30] vs. 9.54 [5.05] pg/mg
protein; p = 0.9714). The concentrations of sEGFR in
culture medium did not differ between cells incubated in
choline and folate deficient media versus those incubated
at choline and folate sufficient media (116.80 [64.99]
vs. 80.49 [23.63] pg/mg protein; p = 0.0862). In a series of
independent experiments, adding 5 μmol/L HC-3
(a choline uptake inhibitor) to the medium containing
sufficient choline (50 μmol/L) resulted in significantly
higher sEGFR concentrations compared to cell medium
from cells incubated in the same choline sufficient media
without HC-3 (Figure S1).

Concentrations of LRP2 protein in HTR-8/SVneo
cell lysates were higher in cells incubated in choline and

TABLE 1 Concentrations of markers in cell medium

Incubation conditionsa Culture well

sFLT1 IGF-1 sEGFR

Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

Control + 50 μmol/L choline + 50 μmol/L folate 1 184.36 155.68 17.61 1.05 122.73 79.40

2 87.91 138.00 6.89 11.72 60.19 89.58

3 83.87 134.79 11.93 10.49 49.69 88.70

4 121.81 54.26 4.30 5.02 73.12 67.32

Within-day mean 119.49 142.82 10.18 7.07 76.43 85.89

Mean (SD) of 2 days 129.49 (35.74) 8.63 (5.30) 80.49 (23.63)

50 μmol/L choline (0 μmol/L folate) 1 96.59 94.85 5.71 5.67 74.42 72.27

2 105.94 110.25 9.88 4.06 73.05 69.69

3 61.52 140.58 10.80 14.26 70.65 82.30

4 24.45 168.57 3.81 8.74 64.13 93.21

Within-day mean 88.02 128.56 8.80 8.18 72.70 79.37

Mean (SD) of 2 days 111.19 (34.48) 8.44 (3.56) 76.51 (8.44)

50 μmol/L folate (0 μmol/L choline) 1 105.63 113.48 10.02 3.10 79.79 79.61

2 157.30 122.17 7.92 7.00 78.46 57.33

3 122.61 103.87 15.61 6.90 83.47 60.64

4 109.76 90.03 7.24 8.10 77.57 68.75

Within-day mean 123.82 107.39 10.20 7.33 79.82 66.58

Mean (SD) of 2 days 115.61 (19.86) 8.97 (3.12) 73.20 (9.76)

Choline and folate deficient (0 μmol/L) 1 254.78 391.81 7.87 19.64 196.48 254.56

2 392.81 125.81 34.14 17.06 224.81 75.42

3 140.07 125.95 12.18 11.19 90.11 84.55

4 59.02 123.86 6.32 2.59 68.26 77.98

Within-day mean 211.67 125.21 8.79 10.28 144.92 79.31

Mean (SD) of 2 days 174.62 (112.49) 9.54 (5.05) 116.80 (64.99)

Note: Concentrations are shown in pg per mg total proteins in the cultured cells. Concentrations were measured in cell medium of HTR-8/SVneo cells. Data are mean of
duplicate measurements of the same well.
Abbreviations: IGF-1, insulin-like growth factor-1; sEGFR, soluble epidermal growth factor receptor; sFLT1, soluble fms-like tyrosine kinase 1.
The reagents used for the assays are described in Table S1. The between-group p-values (ANOVA) were as follow: For sFLT1, p = 0.2146; for IGF-1, p = 0.9714; for
sEGFR, p = 0.0862.
aCholine was added as choline bitartrate, and folate was added as calcium methylfolate.
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folate deficient media compared to the cells incubated in
the control media (2.95 [1.30] vs. 1.65 [0.27] ng/mg pro-
tein, p = 0.004) (Table 2). The LRP2 levels in cell lysates
in choline and folate deficient media (2.95 [1.30] ng/mg
protein) were significantly higher than the concentrations
in cell lysates incubated at choline deficient but folate suf-
ficient media (1.96 [0.28] ng/mg protein) or those incu-
bated at choline sufficient but folate deficient conditions
(1.77 [0.24] ng/mg protein) compared to cells grown in
the control media (p < 0.05).

The concentrations of EOMES in HTR-8/SVneo
cell lysates did not differ significantly between cells
incubated in choline and folate deficient media versus
cells grown in choline and folate sufficient media (6.55

[3.72] ng/mg protein vs. 4.03 [1.46] ng/mg protein;
p = 0.0574) (Table 2). The concentrations of CDX2
protein in cells incubated in choline and folate deficient
media were significantly higher than levels measured in
cells incubated in choline and folate sufficient media
(1.78 [0.60] vs. 0.99 [0.42] pg/mg protein; p = 0.002);
and compared to levels in cells incubated in choline
deficient but folate sufficient media (0.87 [0.13] pg/mg
protein; p < 0.001) or in folate deficient but choline
sufficient media (0.96 [0.16] pg/mg protein; p < 0.001)
(Table 2).

Adding 5 μmol/L HC-3 to the cell media containing
50 μmol/L choline had no effect on any other protein in
the medium or in the cell lysate (data not shown).

TABLE 2 Concentrations of proteins measured in cell lysates and expressed in mg total protein

Incubation conditionsa Culture well

LRP2 in ng/mg protein CDX2 pg/mg protein EOMES ng/mg protein

Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

Control + 50 μmol/L
choline + 50 μmol/L folate

1 3.70 1.99 1.81 0.74 7.06 2.68

2 1.39 1.62 0.98 0.57 4.10 3.20

3 1.23 1.92 0.82 1.06 3.13 3.67

4 1.62 1.77 1.28 0.75 4.40 3.00

Within-day mean 1.41 1.82 1.22 0.69 3.88 3.14

Mean (SD) of 2 days 1.65 (0.27) 0.99 (0.42) 4.03 (1.46)

50 μmol/L choline 1 1.70 1.85 1.15 0.95 4.64 3.50

2 1.42 1.93 0.96 0.82 3.64 3.60

3 1.79 2.20 0.87 0.90 3.78 4.22

4 1.57 1.71 1.25 0.78 3.43 3.81

Within-day mean 1.62 1.92 1.06 0.86 3.62 3.78

Mean (SD) of 2 days 1.77 (0.24) 0.96 (0.16) 3.71 (0.26)

50 μmol/L folate 1 2.08 2.55 1.11 0.76 3.95 4.13

2 2.01 1.70 0.98 0.87 4.84 3.43

3 1.83 1.81 0.83 0.91 5.10 2.65

4 1.66 2.05 0.79 0.68 4.76 3.48

Within-day mean 1.90 2.03 0.93 0.80 4.90 3.42

Mean (SD) of 2 days 1.96 (0.28) 0.87 (0.13) 4.06 (0.90)

Choline and folate
deficient (0 μmol/L)

1 4.76 8.15 2.88 5.90 11.82 11.79

2 4.90 2.01 2.18 1.93 12.16 4.14

3 2.06 2.19 1.17 1.63 4.30 4.56

4 2.18 2.57 1.26 1.40 4.47 4.37

Within-day mean 3.48 2.26 1.87 1.65 8.19 4.36

Mean (SD) of 2 days 2.95 (1.30) 1.78 (0.60) 6.55 (3.72)

Note: Concentrations were measured in HTR-8/SVneo cell lysates. Data are mean of duplicate measurements of the same well.
Abbreviations: CDX2, caudal-related homeobox 2; EOMES, eomesodermin homolog; LRP2, low-density lipoprotein receptor-related protein 2.
The reagents used for the assays are described in Table S1.
The between-group p values (ANOVA) were as follow:
For LRP2, p between groups = 0.004. The Tukey’s multiple comparison test results: mean difference and 95% CI for 50 μM Choline + 50 μM folate versus choline and
folate deficient = �1.304 (�2.279 to �0.3294). 50 μM choline (0 μM folate) versus choline and folate deficient �1.182 (�2.126 to �0.2377). 50 μM folate (0 μM choline)
versus choline and folate deficient = �0.9916 (�1.936 to �0.04767).
For CDX2, p between groups = 0.0002. The Tukey’s multiple comparison test results: mean difference and 95% CI 50 μM choline + 50 μM folate versus choline and
folate deficient �0.7857 (�1.331 to �0.2401). 50 μM choline (0 μM folate) versus choline and folate deficient �0.8186 (�1.347 to �0.2902). 50 μM folate (0 μM choline)
versus choline and folate deficient = �0.9123 (�1.441 to �0.3840).
For EOMES, p between groups = 0.0574.
aCholine was added as choline bitartrate, and folate was added as calcium methylfolate.
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DISCUSSION

We studied the effect of deficiency of choline, folate, or
both of them in human trophoblast cells on candidate
proteins related to placental vascularization or functions
or early fetal development. HTR-8/SVneo cells were used
as a model of first trimester placenta. We found that pro-
tein concentrations of LRP2 and CDX2 were upregu-
lated in lysates of HTR-8/SVneo cells incubated in
choline and folate deficient media compared to those
grown in choline and folate sufficient media. In contrast,
isolated choline or folate deficiency had no significant
effect on LRP2 and CDX2 protein concentrations. The
results suggest additive effects of choline and folate defi-
ciencies on these placental proteins. Moreover, using a
choline uptake inhibitor showed mostly similar results to
those when using choline deficient media.

Choline and folate have unique and joint roles in cell
metabolism. Both nutrients are methyl donors in one-
carbon metabolism,30–32 while choline has specific roles
in synthesis of phospholipids and acetylcholine and folate
has specific roles in synthesis of purine and thymidylate.
Experimental dietary folate deficiency in rats caused
depletion of liver choline derivatives, suggesting that
more choline was used as methyl donor under conditions
of folate deficiency.30 In experimental models of dietary
choline deficiency in newborn pigs, a combination of die-
tary choline and folate deficiencies caused growth retar-
dation and fatty liver that were stronger than those
caused by choline deficiency alone.33 This joint effect of
choline and folate deficiencies is in line with our results
and could be due to hypomethylation, and other mecha-
nisms that collectively lead to inhibition of cell growth
and differentiation.

Earlier studies have shown that prenatal deficiency of
choline caused upregulation of choline transporters.34

Thus, it is possible that adding HC-3 to media containing
choline could cause upregulation of choline receptors
which may partly maintain choline content in the cells. In
addition, it is possible that the HTR-8/SVneo cells can
synthesize phosphatidylcholine from phosphatidyletha-
nolamine, especially when folate is present in the
medium.

Earlier studies have shown that choline supplementa-
tion in third trimester pregnant women lowered plasma
sFLT-1 levels.14 Moreover, sEGFR protein has been
shown to be lowered in plasma of women with pre-
eclampsia (later in pregnancy).15 Our results on sFLT-1
(i.e., not significantly higher under choline and folate
deficient conditions) and sEGFR (unchanged at low cho-
line or upregulated in the presence of HC-3) could be due
to variations between the experiments that results in wide
standard deviations, the cell model we used or the
methods of measuring protein levels. Moreover, the
model we used here (early pregnancy trophoblast cells) is
not directly comparable with third trimester pregnant
women and the protein levels might change when the

pregnancy progresses or might be differentially expressed
by different placental cell types that are not present in the
HTR-8/SVneo cell line.

The finding that LRP2 and CDX2 were upregulated
in HTR-8/SVneo cell line under choline and folate defi-
ciency could reflect adaptation of the cells to extreme
conditions. LRP2 protein is a multi-ligand receptor with a
role in development of the retina.35 CDX2 is a transcription
factor that binds preferably to methyl-containing CpG
sequences on DNA21 and regulates the transcription of
genes expressed in the intestinal epithelium.

The present study has some limitations. The HTR-8/
SVneo cell line may not resemble the function of the pla-
centa as a whole organ with different types of cells.
Moreover, we have used commercially available ELISA
methods to measure concentrations of the target proteins.
These methods have limitations with regard to sensitivity
and the results need to be confirmed by future studies or
in vivo animal models. Finally, we did not investigate the
concentrations of one-carbon metabolites. Therefore, we
cannot confirm the mechanisms by which choline and
folate deficiencies modulated the concentrations of the
proteins. We cannot either confirm that the deficiency
caused upregulation of the LRP2 and CDX2 genes.

Taken together, we identified LRP2 and CDX2 (both
downregulated) as potential molecular targets for com-
bined choline and folate deficiencies in the HTR-8/SVneo
cell line of human trophoblast. Isolated choline deficiency
and folate deficiency was not associated with significant
changes of the concentrations of these proteins in
HTR-8/SVneo cells. The concentrations of sFLT-1, IGF-
1, sEGFR, and EOMES proteins were not significantly
influenced by choline and folate deficiencies. The
functional relevance of downregulation of LRP2 and
CDX2 in placental cells under choline and folate defi-
ciencies during early development needs to be
investigated in vivo.
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