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Kurzzusammenfassung

Wenn Polymerlösungen als Verdrängungsmittel verwendet werden, z.B. beim ”Poly-

merfluten”, wurde bereits nachgewiesen, dass die Viskoelastizität von Polymerlösungen

die Verdrängungsprozesse beeinflusst. Es gibt jedoch keine klare Erklärung dafür,

welche Rolle die Viskoelastizität bei der Verdrängung auf der Mikrometerskala spielt

und wie sie die mikroskopische Verdrängungseffizienz in porösen Medien verbessert.

In dieser Dissertation wird ein möglicher Mechanismus für die Verdrängung von

Kapillareinschlüssen unter dem ausschließlichen Einfluss von elastischen Spannungen

in der verdrängenden Flüssigkeit vorgestellt. Das verwendete mikrofluidische Mod-

ellsystem, das aus zwei Serpentinen-Kanälen besteht, die in der Mitte durch einen

Kanal verbunden sind, wurde so gestaltet, dass es einen einzelnen Poreneinschluss

simuliert. Die Serpentinen-Kanäle sind besonders wichtig, um die gewundene Natur

der Strömung in porösen Medien zu imitieren. Direkte experimentelle Beobachtungen

in diesem Modellsystem zeigen, dass die Grenzfläche zwischen der eingeschlossenen

Phase und der viskoelastischen Verdrängungsphase oberhalb einer kritischen Scherrate

instabil wird, was schließlich zur vollständigen Entleerung der eingeschlossenen Phase

führt. Die Analyse des geschwindigkeitsabhängigen Strömungsverhaltens der Poly-

merlösung im Serpentinen-Kanal mittels µPIV zeigt, dass der Ursprung dieser Gren-

zflächenfluktuationen die Geschwindigkeitsschwankungen aufgrund von rein elastis-

chen Instabilitäten und stark elastischen sekundären Strömungsstrukturen sind. Daraus

lässt sich schließen, dass diese elastizitätsbedingten Instabilitäten die Verschiebung des

kapillaren Einschlusses in den porösen Medien verursachen.
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Abstract

It is already evident that the viscoelastic nature of polymer solutions affects the

displacement processes when such fluids are used as displacing fluids, for example in

polymer flooding. However, a clear explanation of how exactly viscoelasticity plays

a role at the microscale and enhances microscopic displacement efficiency in porous

media is still lacking.

In this dissertation, a possible mechanism of displacing capillary entrapment under

the sole influence of elastic stresses is presented. A model system consisting of two

serpentine channels connected in the middle by a capillary channel has been designed

to represent a single pore entrapment. The serpentine channel is particularly important

to mimic the tortuous nature of flow in porous media. Direct experimental observa-

tions in this model system show that the interface between the entrapped phase and the

viscoelastic polymer solution used as the displacing phase becomes unstable above a

certain shear rate, eventually leading to the complete removal of the entrapped phase.

The results of Particle Image Velocimetry experiments of the polymer flow in the

serpentine channel show that the origin of these interfacial fluctuations is the velocity

fluctuations due to purely elastic instabilities and strong elastic secondary flow struc-

ture.
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CHAPTER 1

Introduction

Viscoelastic fluids are ubiquitous. From polymer melts to the most vital fluids in the

human body, they all belong to this category of complex fluids. The presence of mi-

crostructures like polymers, particles and proteins in such fluids leads to material prop-

erties that result in unique flow behavior and transport dynamics. As the name suggests,

viscoelastic fluids exhibit mechanical behavior intermediate between elastic solids and

viscous liquids. Which behavior dominates, depends on the timescale of the motion,

i.e., velocity. The popular children’s play dough Silly Putty, made of silicone polymers,

is an excellent example to understand the velocity dependence of viscoelastic behavior.

It bounces back like an elastic solid when it is given a hard blow, but flows like a liquid

when left at rest. If you have ever prepared a cake batter with a hand mixer, you have

probably witnessed another unique feature of viscoelastic fluids. When mixing Newto-

nian liquid ingredients such as milk, oil, or syrup, the liquid is thrown away from the

mixing blades by centrifugal force and flows outward toward the walls of the bowl, as

expected according to Newton’s first law. Once the flour, which contains a naturally

occurring protein polymer called gluten, is added, the mixture flows in the opposite di-

rection compared to the previous step, and the resulting batter unexpectedly climbs up

the mixing blades. This peculiar rod-climbing effect, known as the Weissenberg effect,

indicates that during the rotational motion of a viscoelastic fluid, an inward counterforce

acts upon and outweighs the centrifugal force. This force or the corresponding stress in

viscoelastic fluids is called the first normal stress difference and has an important impact

on the flow behavior of such fluids, specially in curved geometries. Such geometries are

of significant relevance for industrial and biological applications of viscoelastic fluids.

Giesekus first discovered in 1966 that the flow of viscoelastic fluids confined in the gap

between two rotating cylinders, i.e., in a Taylor-Couette geometry, becomes unstable

due to the high first normal stress difference, even in the absence of inertia [1]. This un-

stable flow, known as purely elastic unstable or turbulent flow, has potential advantages

and disadvantages in various viscoelastic fluid applications. In polymer processing and

extrusion, for instance, the occurrence of purely elastic instabilities results in undesir-

1
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able rough surfaces. On the other hand, such instabilities improve mixing efficiency and

heat transfer in the creeping flow regime, providing technical advantages in industrial

and biological applications of viscoelastic fluids.

High molecular weight, water-soluble polymers with strong viscoelasticity have

long been successfully used in the petroleum and agricultural industries as viscosity

mediators for enhanced oil recovery and soil remediation. In addition to increasing vis-

cosity and thus improving the macro scale displacement efficiency, these polymers can

also alter flow properties at the microscale due to their unique mechanical properties,

i.e., viscoelasticity. However, when and how exactly viscoelasticity can improve mi-

croscopic displacement efficiency is still an unsolved puzzle to researchers. To resolve

this problem, it is necessary to understand what viscoelasticity is and under what cir-

cumstances it can contribute to the removal of oil entrapment or contamination from

capillary pores in a porous medium.

In this dissertation, various aspects of the microscale flow of viscoelastic polymer

solutions are investigated to provide an explanation for improving microscopic displace-

ment efficiency by such flows in porous media. A unique but simple microfluidic model

system has been used, which consists of two symmetrical serpentine channels to mimic

the tortuous nature of flow in a porous medium, connected by a capillary channel that

serves as a single pore (capillary confinement). The symmetry between the two main

serpentine channels allowed to eliminate the effects of viscous stresses and to study

exclusively the effects of elasticity of semi-dilute polymer solutions on the displace-

ment of capillary entrapment. Direct observations of the displacement processes in this

model system indicated strong fluctuations of the interface between the trapped phase

and the polymer solution in the serpentine channel above a certain shear rate, which

eventually led to the complete removal of the trapped phase once the shear rate was

further increased. Further quantitative analysis of the experimental data confirmed that

the origin of these fluctuations is related to the occurrence of purely elastic instability

in the polymer flow. Since in the semi-dilute regime, the polymer coils are close and

thus strongly interact with each other, we have developed a suitable scaling to predict

the onset of purely elastic instability with respect to the non-linear shear-dependent rhe-

ological properties of such solutions. A comprehensive characterization of the emerged

turbulent polymer flow provided a clear insight into the source of the observed inter-

face functions, namely the development of strong unsteady secondary flow structures.

Finally, experiments investigating displacement processes by polymer solutions in a mi-

crofluidic porous medium consisting of randomly distributed disk arrays in a channel

showed very similar results. The interfaces became unstable, resulting in the defrag-

mentation and eventual release of the trapped phase. Although the rather complex flow

geometry in this case does not allow decoupling of the effects of elasticity and viscosity,
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similar mechanisms as in single pore geometry can be invoked due to the dominance of

curved flow paths. In fact, the occurrence of purely elastic instability and strong sec-

ondary flows are responsible for interfacial fluctuation and removal of entrapments in

porous media.





CHAPTER 2

Overview and Connectivity

This cumulative dissertation is based on four original publications, three of which have

been published in peer-reviewed scientific journals, and the fourth one being under

preparation at the time of submission. The original motivation behind these studies was

to explore and explain the mechanism of capillary displacement by viscoelastic polymer

solutions in porous media.

The publication by Shakeri et al. in AIP Physics of Fluids 2021 investigates the

displacement of a capillary entrapment by various viscoelastic polymer solutions with

different degree of elasticity in a microfluidic model system. The model system was

designed to resemble capillary entrapment as well as the tortuous nature of flow paths

in porous media. This unique model system allows the study of elasticity exclusively

by eliminating the contribution of the viscosity of the fluid. The results of this study

show the occurrence of an unstable flow of the polymer solutions accompanied by an

increase in flow resistance even in the absence of inertial forces. This unstable flow

leads to the fluctuation of the oil-polymer solution interface. Once these fluctuations

are strong enough, they provide the necessary force to overcome the capillary forces

and displace the capillary entrapment.

Providing a universal scaling to predict the onset of purely elastic instability with

respect to the fluid’s rheological properties and the geometrical properties of the flow

channel is the focus of the second publication Shakeri et al. in APS PHYSICAL RE-
VIEW E 2022. In this work, the shear dependency of the rheological properties of

semi-dilute entangled polymer solutions was added to the Pakdel and McKinley cri-

terion to provide a realistic scaling of the onset of purely elastic instability in such

polymer solutions.

In the publication Shakeri et al. in AIP Physics of Fluids 2022 flow of a semi-

dilute entangled polymer solution with the aim of providing a full characterization was

experimentally investigated. An important outcome of this work was that elastic sec-

ondary flow structures highly contribute to the total kinetic energy of the system. Look-

ing back at the initial observation of the displacement process in the single pore geome-

try in light of these latter findings, it can be concluded that the additional flow resistance

5
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and interface fluctuations observed in the capillary entrapment removal experiments are

largely caused by such unsteady secondary flow structures.

Finally, a series of experiments were conducted in a porous model system to utilize

the observations and findings from previous studies to explain the fluid displacement

mechanisms by viscoelastic polymer solutions in porous media. The results of these

experiments have been reported and discussed in Jung et al. in Frontiers in Physics
2022. Similar to the experiments with single entrapment, i.e., the first publication,

the interfaces between the oil entrapments and the viscoelastic invading fluid become

unstable above a certain flow rate and once the fluctuations were strong enough, the oil

entrapments were fragmented and eventually completely removed.

The structure of this thesis is as follows:

• In the Chapter: Background and Theory, the process of displacing capillary

entrapments in porous media, relevant fundamentals of polymer physics, the rhe-

ological properties of polymer solutions, and their flow are discussed, with an

emphasis on the relationship between the fluid properties and the corresponding

flow features.

• In the Chapter: Materials and Methods, a general description of the experi-

mental equipment, methods, and experimental procedures is presented, while the

corresponding details can be found in the methods section of the publications in

A–D.

• In the Chapter: Results and Discussion, the main results and findings of the

attached publications in Appendices A–D, are discussed.

• In the Chapter: Summary and Outlook a summary of the presented study and

an outlook for future research are provided.





CHAPTER 3

Background and Theory

Every oil reservoir undergoes three production phases during its life cycle. The first

phase is primary production, where the reservoir is naturally depleted due to its pres-

sure. However, over time, the reservoir pressure decreases and the secondary produc-

tion phase begins. In this phase, an immiscible fluid, usually water, is injected into the

reservoir to create the pressure needed for further production. After a period of time, the

secondary recovery method also becomes ineffective, and most of the injected water is

recovered in the production wells, while much of the oil remains trapped in the porous

rock due to capillary forces [2, 3]. Depending on the wettability of the rock surface,

the oil may be trapped as large ganglia in large pores in a water-wet rock Fig. 3.1 (a),

spread as a thin film in an oil-wet rock Fig. 3.1 (b), or in an intermediate form in a

mixed-wet rock Fig. 3.1 (c)[4, 5]. A wide range of tertiary or enhanced oil recovery

(EOR) methods have been established in the petroleum industry over the years, most of

which are aimed at recovering the fraction of oil in the reservoir that has been bypassed

by secondary recovery methods, as well as improving the microscopic displacement ef-

ficiency by displacing capillary entrapments. To remove capillary entrapments, viscous

forces must overcome capillary forces, thus increasing the viscosity of the displacing

phase can improve displacement efficiency, especially in non-wet systems where the

capillary threshold is small [2]. Polymer flooding is an established EOR method that

uses polymers to increase the viscosity of the displacing fluid to improve oil recovery

by reducing the mobility ratio between the displacement phase and the reservoir oil.

Early application of polymer flooding in practice dates back to six decades ago, but it

is still considered as one of the most efficient and reliable chemical EOR techniques in

the petroleum industry [2]. For a long time, the general consensus among petroleum en-

gineers was that polymer flooding solely improves volumetric displacement efficiency

by invading the highly permeable zones and fractures in the reservoir rock that were

previously bypassed by water flooding, and has no impact on the oil residual saturation

in the matrix. However, several field production results [6–9] as well as experimen-

tal [10–14] and numerical studies [15–18] indicated otherwise, reporting surprisingly

lower residual oil saturation after polymer flooding. Since the capillary threshold can be

8
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(a) (b) (c)

Fig. 3.1 Sketch of various forms of oil entrapments in porous media with different wet-
tabilities. (a) Non-wet surface, large oil ganglia with relatively small capillary threshold
are entrapped in the larger pores. (b) Wet-surface, oil is spread as a thin film on the sur-
face and in small pores with a high capillary threshold. (c) Mixed-wet, an intermediate
configuration between wet and non-wet. Oil ganglia are entrapped in intermediate pores
and are in contact with more than one active path line.

significant, especially in mixed wet and wet systems, and the increased viscosity during

polymer flooding is not sufficient to overcome it, other mechanisms must be responsi-

ble for these observations [19, 20]. Although several studies suggest that the improved

microscopic displacement efficiency during polymer flooding is due to the viscoelastic

nature of the fluid, the exact mechanism is not yet agreed upon [21–23]. While some

researchers have linked the improved efficiency to the observed increased apparent vis-

cosity, relating it to the extensional viscosity of the polymer solutions [24–26], others

have pinpointed the occurrence of so called purely elastic instabilities as the possible

cause [27–33]. The latter group argues that the unsteady flow induces fluctuations in the

fluid-fluid interface between the viscoelastic invading fluid and the trapped oil ganglia

[22, 34–36], resulting in the breakup of large ganglia into smaller droplets and ulti-

mately the complete removal of the trapped oil [37]. Further displacement experiments

using polymers with different molecular weights imply that the onset of displacement

mainly depends on the intensity of the fluctuations rather than the absolute value of the

apparent viscosity [22, 34, 38]. Other displacement mechanisms such as strip-off of oil

films attached to pore walls caused by an apparent slip length [39, 40], reducing the

effective permeability of porous media by polymer retention [41, 42], as well as droplet

breakup [43, 44], and pulling effects [45, 46] originating from normal stress differences

that remove oil from dead ends have also been reported in the literature.

The geometric features of flow paths in porous media play a crucial role in enhanc-

ing the viscoelasticity of polymer solutions and triggering instabilities. The tortuous

structure of porous media, for instance, enforces both shear and extension, which can

elongate the polymers and consequently alter the flow and cause instabilities, especially

at large Weissenberg numbers (ratio of elastic to viscous forces) where elasticity domi-

nates [18–20]. As a result, displacement processes in natural porous media are affected

by some if not by all the listed mechanisms, yet it remains an open question which,
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mechanism prevails to (re-) mobilize capillary entrapments.

The following sections of this chapter discuss the rheological as well as flow prop-

erties of polymer solutions relevant for understanding the potential effects of viscoelas-

ticity on the displacement process in porous media.

3.1 Polymer Solutions and Concentration Regimes

Polymers are giant macromolecules formed by covalent bonding of a large number of

elementary units (monomers) through a process called polymerization [47]. Carbohy-

drates, lipids, proteins, and nucleic acids (DNA and RNA) are among the best-known

natural and biological polymers [48]. We are also surrounded by synthetic polymers

such as rubber, plastics, resins, and adhesives in our living environments. As already

mentioned, one of the unique applications of synthetic polymers is in enhanced oil re-

covery and soil remediation, where polymers are added to increase the viscosity contrast

between the displacing and displaced phases [4, 49, 50]. This results in an improved

mobility ratio, i.e., more homogeneous and less fingering at the front during the dis-

placement process [4]. The polymers used for this purpose are usually high molecular

weight, water-soluble substances such as hydrolyzed polyacrylamides (HPAM), xan-

than gum and schizophyllan [51–53]. The HPAM family, a semi-random flexible chain

copolymer of ∼ 70% acrylamide and ∼ 30% acrylic acid, is most commonly used

due to its cost-effectiveness and proven performance [2, 54]. The degree of hydrolysis

affects certain physical properties of polymers such as adsorption, shear and thermal

stability, and salt sensitivity [2, 55–57]. The polymerization process and molecular

structure of HPAM polymers are shown in Fig. 3.2.

HPAM polymers in an aqueous solution and at equilibrium acquire a flexible spheri-

cal conformation to preserve their minimum energy [58]. The radius of gyration, which

is an estimate of the size of the polymer coils in solution, corresponds to the radius of

this imaginary enclosing sphere and is defined as [58]:

Rg = 3

√
MW

4
3
πNAc∗

(3.1)
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Fig. 3.3 Sketch of polymer coils in the solution at various concentration regimes. Rg

and c* are the radius of gyration and overlap concentration, respectively.

where MW is the molecular weight, c∗ is the overlap concentration and NA is the Avo-

gadro constant. The overlap concentration, i.e., the concentration at which the polymers

nearly overlap, is proportional to the reciprocal of intrinsic viscosity and is defined as

c∗ ≈ 1/[η]. For the definition of different types of viscosity, see section 3.2.1. The

intrinsic viscosity [η] relates directly to the molecular size of the polymer and is de-

fined as the limit of the reduced viscosity as the concentration of polymer tends to zero,

i.e., [η] = limc→0
η−ηs
cηs

, where η, ηs and c are solution viscosity, solvent viscosity and

polymer concentration, respectively [47]. The intrinsic viscosity, [η], and thus over-

lap concentration, c∗, are experimentally determined using Huggins–Kreamer method

[59, 60]. Polymer solutions are categorized in three regimes with respect to the over-

lap concentration c∗. These concentration regimes are namely dilute, semi-dilute and

concentrated [61]. Fig.3.3 shows a schematic demonstration of polymers at different

concentration regimes. In the dilute regime, where there are only a few coils with a

large distance between them, the polymers interact solely with the solvent molecules.

As their number increases and the coils come closer to each other, they start to interact

with each other. In the semi-dilute regime, polymers start to entangle either internally,

i.e, self entangled, or with neighboring polymers whereas concentrated solutions and

melts are characterized by severe entanglements and dense polymer phases. The dy-

namics and flow behavior of polymers strongly depends on the molecular weight and

concentration of the polymer [62, 63]. Moreover, since HPAM are poly-electrolytes,

they interact quite strongly with ions in the solution and the radius of gyration of the

coils and thus properties of the solutions strongly depends on the type and concentration

of the salts in the solution as well [64].

3.2 Rheology of Polymer Solutions

The term ”rheology” comes from the ancient Greek terms ”ϱέω (rhéō)” and ”λoγια

(-logia)” which literally translates as the study of the flow. However, rheology is not

just about the flow per se. It deals mainly with the flow and deformation of a substance,
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in particular with the relationship between the deformation of a fluid element and the

stresses exerted on it, also with respect to time [65]. Unlike ideally elastic or viscous

materials, viscoelastic fluids exhibit a complex and usually nonlinear stress-strain rela-

tionship, and thus their dynamic behavior can be intricate [66].

In this section, rheological properties of viscoelastic polymer solutions are briefly

explained.

3.2.1 Viscosity

Dynamic viscosity, also referred to as absolute viscosity, usually refers to non-Newtonian

fluids and indicates the internal flow resistance and energy dissipation during continu-

ous deformation, i.e., flow [67]. In polymeric fluids, the interaction between the poly-

mers with each other and with the solvent molecules increases the flow resistance and

energy dissipation, hence polymers are considered as efficient viscosifiers [2]. The

viscosity of a polymer solution depends on the size, number and conformation of the

polymer molecule in it, i.e., larger molecules with higher molecular weights are usu-

ally associated with a higher solution viscosity [3, 50]. Unlike Newtonian fluids, where

stress and strain are linearly related and thus viscosity is a material constant, the poly-

mer conformation and hence the viscosity of the solutions depends strongly on the shear

rate, especially above the overlap concentration [68]. At rest or very low shear rates, the

polymers remain in the coiled conformation, and the solution exhibits a constant vis-

cosity. However, above a critical shear rate the polymers start to uncoil and align with

the flow direction and as a result the flow resistance, i.e., viscosity, is reduced. This

behavior is known as shear thinning [69]. The shear viscosity of polymer solutions is

commonly measured with a rheometer in a steady rotation test, either in stress or in

a strain-controlled mode [70]. Even though for polymer solutions the relationship be-

tween stress and strain is no longer linear and cannot be described by a single constant,

it is still appropriate to represent the shear dependent viscosity function as [65]:

η(γ̇) ≡ τ/γ̇ (3.2)

where τ is shear stress and γ̇ is shear rate. The shear dependent viscosity function, η(γ̇),

of semi-dilute polymer solutions is best described by the Carrueau–Yasuda model [69],

which is a power decay with two constant plateaus at the extreme ranges of the shear

rate:

η(γ̇)− η∞ = (η0 − η∞)[1 + (Λγ̇)a]
n−1
a (3.3)

Here η0 and η∞ are the zero-shear viscosity and viscosity at infinite shear rates, Λ is

a characteristic time, n is the power law exponent associated with the degree of shear
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Fig. 3.4 (a) Sketch of one Maxwell element for a viscoelastic liquid, consisting of one
Hookian spring attached to one Newtonian dashpot in series. (b) Generalized Maxwell
model consisting of multiple parallel Maxwell elements.

thinning, and a is a transition control factor.

3.2.2 Viscoelasticity

As the term viscoelastic suggests, it is a class of material property which show an in-

termediate behavior between elastic solid and viscous fluid, depending on the timescale

of the motion [68]. In such materials, the deformation caused by a constant load has

two components: first, an immediate deformation related to elasticity, and second, a

delayed deformation related to viscosity [66]. After unloading, retarded reformation

occurs either partially or completely. To understand viscoelastic behavior, we must first

know how an elastic and a viscous substance behave. When an ideally elastic material

is slightly deformed, it tends to return to the original configuration as soon as the stress

is removed. This means that the deformation energy acting on an ideally elastic body

during a shear process is stored and can be fully recovered without loss when the load

is removed [61]. This behavior is described via Hook’s law:

τ = Gγ (3.4)

where τ , G and γ are shear stress, shear or rigidity modulus, and strain (deformation),

respectively. In contrast, in ideally viscous material, the energy is entirely dissipated

and after unloading, the material remains deformed to the same extent as at the end of

the loading phase [61]. This behavior is described via Newton’s law:

τ = −ηγ̇ (3.5)

James C. Maxwell, in 1868, proposed the first constitutive relationship between

stress and strain and the corresponding mathematical fundamentals of a viscoelastic

fluid [71]. This model in fact represents a viscoelastic fluid with a linear Hooke’s

spring connected in series with a Newtonian dashpot. A schematic representation of
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a Maxwell element is shown in Fig. 3.4 (a). The total strain (deformation) of the vis-

coelastic material is determined as:

γtotal = γspring + γdashpot (3.6)

The spring acts exactly like a metal spring according to Hook’s law with a shear modu-

lus G, instantly stretching under stress while the piston, immersed in the dashpot filled

with a Newtonian fluid of viscosity η, moves at a rate proportional to the stress, obeying

Newtons’s law. Thus,

τ =
η

G

(
∂τ

∂t

)
+ ηγ̇ (3.7)

Equation 3.7 is reduced to Newton’s law for a steady flow, Eq. 3.5, where the varia-

tion of the shear stress with time is negligible. On the other hand, if the stress changes

rapidly with time, τ is negligible compared to ∂τ
∂t

, and Eq. 3.7 is reduced to the con-

stitutive equation of a Hookian solid, Eq. 3.4. In this model, η
G

is a constant with the

dimension of time and is denoted as the relaxation time λ, thus Eq. 3.7 for τ (t) can be

written as:

τ(t) =

∫ t

−∞

{ η

λ2
exp [− (t− t′) /λ]

}
γ (t, t′) dt′

=

∫ t

−∞
M (t, t′) γ (t, t′) dt′

(3.8)

where M (t, t′) is the memory function, incorporating the idea that stress at the current

time is a function of the immediate past, with the most recent past having the greatest

impact [66]. The Maxwell model is the simplest viscoelastic model among a wide class

of constitutive relationships for viscoelastic fluids that does not consider the shear de-

pendence of the rheological properties, and is thus suitable only for very dilute polymer

solutions in the linear viscoelastic range [72]. To represent a realistic behavior of poly-

mer solutions, especially in the semi-dilute range where both viscosity and relaxation

time depend on shear rate, a generalized modification of the Maxwell model including a

spectrum of relaxation times is required [67]. In the generalized Maxwell model, a vis-

coelastic fluid is described by a series of Maxwell elements connected in parallel with

different Gi and ηi, as shown in 3.4 (b). According to the principle of L. Boltzmann

superposition [73], the memory function for a superposition of n Maxwell elements in

Eq. 3.8 can be written as:

M (t− t′) =
N∑

i=1

Gi

λi

exp

(
−t− t′

λi

)
(3.9)

where Gi and λi are the elastic modulus and viscosity of the ith element.
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The characterization of viscoelastic fluids is of great practical importance since the

behavior of such fluids is directly related to the ”viscous” and ”elastic” response ob-

tained during the unsteady flow of such fluids. The dynamic behavior of such fluids

is mostly examined via small amplitude oscillatory tests [61], where a sinusoidal de-

formation or stress is imposed to the fluid, e.g., τ(t) = τ0sin(ωt) in stress-controlled

mode, and the corresponding response of the fluid in the form of sinusoidal stress or

deformation is captured, e.g. γ(t) = γ0sin(ωt + δ). Figure. 3.5 shows an illustration

of the concept of oscillatory shear flow. The phase shift, δ, varies in the range of 0 to π
2

and indicates whether the fluid behaves ideally viscous (δ = π
2
), ideally elastic (δ = 0)

or viscoelastic (0 < δ < π
2
) [70]. Analogous to the steady-state shear of viscoelastic

fluids, the ratio of stress to strain during a dynamic test is defined as the complex shear

modulus, G∗ = τ(t)/γ(t). G∗ is defined in the complex domain and can be decom-

posed into a real part (elastic or storage modulus, G′) and an imaginary part (viscous

or loss, G′′), i.e., G∗ = G′ + iG′′ , and thus characterizes the overall viscoelastic be-

havior [61]. The small amplitude oscillatory sweep tests are usually performed in two

ways: Amplitude sweep test to determine the range of linear viscoelastic behavior and

frequency sweep test to determine the longest relaxation time or relaxation spectrum of

the viscoelastic polymer solutions [70].

The (generalized) Maxwell model is widely used for analysis and interpretation

of the small amplitude oscillatory sweep tests, which provide important information

about the dynamic properties of polymer solutions in the linear viscoelastic range. The

frequency dependence of G′ and G′′ with respect to the generalized Maxwell models is

defined as:

G′(ω) =
N∑

k=1

Gk
(λk · ω)2

1 + (λk · ω)2
(3.10)

G′′(ω) =
N∑

k=1

Gk
λk · ω

1 + (λk · ω)2
(3.11)

where N is the number of Maxwell elements, and λk and Gk = ηk/λk are the relaxation

time and the corresponding shear modulus of the kth element, respectively.

The largest relaxation time is commonly used as a characteristic timescale to eval-

uate the degree of elasticity of the polymer solutions. However, polymer solutions in

the semi-diluted regime exhibit strongly shear-dependent relaxation times. Therefore,

it is more reasonable to select a relaxation time that corresponds to the range of the

applied shear rate for this aim [74]. In a flow with a characteristic shear rate of γ̇ or a

characteristic frequency ω, two dimensionless numbers can be defined to estimate how

dominant the elastic stresses are. These two dimensionless numbers, which are widely

used to characterize viscoelastic flows, represent the ratio of elastic forces to viscous
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Fig. 3.5 Schematic representation of a unidirectional simple shear flow (top left) and
oscillatory shear flow (bottom left). F is the force exerted on the moving plate, A is the
surface area, and d is the distance between the top and bottom plate. vx(y) is the veloc-
ity component in the flow direction at any vertical location y. The stress components
exerted on faces of a 3D volume element (right).

forces during flow and are referred to as the Deborah number and the Weissenberg num-

ber [75]. The Deborah number is defined as the ratio between the fluid relaxation time

and the characteristic flow time (reciprocal of the characteristic frequency), De = λω.

The Deborah number represents the transient nature of the flow relative to the timescale

of the fluid [76]. If the De number is small, implying that the observation timescale

is large, the material responds like a fluid, and if the De number is large, the material

exhibits a solid-like behavior. From this point of view, there is no fundamental differ-

ence between solids and fluids; it is just a matter of observation timescale. The concept

behind the Weissenberg number as an indicator of elasticity becomes clear when con-

sidering its original definition by K. Weissenberg as the so-called ”recoverable strain”

or the ratio of elastic to viscous forces defined as Wi = λγ̇ [75, 77]. Similar to the De

number, the higher the Wi-number, the more elastic is the response of the material.

3.2.3 Elastic Stress and Normal Stress Differences

The normal stress difference is a unique feature of viscoelastic fluids, which is respon-

sible for important flow phenomena such as the Weissenberg effect [65] and purely

elastic instability in curvilinear flows [78, 79]. To understand what this stress differ-

ence is and how it is generated, we need to look at stress and strain distribution in a

three-dimensional fluid element during flow. Fig. 3.5 is a schematic demonstration of a

simple shear flow of a fluid, where a constant force F is exerted on the top plate with
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surface area A in x-direction. The fluid between the two plates moves in a stratified

manner with a linear velocity profile vx(y) = vXy/d, where vX is the maximum veloc-

ity at the top plate and vx(y = 0) = 0 at the bottom (stationary) plate, due to the no-slip

boundary condition. The shear rate in this case is defined as ˙γxy := dvx(y)
dy

= vX
d

and is

constant. According to Newton’s law, Eq. 3.5 can be written as:

τxy =
F

A
= η ˙γxy (3.12)

In a three-dimensional shear flow, two shear and one normal stress components are

acting on each face of a three-dimensional fluid element, as shown in Fig. 3.5. Thus, a

three-dimensional total stress tensor, Π can be written as follows [66]:

Π =



Πxx Πxy Πxz

Πyx Πyy Πyz

Πzx Πzy Πzz




The total stress tensor Π can be decomposed into an isotropic part (thermodynamic

pressure, p) and a ”deviatoric” part known as the extra stress tensor, τττ , defined as:

Π = −pI+ τ (3.13)

The deviatoric part τττ = τττ(V,∇V, etc.), known as the constitutive equation, is defined

based on the fluid and can be substituted into Eq. 3.13 and subsequently in the flow

equation. For instance, for an incompressible Newtonian fluid, the deviatoric part of the

total stress tensor is symmetric and traceless, i.e., tr(τττ) =
∑n

i=0 τii = τxx+τyy+τzz = 0

and the symmetry of τττ imposes that τττ = τττT , thus, τij = τji [67, 72]. Each off-diagonal

component in the x-plane is linearly related to the rate of deformation of the tensor

components. Thus:

τxx = −2η
∂Vx

∂x
,

τxy = −η

(
∂Vx

∂y
+

∂Vy

∂x

)
,

τxz = −η

(
∂Vx

∂z
+

∂Vz

∂x

)
.

(3.14)

A similar set of equations can be written for the y and z planes as well. The three-

dimensional stress distribution in Newtonian fluids is in general isotropic, i.e., τxx =

τyy = τzz. In simple shear flow, the velocity is constant in the flow direction, ∂Vx

∂x
=

0, and varies only in the perpendicular direction, thus τxx = τyy = τzz = 0 [65].

In viscoelastic polymer solutions, however, the stress-strain relationship is nonlinear.

Moreover, the stress distribution is anisotropic due to anisotropic deformation caused
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by different polymers’ conformation during flow [78]. As a result, two sets of non-zero

normal stress differences appear in viscoelastic fluid flow:

N1 = τxx − τyy (3.15)

N2 = τyy − τzz (3.16)

N1 and N2 are known as first and second normal stress differences and are both func-

tions of shear rate. Several unique behaviors, such as the die swell in extrusion flow

[80], rod climbing or Weissenberg effect [65], purely elastic instability [78, 81], and

secondary flow patterns in curved flows [82] are induced by normal stress differences

in viscoelastic polymer flows.

3.2.4 Viscoelastic Constitutive Models

The deviatoric part of the total stress tensor in equation 3.13, is defined based on the

stress-strain relationship corresponding to the fluid behavior described by the constitu-

tive fluid model. The choice of an appropriate and representative fluid model is thus

necessary for numerical modeling and evaluation of experimental fluid flow. There are

two general types of viscoelastic fluid models, i.e., differential models and integral mod-

els [73]. Even though the integral approach is more accurate, the differential models are

most commonly employed as they are relatively easier to use. Among the long list of ex-

isting differential models, Oldroyd type (Maxwell, Oldroyd-B, White–Metzner), FENE

type, Phan-Thien Tanner (PTT), and Giesekus are widely used [65, 66, 83, 84]. Which

model to choose to describe a viscoelastic fluid depends not only on the rheological

properties of the fluid, but also on the flow geometry. For example, the shear-thinning

viscosity and the non-quadratic first normal stress difference of polymer solutions in the

semi-dilute regime could be represented by either the PTT, the Giesekus or the White–

Metzner (WM) model. The WM constitutive model expresses a fairly simple non-

linear viscoelastic fluid of polymer solutions in the semi-dilute and entangled regime

with strong shear thinning [85]. It is also straightforward to select material parameters

based on the experimentally measured first normal stress difference and viscosity for

this model. Thus, for interpreting the flow behavior of a highly shear-thinning fluid in

a serpentine channel where the flow is mainly shear-dominated, WM is an appropriate

choice and is therefore used in this work.

Despite having different scopes and approaches, all of these models have a common

principle, inspired by Maxwell’s interpretation of a viscoelastic fluid, in which the extra

stress tensor in Eq. 3.13 is decomposed into two components as:

τ = τ1 + τ2 (3.17)
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where τ1 and τ2 are extra stress components corresponding to the elastic and viscous

components of the viscoelastic fluid, respectively. The viscous part is defined as τ2 =

2 η2D, where D is the deformation tensor, D = 1
2

[
∇V +∇V T

]
, and η2 is the cor-

responding viscosity. The elastic part, τ1, is calculated from a differential equation or

an algebraic equation with a state variable (configuration tensor) obeying a differential

equation [73]. For example, the White-Metzner (WM) fluid model [86] computes τ1 in

the following form:

τ1 + λ (γ̇)
▽
τ1 = 2 η1 (γ̇) D (3.18)

where η1 is the corresponding viscosity, and λ (γ̇) is the shear dependent relaxation time

calculated as:

λ(γ̇) = N1/2(η(γ̇)− η∞)γ̇2 (3.19)

here γ̇ is the second invariant of deformation tensor and is defined as γ̇ =
√
2 tr(D2).

The term η(γ̇) is the total viscosity of the viscoelastic fluid, i.e., η = η1 + η2, which

for a shear-thinning fluid is usually described by Eq. 3.3. The upper convected time

derivative,
▽
τ1, is calculated as:

▽
τ1 =

Dτ1
Dt

−
[
τ1 · ∇v + (∇v)T · τ1

]
,

Dτ1
Dt

=
∂τ1
∂t

+ v · ∇τ1

(3.20)

As will be explained in the next section, these constitutive equations are imple-

mented in the flow equations to account for the time-dependent behavior and elasticity

of polymer solutions and to reliably predict the stress distribution during flow.

3.3 Influence of Viscoelasticity on the Flow

Since non-Newtonian fluids are fundamentally different from Newtonian fluids, it is

important to understand how their properties can modify the flow. This can be evaluated

by implementing the representative constitutive equations into the flow equations, i.e.,

the conservation of mass and momentum [5]. In the following, we will explain where

does the viscoelasticity of the polymer solutions impacts these fundamental equations.

3.3.1 Mass Conservation

The principle of mass conservation states that the mass in an arbitrary control volume

as shown in Fig 3.6 is conserved at all times, i.e., the mass flow entering the control
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Fig. 3.6 Sketch of a fluid control volume CV and relevant components such as control
surface CS, volume element dv, and surface element dS for deriving mass and momen-
tum conservation equations.

volume ṁin is equal to the mass flow leaving the control volume ṁout [87]:

dmCV

dt
= ṁin − ṁout = 0 (3.21)

thus, the integral form of the mass conservation is written as follows:

d

dt

∫

CV

ρ · dV = −
∮

CS

ρ ·V · ndS = 0 (3.22)

where ρ is the fluid density, dV is a volume element, n is the normal outward unit

vector, dS is a surface area element, and V is the velocity vector of arbitrary direction,

Fig. 3.6. According to the Gauss’s Theorem [67]:

∮

CS

ρ ·V · ndS =

∫

CV

∇(ρV)dV (3.23)

Thus Eq. 3.22 is reduced to the following form:

∫

CV

(
∂ρ

∂t
+∇(ρV)

)
dV = 0 (3.24)

which results in the general form of the Continuity Equation:

∂ρ

∂t
+∇(ρV) = 0 (3.25)

As seen, viscoelasticity has no effect on the continuity equation. Therefore, it is some-

times sufficient to implement the shear-dependent viscosity of polymer solutions into
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the generalized Newtonian fluid models when only the velocity distribution or its deriva-

tives such as shear rate or deformation tensor are of interest. However, as will be dis-

cussed in the next section, the predictions of the stress tensor in this case are not entirely

accurate because viscoelasticity has a significant impact on the conservation of momen-

tum.

3.3.2 Momentum Conservation

The principle of momentum conservation is in fact the Newton’s second law of motion

[88]: ∑
f(i) = ma =

d(mv)

dt
(3.26)

where m is mass, a is acceleration, and v is velocity. The momentum balance has three

components, which are momentum flow due to convection, advection (by molecular

forces), and body forces:

d

dt

∫

CV

ρvdV = −
∮

CS

(n̂ · v)ρvdS +

∮

CS

n̂ ·ΠdS +

∫

CV

ρgdV (3.27)

considering a differential surface element dS, as shown in Fig. 3.6, and following Gauss’s

theorem the momentum flow by convection, i.e., the first term in the RHS of Eq. 3.27

for the control volume, is written as:

−
∮

CS

(n̂ · v)ρvdS =

∫

CV

∇ · (ρvv)dV (3.28)

The second contribution, i.e., momentum transfer by advection is related to the molecu-

lar forces, originating from the collisions or interactions among polymer molecules and

is computed as [66, 88]:

∮

CS

n̂ ·ΠdS =

∫

CV

∇ ·ΠdV (3.29)

Thus, keeping the last term, which corresponds to the contribution of the body forces,

as is and substituting the Eq. 3.28 and Eq. 3.29 into Eq. 3.27, the general form of the

momentum equation is obtained as:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇ · τ + ρg (3.30)

where τ is computed from the constitutive equation, e.g., for a White-Metzner fluid,

by inserting Eq. 3.17, Eq. 3.18, and Eq. 3.20 into Eq. 3.30. As can be expected, unlike
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Fig. 3.7 A few examples of shear flow with curved streamline. (a) Taylor–Couette cell,
(b) plate-plate geometry, and (c) serpentine channel. R is the radius of curvature of the
flow geometry and Ω is the angular velocity.

for Newtonian fluids, where the relationship between stress and strain is linear, the

constitutive equation, and hence the momentum equation for viscoelastic fluids can be

highly nonlinear and complex.

3.3.3 Elasticity Induced Instabilities

To understand how the viscoelastic nature of polymers causes instabilities when flowing

in curved geometries, a description of the behavior of polymers at the molecular level

is required. Figure 3.8 (a) depicts the behavior of individual polymers under such flow

conditions. At high Weissenberg numbers, the polymers are anisotropically stretched

due to the shear gradients, i.e., the polymers are pulled towards the inner wall due

to the stronger curvature of the streamlines and higher shear rate at this region. This

anisotropic deformation of the polymers leads to an anisotropic distribution of the elas-

tic stresses, and thus to normal stress differences. Under these conditions, a slight per-

turbation of the flow leads to a deformation of the streamlines, as shown in Fig. 3.8 (b)

with solid streamlines. As a result, the gradient of the shear rate is also disturbed

(discrepancy between the solid and dashed streamlines in Fig. 3.8 (b)), causing some

fluid elements to move slightly outward while others move inward. The effective force

pulling the fluid elements inward therefore increases, while the effective force on the

fluid elements moving outward decreases. This effect is thus strongly self-amplifying,

which means that the flow is unstable when the forces are large enough [78]. In a ser-

pentine channel, the situation is even more complicated because the curvature alters in

sign as the flow progresses, and the polymer stream exiting one half-curve enters the

next with the opposite curvature. The unstable and chaotic motion of the polymers is

reflected in the flow by the appearance of an unstable flow that resembles inertial tur-

bulent flow features, i.e., increased flow resistance and fluctuating flow properties, but
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(a) (b)

Inner cylinder

Outer cylinder Outer cylinder

Inner cylinder

Fig. 3.8 (a) Demonstration of anisotropic stretching and deformation of polymers as
they are pulled into regions of higher streamline curvature and higher shear rate, (b)
deformation of streamline as a result of perturbation caused by polymer’s anisotropic
deformation. The solid lines show deformed streamlines with respect to the intrinsic
curvature of the channel, shown by dashed lines. The arrows indicate the direction in
which polymers are pulled. Adapted and redrawn from [78].

with fundamental differences in its underlying mechanism. In other words, unlike in-

ertial turbulence, the energy cascade is not the mechanism behind, and the elasticity of

the polymer solution is the sole cause of instabilities in the flow [89].

Therefore, such instabilities are referred to as ”purely elastic instabilities” [81].

Such instabilities have been reported in other shear flows with curved streamlines such

as in plate-plate geometry and in serpentine channels [33, 89–93] [Fig. 3.7]. Both geo-

metric factors and fluid properties are expected to contribute to the onset and intensity

of purely elastic instability in curved geometries, i.e., the larger the Weissenberg num-

ber and the stronger the curvature of the streamlines, at lower shear rates the instability

is likely to occur.

One of the most fundamental studies on the scaling of the onset of pure elastic in-

stability in curved geometries was carried out by Pakdel and Mckinley [92]. They have

shown that based on the Buckingham theorem approach, the occurrence of pure elas-

tic instability can be scaled by a dimensionless number containing all the components

that govern elastic instability, namely geometric factors, and anisotropic elastic normal

stresses. The well-known criterion of Pakdeland MacKinley is expressed in its most

general form as follows:
ℓ

R

|N1|
|τ | > M2 (3.31)

here ℓ = Uλ is the length scale whereas U is the typical velocity along the flow and

λ, is the polymer the longest relaxation time, R is the typical radius of curvature, N1

is the first normal stress difference and τ is the shear stress. In this context, M , which

is a constant value for dilute polymer solutions with constant viscosity and relaxation

time, indicates a lower threshold above which instability initiates. However, the appli-

cation of this criterion in its original form to semi-dilute entangled polymer solutions

with nonlinear rheological properties is inaccurate because the assumption of a con-
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(a) (b)

Fig. 3.9 Cross-section view of flow in a serpentine channel, adapted from [94]. (a)
Counter-rotating vortices perpendicular to the main flow, (b) normalized first normal
stress difference distribution, with the highest values located near the inner wall.

stant relaxation time is not valid. To address this issue, a more realistic representation

of the rheological properties of such polymer solutions can be included in the original

criterion in the framework of a suitable constitutive model such as the White-Metzner

model (see Appendix B).

The flow of viscoelastic polymer solutions in curved geometries is accompanied by

the emergence of a first normal stress difference gradient between the wall with the

higher curvature and the opposite wall in the direction perpendicular to the main flow,

Fig. 3.9(a) [82, 94]. This gives rise to the development of secondary flow structures

in the form of counter-rotating vortices, known in fluid mechanics as Dean vortices,

Fig. 3.9(b). Although such secondary flows are relatively weak compared to the main

flow, they contribute significantly to the total kinetic energy of the system [95] and

substantially improve the mixing capacity and heat transfer during the flow [11, 53].

As shown and discussed in Appendices A and C, such secondary flows contribute sig-

nificantly to the enhancement of interfacial fluctuations and the removal of capillary

entrapments as well.





CHAPTER 4

Materials and Methods

This chapter is divided into two main sections. In the first part, the rheological mea-

surement methods used to characterize the viscoelastic polymer solutions are discussed.

The second part describes the experimental setups, methods, and procedures employed

to investigate the flow of the viscoelastic polymer solutions at the microscale together

with their potential effects on the displacement of the capillary entrapment.

4.1 Polymer Solutions and Rheological Characterization

4.1.1 Preparation of Polymer Solutions

The Flopaam polymers used in this study, which are typically used for enhanced oil

recovery, are usually supplied as water-soluble dry powders. In enhanced oil recovery,

these solutions must be prepared with a suitable salinity and ionic strength to match

the formation water. This is because natural porous media contain different types of

clay minerals and any change in ionic composition and ionic strength will result in

fine migration and a reduction in permeability [96]. Nevertheless, since these polymers

have a negatively charged carboxylate group on their backbone, they are very sensitive

to salts [97]. In particular, divalent ions such as Ca2+ strongly impair the rheological

properties and reduce the elasticity of the resulting solutions. Therefore, only a minimal

amount of salt was used in this work to achieve the highest possible elasticity in our

studies. As recommended by the American Petroleum Institute (API) practice for the

evaluation of polymer solutions [98], first, a highly concentrated stock solution with a

polymer concentration of 5000 ppm was prepared in a low salinity ”brine solution” of

ultrapure water containing 1000 ppm NaCl and 10 ppm CaCl2. Especially in the case

of high molecular weight polymers, it is very important to avoid vigorous mixing, as

this can lead to mechanical degradation of the polymers in the solution. The desired

concentration was then achieved by diluting the stock solution with a brine having a

similar salt concentration. To avoid degradation of the polymer solutions, the diluted

solutions were freshly prepared every three days and the respective stock solution was

renewed every four weeks.

26
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Fig. 4.1 (a) An example of a rotational rheometer (HAAKE MARS 4, Thermo Scien-
tific). (b) Sketch of a cone-plate measuring geometry. The dimensions of the cone used
for the measurements of this work were α = 1◦ and R = 30mm.

4.1.2 Rotational Rheometry

To measure various parameters that characterize the shear flow and rheological prop-

erties of the polymer solutions a rotational HAAKE MARS 4 rheometer (Thermo Sci-

entific) has been used, is shown in Fig. 4.1(a). Different types of measurement geome-

tries have been developed for rotational rheometers, such as cup-plate or Couette cell,

parallel-plate, and cone-plate. The cone-plate geometry is particularly suitable for rhe-

ological measurements of shear-thinning polymer solutions used in this study because

the small cone angle (usually α < 4◦) in such measuring geometries ensures that the

shear rate is constant over the entire shear gap [99]. A schematic illustration of such

geometry is shown in Fig. 4.1(b).

Depending on the measuring mode, either angular velocity Ω or torque T is ap-

plied and the corresponding response of the sample is measured. A third transducer is

implemented in the rheometer, which measures the thrust force Fn in the axial direc-

tion exerted by the sample in the measuring gap on the upper cone. These values are

converted to rheological equivalents, shear stress τ , shear rate γ̇ and first normal stress

difference N1, as follows:

τ =
3T

2πR3
(4.1)

γ̇ =
Ω

tanα
(4.2)

N1 =
2Fn

πR2
(4.3)

where R and α are the cone radius and angle, respectively [Fig. 4.1(b)].
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Fig. 4.2 Exemplary plot of the shear viscosity of a 2000 ppm 3630 Flopaam solution
using determined via steady shear test.

Two main deformation regimes are possible when using a rotational rheometer:

steady shear by imposing a constant rotational speed or torque to obtain flow curves, or

oscillatory shear by imposing harmonic oscillations to measure the viscoelastic proper-

ties of materials.

4.1.2.1 Steady Shear Test

In the steady shear test, the applied shear rate is either continuously or gradually ramped

up, cf. inset the of Fig. 4.2. The corresponding shear stress is measured, and the shear

viscosity of the sample is calculated as the ratio of the shear stress to the shear rate at

each applied shear rate. An example plot of the shear viscosity of a 2000 ppm 3630

HPAM solution measured with a HAAKE MARS rheometer (Thermo Scientific) and a

cone-plate geometry with 1◦ cone angle is shown in Fig. 4.2

An important application of the shear viscosity values obtained by a steady shear test

is to estimate the intrinsic viscosity and thus overlap concentration using the Huggins-

Kraemer method [59, 60, 100]. According to the Huggins equation, the specific viscos-

ity, ηsp, is related to the intrinsic viscosity, [η], by an equation of the following form:

ηsp
c

= [η] +KH [η]
2c (4.4)

In this context ηsp = (ηsolution − ηsolvent)/ηsolvent, whereas ηsolution is the zero shear

viscosity of the polymer solution at the concentration c, and ηsolvent is the viscosity of

the pure solvent.

Similarly, according to the Kraemer equation, the natural logarithm of the relative
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Fig. 4.3 An exemplary illustration of the implementation of the Huggins-Kreamer
method for estimating the overlap concentration of 3630 Flopaam polymers in an aque-
ous solution containing 1000 ppm NaCl and 100 ppm CaCl2 as solvent.

viscosity, ηr = ηsolution/ηsolvent, is related to the intrinsic viscosity, [η], as follows:

ln(ηr)

c
= ln[η]−KK [η]

2c (4.5)

The values KH and KK are constants that contain information about hydrodynamic and

thermodynamic interactions between the polymer coils in solution [59]. Following Eqs.

4.4 and 4.5, plotting ηsp/c and ln(ηr)/c as a function of concentration, extrapolated to

zero concentration, gives the intrinsic viscosity, [η]H and [η]K , respectively. The overlap

concentration of the polymer, c∗, is then approximated as the reciprocal of the intrinsic

viscosity, i.e., c∗ ≈ 1
[η]H,K

. Figure 4.3 shows an exemplary illustration of the implemen-

tation of the Huggins-Kraemer method for 3630 Flopaam aqueous polymer solutions in

a solvent containing 1000 ppm NaCl and 100 ppm CaCl2. Further details of the rheolog-

ical measurements and shear viscosity plots of polymers with different concentrations

and molecular weight, as well as overlap concentrations of other polymers used in this

dissertation, can be found in the Supplementary Material section of Appendix A.

As already mentioned earlier in section 3.2.3, the shear flow of viscoelastic fluids

is accompanied by the storage of elastic (recoverable) deformations and the generation

of normal stress differences. The first normal stress difference, as a function of shear

rate, is also obtained via the steady shear test and by converting the simultaneously

measured thrust normal force during shear, Fn, to the stress exerted on the cone via

Eq. 4.3. The measured normal force is influenced by the inertia contribution, which

can be significant at high shear rates or for measuring geometries with large diameters.

Thus, a correction for inertia effects is often necessary [101, 102]. The correction is

done by adding the inertia contribution, ∆F , to the measured normal forces. This value
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Fig. 4.4 (a) The stepwise applied steady shear stress and the corresponding measured
thrust normal force. (b) The first normal stress difference computed from the measured
normal forces as a function of shear rate.

is calculated as [103, 104]:

∆F =
3

40
πρω2R4 (4.6)

where ρ is the fluid density, ω is the angular frequency of the rotation and R is the radius

of the cone geometry. To protect the edges of the sample fluid in the gap between the

cone and plate, it is helpful to surround it with an immiscible fluid such as oil (often

referred to as a ”drowned edge”). Figure 4.4(a) shows the protocol developed based on

a stepwise steady shear test in stress-controlled mode to accurately estimate the first

normal stress difference of the polymer solutions used in this work. To correct for

sample relaxation and force transducer drift, the normal force gauge is reset after each

shear step, followed by a rest period and a second gauge reset. The force measured at

each shear step is then corrected for inertia effects. The first normal stress difference

values, N1(γ̇), are calculated from the measured normal force values using Eq. 4.3.

Despite all precautions and corrections, the measured values at very high shear rates

exhibit a high measurement error, which is most likely due to unstable sample edges

and the inevitable influence of inertia. Moreover, at very low shear rates, the normal

force values are close to the measurement accuracy of the force transducer and are

therefore not very precise. The N1 values as a function of shear rate for a 2000 ppm

3630 Flopaam solution are shown in Fig. 4.4(b). More details and further experimental

measurements can be found in Appendix A.

4.1.2.2 Small Amplitude Oscillatory Shear Tests

The dynamic rheological behavior of viscoelastic fluids is studied by periodic defor-

mations, i.e., the measuring geometry oscillates with a small amplitude around the axis

of rotation instead of moving continuously in one direction. Therefore, the measured
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Fig. 4.5 (a) An example of an oscillatory stress and strain function as a function of
time for a 2000 ppm 3630 Flopaam solution. (b) The corresponding Lissajous diagram.
The shift phase angle of with δ ≈ 45◦ and the tilted ellipsoidal shape of the Lissajous
diagram indicates a linear viscoelastic behavior.

values contain information about both viscous response and stiffness (elasticity) of the

sample. The rheological properties obtained from oscillatory tests are implemented di-

rectly into the constitutive model to simulate or evaluate the flow. Since these models

are developed based on linear viscoelastic behavior, it is important to perform the oscil-

latory tests with a small amplitude to ensure that the fluid response is captured within a

linear viscoelastic range.

These tests are performed in either stress or strain-controlled mode. In strain-

controlled mode, a sinusoidal deformation function in the form of γ(t) = γA sinωt

is applied to the sample, and the stress response is recorded in the form of a sinu-

soidal function τ(t) = τA sinωt, while in stress-controlled mode, stress is applied and

strain is measured. The ratio between the stress and strain is referred to as the complex

shear modulus, G∗ = τ(t)/γ(t). As explained in Section 3.2.2, the storage modu-

lus G′ is the real part of G∗ and represents the elastic response of the fluid, while the

loss modulus G′′ is the imaginary part and represents the viscous response of the fluid.

Figure 4.5(a) shows the applied deformation and the corresponding measured stress re-

sponse for a 2000 ppm 3630 Flopaam solution as a function of time. The phase shift

angle of δ ≈ 45◦ is an indication of linear viscoelastic behavior. The tilted ellipsoidal

shape of the Lissajous diagram plotted in Fig. 4.5(b) further confirms this behavior.

The oscillatory tests are performed in two major ways. One option is the defor-

mation amplitude sweep test in which the deformation amplitude varies while the fre-

quency is kept constant (usually ω = 10 rad/s). These tests are carried out solely to

determine the limit of the linear viscoelastic range (LVR). An illustrative plot of the

deformation sweep test for a 2000 ppm 3630 Flopaam solution is shown in Fig. 4.6(a).

The end of the LVR range is marked as the deformation at which G′ deviates from the
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Fig. 4.6 (a) Illustration of a deformation-controlled amplitude sweep test (left) and an
example of a measurement result at a frequency of ω = 10 rad/s. (b) Illustration of
a deformation-controlled frequency sweep test (left) and an example of a measurement
result at a constant deformation of γ = 0.1. The solid line is a fit to a 5-element
Maxwell model, see Sec. 3.2.2. The fluid used for these measurements was a 2000 ppm
3630 Flopaam.

initial constant plateau by at least 5% [70]. The second type of oscillatory test is the

frequency sweep test, where the amplitude is constant, and the frequency usually varies

in the range of ω = 0.1 to 100 rad/s. A suitable amplitude is selected within the LVR,

which is determined by the amplitude sweep test. Frequency sweep tests are performed

to investigate the time-dependent deformation behavior of the fluids, e.g., to obtain re-

laxation times and shear moduli of the viscoelastic polymer solutions. Frequency sweep

test results are interpreted within the framework of the generalized Maxwell model,

as described in section 3.2.2. An exemplary plot of the frequency sweep test for a

2000 ppm 3630 Flopaam solution is shown in Fig. 4.6(b). The time-dependent behavior

of this highly viscoelastic polymer solution can be deduced from G′ and G′′ diagrams

as a function of frequency. The values of G′′ are larger than G′ at low frequencies,

indicating a viscous behavior, while the relationship is reversed at higher frequencies,

indicating an elastic behavior.

4.2 Microfluidic Setup and Procedure

The main technique used in this dissertation is based on microscopy observations of

flow in microfluidic channels. The microfluidic approach is particularly advantageous
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Fig. 4.7 (a) Schematic representation of the microfluidic setup, (b) sketch of the mi-
crofluidic geometry used to study the effect of elastic stresses on displacing capillary
entrapments.

for the study of viscoelastic flows, since the small dimensions of the flow channels al-

low high elasticity and hence Weissenbeg numbers to be achieved, while inertia and thus

Reynolds numbers remain minimal. A sketch of different components of the experimen-

tal setup is shown in Fig. 4.7(a). A microfluidic geometry consisting of two symmetric

serpentine channels connected in the middle by a capillary channel, Fig. 4.7(b), was

designed to represent a capillary entrapment in a porous medium in a controlled and

simplified manner. The serpentine channels were designed to be long enough so that

the side channel in the center is far away and not affected by the inlet and outlet of the

flow geometry. In addition, the side channel was placed in the center for symmetry. The

symmetry of the design allows for eliminating the effect of viscous stresses thus study-

ing the mechanism of displacement of capillary entrapment solely by elastic stresses.

The microfluidic devices were fabricated by the double-molding method described in

Sec. 4.2.1.

4.2.1 Soft-Lithography and Microfluidic Device

Various methods have been developed to fabricate microfluidic channels in the litera-

ture, among which a variant of soft lithography [105–107] has been used in this work.

In this method, first, the desired geometry is designed in 2D using high-precision de-

sign software such as AutoCAD software. The design is then printed on a transparent

photomask with a resolution of approximately 5 µm. Next in the cleanroom, a negative

photoresist (SU-8, MicroChem) is spin-coated onto a silicon wafer with a suitable thick-

ness depending on the desired height of the microfluidic channel that shall be produced

from this photoresist structure. The spin-coated silicon wafer is then soft-baked on a

hot plate. The duration of soft baking should be adjusted according to the used SU-8

technical data sheet depending on the desired height as well. Next, the photomask is

aligned on the SU-8 coated and baked silicon wafer and placed under UV exposure.
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Fig. 4.8 Schematic demonstration of soft lithography for preparation of the silicon mas-
ter and double-molding method for fabricating microfluidic devices with UV adhesives.

As a result, the parts of the photoresist exposed to the UV light are cross-linked. The

silicon wafer is then submerged into a developer solution (MR-dev 600, MicroChem)

to remove the remains of the non-crosslinked photoresist. In the final step, the sili-

con wafer is hard-baked at a temperature of more than 120 ◦C to further harden the

cross-linked photoresist layer and prevent cracking.

The final microfluidic channels are fabricated using a double molding process de-

veloped by Bartolo et. al. [108]. In this method, an intermediate polydimethylsiloxane

(PDMS) mold is first prepared from the silicon master, and then the microfluidic chan-

nel is replicated from this PDMS mold using UV adhesive (NOA 83H, Norland optical

adhesives). The UV adhesive is spread on the PDMS mold and covered with a coverslip.

After 10 minutes of curing under UV light, the adhesive/coverslip is carefully detached

from the PDMS mold and bonded to a glass slide in which two holes are drilled to serve

as the inlet and outlet of the channel via plastic connectors (upchurch nanoport N-333).

Further details on the soft lithography process and the fabrication of the devices used

in the studies presented in this dissertation can be found in the methods section of the

appendix A.

4.2.2 Optical Microscopy and Experimental Procedure

As an experimental procedure, the microfluidic device was first saturated with oil,

and then displacing fluids were injected in volumetric flow rate controlled mode via

a pulsation-free syringe pump (neMESYS, Cetoni GmbH). During this initial injection

process oil remains trapped in the side channel and the interfaces between the oil and
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Fig. 4.9 Monitoring and recording the fluctuations of the interface between the en-
trapped oil and the polymer solution in the main channel at Wi ≈ 45. A sequence of
snapshots clearly shows the random fluctuation of the interface.

the injected fluid were closely inspected using high-speed imaging with a 16-bit sC-

MOS camera (PCO Panda 4.2) attached to an inverted microscope. A snapshot of the

microfluidic geometry is shown in Fig. 4.9, where the oil is trapped in the side channel

and the serpentine channels are filled with the polymer solution. To visualize the flow

paths in the serpentine channel, the polymer solutions were seeded with fluorescent

particles. The fluorescent particles in the flow field are excited with a light of a certain

wavelength and emit a light corresponding to their specific emission wavelength. The

signal emitted by the tracer particles is isolated from the illuminated laser light via a fil-

ter cube that passes only a narrow wavelength band corresponding to the emitted light.

This light is then captured by a camera attached to the epifluorescence microscope. By

setting a long exposure time on the order of hundreds of milliseconds, depending on

the flow velocity, the continuous flow paths can be visualized. Details of the flow path

visualization experiments can be found in Appendix A. A board-mounted differential

pressure sensor (26PCSeries, Honeywell) was installed between the inlet and outlet of

the microfluidic device to determine the flow resistance during the experimental proce-

dure.

After setting up the microfluidic device and setup, the experiments were conducted

by stepwise increasing the flow rate at the inlet until the side channel was fully evacu-

ated. In the case of the Newtonian reference fluid, the experiment was continued until

the pressure drop exceeded the range of the pressure sensor. The random fluctuations

of the interface at high Weissenberg numbers are evident when comparing successive

snapshots in Fig. 4.9. The acquired images were segmented, and the temporal changes

in the position of the interface (in the y-direction) were extracted for further analysis of

the drainage process and characterization fluctuations, cf. Appendix A .
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Fig. 4.10 Schematic illustration of the components of the µPIV setups.

4.2.3 Micro– Particle Image Velocimetry (µPIV)

To understand the origin of the interfacial fluctuations observed with optical microscopy,

and the corresponding increased pressure drop, clear comprehension of the polymer

flow in the serpentine channel has been obtained via Micro Particle Image Velocime-

try (µPIV). µPIV has been developed as a non-invasive optical method to quantify and

study the flow of fluids on a microscale with resolved length scales ranging from 10−4 to

10−7 m [109]. In this technique, micron-sized fluorescent particles are introduced into

the fluid to monitor its motion and track its flow. The foundation of µPIV goes back to

the particle streak velocimetry experiments described by Taylor and Yeung [110] and

Brody et al. [111] (also cf. Fig. 4.9). The µPIV technique in its current form, which is

widely used in microfluidics, was first introduced by Santiago et al. [112–114]. They

used epifluorescent illumination to capture discrete particle images of fluorescent parti-

cles and developed correlation methods for calculating the velocity of the particles and

thus the fluid with a spatial resolution of less than 10 µm. Extensive reviews on this

topic have been published by Sinton [115] and Wereley and Meinhart [109], and more

recently by Etminan et. al. [109].

In general, a µPIV system comprises several principal components: seeding, illumi-

nation, acquisition, calibration, image evaluation and processing, and post-processing.

A schematic representation of the µPIV setup used in this work is shown in Fig 4.10.

The fluid of interest is seeded with fluorescent particles that are assumed to follow the

flow of the fluid. Therefore, it is very important to carefully select the size of the parti-

cles so that they are not too small to be affected by the browning motion or too large to

affect the flow [116]. Polystyrene (PS) particles with a density of ρ = 1.05 g/cm3 and a

refractive index of 1.59 in the range of 0.3 to 2 µm in diameter are the most commonly

used particles for µPIV as they have been proven to follow the motion of the fluid with-

out delay or altering the flow field [117]. Such particles are supplied as a dispersion in

a solution containing surfactants; however, the concentration used for µPIV is so low
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Fig. 4.11 Schematic illustration of particle tracking with single exposure and single
frame imaging, and particle image velocimetry with double frame imaging.

that the amount of surfactants is insufficient to change the interfacial properties of the

carrier fluid.

In contrast to macro PIV, where a two-dimensional light sheet is used for illumi-

nation, in µPIV, it is desirable to illuminate the entire test section with a volume of

light, hence in volume illumination mode. This is mainly due to the lack of optical

access with significant diffraction in light sheet forming optics [118]. For this purpose,

a pulsed DPSS laser with a wavelength corresponding to the excitation wavelength of

the tracer particles is used. The laser is expanded and directed into an inverted epifluo-

rescence microscope. The objective directs the laser beam onto the microfluidic device.

Similar to the flow path visualization experiments explained in Sec. 4.2.2, the fluores-

cent particles in the flow field absorb the excitation light and emit a light corresponding

to their specific emission wavelength. The emitted signal reaches the camera attached

to the epifluorescence microscopy after going through a filter cube that passes only a

narrow wavelength band. The exact details and description of the µPIV setup used in

this dissertation can be found in Appendix C.

Depending on the optical system including the microscope and the objective, there

are two ways to visualize the flow. One option is to use an optical system that has a

depth of correlation that exceeds the depth of the flow being measured, which has the

advantage that all particles in the optical system’s field of view are well-focused. How-

ever, the main disadvantage of this method is that no depth information is preserved,

and the velocity fields obtained represent an average over the depth of the flow. The

second option is to use an optical system whose depth of correlation is smaller than the

flow height. The optical system allows focusing on particles that are within the depth of

correlation of the imaging system, while the out-of-focus particles mainly contribute to

the background noise. For this method, it is very important to accurately determine the

depth of field, or more precisely, the correlation depth in order to resolve the velocity

field with respect to the channel’s height [119]. To improve the reliability of velocity

fields obtained with µPIV, it is important to reduce background noise and improve the
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Fig. 4.12 Schematic illustration of the division of the field of view into interrogation
windows in µPIV. The velocity vector field is acquired by cross-correlation of the parti-
cle motion between two successive images.

signal-to-noise ratio by adding an optimized particle concentration to the flow [113].

In the image acquisition process, two consecutive frames are captured from the mov-

ing particles with a small-time difference dt. The laser pulsation is synchronized with

the camera exposure so that a short pulse is fired for each exposure time corresponding

to each frame of the image pair. Figure 4.11 shows a schematic diagram of the double

shutter double frame scheme. These two frames are divided into equally spaced regions

called interrogation windows. Each interrogation window in the first frame is cross-

correlated with the corresponding window in the second frame to determine the most

probable local displacement and hence velocity vector [120]. A schematic demonstra-

tion of splitting the image field into interrogation windows and generating the velocity

vector field by cross-correlation is shown in Fig. 4.12. Details on image acquisition and

processing, as well as the cross-correlation approach implemented in this dissertation,

can be found in Appendix C. The final temporally-spatially resolved velocity fields are

used for further investigation of flow properties.
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CHAPTER 5

Results and Discussion

Viscoelasticity and purely elastic instability have been implicated in several studies as

possible reasons for the improvement of microscopic efficiency in polymer flooding.

However, an exact mechanism and a clear explanation of how viscoelasticity affects the

displacement process are still lacking. In this chapter, a mechanism of displacement

under the sole influence of the elasticity of the polymer solutions is proposed and dis-

cussed in light of the direct observation and analysis of the experimental results of the

viscoelastic polymer flow that are attached in the appendices A-D.

5.1 Effect of Viscoelasticity on Displacing Capillary Entrapment

When it comes to viscoelastic fluids, the flow even in the simplest microfluidic model

porous media, such as the regular or irregular distribution of disks in a channel, is rather

complex. This complexity does not allow disentangling the impact of the fluid’s elastic-

ity from its viscous component on the efficiency of the displacement process. To tackle

this problem, a simple but robust model system consisting of two symmetric serpen-

tine channels interconnected in the middle by a capillary channel was developed. The

publication by Shakeri et al. in AIP Physics of Fluids 2021 (appendix A) presents the

results of a series of experiments performed to investigate the impact of viscoelastic-

ity of semi-dilute polymer solutions on the displacement of a capillary entrapment in

such a microfluidic channel. A snapshot of the microfluidic channel used in this work

is shown in Fig. 5.1(a), This model system serves as a single capillary entrapment and

represents the main features of flow in porous media, i.e., tortuosity. Consideration of a

tortuous flow geometry is particularly important because the polymers therein are sub-

jected to both shear and elongation, resulting in an anisotropic distribution of elastic

stresses and thus inducing elastic instabilities. Due to the symmetry between channels

A and B in Fig. 5.1(a), the viscous pressure at both ends of the capillary entrapment is

the same and thus cancels out. This allows studying exclusively the effects of elastic

stresses on the displacement mechanism. Direct observation and quantitative expres-

sion of the deviation of the interface position from a reference central line (dashed line

in Fig. 5.1(a)), δY , show that strong fluctuations in the interface occur with increasing

40
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Fig. 5.1 (a) A snapshot of microfluidic geometry. δY is the instantaneous deviation of
the center of the oil column from the fixed central dashed line indicating the interface
fluctuation. ⟨δY ⟩t and ⟨δY ⟩rms are the time average and root mean square of δY , re-
spectively. (b) The temporal changes of δY at different Weissenberg numbers.

flow rate and thus with increasing Weissenberg number. The simultaneously measured

pressure drop across the channel during polymer injection also indicates a sudden in-

crease, confirming the emergence of turbulent flow above a critical shear rate, cf. Fig. 2

in Appendix A. At sufficiently high Weissenberg numbers, a fully developed and highly

random turbulent flow is formed. The corresponding power spectral density analysis of

the interfacial fluctuations (Fig. 7 in Appendix A) shows a large exponent, indicating

that the fluctuations contain a wide range of intensities and are of pure elastic nature.

Once the polymer flow reaches this state of turbulence at both interfaces of the trapped

oil in the side channel, an instantaneous pressure difference between the two ends of

the capillary entrapment occurs that is high enough to overcome the capillary threshold

and release the oil.

A comparison of the experimental results of polymer solutions with different molec-

ular weights and concentrations shows that, regardless of the degree of elasticity of the

polymer solutions, a certain degree of turbulence and thus fluctuation intensity is re-

quired to overcome the capillary threshold and remove oil entrapment, cf. Fig. 5 in Ap-

pendix A. From this study, it can be concluded that purely elastic instability is respon-

sible for the improved microscopic displacement efficiency associated with viscoelastic

polymer flooding.
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5.2 Scaling of the Onset of Purely Elastic Instability

An important step in the evaluation and interpretation of the experimental results for

different polymer solutions discussed in Sec. 5.1, is the scaling of the onset of purely

elastic instability with respect to a uniform and comparable framework. Since the used

polymer solutions are in the semi-dilute regime, i.e., in a concentration regime where

the polymers interact with each other, and thus the rheological and dynamic properties

of the fluid are strongly affected by the shear rate, developing a proper scaling law is

essential. A suitable scaling factor allows the evaluation and interpretation of the exper-

imental results for different polymer solutions with respect to a uniform and comparable

framework. Traditionally, the Pakdel and McKinley criterion is used to scale the onset

of elastic instability in curved flow geometries [121]. In the original form of this crite-

rion, it is assumed that the relaxation time is constant and equal to the longest relaxation

time of the polymers. This assumption is not valid for semi-dilute regime and leads to

a delayed prediction of the onset of elastic instability for such solutions. In the publica-

tion by Shakeri et al. in APS PHYSICAL REVIEW E 2022, the shear dependence of

the rheological properties of the polymer solutions in the context of the White–Metzner

constitutive fluid model is incorporated in the Pakdeland McKinley criterion, resulting

in a criterion of the following form:

C

√
N1 (γ̇crit )

G0

≈ Mcrit (5.1)

where C is a geometry factor computed as C = (WH)/(64πR2) for a serpentine chan-

nel with rectangular cross-section with a height of H and width of W . In this approach

the value of N1(γ̇) is experimentally measured (cf. Fig. S3 in Appendix B), using the

protocol described in Sec. 4.4. The critical shear rate at the onset of pure elastic in-

stability is determined as the shear rate at which the flow resistance increases and the

reduced viscosity (the ratio of apparent viscosity to bulk viscosity measured with a

rheometer) deviates from unity, cf. Fig. 1(b) in the appendix B. The discrete relaxation

time spectrum and the corresponding shear moduli are obtained by fitting the experi-

mentally measured G’ and G” plots (cf. Fig.S4 in Appendix B) to a 5-element Maxwell

model using a frequency sweep test. By using the value of N1(γ̇crit), i.e., the intensity

of the first normal stress difference at the onset of purely elastic instability, and G0,

the largest shear modulus corresponding to the smallest relaxation time, the degree of

elasticity of the polymer solutions at the onset of instability is taken into account.

To evaluate the adjusted criterion for scaling the onset of pure elastic instability

of semi-dilute polymer solutions, the flow of 15 polymer solutions with three differ-

ent molecular weights in a single serpentine channel was studied. Polymer concentra-
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Fig. 5.2 Threshold value Mcrit calculated from Eq. 5.1 as function of c/c∗ for three
different polymer solutions in the semi-dilute regime. The dashed curve is a power-law
fit Mcrit = A (c/c∗)−b, where A = (25.28 ± 3.87) and b = (0.56 ± 0.05). The pink
area corresponds to the standard error of the fitting parameters.

tions were varied in the range of 5× to 30× their corresponding overlap concentration.

Plotting the corresponding Mcrit as a function of normalized concentrations, Fig. 5.2,

exhibits a universal master curve independent of the type and concentration of the poly-

mer solutions. Therefore, the criterion proposed in Eq. 5.1 is successfully evaluated to

determine the onset of pure elastic instability of polymer solutions in the semi-dilute

regime.

5.3 Characterization of Elastic Turbulent flow in a Serpentine Channel

To gain a clear insight into the mechanism behind the enhanced capillary displace-

ment at the pore level, a thorough investigation of viscoelastic microflow is of great

importance. The publication by Shakeri et al. in AIP Physics of Fluids 2022, Ap-

pendix C, addresses the questions of how the elasticity of the polymers affects the flow

in the semi-dilute regime and what the characteristics of the resulting flow are. The

results of this work provide a comprehensive description of statistical, spectral, and

structural properties of the semi-dilute entangled polymer flow in a serpentine chan-

nel, i.e., mixed type flow including regions of both shear and elongation, with curved

streamlines. The direct flow investigations using µPIV and the analysis of the extracted

velocity fields suggest the presence of a highly anisotropic, non-homogeneous, and un-

stable flow above a critical Weissenberg number. The plot of the power spectral density

of the velocity fluctuations, cf. Fig.7 in Appendix C, shows a relatively smaller expo-
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Fig. 5.3 (a) Distribution of the first normal stress difference N1 within a vertical cross-
section of the serpentine channel obtained via CFD simulations (Wi ≈ 5.4). (b) Sec-
ondary flow structures at two successive highest energy levels (n = 1, 2) obtained from
µPIV by POD analysis (Wi ≈ 45).

nent compared to the corresponding value of a dilute polymer solution. This implies a

limited range of the excited scales in the purely elastic turbulent flow of a semi-dilute

entangled polymer solution, which can be due to the limitation of polymer motion in

space and entanglement above the overlap concentration. A numerical method called

proper orthogonal decomposition (POD) was applied to extract the flow structures from

the velocity fields obtained via µPIV. The results of this method directly demonstrate

the activity of purely elastic secondary flows in a serpentine geometry. These secondary

flows which are governed by the gradient of N1 in the cross-flow direction are shown in

Fig. 5.3.

An important outcome of this study is that secondary flow structures highly con-

tribute to the total kinetic energy of the system, cf. Fig. 8 and Fig. 9 in Appendix C.

Looking back at the initial observation of the displacement process in the single pore

geometry in light of these latter findings, it can be concluded that the additional flow

resistance and increased pressure drop observed in the capillary entrapment removal

experiments are largely caused by such a secondary flow structure. Thus, secondary

flow plays an important role in inducing interfacial fluctuations and provides the force

to overcome the capillary threshold.

5.4 Viscoelastic micro-flow in Porous Media

In an attempt to apply the findings from the previous studies to explore and explain the

influence of viscoelasticity on displacement processes in more complex geometries, a

series of experiments were conducted in a simple microfluidic model porous medium.

The results of these experiments have been reported and discussed in Jung et al. sub-
mitted to Frontiers in Physics 2022, Appendix D. The porous medium used in this

work is a microfluidic channel filled with arrays of randomly distributed circular posts
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Fig. 5.4 The intense fluctuations of the interface between the trapped oil and a polymer
solution containing 2000 ppm Flopaam 3630 in the porous medium. Successive images
are taken with a 200 ms time difference between them.

with 30% packing density. The posts have a diameter of d ≈ 0.032mm, a height of

h1 ≈ 0.030mm and an average center-to-center distance of (0.027 ± 0.013)mm. As

mentioned earlier, the flow in such geometry is already quite complex, and it is not

easy to disentangle the effects of elasticity and viscosity. To approach this problem,

different displacing fluids were considered to separately evaluate the effects of each

component, namely viscosity, shear thinning, and elasticity of the fluid. The working

fluids include Newtonian fluids, i.e. water, a high-viscosity glycerin solution, an inelas-

tic shear-thinning polymer solution (Xanthan gum), and a viscoelastic polymer solution

(Flopaam), similar to the previous studies. In separate experiments, the fluids were in-

jected into the initially oil-saturated microfluidic porous medium at a constant flow rate

in the capillary-dominated regime. The polymer solutions were designed to have the

same shear-thinning viscosity, while the viscosity of the glycerin solution matched the

viscosity of the polymer solutions at the typical shear in the porous medium correspond-

ing to the applied flow rates. By comparing the performance of these fluids in terms of

displacement patterns, the size distribution of remaining capillary inclusions, and resid-

ual oil saturation, the contribution of elasticity can be elucidated. A comparison of the

performance of high viscose glycerin solution with water shows that increasing the vis-

cosity and thus the capillary number leads to a more efficient displacement process, both

in terms of improving the mobility ratio and reducing the residual saturation. However,

a comparison of the results of the inelastic polymer solution with the glycerin solution

indicates that the inelastic polymer solution showed more fingers on the invading front

and the final residual saturation was relatively higher than that of glycerin. This is due to
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the highly shear-thinning viscosity of the polymer solution used and the random distri-

bution of the pore geometry, which leads to a variation in the apparent in-situ viscosity

of the polymer. Therefore, the possibility that the increased capillary number associated

with the increased viscosity of the polymer solution per se improves the displacement

process is excluded. In the case of the highly viscoelastic displacement fluid, the ini-

tial front shape looks very similar to the inelastic Xanthan gum. The unique distinction,

however, is that the interfaces between the oil entrapments and the viscoelastic invading

fluid become unstable after some time. A close-up view of the interface between an oil

entrapment and polymer solution in the porous media is shown in Fig. 5.4. The time se-

quence of the flow path lines clearly shows unstable fluctuations at the interface as well

as crossing path lines, indicating semi-three-dimensional effects caused by the unsta-

ble flow. This eventually led to the fragmentation and reconfiguration of the remaining

oil entrapments and their removal from the porous medium. The final residual satura-

tion was lower compared to the inelastic polymer solution with similar shear viscosity,

proving that the occurrence of elastic instability in such fluids at sufficiently large flow

rates has an auxiliary effect on the displacement process. The final size distribution of

the remaining oil showed a relatively smaller average size in the case of the viscoelastic

fluid even compared to the high viscosity glycerin solution, indicating that in the case of

viscoelastic fluids, breakup and demobilization of entrapments occur and even a higher

capillary threshold can be overcome.

The origin of the observed unstable flow in the porous medium can be deduced from

our findings from a single capillary experiment (see Appendix A). Since the flow paths

in such a porous medium inherently have the same characteristics as a serpentine chan-

nel, namely being curved and exhibiting a mixed flow type, it can be concluded that

the anisotropic stress distribution causes purely elastic instability. Moreover, the tortu-

ous nature of the pathways can cause a strong gradient of N1 in the cross-flow direction,

leading to the development of secondary flow structures. Such unstable structures cause

interfacial fluctuations that exert the force necessary to overcome the capillary threshold

and to break up and release the capillary entrapments.





CHAPTER 6

Summary and Outlook

The goal of this dissertation was to provide clear insight into one of the most controver-

sial topics in the field of fluid flow in porous media, namely the microscale mechanism

of capillary displacement by viscoelastic fluids.

Since even the simplest porous medium is still too complex to gain a basic un-

derstanding of viscoelastic microflow, a simple microfluidic geometry was designed

to capture the most important features of such geometries, i.e., a capillary entrapment

and curved flow pathways via serpentine channels. Direct visual observations in this

simplified single-entrapment geometry indicated the occurrence of an unstable flow ac-

companied by an increase in the flow resistance of the polymer solutions above a critical

shear rate. Since the inertia was negligible, this unstable flow was caused exclusively

by elastic forces. Under the influence of this unstable flow, the interface between the

entrapped oil and the polymer solution became unstable, and once the fluctuations were

strong enough, the entrapped oil was completely released.

Since the polymer solutions used in polymer flooding for enhanced oil recovery are

in the semi-dilute regime, our studies also focused on these concentrations. However,

predicting and scaling the onset of elastic instability in this regime required further in-

vestigation. Therefore, we incorporated the rheological properties of such solutions

into the existing scaling approaches and developed a criterion that represents a real-

istic account of the fluid’s properties. Applying the obtained criterion to a variety of

different polymer solutions with different molecular weights confirmed the reliability

of the proposed scaling adjustments. This scaling approach can be further extended to

account for more complex geometric properties in future studies to provide a universal

framework for the comparison and scaling of purely elastic instability, independent of

the geometric and fluid properties.

µPIV experiments of a semi-dilute entangled polymer solution flow in a serpen-

tine channel showed that above a critical shear rate, highly non-homogeneous turbulent

flow occurs. Compared to the turbulent flow of a dilute polymer solution, the range

of excited velocity fluctuations was relatively narrower, which can be attributed to the

entanglement of the polymers in the semi-dilute regime and the resulting restriction on
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the free movement of the polymers. Analysis of the µPIV results using the proper or-

thogonal decomposition method (POD) showed strong secondary flow structures, which

contribute strongly to the kinetic energy of the system. It could be concluded that the

increased flow resistance observed above the critical flow rate in terms of an increased

pressure drop and hence increased apparent viscosity is influenced by these secondary

flows. Investigating the evolution of the secondary flows with respect to the main flow

from such analyses and comparing it with the corresponding numerical predictions and

their contribution to the additional pressure difference will be future research goals.

With the understanding gained from viscoelastic flow in the simplified geometry,

we carried out experiments in a microfluidic porous medium consisting of a random

distribution of circular posts. It was observed that similar to the displacement of a

single entrapment, fluctuations at the interface between the oil entrapments and the

viscoelastic fluid caused their reconfiguration and eventual removal. A comparison of

these results with the displacement of oil with an inelastic polymer solution of similar

shear-thinning viscosity confirmed that the additional displacement in the case of the

viscoelastic polymer solution is solely due to the occurrence of unstable flow at high

shear rates due to the elasticity of the fluid. Since in such porous media the flow paths

are strongly curved, it could be concluded that the amplification of the first normal

stress difference and its gradient in the cross-flow direction can also induce a strong

secondary flow here. These secondary flow structures contribute to the increase of the

flow resistance as well as the intensity of the interfacial fluctuations, which leads to an

improved microscopic displacement efficiency in porous media.

The results presented in this dissertation and all the possible future experiments will

further improve the understanding of viscoelastic microflow and capillary displacement

in porous media and can certainly pave the way for further numerical and theoretical

studies.
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The flow of viscoelastic polymer solutions and their use as displacing agents in porous

media are important for industrial applications, such as enhanced oil recovery and soil

remediation. Complexity of flow and high elasticity of conventionally used viscoelas-

tic polymer solutions can lead to purely elastic instability in porous media. In this

study, we investigate the impact of this instability on displacing capillary entrapments

at low Reynolds numbers using a microfluidic approach. Our unique design consists

of a single-capillary entrapment connected to two symmetric serpentine channels. This

design excludes the effect of viscous forces and enables a direct focus on displacement

processes driven solely by elastic forces. After the onset of purely elastic instability, an

unstable base flow is observed in the serpentine channels. We discuss that the pressure

fluctuations caused by this unstable flow create an instantaneous non-equilibrium state

between the two ends of the capillary entrapment. This provides the driving pressure to

overcome the capillary threshold pressure and eventually displace the entrapped oil. In

our geometry, we observe that the displacement coincides with the emergence of a fully

developed turbulent state.
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ABSTRACT

The flow of viscoelastic polymer solutions and their use as displacing agents in porous media are important for industrial applications, such
as enhanced oil recovery and soil remediation. The complexity of flow and high elasticity of conventionally used viscoelastic polymer
solutions can lead to purely elastic instability in porous media. In this study, we investigate the impact of this instability on displacing
capillary entrapments at low Reynolds numbers using a microfluidic approach. Our unique design consists of a single-capillary entrapment
connected to two symmetric serpentine channels. This design excludes the effect of viscous forces and enables a direct focus on displacement
processes driven solely by elastic forces. After the onset of purely elastic instability, an unstable base flow is observed in the serpentine chan-
nels. We discuss that the pressure fluctuations caused by this unstable flow create an instantaneous non-equilibrium state between the two
ends of the capillary entrapment. This provides the driving pressure to overcome the capillary threshold pressure and eventually displace the
entrapped oil. In our geometry, we observe that the displacement coincides with the emergence of a fully developed elastic turbulent state.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0071556

I. INTRODUCTION

The addition of high molecular weight polymers to a Newtonian
solvent results in a viscoelastic fluid, i.e., a fluid with intermediate
mechanical properties between viscous fluids and elastic solids. Large
elastic stresses induced during the flow of viscoelastic fluids lead to
purely elastic instability even in the absence of inertia, i.e., at low
Reynolds numbers.1,2 As the polymers approach their maximum
capacity for alignment with the flow and reach a so-called stretched
state, they exert a significant back reaction to the flow above a critical
shear rate, _ccrit .

3 In other words, purely elastic instability occurs when
the polymer relaxation time exceeds its transit time and elastic stresses
are no longer fully dissipated.4 The excessive elastic stresses elicit an
unstable base flow. This unstable flow resembles inertia-induced
hydrodynamic turbulent flow below the dissipation scale
(Kolmogorov length), which is known as the “Batchelor regime.”5,6

This regime is characterized by spatially smooth, temporary random
instabilities that cover a wide range of frequencies.5,7,8 This is reflected
as a power-law decay �f �b of the power spectral density (PSD) of
kinetic energy with a characteristic exponent b > 3.2,7,9–13 The occur-
rence of purely elastic instability during the flow of viscoelastic fluids

in various geometries has been extensively studied in the litera-
ture.2,7,14–17 Elastic instability is known to improve the efficiency of
heat transfer18–22 and microfluidic mixing.23–26 Recently, it has been
observed in enhancement oil recovery that purely elastic instability
might play a crucial role in capillary entrapments (ganglia) displace-
ment in porous media.27–29

Several experimental and numerical studies have focused on basic
designs to study the microscopic behavior of viscoelastic fluids and
elastic instability in porous media. A few basic geometries are com-
monly considered to mimic porous media flow characteristics at the
microscale including straight channels embedded with uniform or
randomized post arrays;30–40 a single pore formed by four disks;41,42

and converging and diverging channels.43–45 All of these geometries
have a curved streamline component in common. In fact, the stream-
line curvature of viscoelastic fluid flows can amplify the normal stress
differences that lead to unstable flow.17,46–48

Purely elastic instability in porous media is commonly associated
with increased flow resistance, i.e., an increased apparent viscosity
even at low Reynolds numbers.7,14,49–52 However, this increased
apparent viscosity is not per se large enough to explain the improved

Phys. Fluids 33, 113102 (2021); doi: 10.1063/5.0071556 33, 113102-1
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displacement efficiency of capillary entrapments in porous media.
Displacement experiments performed using polymers with different
molecular weights suggest that the mobilization of capillary entrap-
ments is in fact caused by the unstable nature of flow.27,49,53 The
unstable flow induces fluctuations of the fluid–fluid interface in
between the viscoelastic invading fluid and the trapped oil ganglia.53–56

These fluctuations can lead to breakup of large ganglia into smaller
droplets and eventually complete removal of the trapped defending
phase.57

In this study, we use a microfluidic approach to investigate the
mechanism by which a single-capillary entrapment is displaced by
viscoelastic polymer solutions in the semi-dilute regime. We use
serpentine channels with constant cross section to mimic the shear-
dominated, curved (tortuous) nature of flow in porous media. We
focus on the underlying elasticity-induced phenomena to establish a
link with the displacement of capillary entrapment. To exclude inertial
effects and evaluate the observations as purely elasticity-induced
effects, we conduct microfluidic experiments at small Reynolds num-
bers Re < oð100Þ in the creeping flow regime. This paper is structured
as follows: the methods utilized including the experimental setup, sam-
ple preparation, and fundamentals of the relevant fluid model are
described in Sec. II; in Sec. III, we provide rheological characterizations
of the polymer solutions and present and discuss the results of the
microfluidic experiments; and we conclude the paper in Sec. IV.

II. METHODS
A. Microfluidic geometry

The microfluidic geometry employed in this work consisted of
two identical serpentine channels of width wmc ¼ 0:125 mm that were
connected by a perpendicular side channel of width wsc ¼ 0:05 mm
and length lsc ¼ 1 mm [Fig. 1(a)]. The inner and outer radii of curva-
ture of the serpentine channels were ri ¼ 0:125 mm and ro ¼ 0:25
mm, respectively. The height h of the microfluidic channels was
approximately 0.045mm. Serpentine channels were ideally suited for
mimicking tortuous flow in porous media, whereas the perpendicular
side channel provided the possibility of capillary entrapment of the oil
phase. This geometry resembled a capillary entrapment between two
grains, where fluid interfaces are in contact with more than one active
pathway of the invading phase [Fig. 1(b)]. Together with a common
inlet and outlet, the symmetry of serpentine channels provided an
equal viscous pressure at both ends of the side channel. Hence, our
microfluidic geometry served as a model system that isolated the effect
of elastic stresses on the fluid–fluid interfaces and consequently on the
mechanism of oil displacement from the side channel.

B. Experimental protocol

The microfluidic devices were fabricated following a standard soft-
lithographic procedure.58 The positive master for microfluidic device
production was fabricated via standard photolithographic protocols: a
SU-8 (Kayaku Advanced Materials, Inc.) layer was spin coated onto a
silicon wafer and then exposed to UV light through a transparent pho-
tomask. A negative of such a master was replicated in polydimethylsi-
loxane (PDMS, Sylgard 184 Dow Corning). The final microfluidic
device was molded from this PDMS replicate using the stiff, oil resistant
photo-reactive resin NOA 83H (Norland optical adhesives). The devices
were sealed with a microscopy glass slide and sandwiched with a cover-
slip to further increase the sample stability and avoid deformation of the
channel at higher pressures. Such deformations are a typical problem
among conventionally used PDMS devices.15 The inlet of the microflui-
dic device was connected to a high-precision, pulsation-free syringe
pump (neMESYS, Cetoni GmbH) that enabled fluid injection at a con-
trolled volumetric flow rate. The outlet was connected to a liquid reser-
voir at the same height as the microfluidic device to avoid gravitational
counter pressure. A board-mounted differential pressure sensor (26PC
series, Honeywell) was installed between the inlet and outlet of the
microfluidic device to measure the hydrodynamic pressure drop inside
the microfluidic channel. Prior to the measurements, the pressure sensor
was calibrated using a pressure-controlled pump (MFCS-EZ, Fluigent).
The microfluidic device was placed on an inverted MeF3 microscope
(Reichert-Jung) illuminated by a light-emitting diode (LED) light source
in transmission and images were captured using a 16 Bit-sCMOS cam-
era (PCO Panda 4.2) at a frame rate of 40 fps and a pixel resolution of
(2048� 2048) pixels. The microfluidic experiments were conducted at
room temperature of (20 6 1) �C. The microfluidic geometry was ini-
tially fully saturated with dodecane. Subsequently, dodecane was flushed
out of the main channels by the respective invading phase at the lowest
applied flow rate of 0:5l l/min but remained entrapped in the side
channel. For each set of experiments, the flow rate of the invading phase
was gradually increased in steps of 0:5 ll/min until it reached a critical
flow rate where fluctuation of the fluid–fluid interface could be detected.
The flow rate was increased further in steps of 1:0ll/min until complete
desaturation of the side channel. To ensure a fully developed steady-
state flow while recording fluid-fluid interface fluctuations, we used the
simultaneously measured pressure signal as a reference and started
recording at each flow rate after the pressure reached a stable plateau.

C. Preparation and physical properties of working
fluids

We used viscoelastic aqueous solutions that contained 1000ppm
(0.1 w%) or 2000ppm (0.2 w%) of partially hydrolyzed polyacrylamide

FIG. 1. Sketches of the microfluidic geom-
etry (a) and a typical oil entrapment in a
porous medium (b).
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(HPAM) Flopaam 3630 (SNF Floerger) and 1300 ppm (0.13 w%) or
2500 ppm (0.25 w%) Flopaam 3330 (SNF Floerger) as invading flu-
ids in our microfluidic experiments. The molecular weights of the
HPAM polymers Flopaam 3630 and 3330 are (18.76 2.0) and
(6.56 2.0) MDa, respectively, according to the manufacturer. The
concentrations of the respective polymer solutions were adjusted to
provide similar shear viscosities despite their different degrees of
elasticity (Figs. 2 and 3). Following a standard protocol,59 we ini-
tially prepared a stock solution with 5000 ppm of the appropriate
polymer in a “brine” solution composed of ultrapure water with
1000 ppm NaCl and 100 ppm CaCl2. The stock solution was filtered
to avoid the presence of any undissolved polymer or salt particles
and subsequently diluted to the desired concentration by adding

brine solution. To avoid degradation of the polymer solutions, the
diluted solutions were renewed every three days and the respective stock
solution every four weeks. By applying the Huggins–Kraemer method60

using rotational shear rate ramp measurement results (data not shown),
we determined the critical overlap concentrations to be c�3630 � 82 ppm
and c�3330 � 137 ppm and the corresponding radii of gyration to be
Rg3630 � 441 nm and Rg3330 � 266 nm for Flopaam 3630 and Flopaam
3330, respectively. Because the polymer concentrations used in our
microfluidic experiments were at least ten times greater than c�, we
could safely presume to be in the semi-dilute regime. A characteristic
exponent of 3/2 calculated by scaling the respective zero-shear viscosity
as a function of the polymer concentration (data not shown) confirmed
that we remained in the entangled regime for all utilized polymer solu-
tions.61 As a Newtonian reference case, an aqueous glycerin solution
was prepared by adding 67 w% glycerin (Gr€ussing GmbH) to ultrapure
water. The defending phase in all experiments was dodecane (Merck)
with a constant dynamic viscosity gdodecane ¼ 1:4 mPa�s. First, dodecane
was filtered three times in a column of aluminum oxide powder (Al2O3,
Sigma Aldrich) to remove any potential surface-active contaminants. To
increase the optical contrast of the fluids in the microfluidic setup,
0.5w% of the non-surface-active dye oil-red-o (Sigma Aldrich) was
added to the purified dodecane. For the visualization of path lines,
0.01w% green fluorescent particles (2lm, FluoroMax, Thermo Fisher)
were added to the respective polymer solution and imaged via fluores-
cence microscopy. We confirmed that neither of these additives altered
the physical or rheological properties of the utilized fluids. We measured
densities of qP ¼ ð1:006 0:01Þ g=cm3 and qG¼ð1:1860:01Þg=cm3,
respectively, for the aqueous polymer and glycerin solutions using a pyc-
nometer. The respective interfacial tensions against dodecane were
determined to be rP¼ð5061Þ mN/m and rG¼ð3261Þ mN/m via
the pendant drop method using a contact angle measurement device
(OCA 25, DataPhysics). The advancing and receding contact angles of
the aqueous polymer and glycerin solutions on glass and the NOA
83H-surface in a surrounding dodecane phase were in all cases deter-
mined to be hadv¼ð12564Þ� and hrec¼ð5966Þ�, respectively, via the
sessile drop needle-in method using the contact angle measurement
device (OCA 25, DataPhysics).

FIG. 2. The (shear) viscosity gð_cÞ measured using a rheometer (filled symbols)
and apparent viscosities calculated from in situ pressure measurements (open sym-
bols). Lines are fits to the Carreau–Yasuda model. Dashed lines indicate the critical
shear rates _ccrit , where the viscosities calculated from in situ pressure measure-
ments deviate from the bulk values.

FIG. 3. The (a) first normal stress difference N1 and (b) relaxation time k as functions of the shear rate _c. The lines in figures (a) and (b) are extrapolated power-law fits of N1
and extrapolated Carreau fits of k.
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D. Viscoelastic fluid model

A representative fluid model was needed to describe the specific
rheological properties of our viscoelastic polymer solutions in the semi-
dilute regime and to provide quantitative interpretation of the experi-
mental results. The general approach of describing viscoelastic fluids is
to include viscoelastic properties via a total stress tensor T ¼ T1 þ T2,
where the index “1” identifies a viscoelastic component and the index
“2” a purely viscous component.62 After defining a total viscosity
g ¼ g1 þ g2 and a deformation rate tensor D ¼ 1=2ð�uþ ½�u	TÞ
derived from the velocity tensor u,we can estimate the solvent contribu-
tion to the total stress in a viscoelastic solution, i.e., the stress response
that corresponds to the flow at vanishing degrees of elasticity, as
T2 ¼ 2 g2 D. The viscoelastic contribution T1 is defined for each type
of viscoelastic fluid model. In this work, we used the White–Metzner
fluid constitutive model63–65 as a representative framework for our poly-
mer solutions. We chose this model because it is suitable for describing
the non-quadratic first normal stress difference N1ð _cÞ and the strong
shear thinning viscosities of the HPAM solutions used in our experi-
ments.66–68 TheWhite–Metzner fluid model computes T1 from

T1 þ kT1

r
¼ 2 g1 _cð ÞD; (1)

where k and g1 are the relaxation time and the viscosity of the polymer

contribution, respectively; T1

r
is the upper convected time derivative;

and _c is the shear rate [defined as _c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 trðD2Þ

p
] that can be calcu-

lated from the velocity field and the rate of deformation tensorD.69

To represent the shear-dependent total viscosities gð _cÞ of the
HPAM solutions, we applied the Carreau–Yasuda model, which is
commonly utilized for this type of polymer,67 i.e.,

gð _cÞ � g1 ¼ ðg0 � g1Þ 1þ ðK _cÞa
� �n�1

a : (2)

Here, g0 and g1 are the zero-shear viscosity and viscosity at infi-
nite shear rates, respectively; K is the characteristic time; n is the
power-law exponent associated with the degree of shear thinning; and
a is a transition control factor.

The shear-dependent relaxation time kð _cÞ is calculated from the
shear viscosity, gð _cÞ, and the first normal stress difference, N1, as
follows:

kð _cÞ ¼ N1=2 gð _cÞ � g0½ 	 _c2: (3)

The shear-dependent behavior of the relaxation time is described by
the Careau model with k0 as the longest relaxation time as follows:

kð _cÞ ¼ k0

1þ ðK _cÞ2
� �n�1

2

: (4)

III. RESULTS AND DISCUSSION

With our microfluidic experiments, we sought to understand the
role of the elasticity of a viscoelastic polymer solution in the enhanced
mobilization of capillary entrapments in porous media. To understand
the effects of rheological properties on the flow and displacement pro-
cesses, we first characterized our polymer solutions.

A. Rheological characterization

The polymer solutions selected in this work are known to exhibit
strong shear rate dependence in the semi-dilute regime with regard to
both the viscosity and relaxation time. To characterize their rheologi-
cal properties, we conducted a set of rheological measurements to
determine the shear-dependent viscosity gð _cÞ) (Fig. 2) and first nor-
mal stress difference N1ð _cÞ [Fig. 3(a)] using a Haake Mars 40 rheome-
ter. Further details on the experimental measurement protocols can be
found in the Appendix as well as the results of the frequency sweep
tests.

The viscosity measurements in Fig. 2 are fitted to the Carreau
model according to Eq. (2). The fitting parameters are summarized in
Table I. The value of g1 was set to zero in all four fits. The shear-
dependent relaxation time kð _cÞ, plotted in Fig. 3(b), is calculated
according to Eq. (3) using the viscosity data gð _cÞ (Fig. 2) and the first
normal stress difference N1 [Fig. 3(a)]. The relaxation time kð _cÞ is fit-
ted to the Carreau model [Eq. (4)]. The maximum relaxation times are
k0 � 1:2 s (2000 ppm 3630), k0 � 1:2 s (1000 ppm 3630), k0 � 0:4 s
(2500 ppm 3330), and k0 � 0:5 s (1300 ppm 3330).

B. Interfacial fluctuations and mobilization of capillary
entrapment

The unique design of our microfluidic geometry [Fig. 1(a)] and
high spatiotemporal optical resolution enabled us to focus on the
interactions between the flow in the serpentine channel and the fluid–
fluid interface of oil entrapped at the side channel, as depicted in
Fig. 4(a) (Multimedia view). To this end, fluid–fluid interface time
series were captured at various shear rates. The shear rate in serpentine
channels is approximated by _c ¼ 4Q=ðp r3Þ with the equivalent radius
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwmc hÞ=p

p
,70 where wmc and h are the width and height of the

serpentine channels, respectively. The saturation S of the oil in the side
channel and the fluctuating motion of the fluid–fluid interface could
be acquired from the recorded time series. The saturation S was
defined as the area of the oil column at the end of each step, normal-
ized by the area of the oil column in the first step. Desaturation was
initiated once the fluid–fluid interface was depinned from the edges of
the side channel and S< 1. Interfacial motion was described quantita-
tively based on the motion of the center of mass, dY, of the entrapped

TABLE I. Fitting parameters of the Carreau–Yasuda model for viscosity: g0 is the zero-shear viscosity; K is the characteristic
time; a is a transition control factor; and n is the power-law exponent associated with the degree of shear thinning.

Polymer g0 (Pa�s) K (s) a n

2000 ppm 3630 1.5356 0.011 9.456 0.81 1.076 0.05 0.416 0.02
1000 ppm 3630 0.2846 0.004 6.896 0.32 1.036 0.06 0.526 0.01
2500 ppm 3330 0.6126 0.003 2.436 0.16 0.996 0.06 0.486 0.01
1300 ppm 3330 0.1096 0.001 0.816 0.03 0.906 0.02 0.566 0.01
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oil column. To quantify the strength of interfacial motion, we calcu-
lated the root mean square dYrms for each shear rate and plotted the
results in Fig. 4(b). As shown in the inset of Fig. 4(b), for dYrms

> 0:015 lm (i.e., for dYrms values exceeding the noise level of the
experimental setup), optically visible motion of the fluid–fluid inter-
face that increases with the shear rate is clearly detectable. At the low-
est applied shear rate of _c � 72 s�1, the fluid–fluid interface is
stationary for all utilized invading fluids. When glycerin solution is the
invading phase, the fluid–fluid interface remains stationary across the
full range of applied shear rates. Despite the rather high glycerin solu-
tion viscosity, no oil displacement is observed from the side channel
[Fig. 4(c)]. However, when a viscoelastic polymer solution is the invad-
ing phase, the fluid–fluid interface begins to wobble above a certain
shear rate. The intensity of this wobbling motion increases

monotonically as the shear rate increases further. The higher the poly-
mer molecular weight and concentration, i.e., the higher the degree of
elasticity, the smaller the corresponding shear rate at which wobbling is
initially detected. Eventually, the displacement of the entrapped oil
phase from the side channel is initiated for all utilized polymer solutions
when the fluid–fluid interface fluctuations are sufficiently intense [Fig.
4(c)]. As with the onset of interfacial fluctuations, the higher the elastic-
ity of the polymer solution, the lower the critical shear rate at which dis-
placement initiates. The large values of dYrms and their respective error
bars after the onset of displacement stem from the fact that two different
types of motions contribute to dYrms at this stage. These motions are the
fluctuation of the fluid–fluid interface that is already visible at lower
flow rates and the back-and-forth motion of the remaining oil column
in the side channel that contributes at larger flow rates.

FIG. 4. (a) Optical image of microfluidic geometry. (b) Root-mean square (rms) of dYrms The inset shows a magnified view of the initial values above dYrms � 0:015 lm
(marked by the red box). [(c) and (d)] Remaining oil saturation S in the side channel as a function of the applied flow at various (c) shear rates and (d) Weissenberg numbers.
The vertical dashed lines in figures (b) and (c) as well as the green area in figure (d) indicate the onset of purely elastic instability. The symbols in figures (b)–(d) represent the
experimental data for 67 w% glycerin ($), 2000 ppm Flopaam 3630 (�), 1000 ppm Flopaam 3630 (
), 2500 ppm Flopaam 3330 (�), and 1300 ppm Flopaam 3330 (�).
Multimedia view: https://doi.org/10.1063/5.0071556.1
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The dashed vertical lines in Figs. 4(b) and 4(c) correspond to the
critical shear rates _ccrit that indicate the onset of increased flow resistance,
as determined from the deviation of the apparent viscosity from the bulk
shear viscosity in Fig. 2. Here, the apparent viscosity of each invading
fluid is estimated from pressure drop measurements made between the
inlet and outlet of the microfluidic device, �Pin�out , using the
Hagen–Poiseuille equation for channels with rectangular cross sections.
Because the maximum Reynolds number in our experiments is on the
order of Re � oð100), potential inertial contributions to the observed
increase in flow resistance can be neglected safely and it can be associated
with so-called purely elastic instability at low Reynolds numbers.14,50

For the two Flopaam 3330 solutions, the wobbling motion starts
at shear rates well below _ccrit [Fig. 4(b)]. This suggests that these initial
fluctuations may have different physical origins than the purely elastic
instability. The onset of elastic instability appears at similar critical
Weissenberg numbers (the ratio of elastic and viscous forces)
Wicrit ¼ kð _ccritÞ _ccrit , as noted in Table II. This suggests that a certain
ratio of elastic to viscous forces must be achieved in a given geometry
to initiate purely elastic instability, independent of the molecular
weight and polymer concentration. However, the desaturation curves
plotted as functions of the Weissenberg number in Fig. 4(d) do not
collapse, and no consistent Weissenberg number can be assigned to
the onset of displacement. In particular, the respective onsets of dis-
placement for the two polymer solutions that include Flopaam 3630
(high molecular weight) are shifted remarkably toward higher
Weissenberg numbers than the two Flopaam 3330 solutions. These
observations imply a more complex displacement mechanism with
respect to the elasticity of the invading fluids.

Because there is no displacement in the case of a fully laminar
flow of the glycerin solution, during the entire range of the experi-
ments, it is evident that the magnitude of pressure, �Pin�out , cannot
drive displacement. Indeed, the displacement mechanism can be
explained with respect to the fluctuating component of pressure, P0ðtÞ,
in serpentine channels. These fluctuations occur because of the unsta-
ble nature of viscoelastic flow driven by the elasticity-induced instabil-
ity at high shear rates. At any position in the channel, the
instantaneous pressure, P(t), can be treated as PðtÞ ¼ hPit þ P0ðtÞ,
where hPit is the time-averaged steady-state mean value of the pres-
sure at this position. Due to a common inlet and outlet and the sym-
metry of our microfluidic geometry, hPit cancels out, leaving the
difference in fluctuating pressure components between both ends of
the side channel to overcome the capillary pressure that traps the oil in
place. Because there is no direct access to the local instantaneous pres-
sure, P(t), in our experimental setup, P0ðtÞ cannot be evaluated

directly. Instead, we can hypothesize that the local pressure fluctua-
tions correlate directly with the corresponding time averaged steady-
state mean pressure, i.e., P0ðtÞ / hPit . Assuming a constant pressure
gradient along the microfluidic geometry, hPit can be assessed directly
from the experimentally measured pressure difference �Pin�out .
Furthermore, the fluctuating component, P0ðtÞ, is reflected directly by
the intensity of the observed interfacial fluctuations. Our hypothesis is
supported by the fact that the intensity of interfacial fluctuations
increases in proportion with the average pressure difference between
the inlet and outlet, �Pin�out , of the microfluidic geometry [Fig. 5(a)].
Hence, we can consider �Pin�out as a measure of hPit and the dYrms val-
ues as a measure of pressure fluctuation intensities at both ends of the
side channel. The plot of saturation as a function of �Pin�out shown in
Fig. 5(b) shows that the remaining saturations of all invading polymer
solutions collapse into a single curve and displacement of the entrap-
ment occurs within a narrow pressure range (indicated by the red area
in Fig. 5). A comparison of the data shown in Figs. 4(b) and 4(c) indi-
cates that the displacement starts at a fluctuation intensity larger than
dYrms � 3 lm, as shown via the dashed lines in Fig. 5(a) and in the
inset of Fig. 5(b), respectively. In fact, as indicated in the inset of Fig.
5(b), when saturation is plotted as a function of dYrms, the displace-
ment starts at similar fluctuation intensities dYrms � 3lm, i.e., in a
similar range of pressure fluctuations, regardless of the polymer con-
centration and molecular weight. It can therefore be concluded that
due to the unstable nature of the flow, the pressure fluctuations pro-
vide the pressure required to overcome the capillary threshold of the
entrapment once they are strong enough.

C. Elasticity-induced phenomena in serpentine
channels

To illustrate the underlying elasticity-induced flow features that
cause the observed unstable flow and motion of the fluid–fluid inter-
face, we visualized flow path lines by adding fluorescent particles to
the invading polymer phase. Figure 6 (Multimedia view) shows the
viscoelastic flow path lines for 2500 ppm Flopaam 3330, as visualized
using fluorescence imaging. At _c � 143 s�1 < _ccrit in Fig. 6(a), we
observe a laminar flow, in which the flow path lines follow the curva-
ture of the channel. At increased _c but below _ccrit � 1576 s�1, in Figs.
6(b) and 6(c), the path lines become slightly asymmetric with reference
to a central vertical line. At this stage, visible but mild fluid–fluid inter-
face fluctuations occur [Fig. 6(c)]. After the onset of purely elastic
instability, _c > _ccrit , the base flow exhibits characteristics of turbulent
flow such as chaotic motion of fluorescent particles and semi-3D
effects in the form of crossing path lines [Figs. 6(d)–6(f)]. With further
increase in _c, the intensity of the turbulent flow is amplified and
accompanied by eventual displacement of oil from the side channel
[Figs. 6(e) and 6(f)]. As indicated in Fig. 6(f), no steady path line is
established in the perpendicular side channel and only random particle
motion is observed temporarily. The latter observation confirms the
presence of an instantaneous pressure difference between the two ends
of the side channel.

Figure 7(a) illustrates an example PSD analysis of dY extracted
from the optical images of 2500 ppm Flopaam 3330. We observe a
rather flat plateau at the lowest shear rate _c � 72 s�1 s, where the
fluid–fluid interface remains stationary. At _c � 716 s�1, i.e., below
_ccrit , the PSD curve continues to be a rather flat plateau even though
interfacial fluctuations are detected optically at this shear rate

TABLE II. Overview of the experimentally preset flow rate Qcrit, the approximate
shear rate _ccrit , and the Weissenberg number Wicrit at the onset of purely elastic
instability. The specified error margins are determined based on the nominal preci-
sion of the microfluidic pump and rheometer, as well as dimensional uncertainty
within the microfluidic device.

Polymer Qcrit (ll/min) _ccrit (s
�1) Wicrit

2000 ppm 3630 1:56 0:2 2156 30 12:86 2:9
1000 ppm 3630 2:06 0:2 2876 21 11:26 1:8
2500 ppm 3330 11:06 0:2 15766 139 13:06 0:1
1300 ppm 3330 14:06 0:2 20066 192 13:06 0:1
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[Fig. 4(b)]. This suggests an additional phenomenon induced by poly-
mer solution elasticity prior to the onset of purely elastic instability. At
further increased shear rates, close to _ccrit � 1576 s�1 and above,
power-law decay is observed with an exponent b > 3. In general, at
shear rates above the respective critical values for the various polymer
types and concentrations, power-law decay with an exponent within
3:3 � b � 3:8 is detected in Figs. 7(b)–7(d). This is also in agreement
with the exponent b � 3:4 reported by Mitchell et al.,54 who per-
formed a similar analysis. Based on this, we can conclude that above
the respective values of _ccrit , as identified in Fig. 2, the characteristic

features of purely elastic instability are indeed reflected in the observed
fluctuating motion of the fluid–fluid interface.

The observed interfacial fluctuations, out of plane particle motion,
and slight flow path line asymmetry in Fig. 6(c) prior to the onset of
purely elastic instability (more visible for Flopaam 3330) may be associ-
ated with elastic secondary flows, i.e., flows in the cross-stream direction
that are much weaker than the flow in the main flow direction.16,71,72

These types of secondary flows result from a difference between the cur-
vatures of inner and outer bends of the serpentine channel, where the
gradient of the first normal stress difference N1 arises [Fig. 8(a)].
Consequently, the so-called “Hoop stress” emerges and drives the visco-
elastic fluid toward inner bends at the top and bottom of the serpentine
channel, where N1 is the largest. The fluid is then pushed back to the
outer part of the serpentine channel at the center plane to complete the
formation of counter-rotating vortices in the out-of-plane cross section
of the channel, as indicated by the dashed contours of potential second-
ary flow vortices in Fig. 8(a). Values of N1 as a function of the normal-
ized lateral distance along the dashed central line in Fig. 8(a) are shown
in Fig. 8(b). As indicated in this figure, the N1 difference between the
inner and outer bends is continuously increased by increasing the shear
rate, respectively, the Weissenberg number. However, due to the diffi-
culty of solving the flow equation including the White–Metzger fluid
model after the onset of purely elastic instability, the computational
fluid dynamics (CFD) simulations are limited to lowWeissenberg num-
bers. The out-of-plane moving particles, and thus the path lines
deformed in the direction of flow toward the inner bend in the consecu-
tive stacks of images observed experimentally in Figs. 6(b) and 6(c), are
consistent with the direction of counter-rotating secondary flow vorti-
ces in the upper half of the channel [Fig. 8(a)] with the assumption that
the focal plane of the objective is set slightly above the midplane with
respect to the z-direction. Therefore, we can conclude that the visible
but mild fluctuations of the fluid–fluid interfaces in Fig. 4(b) and the
deviations from the laminar path lines in Fig. 6(c) occur because of
the secondary flows. Such elastic secondary flows are present for all

FIG. 6. [(a)–(f)] Stacks of 32 consecutive path line images of flow in the serpentine
channel. The fluid is 2500 ppm Flopaam 3330 and the images are obtained via fluo-
rescence microscopy. The flow direction is from left to right. The dashed blue line in
figure (a) is a guide for the eye and marks the radius of curvature of the serpentine
channel. The white vertical dashed lines in figures (b) and (c) are references for
symmetry. The entrapped oil phase is colored red artificially for easier identification.
The pink area in figures (c)–(e) indicates the moving fluid–fluid interface.
Multimedia view: https://doi.org/10.1063/5.0071556.2

FIG. 5. (a) The fluctuation intensity dYrms and (b) remaining oil saturation S as functions of the measured pressure difference �Pin�out . The inset in figure (b) shows the satura-
tion S as function of dYrms. The horizontal dashed lines in figure (a) and the inset in figure (b) indicate dYrms � 3lm, where we observe the onset of displacement in Fig.4(b).
The red areas in figures (a) and (b) refer to the pressure ranges associated with the onset of displacement. The symbols in figures (a) and (b) represent the experimental data
for 67 w% glycerin ($), 2000 ppm Flopaam 3630 (�), 1000 ppm Flopaam 3630 (�), 2500 ppm Flopaam 3330 (�), and 1300 ppm Flopaam 3330 (�).
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applied shear rates in the case of viscoelastic flow and their strength
intensifies as theWeissenberg number increases.17

To study the evolution of flow toward a fully developed elastic
turbulent state, the experimentally measured pressure drops were nor-
malized using the corresponding values of a laminar reference flow
and plotted as functions of the shear rate _c in Figs. 9(a) and 9(b) and
as a function of the Weissenberg numberWi in Fig. 9(c). The pressure
drops of the corresponding laminar reference flows were calculated
using CFD simulations of imaginary fluids with the same shear

thinning properties as the polymer solutions defined by the
Carreau–Yasuda model, i.e., with no elastic component attributed to
the total stress tensor. The normalized pressure is close to unity at
lower shear rates, respectively, at Wi <Wicrit . This verifies the
laminar-flow regime at this stage. A steep monotonic increase is
observed for all solutions above the onset of purely elastic instability.
After this onset, the normalized pressure follows a convex shape in the
case of Flopaam 3630 and a concave shape in the case of Flopaam
3330. The curve flattens slowly at the highest applied shear rates for all

FIG. 7. PSD analysis of vertical fluctuation of the center position dY of (a) 2500 ppm Flopaam 3330 for various shear rates above and below the critical shear rate; (b)
2000 ppm Flopaam 3630; (c) 1000 ppm Flopaam 3630; and (d) 1300 ppm Flopaam 3330. The shear rates in figures (b)–(d) are selected to ensure that the flow is safely above
the onset of purely elastic instability _ccrit.

FIG. 8. (a) Sample distribution of the first normal stress difference N1 within a vertical cross section of the serpentine channel obtained via CFD simulations using the
White–Metzner model for 2500 ppm Flopaam 3330 at _c � 143 s�1 and corresponding Wi � 5:4. The contours of potential secondary flow vortices are indicated by dashed
lines, which are intended as guides to the eye. (b) N1 at the central line of the cross section for increasing shear rates _c � 72 s�1 s (Wi � 4:2), _c � 143 s�1 (Wi � 5:4), and
_c � 215 s�1 (Wi � 6:3).
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the polymer solutions [Figs. 9(a) and 9(b)]. The latter behavior is inter-
preted in the literature as an indication of transition toward a fully
developed turbulent regime.7,16,73 The different curvatures of the
evolving normalized pressures after the onset of purely elastic instabil-
ity can be explained with respect to the relaxation time, i.e., degree of
elasticity of polymer coils in the solutions. Larger polymer coils, i.e.,
Flopaam 3630, are more elastic and therefore stretch more easily dur-
ing flow. This leads to an immediate and steep increase in normalized
pressure, after the onset of purely elastic instability. Higher elasticity of
polymers in the solution also leads to a fully developed turbulent state
already at lower shear rates [Figs. 9(a) and 9(b)]. In the case of
Flopaam 3630, the transition from laminar to fully developed turbu-
lence occurs in the range of _c � 200 s�1 to _c � 2000 s�1, whereas
transition for Flopaam 3330 occurs between _c � 2000 s�1 and
_c � 6000 s�1. Comparing these shear rates to the shear rate range
where we detect displacement of the capillary entrapment in our
geometry, in Fig. 4(d), we note that the displacement coincides with
transition toward the fully developed turbulent regime.

IV. CONCLUSION AND OUTLOOK

A single-entrapment microfluidic geometry was designed based
on serpentine channels to mimic the essential features of flow in
porous media, i.e., shear-dominated tortuous pathways. The unique
microfluidic geometry and high optical and temporal resolution of our
experiments allowed us to focus on the displacement of capillary
entrapments (exclusively) by elastic stresses. We confirmed that the
presence of purely elastic instabilities is reflected by the statistics of the
interfacial fluctuations. Based on the power spectral density analysis, a
characteristic exponent b � 3:5 was detected for shear rates that
exceeded the onset of elastic instability. This led us to conclude that
the mild interfacial fluctuations observed prior to the onset of purely

elastic instability have a different origin and could be attributed to sec-
ondary flows induced by the gradient of the first normal stress difference
due to the curvature of the serpentine channel. It was evident that a cer-
tain fluctuation intensity is required to overcome the capillary pressure
threshold and initiate desaturation. The results of our experiments con-
firmed that displacement of the capillary entrapment is governed pri-
marily by the randomness of base flow that arises from elastic instability.
The results of our research show that, in our specific design, the displace-
ment coincides with transition toward a fully developed turbulent regime
regardless of the polymer molecular weight and concentration.

Displacement processes in actual porous media are more com-
plex. Flow asymmetry in randomized porous media and heteroge-
neous pore-throat distributions lead to a wide range of capillary
entrapment sizes as well as broad distributions of in situ flow veloci-
ties. This produces non-uniform viscous pressure fields. Therefore, a
synergic effect of different elasticity-induced phenomena coupled with
viscous forces can be expected to contribute to the mobilization of
capillary entrapments. Thus, decoupling of these components requires
further in-depth investigation into more complex model systems.
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FIG. 9. The ratio of experimentally measured pressures to the computed steady-state pressure drops of imaginary fluids with the same shear thinning properties, as defined
by the Carreau–Yasuda model. Evolution of flow from a laminar to a fully developed turbulent regime for the polymers (a) Flopaam 3630 and (b) Flopaam 3330 as function of
the shear rate, and Weissenberg number (c). The symbols in figure (a) represent data for 2000 ppm Flopaam 3630 (�), and 1000 ppm Flopaam 3630 (
), while the symbols
in (b) represent 2500 ppm Flopaam 3330 (�), and 1300 ppm Flopaam 3330 (�). The horizontal rectangle indicates the laminar regime, the vertical rectangle marks the onset
of purely elastic instabilities.
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APPENDIX: RHEOLOGY PROTOCOLS

1. Rotational test

Shear viscosity of all polymer solutions and dynamic viscosity of
the glycerin solution as shown in Fig. 2 of the main text were deter-
mined through a steady shear step test applying a standard protocol in
stress-controlled mode using HAAKE MARS 40 rheometer and 60mm
cone plate geometry with 1

�
angle. To avoid air bubbles when placing

the respective fluids between the cone and plate, we placed a small
droplet at the tip of the cone to create a wetting film when bringing the
cone and plate in contact. The temperature was set to ð206 0:2Þ

�
C

for all measurements to match the lab temperature.

2. First normal stress difference

The measurements of the first normal stress difference N1 are
shown in Fig. 10(a). At each step, first the normal force value is set

to zero. To account for the drift caused by relaxation of the solution
as well as the force measuring sensor in the device, the measuring
geometry stays for 300 s at rest, followed by a constant rotation at
fixed applied stress for 300 s. The respective polymer solution in the
measuring geometry was surrounded by mineral oil to avoid inertial
instabilities at the edges at higher rotation rates. The normal force
values measured by the rheometer were corrected for inertia,
Ninertia ¼ �0:075pqX2R4, and drift and converted to the first nor-
mal stress difference using N1corr ¼ 2Fn

pR2 in which Fn is the normal
force measured by the rheometer; X, q, and R are the angular rota-
tion, density, and the radius of the measuring geometry, respec-
tively. An exemplary plot (four times repetitions) of first normal
stress difference as a function of shear rate for 2000 ppm Flopaam
3630 is shown in Fig. 10(b).

3. Frequency sweep test

The small amplitude frequency sweep tests were performed
using a standard protocol in stress-controlled mode. The stress
amplitude was acquired priorly from a deformation amplitude
sweep test to be safely in the linear viscoelastic range. To ensure
minimum measurement error, the duration of measurements at
each point was automatically adjusted based on the frequency. The
results are shown in Fig. 11.
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Flow of viscoelastic polymer solutions in curved channels exhibits instability caused by the elastic nature
of polymers even at low Reynolds numbers. However, scaling of the onset of this purely elastic instability in
semidilute polymer solutions has not been previously reported. Here we experimentally investigate the flow of
highly elastic polymer solutions above their overlap concentrations using pressure measurements and particle
image velocimetry. We demonstrate that the onset of instability can be scaled by including shear dependent
rheological properties of the polymer solutions in the nonlinear stability analysis. As a result, a universal criterion
as function of normalized polymer concentration is provided for scaling the onset of purely elastic instability in
the semidilute regime regardless of the type and molecular weight of the polymer.
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Purely elastic instability is a well-known phenomenon oc-
curring during the flow of viscoelastic polymer solutions and
melts at vanishing Reynolds numbers Re. This instability
can be attributed to nonlinear elastic stresses, arising from
the stretching and relaxing of flexible polymers, which do
not fully dissipate beyond a critical shear rate [1–6]. The
occurrence of purely elastic instability can be beneficial for
practical applications such as microfluidic mixing, heat trans-
fer, and mobilization of capillary entrapments [7–9]. However,
in multiple processes in food and cosmetics industry [10,11],
as well as polymer extrusion [12], the occurrence of purely
elastic instability is undesirable. Therefore, it is crucial to
estimate the conditions under which the purely elastic insta-
bility occurs, in terms of the rheology of the fluid and the
geometrical properties of the flow.

Polymers are inherently nonuniformly stretched during
flow, resulting in an anisotropic distribution of three-
dimensional stresses. The difference between the stress
component in the flow direction and the stress component in
the transverse direction is called the first normal stress differ-
ence N1. In curved geometries when N1 becomes substantially
larger than the shear stress τ , elastic stresses dominate,
and polymers are pulled toward regions with higher stream-
line curvature [4,9]. As a result, the laminar flow paths
are disturbed and the polymers are spatially and temporally
subjected to different shear rates. Consequently, the polymers
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repeatedly store and release elastic stresses during flow, which
leads to the emergence of an unstable flow above a certain
threshold. Pakdel and McKinley observed that in a curved ge-
ometry the onset of this instability can be scaled with respect
to the ratio of the first normal stress difference N1 to the shear
stress τ and the curvature of the streamline [13,14]. Thus, the
criteria for scaling the onset of pure elastic instability can be
formulated as in Eq. (1) [4]:√

l

R
|N1|
|τ | � Mcrit, (1)

where l is a characteristic length scale and R is the radius of
streamline curvature. Since, for a given geometry, the onset
of instability is governed merely by the stress ratio, Mcrit

can be considered as a critical stress factor. However, it is
essential to notice that this approach does not provide a uni-
versal numerical value for Mcrit, but rather describes how the
onset of nonlinearity scales with respect to the rheological and
geometrical properties [15]. The value of Mcrit depends on the
type and concentration of the polymer and salt in the solution,
as well as on the type of solvent, and is commonly in the range
of 1 to 6 [4,16].

This scaling is often used for polymer solutions in the di-
lute regime, i.e., for polymer concentrations below the overlap
concentration c∗, in which the viscosity η, and the relaxation
time λ can be assumed to be independent on the shear rate
γ̇ . Here, the ratio of |N1| to |τ | is linearly dependent on the
shear rate, and the characteristic length can be estimated by
l = U λ0, where U is the average flow velocity and λ0 is the
longest polymer relaxation time [4,16–20]. However, above
the overlap concentration c∗ the polymer behavior during flow
is more complicated. Both η(γ̇ ) and λ(γ̇ ) show significant
nonlinear dependency on the shear rate [21,22]. Using the
longest polymer relaxation time λ0 to estimate the charac-
teristic length, as commonly done in literature [23–25], leads
to unrealistically large timescales which do not represent the
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actual dynamics of the polymers in flow in this concentration
regime [25]. Moreover, unlike the dilute regime, the ratio
of the first normal stress difference to the shear stress in
Eq. (1) is not linearly dependent on the shear rate due to
the nonquadratic dependence of N1 on the shear rate, and
the nonlinear dependence of |τ | on the shear rate. Therefore,
the assumption of a constant relaxation time is not reasonable,
and it is necessary to adopt a realistic approach for scaling the
onset of purely elastic instability in the semidilute regime that
faithfully reflects the rheological properties of the polymers.

In this paper, we present a practical scaling of the onset of
purely elastic instability for strongly shear thinning, highly
elastic polymer solutions in the semidilute regime. To this
aim, we determine the onset of purely elastic instability of
various polymer solutions in a microfluidic serpentine channel
via pressure measurements and particle image velocimetry
(μPIV). We scale the onset of the observed instability in our
experiments by considering the White-Metzner fluid model to
account for the shear dependence of the rheological properties
of the polymer solutions. Applying this scaling, the onset of
purely elastic instability as function of normalized polymer
concentration collapses into a universal master curve indepen-
dent of polymer type and molecular weight, confirming the
suggested approach.

The microfluidic channel used in our experiments is fab-
ricated from UV-curable glue NOA 83H (Norland optical
adhesives) by soft lithography using standard protocols [9,26].
The microfluidic serpentine channel consisting of 33 con-
secutive half-loops has the total length of l ≈ 26 mm, width
of w ≈ 0.125 mm, height of h ≈ 0.036 mm, and an inner
bend radius of curvature of ri ≈ 0.125 mm. The inlet of
the microfluidic channel is connected to a high-precision,
pulsation-free syringe pump (neMESYS, Cetoni GmbH) that
enables fluid injection at a controlled volumetric flow rate.
The outlet is connected to a liquid reservoir at the same height
as the microfluidic device to avoid additional hydrostatic pres-
sure difference. The hydrodynamic pressure drop �P inside
the serpentine channel is measured by a differential pressure
sensor (26PC series, Honeywell) mounted between inlet and
outlet. A sketch of the microfluidic channel is provided in the
inset of Fig. 1(a).

To represent a wide range of common polymer types
that are prone to purely elastic instability, we use two com-
mercial polyelectrolytes, the partially hydrolyzed polyacry-
lamides (HPAM, 30% hydrolysis) Flopaam 3630 (Mw,3630 ≈
18.7 MDa) and Flopaam 3330 (Mw,3330 ≈ 6.5 MDa) dissolved
in 17 mM NaCl solution as well as polyethylene oxide (PEO,
Mw,PEO ≈ 8.0 MDa) dissolved in ultrapure water. The sample
solutions with different concentrations are prepared follow-
ing standard protocols [9]. It should be mentioned that the
salt concentration in case of the HPAM solutions is rather
in the low-salt limit and not sufficient to screen all charges
of the polyelectrolyte [27]. The densities of all utilized so-
lutions were determined to � = (1.00 ± 0.01) g/cm3 by a
pycnometer. A full rheological characterization including
steady shear step measurements to determine η(γ̇ ) and N1(γ̇ )
as well as small amplitude frequency sweep tests to de-
termine the storage modulus G′(ω) and the loss modulus
G′′(ω) are performed using a rotational rheometer (HAAKE
MARS 40, Thermo Scientific). The data are presented in the

FIG. 1. (a) The shear viscosity η(γ̇ ) measured using a rheome-
ter (filled symbols) and apparent viscosity ηapp(γ̇ ) (open symbols)
calculated from the pressure difference �P along the serpentine
channel (sketch in the inset) for 0.200 wt% Flopaam 3630. The line
is a fit to the Carreau-Yasuda model [Eq. (3)]. The dashed vertical
line indicates the critical shear rates γ̇crit. (b) Reduced viscosity
ηr (γ̇ ) = ηapp(γ̇ )/η(γ̇ ) as function of the shear rate γ̇ for Flopaam
3630 and 3330. The inset shows the respective data for PEO 8MDa.
The shaded area indicates the initial plateau within the experimental
accuracy.

Supplemental Material (SM) [28]. The critical overlap con-
centrations c∗ of the respective polymer types was determined
using the Huggins-Kraemer method [29] to be c∗

3630 ≈
0.0082 wt%, c∗

3330 ≈ 0.0137 wt%, and c∗
PEO ≈ 0.0375 wt% in

agreement with literature values [9,30,31]. To be safely in
the semidilute regime for each polymer type, the concentra-
tions are chosen to cover the range from 5 × c∗ to 30 × c∗.
Comparison of the power-law exponents of the respective zero
shear viscosity (data in SM [28]) as function of concentration
with literature values [25,27,30,32] confirms that the polymer
chains remain unentangled below 10 × c∗ and become entan-
gled at higher polymer concentrations.
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TABLE I. Overview of the critical shear rate γ̇crit, and Mcrit at the onset of purely elastic instability for the utilized polymer solutions.

Flopaam 3630 c/c∗ γ̇c [s−1] Mc Flopaam 3330 c/c∗ γ̇c [s−1] Mc PEO 8 MDa c/c∗ γ̇c[s−1] Mc

0.050 wt% 6 783 ± 39 9.9 ± 0.6 0.075 wt% 5 3100 ± 39 12.9 ± 0.8 0.188 wt% 5 1566 ± 39 18.3 ± 1.2
0.100 wt% 12 587 ± 39 7.5 ± 0.5 0.140 wt% 10 2741 ± 39 10.6 ± 0.7 0.375 wt% 10 1468 ± 39 6.3 ± 0.4
0.150 wt% 18 587 ± 39 6.9 ± 0.5 0.280 wt% 20 2741 ± 39 5.1 ± 0.3 0.750 wt% 20 1417 ± 39 4.8 ± 0.3
0.200 wt% 24 391 ± 39 3.7 ± 0.2 0.350 wt% 25 2349 ± 39 4.3 ± 0.3 0.938 wt% 25 1370 ± 39 4.5 ± 0.3
0.250 wt% 30 391 ± 39 4.3 ± 0.3 0.420 wt% 30 1566 ± 39 3.5 ± 0.2 1.250 wt% 30 1175 ± 39 3.6 ± 0.2

In our microfluidic experiment, we stepwise increase the
flow rate and measure the corresponding pressure drop �P
across the serpentine channel. This pressure drop can be
converted to an apparent viscosity ηapp(γ̇ ) = τ (γ̇ )/γ̇ , where
the shear stress in a serpentine channel is approximated by
τ = (�P H W )/[2L(W + H )] [33], while the shear rate is
approximated by γ̇ = 4Q/(π r3) with the equivalent radius
of r = √

(W H )/π [34]. It should be noted that this approx-
imation of apparent shear rate γ̇ is commonly recommended
for aspect ratios H/W ≈ 1. For smaller aspect ratios, Hartnett
and Kostic [35] proposed a correction that also includes the
Rabinowitch relation [36] to account for the shear thinning of
polymer solution and nonparabolic velocity profile. However,
we have confirmed that for the aspect ratio H/W ≈ 0.3 used
in this work, the apparent viscosity ηapp(γ̇ ) exhibits a good
agreement with the bulk viscosity values (see the Supplemen-
tal Material [28]). Thus, the given approximation is reliable,
and the corrections are not essential. Furthermore, it is impor-
tant to note that we employ a “point-wise” method and assume
that for a particular flow rate the corresponding apparent shear
rate, viscosity, and relaxation time can be described by con-
stant values.

Comparison of the apparent viscosity ηapp(γ̇ ) with the ex-
trapolated bulk viscosity values η(γ̇ ) in Fig. 1(a) reveals that
above a critical shear rate, ηapp(γ̇ ) deviates from η(γ̇ ). Fig-
ure 1(b) shows the reduced viscosity ηr (γ̇ ) = ηapp(γ̇ )/η(γ̇ ) as
function of the shear rate γ̇ for all studied polymer solutions.
We identify the critical shear rate γ̇crit , listed in Table I, at the
onset of instability when the reduced viscosity exceeds 1.15.
For a given polymer type, γ̇crit decreases only slightly with
increasing concentration. These observations are in agreement
with those of Howe et al. [30] who have reported that γ̇crit is
independent of polymer concentration above c ≈ 10 × c∗ and
is inversely proportional to M2

w.
The serpentine geometry with rectangular cross section re-

quires the consideration of two Reynolds numbers to ensure
that inertial forces are negligible throughout the geometry.
For channel flows, the Reynolds number is usually defined as
Rec = �U r/η with the equivalent radius r as the character-
istic length, whereas the average velocity is approximated by
U = Q/(W H ). To account for centrifugal inertia in curvilin-
ear flow, the radius of curvature of the serpentine channel ri

is used as the characteristic length and thus Res = �U ri/η.
The maximum Reynolds numbers of our presented experi-
ments are Rec ≈ 1 and Res ≈ 4. Therefore, we can conclude
that the contribution of inertia to the flow is negligible. To
verify the purely elastic origin of the observed instability, we
perform μPIV (LaVison) measurements by adding 0.05 wt%
1-μm red fluorescent particles (FluoroMax, Thermo Fisher)
to the polymer solution. The particles are excited with a laser

wavelength of 532 nm. Double-frame images with short time
differences (0.1 ms < dt < 0.8 ms), depending on the flow
velocity, are recorded from the light emitted by the particles.
Cross correlating these double frames, we obtain the velocity
field in the serpentine channel. Figure 2(a) demonstrates the
velocity fields at the middle half-bend of the serpentine chan-
nel averaged over 50 s for two different shear rates. Below the
onset of purely elastic instability (left side), a laminar flow is
observed whereas above the onset of purely elastic instability
the velocity field (right side) deviates from a laminar flow.
In the latter stage, unlike the laminar velocity profile, the
maximum velocity is shifted toward the outer bend, i.e., to-
ward the larger radius of curvature. The power spectra density
of the local velocity fluctuations at the center of the middle
half-bend of the serpentine channel [indicated by a (+) sign in
Fig. 2(a)] are shown for four shear rates below and above the
onset of flow instability in Figs. 2(b)–2(e) (further details in
the Supplemental Material [28]). Indeed, the power-law decay
∼ f −β with a characteristic exponent β ≈ 2, in the range of
1 to 10 Hz at sufficiently high flow rates, is larger than the Kol-
mogorov scale of 5/3 associated with the inertial turbulence,
suggesting that the mechanism of turbulence is not associated
with inertia [37]. Similar exponents of β in the range of 2 to
3 have been reported in the literature for semidilute polymer
solutions at highly elastic turbulent stage [23,38,39].

In order to scale the onset of the instability observed in
our experiments, we require both a rheological description
of the fluids as well as geometrical properties of the flow
channel, as suggested by Eq. (1). The polymer solutions used
in our experiments exhibit strongly shear-dependent viscosity
as well as a nonquadratic first normal stress difference (data
in the Supplemental Material [28]). The behavior of such
polymer solutions is described based on the White-Metzner
constitutive fluid model [9,19,25,40]. The basic concept of
this model is to define a total stress tensor τ = τ1 + τ2, and a
total viscosity η = η1 + η2 that are related by the deformation
rate tensor D [21,41,42]. The pure viscous component of the
stress tensor τ2 is defined as τ2 = 2 η2 D, where η2 is the
solvent viscosity. τ1 is defined by

τ1 + [η(γ̇ )/G0]
�
τ 1 = 2 η1(γ̇ ) D, (2)

where
�
τ 1 is the upper convected time derivative. The shear

rate is defined as γ̇ =
√

2 tr(D2) and the total shear stress is
given by τ = 2 η(γ̇ ) γ̇ . The shear-dependent total viscosity of
the polymer solution η(γ̇ ) is described by the Carreau-Yasuda
model [21,22]:

η(γ̇ ) − η∞ = (η0 − η∞)[1 + (�γ̇ )a]
n−1

a . (3)
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FIG. 2. (a) Time averaged velocity and streamlines obtained
from μPIV for 0.200 wt% Flopaam 3630. [(b)–(e)] PSD analysis
of velocity fluctuations at the center of serpentine channel indicated
by a (+) sign in panel (a) for 0.200 wt% Flopaam 3630 at various
shear rates below and above the critical shear rate. The dashed line
indicates an exponential scaling with β = 2, and the dotted line
represents the Kolmogorov scaling (β = 5/3) for comparison.

η0 and η∞ are the zero-shear viscosity and viscosity at
infinite shear rates, � is a characteristic time, n is the power
law exponent associated with the degree of shear thinning,
and a is a transition control factor. In Eq. (2), the ratio of
the shear-dependent viscosity η(γ̇ ) to the shear modulus G0

is equivalent to the relaxation time λ(γ̇ ) [41,42]. The shear
modulus G0 is taken as the largest shear mode obtained from
the generalized Maxwell model fitted to the small amplitude
frequency sweep test results (data in the Supplemental Ma-
terial [28]). This is a reasonable approximation of the shear
modulus at relatively fast flows, corresponding to the range of
shear rate at which purely elastic instability is observed in our
experiments. To this end, G(ω) = G′(ω) + iG′′(ω) is fitted
to the frequency sweep test results with the least number of

relaxation elements required for a proper fit (typically N = 4),
where G′(ω) and G′′(ω) are given by Eqs. (4) and (5):

G′(ω) =
N∑

k=1

Gk
(λk · ω)2

1 + (λk · ω)2
, (4)

G′′(ω) =
N∑

k=1

Gk
λk · ω

1 + (λk · ω)2
. (5)

Shear modulus G in general describes the elastic component
of a viscoelastic material under shear in the viscoelastic fluid
model, and is defined as G = τ/γe, where γe is the deforma-
tion of the elastic component.

In the following, we adapt the scaling of the nonlinear
instability of the polymer solutions in the semidilute regime
according to the White-Metzner fluid model. Since the re-
laxation time is shear dependent in the semidilute regime,
the characteristic length nonlinearly increases with γ̇ and
is approximated by l (γ̇ ) = λ(γ̇ )U = (η(γ̇ )U )/G0. Stream-
lines of polymer flow in the serpentine channel obtained from
μPIV generally follow the geometrical curvature of the chan-
nel [Fig. 2(a)]. Therefore, the minimum radius of the curved
streamlines R in our experiments is approximated by the inner
radius of the serpentine ri. Thus, within the framework of
the White-Metzner model, the threshold of the critical stress
factor Mcrit at the onset of purely elastic instability in Eq. (1)
is approximated by√

η(γ̇ )U

G0 R
N1(γ̇ )

2 η(γ̇ ) γ̇
� Mcrit. (6)

The average velocity in the serpentine channel is expressed
as U = Q/(W H ). Since we consider the shear rate γ̇ to de-
pend linearly on the flow rate Q and η(γ̇ ) is canceled out,
we approximate the critical stress factor Mcrit by Eq. (7). As
previously mentioned, according to our point-wise approach,
we obtain the relevant rheological properties of the polymer
solution corresponding to the apparent shear rate γ̇crit at onset
of purely elastic instability:

C

√
N1(γ̇crit )

G0
≈ Mcrit. (7)

Here, C is a geometry constant computed as C =
(W H )/(64π R2) for a serpentine channel with rectangular
cross section. Equation (7) suggests that, for a given geom-
etry, Mcrit correlates solely with the ratio between the first
normal stress difference at the onset of purely elastic insta-
bility, N1(γ̇crit ), and the shear modulus G0 corresponding to
the smallest relaxation mode. As explained earlier, the first
normal stress difference is responsible for destabilizing the
polymer flow in a curved geometry. On the other hand, the
capacity of polymers to deform, i.e., their degree of elasticity
is characterized by the value of the shear modulus. Therefore,
the ratio of N1 to G0 is expected to be the decisive factor for
the onset of instability.

Higher normalized concentration of a polymer solution
correlates to higher degree of elasticity, and thus higher value
of G0. This means that the onset of purely elastic instabil-
ity at higher normalized concentrations requires a larger N1.
Applying Eq. (7), we estimate Mcrit for our experiments as
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FIG. 3. Threshold value Mcrit calculated from Eq. (7) as func-
tion of c/c� for all utilized polymer solutions. The dashed curve is
a power-law fit Mcrit = A (c/c∗)−b, where A = (25.28 ± 3.87) and
b = (0.56 ± 0.05).

summarized in Table I and plotted in Fig. 3 as function of the
normalized concentration c/c∗ for all polymer solutions used
in this work. In fact, the estimated values for Mcrit collapse
into a single master curve following a power law with an
exponent of about −0.56. Qualitatively, this trend can be
understood in view of the rheological differences observed in
frequency sweep test between polymers below and above the
entanglement concentration 10 × c∗. For unentangled poly-
mer solutions, i.e., at c/c∗ < 10 the loss modulus G′′(ω) is
always larger than the storage modulus G′(ω) for the en-
tire range of frequencies [28]. This suggests that despite a
significant elastic component in the fluid, viscous behavior

during flow is likely to dominate in this concentration regime,
resulting in retardation of purely elastic instability. This means
that purely elastic instability for c/c∗ < 10 occurs at relatively
higher shear rates, and thus Mcrit is relatively larger. The above
argument is consistent with the discussion of Morozov et al.,
who suggest that the Pakdel and McKinley criterion should
be considered as a suitable asymptotic rule that is accurate
only at sufficiently large degree of elasticity [4]. Indeed, for
concentrations c/c∗ > 10, i.e., in the semidilute entangled
regime where the elastic component is entirely dominant, Mcrit

approaches an asymptotic value of approximately 3.7.
In summary, we have studied the flow of semidilute

polymer solutions in a geometrically well-defined serpentine
channel and detected the occurrence of purely elastic insta-
bility via pressure measurement and μPIV. We have adapted
the traditional scaling of the onset of purely elastic instability
for polymer solutions in the semidilute regime by respecting
the shear dependency of their rheological properties. As a
consequence, our approach provides a realistic representation
of the actual polymer behavior with respect to the flow by
taking the rheological properties at the onset of instability
into account. This, indeed, leads to a universal scaling as
function of normalized concentration depending only on the
ratio between the first normal stress difference N1(γ̇crit ) and
the shear modulus G0 regardless of the type of the polymer.
As demonstrated, this scaling allows quantitative prediction
of the onset of purely elastic instability for a wide range of
high molecular weight polymer solutions.
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Wagner.
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Fitting parameter Carreau-Yasuda model for viscosity

Figure S.1 shows bulk viscosity measurements of all utilized polymer solutions obtained from steady shear step
tests in stress-controlled mode using a HAAKE MARS 40 rheometer and a 60mm cone plate geometry with an angle
of 1◦. To avoid air bubbles when placing the respective fluids between the cone and plate, we place a small droplet
at the tip of the cone to create a wetting film when bringing the cone and plate in contact. The temperature is set
to T = (20 ± 0.2)◦C for all measurements to match the lab temperature where the microfluidic experiments were
conducted. The data are fitted using the Carreau-Yasuda model (Eq. (3) of the main text). The fitting parameter
are summarized in Table S.I.
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FIG. S.1: Bulk viscosity η(γ̇) for different concentrations of (a) Flopaam3630, (b) Flopaam3330, and (c)
PEO8MDa. Lines are fits to the Carreau–Yasuda model (Eq. (3) in the main text).
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TABLE S.I: Fitting parameters of Carreau–Yasuda model for viscosity: η0 is the zero-shear viscosity; Λ is a
characteristic time; a is a transition control factor; and n is the power law exponent associated with the degree of

shear thinning. The viscosity at infinite shear rates was set to the solvent viscosity ηs = 1 · 10−3Pa s.

Flopaam3630 η0 [Pa.s] Λ [s] a n
0.050wt% 0.087± 0.001 7.14± 0.89 1.20± 0.17 0.60± 0.02
0.100wt% 0.496± 0.080 18.58± 3.70 0.79± 0.24 0.51± 0.02
0.150wt% 1.656± 0.025 23.84± 0.74 1.39± 0.09 0.43± 0.01
0.200wt% 4.050± 0.095 35.83± 1.32 1.64± 0.15 0.39± 0.01
0.250wt% 8.459± 0.897 50.52± 8.01 2.47± 0.92 0.36± 0.01

Flopaam3330 η0 [Pa.s] Λ [s] a n
0.075wt% 0.036± 0.001 0.42± 0.03 0.72± 0.04 0.59± 0.01
0.140wt% 0.170± 0.003 1.40± 0.04 1.027± 0.05 0.54± 0.01
0.280wt% 1.127± 0.0491 4.15± 0.27 1.10± 0.09 0.44± 0.01
0.350wt% 2.081± 0.016 5.33± 0.20 0.92± 0.03 0.41± 0.01
0.420wt% 3.998± 0.013 6.88± 0.19 0.81± 0.04 0.37± 0.01
PEO8MDa η0 [Pa.s] Λ [s] a n
0.188wt% 0.021± 0.001 0.12± 0.01 1.25± 0.07 0.70± 0.01
0.375wt% 0.148± 0.010 0.50± 0.06 1.31± 0.17 0.57± 0.01
0.750wt% 2.655± 0.485 4.02± 1.26 1.98± 1.23 0.44± 0.01
0.938wt% 8.139± 1.087 6.46± 1.22 1.41± 0.35 0.38± 0.01
1.250wt% 16.166± 2.366 9.42± 1.89 1.42± 0.33 0.35± 0.01

Figure S.2 shows the power-law fits of the zero shear viscosity as function of concentration for the three polymer
types. Below the overlap concentration c∗, the polymer solutions are in the dilute regime. For concentrations
c∗ < c < 10×c∗, the polymer solutions are in the semi-dilute unentangled regime, while for concentrations c > 10×c∗,
the polymer solutions are entangled. The power-law exponents in Fig. S.2 are in agreement with literature values for
polyelectrolytes in case of the two HPAM-solutions and neutral polymer in case of PEO [1–4].
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FIG. S.2: Zero-shear viscosity η0 as function of concentrations of (a) Flopaam3630, (b) Flopaam3330, and (c)
PEO8MDa. Dashed red lines are extrapolated power-law fits. Dashed vertical lines indicate the overlap

concentration c∗ and the entanglement concentration 10× c∗.
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3

First normal stress difference N1(γ̇)

The values of the first normal stress difference N1 and the corresponding fitting parameter are shown in Fig. S.3
and Table S.II. To account for drift due to relaxation of the solution as well as the force sensor in the rheometer,
the measurement geometry remains at rest for 300 s, followed by rotation at a constant shear rate for also 300 s with
a ramp from γ̇ = 60 s−1 to γ̇ = 1000 s−1. The polymer solution in the measuring geometry was surrounded by
mineral oil to avoid inertia instabilities at the edges at higher rotation rates. The normal force values measured by
the rheometer were corrected for inertia, Ninertia = −0.075π ϱΩ2 R4, and drift and converted to the first normal
stress difference using N1,corr = (2Fn)/(π R2) in which Fn is the normal force measured by the rheometer. Ω, ϱ and
R are respectively angular rotation, density of the polymer solution, and the radius of the measuring geometry.
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FIG. S.3: First normal stress difference N1(γ̇) for different concentrations of (a) Flopaam3630, (b) Flopaam3330,
and (c) PEO8MDa. Lines are extrapolated power-law fits.

TABLE S.II: Fitting parameters of the power-law fit A · γ̇b of the first normal stress difference N1(γ̇)

Flopaam3630 A b Flopaam3330 A b PEO8MDa A b
0.050wt% 0.025± 0.015 1.35± 0.09 0.075wt% 0.024± 0.010 1.12± 0.01 0.188wt% 0.016± 0.007 1.24± 0.06
0.100wt% 0.054± 0.022 1.31± 0.07 0.140wt% 0.097± 0.013 1.04± 0.02 0.375wt% 0.102± 0.015 1.14± 0.02
0.150wt% 0.126± 0.034 1.26± 0.04 0.280wt% 0.427± 0.021 0.95± 0.01 0.750wt% 0.434± 0.054 1.14± 0.02
0.200wt% 0.215± 0.095 1.21± 0.07 0.350wt% 0.555± 0.031 0.92± 0.01 0.938wt% 0.873± 0.092 1.11± 0.02
0.250wt% 0.619± 0.245 1.11± 0.06 0.420wt% 0.963± 0.083 0.88± 0.01 1.250wt% 2.445± 0.166 0.99± 0.01
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Storage G′(ω) and loss modulus G′′(ω)

The storage modulus G′(ω) and the loss modulus G′′(ω) are determined by small amplitude frequency sweep tests
(SAOS) performed in the stress-controlled mode and are presented in Fig. S.4. The stress amplitude was set to 0.1Pa,
safely in the linear viscoelastic range of all solutions. The data are fitted to a multimode Maxwell model, i.e., Eq.(4)
and (5) of the manuscript. The number of modes N was chosen to assure the best possible simultaneous fit to G′(ω)
and G′′(ω). Typically N was set to four, besides the solutions in the semi-dilute unentangled regime, where a smaller
number of modes was sufficient to proper fit the data. The full list of fitting parameter is given in Table S.III.

For the utilized polymer solutions, the longest relaxation time is in the order of 100 s to 101 s, which is 1-2 orders
larger than the typical traveling time of the polymers passing a serpentine bend. Therefore, we believe the smallest
relaxation mode, i.e., the largest mode of the shear modulus in Table S.III to be relevant in our work. Consequently,
the used G0 in the manuscript corresponds to the largest G-value (G1 in Table S.III) that typically corresponds to
the mode with the smallest relaxation time. It should be noted that the frequency range used for the fit was carefully
adjusted based on Lissajous curves of stress and strain from the raw measurement data to ensure that G′(ω) and
G′′(ω) correspond to the linear viscoelasticity range in which the Maxwell model is valid.
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FIG. S.4: Frequency sweep test for different concentrations of (a) Flopaam3630, (b) Flopaam3330, and (c)
PEO8MDa. Filled symbols represent the storage modulus G′(ω) and open symbols represent the loss modulus

G′′(ω). Lines are fits to the multimode Maxwell model with N = 4 (Eqs. (4) and (5) in the main text).

.
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TABLE S.III: Fitting parameters of the simultaneous fit of the Maxwell model to G′(ω) and G′′(ω) according to
Eqs. (4) and (5) in the main text. Gk is the shear modulus corresponding to the relaxation time λk at the k-te mode.

Flopaam3630 G1 [Pa] G2 [Pa] G3 [Pa] G4 [Pa] λ1 [s] λ2 [s] λ3 [s] λ4 [s]
0.050wt% 0.094± 0.003 0.055± 0.003 – – 0.053± 0.004 0.345± 0.020 – –
0.100wt% 0.163± 0.027 0.064± 0.005 0.061± 0.010 0.034± 0.007 0.144± 0.018 0.774± 0.109 0.044± 0.034 2.512± 0.269
0.150wt% 0.307± 0.018 0.256± 0.020 0.182± 0.019 0.099± 0.015 0.041± 0.006 0.268± 0.020 1.778± 0.337 12.834± 2.164
0.200wt% 0.846± 0.036 0.448± 0.022 0.342± 0.020 0.176± 0.016 0.035± 0.003 0.352± 0.035 3.310± 0.385 35.314± 4.834
0.250wt% 0.971± 0.031 0.662± 0.034 0.470± 0.031 0.232± 0.022 0.031± 0.002 0.287± 0.030 2.706± 0.339 35.369± 5.250

Flopaam3330 G1 [Pa] G2 [Pa] G3 [Pa] G4 [Pa] λ1 [s] λ2 [s] λ3 [s] λ4 [s]
0.075wt% 0.075± 0.002 0.049± 0.002 – – 0.048± 0.002 0.256± 0.009 – –
0.140wt% 0.241± 0.111 0.116± 0.079 0.049± 0.073 – 0.081± 0.026 0.279± 0.323 1.130± 1.099 –
0.280wt% 1.127± 0.169 0.672± 0.034 0.374± 0.022 0.135± 0.014 0.025± 0.005 0.143± 0.012 0.702± 0.062 4.062± 0.364
0.350wt% 1.442± 0.113 0.905± 0.047 0.489± 0.031 0.151± 0.019 0.028± 0.004 0.152± 0.013 0.744± 0.070 4.410± 0.492
0.420wt% 1.884± 0.077 1.216± 0.065 0.666± 0.047 0.228± 0.024 0.036± 0.004 0.192± 0.018 1.017± 0.105 7.782± 0.906
PEO8MDa G1 [Pa] G2 [Pa] G3 [Pa] G4 [Pa] λ1 [s] λ2 [s] λ3 [s] λ4 [s]
0.188wt% 0.048± 0.013 0.005± 0.018 – – 0.116± 0.040 0.351± 0.618 – –
0.375wt% 0.397± 0.005 0.180± 0.006 0.071± 0.005 0.009± 0.008 0.054± 0.001 0.171± 0.009 0.487± 0.064 1.187± 0.339
0.750wt% 2.819± 0.085 1.984± 0.087 1.204± 0.076 0.432± 0.048 0,021± 0.001 0.111± 0.009 0.639± 0.066 4.912± 0.608
0.938wt% 5.008± 0.164 3.601± 0.169 2.141± 0.137 0.658± 0.073 0.026± 0.001 0.166± 0.015 1.221± 0.129 16.148± 2.863
1.250wt% 8.389± 0.345 5.882± 0.293 3.943± 0.236 1.561± 0.147 0.016± 0.002 0.127± 0.012 1.031± 0.111 12.858± 1.858

.
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Approximation of shear rate γ̇

As stated in the manuscript, we use the relation γ̇ = 4Q/(π r3) with the equivalent radius of r =
√

(W H)/π to
approximate the shear rate in our serpentine channels with rectangular cross section (W ≈ 125µm, H ≈ 36µm) for
an applied flow rate Q. Strictly speaking, this approximation is developed for Newtonian fluids and aspect ratios
H/W ≈ 1, and must be modified by a geometry factor for other aspect ratios. For non-Newtonian, in particular
shear-thinning fluids, this expression must also be corrected using the Rabinowitsch correction [5] to account for the
non-parabolic flow profile. Here we follow a method proposed by Son et al.[6], and show that shear rates obtained with
these corrections at the aspect ratio H/W ≈ 0.3, employed in our work, deviate less than 10% from our estimation of
γ̇. Son et al. combined an estimation of the shear rate for arbitrary aspect ratios proposed by Hartnett and Kostic
[7] with the Rabinowitsch relation to correct for the flow profile of shear-thinning fluids. The procedure is as follows:

(a) Calculate the wall shear stress τw from the measured pressure difference ∆P :

τW = (
∆P

2L
)(

W H

W +H
)

(b) Calculate the Newtonian approximation of the shear rate

γ̇a = (
6Q

W H2
)(1 +

H

W
) f⋆ (

H

W )

, where f⋆ is a geometrical constant for rectangular ducts provided in Ref. [7].

(c) Calculate the power-law index n as slope of the curve log(τW ) vs log(γ̇a).

(d) Calculate the corrected wall shear rate for a rectangular duct for non-parabolic flow γ̇W :

γ̇W = γ̇a(
2

3
)(
b⋆

f⋆
+

a⋆

f⋆

1

n
)

, where a⋆, b⋆, and f⋆ are geometrical constants for rectangular ducts provided in Ref. [7].

In Figure S.5, we show a comparison of the apparent viscosity in our serpentine channel for corrected and non-
corrected approximation of the shear rate and the bulk viscosity data. We determine a discrepancy of less than 10%
between the corrected and non-corrected shear rates.
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Flopaam 3330 with the apparent viscosity as used in the manuscript (open green symbols), and the apparent

viscosity using correction for shear-thinning and non-parabolic flow profile (full blue symbols). Lines are fits of the
Carreau-Yasuda model to the bulk rheology data.
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Particle image velocimetry (µPIV)

Particle image velocimetry is performed using a µPIV setup (LaVision, Zeiss Axio Observer Z1). The polymer
solutions are loaded with 1µm red fluorescent particles (FluoroMax, Thermo Fisher) and illuminated by green laser
wavelength of 532 nm. For each flow rate, a sequence of double-image is recorded using sCMOS camera (Imager
CLHS, PCO) at a frequency of 42Hz for a duration of 50 seconds. The flow velocity is estimated from the images
using Davis 10 software (LaVision). The time averaged velocity Ū for four different flow rates at the central bend of
the serpentine channel is shown on the left side of Fig. S.6. The velocity fluctuations U ′(t) = U(t)− Ū at the center
of the channel, indicated by (+) signs on the left panel, is shown on the right side of Fig. S.6.
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The complex rheological properties of such highly viscoelastic fluids and the complex-

ity of their flow characteristics, especially in curved geometries, necessitate a thorough

experimental characterization of the dynamics of such fluid flows. We apply statisti-

cal, spectral, and structural analyses to the experimentally obtained velocity fields of a

semi-dilute entangled polymer solution in a serpentine channel to fully characterize the

corresponding flow. Our results show that at high Weissenberg numbers, yet vanishing

Reynolds numbers, the flow resistance is significantly increased, which indicates the

emergence of a purely elastic turbulent flow. Spatial flow observations and statistical

analysis of temporal flow features show that this purely elastic turbulent flow is non-

homogeneous, non-Gaussian, and anisotropic at all scales. Moreover, spectral analysis

indicates that compared to elastic turbulence in the dilute regime, the range of present

scales of the excited fluctuations is narrower. This is partly due to the entanglement of

the polymers in this concentration regime, which restricts their movement, and partly

due to the mixed flow type inherent in the serpentine geometry, which can reduce the

extent of polymer stretching and, thus, reduce the intensity of the fluctuations in the

flow. Furthermore, proper orthogonal decomposition analysis is applied to directly ex-
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associated with secondary flow, which significantly contribute to the total kinetic energy

of the flow.
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ABSTRACT

Polymer solutions in the semi-dilute regime are of considerable industrial importance. The complex rheological properties of such highly
viscoelastic fluids and the complexity of their flow characteristics, especially in curved geometries, necessitate a thorough experimental char-
acterization of the dynamics of such fluid flows. We apply statistical, spectral, and structural analyses to the experimentally obtained velocity
fields of a semi-dilute entangled polymer solution in a serpentine channel to fully characterize the corresponding flow. Our results show that
at high Weissenberg numbers, yet vanishing Reynolds numbers, the flow resistance is significantly increased, which indicates the emergence
of a purely elastic turbulent flow. Spatial flow observations and statistical analysis of temporal flow features show that this purely elastic tur-
bulent flow is non-homogeneous, non-Gaussian, and anisotropic at all scales. Moreover, spectral analysis indicates that compared to elastic
turbulence in the dilute regime, the range of present scales of the excited fluctuations is narrower. This is partly due to the entanglement of
the polymers in this concentration regime, which restricts their movement, and partly due to the mixed flow type inherent in the serpentine
geometry, which can reduce the extent of polymer stretching and, thus, reduce the intensity of the fluctuations in the flow. Furthermore,
proper orthogonal decomposition analysis is applied to directly extract the turbulent flow structure and reveals the activity of the counter-
rotating vortices associated with secondary flow, which significantly contribute to the total kinetic energy of the flow.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0100419

I. INTRODUCTION

Polymer solutions exhibit mechanical properties that are inter-
mediate between viscous liquids and elastic solids due to the elasticity
of the polymer molecules and their stretching and relaxation during
flow.1 Such viscoelastic fluids are ubiquitous in a broad range of indus-
trial applications2–4 and biological settings.5–8 One of the unique fea-
tures of viscoelastic fluid flows, particularly in curved flow pathways, is
the appearance of an unstable state driven by nonlinear elastic stresses,
even in the absence of inertial forces.9 This phenomenon, known as
purely elastic instability or purely elastic turbulence, was first discov-
ered by Giesekus in the Taylor-Couette flow of dilute polymer solu-
tions.10 The occurrence of purely elastic instability can be beneficial
for several industrial applications. For example, the agitation caused
by the unstable flow improves mixing capacity and heat transfer.11,12

Improving the efficiency of capillary entrapment displacement in
porous media has also been proven to be related to the occurrence of

purely elastic instability during polymer flooding.13 However, in multi-
ple processes in the food and cosmetics industries14,15 as well as poly-
mer extrusion,4 the occurrence of purely elastic instability is rather
undesirable. Therefore, the importance of this phenomenon necessi-
tates an understanding of the origin and characterization of purely
elastic turbulent flows.

The origin of the purely elastic instability is related to the
behavior of polymer molecules.16–18 In fact, the counter-reaction of
the elastic stress loading (deformation) and unloading (relaxation)
of the polymers is reflected in the flow, resembling the characteristics
of turbulent flow, such as non-parallel streamlines and chaotic fluctua-
tion of flow properties, accompanied by a significant increase in flow
resistance.19 The polymer behavior and, thus, the induced unstable
flow features strongly depend on the polymer properties such as
molecular weight, size, and concentration, as well as the flow type.20–23

In the dilute regime below the overlap concentration, the individual
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polymer coils are far apart from each other and, hence, do not interact.
The behavior of such polymer solutions is governed solely by the
dynamics of a single polymer and its interaction with solvent mole-
cules.1 Although a considerable amount of research has been devoted
to the numerical and experimental study of the purely elastic turbu-
lence of dilute polymer solutions,17,24–35 there are far fewer studies
focusing on the semi-dilute entangled polymer solutions,17,36–38

despite their industrial importance. The polymer behavior above the
overlap concentration in the semi-dilute entangled regime is more
complicated, as polymers strongly interact with each other and even
become significantly entangled. Numerical modeling of such fluid
flows in a highly turbulent state is extremely challenging due to the
chaotic nature of the expected solution caused by the nonlinear rheo-
logical properties and the corresponding flow equations.39,40

Therefore, understanding and characterizing the purely elastic instabil-
ity in the semi-dilute concentration regime through experimental
research are not only valuable, but essential.

Despite the highly nonlinear and random nature of elastic turbu-
lent flows in general, they are known to be systematic and reproducible
on a statistical level.41–43 A precise and reliable statistical representation
of elastic turbulence, however, requires an extensive description of tem-
poral and spatial fluctuations of flow properties. Improvements in par-
ticle image velocimetry (PIV), both in hardware and data processing
algorithms that allow high temporal and spatial resolution data acquisi-
tion, make this technique one of the most attractive and successful tools
in turbulent fluid flow dynamics.44–46 The acquired time-resolved
velocity fields provide in-depth information on the turbulent flow,
which can be further processed using various statistical and numerical
methods to extract the stochastic turbulent features and structure. A
number of studies restricted to dilute polymer solutions have already
used the PIV technique to characterize the corresponding purely elastic
turbulence in various geometries with curved pathways.18,32,47,48

Most statistical analyses of elastic turbulence are based on the
flow fluctuations at fixed points either in time or in space and rely on
the Taylor frozen turbulence hypothesis to relate the temporal and
spatial characteristics of elastic turbulence.18,49,50 The Taylor hypothe-
sis suggests that in homogeneous flows, turbulent fluctuations travel
downstream without changing their properties.51 However, the global
validity of this hypothesis has been experimentally and numerically
questioned in the elastic turbulence of dilute polymer solutions.27,50 To
avoid the Taylor hypothesis and directly extract the spatial features
and structure of turbulent flow, the proper orthogonal decomposition
(POD) method was developed in the field of fluid dynamics.52 POD is
a robust order reduction method for decomposing the fluctuations in a
flow field into a set of energy modes to represent them as a set of basis
functions. As a result, the highly complex problem can be reduced to a
simpler one by considering only the modes with the highest energy
that contributes the most to the turbulent flow. The application and
practical utility of POD analysis to direct numerical simulation (DNS)
results of elastic turbulence of dilute polymer solutions have been dem-
onstrated in the literature for both high53,54 and vanishing Reynolds
numbers, Re (ratio of inertial to viscous forces).55 However, the appli-
cation of POD in the analysis of experimentally acquired dynamics of
an elastic turbulent flow has not yet been reported.

In this work, we investigate the flow of a semi-dilute entangled
polymer solution in a microfluidic serpentine geometry using the
lPIV technique with the aim of providing a comprehensive

characterization of the purely elastic turbulent flow observed at rela-
tively high Weissenberg numbers (ratio of elastic to viscous forces) yet
at vanishing Reynolds numbers. In our experiments, three different
stages of the flow are considered, namely, below, near, and safely above
the onset of purely elastic instability, to study the evolution of the
purely elastic turbulent flow. Furthermore, to evaluate the homogene-
ity and stream-wise dependence of the flow features at the highly tur-
bulent stage, we compare the velocity profile and spatial flow features
at five different positions in the serpentine channel. Common statisti-
cal analyses, including single-point statistics and two-point correlation,
are employed to characterize purely elastic turbulent flow features of
semi-dilute entangled polymer solutions in the serpentine channel.
Furthermore, we directly extract the structure of purely elastic turbu-
lent flow in the serpentine channel, for the first time to the best of our
knowledge, by applying the PODmethod to the instantaneous velocity
fields captured experimentally using lPIV.

The structure of this paper is as follows: We explain the proper
orthogonal decomposition method in Sec. II and sample preparation
methods, rheological properties of the fluid, and the experimental
setup and procedure in Sec. III. The experimental results are presented
and discussed in Sec. IV and concluded in Sec. V.

II. PROPER ORTHOGONAL DECOMPOSITION

Proper Orthogonal Decomposition (POD) also known as princi-
pal component analysis is a numerical order reduction technique that
decomposes a set of instantaneous velocity fields into a set of deter-
ministic basis functions or modes.52,56,57 In the following, we briefly
present the basic concept of this method, which is necessary to com-
prehend this work. Further mathematical details and application of
this method in fluid dynamics of the turbulent flow can be found in
the literature.52,56,58–60 In the case of an experimentally acquired flow
field with high spatial resolution, the PODmethod is applied using the
“snapshot method.”61 As its name suggests, this method treats each
velocity field obtained from lPIV as a snapshot. In each snapshot, the
velocity vector is defined as u ¼ ðu; vÞ and each velocity component
(scalar) is both a function of position (x, y) and time. The proper
orthogonal decomposition can be applied to either component as well
as to the magnitude of the velocity juj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

. The numerical
analysis begins with constructing a m� n matrix, U, from the velocity
components, e.g., uðx; y; tÞ, where m ¼ Nt and n ¼ Nx � Ny , with Nt

being the number of snapshots and Nx, Ny being the number of spatial
vectors in x- and y-directions. In fact, each entry ðuijÞ of the matrix U
is the measured velocity at a point j in space at time i,

U ¼

u11 ¼ u x1; y1; t1ð Þ � � � u1n ¼ u xNx ; yNy ; t1Þ
� �

u21 ¼ u x1; y1; t2ð Þ � � � u2n ¼ u xNx ; yNy ; t2ð Þ
..
. ..

. ..
.

um1 ¼ u x1; y1; tmð Þ � � � umn ¼ u xNx ; yNy ; tmð Þ

2
66664

3
77775
:

A POD decomposition of the matrixU aims to find a set of orthogonal
vectors [Uð1Þðx; yÞ;Uð2Þðx; yÞ;…;UðNtÞðx; yÞ] such that

U x; y; tð Þ ¼ U1 x; y; tð Þ þ
XNt

n¼2
aðnÞ tð Þ �UðnÞ x; yð Þ; (1)

where U1ðx; y; tÞ represents the time averaged velocity over all Nt

snapshots. UðnÞ are the eigenvectors of the auto-covariance matrix
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C ¼ 1=ðm� 1ÞUTU, and aðnÞ are their corresponding temporal coef-
ficients. These eigenvectors, known as proper orthogonal modes of the
velocity fluctuations, can be viewed as the axes of an n-dimensional
ellipsoid enclosing the entire data set (matrix UÞ in an n-dimensional
space.62 Moreover, since the coefficients aðnÞ are uncorrelated, each
one can be interpreted as variations of one independent “mode” of
fluctuation. The energy contribution of each mode, ½i ¼ 1;…;Nt� to
the total kinetic energy (TKE), is calculated as Ei ¼ ki=

PNt
k¼1 kk,

where ki are the corresponding eigenvalues in the descending order.

III. EXPERIMENTAL METHODS
A. Working fluid and its rheological properties

In this study, we used a viscoelastic aqueous solution containing
2000 ppm (0.2 w%) of partially hydrolyzed polyacrylamide (HPAM)
Flopaam 3630 (SNF Floerger) with a molecular weight of (18.76 2.0)
MDa. The polymer solution was diluted following a standard
protocol13,63 from a 5000 ppm stock solution in a “brine” solution
composed of ultrapure water with 1000 ppm NaCl and 100 ppm
CaCl2. Since HPAM polymers are widely used for enhanced oil recov-
ery, where salt is an essential component of the injected polymer solu-
tions, we have included the typical salt type and concentration
considered in the literature.37,38,64 As shown in our previous study,65

the selected salt concentration is in the low salt range and does not
have a significant impact on screening the negative charges of the pol-
ymers’ backbone or causing transient cross-linking network. Using a
pycnometer, the density of the polymer solution was determined as
qP ¼ ð1:006 0:01Þ g/cm3. Because the polymer concentration used
in our microfluidic experiments was about 25 times larger than the
polymer’s overlap concentration of c�3630 � 82 ppm, we can safely
assume it to be in the semi-dilute entangled regime.65 The shear rate,
_c, dependent viscosity, gð _cÞ, and the first normal stress difference,
N1ð _cÞ, of the polymer solution at ð2060:2Þ�C were measured by a
steady shear step test applying a standard protocol in the deformation
rate-controlled mode using a HAAKE MARS 40 rheometer and a

60mm cone plate geometry with an angle of 1�. The rheological data
are plotted in Fig. 1(a). The storage modulus, G0, and loss modulus,
G00, determined from small amplitude frequency sweep tests in the
stress-controlled mode are plotted in Fig. 1(b). The crossover happens
at the frequency of x � ð0:356 0:1Þ Hz; thus, the longest relaxation
time of the polymer solution is determined as kmax ¼ 1=x � ð361Þ s.
The experimental data are fitted to the multi-mode Maxwell model.65

B. Viscoelastic fluid model

To define the relevant dimensionless Weissenberg number and
to evaluate viscoelastic flow, we need to choose a constitutive fluid
model, which best represents the rheological properties of the fluid.
Among all models developed for describing semi-dilute polymer solu-
tions,66 theWhite-Metzner (WM) constitutive model could best repre-
sent the strong shear-thinning and non-quadratic first normal stress
difference of our polymer solution (Fig. 1). It should be noted that the
WM consecutive model assumes that the second normal stress differ-
ence, N2, is zero and does not consider extensional viscosity. In poly-
mer melts and highly entangled polymer solutions, N2 can be
significant and is typically exerted in the opposite direction of N1; thus,
it can dampen elastic instability and suppress secondary flows in
curved ducts. However, since for polymer solutions in the semi-dilute
regime, as used in this work, the magnitude of N2 is typically measured
to be in the range of 1% to a maximum of 10% of N1, we assume that
N2 can be neglected.67 Moreover, the flow in a serpentine channel is
mainly shear dominated; thus, the effect of extensional viscosity can
also be safely excluded. Therefore, the choice of the WM fluid model in
our case is reasonable. The basic concept of the WMmodel is to define
a total stress tensor s ¼ s1 þ s2 and a total viscosity g ¼ g1 þ g2 that
are related to the deformation rate tensor D ¼ 1

2 ðruþruTÞ.
9,40,68

The pure viscous component of the stress tensor s2 is defined as
s2 ¼ 2 g2 D, where g2 is the solvent viscosity. s1 is defined by

s1 þ k _cð Þsr1 ¼ 2 g1 _cð ÞD; (2)

FIG. 1. (a) The (shear) viscosity gð _cÞ (green diamonds) and first normal stress difference N1 (�) measured using a rotational rheometer. The solid and the dashed lines are
(olive green) fit to the Carreau-Yasuda model Eq. (4) and a power law (blue) N1ð _cÞ ¼ ð0:346 0:07Þ _cð1;1960;03Þ, respectively. The inset shows the calculated Wi (purple
squares) based on Eq. (5). The solid line (purple) is a power law fit, Wið _cÞ ¼ ð0:156 0:01Þ _cð0:9160:01Þ. (b) Elastic modulus G0 (blue squares) and loss modulus G00 (”) mea-
sured via small amplitude frequency sweep test. Solid and dashed lines are corresponding fits to the multi-mode Maxwell model with four elements.
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where s
r
1 is the upper convected time derivative and kð _cÞ is the shear

dependent relaxation time calculated as

kð _cÞ ¼ N1=2ðgð _cÞ � g1Þ _c2; (3)

where the shear rate is defined as _c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 trðD2Þ

p
. The shear depen-

dent total viscosity of the polymer solution gð _cÞ is described by the
Carreau–Yasuda model,9,69

gð _cÞ � g1 ¼ ðg0 � g1Þ 1þ ðK _cÞa
� �n�1

a ; (4)

where g0 and g1 are the zero-shear viscosity and the viscosity at infi-
nite shear rates, K is a characteristic time, n is the power law exponent
associated with the degree of shear thinning, and a is a transition con-
trol factor. The Weissenberg number, Wi, which is defined as
Wið _cÞ ¼ kð _cÞ _c, is thus calculated as

Wið _cÞ ¼ N1=2ðgð _cÞ � g1Þ _c: (5)

Since, in our study, the Reynolds number is always safely below one,
inertia forces are negligible, and the observed flow features are merely
related to elastic stresses. Therefore, the Weissenberg number Wi is
the relevant dimensionless number to be considered in this case. The
calculated values of Wi as a function of the shear rate are plotted in
the inset of Fig. 1.

C. Microfluidic geometry

The flow geometry used in all experiments was a microfluidic
serpentine channel consisting of 33 consecutive half-bends with a
total length of l � 26 mm, a width of w � 0:125 mm, a height of
h � 0:04 mm, and an inner bend radius of ri � 0:125 mm, see the
sketch in Fig. 2. The microscale geometry allows us to achieve high
Wi while keeping the Re low. It is worth mentioning that the choice
of the serpentine channel as flow geometry is twofold. On the one
hand, curved channels are significant for industrial and biological
viscoelastic fluid flows. On the other hand, despite its simplicity, the
flow type in the serpentine channel is complex and leads to intrigu-
ing phenomena in polymer dynamics and the structure of the flow.

The positive master of the microfluidic device was fabricated
via standard photo lithographic protocols.70 A negative mold was
fabricated from that using Sylgard 184 (Dow Corning). In a second
molding step, the final microfluidic device was made using the stiff, oil
resistant, photo-reactive resin NOA 83H (Norland optical adhesives)
sealed with a microscopy glass slide and sandwiched with an addi-
tional coverslip to enhance the stability and avoid deformation of the
channel at higher pressures.

D. Experimental protocol and lPIV setup

The microfluidic channel described in Sec. IIIC was used as the
flow geometry in this work. The inlet of the microfluidic device was
connected to a microfluidic pressure pump (MFCS-EZ, Fluigent) that
enabled fluid injection at a controlled pressure. The outlet was con-
nected to a liquid reservoir at the same height as the microfluidic
device to avoid gravitational counterpressure. The microfluidic device
was placed on an epifluorescent inverted microscope (Axio observer
Z1, Zeiss) equipped with a 20� air objective (Plan-Apochromat,
Zeiss) with numerical aperture NA ¼ 0.8. Fluorescent polystyrene
microspheres ðkext ¼ 542 nm =kemt ¼ 612 nm; FlouroMax, Thermo
Fisher) with a diameter of 1lm were added to the polymer solution.
The size of these particles was large enough to achieve an acceptable
signal-to-noise ratio but small enough to ensure that they followed the
flow with minimal delay without affecting it. The flow in the serpen-
tine channel was illuminated with a triggered Continuous Wave (CW)
laser (k ¼ 532nm, LaVision), and the light from the fluorescent par-
ticles was captured via a sCMOS camera (Imager pro HS, PCO) with a
resolution of � 3 pixel/lm after passing through a cutoff filter to iso-
late the emission signal and reduce the background noise. A sketch of
the lPIV setup is shown in Fig. 2(a).

To ensure that the recorded images correspond to the steady state
flow and not to the transient regime, the recording was started at least
20min after applying the pressure at the inlet. Double-frame images
were captured with small-time delay dt in the range of 0.1–0.8ms,
depending on the flow velocity, to achieve a particle shift of no more
than five pixels between consecutive double-frames. The imaging

FIG. 2. (a) Sketch of the experimental setup including lPIV. (b) Sketch of the microfluidic geometry with dimensions of w � 0:125 mm, height of h � 0:04 mm, and an inner
bend radius of ri � 0:125 mm. The center corresponds to a point 13 mm downstream of the inlet and D x ¼ 1mm.
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frequency, based on each pair of double-frames, was set to 42Hz for
all experiments, and a sequence of 2100 double-frames, equivalent to a
duration of 50 s, �17 times longer than the polymer’s longest relaxa-
tion time, was recorded at multiple locations in the channel, i.e., at dif-
ferent locations along the channel by focusing on the mid-height plane
of the channel [Fig. 2(b)]. The depth of correlation,71 dz, based on the
optical properties of the objective, laser wavelength, and particle size
used in our experiments, is computed as dz � 5lm for our setup.
This corresponds to roughly 12% of the channel height. All experi-
ments were conducted at a room temperature of ð2061Þ�C.

To compute the velocity fields from the lPIV images using a
cross-correlation algorithm, the individual images of the double-frames
were first divided into square areas called “interrogation windows.” A
multi-pass processing approach with an initial interrogation window
size of (64� 64) pixel, and 50% overlap to a final interrogation window
size of (24� 24) pixel with 75% overlap was considered to improve the
accuracy of the fast Fourier transform (FFT) cross-correlation algo-
rithm.72 The experimental setup and the processing routine were tested
with a 50 w% aqueous glycerin solution. The difference between the
lPIV results of the test experiments and the corresponding computa-
tional fluid dynamic (CFD) simulation was less than 5%.

IV. RESULTS AND DISCUSSION

In the following, we present and discuss the experimental results.
First, we study the transition from laminar to elastic turbulent flow
and identify the onset of purely elastic instability. Then, we investigate
the spatial dependence of the velocity profile on the position in the

laminar and turbulent stages of the flow. Thereafter, the purely elastic
turbulent flow is characterized at different probing positions using
single-point statistics in the time domain and two-point correlation
analyses. Finally, we extract the flow structure at the highest turbulent
stage of our system using the PODmethod.

A. Evolution of the purely elastic turbulent flow
and flow features

1. Onset of purely elastic instability

To study the flow evolution from the laminar to turbulent state,
the pressure applied at the inlet was stepwise increased, and instanta-
neous velocity fields were captured at the center of the serpentine
channel, approximately 13mm downstream of the channel inlet
[Fig. 2(b)]. In all experiments, the microscope focus was set at the
mid-height of the channel. Examples of the time-averaged velocity
fields and their corresponding root-mean-square distribution at two
stages of the flow, corresponding to the lowest and the highest applied
inlet pressures, are shown in Fig. 3. At lower applied inlet pressure, the
velocity field is laterally symmetric [Fig. 3(a)] with negligible rms
values [Fig. 3(b)], indicating a laminar flow. However, the velocity field
corresponding to the highest applied inlet pressure is clearly asymmet-
ric [Fig. 3(c)], with a significant rms distribution [Fig. 3(d)].

The time averaged velocity as a function of the applied inlet pres-
sure, respectively, Weissenberg number, at a normalized vertical position
of e ¼ 0 at the center of the channel is plotted in Fig. 4(a). The shear
rate in the serpentine channel is approximated by _c ¼ 4hjuji=r,65,73

FIG. 3. (a) Time averaged velocity field at the mid-height of the channel at the central half-bend for an inlet pressure of 3.47 kPa (Wi � 5 < Wicrit), e ¼ ð0:5w � yÞ=w is the
normalized vertical position across the channel width; (b) the corresponding time averaged root mean square values of the velocity field; (c) time averaged velocity fields at the
center of the serpentine channel for an inlet pressure of 56.39 kPa (Wi � 45 > Wicrit). Points (A), ðA1Þ, and ðA2Þ along the central vertical line at e ¼ �0:3; e ¼ 0:0, and
e ¼ þ0:3, respectively, and points (B) and (C) at the lateral ends of the half-bend are probing positions. Point (A) represents the region with the highest average velocity, and
points (B) and (C) represent the regions with the highest rms value; and (d) the corresponding time averaged root mean square values of the velocity field.
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with hjuji and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwhÞ=p

p
being the time-averaged velocity and the

equivalent radius, respectively. The corresponding Weissenberg num-
ber is then calculated based on Eq. (5) for the approximated in situ
shear rates.

Above a critical inlet pressure, corresponding to Wicrit � 15, as
shown in Fig. 4(a), the measured time averaged velocities determined
at the center of the channel fall significantly below numerical values.
The numerical values are predicted based on CFD simulations of an
imaginary shear thinning fluid with similar Carreau–Yasuda fitting
parameters but no elasticity component, using a generalized
Newtonian fluid model. Moreover, the experimental root-mean-
square (rms) values of the corresponding time-averaged velocities,
shown in Fig. 4(b), exhibit a dramatic increase above Wicrit � 15 as
well. These observations indicate an increased flow resistance and large
velocity fluctuations, which are characteristics of an unstable flow. To
ensure that inertia is negligible throughout the geometry and does not
contribute to this unstable flow, we estimate the relevant Reynolds
numbers. The used serpentine geometry with the rectangular cross
section requires the consideration of two Reynolds numbers. For chan-
nel flows, the Reynolds number is usually defined as Rec ¼ . hjuji r=g,

where the equivalent radius, r, is employed as the characteristic length.
To account for centrifugal inertia in the curvilinear flow, the radius of
the curvature of the serpentine channel, ri, is used as the characteristic
length, and the corresponding Re number can be, thus, expressed as
Res ¼ . hjuji ri=g. The maximum Reynolds numbers in our experi-
ments are Rec � 0:05 and Res � 0:16, respectively, and we can con-
clude that the contribution of inertia to the flow is negligible, and the
observed unstable flow is a purely elastic turbulent flow related solely
to the anisotropic elastic stresses associated with the highly viscoelastic
polymer solution.

2. Spatial features of purely elastic turbulent flow

After analyzing the global flow behavior for shear rates below
and above the critical shear rate, we additionally aim at the analyzing
dependence of the flow profile on the location in the channel, and the
spatial homogeneity of the flow. To this end, we repeated the lPIV
recordings at four additional positions [Fig. 2(b)], with 6Dx;62D
being the distance from the center, (Dx ¼ 1mm; based on the peri-
odicity of our serpentine channel) at two different stages, i.e., at
Wi <Wicrit and Wi >Wicrit . The velocity profiles across the channel

FIG. 4. (a) Time averaged velocity and (b) the corresponding root-mean-square values at e ¼ 0 at the center of the serpentine channel as the function of applied inlet pressure
(bottom axis) and corresponding Weissenberg number (Wi, top axis). (c) Time averaged velocity profiles for an inlet pressure of 3.47 kPa (Wi � 5 < Wicrit), and (d) for the inlet
pressure of 56.39 kPa (Wi � 45 > Wicrit) at five different positions with respect to the center ((Dx ¼ 1mm) of the serpentine channel.
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width along a vertical centerline in each half-bend are plotted in
Figs. 4(c) and 4(d), for Wi � 5 < Wicrit and for Wi � 45 > Wicrit,
respectively. AtWi <Wicrit , the polymer flow in the serpentine chan-
nel is laminar, i.e., the flow lines follow the curvature of the channel.
The velocity profile at this stage is similar to that of a Newtonian fluid,
which means it is skewed toward the wall with the highest curvature,
i.e., at e ¼ ð0:5w� yÞ=w > 0, where the shear rate is higher.
Furthermore, velocity profiles at different locations have an identical
shape, with negligible difference within the experimental error. In con-
trast, the velocity profiles corresponding to Wi >Wicrit [Fig. 4(d)]
show reversed skewness and are rather shifted to the opposite wall, i.e.,
e < 0. This deviation from a laminar flow behavior clearly points
toward the presence of flow structures other than the primary stream-
wise flow. The structure of the flow will be discussed in Sec. IVC. The
shape of the velocity profiles is rather irregular and exhibits spatial
dependence, which means that the mean flow is not essentially invari-
ant and, thus, the flow is spatially non-homogeneous.

3. Flow topology and its impact on polymer behavior
and flow features

The explanation for the observed unstable, non-homogeneous
flow of a semi-dilute entangled polymer solution is multifaceted due to
the interdependence of fluid and flow properties. Therefore, we first
require a lucid insight into the origin of the observed unstable flow,
determined by the molecular behavior of the polymers, with respect to
the flow geometry. As discussed in the literature,16–18,74 the purely
elastic instability in polymer solutions is driven by the dynamics of the
polymers’ deformation, which, in turn, is highly dependent on the
flow type. In fact, Shaqfeh argues that the ratio between the vorticity
and rate of deformation, i.e., the flow type in the flow geometry is a
decisive factor for polymer behavior.22 A practical dimensionless num-
ber to define the flow type is the topology factor defined as
n ¼ ðjDj � jXjÞ=ðjDj þ jXjÞ, where jDj is the magnitude of the
deformation rate tensor and jXj is the magnitude of the vorticity ten-
sor. Polymers exposed to different flow types deform intrinsically dif-
ferent. When subjected to low to moderate shear, the polymers remain
in their coiled configuration and align with the flow direction at high
shear rates. Extensional flow stretches the polymers, while rotational
flow tends to restore them to their coiled shape.22 The topology factor
distribution calculated from experimental values at Wi � 5 < Wicrit
and Wi � 45 > Wicrit is shown in Fig. 5. Below the onset of purely
elastic instability, three distinguished regions of shear (green), exten-
sional (red), and rotational (blue) are visible, alternating orderly
between successive half-bends. The corresponding histogram of the
topology factor distribution indicates that the flow is mainly shear
dominated with defined extensional regions. This suggests that poly-
mers remain mainly in their coiled configuration, and thus, the flow is
predominantly laminar. For Wi >Wicrit , these well-defined regions
are no longer distinguishable, and the flow types are rather randomly
distributed. The corresponding probability distribution indicates that
the fraction of rotational (vortical) flow has increased. This random
distribution of flow types combined with their impact on polymer
behavior results in spatial non-homogeneity of the flow. Furthermore,
the significant contribution of randomly distributed rotational flow
type suggests that the purely elastic turbulent flow is anisotropic.
However, as Haward et al. noted, the topology factor can be dubious

because it does not necessarily contain information about the strength
of the flow types, which is very important for the polymer behavior.75

To this aim, the extensional flow strength is quantified in terms of the
principal strain rate parameter k1, which is the eigenvector of the defor-

mation rate tensor and is expressed as k1 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD11 � D22Þ2 þ 4D2

12

q
.

The normalized value of k1=_c is plotted in Figs. 5(c) and 5(d). As can
be seen, even though distinct extensional regions are visible in the
topology-factor distribution [Fig. 5(a)], the strength of the extension is
quite weak [Fig. 5(c)] and even weaker at the higher Weissenberg
number [Fig. 5(d)]. Thus, the flow remains shear dominated across the
range of the consideredWeissenberg number.

In the semi-dilute entangled regime, the complexity of the rheologi-
cal properties of the fluid plays an important role in the flow properties
as well. Shear thinning, for example, causes a non-parabolic velocity pro-
file and, thus, strong transversal variation of the shear rate in the chan-
nel. This leads to different velocities and relaxation times and to different
degrees of deformation and relaxation of the polymer at different points
in the channel. Moreover, the deformation exerted on the polymers at a
given shear rate is stored in them, due to their significant memory effect,
before they relax or deform at a different shear rate. This further affects
the spatial distribution of rheological properties.

As a result, the mixed and random distribution of the flow types
in a serpentine channel in combination with the highly complex rheo-
logical behavior of semi-dilute entangled polymer solutions leads to a
non-homogeneous and anisotropic purely elastic turbulent flow.

FIG. 5. Local distribution of the topology factor n along the serpentine channel n (top)
and their corresponding probability distribution (bottom) at Wi � 5 < Wicrit (a) and at
Wi � 45 > Wicrit (b). The value n ¼ �1:0 (blue) indicates a pure rotational flow,
n ¼ 0:0 (green) a pure shear flow, and n ¼ 1:0 (red) a pure extensional flow. The
normalized principal strain rate (k1= _c) at Wi � 5 < Wicrit (c) and Wi � 45 > Wicrit
(d). The red color in the legend (k1= _c ¼ 1) indicates strong extension.
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B. Temporal features of purely elastic turbulent flow

To characterize the temporal features of the observed purely elas-
tic turbulent flow, we conduct point-wise analysis of the velocity fluc-
tuations. The velocity fluctuations, u0ðx; y; tÞ, are the Reynolds
decomposition of the velocity in the form of u0ðx; y; tÞ ¼ uðx; y; tÞ
�huðx; yÞi, where uðx; y; tÞ is the instantaneous velocity and huðx; yÞi
is the time averaged velocity at any point in the 2D domain. We
extract time series of velocity fluctuations at three locations along the
centerline of the channel, shown as the dashed line in Fig. 3(c),
namely, (A) near the outer wall with the largest radius of curvature
(e ¼ �0:30), ðA1Þ in the middle of the channel (e ¼ 0:0), and ðA2Þ
near the inner wall with the smallest radius of the curvature
(e ¼ þ0:30). It should be noted that these points are chosen at the ver-
tical centerline for convenience, since here the x and y directions corre-
spond to the azimuthal (streamwise) and radial (transversal)
directions, respectively.

1. Single-point statistics

The corresponding vertical and horizontal components of the
velocity fluctuations, u0x and u0y , as a function of time, are shown in
Figs. 6(a) and 6(b). The fluctuations in the streamwise direction, u0x ,
are significantly stronger than the fluctuations in the transversal direc-
tion, u0y . This observation, which indicates that the temporal velocity
fluctuations are anisotropic, is further evident in the statistical
moments of the velocity fluctuations at these points, shown in Table I.

The values of skewness, Sx and Sy, and kurtosis, Kx and Ky, at different
locations suggest that the velocity fluctuations are slightly non-
Gaussian. It is worth noting that the higher value of the kurtosis of the
streamwise velocity fluctuations near the walls indicates that the fluc-
tuations at these regions are intermittent, i.e., the velocity fluctuations
contain a random sequence of violent bursts also known as rare
events.32 The normalized (auto)-correlation function of total velocity
fluctuations at points (A), (A1Þ and ðA2Þ computed as rijðsÞ
¼ hu0iðt þ sÞu0jðtÞi=hu0i � u0jðtÞi, and i¼ j, is plotted in Fig. 6(c). The
corresponding characteristic time T ¼

Ð1
0 riiðsÞds is on the order of

the polymer’s longest relaxation time and depends on the position of
the probing point. This variation in characteristic time can be
explained in view of the shear dependency of the polymer relaxation
time in the semi-dilute entangled regime. Near the walls, where the
shear rate is highest, the characteristic timescale is smaller than at the
center where the shear rate is lower.

2. Two-point correlation

The total temporal velocity fluctuations at points (A), (B), and
(C) are extracted, and two-point correlation and spectral analysis are
applied to obtain further statistical information about the flow. Point
(A) represents the region with the highest average velocity, and points
(B) and (C) represent the regions with the highest rms value
[Fig. 3(c)]. The normalized velocity fluctuations at these points are
shown in Figs. 7(a)–7(c). The presence of random “bursts,” an

FIG. 6. Temporal fluctuations of (a) streamwise velocity component, (b) transversal velocity component, and (c) autocorrelation function of total velocity fluctuations at points (A),
ðA1Þ, and ðA2Þ marked in Fig. 3(b). The colored rectangle indicates the confident band.

TABLE I. First to fourth moments of velocity fluctuations at Wi � 45 above the onset of purely elastic instability at three different points (A), ðA1Þ, and ðA2Þ located along the
central vertical line [Fig. 3(c)]. hu0xi; hu0yi first moment (mean), rx, ry second moment (standard deviation), Sx,Sy third moment (skewness), and Kx, Ky fourth moment (kurtosis)
of, respectively, x and y components of velocity fluctuations.

Sampling location hu0xi (m/s) rx (m/s) Sx Kx hu0yi (m/s) ry (m/s) Sy Ky

A 3.2040 � 10�6 0.0052 �0.4822 0.8367 3.3270 � 10�10 7.4540 � 10�4 �0.07308 0.43032
A1 �4.780 � 10�8 0.0049 0.2763 �0.2681 �1.534 � 10�10 6.712 � 10�4 0.1995 0.8450
A2 �9.2708 � 10�7 0.0027 0.8538 1.2531 7.3841 � 10�11 4.1440 � 10�4 �0.3780 0.4673
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indication of the intermittency of the purely elastic turbulent flow, is
clearly visible in the velocity fluctuations at all positions [marked in
black in Figs. 7(a)–7(c)]. The temporal fluctuations at points (B) and
(C) look very similar but differ significantly from point (A). This is
further evident in the cross-correlation between time series shown in
Fig. 7(d). The significant correlation between points (B) and (C) with a
peak at zero lag time implies that fluctuations at these points are highly
correlated and synchronized. This indicates the presence of a flow
structure, which will be explained in detail in the context of the POD
analysis in Sec. IVC.

3. Spectral features

The power spectral densities (PSD) of velocity fluctuations at
points (A), (B), and (C) are plotted in Fig. 7(e). A power decay, 	f �b,
with an exponent of b � 2 describes the power spectral density of the
velocity fluctuations in the range of 1 to 10Hz. Similar exponents have
also been reported for the PSD of velocity fluctuations (b � 2:3),42

stress fluctuations (b � 2:0),76 and pressure fluctuations (b � 2:2)38

of semi-dilute entangled polymer solutions in curved geometries.
However, at lower frequencies, the exponent is smaller than b � 2.
The presence of two different exponents in the PSD curve of velocity
fluctuations has been also reported by various researchers, but no clear
reasoning for this observation has been provided so far.38,47 We believe
that in our case, the reason for the lower exponent at lower frequencies

is the presence of a large turbulent structure that is associated with the
secondary flow. This is further supported by the fact that at point (B)
and (C), the power corresponding to the low frequencies is larger than
in point (A).

It should be noted that the observed exponent of b � 2 for semi-
dilute polymer solutions is smaller than the corresponding exponents
of b > 3 commonly reported for purely elastic turbulent flow of dilute
polymer solutions.24,42 The value of b � 3 is theoretically predicted
for dilute polymer solutions based on the assumption of homogeneous
flow, linear elasticity, and linear relaxation of the polymers, which do
not apply to the semi-dilute entangled regime.24,25,47,77 In fact, as dis-
cussed in Sec. IIIA, the rheological properties of polymer solutions in
the semi-dilute entangled regime are shear dependent and, thus, highly
nonlinear. Therefore, it is not unexpected that the exponent of the
power spectral density of the velocity fluctuations appears to be differ-
ent from the value for dilute polymer solutions. However, there is so
far no theoretical work on the spectral features of purely elastic turbu-
lent flow of semi-dilute entangled polymer solutions and the expected
exponents for this concentration regime.

As proposed by de Gennes78 in “Reptation Theory” and as exper-
imentally demonstrated by Perkins et al.,20 the motion of the entangled
polymers is strongly restricted by the neighboring polymers as if they
were confined in a tube. Therefore, due to the restricted deformation
and freedom of individual polymers, their corresponding back
reaction to the flow is also restricted. Furthermore, as shown in Fig. 5,

FIG. 7. Normalized total velocity fluctuations at (a) point (A), (b) point (B), and (c) point (C) marked in Fig. 3(b). U is the time averaged velocity at the corresponding point.
Examples of bursts (rare events) are marked in black. (d) Cross-correlation of normalized velocity fluctuations at points (A), (B), and (C). The colored rectangle indicates the
confident band. (e) Power spectral density of velocity fluctuations at points (A), (B), and (C).
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the rotational component of the flow in the serpentine channel intensi-
fies at high Weissenberg numbers while the extensional component is
weakened. This can reduce the extent of polymer stretching and, thus,
dampen the corresponding velocity fluctuations.16

The damping and limiting of the flow fluctuations are reflected
in the smaller exponent of the power decay of the velocity fluctuations,
indicating that the range of excited scales in the flow is also limited.

C. Proper orthogonal decomposition of the purely
elastic turbulent flow

The cross correlation of velocity fluctuations at points (B) and
(C) in conjunction with the PSD analysis points toward an underlying
flow structure. In fact, an interesting feature of viscoelastic flow in
bend channels is the presence of a secondary flow due to hoop stress
caused by the gradient of the first normal stress difference.13,79,80

However, experimental studies have so far only been able to implicitly
indicate the presence of secondary flows based on the bent streamlines
in the mean flow direction.79 As we discussed extensively so far, the
turbulent flow of a semi-dilute entangled polymer solution in a serpen-
tine channel is non-homogeneous and anisotropic on any scale. This
rejects the assumption of Taylor’s hypothesis, and one cannot explain
spatial flow properties based on temporal statistics. Therefore, in this
section, we will directly extract the secondary turbulent structure using
the PODmethod. As discussed in Sec. II, the aim of proper orthogonal
decomposition is to find a hierarchy of spatial modes, UðnÞ, that best
describes the original stochastic flow. The energy spectrum of spatial
eigenmodes, Ei, calculated at three different Weissenberg numbers
above the onset of purely elastic instability is plotted in Fig. 8(a). The
first mode in all cases contains the highest energy content, which at
the highest stage of the turbulent flow at Wi � 45 contains almost
50% of the total kinetic energy (TKE) of the system. The first mode, in
fact, represents the time averaged mean flow, and all the other modes
describe the deviations from the mean flow. The energy content of the
modes decays and is less than 1% of TKE for modes larger than 6. As
can be seen from the cumulative energy plot in Fig. 8(b), the energy
content of the lower modes is higher at higher Weissenberg numbers,
i.e., where the elastic stresses are more significant. In fact, at Wi � 45,

the first 375 eigenmodes represent 90% of the TKE, while for
Wi � 17, the number of eigenmodes representing 90% of the TKE is
700. This indicates that at higher Weissenberg numbers, the lower
modes representing the larger scale structures gain more energy at the
expense of the higher modes, which correspond to the finer structures.
It can be concluded that, at higher Weissenberg numbers, only a few
early modes are sufficient to describe the existing dominant flow struc-
tures in the system. Moreover, an exponent of approximately (�11/9)
can be fitted to the energy decay spectrum in the range of 2–40, indi-
cated by a dashed line in Fig. 8(a). The exponent of (�11/9) has been
proposed by Knight and Sirovich based on dimensional arguments for
the Kolmogorov inertial range in non-homogeneous turbulent flows.81

Since, in our case, the exponent of b � 2 for the PSD curve of velocity
fluctuations is close to the Kolmogorov scale of (5/3), the exponent of
about (�11/9) is not unexpected.

In order to gain insight into the dominant flow structures, the
vector fields of spatial eigenmodes and their corresponding temporal
coefficients of the three initial highest energy modes at Wi � 45 are
illustrated in Fig. 9. It should be noted that although the 2D distribu-
tion of these modes resembles the shape of a velocity field, they do not
convey the same physical meaning because eigenmodes are, in fact,
dimensionless. Indeed, the instantaneous velocity field associated with
each mode is computed as UðnÞðx; y; tÞ ¼ aðnÞðtÞ �Unðx; yÞ. The spa-
tial eigenmodes of the first mode, i.e., the mean flow, clearly indicate a
strong spiral motion at the lateral sides of the half-bend [Fig. 9(a)].
This points toward the secondary flow governed by the serpentine
geometry due to the change in the curvature at the inflection points,
(B) and (C), affecting the streamwise mean flow.79,82 The temporal
coefficients associated with the first mode exhibit a sudden jump after
a certain time, i.e., the number of snapshots. This sudden jump has
also been observed in numerical simulations for viscoelastic Oldroyd-
B fluids and is related to the onset of the temporal evolution of the
flow.55

The presence of counter-rotating vortices associated with hoop
stress, caused by the gradient of the first normal stress difference13,79,80

in the serpentine channel is further evident in the spatial eigenmodes 2
and 3, which contain 5% and 3% of the TKE, respectively, as can be
seen in Figs. 9(b) and 9(c).

FIG. 8. (a) The energy spectrum of the spatial eigenmodes, the dashed line indicates a spectrum exponent of (�11/9), and (b) the cumulative energy of the spatial eigenmo-
des. The total number of eigenmodes corresponding to 90% TKE is shown as dashed lines.
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To clarify the correlation between modes 2 and 3, the time coeffi-
cients of these modes are plotted against each other in Fig. 10(a). As
evident in the rather compact circular scattering of the temporal coeffi-
cients in the phase portrait, the temporal coefficients are strongly
related, even though both seem to fluctuate rather randomly. The cross
correlation of these temporal coefficients in Fig. 10(b) verifies that
modes 2 and 3 are indeed anti-correlated. These observations confirm
that at high Weissenberg numbers, there is a strong secondary flow in
the form of counter-rotating vortices, which significantly contributes

to the total kinetic energy of the system. Therefore, we can conclude
that the strong increase in the flow resistance during the flow of the
polymer solution in the serpentine channel is indeed related to the
activity of the secondary flow caused by the geometry and the signifi-
cant first normal stress difference at highWeissenberg numbers.

V. CONCLUSION

In this work, we have performed lPIV experiments to extract
spatially and temporally high-resolution velocity fields of a semi-dilute

FIG. 9. The vector fields of spatial eigenmodes (top) and their corresponding temporal coefficients (bottom) at Wi � 45, t is the number of the snapshot or the vector number,
for (a) mode 1, (b) mode 2, and (c) mode 3.

FIG. 10. (a) Phase portrait of temporal coefficients of mode 2 vs mode 3 and (b) cross correlation between temporal coefficients of mode 2 and mode 3. The colored rectangle
indicates the confident band.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 073112 (2022); doi: 10.1063/5.0100419 34, 073112-11

VC Author(s) 2022

110



entangled polymer solution flowing in a serpentine channel. The gen-
eral flow inspections and standard single-point statistical analysis
reveal the presence of a highly anisotropic non-homogeneous unstable
flow above a critical Weissenberg number. The power spectral density
plot decays with an exponent relatively smaller than the corresponding
value of a dilute polymer solution. This indicates a limited range of
excited scales in the purely elastic turbulent flow of a semi-dilute
entangled polymer solution compared to the dilute regime, which is
due to the limitation of polymer motion in space and entanglement
above the overlap concentration. In addition, the geometry-induced
mixed flow type and the strong rotation and weak extension of the
flow in the turbulent state further reduce the extent of polymer stretch-
ing and, thus, reduce the range of excited scales in the turbulent flow.

The two-point correlation indicates the strong cross correlation
between the fluctuations at the two lateral ends of a half-bend. This
implies the presence of a strong secondary flow structure. Due to the
absence of a global correlation between the velocity fluctuations, and
non-homogeneity of the flow and thus invalidity of the Taylor hypoth-
esis, we used the proper orthogonal decomposition method to gain
direct insight into the structural properties of the observed purely elas-
tic turbulent flow. The POD analysis, in fact, clearly shows a strong spi-
ral structure in the highest energy mode and counter-rotating vortices
in the two subsequent modes. This confirms the existence of a three-
dimensional secondary flow driven by the geometry and the hoop
stress, which originates from the gradient of the first normal stress dif-
ference in the transversal direction between the inner and outer walls.

With this first experimental characterization of the flow of a semi-
dilute polymer solution, we hope to stimulate a theoretical validation of
the experimentally observed features that will provide a deep insight
into the flow and purely elastic turbulence in this concentration regime.
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Improving the displacement efficiency of capillary entrapments in porous media by
adding high molecular weight polymers to the invading phase has various industrial
applications, from enhanced oil recovery to soil remediation. Apart from an
increased viscosity contrast compared to regular water flooding, the flow of
viscoelastic polymer solutions exhibits unstable flow behavior even at small
Reynolds numbers, which can lead to an additional displacement mechanism of
the capillary entrapments. In this work, we employ amicrofluidic approach to unravel
the underlying physics andmechanism of this enhanced pore scale displacement. To
this end, we show that the major complex topological flow features in a typical
porous medium can be mimicked by a flow geometry consisting of a single capillary
entrapment connected to two symmetric serpentine channels. This design excludes
the effect of viscous stresses and allows direct focus on displacement processes
driven solely by elastic stresses. We show that the unique viscoelastic fluid features,
such as the significant storage and release of elastic stresses and first normal stress
difference, combined with the flow geometry, lead to purely elastic instability and
secondary flow, which in turn provide the stresses necessary to overcome the
capillary threshold and displace the capillary entrapment.

KEYWORDS

porous media, viscoelastic flow, purley elastic instability, elastic secondary flow, capillary
entrapment, microfluidic

1 Introduction

Displacement processes in porous media are ubiquitous in a variety of natural settings and
technical applications Pinder and Gray [1]; Blunt [2]; Singh et al. [3]; Bear and Verruijt [4]. At
low flow rates, i.e., at sufficiently small capillary numbers (ratio of viscous to capillary forces) the
advance of an invading fluid sweeping out an immiscible defending fluid is governed by the
wettability of the porous medium Zhao et al. [5]; Jung et al. [6]; Singh et al. [3]. Thus, these
displacement processes are mainly controlled by geometrical properties, i.e., the pore-throat
size distribution. This typically leads to ramified displacement patterns, where large portions of
the defending fluid remain trapped by capillary forces. For an invading wetting fluid these
entrapments of the defending fluid are preferentially located at the center of pores or throats,
while for intermediate to non-wetting invading fluids the residual defending fluid commonly
remains trapped at narrow gaps and dead ends, or spreads as films Zhang et al. [7]; Emami
Meybodi et al. [8]. A schematic sketch to illustrate the different types of capillary entrapment is
given in Figure 1. Mobilization of these capillary entrapments in porous media is important in
soil remediation Zhong et al. [9]; Smith et al. [10]; Cao et al. [11]; Ghosh et al. [12]; Philippe
et al. [13], cleaning filtration membranes Li et al. [14]; Salama [15], and enhanced oil recovery
Muggeridge et al. [16].
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Regardless of the wettability of the porous medium, an increase
of the viscosity of the invading fluid, i.e., increasing the capillary
number, leads to a suppression of capillary fingers. Therefore, a
more homogeneous flow profile and consequently an improved
sweep efficiency is achieved when increasing the viscosity of the
invading fluid Lenormand et al. [17]. Furthermore, experiments
using inelastic fluids as invading phase reveal that an increased
capillary number results in breakup of large entrapments of the
defending fluid Krummel et al. [18], while entrapments in smaller
pores with large capillary pressure threshold are barely affected
Lacey et al. [19]. However, theoretical and experimental studies
Zhang et al. [7]; Buchgraber et al. [20]; Afsharpoor et al. [21];
Nilsson et al. [22]; Clarke et al. [23]; Mitchell et al. [24]; Parsa et al.
[25] show that the remaining saturation of the defending fluid is
often distinctly lower than expected after invasion by a viscoelastic
polymer solution with high molecular weight compared to inelastic
invading fluids even at the same viscosity and capillary number
Huifen et al. [26]; Qi et al. [27]; Salmo et al. [28]. This implies that,
apart from the increased capillary number, an additional driving
mechanism must be active to reduce the residual saturation caused
by the invasion of viscoelastic fluids. Although it is meanwhile a
consolidated hypothesis that the improvements of the sweep
efficiency by viscoelastic polymer flooding can be attributed to
the elastic properties of such fluids, the underlying fundamental
mechanisms remain obscure Urbissinova et al. [29]; Clarke et al.
[30]; Rock et al. [31]. Various displacement mechanisms were
proposed in the literature including a strip-off of oil films
attached to pore walls caused by an apparent slip length
Beaumont et al. [32]; Wei et al. [33], reducing the effective
permeability of porous media by polymer retention Ekanem
et al. [34]; Zhu et al. [35], mobilization of oil entrapments by an
apparent shear-thickening effect as a consequence of purely elastic
instability Clarke et al. [23]; Mitchell et al. [24]; Xie et al. [36];
Clarke et al. [30]; Kawale et al. [37]; Browne and Datta [38], as well
as breakup, and pulling effects originating from normal stress
differences that remove oil from dead ends Zhang et al. [7];
Lima et al. [39]; Wang et al. [40]; Fan et al. [41]. However,
displacement processes in natural porous media might be
affected by some if not by all the listed mechanisms, yet it
remains an open question which mechanism prevails to (re-)
mobilize capillary entrapments.

Due to the opacity and inherent complexity of porous media
such as soil, rock, or filter membranes, direct observation of the
underlying mechanisms of mobilization of capillary entrapments is
generally challenging. Therefore, it is necessary to develop

simplified model systems that mimic the characteristic features
of the rather complex flow of viscoelastic polymer solutions in
random porous media. To address these issues, microfluidic model
systems raised interest among researchers Galindo-Rosales et al.
[42]; Browne et al. [43]; Kumar et al. [44]. Several experimental and
numerical studies have been focused on basic designs representing
simplified porous media such as straight channels embedded with
single cylinders Hemingway et al. [45]; Qin and Arratia [46]; Qin
et al. [47], uniform or random post arrays Khomami and Moreno
[48]; Ichikawa and Motosuke [49]; Haward et al. [50]; Walkama
et al. [51], a single pore formed by four disks De et al. [52]; Gillissen
[53], and converging-diverging channels Ekanem et al. [54];
Galindo-Rosales et al. [55]; Kumar et al. [56]; Ekanem et al.
[57]. However, even in the simplest designs used so far,
description of viscoelastic flow is still very complex due to a
wide distribution of flow velocity (and consequently shear rate)
caused by the non-constant cross-section of flow pathways in these
geometries. Estimating accurate in-situ shear rates is particularly
important for viscoelastic polymer solutions with concentrations
above their overlap concentration c* because their rheological
properties are strongly shear dependent. Therefore, a reliable
evaluation of their flow characteristics requires the
approximation of an accurate characteristic shear rate. To avoid
this issue, alternative designs such as serpentine channels can be
employed which are still capable of representing essential features
of porous media such as tortuosity. Serpentine channels are
particularly advantageous because their constant cross-section
allows a single characteristic shear rate _γ to be assigned to the
entire geometry, which facilitates the description of viscoelastic
flows.

In this work, we used a microfluidic approach to experimentally
investigate the displacement mechanism for the mobilization of
capillary entrapments by viscoelastic polymer solutions in the
semi-dilute regime, where viscosity and relaxation time are shear
dependent. To tackle this question effectively, we first performed a
series of displacement experiments in a quasi-two-dimensional porous
medium with various Newtonian and non-Newtonian fluids to
separate the effects of viscosity and elasticity. In order to focus on
the influence of elastic stresses and eliminate the influence of viscosity
on the displacement process, we employed a single capillary
entrapment enclosed by two symmetrical serpentine channels and
varied the degree of elasticity by using polymer solutions with different
concentration and molecular weight. To exclude inertial effects, all
experiments were performed at low Reynolds numbers, i.e., Re <
O(100).

FIGURE 1
Sketch of potential types of capillary entrapments for water wet grains (A), intermediate wet grains (B), and oil wet grains (C). The invading water phase is
colored blue, whereas the defending oil phase is colored red. The arrows indicate the path lines of the invading fluid.
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2 Materials and methods

2.1 Microfluidic setup

Two different microfluidic geometries were employed in this study
and are shown in Figure 2. In order to model a porous medium, we
considered a random array of about 1,400 mono-disperse cylinders
and a porosity of ϕ = 0.7 [Figure 2A]. The cylinders had a diameter d ≈
0.032 mm, a height h1 ≈ 0.030 mm and an average center-to-center
distance of (0.027 ± 0.013) mm. The field of view had a width and
length of 1 mm, respectively 3 mm, resulting in a pore-volume (PV) of
6.3 · 10−11 m3. To explore the sole impact of elasticity and to rule out
the effects of viscous forces on the displacement mechanism, a single-
pore geometry was designed which included two identical serpentine
channels with a width wmc = 0.125 mm that were connected by a
perpendicular side channel with a width wsc = 0.050 mm, as sketched
in Figure 2B. The dimensions of the serpentine channels and the side
channel were chosen to ensure entrapment of the defending fluid in
the side channel by capillary forces. The devices for both designs were
made from the UV-curable glue NOA83H (Norland optical adhesive).
They were fabricated using standard soft lithographic methods; details
of device fabrication are described elsewhere Jung et al. [6]; Shakeri
et al. [58].To conduct the microfluidic experiments, both types of
devices were placed on an inverted microscope (MeF3, Reichert-Jung)
equipped with ×2 and ×4 magnification to observe the flow in the
porous medium and single-pore geometry, respectively. The
illumination was done with a LED light source in transmission.
Images were captured using a 16 bit sCMOS camera (PCO Panda
4.2) at a maximum frame rate of 40 fps at full resolution of (2048 ×
2048) pixels. The corresponding pixel resolution with respect to the
applied magnification was 1.5 μm/pixel for the porous medium and
0.7 μm/pixel for the single-pore geometry. All experiments were
conducted at room temperature of (20 ± 1)°C. To enable fluid
injection at a controlled volumetric flow rate, the inlet of the
microfluidic device was connected to a high-precision, pulsation-
free syringe pump (neMESYS, Cetoni GmbH). Both microfluidic
geometries were first fully saturated with dodecane. Then, the
respective invading fluid was injected at a constant flow rate for
the displacement experiments with the random post array. In the
case of the single-pore geometry, the initial condition was established

by slowly injecting the invading fluids, removing all the oil from the
serpentine channel and leaving the oil entrapment in the connecting
side channel. Once this situation was established, the flow rate was
stepwise increased until complete desaturation of the side channel was
achieved. The maximum Reynolds number in all experiments was in
the order of Re ~ O(100) and thus effects of inertia on the flow could
be neglected. Besides, in all experiments, the outlet was connected to a
fluid reservoir located at the same level as the microfluidic device to
avoid back pressure due to gravity. To measure the hydrodynamic
pressure difference along the single-pore geometry, a board-mounted
differential pressure sensor (26PC series, Honeywell) was placed
between the inlet and outlet as sketched in Figure 2B.

2.2 Working fluids

As non-Newtonian working fluids, we used aqueous solutions of
the polyelectrolytes Flopaam 3630 (Mw,3630 ≈ 18.7 MDa, SNF
Floerger), Flopaam 3330 (Mw,3330 ≈ 6.5 MDa, SNF Floerger), and
Xanthan gum (Mw,Xanthan ≈ 15 MDa Holzwarth [59], Sigma Aldrich)
that are industrially used as viscosifier Sorbie [60]; Mahajan et al. [61].
Polymers of the Flopaam series are synthetic, partially hydrolyzed
polyacrylamides (HPAM, 30% hydrolysis) with very flexible polymer
chains, while Xanthan gum is a rather stiff polysaccharide produced
from simple sugars in a fermentation process by adding Xanthomonas
campestris bacteria Sorbie [60]. The sample solutions with different
polymer concentrations were diluted from their respective stock
solutions using 17 mM NaCl-solution following standard protocols
Shakeri et al; [58,62]. The salt concentration was rather in the low-salt
limit and not sufficient to screen all charges of the polyelectrolytes
Dobrynin et al; [63]. By applying the Huggins—Kraemer method
Mezger [64], we determined the overlap concentrations to be
c3630* ≈ 82 ppm, c3330* ≈ 137 ppm, and cXanthan* ≈ 91 ppm,
respectively. The prepared concentrations of 1,000 ppm (0.1w%)
and 2,000 ppm (0.2w%) of Flopaam 3630, 1,300 ppm (0.13w%)
and 2,500 ppm (0.25w%) of Flopaam 3330, and 2,000 ppm (0.2w
%) of Xanthan gum were at least 10 times larger than the respective
overlap concentration c*, to assure that the solutions were in the semi-
dilute entangled regime. As Newtonian reference cases, we used
purified water, as well as 67w% and 85w% aqueous glycerin

FIGURE 2
Sketches of the employed microfluidic geometries: (A) Random arrangement of about 1,400 cylinders with a diameter d ≈ 0.032 mm, and a height h1 ≈
0.030 mm. The array has the lateral dimensions of l = 3.5 mm andw = 1 mm, The red box indicates the field of view; (B) Two symmetric serpentine channels
with a width wmc = 0.125 mm that are connected by a perpendicular side channel with a width of wsc = 0.050 mm and a length of lsc = 1 mm. The inner and
outer radii of curvature of the serpentine channels were ri = 0.125mm and ro = 0.250mm. The height h2 of the microfluidic channels was approximately
0.045 mm.
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(Grüssing GmbH) solutions. A full rheological characterization of the
utilized solutions including steady shear step measurements to
determine the shear viscosity η( _γ) and the first normal stress
difference N1( _γ) as well as small amplitude frequency sweep tests
to determine the storage modulus G′(ω) and the loss modulus G″(ω)
were performed using a rotational rheometer (HAAKE MARS 40,
Thermo Scientific) and the results are shown in Figure 3.

The defending fluid in all experiments, dodecane (Merck), has a
constant dynamic viscosity of ηdodecane = 1.4 mPa·s at room
temperature of (20 ± 1)°C. Dodecane was initially filtered three
times in a column of aluminum oxide powder (Al2O3, Sigma
Aldrich) to remove any potential surface-active contaminants. To
increase the optical contrast of the fluids in the microfluidic device,
0.5w% of the non-surface-active dye oil-red-o (Sigma Aldrich) was
added to the purified dodecane. The properties of the used fluid
combinations are summarized in Table 2.

For visualization of flow path lines, 0.01w% green fluorescent
particles (2 μm, FluoroMax, Thermo Fisher) were added to the
aqueous phase and imaged via fluorescence microscopy (Axiophot,
Zeiss, equipped with a filter cube appropriate for excitation and
emission wavelength of 475/40 nm and 530/50 nm, respectively).
We have confirmed that the addition of the particles did not affect
the physical or rheological properties of the utilized fluids.

2.3 Viscoelastic fluid model and
dimensionless numbers

As presented in Figure 3, the studied polymer solutions exhibited
strong shear-thinning viscosity η( _γ) and a non-quadratic first normal
stress difference N1( _γ). Such fluids can commonly be described by the
constitutive White–Metzner (WM) fluid model Bodiguel et al. [65];
Soulies et al; [66]; Casanellas et al; [67]. In this work, we applied the
WM-model to describe the rheological properties and consequently to
compute the relevant dimensionless numbers. Fundamentals of theWM-
model can be found elsewhereMacosko [68]; Barnes et al; [69]; Burghelea
and Bertola [70]; White and Metzner [71]; Tseng [72]. The supporting
computational fluid dynamics (CFD) simulations in this work were based
on an imaginary shear-thinning fluid having the same fitting parameters
for the shear-thinning viscosity, but no elasticity component, using a
generalized Newtonian fluid model ANSYS [73].

To represent the shear dependent total viscosity η( _γ) of the
polymer solutions, we employed the Carreau–Yasuda model:

η _γ( ) − η∞ � η0 − η∞( ) 1 + Λ _γ( )a[ ]n−1a (1)
Here η0 and η∞ are the zero-shear viscosity and viscosity at infinite
shear rates, respectively, Λ is a characteristic time, n is the power law

FIGURE 3
Full rheological characterization of (A) viscosity η( _γ), (B) first normal stress difference N1( _γ), and (C) storage and loss modulus, G′(ω) and G″(ω) of the
utilized solutions. Lines are fits to the Carreau–Yasudamodel Eq. 1 in (A) and to a power-lawN1( _γ) � A · _γb in (B). The fitting parameters of the Carreau–Yasuda
model are given in Table 1.

TABLE 1 Fitting parameters of Carreau–Yasuda model for viscosity Eq. 1: η0 is the
zero-shear viscosity; Λ is a characteristic time; a is a transition control factor; and
n is the power law exponent associated with the degree of shear-thinning. η∞
was fixed to the solvent viscosity 0.001 Pa·s for all used polymer solutions.

Polymer η0 [Pa·s] Λ [s] a n

0.13 w% Flopaam 3330 0.109 ± 0.001 0.72 ± 0.02 0.87 ± 0.01 0.54 ±
0.01

0.25 w% Flopaam 3330 0.612 ± 0.003 2.37 ± 0.16 0.99 ± 0.04 0.47 ±
0.01

0.10 w% Flopaam 3630 0.287 ± 0.003 6.43 ± 0.25 0.99 ± 0.04 0.50 ±
0.01

0.20 w% Flopaam 3630 1.535 ± 0.011 9.33 ± 0.81 1.07 ± 0.05 0.41 ±
0.02

0.20 w%Xanthan gum 1.863 ± 0.173 13.27 ± 1.53 0.83 ± 0.10 0.38 ±
0.01

TABLE 2 Density () measured by a pycnometer (Blaubrand, Brand GmbH), as well
as interfacial tension (σ) determined by pendant drop method, and advancing
(θadv) and receding contact angle (θrec) of the utilized combinations of invading
fluids and dodecane determined by sessile drop needle-in method using the
contact angle measurement device (OCA 25, DataPhysics). It should be noted
that the addition of HPAM, respectively Xanthan gum (XG) to water did neither
alter the interfacial tension nor the wettability.

Invading fluid ϱ [g/cm3] σ [mN/m] θadv [°] θrec [°]

purified water 1.00 ± 0.01 50 ± 1 125 ± 4 < 20

water with HPAM/XG 1.00 ± 0.01 50 ± 1 125 ± 4 < 20

67 w% glycerin 1.18 ± 0.01 32 ± 1 125 ± 4 < 20

85 w% glycerin 1.22 ± 0.01 29 ± 2 125 ± 4 < 20

Frontiers in Physics frontiersin.org04

Jung et al. 10.3389/fphy.2023.1099073

118



exponent associated with the degree of shear-thinning, and a is a
transition control factor. The shear dependent relaxation time λ( _γ)
was calculated from the shear viscosity, η( _γ), and the first normal
stress difference, N1( _γ):

λ _γ( ) � N1 _γ( )/2 η _γ( ) − η∞[ ] _γ2 (2)

The complex shear modulus G(ω) can be computed from the
generalized Maxwell model G(ω) = G′(ω) + iG″(ω), where G′(ω) and
G″(ω) are given by Eqs 3, 4. The discrete relaxation time spectrum λk
and the corresponding shear moduli Gk were obtained by fitting the
experimentally measured G′(ω) and G″(ω) data in Figure 3C to these
equations with N = 4 elements. In this context, G0 is the largest shear
modulus corresponding to the smallest relaxation time Shakeri
et al. [62].

G′ ω( ) � ∑N
k�1

Gk
λk · ω( )2

1 + λk · ω( )2 (3)

G″ ω( ) � ∑N
k�1

Gk
λk · ω

1 + λk · ω( )2 (4)

To estimate the degree of elasticity during flow of the polymer
solutions, several dimensionless numbers can be calculated within the
framework of the White–Metzner model. The Deborah number De is
defined as the ratio of the polymer relaxation time to a characteristic
residence time in the flow:

De � η _γ( )U
G0 R , (5)

here R is the minimum radius of the curved streamlines and U is the
average velocity. TheWeissenberg numberWi is defined as the ratio of
elastic stresses to the shear stress τ � 2 η( _γ) _γ, and thus given by

Wi � N1 _γ( )
2 η _γ( ) _γ. (6)

Based on these two dimensionless numbers, the stress ratio M can be
calculated by Morozov and van Saarloos [74]; Pakdel and McKinley
[75]; McKinley et al. [76]; Shakeri et al. [62].

M � ������
DeWi

√ �
�������������
η _γ( )U
G0 R

N1 _γ( )
2 η _γ( ) _γ

√
. (7)

The stress ratio M is of particular interest, since exceeding a critical
value Mcrit characterizes the onset of purely elastic instability, i.e., an
unstable flow of viscoelastic fluids at low Reynolds numbers. The value
of Mcrit depends on the particular geometry, the type, and
concentration of the polymer and salt in the solution, as well as on
the type of solvent, and is commonly in the range of 1–6 Morozov and
van Saarloos [74]; Yao et al. [77].

3 Results and Discussion

3.1 Displacement processes in a random post
array

Exploring the impact of viscoelastic fluid properties on
displacement processes in porous media requires to disentangle the
effects of viscosity and elasticity. To this aim, we conducted a series of

experiments employing three Newtonian fluids with different viscosity
(water, 67w% and 85w% glycerin solution), a shear-thinning inelastic
Xanthan gum solution (0.2w%), and a shear-thinning highly elastic
HPAM solution (0.2w% Flopaam 3630) as invading fluids, displacing
dodecane at a constant applied volumetric flow rate. The evolving
displacement patterns, as well as the configuration of the remaining
saturation of the defending fluid after injecting 200 PV and 1,200 PV
of the invading fluid, are shown in Figure 4.

Prior to the experiments presented in this section, we
experimentally determined a critical capillary number Cacrit ≈ 10–4

as an upper threshold for purely capillary dominated displacement for
our specific microfluidic design, and for the advancing contact angle of
θadv = (125 ± 4)° for all used invading fluids. The capillary number was
approximated by Ca � (η( _γ)U)/σ, where η( _γ) is the shear dependent
viscosity and U is the average velocity. The shear rate was
approximated by _γ � U/

���
k ϕ

√
Berg and van Wunnik [78]; Browne

and Datta [38]. Here, the average velocity was calculated by U = Q/(A
ϕ), where Q is the flow rate, A the cross-section of the channel, ϕ the
porosity, and k the absolute permeability. The absolute permeability of
the microfluidic device k = U · η/(−dp/dx) ≈ 1.59 · 10–11 m2 was
calculated from Darcy law. The pressure gradient (dp/dx) was
computed via CFD simulation of water flooding (here it was
assumed that the permeability is constant for a specific porous
medium and does not depend on the type of invading fluid De
et al. [52]). The applied flow rate was set to Q = 4 μL/min in all
experiments, and the capillary number was varied by varying the
viscosity of the invading fluid.

Figure 4A shows the evolution of the displacement pattern for
water displacing dodecane at a capillary number of Cawater ≈ 8 · 10–6.
The observed displacement fronts appeared to be branched and
followed the geometrical most favorable pathways, indicating that
the displacement is fully capillary dominated. Further injection of
200 PV and 1,200 PV of water in Figures 4B, C had no impact on
configuration of the remaining saturation. Experiments using 67w%
glycerin solution as invading fluid and hence increasing the capillary
number to Caglycerin67 ≈ 5 · 10−5, exhibited no significant influence on
the initial evolution of the displacement pattern in Figure 4D
compared to water. This is expected as the applied capillary
number was still below the critical threshold that was determined
to Cacrit ≈ 10–4 for this system. However, injection of 200 PV and
1,200 PV of 67w% glycerin solution in Figures 4E, F led to a reduction
in the maximum size of the entrapments and hence to a lower
remaining saturation of the defending fluid compared to water
invasion. This observation is in line with the fact that by increasing
the capillary number, the maximum size of the entrapments is
controlled by the competition of viscous to capillary forces
Krummel et al. [18]. Further increase of the capillary number
above Cacrit by invasion of 85w% glycerin solution
(Caglycerin85 ≈ 3 · 10−3), viscous forces of the invading fluid gain
importance. As visible in Figure 4G, the formation of capillary
fingers was suppressed and the front advance was more compact.
Injection of 200 PV of 85w% glycerin solution led to a reduction in size
of the entrapments in Figure 4H. However, injection of 1,200 PV of
85w% glycerin solution in Figure 4I had no visible impact on the
configuration of the remaining saturation since the capillary pressure
threshold to mobilize small entrapments is seemingly too large to
overcome. After benchmarking the Ca dependent displacement
behavior in our porous model geometry for Newtonian fluids, we
address now potential deviations of the displacement pattern by
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invasion of non-Newtonian fluids. Invasion of the shear-thinning
inelastic Xanthan gum solution at CaXanthan ≈ 9 · 10–5 led initially to a
branched displacement pattern with large entrapments in Figure 4J.
Compared to invasion by the Newtonian invading fluids in Figures 4A,
D, no impact of the shear-thinning property on the evolution of the
front was detectable for slow invasion processes. Since all experiments
involving non-Newtonian fluids as invading fluids were performed at
very low capillary numbers, a strong influence of the shear-thinning
properties of the polymer solutions on the morphology of the
displacement front is not expected De et al; [79]; Mitchell et al;
[24]. Similar to the displacement experiment with water, injection
of 200 PV and 1,200 PV of Xanthan gum solution in Figures 4K, L had
no significant impact on configuration of the remaining saturation.
This finding is particularly remarkable because the corresponding
capillary number was even slightly larger than in the experiments with
67w% glycerin solution, in which a reduction of entrapments was
observed. This could be explained by the fact that the strong shear-
thinning viscosity of Xanthan gum solution dampens the impact of
viscous forces when the inlet pressure increases during the continuous
injection. Employing the viscoelastic HPAM solution as invading fluid
at CaHPAM ≈ 8 · 10–5, we observed again a branched evolution of the
displacement pattern in Figure 4M. Analogous to the case of Xanthan
gum, invasion of 200 PVHPAM solution did not significantly alter the
configuration of the remaining saturation in Figure 4N. In contrast, a

substantially different displacement pattern was observed after
injecting 1,200 PV of Flopaam 3630 [Figure 4O]. Large
entrapments have been broken up and only small ones at the
smallest throats remain. A zoomed-in view of the displacement
process can be seen in the time series for Xanthan gum and
Flopaam 3630 in Figure 5 and the corresponding movies in the
Supplementary material Video S1. While the fluid–fluid interfaces
of the Xanthan gum/dodecane interfaces were stable throughout the
experiment, the Flopaam/dodecane interfaces began to fluctuate after
a certain time. These fluctuations seemed to cause the large
entrapments to break up and eventually be displaced completely.

To investigate the causes of the observed fluctuations, we
visualized the path lines of the invading fluid by adding fluorescent
particles to the aqueous phase. Figure 6 illustrates the path lines of the
invading 85 w% glycerin solution, panel (a), respectively of the
viscoelastic HPAM solution, panel (b), displacing dodecane [movies
in Supplementary material Video S2]. Despite the similar viscosity of
the invading fluids for both experiments, the path lines appeared to be
distinctly different. Viscoelastic flow in Figure 6B featured crossing
path lines, semi three-dimensional effects, and fluctuations of the
fluid–fluid interfaces of the entrapped oil, which were absent for the
inelastic flow in Figure 6A. A possible explanation for the observed
unstable flow can be the occurrence of purely elastic instability. This
instability is a unique feature in viscoelastic flow at low Reynolds

FIGURE 4
Snapshots of the displacement pattern for (A–C) water (Cawater = 8 · 10–6), (D–F) 67 w% glycerin (Caglycerin67 � 5 · 10−5), (G–I) 85 w% glycerin
(Caglycerin85 � 3 · 10−3), (J–L) 0.20 w% Xanthan gum (CaXanthan = 9 · 10–5), and (M–O) 0.20 w% Flopaam 3630 (CaHPAM = 8 · 10–5). The first column shows a
compiled image of the displacement patterns for about 0.05 PV (dark blue), 0.15 PV (bright blue), 0.30 PV (green), 0.45 PV (orange), and 0.60 PV (red) of the
invading fluid. The second and third column show displacement pattern for 200PV, and 1,200PV of the invading fluid. As indicated by the arrow, themain
flow direction was from left to right.
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numbers, and it is linked to the molecular behavior of the polymers in
solution Shaqfeh [80]; Groisman and Steinberg [81,82]. Such
viscoelastic highly flexible polymers are strongly deformable.
Specially at high shear rates, their deformation during the flow is
strongly anisotropic. This anisotropic deformation causes anisotropic
distribution of elastic stresses in 3D. The difference of the stress
components in the observation plane, i.e., in x- and y-direction, causes
a first normal stress difference N1 acting in the out-of-plane direction.
If the ratio of N1 to the shear stress τ exceeds a critical stress ratio
McKinley et al. [76]; Pakdel and McKinley [75]; Morozov and van
Saarloos [74]; Shakeri et al. [62], the base flow becomes unstable and
strongly fluctuating fluid–fluid interfaces are caused. Since the stress
distribution of Newtonian fluids is isotropic and solutions of the rather
stiff Xanthan gum do not develop a significant first normal stress
differenceN1, the base flow and consequently the fluid–fluid interfaces
remained stable for inelastic fluids.

However, precise quantification of the contribution of elastic and
viscous stresses, e.g., by computing the stress ratio M, Eq. 7, for flow of
semi-dilute polymer solutions in porous media, is challenging for two

major reasons. First, from a rheological point of view, due to the shear-
thinning viscosity and relaxation time of the polymer solution in this
concentration regime, and non-uniform distribution of shear rate in the
porousmedia, defining a characteristic viscosity and relaxation time is not
straightforward. Second, the complex flow geometry makes it difficult to
estimate the radius of curvature of the streamlines R, since a single flow
path curvature can not be assigned to the entire geometry. Besides, the
occurrence of purely elastic instability lead to an increased flow resistance,
i.e., increased apparent viscosity Shaqfeh [80]; Groisman and Steinberg
[81,83]; Kawale et al. [37]; Shakeri et al. [58]; Browne and Datta [38];
Datta et al. [84]. Therefore, a distinct separation of viscosity- and
elasticity-related effects is unfeasible employing a random arrangement
of posts as representative for porous media.

3.2 Flow properties of porous media

It is well known that increasing the viscosity of the invading fluids
leads to an improved displacement efficiency. By comparing the

FIGURE 5
Time series of optical images of a capillary entrapment displaced by 0.20w% Xanthan gum (A–D), and 0.20w% Flopaam 3630 (E–H). As indicated by the
arrow, the main flow direction was from left to right.

FIGURE 6
Path lines obtained by fluorescence microscopy for an invading Newtonian glycerin solution, respectively viscoelastic polymer solution displacing
dodecane. In (A) the Newtonian glycerin solution follows symmetrical the tortuous path lines of the porous medium, whereas the viscoelastic HPAM solution
exhibits asymmetric and even crossing path lines in (B), which represents an unsteady flow.
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displacement pattern resulting from an invasion with Xanthan gum,
respectively Flopaam in the previous section, we observed, that
elasticity driven interfacial fluctuations contribute as well to an
increased displacement. However, since the turbulent flow related
to the observed fluctuations leads also to an increase of an apparent
viscosity, it is per se not possible to differentiate the effects of these
increased apparent viscosity and the fluctuations due to their
interconnected nature. Hence, to decompose these combined
contributions, we needed to design a more simplified model
system, which is still capable to mimic the characteristic flow
features in porous media, such as the mixed distribution of flow
types. Thus, in order to construct such a model system, we must start
by identifying the characteristic flow features in porous media. In fact,
flow in porous media is composed of an interplay of regions of shear
flow in the vicinity of solid walls, as well as of extensional regions of
converging–diverging flows away from the walls and at stagnation
points at the front and rear poles of obstacles in a flow James [85];
Kawale et al. [37]; De et al. [86]; Poole [87]; Mokhtari et al. [88]. De
et al. De et al. [86] performed direct numerical simulations to
determine the flow type distribution for invasion of a viscoelastic
fluid in a randomized porous medium assembled by bi-disperse disks.
In their simulations, the pore structure triggered tortuous flow paths
that enforce the polymers to undergo repetitive contraction and
expansion. De et al. observed a predominance of shear dominated
flow regions for the full range of the considered Deborah numbers,
while the extent of extensional regions was further reduced at higher
degree of elasticity. Moreover, in this numerical study, it was proven
that the largest normal stress differences in a porous medium were
generated in a shear dominated flow region rather than in extensional
regions. The primary importance of shear flow has also been
confirmed in other works, where it has been demonstrated that the
normal stress differences responsible for an increased pressure
gradient are mainly generated in shear dominated regions De et al.
[52]; Ekanem et al. [54], and most of the energy of viscoelastic stresses

is dissipated in these regions De et al. [86]; Gillissen [53]. In summary,
the elastic nature of the polymer fluid is more pronounced when
coupled with the extensional nature of the flow field Kawale et al. [37];
Walkama et al. [51]; Haward et al. [50]; Ichikawa and Motosuke [49],
however extensional flow is not essential to observe elasticity-induced
flow instabilities. In fact, the most important feature is tortuosity,
i.e., curved path lines that cause a sufficiently strong first normal stress
difference of viscoelastic fluids. Thus, serpentine channels with
constant cross-section are suitable model systems for porous
media. Viscoelastic flow in serpentine channels is very well
characterized in the literature and are straightforward to be
described Soulies et al. [66]; Zilz et al. [89]; Shakeri et al. [90];
Poole et al. [91]; Ducloué et al. [92].

3.3 Displacement of single capillary
entrapment

As previously discussed, serpentine channels are well suited to
mimic tortuous flow in porous media, while the perpendicular side
channel connecting the two serpentine channels of our microfluidic
geometry represents the location for capillary entrapment of the
defending fluid [Figure 2B]. The symmetry of the serpentine
channels, in conjunction with a shared inlet and outlet, ensures
equal viscous pressure at both ends of the side channel. Hence, our
microfluidic model system corresponds to a single capillary
entrapment in a porous medium, where the effect of elastic stresses
at the fluid interfaces can be isolated from the effects of viscous
stresses. In the following experiments, we studied the impact of the
degree of elasticity of the invading fluid on the displacement
mechanism of the capillary entrapment. To this aim, we used as
invading fluids four different viscoelastic HPAM solutions (i.e., for
two different molecular weights and two concentrations each), an
inelastic shear-thinning Xanthan gum solution, and a high viscous

FIGURE 7
(A) Remaining oil saturation S in the side channel, and (B) root-mean-square (rms) of δYrms as function of the applied flow rate (top) and corresponding
shear rate (bottom). The insets display an optical image of microfluidic geometry in (A), and the remaining oil saturation S as a function of δYrms in (B). The
dashed line in (B) indicates the strength of fluctuation of δYrms ≈ 3 μm required to trigger the mobilization of the entrapped oil. The symbols in (A) and (B)
represent experimental data for 67w% glycerin (blue star), 0.13w% Flopaam 3330 (orange diamond), 0.25w% Flopaam 3330 (green triangle), 0.10w%
Flopaam 3630 (red circle), 0.20w% Flopaam 3630 (black square), and 0.20w%Xanthan gum (brown star).
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Newtonian glycerin solution. We initially saturated the single-pore
geometry with dodecane, and subsequently stepwise increased the flow
rate of the invading fluid. The experiments were stopped either when a
complete removal of the oil phase from the perpendicular side channel
was observed, or a maximum Reynolds number in the order of 100 was
reached to avoid any contribution from inertia. To study the
interactions between the flow in the serpentine channel and the
entrapment at the side channel, we captured time series of the area
shown in the inset of Figure 7A at each applied flow rate. To ensure
that a fully developed steady-state flowwas established while recording
fluid–fluid interface fluctuations, we used the simultaneously
measured pressure signal as a reference and started recording at
each flow rate after the pressure reached a stable plateau. The
saturation S of the oil in the side channel and the fluctuating
motion of the fluid–fluid interface could be extracted from the
recorded time series. The corresponding results are plotted in
Figure 7 as a function of shear rate, which was approximated by _γ �
4Q/(π r3) with the equivalent radius of r � ��������(WH)/π√

Son [93]. Even
though this approach neglects the slightly non-parabolic flow profile
of shear-thinning fluids and does not account for a possible apparent
wall-slip effect of non-Newtonian fluids, we have previously shown
that this approximation is sufficiently accurate for the employed
serpentine channels Shakeri et al; [62]. The saturation S in

Figure 7A was defined as the area of the oil column at the end of
each recording step, normalized by the area of the oil column in the
first step. Desaturation was initiated once the fluid—fluid interface was
depinned from the edges of the side channel and S < 1. It should be
mentioned that for increasing shear rates, the menisci of the trapped
oil column get more bulged towards the serpentine channel. This effect
led to saturation values which are slightly larger than one. Interfacial
motion was described quantitatively based on the motion of the center
of mass, δY, of the entrapped oil column. To quantify the strength of
the interfacial motion, we calculated the root-mean-square δYrms for
each shear rate and plotted the results in Figure 7B. For δYrms >
0.015 μm (i.e., for δYrms values exceeding the noise level of the
experimental setup), optically visible motion of the fluid–fluid
interface was clearly detectable and increased with the shear rate.
At the lowest applied shear rate of _γ ≈ 72 s−1, the fluid–fluid interface
was stationary for all utilized invading fluids. When solutions of
glycerin or Xanthan gum were employed as the invading phase, the
fluid–fluid interface remained stationary across the full range of
applied shear rates. Accordingly, no oil displacement was observed
from the side channel despite the rather high viscosity of these
solutions [Figure 7A]. However, when a viscoelastic polymer
solution was injected, the fluid–fluid interface began to wobble
above a certain shear rate. The intensity of this wobbling motion
increased monotonically as the shear rate was further increased. The
corresponding shear rates at which wobbling was initially detected
were significantly lower for polymers with higher molecular weight,
while they were rather independent of concentration, cf. Table 3.
Eventually, displacement of the entrapped oil phase from the side
channel was initiated for all utilized HPAM solutions when the
fluid–fluid interface fluctuations were sufficiently intense at δYrms ≈
3 μm [dashed horizontal line in the inset of Figure 7B].

Simultaneously with the optical recordings, we measured the
corresponding pressure drop ΔP(t) = 〈P〉t + ΔP′(t) across the
serpentine channels, where 〈P〉t � �Pin−out is the time averaged
steady-state mean value, and ΔP′(t) is a fluctuating component
of the pressure. For the viscoelastic HPAM solutions, the strength

TABLE 3 Overview of the experimentally preset flow rate Qcrit, the ratio of
polymer concentration to overlap concentration c/c*, the approximate shear rate
_γcrit determined from Figure 9, and critical stress ratioMcrit at the onset of purely
elastic instability computed from Eq. 7.

Polymer c/c* Qcrit [μl/min] _γcrit [s
−1] Mcrit

0.13w% Flopaam 3330 ≈ 10 14.0 ± 0.2 2006 ± 28 5.32 ± 0.27

0.25w% Flopaam 3330 ≈ 18 12.0 ± 0.2 1719 ± 28 4.24 ± 0.21

0.10w% Flopaam 3630 ≈ 12 2.5 ± 0.2 358 ± 28 4.06 ± 0.20

0.20w% Flopaam 3630 ≈ 24 2.0 ± 0.2 286 ± 28 3.99 ± 020

FIGURE 8
(A) The fluctuation intensity δYrms and (B) remaining oil saturation S as functions of themeasured pressure difference �Pin−out. The horizontal dashed line in
(A) indicates δYrms ≈ 3 μm, where we observe the onset of displacement in Figure 7B. The red areas in (A) and (B) refer to the pressure ranges associated with
the onset of displacement. The symbols in (A) and (B) represent experimental data for 67w% glycerin (blue star), 0.13w% Flopaam 3330 (orange diamond),
0.25w% Flopaam 3330 (green triangle), 0.10w% Flopaam 3630 (red circle), 0.20w% Flopaam 3630 (black square), and 0.20w%Xanthan gum (brown
star).
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of fluctuations of the fluid–fluid interface δYrms raised monotonic
with the measured pressure �Pin−out [Figure 8A]. Interestingly, the
required strength of fluctuations δYrms ≈ 3 μm to overcome the
capillary pressure that keeps the entrapment in place was achieved
at a similar pressure �Pin−out ≈ 50 kPa for all HPAM solutions,
independent of polymer type and concentration. However, since
there was no displacement in case of the inelastic invasion of
glycerin and Xanthan gum solutions, during the entire range of
the experiments, it is evident that the magnitude of the pressure,
�Pin−out, cannot drive the displacement. Instead, the displacement
mechanism can be explained with respect to the fluctuating
component of the pressure, ΔP′(t), in the serpentine channels
Shakeri et al. [58].

To examine the underlying mechanism that caused the
fluctuations, we converted �Pin−out to an apparent viscosity
ηapp( _γ) � τ( _γ)/ _γ, where the shear stress in a serpentine channel
was approximated by τ = (ΔP H W)/(2L(W + H)) Machado et al.
[94]. Comparison of the apparent viscosity ηapp( _γ) with the
extrapolated bulk viscosity values η( _γ) from Figure 3 revealed
that, above a critical shear rate _γcrit, the apparent viscosity
ηapp( _γ) deviated from η( _γ). Figure 9A shows the reduced
viscosity ηr( _γ) � ηapp( _γ)/η( _γ) as function of the shear rate _γ for
all studied polymer solutions. We identified the critical shear rate
_γcrit at the onset of instability when the reduced viscosity exceeds
1.15 cf. Table 3. The value of 1.15 was chosen to ensure that the
reduced viscosity ηr clearly exceeds our experimental accuracy. In
general, a reduced viscosity significantly larger than one is a
signature of turbulent flow. Since the maximum Reynolds
number in our experiments was on the order of Re ~ O(100),
potential inertial contributions to the observed increase in flow
resistance could be safely neglected. This is confirmed by the fact
that no increased reduced viscosity was detected for the inelastic
Xanthan gum and glycerin solutions. Hence, the increase of the
reduced viscosity ηr for the four HPAM-solutions was associated
with purely elastic instability at low Reynolds numbers Browne and

Datta [38]; Groisman and Steinberg [81]. Moreover, the occurrence
of purely elastic instability is also reflected by the stress ratio M. In
the utilized serpentine channels, we detected the onset of instability
forM ≳ 4, cf. Figure 9B, in line with reported values in literature for
similar geometries Pakdel and McKinley [75]; McKinley et al. [76];
Shakeri et al. [62]. However, in case of the two Flopaam
3330 solutions, the wobbling motion started already at shear
rates well below _γcrit [Figure 7B]. This suggests that the unstable
base flow due to purely elastic instability is not the only explanation
for the observed fluctuating interfaces.

In fact, the observed interfacial fluctuations prior to the onset of
purely elastic instability were also affected by elastic secondary flows,
i.e., flows in the cross-stream direction that are much weaker than the
flow in the main flow direction Ducloué et al. [92]; Yao et al. [77];
Poole et al. [91]. In this particular geometry, these types of secondary
flows result from the difference between the curvatures of the inner
and outer bends of the serpentine channel, where the gradient of the
first normal stress difference N1 arises Shakeri et al. [58].
Consequently, a so–called “Hoop stress” emerges and drives the
viscoelastic fluid towards the inner bends at the top and bottom of
the serpentine channel, where N1 is the largest. The fluid is then
pushed back to the outer part of the serpentine channel at the center
plane to complete formation of counter-rotating vortices in the out-of-
plane cross-section of the channel. Such elastic secondary flows are
present for all applied shear rates in the case of viscoelastic flow, and
their strength is expected to increase almost linearly with the applied
shear rate for a laminar base flow Zilz et al. [89]. Even though
secondary flows occur in the cross-sectional plane perpendicular to
the plane of observation and therefore cannot be directly observed
with conventional planar microscopy, secondary flow structures can
be indirectly sensed by their influence on the flow paths as previously
done by, e.g., Groisman and Steinberg [83]; Zilz et al. [89]; Machado
et al. [94]; Shakeri et al. [58]. To visualize these secondary flow
structures, we added fluorescent particles to the 0.10 w% Flopaam
3630 solution, as well as to the 0.25 w% Flopaam 3330 solution and

FIGURE 9
(A) Reduced viscosity ηr and (B) stress ratioM as function of shear rate _γ. The symbols in (A) represent data for 67w% glycerin (blue star), 0.13w% Flopaam
3330 (orange diamond), 0.25w% Flopaam 3330 (green triangle), 0.10w% Flopaam 3630 (red circle), 0.20w% Flopaam 3630 (black square), and 0.20w%
Xanthan gum (brown star). The blue area in (A) indicates a laminar base flow where ηr < 1.15. The dashed vertical lines in (A) as well the shaded area in (B)
indicate the onset of purely elastic instability.
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captured the path lines by fluorescence microscopy at shear rates
below and above the critical shear rates _γ0.10 w%,3630 ≈ 358 s−1 and
_γ0.25 w%,3330 ≈ 1719 s−1, cf. Figure 10. At _γ ≈ 143 s−1 in Figure 10A and
Figure 10C, we observed a fully laminar flow, in which the path lines
follow the curvature of the serpentine channels. At _γ ≈ 1146 s−1 in
Figure 10D, still below the critical shear rate for this solution but
corresponding to experiments where we detected already mild
interfacial fluctuations, we observe a slight shift of the path lines
towards the inner bend of the serpentine channel. At and above the
onset of purely elastic instability, at _γ ≈ 1146 s−1 in Figure 10B and
_γ ≈ 1719 s−1 in Figure 10E, we observed crossing path lines, and semi
three-dimensional effects that were very similar to the observed path
lines for highly viscoelastic flow in porous media in Figure 6B.

The contribution of secondary flows to the fluctuations of the
fluid–fluid interface in Figure 7B can be further investigated by
subjecting the recorded position data δY to power spectral density
(PSD) analysis. Figure 11A displays the PSD analysis of δY
extracted from the optical images of 0.25 w% Flopaam 3330. At
the lowest shear rate _γ ≈ 72 s−1, we observed a plateau, indicating
that the fluid–fluid interface remained stationary. At _γ ≈ 716 s−1,
i.e., below _γcrit, the PSD curve exhibited still a plateau-like shape
although interfacial fluctuations were already optically sensed at
this shear rate [Figure 7B]. At further increased shear rates, close to
_γcrit ≈ 1576 s−1 and above, a power-law decay ~ f−β was observed
with two distinct exponents, βL and βH, at lower and higher ranges
of frequencies. At higher frequencies from 2 Hz to 20 Hz, an
exponent βH in the range of 3–4 is valid. This exponent
observed over at least one decade in the frequency domain is
commonly reported for turbulent flows originated from the
purely elastic instability of dilute polymer solutions Groisman
and Steinberg [83], and theoretically derived by Fouxon et al.
Fouxon and Lebedev [95] and later Steinberg et al. Steinberg
[96] for an Oldyod-B fluid. At lower frequencies from 0.2 Hz to
2 Hz, a smaller exponent βL in the range of 1–2 exist.While this

exponent is in a similar range to the Kolmogorov scale 5/3 for
inertia-induced turbulence Kolmogorov et al. [97], we can rule this
out since the experiments were conducted at small Reynolds
numbers. Similar observations were reported for the PSD
analysis of the center-of-mass fluctuations of entrapped oil
droplets, and pressure fluctuations in viscoelastic flow in porous
media, but remained so far unexplained Mitchell et al. [24]; Kawale
et al. [37]. We believe that the two distinct exponents can be
explained in view of the flow structure underlying the turbulent
flow, namely the short-range elastic instability and the elastic
secondary flow. In fact, the high range of frequencies from 2 Hz

FIGURE 10
Path lines obtained by fluorescence microscopy for 0.10 w% Flopaam 3630 at (A) _γ ≈ 143 s−1 and (B) _γ ≈ 1146 s−1, and 0.25 w% Flopaam 3330 at (C)
_γ ≈ 143 s−1, (D) _γ ≈ 1146 s−1 and (E) _γ ≈ 1719 s−1. The red dashed lines indicate the boundary of the serpentine channels. The yellow dashed lines in (C) and (D)
indicate the center line of the channel as a guide to the eye rates to highlight the evolution from laminar to turbulent flow.

FIGURE 11
PSD analysis of vertical fluctuation of the center position δY of
0.25 w% Flopaam3330 for various shear rates above and below the
critical shear rate _γcrit ≈ 1719 s−1 for this solution.
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to 20 Hz, correspond to relatively small-scaled fluctuations,
originating from purely elastic instability. On the other hand,
the lower range of frequencies, from 0.2 Hz to 2 Hz, is
associated with relatively large flow structure of the secondary
flow. This explanation is supported by our previously published
work, which provided a structural analysis of viscoelastic turbulent
flow in serpentine channels Shakeri et al. [90]. Applying the proper
orthogonal decomposition method on velocity fluctuations
obtained by particle image velocimetry of viscoelastic flow in a
serpentine channel, we demonstrated that in fact, secondary flows
are the dominant feature that contribute to the kinetic energy in
viscoelastic flows at high shear rates, but still low Re numbers.
When the flow of viscoelastic fluids becomes turbulent, it is
reasonable to assume that the stretching of polymers intensifies
and hence the evolution of normal stress differences gets amplified.
Therefore, the purely elastic instability has an amplifying effect on
the secondary flow structures. Thus, the combination of these two
elasticity driven phenomena has a synergistic effect on providing
the force required to destabilize the interfaces and mobilize the
capillary entrapments.

4 Conclusion

In this work, we investigated the underlying mechanism that leads
to an improved mobilization of capillary entrapments in porous media
by invasion of viscoelastic polymer solutions. To this aim, we conducted
a series of displacement experiments employing various Newtonian and
non-Newtonian fluids to separate the effects of viscosity and elasticity
on the displacement process. While entrapments in large pores were
mainly affected by an increased viscosity ratio between the invading and
defending fluids, entrapments at small throats with high capillary
pressure remained unaffected as long only the capillary number was
varied. A distinct behavior was observed during the invasion of
viscoelastic polymer solutions, where the fluid–fluid interfaces began
to fluctuate. Moreover, small entrapments were affected and were
eventually displaced by viscoelastic polymer flooding. However, due
to the complexity of flow in porous media, a clear separation of viscosity
and elasticity related effects is not straightforward. To tackle this
problem, we focused on a single entrapment enclosed by two
symmetric serpentine channels that allowed us to study elasticity
driven fluctuations while eliminating the influence of viscous forces.
We have found out that these fluctuations are caused by a synergetic
effect of secondary flows and purely elastic instability generated by a first
normal stress difference N1. The randomness of these fluctuations lead
to a symmetry-breaking of the flow paths and is consequently the
ultimate cause for the observedmobilization of capillary entrapments in
our single-pore geometry. Since in flow in porous media, curved path
lines are as well a dominant feature, a similar mechanism is responsible
for an enhanced displacement process. However, to address how other
features present in the flow in porous media such as elongational flow
contribute to the displacement process is an interesting task for future
research.
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