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Abstract

Astrocytes constitute the main glial component of the mammalian blood brain barrier

(BBB). However, in the olfactory bulb (OB), the olfactory nerve layer (ONL) is almost

devoid of astrocytes, raising the question which glial cells are part of the BBB. We used

mice expressing EGFP in astrocytes and tdTomato in olfactory ensheathing cells

(OECs), a specialized type of glial cells in the ONL, to unequivocally identify both glial

cell types and investigate their contribution to the BBB in the olfactory bulb. OECs

were located exclusively in the ONL, while somata of astrocytes were located in deeper

layers and extended processes in the inner sublamina of the ONL. These processes sur-

rounded blood vessels and contained aquaporin-4, an astrocytic protein enriched at

the BBB. In the outer sublamina of the ONL, in contrast, blood vessels were sur-

rounded by aquaporin-4-negative processes of OECs. Transcardial perfusion of blood

vessels with lanthanum and subsequent visualization by electron microscopy showed

that blood vessels enwrapped by OECs possessed intact tight junctions. In acute olfac-

tory bulb preparations, injection of fluorescent glucose 6-NBDG into blood vessels

resulted in labeling of OECs, indicating glucose transport from the perivascular space

into OECs. In addition, Ca2+ transients in OECs in the outer sublamina evoked vasocon-

striction, whereas Ca2+ signaling in OECs of the inner sublamina had no effect on adja-

cent blood vessels. Our results demonstrate that the BBB in the inner sublamina of the

ONL contains astrocytes, while in the outer ONL OECs are part of the BBB.
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1 | INTRODUCTION

The blood brain barrier (BBB) controls as selective barrier transport

and diffusion of a plethora of substances from the blood stream into

the CNS and vice versa. While transport of nutrients over the BBB is

fostered, the entry of noxious substances is blocked. The BBB of

capillaries typically consists of endothelial cells (ECs), pericytes, and

astrocyte endfeet (Abbott, Patabendige, Dolman, Yusof, & Begley,

2010; Ballabh, Braun, & Nedergaard, 2004). ECs build up the blood

vessel wall, are connected with each other by tight junctions to

maintain the barrier function and transport glucose from the blood

into the perivascular space (Wolburg & Lippoldt, 2002; Zhao, Nelson,

Betsholtz, & Zlokovic, 2015). Pericytes support the development of

the BBB and stabilize the capillary wall (Bell et al., 2010; Brown

et al., 2019; Daneman, Zhou, Kebede, & Barres, 2010). Astrocyte

endfeet are mainly involved in metabolic exchange between blood
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and neural tissue as well as ion and water regulation. Neuronal infor-

mation processing consumes about 20% of the total glucose and

oxygen demands of the body (Escartin & Rouach, 2013; Harris,

Jolivet, & Attwell, 2012). Therefore, efficient metabolic support of

neurons is essential. As a cellular component of the BBB, astrocytes

take up glucose from the perivascular space, metabolize it and pro-

vide lactate to surrounding neurons (Pellerin et al., 2007). In addition,

local neuronal activity induces Ca2+ signaling in perivascular astro-

cytes, followed by vasoresponses and changes in local blood flow, a

mechanism named neurovascular coupling (Filosa, Bonev, & Nelson,

2004; Gordon, Mulligan, & MacVicar, 2007; Mulligan & MacVicar,

2004; Takano et al., 2006; Zonta et al., 2003). This mechanism is

closely associated with a change in glucose supply (neurometabolic

coupling; Attwell et al., 2010; Leybaert, 2005). In the olfactory bulb,

2-desoxyglucose autoradiography studies have shown high glucose

consumption in the olfactory nerve layer (ONL), an area that harbors

thousands of unmyelinated axons of olfactory sensory neurons

(OSN), but lacks astrocytic somata (Au, Treloar, & Greer, 2002; Ben-

son, Burd, Greer, Landis, & Shepherd, 1985; Sharp, Kauer, & Shep-

herd, 1977; Shepherd, 2003). The lack of astrocyte somata and low

abundance of astrocytic processes raises the question how the BBB

is established in the ONL. A specialized population of glial cell, so-

called olfactory ensheathing cells (OECs), is present in the ONL,

supporting axonal growth and guidance during development and

adult neuroregeneration (Lohr, Grosche, Reichenbach, & Hirnet,

2014). The ONL is divided into an outer and an inner sublamina with

physiologically different subpopulations of OECs (Doucette, 1990,

1991; Thyssen et al., 2013). Nonsynaptic release of glutamate and

ATP from OSN axons induce Ca2+ transients in OECs of the outer

ONL, triggering vasoresponses of associated blood vessels, while

OECs of the inner ONL lack glutamate- or ATP-evoked Ca2+ tran-

sients (Rotermund, Schulz, Hirnet, & Lohr, 2019; Thyssen et al.,

2010; Thyssen et al., 2013). This indicates intimate structural and

functional links between OECs and blood vessels at least in the outer

ONL. Hence, this study addresses the question how OECs in the dif-

ferent sublaminae contribute to the BBB. To investigate the cellular

components of the BBB in the ONL, we performed electron micros-

copy studies and immunofluorescence staining using markers for

astrocytes (GFAP), astrocyte endfeet (aquaporin 4; AQP4), OECs

(S100B) and pericytes (PDGFRβ) in wildtype and transgenic mice

expressing tdTomato in OECs (PLP-CreERT2 x tdTomatofl/fl mice) in

OECs and EGFP in astrocytes (hGFAP-EGFP). The results show that

blood vessels in the outer ONL are devoid of GFAP- and

AQP4-positive structures, but are covered by S100B- and PLP-

tdTomato-positive OECs. In contrast, blood vessels in the inner ONL

and the glomerular layer (GL) are covered by GFAP- and

AQP4-positive cell processes of astrocytes. Pericytes are present in

all layers. The results suggest that OECs but not astrocytes contact

the BBB in the outer sublamina of the ONL, while in the inner sub-

lamina and in deeper layers the BBB has the typical structure as

described in other parts of the brain, comprising astrocyte endfeet.

Hence, the BBB in the mammalian brain does not inevitably require

the contribution of astrocytes.

2 | MATERIAL AND METHODS

2.1 | Animals

Colonies of NMRI (Naval Medical Research Institute) mice (age: post-

natal days 09–12; p09-p12) and PLP-CreERT2 x tdTomatofl/fl and

hGFAP-EGFPGFEC mice (p28-p42) (Hirrlinger et al., 2005; Leone et al.,

2003; Madisen et al., 2010) were obtained from the institutional ani-

mal facility at the University of Hamburg. To induce tdTomato expres-

sion in PLP-CreERT2 x tdTomatofl/fl mice, tamoxifen (Carbolution

Chemicals GmbH, St.Ingbert, Germany) was dissolved in 8% ethanol/

92% Mygliol®812 (Sigma Aldrich, Taufkirchen, Germany) and injected

intraperitoneally for three consecutive days (starting p21; 100 mg/kg

bodyweight). Only heterozygous PLP-CreERT2 and hGFAP-EGFP

mice were used in this study. Animals were analyzed 10–14 days

after the first injection. Animal rearing and dissection was

performed according to the European Union's and local animal welfare

guidelines (GZ G21305/591-00.33; Behörde für Gesundheit und

Verbraucherschutz, Hamburg, Germany).

2.2 | Immunohistochemistry

The olfactory bulbs were prepared and kept at room temperature

(RT) in 4% formalin in phosphate buffered solution (PBS) containing

(in mM): 130 NaCl, 7 Na2HPO4, 3 NaH2PO4. Afterward 100–150 μm

thick sagittal or frontal tissue slices were prepared using a vibratome

(VT1000S, Leica, Nussloch, Germany) following 1 hr incubation in

blocking solution (10% normal goat serum, 0.5% Triton X-100 in PBS)

at RT. Subsequently slices were incubated for 48 hr at 4�C with the pri-

mary antibody solution (antibodies were diluted in 1% NGS, 0.05% Trit-

onX100 in PBS). The following antibodies were used: rabbit anti-S100B

(1:1,000, Dako), mouse anti-S100B (1:1,000, Santa Cruz Biotechnology,

Dallas, TX), rabbit anti-AQP4 (1:1,000, Sigma Aldrich, Taufkirchen, Ger-

many), chicken anti-GFAP (1:1,000, Abcam, Cambridge UK), rat anti-

PDGFRβ (1:100, eBioscience, San Diego, CA), chicken anti-GFP (1:500,

Abcam), rabbit anti-ZO-1 (1/200, Invitrogen, Carlsbad, CA). Slices were

incubated with the following secondary antibodies for 24 hr at 4�C:

goat anti-rabbit Alexa 488 (1:1,000 in PBS; Thermo Fisher, Darmstadt,

Germany), goat anti-rabbit Alexa 555 (1:1,000 in PBS; Thermo Fisher),

goat anti-chicken Alexa 488 (1:1,000 in PBS; Abcam), goat anti-rat

Alexa 488 (1:1,000 in PBS, Abcam). Goat anti-mouse secondary anti-

bodies (Alexa 405 and Alexa 555; 1:1,000, Thermo Fisher) were

employed to stain blood vessels by the detection of mouse IgGs. Addi-

tionally, Hoechst 33342 or DAPI (each 5 μM; Molecular Probes,

Eugene, OR) was added to stain nuclei. Slices were mounted on slides

using a self-hardening embedding medium (Immu-Mount, Thermo

Fisher). Immunohistological stainings were analyzed using a confocal

microscope Nikon eC1. Z-Stacks were taken in 100 nm step sizes and

2,048 × 2,048 pixel. Deconvolutions of the z-stacks were established

using the Huygens Essential program. Moreover, image z-stacks were

projected using an average projection tool in ImageJ and adjusted to

contrast and brightness using Adobe Photoshop CS6.
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2.3 | Ultrathin section electron microscopy

NMRI mice were transcardially perfused with either 2.4% glutaralde-

hyde and 2% lanthanum nitrate in HMSS or solely with 2.4% glutar-

aldehyde in HMSS. The olfactory bulbs were prepared and postfixed

in the identical fixative for at least 4 hr. Preparations were stored in

cacodylate. The olfactory bulbs were postfixed in 1% OsO4, follow-

ing hydration in an ethanol series (50, 70, 96, 100%). To enhance the

contrast 70% ethanol was saturated with uranyl acetate. Dehydra-

tion was completed in propylene oxide. The preparations were

embedded in Araldite (Serva, Heidelberg, Germany). Ultrathin sec-

tions were prepared using a FCR Reichert Ultracut ultramicrotome

(Leica, Bensheim, Germany), following the mounting on pioloform-

coated copper grids, contrasted with lead citrate. The sections were

analyzed using an EM10A electron microscope (Carl Zeiss,

Oberkochen, Germany).

2.4 | Ca2+ imaging and data analysis

In-toto preparations of the olfactory bulb were prepared as described

in previous studies (Stavermann et al., 2012; Thyssen et al., 2010). Ani-

mals were sacrificed and both olfactory bulbs were removed from the

opened head in cooled preparation solution (see below), glued onto

small coverslips and stored for 45 min in carbogen-gassed ACSF at

30�C for recovery. Standard artificial cerebrospinal fluid (ACSF) con-

sisted of (in mM): 120 NaCl, 2.5 KCl, 1 NaH2PO4x2H2O, 26 NaHCO3,

2.8 D-(+)-glucose, 1 MgCl2, 2 CaCl2. The preparation solution consisted

of (in mM) 83 NaCl, 1 NaH2PO4x2H2O, 26.2 NaHCO3, 2.5 KCl,

70 saccharose, 20 D-(+)-glucose, 2.5 MgSO4 x7H2O. Both solutions

were continuously gassed with carbogen (95% O2, 5% CO2) to maintain

the pH of 7.4 and to supply oxygen. Whole bulbs were transferred into

a recording chamber and fixed with a platinum grid. The preparations

were continuously perfused with ACSF (at RT) via a perfusion system.

For multi-cell bolus loading a glass pipette with a resistance of �3 MΩ

was filled with 200 μM Fluo-4 AM in ACSF, made from a 4 mM stock

solution (dissolved in DMSO and 20% pluronic acid) (Stosiek,

Garaschuk, Holthoff, & Konnerth, 2003). The injection pipette was

inserted onto the ONL, following the pressure-injection of the Ca2+

indicator with 0.7 bar for 30 s into the tissue (PDES-01 AM, npi elec-

tronic GmbH, Tamm, Germany). After an incubation of 20 min. Ca2+

signals in OECs were detected by the fluorescence of Fluo-4 (excita-

tion: 488 nm, emission: 500–530 nm) using a confocal microscope

(eC1, Nikon, Düsseldorf, Germany). Images were acquired at a time rate

of one frame every 3–5 s. To analyze Ca2+ changes in single cell

somata, regions of interest (ROIs) were defined, using Nikon EZ-C1

3.90 FreeViewer software. Cells located in the ONL were defined as

OECs (Au et al., 2002; Thyssen et al., 2010). Changes in cytosolic Ca2+

were recorded throughout the experiments as relative changes in Fluo-

4 fluorescence (ΔF) with respect to the resting fluorescence, which was

normalized to 100%.

2.5 | Visualization of blood vessels and
glucose uptake

After bulk loading with Fluo-4 AM, a micropipette with a resistance of

7–8 MΩ (when filled with ACSF) was loaded with 1 μM sul-

forhodamine 101 (SR101; Santa Cruz Biotechnology) diluted in ACSF

and inserted into a blood vessel located in the ONL. SR101 was pres-

sure injected (0.1 bar, 30 s) into the blood vessel, resulting in an imme-

diate labeling of the blood vessel network throughout the olfactory

bulb (Figure S1). SR101 was excited by a helium-neon laser (excitation

543 nm, emission: 553–618 nm) of the confocal microscope. Vaso-

constriction was measured as the decrease of the SR101 fluorescence

in a region of interest, covering the entire cross sections of a blood

vessel segment of ~10–20 μm length. The fluorescent non-

hydrolyzable glucose analog, 6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)

amino)-6-deoxyglucose (6-NBDG, 100 μM in ACSF; Thermo Fisher)

was injected into the blood vessels similar to SR101 to visualize glu-

cose uptake into glial cells. 6-NBDG was excited by a 488-nm argon

laser.

3 | RESULTS

3.1 | Glial distribution in the ONL

We aimed to analyze the glial organization of the BBB in the ONL

using immunohistology. OECs are strongly S100B-positive, whereas

astrocytes, in particular in neonatal brains, show less immunoreactivity

against S100B (Au et al., 2002; Raponi et al., 2007; Thyssen et al.,

2013) (Figure 1a,b). Astrocytes in the GL, however, express high

amounts of GFAP, whereas OECs are GFAP-negative (Au et al., 2002;

Doengi, Deitmer, & Lohr, 2008; Doucette, 1984; Thyssen et al., 2013)

(Figure 1a–e). We did not perfuse the blood vessel system during fixa-

tion, hence blood vessels contain endogenous antibodies including

IgG. Blood vessels were detected by goat anti-mouse IgG antibodies

labeled with Alexa Fluor 405, enabling the visualization of the dense

vascular network of the olfactory bulb (Doengi et al., 2009).

(Figure 1b–e). S100B-positive OECs are exclusively located in the

ONL. In the outer ONL, S100B-positive OEC somata and processes

are in close contact to blood vessels (Figure 1d). GFAP-positive

somata of astrocytes are located throughout all layers of the olfactory

bulb, except the ONL. However, few GFAP-positive astrocytic pro-

cesses project into the inner ONL, intermingling with blood vessels

(Au et al., 2002; Bailey & Shipley, 1993; Petzold, Albeanu, Sato, &

Murthy, 2008; Rieger, Deitmer, & Lohr, 2007; Figure 1e).

Although S100B expression is lower in OB astrocytes compared

to OECs in mice of an age up to 2 weeks, mature astrocytes contain

similar amounts of S100B as OECs, suggesting that S100B might not

be an ideal marker to distinguish between OECs and astrocytes

(Beiersdorfer, Scheller, Kirchhoff, & Lohr, 2019). Therefore, we took

advantage of PLP-CreERT2 x tdTomatofl/fl x hGFAP-EGFPGFEC mice, in
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F IGURE 1 Legend on next page.
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which OECs express tdTomato controlled by the PLP promotor and

astrocytes express EGFP controlled by the hGFAP promotor

(Hirrlinger et al., 2005; Leone et al., 2003; Madisen et al., 2010). The

cytosolic expression of the fluorescent reporters in OECs and astro-

cytes enabled the visualization of the entire cell, in contrast to, for

example, GFAP antibody staining that only labels major cell processes.

tdTomato-expressing OECs are located in the entire ONL (Figure 2a).

Oligodendrocytes are located in the GL, but not the ONL which only

contains unmyelinated axons (Dickinson et al., 1997). Hence,

tdTomato-expressing cells located in the GL are addressed as oligo-

dendrocytes. EGFP-expressing astrocytes are present in the GL and

extend processes in the inner ONL (Beiersdorfer et al., 2019)

(Figure 2a). In particular, blood vessels are ensheathed by GFP-

expressing astrocytes in the inner ONL, whereas tdTomato-expressing

OECs contact the same blood vessel in the outer ONL (Figure 2b).

Our results suggest that OECs might contact the BBB in the outer

ONL, whereas in the inner ONL and deeper layers, blood vessels are

surrounded by astrocytes. To verify that in the outer ONL OECs

tightly enwrap blood vessels, we performed ultrastructural studies

(Figure 2c,d). EM images showed the cellular elements of the BBB in

the ONL of a mouse at an age of 9 days (P9). ECs form the blood ves-

sel wall and are surrounded by a thin (<50 nm) basal lamina. More-

over, OECs surround the blood vessels with their processes as shown

by immunohistochemistry. Similar results have been found in juvenile

mice (P21; Figure S2).

3.2 | Astrocytic endfeet are part of the BBB in the
inner ONL

AQP4 is a member of the water-channel protein family of aquaporins

and is supposed to be exclusively expressed in astrocyte endfeet in

the brain (Nielsen et al., 1997; Rash & Yasumura, 1999; Simard,

Arcuino, Takano, Liu, & Nedergaard, 2003; Wolburg, Wolburg-

Buchholz, Fallier-Becker, Noell, & Mack, 2011). Located at the border

between blood vessels and the neuropil, AQP4 channels provide

osmotic balance and homeostasis within the CNS (Nico et al., 2001).

In the GL of the OB, a dense network of AQP4-positive astrocyte

endfeet has been investigated, while the literature lacks information

about AQP4 in the ONL (Petzold et al., 2008). We aimed to analyze

the expression of AQP4 in the ONL and its contribution to the BBB.

In addition, we stained for GFAP to identify astrocytes. The vascula-

ture was visualized by the detection of mouse IgGs. AQP4 is highly

expressed within the GL, however, AQP4 immunoreactivity was not

restricted to astrocyte endfeet surrounding blood vessels, but appears

to label most of the astrocyte structures (Figure 3a; Petzold et al.,

2008). AQP4 expression can also be detected in the inner ONL

around blood vessels, on astroglial endfeet (Figure 3b). In addition,

AQP4-positive structures are frequently found in the outer ONL, nei-

ther associated with the vasculature nor contributing to GFAP-

positive astrocytes (Figure 3c). In the entire ONL, immunoreactivity of

AQP4 does not co-localize with tdTomato-expressing OECs in PLP-

CreERT2 x tdTomatofl/fl mice (Figure 3d).

3.3 | Pericytes are part of the BBB in the ONL

As a cellular component of the BBB, pericytes fulfill a whole repertoire

of functions, including stabilization of the vasculature, angiogenesis,

macrophage-like function, and regulation of endothelial cell prolifera-

tion (Hamilton, Attwell, & Hall, 2010; Hirschi & D'Amore, 1996; Lai &

Kuo, 2005). In in-vivo studies of the ONL, Chaigneau, Oheim, Audinat,

and Charpak (2003) did not find any capillaries, but arterioles as

defined by the vessel diameter (<6 μm for capillaries). In the GL, on

the other hand, a dense capillary network was analyzed in that study.

In contrast, Halasz, Ljungdahl, and Hokfelt (1979) reported capillaries

in EM studies of the ONL. We investigated the distribution of peri-

cytes in the ONL by immunohistochemistry using anti-PDGFRβ (plate-

let-derived growth factor receptor β), a marker for pericytes (Armulik,

Mae, & Betsholtz, 2011; Attwell, Mishra, Hall, O'Farrell, & Dalkara,

2016; Winkler et al., 2018; Winkler, Bell, & Zlokovic, 2010). Our

results show PDGFRβ-positive pericytes located around blood vessels

in the ONL and GL (Figure 4a). Co-staining with anti-S100B showed

an envelope of OECs around PDGFRβ-positive pericytes in the outer

ONL (Figure 4b,c). In the inner ONL and the GL, in contrast, PDGFRβ-

positive pericytes were enwrapped by AQP4-positive astrocyte pro-

cesses (Figure 4d,e). It should be emphasized that there are no ideal

markers exclusively labeling pericytes independent of area, develop-

mental stage, or experimental conditions (Armulik et al., 2011; Ger-

hardt & Betsholtz, 2003). Different studies suggest PDGFRβ

expression in developing vascular smooth muscles cells (vSMC)

restricted to arterioles, as well as endothelial cells and neurons

(Hellstroem, Kalen, Lindahl, Abramsson, & Betsholtz, 1999; Lindahl

et al., 1997; Smits et al., 1991). However, ultrastructural analyses veri-

fied the existence of pericytes around blood vessels in the ONL and

showed that the cross section of the blood vessel walls were built by

F IGURE 1 Distribution of glial cells and blood vessels in the olfactory nerve layer (ONL) of neonatal mice. (a) Overview of the olfactory bulb.
Olfactory ensheathing cells (OECs) in the olfactory nerve layer (ONL) and astrocytes in the glomerular layer (GL), external plexiform layer (EPL),

and granule cell layer (GCL) are S100B-positive (red). Nuclei are stained with DAPI. Scale bar: 500 μm. (b) At higher magnification, OECs in the
ONL are strongly S100B-positive (red), whereas astrocytes in the GL, EPL, and GCL show weaker expression of S100B. GFAP-positive astrocytes
are localized throughout the GL, EPL, and GCL (green). The vascular network, visualized by immunostaining of mouse IgGs (blue), extends
throughout all layers of the olfactory bulb. Scale bar: 200 μm. (c) Magnified detail from (b). Asterisks indicate glomeruli. Scale bar: 50 μm.
(d) Magnified detail of the outer ONL, as indicated in (c). S100B-positive OECs are closely associated with blood vessels in the outer ONL, lacking
GFAP-positive structures (arrows). Scale bar: 15 μm (e) Magnified detail of the inner ONL as indicated in (c). GFAP-positive astrocytes are closely
associated with blood vessels (arrowheads). Scale bar: 15 μm
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one to two endothelial cells, typical for capillaries (Joost et al., 2019;

Figure 4f,g and Figure S2). Hence, our results demonstrate pericytes

associated with capillaries in the ONL.

3.4 | Selective permeability of the blood brain
barrier in the ONL

One function of the BBB is a selectivity filter for molecular exchange

between brain tissue and blood; For example, entry of noxious sub-

stances into the brain parenchyma is restricted, whereas nutrients are

actively transported into brain tissue. Glucose, the main source of

energy in the brain, is transported across endothelial cells via glucose

transporters 1 (GLUT-1), released into the extracellular space, where

it is taken up by astrocytes, metabolized into lactate and provided to

neurons (Barros & Deitmer, 2010; Simpson, Carruthers, & Vannucci,

2007; Zhao et al., 2015). 2-deoxyglucose autoradiography studies

have shown high glucose consumption in the ONL (Benson et al.,

1985; Sharp et al., 1977). Since our previous results showed that

OECs ensheath not only OSN axons, but also blood vessels in the

ONL and thereby might link both structures together (Thyssen et al.,

2010), we asked whether OECs might take up glucose from the

F IGURE 2 Organization of the blood brain barrier (BBB) in PLP-CreERT2/tdT x GFAP-EGFP mice (a) tdTomato-expressing olfactory
ensheathing cells (OECs; red) are located in the olfactory nerve layer (ONL). Cell bodies of EGFP-expressing astrocytes (green) are located in the
glomerular layer (GL). Immunostaining against mouse IgG outlines the vascular network (blue) in the GL and ONL. One blood vessel crosses the
entire ONL and finally enters one glomerulus. Scale bar: 50 μm (b) Magnified detail as indicated in (a). EGFP-expressing astrocytes are tightly
associated with the blood vessel located in the inner ONL (arrows), while tdTomato-expressing OECs are in close contact to the same blood
vessel as it proceeds in the outer ONL (arrowhead). Scale bar: 20 μm (c) Electron micrograph of the BBB in the ONL. Blood vessels (lumen, L)
located in the ONL are ensheathed by OECs. One OEC is highlighted in red in the right panel. Scale bar: 2 μm. (d) Magnified detail from (c). OEC
processes are separated from the blood vessel by a thin layer of basal lamina (arrowheads). Scale bar: 1 μm
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perivascular space to provide energy to OSN axons. To monitor glu-

cose uptake into glial cells in previous studies, the fluorescent non-

hydrolyzable glucose analog 6-NBDG has been used in the cerebellum

and hippocampus in situ as well as in the somatosensory cortex

in vivo (Barros et al., 2009; Chuquet, Quilichini, Nimchinsky, &

Buzsaki, 2010; Jakoby et al., 2014). We used 6-NBDG to visualize glu-

cose uptake in olfactory bulb in-toto preparations of PLP-CreERT2 x

tdTomatofl/fl mice, enabling identification of OECs by tdTomato

expression. Under optical control, 6-NBDG was pressure-injected into

a large blood vessel located in the lateral ONL, resulting in loading of

6-NBDG into the blood vessel network (Figure 5a). OECs located

close to a 6-NBDG-filled blood vessel, but at least 100 μm apart from

the injection site, were analyzed. tdTomato-positive OECs adjacent to

blood vessels were labeled by 6-NBDG within 3–5 min after injection

of 6-NBDG into blood vessels, indicating glucose uptake by OECs

from the extracellular space close to blood vessels (Figure 5a). Inter-

estingly, OECs which were not directly associated with blood vessels,

but near 6-NBDG-loaded perivascular OECs, were also labeled by

6-NBDG, confirming previous results of gap junction coupling

between OECs (Piantanida et al., 2019; Rela, Bordey, & Greer, 2010).

We did not find apparent labeling of axon bundles by 6-NBDG,

suggesting that there is little uptake of glucose by axons in the ONL.

F IGURE 3 Astrocytic endfeet surround blood vessels in the inner olfactory nerve layer (ONL). (a) GFAP-positive astrocytes (red) co-localize
with AQP4 immunoreactivity (green). Blood vessels are immunostained against mouse IgG (blue). Scale bar: 50 μm. (b) Magnified detail from (a).
GFAP and AQP4 immunostaining colocalize in the inner ONL. One blood vessel extends from the glomerular layer (GL) to the ONL and is
ensheathed by AQP4- and GFAP-positive astrocytic endfeet in the inner ONL (arrowhead), while it is devoid of AQP4- and GFAP-expressing glial
processes in the outer ONL (arrows). Scale bar: 20 μm. (c) PLP-driven tdTomato expression (red) in olfactory ensheathing cells (OECs) in the ONL
(arrow) and oligodendrocytes in the GL (arrowhead). Scale bar: 50 μm. (d) Magnified detail from (c). Blood vessels located in the GL and inner ONL
are ensheathed by AQP4-positive astrocytic endfeet (arrowhead), whereas tdTomato-expressing OECs are associated with blood vessels located
in the outer ONL (arrow). Scale bar: 20 μm
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Endothelial cells are connected by tight junctions, which maintain

the barrier function by controlling paracellular diffusion of substances

from the blood stream into the CNS (Abbott et al., 2010). To investi-

gate the presence of the cytoplasmic tight junction protein, ZO-1

(zonula occludens 1) at the BBB in the ONL, we performed immuno-

fluorescent staining in NMRI mice (Wolburg et al., 2008; Wolburg &

Lippoldt, 2002; Figure 5b). The vasculature was visualized by the

detection of mouse IgGs. Blood vessels located in the entire ONL

F IGURE 4 Pericytes are part of the blood brain barrier (BBB) in the inner and outer olfactory nerve layer (ONL). (a) S100B (red) and PDGFRβ
immunoreactivity (green) in the ONL and the glomerular layer (GL). Nuclei were counterstained with Hoechst in the merged image (blue). Scale
bar: 50 μm. (b) The magnified detail from (a) depicts a longitudinal section of a blood vessel tightly ensheathed by PDGFRβ-positive pericytes
(green) and S100B-positive olfactory ensheathing cells (OECs; red) in the ONL. Scale bar: 25 μm. (c) Magnified details from (a), showing a cross
section of a blood vessel ensheathed by PDGFRβ-positive pericytes (green) and S100B-positive OECs (red) in the ONL. Scale bar: 12.5 μm.
(d) S100B (red), PDFGRβ (green) and AQP4 (blue) immunoreactivity in the GL and ONL (green). Scale bar: 50 μm. (e) Magnified detail of the ONL
as indicated in (d). A blood vessel is ensheathed by PDGFRβ-positive pericytes and AQP4-positive astrocytic endfeet in the inner ONL
(arrowhead), but lacks AQP4-positive ensheathment in the outer ONL (arrow). Scale bar: 25 μm. (f) Electron micrograph of the BBB in the ONL. A
pericyte (green outline in right panel) is directly located on a blood vessel composed by two endothelial cells (EC1 and EC2). L, lumen. Scale bar:
2 μm. (g) At higher magnification, the basal lamina is visible (arrowheads). Scale bar: 1 μm
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showed immunoreactivity against ZO-1, substantiating the presence

of tight junctions between adjacent endothelial cells at the BBB in the

ONL. Interestingly, blood vessels in the GL often showed less ZO-1

immunoreactivity. To analyze the impermeability for noxious sub-

stances of the BBB in the ONL, we perfused NMRI mice

transcardically with 2% lanthanum nitrate in glutaraldehyde. In elec-

tron micrographs, lanthanum nitrate is detected as a black precipitate

(Figure 5c). In case of leakage of the BBB, lanthanum nitrate diffused

across the inter-endothelial cleft into the sub-endothelial space, as it

has been shown for blood vessels in the olfactory lamina propria

(Wolburg et al., 2008). In the ONL, in contrast, lanthanum diffused

only a small distance between the endothelial cells, until further diffu-

sion was prevented by tight junctions, indicating an intact and imper-

meable BBB (Figure 5(d); Figure S2).

3.5 | Ca2+ signaling in OECs triggers vasoresponses
in the outer ONL

The ONL harbors at least two subpopulations of OECs differing in the

expression pattern of marker proteins, physiological properties and

their localization in the inner and outer ONL, respectively (Au et al.,

2002; Honore et al., 2012; Rela et al., 2010; Rela, Piantanida,

Bordey, & Greer, 2015; Thyssen et al., 2013). Release of glutamate

and ATP from OSN axons initiates Ca2+ responses in OECs in the

outer ONL, but not in OECs of the inner ONL, which instead propa-

gate spontaneous Ca2+ waves that do not include OECs of the outer

nerve layer (Stavermann et al., 2015; Thyssen et al., 2013). Since our

results demonstrate differences in the morphological relationship of

blood vessels and OECs between the outer and inner ONL, we asked

whether both subpopulations of OECs differ in their ability to initiate

vasoresponses. Therefore, we performed Ca2+ imaging experiments

using in-toto preparations of the olfactory bulb in which blood vessels

were visualized by SR101 injection. The Ca2+ indicator Fluo-4 AM

was pressure-injected into the ONL, resulting in labeling of OECs with

Fluo-4. Ca2+ transients in OECs of the outer ONL were induced by

focal pressure application of the mGluR agonist DHPG (100 μM) onto

the ONL (Thyssen et al., 2010). DHPG induced Ca2+ responses in

OECs of the outer ONL with an amplitude of 127.1 ± 10.1% ΔF

(n = 35), followed by a decrease in SR101 fluorescence by 25.3

± 3.3% (n = 18) in associated blood vessels, indicating vasoconstriction

(see ROI 2 in Figure 6a,b and Movie S1). Adjacent branches of the

capillaries responded with a delay (see ROIs 3 and 4), whereas no

vasoresponses could be observed in distal capillaries and upstream

arterioles (see ROIs 5 and 6). Spontaneous Ca2+ signals occurring dur-

ing Ca2+ wave propagation in OECs of the inner sublamina

F IGURE 5 Selective permeability of
the blood brain barrier (BBB) in the
olfactory nerve layer (ONL). (a) PLP
promotor-driven tdTomato expression
(red) in the ONL in an in-toto preparation.
The fluorescent glucose analog 6-NBDG
(green) was pressure-injected into a blood
vessel and spread within the vascular
network. tdTomato-positive OECs located

close to the blood vessels took up
6-NBDG (arrowheads), while distant
olfactory ensheathing cells (OECs) were
not labeled by 6-NBDG (arrows). Scale
bar: 5 μm. (b) ZO-1 immunoreactivity
(green) in the ONL and the GL. Nuclei
were counterstained with Hoechst (blue,
in merged image) and blood vessels were
immunostained against mouse IgG (red).
Blood vessels in the ONL are ensheathed
by ZO-1-positive tight junctions. Scale
bar: 50 μm. (c) Lanthanum nitrate was
transcardically perfused before fixation
and visualized by the black precipitation
in electron micrographs. Scale bar: 1 μm.
(d) Magnified detail from (c). Endothelial
tight junctions limited diffusion of
lanthanum nitrate out of the blood vessel
(arrow). Scale bar: 0.5 μm
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F IGURE 6 Ca2+ signaling in olfactory ensheathing cells (OECs) mediates vasoconstriction in the outer olfactory nerve layer (ONL). (a) Blood
vessels located in the outer ONL are injected with SR101 (red) and associated OECs are loaded with Fluo-4 (green). Image sequence of DHPG-
induced Ca2+ transients in OECs, followed by a decrease in SR101 fluorescence, indicating vasoconstriction. DHPG was pressure-applied from a
micropipette located at the left border of the image. Scale bar: 20 μm. (b) ROI1 (as indicated in (a)) represents an OEC selected for analysis. SR101
fluorescence was measured in ROI2 to 6 (as indicated in (a)). The inset represents the time course of Ca2+ signaling in OECs and the following
vasoconstriction in different sections of the vascular tree from higher-order capillaries (ROI2-4), primary capillary (ROI 5), and upstream arteriole
(ROI 6; see also Movie S1). The capillary directly adjacent to OECs responding to DHPG stimulation responded first and with the strongest
constriction (ROI2), followed by adjoining capillary sections (ROIs 3 and 4). No changes in vascular tone could be observed in distant capillaries
and the upstream arteriole (ROIs 5 and 6). (c) Image sequence of a spontaneous Ca2+ wave propagating in OECs of the inner ONL. Scale bar:
10 μm. (d) ROI1 represents the OEC selected for analysis in (c). SR101 fluorescence was measured in ROI2 as indicated in (c). Spontaneous Ca2+

wave propagation in OECs (represented by ROI1) is not followed by a change in blood vessel diameter (ROI2; see also Movie S2)
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(Stavermann et al., 2015), in contrast, did not trigger vasoconstriction

of associated blood vessels (Figure 6c,d; Movie S2).

The results show that Ca2+ responses in OECs of the outer sub-

lamina are capable to trigger local changes in blood vessel diameter. In

the inner ONL, on the other hand, vasoresponses were not evoked by

Ca2+ signals in OECs, supporting the notion that there are functional

differences between the two subpopulation of OECs regarding the

gliovascular interface.

4 | DISCUSSION

In the present study, we investigated the cellular organization of the

BBB in the ONL, using electron microscopy and immunofluorescence

staining. Our results showed that in the outer sublamina of the ONL,

S100B-, and PLP-tdTomato-positive OECs were closely associated with

the vasculature, whereas GFAP- and AQP4-positive astrocyte processes

were sparse and not joint with blood vessels. In contrast, astrocytic

endfeet in the inner sublamina of the ONL enwrapped blood vessels

abundantly, indicating that there are cellular differences in the organiza-

tion of the BBB within the two sublaminae of the ONL (Figure 7).

4.1 | OECs and astrocytes are part of the BBB at
the CNS-PNS transitional zone

The ONL consists of incoming axons of olfactory sensory neurons and

OECs, which support growth and guidance of axons from the

periphery into the CNS (Doucette, 1990, 1991). Therefore, the ONL

represents the CNS-PNS transitional zone, in which the exact borders

of CNS and PNS are still under debate (Barnett & Riddell, 2004; Douc-

ette, 1991; Windus et al., 2010). The glia limitans covers the CNS and

controls the diffusion of substances into the CNS in combination with

the BBB. Recently, Nazareth et al. (2019) have suggested that the glia

limitans consists of astrocytes alone, thus at least the outer sublamina

of the ONL remains PNS, since astrocytes are absent in the outer

ONL (Au et al., 2002; Doucette, 1991). However, the blood nerve bar-

rier (BNB), which is the counterpart to the BBB in the PNS, signifi-

cantly differs in the cellular organization by lacking a glial

compartment (Kanda, 2013). Here, we show that in the outer sub-

lamina of the ONL, S100B-, and PLP-tdtomato positive OECs are in

close contact to the vasculature, whereas in the inner sublamina,

GFAP- and AQP4-positive astrocytes are part of the BBB (Figures 1

and 2). Similar results were obtained in an ultrastructural study in

macaques, showing the association of OECs with local blood vessels

(Herrera, Casas, Bates, & Guest, 2005). In contrast, blood vessels of a

larger diameter that penetrate the entire ONL (penetrating arterioles)

are intensely covered by astrocytes (Doengi et al., 2009; Petzold

et al., 2008). Our results suggest that the vasculature in both sub-

laminae of the ONL is associated with glial cells, in contrast to the

BNB in the PNS. OECs originate from the neural crest, share Schwann

cell properties and are therefore considered peripheral glial cells

(Barraud et al., 2010; Doucette, 1991; Nazareth et al., 2019). How-

ever, OECs are also gap junction-coupled to astrocytes that project

into the ONL, forming one functional unit (Beiersdorfer et al., 2019).

In addition, OECs in the ONL contribute to the glial limitans and the

BBB, considering the entire ONL being part of the CNS (Boyd, Skihar,

Kawaja, & Doucette, 2003; Doucette, 1991; Herrera et al., 2005;

Windus et al., 2010). Furthermore, the BBB and the BNB differ in

their permeability properties in means of lanthanum diffusion. Our

results show that the vasculature in the ONL is impermeable for lan-

thanum, a hallmark for the BBB, in contrast to the BNB in the sural

nerve and the olfactory lamina propria (MacKenzie, Ghabriel, & Allt,

1987; Wolburg et al., 2008). Taken together, OECs share properties

of peripheral and central glial cells, resulting in blurring of the PNS-

CNS transitional zone in the ONL and thereby enabling the entry of

axons through the olfactory nerve into the brain, a process that is

suppressed in other parts of the CNS (Smith, Falone, & Frank, 2012).

4.2 | OECs mediate neurovascular and
neurometabolic coupling in the outer ONL

Neuronal activity mediates Ca2+ transients in astrocytes, initiating the

production and release of vasoactive substances, such as arachidonic

acid and prostaglandins, causing a change in arteriole diameter (Filosa

et al., 2004; Gordon et al., 2007; Mulligan & MacVicar, 2004; Zonta

et al., 2003). In the olfactory bulb, odor stimulation evoked Ca2+ tran-

sients in perivascular astrocytic endfeet resulting in vasodilatation of

arterioles of the inner ONL in vivo (Petzold et al., 2008). We show

that ectopic release of glutamate and ATP by OSN axons induced

F IGURE 7 Blood brain barrier in the mouse olfactory nerve layer.
Capillaries in the outer sublamina of the olfactory nerve layer (ONL)
are covered by pericytes (P) and processes of olfactory ensheathing
cells (OECs). In the inner sublamina of the ONL, capillaries are
covered by pericytes and endfeet of astrocytes (AC), the somata of
which are located in the glomerular layer (GL) comprising glomeruli
(G). L, lumen of capillary. Illustration by SciGraphics
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Ca2+ responses in OECs of the outer ONL, resulting in subsequent

vasoconstrictions of neighboring blood vessels (Thyssen et al., 2010;

Figure 6a,b), while spread of Ca2+ waves in OECs of the inner ONL

did not influence blood vessel diameter (Figure 6c,d). These findings

are in accordance to our histological data, showing that in the outer

sublamina, OECs are closely associated with blood vessels, whereas in

the inner ONL the vasculature is devoid of OECs but enwrapped by

astrocyte endfeet. The results indicate that the two subpopulations of

OECs in the inner and outer sublamina not only differ in the presumed

interaction with regrowing axons but also in their interaction with the

vasculature. In the mouse olfactory bulb, odor stimulation results in

dilation of capillaries in the vicinity of glomeruli with odor-dependent

synaptic activity; however, capillary dilation was preceded by dilation

of up-stream arterioles more than 100 μm apart located in the exter-

nal and mitral cell layer (Rungta, Chaigneau, Osmanski, & Charpak,

2018). The dilation, possibly mediated by potassium-dependent back-

propagating hyperpolarization along the endothelium, was wide-

spread and comprised the entire tree of arteriole, first and higher

order capillaries (Longden, Hill-Eubanks, & Nelson, 2016; Longden &

Nelson, 2015; Rungta et al., 2018). On the contrary, we showed local

constriction of capillaries triggered by Ca2+ transients in OECs with-

out previous vasoresponses of upstream capillaries and arterioles

(Figure 6a,b; Thyssen et al., 2010). Local constriction of capillaries

points to contractility of pericytes, which are present in the ONL

(Figure 3). However, it is yet unclear whether pericytes in the brain

are able to actively contract (Alarcon-Martinez et al., 2018; Hall et al.,

2014; Hill et al., 2015; Vanlandewijck & Betsholtz, 2018). Retrograde

hyperpolarization of upstream arterioles, as described above, is caused

by accumulation of extracellular potassium after neuronal activity,

which activates inward-rectifier K+ channels producing a fast hyper-

polarization of the endothelium (Longden et al., 2017). However, in

our experimental conditions, neuronal activity and the subsequent

enrichment of external K+ is lacking, which might account for differ-

ences between our study and Rungta et al. (2018). In summary, the

present and previous studies show that the mechanism that links neu-

ronal activity to hyperemia is complex and OECs should be included

in the models of neurovascular coupling in the olfactory bulb,

although future experiments have to unravel the definite role OECs

and possible intermediates play therein.

Neuronal information processing is a highly energy-consuming

mechanism. To meet those needs, transport of nutrients across the

BBB is essential. 2-deoxyglucose studies show high energy consump-

tion in the ONL, an area that lacks cell bodies of astrocytes that classi-

cally provide metabolic support to neurons (Giaume, Koulakoff, Roux,

Holcman, & Rouach, 2010; Sharp et al., 1977). Our results demon-

strate that axon-associated OECs are in close contact to the vascula-

ture, thereby adopting the ideal position to supply metabolites to

axons. Additionally, OECs exhibit the ability to take up glucose from

the perivascular space (Figure 5a). This result is confirmed by early

2-deoxyglucose studies that suggest glucose uptake in glial cells of

the ONL (Benson et al., 1985). Moreover, a morphological study

shows the expression of glucose transporter-1 (GLUT-1) in OECs of

the lamina propria (Nunez-Parra et al., 2011), supporting the notion

that OECs possess the molecular machinery for glucose uptake at

the BBB.

Our study shows that OECs in the outer ONL are part of a func-

tional BBB, a hallmark exclusively attributed to astrocytes so far.

Functional properties of perivascular OECs comprise glucose uptake

and neurovascular coupling, capillaries in the ONL are surrounded by

pericytes, and tight junctions between endothelial cells efficiently

shield the neural parenchyma from noxious substances. Hence, the

OEC-based BBB in the ONL shares the most important properties of

the BBB in the rest of the brain.
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