
Learning from Imperfect Data
Incremental Learning and Few-shot Learning

Yaoyao Liu

A dissertation submitted towards the degree
Doctor of Engineering (Dr.-Ing.)

of the Faculty of Mathematics and Computer Science
of Saarland University

Saarbrücken, 2023

Date of Colloquium: Januray 27
th, 2023

Dean of the Faculty: Prof. Dr. Jürgen Steimle
Chair of the Committee: Prof. Dr. Eddy Ilg
Reviewers: Prof. Dr. Bernt Schiele

Prof. Dr. Tinne Tuytelaars
Prof. Dr. Siyu Tang

Academic Assistant: Shaoshuai Shi, Ph.D.

To my parents and my fiancée.

A B S T R A C T

In recent years, artificial intelligence (AI) has achieved great success in many fields, e.g., com-
puter vision, speech recognition, recommendation engines, and neural language processing.
Although impressive advances have been made, AI algorithms still suffer from an important
limitation: they rely on large-scale datasets. In contrast, human beings naturally possess the
ability to learn novel knowledge from real-world and imperfect data such as a small number
of samples or a non-static continual data stream. Attaining such an ability is particularly
appealing.

Specifically, an ideal AI system with human-level intelligence should work with the
following imperfect data scenarios. 1) The training data distribution changes while learning.
In many real scenarios, data are streaming, might disappear after a given period of time, or
even can not be stored at all due to storage constraints or privacy issues. As a consequence,
the old knowledge is over-written, a phenomenon called catastrophic forgetting. 2) The
annotations of the training data are sparse. There are also many scenarios where we do not
have access to the specific large-scale data of interest due to privacy and security reasons. As
a consequence, the deep models overfit the training data distribution and are very likely to
make wrong decisions when they encounter rare cases.

Therefore, the goal of this thesis is to tackle the challenges and develop AI algorithms
that can be trained with imperfect data. To achieve the above goal, we study three topics in
this thesis. 1) Learning with continual data without forgetting (i.e., incremental learning).
2) Learning with limited data without overfitting (i.e., few-shot learning). 3) Learning with
imperfect data in real-world applications (e.g., incremental object detection).

Our key idea is learning to learn/optimize. Specifically, we use advanced learning
and optimization techniques to design data-driven methods to dynamically adapt the key
elements in AI algorithms, e.g., selection of data, memory allocation, network architecture,
essential hyperparameters, and control of knowledge transfer. We believe that the adaptive
and dynamic design of system elements will significantly improve the capability of deep
learning systems under limited data or continual streams, compared to the systems with
fixed and non-optimized elements. More specifically, we first study how to overcome the
catastrophic forgetting problem by learning to optimize exemplar data, allocate memory,
aggregate neural networks, and optimize key hyperparameters. Then, we study how
to improve the generalization ability of the model and tackle the overfitting problem by
learning to transfer knowledge and ensemble deep models. Finally, we study how to
apply incremental learning techniques to the recent top-performance transformer-based
architecture for a more challenging and realistic vision, incremental object detection.

v

Z U S A M M E N FA S S U N G

Künstliche Intelligenz (KI) hat in den letzten Jahren in vielen Bereichen große Erfolge erzielt,
z. B. Computer Vision, Spracherkennung, Empfehlungsmaschinen und neuronale Sprachver-
arbeitung. Obwohl beeindruckende Fortschritte erzielt wurden, leiden KI-Algorithmen
immer noch an einer wichtigen Einschränkung: Sie sind auf umfangreiche Datensätze
angewiesen. Im Gegensatz dazu besitzen Menschen von Natur aus die Fähigkeit, neuartiges
Wissen aus realen und unvollkommenen Daten wie einer kleinen Anzahl von Proben oder
einem nicht statischen kontinuierlichen Datenstrom zu lernen. Das Erlangen einer solchen
Fähigkeit ist besonders reizvoll.

Insbesondere sollte ein ideales KI-System mit Intelligenz auf menschlicher Ebene mit
den folgenden unvollkommenen Datenszenarien arbeiten. 1) Die Verteilung der Train-
ingsdaten ändert sich während des Lernens. In vielen realen Szenarien werden Daten
gestreamt, können nach einer bestimmten Zeit verschwinden oder können aufgrund von
Speicherbeschränkungen oder Datenschutzproblemen überhaupt nicht gespeichert werden.
Infolgedessen wird das alte Wissen überschrieben, ein Phänomen, das als katastrophales
Vergessen bezeichnet wird. 2) Die Anmerkungen der Trainingsdaten sind spärlich. Es
gibt auch viele Szenarien, in denen wir aus Datenschutz- und Sicherheitsgründen keinen
Zugriff auf die spezifischen großen Daten haben, die von Interesse sind. Infolgedessen
passen die tiefen Modelle zu stark an die Verteilung der Trainingsdaten an und treffen sehr
wahrscheinlich falsche Entscheidungen, wenn sie auf seltene Fälle stoßen.

Daher ist das Ziel dieser Arbeit, die Herausforderungen anzugehen und KI-Algorithmen
zu entwickeln, die mit unvollkommenen Daten trainiert werden können. Um das obige Ziel
zu erreichen, untersuchen wir in dieser Arbeit drei Themen. 1) Lernen mit kontinuierlichen
Daten ohne Vergessen (d. h. inkrementelles Lernen). 2) Lernen mit begrenzten Daten ohne
Überanpassung (d. h. Lernen mit wenigen Schüssen). 3) Lernen mit unvollkommenen
Daten in realen Anwendungen (z. B. inkrementelle Objekterkennung).

Unser Leitgedanke ist Lernen lernen/optimieren. Insbesondere verwenden wir fortschrit-
tliche Lern- und Optimierungstechniken, um datengesteuerte Methoden zu entwerfen, um
die Schlüsselelemente in KI-Algorithmen dynamisch anzupassen, z. B. Auswahl von Daten,
Speicherzuweisung, Netzwerkarchitektur, wesentliche Hyperparameter und Steuerung des
Wissenstransfers. Wir glauben, dass das adaptive und dynamische Design von Systemele-
menten die Leistungsfähigkeit von Deep-Learning-Systemen bei begrenzten Daten oder
kontinuierlichen Streams im Vergleich zu Systemen mit festen und nicht optimierten El-
ementen erheblich verbessern wird. Genauer gesagt untersuchen wir zunächst, wie das
katastrophale Vergessensproblem überwunden werden kann, indem wir lernen, Beispiel-
daten zu optimieren, Speicher zuzuweisen, neuronale Netze zu aggregieren und wichtige
Hyperparameter zu optimieren. Dann untersuchen wir, wie die Verallgemeinerungsfähigkeit
des Modells verbessert und das Overfitting-Problem angegangen werden kann, indem wir
lernen, Wissen zu übertragen und tiefe Modelle in Ensembles zusammenzufassen. Schließlich
untersuchen wir, wie man inkrementelle Lerntechniken auf die jüngste transformatorbasierte
Hochleistungsarchitektur für eine anspruchsvollere und realistischere Vision, inkrementelle
Objekterkennung, anwendet.

vii

A C K N O W L E D G E M E N T S

First and foremost, I would like to express my most sincere gratitude to my main supervisor,
Prof. Bernt Schiele. He is always supportive, insightful, and helpful. During the past three
years, he has given me a lot of freedom to choose the research topics that I am interested
in. During our meetings, he gave me many insightful suggestions on research, life, and
career. He provided me with many opportunities to improve myself, including attending the
ELLIS project and the ICVSS summer school. He also provided me with a lot of guidance
and encouragement when I was facing difficulties. For these reasons, Bernt is an incredible
advisor to have.

I would also like to thank my second supervisor, Prof. Qianru Sun. We have been
working together for many years, and she was the mentor of my first research project when I
was at the National University of Singapore. She taught me a lot of things, including coding,
reviewing, paper writing, and presentations. She also provided me with a lot of help in my
life. When I was in Singapore, she recommended participating in jogging and marathon,
and introduced a lot of new friends to me. She also guided me during my first academic
conference, CVPR 2019. I am truly grateful to have had the opportunity to work with her for
these years.

I would like to thank my co-advisors in the ELLIS Ph.D. project, Dr. Christian Rupprecht
and Prof. Andrea Vedaldi. They are truly talented and always nice. They gave me a lot
of suggestions for my research project during our weekly meetings, spent a lot of time on
revising my papers, and provided me with many wonderful future research ideas. They
are also very supportive and helpful, providing me with many wonderful opportunities. I
would really love to say thank you to them.

I am deeply thankful to all the members of my thesis committee, Prof. Tinne Tuytelaars,
Prof. Siyu Tang, Prof. Eddy Ilg, and Shaoshuai Shi, Ph.D. My defense schedule is so tight,
and they provide me with a lot of flexibility. During the defense, they gave me a lot of
insightful suggestions and comments on my work. I am truly grateful to have them on my
Ph.D. committee.

I would like to express my gratitude towards our secretary, Connie Balzert. She is super
nice and provided me with a lot of assistance during my life in Germany. We worked
together on many tasks, e.g., the high-level computer vision courses. She is really supportive
and helpful.

I would also like to thank my wonderful colleagues at Max Planck Institute. We had in-
depth discussions, weekly seminars, reading groups, retreats, lunches, and dinners together.
They are all very talented and nice. I particularly want to thank Anna, Anurag, Fan, Moritz,
David, Mattia, Siddhartha, Yong, Mo, Xudong, Xinting, Wenjia, Li, Shaoshuai, Jan Eric, Zhi,
Max, Sukrut, Christopher, Yiting, Yang, Yongqin, Ning, Jiangxin, Dengxin, Stephan, Margret,
Steffen, Jovita, Bharat, Julian, Vladimir, Aymen, Gerard, Garvita, Xiaohan, Keyang, Ahmed,
Paul, Hejing, Arpit, as well as all other current and former colleagues. I would also like to
thank the staff from the IST service team and the international office.

Outside MPI, I specifically want to thank my friends in Saarbrücken and other parts of
the world, Miaoran Zhang, Dingfan Chen, Hui-Po Wang, Xueting Li, Rui Ye, Yingwei Li, Xin
Wang, Ruibing Hou, Chen Gao, Shu Liu. They gave me a lot of help in both life and research.

ix

x

Their friendship and support are very important during my Ph.D.
I would also like to thank my advisors and colleagues when I was at the National

University of Singapore and Tianjin University. I particularly want to mention Prof. Tat-Seng
Chua, Prof. Hanwang Zhang, Prof. An-An Liu, Prof. Yuting Su, Na Zhao, Lizi Liao, Fuli
Feng, Xiang Wang, Yunshan Ma, Yixin Cao, Xindi Shang, Lixi Deng, Yujuan Ding, Xiaoyu
Du, Xun Yang, Yingwei Wei, Jingjing Chen, Zikun Hu, Junbin Xiao, Zhe Jin, Wenhui Li,
Ning Xu, Yao Lu, Xin Zhang, Lei Xu, Nannan Liu, Zhuang Shao, as well as all other former
colleagues.

I dedicate this thesis to my parents and my fiancée for their unconditional love and
support for my study in Germany. My fiancée, Yingying, is not only my partner in life but
also a great company in pursuing my academic dreams. She gave me a lot of suggestions for
my papers and talks. She also gave me valuable insights on how to do research. Without
their love and help, this dissertation could not have been possible.

C O N T E N T S

1 Introduction 1
1.1 Incremental learning: learning with continual data without forgetting 3

1.1.1 Challenges in incremental learning . 4

1.1.2 Our contributions . 4

1.2 Few-shot learning: learning with limited data without overfitting 5

1.2.1 Challenges in few-shot learning . 6

1.2.2 Our contributions . 7

1.3 Incremental object detection: learning in real-world applications 7

1.3.1 Challenges in incremental object detection 8

1.3.2 Our contributions . 8

1.4 Outline of the Thesis . 9

1.5 Publications . 11

2 Related Work 13
2.1 Incremental learning . 13

2.1.1 Problem definition . 14

2.1.2 Evaluation protocols . 14

2.1.3 A literature review of incremental learning methods 14

2.1.4 Connections to our work . 16

2.2 Few-shot learning . 17

2.2.1 Problem definition and evaluation protocol 18

2.2.2 A literature review of few-shot learning methods 18

2.2.3 Connections to our work . 19

2.3 Incremental object detection . 20

2.3.1 Problem definition and evaluation protocol 20

2.3.2 A literature review of incremental object detection methods 20

2.3.3 Connections to our work . 21

I Incremental Learning: Learning with Continual Data without Forgetting 23

3 Learning to Optimize Exemplar Data 25
3.1 Introduction . 25

3.2 Related Work . 27

3.3 Methodology . 28

3.3.1 Denotations for CIL . 28

3.3.2 Distillation Loss for CIL . 28

3.3.3 Global BOP . 29

3.3.4 Model-level problem . 29

3.3.5 Exemplar-level problem . 30

3.4 Weight transfer operations . 31

3.5 Algorithm . 32

xi

xii contents

3.6 Experiments . 34

3.6.1 Datasets and implementation details . 34

3.6.2 Results and analyses . 37

3.7 Conclusion . 39

4 Learning to Allocate Memory 41
4.1 Introduction . 42

4.2 Related Work . 43

4.3 Methodology . 44

4.3.1 Denotations for CIL . 44

4.3.2 Preliminaries for Reinforcement Learning 45

4.3.3 Formulation of RMM . 45

4.3.4 Optimization . 47

4.3.5 Algorithm . 48

4.4 Experiments . 50

4.4.1 Datasets and Implementation Details . 50

4.4.2 Results and Analyses . 51

4.5 Conclusion . 53

5 Learning to Aggregate Neural Networks Adaptively 55
5.1 Introduction . 55

5.2 Related Work . 57

5.3 Methodology . 58

5.3.1 Architecture Details . 58

5.3.2 Optimization Steps . 60

5.3.3 Algorithm . 61

5.4 Experiments . 62

5.4.1 Datasets and Implementation Details . 62

5.4.2 Results and Analyses . 64

5.5 Conclusions . 68

6 Learning to Optimize the Hyperparameter Online 69
6.1 Introduction . 69

6.2 Related Work . 72

6.3 Methodology . 73

6.3.1 Denotations for CIL . 73

6.3.2 An Online MDP Formulation for CIL . 73

6.3.3 Optimizable Hyperparameters . 74

6.3.4 Policy Learning . 75

6.4 Experiments . 79

6.4.1 Datasets and Implementation Details . 79

6.4.2 Results and Analyses . 79

6.5 Conclusions . 82

II Few-shot Learning: Learning with Limited Data without Overfitting 83

7 Learning to Transfer Knowledge 85

contents xiii

7.1 Introduction . 86

7.2 Related work . 87

7.3 Methodology . 89

7.3.1 Denotations for meta-learning . 89

7.3.2 Meta-transfer learning (MTL) . 90

7.3.3 Hard task (HT) meta-batch . 92

7.3.4 Meta-gradient regularization . 94

7.3.5 The overall algorithm . 94

7.3.6 Plug MTL into baseline methods . 94

7.4 Experiments . 95

7.4.1 Datasets . 95

7.4.2 Implementation details . 96

7.4.3 Comparison to the state-of-the-art . 98

7.4.4 Plug-in evaluation . 102

7.4.5 Ablation study . 103

7.4.6 Statistical data of SS . 104

7.5 Conclusion . 106

8 Learning to Ensemble Deep Models 107
8.1 Introduction . 107

8.2 Related Works . 109

8.3 An Ensemble of Epoch-wise Empirical Bayes Models 110

8.3.1 Denotations . 110

8.3.2 Empirical Bayes method . 111

8.3.3 Learning the ensemble of base-learners 113

8.3.4 Meta-learning the hyperprior learners . 114

8.3.5 Plugging-in to baseline methods . 115

8.4 Experiments . 115

8.4.1 Datasets and implementation details . 115

8.4.2 Results and analyses . 117

8.5 Conclusions . 119

III Incremental Object Detection: Learning in Real-world Applications 121

9 Continual Detection Transformer 123
9.1 Introduction . 123

9.2 Related Work . 125

9.3 Methodology . 126

9.3.1 Incremental object detection . 126

9.3.2 Transformer-based detectors . 126

9.3.3 Detector knowledge distillation . 128

9.3.4 Distribution-preserving calibration . 131

9.4 Experiments . 132

9.4.1 Dataset and implementation details . 132

9.4.2 Results and analyses . 135

9.5 Conclusions . 136

xiv contents

10 Conclusion and Future Work 139
10.1 Discussions of contributions . 140

10.1.1 Incremental learning . 140

10.1.2 Few-shot learning . 141

10.1.3 Incremental object learning . 142

10.2 Future directions . 142

10.2.1 Incremental learning . 142

10.2.2 Few-shot learning . 143

10.2.3 A broader view on the topic . 143

List of Figures 145

List of Tables 151

Bibliography 155

1I N T R O D U C T I O N

Contents
1.1 Incremental learning: learning with continual data without forgetting . . . 3

1.1.1 Challenges in incremental learning 4

1.1.2 Our contributions . 4

1.2 Few-shot learning: learning with limited data without overfitting 5
1.2.1 Challenges in few-shot learning . 6

1.2.2 Our contributions . 7

1.3 Incremental object detection: learning in real-world applications 7
1.3.1 Challenges in incremental object detection 8

1.3.2 Our contributions . 8

1.4 Outline of the Thesis . 9
1.5 Publications . 11

In recent years, artificial intelligence (AI) has achieved great success in many fields. In
computer vision, AI algorithms have applications in photo tagging on social media,
radiology imaging in healthcare, and self-driving cars within the automotive industry.

In speech recognition, AI helps mobile devices to conduct voice searches—e.g., Siri—or
improve accessibility for texting. In recommendation engines, AI algorithms can help to
discover data trends that can be used to develop more effective cross-selling strategies, which
are used by online retailers to make relevant product recommendations to customers during
the checkout process [IBM20].

Although impressive advances have been made, AI algorithms still suffer from an
important limitation: they rely on the quality and size of the training dataset. A well-built
and large-scale dataset is a critical condition for learning a powerful AI model. In most AI
algorithms, training data are assumed to satisfy the following two requirements: 1) they
contain a massive amount of manually annotated samples [Xia20]; 2) they are independently
and identically distributed (i.i.d.), i.e., the data distribution is assumed static [Les20].

In contrast, human beings naturally possess the ability to learn novel knowledge from
real-world and imperfect data, such as a small number of samples or a non-static continual
data stream. For example, a child can easily learn new concepts from several new things
every day without forgetting the old concepts.

Attaining such an ability is particularly appealing and will push the AI models one step
further toward human-level intelligence. Specifically, an ideal AI system with human-level
intelligence should work with the following imperfect data scenarios:

• The training data distribution changes while learning. In many real scenarios, data are
streaming, might disappear after a given period of time, or even can’t be stored at all
due to storage constraints or privacy issues. As a consequence, the old knowledge is
over-written, a phenomenon called catastrophic forgetting [Alj19].

• The annotations of the training data are sparse. Collecting and manually labeling a
large-scale amount of data can be very expensive and time-consuming. There are also

1

2 chapter 1. introduction

many scenarios where scientists do not have access to the specific large-scale data of
interest due to privacy and security reasons. As a consequence, the deep models overfit
the training data and are very likely to make wrong decisions when they encounter rare
circumstances [Yav20].

Therefore, the goal of this thesis aims to tackle the challenges above and develop AI algo-
rithms that can be trained with imperfect data. Our key idea is learning to learn/optimize,
i.e., using advanced learning and optimization techniques to design data-driven methods
to dynamically adapt the key elements in AI algorithms, e.g., selection of data, memory
allocation, network architecture, essential hyperparameters, and control of knowledge trans-
fer. We believe that the adaptive and dynamic design of system elements will significantly
improve the capability of deep learning systems under limited data or continual streams,
compared to the systems with fixed and non-optimized elements.

The key contributions are briefly summarized below regarding the main topics of this
thesis.

• Learning with continual data without forgetting (i.e., incremental learning). In Part I,
we study how to overcome the catastrophic forgetting problem by learning to optimize
exemplar data, combine neural networks, and allocate memory. More specifically,

– In Chapter 3, we propose a novel training framework by leveraging bilevel optimization
to optimize a set of synthesized exemplar data to retain old knowledge.

– In Chapter 4, we introduce a dynamic memory management strategy that learns to
allocate memory budgets for different object classes in different incremental learning
phases. The key technique is to utilize reinforcement learning to learn a policy to
allocate memory for each class.

– In Chapter 5, we develop a generic network architecture that learns to combine high-
stability and high-plasticity neural network blocks.

– In Chapter 6, we further balance the stability-plasticity trade-off for different data-
receiving settings of incremental learning by introducing an online learning method
that can adaptively optimize the tradeoff without knowing the setting as a priori.

• Learning with limited data without overfitting (i.e., few-shot learning). In Part II, we
study how to improve the generalization ability of the model and tackle the overfitting
problem by learning to transfer knowledge and ensemble deep models. Specifically,

– In Chapter 7, we design a meta-transfer learning framework that allows us to leverage
the transferrable pattern learned from existing large-scale tasks using meta-learning.

– In Chapter 8, we introduce a method that learns to ensemble deep models to reduce the
model uncertainty in few-shot learning.

• Learning in real-world applications (e.g., incremental object detection). In Part III,
we apply incremental learning and few-shot learning algorithms in more challenging
real-world applications. Specifically,

– In Chapter 9, we propose a ContinuaL DEtection TRansformer (CL-DETR), a new
method for transformer-based incremental object detection that enables effective usage
of knowledge distillation and exemplar replay in a more realistic computer vision task,
object detection.

For the rest of this chapter, we discuss each topic and explain our contributions. Then,
we provide an outline of the thesis with relevant publications.

1.1 incremental learning: learning with continual data without forgetting3

1.1 incremental learning: learning with continual data without for-
getting

Incremental learning, which is also referred to as continual learning [LAM+
22, AKT19, LR17]

or lifelong learning [ACT17, CL18, CRRE19], deals with the challenge of acquiring knowledge
from training data obtained gradually over time. The core concept of incremental learning
is to enable deep learning algorithms to learn from real-world data sources, where not all
information is immediately available and needs to be processed sequentially. Incremental
learning aims to overcome the limitations of traditional machine learning methods that
require access to complete datasets upfront. By embracing incremental learning, deep
learning models can adapt and improve as new data becomes available, allowing them
to continuously enhance their performance and accumulate knowledge over time [Cha20,
Les20].

In incremental learning, the key principle is that only a limited portion of the training
data is accessible at any given time, and storing most of the old data may not be feasible
due to storage constraints or privacy concerns [Alj19]. As a result, the available memory is
often restricted to a small budget, and a subset of the old data is stored as exemplars to be
replayed in the future [RKSL17, DCO+

20, WZYZ22].

Incremental learning mainly has two settings: class-incremental and task-incremental
settings. In the class-incremental setting, the training data for new classes is presented in
each phase, and the model is evaluated on a joint test set for all classes encountered so far.
In contrast, the task-incremental setting involves receiving the training data for a new task
in each phase and evaluating the model on the test sets for all previous tasks separately.
We primarily focus on the class-incremental setting, which is more practical and realistic for
real-world scenarios. Moreover, class-incremental learning methods can be easily extended
to the task-incremental setting [LH18, RKSL17], making it a necessary condition to address
real-life challenges effectively [Les20].

The main challenge in developing an effective incremental learning method is the
catastrophic forgetting problem of previously learned information when new knowledge
is acquired [Rat90, Cha20, Alj19]. To address this issue, popular methods such as Ex-
emplar Replay (ER) and Knowledge Distillation (KD) have been developed. ER meth-
ods [RKSL17, LSL+

20, LSS21b, WZY+
22, CMG+

18, LWM+
20] involve memorizing some of

the past training data or exemplars, and replaying them in subsequent phases to recall old
knowledge. On the other hand, KD methods [LH18, DCO+

20, HPL+
19, HTM+

21, ZXG+
20]

involve introducing regularization terms in the learning objective to preserve previous knowl-
edge when training the model on new data. The key concept behind KD is to encourage
the new model’s logits or feature maps to be similar to those of the old model. By utilizing
these methods, researchers aim to create more effective and efficient incremental learning
approaches that can improve upon current models.

Despite the success of ER and KD methods, there are still significant challenges that need
to be addressed in incremental learning for image classification. In the following, we will
discuss these challenges in detail. After that, we will provide a summary of our contributions
in this area.

4 chapter 1. introduction

1.1.1 Challenges in incremental learning

• Choice of exemplars. How to choose the most representative exemplars is a funda-
mental challenge of ER methods. However, existing methods to extract exemplars are
based on heuristically designed rules, e.g., the nearest neighbors around the average
sample in each class (named herding) [DCO+

20, WZYZ22, RKSL17], but turn out to be
not particularly effective [LSL+

20]. Thus, it is very important to design better exemplar
selection methods to effectively leverage the limited memory budget.

• Imbalanced memory usage. As the memory budget is limited and the training
environment is ever-changing, it is very important to control memory allocation
precisely. However, existing methods [DCO+

20, WZYZ22, RKSL17] allocate memory
between the old and new classes in an arbitrary and static fashion, e.g., 20 per old class
vs. 1, 300 per new class for the ImageNet-Full dataset. This causes a serious imbalance
between the old and new classes and can exacerbate the problem of catastrophic
forgetting. Thus, it is necessary to design a dynamic memory management strategy.

• Static network architectures. As the deep networks observe new training data in
each phase, the network architecture needs to be adjusted accordingly. However,
most of the existing methods [DCO+

20, WZYZ22, RKSL17] apply a fixed network
architecture for all phases, which is obviously sub-optimal. Some methods [XZ18,
HFLR19] try to add new filters and layers to capture the new knowledge, but they
violate the memory constraints of incremental learning because they make the number
of network parameters grow linearly with the number of phases. Therefore, how
to adjust the network architecture dynamically without increasing memory usage is
another important challenge.

• Prefixed hyperparameters. In incremental learning, key hyperparameters, e.g., KD
loss weights, learning rates, and classifier types, significantly influence the final perfor-
mance [LLSS23a]. However, existing methods prefix hyperparameters for all phases
before knowing how data will be received in the future, thus generating suboptimal
performance. How to dynamically obtain the optimal hyperparameters for each phase
remains an open question.

1.1.2 Our contributions

In this section, we summarize our contributions to addressing the above main challenges of
incremental learning for classification.

In Chapter 3, we tackle the first challenge, sub-optimal exemplars, by developing an
automatic exemplar extraction framework called mnemonics training. In this framework, we
parameterize the exemplars using image-size parameters and then optimize them in an
end-to-end scheme. Using mnemonics training, the incremental learning model in each
phase can not only learn the optimal exemplars from the new class data but also adjust
the exemplars of previous phases to fit the current data distribution. Empirical results
show our mnemonics exemplars yield consistently clear separations among classes, from
early to late phases. We can observe that our mnemonics exemplars are mostly located
on the boundary of the class data distribution, which is essential to derive high-quality
classifiers. Our framework can be combined with different incremental learning baselines

1.2 few-shot learning: learning with limited data without overfitting 5

and consistently improves performance.
In Chapter 4, we address the second challenge, imbalanced memory usage, by proposing

reinforced memory management (RMM), which learns an optimal memory management
policy for each incremental phase using reinforcement learning. We design a new policy
function to contain two sub-functions that propagate two levels of actions in a hierarchical
way. The level-1 function determines how to split memory between the old and new data,
and the level-2 function determines how to allocate memory for each old class. We conduct
extensive experiments by plugging RMM into two top-performing incremental learning
methods and testing them on different datasets. Our results show the clear and consistent
superiority of our RMM.

In Chapter 5, we address the third challenge, static network architectures, by introducing
a novel network architecture called Adaptive Aggregation Networks (AANets). In our
AANets, we explicitly build two residual blocks (at each residual level): one for maintaining
the knowledge of old classes (i.e., the stability) and the other for learning new classes (i.e.,
the plasticity). We achieve these by allowing these two blocks to have different levels of
learnability, i.e., fewer learnable parameters in the stable block but more in the plastic
one. We apply aggregation weights to the output feature maps of these blocks, sum
them up, and pass the result maps to the next residual level. In this way, we are able to
dynamically balance the usage of these blocks by updating their aggregation weights. To
achieve auto-updating, we take the weights as hyperparameters and optimize them in an end-
to-end manner. For evaluation, we conduct CIL experiments on three widely-used datasets,
CIFAR-100, ImageNet-Subset, and ImageNet. We find that many existing CIL methods, e.g.,
iCaRL [RKSL17], LUCIR [HPL+

19], Mnemonics Training [LSL+
20], and PODNet [DCO+

20],
can be directly incorporated in the architecture of AANets, yielding consistent performance
improvements.

In Chapter 6, we tackle the fourth challenge, prefixed hyperparameters, by formulating
the hyperparameter optimization process as an online Markov Decision Process (MDP)
problem and propose a specific algorithm to solve it. We apply local estimated rewards and
a classic bandit algorithm Exp3 [ACBFS02] to address the issues when applying online MDP
methods to the CIL protocol. Empirically, we find our method performs well consistently.
We conduct extensive experiments by plugging our method into three top-performing
methods (LUCIR [HPL+

19], AANets [LSS21a], and RMM [LSS21b]) and testing them on
three benchmarks (i.e., CIFAR-100, ImageNet-Subset, and ImageNet-Full). Our results show
consistent improvements of the proposed method in different data-receiving settings of
incremental learning.

1.2 few-shot learning: learning with limited data without overfitting

Few-shot learning aims to train deep models using a limited number of examples with
supervised information, such as just five annotated samples per class [WYKN20]. While
humans tend to be highly effective in this context, often able to grasp the essential connection
between new concepts and their own knowledge, machine learning models still struggle
with this task. For example, on the CIFAR-100 dataset, a classification model trained in
fully supervised mode achieves 76% accuracy for the 100-class setting [CUH16], whereas
the best-performing 1-shot model only achieves an average of 45% for the simpler 5-class
setting [SLCS19]. In many real-world applications, large-scale training data may not be
available, as in the medical domain, making it desirable to improve machine learning models

6 chapter 1. introduction

to handle few-shot settings.
Recent methods solve the few-shot learning problem based on meta-learning [FAL17,

FXL18, GFL+
18, FFS+18, ZCG+

18, SLCS19, AES19, LMRS19, HMX+
20]. Meta-learning is a

task-level optimization-based method [BBCG92, NM92, TP98]. It aims to transfer experience
from similar few-shot learning tasks. Related methods follow a unified training process
that contains two loops. The inner loop learns a base learner for an individual task, and
the outer loop then uses the validation performance of the learned base learner to optimize
the meta-learner. For example, a representative method named Model-Agnostic Meta-
Learning (MAML) learns to search for the optimal initialization state to fast adapt a base
learner to a new task [FAL17]. Its task-agnostic property makes it possible to generalize
to few-shot supervised/semi-supervised learning as well as unsupervised reinforcement
learning [FAL17, GFL+

18, FXL18, AES19, ZCG+
18, RRS+19, RTR+

18, LSL+
19].

Recent methods address the few-shot learning problem by utilizing meta-learning [FAL17,
FXL18, GFL+

18, FFS+18, ZCG+
18, SLCS19, AES19, LMRS19, HMX+

20], a task-level optimization-
based method [BBCG92, NM92, TP98]. It aims to transfer knowledge from related few-shot
learning tasks. Meta-learning approaches follow a unified training process consisting of
two loops. In the inner loop, a base learner is trained for each task, while the outer loop
optimizes the meta-learner using the validation performance of the base learner. For instance,
Model-Agnostic Meta-Learning (MAML) [FAL17] is a prominent meta-learning method that
searches for optimal initializations to enable the base learner to adapt rapidly to a new
task. MAML’s task-agnostic property allows it to be applied across a range of settings,
such as few-shot supervised/semi-supervised learning and unsupervised reinforcement
learning [FAL17, GFL+

18, FXL18, AES19, ZCG+
18, RRS+19, RTR+

18, LSL+
19].

Despite the success of the meta-learning framework, few-shot learning still poses a
significant challenge due to the insufficient number of training examples when training deep
neural networks [Xia20]. In the following paragraphs, we will discuss the primary challenges
in image classification for few-shot learning and provide an overview of our contributions.

1.2.1 Challenges in few-shot learning

• Risk of overfitting. The limited number of training examples from novel classes makes
directly fine-tuning deep neural networks problematic, as it can lead to overfitting. In
other words, the model may fit perfectly into the small training set of novel classes
but fail to generalize to unseen examples. Traditional techniques used in supervised
learning may not be effective in few-shot learning due to the issue of overfitting. Thus,
preventing overfitting while fine-tuning deep neural networks in few-shot learning is
still an unresolved challenge [Xia20].

• Slow convergence speed. In meta-learning, convergence is typically slow. It is
because we need to compute second-order gradients, which are computationally
expensive [JLLP20]. Therefore, how to develop efficient training methods and speed
up the convergence speed is another challenge we would like to tackle.

• Unstable base-learners. The learning process of a base learner for few-shot tasks is
quite unstable [AES19], and often results in high-variance or low-confidence predictions.
How to train a stable and robust base learner with a few training samples for novel
classes is unsolved.

1.3 incremental object detection: learning in real-world applications 7

• Sub-optimal hyperparameters. It is well-known that the values of hyperparameters,
e.g., for initializing and updating models, are critical for best performance, and are
particularly important for few-shot learning. However, existing methods deploy the
same hyperparameters for different few-shot tasks, leading to sub-optimal performance.
Thus, it is important to produce task-specific hyperparameters for few-shot learning.

1.2.2 Our contributions

In this section, we summarize our contributions to addressing the above main challenges of
incremental learning for classification.

In Chapter 7, we tackle the first and second challenges, overfitting and slow convergence
speed, by proposing a novel meta-learning method called meta-transfer learning (MTL). In
particular, transfer means that deep neural network weights trained on large-scale data
can be used in other tasks by two light-weight neuron operations: Scaling and Shifting
(SS). “Meta” means that the parameters of these SS operations can be viewed as hyper-
parameters learned with few-shot learning tasks [MY17, LZCL17, FFS+18]. Our MTL t helps
deeper-neural-network-based base-learners converge faster while reducing their probability
to overfit when training on a few labeled data only. We further design our hard task (HT)
meta-batch strategy to offer a challenging but effective learning curriculum, which achieves
both faster convergence and stronger performance. We conduct experiments on three few-
shot learning benchmarks, namely miniImageNet [VBL+

16], tieredImageNet [RTR+
18] and

Fewshot-CIFAR100 (FC100) [ORL18], and achieve the state-of-the-art performance on both
supervised and semi-supervised few-shot learning.

In Chapter 8, we address the third and fourth challenges, unstable base-learners and sub-
optimal hyperparameters, by proposing a novel approach, E3BM, which learns the ensemble
of epoch-wise empirical Bayes models for each few-shot task. In E3BM, we utilize the
sequence of epoch-wise base-learners (while training a single base learner) as the ensemble
to stabilize the base learner and achieve low-variance or high-confidence predictions. Further,
we meta-learn hyperprior learners with meta-training tasks and use them to generate task-
specific hyperparameters. We plug-in our E3BM to the state-of-the-art few-shot learning
methods [FAL17, SLCS19, HMX+

20] and obtain consistent performance boosts.

1.3 incremental object detection: learning in real-world applications

Incremental object detection aims to train an object detector with the training samples for
different object categories observed in different phases [SSA17]. Similar to incremental
learning for image classification, the ability of the trainer to access past data is also restricted
in incremental object detection. Incremental object detection is more challenging compared
to incremental image classification because the catastrophic forgetting problem occurs in
both localization and classification.

Existing works [YZZ+
22, ZCS+20, FWY22] utilize popular incremental image classifi-

cation techniques, knowledge distillation [HVD15] and exemplar replay [RKSL17] to address
the forgetting problem in incremental object detection. However, we empirically find that
knowledge distillation and exemplar replay do not work well if applied directly to recent
transformer-based detectors, e.g., Deformable DETR [ZSL+

21]. Thus, how to adapt incre-
mental image classification techniques to state-of-the-art transformer-based detectors remains

8 chapter 1. introduction

an open problem.

Below, we elaborate on the main challenges in incremental object detection, followed by
a summary of our contributions.

1.3.1 Challenges in incremental object detection

• Unbalanced and contradictory knowledge distillation. Transformer-based detectors
work by testing a large number of object hypotheses in parallel. Because the number
of hypotheses is much larger than the typical number of objects in an image, most of
them are negative, resulting in an unbalanced knowledge distillation loss. Furthermore,
because both old and new object categories can co-exist in any given training image,
the KD loss and regular training objective can provide contradictory evidence.

• Category distribution mismatch of the exemplars. Exemplar replay methods for
image classification try to sample the same number of exemplars for each category. In
incremental object detection, this is not a good strategy because the true object category
distribution is typically highly skewed. Balanced sampling causes a mismatch between
the training and testing data statistics.

1.3.2 Our contributions

In this section, we summarize our contributions to addressing the above main challenges of
incremental learning for classification.

In Chapter 9, we address the above challenges by proposing ContinuaL DEtection TRans-
former (CL-DETR), a new method for transformer-based incremental object detection which
enables effective usage of knowledge distillation and exemplar replay in this context. CL-
DETR introduces the concept of Detector Knowledge Distillation (DKD), selecting the most
confident object predictions from the old model, merging them with the ground-truth la-
bels for the new categories while resolving conflicts, and applying standard joint bipartite
matching between the merged labels and the current model’s predictions for training. This
approach subsumes the knowledge distillation loss, applying it only for foreground predic-
tions correctly matched to the appropriate model’s hypotheses. CL-DETR also improves
exemplar replay by introducing a new calibration strategy to preserve the distribution of
object categories observed in the training data. This is obtained by carefully engineering the
set of exemplars remembered to match the desired distribution. Furthermore, each phase
consists of a main training step followed by a smaller one focusing on better calibrating the
model.

We demonstrate CL-DETR by applying it to different transformer-based detectors in-
cluding Deformable DETR [ZSL+

21] and UP-DETR [DCLC21]. Our results on COCO 2017

show that CL-DETR leads to significant improvements compared to the baseline, boosting
AP by 4.2 percentage points compared to a direct application of knowledge distillation
and exemplar replay to the underlying detector model. We further study and justify our
modeling choices via extensive ablations.

1.4 outline of the thesis 9

1.4 outline of the thesis

In this section, we provide an overview of the thesis by briefly summarizing each chapter
and drawing a connection between them. We also note the respective publications and
collaborations with other researchers.

Chapter 2, Related Works. This chapter surveys related works which tackle the challenges
of learning with imperfect data with a focus on the three directions of the thesis i.e.,
incremental learning, few-shot learning, and incremental object detection. We discuss
how these works relate to the methods and contributions presented in this thesis.
Discussions of related works specific to the following chapters are provided within
each chapter.

Part I, Incremental learning: learning with continual data without forgetting

Chapter 3, Mnemonics Training. In this chapter, we tackle the memory limitation problem
in incremental learning by proposing a novel and automatic framework called mnemon-
ics training. We parameterize exemplars and optimize them in an end-to-end manner
to obtain high-quality memory-efficient exemplars.

The content of this chapter corresponds to the CVPR 2020 publication with the ti-
tle Mnemonics Training: Multi-Class Incremental Learning without Forgetting [LSL+

20].
Yaoyao Liu is the first author of this paper, under the supervision of Prof. Bernt Schiele
and Prof. Qianru Sun. It is also a collaboration with An-An Liu and Yuting Su from
Tianjin University.

Chapter 4, Reinforced Memory Management. In this chapter, we further tackle the mem-
ory limitation problem in incremental learning by developing a dynamic memory
management strategy, Reinforced Memory Management, which is optimized for the
incremental phases and different object classes.

The content of this chapter corresponds to the NeurIPS 2021 publication with the title
RMM: Reinforced Memory Management for Class-Incremental Learning [LSS21b]. Yaoyao
Liu is the first author of this paper, under the supervision of Prof. Bernt Schiele and
Prof. Qianru Sun.

Chapter 5, Adaptive Aggregation Networks. In this chapter, we alleviate the stability-plasticity
trade-off in incremental learning by designing a novel network architecture called Adap-
tive Aggregation Networks (AANets), in which we explicitly build two types of residual
blocks at each residual level (taking ResNet as the baseline architecture): a stable block
and a plastic block. We aggregate the output feature maps from these two blocks
and then feed the results to the next-level blocks. We adopt the aggregation weights
in order to balance these two types of blocks, i.e., to balance stability and plasticity,
dynamically.

The content of this chapter corresponds to the CVPR 2021 publication with the title
Adaptive Aggregation Networks for Class-Incremental Learning [LSS21a]. Yaoyao Liu is the
first author of this paper, under the supervision of Prof. Bernt Schiele and Prof. Qianru
Sun.

10 chapter 1. introduction

Chapter 6, Online Hyperparameter Optimization. In this chapter, we further balance the
stability-plasticity trade-off for different data-receiving settings of incremental learning
by introducing an online learning method that can adaptively optimize the tradeoff
without knowing the setting as a priori. Specifically, we first introduce the key hyper-
parameters that influence the tradeoff, e.g., knowledge distillation (KD) loss weights,
learning rates, and classifier types. Then, we formulate the hyperparameter optimiza-
tion process as an online Markov Decision Process (MDP) problem and propose a
specific algorithm to solve it.

The content of this chapter corresponds to the AAAI 2023 publication with the title
Online Hyperparameter Optimization for Class-Incremental Learning [LLSS23a]. Yaoyao Liu
is the first author of this paper, under the supervision of Prof. Bernt Schiele and Prof.
Qianru Sun. It is also a collaboration with Yingying Li from Caltech.

Part II, Few-shot learning: learning with limited data without overfitting

Chapter 7, Meta-Transfer Learning. In this chapter, we tackle the over-fitting issue in few-
shot learning by proposing a novel method called meta-transfer learning (MTL), which
learns to adapt a deep neural network for few-shot learning tasks. Specifically, MTL is
achieved by learning the scaling and shifting functions of deep neural network weights
for each task. In addition, we introduce the hard task (HT) meta-batch scheme as an
effective learning curriculum for MTL.

The content of this chapter was published in TPAMI 2022 with the title Meta-Transfer
Learning through Hard Tasks [SLC+

22], which is an extension of our CVPR 2019 pub-
lication, Meta-Transfer Learning for Few-Shot Learning [SLCS19]. Yaoyao Liu and Prof.
Qianru Sun are the co-first authors of this work, under the supervision of Prof. Bernt
Schiele. The collaborators include Prof. Tat-Seng Chua from the National University of
Singapore and Zhaozheng Chen from Singapore Management University.

Chapter 8, An Ensemble of Epoch-wise Empirical Bayes Models. In this chapter, we im-
prove the robustness of few-shot learning by meta-learning the ensemble of epoch-wise
empirical Bayes models. Epoch-wise means that each training epoch has a Bayes model
whose parameters are specifically learned and deployed. Empirical means that the
hyperparameters, e.g., used for learning and ensembling the epoch-wise models, are
generated by hyperprior learners conditional on task-specific data.

The content of this chapter corresponds to the ECCV 2020 publication with the title
An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning [LSS20]. Yaoyao Liu is
the first author of this paper, under the supervision of Prof. Bernt Schiele and Prof.
Qianru Sun.

Part III, Incremental object detection: learning with imperfect data in real-world applica-
tions

Chapter 9, Continual Detection Transformer. In this chapter, we apply the incremental
learning setting to a more realistic computer vision task, object detection. We propose
a ContinuaL DEtection TRansformer (CL-DETR), a new method for transformer-based
incremental object detection that enables effective usage of knowledge distillation and
exemplar replay.

1.5 publications 11

The content of this chapter corresponds to the CVPR 2023 publication with the title
Continual Detection Transformer for Incremental Object Detection [LSVR23]. Yaoyao Liu is
the first author of this paper. This work is also part of the ELLIS Ph.D. project, under
the supervision of Dr. Christian Rupprecht and Prof. Andrea Vedaldi from Oxford,
and Prof. Bernt Schiele from Max Planck Institute for Informatics.

1.5 publications

The content of this thesis has previously appeared in the following publications, ordered as
outlined above:

• [LSL+20] Liu, Yaoyao, Yuting Su, An-An Liu, Bernt Schiele, and Qianru Sun. “Mnemon-
ics training: Multi-class incremental learning without forgetting.” In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

• [LSS21b] Liu, Yaoyao, Bernt Schiele, and Qianru Sun. “RMM: Reinforced memory
management for class-incremental learning.” In Proceedings of Advances in Neural
Information Processing Systems (NeurIPS), 2021.

• [LSS21a] Liu, Yaoyao, Bernt Schiele, and Qianru Sun. “Adaptive Aggregation Net-
works for Class-Incremental Learning.” In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2021.

• [LLSS23a] Liu, Yaoyao, Li, Yingying, Bernt Schiele, and Qianru Sun. “Online Hyper-
parameter Optimization for Class-Incremental Learning.” In Proceedings of AAAI
Conference on Artificial Intelligence (AAAI), 2023.

• [SLC+22] Sun, Qianru, Yaoyao Liu (equal contribution), Zhaozheng Chen, Tat-Seng
Chua, and Bernt Schiele. "Meta-transfer learning through hard tasks." IEEE Transactions
on Pattern Analysis and Machine Intelligence (2022).

• [LSS21a] Liu, Yaoyao, Bernt Schiele, and Qianru Sun. “An Ensemble of Epoch-wise
Empirical Bayes for Few-shot Learning.” In Proceedings of European Conference on
Computer Vision (ECCV), 2020.

• [LSVR23] Liu, Yaoyao, Bernt Schiele, Andrea Vedaldi, and Christian Rupprecht. “Con-
tinual Detection Transformer for Incremental Object Detection.” In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Further contributions were made to the following works not discussed in this thesis:

• [LSH+21] Liu, Yaoyao, Qianru Sun, Xiangnan He, An-An Liu, Yuting Su, and Tat-Seng
Chua. "Generating face images with attributes for free." IEEE Transactions on Neural
Networks and Learning Systems (2020).

• [LHL+21] Li, Xinzhe, Jianqiang Huang, Yaoyao Liu, Qin Zhou, Shibao Zheng, Bernt
Schiele, and Qianru Sun. "Learning to teach and learn for semi-supervised few-shot
image classification." Computer Vision and Image Understanding (2021).

12 chapter 1. introduction

• [LLSS23b] Zilin Luo, Liu, Yaoyao, Bernt Schiele, Andrea Vedaldi, and Christian Rup-
precht. “Class-Incremental Exemplar Compression for Class-Incremental Learning.” In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2023.

2R E L AT E D W O R K

Contents
2.1 Incremental learning . 13

2.1.1 Problem definition . 14

2.1.2 Evaluation protocols . 14

2.1.3 A literature review of incremental learning methods 14

2.1.4 Connections to our work . 16

2.2 Few-shot learning . 17
2.2.1 Problem definition and evaluation protocol 18

2.2.2 A literature review of few-shot learning methods 18

2.2.3 Connections to our work . 19

2.3 Incremental object detection . 20
2.3.1 Problem definition and evaluation protocol 20

2.3.2 A literature review of incremental object detection methods 20

2.3.3 Connections to our work . 21

The field of learning with imperfect data covers a wide range of topics, e.g., incremental
learning, few-shot learning, semi-supervised learning, and weakly-supervised learn-
ing. In this thesis, we mainly focus on incremental learning for image classification,

incremental learning for object detection, and few-shot learning for image classification.

In this chapter, we formally define the research problems chosen in this thesis. We present
the most relevant and recent developments in the fields and relate them to the contributions
of this thesis in the conclusion of each section. The following chapters also discuss related
work but targeted to the respective topic of these chapters.

2.1 incremental learning

The goal of incremental learning for image classification is to develop a classification model
that gradually learns from training data of different classes, phase-by-phase. In each phase,
the classifier is trained using both the new class data and the memorized samples of old
classes. The model is then evaluated on the test data of both old and new classes. Incremental
learning allows the classification model to continually improve its performance as it receives
additional data, making it suitable for tasks where new classes are continuously being
introduced.

In this section, we first formally define the incremental learning problem and introduce
the existing evaluation protocols. Then we discuss popular incremental learning methods
and the relations between those and our proposed approaches.

13

14 chapter 2. related work

2.1.1 Problem definition

The general incremental learning pipeline is as follows. It usually assumes there are N
phases during which the number of classes gradually increases to the maximum [DCO+

20,
HPL+

19, HTM+
21, LSL+

20]. In the 1-st phase, we observe data D1, and use it to learn an
initial model Θ1. After this phase, we can only store a small subset of D1 (i.e., exemplars
denoted as E1) in memory used as replay samples in later phases. In the i-th phase (i≥2),
we get new class data Di and load exemplars E1:i−1=E1 ∪ · · · ∪ Ei−1 from the memory. Then,
we initialize Θi with Θi−1, and train it using E1:i−1 ∪Di. After that, we select exemplars E1:i
from E1:i−1 ∪Di and save them in the memory.

2.1.2 Evaluation protocols

There are mainly two evaluation protocols for incremental learning: task-incremental setting
and class-incremental setting.

In the task-incremental setting, we regard the training data in each phase as an independent
task. Let Qi denote the test set for the i-th phase task Di. At inference time, we evaluate
the model on a sequence of test sets, Q1,Q2, . . . ,QN , respectively. That means, the model
has access to the task IDs and knows which task the model is evaluated on. Most early
methods [LH18, CRRE19] considered this setting, which has the clear advantage that methods
do not have to discriminate between classes coming from different tasks [MLT+

20].
In the class-incremental setting, we aim to train a joint model that can classify all classes

we have observed so far, thus we do not have access to the task ID at inference time. After N
phases, we evaluate the model on a joint test set, Q1:N , which contains the test samples of all
classes we have observed. This setting is more challenging compared to the task-incremental
setting [MLT+

20].
In this thesis, we mainly focus on the class-incremental setting. The reasons are as follows.

1) The class-incremental setting is more realistic and difficult. We cannot access task IDs in
many real-world applications. 2) The class-incremental methods can also be used to solve the
task-incremental problems and achieve good performance [MLT+

20].

2.1.3 A literature review of incremental learning methods

Incremental learning methods can be broadly categorized into three main categories:
regularization-based methods, replay-based methods, and dynamic architecture meth-
ods [Xia19].

2.1.3.1 Regularization-based methods

Regularization-based methods help mitigate catastrophic forgetting by introducing additional
regularization terms into the loss function during training. Recent regularization-based
methods can be classified into two categories based on the type of regularization used:
knowledge distillation regularization and network parameter regularization.

Knowledge distillation regularization [HVD15] tries to preserve the knowledge capture in
a previous version of the model by matching logits [LH18, RKSL17], feature maps [DCO+

20],
or other information [TCH+

20, WZYZ22, SKH21, JKK+
22, PZS22] in the new model. Li et

al. [LH18] were the pioneers in applying knowledge distillation to incremental learning. Their

2.1 incremental learning 15

approach involved forcing the predictions made by the new model to mimic the predictions
made by the old model, given the new training data and old exemplars. Following this
line, Rannen et al. [TABT17] proposed a different approach. They trained an encoder to
capture the important features of each task and then prevented the reconstructions of these
features using auto-encoders from changing. Dhar et al. [DSP+

19] proposed a novel method
that included an information-preserving penalty with attention distillation to overcome
forgetting. Hou et al. [HPL+

19] introduced a series of new regularization terms, including
less-forgetting constraint and inter-class separation, to address the issue of data imbalance
between old and new classes. Douillard et al. [DCO+

20] proposed an effective spatial-based
distillation loss applied throughout the model and also a representation comprising multiple
proxy vectors for each object class. Tao et al. [TCH+

20] built the framework with a topology-
preserving loss to maintain the topology in the feature space. Yu et al. [YTL+

20] estimated
the drift of previous classes during the training of new classes. Joseph et al. [JKK+

22]
proposed a regularization term based on an energy manifold for the latent representations
and forced previous task latent representations to have low energy and the current task
latent representations to have high energy values.

Network parameter regularization mitigates the issue of forgetting by imposing a penalty
on the differences between the parameters of the old and new models. Kirkpatrick et
al. [KPR+

17] first proposed to penalize parameters with different weights by considering
the importance of each one. Zenke et al. [ZPG17] estimated the importance of weights in
an online manner and took into account all previous tasks by accumulating the parameter
specific contribution to changes in the total loss. Chaudhry et al. [CDAT18] combined
[ZPG17] and an online version of [KPR+

17] with a theoretically grounded KL-divergence
based perspective. Lee et al. [LKJ+17] tried to match the moment of the posterior distribution
of the neural networks, which are trained on the old and new tasks, respectively. Aljundi
et al. [ABE+

18] obtained the gradients of the squared L2 norm of the network outputs and
measured the importance of parameters in an unsupervised way.

2.1.3.2 Replay-based methods

Replay-based methods overcome the forgetting problem by storing a portion of past training
samples or features and using them to “recall" previous knowledge during subsequent
phases of learning. Recent replay-based methods can be broadly categorized into three
groups, based on the type of saved information used: real image replay, generated image
replay, and features replay.

Real image replay methods store real images as exemplars in the memory. Rebuffi
et al. [RKSL17] proposed the first replay-based method based on herding [Wel09], which
computes the average features for each class and selects the exemplars that can rebuild
similar average features as the exemplars. Lopez-Paz et al. [LPR17] chose exemplars solving
a constrained optimization problem. Castro et al. [CMG+

18] proposed to finetune the final
model on the exemplars for a few epochs to further alleviate the class imbalance problem. Wu
et al. [WCW+

19] tried both herding [Wel09] and random exemplar selection in their paper.
Wang et al. [WZY+

22] aimed to trade-off between the quality and quantity of exemplars by
image compression using the JPEG algorithm, i.e., each exemplar is uniformly downsampled.

The objective of generated image replay methods is to train a generation model to
generate exemplars that can be used for replay during subsequent phases of learning. Shin
et al. [SLKK17] first proposed to train Generative Adversarial Networks (GANs) [GPAM+

20]
to produce the exemplars. Wu et al. [WHL+

18] used conditional GANs to explicitly generate

16 chapter 2. related work

samples for each class given a one-hot conditioning vector. Zhai et al. [ZCT+
19] also used

the conditional GAN framework and extended conditioning from one-hot vectors to images.
Features replay methods either save or generate past features and use them for replay

during later stages of learning. to overcome forgetting and retain old knowledge. Kemker
et al.[KK18] learned an encoder and a decoder for features extracted from a pre-trained
model and generated pseudo features to recall the old knowledge. Belouadah et al. [BP19]
proposed to leverage a second memory to store statistics of old classes in rather compact
formats. Iscen et al. [IZLS20] preserved low dimensional features instead of raw instances to
reduce the storage overhead.

2.1.3.3 Dynamic architecture methods

Dynamic architecture methods maintain the learned parameters associated with prior knowl-
edge and assign new parameters in various forms, such as unused parameters and supple-
mentary network filters, to acquire new knowledge [YXH21]. Rusu et al. [RRD+

16] proposed
“progressive networks” to integrate the desiderata of different tasks directly into the networks.
Abati et al. [ATB+

20] equipped each convolution layer with task-specific gating modules that
select specific filters to learn each new task. Rajasegaran et al.[RHK+

19] progressively chose
the optimal paths for the new task while encouraging parameter sharing across tasks. Xu et
al. [XZ18] searched for the best neural network architecture for each coming task by leverag-
ing reinforcement learning strategies. Hung et al. [HTW+

19] proposed a compaction and
selection/expansion mechanism that prunes the deep model and expands the architecture
alternatively with selective weight sharing.

Recently, dynamic architectures with expandable representations have demonstrated state-
of-the-art performance for incremental learning. The key concept is to augment the feature
dimensions using an additional network in each phase to generate more distinctive features
for classification. To manage memory usage, these methods typically employ network
pruning and knowledge distillation to compress the network size. Yan et al. [YXH21]
proposed to freeze the previously learned representation and augment it with additional
feature dimensions from a new learnable feature extractor. They also introduced a channel-
level mask-based pruning strategy to control the final network size. Wang et al. [WZYZ22]
suggested a method for dynamic module expansion, wherein new modules are added
to capture the residuals between the target and the output of the original model. They
subsequently employ an efficient distillation strategy to eliminate redundant parameters and
feature dimensions, thereby preserving the single backbone model.

2.1.4 Connections to our work

In Chapter 3, we introduce an effective replay-based method, mnemonics training, which
parameterizes exemplars and optimizes them in an end-to-end manner to obtain high-quality
memory-efficient exemplars. Related generated image replay methods [SLKK17, KGL17,
VVPL17] used Generative Adversarial Networks (GAN) [GPAM+

14] to generate old samples
in each new phase for data replaying, and good results were obtained in the multi-task
incremental setting. However, their performance strongly depends on the GAN models,
which are notoriously hard to train. Moreover, storing GAN models requires memory, so
these methods might not be applicable to MCIL with a strict memory budget. Our mnemonics
exemplars are optimizable and can be regarded as synthesized, while our approach is based

2.2 few-shot learning 17

on the direct parameterization of exemplars without training extra models.

In Chapter 4, we propose a dynamic memory management strategy, Reinforced Memory
Management, which is optimized for the incremental phases and different object classes.
Existing replay-based methods [RKSL17, CMG+

18, WZY+
22] allocate memory between the

old and new classes in an arbitrary and static fashion, e.g., 20 per old class vs. 1, 300 per
new class for the ImageNet-Full dataset. This causes a serious imbalance between the old
and new classes and can exacerbate the problem of catastrophic forgetting. In contrast, our
approach learns an optimal memory management policy for each incremental phase using
reinforcement learning. Thus, our method achieves better memory allocation and alleviates
the class imbalance problem in incremental learning.

In Chapter 5, we design a novel network architecture called Adaptive Aggregation
Networks (AANets) to alleviate the stability-plasticity trade-off in incremental learning.
Our method is closely related to dynamic architecture methods [ATB+

20, RHK+
19, XZ18].

However, in these methods, the size of the network increases with the number of stages. In
contrast, our approach does not continuously increase the network size. We validate in the
experiments that under a strict memory budget, our approach can surpass many related
methods, and plug-in versions of these related methods can bring consistent performance
improvements.

In Chapter 6, we further balance the stability-plasticity trade-off by introducing an online
learning method that can adaptively optimize the key hyperparameters in incremental
learning. Related regularization-based methods [LH18, HPL+

19, DCO+
20] are either too

stable or too plastic to perform well in different data-receiving settings of incremental
learning. Our method learns an online policy to generate hyperparameters that balance
stability and plasticity. Therefore, our method performs can adapt to different data-receiving
settings and achieve better performance.

2.2 few-shot learning

The goal of few-shot learning is to learn deep neural networks using only a limited number
of labeled data, e.g., around five samples per class. Due to the vast number of model
parameters in deep neural networks, it is not possible to train a model from scratch with
such a small amount of data. Therefore, in few-shot learning, we assume that some base
classes have sufficient labeled data available. The task becomes how to learn a model from
these base classes that can generalize well to novel classes with only a few labeled data
available [Xia20].

Recent few-shot learning related works [VBL+
16, RL17, FAL17, ORL18, RRS+19] usually

evaluate their method using the meta-learning framework. The framework involves training
the model on multiple few-shot tasks, also known as episodes, which are generated from
the base classes possessing an adequate amount of labeled data. Following this, the model’s
performance is evaluated on test episodes derived from novel classes.

In this section, we first formally define the few-shot learning problem and introduce the
existing evaluation protocols. Then we discuss popular few-shot learning methods and the
relations between those and our proposed methods.

18 chapter 2. related work

2.2.1 Problem definition and evaluation protocol

In this section, we briefly introduce the unified episodic formulation in meta-learning,
following related works [VBL+

16, RL17, FAL17, ORL18, RRS+19]. Then, we introduce the
task-level data denotations used in two phases, i.e., meta-train and meta-test.
The episodic formulation was proposed for tackling few-shot tasks first in [VBL+

16]. It
is different from traditional image classification, in three aspects: (1) the main phases are
not train and test but meta-train and meta-test, each of which includes training and testing;
(2) the samples in meta-train and meta-test are not data points but episodes, and each
episode is a few-shot classification task; and (3) the objective is not classifying unseen data
points but to fast adapt the meta-learned experience or knowledge to the learning of a new
few-shot classification task.

The denotations of two phases, meta-train and meta-test, are as follows. A meta-train
example is a classification task T sampled from a distribution p(T). T is called an episode,
including a training split T (tr) to optimize the base-learner, i.e., the classifiers in our model,
and a test split T (te) to optimize the meta-learner, i.e., the scaling and shifting parameters in
our model. In particular, meta-train aims to learn from a number of episodes {T } sampled
from p(T). An unseen episode Tunseen in meta-test will start from that experience of the
meta-learner and adapt the base-learner. The final evaluation is done by testing a set of
unseen data points in T (te)

unseen.
Meta-train phase. This phase aims to learn a meta-learner from multiple episodes. In each
episode, meta-training has a two-stage optimization. Stage 1 is called base-learning, where
the cross-entropy loss is used to optimize the parameters of the base-learner. Stage 2 contains
a feed-forward test on episode test data points. The test loss (also called meta loss) is used
to optimize the parameters of the meta-learner. Specifically, given an episode T ∈ p(T),
the base-learner θT is learned from episode training data T (tr) and its corresponding loss
LT (θT , T (tr)). After optimizing this loss, the base-learner has parameters θ̃T . Then, the
meta-learner is updated using meta loss LT (θ̃T , T (te)). After meta-training on all episodes,
the meta-learner is optimized by meta losses {LT (θ̃T , T (te))}T ∈p(T). Therefore, the number
of meta-learner updates equals the number of episodes.
Meta-test phase. This phase aims to test the performance of the trained meta-learner for fast
adaptation to unseen episodes. Given Tunseen, the meta-learner θ̃T teaches the base-learner
θTunseen to adapt to the objective of Tunseen by some means, e.g. through initialization [FAL17].
Then, the test result on T (te)

unseen is used to evaluate the meta-learning approach. If there
are multiple unseen episodes {Tunseen}, the average result on {T (te)

unseen} will be the final
evaluation.

2.2.2 A literature review of few-shot learning methods

We can divide meta-learning methods into three categories. 1) Metric learning meth-
ods [VBL+

16, SSZ17, SYZ+
18, LDM+

19, YHZS20, HCB+
19, DSM19, PDH18] learn a simi-

larity space in which learning is particularly efficient for few-shot training examples. Ex-
amples of distance metrics include cosine similarity [VBL+

16, CLK+
19, PDH18], Euclidean

distance to the prototypical representation of a class [SSZ17], CNN-based relation mod-
ule [SYZ+

18], ridge regression based [BHTV19], and graph model based [SE18, LLP+
19].

Some recent works also tried to generate task-specific feature representation for few-shot

2.2 few-shot learning 19

episodes based on metric learning, like [LDM+
19, LED+

19] 2) Memory network meth-
ods [MY17, ORL18, MRCA18, PDH18, BRCŚ+17] learn to store “experience” when learning
seen tasks and then generalize it to unseen tasks. The key idea is to design a model
specifically for fast learning with a few training steps. A family of model architectures
uses external memory storage, including Neural Turing Machines [SBB+

16], Meta Net-
works [MY17], Neural Attentive Learner (SNAIL) [MRCA18], and Task Dependent Adaptive
Metric (TADAM) [ORL18]. For test, general meta memory and specific task information are
combined to make predictions in neural networks. 3) Gradient descent based meta-learning
methods [FAL17, FXL18, AES19, RL17, LC18, GFL+

18, ZCG+
18, SLCS19, LMRS19, HMX+

20,
LC18] intend for adjusting the optimization algorithm so that the model can converge within
a small number of optimization steps (with a few examples). The optimization algorithm
can be explicitly modeled with two learning loops that outer-loop has a meta-learner that
learns to adapt an inner-loop base-learner (to few-shot examples) through different tasks.
For example, Ravi et al. [RL17] introduced a method that compresses the base-learners’
parameter space in an LSTM meta-learner. Rusu et al. [RRS+19] designed a classifier gen-
erator as the meta-learner which outputs parameters for each specific base-learning task.
Finn et al. [FAL17] proposed a meta-learner called MAML that learns to effectively initialize
a base-learner for a new task. Lee et al. [LC18] proposed MT-net, where the meta-learner
determines a sub-space and a corresponding metric that task-specific learners can learn in,
thus setting the degrees of freedom of task-specific learners to an appropriate amount. Lee
et al. [LMRS19] presented a meta-learning approach with convex base-learners for few-shot
tasks. Other related works in this category include Hierarchical Bayesian model [GFL+

18],
Bilevel Programming [FFS+18], and GAN based meta model [ZCG+

18]. Hu et al. [HMX+
20]

proposed to update base-learner with synthetic gradients generated by a variational posterior
conditional on unlabeled data.

Among them, MAML is a fairly general optimization algorithm, compatible with any
model that learns through gradient descent. Its meta-learner optimization is done by gradient
descent using the validation loss of the base-learner.

2.2.3 Connections to our work

In Chapter 7, we propose a novel few-shot learning method called meta-transfer learning
(MTL), which learns to adapt a deep neural network for few-shot learning tasks. Specifically,
MTL is achieved by learning the scaling and shifting functions of deep neural network
weights for each task. In addition, we introduce the hard task (HT) meta-batch scheme
as an effective learning curriculum for MTL. Our method differs from existing few-shot
learning methods in the following two aspects. 1) Our method transfer the knowledge
from the pre-trained model using the scaling and shifting functions of deep neural network
weights, while the existing methods [ZZW+

21, ZCLS22] directly finetune the pre-trained
model. Thus, our method is less prone to overfitting to the novel few-shot tasks. 2) We
first introduce the hard task learning curriculum for few-shot learning, which significantly
improves the convergence speed during meta-training.

In Chapter 8, we improve the robustness of few-shot learning by meta-learning the
ensemble of epoch-wise empirical Bayes models. Our approach is closely related to gradient
descent based methods [FAL17, AES19, SLCS19, SLCS19, SLC+

22, HMX+
20]. An impor-

tant difference is that we learn how to combine an ensemble of epoch-wise base-learners
and how to generate efficient hyperparameters for base-learners, while other methods

20 chapter 2. related work

such as MAML [FAL17], MAML++ [AES19], LEO [RRS+19], MTL [SLCS19, SLC+
22], and

SIB [HMX+
20] use a single base-learner.

2.3 incremental object detection

Incremental object detection aims to train a detection model with the training data of different
categories gradually coming phase-by-phase. In each phase, the detector is re-trained on
new category data and old category memory, then evaluated on the test data for all observed
categories.

In this section, we first formally define the incremental object detection problem and
introduce the existing evaluation protocols. Then we discuss popular incremental object
detection methods and the relations between those and our proposed method.

2.3.1 Problem definition and evaluation protocol

In incremental object detection, the goal is to train a detector in phases, where in each
phase the model is only given annotations for a subset of the object categories. Formally,
let D = {(x, y)} be a dataset of images x with corresponding object annotations y, such
as COCO 2017 [LMB+

14], and let C = {1, . . . , C} be the set of object categories. We adopt
such a dataset for benchmarking IOD as follows. First, we partition D and C into M subsets
D = D1 ∪ · · · ∪ DM and C = C1 ∪ · · · ∪ CM, one for each training phase. For each phase i, we
modify the samples (x, y) ∈ Di so that y only contains annotations for objects of class Ci and
drop the others.

In phase i of training, the model is only allowed to observe images Di with annotations
for objects of types Ci ⊂ C. Notably, images can and do contain objects of any possible type
C, but only types Ci are annotated in this phase. After phase i is complete, training switches
to the next phase i + 1, so the model observes different images Di+1 and annotations for
objects of different types Ci+1.

For exemplar replay, we relax this training protocol and allow the model to memorize
a small number of exemplars Ei ⊂ Di from the previous phases. In this case, the model is
trained on the union Di ∪ E1:i−1 where E1:i−1 = E1 ∪ · · · ∪ Ei−1 forms the exemplar memory.

The evaluation process is as follows. At the end of each phase, the detection model
will be evaluated on a test set that contains the objects of all categories observed so far.
Following [FWY22], the standard COCO metrics are used for evaluation, i.e., AP, AP50, AP75,
APS, APM, and APL [FWY22].

2.3.2 A literature review of incremental object detection methods

Incremental object detection applies incremental learning to object detection specifically.
This is more challenging than incremental image classification, as images can contain
multiple objects, both of old and new types, with only the new types being annotated in any
given training phase. Both knowledge distillation [LH18, HPL+

19, DCO+
20] and exemplar

replay [RKSL17, CMG+
18] methods have been applied to detection before. [SSA17] applies

KD to the output of Faster R-CNN [Gir15]. Inspired by this, recent incremental object
detection methods extended the knowledge distillation framework to other detectors (e.g.,
Faster-RCNN [RHGS17] and GFL [LWW+

20]) by adding KD terms on the intermediate

2.3 incremental object detection 21

feature maps [YZZ+
22, ZCS+20, FWY22] and region proposal networks [CYC19, HFJT19,

PZL20]. [JKKB21] proposes instead to store a set of exemplars and fine-tune the model on
the exemplars after each incremental step. [LYR+

20] proposes an adaptive sampling strategy
to achieve more efficient exemplar selection for incremental object detection.

2.3.3 Connections to our work

In Chapter 9, we apply the incremental learning setting to recent top-performing transformer-
based detection models, e.g., Deformable DETR [ZSL+

21]. Existing incremental object detec-
tion methods are designed based on conventional detectors such as Faster-RCNN [RHGS17]
and GFL [LWW+

20]. Empirically, we find that a direct application of existing knowledge
distillation and exemplar replay methods to current state-of-the-art transformer-based detec-
tors such as Deformable DETR [ZSL+

21] and UP-DETR [DCLC21] does not work well. In
contrast, we propose fixes to this issue by proposing detector knowledge distillation and
distribution preserving calibration to improve knowledge distillation and exemplar replay,
respectively.

I
I n c r e m e n ta l L e a r n i n g :

L e a r n i n g w i t h C o n t i n ua l Data

w i t h o u t F o r g e t t i n g

In the first part of this thesis, we focus on incremental learning
and study how to overcome the catastrophic forgetting problem by
learning to optimize exemplar data, combine neural networks, and
allocate memory. More specifically,

Specifically, in Chapter 3, we study how to efficiently select
exemplars for incremental learning. We parameterize exemplars
and optimize them in an end-to-end manner to obtain high-quality
memory-efficient exemplars.

In Chapter 4, we further tackle the memory limitation prob-
lem in incremental learning by developing a dynamic memory
management strategy, Reinforced Memory Management, which is
optimized for the incremental phases and different object classes.

In Chapter 5, we intend to find a suitable dynamic network
architecture for incremental learning. To this end, we propose
Adaptive Aggregation Networks (AANets), which maintain two
types of residual blocks, stable and plastic blocks, to alleviate the
stability-plasticity trade-off in incremental learning. Compared
to previous dynamic architecture methods, our method does not
continuously increase the network size.

In Chapter 6, we further balance the stability-plasticity trade-off
by introducing a method that can adaptively optimize the key
hyperparameters in the incremental learning process. We formulate
the hyperparameter optimization process as an online Markov
Decision Process (MDP) problem and propose an online learning
algorithm to solve it.

3L E A R N I N G T O O P T I M I Z E
E X E M P L A R D ATA

Contents
3.1 Introduction . 25
3.2 Related Work . 27
3.3 Methodology . 28

3.3.1 Denotations for CIL . 28

3.3.2 Distillation Loss for CIL . 28

3.3.3 Global BOP . 29

3.3.4 Model-level problem . 29

3.3.5 Exemplar-level problem . 30

3.4 Weight transfer operations . 31
3.5 Algorithm . 32
3.6 Experiments . 34

3.6.1 Datasets and implementation details 34

3.6.2 Results and analyses . 37

3.7 Conclusion . 39

Incremental learning aims to learn new concepts by incrementally updating a model
trained on previous concepts. However, there is an inherent trade-off to effectively
learning new concepts without catastrophically forgetting previous ones. To alleviate

this issue, it has been proposed to keep around a few examples of the previous concepts.
However, the effectiveness of this approach heavily depends on the representativeness of
these examples. In this chapter, we propose a novel and automatic framework we call
mnemonics training, where we parameterize exemplars and make them optimizable in an end-
to-end manner. We train the framework through bi-level optimizations, i.e., model-level and
exemplar-level. We conduct extensive experiments on three incremental learning benchmarks,
CIFAR-100, ImageNet-Subset, and ImageNet, and show that using mnemonics exemplars
can surpass the state-of-the-art by a large margin. Interestingly and quite intriguingly, the
mnemonics exemplars tend to be on the boundaries between different classes.

This chapter is based on [LSL+20]. As the first author of [LSL+
20], Yaoyao Liu conducted

all experiments and was the main writer. This paper was selected as an oral paper in CVPR
2020 (4%) and has received more than 170 citations. It has been recognized in a widely-cited
review paper [MLT+

20] as an exciting new direction.

3.1 introduction

Natural learning systems, such as humans, inherently work in an incremental manner as
the number of concepts increases over time. They naturally learn new concepts while not
forgetting previous ones. In contrast, current machine learning systems, when continuously

25

26 chapter 3. learning to optimize exemplar data

random (baseline) herding (related) mnemonics (ours)

Early phase (50 classes used, 5 classes visualized in color):

Late phase (100 classes used, 5 classes visualized in color):

Figure 3.1: The t-SNE [MH08] results of three exemplar methods in two phases. The
original data of 5 colored classes occur in the early phase. In each colored class, deep-color
points are exemplars, and light-color ones show the original data as a reference of the
real data distribution. Gray crosses represent other participating classes, and each cross is
for one class. We have two main observations. (1) Our approach results in much clearer
separation in the data, than random (where exemplars are randomly sampled in the early
phase) and herding (where exemplars are nearest neighbors of the mean sample in the
early phase) [RKSL17, HPL+

19, WCW+
19, CMG+

18]. (2) Our learned exemplars are mostly
located on the boundaries between classes.

updated using novel incoming data, suffer from catastrophic forgetting (or catastrophic
interference), as the updates can override knowledge acquired from previous data [MC89,
MH93, Rat90, SLKK17, KMA+

18]. This is especially true for class incremental learning (CIL),
where one cannot replay all previous inputs. Catastrophic forgetting, therefore, becomes a
major problem for CIL systems.

Motivated by this, a number of works have recently emerged [RKSL17, LH18, HPL+
19,

WCW+
19, CMG+

18, LCL19]. Rebuffi et al. [RKSL17] firstly defined a protocol for evaluating
CIL methods, i.e., to tackle the image classification task where the training data for different
classes comes in sequential training phases. As it is neither desirable nor scaleable to retain
all data from previous concepts, in their protocol, they restrict the number of exemplars that
can be kept around per class, e.g., only 20 exemplars per class can be stored and passed
to the subsequent training phases. These “20 exemplars” are important to CIL as they are
the key resource for the model to refresh its previous knowledge. Existing methods to
extract exemplars are based on heuristically designed rules, e.g., nearest neighbors around
the average sample in each class (named herding [Wel09]) [RKSL17, HPL+

19, WCW+
19,

CMG+
18], but turn out to be not particularly effective. For example, iCaRL [RKSL17] with

herding sees an accuracy drop of around 25% in predicting 50 previous classes in the last
phase (when the number of classes increases to 100) on CIFAR-100, compared to the upper-

3.2 related work 27

bound performance of using all examples. A t-SNE visualization of herding exemplars is
given in Figure 3.1, and shows that the separation between classes becomes weaker in later
training phases.

In this chapter, we address this issue by developing an automatic exemplar extraction
framework called mnemonics training, where we parameterize the exemplars using image-size
parameters, and then optimize them in an end-to-end scheme. Using mnemonics training,
the CIL model in each phase can not only learn the optimal exemplars from the new class
data but also adjust the exemplars of previous phases to fit the current data distribution. As
demonstrated in Figure 3.1, mnemonics exemplars yield consistently clear separations among
classes, from early to late phases. When inspecting individual classes (as e.g. denoted by
the black dotted frames in Figure 3.1 for the “blue” class), we observe that the mnemonics
exemplars (dark blue dots) are mostly located on the boundary of the class data distribution
(light blue dots), which is essential to derive high-quality classifiers.

Technically, mnemonics training has two models to optimize, i.e., the conventional model
and the parameterized mnemonics exemplars. The two are not independent and can not
be jointly optimized, as the exemplars learned in the current phase will act as the input
data of later-phase models. We address this issue using a bi-level optimization program
(BOP) [SMD18, MVL+

19] that alternates the learning of two levels of models. We iterate
this optimization through the entire incremental training phases. In particular, for every
single phase, we perform a local BOP that aims to distill the knowledge of new class data
into the exemplars. First, a temporary model is trained with exemplars as input. Then, a
validation loss on new class data is computed, and the gradients are back-propagated to
optimize the input layer, i.e., the parameters of the mnemonics exemplars. Iterating these
two steps allows for deriving representative exemplars for later training phases. To evaluate
the proposed mnemonics method, we conduct extensive experiments for FOUR different
baseline architectures and on THREE CIL benchmarks – CIFAR-100, ImageNet-Subset, and
ImageNet. Our results reveal that mnemonics training consistently achieves top performance
compared to baselines, e.g., 17.9% and 4.4% higher than herding-based iCaRL [RKSL17] and
LUCIR [HPL+

19], respectively, in the 25-phase setting on the ImageNet [RKSL17].
Our contributions include: (1) A novel mnemonics training framework that alternates

the learning of exemplars and models in a global bilevel optimization program, where
bilevel includes model-level and exemplar-level; (2) A novel local bilevel optimization program
(including meta-level and base-level) that trains exemplars for new classes as well as adjusts
exemplars of old classes in an end-to-end manner; (3) In-depth experiments, visualization
and explanation of mnemonics exemplars in the feature space.

3.2 related work

In this section, we discuss related works on bi-level optimization problems. We will not
repeat the incremental learning works that have been discussed in Chapter 2.
Bi-level optimization problem (BOP) [WZTE18, VSV52, GPAM+

14] aims to solve two levels
of problems in one framework where the A-level problem is the constraint to solve the
B-level problem. It can be traced back to the Stackelberg competition [VSV52] in the area of
game theory. Nowadays, it is widely applied in the area of machine learning. For instance,
Training GANs [GPAM+

14] can be formulated as a BOP with two optimization problems:
maximizing the reality score of generated images and minimizing the real-fake classification
loss. Meta-learning [FAL17, SLCS19, ZLL+

19b, LSL+
19, ZCLS20, SLC+

22] is another BOP

28 chapter 3. learning to optimize exemplar data

in which a meta-learner is optimized subject to the optimality of the base-learner. Recently,
MacKay et al. [MVL+

19] formulated hyperparameter optimization as a BOP where the
optimal model parameters in a certain time phase depend on hyperparameters, and vice
versa. In this work, we introduce a global BOP that alternatively optimizes the parameters
of the CIL models and the mnemonics exemplars across all phases. Inside each phase, we
exploit a local BOP to learn (or adjust) the mnemonics exemplars specific to the new class (or
the previous classes).

3.3 methodology

As illustrated in Figure 3.2, the proposed mnemonics training alternates the learning of
classification models and mnemonics exemplars across all phases, where mnemonics exemplars
are not just data samples but can be optimized and adjusted online. First, we elaborate
on the denotations (Section 3.3.1) and introduce the distillation loss used in related works
(Section 3.3.2). Then, we formulate this alternative learning with a global Bilevel Optimization
Program (BOP) composed of model-level and exemplar-level problems (Section 3.3.3), and
provide the solutions in Section 3.3.4 and Section 3.3.5, respectively.

3.3.1 Denotations for CIL

Assume there are N + 1 phases (i.e, 1 initial phase and N incremental phases) in the class-
incremental learning system. In the initial (the 0-th) phase, we learn the model Θ0 on
data D0 using a conventional classification loss, e.g. cross-entropy loss, and then save
Θ0 to the memory of the system. Due to the memory limitation, we can not keep the
entire D0, but instead, we select and store a handful of exemplars E0 (evenly for all classes)
as a replacement of D0 with |E0| ≪ |D0|. In the i-th incremental phase, we denote the
previous exemplars E0 ∼ Ei−1 shortly as E0:i−1. We load Θi−1 and E0:i−1 from the memory,
and then use E0:i−1 and the new class data Di to train Θi initialized by Θi−1. During
training, we use a classification loss and a CIL-specific distillation loss [LH18, RKSL17].
After each phase, the model is evaluated on unseen data for all classes observed by the
system so far. We report the average accuracy over all N + 1 phases as the final evaluation,
following [RKSL17, WCW+

19, HPL+
19].

3.3.2 Distillation Loss for CIL

Distillation loss was originally proposed in [HVD15] and was applied to CIL in [LH18,
RKSL17]. It encourages the new Θi and previous Θi−1 to maintain the same prediction
ability on old classes. Assume there are K classes in D0:i−1. Let x be an image in Di. p̂k(x)
and pk(x) denote the prediction logits of the k-th class from Θi−1 and Θi, respectively. The
distillation loss is formulated as

Ld(Θi; Θi−1; x) = −
K

∑
k=1

π̂k(x)logπk(x), (3.1a)

π̂k(x) =
e p̂k(x)/τ

∑K
j=1 e p̂j(x)/τ

, πk(x) =
epk(x)/τ

∑K
j=1 epj(x)/τ

, (3.1b)

3.3 methodology 29

where τ is a temperature scalar set to be greater than 1 to assign larger weights to smaller
values.

We use the softmax cross entropy loss as the Classification Loss Lc. Assume there are M
classes in D0:i,. This loss is formulated as

Lc(Θi; x) = −
K+M

∑
k=1

δy=klogpk(x), (3.2)

where y is the ground truth label of x, and δy=k is an indicator function.

3.3.3 Global BOP

In CIL, the classification model is trained incrementally in each phase on the union of new
class data and old class mnemonics exemplars. In turn, based on this model, the new class
mnemonics exemplars (i.e., the parameters of the exemplars) are trained before omitting new
class data. In this way, the optimality of the model derives a constraint to optimizing the
exemplars, and vice versa. We propose to formulate this relationship with a global BOP in
which each phase uses the optimal model to optimize exemplars, and vice versa.

Specifically, in the i-th phase, our CIL system aims to learn a model Θi to approximate
the ideal one named Θ∗i which minimizes the classification loss Lc on both Di and D0:i−1, i.e.,

Θ∗i = arg min
Θi
Lc(Θi; D0:i−1 ∪ Di). (3.3)

Since D0:i−1 was omitted (i.e., not accessible) and only E0:i−1 is stored in memory, we
approximate E0:i−1 towards the optimal replacement of D0:i−1 as much as possible. We
formulate this with the global BOP, where “global” means operating through all phases, as
follows,

min
Θi
Lc(Θi; E∗0:i−1 ∪ Di) (3.4a)

s.t. E∗0:i−1 = arg min
E0:i−1
Lc
(
Θi−1(E0:i−1); E0:i−2 ∪ Di−1

)
, (3.4b)

where Θi−1(E0:i−1) denotes that Θi−1 was fine-tuned on E0:i−1 to reduce the bias caused by
the imbalanced sample numbers between new class data Di−1 and old exemplars E0:i−2, in
the i− 1-th phase. Please refer to the last paragraph in Section 3.3.5 for more details. In the
following, Problem 3.4a and Problem 3.4b are called model-level and exemplar-level problems,
respectively.

3.3.4 Model-level problem

As illustrated in Figure 3.2, in the i-th phase, we first solve the model-level problem with the
mnemonics exemplars E0:i−1 as part of the input and previous Θi−1 as the model initialization.
According to Problem 3.4, the objective function can be expressed as

Lall = λLc(Θi; E0:i−1 ∪ Di) + (1− λ)Ld(Θi; Θi−1; E0:i−1 ∪ Di), (3.5)

where λ is a scalar manually set to balance between Ld and Lc (introduced in Section 3.3.2).
Let α1 be the learning rate, Θi is updated with gradient descent as follows,

Θi ← Θi − α1∇ΘLall. (3.6)

30 chapter 3. learning to optimize exemplar data

Model Θ1 Model

New class
data D2

Model

New class
data D3

Exemplars
M2

...

...

Phase 0

Phase 1 Phase 2 ...

Exemplars

New class
data D1

(a)Eq. 3

Eq. 4

Model

Data Data

Exemplars

E
q.

 9

Model Exemplars

Data

the data sequence
from different classes

E
q.

 6

E
q.

 9
, 1

0

Phase 1

exemplar-level
...

Data ...

... ModelModel

Phase i

E
q.

 9
, 1

0

...

Exemplars (a) ...

...

...
Data

E
q.

 6

exemplar-level exemplar-levelconventional model-level model-level

same same

Figure 3.2: The computing flow of the proposed mnemonics training. It is a global BOP
that alternates the learning of mnemonics exemplars (we call exemplar-level optimization) and
CIL models (model-level optimization). The exemplar-level optimization within each phase is
detailed in Figure 3.3. Ẽ denotes the old exemplars adjusted to the current phase.

Then, Θi will be used to train the parameters of the mnemonics exemplars, i.e., to solve the
exemplar-level problem in Section 3.3.5.

3.3.5 Exemplar-level problem

Typically, the number of exemplars Ei is set to be greatly smaller than that of the original
data Di. Existing methods [RKSL17, HPL+

19, WCW+
19, CMG+

18] are always based on
the assumption that the models trained on the few exemplars also minimize its loss on
the original data. However, there is no guarantee particularly when these exemplars
are heuristically chosen. In contrast, our approach explicitly aims to ensure a feasible
approximation of that assumption, thanks to the differentiability of our mnemonics exemplars.

To achieve this, we train a temporary model Θ′i on Ei to maximize the prediction on Di,
for which we use Di to compute a validation loss to penalize this temporary training with
respect to the parameters of Ei. The entire problem is thus formulated in a local BOP, where
“local” means within a single phase, as

min
Ei
Lc
(
Θ′i(Ei); Di

)
(3.7a)

s.t. Θ′i(Ei) = arg min
Θi
Lc(Θi; Ei). (3.7b)

We name the temporary training in Problem 3.7b as base-level optimization and the validation
in Problem 3.7a as meta-level optimization, similar to the naming in meta-learning applied to
tackling few-shot tasks [FAL17].
Training Ei. The training flow is detailed in Figure 3.3(b) with the data split on the left of
Figure 3.3(a). First, the image-size parameters of Ei are initialized by a random sample subset
S of Di. Second, we initialize a temporary model Θ′i using Θi and train Θ′i on Ei (denoted
uniformly as E in 3.3(b)), for a few iterations by gradient descent:

Θ′i ← Θ′i − α2∇Θ′Lc(Θ′i; Ei), (3.8)

where α2 is the learning rate of fine-tuning temporary models. Finally, as the Θ′i and Ei are
both differentiable, we are able to compute the loss of Θ′i on Di, and back-propagate this
validation loss to optimize Ei,

Ei ← Ei − β1∇ELc
(
Θ′i(Ei); Di

)
, (3.9)

3.4 weight transfer operations 31

Temporary
Model aa

 Exemplars

back-propagate

 Model

initialize

Temporary
Model aa

feed update

feed

Data 2Data 1

initialize

meta-level

base-level
Exemplar
Subset B

Data 2:

Data 1:

(b)

Exemplars

subset-1

New class
data Di

Subset Si
Exemplars

M1
subset-2

To train the exemplars
from Di

To adjust old exemplars
 i.e.,

Data
Subset

 Data

Exemplar
Subset A

(b) uniform computing flow(a) data splits in two cases

Figure 3.3: The proposed local BOP framework that uses a uniform computing flow in (b) to
handle two cases of exemplar-level learning: training new class exemplars Ei from Di; and
adjusting old exemplars E0:i−1, with the data respectively given in (a). Note that (1) EA

0:i−1
and EB

0:i−1 are used as the validation set alternately for each other when adjusting E0:i−1; (2)
E in (b) denote the mnemonics exemplars which are Ei, EA

0:i−1, and EB
0:i−1 in Eq. 3.9, 3.10a and

3.10b, respectively.

where β1 is the learning rate. In this step, we basically need to back-propagate the validation
gradients till the input layer, through unrolling all training gradients of Θ′i. This operation
involves a gradient through a gradient. Computationally, it requires an additional backward
pass through Lc(Θ′i; Ei) to compute Hessian-vector products, which is supported by standard
numerical computation libraries such as TensorFlow [AAB+

16] and PyTorch [SDC+
19].

Adjusting E0:i−1. The mnemonics exemplars of a previous class were trained when this class
occurred. It is desirable to adjust them to the changing data distribution online. However,
old class data D0:i−1 are not accessible, so it is not feasible to directly apply Eq. 3.9. Instead,
we propose to split E0:i−1 into two subsets and subject to E0:i−1 = EA

0:i−1 ∪ EB
0:i−1. We use one

of them, e.g. EB
0:i−1, as the validation set (i.e., a replacement of D0:i−1) to optimize the other

one, e.g., EA
0:i−1, as shown on the right of Figure 3.3(a). Alternating the input and target data

in Figure 3.3(b), we adjust all old exemplars in two steps:

EA
0:i−1 ← EA

0:i−1 − β2∇EALc
(
Θ′i(EA

0:i−1); EB
0:i−1

)
, (3.10a)

EB
0:i−1 ← EB

0:i−1 − β2∇EBLc
(
Θ′i(EB

0:i−1); EA
0:i−1

)
, (3.10b)

where β2 is the learning rate. Θ′i(EB
0:i−1) and Θ′i(EA

0:i−1) are trained by replacing Ei in Eq. 3.8
with EB

0:i−1 and EA
0:i−1, respectively. We denote the adjusted exemplars as Ẽ0:i−1. Note that we

can also split E0:i−1 into more than 2 subsets, and optimize each subset using its complement
as the validation data, following the same strategy in Eq. 3.10.
Fine-tuning models on only exemplars. The model Θi has been trained on Di ∪ E0:i−1, and
may suffer from the classification bias caused by the imbalanced sample numbers, e.g., 1000
versus 20, between the classes in Di and E0:i−1. To alleviate this bias, we propose to fine-tune
Θi on Ei ∪ Ẽ0:i−1 in which each class has exactly the same number of samples (exemplars).

3.4 weight transfer operations

We deploy weight transfer operations [SLCS19, PSdV+
18] to train the weight scaling and

shifting parameters (named Ti) in the i-th phase which specifically transfer the network

32 chapter 3. learning to optimize exemplar data

weights Θi−1 to Θi. The aim is to preserve the structural knowledge of Θi−1 when learning
Θi on new class data.

Specifically, we assume the q-th layer of Θi−1 contains R neurons, so we have R neuron
weights and biases as {Wq,r, bq,r}R

r=1. For conciseness, we denote them as Wq and bq. For Wq,
we learn R scaling parameters denoted as T W

q , and for bq, we learn R shifting parameters
denoted as T b

q . Let Xq−1 and Xq be the input and output (feature maps) of the q-th layer. We
apply T W

q and T b
q to Wq and bq as,

Xq = (Wq ⊙ T W
q)Xq−1 + (bq + T b

q), (3.11)

where ⊙ donates the element-wise multiplication. Assuming there are Q layers in total, the
scaling and shifting parameters are denoted as Ti = {T W

q , T b
q }Q

q=1.
Therefore, to learn the CIL model Θi, we use the indirect way of training Ti (instead of

the direct way of training Θi) on Di ∪ E0:i−1 and keeping Θi−1 fixed. During the training,
both classification loss and distillation loss [LH18, RKSL17] are used. Let ⊙L donate the
function of applying Ti to Θi−1 by layers (Eq. 3.12). The objective function Eq. 3.5 can be
rewritten as:

Lall =λLc(Ti ⊙L Θi−1; E0:i−1 ∪ Di)

+ (1− λ)Ld(Ti ⊙L Θi−1; Θi−1; E0:i−1 ∪ Di),
(3.12)

where λ is a scalar manually set to balance two loss terms. Let α1 be the learning rate, Ti is
updated with gradient descent as follows,

Ti ← Ti − α1∇TLall. (3.13)

After the learning of Ti, we compute Θi as follows:

Θi ← Ti ⊙L Θi−1. (3.14)

3.5 algorithm

In Algorithm 1, we summarize the overall process of the proposed mnemonics training.
Steps 1-16 show the alternative learning of classification models and mnemonics exemplars.
Specifically in each phase, Step 8 executes the model-level training, while Step 11 and 14 are
the exemplar-level. Step 17 is optional due to different CIL settings regarding the memory
budget. We conduct experiments in two settings: (1) each class has a fixed number (e.g., 20)
of exemplars, and (2) the system consistently keeps a fixed memory budget in all phases,
therefore, the system in earlier phases can store more exemplars per class and needs to
discard old exemplars in later phases gradually. Step 18 fine-tunes the model on adjusted
and balanced examples. It is helpful to reduce the previous model bias (Step 8) caused by the
imbalance of sample numbers between new class data Di and old exemplars E0:i−1. Step 19

is to evaluate the learned model Θi in the current phase, and the average over all phases will
be reported as the final evaluation. Step 20 updates the memory to include new exemplars.

3.5 algorithm 33

Algorithm 1: Mnemonics Training

Input: Data flow {Di}N
i=0.

Output: MCIL models {Θi}N
i=0, and mnemonics exemplars {Ei}N

i=0.
1 for i in {0, 1, ..., N} do
2 Get Di;
3 if i = 0 then
4 Randomly initialize Θ0 and train it on D0;
5 else
6 Get E0:i−1 from memory;
7 Initialize Θi with Θi−1;
8 Train Θi on E0:i−1 ∪ Di by Eq. 3.6;
9 end
10 Sample S from Di to initialize Ei;
11 Train Ei using Θi by Eq. 3.9;
12 while i ≥ 1 do
13 Split E0:i−1 into subsets EA

0:i−1 and EB
0:i−1 ;

14 Optimize EA
0:i−1 and EB

0:i−1 by Eq. 3.10;
15 Get the adjusted old exemplars Ẽ0:i−1

16 end
17 (Optional) delete part of the exemplars in Ẽ0:i−1;
18 Finetune Θi on Ei ∪ Ẽ0:i−1;
19 Run test and record the results;
20 Update E0:i ← Ei ∪ Ẽ0:i−1 in memory.
21 end

34 chapter 3. learning to optimize exemplar data

3.6 experiments

We evaluate the proposed mnemonics training approach on two popular datasets (CIFAR-
100 [KH+

09] and ImageNet [RDS+15]) for four different baseline architectures [LH18,
RKSL17, WCW+

19, HPL+
19], and achieve consistent improvements. Below we describe the

datasets and implementation details (Section 3.6.1), followed by results and analyses (Sec-
tion 3.6.2), including comparisons to the state-of-the-art, ablation studies, and visualization
results.

3.6.1 Datasets and implementation details

Datasets. We conduct CIL experiments on two datasets, CIFAR-100 [KH+
09] and Ima-

geNet [RDS+15], which are widely used in related works [RKSL17, CMG+
18, WCW+

19,
HPL+

19]. CIFAR-100 [KH+
09] contains 60, 000 samples of 32× 32 color images from 100

classes. Each class has 500 training and 100 test samples. ImageNet (ILSVRC 2012) [RDS+15]
contains around 1.3 million samples of 224× 224 color images from 1, 000 classes. Each
class has about 1, 300 training and 50 test samples. ImageNet is typically used in two CIL
settings [HPL+

19, RKSL17]: one based on only a subset of 100 classes and the other based on
the entire 1, 000 classes. The 100-class data in ImageNet-Subeset are randomly sampled from
ImageNet with an identical random seed (1993) by NumPy, following [RKSL17, HPL+

19].
The architectures of Θ. Following the uniform setting [RKSL17, WCW+

19, HPL+
19], we

use a 32-layer ResNet [HZRS16] for CIFAR-100 and an 18-layer ResNet for ImageNet. We
deploy the weight transfer operations [SLCS19, PSdV+

18] to train the network, rather than
using standard weight overwriting. This helps to reduce forgetting between adjacent models
(i.e., Θi−1 and Θi).
The architecture of E . It depends on the size of the image and the number of exemplars we
need. On the CIFAR-100, each mnemonics exemplar is a 32× 32× 3 tensor. On the ImageNet,
it is a 224× 224× 3 tensor. The number of exemplars is set in two manners [HPL+

19]. (1) 20
samples are uniformly used for every class. Therefore, the parameter size of the exemplars
per class is equal to tensor×20. (2) The system keeps a fixed memory budget, e.g. at most
2, 000 exemplars in total, in all phases. It thus saves more exemplars per class in earlier
phases and discards old exemplars afterward. In both settings, we have the consistent finding
that mnemonics training is the most efficient approach, surpassing the state-of-the-art by large
margins with little computational or parametrization overheads.
Model-level hyperparameters. The SGD optimizer is used to train Θ. Momentum and
weight decay parameters are set to 0.9 and 0.0005, respectively. In each (i.e. i-th) phase, the
learning rate α1 is initialized as 0.1. On the CIFAR-100 (ImageNet), Θi is trained in 160 (90)
epochs for which α1 is reduced to its 1

10 after 80 (30) and then 120 (60) epochs. In Eq. 3.5, the
scalar λ and temperature τ are set to 0.5 and 2, respectively, following [RKSL17, HPL+

19].
Exemplar-level hyperparameters. An SGD optimizer is used to update mnemonics exemplars
Ei and adjust E0:i−1 (as in Eq. 3.9 and Eq. 3.10 respectively) in 50 epochs. In each phase, the
learning rates β1 and β2 are initialized as 0.01 uniformly and reduced to their half after every
10 epochs. Gradient descent is applied to update the temporary model Θ′ in 50 epochs (as
in Eq. 3.8). The learning rate α2 is set to 0.01. We deploy the same set of hyperparameters
for fine-tuning Θi on Ei ∪ Ẽ0:i−1.
Benchmark protocol. This work follows the protocol in the most recent work — LU-

3.6 experiments 35

#phase (N=25)

Upper Bound Ours LUCIR BiC iCaRL LwF

(a) CIFAR-100 (100 classes). In the 0-th phase, Θ0 is trained on 50 classes, the remaining classes are given
evenly in the subsequent phases.

(b) ImageNet-Subset (100 classes). In the 0-th phase, Θ0 is trained on 50 classes, the remaining classes are
given evenly in the subsequent phases.

(c) ImageNet (1000 classes). In the 0-th phase, Θ0 on is trained on 500 classes, the remaining classes are given
evenly in the subsequent phases.

Figure 3.4: Phase-wise accuracies (%). Light-color ribbons are visualized to show the 95%
confidence intervals. Comparing methods: Upper Bound (the results of joint training with
all previous data accessible in each phase); LUCIR (2019) [HPL+

19]; BiC (2019) [WCW+
19];

iCaRL (2017) [RKSL17]; and LwF (2016) [LH18]. We show Ours results using “LUCIR w/
ours”. Please refer to the average accuracy of each curve in Table 3.1.

36 chapter 3. learning to optimize exemplar data

Metric Method
CIFAR-100 ImageNet-Subset ImageNet

N=5 10 25 5 10 25 5 10 25

LwF⋄ (2016) [LH18] 49.59 46.98 45.51 53.62 47.64 44.32 44.35 38.90 36.87

LwF w/ ours 54.21 52.72 51.59 60.94 59.25 59.71 52.70 50.37 50.79

iCaRL (2017) [RKSL17] 57.12 52.66 48.22 65.44 59.88 52.97 51.50 46.89 43.14

Average acc. (%) ↑ iCaRL w/ ours 60.00 57.37 54.13 72.34 70.50 67.12 60.61 58.62 53.46

Ā = 1
N+1 ∑N

i=0Ai BiC (2019) [WCW+
19] 59.36 54.20 50.00 70.07 64.96 57.73 62.65 58.72 53.47

BiC w/ ours 60.67 58.11 55.51 71.92 70.73 69.22 64.63 62.71 60.20

LUCIR (2019) [HPL+
19] 63.17 60.14 57.54 70.84 68.32 61.44 64.45 61.57 56.56

LUCIR w/ ours 63.34 62.28 60.96 72.58 71.37 69.74 64.54 63.01 61.00

LwF⋄ (2016) [LH18] 43.36 43.58 41.66 55.32 57.00 55.12 48.70 47.94 49.84

LwF w/ ours 40.00 36.50 34.26 41.07 39.76 39.99 37.46 38.42 37.95

iCaRL (2017) [RKSL17] 31.88 34.10 36.48 43.40 45.84 47.60 26.03 33.76 38.80

Forgetting rate (%) ↓ iCaRL w/ ours 25.94 26.92 28.92 20.96 24.12 29.32 20.26 24.04 17.49

F = AZ
N −AZ

0 BiC (2019) [WCW+
19] 31.42 32.50 34.60 27.04 31.04 37.88 25.06 28.34 33.17

BiC w/ ours 22.42 24.50 25.52 18.43 19.20 21.43 18.32 19.72 20.50

LUCIR (2019) [HPL+
19] 18.70 21.34 26.46 31.88 33.48 35.40 24.08 27.29 30.30

LUCIR w/ ours 10.91 13.38 19.80 17.40 17.08 20.83 13.85 15.82 19.17
⋄ Using herding exemplars as [HPL+

19, RKSL17, WCW+
19] for fair comparison.

Table 3.1: Average accuracies Ā (%) and forgetting rates F (%) for the state-of-the-
art [HPL+

19] and other baseline architectures [LH18, RKSL17, WCW+
19] with and without

our mnemonics training approach as a plug-in module. Let Dtest
i be the test data correspond-

ing to Di in the i-th phase. Ai denotes the average accuracy of Dtest
0:i by Θi. AZ

i is the average
accuracy of Dtest

0 by Θi in the i-th phase. Note that the weight transfer operations are applied
in “w/ ours” methods.

3.6 experiments 37

Exemplar
CIFAR-100 ImagNet-Subset

N=5 10 25 5 10 25

random w/o adj.

↑

61.87 60.23 58.57 70.67 69.15 67.17

random 62.64 60.61 58.82 70.69 69.67 67.46

herding w/o adj. 62.98 61.23 60.36 71.66 71.02 69.40

herding 62.96 61.76 60.38 71.76 71.04 69.61

ours w/o adj. 63.25 61.86 60.46 71.91 71.08 69.68

ours 63.34 62.28 60.96 72.58 71.37 69.74

random w/o adj.

↓

11.16 13.42 12.26 18.92 19.56 23.64

random 12.13 14.80 12.26 17.92 17.91 23.60

herding w/o adj. 12.69 13.63 16.36 17.16 18.00 20.00
herding 11.00 14.38 15.60 15.80 17.84 20.72

ours w/o adj. 9.80 13.44 16.68 18.27 18.08 20.96

ours 10.91 13.38 15.22 17.40 17.08 20.83

Table 3.2: Ablation study. The top and the bottom blocks present average accuracies Ā (%)
and forgetting rates F (%), respectively. “w/o adj.” means without old exemplar adjustment.
Note that the weight transfer operations are applied in all these experiments.

CIR [HPL+
19]. We also implement all other methods [RKSL17, CMG+

18, WCW+
19] on this

protocol for a fair comparison. Given a dataset, the model (Θ0) is firstly trained on half of the
classes. Then, the model (Θi) learns the remaining classes evenly in the subsequent phases.
Assume an CIL system has 1 initial phase and N incremental phases. The total number of
incremental phases N is set to be 5, 10, or 25 (for each the setting is called “N-phase” setting).
At the end of each individual phase, the learned Θi is evaluated on the test data Dtest

0:i where
“0 : i” denote all seen classes so far. The average accuracy Ā (over all phases) is reported as
the final evaluation [RKSL17, HPL+

19]. In addition, we propose a forgetting rate, denoted
as F , by calculating the difference between the accuracies of Θ0 and ΘN on the same initial
test data Dtest

0 . The lower forgetting rate is better.

3.6.2 Results and analyses

Table 3.1 shows the comparisons with the state-of-the-art [HPL+
19] and other baseline

architectures [LH18, RKSL17, WCW+
19], with and without our mnemonics training as a

plug-in module. Note that “without” in [LH18, RKSL17, WCW+
19, HPL+

19] means using
herding exemplars (we add herding exemplars to [LH18] for fair comparison). Figure 3.4
shows the phase-wise results of our best model, i.e., LUCIR [HPL+

19] w/ ours, and those of
the baselines. Table 3.2 demonstrates the ablation study for evaluating two key components:
training mnemonics exemplars; and adjusting old mnemonics exemplars. Figure 3.5 visualizes
the differences between herding and mnemonics exemplars in the data space.
Compared to the state-of-the-art. Table 3.1 shows that taking our mnemonics training as a
plug-in module on the state-of-the-art [HPL+

19] and other baseline architectures consistently
improves their performance. In particular, LUCIR [HPL+

19] w/ ours achieves the highest
average accuracy and lowest forgetting rate, e.g. respectively 61.00% and 19.17% on the
most challenging 25-phase ImageNet. The overview on forgetting rates F reveals that our
approach is greatly helpful in reducing forgetting problems for every method. For example,
LUCIR (w/ ours) sees its F reduced to around the third and the half on the 25-phase

38 chapter 3. learning to optimize exemplar data

 mnemonics

 herding

C
IF
A
R
-1
00

 herding

 mnemonics

Im
ag
eN

et

500 700 900

50 70 90 500 700 900

50 70 90

Figure 3.5: The t-SNE [MH08] results of herding and our mnemonics exemplars on two
datasets. N=5. In each colored class, deep-color points are exemplars, and light-color ones
are original data referring to the real data distribution. The total number of classes (used
in the training) is given in the top-left corner of each sub-figure. For clear visualization,
Phase-0 randomly picks 3 classes from 50 (500) classes on CIFAR-100 (ImageNet). Phase-2
and Phase-4 increases to 5 and 7 classes, respectively.

CIFAR-100 and ImageNet, respectively.

Different total phases (N = 5, 10, 25). Table 3.1 and Figure 3.4 demonstrate that the boost
by our mnemonics training becomes larger in more-phase settings, e.g. on ImageNet-Subset,
LUCIR w/ ours gains 1.74% on 5-phase while 8.30% on 25-phase. When checking the ending
points of the curves from N=5 to N=25 in Figure 3.4, we find related methods, LUCIR, BiC,
iCaRL, and LwF, all suffer from performance drop. The possible reason is that their models
get more and more seriously overfitted to herding exemplars which are heuristically chosen
and fixed. In contrast, our best model (LUCIR w/ ours) does not have such problem, thanks
to our mnemonics exemplars being given both strong optimizability and flexible adaptation ability
through the BOP.

Ablation study. Table 3.2 concerns six ablative settings and compares the efficiencies
between our mnemonics training approach (w/ and w/o adjusting old exemplars) and two
baselines: random and herding exemplars. Concretely, our approach achieves the highest
average accuracies and the lowest forgetting rates in all settings. Dynamically adjusting old
exemplars brings consistent improvements, i.e., average 0.34% on both datasets. In terms
of forgetting rates, our results are the lowest (best). It is interesting that random achieves
lower (better) performance than herding. Random selects exemplars both on the center and
boundary of the data space (for each class), but herding considers the center data only which
strongly relies on the data distribution in the current phase but can not take any risk of
distribution change in subsequent phases. This weakness is further revealed through the
visualization of exemplars in the data space, e.g., in Figure 3.5.

Visualization results. Figure 3.5 demonstrates the t-SNE results for herding (deep-colored)
and our mnemonics exemplars (deep-colored) in the data space (light-colored). We have
two main observations. (1) Our mnemonics approach results in much clearer separation in
the data than herding. (2) Our mnemonics exemplars are optimized to mostly locate on the
boundaries between classes, which is essential to yielding high-quality classifiers. Comparing
the Phase-4 results of two datasets (i.e., among the sub-figures on the rightmost column),
we can see that learning more classes (i.e., on the ImageNet) clearly causes more confusion

3.7 conclusion 39

among classes in the data space, while our approach is able to yield stronger intra-class
compactness and inter-class separation.

3.7 conclusion

In this chapter, we develop a novel mnemonics training framework for tackling multi-class
incremental learning tasks. Our main contribution is the mnemonics exemplars which are
not only efficient data samples but also flexible, optimizable and adaptable parameters
contributing a lot to the flexibility of online systems. Quite intriguingly, our mnemonics
training approach is generic that it can be easily applied to existing methods to achieve large-
margin improvements. Extensive experimental results on four different baseline architectures
validate the high efficiency of our approach, and the in-depth visualization reveals the
essential reason is that our mnemonics exemplars are automatically learned to be the optimal
replacement of the original data which can yield high-quality classification models.

4L E A R N I N G T O
A L L O C AT E M E M O RY

Contents
4.1 Introduction . 42
4.2 Related Work . 43
4.3 Methodology . 44

4.3.1 Denotations for CIL . 44

4.3.2 Preliminaries for Reinforcement Learning 45

4.3.3 Formulation of RMM . 45

4.3.4 Optimization . 47

4.3.5 Algorithm . 48

4.4 Experiments . 50
4.4.1 Datasets and Implementation Details 50

4.4.2 Results and Analyses . 51

4.5 Conclusion . 53

Class-incremental learning (CIL) [RKSL17] trains classifiers under a strict memory
budget: in each incremental phase, learning is done for new data, most of which
is abandoned to free space for the next phase. The preserved data are exemplars

used for replaying. However, existing methods use a static and ad hoc strategy for memory
allocation, which is often sub-optimal. In this chapter, we propose a dynamic memory
management strategy that is optimized for the incremental phases and different object classes.
We call our method reinforced memory management (RMM), leveraging reinforcement
learning. RMM training is not naturally compatible with CIL as the past, and future data are
strictly non-accessible during the incremental phases. We solve this by training the policy
function of RMM on pseudo CIL tasks, e.g., the tasks built on the data of the 0-th phase, and
then applying it to target tasks. RMM propagates two levels of actions: Level-1 determines
how to split the memory between old and new classes, and Level-2 allocates memory for each
specific class. In essence, it is an optimizable and general method for memory management
that can be used in any replaying-based CIL method. For evaluation, we plug RMM into
two top-performing baselines (LUCIR+AANets and POD+AANets [LSS21a]) and conduct
experiments on three benchmarks (CIFAR-100, ImageNet-Subset, and ImageNet-Full). Our
results show clear improvements, e.g., boosting POD+AANets by 3.6%, 4.4%, and 1.9% in
the 25-Phase settings of the above benchmarks, respectively.

This chapter is based on [LSS21b]. As the first author, Yaoyao Liu conducted all
experiments and was the main writer. This work has been integrated into a popular open-
source class-incremental learning toolbox [ZWYZ21].

41

42 chapter 4. learning to allocate memory

load

load

model
train

model
train

load
model

train

load
model

train

old/new allocation

class-specific allocation
& exemplar selection

P
ha

se
 i

P
ha

se
 i+
1

P
ha

se
 i

P
ha

se
 i+
1

exemplar
selection

(a) Baseline (b) Reinforced Memory Management (ours)

randomly

randomly states

Level-2 policy

Level-1 action

Level-1 policy

Level-2 action

Figure 4.1: (a) Existing CIL methods [HPL+
19, LSS21a, RKSL17] allocate memory between

old and new classes in an arbitrary and frozen way, causing the data imbalance between old
and new classes and exacerbating the catastrophic forgetting of old knowledge in the learned
model. (b) Our proposed method—Reinforced Memory Management (RMM)—is able to
learn the optimal and class-specific memory sizes in different incremental phases. Please
note we use orange, blue, and green dots to denote the samples observed in the (i-1)-th, i-th,
and (i+1)-th phases, respectively.

4.1 introduction

Ideally, AI systems should be adaptive to ever-changing environments—where the data are
continuously observed by sensors. Their models should be capable of learning new concepts
from data while maintaining the ability to recognize previous ones. In practice, the systems
often have constrained memory budgets because of which most of the historical data have to
be abandoned [HTM+

21]. However, deep-learning-based AI systems, when continuously
updated using new data and limited historical data, often suffer from catastrophic forgetting,
as the updates can override knowledge acquired from previous data [MC89, MH93, Rat90].

To encourage research on the forgetting problem, Rebuffi et al. [RKSL17] defined a
standard protocol of class-incremental learning (CIL) for image classification, where the
training data of different object classes come in phases. In each phase, the classifier is
evaluated on all classes observed so far. As the total memory size is limited [RKSL17], CIL
systems abandon the majority of the data and only preserve a small number of exemplars,
e.g., 20 exemplars per class, which will be used for replaying in subsequent phases. Replaying
usually happens for multiple epochs [DCO+

20, HPL+
19, LSS21a, RKSL17], so both the old

class exemplars and new class data need to be stored in the limited memory. Existing CIL
methods allocate memory between the old and new classes in an arbitrary and static fashion,
e.g., 20 per old class vs. 1, 300 per new class for the ImageNet-Full dataset. This causes
a serious imbalance between the old and new classes and can exacerbate the problem of
catastrophic forgetting.

To address this, we propose to learn an optimal memory management policy for each
incremental phase with continuously reinforced model performance and call our method
reinforced memory management (RMM). Detailed actions include 1) allocating the memory

4.2 related work 43

between the existing (old) and the coming (new) data for each phase, and 2) specifying the
memory for each old class according to its recognition difficulty before abandoning any of its
data. To this end, we leverage reinforcement learning [LCL19, LL19, LZQL19, Wil92, ZL17]
and design a new policy function to contain two sub-functions that propagate two levels of
actions in a hierarchical way. Level-1 function determines how to split memory between the
old and new data. Its output action is then inputted into the Level-2 function to determine
how to allocate memory for each old class. The overall objective of the function is to
maximize the cumulative evaluation accuracy across all incremental phases. However, this is
not naturally compatible with the standard protocol of CIL [RKSL17] where neither past nor
future data are accessible for evaluation. To tackle this issue, we propose to pre-train the
function on pseudo CIL tasks and then adopt it in the learning process of our target task.
In principle, we can build such pseudo tasks using any available categorical data, e.g., the
data in the 0-th phase of the target CIL task or the data from another dataset. Even though
this is a non-stationary reinforcement learning problem, we can regard the pseudo and
target CIL tasks as a sequence of stationary tasks and train the policy function to exploit the
dependencies between these consecutive tasks. Such continuous adaptation in non-stationary
environments is feasible based on the empirical analysis given in [ABB+

18].
Technically, we propose the following method to guarantee the transferability of policy

functions between pseudo and target CIL tasks. We take a Level-1 action based on the ratio
of the number of new classes to the total number of classes observed so far. A lower (higher)
ratio will result in weakening the stability (plasticity) of the classification model. Then, we
take a Level-2 action for each individual class conditioned on both the Level-1 action and the
training entropy of that class. A higher entropy denotes a more difficult class, leading to
more memory allocated to the class. For evaluation, we conduct extensive CIL experiments
by plugging RMM into two top-performing methods (LUCIR+AANets, POD+AANets) and
testing them on three benchmarks (CIFAR-100, ImageNet-Subset, and ImageNet-Full). Our
results show the clear and consistent superiority of RMM, e.g., it boosts the state-of-the-art
POD+AANets by 3.6%, 4.4%, and 1.9% in the 25-Phase settings of the above benchmarks,
respectively.

Our technical contribution is three-fold. 1) A hierarchical reinforcement learning al-
gorithm called RMM to manage the memory in a way that can be conveniently modified
through incremental phases and for different classes. 2) A pseudo task generation strat-
egy that requires only in-domain available data (small-scale) or cross-domain datasets
(large-scale), relieving the data incompatibility between reinforcement learning and class-
incremental learning. 3) Extensive experiments, visualization, and interpretation for RMM
in three CIL benchmarks and using two top models as baselines.

4.2 related work

In this section, we discuss related works on reinforcement Learning problems. We will not
repeat the incremental learning works that have been discussed in Chapter 2.
Reinforcement Learning defines an agent that needs to decide its actions in an unknown
environment by maximizing the expected cumulative reward. It has been widely applied
to many optimization problems, e.g., neural architecture search [XZ18, ZL17] and neural
machine translation [RCAZ16, SCH+

16]. Reinforcement learning has also been introduced to
solve incremental learning problems. Xu et al. [XZ18] proposed to increase convolution filters
once a new task arrives and optimize the increased number by reinforcement learning. Gao et

44 chapter 4. learning to allocate memory

al. [GLK20] proposed an improved version that makes the minimal expansion of the network,
reducing memory and computing overheads. Veniat et al. [VDR21] introduced a modular
architecture, where each module represents a different atomic skill, and used the REINFORCE
algorithm [Wil92] to optimize it. Huang et al. [HFLR19] combined reinforcement learning
with Net2Net [CGS16] and designed a NAS-based CIL method. In our work, we also use the
REINFORCE algorithm [Wil92], but differ in three aspects. First, we are the first to optimize
memory allocation for CIL in a reinforced way. Second, we learn the policy functions on
generated pseudo CIL tasks, where we can access both past, and future data (for each
incremental phase) and thus are able to compute the cross-phase (long-term) rewards. In
contrast, the related work [GLK20, XZ18] could use only current-phase data to estimate
a short-term reward. Third, our reinforcement learning has a hierarchical structure that
specially fits the nature of the data stream in the CIL settings.

4.3 methodology

Our RMM approach learns policy functions that propagate two levels of actions in a hierar-
chical way, specially designed for CIL. As illustrated in Figure 4.1 (b), Level-1 determines the
memory split between exemplars and new data, and Level-2 allocates the memory for each
individual class.

In the following, we first elaborate on the denotations in Section 4.3.1. Then, we introduce
the preliminaries for reinforcement learning in Section 4.3.2. After that, we motivate and
introduce the formulation of RMM, including the definitions of states, actions, rewards, and
hierarchical policy functions in Section 4.3.3. In Section 4.3.4, we detail the steps of creating
pseudo CIL tasks on which we learn the policy functions. In Section 4.3.5, we summarize
the algorithm.

4.3.1 Denotations for CIL

CIL usually assumes (N+1) learning phases: an initial phase and N incremental phases dur-
ing which the number of classes gradually increases till the maximum [DCO+

20, HPL+
19,

HTM+
21, LSL+

20]. We assume that total memoryM is bounded and fixed for all incremen-
tal phases [RKSL17]. M is used to store the exemplars and new coming data as both kinds of
data need to be loaded repeatedly during training epochs. In the initial (0-th) phase, data D0,
containing the training samples of C0 classes, are used to learn the initial classification model
Θ0. In the i-th incremental phase, we split M into two dynamic partitions: the exemplar
memoryMold and new data memoryMnew. We select Et as representative samples of the
data seen in the t-th phase, and denote total exemplars E0 ∼ Ei−1 shortly as E0:i−1. We save
E0:i−1 into Mold and free Mnew. Then, we observe new data that contain Ci new classes.
We randomly load new data intoMnew untilMnew is full, and all the other new data are
discarded. We denote the loaded new data as Di. Then, we initialize Θi with Θi−1, and train
it using E0:i−1 ∪Di. The resulting model Θi will be evaluated with a test set containing all
classes observed so far. We repeat this training and testing, and report the average accuracy
across all phases.

4.3 methodology 45

4.3.2 Preliminaries for Reinforcement Learning

Reinforcement learning (RL) aims to learn an optimal policy function π for an agent
interacting in an unknown environment [Wil92, XZ18, ZL17]. In the CIL scenario, in each
incremental phase, the agent observes the current state si from the environment, and
then takes an action ai (how to allocate memory) according to the policy function π(ai|si).
Subsequently, the environment is updated to a new state si+1 and the reward ri is calculated
to optimize the parameters of π(ai|si) through back-propagation. Specifically, the learning
objective of π(ai|si) is to maximize the expected cumulative reward Ri = ∑∞

t=i γt−irt, where
γ ∈ [0, 1) is a discounting factor that determines the weights of future rewards. Please note
that in our case, the (N+1)-phase CIL task is a finite horizon problem [Glo00, ZL17], so
we remove the discounting factor and use R = ∑N

t=0 rt, which is actually the cumulative
validation accuracy of all training CIL tasks. In Section 4.3, we discuss the proposed RL
algorithm for memory allocation and how to generate pseudo tasks for training its policy
function.

4.3.3 Formulation of RMM

In the i-th incremental phase CIL, we manage the memory for two kinds of data: exemplars
E0:i−1 and new data Di. For the former, we have access to their images and labels so
we can allocate a different memory size to a different class, e.g., based on its recognition
difficulty. For the latter, we do not have such access before loading the data (otherwise,
causing a violation to the CIL protocol), so we are only able to learn a total memory size,
i.e., the memory size for all new classes (and then split it evenly for each individual class).
Therefore, memory management in CIL settings is inherently hierarchical: 1) coarse memory
allocation between exemplars and new data; and then 2) fine-grained memory allocation
among specific classes. To this end, we modify the standard reinforcement learning into a
hierarchical structure.

As illustrated in Figure 4.2 (a), in the i-th incremental phase of CIL (i.e., the environment),
the argent receives a state value si. Level-1 policy πη takes si as the input to produce an

action a[1]i ∼ πη(si). a[1]i determines how to split memory between the exemplars and new

data. After that, Level-2 policy πϕ takes si and a[1]i as inputs to produce the second action

a[2]i ∼ πϕ(si, a[1]i) that distributes the exemplar memory for each individual class.
States, defined for our CIL settings, should have two properties. 1) Being transferable
between CIL tasks, e.g., from a small-scale CIL task including 50 classes (in total) to a large
one including 100 classes. The reason is that we need to transfer the policy functions learned
from pseudo CIL tasks (defined in Section 4.3.4) to the target task. The states, the inputs of
policy functions, should also be transferable. 2) Being distinct in each incremental phase.
This is to enable the state variable to represent a specific forgetting or data imbalance degree
at each different learning phase of the CIL model. To fulfill these properties, we formulate
the state in the i-th phase as si =

(
Ci

∑i−1
t=0 Ct

, |Mold|
|M|

)
, where Ci denotes the number of classes in

Di,Mold denotes the memory allocated to exemplars E0:i−1, andM is the total memory.
Level-1 Actions. In the 1-st incremental phase, our Level-1 policy function produces an
action to allocate the memory for exemplars E0 and new data D1. We denote this action as
a[1]1 and assign its value with the ratio of the number of the exemplars |E0| to the memory

46 chapter 4. learning to allocate memory

…

π𝜂

si

π𝜙

ai
[1]

ai
[2]

a1
[1] a1

[2]
，

s1

R

(a) The i-th incremental phase
of the k-th pseudo CIL task (b) The k-th pseudo CIL task

…

ai
[1] ai

[2]
，

si

Figure 4.2: (a) In the i-th phase of the k-th pseudo CIL task, Level-1 policy πη takes si as

the input, and produces action a[1]i . Level-2 policy πϕ takes si and a[1]i as the inputs, then

produces action a[2]i . (b) For the k-th pseudo CIL task, we allocate memory for N times (i.e.,
in N phases) using the policies πη and πϕ, and compute the cumulative reward R.

size |M|, so we have a[1]1 ∈ (0, 1). In the i-th phase (i ≥ 2), the definition of a[1]i is different

to a[1]1 as it is a relative change over a[1]i−1. Specifically, a[1]i is the ratio of increased (if its
value is positive) or decreased (if negative) memory size ofMold compared to the (i-1)-th
phase. Using this definition aims for smooth and continuous memory management. In the
formulation, the memory sizes of exemplars E0:i−1 and new data Di are, respectively,

|Mold| = |E0:i−1| =
i

∑
t=1

a[1]t |M|, |Mnew| = |Di| =
(

1−
i

∑
t=1

a[1]t

)
|M|. (4.1)

We set a constrain a[1]i ∈ [−0.1, 0.1] for i ≥ 2. Otherwise, if a[1]i is too big, there are not

enough exemplars to fill the memory, as most old-class data has been abandoned. If a[1]i is
too small, many exemplars will be permanently deleted in this phase, making it hard or
even impossible to adjustMold back to a high value in the future phases. If ∑i

t=1 a[1]t > 1,
Mnew will be negative. So, we force ∑i

t=1 a[1]t ≤ 1 by rejection sampling [Bis06], i.e., using πη

to output another action until it is feasible to execute. Note that this situation rarely happens
in real training, because whenMnew becomes very low, πη tends to produce an action to
increase it.

Level-2 Actions. Here, we elaborate on how to get class-specific memory allocation. In the
(i− 1)-th phase, we split the classes for Di−1 into two groups evenly according to training
entropy values: classes with higher values (difficult classes) are in one group and the rest
in the other group. Therefore, Level-2 action a[2]i ∈ (0, 1) determines how to split memories
between harder and easier classes. During initial experiments, we observed that using two
groups already yields improved results and using more groups causes a decrease.

Let MA
j and MB

j denote the memory allocated for the high-entropy and low-entropy

4.3 methodology 47

groups, respectively, in the j-th phase (j ≤ i):

|MA
j | = a[2]j+1|Ej| =

a[2]j+1Cj

∑i
t=1 Ct

|Mold|, |MB
j | = (1− a[2]j+1)|Ej| =

(1− a[2]j+1)Cj

∑i
t=1 Ct

|Mold|. (4.2)

Then, we allocate memory evenly to the classes within the group, e.g., if the high-entropy
group has 10 classes, each class will have a memory size of 1

10 |MA
j |.

Rewards. The objective of CIL is that the trained model (in any phase) should be efficient to
recognize all classes seen so far. It is intuitive and convenient to use the validation accuracy
as the reward in each phase. In the i-th phase, the objective of RMM is to maximize the
expected cumulative reward, i.e., R = ∑N

i=0 ri, where ri denotes the validation accuracy in
the i-th phase.

4.3.4 Optimization

Cumulative

Reward

Pseudo
CIL Task

…

Update

Rz
1

×Z

∇ J(𝜂, 𝜙) 𝜂, 𝜙

A
g
ent

Cumulative
Reward

Pseudo
CIL Task

… Rz
k

×Z

Figure 4.3: Updating η and ϕ in one epoch.
To get stable gradients for J(η, ϕ), we create
K different pseudo CIL tasks, and run each
task for Z times.

In the CIL protocol, it is impossible to see past
or future data in any incremental phase. It
is thus not intuitive how to compute cumula-
tive rewards till the last phase. We propose to
solve the issue by generating pseudo CIL tasks
(where all data are accessible).
Pseudo CIL Tasks should meet two require-
ments: 1) their training and validation data
are fully accessible for computing cumulative
rewards, and 2) they have the same format
(e.g., the same number of phases) of the tar-
get CIL task. Data Sources: For requirement
1, an intuitive solution is to use D0 (available
in the 0-th phase). Based on the CIL proto-
col [DCO+

20, HPL+
19, HTM+

21, LSS21a], D0
contains half of the classes of the whole dataset,
e.g., 50 classes on CIFAR-100, which supplies
enough data to build downsized CIL tasks.
When building the tasks, we randomly choose
10% training samples of each class (from D0) to
compose a pseudo validation set (note that we are not allowed to use the original validation
set in training). When aiming for larger-scale data in CIL, we can leverage smaller datasets.
For example, the pseudo tasks for ImageNet-Subset can be built on the data of CIFAR-100.
This is also meaningful to evaluate the transferability of RMM policy functions (discussed in
the Ablation Study). Task Generation Protocol is based on requirement 2. If using another
dataset, we simply follow its original CIL protocol. If using the data accessed in the 0-th
phase (i.e., D0), we can reduce the number of classes (in each phase) by half. For example, for
CIFAR-100, we use 50-class D0 to generate a 5-phase pseudo CIL task as follows: loading 25
classes in the 0-th phase, and after that, five classes per phase. To generate another pseudo
task, we simply change the order of classes.

Training. We elaborate the steps of learning Level-1 policy πη and Level-2 policy πϕ in
the following. The goal is to optimize the parameters η and ϕ by maximizing the expected

48 chapter 4. learning to allocate memory

cumulative reward J(η, ϕ). We denote any pseudo CIL task and its cumulative reward as T
and R, respectively, and have,

J(η, ϕ) = ET Eπη ,πϕ [R]. (4.3)

Policy Gradient Estimation. According to the policy gradient theorem [Wil92], we can
compute the gradients for J(η, ϕ) as follows,

∇η,ϕ J(η, ϕ) = ET

[
N

∑
i=1

Eπη ,πϕ [∇η,ϕ log(πη(a[1]i |si)πϕ(a[2]i |si, a[1]i))R]

]
. (4.4)

Following the REINFORCE algorithm [Wil92], we replace the expectations ET [·] and Eπη ,πϕ [·]
with sample averages using the Monte Carlo method [Ham13]. Specifically, in each epoch,
we create K pseudo tasks and run each task for Z times, as shown in Figure 4.3. Thus we
can derive the empirical approximation of ∇η,ϕ J(η, ϕ) as,

∇η,ϕ J(η, ϕ) =
1

ZK

K

∑
k=1

Z

∑
z=1

N

∑
i=1
∇η,ϕ log(πη(a[1]i |si)πϕ(a[2]i |si, a[1]i))(Rk

z − b), (4.5)

where Rk
z denotes the z-th reward for the k-th pseudo task Tk, and b denotes the baseline

function—the moving average of previous rewards. Using this baseline function is a common
trick in RL to reduce the variance of estimated policy gradients [KvHW19, RMM+

17, ZL17].
Updating Parameters. We update η and ϕ in each epoch according to the gradient ascent

rule [XZ18, ZL17]:

η := η + β1∇η J(η, ϕ), ϕ := ϕ + β2∇ϕ J(η, ϕ), (4.6)

where β1 and β2 are the learning rates. We iterate this update for m epochs in total.

4.3.5 Algorithm

Algorithm 2 summarizes the overall training steps of the proposed RMM. There are four
loops in the algorithm: 1) we train the RMM agent for m epochs; 2) we create K pseudo
CIL tasks in each epoch; 3) we run each pseudo CIL task for Z times; and 4) there are N+1
learning phases each time. Specifically, Line 3 initializes the parameters of policy functions.
Line 6 creates the k-th pseudo CIL task. Line 8 initializes the classification model. Lines 10-16

allocate the memory according to the actions produced by RMM policy. Line 17 loads new
data. Lines 18-19 train the classification model and compute the accuracy. Line 20 estimates
the z-th cumulative reward. Lines 21-22 compute the gradients and update policy functions.

4.3 methodology 49

Algorithm 2: Learning policy functions in RMM
Input: Data D for generating pseudo CIL tasks
Output: Policy functions πη , πϕ.

1 Initialize η and ϕ;
2 for m epochs do
3 for k in 1, ..., K do
4 Create a new pseudo task Tk using D;
5 for z in 1, ..., Z do
6 Initialize classification model Θ0;
7 for i in 0, ..., N do
8 if i ≥ 1 then
9 Observe si and produce a[1]i ∼ πη(si);
10 AllocateMold andMnew using Eq. 4.1;

11 Produce a[2]i ∼ πϕ(a[1]i , si);
12 Allocate {MA

j }i
j=0 and {MB

j }i
j=0 using Eq. 4.2;

13 Update E0:i−1 using herding [RKSL17];
14 Save E0:i−1 inMold and freeMnew;
15 end
16 Observe new data and load Di intoMnew randomly;
17 Initialize Θi with Θi−1 and train it using E0:i−1 ∪Di;
18 Compute validation accuracy ri;
19 end
20 Compute Rk

z = ∑N
i=0 ri and update b;

21 end
22 end
23 Compute ∇η,ϕ J(η, ϕ) using Eq. 4.5;
24 Update η and ϕ using Eq. 4.6.
25 end

50 chapter 4. learning to allocate memory

4.4 experiments

We evaluate the proposed RMM method on three CIL benchmarks: CIFAR-100 [KH+
09],

ImageNet-Subset [RKSL17], and ImageNet-Full [RDS+15], and use two top-performing
methods LUCIR+AANets and POD+AANets [LSS21a] as baselines. Below we introduce the
datasets and implementation details (Section 4.4.1), followed by the experimental results and
analyses (Section 4.4.2).

4.4.1 Datasets and Implementation Details

Datasets. We use three benchmarks based on two datasets, CIFAR-100 [KH+
09] and Ima-

geNet [RDS+15], following common settings [DCO+
20, HPL+

19, RKSL17, LSS21a]. CIFAR-
100 [KH+

09] contains 60, 000 samples of 32× 32 color images from 100 classes. There are
500 training and 100 test samples for each class. ImageNet (ILSVRC 2012) [RDS+15] con-
tains around 1.3 million samples of 224× 224 color images from 1, 000 classes. There are
about 1, 300 training and 50 test samples for each class. ImageNet has two CIL settings:
ImageNet-Subset is based on a subset of 100 classes; and ImageNet-Full uses the full set of
1, 000 classes. The 100-class data for the ImageNet-Subset are sampled from ImageNet. For
the experiments on PODNet [DCO+

20] and POD-AANets [LSS21a], we use the same class
orders and hyperparameters as [DCO+

20]. For the experiments on LUCIR [HPL+
19] and

LUCIR-AANets [LSS21a], we use the same class orders and hyperparameters as [HPL+
19].

Benchmarks. We follow the benchmark protocol used in [DCO+
20, HPL+

19, LSS21a,
LSL+

20]. Given a dataset, the initial (the 0-th phase) model is trained on the data of
half of the classes. Then, it learns the remaining classes evenly in the subsequent N phases.
Assume there is an initial phase and N incremental phases in the CIL system. The total
number of incremental phases N is set to be 5, 10, or 25 (for each the setting is called
“N-phase” setting). At the end of each individual phase, the learned model in each phase
is evaluated on the test set containing all seen classes. In the tables, we report average
accuracy over all phases and the last-phase accuracy, where the latter indicates the degree of
forgetting.
Network Architectures. Following [HPL+

19, LSS21a, RKSL17, WCW+
19], we use a 32-layer

ResNet [RKSL17] for CIFAR-100 and an 18-layer ResNet [HZRS16] for ImageNet. Please
note that it is standard to use a shallower ResNet for ImageNet. The 32-layer ResNet consists
of an initial convolution layer and three residual blocks (in a single branch). Each block
has ten convolution layers with 3× 3 kernels. The number of filters starts from 16 and is
doubled every next block. After these three blocks, there is an average-pooling layer to
compress the output feature maps to a feature embedding. The 18-layer ResNet follows
the standard settings in [HZRS16]. We deploy AANets using the same parameters as its
original paper [LSS21a]. For policy functions πη and πϕ, we use two-layer FC networks. All
actions are discretized at 0.1 intervals to reduce the search space and get a tolerable training
overhead.
Hyperparameters and Configuration. The training of the classification model Θ exactly fol-
lows the uniform setting in [DCO+

20, HPL+
19, LSS21a, LSL+

20]. On CIFAR-100 (ImageNet-
Subset/Full), we train it for 160 (90) epochs in each phase, and divide the learning rate by
10 after 80 (30) and then after 120 (60) epochs. Then, we fine-tune the model for 20 epochs
using only exemplars (including the preserved exemplars of the new data to be used in

4.4 experiments 51

Method
CIFAR-100 ImageNet-Subset ImageNet-Full

N=5 10 25 5 10 25 5 10 25

LwF [LH18] 56.79 53.05 50.44 58.83 53.60 50.16 52.00 47.87 47.49

iCaRL [RKSL17] 60.48 56.04 52.07 67.33 62.42 57.04 50.57 48.27 49.44

LUCIR [HPL+
19] 63.34 62.47 59.69 71.21 68.21 64.15 65.16 62.34 57.37

Mnemonics [LSL+
20] 64.59 62.59 61.02 72.60 71.66 70.52 65.40 64.02 62.05

PODNet [DCO+
20] 64.60 63.13 61.96 76.45 74.66 70.15 66.80 64.89 60.28

LUCIR-AANets [LSS21a] 66.88 65.53 63.92 72.80 69.71 68.07 65.31 62.99 61.21

w/ RMM (ours) 68.42 67.17 64.56 73.58 72.83 72.30 65.81 64.10 62.23

POD-AANets [LSS21a] 66.61 64.61 62.63 77.36 75.83 72.18 67.97 65.03 62.03

w/ RMM (ours) 68.86 67.61 66.21 79.52 78.47 76.54 69.21 67.45 63.93

Table 4.1: Average accuracies (%) across all phases using two state-of-the-art methods
(LUCIR+AANets and POD+AANets [LSS21a]) w/ and w/o our RMM plugged in. The upper
block is for recent CIL methods. For fair comparison, we re-implement these methods using
our strict memory budget (see “Memory Budget” in Section 4.4.1) based on the public code.

future phases). We use an SGD optimizer and an ADAM optimizer for the classification
model and policy functions, respectively.
Memory Budget. There are two popular settings about memory budget in related work.
One uses a bounded memory budget with a fixed capacity for all phases [HPL+

19, LSL+
20,

RKSL17]. Another one allows the memory budget to grow along with phases [HPL+
19,

HTM+
21, TCH+

20]. The first one is more strict and thus used as the major setting in this
chapter.In every benchmark, the total budget of memory depends on the phase number N.
For example, on CIFAR-100, the total memory budget is set as 7, 000 samples when N=5
(7, 000 samples = 10 classes/phase × 500 samples/class + 2, 000 samples). Please note that
2, 000 is a bounded memory budget allocated since the 0-th phase for saving exemplars. For
a fair comparison, we re-implement related methods and report the results in Table 4.1 if
their original results (in the respective papers) were obtained in a different setting of memory
budget.

4.4.2 Results and Analyses

Table 4.1 presents the results of two state-of-the-art methods (LUCIR+AANets and POD+AANets
[LSS21a]) w/ and w/o our RMM plugged in, and some recent CIL work [DCO+

20, HPL+
19,

LH18, LSL+
20, RKSL17]. Table 4.2 shows the ablation study in 6 settings. Figure 4.4 plots the

changes of the average number of exemplars per old/new class for the incremental phases.
Comparing to the State-of-the-Art. From Table 4.1, we make the following observa-
tions. 1) Our RMM consistently improves the two top baselines LUCIR+AANets and
POD+AANets [LSS21a] in all settings. E.g., LUCIR-AANets w/ RMM and POD-AANets w/
RMM respectively get 2.7% and 3.1% average improvements on the ImageNet-Subset. 2)
Our POD-AANets w/ RMM achieves the best performances. Interestingly, we find that our
RMM can boost performance more when the number of phases is larger. For example, when
N=25, RMM improves POD-AANets by 3.6% and 4.4% on CIFAR-100 and ImageNet-Subset,

52 chapter 4. learning to allocate memory

Ablation Setting

CIFAR-100 ImagNet-Subset

N=5 10 25 5 10 25

Avg Last Avg Last Avg Last Avg Last Avg Last Avg Last

1 BaseRow 66.61 57.81 64.61 55.70 62.63 52.53 77.36 70.02 75.83 68.97 72.18 63.89

2 One-level RL 67.92 58.61 66.94 58.31 65.95 56.44 78.50 72.00 78.15 71.00 75.47 67.47

3 Two-level RL (Used) 68.86 59.00 67.61 59.03 66.21 56.50 79.52 73.80 78.47 71.40 76.54 68.84

margin +2.3 +1.2 +3 +3.3 +3.6 +4 +2.1 +3.8 +2.6 +2.4 +4.4 +5

4 Two-level RL (T.P.) 68.62 59.40 67.22 58.20 65.82 56.20 78.81 72.42 77.68 70.77 75.29 68.81

margin +2 +1.6 +2.6 +2.5 +3.2 +3.7 +1.5 +2.4 +1.9 +1.8 +3.1 +4.9

5 UpperBound RL 70.00 61.12 68.36 60.00 66.56 56.74 80.01 74.31 78.95 71.97 76.99 69.14

6 CrossVal Fixed 67.50 58.48 66.69 57.19 65.73 55.51 77.96 70.31 76.70 69.08 74.18 66.10

Table 4.2: The evaluation results in the ablation study (%). “T.P.” denotes our results using
the Policy functions Transferred from another dataset. “Avg”, “Last”, and “Used” denote
the average accuracy over all phases, the last-phase accuracy, and the results used as ours in
Table 4.1, respectively. BaseRow is from the sota method POD-AANets [LSS21a]. Row 2 is
for learning Level-1 policy. Row 3 is for learning Level-1 and Level-2 policies in a hierarchical
way. Row 4 is for using Transferred Policies (from the other dataset in the table), when RL
is costly or impossible on target CIL tasks. The bottom lines are two oracles: training the
RL model on the target CIL task (Row 5) and using cross-validation to find the best fixed
memory allocation between old and new classes (Row 6).

respectively. These two numbers are 2.3% and 2.1% when N=5. This indicates that the supe-
riority of our RMM is more obvious in challenging settings (where the forgetting problem is
more serious due to the more frequent model re-training through phases).

Ablation Settings. Table 4.2 shows the results of our ablation study. Row 1 is for the baseline
method POD-AANets [LSS21a]. Row 2 is for learning only Level-1 policy πη (where each
class gets an even split of the memory). Row 3 is for learning both Level-1 policy πη and
Level-2 policy πϕ in our proposed hierarchical method, and its results are used in Table 4.1
as “ours”. Row 4 is for using Policy functions Transferred from another dataset (T.P.), which
means on the target CIL dataset there is no training of RMM. Here, for CIFAR-100, we use
the policy functions learned on ImageNet-Subset, and vice versa. On the last two rows, we
show two oracle settings. Row 5 is the upper bound that assumes all past and future data are
accessible during training RMM on the target CIL dataset. Row 6 is for using cross-validation
(i.e., all past, future, and validation data are accessible) to find the best fixed memory split
between old and new class data, e.g., old

new = 0.7 is chosen and then used in all phases.

Ablation Results. Hierarchical: In Table 4.2, when comparing Row 2 to Row 1, it is clear
that leveraging reinforcement learning yields better results as it can derive adaptive memory
allocation between old and new data. Using class-specific memory management further
increases the model performance (i.e., comparing Row 3 to Row 2), even though we divide
the classes into only two groups. T.P. (Transferred Policy functions): Comparing Row 4

to Row 3, we can see that using transferred policy functions (trained on another dataset)
achieves comparable performance, and Row 4 does not require any reinforcement learning

4.5 conclusion 53

1 2 3 4 5
phase (N=5)

100

200

300

400

ex
em

pl
ar

s p
er

 c
la

ss
 UpperBound RL, Old UpperBound RL, New Two-level RL, Old Two-level RL, New Baseline, Old Baseline, New

1 52 3 41 52 3 4

100

200

300

400

500
sa

m
pl

es
 p

er
 c

la
ss

phase (N=5)
1 5 10 15 20 25

phase (N=25)
1 5 10 15 20 25

100

200

300

400

500

Figure 4.4: The memory allocated for “Old” and “New” across different phases on CIFAR-
100. The second and fourth plots are enlarged versions of the first and third plots, respectively.
Solid and dashed lines denote old and new classes, respectively. The baseline is POD-
AANets [LSS21a]. “Two-level RL” and “UpperBound RL” correspond to Row 3 and Row 5

in Table 4.2, respectively.

on the target CIL dataset. Oracle: Comparing Row 3 to Row 5, we see that learning RMM on
pseudo CIL tasks is comparable to the upper bound case where all training and validation
data are accessible, given the fact that the latter needs higher computational overhead and
violates the standard CIL protocol. Row 6 results are consistently lower than ours in Row 3,
although cross-validation has access to all past, future, and validation data.
Allocated Memory. Figure 4.4 shows the change of the average number of samples per class
in three ablative settings. Solid and dashed lines represent old and new classes, respectively.
From the plots, we have two observations. 1) Learning RMM on the pseudo or target
CIL tasks (green and orange lines), we can obtain similar memory management results
(i.e., actions). This means the learned policy is transferrable in non-stationary continuous
environments. This matches the conclusion of continuous adaptation in [ABB+

18]. 2) Using
our RMM method achieved more balanced memory sizes between exemplars and new data.
For example, in the 1-st phase of the 5-phase setting, “UpperBound RL” and “Two-level RL”
allocate around 100 samples for both exemplars and new data. While the baseline setting
has 40 and 500 samples for them, respectively. It thus addresses the data imbalance problem
for CIL in a learnable way.

4.5 conclusion

We propose the reinforced memory management (RMM) method specially for tackling
CIL tasks. The hierarchical reinforcement learning (RL) framework (two levels) in RMM is
capable of making more adaptive memory allocation actions than using standard RL (one
level). Using the generated pseudo tasks in RMM solves the issue of data incompatibility
between CIL and RL. Corresponding experimental results show that the policy trained
on these pseudo tasks can be directly applied to target tasks without any computational
overhead. Our overall method of RMM is generic, and its trained policy (with or without
using an in-domain dataset) can be easily incorporated into exemplar replaying-based CIL
methods to boost performance.

5L E A R N I N G T O
A G G R E G AT E N E U R A L
N E T W O R K S A D A P T I V E LY

Contents
5.1 Introduction . 55
5.2 Related Work . 57
5.3 Methodology . 58

5.3.1 Architecture Details . 58

5.3.2 Optimization Steps . 60

5.3.3 Algorithm . 61

5.4 Experiments . 62
5.4.1 Datasets and Implementation Details 62

5.4.2 Results and Analyses . 64

5.5 Conclusions . 68

An inherent problem in class-incremental learning (CIL) is the stability-plasticity
dilemma between the learning of old and new classes, i.e., high-plasticity models
easily forget old classes, but high-stability models are weak to learn new classes. We

alleviate this issue by proposing a novel network architecture called Adaptive Aggregation
Networks (AANets) in which we explicitly build two types of residual blocks at each residual
level (taking ResNet as the baseline architecture): a stable block and a plastic block. We
aggregate the output feature maps from these two blocks and then feed the results to the
next-level blocks. We adapt the aggregation weights in order to balance these two types of
blocks, i.e., to balance stability and plasticity, dynamically. We conduct extensive experiments
on three CIL benchmarks: CIFAR-100, ImageNet-Subset, and ImageNet, and show that many
existing CIL methods can be straightforwardly incorporated into the architecture of AANets
to boost their performance.

This chapter is based on [LSS21a]. As the first author of [LSS21a], Yaoyao Liu conducted
all experiments and was the main writer. This work has been cited more than 70 times
and used as a baseline framework for many papers published in top-tier conferences,
e.g., [JKK+

22, SZL+
22]. A CVPR 2022 paper [JKK+

22] especially thanks our work in its
acknowledgments.

5.1 introduction

AI systems are expected to work in an incremental manner when the amount of knowledge
increases over time. They should be capable of learning new concepts while maintaining
the ability to recognize previous ones. However, deep-neural-network-based systems often

55

56 chapter 5. learning to aggregate neural networks adaptively

suffer from serious forgetting problems (called “catastrophic forgetting”) when they are
continuously updated using new coming data. This is due to two facts: (i) the updates
can override the knowledge acquired from the previous data [MC89, MH93, Rat90, SLKK17,
KMA+

18], and (ii) the model can not replay the entire previous data to regain the old
knowledge.

To encourage solving these problems, [RKSL17] defined a class-incremental learning
(CIL) protocol for image classification where the training data of different classes gradually
come phase-by-phase. In each phase, the classifier is re-trained on new class data, and then
evaluated on the test data of both old and new classes. To prevent trivial algorithms such as
storing all old data for replaying, there is a strict memory budget due to which a tiny set
of exemplars of old classes can be saved in the memory. This memory constraint causes a
serious data imbalance problem between old and new classes, and indirectly causes the main
problem of CIL – the stability-plasticity dilemma [MBB13]. In particular, higher plasticity
results in the forgetting of old classes [MC89], while higher stability weakens the model
from learning the data of new classes (that contain a large number of samples). Existing CIL
works try to balance stability and plasticity using data strategies. For example, as illustrated
in Figure 5.1 (a) and (b), some early methods train their models on the imbalanced dataset
where there is only a small set of exemplars for old classes [RKSL17, LH18], and recent
methods include a fine-tuning step using a balanced subset of exemplars sampled from
all classes [CMG+

18, HPL+
19, DCO+

20]. However, these data strategies are still limited
in terms of effectiveness. For example, when using the models trained after 25 phases,
LUCIR [HPL+

19] and Mnemonics [LSL+
20] “forget” the initial 50 classes by 30% and 20%,

respectively, on the ImageNet dataset [RDS+15].
In this chapter, we address the stability-plasticity dilemma by introducing a novel network

architecture called Adaptive Aggregation Networks (AANets). Taking the ResNet [HZRS16]
as an example of baseline architectures, we explicitly build two residual blocks (at each
residual level) in AANets: one for maintaining the knowledge of old classes (i.e., the stability)
and the other for learning new classes (i.e., the plasticity), as shown in Figure 5.1 (c). We
achieve these by allowing these two blocks to have different levels of learnability, i.e., fewer
learnable parameters in the stable block but more in the plastic one. We apply aggregation
weights to the output feature maps of these blocks, sum them up, and pass the result maps
to the next residual level. In this way, we are able to dynamically balance the usage of
these blocks by updating their aggregation weights. To achieve auto-updating, we take the
weights as hyperparameters and optimize them in an end-to-end manner [FAL17, WCW+

19,
LSL+

20].
Technically, the overall optimization of AANets is bilevel. Level-1 is to learn the network

parameters for two types of residual blocks, and level-2 is to adapt their aggregation weights.
More specifically, level-1 is the standard optimization of network parameters, for which
we use all the data available in the phase. Level-2 aims to balance the usage of the two
types of blocks, for which we optimize the aggregation weights using a balanced subset (by
downsampling the data of new classes), as illustrated in Figure 5.1 (c). We formulate these
two levels in a bilevel optimization program (BOP) [SMD18] that solves two optimization
problems alternatively, i.e., update network parameters with aggregation weights fixed, and
then switch. For evaluation, we conduct CIL experiments on three widely-used benchmarks,
CIFAR-100, ImageNet-Subset, and ImageNet. We find that many existing CIL methods, e.g.,
iCaRL [RKSL17], LUCIR [HPL+

19], Mnemonics Training [LSL+
20], and PODNet [DCO+

20],
can be directly incorporated in the architecture of AANets, yielding consistent performance

5.2 related work 57

train

in
iti
al
iz
e

old model

new model

train

initialize

(a) Conventional

old model

new model

(b) Balanced Fine-tuning (c) Adaptive Aggregation (Ours)

new data

old exemplars

fine-tunetrain
train

old model

plastic blocks

herding*

new model
stable blocks

initialize

old exemplars old exemplars

new data new exemplars

old exemplars

herding*

old exemplars

new data new exemplars

aggregation weights 1

aggregation weights 2

Figure 5.1: Conceptual illustrations of different CIL methods. (a) Conventional methods use
all available data (which are imbalanced among classes) to train the model [RKSL17, HPL+

19]
(b) Recent methods [CMG+

18, HPL+
19, DCO+

20, LSL+
20] follow this convention but add a

fine-tuning step on a balanced subset of all classes. (c) The proposed Adaptive Aggregation
Networks (AANets) is a new architecture and it applies a different data strategy: using all
available data to update the parameters of plastic and stable blocks, and the balanced set of
exemplars to adapt the aggregation weights for these blocks. Our key lies in that adapted
weights can balance the usage of the plastic and stable blocks, i.e., balance between plasticity
and stability. *: herding is the method to choose exemplars [Wel09], and can be replaced by
others, e.g., mnemonics training in [LSL+

20].

improvements. We observe that a straightforward plug-in causes memory overheads, e.g.,
26% and 15% respectively for CIFAR-100 and ImageNet-Subset. For a fair comparison, we
conduct additional experiments under the settings of zero overhead (e.g., by reducing the
number of old exemplars for training AANets), and validate that our approach still achieves
top performance across all datasets.

Our contribution is three-fold: 1) a novel and generic network architecture called
AANets specially designed for tackling the stability-plasticity dilemma in CIL tasks; 2) a
BOP-based formulation and an end-to-end training solution for optimizing AANets; and 3)
extensive experiments on three CIL benchmarks by incorporating four baseline methods in
the architecture of AANets.

5.2 related work

In this section, we discuss related works on bi-level optimization problems. We will not
repeat the incremental learning works that have been discussed in Chapter 2.
Bi-level Optimization Problem can be used to optimize hyperparameters of deep models.
Technically, the network parameters are updated at one level and the key hyperparameters are
updated at another level [VSV52, WZTE18, GPAM+

14, ZCLS20, LSS20, LSL+
19]. Recently,

a few bilevel-optimization-based approaches have emerged for tackling incremental learning
tasks. Wu et al. [WCW+

19] learned a bias correction layer for incremental learning models
using a bilevel optimization framework. Rajasegaran et al. [RKH+

20] incrementally learned
new tasks while learning a generic model to retain the knowledge from all tasks. Riemer
et al. [RCA+

19] learned network updates that are well-aligned with previous phases, such
as to avoid learning towards any distracting directions. In our work, we apply the bilevel

58 chapter 5. learning to aggregate neural networks adaptively

optimization program to update the aggregation weights in our AANets.

5.3 methodology

Class-Incremental Learning (CIL) usually assumes (N + 1) learning phases in total, i.e.,
one initial phase and N incremental phases during which the number of classes gradually
increases [HPL+

19, LSL+
20, DCO+

20, HTM+
21]. In the initial phase, data D0 is available

to train the first model Θ0. There is a strict memory budget in CIL systems, so after the
phase, only a small subset of D0 (exemplars denoted as E0) can be stored in the memory and
used as replay samples in later phases. Specifically in the i-th (i ≥ 1) phase, we load the
exemplars of old classes E0:i−1 = {E0, . . . , Ei−1} to train model Θi together with new class
data Di. Then, we evaluate the trained model on the test data containing both old and new
classes. We repeat such training and evaluation through all phases.

The key issue of CIL is that the models trained at new phases easily “forget” old classes.
To tackle this, we introduce a novel architecture called AANets. AANets is based on a
ResNet-type architecture, and each of its residual levels is composed of two types of residual
blocks: a plastic one to adapt to new class data and a stable one to maintain the knowledge
learned from old classes. The details of this architecture are elaborated in Section 5.3.1. The
steps for optimizing AANets are given in Section 5.3.2.

5.3.1 Architecture Details

In Figure 5.2, we provide an illustrative example of our AANets with three residual levels.
The inputs x[0] are the images and the outputs x[3] are the features used to train classifiers.
Each of our residual “levels” consists of two parallel residual “blocks” (of the original
ResNet [HZRS16]): the orange one (called plastic block) will have its parameters fully
adapted to new class data, while the blue one (called stable block) has its parameters
partially fixed in order to maintain the knowledge learned from old classes. After feeding
the inputs to Level 1, we obtain two sets of feature maps respectively from two blocks, and
aggregate them after applying the aggregation weights α[1]. Then, we feed the resulting
maps to Level 2 and repeat the aggregation. We apply the same steps for Level 3. Finally, we
pool the resulting maps obtained from Level 3 to train classifiers. Below we elaborate on the
details of this dual-branch design as well as the steps for feature extraction and aggregation.
Stable and Plastic Blocks. We deploy a pair of stable and plastic blocks at each residual
level, aiming to balance between the plasticity, i.e., for learning new classes, and stability,
i.e., for not forgetting the knowledge of old classes. We achieve these two types of blocks by
allowing different levels of learnability, i.e., fewer learnable parameters in the stable block but
more in the plastic. We detail the operations in the following. In any CIL phase, Let η and ϕ
represent the learnable parameters of plastic and stable blocks, respectively. η contains all
the convolutional weights, while ϕ contains only the neuron-level scaling weights [SLCS19].
Specifically, these scaling weights are applied on the model θbase obtained in the 0-th phase1.
As a result, the number of learnable parameters ϕ is much less than that of η. For example,
when using 3× 3 neurons in θbase, the number of learnable parameters ϕ is only 1

3×3 of the
number of full network parameters (while η has the full network parameters). We further

1Related work [HPL+
19, DCO+

20, LSL+
20] learned Θ0 in the 0-th phase using half of the total classes. We

follow the same way to train Θ0 and freeze it as θbase.

5.3 methodology 59

Level 1 Level 2 Level 3

Figure 5.2: An example architecture of AANets with three levels of residual blocks. At
each level, we compute the feature maps from a stable block (ϕ⊙ θbase, blue) as well as a
plastic block (η, orange), respectively, aggregate the maps with adapted weights, and feed
the result maps to the next level. The outputs of the final level are used to train classifiers.
We highlight that this is a logical architecture of AANets, and in real implementations,
we strictly control the memory (i.e., the sizes of input data and residual blocks) within
the same budget as related works which deploy plain ResNets. Please refer to the details
in the section on experiments.

elaborate on these in the following paragraph.
Neuron-level Scaling Weights. For stable blocks, we learn their neuron parameters in the
0-th phase and freeze them in the other N phases. In these N phases, we apply a small set of
scaling weights ϕ at the neuron-level, i.e., each weight for scaling one neuron in θbase. We
aim to preserve the structural pattern within the neuron and slowly adapt the knowledge of
the whole blocks to new class data. Specifically, we assume the q-th layer of θbase contains R
neurons, so we have R neuron weights as {Wq,r}R

r=1. For conciseness, we denote them as Wq.
For Wq, we learn R scaling weights denoted as ϕq Let Xq−1 and Xq be the input and output
feature maps of the q-th layer, respectively. We apply ϕq to Wq as follows,

Xq = (Wq ⊙ ϕq)Xq−1, (5.1)

where ⊙ donates the element-wise multiplication. Assuming there are Q layers in total, the
overall scaling weights can be denoted as ϕ = {ϕq}Q

q=1.
Feature Extraction and Aggregation. We elaborate on the process of feature extraction and
aggregation across all residual levels in the AANets, as illustrated in Figure 5.2. Let F [k]

µ (·)
denote the transformation function of the residual block parameterized as µ at the Level k.
Given a batch of training images x[0], we feed them to AANets to compute the feature maps
at the k-th level (through the stable and plastic blocks respectively) as follows,

x[k]ϕ = F [k]
ϕ⊙θbase

(x[k−1]); x[k]η = F [k]
η (x[k−1]). (5.2)

The transferability (of the knowledge learned from old classes) is different at different levels
of neural networks [YCBL14]. Therefore, it makes more sense to apply different aggregation
weights for different levels of residual blocks. Let α

[k]
ϕ and α

[k]
η denote the aggregation weights

of the stable and plastic blocks, respectively, at the k-th level. Then, the weighted sum of x[k]ϕ

and x[k]η can be derived as follows,

x[k] = α
[k]
ϕ · x

[k]
ϕ + α

[k]
η · x[k]η . (5.3)

60 chapter 5. learning to aggregate neural networks adaptively

In our illustrative example in Figure 5.2, there are three pairs of weights to learn at each
phase. Hence, it becomes increasingly challenging to choose these weights manually if
multiple phases are involved. In this chapter, we propose a learning strategy to automatically
adapt these weights, i.e., optimizing the weights for different blocks in different phases. See
details in Section 5.3.2.

5.3.2 Optimization Steps

In each incremental phase, we optimize two groups of learnable parameters in AANets:
(a) the neuron-level scaling weights ϕ for the stable blocks and the convolutional weights
η on the plastic blocks; (b) the feature aggregation weights α. The former is for network
parameters and the latter is for hyperparameters. In this chapter, we formulate the overall
optimization process as a bilevel optimization program (BOP) [GPAM+

14, LSL+
20].

The Formulation of BOP. In AANets, the network parameters [ϕ, η] are trained using the
aggregation weights α as hyperparameters. In turn, α can be updated when temporarily
fixing network parameters [ϕ, η]. In this way, the optimality of [ϕ, η] imposes a constraint
on α and vise versa. Ideally, in the i-th phase, the CIL system aims to learn the optimal
αi and [ϕi, ηi] that minimize the classification loss on all training samples seen so far, i.e.,
Di ∪D0:i−1, so the ideal BOP can be formulated as,

min
αi
L(αi, ϕ∗i , η∗i ;D0:i−1 ∪Di) (5.4a)

s.t. [ϕ∗i , η∗i] = arg min
[ϕi ,ηi]
L(αi, ϕi, ηi;D0:i−1 ∪Di), (5.4b)

where L(·) denotes the loss function, e.g., cross-entropy loss. Please note that for the
conciseness of the formulation, we use ϕi to represent ϕi ⊙ θbase (same in the following
equations). We call Problem 5.4a and Problem 5.4b the upper-level and lower-level problems,
respectively.
Data Strategy. To solve Problem 5.4, we need to use D0:i−1. However, in the setting of
CIL [RKSL17, HPL+

19, DCO+
20], we cannot access D0:i−1 but only a small set of exemplars

E0:i−1, e.g., 20 samples of each old class. Directly replacing D0:i−1 ∪ Di with E0:i−1 ∪ Di in
Problem 5.4 will lead to the forgetting problem for the old classes. To alleviate this issue, we
propose a new data strategy in which we use different training data splits to learn different
groups of parameters: 1) in the upper-level problem, αi is used to balance the stable and
the plastic blocks, so we use the balanced subset to update it, i.e., learning αi on E0:i−1 ∪ Ei
adaptively; 2) in the lower-level problem, [ϕi, ηi] are the network parameters used for feature
extraction, so we leverage all the available data to train them, i.e., base-training [ϕi, ηi] on
E0:i−1 ∪Di. Based on these, we can reformulate the ideal BOP in Problem 5.4 as a solvable
BOP as follows,

min
αi
L(αi, ϕ∗i , η∗i ; E0:i−1 ∪ Ei) (5.5a)

s.t. [ϕ∗i , η∗i] = arg min
[ϕi ,ηi]
L(αi, ϕi, ηi; E0:i−1 ∪Di), (5.5b)

where Problem 5.5a is the upper-level problem and Problem 5.5b is the lower-level problem we
are going to solve.
Updating Parameters. We solve Problem 5.5 by alternatively updating two groups of
parameters (αi and [ϕ, η]) across epochs, e.g., if αi is updated in the j-th epoch, then [ϕ, η]

5.3 methodology 61

will be updated in the (j + 1)-th epoch, until both of them converge. Taking the i-th phase
as an example, we initialize αi, ϕi, ηi with αi−1, ϕi−1, ηi−1, respectively. Please note that ϕ0
is initialized with ones, following [SLCS19, SLC+

22]; η0 is initialized with θbase; and α0 is
initialized with 0.5. Based on our Data Strategy, we use all available data in the current
phase to solve the lower-level problem, i.e., training [ϕi, ηi] as follows,

[ϕi, ηi]← [ϕi, ηi]− γ1∇[ϕi ,ηi]L(αi, ϕi, ηi; E0:i−1 ∪Di). (5.6)

Then, we use a balanced exemplar set to solve the upper-level problem, i.e., training αi as
follows,

αi ← αi − γ2∇αiL(αi, ϕi, ηi; E0:i−1 ∪ Ei), (5.7)

where γ1 and γ2 are the lower-level and upper-level learning rates, respectively.

Algorithm 3: AANets (in the i-th phase)
Input: New class data Di; old class exemplars E0:i−1; old parameters αi−1, ϕi−1, ηi−1;

base model θbase.
Output: new parameters αi, ϕi, ηi; new class exemplars Ei.

1 Get Di and load E0:i−1 from memory;
2 Initialize [ϕi, ηi] with [ϕi−1, ηi−1];
3 Initialize αi with αi−1;
4 Select exemplars Ei ⫋ Di, e.g. by herding [RKSL17, HPL+

19] or mnemonics
training [LSL+

20];
5 for epochs do
6 for mini-batches in E0:i−1 ∪Di do
7 Train [ϕi, ηi] on E0:i−1 ∪Di by Eq. 5.6;
8 end
9 for mini-batches in E0:i−1 ∪ Ei do
10 Learn αi on E0:i−1 ∪ Ei by Eq. 5.7;
11 end
12 end
13 Update exemplars Ei, e.g. by herding [RKSL17, HPL+

19] or mnemonics
training [LSL+

20];
14 Replace E0:i−1 with E0:i−1 ∪ Ei in the memory.

5.3.3 Algorithm

In Algorithm 3, we summarize the overall training steps of the proposed AANets in the
i-th incremental learning phase (where i ∈ [1, ..., N]). Lines 1-4 show the preprocessing
including loading new data and old exemplars (Line 1), initializing the two groups of
learnable parameters (Lines 2-3), and selecting the exemplars for new classes (Line 4). Lines
5-12 optimize alternatively between the network parameters and the Adaptive Aggregation
weights. In specific, Lines 6-8 and Lines 9-11 execute the training for solving the upper-level
and lower-level problems, respectively. Lines 13-14 update the exemplars and save them to
the memory.

62 chapter 5. learning to aggregate neural networks adaptively

5.4 experiments

We evaluate the proposed AANets on three CIL benchmarks, i.e., CIFAR-100 [KH+
09],

ImageNet-Subset [RKSL17] and ImageNet [RDS+15]. We incorporate AANets into four
baseline methods and boost their model performances consistently for all settings. Below we
describe the datasets and implementation details (Section 5.4.1), followed by the results and
analyses (Section 5.4.2), which include a detailed ablation study, extensive comparisons to
related methods, and some visualization of the results.

5.4.1 Datasets and Implementation Details

Datasets. We conduct CIL experiments on two datasets, CIFAR-100 [KH+
09] and Ima-

geNet [RDS+15], following closely related work [HPL+
19, LSL+

20, DCO+
20]. CIFAR-100

contains 60, 000 samples of 32× 32 color images for 100 classes. There are 500 training and
100 test samples for each class. ImageNet contains around 1.3 million samples of 224× 224
color images for 1000 classes. There are approximately 1, 300 training and 50 test samples
for each class. ImageNet is used in two CIL settings: one based on a subset of 100 classes
(ImageNet-Subset) and the other based on the full set of 1, 000 classes. The 100-class data for
ImageNet-Subset are sampled from ImageNet in the same way as [HPL+

19, DCO+
20].

Architectures. Following the exact settings in [HPL+
19, LSL+

20], we deploy a 32-layer
ResNet as the baseline architecture (based on which we build the AANets) for CIFAR-100.
This ResNet consists of 1 initial convolution layer and 3 residual blocks (in a single branch).
Each block has 10 convolution layers with 3× 3 kernels. The number of filters starts from 16
and is doubled every next block. After these 3 blocks, there is an average-pooling layer to
compress the output feature maps to a feature embedding. To build AANets, we convert
these 3 blocks into three levels of blocks and each level consists of a stable block and a plastic
block, referring to Section 5.3.1. Similarly, we build AANets for ImageNet benchmarks but
taking an 18-layer ResNet [HZRS16] as the baseline architecture [HPL+

19, LSL+
20]. Please

note that there is no architecture change applied to the classifiers, i.e., using the same FC
layers as in [HPL+

19, LSL+
20].

Hyperparameters and Configuration. The learning rates γ1 and γ2 are initialized as 0.1
and 1× 10−8, respectively. We impose a constraint on each pair of αη and αϕ to make sure
αη + αϕ = 1. For a fair comparison, our training hyperparamters are almost the same as
in [DCO+

20, LSL+
20]. Specifically, on the CIFAR-100 (ImageNet), we train the model for

160 (90) epochs in each phase, and the learning rates are divided by 10 after 80 (30) and then
after 120 (60) epochs. We use an SGD optimizer with a momentum 0.9 and a batch size 128
to train the models in all settings.
Memory Budget. By default, we follow the same data replay settings used in [RKSL17,
HPL+

19, LSL+
20, DCO+

20], where each time reserves 20 exemplars per old class. In
our “strict memory budget” settings, we strictly control the memory budget shared by
the exemplars and the model parameters. For example, if we incorporate AANets to
LUCIR [HPL+

19], we need to reduce the number of exemplars to balance the additional
memory used by model parameters (as AANets take around 20% more parameters than
plain ResNets). As a result, we reduce the numbers of exemplars for AANets from 20 to
13, 16, and 19, respectively, for CIFAR-100, ImageNet-Subset, and ImageNet, in the “strict
memory budget” setting. For example, on CIFAR-100, we use 530k additional parameters,

5.4 experiments 63

Row Ablation Setting
CIFAR-100 (acc.%)

Memory FLOPs #Param N=5 10 25

1 single-branch “all” [HPL+
19] 7.64MB 70M 469K 63.17 60.14 57.54

2 “all” + “all” 9.43MB 140M 938K 64.49 61.89 58.87

3 “all” + “scaling” 9.66MB 140M 530K 66.74 65.29 63.50
4 “all” + “frozen” 9.43MB 140M 469K 65.62 64.05 63.67

5 “scaling” + “frozen” 9.66MB 140M 60K 64.71 63.65 62.89

6 w/o balanced E 9.66MB 140M 530K 65.91 64.70 63.08

7 w/o adapted α 9.66MB 140M 530K 65.89 64.49 62.89

8 strict memory budget 7.64MB 140M 530K 66.46 65.38 61.79

Row Ablation Setting
ImageNet-Subset (acc.%)

Memory FLOPs #Param N=5 10 25

1 single-branch “all” [HPL+
19] 330MB 1.82G 11.2M 70.84 68.32 61.44

2 “all” + “all” 372MB 3.64G 22.4M 69.72 66.69 63.29

3 “all” + “scaling” 378MB 3.64G 12.6M 72.55 69.22 67.60

4 “all” + “frozen” 372MB 3.64G 11.2M 71.71 69.87 67.92

5 “scaling” + “frozen” 378MB 3.64G 1.4M 73.01 71.65 70.30

6 w/o balanced E 378MB 3.64G 12.6M 70.30 69.92 66.89

7 w/o adapted α 378MB 3.64G 12.6M 70.31 68.71 66.34

8 strict memory budget 330MB 3.64G 12.6M 72.21 69.10 67.10

Table 5.1: Ablation study. The baseline (Row 1) is LUCIR [HPL+
19]. “all”, “scaling”,

and “frozen” denote three types of blocks and they have different numbers of learnable
parameters, e.g., “all” means all convolutional weights and biases are learnable. If we name
them as A, B, and C, we use A+B in the table to denote the setting of using A-type and
B-type blocks respectively as plastic and stable blocks. See more details in Section 5.4.2
Ablation settings. Adapted α are applied on Rows 3-8. “all”+“scaling” is the default setting
of Rows 6-8. “#Param” indicates the number of learnable parameters. “Memory” denotes
the peak memory for storing the exemplars and the learnable & frozen network parameters
during the model training through all phases.

64 chapter 5. learning to aggregate neural networks adaptively

so we need to reduce 530kfloats× 4bytes/float÷ (32× 32× 3bytes/image)÷ 100classes ≈
7images/class.
Benchmark Protocol. We follow the common protocol used in [HPL+

19, LSL+
20, DCO+

20].
Given a dataset, the model is trained on half of the classes in the 0-th phase. Then, it learns
the remaining classes evenly in the subsequent N phases. For N, there are three options as 5,
10, and 25, and the corresponding settings are called “N-phase”. In each phase, the model
is evaluated on the test data for all seen classes. The average accuracy (over all phases) is
reported. For each setting, we run the experiment three times and report averages and 95%
confidence intervals.

5.4.2 Results and Analyses

Table 5.1 summarizes the statistics and results in 8 ablative settings. Table 5.2 presents the
results of 4 state-of-the-art methods w/ and w/o AANets as a plug-in architecture, and the
reported results from some other comparable work. Figure 5.3 compares the activation maps
(by Grad-CAM [SCD+

17]) produced by different types of residual blocks and for the classes
seen in different phases. Figure 5.4 shows the changes of values of αη and αϕ across 10
incremental phases.
Ablation Settings. Table 5.1 shows the ablation study. By differentiating the numbers of
learnable parameters, we can have 3 block types: 1) “all” for learning all the convolutional
weights and biases; 2) “scaling” for learning neuron-level scaling weights [SLCS19] on the
top of a frozen base model θbase; and 3) “frozen” for using only θbase (always frozen). In
Table 5.1, the pattern of combining blocks is A+B where A and B stand for the plastic and
the stable blocks, respectively. Row 1 is the baseline method LUCIR [HPL+

19]. Row 2 is a
double-branch version for LUCIR without learning any aggregation weights. Rows 3-5 are
our AANets using different combinations of blocks. Row 6-8 use “all”+“scaling” under an
additional setting as follows. 1) Row 6 uses imbalanced data E0:i−1 ∪Di to train α adaptively.
2) Row 7 uses fixed weights αη = αϕ = 0.5 at each residual level. 3) Row 8 is under the
“strict memory budget” setting, where we reduce the numbers of exemplars to 14 and 17 for
CIFAR-100 and ImageNet-Subset, respectively.
Ablation Results. In Table 5.1, if comparing the second block (ours) to the first block
(single-branch and double-branch baselines), it is obvious that using AANets can clearly
improve the model performance, e.g., “scaling”+“frozen” gains an average of 4.8% over
LUCIR for the ImageNet-Subset, by optimizing 1.4M parameters during CIL — only 12.6%
of that in LUCIR. Among Rows 3-5, we can see that for the ImageNet-Subset, models with
the fewest learnable parameters (“scaling”+“frozen”) work the best. We think this is because
we use shallower networks for learning larger datasets (ResNet-32 for CIFAR-100; ResNet-18

for ImageNet-Subset), following the Benchmark Protocol. In other words, θbase is quite
well-trained with the rich data of half ImageNet-Subset (50 classes in the 0-th phase), and can
offer high-quality features for later phases. Comparing Row 6 to Row 3 shows the efficiency
of using a balanced subset to optimize α. Comparing Row 7 to Row 3 shows the superiority
of learning α (which is dynamic and optimal) over manually choosing α.
About the Memory Usage. By comparing Row 3 to Row 1, we can see that AANets can
clearly improve the model performance while introducing small overheads for the memory,
e.g., 26% and 14.5% on the CIFAR-100 and ImageNet-Subset, respectively. If comparing
Row 8 to Row 3, we find that though the numbers of exemplars are reduced (for Row 8), the
model performance of AANets has a very small drop, e.g., only 0.3% for the 5-Phase CIL

5.4 experiments 65

Dataset: CIFAR-100 N=5 10 25

BiC [WCW+
19] 59.36 54.20 50.00

TPCIL [TCH+
20] 65.34 63.58 –

iCaRL [RKSL17] 57.12±0.50 52.66±0.89 48.22±0.76

w/ AANets (ours) 64.22±0.42 60.26±0.73 56.43±0.81

LUCIR [HPL+
19] 63.17±0.87 60.14±0.73 57.54±0.43

w/ AANets (ours) 66.74±0.37 65.29±0.43 63.50±0.61

Mnemonics [LSL+
20] 63.34±0.62 62.28±0.43 60.96±0.72

w/ AANets (ours) 67.59±0.34 65.66±0.61 63.35±0.72

PODNet-CNN [DCO+
20] 64.83±1.11 63.19±1.31 60.72±1.54

w/ AANets (ours) 66.31±0.87 64.31±0.90 62.31±1.02

Dataset: ImageNet-Subset N=5 10 25

BiC [WCW+
19] 70.07 64.96 57.73

TPCIL [TCH+
20] 76.27 74.81 –

iCaRL [RKSL17] 65.44±0.35 59.88±0.83 52.97±1.02

w/ AANets (ours) 73.45±0.51 71.78±0.64 69.22±0.83

LUCIR [HPL+
19] 70.84±0.69 68.32±0.81 61.44±0.91

w/ AANets (ours) 72.55±0.67 69.22±0.72 67.60±0.39

Mnemonics [LSL+
20] 72.58±0.85 71.37±0.56 69.74±0.39

w/ AANets (ours) 72.91±0.53 71.93±0.37 70.70±0.45

PODNet-CNN [DCO+
20] 75.54±0.29 74.33±1.05 68.31±2.77

w/ AANets (ours) 76.96±0.53 75.58±0.74 71.78±0.81

Dataset: ImageNet N=5 10 25

BiC [WCW+
19] 70.07 64.96 57.73

TPCIL [TCH+
20] 76.27 74.81 –

iCaRL [RKSL17] 65.44±0.35 59.88±0.83 52.97±1.02

w/ AANets (ours) 73.45±0.51 71.78±0.64 69.22±0.83

LUCIR [HPL+
19] 70.84±0.69 68.32±0.81 61.44±0.91

w/ AANets (ours) 72.55±0.67 69.22±0.72 67.60±0.39

Mnemonics [LSL+
20] 72.58±0.85 71.37±0.56 69.74±0.39

w/ AANets (ours) 72.91±0.53 71.93±0.37 70.70±0.45

PODNet-CNN [DCO+
20] 75.54±0.29 74.33±1.05 68.31±2.77

w/ AANets (ours) 76.96±0.53 75.58±0.74 71.78±0.81

Table 5.2: Average incremental accuracies (%) of four state-of-the-art methods w/ and w/o
our AANets as a plug-in architecture. In the upper block, we present some comparable
results reported in some other related works. Please note 1) [DCO+

20] didn’t report the
results for N=25 on the ImageNet, and we produce the results using their public code; 2)
[LSL+

20] updated their results on arXiv (after fixing a bug in their code), different from its
conference version; 3) for “w/ AANets”, we use “all”+“scaling” blocks corresponding to
Row 3 of Table 5.1.

66 chapter 5. learning to aggregate neural networks adaptively

37

49

4840

4811

4981

176

Classes seen in Phase 0

image AANets stable plastic

go
ld

fi
n

ch
go

ld
fi

n
ch

q
u

ai
l

4872
image AANets stable plastic

te
rr

ie
r

te
rr

ie
r

d
h

o
le

Classes seen in Phase 3

image AANets stable plastic

A
rc

ti
c

fo
x

A
rc

ti
c

fo
x

ca
n

 o
p

en
er

Classes seen in Phase 5

Figure 5.3: The activation maps using Grad-CAM [SCD+
17] for the 5-th phase (the last

phase) model on ImageNet-Subset (N=5). Samples are selected from the classes coming
in the 0-th phase (left), the 3-rd phase (middle), and the 5-th phase (right), respectively.
Green tick (red cross) means the discriminative features are activated on the object regions
successfully (unsuccessfully). ᾱη = 0.428 and ᾱϕ = 0.572.

models of CIFAR-100 and ImageNet-Subset. Therefore, we can conclude that AANets can
achieve rather satisfactory performance under strict memory control — a desirable feature
needed in class-incremental learning systems.
Comparing to the State-of-the-Art. Table 5.2 shows that taking our AANets as a plug-in
architecture for 4 state-of-the-art methods [RKSL17, HPL+

19, LSL+
20, DCO+

20] consistently
improves their model performances. E.g., for CIFAR-100, LUCIR w/ AANets and Mnemonics
w/ AANets respectively gains 4.9% and 3.3% improvements on average. From Table 5.2,
we can see that our approach of using AANets achieves top performances in all settings.
Interestingly, we find that AANets can boost more performance for simpler baseline methods,
e.g., iCaRL. iCaRL w/ AANets achieves mostly better results than those of LUCIR on three
datasets, even though the latter method deploys various regularization techniques.
Visualizing Activation Maps. Figure 5.3 demonstrates the activation maps visualized by
Grad-CAM for the final model (obtained after 5 phases) on ImageNet-Subset (N=5). The
visualized samples from left to right are picked from the classes coming in the 0-th, 3-rd,
and 5-th phases, respectively. For the 0-th phase samples, the model makes the prediction
according to foreground regions (right) detected by the stable block and background regions
(wrong) by the plastic block. This is because, through multiple phases of full updates, the
plastic block forgets the knowledge of these old samples while the stable block successfully
retains it. This situation is reversed when using that model to recognize the 5-th phase
samples. The reason is that the stable block is far less learnable than the plastic block,
and may fail to adapt to new data. For all shown samples, the model extracts features as
informative as possible in two blocks. Then, it aggregates these features using the weights
adapted from the balanced dataset, and thus can make a good balance of the features to
achieve the best prediction.
Aggregation Weights (αη and αϕ). Figure 5.4 shows the values of αη and αϕ learned during
training 10-phase models. Each row displays three plots for three residual levels of AANets,
respectively. Comparing among columns, we can see that Level 1 tends to get larger values
of αϕ, while Level 3 tends to get larger values of αη . This can be interpreted as lower-level
residual blocks learning to stay stable, which is intuitively correct in deep models. With
respect to the learning activity of CIL models, it is to continuously transfer the learned

5.4 experiments 67

0 2 4 6 8 10

#phases (Level 1)

-1

0

1

2

0 2 4 6 8 10

#phases (Level 2)

0 2 4 6 8 10

#phases (Level 3)

(a) CIFAR-100 (N=10)

0 2 4 6 8 10

#phases (Level 1)

0.2

0.4

0.6

0.8

0 2 4 6 8 10

#phases (Level 2)

0 2 4 6 8 10

#phases (Level 3)

(b) ImageNet-Subset (N=10)

0 2 4 6 8 10

#phases (Level 1)

0.2

0.4

0.6

0.8

0 2 4 6 8 10

#phases (Level 2)

0 2 4 6 8 10

#phases (Level 3)

(c) ImageNet (N=10)

Figure 5.4: The values of αη and αϕ adapted for each residual level and in each incremental phase.
All curves are smoothed with a rate of 0.8 for better visualization.

68 chapter 5. learning to aggregate neural networks adaptively

knowledge to subsequent phases. The features at different resolutions (levels in our case)
have different transferabilities [YCBL14]. Level 1 encodes low-level features that are more
stable and shareable among all classes. Level 3 nears the classifiers, and tends to be more
plastic such as to fast to adapt to new classes.

5.5 conclusions

We introduce a novel network architecture AANets specially for CIL. Our main contribution
lies in addressing the issue of stability-plasticity dilemma in CIL by a simple modification
on plain ResNets — applying two types of residual blocks to respectively and specifically
learn stability and plasticity at each residual level, and then aggregating them as a final
representation. To achieve efficient aggregation, we adapt the level-specific and phase-
specific weights in an end-to-end manner. Our overall approach is generic and can be easily
incorporated into existing CIL methods to boost their performance.

6L E A R N I N G T O O P T I M I Z E
T H E H Y P E R PA R A M E T E R
O N L I N E

Contents
6.1 Introduction . 69
6.2 Related Work . 72
6.3 Methodology . 73

6.3.1 Denotations for CIL . 73

6.3.2 An Online MDP Formulation for CIL 73

6.3.3 Optimizable Hyperparameters . 74

6.3.4 Policy Learning . 75

6.4 Experiments . 79
6.4.1 Datasets and Implementation Details 79

6.4.2 Results and Analyses . 79

6.5 Conclusions . 82

In Chapter 5, we show a dynamic architecture to address the stability-plasticity trade-off in
class-incremental learning (CIL). However, none of the existing CIL models can achieve
the optimal trade-off in different data-receiving settings—where typically the training-

from-half (TFH) setting needs more stability, but the training-from-scratch (TFS) needs more
plasticity. To this end, we design an online learning method that can adaptively optimize
the tradeoff without knowing the setting as a priori. Specifically, we first introduce the key
hyperparameters that influence the tradeoff, e.g., knowledge distillation (KD) loss weights,
learning rates, and classifier types. Then, we formulate the hyperparameter optimization
process as an online Markov Decision Process (MDP) problem and propose a specific
algorithm to solve it. We apply local estimated rewards and a classic bandit algorithm
Exp3 [ACBFS02] to address the issues when applying online MDP methods to the CIL
protocol. Our method consistently improves top-performing CIL methods in both TFH and
TFS settings, e.g., boosting the average accuracy of TFH and TFS by 2.2 percentage points on
ImageNet-Full, compared to the state-of-the-art [LSS21b].

This chapter is based on [LLSS23a]. As the first author, Yaoyao Liu conducted all
experiments and was the main writer.

6.1 introduction

Real-world problems are ever-changing, with new concepts and new data being continuously
observed. Ideal AI systems should have the ability to learn new concepts from the new
data, also known as plasticity, while maintaining the ability to recognize old concepts, also

69

70 chapter 6. learning to optimize the hyperparameter online

45 50 55 60 65 70 75

Training from half (TFH)

45

50

55

60

65

T
ra

in
in

g
 f

ro
m

 s
cr

at
ch

 (
T

F
S

)

LwF

iCaRL

LUCIR

AANets

RMM

Ours

Figure 6.1: Average accuracy (%) on CIFAR-100 25-phase, using two data-receiving settings:
1) training-from-half (TFH): a large amount of data is available beforehand to pre-train
the encoder; 2) training-from-scratch (TFS): classes come evenly in each phase. Dark blue
and orange indicate the baselines and our method, respectively. Light-color circles are
confidence intervals. Notice that methods with strong KD losses, e.g., LUCIR [HPL+

19],
AANets [LSS21a], and RMM [LSS21b], tend to provide worse performance in TFS than TFH,
while methods with weak KD losses, e.g., iCaRL [RKSL17] and LwF [LH18], tend to provide
worse performance in TFH than TFS. Our method uses an online learning algorithm to
produce the key hyperparameters, e.g., KD loss weights that control which KD losses are
used. Thus, our method achieves the highest performance in both TFS and TFH.

known as stability. However, there is a fundamental tradeoff between plasticity and stability:
too much plasticity may result in the catastrophic forgetting of old concepts, while too much
stability restricts the ability to adapt to new concepts [MC89, MH93, Rat90]. To encourage
related research, [RKSL17] defined the class-incremental learning (CIL) protocol, where the
training samples of different classes come to the model phase-by-phase and most of the past
data are removed from the memory.

Recently, many methods have been proposed to balance the stability-plasticity tradeoff for
different data-receiving settings of CIL. For example, the strong feature knowledge distillation
(KD) loss function is usually adopted when a large amount of data is available beforehand
(e.g., the training-from-half (TFH) setting) since it encourages stability [HPL+

19, LSS21a,
LSS21b]; while the weak logit KD loss function is popular when data and classes are received
evenly in each phase (e.g., the training-from-scratch (TFS) setting) since it provides more
plasticity [RKSL17, BP19, LH18].

Most CIL algorithms pre-fix the tradeoff balancing methods, usually according to which
data-receiving setting will be used in the experiments. However, in real-world scenarios, it is
difficult to anticipate how data will be received in the future. Hence, a pre-fixed method
is no longer proper for balancing the stability and plasticity of the actual data stream, thus
generating worse performance. This can also be validated in Figure 6.1. Notice that the
methods with weak KD, e.g., iCaRL [RKSL17] and LwF [LH18], provide worse performance
in TFH than in TFS since weak KD provides too much plasticity for TFH, while the methods
with strong KD, e.g., LUCIR [HPL+

19], AANets [LSS21a], and RMM [LSS21b], perform

6.1 introduction 71

worse in TFS than in TFH due to too much stability.
Therefore, a natural question is: how to design an adaptive trade-off balancing method to

achieve good performance without knowing how data will be received beforehand? To tackle
this, we propose an online-learning-inspired method to adaptively adjust key hyperparam-
eters that affect the trade-off balancing performance in CIL. In our method, we introduce
hyperparameters to control the choice of KD loss functions, learning rates, and classifier
types, which are key algorithm choices that affect the tradeoff balancing performance.1

In this way, deciding this choice is transformed into a hyperparameter optimization (HO)
problem.

This HO problem cannot be directly solved because future data are not available. Thus,
we borrow ideas from online learning, which is a widely adopted approach to adaptively
tune the decisions without knowing the future data a priori while still achieving good
performance in hindsight.

However, in CIL, our decisions affect not only the next phase but also all the future
phases, which is different from the standard online learning setting [And08]. To capture the
dependence across phases, we formulate the HO problem in CIL as an online MDP, which
is a generalized version of online learning. Further, we propose a new algorithm based
on [EDKM09] to solve this online MDP problem. Our algorithm differs from the standard
online MDP algorithm in [EDKM09] in two aspects:

• In CIL, we cannot directly observe the reward (i.e., validation accuracy) because the
validation data is not accessible during training. To address this issue, we estimate the
reward by rebuilding local training and validation sets during policy learning in each
phase, and computing the estimated reward on the local validation sets.

• In CIL, we only have access to the model generated by the selected hyperparameters
instead of the models generated by other hyperparameters. In other words, we only
have bandit feedback instead of full feedback as assumed in [EDKM09]. To address this,
we revise the algorithm in [EDKM09] by combining it with a classic bandit algorithm,
Exp3 [ACBFS02].

Empirically, we find our method performs well consistently. We conduct extensive CIL
experiments by plugging our method into three top-performing methods (LUCIR [HPL+

19],
AANets [LSS21a], and RMM [LSS21b]) and testing them on three benchmarks (i.e., CIFAR-
100, ImageNet-Subset, and ImageNet-Full). Our results show the consistent improvements of
the proposed method, e.g., boosting the average accuracy of TFH and TFS by 2.2 percentage
points on ImageNet-Full, compared to the state-of-the-art [LSS21b].

Lastly, it is worth mentioning that our method can also be applied to optimize other key
hyperparameters in CIL, e.g., memory allocation [LSS21b].

Summary of our contributions. Our contributions are three-fold: 1) an online MDP
formulation that allows online updates of hyperparameters that affect the balance of the
stability and plasticity in CIL; 2) an Exp3-based online MDP algorithm to generate adap-
tive hyperparameters using bandit and estimated feedback; 3) extensive comparisons and
visualizations for our method in three CIL benchmarks, taking top-performing methods as
baselines.

1The impact of KD losses has been discussed before. Learning rates naturally affect how fast the model
learns new concepts. We also adjust the classifier type because empirical results [RKSL17, HPL+

19] show that
the nearest class mean (NCM) and fully-connected (FC) classifiers perform better under more plasticity and
stability, respectively.

72 chapter 6. learning to optimize the hyperparameter online

Model Θ1 Model

New class
data D2

Model

New class
data D3

Exemplars
M2

...

...

Phase 0

Phase 1 Phase 2 ...

Exemplars

New class
data D1

(a)Eq. 3

Eq. 4

Model

 Data Data

Data sequence
from different classes

Phase 1

Model

Phase i

Policy Model
Hyperparameters

Train
TrainTrain

Initialize

... Data

Policy Model

TrainTrain

...
Initialize...

...

...

Hyperparameters

Figure 6.2: The computing flow of our method. We formulate the CIL task as an online MDP:
each phase in CIL is a stage in the MDP, and the CIL models are the states. We train the
policy to produce actions, which contain the hyperparameters we use in the CIL training.
We illustrate the training process of each phase in Figure 6.3.

6.2 related work

In this section, we discuss related works on reinforcement learning, online learning, and
hyperparameter optimization. We will not repeat the incremental learning works that have
been discussed in Chapter 2.

Reinforcement learning (RL) aims to learn a policy in an environment, which is typically
formulated as an MDP. Some CIL papers also deploy RL algorithms in their frameworks.
[XZ18] used RL to expand its backbone network when a new task arrives adaptively. [LSS21b]
used RL to learn a policy to adjust the memory allocation between old and new class data
dynamically along with the learning phases. Our method focuses on learning a policy to
produce key hyperparameters. Besides, the existing methods need to solve the complete
MDP, which is time-consuming. Here, we formulate the CIL task as an online MDP. Thus,
our method is more time-efficient.

Online learning observes a stream of samples and makes a prediction for each element
in the stream. There are mainly two settings in online learning: full feedback and bandit
feedback. Full feedback means that the full reward function is given at each stage. It can be
solved by Best-Expert algorithms [EDKM05]. Bandit feedback means that only the reward
of the implemented decision is revealed. If the rewards are independently drawn from
a fixed and unknown distribution, we may use e.g., Thompson sampling [AG12] and
UCB [AO10] to solve it. If the rewards are generated in a non-stochastic version, we can
solve it by e.g., Exp3 [ACBFS02]. Online MDP is an extension of online learning. Many
studies [EDKM09, LZQL19] aim to solve it by converting it to online learning. In our case,
we formulate the CIL as an online MDP and convert it into a classic online learning problem.
The rewards in our MDP are non-stochastic because the training and validation data change
in each phase. Therefore, we design our algorithm based on Exp3 [ACBFS02].

Hyperparameter optimization (HO). There are mainly two popular lines of HO methods:
gradient-based and meta-learning-based. Gradient-based HO methods [BPRS18] make
it possible to tune the entire weight vectors associated with a neural network layer as
hyperparameters. Meta-learning-based HO methods [FFS+18] use a bilevel program to
optimize the hyperparameters. However, all these methods only consider time-invariant
environments. Our online method learns hyperparameters that adapt to the time-varying
environments in CIL.

6.3 methodology 73

6.3 methodology

As illustrated in Figures 6.2 and 6.3, we formulate CIL as an online MDP and learn a
policy to produce the hyperparameters in each phase. In this section, we first elaborate on
the CIL denotations. Then, we introduce the online MDP formulation, show optimizable
hyperparameters, and provide an online learning algorithm to train the policy.

6.3.1 Denotations for CIL

The general CIL pipeline is as follows. There are multiple phases during which the number
of classes gradually increases to the maximum [DCO+

20, HPL+
19, HTM+

21, LSL+
20]. In

the 0-th phase, we observe data D0, and use it to learn an initial model Θ0. After this phase,
we can only store a small subset of D0 (i.e., exemplars denoted as E0) in memory used as
replay samples in later phases. In the i-th phase (i≥1), we get new class data Di and load
exemplars E0:i−1=E0 ∪ · · · ∪ Ei−1 from the memory. Then, we initialize Θi with Θi−1, and
train it using E0:i−1 ∪Di. We evaluate the model Θi on a test set Q0:i for all classes observed
so far. After that, we select exemplars E0:i from E0:i−1 ∪Di and save them in the memory.

Existing work mainly focus on two data-receiving settings: training-from-half (TFH) [HPL+
19]

and training-from-scratch (TFS) [RKSL17] settings. In TFH, we are given half of all classes in
the 0-th phase, and observe the remaining classes evenly in the subsequent N phases. In
TFS, we are given the same number of classes in all N phases.

6.3.2 An Online MDP Formulation for CIL

Optimizing hyperparameters in CIL should be online inherently: training and validation
data changes in each phase, so the hyperparameters should be adjusted accordingly. Thus, it
is intuitive to formulate the CIL as an online MDP. In the following, we provide detailed
formulations.
Stages. Each phase in the CIL task can be viewed as a stage in the online MDP.
States. The state should define the current situation of the intelligent agent. In CIL, we use
the model Θi as the state of the i-th phase/stage. We use S to denote the state space.
Actions. We use a vector consisting of the hyperparameters in the i-th phase as the action ai.
When we take the action ai, we deploy the corresponding hyperparameters. We denote the
action space as A. Please refer to the next subsection, Optimizable Hyperparameters, for more
details.
Policy p={p(a|Θi)}a∈A is a probability distribution over the action space A, given the
current state Θi.
Environments. We define the training and validation data in each phase as the environment.
In the i-th phase, the environment is Hi=(E0:i−1 ∪Di,Q0:i), where E0:i−1 ∪Di is the training
data and Q0:i is the corresponding validation data. The environment is time-varying because
we are given different training and validation data in each phase.
Rewards. CIL aims to train a model that is efficient in recognizing all classes seen so far.
Therefore, we use the validation accuracy as the reward in each phase. Our objective is to
maximize a cumulative reward, i.e., R = ∑N

i=1 rHi(Θi, ai), where rHi(Θi, ai) denotes the i-th
phase reward, i.e., the validation accuracy of Θi. The reward function rHi changes with Hi,
so it is time-varying.

74 chapter 6. learning to optimize the hyperparameter online

6.3.3 Optimizable Hyperparameters

In this part, we introduce the optimizable hyperparameters, and how to define the actions
and action space based on the hyperparameters. We consider three kinds of hyperparameters
that significantly affect the stability and plasticity: 1) KD loss weights, 2) learning rates, and
3) classified types.
1) KD loss weights. We first introduce two KD losses (i.e., logit and feature KD losses) and
then show how to use the KD loss weights to balance them.
Logit KD loss is proposed in [HVD15] and widely applied in CIL methods [LH18, RKSL17,
LSS21a]. Its motivation is to make the current model Θi mimic the prediction logits of the
old model Θi−1:

Llogi = −
K

∑
k=1

ηk(µ(x; Θi−1)) log ηk(µ(x; Θi)), (6.1)

where µ(x; Θ) is a function that maps the input mini-batch (x, y) to the prediction logits
using the model Θ. ηk(v) = v1/τ

k / ∑j v1/τ
j is a re-scaling function for the k-th class prediction

logit and τ is a scalar set to be greater than 1.
Feature KD loss [HPL+

19, DCO+
20] aims to enforce a stronger constraint on the previous

knowledge by minimizing the cosine similarity between the features from the current model
Θi and the old model Θi−1. It can be computed as follows,

Lfeat = 1− Sc(f (x; Θi), f (x; Θi−1)), (6.2)

where f (x; Θ) denotes a function that maps the input image x to the features using the
model Θ. Sc(v1, v2) denotes the cosine similarity between v1 and v2.
The overall loss in the i-th phase is a weighted sum of the classification and different KD
losses:

Loverall = LCE + βiLlogi + γiLfeat, (6.3)

where βi and γi are the weights of the logit and feature KD losses, respectively. LCE is
the standard cross-entropy classification loss. Existing methods [LH18, RKSL17, HPL+

19,
LSS21a, LSS21b] can be viewed as using fixed heuristic KD loss weights, e.g., βi≡1 and
γi≡0 in iCaRL [LH18, RKSL17]. Instead, our method optimizes βi and γi online. Thus, we
can balance the model’s stability and plasticity by adjusting βi and γi. We apply different
weights for the logit and feature KD losses so that we can achieve fine-grained control over
the intensity of knowledge distillation.
2) Learning rate is another important hyperparameter that affects the model’s stability and
plasticity. We empirically find that a lower learning rate makes the CIL model more stable,
while a higher learning rate makes the CIL model more plastic. If we use λi to denote the
learnable learning rate in the i-th phase, we update the CIL model as follows,

Θi ← Θi − λi∇ΘiLoverall. (6.4)

Another hyperparameter, the number of training epochs, has similar properties to the
learning rate. We choose to optimize the learning rate and fix the number of epochs because
it empirically works better with our online learning algorithm.
3) Classifier type. Motivated by the empirical analysis, we consider two classifier types in our
study: nearest class mean (NCM) [RKSL17, SSZ17] and fully-connected (FC) [HPL+

19, LSL+
20]

classifiers. For the NCM classifier, we first compute the mean feature for each class using the

6.3 methodology 75

Local validationLocal training

New data Old exemplars

Temporary model Temporary model

Train Test

Policy

CIL model

Hyperparameters (action)

Hyperparameters

Train
Po

lic
y

le
ar

ni
ng

C
IL

 tr
ai

ni
ng

Update
Validation acc. (reward)

Figure 6.3: The training process of our online learning method in the i-th phase. It includes
policy learning and CIL training. (a) Policy learning. 1) We construct a class-balanced subset
from all training data as the local validation set and use the remaining data as the local
training set. 2) We initialize the temporary model with Θi−1. 3) We sample an action using
the current policy and deploy the hyperparameters on the temporary model according to the
action. 4) We train it on the local training set for M1 epochs, and evaluate it on the local test
set. 5) We use the validation accuracy as the reward and update the policy. We update the
policy for T iterations by repeating Steps 2-5. (b) CIL training. We sample an action using
the learned policy and deploy the hyperparameters on the CIL model. Then, we train the
CIL model on all training data for M2 epochs. We set M1 = ⌈0.1M2⌉ to speed up the policy
learning.

new data and old exemplars. Then we perform a nearest neighbor search using the Euclidean
distance on the L2 normalized mean features to get the final predictions. It is observed
empirically that the NCM classifier tends to work better on the models with high plasticity,
while the FC classifier performs better on the models with high stability [RKSL17, HPL+

19].
Thus, we propose to use a hyperparameter, classifier type indicator δi, to control the final
predictions during the evaluation:

µ(x; Θi) = µncm(x; Θi)[δi = 1] + µfc(x; Θi)[δi = 0], (6.5)

where δi ∈ {0, 1}, µncm and µfc are the predictions on the input image x using the NCM and
FC classifiers, respectively.
Summary: actions and action space. In summary, we define the action as ai=(βi, γi, λi, δi,),
which consists of the following hyperparameters: KD loss weights βi and γi, learning rate
λi, and classifier type indicator δi. For the hyperparameters that may vary in a continuous
range, we discretize them to define a finite action space.2 In the next subsection, we show how
to learn the policy in each phase.

6.3.4 Policy Learning

A common approach to solving an online MDP is to approximate it as an online learning
problem and solve it using online learning algorithms [EDKM05, AG12, ACBFS02]. We also

2Though discretization suffers the curse of dimensionality, our experiments show that with a coarse grid, we
already have significant improvements over pre-fixed hyperparameters.

76 chapter 6. learning to optimize the hyperparameter online

take this approach, and our approximation follows [EDKM09], which achieves the optimal
regret. In their paper, [EDKM09] relax the Markovian assumption of the MDP by decoupling
the cumulative reward function and letting it be time-dependent so that they can solve
the online MDP by standard online learning algorithms. Such a decoupling requires the
following assumptions. 1) Fast mixing: in CIL, the hyperparameters in an early phase do
not have much impact on the test accuracy of the classes observed in the current phase. 2)
The algorithm changes the hyperparameters slowly (this can be observed in Experiments &
Figure 6.5). Thus, these assumptions fit our CIL problem.

However, we cannot directly apply the algorithms proposed in [EDKM09] to our problem.
It is because their paper assumes full feedback, i.e., we can observe the rewards of all actions
in each phase. Therefore, its online learning problem could be solved by Best Expert
algorithms [EDKM05]. In CIL, we cannot observe any reward (i.e., validation accuracy)
because the validation data is not accessible during training. To address this issue, we
rebuild the local training and validation sets in each phase. In this way, our problem has
bandit feedback: we can compute the reward of the implemented action. Therefore, we can
solve our online learning problem based on Exp3 [ACBFS02], a famous bandit algorithm.

In the following, we show how to rebuild the local training and validation sets, compute
the decoupled cumulative reward, and learn the policy with Exp3.
Rebuilding local datasets. In the i-th phase, we need to access the validation set Q0:i
to compute the reward (i.e., the validation accuracy). However, we are not allowed to
use Q0:i during training because it violates the CIL benchmark protocol. Therefore, we
replace Q0:i with a class-balanced subset B0:i sampled from the training data E0:i−1 ∪ Di.
B0:i contains the same number of samples for both the old and new classes. In this way,
we can rebuild the local training and validation sets, and obtain the local environment
hi = ((E0:i−1 ∪Di) \ B0:i,B0:i).
Decoupled cumulative reward. We create the decoupled cumulative reward function R̂
based on the original cumulative reward function R = ∑N

j=1 rHj(Θj, aj). In the i-th phase, we
compute R̂ as follows,

R̂(ai, hi) =
i−1

∑
j=1

rHj(Θj, aj)︸ ︷︷ ︸
Part I

+
i+n

∑
j=i

rhi(Θj, ai)︸ ︷︷ ︸
Part II

, (6.6)

where Part I is the historical rewards from the 1-st phase to the (i-1)-th phase. It is a constant
and doesn’t influence policy optimization. Part II is the long-term reward of a time-invariant
local MDP based on the local environment hi. We use Part II as an estimation of the future
rewards, following [EDKM09]. Because we don’t know the total number of phases N during
training, we assume there are n phases in the future. Furthermore, we fix the action ai in
Part II to simplify the training process. Thus, R̂ can be reviewed as a function of ai and hi.
Training policy with Exp3. Exp3 [ACBFS02] introduces an auxiliary variable w = {w(a)}a∈A.
After updating w, we can determine the policy p={p(a|Θi)}a∈A by

p = w/||w||, (6.7)

The updating rule of w is provided below. In the 1-st phase, we initialize w as {1, . . . , 1}. In
each phase i (i≥1), we update w for T iterations. In the t-th iteration, we sample an action
at∼p, apply the action at to the CIL system, and compute the decoupled cumulative reward

6.3 methodology 77

R̂(at, hi) using Eq. 6.6. After that, we update w(at) in w as,

w(at)← w(at) exp(ξR̂(at, hi)/p(at|Θi)), (6.8)

where ξ is a constant, which can be regarded as the learning rate in Exp3.

78 chapter 6. learning to optimize the hyperparameter online

Methods
CIFAR-100, N=5 CIFAR-100, N=25

TFH TFS Avg. TFH TFS Avg.

LwF [LH18] 52.3 58.8 55.6 45.6 48.3 47.9
iCaRL [RKSL17] 58.1 64.0 61.0 48.1 53.2 50.7
PODNet [DCO+

20] 64.7 63.6 64.2 60.3 45.3 52.8
DER [YXH21] 67.6 72.3 70.0 65.5 67.3 66.4
FOSTER [WZYZ22] 70.4 72.5 71.5 63.8 70.7 67.3

LUCIR [HPL+
19] 63.1±0.7 63.0±0.6 63.1±0.7 57.5±0.4 49.2±0.5 53.4±0.5

w/ ours 63.9±0.6 64.9±0.5 64.4±0.6 59.3±0.5 52.4±0.5 55.9±0.5

↑0.8 ↑1.9 ↑1.3 ↑1.8 ↑3.2 ↑2.5

AANets [LSS21a] 65.3±0.4 63.1±0.3 64.2±0.4 63.2±0.3 44.4±0.4 53.8±0.4

w/ ours 67.0±0.3 65.1±0.3 66.1±0.3 64.1±0.4 50.3±0.5 57.2±0.5

↑1.7 ↑2.0 ↑1.9 ↑0.9 ↑5.9 ↑3.4

RMM [LSS21b] 67.6±0.7 70.4±0.8 69.0±0.8 65.6±0.6 58.4±0.6 62.0±0.6

w/ ours 70.8±0.7 72.7±0.6 71.8±0.7 69.5±0.8 65.9±0.7 67.7±0.8

↑3.2 ↑2.3 ↑2.8 ↑3.9 ↑7.5 ↑5.7

Methods
ImageNet-Subset, N=5 ImageNet-Subset, N=25

TFH TFS Avg. TFH TFS Avg.

LwF [LH18] 55.1 62.0 58.6 44.3 43.9 44.1
iCaRL [RKSL17] 65.3 70.4 67.9 53.0 53.5 53.3
PODNet [DCO+

20] 64.3 58.9 61.6 68.3 39.1 53.7
DER [YXH21] 78.4 76.9 77.7 75.4 71.0 73.2
FOSTER [WZYZ22] 80.2 78.3 79.3 69.3 72.9 71.1

LUCIR [HPL+
19] 65.3±0.6 66.7±0.5 66.0±0.6 61.4±0.7 46.2±0.8 53.8±0.8

w/ ours 70.6±0.7 68.4±0.6 69.5±0.7 62.9±0.6 54.1±0.6 58.5±0.6

↑5.3 ↑1.7 ↑3.5 ↑1.5 ↑7.9 ↑4.7

AANets [LSS21a] 77.0±0.7 68.9±0.6 73.0±0.7 72.2±0.6 60.7±0.5 66.5±0.6

w/ ours 77.3±0.6 70.6±0.5 74.0±0.6 72.9±0.5 64.8±0.5 68.9±0.5

↑0.3 ↑1.7 ↑1.0 ↑0.7 ↑4.1 ↑2.4

RMM [LSS21b] 79.5±0.2 80.5±0.3 80.0±0.3 75.0±0.3 71.6±0.3 73.3±0.3

w/ ours 81.0±0.3 82.2±0.4 81.6±0.4 76.1±0.2 73.2±0.4 74.7±0.3

↑1.5 ↑1.7 ↑1.6 ↑1.1 ↑1.6 ↑1.4

Table 6.1: Average accuracy (%) across all phases on CIFAR-100 and ImageNet-Subset. The
first block shows some recent CIL methods. The second block shows three top-performing
baselines [HPL+

19, LSS21a, LSS21b] w/ and w/o our method plugged in. “TFH” and “TFS”
denote the training-from-half and training-from-scratch settings, respectively. “Avg.” shows the
average of the “TFH” and “TFS” results. For “AANets” [LSS21a], we use its version based
on PODNet [DCO+

20]. We rerun the baselines [LH18, RKSL17, DCO+
20, YXH21, WZYZ22]

using their open-source code in a unified setting for a fair comparison.

6.4 experiments 79

6.4 experiments

We evaluate the proposed method on three CIL benchmarks: CIFAR-100 [KH+
09], ImageNet-

Subset [RKSL17], and ImageNet-Full [RDS+15]. We incorporate our method into three
top-performing baseline methods (LUICR [HPL+

19], AANets [LSS21a], and RMM [LSS21b])
and boost their performances consistently in all settings. Below we describe the datasets
and implementation details, followed by the results and analyses, which include extensive
comparisons to related work, ablation results, and visualizations.

6.4.1 Datasets and Implementation Details

Datasets. We employ CIFAR-100 [KH+
09], ImageNet-Subset [RKSL17] (100 classes), and

ImageNet-Full [RDS+15] (1000 classes) as the benchmarks. We use the same data splits and
class orders as the related work [RKSL17, CMG+

18, LSS21a, LSS21b] for a fair comparison.
Network architectures. We use a modified 32-layer ResNet [RKSL17] for CIFAR-100 and
an 18-layer ResNet [HZRS16] for ImageNet, following [RKSL17, HPL+

19, LSS21a, LSS21b,
HTM+

21]. We deploy the AANets [LSS21a] for the experiments based on AANets and
RMM [LSS21b]. Further, we use a cosine normalized classifier without bias terms as the FC
classifier, following [HPL+

19, LSL+
20].

Configurations. We discretize the hyperparameter search space into 50 actions, i.e., card(A)=50.
We update the policy for 25 iterations in each phase, i.e., T=25. For other configurations, we
follow the corresponding baselines.
Benchmark protocol. We run experiments in both TFH and TFS settings. 1) Training-from-half
(TFH) [HPL+

19, LSL+
20, DCO+

20, LSS21a]. It means the data of the half dataset are used
to train the 0-th phase model. The rest classes come to the model evenly in subsequent N
phases. 2) Training-from-scratch [RKSL17, ZXG+

20, WCW+
19] (TFS). It divides all classes

evenly for N phases, i.e., the same number of classes coming to the model in each phase.
Compared to TFH, this setting has poorer models in earlier phases. We have two options for
the number of total phases, i.e., N=5/25. We report the average accuracy across all phases.
We run each experiment three times and report the average results with 95% confidence
intervals.

6.4.2 Results and Analyses

Tables 6.1 and 6.2 present the results of top-performing baselines w/ and w/o our method
and some recent related work. Table 3.2 summarizes the results in seven ablative settings.

Methods
ImageNet-Full, N=5

TFH TFS Avg.

LUCIR [HPL+
19] 64.5±0.3 62.7±0.4 62.0±0.4

w/ ours 65.8±0.3 ↑1.3 66.1±0.3 ↑3.4 66.0±0.3 ↑2.4

RMM [LSS21b] 69.0±0.5 66.1±0.4 67.6±0.5

w/ ours 70.7±0.5 ↑1.7 68.9±0.5 ↑2.8 69.8±0.5 ↑2.2

Table 6.2: Average accuracy (%) on ImageNet-Full.

80 chapter 6. learning to optimize the hyperparameter online

No.
Optimizing N=5 N=25

(β, γ) (aδa,) (aλa) TFH TFS TFH TFS

1 Baseline 63.11 62.96 57.47 49.16

2 ✓ 63.20 63.60 58.27 50.91

3 ✓ ✓ 63.23 64.08 58.20 51.94

4 ✓ ✓ ✓ 63.88 64.92 59.27 52.44

5 Cross-val fixed 63.33 64.02 57.50 51.64

6 Offline RL [LSS21b] 63.42 63.88 58.12 51.53

7 Bilevel HO [FFS+18] 63.20 63.02 57.56 49.42

Table 6.3: Ablation results (average accuracy %) on CIFAR-100. (β, γ) are KD loss weights. λ
and δ denote learning rates and classifier types, respectively. The baseline is LUCIR [HPL+

19].
Row 4 shows our best result.

Figure 6.4 compares the activation maps (using Grad-CAM [SCD+
17]) produced by diffident

methods in TFH and TFS. Figure 6.5 shows the values of hyperparameters produced by our
method.
Comparison with the state-of-the-art. Tables 6.1 and 6.2 show that taking our method as
a plug-in module for the state-of-the-art [LSS21b] and other baselines [HPL+

19, LSS21a]
consistently improves their performance. For example, RMM [LSS21b] w/ ours gains 4.3
and 2.2 percentage points on CIFAR-100 and ImageNet-Full, respectively. Interestingly, we
find that we can surpass the baselines more when the number of phases N is larger. E.g.,
on CIFAR-100, our method improves RMM by 5.7 percentage points when N=25, while this
number is 2.8 percentage points when N=5. Our explanation is that the forgetting problem
is more serious when the number of phases is larger. Thus, we need better hyperparameters
to balance the stability and plasticity.
Ablation study. Table 3.2 concerns eight ablative settings, and shows the results in both TFH
and TFS for different numbers of phases (N=5/25). The detailed analyses are as follows.
1) First block. Row 1 shows the baseline [HPL+

19].
2) Second block: optimizable hyperparameters. In our study, we optimize three kinds of
hyperparameters that affect the model’s stability and plasticity: KD loss weights (β, γ),
learning rate λ, and classifier type indicator δ. Comparing Row 2 to Row 1, we can observe
that optimizing the KD loss weights boosts the TFS accuracy more significantly. It is
because the baseline, LUCIR [HPL+

19], applies a strong regularization term (i.e., feature KD
loss) which harms the TFH performance. Our method changes the regularization term by
adjusting the KD loss weights, so it achieves better performance. Comparing Row 3 to Row
2, we can see that optimizing the classifier type indicator δ performs further improvements,
especially in TFS. It is because the baseline deploys an FC classifier by default while our
method learns to switch between different classifiers in different settings. Comparing Row 4

to Row 3, we can see the effectiveness of optimizing the learning rates in CIL. In summary,
it is impressive that optimizing three kinds of hyperparameters together achieves the best
results.
3) Third block: hyperparameter learning methods. For Row 5, we use cross-validation (i.e.,
all past, future, and validation data are accessible) to find a set of fixed hyperparameters
and apply them to all phases. We can see that Row 5 results are consistently lower than

6.4 experiments 81

Training from half (TFH)

Images iCaRL Ours

Ph
as

e
0

Ph
as

e
3

Ph
as

e
5

Training from scratch (TFS)

Images iCaRL Ours

Ph
as

e
0

Ph
as

e
3

Ph
as

e
5

LUCIR LUCIR

Figure 6.4: The activation maps using Grad-CAM [SCD+
17] for the last phase model on

ImageNet-Subset 5-phase. Samples are selected from the classes coming in the 0-th, 3-rd,
and 5-th phases. Green ticks mean successful activation of discriminative features on object
regions, while red crosses mean unsuccessful.

ours in Row 4, although it can access more data. It shows that we need to update the
hyperparameters online in different phases. For Row 6, we use the policy pre-trained in
the 0-th phase of the target CIL task using the framework proposed in [LSS21b] (compared
to ours, it is offline). Comparing Row 6 with Row 4, we are happy to see that our online
learning algorithm achieves better performance than the offline RL while we use much less
training time. For Row 7, we use the bilevel hyperparameter optimization method [FFS+18].
Comparing Row 7 with Row 4, we can observe that our method achieves more significant
performance improvements. The reason is that [FFS+18] is designed for time-invariant
environments, while our online algorithm can adapt to the time-varying environments in
CIL.
Visualizing activation maps. Figure 6.4 demonstrates the activation maps visualized by Grad-
CAM [SCD+

17] for the final model (obtained after five phases) on ImageNet-Subset 5-phase.
The left and right sub-figures show the results for training-from-half (TFH) and training-
from-scratch (TFS), respectively. We can observe: 1) LUCIR [HPL+

19] makes predictions
according to foreground (correct) and background (incorrect) regions in the TFH and TFS
settings, respectively; 2) iCaRL [RKSL17] behaves opposite to LUCIR in the two settings; 3)
our method always makes predictions according to foreground (correct) regions in both TFH
and TFS. The reasons are as follows. LUCIR applies a strong (feature) KD by default, so it
performs better in TFH. iCaRL applies a weak (logit) KD by default, so it performs better in
TFS. Our method can adjust the hyperparameters to change between different KD losses, so
it performs well in both settings.
Hyperparameter values. Figure 6.5 shows the hyperparameter values produced by our
policy on CIFAR-100 25-phase.
1) KD loss weights β and γ. From the figure, we have two observations. a) The policy learns
to produce a larger initial value for γ and β in TFH and TFS, respectively. Our explanation is
as follows. In TFH, we already have a pre-trained model, so we need a strong regularization
term (i.e., feature KD loss) to make the model more stable and avoid forgetting. In TFS, we
start from random initialization, so we need a weak regularization term (i.e., logit KD loss)
to improve the model’s plasticity. b) Both β and γ increase in TFH, while β decreases and γ
increases in TFS. It is because we need stronger regularization to maintain the knowledge

82 chapter 6. learning to optimize the hyperparameter online

5 10 15 20
#phases (TFH)

0.2
0.4
0.6
0.8
1.0 Logit KD ()

Feature KD ()

5 10 15 20
#phases (TFS)

0
0.20
0.40
0.60
0.80
1.00

5 10 15 20
#phases (TFH)

0

0.05

0.10

0.15 Learning rate ()

5 10 15 20
#phases (TFS)

0

0.05

0.10

0.15

Figure 6.5: The hyperparameter values produced by our policy on CIFAR-100 25-phase for
LUCIR [HPL+

19] w/ ours. We smooth all curves with a rate of 0.8 for better visualization.

when more data is observed. The policy achieves that in different ways: it assigns higher
weights for both KD losses in TFH, while it transfers from logit KD to feature KD in TFS.
2) Learning rates λ. In Figure 6.5, we can observe that the learning rate in TFS is much
higher than in TFH. It can be explained that 1) we need a higher learning rate in TFS as
the model is trained from scratch and needs to capture more new knowledge; 2) we need a
lower learning rate in TFH because we need to avoid forgetting the pre-trained model.
3) Classifier type indicator δ. On CIFAR-100 25-phase, our policy learned to choose the
NCM and FC classifiers in TFS and TFH, respectively.

6.5 conclusions

In this study, we introduce a novel framework that allows us to optimize hyperparameters
online to balance the stability and plasticity in CIL. To achieve this, we formulate the
CIL task as an online MDP and learn a policy to produce the hyperparameters. Our
approach is generic, and it can be easily applied to existing methods to achieve large-margin
improvements in both TFS and TFH settings. It is worth mentioning that our method can
also be applied to optimize other key hyperparameters in CIL.

II
F e w - s h o t L e a r n i n g :

L e a r n i n g w i t h L i m i t e d Data

w i t h o u t O v e r f i t t i n g

While the previous parts focused on incremental learning, this
part considers another learning scenario with imperfect data,
few-shot learning for image classification. For this task, we study
how to improve the generalization ability of the model and tackle
the overfitting problem by learning to transfer knowledge and
ensemble deep models. Specifically,

Chapter 7 tackles the over-fitting issue in few-shot learning
by proposing a novel method called meta-transfer learning (MTL),
which learns to adapt a deep neural network for few-shot learning
tasks.

In Chapter 8, we improve the robustness of few-shot learn-
ing by meta-learning the ensemble of epoch-wise empirical
Bayes models. Epoch-wise means that each training epoch has
a Bayes model whose parameters are specifically learned and
deployed. Empirical means that the hyperparameters, e.g., used for
learning and ensembling the epoch-wise models, are generated by
hyperprior learners conditional on task-specific data.

7L E A R N I N G T O
T R A N S F E R K N O W L E D G E

Contents
7.1 Introduction . 86
7.2 Related work . 87
7.3 Methodology . 89

7.3.1 Denotations for meta-learning . 89

7.3.2 Meta-transfer learning (MTL) . 90

7.3.3 Hard task (HT) meta-batch . 92

7.3.4 Meta-gradient regularization . 94

7.3.5 The overall algorithm . 94

7.3.6 Plug MTL into baseline methods . 94

7.4 Experiments . 95
7.4.1 Datasets . 95

7.4.2 Implementation details . 96

7.4.3 Comparison to the state-of-the-art 98

7.4.4 Plug-in evaluation . 102

7.4.5 Ablation study . 103

7.4.6 Statistical data of SS . 104

7.5 Conclusion . 106

Meta-learning has been proposed as a framework to address the challenging few-
shot learning setting. The key idea is to leverage a large number of similar few-shot
tasks in order to learn how to adapt a base-learner to a new task for which only a

few labeled samples are available. As deep neural networks (DNNs) tend to overfit using a
few samples only, typical meta-learning models use shallow neural networks, thus limiting
their effectiveness. In order to achieve top performance, some recent works tried to use
the DNNs pre-trained on large-scale datasets but mostly in straight-forward manners, e.g.,
(1) taking their weights as a warm start of meta-training, and (2) freezing their convolutional
layers as the feature extractor of base-learners. In this chapter, we propose a novel approach
called meta-transfer learning (MTL), which learns to transfer the weights of a deep NN for
few-shot learning tasks. Specifically, meta refers to training multiple tasks, and transfer is
achieved by learning the scaling and shifting functions of DNN weights (and biases) for each
task. To further boost the learning efficiency of MTL, we introduce the hard task (HT) meta-
batch scheme as an effective learning curriculum of few-shot classification tasks. We conduct
experiments for five-class few-shot classification tasks on three challenging benchmarks,
miniImageNet, tieredImageNet, and Fewshot-CIFAR100 (FC100), in both supervised and
semi-supervised settings. Extensive comparisons to related works validate that our MTL
approach trained with the proposed HT meta-batch scheme achieves top performance. An
ablation study also shows that both components contribute to fast convergence and high
accuracy.

85

86 chapter 7. learning to transfer knowledge

This chapter is based on [SLC+22]. As the co-first author of [LSL+
20], Yaoyao Liu

conducted most experiments and was the main writer. Figure 7.8 and the corresponding
results were contributed by Zhaozheng Chen from Singapore Management University. The
conference version of this paper, [SLCS19], is one of the Top 200 most cited CVPR papers in
five years and has been cited more than 700 times. This work also inspired several real-world
applications, e.g., super-resolution [SCC20] and COVID-19 Detection [SB20]. Furthermore,
this work is reproduced in [LDT+

21] and has shown to be one of the most effective few-shot
learning baselines with the highest cross-domain transferability.

7.1 introduction

Although deep learning systems have achieved great performance when sufficient amounts
of labeled data are available [YYG15, HZRS16, SLD17], there has been growing interest
in reducing the required amount of data. Few-shot learning tasks have been defined for
this purpose. The aim is to learn new concepts from a handful of training examples, e.g.,
from 1 or 5 training images [LFP06, FAL17, SLCS19]. Humans tend to be highly effective in
this context, often grasping the essential connection between new concepts and their own
knowledge, but it remains challenging for machine learning models. For instance, on the
CIFAR-100 dataset, a classification model trained in the fully supervised mode achieves 76%
accuracy for the 100-class setting [CUH16], while the best-performing 1-shot model achieves
only 45% in average for the much simpler 5-class setting [SLCS19]. On the other hand,
in many real-world applications, we lack large-scale training data, as e.g., in the medical
domain. It is thus desirable to improve machine learning models in order to handle few-shot
settings.

Basically, the nature of few-shot learning with very scarce training data makes it difficult
to train powerful machine learning models for new concepts. People explore a variety of
methods in order to overcome this. A straightforward idea is to increase the amount of
available data by data augmentation techniques [KBI+17]. Several methods were proposed
to learn a data generator e.g. conditioned on Gaussian noises [MD17, SKS+18, WGHH18] or
object attributes [XSSA19]. However, this data generator often under-performs when trained
on few-shot data, which has been investigated by [BV18]. An alternative is to merge data
from multiple tasks, which, however, is often ineffective due to high variances of the data
across tasks [WGHH18].

In contrast to data augmentation methods, meta-learning is a task-level optimization-
based method [BBCG92, NM92, TP98]. It aims to transfer experience from similar few-shot
learning tasks [FAL17, FXL18, GFL+

18, FFS+18, LC18, ZCG+
18, SLCS19, AES19, LMRS19,

HMX+
20]. Related methods follow a unified training process that contains two loops. The

inner-loop learns a base-learner for an individual task, and the outer-loop then uses the
validation performance of the learned base-learner to optimize the meta-learner. A state-
of-the-art representative method named Model-Agnostic Meta-Learning (MAML) learns to
search for the optimal initialization state to fast adapt a base-learner to a new task [FAL17].
Its task-agnostic property makes it possible to generalize to few-shot supervised/semi-
supervised learning as well as unsupervised reinforcement learning [FAL17, GFL+

18, FXL18,
AES19, ZCG+

18, RRS+19, RTR+
18, LSL+

19]. However, in our view, there are two main
limitations of this type of approach limiting their effectiveness: i) these methods usually
require a large number of similar tasks for meta-training, which is costly; and ii) each task is
typically modeled by a low-complexity base-learner, such as a shallow neural network (SNN),

7.2 related work 87

to avoid model overfitting to few-shot training data, thus being unable to deploy the deeper
and more powerful architectures. For example, for the miniImageNet dataset [VBL+

16],
MAML uses a shallow CNN with only 4 CONV layers and its optimal performance was
obtained by learning on 240k tasks (60k iterations in total and each meta-batch contains 4
tasks).

In this chapter, we propose a novel meta-learning method called meta-transfer learning
(MTL) leveraging the advantages of both transfer learning and meta-learning. In a nutshell,
MTL is a novel learning method that helps deeper neural networks based base-learners
converge faster while reducing their probability to overfit when training on a few labeled
data only. In particular, “transfer” means that DNN weights trained on large-scale data
can be used in other tasks by two light-weight neuron operations: Scaling and Shifting (SS),
i.e. αX + β. “Meta” means that the parameters of these SS operations can be viewed as
hyper-parameters learned with few-shot learning tasks [MY17, LZCL17, FFS+18]. First,
large-scale trained DNN weights offer a good initialization, enabling fast convergence of
MTL with fewer tasks, e.g., only 8k tasks for miniImageNet [VBL+

16], 30 times fewer than
MAML [FAL17]. Second, light-weight operations on DNN neurons have less parameters
to learn, e.g., less than 2

49 if considering neurons of size 7× 7 (1
49 for α and < 1

49 for β),
reducing the chance of overfitting to few-shot data. Third, these operations keep those
trained DNN weights unchanged and thus avoid the problem of “catastrophic forgetting”
which means forgetting general patterns when adapting to a specific task [LR17, MC89].
Finally, these operations are conducted on the convolutional layers mostly working for
image feature extraction, thus can generalize well to a variety of few-shot learning models,
e.g., MAML [FAL17], MatchingNet [VBL+

16], ProtoNet [SSZ17], RelationNet [SYZ+
18] and

SIB [HMX+
20].

The second main contribution of this chapter is an effective meta-training curriculum.
Curriculum learning [BLCW09] and hard negative mining [SGG16] both suggest that faster
convergence and stronger performance can be achieved by better arrangements of training
data, i.e., the few-shot training tasks in our case. Inspired by these ideas, we design our hard
task (HT) meta-batch strategy to offer a challenging but effective learning curriculum. The
conventional meta-batch contains a number of random tasks [FAL17], but our HT meta-batch
online re-samples harder ones according to past failure tasks with the lowest validation
accuracy. In addition, we add the meta-gradient regularization on each task that each task is
optimized by using the weighted sum of meta-gradients of both current and previous tasks.
The aim is to force the meta-learner not to forget old knowledge in afterward learning.

Our overall contribution is thus three-fold: i) we propose a novel MTL method that
learns to transfer large-scale pre-trained DNN weights for solving few-shot learning tasks;
ii) we propose a novel HT meta-batch learning strategy that forces meta-transfer to “grow
faster and stronger through hardship”; and iii) we conduct extensive experiments on three
few-shot learning benchmarks, namely miniImageNet [VBL+

16], tieredImageNet [RTR+
18]

and Fewshot-CIFAR100 (FC100) [ORL18], and achieve the state-of-the-art performance on
both supervised and semi-supervised few-shot learning.

7.2 related work

We borrow the idea of transfer learning when leveraging the large-scale pre-training step in
prior to meta-transfer. For task sampling, our HT meta-batch scheme is related to curriculum
learning and hard negative sampling methods.

88 chapter 7. learning to transfer knowledge

D {T1∼k}1∼N T (tr
unseen

) T (te
unseen

)

Figure 7.1: The pipeline of our proposed few-shot learning method, including: (a) DNN
pre-training on large-scale data, i.e. using the entire training dataset; and (b) meta-transfer
learning (MTL) that learns the parameters of Scaling and Shifting (SS), on the basis of pre-
trained feature extractor (Section 7.3.2). The learning process is scheduled by the proposed
HT meta-batch (Section 7.3.3) and regularized by meta-gradient regularization (Section 7.3.4).
In (c), it is meta-test on unseen task whose processing consists of a base-learner (classifier)
Fine-Tuning (FT) stage and a final evaluation stage, described in the last paragraph in
Section 7.3.1. Input data are along with arrows. Modules with names in bold get updated at
corresponding phases.

In this section, we discuss related works on transfer learning and curriculum learning.
We will not repeat the incremental learning works that have been discussed in Chapter 2.
Transfer learning. Transfer learning or knowledge transfer has the goal to transfer the
information of trained models to solve unknown tasks, thereby reducing the effort to collect
new training data. What and how to transfer are key issues to be addressed. Different
methods are applied to different source-target domains and bridge different transfer knowl-
edge [PTKY11, YYH07, WZHY18, ZSS+18, SSF17, LSL+

20, PSdV+
18]. For deep models,

a powerful transfer method is adapting a pre-trained model for a new task, often called
fine-tuning (FT). Models pre-trained on large-scale datasets have proven to generalize bet-
ter than randomly initialized ones [EBC+

10]. Another popular transfer method is taking
pre-trained networks as backbone and adding high-level functions, e.g. for object detection
[HRS+17] and image segmentation [HGDG17, CPK+

18]. Besides, the knowledge to transfer
can be from multi-modal category models, e.g. the word embedding models used for
zero-shot learning [RES13, XSSA19] and trained attribute models used for social relationship
recognition [SSF17].

In this chapter, our meta-transfer learning leverages the idea of transferring pre-trained
weights and our model meta-learns how to effectively transfer. The large-scale trained DNN
weights are what to transfer, and the operations of Scaling and Shifting indicate how to transfer.
Some existing few-shot learning methods [KVSN18, MRCA18, QLSY18, SRM18, RRS+19]
also deployed pre-trained DNNs. DNN weights in these methods are usually fixed for
feature extraction or simply fine-tuned on each task. In contrast, our approach defines an
explicit meta-learner to extract and apply usable knowledge of pre-learned DNNs to tackling
the challenging few-shot learning tasks.
Curriculum learning & hard sample mining. Curriculum learning was proposed by Bengio
et al. [BLCW09] and is popular for multi-task learning [SGNK17, WCA18, GBM+

17]. They
showed that instead of observing samples at random it is better to organize samples in a
meaningful way so that fast convergence, effective learning and better generalization can
be achieved. Kumar et al. [KPK10] introduced an iterative self-paced learning algorithm
where each iteration simultaneously selects easy samples and learns a new parameter vector.
Intuitively, the curriculum is determined by the pupil’s abilities rather than being fixed by

7.3 methodology 89

a teacher. Pentina et al. [PSL15] use adaptive SVM classifiers to evaluate task difficulty for
later organization. Most recently, Jiang et al. [JZL+

18] designed a MentorNet that provides a
“curriculum”, i.e., sample weighting scheme, for StudentNet to focus on the labels which
are probably correct. The trained MentorNet can be directly applied for the training of
StudentNet on a new dataset. Differently, our MTL method does task difficulty evaluation
online at the phase of test in each task, without needing any auxiliary model.

Hard sample mining was proposed by Shrivastava et al. [SGG16] for object detection with
DNNs. It treats image proposals overlapped with ground truth (i.e. causing more confusions)
as hard negative samples. Training on more confusing data enables the detection model to
achieve higher robustness and better performance [CF16, HKC+

17, DT05]. Inspired by this,
we sample harder tasks online and make our MTL learner “grow faster and stronger through
more hardness”. In our experiments, we show that this can be generalized to different
architectures with different meta-training operations, i.e. SS and FT, referring to Figure 7.4.

7.3 methodology

As shown in Figure 7.1, our method consists of three main training phases in order to achieve
effective few-shot classifiers. First, we train a DNN on large-scale data, e.g., on miniImageNet
with 64 classes and 600 samples per class [VBL+

16], and then fix convolutional layers as the
Feature Extractor. Second, in the meta-transfer learning phase, our MTL learns the Scaling
and Shifting (SS) parameters for the neurons of Feature Extractor, enabling the fast adaptation
to few-shot episodes (Section 7.3.2). To boost the overall learning efficiency, we apply the HT
meta-batch scheme (Section 7.3.3) and the meta-gradient regularization (Section 7.3.4) to the
meta-train phase. The overall algorithm of our approach is given in Section 7.3.5. Finally, in
Section 7.3.6, we introduce how to plug this algorithm into existing methods.

7.3.1 Denotations for meta-learning

In this section, we briefly introduce the unified episodic formulation in meta-learning,
following related works [VBL+

16, RL17, FAL17, ORL18, RRS+19]. Then, we introduce the
task-level data denotations used at two phases, i.e., meta-train and meta-test.
Meta-learning has an episodic formulation that was proposed for tackling few-shot tasks
first in [VBL+

16]. It is different from traditional image classification, in three aspects: (1) the
main phases are not train and test but meta-train and meta-test, each of which includes
training and testing; (2) the samples in meta-train and meta-test are not data points but
episodes, and each episode is a few-shot classification task; and (3) the objective is not
classifying unseen data points but to fast adapt the meta-learned experience or knowledge
to the learning of a new few-shot classification task.

The denotations of two phases, meta-train and meta-test, are as follows. A meta-train
example is a classification task T sampled from a distribution p(T). T is called an episode,
including a training split T (tr) to optimize the base-learner, i.e., the classifiers in our model,
and a test split T (te) to optimize the meta-learner, i.e., the scaling and shifting parameters in
our model. In particular, meta-train aims to learn from a number of episodes {T } sampled
from p(T). An unseen episode Tunseen in meta-test will start from that experience of the
meta-learner and adapt the base-learner. The final evaluation is done by testing a set of
unseen data points in T (te)

unseen.

90 chapter 7. learning to transfer knowledge

Meta-train phase. This phase aims to learn a meta-learner from multiple episodes. In each
episode, meta-training has a two-stage optimization. Stage-1 is called base-learning, where
the cross-entropy loss is used to optimize the parameters of the base-learner. Stage-2 contains
a feed-forward test on episode test data points. The test loss (also called meta loss) is used
to optimize the parameters of the meta-learner. Specifically, given an episode T ∈ p(T),
the base-learner θT is learned from episode training data T (tr) and its corresponding loss
LT (θT , T (tr)). After optimizing this loss, the base-learner has parameters θ̃T . Then, the
meta-learner is updated using meta loss LT (θ̃T , T (te)). After meta-training on all episodes,
the meta-learner is optimized by meta losses {LT (θ̃T , T (te))}T ∈p(T). Therefore, the number
of meta-learner updates equals the number of episodes.
Meta-test phase. This phase aims to test the performance of the trained meta-learner for fast
adaptation to unseen episodes. Given Tunseen, the meta-learner θ̃T teaches the base-learner
θTunseen to adapt to the objective of Tunseen by some means, e.g. through initialization [FAL17].
Then, the test result on T (te)

unseen is used to evaluate the meta-learning approach. If there
are multiple unseen episodes {Tunseen}, the average result on {T (te)

unseen} will be the final
evaluation.

7.3.2 Meta-transfer learning (MTL)

During pre-training, we merge all data D and derive the many-shot many-class model using
the cross-entropy loss. The model is composed of the Feature Extractor Θ and a many-
class classifier. The Θ keeps frozen in the following meta-training and meta-test phases,
as shown in Figure 7.1. The many-class classifier is discarded, because few-shot episodes
contain different classification objectives, e.g., 5-class instead of 64-class classification for
miniImageNet [VBL+

16].
As shown in Figure 7.1(b), our MTL optimizes only the meta operations Scaling and

Shifting (SS) through HT meta-batch training (Section 7.3.3). Figure 7.2 visualizes the
difference of updating through SS and FT (Fine-Tuning). SS operations, denoted as ΦS1 and
ΦS2 , do not change the frozen neuron weights of Θ during learning, while FT updates the
complete Θ. Note that this FT is distinct from the Base-learner FT (on θ).

In the following, we expand the details of SS operations corresponding to Figure 7.1(b).
Given an episode T , the loss of T (tr) is used to optimize the current base-learner (classifier)
θ′ by gradient descent:

θ′ ← θ − β∇θLT (tr)

(
[Θ; θ], ΦS{1,2}

)
, (7.1)

where θ concerns a few classes, e.g., 5 classes, to classify each time in a novel few-shot setting.
θ′ corresponds to a temporal classifier working only in the current episode, initialized by the
θ optimized by previous episodes (see Eq. (7.3)).

ΦS1 is initialized by ones and ΦS2 by zeros. Then, they are optimized by the meta loss of
T (te) as follows,

ΦSi =: ΦSi − γ∇ΦSi
LT (te)

(
[Θ; θ′], ΦS{1,2}

)
, i = 1, 2. (7.2)

In this step, θ is updated with the same learning rate γ as in Eq. (7.2),

θ =: θ − γ∇θLT (te)

(
[Θ; θ′], ΦS{1,2}

)
. (7.3)

Re-linking to Eq. (7.1), we note that the above θ′ comes from the last epoch of base-learning
on T (tr).

7.3 methodology 91

W b W ′ b′

ΦS1
ΦS2 Φ′

S1
Φ′

S2

T

W b W b

T

Figure 7.2: Two kinds of meta operations on pre-trained weights. (a) Parameter-level
Fine-Tuning (FT) is a conventional meta-train operation used in related works such as
MAML [FAL17], ProtoNets [SSZ17] and RelationNets [SYZ+

18]. Its update works for all
neuron parameters, W and b. (b) Our neuron-level Scaling and Shifting (SS) operations in
MTL. They reduce the number of learning parameters and avoid overfitting problems. In ad-
dition, they keep large-scale trained parameters (in yellow) frozen, preventing “catastrophic
forgetting” [LR17, MC89].

Next, we describe how we apply ΦS{1,2} to the frozen neurons as shown in Figure 7.2(b).
Given the trained Θ, for its l-th layer containing K neurons, we have K pairs of parameters,
respectively as weight and bias, denoted as {(Wi,k, bi,k)}. Note that the neuron location
l, k will be omitted for readability. Based on MTL, we learn K pairs of scalars {ΦS{1,2}}.
Assuming X is the input, we apply {ΦS{1,2}} to (W, b) as,

SS(X; W, b; ΦS{1,2}) = (W ⊙ΦS1)X + (b + ΦS2), (7.4)

where ⊙ denotes the element-wise multiplication.
Taking Figure 7.2(b) as an example of a single 3× 3 filter, after SS operations, this filter is

scaled by ΦS1 then the feature maps after convolutions are shifted by ΦS2 in addition to the
original bias b. Detailed steps of SS are given in Algorithm 4 in Section 7.3.5.

Figure 7.2(a) shows a typical parameter-level FT operation, which is in the meta optimiza-
tion phase of our related work MAML [FAL17]. It is obvious that FT updates the complete
values of W and b, and has a large number of parameters, and our SS reduces this number to
below 2

9 in the example of the figure. In summary, SS can benefit the few-shot learning model
in three aspects. 1) It starts from a strong initialization based on a large-scale trained DNN,

92 chapter 7. learning to transfer knowledge

Figure 7.3: The computation flow of online hard task sampling. During an HT meta-batch
phase, the meta-training first goes through K random tasks then continues on re-sampled K′

hard tasks.

yielding fast convergence for MTL. 2) It does not change DNN weights, thereby avoiding
the problem of “catastrophic forgetting” [LR17, MC89] when learning specific episodes in
MTL. 3) It is light-weight, reducing the chance of overfitting of MTL in few-shot scenarios.
In experiments, we compare SS with FT based on multiple baseline methods, and show the
clear superiority of SS against the problem of “forgetting”.

7.3.3 Hard task (HT) meta-batch

In this section, we introduce a method to schedule hard tasks in meta-training batches. The
conventional meta-batch is composed of randomly sampled episodes, where the randomness
implies random difficulties [FAL17]. In our meta-training pipeline, we intentionally pick up
failure cases in each episode and re-compose their data to be harder episodes for adverse
re-training. The task flow is shown in Figure 7.3. We aim to force our meta-learner to “grow
up through hardness”.
Pipeline. Given a (M-class, N-shot) episode T , a meta-batch {T1∼k} contains two splits,
T (tr) and T (te), for base-learning and test, respectively. The base-learner is optimized by the
loss of T (tr) (in multiple epochs). SS parameters are then optimized by the loss of T (te) once.
During the loss computation on T (te), we can also get the recognition accuracy for M classes.
Then, we choose the lowest accuracy Accm∗ to determine the most difficult class m∗ (also
called failure class) in the current episode.

After obtaining all failure classes {m∗} from {T1∼k} in the current meta-batch (k is the
batch size), we re-sample episodes from the data indexed by {m∗}. Specifically, we assume
p(T |{m∗}) is the task distribution, we sample a “harder” episode T hard ∈ p(T |{m∗}). Two
important details are given below.
Choosing hard class m∗. We choose the failure class m∗ from each episode by ranking the
class-level accuracies instead of fixing a threshold. In a dynamic online setting as ours, it is
more sensible to choose the hardest cases based on ranking rather than fixing a threshold
ahead of time.
Two methods of hard tasking using {m∗}. Chosen {m∗}, we can re-sample episodes T hard

by (1) directly using the samples of m∗-th class in the current episode T , or (2) indirectly
using the index m∗ to sample new samples of that class. In fact, setting (2) considers to
include more data variance of m∗-th class and it works better than setting (1) in general.

7.3 methodology 93

Algorithm 4: MTL with HT meta-batch strategy
Input: Task distribution p(T) and corresponding dataset D, learning rates α, β and γ
Output: Feature extractor Θ, base learner θ, Scaling and Shifting parameters ΦS{1,2}

1 Randomly initialize Θ and θ;
2 for samples in D do
3 Evaluate LD([Θ; θ]) ;
4 Optimize Θ and θ;
5 end
6 Initialize ΦS1 by ones, initialize ΦS2 by zeros; Reset θ for few-shot episodes;

Randomly initialize θ; Initialize {m∗} as an empty set.
7 for iterations in meta-training do
8 Randomly sample a batch of episodes {T1∼K} ∈ p(T);
9 for k from 1 to K do
10 for samples in T (tr)

k do
11 Evaluate LT (tr)

k
;

12 Optimize θ′ by Eq. (7.1);
13 end
14 Optimize ΦS{1,2} and θ by Eq. (7.5) and Eq. (7.6);
15 for m ∈ {1 ∼ M} do
16 Classify samples of m-th class in T (te)

k ;
17 Compute Accm;
18 end
19 Get the returned m∗-th class, then add it to set {m∗};
20 end
21 Sample hard tasks {T hard} ⊆ p(T |{m∗});
22 for k from 1 to K′ do
23 Sample episode T hard

k ∈ {T hard} ;

24 for samples in T hard,(tr)
k do

25 Evaluate LT hard,(tr)
k

;

26 Optimize θ′ by Eq. (7.1);
27 end
28 Optimize ΦS{1,2} and θ by Eq. (7.5) and Eq. (7.6);
29 end
30 Empty {m∗}.
31 end

94 chapter 7. learning to transfer knowledge

7.3.4 Meta-gradient regularization

In order to further reduce the “catastrophic forgetting” problem, we deploy an easy and
efficient meta-gradient regularization method for each training episode. Particularly, we
apply this regularization to updating ΦS{1,2} and θ. Let q denote the index of the current
episode. Let ∇LT (te)

r
be the gradient of the r-th episode. Eq. (7.2) and Eq. (7.3) can be

rewritten as,

ΦSi =:ΦSi − γ∇ΦSi
LT (te)

q

(
[Θ; θ′], ΦS{1,2}

)
− γψ1

q−1

∑
r=q−p

∇ΦSi
LT (te)

r

(
[Θ; θ′], ΦS{1,2}

)
, i = 1, 2;

(7.5)

θ =:θ − γ∇θLT (te)
q

(
[Θ; θ′], ΦS{1,2}

)
− γψ2

q−1

∑
r=q−p

∇θLT (te)
r

(
[Θ; θ′], ΦS{1,2}

)
,

(7.6)

where ψ1 and ψ2 are two temperature scalars to balance the weights of the meta-gradients
from current and previous episodes.

7.3.5 The overall algorithm

We elaborate on the training process using our approach in Algorithm 1. There are two main
training stages: large-scale DNN training (lines 1-5) and meta-transfer learning (lines 6-31).
In particular, the proposed HT meta-batch sampling (with the subsequent training) is given
on lines 21-30. Note that the indices of failure classes are returned on line 19.

7.3.6 Plug MTL into baseline methods

Conventional supervised few-shot learning methods include metric learning based (e.g.,
ProtoNets [SSZ17], MatchingNets [VBL+

16], and RelationNets [SYZ+
18]) and optimization

based (e.g., MAML [FAL17]). For semi-supervised few-shot learning, there are Masked Soft
k-Means [RTR+

18], TPN [LLP+
19], and LST [LSL+

19]. The neural network architecture in
these methods is often composed of two modules, i.e., convolutional-layer feature extractor Θ
and fully-connected-layer classifier θ. Our MTL operations SS are conducted on convolutional
neurons, so they are generic and easy to plug in Θ.

First, we pre-train Θ on a many-shot classification task using the whole set of D. Then,
we plug-in Scaling and Shifting weights ΦSS on each neuron of Θ and update them with meta
loss. Given an episode T , we feed training images x(tr) and test images x(te) to the feature
extractor Θ⊙ΦSS, and obtain the embedding e(tr) and e(te), respectively. We apply different
classifier architectures [SSZ17, VBL+

16, SYZ+
18, FAL17, RTR+

18, LLP+
19, LSL+

19] to train
classifiers with e(tr) and y(tr), and then test with e(te) resulting in the predictions ŷ(te). We
then compute the test loss using ŷ(te) and y(te). Using this loss, we proceed meta-gradient
back-propagation to update ΦSS as well as the original meta-learner proposed in the baseline
methods, e.g. the initialization network of base-learner θ in MAML [FAL17]. In experiments,
we report all our plug-in results compared to those of using FT operations (see Table 7.4 and
Table 7.5).

7.4 experiments 95

7.4 experiments

We evaluate the proposed approach in terms of few-shot recognition accuracy and model
convergence speed. Below we describe the datasets we evaluate on and detailed settings,
followed by the comparisons to state-of-the-art methods, validations on several baseline
methods with SS plugin, and an ablation study regarding the key components of our
approach, i.e., SS operations, HT meta-batch, and meta-gradient regularization. In the end,
we demonstrate the statistical numbers and Gaussian fitting curves for the meta-learned SS
parameters.

7.4.1 Datasets

We conduct few-shot learning experiments on three benchmarks, miniImageNet [VBL+
16],

tieredImageNet [RTR+
18] and Fewshot-CIFAR100 (FC100) [ORL18]. miniImageNet is the

most widely used in related works [FAL17, RL17, GFL+
18, FFS+18, MYMT18], and the later

ones are more recently published with a larger scale and a more challenging setting, i.e.,
lower image resolution and stricter training-test splits.

miniImageNet [VBL+16]. It was proposed especially for the few-shot learning evalua-
tion [VBL+

16]. Its complexity is high due to the use of ImageNet images, but it requires
fewer resources and infrastructure than running on the full ImageNet dataset [RDS+15]. In to-
tal, there are 100 classes with 600 samples of 84× 84 color images per class. These 100 classes
are divided into 64, 16, and 20 classes respectively for sampling episodes for meta-train, meta-
validation and meta-test, following related works [FAL17, RL17, GFL+

18, FFS+18, MYMT18].

tieredImageNet [RTR+18]. Compared to miniImageNet, it is a larger subset of ImageNet
with 608 classes (779, 165 images) grouped into 34 super-class nodes. These nodes are
partitioned into 20, 6, and 8 disjoint sets respectively for meta- training, validation, and test.
The corresponding sub-classes are used to build the classification tasks in each of which
the 5 sub-classes are randomly sampled. As argued in [RTR+

18], this super-class based
training-test split results in a more challenging and realistic regime with meta- test and
validation episodes that are less similar to meta-train episodes.

Fewshot-CIFAR100 (FC100) [ORL18]. This dataset is based on the popular object classifica-
tion dataset CIFAR100 [Kri09]. Its training-test splits are also based on super-classes [ORL18].
In total, it contains 100 object classes (600 images per class) belonging to 20 super-classes.
meta-train data are from 60 classes belonging to 12 super-classes. Meta-validation and
meta-test sets contain 20 classes belonging to 4 super-classes, respectively. Compared to
the ImageNet subsets above, FC100 offers a more challenging scenario with lower image
resolution, i.e. each sample is a 32× 32 color image. In addition, the super-class gap on
FC100 is more significant than that on ImageNet datasets.

Semi-supervised splits. On miniImageNet and tieredImageNet, we follow the semi-supervised
task splitting method used in previous works [LSL+

19, RTR+
18, LLP+

19]. In addition to the
supervised data (same as above), we use 30 (50) unlabeled images per class for every 1-shot
(5-shot) episode. In a more difficult setting, we use unlabeled data from 3 distracting classes
(same number of samples with non-distracting classes) that are excluded in the support
set [LLP+

19, RTR+
18]

96 chapter 7. learning to transfer knowledge

7.4.2 Implementation details

Episode sampling. We use the same episode sampling method as related works [FAL17],
on all datasets. Specifically, (1) we consider the 5-class classification, (2) during meta-train,
we sample 5-class, 1-shot (or 5-shot) episodes to contain 1 (or 5) samples for train episode
and 15 (uniform) samples for episode test, and (3) during meta-validation and meta-test,
we sample 5-class, 1-shot (or 5-shot) episodes to contain 1 (or 5) samples for train episode
and 1 (uniform) sample for episode test. Note that in some related works, e.g., [ORL18], 32
samples are used for episode test on 5-shot episodes. Using such a larger number of test
samples results in a lower standard variance of recognition accuracies.

In total, we sample at most 20k episodes (10k meta-batches) for meta-train (same for the
cases w/ and w/o HT meta-batch), and sample 600 random episodes for both meta-validation
and meta-test [FAL17]. Note that we choose the trained models which have the highest
meta-validation accuracies, for meta-test.
Network architectures. We present the details of network architectures for Feature Extractor
parameters Θ, MTL meta-learner with Scaling and Shifting (SS) parameters ΦS1 , ΦS2 , and
MTL base-learner (classifier) parameters θ. For Θ, in our conference version [SLCS19], we
used ResNet-12 and 4CONV which are also commonly used in previous works [FAL17,
VBL+

16, RL17, MYMT18, MRCA18, ORL18, LMRS19]. In this journal version, we implement
two deeper architectures – ResNet-18, ResNet-25 and WRN-28-10 which have been adopted
in newly published related works [LED+

19, QLSY18, YHZS18, HMX+
20], and we achieve

the top performance using ResNet-25 and WRN-28-10. In specific, 4CONV consists of 4
layers with 3× 3 convolutions and 32 filters, followed by batch normalization (BN) [IS15], a
ReLU nonlinearity, and 2× 2 max-pooling. MTL only works with the following deep nets.
ResNet-12 contains 4 residual blocks and each block has 3 CONV layers with 3× 3 kernels.
At the end of each residual block, a 2× 2 max-pooling layer is applied. The number of filters
starts from 64 and is doubled every next block. Following 4 blocks, there is a mean-pooling
layer to compress the output feature maps to a feature embedding. ResNet-18 contains 4
residual blocks and each block has 4 CONV layers with 3× 3 kernels. The number of filters
starts from 64 and is doubled every next block. Before the residual blocks, there is one
additional CONV layer with 64 filter and 3× 3 kernels at the beginning of the network. The
residual blocks are followed by an average pooling layer. The ResNet-18 backbone we use
exactly follows [HZRS16] except that the last FC layer is removed. ResNet-25 is exactly the
same as the released code of [QLSY18, YHZS20]. Three residual blocks are used after an
initial convolutional layer. Each block has 4 CONV layers with 3× 3 kernels. The number
of filters starts from 160 and is doubled every next block. After a global average pooling
layer, it leads to a 640-dim embedding. WRN-28-10 has its depth and width set to 28 and
10, respectively. After a global average pooling in the last layer of the backbone, it gets a
640-dimensional embedding. For this backbone, we resize the input image to 80× 80× 3
for a fair comparison with related methods [SLCS19, HMX+

20]. Other details are the same
as those of ResNet-25 [YHZS20, RRS+19]. Note that we employ this architecture using the
code of SIB [HMX+

20] and implement only our SS operations to it.
For the architecture of ΦS1 and ΦS2 , actually, they are generated according to the archi-

tecture of Θ, as introduced in Section 7.3.2. For example, when using ResNet-25 in MTL, ΦS1

and ΦS2 also have 25 layers, respectively.
For the architecture of θ (the parameters of the base-learner), we empirically find that

in our cases a single FC layer (as θ) is faster to train and more effective for classification

7.4 experiments 97

Base-learning Dim. of θ
miniImageNet

1-shot 5-shot

θ (2 FC layers) 512, 5 59.1 ± 1.9 70.7 ± 0.9

θ (3 FC layers) 1024, 512, 5 56.2 ± 1.8 68.7 ± 0.9

Θ, θ 5 59.6 ± 1.8 71.6 ± 0.9

θ (Ours) 5 60.6 ± 1.9 74.3 ± 0.8

Table 7.1: The 5-way, 1-shot and 5-shot classification accuracy (%) on miniImageNet, for
choosing the best architecture of base-learner (i.e., the classifier θ). “meta-batch” and “ResNet-
12 (pre)” are used.

than multiple layers, taking the most popular dataset miniImageNet as an example. Results
are given in Table 7.1, in which we can see the performance drop when changing this θ to
multiple layers.
Pre-training stage. For the phase of DNN training on large-scale data, the model is trained
by Adam optimizer [KB14]. The learning rate is initialized as 0.001, and decays to its
half every 5k iterations until it is lower than 0.0001. We set the keep probability of the
dropout as 0.9 and batch-size as 64. The pre-training stops after 10k iterations. Note that for
hyperparameter selection, we randomly choose 550 samples for each class as the training
set, and the rest as validation. After the grid search for hyperparameters, we fix them and
mix up all samples (64 classes, 600 samples each class) to do the final pre-training. Image
samples in these steps are augmented by horizontal flipping.
Meta-train stage. This is a task-level training in which the base-learning in one task considers
a training step for optimizing base-learner, followed by a validation step for optimizing
meta-learner. The base-learner θ is optimized by batch gradient descent with the learning
rate of 0.01. It is updated with 20 and 60 epochs respectively for 1-shot and 5-shot episodes
on the miniImageNet and tieredImageNet datasets, and 20 epochs for all episodes on the
FC100 dataset. Specially when using ResNet-25, we use 100 epochs for all episodes on all
datasets. The meta-learner, i.e. the parameters of the SS operations, is optimized by Adam
optimizer [KB14]. Its learning rate is initialized as 0.001, and decays to the half every 1k
iterations until 0.0001. The size of meta-batch is set to 2 (episodes) due to the memory limit.
For meta-gradient regularization, each time we deploy 8 previous episodes to compute meta
gradients, and set temperature scalars ψ1 and ψ2 both as 1.0.
HT meta-batch. Hard tasks are sampled every time after running 10 meta-batches, i.e., the
failure classes used for sampling hard tasks are from 20 episodes as each meta-batch contains
2 episodes. The number of hard tasks is selected for different settings by validation: 10
and 4 hard tasks respectively for the 1-shot and 5-shot experiments, on the miniImageNet
and tieredImageNet datasets; and respectively 20 and 10 hard tasks for the 1-shot, 5-shot
experiments, on the FC100 dataset.
Ablative settings. In order to show the effectiveness of our SS operations, we carefully design
several ablative settings: two baselines without meta-learning but more classic learning,
named as update*, four baselines of Fine-Tuning (FT) on different numbers of parameters
in the outer-loop based on MAML [FAL17], named as FT*, and two SS variants on smaller
numbers of parameters, named as SS*. Table 3.2 shows the results in these settings, for which
we simply use the classical architecture (ResNet-12) containing 4 residual blocks named

98 chapter 7. learning to transfer knowledge

Θ1 ∼ Θ4 and an FC layer θ (classifier). The bullet names used in the Table are explained as
follows.
update [Θ; θ] (or θ). There is no meta-train phase. During test phase, each episode has its
whole model [Θ; θ] (or the classifier θ) updated on T (tr), and then tested on T (te).
FT θ ([Θ4; θ] or [Θ3; Θ4; θ] or [Θ; θ]). These are straight-forward ways to reduce the quantity
of meta-learned parameters. For example, “[Θ3; Θ4; θ]” does not update the the first two
residual blocks which encode the low-level image features. Specially, “θ” means only the
classifier parameters are updated during meta-train.
SS [Θ4; θ] (or [Θ3; Θ4; θ] or [Θ; θ]). During the meta-train, SS parameters are defined and
used on Θ4. Low-level residual blocks, e.g. Θ1, deploy the pre-trained weights without
meta-level update.
SS [Θ; θ], regularized. Our method of meta-transfer learning on the whole backbone and
with meta-gradient regularization.

7.4.3 Comparison to the state-of-the-art

Table 7.2 and Table 7.3 present the overall comparisons to related works, on the miniImageNet,
tieredImageNet, and FC100 datasets. Note that these numbers are the meta-test results
of the meta-trained models which have the highest meta-validation accuracies. On the
miniImageNet, models on 1-shot and 5-shot are meta-trained for 6k and 10k iterations,
respectively. On the tieredImageNet, iterations for 1-shot and 5-shot are at 8k and 10k,
respectively. On the FC100, iterations are all at 3k.
miniImageNet. In Table 7.2, we can see that “SIB + SS [Θ; θ]” and “SS [Θ; θ], HT meta-batch”
achieve top performances for 1-shot and 5-shot tasks, respectively. Regarding the network
architecture, we can see that models using deeper ones, e.g. ResNet-25 and WRN-28-10,
outperform 4CONV-based models by quite large margins, e.g. 4CONV models have the
best 1-shot result with 55.51% [LLP+

19] which is 9.4% lower than 64.9% (our method on
ResNet-25). This clearly validates our contribution of utilizing deeper neural networks to
tackle the few-shot classification problems.
tieredImageNet. In Table 7.3, we give the results on the larger dataset — tieredImageNet.
Since this dataset is newly proposed [RTR+

18], its results of using previous methods [SSZ17,
SYZ+

18, FAL17] were reported by [RTR+
18, LLP+

19]. From the table, we again confirm
that “SIB + SS [Θ; θ]” outperforms others, e.g. it achieves around a margin of 2.6% over the
original SIB [HMX+

20] on 1-shot tasks. An interesting observation is that on this larger and
more challenging dataset, our deeper version of MTL (ResNet-25) outperforms the shallower
one (ResNet-12) by 7% on 1-shot, which is twice the margin on miniImageNet (3.5%). This
shows our idea of transferring knowledge from pre-trained DNNs is more promising for
handling harder few-shot settings.
FC100. In Table 7.3, we also show the results on the FC100. We report the numbers of
TADAM [ORL18] and MetaOptNet [LMRS19] given in original papers, and obtain the
results of classical methods, i.e. MAML [FAL17], MAML++ [AES19], RelationNets [SYZ+

18]
and MatchineNets [VBL+

16], by implementing their open-sourced code on the deeper pre-
trained networks. From the table, we can see that our approach consistently outperforms
MAML and its improved version MAML++ by large margins, e.g. over 7% for 1-shot tasks.
Besides, it surpasses TADAM and MetaOptNet by 6% and 5%, respectively. Implementing
SS operations on SIB brings around 1% gains over the original both for 1-shot and 5-shot.

7.4 experiments 99

Few-shot Learning Method Backbone
miniImageNet (test)

1-shot 5-shot

Data augmentation Adv. ResNet, [MD17] WRN-40 (pre) 55.2 69.6
Delta-encoder, [SKS+18] VGG-16 (pre) 58.7 73.6

Metric learning

MatchingNets, [VBL+
16] 4 CONV 43.44 ± 0.77 55.31 ± 0.73

ProtoNets, [SSZ17] 4 CONV 49.42 ± 0.78 68.20 ± 0.66

RelationNets, [SYZ+
18] 4 CONV 50.44 ± 0.82 65.32 ± 0.70

Graph neural network, [SE18] 4 CONV 50.33 ± 0.36 66.41 ± 0.63

Ridge regression, [BHTV19] 4 CONV 51.9 ± 0.2 68.7± 0.2

TransductiveProp, [LLP+
19] 4 CONV 55.51 69.86

Memory network

Meta Networks, [MY17] 5 CONV 49.21 ± 0.96 –
SNAIL, [MRCA18] ResNet-12 (pre)⋄ 55.71 ± 0.99 68.88 ± 0.92

TADAM, [ORL18] ResNet-12 (pre)†
58.5 ± 0.3 76.7 ± 0.3

Cross-Modulation Nets, [PDH18] 4 CONV 50.94 ± 0.61 66.65 ± 0.67

Isotropic Gaussian, [BRCŚ+17] ResNet-34 (pre) 56.3 ± 0.4 73.9 ± 0.3

Gradient descent

MAML, [FAL17] 4 CONV 48.70 ± 1.75 63.11 ± 0.92

MAML++, [AES19] 4 CONV 52.15 ± 0.26 68.32 ± 0.44

Meta-LSTM, [RL17] 4 CONV 43.56 ± 0.84 60.60 ± 0.71

Hierarchical Bayes, [GFL+
18] 4 CONV 49.40 ± 1.83 –

MT-net, [LC18] 4 CONV 51.70 ± 1.84 –
Bilevel Programming, [FFS+18] ResNet-12

⋄
50.54 ± 0.85 64.53 ± 0.68

MetaGAN, [ZCG+
18] ResNet-12 52.71 ± 0.64 68.63 ± 0.67

adaResNet, [MYMT18] ResNet-12
‡

56.88 ± 0.62 71.94 ± 0.57

MetaOptNet, [LMRS19] ResNet-12 62.64 ± 0.35 78.63 ± 0.68

LEO, [RRS+19] WRN-28-10 (pre) 61.67 ± 0.08 77.59 ± 0.12

LGM-Net, [LDM+
19] MetaNet+4CONV 69.13 ± 0.35 71.18 ± 0.68

CTM, [LED+
19] ResNet-18 (pre) 64.12 ± 0.82 80.51 ± 0.13

SIB, [HMX+
20] WRN-28-10 (pre) 70.0 ± 0.6 79.2 ± 0.4

Ours

FT [Θ; θ], HT meta-batch ResNet-12 (pre) 58.7 ± 1.8 73.2 ± 0.8

SS [Θ; θ], HT meta-batch ResNet-12 (pre) 61.4 ± 1.8 75.9 ± 0.8

SS [Θ; θ], HT meta-batch ResNet-18 (pre) 62.0 ± 1.9 76.0 ± 0.8

SS [Θ; θ], HT meta-batch ResNet-25 (pre) 64.9 ± 1.8 81.2 ± 0.8

SIB + SS [Θ; θ] WRN-28-10 (pre) 71.0 ± 0.7 81.0 ± 0.4

⋄Additional 2 convolutional layers
‡Additional 1 convolutional layer
†Additional 72 fully connected layers

Table 7.2: The 5-way, 1-shot and 5-shot classification accuracy (%) on miniImageNet datasets.
“pre” means including our pre-training step with all training data points. The best and
second best results are highlighted. Note that (1) the standard variance is affected by the
number of episode test samples, and our sample splits are the same with MAML [FAL17];
and (2) our methods with SS [Θ; θ] all use meta-gradient regularization.

100 chapter 7. learning to transfer knowledge

Few-shot Learning Method Backbone
tieredImageNet (test) FC100 (test)

1-shot 5-shot 1-shot 5-shot

ProtoNets, [SSZ17] (by [RTR+
18]) 4 CONV 53.31 ± 0.89 72.69 ± 0.74 – –

ProtoNets, [SSZ17] (by us) ResNet-25 65.30 ± 1.70 83.00 ± 0.70 41.1 ± 1.8 58.6 ± 0.8

RelationNets, [SYZ+
18] (by [LLP+

19]) 4 CONV 54.48 ± 0.93 71.32 ± 0.78 – –
TransductiveProp, [LLP+

19] 4 CONV 57.41 ± 0.94 71.55 ± 0.74 – –
MAML, [FAL17] (by us) 4CONV 49.0 ± 1.8 66.5 ± 0.9 38.1 ± 1.7 50.4 ± 1.0

MAML++, [AES19] (by us) 4CONV 51.5 ± 0.5 70.6 ± 0.5 38.7 ± 0.4 52.9 ± 0.4

TADAM, [ORL18] ResNet-12 (pre)†
62.13 ± 0.31 81.92 ± 0.30 40.1 ± 0.4 56.1 ± 0.4

MetaOptNet [LMRS19] ResNet-12 65.99 ± 0.72 81.56 ± 0.53 41.1 ± 0.6 55.5 ± 0.6

CTM, [LED+
19] ResNet-18 (pre) 68.41 ± 0.39 84.28 ± 1.73 – –

LEO, [RRS+19] WRN-28-10 (pre) 66.33 ± 0.05 81.44 ± 0.09 – –
SIB, [HMX+

20] (by us) WRN-28-10 (pre) 72.9 ± 0.6 82.8 ± 0.4 45.2 ± 0.6 55.9 ± 0.4

FT [Θ; θ], HT meta-batch ResNet-12 (pre) 64.7 ± 1.7 78.5 ± 0.8 42.0 ± 1.8 55.2 ± 0.8

SS [Θ; θ], HT meta-batch ResNet-12 (pre) 65.3 ± 1.8 81.2 ± 0.8 45.3 ± 1.8 57.5 ± 0.8

SS [Θ; θ], HT meta-batch ResNet-18 (pre) 68.1 ± 1.8 82.3 ± 0.8 45.5 ± 1.8 57.9 ± 0.8

SS [Θ; θ], HT meta-batch ResNet-25 (pre) 72.3 ± 1.8 85.6 ± 0.8 46.1 ± 1.8 61.4 ± 0.8

SIB + SS [Θ; θ] WRN-28-10 (pre) 75.5 ± 0.7 84.3 ± 0.4 45.9 ± 0.7 56.7 ± 0.4

†Additional 72 fully connected layers.

Table 7.3: The 5-way, 1-shot and 5-shot classification accuracy (%) on tieredImageNet and
FC100 datasets. “pre” means including our pre-training step with all training datapoints.
“by [*]” means the results were reported in [*]. “by us” means our implementation using
open-sourced code. The best and second best results are highlighted. Note that (1) the
standard variance is affected by the number of episode test samples, and our sample splits
are the same with MAML [FAL17]; and (2) our methods with SS [Θ; θ] all use meta-gradient
regularization.

7.4 experiments 101

Method Operation
miniImageNet miniImageNet tieredImageNet(tieredPre)

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNets [SSZ17] SS 56.7 ± 1.9 72.0 ± 0.9 62.0 ± 1.9 77.9 ± 1.0 62.2 ± 2.1 78.1 ± 0.9

FT 55.2 ± 1.9 70.8 ± 0.9 57.2 ± 1.9 75.9 ± 0.9 54.9 ± 2.0 73.0 ± 1.0

MatchingNets [VBL+
16] SS 58.1 ± 1.8 66.9 ± 0.9 63.6 ± 1.7 73.2 ± 0.9 64.5 ± 1.9 73.9 ± 0.9

FT 57.4 ± 1.7 67.5 ± 0.8 61.1 ± 1.8 72.6 ± 0.8 62.4 ± 1.8 73.5 ± 0.8

RelationNets [SYZ+
18] SS 57.2 ± 1.8 71.1 ± 0.9 61.5 ± 1.8 74.9 ± 0.9 65.6 ± 1.9 77.5 ± 0.9

FT 56.0 ± 1.8 69.0 ± 0.8 58.9 ± 1.8 72.0 ± 0.8 62.2 ± 1.8 76.0 ± 0.9

MTL (FC) SS 60.6 ± 1.9 74.3 ± 0.8 65.7 ± 1.8 78.4 ± 0.8 65.6 ± 1.7 78.7 ± 0.9

MAML [FAL17] (FC) FT 58.3 ± 1.9 71.6 ± 0.9 61.6 ± 1.9 73.5 ± 0.8 62.0 ± 1.8 70.6 ± 0.9

MTL (Cosine) SS 58.2 ± 1.8 74.6 ± 0.8 66.1 ± 1.8 79.7 ± 0.9 67.1 ± 1.8 80.0 ± 0.8

MAML [FAL17] (Cosine) FT 59.8 ± 1.8 72.8 ± 0.9 59.9 ± 1.9 76.5 ± 0.7 65.1 ± 1.9 78.2 ± 0.8

Table 7.4: The 5-way, 1-shot and 5-shot classification accuracy (%) on miniImageNet and
tieredImageNet datasets. “meta-batch” and “ResNet-12 (pre)” are used. “(tieredPre)” means
the pre-training stage is finished on the tieredImageNet. We implement the public code of
related methods [FAL17, SSZ17, VBL+

16, SYZ+
18, CLK+

19] in our framework by which
we are able to conduct different meta operations, i.e. FT [Θ; θ] and SS [Θ; θ]. The best and
second best results are highlighted in each block. Note that (1) cosine classifiers have been
used in MatchingNets [SSZ17] and Baseline++ [CLK+

19] for few-shot classification; and (2)
MAML in this table is not exactly the same with original MAML [FAL17], as it works on
deep neural networks and does not update convolutional layers during base-training.

102 chapter 7. learning to transfer knowledge

Method
miniImageNet tieredImageNet miniImageNet tieredImageNet

w/D w/D
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Masked Soft k-Means [RTR+
18] 50.7 ± 0.3 64.4 ± 0.2 52.4 ± 0.4 69.9 ± 0.2 49.0 ± 0.3 63.0 ± 0.1 51.4 ± 0.4 69.1 ± 0.3

Masked Soft k-Means w/ MTL 58.6 ± 1.8 72.2 ± 0.8 65.1 ± 0.8 80.1 ± 0.8 57.2 ± 1.8 71.0 ± 0.8 63.5 ± 1.8 80.2 ± 0.8

TPN [LLP+
19] 52.8 ± 0.3 66.4 ± 0.2 55.7 ± 0.3 71.0 ± 0.2 50.4 ± 0.8 64.9 ± 0.7 53.5 ± 0.9 69.9 ± 0.8

TPN w/ MTL 59.6 ± 1.8 72.3 ± 0.8 68.3 ± 1.9 80.4 ± 0.8 59.1 ± 1.8 71.0 ± 0.8 67.7 ± 1.9 80.3 ± 0.8

LST [LSL+
19] w/o MTL 64.7 ± 1.9 74.8 ± 0.8 73.3 ± 1.6 82.9 ± 0.8 59.8 ± 1.9 74.8 ± 0.8 70.2 ± 1.6 81.9 ± 0.8

LST w/ MTL 70.1 ± 1.9 78.7 ± 0.8 77.7 ± 1.6 85.2 ± 0.8 64.1 ± 1.9 77.4 ± 0.8 73.5 ± 1.6 83.4 ± 0.8

Table 7.5: Semi-supervised 5-way, 1-shot and 5-shot classification accuracy (%) on mini and
tiered. “meta-batch” and “ResNet-12 (pre)” are used. “w/D” means additionally including
the unlabeled data from 3 distracting classes (5 unlabeled samples per class) that are excluded
in the “5-way” classes of the task [LLP+

19, RTR+
18, LSL+

19].

7.4.4 Plug-in evaluation

The Scaling and Shifting (SS) operations in our proposed MTL approach work on pre-trained
convolutional neurons thus are easy to be applied to other CNN-based few-shot learning
models. Detailed plug-in steps are given in Section 7.3.6.

Table 7.4 shows the results of implementing SS operations on supervised models, i.e.
ProtoNets [SSZ17], MatchingNets [VBL+

16], RelationNets [SYZ+
18], MAML [FAL17] (with

a single FC layer as the base-learner [SLCS19]), and MAML [FAL17] (with a cosine distance
classifier as the base-learner [VBL+

16, CLK+
19]). In their original methods, FT is the meta-

level operation and 4CONV is the uniform architecture. For an easy and fair comparison,
we also implement the results of using FT on deeper networks (e.g. ResNet-12). Note
that more results of using ResNet-18 are provided in the Appendix. Regarding the table,
we have three columns. “miniImageNet (tiered Pre)” denotes that the model is pre-trained
on tieredImageNet and its weights are then meta-transferred to the learning of few-shot
models on miniImageNet episodes. We can see that in all settings, (1) the best performance is
achieved by our proposed MTL, e.g., MTL (FC) outperforms MAML (FC) by 3.6% and 8.1%
on tieredImageNet 1-shot and 5-shot, respectively; and (2) classical methods using SS get
consistent improvements over the original version of using FT, e.g., RelationNets [SYZ+

18]
gains 3.4% and 1.5% on tieredImageNet 1-shot and 5-shot, respectively.

In addition, we verify the generalization ability of our MTL to semi-supervised few-shot
learning (SSFSL) methods [LLP+

19, RTR+
18, LSL+

19]. Our results on the miniImageNet
and tieredImageNet datasets are presented in Table 7.5. Note that “w/D” indicates the more
challenging setting of including 3 distracting classes in the unlabeled set (see Section 7.4.1).
From Table 7.5, we can see that three models “w/ MTL” obtain consistent improvements
(over their originals) by quite large margins, e.g. the highest as 14.2% on tieredImageNet
1-shot w/D.

7.4 experiments 103

Settings
miniImageNet miniImageNet FC100 FC100

(tieredPre) (tieredPre)

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

update [Θ; θ] 45.3 ± 1.9 64.6 ± 0.9 54.4 ± 1.8 73.7 ± 0.8 38.4 ± 1.8 52.6 ± 0.9 37.6 ± 1.9 52.7 ± 0.9

update θ 50.0 ± 1.8 66.7 ± 0.9 51.3 ± 1.8 70.3 ± 0.8 39.3 ± 1.9 51.8 ± 0.9 38.3 ± 1.8 52.9 ± 1.0

FT θ 55.9 ± 1.9 71.4 ± 0.9 61.6 ± 1.8 73.5 ± 0.9 41.6 ± 1.9 54.9 ± 1.0 40.4 ± 1.9 54.7 ± 0.9

FT [Θ4; θ] 57.2 ± 1.8 71.6 ± 0.8 62.3 ± 1.8 73.9 ± 0.9 40.9 ± 1.8 54.3 ± 1.0 41.2 ± 1.8 53.6 ± 1.0

FT [Θ3, Θ4; θ] 58.1 ± 1.8 70.9 ± 0.8 63.0 ± 1.8 74.8 ± 0.9 41.5 ± 1.8 53.7 ± 0.9 40.7 ± 1.9 53.8 ± 0.9

FT [Θ; θ] 58.3 ± 1.8 71.6 ± 0.8 63.2 ± 1.9 75.7 ± 0.8 41.6 ± 1.9 54.4 ± 1.0 41.1 ± 1.9 54.5 ± 0.9

SS [Θ4; θ] 59.2 ± 1.8 73.1 ± 0.9 64.0 ± 1.8 76.9 ± 0.8 42.4 ± 1.9 55.1 ± 1.0 42.7 ± 1.9 55.9 ± 1.0

SS [Θ3, Θ4; θ] 59.4 ± 1.8 73.4 ± 0.8 64.5 ± 1.8 77.2 ± 0.8 42.5 ± 1.9 54.5 ± 1.0 43.4 ± 1.8 56.4 ± 1.0

SS [Θ; θ] 60.6 ± 1.8 74.3 ± 0.8 65.7 ± 1.8 78.4 ± 0.9 43.6 ± 1.9 55.4 ± 1.0 43.5 ± 1.9 57.1 ± 1.0

SS [Θ; θ], regularized 61.0 ± 1.8 74.5 ± 0.8 66.2 ± 1.8 79.1 ± 0.8 43.5 ± 1.7 55.3 ± 0.8 43.5 ± 1.9 57.2 ± 0.8

Table 7.6: The 5-way, 1-shot and 5-shot classification accuracy (%) using ablative models,
on two datasets. “meta-batch” and “ResNet-12 (pre)” are used. “(tieredPre)” means the
pre-training stage is finished on the tieredImageNet. The best and second best results are
highlighted.

0 2k 4k 6k 8k

iterations

0.36

0.38

0.40

0.42

ac
cu

ra
cy

 (
%

)

(a) FT, ResNet-12

0 2k 4k 6k 8k

iterations

0.36

0.38

0.40

0.42

(b) SS, ResNet-12

0 2k 4k 6k 8k

iterations

0.36

0.38

0.40

0.42

(c) SS, ResNet-18

0 2k 4k 6k 8k

iterations

0.40

0.41

0.42

0.43

0.44

(d) SS, ResNet-25

Figure 7.4: The 5-way, 1-shot meta-validation accuracy plots on the FC100, using FT (pre-
trained ResNet-12 and MAML [FAL17]) and our MTL on different pre-trained networks.
Red curve uses the original meta-batch [FAL17] and others use our proposed HT meta-batch.

7.4.5 Ablation study

Table 7.6 shows the results of ablation studies on the miniImageNet and FC100. Figure 7.4
demonstrates the performance gap between w/ and w/o HT meta-batch in terms of recognition
accuracy and converging speed on the FC100. Table 7.7 summarizes the accuracies of w/ and
w/o HT meta-batch on ImageNet-based datasets.
MTL vs. No meta-learning. Table 7.6 shows the results of No meta-learning methods on
the top block. Compared to these, our approach achieves significantly better performance,
e.g., the largest margins on miniImageNet are 11.0% for 1-shot and 7.8% for 5-shot. This
validates the effectiveness of meta-learning method for tackling few-shot learning problems.
Between two No meta-learning methods, we can see that updating both feature extractor Θ
and classifier θ is inferior to updating θ only (Θ is pre-trained), e.g., around 5% reduction on
miniImageNet 1-shot. One reason is that in few-shot settings, there are too many parameters
to optimize with few-shot data. This is our motivation to learn only θ during base-learning
(see Table 7.1).

104 chapter 7. learning to transfer knowledge

Setting
miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

FT [Θ; θ] 58.3 ± 1.9 71.6 ± 0.9 61.6 ± 1.9 73.5 ± 0.8

FT [Θ; θ], HT 58.7 ± 1.8 73.2 ± 0.8 64.7 ± 1.7 78.5 ± 0.8

SS [Θ; θ] 60.6 ± 1.9 74.3 ± 0.8 65.6 ± 1.7 78.7 ± 0.9

SS [Θ; θ], HT 61.4 ± 1.8 75.9 ± 0.8 65.3 ± 1.8 81.2 ± 0.8

Table 7.7: Ablation results for the 5-way, 1-shot and 5-shot classification accuracy (%) on
miniImageNet and tieredImageNet datasets. “ResNet-12 (pre)” is used.

SS [Θ; θ] works better than light-weight FT variants. Table 7.6 shows that our approach with
SS [Θ; θ] achieves the best performances for all few-shot settings. SS actually meta-learns a
smaller set of transferring parameters on [Θ; θ] than FT. People may argue that FT is weaker
because it learns a larger set of initialization parameters, whose quantity is equal to the size
of [Θ; θ], causing the model to overfit to few-shot data. In the middle block of Table 7.6, we
show the ablation study of freezing low-level pre-trained layers and meta-learn only the
high-level layers (e.g. Θ4 of ResNet-12) by FT operations. It is obvious that they all yield
inferior performances than using our SS. An additional observation is that our methods SS*
perform consistently better than FT*.
Meta-gradient regularization is effective. On the last two rows of Table 7.6, we validate the
effectiveness of meta-gradient regularization (see Section 7.3.4). From the results, we can
see deploying such cross-task memory regularization (SS [Θ; θ], regularized) achieves better
performance than using SS [Θ; θ] whose meta gradients each time come from an individual
episode. This is because our regularization forces meta-learner to be less forgetting about
previous episodes, and additionally stabilize the meta-gradients of each few-shot episode.
Accuracy gain by HT meta-batch. HT meta-batch is basically a curriculum learning scheme,
and can be generalized to the models with different network architectures. In Table 7.7, we
show the ablation results for HT meta-batch on ImageNet-based datasets. Comparing SS
[Θ; θ], HT (HT meta-batch) with SS [Θ; θ], HT meta-batch improves the results by an average
accuracy of 1.5%. In Figure 7.4, we show the validation curves including the cases of using
FT as well as SS during meta-training on the FC100 dataset. Red curves are the results of
using conventional meta-batch [FAL17]. It is clear that HT meta-batch boosts both FT and
SS based meta-learners.
Speed of convergence of MTL with HT meta-batch. From Figure 7.4 (a)-(d), we can see that
impressively, the models using our proposed HT meta-batch require only 1 ∼ 4k episodes to
converge to a good performance. Note that (1) each iteration contains 2 training episodes,
and (2) MAML [FAL17] without deep pre-trained networks used over 200k episodes to
achieve the best performance on miniImageNet. We attest to this for three reasons. First, our
methods start from the pre-trained deep neural networks. Second, our SS needs to learn
only < 2

9 parameters of the number of FT parameters. Third, our HT meta-batch is a hard
negative mining step and brings accelerations by learning challenging tasks [SGG16].

7.4.6 Statistical data of SS

We evaluate to what extent neuron weights and biases (e.g., on ResNet-12) have drifted after
SS operations. We present the statistics on the learned SS weights in Table 7.8. Each number

7.4 experiments 105

(a) miniImageNet

0.5 1.0 1.5

0.00

0.01

0.02

0.03

0.04

R
el

at
iv

e
Fr

eq
ue

nc
y

The value of scaling

 Relative Frequency
 Gaussian Curve

(b) miniImageNet

-0.10 -0.05 0.00 0.05 0.10
0.00

0.05

0.10

R
el

at
iv

e
Fr

eq
ue

nc
y

The value of shifting

 Relative Frequency
 Gaussian Curve

miniImageNet tieredImageNet FC100

Sc
al

in
g y0 9.58× 10−5 1.95× 10−4 8.01× 10−5

xc 9.94× 10−1 9.98× 10−1 9.93× 10−1

w 2.11× 10−1 1.49× 10−1 2.27× 10−1

A 9.87× 10−3 9.79× 10−3 9.90× 10−3

Sh
ift

in
g y0 1.99× 10−3 1.32× 10−3 1.30× 10−3

xc 7.52× 10−4 7.61× 10−4 6.28× 10−4

w 1.46× 10−2 1.53× 10−2 1.70× 10−2

A 1.65× 10−3 1.73× 10−3 1.71× 10−3

Table 7.8: Statistical values of SS parameters, i.e. to see how much network parameters
drifted after the meta-training using SS. The experiments are conducted with the settings of
ResNet-12, meta-batch, 5-way and 1-shot. Scaling and Shifting parameters are counted with
bin size 0.01 and 0.002, respectively. Relative frequency of each SS value is computed. All
dots match a fit to the Gaussian distribution (y = y0 +

A
w
√

π/2
e−2(x−xc

w)2
). xc and w are the

values of mean and standard deviation, respectively. y0 and A are two parameters of the
distribution to enable the exact fit.

in the table shows how much the weight (or bias) drifts from the original weight (or bias)
pre-trained using large-scale data. Each dot curve in (a) and (b) presents the distribution of
those numbers, matching well with the Gaussian distribution (in red).

We find that Scaling parameters are more scattered than Shifting on three datasets. The
average shift of mean values xc of Scaling is 4.51× 10−3 higher than that of Shifting 7.13× 10−4

(note that initialization for Scaling parameter is 1 and for Shifting is 0). The standard deviation
w shows also higher for Scaling. We think these are due to the fact that convolution neuron
weights (rather than neuron biases) encode the most of image representation knowledge.
We also see the differences among three datasets: the parameter drifting is more obvious
on smaller datasets such as the FC100. In other words, the gap between pre-trained model
and meta-learner is more significant on such dataset. We think this is because the feature
representations learned on small-size data are not as generalizable as those learned on
larger-scale data.

106 chapter 7. learning to transfer knowledge

7.5 conclusion

In this chapter, we show that our novel MTL model trained with HT meta-batch learning
curriculum achieves the top performance for tackling few-shot learning problems. The key
operations of MTL on pre-trained DNN neurons proved to be highly efficient for adapting
the learning experience to the unseen task. The superiority was particularly achieved in
the extreme 1-shot cases on three challenging benchmarks – miniImageNet, tieredImageNet,
and FC100. The generalization ability of our method is validated by implementing MTL
on the classical supervised few-shot models as well as the state-of-the-art semi-supervised
few-shot models. The consistent improvements by MTL prove that large-scale pre-trained
deep networks can offer a good “knowledge base” to conduct efficient few-shot learning on.
In terms of learning scheme, HT meta-batch showed consistently good performance for the
ablative models. On the more challenging FC100 benchmark, it showed to be particularly
helpful for boosting convergence speed. This design is independent of any specific model
or architecture and can be generalized well whenever the hardness of the task is easy to
evaluate in online iterations.

8L E A R N I N G T O
E N S E M B L E D E E P
M O D E L S

Contents
8.1 Introduction . 107
8.2 Related Works . 109
8.3 An Ensemble of Epoch-wise Empirical Bayes Models 110

8.3.1 Denotations . 110

8.3.2 Empirical Bayes method . 111

8.3.3 Learning the ensemble of base-learners 113

8.3.4 Meta-learning the hyperprior learners 114

8.3.5 Plugging-in to baseline methods . 115

8.4 Experiments . 115
8.4.1 Datasets and implementation details 115

8.4.2 Results and analyses . 117

8.5 Conclusions . 119

The lack of training data in few-shot learning leads to poor models that perform high-
variance or low-confidence predictions. In this chapter, we propose to meta-learn the
ensemble of epoch-wise empirical Bayes models (E3BM) to achieve robust predictions.

“Epoch-wise” means that each training epoch has a Bayes model whose parameters are
specifically learned and deployed. “Empirical” means that the hyperparameters, e.g., used
for learning and ensembling the epoch-wise models, are generated by hyperprior learners
conditional on task-specific data. We introduce four kinds of hyperprior learners by con-
sidering inductive vs. transductive, and epoch-dependent vs. epoch-independent, in the
paradigm of meta-learning. We conduct extensive experiments for five-class few-shot tasks
on three challenging benchmarks: miniImageNet, tieredImageNet, and FC100, and achieve
top performance using the epoch-dependent transductive hyperprior learner, which captures
the richest information. Our ablation study shows that both “epoch-wise ensemble” and
“empirical” encourage high efficiency and robustness in the model performance.

This chapter is based on [LSS20]. As the first author of [LSS20], Yaoyao Liu conducted
all experiments and was the main writer. This work received more than 80 citations and is
used as the baseline framework for many top-tier conference papers [XL22, SXH+

21, LSA21].

8.1 introduction

The ability to learn new concepts from a handful of examples is well-handled by humans,
while in contrast, it remains challenging for machine models whose typical training requires

107

108 chapter 8. learning to ensemble deep models

(a) MAML [13] (b) SIB [25]

θθ
SGD

SGD

SGD

SIB

SIB

(c) E3BM (ours)

SIB

...

...

Figure 8.1: Conceptual illustrations of the model adaptation on the blue, red and yellow
tasks. (a) MAML [FAL17] is the classical inductive method that meta-learns a network
initialization θ that is used to learn a single base-learner on each task, e.g., Θa

3 in the blue
task. (b) SIB [HMX+

20] is a transductive method that formulates a variational posterior as a
function of both labeled training data T (tr) and unlabeled test data x(te). It also uses a single
base-learner and optimizes the learner by running several synthetic gradient steps on x(te).
(c) Our E3BM is a generic method that learns to combine the epoch-wise base-learners (e.g.,
Θ1, Θ2, and Θ3), and to generate task-specific learning rates α and combination weights v
that encourage robust adaptation. Θ̄1:3 denotes the ensemble result of three base-learners;
Ψα and Ψv denote the hyperprior learners learned to generate α and v, respectively. Note
that figure (c) is based on E3BM+MAML, i.e., plug-in our E3BM to MAML baseline. Other
plug-in versions are introduced in Sec. 8.3.5.

a significant amount of data for good performance [KSH12]. However, in many real-world
applications, we have to face the situations of lacking a significant amount of training data,
as e.g., in the medical domain. It is thus desirable to improve machine learning models to
handle few-shot settings where each new concept has very scarce examples [LFP06, FAL17,
SLCS19, JL20].

Meta-learning methods aim to tackle the few-shot learning problem by transferring
experience from similar few-shot tasks [Car95]. There are different meta strategies, among
which the gradient descent based methods are particularly promising for today’s neu-
ral networks [FAL17, FXL18, GFL+

18, FFS+18, LC18, ZCG+
18, SLCS19, AES19, ZLL+

19b,
HMX+

20, ZLL+
19a, ZCLS20, WHD+

20]. These methods follow a unified meta-learning pro-
cedure that contains two loops. The inner loop learns a base-learner for each individual task,
and the outer loop uses the validation loss of the base-learner to optimize a meta-learner. In
previous works [FAL17, FXL18, AES19, SLCS19], the task of the meta-learner is to initialize
the base-learner for the fast and efficient adaptation to the few training samples in the new
task.

In this chapter, we aim to address two shortcomings of the previous works. First, the
learning process of a base-learner for few-shot tasks is quite unstable [AES19], and often
results in high-variance or low-confidence predictions. An intuitive solution is to train an
ensemble of models and use the combined prediction, which should be more robust [Bre96,
OV12, JBvdL18]. However, it is not obvious how to obtain and combine multiple base-
learners given the fact that a very limited number of training examples are available. Rather

8.2 related works 109

than learning multiple independent base-learners [YKD+
18], we propose a novel method

of utilizing the sequence of epoch-wise base-learners (while training a single base-learner)
as the ensemble. Second, it is well-known that the values of hyperparameters, e.g., for
initializing and updating models, are critical for best performance, and are particularly
important for few-shot learning. In order to explore the optimal hyperparameters, we
propose to employ the empirical Bayes method in the paradigm of meta-learning. In specific,
we meta-learn hyperprior learners with meta-training tasks, and use them to generate task-
specific hyperparameters, e.g., for updating and ensembling multiple base-learners. We call
the resulting novel approach E3BM, which learns the Ensemble of Epoch-wise Empirical
Bayes Models for each few-shot task. Our “epoch-wise models” are different models since
each one of them is resulted from a specific training epoch and is trained with a specific set
of hyperparameter values. During test, E3BM combines the ensemble of models’ predictions
with soft ensembling weights to produce more robust results. In this chapter, we argue that
during model adaptation to the few-shot tasks, the most active adapting behaviors actually
happen in the early epochs, and then converge to and even overfit to the training data in
later epochs. Related works use the single base-learner obtained from the last epoch, so their
meta-learners learn only partial adaptation experience [FAL17, SLCS19, FXL18, HMX+

20].
In contrast, our E3BM leverages an ensemble modeling strategy that adapts base-learners
at different epochs and each of them has task-specific hyperparameters for updating and
ensembling. It thus obtains the optimized combinational adaptation experience. Figure 8.1
presents the conceptual illustration of E3BM, compared to those of the classical method
MAML [FAL17] and the state-of-the-art SIB [HMX+

20].
Our main contributions are three-fold. (1) A novel few-shot learning approach E3BM

that learns to learn and combines an ensemble of epoch-wise Bayes models for more robust
few-shot learning. (2) Novel hyperprior learners in E3BM to generate the task-specific hyper-
parameters for learning and combining epoch-wise Bayes models. In particular, we introduce
four kinds of hyperprior learner by considering inductive [FAL17, SLCS19] and transduc-
tive learning methods [HMX+

20], and each with either epoch-dependent (e.g., LSTM) or
epoch-independent (e.g., epoch-wise FC layer) architectures. (3) Extensive experiments on
three challenging few-shot benchmarks, miniImageNet [VBL+

16], tieredImageNet [RTR+
18]

and Fewshot-CIFAR100 (FC100) [ORL18]. We plug in our E3BM to the state-of-the-art
few-shot learning methods [FAL17, SLCS19, HMX+

20] and obtain consistent performance
boosts. We conduct extensive model comparison and observe that our E3BM employing
an epoch-dependent transductive hyperprior learner achieves the top performance on all
benchmarks.

8.2 related works

In this section, we discuss related works on hyperparameter optimization and ensemble
modeling. We will not repeat the incremental learning works that have been discussed in
Chapter 2.
Hyperparameter optimization. Building a model for a new task is a process of exploration-
exploitation. Exploring suitable architectures and hyperparameters are important before
training. Traditional methods are model-free, e.g., based on grid search [BB12, LJD+

17,
JDO+

17]. They require multiple full training trials and are thus costly. Model-based
hyperparameter optimization methods are adaptive but sophisticated, e.g., using random
forests [HHL11], Gaussian processes [SLA12] and input warped Gaussian processes [SSZA14]

110 chapter 8. learning to ensemble deep models

or scalable Bayesian optimization [SRS+15]. In our approach, we meta-learn a hyperprior
learner to output optimal hyperparameters by gradient descent, without additional manual
labor. Related methods using gradient descent mostly work for single model learning in
an inductive way [Ben00, Dom12, MDA15, LRBG16, FFS+18, MMCSD19, LZCL17, LSL+

20].
While, our hyperprior learner generates a sequence of hyperparameters for multiple models,
in either the inductive or the transductive learning manner.
Ensemble modeling. It is a strategy [HLP+

17, ZSC+
19] to use multiple algorithms to

improve machine learning performance, and which is proved to be effective to reduce the
problems related to overfitting [KW03, SK96]. Mitchell et al. [Mit97] provided a theoretical
explanation for it. Boosting is one classical way to build an ensemble, e.g., AdaBoost [FS97]
and Gradient Tree Boosting [Fri02]. Stacking combines multiple models by learning a
combiner and it applies to both tasks in supervised learning [Bre96, OV12, JBvdL18] and
unsupervised learning [SW99]. Bootstrap aggregating (i.e., Bagging) builds an ensemble of
models through parallel training [Bre96], e.g., random forests [Ho95]. The ensemble can also
be built on a temporal sequence of models [LA17]. Some recent works have applied ensemble
modeling to few-shot learning. Yoon et al. proposed Bayesian MAML (BMAML) that trains
multiple instances of base-model to reduce mete-level overfitting [YKD+

18]. The most
recent work [DSM19] encourages multiple networks to cooperate while keeping predictive
diversity. Its networks are trained with carefully-designed penalty functions, different from
our automated method using empirical Bayes. Besides, its method needs to train much more
network parameters than ours. Detailed comparisons are given in the experiment section.

8.3 an ensemble of epoch-wise empirical bayes models

As shown in Fig. 8.2, E3BM trains a sequence of epoch-wise base-learners {Θm} with training
data T (tr) and learns to combine their predictions {z(te)m } on test data x(te) for the best
performance. This ensembling strategy achieves more robustness during prediction. The
hyperparameters of each base-learner, i.e., learning rates α and combination weights v, are
generated by the hyperprior learners conditional on task-specific data, e.g., x(tr) and x(te).
This approach encourages the high diversity and informativeness of the ensembling models.

8.3.1 Denotations

In this section, we introduce the unified episodic formulation of few-shot learning, follow-
ing [VBL+

16, RL17, FAL17]. This formulation was proposed for few-shot classification first
in [VBL+

16]. Its problem definition is different from traditional classification in three aspects:
(1) the main phases are not training and test but meta-training and meta-test, each of which
includes training and test; (2) the samples in meta-training and meta-testing are not data
points but episodes, i.e. few-shot classification tasks; and (3) the objective is not classifying
unseen data points but to fast adapt the meta-learned knowledge to the learning of new
tasks.

Given a dataset D for meta-training, we first sample few-shot episodes (tasks) {T } from
a task distribution p(T) such that each episode T contains a few samples of a few classes,
e.g., 5 classes and 1 shot per class. Each episode T includes a training split T (tr) to optimize
a specific base-learner, and a test split T (te) to compute a generalization loss to optimize
a global meta-learner. For meta-test, given an unseen dataset Dun (i.e., samples are from

8.3 an ensemble of epoch-wise empirical bayes models 111

...
... ...

...

G G

deploy

m
et

a
up

da
te

deploy

Learning rate Combination weightBase-learner initializer

...

base
update

base
update

predictions

Hyperprior Learner ()

Epoch-wise base-learner

Figure 8.2: The computing flow of the proposed E3BM approach in one meta-training episode.
For the meta-test task, the computation will be ended with predictions. Hyper-learner
predicts task-specific hyperparameters, i.e., learning rates and multi-model combination
weights. When its input contains x(te), it is transductive, otherwise inductive. Its detailed
architecture is given in Fig. 8.3.

unseen classes), we sample a test task Tun to have the same-size training/test splits. We first
initiate a new model with meta-learned network parameters (output from our hyperprior
learner), then train this model on the training split T (tr)

un . We finally evaluate the performance
on the test split T (te)

un . If we have multiple tasks, we report average accuracy as the final
result.

8.3.2 Empirical Bayes method

Our approach can be formulated as an empirical Bayes method that learns two levels of mod-
els for a few-shot task. The first level has hyperprior learners that generate hyperparameters
for updating and combining the second-level models. More specifically, these second-level
models are trained with the loss derived from the combination of their predictions on
training data. After that, their loss of test data is used to optimize the hyperprior learners.
This process is also called meta update. See the dashed arrows in Fig. 8.2.

In specific, we sample K episodes {Tk}K
k=1 from the meta-training data D. Let Θ denote

base-learner and ψ represent its hyperparameters. An episode Tk aims to train Θ to recognize
different concepts, so we consider using concept-related (task specific) data for customizing
the Θ through a hyperprior p(ψk). To achieve this, we first formulate the empirical Bayes

112 chapter 8. learning to ensemble deep models

method with marginal likelihood according to hierarchical structure among data as follows,

p(T) =
K

∏
k=1

p(Tk) =
K

∏
k=1

∫
ψk

p(Tk|ψk)p(ψk)dψk. (8.1)

Then, we use variational inference [HBWP13] to estimate {p(ψk)}K
k=1. We parametrize

distribution qφk(ψk) with φk for each p(ψk), and update φk to increase the similarity betweeen
qφk(ψk) and p(ψk). As in standard probabilistic modeling, we derive an evidence lower
bound on the log version of Eq. (8.1) to update φk,

log p(T) ⩾
K

∑
k=1

[
Eψk∼qφk

[
log p(Tk|ψk)

]
− DKL(qφk(ψk)||p(ψk))

]
. (8.2)

Therefore, the problem of using qφk(ψk) to approach to the best estimation of p(ψk)
becomes equivalent to the objective of maximizing the evidence lower bound [BKM17,
HBWP13, HMX+

20] in Eq. (8.2), with respect to {φk}K
k=1, as follows,

min
{φk}K

k=1

1
K

K

∑
k=1

[
Eψk∼qφk

[
− log p(Tk|ψk)

]
+ DKL(qφk(ψk)||p(ψk))

]
. (8.3)

mean

concat

mean

FC

mean

LSTM

’

mean

concat

LSTM

(a) Epoch-independent (b) Epoch-dependent

FC

Figure 8.3: Two options of hyperprior learner at the
m-th base update epoch. In terms of the mapping
function, we deploy either FC layers to build epoch-
independent hyperprior learners, or LSTM to build
an epoch-dependent learner. Values in dashed box
were learned from previous tasks.

To improve the robustness of
few-shot models, existing methods
sample a significant amount num-
ber of episodes during meta-training
[FAL17, SLCS19]. Each episode em-
ploying its own hyperprior p(ψk)
causes a huge computation bur-
den, making it difficult to solve the
aforementioned optimization prob-
lem. To tackle this, we leverage
a technique called “amortized vari-
ational inference” [KW14, RMW14,
HMX+

20]. We parameterize the KL
term in {φk}K

k=1 (see Eq. (8.3)) with
a unified deep neural network Ψ(·)
taking x(tr)k (inductive learning) or

{x(tr)k , x(te)k } (transductive learning) as

inputs, where x(tr)k and x(te)k respec-
tively denote the training and test
samples in the k-th episode. In
this chapter, we call Ψ(·) hyper-
prior learner. As shown in Fig. 8.3,
we additionally feed the hyperprior
learner with the training gradients
∇LΘ(T (tr)

k) to Ψ(·) to encourage it
to “consider” the current state of the
training epoch. We mentioned in

8.3 an ensemble of epoch-wise empirical bayes models 113

Sec. 8.1 that base-learners at differ-
ent epochs are adapted differently, so we expect the corresponding hyperprior learner to
“observe” and “utilize” this information to produce effective hyperparameters. By replacing
qφk with qΨ(·), Problem (8.3) can be rewritten as:

min
Ψ

1
K

K

∑
k=1

[
Eψk∼qΨ(·)

[
− log p(Tk|ψk)

]
+ DKL(qΨ(·)(ψk)||p(ψk))

]
. (8.4)

Then, we solve Problem (8.4) by optimizing Ψ(·) with the meta gradient descent method
used in classical meta-learning paradigms [FAL17, SLCS19, HMX+

20]. We elaborate the
details of learning {Θm} and meta-learning Ψ(·) in the following sections.

8.3.3 Learning the ensemble of base-learners

Previous works have shown that training multiple instances of the base-learner is helpful
to achieve robust few-shot learning [YKD+

18, DSM19]. However, they suffer from the
computational burden of optimizing multiple copies of neural networks in parallel, and
are not easy to generalize to deeper neural architectures. If include the computation of
second-order derivatives in meta gradient descent [FAL17], this burden becomes more
unaffordable. In contrast, our approach is free from this problem, because it is built on
top of optimization-based meta-learning models, e.g., MAML [FAL17], MTL [SLCS19], and
SIB [HMX+

20], which naturally produce a sequence of models along the training epochs in
each episode.

Given an episode T = {T (tr), T (te)} = {{x(tr), y(tr)}, {x(te), y(te)}}, let Θm denote the
parameters of the base-learner working at epoch m (w.r.t. m-th base-learner or BL-m), with
m ∈ {1, ..., M}. Basically, we initiate BL-1 with parameters θ (network weights and bias) and
hyperparameters (e.g., learning rate α), where θ is meta-optimized as in MAML [FAL17],
and α is generated by the proposed hyperprior learner Ψα. We then adapt BL-1 with normal
gradient descent on the training set T (tr), and use the adapted weights and bias to initialize
BL-2. The general process is thus as follows,

Θ0 ← θ, (8.5)

Θm ← Θm−1 − αm∇ΘL(tr)
m = Θm−1 −Ψα(τ,∇ΘL(tr)

m)∇ΘL(tr)
m , (8.6)

where αm is the learning rate outputted from Ψα, and ∇ΘL(tr)
m are the derivatives of the

training loss, i.e, gradients. τ represents either x(tr) in the inductive setting, or {x(tr), x(te)}
in the transductive setting. Note that Θ0 is introduced to make the notation consistent, and a
subscript m is omitted from Ψα for conciseness. Let F(x; Θm) denote the prediction scores of
input x, so the base-training loss T (tr) =

{
x(tr), y(tr)

}
can be unfolded as,

L(tr)
m = Lce

(
F(x(tr); Θm−1), y(tr)

)
, (8.7)

where Lce is the softmax cross entropy loss. During the episode test, each base-learner BL-m
infers the prediction scores zm for test samples x(te),

zm = F(x(te); Θm). (8.8)

114 chapter 8. learning to ensemble deep models

Assume the hyperprior learner Ψv generates the combination weight vm for BL-m. The
final prediction score is initialized as ŷ(te)1 = v1z1 . For the m-th base epoch, the prediction
zm will be calculated and added to ŷ(te) as follows,

ŷ(te)m ← vmzm + ŷ(te)m−1 = Ψv(τ,∇ΘL(tr)
m)F(x(te); Θm) + ŷ(te)m−1. (8.9)

In this way, we can update prediction scores without storing base-learners or feature maps
in the memory.

8.3.4 Meta-learning the hyperprior learners

As presented in Fig. 8.3, we introduce two architectures, i.e., LSTM or individual FC layers,
for the hyperprior learner. FC layers at different epochs are independent. Using LSTM to
“connect” all epochs is expected to “grasp” more task-specific information from the overall
training states of the task. In the following, we elaborate the meta-learning details for both
designs.

Assume before the k-th episode, we have meta-learned the base learning rates {α′m}M
m=1

and combination weights {v′m}M
m=1. Next in the k-th episode, specifically at the m-th epoch

as shown in Fig. 8.3, we compute the mean values of τ and ∇ΘmL
(tr)
m , respectively, over all

samples1. We then input the concatenated value to FC or LSTM mapping function as follows,

∆αm, ∆vm = FCm(concat[τ̄;∇ΘmL
(tr)
m]), or (8.10)

[∆αm, ∆vm], hm = LSTM(concat[τ̄;∇ΘmL
(tr)
m], hm−1), (8.11)

where hm and hm−1 are the hidden states at epoch m and epoch m− 1, respectively. We then
use the output values to update hyperparameters as,

αm = λ1α′m + (1− λ1)∆α, vm = λ2v′m + (1− λ2)∆v, (8.12)

where λ1 and λ2 are fixed fractions in (0, 1). Using learning rate αm, we update BL-(m− 1)
to be BL-m with Eq. (8.6). After M epochs, we obtain the combination of predictions ŷ(te)M
(see Eq. (8.9)) on test samples. In training tasks, we compute the test loss as,

L(te) = Lce(ŷ
(te)
M , y(te)). (8.13)

We use this loss to calculate meta gradients to update Ψ as follows,

Ψα ← Ψα − β1∇ΨαL(te), Ψv ← Ψv − β2∇ΨvL(te), (8.14)

where β1 and β2 are meta-learning rates that determine the respective stepsizes for updating
Ψα and Ψv. These updates are to back-propagate the test gradients till the input layer,
through unrolling all base training gradients of Θ1 ∼ ΘM. The process thus involves
a gradient through a gradient [FAL17, FXL18, SLCS19]. Computationally, it requires an
additional backward pass through L(tr) to compute Hessian-vector products, which is
supported by standard numerical computation libraries such as TensorFlow [AAB+

16] and
PyTorch [SDC+

19].
1In the inductive setting, training images are used to compute τ̄; while in the transductive setting, test

images are additionally used.

8.4 experiments 115

8.3.5 Plugging-in to baseline methods

The optimization of Ψ relies on meta gradient descent method, which was first applied
to few-shot learning in MAML [FAL17]. Recently, MTL [SLCS19] showed more efficiency
by implementing that method on deeper pre-trained CNNs (e.g., ResNet-12 [SLCS19], and
ResNet-25 [SLC+

22]). SIB [HMX+
20] was built on even deeper and wider networks (WRN-

28-10), and it achieved top performance by synthesizing gradients in transductive learning.
These three methods are all optimization-based, and use the single base-learner of the last
base-training epoch. In the following, we describe how to learn and combine multiple
base-learners in MTL, SIB and MAML, respectively, using our E3BM approach.

According to [SLCS19, HMX+
20], we pre-train the feature extractor f on a many-shot

classification task using the whole set of D. The meta-learner in MTL is called scaling and
shifting weights ΦSS, and in SIB is called synthetic information bottleneck network ϕ(λ, ξ).
Besides, there is a common meta-learner called base-learner initializer θ, i.e., the same θ in
Fig. 8.2, in both methods. In MAML, the only base-learner is θ and there is no pre-training
for its feature extractor f .

Given an episode T , we feed training images x(tr) and test images x(te) to the feature
extractor f ⊙ΦSS in MTL (f in SIB and MAML), and obtain the embedding e(tr) and e(te),
respectively. Then in MTL, we use e(tr) with labels to train base-learner Θ for M times to
get {Θm}M

m=1 with Eq. (8.6). In SIB, we use its multilayer perceptron (MLP) net to synthesize
gradients conditional on e(te) to indirectly update {Θm}M

m=1. During these updates, our
hyperprior learner Ψα derives the learning rates for all epochs. In episode test, we feed e(te)

to {Θm}M
m=1 and get the combined prediction {zm}M

m=1 with Eq. (8.9). Finally, we compute the
test loss to meta-update [Ψα; Ψv; ΦSS; θ] in MTL, [Ψα; Ψv; ϕ(λ, ξ); θ] in SIB, and [f ; θ] in MAML.
We call the resulting methods MTL+E3BM, SIB+E3BM, and MAML+E3BM, respectively, and
demonstrate their improved efficiency over baseline models [SLCS19, HMX+

20, FAL17] in
experiments.

8.4 experiments

We evaluate our approach in terms of its overall performance and the effects of its two
components, i.e. ensembling epoch-wise models and meta-learning hyperprior learners. In
the following sections, we introduce the datasets and implementation details, compare our
best results to the state-of-the-art, and conduct an ablation study.

8.4.1 Datasets and implementation details

Datasets. We conduct few-shot image classification experiments on three benchmarks:
miniImageNet [VBL+

16], tieredImageNet [RTR+
18] and FC100 [ORL18]. miniImageNet is the

most widely used in related works [FAL17, HMX+
20, HCB+

19, SLCS19, SYZ+
18, HMX+

20].
tieredImageNet and FC100 are either with a larger scale or a more challenging setting with
lower image resolution, and have stricter training-test splits.
miniImageNet was proposed in [VBL+

16] based on ImageNet [RDS+15]. There are 100
classes with 600 samples per class. Classes are divided into 64, 16, and 20 classes respectively
for sampling tasks for meta-training, meta-validation and meta-test. tieredImageNet was
proposed in [RTR+

18]. It contains a larger subset of ImageNet [RDS+15] with 608 classes

116 chapter 8. learning to ensemble deep models

(779, 165 images) grouped into 34 super-class nodes. These nodes are partitioned into 20,
6, and 8 disjoint sets respectively for meta-training, meta-validation and meta-test. Its
super-class based training-test split results in a more challenging and realistic regime with
test tasks that are less similar to training tasks. FC100 is based on the CIFAR100 [Kri09]. The
few-shot task splits were proposed in [ORL18]. It contains 100 object classes and each class
has 600 samples of 32× 32 color images per class. On these datasets, we consider the (5-class,
1-way) and (5-class, 5-way) classification tasks. We use the same task sampling strategy as in
related works [FAL17, AES19, HMX+

20].

Backbone architectures. In MAML+E3BM, we use a 4-layer convolution network (4CONV) [FAL17,
AES19]. In MTL+E3BM, we use a 25-layer residual network (ResNet-25) [QLSY18, YHZS20,
SLC+

22]. Followed by convolution layers, we apply an average pooling layer and a fully-
connected layer. In SIB+E3BM, we use a 28-layer wide residual network (WRN-28-10) as
SIB [HMX+

20].

The configuration of base-learners. In MTL [SLCS19] and SIB [HMX+
20], the base-learner is

a single fully-connected layer. In MAML [FAL17], the base-learner is the 4-layer convolution
network. In MTL and MAML, the base-learner is randomly initialized and updated during
meta-learning. In SIB, the base-learner is initialized with the averaged image features of each
class. The number of base-learners M in MTL+E3BM and SIB+E3BM are respectively 100
and 3, i.e., the original numbers of training epochs in [SLCS19, HMX+

20].

The configuration of hyperprior learners. In Fig. 8.3, we show two options for hyperprior
learners (i.e., Ψα and Ψv). Fig. 8.3(a) is the epoch-independent option, where each epoch
has two FC layers to produce α and v respectively. Fig. 8.3(b) is the epoch-dependent
option which uses an LSTM to generate α and v at all epochs. In terms of the learning
hyperprior learners, we have two settings: inductive learning denoted as “Ind.”, and
transductive learning as “Tra.”. “Ind.” is the supervised learning in classical few-shot
learning methods [FAL17, SLCS19, LMRS19, VBL+

16, SSZ17]. “Tra.” is semi-supervised
learning, based on the assumption that all test images of the episode are available. It has
been applied to many recent works [LLP+

19, HCB+
19, HMX+

20].

Ablation settings. We conduct a careful ablative study for two components, i.e., “ensembling
multiple base-learners” and “meta-learning hyperprior learners”. We show their effects
indirectly by comparing our results to those of using arbitrary constant or learned values of
v and α. In terms of v, we have 5 ablation options: (v1) “E3BM” is our method generating
v from Ψv; (v2) “learnable” is to set v to be update by meta gradient descent same as θ
in [FAL17]; (v3) “optimal” means using the values learned by option (a2) and freezing
them during the actual learning; (v4) “equal” is an simple baseline using equal weights;
(v5) “last-epoch” uses only the last-epoch base-learner, i.e., v is set to [0, 0, ..., 1]. In the
experiments of (v1)-(v5), we simply set α as in the following (a4) [FAL17, SLCS19, HMX+

20].
In terms of α, we have 4 ablation options: (a1) “E3BM” is our method generating α from Ψα;
(a2) “learnable” is to set α to be update by meta gradient descent same as θ in [FAL17]; (a3)
“optimal” means using the values learned by option (a2) and freezing them during the actual
learning; (a4) “fixed” is a simple baseline that uses manually chosen α following [FAL17,
SLCS19, HMX+

20]. In the experiments of (a1)-(a4), we simply set v as in (v5), same with the
baseline method [SLCS19].

8.4 experiments 117

Methods Backbone
miniImageNet tieredImageNet FC100

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MatchNets [VBL+
16] 4CONV 43.44 55.31 – – – –

ProtoNets [SSZ17] 4CONV 49.42 68.20 53.31 72.69 – –
MAML⋄ [FAL17] 4CONV 48.70 63.11 49.0 66.5 38.1 50.4

MAML++⋄ [AES19] 4CONV 52.15 68.32 51.5 70.6 38.7 52.9
TADAM [ORL18] ResNet-12 58.5 76.7 – – 40.1 56.1

MetaOptNet [LMRS19] ResNet-12 62.64 78.63 65.99 81.56 41.1 55.5
CAN [HCB+

19] ResNet-12 63.85 79.44 69.89 84.23 – –
CTM [LED+

19] ResNet-18 64.12 80.51 68.41 84.28 – –
MTL [SLCS19] ResNet-12 61.2 75.5 – – 45.1 57.6

MTL⋄ [SLCS19] ResNet-25 63.4 80.1 69.1 84.2 43.7 60.1
LEO [RRS+19] WRN-28-10 61.76 77.59 66.33 81.44 – –

Robust20-dist‡ [DSM19] WRN-28-10 63.28 81.17 – – – –
MAML+E3BM 4CONV 53.2(↑4.5) 65.1(↑2.0) 52.1(↑3.1) 70.2(↑3.7) 39.9(↑1.8) 52.6(↑2.2)

(+time, +param) – (8.9, 2.2) (9.7, 2.2) (10.6, 2.2) (9.3, 2.2) (7.8, 2.2) (12.1, 2.2)
MTL+E3BM ResNet-25 64.3(↑0.9) 81.0(↑0.9) 70.0(↑0.9) 85.0(↑0.8) 45.0(↑1.3) 60.5(↑0.4)

(+time, +param) – (5.9, 0.7) (10.2, 0.7) (6.7, 0.7) (9.5, 0.7) (5.7, 0.7) (7.9, 0.7)
(a) Inductive Methods

EGNN [KKKY19] ResNet-12 64.02 77.20 65.45 82.52 – –
CAN+T [HCB+

19] ResNet-12 67.19 80.64 73.21 84.93 – –
SIB⋄‡ [HMX+

20] WRN-28-10 70.0 79.2 72.9 82.8 45.2 55.9
SIB+E3BM‡ WRN-28-10 71.4(↑1.4) 81.2(↑2.0) 75.6(↑2.7) 84.3(↑1.5) 46.0(↑0.8) 57.1(↑1.2)

(+time, +param) – (2.1, 0.04) (5.7, 0.04) (5.2, 0.04) (4.9, 0.04) (6.1, 0.04) (7.3, 0.04)
(b) Transductive Methods

⋄Our implementation on tieredImageNet and FC100. ‡Input image size: 80× 80× 3.

Table 8.1: The 5-class few-shot classification accuracies (%) on miniImageNet, tieredImageNet,
and FC100. “(+time, +param)” denote the additional computational time (%) and parameter
size (%), respectively, when plugging-in E3BM to baselines (MAML, MTL and SIB). “–” means
no reported results in original papers. The best and second best results are highlighted.

8.4.2 Results and analyses

In Table 8.1, we compare our best results to the state-of-the-arts. In Table 8.2, we present
the results of using different kinds of hyperprior learner, i.e., regarding two architectures
(FC and LSTM) and two learning strategies (inductive and transductive). In Fig. 8.4(a)(b),
we show the validation results of our ablative methods, and demonstrate the change during
meta-training iterations. In Fig. 8.4(c)(d), we plot the generated values of v and α during
meta-training.
Comparing to the state-of-the-arts. Table 8.1 shows that the proposed E3BM achieves the best
few-shot classification performance in both 1-shot and 5-shot settings, on three benchmarks.
Please note that [DSM19] reports the results of using different backbones and input image
sizes. We choose its results under the same setting as ours, i.e., using WRN-28-10 networks
and 80× 80× 3 images, for fair comparison. In our approach, plugging-in E3BM to the
state-of-the-art model SIB achieves 1.6% of improvement on average, based on the identical
network architecture. This improvement is significantly larger as 2.9% when taking MAML
as the baseline. All these show to be more impressive if considering the tiny overheads from

118 chapter 8. learning to ensemble deep models

No.
Setting miniImageNet tieredImageNet FC100

Method Hyperprior Learning 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

1 MTL [SLCS19] – Ind. 63.4 80.1 69.1 84.2 43.7 60.1
2 MTL+E3BM FC Ind. 64.3 80.9 69.8 84.6 44.8 60.5
3 MTL+E3BM FC Tra. 64.7 80.7 69.7 84.9 44.7 60.6
4 MTL+E3BM LSTM Ind. 64.3 81.0 70.0 85.0 45.0 60.4
5 MTL+E3BM LSTM Tra. 64.5 81.1 70.2 85.3 45.1 60.6
6 SIB [HMX+

20] – Tra. 70.0 79.2 72.9 82.8 45.2 55.9
7 SIB+E3BM FC Tra. 71.3 81.0 75.2 83.8 45.8 56.3
8 SIB+E3BM LSTM Tra. 71.4 81.2 75.6 84.3 46.0 57.1

Table 8.2: The 5-class few-shot classification accuracies (%) of using different hyperprior
learners, on the miniImageNet, tieredImageNet, and FC100. “Ind.” and “Tra.” denote
the inductive and transductive settings, respectively. The best and second best results are
highlighted.

pluging-in. For example, using E3BM adds only 0.04% learning parameters to the original
SIB model, and it gains only 5.2% average overhead regarding the computational time. It
is worth mentioning that the amount of learnable parameters in SIB+E3BM is around 80%
less than that of model in [DSM19] which ensembles 5 deep networks in parallel (and later
learns a distillation network).
Hyperprior learners. In Table 8.2, we can see that using transductive learning clearly
outperforms inductive learning, e.g., No. 5 vs. No. 4. This is because the “transduction”
leverages additional data, i.e., the episode-test images (no labels), during the base-training.
In terms of the network architecture, we observe that LSTM-based learners are slightly better
than FC-based (e.g., No. 3 vs. No. 2). LSTM is a sequential model and is indeed able to
“observe” more patterns from the adaptation behaviors of models at adjacent epochs.
Ablation study. Fig. 8.4(a) shows the comparisons among α related ablation models. Our
E3BM (orange) again performs the best, over the models of using any arbitrary α (red
or light blue), as well as over the model with α optimized by the meta gradient descent
(blue) [FAL17]. Fig. 8.4(b) shows that our approach E3BM works consistently better than the
ablation models related to v. We should emphasize that E3BM is clearly more efficient than
the model trained with meta-learned v (blue) through meta gradient descent [FAL17]. This
is because E3BM hyperprior learners generate empirical weights conditional on task-specific
data. The LSTM-based learners can leverage even more task-specific information, i.e., the
hidden states from previous epochs, to improve efficiency.
The values of α and v learned by E3BM. Fig. 8.4(c)(d) shows the values of α and v during
the meta-training iterations in our approach. Fig. 8.4(c) show the base-learners working at
later training epochs (e.g., BL-100) tend to get smaller values of α. This is actually similar to
the common manual schedule, i.e. monotonically decreasing learning rates, of conventional
large-scale network training [HZZ+

19]. The difference is that in our approach, this is
“scheduled” in a total automated way by hyperprior learners. Another observation is that the
highest learning rate is applied to BL-1. This actually encourages BL-1 to make an influence
as significant as possible. It is very helpful to reduce meta gradient diminishing when
unrolling and back-propagating gradients through many base-learning epochs (e.g., 100
epochs in MTL). Fig. 8.4(d) shows that BL-1 working at the initial epoch has the lowest values
of v. In other words, BL-1 is almost disabled in the prediction of episode test. Intriguingly,

8.5 conclusions 119

0 2k 4k 6k 8k 10k
iterations

0.63

0.65

0.67
m

et
a-

va
l a

cc
.

E3BM
learnable

fixed
optimal

(a) Val. acc. for α

0 2k 4k 6k 8k 10k
iterations

0.61

0.63

0.65

0.67

m
et

a-
va

l a
cc

.

E3BM
learnable
last-epoch

optimal
equal

(b) Val. acc. for v

0 2k 4k 6k 8k
iterations

0.010

0.015

0.020

0.025

va
lu

es
 o

f

BL-1
BL-25
BL-50
BL-75
BL-100

(c) Values of α

0 2k 4k 6k 8k
iterations

0.005

0.015

0.025

va
lu

es
 o

f v

(d) Values of v

Figure 8.4: (a)(b): The meta-validation accuracies of ablation models. The legends are
explained in (a1)-(a4) and (v1)-(v5) in Sec. 8.4.1 Ablation settings. All curves are smoothed
with a rate of 0.9 for better visualization. (c)(d): The values of α and v generated by Ψα and
Ψv, respectively. The setting is using MTL+E3BM, ResNet-25, on miniImageNet, 1-shot.

BL-25 instead of BL-100 gains the highest v values. Our explanation is that during the
base-learning, base-learners at latter epochs get more overfitted to the few training samples.
Their functionality is thus suppressed. Note that our empirical results revealed that including
the overfitted base-learners slightly improves the generalization capability of the approach.

8.5 conclusions

We propose a novel E3BM approach that tackles the few-shot problem with an ensemble of
epoch-wise base-learners that are trained and combined with task-specific hyperparameters.
In specific, E3BM meta-learns the hyperprior learners to generate such hyperparameters
conditional on the images as well as the training states for each episode. Its resulting model
allows making use of multiple base-learners for more robust predictions. It does not change
the basic training paradigm of episodic few-shot learning, and is thus generic and easy to
plug-and-play with existing methods. By applying E3BM to multiple baseline methods, e.g.,
MAML, MTL, and SIB, we achieved top performance on three challenging few-shot image
classification benchmarks, with little computation or parametrization overhead.

III
I n c r e m e n ta l O b j e c t D e t e c t i o n :

L e a r n i n g i n R e a l - w o r l d

A p p l i c at i o n s

In the third part, we apply incremental learning and few-shot
learning algorithms in more challenging real-world applications.

Specifically, in Chapter 9, we propose a ContinuaL DEtec-
tion TRansformer (CL-DETR), a new method for transformer-based
incremental object detection that enables effective usage of two
popular incremental learning techniques for image classifica-
tion, knowledge distillation and exemplar replay, on recent
top-performance transformer-based detectors.

9C O N T I N U A L D E T E C T I O N
T R A N S F O R M E R

Contents
9.1 Introduction . 123
9.2 Related Work . 125
9.3 Methodology . 126

9.3.1 Incremental object detection . 126

9.3.2 Transformer-based detectors . 126

9.3.3 Detector knowledge distillation . 128

9.3.4 Distribution-preserving calibration 131

9.4 Experiments . 132
9.4.1 Dataset and implementation details 132

9.4.2 Results and analyses . 135

9.5 Conclusions . 136

Incremental object detection (IOD) aims to train an object detector in phases, each with
annotations for new object categories. As in other incremental settings, IOD is subject
to catastrophic forgetting, which is often addressed by techniques such as knowledge

distillation (KD) and exemplar replay (ER). However, KD and ER do not work well if
applied directly to state-of-the-art transformer-based object detectors such as Deformable
DETR [ZSL+

21] and UP-DETR [DCLC21]. In this chapter, we solve these issues by proposing
a ContinuaL DEtection TRansformer (CL-DETR), a new method for transformer-based IOD
which enables effective usage of KD and ER in this context. First, we introduce a Detector
Knowledge Distillation (DKD) loss, focusing on the most informative and reliable predictions
from old versions of the model, ignoring redundant background predictions, and ensuring
compatibility with the available ground-truth labels. We also improve ER by proposing a
calibration strategy to preserve the label distribution of the training set, therefore better
matching training and testing statistics. We conduct extensive experiments on COCO 2017

and demonstrate that CL-DETR achieves state-of-the-art results in the IOD setting.
This chapter is based on [LSVR23]. As the first author of [LSVR23], Yaoyao Liu

conducted all experiments and was the main writer.

9.1 introduction

Humans inherently learn in an incremental manner, acquiring new concepts over time
without forgetting previous ones. In contrast, machine learning suffers from catastrophic
forgetting [MC89, MH93, KPR+

17], where learning from non-i.i.d. data can override knowl-
edge acquired previously. Unsurprisingly, forgetting also affects object detection mod-
els [FWY22, AKT19, PZL20, SSA17, VYP+

22, YDS+22, JRK+
21]. In this context, the problem

123

124 chapter 9. continual detection transformer

Old categories All categories

36

38

40

42

A
v
er

ag
e

P
re

ci
si

o
n
 (

%
)

 w/ ER+KD w/ Ours Upper Bound

Figure 9.1: The final Average Precision (AP, %) of two-phase incremental object detection on
COCO 2017. We observe 70 and 10 categories in the first and second phases, respectively.
The baseline is Deformable DETR [ZSL+

21]. “Upper bound” shows the results of joint
training with all previous data accessible in each phase.

was formalized by Shmelkov et al. [SSA17], who defined an incremental object detec-
tion (IOD) protocol, where the training samples for different object categories are observed
in different phases, restricting the ability of the trainer to access past data.

Popular methods to address forgetting in tasks other than detection include Knowl-
edge Distillation (KD) and Exemplar Replay (ER). KD [LH18, DCO+

20, HPL+
19, HTM+

21,
ZXG+

20] introduces regularization terms in the learning objective in an attempt to preserve
previous knowledge when training the model on new data. The key idea is to encourage
the new model’s logits or feature maps to be close to those of the old model. ER meth-
ods [RKSL17, LSL+

20, LSS21b, WZY+
22, CMG+

18, LWM+
20] work instead by memorising

some of the past training data (the exemplars), replaying them in the following phases to
“remember” the old object categories.

Recent state-of-the-art results in object detection have been achieved by a family of
transformer-based architectures that include DETR [CMS+20], Deformable DETR [ZSL+

21]
and UP-DETR [DCLC21]. In this chapter, we show that KD and ER do not work well if
applied directly to these models. For instance, in Fig. 9.1 we show that applying KD and
ER to Deformable DETR leads to much worse results compared to training with all data
accessible in each phase (i.e., the standard non-incremental setting).

We identify two main issues that cause this drop in performance. First, transformer-
based detectors work by testing a large number of object hypotheses in parallel. Because
the number of hypotheses is much larger than the typical number of objects in an image,
most of them are negative, resulting in an unbalanced KD loss. Furthermore, because both
old and new object categories can co-exist in any given training image, the KD loss and
regular training objective can provide contradictory evidence. Second, ER methods for image
classification try to sample the same number of exemplars for each category. In IOD, this is
not a good strategy because the true object category distribution is typically highly skewed.
Balanced sampling causes a mismatch between the training and testing data statistics.

In this chapter, we solve these issues by proposing ContinuaL DEtection TRansformer (CL-
DETR), a new method for transformer-based IOD which enables effective usage of KD and
ER in this context. CL-DETR introduces the concept of Detector Knowledge Distillation (DKD),

9.2 related work 125

selecting the most confident object predictions from the old model, merging them with the
ground-truth labels for the new categories while resolving conflicts, and applying standard
joint bipartite matching between the merged labels and the current model’s predictions for
training. This approach subsumes the KD loss, applying it only for foreground predictions
correctly matched to the appropriate model’s hypotheses. CL-DETR also improves ER
by introducing a new calibration strategy to preserve the distribution of object categories
observed in the training data. This is obtained by carefully engineering the set of exemplars
remembered to match the desired distribution. Furthermore, each phase consists of a main
training step followed by a smaller one focusing on better calibrating the model.

We also propose a more realistic variant of the IOD benchmark protocol. In previous
works [SSA17, FWY22], in each phase, the incremental detector is allowed to observe all
images that contain a certain type of objects. Because images often contain a mix of
object classes, both old and new, this means that the same images can be observed in
different training phases. This is incompatible with the standard definition of incremental
learning [RKSL17, LSL+

20, HPL+
19] where, with the exception of the examples deliberately

stored in the exemplar memory, the images observed in different phases do not repeat. We
redefine the IOD protocol to avoid this issue.

We demonstrate CL-DETR by applying it to different transformer-based detectors in-
cluding Deformable DETR [ZSL+

21] and UP-DETR [DCLC21]. As shown in Fig. 9.1, our
results on COCO 2017 show that CL-DETR leads to significant improvements compared to
the baseline, boosting AP by 4.2 percentage points compared to a direct application of KD
and ER to the underlying detector model. We further study and justify our modeling choices
via ablations.

To summarise, we make four contributions: (1) The DKD loss that improves KD for
knowledge distillation by resolving conflicts between distilled knowledge and new evidence
and by ignoring redundant background detections; (2) A calibration strategy for ER to match
the stored exemplars to the training set distribution; (3) A revised IOD benchmark protocol
that avoids observing the same images in different training phases; (4) Extensive experiments
on COCO 2017, including state-of-the-art results, an in-depth ablation study, and further
visualizations.

9.2 related work

In this section, we discuss related works on transformer-based object detection, online
learning, and hyperparameter optimization. We will not repeat the incremental learning and
incremental object detection works that have been discussed in Chapter 2.

Transformer-based object detection. DEtection TRansformer (DETR) [CMS+20] proposes
an elegant architecture for object detection based on a visual transformer [VSP+

17]. Com-
pared to pre-transformer approaches, DETR eliminates the need for non-maximum sup-
pression in post-processing because self-attention can learn to remove duplicated detection
by itself. This is achieved by using the Hungarian loss, matching each object hypothe-
sis to exactly one target or background using bipartite matching [SCYK21]. Deformable
DETR [ZSL+

21] improves the performance of DETR, particularly for small objects, via sparse
attention on multi-level feature maps. UP-DETR [DCLC21] leverages unsupervised learn-
ing to pre-train the parameters of the encoder and decoder in DETR to further boost the
performance.

Our method does not fundamentally change these detectors and is in fact applicable to all

126 chapter 9. continual detection transformer

similar ones. Instead, it proposes broadly-applicable changes that make transformer-based
detector work well in combination with KD and ER for the IOD problem.

9.3 methodology

After defining the incremental detection problem (Section 9.3.1) and providing the necessary
background (Section 9.3.2), we introduce ContinuaL DEtection TRansformer (CL-DETR),
a new method for incremental object detection that extends DETR-like detectors with
knowledge distillation (KD; Section 9.3.3) and exemplar replay (ER; Section 9.3.4).

9.3.1 Incremental object detection

In incremental object detection (IOD) the goal is to train a detector in phases, where in each
phase the model is only given annotations for a subset of the object categories. Formally,
let D = {(x, y)} be a dataset of images x with corresponding object annotations y, such
as COCO 2017 [LMB+

14], and let C = {1, . . . , C} be the set of object categories. We adapt
such a dataset for benchmarking IOD as follows. First, we partition D and C into M subsets
D = D1 ∪ · · · ∪ DM and C = C1 ∪ · · · ∪ CM, one for each training phase. For each phase i, we
modify the samples (x, y) ∈ Di so that y only contains annotations for objects of class Ci and
drop the others.1

In phase i of training, the model is only allowed to observe images Di with annotations
for objects of types Ci ⊂ C. Notably, images can and do contain objects of any possible type
C, but only types Ci are annotated in this phase. After phase i is complete, training switches
to the next phase i + 1, so the model observes different images Di+1 and annotations for
objects of different types Ci+1.

For exemplar replay, we relax this training protocol and allow the model to memorise
a small number of exemplars Ei ⊂ Di from the previous phases. In this case, the model is
trained on the union Di ∪ E1:i−1 where E1:i−1 = E1 ∪ · · · ∪ Ei−1 forms the exemplar memory.

Note that this is a stricter and improved protocol compared to prior works in IOD [SSA17,
FWY22]. In these works, the model is still presented a subset of annotations restricted to
classes Ci in each phase; however, Di ⊂ D is defined as the subset of all images that contains
objects of type Ci. Because images contain a mix of object categories that can span different
subsets Ci, this means that different subsets Di can overlap, so that the same images can
be observed multiple times in different phases. This violates the standard definition of
incremental learning [RKSL17, LSL+

20, HPL+
19] which assumes that different samples are

observed in different phases. Our setting retains this property.

9.3.2 Transformer-based detectors

State-of-the-art methods like DETR [ZSL+
21, CMS+20, DCLC21, LWZ+

21, SCYK21, ZLL+
22]

build on powerful visual transformers to solve the object detection problem. In order to
motivate and explain our method, we first review briefly how they work.

With reference to Fig. 9.2, the model Φ takes as input an image x ∈ R3×H×W and
outputs the object predictions ŷ = Φ(x) using a number of attention and self-attention layers.
The output ŷ = (ŷj)j∈N is a sequence N = {1, . . . , N} of object predictions ŷj = (p̂j, b̂j),

1In this way, some images end up containing no annotated objects.

9.3 methodology 127

CNN

…

Transformer
encoder

Transformer
decoder

O
bject queries Transformer

encoder

Transformer
decoder

O
bject queries

Old model New model
Transformer

encoder

Transformer
decoder

O
bject queries

Input image Positional
encoding

Selection

Joint
bipartite
matching

CNN

…Old model New model

Input image Positional
encoding

(a) Classical knowledge distillation (b) Detector knowledge distillation (ours)

New model
predictions

Transformer
encoder

Transformer
decoder

O
bject queries

O
bject queries

Ground-truth
labels

MergeGround-truth
 labels

Figure 9.2: (a) Classical knowledge distillation. There are two issues when directly applying
KD [HVD15, LH18] to the transformer-based detectors [ZSL+

21, CMS+20, DCLC21]. (i)
Transformer-based detectors work by testing a large number of object hypotheses in parallel.
Because the number of hypotheses is much larger than the typical number of objects in an
image, most of them are negative, resulting in an unbalanced KD loss. (ii) Because both old
and new object categories can co-exist in any given training image, the KD loss and regular
training objective can provide contradictory evidence. (b) Detector knowledge distillation
(ours). We select the most confident foreground predictions from the old model and use
them as pseudo labels. We purposefully ignore background predictions because they are
imbalanced and they can contradict the labels of the new classes available in the current
phase. Then, we merge the pseudo labels for the old categories with the ground-truth labels
for the new categories and use bipartite matching to train the model on the joint labels.
This inherits the good properties of the original formulation such as ensuring one-to-one
matching between labels and hypotheses and avoiding duplicate detections.

128 chapter 9. continual detection transformer

consisting of a class probability vector p̂j : C ∪ {ϕ} → [0, 1] and a vector bj ∈ [0, 1]4 specifying
the center and size of the object bounding box relative to the image size. Note that the
support of p̂j includes element ϕ that denotes the background class, or ‘no object’ (hence, p̂j
has C + 1 dimensions).

The object predictions correspond to a fixed set of object queries internal to the model.
Each query is thus mapped to an object instance or background. The order of the queries is
conceptually immaterial, but queries are fixed and non-interchangeable after training. For
instance, ŷ1 is always the prediction that corresponds to the first query in the model. This is
relevant for the application of KD.

For supervised training, the model is given ground truth object annotations y =
((pj, bj))j∈N where pj is the indicator vector of the category of the object and bj ∈ [0, 1]4 is
its bounding box. Images usually contain fewer objects than the number N of hypotheses, so
y is padded with background detections for which pi(ϕ) = 1 and bi is arbitrary. The model
is trained end-to-end to optimise the loss,

LDETR(ŷ, y) = ∑
i∈N
⟨− log p̂σ̂i , pi⟩+ 1c(pi) ̸=ϕLbox(b̂σ̂i , bi), (9.1)

where c(pi) = argmaxc∈C∪{ϕ} pi(c) is the class encoded by pi, Lbox(b̂σ̂i , bi) = γ1LIoU(b̂σ̂i , bi) +

γ2∥b̂σ̂i − bi∥1 is the bounding box prediction loss and σ̂ is the best association of ground
truth labels to object hypotheses, obtained by solving the matching problem,

σ̂ = argmax
σ∈SN

∑
i∈N

1c(pi) ̸=ϕ

{
−⟨ p̂σi , pi⟩+ Lbox(b̂σi , bi),

}
(9.2)

using the Hungarian algorithm [Kuh55, SAN16]. Please see [CMS+20] for details.

9.3.3 Detector knowledge distillation

In a multi-phase learning scenario, at the beginning of a new phase, the model is initialized
as Φ← Φold where Φold is the model trained in the phase before. As the new data for the
current phase is received, training the model Φ as normal by minimising Eq. (9.1) leads to
forgetting.

KD [HVD15, LH18] reduces forgetting by maintaining a copy of the old model and
making sure that the outputs of the new and old models stay close. Applied to our
transformer-based detectors, given a new training image-label pair (x, y), one computes the
old model’s output ŷold = Φold(x) and, minimizes the sum of the LDETR(ŷ, y) loss with the
knowledge distillation loss

LKD(ŷ, ŷold) = ∑
j∈N

[
∑
c∈C
− p̂j(c) log p̂old

j (c)

]
+ Lbox(b̂j, b̂old

j).

This loss compares the output tokens of the new and old models, which makes sense since
they depend on the same object queries, at least initially, and are thus in correspondence.
However, we find that this loss is dominated by background information because most of the
tokens predict background. Furthermore, transformer-based detectors aim to find one-to-one
matchings between predictions and ground-truth labels without duplicates, which is not
accounted for by the classical KD loss.

9.3 methodology 129

The key issue is that summing losses LDETR + LKD as in standard KD fails to properly
account for the structure of the labels, which is crucial for detection problems, particularly
in an incremental learning setting. Specifically, the old model knows about all categories
seen so far during training except the new categories that are annotated in the current
phase. However, the new training images contain multiple objects, including the old types,
which are thus not annotated in the current phase. This means that LDETR and LKD provide
potentially contradictory supervision.

We thus suggest that, in a detection context, new and old knowledge should be fused
in a structured manner. As illustrated in Fig. 9.2, we do so by selecting the most confident
foreground predictions from the old model and using them as pseudo labels. We purposefully
ignore background predictions because they are imbalanced and they can contradict the
labels of the new classes available in the current phase. Then, we merge the pseudo labels
for the old categories with the ground-truth labels for the new categories and use bipartite
matching to train the model on the joint labels. This inherits the good properties of the
original formulation such as ensuring one-to-one matching between labels and hypotheses
and avoiding duplicate detections.

Formally, given the predictions ŷold from the old model, we first identify the subset
F ⊂ N of the ones that are predicted as foreground:

F = {j ∈ N : ∀c ∈ C : p̂old
j (c) > p̂old

j (ϕ)}.

Of these, we pick the subset P ⊂ F , |P| = K formed by the K most confident predictions,
i.e.,

∀i ∈ P , j ∈ F −P : max
c∈C

p̂old
i (c) > max

c∈C
p̂old

j (c).

Finally, we further restrict the predictions to the subset Q ⊂ P that does not overlap too
much with the ground-truth labels for the new categories:

Q = {j ∈ P : ∀i ∈ N : c(pi) ̸= ϕ⇒ IoU(b̂old
j , bi) ≤ λ}.

In the experiments, we set λ = 0.7. With remain with a filtered set of pseudo-labels:

ŷpseudo = (ŷold
j)j∈Q. (9.3)

Next, we distill knowledge from the current labels y and the pseudo-labels obtained from
the old model into a single, coherent set of labels

ydistill = (yi)i:c(pi) ̸=ϕ ⊕ ŷpseudo ⊕ ybg, (9.4)

where we concatenate the object labels for the new categories, the pseudo-labels, and enough
background labels ybg to pad ydistill to contain N elements.

In this manner, the distillation occurs at the level of the labels. The model is still trained
by using Eq. (9.1) as before, resulting in the detector knowledge distillation (DKD) loss:

LDKD(ŷ, ydistill) = LDETR(ŷ, ydistill). (9.5)

Besides the usage of the distilled labels, the main difference between Eqs. (9.1) and (9.5)
is that, while the class distribution pi for the new label is deterministic, it is not for the
pseudo-labels. Plugged in Eq. (9.1), this results in the standard distillation effect for categorial
distributions trained using the cross entropy loss.

130 chapter 9. continual detection transformer

Algorithm 5: CL-DETR (the i-th phase)

Input: new category data Di; old category exemplars E1:i−1; old model Φold.
Output: new model Φ; exemplars E1:i.

1 Get Di and load E1:i−1 from memory;
2 Let Φ← Φold;
3 for epochs do
4 for mini-batches (x, y) ∈ Di ∪ E1:i−1 do
5 Let ŷold ← Φold(x);
6 Get ŷpseudo from ŷold and y using Eq. (9.3);
7 Get ydistill from ŷpseudo and y using Eq. (9.4);
8 Let ŷ← Φ(x);
9 Get σ̂ by matching ydistill to ŷ using Eq. (9.2);
10 Compute LDKD(ŷ, ydistill) using Eq. (9.5);
11 Update Φ via a gradient step.
12 end
13 end
14 Build the exemplar set E1:i using Algorithm 6;
15 for epochs do
16 for mini-batches (x, y) ∈ E1:i do
17 Let ŷ← Φ(x);
18 Compute LDETR(ŷ, y) using Eq. (9.1);
19 Update Φ via a gradient step;
20 end
21 end
22 Save E1:i to the memory.

Algorithm 6: Exemplar selection (the i-th phase)
Input: new category data Di; old category exemplars E1:i−1; target number of

exemplars Ri.
Output: exemplars E1:i.

1 Let Ei ← {};
2 repeat
3 Select e ∈ Di according to Eq. (9.6);
4 Let Ei ← Ei ∪ {x};
5 until Ri times;
6 Let E1:i ← Ei ∪ E1:i−1.

9.3 methodology 131

Setting Method Detection baseline AP AP50 AP75 APS APM APL

70+10

ERD [FWY22] UP-DETR 36.2±0.3 54.8±0.4 39.3±0.4 20.8±0.3 39.3±0.5 47.9±0.3

CL-DETR (ours) UP-DETR 37.6±0.2 56.5±0.4 39.4±0.3 20.5±0.3 39.1±0.4 49.9±0.3

LwF [LH18] Deformable DETR 24.5±0.3 36.6±0.2 26.7±0.4 12.4±0.2 28.2±0.4 35.2±0.4

iCaRL [RKSL17] Deformable DETR 35.9±0.4 52.5±0.3 39.2±0.3 19.1 ±0.3 39.4±0.5 48.6±0.3

ERD [FWY22] Deformable DETR 36.9±0.4 55.7±0.4 40.1±0.4 21.4±0.3 39.6±0.3 48.7±0.3

CL-DETR (ours) Deformable DETR 40.1±0.3 57.8±0.4 43.7±0.3 23.2±0.3 43.2±0.2 52.1±0.3

40+40

ERD [FWY22] UP-DETR 35.4±0.4 55.1±0.3 38.3±0.3 17.9±0.4 39.0±0.3 49.8±0.3

CL-DETR (ours) UP-DETR 37.0±0.2 56.2±0.2 39.1±0.4 20.9±0.2 38.9±0.3 49.2±0.3

LwF [LH18] Deformable DETR 23.9±0.2 41.5±0.3 25.0±0.3 12.0±0.4 26.4±0.3 33.0±0.5

iCaRL [RKSL17] Deformable DETR 33.4±0.4 52.0±0.3 36.0±0.2 18.0±0.3 36.4±0.3 45.5±0.4

ERD [FWY22] Deformable DETR 36.0±0.2 55.2±0.2 38.7±0.3 19.5±0.2 38.7±0.3 49.0±0.4

CL-DETR (ours) Deformable DETR 37.5±0.3 55.1±0.4 40.3±0.2 20.9±0.2 40.8±0.4 50.7±0.2

Table 9.1: IOD results (%) on COCO 2017. In the A + B setup, in the first phase, we observe
a fraction A

A+B of the training samples with A categories annotated. Then, in the second
phase, we observe the remaining B

A+B of the training samples, where B new categories are
annotated. We test settings A + B = 40 + 40 and 70 + 10. Exemplar replay is applied for all
methods except for LwF [LH18]. We run experiments for three different categories and data
orders and report the average AP with 95% confidence interval.

9.3.4 Distribution-preserving calibration

ER methods, which store a small number of exemplars and replay them in future phases, are
shown to be effective in preserving the old category knowledge in IOD [JKKB21, LYR+

20], but
can suffer from the severe imbalance between old and new category annotations. Incremental
learning methods for classification [HPL+

19, LSS21a, WCW+
19] usually use re-balancing

strategies to address the imbalance problem. They create a category-balanced subset of
the data and finetune some model components (e.g., the classifier) on it. However, such
strategies do not apply directly to the IOD setting. First, the class distribution in detection is
far from balanced, and a better strategy is to match the natural data distribution instead of
the uniform one. Second, because there are multiple objects in each image, it is non-trivial
to create a subset of exemplar images with a set number of objects for each category. We
address these issues next.

Selecting exemplars to match the training distribution. Called during phase i, Algorithm 6

produces a new exemplar subset Ei whose distribution matches as well as possible the
distribution of categories in the subset Di of the data. This is achieved by adding to Ei a set
number Ri of one exemplar e∗ ∈ Di, one at a time, chosen by minimizing the Kullback-Leibler
divergence [KL51] between the category marginals of Ei and Di:

e∗ ← ∑
c∈Ci

pDi(c) log pEi∪{e}(c), (9.6)

where pD(c) denotes the probability of category c in dataset D. Then, the overall exemplar
set E1:i = Ei ∪ E1:i−1 is obtained as the union of the new subset just found and the previous
exemplar et E1:i−1. Because classes in different subsets Di are disjoint, this also means that,
by the end of training, the distribution of classes in E1:M approximates the one of the overall
training set D.

132 chapter 9. continual detection transformer

Learning using balanced data. In order to use the available data as well as possible while
balancing the detector Φ, in each phase we update it in two steps. In the first step, the model
is trained using the DKD loss on all the available data Di ∪ E1:i−1 given by the union of the
current data subset Di and the exemplar memory E1:i−1 carried over the previous training
phases. In the second step, the model is fine-tuned using the new exemplar set E1:i, ignoring
Di and using only the DETR loss, using less data but achieving better calibration. The overall
algorithm is given in Algorithm 5.

9.4 experiments

We evaluate CL-DETR on COCO 2017 using two transformer-based detectors, Deformable
DETR and UP-DETR [ZSL+

21, DCLC21] as the baselines, and achieve consistent improve-
ments compared to the baselines and a direct application of KD and ER. Below we describe
the dataset and implementation details (Section 9.4.1) followed by results and analyses
(Section 9.4.2).

9.4.1 Dataset and implementation details

Dataset and evaluation metrics. We conduct IOD experiments on COCO 2017 [LMB+
14],

which is widely used in related works [FWY22, PZM+
21, ZSL+

21, DCLC21]. Follow-
ing [FWY22], the standard COCO metrics are used for evaluation, i.e., AP, AP50, AP75,
APS, APM, and APL, In the ablation study, we introduce a new metric, forgetting percentage
points (FPP), measuring the difference between the AP of the first phase model and the last
phase model on the categories observed in the first phase.

Experiment setup. We conduct IOD experiments in the following setting. Two-phase
setting: In the A + B setup, in the first phase, we observe a fraction A

A+B of the training
samples with A categories annotated. Then, in the second phase, we observe the remaining

B
A+B of the training samples, where B new categories are annotated. We test settings
A + B = 40 + 40 and 70 + 10. Multiple-phase setting: In the 40 + X × Y setup, in the
first phase, we observe half of the training samples with 40 categories annotated. In each
following phase, we observe 1

2Y of the training samples we have never seen before with
annotations for X new categories. We run experiments for 40 + 20× 2 and 40 + 10× 4. We
repeat each experiment three times, randomizing the order of categories and data in the
different phases, and report the average APs. The total memory budget for the exemplars is
set as 10% of the total dataset size.

Implementation details. For all experiments, we utilize an ImageNet pre-trained ResNet-50

backbone, following [ZSL+
21, DCLC21]. For the experiments on Deformable DETR [ZSL+

21],
we use the standard configurations without their iterative bounding box refinement mecha-
nism and the two-stage Deformable DETR. We train the model for 50 (Deformable DETR)
and 150 epochs (UP-DETR), following the original implementations [ZSL+

21, DCLC21]. In
order to apply our distribution-preserving calibration (Section 9.3.4), we train the coarse
Deformable DETR (UP-DETR) model for 40 (120) epochs and perform calibration for 10 (30)
epochs to preserve the total number of epochs.

9.4 experiments 133

1 2 3 4 5
#phase (M=5)

0

10

20

A
P

(%
)

Upper bound CL-DETR (ours) ERD SID RILOD

1 32
#phase (40+20×2)

0

10

20

30

40

A
P

(%
)

1 2 3 4 5
#phase (40+10×4)

0

10

20

30

40

A
P

(%
)

1 3
0

20

40

60

A
P5

0
(%

)

2
#phase (40+20×2)

1 2 3 4 5
#phase (40+10×4)

0

20

40

60

A
P5

0
(%

)

Figure 9.3: IOD results (AP/AP50, %) on COCO 2017 in the 40 + 20× 2 and 40 + 10× 4
settings. Our method is based on Deformable DETR. Comparing methods: Upper Bound
(the results of joint training with all previous data accessible in each phase), ERD [FWY22],
SID [PZM+

21], and RILOD [LTG+
19]. The results of the related works are from [FWY22].

We use the same data split as [FWY22] for a fair comparison.

134 chapter 9. continual detection transformer

Row
Knowledge Joint Pseudo Exemplar Distribution All categories ↑
distillation bipartite label replay preserving

AP APS APM APL(KD) matching selection (ER) calibration

1 4.2 1.6 4.7 5.8
2 ✓ 24.5 12.4 28.2 35.2
3 ✓ ✓ 30.3 19.5 33.0 39.0
4 ✓ ✓ ✓ 33.9 16.3 37.1 49.2

5 ✓ ✓ ✓ ✓ 37.9 20.8 40.9 50.4
6 ✓ ✓ ✓ ✓ 40.1 23.2 43.2 52.1

Row
Knowledge Joint Pseudo Exemplar Distribution Old categories ↑
distillation bipartite label replay preserving

AP APS APM APL(KD) matching selection (ER) calibration

1 0.7 0.2 0.8 0.8
2 ✓ 24.0 12.3 27.7 34.4
3 ✓ ✓ 33.4 21.8 36.4 43.2
4 ✓ ✓ ✓ 33.9 16.6 36.8 50.0

5 ✓ ✓ ✓ ✓ 39.0 21.6 41.7 52.3
6 ✓ ✓ ✓ ✓ 41.8 24.5 44.7 54.6

Row
Knowledge Joint Pseudo Exemplar Distribution FPP ↓
distillation bipartite label replay preserving

AP APS APM APL(KD) matching selection (ER) calibration

1 42.6 25.6 45.1 56.7
2 ✓ 19.3 13.5 18.2 23.1
3 ✓ ✓ 9.9 4.0 9.5 14.3
4 ✓ ✓ ✓ 9.4 9.2 9.1 7.5

5 ✓ ✓ ✓ ✓ 4.3 4.2 4.2 5.2
6 ✓ ✓ ✓ ✓ 1.5 1.3 1.2 2.9

Table 9.2: Ablation results (%) for KD and ER, using Deformable DETR [ZSL+
21] on COCO

2017 in the 70 + 10 setting. “All categories” (higher is better) denote the results of the last
phase model on 80 categories. “Old categories” (higher is better) denote the results of the
last phase model on 70 categories observed in the first phase. “Forgetting percentage points
(FPP)” (lower is better) show the difference between the AP of the first-phase model and
the last-phase model on 70 categories observed in the first phase. The baseline (row 1) is
finetuning the model without IOD techniques. Our method (CL-DETR) is shown in row 6.

9.4 experiments 135

Row Setting AP AP50 AP75 APS APM APL

1 K=5 39.7 57.4 43.1 22.7 42.6 52.7
2 K=10 40.1 57.8 43.7 23.2 43.2 52.1
3 K=20 39.9 57.8 43.2 23.5 42.9 51.7

4 p≥0.1 39.3 57.1 42.9 22.6 42.3 52.5
5 p≥0.3 39.6 57.5 43.0 23.2 42.4 52.2
6 p≥0.5 39.2 56.8 42.4 22.3 41.9 51.8

Table 9.3: Ablation result (%) for different pseudo label selection strategies on COCO 2017

using the 70 + 10 setting. Rows 1–3 show the results for using different K when selecting
top-K most-confident non-background predictions. Rows 4–6 show the results for using
different thresholds p of the prediction scores to select the non-background predictions.

9.4.2 Results and analyses

Two-phase setting. Table 9.1 shows that, in the two-phase settings 70 + 10 and 40 + 40,
applying CL-DETR to Deformable DETR [ZSL+

21] and UP-DETR [DCLC21] consistently
performs better than the state-of-the-art [FWY22] and other IOD methods [LH18, RKSL17].
In particular, Deformable DETR [ZSL+

21] w/ ours achieves the highest AP, e.g., 40.1% and
37.5% in the 70 + 10 and 40 + 40 settings, respectively. The performance gap is larger when
we observe more categories in the 1-st phase. e.g., the AP differences between our method
and [FWY22] are 3.2 and 1.5 percentage points when we observe 70 and 40 categories in the
first phase, respectively. Likely due to CL-DETR benefiting more from a well-pre-trained
model.

Multiple-phase setting. Figure 3.4 evaluates CL-DETR in the multiple-phase setting with
large gains compared to other IOD methods in both the 40 + 20× 2 and 40 + 10× 4 ex-
perimental variants. The relative advantage of CL-DETR increases with the number of
phases. For instance, our method improves the AP of [FWY22] by 2.9 percentage points in
the 40 + 20× 2 setting and by 7.4 percentage points in the 40 + 10× 4 setting. This suggests
that the advantage of CL-DETR shows more in challenging settings, where the forgetting
problem is stronger due to the larger number of training phases.

Ablation study for DKD. In Table 9.2 (Rows 1–4) we ablate our DKD approach. By
comparing row 2 to row 1, we observe that classical KD significantly improves the IOD
performance compared to the baseline (i.e., finetuning the model without IOD techniques),
but still results in large overall forgetting: 19.3 FPP. Comparing row 3 to row 2, we can see
that joint bipartite matching works well and boosts the AP of all categories by 5.8 percentage
points compared to conventional KD. The reason is that joint bipartite matching helps ensure
a one-to-one matching between objects and hypotheses and discourages duplicate detections.
Comparing row 4 to row 3, our pseudo label selection further improves the AP and reduces
forgetting, helping the model to ignore the redundant background information and reducing
conflicts between old and new labels.

Ablation study for ER. In Table 9.2 (Rows 5–6), we ablate our ER method. Comparing
row 6 to row 5, we can see that the calibration strategy of Section 9.3.4 boosts both the

136 chapter 9. continual detection transformer

(a) (b) (c) (d)
Figure 9.4: Visualizations of the old category pseudo (blue) and ground-truth (green)
bounding boxes on COCO 2017 using the 70 + 10 setting. (a, b): Our method generates
accurate pseudo bounding boxes that exactly match the ground-truth ones. (c, d): When
there are too many annotations in the images, generated pseudo bounding boxes cannot
cover all ground-truth ones. However, the pseudo bounding boxes are still focused on the
foreground objects.

all-category and old-category performance, by 1.8 and 2.1 percentage points respectively,
compared to using conventional ER [RKSL17, LYR+

20]. It also helps to overcome the
catastrophic forgetting problem in IOD, reducing the AP forgetting by 2.1 percentage points.
This is because the conventional ER balances the sample distributions, changing the category
distribution of the training set, leading to inferior performance. Our method builds an
exemplar set following the original category distribution of the training set, thus improves
performance.

Ablation study for pseudo label selection strategies. In Table 9.3, we show the results for
two pseudo label selection strategies: (1) selecting top-K most-confident non-background
predictions (Rows 1–3); and (2) selecting the predictions using a threshold for the prediction
scores (Rows 4–6). We observe the first strategy works better, with peak AP when K=10. The
maximum performance difference is only 0.4 percentage points when using different values
for K. This indicates our method is robust to its hyperparameter settings.

Visualizations. Figure 9.4 visualizes the old category pseudo (blue) and ground-truth
(green) bounding boxes in some training samples in COCO 2017. In Fig. 9.4 (a,b), CL-DETR
generates accurate pseudo bounding boxes that exactly match the ground-truth ones. This
shows the effectiveness of our pseudo label selection strategy. In Fig. 9.4 (c,d), CL-DETR fails
to generate pseudo bounding boxes for all objects in the images when there are too many.
This is explained by our strategy of selecting the top-K most-confident non-background
bounding boxes as the pseudo-labels followed by removing the ones that overlap with
the new category ground-truth labels excessively. In this manner, the number of pseudo
bounding boxes is always smaller than K. The trade-off, justified by our improvements in the
experiments, is to prefer correct although possibly incomplete annotations than contradictory
or noisy ones.

9.5 conclusions

This chapter introduced CL-DETR, a novel IOD method that can effectively use KD and ER
in transformer-based detectors. CL-DETR improves the standard KD loss by introducing
DKD which selects the most informative predictions from the old model, rejecting redundant

9.5 conclusions 137

background predictions, and ensuring that the distilled information is consistent with the
new ground-truth evidence. CL-DETR also improves ER by selecting exemplars to match
the distribution of the training set. CL-DETR is fairly generic and can be easily applied
to different transformer-based detectors, including Deformable DETR [ZSL+

21] and UP-
DETR [DCLC21], achieving large improvements. We have also defined a more realistic IOD
benchmark protocol that avoids using duplicated images in different training phases. In the
future, we plan to extend our method to more challenging settings such as online learning.

10C O N C L U S I O N A N D
F U T U R E W O R K
Contents

10.1 Discussions of contributions . 140
10.1.1 Incremental learning . 140

10.1.2 Few-shot learning . 141

10.1.3 Incremental object learning . 142

10.2 Future directions . 142
10.2.1 Incremental learning . 142

10.2.2 Few-shot learning . 143

10.2.3 A broader view on the topic . 143

Significant progress has been made across various AI systems in recent years. Despite
the success, AI algorithms still can not work well when training with imperfect data,
e.g., continual data stream and limited labeled data. In contrast, human beings

naturally possess the ability to learn from the above challenging imperfect data scenarios.
This thesis aims to explore the following imperfect data scenarios:

• Incremental learning, i.e., the training data distribution changes while learning. In many
real scenarios, data are streaming, might disappear after a given period of time, or even
can’t be stored at all due to storage constraints or privacy issues. As a consequence, the old
knowledge is over-written, and this phenomenon is called catastrophic forgetting [Alj19].

• Few-shot learning, i.e., the annotations of the training data are sparse. Collecting and
manually labeling a large-scale amount of data can be very expensive and time-consuming.
There are also many scenarios where scientists do not have access to the specific large-scale
data of interest due to privacy and security reasons. As a consequence, the deep models
overfit the training data and are very likely to make wrong decisions when they encounter
rare circumstances [Yav20].

We tackle the above challenges based on the key idea, learning to learn/optimize, i.e.,
using advanced learning and optimization techniques to design data-driven methods to
dynamically adapt the key elements in AI algorithms, e.g., selection of data, memory alloca-
tion, network architecture, essential hyperparameters, and control of knowledge transfer. We
believe that the adaptive and dynamic design of system elements will significantly improve
the capability of deep learning systems under limited data or continual streams, compared
to the systems with fixed and non-optimized elements.

Our solutions are briefly summarized below.

• Incremental learning. In Part I, we study how to overcome the catastrophic forgetting
problem by learning to optimize exemplar data, combine neural networks, and allocate
memory. More specifically,

– In Chapter 3, we propose a novel training framework by leveraging bilevel optimization
to optimize a set of synthesized exemplar data to recall the old knowledge.

139

140 chapter 10. conclusion and future work

– In Chapter 4, we introduce a dynamic memory management strategy that learns to
allocate memory budgets for different object classes in different incremental learning
phases. The key technique is to utilize reinforcement learning to learn a policy to
allocate memory for each class.

– In Chapter 5, we develop a generic network architecture that learns to combine high-
stability and high-plasticity neural network blocks.

– In Chapter 6, we further balance the stability-plasticity trade-off for different data-
receiving settings of incremental learning by introducing an online learning method
that can adaptively optimize the tradeoff without knowing the setting as a priori.

• Few-shot learning. In Part II, we study how to improve the generalization ability of the
model and tackle the overfitting problem by learning to transfer knowledge and ensemble
deep models. Specifically,

– In Chapter 7, we design a meta-transfer learning framework that allows us to leverage
the transferrable pattern learned from existing large-scale tasks using meta-learning.

– In Chapter 8, we introduce a method that learns to ensemble deep models to reduce the
model uncertainty in few-shot learning.

The above AI algorithms are designed and evaluated based on the image classification
task. In order to migrate the gap between these AI algorithms and more realistic applications,
we further study the following topic in the thesis:

• Incremental object detection. In Part III, we apply incremental learning and few-shot
learning algorithms in more challenging real-world applications. Specifically,

– In Chapter 9, we propose a ContinuaL DEtection TRansformer (CL-DETR), a new
method for transformer-based incremental object detection that enables effective usage
of knowledge distillation and exemplar replay in a more realistic computer vision task,
object detection.

In the following, we discuss our detailed contributions and future perspectives.

10.1 discussions of contributions

10.1.1 Incremental learning

Natural learning systems, such as humans, inherently work incrementally as the number
of concepts increases over time. They naturally learn new concepts while not forgetting
previous ones. In contrast, when continuously updated using novel incoming data, current
machine learning systems suffer from catastrophic forgetting, as the updates can override
knowledge acquired from previous data. Catastrophic forgetting, thus, becomes a major
problem for incremental learning systems. Our solution falls into four aspects – data,
memory allocation, network architecture, and key hyperparameters.
Learning to optimize exemplar data. An intuitive approach to incremental learning is to
keep a small number of old samples (i.e., exemplars) for replay within memory constraints.
However, we found that the class boundaries learned from a few random or center exemplars

10.1 discussions of contributions 141

are weak in later training phases. We tackle this problem in Chapter 3, where we parameterize
and learn the exemplars by solving a bi-level program.

Learning to allocate memory. In incremental learning, most of the old class samples are
abandoned to free space for the next phase. The preserved data are exemplars used for
replaying. However, existing methods use a static and ad hoc strategy for memory allocation,
which is often sub-optimal. In Chapter 4, we introduce a memory management strategy
based on reinforcement learning to achieve dynamic memory allocation for each class.

Learning to aggregate neural networks adaptively. In incremental learning, high-plasticity
models easily forget old classes, but high-stability models are weak in learning new classes.
We alleviate this issue by proposing a novel network architecture called Adaptive Aggregation
Networks (AANets) Chapter 5, where we aggregate the feature maps from different network
branches by meta-learned weights.

Learning to optimize the hyperparameter online. None of the existing incremental learning
models can achieve the optimal trade-off in different data-receiving settings—where typically
the training-from-half (TFH) setting needs more stability, but the training-from-scratch (TFS)
needs more plasticity. To this end, in Chapter 6, we design an online learning method
that can adaptively optimize the tradeoff without knowing the setting as prior. Specifically,
we first introduce the key hyperparameters that influence the tradeoff, e.g., knowledge
distillation (KD) loss weights, learning rates, and classifier types. Then, we formulate the
hyperparameter optimization process as an online Markov Decision Process (MDP) problem
and propose a specific algorithm to solve it.

10.1.2 Few-shot learning

We expect the machine learning model can learn new concepts from a handful of training
examples, e.g., from 1 or 5 training images per class. Humans tend to be highly effective
in such a context, often grasping the essential connection between new concepts and their
own knowledge and experience, but this remains challenging for machine learning models.
Besides, in many real-world applications, we lack large-scale training data, e.g., in medical
image domains. It is thus desirable to improve machine models to handle few-shot settings.

Learning to transfer knowledge. One solution to few-shot learning is to leverage the
transferrable pattern learned from existing large-scale tasks. However, fine-tuning pre-
trained models on few-shot tasks often suffer from overfitting problem. In Chapter 7, we
tackle this issue by updating neuron-level scaling and shifting weight using meta-learning.
Our method helps deep neural networks converge faster while reducing the probability of
overfitting when training on a few labeled data only.

Learning to ensemble deep models. In few-shot learning, the model uncertainty is high
and often results in low performance. To tackle this issue, in Chapter 8, we proposed
a solution of training an ensemble of models and using the combined prediction, which
should be more robust. Furthermore, we use the sequence of base-learners while training
a single base-learner as the ensemble and learn how to weigh them for best performance
automatically.

142 chapter 10. conclusion and future work

10.1.3 Incremental object learning

Incremental object detection aims to train an object detector with the training samples for
different object categories observed in different phases [SSA17]. Similar to incremental
learning for image classification, the ability of the trainer to access past data is also restricted
in incremental object detection. Incremental object detection is more challenging compared
to incremental image classification because the catastrophic forgetting problem occurs in
both localization and classification.

Continual detection transformer. Chapter 9 introduced CL-DETR, a novel IOD method
that can effectively use KD and ER in transformer-based detectors. CL-DETR improves the
standard KD loss by introducing DKD which selects the most informative predictions from
the old model, rejecting redundant background predictions, and ensuring that the distilled
information is consistent with the new ground-truth evidence. CL-DETR also improves ER
by selecting exemplars to match the distribution of the training set. CL-DETR is fairly generic
and can be easily applied to different transformer-based detectors, including Deformable
DETR [ZSL+

21] and UP-DETR [DCLC21], achieving large improvements.

10.2 future directions

My past research has demonstrated great promise in applying learning to learn techniques to
standard classification models when facing limited or incrementally coming data. Looking
forward, We envision a future where learning to learn methods are scaled to more realistic
data settings and applied to more challenging vision tasks. To achieve this vision, below we
outline a few future directions we plan to pursue.

10.2.1 Incremental learning

Vision language pre-training for incremental learning. A good initial model is very
important to incremental learning performance [ZZC+

22]. Thus, how to obtain such an initial
model with accessible data is an open question for incremental learning. CLIP [RKH+

21] has
shown to be a very powerful pre-training strategy with only unlabeled vision and language
training data, which can be easily obtained in many real-world applications. Thus, we plan
to design an algorithm that can effectively pre-train the initial model with a CLIP-based
framework and transfer it to boost performance on the continual data stream. To achieve
this goal, we plan to leverage the ensemble of the Bayes models. My work [LSS20] can serve
as a good starting point.

Incremental 3D object detection. If we take a closer look at the typical learning setup, most
of the advances in 3D object detection have been realized using static images in an offline
learning setup. On the contrary, humans receive a continuous temporal stream of visual
data and train and test the model on the same visual data, which is an online continual
setting. Hence, we plan to design a practical object detection framework that can handle a
continual data stream without forgetting the learned knowledge. To achieve this goal, we
plan to leverage many unlabeled objects in the training samples and develop re-balancing
strategies for detection and segmentation. My work [LSS21a, LHL+

21] can serve as a good
starting point.

10.2 future directions 143

Cross-domain incremental learning. Despite the significant improvements that have been
made in the incremental learning field, few existing works explore how to train an incremen-
tal model with the training samples coming from different domains continuously. However,
we usually need to face the domain transfer problem in many real-world applications. Hence,
we plan to design an incremental learning algorithm that adapts to domain shifts. To achieve
this goal, we plan to leverage the learning to learn technique to adjust the key components,
e.g., hyperparameters, to adapt to different domains. My work [LLSS23a] can serve as a
good starting point.

10.2.2 Few-shot learning

Generic few-shot learning framework. Majority of existing few-shot learning methods
tackle specific visual tasks by using task-specific prior information. However, little attention
has been devoted to fundamental problems of exploring what makes it hard to transfer
few-shot learning techniques into real-world applications. Hence, we would like to exploit
generic few-shot learning frameworks that are applicable to different visual learning tasks,
such as 3D-scene geometry and medical imaging. Possible tools include meta-learning,
transfer learning, and neural architecture search. My work [LSS21a, LSS20, SLC+

22] can
serve as a good starting point. Furthermore, We are also enthusiastic about collaborating
with domain experts and designing algorithms based on specific domain knowledge.

Generalized few-shot learning. Existing few-shot learning algorithms mainly aim to achieve
high performance on the novel classes only. However, in many real-world applications, we
are interested in generalized few-shot learning, where the model has to predict both base
and novel classes. As we need to adapt the few-shot models to the novel classes without
losing the knowledge of the old classes, we plan to use the regularization techniques in
incremental learning to achieve our goal. My work [LSS21a, LLSS23a] can serve as a good
starting point.

Few-shot 3D object detection. In 3D-related tasks such as 3D object detection, we usually
need to face few-shot training data because it is difficult to collect high-quality 3D training
samples. Hence, we plan to design a practical object detection framework that can be trained
with limited labeled samples. To achieve this goal, we plan to adapt the episodic training
framework of meta-learning to 3D object detection. Thus, we can transfer knowledge from
another data source to boost the performance of our target 3D task. My work [SLC+

22] can
serve as a good starting point.

10.2.3 A broader view on the topic

Our long-term goal is to develop AI algorithms that work with imperfect training data.
Incremental learning and few-shot learning are simply two directions toward this goal. In the
future, we plan to explore other related topics, including semi-supervised and self-supervised
learning.
Semi-supervised and self-supervised learning. The main challenges in incremental learning
and few-shot learning come from lacking enough labeled data. Semi-supervised and self-
supervised learning are both two practical solutions for learning with limited labeled data.
While semi-supervised learning leverages unlabeled data in addition to labeled data, self-
supervised learning learns from a completely unlabeled dataset by solving other proxy tasks

144 chapter 10. conclusion and future work

that make use of the structure of the input data. Hence, I plan to improve class-incremental
learning and few-shot learning frameworks by incorporating semi-supervised and self-
supervised learning techniques. To achieve this goal, I plan to utilize and develop advanced
tools from online learning and reinforcement learning to control the usage of unlabeled data
in incremental learning and few-shot learning frameworks. My work [LSS21b, LHL+

21] can
serve as a good starting point.

L I S T O F F I G U R E S

3.1 The t-SNE [MH08] results of three exemplar methods in two phases. The
original data of 5 colored classes occur in the early phase. In each colored
class, deep-color points are exemplars, and light-color ones show the original
data as a reference of the real data distribution. Gray crosses represent other
participating classes, and each cross is for one class. We have two main
observations. (1) Our approach results in much clearer separation in the data,
than random (where exemplars are randomly sampled in the early phase)
and herding (where exemplars are nearest neighbors of the mean sample in
the early phase) [RKSL17, HPL+

19, WCW+
19, CMG+

18]. (2) Our learned
exemplars are mostly located on the boundaries between classes. 26

3.2 The computing flow of the proposed mnemonics training. It is a global BOP
that alternates the learning of mnemonics exemplars (we call exemplar-level
optimization) and CIL models (model-level optimization). The exemplar-level
optimization within each phase is detailed in Figure 3.3. Ẽ denotes the old
exemplars adjusted to the current phase. 30

3.3 The proposed local BOP framework that uses a uniform computing flow in (b)
to handle two cases of exemplar-level learning: training new class exemplars Ei
from Di; and adjusting old exemplars E0:i−1, with the data respectively given in
(a). Note that (1) EA

0:i−1 and EB
0:i−1 are used as the validation set alternately for

each other when adjusting E0:i−1; (2) E in (b) denote the mnemonics exemplars
which are Ei, EA

0:i−1, and EB
0:i−1 in Eq. 3.9, 3.10a and 3.10b, respectively. 31

3.4 Phase-wise accuracies (%). Light-color ribbons are visualized to show the
95% confidence intervals. Comparing methods: Upper Bound (the results
of joint training with all previous data accessible in each phase); LUCIR
(2019) [HPL+

19]; BiC (2019) [WCW+
19]; iCaRL (2017) [RKSL17]; and LwF

(2016) [LH18]. We show Ours results using “LUCIR w/ ours”. Please refer to
the average accuracy of each curve in Table 3.1. 35

(a) CIFAR-100 (100 classes). In the 0-th phase, Θ0 is trained on 50 classes,
the remaining classes are given evenly in the subsequent phases. 35

(b) ImageNet-Subset (100 classes). In the 0-th phase, Θ0 is trained on 50
classes, the remaining classes are given evenly in the subsequent phases. 35

(c) ImageNet (1000 classes). In the 0-th phase, Θ0 on is trained on 500
classes, the remaining classes are given evenly in the subsequent phases. 35

3.5 The t-SNE [MH08] results of herding and our mnemonics exemplars on two
datasets. N=5. In each colored class, deep-color points are exemplars, and
light-color ones are original data referring to the real data distribution. The
total number of classes (used in the training) is given in the top-left corner of
each sub-figure. For clear visualization, Phase-0 randomly picks 3 classes from
50 (500) classes on CIFAR-100 (ImageNet). Phase-2 and Phase-4 increases to 5
and 7 classes, respectively. 38

145

146 list of figures

4.1 (a) Existing CIL methods [HPL+
19, LSS21a, RKSL17] allocate memory be-

tween old and new classes in an arbitrary and frozen way, causing the data
imbalance between old and new classes and exacerbating the catastrophic
forgetting of old knowledge in the learned model. (b) Our proposed method—
Reinforced Memory Management (RMM)—is able to learn the optimal and
class-specific memory sizes in different incremental phases. Please note we
use orange, blue, and green dots to denote the samples observed in the (i-1)-th,
i-th, and (i+1)-th phases, respectively. 42

4.2 (a) In the i-th phase of the k-th pseudo CIL task, Level-1 policy πη takes si

as the input, and produces action a[1]i . Level-2 policy πϕ takes si and a[1]i as

the inputs, then produces action a[2]i . (b) For the k-th pseudo CIL task, we
allocate memory for N times (i.e., in N phases) using the policies πη and πϕ,
and compute the cumulative reward R. 46

4.3 Updating η and ϕ in one epoch. To get stable gradients for J(η, ϕ), we create
K different pseudo CIL tasks, and run each task for Z times. 47

4.4 The memory allocated for “Old” and “New” across different phases on CIFAR-
100. The second and fourth plots are enlarged versions of the first and
third plots, respectively. Solid and dashed lines denote old and new classes,
respectively. The baseline is POD-AANets [LSS21a]. “Two-level RL” and
“UpperBound RL” correspond to Row 3 and Row 5 in Table 4.2, respectively. 53

5.1 Conceptual illustrations of different CIL methods. (a) Conventional methods
use all available data (which are imbalanced among classes) to train the
model [RKSL17, HPL+

19] (b) Recent methods [CMG+
18, HPL+

19, DCO+
20,

LSL+
20] follow this convention but add a fine-tuning step on a balanced subset

of all classes. (c) The proposed Adaptive Aggregation Networks (AANets) is
a new architecture and it applies a different data strategy: using all available
data to update the parameters of plastic and stable blocks, and the balanced
set of exemplars to adapt the aggregation weights for these blocks. Our key
lies in that adapted weights can balance the usage of the plastic and stable
blocks, i.e., balance between plasticity and stability. *: herding is the method
to choose exemplars [Wel09], and can be replaced by others, e.g., mnemonics
training in [LSL+

20]. 57

5.2 An example architecture of AANets with three levels of residual blocks. At
each level, we compute the feature maps from a stable block (ϕ⊙ θbase, blue)
as well as a plastic block (η, orange), respectively, aggregate the maps with
adapted weights, and feed the result maps to the next level. The outputs of
the final level are used to train classifiers. We highlight that this is a logical
architecture of AANets, and in real implementations, we strictly control the
memory (i.e., the sizes of input data and residual blocks) within the same
budget as related works which deploy plain ResNets. Please refer to the
details in the section on experiments. 59

5.3 The activation maps using Grad-CAM [SCD+
17] for the 5-th phase (the last

phase) model on ImageNet-Subset (N=5). Samples are selected from the classes
coming in the 0-th phase (left), the 3-rd phase (middle), and the 5-th phase
(right), respectively. Green tick (red cross) means the discriminative features
are activated on the object regions successfully (unsuccessfully). ᾱη = 0.428
and ᾱϕ = 0.572. 66

list of figures 147

5.4 The values of αη and αϕ adapted for each residual level and in each incremental
phase. All curves are smoothed with a rate of 0.8 for better visualization. . . . 67

(a) CIFAR-100 (N=10) . 67

(b) ImageNet-Subset (N=10) . 67

(c) ImageNet (N=10) . 67

6.1 Average accuracy (%) on CIFAR-100 25-phase, using two data-receiving set-
tings: 1) training-from-half (TFH): a large amount of data is available before-
hand to pre-train the encoder; 2) training-from-scratch (TFS): classes come
evenly in each phase. Dark blue and orange indicate the baselines and our
method, respectively. Light-color circles are confidence intervals. Notice that
methods with strong KD losses, e.g., LUCIR [HPL+

19], AANets [LSS21a], and
RMM [LSS21b], tend to provide worse performance in TFS than TFH, while
methods with weak KD losses, e.g., iCaRL [RKSL17] and LwF [LH18], tend
to provide worse performance in TFH than TFS. Our method uses an online
learning algorithm to produce the key hyperparameters, e.g., KD loss weights
that control which KD losses are used. Thus, our method achieves the highest
performance in both TFS and TFH. 70

6.2 The computing flow of our method. We formulate the CIL task as an online
MDP: each phase in CIL is a stage in the MDP, and the CIL models are the
states. We train the policy to produce actions, which contain the hyperparam-
eters we use in the CIL training. We illustrate the training process of each
phase in Figure 6.3. 72

6.3 The training process of our online learning method in the i-th phase. It
includes policy learning and CIL training. (a) Policy learning. 1) We construct
a class-balanced subset from all training data as the local validation set and
use the remaining data as the local training set. 2) We initialize the temporary
model with Θi−1. 3) We sample an action using the current policy and deploy
the hyperparameters on the temporary model according to the action. 4) We
train it on the local training set for M1 epochs, and evaluate it on the local test
set. 5) We use the validation accuracy as the reward and update the policy. We
update the policy for T iterations by repeating Steps 2-5. (b) CIL training. We
sample an action using the learned policy and deploy the hyperparameters
on the CIL model. Then, we train the CIL model on all training data for M2
epochs. We set M1 = ⌈0.1M2⌉ to speed up the policy learning. 75

6.4 The activation maps using Grad-CAM [SCD+
17] for the last phase model

on ImageNet-Subset 5-phase. Samples are selected from the classes coming
in the 0-th, 3-rd, and 5-th phases. Green ticks mean successful activation of
discriminative features on object regions, while red crosses mean unsuccessful. 81

6.5 The hyperparameter values produced by our policy on CIFAR-100 25-phase
for LUCIR [HPL+

19] w/ ours. We smooth all curves with a rate of 0.8 for
better visualization. 82

148 list of figures

7.1 The pipeline of our proposed few-shot learning method, including: (a) DNN
pre-training on large-scale data, i.e. using the entire training dataset; and (b)
meta-transfer learning (MTL) that learns the parameters of Scaling and Shifting
(SS), on the basis of pre-trained feature extractor (Section 7.3.2). The learning
process is scheduled by the proposed HT meta-batch (Section 7.3.3) and
regularized by meta-gradient regularization (Section 7.3.4). In (c), it is meta-
test on unseen task whose processing consists of a base-learner (classifier)
Fine-Tuning (FT) stage and a final evaluation stage, described in the last
paragraph in Section 7.3.1. Input data are along with arrows. Modules with
names in bold get updated at corresponding phases. 88

7.2 Two kinds of meta operations on pre-trained weights. (a) Parameter-level
Fine-Tuning (FT) is a conventional meta-train operation used in related works
such as MAML [FAL17], ProtoNets [SSZ17] and RelationNets [SYZ+

18]. Its
update works for all neuron parameters, W and b. (b) Our neuron-level
Scaling and Shifting (SS) operations in MTL. They reduce the number of
learning parameters and avoid overfitting problems. In addition, they keep
large-scale trained parameters (in yellow) frozen, preventing “catastrophic
forgetting” [LR17, MC89]. 91

7.3 The computation flow of online hard task sampling. During an HT meta-batch
phase, the meta-training first goes through K random tasks then continues on
re-sampled K′ hard tasks. 92

7.4 The 5-way, 1-shot meta-validation accuracy plots on the FC100, using FT (pre-
trained ResNet-12 and MAML [FAL17]) and our MTL on different pre-trained
networks. Red curve uses the original meta-batch [FAL17] and others use our
proposed HT meta-batch. 103

(a) FT, ResNet-12 . 103

(b) SS, ResNet-12 . 103

(c) SS, ResNet-18 . 103

(d) SS, ResNet-25 . 103

8.1 Conceptual illustrations of the model adaptation on the blue, red and yellow
tasks. (a) MAML [FAL17] is the classical inductive method that meta-learns
a network initialization θ that is used to learn a single base-learner on each
task, e.g., Θa

3 in the blue task. (b) SIB [HMX+
20] is a transductive method

that formulates a variational posterior as a function of both labeled training
data T (tr) and unlabeled test data x(te). It also uses a single base-learner and
optimizes the learner by running several synthetic gradient steps on x(te). (c)
Our E3BM is a generic method that learns to combine the epoch-wise base-
learners (e.g., Θ1, Θ2, and Θ3), and to generate task-specific learning rates α
and combination weights v that encourage robust adaptation. Θ̄1:3 denotes
the ensemble result of three base-learners; Ψα and Ψv denote the hyperprior
learners learned to generate α and v, respectively. Note that figure (c) is based
on E3BM+MAML, i.e., plug-in our E3BM to MAML baseline. Other plug-in
versions are introduced in Sec. 8.3.5. 108

list of figures 149

8.2 The computing flow of the proposed E3BM approach in one meta-training
episode. For the meta-test task, the computation will be ended with predic-
tions. Hyper-learner predicts task-specific hyperparameters, i.e., learning rates
and multi-model combination weights. When its input contains x(te), it is
transductive, otherwise inductive. Its detailed architecture is given in Fig. 8.3. 111

8.3 Two options of hyperprior learner at the m-th base update epoch. In terms of
the mapping function, we deploy either FC layers to build epoch-independent
hyperprior learners, or LSTM to build an epoch-dependent learner. Values in
dashed box were learned from previous tasks. 112

8.4 (a)(b): The meta-validation accuracies of ablation models. The legends are
explained in (a1)-(a4) and (v1)-(v5) in Sec. 8.4.1 Ablation settings. All curves
are smoothed with a rate of 0.9 for better visualization. (c)(d): The values of α
and v generated by Ψα and Ψv, respectively. The setting is using MTL+E3BM,
ResNet-25, on miniImageNet, 1-shot. 119

(a) Val. acc. for α . 119

(b) Val. acc. for v . 119

(c) Values of α . 119

(d) Values of v . 119

9.1 The final Average Precision (AP, %) of two-phase incremental object detection
on COCO 2017. We observe 70 and 10 categories in the first and second
phases, respectively. The baseline is Deformable DETR [ZSL+

21]. “Upper
bound” shows the results of joint training with all previous data accessible in
each phase. 124

9.2 (a) Classical knowledge distillation. There are two issues when directly
applying KD [HVD15, LH18] to the transformer-based detectors [ZSL+

21,
CMS+20, DCLC21]. (i) Transformer-based detectors work by testing a large
number of object hypotheses in parallel. Because the number of hypotheses
is much larger than the typical number of objects in an image, most of
them are negative, resulting in an unbalanced KD loss. (ii) Because both
old and new object categories can co-exist in any given training image, the
KD loss and regular training objective can provide contradictory evidence.
(b) Detector knowledge distillation (ours). We select the most confident
foreground predictions from the old model and use them as pseudo labels. We
purposefully ignore background predictions because they are imbalanced and
they can contradict the labels of the new classes available in the current phase.
Then, we merge the pseudo labels for the old categories with the ground-truth
labels for the new categories and use bipartite matching to train the model on
the joint labels. This inherits the good properties of the original formulation
such as ensuring one-to-one matching between labels and hypotheses and
avoiding duplicate detections. 127

9.3 IOD results (AP/AP50, %) on COCO 2017 in the 40 + 20× 2 and 40 + 10× 4
settings. Our method is based on Deformable DETR. Comparing methods:
Upper Bound (the results of joint training with all previous data accessible in
each phase), ERD [FWY22], SID [PZM+

21], and RILOD [LTG+
19]. The results

of the related works are from [FWY22]. We use the same data split as [FWY22]
for a fair comparison. 133

150 list of figures

9.4 Visualizations of the old category pseudo (blue) and ground-truth (green)
bounding boxes on COCO 2017 using the 70 + 10 setting. (a, b): Our method
generates accurate pseudo bounding boxes that exactly match the ground-truth
ones. (c, d): When there are too many annotations in the images, generated
pseudo bounding boxes cannot cover all ground-truth ones. However, the
pseudo bounding boxes are still focused on the foreground objects. 136

L I S T O F TA B L E S

Tab. 3.1 Average accuracies Ā (%) and forgetting rates F (%) for the state-of-the-
art [HPL+

19] and other baseline architectures [LH18, RKSL17, WCW+
19]

with and without our mnemonics training approach as a plug-in module.
Let Dtest

i be the test data corresponding to Di in the i-th phase. Ai
denotes the average accuracy of Dtest

0:i by Θi. AZ
i is the average accuracy

of Dtest
0 by Θi in the i-th phase. Note that the weight transfer operations

are applied in “w/ ours” methods. 36

Tab. 3.2 Ablation study. The top and the bottom blocks present average accuracies
Ā (%) and forgetting rates F (%), respectively. “w/o adj.” means without
old exemplar adjustment. Note that the weight transfer operations are
applied in all these experiments. 37

Tab. 4.1 Average accuracies (%) across all phases using two state-of-the-art meth-
ods (LUCIR+AANets and POD+AANets [LSS21a]) w/ and w/o our RMM
plugged in. The upper block is for recent CIL methods. For fair compar-
ison, we re-implement these methods using our strict memory budget
(see “Memory Budget” in Section 4.4.1) based on the public code. 51

Tab. 4.2 The evaluation results in the ablation study (%). “T.P.” denotes our results
using the Policy functions Transferred from another dataset. “Avg”,
“Last”, and “Used” denote the average accuracy over all phases, the
last-phase accuracy, and the results used as ours in Table 4.1, respectively.
BaseRow is from the sota method POD-AANets [LSS21a]. Row 2 is for
learning Level-1 policy. Row 3 is for learning Level-1 and Level-2 policies
in a hierarchical way. Row 4 is for using Transferred Policies (from the
other dataset in the table), when RL is costly or impossible on target CIL
tasks. The bottom lines are two oracles: training the RL model on the
target CIL task (Row 5) and using cross-validation to find the best fixed
memory allocation between old and new classes (Row 6). 52

Tab. 5.1 Ablation study. The baseline (Row 1) is LUCIR [HPL+
19]. “all”, “scal-

ing”, and “frozen” denote three types of blocks and they have different
numbers of learnable parameters, e.g., “all” means all convolutional
weights and biases are learnable. If we name them as A, B, and C, we use
A+B in the table to denote the setting of using A-type and B-type blocks
respectively as plastic and stable blocks. See more details in Section 5.4.2
Ablation settings. Adapted α are applied on Rows 3-8. “all”+“scaling”
is the default setting of Rows 6-8. “#Param” indicates the number of
learnable parameters. “Memory” denotes the peak memory for storing
the exemplars and the learnable & frozen network parameters during
the model training through all phases. 63

151

152 list of tables

Tab. 5.2 Average incremental accuracies (%) of four state-of-the-art methods w/
and w/o our AANets as a plug-in architecture. In the upper block,
we present some comparable results reported in some other related
works. Please note 1) [DCO+

20] didn’t report the results for N=25

on the ImageNet, and we produce the results using their public code;
2) [LSL+

20] updated their results on arXiv (after fixing a bug in their
code), different from its conference version; 3) for “w/ AANets”, we use
“all”+“scaling” blocks corresponding to Row 3 of Table 5.1. 65

Tab. 6.1 Average accuracy (%) across all phases on CIFAR-100 and ImageNet-
Subset. The first block shows some recent CIL methods. The second
block shows three top-performing baselines [HPL+

19, LSS21a, LSS21b]
w/ and w/o our method plugged in. “TFH” and “TFS” denote the training-
from-half and training-from-scratch settings, respectively. “Avg.” shows the
average of the “TFH” and “TFS” results. For “AANets” [LSS21a], we use
its version based on PODNet [DCO+

20]. We rerun the baselines [LH18,
RKSL17, DCO+

20, YXH21, WZYZ22] using their open-source code in a
unified setting for a fair comparison. 78

Tab. 6.2 Average accuracy (%) on ImageNet-Full. 79

Tab. 6.3 Ablation results (average accuracy %) on CIFAR-100. (β, γ) are KD loss
weights. λ and δ denote learning rates and classifier types, respectively.
The baseline is LUCIR [HPL+

19]. Row 4 shows our best result. 80

Tab. 7.1 The 5-way, 1-shot and 5-shot classification accuracy (%) on miniImageNet,
for choosing the best architecture of base-learner (i.e., the classifier θ).
“meta-batch” and “ResNet-12 (pre)” are used. 97

Tab. 7.2 The 5-way, 1-shot and 5-shot classification accuracy (%) on miniImageNet
datasets. “pre” means including our pre-training step with all training
data points. The best and second best results are highlighted. Note
that (1) the standard variance is affected by the number of episode test
samples, and our sample splits are the same with MAML [FAL17]; and
(2) our methods with SS [Θ; θ] all use meta-gradient regularization. . . . 99

Tab. 7.3 The 5-way, 1-shot and 5-shot classification accuracy (%) on tieredImageNet
and FC100 datasets. “pre” means including our pre-training step with all
training datapoints. “by [*]” means the results were reported in [*]. “by
us” means our implementation using open-sourced code. The best and
second best results are highlighted. Note that (1) the standard variance
is affected by the number of episode test samples, and our sample splits
are the same with MAML [FAL17]; and (2) our methods with SS [Θ; θ]
all use meta-gradient regularization. 100

list of tables 153

Tab. 7.4 The 5-way, 1-shot and 5-shot classification accuracy (%) on miniImageNet
and tieredImageNet datasets. “meta-batch” and “ResNet-12 (pre)” are
used. “(tieredPre)” means the pre-training stage is finished on the
tieredImageNet. We implement the public code of related methods [FAL17,
SSZ17, VBL+

16, SYZ+
18, CLK+

19] in our framework by which we are
able to conduct different meta operations, i.e. FT [Θ; θ] and SS [Θ; θ].
The best and second best results are highlighted in each block. Note
that (1) cosine classifiers have been used in MatchingNets [SSZ17] and
Baseline++ [CLK+

19] for few-shot classification; and (2) MAML in this
table is not exactly the same with original MAML [FAL17], as it works on
deep neural networks and does not update convolutional layers during
base-training. 101

Tab. 7.5 Semi-supervised 5-way, 1-shot and 5-shot classification accuracy (%) on
mini and tiered. “meta-batch” and “ResNet-12 (pre)” are used. “w/D”
means additionally including the unlabeled data from 3 distracting
classes (5 unlabeled samples per class) that are excluded in the “5-way”
classes of the task [LLP+

19, RTR+
18, LSL+

19]. 102

Tab. 7.6 The 5-way, 1-shot and 5-shot classification accuracy (%) using abla-
tive models, on two datasets. “meta-batch” and “ResNet-12 (pre)” are
used. “(tieredPre)” means the pre-training stage is finished on the
tieredImageNet. The best and second best results are highlighted. 103

Tab. 7.7 Ablation results for the 5-way, 1-shot and 5-shot classification accuracy
(%) on miniImageNet and tieredImageNet datasets. “ResNet-12 (pre)” is
used. 104

(a) miniImageNet . 105

(b) miniImageNet . 105

Tab. 7.8 Statistical values of SS parameters, i.e. to see how much network pa-
rameters drifted after the meta-training using SS. The experiments are
conducted with the settings of ResNet-12, meta-batch, 5-way and 1-shot.
Scaling and Shifting parameters are counted with bin size 0.01 and 0.002,
respectively. Relative frequency of each SS value is computed. All dots
match a fit to the Gaussian distribution (y = y0 +

A
w
√

π/2
e−2(x−xc

w)2
). xc

and w are the values of mean and standard deviation, respectively. y0
and A are two parameters of the distribution to enable the exact fit. . . . 105

Tab. 8.1 The 5-class few-shot classification accuracies (%) on miniImageNet, tieredImageNet,
and FC100. “(+time, +param)” denote the additional computational time
(%) and parameter size (%), respectively, when plugging-in E3BM to base-
lines (MAML, MTL and SIB). “–” means no reported results in original
papers. The best and second best results are highlighted. 117

Tab. 8.2 The 5-class few-shot classification accuracies (%) of using different hyper-
prior learners, on the miniImageNet, tieredImageNet, and FC100. “Ind.”
and “Tra.” denote the inductive and transductive settings, respectively.
The best and second best results are highlighted. 118

154 list of tables

Tab. 9.1 IOD results (%) on COCO 2017. In the A + B setup, in the first phase,
we observe a fraction A

A+B of the training samples with A categories
annotated. Then, in the second phase, we observe the remaining B

A+B
of the training samples, where B new categories are annotated. We
test settings A + B = 40 + 40 and 70 + 10. Exemplar replay is applied
for all methods except for LwF [LH18]. We run experiments for three
different categories and data orders and report the average AP with 95%
confidence interval. 131

Tab. 9.2 Ablation results (%) for KD and ER, using Deformable DETR [ZSL+
21]

on COCO 2017 in the 70 + 10 setting. “All categories” (higher is bet-
ter) denote the results of the last phase model on 80 categories. “Old
categories” (higher is better) denote the results of the last phase model
on 70 categories observed in the first phase. “Forgetting percentage
points (FPP)” (lower is better) show the difference between the AP of the
first-phase model and the last-phase model on 70 categories observed
in the first phase. The baseline (row 1) is finetuning the model without
IOD techniques. Our method (CL-DETR) is shown in row 6. 134

Tab. 9.3 Ablation result (%) for different pseudo label selection strategies on
COCO 2017 using the 70 + 10 setting. Rows 1–3 show the results for
using different K when selecting top-K most-confident non-background
predictions. Rows 4–6 show the results for using different thresholds p
of the prediction scores to select the non-background predictions. 135

B I B L I O G R A P H Y

[AAB+
16] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian J. Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,
Sherry Moore, Derek Gordon Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A. Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda B. Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous distributed systems. arXiv, 1603.04467, 2016. Cited on pages 31 and 114.

[ABB+
18] Maruan Al-Shedivat, Trapit Bansal, Yura Burda, Ilya Sutskever, Igor Mordatch, and Pieter

Abbeel. Continuous adaptation via meta-learning in nonstationary and competitive
environments. In ICLR, 2018. Cited on pages 43 and 53.

[ABE+
18] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne

Tuytelaars. Memory aware synapses: Learning what (not) to forget. In ECCV, pages
144–161, 2018. Cited on page 15.

[ACBFS02] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic
multiarmed bandit problem. SIAM journal on computing, 32(1):48–77, 2002. Cited on
pages 5, 69, 71, 72, 75, and 76.

[ACT17] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong
learning with a network of experts. In CVPR, pages 3366–3375, 2017. Cited on page 3.

[AES19] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml. In
ICLR, 2019. Cited on pages 6, 19, 20, 86, 98, 99, 100, 108, 116, and 117.

[AG12] Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed
bandit problem. In COLT, volume 23, pages 39.1–39.26, 2012. Cited on pages 72 and 75.

[AKT19] Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning.
In CVPR, pages 11254–11263, 2019. Cited on pages 3 and 123.

[Alj19] Rahaf Aljundi. Continual learning in neural networks. PhD thesis, KU Leuven, Belgium,
2019. Cited on pages 1, 3, and 139.

[And08] Terry Anderson. The theory and practice of online learning. Athabasca University Press,
2008. Cited on page 71.

[AO10] Peter Auer and Ronald Ortner. Ucb revisited: Improved regret bounds for the stochastic
multi-armed bandit problem. Periodica Mathematica Hungarica, 61(1-2):55–65, 2010. Cited
on page 72.

[ATB+
20] Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone Calderara, Rita Cucchiara,

and Babak Ehteshami Bejnordi. Conditional channel gated networks for task-aware
continual learning. In CVPR, pages 3931–3940, 2020. Cited on pages 16 and 17.

[BB12] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13:281–305, 2012. Cited on page 109.

155

156 BIBLIOGRAPHY

[BBCG92] Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. On the optimization of a
synaptic learning rule. In Optimality in Artificial and Biological Neural Networks, pages
6–8. Univ. of Texas, 1992. Cited on pages 6 and 86.

[Ben00] Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural Computation,
12(8):1889–1900, 2000. Cited on page 110.

[BHTV19] Luca Bertinetto, João F. Henriques, Philip H. S. Torr, and Andrea Vedaldi. Meta-learning
with differentiable closed-form solvers. In ICLR, 2019. Cited on pages 18 and 99.

[Bis06] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006. Cited on
page 46.

[BKM17] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859–877, 2017. Cited
on page 112.

[BLCW09] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum
learning. In ICML, pages 41–48, 2009. Cited on pages 87 and 88.

[BP19] Eden Belouadah and Adrian Popescu. Il2m: Class incremental learning with dual
memory. In CVPR, pages 583–592, 2019. Cited on pages 16 and 70.

[BPRS18] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. JMLR, 18:1–43, 2018.
Cited on page 72.

[BRCŚ+17] Matthias Bauer, Mateo Rojas-Carulla, Jakub Bartlomiej Światkowski, Bernhard
Schölkopf, and Richard E Turner. Discriminative k-shot learning using probabilis-
tic models. arXiv, 1706.00326, 2017. Cited on pages 19 and 99.

[Bre96] Leo Breiman. Stacked regressions. Machine Learning, 24(1):49–64, 1996. Cited on pages
108 and 110.

[BV18] Sergey Bartunov and Dmitry P. Vetrov. Few-shot generative modelling with generative
matching networks. In AISTATS, pages 670–678, 2018. Cited on page 86.

[Car95] Rich Caruana. Learning many related tasks at the same time with backpropagation. In
NIPS, pages 657–664, 1995. Cited on page 108.

[CDAT18] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr.
Riemannian walk for incremental learning: Understanding forgetting and intransigence.
In ECCV, pages 532–547, 2018. Cited on page 15.

[CF16] Olivier Canévet and François Fleuret. Large scale hard sample mining with monte carlo
tree search. In CVPR, pages 5128–5137, 2016. Cited on page 89.

[CGS16] Tianqi Chen, Ian J. Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning
via knowledge transfer. In Yoshua Bengio and Yann LeCun, editors, ICLR, 2016. Cited
on page 44.

[Cha20] Arslan Chaudhry. Continual Learning for Efficient Machine Learning. PhD thesis, University
of Oxford, UK, 2020. Cited on page 3.

[CL18] Zhiyuan Chen and Bing Liu. Lifelong machine learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 12(3):1–207, 2018. Cited on page 3.

[CLK+
19] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Wang, and Jia-Bin Huang. A closer

look at few-shot classification. In ICLR, 2019. Cited on pages 18, 101, 102, and 153.

BIBLIOGRAPHY 157

[CMG+
18] Francisco M. Castro, Manuel J. Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and

Karteek Alahari. End-to-end incremental learning. In ECCV, pages 241–257, 2018. Cited
on pages 3, 15, 17, 20, 26, 30, 34, 37, 56, 57, 79, 124, 145, and 146.

[CMS+20] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov,
and Sergey Zagoruyko. End-to-end object detection with transformers. In ECCV, pages
213–229, 2020. Cited on pages 124, 125, 126, 127, 128, and 149.

[CPK+
18] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L.

Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40(4):834–848, 2018. Cited on page 88.

[CRRE19] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny.
Efficient lifelong learning with a-gem. In ICLR, 2019. Cited on pages 3 and 14.

[CUH16] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). In ICLR, 2016. Cited on pages 5

and 86.

[CYC19] Li Chen, Chunyan Yu, and Lvcai Chen. A new knowledge distillation for incremental
object detection. In IJCNN, pages 1–7, 2019. Cited on page 21.

[DCLC21] Zhigang Dai, Bolun Cai, Yugeng Lin, and Junying Chen. UP-DETR: Unsupervised
pre-training for object detection with transformers. In CVPR, pages 1601–1610, 2021.
Cited on pages 8, 21, 123, 124, 125, 126, 127, 132, 135, 137, 142, and 149.

[DCO+
20] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle.

Podnet: Pooled outputs distillation for small-tasks incremental learning. In ECCV, 2020.
Cited on pages 3, 4, 5, 14, 15, 17, 20, 42, 44, 47, 50, 51, 56, 57, 58, 60, 62, 64, 65, 66, 73, 74,
78, 79, 124, 146, and 152.

[Dom12] Justin Domke. Generic methods for optimization-based modeling. In AISTATS, pages
318–326, 2012. Cited on page 110.

[DSM19] Nikita Dvornik, Cordelia Schmid, and Julien Mairal. Diversity with cooperation: En-
semble methods for few-shot classification. In ICCV, pages 10275–10284, 2019. Cited
on pages 18, 110, 113, 117, and 118.

[DSP+
19] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa.

Learning without memorizing. In CVPR, pages 5138–5146, 2019. Cited on page 15.

[DT05] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In CVPR, pages 886–893, 2005. Cited on page 89.

[EBC+
10] Dumitru Erhan, Yoshua Bengio, Aaron C. Courville, Pierre-Antoine Manzagol, Pascal

Vincent, and Samy Bengio. Why does unsupervised pre-training help deep learning?
Journal of Machine Learning Research, 11:625–660, 2010. Cited on page 88.

[EDKM05] Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. Experts in a markov decision
process. In NIPS, pages 401–408, 2005. Cited on pages 72, 75, and 76.

[EDKM09] Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. Online markov decision processes.
Mathematics of Operations Research, 34(3):726–736, 2009. Cited on pages 71, 72, and 76.

[FAL17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In ICML, pages 1126–1135, 2017. Cited on pages 6, 7, 17,
18, 19, 20, 27, 30, 56, 86, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 148, 152, and 153.

158 BIBLIOGRAPHY

[FFS+18] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano
Pontil. Bilevel programming for hyperparameter optimization and meta-learning. In
ICML, pages 1563–1572, 2018. Cited on pages 6, 7, 19, 72, 80, 81, 86, 87, 95, 99, 108,
and 110.

[Fri02] Jerome H Friedman. Stochastic gradient boosting. Computational Statistics & Data
Analysis, 38(4):367–378, 2002. Cited on page 110.

[FS97] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119–
139, 1997. Cited on page 110.

[FWY22] Tao Feng, Mang Wang, and Hangjie Yuan. Overcoming catastrophic forgetting in
incremental object detection via elastic response distillation. In CVPR, pages 9427–9436,
2022. Cited on pages 7, 20, 21, 123, 125, 126, 131, 132, 133, 135, and 149.

[FXL18] Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning.
In NeurIPS, pages 9537–9548, 2018. Cited on pages 6, 19, 86, 108, 109, and 114.

[GBM+
17] Alex Graves, Marc G. Bellemare, Jacob Menick, Rémi Munos, and Koray Kavukcuoglu.

Automated curriculum learning for neural networks. In ICML, pages 1311–1320, 2017.
Cited on page 88.

[GFL+
18] Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas L. Griffiths.

Recasting gradient-based meta-learning as hierarchical bayes. In ICLR, 2018. Cited on
pages 6, 19, 86, 95, 99, and 108.

[Gir15] Ross Girshick. Fast r-cnn. In ICCV, pages 1440–1448, 2015. Cited on page 20.

[GLK20] Qiang Gao, Zhipeng Luo, and Diego Klabjan. Efficient architecture search for continual
learning. arXiv, 2006.04027, 2020. Cited on page 44.

[Glo00] Pierre Yves Glorennec. Reinforcement learning: An overview. In Proceedings European
Symposium on Intelligent Techniques (ESIT-00), Aachen, Germany, pages 14–15. Citeseer,
2000. Cited on page 45.

[GPAM+
14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, pages
2672–2680, 2014. Cited on pages 16, 27, 57, and 60.

[GPAM+
20] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139–144, 2020. Cited on page 15.

[Ham13] John Hammersley. Monte carlo methods. Springer Science & Business Media, 2013. Cited
on page 48.

[HBWP13] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic varia-
tional inference. The Journal of Machine Learning Research, 14(1):1303–1347, 2013. Cited
on page 112.

[HCB+
19] Ruibing Hou, Hong Chang, MA Bingpeng, Shiguang Shan, and Xilin Chen. Cross

attention network for few-shot classification. In NeurIPS, pages 4005–4016, 2019. Cited
on pages 18, 115, 116, and 117.

[HFJT19] Yu Hao, Yanwei Fu, Yu-Gang Jiang, and Qi Tian. An end-to-end architecture for class-
incremental object detection with knowledge distillation. In ICME, pages 1–6, 2019.
Cited on page 21.

BIBLIOGRAPHY 159

[HFLR19] Shenyang Huang, Vincent François-Lavet, and Guillaume Rabusseau. Neural architec-
ture search for class-incremental learning. arXiv, 1909.06686, 2019. Cited on pages 4

and 44.

[HGDG17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. In
ICCV, pages 2980–2988, 2017. Cited on page 88.

[HHL11] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. In LION, pages 507–523, 2011. Cited
on page 109.

[HKC+
17] Ben Harwood, Vijay Kumar, Gustavo Carneiro, Ian Reid, and Tom Drummond. Smart

mining for deep metric learning. In ICCV, pages 2840–2848, 2017. Cited on page 89.

[HLP+
17] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q

Weinberger. Snapshot ensembles: Train 1, get m for free. In ICLR, 2017. Cited on page
110.

[HMX+
20] Shell Xu Hu, Pablo G Moreno, Xi Shen1 Yang Xiao, Neil D Lawrence, Guillaume

Obozinski, Andreas Damianou, and France Champs-sur Marne. Empirical bayes meta-
learning with synthetic gradients. In ICLR, 2020. Cited on pages 6, 7, 19, 20, 86, 87, 96,
98, 99, 100, 108, 109, 112, 113, 115, 116, 117, 118, and 148.

[Ho95] Tin Kam Ho. Random decision forests. In ICDAR, volume 1, pages 278–282, 1995. Cited
on page 110.

[HPL+
19] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a

unified classifier incrementally via rebalancing. In CVPR, pages 831–839, 2019. Cited
on pages 3, 5, 14, 15, 17, 20, 26, 27, 28, 30, 34, 35, 36, 37, 42, 44, 47, 50, 51, 56, 57, 58, 60,
61, 62, 63, 64, 65, 66, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 124, 125, 126, 131, 145, 146, 147,
151, and 152.

[HRS+17] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza
Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, and Kevin Murphy.
Speed/accuracy trade-offs for modern convolutional object detectors. In CVPR, pages
3296–3297, 2017. Cited on page 88.

[HTM+
21] Xinting Hu, Kaihua Tang, Chunyan Miao, Xian-Sheng Hua, and Hanwang Zhang.

Distilling causal effect of data in class-incremental learning. In CVPR, 2021. Cited on
pages 3, 14, 42, 44, 47, 51, 58, 73, 79, and 124.

[HTW+
19] Steven C. Y. Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan,

and Chu-Song Chen. Compacting, picking and growing for unforgetting continual
learning. In NeurIPS, pages 13647–13657, 2019. Cited on page 16.

[HVD15] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural
network. arXiv, 1503.02531, 2015. Cited on pages 7, 14, 28, 74, 127, 128, and 149.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In CVPR, pages 770–778, 2016. Cited on pages 34, 50, 56, 58, 62, 79,
86, and 96.

[HZZ+
19] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag

of tricks for image classification with convolutional neural networks. In CVPR, pages
558–567, 2019. Cited on page 118.

[IBM20] IBM. Artificial intelligence (AI). https://www.ibm.com/cloud/learn/
what-is-artificial-intelligence, 2020. Cited on page 1.

https://www.ibm.com/cloud/learn/what-is-artificial-intelligence
https://www.ibm.com/cloud/learn/what-is-artificial-intelligence

160 BIBLIOGRAPHY

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In ICML, pages 448–456, 2015. Cited on
page 96.

[IZLS20] Ahmet Iscen, Jeffrey Zhang, Svetlana Lazebnik, and Cordelia Schmid. Memory-efficient
incremental learning through feature adaptation. In ECCV, pages 699–715, 2020. Cited
on page 16.

[JBvdL18] Cheng Ju, Aurélien Bibaut, and Mark van der Laan. The relative performance of
ensemble methods with deep convolutional neural networks for image classification.
Journal of Applied Statistics, 45(15):2800–2818, 2018. Cited on pages 108 and 110.

[JDO+
17] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Don-

ahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha
Fernando, and Koray Kavukcuoglu. Population based training of neural networks.
arXiv, 1711.09846, 2017. Cited on page 109.

[JKK+
22] K. J. Joseph, Salman Khan, Fahad Shahbaz Khan, Rao Muhammad Anwer, and Vineeth N

Balasubramanian. Energy-based latent aligner for incremental learning. In CVPR, pages
7452–7461, 2022. Cited on pages 14, 15, and 55.

[JKKB21] K. J. Joseph, Salman H. Khan, Fahad Shahbaz Khan, and Vineeth N. Balasubramanian.
Towards open world object detection. In CVPR, pages 5830–5840, 2021. Cited on pages
21 and 131.

[JL20] Hong-Gyu Jung and Seong-Whan Lee. Few-shot learning with geometric constraints.
IEEE Transactions on Neural Networks and Learning Systems, 2020. Cited on page 108.

[JLLP20] Kaiyi Ji, Jason D Lee, Yingbin Liang, and H Vincent Poor. Convergence of meta-learning
with task-specific adaptation over partial parameters. NeurIPS, pages 11490–11500, 2020.
Cited on page 6.

[JRK+
21] K. J. Joseph, Jathushan Rajasegaran, Salman Khan, Fahad Shahbaz Khan, and Vineeth N

Balasubramanian. Incremental object detection via meta-learning. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2021. Cited on page 123.

[JZL+
18] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet:

Learning data-driven curriculum for very deep neural networks on corrupted labels. In
ICML, pages 2309–2318, 2018. Cited on page 89.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv,
1412.6980, 2014. Cited on page 97.

[KBI+17] Anna Khoreva, Rodrigo Benenson, Eddy Ilg, Thomas Brox, and Bernt Schiele. Lucid
data dreaming for object tracking. arXiv, 1703.09554, 2017. Cited on page 86.

[KGL17] Nitin Kamra, Umang Gupta, and Yan Liu. Deep generative dual memory network for
continual learning. arXiv, 1710.10368, 2017. Cited on page 16.

[KH+
09] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny

images. Technical report, Citeseer, 2009. Cited on pages 34, 50, 62, and 79.

[KK18] Ronald Kemker and Christopher Kanan. Fearnet: Brain-inspired model for incremental
learning. In ICLR, 2018. Cited on page 16.

[KKKY19] Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang D Yoo. Edge-labeling graph
neural network for few-shot learning. In CVPR, pages 11–20, 2019. Cited on page 117.

BIBLIOGRAPHY 161

[KL51] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86, 1951. Cited on page 131.

[KMA+
18] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L. Hayes, and Christopher

Kanan. Measuring catastrophic forgetting in neural networks. In AAAI, pages 3390–3398,
2018. Cited on pages 26 and 56.

[KPK10] M. Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent
variable models. In NIPS, pages 1189–1197, 2010. Cited on page 88.

[KPR+
17] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Des-

jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neural networks. PNAS, pages
3521–3526, 2017. Cited on pages 15 and 123.

[Kri09] Alex Krizhevsky. Learning multiple layers of features from tiny images. University of
Toronto, 2009. Cited on pages 95 and 116.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. In NIPS, pages 1097–1105, 2012. Cited on page
108.

[Kuh55] Harold W Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955. Cited on page 128.

[KvHW19] Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline
for free! In ICLR Workshops, 2019. Cited on page 48.

[KVSN18] Rohit Keshari, Mayank Vatsa, Richa Singh, and Afzel Noore. Learning structure and
strength of CNN filters for small sample size training. In CVPR, pages 9349–9358, 2018.
Cited on page 88.

[KW03] Ludmila I. Kuncheva and Christopher J. Whitaker. Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy. Machine Learning, 51(2):181–
207, 2003. Cited on page 110.

[KW14] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.
Cited on page 112.

[LA17] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In
ICLR, 2017. Cited on page 110.

[LAM+
22] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis,

Gregory G. Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying
forgetting in classification tasks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(7):3366–3385, 2022. Cited on page 3.

[LC18] Yoonho Lee and Seungjin Choi. Gradient-based meta-learning with learned layerwise
metric and subspace. In ICML, pages 2933–2942, 2018. Cited on pages 19, 86, 99,
and 108.

[LCL19] Yingying Li, Xin Chen, and Na Li. Online optimal control with linear dynamics and
predictions: Algorithms and regret analysis. In NeurIPS, pages 14858–14870, 2019. Cited
on pages 26 and 43.

[LDM+
19] Huai-Yu Li, Weiming Dong, Xing Mei, Chongyang Ma, Feiyue Huang, and Bao-Gang

Hu. Lgm-net: Learning to generate matching networks for few-shot learning. In ICML,
pages 3825–3834, 2019. Cited on pages 18, 19, and 99.

162 BIBLIOGRAPHY

[LDT+
21] Wenbin Li, Chuanqi Dong, Pinzhuo Tian, Tiexin Qin, Xuesong Yang, Ziyi Wang, Huo

Jing, Yinghuan Shi, Lei Wang, Yang Gao, and Jiebo Luo. Libfewshot: A comprehensive
library for few-shot learning. arXiv, 2109.04898, 2021. Cited on page 86.

[LED+
19] Hongyang Li, David Eigen, Samuel Dodge, Matthew Zeiler, and Xiaogang Wang.

Finding task-relevant features for few-shot learning by category traversal. In CVPR,
pages 1–10, 2019. Cited on pages 19, 96, 99, 100, and 117.

[Les20] Timothée Lesort. Apprentissage continu : S’attaquer à l’oubli foudroyant des réseaux de
neurones profonds grâce aux méthodes à rejeu de données. (Continual Learning : Tackling
Catastrophic Forgetting in Deep Neural Networks with Replay Processes). PhD thesis, Institut
Polytechnique de Paris, France, 2020. Cited on pages 1 and 3.

[LFP06] Fei-Fei Li, Robert Fergus, and Pietro Perona. One-shot learning of object categories.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4):594–611, 2006. Cited
on pages 86 and 108.

[LH18] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(12):2935–2947, 2018. Cited on pages 3, 14, 17, 20,
26, 28, 32, 34, 35, 36, 37, 51, 56, 70, 74, 78, 124, 127, 128, 131, 135, 145, 147, 149, 151, 152,
and 154.

[LHL+
21] Xinzhe Li, Jianqiang Huang, Yaoyao Liu, Qin Zhou, Shibao Zheng, Bernt Schiele,

and Qianru Sun. Learning to teach and learn for semi-supervised few-shot image
classification. Computer Vision and Image Understanding, 212:103270, 2021. Cited on
pages 11, 142, and 144.

[LJD+
17] Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar.

Hyperband: A novel bandit-based approach to hyperparameter optimization. Journal of
Machine Learning Research, 18:185:1–185:52, 2017. Cited on page 109.

[LKJ+17] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang.
Overcoming catastrophic forgetting by incremental moment matching. In NIPS, pages
4652–4662, 2017. Cited on page 15.

[LL19] Yingying Li and Na Li. Online learning for markov decision processes in nonstationary
environments: A dynamic regret analysis. In ACC, pages 1232–1237. IEEE, 2019. Cited
on page 43.

[LLP+
19] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, and Yi Yang. Learning to propagate

labels: Transductive propagation network for few-shot learning. In ICLR, 2019. Cited
on pages 18, 94, 95, 98, 99, 100, 102, 116, and 153.

[LLSS23a] Yaoyao Liu, Yingying Li, Bernt Schiele, and Qianru Sun. Online hyperparameter
optimization for class-incremental learning. In AAAI, 2023. Cited on pages 4, 10, 11, 69,
and 143.

[LLSS23b] Zilin Luo, Yaoyao Liu, Bernt Schiele, and Qianru Sun. Class-incremental exemplar
compression for class-incremental learning. In CVPR, 2023. Cited on page 12.

[LMB+
14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,

Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In
ECCV, pages 740–755, 2014. Cited on pages 20, 126, and 132.

[LMRS19] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-
learning with differentiable convex optimization. In CVPR, pages 10657–10665, 2019.
Cited on pages 6, 19, 86, 96, 98, 99, 100, 116, and 117.

BIBLIOGRAPHY 163

[LPR17] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual
learning. In NIPS, pages 6467–6476, 2017. Cited on page 15.

[LR17] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual
learning. In NIPS, pages 6467–6476, 2017. Cited on pages 3, 87, 91, 92, and 148.

[LRBG16] Jelena Luketina, Tapani Raiko, Mathias Berglund, and Klaus Greff. Scalable gradient-
based tuning of continuous regularization hyperparameters. In ICML, pages 2952–2960,
2016. Cited on page 110.

[LSA21] Michalis Lazarou, Tania Stathaki, and Yannis Avrithis. Iterative label cleaning for
transductive and semi-supervised few-shot learning. In CVPR, pages 8751–8760, 2021.
Cited on page 107.

[LSH+
21] Yaoyao Liu, Qianru Sun, Xiangnan He, An-An Liu, Yuting Su, and Tat-Seng Chua.

Generating face images with attributes for free. IEEE Transactions on Neural Networks and
Learning Systems, 32(6):2733–2743, 2021. Cited on page 11.

[LSL+
19] Xinzhe Li, Qianru Sun, Yaoyao Liu, Qin Zhou, Shibao Zheng, Tat-Seng Chua, and Bernt

Schiele. Learning to self-train for semi-supervised few-shot classification. In NeurIPS,
pages 10276–10286, 2019. Cited on pages 6, 27, 57, 86, 94, 95, 102, and 153.

[LSL+
20] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and Qianru Sun. Mnemonics training:

Multi-class incremental learning without forgetting. In CVPR, pages 12245–12254, 2020.
Cited on pages 3, 4, 5, 9, 11, 14, 25, 44, 50, 51, 56, 57, 58, 60, 61, 62, 64, 65, 66, 73, 74, 79,
86, 88, 110, 124, 125, 126, 146, and 152.

[LSS20] Yaoyao Liu, Bernt Schiele, and Qianru Sun. An ensemble of epoch-wise empirical bayes
for few-shot learning. In ECCV, pages 404–421, 2020. Cited on pages 10, 57, 107, 142,
and 143.

[LSS21a] Yaoyao Liu, Bernt Schiele, and Qianru Sun. Adaptive aggregation networks for class-
incremental learning. In CVPR, 2021. Cited on pages 5, 9, 11, 41, 42, 47, 50, 51, 52, 53,
55, 70, 71, 74, 78, 79, 80, 131, 142, 143, 146, 147, 151, and 152.

[LSS21b] Yaoyao Liu, Bernt Schiele, and Qianru Sun. Rmm: Reinforced memory management for
class-incremental learning. In NeurIPS, pages 3478–3490, 2021. Cited on pages 3, 5, 9,
11, 41, 69, 70, 71, 72, 74, 78, 79, 80, 81, 124, 144, 147, and 152.

[LSVR23] Yaoyao Liu, Bernt Schiele, Andrea Vedaldi, and Christian Rupprecht. Continual detection
transformer for incremental object detection. In CVPR, 2023. Cited on pages 11 and 123.

[LTG+
19] Dawei Li, Serafettin Tasci, Shalini Ghosh, Jingwen Zhu, Junting Zhang, and Larry P.

Heck. RILOD: near real-time incremental learning for object detection at the edge. In
Songqing Chen, Ryokichi Onishi, Ganesh Ananthanarayanan, and Qun Li, editors, SEC,
pages 113–126, 2019. Cited on pages 133 and 149.

[LWM+
20] Xialei Liu, Chenshen Wu, Mikel Menta, Luis Herranz, Bogdan Raducanu, Andrew D

Bagdanov, Shangling Jui, and Joost van de Weijer. Generative feature replay for class-
incremental learning. In CVPR Workshops, pages 226–227, 2020. Cited on pages 3

and 124.

[LWW+
20] Xiang Li, Wenhai Wang, Lijun Wu, Shuo Chen, Xiaolin Hu, Jun Li, Jinhui Tang, and

Jian Yang. Generalized focal loss: Learning qualified and distributed bounding boxes
for dense object detection. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, NeurIPS, 2020. Cited on pages 20

and 21.

164 BIBLIOGRAPHY

[LWZ+
21] Fanfan Liu, Haoran Wei, Wenzhe Zhao, Guozhen Li, Jingquan Peng, and Zihao Li.

WB-DETR: Transformer-based detector without backbone. In ICCV, pages 2979–2987,
2021. Cited on page 126.

[LYR+
20] Xialei Liu, Hao Yang, Avinash Ravichandran, Rahul Bhotika, and Stefano Soatto. Multi-

task incremental learning for object detection. arXiv, 2002.05347, 2020. Cited on pages
21, 131, and 136.

[LZCL17] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly
for few shot learning. arXiv, 1707.09835, 2017. Cited on pages 7, 87, and 110.

[LZQL19] Yingying Li, Aoxiao Zhong, Guannan Qu, and Na Li. Online markov decision processes
with time-varying transition probabilities and rewards. In ICML workshop on Real-world
Sequential Decision Making, 2019. Cited on pages 43 and 72.

[MBB13] Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. The stability-plasticity
dilemma: Investigating the continuum from catastrophic forgetting to age-limited
learning effects. Frontiers in Psychology, 4:504, 2013. Cited on page 56.

[MC89] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist
networks: The sequential learning problem. In Psychology of Learning and Motivation,
volume 24, pages 109–165. Elsevier, 1989. Cited on pages 26, 42, 56, 70, 87, 91, 92, 123,
and 148.

[MD17] Akshay Mehrotra and Ambedkar Dukkipati. Generative adversarial residual pairwise
networks for one shot learning. arXiv, 1703.08033, 2017. Cited on pages 86 and 99.

[MDA15] Dougal Maclaurin, David K. Duvenaud, and Ryan P. Adams. Gradient-based hyper-
parameter optimization through reversible learning. In ICML, pages 2113–2122, 2015.
Cited on page 110.

[MH93] K. McRae and P. Hetherington. Catastrophic interference is eliminated in pre-trained
networks. In CogSci, 1993. Cited on pages 26, 42, 56, 70, and 123.

[MH08] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(Nov):2579–2605, 2008. Cited on pages 26, 38, and 145.

[Mit97] TM Mitchell. Machine learning, mcgraw-hill higher education. New York, 1997. Cited
on page 110.

[MLT+
20] Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel Menta, Andrew D Bagdanov,

and Joost van de Weijer. Class-incremental learning: survey and performance evaluation
on image classification. arXiv, 2010.15277, 2020. Cited on pages 14 and 25.

[MMCSD19] Luke Metz, Niru Maheswaranathan, Brian Cheung, and Jascha Sohl-Dickstein. Meta-
learning update rules for unsupervised representation learning. In ICLR, 2019. Cited
on page 110.

[MRCA18] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. Snail: A simple neural
attentive meta-learner. In ICLR, 2018. Cited on pages 19, 88, 96, and 99.

[MVL+
19] Matthew MacKay, Paul Vicol, Jon Lorraine, David Duvenaud, and Roger Grosse.

Self-tuning networks: Bilevel optimization of hyperparameters using structured best-
response functions. In ICLR, 2019. Cited on pages 27 and 28.

[MY17] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In ICML, pages 2554–2563, 2017.
Cited on pages 7, 19, 87, and 99.

BIBLIOGRAPHY 165

[MYMT18] Tsendsuren Munkhdalai, Xingdi Yuan, Soroush Mehri, and Adam Trischler. Rapid
adaptation with conditionally shifted neurons. In ICML, pages 3661–3670, 2018. Cited
on pages 95, 96, and 99.

[NM92] Devang K Naik and RJ Mammone. Meta-neural networks that learn by learning. In
IJCNN, pages 437–442, 1992. Cited on pages 6 and 86.

[ORL18] Boris N. Oreshkin, Pau Rodríguez, and Alexandre Lacoste. TADAM: task dependent
adaptive metric for improved few-shot learning. In NeurIPS, pages 719–729, 2018. Cited
on pages 7, 17, 18, 19, 87, 89, 95, 96, 98, 99, 100, 109, 115, 116, and 117.

[OV12] Mete Ozay and Fatos T Yarman Vural. A new fuzzy stacked generalization technique
and analysis of its performance. arXiv, 1204.0171, 2012. Cited on pages 108 and 110.

[PDH18] Hugo Prol, Vincent Dumoulin, and Luis Herranz. Cross-modulation networks for
few-shot learning. arXiv, 1812.00273, 2018. Cited on pages 18, 19, and 99.

[PSdV+
18] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville.

Film: Visual reasoning with a general conditioning layer. In AAAI, pages 3942–3951,
2018. Cited on pages 31, 34, and 88.

[PSL15] Anastasia Pentina, Viktoriia Sharmanska, and Christoph H. Lampert. Curriculum
learning of multiple tasks. In CVPR, pages 5492–5500, 2015. Cited on page 89.

[PTKY11] Sinno Jialin Pan, Ivor W. Tsang, James T. Kwok, and Qiang Yang. Domain adaptation via
transfer component analysis. IEEE Transactions on Neural Networks and Learning Systems,
22(2):199–210, 2011. Cited on page 88.

[PZL20] Can Peng, Kun Zhao, and Brian C. Lovell. Faster ILOD: incremental learning for object
detectors based on faster RCNN. Pattern Recognition Letter, 140:109–115, 2020. Cited on
pages 21 and 123.

[PZM+
21] Can Peng, Kun Zhao, Sam Maksoud, Meng Li, and Brian C. Lovell. SID: incremental

learning for anchor-free object detection via selective and inter-related distillation. CVIU,
210:103229, 2021. Cited on pages 132, 133, and 149.

[PZS22] Mozhgan PourKeshavarzi, Guoying Zhao, and Mohammad Sabokrou. Looking back on
learned experiences for class/task incremental learning. In ICLR, 2022. Cited on page
14.

[QLSY18] Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L. Yuille. Few-shot image recognition
by predicting parameters from activations. In CVPR, pages 7229–7238, 2018. Cited on
pages 88, 96, and 116.

[Rat90] R. Ratcliff. Connectionist models of recognition memory: Constraints imposed by
learning and forgetting functions. Psychological Review, 97:285–308, 1990. Cited on pages
3, 26, 42, 56, and 70.

[RCA+
19] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and

Gerald Tesauro. Learning to learn without forgetting by maximizing transfer and
minimizing interference. In ICLR, 2019. Cited on page 57.

[RCAZ16] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence
level training with recurrent neural networks. In Yoshua Bengio and Yann LeCun,
editors, ICLR, 2016. Cited on page 43.

166 BIBLIOGRAPHY

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International Journal of Computer Vision, 115(3):211–252,
2015. Cited on pages 34, 50, 56, 62, 79, 95, and 115.

[RES13] Marcus Rohrbach, Sandra Ebert, and Bernt Schiele. Transfer learning in a transductive
setting. In NIPS, pages 46–54, 2013. Cited on page 88.

[RHGS17] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards
real-time object detection with region proposal networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(6):1137–1149, 2017. Cited on pages 20 and 21.

[RHK+
19] Jathushan Rajasegaran, Munawar Hayat, Salman H Khan, Fahad Shahbaz Khan, and

Ling Shao. Random path selection for continual learning. In NeurIPS, pages 12669–12679,
2019. Cited on pages 16 and 17.

[RKH+
20] Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and

Mubarak Shah. itaml: An incremental task-agnostic meta-learning approach. In CVPR,
pages 13588–13597, 2020. Cited on page 57.

[RKH+
21] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini

Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger,
and Ilya Sutskever. Learning transferable visual models from natural language supervi-
sion. In Marina Meila and Tong Zhang, editors, ICML, pages 8748–8763, 2021. Cited on
page 142.

[RKSL17] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert.
iCaRL: Incremental classifier and representation learning. In CVPR, pages 5533–5542,
2017. Cited on pages 3, 4, 5, 7, 14, 15, 17, 20, 26, 27, 28, 30, 32, 34, 35, 36, 37, 41, 42, 43,
44, 49, 50, 51, 56, 57, 60, 61, 62, 65, 66, 70, 71, 73, 74, 75, 78, 79, 81, 124, 125, 126, 131, 135,
136, 145, 146, 147, 151, and 152.

[RL17] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In
ICLR, 2017. Cited on pages 17, 18, 19, 89, 95, 96, 99, and 110.

[RMM+
17] Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava Goel.

Self-critical sequence training for image captioning. In CVPR, pages 7008–7024, 2017.
Cited on page 48.

[RMW14] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropaga-
tion and approximate inference in deep generative models. In ICML, pages 1278–1286,
2014. Cited on page 112.

[RRD+
16] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirk-

patrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural
networks. arXiv, 1606.04671, 2016. Cited on page 16.

[RRS+19] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon
Osindero, and Raia Hadsell. Meta-learning with latent embedding optimization. In
ICLR, 2019. Cited on pages 6, 17, 18, 19, 20, 86, 88, 89, 96, 99, 100, and 117.

[RTR+
18] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B.

Tenenbaum, Hugo Larochelle, and Richard S. Zemel. Meta-learning for semi-supervised
few-shot classification. In ICLR, 2018. Cited on pages 6, 7, 86, 87, 94, 95, 98, 100, 102,
109, 115, and 153.

[SAN16] Russell Stewart, Mykhaylo Andriluka, and Andrew Y Ng. End-to-end people detection
in crowded scenes. In CVPR, pages 2325–2333, 2016. Cited on page 128.

BIBLIOGRAPHY 167

[SB20] Fátima Saiz and Iñigo Barandiaran. Covid-19 detection in chest x-ray images using
a deep learning approach. International Journal of Interactive Multimedia and Artificial
Intelligence, 2020. Cited on page 86.

[SBB+
16] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy P.

Lillicrap. Meta-learning with memory-augmented neural networks. In ICML, pages
1842–1850, 2016. Cited on page 19.

[SCC20] Jae Woong Soh, Sunwoo Cho, and Nam Ik Cho. Meta-transfer learning for zero-shot
super-resolution. In CVPR, pages 3516–3525, 2020. Cited on page 86.

[SCD+
17] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,

Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via
gradient-based localization. In CVPR, pages 618–626, 2017. Cited on pages 64, 66, 80,
81, 146, and 147.

[SCH+
16] Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu.

Minimum risk training for neural machine translation. In ACL, 2016. Cited on page 43.

[SCYK21] Zhiqing Sun, Shengcao Cao, Yiming Yang, and Kris M Kitani. Rethinking transformer-
based set prediction for object detection. In ICCV, pages 3611–3620, 2021. Cited on
pages 125 and 126.

[SDC+
19] Benoit Steiner, Zachary DeVito, Soumith Chintala, Sam Gross, Adam Paszke, Francisco

Massa, Adam Lerer, Gregory Chanan, Zeming Lin, Edward Yang, et al. PyTorch: An
imperative style, high-performance deep learning library. In NeurIPS, pages 8024–8035,
2019. Cited on pages 31 and 114.

[SE18] Victor Garcia Satorras and Joan Bruna Estrach. Few-shot learning with graph neural
networks. In ICLR, 2018. Cited on pages 18 and 99.

[SGG16] Abhinav Shrivastava, Abhinav Gupta, and Ross B. Girshick. Training region-based
object detectors with online hard example mining. In CVPR, pages 761–769, 2016. Cited
on pages 87, 89, and 104.

[SGNK17] Nikolaos Sarafianos, Theodore Giannakopoulos, Christophoros Nikou, and Ioannis A.
Kakadiaris. Curriculum learning for multi-task classification of visual attributes. In
ICCV Workshops, 2017. Cited on page 88.

[SK96] Peter Sollich and Anders Krogh. Learning with ensembles: How overfitting can be
useful. In NIPS, pages 190–196, 1996. Cited on page 110.

[SKH21] Christian Simon, Piotr Koniusz, and Mehrtash Harandi. On learning the geodesic path
for incremental learning. In CVPR, pages 1591–1600, 2021. Cited on page 14.

[SKS+18] Eli Schwartz, Leonid Karlinsky, Joseph Shtok, Sivan Harary, Mattias Marder,
Rogério Schmidt Feris, Abhishek Kumar, Raja Giryes, and Alexander M. Bronstein.
Delta-encoder: an effective sample synthesis method for few-shot object recognition. In
NeurIPS, pages 2850–2860, 2018. Cited on pages 86 and 99.

[SLA12] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of
machine learning algorithms. In NIPS, pages 2951–2959, 2012. Cited on page 109.

[SLC+
22] Qianru Sun, Yaoyao Liu, Zhaozheng Chen, Tat-Seng Chua, and Bernt Schiele. Meta-

transfer learning through hard tasks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(3):1443–1456, 2022. Cited on pages 10, 11, 19, 20, 27, 61, 86, 115, 116,
and 143.

168 BIBLIOGRAPHY

[SLCS19] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. Meta-transfer learning for
few-shot learning. In CVPR, pages 403–412, 2019. Cited on pages 5, 6, 7, 10, 19, 20, 27,
31, 34, 58, 61, 64, 86, 96, 102, 108, 109, 112, 113, 114, 115, 116, 117, and 118.

[SLD17] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(4):640–651, 2017. Cited on page 86.

[SLKK17] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with
deep generative replay. In NIPS, pages 2990–2999, 2017. Cited on pages 15, 16, 26,
and 56.

[SMD18] Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. A review on bilevel optimization: From
classical to evolutionary approaches and applications. IEEE Transactions on Evolutionary
Computation, 22(2):276–295, 2018. Cited on pages 27 and 56.

[SRM18] Tyler R. Scott, Karl Ridgeway, and Michael C. Mozer. Adapted deep embeddings: A
synthesis of methods for k-shot inductive transfer learning. In NeurIPS, pages 76–85,
2018. Cited on page 88.

[SRS+15] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan
Sundaram, Md. Mostofa Ali Patwary, Prabhat, and Ryan P. Adams. Scalable bayesian
optimization using deep neural networks. In ICML, pages 2171–2180, 2015. Cited on
page 110.

[SSA17] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. Incremental learning of
object detectors without catastrophic forgetting. In ICCV, pages 3420–3429, 2017. Cited
on pages 7, 20, 123, 124, 125, 126, and 142.

[SSF17] Qianru Sun, Bernt Schiele, and Mario Fritz. A domain based approach to social relation
recognition. In CVPR, pages 435–444, 2017. Cited on page 88.

[SSZ17] Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot
learning. In NIPS, pages 4077–4087, 2017. Cited on pages 18, 74, 87, 91, 94, 98, 99, 100,
101, 102, 116, 117, 148, and 153.

[SSZA14] Jasper Snoek, Kevin Swersky, Richard S. Zemel, and Ryan P. Adams. Input warping
for bayesian optimization of non-stationary functions. In ICML, pages 1674–1682, 2014.
Cited on page 109.

[SW99] Padhraic Smyth and David Wolpert. Linearly combining density estimators via stacking.
Machine Learning, 36(1-2):59–83, 1999. Cited on page 110.

[SXH+
21] Xi Shen, Yang Xiao, Shell Xu Hu, Othman Sbai, and Mathieu Aubry. Re-ranking for

image retrieval and transductive few-shot classification. NeruIPS, pages 25932–25943,
2021. Cited on page 107.

[SYZ+
18] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H. S. Torr, and Timothy M.

Hospedales. Learning to compare: Relation network for few-shot learning. In CVPR,
pages 1199–1208, 2018. Cited on pages 18, 87, 91, 94, 98, 99, 100, 101, 102, 115, 148,
and 153.

[SZL+
22] Yujun Shi, Kuangqi Zhou, Jian Liang, Zihang Jiang, Jiashi Feng, Philip HS Torr, Song

Bai, and Vincent YF Tan. Mimicking the oracle: An initial phase decorrelation approach
for class incremental learning. In CVPR, pages 16722–16731, 2022. Cited on page 55.

[TABT17] Amal Rannen Triki, Rahaf Aljundi, Matthew B. Blaschko, and Tinne Tuytelaars. Encoder
based lifelong learning. In ICCV, pages 1329–1337, 2017. Cited on page 15.

BIBLIOGRAPHY 169

[TCH+
20] Xiaoyu Tao, Xinyuan Chang, Xiaopeng Hong, Xing Wei, and Yihong Gong. Topology-

preserving class-incremental learning. In ECCV, pages 254–270, 2020. Cited on pages
14, 15, 51, and 65.

[TP98] Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In
Learning to learn, pages 3–17. Springer, 1998. Cited on pages 6 and 86.

[VBL+
16] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra.

Matching networks for one shot learning. In NIPS, pages 3630–3638, 2016. Cited on
pages 7, 17, 18, 87, 89, 90, 94, 95, 96, 98, 99, 101, 102, 109, 110, 115, 116, 117, and 153.

[VDR21] Tom Veniat, Ludovic Denoyer, and Marc’Aurelio Ranzato. Efficient continual learning
with modular networks and task-driven priors. In ICLR, 2021. Cited on page 44.

[VSP+
17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. NIPS, pages
5998–6008, 2017. Cited on page 125.

[VSV52] Heinrich Von Stackelberg and Stackelberg Heinrich Von. The theory of the market economy.
Oxford University Press, 1952. Cited on pages 27 and 57.

[VVPL17] Ragav Venkatesan, Hemanth Venkateswara, Sethuraman Panchanathan, and Baoxin Li.
A strategy for an uncompromising incremental learner. arXiv, 1705.00744, 2017. Cited
on page 16.

[VYP+
22] Eli Verwimp, Kuo Yang, Sarah Parisot, Hong Lanqing, Steven McDonagh, Eduardo

Pérez-Pellitero, Matthias De Lange, and Tinne Tuytelaars. Re-examining distillation for
continual object detection. In BMVC, 2022. Cited on page 123.

[WCA18] Daphna Weinshall, Gad Cohen, and Dan Amir. Curriculum learning by transfer learning:
Theory and experiments with deep networks. In ICML, pages 5235–5243, 2018. Cited
on page 88.

[WCW+
19] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and

Yun Fu. Large scale incremental learning. In CVPR, pages 374–382, 2019. Cited on
pages 15, 26, 28, 30, 34, 35, 36, 37, 50, 56, 57, 65, 79, 131, 145, and 151.

[Wel09] Max Welling. Herding dynamical weights to learn. In ICML, pages 1121–1128, 2009.
Cited on pages 15, 26, 57, and 146.

[WGHH18] Yu-Xiong Wang, Ross B. Girshick, Martial Hebert, and Bharath Hariharan. Low-shot
learning from imaginary data. In CVPR, pages 7278–7286, 2018. Cited on page 86.

[WHD+
20] Xin Wang, Thomas E. Huang, Trevor Darrell, Joseph E Gonzalez, and Fisher Yu. Frus-

tratingly simple few-shot object detection. In ICML, 2020. Cited on page 108.

[WHL+
18] Chenshen Wu, Luis Herranz, Xialei Liu, Yaxing Wang, Joost van de Weijer, and Bogdan

Raducanu. Memory replay gans: Learning to generate new categories without forgetting.
In NeurIPS, pages 5966–5976, 2018. Cited on page 15.

[Wil92] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992. Cited on pages 43, 44,
45, and 48.

[WYKN20] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a
few examples: A survey on few-shot learning. ACM computing surveys (csur), 53(3):1–34,
2020. Cited on page 5.

170 BIBLIOGRAPHY

[WZHY18] Ying Wei, Yu Zhang, Junzhou Huang, and Qiang Yang. Transfer learning via learning
to transfer. In ICML, pages 5085–5094, 2018. Cited on page 88.

[WZTE18] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros. Dataset distilla-
tion. arXiv, 1811.10959, 2018. Cited on pages 27 and 57.

[WZY+
22] Liyuan Wang, Xingxing Zhang, Kuo Yang, Longhui Yu, Chongxuan Li, Lanqing Hong,

Shifeng Zhang, Zhenguo Li, Yi Zhong, and Jun Zhu. Memory replay with data com-
pression for continual learning. In ICLR, 2022. Cited on pages 3, 15, 17, and 124.

[WZYZ22] Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Foster: Feature boosting
and compression for class-incremental learning. In ECCV, 2022. Cited on pages 3, 4, 14,
16, 78, and 152.

[Xia19] Liu Xialei. Visual recognition in the wild: learning from rankings in small domains and
continual learning in new domains. PhD thesis, Universitat Autònoma de Barcelona, Spain,
2019. Cited on page 14.

[Xia20] Yongqin Xian. Learning from limited labeled data - Zero-Shot and Few-Shot Learning. PhD
thesis, Saarland University, Saarbrücken, Germany, 2020. Cited on pages 1, 6, and 17.

[XL22] Jingyi Xu and Hieu Le. Generating representative samples for few-shot classification. In
CVPR, pages 9003–9013, 2022. Cited on page 107.

[XSSA19] Yongqin Xian, Saurabh Sharma, Bernt Schiele, and Zeynep Akata. f-VAEGAN-D2: A
feature generating framework for any-shot learning. In CVPR, pages 10275–10284, 2019.
Cited on pages 86 and 88.

[XZ18] Ju Xu and Zhanxing Zhu. Reinforced continual learning. In NeurIPS, pages 899–908,
2018. Cited on pages 4, 16, 17, 43, 44, 45, 48, and 72.

[Yav20] Najib Yavari. Few-Shot Learning with Deep Neural Networks for Visual Quality Control: Eval-
uations on a Production Line. PhD thesis, KTH ROYAL INSTITUTE OF TECHNOLOGY,
2020. Cited on pages 2 and 139.

[YCBL14] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? In NIPS, pages 3320–3328, 2014. Cited on pages 59

and 68.

[YDS+22] Binbin Yang, Xinchi Deng, Han Shi, Changlin Li, Gengwei Zhang, Hang Xu, Shen
Zhao, Liang Lin, and Xiaodan Liang. Continual object detection via prototypical task
correlation guided gating mechanism. In CVPR, pages 9255–9264, 2022. Cited on page
123.

[YHZS18] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Learning embedding adaptation
for few-shot learning. arXiv, 1812.03664, 2018. Cited on page 96.

[YHZS20] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-shot learning via embedding
adaptation with set-to-set functions. In CVPR, 2020. Cited on pages 18, 96, and 116.

[YKD+
18] Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin

Ahn. Bayesian model-agnostic meta-learning. In NeurIPS, pages 7343–7353, 2018. Cited
on pages 109, 110, and 113.

[YTL+
20] Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmei Cheng,

Shangling Jui, and Joost van de Weijer. Semantic drift compensation for class-incremental
learning. In CVPR, pages 6982–6991, 2020. Cited on page 15.

BIBLIOGRAPHY 171

[YXH21] Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representa-
tion for class incremental learning. In CVPR, pages 3014–3023, 2021. Cited on pages 16,
78, and 152.

[YYG15] LeCun Yann, Bengio Yoshua, and Hinton Geoffrey. Deep learning. Nature, 521(7553):436,
2015. Cited on page 86.

[YYH07] Jun Yang, Rong Yan, and Alexander G. Hauptmann. Adapting SVM classifiers to data
with shifted distributions. In ICDM Workshops, 2007. Cited on page 88.

[YZZ+
22] Dongbao Yang, Yu Zhou, Aoting Zhang, Xurui Sun, Dayan Wu, Weiping Wang, and

Qixiang Ye. Multi-view correlation distillation for incremental object detection. Pattern
Recognition, 131:108863, 2022. Cited on pages 7 and 21.

[ZCG+
18] Ruixiang Zhang, Tong Che, Zoubin Grahahramani, Yoshua Bengio, and Yangqiu Song.

Metagan: An adversarial approach to few-shot learning. In NeurIPS, pages 2371–2380,
2018. Cited on pages 6, 19, 86, 99, and 108.

[ZCLS20] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen. Deepemd: Few-shot image
classification with differentiable earth mover’s distance and structured classifiers. In
CVPR, pages 12203–12213, 2020. Cited on pages 27, 57, and 108.

[ZCLS22] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen. Deepemd: Differentiable
earth mover’s distance for few-shot learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022. Cited on page 19.

[ZCS+20] Wang Zhou, Shiyu Chang, Norma Sosa, Hendrik Hamann, and David Cox. Lifelong
object detection. arXiv, 2009.01129, 2020. Cited on pages 7 and 21.

[ZCT+
19] Mengyao Zhai, Lei Chen, Frederick Tung, Jiawei He, Megha Nawhal, and Greg Mori.

Lifelong gan: Continual learning for conditional image generation. In ICCV, pages
2759–2768, 2019. Cited on page 16.

[ZL17] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In
ICLR, 2017. Cited on pages 43, 45, and 48.

[ZLL+
19a] Chi Zhang, Guosheng Lin, Fayao Liu, Jiushuang Guo, Qingyao Wu, and Rui Yao.

Pyramid graph networks with connection attentions for region-based one-shot semantic
segmentation. In ICCV, pages 9587–9595, 2019. Cited on page 108.

[ZLL+
19b] Chi Zhang, Guosheng Lin, Fayao Liu, Rui Yao, and Chunhua Shen. Canet: Class-agnostic

segmentation networks with iterative refinement and attentive few-shot learning. In
CVPR, pages 5217–5226, 2019. Cited on pages 27 and 108.

[ZLL+
22] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and

Heung-Yeung Shum. DINO: DETR with improved denoising anchor boxes for end-to-
end object detection. arXiv, 2203.03605, 2022. Cited on page 126.

[ZPG17] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. In Doina Precup and Yee Whye Teh, editors, ICML, pages 3987–3995, 2017.
Cited on page 15.

[ZSC+
19] Le Zhang, Zenglin Shi, Ming-Ming Cheng, Yun Liu, Jia-Wang Bian, Joey Tianyi Zhou,

Guoyan Zheng, and Zeng Zeng. Nonlinear regression via deep negative correlation
learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019. Cited on
page 110.

172 BIBLIOGRAPHY

[ZSL+
21] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable

DETR: deformable transformers for end-to-end object detection. In ICLR, 2021. Cited
on pages 7, 8, 21, 123, 124, 125, 126, 127, 132, 134, 135, 137, 142, 149, and 154.

[ZSS+18] Amir Roshan Zamir, Alexander Sax, William B. Shen, Leonidas J. Guibas, Jitendra Malik,
and Silvio Savarese. Taskonomy: Disentangling task transfer learning. In CVPR, pages
3712–3722, 2018. Cited on page 88.

[ZWYZ21] Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, and De-Chuan Zhan. Pycil: A python toolbox
for class-incremental learning. arXiv, 2112.12533, 2021. Cited on page 41.

[ZXG+
20] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-Tao Xia. Maintaining discrimi-

nation and fairness in class incremental learning. In CVPR, pages 13208–13217, 2020.
Cited on pages 3, 79, and 124.

[ZZC+
22] Kai Zhu, Wei Zhai, Yang Cao, Jiebo Luo, and Zhengjun Zha. Self-sustaining representa-

tion expansion for non-exemplar class-incremental learning. In CVPR, pages 9286–9295,
2022. Cited on page 142.

[ZZW+
21] Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. Prototype augmen-

tation and self-supervision for incremental learning. In CVPR, pages 5871–5880, 2021.
Cited on page 19.

	Title Page
	Dedication
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction
	1.1 Incremental learning: learning with continual data without forgetting
	1.1.1 Challenges in incremental learning
	1.1.2 Our contributions

	1.2 Few-shot learning: learning with limited data without overfitting
	1.2.1 Challenges in few-shot learning
	1.2.2 Our contributions

	1.3 Incremental object detection: learning in real-world applications
	1.3.1 Challenges in incremental object detection
	1.3.2 Our contributions

	1.4 Outline of the Thesis
	1.5 Publications

	2 Related Work
	2.1 Incremental learning
	2.1.1 Problem definition
	2.1.2 Evaluation protocols
	2.1.3 A literature review of incremental learning methods
	2.1.4 Connections to our work

	2.2 Few-shot learning
	2.2.1 Problem definition and evaluation protocol
	2.2.2 A literature review of few-shot learning methods
	2.2.3 Connections to our work

	2.3 Incremental object detection
	2.3.1 Problem definition and evaluation protocol
	2.3.2 A literature review of incremental object detection methods
	2.3.3 Connections to our work

	I Incremental Learning: Learning with Continual Data without Forgetting
	3 Learning to Optimize Exemplar Data
	3.1 Introduction
	3.2 Related Work
	3.3 Methodology
	3.3.1 Denotations for CIL
	3.3.2 Distillation Loss for CIL
	3.3.3 Global BOP
	3.3.4 Model-level problem
	3.3.5 Exemplar-level problem

	3.4 Weight transfer operations
	3.5 Algorithm
	3.6 Experiments
	3.6.1 Datasets and implementation details
	3.6.2 Results and analyses

	3.7 Conclusion

	4 Learning to Allocate Memory
	4.1 Introduction
	4.2 Related Work
	4.3 Methodology
	4.3.1 Denotations for CIL
	4.3.2 Preliminaries for Reinforcement Learning
	4.3.3 Formulation of RMM
	4.3.4 Optimization
	4.3.5 Algorithm

	4.4 Experiments
	4.4.1 Datasets and Implementation Details
	4.4.2 Results and Analyses

	4.5 Conclusion

	5 Learning to Aggregate Neural Networks Adaptively
	5.1 Introduction
	5.2 Related Work
	5.3 Methodology
	5.3.1 Architecture Details
	5.3.2 Optimization Steps
	5.3.3 Algorithm

	5.4 Experiments
	5.4.1 Datasets and Implementation Details
	5.4.2 Results and Analyses

	5.5 Conclusions

	6 Learning to Optimize the Hyperparameter Online
	6.1 Introduction
	6.2 Related Work
	6.3 Methodology
	6.3.1 Denotations for CIL
	6.3.2 An Online MDP Formulation for CIL
	6.3.3 Optimizable Hyperparameters
	6.3.4 Policy Learning

	6.4 Experiments
	6.4.1 Datasets and Implementation Details
	6.4.2 Results and Analyses

	6.5 Conclusions

	II Few-shot Learning: Learning with Limited Data without Overfitting
	7 Learning to Transfer Knowledge
	7.1 Introduction
	7.2 Related work
	7.3 Methodology
	7.3.1 Denotations for meta-learning
	7.3.2 Meta-transfer learning (MTL)
	7.3.3 Hard task (HT) meta-batch
	7.3.4 Meta-gradient regularization
	7.3.5 The overall algorithm
	7.3.6 Plug MTL into baseline methods

	7.4 Experiments
	7.4.1 Datasets
	7.4.2 Implementation details
	7.4.3 Comparison to the state-of-the-art
	7.4.4 Plug-in evaluation
	7.4.5 Ablation study
	7.4.6 Statistical data of SS

	7.5 Conclusion

	8 Learning to Ensemble Deep Models
	8.1 Introduction
	8.2 Related Works
	8.3 An Ensemble of Epoch-wise Empirical Bayes Models
	8.3.1 Denotations
	8.3.2 Empirical Bayes method
	8.3.3 Learning the ensemble of base-learners
	8.3.4 Meta-learning the hyperprior learners
	8.3.5 Plugging-in to baseline methods

	8.4 Experiments
	8.4.1 Datasets and implementation details
	8.4.2 Results and analyses

	8.5 Conclusions

	III Incremental Object Detection: Learning in Real-world Applications
	9 Continual Detection Transformer
	9.1 Introduction
	9.2 Related Work
	9.3 Methodology
	9.3.1 Incremental object detection
	9.3.2 Transformer-based detectors
	9.3.3 Detector knowledge distillation
	9.3.4 Distribution-preserving calibration

	9.4 Experiments
	9.4.1 Dataset and implementation details
	9.4.2 Results and analyses

	9.5 Conclusions

	10 Conclusion and Future Work
	10.1 Discussions of contributions
	10.1.1 Incremental learning
	10.1.2 Few-shot learning
	10.1.3 Incremental object learning

	10.2 Future directions
	10.2.1 Incremental learning
	10.2.2 Few-shot learning
	10.2.3 A broader view on the topic

	 List of Figures
	 List of Tables
	 Bibliography

