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Abstract
Quantum permutations arise in many aspects of modern “quantum mathematics”.
However, the aim of this article is to detach these objects from their context and to
give a friendly introduction purely within operator theory. We define quantum permu-
tation matrices as matrices whose entries are operators on Hilbert spaces; they obey
certain assumptions generalizing classical permutation matrices. We give a number of
examples and we list many open problems. We then put them back in their original
context and give an overview of their use in several branches of mathematics, such
as quantum groups, quantum information theory, graph theory and free probability
theory.
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1 Introduction

One of the most basic symmetry operations in mathematics, is given by permutations:
Take N points x1, . . . , xN listed in some order, and permute them. We may capture
permutations in various ways in mathematics, and one way to do so is by using permu-
tation matrices. Recall that a permutation matrix is an N ×N -matrix σ ∈ MN ({0, 1}),
(a) whose entries σi j are either 0 or 1,
(b) such that each column and each row contains exactly one 1, all other entries being

0.

Here is an example of a 4 × 4 permutation matrix:

σ =

⎛
⎜⎜⎝
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

⎞
⎟⎟⎠

Such an N × N permutation matrix acts on C
N by permuting the canonical basis

vectors e1, . . . , eN ∈ C
N . So, in a way, we identify our N points x1, . . . , xN from

above with the basis vectors e1, . . . , eN and permute them by letting the matrix σ act
on them–we identify the N -elementary set X = {x1, . . . , xN }with the N -dimensional
space C

N . Now, this is a very common theme in “quantum mathematics”: We iden-
tify a classical space with another object having some more “functional analytic”
properties—and this allows us to define and study “quantum versions” of this classi-
cal space. What exactly do we mean by this?

Let us postpone this discussion to Sect. 4.1 and let us define quantum permu-
tation matrices right away. A quantum permutation matrix is an N × N -matrix
u ∈ MN (B(H)), where H is some Hilbert space, such that

(a) all entries ui j ∈ B(H) are orthogonal projections (i.e. ui j = u∗
i j = u2i j ),

(b) and
∑N

k=1 uik = ∑N
k=1 ukj = 1 for all i, j = 1, . . . , N .

Actually, an easy calculation (see Lemma 2.2) shows that the latter implies

(b’) uiku jk = uki uk j = 0 for all i, j, k = 1, . . . , N with i �= j .
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Here is an example of a 4 × 4-quantum permutation matrix with H = C
2:

u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
0 0
0 0

)
1
2

(
1 1
1 1

) (
0 0
0 0

)
1
2

(
1 −1

−1 1

)

(
0 0
0 0

)
1
2

(
1 −1

−1 1

) (
0 0
0 0

)
1
2

(
1 1
1 1

)

(
1 0
0 0

) (
0 0
0 0

) (
0 0
0 1

) (
0 0
0 0

)

(
0 0
0 1

) (
0 0
0 0

) (
1 0
0 0

) (
0 0
0 0

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let us make a few observations: Firstly, the entries of any (classical) permutation
matrix σ ∈ MN ({0, 1}) satisfy the axioms of a quantum permutation matrix—a per-
mutation matrix is a quantum permutation matrix, with H = C (and thus B(C) = C).
Secondly, the entries ui j ∈ B(H) of a quantum permutation matrix do not need to
commute, as the above example shows. Thirdly, the above matrix u is “quantum”
indeed: While the above classical permutation matrix σ sends the first particle to the
third one (meaning, it maps e1 to e3), the above quantum permutation matrix u sends
the first particle a little bit to the third, and a little bit to the fourth – in the sense that
the matrix u ∈ M4(M2(C)) acting on C

2 ⊕ C
2 ⊕ C

2 ⊕ C
2 sends the first copy of C

2

to some part of the third copy (namely to

(
1 0
0 0

)
C
2 ⊆ C

2) and to some part of the

fourth copy (namely to

(
0 0
0 1

)
C
2 ⊆ C

2). Quantum, isn’t it?

However, the “quantum” aspect of the matrix will be neglected in the main part of
the article:

• In Sect. 2, we will study quantum permutation matrices as such, in the realm of
operator theory, and list a number of open problems.

• In Sect. 4, we will then explain how quantum permutation matrices fit into the
broader context of quantum groups, quantum information, graph theory and free
probability, and again list a number of open problems. And we give references and
sketch the history of the field.

With the present article, we hope to provide a friendly access to quantum permuta-
tion matrices (also known as magic unitaries) for people interested in operator theory.
In our functional analysis research seminar at SaarlandUniversity, we sometimes had a
“friendly clash of cultures” between the groups of Jörg Eschmeier (together with Ernst
Albrecht, Gerd Wittstock and Heinz König, and later also Michael Hartz’s group) and
the more operator algebraic ones by Roland Speicher and myself. However, a com-
mon ground was to consider operators on Hilbert spaces and to try to understand their
properties. While Jörg was more interested in (tuples of) commuting operators, we
were more interested in noncommuting operators—but in the end, we all dealt with
operators on Hilbert spaces, to some extent. And maybe, Hardy spaces and their gen-
eralizations or complex analysis can be helpful when studying quantum permutation
matrices at some point, in Jörg’s spirit?
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The quantum permutation matrices we are presenting here are interestingly diverse
objects: They can be seen as an array of operators, containing certain tuples of com-
muting operators (within one row or one column, for instance), but also involving
noncommutativity between other entries. It is good to think back to those happy times,
when we had our interestingly diverse research seminar sessions at Saarland Univer-
sity, containing tuples from Jörg’s group and tuples from Roland’s and my groups,
each group asking in the sense of:

– “But how about the Hardy space?”
– “And how about noncommutativity?”

2 Quantum PermutationMatrices in Operator Theory

In this section, we define and study quantum permutation matrices in the realm of
operator theory and we list a number of open problems. See Sect. 4 for the historical
origins.

2.1 Definition of Quantum PermutationMatrices

Let us define quantum permutation matrices first.

Definition 2.1 Let N ∈ N and let H be a (complex) Hilbert space. A quantum per-
mutation matrix (also called magic unitary) is a matrix u ∈ MN (B(H)) consisting of
entries ui j ∈ B(H), i, j = 1, . . . , N , such that

(a) ui j = u∗
i j = u2i j for all i, j = 1, . . . , N (i.e., the entries are projections)

(b) and
∑N

k=1 uik = ∑N
k=1 ukj = 1 for all i, j = 1, . . . , N with i �= j .

u =

⎛
⎜⎜⎜⎝

u11 u12 · · · u1N
u21 u22 · · · u2N

...

uN1 u2N · · · uNN

⎞
⎟⎟⎟⎠ ∈ MN (B(H))

So, by definition, a quantum permutation matrix is an operator in B(
⊕N

k=1 H). In
some sense, it “permutes” the N copies of H , just as a classical permutation matrix
permutes N copies of C. If H is finite-dimensional of dimension d, we have u ∈
MN (Md(C)), i.e. u is an N × N -matrix whose entries are matrices themselves (of
size d × d). See Sect. 2.3 for examples. Let us derive further (well-known) relations
amongst the entries of quantum permutation matrices.

Lemma 2.2 For any quantum permutation matrix, we have

uiku jk = uki uk j = 0

for all i, j, k = 1, . . . , N with i �= j .
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Proof Projections summing up to 1 (or to simply to a projection) need to be mutually
orthogonal. This follows from positivity. Indeed, if p1, . . . , pN are projections auch
that

∑
k pk = 1, then for any j = 1, . . . , N ,

N∑
i=1,i �= j

(pi p j )
∗(pi p j ) =

N∑
i=1

(pi p j )
∗(pi p j ) − p j

= p j

(
N∑
i=1

pi

)
p j − p j = p j − p j = 0.

Hence, the positive elements (pi p j )
∗(pi p j ) with i �= j sum up to zero, which means

that each of these summands needs to be zero; hence pi p j = 0 if i �= j . ��
Note that in case one wants to define quantum permutation matrices in general

∗-algebras, one should better add the relations from Lemma 2.2, as orthogonality is
not implied in a general ∗-algebra [14, Rem. 4.10].

2.2 Link to Classical PermutationMatrices

Let us study the case dim H = 1 in Definition 2.1. In that case, we obtain classical
permutation matrices.

Lemma 2.3 Let u ∈ MN (B(H)) be a quantum permutationmatrix and let dim H = 1.
Then u is a (classical) permutation matrix.

Proof If dim H = 1, we have H = C and B(H) = C. Thus, the entries ui j of u
are scalars. Now, since ui j = u∗

i j , they are actually real, and as u2i j = ui j , we infer
ui j ∈ {0, 1}. In each row (and in each column), by Lemma 2.2, there is at most one
nontrivial entry, and by (b) ofDefinition 2.1, there is exactly one. These are the defining
properties of a permutation matrix. ��

Also, if all entries ui j commute, we are in the classical situation.1

Lemma 2.4 Let u ∈ MN (B(H)) be a quantum permutation matrix and let H be finite-
dimensional of dimension d ∈ N. Assume that all entries ui j ∈ B(H) commute, for
all i, j = 1, . . . , N.

Then, there are permutation matrices σ1, . . . , σd ∈ MN (C), such that u is unitarily
equivalent to

⎛
⎜⎜⎜⎝

σ1
σ2

. . .

σd

⎞
⎟⎟⎟⎠ =

⊕
t=1,...,d

σt ∈
⊕

t=1,...,d

MN (C) ⊆ MNd(C) ∼= MN (Md(C)).

1 As an alternative to Lemma 2.4, one may show that for commuting entries ui j , there are permutation

matrices σ1, . . . , σd such that u = ∑d
t=1 σt ⊗ at ∈ MN (C) ⊗ B(H) for at = u1σt (1)...uNσt (N ) ∈ B(H).

[68].
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Proof We identify B(H) with Md(C).
Special case. For convenience, let us prove a special case first, assuming that the

rank of each ui j is atmost one. Fix the first row u11, u12, . . . , u1N ∈ Md(C) of u. These
are mutually orthogonal projections summing up to 1, by Definition 2.1 (and Lemma
2.2). We thus find a unitary W ∈ Md(C) such that each w1 j := Wu1 jW ∗ ∈ Md(C)

is diagonal, for all j = 1, . . . , N . We pick an orthonormal basis e1, . . . , ed of C
d

according to this diagonalization andwe denote by pk , for k = 1, . . . , d, the projection
onto the one-dimensional space spanned by the basis vector ek . Since the rank of each
w1 j is at most one, we have

{w1 j | j = 1, . . . , N } = {pk | k = 1, . . . , d}.

Now, by assumption, each element wi j := Wui jW ∗ ∈ Md(C), i, j = 1, . . . , N
commutes with all w1m , m = 1, . . . , N , i.e. it commutes with all pk , k = 1, . . . , d.
Hence, each wi j is a diagonal projection matrix of rank at most one and we have

{wi j | i, j = 1, . . . , N } = {pk | k = 1, . . . , d}.

Denote by σt ∈ MN ({0, 1}), t = 1, . . . , d the matrix with

(σt )i j := (wi j )t t ,

i.e. σt consists in the t-th diagonal entries of all wi j ’s. Since the matrix w formed
by the elements wi j , i, j = 1, . . . , N is a quantum permutation matrix, we infer that
σ1, . . . , σd are permutation matrices.

General case.We now drop the assumption that the rank of each ui j is at most one
and we prove the general case. Again, we find a unitary W1 ∈ Md(C) such that each
w

(1)
1 j := W1u1 jW ∗

1 ∈ Md(C) is diagonal, for all j = 1, . . . , N . Define the quantum

permutation matrix w(1) with entries w
(1)
i j := W1ui jW ∗

1 . Since each w
(1)
i j commutes

with all elements from the first row of w(1), each w
(1)
i j is block diagonal (but not

necessarily diagonal, in contrast to the above special case) with respect to the blocks
of the first row of w(1).

Now, consider the second row of w(1). Again, these are projections summing up to
1, and we find a unitary W2 ∈ Md(C) such that each w

(2)
2 j := W2w

(1)
2 j W

∗
2 ∈ Md(C)

is diagonal, for all j = 1, . . . , N . The crucial point is, that we may choose W2 to be
block diagonal with respect to the blocks of the first row of w(1), since the second
row of w(1) is block diagonal with respect to the first row of w(1). Thus, defining the
quantum permutation matrix w(2) with entries w

(2)
i j := W2w

(1)
i j W ∗

2 , we note that both

the first and the second row of w(2) are diagonal, since W2 being block diagonal with
respect to the first row did not change the first row.

Iterating, we may eventually diagonalize all elements of the matrix and we end up
with a quantum permutation matrix w = (wi j ), which is unitarily equivalent to u and
whose entries wi j are all diagonal, i.e. each wi j is a diagonal matrix with entries 0 or
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1. Now, denote by σt ∈ MN ({0, 1}), t = 1, . . . , d the matrix with

(σt )i j := (wi j )t t ,

which yields permutation matrices σ1, . . . , σd , since w is a quantum permutation
matrix. ��

We observe, that Lemma 2.3 is a special case of Lemma 2.4 with d = 1. The next
lemma shows, that if we want to go beyond the classical case, we need to choose
N ≥ 4.

Lemma 2.5 Let u ∈ MN (B(H)) be a quantum permutation matrix with N ≤ 3. Then
the entries of u all commute.

Proof If N = 1 or N = 2, the situation is trivial (in the latter case: u12 = 1 − u11,
u21 = 1 − u11, u22 = u11). For N = 3, we copy the following proof from [53,
Sect. 2.2]. Consider ui j and ukl . We want to show that they commute. They do, if
i = k or j = l, by Lemma 2.2, or since ui j = ukl , in case both equations hold, i = k
and j = l.

If now i �= k and j �= l, there is some m with m �= j and m �= l such that
{ j, l,m} = {1, 2, 3}. Since i �= k, we have by Lemma 2.2

ui j uk j uim = 0, ui j ukmuim = 0, ui j ukluil = 0,

which yields, by Definition 2.1(b),

ui j ukluim = ui j (ukj + ukl + ukm)uim = ui j uim = 0

and

ui j ukl = ui j ukl(ui j + uil + uim) = ui j uklui j = (ui j uklui j )
∗ = (ui j ukl)

∗ = uklui j .

��

2.3 Examples

Let us now come to truly non-classical examples.

Example 2.6 Let p, q ∈ B(H) be projections. The following is a (well-known) 4 × 4
quantum permutation matrix.

⎛
⎜⎜⎝

p 1 − p 0 0
1 − p p 0 0
0 0 q 1 − q
0 0 1 − q q

⎞
⎟⎟⎠
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Note that p and q need not commute. As a concrete example, let us rearrange the
example from the introduction:

u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
1 0
0 0

) (
0 0
0 1

) (
0 0
0 0

) (
0 0
0 0

)

(
0 0
0 1

) (
1 0
0 0

) (
0 0
0 0

) (
0 0
0 0

)

(
0 0
0 0

) (
0 0
0 0

)
1
2

(
1 1
1 1

)
1
2

(
1 −1

−1 1

)

(
0 0
0 0

) (
0 0
0 0

)
1
2

(
1 −1

−1 1

)
1
2

(
1 1
1 1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For this matrix, the entries do not commute and the assumptions of Lemma 2.4 are
violated. Indeed, this matrix cannot be written as a direct sum of classical permutation
matrices (since the entries of a direct sum of permutation matrices all commute).

In order to have more examples, let us mention a construction by Woronowicz, see
for instance [49, Def. 3.1]

Definition 2.7 Given two matrices u, v ∈ MN (B(H)) their Woronowicz tensor prod-
uct is defined as

u k v :=
N∑

i, j=1

Ei j ⊗
(

N∑
k=1

uik ⊗ vk j

)
.

It is easy to see that if u and v are quantum permutation matrices, so is u k v.

Example 2.8 The following example is taken from [49, Ex. 3.12], where p, p′, q, q ′ ∈
B(H) may be any projections.

⎛
⎜⎜⎜⎜⎝

p ⊗ p′ (1 − p) ⊗ q ′ p ⊗ (1 − p′) (1 − p) ⊗ (1 − q ′)
(1 − p) ⊗ p′ p ⊗ q ′ (1 − p) ⊗ (1 − p′) p ⊗ (1 − q ′)

q ⊗ (1 − p′) (1 − q) ⊗ (1 − q ′) q ⊗ p′ (1 − q) ⊗ q ′

(1 − q) ⊗ (1 − p′) q ⊗ (1 − q ′) (1 − q) ⊗ p′ q ⊗ q ′

⎞
⎟⎟⎟⎟⎠

In fact, this matrix arises as

⎛
⎜⎜⎝

p 0 1 − p 0
1 − p 0 p 0
0 q 0 1 − q
0 1 − q 0 q

⎞
⎟⎟⎠ k

⎛
⎜⎜⎝

p′ 0 1 − p′ 0
1 − p′ 0 p′ 0

0 q ′ 0 1 − q ′
0 1 − q ′ 0 q ′

⎞
⎟⎟⎠
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Example 2.9 And another one from [49, Ex. 3.13], again coming from taking the
Woronowicz tensor product. Note that, as in the previous example, we may replace
all p by p′ in the second tensor leg, and by p′′ in the third one, and the same for q.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p ⊗ p ⊗ p p ⊗ (1 − p) ⊗ q p ⊗ p ⊗ (1 − p) p ⊗ (1 − p) ⊗ (1 − q)

+(1 − p) ⊗ q ⊗ (1 − p) +(1 − p) ⊗ (1 − q) ⊗ (1 − q) +(1 − p) ⊗ q ⊗ p +(1 − p) ⊗ (1 − q) ⊗ q

(1 − p) ⊗ p ⊗ p (1 − p) ⊗ (1 − p) ⊗ q (1 − p) ⊗ p ⊗ (1 − p) (1 − p) ⊗ (1 − p) ⊗ (1 − q)

+p ⊗ q ⊗ (1 − p) +p ⊗ (1 − q) ⊗ (1 − q) +p ⊗ q ⊗ p +p ⊗ (1 − q) ⊗ q

q ⊗ (1 − p) ⊗ p q ⊗ p ⊗ q q ⊗ (1 − p) ⊗ (1 − p) q ⊗ p ⊗ (1 − q)

+(1 − q) ⊗ (1 − q) ⊗ (1 − p) +(1 − q) ⊗ q ⊗ (1 − q) +(1 − q) ⊗ (1 − q) ⊗ p +(1 − q) ⊗ q ⊗ q

(1 − q) ⊗ (1 − p) ⊗ p (1 − q) ⊗ p ⊗ q (1 − q) ⊗ (1 − p) ⊗ (1 − p) (1 − q) ⊗ p ⊗ (1 − q)

+q ⊗ (1 − q) ⊗ (1 − p) +q ⊗ q ⊗ (1 − q) +q ⊗ (1 − q) ⊗ p +q ⊗ q ⊗ q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Example 2.10 The following example is taken from [13, Sect. 2]. Let

g1 :=
(
1 0
0 1

)
, g2 :=

(
i 0
0 −i

)
, g3 :=

(
0 1

−1 0

)
, g4 :=

(
0 i
i 0

)
,

be the Pauli matrices. For a unitary matrix x ∈ U2 ⊆ M2(C), we view the matrix
gi xg j ∈ M2(C) as a vector in C

4. Let w
(x)
i j ∈ M4(C) be the rank one projection

onto the vector gi xg j ∈ M2(C) ∼= C
4. Then, wx = (w

(x)
i j ) is a quantum permutation

matrix. Also, x �→ wx , as a function in C(U2, M4(C)), is a quantum permutation
matrix.

Example 2.11 The following example is taken from [11, Def. 4.1] which is linked to
quantum Latin squares. Let H be an N -dimensional Hilbert space and let ξi j ∈ H be
vectors, for i, j = 1, . . . , N , such that

• for every i = 1, . . . , N , the set {ξi j | j = 1, . . . , N } forms an orthonormal basis
of H ,

• and for every j = 1, . . . , N , the set {ξi j | i = 1, . . . , N } forms an orthonormal
basis of H .

Let pi j ∈ B(H) be the rank one projection onto the vector ξi j . Then, p = (pi j )
forms a quantum permutation matrix. In [11], amongst others the case is studied when
h ∈ MN (C) is a complex Hadamard matrix: Denote its rows by h1, . . . , hN . They
may be viewed as invertible elements in the algebra C

N and considering the vectors
ξi j := hi/h j ∈ C

N and their rank one projections pi j , we may construct a quantum
permutation matrix. See also [31].

2.4 Quantum PermutationMatrices and Quantum Isomorphisms of Graphs

There are quantum permutation matrices which generalize isomorphisms of graphs,
see their use in Sect. 4.3. Given a finite simple graph � = (V , E), we denote by i ∼ j ,
if two vertices i, j ∈ V are connected by an edge from E , and i � j otherwise. We
specify i ∼1 j or i ∼2 j in case there are two graphs �1 and �2.
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Definition 2.12 Let N ∈ N and let H be a Hilbert space. Let �1 = (V , E1) and
�2 = (V , E2) be finite simple graphs, with V = {1, . . . , N }. A quantum isomorphism
matrix of �1 and �2 is a matrix u ∈ MN (B(H)) consisting of entries ui j ∈ B(H),
i, j = 1, . . . , N , such that

(a) ui j = u∗
i j = u2i j for all i, j = 1, . . . , N ,

(b)
∑N

k=1 uik = ∑N
k=1 ukj = 1 for all i, j = 1, . . . , N with i �= j ,

(c) and ui j ukl = uklui j = 0 if i ∼2 k and j �1 l,
(d) as well as ui j ukl = uklui j = 0 if i �2 k and j ∼1 l.

If � = �1 = �2, we say that u is a quantum automorphism matrix of � in that case.

Hence, a quantum isomorphismmatrix is a quantum permutationmatrix (by (a) and
(b)). Another way of expressing relations (c) and (d) is to say, that uA1 = A2u holds,
where Ak ∈ MN ({0, 1}) is the adjacency matrix of �k , k = 1, 2, i.e. (A1)i j = 1, if
i ∼1 j and (A1)i j = 0, if i �1 j . Let us prove it.

Lemma 2.13 Let u be a quantum permutation matrix. We have uA1 = A2u if and only
if relations (c) and (d) of Definition 2.12 hold.

Proof Since

∑
s: s∼1l

uis =
∑
s

uis(A1)sl = (uA1)il

and

∑
t : i∼2t

utl =
∑
t

(A2)i t utl = (A2u)il ,

we observe that uA1 = A2u holds if and only if

∑
s: s∼1l

uis =
∑

t : i∼2t

utl .

Thus, assuming uA1 = A2u, we obtain in case i ∼2 k and j �1 l

ui j ukl =
∑

t : i∼2t

ui j (utlukl) =
∑

s: s∼1l

(ui j uis)ukl = 0.

Here, we used Lemma 2.2 to show that utlukl = δtkukl and ui j uis = δ jsui j ,
i.e.

∑
t : i∼2t utlukl = ukl (since k appears in the sum, because i ∼2 k), whereas∑

s: s∼1l ui j uis = 0, since j does not appear in the sum. Likewise, we obtain in case
i �2 k and j ∼1 l

ui j ukl =
∑

s: s∼1l

(ui j uis)ukl =
∑

t : i∼2t

ui j (utlukl) = 0.
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Conversely, assuming relations (c) and (d) of Definition 2.12, we infer

∑
s: s∼1l

uis =
∑

s: s∼1l

∑
t

uisutl =
∑

s: s∼1l

∑
t : i∼2t

uisutl =
∑
s

∑
t : i∼2t

uisutl =
∑

t : i∼2t

utl .

��
As in Sect. 2.2, we see that Definition 2.12 generalizes the classical situation: Given

graphs �1 and �2, assume that σ ∈ SN is an isomorphism between them. We then
have σ A1σ

−1 = A2, or equivalently σ A1 = A2σ .

Example 2.14 Let � be the undirected graph on V = {1, 2, 3, 4} given by:

3 4

1 2

The matrices from Example 2.6 are quantum automorphism matrices of this graph.

3 Open Problems

There aremany open problems relatedwith quantumpermutationmatrices. Let us state
these problems first, as problems in operator theory, and let us shift the background
information to the next section.

3.1 Faithful Models

We don’t have a (finite-dimensional2) faithful model of quantum permutation matri-
ces, for N ≥ 5. The task is to find a quantum permutation matrix u with ui j ∈
B(H) on some finite-dimensional Hilbert space H , such that for any polynomial
p in the N 2 entries and for any other quantum permutation matrix v, if p(u) =
p(u11, u12, . . . , uNN ) = 0, then also p(v) = 0. In other words, if a polynomial
relation holds for u, then it holds for any other v, too.

Problem 3.1 Find a faithfulmodel (for polynomial relations3) of quantumpermutation
matrices of size N.

There are models for N = 4: The map x �→ wx of Example 2.10 produces a
faithful model, see [13]. See also [7, 11, 25, 27] for more on (not necessarily faithful)
models, in particular [27, Conj. 5.7] for a conjecture on inner faithfulness of some

2 We will see in Sect. 4.2 that we may define a universal C∗-algebra AS(N ) generated by the entries of a
quantum permutation matrix. By the noncommutative Gelfand-Naimark Theorem, we may represent this
C∗-algebra faithfully on some Hilbert space – but it might be an infinite-dimensional one.
3 More generally, we are interested in faithful, finite-dimensional ∗-representations of AS(N ).
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matrix model for quantum permutation matrices of any size N ≥ 4. See also [6] for
more on the case N = 4.

As a more concrete problem, consider the matrix of Example 2.6. It is not a faithful
model. Indeed, the polynomial p(u) = u13 vanishes for the matrix in Example 2.6,
but not for the matrix in Example 2.8. Also the matrix from the latter example is not
a faithful model. Indeed, consider the polynomial p(u) = u11u23. It vanishes for the
matrix in Example 2.8 (as p(u) = (p ⊗ p′)((1− p) ⊗ (1− p′)) = 0 for that matrix),
but not for the matrix in Example 2.9, as

p(u) = (
p ⊗ p ⊗ p + (1 − p) ⊗ q ⊗ (1 − p)

)(
(1 − p) ⊗ p ⊗ (1 − p) + p ⊗ q ⊗ p

)

= p ⊗ pq ⊗ p + (1 − p) ⊗ qp ⊗ (1 − p)

�= 0

for suitable choices of the projections. Let us rephrase the questions from [49,Question
4.10, 4.11].

Problem 3.2 Is the matrix in Example 2.9 a faithful model of size N = 4?

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p ⊗ p ⊗ p p ⊗ (1 − p) ⊗ q p ⊗ p ⊗ (1 − p) p ⊗ (1 − p) ⊗ (1 − q)

+(1 − p) ⊗ q ⊗ (1 − p) +(1 − p) ⊗ (1 − q) ⊗ (1 − q) +(1 − p) ⊗ q ⊗ p +(1 − p) ⊗ (1 − q) ⊗ q

(1 − p) ⊗ p ⊗ p (1 − p) ⊗ (1 − p) ⊗ q (1 − p) ⊗ p ⊗ (1 − p) (1 − p) ⊗ (1 − p) ⊗ (1 − q)

+p ⊗ q ⊗ (1 − p) +p ⊗ (1 − q) ⊗ (1 − q) +p ⊗ q ⊗ p +p ⊗ (1 − q) ⊗ q

q ⊗ (1 − p) ⊗ p q ⊗ p ⊗ q q ⊗ (1 − p) ⊗ (1 − p) q ⊗ p ⊗ (1 − q)

+(1 − q) ⊗ (1 − q) ⊗ (1 − p) +(1 − q) ⊗ q ⊗ (1 − q) +(1 − q) ⊗ (1 − q) ⊗ p +(1 − q) ⊗ q ⊗ q

(1 − q) ⊗ (1 − p) ⊗ p (1 − q) ⊗ p ⊗ q (1 − q) ⊗ (1 − p) ⊗ (1 − p) (1 − q) ⊗ p ⊗ (1 − q)

+q ⊗ (1 − q) ⊗ (1 − p) +q ⊗ q ⊗ (1 − q) +q ⊗ (1 − q) ⊗ p +q ⊗ q ⊗ q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

There are hints [39] that this is indeed the case! However, there is no proof yet.

3.2 Hilbert Sudoku/SudoQ

An interesting problem is the following. Given a rectangular array of projections
(ui j )i=1,...,m; j=1,...,N , m < N such that

∑N
k=1 uik = 1 for all i = 1, . . . ,m and such

that ui j uk j = 0 for all i �= k and all j = 1, . . . , N .

Problem 3.3 Can we fill up a given rectangular matrix to a quantum permutation
matrix? More precisely, can we find further projections (ui j )i=m+1,...,N ; j=1,...,N such
that u = (ui j )i, j=1,...,N is a quantum permutation matrix?

Let us give a concrete example. Suppose the following array is given:

u11 u12 u13 u14
u21 u22 u23 u24
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All ui j are projections, we have u11+u12+u13+u14 = 1 and u21+u22+u23+u24 = 1
as well as u1 j u2 j = 0 for j = 1, 2, 3, 4.

Problem 3.4 Can you always fill up this array to a 4×4 quantum permutation matrix?

Or can you give a counter example of eight projections such that the above array
may not be filled up?The answer is unknown. (And it is yes, if all projections commute,
see Lemma 2.4.) See [32, Sect. 5] for the source of this problem and see [31] for the
links to Hadamard matrices and Example 2.11. As a side remark, such a rectangular
matrix needs to be filled up to a quadratic matrix – wemay not fill it up to a rectangular
matrix4

As a starting point for Problem 3.4, you might want to investigate the following
question.

Problem 3.5 Given two projections p, q ∈ B(H), classify how they can be decom-
posed into projections p = p1 + p2 and q = q1 + q2 such that p1 ⊥ q1 and p2 ⊥ q2.

This might be useful firstly, when investigating how the given rectangular array
of Problem 3.4 may look like in general, with p1 = u11, p2 = u21, q1 = u12 and
q2 = u22; secondly given such a rectangular array, you must find a decomposition of
p := 1− (u11 +u21) and q := 1− (u12 +u22) into p = u31 +u41 and q = u32 +u42
on the way to solve Problem 3.4; and thirdly, this shall also help when trying to find
counterexamples. Recall also Halmos’s investigation of two projections in generic
position [46].

In fact, you may even think of more complicated situations: Think of a quantum
permutationmatrixwith “empty spots”.Canyou alwaysfill it up to a complete quantum
permutation matrix? You might want to call this game “Hilbert Sudoku” or “SudoQ”
[62].

Problem 3.6 Is there a Hilbert Sudoku consisting in entries ui j which all commute,
such that no “classical” solution exists (i.e. no completion to a quantum permutation
matrix such that all entries commute) but a nonclassical one (some of the additional
ui j do not commute)?

See also [62, Ex. 4.3, 4.4, Conj. 4.2, Conj. on page 3] for more on the Hilbert
Sudoku game.

The Hilbert sudoku problem (in its rectangular form) is linked to the following
classical situation. Suppose, we have two finite, simple graphs �1 = (V1, E1) and
�2 = (V2, E2) with m = |V1| ≤ |V2| = N . Assume we have an injective graph

4 There cannot be a “rectangular quantum permutation matrix”: Given a matrix (ui j )i=1,...,m; j=1,...,N of

projections ui j such that
∑N

k=1 uik = 1 and
∑m

k=1 uk j = 1, we have

m · 1 =
m∑
i=1

N∑
j=1

ui j =
N∑
j=1

m∑
i=1

ui j = N · 1,

so m = N holds. Acknowledgements to Alexander Mang for this short and sweet argument. See also [1,
after Lemma 4.1].
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homomorphism ϕ : �1 → �2, i.e. if i ∼1 j , then ϕ(i) ∼2 ϕ( j). We can write this
homomorphism as an array (σi j )i=1,...,m; j=1,...,N with σi j = 1, if ϕ(i) = j and zero
otherwise. Since ϕ is defined on all of V1, we have

∑N
k=1 σik = 1 for all i = 1, . . . ,m.

Since ϕ is injective, we have ui j uk j = 0 for all i �= k and all j . And since �1 and the
subgraph ϕ(�1) of �2 are isomorphic, it is easy to fill up the graph �1 to a larger graph
�′
1 which is then isomorphic to �2. So, we may rephrase the question of filling up

rectangular arrays (ui j )i=1,...,m; j=1,...,N to quantum permutation matrices: Suppose
that the ui j in that rectangular array also satisfy the relations (c) and (d) of Definition
2.12 for two graphs �1 and �2. In that case, we have a graph �1 which we may view
as a subgraph of �2 to some extent (it is quantum isomorphic to a subgraph of �2).

Problem 3.7 Can we complete the graph �1 to a graph �′
1 which is quantum isomor-

phic to �2?

This is unclear!

3.3 Quantum Symmetries of Graphs

There is awhole community interested in the following question: Given a finite, simple
graph�, is there a quantum automorphismmatrix of� (in the sense of Definition 2.12)
whose entries do not all commute (i.e. there are some i, j, k, l such that ui j ukl �=
uklui j )? In that case, we say that the graph has quantum symmetries. On the other
hand, if all quantum automorphismmatrices of � have commuting entries, we say that
� has no quantum symmetries.

As an example, take the complete graph (no self-edges, no multiple edges, undi-
rected) on four vertices. It does have quantum symmetries. Indeed, any 4×4 quantum
permutation matrix is a quantum automorphism of the complete graph (note that the
relations (c) and (d) of Definition 2.12 are redundant for the complete graph), and
the matrix of Example 2.6 has noncommuting entries. The same holds true for the
graph in Example 2.14, it has quantum symmetries. Adding one edge to that graph
however, we obtain a graph without quantum symmetries. See also [36, 73] for more
on quantum symmetries and these examples of simple graphs on a small number of
vertices.

For quite a few simple graphs, the question of the existence of quantum symmetries
is settled. See also Sect. 4.3. However, there are also many open questions in this
regard. For instance, how about the Johnson graph J (6, 3), the Tutte 12-cage or the
graph constructed from the linear constraint system on K3,3 – do these graphs have
quantum symmetries? [71, Ch. 8.2]

Problem 3.8 Can you find a quantum permutation matrix with noncommuting entries
which is a quantum automorphism matrix for one of these graphs?

Another interesting question in that context:

Problem 3.9 Can you find an asymmetric graph � (i.e.a graph whose automorphism
group is trivial) and a quantum automorphism matrix of � such that one of its entries
ui j with i �= j is nonzero?
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We have no clue whether such a graph exists, but it would be a very exciting
example. SeeSect. 4.3. In fact, it seems that certain automorphismgroups are “quantum
excluding” [26]. Generalizing the above question, we may ask:

Problem 3.10 Can you find a graph � whose automorphism group is either the trivial
one {e}, a cyclic group Zk or the symmetric group S3 (also for the alternating groups
An, in particular for A5, it is open) and a quantum automorphism matrix of � such
that one of its entries ui j with i �= j is nonzero?

And yet another question:

Problem 3.11 Can you find two simple connected asymmetric graphs�1 and�2 which
are non-isomorphic, but for which a quantum isomorphismmatrix as inDefinition 2.12
exists?

Actually, solving Problem 3.11 in the affirmative solves Problem 3.9 in the affirma-
tive by taking � as the disjoint union of �1 and �2. We know that there are such graphs
as in Problem 3.11, if we drop the asymmetry assumption: There are non-isomorphic
graphs which are quantum isomorphic [53, Sect. 4.4]. However, the smallest such
example we know has 24 vertices.

Problem 3.12 Can you find two graphs �1 and �2, each having less than 24 ver-
tices, which are non-isomorphic, but for which a quantum isomorphism matrix as in
Definition 2.12 exists? What is the smallest such example?

It is known to experts that the smallest example must have at least 16 vertices. [68]

3.4 Quantum Sinkhorn Algorithm

Sinkhorn’s algorithm, in a nutshell, is a procedure to construct bistochastic matrices:
Take an arbitrary orthogonal matrix A ∈ MN (R) and normalize the rows such that
their entries sum up to one, for each row. Then do the same for the columns. Oh no,
you just destroyed the row sums – their sum might now differ from one! Nevermind,
simply normalize again the rows, then the columns, then the rows etc. Eventually,
magically, this will converge to a bistochastic matrix, i.e. to an orthogonal matrix
B ∈ MN (R) such that

∑
k Bik = ∑

k Bk j = 1 for all i and j .
In [27], a Sinkhorn type algorithm for quantum permutation matrices has been

presented. Pick N 2 rank one projections and put them in an N × N matrix. Then
normalize alternatingly the rows and the columns. In [64], we refined this algorithm:
We may also insert a graph � in this algorithm and adjust the normalization procedure
so that the iterations tend to respect the graph better and better. When restricting
our algorithm to a friendly subclass of vertex-transitive graphs (to so called quasi
Cayley graphs),weobtain very good results: The algorithmpredictswith high accuracy
whether or not the given graph has quantum symmetries. However, unlike in the case
of the classical Sinkhorn algorithm, we are unable to prove convergence (althought
we observe it).
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Problem 3.13 Does this quantum Sinkhorn algorithm converge?

This is related tomany other such questions in operator theory regarding the stability
property: Given a sequence of operators which approximately almost satisfy a certain
condition – can we find a limit object, which actually precisely satisfies this condition?
We don’t know for the quantum Sinkhorn algorithm.

3.5 Intermediate Quantum Permutations

The next open problem we want to present here has been puzzling the quantum group
community for quite a while. We rephrase it in terms of operator theory, which looks
a bit cumbersome, since we avoid the language of quantum groups and C∗-algebras.

Problem 3.14 Given N ≥ 6. Find (or disprove the existence of)

(a) a polynomial p in the N 2 entries of a N × N matrix,
(b) and two N × N quantum permutation matrices u and v each with some noncom-

muting entries (at least two entries shall not commute),

such that

(c) p(σ ) = 0 for all permutation matrices σ ∈ MN ({0, 1}),
(d) p(u) = 0 (i.e. the polynomial relation vanishes on the entries of u),
(e) p(v) �= 0 (it does not vanish on the entries of v),
(f) and whenever we take any quantum permutation matrix w with p(w) = 0, then

also p(w′) = 0, where w′
i j := ∑N

k=1 wik ⊗ wk j .

In that case, you just proved the existence of a famous intermediate quantum permu-
tation group, see Sect. 4.2.

3.6 More Examples, Constructions and QuantumTranspositionMatrices

Finally, we need more examples of quantum permutation matrices.

Problem 3.15 Is there a good machine for constructing quantum permutation matri-
ces?

Is there a nice subclass of quantum permutation matrices, which may be studied
separately? Possibly on some niceHilbert spaces, like functionalHilbert spaces, Hardy
spaces, Bergman spaces, Fock spaces? See [7, 13, 27, 49] for somemodels of quantum
permutation matrices.

Actually, recall that Examples 2.8 and 2.9 come from theWoronowicz tensor prod-
uct. In fact, the class of quantum permutation matrices is closed under taking the
Woronowicz tensor product, conjugation with a diagonal unitary W ⊕ . . . ⊕ W (as in
Lemma 2.4), or other operations, see for instance [11, Def. 3.6]. Now, the theory of
classical permutation matrices allows for a nice generating set: Transpositions – every
permutation matrix may be written as a product of transpositions. We do not have an
analog for quantum permutation matrices.
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Problem 3.16 Are there “quantum transposition matrices” such that every quantum
permutation matrix can be constructed from a tuple of quantum transposition matri-
ces? Are there natural building blocks of quantum permutation matrices?

4 Quantum PermutationMatrices in Their Broader Context and Use

In this final section, we briefly sketch the context of the above objects and problems
and we give references for further reading. We try to be very selective here in order
to keep it short and simple. In particular, we cannot reflect the whole variety of the
existing research on these topics.

4.1 QuantumMathematics

The notion “quantummathematics” is not well-established yet, but it is used from time
to time to subsume various areas of mathematics losely related to quantum physics. A
common theme is noncommutativity, i.e. we consider algebraic structures where we
might have xy �= yx for some elements x and y. In the 1930s and 1940s, the theories
of von Neumann algebras [58, 59] and of C∗-algebras [35, 42] have been founded, as
a starting point of “noncommutative analysis” or “quantum analysis”.

4.1.1 Gelfand (Naimark) Philosophy

The famous Gelfand-Naimark Theorem from 1943 [42] (see also [24, Thm. II.2.2.4])
states that a unital C∗-algebra is commutative if and only if it is isomorphic to an
algebra of continuous functions on a compact Hausdorff space. This is even a func-
torial/categorial relation and we may thus identify commutative C∗-algebras with
compact spaces – and view noncommutative C∗-algebras as analogues of “noncom-
mutative” compact spaces, in some sense. ThisGelfand dualitymight look a bit strange
when one sees it for the first time, but it is just the beginning of a whole philosophy
of “quantum” versions of classical theories.

4.1.2 Extensions of the Gelfand Philosophy

While the theory ofC∗-algebras can be viewed, to some extent, as noncommutative (or
“quantum”) topology [41], the theory of von Neumann algebras is viewed as noncom-
mutative measure theory [2, Sect. 3], [24, Ch. III]; there is Connes’s noncommutative
(differential) geometry [33], Voiculescu’s free probability [57, 63, 77, 78] (as a counter
part to probability theory; you might also consider the community of “quantum prob-
ability” here), and there is Woronowicz’s theory of compact quantum groups [65,
75, 81, 83]. They are all building on this Gelfand philosophy: commutative algebras
correspond to the classical situation, while noncommutative ones correspond to their
quantum counterpart. To some extent, you may also add quantum information theory
(in analogy to information theory) [61, 80] and Taylor’s free analysis/noncommutative
function theory (in analogy to complex analysis) [52, 74] to this family – although



37 Page 18 of 26 M. Weber

the latter ones rely little on Gelfand duality. However, all these theories found their
pioneers in the 1980s (besides von Neumann algebras: in the 1930s and C∗-algebras:
in the 1940s) and more and more interdependences have been revealed in the past few
decades.

So this is why it might be the time to subsume all these theories under the name
“quantum mathematics” and to view it as a deeply intervowen branch of modern
mathematics. See also [82] for a very brief introduction and overview, or [38].

4.2 QuantumGroups and Quantum Permutation Groups

In the context of “quantummathematics”, the role of symmetries is played by quantum
groups rather than by groups.

4.2.1 Quantum Groups

In the 1980s, Woronowicz [83, 84] defined compact quantum groups and he showed
that this class naturally generalizes the class of compact groups. See also the books
[65, 75]. Let us present the slightly easier definition of a compact matrix quantum
group [83]. See also the introductory notes [81].

Definition 4.1 Let N ∈ N. A compact matrix quantum group is a pair G = (A, u)

with u = (ui j )i, j=1,...,N such that

(a) A is a unital C∗-algebra which is generated by the elements ui j ∈ A, with i, j =
1, . . . , N ,

(b) u = (ui j ) and ū = (u∗
i j ) are invertible matrices in MN (A),

(c) the map � : A → A ⊗min A given by �(ui j ) = ∑N
k=1 uik ⊗ ukj is a ∗-

homomorphism.

Woronowicz proved a Gelfand-Naimark type theorem for compact matrix quantum
groups (A, u): If theC∗-algebra A is commutative, then A is isomorphic to the algebra
of continuous functions C(G) on some compact matrix group G ⊆ GLN (C), the
generators ui j are then the evaluation maps of the matrix entries, and � arises from
matrix multiplication (hence, from the group operation ofG). See [75, Prop. 5.1.3] for
the more general statement on compact quantum groups. Let us mention, that there
also other (strongly related) notions of quantum groups, mostly in a purely algebraic
setting rather than in Woronowicz’s analytic one, see for instance [50]. See [75, Sect.
5.4] for some links.

4.2.2 Quantum Permutation Groups

In the 1990s, Sh. Wang [79] defined S+
N , a quantum version of the symmetric group

SN . It is given by the universal C∗-algebra

AS(N ) := C∗(ui j , i, j = 1, . . . , N | ui j = u∗
i j = u2i j ,

∑
k

uik =
∑
k

uk j = 1).
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So, it is the universal C∗-algebra generated by the entries of a “universal quantum
permutation matrix”. If we add commutativity of all generators to this C∗-algebra,
we obtain a commutative C∗-algebra, which is – by Gelfand-Naimark’s Theorem –
isomorphic to the algebra of continuous functions on some compact space. Which
space? SN , the symmetric group! So, in Woronowicz’s theory (which also takes the
group structure on SN into account, in Gelfand duality), S+

N is a reasonable quantum
counterpart of SN .

4.2.3 Quantum Permutation Matrices as Representations of AS(N); Further Reading

Now, we immediately see that any quantum permutation matrix, as defined in Defi-
nition 2.1, gives rise to a ∗-representation of AS(N ), so Sect. 2 basically boils down
to the representation theory of this C∗-algebra. This is also the origin of quantum
permutation matrices, better known under the name magic unitaries. They can also
be viewed as generalized latin squares. It is impossible to list the whole literature on
S+
N , but here is a small collection: [6, 10–12, 15, 20, 22, 23, 28, 30, 37, 47, 79]. See in

particular the survey [9]. See [45, 72] for a discussion on possible definitions of S+∞.
See also [54] for another point of view on quantum permutations.

4.2.4 Operator Algebras Associated to S+N

Note that the C∗-algebras AS(N )—or more generally, the C∗-algebras A associated
to compact matrix quantum groups G = (A, u) – lead to very interesting and deeply
studied examples of operator algebras. In fact, any compact quantum group possesses
a distinguished state, the Haar state, see for instance [75, Thm. 5.1.6, Def. 5.1.9].
So, by GNS construction, we obtain a reduced version of any quantum group, and
also a von Neumann algebra associated to it. Now, these objects are at the same time
very intricate, and yet tractable due to their extra structure, with striking connections
to operator algebras associated with classical discrete groups. See for instance [81,
Sect. 7.3, Sect. 7.4.6] for a short and incomplete (and also slightly outdated) overview
on these operator algebraic aspects. See also the literature mentioned in the previous
subsubsection.

4.2.5 “Easy” Quantum Groups

The representation theory of S+
N is quite combinatorial using partitions of sets, similar

to Brauer diagrams and Schur-Weyl duality. See the work on “easy” quantum groups
for this larger class of “combinatorial quantum groups” containing S+

N ; here is some
excerpt: [17, 18, 29, 40, 43, 60, 67, 76] Here is an introduction to the field: [81].

4.2.6 Intermediate Quantum Permutation Groups

For the famous question on the existence of intermediate quantum permutation groups
mentioned in Sect. 3.5, let us state it here more properly:

Problem 4.2 Is there some N ∈ N and a quantum group G such that SN � G � S+
N?
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The answer is no for N ≤ 5, see [4, 15], and it is unknown for N ≥ 6. Providing
a polynomial p and a solution to the question in Sect. 3.5 would produce such an
intermediate quantum group G whose associated C∗-algebra is the quotient of C(S+

N )

by the relations p = 0.

4.2.7 S+N as a Symmetry Object

By the way, just like SN is the symmetry object of N points within the category of
groups (i.e. it is themaximal group acting on N points), S+

N is the symmetry object of N
points within the theory of quantum groups:Wemay define actions of quantum groups
on N points (after identifying N points with C

N in the sense of Gelfand duality), and
we observe that S+

N is the maximal object acting on it [79, 81]. As S+
N contains SN ,

due to a natural definition of what containment means here, we have more ways of
quantum permuting points than just permuting them. The quantum world has a richer
notion of symmetry!

4.3 Quantum Symmetries of Graphs and Quantum Isomorphisms of Graphs

Let us comment on further use of quantum permutation matrices as symmetry objects.

4.3.1 Quantum Automorphism Groups of Graphs

In 2005, Banica defined the quantum automorphism group of a finite graph [3, 21]. It
is given by the quotient of the above C∗-algebra AS(N ) by the relations (c) and (d)
of Definition 2.12. It naturally generalizes the automorphism group of a simple finite
graph � = ({1, . . . , N }, E), which in turn is given by

Aut(�) = {σ ∈ SN | σ A = Aσ },

where A ∈ MN ({0, 1}) is the adjacency matrix of �. The quantum automorphism
group of � contains the automorphism group, and we say that � has quantum sym-
metries in case this is a strict containment; this definition is consistent with the one
given in Sect. 3.3.

Again, the quantum world has a richer notion of symmetry—for a graph having
quantum symmetries, we have more ways of quantum permuting its vertices than just
permuting them. The literature on quantum symmetries is growing rapidly these days,
and here is a short collection: [3, 5, 8, 21, 44, 69–71, 73]. Let us also mention some
Erdös-Renyi type results in this context: [53, Thm. 3.15] and [34, 48].

4.3.2 Quantum Isomorphism of Graphs

Closely linked is the concept of quantum isomorphism of two graphs. We say that two
graphs are quantum isomorphic, if a quantum isomorphism (in the sense of Definition
2.12) between them exists. Surprisingly, there are graphs, which are non-isomorphic
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but quantum isomorphic, see [53, Sect. 4.4]. This is striking—the quantum isomor-
phism class of a graph is larger than its isomorphism class, in general!

This is also very interesting in the context of graph homomorphism counts. In the
1960s, Lovasz showed, that two graphs �1 and �2 are isomorphic, if and only if for all
graphs �′, the graph homomorphism counts from �′ to �1 and from �′ to �2 coincide.
Do we really need all graphs �′? May we restrict to graph homomorphism counts for
a smaller class, say planar graphs �′ for instance? In 2019, Mancinska and Roberson
proved a Quantum Lovasz Theorem [56] (or rather [55] for the full version): Two
graphs �1 and �2 are quantum isomorphic, if and only if for all planar graphs �′,
the graph homomorphism counts from �′ to �1 and from �′ to �2 coincide. As there
are graphs, which are quantum isomorphic but not isomorphic, we may not restrict to
planar graphs in Lovasz’s Theorem.

The result by Mancinska and Roberson is exciting in many ways: Not only is it a
strong theorem in graph theory—it has been achieved by means from quantum group
theory and quantum information, revealing a nice interplay between these three fields.

4.4 Quantum Information Theory

Let us elaborate more on the link to quantum information theory.

4.4.1 Graph Isomorphism Game

Consider the nonlocal game, as described in [53, 55]: Given two graphs�1 = (V1, E1)

and �2 = (V2, E2) with |V1| = |V2| = N , a referee passes a vertex xA ∈ X to Alice
and a vertex xB ∈ X to Bob; here, X := V1 � V2 is the disjoint union of V1 and
V2. Alice replies with a vertex yA ∈ X which is not from the same graph as xA, and
likewise Bob replies with yB ∈ X different from the graph where yA is from. The
players win the game, if

(1) the set {xA, xB , yA, yB} has four elements, two of them being from V1 (let us call
them j and l) and two of them from V2 (calling them i and k) and we have j ∼1 l
if and only if i ∼2 k,

(2) or the set {xA, xB, yA, yB} has two elements, one from V1 and one from V2.

4.4.2 Classical Winning Strategy

There is a perfect strategy (i.e. a strategy with which they may always win regardless
of the referee’s input), if and only if �1 and �2 are isomorphic. Indeed, in that case
let ϕ : V1 → V2 be an isomorphism of �1 and �2 and instruct Alice to reply with
ϕ(xA) ∈ V2 in case xA ∈ V1 and with ϕ−1(xA) ∈ V1 in case xA ∈ V2; likewise for
Bob.

4.4.3 QuantumWinning Strategy

Now, may Alice and Bob increase their chances to win when applying a quantum
strategy? Technically, they are now performing quantum measurements, on a shared
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entangled state. And the answer is: Yes, they can! If the given graphs �1 and �2 are
non-isomorphic but quantum isomorphic, there is no classical winning strategy, but
there is a perfect quantum strategy. The strategy comes from a quantum isomorphism
matrix, as in Definition 2.12, of course.

So, the existence of perfect quantum strategies for this game in quantum information
theory is linked with quantum permutation matrices (and hence also with quantum
groups), and also with quantum isomorphisms of graphs and a quantum version of
Lovasz’s Theorem from graph theory. Beautiful, isn’t it? See also [14, 66] for more
on such links.

4.5 Free Probability Theory

Let us mention another use of quantum permutation matrices, or rather of the quantum
permutation group S+

N .

4.5.1 Classical de Finetti Theorem

In probability theory, De Finetti’s Theoremmay be stated as follows: Given a sequence
(xn)n∈N of real random variables, this sequence is iid (independent, identically dis-
tributed) over the tail algebra if and only if it is exchangeable (i.e. its distribution is
invariant under the action of the symmetric groups SN , N ∈ N on finite tuples of the
sequence).

4.5.2 Free de Finetti Theorem

Now, in free probability theory [57, 63, 77, 78], there is a notion of free independence,
a kind of a noncommutative counterpart of classical independence, for noncommuting
random variables. And just as SN is the distributional symmetry object for classical
(conditional) independence, S+

N is the distributional symmetry object for (conditional)
free independence—Köstler and Speicher’s De Finetti Theorem [51] states: Given a
sequence (xn)n∈N of selfadjoint noncommutative random variables, this sequence is
freely independent and identically distributed over the tail algebra if and only if it is
quantum exchangeable (i.e. its distribution is invariant under the action of the quantum
permutation groups S+

N , N ∈ N on finite tuples of the sequence).

4.5.3 More on de Finetti Theorems and Other Stochastic Aspects

This is another instance of the interplay between various fields of “quantummathemat-
ics”: Just as groups provide the correct symmetries for probability theory, the correct
symmetries for free probability are provided by quantum groups. See for instance
[19], [16, Sect. 1.1] for more on such de Finetti theorems, or [18] for other stochastic
aspects of S+

N .
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