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Abstract    We  consider  GROUP  CONTROL  BY  ADDING
INDIVIDUALS  (GCAI)  in  the  setting  of  group  identification
for  two  procedural  rules —the  consensus-start-respecting  rule
and the liberal-start-respecting rule. It  is known that GCAI for
both  rules  are -hard,  but  whether  they  are  fixed-parameter
tractable  with  respect  to  the  number  of  distinguished
individuals remained open.  We resolve both open problems in
the affirmative.  In  addition,  we strengthen the -hardness  of
GCAI  by  showing  that,  with  respect  to  the  natural  parameter
the  number  of  added  individuals,  GCAI  for  both  rules  are

-hard.  Notably,  the -hardness  for  the  liberal-start-
respecting rule holds even when restricted to a very special case
where  the  qualifications  of  individuals  satisfy  the  so-called
consecutive  ones  property.  However,  for  the  consensus-start-
respecting rule, the problem becomes polynomial-time solvable
in this special case. We also study a dual restriction where the
disqualifications  of  individuals  fulfill  the  consecutive  ones
property,  and  show  that  under  this  restriction  GCAI  for  both
rules  turn  out  to  be  polynomial-time  solvable.  Our  reductions
for  showing -hardness  also  imply  several  algorithmic
lower bounds.

Keywords    group  control  by  adding  individuals, group
identification, parameterized  complexity, consecutive  ones
property, FPT, W[2]-hard

 1    Introduction
In  the  model  of  group  identification,  we  have  a  group  of
individuals  each  of  whom  holds  binary  valuations  on  all
individuals including herself, and the model aims to determine
who among these individuals are socially qualified by utilizing
a certain social aggregation rule [1]. Since the initial works of
Kasher [2] and Kasher and Rubinstein [1], group identification
has  been  extensively  explored  from  the  perspective  of
economics,  with  the  main  focus  being  on  axiomatic
characterizations of different social aggregation rules [3–7].

As  social  aggregation  rules  can  be  seen  as  special  voting
systems  where  individuals  are  both  voters  and  candidates,
inspired  by  the  pioneering  work  of  Bartholdi,  Tovey,  and
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Trick [8] on voting control problems, Yang and Dimitrov [9]
initiated  the  study  of  group  identification  from  a  theoretical
computer science perspective by investigating the complexity
of  the  GROUP  CONTROL  BY  ADDING/DELETING
INDIVIDUALS  (GCAI/GCDI)  problems.  In  particular,
GCAI/GCDI  consists  in  determining  if  a  given  (valuation)
profile  can  be  modified  by  adding/deleting  a  limited  number
of  individuals  to  make  a  given  subset  of  distinguished
individuals  all  socially  qualified.  Yang  and  Dimitrov  studied
the  consensus-start-respecting  rule  and  the  liberal-start-
respecting rule, and showed that GCAI for both rules are -
hard, while GCDI for both rules turned out to be polynomial-
time solvable. However, it is left open whether GCAI for these
two rules are fixed-parameter tractable ( )  with respect  to
the number of distinguished individuals. We resolve the open
questions in the affirmative by reducing GCAI to a variant of
the  DIRECTED  STEINER  TREE  problem  (Theorems  2  and
3).  In  addition,  we  strengthen  the  above-mentioned -
hardness  results  by  showing  that  GCAI  for  both  rules  are

-hard  with  respect  to  the  number  of  added  individuals
(Theorems  4  and  6).  Particularly,  the -hardness  for  the
liberal-start-respecting  rule  holds  even  when  restricted  to  a
very  special  case  where  the  qualifications  of  individuals
satisfy  the  so-called consecutive  ones  property.  However,  for
the  consensus-start-respecting  rule,  the  problem  is
polynomial-time solvable in this special case (Theorem 5). We
also  study  a  dual  restriction  where  the  disqualifications  of
individuals  fulfill  the  consecutive  ones  property,  and  show
that  under  this  restriction  GCAI for  both  rules  turn  out  to  be
polynomial-time  solvable  (Theorem  7).  Our  hardness
reductions  also  lead  to  numerous  lower  bounds  concerning
kernelizations and exact algorithms (Corollaries 1–6).

 2    Related works
Since  the  first  work  of  Yang  and  Dimitrov  [9]  on  the
complexity  of  group  control  problems,  several  related
problems  have  been  proposed  and  studied  very  recently.  It
should  be  pointed  out  that  in  addition  to  the  consensus-start-
respecting rule and the liberal-start-respecting rule,  Yang and
Dimitrov [9]  also  studied the  class  of  consent  rules  proposed
by  Samet  and  Schmeidler  [7],  and  established  a  complete
complexity  landscape  of  the  group  control  problems  with
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respect  to  the  consent  quotas  of  these  rules.  Erdélyi,  Reger,
and  Yang  [10,11]  studied  the  destructive  counterparts  of  the
group  control  problems,  group  bribery  problems,  and  the
problems  of  determining  socially  qualified  individuals  with
incomplete information. Later, Erdélyi and Yang [12] studied
the  complexity  of  microbribery  in  group  identification.
Additionally,  Boehmer  et  al.  [13]  also  considered  numerous
bribery  problems  in  group  identification  through  the  lens  of
parameterized  complexity.  Junker  [14,15]  later  extended  the
results of Boehmer et al. [13] and studied some other variants
of  strategic  problems  in  group  identification.  Motivated  by
applications  in  information  diffusion  in  social  networks,
Blažej  [16]  studied  some  generalizations  of  group  control
problems for the two procedural rules mentioned above. Very
recently,  Yang  and  Dimitrov  [17]  studied  group  control
problems for the class of consent rules when restricted to two
types of cyclic domains which contain the domains studied in
the paper  as  special  cases.  They showed that  these problems,
being  computationally  hard  to  solve  in  general,  become
polynomial-time solvable when the input profile falls into the
category of these cyclic domains.

NP

Voting  problems  restricted  to  special  domains  have  been
widely  studied  in  the  literature.  Particularly,  the  consecutive
domain  has  been  studied  as  an  analog  of  single-peaked
domain for dichotomous preferences [18,19]. This domain has
been also studied under the name candidate interval [20–23].
It is known that many voting problems which are -hard in
general  become  polynomial-time  solvable  when  restricted  to
this  domain,  with  only  a  few  exceptions  [24,25].  For  further
discussions on the complexity of voting problems in restricted
domains, we refer to [26–29] for comprehensive surveys.
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It  should  also  be  noted  that  the  consecutive  domain  is
equivalent to the so-called consecutive ones property of -
matrices  which  has  long  been  explored  due  to  its  significant
applications in a broad range of areas (cf. the survey [30] and
references  therein).  Recall  that  a -matrix  satisfies  the
consecutive  ones  property  if  its  columns  can  be  permuted  so
that in each row all s are consecutive.

 3    Preliminaries

i [i]
i

Throughout  this  paper  we  will  need  the  following  basic
ingredients.  For an integer ,  is  the set  of positive integers
no greater than .

 3.1    Social aggregation rules
N n a ∈ N

N
a′ ∈ N φ(a,a′) = 1 a a′

φ(a,a′) = 0 a a′

φ : N ×N→ {0,1} N
f f (φ,T ) ⊆ T

(φ,T ) φ N T ⊆ N
f (φ,T ) f

T φ

Let  be a set of  individuals. Each individual  has an
opinion who from the set  possess a certain qualification and
who do not. For , we write  if  qualifies ,
and  write  if  disqualifies .  The  mapping

 is  called  a profile over .  A social
aggregation rule is a function  assigning a subset 
to each pair  of a profile  over  and a subset .
The  members  of  are  called  socially  qualified
individuals in  at the profile .

In what follows we focus in our analysis on two procedural
rules:  the consensus-start-respecting rule and the liberal-start-
respecting  rule.  The  reader  is  referred  to  [4]  for  axiomatic
characterizations of these rules.

T ⊆ N

Consensus-start-respecting  rule f CSR This  rule  determines
the  socially  qualified  individuals  iteratively.  First,  all
individuals  qualified  by  everyone  are  considered  socially
qualified.  Then,  in  each  iteration,  all  individuals  who  are
qualified  by  at  least  one  of  the  currently  socially  qualified
individuals  are  added  into  the  set  of  socially  qualified
individuals. The iterations terminate when no new individuals
can be added this way. Formally, for every , let
 

KC
0 (φ,T ) = {a ∈ T | ∀(a′ ∈ T )[φ(a′,a) = 1]}.

ℓ = 1 2, . . . KC
ℓ

(φ,T ) =For each integer , , let 
 

KC
ℓ−1(φ,T )∪{a ∈ T | ∃(a′ ∈ KC

ℓ−1(φ,T ))[φ(a′,a) = 1]}.
fCSR(φ,T ) = KC

ℓ
(φ,T ) ℓ

KC
ℓ

(φ,T ) = KC
ℓ−1(φ,T )

Then,  for  some  integer  such  that
.

fCSR

T ⊆ N

Liberal-start-respecting  rule f LSR This  rule  is  analogous  to
 with only the difference that the initial socially qualified

individuals are those who qualify themselves. In particular, for
every , let
 

KL
0 (φ,T ) = {a ∈ T | φ(a,a) = 1}.
ℓ = 1 2, . . . KL

ℓ (φ,T ) =For each integer , , let 
 

KL
ℓ−1(φ,T )∪{a ∈ T | ∃(a′ ∈ KL

ℓ−1(φ,T ))[φ(a′,a) = 1]}.
f LSR(φ,T ) = KL

ℓ (φ,T ) ℓ

KL
ℓ (φ,T ) = KL

ℓ−1(φ,T )
Then,  for  some  integer  such  that

.

KC
0 (φ,T ) = ∅ KL

0 (φ,T ) = ∅
fCSR(φ,T ) = ∅ f LSR(φ,T ) = ∅

It should be noted that when  (resp. )
we have that  (resp. ).

 3.2    Consecutive domains
▷ = (a1,a2, . . . ,an) N

a ∈ N
Let  be  a  linear  order  over .  For  each
individual , let
 

φ▷(a) = (φ(a,a1),φ(a,a2), . . . ,φ(a,an)).
φ▷(a)
▷ 1 φ▷(a)

i, j ∈ [n] i ⩽ j φ(a,ax) = 1 x
i ⩽ x ⩽ j φ(a,ax) = 0 x

φ▷(a)
▷ 0 φ▷(a)

φ ▷
N φ▷(a) a ∈ N

We say that  is qualifying consecutive (QC) with respect
to the order  if all s are consecutive in ,  i.e.,  there are

 such  that ,  for  all  such  that
, and  for all other possible values of  (if

there are any). We say that  is disqualifying consecutive
(DQC) with respect to  if s are consecutive in . We say
that  is QC (resp. DQC) if there is at least one linear order 
over  with respect to which every  where  is QC
(resp. DQC).

(0,1)

It  is  immediately  clear  from  the  above  definition  that
checking if a profile is QC or DQC is equivalent to checking if
a -matrix  satisfies  the  consecutive  ones  property,  which
can be done in polynomial-time (cf. [31–33]).

 3.3    Group control

f
Let us now formally state the group control problem we study.
Let  be a social aggregation rule.
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SIn  what  follows,  we  call  members  of  distinguished
individuals.

 3.4    Parameterized complexity
Σ∗×N Σ

FPT
(X, κ)

(X, κ)
f (κ) · |X|O(1) f
κ

A parameterized problem is  subset  where  is  a  fixed
alphabet.  A  parameterized  problem  is  if  there  is  an
algorithm  so  that  for  each  instance  of  the  problem  the
algorithm  determines  correctly  if  is  a  YES-instance  in
time ,  where  is  a  computable  function  in  the
parameter .  The  following  hierarchy  has  been  developed  to
classify parameterized problems:
 

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆ XP.
W[2] W[2]

W[2]
FPT

A parameterized problem is -hard if all problems in 
are  parameterized  reducible  to  the  problem. -hard
problems do not  admit  any -algorithms unless  the  above
hierarchy collapses to some level.

FPT P
(X, κ) P

(X′, κ′) P

A kernelization of an  problem  is an algorithm which
takes an instance  of  as input and outputs an instance

 of  such that
(1)

(X, κ)
 the  algorithm  runs  in  polynomial  time  in  the  size  of

,
(2) (X, κ) (X′, κ′)  is a YES-instance if and only if  is a YES-

instance, and
(3) |X′| ⩽ g(κ) g κ  for some computable function  in .

P g PIf  has a kernelization where  is a polynomial, we say that 
admits a polynomial kernel.

For  further  discussions  on  parameterized  complexity,  we
refer to [34,35].

 3.5    Useful graph problems
In  the  following,  we  introduce  some  graph  problems  used  to
establish our results. We assume the reader is familiar with the
basics in graph theory [36,37].

G
R B G

R B v u
A

B A B B
A

A bipartite graph is a graph  whose vertices can be divided
into two disjoint sets  and  so that the edges of  are only
between  and .  A  vertex  dominates another  vertex  if
there is an edge between them. For two disjoint subsets  and

 of vertices, we say that  dominates  if every vertex in 
is dominated by at least one vertex in .
 

 
 

NP
W[2]

κ

RBDS  is  a  well-known -hard  problem,  and  from  the
parameterized  complexity  point  of  view  it  is -hard  with
respect  to  [35].  We  will  use  this  problem  to  establish  our
fixed-parameter intractability results.

G V(G)
E(G) J

G V(J)
J

Some of our problems are solved by reducing to a variant of
the DIRECTED STEINER TREE problem defined below. For
a graph (resp. digraph) , we use  to denote its vertex set,
and use  to denote its edge (resp. arc) set. For a subset 
of edges (resp. arcs) of ,  is the set of vertices incident
with edges (resp. arcs) in .

 
 

NP FPT
|X|

O∗(2|X|)

It  is  known that  DST is -hard  and,  moreover,  it  is 
with  respect  to  the  number  of  terminals  [38–40].  More
precisely, DST can be solved in  time [38,39,41,42]1).
 

 
 

FPT

FPT

We  shall  use  DVWST  as  an  intermediate  problem  to
establish our -results.  Note that  DVWST can be trivially
transformed  into  DST  in  polynomial  time  by  splitting  each
vertex  into  two  vertices  connected  by  one  arc  with  the  same
weight as the original vertex. Therefore, DVWST is also 
with respect to the number of terminals (Theorem 1).

 4    Our results
FPTWe  shall  first  study  two -algorithms  for  GCAI  in  the

general domain, and then we explore the complexity of GCAI
restricted to the QC and the DQC domains.

 4.1    The general domain
fCSR

f LSR fCSR

FPT

First, we resolve the open questions regarding GCAI for 
and  in the affirmative, starting with the one for . To
this end, we first show that the DVWST problem is  with
respect to the number of terminals.

O∗(2ℓ) ℓTheorem 1 DVWST can be solved in  time where  is
the number of terminals.

The proof of Theorem 1 is deferred to the Appendix.

fCSR

fCSR

Bellow  we  study  a  lemma  which  suggests  that  to  solve
GCAI for  we can make a guess on one of the individuals
who  is  qualified  by  all  individuals  in  the  final  profile.  This
enables  us  to  split  an  instance  of  GCAI  for  into
polynomially  many  subinstances  which  are  then  solved  via
Theorem 1.

φ N Gφ
N

a ∈ N a′ ∈ N a
a′

The incidence graph of  a  profile  over ,  denoted ,  is
the  digraph  whose  vertices  are  exactly  the  individuals  in ,
and  there  is  an  arc  from  to  if  and  only  if 
qualifies . Note that the incidence graph may contain loops.
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φ N
fCSR(φ,N) , ∅ a ∈ N

N φ a′ ∈ N \ {a}
a′ ∈ fCSR(φ,N)

a a′ Gφ

Lemma 1 Let  be a profile over a set  of individuals so that
.  Let  be  an  individual  qualified  by  all

individuals in  with respect to . Then, for every ,
it  holds  that  if  and  only  if  there  is  a  directed
path from  to  in .

φ a a′

fCSR

a a′ a′ ∈ fCSR(φ,N)
a′ ∈ fCSR(φ,N)

fCSR b ∈ N

b a′ Gφ φ b
a

a a′ Gφ

Proof Let , , and  be as stipulated in the lemma. It is clear
from the definition of  that if there is a directed path from

 to ,  then .  It  remains  to  show  the  other
direction.  Assume  that .  Due  to  the  definition
of , there must be an individual  who is in the initial
set  of  socially  qualified  individuals,  and  there  is  a  directed
path  from  to  in  the  incidence  graph  of .  So,  is
qualified by all individuals including , implying that there is
a directed path from  to  in .　　　　　　　　　　□

S
S

Observe  that  if  an  individual  in  qualifies  another
individual in , then if the former is socially qualified so is the
latter.  The  following  reduction  rule  implements  this
observation.

a,a′ ∈ S a a′ a′ S
T \S

Reduction  Rule  1 If  there  are  two  distinct  distinguished
individuals  such  that  qualifies , move  from 
into .

Y GFor a subset  of vertices in a digraph , let
 

N−G(Y) = {v ∈ V(G) \Y | ∃(u ∈ Y)[(v,u) ∈ E(G)]}
Y Ybe the set of inneighbors of vertices in , without  itself, and

let
 

N+G(Y) = {v ∈ V(G) \Y | ∃(u ∈ Y)[(u,v) ∈ E(G)]}
Y Y

Y vY
N−G({vY }) = N−G(Y) N+G({vY }) = N+G(Y)

Y G vY Y

be  the  set  of  outneighbors  of  vertices  in ,  without  itself.
Merging  is  the operation that  creates one vertex  so that

 and ,  and  removes  all
vertices of  from . We call  the merging vertex of .

FPT
Armed with Lemma 1 and Reduction Rule 1,  we are ready

to present our first -algorithm.

fCSR FPT
ℓ

O∗(2ℓ)

Theorem 2 GCAI for  is  with respect to the number
 of distinguished individuals. More precisely, it can be solved

in  time.

I = (N,φ,S ,T,k) fCSR

I
S

S |N|
I a∗ ∈ N

U ⊆ N \T k
S ⊆ fCSR(φ,T ∪U) a∗ ∈ T ∪U

T ∪U a∗ a∗

I

Proof Let  be an instance of GCAI for .
We first  exhaustively  apply  Reduction  Rule  1  to  so  that  in
the  resulting  instance  no  individual  in  qualifies  another
different  individual  in .  Then,  we  split  the  instance  into 
subinstances,  each of which takes  and an individual 
as input, and determines if there exists  of at most 
individuals  so  that , ,  and  all
individuals  in  qualify .  That  is,  is  our  guessed
individual  who  is  in  the  initial  set  of  socially  qualified
individuals  in  the  final  profile.  Obviously,  the  original
instance  is a YES-instance if and only if at least one of the
subinstances is a YES-instance.

a∗ a∗ T
a∗ N \T T

k a∗

T

Now  we  focus  on  solving  a  subinstance  with  a  guessed
individual .  We  assume  that  is  included  in ,  since
otherwise we simply move  from  into  and decrease

 by one. As  is supposed to be qualified by all individuals
in  the  final  profile,  if  there  is  an  individual  in  who

a∗

N \T a∗

N φ

a∗ ∈ T
fCSR(φ,T ) ⊆ fCSR(φ,T ∪U)

U ⊆ N \T T
φ

N \T T S := S \ fCSR(φ,T )
S

T φ
S

G
φ N fCSR(φ,T )

a∗ ∈ fCSR(φ,T ) fCSR(φ,T )
u fCSR(φ,T )

N \T 1
u 0

S p = k

disqualifies ,  we  directly  discard  this  subinstance  and
proceed  to  the  next  one.  Otherwise,  we  remove  from  the
subinstance  all  individuals  in  who  disqualify  (this
includes  deleting  them  from  both  and  from ).  We  shall
solve the subinstance by reducing it to DVWST. Observe first
that  by  Lemma  1  and  the  fact  that  is  qualified  by  all
individuals now, it  holds that  for
all , i.e., if an individual is socially qualified in  at

,  it  remains  socially  qualified  when  additional  individuals
from  are added into . We reset , i.e.,
we  remove  from  all  individuals  which  are  already  socially
qualified  in  at .  In  light  of  the  above  observation,  the
subinstances before and after the resetting of  are equivalent.
Now  we  create  an  instance  of  DVWST  as  follows.  The
digraph  in  the  DVWST  instance  is  obtained  from  the
incidence  graph  of  over  by  merging .
Obviously, ,  and  so  is  nonempty.
Let  denote the merging vertex of , and we let it be
the  given  root  of  the  DVWST  instance.  Furthermore,  we  let
every  individual  in  have  weight ,  and  let  all  the  other
individuals  (including )  have  weight .  The  terminals  are
those in , and the weight upper bound is .

J k
u a ∈ S

G a fCSR (φ, J∪{u}∪S )
N \T 1
0 J

k N \T
J∩ (N \T )

U ⊆ N \T k
a ∈ S

a ∈ fCSR(φ,T ∪U)
u a G T ∪U

U k

If there is a subset  of vertices of total weight at most  so
that there is  a directed path from  to every terminal  in

,  then  is  socially  qualified  in  due  to
Lemma 1. Moreover, as all individuals in  have weight 
and  all  the  other  individuals  have  weight ,  we  know  that 
contains  at  most  individuals  from ,  implying  that

 is  a  YES-certificate  for  the  subinstance.  For  the
opposite direction,  if  there is  a subset  of at  most 
individuals  so  that  for  all  it  holds  that

,  then  due  to  Lemma  1  there  is  a  directed
path  from  to  in  the  subgraph of  induced by .  As
the total  weight  of  vertices  in  is  at  most ,  the instance of
DVWST is a YES-instance.

ℓ = |S |
|N|

O∗(2ℓ)
O∗(2ℓ)

Regarding  the  running  time,  let  be  the  number  of
distinguished individuals. As there are at most  subinstances
to  consider  and  each  of  them  can  be  solved  in  time
(Theorem 1), the whole algorithm runs in  time.　　　□

f LSR

An  analogous  result  for  the  liberal-start-respecting  rule
exists.  In  fact,  the  algorithm in  this  case  is  simpler.  We  first
use  a  reduction  rule  to  refine  the  structure  of  instances  of
GCAI for .

a,a′ ∈ S a a′

a′ S T \S
Reduction Rule 2 If there are  such that  qualifies ,
move  from  into .

a a′

a a′

f LSR

Notice  that  the  difference  between  Reduction  Rule  1  and
Reduction Rule 2 is that in the second rule  and  may be the
same, while the first  reduction rule requests that  and  are
distinct.  The  reason  is  that  under  every  individual
qualifying herself is already socially qualified without needing
other individuals’ qualifications.

f LSR FPT
ℓ

O∗(2ℓ)

Theorem 3 GCAI for  is  with respect to the number
 of distinguished individuals. More precisely, it can be solved

in  time.
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I = (N,φ,S ,T,k) f LSR

I

G
φ N

u u
N {a ∈ N | φ(a,a) = 1}

u S
N \T 1

0

O∗(2ℓ)

Proof Let  be an instance of GCAI for .
We first  apply  Reduction  Rule  2  to  iteratively  until  it  does
not  apply.  Then,  we  solve  the  instance  by  reducing  it  to  a
DVWST instance  as  follows.  The  digraph  of  the  DVWST
instance is obtained from the incidence graph of  over  by
creating  one  new  vertex  and  creating  arcs  from  to  every
individual  in  qualifying  herself  (i.e., ).
We  set  as  the  root,  and  set  as  the  set  of  the  terminals.
Finally, we let the weight of all individuals in  be , and
let those of others be . Similar to the analysis in the proof of
Theorem 2, we can show that the two instances are equivalent,
and the running time of the algorithm is .　　　　　□

NP

W[2]
W[2]

Next,  we  strengthen  the -hardness  of  GCAI  for  the
consensus-start-respecting  rule  established  in  [9]  by  showing
its -hardness  with  respect  to  the  number  of  added
individuals.  We  also  have  a -hardness  result  for  the
liberal-start-respecting  rule,  but  we  defer  the  presentation  of
this  result  to  the  next  section  because  it  holds  even  in  a
specific domain which is not the focus of this section.

fCSR W[2]Theorem  4 GCAI  for  is -hard  with  respect  to  the
number of added individuals.

(G, κ)
G = (R∪B,E)
(R,B) κ
fCSR G

N = R∪B S = T = B φ
N

Proof We prove the theorem via a reduction from the RBDS
problem.  Let  be  an  RBDS  instance,  where

 is  a  bipartite  graph  with  the  vertex  partition
, and  is an integer. We create an instance of GCAI for

 as  follows.  First,  we  create  for  each  vertex  in  an
individual denoted by the same symbol for notational brevity.
Let  and let .  We define  a  profile  over

 so that:

b ∈ B R
B

● each  qualifies all individuals in  and disqualifies
all individuals in ; and

r ∈ R R
b ∈ B r b

r b G

● each  qualifies all  individuals in  and,  moreover,
for  each  individual  it  holds  that  qualifies  if
and only if  dominates  in .

fCSR (N,φ,S ,T, κ)The instance of GCAI for  is . The reduction
can be done in  polynomial  time.  We show the correctness  of
the reduction as follows.

(⇒) R′ ⊆ R κ

B φ

R N
R′ ⊆ fCSR(φ,B∪R′) R′

B b ∈ B r ∈ R
b φ r b

b ∈ fCSR(φ,B∪R′) b ∈ B
fCSR

 Assume  that  there  is  a  subset  of  at  most 
vertices  dominating .  According  to  the  definition  of ,
individuals  in  are  qualified  by  all  individuals  in .
Therefore,  it  holds  that .  Moreover,  as 
dominates , for every  there is at least one  which
dominates .  By  the  definition  of ,  qualifies ,  implying
that .  As this  holds  for  all ,  we know
that  the  instance  of  GCAI  for  constructed  above  is  a
YES-instance.

(⇐) R′ ⊆ R
N \T = R κ B ⊆ fCSR(φ,B∪R′)

b B
φ b R

b G b ∈ fCSR(φ,B∪R′) R′

b
b ∈ B R′ B |R′| ⩽ κ

 Assume  that  there  is  a  subset  (recall  that
) of cardinality at most  so that .

Let  be  any  arbitrary  individual  in .  According  to  the
definition  of ,  is  qualified  only  by  individuals  in  who
dominate  in .  As ,  this  implies  that 
contains at least one vertex dominating . As this holds for all

,  we  conclude  that  dominates .  Given ,  we
conclude that the RBDS instance is a YES-instance.　　　　□

 4.2    The consecutive domains
Now  we  explore  the  complexity  of  GCAI  for  the  two
procedural rules restricted to the consecutive domains.

φ N
▷ N fCSR(φ,N)

▷

Lemma 2 Let  be a profile over  which is QC with respect
to  a  linear  order  of .  Then,  all  individuals  in 
are consecutive in the order .

fCSR(φ,N) = ∅
a ∈ N

N φ ▷
▷

a fCSR(φ,N)
▷

Proof If ,  the  lemma  vacuously  holds.
Otherwise,  there  is  an  individual  which is  qualified  by
all  individuals  in .  As  is  QC  with  respect  to ,  all
individuals only qualify individuals consecutive in , and they
all  qualify .  It  follows  that  all  individuals  in  are
consecutive in .　　　　　　　　　　　　　　　　　□

fCSR
Based on Lemma 2, we derive a polynomial-time algorithm

for GCAI for .

fCSRTheorem 5 GCAI for  is polynomial-time solvable when
restricted to QC profiles.

I = (N,φ,S ,T,k) fCSR

φ ▷ N ai
a j

▷ S
I ai a j

T k N \T
T ai
a j S T \S S

S i = j

Proof Let  be  an  instance  of  GCAI  for 
where  is QC with respect to a linear order  over . Let 
and  be  respectively  the  left-most  and  the  right-most
individuals  in  that  are  from .  Due  to  Lemma  2,  the
question  of  is  equivalent  to  making  and  socially
qualified in  by adding at most  individuals from  into

. In light of this fact, we move all individuals except  and
 from  into .  After  this  operation,  contains  at  most

two individuals (  is  a singleton when ).  Then, we solve
the instance in polynomial time by Theorem 2.　　　　　　□

fCSR f LSR
Now we move on to the liberal-start-respecting rule. Unlike

,  we show that  GCAI for  remains  computationally
hard even when restricted to QC profiles.

f LSR NP W[2]Theorem 6 GCAI for  is -hard and is -hard with
respect  to  the  number  of  added  individuals  even  when
restricted to QC profiles.

f LSR

(G, κ) G = (B∪R,E)
κ b ∈ B

b
r ∈ R d(r) r G

r ∈ R d(r)+1 r(0), r(1), . . . ,
r(d(r)) C(r) = {r(i) | i ∈ [d(r)]} r ∈ R
C(R) =

∪
r∈R C(r) N

|B|+ |R|+∑r∈R d(r) S = B
T = B∪C(R) φ N

Proof We  prove  the  theorem by  giving  a  reduction  from the
RBDS  problem  to  GCAI  for  restricted  to  QC  profiles.
Let  be  an instance of  RBDS, where  is  a
bipartite  graph,  and  is  an  integer.  For  each ,  we
construct  an  individual  denoted  still  by  for  notational
simplicity. For each , let  be the degree of  in . For
each ,  we  construct  individuals 

.  Let  for  each ,  and  let
.  In  addition,  let  denote  the  set  of  the

above  constructed  individuals,  let ,
and let . We define a profile  over  as follows.

r ∈ R r(0)
r(0) r(1) . . . r(d(r)) r(1) r(2) . . . r(d(r))

r G
r G

d(r)

●  For  each  red  vertex ,  the  individual  qualifies
, , , , and each of , , , 

qualifies  exactly  one  neighbor  of  in  so  that  every
neighbor of  in  is  qualified by exactly one of these

 individuals.
a,a′ ∈ N φ(a,a′)
φ(a,a′) = 0

● For each  where  is not specified above,
we define .

(N,φ,S ,T, κ)The instance of GCAI is .
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φ
{r(0) | r ∈ R}

r(0) r ∈ R
d(r)+1 r

N r ∈ R
d+1 r

It is easy to see that the profile  is QC. In fact, except those
in ,  every  other  individual  qualifies  at  most  one
individual.  Moreover,  as  every  where  qualifies
exactly the  individuals created for , the profile is QC
with respect to any linear order over  where for every 
the  individuals created for  are consecutive.

The  construction  takes  polynomial  time.  In  the  following,
we show the correctness of the reduction.

(⇒) R′ ⊆ R κ

B U = {r(0) | r ∈ R′}
S ⊆ f LSR(φ,T ∪U) φ(r(0),r(0)) = 1 r ∈ R

r(0) r
r ∈ R′ r(0) r(1) . . .

r(d(r)) f LSR T ∪U φ b
S R′ B B = S b

r ∈ R′ G
r(i) i ∈ [d(r)] b

r(i) ∈ f LSR(φ,T ∪U) b ∈ f LSR(φ,T ∪U)
b ∈ S

f LSR

 Assume  that  there  is  a  subset  of  at  most 
vertices  dominating .  Let .  We  show  that

. Note that as  for all ,
and  qualifies  also  all  the  other  individuals  created  for ,
we  know  that  for  every ,  the  individuals , , ,

 are all  socially qualified in  at .  Let  be
an individual in . As  dominates  and ,  has at least
one neighbor  in . Then, due to the above construction,
there exists an individual  where  qualifying . As

,  it  follows  that .  As
this  holds  for  all ,  the  above  constructed  instance  of
GCAI for  is a YES-instance.

(⇐) U ⊆ N \T |U | ⩽ κ
S ⊆ f LSR(φ,T ∪U) R′ = {r ∈ R | r(0) ∈ U}
|R′| = |U | ⩽ κ R′ B b

B φ b
C(r) r ∈ R r b

b ∈ f LSR(φ,T ∪U) r ∈ R i ∈ [d(r)]
r(i) ∈ f LSR(φ,T ∪U) φ(r(i),b) = 1

r(i) r(0)
r(0) ∈ U r ∈ R′

b r
b ∈ B R′ B

 Assume that there is a  such that  and
.  Let .  Clearly,

. We claim that  dominates . Let  be a vertex
(individual) in . By the definition of ,  is only qualified by
individuals in  where  such that  dominates . Then,
as , there exist  and  such that

 and .  Note  that  the  only
individual  qualifying  is  the  individual  who qualifies
herself.  This  means  that ,  and  hence .  It  also
implies that  is dominated by . As the above argument holds
for all , we conclude that  dominates , and hence the
RBDS instance is a YES-instance.　　　　　　　　　　□

When restricted to  DQC, we can show that  GCAI for  both
procedural  rules  are  polynomial-time  solvable.  A  crucial
observation is that if an instance is a YES-instance, we need at
most two individuals to bring all distinguished individuals into
the  set  of  socially  qualified  individuals.  This  observation
enables us to solve the problem by first guessing the no more
than  two  individuals  which  together  qualify  all  distinguished
individuals,  and  then  solving  the  remaining  part  via  resetting
the guessed individuals as distinguished individuals.  As there
are  polynomially  many guesses,  by utilizing Theorems 2  and
3, we can solve the problem in polynomial time.

fCSR f LSR
Theorem 7 When restricted to DQC profiles,  both GCAI for

 and GCAI for  are polynomial-time solvable.

I = (N,φ,S ,T,k) fCSR

f LSR φ

▷ = (a1,a2, . . . ,an) N k < 2

k ⩾ 2 a⊵a′ a▷a′

a = a′ N′ = {a ∈ N | ∃(a′ ∈ N)[φ(a,a′) = 0]}
N N

a ∈ N′ L(a) a
R(a) a ▷

L(a) = a j R(a) = a j

Proof Let  be  an  instance  of  GCAI  for 
(resp. ),  where  is  DQC  with  respect  to  a  linear  order

 over .  If ,  we  solve  the  instance  in
polynomial time by a brute-force search. So, in the following,
let  us  assume  that .  By ,  we  mean  either  or

.  Let  be  the  set  of
individuals in  disqualifying at least one individual in . For
each , let  be the left-most individual  disqualifies,
and  let  be  the  right-most  individual  disqualifies  in .
More  precisely,  (resp. )  such  that

φ(a,a j) = 0 ai ∈ N φ(a,ai) = 0
i ⩾ j i ⩽ j

 and, moreover, for all  such that 
it holds that  (resp. ). Let
 

A = {a ∈ N′ | φ(a,an) = 1,∀(a′ ∈ N,φ(a′,an) = 1)[R(a)⊵R(a′)]}
and let
 

B = {a ∈ N′ | φ(a,a1) = 1,∀(a′ ∈ N,φ(a′,a1) = 1)[L(a′)⊵L(a)]}.
Z ⊆ NFor every subset , let

 

1φ(Z) = {a ∈ N | ∃(a′ ∈ Z)[φ(a′,a) = 1]}

Z
denote  the  set  of  individuals  qualified  by  at  least  one
individual from .

X A∪B
Y ∈ {A,B} |X∩Y | = 1

Y , ∅ N \N′ = ∅ Z ⊆ N
1φ(Z) ⊆ 1φ(X) N \N′ , ∅ Z ⊆ N

1φ(Z) ⊆ 1φ({a}) a ∈ N \N′

Observation  1 Let  be  a  subset  of  of  cardinality  at
most  two  so  that  for  each  it  holds  that 
whenever . Then, if , for every , it holds
that .  Moreover,  if ,  for  every ,
it holds that  for every .

I

S
I

S ′ ⊆ N
S ⊆ 1φ(S ′) S ′

IS ′ = (N,φ,S ′,T ′,k′) T ′ = T ∪S ′

k′ = k− |S ′∩ (N \T )| T ′ k′

S ′ N \T
N \T T IS ′

I
S ′ IS ′

|N|2

In view of Observation 1, if  is a YES-instance, there exists
a  subset  of  at  most  two  socially  qualified  individuals  in  the
final  profile  so  that  every  individual  in  is  qualified  by  at
least  one  individual  in  the  subset.  Therefore,  to  solve ,  we
enumerate  all  subsets  of  at  most  two  individuals  so
that .  For  each  enumerated  subset ,  we  solve  an
instance  of GCAI, where  and

 (the  definitions  of  and  correspond
to  that  if  an  individual  in  is  from ,  we  move  it  from

 into ). By Theorems 2 and 3, each  can be solved in
polynomial time. The original instance  is a YES-instance if
and only if there exists at least one enumerated  so that  is
a  YES-instance.  As  we  have  at  most  enumerations,  the
whole algorithm takes polynomial time.　　　　　　　　□

 5    Concluding remarks

fCSR f LSR

FPT

fCSR

f LSR W[2] k

fCSR f LSR

fCSR

f LSR

We proved that GCAI for both the consensus-start-respecting
rule  ( )  and  the  liberal-start-respecting  rule  ( )  are

 with  respect  to  the  number  of  distinguished  individuals
(Theorems 2 and 3),  resolving two open questions left  in [9].
Additionally,  we  showed  that  GCAI  for  and  GCAI  for

 are -hard  with  respect  to  the  solution  size 
(Theorems 4 and 6). Furthermore, we studied GCAI restricted
to  the  qualifying  consecutive  (QC)  domain  and  the
disqualifying  consecutive  (DQC)  domain.  We  showed  that
both GCAI for  and GCAI for  become polynomial-
time  solvable  when  restricted  to  the  DQC  domain  (Theorem
7).  However,  when  restricted  to  the  QC  domain,  GCAI  for

 is  polynomial-time  solvable  (Theorem  5),  while  GCAI
for  remains  computationally  hard  (Theorem  6).  See
Table 1 for a summary of these results.

|S |+ k

Given  the  fixed-parameter  tractability  of  GCAI  stated  in
Theorems 2 and 3, one may wonder whether the two problems
admit polynomial kernels when parameterized by the number
of  distinguished individuals.  Regarding this  issue,  we remark
that both reductions in the proofs of Theorems 4 and 6 are in
fact polynomial parameter transformations with respect to the
combined  parameter  of  the  number  of  distinguished
individuals and the number of added individuals. Then, by the
lower  bound  technique  developed  by  Dom,  Lokshtanov,  and
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Saurabh  [43],  we  have  the  following  two  corollaries  refuting
the  possibility  of  the  existence  of  polynomial  kernels  for  the
two problems.

fCSR

|T |+ k(
PH = Σ3P

)Corollary  1 GCAI  for  does  not  admit  any  polynomial
kernel  with  respect  to  the  parameter  unless  the
polynomial hierarchy collapses to the third level .

S ⊆ T fCSR

|S |+ k

Note that as , Corollary 1 implies that GCAI for 
is  unlikely  to  admit  any  polynomial  kernel  with  respect  to

.

f LSR

|S |+ k
Corollary  2 GCAI  for  does  not  admit  any  polynomial
kernel  with  respect  to  the  parameter  unless  the
polynomial  hierarchy  collapses  to  the  third  level.  Moreover,
this holds even when restricted to QC profiles.

FPT
t = |N \T | O∗(2t)

|R|

Additionally,  note  that  GCAI  is  with  respect  to
 because it  can be solved in  time by a brute-

force  search.  Because  RBDS  is  unlikely  to  admit  any
polynomial  kernel  with  respect  to  [34],  our  reductions  in
the  proofs  of  Theorems  4  and  6  respectively  lead  to  the
following two corollaries.

fCSR

|N \T |
Corollary  3 GCAI  for  does  not  admit  any  polynomial
kernel  with  respect  to  the  parameter  unless  the
polynomial hierarchy collapses to the third level.

f LSR

|N \T |
Corollary  4 GCAI  for  does  not  admit  any  polynomial
kernel  with  respect  to  the  parameter  unless  the
polynomial  hierarchy  collapses  to  the  third  level.  Moreover,
this holds even when restricted to QC profiles.

O∗(tk)

O∗(2o(|R|))
O∗(|R|o(κ))

Finally, observe that GCAI can be also solved in  time
by  a  brute-force  search.  As  RBDS  cannot  be  solved  in

 time  assuming  the  Strong  Exponential  Time
Hypothesis (SETH) [34], and it cannot be solved in 
time  assuming  ETH  [44],  our  reductions  in  the  proofs  of
Theorems  4  and  6  imply  that  these  brute-force  based
algorithms are essentially optimal.

fCSR

O∗(2o(t)) fCSR

O∗(to(k))

Corollary  5 Unless  SETH  fails  GCAI  for  cannot  be
solved in  time, and unless ETH fails GCAI for 
cannot be solved in  time.

f LSR

O∗(2o(t)) f LSR

O∗(to(k))

Corollary  6 Unless  SETH  fails  GCAI  for  cannot  be
solved in  time, and unless ETH fails GCAI for 
cannot  be solved in  time.  Moreover,  this  holds  even
when restricted to QC profiles.

 Appendix
I = (G,X,u,w, p)

I
Proof  of  Theorem  1 Let  be  an  instance  of
DVWST.  We  create  an  instance  of  DST  equivalent  to  as

follows.
G′ GWe first create an arc-weighted digraph  obtained from 

by performing the following operations:
(1) v ∈ V(G) \ (X∪{u})

vin vout vin vout

w(v)
vin v G

vout

v G

 Replace  every  vertex  with  two
vertices  and ,  add  an  arc  from  to  with
weight ,  and  add  some  other  arcs  so  that  the
inneighbors of  are exactly the inneighbors of  in ,
and  the  outneighbors  of  are  exactly  the
outneighbors of  in .

(2)
0

 Set the weights of all arcs whose weights have not been
specified to be .

w′ : E(G′)→ N∪{0}
G′

(G′,X,u,w′, p)

Let  be the function corresponding to the
above  assignment  of  weights  to  arcs  in .  The  instance  of
DST  is .  The  reduction  clearly  can  be  done  in
polynomial time. It remains to show the correctness.

(⇒)
J ⊆ V(G) \ (X∪{u})∑

v∈J w(J) ⩽ p x ∈ X
u x G J∪X∪{u}

E′ G 0
J′ = E′∪{(vin,vout) | v ∈ J}

 Assume  that  the  DVWST  instance  is  a  YES-instance,
i.e.,  there  is  a  subset  such  that

, and for every terminal  there is a directed
path from  to  in the subgraph of  induced by .
Let  be  the  set  of  arcs  in  of  weight .  Let

. It holds that
 ∑

e∈J′
w′(e) =

∑
v∈J

w′((vin,vout)) =
∑
v∈J

w(v) ⩽ p.

u v1 v2 · · · vt x u
x ∈ X G

G′ u vin1 vout1 vin2 vout2 · · · vint voutt x
G′

Moreover, if  is a directed path from the root 
to some terminal  in the digraph ,  by the definition of

 we  know  that  is  a  directed
path in . Therefore, the constructed DST instance is a YES-
instance.

(⇐)
J G′∑

e∈J w′(e) ⩽ p x ∈ X
u x G′

V(J)

 Assume that the constructed instance of DST is a YES-
instance,  i.e.,  there  is  a  subset  of  arcs  in  so  that

 and,  moreover,  for  every  terminal  there
is a directed path from  to  in the subgraph of  induced by

. Let
 

J′ = {v ∈ V(G) \ (X∪{u}) | (vin,vout) ∈ J}.∑
v∈J′ w(v) ⩽ p

x ∈ X
u x G′ V(J)

u x G
J′∪X∪{u} vin

vout u x
vin vin vout

u x G′

u x G
vin vout v

Similar  to  the  above  analysis,  we  know  that 
and for every terminal  we can change any directed path
from  to  in  the  subgraph  of  induced  by  into  a
directed  path  from  to  in  the  subgraph  of  induced  by

.  In  particular,  observe  that  each  has  a  unique
outneighbor .  So,  in  any -  directed  path  containing  a
vertex ,  the  next  vertex  after  in  the  path  must  be .
Therefore,  from  a  directed  path  from  to  in ,  we  can
obtain  a  directed  path  from  to  in  by  replacing  every
occurrence of  in the path with the vertex .

O∗(2ℓ) ℓ

The theorem follows from the above reduction and the fact
that DST can be solved in  time, where  is the number
of terminals [38,39,41,42].　　　　　　　　　　　　　□

   
fCSR f LSR S

k
Table 1    A summary of our main results regarding the complexity of group control by adding individuals for the two procedural rules  and . Here, 
denotes the set of distinguished individuals, and  denotes the number of individuals allowed to be added

Parameters Restricted domains
|S | k QC DQC

fCSR FPT (Theorem 2) W[2]-hard (Theorem 4) P (Theorem 5) P (Theorem 7)

f LSR FPT (Theorem 3) W[2]-hard (Theorem 6) W[2] k-hard w.r.t  (Theorem 6) P (Theorem 7)
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