Fachbereich Informatik

Universit&t Kaiserslautern

Postfach 3049

SEKI - REPORT

D-6750 Kaiserslautern

Comparing on Strings:
Iterated Syllable Ordering and
Recursive Path Ordering

Joachim Steinbach
SEKI Report SR-89-15

Comparing on Strings:
Iterated Syllable Ordering and
Recursive Path Ordering

Joachim Steinbach
SEKI Report SR-89-15

Comparing on Strings :
Iterated syllable ordering
&

Recursive path ordering

Joachim Steinbach

Universitat Kaiserslautern
Fachbereich Informatik
Postfach 3049
D - 6750 Kaiserslautern (FRG)

This research was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D4)

Abstract

The recursive path ordering introduced by Dershowitz can prove the termination
of term rewriting systems. On string rewriting systems, the iterated syllable (or
collecting]) ordering is a total ordering. We will prove that the recursive path
ordering on monadic terms is equivalent to the iterated syllable ordering on the

reverse words.

1. Miotivation and Notation

There has been considerable interest in rewrite systems because they are a
useful model for non-deterministic computations with various applications
including automatic theorem proving, program verification and synthesis,
abstract data type specifications and algebraic simplification. Such systems
may take the form of term rewriting systems (cf. [AMS89]), string rewriting
systems [(cf. [Bo87], [KN85]), etc.

A term rewriting system R over a set of terms I' is a finite set of rules, each
of the form 1 — r, where | and r are terms in I The set I' of all terms is
constructed from elements of a set § of operators [or function symbols) and
some denumerably infinite set B of variables. The leading function symbol and the
multiset of the (direct) arguments of a term t are referred to by top(t) and arg(t],
respectively.

A Thue system £ over a set of strings =* is a finite set of rules, each of
the form 1 = r, where 1 and r are words in =* * is the monoid freely generated
by a finite alphabet X under the operation of concatenation, i.e. the set of all
finite strings over X. The empty string ¢ is the identity in the monoid. The
length function on strings, denoted by lul, is defined as usual. Especially, lul,
is the number of occurrences of the letter a in u. Synonymously to terms, top
and arg denote the first letter and the rest of a word, respectively.

A close relation between term rewriting and Thue systems will exist if
monadic terms are used only. A monadic term only contains unary function
symbols and either a constant or a variable. The subset of the monadic terms
without constants can unequivocally be transformed into strings and vice
versa: Let be § = {f;,..f } and = = {a;,.,a_}, t and t' € [(F.{x}), u and u' € =*.

(] = £ if t=x€®
E a,1,(t') if t= £t

For example, (f,(f;(f,(x]])])) = a,a,a,.

S* > T

tz[u]= { fi[X] ?f 4 i

|
f,(t,(u')) if u=a;-u,u +e

L)

"
[\

For example, 1t,(a,a5a,) = f(f5(f(x]]).

An effective calculation with rewrite systems presumes termination. A great
number of orderings have been defined. Most of them are so-called precedence
orderings using a special ordering on operators (letters). More precisely, a
precedence is a partial ordering > on § (2] which is an irreflexive and transitive

binary relation.

This report deals with two orderings based on a precedence, the recursive path
ordering of Dershowitz ([De82]) on term rewriting systems and the iterated
syllable (or collecting) ordering (see for example [Si87], [Wi88], [AWS89]) on string
rewriting systems. The definitions of these orderings are the main constituents
of the next two chapters. The main result of this paper consists of a comparison
between these orderings. In chapter 4, we will prove that the two orderings are
equal if they are restricted to strings.

2. RPO on strings

The comparison w.r.t. the recursive path ordering (RPO, for short) is based on the
following idea: A term is decreased by replacing a subterm with any numbers
of smaller terms which are connected by any structure of operators smaller
(w.r.t. a precedence ») than the leading function symbol of the replaced subterm.
The relationship between these operators w.r.t. > is responsible for decreasing one
of the [or both) terms in the recursive definition of the RPO. If one of the terms
is ‘empty’ (i.e. totally decreased) then the other one is greater.

Definition 21 (The recursive path ordering, [De82])

Let be s and t two terms and > any partial ordering on the operators. Then,

S >rpo t '
iff i) top(s) » top(t) A {s} »gpo arg(t)

or ii) top(s) = top(t) A arg(s) »gpo arg(t]

or iii) arg(s) »gpo ft}
O

Two terms are considered equivalent w.r.t. the RPO if they are permutationally
congruent, i.e. they are the same except for permutations among subterms
(e.g. f(xy) =gpo VX)) »gpo is the extension of >pp, to multisets of terms.
Multisets are like sets, but allow multiple occurrences of identical terms. The
extension of >p, on multisets is defined as follows: A multiset S is greater
than (w.r.t. the RPO) a multiset T (¥ S) over I', denoted by

S»rpo T iff (vt € T\S) (3s € S\T) s >gpo t

ie. S »gpo T if T can be obtained from S by replacing one or more terms in
S by any finite number of terms, each of which is smaller (war.t. >RPO] than
one of the replaced terms.

Example 2.2

We would like to prove that the distributive law x*(y+z] — [x*y]+(xx*z]
terminates. We use the total precedence * > +. Therefore, we must show that
fo¥ %o o arg(t), i.e. {s} »gpo {xX*y , x*z}. The single term on the left side has
to be greater than both terms on the right side: s is greater than x*y because
we have to remove the leading function symbols and can show that
{x , y+z} »RPO {x , y} because (after removing x) Y*Z >rpo ¥ by using the
subterm property of the RPO (21 iii). s >rpo X*Z is proved in the same way.

O

Note that there are several extensions of this ordering. The reader is referred
to [De871 or [St89] for an overview. However, we would like to consider a
special version of the RPO: the RPO on strings. Since § consists of only unary
operators , the multiset extension is superfluous.

Lemma 2.3 (The recursive path ordering on strings)

Let be u,v two words over =* and P any partial ordering on . Then,

U >rpo V
iff i) top(u) » top(v]) A U >ppo arg(v)

or ii) top(u) = top(v] A arg(u) >gpo arg(v)
or iii) arg(u) 2gpgo Vv

Proof: obvious

Example 2.4

The rule abc — cba is terminating since there is an RPO which shows this
property. Assuming b > ¢ > a, abc >pp cba iff bec 24 cba iff bc 2p ba

iff ¢ 2ppo @ which is valid since ¢ P a.
O

3. The iterated svyllable ordering

In contrast to term rewriting systems, the uniform termination property of
Thue systems is decidable. There exist several total orderings which guarantee

this property, e.g.

The ordering in which words are ordered first by length and, if the
lengths are equal, lexicographically according to the precedence.

The ordering of Knuth and Bendix assigns natural numbers to the
elements of £ and then to words by adding the numbers of the letters
(called weight) they contain. Two words are compared by comparing
their weights, and if the weights are equal, by comparing the top
symbols w.r.t. the precedence.

Another well-known ordering on strings is the so-called iterated syllable (or
collecting) ordering (see [Si87], [Wi88], [AWS89]). To describe this strategy we
need some helpful definitions.

Definition 31 (Lexicographic extension, Syllabic decomposition)

- Let be > an ordering on strings and u,,..,u_,v,,.,V_ words over >* Then,

P a
1
[y ; Ve 5 5= up] >lex (v, , v, , vq]
if either p > O A q=0
or u > vy
or uy = v, oA (u, ,up] AR (v o s vq]

is the lexicographic extension of > on tuples of words.

Let be u = ujau,a..au, a word with k = O, u, € =* and a € X. Then,

dec(u , a) = (ug , u;, .., uyl

is the syllabic decomposition of u w.r.t. the letter a.

We will present a slightly modified version of the original ordering contained
in [Si871 (cf. [WiB8], [AWS89]]. Both orderings are known to be equivalent [see
[(wigsi).

Definition 3.2 (The iterated syllable ordering)

Let be u, v two words over =*. Furthermore, a total precedence b is given.
Then,

u >gp V iff lal, > vl Lose
or lul, = Ivl, A declua) >g3¢ dec(v,a)

such that a is the greatest (w.r.t. p} letter in u or v.
a

This ordering was already used implicitly in collecting algorithms solving the
generalized word problem of polycyclic groups. The normal form of a string is
exactly the corresponding element being minimal relative to the collecting
ordering.

Furthermore, Bauer ([Ba811) applied the basis (without iteration) of this ordering:
An element u is greater.than v if lul, > Ivl, or lul, = IVl & dec(u,a) se* dec(v,a)
where a is a special letter and » is the ordering on the length of elements
(u » v iff lul > Ivl). Note that the iterated syllable ordering will be well-founded
if this ordering has this property since a lexicographic ordering of fixed-length
tuples will be well-founded if the orderings on components are (see [De831]).

Example 3.3 ([Si87])

We will prove the termination of the rule u = baca — caba = v with the
help of the iterated syllable ordering based on the precedence a » b b ¢. Since

lul, = Ivl, = 2, the syllabic decompositions wur.t. a must be compared
(b, ¢) >i2% (c . b) because Ibly =1 > 0 = lcl, .

Note that caba >g; b..b since b..b does not contain any a. This is the basic

concept of multiset orderings (see chapter 2).
o

4. Comparison and Conclusion

In this chapter we compare the power of the presented orderings restricted to
strings. Note that the RPO as well as the SYL are reduction orderings.

Restricted to strings, the recursive path ordering on reverse words and the
iterated syllable ordering are equivalent.

Definition 4.1 (Reversal of a string]

- *.
Let be u = aja,.aj € =7

is the reversal of u.

Theorem 4.2

Let be u, v € =¥, > a total precedence:
W Py V iff olu) >gpo elvl.

Proof:
"~>": We will prove this statement by induction on lul+lvl. Let be a the greatest

letter occurring in u or v.

i) ll, > vl
~> u = ugjawa.au , V= vgavja.av, and m >n
Let be m=n + k, k > 0.

Note that elu,,Ja.aplu)ap(uy) >rpo elv,]a.ap(v]ap(v,)

if

olu, . _gJa-aeludaolug) >ppo elv, ,Ja..aelv;)ap(v,)
since p(v,]) could be eliminated by applying 23 i), plu,,,) could be
removed by applying 2.3 iii) and both a’s can be removed with the
help of 2.3 ii).

By induction on the index of u and v, respectively, we have to verify
elugla.apluy) >rpo elvg)

which is valid since a is greater (w.r.t. ») than all symbols occurring
in p[vo].

”
<~orv

ii) lal, = v, a declua) >3} dec(v,a)

A lex
> (ug vy, wou) >2% (v vy, L V]
W.lo.g. let be Un=Vg - U5 47V, 4 A U >y V- We have to show

that
elugylaelu, _Ja.aplug) >grpo elvylaelv, _;la.ap(vg].

This is valid if (see i)

elu;la.apluy) >gpo elvila.ap(vy)
which is equivalent to

eluJw >ppo elvw , w € =*
gince N=Ve o Wiy Wiy -

This is valid since, by induction hypothesis, o(u;] >gpo e(v;] and the

‘subterm’ property of the RPO.

induction on lul+lvl. Since p(p(u)) = u, we have to show that u >
implies p(u) >gyp elv).

i] top(u) » top(v)

~> U >ppo arg(v)
by definition of the RPO (lemma 2.3 i)

~> olu) >y elarg(v))
by induction hypothesis

Let be top(u) = a, top(v] = b. Therefore, we have to prove that
elu) >gy1. elarg(v]lb

which is equivalent to
elarg(u)]a >gy1 elarg(v])p.

RPO

": Analogous with the other direction we will prove this assertion by

\%

Let be c the greatest letter occurring in u or v. Furthermore, let be

arg(u) = u_ c..cucuy and arg(v] = V,C..CVCV :

-lplarg(u))i, > lolarg(v])l,
> Ip[u]lc > Ip[v]lc

since lp[v]l, = lplarg(v]])l, (because a >b and therefore, c b b)

“lplarg(u))l, = lplarg(v])l, A oluy) >y olv]) A i<n
~> olu) >gyp olV)
since i<n A abdb

“lolarg(u))l, = lplarg(v)ll, A~ elu) >gyp elv,]
~> olu Ja >gyy elv)b
since lp(u Jal, > lp(v Jbl, A abb

ii) top(u) = top(v] =: a

~> arg(u) >gpo arg(v)
by definition of the RPO (lemma 23 ii)

~> polarg(u)) >gy . elarg(v]]
by induction hypothesis

~> olarg(u)la >gy elarg(vl]la
by definition of the SYL

iii)top(u) ¢ top(v)

~> arg(u) 2gpgy Vv
by definition of the RPO (lemma 2.3 iii)

Let be a := top(u):

-arg(u) =gpo Vv
~> arg(u) = v

by definition of the RPO
~> plarg(u]] = o(v)

by definition of o
~> olarg(ulla >gy; elV]

by definition of the SYL
~> o(u) >svyL o(v]

arg(u) >gpo v
~> plarg(u)) >gyp elv]
by induction hypothesis
~> oplarg(u)la >gy . e(V]
since lp(arg(u)lal, > lo(arg(u))i, and > is a partial ordering

Note that the same relationship between the SYL and the RPO will exist if the
precedence is quasi-total. As usual, a quasi-ordered set (=* =) consists of the set
>* and a transitive and reflexive binary relation > defined on elements of ¥ A
quasi-ordering defines an equivalence relation = as both = and <, and a partial
ordering > as 2 but not <

Lemma 4.3

Let be u, v € =* > a quasi-total precedence:

U >y V iff elu) >zpo olv).

Proof: analogous with the proof of theorem 4.2

In conclusion, we would like to point out that other well-known path (and
decomposition) orderings are also equivalent (in the same sense as the RPO] to
the iterated syllable ordering. This assertion is based on the following lemma:

Lemma 4.4 ([St89])

Let be s, t monadic terms and > a total precedence. Then,

S >rpo t %ff $ >pgo t
¥ff S >rDO t
iff S kNS t:

O

PSO is the path of subterms ordering of Plaisted, RDO is the abbreviation of
‘recursive decomposition ordering’ developed by Lescanne and KNS stands for
the path ordering of Kapur, Sivakumar and Narendran. All these orderings are

described in [De87] and [St891

- 10 -

Acknowledgement

There remains the pleasant duty to express my appreciation to J. Avenhaus,
K. Madlener and I. Sonntag for helping me with this work.

References

[AM89]

[AWB83]

[Ba81]

[Bo871

[De871

[DeB83]

J. Avenhaus, K. Madlener

Term rewriting and equational reasoning

In: Formal Techniques in Artificial Intelligence - A source book,
R.B. Banerji (ed.), Academic Press, 1989

J. Avenhaus, D. Wissmann

Using rewriting techniques to solve the generalized word problem in
polycyclic groups

Proc. ISSAC, Portland, 1989

G. Bauer

Zur Darstellung von Monoiden durch konfluente Regelsysteme
Dissertation, Fachbereich Informatik, Universitdt Kaiserslautern,
W. Germany, Februar 1981

R.V. Book
Thue systems as rewriting systems
J. Symbolic Computation 3, 1987

N. Dershowitz
Termination of rewriting
J. Symbolic Computation 3, 1987

N. Dershowitz

Well-founded orderings

Technical Report ATR-83(8478])-3, Information Sciences Research Office,
The Aerospace Corporation, El Segundo, California, May 1983

- 11 -

[De82] N. Dershowitz
Orderings for term rewriting systems
J. Theoretical Computer Science, Vol. 17, No. 3, March 1982

[KN85] D. Kapur, P. Narendran
The Knuth-Bendix completion procedure and Thue systems
SIAM J. Computing, Vol. 14, No. 4, November 1985

[Si87] C.C. Sims
Verifying nilpotence
J. Symbolic Computation 3, 1987

[St89] J. Steinbach
Extensions and comparison of simplification orderings
Proc. 3rd RTA, Chapel Hill, LNCS 355, 1989 :

[Wigs8] D. Wissmann
Applying rewriting techniques to groups with power-commutation
presentations
Proc. Int. Symposium on Symbolic and Algebraic Computation, Rome,
July 1988

- 12 -

