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ABSTRACT
The goal of the field of deep learning-based image generation is to synthesize

images that are indistinguishable from real ones, and to precisely control the con-
tent of these images. Generative adversarial networks (GANs) have been the most
popular image synthesis framework in recent years due to their unrivaled image
quality. They consist of a generator and discriminator network, where the dis-
criminator is trained to detect synthetic images, while the generator is trained to
outsmart the discriminator by synthesizing more realistic images. Much progress
has been made in the development of GANs, but there is still a lot of work to
be done to further improve the synthesis quality and control. To this end, this
work proposes methods to improve the synthesis quality of GANs and increase the
control over the image content.

First, we propose the idea of segmentation-based adversarial losses to increase
the quality of synthetic images. In particular, we redesign the GAN discriminator
as a segmentation network that classifies image pixels as real or fake. Further, we
propose a regularization made possible by the new discriminator design. The new
method improves image quality in unconditional and conditional GANs.

Second, we show that segmentation-based adversarial losses are naturally well-
suited for semantic image synthesis. Semantic image synthesis is the task of gener-
ating images from semantic layouts, which offers precise control over the content.
We adapt the approach of a segmentation-based GAN loss to semantic image
synthesis and thereby make previously used extra supervision superfluous. In
addition, we introduce a noise injection method to increase the synthesis diversity
significantly. The effects of the proposed techniques are improved image quality,
new possibilities for global and local image editing, better modeling of long-tailed
data, the ability to generate images from sparsely-annotated label maps, and a
substantial increase in the multi-modality of the synthesized images. In doing so,
our model is also conceptually simpler and more parameter-efficient than previous
models.

Third, we show that our improvement in multi-modality in semantic image
synthesis opens the door for controlling the image content via the latent space of
the GAN generator. Therefore, we are the first to introduce a method for finding
interpretable directions in the latent space of semantic image synthesis GANs.
Consequently, we enable additional control of the image content via discovered
latent controls, next to the semantic layouts.

In summary, this work advances the state of the art in image synthesis for several
types of GANs, including GANs for semantic image synthesis. We also enable a
new form of control over the image content for the latter.
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ZUSAMMENFASSUNG
Das Ziel der Deep Learning basierenden Bildgenerierung ist es, Bilder zu syn-
thetisieren, die nicht von echten Bildern zu unterscheiden sind und deren Inhalt
genau zu steuern. Generative Adversarial Networks (GANs) waren in den let-
zten Jahren aufgrund ihrer hohen Bildqualität das beliebteste Framework für die
Bildsynthese. GANs setzen sich aus einem Generator- und Diskriminatornetzw-
erk zusammen, wobei der Diskriminator darauf trainiert wird, synthetische Bilder
zu erkennen, während der Generator darauf trainiert wird den Diskriminator zu
überlisten indem er realistischere Bilder synthetisiert. Trotz großer Fortschritte
in den letzten Jahren ist noch viel Arbeit nötig um die Qualität der Bildsynthese
sowie die Kontrolle über den Bildinhalt zu verbessern. Zu diesem Zweck präsen-
tiert diese Arbeit neue Methoden, welche die Qualität und die Kontrolle über den
Inhalt von GAN-generierten Bildern verbessern.

Zunächst schlagen wir vor segmentierungsbasierte Zielfunktionen für GANs
zu benutzen um die Qualität synthetischer Bilder zu verbessern. Zu diesem Zweck
gestalten wir den GAN-Diskriminator als Segmentierungsnetzwerk neu das Pixel
als echt oder gefälscht klassifiziert. Weiterhin schlagen wir eine Regularisierung
vor die durch das neue Diskriminatordesign ermöglicht wird. Unser Verfahren
verbessert die Bildqualität in Klassen-konditionierten und unkonditioniert GANs.

Zweitens zeigen wir, dass segmentierungsbasierte Zielfunktionen sehr gut für
die Semantische Bildsynthese geeignet sind, welche Bilder aus semantischen Karten
generiert. Wir wenden eine segmentierungsbasierten GAN-Zielfunktion fü die se-
mantische Bildsynthese an und machen dadurch die bisher verwendete zusätzliche
Überwachung überflüssig. Darüber hinaus führen wir eine Rauschinjektionsmeth-
ode ein welche die Synthesevielfalt erheblich erhöht. Unsere vorgeschlagenen
Techniken ermöglichen eine verbesserte Bildqualität, globale und lokalen Bildma-
nipulation, eine bessere Modellierung von Long-Tail-Daten, die Fähigkeit, Bilder
von spärlich annotierten semantischen Karten zu generieren, und eine wesentliche
Steigerung der Multimodalität der synthetisierten Bilder. Dabei ist unser Modell
auch konzeptionell einfacher und parametereffizienter als bisherige Modelle.

Drittens zeigen wir, dass unsere Verbesserung der Multimodalität in der seman-
tischen Bildsynthese die Steuerung des Bildinhalts über die latente Repräsentation
des GAN-Generators ermöglicht. Daher stellen wir als erste eine Methode vor,
um interpretierbare Richtungen im latenten Raum von GANs zur Semantischer
Bildsynthese zu finden. Folglich ermöglichen wir neben den semantischen Karten
eine zusätzliche Kontrolle des Bildinhalts über entdeckte latente Steuerungen.

Zusammenfassend lässt sich sagen, dass diese Arbeit den Stand der Technik in
der Bildsynthese für mehrere Arten von GANs voran bringt, einschließlich GANs
für die semantische Bildsynthese. Letzteren ermöglichen wir auch eine neue Form
der Kontrolle über den Bildinhalt.
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1 Introduction

Contents
1.1 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Unconditional and class-conditional GANs . . . . . . . . . 3

1.1.2 Semantic image synthesis with GANs . . . . . . . . . . . . 5

1.1.3 Discovering GAN controls . . . . . . . . . . . . . . . . . . . 7

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Humans have the ability to perceive and imagine data. Perception corresponds
to encoding and classifying visual, auditory, and other sensory inputs. Imagination
is the decoding of ideas into images, sounds, or other types of sensory information.
In an effort to imitate humans, the field of deep learning commonly models percep-
tion and imagination via neural network-based encoders and decoders. Usually,
these two can also be referred to as discriminative and generative models. This
thesis focuses on generative models for images.

The applications of image synthesis are manifold. Essentially, it is possible to
automate or semi-automate any task that requires the creation of visual imagery.
For example, image synthesis models can be a tool for anyone to create artwork
or stock footage. Image synthesis models also enable inpainting, super-resolution,
artistic style transfer, creating realistic textures for 3D models, or applying filters
to faces, such as aging filters. Moreover, synthetic images can serve as training
data for other machine learning models. Finally, an important function of an image
synthesis model is to provide insight into what an encoder learned. For example,
through the visualization capability of models like DALL-E (Ramesh et al., 2021)
and follow-up methods, we know that deep learning models can learn the com-
positional representations required to convincingly combine unrelated concepts,
such as an "avocado chair" or "a relaxed garlic with a blindfold reading a newspaper
while floating in a pool of tomato soup" (Saharia et al., 2022).

This thesis focuses on generative adversarial networks (GANs), which consti-
tute the most popular image generation paradigm in recent years due to their
unparalleled visual quality. GANs consist of two neural networks: a generator and
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a discriminator. The generator synthesizes images from noise and some optional
conditional information specifying the content. Thereby, the conditional informa-
tion specifies the image content, while the noise is responsible for the remaining
variability. In effect, the generator can sample a diverse set of images. The discrimi-
nator classifies images from the dataset as real and synthesized images as fake. The
discriminator feedback improves the generator until it produces fake images that
the discriminator cannot distinguish from real images anymore. GANs that em-
ploy both noise and conditioning information are referred to as conditional GANs,
while unconditional GANs only get noise as input.

Giraffe

unconditional synthesis class-conditional synthesis

semantic image synthesis super-resolution

A green train
is coming
down the
tracks.

sketch-to-image synthesis text-to-image synthesis

Figure 1.1: Overview of common GAN tasks, using unconditional or conditional
generators (green) to generate images from noise.

GANs can be trained for many different conditional generation tasks, such as
class-to-image, layout-to-image, image-to-image, or text-to-image. Depending on
the task, different conditional GAN architectures are used. Figure 1.1 gives an
overview of various GAN tasks. In this thesis, we focus on unconditional GANs,
class-conditional GANs, and GANs for semantic image synthesis. Semantic image
synthesis is the task of generating images from semantic layouts.

Designing GANs involves several challenges, many of which concern all GANs,
whereas some challenges are unique for certain task-specific GANs. An example
of a universal problem is mode dropping, which leads the generator to synthesize
only a subset of the modes of the training distribution. Also, unstable training is a
general problem for GANs, but less for semantic image synthesis GANs. However,
there are problems specific to the semantic image synthesis task, such as the GAN
generator being less sensitive to input noise and not achieving good image quality
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when relying solely on standard GAN optimization. Apart from the challenge of
designing GANs that produce diverse high-quality images, there are additional
challenges concerning the inspection and evaluation of trained GANs. For exam-
ple, much research has been devoted to proposing objective quality and diversity
metrics (Heusel et al., 2017b; Salimans et al., 2016a; Shmelkov et al., 2018; Sajjadi
et al., 2018; Kynkäänniemi et al., 2019), or tools to inspect the latent space and
control the synthesis along disentangled image properties (Shen and Zhou, 2021;
Härkönen et al., 2020; Peebles et al., 2020).

In this thesis, we provide innovations for improving the synthesis quality and
diversity of GAN, but also for the inspection and control of GANs. In particular, we
propose architectural changes and regularization for GANs in unconditional, class-
conditional, and semantic image synthesis. Additionally, we focus on inspecting
the latent space of semantic image synthesis GANs, proposing an algorithm to
find semantically meaningful latent space directions to control the appearance of
selected classes.

This thesis is structured as follows. In Chapter 2, we provide the background
and related work for unconditional GANs, class-conditional GANs, GANs for se-
mantic image synthesis, and methods that find meaningful directions in latent
spaces of GAN. In Chapter 3, we introduce a new discriminator architecture
and regularization to improve the synthesis quality of unconditional and class-
conditional GANs. Next, in Chapter 4, we redesign the architecture of current
semantic image synthesis GANs to improve image quality, diversity, and control-
lability. In Chapter 5, we propose the first method to allow finding latent controls
in semantic image synthesis models. Lastly, in Chapter 6 we discuss our results
in the context of work that has been done since the corresponding chapters were
published and give an outlook on the future of the field.

In the remainder of this chapter, we first discuss the research challenges and
contributions of each chapter in Section 1.1. Finally, we provide a detailed outline
of this thesis in Section 1.2.

1.1 Contributions of the thesis

This thesis focuses on the three subtasks unconditional and class-conditional GANs,
semantic image synthesis with GANs, and discovering GAN controls. In the remainder
of this section, we outline the challenges for each task and our contributions to
address these challenges.

1.1.1 Unconditional and class-conditional GANs

Unconditional GANs synthesize images from noise only, while class-conditional
GANs synthesize images from noise and a one-hot class vector. Improving the
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synthesis quality in these two basic GAN tasks is the focus of Chapter 3 and our
corresponding publication "A U-Net Based Discriminator for Generative Adversar-
ial Networks" (CVPR 2020) (Schönfeld et al., 2020).

1.1.1.1 Challenges

Training instability. Training instability has been a long-standing issue in GAN
training. For example, training collapses in roughly half of all training runs of
BigGAN (Brock et al., 2019), which forms the baseline for our work in Chapter 3.
The source of instability lies in the sporadic occurrence of very large gradients in the
discriminator (Brock et al., 2019), caused by fake batches that strongly perturb the
discriminator. That is why training stability can be substantially improved through
regularization that limits the gradient magnitude (Miyato et al., 2018; Mescheder
et al., 2018). Training also becomes more stable through self-supervision, such as
reconstruction losses or consistency regularization, which improves the robustness
of the discriminator (Chen et al., 2019; Zhang et al., 2020a).

Mode dropping. Mode dropping occurs when the generator does not cover all
modes of the data distribution. In this case, the generator concentrates its modeling
power on a set of common appearances in the dataset. The phenomenon can be
explained by the discriminator not being able to detect missing modes (Arora et al.,
2017). Also, the most commonly used NS-GAN objective assigns much more cost
to low image quality than mode dropping (Arjovsky and Bottou, 2017). A GAN
generator should ideally be evaluated with respect to precision and recall, where
precision measures the visual quality of synthetic images, while recall measures
how well the generator covers the full diversity of the training distribution. Metrics
of precision and recall are slowly being adopted (Sajjadi et al., 2018; Kynkäänniemi
et al., 2019) but are not commonplace.

Long-range and global-local dependencies. Convolutional discriminators can
struggle to take long-range interactions in images into account, since only the last
layers have a receptive field large enough to connect distant parts of an image.
This can become a problem for image datasets that require accurate modeling of
complex structures. For example, GANs often produce images of animals with the
wrong number of legs. Problems with long-range dependencies have motivated
the use of self-attention modules in models like SA-GAN (Zhang et al., 2019) or
BigGAN. Further, GAN discriminators also need to take global-local interactions
into account. Local image structures build up the global structure, and local details
also depend on global information. The convolutional encoder structure of a typical
GAN discriminator may not be best suited to integrate information from all scales
and positions.
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1.1.1.2 Contributions

The first contribution is a U-Net based discriminator. Motivated by the idea of
integrating global and local as well as long-range interdependencies, we propose
to rethink the typical GAN discriminator as a segmenter. Therefore, we choose the
popular U-Net segmenter network structure (Ronneberger et al., 2015). A regular
discriminator is a classification network consisting of convolutional blocks with
decreasing resolution. In contrast, a U-Net discriminator consists of an encoder
and decoder network, connected through skip connections. The real-fake classifi-
cation is computed on a per-pixel basis. In essence, the task of the discriminator
is to segment an image into real and fake parts. Additionally, a scalar discrimi-
nator loss is computed from the encoder, corresponding to the regular GAN loss.
The U-Net structure naturally integrates information from all scales and locations,
such that every per-pixel loss also respects the bigger context. This segmentation
discriminator enables a new regularization method.

The second contribution therefore is a spatial consistency regularization. Pre-
vious consistency regularizations encouraged invariance to image transformations
that do not affect realness. Instead, our consistency regularization encourages
equivariance by applying the image transformation also to the discriminator out-
put. This is possible because a segmentation-based discriminator output has the
same dimension as the image itself. The new regularization strongly improves
synthesis quality.

The third contribution is the resulting improvement over the state-of-the-art
BigGAN model, as well as providing the best-recorded performance on the CelebA
dataset amongst all published image synthesis methods at the time of publishing
our method.

1.1.2 Semantic image synthesis with GANs

In the semantic image synthesis (SIS) setting, the input to the GAN generator is
noise and a label map. The label map is a 2D map that specifies a semantic class for
each pixel of an image, and is also referred to as segmentation map in other contexts.
The GAN is thus trained with pairs of real images and their corresponding label
maps. Semantic image synthesis is the focus of Chapter 4 and our corresponding
publication "You Only Need Adversarial Supervision for Semantic Image Synthesis"
(ICLR 2021) (Schönfeld et al., 2021) and the extended work published in ĲCV
2022 (Sushko et al., 2022). Note that GANs for semantic image synthesis suffer
from the same challenges as unconditional and class-conditional GANs, such as
training instability, mode dropping, and modeling long-range and global-local
dependencies. However, SIS GANs suffer from some additional challenges, which
are outlined in the following.
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1.1.2.1 Challenges

Insensitivity to noise. In unconditional and class-conditional GANs, it is self-
evident that resampling the input noise will yield many different images. In fact,
training would collapse or end early with major mode collapse if the generator
stopped reacting to the noise. On the contrary, semantic image synthesis models
have a major problem with noise. In fact, early models like Pix2Pix did not react
to noise at all. Training these networks was only possible because label maps
act as a source of variation in the input, though not as well as a random number
generator. In addition, multiple discriminators at different scales were necessary to
avoid collapse. A perceptual additional perceptual loss, first introduced by Chen
and Koltun (2017), was crucial to achieving good image quality. As we show in
Chapter 4, this perceptual loss is one of several factors reducing the sensitivity to
noise.

Necessity of a perceptual loss. A perceptual loss employs a pretrained classifier
network to extract deep features from real and fake images. The perceptual loss is
defined as the distance between these features and is used to train the generator. As
shown in Chapter 4, previous models depend on this loss. Without it, performance
is strongly reduced. Unfortunately, this loss suppresses the synthesis diversity and
occupies GPU memory. The fact that previous SIS GANs cannot be trained like
regular GANs, employing nothing more than a single generator and discriminator
network, hints that something is very suboptimal in the training of SIS GANs.

Imbalanced datasets. SIS GANs are trained with semantic segmentation datasets.
Class imbalance has been a long-standing problem in semantic segmentation,
where models perform best for large or frequently occurring classes at the ex-
pense of small or rare classes. Semantic image synthesis is plagued by the same
problem, leading to lower diversity and lower quality textures for small and rare
classes. In Chapter 4, we give a detailed analysis of performance across semantic
classes, taking size and occurrence frequency into account.

1.1.2.2 Contributions

First, we propose redesigning the GAN discriminator to a segmentation-based
discriminator, segmenting each pixel into one of the real classes or an additional
"fake" class. In effect, we achieve much stronger supervision while using the exact
same data as previous methods. With this simple change, both the need for multiple
discriminators as well as for a perceptual loss vanishes. Both used to be necessary,
because the traditional discriminator design is not powerful enough for the task of
SIS.

Second, we introduce LabelMix regularization. LabelMix enforces consistency
in the local discriminator predictions when parts of an image are swapped out. To



7 1.1. Contributions of the thesis

this end, composite images are formed by cutting and mixing real and fake images
of the same label map, respecting the semantic class boundaries. We show that
LabelMix improves the performance of our SIS model.

Third, we significantly improve the synthesis diversity. On the one hand, the
diversity is increased by not using a perceptual loss. On the other hand, we propose
a new way to feed noise into the SIS generator. In particular, the solution is to sample
a 3D tensor of noise and use it to modulate the intermediate generator features. A
positive side effect of the 3D structure of the noise is that it allows resampling noise
for specific image regions, increasing the manipulation control over the image. For
example, given a label map of a bedroom, one can resample the whole image or
only the bed.

Fourth, our model outperforms the previous state-of-the-art models on the
standard benchmark datasets ADE20K, COCO, and Cityscapes. Performance is
improved both in terms of image quality and diversity.

Fifth, we propose to use the LVIS dataset (Gupta et al., 2019) to asses the long-
tail performance of SIS models. LVIS is strongly imbalanced across more than 1000
classes. Previous SIS models have been trained on at most 184 classes, through
the COCO dataset. We observe that previous work performs poorly on underrep-
resented classes and experiences complete mode collapse on sparsely-annotated
label maps. Our model fixes these issues and outperforms previous work by a
large margin.

Lastly, we propose to evaluate SIS models through synthetic data augmentation
in semantic image synthesis. The measured performance depends on image quality,
diversity, and label map alignment and thereby measures all aspects at once that
matter in semantic image synthesis.

1.1.3 Discovering GAN controls

The latent space of unconditional and class-conditional GANs encodes diverse
semantics of an image. GAN control methods can identify directions in this latent
space that correspond to specific semantics. For example, interpolating the latent
noise along a direction that corresponds to "zoom" would zoom the image in or out.
Another direction may change the weather or the time of the day. In the following,
we highlight challenges in this research area and explain why no such methods
exist for semantic image synthesis. The contributions of this section correspond to
Chapter 5, where we present a GAN control discovery method for semantic image
synthesis. The corresponding paper "Discovering Class-Specific GAN Controls for
Semantic Image Synthesis" is currently under submission.
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1.1.3.1 Challenges

Restricted to unconditional GANs Previously, GAN control methods for semantic
image synthesis models did not exist for two reasons: First, the SIS models were
insensitive to noise, so no such directions could exist. Second, previous methods
cannot easily take the label maps into account. In particular, previous methods
establish a correspondence between changes in the whole image and directions in
the latent noise. However, the label map has a much greater influence on the image
content, while the notion of "directions" does not apply to label maps.

Lack of quantitative evaluation metrics GAN control methods are evaluated
mainly by visual inspection. Therefore, it is unclear which method performs better.
Further, it is unclear how general the visual results are. A found direction may
work well on a few images, but not generalize to all images. For this reason, there is
a need for quantitative metrics to have a meaningful comparison between different
GAN control discovery methods.

1.1.3.2 Contributions

The first contribution is a method that we term Ctrl-SIS, which is the first to apply
GAN control discovery to semantic image synthesis GANs. In contrast to other
GAN control discovery methods, ours explicitly uses the label map. Furthermore,
our method learns class-specific directions changing the appearance of labels lo-
cally, instead of directions that change the image globally. For example, Ctrl-SIS
finds different appearances for the class "tree", allowing it to turn green leaves into
autumn leaves or to remove them altogether.

The second contribution is the introduction of evaluation metrics for GAN
control methods in semantic image synthesis. These metrics evaluate how many
unique directions are found, how consistent they are, and to what extent they
affect the areas not belonging to the corresponding class. With these metrics, we
demonstrate that Ctrl-SIS performs better on the GAN control discovery task than
previous methods that were not designed for semantic image synthesis.

1.2 Outline of the thesis

In this section, we briefly describe the content of each chapter. We also list the corre-
sponding publications and the contributions of individual authors when necessary.

Chapter 2: Related work. In this chapter, we describe previous work on which
our contributions are built, as well as parallel or later work related to our
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research. Among others, we cover the three core areas of our work: gener-
ative adversarial networks, semantic image synthesis, and discovering GAN
controls.

Chapter 3: A U-Net-based GAN discriminator. This chapter presents a new dis-
criminator architecture for GANs: instead of the typical classification-based
discriminator, a discriminator that acts as a segmentation network is pro-
posed. In addition, we propose a new consistency regularization technique
that makes use of the new segmentation-based discriminator design. In effect,
we improve over the state-of-the-art BigGAN model, which formed the base-
line of our architectural modifications, in terms of image quality on several
datasets.

The work presented in this chapter was published as the CVPR 2022 paper "A
U-Net-based discriminator for generative adversarial networks" (Schönfeld
et al., 2020). Edgar Schönfeld was the lead author of the paper.

Chapter 4: Semantic image synthesis with only adversarial supervision. In this
chapter, we present a new model for semantic image synthesis — the task of
generating a real image from a 2D map of semantic labels. Previous works
struggled with two major problems: First, while these models were GAN-
based, the adversarial supervision provided by the GAN loss was insufficient
to generate images of good quality, making additional networks and losses
necessary. Second, while semantic image synthesis is a one-to-many map-
ping, previous works struggled with producing diverse images for a given
label map. Our work addresses these two shortcomings as follows. First,
inspired by the work from chapter 3, we redesign the discriminator as a seg-
mentation network. This alone makes the method more data-efficient and
alleviates the need for additional losses and networks to achieve good im-
age quality. In addition, the new discriminator significantly improves image
quality. Further, we introduce LabelMix regularization, which makes use of
the newly introduced segmentation-based discriminator and improves image
quality further. Second, we introduce a 3D noise injection scheme, leading
to vastly improved diversity between images generated from the same label
map, strongly improving the ability of the model to perform a one-to-many
mapping.

The presented work is published in the ICLR 2021 paper "You only need
adversarial supervision for semantic image synthesis" (Schönfeld et al., 2021).
This chapter is based on the extended version published at ĲCV 2022 (Sushko
et al., 2022). Edgar Schönfeld and Vadim Sushko are joint first authors and
contributed equally to all aspects of the paper, including discussion, ablation
experiments, final experiments, evaluations, and paper writing.
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Chapter 5: Discovering GAN controls for semantic image synthesis. This chap-
ter introduces a method for discovering semantically meaningful directions
in the latent space of semantic image synthesis (SIS) models. Inspired by
such latent discovery methods for conventional GANs, we present a latent
discovery method for SIS GANs. Previously, SIS GANs did not have enough
diversity to encode information in the latent noise. However, through our
contributions in Chapter 4, the SIS model can acquire sufficient diversity to
encode meaningful information in noise. We exploit this fact to develop a
latent discovery method for SIS GANs, called Ctrl-SIS. Our method provides
a different set of semantically meaningful latent directions for each semantic
class, without direct supervision, allowing image editing not only via the la-
bel map but also the noise. For example, for the tree class, Ctrl-SIS discovers
a latent direction that gives trees autumn leaves and another that removes all
leaves altogether. In doing so, we are the first to present such a method.

The work in this chapter is based on the paper "Discovering Class-Specific
GAN Controls for Semantic Image Synthesis", currently under submission.
Edgar Schönfeld is the lead author. Julio Borges contributed by implementing
the related latent discovery methods and to paper writing. Vadim Sushko
contributed with training implementations of the related SIS work and paper
writing.

Chapter 6: Conclusions and future perspectives. In this chapter, we discuss the
results of this thesis. We put the presented work in the context of research
published after the work presented in this thesis, and discuss future steps.
Lastly, we give a broader outlook on the future of the field.
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This chapter gives an overview of the related work for the methods covered in
this thesis. We provide background knowledge and discuss the differences and
similarities between our proposed methods and the related works.

The general theme of this thesis is image generation with generative adversarial
networks (GANs). Therefore, we start by explaining the working principle of GANs
in Section 2.1. In addition, we elaborate on the developments in architecture and
training responsible for the incredible improvement in synthesis quality since the
invention of GANs (see Fig. 2.1).

In doing so, Section 2.1 focuses on unconditional and class-conditional GANs,
providing the background knowledge for Chapter 3. Next, Section 2.2 focuses
specifically on GANs for semantic image synthesis, which is the main topic of
Chapter 4. We highlight problems specific to semantic image synthesis and how
they have been addressed in the literature. In Section 2.3 we explain methods
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Figure 2.1: 4.5 years of GAN progress on face generation, as tweeted by GAN
creator Ian Goodfellow (Goodfellow, 2019).

that give the user better control of the content of GAN-generated images in the
context of semantic image synthesis, which is highly relevant for Chapter 5. Lastly,
in Section 2.4 we introduce image synthesis models that are alternatives to GANs.
Only recently, some of these methods can compete with GANs in terms of synthesis
quality. Hence, we compare these methods to GANs regarding their advantages
and drawbacks.

2.1 Unconditional and class-conditional GANs

In this section, we first explain the working principle of a GAN. Subsequently, we
lay out the most important improvements in architecture design and training that
led to the state-of-the-art performance we see today.

2.1.1 General working principle of GANs

noise z fake image G(z)generator discriminator

real image x

D(x)
D(G(z))

Figure 2.2: Illustration of a generative adversarial network (GAN)

A GAN consists of two separate networks: a generator and a discriminator (see
Fig. 2.2). In its most basic form, the generator synthesizes an image from random
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noise. At the same time, the discriminator is trained as a classifier to categorize
real and synthetic images in the respective "real" or "fake" class. The generator
and discriminator are trained alternatingly with one parameter update step each.
First, the discriminator is trained on real images and images synthesized by the
generator. Second, the generator uses the frozen discriminator as a loss function to
improve the realism of the synthetic images. In other words, the generator’s goal
is to convince the discriminator that the images are real, while the discriminator
tries not to be fooled. The solution to this game is known as Nash equilibrium, a
stable situation in which neither player 𝐺 nor 𝐷 can improve. A GAN is said to
have converged if it reaches a local Nash equilibrium. The objective𝑉 of this game
is expressed as:

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = E𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)
[
log𝐷(𝑥)

]
+ E𝑧∼𝑝𝑧(𝑧)

[
log(1 − 𝐷(𝐺(𝑧)))

]
(2.1)

Here, 𝐺 is the generator and 𝐷 the discriminator network. 𝐷(𝑥) represents the
probability that 𝑥 is from the real data distribution. This objective can be split into
a discriminator loss ℒ𝐷 and generator loss ℒ𝐺 that are minimized alternatingly:

min
𝐷

ℒ𝐷 = −E𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)
[
log𝐷(𝑥)

]
− E𝑧∼𝑝𝑧(𝑧)

[
log(1 − 𝐷(𝐺(𝑧)))

]
(2.2)

min
𝐺

ℒ𝐺 = E𝑧∼𝑝𝑧(𝑧)
[
log(1 − 𝐷(𝐺(𝑧)))

]
. (2.3)

The loss formulation above is referred to as minimax GAN loss (M-GAN).
However, the problem with Eq. 2.3 is that the gradients resulting from log(1 −
𝐷(𝐺(𝑧))) will vanish if the discriminator can confidently distinguish real and fake
images. For this reason, log𝐷(𝐺(𝑧)) is maximized instead:

min
𝐺

ℒ𝐺 = −E𝑧∼𝑝𝑧(𝑧)
[
log𝐷(𝐺(𝑧))

]
. (2.4)

The standard GAN implementation thus employs the non-saturating (NS-GAN)
loss of Eq. 2.4. Originally, for every optimization step of 𝐺, 𝑘 optimization steps
of 𝐷 were performed for 𝐷 to stay close to its optimal solution (Goodfellow et al.,
2014). This approach was replaced by the two time-scale update rule (Heusel et al.,
2017b), setting 𝑘 = 1 and instead using a higher learning rate for 𝐷. Heusel et al.
(2017b) showed that the discriminator converges to a local Nash equilibrium when
𝐺 and𝐷 have separate learning rates, since the generator updates are small enough
for the discriminator to react. The training procedure is summarized in Algorithm
1.

Based on this simple setup, many improvements have been proposed, affecting
the loss, regularization, and model architecture. To show how current GANs
achieve their excellent synthesis ability, we review the most important changes in
the following.
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Algorithm 1 Training a GAN with minibatch gradient descent.
Input: 𝐷: Discriminator network, 𝐺: Generator network, 𝑁 : Batch size,

1 for number of training iterations do
2 · Sample minibatch of noise {𝑧1, ..., 𝑧𝑁 }
3 · Sample minibatch of data {𝑥1, ..., 𝑥𝑁 }
4 · Update 𝐷 with loss

− 1
𝑁

𝑁∑
𝑛=1

[
log𝐷(𝑥𝑛) + log(1 − 𝐷(𝐺(𝑧𝑛)))

]
5 · Update 𝐺 with loss

− 1
𝑁

𝑁∑
𝑛=1

[
log𝐷(𝐺(𝑧𝑛))

]
6 end for

2.1.2 Improvements in GAN architectures

The original GAN paper provided experiments with simple MLP and CNN archi-
tectures. These architectures were sufficient to produce gray-scale images from
simple datasets of digits or faces (see the leftmost image in Fig. 2.1) but already
insufficient for the relatively simple CIFAR-10 dataset with ten object categories.
Since the publication of the original GAN, many changes to the discriminator and
generator architecture have been proposed until most models converged to a simi-
lar setup. In the following, we first outline the anatomy of a typical GAN. We then
explain improvements in the basic up- and down-scaling blocks from which GAN
architectures are assembled. Next, we discuss improvements in using conditional
information in the generator and discriminator networks. Lastly, we describe re-
cently introduced GAN architectures that make use of transformers (Vaswani et al.,
2017).

Anatomy of a typical GAN architecture. Both generator and discriminator consist
of ResNet blocks. These blocks typically contain two internal convolutional layers
with a 3𝑥3 kernel size and stride 1. The input to a block is added to the output
via a residual connection. The output features of each block are modulated via a
conditional normalization method, for example, conditional batch normalization.
The conditioning information could be a one-hot class vector, a noise vector, or
both. It may differ for every generator ResNet block to model image characteristics
at different scales separately. No such conditioning takes place in the discriminator.
The convolutional blocks do not change the spatial resolution of features, e.g., via
strided convolutions. Instead, features are up- or downsampled via interpolation
only. In the following, we explain the reasoning behind these basic choices and
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which solutions exist to improve them.

Up- and downscaling in GAN blocks. The main difference between generator
and discriminator blocks is that the intermediate features are either upscaled or
downscaled. The exact way features are up- or downsampled in convolutional
architectures has a perhaps surprisingly strong influence on the quality of the syn-
thetic images. For this reason, previous literature designed solutions to problems
such as checkerboard artifacts, training stability, and aliasing.

Checkerboard artifacts are periodic fluctuations in color or brightness between
pixels (see Fig. 2.3 ). They occur when upsampling in the generator is implemented
using transposed convolutions, especially if the kernel size is not divisible by the
stride and therefore produces overlapping patches (Odena et al., 2016). Strided
convolutions can also cause checkerboard artifacts in the discriminator. The solu-
tion is not to use deconvolution or strided convolutions but to upsample features
via interpolation and downsample via average pooling (Odena et al., 2016). This
solution is referred to as resize-convolution. The proposed GANs in Chapters 3 and
4 use resize-convolution, in line with the baselines on which we built our models.

Figure 2.3: An example of heavy checkerboard artifacts1.

Unfortunately, the higher the resolution, the less stable training becomes since
the high resolution makes it easier for the discriminator to distinguish real and
fake images. One way to stabilize training is to progressively grow the generator
and discriminator by slowly appending higher-resolution ResNet blocks (Karras
et al., 2018; Sauer et al., 2022). Progressive growing also speeds up training, since
the lower-resolution images are easier to learn and less GPU memory is required.
Alternatively, direct skip connections from the generator to discriminator blocks of
the same resolution can be established, or variants thereof (Karnewar and Wang,
2020; Karras et al., 2020b). In this case, the generator learns intermediate smaller
versions of the image. While recognizable images form early during training in
low-resolution layers, they only form in higher-resolution layers later in training.

1Figure from Odena et al. (2016) licensed under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/
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For comparison with previous work, we neither make use of progressive growing
nor skip connections between generator and discriminator in Chapters 3 and 4.

Lastly, correct upsampling is crucial to avoid aliasing and its far-reaching side
effects. The fact that GANs process images as discrete signals, i.e., pixel values are
sampled as a regular 2D grid, causes aliasing. Aliasing causes unintended side
effects, such as a lack of rotation equivariance and an imperfect translation equiv-
ariance that manifests itself in the phenomenon of texture-sticking (Karras et al.,
2021b). Texture-sticking refers to the problem that textures appear to stick to the
computer screen when you translate an image. For example, if a generated face is
moved around a little by stepping through the latent space, some hairs will stay
at their exact pixel coordinates 2. To define what we mean by equivariance more
formally, let 𝑓 be a network layer and 𝑡 be a transformation, such as rotation or
translation. Equivariance implies that the application of 𝑓 and 𝑡 is commutative,
i.e., 𝑓 ◦ 𝑡 = 𝑡 ◦ 𝑓 . This property must hold for all layers 𝑓 , meaning convolutions,
nonlinearities, and upsampling. However, treating the image as a discrete signal
introduces aliasing, which destroys the commutative property. The solution pro-
posed by Karras et al. (2021b) to achieving this equivariance lies in treating the
image approximately as a continuous signal and redesigning convolution layers,
nonlinearities, and upsampling accordingly.

For example, if we assume that 𝑓 is a ReLU nonlinearity and 𝑡 is translation,
then 𝑓 ◦ 𝑡 = 𝑡 ◦ 𝑓 does not hold in the discrete domain if 𝑡 translates the image by
half a pixel. However, we can approximate the continuous signal by upsampling
the image before applying 𝑓 . In practice, Karras et al. (2021b) find that upsampling
by a factor of 2 is sufficient. Consequently, when the default upsampling layer and
nonlinearity are fused, a feature map is temporarily upsampled four times.

Thereby, the choice of the upsampling filter itself is essential as well. For exam-
ple, naive nearest neighbor upsampling creates a faint but unmistakable afterimage,
since every pixel at 𝑁𝑥𝑁 resolution results in a 2𝑥2 megapixel at 2𝑁𝑥2𝑁 resolu-
tion. This compromises the commutative relationship between upsampling and
small translations, e.g., at subpixel scale. Such forms of aliasing can be suppressed
by using a more sophisticated resizing filter, such as a windowed sinc filter with a
large Kaiser window (Karras et al., 2021b).

Taken together, these adjustments have been shown to make the generator
translation equivariant. Karras et al. (2021b) also proposes to achieve rotation
equivariance in the generator via a radially symmetric convolutional kernel, which
is satisfied by using only 1𝑥1 convolutions. For downsampling, average pooling is
replaced by a radially symmetric filter. Now that the model allows rotation and
translation equivariance, the first input to the generator should be Fourier features
that define a spatial map. The alignment of this map is controlled via rotation and
translation parameters of a trainable affine transformation layer, which allow to

2An example video of texture sticking can be seen here https://tinyurl.com/2p8pda7f

https://tinyurl.com/2p8pda7f
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change translation and rotation separately. The design of anti-aliasing GAN blocks
was only proposed after our work in Chapters 3 and 4, and their application will
likely become standard practice.

In conclusion, a lot of effort has gone into up- and down-sampling GAN blocks
to enable highly realistic image synthesis, free of artifacts stemming from the block
design. Unlike previous works, we propose discriminator architectures with both
downscaling and upscaling blocks in Chapters 3 and 4. In doing so, we show how
generator blocks can be repurposed in the discriminator to achieve a segmenta-
tion network design. These segmentation-based discriminators improve synthesis
performance and allow new regularization methods. We next discuss the incorpo-
ration of conditioning information into GAN blocks.

Conditional generators. In the following, we describe design choices in GAN
generators to enable conditional image generation. GAN generators take noise
and optionally additional information as input. The additional input is typically a
one-hot encoding of a class. In unconditional image synthesis, either an identical
noise vector or separate layer-specific noise vectors are given to each generator
block (Denton et al., 2015; Brock et al., 2018) to allow scale-specific control of
the image. For class-conditional image synthesis, one-hot vectors are typically
concatenated to the noise (Brock et al., 2018; Karras et al., 2020a). The concatenated
vector is fed into each generator block. This setup is also used throughout our
experiments on unconditional and class-conditional GANs in Chapter 3. More
recently, improved image quality was achieved by replacing the one-hot embedding
with a learned class embedding (Sauer et al., 2022). These embeddings were
generated by averaging EfficientNet (Tan and Le, 2019) features of all ImageNet
images belonging to the same class. Orthogonal to these techniques, feeding the
conditioning vector through an MLP before inserting it into the generator layers
helps to disentangle the latent space (Karras et al., 2019b, 2020c,a).

Different forms of conditional normalization are the most widespread tech-
niques for injecting noise and additional conditioning information in the generator
blocks. In essence, the generator blocks incorporate the injected information by
using it to modulate the outputs of the convolutional layers. For example, the
conditioning vector can be used to control the scale and shift of a conditional batch
normalization layer (Miyato and Koyama, 2018; Miyato et al., 2018; Brock et al.,
2018). Analogously, StyleGAN (Karras et al., 2019b) modulates generator features
with adaptive instance normalization (AdaIN) with scale and shift learned from
the conditioning vector. In StyleGAN-2 (Karras et al., 2020c), AdaIN is replaced by
a "modulated convolution", in which the convolutional kernel weights are scaled
directly via the conditioning vector. Additionally, StyleGAN-XL (Sauer et al., 2022)
proposes to improve class-conditional image synthesis with an external classifier
loss. For comparison with previous work, we employ conditional batch normaliza-
tion for our experiments in Chapter 3.
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Inspired by these principles, in Chapter 4 we also propose a conditional nor-
malization technique for the specific task of generating images from label maps,
known as semantic image synthesis, greatly enhancing synthesis diversity. In stark
contrast to unconditional and class-conditional GANs, previous work in semantic
image synthesis suffered from low sensitivity to noise and did not manage to make
layer-wise noise injection work. We remove barriers that hampered noise sensi-
tivity and propose to modulate features locally using a 3D noise tensor (i.e., one
channel dimension and two spatial dimensions) via a specific form of conditional
batch normalization. In effect, we create an effective noise conditioning scheme for
semantic image synthesis GANs, greatly enhancing image diversity.

Conditional discriminators. The following describes how GAN discriminators
are designed to enable conditional image generation. While conditioning infor-
mation such as class embeddings is fed to every generator layer, discriminators
usually incorporate the class information in the loss alone. The first conditional
GAN variants (Mirza and Osindero, 2014) still left the loss untouched. Instead,
they simply concatenated the conditioning vector to the discriminator input or an
intermediate feature (Reed et al., 2016). However, it is not guaranteed that the
discriminator makes use of the conditioning information since it can simply ignore
parts of its input. For this reason, it is more effective to use a conditional loss
instead. To this end, Odena et al. (2017) proposed to perform class-conditional syn-
thesis by adding a classification head to the final discriminator layer. The currently
most widely used conditional loss is the projection loss proposed by Miyato and
Koyama (2018), which we also use in Chapter 3. The projection loss allows incor-
porating any conditioning information in the form of an embedding, i.e., not just
categorical information. It computes the inner product between the penultimate
layer and the conditional embedding. The inner product is added to the final dis-
criminator output before computing the real-fake classification loss. The projection
loss significantly increased the quality of class-conditional image generation with
1000 ImageNet classes (Miyato and Koyama, 2018). Yet, specific GAN architectures
still struggled with large-scale class-conditional generation (Sauer et al., 2022). In
particular, Sauer et al. (2022) observe that the intra-class diversity can be greatly
improved by initializing the class embeddings used for the projection loss with
pretrained class embeddings.

In Chapter 4, we propose a conditional discriminator loss in the semantic image
synthesis setting. While previously, there was no known way of computing a
conditional loss in semantic image synthesis GANs, we enable it by redesigning
the discriminator architecture.

Transformer-based GANs. Following the large success of transformers in lan-
guage modeling (Vaswani et al., 2017; Brown et al., 2020), transformers have been
successfully applied to computer vision tasks such as classification (Dosovitskiy
et al., 2020), object detection (Carion et al., 2020), or semantic segmentation (Cheng
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et al., 2022). Next to these discriminative tasks, transformers have also recently
been incorporated into GANs where they can help improve learning long-range
dependencies. ViT-GAN (Lee et al., 2021), TransGAN (Jiang et al., 2021), and
HiT (Zhao et al., 2021) are transformer-based convolution-free architectures. In
these architectures, images are modeled as a sequence of flattened image patches.
StyleFormer (Park and Kim, 2022) remodels the StyleGAN2 (Karras et al., 2020b)
architecture with transformers. In contrast to purely transformer-based GANs,
GANformer 1 and 2 (Hudson and Zitnick, 2021; Arad Hudson and Zitnick, 2021)
combine transformer blocks with convolution. In this case, the image is not mod-
eled as a sequence of patches. Instead, the attention mechanism of the transformer
is used between latent codes and features in the generator, and also between learned
embeddings and features in the discriminator. The use of transformers in GANs is
a very recent development and therefore not part of the architectures proposed in
this thesis.

2.1.3 Improvements in training

Next to improving GAN architectures, a lot of effort has gone into improving the
training procedure. Research on improving GAN training has mainly focused on
better objective functions and regularization techniques. In the following, we give
an overview of several proposed GAN losses and explain why the original GAN
loss is still the most popular objective today. Next, we give a brief overview of
the two most effective forms of regularization: Lipschitz regularization and self-
supervision.

GAN objectives. The original GAN paper proposed a minimax loss (M-GAN) and a
non-saturating loss (NS-GAN). While subsequent literature frequently refers to the
original GAN as "standard GAN", we use the more precise M-GAN and NS-GAN
in this thesis. The NS-GAN loss alleviates the vanishing-gradient problem of the
M-GAN loss and is therefore used by default. Another popular replacement for the
M-GAN loss is the Wasserstein GAN (WGAN) loss (Arjovsky et al., 2017). WGAN
minimizes the Wasserstein distance between real and synthetic data. In contrast to
the Jensen-Shannon Divergence minimized by M-GAN, the Wasserstein distance
yields strong and useful gradients even when the real and synthetic data have no
meaningful overlap, e.g., at the beginning of training. To estimate the Wasserstein
distance, it is necessary to enforce a 1-Lipschitz constraint on the discriminator,
meaning that no gradient can be greater than one. Originally, this was achieved by
gradient clipping (Arjovsky et al., 2017) and later by a gradient penalty (Gulrajani
et al., 2017b) (WGAN-GP). The functional form of the WGAN objective falls into the
category of integral probability metrics (IPMs) (Müller, 1997). Other examples of
IPM GAN formulations include MMD-GAN (Li et al., 2017), Fisher-GAN (Mroueh
and Sercu, 2017), McGAN (Mroueh et al., 2017), Sobolev-GAN (Mroueh et al., 2018),
and more. On the other hand, the NS-GAN objective falls under the family of so-
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called f-divergences (Nowozin et al., 2016b). Other GANs minimizing f-divergences
are f-GAN (Nowozin et al., 2016b), LS-GAN (Mao et al., 2017), EBGAN (Zhao et al.,
2017), and more. Today, the original NS-GAN loss is still one of the most-used GAN
objectives, for example, in the StyleGAN series of state-of-the-art models (Karras
et al., 2019b, 2020b, 2021b; Sauer et al., 2022). Interestingly, the question of which
loss function performs best cannot be clearly answered (Mescheder et al., 2018;
Luc̆ić et al., 2018; Shannon et al., 2020; Mallasto et al., 2019; Fedus et al., 2018), but
it is evident that the original NS-GAN loss compares very favorable to other losses
both in theory (Shannon et al., 2020; Fedus et al., 2018) and practice (Luc̆ić et al.,
2018; Kurach et al., 2019). In particular, "A Large-Scale Study on Regularization
and Normalization in GANs" by Kurach et al. (2019) concludes on an empirical
basis that one should use the original NS-GAN loss as the default choice. The
GAN models we propose in Chapter 3 and Chapter 4 use the NS formulation as
well. Compared to the choice of the loss function, regularization techniques have
a substantial impact on performance (Qin et al., 2020; Mescheder et al., 2018) and
are discussed next.

Lipschitz regularization. Lipschitz regularization ensures that discriminator gra-
dients do not exceed a certain magnitude. Although Lipschitz regularization is
necessary to minimize the Wasserstein distance in WGAN and WGAN-GP, it has
proven helpful for all GAN training schemes, regardless if they are necessary from
a divergence minimization point of view (Fedus et al., 2018). In fact, Lipschitz
regularization leads to convergence for loss functions that otherwise would not
converge (Qin et al., 2020; Mescheder et al., 2018). Particularly, Qin et al. (2020)
show that with sufficient Lipschitz regularization, even non-standard loss func-
tions, such as a seemingly arbitrary cosine-based GAN loss, yield comparable
results to other loss functions. Lipschitz regularization can be implemented via
gradient clipping (Arjovsky et al., 2017), gradient penalties (Gulrajani et al., 2017a;
Mescheder et al., 2018) or by rescaling the weights of the network (Miyato et al.,
2018). The most widely used gradient penalty is R1 regularization (Mescheder
et al., 2018). For example, a large scale study by Kurach et al. (2019) recommends
the use of R1 regularization in combination with the NS-loss as default, which is
also done in the StyleGAN series (Karras et al., 2019b, 2020b, 2021b; Sauer et al.,
2022). On the other hand, spectral normalization (Miyato et al., 2018) enforces the
Lipschitz constraint by rescaling the network weights, and is for example used in
the state-of-the-art models SA-GAN (Zhang et al., 2019) and BigGAN (Brock et al.,
2018), as well as the models we use in Chapter 3, 4 and 5.

Self-supervised discriminators. Next to Lipschitz regularization, GAN discrimi-
nators can also greatly benefit from self-supervision. Self-supervision techniques
for GANs fall into two main categories: First, the discriminator has to solve an aux-
iliary prediction task via an additional head. Second, the discriminator is trained
with consistency regularization to be invariant to image changes that do not affect
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realism.
A well-known self-supervised task is training the discriminator with an auxil-

iary rotation loss (Chen et al., 2019). Real input images are rotated by one of the four
angles {0°, 90°, 180°, 270°} and the discriminator has to minimize the cross-entropy
between the real rotation index and the index predicted by an additional classifi-
cation head. Interestingly, Chen et al. (2019) find that additional self-supervision
not only improves image quality but also strongly reduces the sensitivity of GAN
training to the choice of hyperparameters, such as the betas in the Adam optimizer.
The regularizing effect can be explained by the fact that self-supervision reduces
shortcut learning when discriminating between real and fake images, leading to
improved training stability and image quality. Hence, self-supervision and Lip-
schitz regularization both reduce extreme or abrupt changes in D’s parameters.
In addition, self-supervision leads to more general and robust features. Another
self-supervision task is image-reconstruction: FastGAN (Liu et al., 2021) treats
the discriminator as an image encoder and reconstructs the original image from
discriminator features with additional decoders. This self-supervision strongly
improves image quality, especially in few-shot training scenarios, where the GAN
can only learn from approximately 100 images.

The second form of self-supervision used in GANs is consistency regularization
(CR). As proposed by Zhang et al. (2020a), the idea is to make the discriminator
prediction invariant to transformations 𝑇 that do not change the realism of an
image, such as horizontal flips or translating the image by a few pixels. For this,
the discriminator is trained with the additional loss ∥𝐷(𝑥) − 𝐷(𝑇(𝑋))∥2. Note that
this method does not require additional prediction heads. Zhang et al. (2020a) also
propose an improved consistency regularization method (ICR), which additionally
applies CR to synthetic images and creates extra transformations by perturbing the
latent space.

In Chapters 3 and 4, we propose a consistency regularization that encourages
equivariance instead of invariance to transformations that do not alter the real-fake
classification.

2.2 Semantic image synthesis with GANs

Semantic Image Synthesis (SIS) is the task of synthesizing a realistic-looking image
from a label map. A label map is a 2D map that specifies a class index for each
pixel in an image. Generating images from label maps requires a specialized GAN
architecture that makes efficient use of the provided label maps. Ideally, SIS models
should yield the same high image quality and diversity as unconditional GANs. In
reality, SIS models lag behind unconditional GANs in both aspects. To understand
why, we discuss several generator and discriminator architectures designed for
using label maps, and highlight the problems of these models (Sec. 2.2.1&2.2.2).
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Importantly, all previous works also make use of a third network, known as the
perceptual loss, which we discuss after the generator and discriminator architec-
tures (Sec. 2.2.3). Lastly, we give a brief overview of SIS models not based on GANs
(Sec. 2.2.4), some of which are very recent and have caught up with GANs in terms
of synthesis quality.

2.2.1 Generator architectures

To enforce the alignment between the generated images and the conditioning label
maps, previous methods explored different ways to incorporate the label maps
into generator training. In many conventional approaches (Isola et al., 2017; Wang
et al., 2018a; Tang et al., 2020c,b; Ntavelis et al., 2020; Richardson et al., 2021),
label maps are provided to the generator via an additional encoder network. For
example, the Pix2Pix and Pix2PixHD (Isola et al., 2017; Wang et al., 2018a) generator
network is a U-Net (Ronneberger et al., 2015), which takes the label map as input
and produces an image as output. However, this solution has been shown to be
suboptimal at preserving the semantic information until the later stages of image
generation. For this reason, SPADE (Park et al., 2019b) introduced a spatially-
adaptive denormalization layer (SPADE layer) that directly modulates the label
map onto the generator’s hidden layer outputs at various scales. In essence, the
SPADE layer is a conditional batch normalization layer, except that scale and shift
depend on the label map and are therefore learned per pixel. Since the generator
is very responsive to the conditional normalization, the SPADE layer makes the
U-Net encoder superfluous. However, SPADE still uses an encoder network to
predict a latent style vector that is fed as input to the generator. Alternatively,
CC-FPSE (Liu et al., 2019) proposed to use spatially-varying convolution kernels
conditioned on the label map, which they term conditional convolutions. In this
case, an encoder is used to extract a feature pyramid from the label map. From
these features, the convolutional kernel weights in the generator are predicted
directly. Most recently, SC-GAN (Wang et al., 2021c) utilized label maps as input
to generate class-specific semantic vectors at different scales, which are used as
conditioning at different layers of the image rendering network. The conditioning
is implemented via conditional normalization and a specific form of conditional
convolutions. Lastly, CollageGAN (Li et al., 2021b) proposed to extract a label map
representation via a feature pyramid encoder and inject it as a spatial style tensor
into a StyleGAN2 generator. After generating an initial image, the image is refined
with additional class-specific generators.

Our OASIS model proposed in Chapter 4 is based on SPADE and takes over
the conditional batch normalization technique to incorporate label information.
We show that the main bottleneck for the performance of previous models lies
in the discriminator. Hence, despite employing simple conditional batch normal-
ization we outperform CC-FPSE and SC-GAN. SC-GAN constitutes concurrent
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work to ours, and Wang et al. (2021c) shows that SC-GAN’s performance improves
when its discriminator is replaced by our OASIS discriminator. CollageGAN was
published after our work and directly compares to OASIS. The comparison is not
straightforward, since CollageGAN employs a different baseline for the generator
network. However, it is clear from Li et al. (2021b) that the quality improvement
comes from the class-specific generators. Unfortunately, such an approach cannot
scale to a setting with many classes. In contrast, we use the LVIS dataset with more
than 1000 classes to evaluate our model in Chapter 4. Lastly, the comparison to our
model in Li et al. (2021b) is limited to only a few datasets and misses important
metrics, such as the so-called mean intersection over union.

While improving the quality of generated images, the works published before
OASIS (see Chapter 4) struggled to achieve multi-modality through sampling the
input noise, as the generator tended to become insensitive to noise or achieved only
poor quality, as first observed by (Isola et al., 2017). For example, Pix2Pix (Isola
et al., 2017) is completely insensitive to noise and can only achieve negligible di-
versity via dropout. Thus, the aforementioned approaches resorted to having an
image encoder in the generator design to enable multi-modal synthesis. The gen-
erator then combines the extracted image style with the label map to reconstruct
the original image. One can generate multiple outputs conditioned on the same
label map by alternating the style vector. However, using an image encoder is
a resource-demanding solution. In Chapter 4, we enable multi-modal synthesis
directly through sampling of a 3D noise tensor which is injected at every layer of
the network. Different from the structured noise injection of Alharbi and Wonka
(2020) and class-specific latent codes of Zhu et al. (2020b), we inject the 3D noise
along with label maps and adjust it to image resolution, also enabling resampling
of selected semantic segments (see Fig. 4.2).

2.2.2 Discriminator architectures

To provide a powerful guiding signal to the generator, a GAN discriminator for
semantic image synthesis should evaluate both the image realism and its alignment
to the provided semantic label map. Thus, a fundamental question is to find
the most efficient way for the discriminator to utilize the given semantic label
maps. To this end, Pix2pix (Isola et al., 2017), Pix2pixHD (Wang et al., 2018a),
and SPADE (Park et al., 2019b) rely on concatenating the label maps directly to
the input image, which is fed to multiple PatchGAN discriminators at different
scales. For this, the image is downscaled 2 and 4 times. As shown in Chapter 4,
training becomes unstable when only a single discriminator is used. Alternatively,
SESAME (Ntavelis et al., 2020) employed a projection-based discriminator (Miyato
and Koyama, 2018), applying an additional branch to process semantic label maps
separately from images, and merging the two streams before the last convolutional
layer via a pixel-wise multiplication. CC-FPSE (Liu et al., 2019) proposed a feature-



Chapter 2. Related Work 24

pyramid discriminator, embedding both images and label maps into a joint feature
map, and then consecutively upsampling it in order to classify it as real/fake
at multiple scales. LGGAN (Tang et al., 2020c) introduced a classification-based
feature learning module to learn more discriminative and class-specific features.

In Chapter 4, we propose to use a simple pixel-wise semantic segmentation
network as a discriminator instead of multi-scale image classifiers as in the above
approaches, and to directly exploit the semantic label maps for its supervision.
Segmentation-based discriminators have been shown to improve semantic segmen-
tation (Souly et al., 2017), but have not been explored for semantic image synthesis.
Our work is the first to apply an adversarial semantic segmentation loss for this
task. The segmentation-based discriminator has since been applied in several sub-
sequent works (Wang et al., 2021c; Lv et al., 2022; Jain et al., 2022; Jeong et al., 2021;
Musat et al., 2022; Hao et al., 2021).

2.2.3 Perceptual losses

Gatys et al. (2015), Gatys et al. (2016), Johnson et al. (2016), and Bruna et al. (2016)
were pioneers at exploiting perceptual losses to produce high-quality images for
super-resolution and style transfer using convolutional networks. Such a loss ex-
tracts deep features from real and generated images by an external classification
network, and minimizes their L1-distance to bring fake images closer to the real
data. For semantic image synthesis, the VGG-based perceptual loss was first in-
troduced by CRN (Chen and Koltun, 2017), and later adopted by Pix2pixHD (Isola
et al., 2017). Since then, it has become a default for training the generator (Park
et al., 2019b; Liu et al., 2019; Tan et al., 2020; Tang et al., 2020a; Richardson et al.,
2021; Wang et al., 2021c; Li et al., 2021b). As the perceptual loss is based on a VGG
network pretrained on ImageNet (Deng et al., 2009), methods relying on it are con-
strained by the ImageNet domain and the representational power of VGG. With the
recent progress in GAN training, e.g., by architecture designs and regularization
techniques, the actual necessity of the perceptual loss requires a reassessment. In
Chapter 4, we experimentally show that such loss imposes unnecessary constraints
on the generator, significantly limiting the diversity among samples. We find that
without the VGG loss much higher diversity can be achieved in semantic image
synthesis, without compromising synthesis quality.

2.2.4 Semantic image synthesis models not based on GANs

Concurrently to the first GAN-based SIS models (Isola et al., 2017), SIS models
were proposed that are only trained using the VGG perceptual loss. As such, the
cascaded refinement network (CRN) (Chen and Koltun, 2017) trains a generator
only via the VGG perceptual loss and a diversity term, but achieves similar quality
compared to Pix2Pix. This result yet again highlights the strong dependence of
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previous GAN-based models on the perceptual loss. Similarly, SIMS (Qi et al.,
2018) combines this approach with a memory bank of real image segments to
achieve even higher image quality. Recently, diffusion models emerged as a viable
alternative to GANs for unconditional image synthesis (Jolicoeur-Martineau et al.,
2020; Song and Ermon, 2020; Ho et al., 2020). SDM applies diffusion models
to semantic image synthesis (Wang et al., 2022b), performing similarly to the
model we propose in Chapter 4. Moreover, (Wang et al., 2022a) demonstrate a
strongly improved performance in one key performance metric, the so-called FID
score (Heusel et al., 2017a), by using a pretrained diffusion model. Compared to our
method (Chapter 4), these more recent diffusion-based works perform similarly or
better in terms of FID, but lag behind in terms of the label-map alignment measured
by the mIoU score. The two mentioned diffusion-based works directly compare to
our method (Chapter 4) in their evaluation.

2.3 Discovering GAN controls

It has been shown that the latent space of GANs frequently exhibits semantically
relevant vector space arithmetic (Bau et al., 2019; Goetschalckx et al., 2019; Jahanian
et al., 2020; Voynov and Babenko, 2020; Schwettmann et al., 2021). Therefore,
works on discovering GAN controls are concerned with automatically identifying
directions in the latent space that only change isolated semantic aspects of an image.
In this section, we discuss GAN control methods, emphasizing methods that can
change images in localized regions without affecting the rest of the image. These
related works are highly relevant for Chapter 5, where we present an algorithm to
apply GAN control discovery to SIS models, which to the best of our knowledge,
has not been done before.

2.3.1 GAN control discovery

Finding steerable directions in the latent space is highly difficult due to the large
dimensionality of the latent space and the high diversity of image semantics. For
this reason, some works required human supervision (Schwettmann et al., 2021),
attribute predictors (Wu et al., 2021; Shen et al., 2020), or predetermined visual
transformations such as zooming or rotation (Jahanian et al., 2020; Plumerault
et al., 2019) in order to identify interpretable latent directions. This dependence on
supervision, however, limits the usability of these methods in practice. Another line
of work investigated the unsupervised discovery of GAN controls (Spingarn et al.,
2020; Voynov and Babenko, 2020; Tzelepis et al., 2021; Shen and Zhou, 2021; Härkö-
nen et al., 2020; Yüksel et al., 2021). GANSpace (Härkönen et al., 2020) proposed to
perform PCA on the intermediate feature space of the generator, discovering useful
controls in the latent space resulting from layerwise perturbations along the princi-
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pal directions. SeFa (Shen and Zhou, 2021) identified latent controls by performing
eigendecomposition of a generator’s weights, extracting semantically meaningful
directions in closed-form. In contrast, Yüksel et al. (2021) and Tzelepis et al. (2021)
relied on gradient-based optimization. WarpedGanSpace (Tzelepis et al., 2021)
used a classifier to discriminate among a fixed set of directions in the image space,
while LatentCLR (Yüksel et al., 2021) used a contrastive loss optimizing directions
to have orthogonal effects on the generator’s intermediate features. A common
limitation of unsupervised methods is that latent directions obtained this way are
left to subjective visual inspection and manual identification of significant controls.

The above work focused mainly on finding latent directions for global image
manipulation, considering only unconditional image synthesis GAN models. In
contrast, in Chapter 5 we propose a GAN control discovery method for conditional
SIS models, where we take advantage of the given semantic label maps to find class-
specific latent directions. We pick state-of-the-art GANSpace and SeFa models for
comparison with our method due to their conceptual simplicity, the ease with
which they are adapted to SIS GAN models, as well as their code availability.

2.3.2 Local editing with GANs.

Recent work enabled local image editing by performing optimization in latent
space on specific image regions (Wu et al., 2021; Suzuki et al., 2018; Ling et al., 2021;
Pajouheshgar et al., 2021; Zhu et al., 2022, 2021). EditGAN (Ling et al., 2021) jointly
modeled images and their segmentations. Users need to modify the segmentation
mask, based on which the optimization is performed in the latent space to realize
the edit. LELSD (Pajouheshgar et al., 2021) proposed an area loss that, given
a binary mask, optimizes changes only within the specified area and minimizes
changes outside. However, the found directions are still applied globally. Parallel
to our work, ReSeFa (Zhu et al., 2022) proposed to optimize the change of pixel
values with respect to the latent code, identifying latent variations corresponding
to an image region specified by the user. The main limitation of the above work is
that it requires test-time optimization, preventing the user from interactive image
editing. In contrast, in Chapter 5 we present a method that is optimized end-to-end
once to provide latent directions for interactive editing in the spirit of GANSpace
and SeFa.

Unlike existing work, our method is the first method explicitly proposed for
SIS GANs (Wang et al., 2021c; Park et al., 2019b; Schönfeld et al., 2021). It takes
advantage of the given label maps to find diverse class-specific latent directions
without requiring further supervision or mask area definitions, enabling the user
to perform image editing interactively.
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2.4 Alternatives to GANs

In this section, we discuss image synthesis models that are optimized with a tra-
ditional maximum likelihood approach instead of adversarial training. The three
most widely used paradigms are variational autoencoders (VAEs), transformers,
and diffusion models. In the following, we explain these models, including their
advantages and disadvantages with respect to GANs.

VAEs. VAEs (Kingma and Welling, 2014) are autoencoders in which latent vari-
ables are parametrized by a distribution that we can sample from. The most widely
used parametrization is to learn the mean and variance of a latent Gaussian dis-
tribution. The training loss is the KL divergence between the latent distribution
and a Gaussian prior combined with a reconstruction loss. The best-performing
VAEs can achieve high image quality on datasets with a simple structure, e.g., face
datasets (Child, 2020; Vahdat and Kautz, 2020; Hazami et al., 2022). However, VAEs
struggle to produce satisfying samples on more challenging datasets like ImageNet
(Child, 2020). While the current state-of-the-art models work well on resolution
256, training at resolution 1024 does not lead to satisfying visual results (Child,
2020; Hazami et al., 2022). Lastly, VAEs tend to produce blurry images since the
euclidean reconstruction loss minimizes the mean distance between all plausible
outputs for a given Gaussian latent.

Diffusion models. Diffusion models (Ho et al., 2020) consist of a so-called for-
ward and backward process. The forward process gradually adds Gaussian noise
to an image. The backward process gradually restores the unperturbed image,
employing a U-Net to train to predict the added noise at various noise levels.
During inference, the backward process is applied to pure noise to generate an
image via denoising iteratively. Unlike GANs, diffusion models do not suffer from
training instabilities and can achieve similar or better image quality (Dhariwal
and Nichol, 2021). In addition, diffusion models have better mode coverage of
the training distribution compared to GANs, which are well known for suffering
from a mode-dropping problem. However, the sampling time is slower due to the
iterative generation procedure, which may require thousands of network evalua-
tions. Diffusion models can be used more efficiently by applying them only in an
image generator’s latent space, referred to as a latent diffusion model (Rombach
et al., 2022). In latent diffusion, an autoencoder is trained in combination with a
GAN loss. Afterward, the autoencoder is fixed and a diffusion model is trained to
generate the latents. In essence, the diffusion model learns the image’s high-level
structure, while the autoencoder decoder models the low-level details.

Transformers. Transformers are powerful sequence-to-sequence models that can
be used to model images in the pixel space (Chen et al., 2020a) or latent space of an
autoencoder (Esser et al., 2021). In the latter case, the autoencoder is trained with a
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GAN loss to produce sharp images and increase the realism (Esser et al., 2021). The
advantages are that each location attends to all others, which contributes to image
realism, and that training is stable and therefore highly scalable (Yu et al., 2022).
Further, the use of transformers allows seamless integration with language models,
benefitting text-to-image synthesis(Yu et al., 2022). The downside of transformers
lies in the long iterative sampling time. Hence, just as in the case of diffusion
models, modeling the image directly in the pixel space is costly.
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Among the major remaining challenges for generative adversarial networks
(GANs) is the capacity to synthesize globally and locally coherent images with
object shapes and textures indistinguishable from real images. In this chapter,
we address this issue by proposing an alternative U-Net based discriminator ar-
chitecture, borrowing insights from the segmentation literature. The proposed
U-Net based architecture allows to provide detailed per-pixel feedback to the gen-
erator while maintaining the global coherence of synthesized images, by provid-
ing the global image feedback as well. Empowered by the per-pixel response
of the discriminator, we further propose a per-pixel consistency regularization
technique based on the CutMix data augmentation, encouraging the U-Net dis-
criminator to focus more on semantic and structural changes between real and
fake images. This improves the U-Net discriminator training, further enhanc-
ing the quality of generated samples. The novel discriminator improves over the
state of the art in terms of the standard distribution and image quality metrics,
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enabling the generator to synthesize images with varying structure, appearance,
and levels of detail, maintaining global and local realism. Compared to the Big-
GAN baseline, we achieve an average improvement of 2.7 FID points across FFHQ,
CelebA, and the newly introduced COCO-Animals dataset. The code is available
at https://github.com/boschresearch/unetgan. The work presented in
this chapter was published as the CVPR 2022 paper "A U-Net-based discriminator
for generative adversarial networks" (Schönfeld et al., 2020).

This chapter takes the first step toward the GAN improvements presented in this
thesis. Chapter 4 uses the discriminator architecture proposed in this chapter as
starting point to develop a more powerful semantic image synthesis model. Thanks
to this architecture change and additional improvements, we strongly increase the
synthesis diversity in semantic image synthesis GANs. Based on this increased
diversity, in Chapter 5 we propose a method to control the appearance of classes
through walks in the latent space of semantic image synthesis GANs

3.1 Introduction

The quality of synthetic images produced by generative adversarial networks
(GANs) has seen tremendous improvement recently (Brock et al., 2019; Karras
et al., 2019a). The progress is attributed to large-scale training (Menick and Kalch-
brenner, 2019; Brock et al., 2019), architectural modifications (Zhang et al., 2019;
Karras et al., 2018, 2019a; Lin et al., 2019), and improved training stability via the
use of different regularization techniques (Miyato et al., 2018; Zhang et al., 2020a).
However, despite the recent advances, learning to synthesize images with global
semantic coherence, long-range structure, and the exactness of detail remains chal-
lenging.

One source of the problem lies potentially in the discriminator network. The
discriminator aims to model the data distribution, acting as a loss function to pro-
vide the generator with a learning signal to synthesize realistic image samples.
The stronger the discriminator, the better the generator has to become. In the cur-
rent state-of-the-art GAN models, the discriminator being a classification network
learns only a representation that allows to efficiently penalize the generator based
on the most discriminative difference between real and synthetic images. Thus, it
often focuses on either the global structure or local details. The problem amplifies
as the discriminator has to learn in a non-stationary environment: the distribution
of synthetic samples shifts as the generator constantly changes through training,
and is prone to forgetting previous tasks (Chen et al., 2019) (in the context of the dis-
criminator training, learning semantics, structures, and textures can be considered
different tasks). This discriminator is not incentivized to maintain a more powerful
data representation, learning both global and local image differences. This often
results in the generated images with discontinued and mottled local structures

https://github.com/boschresearch/unetgan
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Progression during training

real

fake

Figure 3.1: Images produced throughout the training by our U-Net GAN model
(top row) and their corresponding per-pixel feedback of the U-Net discriminator
(bottom row). The synthetic image samples are obtained from a fixed noise vec-
tor at different training iterations. Brighter colors correspond to the discriminator
confidence of pixel being real (and darker of being fake). Note that the U-Net
discriminator provides very detailed and spatially coherent response to the gen-
erator, enabling it to further improve the image quality, e.g., the unnaturally large
man’s forehead is recognized as fake by the discriminator and is corrected by the
generator throughout the training.

(Lin et al., 2019) or images with incoherent geometric and structural patterns (e.g.,
asymmetric faces or animals with missing legs) (Zhang et al., 2019).

To mitigate this problem, we propose an alternative discriminator architecture,
which simultaneously outputs both global (over the whole image) and local (per-
pixel) decision of the image belonging to either the real or fake class, see Figure 3.1.
Motivated by the ideas from the segmentation literature, we redesign the discrim-
inator to take a role of both a classifier and segmenter. We change the architecture
of the discriminator network to a U-Net (Ronneberger et al., 2015), where the en-
coder module performs per-image classification, as in the standard GAN setting,
and the decoder module outputs per-pixel class decision, providing spatially co-
herent feedback to the generator, see Figure 3.2. This architectural change leads to
a stronger discriminator, which is encouraged to maintain a more powerful data
representation, making the generator task of fooling the discriminator more chal-
lenging and thus improving the quality of generated samples (as also reflected in
the generator and discriminator loss behavior in Figure 3.10). Note that we do
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not modify the generator in any way, and our work is orthogonal to the ongoing
research on architectural changes of the generator (Karras et al., 2019a; Lin et al.,
2019), divergence measures (Li et al., 2017; Arjovsky et al., 2017; Nowozin et al.,
2016a), and regularizations (Roth et al., 2017; Gulrajani et al., 2017b; Miyato et al.,
2018).

The proposed U-Net based discriminator allows to employ the recently intro-
duced CutMix (Yun et al., 2019) augmentation, which is shown to be effective for
classification networks, for consistency regularization in the two-dimensional out-
put space of the decoder. Inspired by Yun et al. (2019), we cut and mix the patches
from real and synthetic images together, where the ground truth label maps are
spatially combined with respect to the real and fake patch class for the segmenter
(U-Net decoder) and the class labels are set to fake for the classifier (U-Net en-
coder), as globally the CutMix image should be recognized as fake, see Figure 3.3.
Empowered by per-pixel feedback of the U-Net discriminator, we further employ
these CutMix images for consistency regularization, penalizing per-pixel incon-
sistent predictions of the discriminator under the CutMix transformations. This
fosters the discriminator to focus more on semantic and structural changes between
real and fake images and to attend less to domain-preserving perturbations. More-
over, it also helps to improve the localization ability of the decoder. Employing
the proposed consistency regularization leads to a stronger generator, which pays
more attention to local and global image realism. We call our model U-Net GAN.

We evaluate the proposed U-Net GAN model across several datasets using the
state-of-the-art BigGAN model (Brock et al., 2019) as a baseline and observe an
improved quality of the generated samples in terms of the FID and IS metrics.
For unconditional image synthesis on FFHQ (Karras et al., 2019a) at resolution
256 × 256, our U-Net GAN model improves 4 FID points over the BigGAN model,
synthesizing high-quality human faces (see Figure 3.5). On CelebA (Liu et al.,
2015) at resolution 128 × 128 we achieve 1.6 point FID gain, yielding to the best of
our knowledge the lowest known FID score of 2.95. For class-conditional image
synthesis on the introduced COCO-Animals dataset (Lin et al., 2014; Kuznetsova
et al., 2018) at resolution 128 × 128 we observe an improvement in FID from 16.37
to 13.73, synthesizing diverse images of different animal classes (see Figure 3.6).

3.2 U-Net GAN model

In this section, we present our U-Net GAN model. The key to our approach is to
redesign the "vanilla" GAN discriminator as a U-Net (Ronneberger et al., 2015), as
well as a consistency regularization enabled by this new architecture. To this end,
we first briefly explain the baseline vanilla discriminator (Sec. 3.2.1), followed by an
explanation of recently proposed mix and cut regularization techniques that form
the basis of our proposed regularization (Sec. 3.2.2). Next, we present our proposed
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U-Net GAN discriminator (Sec. 3.2.3) and consistency regularization (Sec. 3.2.4).
Lastly, we present implementation details (Sec. 3.2.5). Note that our method is
compatible with most GAN models as it does not modify the generator in any way
and leaves the original GAN objective intact.

3.2.1 The discriminator baseline.

A vanilla GAN consists of two networks: a generator 𝐺 and a discriminator 𝐷,
trained by minimizing the following competing objectives in an alternating manner:

ℒ𝐷 = −E𝑥[log𝐷(𝑥)] − E𝑧[log(1 − 𝐷(𝐺(𝑧)))],
ℒ𝐺 = −E𝑧[log𝐷(𝐺(𝑧))]1. (3.1)

𝐺 aims to map a latent variable 𝑧 ∼ 𝑝(𝑧) sampled from a prior distribution to a
realistic-looking image, while 𝐷 aims to distinguish between real 𝑥 and generated
𝐺(𝑧) images. Ordinarily, 𝐺 and 𝐷 are modeled as a decoder and an encoder
convolutional network, respectively. While there are many variations of the GAN
objective function and its network architectures (Kurach et al., 2018; Luc̆ić et al.,
2018), in this work we focus on improving the discriminator network. Our chosen
baseline is the state-of-the-art model BigGAN (Brock et al., 2019) with an encoder-
shaped discriminator. In Section 3.2.3, we propose to alter this 𝐷 architecture
from a standard classification network to an encoder-decoder network – U-Net
(Ronneberger et al., 2015), leaving the underlying basic architecture of 𝐷 – the
encoder part – untouched. The proposed discriminator allows to maintain both
global and local data representation, providing more informative feedback to the
generator.

3.2.2 Mix and cut regularizations.

Recently, a few simple yet effective regularization techniques have been proposed,
which are based on augmenting the training data by creating synthetic images via
mixing or/and cutting samples from different classes. In MixUp (Zhang et al.,
2018b) the input images and their target labels are interpolated using the same
randomly chosen factor. Verma et al. (2019a) extends Zhang et al. (2018b) by per-
forming interpolation not only in the input layer but also in the intermediate layers.
CutOut (Devries and Taylor, 2017) augments an image by masking a rectangular
region to zero. Differently, CutMix (Yun et al., 2019) augments training data by
creating synthetic images via cutting and pasting patches from image samples of
different classes, marrying the best aspects of MixUp and CutOut. Other works em-
ploy the Mix&Cut approaches for consistency regularization (Verma et al., 2019b;
Berthelot et al., 2019; Zhang et al., 2020a), to encourage invariance to the MixUp

1This formulation is originally proposed as non-saturating (NS) GAN in Goodfellow et al. (2014).
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Figure 3.2: U-Net GAN. The proposed U-Net discriminator classifies the input
images on a global and local per-pixel level. Due to the skip-connections between the
encoder and the decoder (dashed line), the channels in the output layer contain both
high- and low-level information. Brighter colors in the decoder output correspond
to the discriminator confidence of pixels being real (and darker of being fake).

or CutOut transformation. Of the aforementioned previous works, Zhang et al.
(2020a) and Zhao et al. (2020b) are the only to apply Mix&Cut approaches to
GANs. In our work, we propose the consistency regularization under the CutMix
transformation. In contrast to previous work, the CutMix transformation is applied
in the pixel output space of our U-Net discriminator, mixes real and fake images, and
encourages equivariances to the transformation. This helps to improve the local-
ization quality of the U-Net discriminator and induce it to attend more to semantic
and structural changes between real and fake samples. We call our model U-Net
GAN.

3.2.3 U-Net based discriminator

Encoder-decoder networks (Badrinarayanan et al., 2017; Ronneberger et al., 2015)
constitute a powerful method for dense prediction. U-Nets (Ronneberger et al.,
2015) in particular have demonstrated state-of-the-art performance in many com-
plex image segmentation tasks. In these methods, similarly to image classification
networks, the encoder progressively downsamples the input, capturing the global
image context. The decoder performs progressive upsampling, matching the out-
put resolution to the input resolution, and thus enabling precise localization. Skip
connections route data between the matching resolutions of the two modules, fur-
ther improving the ability of the network to accurately segment fine details.

Analogously, in this work, we propose to extend a discriminator to form a U-
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Net, by reusing building blocks of the original discriminator classification network
as an encoder part and building blocks of the generator network as the decoder
part. In other words, the discriminator now consists of the original downsampling
network and a new upsampling network. The two modules are connected via a
bottleneck, as well as skip-connections that copy and concatenate feature maps
from the encoder and the decoder modules, following Ronneberger et al. (2015).
We will refer to this discriminator as 𝐷𝑈 . While the original 𝐷(𝑥) classifies the
input image 𝑥 into being real and fake, the U-Net discriminator 𝐷𝑈(𝑥) additionally
performs this classification on a per-pixel basis, segmenting the image 𝑥 into real and
fake regions, along with the original image classification of 𝑥 from the encoder, see
Figure 3.2. This enables the discriminator to learn both global and local differences
between real and fake images.

Hereafter, we refer to the original encoder module of the discriminator as 𝐷𝑈
𝑒𝑛𝑐

and to the introduced decoder module as 𝐷𝑈
𝑑𝑒𝑐 . The new discriminator loss can

now be computed by taking the decisions from both 𝐷𝑈
𝑒𝑛𝑐 and 𝐷𝑈

𝑑𝑒𝑐 :

ℒ𝐷𝑈 = ℒ𝐷𝑈
𝑒𝑛𝑐

+ ℒ𝐷𝑈
𝑑𝑒𝑐
, (3.2)

where similarly to Eq. 3.1 the loss for the encoder 𝐿𝐷𝑈
𝑒𝑛𝑐

is computed from the scalar
output of 𝐷𝑈

𝑒𝑛𝑐 :

ℒ𝐷𝑈
𝑒𝑛𝑐
=−E𝑥[log𝐷𝑈

𝑒𝑛𝑐(𝑥)]−E𝑧[log(1−𝐷𝑈
𝑒𝑛𝑐(𝐺(𝑧)))], (3.3)

and the loss for the decoder 𝐿𝐷𝑈
𝑒𝑛𝑐

is computed as the mean decision over all pixels:

ℒ𝐷𝑈
𝑑𝑒𝑐

= −E𝑥
[∑
𝑖, 𝑗

log[𝐷𝑈
𝑑𝑒𝑐(𝑥)]𝑖, 𝑗

]
− E𝑧

[∑
𝑖, 𝑗

log(1 − [𝐷𝑈
𝑑𝑒𝑐(𝐺(𝑧))]𝑖 , 𝑗)

]
. (3.4)

Here, [𝐷𝑈
𝑑𝑒𝑐(𝑥)]𝑖 , 𝑗 and [𝐷𝑈

𝑑𝑒𝑐(𝐺(𝑧))]𝑖, 𝑗 refer to the discriminator decision at pixel
(𝑖 , 𝑗). These per-pixel outputs of 𝐷𝑈

𝑑𝑒𝑐 are derived based on global information
from high-level features, enabled through the process of upsampling from the
bottleneck, as well as more local information from low-level features, mediated by
the skip connections from the intermediate layers of the encoder network.

Correspondingly, the generator objective becomes:

ℒ𝐺 = −E𝑧
[
log𝐷𝑈

𝑒𝑛𝑐(𝐺(𝑧)) +
∑
𝑖, 𝑗

log[𝐷𝑈
𝑑𝑒𝑐(𝐺(𝑧))]𝑖, 𝑗

]
, (3.5)

encouraging the generator to focus on both global structures and local details while
synthesizing images in order to fool the more powerful discriminator 𝐷𝑈 .

3.2.4 Consistency regularization

Here we present the consistency regularization technique for the U-Net based dis-
criminator introduced in the previous section. The per-pixel decision of the well-
trained 𝐷𝑈 discriminator should be equivariant under any class-domain-altering
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transformations of images. However, this property is not explicitly guaranteed.
To enable it, the discriminator should be regularized to focus more on semantic
and structural changes between real and fake samples and to pay less attention
to arbitrary class-domain-preserving perturbations. Therefore, we propose the
consistency regularization of the 𝐷𝑈 discriminator, explicitly encouraging the de-
coder module 𝐷𝑈

𝑑𝑒𝑐 to output equivariant predictions under the CutMix transfor-
mations (Yun et al., 2019) of real and fake samples. The CutMix augmentation
creates synthetic images via cutting and pasting patches from images of different
classes. We choose CutMix among other Mix&Cut strategies as it does not alter
the real and fake image patches used for mixing, in contrast to Zhang et al. (2018b),
preserving their original class domain, and provides a large variety of possible
outputs. We visualize the CutMix augmentation strategy and the 𝐷𝑈 predictions
in Figure 3.3.

Following (Yun et al., 2019), we synthesize a new training sample �̃� for the
discriminator 𝐷𝑈 by mixing 𝑥 and 𝐺(𝑧) ∈ R𝑊×𝐻×𝐶 with the mask M:

�̃� = mix(𝑥, 𝐺(𝑧),M),
mix(𝑥, 𝐺(𝑧),M) = M ⊙ 𝑥 + (1 − M) ⊙ 𝐺(𝑧), (3.6)

where M ∈ {0, 1}𝑊×𝐻 is the binary mask indicating whether the pixel (𝑖, 𝑗) comes
from the real (M𝑖, 𝑗 = 1) or fake (M𝑖 , 𝑗 = 0) image, 1 is a binary mask filled with
ones, and ⊙ is an element-wise multiplication. In contrast to (Yun et al., 2019),
the class label 𝑐 ∈ {0, 1} for the new CutMix image �̃� is set to be fake, i.e., 𝑐 = 0.
Globally, the mixed synthetic image should be recognized as fake by the encoder
𝐷𝑈
𝑒𝑛𝑐 , otherwise the generator can learn to introduce the CutMix augmentation

into generated samples, causing undesirable artifacts. Note that for the synthetic
sample �̃�, 𝑐 = 0 and M are the ground truth for the encoder and decoder modules
of the discriminator 𝐷𝑈 , respectively.

Given the CutMix operation in Eq. 3.6, we train the discriminator to provide con-
sistent per-pixel predictions, i.e.,𝐷𝑈

𝑑𝑒𝑐

(
mix(𝑥, 𝐺(𝑧),M))≈mix

(
𝐷𝑈
𝑑𝑒𝑐(𝑥), 𝐷𝑈

𝑑𝑒𝑐(𝐺(𝑧)),M
)
,

by introducing the consistency regularization loss term in the discriminator objec-
tive:

ℒ𝑐𝑜𝑛𝑠
𝐷𝑈
𝑑𝑒𝑐

=
𝐷𝑈

𝑑𝑒𝑐

(
mix(𝑥, 𝐺(𝑧),M)

)
− mix

(
𝐷𝑈
𝑑𝑒𝑐(𝑥), 𝐷𝑈

𝑑𝑒𝑐(𝐺(𝑧)),M
)2

, (3.7)

where denotes ∥ · ∥ the 𝐿2 norm. This consistency loss is then taken between the
per-pixel output of 𝐷𝑈

𝑑𝑒𝑐 on the CutMix image and the CutMix between outputs
of the 𝐷𝑈

𝑑𝑒𝑐 on real and fake images, penalizing the discriminator for inconsistent
predictions.

We add the loss term in Eq. 3.7 to the discriminator objective in Eq. 3.2 with a
weighting hyperparameter 𝜆:

ℒ𝐷𝑈 = ℒ𝐷𝑈
𝑒𝑛𝑐

+ ℒ𝐷𝑈
𝑑𝑒𝑐

+ 𝜆ℒ𝑐𝑜𝑛𝑠
𝐷𝑈
𝑑𝑒𝑐
.. (3.8)
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Figure 3.3: Visualization of the CutMix augmentation and the predictions of the
U-Net discriminator on CutMix images. 1st row: real and fake samples. 2nd&3rd
rows: sampled real/fake CutMix ratio 𝑟 and corresponding binary masks M (color
code: white for real, black for fake). 4th row: generated CutMix images from real
and fake samples. 5th&6th row: the corresponding real/fake segmentation maps
of 𝐷𝑈 with its predicted classification scores.
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The generator objective ℒ𝐺 remains unchanged, see Eq. 3.5.
In addition to the proposed consistency regularization, we also use CutMix

samples for training both the encoder and decoder modules of 𝐷𝑈 . Note that for
the U-Net GAN we use the non-saturating GAN objective formulation (Goodfellow
et al., 2014). However, the introduced consistency regularization as well as the U-
Net architecture of the discriminator can be combined with any other adversarial
losses of the generator and discriminator (Arjovsky et al., 2017; Lim and Ye, 2017;
Nowozin et al., 2016a).

3.2.5 Implementation

Here we discuss the implementation details of the U-Net GAN model proposed in
Section 3.2.3 and 3.2.4.
U-Net based discriminator. We build upon the recent state-of-the-art BigGAN
model (Brock et al., 2019), and extend its discriminator with our proposed changes.
The architecture details of the BigGAN model (Brock et al., 2019) and our U-Net
discriminator are summarized in Table 3.1, 3.2 and Table 3.3. From these tables it
is easy to see that the encoder and decoder of the U-Net discriminator follow the
original BigGAN discriminator and generator setups, respectively.

We adopt the BigGAN generator and discriminator architectures for the 256×256
(and 128 × 128) resolution with a channel multiplier 𝑐ℎ = 64, as described in detail
in (Brock et al., 2019). The original BigGAN discriminator downsamples the input
image to a feature map of dimensions 16𝑐ℎ × 4 × 4, on which global sum pooling
is applied to derive a 16𝑐ℎ dimensional feature vector that is classified into real or
fake. In order to turn the discriminator into a U-Net, we copy the generator archi-
tecture and append it to the 4× 4 output of the discriminator. In effect, the features
are successively upsampled via ResNet blocks until the original image resolution
(𝐻×𝑊) is reached. To make the U-Net complete, the input to every decoder ResNet
block is concatenated with the output features of the encoder blocks that share the
same intermediate resolution. In this way, high-level and low-level information are
effectively integrated on the way to the output feature map. Hereby, the decoder
architecture is almost identical to the generator, with the exception that we change
the number of channels of the final output from 3 to 𝑐ℎ, append a final block of 1×1
convolutions to produce the 1×𝐻×𝑊 output map, and do not use class-conditional
BatchNorm (de Vries et al., 2017; Dumoulin et al., 2017) in the decoder, nor the en-
coder. Similarly to (Brock et al., 2019), we provide class information to 𝐷𝑈 with
projection (Miyato and Koyama, 2018) to the 𝑐ℎ-dimensional channel features of
the U-Net encoder and decoder output. In contrast to (Brock et al., 2019) and in
alignment with (Chen et al., 2018b), we find it beneficial not to use a hierarchical la-
tent space, but to directly feed the same input vector 𝑧 to BatchNorm at every layer
in the generator. Lastly, we also remove the self-attention layer in both encoder
and decoder, as in our experiments they did not contribute to the performance but
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(a) BigGAN Generator
(128 × 128)

𝑧 ∈ R120 ∼ 𝒩(0, 𝐼)
Embed(y) ∈ R128

Linear (20 + 128) → 4 × 4 × 16𝑐ℎ
ResBlock up 16𝑐ℎ → 16𝑐ℎ
ResBlock up 16𝑐ℎ → 8𝑐ℎ
ResBlock up 8𝑐ℎ → 4𝑐ℎ
ResBlock up 4𝑐ℎ → 2𝑐ℎ

Non-Local Block (64 × 64)
ResBlock up 2𝑐ℎ → 𝑐ℎ

BN, ReLU, 3 × 3 Conv 𝑐ℎ → 3
Tanh

(b) BigGAN Discriminator
(128 × 128)

RGB image 𝑥 ∈ R128×128×3

ResBlock down 𝑐ℎ → 2𝑐ℎ
Non-Local Block (64 × 64)
ResBlock down 2𝑐ℎ → 4𝑐ℎ
ResBlock down 4𝑐ℎ → 8𝑐ℎ
ResBlock down 8𝑐ℎ → 16𝑐ℎ
ResBlock down 16𝑐ℎ → 16𝑐ℎ

ReLU, Global sum pooling
Embed(y)·ℎ + (linear→ 1)

Table 3.1: The BigGAN (Brock et al., 2019) generator and discriminator architec-
tures for class-conditional image generation.

led to memory overhead. While the original BigGAN is a class-conditional model,
we additionally devise an unconditional version for our experiments. For the un-
conditional model, we replace class-conditional BatchNorm with self-modulation
(Chen et al., 2018b), where the BatchNorm parameters are conditioned only on the
latent vector 𝑧, and do not use the class projection of (Miyato and Koyama, 2018)
in the discriminator.

All these modifications leave us with a two-headed discriminator. While the de-
coder head is already sufficient to train the network, we find it beneficial to compute
the GAN loss at the encoder and decoder head with equal weight. Analogously to
BigGAN, we keep the hinge loss (Zhang et al., 2019) in all basic U-Net models, while
the models that also employ the consistency regularization in the decoder output
space benefit from using the non-saturating loss (Goodfellow et al., 2014). Our
implementation builds on top of the original BigGAN PyTorch implementation2.

Consistency regularization. For each training iteration a mini-batch of CutMix
images (�̃� , 𝑐 = 0,M) is created with probability 𝑝𝑚𝑖𝑥 . This probability is increased
linearly from 0 to 0.5 between the first 𝑛 epochs in order to give the generator time to
learn how to synthesize more real looking samples and not to give the discriminator
too much power from the start. CutMix images are created from the existing real
and fake images in the mini-batch using binary masks M. For sampling M, we
use the original CutMix implementation3: first sampling the combination ratio 𝑟
between the real and generated images from the uniform distribution (0, 1) and

2https://github.com/ajbrock/BigGAN-PyTorch
3https://github.com/clovaai/CutMix-PyTorch

https://github.com/ajbrock/BigGAN-PyTorch
https://github.com/clovaai/CutMix-PyTorch
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(a) BigGAN Generator
(256 × 256)

𝑧 ∈ R140 ∼ 𝒩(0, 𝐼)
Linear (20 + 128) → 4 × 4 × 16𝑐ℎ

ResBlock up 16𝑐ℎ → 16𝑐ℎ
ResBlock up 16𝑐ℎ → 8𝑐ℎ
ResBlock up 8𝑐ℎ → 8𝑐ℎ
ResBlock up 8𝑐ℎ → 4𝑐ℎ
ResBlock up 4𝑐ℎ → 2𝑐ℎ

Non-Local Block (128 × 128)
ResBlock up 2𝑐ℎ → 𝑐ℎ

BN, ReLU, 3 × 3 Conv 𝑐ℎ → 3
Tanh

(b) BigGAN Discriminator
(256 × 256)

RGB image 𝑥 ∈ R256×256×3

ResBlock down 𝑐ℎ → 2𝑐ℎ
ResBlock down 2𝑐ℎ → 4𝑐ℎ
Non-Local Block (64 × 64)
ResBlock down 4𝑐ℎ → 8𝑐ℎ
ResBlock down 8𝑐ℎ → 8𝑐ℎ
ResBlock down 8𝑐ℎ → 16𝑐ℎ
ResBlock down 16𝑐ℎ → 16𝑐ℎ

ReLU, Global sum pooling
linear→ 1

Table 3.2: The BigGAN (Brock et al., 2019) generator and discriminator architec-
tures, modified for unconditional image generation.

(a) U-Net GAN Discriminator
(256 × 256, unconditional)

RGB image 𝑥 ∈ R256×256×3

ResBlock down 𝑐ℎ → 2𝑐ℎ
ResBlock down 2𝑐ℎ → 4𝑐ℎ

Optional Non-Local Block (64 × 64)
ResBlock down 4𝑐ℎ → 8𝑐ℎ
ResBlock down 8𝑐ℎ → 8𝑐ℎ

ResBlock down 8𝑐ℎ → 16𝑐ℎ *(see below)
ResBlock up 16𝑐ℎ → 8𝑐ℎ

ResBlock up (8 + 8)𝑐ℎ → 8𝑐ℎ
ResBlock up (8 + 8)𝑐ℎ → 4𝑐ℎ
ResBlock up (4 + 4)𝑐ℎ → 2𝑐ℎ
ResBlock up (2 + 2)𝑐ℎ → 𝑐ℎ
ResBlock up (𝑐ℎ + 𝑐ℎ) → 𝑐ℎ

ResBlock 𝑐ℎ → 1
Sigmoid

* ReLU, Global sum pooling, linear→ 1

(b) U-Net GAN Discriminator
(128 × 128, class-conditional)

RGB image 𝑥 ∈ R128×128×3

ResBlock down 𝑐ℎ → 2𝑐ℎ
Optional Non-Local Block (64 × 64)

ResBlock down 2𝑐ℎ → 4𝑐ℎ
ResBlock down 8𝑐ℎ → 8𝑐ℎ

ResBlock down 8𝑐ℎ → 16𝑐ℎ *(see below)
ResBlock up 16𝑐ℎ → 8𝑐ℎ

ResBlock up (8 + 8)𝑐ℎ → 4𝑐ℎ
ResBlock up (4 + 4)𝑐ℎ → 2𝑐ℎ
ResBlock up (2 + 2)𝑐ℎ → 𝑐ℎ
ResBlock up (𝑐ℎ + 𝑐ℎ) → 𝑐ℎ
Embed(y)·ℎ + (Conv 𝑐ℎ → 1)

Sigmoid
* ReLU, Global sum pooling
Embed(y)·ℎ + (linear→ 1)

Table 3.3: The U-Net GAN discriminator architectures for class-conditional (a) and
unconditional (b) tasks of generating images at resolution 128 × 128 and 256 × 256,
respectively.

then uniformly sample the bounding box coordinates for the cropping regions of 𝑥
and 𝐺(𝑧) to preserve the 𝑟 ratio, i.e., 𝑟 = |M|

𝑊∗𝐻 (see Figure 3.3). Binary masks M also
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denote the target for the decoder 𝐷𝑈
𝑑𝑒𝑐 , while we use fake, i.e., 𝑐 = 0, as the target

for the encoder 𝐷𝑈
𝑒𝑛𝑐 . We set 𝜆 = 1.0 as it showed empirically to be a good choice.

Note that the consistency regularization does not impose much overhead during
training. Extra computational cost comes only from feeding additional CutMix
images through the discriminator while updating its parameters.

3.3 Experiments

3.3.1 Experimental setup

Datasets. We consider three datasets: FFHQ (Karras et al., 2019a), CelebA (Liu
et al., 2015), and the subset of the COCO (Lin et al., 2014) and OpenImages
(Kuznetsova et al., 2018) images containing animal classes, which we will fur-
ther on refer to as COCO-Animals. We use FFHQ and CelebA for unconditional
image synthesis and COCO-Animals for class-conditional image synthesis, where
the class label is used. We experiment with 256 × 256 resolution for FFHQ, and
128 × 128 for CelebA and COCO-Animals.

CelebA is a human face dataset of 200k images, featuring∼ 10k different celebri-
ties with a variety of facial poses and expressions. Similarly, FFHQ is a more recent
dataset of human faces, consisting of 70k high-quality images with higher variation
in terms of age, ethnicity, accessories, and viewpoints.

The proposed COCO-Animals dataset consists of ∼ 38k training images belong-
ing to 10 animal classes, where we choose COCO (Lin et al., 2014) and OpenIm-
ages (Kuznetsova et al., 2018) (using the human verified subset with mask annota-
tions) samples in the categories bird, cat, dog, horse, cow, sheep, giraffe, zebra, elephant,
and monkey. The two datasets have a great overlap in animal classes. We take all
images from COCO and the aforementioned OpenImages split in the categories
horse, cow, sheep, giraffe, zebra, and elephant. The monkey images are taken over di-
rectly from OpenImages, since this category contained more training samples than
the next biggest COCO animal class bear. The class bear and monkey are not shared
between COCO and OpenImages. Lastly, the categories bird, cat, and dog contained
vastly more samples than all other categories. For this reason, we took over only
a subset of the total of all images in these categories. These samples were picked
from OpenImages only, for their better visual quality. To ensure good quality of
the picked examples, we used the provided bounding boxes to filter out images
in which the animal of interest is either too small or too big (> 80%, < 30% of the
image area for cats, > 70%, < 50% for birds and dogs). The thresholds were chosen
such that the number of appropriate images is approximately equal.

With its relatively small size and imbalanced number of images per class as
well as due to its variation in poses, shapes, number of objects, and backgrounds,
COCO-Animals presents a challenging task for class-conditional image synthesis.
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We choose to create this dataset in order to perform conditional image generation
in the mid- to high-resolution regime, with a reasonable computational budget
and feasible training time. Other datasets in this order of size either have too few
examples per class (e.g., AwA (Xian et al., 2018)) or too little inter- and intra-class
variability. In contrast, the intra-class variability of COCO-Animals is very high for
certain classes, e.g., bird and monkey, which span many subspecies.
Evaluation metrics. For quantitative evaluation we use the Fréchet Inception dis-
tance (FID) (Heusel et al., 2017b) as the main metric, and additionally consider
the Inception score (IS) (Salimans et al., 2016b). Between the two, FID is a more
comprehensive metric, which has been shown to be more consistent with human
evaluation in assessing the realism and variation of the generated images (Heusel
et al., 2017b), while IS is limited by what the Inception classifier can recognize,
which is directly linked to its training data (Barratt and Sharma, 2018). If one
learns to generate something not present in the classifier’s training data (e.g., hu-
man faces) then IS can still be low despite generating high-quality images since
that image does not get classified as a distinct class.

In all our experiments, FID and IS are computed using 50k synthetic images,
following Karras et al. (2018). By default, all reported numbers correspond to
the best or median FID of five independent runs achieved with 400k training
iterations for FFHQ and COCO-Animals, and 800k training iterations for CelebA.
For evaluation, we employ moving averages of the generator weights following
Brock et al. (2019) and Karras et al. (2018), with a decay of 0.9999. Note that we do
not use any truncation tricks or rejection sampling for image generation.
Training details. We adopt the original training parameters of Brock et al. (2019)
for training U-Net GAN, which are summarized in Table 3.4.

Hyperparameter Value
Optimizer Adam (𝛽1 = 0, 𝛽2 = 0.999)
G’s learning rate 1e-4 (256), 5e-5 (128)
D’s learning rate 5e-4 (256), 2e-4 (128)
Batch size 20 (256), 80 (128)
Weight Initialization Orthogonal

Table 3.4: Hyperparameters of U-Net GAN for resolution 2562 and 1282.

In particular, we use a uniformly distributed noise vector 𝑧 ∈ [−1, 1]140 as input
to the generator, and the Adam optimizer (Kingma and Ba, 2015) with different
learning rates for 𝐺 and 𝐷𝑈 . The number of warmup epochs 𝑛 for consistency reg-
ularization is chosen to be 200 for COCO-Animals, and 20 for FFHQ and CelebA.
In contrast to Brock et al. (2019), we operate with considerably smaller mini-batch
sizes: 20 for FFHQ, 50 for CelebA, and 80 for COCO-Animals. Regarding the dif-
ference between class-conditional and unconditional image generation, it is worth
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noting that the CutMix regularization is applied only to samples within the same
class. In other words, real and generated samples are mixed only within the class
(e.g., real and fake zebras, but not real zebras with fake elephants).

3.3.2 Results

We first test our proposed U-Net discriminator in two settings: unconditional image
synthesis on FFHQ and class-conditional image synthesis on COCO-Animals, using
the BigGAN model (Brock et al., 2019) as a baseline for comparison. We report our
key results in Table 3.5 and Figure 3.4.

Method
FFHQ COCO-Animals

Best Median Best Median
FID↓ IS↑ FID↓ IS↑ FID↓ IS↑ FID↓ IS↑

BigGAN (Brock et al., 2019) 11.48 3.97 12.42 4.02 16.37 11.77 16.55 11.78
U-Net GAN 7.48 4.46 7.63 4.47 13.73 12.29 13.87 12.31

Table 3.5: Evaluation results on FFHQ and COCO-Animals. We report the best
and median FID score across 5 runs and its corresponding IS, see Section 3.3.2 for
discussion.
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Figure 3.4: FID curves over iterations of the BigGAN model (blue) and the proposed
U-Net GAN (red). Depicted are the FID mean and standard deviation across 5 runs
per setting.

In the unconditional case, our model achieves the FID score of 7.48, which
is an improvement of 4.0 FID points over the canonical BigGAN discriminator
(see Table 3.5). In addition, the new U-Net discriminator also improves over the
baseline in terms of the IS metric (3.97 vs. 4.46). The same effect is observed for
the conditional image generation setting. Here, our U-Net GAN achieves an FID
of 13.73, improving 2.64 points over BigGAN, as well as increases the IS score from
11.77 to 12.29. Figure 3.4 visualizes the mean FID behaviour over the training
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Method Dataset
FID

Best Median Mean Std
BigGAN

COCO-Animals
16.37 16.55 16.62 0.24

U-Net GAN 13.73 13.87 13.88 0.11
BigGAN

FFHQ
11.48 12.42 12.35 0.67

U-Net GAN 7.48 7.63 7.73 0.56
BigGAN

CelebA
3.70 3.89 3.94 0.16

U-Net GAN 2.03 2.07 2.08 0.04

Table 3.6: Best, median, mean, and std of FID values across 5 runs.
across 5 independent runs. From Figure 3.4 it is evident that the FID score drops
for both models at a similar rate, with a constant offset for the U-Net GAN model,
as well as the smaller standard deviation of FID. These results showcase the high
potential of the new U-Net based discriminator. For a detailed comparison of the
FID mean, median, and standard deviation across 5 runs we refer to Table 3.6.

Qualitative results on FFHQ and COCO-Animals are shown in Figure 3.5 and
Figure 3.6. Figure 3.5 displays human faces generated by U-Net GAN through
linear interpolation in the latent space between two synthetic samples. We observe
that the interpolations are semantically smooth between faces, i.e., an open mouth
gradually becomes a closed mouth, hair progressively grows in length, beards or
glasses smoothly fade or appear, and hair color changes seamlessly. Furthermore,
we notice that on several occasions men appear with pink beards. As FFHQ contains
a fair share of people with pink hair, we suspect that our generator extrapolates hair
color to beards, enabled by the global and local 𝐷𝑈 feedback during the training.
Figure 3.6 shows generated samples on COCO-Animals. We observe diverse images
of high quality. We further notice that employing the class-conditional projection
(as used in BigGAN) in the pixel output space of the decoder does not introduce
class leakage or influence the class separation in any other way. These observations
confirm that our U-Net GAN is effective in both unconditional and class-conditional
image generation.

Ablation study. In Table 3.7 we next analyze the individual effect of each of the
proposed components of the U-Net GAN model (see Section 3.2 for details) to
the baseline architecture of BigGAN on the FFHQ and COCO-Animals datasets,
comparing the median FID scores. Note that each of these individual components
builds on each other. As shown in Table 3.7, employing the U-Net architecture
for the discriminator alone improves the median FID score from 12.42 to 10.86 for
FFHQ and 16.55 to 15.86 for COCO-Animals. Adding the CutMix augmentation
improves upon these scores even further, achieving an FID of 10.30 for FFHQ and
14.95 for COCO-Animals. Note that we observe a similar improvement if we em-
ploy the CutMix augmentation during the BigGAN training as well. Employing
the proposed consistency regularization in the segmenter 𝐷𝑈

𝑑𝑒𝑐 output space on
the CutMix images enables us to get the most out of the CutMix augmentation
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Figure 3.5: Images generated with U-Net GAN trained on FFHQ with resolution
256 × 256 when interpolating in the latent space between two synthetic samples
(left to right). Note the high quality of synthetic samples and very smooth interpo-
lations, maintaining global and local realism.
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Figure 3.6: Images generated with U-Net GAN trained on COCO-Animals with
resolution 128 × 128.
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and allows us to better leverage the per-pixel feedback of the U-Net discriminator,
without imposing much computational or memory cost. In effect, the median FID
score drops to 7.63 for FFHQ and to 13.87 for COCO-Animals. Overall, we observe
that each proposed component of the U-Net GAN model leads to improved perfor-
mance in terms of FID. Lastly, in Figure 3.7 we present a qualitative comparison of
uncurated images generated with the unconditional BigGAN model (Brock et al.,
2019) and our U-Net GAN. The images generated by U-Net GAN exhibit finer
details and maintain better local realism.

Method COCO-Animals FFHQ
BigGAN (Brock et al., 2019) 16.55 12.42
U-Net based discriminator 15.86 10.86

+ CutMix augmentation 14.95 10.30
+ Consistency regularization 13.87 7.63

Table 3.7: Ablation study of the U-Net GAN model on FFHQ and COCO-Animals.
Shown are the median FID scores. The proposed components lead to better per-
formance, on average improving the median FID by 3.7 points over BigGAN.

Comparison with state of the art. Table 3.8 shows that U-Net GAN compares
favorably with the state of the art on the CelebA dataset. The BigGAN base-
line already outperforms COCO-GAN, the best result reported in the literature to
the best of our knowledge, lowering FID from 5.74 to 4.54, whereas U-Net GAN
further improves FID to 2.95. FID scores for CelebA were computed with the stan-
dard TensorFlow Inception network for comparability, resulting in slightly different
numbers compared to Table 3.6. The PyTorch and TensorFlow FIDs for all datasets
are presented in Table 3.9. It is worth noting that BigGAN is the representative of
just one of the two well-known state-of-the art GAN families, led by BigGAN and
StyleGAN, and their respective further improvements (Zhang et al., 2020a; Zhao
et al., 2020b; Karras et al., 2020c). While in this work we base our framework on
BigGAN, it would be interesting to also explore the application of the U-Net based
discriminator for the StyleGAN family.

Method FID ↓ IS ↑
PG-GAN (Karras et al., 2018) 7.30 –
COCO-GAN (Lin et al., 2019) 5.74 –
BigGAN (Brock et al., 2019) 4.54 3.23
U-Net GAN 2.95 3.43

Table 3.8: Comparison with the state-of-the-art models on CelebA (128 × 128).
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BigGAN

U-Net GAN

Figure 3.7: Qualitative comparison of uncurated images generated with the un-
conditional BigGAN model (top) and our U-Net GAN (bottom) on FFHQ with
resolution 256 × 256. Note that the images generated by U-Net GAN exhibit finer
details and maintain better local realism.
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PyTorch TensorFlow
Dataset Method FID ↓ IS ↑ FID ↓ IS ↑
FFHQ BigGAN (Brock et al., 2019) 11.48 3.97 14.92 3.96

(256 × 256) U-Net GAN 7.48 4.46 8.88 4.50
COCO-Animals BigGAN (Brock et al., 2019) 16.37 11.77 16.42 11.34

(128 × 128) U-Net GAN 13.73 12.29 13.96 11.77
PG-GAN (Karras et al., 2018) – – 7.30 –

CelebA COCO-GAN (Lin et al., 2019) – – 5.74 –
(128 × 128) BigGAN (Brock et al., 2019) 3.70 3.08 4.54 3.23

U-Net GAN 2.03 3.33 2.95 3.43

Table 3.9: Evaluation results on FFHQ, COCO-Animals, and CelebA with PyTorch
and TensorFlow FID/IS scores. The difference lies in the choice of framework in
which the inception network is implemented, which is used to extract the inception
metrics.

Figure 3.8: Generated samples and the corresponding U-Net decoder predictions
for COCO-Animals (row 1 & 2) and FFHQ (row 3 & 4). Brighter areas correspond
to the discriminator confidence of pixels being real (and darker of being fake).

Discriminator response visualization. The heterogenous per-pixel predictions of
the decoder are visualized in Figure 3.8. For both COCO-Animals and FFHQ it can
be seen that differently textured regions evoke different decoder predictions. Yet,
the real-fake predictions do not follow texture boundaries strictly, indicating that
the decoder predictions are based on learned patterns at different scales. In effect,
the U-Net decoder provides a very detailed and spatially coherent response, which
enables the generator to further improve the image quality.
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Importantly, we observe that encoder (𝐷𝑈
𝑒𝑛𝑐) and decoder (𝐷𝑈

𝑑𝑒𝑐) often assign dif-
ferent real/fake scores per sample. Figure 3.9 visualizes the per-sample predictions
for a complete training batch. Here, the decoder score is computed as the average
per-pixel prediction. The scores correlate with each other but have a high variance.
The points in the upper left quadrant correspond to samples that are assigned a
high probability of being real by the decoder, but a low probability by the encoder.
This implies realism on a local level, but not necessarily on a global one. Similarly,
the lower right quadrant represents samples that are identified as realistic by the
encoder, but contain unrealistic patches which cause a low decoder score. The
fact that the encoder and decoder predictions are not tightly coupled further im-
plies that these two components are complementary. In other words, the generator
receives more pronounced feedback by the proposed U-Net discriminator than it
would get from a standard GAN discriminator.

DUdec

Figure 3.9: Visualization of the predictions of the encoder 𝐷𝑈
𝑒𝑛𝑐 and decoder 𝐷𝑈

𝑑𝑒𝑐
modules during training, within a batch of 50 generated samples. For visualization
purposes, the 𝐷𝑈

𝑑𝑒𝑐 score is averaged over all pixels in the output. Note that quite
often decisions of 𝐷𝑈

𝑒𝑛𝑐 and 𝐷𝑈
𝑑𝑒𝑐 are not coherent with each other. As judged

by the U-Net discriminator, samples in the upper left consist of locally plausible
patterns, while not being globally coherent (example in orange), whereas samples
in the lower right look globally coherent but have local inconsistencies (example in
purple: giraffe with too many legs and vague background).

Characterizing the training dynamics. Both BigGAN and U-Net GAN experience
similar stability issues, with ∼ 60% of all runs being successful. For U-Net GAN,
training collapse occurs generally much earlier (∼ 30k iterations) than for BigGAN
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Figure 3.10: Comparison of the generator and discriminator loss behavior over
training for U-Net GAN and BigGAN. The generator and discriminator loss of U-
Net GAN is additionally split up into its encoder- and decoder components.

(> 200k iterations, as also reported in Brock et al. (2019)), allowing to discard failed
runs earlier. Among successful runs for both models, we observe a lower standard
deviation in the achieved FID scores, compared to the BigGAN baseline (see Table
3.6). Figure 3.10 depicts the evolution of the generator and discriminator losses
(green and blue, respectively) for U-Net GAN and BigGAN over training. For
U-Net GAN, the generator and discriminator losses are additionally split into the
loss components of the U-Net encoder 𝐷𝑈

𝑒𝑛𝑐 and decoder 𝐷𝑈
𝑑𝑒𝑐 . The U-Net GAN

discriminator loss decays slowly, while the BigGAN discriminator loss approaches
zero rather quickly, which prevents further learning from the generator. This
explains the FID gains of U-Net GAN and shows its potential to improve with
longer training. The generator and discriminator loss parts from encoder (image-
level) and decoder (pixel-level) show similar trends, i.e., we observe the same
decay for 𝐷𝑈

𝑒𝑛𝑐 and 𝐷𝑈
𝑑𝑒𝑐 losses but with different scales. This is expected as 𝐷𝑈

𝑒𝑛𝑐
can easily classify an image as belonging to the real or fake class just by looking at
one distinctive trait, while to achieve the same scale 𝐷𝑈

𝑑𝑒𝑐 needs to make a uniform
real or fake decision on all image pixels.

3.4 Conclusion

In this work, we propose an alternative U-Net based architecture for the discrim-
inator, which allows to provide both global and local feedback to the generator.
In addition, we introduce a consistency regularization technique for the U-Net
discriminator based on the CutMix data augmentation. We show that all the
proposed changes result in a stronger discriminator, enabling the generator to syn-
thesize images with varying levels of detail, maintaining global and local realism.
We demonstrate the improvement over the state-of-the-art BigGAN model (Brock
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et al., 2019) in terms of the FID score on three different datasets.
Compared to unconditional and class-conditional image synthesis, other image

synthesis tasks can benefit even more from detailed local discriminator feedback.
One such task is semantic image synthesis, where a GAN generates images for a
given label map. We have already shown that a U-Net discriminator can be class-
conditional. However, the decoder loss is computed per pixel, and therefore the
losses of different pixels can be conditioned on different classes. This is useful for
semantic image synthesis, where different pixels are assigned to different classes.
Hence, in Chapter 4 we extend the U-Net discriminator approach for the task
of semantic image synthesis and introduce further innovations to improve over
previous state-of-the-art models.
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In Chapter 3 we demonstrated how a U-Net based discriminator could improve
image synthesis in unconditional and class-conditional GANs. In this chapter, we
focus on the more complex task of synthesizing images from semantic label maps,
known as semantic image synthesis. Despite their recent successes, GANs for se-
mantic image synthesis still suffer from poor image quality when trained with only
adversarial supervision. Previously, additionally employing a VGG-based percep-
tual loss has helped to overcome this issue, significantly improving the synthesis
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quality, but at the same time limited the progress of GAN models for semantic im-
age synthesis. In this chapter, we propose a novel, simplified GAN model, which
needs only adversarial supervision to achieve high-quality results. Inspired by
the approach presented in Chapter 3, we redesign the discriminator as a seman-
tic segmentation network, and directly use the given semantic label maps as the
ground truth for training. By providing stronger supervision to the discriminator
as well as to the generator through spatially- and semantically-aware discrimina-
tor feedback, we are able to synthesize images of higher fidelity and with a better
alignment to their input label maps, making the use of the perceptual loss superflu-
ous. Furthermore, we enable high-quality multi-modal image synthesis through
global and local sampling of a 3D noise tensor injected into the generator, which
allows complete or partial image editing. We show that images synthesized by
our model are more diverse and follow the color and texture distributions of real
images more closely. We achieve a strong improvement in image synthesis quality
over prior state-of-the-art models across the commonly used ADE20K, Cityscapes,
and COCO-Stuff datasets using only adversarial supervision. In addition, we
investigate semantic image synthesis under severe class imbalance and sparse an-
notations, which are common aspects in practical applications but were overlooked
in prior works. To this end, we evaluate our model on LVIS, a dataset originally
introduced for long-tailed object recognition. We thereby demonstrate high per-
formance of our model in the sparse and unbalanced data regimes, achieved by
means of the proposed 3D noise and the ability of our discriminator to balance
class contributions directly in the loss function. Our code and pretrained models
are available at https://github.com/boschresearch/OASIS. The content
of this chapter corresponds to the ICLR 2021 paper "You only need adversarial
supervision for semantic image synthesis" (Schönfeld et al., 2021) and its extended
version published at ĲCV 2022 (Sushko et al., 2022).

Chapter 5 exploits the increased diversity and the ability to locally manipulate
objects, which result from the work in this chapter. Thanks to the increased di-
versity, a semantic image synthesis GAN can form an interpretable latent space.
Moreover, interpretable class-specific latent space directions can emerge due to the
ability to manipulate objects locally. In Chapter 5, we present an algorithm to find
such directions and use them to edit images in a meaningful way.

4.1 Introduction

Conditional generative adversarial networks (GANs) (Mirza and Osindero, 2014)
synthesize images conditioned on class labels (Brock et al., 2019; Casanova et al.,
2021), text (Reed et al., 2016; Zhang et al., 2018a, 2021), other images (Isola et al.,
2017; Huang et al., 2018; Park et al., 2020), or semantic label maps (Park et al.,
2019b; Liu et al., 2019; Wang et al., 2021c). In this work, we focus on the latter,

https://github.com/boschresearch/OASIS
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Semantic SPADE (Park et al., 2019b) Our model (OASIS), sampled with different noise
label map with VGG w/o VGG w/o VGG

Figure 4.1: Existing semantic image synthesis models heavily rely on the VGG-
based perceptual loss to improve the quality of generated images. In contrast, our
model (OASIS) can synthesize diverse and high-quality images while only using
an adversarial loss, without any external supervision.

addressing semantic image synthesis. Taking pixel-level annotated semantic maps
as input, semantic image synthesis enables the rendering of realistic images from
user-specified layouts, without the use of an intricate graphics engine. Therefore,
its applications range widely from content creation and image editing to produc-
ing training data for downstream applications that adhere to specific semantic
requirements (Park et al., 2019a; Ntavelis et al., 2020).

Despite the recent progress on stabilizing GANs (Miyato et al., 2018; Zhang
and Khoreva, 2019; Karras et al., 2020a; Sauer et al., 2021) and developing their
architectures (Karras et al., 2021b, 2019a, 2020c; Brock et al., 2019; Liu et al., 2021),
state-of-the-art GAN-based semantic image synthesis models (Park et al., 2019b;
Liu et al., 2019; Wang et al., 2021c) still greatly suffer from training instabilities and
poor image quality when the generator is only trained to fool the discriminator in
an adversarial fashion (see Fig. 4.1). An established practice to overcome this issue
is to employ a perceptual loss (Wang et al., 2018a) to train the generator, in addition
to the discriminator loss. The perceptual loss aims to match intermediate features
of synthetic and real images, that are estimated via an external perception network.
A popular choice for such a network is VGG (Simonyan and Zisserman, 2015), pre-
trained on ImageNet (Deng et al., 2009). Although the perceptual loss substantially
improves the performance of previous methods, it comes with the computational
overhead introduced by utilizing an extra network for training. Moreover, as we
show in our experiments, it dominates over the adversarial loss during training, as
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Figure 4.2: OASIS multi-modal synthesis results. The 3D noise can be sampled
globally (first 2 rows), changing the whole scene, or locally (last 2 rows), partially
changing the image. For the latter, we sample different noise per region, like the
bed segment (in red) or arbitrary areas defined by shapes.

the generator starts to learn mostly through minimizing the VGG loss, which has
a negative impact on the diversity and quality of generated images. Therefore, in
this work we propose a novel, simplified model that establishes new state-of-the-art
results without requiring a perceptual loss.

To achieve semantic image synthesis of high quality, the training signal to the
GAN generator should contain feedback on whether the generated images are
well aligned to the input label maps. Thus, a fundamental question for GAN-
based semantic image synthesis models is how to design the discriminator that
would efficiently utilize information from given semantic label maps, in addition
to judging the realism of given images. Conventional methods (Park et al., 2019b;
Wang et al., 2018a; Liu et al., 2019; Isola et al., 2017; Wang et al., 2021c; Ntavelis
et al., 2020) adopt a multi-scale classification network, taking the label map as input
along with the image, and making a global image-level real/fake decision. This
discriminator has limited representation power, as it is not incentivized to learn
high-fidelity pixel-level details of the images and their precise alignment with the
input semantic label maps. For example, such a classification-based discriminator
can base its decision solely on image realism, without the need of examining the
alignment between the image and label map. To mitigate this issue, we propose an
alternative architecture for the discriminator, redesigning it as an encoder-decoder
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semantic segmentation network (Ronneberger et al., 2015), and directly exploiting
the given semantic label maps as ground truth via an (𝑁+1)-class cross-entropy
loss. This new discriminator provides semantically-aware pixel-level feedback to
the generator, partitioning the image into segments belonging to one of the 𝑁 real
semantic classes or the fake class. With this design, the network cannot ignore
the provided label maps, as it has to predict a correct class label for each pixel of
an image. Enabled by the discriminator per-pixel response, we further introduce
a LabelMix regularization, which fosters the discriminator to focus more on the
semantic and structural differences of real and synthetic images. The proposed
changes lead to a much stronger discriminator, that maintains a powerful semantic
representation of objects, giving more meaningful feedback to the generator, and
thus making the perceptual loss supervision superfluous (see Fig. 4.1).

Semantic image synthesis is naturally a one-to-many mapping, where one label
map can correspond to many possible real images. Thus, a desirable property of
a generator is to generate a diverse set of images from a single label map, only
by sampling noise. This property is known as multi-modality. Previously, only
using a noise vector as input was not sufficient to achieve multi-modality, because
the generator tended to mostly ignore the noise or synthesized images of poor
quality (Isola et al., 2017; Wang et al., 2018a). Thus, prior work (Wang et al., 2018a;
Park et al., 2019b) resorted to using an image encoder to produce multi-modal
outputs. In this work, we enable multi-modal synthesis of the generator via a
newly-introduced 3D noise sampling method, without requiring an image encoder
and not relying on availability of a reference image to produce new image styles.
Empowered by our stronger discriminator, the generator can now effectively syn-
thesize different images by simply resampling a 3D noise tensor, which is used
not only as the input, but is also combined with intermediate features via condi-
tional normalization at every layer. This procedure makes the generator spatially
sensitive to noise, so we can resample it both globally (channel-wise) and locally
(pixel-wise), allowing to change not only the appearance of the whole scene, but
also of specific semantic classes or any chosen area (see Fig. 4.2). As shown in our
experiments, the proposed 3D noise injection scheme enables a significantly higher
diversity of synthesis compared to previous methods.

With the proposed modifications in the discriminator and generator design,
we outperform the prior state of the art in synthesis quality across the commonly
used datasets ADE20K (Zhou et al., 2017), COCO-Stuff, (Caesar et al., 2018), and
Cityscapes (Cordts et al., 2016). Omitting the necessity of the VGG perceptual loss,
our model generates samples of higher quality and diversity, and follows the color
and texture distributions of real images more closely.

A well-known challenge for semantic segmentation applications is the problem
of class imbalance. In practice, a dataset can contain underrepresented classes (rep-
resenting a very small fraction of the dataset pixels), which can lead to suboptimal
performance of models (Sudre et al., 2017). However, to the best of our knowledge,
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this problem has not been studied in the context of semantic image synthesis. For
this reason, we propose to extend the evaluation setup used in previous works by
using the highly imbalanced LVIS dataset (Gupta et al., 2019). Originally intro-
duced as a dataset for long-tailed object recognition, LVIS contains a large set of
1203 classes, the majority of which appear only in a few images. Moreover, to sim-
plify dataset curation, label maps in LVIS were annotated sparsely, with large image
areas being occupied with a generic background label. The above properties make
LVIS a very challenging evaluation setting for previous semantic image synthesis
models, as we demonstrate by the example of the state-of-the-art SPADE model
(Park et al., 2019b). As the classification-based discriminator of SPADE makes a
global real/fake decision for each image-label pair, the loss contribution originating
from underrepresented classes can be dominated by the loss contribution of well
represented classes. In contrast, our proposed discriminator mitigates this issue:
with the (𝑁+1)-class cross-entropy loss computed for each image pixel, it becomes
possible to assign higher weights for the pixels belonging to underrepresented
classes. As shown in our experiments, our model successfully deals with both the
extreme class imbalance and sparsity in label maps, outperforming SPADE on the
LVIS dataset by a large margin.

To extend the evaluation of our model further, we test the efficacy of generated
images when applied as synthetic data augmentation for the training of semantic
segmentation networks. This way, the performance of semantic image synthesis is
assessed through a task that holistically requires high image quality, diversity, and
precise image alignment to the label maps. We demonstrate that the synthetic data
produced by our model achieves high performance on this test, eliciting a notable
increase in downstream segmentation performance. In doing so, our model outper-
forms a strong baseline SPADE (Park et al., 2019b), indicating its high potential to
be applied in segmentation applications. In addition, we also demonstrate how our
model for the first time enables the application of a GAN-based semantic image
synthesis model to unlabelled images, without requiring external segmentation
networks. Thanks to a good segmentation performance of our trained discrimina-
tor, we can infer the label map of an image and generate many alternative versions
of the same scene by varying the 3D noise. We find these results promising for
future utilization of our model in applications.

We call our model OASIS, as it needs only adversarial supervision for semantic
image synthesis. In summary, our main contributions include:

• We propose a novel segmentation-based discriminator architecture, that gives
more powerful feedback to the generator and eliminates the necessity of the
perceptual loss supervision.

• We present a simple 3D noise sampling scheme, notably increasing the diver-
sity of multi-modal synthesis and enabling both complete or partial resam-
pling of a generated image.
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• With the OASIS model, we achieve high-quality results on the ADE20K,
Cityscapes, and COCO-Stuff datasets, outperforming previous state-of-the-
art models while relying only on adversarial supervision. We show that
images synthesized by OASIS exhibit much higher diversity and more closely
follow the color and texture distributions of real images.

• We propose to use the LVIS dataset (Gupta et al., 2019) to assess image gener-
ation in the regime with many underrepresented semantic classes, leading to
a severe class imbalance. We show how the OASIS design directly addresses
these issues and thereby outperforms the strong baseline SPADE (Park et al.,
2019b) by a large margin.

• We test the efficacy of generated images for synthetic data augmentation, as
a unified measure that simultaneously depends on image quality, diversity,
and label map alignment. The images generated by OASIS elicit a stronger
increase in downstream segmentation performance compared to SPADE, sug-
gesting a higher potential of our model for future utilization in applications.

The rest of this chapter is organized as follows: In section 4.2 we explain the
OASIS model and its key innovation compared to the previous state-of-the-art
baseline. Section 4.3 presents an elaborate qualitative and quantitative analysis of
OASIS. Lastly, section 4.4 summarizes this chapter.

4.2 The OASIS model

In this section, we present our OASIS model, which, in contrast to other semantic
image synthesis methods, needs only adversarial supervision for training. Using
SPADE as a starting point (Sec. 4.2.1), we first propose to redesign the discriminator
as a semantic segmentation network, directly using the given semantic label maps
as ground truth (Sec. 4.2.2). Empowered by spatially- and semantically-aware
feedback of the new discriminator, we next redesign the SPADE generator, enabling
its effective multi-modal synthesis via 3D noise sampling (Sec. 4.2.3). Lastly, we
illustrate the superfluity of the VGG loss for our model (Sec. 4.2.4).

4.2.1 The SPADE baseline

We choose SPADE as our baseline as it is a state-of-the-art model and a relatively
simple representative of conventional semantic image synthesis models. As de-
picted in Fig. 4.3, the discriminator of SPADE largely follows the PatchGAN multi-
scale discriminator (Isola et al., 2017), adopting two image classification networks
operating at different resolutions. Both of them take the channel-wise concate-
nation of the semantic label map and the real/fake image as input, and produce
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Figure 4.3: SPADE (left) vs. OASIS (right). OASIS outperforms SPADE, while
being simpler and lighter: it uses only an adversarial loss as supervision and a
single segmentation-based discriminator, without relying on heavy external net-
works. Furthermore, OASIS learns to synthesize multi-modal outputs by directly
resampling the 3D noise tensor, instead of using an image encoder as in SPADE.

real/fake classification scores. On the generator side, SPADE adopts spatially-
adaptive normalization layers to effectively integrate the semantic label map into
the synthesis process from low to high scales. Additionally, the image encoder is
used to extract the style vector from the reference image, which is then combined
with a 1D noise vector for multi-modal synthesis. The training loss of SPADE con-
sists of three terms, namely, an adversarial loss, a feature matching loss, and the
VGG-based perceptual loss:

ℒ = max
𝐺

min
𝐷

ℒadv + 𝜆fmℒfm + 𝜆vggℒvgg. (4.1)

Overall, SPADE is a resource-demanding model at both training and test time, i.e.,
with two PatchGAN discriminators, an image encoder in addition to the generator,
and the VGG loss. In the following, we revisit its architecture and introduce a
simpler and more efficient solution that offers better performance and reduces the
model complexity.
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Label map Real image 𝑥 Fake image �̂� Mask 𝑀 LabelMix(𝑥,�̂�) 𝐷LabelMix(𝑥,�̂�) LabelMix(𝐷𝑥,𝐷�̂�)

Figure 4.4: LabelMix regularization. Real 𝑥 and fake �̂� images are mixed using
a binary mask 𝑀, sampled based on the label map, resulting in LabelMix(𝑥,�̂�).
The consistency regularization minimizes the L2 distance between the logits of
𝐷LabelMix(𝑥,�̂�) and LabelMix(𝐷𝑥 ,𝐷�̂�). In this visualization, black corresponds to the
fake class in the 𝑁+1 segmentation output.

4.2.2 The OASIS discriminator

To train the generator to synthesize high-quality images that are well aligned
with the input semantic label maps, we need a powerful discriminator that co-
herently captures discriminative semantic features at different image scales. While
classification-based discriminators, such as PatchGAN, take label maps as input
concatenated to images, they can afford to ignore them and make the decision
solely on image patch realism. Thus, we propose to cast the discriminator task as a
multi-class semantic segmentation problem to directly utilize label maps for super-
vision, and accordingly alter its architecture to an encoder-decoder segmentation
network (see Fig. 4.3). Encoder-decoder networks have been proven to be effective
for semantic segmentation (Badrinarayanan et al., 2016; Chen et al., 2018a). Thus,
we build our discriminator architecture upon U-Net (Ronneberger et al., 2015),
which consists of the encoder and decoder connected by skip connections. This
discriminator architecture is multi-scale through its design, integrating informa-
tion over up- and down-sampling pathways as well as through the encoder-decoder
skip connections. The segmentation task of the discriminator is formulated to pre-
dict the per-pixel class label of the real images, using the given semantic label maps
as ground truth. In addition to the 𝑁 semantic classes from the label maps, all
pixels of fake images are categorized as one extra class. As the formulated se-
mantic segmentation problem has 𝑁 + 1 classes, we propose to use an (𝑁+1)-class
cross-entropy loss for training.

In practice, the 𝑁 semantic classes are often imbalanced, as some of the classes
represent significantly less pixels of the dataset compared to others. The loss con-
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tribution for such underrepresented classes can be dominated by well-represented
classes, which can lead to suboptimal performance. To mitigate this issue, empow-
ered by the pixel-level loss computation of our discriminator, we propose to weight
each class by its inverse pixel-wise frequency in a batch, thus giving underrepre-
sented semantic classes more weight. In doing so, the loss contributions of each
class are equally balanced, and thus the generator is also encouraged to pay more
attention to underrepresented classes. Mathematically, the new discriminator loss
is expressed as:

ℒ𝐷 = − E(𝑥,𝑡)

𝑁∑
𝑐=1

𝛼𝑐

𝐻×𝑊∑
𝑖, 𝑗

𝑡𝑖, 𝑗 ,𝑐 log𝐷(𝑥)𝑖 , 𝑗 ,𝑐


− E(𝑧,𝑡)

𝐻×𝑊∑
𝑖 , 𝑗

log𝐷(𝐺(𝑧, 𝑡))𝑖 , 𝑗 ,𝑐=𝑁+1

 ,
(4.2)

where 𝑥 denotes the real image; (𝑧, 𝑡) is the noise-label map pair used by the
generator 𝐺 to synthesize a fake image; and the discriminator 𝐷 maps the real or
fake image into a per-pixel (𝑁+1)-class prediction probability. The ground truth
label map 𝑡 has three dimensions, where the first two correspond to the spatial
position (𝑖, 𝑗) ∈ 𝐻 ×𝑊 , and the third one is a one-hot vector encoding the class
𝑐 ∈ {1, .., 𝑁+1}. The class balancing weight 𝛼𝑐 is the inverse pixel-wise frequency
of a class 𝑐 per batch:

𝛼𝑐 =
𝐻 ×𝑊∑𝐻×𝑊

𝑖,𝑗 𝐸𝑡
[
1[𝑡𝑖, 𝑗 ,𝑐 = 1]] . (4.3)

In effect, improving the synthesis of underrepresented and well-represented classes
is equally necessary to minimize the loss. As we show in Sec. 4.3.3, this step helps
to improve the synthesis quality of underrepresented classes.

LabelMix regularization. In order to encourage our discriminator to focus on
differences in content and structure between the fake and real classes, we propose
a LabelMix regularization. Based on the semantic layout, we generate a binary
mask 𝑀 to mix a pair (𝑥, �̂�) of real and fake images conditioned on the same label
map: LabelMix(𝑥, �̂�, 𝑀) = 𝑀 ⊙ 𝑥 + (1 − 𝑀) ⊙ �̂�, as visualized in Fig. 4.4. Given
the mixed image, we further train the discriminator to be equivariant under the
LabelMix operation. This is achieved by adding a consistency loss term ℒ𝑐𝑜𝑛𝑠 to
Eq. 4.2:

ℒ𝑐𝑜𝑛𝑠 =
𝐷logits

(
LabelMix(𝑥, �̂�, 𝑀)

)
− LabelMix

(
𝐷logits(𝑥), 𝐷logits(�̂�), 𝑀

)2
,

(4.4)
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where𝐷logits are the logits attained before the last softmax activation layer, and ∥ · ∥
is the 𝐿2 norm. This consistency loss compares the output of the discriminator on
the LabelMix image with the LabelMix of its outputs, penalizing the discriminator
for inconsistent predictions. LabelMix is different to CutMix (Yun et al., 2019),
which randomly samples the binary mask 𝑀. A random mask will introduce
inconsistency between the pixel-level labels and the scene layout provided by the
label map. For an object with the class label 𝑐, it will contain pixels from both real
and fake images, resulting in two labels, i.e., 𝑐 and 𝑁 + 1. To avoid such incon-
sistency, the mask of LabelMix is generated according to the label map, providing
natural borders between semantic regions, see Mask 𝑀 in Fig. 4.4. Under La-
belMix regularization, the generator is encouraged to respect the natural semantic
boundaries, improving pixel-level realism while also considering the class segment
shapes.

Alternative ways to encode label maps. Besides the proposed (𝑁+1)-class cross-
entropy loss, there are other ways to incorporate a label map into the training
of a segmentation-based discriminator. One can concatenate the label map to
the input image, analogously to SPADE. Another option is to use projection, by
taking the inner product between the last linear layer output and the embedded
label map, analogous to class-label conditional GANs (Miyato and Koyama, 2018).
For both alternatives, the training loss is the pixel-level real/fake binary cross-
entropy introduced in Chapter 3 (Schönfeld et al., 2020). As in these two variants
the label maps are used as input to the discriminator (concatenated to the input
image or fed to the last linear layer), they are propagated forward through the
network. In contrast, the (N+1)-setting uses label maps only as targets for the
loss computation, so they are propagated backward through the network via the
gradient updates. Backward propagation ensures that the discriminator learns
semantic-aware features, in contrast to forward propagation, where the alignment
of a generated image to the input label map can be ignored. A comparison between
the above label map encodings is provided in the ablations section (see Sec. 4.3.6),
in particular Table 4.9.

4.2.3 The OASIS generator

To stay in line with the OASIS discriminator design, the training loss for the gener-
ator is changed to

ℒ𝐺 = −E(𝑧,𝑡)

𝑁∑
𝑐=1

𝛼𝑐

𝐻×𝑊∑
𝑖, 𝑗

𝑡𝑖, 𝑗 ,𝑐 log𝐷(𝐺(𝑧, 𝑡))𝑖 , 𝑗 ,𝑐
 , (4.5)

which is a direct outcome of the non-saturation trick (Goodfellow et al., 2014) to
Eq. 4.2. We next redesign the generator to enable multi-modal synthesis through
noise sampling. SPADE is deterministic in its default setup, but can be trained with
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Figure 4.5: VGG and adversarial generator loss functions for SPADE and OASIS
trained with VGG loss on ADE20k dataset. The adversarial loss scales are different
due to different objectives (binary or (N+1)-class cross entropy loss).

an extra image encoder to generate multi-modal outputs. We introduce a simpler
version that enables synthesis of diverse outputs directly from input noise. For this,
we construct a noise tensor of size 𝑀×𝐻×𝑊 , matching the spatial dimensions of
the label map of size𝑁×𝐻×𝑊 , where𝑁 is the number of semantic labels and𝐻×𝑊
corresponds to the height and width of the image. Note that for simplicity during
training we sample the 3D noise tensor globally, i.e., per-channel, replicating each
channel value spatially along the height and width of the tensor. In other words,
a 𝑀-dimensional latent vector is sampled and then broadcasted to each pixel of
an image. We analyze alternative ways of sampling 3D noise during training in
the ablation section (see Sec. 4.3.6). After sampling, the noise and the label map
are concatenated along the channel dimensions to form a combined noise-label 3D
tensor of size (𝑀+𝑁)×𝐻×𝑊 . This combined tensor serves as input to the first
generator layer, but also as input to the spatially-adaptive normalization layers in
every generator block. This way, all intermediate feature maps are conditioned
on both the semantic labels and the noise (see Fig. 4.3), making the noise hard
to ignore. As the 3D noise is channel- and pixel-wise sensitive, at test time, one
can sample the noise globally, per-channel, and locally, per-segment or per-pixel,
for controlled synthesis of the whole scene or of specific semantic objects. For
example, when generating a scene of a bedroom, one can resample the noise locally
and change the appearance of the bed alone (see Fig. 4.2).

Note that using image styles via an encoder, as in SPADE, is also possible in our
setting, as the 3D noise can be simply concatenated to the encoder style features.
Lastly, to further reduce the complexity, we remove the first residual block in
the generator, reducing the number of parameters from 96M to 72M without a
noticeable performance loss (see ablation in Table 4.7).
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4.2.4 Superfluity of the perceptual loss for OASIS

In contrast to SPADE, which strongly relies on the perceptual loss during training
(see Fig. 4.1), the OASIS generator is trained only with the adversarial loss from
the segmentation-based discriminator, according to Eq. 4.5. To illustrate the in-
significance of the VGG loss for OASIS, in Fig. 4.5 we compare the curves of the
VGG and generator adversarial loss functions of SPADE and OASIS, for compari-
son additionally trained with the perceptual loss. We see that SPADE focuses on
minimizing the VGG loss during training, but keeps the adversarial generator loss
constant. Without a rich training signal from its Patch-GAN discriminator, the
generator of SPADE resorts to learning mostly from the VGG loss. In contrast, with
the stronger discriminator supervision provided by the semantic label maps and
the multi-scale U-Net architecture, OASIS achieves a better adversarial balance.
Hence, the generator is forced to learn semantically meaningful features that the
segmentation-based discriminator judges as real, and the generator loss does not
stay constant (see Fig. 4.5).

The advantage of training the generator only with the adversarial loss is three-
fold. Firstly, the perceptual loss can bias the training signal with the color and
texture statistics encoded in the VGG features extracted from ImageNet. As shown
in Sec. 4.3.2, the strong adversarial supervision from the OASIS discriminator,
without the VGG loss, allows to generate images with color and texture distribu-
tions closer to the provided real data. Secondly, the perceptual loss can induce
unnecessary constraints on the generator and thus significantly limit the diversity
of multi-modal image synthesis. This effect is further demonstrated in Table 4.2.
Lastly, removing the perceptual loss eliminates the computational overhead that
was introduced by an additional VGG network during training.

4.3 Experiments

We provide an extensive experimental evaluation of our contributions, using the
official implementation of SPADE1 as our baseline. The setup of our experiments
is described in detail in Sec. 4.3.1. Firstly, we compare OASIS with prior methods
on common semantic image synthesis benchmark datasets, comparing their perfor-
mance in terms of both image quality and diversity (Sec. 4.3.2). To further highlight
the advantages of OASIS over the SPADE baseline, we provide additional discus-
sions on different aspects of semantic image synthesis. In particular, Sec. 4.3.3 is
devoted to the performance analysis on the underrepresented classes, extending
the comparison of the models to the LVIS dataset (Gupta et al., 2019). Sec. 4.3.4
demonstrates new semantic image editing techniques enabled by OASIS. Sec. 4.3.5
explores the application of generated images as synthetic data augmentation for

1github.com/NVlabs/SPADE

github.com/NVlabs/SPADE
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the training of semantic segmentation networks. Lastly, we provide an extensive
ablation study to verify the effectiveness of the proposed contributions (Sec 4.3.6).

4.3.1 Experimental setup

Datasets. We conduct experiments on several challenging datasets. Firstly, to
compare OASIS with prior models, we use the ADE20K (Zhou et al., 2017), COCO-
Stuff, (Caesar et al., 2018), and Cityscapes (Cordts et al., 2016), which are the three
benchmark datasets commonly used in the semantic image synthesis literature
(see Sec. 4.3.2). The image resolution is set to 256x256 for ADE20K and COCO-
Stuff, and 256x512 for experiments on Cityscapes. Following Qi et al. (2018), we
also evaluate OASIS on ADE20K-outdoors, the subset of ADE20K containing only
outdoor scenes.

Secondly, to test the capability of models to learn underrepresented classes, we
conduct additional evaluations on the ADE20K and LVIS dataset (Gupta et al., 2019)
(see Sec. 4.3.3). We select ADE20K among conventional datasets for its notable class
imbalance, as among its 150 classes, more than 86% of the image pixels belong only
to the 30 best-represented ones (see Table 4.3). In addition, to test the networks
under more extreme class imbalance, we propose to use LVIS, the dataset that has
been originally introduced for the task of long-tailed instance segmentation. LVIS
employs the same set of training images as COCO-Stuff, but its annotations are
different in two important ways. First, LVIS provides a significantly larger set of
1203 annotated classes, following a long-tailed distribution in which some classes
are present only in one or a few training samples (see Fig. 4.6). Second, due to a fixed
labeling budget, different background types were not considered for annotation in
LVIS. Consequently, the images in the LVIS dataset contain large areas belonging
to the background class, which sometimes covers more than 90% of the pixels in an
image (see gray areas in Fig. 4.10). For the above two reasons, the structure of LVIS
poses a new challenge for semantic image synthesis, as models need to account
for a much more extreme class imbalance. We conduct experiments on LVIS at the
image resolution of 128x128.

Training. We follow the experimental setting of Park et al. (2019b). The Adam
(Kingma and Ba, 2015) optimizer was used with momenta 𝛽 = (0, 0.999) and con-
stant learning rates (0.0001, 0.0004) for 𝐺 and 𝐷. We did not use the GAN feature
matching loss for OASIS, as we did not observe any improvement with it, and used
the VGG loss only for ablations with 𝜆VGG = 10. The parameter for LabelMix 𝜆LM
was set to 5 for ADE20k and Cityscapes, and to 10 for COCO-Stuff and LVIS. The
latent dimension 𝑀 was set to 64. We did not experience any training instabilities
and, thus, did not employ any extra stabilization techniques. All our models use
an exponential moving average (EMA) of the generator weights with 0.9999 decay.
All the experiments were run on 4 Tesla V100 GPUs, with a batch size of 20 for
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Figure 4.6: Comparison of class distributions of the COCO and LVIS datasets. LVIS
has a much larger vocabulary of 1203 classes with a long tail of underrepresented
classes.

Cityscapes and 32 for the other datasets. The training epochs are 200 on ADE20K
and Cityscapes, and 100 for the larger COCO-Stuff and LVIS datasets. On average,
a complete forward-backward pass with batch size 32 on ADE20k takes around
0.95ms per training image.

Evaluation metrics. Following prior work (Park et al., 2019b; Liu et al., 2019), we
evaluate the quality of semantic image synthesis by computing the FID (Heusel et al.,
2017b) and evaluate the alignment of the generated images with their semantic label
maps via mIoU (mean intersection-over-union) or mAP (mean average precision)
on the test set (see Sec. 4.3.2). mIoU evaluates the alignment of generated images
with their ground truth label maps, as measured by an external pretrained semantic
segmentation network. We use UperNet101 (Xiao et al., 2018) for ADE20K, multi-
scale DRN-D-105 (Yu et al., 2017) for Cityscapes, and DeepLabV2 (Chen et al., 2015)
for COCO-Stuff. Differently, for the LVIS dataset, the alignment of generated images
to ground truth label maps is measured using mAP instead of mIoU, following the
official guidelines for evaluating instance segmentation models on this dataset (see
Sec. 4.3.3). We compute mAP using a state-of-the-art instance segmentation model
from Wang et al. (2021a), pretrained on LVIS.

In addition, to better understand how the perceptual loss influences synthesis
performance, we propose to compare the color and texture statistics of generated and
real images. For this, we compute color histograms in the LAB space and measure
the earth mover’s distance between the real and generated image sets (Rubner et al.,
2000). We also measure the texture similarity to the real data as the 𝜒2-distance
between Local Binary Patterns histograms (Ojala et al., 1996). As different semantic
classes have different color and texture distributions, we aggregate the histogram
distances separately per class and compute their average.

To measure the diversity among synthesized samples in the multi-modal image
generation regime, we evaluate MS-SSIM (Wang et al., 2003) and LPIPS (Zhang
et al., 2018d) between the images generated from the same label map. For each
label map in the test set, we generate 20 images and compute the mean pairwise
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Method # param VGG ADE20K ADE-outd. Cityscapes COCO-stuff
FID↓ mIoU↑ FID↓ mIoU↑ FID↓ mIoU↑ FID↓ mIoU↑

CRN 84M 3 73.3 22.4 99.0 16.5 104.7 52.4 70.4 23.7
SIMS 56M 3 n/a n/a 67.7 13.1 49.7 47.2 n/a n/a

Pix2pixHD 183M 3 81.8 20.3 97.8 17.4 95.0 58.3 111.5 14.6
LGGAN n/a 3 31.6 41.6 n/a n/a 57.7 68.4 n/a n/a
CC-FPSE 131M 3 31.7 43.7 n/a n/a 54.3 65.5 19.2 41.6
SC-GAN 66M 3 29.3 45.2 n/a n/a 49.5 66.9 18.1 42.0
SESAME 104M 3 31.9 49.0 n/a n/a 54.2 66.0 n/a n/a
SPADE 102M 3 33.9 38.5 63.3 30.8 71.8 62.3 22.6 37.4

SPADE+ 102M
3 32.9 42.5 51.1 32.1 47.8 64.0 21.7 38.8
7 60.7 21.0 65.4 22.7 61.4 47.6 99.1 16.1

OASIS 94M 7 28.3 48.8 48.6 40.4 47.7 69.3 17.0 44.1

Table 4.1: Comparison with other methods across datasets. Bold denotes the best
performance.

scores. For the final numbers, the scores are averaged over all label maps.
Lastly, we propose to test the efficacy of generated images when applied as

synthetic data augmentation for the task of semantic segmentation (see Sec. 4.3.5).
For this, we take a DeepLab-V3 segmentation network with a ResNeSt-50 backbone
(Zhang et al., 2020b) and train it on ADE20K and Cityscapes. At each training step of
DeepLab-V3, we add for each training image its synthetic counterpart to the batch,
generated from the same label map. The efficacy of synthetic images is therefore
measured by its effect on the downstream mIoU performance of DeepLab-V3.

4.3.2 Evaluation of the synthesis quality and diversity

In this section, we compare OASIS to previous state-of-the-art methods. For a fair
comparison to the baseline SPADE, we additionally train this model without the
feature matching loss and using EMA (Yaz et al., 2018) at the test phase. We refer
to this improved baseline as SPADE+.

Synthesis quality. Table 4.1 compares the synthesis quality achieved by OASIS and
previous methods. We report the results of our evaluation for OASIS and SPADE+,
and the officially reported numbers for all the other models. As seen from Table 4.1,
OASIS outperforms prior state-of-the-art models in FID on all benchmark datasets.
Our model also has the highest mIoU scores on three out of four datasets, being
almost on par with the highest score on ADE20K achieved by SESAME (Ntavelis
et al., 2020) Importantly, OASIS achieves the improvement using only adversarial
supervision from its segmentation-based discriminator. On the contrary, in the
absence of the VGG loss, the baseline SPADE+ does not produce images of high
visual quality (see Fig. 4.1), with two-digit drops in FID scores observed for all
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OASIS SPADE+

w/o VGG
with VGG

Texture
3.2

1.7 1.4 1.8

Color

OASIS SPADE+

3.4

2.1 2.2 2.4

Figure 4.7: Histogram distances to real data on the ADE20K validation set. While
SPADE+ relies on the VGG loss to learn colors and textures, OASIS achieves low
scores without it.

Method Multi-mod. VGG MS-SSIM↓ LPIPS↑ FID↓mIoU↑
SPADE+ Encoder 3 0.85 0.16 33.4 40.2

SPADE+ 3D noise
7 0.35 0.50 58.4 18.7
3 0.53 0.36 34.4 36.2

OASIS 3D noise
7 0.65 0.35 28.3 48.8
3 0.88 0.15 31.6 50.8

Table 4.2: Multi-modal synthesis evaluation on ADE20K. Bold and red denote the
best and the worst performance.

the datasets in Table 4.1. The strong adversarial supervision also allows OASIS to
produce images with color and texture distributions closer to the real data, which
is demonstrated in Fig. 4.7, where OASIS achieves the lowest color and texture
distances to the target distribution. In contrast, SPADE+ needs to compensate for
a weaker discriminator signal with the VGG loss, struggling to learn the color and
texture distribution of real images without it (see Fig. 4.7).

Fig. 4.8 shows a qualitative comparison of our results to previous models.
Our approach noticeably improves image quality, synthesizing finer textures and
more natural colors. While the previous methods occasionally produce areas with
unnatural checkerboard artifacts, OASIS generates large objects and surfaces with
higher photorealism. Notably, the improvement over previous models is especially
remarkable for the semantic classes that occupy large areas, e.g., wall (rows 1,4 in
Fig. 4.8), road (rows 5,6), or water (row 3).

Synthesis diversity. By resampling the input 3D noise, OASIS can produce diverse
images given the same label map (see Fig. 4.2). To measure the diversity of such
multi-modal synthesis, we evaluate MS-SSIM (Wang et al., 2003) and LPIPS (Zhang
et al., 2018d). The lower the MS-SSIM and the higher the LPIPS scores, the more
diverse the generated images are. As seen from Table 4.2, OASIS outperforms
SPADE+ in both diversity metrics, improving the MS-SSIM scores from 0.85 to 0.65
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and LPIPS from 0.16 to 0.35. To assess the effect of the perceptual loss and the
noise sampling on diversity, we train SPADE+ with 3D noise or the image encoder,
and with or without the perceptual loss. Table 4.2 shows that OASIS, without
the perceptual VGG loss, improves over SPADE+ with the image encoder, both in
terms of image diversity (MS-SSIM, LPIPS) and quality (mean FID, mIoU across 20
realizations). Using 3D noise further increases diversity for SPADE+. However, a
strong quality-diversity trade-off exists for SPADE+: 3D noise improves diversity at
the cost of quality, and the perceptual loss improves quality at the cost of diversity.
We conclude that our 3D noise injection strongly improves the synthesis diversity,
while the VGG loss decreases it.

Label map Ground truth Pix2pixHD SPADE CC-FPSE OASIS

Label map Ground truth SPADE CC-FPSE OASIS

Figure 4.8: Qualitative comparison of OASIS with other methods on ADE20K
and Cityscapes. Trained with only adversarial supervision, our model generates
images with better perceptual quality and structure.

While the increased diversity is a big advantage, it can also lead to failures in
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Label map Ground truth SPADE CC-FPSE OASIS

Figure 4.9: Failure mode of OASIS. Without the VGG loss, OASIS has less con-
straints on the diversity in colors and textures. This helps to achieve higher diversity
among the generated samples, but sometimes leads to synthesis of objects with out-
lier colors and textures which may look less realistic compared to Park et al. (2019b)
and Liu et al. (2019).

rare cases: for some samples the colors and textures of objects may lie further from
the real distribution and seem unnatural to the human eye (see Fig. 4.9).

4.3.3 Synthesis performance on underrepresented classes

Class imbalance is a well-known challenge in semantic segmentation applications
(Sudre et al., 2017). Similarly to semantic segmentation, to ensure good perfor-
mance in real-life test scenarios, semantic image synthesis models should account
for a possible dataset class imbalance, especially considering that GANs are noto-
rious for dropping modes of training data (Arjovsky and Bottou, 2017). However,
to the best of our knowledge, this issue was not addressed in prior works. Thus, in
what follows, we evaluate the performance of OASIS and SPADE+ on the ADE20K
and LVIS datasets, considering their class imbalances. While the class imbalance
in ADE20K is notable (e.g., 86.4% of all image pixels belong to the 30 best repre-
sented classes), this issue is much more amplified in LVIS, which has a long tail of
underrepresented classes (see Fig. 4.6).

Evaluation on ADE20K. OASIS significantly outperforms the SPADE+ baseline in
the alignment between generated images and label maps, as measured by mIoU
(see Table 4.1). As shown in Table 4.3, the improvement in mIoU on ADE20K comes
mainly from the better IoU scores achieved for underrepresented semantic classes.
To illustrate this, the semantic classes are sorted by their pixel-wise frequency in
the training images, obtained by dividing the number of pixels a class occupies
in the dataset by the total number of pixels of all images (2nd column in Table
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Classes IDs Pixel-wise
frequency

mIoU

SPADE+ OASIS
(w/o 𝛼𝑐)

OASIS
(w. 𝛼𝑐)

0 - 29 86.4% 63.7 69.1 68.8
30 - 59 7.2% 47.4 52.4 56.6
60 - 89 3.5% 45.3 47.0 51.5
90 - 119 1.8% 29.3 36.2 41.5
120 - 149 1.0% 26.2 31.2 39.7

0-149
(all classes) 100% 42.4 47.2 51.6

Table 4.3: Per-class IoU scores on ADE20k, grouped by pixel-wise frequency (the
fraction of all pixels in the datasets belonging to one class). Bold denotes the best
performance. Training with per-class loss balancing is denoted by 𝛼𝑐 .

Method FID ↓ mAP, % ↑ classes with AP > 0 ↑
SPADE+ 26.8 4.56 439
OASIS 15.3 5.38 510
real data 0 6.70 624

Table 4.4: Comparison of SPADE+ and OASIS on the LVIS dataset with 1203 classes
and a long tail of underrepresented classes. Bold denotes the best performance.
Last row shows the scores for the LVIS validation set.

4.3). Table 4.3 highlights that the relative gain in mIoU is especially high for
the groups of underrepresented semantic classes, that cover less than 3% of all
pixels in the dataset. For these classes, the relative gain over the SPADE+ baseline
exceeds 40%. Remarkably, the gain for this group mainly comes from the per-
class balancing applied in the OASIS loss function (columns “w/o 𝛼𝑐” and “w.
𝛼𝑐”), which draws the attention of the discriminator to underrepresented semantic
classes, thus allowing a higher quality of their generation. This class balancing
computes a weight 𝛼𝑐 for the losses of each class 𝑐 on a per-batch basis, for which the
total number of pixels in a given batch is divided by the number of pixels belonging
to the class (see Eq. 4.2 and 4.3 ). We note that the possibility to introduce the pixel-
wise frequency based balancing requires the loss to be computed separately for
each image pixel. This is a unique property of the OASIS discriminator, in contrast
to conventional classification-based discriminators, which have to evaluate realism
with a single score for images containing both well- and underrepresented classes
together.

Evaluation on LVIS. A quantitative comparison between the models on the LVIS
dataset is shown in Table 4.4. In this more extremely imbalanced data regime,
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Figure 4.10: Qualitative comparison between OASIS and SPADE+ on the long-
tailed LVIS dataset with 1203 classes. OASIS generates higher-quality images with
more natural colors and textures. For label maps covered mostly by the background
class (four right columns), OASIS hallucinates plausible and diverse images, while
SPADE+ suffers from mode collapse.

the gain of our model is pronounced: OASIS outperforms SPADE+ by a large
margin, lowering the FID by 43% (from 26.8 to 15.3). Fig. 4.10 shows a qualitative
comparison between the models. OASIS produces images of higher visual quality
with more natural colors and textures. In Table 4.4 we report the mean Average
Precision (mAP) of the instance segmentation network evaluated on the set of
generated images. OASIS outperforms SPADE+ in mAP by a notable margin (5.38 vs
4.56), thus producing objects with a more realistic appearance and largely reducing
the gap to real data (mAP of 6.70). To evaluate the ability of the models to generate
underrepresented classes at the tail of the LVIS data distribution, we count the
number of classes for which a non-zero AP score is achieved. Table 4.4 shows that
OASIS can model more semantic classes: OASIS achieves a positive AP for 510
semantic classes compared to 439 for SPADE+, thus exhibiting a better capability
to synthesize underrepresented classes.

In addition to better handling the class imbalance, OASIS also visually out-
performs SPADE+ on the LVIS label maps with a very large proportion of the
background class. As seen in Fig. 4.10 (four rightmost columns), from such label
maps, SPADE+ fails to produce plausible images and suffers from mode collapse.
In contrast, OASIS successfully deals with such kinds of inputs, producing diverse
and visually plausible images even for the least annotated label maps, with the
highest proportion of the background class.

In conclusion, we consider long-tailed datasets, such as LVIS, an interesting
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Figure 4.11: Images generated by OASIS on ADE20K with 256 × 256 resolution
using different 3D noise inputs. For both input label maps, the noise is resampled
globally (first row) or locally in the areas marked in red (second row).

direction for future work, as the improved synthesis of multiple tail classes un-
der severe imbalance can significantly boost the applicability of semantic image
synthesis to real-world applications.

4.3.4 Image editing with OASIS

OASIS can generate diverse images for a single label map by resampling input 3D
noise. In the following, we present qualitative multi-modal results and discuss two
unique semantic image editing techniques enabled by our model: local resampling
of selected semantic classes and diverse resampling of unlabelled images.

Global and local resampling of the 3D noise. The 3D noise of OASIS modulates
the activations directly at every generator layer, matching the spatial resolution
of features at different generation scales. Therefore, such modulation affects both
global and local characteristics of a generated image. At test time, this allows
different strategies for noise sampling. For example, the noise can be sampled
globally for all pixels, varying the whole image (see Fig. 4.11, first and third rows).
Alternatively, a noise vector can be resampled only for specified image regions,
resulting in local image editing while preserving the rest of the scene. For example,
the local strategy allows to resample only the sky area in a landscape scenery,
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Figure 4.12: Latent space interpolations between images generated by OASIS for
the ADE20K dataset at resolution 256 × 256. The first two rows display global
interpolations. The second two rows show local interpolations of the floor or water
only.

or only the window in a scene of a bedroom (see Fig. 4.11, second and fourth
rows). Spatial sensitivity of OASIS to 3D noise is further demonstrated in Fig.
4.12, showing interpolations in the latent space. The learned latent space captures
well the semantic meaning of objects and allows smooth interpolations not only
globally, but also locally for selected objects (see Fig. 4.12, two last rows).

Creating diverse images from unlabelled data. In contrast to previous semantic
image synthesis methods, the OASIS discriminator can be reused as a stand-alone
image segmenter. To obtain a segmentation prediction for a given image, a user just
needs to feed it to our pretrained discriminator and select the highest activation
among real classes in its (𝑁+1)-channel output for each pixel. When tested as
an image segmenter on the validation set of ADE20K, the OASIS discriminator
reaches a mIoU of 40.0. For comparison, the state-of-the-art model DeepLab-V3
with a ResNeST backbone (Zhang et al., 2020b) achieves an mIoU of 46.91. The
good segmentation performance allows OASIS to be applied to unlabelled images:
given an unseen image without the ground truth annotation, OASIS can predict
a label map via the discriminator. Subsequently feeding this prediction to the
generator allows to synthesize a scene with the same layout but different style (see
Fig. 4.13). The recreated scenes closely follow the ground truth label map of the
original image and vary considerably, due to the high sensitivity of OASIS to the
3D noise. We note that OASIS uniquely reaches this ability using only adversarial
training, without the need for an external segmentation network or additional loss
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Input image Segmentation Recreation 1 Recreation 2 Recreation 3

Figure 4.13: After training, the OASIS discriminator can be used to segment
images. The first two columns show the real image and the segmentation of the
discriminator. Using the predicted label map, the generator can produce multiple
versions of the original image by resampling noise (Recreations 1-3). Note that no
ground truth maps are required.

functions. We believe that the ability to create multiple versions of one image while
retaining the layout, but not requiring the ground truth label map, may provide
useful data augmentation for various applications in future research.

4.3.5 Synthetic data augmentation

As an additional evaluation method, we test the efficacy of generated images when
applied as synthetic data augmentation for the task of semantic segmentation.
Synthetic data augmentation is a task that benefits from both image quality and
diversity, as well as the ability to generate semantic classes that are underrepre-
sented in the original data (see Table 4.3). Therefore, the effect of synthetic data
augmentation on downstream performance can constitute a more holistic evalua-
tion of semantic image synthesis models. To test the efficiency of OASIS, we train a
DeepLab-V3 segmentation network on ADE20K and Cityscapes, at each step aug-
menting each training image with its synthetic augmentation, produced by OASIS
from the same label map.

We compare OASIS against the strong baseline SPADE in Table 4.5. Between the
two methods, OASIS elicits a stronger increase in segmentation performance with
an improvement of 2.0 mIoU on Cityscapes and 0.8 mIoU on ADE20K, compared
to DeepLab-V3 trained without synthetic augmentation. The higher performance
improvement of OASIS compared to SPADE is explained by all the previously
observed gains in image quality, diversity, and the alignment to input label maps
(see Fig. 4.7, Tables 4.1 and 4.2). In addition to that, the segmentation performance
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Data augmentation Cityscapes ADE20K
mIoU↑ mIoU↑

no synthetic DA 62.7 41.0
with SPADE 62.6 41.6
with OASIS 64.7 41.8

Table 4.5: Semantic segmentation performance of ResNeSt-50 with and without
synthetic data augmentation (DA). Bold denotes the best performance.

is also improved due to the fact that OASIS tends to synthesize underrepresented
classes better than SPADE, which is evident from Table 4.6. This table compares
the IoU performance of DeepLab-V3 on the well-represented and underrepresented
classes of Cityscapes, as measured by the pixel-wise frequency of the semantic class
in the dataset. Examples of well-represented classes are road and building (see the
1st row of Table 4.6), while classes like bicycle or traffic light are the least represented
in the dataset (see 4th row in Table 4.6). Note that the IoU comparison in Table 4.6
is different from Table 4.3, where the IoU was measured directly on synthetic data
using a pretrained segmenter. It can be seen that the improvement in IoU through
OASIS can be mostly attributed to better performance on underrepresented classes,
as the gap in performance between OASIS and SPADE becomes larger for the
classes which are less represented. Lastly, since the OASIS generator was trained
to fool an image segmenter (the OASIS discriminator), it may synthesize harder
examples for semantic segmentation than SPADE, thus having higher potential to
improve the generalization of segmentation networks to challenging corner cases.
We find the above results promising for future utilization of OASIS in various
downstream applications. Moreover, for future research, we find it interesting to
explore synthetic data augmentation in combination with other data augmentation
techniques, e.g., RandAugment (Cubuk et al., 2020), which has the potential to
provide further performance gains for downstream applications.

4.3.6 Ablations

We conduct all our ablations on the ADE20K dataset. We choose this dataset as
it more challenging (with 150 classes) than Cityscapes (35 classes) and ADE20K-
Outdoors (110 classes), and has more reasonable training time (5 days) compared to
COCO-Stuff and LVIS (4 weeks). Our main ablation shows the impact of the main
technical components of OASIS, including the new discriminator, lighter generator,
LabelMix and the 3D noise. Further ablations are concerned with the architecture
changes in the discriminator, the label map encoding in the discriminator, different
noise sampling strategies, LabelMix, and the GAN feature matching loss.

Main ablation. Table 4.7 shows that SPADE+ achieves low performance on the
image quality metrics without the perceptual loss. Replacing the SPADE+ discrim-
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Sorted classes Pixel-wise
frequency None SPADE OASIS

abs rel abs rel
0 - 4 82.7% 90.6 90.6 +0.0 90.9 +0.3
5 - 8 12.5% 66.2 66.2 +0.0 67.4 +1.2
9 - 12 3.3% 50.2 49.1 -1.1 52.2 +2.0
13 - 18 1.6% 51.9 52.3 +0.4 55.4 +3.5

all classes 100% 62.7 62.6 -0.1 64.7 +2.0

Table 4.6: Per-class IoU scores on Cityscapes, obtained without (None) and with
synthetic data augmentation using SPADE or OASIS. The classes are sorted and
grouped by class pixel-wise frequency, as measured by the total fraction of pixels
in the dataset belonging to one class. Bold denotes the best performance. The
absolute (abs) and relative (rel) mIoU gain via data augmentation is shown.

𝐺 𝐷 VGG LabelMix FID↓ mIoU↑
SPADE+ SPADE+ 7 7 60.7 21.0
SPADE+ OASIS 7 7 29.0 52.1

OASIS OASIS
7 7 29.3 51.6
7 3 28.4 50.6

OASIS
+3D noise OASIS

7 3 28.3 48.8
3 3 31.6 50.8

Table 4.7: Main ablation on ADE20K. The OASIS generator is a lighter version of the
SPADE+ generator (72M vs 96M parameters). Bold denotes the best performance.

inator with the OASIS discriminator, while keeping the generator fixed, improves
FID and mIoU by more than 30 points. Changing the SPADE+ generator to the
lighter OASIS generator leads to a negligible degradation of 0.3 in FID and 0.5 in
mIoU, but reduces the number of parameters from 96M to 72M. With LabelMix FID
improves further by about 1 point. Adding 3D noise improves FID but degrades
mIoU, as diversity complicates the task of the pretrained semantic segmentation
network used to compute the mIoU score. For OASIS the perceptual loss deteri-
orates FID by more than 2 points, but improves mIoU. Overall, without the VGG
loss the new discriminator is the key to the performance boost over SPADE+.

Ablation on the discriminator architecture. We train the OASIS generator with
three alternative discriminators: the original multi-scale PatchGAN consisting of
two networks, a single-scale PatchGAN, and a ResNet-based discriminator, cor-
responding to the encoder of the U-Net shaped OASIS discriminator. Table 4.8
shows that the alternative discriminators only perform well with perceptual super-
vision, while the OASIS discriminator achieves superior performance independent
of it. The single-scale discriminators even collapse without the perceptual loss (red
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𝐷 architecture
w/o VGG with VGG

FID↓ mIoU↑ FID↓ mIoU↑
MS-PatchGAN (2x) 60.7 21.0 32.9 42.5
PatchGAN 197 0.62 34.2 42.2
ResNet-PatchGAN 147 0.42 32.4 45.1
OASIS 29.3 51.6 29.2 51.1

Table 4.8: Ablation on the 𝐷 architecture. Bold denotes the best performance, red
highlights collapsed runs.

Label encoding w/o VGG with VGG
FID↓ mIoU↑ FID↓ mIoU↑

Input concatenation 280 0.02 30.0 43.9
Projection 32.4 44.9 28.0 46.9
N+1 loss 28.3 47.2 28.6 49.8
Balanced N+1 loss 29.3 51.6 29.2 51.1

Table 4.9: Ablation on the label map encoding. Bold denotes the best performance,
red shows collapsed runs.

colors in Table 4.8).

Ablation on the discriminator label map encoding. We study four different ways
to use label maps in the discriminator: the first encoding is input concatenation,
as in SPADE. The second option is a pixel-wise projection-based GAN loss (Miyato
and Koyama, 2018). Unlike Miyato and Koyama (2018), we condition the GAN
loss on the label map instead of a single label. The third and fourth option is to
employ the label maps as ground truth for the 𝑁+1 segmentation loss, or for the
class-balanced 𝑁+1 loss (see Sec. 4.2.2). For a fair comparison we use neither 3D
noise nor LabelMix. As shown in Table 4.9, input concatenation is not sufficient
without additional perceptual loss supervision, leading to training collapse. With-
out the perceptual loss, the 𝑁+1 loss outperforms the input concatenation and the
projection in both the FID and mIoU metrics. Finally, the class balancing enables
enhanced supervision for underrepresented semantic classes, which noticeably im-
proves mIoU scores. On the other hand, we observed that the FID metric is more
sensitive to the synthesis of well-represented classes and not underrepresented
classes, which explains the negative effect of the class balancing on FID.

Ablation on noise sampling strategies for training. Our 3D noise can contain
the same sampled vector for each pixel, or different vectors for different regions.
This allows for different sampling strategies during training. Table 4.10 shows the
effect of using different methods of sampling 3D noise for different locations during
training: Image-level sampling creates one global 1D noise vector and replicates it
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Sampling Cityscapes ADE20K
FID↓ mIoU↑ MS-SSIM↓ FID↓ mIoU↑ MS-SSIM↓

Image-level 47.7 69.3 0.64 28.3 48.8 0.65
Region-level 48.1 69.7 0.62 28.8 48.1 0.58
Pixel-level 50.9 65.5 0.84 28.6 34.0 0.68
Mix 46.4 70.9 0.68 28.5 47.6 0.66

Table 4.10: Different 3D noise sampling strategies during training. Bold denotes
the best performance.

along the height and width of the label map to create a 3D noise tensor. Region-level
sampling relies on generating one 1D noise vector per semantic class, and stacking
them in 3D to match the height and width of the semantic label map. Pixel-level
sampling creates different noise for every spatial position, with no replication
taking place. Mix switches between image-level and region-level sampling via a
coin flip decision at every training step. With no obvious winner in performance, we
choose the simplest scheme (image-level) for our experiments. We find a further
investigation with more advanced strategies an interesting direction for future
work.

Ablation on LabelMix. Consistency regularization for the segmentation output
of the discriminator requires a method of generating binary masks. Therefore, we
compare the effectiveness of CutMix (Yun et al., 2019) and our proposed LabelMix.
Both methods produce binary masks, but only LabelMix respects the boundaries
between semantic classes in the label map. Table 4.11 compares the FID and mIoU
scores of OASIS trained with both methods on the Cityscapes dataset. As seen
from the table, LabelMix improves both FID (51.5 vs. 47.7) and mIoU (66.3 vs.
69.3), in comparison to OASIS without consistency regularization. CutMix-based
consistency regularization only improves the mIoU (66.3 vs. 67.4), but not as
much as LabelMix (69.3). We suspect that since the images are already partitioned
through the label map, an additional partition through CutMix results in a dense
patchwork of areas that differ by semantic class and real/fake class identity. This
may introduce additional label noise during training for the discriminator. To
avoid such inconsistency between semantic classes and real/fake identity, the mask
of LabelMix is generated according to the label map, providing natural borders
between semantic regions, so that the real and fake objects are placed side-by-side
without interfering with each other. Under LabelMix regularization, the generator
is encouraged to respect the natural semantic class boundaries, improving pixel-
level realism while also considering the class segment shapes.

Ablation on the feature matching loss. We measure the effect of the discriminator
feature matching loss (FM) in the absence and presence of the perceptual loss
(VGG). The discriminator feature matching loss is used by default in SPADE. Table
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Transformation FID↓ mIoU ↑
No CR 51.5 66.3
CutMix 52.1 67.4
LabelMix 47.7 69.3

Table 4.11: Ablation study on the impact of LabelMix and CutMix for consistency
regularization (CR) in OASIS on Cityscapes. Bold denotes the best performance.

VGG FM FID↓ mIoU↑
7 7 47.7 69.3
7 3 48.5 69.1
3 7 46.1 72.0
3 3 46.5 70.9

(a) OASIS on Cityscapes.

VGG FM FID↓ mIoU↑
7 7 61.4 47.6
7 3 57.3 55.8
3 7 47.8 64.0
3 3 48.1 64.4

(b) SPADE+ on Cityscapes.

Table 4.12: The effect of the discriminator feature matching loss (FM) in the absence
or presence of the perceptual loss (VGG). Bold denotes the best performance.

4.12 presents the results for OASIS and SPADE+ on Cityscapes. For SPADE+, we
observe that the feature matching loss affects the metrics notably only when no
perceptual loss is used. In this case, the FM loss improves mIoU by 8.2 points.
In contrast, the effect of the FM loss on the mIoU is small when the perceptual
loss is used (0.4 points). Hence, the role of the FM loss in the training of SPADE+
is to improve performance by stabilizing the training, similar to the perceptual
loss. This observation is in line with the general observation that SPADE and
other semantic image synthesis models require the help of additional loss functions
because the adversarial supervision through the discriminator is not strong enough.
In comparison, we did not observe any training collapses in OASIS, despite not
using any extra loss functions. For OASIS, the feature matching loss results in a
worse FID (by 0.8 points) in the absence of the perceptual loss. We also observe
a degradation of 1.1 mIoU points through the FM loss, in the case where the
perceptual supervision is present. This indicates that the FM loss negatively affects
the strong supervision from the semantic segmentation adversarial loss of OASIS.

4.4 Conclusion

This work studies semantic image synthesis, the task of generating diverse and
photorealistic images from semantic label maps. Conventionally, semantic image
synthesis GAN models employed a perceptual VGG loss to overcome training in-
stabilities and improve the synthesis quality. In our experiments we demonstrated
that the VGG-based perceptual loss imposes unnecessary constraints on the feature
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space of the generator, significantly limiting its ability to produce diverse samples
from input noise, as well as the ability to produce images with colors and textures
closely matching the distribution of real images. Therefore, in this work we propose
OASIS, a semantic image synthesis model that needs only adversarial supervision
to achieve high-quality results.

The improvement over the prior work in image synthesis quality is achieved via
the detailed spatial and semantic-aware supervision from our novel segmentation-
based discriminator, which uses semantic label maps as ground truth for training.
With this powerful discriminator, OASIS can easily generate diverse outputs from
the same semantic label map by resampling 3D noise, eliminating the need for
additional image encoders to achieve multi-modality. The proposed 3D noise
injection scheme can work both in a global and local regime, allowing to change
the appearance of the whole scene and of individual objects. With the proposed
modifications, OASIS significantly improves over previous state-of-the-art models
in terms of image synthesis quality.

Furthermore, we proposed to use the LVIS dataset to evaluate semantic image
synthesis under severe class imbalance and sparse label annotations. Thanks to
the class balancing mechanism enabled by its segmentation-based discriminator,
OASIS achieves more realistic synthesis of underrepresented classes, achieving
pronounced gains on the extremely unbalanced LVIS dataset. Lastly, the design of
OASIS can be better suited for image editing applications compared to the SPADE
baseline, enabling diverse resampling of scenes from unlabeled images, as well
as for synthetic data augmentation, improving the performance of a downstream
segmentation network by a larger margin.

The fact that image diversity is substantially increased by using 3D noise and
abolishing the perceptual loss raises an interesting question: Does the latent space
have a semantic structure, meaning that specific directions in this space correspond
to meaningful image transformations, which may even be class-specific? For ex-
ample, do dedicated directions exist for the type of sheets on the bed or the road’s
surface? In Chapter 5 we present a method to find such directions and use it to
manipulate the appearance of classes in semantic image synthesis models.
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In Chapter 4, we proposed changes to make semantic image synthesis (SIS)
models significantly more sensitive to input noise, resulting in increased synthesis
diversity. In this chapter, we study the diverse latent space that accompanies the
increased diversity in SIS GANs. Prior work has extensively studied the latent
space structure of GANs for unconditional image synthesis, enabling global edit-
ing of generated images by identifying interpretable latent directions. However,
the discovery of latent controls for conditional GANs for semantic image synthesis
(SIS) has remained unexplored. In this work, we specifically focus on addressing
this gap. By making use of inherent semantic label maps in the SIS task, we pro-
pose a novel optimization method for finding spatially disentangled class-specific
latent controls. We show that the latent directions found by our method can
effectively control the local appearance of semantic classes, e.g., changing their in-
ternal structure, texture, or color independently from each other. Visual inspection
and quantitative evaluation of the discovered GAN controls on various datasets
demonstrate that our method discovers a diverse set of unique and semantically
meaningful latent directions for class-specific edits. The content of this chapter
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corresponds to our paper "Discovering Class-Specific GAN Controls for Semantic
Image Synthesis" which is currently under review and not yet published.

Label map

Generated image

Editing of class building

Editing of class street

Editing of class building and street jointly

Figure 5.1: Ctrl-SIS learns class-specific directions in the latent space of a SIS model,
which can be applied jointly for different classes for local editing of the image.

5.1 Introduction

Semantic image synthesis (SIS) transforms user-specified semantic layouts to real-
istic images. Its applications range widely from image editing and content creation
to synthetic data augmentation, where training data is generated to fulfill specific
semantic requirements. For SIS, GANs (Goodfellow et al., 2014) have demon-
strated their superiority in terms of the visual quality of synthesized images and
their alignment to input semantic label maps (Park et al., 2019b; Schönfeld et al.,
2021; Tan et al., 2021; Wang et al., 2021c; Li et al., 2021b). Although some of the
GAN-based SIS models allow local appearance editing of single classes or regions
in an image – either by style transfer from a reference image (Zhu et al., 2020a; Lee
et al., 2020; Tan et al., 2021) or by sampling noise independently for specific image
regions (Schönfeld et al., 2021; Zhu et al., 2020b), there is no technique to enable
interpretable semantic changes for a specific class without a reference image and
user-in-the-loop supervision.

On the other hand, prior work has extensively studied the latent space of un-
conditional GANs (Goetschalckx et al., 2019; Plumerault et al., 2019; Härkönen
et al., 2020; Shen and Zhou, 2021; Tzelepis et al., 2021; Yüksel et al., 2021), finding
interpretable latent directions which activate distinctive factors of variations in the
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generation process in an unsupervised fashion, without exploiting reference im-
ages. Moving latent code(s) along a certain direction can result in domain-agnostic
transformations, e.g., rotation or zooming (Voynov and Babenko, 2020; Jahanian
et al., 2020; Plumerault et al., 2019), or domain-specific alterations, e.g., age or nose
length of a person (Cherepkov et al., 2021; Wu et al., 2021; Ling et al., 2021; Shen
et al., 2020; Collins et al., 2020). Despite their recent progress, it remains a challenge
to find interpretable latent directions to control interactively the synthesis of spe-
cific semantic classes in the image without changing other image regions. Since the
above methods were designed specifically for unconditional GANs, they are not
well suited to discover class-specific latent directions in the presence of semantic
label maps, inherently given for SIS.

In this work, we address this limitation and study the latent space of conditional
GANs designed specifically for SIS, which to the best of our knowledge has not been
explored previously. In particular, making use of the label maps we devise a method
to discover meaningful latent directions that only change a specific semantic class
in the image. These directions can, for example, encode different designs of the
facade for the building class or surfaces for the street class (Fig. 5.1), enabling the
user to perform local semantic edits independently from the rest of the image.
Note that in recent state-of-the-art SIS GANs, the generator is already designed
to be sensitive to spatial information (Schönfeld et al., 2021) (see Chapter 4). The
generator is conditioned on the semantic label map along with the 3D latent code,
allowing to modulate the appearance of every single pixel in the image. This results
in spatial disentanglement across classes and, thus, better manipulation control for
class-specific image regions in comparison to unconditional GANs (Brock et al.,
2018; Karras et al., 2020b; Schönfeld et al., 2020; Karras et al., 2021a).

On this basis, we introduce a simple, efficient optimization method to discover
class-specific controls in pretrained SIS GANs, which we call Ctrl-SIS (see Fig. 5.2).
Our optimization objective is designed to ensure that the learned latent directions
are 1) diverse and different from each other (diversity loss); 2) only affect the image
area of the selected class, preserving the appearance of other areas (disentanglement
loss); and 3) induce the same semantic edits consistently across different initial
latent codes and label maps containing the class (consistency loss). See Sec. 5.2
for more details. We demonstrate that GAN controls discovered automatically by
Ctrl-SIS can effectively manipulate the appearance of the selected semantic class in
specific ways, without affecting other classes in the image. For example, we can
change the house facade (see Fig. 5.1), remove leaves from trees or cover mountains
in snow (see Fig. 5.4). Moreover, we can edit different classes jointly, e.g., alter both
the building and the road in the street scene (see Fig. 5.1). Since we use only train-
time optimization, instead of exhaustive search as in Wu et al. (2021) or test-time
optimization as in Ling et al. (2021), Pajouheshgar et al. (2021), Zhu et al. (2021),
or Zhu et al. (2022), our training time stays relatively fast compared to the former,
while also allowing interactive image editing compared to the latter.
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Figure 5.2: Ctrl-SIS provides a set of 𝐾 class-specific latent directions which control
the appearance of 𝐶 semantic classes. To alter the appearance of class 𝑐, a class-
specific latent direction is added to the input 3D latent code 𝑧 of the generator 𝐺 in
the label map area corresponding to class 𝑐 – 𝑀𝑐 .

The evaluation of GAN control discovery methods is commonly left to subjective
visual inspection. To address this, we introduce new metrics to quantitatively assess
diversity, spatial disentanglement, and consistency properties of learned latent
directions (see Sec. 5.3.2). We compare Ctrl-SIS with other GAN control methods
for different SIS GANs (Schönfeld et al., 2021; Park et al., 2019b; Wang et al., 2021c)
on two datasets (Zhou et al., 2017; Caesar et al., 2018). Our experiments show that
latent directions found by prior methods adapted to SIS (Härkönen et al., 2020; Shen
and Zhou, 2021) lead to weaker class edits, comparable to random directions (see
Sec. 5.3). In contrast, Ctrl-SIS finds directions that enable diverse and semantically
meaningful class edits while maintaining high image quality.

In summary, our contributions are as follows: 1) We propose Ctrl-SIS – a
method to discover interpretable latent controls for individual semantic classes
in pretrained SIS GANs. To the best of our knowledge, the discovery of class-
specific latent direction has not yet been addressed in the SIS literature. 2) We
define diversity, consistency, and spatial disentanglement as desirable properties
of class-specific latent controls and propose new metrics to quantify them.

5.2 Ctrl-SIS method

The goal of this work is to discover steerable latent directions for GAN-based
SIS models. Enabled by the given semantic label maps, we aim to find GAN
controls specific to semantic classes, e.g. a set of latent directions for controlling
the appearance of the street and another set of directions for the appearance of
house facades, see Fig. 5.1. However, this task presents two major challenges.

The first challenge is that SIS GANs commonly do not provide the same image
diversity as unconditional models (Brock et al., 2018; Karras et al., 2020b), nor have
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Label map Class Original k=1 k=2 k=3

Figure 5.3: Examples of directions discovered by Ctrl-SIS for various classes, such as
different views of a window, face appearances, or tree leafage for different seasons
of the year. The directions give insight into the concepts that the pretrained SIS
model is able to represent. The last row shows global edits with different directions
per class.

region-specific latent codes. We alleviate both problems by applying a 3D latent
code injection (Schönfeld et al., 2021), which we describe in Sec. 5.2.1. The second
challenge is that prior GAN control discovery methods are not designed to consider
label maps, nor to find class-specific directions, as they are devised for unconditional
GANs. We address both aspects in Sec. 5.2.2 with a simple, efficient optimization
method which we call Ctrl-SIS.

5.2.1 GAN controls for SIS models

Current SIS models employ different ways to inject latent code into the generator,
which affects its ability to perform class-specific edits. The default approach is to
feed a one-dimensional latent vector as input to the generator (Park et al., 2019b;
Wang et al., 2021c; Liu et al., 2019), resulting in no direct opportunity to perform
local region-based edits of the image. Thus, in order to enable local editing in SIS,
we employ the 3D latent code injection scheme from Schönfeld et al. (2021) (see
Chapter 4), adopting it to all SIS models considered in this work. The 3D latent
codes 𝑧 ∈ R𝐻×𝑊×𝐷 are created by replicating the original noise vector along the
height𝐻 and width𝑊 of the label map. The 3D latent code allows to apply different
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latent vectors to different image regions (see Fig. 5.2). In practice, altering the 3D
latent code only for a specific image region can still affect other image areas, due
to spatial correlations learned by the generator during training. Nevertheless, the
3D latent space provides better spatial disentanglement, and thus improves image
manipulation control for local edits compared to 1D latent codes. In the remainder
of this paper, we assume a 3D latent space for the discovery of SIS GAN controls.

Let 𝐺 be a well-trained GAN generator of an SIS model. The generator 𝐺(𝑧, 𝑦)
synthesizes an image given a 3D latent code 𝑧 and label map 𝑦, i.e., 𝑥 = 𝐺(𝑧, 𝑦) =
𝐹(ℎ(𝑧, 𝑦)), where ℎ = {𝐺𝑙(𝑧, 𝑦)}𝑙∈𝐿 is a chosen subset of features from intermediate
layers 𝑙 ∈ 𝐿 in the network 𝐺, and 𝐶 is the total number of semantic classes. The
latent code 𝑧 controls the appearance of the synthetic image, while the label map
𝑦 specifies the scene layout. Then an image 𝑥 can be globally edited by moving 𝑧
along a specific direction 𝑣𝑘 :

𝑥(𝑣𝑘) = 𝐹(ℎ(𝑧, 𝑣𝑘 , 𝑦)) = 𝐺(𝑧 + 𝛼𝑣𝑘 , 𝑦), (5.1)

where 𝛼 controls the intensity of the change, and the latent direction 𝑣𝑘 determines
the semantics of the image transformation. Local editing of class 𝑐 in 𝑥 is carried
out by moving 𝑧 along a class-specific direction 𝑣𝑐𝑘 only in the area of class 𝑐 in the
label map 𝑦:

𝑥(𝑣𝑐𝑘) = 𝐹(ℎ(𝑧, 𝑣𝑐𝑘 , 𝑦)) = 𝐺(𝑧 + 𝛼𝑀𝑐 ⊙ 𝑣𝑐𝑘 , 𝑦), (5.2)

where 𝑀𝑐 = 1[𝑦=𝑐] is a binary mask indicating pixels in the image belonging to
𝑐 (see Fig. 5.2). We next define the task of class-specific GAN control discovery
and introduce an optimization objective to find 𝑣𝑐𝑘 directions for any pretrained SIS
model with a spatially-aware generation process induced by 3D latent codes.

5.2.2 Discovery of class-specific GAN controls

For the class of interest 𝑐 ∈ 𝐶 we aim to find a diverse set of class-specific directions
𝑉 𝑐 = {𝑣𝑐0 , 𝑣𝑐1 , ..., 𝑣𝑐𝐾}, 𝐾 > 1, that can meaningfully edit the appearance of class 𝑐
in the synthetic image 𝑥, such that image 𝑥(𝑣𝑐𝑘) has a visually distinct appearance
of class 𝑐 compared to 𝑥, but all other classes have the same appearance as in 𝑥.
Based on this logic, we form an optimization objective, which consists of diversity,
disentanglement, and consistency loss terms:

min
𝑉 𝑐

ℒ𝑑𝑖𝑣 + ℒ𝑑𝑖𝑠 + ℒ𝑐𝑜𝑛𝑠𝑡 . (5.3)

The diversity loss ℒ𝑑𝑖𝑣 encourages a set of class-specific GAN controls 𝑉 𝑐 to be
diverse and introduce different semantic changes to class 𝑐, the disentanglement
loss ℒ𝑑𝑖𝑠 prevents changes outside the class area, and the consistency loss ℒ𝑐𝑜𝑛𝑠𝑡

ensures that the semantics of an edit are consistent between different initial latent
codes 𝑧. We next provide the mathematical formulation of these loss terms.
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Diversity loss. Given a label map 𝑦 and a class of interest 𝑐, the diversity loss
aims to ensure that the set of found latent directions 𝑉 𝑐 applied to identical input
latent code 𝑧 yields maximally different semantic visual effects, i.e., change the
appearance of class 𝑐 in a different way. It is formulated as

ℒ𝑑𝑖𝑣=−E(𝑧,𝑦)
[ 𝐾∑
𝑘1,2=1
𝑘1≠𝑘2

𝑀𝑐 · | |ℎ(𝑧, 𝑣𝑐𝑘1
, 𝑦) − ℎ(𝑧, 𝑣𝑐𝑘2

, 𝑦)| |2
]
, (5.4)

where ∥ · ∥ is the 𝐿2 norm, and for the class-specific area𝑀𝑐 the distance between the
two resulting images 𝑥(𝑣𝑐𝑘1

) and 𝑥(𝑣𝑐𝑘2
) is maximized in the generator feature space

ℎ, ensuring semantically different directions for class 𝑐. Depending on the selected
feature space in 𝐺, i.e., the subset of intermediate layers 𝐿 in ℎ = {𝐺𝑙(𝑧, 𝑦)}𝑙∈𝐿, we
can find various GAN control directions which correspond to different semantics
encoded in the selected feature space of 𝐺.

Disentanglement loss. The discovered latent direction 𝑣𝑐𝑘 for class 𝑐 should only
affect the image area belonging to 𝑐 in the label map 𝑦 and leave the rest of the
image unaffected. Thus, we also minimize the change for images 𝑥(𝑣𝑐𝑘1

) and 𝑥(𝑣𝑐𝑘2
)

in the feature space ℎ in the area outside of 𝑀𝑐 :

ℒ𝑑𝑖𝑠=E(𝑧,𝑦)
[ 𝐾∑
𝑘1,2=1
𝑘1≠𝑘2

(1−𝑀𝑐) · | |ℎ(𝑧, 𝑣𝑐𝑘1
, 𝑦)−ℎ(𝑧, 𝑣𝑐𝑘2

, 𝑦)| |2
]
. (5.5)

Consistency loss. Identical GAN control directions should cause consistent seman-
tic edits of class 𝑐 for different input latent codes and the same label map 𝑦 given
to the generator. Therefore, for every found direction 𝑣𝑐𝑘 we minimize the feature
space distance between two images generated with 𝑧1 and 𝑧2 in the class-specific
area 𝑀𝑐 :

ℒ𝑐𝑜𝑛𝑠𝑡=E(𝑧,𝑦)
[ 𝐾∑
𝑘=1

𝑀𝑐 · | |ℎ(𝑧1 , 𝑣𝑐𝑘 , 𝑦) − ℎ(𝑧2 , 𝑣𝑐𝑘 , 𝑦)| |2
]
. (5.6)

Note that the directions in 𝑉 𝑐 are the only parameters to be optimized; the
weights of the pretrained image generator 𝐺(𝑧, 𝑦) are kept frozen. The parame-
ters are optimized by iterating over batches of label maps in the training set and
minimizing the objective for selected classes at every step. During optimization,
the directions 𝑣𝑐𝑘 are normalized along the channel dimension to unit length 1 and
subsequently scaled by 𝛼, sampled from the interval [−𝑛; 𝑛], where 𝑛 = E[| |𝑧 | |2]
is the average norm of the latent code along the channel dimension. This ensures
that the latent edits are neither too small nor too extreme.
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Figure 5.4: Interpretable latent directions learnt by Ctrl-SIS for various classes.
Each triplet is edited with an identical direction. Class-specific edits, such as aging,
snowy streets or bald trees, are highly consistent across different label maps and
initial latent codes.

5.3 Experiments

5.3.1 Experimental setup

Datasets. We use three challenging datasets: ADE20K (Zhou et al., 2017), COCO-
Stuff (Caesar et al., 2018), and CelebAMask-HQ (Lee et al., 2020). CelebAMask-HQ
consists of 30k face images. ADE20K and COCO-Stuff contain 20k and 164k images
of indoor and outdoor scenes, and are used for the main experiments and ablations.

SIS models. We consider three pretrained GANs for SIS: SC-GAN (Wang et al.,
2021c), SPADE (Park et al., 2019b), and OASIS (Schönfeld et al., 2021), using the code
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provided by the authors 1. We additionally implement 3D latent codes for SPADE
and SC-GAN, which do not originally support it, enabling local image editing for
them.

GAN control methods. Ctrl-SIS is compared against two related latent discovery
methods, GANSpace (Härkönen et al., 2020) and SeFa (Shen and Zhou, 2021), using
the authors’ code 2. Following GANSpace-StyleGAN2 (Härkönen et al., 2020) and
SeFA-StyleGAN2 (Shen and Zhou, 2021), we train all latent direction methods
on features extracted from the normalization layers of each ResNet block in the
generator.

Training details. Ctrl-SIS is trained with a batch size of 16 on a single NVIDIAv100
GPU, using the AdamW optimizer (Loshchilov and Hutter, 2017) and a learning
rate of 1e-3. We train for 20 epochs on ADE20K, and 5 epochs on COCO-Stuff
and CelebAMask-HQ, using 𝐾 = 5. Finding class-specific directions with Ctrl-
SIS takes ∼1h. For evaluation we scale the directions with 𝛼 sampled in [−𝑛; 𝑛]
(see Sec. 5.2.2), to ensure that the direction magnitude is in the same range as
the average latent code. By scaling the magnitudes of latent directions from all
methods in the same way, we ensure that the effect of the edit only depends on the
learned direction. For GANSpace and SeFa, we pick the directions corresponding
to the first 𝐾 components, as they cause the largest variations.

Image quality metrics. Following Isola et al. (2017), Park et al. (2019b), and Schön-
feld et al. (2021), we monitor the visual quality of images generated with class-
specific edits using FID (Heusel et al., 2017a) and mIoU metrics. FID is known
to be well aligned with human judgement of image quality. mIoU assesses the
alignment of images with ground truth label maps, calculated via a pretrained se-
mantic segmentation network. We use UperNet101 (Xiao et al., 2018) for ADE20K
and DeepLabV2 (Chen et al., 2015) for COCO-Stuff. In addition, we employ the
precision and recall metrics of Kynkäänniemi et al. (2019), which correlate with
image quality and diversity, respectively.

5.3.2 Evaluation of class-specific GAN controls

Prior GAN control methods were mostly evaluated by subjective visual inspec-
tion (Härkönen et al., 2020; Shen and Zhou, 2021; Yüksel et al., 2021). Consequently,
it was challenging to assess the important properties of GAN control methods. In
particular, a method for discovering semantically meaningful class-specific direc-
tions in the latent space of SIS GANs should exhibit the following three traits: First,
the found directions should be as unique and different as possible. We assess this
property via the mean control diversity - mCD. Second, a latent direction should
invoke the same semantic edit independent of the initial latent code, which we

1Code for SIS models: SPADE, SC-GAN, OASIS
2Code for GAN control methods: GANSpace, SeFa

https://github.com/NVlabs/SPADE
https://github.com/dvlab-research/SCGAN
https://github.com/boschresearch/OASIS
https://github.com/harskish/ganspace
https://github.com/genforce/sefa
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assess via the mean control consistency - mCC. Third, class-specific edits should not
affect image areas outside of the target class area. We verify this requirement via
the mean outside class diversity - mOD. The scores are based on computing the LPIPS
distance between pairs of images with different edits and the same initial latent
code (mCD and mOD), or the same edits but different initial latent codes (mCC).
For the global mCD and mCC scores the edits are applied to all classes simultane-
ously with latent directions that are randomly picked from the set of discovered
class-specific directions. On the other hand, the local scores mCD𝑙 , mCC𝑙 , and
mOD rely on pairwise distances between images where only one class is edited at
a time. To compute the pairwise distance between images where only one class is
edited, we use the masked LPIPS distance. In the following, we explain the masked
LPIPS distance and provide the formulations of the local scores mCD𝑙 , mCC𝑙 , and
mOD, as well as the global scores mCD and mCC.

The masked LPIPS distance. The default LPIPS distance between two images
is based on extracting deep features from both images using a VGG network pre-
trained on ImageNet classification (Zhang et al., 2018c). The features of all layers are
normalized and re-scaled along the channel dimension. The final LPIPS distance is
the L2 distance between these features. To compute the masked LPIPS distance, we
multiply the deep features with a binary mask before computing the L2 distance.
We distinguish between LPIPS𝑀𝑐 and LPIPS1−𝑀𝑐 . The former uses the binary mask
𝑀𝑐 , which is 1 where the label map contains class 𝑐 and 0 everywhere else. The
latter applies the inverted mask 1 −𝑀𝑐 .

Mean control diversity. The mean control diversity is computed for global edits
(mCD) and local edits (mCD𝑙). The mCD𝑙 is computed via:

mCD𝑙 =
1
𝐶

𝐶∑
𝑐=1
E𝑐

[𝒫𝐶𝐷] , (5.7)

where 𝐶 is the total number of classes and 𝒫𝐶𝐷 denotes the control diversity
measured for a label map containing class 𝑐. To compute 𝒫𝐶𝐷 , a fixed initial latent
code is sampled for each label map containing class 𝑐. Given a label map and
its initial latent code, one locally edited image is created for each of the 𝐾 latent
directions specific to class 𝑐. Next, the average locally masked LPIPS distance is
computed between all pairs of the 𝐾 edited images. This score is averaged over 𝑍
initial latent codes, which can be formulated as follows:

𝒫𝐶𝐷 =
1
𝑍𝐾

𝑍∑
𝑧

𝐾∑
𝑘1,2=1
𝑘1≠𝑘2

LPIPS𝑀𝑐
𝑧,𝑘1 ,𝑘2

. (5.8)

Here, LPIPS𝑀𝑐
𝑧,𝑘1 ,𝑘2

denotes the LPIPS distance masked with 𝑀𝑐 between two images
created with the same initial latent code 𝑧, where class 𝑐 is edited with latent
direction 𝑘1 and 𝑘2, respectively.
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The mCD for global edits is computed as the average distance between globally
edited images on the same label map. For each label map, we create pairs of images
with different global edits, changing all classes at once. The class-specific latent
directions are randomly chosen for each class. We compute the mean of the default
LPIPS distance over all pairs and different initial latent codes. The score is averaged
over all label maps in the test set. Higher mCD and mCD𝑙 scores indicate better
diversity.

Mean outside class diversity. The spatial disentanglement metric mOD is com-
puted for local edits via

mOD =
1
𝐶

𝐶∑
𝑐=1
E𝑐

[𝒫𝑂𝐷] , (5.9)

where 𝒫𝑂𝐷 is the outside class diversity measured for a label map containing class
𝑐. In contrast to mCD𝑙 , the masked LPIPS is computed for the area outside the
target class:

𝒫𝑂𝐷 =
1
𝑍𝐾

𝑍∑
𝑧

𝐾∑
𝑘1,2=1
𝑘1≠𝑘2

LPIPS1−𝑀𝑐
𝑧,𝑘1 ,𝑘2

. (5.10)

LPIPS1−𝑀𝑐
𝑧,𝑘1 ,𝑘2

denotes the LPIPS distance masked with 1 − 𝑀𝑐 between two images
created with the same initial latent code 𝑧, where class 𝑐 is edited locally with
the latent direction 𝑘1 and 𝑘2, respectively. A lower mOD indicates better spatial
disentanglement.

Mean control consistency. Lastly, to measure the consistency of an edit under
different initial latent codes, we compute the mean control consistency for global
edits (mCC) and local edits (mCC𝑙). The mCC𝑙 is

mCC𝑙 =
1
𝐶

𝐶∑
𝑐=1
E𝑐

[𝒫𝐶𝐶 ] , (5.11)

where 𝒫𝐶𝐶 is the control consistency of a label map containing class 𝑐. We compute
the pairwise distances between images with different initial latent codes and the
same local edit:

𝒫𝐶𝐶 =
1
𝑍𝐾

𝐾∑
𝑘

𝑍∑
𝑧1,2=1
𝑧1≠𝑧2

LPIPS𝑀𝑐
𝑘,𝑧1 ,𝑧2

. (5.12)

Here, LPIPS𝑀𝑐
𝑘,𝑧1 ,𝑧2

denotes the LPIPS distance masked with 𝑀𝑐 between two images
created with different initial latent codes 𝑧1 and 𝑧2, where class 𝑐 is edited locally
with latent direction 𝑘 for both images.

The global mCC score is computed as the average distance between images with
the same global edit but different initial latent codes. For each label map, we create
pairs of images with different initial latent codes, but a shared global edit. We
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compute the mean of the default LPIPS distance over all pairs and across different
shared global edits. The score is averaged over all label maps in the test set. Ideally,
the mCC and mCC𝑙 are low, indicating high consistency under different initial
latent codes.

Relation to prior diversity and disentanglement scores. The mCD𝑙 and mCC𝑙 are
related to the mean class diversity (mCSD) and mean other class (mOCD) proposed
by Zhu et al. (2020b). These two metrics evaluate diversity and spatial disentan-
glement for SIS models that allow class-specific manipulations (Zhu et al., 2020b;
Schönfeld et al., 2021). Note that mCSD and mOCD measure the class-specific
diversity and disentanglement of a SIS model, while our metrics evaluate the class-
specific diversity and disentanglement of a set of discovered latent directions, allowing
us to compare different control discovery methods on the same SIS model. The
mCSD measures intra-class diversity as a property of the SIS model itself. In
contrast, mCD𝑙 measures the diversity of a set of latent directions, which is a prop-
erty of the GAN control discovery method. The same relationship holds between
mOCD and mOD. We next present an extended evaluation using our proposed
local metrics mCD𝑙 , mCC𝑙 , and mOD.

Human evaluation. We also conduct a human evaluation of the learned latent
directions. To this end, we employ the SHE score from Zhu et al. (2020b) and
introduce a Human Diversity Rank (HDR) metric. For SHE, participants are shown
two images edited only in the corresponding class area by applying the learned
class-specific latent direction. The final SHE score is the percentage of image pairs
that the participants judge to be semantically different in the area of only one class.
For HDR, participants are shown rows of locally edited images from four different
methods (Random, SeFa, GANSpace, Ctrl-SIS), as in Fig. 5.5 but in a randomized
order. The task is to rank the methods by their diversity. The final HDR score is
an average rank (range 1 to 4) assigned to a GAN control discovery method. Each
participant is provided with 50 questions and unlimited answering time for both
scores.

5.3.3 Main results

We compare Ctrl-SIS, GANSpace, and SeFa on global and local image editing. While
local edits target a single class per image, global edits combine all class-specific edits
within an image. Examples of local and global edits with Ctrl-SIS are shown in
Fig. 5.3. The local edits show that the found directions encode semantic meaning,
such aging faces, covering mountains in snow or turning on lamps (see Fig. 5.3 and
5.4). Global edits change the whole image globally and are the result of combining
all class edits in one image (see last row of Fig. 5.3). In addition, we compare all
methods to the performance of randomly sampled directions ("Random"), as well
as to the performance on unedited images ("Baseline").
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Figure 5.5: Qualitative comparison of Ctrl-SIS against SeFa and GANSpace. The
learned directions 𝑘 = 1, ..., 5 are applied for different classes. Ctrl-SIS class-specific
latent directions result in more diverse edits for a selected class.
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Method ADE20K COCO-Stuff
mCD ↑mCC ↓mOD ↓ FID↓mIoU↑ mCD ↑mCC ↓mOD ↓ FID↓mIoU↑

Baseline - - - 28.6 52.2 - - - 17.1 42.4
Random 0.11 0.30 0.01 31.3 49.4 0.16 0.07 0.00 17.6 42.3
GANSpace 0.09 0.29 0.01 28.1 53.3 0.15 0.06 0.00 17.2 42.1
SeFa 0.12 0.28 0.01 28.1 53.2 0.15 0.06 0.00 17.1 43.8
Ctrl-SIS 0.26 0.28 0.01 30.9 48.9 0.30 0.07 0.01 21.1 43.6

Table 5.1: Evaluation of OASIS GAN controls on ADE20K and COCO-Stuff.

mCD𝑙 ↑ Precision↑ Recall↑ Human eval.
SHE↑ HDR↓

Baseline - 0.84 0.63 - -
Random 0.04 0.82 0.62 32.9 2.62
GANSpace 0.03 0.87 0.61 29.1 3.43
SeFa 0.05 0.87 0.62 30.3 2.88
Ctrl-SIS 0.12 0.85 0.64 60.7 1.07

Table 5.2: Evaluation of local class-specific image edits on ADE20K with OASIS.

As seen in Table 5.1, Ctrl-SIS achieves improved diversity by at least a factor
of two, e.g., mCD of 0.26 vs. 0.12 of SeFa on ADE20K. Interestingly, the diversity
of GANSpace and SeFa is lower (underlined numbers) or close to random direc-
tions. Neither of these methods are designed to find class-specific directions. Yet,
they still capture class-agnostic variations in the data, leading to directions that are
closer to the mean of the image distribution and thus slightly better FID and mIoU.
All methods exhibit similar consistency (mCC), with Ctrl-SIS and SeFa performing
best on ADE20K, and SeFa and GANSpace on COCO-Stuff. The consistency of
Ctrl-SIS is demonstrated in Fig. 5.4, e.g., where the learned latent direction con-
sistently defoliates trees or covers streets in snow. Similar to the consistency, the
disentanglement (mOD) is strong for all methods, due to the spatially disentangled
3D latent space of the OASIS model.

Due to the higher diversity of edited images, FID increases slightly for Ctrl-SIS
compared to the baseline of unedited images (see Table 5.1). Since FID measures
the overlap between the real and synthetic image distributions, images with weaker
edits are closer to the original data. This is illustrated in Fig. 5.5, where edits are
shown side-by-side for all methods. Since SeFa and GANSpace only minimally
change the class, their FID is close to FID of unedited images (see Baseline in Table
5.1). Likewise, mIoU of images edited with Ctrl-SIS decreases, as the edited images
move away from the mean mode of the synthetic image distribution. In contrast, for
SeFa and GANSpace FID and mIoU are slightly better with respect to the baseline,
while their diversity (mCC) is comparable to random directions. This observation
suggests that SeFa and GANSpace images are closer to typical samples of the test
set, while Ctrl-SIS learns more distinct directions.
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Model Method Global edits Local edits
mCD ↑ FID ↓ mIoU ↑ mCD𝑙 ↑ FID ↓ mIoU ↑

OASIS

Random 0.11 31.3 49.4 0.04 30.6 50.1
GANSpace 0.09 28.1 53.3 0.03 28.3 53.9
SeFa 0.12 28.1 53.2 0.05 28.3 53.7
Ctrl-SIS 0.26 30.9 48.9 0.12 28.8 51.6

SC-GAN

Random 0.08 34.3 38.1 0.05 34.2 38.6
GANSpace 0.11 34.2 38.3 0.06 34.3 38.8
SeFa 0.10 34.4 37.8 0.06 34.4 38.9
Ctrl-SIS 0.25 36.4 34.7 0.18 34.2 38.4

SPADE

Random 0.08 34.6 39.4 0.05 34.6 39.6
GANSpace 0.12 35.1 39.3 0.08 34.6 39.7
SeFa 0.09 34.7 39.4 0.06 34.8 39.7
Ctrl-SIS 0.14 35.4 38.6 0.09 34.6 39.4

Table 5.3: Comparison of GAN control methods across SIS models on ADE20K.

Method mCD ↑ mCC ↓ mOD ↓ FID ↓ mIoU ↑
Ctrl-SIS 0.26 0.28 0.01 30.9 48.9
No ℒ𝑑𝑖𝑣 0.24 0.28 0.01 30.5 49.4
No ℒ𝑐𝑜𝑛𝑠𝑡 0.26 0.29 0.01 30.9 48.7
No ℒ𝑑𝑖𝑠 0.27 0.28 0.02 31.6 48.3

Table 5.4: Loss ablation of Ctrl-SIS on ADE20K.

We perform alternative evaluations of local class-specific edits in Table 5.2.
Ctrl-SIS shows the highest recall and diversity (mCD𝑙), and is the only method to
improve both precision and recall over the OASIS baseline. Due to the precision-
recall trade-off, SeFa and GANSpace have higher precision at the loss of recall,
which is also reflected in their low mCD𝑙 score and better FID over Baseline in
Table 5.1. Moreover, both human diversity evaluation scores (SHE and HDR) are
well aligned with the diversity metric mCD𝑙 and recall, confirming the highest
diversity of Ctrl-SIS.

Next, we compare Ctrl-SIS on different SIS models. Table 5.3 shows that Ctrl-SIS
strongly improves diversity for local and global edits across all tested SIS models.
The trade-off between diversity versus FID and mIoU is less pronounced for SPADE,
which naturally suffers from lower sensitivity to input latent code due to the strong
regularization effect of its perceptual loss, as shown in (Schönfeld et al., 2021)
(see Chapter 4). While OASIS is trained without a perceptual loss, and SC-GAN
uses a more powerful layer-wise conditioning strategy, leading to more diversity.
Similarly to Table 5.1, the diversity of GANSpace and SeFa is comparable to random
directions. In other words, the directions that SeFa and GANSpace find differ just
as much from each other, as a set of randomly chosen directions. In contrast, the
directions of Ctrl-SIS embody distinct appearances that are unlikely to appear in a
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Label map Original 𝑘1 𝑘2 𝑘3 𝑘1 + 𝑘2 𝑘2 + 𝑘3 𝑘1 + 𝑘3

Figure 5.6: Combinations of directions 𝑘1, 𝑘2 and 𝑘3 found for the face class (skin,
neck, nose, ears) in the CelebAMask-HQ dataset. Different semantics can be com-
bined, e.g., k1 (beard) and k2 (age) yield an old bearded person.

Original Res-Blk 1 Res-Blk 2 Norm-Blk 3 Norm-Blk 4 Res + Norm

Figure 5.7: Optimizing Ctrl-SIS on the output features of ResNet blocks leads to an
emphasis on structure (Res-Blk 1&2), while late normalization layers focus more
on color (Norm-Blk 3&4). Directions from different layers can be combined: the
last column combines Norm-Blk 4 with Res-Blk 1 (top) and 2 (bottom).

set of random directions.

Compositionality. Individual class-specific latent directions can be combined. For
example, Fig. 5.6 shows that directions corresponding to "age" and "beard" can
be combined into "old and bearded". Further, the latent directions found by Ctrl-
SIS depend on the subset of feature layers 𝐺𝑙(𝑧, 𝑦) of the SIS generator 𝐺 chosen
for optimization (see Sec. 5.2). Fig. 5.7 highlights latent directions that were
discovered by optimizing over layers from different ResNet blocks of the generator.
For example, the set Norm-Block 4 in Fig. 5.7 minimizes the loss over the first
convolution in all conditional normalization layers (Park et al., 2019b) within the
fourth ResNet block. While for the set Res-Block 1 we minimized the loss for
the final output features of the first ResNet block. We observe that the directions
for Res-Block 1 and 2 differ strongly in the internal structure of semantic classes,
while Norm-Block 3 and 4 encode changes in color. Interestingly, latent directions
can be combined when synthesizing images, by injecting different directions in
different layers. In the last column of Fig. 5.7, the directions of early ResNet blocks
are injected into the first four layers of the SIS model, while directions from the
conditional normalization layers of late ResNet blocks are injected from layer five
onward. As the former directions encode structure, and the latter encode colors,
the resulting image combines both aspects.
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Ablation. Table 5.4 presents an ablation on the proposed objective, using OASIS on
the ADE20K dataset. Without the diversity term of our loss function, the diversity
decreases. Likewise, without the consistency or disentanglement term, consistency
and disentanglement worsen. Further, the disentanglement term helps to improve
synthesis and segmentation quality (FID and mIoU), by helping to restrict the area
affected by the edit only to the selected class area.

5.4 Conclusion

We propose Ctrl-SIS, which to our knowledge, is the first method for discovering
class-specific interpretable GAN controls of SIS models. This is achieved by opti-
mizing a set of class-specific latent directions via proposed diversity, consistency,
and disentanglement loss terms, making use of semantic label maps provided as
part of the SIS task. The learned latent directions can locally change the appearance
of targeted semantic classes without affecting other classes in the image, and can be
combined to sequentially change the image. Quantitative and qualitative analysis
shows that Ctrl-SIS results in image edits of high quality, that are significantly more
diverse than prior methods adapted to SIS.



Chapter 5. Discovering GAN Controls for Semantic Image Synthesis 100



6 Conclusion and Future
Perspectives

Contents
6.1 Discussion of contributions . . . . . . . . . . . . . . . . . . . . . . 103

6.1.1 Unconditional and class-conditional image synthesis with
GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1.2 Semantic image synthesis with GANs . . . . . . . . . . . . 104

6.1.3 Discovering GAN controls for semantic image synthesis . 106

6.2 Future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.1 Unconditional and class-conditional image synthesis with
GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.2 Semantic image synthesis with GANs . . . . . . . . . . . . 110

6.2.3 Discovering GAN controls for semantic image synthesis . 112

6.2.4 Broader outlook . . . . . . . . . . . . . . . . . . . . . . . . . 113

At the current pace of progress in deep learning, impressive improvements
in deep learning-based image synthesis can be seen on a year-to-year basis. The
improvements in synthesis quality include higher resolution, a higher degree of
detail, more diversity, better fidelity and correctness (e.g., dogs with no more or
less than four legs), and the absence of artifacts introduced by the generation
process. Improvements in synthesis controllability come from increased fidelity
of conditional synthesis models, as well as better methods for image inversion
(Richardson et al., 2021) and latent space control discovery (Härkönen et al., 2020;
Shen and Zhou, 2021). In the area of high-fidelity conditional generation, significant
strides have recently been made through large-scale training on ubiquitous text-
image pairs from the web (Ramesh et al., 2021, 2022; Saharia et al., 2022; Yu et al.,
2022; Rombach et al., 2022), which we also take into consideration in this chapter.
These advances were also made possible through the use of transformers and
diffusion models, which achieve the same or even better image synthesis quality as
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GANs in some situations (Dhariwal and Nichol, 2021). In this thesis, we improved
the image quality and controllability of GANs by working on three topics that we
summarize in the following.

First, we focused on unconditional and class-conditional image synthesis with GANs.
In Chapter 3, we proposed to rethink a GAN discriminator as a real-fake segmenter,
based on a U-Net architecture. The new architecture more readily integrates fea-
tures from all scales and image positions for the real-fake classification. The U-Net
discriminator allows treating the discriminator prediction like an "image", which
enables regularization that would not be possible otherwise, such as our proposed
CutMix-based consistency regularization. Our discriminator improves synthesis
quality by counteracting loss saturation (see Fig. 3.10) and self-supervision through
our consistency regularization. The resulting U-Net GAN improved over the pre-
vious state-of-the-art BigGAN model and established a new state of the art among
all models on the CelebA dataset.

Second, we focused on semantic image synthesis with GANs. In Chapter 4, we
solved two core problems of previous semantic image synthesis (SIS) models: the
necessity of a perceptual loss and the insensitivity to noise. We address both prob-
lems by introducing a segmentation-based discriminator. In addition, we strongly
increase the noise sensitivity by proposing 3D noise injection. Our changes lead
to a significant increase in synthesis quality and diversity and new possibilities in
image manipulation due to the 3D structure of our noise. In addition to the stan-
dard evaluation, we propose an evaluation based on synthetic data augmentation,
as well as a large-scale evaluation on the LVIS dataset. As shown in our LVIS exper-
iments, we also successfully address dealing with imbalanced classes and sparse
label maps, where previous work fails. The proposed OASIS model outperforms
all previous state-of-the-art works.

Third, we focused on discovering GAN controls for semantic image synthesis -
the automatic identification of meaningful directions in the latent space of SIS
GANs. Previously, GAN control discovery methods existed only for unconditional
and class-conditional GANs. However, the existing techniques are unsuitable for
application in semantic image synthesis. Thus, in Chapter 5 we proposed such a
method for semantic image synthesis, which learns a set of different controls for
each class. These controls allow changing only one class in the image without
affecting neighboring pixels. Since previous methods are primarily evaluated by
subjective visual inspection, we also introduce evaluation metrics for diversity,
consistency, and spatial disentanglement. The resulting method is termed Ctrl-SIS
and can serve as a tool for manipulating synthetic images and inspecting the latent
space of SIS GANs.

In this chapter, we discuss our contributions in more detail in Section 6.1. Lastly,
we elaborate on open problems and future perspectives in Section 6.2.
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6.1 Discussion of contributions

This thesis aimed to improve the image quality and controllability of GANs. To this
end, we covered the three topics unconditional and class-conditional image synthesis
with GANs, semantic image synthesis with GANs, and discovering GAN controls for
semantic image synthesis in separate chapters. In the following, we summarize the
contributions of each chapter.

6.1.1 Unconditional and class-conditional image synthesis with
GANs

In Chapter 3, we focused on unconditional and class-conditional image synthesis
with GANs. The goal was to improve image quality by redesigning the GAN
discriminator. The key contribution is the introduction of a segmentation-based
discriminator and a CutMix-based regularization enabled by the new discriminator
design. Previously, classification-based discriminators were the norm for GAN
architectures. On the other hand, we base our discriminator on the popular U-Net
segmentation network. In contrast to a standard U-Net segmentation network, we
also compute the loss at the bottleneck layer between encoder and decoder. The
advantages of a U-Net discriminator are two-fold:

First, it performs local real-fake classifications of image patches, taking into
account the larger image context. In contrast, a classification-based discriminator
can easily classify an image as real or fake by only considering one distinctive
trait. Consequently, the U-Net discriminator loss saturates much slower during
training, since a small loss would require uniform predictions over all image pixels.
Likewise, the loss predictions for the encoder and decoder also differ, contributing
to the slower loss saturation. In the BigGAN baseline, on the other hand, the
generator stops improving earlier due to faster loss saturation.

Second, the fact that the discriminator output is two-dimensional with the same
height and width as the input image allows for new forms of regularization. We
show that the new design enables introducing the nonleaking CutMix data aug-
mentation, as well as a consistency regularization promoting equivariance under
the CutMix transformation. The CutMix equivariance is an inductive bias that pre-
vents overfitting to changes in the image that do not affect the realness of patches.
For example, the CutMix regularization discourages local real-fake classifications
from taking shortcuts by copying the real-fake classification of neighboring patches.
Note that the CutMix augmentation is nonleaking, i.e., it avoids the known prob-
lem of augmentation leakage in GANs (Zhao et al., 2020a; Karras et al., 2020a), due
to the unique property of computing the GAN loss in 2D.

Importantly, almost any GAN discriminator can be converted into a U-Net
discriminator, without changing the base architecture or the loss functions. When
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it comes to the architecture, the only necessary modification is to add a decoder
to the already existing encoder-shaped discriminator net. With respect to the
GAN loss, we showed that different GAN losses are trivial to extend to a U-Net
decoder loss, such as the hinge loss, binary cross-entropy, and the class-conditional
projection loss. Although our experiments were conducted on a BigGAN backbone,
the U-Net discriminator has also been successfully implemented for StyleGAN2,
where it works well in combination with the standard StyleGAN2 perceptual path
length regularization and R1 regularization1. Interestingly, we observed that the
self-attention layers of BigGAN do not contribute to performance in the U-Net
GAN setting, likely because the U-Net architecture already achieves a similar effect
of integrating information from distant image regions.

With our proposed changes to the discriminator, we achieved an average im-
provement of 2.7 FID compared to the previous state-of-the-art baseline BigGAN,
measured on three different datasets. Thereby, U-Net GAN improves performance
in both the unconditional and class-conditional setting. To the best of our knowl-
edge, our model also achieved the best FID score on the CelebA dataset (2.95)
at the time of publication. Our publication (Schönfeld et al., 2020) is the first to
propose a segmentation-based discriminator, opening up further opportunities for
research. Since our publication, the U-Net discriminator has also been popular in
GAN-based super-resolution (Zhang et al., 2020c; Wang et al., 2021b; Jo et al., 2020;
Wei et al., 2021; Wang, 2021; Li et al., 2021a). A widely-used super-resolution model
that employs the U-Net discriminator is Real-ESR GAN (Wang et al., 2021b), which
at the time of writing counts more than 16K stars on github2.

6.1.2 Semantic image synthesis with GANs

In Chapter 4, we focused on semantic image synthesis (SIS), the task of convert-
ing label maps to images. Prior to our work, semantic image synthesis suffered
from two entangled problems: First, SIS generators had low sensitivity to input
noise and, therefore, severely limited diversity compared to unconditional GANs.
Second, training a pure GAN was insufficient in previous architectures to achieve
good image quality. Additional losses or discriminators were used by default. In
particular, all previous works strongly depended on the perceptual loss, which
unnecessarily constrains the generator and is partly responsible for the first prob-
lem. We addressed these two problems by introducing the OASIS model, and
summarize the associated contributions in the following.

We showed in our experiments that the perceptual loss significantly limits
the diversity of SIS models. The reason is that the perceptual loss acts like a
reconstruction loss, but in VGG feature space. Consequently, a one-to-one matching
between the synthetic and real image is encouraged, independent of the input

1https://github.com/lucidrains/unet-stylegan2/
2https://github.com/xinntao/Real-ESRGAN

https://github.com/lucidrains/unet-stylegan2/
https://github.com/xinntao/Real-ESRGAN
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noise, despite the fact that SIS requires a one-to-many mapping. Yet, without the
perceptual loss, the image quality of the previous state-of-the-art baseline degrades
strongly, e.g., from 21.7 to 99.1 FID for COCO-Stuff. Our ablations showed that the
discriminator is the root of the problem. Notably, without the perceptual loss,
training of the SPADE baseline collapses unless multiple discriminators are used.

We solved the problems mentioned above by using a segmentation-based dis-
criminator. The explanatory insight is that it is more appropriate to use the label
map as a loss target than to use it as discriminator input: As input, the label map
can be ignored. As loss targets, labels cannot be ignored and provide strong super-
vision that was previously lacking. In effect, we showed that the perceptual loss
becomes superfluous and that image quality and diversity are improved out-of-the-
box, compared to previous models using the perceptual loss. Compared to U-Net
GAN, the OASIS discriminator employs an N+1 cross-entropy loss as GAN objec-
tive and uses only the decoder loss, making OASIS the first GAN to employ a "pure"
segmentation loss as GAN objective. Importantly, the OASIS discriminator unlocks
new capabilities: Compared to all other discriminators, the OASIS discriminator
can balance the loss among individual classes. The pixel-wise loss of underrep-
resented classes, i.e., rare or small objects, can be given a higher weight, which
benefits the overall image quality by boosting the synthesis quality of underrepre-
sented classes. Further, the OASIS discriminator enables our proposed LabelMix
regularization, which improves synthesis quality. Interestingly, we demonstrate
that the discriminator can be used as a regular segmenter after training, which
allows the generator to resynthesize unannotated images with different textures.

Next to the discriminator design, we also overhauled the generator by proposing
3D noise injection. While previous works used the noise vector as input to the first
generator layer, we inject a 3D noise tensor together with the label map into a
spatially sensitive conditional batch normalization layer at every generator block.
This setup makes the noise hard to ignore and strongly improves diversity, in
addition to the diversity boost resulting from abandoning the perceptual loss. Our
generator also improves the controllability of the synthesis process, since the 3D
noise allows resampling images globally or locally at different spatial positions.

Taken together, the new discriminator and generator design constitute the OA-
SIS model. We showed that OASIS outperforms all previous works on the standard
benchmark datasets. We achieved improvements in terms of image quality, align-
ment with the label maps, and synthesis diversity. Further, we proposed to evaluate
the SIS model via synthetic data augmentation, using synthesized images and their
label maps as additional data for semantic segmentation. We observed a stonger
increase in segmentation performance compared to the SPADE baseline, suggesting
a potential use of SIS models for data augmentation in semantic segmentation.

In addition to the standard benchmark datasets, we were the first to compare
SIS models on the LVIS dataset and specifically propose to use it to evaluate perfor-
mance in a large-scale setting (more than 1000 classes), strong class imbalance, and
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sparse annotations. An evaluation in a data regime that is closer to a real-world
use case has been previously missing. We showed that OASIS significantly outper-
forms previous work on the LVIS dataset, lowering FID by 43%. Importantly, we
demonstrated that OASIS works well even on very sparsely annotated label maps,
where the previous state-of-the-art baseline collapses. The fact that OASIS works
on sparse label maps can be attributed to the 3D noise. After all, the SPADE base-
line has no significant source of stochasticity and therefore regards two different
sparse label maps as almost identical, leading to collapsed predictions. Further,
OASIS better synthesizes underrepresented classes under the heavy class-inbalance
of LVIS, thanks to the class-balancing enabled by the OASIS discriminator design.

Lastly, it is important to note the similarity between OASIS and common class-
conditional GANs, like BigGAN. First, like BigGAN, OASIS concatenates noise
and class labels and uses them for conditional batch normalization at every layer.
The difference is that in OASIS, the noise, the labels, and the conditional batch
normalization have the spatial dimensions of height and width. Interestingly,
previous SIS works did not adhere to a layerwise conditional normalization scheme,
which is common in unconditional and class-conditional GANs. Part of the reason
may be the damping effect of the perceptual loss on noise sensitivity. Moreover,
it is common in class-conditional GANs to use the class label as a loss target via
an additional classification head, or to inject it in the last layer to compute the loss
input. Only the very first conditional GANs used the class label directly as input
to the discriminator (Mirza and Osindero, 2014). Yet, all previous SIS models used
the label map directly as discriminator input, since there is no straightforward way
of incorporating the label map into the loss of a classification-based discriminator.
Therefore, through our proposed changes, SIS GANs have become more similar
to regular class-conditional GANs, which work perfectly well without multiple
discriminators or perceptual losses, and enjoy high image diversity.

6.1.3 Discovering GAN controls for semantic image synthesis

In Chapter 5, we proposed a method for discovering class-specific semantically
meaningful directions in the latent space of SIS GANs. Our technique allows
to analyze the latent space of SIS GANs and provides a user with controls for
class-specific edits in synthetic images. Previous works on GAN control discovery
focused on unconditional GANs, and were therefore not designed to deal with im-
age generation in the presence of label maps. In particular, the baselines evaluated
in Chapter 5 yield latent directions that are comparable to completely random di-
rections. Another line of work focuses on controlling the appearance of SIS images
via style transfer from a reference image, rather than identifying latent directions.
One reason why latent direction discovery for SIS GANs remained unexplored is
the very limited diversity in the latent space of previous SIS GANs. Hence, the
strongly improved diversity of OASIS enabled our work in Chapter 5.
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In particular, we propose a method named Ctrl-SIS, which is the first method
to apply GAN control discovery to SIS. In addition, Ctrl-SIS is the only method
that discovers class-specific directions. We identify three properties of a good SIS
GAN control discovery method: The class-specific discovered directions should
be all uniquely different (diversity), evoke the same semantic changes regardless
of the initial conditions (consistency), and should only affect the selected class
(disentanglement). In contrast to previous works, Ctrl-SIS specifically optimizes
for these three properties using dedicated losses.

Since previous works also primarily evaluate their method via subjective visual
inspection, we propose evaluation metrics to assess the three properties mentioned
above. We thus show quantitatively, but also qualitatively, that Ctrl-SIS identifies
directions that are consistent, spatially disentangled, and significantly more diverse
than the tested baselines. In addition, we demonstrate that the learned directions
can be combined on the same or different objects. When two directions are applied
on the same object, the individual semantics of both directions are preserved. For
example, "old" and "beard" combine to "old and bearded" for the face class.

In conclusion, the controls identified by Ctrl-SIS allow a user to edit synthesized
images in a predefined manner for specific classes. Additionally, Ctrl-SIS can
provide a user with insight into the representations that the SIS model learns:
First, Ctrl-SIS allows a user to visually assess the diversity that the SIS GAN model
managed to capture for every class, which can help identify which classes and
class-appearances the SIS model struggles to learn. Second, it enables a user to see
which visual aspects each generator layer focuses on, as well as how sensitive each
generator layer is to changes in the latent space. In doing so, Ctrl-SIS may help
with the design of better SIS models.

6.2 Future perspectives

This thesis presented works to improve the synthesis quality and controllability of
GANs. Achieving highly detailed image synthesis that accurately follows a user’s
input still requires much work. This section discusses future steps in the research
topics covered in this thesis. Finally, we give a broader outlook for the general field
of controllable image synthesis. In doing so, we do not limit ourselves to GANs,
but also discuss current transformer and diffusion models.

6.2.1 Unconditional and class-conditional image synthesis with
GANs

In the following, we discuss possible further steps for unconditional and class-
conditional GANs, including U-Net GAN (see Chapter 3).
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Pretrained feature extractors for the discriminator. GAN training benefits from
an increased amount of data, but large-scale training is time-consuming. It is there-
fore particularly useful to incorporate networks pretrained on massive amounts of
data. The data used for pretraining may be unlabeled, while the downstream GAN
is trained on a smaller set of labeled data. Pretrained feature extractors have been
widely used in GANs for image-to-image translation and semantic image synthesis
(Wang et al., 2018a; Park et al., 2019b), but not in unconditional or class-conditional
GANs. Only recently, pretrained networks were incorporated into the GAN dis-
criminator of unconditional and class-conditional GANs: Kumari et al. (2022) form
an ensemble between the original discriminator and several different pretrained
feature extractors to classify images into real and fake. On the other hand, Pro-
jectedGAN (Sauer et al., 2021) and StyleGAN-XL (Sauer et al., 2022) feed the real
and fake images into a fixed feature extractor. The feature channels are mixed via
random projections before being processed as a U-Net. Multiple discriminators
classify the features of each individual layer. It would be straightforward to adapt
this principle to U-Net GAN, by exchanging the encoder with a pretrained network
and adding random projections. After all, ProjectedGAN has been shown to train
faster by an order of magnitude while also achieving better FIDs (Sauer et al., 2021).
Yet, in this particular case it is not clear if the better FID really corresponds to better
images, since the visual results do not clearly confirm the improvement in FID.
More research would be helpful to better understand the effect of using pretrained
feature extractors in GAN discriminators.

Transfer learning for the generator. Next to the discriminator, the generator also
benefits from pretrained networks. The most straightforward approach is to fine-
tune a set of layers of a pretrained GAN on a new dataset (Wang et al., 2018b; Mo
et al., 2020). Unbalanced GAN (Ham et al., 2020) reuses the trained decoder of a
VAE as a GAN generator. Orthogonally, Baek and Shim (2022) proposes to pretrain
a generator on potentially unlimited simulated data of visual primitives, consisting
of shapes, colors, and textures. Interestingly, this approach outperforms models
pretrained on real data on the task of few-shot learning from a new dataset of only
100 images. However, while discriminators can use any off-the-shelf pretrained
feature extractor, transfer learning for generators is currently limited to reusing
pretrained generators of the exact same architecture. Future research is needed
to devise more flexible and general methods for transfer learning in GAN gener-
ators. Amongst others, there may be room for improvement for pretraining with
simulated (and perhaps more realistic) data beyond the visual primitives chosen
by Baek and Shim (2022).

Continual learning. Continual learning addresses the problem of catastrophic
forgetting (French, 1999). Since training is expensive and time-consuming, a lot
of time and money could be saved if GANs could be trained on new incoming
data without having to retrain from scratch. Lifelong GAN (Zhai et al., 2019) uses
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knowledge distillation (Hinton et al., 2015) to enable producing images learned in
previous tasks. More recently, Cong et al. (2020) show that a pretrained GAN can
learn from different datasets by freezing all weights and only retraining the style-
modulation layers for each dataset. A similar approach is taken by Jain et al. (2022),
to equip OASIS (see Chapter 4) with continual learning capabilities. However,
it remains to be seen whether popular continual learning techniques like Elastic
Weight Consolidation (Kirkpatrick et al., 2017) can be applied to GANs and whether
learning from a continuous stream of data will be feasible at some point in the
future.

Transformer-based architectures. Almost all GANs are built on convolutions.
However, recent GANs combine convolutions with transformers (Hudson and Zit-
nick, 2021; Arad Hudson and Zitnick, 2021) or are entirely transformer-based (Lee
et al., 2021; Jiang et al., 2021; Zhao et al., 2021). ViT-GAN (Lee et al., 2021), Trans-
GAN (Jiang et al., 2021), and HiT (Zhao et al., 2021) use a vision transformer (Doso-
vitskiy et al., 2020) for both generator and discriminator, which models a sequence
of flattened image patches. Transformers may be especially well suited for learn-
ing the interdependence between spatially separated image patches. On the other
hand, GANformer 1 and 2 (Hudson and Zitnick, 2021; Arad Hudson and Zit-
nick, 2021) implement attention between the latent codes and the generator fea-
tures, as well as between learned embeddings and discriminator features. These
transformer-based GANs each improved synthesis quality over their respective
baselines and developing them further may lead to even better-performing GANs.

Positional embeddings and implicit neural representations. A recent develop-
ment is the use of positional embeddings as input to the generator, allowing the
generation of arbitrarily sized or shaped images (Ntavelis et al., 2022; Skorokhodov
et al., 2021b,a; Lin et al., 2021), out-of-the-box superresolution (Skorokhodov et al.,
2021a; Ntavelis et al., 2022), out-of-the-box outpainting (Skorokhodov et al., 2021a),
filling the gap between two images (Lin et al., 2021), image translation (Karras
et al., 2021b), and arbitrary geometric transformation (Ntavelis et al., 2022). Some
of these works go a step further and base the generator entirely on implicit neural
representations (INRs), which are MLPs that produce an RGB value for a given
positional coordinate (Anokhin et al., 2021; Skorokhodov et al., 2021a; Lin et al.,
2021; Karras et al., 2021b). Depending on the implementation, INR-based genera-
tors have the additional advantage that image generation can be parallelized, since
image patches can be produced independently. In doing so, InfinityGAN (Lin et al.,
2021) reports a 7.2× inference speed-up. Besides, StyleGAN3 demonstrates how
using MLP generator layers implemented via 1 × 1 convolutions allows achieving
rotation equivariance. Despite the listed advantages, further research is needed to
better synchronize local and global structure in image generation of arbitrary scale
and size. In particular, spatial embeddings need to effectively encode positions
along wide distances while preventing repeated motives, e.g., for panorama im-
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ages. Next to better spatial embeddings, regularization schemes can be improved
for better consistency between global and local structure. These developments
will help to generate large high-resolution images with a lot of detail. INR-based
and transformer-based generators appear to perform best when paired with a con-
volutional discriminator (Lee et al., 2021; Anokhin et al., 2021), suggesting there
is room for improvement when it comes to incorporating new components into
discriminator architectures.

Data augmentation. Data augmentation is widely used in most areas of deep
learning. However, common augmentations like color jitter, adding noise, or cut-
ting out parts of the image leak into the synthetic images (Karras et al., 2020a). For
example, adding noise during training would lead to noisy synthetic images. The
solution is to use differentiable data augmentation, where augmentations are not
just applied to real data, but to both synthetic and real images in the D-step, as
well as in the G-step (Karras et al., 2020a; Zhao et al., 2020a). However, as shown
in Chapter 3, the CutMix augmentation is not leaking in U-Net GAN, despite not
being used as a differentiable augmentation. U-Net GAN achieves this by setting
the loss target for augmented images to fake in the encoder loss, while the decoder
loss evaluates individual pixels and does therefore not leak. In future work, it may
be worth exploring other augmentations based on cutting and mixing images, as
well as geometric transformations, which should theoretically not leak through the
U-Net decoder loss. These augmentations should additionally be tested for consis-
tency regularization and also under the differentiable augmentation framework.

6.2.2 Semantic image synthesis with GANs

Semantic image synthesis is the focus of Chapter 4 and 5. In this section, we discuss
future steps to increase the performance of semantic image synthesis models.

Applying methods from the unconditional GAN literature. Note that all future
steps discussed in the previous subsection on unconditional and class-conditional
(Sec. 6.2.1) also apply to SIS GANs. This includes leveraging pretrained networks,
e.g., general feature extractors, continual learning, new architectural components
like transformers or implicit neural representations, and data augmentation. Im-
portantly, many of these things have not yet been applied to semantic image syn-
thesis. Pretrained networks have been used in the form of the VGG perceptual
loss, which limits synthesis diversity (see Chapter4). However, incorporating a
pretrained network as part of the discriminator weights in the spirit of Project-
edGAN (Sauer et al., 2021) would not reduce diversity, since no matching between
the real and fake VGG image features takes place. After all, the enforced one-to-one
mapping independent of the noise is the reason for the diversity reduction seen
in previous works. Further, OASIS has been extended to support continual learn-
ing (Jain et al., 2022), but much more work remains to be done. Moreover, vision
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transformers and MLP-based generators still remain to be tried on semantic im-
age synthesis GANS. In addition, self-supervised losses like the rotation loss (Chen
et al., 2019) or the consistency loss of Zhao et al. (2020b) have not been applied to SIS
GANs, despite the success in unconditional and class-conditional GANs. Lastly,
the widely used differentiable data augmentation (Zhao et al., 2020a; Karras et al.,
2020a) has yet to be applied to SIS GANs. Differentiable data augmentation may
strongly impact performance, since the size of segmentation datasets is typically
small due to the high annotation cost.

Semi-supervised learning. Segmentation-based discriminators in SIS can make
use of the rich literature in the field of semi-supervised segmentation. Conse-
quently, SIS performance could increase by making use of a large number of unla-
beled images. In this case, the discriminator would learn to better segment images
and could therefore give better feedback to the generator. Another self-supervised
option would be to add an auxiliary binary real-fake classification head for unla-
beled images. In doing so, OASIS could directly follow the U-Net GAN design,
where the encoder part of the discriminator serves as a binary real-fake classifier.

Alternative segmentation losses. Next to the standard cross-entropy loss for se-
mantic segmentation, alternative losses have been formulated such as the focal loss
(Lin et al., 2017), lovász-softmax loss (Berman et al., 2018), region mutual informa-
tion loss (Zhao et al., 2019), or poly loss (Leng et al., 2021). Future steps for SIS with
segmentation-based discriminators may resort to one of these losses, or a combi-
nation thereof. Note that in our ablations in Chapter 4 we also demonstrated that a
segmentation loss based on a pixel-wise projection loss (Miyato and Koyama, 2018)
yields acceptable results, while this loss is not used in the segmentation literature.
Thus, it is possible for follow-up work to use another known segmentation loss or
propose a new loss function for the segmentation-based discriminator. Lastly, a
segmentation loss that is beneficial for OASIS or follow-up work in semantic image
synthesis may also be beneficial for U-Net based discriminators in unconditional
and class-conditional GANs.

GAN inversion for semantic image synthesis. GAN inversion is a powerful tool
that allows editing a real image, by encoding it into the latent space of a generator
and re-synthesizing it with edits (Richardson et al., 2021). This principle could
be applied to segmentation-based discriminators as well. As we show in Chapter
4, OASIS can already predict the label map of an unlabeled image and recreate it
in a different style. Ideas from the GAN inversion literature can be used to also
encode the style of an input image, allowing it to encode and decode an image
accurately. Before decoding, the image can be edited in the predicted label map
and the encoded style.

Unifying semantic image synthesis and image-to-image translation. Semantic
image synthesis is a specific case of image-to-image translation, which also includes
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sketch-to-image, image inpainting, image denoising, simulation-to-real, image col-
orization, and other tasks. While OASIS is tailored to use a semantic segmentation
loss, it is not straightforward to use other forms of spatial conditional information
directly in the GAN loss, e.g., hand drawn sketches. That is why general image-to-
image models used the label map and other forms of spatial conditioning as direct
input to the discriminator (Isola et al., 2017). Yet, the fact that segmentation-based
discriminators output a spatial prediction may help to incorporate spatial condi-
tions in future research. Interestingly, GauGAN2 (Huang et al., 2022) performs
image-to-image translation from sketches and label maps, and incorporates the 2D
input condition into the GAN loss via projection (Miyato and Koyama, 2018). Since
a projection-based segmentation loss works for OASIS, it may be possible to use the
findings of Huang et al. (2022) to enable general image-to-image translation with
OASIS.

6.2.3 Discovering GAN controls for semantic image synthesis

In Chapter 5, we present a method for discovering semantically meaningful class-
specific latent directions in the latent space of semantic image synthesis models. In
the following, we discuss future steps for this task.

Contrastive learning. Contrastive learning (Chen et al., 2020b) is a highly effective
unsupervised method for learning representations, based on the similarity and
differences of features. This principle can be exploited to discover unique latent
directions, by letting the directions take the role of the features in a contrastive ob-
jective, as demonstrated in LatentCLR (Yüksel et al., 2021). Adapting this approach
to GAN control discovery to semantic image synthesis may be an interesting next
step.

Closed-form solutions. Methods like SeFa (Shen and Zhou, 2021) and ReSeFa (Zhu
et al., 2022) have the advantage of finding meaningful directions in seconds. How-
ever, it is not clear how to extend these methods to find class-specific directions
for semantic image synthesis. In particular, it is not clear how to factorize out the
image changes caused by the noise from those caused by the label. In addition, a
method ideally finds general directions, rather than requiring test-time optimiza-
tion on single images like Zhu et al. (2022). However, finding a practical solution
to discovering general class-specific latent directions for SIS based on closed-form
methods would be of great value.

More diverse semantic image synthesis models. The more diverse the semantic
image synthesis model is, the more useful methods such as Ctrl-SIS will be. It
was the improved diversity through our proposed 3D noise (see Chapter 4), which
enabled our investigation of the SIS GAN latent space (see Chapter 5). Follow-up
work will likely find ways to improve diversity further. Additionally, revisiting
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older works on improving diversity (Zhu et al., 2017) may already provide solu-
tions.

6.2.4 Broader outlook

In this section, we comment on the longer-term perspective of the field of control-
lable image synthesis. For this, we want to answer the question of where the field
is headed and how to get there. If we had to define an end goal for the field of
controllable image synthesis, it might look as follows:

Goal of the field of controllable image synthesis: Given any description of the
image content, be it in the form of text, sketches, label maps, or others, we can synthesize
an image with exactly the specified content. Different forms of image descriptions can be
combined. Noise can generate seemingly endless image variations, respecting the descrip-
tions. Noise can also be applied alone to yield completely random images. The image looks
perfectly realistic, and we can specify any output shape and resolution. If the model does
not synthesize the image we have in mind on the first attempt, we can iteratively refine the
image until we see exactly what we want. The refinement includes changing images only in
certain areas without affecting the rest of the image. We can also show the synthesis model
new examples of unseen objects, and it will be able to remember and synthesize them.

Thus, the two key axes along which models must improve are quality and con-
trollability, which were at the center of this thesis. Recent developments in image
synthesis indicate that the goal outlined above may be achievable. Particularly,
text-to-image models such as DALL-E (Ramesh et al., 2021), DALL-E 2 (Ramesh
et al., 2022), Imagen (Saharia et al., 2022), Parti (Yu et al., 2022), and latent diffu-
sion (Rombach et al., 2022) demonstrate high image quality, controllable through
text. These models demonstrate compositionality and zero-shot capabilities. For
example, they allow generating convincing "avocado chairs" or people, objects, and
other concepts in unusual combinations (see Fig. 6.1). The stunning results sug-
gest that scaling up the size of the dataset and the number of parameters plays a
crucial role in achieving the goals of controllable image synthesis. If we believe
in Richard Sutton’s "bitter lesson"3, then models that can best leverage computa-
tion will outperform solutions built on specialized domain knowledge by a large
margin. Following this reasoning, big strides towards our goal will come from in-
venting more efficient and scalable architectures, leveraging massive datasets, and
strategies that increase a model’s exposure to more data, such as semi-supervised
learning and transfer learning. On the other hand, some problems are not solved
by scale alone, but by how models deal with problems inherent to the data. For
example, the image content in large datasets follows a long-tailed distribution. Be-
ing able to generate rare content with similar quality as well-represented content
requires algorithmic innovation. Hereafter, we discuss future developments in the
light of the aforementioned aspects.

3http://www.incompleteideas.net/IncIdeas/BitterLesson.html

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
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Consolidation of methods across modalities. Recent text-to-image models have
achieved impressive results thanks to scale. The fact that text-image pairs are
readily available on the web allowed for the creation of datasets with 250 million
(Ramesh et al., 2021), 400 million (Schuhmann et al., 2021), and very recently 5
billion (Schuhmann et al.) samples. More data also means that models must scale
in capacity through increased parameter counts. Since training such large models
is expensive, any source of dysfunction must be eliminated. Complex models with
many moving parts may contain a component that malfunctions at larger scales,
and therefore compromises the ability of the model to scale well. Thus, Yu et al.
(2022) argue with regard to their Parti model (see Fig. 6.1) that it is beneficial
for scaling if a model is conceptually simple. Accordingly, they propose a text-to-
image pipeline built entirely from standard transformers, making scaling to 20B
parameters straightforward. Transformers are routinely used in natural language
processing and are increasingly applied in computer vision. The consolidation of
architectures and training methods for vision and language is likely to continue in
the near future, and improvements in the field of language models will translate
into improvements in image synthesis, and vice versa.

Multi-modal conditioning. Another form of consolidation is models that can
work simultaneously with different types of conditioning information. A pioneer-
ing work is Product-of-Expert GAN (PoE-GAN), also known as GauGAN2 (Huang
et al., 2022), which can generate images from text, sketches, and label maps, or
a combination thereof. The model acts as an unconditional GAN when no con-
ditioning input is given. Training with multi-modal conditioning faces several
challenges. Some modalities have to be ignored when the modalities contain con-
tradicting information. Huang et al. (2022) show that their model performs better
when trained with unimodal data, indicating much room for improvement when
it comes to fusing multi-modal data. Importantly, acquiring multi-modal annota-
tions is especially expensive: More annotations are required, and the content of
different modalities has to be well aligned, too. One solution may be to train with
unaligned data and learn the alignment implicitly. Another problem to solve is
dealing with unbalanced annotations between modalities: There will be more text
and image pairs than sketch and image pairs. Learning under such annotation-
imbalance amounts to a particular form of semi-supervised learning, where some
images miss some form of annotation, while other images miss another form of
annotation. Successfully addressing these challenges will lead to powerful content
creation tools.

Parameter-efficient models. The results of the aforementioned Parti model are
among the best the field currently has to offer. Especially the correct rendering
and placement of written text in images is unprecedented, as shown in Figure
6.1. Figure 6.1 also demonstrates the necessity of a large number of parameters to
generalize well. Parti is built entirely from transformers. While several efficient
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transformers have been proposed, many of them do not scale well (Tay et al.,
2022). More research is necessary to achieve such impressive results as in recent
text-to-image models using a smaller parameter count.

350M 750M 3B 20B

A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses standing on the grass
in front of the Sydney Opera House holding a sign on the chest that says "Welcome Friends!".

A green sign that says "Very Deep Learning" and is at the edge of the Grand Canyon.
Puffy white clouds are in the sky.

Figure 6.1: Scaling behavior of the Parti model (Yu et al., 2022) from 350M to 20B
parameters. Higher parameter counts result in better image quality and higher
alignment with the input prompt. High fidelity placement of embedded text only
occurs at 20B parameters.

Scaling up GANs. Recent breakthroughs in text-to-image generation were built
on transformers and diffusion models. The GAN loss is mainly used in combina-
tion with a pixel-wise reconstruction loss to train the decoder that translates the
compressed image representation into pixel space (Yu et al., 2022; Rombach et al.,
2022; Ding et al., 2022; Wu et al., 2022). Transformer-based models that do not use
a GAN loss for their decoders produce blurry images (Ramesh et al., 2021). The
likely reason for the widespread use of transformers and diffusion models is the
better scaling properties. GANs still suffer from more training instability than other
models. The performance and training stability of GANs on large-scale datasets of
hundreds of millions of images is still underexplored and an interesting topic for
future research.

Transfer learning via pretrained models. The success seen in text-to-image syn-
thesis is unlikely to directly translate to semantic image synthesis, since the training
data is more limited. It is not possible to scrape millions or even billions of pairs
of label maps and images from the web. The same holds true for any type of con-
ditioning information, apart from text. For conditional image synthesis models to
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profit from the effect of scale, they could leverage pretrained networks. A purely
GAN-based model may make use of a pretrained feature extractor in the discrimi-
nator, similar to Sauer et al. (2021, 2022), who apply this principle to unconditional
and class-conditional GANs. On the other hand, diffusion-based conditional image
synthesis models can benefit from finetuning a diffusion model that was trained
on a large unlabeled dataset, as shown by Wang et al. (2022a) for the task of seman-
tic image synthesis. This idea may also be tried for GANs, by finetuning a large
pretrained unconditional GAN on the conditional image synthesis task.

Semi-supervised learning. Another strategy for conditional image synthesis tasks,
besides the data-rich text-to-image task, is the leverage of semi-supervised learning.
Recently, OSSGAN (Katsumata et al., 2022) proposed a model for class-conditional
image synthesis in an "open set" setting. In the open set task, the model is trained
jointly on a small set of labeled images and a large set of unlabeled images with
classes that are not contained in the labeled image set. Straightforward strategies
for open set learning are either using pseudo-labels, or using different losses for
labeled and unlabeled images. It would be useful to try and further develop semi-
supervised strategies for semantic image synthesis and other conditional image
generation tasks.

Strategies for long-tailed data. Almost all datasets follow a long-tailed distri-
bution, with the exception of artificially balanced datasets. However, artificially
balancing large datasets by their content is not possible. For example, it is impos-
sible to balance a 400M dataset of text and image pairs to contain every concept or
combination of concepts equally often. Likewise, a dataset of pairs of label maps
and images will always contain classes that are far more rare than others, or have
vastly different object sizes. In effect, text-to-image models can generate pictures
of Obama in many different contexts but struggle to render celebrities that are only
known in some countries or regions. Semantic image synthesis models perform
well on buildings but poorly on the grandstand class. This motivates the per-class
balancing in OASIS (see Chapter 4). Much future research is needed to better
model underrepresented classes or concepts in image synthesis models, in order to
obtain models that are more faithful to the input conditioning and therefore more
controlable.

Incremental learning and few-shot learning. It would be useful to have a trained
image generation model that can be shown a single picture and label of a concept,
and subsequently synthesize this concept in all kinds of other contexts. Ideally, the
model can learn many new concepts without retraining and without catastrophic
forgetting (French, 1999). The first such model was recently presented by Gal et al.
(2022) for the text-to-image task, and we are likely to see more follow-up works
in this direction. More research is needed to also translate this capability to other
conditional image synthesis tasks. The work of Gal et al. (2022) highlights the
importance of data and model scale for incremental and few-shot learning. If a
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model is so big that it can represent almost any visual concept, we only need to find
new "words" for the incrementally presented concepts, without having to update
the weights of the model.
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