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Mitochondrial cytochromes P450 presumably originated from a common

microsomal P450 ancestor. However, it is still unknown how ancient mito-

chondrial P450s were able to retain their oxygenase function following

relocation to the mitochondrial matrix and later emerged as enzymes spe-

cialized for steroid hormone biosynthesis in vertebrates. Here, we used the

approach of ancestral sequence reconstruction (ASR) to resurrect ancient

CYP11A1 enzymes and characterize their unique biochemical properties.

Two ancestral CYP11A1 variants, CYP11A_Mammal_N101 and

CYP11A_N1, as well as an extant bovine form were recombinantly

expressed and purified to homogeneity. All enzymes showed characteristic

P450 spectral properties and were able to convert cholesterol as well as

other sterol substrates to pregnenolone, yet with different specificities. The

vertebrate CYP11A_N1 ancestor preferred the cholesterol precursor,

desmosterol, as substrate suggesting a convergent evolution of early choles-

terol metabolism and CYP11A1 enzymes. Both ancestors were able to

withstand increased levels of hydrogen peroxide but only the ancestor

CYP11A_N1 showed increased thermostability (~ 25 °C increase in T50)

compared with the extant CYP11A1. The extraordinary robustness of

ancient mitochondrial P450s, as demonstrated for CYP11A_N1, may have

allowed them to stay active when presented with poorly compatible elec-

tron transfer proteins and resulting harmful ROS in the new environment

of the mitochondrial matrix. To the best of our knowledge, this work rep-

resents the first study that describes the resurrection of ancient mitochon-

drial P450 enzymes. The results will help to understand and gain

fundamental functional insights into the evolutionary origins of steroid

hormone biosynthesis in animals.

Introduction

Cytochromes P450 (P450s) constitute a large group of

heme-thiolate oxygenases that catalyze the incor-

poration of one atom of molecular oxygen into

nonactivated C-H bonds of organic substrates [1].

Since P450s are distributed among all domains of life

[2], they are believed to originate from a common
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ancestor that underwent sequential diversification pro-

cesses during the evolution of life, leading to a variety

of P450 species with different activities and specialized

functions. P450s were first found in liver microsomes

of animals [3] and were subsequently also discovered

in adrenocortical tissues [4]. Further studies on distri-

bution and function of different P450 species in verte-

brates revealed two classes of P450s based on

subcellular localization. Mitochondrial P450s are local-

ized on the matrix side of the inner mitochondrial

membrane and are primarily involved in biosynthesis

of steroid hormones, which act as potent regulators of

fundamental physiological processes including develop-

ment, reproduction as well as homeostasis in animals.

By contrast, microsomal P450s are found on the cyto-

plasmic side of the endoplasmic reticulum (ER) mem-

brane and are, with some exceptions, responsible for

metabolic clearance of endogenous and exogenous sub-

strates. Numerous microsomal P450s with diverse

functions have been identified and characterized in

other eukaryotes including plants [5], fungi [6], and

insects [7], but mitochondrial P450s seem to be unique

to animal cells. Hence, there have been considerable

efforts to investigate and understand the development

and evolution of mitochondrial P450s, which presum-

ably started shortly after the beginning of the animal

lineage [8].

A common hypothesis assumes that mitochondrial

P450s might have evolved early from a common

microsomal ancestor. Ongoing phylogenetic studies,

indeed, suggest that sequential mutations in the signal-

anchor sequence of microsomal P450s, which targets

them to the cytoplasmic site of the ER membrane,

promoted the evolution of a mitochondrial targeting

sequence (MTS) and eventually allowed the posttrans-

lational transport of microsomal P450s into the mito-

chondrial matrix [9]. However, once relocated to the

mitochondrial matrix, the formerly microsomal ances-

tor was spatially separated from its auxiliary electron

transfer system, an ER membrane-bound NADPH-

dependent cytochrome P450 reductase (CPR) [10]. In

order to retain their oxygenase function in the mito-

chondrial matrix, the relocated microsomal P450s pre-

sumably adapted to an alternative electron transfer

system consisting of the already existing ferredoxin

(Fdx) and cognate ferredoxin reductase (FdR) [11–14].
The whole process seems to have coincided with grad-

ual changes in the substrate spectrum of microsomal

P450s at the end of which mitochondrial P450s

emerged as enzymes with highly specialized functions

in steroid hormone metabolism in animals.

In vertebrates, steroid hormone biosynthesis is medi-

ated by several P450s of which only members of the

CYP11 family belong to the mitochondrial P450 class.

Among them, CYP11A1 catalyzes the initial and rate-

limiting step of steroid hormone biosynthesis in verte-

brates, which is the side-chain cleavage (SCC) of

cholesterol. The sequential SCC process involves three

monooxygenase reactions and starts with the hydroxy-

lation of the cholesterol side-chain at position C22.

The second step involves the hydroxylation of 22R-

hydroxycholesterol at position 20a and proceeds with

the cleavage of the C20–C22 bond of 20a,22R-
dihydroxycholesterol to form pregnenolone, the uni-

versal precursor of all steroid hormones [15]. For this

reason, the emergence of the mitochondrial CYP11

family in basal vertebrates is considered as one of the

most pivotal steps during evolution of steroid hormone

biosynthesis.

Conventional phylogenetic analyses may allow esti-

mation of the time when steroidogenic activities were

acquired by mitochondrial P450s or identification of

conserved amino acid sequences as well as structural

motifs within the evolving steroidogenic P450 enzymes.

However, they do not provide insights into the effects

of substituted amino acids and associated functional

changes that were necessary for the evolution of ster-

oid metabolism in animals. These investigations exclu-

sively rely on biochemical analyses of isolated or

recombinantly produced P450 enzymes. However,

despite the ever-increasing number of P450 sequences

in animals, biochemical characterization of steroido-

genic P450s has been mostly limited to a few extant

members of mammalian P450 families including

CYP11 [15–21], CYP17 [22–24], CYP19 [25], and

CYP21 [26]. The problem is that the scarce knowledge,

derived from functional analyses of P450 enzymes of

closely related species, does not provide sufficient

information to draw reliable conclusions about the

underlying mechanisms that promoted early develop-

ment of steroid hormone biosynthesis. Furthermore,

biochemical analyses of extant P450 enzymes disregard

ancient enzyme properties that may have emerged

transiently but actually were essential for the evolution

of steroid metabolism.

Just recently, the promising bioinformatic approach

of ancestral sequence reconstruction (ASR) was suc-

cessfully applied for the resurrection of protein ances-

tors of selected microsomal P450s, including the drug-

metabolizing mammalian enzymes CYP3A4 [27],

CYP2D6 [28], and CYP1B1 [29]. The ASR process

can in general be described in three steps: firstly

known amino acid sequences of the respective phyloge-

netic group are collated and aligned to produce a mul-

tiple sequence alignment (MSA); secondly, the MSA is

used to build a phylogenetic tree, which provides
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a visual and computational representation of the evo-

lutionary relationships; and thirdly, both the phyloge-

netic tree and the MSA are used in tandem with an

amino acid substitution rate matrix to infer the most

likely ancestral state at each position in the alignment

[30]. The ancestral state is predicted at each position

independently and the results are concatenated to gen-

erate an entire ancestral sequence. The prediction is

thereby determined by three components, the residues

present in extant sequences and how they are aligned,

the evolutionary relationship between the respective

sequences provided in the MSA, and the most likely

substitution that occurred according to the substitution

rate matrix.

The ASR of microsomal P450 enzymes resurrected

to date has provided intriguing insights into changes

that translated to exceptional enzyme features such as

increased thermostability, altered product selectivity,

or improved catalytic activity [28,29]. Despite the

recent success in resurrection of microsomal P450s,

ASR has not been applied yet to mitochondrial cyto-

chromes P450. For this reason, the aim of the present

study was to use ASR for the first resurrection and

biochemical characterization of mitochondrial P450

ancestors. The CYP11A1 subfamily was selected as

target due to its key role in steroid hormone biosyn-

thesis in vertebrates.

Results and discussion

Ancestral sequence reconstruction of CYP11A1

For the inference of the ancestor of CYP11A1

enzymes, a maximum-likelihood, joint reconstruction

approach was employed. The MSA used for the recon-

struction contained a total of 339 extant sequences, of

which 185 sequences were CYP11A1 sequences and

154 were CYP11B/C sequences. The phylogenetic tree

obtained conformed to the expected tree as proposed

for CYP11s previously [8] and was in agreement with

the tree of life to the level of vertebrate classes

(Fig. 1). Accordingly, the CYP11A clade and the

CYP11B/C clade branched separately and the land

vertebrate CYP11Bs branched from fish CYP11Cs.

Given that the two clades are predicted to be ohnologs

that duplicated in the 2R whole-genome duplication

event (the proposed two rounds of genome duplication

occurring in early vertebrate evolution [31]), the esti-

mated age of the ancestor of the vertebrate CYP11As

(CYP11A_N1) is ~ 450 million years [32]. In order to

gain insights into the evolution of CYP11A enzymes,

we selected two nodes for synthesis and subsequent

biochemical characterization of the respective ancestral

CYP11A enzymes. CYP11A_N1 was of special interest

since it showed only 55.0% sequence identity to the

extant CYP11A1 form, suggesting potentially altered

product or substrate selectivity which could provide

novel insights into ancient steroid hormone biosynthe-

sis. Furthermore, recent studies have revealed that

microsomal ancestral P450s of similar age display a

significant increase (up to 30 °C) in thermostability

[27,28]. Thus, CYP11A_N1 was of additional interest

to test whether the stabilization of the P450 fold via

ASR also applies to mitochondrial P450 enzymes. The

ancestor of mammalian CYP11A enzymes

(CYP11A_Mammal_N101) shared 71.5% sequence

identity with extant bovine CYP11A1 and was selected

as an intermediate ancestor for characterization to

gain insights into gradual evolutionary changes with

respect to activity and stability compared with extant

bovine CYP11A1 and CYP11A_N1. A multiple

sequence alignment covering the whole amino acid

sequences of all CYP11A1 variants is presented in

Fig. 2.

Recombinant production of selected CYP11A1

variants

The ancestral CYP11A1 enzymes, CYP11A_Mam-

mal_N101 and CYP11A_N1, as well as the bovine

CYP11A1 variant were successfully co-expressed with

the molecular chaperones GroES and GroEL in

recombinant E. coli C43(DE3) cells. Initial measure-

ments of the CYP11A1 content in the cell homoge-

nates suggested very high expression levels for all

CYP11A1 variants ranging from 1200 to

1600 nmol�L�1 cell culture, which represent the highest

reported values for CYP11A1 yields in recombinant

E. coli cells so far [33]. The nearly twofold improve-

ment of CYP11A1 expression levels could be attribu-

ted to the utilization of the T7 promoter which is

considerably stronger than the previously used trc pro-

moter [34]. However, it is notable that other ancestral

P450s have also shown high recombinant expression

yield, so a beneficial effect of protein stability on

expression yield cannot be excluded. The his-tagged

CYP11A1 proteins were purified from cell homoge-

nates via a two-step purification process that involved

immobilized metal ion affinity chromatography

(IMAC) and subsequent ion exchange chromatography

(IEC). Homogeneity of the purified CYP11A1 enzymes

(54 kDa) was confirmed via SDS/PAGE analysis for

both ancestors, CYP11A_Mammal_N101 and

CYP11A_N1, whereas the bovine CYP11A1 showed

minor contamination with the molecular chaperone,

GroEL (60 kDa) (Fig. 3). UV-Vis spectroscopy of the
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purified enzymes revealed the characteristic low spin

state spectrum of oxidized cytochromes P450 includ-

ing the major Soret band (c) at 418 nm as well as

the minor a- and b-bands at in the Q-band region,

respectively. Upon reduction with sodium dithionite

and binding of carbon monoxide (CO), all recombi-

nant CYP11A1 proteins exhibited the typical batho-

chromic shift of the c-band toward 450 nm,

suggesting proper protein folding and orientation of

the prosthetic heme group in the active center of the

enzymes [35].

Both ancestral CYP11A1 enzymes are active

CYP11A1 is particularly known for its role in initiating

de novo steroidogenesis in vertebrates by converting

cholesterol to pregnenolone [19]. For this reason, we first

aimed to test the purified CYP11A1 enzymes for side-

chain cleavage (SCC) activity toward the natural sub-

strate, cholesterol, in reconstituted in vitro assays. All

CYP11A1 enzymes, including notably both ancestral

CYP11A1 enzymes, were found to be active and showed

identical product patterns with pregnenolone being the

main reaction product (data not shown). As demon-

strated by time-dependent conversions (Fig. 4A), the

extant CYP11A1 variant showed a nearly twofold higher

cholesterol conversion rate than the ancestral enzymes

under the tested reaction conditions. After 30 min of

incubation, bovine CYP11A1 had converted a total of

83.2 � 4.2 µM cholesterol while the ancestral enzymes

CYP11A_Mammal_N101 and CYP11A_N1 showed sig-

nificantly lower cholesterol conversion values of

41.4 � 7.7 µM and 36.8 � 1.4 µM, respectively. Since

the CYP11A1 ancestors CYP11A_Mammal_N101 and

CYP11A_N1 share just 71.6% and 55.0% identity with

the protein sequence of the extant CYP11A1 enzyme, the

Fig. 1. Maximum-likelihood phylogenetic

tree derived from the set of CYP11

sequences used here. The branches

representing the CYP11B and CYP11C

subfamilies are collapsed to better show

the topology of the CYP11A branch. The bar

indicates branch length in substitutions per

site, a measure of evolutionary age.
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reduced cholesterol SCC activity could be due to several

factors. These include compromised electron transfer,

limited access of the sterol substrate to the active site, or

spatial constraints within the substrate-binding pocket of

the enzyme. For this reason, the spectral dissociation

constant (Kd value) of cholesterol was determined for

each CYP11A1 variant (Table 1). The binding affinity of

cholesterol to both ancestral enzymes, CYP11A_N1 and

CYP11A_Mammal_N101, was 2–2.4 times lower than

that of cholesterol to bovine CYP11A1 and approxi-

mately reflected the reduced SCC activities observed for

the time-dependent cholesterol conversion experiment.

Similarly, the NADPH consumption rates for

CYP11A_Mammal_N101(15.8 � 0.8 nmol�min�1�nmol�1

P450) and for CYP11A_N1 (18.4 � 0.9 nmol�min�1�nmol�1

P450) were considerably low, whereas the high

Fig. 3. UV-Vis spectral features of the purified P450 enzymes. A, Bovine CYP11A1, B, ancestor CYP11A_Mammal_N101, and C, ancestor

CYP11A_N1. Characteristic absorption spectra are shown for the enzymes in the oxidized state (solid lines), dithionite-reduced state (dashed

lines), and dithionite-reduced CO-bound state (dotted lines). Insets display the SDS/PAGE analysis of the corresponding CYP11A1 enzyme

following IMAC and IEC purification. The peqGOLD prestained protein marker IV (VWR) was used as standard.

Fig. 2. MSA of ancestral CYP11A enzymes and bovine CYP11A1. Numbers on top are shown for the N-terminal modified form of bovine

CYP11A1 according to the N-terminal modification by Wada et al. [62]. Red boxes indicate conservation with respect to amino acid identity,

red characters show amino acid similarity, and blue frames show homologous regions. The MSA was created using MAFFT version 7 [81],

and secondary structure elements of bovine CYP11A1 were mapped with the ESPript 3.0 server [82] using bovine CYP11A1 (PDB entry:

3MZS) as the structural template [16]. The sequence of bCYP11A1 shows the bCYP11A1 mutant used in this study with asparagine to

aspartic acid mutation at position corresponding to position 290 [65]. Annotation of the secondary structure elements was adopted from

elsewhere [83].
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Fig. 4. Activity and substrate plasticity of the purified CYP11A1 enzymes. A, Time-dependent conversion of cholesterol with bovine

CYP11A1 (green symbols), CYP11A_Mammal_N101 (blue symbols), and CYP11A_N1 (orange symbols). Data are presented as mean values

and standard deviations of three independent experiments. B, Relative activities of the CYP11A1 enzymes with different sterol derivatives

desmosterol (white bars), cholesterol (pink bars), campesterol (light red bars), and b-sitosterol (red bars). Data were collected from three

independent experiments and scaled to the corresponding enzyme activity with cholesterol. Error bars represent the relative standard

deviation (RSD) of the scaled enzyme activities. Statistical analysis was performed using two-sample t-tests, *P ≤ 0.05, **P ≤ 0.001. C,

Molecular structures of the tested sterol derivatives desmosterol (R1), cholesterol (R2), campesterol (R3), and b-sitosterol (R4). Note that

the complexity of the sterol side chain increases from R1–R4.

Table 1. Substrate affinity of bovine CYP11A1, CYP11A_Mammal_N101, and CYP11A_N1 toward sterol substrates with varying side chains.

Dissociation constants (Kd values) were determined by difference spectroscopy (A390nm–A420nm) in the presence of bovine adrenodoxin

(Adx1–128). Data were fitted using hyperbolic regression analysis in OriginPro 2020 and represent the mean values and standard deviation of

three individual experiments. n. q. Not quantifiable. The substrate-induced spectral change was too low for proper Kd value determination. n.

d. Not detectable. Titration of the substrate did not induce spectral changes.

Variant Cholesterol [µM] Desmosterol [µM] Campesterol [µM] b-Sitosterol [µM]

Bovine CYP11A1 3.3 � 0.4 4.0 � 0.2 5.9 � 0.3 8.8 � 1.1

CYP11A_Mammal_N101 7.8 � 0.4 8.3 � 1.1 8.8 � 1.2 12.4 � 0.8

CYP11A_N1 6.8 � 0.7 4.7 � 0.5 n. q. n. d.
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NADPH consumption rate of bovine CYP11A1

(25.8 � 3.8 nmol�min�1�nmol��1 P450) indicated more effi-

cient interactionswith bovineAdx than bothCYP11A1ances-

tors. Previous studies indeed demonstrated that binding of

cholesterol to CYP11A1 increases binding of Adx and

vice versa, therebypromoting cholesterol conversion ina coop-

erative way [36]. Substrate-induced structural changes to the

electrostatic landscape at the P450 surface seem to play a piv-

otal role in this heterotrophic modulation process [37]. Four

positively charged residues in the bovine CYP11A1 protein

sequence, corresponding to positions K268, K404, K406, and

R427, were identified to be important for electrostatic interac-

tions of CYP11A1 with Adx [38]. While the key residue R427

was well conserved within the protein sequences of extant and

ancestral CYP11A1 enzymes, the other residues differed signif-

icantly from their counterparts in the extant enzyme. Most

notably K406, which is involved in electrostatic interactions

withD72 ofAdx, was substituted in bothCYP11A1 ancestors

by the negatively charged residue aspartate leading to strong

repulsive electrostatic forces between Adx and

CYP11A_Mammal_N101 or CYP11A_N1 [39]. Since substi-

tution of K406 with the neutral amino acid glutamine has

already been reported to impair the binding of Adx to bovine

CYP11A1 significantly [38], the K406D mutation in both

ancestral CYP11A1 enzymes might have comparable or even

worse effects on Adx binding and would explain the observed

decrease in cholesterol SCC activity of CYP11A_Mam-

mal_N101 and CYP11A_N1. Amino acid substitutions of

K404 had comparably low effects, while the contribution of

K268 to Adx binding has not been determined yet. Assuming

thatmitochondrialP450s evolved fromacommonmicrosomal

ancestor, favorable changes of redox partner interaction sites

towardcomponentsofanalternativeETS in themitochondrial

matrix may not only have been crucial for microsomal P450s

to retain their oxygenase function but also to increase affinity

to novel substrates of the emerging steroidogenic pathway.

The distinct differences of redox partner interaction sites and

associated catalytic activities between the ancestral CYP11A1

enzymes and the extant CYP11A1, indeed, support this

hypothesis and might provide unique functional insights into

sequential ETSadaptationprocesses.

The CYP11A1 ancestor, CYP11A_N1, prefers the

cholesterol precursor, desmosterol

The CYP11A1 enzymes were also tested for substrate

specificity with diverse cholesterol analogs that mainly

differed in size and complexity of the sterol side chain.

These included the cholesterol precursor, desmosterol

(5,24-cholestadien-3b-ol), as well as the plant sterols,

campesterol (24a-methylcholesterol), and b-sitosterol
(24b-ethylcholesterol). The activity of all CYP11A1

variants appeared to be largely affected by the

structural complexity of the sterol side chain, since

bulkier chains evidently decreased the efficiency of

sterol conversions with b-sitosterol being the less pre-

ferred sterol substrate (Fig. 4B). Determination of the

binding affinities for each cholesterol analog further

solidified this observation since substrates with bulkier

sterol side chains showed increasingly worse spectral

Kd values compared with that of cholesterol (Table 1).

This trend was particularly apparent for the Kd values

of both mammalian CYP11A1 variants and is in good

agreement with previous studies that reported desmos-

terol as an equivalent substrate to cholesterol [40,41]

while phytosterols were converted less efficiently to

pregnenolone by mammalian CYP11A1 enzymes

[42,43]. Despite supplementation of bovine Adx to

improve the spectral response, binding of phytosterols

to the active site of CYP11A_N1 was not observed

spectrophotometrically under the tested conditions.

Although substrate binding to cytochromes P450 does

not necessarily induce the characteristic type I spectral

shift [44,45], the fact a spectral shift was exclusively

lacking when these bulky sterols were titrated to the

whole subfamily ancestor CYP11A_N1 suggests

impaired access of the substrate to the active site of

CYP11A_N1 or decreased ability to replace water as

the sixth ligand. Intriguingly, the earliest ancestor

CYP11A_N1 was the only CYP11A1 variant that

showed a lower Kd value, and consequently, higher

conversion rates for the cholesterol precursor desmos-

terol than for cholesterol itself, suggesting sequential

adaptation processes of the CYP11A1 active site that

allowed the conversion of novel intermediates of the

evolving cholesterol metabolism. Since desmosterol

also represented the sterol with the least bulky side-

chain (Fig. 4C), spatial constraints within the active

site of CYP11A_N1 could be the determining factors

in this adaption process.

The CYP11A1 ancestor, CYP11A_N1, is a robust

biocatalyst

As mentioned previously, there is evidence that mito-

chondrial P450s originated from an early microsomal

P450 ancestor [8,9]. Once relocated to the mitochon-

drial matrix, this ancestor would have been faced with

substantial changes in the redox environment, most

notably, with the lack of a compatible ETS. While

residing on the cytoplasmic side of the ER membrane,

microsomal P450s received electrons from a NADPH-

dependent reductase (CPR). In the mitochondrial

matrix, however, a cognate CPR enzyme was not pre-

sent and consequently, ancient mitochondrial P450s

would have had to receive electrons from an
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alternative ETS to retain their monooxygenase func-

tions. Initial interactions of ancient mitochondrial

P450s with incompatible components of an already

existing mitochondrial ETS [46] might have been ineffi-

cient and, thus, might have resulted in enhanced for-

mation rates of reactive oxygen species (ROS) during

the P450 catalytic cycle. Extensive ROS formation due

to poor electron coupling has been reported to lead to

rapid inactivation of extant P450 enzymes, particularly

in steroidogenic tissues of the adrenal cortex [47]. For

this reason, we hypothesized that an increased toler-

ance against high ROS levels was crucial for ancient

P450s to stay active and evolve specialized steroido-

genic functions in the mitochondria. In order to test

this hypothesis, the extant CYP11A1 enzyme as well

as its ancestors CYP11A_Mammal_N101 and

CYP11A_N1 were exposed for 10 min to increasing

levels of hydrogen peroxide (H2O2) to get a broad pic-

ture on the stability of the ancestors against ROS

(Fig. 5A), although exact H2O2 concentrations in adre-

nal mitochondria are not known yet. The residual

cholesterol SCC activity was tested as described in the

Materials and methods section. Intriguingly, half of

the extant CYP11A1 enzymes were already inactivated

at H2O2 levels of 11 � 1 nmol�pmol�1 P450 whereas

its closely related ancestor CYP11A_Mammal_N101

was able to withstand approximately sixfold higher

H2O2 levels of up to 69 � 7 nmol�pmol�1 P450. How-

ever, the most ancient CYP11A1 enzyme CYP11A_N1

showed a striking increase in ROS stability, tolerating

20-fold higher H2O2 levels of up to

190 � 35 nmol�pmol�1 P450.

These results might indicate that ancient mitochon-

drial P450s were not as susceptible to inactivation by

ROS as their extant counterparts. Furthermore, this

ability seems to have been lost as evolution of

steroidogenic P450 enzymes proceeded to a point at

which enhanced stability against ROS no longer pro-

vided any evolutionary advantage for ancient mito-

chondrial P450s. A gradual loss of ROS stability

might hint toward convergent adaption processes of

the redox partner interaction sites that ultimately

resulted in an optimized electron transfer and, in turn,

to lower ROS formation. The extraordinary resistance

against ROS raised the question as to whether ances-

tor CYP11A_N1 might have acted as a peroxygenase-

like P450, which is able to utilize H2O2 to drive cataly-

sis. However, incubation of CYP11A_N1 with choles-

terol and H2O2 levels of up to 100 nmol�pmol�1 P450

did not lead to any detectable product formation (data

not shown). To the best of our knowledge, enhanced

stability toward ROS has not been reported for the

resurrected microsomal P450 ancestors and could, in

fact, be a unique enzyme feature of resurrected mito-

chondrial P450s.

Microsomal P450 ancestors were shown in previous

studies to possess substantially increased thermostabil-

ity over their descendants [27–29]. For this reason, we

tested the thermostability properties of the purified

ancestral CYP11A1 enzymes via thermal unfolding

studies. Initial CD spectroscopy in the far UV demon-

strated characteristic signatures of helix-rich proteins

with two signal minima at wavelengths of approxi-

mately 210 nm and 220 nm, suggesting similar sec-

ondary structure element compositions for all tested

CYP11A1 enzymes (Fig. 5B). The enzymes were

exposed to a linear temperature gradient, and signal

changes at a wavelength of 210 nm were used to calcu-

late the fraction of unfolded CYP11A1 at the indicated

temperature. In general, all tested CYP11A1 variants

showed sigmoidal melting curves suggesting highly

cooperative protein unfolding kinetics. The transition,

at which half of the protein fraction still existed in a

folded state, represented the individual melting temper-

ature (Tm) of the CYP11A1 enzymes (Fig. 5C). Appar-

ently, the Tm of the ancestral

CYP11A_Mammal_N101 enzyme did not differ nota-

bly from that of the extant CYP11A1 enzyme. Both

showed mesophilic Tm values of approximately

49.2 � 0.3 °C. It is noteworthy, that a second transi-

tion was evident in the melting curve of the purified

bovine enzyme, which might derive from the previ-

ously described contamination with a small fraction of

the molecular chaperone GroEL. However, the Tm

value of the vertebrate ancestor CYP11A_N1 was

strikingly increased by 25 °C to 74.2 � 0.4 °C and

even exceeded the reported melting temperatures of

some naturally thermostable P450s including

CYP154H1 (67 °C) from Thermobifida fusca [48],

CYP231A2 (65 °C) from Picrophilus torridus [49] or

CYP450-T2 (56.8 °C), a not-yet-classified P450 derived

from metagenomic data of the Binh Chau hot spring

[50]. In contrast to these P450s, CYP11A_N1 was not

likely to have existed in a hot environment where ther-

mal robustness was required, given that it is expected

to have evolved around the time vertebrates emerged

on earth and where temperatures were similar to those

presently [9]. However, such high thermal robustness is

in line with other ancestral vertebrate P450s previously

reconstructed and characterized [27–29]. We propose

that the observed high level of thermostability seen in

these ancestors is a carryover from older P450 enzymes

from primordial organisms which may have existed in

hot, marine environments on the early Earth. This

thermal stability may have facilitated the diversifica-

tion of the mitochondrial P450 enzymes toward new
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functions in steroid metabolism by buffering the

potentially destabilizing effect of mutations. However,

in the absence of an explicit selection pressure for ther-

mal robustness, such diversification may have led to a

loss of thermal robustness over time, finally resulting

in the rather thermolabile extant P450 forms observed

today. Alternatively, we cannot exclude the possibility

that the increase in thermal robustness is an artifact of

the maximum-likelihood method used for inferring the

ancestral state [51]. However, the degree of stabiliza-

tion expected from such an artifact would be expected

to lead to an increase in Tm of a few degrees [52]

rather than the ~ 25 �C between N1 and the extant

bovine enzyme seen here.

Determination of the 10T50 values, the temperature

at which the initial cholesterol SCC activity is reduced

Fig. 5. Comparison of the ROS resistance and thermostability of the bovine CYP11A1 enzyme (green lines and symbols) and the ancestral

CYP11A1 enzymes CYP11A_Mammal_N101 (blue lines and symbols) and CYP11A_N1 (orange lines and symbols). A, Residual activity of the

CYP11A1 enzymes following incubation with increasing concentrations of H2O2 for 10 min. Data were collected from three independent

experiments and scaled to the corresponding cholesterol SCC activity of the untreated enzymes. Error bars represent the RSD of the scaled

enzyme activities. B, Representative CD spectra for each enzyme were recorded at 20 °C with enzyme concentrations of 5 µM in 50 mM

potassium phosphate buffer, pH 7.4. C, Thermal melting curves of ligand-free CYP11A1 enzymes. Changes in the molar ellipticity at 210 nm

were used to calculate the fraction of unfolded proteins at the indicated temperature. Data represent the mean values of two technical

replicates. D, Residual activity of the CYP11A1 enzymes following exposure to elevated temperatures for 10 min. Data were collected from

three independent experiments and scaled to the corresponding cholesterol SCC activity at 37 °C. Error bars represent the RSD of the

scaled enzyme activities.
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to 50% after 10 min of heating, confirmed the previ-

ously described results of the thermal unfolding studies

(Fig. 5D). While the extant CYP11A1 enzyme showed a

moderate 10T50 value of 42.0 � 0.9 °C, the correspond-

ing value for the ancestor CYP11A_N1 was significantly

increased to 67.5 � 0.8 °C. Again, the difference in

thermostability between bovine CYP11A1 and

CYP11A_N1 was calculated to be 25 °C, which is con-

sistent with that of the CD measurements. Although the

Tm values for the ancestral CYP11A_Mammal_N101

and the extant CYP11A1 enzymes were determined to

be identical in CD measurements, the 10T50 of

CYP11A_Mammal_N101 seemed to be slightly

increased by 3 °C to 45.4 � 0.5 °C, suggesting a differ-

ent segmental unfolding process for CYP11A_Mam-

mal_N101 that might favor the integrity of its catalytic

center.

Determinants of thermostability for the CYP11A1

ancestor, CYP11A_N1

The thermal stability of proteins, particularly in com-

parison with their mesophilic counterparts within the

same family, has been attributed to a number of fac-

tors such as additional disulfide bonds, expanded aro-

matic and electrostatic networks, differences in

hydrogen-bonding, shorter loop structures, and a

higher degree of buried hydrophobic surface area

[53,54]. We computed and analyzed these factors on

the basis of homology models for the extant and

ancestral CYP11A1 enzymes. First of all, we found a

unique tyrosine to cysteine substitution at position 242

in the G-helix of the thermostable vertebrate ancestor

CYP11A_N1, which was found in a promising posi-

tion to form a putative disulfide bond with a corre-

sponding cysteine at position 173 in the E-helix. While

the cysteine at position 173 was also present in the

sequence of the ancestral CYP11A1 enzyme

CYP11A_Mammal_N101, the extant bovine CYP11A1

variant did not contain either of the cysteine residues

that possibly contributed to the enhanced thermosta-

bility of the CYP11A1 ancestor CYP11A_N1. Based

on the atomic coordinates in the obtained homology

model of CYP11A_N1, the distance between the thiol

groups of C173 and C242 is 6.4 �A and, thus, beyond

the contact distance for disulfide bond formation

(Fig. 6A) [55]. However, we hypothesized that a cer-

tain degree of structural flexibility, particularly known

for the F/G-loop region and adjacent helices of cyto-

chromes P450, could allow both cysteine residues to

come close enough for disulfide bond formation. In

order to test this hypothesis, the cysteine at position

242 was replaced via site-directed mutagenesis by a

tyrosine, the corresponding amino acid in the protein

sequences of the mesophilic bovine CYP11A1 and

CYP11A_Mammal_N101. Thermal unfolding studies

with the purified C242Y mutant of CYP11A_N1, how-

ever, did not show any difference in melting tempera-

ture compared with that of the parental CYP11A_N1

(Fig. 6B), thus excluding disulfide bond formation as a

potential factor for stabilization of ancestor

CYP11A_N1. Detailed investigations of the CYP11A1

structures showed not only that all three homology

models exhibited the same arrangement of secondary

structural elements in space but also identical lengths

of loop structures. Thus, this factor can also be ruled

out as explanation for the thermostability of the

CYP11A1 ancestor, CYP11A_N1. On the other hand,

this is not surprising, as the same structural template

(human CYP11A1, PDB entry 3N9Y) was used [19].

Furthermore, there was no indication that differences

in amino acid composition (hydrophobic vs. hydrophi-

lic) would be decisive, since CYP11A_Mammal_N101

exhibited the highest fraction of hydrophobic amino

acids (Table S1) but was not the most thermostable

enzyme. Consideration of intramolecular contacts (hy-

drogen bonds, salt bridges, and Cb beta contacts)

showed likewise no conclusive picture (Table S2).

Although the three CYP variants do not substantially

differ in their amino acid composition, the accessibility

of their hydrophobic surface area, which is reflected by

calculated solvation energies, could still be different.

Surprisingly, the ancestral CYP11A_N1 showed the

most unfavorable value. Thus, an optimized polar sur-

face could not be the driving force for thermostability

in this case. Still, the degree of hydrophobic internal

packing may vary in between these P450 variants and,

thus, contribute to increased thermostability as

recently shown for ancestral enzyme variants of the

human drug-metabolizing cytochrome P450 CYP3A4

[27]. The solvation score of the SWISS-Model is

indicative of that and points toward a preferred situa-

tion in the ancestral CYP11A_N1 (Table S3). A better

hydrophobic packing would also be reflected by better

nonbonding (van der Waals) interactions. Moreover, a

more favorable arrangement of hydrogen bonds and

salt bridges will give rise to preferable electrostatics.

These factors were computed as force field energies

(Table S4) and indicate that CYP11A_N1 is optimal

regarding electrostatic interactions (hydrogen bonds

and salt bridges), but not in terms of hydrophobic

packing, which is also apparent by the worse solvation

energy. Since CYP11A_Mammal_N101 contains more

hydrogen bonds, but the same number of salt bridges,

it becomes apparent that those in the ancestral

CYP11A_N1 must be more optimally arranged.
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Therefore, we conclude that the thermostability of the

ancestral CYP11A_N1 is caused by a more favorable

network of salt bridges that, in summary, stabilize the

interactions between the secondary structural elements

better than in the other CYP11 enzymes.

Conclusion

The emergence of mitochondrial P450 seems to coin-

cide with the development of steroid hormone biosyn-

thesis in chordates. Several studies on the phylogenetic

relationships between cytochromes P450 from basal

vertebrates suggested a plausible model for the devel-

opment and diversification process of mitochondrial

P450s from a common microsomal ancestor [8,9].

However, these studies did not provide any insights

into the structural changes that were necessary for

mitochondrial P450s to adapt to the novel environ-

ment in the mitochondrial matrix or to develop novel

steroidogenic functions. Here, we used the strategy of

ancestral sequence reconstruction to resurrect the first

ancestral enzymes of mitochondrial P450s. Our find-

ings derived from diverse in vitro studies revealed

unique properties of the ancient CYP11A1 enzymes.

For the first time, cytochrome P450 ancestors were

shown to exhibit increased stability toward elevated

levels of ROS resulting from poor electron coupling

due to inefficient redox partners’ interactions, as

demonstrated for both ancestral CYP11A1 enzymes

using an extant mitochondrial electron transfer system.

Since ROS formation leads to rapid inactivation of

P450 biocatalysts, the tolerance of ancient CYP11A1

enzymes toward high levels of ROS actually might

have helped ancestral P450s to stay active and undergo

further crucial diversification processes in the mito-

chondrial matrix. Furthermore, the ancestral enzyme

CYP11A_N1 seemed to prefer the cholesterol precur-

sor, desmosterol, as sterol substrate, a novel finding

that suggests convergent evolution processes for

steroidogenic P450s and enzymes involved in choles-

terol biosynthesis. Finally, the ancestor N1 exhibited a

striking increase in thermostability compared with the

extant CYP11A1 enzyme, a desirable feature that will

significantly contribute to the development and appli-

cation of CYP11A_N1 as promising P450 biocatalyst

for the biotechnological production of steroid hor-

mones.

Materials and methods

Ancestral sequence reconstruction

ASR was performed using extant sequences obtained by

searching the UniProt and NCBI databases using bovine

CYP11A1 (UniProt accession no. P00189) and bovine

CYP11B1 (UniProt accession no. P15150) sequences and

Basic Local Alignment Search Tool (BLAST) [56] to search

for homologue sequences. The collected sequences were

clustered using CD-HIT [57] with a cutoff of 99.99% to

remove duplicate sequences. Subsequently, sequences were

aligned iteratively using MAFFT [58], followed by iterative

rounds of manual curation using Jalview [59] to remove

anomalous sequences (containing apparent frameshifts,

internal gaps and insertions, and short sequence fragments

(< 400 ~ amino acids). A total of 339 sequences were

included in the final alignment, which was then used to

Fig. 6. Evaluation of a putative disulfide bond in the structure of the thermostable CYP11A_N1. A, Superposition of the homology models of

the bovine CYP11A1 enzyme (cyan) and the ancestral variants, CYP11A_Mammal_N101 (magenta), and CYP11A_N1 (apricot). The crystal

structure of human CYP11A1 (PDB entry: 3N9Y) was used as template for the protein structure modeling via the SWISS-Model web server

[74]. The yellow rectangle displays a detailed view of the protein region where the thiol groups of two cysteine residues (at positions 173

and 242) might be involved in the formation of a putative disulfide bond in CYP11A_N1. B, Thermal melting curves of the ligand-free

parental CYP11A_N1 (orange open circles) and the C242Y mutant (light gray open circles). Changes in the molar ellipticity at 210 nm were

used to calculate the fraction of unfolded proteins at the indicated temperature. Data represent the mean values of two technical replicates.
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generate the phylogenetic tree with the RaxML program

[60]. The GRASP web server was used for the ancestral

inference [61]. The N termini of the inferred ancestors were

modified according to Wada et al. [62] and the N-terminal

truncation of inferred sequences was done based on the

MSA and the alignment with the bovine CYP11A1 extant

form. The resulting novel amino acid sequences were

reverse translated to cDNA avoiding the NdeI, HindIII,

SalI, and XbaI restriction sites.

Reagents and enzymes

Dehydrated culture media were acquired from Becton,

Dickinson and company (Franklin Lakes, NJ, USA). PCRs

were performed with PhusionTM High-Fidelity DNA-

Polymerase from Thermo Fisher Scientific GmbH (Karl-

sruhe, Germany). Oligonucleotides were synthesized by

Eurofins Genomics GmbH (Ebersberg, Germany). Restric-

tion enzymes as well as the Instant Sticky-end Ligase were

purchased from New England Biolabs GmbH (Frankfurt

am Main, Germany). Glucose-6-phosphate dehydrogenase

was purchased from Roche (Basel, Switzerland). Choles-

terol oxidase and catalase were acquired from Merck

KGaA (Darmstadt, Germany). Sterols were purchased

from TCI Deutschland GmbH (Eschborn, Germany).

Isopropyl-b-D-thiogalactopyranoside, 5-aminolevulinate,

and the reduced form of NADPH were acquired from Car-

bolution Chemicals GmbH (Saarbr€ucken, Germany).

HPLC grade solvents and water were obtained from Fisher

Scientific GmbH (Kehl, Germany). All other chemicals

were acquired from Sigma-Aldrich (Schnelldorf, Germany).

Bacterial strains, expression vectors, and culture

conditions

All bacterial strains and vectors used in this study are listed

in Table S5. Escherichia coli TOP10 cells were used for the

assembly and propagation of all vector constructs. Recom-

binant production of the CYP11A1 variants was carried

out in E. coli C43 (DE3) cells. The bovine redox partners’

adrenodoxin (Adx1–128) and adrenodoxin reductase (AdR)

were expressed in E. coli BL21 (DE3) cells. All E. coli

strains were transformed using a standard calcium chloride

(CaCl2) transformation process [63]. Growth media for

recombinant E. coli cells were supplemented with

50 µg�mL�1 kanamycin for the chaperone GroES/EL

encoding vector pGro12 and 100 µg�mL�1 ampicillin for

pET17b-derived expression vectors. Seed cultures for all

bacterial cells were prepared in LB-Miller medium [64] sup-

plemented with appropriate antibiotics. Expression cultures

for recombinant protein production were prepared accord-

ingly in 200 mL of TB medium [64] supplemented with

1 mM 5-aminolevulinate and inoculated with 2 mL of the

corresponding seed culture.

DNA manipulation

The gene strings of all CYP11A1 variants were synthesized

by Eurofins Genomics GmbH. The extant CYP11A1 form

used in this study is a bovine CYP11A1 mutant with an

asparagine to aspartic acid substitution at position 290 [65].

The 3´ ends of the cDNAs were extended with a hexa-

histidine coding sequence (5´-CATCATCACCATCAT

CAT-3´) to facilitate enzyme purification via affinity chro-

matography. Standard restriction digestion and ligation

were used to insert the genes between the NdeI and HindIII

sites of the pET17b expression vector (Novagen, Madison,

WI, USA). In order to evaluate the contribution of a puta-

tive disulfide bond to the enzyme stability of the younger

CYP11A1 ancestor CYP11A_Mammal_N101, site-directed

mutagenesis was carried out according to standard proto-

cols [66]. The mutagenic primer pair (5´-
CATGCCGATAAATACATCCAGAAAATCTATCGTC

AG-3´ and 5´-TCTGGATGTATTTATCGGCATGGTT

0AAAAATCAC-3´) contained a single codon substitution

(underlined) to replace one of the involved cysteine residues

at position 242 of the CYP11A_N1 sequence by a tyrosine

residue. The codon exchange (C242Y) was confirmed by

sequencing at Eurofins Genomics GmbH.

Protein expression and purification

Recombinant production of all CYP11A1 variants was car-

ried out as described previously [33] with slight changes to

the purification process. Following protein expression, cell

pellets were suspended in 50 mL lysis buffer (pH 7.4) con-

taining 50 mM potassium phosphate, 150 mM sodium chlo-

ride, 150 mM sodium acetate, 0.1 mM PMSF, 1% (v/v)

Tween-20, 1.5% (w/v) sodium cholate, and 20% (v/v) glyc-

erol. The bacterial cells were disrupted by sonication on ice

for 20 min (15 s pulse on, 15 s pulse off, 13% amplitude).

Following removal of cell debris by centrifugation at

30 000 g and 4 °C for 30 min, the supernatants of the

lysates were applied to individual ProtinoTM Ni-NTA agar-

ose columns (Macherey-Nagel, D€uren, Germany) equili-

brated with lysis buffer. The columns were washed three

times with 50 mL of lysis buffer containing 10 mM, 20 mM,

and 40 mM imidazole, respectively. The column bound pro-

tein was eluted with lysis buffer supplemented with 250 mM

imidazole and subsequently dialyzed extensively overnight

against dilution buffer (pH 6.8) containing 20 mM potas-

sium phosphate, 0.1 mM PMSF, 1% (v/v) Tween-20, 1.5%

(w/v) sodium cholate, and 20% (v/v) glycerol. The dialyzed

protein solutions were applied to individual SP SepharoseTM

Fast Flow columns (Cytiva Europe GmbH, Freiburg, Ger-

many) equilibrated with dilution buffer. The columns were

washed 3 times with 25 mL of dilution buffer containing

25 mM, 50 mM, and 100 mM sodium chloride, respectively.

The bound protein was eluted with dilution buffer
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supplemented with 300 mM sodium chloride. Finally, the

obtained protein solutions were washed several times with

dilution buffer using AmiconTM Ultra Centrifugal Filter

Units (Merck KGaA) with MWCOs of 30 kDa, concen-

trated to 250 µM stock solutions and stored at �80 °C until

use. Carbon monoxide (CO) difference spectroscopy was

used to determine the concentration of the purified

CYP11A1 enzymes based on the molar extinction coeffi-

cient of 91 mM
-1�cm-1 [67]. Homogeneity of the purified

CYP11A1 enzymes was assessed following separation on

15% SDS polyacrylamide gels and subsequent Coomassie

staining.

Recombinant bovine adrenodoxin (Adx1–128) and bovine

adrenodoxin reductase (AdR) were produced and purified

as described elsewhere [68,69]. The final protein concentra-

tions were calculated based on the molar extinction coeffi-

cients of e414 = 9.8 mM
-1�cm-1 for Adx [70] and

e450 = 10.9 mM
-1�cm-1 for AdR, [71]. The Q values for Adx

(A414/A276) and AdR (A450/A276) were in good agreement

with those from previous reports.

CD spectroscopy

CD spectroscopy was performed on a JASCO 715 spec-

tropolarimeter equipped with a Jasco PTC-348WI tempera-

ture controller (JASCO Deutschland GmbH, Pfungstadt,

Germany). CD spectra were recorded at 20 °C in the far-

UV region between 200 nm and 260 nm with data intervals

of 0.5 nm and a spectral bandwidth of 1 nm. CYP11A1

samples were diluted to concentrations of 5 µM using

50 mM potassium phosphate buffer (pH 7.4) and trans-

ferred to QS-100 macrocuvettes (Hellma Analytics GmbH

& Co. KG, M€ullheim, Germany) with a path length of

0.1 cm. During measurements, the cuvette chamber was

constantly purged with nitrogen gas (5 L�min�1). At least

10 scans were accumulated to obtain the mean values for

ellipticity. For thermal unfolding studies, the CYP11A1

samples were exposed to a temperature gradient from 20 to

90 °C with an increment of 0.1 °C at a heating rate of 1 °C
per min. Changes in the molar ellipticity were monitored at

210 nm. The fractions of unfolded proteins were calculated

as described elsewhere [72]. The resulting melting curves

were fitted to the Boltzmann function in OriginPro 2020,

and individual Tm values for the CYP11A variants were

derived from the calculated inflection point of the sig-

moidal fits.

Ligand binding assay

Dissociation constants (Kd values) for all sterol substrates

were determined on a CLARIOstar� Plus microplate

reader (BMG Labtech, Ortenberg, Germany) using differ-

ence spectroscopy as described elsewhere with slight modifi-

cations [73]. Samples containing 1 µM CYP11A1 and 20 µM

Adx1–128 were prepared in 200 µL conversion buffer

(50 mM HEPES, 0.05% (v/v) Tween-20, pH 7.4) and incu-

bated with increasing concentrations of sterol substrates

dissolved in 2-hydroxypropyl-b-cyclodextrin (b-CD). The

final concentration of b-CD in all mixtures was 0.45% (w/

v) to avoid any effect of b-CD supplementation on sterol

binding. A sample supplemented with pure b-CD was used

as reference. Mean values for the peak-to-through differ-

ences (DA390nm–420nm) of three individual experiments were

plotted using OriginPro 2020, and Kd values were calcu-

lated from hyperbolic regression analysis.

In vitro conversion of sterols by CYP11A1

variants

CYP11A1-mediated conversion of sterols was carried out

in 1.5-mL reaction tubes. The reconstituted reaction mix-

tures (250 µL) consisted of 0.5 µM CYP11A1, 10 µM Adx,

1.5 µM AdR, and 100 µM of the corresponding sterol sub-

strate (prepared as 10 mM stock solutions in 45% (w/v) 2-

hydroxypropyl-b-cyclodextrin in water) in 50 mM HEPES

buffer (pH 7.4) supplemented with 0.05% (v/v) Tween-20.

In addition, a NADPH regeneration system, comprised of

1 mM MgCl2, 5 mM glucose-6-phosphate, and 1 U glucose-

6-phosphate dehydrogenase per reaction, was applied. The

conversion was started by adding 500 µM NADPH to the

reaction tubes. Following conversion at 37 °C and

1000 r.p.m. in a ThermoMixer� (Eppendorf, Wesseling,

Germany) for the indicated times, the reactions were

stopped by boiling for 2 min in a water bath. To enable

UV detection of the reaction product pregnenolone, the

reaction mixtures were subsequently treated with 0.2 U of

cholesterol oxidase. Prior to extraction, the samples were

supplemented with 100 µM of the internal standard 21-

hydroxyprogesterone (DOC). Thermal inactivation studies

of the purified CYP11A1 variants were carried out follow-

ing exposure to elevated temperatures for 10 min. In order

to avoid negative effects on other enzyme constituents of

the in vitro system, the CYP11A1 solutions were heated

separately and chilled to room temperature prior to addi-

tion to the reaction mixtures. Similarly, H2O2 tolerance

assays were carried out following preincubation of the

CYP11A1 enzymes with increasing concentrations of H2O2

for 10 min and subsequent inactivation of residual H2O2

with 10 U catalase per reaction. The remaining side-chain

cleavage activity for cholesterol was determined after

15 min of conversion as described above.

Steroid extraction and analysis

In vitro reactions were extracted twice with double the vol-

ume of ethyl acetate under vigorous shaking. The organic

supernatants were combined and evaporated to dryness

using a UNIVAPO 100 H vacuum concentrator centrifuge
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UniEquip, Planegg, Germany). Residual steroid extracts

were suspended in 150 µL of pure acetonitrile and subjected

to RP-HPLC analysis on a JASCO 2000 series HPLC sys-

tem using a Nucleodur 100-5 C18 EC column (Macherey-

Nagel). The mobile phase consisted of 10% acetonitrile in

water on channel A and pure acetonitrile on channel B. The

following gradient was used for separation of the steroids:

0–10 min, 0% B to 100% B; 10–17.5 min, 100% B; 17.5–
17.6 min, 100% B to 0% B; and 17.6–20 min, 0% B. The

flow rate was changed as follows: 0–10 min, 1.0 mL�min�1

to 2.0 mL�min�1; 10–17.5, 2.0 mL�min�1; 17.5–17.6 min,

2.0 mL�min�1 to 1.0 mL�min�1; and 17.6–20 min,

1.0 mL�min�1. The column oven temperature was set to

40 °C, and the injection volume was 40 µL per sample.

Detection of the internal standard, DOC, and the reaction

product, progesterone, was carried out at a wavelength of

240 nm. The corresponding progesterone yields were

calculated based on the peak area ratios of progesterone

to DOC, which were shown to be linear (y = 0.00846x –
0.00216; R2 = 0.999) over a broad range of concentrations.

Computational methods

Homology models for the three CYP11A1 variants were

generated using the SWISS-Model web server [74,75].

The crystal structure of human CYP11A1 (PDB entry

3N9Y, chain A) was selected as template for all three

P450 variants due to its higher resolution (2.10 �A) com-

pared with that of bovine CYP11A1 (PDB entry 3MZS,

2.50 �A). The corresponding evaluation scores are given in

Table S1. The heme (HEM) moiety was added manually

to each model. The WHAT IF web interface was used

to obtain the number of (potential) hydrogen bonds, salt

bridges, and Cb contacts, respectively [76]. Solvation

energies were computed using the PDB2PQR and APBS

web servers [77,78]. Hydrogen atoms were added to the

homology models employing the ProToss functionality of

the ProteinsPlus web service [79] prior to calculation of

the force field energies using the SWISS-PDB Viewer

[80].
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