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Abstract: Most relevant to predicting the behavior of shape-memory-alloy (SMA)-based actuator-
sensor applications activated by Joule heating are the electro-mechanical characteristics of the material
under consideration. For a comprehensive characterization, a single setup that is able to provide all
relevant data and information is desirable. This work covers the design, implementation and valida-
tion of such a high-end test bench for the holistic characterization of SMA micro-wires. In addition,
the setup provides the possibility of application simulation experiments. Key elements of the design
are the clamping mechanism guided on air bearings, a linear direct drive, a high-resolution load cell,
a high-precision constant current source and a stress-controlled in-line wire sample installation. All
measurements take place inside an isolated, temperature-controlled chamber. With the presented
setup, the electro-mechanical and thermal characteristics of SMA wire samples with diameters from
20 µm to 100 µm can be determined. Via hardware-in-the-loop (HiL) implementation, the outputs
with different biasing mechanisms and additional end-stops can be simulated even at high ambient
temperatures. The generated results facilitate the prediction of the exact characteristics of SMA-driven
actuator-sensor systems in a variety of applications and lead to a better general understanding of the
alloy’s properties. All functionalities and features of the setup are presented by discussing the results
of exemplary experiments.

Keywords: shape memory alloy; nickel–titanium; NiTi; Nitinol; material characterization; actuator;
superelastic; tensile test; high temperature; hardware-in-the-loop

1. Introduction

Shape memory alloys (SMA) show, on the one hand, a great potential to reduce the
weight, size and energy consumption of existing drive systems. On the other hand, they
enable the integration of actuators in new areas, where spatial conditions typically prevent
active elements from being implemented.

From an engineering perspective, SMA wires can be seen as electrical actuators in wire
shape, and from a material science view, their thermo-mechanical behavior is of foremost
interest, which is the reason for which much research concerning the thermo-mechanical
behavior of SMA materials is being conducted. However, for the design of new SMA-driven
systems, measurement data based on electrically heated wires and the characteristic of their
electrical resistance are of high relevance. Based on this, the temperature dependency and,
especially, methods to influence the transition temperatures of the material are of concern
to investigate the limitations of SMA-driven actuators.

The fundamentals of thermal SMAs have been discussed extensively in research
articles over the last decades [1–5]. Hence, in this work, the following paragraph gives only
a short summary on the topic.
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SMAs have the highest known energy density as an actuator and combine this with
resistance-based self-sensing capabilities [6–8]. They are often used in the form of wires
and are commercially available in the form of binary nickel–titanium (NiTi). This is also
called Nitinol. Nitinol was first investigated by researchers of the U.S. Naval Ordinance
Laboratory in 1963 [9]. Depending on the alloy composition, the material shows varying
thermo-mechanical behavior. Ni-rich NiTi is superelastic and can be stretched up to 10%
at room temperature without permanent damage [10]. The Ti-rich variant, on the other
hand, undergoes a (quasi-)plastic deformation if stretched at room temperature. When
it is then heated to the so-called transformation temperature, it transforms back to its
original geometry. This behavior is called shape memory effect, and strains of 5% or more
can be fully recovered [3]. Both effects are based on a reversible rearrangement of the
materials’ crystal lattice structure, in which a phase transformation from martensite to
austenite takes place. The composition of the lattice structure depends on the temperature
and the material stress, which is why we talk about the thermo-mechanical behavior of
NiTi [11]. To use SMAs as actuators, a Ti-rich NiTi wire is typically heated either by
electrical power via Joule heating or passively by a high-temperature fluid in contact with
the alloy [12,13]. Because of their high energy density, SMA wires are especially suitable for
small and lightweight actuator systems, such as valves, small-size gripping systems and
optical image stabilization [14–16]. Other fields of research include continuum robots for
catheters and endoscopes as well as bionic applications [17–20]. In all these applications,
the self-sensing feature of SMA wires is put to use, and externally positioned sensors
are dispensable. The sensing is based on a change of the electrical resistance that can be
observed when the SMA undergoes the austenite–martensite transformation. The resistance
depends on the contemporary crystal structure, the SMA’s length and cross-sectional area,
as well as its temperature [12,21].

SMA actuators in the shape of thin wires have many benefits and are therefore the
focus of this work, just as they are also the focus of many commercially available products
and recent research and developments [14,22–25]. Due to their unique form factor, they
create much freedom for design, and their surface-to-cross-sectional area ratio enables
faster cooling compared to other forms. The implementation of these wires and electrical
contacting are already well-understood, and they can be bundled to create muscle-like
strands that exhibit high forces with unchanged dynamics [15,26,27]. As most technical
applications have high requirements on the dynamics of the system, this work concentrates
on wires with diameters of 100 µm and below, which are also referred to as microwires.
These microwires have been shown to realize switching cycle times of 1 Hz to 35 Hz with
natural convective cooling in air [2,28].

Dynamic mechanical analyzers (DMA) are used for the thermo-mechanical charac-
terization of SMA wires, but they lack the electrical components necessary to characterize
Joule-heated actuator wires as well as the required repeatable installation process [29,30].
To achieve significant and repeatable measurement data with which the behavior of Joule-
heated SMA wires can be systematically investigated, a test bench is required that is
designed to conduct a variety of experiments on a single sample. The goal of this work
is the development and implementation of a fully adjustable setup for actuator simula-
tions even at high ambient temperatures, on which tensile tests and SMA wire training
procedures can also be performed. Fundamental measurements form the basis of SMA
wire characterization; these enable the systematic comparison of different wire samples
concerning their alloy composition and heat treatment, among other things. This enables
the selection of the best specimen for a certain application and helps to increase the overall
understanding of SMA wire behavior. The data are also used to parametrize and validate
numerical SMA models and simulations, as was undertaken by Mandolino et al. with
measurement data acquired on the setup described in this work [31]. For the design of so-
phisticated SMA-based actuator systems with uncommon load scenarios (e.g., high ambient
temperatures, high material stress), it is important to investigate the SMA’s characteristics
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under the exact same conditions as they are in the application. This ensures that the system
works exactly as intended.

The remainder of this paper is structured as follows. Section 2 covers the design and
features of the test rig as well as the control and measurement system. In Section 3, all
functions of the setup are validated and discussed on the basis of exemplary experimental
results, and Section 4 finishes with a conclusion and an outlook for future publications.

2. Mechanical Design of the Test Bench, Data Acquisition and Measurement Setup

In this section, the mechanical design of the characterization setup is described in
detail. All parts and functions are discussed, including the measurement setup and data
acquisition. The goal is to create a test bench on which a multitude of experiments can be
conducted on a single test specimen and on a single platform without manual manipulation
of the SMA wire. Significant results as well as the ability to change the specimen in an easy
way and to reinstall it with the highest repeatability are mandatory.

The setup is developed for wires with a diameter of 20 to 100 µm and a length of about
100 mm. Due to the delicacy of SMA microwires, a multitude of measurements have to be
taken into account to achieve repeatable and significant experimental results. A schematic
of the setup design and a photograph of the implemented test rig are presented in Figure 1.
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Figure 1. (a) Schematic design of the experimental setup. (b) Picture of the fully implemented test 
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wire clamp (M); 9: insulation adapter; 10: preload drive (P); 11: linear direct drive. 

Figure 1. (a) Schematic design of the experimental setup. (b) Picture of the fully implemented test rig
with closed heating chamber including the following components: 1: load cell; 2: air bearing; 3: SMA
wire reel; 4: PT100 sensors; 5: fixed wire clamp (F); 6: SMA wire; 7: heating chamber; 8: moving wire
clamp (M); 9: insulation adapter; 10: preload drive (P); 11: linear direct drive.

From a mechanical point of view, the key element of the whole setup is the clamping
mechanism to fix the SMA wire specimen. The CAD assembly of the clamps can be seen in
Figure 2a,b. These clamps fix the SMA wire mechanically, and all electrical supply and mea-
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surement connections are attached, as can be observed in the picture of the implemented
clamps in Figures 2 and 3. The clamps are an assembly of milled parts made from stainless
steel. Two offset angled surfaces create a V-shape that defines the position of the SMA wire
exactly in the center of the clamps and in line with the whole setup. The wire is clamped on
the inner surface of the V-shape over a length of 10 mm. The clamps are tightened manually
by spring-loaded hexagonal bolts (parts 1 and 4 in Figure 2). The spring is designed such
that the required clamping force of the SMA wire is reached when it is fully compressed.
Thus, the clamping force is repeatable, and the wire is held in place safely. Furthermore,
the clamps feature guiding rollers and small holes to guide the SMA wire in and out of the
isolating chamber they are placed in. They are electrically isolated from the rest of the test
rig by PTFE adapters (Figure 1, part 9) in order to enable the electrical heating of the SMA
wire without any short circuits.
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Figure 2. On (a,b), the CAD designs of both wire clamps are displayed. Image (c) shows the fixed
bearing of the isolating chamber, and (d) illustrates the floating bearing, which allows for a thermal
expansion. The following parts are displayed: 1: spring to load the clamps, 2: clamping jaws,
3: guiding rollers for the SMA wire, 4: bolt to manually tighten clamps, 5: linear guides for thermal
expansion of isolating chamber.
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sample installed, electrical wiring and PT100 sensor tips.

Each clamp is mounted to an air bearing shaft, as shown in Figure 1 (2), with the goal
of reducing friction losses as much as possible. This is crucial for meaningful micro-wire
force measurements, due to the low absolute force level (0.1 N at 200 MPa for a 25 µm
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diameter wire). The bearing is also necessary to keep the lateral forces caused by the weight
of the clamps from affecting the force measurement and the linear drive.

The fixed wire clamp (F) is connected via the air bearing to a “Futek LSB200 2 lbs”
load cell with a measuring range of approx. +/−10 N. Knowing the SMA wire diameter,
the material stress can be calculated with the force measurement data. The moving wire
clamp (M) is attached to an “Aerotech ANT-25LA” linear direct drive. Its range of travel
is 50 mm, and it is equipped with a sub-micrometer-resolution position encoder that is
used as feedback to obtain the wire strain. Additionally, these two components set the base
for a closed-loop force and position control, called hardware-in-the-loop (HiL). To ensure
a consistent specimen length of 100 mm for each experiment, the distance between the
clamps is precisely set using a gauge, and the linear drive is “homed” and in fixed-position
mode. To install the SMA wire in a repeatable way, an additional stepper motor (Figure 1,
part 10) is installed to pull the wire to a defined pre-stress before it is fixated with the
clamps. This process will be discussed in detail in Section 3.

Microwires need to be shielded from irregular air flow and variable convection. Slight
air streaming in a room, which occurs, for example, due to the air condition, influences
the wire temperature and leads to irregular measurement results. For this reason, the
developed setup features a cylindrical chamber with a diameter of 90 mm and a length
of 200 mm, in which the wire sample as well as the clamps to fix it are placed. The upper
half of the chamber (part 7 in Figure 1b) can be removed to access the wire and the clamps.
Inside, a heating foil is attached to the chamber’s walls, which is depicted in Figure 3. In
combination with PT100 temperature sensors, the temperature within can be precisely
controlled and monitored to set points of up to 100 ◦C. To account for the expansion of the
material when the chamber is heated, the mounting points are located close to the axial
center of the cylinders faces, including a floating bearing on one end. With these measures,
which are depicted in Figure 2c,d, blockage of the moving clamps due to thermal expansion
of the chamber is prevented, and an annular gap for the clamps of less than 0.5 mm is set.

To achieve the highest possible repeatability and least handling effort, the wire is taken
directly from the reel on which it is delivered by the supplier. It is guided into the chamber
through the open fixed wire clamp (F), onto the featured guiding rollers, and then it exits on
the opposite side, where it can be mounted to the pre-loading system (P) (Figure 1, part 10).
This procedure is only necessary for the initial setup. After that, a fresh sample is installed
by pulling a new part of the wire from the spool to the experimental chamber. This kind of
controlled installation process has the benefit that no manual handling or cutting of the
SMA wire is necessary to install a new specimen after the first setup.

The whole setup is mounted on a “ThorLabs” rail system (Figure 4) combined with
milled custom adapters and positioning stages for a precise alignment of the setup. The
outer measurements of the mechanical setup are 800 mm × 350 mm × 200 mm (l × h × w).
The setup is installed on an optical table with air damping to keep shocks and vibrations in
the environment of the setup from interfering with the highly sensitive force measurement.

A “National Instruments NI PXI7852R” FPGA-based system and “LabVIEW” pro-
gramming environment on a PC serve for the control unit as well as data acquisition. The
system features several high-resolution analog and digital in- and outputs. The measured
values are as follows: position of the moving wire clamp, force of the SMA wire, voltage
and current of the wire, temperature inside the chamber. With these values, we can retrace
the stress, strain, electrical resistance and electrical power of the SMA wire specimen. The
ambient temperature in the heated chamber is measured with two PT100 sensors. They
are placed in proximity to the wire: one is close to the fixed clamp, and the other is in the
center of the chamber, as can be seen in Figure 3. Another temperature sensor can be added
to measure either the temperature inside the fixed clamp or the ambient temperature of the
room in which the setup is placed.
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A temperature measurement of the wire specimen itself is omitted. A reliable and
meaningful measurement can only be performed with a contactless measurement method,
for example, an infrared camera. A sensor in physical contact with the wire works as a
heat sink, which corrupts the result and does not acquire the temperature distribution over
the wire length. Due to the necessary calibration, emission factors, curved wire surface,
the small diameter of the SMA and the fact that the sample is enclosed in the chamber, an
infrared measurement also proves to be challenging.

Feedback control loops are implemented on the FPGA real-time system for the tem-
perature in the chamber, the electrical power to heat the SMA wire, as well as the force and
position of the linear direct drive. With the latter, so-called HiL tests can be performed,
which enable one to simulate a spring or constant load as a biasing element of the actu-
ator wire. Position control modes enable the addition of arbitrary end-stops to the load
scenarios.

Apart from heating the ambient air in the chamber, the wire is heated via Joule heating.
Therefore, a custom current source with 24 V supply voltage is designed. An output current
of 0–250 mA is set and controlled by a 0–10 V input signal from an NI module. It features
three separate 0–10 V output channels with a different measurement range to measure the
supplied current. For high electrical powers, in austenitic tensile tests, for example, the
0–250 mA channel is used. For acquiring precise resistance values close to zero power in
the martensitic state, for ambient heating and when cooling down in HiL tests, the channels
0–25 mA and 0–6.25 mA are used for a better resolution. The current source is validated in
preliminary work, and an absolute measurement error of 10 µA is achieved. This kind of
precision is necessary to receive significant resistance values.

All input parameters for the experiment are set on a user interface on the PC, where
the experiments are started, and the measurement data are depicted. When an experiment
is finished, the data are saved for post processing, plotting and analysis with “MATLAB”.

3. Result and Discussion of Validation Experiments and Functionalities

In this section, the functionalities and features of the test rig are proposed and validated
with exemplary results on a variety of NiTi wire specimens. The full range of possible
experiments and sample diameters is introduced by means of various wire manufacturers.
The authors do not intend to compare the different manufacturers and companies to each
other, which is why each experiment is performed with a number of varied parameters to
place the focus on the capabilities of the test setup. The goal here is to present the options
that are provided by the results generated with the help of the test rig, to evaluate and
extract various parameters of interest and application relevant data.
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Before each experiment, the test specimen needs to be installed in a precise and
repeatable manner. As described in Section 1, the length of a SMA actuator is defined by
its current temperature and stress as well as the stress-temperature history. In this article,
we define the austenitic length of the SMA wire at 10 MPa stress as “zero length” L0. The
required heating power can easily be acquired in preliminary experiments, by testing at
which power level the specimen does not contract any further. The benefit of setting this
length as zero is that a SMA wire cannot become any shorter than when it is 100% in the
austenite phase, which makes it absolutely repeatable. The stress is chosen, so that the
wire is straight without slack or bending, and the correct length is set. For a repeatable and
defined length and crystal lattice composition of each SMA wire specimen to be tested, the
installation procedure, presented in a flowchart in Figure 5, is performed.
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Figure 5. Flowchart of the installation procedure of a SMA wire specimen in the test rig.

After all clamps are opened, the specimen is mounted to the fixed wire clamp (F) and
the preloading drive (P) outside the chamber (Figure 1). The moving wire clamp (M) stays
open, and the wire is only guided through it. The wire is pulled by the preloading drive,
while it is electrically heated above Af temperature, until the defined stress of 10 MPa is
reached. Then, the bolt of clamp (M) is tightened to fix the specimen, and the installation
process is finished. The heating current is switched off, and clamp (P) is opened. After this
process, the SMA wire sample is known to have a L0 of 100 mm, and it is ready for the
following experiments.

Each experiment is started by conducting a so-called “reset test”, with the goal of
having the same repeatable initial condition for every test and reducing the influence of the
order in which different experiments are conducted on a specimen. To reset a wire sample
to these initial conditions, it is heated to austenite and cooled back down to martensite
under stress-free conditions.

In general, two different sorts of experiments can be conducted on the test rig: tensile
tests, in which the wire is cycled mechanically, and actuator tests, in which the wire is
cycled thermally via Joule heating. Both variants can be repeated any number of times,
which is used for training experiments. SMA samples for tensile tests are heated with
constant electrical power, constant current or via the ambient air temperature. The pa-
rameters that are variable are the maximum strain, the strain rate and the level of heating
power/current/temperature. The actuator tests are conducted with the help of HiL. Biasing
elements such as springs and masses can be simulated with the help of a closed-loop force
and position control of the linear direct drive. The heating is achieved via triangular current
signals, as a constant power supply is not common in actuator applications due to the
complexity. Parameters that can be varied are the biasing force and spring stiffness, the
activation signal duration, the maximum heating current and the ambient temperature. To
limit the travel, as it is also often done in applications, arbitrary end-stops can be set.

The following resulting data are extracted from all experiments: time in s, force in
N, position (of the linear drive) in mm, voltage over the SMA in V, current in A, ambient
temperature in ◦C. The diameter of each wire sample is measured in a cold state with a
micrometer gauge to calculate the material stress. The change in the wire’s cross-sectional
area under strain or contraction is not considered.

In the following subsections, only stress–strain diagrams are presented instead of force
elongations graphs, to have a common and comparable basis for varying diameters or wire
lengths. Force and elongations can easily be calculated, as the necessary parameters are
listed for each experiment. Electrical resistance and power are calculated from the voltage
and current measured during the experiments.
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3.1. Validation of Installation Process

To validate the previously described installation procedure of wire samples, a special
test series is conducted. The goal is to check the repeatability of the procedure, so that wire
samples can be changed, and the next experiment will have the same initial conditions as
the one before. For the checkup, a “SAES Getters Smartflex 100” NiTi wire specimen with a
measured diameter of 100 µm is used [32]. A specimen is installed in the defined manner,
and a tensile test with 0.2% maximum strain and a constant power of 0.5 W is performed.
The installation procedure and the following tensile test is repeated three times, of which
the results are presented in Figure 6.
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Figure 6. Results of the validation experiments for the wire installation process. Depicted are input
and output parameters over time in (a) and stress over strain in (b). Test parameters: tensile test, max.
strain 0.2%, strain rate 0.005 s−1, wire specimen “SAES Getters Smartflex” 100 µm, electrical heating
power 0.5 W, 3 iterations.

The results of the validation experiment show that the L0′ has a maximum variance of
0.015% strain, resulting in 7 MPa difference in stress at 0.2% strain. These values prove that
a good repeatability of the installation process is provided.

3.2. Tensile Tests under Constant Electrical Power Heating

The first function of the test rig to be introduced are tensile tests in which the maximum
strain, strain rate and heating method are variable parameters. The results are used
for a basic characterization of actuator wires and allow for evaluation and comparison,
for example, of different alloy compositions and transformation temperatures. For this
exemplary experiment, the wire is heated with a constant electrical power and stretched
to 5% strain with a strain rate of 0.01 s−1. A “Dynalloy Flexinol LT (70 ◦C)” NiTi wire
with a measured diameter of 49 µm is used [33]. To examine the tensile characteristics
under different conditions, five tensile tests are performed in a certain order. Before the
experiment starts, the sample undergoes the previously introduced reset procedure, in
which it is heated to full austenite and cooled down without tensile stress. The first tensile
test is conducted with no power applied, but 5 mA of measuring current is used to calculate
the resistance. This test is repeated once. Then, three more tensile tests are performed with
high power (0.37 W), medium power (0.31 W) and low power (0.25 W). For evaluation, the
acquired data are plotted over time and can be seen in Figure 7. In between each of these
iterations, the reset procedure is omitted.
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Figure 7. Results of tensile tests with wire specimen “Dynalloy Flexinol LT (70 ◦C)” of 49 µm diameter
under varied constant power. All results are plotted over time. Test parameters: max. strain 5%,
strain rate 0.01 s−1, ambient temperature 22 ◦C.

The first two tests, in black and red color, show the martensitic material characteristics.
In the first experiment, a detwinning of the martensite can be observed that builds under
stress-free cooling from austenite to martensite. After the material is detwinned, the second
tensile test shows the purely elastic behavior of martensite. In Figure 8, the results of stress
and resistance are plotted over strain. Here, the martensitic detwinning and the elastic
branch can be observed as well. In Figure 8a, the typical stress–strain hysteresis with
varying transformation plateaus depending on the heating power is recognizable, and in
Figure 8b, a linear change in resistance under a tensile load with constant heating power
is evident.
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3.3. Tensile Tests under Constant Electrical Current Heating

A power-controlled electrical supply is uncommon in SMA applications due to the
complexity and lack of benefits. For scientific tests, on the other hand, this is of interest,
because a constant heating power equals a constant temperature if the strain rate and the
rate of the change in power are sufficiently small [34]. As the main target of the setup
is to provide measurement data that are of relevance for applications, experiments with
constant current to heat the wire are also part of the test portfolio and are presented in
the following. In the example depicted in Figures 9 and 10, a strain rate of 0.005 s−1 at a
maximum strain of 5% is chosen for a “Fort Wayne Metals NiTi #5” wire with a measured
diameter of 73 µm [35].
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Figure 10. Results of tensile tests with wire specimen “Fort Wayne Metals NiTi #5” of 73 µm diameter
under varied constant current heating: (a) shows stress vs. strain, and (b) shows resistance vs. strain.
Test parameters: max. strain 5%, strain rate 0.005 s−1.

The method of the experiments is the same as mentioned in Section 3.2, and the heating
is controlled with a constant current instead of constant power. The first tensile test is
conducted with 5 mA of measuring current to calculate the resistance. This test is repeated
once. Then, three more tensile tests are performed with high current (150 mA), medium
current (140 mA) and low current (130 mA). As can be observed in Figure 10a, the main
difference from constant power heating is that the slopes of the transformation plateaus
are steeper and less distinct, due to the increase in electrical power with increasing wire
resistance. A detwinning of the martensite is also evident in this sample for the first tensile
test. The amount of twinned martensite and, with it, the intrinsic two-way-effect of a SMA
wire are varied in between samples. This depends on individual load history as well as
the training and the alloy composition [36]. With the help of the austenitic and martensitic
branch of the stress–strain curves in Figure 10a, as well as the resistance–strain graph in
Figure 10b, the first important tool for the design of a SMA actuator is available.

With these results, the maximum stroke and the force output of an actuator with
a certain bias element can be estimated by a graphical/geometrical comparison of the
austenite and martensite branches. The necessary electrical specifications can be estimated
with the maximum and minimum values of austenitic and martensitic resistance values
and the equivalent heating currents.

3.4. Tensile Tests under Ambient Temperature Heating

The chamber that isolates the specimen from the surrounding air can be used to
passively heat the SMA wire, as described in Section 2. Therefore, a certain temperature
setpoint is chosen, and the inside of the chamber is heated up to that level. In this subsection
tensile tests with a passively heated wire are proposed. The outputs are used to check at
which temperature a sample starts to build up austenite phase fractions and to compare
electrically heated experiments with temperature-controlled tests for evaluating transition
temperatures. For these tests, a NiTi wire sample provided by “Ingpuls GmbH” with a
diameter of 73 µm is used [37]. For each temperature setpoint (22 ◦C, 60 ◦C, 80 ◦C, 100 ◦C),
a tensile test with three iterations is performed. Before every set of tensile tests, the reset
procedure is conducted. Thus, the first iteration of one set deviates from the second and the
third, as can be observed in Figures 11 and 12. For the tensile tests of this subsection, the
maximum strain is set to 6% with a strain rate of 0.005 s−1. All tests are conducted with the
same sample in order of rising temperature. The temperature control is based on the PT100
sensor placed in the middle of the chamber, and the measurement in proximity to the clamp
provides information about the uniformity of temperature distribution inside the chamber.
The temperature-over-time graph in Figure 11 makes this distribution visible. Meanwhile,
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the air in the middle of the chamber is steady at the chosen setpoint. The temperature at
the edge is slightly lower due to small air gaps in the surrounding and the clamp working
as a heat sink.
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Figure 11. Results of tensile tests with a wire specimen by “Ingpuls GmbH” of 73 µm diameter with
varied ambient temperature. Three iterations are performed for each temperature. All results are
plotted over time. Test parameters: max. strain 6%, strain rate 0.005 s−1, measurement current 10 mA.

The shape of the stress–strain hysteresis in Figure 12a, for temperatures of 80 ◦C
and higher, shows the typical austenitic characteristics, as can be expected for an actuator
wire. For the experiment at room temperature, the same detwinning effect in the first
cycle as in the previous subsections can be observed. The set of tensile tests at 60◦ C
ambient temperature shows that the material is already partially transformed to austenite.
To achieve the resistance values, a measurement current of 10 mA is applied during
all experiments. The results of the resistance measurements are plotted over strain in
Figure 12b. The typical linear behavior is observed at 22 ◦C, 80 ◦C and 100 ◦C. The 60 ◦C
experiment shows a hysteretic characteristic, as the sample seems to partially transform
back to austenite when it is fully relaxed.
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Figure 12. Results of tensile tests with a wire specimen by “Ingpuls GmbH” of 73 µm diameter with
varied ambient temperature. Three iterations are performed for each temperature. (a) shows stress vs.
strain, and (b) shows resistance vs. strain. Max. strain 6%, strain rate 0.005 s−1.

3.5. Actuator Tests with Constant Load Bias

The so-called HiL function of the test rig enables the performance of actuator tests
with the simulation of various biasing mechanisms. The linear direct drive is used in a
force-control mode with a closed loop feedback of the force measurement provided by the
loadcell. Constant load biasing with arbitrary levels, a variable linear bias spring with an
adjustable force offset and freely selectable end stops are implemented. In this subsection,
the constant load biasing function of the test rig is proposed with the example of a 100 µm
“SAES Getters Smartflex” NiTi wire. The time sequence of the output data is depicted in
Figure 13.

The test sequence is started with only the measurement current of 10 mA applied
to achieve continuous resistance measurement results from the experiment’s start. The
linear drive is moved to pull the wire to the preset force value of 1.48 N, which results
in a material stress of 188 MPa. When the setpoint is reached, a triangular current signal
with a maximum value of 220 mA and a signal duration of 60 s, as displayed in Figure 13,
is run three times. This results in the wire contracting to a strain of 0.7% and releasing
back to 5.7% of absolute strain. A difference between the initial cycle and the next cycles
can be observed in the strain and stress signal in Figure 13 as well as in Figure 14a. The
reason for this behavior lies in the detwinning of martensite in the first cycle. In the reset
procedure that is performed before each set of experiments, martensite in a twin structure
is generated because of the “load-free” condition in the experiment. In the last two cycles
of the experiment, the biasing stress only allows for the formation of detwinned martensite.
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Figure 13. Results of actuator tests with wire specimen “SAES Getters Smartflex” of 100 µm diameter
under constant load biasing of 188 MPa. A triangular current signal with an amplitude of 220 mA
and a signal duration of 60 s are applied. Three iterations are performed for the experiment, of which
all results are plotted over time.
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Figure 14. Results of actuator tests with wire specimen “SAES Getters Smartflex” of 100 µm diameter
under constant load biasing of 188 MPa. A triangular current signal with an amplitude of 220 mA
and a signal duration of 60 s is applied. Three iterations are performed for the experiment. (a) shows
the stress vs. strain behavior, and (b) shows resistance vs. strain.

This difference due to the initial lattice structure of the NiTi is also observed in the
resistance-over-strain graph in Figure 14b. The linear correlation between resistance and
strain in tensile tests gives way to a hysteretic behavior. Taking into account the start
of the second signal, when the behavior is stabilized, the resistance rises from 12 Ω to
12.7 Ω as the wire temperature rises, and only a minor change in geometry and the crystal
lattice appears. In the phase transformation to austenite, accompanied by a contraction
of about 4.8%, the resistance drops to 10.2 Ω. As the heating current is reduced again, a
slight dip in resistance can be observed, which leads to the first loop in the hysteresis. This
is due to the temperature outweighing the influence on the resistance. Then, the crystal
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lattice transforms back to martensite, accompanied by a rise in resistance of up to 12.5 Ω.
Another loop is formed in the cooling process, as the slope of the resistance over strain is
not monotonous and cuts the heating branch of the resistance–strain curve. Returning to
full martensite and room temperature, the starting value of 12 Ω is reached again.

The SMA wire is heated electrically and quantitative temperature measurements of
micro wires cannot be performed in this test setup and neither can the wire temperature be
measured in SMA-driven applications. The power–strain diagram is shown in Figure 15
and can be compared to a typical temperature-over-strain diagram. As the experiment
is conducted in a quasistatic manner due to the slow heating rate, a correlation between
electrical power and temperature is allowed [8]. The typical shape of a SMA temperature–
strain hysteresis can be qualitatively observed in the power–strain plot as well. In systematic
experiments, these plots can be used to achieve the austenite start and finish power of a
wire sample for various loads. With the help of temperature-controlled experiments, a
comparison is possible as well.
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Figure 15. Results of actuator tests with wire specimen “SAES Getters Smartflex” of 100 µm diameter
under constant load biasing of 188 MPa. A triangular current signal with an amplitude of 220 mA and
a signal duration of 60 s is applied. Three iterations are performed for the experiment. The diagram
shows the strain over electrical power behavior.

A soon as the electrical power is increased, the SMA sample starts to contract with a
slow rate. After about 1.5% contraction, at 0.39 W, the main portion of the phase transforma-
tion takes place, and the wire contracts suddenly about 3%. The last 0.4% strain is reached
at 0.5 W. The transformation back to martensite is less sudden, has a flatter slope and occurs
mainly at about 0.2 W. From this hysteresis curve, we can extract the information about
austenite and martensite start and finish power values and the width of the hysteresis,
which helps to compare and evaluate different SMA samples for specific applications.

3.6. Actuator Tests with Spring Load Bias

In most cases, the biasing system for an SMA wire in technical applications includes
linear springs. The stiffness and pretension of the spring influence the stroke output and
resistance of SMA wires. To conduct a systematic study on this influence with variations in
the parameters, it is possible to simulate any spring with any pretension with the test setup.
Furthermore, we can test and investigate specific actuator configurations in detail before
building the actual system. In this example, a “SAES Getters Smartflex” NiTi wire with
100 µm diameter is prestressed to the same level as in Section 3.5, and a spring stiffness
of 0.2 N/mm is applied. The wire is heated with the same sequence as before, which is
a triangular signal with 60 s duration and an amplitude of 220 mA. The results of three
iterations of the experiment are shown in Figure 16.
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Figure 16. Results of actuator tests with wire specimen “SAES Getters Smartflex” of 100 µm diameter
under spring load biasing of 0.2 N/mm and a pretension of 1.48 N. A triangular current signal with
an amplitude of 220 mA and a signal duration of 60 s is applied. Three iterations are performed for
the experiment, of which all results are plotted over time.

The results of stress and resistance plotted over strain are displayed in Figure 17.
The same difference in the initial cycle can be observed as in Section 3.5 due to twinned
martensite formed in the reset procedure before the actual experiment. The stress–strain
curve follows the spring characteristic and exhibits a stroke of 4.5% in stable conditions
after the first activation. The actuator cycles between 170 and 295 MPa. In the strain–time
trend of Figure 16, it is observed that the maximum stroke is slightly reduced with ongoing
cycling. The SMA behavior is not stable in the high-stress region, and a residual strain
builds up.
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Figure 17. Results of actuator tests with wire specimen “SAES Getters Smartflex” of 100 µm diameter
under spring load biasing. A triangular current signal with an amplitude of 220 mA and a signal
duration of 60 s is applied. Three iterations are performed for the experiment. (a) shows the stress vs.
strain behavior, and (b) shows resistance vs. strain.
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Comparing the resistance–strain graph in Figure 17b to Figure 14b, the spring-loaded
SMA wire shows a less hysteretic behavior but still shows similar crossing loops. This
difference can be explained by the stress dependency in the transformation temperatures of
the SMA materials. The stress increases with the wire contracting, and at the same time, this
increases the transformation temperature. For SMA-driven technical systems, this means
that the resistance signal of the self-sensing feature is easier to interpret and correlate with
a certain actuator position.

The stress dependency of the phase transformation temperature also prostates in the
strain–power hysteresis in Figure 18, where the shape of the hysteresis is changed compared
to Figure 15. The transformation from austenite to martensite and back is less steep, as
phase transformation temperature rises with increasing stress, and vice versa. The higher
material stress makes higher heating powers necessary to fully transform the crystal lattice
to austenite. By varying spring stiffness and preloading, their influence on heating power
and resistance behavior can be studied systematically. The results can help to predict the
necessary parameters for high load scenarios of SMA that are rather uncommon and to
increase the performance of self-sensing-based control strategies for SMA actuators.
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Figure 18. Results of actuator tests with wire specimen “SAES Getters Smartflex” of 100 µm diameter
under spring load biasing. A triangular current signal with an amplitude of 220 mA and a signal
duration of 60 s is applied. Three iterations are performed for the experiment. The diagram shows
the strain vs. electrical power behavior.

3.7. Actuator Test with Spring Load Biasing, End Stops and 60 ◦C Ambient Temperature

The full potential of the test rig is put on display in this following subsection. For
applications in commercial products, the automotive and the industrial environment, the
ambient conditions change, and increased temperatures prove to be especially challenging
for SMA actuator performance. Additionally, a defined movement of drive units is often
supported by end stops. To investigate the capabilities of SMA wire actuators at high
temperatures and the influence of the biasing force on the characteristics, several features
of the test rig are combined for these experiments. Before the experiment is started, the
chamber is heated to a stable temperature of 60 ◦C. The wire specimen is again a “SAES
Getters Smartflex” with 100 µm diameter, which is prestressed to 188 MPa. Due to the
increased ambient temperature, the amplitude of the triangular signal of the heating
current is reduced to 180 mA to avoid overheating and damaging the sample. To simulate
a realistic application, for example, a fluidic valve, two end stops at 1.5% and 4% strain are
implemented. The experimental procedure is similar to Sections 3.5 and 3.6, and the end
stops limit the range of travel. The results of all measurement data are presented over time
in Figure 19. Temperature is not included, as it is held constant along the experiment.
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Figure 19. Results of actuator tests with wire specimen “SAES Getters Smartflex” of 100 µm diameter
under spring load biasing with end stops and 60 ◦C ambient temperature. A triangular current signal
with an amplitude of 180 mA and a signal duration of 60 s is applied. Three iterations are performed
for the experiment, of which all results are plotted over time.

Due to the end stop at 4% strain, the movement of the SMA sample starts after the
188 MPa spring preload is overcome. This can be observed in a good manner in Figure 20a.
As the second end stop is reached at 1.5% strain, the stress rises up to 420 MPa. This SMA
sample is not trained for stresses higher than 200 MPa, and therefore, the maximum stress
drops with each cycle, as can be observed in Figure 19. The strain output is not affected, as
the end stops limit the travel beforehand.
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3.7, excessive material stress leads to instable stress–strain characteristics, and the stroke 
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Figure 20. Results of actuator tests with wire specimen “SAES Getters Smartflex” of 100 µm diameter
under spring load biasing with end stops and 60 ◦C ambient temperature. A triangular current signal
with an amplitude of 180 mA and a signal duration of 60 s is applied. Three iterations are performed
for the experiment. (a) shows the stress vs. strain behavior, and (b) shows resistance vs. strain.

The resistance (Figure 20b) is even less hysteretic than in the previous subsection,
because of the ambient temperature being close to the austenite start temperature and the
limited travel. Thus, loops at both ends are cut off as well. The bends in the resistance
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signal in Figure 19 when the end stops are reached promise a good detectability with the
help of resistance-based control strategies.

If these limits can be detected, the overshoot in material stress can be reduced, for
example, with a feedback control. This can lead to better fatigue life and higher energy
efficiency of SMA systems. When looking at the strain–power hysteresis in Figure 21,
compared to Figure 18, it can be observed that it has moved towards the lower left corner
and decreased in width and height. Because of the increased ambient temperature, the
electrical power needed to start the transformation is reduced to under 0.2 W, and the end
stops limit the strain. It is also evident that a maximum current of only about 150 mA is
sufficient to reach full contraction in this configuration.
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Figure 21. Results of actuator tests with wire specimen “SAES Getters Smartflex” of 100 µm diameter
under spring load biasing with end stops and 60 ◦C ambient temperature. A triangular current signal
with an amplitude of 180 mA and a signal duration of 60 s is applied. Three iterations are performed
for the experiment. The diagram shows the strain over electrical power behavior.

3.8. Training—Cyclic Tensile and Actuator Tests

Commercially available NiTi actuator wires are usually trained and exhibit a stable
behavior when used within a typical range of 200 MPa. As is shown in Sections 3.6 and 3.7,
excessive material stress leads to instable stress–strain characteristics, and the stroke and
force output degrade over time. This aspect and the residual strain can lead to the failure of
a system in the very beginning. To avoid this, SMA wires in high-stress applications need
to undergo an additional training procedure to achieve a stable and predictable behavior.
A distinction can be made between two basic principles of training: thermal cycling and
mechanical cycling. To investigate the influence of these training methods with different
parameters, the data acquisition of the test rig is designed to handle large data sets of test
series with up to 100 cycles. In the following, one example for each training method is
described by means of two different wire samples. In Figure 22, the results of a training
process of a “SAES Getters Smartflex” NiTi wire with 24 µm are presented by means of
mechanical cycling. The heating power is held constant at 0.23 W for the procedure, and
50 tensile tests with a maximum strain of 5% and a strain rate of 0.005 s−1 are conducted.



Materials 2023, 16, 4820 20 of 24

Materials 2023, 16, x FOR PEER REVIEW 20 of 24 
 

 

behavior. A distinction can be made between two basic principles of training: thermal 

cycling and mechanical cycling. To investigate the influence of these training methods 

with different parameters, the data acquisition of the test rig is designed to handle large 

data sets of test series with up to 100 cycles. In the following, one example for each training 

method is described by means of two different wire samples. In Figure 22, the results of a 

training process of a “SAES Getters Smartflex” NiTi wire with 24 µm are presented by 

means of mechanical cycling. The heating power is held constant at 0.23 W for the proce-

dure, and 50 tensile tests with a maximum strain of 5% and a strain rate of 0.005 s−1 are 

conducted.  

 

Figure 22. Results of cyclic tensile tests with wire specimen “SAES Getters Smartflex” of 24 µm 

diameter under constant power heating with 0.23 W, 5% maximum strain and a strain rate of 0.005 

s−1. The results of 50 cycles for a wire training are plotted over time. The final cycle is plotted in red. 

It is observed that over time, the characteristics of stress and resistance change. Start-

ing the experiment, the change is quite pronounced and then leads to a saturation. The 

stress–strain hysteresis, which is depicted in Figure 23a, undergoes a decrease in hystere-

sis width, as the upper-plateau stress decreases while the lower-plateau stress stays al-

most unchanged. Furthermore, the shape of the hysteresis is modified. The negative slope 

of the upper transformation plateau decreases and is almost constant in the last cycle. 

Evident is also the residual strain that is increased to 0.45%. In an application, this phe-

nomenon leads to a reduced maximum stroke of the actuator, as is already indicated in 

Figure 16. The resistance, on the other hand, undergoes less changes. In Figure 23b, the 

residual strain manifests in a higher minimum resistance (154 Ω instead of 152 Ω), and the 

overall behavior changes only in a minor way. Parameters that can be varied for a system-

atic investigation of the training effect are the maximum strain, maximum stress, temper-

ature level (electrical power), strain rate and number of cycles. Wire samples can be com-

pared concerning the evolution of the hysteresis and the residual strain, which can help 

in the selection of the best-performing wire sample for applications with high material 

stress and can also give early insights into the fatigue behavior of the wire. 

Figure 22. Results of cyclic tensile tests with wire specimen “SAES Getters Smartflex” of 24 µm
diameter under constant power heating with 0.23 W, 5% maximum strain and a strain rate of
0.005 s−1. The results of 50 cycles for a wire training are plotted over time. The final cycle is plotted
in red.

It is observed that over time, the characteristics of stress and resistance change. Starting
the experiment, the change is quite pronounced and then leads to a saturation. The stress–
strain hysteresis, which is depicted in Figure 23a, undergoes a decrease in hysteresis
width, as the upper-plateau stress decreases while the lower-plateau stress stays almost
unchanged. Furthermore, the shape of the hysteresis is modified. The negative slope of the
upper transformation plateau decreases and is almost constant in the last cycle. Evident
is also the residual strain that is increased to 0.45%. In an application, this phenomenon
leads to a reduced maximum stroke of the actuator, as is already indicated in Figure 16.
The resistance, on the other hand, undergoes less changes. In Figure 23b, the residual
strain manifests in a higher minimum resistance (154 Ω instead of 152 Ω), and the overall
behavior changes only in a minor way. Parameters that can be varied for a systematic
investigation of the training effect are the maximum strain, maximum stress, temperature
level (electrical power), strain rate and number of cycles. Wire samples can be compared
concerning the evolution of the hysteresis and the residual strain, which can help in the
selection of the best-performing wire sample for applications with high material stress and
can also give early insights into the fatigue behavior of the wire.
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Figure 23. Results of cyclic tensile tests with wire specimen “SAES Getters Smartflex” of 24 µm
diameter under constant power heating with 0.23 W, 5% maximum strain and a strain rate of
0.005 s−1. The results of 50 cycles for wire training are plotted in a stress–strain plot (a) as well as a
resistance–strain plot (b). The final cycle is plotted in red.

The second training method could also be performed with the wire in the actual
application and is discussed in the example of a “Fort Wayne Metals NiTi #5” with a
diameter of 73 µm and a constant stress of 320 MPa. The triangular current signal has a
duration of 30 s and an amplitude of 160 mA. The experiment is performed with 50 cycles,
of which the evolution of the results is shown in Figure 24. The main gradient in the
characteristics of stress and resistance is visible in the first 10 to 20 cycles. A saturation is
visible after that.
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Figure 24. Results of a cyclic actuator test with wire specimen “Fort Wayne Metals NiTi #5” of 73 µm
diameter under constant load biasing. A triangular current signal with an amplitude of 160 mA and
a signal duration of 30 s is applied. Fifty activation cycles are for the training experiment, of which all
results are plotted over time. The final cycle is plotted in red.

The change in characteristics of the resistance is more distinct than in mechanical
cycling, which can be observed in Figure 25b. The minimum resistance increases from
19.9 Ω to 21.2 Ω, and the hysteretic shape and maximum value change as well.
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Figure 25. Results of a cyclic actuator test with a wire specimen “Fort Wayne Metals NiTi #5” of 73 µm
diameter under constant load biasing. A triangular current signal with an amplitude of 160 mA and
a signal duration of 30 s is applied. Fifty activation cycles are conducted for the training experiment,
of which the stress–strain diagram is plotted in (a), and the resistance–strain behavior is plotted in
(b). The final cycle is depicted in red.

The actuator stroke decreases from 3.5% strain to 2.3%, which can be observed in
Figures 24 and 25a. In this case, investigations into how an increased heating current can
reduce the effect are to be conducted. Of interest is also the influence of various stress levels
and spring stiffnesses on the stabilization of the material characteristics. For both training
methods, the minimum cycles needed for an effective training to new stress levels are of
special interest. To evaluate the influence of various training methods and parameters,
tensile tests for a basic characterization of the trained wire can be performed. From the
outputs, the evolution of important data such as the residual strain, the intrinsic two-way
effect and the hysteresis width can be extracted. The actual actuator performance can also
be verified with actuator tests after the training series.

4. Conclusions and Outlook

In this work, the design and implementation of a SMA micro-wire characterization test
bench are presented. With exemplary measurements of a variety of experiments, the multi-
functionality of the setup is shown. On the presented test rig, with its unique properties and
features, various application-oriented experiments and tests can be performed. The scope
of functions is illustrated with a full range of wire diameters. Meaningful basic characteri-
zations with differently heated tensile tests as well as actuator tests at adjustable ambient
temperatures with variable biasing are performed, and the results are presented. Analyzing
the results, we can extract, among other parameters, Young’s modulus of martensite and
austenite, the hysteresis width, electrical resistivities, residual strains and functional fatigue
after different training procedures. The setup helps to design actuator systems for many
applications under difficult conditions such as high temperature and high stress. Due to
the repeatable and significant results, the setup is well-placed for model and simulation
validation. The most important lessons learned during the design and validation of the
setup are the importance of reducing the friction with the help of air bearings, the necessity
to isolate microwires from the surrounding air, as well as the precision needed to measure
low electrical currents. In a future work, a systematic and application-oriented approach to
measuring and characterizing a SMA wire sample on this test rig will be presented.
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