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Abstract
We study the parameterized complexity of winner determination problems for three preva-
lent k-committee selection rules, namely the minimax approval voting (MAV), the propor-
tional approval voting (PAV), and the Chamberlin–Courant’s approval voting (CCAV). It 
is known that these problems are computationally hard. Although they have been studied 
from the parameterized complexity point of view with respect to several natural parame-
ters, many of them turned out to be W[1]-hard or W[2]-hard. Aiming at obtaining plentiful 
fixed-parameter algorithms, we revisit these problems by considering more natural single 
parameters, combined parameters, and structural parameters.

Keywords  Multiwinner voting · Fixed-parameter tractability · Minimax approval voting · 
Proportional approval voting · Chamberlin–Courant’s approval voting · Treewidth · W[1]-
hard

1  Introduction

Committee selection rules (a.k.a. multiwinner voting rules) have received a considerable 
amount of attention recently due to their broad applications in social choice, multi-agent 
systems, recommendation systems, etc. [31, 39, 40, 49]. How efficiently winning candidates 
with respect to a committee selection rule can be calculated is one of the most significant 
criteria to evaluate the applicability of these rules. Many rules, such as STV, Bloc, k-Borda, 
approval voting, satisfaction approval voting, admit polynomial-time algorithms for comput-
ing winners [3, 28]. However, there are also salient committee selection rules with respect to 
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which winners are NP-hard to compute. Among them are particularly the minimax approval 
voting (MAV) [11, 50], the proportional approval voting (PAV) [3, 43, 70], and the Cham-
berlin–Courant’s approval voting (CCAV) [18, 61]. Nevertheless, as these rules possess their 
own merits in many other aspects [2, 33, 43, 44, 49], researchers investigated the parameter-
ized complexity of winner determination problems under these rules, with the hope of procur-
ing as many fixed-parameter tractability results as possible. While many realistic parameters 
have been considered in the literature so far, there are still many relevant but underappreciated 
parameters. This paper aims to take a further step towards breaking the complexity barrier 
against the applicability of the above-mentioned three approval-based rules by extensively 
expanding the set of meaningful parameters leading to FPT-algorithms for the winner deter-
mination problems. Notably, in addition to many traditional parameters, we also study sev-
eral structural parameters of the incidence graphs of approval-based elections. The incidence 
graph of an approval-based election is a bipartite graph whose vertex set is the candidate set 
union the voter set, and there is an edge between a candidate and a voter if and only if this 
voter approves the candidate. To date, less is known about whether some structural parameters 
of the incidence graphs such as the treewidth and the size of a maximum matching lead to 
some FPT-algorithms. These parameters are intimately connected to several important single 
parameters. For example, they are lower bounds of both the number of candidates m and the 
number of voters n, and hence any FPT-algorithm with respect to these two structural param-
eters directly carry over to m and n.

Organization. In Sect. 2, we give definitions and notations used in the paper. Then, we 
elaborate on related works and summarize our main results in Sect. 3. Our concrete results 
are encapsulated in Sects.  4–6. Specifically, Sect.  4 studies single parameters, Sect.  5 
explores combinations of the single parameters occurring in Sect.  4 and Sect.  6 focuses 
on the aforementioned structural parameters. For an overview of our main results, we refer 
to Table 1. We complete the paper by recapping our contributions and laying out several 
promising avenues for future research in Sect. 7.

2 � Preliminaries

In this section, we give essential notions related to our study.

2.1 � Elections

We study approval-based multiwinner voting. In this setting, an election is a tuple 
E = (C,V) where C is a set of candidates and V is a multiset of votes. Each vote of V is 
cast by a voter and is defined as a subset of C. In this paper, we interchangeably use the 
terms vote and voter. We say that a vote v approves a candidate c if c ∈ v . For each can-
didate c, V(c) denotes the set of votes in V approving c. Let k be a nonnegative integer. A 
k-set is a set of cardinality k. A committee (respectively, k-committee) is a subset (respec-
tively, k-subset) of candidates. A k-committee selection rule maps each election (C, V) and 
every nonnegative integer k such that k ≤ |C| to a collection of k-committees of C, winning 
k-committees of (C, V) under this rule.

The Hamming distance between two sets v and v′ is defined as

We study the following k-committee selection rules. 

H(v, v�) = |v ⧵ v�| + |v� ⧵ v|.
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MAV	� In general, MAV selects k-committees as close as possible to every vote, where 
the closeness is measured by the Hamming distance. Precisely, the MAV score 
of a committee w with respect to (C, V) is ���(V ,w) = maxv∈V H(v,w) . MAV 
selects k-committees with the minimum MAV score.

CCAV	� A vote v is satisfied with a committee w if and only if at least one of v’s approved 
candidates is contained in w , i.e., v ∩ w ≠ � . Candidates in v ∩ w are regarded 
as representatives of  v in w . The CCAV score of a committee w with respect 
to  (C,  V) is ����(V ,w) = |{v ∈ V ∶ v ∩ w ≠ �}| . CCAV selects  k-committees 
with the maximum CCAV score.1

PAV	� The PAV score of a committee  w with respect to an election  (C,  V) is 
���(V ,w) =

∑
v∈V ,v∩w≠�

∑�v∩w�
i=1

1

i
 . PAV selects k-committees with the maximum 

PAV score.

Note that by the above definitions, ����(V , �) = ���(V , �) = 0 holds.
For each � ∈ {MAV, CCAV, PAV} , we study the following problem. 

�-MULTIWINNER

Input: An election E = (C,V) , an integer k ≤ |C| , and a rational number d.
Question: Is there a k-committee w ⊆ C such that �(V ,w) ≤ d for � = MAV , and �(V ,w) ≥ d for 

� ∈ {CCAV, PAV}?

 Throughout this paper, we study the following single parameters and consistently use the 
corresponding notations given below.

•	 m = |C|.
•	 n = |V|.
•	 d : the threshold score of a desired committee.
•	 k: size of winning committees.
•	 k = m − k.
•	 △V = maxv∈V |v| is the maximum number of candidates a vote approves.
•	 △C = maxc∈C |V(c)| is the maximum number of votes approving a candidate in com-

mon.

The first four parameters are natural and have been substantially covered in the literature. 
(See Sect. 3 for the details.) The study of k is motivated by the observation that in many 
real-life decision-making scenarios winners are picked by eliminating a small number of 
losers, or more relevantly, many decision-making processes are directly designed to select 
losers other than selecting winners. The last two parameters △V and △C have been either 
explicitly or implicitly studied in the literature. In many real-world applications voters are 
allowed to approve only a few candidates. In some other scenarios, voters are cognitively 
limited or time constrained so that they are only able to evaluate a small number of candi-
dates. In these cases, △V is relatively small. Regarding the parameter △C , observe that it 
is no greater than n. So, it is small whenever n is small. Moreover, as our goal is to provide 
a landscape of the parameterized complexity of �-MULTIWINNER as complete as possible, 

1  CCAV is a special rule of the class of Chamberlin–Courant’s rules. See [28] for further discussions.
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it is theoretically significant to study this parameter so as that we can offer results for com-
bined parameters including △C.

2.2 � Graphs

We assume the reader is familiar with the basic concepts of graph theory, and refer to [12, 
73] for notions in graph theory used but not defined in the paper. We only reiterate some 
basic notions below. A graph is a pair (N, A) where N is a set of vertices and A is a set of 
edges over N. Each edge is defined as an unordered pair of vertices, and between every two 
vertices there can be at most one edge. A multigraph is a generalization of a graph where 
between every two vertices there may exist multiple edges, and there may exist loops on 
vertices. A hypergraph is a generalization of a graph where every edge is a subset of verti-
ces. A multihypergraph is a generalization of a hypergraph so that there may exist multiple 
edges consisting of the same vertices.

A matching of a graph G = (N,A) is a subset M of A such that no two edges in M share 
a common vertex. A vertex v is saturated by M if v is a vertex in some edge in M. A maxi-
mum matching of G is a matching with the maximum cardinality among all matching of G. 
We use �(G) to denote the size of a maximum matching of G.

2.3 � Parameterized complexity

A parameterized problem is a subset of �∗ × ℕ , where � is a finite alphabet. A parameter-
ized problem can be either fixed-parameter tractable (FPT) or fixed-parameter intracta-
ble. In particular, a parameterized problem is FPT if there is an algorithm which correctly 
determines for each instance (I, �) of the problem whether (I, �) is a Yes-instance in time 
O(f (�) ⋅ |I|O(1)) , where f is a computable function and |I| is the size of I. Fixed-parameter 
intractable problems are further classified into many classes including W[1]-hard, W[2]-
hard, etc. For greater details on parameterized complexity theory, we refer to [22, 25, 27].

3 � Related works and our contributions

In this section, we discuss some important related works and outline our main 
contributions.

3.1 � Single parameters

�-MULTIWINNER has many natural parameters inherent in its definition, say, the seven sin-
gle parameters listed at the end of Sect. 2.1. All these seven parameters except k have been 
explicitly or implicitly investigated in the literature prior to our work.

First, it is easy to see that MAV-Multiwinner, CCAV-Multiwinner, and PAV-Multi-
winner are FPT with respect to the parameter m. Misra, Nabeel, and Singh [57] proved 
that MAV-Multiwinner is FPT with respect to the parameters d and n, but becomes W[2]-
hard when parameterized by k. Betzler, Slinko, and Uhlmann [4] proved that CCAV-Mul-
tiwinner is FPT with respect to the parameter n, but turned out to be W[2]-hard when k is 
the parameter. Moreover, they considered a dual parameter R = n − d . They proved that 
CCAV-Multiwinner is NP-hard even when R = 0 , but presented an FPT-algorithm with 
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respect to the combined parameter k + R.2 Aziz et al. [3] proved that PAV-Multiwinner is 
W[1]-hard with respect to k even if every voter approves two candidates.

We complement these results as follows. First, we close some gaps and improve an 
FPT-algorithm. Concretely, we propose an FPT-algorithm for PAV-Multiwinner when 
parameterized by n. We also observe that CCAV-Multiwinner is equivalent to the Partial 
Hitting Set problem, and as a consequence of a previous result for the Partial Hitting 
Set problem, CCAV-Multiwinner can be solved in O∗(2O(d)) time or in O∗(2O(n)) time.3 It 
should be noted that our new observation-based algorithm substantially improves the pre-
vious best FPT-algorithm for CCAV-Multiwinner parameterized by n studied in [4] which 
runs in time O∗(nn) . Second, we study the parameter k = m − k , the number of nonwin-
ning candidates. We show that MAV-Multiwinner, CCAV-Multiwinner, and PAV-Mult-
iwinner are all W[1]-hard with respect to this parameter, even when every voter approves 
two candidates. Third, from previous results by other researchers, we achieve numerous 
dichotomy results with respect to the two natural parameters △V and △C . It is known 
that MAV-Multiwinner, CCAV-Multiwinner, and PAV-Multiwinner are already NP-hard 
when △V = 2 and △C = 3 [3, 50, 62]. We prove that MAV-Multiwinner and CCAV-Mul-
tiwinner become polynomial-time solvable if △V ≤ 1 or △C ≤ 2 , and PAV-Multiwinner 
becomes polynomial-time solvable if min{△V,△C} = 1 or △V = △C = 2.

3.2 � Combined parameters

Obviously, if a problem is FPT with respect to a parameter � , it is FPT with respect to any 
combined parameter including � . As except PAV-Multiwinner with respect to d whose 
fixed-parameter tractability is open, MAV-Multiwinner, CCAV-Multiwinner, and PAV-
Multiwinner are FPT with respect to m, n, and d , it only makes sense to study combi-
nations of other parameters. As k + k = m , �-MULTIWINNER for � ∈ {MAV,CCAV, PAV} 
is FPT with respect to k + k . For MAV and CCAV, the remaining combinations of two 
single parameters are k +△V , k +△C , k +△V , and k +△C . We establish many FPT-
results with respect to these combined parameters. Concretely, we obtain FPT-results for 
MAV-Multiwinner and CCAV-Multiwinner when parameterized by k +△C and k +△C . 
However, as MAV-Multiwinner, CCAV-Multiwinner, and PAV-Multiwinner are W[1]-
hard with respect to k (even when every vote approves two candidates), they are W[1]-hard 
when parameterized by k +△V . For the parameter k +△V , we develop an FPT-algorithm 
for MAV-Multiwinner, but we show that CCAV-Multiwinner is W[1]-hard even when 
every vote approves two candidates. Concerning PAV, a reduction by Aziz et al. [3] implies 
that PAV-Multiwinner is W[1]-hard with respect to k +△V . We are unable to prove the 
FPT-membership of PAV-Multiwinner with respect to d , but we show that combining d 
and △V leads to an FPT-result.

We would like to point out that Misra, Nabeel, and Singh [57] studied kernelization of 
MAV-Multiwinner with respect to the combined parameters d + m and n + k , and showed 

2  A parameterized problem is FPT with respect to the combination of two parameters � and �′ if it is solv-
able in time O∗(f (�, ��)) where f is a computable function in � and �′ , or equivalently it is FPT with respect 
to � + ��.
3  O∗() is O() with polynomial factors being omitted.
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that these problems do not admit any polynomial kernels unless ���� ⊆ ��∕����4. In 
addition, Liu and Guo [53] studied the combined parameter k + n for some generalizations 
of MAV-Multiwinner. Betzler, Slinko, and Uhlmann [4] proved that CCAV-Multiwinner 
is W[2]-hard with respect to the combined parameter of R = n − d and  k. Though not 
explicitly stated, their reduction actually implies that CCAV-Multiwinner does not admit 
any polynomial kernel with respect to both n and m, unless the polynomial hierarchy col-
lapses to the third level.5

3.3 � Structural parameters

Heretofore, the most widely studied structural parameters in the setting of multiwinner vot-
ing are based on various concepts of restricted preference domains such as single-peaked 
preferences and single-crossing preferences (see, e.g., [20]). Particularly, these parameters 
measure how far an election is away from a specific domain of preferences. In this paper, 
we study two structural parameters of incidence graphs of elections. Recall that the inci-
dence graph of an election E = (C,V) is a bipartite graph GE with vertex set C ∪ V  so that 
there is an edge between a candidate c ∈ C and a vote v ∈ V  if and only if c ∈ v . We prove 
that CCAV-Multiwinner is FPT with respect to treewidth of incidence graphs, and MAV-
Multiwinner and PAV-Multiwinner are FPT if we combine the treewidth and the param-
eter k. When parameterized by the size of maximum matchings of incidence graphs, we 
have FPT-algorithms for all three rules.

3.4 � Other related works

In addition to the extensive effort made from the angle of parameterized complexity, much 
exploration on the complexity of �-MULTIWINNER restricted to preference domains has 
been pursued over the past few years. Betzler, Slinko, and Uhlmann [4] developed polyno-
mial-time algorithms for CCAV-Multiwinner in the single-peaked domain. This algorithm 
was subsequently extended to an FPT-algorithm with respect to the parameter single-
peaked width by Cornaz, Galand, and Spanjaard [20]. Yu, Chan, and Elkind [81] studied 
the domain of single-peaked on trees, and obtained both polynomial-time algorithms and 
NP-hardness results for many variants of CCAV. One of their results [81, Theorem 4.1] is 
in essence an FPT-algorithm for CCAV-Multiwinner with respect to the combined param-
eter m + k + � , where � is the number of leaves of the underlying tree. A follow-up paper 
by Peters and Elkind [59] addressed several open questions left in [81]. Later, Elkind and 
Lackner [29] proposed  13 different restricted domains of dichotomous preferences, and 
obtained several polynomial-time algorithms and FPT-algorithms for �-MULTIWINNER 
for � being CCAV, MAV, and PAV with respect to the parameter △V , and the combined 
parameter k + d , when the given elections fall into certain specific categories of their pro-
posed domains. Liu and Guo [53] presented polynomial-time algorithms for MAV-Mult-
iwinner in two of the domains proposed by Elkind and Lackner. Peters and Lackner [60] 

4  A kernelization with respect to a parameter is a polynomial-time algorithm which transforms an instance 
into an equivalent instance with the size of the main part being bounded from above by a computable func-
tion of the parameter. See [22, Chapter 2] for more details.
5  These kernelization lower bounds follow from a reduction by Betzler, Slinko, and Uhlmann [4] and sev-
eral techniques for establishing kernelization lower bounds delineated in [22, Chapter 14] and [24].
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proposed the domain of single-peaked on a circle, an appealing generalization of the sin-
gle-peaked domain. They provided a polynomial-time algorithm for CCAV-Multiwinner in 
this domain. Peters [58] observed a relationship between voting problems restricted to the 
single-peaked domain and totally unimodular integer linear programming. In view of this 
observation and the fact that totally unimodular integer linear programming is polynomial-
time solvable [64], a variety of polynomial-time solvability results were obtained, includ-
ing one for PAV-Multiwinner.6 Skowron et al. [68] complemented these results by show-
ing that CCAV-Multiwinner is polynomial-time solvable restricted to the single-crossing 
domain. Clearwater, Puppe, and Slinko [19] then extended this result to the domain of 
single-crossing on trees. Yang [78] expanded several domains of Elkind and Lackner [29] 
to directed tree-embedded domains, and derived a number of polynomial-time algorithms 
for MAV-Multiwinner, CCAV-Multiwinner, and PAV-Multiwinner restricted to these 
domains.

As traditional approaches tackling NP-hard problems, approximation and heuristic 
algorithms for �-MULTIWINNER where � ∈ {MAV,CCAV, PAV} have also been perpetu-
ally reported over the past few years [16, 23, 35, 65, 66].

We would like to mention that the (parameterized) complexity of �-MULTIWINNER 
for numerous ranking-based multiwinner voting rules � has been considerably studied in 
the literature, too [4, 32, 42]. On top of that, the (parameterized) complexity of winner 
determination problems for several variants of multiwinner voting rules has been explored 
recently [13, 75].

Finally, we remark that, besides winner determination problems, investigating the com-
plexity of many strategic voting problems, such as manipulation, control, and bribery, has 
gained increasing interest in recent years as well [14, 34, 76, 77]. We refer to [48] for a 
comprehensive survey of approval-based multiwinner voting where many other important 
issues not discussed above have been greatly elaborated on.

4 � Single parameters

In this section, we investigate some predominant single parameters.

4.1 � Parameters d, n, and k

We start with an FPT-algorithm for PAV-Multiwinner with respect to n. Before presenting 
our algorithm, let us recall the main idea of an FPT-algorithm for MAV-Multiwinner with 
respect to n [57]. First, the candidates are partitioned into at most 2n subsets, each con-
sisting of all candidates approved by exactly the same votes. Then, what matters for solv-
ing the problem is only how many candidates from each subset are contained in a desired 
k-committee. Based on this observation, MAV-Multiwinner can be reduced to integer 
linear programming (ILP) by assigning to each subset defined above an integer variable. 
As the number of variables is bounded by 2n , Lenstra’s theorem [51] provides an FPT-
algorithm for MAV-Multiwinner with respect to  n. Although the FPT-algorithm with 
respect to n for CCAV-Multiwinner derived by Betzler, Slinko, and Uhlmann [4] is not 
ILP-based, it is easy to see that CCAV-Multiwinner also admits a similar ILP formulation. 

6  We note that [60] integrates a conference paper with the same title appeared in AAAI 2017 and [58].
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Unfortunately, this framework does not apply to PAV-Multiwinner. The reason is that the 
objective in this case is a nonlinear function. To overcome this obstacle, we resort to an 
FPT-framework proposed by Bredereck  et  al. [15] for the Mixed Integer Programming 
With Simple Piecewise Linear Transformations problem. In fact, we need only a special 
case of the problem defined below. For a vector x ∈ ℤ

p and an integer i ∈ [p] , we use xi to 
denote the i-th component of x.

A real-valued function f is concave if for every x and y such that x < y and every � such 
that 0 ≤ � ≤ 1 it holds that

Intuitively, a function is concave if for every  x,  y, and  z such that x ≤ y ≤ z , the point 
(y, f(y)) is not below the straight line determined by the two points (x, f(x)) and (z, f(z)). A 
piecewise linear concave function is a piecewise linear function that is concave. 

Integer Programming With Simple Piecewise Linear Transformations (IPWSPLT)

Input: A collection {fi,j ∶ i ∈ [p], j ∈ [q]} of p ⋅ q piecewise linear concave functions, and a vector 
b ∈ ℤ

p.
Question: Is there a vector x ∈ ℤ

q such that for every i ∈ [p] it holds that
∑q

j=1
fi,j(xj) ≤ bi?      (1)

The original problem MIPWSPLT studied by Bredereck et al. [15] is more general in 
that it allows the existence of additional variables which may take nonintegral values, and 
allows the occurrences of both piecewise linear concave functions and piecewise linear 
convex functions simultaneously.

Lemma 1  ([15]) IPWSPLT can be solved in time O(����(|I|, t) ⋅ q2.5q+o(q)) , where |I| is the 
number of bits encoding the input, and t is the maximum number of pieces per function.

We note that Lemma 1 still holds if in the definition of IPWSPLT the less than sign is 
replaced with the greater than sign or the equal sign in (1) for several i ∈ [p] [15].

Now we are ready to present our FPT-algorithm for PAV-Multiwinner with respect 
to n. We provide indeed an algorithm for a more general problem called Annotated PAV-
Multiwinner. In this problem, we are given an election (C, V), a subset C′ ⊆ C of candi-
dates, an integer k such that |C′| ≤ k ≤ |C| , and a number d , and the question is whether 
there is a k-committee w ⊆ C such that C′ ⊆ w ⊆ C and PAV(V ,w) ≥ d . Clearly, PAV-
Multiwinner is a special case of Annotated PAV-Multiwinner where C� = � . This gener-
alization is afterward exploited in an algorithm presented in Sect. 6.

Theorem 1  Annotated PAV-Multiwinner is  FPT  with respect to n.

Proof  We prove Theorem 1 by reducing Annotated PAV-Multiwinner to IPWSPLT.
Let I = (E,C�, k, d) be an instance of Annotated PAV-Multiwinner, where E = (C,V) 

and C′ ⊆ C . Let n = |V| be the number of votes. In what follows, we construct an inte-
ger programming formulation of Annotated PAV-Multiwinner, prove the correctness of 
the reduction, and prove that the formulation is an instance of IPWSPLT. We create two 
types of variables. First, we create a variable xv for each vote v ∈ V  , indicating the num-
ber of v’s approved candidates in a desired k-committee. Second, for each U ⊆ V  , let CU 

f (� ⋅ x + (1 − �) ⋅ y) ≥ � ⋅ f (x) + (1 − �) ⋅ f (y).
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be the set of candidates approved by all votes in U but disapproved by votes from V ⧵ U , 
i.e., CU = {c ∈ C ∶ V(c) = U} . We create a variable  xU for each U ⊆ V  which indicates 
the number of candidates from CU that are supposed to be in a desired k-committee. The 
constraints are as follows. 

(1)	 for each variable xU, U ⊆ V  , it holds that |C� ∩ CU| ≤ xU ≤ |CU|.
(2)	 For each v ∈ V  , we have xv =

∑
v∈U⊆V xU.

(3)	 As we aim to select a committee of cardinality k, we have 
∑

U⊆V xU = k.
(4)	 For the last constraint, we need to define a piecewise linear concave function 

f ∶ ℝ≥0 → ℝ≥0 as follows. First, f (0) = 0 . Second, for each positive integer x, we 
define f (x) = ∑x

i=1
1
i
 . Third, for each real x such that y < x < y + 1 and y is a nonnegative 

integer, we define 

 Fig.  1 illustrates the function  f. The last constraint is then 
∑

v∈V f (xv) ≥ d , which 
ensures that the desired k-committee has PAV score at least d.

Now we show the correctness of the reduction, i.e., we show that the given instance I is a 
Yes-instance if and only if the above integer programming has a feasible solution.

(⇒) Assume that  I is a Yes-instance, i.e., there exists a k-committee  w so that 
C′ ⊆ w ⊆ C and ���(V ,w) ≥ d . We assign to the variables constructed above the corre-
sponding values, i.e., we let xU = |w ∩ CU| for each U ⊆ V  , and let xv = |v ∩ w| for each 
v ∈ V  . Obviously, |w ∩ CU| ≤ |CU| . As C′ ⊆ w , it holds that |C� ∩ CU| ≤ |w ∩ CU| . There-
fore, constraints defined in (1) hold. As for every two distinct U,U′ ⊆ V , CU and CU′ are 
disjoint and, moreover, 

⋃
U⊆V CU = C , it holds that

for all v ∈ V  , and 
∑

U⊆V �w ∩ CU� = �w� = k . In other words, all constraints described 
in (2)–(3) are satisfied. Notice that by the definition of CU , if v ∉ U then CU ∩ v = � , and 
if v ∈ U then CU ⊆ v . This ensures the correctness of Equality (1). Finally, the constraint 
given in (4) holds because 

∑
v∈V f (xv) is exactly the PAV score of w with respect to V which 

is equal to or greater than d.
(⇐) Assume that the above integer programming has a feasible solution. We show below 

that I is a Yes-instance by constructing a desired k-committee w . Initially, let w = � . For 
every xU , U ⊆ V  , in the feasible solution, we arbitrarily select xU candidates from CU so 
that all candidates in C� ∩ CU are selected, and add them into w . By the constraints in (1), 
these xU candidates exist for each U ⊆ V  . By the constraint in (3), we know that w consists 

f (x) = f (y) + (x − y) ⋅ (f (y + 1) − f (y)).

(1)|v ∩ w| =
∑

v∈U⊆V

|v ∩ w ∩ CU| =
∑

v∈U⊆V

|w ∩ CU| =
∑

v∈U⊆V

xU

Fig. 1   An illustration of the 
piecewise linear concave func-
tion f in the proof of Theorem 1
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of k candidates. By the constraints in (2), xv is exactly the number of candidates from w 
approved in v. As a result, 

∑
v∈V f (xv) is exactly the PAV score of w with respect to V. Then, 

from the constraint in (4), it follows that ���(V ,w) ≥ d . Finally, as 
⋃

U⊆V CU = C , by the 
definition of w we know that C′ is contained in w . Now we can conclude that I is a Yes-
instance of Annotated PAV-Multiwinner.

Next, we show that the above integer programming is an instance of IPWSPLT. To this 
end, we reiterate that IPWSPLT contains ILP as a special case. Constraints described in 
(1)–(3) are standard constraints (or can be transformed into standard form trivially) of ILP. 
It is easy to see that the function  f defined in (4) is a piecewise linear concave function. 
Therefore, the above integer programming is an instance of IPWSPLT.

It remains to analyze the running time of the algorithm. The above reduction clearly 
takes FPT-time in n, and the number of variables is n + 2n . Then, by Lemma 1 and the cor-
rectness of the reduction, Annotated PAV-Multiwinner is FPT with respect to n. 	�  ◻

We note that a similar FPT-algorithm for winners computation for a large class of 
ranking-based multiwinner voting rules has been also derived by Faliszewski  et  al. [32, 
Theorem 16].

Now we study the parameter k = m − k , i.e., the number of candidates not in a desired 
k-committee. In regard to MAV, the NP-hardness proof by LeGrand [50] actually already 
implied that MAV-Multiwinner is W[1]-hard with respect to k . Precisely, LeGrand’s NP-
hardness reduction is from the Vertex  Cover problem, where vertices correspond to can-
didates, and edges correspond to votes so that each vote approves exactly the candidates 
corresponding to its two endpoints. It is easy to see that there is a vertex cover of cardi-
nality � if and only if there is a �-committee so that the Hamming distance between this 
committee and each vote is at most � . The -hardness of MAV-Multiwinner follows from 
that Vertex  Cover is W[1]-hard with respect to m − � where m is the number of vertices 
(candidates) [26].

Corollary 1  ([26, 50]) MAV-Multiwinner is W[1]-hard with respect to k even when every 
vote approves two candidates.

It should be noted that Vertex  Cover with respect to m − � is exactly a parameterized 
variant of the Independent Set problem. We provide the formal definition of the problem 
below because it will be used to establish our next intractability result.

An independent set of a graph is a subset of pairwise nonadjacent vertices. 

�-Independent Set ( �-IDS)

Input: A graph G = (N,A) and an integer �.
Parameter: �.
Question: Does G admit an independent set of cardinality at least �?

Theorem  2  CCAV-Multiwinner is W[1]-hard with respect to  k , even when every vote 
approves two candidates.

Proof  To prove Theorem 2, we offer a reduction from �-IDS to CCAV-Multiwinner, simi-
lar to the one for MAV-Multiwinner discussed above by LeGrand [50]. Let (G = (N,A), �) 
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be an instance of �-IDS. We construct an instance ((C,V), k, d) of CCAV-Multiwinner 
as follows. For each vertex c ∈ N , we create one candidate denoted by the same symbol 
for simplicity. Let C = N and let m = |C| . For each edge {c, c�} ∈ A , we create one vote v 
approving exactly c and c′ , i.e., v = {c, c�} . Let V be the set of the created votes. Finally, we 
set k = � (hence k = m − � ) and set d = |A|.

The correctness of the reduction is easy to check. If there is an independent set  I of 
size  k , the CCAV score of the (m − k)-committee N ⧵ I is d . Conversely, if there is an 
(m − k)-committee w of CCAV score d , every vote has at least one of its approved candi-
dates in the committee. Due to the construction, this implies that N⧵w is an independent 
set. 	�  ◻

For PAV, we also obtain a W[1]-hardness result via a reduction from the following 
problem. 

Minimum ( �)-Vertex Subgraph ( �-MVS)

Input: A graph G = (N,A) and two integers � and �.
Parameter: �.
Question: Is there S ⊆ N such that |S| = � and G[N ⧵ S] has at most � edges?

Cai [17] proved that the �-MVS problem is W[1]-hard even when the input graph is 
regular, i.e., all vertices have the same degree.

Theorem  3  PAV-Multiwinner is W[1]-hard with respect to  k , even when every vote 
approves two candidates.

Proof  We provide a reduction from �-MVS to PAV-Multiwinner. Let (G, �,�) be an 
instance of �-MVS such that every vertex of G has degree r for some positive integer r. 
Let G = (N,A) and let m = |N| . Without loss of generality, we assume that 𝜅 < m . We con-
struct an instance ((C,V), k, d) of PAV-Multiwinner as follows. For each vertex c ∈ N , we 
create one candidate in C denoted by the same symbol, and for each edge {c, c�} ∈ A , we 
create one vote approving c and c′ in V. We set k = m − � , and hence k = � . Finally, we set 
d = (m − �) ⋅ r −

𝓁

2
 . It remains to show the correctness.

(⇒) Suppose that there exists S ⊆ N so that |S| = � and G[N ⧵ S] contains exactly �′ ≤ � 
edges. Then the PAV score of the committee N⧵S is

Obviously, |N ⧵ S| = m − |S| = k . Therefore, the PAV-Multiwinner instance is a 
Yes-instance.

(⇐) Conversely, suppose that w ⊆ C is an (m − �)-committee of PAV score at least d . 
Let �′ be the number of votes whose both approved candidates are in  w . Due to the 
reduction, every candidate is approved by exactly  r votes. Therefore, there are exactly 
(m − �) ⋅ r − 2𝓁� votes which have exactly one of their approved candidates in w . Hence, 
the PAV score of w is 3

2
𝓁� + ((m − �) ⋅ r − 2𝓁�) , which is at least d . It immediately follows 

that �′ ≤ � , implying that N⧵w is a Yes-witness of the �-MVS instance (G, �,�) . 	�  ◻

3

2
𝓁� +

(
(m − �) ⋅ r − 2𝓁�

)
= (m − �) ⋅ r −

𝓁�

2
≥ d.
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It should be pointed out that a reduction established by Skowron, Faliszewski, and Lang 
[67, Theorem  5] for showing NP-hardness of a related problem also implies that PAV-
Multiwinner is W[1]-hard with respect to k.7

Now we move on to the parameter d . We observe that CCAV-Multiwinner is equivalent 
to the Partial Hitting Set problem which has been intensively studied in the literature. 

Partial Hitting Set

Input: A universe U, a collection S  of subsets of U, and two nonnegative integers a and b.
Parameter: b.
Question: Is there S ⊆ U such that |S| = a and S intersects at least b elements of S ?

Clearly, by taking C = U , V = S  , k = a , and d = b in the above definition we obtain 
CCAV-Multiwinner. Bläser [5] derived an algorithm running in time O∗(2O(b)) for Partial 
Hitting Set. This leads to the following corollary.

Corollary 2  ([5]) CCAV-Multiwinner can be solved in time O∗(2O(d)).

Observe that every CCAV-Multiwinner instance where d > n is a No-instance. As a 
result, Corollary 2 implies an algorithm for CCAV-Multiwinner running in time O∗(2O(n)) , 
which appreciably improves the O∗(nn) algorithm presented in [4].

Corollary 3  ([5]) CCAV-Multiwinner can be solved in time O∗(2O(n)).

Bläser [5] also presented a randomized algorithm of running time O∗((2e)b) which 
solves the Partial Hitting Set problem correctly with probability at least 1 − e−1 , where e 
is the Napier’s constant. We arrive at the following corollary.

Corollary 4  ([5]) There is a randomized algorithm running in time O∗((2e)d) which solves 
CCAV-Multiwinner correctly with probability at least 1 − e−1.

4.2 � Parameters △
V

 and △
C

In this section, we study the two parameters △V and △C . First, as Vertex  Cover remains 
NP-hard when restricted to cubic graphs (i.e., 3-regular graphs) [38], the reduction for the 
NP-hardness of MAV-Multiwinner established by LeGrand [50] implies that MAV-Mul-
tiwinner is NP-hard even when every candidate is approved by three votes and every vote 
approves two candidates. It remains to study the cases where △V ≤ 1 or △C ≤ 2.

Recall that for a committee selection rule � and an election E = (C,V) , �(E, k) is the 
set of all optimal k-committees under � . More precisely, for � being MAV, �(E, k) con-
sists of all k-committees of C with the minimum Hamming distance to the votes, and 

7  Their reduction is from Vertex  Cover restricted to 3-regular graphs, and a slight modification results in a 
reduction based on Vertex  Cover restricted to regular graphs which is W[1]-hard parameterized by m − � 
[26].
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for � being CCAV and PAV, �(E, k) consists of all k-committees of C with the maximum 
CCAV and PAV scores, respectively.

It is easy to see that every election E = (C,V) where every vote approves only one 
candidate admits a k-committee, k ≤ |C| , which is optimal with respect to MAV, CCAV, 
and PAV at the same time. In fact, any optimal k-committee under the approval voting 
(AV) is such a k-committee. The AV score of a candidate c is |V(c)| , the number of votes 
approving c, and AV selects k-committees with the maximum sum of AV scores of can-
didates in the committees.

Observation 1  Let E = (C,V) be an election where every vote in  V approves at most 
one candidate, and let k ≤ |C| be an integer. It holds that AV(E, k) ⊆ MAV(E, k) and 
AV(E, k) = CCAV(E, k) = PAV(E, k).

To see that AV(E, k) ⊆ MAV(E, k) instead of AV(E, k) = MAV(E, k) in Observation 1, 
consider an election with two candidates  a and  b, where  a is approved by two votes, 
and b is approved by a third vote which does not approve a. For k = 1 , both {a} and {b} 
are optimal with respect to MAV, but only {a} is optimal with respect to AV.

The following corollary follows from Observation 1 and the clear fact that an optimal 
k-committee with respect to AV can be computed in polynomial time.

Corollary 5  For each � ∈ {MAV,CCAV, PAV} , �-MULTIWINNER is polynomial-time solv-
able when △V ≤ 1.

Regarding △C , we have several polynomial-time solvability results for △C ≤ 2 . One 
of our results is based on the following polynomial-time solvable problem [52]. 

Simple b-Edge Cover of Multigraphs (SECM)

Input: A multigraph G = (N,A) , a function f ∶ N → ℤ
+ , and an integer �.

Question: Is there A′ ⊆ A such that |A′| ≤ � and every v ∈ N is incident to at least f(v) edges in A′?

If we require |A�| = � in the above definition, we obtain the exact version of SECM 
(E-SECM). Clearly, E-SECM can also be solved in polynomial time.

Every election E = (C,V) can be represented by a multihypergraph where every vote 
v ∈ V  is considered as a vertex and every candidate c ∈ C is considered as an edge con-
sisting of vertices in V(c). When a candidate is approved by only one vote, there is a 
loop on this vote. We use H(E) to denote this multihypergraph representing E. Clearly, 
given an election, its multihypergraph representation can be computed in polynomial 
time. When △C ≤ 2, H(E) degenerates to a multigraph.

For a class H  of multihypergraphs, we say that an election  E is an H -election if 
H(E) ∈ H .

Theorem  4  MAV-Multiwinner and CCAV-Multiwinner are polynomial-time solvable if 
△C ≤ 2.

Proof  We derive polynomial-time algorithms for the special cases of MAV-Multiwinner 
and CCAV-Multiwinner stated in the theorem as follows. Let (E, k, d) be an instance of 
MAV-Multiwinner or CCAV-Multiwinner, where E = (C,V) . We first compute the 
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multigraph representation  H(E) = (V ,A) of  E which can be done in polynomial time, 
where A is the set of edges corresponding to candidates in C.

MAV. We solve MAV-Multiwinner by reducing it to E-SECM. Recall that for each 
v ∈ V , |v| is the number of candidates approved by v which is equal to the number of edges 
incident to v in H(E). Observe that the Hamming distance between every vote v and every 
k-committee can be at most |v| + k . Therefore, if d ≥ |v| + k , we can safely remove  v 
from V without changing the answer to the instance. In light of this fact, we assume now 
that |v| + k > d for every v ∈ V  . Let  f ∶ V → ℤ

+ be a function such that f (v) = ⌈ �v�+k−d
2

⌉ 
for every v ∈ V  . By setting � = k we complete the construction of an instance (H(E), f , �) 
of E-SECM. Assume that there exists A′ ⊆ A of cardinality � so that every v ∈ V  is inci-
dent to at least f(v) edges in A′ . Let w be the k-committee corresponding to A′ . The Ham-
ming distance between every vote v ∈ V  and w is

The proof for the other direction is analogous.
CCAV. We derive a greedy algorithm for CCAV-Multiwinner. Let H′ be the graph 

obtained from H(E) by 

(1)	 removing all loops, and
(2)	 for every two vertices between which there are multiple edges, removing all but any 

arbitrary one of these multiple edges.

Let M be a maximum matching of H′ , and let V(M) be the set of vertices saturated by M. 
We distinguish between two cases.

–	 If |M| ≥ k , we arbitrarily select k edges in M, and let w be the k-committee corre-
sponding to these selected edges.

–	 If |M| < k , let w be the set of candidates corresponding to edges in M. Let E′ be the 
election obtained from E by removing all votes in V(M) and all candidates approved 
only by votes in  V(M). As  M is a maximum matching of H′ , no two votes of E′ 
approve a common candidate. Then, for every nonempty vote in E′ , we arbitrarily 
select one candidate approved by the vote. Let w′ denote the set of all these selected 
candidates. If |w�| ≥ k − |M| , we include into  w any arbitrary k − |M| candidates 
from w′ ; otherwise, we include into w all candidates of w′ together with any arbitrary 
k − |w ∪ w�| remaining candidates.

In either case, we conclude that the given instance of CCAV-Multiwinner is a Yes-instance 
if and only if ����(V ,w) ≥ d . 	�  ◻

Now we study special cases of PAV-Multiwinner where △C and △V are very small 
integers. We need the following notions. A path is a graph comprised of a sequence v1, v2
, …, vt of t vertices and t − 1 edges so that there is an edge between two vertices if and only 
if they are consecutive in the sequence. A cycle is a graph obtained from a path by adding 
an edge between the first and the last vertices. A hairstick is a graph obtained from a path 
by adding one loop either on the first vertex or on the last vertex. A double headed hair-
stick (DH-hairstick) is a graph obtained from a path by adding one loop on both the first 
vertex and on the last vertex. We refer to Fig. 2 for an illustration of these graphs.

|v ⧵ w| + |w ⧵ v| ≤ (|v| − f (v)) + (k − f (v)) ≤ d.
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Lemma 2  Let H  be the set of all paths, cycles, hairsticks, and DH-hairsticks. Then, given 
an H -election, we can compute a PAV optimal k-committee of the election in polynomial 
time.

We defer the proof of Lemma 2 to the appendix.

Theorem 5  PAV-Multiwinner is polynomial-time solvable if △C ≤ 1 or △V = △C = 2.

Proof  Let I = (E, k, d) be an instance of PAV-Multiwinner where E = (C,V).
We consider first the case where △C ≤ 1 . The following algorithm finds an optimal 

k-committee. First, let w = � . Then, we arrange votes in V in a cyclic order (the relative 
orders of the votes do not matter), and starting from any arbitrary vote we consider the 
votes one-by-one in a clockwise order. In particular, if the currently considered vote v has 
at least one approved candidate not contained in w , i.e., v ⧵ w ≠ ∅ , we add any arbitrary 
candidate from v ⧵ w into w ; otherwise we proceed to the next vote. The procedure runs 
until |w| = k or w cannot be expanded in the way described above. Finally, we conclude 
that I is a Yes-instance if and only if ���(V ,w) ≥ d.

Now we consider the case where △C = △V = 2 . We first compute the multigraph rep-
resentation H(E) of E. Given a subgraph of H(E), the subelection of E restricted to this 
subgraph refers to E restricted to candidates and votes corresponding respectively to the 
edges and the vertices of the subgraph. Observe that every connected component of H(E) is 
either a path, a cycle, a hairstick, or a DH-hairstick, and by Lemma 2, for every integer j, an 
optimal j-committee of each subelection restricted to a connected component can be com-
puted in polynomial time. Based on this, we derive a dynamic programming algorithm. 
Precisely, let (H1,H2,… ,Hz) be an arbitrary order of the connected components of H(E). 
For each i ∈ [z] , let m≤i be the number of edges in the first i connected components in the 
order. We maintain a table T(i, j) where i ∈ [z] and j ≤ min{k,m≤i} is a nonnegative inte-
ger. We define T(i, j) as the PAV score of an optimal j-committee in the election restricted 
to the first i connected components. By Lemma 2, T(1, j) for all possible j can be computed 
in polynomial time. We use the following recursion to compute T(i,  j), assuming that all 
entries T(i�, j�) such that i′ < i have been computed. For each j′ ≤ j , let d(j�) be the PAV 
score of an optimal j′-committee of E restricted to Hi , which can be computed in polyno-
mial time by Lemma 2. Then, we have that

After all entries are computed, we conclude that the given instance I is a Yes-instance if 
and only if T(z, k) ≥ d . 	�  ◻

T(i, j) = max
j� ∈ [j] ∪ {0},

j − j� ≤ m≤i−1

{d(j�) + T(i − 1, j − j�)}.

Fig. 2   An illustration of cycles, paths, hairsticks, and DH-hairsticks
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5 � Combined parameters

The study in the previous section revealed that the parameters k, k, △V , and △C generally 
lead to fixed-parameter intractability results. In this section, we explore whether combining 
two or three of them offers us FPT-results.

5.1 � Combining k with △
V

 and △
C

We first consider the combined parameter k +△C , starting with an FPT-result for 
MAV-Multiwinner.

Theorem 6  MAV-Multiwinner is  FPT  with respect to k +△C.

Proof  We prove the theorem by giving an FPT-algorithm for MAV-Multiwinner as fol-
lows. Let I = (E, k, d) be an instance of MAV-Multiwinner, where E = (C,V) . Let n = |V| . 
If n ≤ k ⋅ △C + 1 , then as MAV-Multiwinner is FPT with respect to n [57], we can solve I 
in FPT-time in k +△C . Otherwise, let (v1, v2,… , vn) be a linear order on  V such that 
|vi| ≥ |vi+1| for every i ∈ [n − 1] , i.e., vi approves at least the same number of candidates 
as vi+1 does. Then, the algorithm deletes the last n − (k ⋅ △C + 1) votes in this order, and 
solves the remaining instance by an FPT-algorithm with respect to the number of votes 
(e.g., the one presented in [57]).

It remains to prove the correctness of the algorithm. Let E′ be the election after the dele-
tion of the votes as described above. Clearly, every k-committee of the original election 
with MAV score d is a k-committee of E′ with MAV score at most d . To show the correct-
ness for the opposite direction, let w be a k-committee of E′ with MAV score d . As every 
candidate is approved by at most △C votes, at most k ⋅ △C votes in E′ intersect w . As E′ 
contains the first k ⋅ △C + 1 votes in the order defined above, there exists i ∈ [k ⋅ △C + 1] 
so that the vote  vi does not approve any candidate from  w . The Hamming distance 
between w and vi is k + |vi| ≤ d . As |vj| ≤ |vi| for every deleted vote vj , j ≥ k ⋅ △C + 2 , the 
Hamming distance between w and vj is at most k + |vj| ≤ k + |vi| ≤ d . It follows that w has 
MAV score d in the election E. 	�  ◻

Let us move on to CCAV. Obviously, if  w is a  k-committee, then at most k ⋅ △C 
votes intersect  w . Hence, the CCAV score of every optimal  k-committee is bounded 
from above by k ⋅ △C . This observation leads to a simple algorithm for CCAV-
Multiwinner: if d > k ⋅ △C , return “No”; otherwise, solve it by Corollary  2 in time 
O∗(2O(d)) = O∗(2O(k⋅△C)).

Corollary 6  CCAV-Multiwinner is  FPT  with respect to k +△C.

Now we study the combined parameter k +△V . Observe that MAV-Multiwinner 
admits a straightforward FPT-algorithm with respect to k +△V based on an algorithm in 
[57]: if d > k +△V , every k-committee has MAV score at most d , and hence we directly 
conclude that the given instance is a Yes-instance; otherwise, we solve it by the FPT-algo-
rithm with respect to d proposed in [57].

Corollary 7  MAV-Multiwinner is  FPT  with respect to k +△V.
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Aziz et al. [3] proved that PAV-Multiwinner is W[1]-hard when the parameter is k even 
if △V = 2 . This implies that PAV-Multiwinner is W[1]-hard with respect to k +△V . For 
CCAV, Betzler, Slinko, and Uhlmann [4] proved that CCAV-Multiwinner is W[2]-hard 
with respect to  k by a reduction from the Hitting Set problem. However, in the reduc-
tion the maximum number of candidates approved by a vote is not bounded from above 
by a constant. Using a reduction from the Partial Vertex  Cover problem, we show that 
CCAV-Multiwinner is W[1]-hard with respect to k in this special case. 

Partial Vertex  Cover (PVC)

Input: A graph G and two integers � and �.
Parameter: �.
Question: Is there a subset S ⊆ V(G) such that |S| = � and S covers at least �  

edges of G?

It is known that PVC is W[1]-hard with respect to � [41].

Theorem 7  CCAV-Multiwinner is W[1]-hard with respect to k even if every vote approves 
two candidates.

Proof  Given an instance (G, �,�) of PVC, we create a CCAV-Multiwinner instance as 
follows. We regard each vertex as a candidate and regard each edge as a vote approving 
exactly the two candidates corresponding to its two endpoints. The reduction is completed 
by setting k = � and d = � . The correctness is easy to see. 	�  ◻

5.2 � Combining k with △
V

 and △
C

We have shown that MAV-Multiwinner, CCAV-Multiwinner, and PAV-Multiwinner are 
W[1]-hard or W[2]-hard with respect to the single parameter k even when △V = 2 . It fol-
lows that these problems are W[1]-hard or W[2]-hard when parameterized by k +△V . 
Hence, we focus only on the combined parameter k +△C . We first prove that MAV-Mult-
iwinner is FPT with respect to this parameter by reducing it to an FPT problem which is a 
generalization of the r-Set Packing problem. 

Generalized r-Set Packing (GrSP)

Input: A universe U, a multiset S  of r-subsets of U, a function 
 f ∶ U → ℕ0 , and an integer �.

Parameter: � + r.
Question: Is there an S ⊆ S  such that |S| = � and every u ∈ U occurs in at  

most f(u) elements of S?

It is known that GrSP is FPT [79]8. It is easy to verify that the variant of the GrSP 
problem where each s ∈ S  is of cardinality at most  r, instead of exactly  r, is reducible 

8  The definition of GrSP in [79] requests  f(u) to be positive for all u ∈ U . However, it is fairly easy to 
see that if we allow f (u) = 0 for some u ∈ U , we can safely remove all X ∈ S  such that u ∈ X from the 
instance without changing the answer to the instance. So, allowing f (u) = 0 for u ∈ U does not destroy the 
fixed-parameter tractability of the problem.
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to GrSP in polynomial time: for each s ∈ S  such that |s| < r , create r − |s| new elements 
in U, add them into s, and set f (u) = 1 for every newly introduced element in U. Therefore, 
the above variant is also FPT. In the following, we use G r≤ SP to denote this variant.

Theorem 8  MAV-Multiwinner is  FPT  with respect to k +△C.

Proof  Let I = (E, k, d) be an instance of MAV-Multiwinner, where E = (C,V) . Note 
that the Hamming distance between each vote v and each k-committee is at least |k − |v|| . 
Therefore, if there exists a vote v ∈ V  such that |v| < k and d < k − |v| , we immediately 
conclude that the given instance  I is a No-instance. In what follows, we assume that for 
all v ∈ V  either it holds that |v| ≥ k , or it holds that |v| < k and d ≥ k − |v| . We reduce I 
to an instance of G r≤ SP in polynomial time as follows. Precisely, let U = V  , and let 
S = {V(c) ∶ c ∈ C} . Clearly, each element of S  is of cardinality at most △C . Hence, we 
set r = △C . Regarding the function f, for each v ∈ V  we define

By the above assumption, the function f is nonnegative. Finally, we define � = k = |C| − k.
It remains to prove that the two instances are equivalent.
(⇒) Suppose that the G r≤ SP instance is a Yes-instance. In particular, let S ⊆ S  be such 

that |S| = � and every u ∈ U occurs in at most  f(u) elements of  S. Let C′ be the subset 
of candidates corresponding to  S. Clearly, |C�| = |S| = k . We claim that w = C ⧵ C� is 
a  k-committee with MAV score at most d . Due to the above construction, every vote  v 
occurs in at most f(v) submultisets from S. This implies that v has at least |v| − f (v) of its 
approved candidates in w . Hence, the Hamming distance between v and w is at most

In other words, the instance I is a Yes-instance.
(⇐) Suppose that  I is a Yes-instance, i.e., there is a  k-committee  w ⊆ C such that 

���(V ,w) ≤ d . Let C� = C⧵w . Then, for each vote v ∈ V  at least ⌈ �v�+k−d
2

⌉ of its approved 
candidates must be in w . In other words, at most �v� − ⌈ �v�+k−d

2
⌉ = f (v) of v’s approved 

candidates can be in S = {V(c) ∶ c ∈ C�} . This implies that the G r≤ SP instance is a Yes-
instance. 	� ◻

Next, we prove that CCAV-Multiwinner is FPT with respect to the combined parameter 
k +△C as well.

Theorem 9  CCAV-Multiwinner is  FPT  with respect to k +△C.

Proof  We prove Theorem 9 by deriving a branch-and-bound FPT-algorithm with respect 
to k +△C . Let I = ((C,V), k, d) be an instance of CCAV-Multiwinner. Throughout the 
algorithm, let k = |C| − k.

We first remove from C all candidates not approved by any votes, and remove from V 
all empty votes. Then, we assume that neither of C and V is empty, since otherwise the 
instance can be solved trivially. Observe now that if a vote v ∈ V  approves more than k 
candidates, any k-committee intersects v. In light of this observation, we need only to focus 
on votes approving at most k candidates. Let U ⊆ V  be the submultiset of votes from V 

f (v) =

⌊
d + |v| − k

2

⌋
.

f (v) + (k − (|v| − f (v))) = 2 ⋅ f (v) + k − |v| ≤ d.
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approving at most k candidates. Let B = ∪v∈Uv be the set of candidates approved by votes 
from U. If U = � or |B| ≤ k , any k-committee containing B satisfies all votes. In this case, 
we conclude that I is a Yes-instance if and only if d ≤ |V| . Assume now that |B| ≥ k + 1 . 
For each candidate c ∈ C , let V1(c) be the multiset of votes in U that approve c only, i.e., 
V1(c) = {v ∈ U ∶ v = {c}} . Let c⋆ ∈ B be such that |V1(c⋆)| ≤ |V1(c)| for all c ∈ B . Let 
A =

⋃
v∈V(c)∩U v . A significant observation is that there is an optimal k-committee which 

does not contain A. (A proof for the observation is given later.) In line with this observa-
tion, we solve the instance by branching on which candidate from A is not contained in 
a certain optimal k-committee. In particular, we create |A| branching cases, one for each 
x ∈ A . In the branching case for x ∈ A , we reset C ∶= C ⧵ {x} (note that this implies that k 
is decreased by one), d ∶= d − |V⧵U| , and V ∶= U , and solve the subinstance iteratively 
by the above procedure. We use two pruning criteria to determine when to terminate the 
branching: d ≤ 0 or k = 0 . When we arrive at a branching node where d ≤ 0 and k ≥ 0 , it 
holds clearly that the given instance I is a Yes-instance, and thus in this case we terminate 
the whole algorithm by returning “Yes”. When we arrive at a branching node where k = 0 
and d > 0 , we determine that I is a Yes-instance if ����(V ,C) ≥ d , and discard the cor-
responding branching case otherwise.

Now we prove the correctness of the above mentioned observation. To this end, 
assume that w is an optimal k-committee such that A ⊆ w . Then, we can obtain another 
optimal k-committee from w by replacing c⋆ (notice that c⋆ ∈ A ) with any arbitrary can-
didate from B ⧵ w (as |B| ≥ k + 1 such a candidate exists). The reason is that every vote 
from (V(c⋆) ∩ U) ⧵ V1(c⋆) approves at least one candidate from w ⧵ {c⋆} (because A ⊆ w ). 
Hence, removing  c⋆ from  w may only affect the existence of representatives of votes 
from V1(c⋆) in the committee. However, as |V1(c⋆)| ≤ |V1(c)| for all c ∈ B , adding any 
arbitrary candidate from B ⧵ w into w makes all votes from V1(c⋆) which do not have any 
representatives before have representatives now.

Regarding the running time of the algorithm, note that |A| ≤ △C ⋅ k . Hence, each 
branching node has at most △C ⋅ k children, implying that the branching algorithm has 
running time O∗((△C ⋅ k)k) . 	�  ◻

5.3 � Combining d and △
V

It is known that MAV-Multiwinner and CCAV-Multiwinner are both FPT with respect to 
the parameter d . However, it is unknown whether PAV-Multiwinner is FPT with respect 
to d . Even though we are unable to resolve this open question, we provide an FPT-algo-
rithm when combining d and △V.

Theorem 10  PAV-Multiwinner is  FPT  with respect to d +△V.

Proof  We prove the theorem by giving a branch-and-bound FPT-algorithm. Let 
I = (E, k, d) be an instance of PAV-Multiwinner, where E = (C,V).

First, if  C contains a candidate approved by at least  d votes in  V, any  k-committee 
including this candidate is a desired committee. So, in this case, we directly conclude that I 
is a Yes-instance.

Second, let C0 ⊆ C be the set of candidates not approved by any votes in V. We remove 
from the election (C, V) all candidates in C0 , and reset k ∶= min{k, |C|} . It is easy to verify 
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that the two instances before and after this step are equivalent. Afterwards, if k = |C| , we 
conclude that I is a Yes-instance if and only if ���(V ,C) ≥ d.

From now on, let us assume that every candidate is approved by at least one and at 
most d − 1 votes in V, and k < |C| . For each S ⊊ C and each c ∈ C ⧵ S , we define

as the marginal contribution of c to the PAV score of the committee S ∪ {c} . In our branch-
ing tree, each branching node is associated with a subset S ⊊ C of cardinality at most k, 
which is supposed to be contained in a desired committee. The root of the branching tree 
is associated with S = � . Suppose we are now at a branching node associated with a sub-
set S ⊊ C . Let c ∈ C⧵S be a candidate such that �(S, c) ≥ �(S, c�) for all c� ∈ C ⧵ S . Let 
A = (

⋃
v∈V(c) v) ⧵ S be the set of candidates approved by votes approving c but not con-

tained in S. Then, we create |A| branching cases, one for each x ∈ A . The set associated 
with the branching case for x ∈ A is S ∪ {x} . The correctness of our branching is rooted in 
the fact (a proof supporting this fact is provided later) that, if the given instance I is a Yes-
instance, there exists at least one desired k-committee which includes at least one candidate 
from A.

We terminate the branching when the branching depth of the current branching node 
reaches min{k, d ⋅ △V} . Recall that the branching depth of a branching node is the number 
of edges on the path from the root to the node in the branching tree. By our branching strat-
egy, the branching depth of a branching node associated with S is exactly |S| . Therefore, 
when k ≤ d ⋅ △V and the branching depth of the current node associated with S reaches k, 
we have that |S| = k . In this case, if S has PAV score at least d with respect to V, we con-
clude that the given instance I is a Yes-instance. Consider now the case where k > d ⋅ △V . 
Note that �(S, x) ≥ 1

△V

 for each possible S and x. Therefore, if the current branching node 
associated with S has branching depth d ⋅ △V, S is a k′-committee, k′ ≤ k , of PAV score at 
least d . As a result, when k > d ⋅ △V and the current node has branching depth d ⋅ △V , we 
directly conclude that I is a Yes-instance. If none of the branching nodes leads to a “Yes”-
answer, we conclude that I is a No-instance.

Note that |A| ≤ |V(c)| ⋅ △V ≤ d ⋅ △V , where A is as defined above. Therefore, the run-
ning time of the whole algorithm is bounded by O∗((d ⋅ △V)

d⋅△V ).
To show the correctness, it suffices to prove the following claim (corresponding to the 

aforementioned fact).

Claim  Let S ⊊ C be a subset of at most k − 1 candidates, and let c ∈ C ⧵ S be a candidate 
such that �(S, c) ≥ �(S, c�) for all c� ∈ C ⧵ S . Let A = (

⋃
v∈V(c) v) ⧵ S . Then, if there is a 

k-committee w ⊊ C such that ���(V ,w) ≥ d , S ⊊ w , and A ∩ w = � , there exists a k-com-
mittee w′ ⊊ C such that ���(V ,w�) ≥ d , S ⊆ (w ∩ w�) , and A ∩ w� ≠ �.

Now we prove the claim. Let S, c, and A be as stipulated in the claim. Suppose that 
there is a k-committee w ⊊ C such that ���(V ,w) ≥ d , S ⊊ w , and A ∩ w = � . Let  c′ 
be any candidate in w⧵S , and let w� = w⧵{c�} ∪ {c} . Obviously, S ⊆ (w ∩ w�) and 
A ∩ w� ≠ � . To complete the proof, it suffices to show that ���(V ,w�) ≥ d . First, as 
w ∩ A = � and S ⊆ w , it holds that �(w, c) = �(S, c) . Second, as S ⊆ w ⧵ {c�} , it holds that 
�(w ⧵ {c�}, c�) ≤ �(S, c�) . Third, it is clear that �(w ⧵ {c�}, c) ≥ �(w, c) . We also reiterate 
that �(S, c) ≥ �(S, c�) . Putting this all together, we obtain �(w ⧵ {c�}, c) ≥ �(w ⧵ {c�}, c�) 
which implies ���(V ,w�) ≥ ���(V ,w) ≥ d . The proof is completed. 	�  ◻

�(S, c) = ���(V , S ∪ {c}) − ���(V , S),
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We have derived many FPT-algorithms with respect to different single parameters and 
their combinations. Our results reveal that MAV-Multiwinner and CCAV-Multiwinner are 
FPT with respect to any combinations of three single parameters studied so far. Unfortu-
nately, we have only a few FPT-results for PAV-Multiwinner even for combinations of 
two single parameters. We finish this section by remarking that PAV-Multiwinner is FPT 
with respect to k +△V +△C : if d > k ⋅ △C , return “No”; otherwise, solve the instance in 
FPT-time via Theorem 10.

Corollary 8  PAV-Multiwinner is  FPT  with respect to k +△V +△C.

6 � Structural parameters

In this section, we study two structural parameters of incidence graphs of elections. For an 
election E, let GE denote the incidence graph of E.

6.1 � Treewidth

Treewidth is a widely-studied notion to measure the closeness of a graph to a tree [63]. 
It has been shown that a great deal of graphs stemming from innumerable combinatorial 
problems in a variety of areas have bounded treewidth (see, e.g., [47, 56, 71, 74]). Addi-
tionally, it has been scrutinized that even when treewidth is large, using tree decomposi-
tions could also be helpful for designing algorithms [55]. From a theoretical point of view, 
a myriad of NP-hard problems are known to be FPT with respect to the parameter tree-
width [21]. With regard to the applicability of treewidth in multiwinner voting, we point 
out that the treewidth of the incidence graph of an election is no greater than the number m 
of candidates and the number n of voters in the election, implying that any FPT-algorithm 
for �-MULTIWINNER with respect to the treewidth also runs in FPT-time in m and n.

A tree decomposition of a graph G = (N,A) is a tuple (T ,B) , where T = (L,F) is 
a rooted tree with vertex set  L and edge set  F, and B = {Bx ⊆ N ∶ x ∈ L} is a col-
lection of subsets of vertices of  G such that the following three conditions are fulfilled 
simultaneously:

•	 For each vertex v ∈ N in G there exists at least one Bx ∈ B such that v ∈ Bx , i.e., every 
vertex of G is in at least one element of B.

•	 For each edge {v, u} ∈ A in G there exists at least one Bx ∈ B such that v, u ∈ Bx , i.e., 
every edge of G is contained in at least one element of B.

•	 If a vertex v ∈ N is in Bx,By ∈ B , then v is in every Bz ∈ B where z is a vertex on the 
unique path between x and y in T.

The width of the tree decomposition is defined as maxB∈B |B| − 1 . The treewidth of a 
graph G, denoted �(G) , is the minimum possible width of tree decompositions of G. Ele-
ments of B are called bags. To avoid confusion, in the following we call vertices of  T 
nodes.

A more refined notion commonly used in designing FPT-algorithms is the so-called 
nice tree decomposition [9]. In particular, a nice tree decomposition (T ,B) of a graph G is 
a tree decomposition of G which further satisfies the following conditions simultaneously:
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•	 Every bag B ∈ B associated with the root or a leaf of T is empty, i.e., Bx = � if x is the 
root or a leaf of T.

•	 Nonleaf nodes of T are categorized into introduce nodes, forget nodes, and join nodes 
such that:

•	 Each introduce node x has exactly one child y such that By ⊊ Bx and |Bx⧵By| = 1 , 
i.e., Bx has exactly one more element than By.

•	 Each forget node x has exactly one child y such that Bx ⊊ By and |By⧵Bx| = 1 , i.e., Bx 
is obtained from By by removing one element.

•	 Each join node x has exactly two children y and z such that Bx = By = Bz.

It is easy to see from the definition that in a nice tree decomposition, each vertex can be 
introduced multiple times but can be only forgotten once. Moreover, when a vertex is intro-
duced in a bag Bx , all of its neighbors contained in bags associated with nodes in the sub-
tree rooted at x are contained in Bx.

Lemma 3  ([45]) Let G be a graph of p vertices. Then, given a tree decomposition of G of 
width � , a nice tree decomposition of G of width � having O(p ⋅ �) nodes can be computed 
in polynomial time.

It has long been known that calculating treewidth is NP-hard even for bipartite graphs 
[7]. However, determining whether the treewidth of a graph is at most � is FPT with 
respect to � and, moreover, powerful heuristic and approximation algorithms for calcu-
lating treewidth have been perpetually reported [6, 8, 72]. Besides, treewidth of chordal 
bipartite graphs can be computed in polynomial time,9 and the gap between chordal bipar-
tite graphs and general bipartite graphs is quite small [46]. It is also well-known that 
every graph of p vertices admits an optimal tree decomposition of O(p) nodes. Then, by 
Lemma 3, when we study FPT-algorithms with respect to treewidth or a combined param-
eter involving treewidth, it does not lose any generality to assume that a nice tree decompo-
sition is given.

Theorem  11  CCAV-Multiwinner can be solved in time O∗(4�) if a nice tree decomposi-
tion of width � and of ����(p) nodes of the incidence graph of the input election is given, 
where p is the number of vertices of the incidence graph.

Proof  Let (E, k, d) be an instance of CCAV-Multiwinner where E = (C,V) and k ≤ |C| . In 
addition, let (T ,B) be a nice tree decomposition of GE of width � that has ����(p) nodes, 
where p = |C| + |V| . We design a dynamic programming algorithm running in time O∗(4�) 
as follows.

For each bag Bx ∈ B associated with a node x in the tree T, let C(Bx) and V(Bx) be the 
set of candidate-vertices and the set of vote-vertices contained in Bx , respectively. Moreo-
ver, let C(Tx) be the set of candidates in bags associated with nodes in the subtree rooted 
at x. Obviously, C(Bx) ⊆ C(Tx) . We maintain for each node x in T a 3-dimensional table 
Dx(C

�,V �, k�) , where C′ is a subset of C(Bx) such that |C′| ≤ k, V ′ is a submultiset of V(Bx) , 
and k′ is an integer such that |C�| ≤ k� ≤ min{k, |C(Tx)|} . We say that a k′-committee w 

9  A chordal bipartite graph is a bipartite graph without induced cycles of length at least six.
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is a valid committee for the entry Dx(C
�,V �, k�) if all the following conditions hold 

simultaneously: 

(1)	 w ⊆ C(Tx);
(2)	 C� = C(Bx) ∩ w ; and
(3)	 a vote in V(Bx) has a representative in w if and only if this vote is in V ′ , i.e., for every 

v ∈ V(Bx) it holds that v ∩ w ≠ � if and only if v ∈ V �.

The value of the entry Dx(C
�,V �, k�) is the CCAV score of an optimal valid  k′-com-

mittee for the entry. If  Dx(C
�,V �, k�) admits no valid k′-committees, we define 

Dx(C
�,V �, k�) = −∞ . Clearly, each table associated with a bag has at most 2�+1 ⋅ (k + 1) 

entries.
The algorithm updates the tables from those associated with the leaves up to the one 

associated with the root of T. The values of entries associated with leaves are all 0 (recall 
that each leaf bag is empty). We update the entry Dx(C

�,V �, k�) associated with a nonleaf 
node x in T as follows.

First, if some candidate from C′ is approved by some vote from V(Bx) ⧵ V
� , we set 

Dx(C
�,V �, k�) = −∞ . Otherwise, we consider the following cases with respect to the types 

of x.

•	 x is a join node
•	 Let y and z be the two children of x. We have Bx = By = Bz . In this case, we let 

 It is obvious that there are O∗(2�) different combinations of k′
1
, k′

2
, V ′

1
 , and V ′

2
 to con-

sider in the max function. As a result, Dx(C
�,V �, k�) can be computed in O∗(2�) time.

•	 x is an introduce node
•	 Let y be the child of x, and let {h} = Bx ⧵ By . We further distinguish between two sub-

cases.

•	 h is a vote
•	 If h ∉ V � , then due to the above discussion  h does not approve any candi-

dates from  C′ . We set Dx(C
�,V �, k�) = Dy(C

�,V �, k�) . If h ∈ V � , then we set 
Dx(C

�,V �, k�) = Dy(C
�,V � ⧵ {h}, k�) + 1 if h approves at least one candidate from C′ ; 

and set Dx(C
�,V �, k�) = −∞ otherwise.

•	 h is a candidate
•	 If h ∉ C� , we set Dx(C

�,V �, k�) = −∞ when k� = |C(Tx)| , and set 
Dx(C

�,V �, k�) = Dy(C
�,V �, k�) when k� < |C(Tx)| . If h ∈ C� , let Vx(h) be the submul-

tiset of votes in V ′ approving h. Then, we set 

 Note that in this case if Vx(h) = � , we have that 
Dx(C

�,V �, k�) = Dy(C
�⧵{h},V �, k� − 1) . As |Vx(h)| ≤ � , Dx(C

�,V �, k�) can be calcu-
lated in O∗(2�)-time.

Dx(C
�
,V �

, k�) = max

k�
1
+ k�

2
= k� − |C�|

0 ≤ k�
1
≤ |C(Ty) ⧵ C�|

0 ≤ k�
2
≤ |C(Tz) ⧵ C�|

V �
1
,V �

2
⊆ V �,V �

1
∪ V �

2
= V �

{
Dy

(
C�

,V �
1
, k�

1
+ ||C�||

)
+ Dz

(
C�

,V �
2
, k�

2
+ ||C�||

)
− ||V �

1
∩ V �

2
||
}
.

Dx

(
C�,V �, k�

)
= max

U⊆Vx(h)

{
Dy

(
C� ⧵ {h},V � ⧵ U, k� − 1

)
+ |U|

}
.
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•	 x is a forget node
•	 Let y be the child of x and let {h} = By ⧵ Bx . We consider the following two subcases.

•	 h is a vote
•	 We set Dx

(
C�,V �, k�

)
= max

{
Dy

(
C�,V �, k�

)
,Dy

(
C�,V � ∪ {h}, k�

)}
.

•	 h is a candidate
•	 Clearly, h ∉ C� . If |C�| = k� or  h is approved by some votes in V(Bx) ⧵ V

� , we set 
Dx(C

�,V �, k�) = Dy(C
�,V �, k�) ; otherwise, let 

By the definition of the table, Dr(�, �, k) is the CCAV score of an optimal valid k-com-
mittee for the entry, where r is the root of T (recall that the bag associated with the root is 
empty). By Conditions (1)–(3) given above, every k-committee of C is valid for Dr(�, �, k) . 
Therefore, after all tables are computed, we conclude that the given instance of CCAV-
Multiwinner is a Yes-instance if and only if Dr(�, �, k) ≥ d.

It remains to analyze the running time of the algorithm. Each node in the nice tree 
decomposition is associated with a table of O∗(2�) entries. Due to the above procedure, 
calculating an entry corresponding to a forget node takes polynomial time, and calculating 
an entry corresponding to a join or an introduce node takes O∗(2�) time. As the nice tree 
decomposition has polynomially many nodes, the running time of the algorithm is O∗(4�) . 	
� ◻

Similar algorithms for PAV-Multiwinner and MAV-Multiwinner can be derived but 
with the running time being bounded by O∗((k + 1)�) . The reason is that in these cases we 
need to maintain more information in order to solve the problem. For example, for PAV-
Multiwinner, we need to maintain for each vote in V ′ the number of its approved candi-
dates that are supposed to be in a desired committee, which requests a table of size at least 
O∗((k + 1)�).

Theorem 12  PAV-Multiwinner and MAV-Multiwinner are  FPT  with respect to the com-
bined parameter k + � , if a nice tree decomposition of width � having ����(p) nodes of 
the incidence graph of the input election is given, where p is the number of vertices of the 
incidence graph.

Proof  To prove the theorem, we derive FPT-algorithms for PAV-Multiwinner and MAV-
Multiwinner with respect to k + � . Let I = (E, k, d) be an instance of �-MULTIWINNER 
where � ∈ {PAV,MAV} , E = (C,V) , and k ≤ |C| . In addition, let  p = |C| + |V| , and 
let (T ,B) be a nice tree decomposition of GE of width � that has ����(p) nodes. The algo-
rithms have the same skeleton as the one in the proof of Theorem 11 for CCAV-Multiwin-
ner. More concretely, we maintain a table for each node of T, compute the tables in a bot-
tom-up manner, and determine if the given instance  I is a Yes-instance according to the 
table associated with the root. To delineate the algorithms, we need the following nota-
tions. For an integer i, we define f (i) =

∑i

j=1
1

j
 if i ≥ 1 and define f (i) = 0 otherwise. For a 

function � ∶ A → B and an element a ∈ A , �−a denotes � restricted to the domain A ⧵ {a} , 
i.e., �−a ∶ A⧵{a} → B is a function such that for all a� ∈ A⧵{a} it holds that �−a(a�) = �(a�) . 
Additionally, let C(Bx), V(Bx) , and C(Tx) be defined as in the proof of Theorem 11. Further-
more, in parallel with C(Tx) , we let V(Tx) denote the multiset of all votes contained in bags 
associated with nodes in the subtree rooted at x.

Dx

(
C�,V �, k�

)
= max

{
Dy

(
C�,V �, k�

)
,Dy

(
C� ∪ {h},V �, k�

)}
.
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PAV. For each node  x in  T, we maintain a table Dx(C
�, k�,�) where C� ⊆ C(Bx) , 

|C�| ≤ k� ≤ min{k, |C(Tx)|} , and  � ∶ V(Bx) → [k] ∪ {0} is a function. We note that 
if V(Bx) = �, � is an empty function. We say that a k′-committee w ⊆ C(Tx) is valid for 
Dx(C

�, k�,�) if Conditions (1) and (2) listed in the proof of Theorem 11, and the following 
condition are satisfied simultaneously: 

(D)	 |v ∩ w| = �(v) for all v ∈ V(Bx).

We define Dx(C
�, k�,�) as the maximum possible PAV score of k′-committees valid for 

Dx(C
�, k�,�) with respect to V(Tx) . More precisely,

if Dx(C
�, k�,�) admits at least one valid k′-committee, and Dx(C

�, k�,�) = −∞ otherwise.
The tables for the leaves can be computed trivially according to the definition of the 

tables. We show how to update an entry Dx(C
�, k�,�) by distinguishing the types of the 

node x.

•	 x is a join node
•	 Let y and z be the two children of x. We let 

 where 

(a)	 k′
1
 and k′

2
 run over all integers so that k�

1
+ k�

2
= k� − |C�| , 0 ≤ k�

1
≤ |C(Ty)⧵C�| , and 

0 ≤ k�
2
≤ |C(Tz) ⧵ C�|;

(b)	 �1 and �2 run over all functions from V(Bx) to nonnegative integers so that for all 
v ∈ V(Bx) it holds that �1(v) + �2(v) = �(v) − |v ∩ C�|;

(c)	 for each i ∈ [2],  �′
i
 is a function from  V(Bx) to [k] ∪ {0} so that 

�
�
i
(v) = �i(v) + |v ∩ C�| for all v ∈ V(Bx) ; and

(d)	 for each � ∈ {�,��
1
,��

2
} , g(�) =

∑
v∈V(Bx)

f (�(v)).

	    By Condition (4), the number of different combinations of �1 and �2 in (b) is bounded 
from above by O∗((k + 1)�+1) ⋅ O∗((k + 1)�+1) = O∗(k2�) . As a result, an entry in this 
case can be computed in time O∗(k2�) . (Note that by the above recursion, when V(Bx) = � 
we have that Dx(C

�, k�,�) = maxk�
1
,k�
2

{Dy(C
�, k�

1
+ |C�|,�) + Dz(C

�, k�
2
+ |C�|,�)}.)

•	 x is an introduce node
•	 Let y be the child of x, and let {h} = Bx ⧵ By . We further distinguish between the fol-

lowing two subcases.

•	 h is a vote
•	 In this case, we set 

Dx(C
�, k�,𝜇) ∶= max

w ⊆ C(Tx), |w| = k�

w is valid for Dx(C
�, k�,𝜇)

���(V(Tx),w),

Dx(C
�
, k�,�) = max

k�
1
,k�
2
,�1,�2

{Dy

(
C�
, k�

1
+ ||C�||,��

1

)
− g(��

1
)

+ Dz

(
C�
, k�

2
+ |C�|,��

2

)
− g(��

2
)

+ g(�)},
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•	 h is a candidate
•	 If h ∉ C� , we set Dx(C

�, k�,�) = −∞ when k� = |C(Tx)| , and set 
Dx(C

�, k�,�) = Dy(C
�, k�,�) when k� < |C(Tx)| . If h ∈ C� , we set Dx(C

�, k�,�) = −∞ 
if there exists v ∈ V(Bx) such that h ∈ v and �(v) = 0 , and set 
Dx(C

�, k�,�) = Dy(C
�⧵{h}, k� − 1,��) +

∑
v∈V(Bx),h∈v

1

�(v)
 otherwise, where 

�� ∶ V(By) → [k] ∪ {0} is the function so that for all v ∈ V(By) it holds that 
��(v) = �(v) − |v ∩ {h}| . (If V(Bx) = �, �′ is an empty function.)

•	 x is a forget node
•	 Let y be the child of x and let {h} = By ⧵ Bx . Similar to the above case we distinguish 

between the following two subcases.

•	 h is a vote We set Dx(C
�, k�,�) = max

�� ∶ V(By) → [k] ∪ {0}

�
�
−h

= �

Dy(C
�, k�,��) . Obvi-

ously, we have at most (k + 1)�+1 different functions �′ to check, and hence such an 
entry Dx(C

�, k�,�) can be computed in O∗(k�) time.
•	 h is a candidate 

In this case, we set 

After the table for the root r is computed, we conclude that the given instance I is a Yes-
instance if and only if Dr(�, k,�) ≥ d , where � is an empty function (recall that the bag 
associated with the root is empty). This is because that by the definition of the table, 
Dr(�, k,�) is the maximum possible PAV score of a valid k-committee for Dx(�, k,�) 
with respect to V(Tr) = V .

MAV. For each node x in T, we maintain a table Dx(C
�, k�,�) whose components are defined 

as with the ones for PAV. The validity of a k′-committee for an entry is also defined the same. 
However, in this case each entry takes only binary values 1 and 0. The entry Dx(C

�, k�,�) is 1 if 
and only if there is at least one k′-committee w which is valid for the entry (i.e., a k′-committee 
satisfying Conditions (1)–(2) in the proof of Theorem 11, and Condition (4) given above) and, 
moreover, for each v ∈ V(Tx) ⧵ V(Bx) , it holds that |w ∩ v| ≥ k+|v|−d

2
 . Observe that, by the defi-

nition of nice tree decomposition, none of the votes in V(Tx) ⧵ V(Bx) approves any candidates 
from C ⧵ C(Tx) . Therefore, for every k-committee w′ ⊆ C such that w� ∩ C(Tx) = w and every 
v ∈ V(Tx)⧵V(Bx) , it holds that v ∩ w = v ∩ w� , implying that the Hamming distance between v 
and w′ is at most d if and only if |v ∩ w| ≥ k+|v|−d

2
 . The requirement |w ∩ v| ≥ k+|v|−d

2
 ensures 

that as long as the given instance admits a Yes-witness w′ ⊆ C such that w� ∩ C(Tx) = w , the 
existence of this Yes-witness is safely preserved in the table.

The tables for the leaves can be computed trivially according to their definitions. We 
show how to update an entry Dx(C

�, k�,�) by distinguishing the types of the node x.

•	 x is a join node
•	 Let y and z be the two children of x. In this case, we set Dx(C

�, k�,�) = 1 if and only if 
there are two functions �1,�2 ∶ V(Bx) → [k] ∪ {0} and two nonnegative integers k′

1
 and k′

2
 

such that 

Dx(C
�, k�,�) =

{
−∞, if �(h) ≠ |h ∩ C�|
Dy(C

�, k�,�−h) + f (�(h)), otherwise

Dx(C
�, k�,�) =

{
Dy(C

�, k�,�), if |C�| = k�

max{Dy(C
�, k�,�),Dy(C

� ∪ {h}, k�,�)}, otherwise
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(a)	 k�
1
+ k�

2
= k� − |C�|;

(b)	 for all v ∈ V(Bx) it holds that �1(v) + �2(v) = �(v) − |v ∩ C�| and, moreover,
(c)	 Dy

(
C�, k�

1
+ |C�|,��

1

)
= Dz

(
C�, k�

2
+ |C�|,��

2

)
= 1 , where for each i ∈ [2], �′

i
 is the 

function from V(Bx) to [k] ∪ {0} so that ��
i
(v) = �i(v) + |v ∩ C�| for all v ∈ V(Bx).

	    It is obvious that there are O∗(kO(�)) different combinations of k′
1
, k′

2
, �1 , and �2 to 

enumerate. As a result, it takes O∗(kO(�)) time to compute Dx(C
�, k�,�) . (Note that when 

V(Bx) = � , the above recursion indicates that Dx(C
�, k�,�) = 1 if and only if there are k′

1
 

and k′
2
 as above so that Dy(C

�, k�
1
+ |C�|,�) = Dz(C

�, k�
2
+ |C�|,�) = 1.)

•	 x is an introduce node
•	 Let y be the child of x, and let {h} = Bx ⧵ By . We further distinguish between the fol-

lowing two subcases.

•	 h is a vote
•	 We set Dx(C

�, k�,�) = 1 if and only if �(h) = |C� ∩ h| and Dy(C
�, k�,�−h) = 1.

•	 h is a candidate
•	 If h ∉ C� , we set Dx(C

�, k�,�) = 0 when k� = |C(Tx)| , and set 
Dx(C

�, k�,�) = Dy(C
�, k�,�) when k� < |C(Tx)| . If h ∈ C� , we set Dx(C

�, k�,�) = 1 if 
and only if Dy(C

� ⧵ {h}, k� − 1,��) = 1 where �� ∶ V(By) → [k] ∪ {0} is a function 
so that for all v ∈ V(By) it holds that ��(v) = �(v) − |v ∩ {h}| . (When V(Bx) = � , 
Dx(C

�, k�,�) = Dy(C
�⧵{h}, k� − 1,�).)

•	 x is a forget node
•	 Let y be the child of x and let {h} = By ⧵ Bx.

•	 h is a vote
•	 We set Dx(C

�, k�,�) = 1 if and only if 

(1)	 �(h) ≥
k+|h|−d

2
 , and

(2)	 there is a function �� ∶ V(By) → [k] ∪ {0} so that � = �
�
−h

 and 
Dy(C

�, k�,��) = 1.

	    The first condition is to ensure that there is a k-committee which contains a 
valid k′-committee w for the entry and the Hamming distance between w and h is at 
most d.

•	 h is a candidate
•	 If |C�| = k� , we set Dx(C

�, k�,�) = Dy(C
�, k�,�) . Otherwise, we set Dx(C

�, k�,�) = 1 
if and only if Dy(C

�, k�,�) + Dy(C
� ∪ {h}, k�,�) ≥ 1.

After the table for the root  r is computed, we conclude that the given instance  I is a Yes-
instance if and only if Dr(�, k,�) = 1 , where � is an empty function. The reason for this is 
that by the definition of the table, it holds that Dr(�, k,�) = 1 if and only if there is at least 
one k-committee w ⊆ C(Tr) = C which is valid for Dr(�, k,�) and, moreover, for each 
v ∈ V(Tr) ⧵ V(Br) = V , it holds that |w ∩ v| ≥ k+|v|−d

2
.

The running times of the algorithms for PAV-Multiwinner and MAV-Multiwinner are 
dominated by the total size of all tables which is bounded from above by O∗(kO(�)) . 	�  ◻
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6.2 � Maximum matching

It is well-known that for every bipartite graph G, the size of a maximum matching of G 
equals the size of a minimum vertex cover of  G [54]. As the treewidth of a graph is 
bounded from above by the size of a minimum vertex cover of the graph [37], it follows 
from Theorem 11 that CCAV-Multiwinner is FPT with respect to �(GE) , where E is a 
given election. We show that MAV-Multiwinner and PAV-Multiwinner are also FPT 
with respect to this parameter. Observe that the size of a maximum matching of GE can 
be at most min{m, n} , where m is the number of candidates and n is the number of votes 
in the election E. Consequently, every FPT-algorithm with respect to �(GE) also runs in 
FPT-time in n and m.

Theorem  13  MAV-Multiwinner and PAV-Multiwinner are  FPT  with respect to �(GE) , 
where E is the election in the input.

Proof  Let I = (E, k, d) be an instance of �-MULTIWINNER , where E = (C,V) and 
� ∈ {MAV, PAV} . Let GE be the incidence graph of E, and let M be a maximum match-
ing of GE . Hence, �(GE) = |M| . For simplicity, we write � for �(GE) . Let C(M) and V(M) 
be the set of candidates and the multiset of votes saturated by M, respectively. Obviously, 
|C(M)| = |V(M)| = � . We derive algorithms for MAV and PAV as follows.

MAV. We split  I into at most  2� subinstances, each of which takes  I and a subset 
C� ⊆ C(M) of size at most k as input, and asks whether there is a k-committee w ⊆ C of 
MAV score at most d such that C� = C(M) ∩ w . It is easy to see that I is a Yes-instance if 
and only if at least one of the subinstances is a Yes-instance. We show how to solve each 
subinstance in polynomial time.

Let I� = (I,C�) be a subinstance. Let v be a vote in V⧵V(M) . Assume that w is a k-com-
mittee such that w ∩ C(M) = C� . As  M is a maximum matching of GE , no vote from 
V ⧵ V(M) approves any candidate from C ⧵ C(M) . Consequently, the Hamming distance 
between  v and w is |v| + k − 2|v ∩ C�| . Hence, if there is a vote in V ⧵ V(M) such that 
|v| + k − 2|v ∩ C�| > d , the subinstance is a No-instance. So, let us assume that this is not 
the case. Now the task is to identify a subset H of k − |C�| candidates from C ⧵ C(M) such 
that the Hamming distance between every vote from V(M) and the committee H ∪ C� is 
at most d , or equivalently, for every v ∈ V(M), H contains at least |v|+k−d

2
− |v ∩ C�| of v’s 

approved candidates in C ⧵ C(M) . For each v ∈ V(M) , let f (v) = |v|+k−d
2

− |v ∩ C�| . We 
reduce the subinstance into an ILP with a bounded number of variables. Specifically, for 
each U ⊆ V(M) , let CU be the set of candidates in C ⧵ C(M) approved by all votes in U but 
not approved by any vote in V(M)⧵U , and let mU = |CU| . For each U ⊆ V(M) , we create 
one nonnegative integer variable xU which indicates the number of candidates from CU that 
are supposed to be in a desired committee. The constraints are as follows.

•	 First, for each variable xU we have that 0 ≤ xU ≤ mU.
•	 Second, as we seek k − |C�| candidates from C⧵C(M) , it holds that 

•	 Finally, for every v ∈ V(M) , it holds that 

∑

U⊆V(M)

xU = k − |C�|.
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 This inequality ensures that the Hamming distance between every vote v ∈ V(M) and 
the desired committee is at most d.

It is known that ILP is FPT with respect to the number of variables [51]. As the above ILP 
has at most 2� variables, the subinstance can be solved in FPT-time in � . As there are at 
most 2� subinstances, the whole algorithm runs in FPT-time in �.

PAV. The algorithm is analogous to the above one for MAV. First, we split the given 
instance  I into subinstances by enumerating all possible intersections C′ of  C(M) and a 
desired k-committee. Then, every nonempty vote v ∈ V ⧵ V(M) such that v ∩ C� ≠ � 
provides a PAV score 

∑�v∩C��
i=1

1

i
 to every k-committee whose intersection with  C(M) is 

exactly C′ . Let

The question now is equivalent to solving an instance ((C,V(M)),C�, k, d − d�) of Anno-
tated PAV-Multiwinner, which can be done in FPT-time in |V(M)| = |M| = � (Theo-
rem 1). 	�  ◻

7 � Conclusion

We have investigated the parameterized complexity of �-MULTIWINNER for � being the 
three prevalent approval-based k-committee selection rules MAV, CCAV, and PAV, aim-
ing at providing plentiful fixed-parameter tractability results with respect to meaningful 
parameters. We studied many natural single parameters, their combinations, and two struc-
tural parameters of incidence graphs of elections, and obtained an almost complete land-
scape of the parameterized complexity of �-MULTIWINNER for � ∈ {MAV,CCAV, PAV} 
with respect to these parameters. For a summary of our concrete results, we refer to 
Table 1. It should be noted that many of our tractability results were obtained by reducing 
�-MULTIWINNER to well-studied graph/set problems. As advocated by several researchers 
[30, 36], a remarkable advantage of using the reduction scheme is that we can automati-
cally update our results with the state-of-the-art of these graph/set problems. In addition, 
though many reductions are trivial and direct, we deem that pointing out the connections 
between �-MULTIWINNER and the graph/set problems benefits researchers from different 
communities.

Our exploration leaves several intriguing problems for future research. We select two 
open questions that we believe to be the most challenging.

Open Question 1  Is PAV-Multiwinner  FPT  with respect to d?

Open Question 2  Is PAV-Multiwinner  FPT  with respect to the treewidth of the inci-
dence graph of the given election?

∑

U⊆V(M),v∈U

xU ≥ f (v).

d� =
∑

v∈V⧵V(M),v∩C�≠�

|v∩C�|∑

i=1

1

i
.
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Besides these open questions, improving the FPT-algorithms presented in the paper 
or investigating the kernelizations of FPT problems are also promising avenues for future 
research. We remark that Agrawal et al. [1] studied kernelizations of the Partial Hitting 
Set problem. Their results imply that CCAV-Multiwinner admits a polynomial kernel with 
respect to d +△V . It is interesting to see if the same holds for PAV-Multiwinner. Regard-
ing MAV, Misra, Nabeel, and Singh [57] have shown that MAV-Multiwinner is unlikely 
to admit any polynomial kernels with respect to d + m and n + k , assuming standard com-
plexity hypothesis. This means that MAV-Multiwinner is unlikely to admit any polynomial 
kernels with respect to smaller parameters (e.g., d, n, d +△V , etc.).

Finally, we would like to mention that recently a few researchers have examined a num-
ber of structural parameters based on real electoral data or data generated by promising 
models, largely motivated by previous theoretical works on the parameterized complexity 
of voting problems with respect to these parameters (see, e.g., [10, 69]). Although graphs 
of small treewidth arisen from various research areas have been continually reported in 
the literature, to the best of our knowledge, analogous works on the treewidth of incidence 
graphs of elections have not been conducted heretofore. We hope that our algorithms pre-
sented in Sect. 6 would inspire such an investigation.

Appendix

This appendix is devoted to the proof of Lemma 2. In the following, when we remove a 
candidate from an election, we remove it from the candidate set and from all votes approv-
ing the candidate. Lemma 2. Let H  be the set of all paths, cycles, hairsticks, and DH-
hairsticks. Then, given an H -election, we can compute a PAV optimal k-committee of the 
election in polynomial time.

Proof  Let E = (C,V) be an election whose multihypergraph representation H(E) is either 
a path, a cycle, a hairstick, or a DH-hairstick. Let  k be a nonnegative integer such that 
k ≤ |C| . Let n = |V| . Note that n is also the number of vertices in H(E). We consider all the 
possible cases of H(E) as follows. 

Case 1: H(E) is a path or a cycle.	� We first compute a maximum matching M of H(E). If 
|M| ≥ k , it is easy to see that the k-committee corre-
sponding to M is optimal. Otherwise, we further distin-
guish between two subcases based on the parity of n. 
Let w be the committee corresponding to  M. If  n is 
even, we know that M is a perfect matching. Let M′ be 
the set of edges of H(E) without M. Obviously, M′ is 
also a matching of H(E). Let C(M�) be the set of candi-
dates corresponding to M′ . As M is a perfect matching, 
adding each c ∈ C(M�) into any committee contain-
ing w and excluding c increases the PAV score of the 
committee by exactly one. In light of this fact, we add 
any k − |M| arbitrary candidates from C(M�) into  w , 
and return w . If n is odd, there is exactly one vertex v 
in H(E) not saturated by M. We put into w one arbitrary 



	 Autonomous Agents and Multi-Agent Systems           (2023) 37:28 

1 3

   28   Page 32 of 35

candidate approved by  v. Then, we arbitrarily add 
k − 1 − |M| candidates from the remaining candidates 
into w , and return w.

Case 2: H(E) is a hairstick.	� If k = n , we return the whole set of candidates. Other-
wise (i.e., k < n ), a key observation is that there exist 
optimal k-committees which do not contain the candi-
date corresponding to the loop in H(E). By this obser-
vation, we directly remove the loop-candidate from the 
election. Now, the election admits a path representa-
tion, and we use the algorithm described in Case 1 to 
compute an optimal k-committee.

Case 3: H(E) is a DH-hairstick.	� If k = n + 1 , we return the whole set of candidates. 
Otherwise, there exist optimal k-committees which 
contain at most one of the two candidates correspond-
ing to the loops in  H(E). In this case, we arbitrarily 
select one loop, and remove the corresponding candi-
date from the election. Then, we arrive at a hairstick 
representation of the election. The algorithm given in 
Case 2 is applied to solve the problem.

It is easy to see that the above algorithms in all cases run in polynomial time. 	�  ◻
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