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Abstract

Background

To investigate whether variation of the keratometer/corneal refractive index nK/nC improves

the performance (prediction error PE) of classical and a modern intraocular lens (IOL)

power calculation formula and further, to establish whether any trend error of PE for corneal

radius R could be eliminated using formula constant and nK/nC optimisation.

Methods

Based on 2 large datasets (1: N = 888 Hoya Vivinex aberration-correcting and 2: N = 822

Alcon SA60AT spherical lens) a classical formula constant optimisation has been performed

for the Hoffer Q, Holladay 1, Haigis and Castrop formulae, to minimise the root mean

squared (rms) PE (situation A). In two further optimisations, the formula constants and the

formula specific nK/nC value were optimised to minimise the rms PE (situation B) or rms PE

and trend error of PE for R (situation C). Nonlinear iterative optimisation strategy was

applied according to Levenberg-Marquardt.

Results

Optimising for rms PE and trend error (C) mainly improved the performance of the Holladay

1. The Haigis formula also showed a slight improvement compared to (A). The Hoffer Q for-

mula shows no relevant trend error of PE for R. In contrast, the Holladay shows a positive

and the Haigis (and the Castrop a slight) negative trend error of PE for R. The trend error

could be fully eliminated by optimising formula constants and nK/nC in (B), but this was at

the cost of overall performance in the case of the Holladay 1 formula.
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Conclusion

Classical IOL calculation concepts should be critically examined for potential improvement

of formula performance by variation of the empirical nK/nC value defined in the formula.

With additional degrees of freedom additional optimisation terms such as trend errors might

be considered in new intelligent optimisation strategies.

Introduction

There are 3 basic principles for calculating intraocular lenses in cataract surgery: empirical

strategies including linear or nonlinear regressions or machine learning applications, theoreti-

cal-optical formulae based on linear Gaussian optics, and numerical raytracing [1–3].

Empirical strategies are independent of an optical model for the pseudophakic eye. In these

strategies, the interactions between potential predictors derived from biometry are ‘trained’ on

a large dataset of previous cataract surgeries where the potential predictors, the power of the

implanted intraocular lens (IOL) and the spherical equivalent refraction at the spectacle plane

(SEQ) are known [4]. The most important benefit of empirical calculation principles is that

they are independent of any specific model eye. However, to overcome the missing link

between predictors a very large number of clinical cases (historic data) typically have to be

evaluated [5, 6].

In contrast, theoretical-optical formulae are based on a pseudophakic model eye containing

3–5 refractive surfaces. The calculation may be performed using matrix algebra, vergence

transformations, or ray tracing with restrictions to the paraxial space [1]. With theoretical-

optical formulae the interaction between biometric values is used to define the formula, and

subsequently some fine-tuning is required in terms of formula constant optimisation to adapt

the (generally valid) formula calculation scheme to the individual characteristics of a specific

IOL type [4–6]. In general, arbitrary metrics for the formula prediction error could be used for

formula constant optimisation. Among these would be the mean, mean absolute, median,

median absolute, root mean squared error or the standard deviation or width of any confi-

dence interval of the error [6]. For example, the logic behind using the root mean squared

error, as typically used in (linear) regression analysis or in cost functions of neural network

applications, is to penalise large errors more than small errors.

Numerical raytracing cannot be formulated in terms of linear equations. Instead, a repre-

sentative bundle of rays originated from a source has to be followed successively through all

refractive surfaces and optical interspaces to the image plane where a sharp focus is to be

formed. Numerical raytracing requires detailed information on the exact shape of all refracting

surfaces, the relative positioning of the surfaces, the refractive indices of all ocular media (cor-

nea, aqueous humor, the IOL and the vitreous humour), and the shape and location of the

aperture stop. These constraints can sometimes make clinical application in a routine setup

inconvenient.

All strategies based on pseudophakic model eyes (theoretical formulae as well as numerical

raytracing) require an (empirical) prediction of the axial IOL position [7, 8], whereas raytra-

cing always deals with the ‘geometric’ position of the IOL (ALP) within the eye. In contrast,

theoretical-optical formulae involve either the geometrical or a fictitious axial position (the so-

called ‘effective’ lens position ELP) depending on the formula architecture [7, 8].

To simplify the calculations with theoretical-optical formulae several internal constants or

parameters, regressions, or hard / soft truncations of biometric measures are introduced in the

PLOS ONE Revised formula constant optimisation techniques

PLOS ONE | https://doi.org/10.1371/journal.pone.0282213 February 24, 2023 2 / 15

https://doi.org/10.1371/journal.pone.0282213


IOL power formula architecture. These are mostly based on empirical work of the formula

authors [4, 5]. Since in most formulae the cornea is considered as a thin lens model instead of

as a meniscus lens having two refractive surfaces, we use a keratometer index to convert the

biometrically measured corneal front surface radius of curvature (Ra) to a corneal power. This

conversion is primarily based on assumptions about the ratio of corneal front to back surface

radius as well as the central corneal thickness, and these cannot be verified by the IOL calcula-

tion formula or any keratometer [3]. Especially in patients with a history of corneal refractive

surgery this conversion systematically fails.

The keratometer index in particular is well known as a relevant source of errors in IOL

power calculation or prediction of the postoperative refraction, even in ‘normal’ eyes. Some

formulae use an explicit keratometer index such as the Javal index (nK = 1.3375, Holladay 1

formula, [9]). Others use a ‘customised’ keratometer index (nK = 1.3315, Haigis formula [10];

nK = 1.333, SRK/T formula [11, 12]) or do not explicitly specify nK (Hoffer Q formula [13,

14])). Some newer generation formulae consider the cornea as a thick lens model (meniscus

lens) having 2 refractive surfaces. In these models, the conversion to corneal power requires

the radii of the corneal front and back surfaces together with the corneal thickness and the

refractive index of the cornea. As quoted in the literature, this last parameter varies with values

in the region of nC = 1.376 (Olsen formula [3, 8]; Castrop formula, [15, 16]). Since most of the

conversion formulae systematically overestimate the corneal power (especially with the Javal

keratometer index nK = 1.3375, depending on the corneal radius), the axial position has to be

shifted backwards to compensate in order to obtain an appropriate IOL power [7, 8, 15]. How-

ever, this shift in axial lens position has a much larger effect with high power IOLs than with

low power IOLs. With a zero lens axially shifting the IOL has no effect.

The purpose of the present study is

• to investigate the performance of 3 classical theoretical-optical lens power calculation formu-

lae (Holladay 1, Hoffer Q, and Haigis formula) based on a thin lens cornea together with a

modern formula (Castrop formula) based on a thick lens cornea in 2 large clinical datasets

with aspherical (aberration correcting) hydrophobic acrylic intraocular lenses,

• to isolate the lens power calculation part of the IOL power formula from the lens position

prediction term and to vary the keratometer index (Holladay 1, Hoffer Q, and Haigis for-

mula) or the corneal refractive index (Castrop formula) together with the formula constants

(pACD for Hoffer Q, SF for Holladay 1, a0/a1/a2 for Haigis, C/H/R for Castrop) in order to

minimise the formula prediction error,

• to determine the trend error of the corneal front surface radius of curvature and to zero this

trend error by modulating the above mentioned refractive indices and formula constants,

and

• to cross-validate the results for the ‘optimal’ refractive index (either keratometer or corneal

refractive index) by using the indices derived from one dataset and applied to the other data-

set and evaluating the formula performance using these cross-validated refractive indices.

Materials and methods

Dataset for this study

In this retrospective study we analysed 2 datasets containing measurements from eyes from a

cataract population performed at Augen- und Laserklinik Castrop-Rauxel, Castrop-Rauxel,

Germany. The data were anonymised at source and transferred to us in an anonymous
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fashion. The local ethics committee provided a waiver for this study (Ärztekammer des Saar-

landes, registration number 157/21), and patient informed consent was not required.

Dataset 1 contains data from 888 eyes (490 right eyes and 398 left eyes; 495 female and 393

male) of 888 patients with a mean age of 71.2±9.1 years (median: 71 years, range: 47 to 91

years). Each patient received a monofocal hydrophobic acrylic aberration-correcting aspheric

lens (Vivinex, Hoya Surgical Optics, Singapore). Dataset 2 contains data from 822 eyes (418

right eyes and 404 left eyes; 433 female and 389 male) of 822 patients with a mean age of 72.7

±9.6 years (median: 72 years, range: 49 to 94 years), each of whom received a monofocal

hydrophobic acrylic spherical lens (SA60AT, Alcon, Fort Worth, USA).

The datasets contained preoperative biometric data derived with the IOLMaster 700 (Carl-

Zeiss-Meditec, Jena, Germany). The measured parameters included: axial length AL, central

corneal thickness CCT measured from epithelium to endothelium, anterior chamber depth

ACD measured from the corneal front apex to the anterior apex of the crystalline lens, central

lens thickness LT, and the corneal front surface radius measured in the flat (R1) and in the

steep meridian (R2). In addition, the refractive power of the inserted lens (PIOL) and the post-

operative refraction (sphere and cylinder) 5 to 12 weeks after cataract surgery were measured

by an experienced optometrist and recorded in the datasets. The datasets included only data

with a postoperative Snellen decimal visual acuity of 0.8 (20/25 Snellen lines) or higher to

ensure that the postoperative refraction was reliable. The descriptive data on pre-cataract

biometry, PIOL and postoperative refraction are summarised in Table 1.

The anonymised Excel data (.xlsx-format) were imported into Matlab (Matlab 2021a, Math-

Works, Natick, USA) for further processing.

Preprocessing of the data

Custom software was written in Matlab. The patient age was derived from the date of cataract

surgery and date of birth. The mean corneal radius of curvature Rmean was calculated as

Rmean = ½�(R1+R2). We additionally calculated R = 0.5�R1�R2/(R1+R2), as some formulae

(e.g. SRK/T or Hoffer Q formula) deal with the corneal radius reconverted from the mean

Table 1. Descriptive statistics of the 2 datasets with mean, standard deviation (SD), median, the lower (quantile 2.5%) and upper (quantile 97.5%) boundary of the

95% confidence interval, and the interquartile range IQR (quartile 75%—quartile 25%). AL refers to the axial length, CCT to the central corneal thickness, ACD to the

external phakic anterior chamber depth measured from the corneal front apex to the front apex of the crystalline lens, LT to the central thickness of the crystalline lens, R1

and R2 to the corneal radii of curvature for the flat and steep meridians, Rmean to the average of R1 and R2, PIOL to the refractive power of the intraocular lens implant,

and SEQ to the spherical equivalent power achieved 5 to 12 weeks after cataract surgery.

Dataset 1: 888 eyes with HOYA Vivinex IOL

AL in mm CCT in μm ACD in mm LT in mm R1 in mm R2 in mm Rmean in mm PIOL in dpt SEQ in dpt

Mean 24.0980 559 3.1864 4.6176 7.8598 7.6732 7.7665 20.6222 -0.5612

SD 1.4072 36 0.4081 0.4568 0.2828 0.2745 0.26882 3.7318 0.9239

Median 23.9026 559 3.1848 4.5929 7.8473 7.6735 7.7654 21.0 -0.2500

Quantile 2.5% 22.0997 499 2.5139 3.8630 7.3955 7.2234 7.3137 13.5 -2.3800

Quantile 97.5% 26.7788 618 3.8299 5.3548 8.3355 8.1504 8.2280 26.0 0.3800

IQR 1.7474 49 0.5719 0.5978 0.3540 0.3717 0.3455 4.5 0.6300

Dataset 2: 822 eyes with Alcon SA60AT IOL

Mean 23.1501 556 3.0459 4.6170 7.7806 7.6175 7.6991 22.7293 -0.4809

SD 1.5130 36 0.4048 0.4347 0.2719 0.2740 0.2654 4.5979 0.7197

Median 23.1850 555 3.0260 4.6097 7.8100 7.6400 7.7300 22.5 -0.2500

Quantile 2.5% 20.7920 493 2.3862 3.9680 7.2760 7.1060 7.2340 16.5 -2.1250

Quantile 97.5% 25.7140 614 3.7096 5.3500 8.2000 8.0500 8.1220 31.0 0.3750

IQR 1.5800 47 0.5620 0.5600 0.3500 0.3600 0.3450 4.0 0.7500

https://doi.org/10.1371/journal.pone.0282213.t001
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corneal power. The spherical equivalent refraction SEQ was derived as SEQ = sphere

+ 0.5�cylinder. The following lens power calculation formulae were considered in this constant

optimisation process:

• Hoffer Q formula published by Hoffer [13, 14, 17],

• Holladay 1 formula published by Holladay and Prager [9],

• Haigis formula [10], as well as the

• Castrop formula published by Wendelstein et al. and Langenbucher et al. [15, 16].

The Hoffer Q formula considers the AL and Kmean (keratometer index nK = 1.3375)

together with the formula constant pACD. In the Q part of the formula for calculation of the

ELP some truncation is performed for the AL.

The Holladay 1 formula considers the AL and the Rmean together with the formula con-

stant SF. In the formula, there appears some truncation in R and a nonlinear transformation

in AL. The keratometer index used in the Holladay formula is 4/3.

The Haigis formula considers the AL, ACD and Rmean together with a formula constant

triplet a0/a1/a2. The 3 formula constants are used in terms of a multilinear regression to calcu-

late the ELP to ELP = a0+a1�ACD+a2�AL. There are no truncations or linear/nonlinear trans-

formations, and the keratometer index used in the Haigis formula is nK = 1.3315.

The Castrop formula considers the AL, CCT, ACD, LT, Rmean, and the corneal back sur-

face radius together with a formula constant triplet C/H/R. For simplicity (as outlined in [5, 6,

15]) the measurement of the corneal back surface radius can be replaced in the case of ‘normal’

cataracts without any corneal pathology or a history of corneal refractive surgery by a value of

0.834�Rmean. The formula constants C and H are used in terms of a multilinear regression to

calculate the ELP, and R is used as an offset in the formula predicted refraction to account e.g.

for the refraction lane distance. There are no truncations in the predictors, and the axial length

is linearly transformed with a sum-of-segments concept according to Cooke et al. [18, 19]. The

corneal refractive index used in the Castrop formula is nC = 1.376.

All formulae included in this analysis were reorganised and solved for the SEQ as a function

of preoperative biometrical data and PIOL. The formula prediction error PE was defined as

the difference between the achieved SEQ (from the postoperative follow-up examination) and

the SEQ predicted by the formula. A linear regression of PE was calculated for R (Hoffer Q for-

mula) or Rmean (Holladay 1, Haigis, or Castrop formula) in terms of minimising the root

mean squared error, and the regression parameters intercept and slope were documented.

Target criteria and formula constant optimisation

In this study for both datasets four situations have been considered for our formula constant

optimisation:

a. A standard optimisation of the formula using the keratometer index or corneal refractive

index as proposed by the formula authors. The formula constants pACD, SF, a0/a1/a2 and

C/H/R were optimised for the Hoffer Q, Holladay 1, Haigis, and Castrop formula to mini-

mise the sum of squared formula prediction error PE.

b. A formula constant optimisation where the formula constants were optimised together

with the keratometer index (Hoffer Q, Holladay 1 and Haigis formula) or the corneal

refractive index (Castrop formula) in terms of minimising the sum of squared formula pre-

diction error PE.
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c. A formula constant optimisation where the formula constants were optimised together with

the keratometer index (Hoffer Q, Holladay 1 and Haigis formula) or the corneal refractive

index (Castrop formula) in terms of minimising the sum of squared formula prediction

error PE and the slope of the linear regression of PE over R (Hoffer Q) or Rmean (Holladay

1, Haigis, and Castrop).

d. A standard optimisation according to A) but with a keratometer index (Hoffer Q, Holladay

1, Haigis) or corneal refractive index (Castrop) as derived in the optimisation of B) with the

other dataset. This means that the refractive / keratometer index values derived from data-

set 1 were used for cross-validation of dataset 2 and vice versa.

To summarise, the Hoffer Q, Holladay 1, and Haigis formulae each involve a thin lens

model cornea and a well-documented keratometer index. In contrast, the Castrop formula is a

modern formula using a thick lens model cornea where the corneal refractive index is used

instead of a keratometer index. These IOL power formulae were split into a part for the predic-

tion of the axial lens position (empirical prediction of ELP or ALP) and the main part of the

formula (dealing with paraxial vergence transformation) to derive the IOL power. For all of

the optimisations that consider a variation of the keratometer index or corneal refractive index

(i.e. situations B and C), the variation was restricted to the main part of the lens power calcula-

tion formula. No variation was made in the ELP prediction part of the formula.All optimisa-

tions were performed using an iterative nonlinear Levenberg-Marquardt algorithm [20–22],

which minimises the sum of the squared model error. This is equivalent to a minimisation in

terms of root mean squared error. The algorithm was set up with the following stopping crite-

ria: a maximum number of iterations n = 1000, a threshold of 1e-16 for improvement in the

merit function, and a threshold of 1e-14 for the step size between consecutive iterations.

The target parameter of our investigation was the formula prediction error, defined as the

difference between the achieved refraction and the formula predicted refraction. First, for ref-

erence, we retrieved the formula constants (pACD, SF, a0/a1/a2, and C/H/R) with the original

formula as published in [5, 6] (situation A). We then modified the formula by a variation of

nK or nC to get an idea of whether the (mostly empirical) nK or nC value used in the formula

yields the best solution (situation B). For that purpose, only the main part of the formula was

modified, and the ELP / ALP prediction model was kept untouched.

Presentation of the data

For both datasets, we evaluated the formula prediction error PE in terms of the mean, standard

deviation (SD), median, lower and upper boundary of the 95% confidence interval (2.5%

quantile and 97.5% quantile) and the interquartile range (IQR). Cumulative probability density

functions (CDF plots) were derived to show the performance of the PE for situations A), B),

C), and D) for both datasets. Scatterplots were used to show the PE trend error for the corneal

radius R or Rmean, respectively, and to prove the efficiency of our optimisation in situation C)

where the elimination trend error for R / Rmean was part of the optimisation process.

Results

In general, the Levenberg-Marquardt iterative nonlinear optimisation algorithm showed a fast

and stable convergence for both datasets and all four situations A) to D). Between 12 and 192

iterations (86 to 311 function evaluations) were necessary to find the best solution for the for-

mula constants (and nK/nC).

The formula constants and nK/nC indices are listed in Table 2 for situations A), B), C), and

D) (as defined under "preprocessing"). In Table 3 the mean, SD, median, the lower and upper
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Table 2. Optimised formula constants for the Hoffer Q (pACD), the Holladay 1 (SF), Haigis (a0/a1/a2), and Castrop formula (C / H / R). Formula constant optimi-

sation was performed to minimise the sum of squared prediction errors PE. A) refers to the ‘classical’ formulae with standard nK/nC values, with B) the formula constants

and nK/nC in the main part of the formula were varied for optimisation, with C) the formula constants and nK/nC in the main part of the formula were varied to minimise

for PE and the PE trend error over corneal radius, and with D) a standard optimisation was performed using the nK/nC value from situation B) derived from the other

dataset in terms of a cross-validation.

Formula constant; nK/nC Dataset 1: N = 888 Hoya Vivinex lenses Dataset 2: N = 822 Alcon SA60AT lenses

A) B) C) D) A) B) C) D)

Hoffer Q 5.7356 5.1475 5.1020 5.2450 5.4091 4.9860 5.3569 4.9088

nK 1.3375 1.3313 1.3308 1.3323 1.3375 1.3323 1.3369 1.3313

Holladay 1 1.9618 1.7020 2.4337 1.9109 1.6959 1.6536 2.1759 1.4731

nK 4/3 1.3306 1.3383 1.3328 4/3 1.3328 1.3392 1.3306

Haigis a0 -0.6853 0.2644 0.4030 0.3115 -0.7516 0.1958 0.3306 0.1502

a1 0.3417 0.3254 0.2646 0.3246 0.2872 0.2694 0.2535 0.2702

a2 0.2029 0.1475 0.1357 0.1448 0.2019 0.1456 0.1272 0.1483

nK 1.3315 1.3271 1.3236 1.3269 1.3315 1.3269 1.3228 1.3271

Castrop C 0.2746 0.2722 0.2504 0.2768 0.2792 0.2762 0.2545 0.2795

H 0.3905 0.3760 0.3616 0.3749 0.1109 0.0965 0.0820 0.1094

R 0.0728 0.0544 0.0361 0.0102 0.0882 0.0698 0.0515 0.0338

nC 1.3760 1.3849 1.3959 1.3740 1.3760 1.3740 1.3839 1.3849

https://doi.org/10.1371/journal.pone.0282213.t002

Table 3. Formula prediction error PE (difference of the SEQ measured after cataract surgery minus the formula predicted SEQ) for the Hoffer Q (pACD), the Hol-

laday 1 (SF), Haigis (a0/a1/a2), and Castrop formula (C / H / R). SD refers to the standard deviation, 2.5% quantile and 97.5% quantile to the lower and upper boundary

of the 95% confidence interval, and IQR to the interquartile range as the difference between the 75% and the 25% quantile. Formula constant optimisation was performed

to minimise the sum of squared prediction errors PE. Situation A) refers to the ‘classical’ formulae with standard nK/nC values, with situation B) the formula constants

and nK/nC in the main part of the formula were varied for optimisation, with situation C) the formula constants and nK/nC in the main part of the formula were varied to

minimise for PE and the PE trend error over corneal radius, and with situation D) a standard optimisation was performed using the nK/nC value from situation B) derived

from the other dataset in terms of a cross-validation.

Formula prediction error PE in dpt Dataset 1: N = 888 Hoya Vivinex lenses Dataset 2: N = 822 Alcon SA60AT lenses

A) B) C) D) A) B) C) D)

Hoffer Q Mean 0.0370 -0.0008 -0.0009 0.0055 0.0415 -0.0008 0.0440 -0.0086

SD 0.4275 0.3892 0.3894 0.3903 0.4597 0.4273 0.4524 0.4284

Median 0.0291 0.0007 -0.0027 0.0145 0.0320 -0.0016 0.0355 -0.0157

2.5% quantile -0.6550 -0.6064 -0.6169 -0.6169 -0.6793 -0.6625 -0.6724 -0.6656

97.5% quantile 0.7702 0.6116 0.6150 0.6124 0.8102 0.6801 0.7943 0.6599

IQR 0.5231 0.4808 0.4778 0.4775 0.6082 0.5673 0.5939 0.5434

Holladay 1 Mean 0.0188 0.0021 -0.0002 0.0155 0.0048 0.0005 0.0000 -0.0179

SD 0.4256 0.4186 0.4648 0.4231 0.4440 0.4437 0.4883 0.4495

Median 0.0057 0.0121 -0.0198 0.0004 0.0023 -0.0043 -0.0174 -0.0291

2.5% quantile -0.6576 -0.66572 -0.7098 -0.6563 -0.6982 -0.6844 -0.7531 -0.7133

97.5% quantile 0.8011 0.7131 0.8534 0.7810 0.7268 0.7101 0.8244 0.6850

IQR 0.5371 0.5106 0.5550 0.5333 0.5619 0.5635 0.5831 0.5629

Haigis Mean 0.0334 -0.0011 -0.0008 -0.0147 0.0447 -0.0011 0.0001 -0.0016

SD 0.4027 0.3672 0.3876 0.3728 0.4568 0.4162 0.4174 0.4162

Median 0.0341 -0.0047 -0.0146 -0.0182 0.0440 -0.0075 -0.0070 -0.0070

2.5% quantile -0.6472 -0.5999 -0.6595 -0.5967 -0.7117 -0.6573 -0.6658 -0.6570

97.5% quantile 0.7140 0.6125 0.6679 0.6099 0.7725 0.6829 0.6954 0.6831

IQR 0.5132 0.4613 0.4762 0.4492 0.5941 0.5630 0.5689 0.5625

Castrop Mean 0.0000 -0.0020 0.0000 -0.0001 0.0000 -0.0032 0.0000 0.0000

SD 0.3437 0.3434 0.3414 0.3433 0.4065 0.4061 0.4018 0.4061

Median -0.0085 -0.0125 -0.0113 -0.0075 -0.0130 -0.0163 -0.0101 -0.0125

2.5% quantile -0.5610 -0.5593 -0.5453 -0.5622 -0.6855 -0.6784 -0.6677 0.6861

97.5% quantile 0.5581 0.5505 0.5443 0.5553 0.6747 0.6734 0.6818 0.6722

IQR 0.4376 0.4382 0.4133 0.4363 0.5518 0.5532 0.5364 0.5516

https://doi.org/10.1371/journal.pone.0282213.t003
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boundaries of the 95% confidence interval (2.5% quantile and 97.5% quantile) and the IQR are

displayed for both datasets and for situations A), B), C), and D).

Fig 1 displays the boxplot of the absolute value of the PE for both datasets (left graph: data-

set 1, Hoya Vivinex lens, N = 888; right graph: dataset 2, Alcon SA60AT lens, N = 822) and sit-

uations A), B), C), and D). The boxes refer to the 25% to 75% quartile, the red lines in the

boxes to the median value, and the whiskers to the lower and upper boundaries of the 95%

confidence interval (threshold of the outliers). Under variation of nK/nC the performance of

the Hoffer Q formula was increased in both datasets (comparing 1st (A) and 2nd box (B) in

each section). With the Haigis formula there was only a very slight improvement and with the

Holladay 1 and the Castrop formula there was no systematic improvement. Comparing the 3rd

box (C) in each section to the 2nd box (B) we can see that with the Hoffer Q formula and with

the Castrop formula, that including the trend error for corneal radius in the optimisation strat-

egy does not degrade the overall performance. In contrast, especially with the Holladay for-

mula and very slightly with the Haigis formula, including the corneal radius trend error of PE

in the optimisation strategy results in a deterioration of the absolute prediction error. Using

the nK/nC value derived from dataset 2 for optimising the formula constants for dataset 1 (sit-

uation D, 4th box in each section, left graph) or using the nK/nC value derived from dataset 1

for optimising the formula constants for dataset 2 (situation D, 4th box in each section, right

Fig 1. Boxplots of the absolute value of prediction error (PE, measured spherical equivalent refraction–formula

predicted refraction) for the Hoffer Q, Holladay1, Haigis, and Castrop formulae for dataset 1 (Hoya Vivinex,

N = 888, left graph) and dataset 2 (Alcon SA60AT, N = 822, right graph). Formula constant optimisation was

performed to minimise the sum of squared prediction errors PE: Situation A refers to the ‘classical’ formulae with

standard nK/nC values; with situation B the formula constants and nK/nC in the main part of the formula were varied

for optimisation; with situation C the formula constants and nK/nC in the main part of the formula were varied to

minimise for PE and the PE trend error over corneal radius; with situation D) a standard optimisation was performed

using the nK/nC value from situation B derived from the other dataset in terms of a cross-validation.

https://doi.org/10.1371/journal.pone.0282213.g001
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graph) does not systematically affect the outcome of the formula compared to the ‘optimal’

value (derived in situation B, 2nd box in each section, left and right graph).

Fig 2 shows the cumulative density function (CDF) plot of PE for both datasets for the Hof-

fer Q, Holladay1, Haigis, and Castrop formulae for dataset 1 (Hoya Vivinex, N = 888, left

graph) and dataset 2 (Alcon SA60AT, N = 822, right graph). We can see from the graphs that

the performance of the Castrop formula does not differ for situations A), B), C), and D) for

either dataset. The Haigis formula shows very slight differences in the performance curve com-

paring situations A) to D).On the other hand, the Hoffer Q formula especially, and also the

Fig 2. Cumulative density function (CDF on the Y axis) of prediction error (PE on the X axis, measured spherical equivalent refraction–formula

predicted refraction) for the Hoffer Q, Holladay1, Haigis, and Castrop formula for dataset 1 (Hoya Vivinex, N = 888, left graph) and dataset 2

(Alcon SA60AT, N = 822, right graph). The ticks on the Y axis indicate the portion of cases in the dataset showing a PE less equal this mark. The steeper

the slope around a PE = 0 the more cases within the respective limits. The number of eyes within PE limits (PE within ±0.5 dpt) could be extracted from

the graph by subtracting the respective CDF values at PE = 0.5 dpt and PE = -0.5 dpt. Formula constant optimisation was performed to minimise the sum

of squared prediction errors PE: Situation A) (blue lines) refers to the ‘classical’ formulae with standard nK/nC values; with situation B) (red lines) the

formula constants and nK/nC in the main part of the formula were varied for optimisation; with situation C) (green lines) the formula constants and nK/

nC in the main part of the formula were varied to minimise for PE and the PE trend error over corneal radius; with situation D) (dashed magenta lines) a

standard optimisation was performed using the nK/nC value from situation B) derived from the other dataset in terms of a cross-validation.

https://doi.org/10.1371/journal.pone.0282213.g002
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Holladay formula to a certain extent, both show systematic differences between the 4 situations

A) to D). The steeper slopes of the red lines (situation B) compared to the blue lines (situation

A) indicate that the performance of the formulae could in general be improved by variation of

the keratometer index, particularly with the Hoffer Q formula.

Fig 3 displays the scatterplot of PE for both datasets for the Hoffer Q, Holladay1, Haigis,

and Castrop formulae for dataset 1 (Hoya Vivinex, N = 888, left graph) and dataset 2 (Alcon

SA60AT, N = 822, right graph). The slopes of the regression lines in the plots represent the

trend error of PE for the corneal radius R/Rmean. We can see from the graphs (blue regression

lines) that the Hoffer Q formula (slope: -0.0837/-0.0090 dpt/mm for dataset 1/2) has a negligi-

ble trend error for corneal radius, whereas the Holladay 1 formula (slope: 0.3630/0.2343 dpt/

mm for dataset 1/2) shows a positive trend error. The Haigis formula (slope: -0.2889/-0.3249

Fig 3. Scatterplot of prediction error (PE, measured spherical equivalent refraction–formula predicted refraction) versus the corneal radius for the

Hoffer Q, Holladay1, Haigis, and Castrop formula for dataset 1 (Hoya Vivinex, N = 888, left graph) and dataset 2 (Alcon SA60AT, N = 822, right

graph). Formula constant optimisation was performed to minimise the sum of squared prediction errors PE: Situation A) (blue o-markers and blue line

indicating the trend error derived from linear regression) refers to the ‘classical’ formulae with standard nK/nC values; with situation B) (red x-markers

and red line indicating the trend error derived from linear regression) the formula constants and nK/nC in the main part of the formula were varied for

optimisation; with situation C) (green �-markers and green line indicating the trend error derived from linear regression) the formula constants and nK/

nC in the main part of the formula were varied to minimise for PE and the PE trend error over corneal radius. Situation D) is not shown in this figure.

https://doi.org/10.1371/journal.pone.0282213.g003
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dpt/mm for dataset 1/2) and the Castrop formula (slope: -0.0852/-0.2147 dpt/mm for dataset

1/2) both show a slight negative trend error. Including nK/nC in the optimisation process did

not worsen the trend error of PE for corneal radius (red regression lines) for any of the formu-

lae under test. We see from the graphs that the Hoffer Q formula (slope: -0.0056/0.0713 dpt/

mm for dataset 1/2) again has a negligible trend error for corneal radius. Conversely the Holla-

day 1 formula (slope: 0.4003/0.2426 dpt/mm for dataset 1/2) shows a positive trend error and

the Haigis formula (slope: -0.0828/-0.1077 dpt/mm for dataset 1/2) and the Castrop formula

(slope: -0.0851/-0.2057 for dataset 1/2) a slight negative trend error. For all formulae under

test, optimising for the sum of squared PE and the trend error of PE for corneal radius R/

Rmean was able to nullify the trend error (situation C, green regression lines). However, espe-

cially with the Holladay 1 formula (and slightly for the Haigis formula), elimination of the

trend error for R/Rmean is at the cost of the overall performance (compare Fig 1 situation (C)

vs. situation (B).

Discussion

Numerous formulae for calculating intraocular lens power have been proposed in the last 20

years. In contrast to the basic formulae of Fyodorov [23] or Gernet [24] or the classical formu-

lae of Sanders, Retzlaff and Kraff (SRK/T), Hoffer (Hoffer Q), Holladay (Holladay 1) or Haigis,

most of the formula authors nowadays do not disclose or publish the calculation strategy. At

best they offer WEB based applications or software solutions for calculating the lenses. Such

software tools do not allow batch calculations on a large set of patient data. Today, classical for-

mulae are increasingly being replaced by ‘modern’ calculation strategies such as the Barrett

Universal II, Kane, Pearl, EVO, VRF/VRF-G, Hill RBF, K6, or T2 formulae in many countries

of the world [1, 2]. To compare the prediction performance with other formulae it is necessary

to enter the data from preoperative data (biometry), intraoperative data (lens power) and post-

operative data (manual refraction after 4 weeks to 6 months) manually, introducing a large

risk of transcription errors. Additionally, a systematic optimisation of constants is not possible

for undisclosed formulae [1, 3].

In all lens power calculation formulae, the corneal power has to be known but it cannot be

measured directly. Using manual keratometers or automated keratometers or topographers

integrated in the biometer device we normally measure the corneal front surface radius. With

some modern OCT based biometers it is also possible to assess the central corneal thickness

and the corneal back surface radius, and this enables us to switch to a thick lens model for the

cornea. However, in most lens power calculation formulae, even modern ones, the cornea is

still considered as a thin lens, and this requires a keratometer index for conversion of corneal

radius to power. The CCT and corneal back surface curvature are ignored [15]. All kerat-

ometer indices are implicitly based on a corneal model (e.g. based on a corneal refractive

index, the CCT and the ratio of corneal front to back surface radius) and do not represent a

proper conversion from corneal radius to power in the general case. For example, if we con-

sider the Javal keratometer index nK = 1.3375 and a corneal front / back surface radius of 7.7 /

6.8 mm and a corneal thickness of 500 μm (refractive index of aqueous humour 1.336) accord-

ing to the Gullstrand schematic model eye, the corneal refractive index nC should be

nC = 1.3229 / 1.3760 / 1.3210 if the keratometric corneal power 337.5/7.7 dpt = 43.8312 dpt

represents the equivalent power / back vertex power / front vertex power. If we compare these

refractive indices to the corneal refractive index listed in schematic model eyes, it is clear that

the Javal keratometer index for ‘normal corneas’ represents the back vertex power, which has

no impact in IOL power calculation. Instead, as all distances in the eye are referenced to the

corneal front apex (e.g. AL, CCT, ACD) the corneal front vertex power has to be used in
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theoretical-optical formulae considering the cornea as thin lens and therefore the use of e.g.

the Javal keratometer index is questionable.

Bearing these data in mind, the basic idea behind the present study was to investigate the

impact of the keratometer index or corneal refractive index used in classical IOL power calcu-

lation formulae and in a modern fully disclosed formula. The optimisations for each formula

and each situation were carried out as described in "Target criteria and formula constant opti-

misation". As we can see from Fig 1, the Hoffer Q formula mostly benefits from a variation of

nK, whereas in the other formulae there was no improvement or only a negligible improve-

ment with variation of nK/nC. The respective metrics are listed in Table 3. Fig 1 also shows

that, especially with dataset 1 (the aspheric aberration correcting Hoya Vivinex lens), the Hai-

gis and Castrop formulae perform much better compared to the Hoffer Q or Holladay 1 for-

mulae with or without variation of nK/nC. In contrast, in dataset2 (spherical lens) there is no

clinically relevant difference between the four formulae. This difference between the two data-

sets (from the same clinical centre) could be a result of the (on average) larger spherical aberra-

tions after implantation of the spherical Alcon lens in dataset 2 as compared to the aberration-

correcting Hoya lens in dataset 1. This could affect the precision of postoperative refractome-

try and may hide the differences between formulae in dataset 2. From Fig 3 we can also see

that the trend error of PE for the corneal radius (situation C) could be eliminated completely

with variation of the formula constants and nK/nC. However, Fig 1 shows us that eliminating

the trend error significantly/slightly worsens the performance of the Holladay 1 / Haigis for-

mula (comparing situations B and C), whereas the Hoffer Q and the Castrop formula are

mainly unaffected. This is obvious as the latter formulae initially show a low trend error. Over-

all, even with the Hoffer Q formula, which uses the Javal keratometer index for calculation

(where we would expect a large trend error), in reality this trend error in PE for corneal radius

is surprisingly low. This might be mostly due to the concept for prediction of the axial lens

position ELP, which might compensate for the trend error in R. This ELP prediction model

was not modified in our analysis [25]. However, we should be aware that modifying the formu-

lae by variation of the nK/nC and/or including the trend error of PE for the corneal radius in

the optimisation strategy requires new formula constants, as shown in Table 2.

In the past, several studies addressing the trend error of formulae with respect to the axial

length have been published [25]. In the WEB we find some recommendations as to which for-

mula is most suitable for long or short eyes. However, in practice, making recommendations

for ‘suitable’ or ‘unsuitable’ formulae based only on the axial length is only half of the truth: the

combinations of all biometric measures have to be considered in such recommendations.

Especially the ‘uncommon’ combinations of long eyes with steep corneas or short eyes with

flat corneas seem to be particularly challenging.

Therefore, in the present study we tried to find out whether classical formulae (e.g. the Hof-

fer Q, Holladay 1, or Haigis formula) could be ‘tuned’ for modern IOLs and cataract surgery

techniques by means of a variation of the keratometer index, or whether modern formulae

with a thick lens model for the cornea (e.g. the Castrop formula) could be improved by a varia-

tion of the corneal refractive index. This seems to be true for some of the formulae (principally

the Hoffer Q formula). Even if we apply the nK/nC value derived from dataset 2 for dataset 1

or vice versa (in terms of cross-validation), the benefit might be visible if compared to the per-

formance using the original nK/nC (comparing situation B to A or situation D to A in Fig 1).

However, eliminating the trend error of PE for the corneal radius with variation of nK/nC and

the formula constants, the performance of the Holladay 1 formula which showed the largest

(positive) trend and the Haigis formula (which showed some negative trend) deteriorated

somewhat (comparing situation C to situation A or B). This might be mostly due to the fact

that we restricted the modifications made in the formula (variation of nK/nC) to the main part
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of the formula (the vergence transformation) while keeping the empirical part (prediction of

the ELP/ALP) unchanged. As the empirical ELP/ALP prediction should be balanced in all the

IOL power calculation formulae to achieve the best results, the ELP/ALP prediction strategy

might be included in the modification, especially in formulae where the corneal radius is a pre-

dictor for the axial lens position.

However, there are some limitations in our study: firstly, we considered only 2 datasets

with hydrophobic acrylic lenses, one with an aberration correcting aspheric and one with a

spherical lens design. Even though these are very popular lenses on the market, they might not

reflect the full spectrum of lens designs. Secondly, we optimised all the formula constants (and

nK/nC) for the sum of squared formula prediction error PE, which is equivalent to a minimi-

sation of the root mean squared PE or the ‘energy’ of the PE [5, 6]. Even if we feel that this met-

ric is the most suitable target criterion, there might be a variety of other target parameters or

metrics for optimisation. Thirdly, in our study we modified only the main part of the IOL

power calculation formulae keeping the ELP/ALP prediction concept unchanged. The Hoffer

Q and the Holladay 1 formulae consider the corneal curvature in the ELP prediction concept,

whereas the Haigis and the Castrop formula do not. The results might change slightly if the

variation in nK/nC were also considered in the ELP prediction part of the formulae. And last

but not least, the potential trend error for the axial length was not considered for our analysis.

Conclusion

This study describes techniques for modification of three classical IOL power calculation for-

mulae (Hoffer Q, Holladay 1, Haigis) and a fully disclosed modern formula (Castrop formula)

by variation of the keratometer index nK (with a thin lens model for the cornea) or the corneal

refractive index nC (with a thick lens model of the cornea). Some of the formulae benefit from

variation of nK/nC, whereas others do not. However, we have to be aware that variation of nK/

nC always requires modification of the formula constants. The study was based on 2 large

datasets with hydrophobic acrylic lenses, one with an aberration correcting aspheric design

(Hoya Vivinex) and one with a spherical design (Alcon SA60AT). More clinical data are

required to verify our findings and to derive recommendations on modifications of the nK/

nC.
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