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“But in my opinion, all things in nature occur mathematically.”

René Descartes





Abstract

Industry 4.0 is based on the intelligent networking of machines and processes in industry
and makes a decisive contribution to increasing competitiveness. For this, reliable
measurements of used sensors and sensor systems are essential. Metrology deals with
the definition of internationally accepted measurement units and standards. In order to
internationally compare measurement results, the Guide to the Expression of Uncertainty
in Measurement (GUM) provides the basis for evaluating and interpreting measurement
uncertainty. At the same time, measurement uncertainty also provides data quality
information, which is important when machine learning is applied in the digitalized
factory. However, measurement uncertainty in line with the GUM has been mostly
neglected in machine learning or only estimated by cross-validation.

Therefore, this dissertation aims to combine measurement uncertainty based on the
principles of the GUM and machine learning. For performing machine learning, a
data pipeline that fuses raw data from different measurement systems and determines
measurement uncertainties from dynamic calibration information is presented. Fur-
thermore, a previously published automated toolbox for machine learning is extended
to include uncertainty propagation based on the GUM and its supplements. Using
this uncertainty-aware toolbox, the influence of measurement uncertainty on machine
learning results is investigated, and approaches to improve these results are discussed.
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Zusammenfassung

Industrie 4.0 basiert auf der intelligenten Vernetzung von Maschinen und Prozessen und
trägt zur Steigerung der Wettbewerbsfähigkeit entscheidend bei. Zuverlässige Messungen
der eingesetzten Sensoren und Sensorsysteme sind dabei unerlässlich. Die Metrologie
befasst sich mit der Festlegung international anerkannter Maßeinheiten und Standards.
Um Messergebnisse international zu vergleichen, stellt der Guide to the Expression of
Uncertainty in Measurement (GUM) die Basis zur Bewertung von Messunsicherheit
bereit. Gleichzeitig liefert die Messunsicherheit auch Informationen zur Datenqualität,
welche wiederum wichtig ist, wenn maschinelles Lernen in der digitalisierten Fabrik zur
Anwendung kommt. Bisher wurde die Messunsicherheit im Bereich des maschinellen
Lernens jedoch meist vernachlässigt oder nur mittels Kreuzvalidierung geschätzt.

Ziel dieser Dissertation ist es daher, Messunsicherheit basierend auf dem GUM und
maschinelles Lernen zu vereinen. Zur Durchführung des maschinellen Lernens wird eine
Datenpipeline vorgestellt, welche Rohdaten verschiedener Messsysteme fusioniert und
Messunsicherheiten aus dynamischen Kalibrierinformationen bestimmt. Des Weiteren
wird eine bereits publizierte automatisierte Toolbox für maschinelles Lernen um Unsi-
cherheitsfortpflanzungen nach dem GUM erweitert. Unter Verwendung dieser Toolbox
werden der Einfluss der Messunsicherheit auf die Ergebnisse des maschinellen Lernens
untersucht und Ansätze zur Verbesserung dieser Ergebnisse aufgezeigt.
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Eichstädt, and A. Schütze: Uncertainty-aware data pipeline of calibrated
MEMS sensors used for machine learning, Measurement: Sensors (2022)
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sationsprobleme innerhalb eines Sensorsystems und deren Auswirkungen
auf Ergebnisse des maschinellen Lernens, 20. GMA/ITG Fachtagung
Sensoren und Messsysteme (2019)
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Introduction

1 Introduction

This chapter provides a short introduction to metrology and artificial intelligence (AI).
Furthermore, it describes the scope of the dissertation and gives a brief outline of its
chapter structure.

1.1 Motivation

Metrology is the “science of measurement and its application” [1]. It deals with
the definition of internationally accepted measurement units, the realization of these
measurement units in practice, as well as the establishment of traceability by linking
practical measurements with reference standards using calibration [2].

Metrological traceability is crucial to ensure that measurements carried out at different
times, at different locations, by different measurement systems, and by different engineers
are comparable. The need for measurement standards and traceability dates back to
the French Revolution. At this time, a uniform system of units was required for trading
between different countries. In 1793, René Just Haüy developed the first document that
established relations between different national measures [3]. The Système international
d’unités (SI) [4] used today is based on the metric system that was adopted by the
French government during the French Revolution [5]. The latest change was made
on May 20, 2019, when the kilogram is no longer defined by a cylinder of platinum-
iridium alloy (Le Grand K) but, from then on, is defined by the Planck constant [6]. In
addition to an internationally accepted metric system, the precision levels of the various
national industries and the associated measurement uncertainty also play an essential
role in global trade. As all measurements are subject to uncertainty, a measurement
result is denoted as complete only if it contains both the measured value and the
associated measurement uncertainty as a quantitative statement on the quality. To
compare measurement results worldwide, the Guide to the Expression of Uncertainty
in Measurement (GUM) [7] was developed by the members of the Joint Committee
for Guides in Metrology (JCGM) in 1993. It provides internationally accepted rules

1



Motivation

for evaluating and expressing measurement uncertainty. Nowadays, the GUM and
its supplements define the de facto standard for uncertainty evaluation in the field of
metrology.

In the age of the fourth industrial revolution, also called Industry 4.0 (I4.0), the
digitalization of factories is one of the most important decisive factors for increasing
competitiveness and efficiency [8]. Optimizing production processes and driving techno-
logical advancements will enhance quality, productivity, and flexibility while reducing
human errors and costs in a digitalized factory, the so-called Factory of the Future (FoF).
The Industrial Internet of Things (IIoT), as a subset of the Internet of Things (IoT), uses
interconnected smart sensors, actuators, and devices to enhance production processes,
increase efficiency, and improve safety and health [9]. New applications are emerging
for analyzing large amounts of collected data, allowing automation and improvement
of complex processes, leading to the field of AI with its important subset, machine
learning (ML) (cf. Figure 1.1). Combining AI technologies with IoT infrastructure leads
to Artificial Intelligence of Things (AIoT), a current trend in smart industries [10]. In
addition to the application in industry, e.g., to perform predictive maintenance, AI is
used in a wide field of applications, e.g., in internet search engines (e.g., Google) or in
self-driving cars [11].

Artificial Intelligence

Machine Learning

Deep Learning

Supervised
Learning

Semi-supervised
Learning

Reinforcement
Learning

Unsupervised
Learning

Figure 1.1: Relationship between artificial intelligence and its subfields, machine
learning (with its different learning types), as well as deep learning
(adapted from [12]).

The founding of AI as a field of research dates back to the Dartmouth Conference
in 1956 [13]. AI broadly describes the approach of using machines to solve problems
by imitating intelligent human behavior, i.e., thinking and acting like humans [14–16].
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Introduction

There are many definitions for AI, but no single correct working one exists, as shown in
[17]. ML, a subset of AI, is the general term for computers learning from data alone
without being explicitly programmed [18, 19]. In the field of deep learning (DL), a form
of ML involving the use of multilayer artificial neural networks (ANNs), algorithms
adjust themselves to increase accuracy without any human intervention [20]. An ANN is
an information processing technique with a layered structure inspired by the biological
structure of the human brain [21]. ANNs essentially are ML algorithms, and therefore,
DL is a subset of ML; however, comparing DL with ML brings up some differences.
While ML uses chiefly structured data, i.e., data that can be expressed in rows and
columns, DL can also deal with unstructured data, e.g., audio, image, and text [20,
22]. Unstructured data means the desired information is unavailable in a structured
form, e.g., if a dog is visible in an image [23]. DL achieves better accuracy when large
amounts of data are available, whereas ML is better at using smaller data sets [24]. A
benefit of using ML instead of DL is the better interpretability of the models and their
decisions [25].

This dissertation aims to bring both fields together, metrology on the one hand and
ML on the other, leading to uncertainty-aware ML. The focus of this dissertation is
set on ML model building and the reliability of the models’ decisions and predictions
by considering measurement uncertainty in the entire ML process. When decisions or
predictions are based on ML models, confidence in the used algorithms is essential, and
therefore, reliable measurement data and the assessment of data quality are required as
reliability is directly affected by data quality. Data quality can be expressed in terms of
measurement uncertainty, whose evaluation is essential for metrological traceability.

However, evaluating the uncertainty of each specific prediction of an ML model is
often neglected so far [26], and the average performance of the ML model is only assessed
by cross-validation (CV) [27]. The typically used k-fold CV splits the data set into
k ∈ N subsets, trains the model with k − 1 subsets, and uses the remaining subset for
the model application to asses how accurately the model performs on data that has not
been used for the training [28, 29]. Performing CV leads to uncertainty evaluation of
the average ML model performance by using quantities such as the mean absolute error
(MAE) or the root-mean-square error (RMSE) [26]. Quantifying the uncertainty of each
specific prediction needs additional computational effort to that used for model training.
Nevertheless, uncertainty quantification should not be considered as a burden but as a
worthwhile addition leading to reliable ML predictions.
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Motivation

The European Metrology Programme for Innovation and Research (EMPIR) project
Metrology for the Factory of the Future (Met4FoF) aims to provide a framework for the
entire lifecycle of measured data in industrial applications, including traceable calibration
of smart sensors, metrology in complex sensor networks, and uncertainty quantification
in ML [30, 31]. By combining metrology for digital sensors, sensor networks, and data
analysis performed by ML, the traceability chain becomes digitally enabled [31]. In
sensor networks, the key elements in the FoF, automated data transfer, and data analysis
plays an important role. To achieve interoperability and automate data analysis in
an I4.0 environment, raw sensor data must be enriched with machine-readable and
machine-interpretable information in the form of metadata based on ontologies [32, 33]
such as Quantities, Units, Dimensions, and Types (QUDT) [34] and Semantic Sensor
Network (SSN) [35].

To achieve a digitally enabled traceability chain, smart sensors must provide un-
certainty associated with the raw data [36] that can be used for ML. To evaluate
the uncertainty of each specific prediction, uncertainty propagation through feature
extraction (FE) and feature selection (FS) algorithms, which prepare the data for using
ML algorithms, as well as the propagation through the used data-driven ML algorithm
is required. The uncertainty propagation in the ML process is one specific challenge
addressed in this dissertation. Many algorithms for FE, FS, classification, and regression
exist, and they could all be extended with uncertainty propagation in line with the GUM
and its supplements. However, this would be time-consuming, and thus, the decision
in this dissertation was made to use an already published software toolbox for ML [37,
38], the so-called automated machine learning toolbox (AMLT), explained in detail in
Section 2.2, which consists of a choice of complementary algorithm covering a wider field
of applications. It has already been applied successfully to various data sets covering use
cases such as industrial condition monitoring [39]. The AMLT consists of five FE and
three FS algorithms as well as one classifier leading to a manageable effort to develop
uncertainty propagation for each algorithm to make the AMLT uncertainty-aware. For
some ML methods, uncertainty propagation was already developed, for example, for
discrete Fourier transform (DFT) [40] and discrete Wavelet transform (DWT) [41, 42],
so these algorithms require only minor adjustments. By extending all algorithms used
in the AMLT with uncertainty propagation, the extended version of the AMLT can be
used to perform uncertainty-aware ML. As this uncertainty-aware automated machine
learning toolbox (UA-AMLT) is only suitable for classification problems, there is a
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need for an adapted UA-AMLT for regression problems, including the corresponding
uncertainty propagation, which is also addressed in this dissertation.

Using the developed UA-AMLT, the influence of measurement uncertainty on the
ML performance can be investigated as a further challenge in this dissertation. As
measurement uncertainty occurs in time (e.g., caused by timing issues in a sensor
network) and value (e.g., caused by noise), both occurrences and their influences on the
ML models and their performance are investigated.

1.2 Organization

After motivating this dissertation, including the reasons for this research and the
objectives to be achieved, Chapter 2 introduces the fundamentals for the demonstrated
developments and investigations. First, the measurement uncertainty according to
the GUM and the used ML algorithms are presented, which will be extended by the
measurement uncertainty propagation in the course of the thesis. For investigating the
influence of measurement uncertainty on ML results, different data sets are presented:

• a data set of a lifetime test of an electromechanical cylinder,

• a data set of different calibration and field test measurements of gas mixtures with
a metal oxide semiconductor (MOS) gas sensor, and

• a data set of a hydraulic system with different simulated failures.

This dissertation summarizes the work published in Papers 1 to 4. In Chapter 3, the
papers themselves are introduced, starting in Section 3.1 with an overview of the relation
between the paper presented in the following sections. Section 3.2 (Paper 1) deals
with an uncertainty-aware data pipeline for calibrated micro-electro-mechanical systems
(MEMS) sensors used for machine learning, including data alignment of two different data
acquisition units (DAQs) and obtaining uncertainty values for raw data from calibration
information. As an extension to Paper 1, Section 3.3 presents how data used in this
paper can be made FAIR, i.e., findable, accessible, interoperable, and reusable, and the
FAIRness level of this new data set is assessed. Subsequently, Section 3.4 (Paper 2)
investigates the influence of time synchronization problems within a sensor network
on ML results, and ways to improve the obtained results are discussed. In Section 3.5
(Paper 3), the development of an uncertainty-aware AMLT is presented by extending
an existing AMLT with uncertainty propagation for every step (FE, FS, as well as
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classification) within this toolbox. Section 3.6 (Paper 4) extends the uncertainty-aware
AMLT for regression problems by developing an uncertainty-aware Partial Least Squares
Regression (PLSR) version. Furthermore, the influence of measurement uncertainty
on regression problem results is investigated, and potentials to optimize the overall
measurement system, including ML, is shown.

This thesis is closed with a summary and an outlook on further research directions.
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Fundamentals

2 Fundamentals

This chapter covers the fundamentals of this thesis. It briefly introduces measurement
uncertainty propagation in line with the Guide to the Expression of Uncertainty in
Measurement (GUM) [7] and its supplements, Supplement 1 (GUM-S1) [43] and Supple-
ment 2 (GUM-S2) [44]. In addition, some common machine learning methods, which
will be referred to in the next chapter, are presented. Three data sets are used in this
thesis to investigate the influence of measurement uncertainty on machine learning (ML)
results. These data sets are explained in this chapter. To perform machine learning
well and reproducible, data sets that fit FAIR principles are needed at best [45]. This
chapter explains these principles and how a data set can achieve FAIRness, as well as a
method to assess the FAIRness level of a data set.

2.1 Measurement Uncertainty

Measurement uncertainty is defined as a “non-negative parameter characterizing the dis-
persion of the quantity values being attributed to a measurand, based on the information
used” [1, 2.26]. In practice, measurement uncertainties cannot be prevented, although
their magnitude can be minimized by good measurement systems as well as appropriate
processing and analysis of data. Common sources of measurement uncertainty are,
for example, ambient conditions, characteristics of the measurement device as well as
the human itself [7]. Figure 2.1 gives an overview of possible sources that potentially
cause measurement uncertainty. Thus, uncertainty quantification from measurement
setup, measurements themselves, to data evaluation in machine learning is essential.
A framework for evaluating and expressing measurement uncertainty is given by the
GUM [7], and its supplements GUM-S1 [43] and GUM-S2 [44]. With this framework,
measurements and their derived quantities are evaluated according to a uniform pro-
cess, and the resulting measurement accuracy, as well as the measurement results, are
transparent, interpretable, and comparable worldwide.
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Figure 2.1: Ishikawa diagram showing potential causes of measurement uncertainty.

In accordance with the GUM, the uniform process of measurement uncertainty
estimation consists of four main steps [7]:

1. Specification of the measurand Y .

2. Identification of the input quantities X1, X2, . . . , Xn, which influence the measure-
ment and determination of the standard uncertainty u(xi) for each of the input
estimates xi.

3. Development of a mathematical model

Y = f(X) (2.1)

with real-value input quantities X = (X1, X2, . . . , Xn)⊤, which expresses the
functional dependence of the measurand Y on the input quantities Xi.

4. Calculation of the combined standard uncertainty uc(y), which is assigned to the
estimated value of the measurand y.

In the GUM, a first-order Taylor series approximation, i.e., a linearization of the
model equation Y = f(X), is used to combine the individual standard uncertainties
u(xi). The combined standard uncertainty of the measurement result is the positive
square root of the estimated variance u2

c(y) obtained from the Law of Propagation of
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Uncertainty (LPU) [7]

u2
c(y) =

n∑
i=1

(
∂f

∂xi

)2

u2(xi) + 2
n−1∑
i=1

n∑
j=i+1

∂f

∂xi

∂f

∂xj
u(xi, xj)︸ ︷︷ ︸

=0, if uncorrelated input quantities

. (2.2)

The sensitivity coefficients ci = ∂f
∂xi

in Equation (2.2) describe how a small change in
the input estimates x1, x2, . . . , xn influences the estimated value of the measurand y.

With the sensitivity vector containing the derivatives with respect to the input
estimates

fx =
(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
(2.3)

and with the covariance matrix Ux of dimension n× n associated with x

Ux =


u2(x1) u(x1, x2) . . . u(x1, xn)
u(x2, x1) u2(x2) . . . u(x2, xn)

... ... . . . ...
u(xn, x1) u(xn, x2) . . . u2(xn)

 , (2.4)

Equation (2.2) can be written in matrix-vector notation as

u2
c(y) = fx · Ux · f⊤

x . (2.5)

An illustration of the LPU is shown in Figure 2.2a.

In the classical GUM method described above, problems arise if, for example, the
influence of the input quantities X1, X2, . . . , Xn on the measurand Y is described by a
significantly nonlinear function or the input quantities are not normally but arbitrarily
distributed (Central Limit Theorem, [7, G.2]). A more general approach without these
limitations is presented in GUM-S1 [43], which deals with the propagation of probability
distributions based on a Monte Carlo method (MCM). The probability density functions
(PDFs) gXi

(ξi), i = 1, . . . , n, for the input quantities Xi are propagated through the
model in Equation (2.1) to obtain the PDF gY (η) for the measurand Y . As this method
is entirely numerical, it is difficult to identify the most significant contribution to
the combined standard uncertainty. The computational cost strongly depends on the
number of Monte Carlo trials. Figure 2.2b illustrates the propagation of probability
distributions through a mathematical model using three independent input quantities
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as an example. In this figure, gX1(ξ1) and gX2(ξ2) are PDFs of a Gaussian distribution
N (µ, σ2 = u2(x)) with different values for σ, and gX3(ξ3) is a PDF of a triangular
distribution. Propagating these three PDFs through the model leads to an asymmetric
PDF gY (η) for the measurand Y .

(a) Law of Propagation of Uncertainty (LPU). (b) Propagation of probability density
functions (PDFs).

Figure 2.2: Illustration of GUM and GUM-S1 for n = 3 input quantities (adapted
from [43]).

The linearization method (GUM) and the Monte Carlo method (GUM-S1) can only
be used if the input quantities are real-valued and if there is only a single scalar output
quantity in the measurement model. Thus, Supplement 2 of the GUM extends both
methods to complex-valued quantities and any number of output quantities. In this
case, the measurement model can be written as

Y = f(X), (2.6)

where X = (X1, X2, . . . , Xn)⊤ and Y = (Y1, Y2, . . . , Ym)⊤ denote the input and the
output quantities, respectively.

Let Cx denote the sensitivity matrix of dimension m× n given by

Cx =



∂f1

∂x1
. . .

∂f1

∂xn... . . . ...
∂fm
∂x1

. . .
∂fm
∂xn

 . (2.7)

The covariance matrix of dimension m×m associated with y is given by

Uy =


u2(y1) u(y1, y2) . . . u(y1, ym)
u(y2, y1) u2(y2) . . . u(y2, ym)

... ... . . . ...
u(ym, y1) u(ym, y2) . . . u2(ym)

 (2.8)
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and calculated with

Uy = Cx · Ux · C⊤
x (2.9)

according to [44, 6.2.1]. Figure 2.3 illustrates the LPU as well as the propagation of
probability distributions through a mathematical model using three independent input
and two output quantities as an example.

(a) Law of Propagation of Uncertainty (LPU). (b) Propagation of probability density
functions (PDFs).

Figure 2.3: Illustration of GUM-S2 for n = 3 mutually independent input quantities
and m = 2 output quantities (adapted from [44]).

2.2 Machine Learning
When physics-based model building is impossible due to a lack of theoretical knowledge
about the physical system or analytical model building is too complex, data-driven
models based on ML can be used instead. The four main types of ML techniques are
shown in Figure 2.4.

Unsupervised Learning
(Data driven)

Supervised Learning
(Task driven)

Reinforcement Learning
(Learn from mistakes)

Semi-supervised Learning
(Combina�on of supervised and

unsupervised Learning)

Machine Learning

Clustering
Dimensionality

Reduc�on
Classifica�on Regression

Figure 2.4: Main types of machine learning techniques and their algorithm types
(adapted from [46]).

Unsupervised learning means finding hidden structures or patterns in unlabeled
data [47]. Semi-supervised learning is a combination of unsupervised and supervised
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learning, which uses labeled as well as unlabeled data [47]. Reinforcement learning
is neither supervised nor unsupervised, as it is only based on rewarding desired and
punishing undesired behaviors [23]. Supervised learning techniques, i.e., classification and
regression, which are focused on in this thesis, use data D as input and a corresponding
target vector y as output to learn the mapping function f from the input to the output.
Then, it holds y = f(D). The difference between classification and regression is that
the target y for classification is discrete (categorical) while it is continuous (numerical)
for regression.

In [37], an automated machine learning toolbox (AMLT) for classification using the
commercial software MATLAB® is presented, which neither needs any analytical model
of the task at hand nor requires expert knowledge about data science. It can cope with
a large variety of supervised learning problems using observations in the form of cyclic
sensor data, i.e., at least one parameter in the measurements repeats a recurring pattern
over time. If no cyclic sensor data is available, windowing can be used to data streams
in the preprocessing step to split the unbounded data stream into finite ranges. Thus,
cyclic data for one sensor is given by a matrix D ∈ Rm×n, where m denotes the number
of cycles and n is the number of samples per cycle. Using c ∈ N different sensors
means that there are c different cyclic data matrices Dc ∈ Rm×nc , one for each sensor.
The number of samples nc for each matrix depends on the sampling rates of the sensors
and can be different for all sensors but has to be the same for all cycles of one sensor.
In the following, all mathematical considerations are shown on one cyclic data matrix
D for one sensor for which it holds

D =


d11 d12 . . . d1n

d21 d22 . . . d2n
... ... . . . ...
dm1 dm2 . . . dmn

 . (2.10)

The data matrix is often unsuitable for performing classification or regression directly
due to its high dimensionality and redundancy. High-dimensional data D can lead to
some counterintuitive mathematical effects, such as the exponential increase in volume
when adding additional dimensions to a mathematical space [48], which are subsumed as
the curse of dimensionality in the context of ML [49–52]. To avoid these mathematical
effects, the dimensionality of the data must be reduced as much as possible without losing
important information within the data. Moreover, multicollinearity, i.e., redundancy in
the data, is a common problem in data analysis as the covariance matrix of the data
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becomes singular and, therefore, the matrix is noninvertible. The singularity leads to
numerical issues in various ML techniques, e.g., Linear Discriminant Analysis (LDA).
For these two reasons, dimensionality reduction is necessary, which can be achieved
by feature extraction (FE) (cf. Section 2.2.1) and if the number of features is still too
high by subsequent feature selection (FS) (cf. Section 2.2.2). In addition, analyzing
dimensionality-reduced data is less computationally expensive and better manageable
[53]. Thus, the AMLT for classification problems consists of three main parts: FE, FS,
and classification.

According to the No Free Lunch Theorem (NFL) [54–56], there is no single best
algorithm for all classification problems. Therefore, the AMLT consists of several
complementary algorithms for FE and FS. In [57], 14 FE and 66 FS algorithms have
been investigated for classification problems. 49 of the 66 FS algorithms have been
implemented and tested on several data sets, which leads to a combination of three
complementary FS algorithms (cf. Section 2.2.2), resulting in good feature sets for every
tested data set. Using this combination, 14 FE algorithms have been tested on nine
data sets, including, among others, gas sensor and condition monitoring data. Five
complementary FE algorithms, which reliably provide good results, have been chosen for
the AMLT. These algorithms are explained in more detail in Section 2.2.1. Combining
the five FE and the three FS algorithms leads to 15 combinations for the model training,
where the best one, i.e., the combination with minimum cross-validation (CV) error
(explained in Section 2.2.4), is used for the model application. The AMLT has been
tested on several data sets from different use cases for classification tasks, e.g., industrial
condition monitoring, activity recognition using smartphones, and day recognition using
traffic information [39]. The AMLT did not fail for any tested data set, and the results
were similar to or better than previously achieved results with other approaches, which
are often specially designed for a specific data set [39]. A scheme of the AMLT is shown
in Figure 2.5a. Using the AMLT, a mathematically optimal solution will not be reached
in most cases, but a good trade-off solution for a broad range of use cases can be covered.

For regression problems, the AMLT for classification is slightly modified, as shown in
Figure 2.5b. No FE algorithm is changed, but only one of the three FS algorithms can
be used in the AMLT for regression problems as FS is supervised and only one algorithm
can deal with continuous target values. Five FE algorithms and one FS algorithm result
in only five possible algorithm combinations. The best combination is determined by
the minimum CV error (with root-mean-square error (RMSE) as error measure) and
later used for the model application.
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(a) Scheme of the automated machine learning toolbox for classification (adapted from [38]).
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(b) Scheme of the automated machine learning toolbox for regression (adapted from Paper 4, [58]).

Figure 2.5: Scheme of the automated machine learning toolbox for (a) classification
(blue) and (b) regression (blue) together with feature extraction (red) and
feature selection (green).
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To perform ML with the AMLT, data must be preprocessed to obtain an equidistant
and cyclic structure. This is one of the preprocessing steps included in the uncertainty-
aware data pipeline for calibrated MEMS sensors shown in Paper 1 (Section 3.2). To
perform uncertainty-aware ML, measurement uncertainty must be considered. Thus,
Paper 1 (Section 3.2) presents how measurement uncertainty for raw data can be
determined from calibration information. As the AMLT assumes equidistant timestamps
due to the matrix representation, measurement uncertainty in time and the influence
of ML results are considered in Paper 2 (Section 3.4). The extension of the AMLT to
include consideration of measurement uncertainty in the values is based on the GUM [7]
and its supplements, GUM-S1 [43] and GUM-S2 [44]. For classification problems, the
extension is presented in Paper 3 (Section 3.5), and for regression problems, it is shown
in Paper 4 (Section 3.6).

2.2.1 Feature Extraction

FE is an unsupervised step in the AMLT with the objective of concentrating as much
information of the cyclic data set D in as few features as possible. In case of small data
sets, FE is not necessarily a dimensionality reduction step as, in this case, the number
of extracted features per cycle, denoted as k, can be larger than n, i.e., the number of
samples per cycle. Five complementary algorithms are used in the AMLT to extract
features from time, frequency, and time-frequency domain resulting in five feature sets
containing mostly a high number of features. These five algorithms reliably provide
good results on all tested data sets by Schneider [57]. For each of these algorithms, FE
can be mathematically defined for data of one sensor as a mapping D 7→ FE, where
FE ∈ Rm×k, k ∈ N, denotes the matrix containing extracted features.

2.2.1.1 Adaptive Linear Approximation

Information contained in local details, like edges in the time domain, can be extracted
using Adaptive Linear Approximation (ALA) [37]. ALA splits a measurement cycle
into linear segments of variable length. As features, the mean value and the slope of
every linear segment are extracted from the time domain [59]. Splitting a cycle into a
large number of segments leads to many features and, thus, a small approximation error.
In contrast, fewer features, i.e., fewer segments, leads to a larger approximation error.
The number of segments sALA is calculated automatically by using data of all cycles

15



Machine Learning

contained in D and stopping the splitting of the cycles when the approximation error
does not significantly decrease with a further split. Thus, all cycles are split equally.

Let di = (di1, di2, . . . , din) ∈ R1×n denote the real-valued time-domain signal, i.e.,
the i-th measurement cycle of D. As the calculations for every segment are the same,
they are shown here only for the k-th segment of di with start index vk and the end
index vk+1. A measurement value dij at time tj , which lies within the k-th segment, can
be linearly approximated by

dij = fik(tj) = aik + bik · (tj − tk), (2.11)

where aik denotes the mean value and bik the slope of the k-th segment within the i-th
cycle. This segment’s mean and slope can be calculated according to

aik = 1
vk+1 − vk + 1

vk+1∑
j=vk

dij and (2.12)

bik =

vk+1∑
j=vk

(tj − tk)(dij − aik)
vk+1∑
j=vk

(tj − tk)2
with (2.13)

tk = 1
vk+1 − vk + 1

vk+1∑
j=vk

tj. (2.14)

Using Equation (2.12) and Equation (2.13) for every cycle segment lead to the feature
matrix FE,ALA ∈ Rm×2sALA , which contains row-wise, for every cycle, the mean values
in the first sALA columns, and the remaining ones contain the slopes. If n > 500,
downsampling with the nearest integer of n

500 + 1 as the factor is performed to reduce
the computational cost of the ALA algorithm.

2.2.1.2 Best Daubechies Wavelets

Using a wavelet transform for signal analysis has many applications in science and
engineering, cf. [60–62]. The special feature of the wavelet transform is that it offers
high resolution in the frequency domain and low resolution in the time domain for
low-frequency signals and vice versa for high-frequency signals [63]. A simultaneously
high temporal and high spectral resolution is impossible due to the Gabor limit [64],
which states that there is always a trade-off between time and frequency resolution. In
comparison to the wavelet transform, the Fourier transform has a constant frequency
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resolution over the entire frequency range. Thus, a wavelet transform is the better
choice for extracting features in the time-frequency domain from a signal with a dynamic
frequency spectrum.

The continuous Wavelet transform (CWT) Wψf(a, b) of a function f(t) is defined by

Wψf(a, b) := |a|−
1
2

∞∫
−∞

f(t) · ψ
(
t− b

a

)
dt, (2.15)

where

ψab(t) = |a|−
1
2 ψ

(
t− b

a

)
(2.16)

denotes the continuous mother wavelet, which can be scaled by a and translated by
b [65]. In contrast to the CWT, the discrete Wavelet transform (DWT) is based on
discretely sampled wavelets. A DWT can be calculated by a fast wavelet transform
implemented very efficiently as a filter bank [66], i.e., as a sequence of low-pass and
high-pass filters, see Figure 2.6.

Figure 2.6: Filter bank for the DWT implementation.

Best Daubechies Wavelets (BDW) uses a DWT with a Daubechies-4 (D4) wavelet
(four wavelet and scaling function coefficients) as the mother wavelet. The family of
Daubechies wavelets was introduced by the Belgian mathematician Ingrid Daubechies
in 1992 [67] and belongs to the class of orthogonal wavelets. The name DN of an
individual Daubechies wavelet contains the length N = 2p of the filter. Each wavelet
has a maximum of p vanishing moments, i.e., it is orthogonal to every polynomial with
degree < p− 1. So, the D4 wavelet, shown in Figure 2.7, has two vanishing moments
and is orthogonal to all linear and constant functions.

No algebraic formula exists for the scaling function of the D4 wavelet, but the
coefficients of the filters express it. According to [67], the four high-frequency filter
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Figure 2.7: D4 mother wavelet (adapted from [67]).

coefficients h and the four low-frequency filter coefficients g for the D4 wavelet are given
by

g = (g1, g2, g3, g4) =
(

1 −
√

3
4
√

2
,
3 −

√
3

4
√

2
,
3 +

√
3

4
√

2
,
1 +

√
3

4
√

2

)
(2.17)

and

h = (h1, h2, h3, h4) = (−g4, g3,−g2, g1) . (2.18)

As wavelet transforms are linear, they can be defined by matrices of dimension n× n

containing the filter coefficients if the input signal is of size n. Each level l ∈ N>0 of the
filter bank performs a parallel high-pass and low-pass filtering of the input data a(l−1)

i

followed by downsampling by 2. The wavelet transform provides a decomposition of the
signal into coarse information contained in the approximation vectors a(1)

i , a(2)
i , . . . , a(lmax)

i

and detailed information contained in the detail vectors c(1)
i , c(2)

i , . . . , c(lmax)
i . lmax denotes

the maximum number of wavelet decomposition levels. This number depends not only
on the length of the input data but also on the chosen mother wavelet. For a wavelet
transform with the D4 wavelet, the maximum number of wavelet decomposition levels
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lmax for a signal of length n is determined by

3 · 2lmax ≤ n ⇔ lmax ≤ lb
(
n

3

)
, lmax ∈ N. (2.19)

The function lb(a) in the equation above denotes the logarithm to the base 2 of a, i.e.,
log2(a). After lmax wavelet decomposition levels, the Wavelet coefficients for the i-th
cycle are given by (a(lmax)

i , c(lmax)
i , . . . , c(2)

i , c(1)
i ). 10 % of the wavelet coefficients with

the highest average absolute value over all cycles are chosen as features because they
contribute the most to a low approximation error [68]. According to [37], choosing only
10 % of the wavelet coefficients is a suitable trade-off between a low approximation error
and a low number of features leading to a significant feature reduction. This leads to
the feature matrix FE,BDW ∈ Rm×sBDW , which contains row-wise the sBDW chosen
wavelet coefficients for every cycle.

2.2.1.3 Best Fourier Coefficients

Best Fourier Coefficients (BFC) performs a discrete Fourier transform (DFT) to extract
features from the frequency domain. The DFT for a real-valued signal x of length n,
i.e., x = (x0, x1, . . . , xn−1), is defined as

Xk =
n−1∑
l=0

xl exp (−jkβl) (2.20)

Euler=
n−1∑
l=0

xl · [cos (kβl) − j · sin (kβl)] (2.21)

=
n−1∑
l=0

xl · cos (kβl) − j ·
n−1∑
l=0

xl · sin (kβl) (2.22)

= ℜk + j · ℑk, k = 0, . . . , n− 1 (2.23)

with j =
√

−1 and βl = 2π l
n

[69, 70]. As the DFT of real-valued signals is symmetric,
i.e., Xk = X ∗

n−k, only n
2 + 1 Fourier coefficients must be computed. In the AMLT,

amplitude and phase representation of the DFT are used, i.e.,

Ak =
√

ℜ2
k + ℑ2

k and Pk = arctan
(

ℑk

ℜk

)
, (2.24)

which are non-linear transformations in contrast to real and imaginary part representa-
tions.
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For every cycle di of the data matrix D, the amplitudes Aik and the phases Pik are
calculated, and 10 % of the amplitudes with the highest average absolute value over
all cycles and their corresponding phases are extracted as features from the frequency
domain [68]. As for BDW, here again, 10 % is a suitable trade-off between a low
approximation error and a low number of features [37]. This leads to the feature matrix
FE,BFC ∈ Rm×2sBF C , which contains row-wise the sBFC = n

20 chosen amplitudes and
their corresponding phases per cycle.

2.2.1.4 Principal Component Analysis

To extract information contained in the general cycle shape, Principal Component
Analysis (PCA) can be used [37]. PCA is a linear transformation that reduces the
dimensionality of a data set by transforming the data set to a new coordinate system
while preserving as much information as possible in as few new variables, the so-called
principal components (PCs), as possible [71–74]. The PCs, i.e., the eigenvectors of the
covariance matrix of the data set, represent the axes directions of the new PC space
while the corresponding eigenvalues explain the variance in the data along the new axes.
PCs are orthogonal and, therefore, uncorrelated. The first PC is the direction with the
largest variance, the second PC is orthogonal to the first and explains the second largest
variance, and so on for subsequent PCs. For dimensionality reduction, only the first r
PCs are kept. Thus, for the data matrix D ∈ Rm×n, it holds

D = T · W⊤, (2.25)

where T ∈ Rm×r, r < m, denotes the scores matrix consisting row-wise of the
projections of the corresponding vector of D onto the eigenvectors contained column-
wise in the coefficient matrix W ∈ Rn×r. In MATLAB®, the decomposition of D
is carried out by a singular value decomposition (SVD) [75]. Figure 2.8 presents an
example of a PCA performed on a two-dimensional data set consisting of random data.

For this data set (cf. Figure 2.8(a)), the new axes represented by the two eigenvectors
are shown in red. The green ellipse in this plot is the confidence ellipse that contains
95.45 % (2σ range) of the data. The data set transformed into the new space is shown
in Figure 2.8(b).

If n > 500, downsampling with the nearest integer of n
500 +1 as the factor is performed.

The first principal components’ projections are used as features from the time domain.
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Figure 2.8: Principal Component Analysis performed on a two-dimensional data set
consisting of random data. (a) Axis of the new feature space represented
by the eigenvectors (red) and confidence ellipse of the 2σ range (green).
(b) Data in the new space.

This leads to the feature matrix FE,PCA ∈ Rm×sP CA , which contains sPCA ≤ 500
principal components.

2.2.1.5 Statistical Moments

Statistical Moments (SM) describe the characteristics of the statistical distribution of
measurement values, which also contain information in the time domain [76]. Therefore,
the first four statistical moments (mean, standard deviation as the root of the variance,
skewness, and kurtosis) are used to extract features. Instead of calculating the statistical
moments over complete cycles, which would lead to only four features per cycle, the
cycles are each divided into sSM = 10 segments of nearly equal length, and the statistical
moments are calculated for each of the segments to extract ten times more features.
The division into nearly equally sized segments and extracting statistical moments as
features were already successfully performed by Helwig et al. [77].

Let a = (a1, a2, . . . , asSM
) and e = (e1, e2, . . . , esSM

) denote the indices of the first and
the last measurement value of every segment, respectively. The indices can be calculated
according to

ak = (k − 1) ·
⌈
n

sSM

⌉
+ 1 and (2.26)

ek = min
(
k ·
⌈
n

sSM

⌉
, n
)

(2.27)
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for k = 1, . . . , sSM . It holds a1 = 1 and esSM
= n. The number of measurement values

of the k-th segment is given by Nk = ek − ak + 1 for k = 1, . . . , sSM , where Nk is equal
for the same segment for each cycle. The four statistical moments of the k-th segment
of cycle di can be calculated as follows [78]:

• mean value

µik = dik = 1
Nk

ek∑
j=ak

dij, (2.28)

• standard deviation

σik =
√√√√ 1
Nk − 1

ek∑
j=ak

(dij − µik)2, (2.29)

• skewness

vik =

1
Nk

ek∑
j=ak

(dij − µik)3

(
1
Nk

ek∑
j=ak

(dij − µik)2
) 3

2
, and (2.30)

• kurtosis

wik =

1
Nk

ek∑
j=ak

(dij − µik)4

(
1
Nk

ek∑
j=ak

(dij − µik)2
)2 . (2.31)

The resulting feature matrix FE,SM ∈ Rm×4sSM contains, row-wise per cycle, the four
statistical moments for each of the sSM sections.

2.2.2 Feature Selection

For Big Data applications, the dimensionality reduction will be insufficient after FE.
Therefore, further dimensionality reduction is performed by selecting only the most
relevant features concerning the given task at hand. An ideal feature set contains a
small number of uncorrelated features with a high variance. As the target value for every
cycle is known, FS is a supervised dimensionality reduction step. Unlike FE, which
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generates new features from the data, FS keeps a subset of the existing feature set FE

by removing redundant, irrelevant, and noisy features from the feature set. Therefore,
FS enables faster model training, reduces the complexity and improves the accuracy
of the ML model, and reduces overfitting [79, 80]. Overfitting means the model has
learned too much from the data and starts memorizing it instead of understanding it
[81], leading to performance degradation on data that was not used for training [79].

In the AMLT, three complementary algorithms, chosen according to [57], are used
to rank features and filter redundant, irrelevant, and noisy features from the feature
matrices FE. In general, FS algorithms can be divided into filter, wrapper, and embedded
methods. Filter methods, e.g., Pearson correlation (cf. Section 2.2.2.1) and ReliefF
(cf. Section 2.2.2.2), select features according to statistical techniques which indicate
the relationship between the feature and the corresponding target without training a
model. Wrapper methods, e.g., Recursive Feature Elimination Support Vector Machine
(RFESVM) (cf. Section 2.2.2.3), have high computational cost as these methods
repeatedly train a model on a feature subset, determine the performance of the trained
model, change the feature subset by adding or removing features, train a new model, and
compare the performance of both models. Thus, the model detects the importance of
the features by learning. Embedded methods, which are not used in the AMLT, combine
the qualities of wrapper and filter methods, i.e., the selection process is embedded in the
learning. In contrast to wrapper methods, only one ML model is trained, which leads to
less computational cost, and features are selected based on their importance returned
by this trained model. Examples of embedded methods are Least Absolute Shrinkage
and Selection Operator (LASSO) [29, 82], ridge [83, 84], and elastic net [85].

To determine the optimum number of features, a 10-fold CV, explained in more
detail in Section 2.2.4, is carried out for every number of features in each feature subset
using a suitable ML algorithm, as explained in Section 2.2.3. The lowest CV error,
according to this brute force approach, leads to the optimum number l of the most
relevant features. Thus, FE can be mathematically defined as a mapping FE 7→ FS,
where FE ∈ Rm×k, k ∈ N, denotes the matrix containing extracted features and
FS ∈ Rm×l, l ≤ k, contains the optimum number of most relevant features.

2.2.2.1 Pearson Correlation

Pearson correlation is a filter method used for feature preselection as well as selection in
the AMLT. If the number of features is more than 500 per feature set FE, a preselection is
performed by Pearson correlation due to its low computational cost. In general, Pearson
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correlation measures the strength and, if it is not the absolute value, the direction of the
linear relationship between a feature and a target in terms of the Pearson correlation
coefficient rPearson ∈ [−1, 1]. If rPearson is close to zero, no linear relationship is
indicated. The Pearson correlation coefficient rPearson,j for a feature, i.e., one column fj
of FE, and a target y is defined as

rPearson,j =
∑m
i=1

(
(fij − fj)(yi − y)

)
[∑m

i=1

(
(fij − fj)2

)∑m
i=1 ((yi − y)2)

]1/2 , (2.32)

where m denotes the number of cycles [86, 87]. The features in the AMLT are sorted in
descending order according to their Pearson correlation coefficient, and the first lPearson
features for all m cycles build the matrix FS,Pearson ∈ Rm×lP earson .

2.2.2.2 ReliefF

Like Pearson correlation, ReliefF belongs to the filter methods and is used in case of
classification tasks when no linear class separation is possible. As the version naming
of this algorithm is according to the Latin alphabet, the F denotes the sixth version
of the algorithm Relief, which is, in its basic version, limited to binary classification
problems [88, 89]. In contrast to Relief, ReliefF can deal with multi-class problems. This
algorithm determines the nearest hits and the nearest misses for each point by using
k-nearest neighbors with the Manhattan metric, which is induced by 1-norm as distance
measure [90–93]. In other words, for one point belonging to one class, ReliefF searches
for k of the nearest neighbors from the same class (nearest hits) and k of the nearest
neighbors from each different class (nearest misses) [56]. In the AMLT, k is set to three.
The contribution of all nearest hits and all nearest misses are averaged to update the
quality estimations of the features. These weights indicate the ranking of the features,
which means that FS,ReliefF ∈ Rm×lReliefF contains the lReliefF features with the highest
weights for all m cycles.

2.2.2.3 Recursive Feature Elimination Support Vector Machine

Recursive Feature Elimination Support Vector Machine (RFESVM) is a wrapper method
introduced in [94, 95]. This method has higher computational cost and a higher risk
of overfitting than filter methods [96, 97]. Using One-vs-One classification, multi-class
problems are split into several binary classification problems by setting one class as
positive, another as negative, and ignoring all the other classes. This means that for Nc
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classes, all pairs of classes are used, and
(
Nc

2

)
binary classification problems are solved

[98]. In the simplest case of a binary classification problem, Support Vector Machines
(SVMs) find an optimal hyperplane

w⊤x + b = 0, (2.33)

which separates the two classes by determining the maximum margin 2
∥w∥ , i.e., the

maximum distance between the hyperplane and the support vectors of both classes. w
is the weight vector, and scalar b is called bias. The corresponding optimization problem
to solve is [99]:

min
w,b

1
2∥w∥2

subject to yi
(
w⊤xi + b

)
≥ 1, i = 1, . . . , l. (2.34)

In this equation, xi are the support vectors, and yi = ±1 are the labels. Figure 2.9a
shows a linear hard-margin SVM for binary classification in the two-dimensional space.
The support vectors for the positive and the negative class are labeled with surrounding
green circles. In the two-dimensional case, the hyperplanes are lines. Support vectors of
a hard-margin SVM lie on these lines. A hard-margin SVM does not tolerate outliers
and, therefore, does not work if the data is not linearly separable.

In contrast to a hard-margin SVM, a soft-margin SVM allows data separation with
outliers. In the AMLT, a linear soft-margin SVM, i.e., a soft-margin SVM with a linear
kernel, is implemented to solve the following optimization problem [29]:

min
w,b,ξi

1
2∥w∥2 + C

l∑
i=1

ζi

subject to yi
(
w⊤xi + b

)
≥ 1 − ζi, ζi ≥ 0, i = 1, . . . , l. (2.35)

In this equation, xi denotes the support vectors, yi = ±1 the labels, C the regularization
parameter, and ζi the slack variables. The smaller the regularization parameter C is,
the wider the margin. A smaller regularization parameter C increases the importance
of the slack variables ζi, whereas a higher C decreases the importance of the ζi. The
hard-margin SVM (cf. Figure 2.9a) corresponds to C = ∞.

In Figure 2.9b, a linear soft-margin SVM for binary classification is shown in the
two-dimensional space. The support vectors for the positive and the negative class are
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labeled with surrounding green circles. In the two-dimensional case, the hyperplanes are
lines. A soft-margin SVM allows support vectors to lie within the margin.

(a) Linear hard-margin Support Vector Machine. (b) Linear soft-margin Support Vector Machine.

Figure 2.9: Comparison of (a) linear hard-margin and (b) linear soft-margin Support
Vector Machine for binary classification in the two-dimensional space.

For multi-class problems, the weights are added up over all binary classification prob-
lems. Features with the lowest weights are recursively removed from the feature set FE as
they contribute the least to the class separation [100]. Thus, FS,RFESVM ∈ Rm×lRF ESV M

contains the lRFESVM most relevant features according to the SVM weights for all m
cycles.

2.2.3 Machine learning algorithms

FE and FS, introduced in the previous sections, prepare the data for using ML algorithms.
This means that for each combination of FE and FS, a matrix FS ∈ Rm×l containing
the optimum number l of the most relevant features is given as input for the last step
of the AMLT. In general, ML algorithms are divided into supervised, unsupervised,
semi-supervised, and reinforcement techniques (cf. Figure 2.4)). Supervised learning
techniques analyze labeled data sets, whereas unsupervised learning techniques use
unlabeled data sets. Classification and regression are supervised machine learning
techniques. Clustering methods belong to unsupervised ML algorithms and try to group
data [51, 101, 102]. Reinforcement learning algorithms, e.g., Q-learning [103, 104], learn
from experiences in a feedback-based process. An overview of reinforcement algorithms
is given in [105]. Most literature distinguishes only between these three kinds of machine
learning techniques. Some newer literature, such as [46], adds semi-supervised learning
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as a fourth kind of ML technique. While (un)supervised learning means that the data set
is (un)labeled, semi-supervised learning uses labeled as well as unlabeled data. Novelty
detection, which identifies new or unknown data, can be named as a representative of
this learning technique [106, 107].

In the AMLT, only supervised machine learning algorithms are used. As shown in
Figure 2.5, a distinction is made between the toolbox for classification problems and
the toolbox for regression problems. The objective of classification or quantification
is to apply a trained model on unknown observations (cycles) and predict their class
labels, e.g., failure status for condition monitoring and predictive maintenance, or their
individual response values, e.g., gas concentrations to determine the indoor air quality
(IAQ). Data sets for these use cases are introduced in Section 2.3.

2.2.3.1 Classification

In the AMLT, the classification is divided into two parts. First, further dimensionality
reduction is performed using LDA in order to reduce computational cost and avoid
overfitting. In addition to overfitting, the curse of dimensionality, also called Hughes
phenomenon [108], can lead to models with lower accuracy due to counterintuitive
geometrical properties of high dimensional spaces. Thus, the curse of dimensionality
must also be avoided. The goodness of the classification is expressed by the classification
error, defined as the percentage of misclassified cycles.

LDA is a linear dimensionality reduction technique first introduced by Fisher in
1936 using the well-known multivariate Fisher’s iris data set as an example [109]. The
objective of LDA is to minimize the within-class (intra-class) variance and maximize
the between-class (inter-class) variance [110]. In contrast to PCA, which finds the axes
maximizing the variance within the data, as explained in Section 2.2.1.4, LDA maximizes
the axes for class separability. The within-class and the between-class scatter matrix for
classes Ci, i = 1, . . . , nclass, are given by

SW =
nclass∑
i=1

∑
x∈Ci

(x − xi) (x − xi)t (2.36)

and

SB =
nclass∑
i=1

Ni (xi − x) (xi − x)t , (2.37)
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respectively [56, 111, 112]. The number of observations per class Ci is given by the scalar
Ni, and the vector containing features by x. xi denotes the column-wise arithmetic
mean vector of the features belonging to class Ci, and x is the grand mean for the whole
feature set. The objective of the LDA is to obtain the optimal projection matrix W by
maximizing Fisher’s criterion [56]

J(W) = W⊤SBW
W⊤SWW

. (2.38)

The optimal projection matrix W can be achieved by solving the generalized eigenprob-
lem

SBwi = λiSWwi ⇔ S−1
WSBwi = λiwi, (2.39)

where wi denotes the i-th eigenvector corresponding to the i-th largest eigenvalue λi
[113]. For nclass classes, LDA performs a linear projection of the feature space into an
(nclass − 1)-dimensional subspace, i.e., W ∈ Rl×(nclass−1). It holds

FLDA = FS · W (2.40)

with FLDA ∈ Rm×(nclass−1). It should be noted that LDA assumes a normal distribution
of the data within each class, which is usually not the case for real-world data. As LDA
is quite robust against violating the assumption of a normal distribution, it can also be
applied to classes whose data are not normally distributed [110, 114].

For the example in Figure 2.10, the multivariate Fisher’s iris data set [109] is used,
which contains 50 samples for each of the three iris species (setosa, versicolor, virginica)
with four features (length and width of sepals and petals). The data for the sepal
measurements is presented in Figure 2.10(a). The LDA plot (cf. Figure 2.10(b))
shows that the first discriminant function separates the data well, whereas the second
discriminant function does not contribute much to the class separation.

After performing LDA, the actual classification is carried out using the Mahalanobis
distance [115–117]. It measures distances relative to the central point of each class and
takes correlation into account by considering the covariance matrix (cf. Equation (2.41)).
Points of the same Mahalanobis distance towards the central point of a class form an
ellipse around the central point [118, 119], whereas points of the same Euclidean distance
build a circle in the two-dimensional space.
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Figure 2.10: Linear Discriminant Analysis on the multivariate Fisher’s iris data set.
(a) Sepal measurement data. (b) Projection of the Fisher’s iris data into
the new two-dimensional subspace.

The Mahalanobis distance between f and the central point of class Ci is defined as

dMahal (f) =
√

(f − xi)⊤ S−1
i (f − xi). (2.41)

In this equation, f is the vector of the test data features, xi is the column-wise arithmetic
mean of the training data features belonging to class Ci, and Si is the covariance matrix
of class Ci. The class with the lowest Mahalanobis distance dMahal ∈ R≥0 is assigned
to f . In the AMLT, Mahalanobis distance classification, together with a previously
performed LDA, is chosen to determine the corresponding class for an unknown point
as it is less computational cost-intensive than K-nearest neighbors (KNN) classification,
which assigns unknown points to the class that is most represented within the K nearest
neighbors [51].

2.2.3.2 Regression

In the AMLT, Partial Least Squares Regression (PLSR) is used as the quantification
algorithm. The objective of PLSR is to model the dependence relationship between the
target y ∈ Rm and multiple features FS ∈ Rm×l [120]. The goodness of regression is
expressed by the RMSE, which is a measure of the differences between the observed
y ∈ Rm and the predicted target values ŷ ∈ Rm and is defined by

RMSE(y, ŷ) =
√√√√ 1
m

m∑
i=1

(yi − ŷi)2. (2.42)
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In [121], the basic PLSR algorithm of a response matrix on a predictor matrix using
ncomp PLSR components is developed. In case of the AMLT, let the predictor matrix
be given as the selected feature matrix FS ∈ Rm×l and the response matrix be only
a vector, i.e., y ∈ Rm. To perform PLSR, the following decompositions must be
iteratively solved such that the covariance between FS and y is maximized [29, 122]:

FS = F̂S + FSres = FSS
· F⊤

SL
+ FSres and (2.43)

y = ŷ + yres = YS · y⊤
L + yres, (2.44)

where FSL
∈ Rl×ncomp and yL ∈ R1×ncomp denote the loading matrix and loading vector,

respectively. FSS
∈ Rm×ncomp and YS ∈ Rm×ncomp are the predictor and response

scores, respectively. The matrix FSres and the vector yres are the residual terms for
predictor and response and are used as the start for the next iteration step. In these
equations, F̂S and ŷ give the Partial Least Square (PLS) estimations of FS and y,
respectively.

An example of a PLSR model for predicting formaldehyde (CH2O) concentrations
based on the gas sensor data set introduced in Section 2.3.3 is presented in Figure 2.11.
The training and the testing are performed with 80 % and 20 % of the data set,
respectively.

In MATLAB®, PLSR is calculated using the statistically inspired modification of the
PLS (SIMPLS) algorithm [123], which directly determines the regression coefficients
without SVD or matrix inversion [124]. In the SIMPLS algorithm, a vector of ones is
prepended to FS to compute coefficient estimates for a model with constant terms. This
augmented matrix is denoted by F̃S ∈ Rm×(l+1). For the SIMPLS algorithm, it holds

FSS
= F̃S · W and (2.45)

ŷ = FSS
· y⊤

L (2.46)

with W ∈ R(l+1)×ncomp denoting a weight matrix. Substituting Equation (2.45) into
Equation (2.46) leads to the predictive linear regression model

ŷ = F̃S · W · y⊤
L (2.47)

= F̃S · b, (2.48)

where b ∈ Rl+1 denotes the regression coefficient vector containing the intercept term
in the first entry and l PLSR coefficient estimates in the others.
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Figure 2.11: Partial Least Squares Regression model trained with training data and
the concentration prediction of the training (green) and the test data
(blue).

2.2.4 Validation and Testing

For evaluation of the performance of an ML model, the data set is split into three disjoint
subsets: training, validation, and test data set. The training data set is used for the
learning process of the model, i.e., the training, to fit parameters. With the validation
data set, the model is evaluated during training, and the hyperparameters of a model,
e.g., the optimum number l of the most relevant features, are tuned. This approach of
splitting the data set during training prevents the trained model from overfitting, i.e.,
the model performs well on data already seen but cannot generalize it on previously
unseen data. After completing the model training process, the final model is evaluated
with the test data set, which was not seen by the trained model before.

There is no optimal split percentage and, therefore, no clear guidance on what ratio
to use for the data set split. The ratio strongly depends on the use case, the total
number of samples in the data set, and the hyperparameters that should be tuned.
Many approaches exist in the literature, e.g., [125–128]. For the training (including
validation) and the testing process, a typical split is 80:20. This split is based on the
well-known Pareto principle [129], which says that 80 % of effects arise from 20 % of
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causes in most cases. Thus, a commonly used split ratio is 70:10:20, which means 70 %
of the data set is for training, 10 % for validation, and 20 % for testing.

The overall process of model training, validation, and testing, as well as the data set
splits used in the AMLT, are shown in Figure 2.12.

data set

training
data set

validation
data set

test
data set

model
test

72 % 8 % 20 %

model
training

model
evaluation

model with 
lowest CV error

Figure 2.12: Overall process of training, validation, and testing of a model with the
corresponding split of the data set used in the AMLT.

For validation in the AMLT, a k-fold stratified CV [28, 29] is automatically performed
during the model training. On the one hand, if the bias is high, an ML model tends to
underfit, i.e., the model is too simple and performs poorly on both training and test
data. On the other hand, if the variance is high, an ML model only performs well on
training data and not on test data, i.e., the model is overfitted. Models with a high
variance have a low bias [130], and vice versa. This balancing of under- and overfitting is
called the bias-variance trade-off [131]. Figure 2.13 illustrates the bias-variance trade-off.

Choosing a value for k depends on the data set [133]. A good compromise is given by
choosing k = 5 or k = 10 [28, 29]. The commonly used split ratio 70:10:20 would be
represented by k = 8, but in the AMLT, k = 10 is used, and therefore, the chosen split
ratio is 72:8:20 (cf. Figure 2.12). The training data set is partitioned into k subsets

32



Fundamentals

Figure 2.13: Illustration of the bias-variance trade-off (adapted from [132]).

of roughly equal size under the constraint that each subset has nearly the same label
distribution as the data set itself. Model training is performed with only k − 1 subsets,
i.e., the training data. For validation, the trained model is applied to the remaining
subset, i.e., the validation data, and the CV error is calculated as the performance
measure during the training process. To determine the CV error, the corresponding
error measure (depending on the target) is used to calculate the error for every fold,
and all calculated errors are averaged over all folds [56]. As the error measure, the
classification error for the classification version of the AMLT and the RMSE for the
regression version is applied. The algorithm combination with the lowest CV error is
chosen as the best choice for FE and FS for the task at hand.

To measure the performance of the final model, the final model is applied to the test
data set, and the corresponding error, as an unbiased evaluation, is determined.

2.3 Used data sets

This section presents three different data sets, which are used to investigate the influence
of measurement uncertainty in Chapter 3. As a representative for regression problems,
IAQ monitoring is considered, while industrial condition monitoring is used for classifi-
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cation problems. All used data sets and corresponding short descriptions are publicly
available on the online service Zenodo [134].

2.3.1 Hydraulic system data set

Sustainability is a challenge in today’s industry and plays a significant role, especially
in Industry 4.0, with high requirements for machine availability, safety, worker health,
and reliability. Machine downtime due to planned periodic maintenance or unplanned
breakdown with a failure must be reduced as they are costly [135]. Therefore, condition
monitoring as a key element of predictive maintenance is used to schedule optimum
maintenance, avoid downtime and save money [136]. Conditions that could shorten the
typical lifespan of, for example, a component or a machine are monitored and can be
approached before they develop into a major problem.

Hydraulic systems are widely used in industrial applications, e.g., in extruding, forming,
and punching processes, as they can deal with high forces. They use incompressible fluids,
leading to more position precision and more movement control compared to pneumatic
systems [137]. A simple hydraulic system to move actuators consists of a reservoir with
a filter unit, e.g., an oil tank, a hydraulic pump, several valves and pipes, and a power
source, which is, in many use cases, an electrical motor. In addition, accumulators are
used in hydraulic systems to absorb shocks and pulsations from pressure and volume
flow fluctuations. To ensure a reliable and safe hydraulic system operation, oil cooling
is essential to prevent the used fluid from overheating.

The hydraulic system data set [138] contains 1,449 cycle measurements of simulated
fault conditions of various components in a hydraulic system. The used hydraulic system
developed in [139] consists of a primary working circuit and a secondary cooling-filtration
circuit, both connected via an oil tank (cf. Figure 2.14).

It is equipped with 14 process sensors, which are already used for process control and
regulation, measuring

• electrical motor power of MP1 (EPS1) with a sampling rate of 100 Hz,

• pressures (PS1 - PS6) with a sampling rate of 100 Hz,

• volume flows (FS1 and FS2) with a sampling rate of 10 Hz,

• temperatures (TS1 – TS4) with a sampling rate of 1 Hz, and

• the root-mean-square (RMS) value of the vibration velocity (VS1) with a 1 Hz
sampling rate.
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Figure 2.14: Hydraulic system, in which various fault conditions of hydraulic
accumulators A1 - A4 (red), cooler C1 (yellow), pump MP1 (green), and
valve V10 (blue) are simulated (adapted from [140]).

This means that no additional sensors need to be installed in addition to the existing
process sensors to generate the data set for condition monitoring of the hydraulic system.
Furthermore, three virtual sensors derived from data from the process sensors are
included in the data set: cooling efficiency, cooling power, and system efficiency, each
with a sampling rate of 1 Hz [139]. In total, measurement data of 17 sensors in SI units
with different sampling rates is included in the hydraulic system data set.

In both circuits, various fault conditions of cooler, hydraulic accumulator, pump, and
valve are simulated at various severity levels. An overview of these conditions, their
classification target values in the data set, and the corresponding interpretations are
given in Table 2.1.

Each working cycle has a constant duration of 60 s. The various fault conditions are
systematically combined and changed after every tenth cycle, as shown in Figure 2.15, i.e.,
the data set contains ten working cycles per each of the 144 fault condition combinations.
These 144 fault conditions result from the full factorial experiment design.

Each of the four fault conditions represents a continuous process, e.g., a decrease
of gas filling pressure or cooling efficiency degradation, so that the data set can be
used for regression. However, a classification problem is considered in this thesis as it
has the benefit of additional validation besides k-fold CV by using LDA. Thereby, the
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Table 2.1: Classification target values of the four different fault conditions and their
interpretations (adapted from [139]). Target values are taken from the
published data set [138].

Component Condition Classes Interpretation

Accumulator Gas filling 2 optimal pressure (130 bar)
A1-A4 pressure 3 slightly reduced pressure (115 bar)

4 severely reduced pressure (100 bar)
5 close to total failure (90 bar)

Cooler C1 Cooling 3 % close to total failure
efficiency 20 % reduced efficiency

100 % full efficiency
Pump MP1 Internal 0 no leakage

leakage 1 weak leakage (3 × 0.2 mm)
2 severe leakage (3 × 0.25 mm)

Valve V10 Switching 73 % close to total failure
behavior 80 % large delay

90 % small delay
100 % optimal switching behavior

Figure 2.15: Fault conditions of hydraulic accumulators A1 - A4 (red, scaled by 20 for
better visibility), cooler C1 (yellow), pump MP1 (green, scaled by 50 for
better visibility), and valve V10 (blue) for 1,449 cycles.
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target values are considered as discrete steps. In an LDA scatter plot, the classes are
sorted ascending or descending according to their target classes, and every subsequently
projected class sorts itself correctly at the position that would be expected, considering
a continuous process. In contrast, if the classes are not sorted correctly, the class
separation is caused not significantly by the target but by cross-influences [141]. To
perform this validation using LDA, the data set is divided into training and test data.
The training data is used for the model training, whereas the test data is only projected
onto the LDA space. Figure 2.16 shows an example of this sorting behavior using the
gas filling pressure of the accumulator as the target. The model is trained with only
three classes (class 2, 3, and 5), and the unseen data (class 4) is projected onto the LDA
space. The classes are sorted descending from high to low gas filling pressure.

Figure 2.16: LDA plot of the gas filling pressure of the accumulator. Classes 2, 3, and
5 are used for the model training, whereas class 4 is correctly projected
onto the LDA space.

2.3.2 Electromechanical cylinder data set

The electromechanical cylinder (EMC) data set [142] consists of lifetime tests of three
EMCs (Festo ESBF-BS-63-400-5P [143]). It has been recorded at Zentrum für Mecha-
tronik und Automatisierungstechnik gGmbH (ZeMA) with a test bed specially designed
for condition monitoring and lifetime tests of EMCs [139]. The function of the EMC is
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based on a ball screw drive as a mechanical linear actuator that translates a rotational
into a linear motion. It has several favorable properties, e.g., high accuracy in position
and repetition, low wear, and hence a long lifetime [144]. Thus, assembly and handling
systems, as well as tool machines, are typical applications of EMCs. A failure of an EMC
in such systems leads to a loss of quality and costly downtime. Therefore, knowledge
about the actual wear and the remaining useful lifetime until the failure of the EMC
occurs is of interest.

Simplified, the used test bed consists of an EMC as the device under test (DUT)
and a pneumatic cylinder, which simulates a load on the DUT in axial direction during
each working cycle. The combination of a high axial load, a high motion speed, and a
high acceleration results in a fast wear progression of the EMC. The parameters of the
lifetime test are shown in Table 2.2.

Table 2.2: Parameters for each of the three lifetime tests [141].

Parameter Value

Velocity 200 mm/s
Axial force 7 kN (const. pulling)
Stroke range 100 mm to 350 mm
Acceleration 5,000 mm/s2

Deceleration 5,000 mm/s2

The drag error is used as failure criterion, meaning the lifetime test fails when a
deviation larger than 30 mm between the set and the actual EMC end position arises
[139]. Only small deviations usually occur during normal operation, whereas a significant
deviation increase indicates a defect of the EMC [139]. The remaining useful lifetime
(RUL), i.e., the period an EMC is likely to operate before it requires repair or replacement,
is assumed to reduce linearly at this test bed based on [145]. As target, the used lifetime
in percent, i.e., the opposite of RUL, is used for this data set. Used lifetime can be
considered as a regression or a classification problem; however, in this thesis, the data
set is used as classification problem because of the benefit of an additional validation
as mentioned in Section 2.3.1. Thus, the used lifetime as classification target for this
data set starts at 1 % and ends at 100 % when the EMC is detected as defective with
discrete class percentages (1 % increments) in between.

The data acquisition unit (DAQ) of the EMC test bed (ZeMA DAQ) acquires data
from eleven different sensors with sampling rates between 10 kHz and 1 MHz during
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each cycle of the lifetime test. In detail, these sensors are described in the following
listing [139]:

• four process sensors (axial force, pneumatic pressure, velocity, and active current
of the EMC servo motor) with a sampling rate of 10 kHz each,

• three accelerometers with a sampling rate of 100 kHz, attached at the plain and
the ball bearing, as well as at the piston rod,

• one microphone with a 100 kHz sampling rate, and

• three electrical motor current sensors with a sampling rate of 1 MHz each.

These sensors are localized at different positions schematically shown in Figure 2.17. It
is assumed that the ZeMA DAQ provides equidistant samples in time, as no timestamps
are sampled with this system.

Figure 2.17: Schematic representation of the EMC, the ZeMA DAQ sensors
localization (orange), and the pneumatic cylinder that simulates a load
on the EMC (adapted from Paper 1, [146]).

One working cycle lasts 2.8 s and consists of a forward stroke, a waiting time (150 ms),
and a return stroke, as shown in Figure 2.18.

For ML, only one second of the return stroke phase is used as the velocity and load
are constant in this period. Typically, a lifetime test consists of more than 500,000
working cycles or more than 16 days. This lifetime is significantly shorter than the
lifetime of an EMC in industrial applications, as the EMC is tested in the test bed under
conditions that cause extreme wear. To make the data set more manageable, only every
100th working cycle is included for each lifetime test, and the data is downsampled to
2 kHz. The cycle reduction only affects the number of cycles per target class. Thus,
the individual lifetime tests for the three EMCs (axis 3, axis 5, and axis 7) consist of
6,292, 6,083, and 5,732 cycles. The downsampling has no significant influence on the ML
results, as shown in Section 3.4. The measurement values in the EMC data set are stored
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Figure 2.18: Velocity (blue) and position (red) of the EMC during one cycle. The
yellow box marks one second of the return stroke that is used for ML
(adapted from Paper 1, [146]).

as analog-to-digital converter (ADC) values. In addition to the data file containing
the measurement values, a further document, including the conversion formula and
its specific constants (e.g., gain and offset) per sensor, is provided on Zenodo [142] to
convert the ADC values to Système international d’unités (SI) units.

2.3.3 Gas sensor data set

Humans’ most crucial environment is the indoor environment, as they spend most of
their lifetime indoors [147–149]. Therefore, their health, well-being, and performance
are related to IAQ [150, 151] and can be negatively affected by polluted indoor air. As
major pollutants in poor indoor air, volatile organic compounds (VOCs) can lead to
serious health problems, e.g., sick building syndrome [152, 153], or even severe diseases,
e.g., different cancer types [154, 155]. On the one hand, common sources of VOCs
are humans themselves by exhalation and dermal emission [156, 157]. Therefore, the
concentration of carbon dioxide (CO2) emitted by humans inside a building can be
used to approximate the IAQ there [158], and IAQ monitoring is mainly based on CO2

measurements today. However, on the other hand, human activities such as cooking,
heating (especially burning stoves), household cleaning, and tobacco smoking, as well
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as their consumer products, for example, furniture and carpets, emit VOCs [159]. Due
to the construction materials used, even the building itself contributes to the VOC
concentration [160].

To quantify VOCs in indoor air, metal oxide semiconductor (MOS) gas sensors are
widely used due to their low cost, robustness, and high sensitivity [161, 162]. However,
MOS gas sensors have only a low selectivity. To improve their limited selectivity, e.g.,
to a group of gases like VOCs, they can be operated in dynamic modes, especially
temperature modulation. This temperature modulation is also known as temperature
cycled operation (TCO), which has first been proposed in 1974 [163] and further
investigated and improved during the last decades [162, 164–167]. Using MOS gas
sensors in TCO, i.e., a cyclical change of the sensing layer temperature, results in rich
and extensive sensor response patterns, which can be interpreted using ML [162].

The gas sensor data set [168] used in this thesis was published in 2021 [167, 169]. It
consists of several calibration measurements of random gas mixtures in a gas mixing
apparatus (GMA) and several field test measurements of ambient air carried out in
an office with the multilayer MOS gas sensor SGP30 [170], which has four sensitive
layers on one hotplate [171]. As single VOCs for the calibration measurements in a
GMA, four widely-used gases are chosen: acetone, ethanol, formaldehyde, and toluene.
Formaldehyde is identified as one of the most toxic and carcinogenic gases in indoor air
[172–174] and was listed under the five most hazardous gases by the INDEX project
[175]. The most significant sources are pressed wood products, e.g., particleboard and
plywood paneling [176]. Even toluene (e.g., in inks and paints [177]) is listed under the 13
most hazardous gases within the INDEX project [175]. The overall VOC concentration
VOCsum is calculated as the sum of the four VOC concentrations. Together with water
vapor and inorganic background gases, i.e., hydrogen and carbon monoxide, they are
the basis of the gas composition within the data set, as shown in Figure 2.19.

In the calibration period, the concentrations of seven different gases that are relevant
for indoor air quality and humidity are randomly chosen from the ranges shown in
Table 2.3 using Latin hypercube sampling (LHS) [179, 180] to obtain unique gas mixtures
(UGMs).

The used temperature cycle (TC) consists of ten temperature steps at 400 ◦C with a
duration of 5 s each. Every 400 ◦C phase is followed by a single constant low-temperature
step of a level between 100 ◦C and 375 ◦C with a duration of 7 s each. Thus, one single
temperature cycle lasts 120 s and consists of 2,400 measurement values for each gas-
sensitive layer of the SGP30 (sampling rate 20 Hz). One TC represents one observation
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Figure 2.19: Overview of the gas composition consisting of background gases (red)
and volatile organic compounds (blue) (adapted from [58, 178]).

(cycle) for each gas-sensitive layer, i.e., one row in each of the four data matrices
Di, i = 1, . . . , 4. The sensor response of the first gas-sensitive layer of the used SGP30,
i.e., the logarithmic resistance, is shown for one cycle in Figure 2.20.

In this thesis, only the initial calibration period of the gas sensor data set is used.
During this period, the SGP30 sensor is exposed to each UGM for ten TCs. The initial
calibration period consists of 500 UGMs, resulting in 5,000 cycles. The limited time
response of the GMA and synchronization problems between GMA and the MOS gas
sensor SGP30 lead to an omission of the first four TCs and the last TC for each UGM,
i.e., only five TCs are left per UGM. Due to run-in effects, the three UGMs at the
beginning of the initial calibration period are also not considered. Thus, the used
part of the gas sensor data set comprises 2,485 TCs during 497 UGMs with stable gas
concentrations from the initial calibration. The gas sensor data set is suitable for the
regression version of the AMLT, as gas concentrations are continuous natural values.
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Table 2.3: Concentration ranges for all gases during the initial calibration period [181].

Substance Minimum Maximum

Hydrogen 400 ppb 2,000 ppb
Carbon monoxide 150 ppb 2,000 ppb
Humidity 25 % RH 70 % RH
Acetone 14 ppb 300 ppb
Ethanol 4 ppb 300 ppb
Formaldehyde 1 ppb 400 ppb
Toluene 4 ppb 300 ppb
VOCsum 300 ppb 1,200 ppb
RH: relative humidity

Figure 2.20: Response of the first gas-sensitive layer for one UGM of the SGP30 (blue)
during the used TC (red).

2.4 FAIR data

The data sets presented in Section 2.3 have one major disadvantage. In addition to the
file containing the data itself, one or more additional files are required, which contain
further information, e.g., explanations of the variable names, references to publications
concerning the data set, or even conversion formulas from ADC values to SI units. This
additional information often poses problems for users of the data set if they are not
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included in the data set. To obtain all the relevant information concerning the data set,
necessary explanations must be provided in at least one additional file. Therefore, good
data management is required to reuse already existing data sets to provide long-term
data storage, thus consequently achieving sustainability [182–184]. Data sharing and
exchanging in research and industry can benefit scientific progress. Moreover, given the
increasing advancement of digitalization, the data usage process should be automated,
which leads to the fact that machines’ ability to find and use a data set must be improved,
resulting in the need for machine-readable metadata within a data set.

In 2016, a consortium of scientists and organizations published the FAIR data principles
and their 15 subprinciples [185]. These FAIR principles provide guidelines to enhance
Findability, Accessibility, Interoperability, and Reusability of digital resources, such
as code and data sets. Their primary focus is machine readability, i.e., the ability
of machines, e.g., computers, to find, access, interoperate, and reuse digital resources
without human intervention or only with minimal human assistance. In 2021, 66 %
of researchers surveyed had heard of the principles, however, only 28 % of them were
familiar with the principles [186], although the FAIRness of data is highly relevant.
Making data traceable and FAIR is a manageable burden for the individual researcher.
It reduces administrative effort and saves time when reusing the data, e.g., by another
institute, a colleague, or the original researcher himself.

Reaching FAIRness involves three areas: the data themselves, the metadata describing
these data, and the necessary infrastructure, e.g., the data storage. Yearly, thousands of
petabytes of data are collected, and their potential cannot be realized due to missing
FAIR compliance [187].

First and foremost, (re)using data means finding them. Therefore, digital objects
as a composition of data and machine-readable metadata with unique and persistent
identifiers, e.g., a Digital Object Identifier (DOI), are essential for machines and humans
to find the data. In the context of Open Science, the online access repository Zenodo
[134] is one suitable archive with searchable metadata. Metadata should follow a common
structure and terminology. Thus, semantic descriptors are used in the metadata to
reach not only machine readability but also machine interpretability. Commonly used
ontologies and knowledge representations are Dublin Core (DC) [188], Digital System of
Units (DSI) [189], Quantities, Units, Dimensions, and Types (QUDT) [34], Resource
Description Framework (RDF) [190], and Semantic Sensor Network (SSN) [35] which
includes the Sensor, Observation, Sample, and Actuator (SOSA) ontology [191].
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After finding the required data, knowledge about how the data can be accessed
is necessary. Accessibility is often confused with Open Data, but in the context of
FAIR data, this only means that there are clearly and transparently defined conditions
for accessibility, e.g., access only for an individual research institute or access after
authorization.

To realize data interoperability, the data must be enriched with machine-readable
metrological properties such as types of physical quantities and the corresponding units of
measurement. As all measurements are subject to uncertainty, measurement uncertainty
provided by calibration, if available, should also be provided within a data set.

A good description of the data in terms of metadata is necessary for reusing data.
These top-level metadata contain information about the data set, e.g., the creators of
the data, the project in which the data was recorded, or the license of the data (e.g.,
Creative Commons Attribution 4.0 International (CC-BY-4.0)). To collaborate between
different research institutes and industry partners, it is necessary to use common, open,
and well-described data formats, e.g., Hierarchical Data Format Version 5 (HDF5) for
data and JavaScript Object Notation (JSON) for metadata.

For assessing FAIRness of a data set by its originator, i.e., a self-control if a data set
achieves a certain level of FAIRness, the FAIR data maturity model is used [192, 193].
Forty-one measurable aspects concerning the data and the metadata, called FAIR data
maturity model indicators, are defined for the four main FAIR data principles, as shown
in [192]. Twenty indicators are classified as essential, 14 as important, and seven as
useful. Each indicator can be evaluated by five levels [193]:

• not applicable (0),

• not being considered yet (1),

• under consideration or in planning phase (2),

• in implementation phase (3), and

• fully implemented (4).

These levels also give ideas on how the FAIRness level of the data can be improved
and where to concentrate the effort. For visualization of the FAIRness level, four radar
charts, one for each main FAIR data principle, are usually used.
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3 Results and Discussions

This chapter contains detailed presentations and discussions of the published peer-
reviewed papers that comprise the central part of this cumulative dissertation. An
additional self-generated and annotated data set is presented, which fits the FAIR data
principles.

3.1 Introduction

Industry 4.0 (I4.0), the fourth industrial revolution, denotes the transformation from
traditional to smart manufacturing using digitalization. Smart factories, the so-called
Factories of the Future (FoFs), allow increased flexibility in manufacturing and produc-
tion, as well as better quality and improved productivity [194]. In FoFs, which represent
the core elements of I4.0, the Industrial Internet of Things (IIoT) builds the networking
basis for interconnected (smart) sensors, i.e., enabling the communication between
individual sensors. In IIoT environments, often large numbers of sensors from a wide
range of applications, e.g., micro-electro-mechanical systems (MEMS) sensors, are used
due to their flexibility and cost-efficiency [31]. In a distributed sensor network, these
sensors independently collect data from a wide range of different physical quantities
from all levels of the manufacturing and production processes. This means that the
sensor data does not necessarily have the same time basis. Therefore, sensor data fusion
is required to bring the data of several sensors together in a consistent way.

In a survey presented in [195], data scientists spend 80 % of their time and effort on
data preprocessing and data gathering. In contrast, only 20% of their time and effort are
used for the actual machine learning (ML) analysis. Thus, data preprocessing, including
labeling data, cleaning data, for example, from corrupt, duplicate, and incomplete data,
fusion data, and organizing data, i.e., bringing data in a useful format for easily accessing
and analyzing it, is an essential step in ML analysis projects. Data preprocessing is
often not only time-consuming but also computationally complex leading to the idea of
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providing a data pipeline for calibrated MEMS sensors to enhance and automate this
process and, thus, reduce the required effort for the data preprocessing step.

Sensor data quality is essential to fully use the wide-ranging potential of smart sensors
in the context of I4.0 and IIoT [196]. For example, time synchronization problems
within a sensor network, sensor precision, sensor drift, or sensor failure can directly
influence the sensor data quality. Considering uncertainty in both time and value is a
key element for obtaining reliable data and performing ML with reliable data. Therefore,
it is required to have appropriate data sets, preferably data sets that meet the FAIR
principles and already contain associated measurement uncertainties to the measured
values. FAIRness and metrological traceable data build a basis for data exchange in
research and industry.

However, measurement uncertainty evaluation for each prediction of an ML model
is often neglected in the ML process [26]. Thus, measurement uncertainty for raw
sensor data is not or only rarely included in published data sets. On the one hand,
uncertainty information can be obtained from manufacturers’ datasheets; however,
these datasheets only give rough estimates for the uncertainty values. On the other
hand, the more suitable but expensive way is to derive uncertainty values based on
dynamic calibration information. Traceability in the FoF is achieved by consideration of
measurement uncertainty from the calibration of individual sensors through to data-
driven ML analysis [31].

Confidence in ML algorithms, their decisions, and their predictions is crucial. Quan-
titative measurements are carried out in industry every day, and as no measurement
result is exact, measurement uncertainty occurs in both time and value. In distributed
sensor networks, one of the causes for uncertainty in time can be time synchronization
errors between individual sensors, for example resulting from network communication
problems or time delays. Performing sensor data fusion in the correct way is crucial
for ML applications as this directly influences the ML model performance. Uncertainty
in the measurement value results from sensor degradation over time, limitation of the
measurement systems, or simply the use of non-calibrated or low-performance sensors.
Considering uncertainty information in time and value for performing ML contributes to
the data quality, and therefore influence on the model-based ML results can be expected.
Thus, determining measurement uncertainty and using it in ML must not be regarded
as an additional burden; instead, it is a worthwhile addition with added value.
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3.2 Paper 1 – Uncertainty-aware data pipeline of
calibrated MEMS sensors used for machine learning

Industry 4.0 requires a digitalized factory, the so-called FoF, where (smart) sensors are
used to increase competitiveness and efficiency [8]. In Factories of the Future, using
a large number of low-cost sensors is preferred over a small number of high-quality
and expensive sensors to reduce cost or increase robustness through redundancy [31].
Intensive data preprocessing with a lot of challenges is required to obtain high-quality
preprocessed data from low-cost sensors as their origin data quality is limited. Improving
the data quality is necessary, as the quality and accuracy of ML results is directly related
to the data quality [197, 198].

In Paper 1 [146], the starting point is an already existing test bed for condition
monitoring and lifetime tests of electromechanical cylinders (EMCs) at Zentrum für
Mechatronik und Automatisierungstechnik gGmbH (ZeMA). As described in Section 2.3.2,
the test bed is equipped with eleven sensors with sampling rates between 10 kHz
and 1 MHz. Data acquired with this expensive ZeMA data acquisition unit (DAQ)
system has already been successfully used for wear detection and lifetime prediction of
electromechanical cylinders by applying ML [37, 139].

To obtain data from low-cost sensors, the test bed for EMC lifetime tests (c.f.
Section 2.3.2) is equipped with a further DAQ module based on the microcontroller
STM32F767ZI [199], the so-called Smart-Up Unit (SUU) [36, 200], which has been
developed in the project Metrology for the Factory of the Future (Met4FoF) [31]. The
SUU uses three MEMS sensors:

• a 3-axis accelerometer (Bosch BMA 280 [201]) with a sampling rate of 2 kHz,

• a 9-axis inertial measurement unit (InvenSense MPU 9250 [202]) with a sampling
rate of 100 Hz for the magnetic flux density and 1 kHz for the acceleration as well
as for the angular speed, and

• a combined pressure and temperature sensor (TE Connectivity MS 5837-02BA
[203]) with a sampling rate of 1 Hz.

These three sensors are located at the plain bearing on the same sensor holder as the
plain bearing accelerometer of the ZeMA DAQ. Additionally, independent absolute
timestamps based on the Global Navigation Satellite System (GNSS), especially Global
Positioning System (GPS) in the presented paper, are stored for every measurement
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value. These absolute timestamps have nanosecond resolution and sub-microsecond
uncertainty, as the used GNSS module provides a time reference synchronized with the
SUU hardware timer via a pulse-per-second (PPS) signal. To investigate the potential
of the low-cost SUU, a lifetime test of an EMC was carried out and time series data
with both systems, the ZeMA DAQ and the SUU, were acquired.

In contrast to the ZeMA DAQ, which only records working cycles of 2.8 s, the SUU
acquires data continuously. To use ML methods, ZeMA DAQ and SUU data need to be
brought together consistently so that the SUU data fits the shape of the ZeMA DAQ
data. For this sensor data fusion process, a data processing pipeline for the SUU data
is proposed, which begins with the raw SUU sensors data and the calibration data of
these sensors, and after several steps, leads to a cycle-wise data set with corresponding
uncertainty values. The trigger signal of the ZeMA DAQ, which indicates the start of
each working cycle, is the only link between the ZeMA DAQ and the SUU. It is not
only recorded by the ZeMA DAQ but also by the SUU and builds the basis for the data
alignment process. Cycles in the SUU data are detected and extracted with the rising
edge of the trigger signal.

During the data preprocessing step, several unforeseen issues occurred, which have to
be threatened. Accidentally, the acceleration sampling rates of two sensors (InvenSense
MPU 9250 and Bosch BMA 280) were interchanged in the software version of the SUU
used for data acquisition. As the MPU 9250 can only be sampled with 1 kHz, a 2 kHz
sampling rate leads to two identical measurement values at different time stamps, as
shown in Figure 3.1a. To solve this problem, only every second measurement value of
the MPU 9250 accelerations with its corresponding GPS time stamp is used in Paper 1.
In the current software version [205], this bug is corrected.

As the data is stored in multiple files every 30 min, a file switch leads to a data loss
of approximately 1 s, as shown in Figure 3.1b. If this problem occurs, the affected cycle
is ignored, and the next one is taken as there is no noticeable difference in the signals of
two directly following cycles.

Furthermore, due to hardware connection issues, some rising edges of the trigger
signal are not recorded, although data from the sensors show that there should have
been rising edges (cf. Figure 3.1c). Data, which is affected by the missing trigger, is
made usable by halving the distance between the two rising edges around the missing
one and assuming that the missing rising edge is located in the middle.

In the end, it was possible to detect 476,617 cycles in the SUU data compared to
476,560 in the ZeMA DAQ data. The higher number of cycles in the SUU data can be
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(a) Interchanged sampling rates of the MPU 9250
(blue) and BMA 280 (green), meaning only
every second measurement value is different
for the MPU 9250 [204].

(b) MPU 9250 acceleration data in one direction
(blue), the trigger signal (red), and the missing
data between two recorded files (green area)
[204].

(c) MPU 9250 acceleration data in one direction
(blue), the trigger signal (red), and the missing
rising edge (dashed green) [204].

(d) Time glitch of approx. 40 s. The green area is
fitted using a robust linear regression [204].

Figure 3.1: Issues in the data preprocessing step.

explained by the fact that the ZeMA DAQ only records data when it receives a trigger
signal.

Further issues are time glitches, leading to forward and backward jumps of integer
multiples of 1 s in 11.38 ppm of the timestamps, which are not handled in the used SUU
software version. Such a time glitch is shown in Figure 3.1d. These jumps are detected
by a robust linear regression of timestamps over the sample index. Assuming that less
than 50 % of the timestamps in one file are affected by a time glitch [206], timestamps
are replaced by regressed values if their difference is larger than a chosen threshold.
These time glitches are treated in the current software version [205] and, thus, will be
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no issue anymore in the future. Correct timestamps are required for the next step of
SUU data preprocessing.

To make the extracted working cycles equidistant, interpolation is necessary, and
uncertainty must be propagated through the interpolation algorithms. Five interpolation
methods are considered: linear and cubic spline, as well as next, nearest, and previous
neighbor. For the different interpolation methods and their uncertainty propagation, the
Python package PyDynamic is used [207, 208]. In this software package, the calculation
of the sensitivity coefficients for the different interpolation methods is based on the Guide
to the Expression of Uncertainty in Measurement (GUM) and carried out according to
the corresponding uncertainty propagation formulas provided by White et al. [209, 210].

As uncertainty values based on manufacturer’s datasheets are only rough estimates,
uncertainty values derived from dynamic calibration information are used in Paper 1.
Paper 1 only shows how to obtain measurement uncertainty values from dynamic
calibration information, whereas consideration of measurement uncertainty and the
influence on ML results is investigated in Paper 4. Dynamic calibration is performed using
sine excitation at different frequencies and amplitudes under consideration of absolute
timestamps [36]. As references, the velocity of the mechanical excitations is measured
with three laser Doppler vibrometers. To represent the inverse transfer behavior, a
stable infinite impulse response (IIR) filter is chosen. The numerator and denominator
coefficients of a stable IIR filter are determined, and the uncertainties associated with
the filter coefficients are calculated using the PyDynamic function invLSIIR unc [211].
This function propagates uncertainty based on a Monte Carlo method described in
Supplement 2 to the GUM (GUM-S2) [44]. To obtain the uncertainty values associated
with the measurement values, the IIR filter with uncertainty is applied to the raw sensor
readings [212].

For performing ML with the automated machine learning toolbox (AMLT), ZeMA
DAQ and SUU data are used. Using 1 % lifetime increments as target and comparing data
downsampled to 1 kHz for both systems, the ZeMA DAQ data set leads to more precise
and accurate lifetime predictions than the SUU data set. There are also performance
differences between the different interpolation schemes used for the data of the SUU.
Next and previous neighbor perform 10 % worse than linear and cubic spline, as well as
nearest neighbor, which performs nearly equally.

However, using a lower resolution for the remaining useful lifetime (RUL) estimation,
i.e., 10 % increments which means approximately 39 h instead of 1 % (3.9 h), the cubic
interpolated data of the SUU leads to a classification error of 45.95 %. In comparison,
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the ZeMA DAQ data achieves a classification error of 26.47 % using 1 % increments for
the lifetime target. As the classification error only considers whether the correct target
class is predicted or not, the root-mean-square error (RMSE) is used, which takes the
distances between the actual and the predicted target values into account. The RMSE
for the ZeMA DAQ data is 1.39 %, whereas it is 5.25 % for the SUU data. This shows
that, in the light of “fitness for purpose,” the SUU, which is of much lower cost than
the complex ZeMA DAQ, can also provide suitable results for the RUL estimation of
the EMC. However, the estimated lifetime does not have the same resolution as for the
ZeMA DAQ data, but it will likely be sufficient for most maintenance interval scheduling
tasks.
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A B S T R A C T   

Sensors are a key element of recent Industry 4.0 developments and currently further sophisticated functionality is 
embedded into them, leading to smart sensors. In a typical “Factory of the Future” (FoF) scenario, several smart 
sensors and different data acquisition units (DAQs) will be used to monitor the same process, e.g. the wear of a 
critical component, in this paper an electromechanical cylinder (EMC). If the use of machine learning (ML) 
applications is of interest, data of all sensors and DAQs need to be brought together in a consistent way. To 
enable quality information of the obtained ML results, decisions should also take the measurement uncertainty 
into account. This contribution shows an ML pipeline for time series data of calibrated Micro-Electro-Mechanical 
Systems (MEMS) sensors. Data from a lifetime test of an EMC from multiple DAQs is integrated by alignment, 
(different schemes of) interpolation and careful handling of data defects to feed an automated ML toolbox. In 
addition, uncertainty of the raw data is obtained from calibration information and is evaluated in all steps of the 
data processing pipeline. The results for the lifetime prognosis of the EMC are evaluated in the light of “fitness for 
purpose”.   

1. Introduction 

Industrial processes are typically monitored by processing time series 
data acquired by (smart) sensors. In the field of Industry 4.0, machine 
learning (ML) methods have become a popular choice to extract features 
of interest from raw time series signals. Although not a limitation of ML 
in general, many of these algorithms dealing with time series data expect 
input data with equidistant timestamps. Data acquisition is often per-
formed by microcontrollers at a sampling frequency derived from an 
internal oscillator. As these oscillators experience general variances 
arising from factors such as temperature dependence, the yielded sample 
times differ from the desired values. 

The traditional approach is to sample all necessary sensors using the 
same (multi-channel) data acquisition unit (DAQ). In this case, the 
common assumption is that all data is equidistant in time (within some 
margin of error). However, in Industry 4.0 scenarios data is acquired 
using multiple independent DAQs and the assumption of equidistant 
timestamps is prone to failure. As a consequence of the accumulated 

sample-frequency drift, the i-th record of one smart sensor is no longer 
guaranteed to represent the same moment in time as the i-th record of 
another one. Recent studies [1] showed that this can lead to significant 
errors in a subsequent ML processing pipeline. 

Moreover, to obtain reliable data, it is of interest to consider un-
certainty as defined in Refs. [2,3] both in time and value. In the 
considered setting, timestamps with uncertainty are obtained from a 
smart sensor system. In general, uncertainty associated with the meas-
urand can be derived from the manufacturer’s datasheet or calibration 
information. In this contribution, it is shown how uncertainty values can 
be derived based on dynamic calibration information, as manufacturer’s 
datasheets only give rough estimates of the uncertainty values. 

To provide the same equidistant time base it is necessary to syn-
chronize data from two or more independent sources. After performing 
this alignment, the influence of multiple interpolation schemes on sub-
sequent ML pipelines and on the associated processing steps is investi-
gated. The proposed solution is applied to data obtained by a test bed for 
life-time prognosis and end-of-line tests of electromechanical cylinders 
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(EMCs) with an existing analog sampling DAQ. In a recent measurement 
campaign, the test bed was observed with the original DAQ system and 
an additional smart sensor (combining multiple digital sensors) with 
independent absolute timestamping based on the Global Navigation 
Satellite System (GNSS). An overview of the required pipeline is shown in 
Fig. 1. While providing references to the specific sections the figure also 
illustrates that most of the effort is included in the data preprocessing 
steps. 

2. Measurement setup 

The used data set is generated by a test bed for lifetime tests of EMCs. 
The main components of the test bed are the EMC under test (Festo ESBF 
cylinder [4]), schematic shown in Fig. 2, and a pneumatic cylinder 
simulating a load of 7 kN, equivalent to the maximum load according to 
manufacturer specifications, on the EMC in axial direction. Fig. 3 shows 
the scheme of the test bed. 

A typical working cycle, which can be seen in Fig. 4, consists of a 
forward stroke, a waiting time (150 ms) and a return stroke, and lasts 
2.8 s. 

Both linear movements of the EMC are always carried out at 
maximum speed and acceleration of approx. 200 mm/s and 5 m/s2, 
respectively. In this test bed, long-term high load and speed driving tests 
are carried out until the EMC fails. Failure is determined by the end 
position accuracy criterion (< 30 mm deviation) which after degrada-
tion is no longer met due to increased friction. The typical lifetime of an 
EMC under these test conditions in earlier experiments was approx. 
630,000 cycles or 20 days. 

2.1. ZeMA DAQ characteristics of the EMC test bed measurement system 

This test bed is equipped with eleven different sensors recorded with 
the test bed DAQ system:  

● three electrical motor current sensors with 1 MHz sampling rate 
each,  

● one microphone with a sampling rate of 100 kHz,  
● three accelerometers with 100 kHz sampling rate, attached at the 

piston rod, plain bearing, and ball bearing, respectively, and,  
● four process sensors (axial force, pneumatic pressure, velocity, and 

active current of the EMC motor) with 10 kHz sampling rate each. 

The cycle-by-cycle data acquisition of the EMC test bed is triggered 
by a digital output of the motor controller which is parameterized via 
the proprietary Festo Configuration Tool (FCT) software to provide an 
edge signal when the motion profile starts. The data acquisition at the 
EMC test bed is carried out with a NI PXI system with three modules (cf. 
Fig. 5):  

● Reconfigurable oscilloscope PXIe-5170R with eight simultaneously- 
sampled channels, up to 250 MS/s and 14 bit resolution [7],  

● Sound and vibration module PXIe-4492 with eight simultaneously- 
sampled channels, up to 204.8 kS/s and 24 bit resolution [8], and,  

● Multifunction I/O module PXIe-6341 with eight differential or 16 
single-ended channels, up to 500 kS/s and 16 bit resolution [9]. 

2.2. SmartUp unit characteristics 

The SmartUp Unit (SUU) is a DAQ module based on an STM32F767Zi 
microcontroller [10]. It is installed in parallel to the original DAQ and 
was first deployed as part of a method to demonstrate the calibration of a 
digital Micro-Electro-Mechanical Systems (MEMS) sensor [11]. The SUU 
is capable of connecting to the digital interfaces of modern integrated 
sensors via SPI or I2C and transmit the data generated as a time series 
with hardware generated timestamps. The integer values of the digital 
sensors are converted by the SUU with the nominal scaling factors into SI 
floating point values. The SUU also provides meta information on the 
measured values such as full-scale range, resolution (e.g. 216 least sig-
nificant bits (LSBs)), measured quantity (e.g. “X Acceleration”) and 
units (e.g. “\metre\second\tothe{-2}” in accordance with [12]) in 
a stateless protocol. As part of the Metrology for the Factory of the Future 
(Met4FoF) project [13], the SUU is also designed for use in Industry 4.0 
environments. A key application in Met4FoF is condition monitoring 
which necessitates the availability of reliable time-synchronized data 
[14]. The SUU enables time-synchronization by means of a GNSS 
receiver. The GNSS module provides a time-reference which is syn-
chronized with the hardware timers of the SUU via a pulse-per-second 
(PPS) signal resulting in an absolute timestamp with nanosecond reso-
lution and sub-microsecond uncertainty. The PPS signal is generated by 
atomic clocks that are part of the GNSS, leading to this high accuracy. 

The SUU is equipped with three digital sensors  

● a 9-axis inertial measurement unit (InvenSense MPU-9250) [15],  
● a 3-axis accelerometer (Bosch BMA280) [16], and  
● a combined pressure and temperature sensor (TE Connectivity MS 

5837-02BA) [17], 

such that three sensors and the SUU together form a smart sensor. As 
shown in Fig. 6, the sensors of the SUU are placed on the same sensor 
holder as the acceleration sensor Kistler 8712A5M1 [18] at the plain 
bearing of the ZeMA test bed. 

Fig. 7 summarizes the sensors of the SUU (purple dots) and the 
sensors of the ZeMA DAQ unit (red dots) as well as their location with 
respect to the EMC. The green triangle symbolizes the trigger signal of 

Fig. 1. Overview of the data processing pipeline.  

Fig. 2. Simplified structure of an EMC with a spindle drive (adapted 
from Ref. [5]). 
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the ZeMA test bed which is recorded by the SUU and is hence the only 
link between both DAQ units. In the following, the MS 5837-02BA 
sensor is ignored as this sensor had a defect after its installation on 
the test bed. 

3. Data presentation 

The data recorded on both DAQs represent the same EMC lifetime 
test executed in April 2021 which lasted approx. 16.5 days (387.83 h). 

3.1. ZeMA DAQ 

The raw data set generated by the ZeMA DAQ totals to 9.41 TB from 
476,560 cycles. The recording is event-centric and records 2.8 s of every 
cycle. As a consequence, a small period (~ 0.1 s) between cycles is 
omitted. The acquisition does not record any absolute time information, 
but is assumed to be equidistant in time. 

To save computational costs in later processing steps, a data set 
downsampled to 2 kHz is created. This includes only 1 s of the return 
stroke (gray area in Fig. 4) of every 100th cycle beginning at cycle 51, 
bringing the size down to less than 2 GB. The data recorded during cycle 
51 with the eleven sensors of the ZeMA DAQ is shown in Fig. 17). 

3.2. SUU DAQ 

During the same test the SUU generates a data set with 71 GB. The 
recorded data is not event-centric, but consists of continuous recordings 
split across multiple files. The acquisition uses GNSS to provide absolute 
timestamp information for the acquisition time of every datapoint. Due 
to the temperature dependence of the internal oscillator’s behavior of 
the sensor [11], the time series is non-equidistant. The data recorded 
during cycle 51 with the BMA 280 and the MPU 9250 SUU is shown in 
Fig. 18 and in Fig. 19, respectively. In addition to the main sensors of the 
SUU described in section 2.2, a trigger signal from the ZeMA DAQ is 
recorded. This trigger marks the start of a new cycle in the ZeMA system 
by providing a voltage signal with a short peak above 2.5 V. 

3.3. Data preprocessing strategy 

Methods for feature extraction and selection based on the event- 
centric data structure have been described recently [19,20]. In order 

Fig. 3. Scheme of the test bed [6].  

Fig. 4. Working cycle of the EMC test bed.  

Fig. 5. Data acquisition unit of the EMC test bed (adapted from Ref. [5]).  
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to use the existing methods in conjunction with the smart sensor data 
from the SUU, it is necessary to extract event-centric data from the SUU 
data set and save it in a format similar to the downsampled ZeMA DAQ 
data set. To bring the data of two independent sources together, the 
following steps are necessary:  

1. The data needs to be aligned temporally. This includes the challenge 
of establishing a conversion between the implicit relative timestamps 
of the original DAQ and the absolute timestamps of the smart sensor 
by an analysis of a common signal. This enables a correction of the 
drift of the original DAQ-time base, as well as a quantification of its 
time uncertainty.  

2. Both data sets need to be represented on the same equidistant time 
base. This is achieved by interpolation of the SUU data set. 

The temporal alignment of both raw data sets is achieved by cycle 
detection and an appropriate bookkeeping. It is then possible to extract 
time series of specific cycles and interpolate them to equidistant time 
matching the representation used in the downsampled ZeMA data set. 

These steps are described in more detail in the following section. The 
preprocessed data set is available as a standalone publication with 
comprehensive annotations [21]. 

4. Methods for ZeMA DAQ and SUU data alignment 

In order to represent the data recorded by the SUU in the same event- 
centric structure as used by the ZeMA DAQ, certain methods need to be 
applied. An overview of the pipeline steps is already given in Fig. 1. The 
proposed cycle detection, extraction and interpolation is shown for an 
exemplary time period in Fig. 8 and detailed in sections 4.1 and 4.2. In 
section 4.3, issues encountered with the recorded timestamps are fixed 
to allow successful interpolation. Uncertainty-aware data processing is 
an enabler of metrological traceability. Therefore, the uncertainty for 
the interpolation and the uncertainty for the calibration-based 
compensated raw data are described in sections 4.4 and 4.5, respec-
tively. The effect of timestamp uncertainty was also investigated, but 
was found not to be relevant in the presented setup. However, a short 
justification is given in A. 

4.1. Cycle detection 

The general idea to detect cycles in the SUU data set is based on the 
recorded trigger signal. Rising edges in this signal mark the beginning of 
a new cycle. This allows detection of the start of a new cycle with an 
uncertainty of u(t0,i) = 1 ms corresponding to the sample rate of the 
trigger signal. 

Directly applying this method yields fewer than the expected number 
of total cycles but some of them have double the typical length. A 
detailed inspection of the raw data identified three main causes for the 
presumably “missing triggers”:  

1. rising edge in the first entry of a file  
2. rising edge starts and ends between two files  
3. no rising edge, but data on other channels indicate a cycle 

Problems (i) and (ii) are caused by data aggregation in multiple files, 
each typically storing the datapoints of 30 min. Because of the nature of 
the overall acquisition pipeline, switching to the next file takes 1.5 s 
during which no data is recorded. Problem (iii) is likely independent of 
the SUU and related to hardware connection issues but no further 
investigation was performed in this contribution. 

The first problem can be handled by a consistent bookkeeping of the 
last datapoint of the trigger signal in the previous file. The second and 
third problems, although differing in cause, can both be handled simi-
larly. If the duration between two cycle starts exceeds 4 s, it is assumed 
that a previously undetected cycle started in the center between both 
surrounding triggers. Furthermore, to detect triggers that might fall into 
the short “blackout” period between two files, the last trigger of the 
previous file is included. 

By considering these special cases, 476,617 cycles are detected in the 
SUU data compared to 476,560 in the ZeMA data. The main cause for the 
difference is that the ZeMA DAQ only records data when the trigger 
signal is received. As mentioned in problem (iii), the SUU also detects 
cycles, when no trigger is encountered by inserting “virtual” triggers. 
This leads to a slightly higher number of detected cycles for the SUU. 

4.2. Cycle extraction 

Detected cycles are numbered in ascending order across files and 
every 100th cycle starting from the 51st cycle (1-based array indexing) 
gets extracted. The time series of a cycle of interest are all data points 

Fig. 6. Installation of the SUU and its three sensors in the EMC test bed. The 
Kistler 8712A5M1 acceleration sensor of the ZeMA DAQ is also installed at the 
same location. 

Fig. 7. SUU sensors (purple) and ZeMA DAQ sensors (red) localization with 
respect to the EMC. The green triangle symbolizes the trigger, which indicates 
the start of a cycle and is recorded by both the ZeMA DAQ and the SUU. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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recorded between the start of the cycle (included) and the start of the 
next cycle (excluded). If the time series of the cycle of interest does not 
allow the interpolation of the return stroke (e.g. missing data because of 
file end), the next cycle is chosen instead. Uncertainty of data is quan-
tified as half a LSB, which is an optimistic estimation. 

4.3. Time Glitch treatment 

In early versions of the SUU software, the Global Positioning System 
Fix Data (GGA) message was evaluated after the PPS pulse, without 
checking whether there was really a new fix. If only two satellites are in 
the field of view, there is a PPS pulse but no new fix. This led to leaps of 
integer multiples of 1 s in the measurement data. Although the issue is 
fixed in the latest version of the SUU software, some of the acquired data 
required correction in the preprocessing pipeline. The jumps forwards 
and backwards in time are detected by a robust regression of timestamps 
over the sample index. Timestamps differing more than a threshold from 
the fitted regression line are replaced with the regressed values under 
the assumption that less than 50% of the data in a file is corrupted by the 

glitch [22]. On average, time glitch treatment was required for only 
11.38 ppm of the recorded data. 

4.4. Uncertainty of interpolation 

Extracted cycles are made equidistant by relying on the Python 
package PyDynamic which provides the method interp1d_unc and 
propagates uncertainty based on [2,23,24].1 The uncertainty of a spline 
interpolation is calculated with 

ŷ(t) =
∑N

i=1
yiFi(t, t1,…, tN) (1)  

Fig. 8. Breakdown of preprocessing steps. Top: Extract cycle count from trigger signal. Mid: extracted 51 cycle. Bottom: detail of interpolation at given sample rate.  

1 Calculation of the sensitivity coefficients (as used for standard uncertainty 
evaluation of uncorrelated input quantities in Ref. [2]) is provided in Ref. [23] 
and applied in Ref. [24]. Following the calculations in Ref. [23], we assume a 
sign error for uncertainty from data timestamps in Ref. [24]. In this publication, 
we consider the version from Ref. [23]. 
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(2)  

where (ti, yi) denotes the original data points and Fi the interpolation 
kernels. Note, that the last two terms in the uncertainty equation are 
zero if both time uncertainty u(ti) and uncertainty of the requested time 
u(t) are negligible and therefore set to zero. 

The interpolation method is not fully online-capable, but can be 
performed iteratively, allowing for an execution before all data is 
recorded. 

4.5. Uncertainty from dynamic calibration 

An established dynamic calibration method using sine excitation is 
performed [11] but under consideration of absolute timestamps and 
using digital processing as opposed to analog phase synchronization. In 
order to perform the calibration, PTB’s three component acceleration 
facility was used to excite the device under test (DUT), i.e. the sensors 
shown in Fig. 6. The acceleration sensors are excited with monofrequent 
sine signals at different frequencies (10 Hz–200 Hz in steps of 10 Hz) and 
amplitudes (between 12 m/s2 to 50 m/s2) along all three measurement 
axes (X, Y, Z) in the laboratory reference frame. The mechanical exci-
tations are measured with three laser Doppler vibrometers (LDVs) as ref-
erences. A sine approximation is fitted to the LDV velocity values, 
transferring it to the frequency space. By derivation of the velocity in the 
frequency domain, this leads to the actual acceleration values. Since the 
sensor coordinate frames do not perfectly match the laboratory refer-
ence frame, the rotation angles must be determined. For this purpose, 
signed amplitude vectors are calculated from the amplitude and phase 
values of the frequencies up to 40 Hz, taking into account the group 
delay. The rotation matrix for each sensor can be determined using the 
Kabsch algorithm [25,26] and is implemented using the SciPy function 
align_vectors. Based on [11], the complex frequency response 
values are calculated from the time synchronized LDV and the sensor 
readings. 

A stable infinite impulse response (IIR) filter is chosen to represent the 
inverse transfer behavior. This is achieved by a least square fit (LSIIR) to 
the reciprocal of a given set of frequency response values and their 
corresponding uncertainties. Only raw data points that are reasonably 
different from zero for both DUT and reference system are used for the 
transfer behavior estimation to focus on the transfer characteristics 
along the same axis of both systems. The implementation makes use of 
the PyDynamic function invLSIIR_unc as described in Ref. [27], 
which propagates uncertainties according to the Guide to the Expression 
of Uncertainty in Measurement Supplement 2 (GUM S2) Monte Carlo 
method [28]. This leads to the filter numerator and denominator co-

efficients ( b
→
, a→), the time delay τ in samples and the uncertainties 

associated with the filter coefficients.To evaluate dynamic uncertainty 
of the sensor data, the obtained IIR filter with uncertainty is applied to 
the raw sensor readings, yielding a compensated signal with dynamic 
measurement uncertainties based on the calibration results. This is 
accomplished using the PyDynamic function IIRuncFilter which is 
based on the formulas given in Ref. [29]. The amplitude spectrum of the 
empirical transfer behavior in DUT-y-direction and the fitted inverse 
behavior are visualized in Fig. 9 with coefficients 

b
→

≈ [0.54, − 0.59, 0.58, − 0.19] ​ and ​ (3)  

a→≈ [1.0, − 2.11, 3.15, − 3.10, 2.20, − 1.09, 0.30]. (4)  

Applying the inverse behavior to 1 s of the 51st cycle yields the time 
series plot in Fig. 10. 

5. Lifetime estimation with ML 

After performing the alignment of the ZeMA DAQ and the SUU data, 
the influence of multiple interpolation schemes on subsequent ML 
pipelines and on the associated processing steps is investigated in this 
section. 

5.1. Automated ML toolbox 

To evaluate the data sets, a software toolbox for statistical ML [19, 
20,30] is used. An uncertainty-aware version of this toolbox has been 
developed recently,2 but was not ready for this publication. The auto-
mated ML toolbox is particularly suitable for analysis of cyclic sensor 
data and consists of three main parts (cf. Fig. 11): feature extraction, 
feature selection, and classification. For feature extraction, five comple-
mentary methods are used which extract features from the time, fre-
quency and time-frequency domains. Feature selection is carried out 
with three complementary methods. In this step, redundant features and 
features with low information content are removed from the feature set. 
Feature extraction together with feature selection leads to 15 possible 
algorithm combinations. Classification is further split in two parts: an 
additional dimensionality reduction step using Linear Discriminant 
Analysis (LDA) and the classification itself which is based on the 
Mahalanobis distance. To validate the results, a 10-fold stratified 
cross-validation is used. This means, the data set is equally partitioned 
into ten subsets and the class distribution within the subsets is nearly 
equal. For every fold, the model is trained with the training data (90% of 
the data set) and the resulting model is then applied to the test data (10% 
of the data set). For every fold, the cross-validation error, i.e. the per-
centage of misclassified cycles, is calculated and averaged over all folds. 
The algorithm combination with the lowest cross-validation error out of 
the 15 combinations is chosen as the best for the classification task at 
hand. 

5.2. Results and interpretation 

The automated ML toolbox is applied to the preprocessed data of 
both measurement systems with the target classification given by the 

Fig. 9. Amplitude spectrum of empirical transfer behavior in DUT-y-direction 
(red) and fitted inverse transfer function (green). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

2 https://github.com/ZeMA-gGmbH/LMT-UA-ML-Toolbox 
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percentage of lifetime already passed by starting at 1%. The best result, 
i.e. the smallest cross-validation error, is achieved with Best Fourier 
Coefficients (BFC) as extractor and Recursive Feature Elimination Support 
Vector Machine (RFESVM) as selector. In Fig. 12, the influence of the 
measurement system and the interpolation/resampling method can be 
clearly seen. More precise and accurate lifetime predictions are achieved 
with the ZeMA DAQ data for 1 kHz and 2 kHz sampling rate. As seen in 
Fig. 12 the effect of the chosen interpolation scheme has an influence on 
the ML training. While nearest (nearest neighbor), linear and 
cubic perform similarly well, the interpolation methods next and 
previous show a decrease in performance of approx. 10%. 

The classification error for 1% (=̂ 3.88 h) lifetime target increments 
is 26.47% for the ZeMA DAQ data in comparison to 45.95% for the cubic 
interpolated SUU data as shown in Fig. 13. The root-mean-square error 
(RMSE) for 1% lifetime target increments is 1.39% for the ZeMA DAQ 
data in comparison to 5.25% for the cubic interpolated SUU data. 

However, reducing the required accuracy in the lifetime target to 
10% (=̂ 38.78 h) improves the prediction quality for the SUU data and 

leads to usable classification errors of 12% as shown in Fig. 14. The 
larger lifetime target increments together with the low cost of the SUU 
hardware results in a good tradeoff between cost and accuracy for many 
use cases. 

Fig. 15 shows which individual sensors from the SUU data actually 
contributed into the ML lifetime estimation. The acceleration sensors 
provide 90% of all features (19 in total) used for the ML model building. 

Repeating the lifetime estimation using only one of the sensors 
installed at the plain bearing (Kistler 8712A5M1, MPU 9250 or BMA 
280), yields very similar cross-validation errors of 67.33%, 63.89% and 
65.88%, respectively. This allows to conclude that the more accurate 
lifetime estimation of the ZeMA DAQ system is not so much a cause of 
the better acquisition performance (larger sampling rate and resolution, 
high time accuracy, high-end sensors in comparison to the sensors of the 
SUU), but rather a consequence of the available variety of measurands. 

Fig. 10. Top: Comparison of indicated and compensated time series of the y-axis of the DUT (note: for better visualization an expanded uncertainty with k = 5 is 
shown). Bottom: Corresponding dynamic standard uncertainty of the compensated signal (k = 1). 

Fig. 11. Scheme of the ML toolbox with feature extraction (red), selection (green) and classification (blue) [30]. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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6. Conclusion and outlook 

Driven by the idea of bringing together data from two different data 
acquisition units (DAQs), data of one DAQ was brought into the event- 
centric format of the other. The preprocessing step necessary to ach-
ieve this turned out to be very computationally complex and time- 
consuming. Therefore, careful data pre-inspection is necessary and so-
lutions to compensate the encountered problems are given. These so-
lutions could lead to enhancements that reduce the required effort for 
data preprocessing in future measurement campaigns. 

Uncertainty information for the SUU data is obtained from dynamic 
calibration and corresponding compensation with an uncertain filter. 
The influence of timestamp uncertainty was investigated, but its overall 
contribution to the uncertainty of the interpolated signal is minor 
because of the use of absolute timestamps provided by the onboard 
GNSS module. However, this can change drastically, if the provided 
time-signal has significantly higher uncertainty. 

The interpolated SUU data clearly indicates that a sensing system of 
much lower cost can also provide raw data suitable for an ML lifetime 
estimation. However, this necessitates involved preprocessing in 
conjunction with the fact that the estimated lifetime from the SUU data 
does not achieve the same resolution for the remaining useful lifetime 
prediction as the more complex sensor system represented by the ZeMA 
data (10% vs. 1% lifetime target increments). But following the idea of 

“fitness for purpose”, this is still an excellent example for the adequacy 
of the measurement effort and required accuracy. As these lifetime es-
timations will be used as an indicator in predictive maintenance, 10% 
increments will likely be sufficient for most maintenance interval 
scheduling tasks. 

Fig. 12. Cross-validation performance of models trained on different input data 
sets. BFC is used as extractor and RFESVM as selector. 

Fig. 13. Predicated lifetime compared with linear target (1% increments) for one fold of the 10-fold cross-validation. (a) 1 kHz ZeMA DAQ data and (b) 1 kHz cubic 
interpolated SUU data. 

Fig. 14. Predicated lifetime of cubic interpolated SUU data compared with 
linear target (10% increments) for one fold of the 10-fold cross-validation. 

Fig. 15. Percentage of features selected from different sensors on the SUU that 
contribute to the lifetime estimate. 
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In an upcoming measurement campaign, the SUU data will be 
sampled at 2 kHz. This would also allow extraction of features from the 
500 Hz–1000 Hz range, which is otherwise not possible as the used 1 
kHz sampling rate is below the required Nyquist-rate of 2 kHz. This is 
necessary, because highly relevant features from the original ZeMA data 
are known to be in the range of 0 Hz–1000 Hz [1]. The transferability of 
an abstraction of the model generated with data of one EMC to another 
EMC is an ongoing research topic at ZeMA, the current focus lies on 
domain adaption methods [31]. As the uncertainty values are not used 
for the ML model building, the application of a recently developed 
uncertainty-aware automated ML toolbox will be investigated in up-
coming research. 

CRediT authorship contribution statement 

Tanja Dorst: Conceptualization, Methodology, Software, Data 
curation, Formal analysis, Investigation, Writing – original draft. Max-
imilian Gruber: Conceptualization, Methodology, Software, Data 
curation, Formal analysis, Writing – original draft. Benedikt Seeger: 
Software, Investigation, Resources. Anupam Prasad Vedurmudi: 
Writing – review & editing. Tizian Schneider: Software, Resources. 
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Appendix A. On Time Uncertainty in Interpolation 

As described in a recent publication [1], time uncertainty or shifts/drifts can have a significant effect on the performance of subsequent 
ML-processes. A small yet accumulating deviation in the phase between the raw and interpolated data points over a period of 30 ms is observable in the 
lowermost plot in Fig. 8. Under the assumption that the raw data is recorded at its nominal sample rate (1000 Hz), the end of the cycle (t0 + 2.8 s) 
would be after 2800 data points. However, knowing the absolute timestamps, the 2800th datapoint in the raw data corresponds (in cycle 51) to just t0 
+ 2.7889 s. Over just one cycle the timestamp error would have already accumulated to 11.11 ms (or 11 data points respectively). As described in 
Ref. [1], this can lead to a reduced prediction performance of trained ML-methods if left untreated. 

Such time uncertainty can be incorporated into the uncertainty analysis of the interpolated value. The time information coming from the SUU is 
based on GNSS and typically achieves time uncertainty of around ~ 300 ns. The implemented interpolation method presented above does not consider 
time uncertainty information, although equation (2) supports it. Therefore the influence of time uncertainty is manually compared for some inter-
esting cases by evaluating the uncertainty from the data timestamps (second term in equation (2)) 

∑N

i=1
F2

i (t)

(
∂ŷ
∂t

⃒
⃒
⃒
⃒

t=ti

)2

u2(ti) (A.1)  

and compared to the uncertainty from the data values (first term in equation (2)) 
∑N

i=1
F2

i (t)u
2(yi). (A.2)  

In the following, it is assumed that the uncertainty of the requested time (third term in equation (2)) is zero. For the 51st cycle the median of the root of 
the first term (equation A.2) over all data points evaluates to 2.236 × 10− 3 m/s2. At the expected time uncertainty achievable in GNSS based systems 
the median of the root of the second term evaluates to approximately 1 × 10− 4 m/s2. The variation in the median of the root of equation A.1) is shown 
in Fig. 16 for different values of given input time uncertainties. Specific indicators have been placed on values corresponding to many relevant 
magnitudes found in practical applications such as:  

● GNSS3: ~300 ns  
● Precision Time Protocol IEEE 1588: ~300 ns [32].  
● local Network Time Protocol (NTP): ~100 μs [33].  
● Trigger detection4: ~1 ms  
● web NTP: ~10 ms [33]. 

As can be seen in Fig. 16, the observed uncertainty of ~300 ns for the GNSS timestamps (yellow line) would not contribute much to the uncertainty 
of the interpolated value. For other above mentioned common time sources this behavior changes. 

3 as indicated by our data using the onboard oscillator of the SUU’s debugger.  
4 in the setup of this paper. 
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Fig. 16. Contribution of timestamp uncertainty onto interpolated data values for different assumed input time uncertainties.  
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Appendix B. Exemplary Raw Data

Fig. 17. Raw data recorded during the 51st cycle by the ZeMA DAQ expressed in SI units.  

Fig. 18. Raw data recorded during the 51st cycle by the BMA 280 sensor of the SUU.   
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Fig. 19. Raw data recorded during the 51st cycle by the MPU 9250 sensor of the SUU.  
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3.3 Making a data set FAIR

FAIRness and metrological traceability build a basis for measurement data exchange
in research and industry. As an extension to Paper 1, the EMC lifetime test data
sets of both DAQ systems, the ZeMA DAQ and the SUU, used in this paper were
not only uploaded on Zenodo as an HDF5 file but also made FAIR beforehand to
ensure sustainable research data management. To achieve FAIRness, the data sets
were restructured, merged, and extended with metadata that fits the FAIR principles
explained in Section 2.4 [213, 214]. For the metadata, several ontologies and knowledge
representations are used.

The top-level metadata contains information about the data set, e.g., information
about the creators of the data set and their contact addresses, publication-related
information, or information about the experiment carried out to acquire the data.
Listing 3.1 shows the most important top-level metadata in the JavaScript Object
Notation (JSON) format. A complete list of all top-level metadata for this data set can
be found on Zenodo [215].

1 " Project ": {
2 " fullTitle ": " Metrology for the Factory of the Future ",
3 " funding programme ": "EMPIR",
4 " fundingNumber ": "17 IND12"
5 },
6 " Person ": {
7 "dc: author ": ["Tanja Dorst", " Maximilian Gruber ", " Anupam Prasad

Vedurmudi "],
8 "e-mail": ["t. dorst@zema .de", " maximilian . gruber@ptb .de"," anupam

. vedurmudi@ptb .de"],
9 " affiliation ": ["ZeMA gGmbH", " Physikalisch - Technische

Bundesanstalt ", " Physikalisch - Technische Bundesanstalt "]
10 },
11 " Publication ": {
12 "dc: identifier ": "10.5281/ zenodo .5185953" ,
13 "dc: license ": " Creative Commons Attribution 4.0 International (

CC -BY -4.0)",
14 "dc:title": " Sensor data set of one electromechanical cylinder

at ZeMA testbed (ZeMA DAQ and Smart -Up Unit)",
15 "dc: subject ": [" measurement uncertainty ", " sensor network ", "

MEMS"],
16 "dc: SizeOrDuration ": "24 sensors , 4776 cycles and 2000

datapoints each"
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17 },
18 " Experiment ": {
19 "date": "2021 -03 -29/2021 -04 -15",
20 "DUT": "Festo ESBF cylinder ",
21 " identifier ": " axis11 "
22 }

Listing 3.1: JSON code for the most important top-level metadata [213, 214].

As ZeMA DAQ and SUU data are merged in one data set, the HDF5 file is structured
in two main groups, one for each system. The subgroups of these two main groups contain
the numerical measurement values together with machine-readable descriptions of the
corresponding sensors, quantities, and units. They also contain important information,
like whether the values are ADC or converted values or if an interpolation scheme has
been used to obtain the numerical measurement values. Listing 3.2 shows two JSON
code examples, one for a sensor of the ZeMA DAQ and one for a sensor of the SUU.

1 "/ ZeMA_DAQ / Sound_Pressure ": {
2 "sosa: madeBySensor ": "G.R.A.S.46 BE",
3 "rdf:type": "qudt: Quantity ",
4 "si:unit": "\\ pascal ",
5 "qudt: hasQuantityKind ": "qudt: SoundPressure ",
6 "qudt:value": {
7 "si:label": "Sound pressure ",
8 "misc": {
9 " raw_data ": False,

10 " comment ": " Converted from ADC values based on appropriate
conversion ."

11 },
12 },
13 "qudt: standardUncertainty ": {
14 "si:label": "Sound pressure uncertainty "
15 }
16 },
17 "/ PTB_SUU / BMA_280 / Acceleration ": {
18 "sosa: madeBySensor ": "BMA 280",
19 "rdf:type": "qudt: Quantity ",
20 "si:unit": "\\ metre \\ second \\ tothe { -2}",
21 "qudt: hasQuantityKind ": ["qudt: Acceleration ", "qudt: Acceleration

", "qudt: Acceleration "],
22 "qudt:value": {
23 "si:label": ["X acceleration ", "Y acceleration ", "Z

acceleration "]
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24 },
25 "qudt: standardUncertainty ": {
26 "si:label": ["X acceleration uncertainty ", "Y acceleration

uncertainty ", "Z acceleration uncertainty "]
27 },
28 "misc": {" interpolation_scheme ": "cubic"}
29 }

Listing 3.2: JSON code for the metadata of the sound pressure sensor G.R.A.S.46 BE
of the ZeMA DAQ and the 3-axis accelerometer BMA 280 of the SUU
[213, 214].

To assess the FAIRness level of the merged data set [215], the FAIR data maturity
model is applied. Figure 3.2 shows a detailed assessment of the 41 indicators, divided into
the four main FAIR data principles. Evaluating all indicators shows a good agreement
between the data set and the FAIR data principles. Nevertheless, certain indicators
should still be further improved. However, even if the maximum value (4) for all
indicators is reached, this is not a guarantee to represent meaningful data.

Figure 3.2: Detailed assessment of the indicators of the FAIR data maturity model
(adapted from [214]).
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3.4 Paper 2 – Influence of synchronization within a
sensor network on machine learning results

Digitalization in the context of I4.0 enhances strategic flexibility leading to more
productive and efficient processes as well as improving product quality [9]. In a Factory
of the Future, the IIoT builds the networking basis for enabling interconnected sensors,
machines, and other devices, so that they are able to communicate with each other.
Sensor networks are a key component in the IIoT, allowing data collection and data-
driven analysis [200]. Smart sensors and data evaluation, e.g., based on ML, allows, inter
alia, fault condition detection [37], predictive maintenance [216], as well as production
planning and control [217]. In order to fully use the potential of smart sensors, it is
essential to consider the quality of the sensor data [196]. The data quality is influenced,
e.g., by environmental conditions, sensor precision, sensor failure, or time synchronization
problems. As sensors in distributed sensor networks can sample at different times, data
of these sensors will not have the same time base, i.e., time synchronization errors
between multiple sensors can occur. Additionally, time delays can occur when data is
transmitted within a sensor network [218]. For ML applications, correctly performed
data fusion is crucial, as shown in the presented paper.

Paper 2 [219] addresses the data quality problem through time synchronization errors
occurring mainly within distributed sensor systems and investigates the influence of
these time synchronization errors on ML results. For the presented study, an EMC
data set acquired during a lifetime test, as described in Section 2.3.2, is used. ML is
performed with only one second of the return stroke phase because the velocity and load
are constant during this period. As the full data set of one lifetime test consists of approx.
629,000 cycles meaning approx. 12 TB, it is essential to decrease computational cost
by reducing the amount of data used for ML with the AMLT. First, a cycle reduction
is carried out using only every 100th working cycle, leading to approximately 62 cycles
per target class. A possibility to further reduce the amount of data is reducing the
sampling rate of the data set. To test if lower sampling rates influence ML results,
several data sets with various sampling rates are used for model training in the AMLT.
It is shown that using the data set, which has been downsampled to 2 kHz, and only
contains every 100th working cycle, is sufficient to obtain similar results compared to
the data set with full sampling rates for each sensor. Data sets with lower sampling
rates perform worse than the 2 kHz data set, whereas data sets with higher sampling
rates up to 10 kHz perform similarly to the 2 kHz data set. As most of the relevant
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features for the data sets of different sampling rates are between 250 Hz and 1 kHz and
the Nyquist criterion [220] requires a sampling rate at least twice the highest frequency,
the data set downsampled to already 2 kHz contains these relevant features. Therefore,
the data set with a sampling rate of 2 kHz containing only every 100th working cycle is
chosen for further investigations. This reduced data set recorded during the lifetime
test of axis 3 is available in the EMC data set presented in Section 2.3.2. It is used to
train a classification ML model to predict the RUL of the EMC with a resolution of
1 %. Best Fourier Coefficients (BFC) for feature extraction (FE) and Recursive Feature
Elimination Support Vector Machine (RFESVM) for feature selection (FS) is determined
as the best algorithm combination by the AMLT, reaching a cross-validation (CV)
error of 18.18 % in model training, which is a good result for this task. In comparison,
when performing ML with the full data set and, therefore, dealing with extremely high
computational cost, the minimum reachable CV error is 8.9 % using a more complex
model with 499 features [221]. The CV error of 18.18 % is achieved when using only 17
Fourier coefficient features for RUL estimation, whereby 12 of them represent amplitudes.
One advantage of using ML instead of deep learning (DL) is the interpretability of the
model. In this contribution, it is shown that the 17 most important features have a
physical explanation based on [139].

To investigate how the time shifts in the data influence the model training results,
ML models are trained with different time-shifted data sets. Random time shifts with
a minimum of 0.1 ms up to a maximum of 50 ms between individual sensors’ working
cycles are used to simulate time synchronization errors. The time-shifted data sets
are generated using the full data set and downsampling it to 2 kHz after artificially
generated random time shifts between individual sensors’ working cycles are added. It
is demonstrated that the larger the maximum time shift in the data set is, the worse
the CV error in the training. Minimal synchronization errors have only a small impact
on the CV error. However, for the data set with time shifts up to 50 ms, a CV error of
29.97 % is reached, which is significantly worse than the CV error of the raw data set
(18.18 %). Likely, the variance in the data increases by increasing random time shifts,
and therefore, learning for the model becomes more difficult.

For one amplitude feature (120 Hz of the active current) of the 17 most relevant
features, it is exemplarily shown that amplitude changes during the lifetime of the EMC.
However, the amplitudes are nearly equal for the same cycle number of the raw data set
and the data set with time shifts up to 50 ms. The robustness of the amplitudes against
time shifts can be explained using the mathematical expression of the Fourier transform.
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Time-shifting a signal leads to an unchanged amplitude spectrum, whereas the phase
spectrum experiences a frequency-proportional (linear) phase shift. This effect is used
later in the contribution to improve ML models.

To investigate the influence of time shifts on the prediction performance, the ML
model is trained with the raw data set, and this trained model is then applied to the
data sets with different random time shifts. This approach simulates synchronization
problems within a sensor network. For training (including validation) and testing, an
80:20 split is used, as explained in Section 2.2.4. It is shown that the classification
error (the percentage of misclassified cycles) determined using the test data set increases
with increasing time shifts. Already random time shifts of up to 0.1 ms lead to a
significant classification error increase. If no better synchronization is possible between
the sensors, the phase features can be excluded from the feature set after FE to enhance
the results significantly. For example, using the data set with up to 1 ms time shifts,
the classification error is enhanced to 44.99 % using only amplitudes as features in
the trained model, in contrast to a classification error of 95.87 % using phases and
amplitudes as features. Training with not only the raw data set but also, in addition,
with time-shifted data sets and then removing the phases out of the resulting feature
set is successfully tested to improve the model further. To test this improving effect,
on the one hand, only the raw data set is used for model training, and on the other
hand, in addition to the raw data set, the two data sets with time shifts of up to 0.1 ms
and 0.5 ms are used for model training. This leads to two trained models based on
amplitude and phase features. By removing the phases from the feature sets of both
trained models, leading to two additional models containing only amplitudes as features,
there are a total of four models whose performances are compared. Testing of the four
models is then carried out by using the data set with time shifts of up to 1 ms. Both
models trained with the raw data performed worse than the two models trained with
the three data sets. The best model with a classification error of 35.93 % is that one
trained with the three data sets and removed phases from the feature set.

Another important issue besides synchronization within a sensor network is the choice
of the correct time frame of the data set for performing ML. It is indicated that the
choice of the time frame for the 1 s period of the return stroke of the EMC is essential.
To show this, training the model with the raw data set and applying it to different
constant time-shifted data sets is carried out. Even in this case, enhancing the results
by excluding the phase features from the feature set is possible.
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In summary, Paper 2 provides suggestions for enhancing the setup of distributed
measurement systems, especially concerning the necessary synchronization between
sensors. When no information on the synchronization within the sensor network is
available, artificially time-shifted data sets from the raw data set should be generated
and used for model training.
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Abstract. Process sensor data allow for not only the control of industrial processes but also an assessment
of plant conditions to detect fault conditions and wear by using sensor fusion and machine learning (ML). A
fundamental problem is the data quality, which is limited, inter alia, by time synchronization problems. To
examine the influence of time synchronization within a distributed sensor system on the prediction performance,
a test bed for end-of-line tests, lifetime prediction, and condition monitoring of electromechanical cylinders
is considered. The test bed drives the cylinder in a periodic cycle at maximum load, a 1 s period at constant
drive speed is used to predict the remaining useful lifetime (RUL). The various sensors for vibration, force,
etc. integrated into the test bed are sampled at rates between 10 kHz and 1 MHz. The sensor data are used
to train a classification ML model to predict the RUL with a resolution of 1 % based on feature extraction,
feature selection, and linear discriminant analysis (LDA) projection. In this contribution, artificial time shifts
of up to 50 ms between individual sensors’ cycles are introduced, and their influence on the performance of
the RUL prediction is investigated. While the ML model achieves good results if no time shifts are introduced,
we observed that applying the model trained with unmodified data only to data sets with time shifts results
in very poor performance of the RUL prediction even for small time shifts of 0.1 ms. To achieve an acceptable
performance also for time-shifted data and thus achieve a more robust model for application, different approaches
were investigated. One approach is based on a modified feature extraction approach excluding the phase values
after Fourier transformation; a second is based on extending the training data set by including artificially time-
shifted data. This latter approach is thus similar to data augmentation used to improve training of neural networks.

1 Introduction

In the Industry 4.0 paradigm, industrial companies have to
deal with several emerging challenges of which digitaliza-
tion of the factory is one of the most important aspects for
success. In digitalized factories, sometimes also referred to
as “Factories of the Future” (FoF), the “Industrial Internet
of Things” (IIoT) forms the networking basis and allows
users to improve operational effectiveness and strategic flex-
ibility (Eichstädt, 2020; Schütze et al., 2018). Key compo-
nents of FoF and IIoT are intelligent sensor systems, also
called cyber-physical systems, and machine learning (ML),
which allow for the automation and improvement of com-

plex process and business decisions in a wide range of appli-
cation areas. For example, smart sensors can be used to eval-
uate the state of various components, determine the optimum
maintenance schedule, or detect fault conditions (Schneider
et al., 2018b), as well as to control entire production lines
(Usuga Cadavid et al., 2020). To make full use of the wide-
ranging potential of smart sensors, the quality of sensor data
has to be taken into account (Teh et al., 2020). This is lim-
ited by environmental factors, sensor failures, measurement
uncertainty, and – especially in distributed sensor networks
– by time synchronization errors between individual sensors.
Confidence in ML algorithms and their decisions or predic-
tions requires reliable data and therefore a metrological in-
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frastructure allowing for an assessment of the data quality.
In this contribution, a software toolbox for statistical ma-
chine learning (Schneider et al., 2017, 2018b; Dorst et al.,
2021a) is used to evaluate large data sets from distributed
sensor networks under the influence of artificially generated
time shifts to simulate synchronization errors. One aspect to
address time synchronization problems in distributed sensor
networks is improved time synchronization methods to pro-
vide a reliable global time for all sensors. Many different
synchronization methods are proposed for sensor networks
(Sivrikaya and Yener, 2004). However, improved time syn-
chronization might not be possible or be too costly, especially
in existing sensor networks which were often never designed
for sensor data fusion, so the ML approach can be improved
to achieve a more robust model with acceptable results as
demonstrated in this contribution.

2 Test bed for data acquisition

Predictive maintenance, based on reliable condition moni-
toring, is a requirement for reducing repair costs and ma-
chine downtime and, as a consequence, increasing produc-
tivity. Therefore, an estimation of the remaining useful life-
time (RUL) of critical components is required. Since we are
using a data-driven model, this cannot be done directly with-
out reference data. A test bed for electromechanical cylin-
ders (EMCs) with a spindle drive equipped with several sen-
sors is used. This specific test bed was used as it contains
a large variety of sensor domains and allows for physical
interpretation. Because most industrial ML problems only
use a subset of these sensors, the approaches of the chosen
test bed can be transferred. In this test bed, long-term speed
driving and high load tests are carried out until a position er-
ror of the EMC occurs, i.e., until the device under test (DUT)
fails. Characteristic signal patterns and relevant sensors can
be identified for condition monitoring as well as for RUL
estimation of the EMCs. Figure 1 shows the scheme of the
test bed. Simplified, the setup of the test bed consists of the
tested EMC and a pneumatic cylinder which simulates the
variable load on the EMC in axial direction. All parameters
of the working cycle can be set by using a LabVIEW GUI.

A typical working cycle lasts 2.8 s. It consists of a forward
stroke and a return stroke of the EMC as well as a waiting
time of 150 ms between both linear movements. The move-
ments are always carried out with approximately maximum
speed and maximum acceleration. The stroke range of the
EMC is between 100 and 350 mm in the test bed. The com-
bination of high travel speed (200 mm s−1), high axial force
(7 kN), and high acceleration (5 mm s−2) leads to fast wear
of the EMC. The error criterion for failure of the EMC is
defined as a too large deviation between the nominal and ac-
tual position values; i.e., the test is stopped as soon as the
specified position accuracy (position accuracy< 30 mm) is
no longer fulfilled due to increased friction.

To gather as much data as possible from different sensor
domains for a comprehensive condition monitoring, the fol-
lowing 11 sensors are used within the test bed (Schneider
et al., 2018a):

– one microphone with a sampling rate of 100 kHz;

– three accelerometers with 100 kHz sampling rate, at-
tached at the plain bearing, at the piston rod, and at the
ball bearing;

– four process sensors (axial force, pneumatic pressure,
velocity, and active current of the EMC motor) with
10 kHz sampling rate each;

– three electrical motor current sensors with 1 MHz sam-
pling rate each.

In Fig. 2, the raw data for one cycle and all sensors is shown.
The collected data reflect the functionality of the EMC and
its decrease during the long-term test. For data analysis,
which is described in more detail in the next section, vari-
ous EMCs were tested until the position error occurred. The
typical lifetime of an EMC under these test conditions was
approx. 629 000 cycles corresponding to roughly 20 d and
generated an average of 12 TB of raw data.

3 ML toolbox for data analysis

The ML toolbox developed by Schneider et al. (2018b) is
used for RUL analysis in this contribution. It can be applied
in a fully automated way, i.e., without expert knowledge and
without a detailed physical model of the process. After ac-
quisition of the raw data, feature extraction and selection as
well as classification and evaluation are performed, as shown
in Fig. 3.

3.1 Feature extraction

In the beginning, unsupervised feature extraction (FE) is per-
formed, i.e., without knowledge of the group to which the
individual work cycle belongs, in this case the current state
of aging (RUL). Features are generated from the repeating
working cycles of the raw data. As there is no method that
works well for all applications, features are extracted from
different domains by five complementary methods:

– Adaptive linear approximation (ALA) divides the cy-
cles into approximately linear segments. For each linear
segment, mean value and slope are extracted as features
from the time domain (Olszewski et al., 2001).

– Using principal component analysis (PCA), projections
on the principal components are determined and used
as features, representing the overall signal (Wold et al.,
1987).
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Figure 1. Basic scheme of the EMC test bed (Helwig et al., 2017).

Figure 2. Raw data recorded during one cycle by 11 sensors expressed in SI units.
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Figure 3. Schematic of the automatic toolbox for condition monitoring using machine learning, adapted from Dorst et al. (2019).

– The best Fourier coefficient (BFC) method extracts the
10 % of amplitudes with the highest average absolute
value over all cycles and their corresponding phases as
features from the frequency domain (Mörchen, 2003).

– The best Daubechies wavelet (BDW) algorithm is based
on a wavelet transform, and as for BFC, the 10 % of
the wavelet coefficients with the highest average abso-
lute value over all cycles are chosen as features from the
time-frequency domain.

– In general, information is also included in the statistical
distribution of the measurement values. These features
are extracted from a fixed number of equally sized seg-
ments of a cycle by the four statistical moments (SMs)
of mean, variance, skewness, and kurtosis.

The objective of FE is to concentrate information in as few
features as possible whilst achieving a precise prediction of
the RUL. The FE methods are applied to all sensor signals
and all cycles. This results in five feature sets with a large
number of features in each. However, the number of features
is still too high after performing feature extraction for Big
Data applications, such as RUL estimation of the EMC as
described in the previous section. Due to the insufficient data
reduction in this step, feature selection is carried out with the
extracted features to prevent the “curse of dimensionality”
(Beyer et al., 1999).

3.2 Feature selection

Feature selection (FS) is a supervised step; i.e., the group to
which each cycle belongs is known. In the case of the RUL
estimation of the EMC, the target value is the used lifetime
with a resolution of 1 %. As for feature extraction, no method
alone can provide the optimum solution for all applications,
so three different complementary methods are used for fea-
ture selection in the ML toolbox:

– Recursive Feature Elimination Support Vector Machine
(RFESVM) uses a linear support vector machine (SVM)
to recursively remove the features with the smallest con-
tribution to the group separation from the set of all
features (Guyon and Elisseeff, 2003; Rakotomamonjy,
2003).

– The RELIEFF algorithm is used when the groups cannot
be separated linearly. This algorithm finds the nearest
hits and nearest misses for each point by using k-nearest
neighbors with the Manhattan norm (Kononenko and
Hong, 1997; Robnik-Šikonja and Kononenko, 2003).

– Pearson correlation is used as a third method for feature
(pre)selection because of its low computational cost.
The features are sorted by their correlation coefficient
to the target value. This coefficient indicates how large
the linear correlation between a feature and the target
value is.

Preselection based on Pearson correlation is performed to re-
duce the feature set to only 500 features before applying the
RFESVM or RELIEFF algorithms to reduce the computa-
tional costs. After ranking the features with a feature selec-
tion algorithm, a 10-fold cross-validation (explained later) is
carried out for every number of features to find the optimum
number of features. Thus, the most relevant features with re-
spect to the classification task are selected, and features with
redundant or no information content are removed from the
feature set.

In addition to reducing the data set, this step also avoids
overfitting, which often occurs when the number of data
points for developing the classification model is not signif-
icantly greater than the number of features.
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3.3 Classification

The classification is carried out in two steps: a further di-
mensionality reduction followed by the classification itself.
The further dimensionality reduction is based on linear dis-
criminant analysis (LDA). It performs a linear projection
of the feature space into a g− 1-dimensional subspace for
g groups which represent the corresponding system state.
The intraclass variance, the variance within the classes, is
minimized while the interclass variance, the variance be-
tween the classes, is maximized (Duda et al., 2001). Thus,
the distance calculation in the classification step has only a
complexity of g− 1. The actual classification is carried out
using the Mahalanobis distance; see Eq. (1):

dMahal(x)=
√

(x−m)>S−1(x−m). (1)

Here x denotes the vector of the test data, m the component-
wise arithmetic mean, and S the covariance matrix of the
group. For each data point, the Mahalanobis distance indi-
cates how far it is away from the center of the data group,
taking the group scattering into account. In order to classify
the data, each sample is labeled with the class that has the
smallest Mahalanobis distance. Points of equal Mahalanobis
distance from a center graphically form a hyperellipse in the
g− 1-dimensional LDA space.

3.4 Evaluation

The k-fold stratified cross-validation (CV) is used for eval-
uation (Kohavi, 1995). This means the data set is randomly
divided into k subsets, with k ∈ N. Stratified means that each
of the k subsets has approximately the same class distribu-
tion as the whole feature set. In the ML toolbox, k is usually
set to 10. Thus, one group forms the test data set and nine
groups form the training data set, from which the ML model
is generated.

3.5 Automated ML toolbox

The automatic ML toolbox compares the 15 combinations
that are achieved by combining all feature extraction meth-
ods and all selection methods. The cross-validation error,
i.e., the percentage of misclassified cycles by the 10-fold
cross-validation, is automatically calculated for each of the
10 permutations resulting from the 10-fold cross-validation
and for each of the 15 FE/FS combinations. To compare the
result of the different combinations, the mean of the 10 cross-
validation errors (one cross-validation error per fold) per
combination is used. The minimum value of all the 15 cross-
validation errors (one error per combination) leads to the best
combination of FE/FS method. Thus, finding the best com-
bination of one feature extraction and one feature selection
method for the current application case is a fully automated
process that is performed offline. The actual classification is

Figure 4. Working cycle depicted as position (red) and velocity
(blue) consisting of forward stroke, waiting time, and return stroke,
as well as the period (green) evaluated for estimation of the RUL.

then carried out online by using only the best of the 15 com-
binations, which results in a low computational effort during
application.

4 Application of the ML toolbox on test bed data

The basis for this contribution is a lifetime test of an EMC
which originally lasted 20.4 d and consists of 629 485 cy-
cles. Only 1 s of the synchronous phase of the return stroke
(duration 1.2 s) for each working cycle is evaluated with the
ML toolbox. During this 1 s period, the velocity is constant
and the load is highest as the EMC is pulling against a con-
stant load provided by the pneumatic cylinder; see Fig. 4.
Thus, this 1 s period is suitable for ML problems.

For this full data set, where all sensors have their orig-
inal sampling rate, the minimum cross-validation error of
8.9 % was achieved with 499 features and a combination of
BFC and Pearson correlation together with the previously
described LDA classifier (Schneider et al., 2018c). Pearson
correlation was only used as selector due to the high compu-
tational time of RFESVM and RELIEFF for the full data set
with 629 485 cycles. Feature extraction together with feature
selection leads to a data reduction of approximately a factor
of 60 000 in this case; i.e., the originally recorded 12 TB of
raw data for this EMC is reduced to a feature set of approxi-
mately 200 MB.

To reduce computational costs and to allow us to study var-
ious influencing factors on the classification performance, a
reduced data set with only every hundredth cycle is used in
this contribution. A further reduction of the computational
costs could be achieved by reducing the sampling rate of the
data. To test the influence of lower sampling rates, several
data sets with different sampling rates are used, and it can
be observed that the best results across all used sampling
rates are always achieved with a combination of BFC and
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Figure 5. The 10-fold cross-validation error vs. number of selected
features for data sets with different sampling rate using BFC as ex-
tractor and RFESVM as selector.

Table 1. Cross-validation error for different FE/FS combinations.

FS/FE Pearson RFESVM RELIEFF

ALA 77.84 % 42.53 % 94.06 %
BDW 77.29 % 59.20 % 89.89 %
BFC 36.97 % 18.18 % 90.41 %
PCA 31.06 % 28.56 % 96.82 %
SM 57.91 % 38.89 % 99.05 %

RFESVM. As shown in Fig. 5, the minimum 10-fold cross-
validation error of the EMC data sets with sampling rates of
1 kHz and more is nearly the same. Thus, the quality of the
prediction is not influenced by a lower sampling rate. The
minimum cross-validation error (18.15 %) is achieved with
the 5 kHz data set, but with the 2 kHz version, the cross-
validation error increases only slightly in the second deci-
mal place (18.18 %). Thus, it is not necessary to use a data
set with a higher sampling rate, and due to less computa-
tional costs, the 2 kHz data set is chosen for this contribu-
tion. It seems that several relevant features are in the range
between 250 Hz and 1 kHz and, based on the Nyquist crite-
rion, are thus contained in this data set. All further results in
this contribution are based on the 2 kHz resolution data set of
an EMC with 6292 cycles (1.1 GB) and time-shifted versions
of this data set. The 2 kHz raw data set is available online for
further analysis (Dorst, 2019).

For this data set, the lowest cross-validation error is
reached with features extracted from the frequency domain
with BFC and RFESVM as selector. The cross-validation er-
ror for the 15 FE/FS combinations can be found in Table 1.

The lowest cross-validation error with 18.18 % misclas-
sifications occurs when using only 17 features as shown in
Fig. 6. The large increase of the cross-validation error when

Figure 6. The 10-fold cross-validation error vs. number of se-
lected features for the original 2 kHz data set without time shift us-
ing RFESVM as selector. For a better visibility, only results with
RFESVM as selector are shown.

using 54–56 features or more in Figs. 5 and 6 can be un-
derstood considering the covariance matrices S used for cal-
culation of the Mahalanobis distance. These covariance ma-
trices have a reciprocal condition number of about 10−19 in
1-norm, which means that they are ill-conditioned. A reason
for the ill-conditioned covariance matrices is the low number
of cycles (only 62, which results from the 1 % resolution of
the RUL together with 6292 cycles) per target class and the
nearly equal number of features.

Since 11 sensors are used within the test bed, Fig. 7 shows
which sensors are contributing to the 17 most important fea-
tures for the RUL prediction using BFC as the feature ex-
tractor and RFESVM as selector. It can be clearly seen that
five features each (i.e., 29 %) are derived from the micro-
phone and the active current data. For further analysis, it is
important to note that 12 of the 17 best Fourier coefficient
features represent amplitudes.

To check the plausibility of the results, Fig. 8 shows that
these 17 most relevant features are within the range 0 to
640 Hz. Thus, using the 1 kHz data set would lead to a loss
of relevant features (640 Hz). The dominant frequency here
is 120 Hz (five features) which represents the third harmonic
of the rotation frequency. The explanation for the other fre-
quencies can be found in Table 2 (cf. Helwig, 2018).

5 Synchronization problems and their effects on
machine learning results

Synchronization between different sensors is important to
enable data analysis. Correctly performed data fusion is cru-
cial for applications, e.g., in industrial condition monitor-
ing (Helwig, 2018). Synchronization problems there simply
means that the raw data of the sensors’ cycles are shifted
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Figure 7. The 17 most important features by sensors, selected with
RFESVM. Only 6 of the 11 sensors contribute to the 17 most im-
portant features.

Figure 8. Frequency range of the 17 most relevant features. The
frequencies of all relevant features are ≤ 640 Hz.

against each other. The feature extraction is carried out for
every sensor and all features are packed together in the clas-
sifier. As the temporal localization of effects can play a role
in ML, synchronization problems can lead to poor classifica-
tion results like later shown in this contribution.

To analyze the effects of synchronization problems be-
tween the individual sensors installed within the test bed and
their effect on the lifetime prognosis, time-shifted data sets
downsampled to 2 kHz are used. Thereby, the raw data set
with full resolution, mentioned in Sect. 4, serves as basis to
simulate synchronization errors. These errors are simulated
by manipulating the raw data set with random time shifts
between the individual sensors’ cycles in the 1.0 s window
of the return stroke. The maximum time shift of a cycle is
±50 ms in relation to the original time axis to ensure that
only data from the return stroke are used for all sensors. The

Table 2. Explanation of the frequencies of the 17 most relevant
features. The 17 most relevant features are physically explainable.

Frequency Explanation

0 Hz mean value of the signal
40 Hz mechanical driving frequency
120 Hz third harmonic of the rotation frequency
440 Hz rollover frequency of the ball screw drive
480 Hz damage frequency of the spindle nut
640 Hz mechanical resonance

minimal possible time shift is ±0.1 ms as the lowest sam-
pling rate over all sensors is 10 kHz.

Clock synchronization is a topic of research still today
(Yiğitler et al., 2020). As shown in this contribution, it is
important to think about clock synchronization, because if
not, then there will be serious issues with the results. For
distributed sensor networks, the considered time shifts are
in a range that can be expected (Tirado-Andrés and Araujo,
2019).

After simulating these errors with the raw data set, the dif-
ferent time-shifted data sets are downsampled to 2 kHz to re-
duce computational complexity. Analysis is carried out using
time-shifted data sets with a minimum of ±0.1 ms per cycle
(based on the time axis of the 2 kHz raw data set) and sensor
up to a maximum of ±50 ms per cycle and sensor. The time-
shifted values in every cycle for every sensor are randomly
generated with a discrete uniform distribution. This means
that the time shift for all samples of one single cycle is the
same but not for the same cycle over all sensors. The best
combination of FE/FS algorithm for all five time-shifted data
sets is BFC as extractor together with RFESVM as selec-
tor. An increase in the cross-validation error is observed with
increasing random time shifts for all sensors (cf. Table 3).
For random time shifts between 0.1 and 1 ms, the cross-
validation error is nearly the same; the change is only in the
first decimal place. Using random time shifts with more than
±50 ms leads to a significant decrease of the classification
performance. A likely reason for this decrease is probably
that not only data from the synchronous phase of the return
stroke are used, but also some data from the acceleration or
deceleration phase of the return stroke are included in the
evaluated 1 s period. To depict the effect of increasing ran-
dom time shifts on the prediction performance more clearly,
the cross-validation error using BFC as extractor, RFESVM
as selector, and time shifts from 0.1 to 50 ms between all 11
sensors are shown in Fig. 9 vs. the number of features. Ev-
ery model was trained with the specific time-shifted data set.
It can be clearly seen that small time shifts only have a mi-
nor effect on the cross-validation error, whereas time shifts
of 1 ms or more increase the cross-validation error notice-
ably. One reason is that the variance in the data increases
by increasing random time shifts and makes it harder for the
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Figure 9. Cross-validation errors vs. the number of selected BFC
features for different random simulated synchronization errors us-
ing RFESVM as selector.

Figure 10. Cross-validation errors vs. the number of selected BFC
features for constant shifted time windows with RFESVM as selec-
tor.

model to learn. For constant time shifts, on the other hand,
the cross-validation error is nearly the same as for the raw
data set (cf. Fig. 10), because every cycle is shifted by the
same constant time, which does not affect the Fourier coeffi-
cients. Although, random time shifts have no influence on the
amplitude spectrum in theory, but because of the experimen-
tal setup, there can occur cross-influences that make model
building harder.

Since most of the results resulting from time-shifted data
sets are almost equivalent to those obtained for the 2 kHz
raw data set, not all results are explicitly discussed in this
contribution. Only the data set with time shifts of maximum
±50 ms for all sensors’ cycles is considered in more detail

Figure 11. Cross-validation error vs. number of selected features
for a maximum time shift of ±50 ms and RFESVM as selector. For
a better visibility, only the results with RFESVM as selector are
shown.

Figure 12. Best feature according to RFESVM (120 Hz of the ac-
tive current) for the 2 kHz raw data set and the data set with random
time shift of maximum 50 ms for three different cycles.

here. On the one hand, this time shift is the maximum pos-
sible when taking into account the cycle length of 2.8 s and
evaluating a full second of the return stroke, and on the other
hand, this time shift provides the worst cross-validation er-
ror for the combination of BFC and RFESVM. As shown in
Fig. 11, the minimum cross-validation error is now 29.97 %,
which is significantly worse than for the original data set
without time shifts (18.18 %).

Figure 12 shows the frequency spectra for the 120 Hz fea-
ture of the active current (1 of the 17 most relevant features)
for different cycles of the raw data set and the data set with
random time shift of maximum 50 ms. It can be clearly seen
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Table 3. Cross-validation error for the 2 kHz raw data set and 2 kHz data sets with different time shifts with BFC as extractor and RFESVM
as selector.

Random time Sensors with Min mean of Selected features Frequency range Most relevant sensor (extracted features)
shift per time shift 10-fold CV (thereof of selected
cycle error amplitudes) features

without – 18.18 % 17 (71 %) 0–640 Hz microphone, active current (each 29 %)

≤±0.1 ms all 20.49 % 20 (90 %) 0–640 Hz active current (35 %)

≤±0.5 ms all 20.74 % 15 (93 %) 0–640 Hz active current (27 %)

≤±1 ms all 20.68 % 13 (100 %) 0–640 Hz active current (23 %)

≤±10 ms all 24.09 % 18 (100 %) 0–640 Hz acceleration piston rod (22 %)

≤±50 ms all 29.97 % 15 (100 %) 0–840 Hz microphone, acceleration piston rod,
acceleration ball bearing (each 20 %)

that this amplitude feature changes during the lifetime of the
axis, but for different time-shifted data sets, it is nearly the
same for the same cycle as for the raw data set. This is shown
exemplary here with only one time-shifted data set.

For explanation of this behavior, let x(t) denote the
real-valued time domain signal for which information is
available at discrete time points t0, . . . , tN−1. The discrete
Fourier transform (DFT) for the real-valued sequence X =

(X0, . . . ,XN−1)> is defined as

X̂k =

N−1∑
n=0

Xn exp
(
−j

2πn
N

k

)
for k = 0, . . ., N − 1. (2)

If the DFT of the signal x(t) is given by X̂k , the DFT for the
time-shifted signal x(t − s) is given by

X̂k,shifted = X̂k exp
(
−j

2πn
N

s

)
for k = 0, . . ., N − 1. (3)

The spectrum of the time-shifted signal is thus calculated
from X̂k , where each spectral component k experiences a
frequency-proportional (linear) phase shift of exp

(
−j 2π

N
s
)

.
The amplitude spectrum of the time-shifted signal remains
unchanged. Therefore, the amplitudes are robust against time
shifts as seen in Fig. 12.

In industrial environments, there are often two different is-
sues when using machine learning. First, there are synchro-
nization problems within a sensor network which can be sim-
ulated here by training the model with the raw data set and
applying the trained model on the data sets with different ran-
dom time shifts. Figure 13 shows the classification error us-
ing a 10-fold cross-validation, which means the training per
fold is carried out with 5663 random cycles of the 2 kHz raw
data set; the remaining cycles of different data sets are used
for the testing. It can be clearly seen that the classification
error increases the larger the time shifts get. The classifica-
tion error of 17.33 % is reached when applying the model
only to the raw test data without time shifts. Applying the

Figure 13. Classification error for one fold of the 10-fold cross val-
idation using the raw data set for the model training and applying
this model to data sets with different maximum random time shifts.
Red dots represent models based on both amplitude and phase fea-
tures, while green dots represent models using amplitude data only.

model built only with the raw data to time-shifted data with
±0.1 ms already leads to a significant increase of the classifi-
cation error (48.17 %). Thus, it is crucially important that the
different sensors and cycles are synchronized. But when data
are not well synchronized or if there is no information about
the synchronization, the results can be improved somewhat
by excluding the phase features, which can also be seen in
Fig. 13. For the data set with ±1 ms time shift, the result can
be improved from 95.87 % using the model with amplitudes
and the phases to 44.99 % when removing the phases out of
the model.

The second important issue is the choice of the time frame.
Figure 14 shows that the time frame must be chosen ex-
actly the same for all data sets, because the classification
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Figure 14. Classification error for one fold of the 10-fold cross val-
idation using the 2 kHz raw data set for the model training and con-
stant time-shifted data sets for the application of the trained model.
Red dots represent models based on both amplitude and phase fea-
tures, while green dots represent models using amplitude data only.

Table 4. Classification error for the prediction of the data set with
1 ms time shift by using different models.

Model/prediction Without time shift Without time shift,
with 0.1 ms and
0.5 ms time shift

Amplitudes and phases 95.87 % 41.81 %
Only amplitudes 44.99 % 35.93 %

rate for one fold of the 10-fold cross-validation worsens from
17.33 %, applying the raw data for the testing, to 69.63 %, ap-
plying the data set with a time frame shifted by only 0.1 ms
when using the model trained with the 2 kHz raw data set.
In this case, it is also possible to improve the results by re-
moving the phases from the model. For the data with the con-
stant time shift of 0.1 ms, removing the phases and thus using
only a model with amplitudes leads to a classification error
of 22.26 % instead of 69.63 %.

A further improvement of the classification results can be
achieved by training the model not only with the raw data
but also with synthetically time-shifted data and considering
only the amplitude features within the model (cf. Table 4).

To depict the effect of improving the classification error
more clearly, the ±1 ms time-shifted data set is used for the
testing of the model in all four cases in Fig. 15. Two differ-
ent models are considered here. In the upper subfigures, the
model was trained only with the 2 kHz raw data set, whereas
in the lower ones the±0.1 and±0.5 ms time-shifted data are
used for the model training in addition. The two subfigures
on the left show the prediction of the lifetime with a resolu-
tion of 1 % when using the model, as it is resulting from the

ML toolbox which means using both amplitudes and phases,
whereas in the right ones only amplitudes are used. It can
be clearly seen that the best classification error of 35.93 %
for the±1 ms time-shifted data set is reached with the model
which is additionally trained with time shifts and consists of
only amplitudes.

6 Conclusion and outlook

In this contribution, data sets with time synchronization er-
rors were considered to investigate their influence on results
obtained with a ML software toolbox for condition moni-
toring and fault diagnosis. Minimal synchronization errors
between the individual sensors, when already present in the
training data, only have a small effect on the cross-validation
error achieved with the ML toolbox. However, if ML mod-
els are trained without any synchronization errors, applying
these models to data sets even with minimal time shifts of
0.1 ms results in large classification errors, here for the pre-
diction of the RUL of a critical component. This error can be
reduced by modifying the feature extraction and excluding
phase values after Fourier analysis in a first step. By adding
artificially time-shifted data to the training set, a further
improvement of the classification result is achieved. Thus,
the study presented in this contribution provides important
guidelines for improving the setup of distributed measure-
ment systems, especially about the necessary synchroniza-
tion between sensors. If no information about the synchro-
nization within the network is available, it is suggested to
generate artificially time-shifted data sets from the original
data and use this extended data set for training the ML model.
Note that this is similar to data augmentation suggested for
improving the performance and robustness of neural net-
works (Wong et al., 2016).

It is also important to choose the time frame for the 1 s
period correctly. Applying the model to data even with only
a small shift of 0.1 ms of the time frame in comparison to the
training data already leads to very poor classification results.

For future work, measurement uncertainty should be con-
sidered in addition to time synchronization errors as both
contribute to data quality and are therefore expected to have
a strong influence on ML results for condition monitoring
or fault diagnosis. In the European research project “Metrol-
ogy for the Factory of the Future” (Met4FoF), mathematical
models for the consideration of metrological information in
ML models are developed. For example, the project consid-
ers the classification within the ML toolbox by reviewing the
robustness of the LDA as a classifier when using redundant
features. Specifically, we will study how long the quality of
the LDA results continues to improve with additional fea-
tures and when the point is reached where the LDA fails,
because the covariance matrix becomes singular; i.e., its de-
terminant disappears.
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Figure 15. Predictions (blue) of the used EMC lifetime (steps of 1 %) for one fold of the 10-fold cross validation for the data set with
time shifts of up to 1 ms and the assumed used lifetime target from 1 % to 100 % (red). (a) Model trained with raw data only using both
amplitude and phase features. (b) Model trained with raw data only using only amplitude features. (c) Model trained with raw, 0.1, and 0.5 ms
time-shifted data sets using both amplitude and phase features. (d) Model trained with raw, 0.1 and 0.5 ms time-shifted data sets only using
amplitude features.

The current ML toolbox (see Fig. 3) does not take any
measurement uncertainties into account. To overcome this
limitation, the methods included in the toolbox are extended
to allow for more robust and accurate failure analysis or con-
dition monitoring applications such as predicting the RUL of
components as discussed in this paper. The uncertainty evalu-
ation for the BFC method was already presented by Eichstädt
and Wilkens (2016). The uncertainty evaluation for ALA was
recently published (Dorst et al., 2020). The uncertainty eval-
uation for the remaining three feature extraction methods
is already developed and will be published soon. Thus, the
ML toolbox can then provide features together with their un-
certainty as determined from the uncertainty of the raw sen-
sor data. Furthermore, the three feature selection algorithms
can be replaced by filter-based selection algorithms which
weight the features based on their uncertainties. Finally, the
propagation of the uncertainty values through the LDA clas-
sifier is also completed. Thus, the extended ML toolbox, soon
to be published, will be able to take the uncertainty of mea-
sured data into account to achieve improved models. In the
future, we plan to add wrapper and embedded methods for
the feature selection step of the ML toolbox that also con-
sider uncertainties.

Code and data availability. The paper uses data obtained from
a lifetime test of an EMC at the ZeMA test bed. As the full
data set is confidential, a downsampled 2 kHz version of the data
set is available on Zenodo https://doi.org/10.5281/zenodo.3929385
(Dorst, 2019).

The automated ML toolbox (Schneider et al., 2017, 2018b; Dorst
et al., 2021a) includes all the code for data analysis associated
with the current submission and is available at https://github.com/
ZeMA-gGmbH/LMT-ML-Toolbox (last access: 23 August 2021)
(Dorst et al., 2021b).
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3.5 Paper 3 – Uncertainty-aware automated machine
learning toolbox

Quantitative measurements are carried out in industry every day. As no measurement
result is exact, it is only complete with an accompanied quantitative statement of its
associated uncertainty. Knowing the measurement uncertainty is crucial for assessing
the reliability and comparability, and determining the quality of measurement results
as well as evaluating the decisions based on these results. When decisions are based
on machine learning inference, i.e., the process of applying a trained ML model to
measurement data for obtaining decisions or predictions, assessing the reliability of the
ML result, which is affected by the quality of the input measurement data, is essential.
In addition to uncertainty in time presented in Section 3.4, uncertainties also occur in
the measurement values. The AMLT, in its original version [38], does not consider any
uncertainty in measurement values.

Paper 3 [222] presents an extended version of the AMLT, the so-called uncertainty-
aware automated machine learning toolbox (UA-AMLT), for classification problems to
overcome the limitation of neglected uncertainty in measurement values. This paper is
based on the AMLT for classification problems in its original version, as presented in
Figure 2.5a. Each ML method in the AMLT is equipped with uncertainty propagation for
uncorrelated input quantities in line with the GUM and its supplements, Supplement 1
(GUM-S1) and Supplement 2 (GUM-S2).

Performing feature extraction, i.e., the mapping D 7→ FE for every FE algorithm
in the AMLT (cf. Section 2.2.1), not only the features are calculated but also the
corresponding uncertainties. This leads to a matrix UFE of the same size as FE

containing the corresponding uncertainty values. For example, the associated uncertainty
value for the measurement value fEij is uFE ij. For uncertainty propagation through
the Principal Component Analysis (PCA) algorithm, an efficient Monte Carlo method
(MCM) implementation [223] is used based on GUM-S1 as an analytical approach
leads to numerical issues for big data applications. The sensitivity coefficients for the
remaining four FE algorithms are calculated according to the analytical approach (cf.
Equation (2.2)) presented in the GUM. For Adaptive Linear Approximation (ALA)
and BFC, the approaches had already been previously published in [40, 224, 225]. An
uncertainty-aware Best Daubechies Wavelets (BDW) algorithm was already proposed
in [41, 42]. This algorithm needs an adaption to the Daubechies Daubechies-4 (D4)
wavelet, as shown in [226]. The missing Statistical Moments (SM) algorithm, i.e., the
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calculation of mean, standard deviation, skewness, and kurtosis, and the corresponding
analytical uncertainty propagation according to the GUM are presented in detail in
Paper 3.

Expressed mathematically, feature selection is a mapping FE 7→ FS (cf. Section 2.2.2)
that ranks features and removes redundant, irrelevant, and noisy ones according to the
chosen FS algorithm. Paper 3 suggests using modified versions of the three FS algorithms,
called weighted FS algorithms, which take uncertainty values into account for the ranking
and removing process. In addition, a mapping UFE 7→ UFS is performed, whereby
the uncertainty matrix UFS has the same size as FS and contains the corresponding
uncertainty values. As the FS process only ranks features and removes redundant,
irrelevant, and noisy features from the feature matrices (cf. Section 2.2.2)), the associated
uncertainty values of the excluded features contained in the uncertainty matrix are
also removed. This means the FS step only rearranges features and their associated
uncertainty and removes the not selected ones.

The classification step uses Linear Discriminant Analysis (LDA) as dimensionality
reduction followed by a Mahalanobis distance classifier. The calculation of the uncertainty
propagation for the LDA algorithm is based on GUM-S2, the extension of the GUM
to any number of output quantities. The Mahalanobis distance is made uncertainty-
aware by consideration of the vertices of a hyperrectangle. A hyperrectangle in the
l-dimensional space consists of 2l facets, 2l vertices, and l · 2l−1 edges [227]. l denotes
the optimum number of the most relevant features (cf. Section 2.2.2). For a worst-case
classification, as proposed in Paper 3, only points with a maximum possible distance
from a projected point are relevant. The maximum possible distance is given by the
uncertainty values, and thus, the vertices can be calculated by an addition/subtraction
of the uncertainty values to the projected value. These relevant points, i.e., the vertices
of a hyperrectangle, are shown in Figure 3.3 for the one-, two- and three-dimensional
case.

Figure 3.3: Hyperrectangle in case of one (line), two (rectangle), and three dimensions
(cuboid) with an exemplary projected point (red) and the relevant
distances (grey dashed line).

88



Results and Discussions

For every vertex of the hyperrectangle, the Mahalanobis distance to the central point
of each class is calculated according to Equation (2.41). This leads to a class assignment
for every vertex. The class assignments can be presented in a confusion matrix, as shown
in Paper 3. For the worst-case classification, the minimum and maximum class value for
every vertex is determined, leading to the worst-case class prediction for the vertices.
This information is useful for a prediction plot, as shown in Paper 3.

For the demonstration of the UA-AMLT, the hydraulic system data set, which is
presented in Section 2.3.1, is considered. An ML model is trained using data from the
pressure sensor PS1 and the cooler efficiency as the target. Although the degradation
of the cooler efficiency is a continuous process, the prediction of cooler efficiency is
considered here as a classification problem where the target values are discrete steps (3 %,
20 %, and 100 % cooling efficiency), as explained in Section 2.3.1. Statistical Moments
and weighted Pearson correlation are used as FE and FS algorithms, respectively. White
noise with standard deviation σ = 1 bar is assumed as uncertainty contribution for the
measured signals.

Figure 3.4 shows that the measurement uncertainty influences the selection of the
most relevant features. In this example, the AMLT is applied to the same data as the

(a) 40 features extracted with Statistical Moments
algorithm and the 17 most relevant ones
(colored) according to Pearson correlation.
Results obtained by using the AMLT.

(b) 40 features extracted with Statistical Moments
algorithm and the 17 most relevant ones
(colored) according to weighted Pearson
correlation. Results obtained by using the
UA-AMLT. Uncertainty values (represented as
error bars) are analytically calculated with the
UA-AMLT, as presented in Paper 3. Where
no error bar is visible, the uncertainty value is
in the hundredth bar pressure range.

Figure 3.4: 17 most relevant features (colored) and 23 less relevant features (greyed)
determined using (a) the AMLT and (b) the UA-AMLT.
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UA-AMLT, i.e., data from pressure sensor PS1 and cooling efficiency as target. In the
AMLT, the shown features for one cycle are also calculated using Statistical Moments
as FE algorithm. Their importance is determined by Pearson correlation in the AMLT
and weighted Pearson correlation in the UA-AMLT. Considering, for example, the
kurtosis features of the ten segments determined by the Statistical Moments algorithm,
three features are chosen using the AMLT compared to using the UA-AMLT, whereby
three others are chosen for the set of most relevant features. The skewness of the sixth
segment is chosen by both toolboxes, the AMLT and the UA-AMLT, to be under the
17 most important features, although, in case of the UA-AMLT, this feature has the
highest standard deviation of all skewness features. In the AMLT, this feature has the
fifth-highest Pearson correlation coefficient considering all 40 features. Therefore, in
the UA-AMLT, propagating the uncertainty through the FE algorithm still leads to a
weighted Pearson correlation coefficient under the highest 17, i.e., this feature is still
one of the 17 most important features despite the high uncertainty value.

This paper also shows with this example of FE and FS algorithm combination together
with LDA and Mahalanobis distance as the classifier that measurement uncertainty
for sensor data influences the model-based ML results. The benefit of uncertainty
quantification for classification in ML is obtaining a more realistic class prediction.
Moreover, weaknesses can be detected, e.g., noise susceptibility. For example, this
information can be used to improve the ML model further.
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Abstract: Measurement data can be considered complete
only with an associated measurement uncertainty to ex-
press knowledge about the spread of values reasonably
attributed to the measurand. Measurement uncertainty
also allows to assess the comparability and the reliabil-
ity of measurement results as well as to evaluate decisions
based on the measurement result. Artificial Intelligence
(AI) methods and especially Machine Learning (ML) are
often based on measurements, but so far, uncertainty is
widely neglected in this field. We propose to apply uncer-
tainty propagation in ML to allow estimating the uncer-
tainty of ML results and, furthermore, an optimization of
MLmethods tominimize this uncertainty.Here,wepresent
an extension of a previously published automatedML tool-
box (AMLT), which performs feature extraction, feature
selection and classification in an automated way without
any expert knowledge. To this end, we propose to apply
the principles described in the “Guide to the Expression of
Uncertainty in Measurement” (GUM) and its supplements
to carry out uncertainty propagation for every step in the
AMLT. In previous publications we have presented the un-
certainty propagation for some of the feature extraction
methods in the AMLT. In this contribution, we add some
more elements to this concept by also including statisti-
cal moments as a feature extraction method, add uncer-
tainty propagation to the feature selection methods and
extend it to also include the classification method, lin-
ear discriminant analysis combinedwithMahalanobis dis-
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tance. For these methods, analytical approaches for un-
certainty propagation are derived in detail, and the uncer-
tainty propagation for the other feature extraction and se-
lection methods are briefly revisited. Finally, the use the
uncertainty-aware AMLT is demonstrated for a data set
consisting of uncorrelated measurement data and associ-
ated uncertainties.

Keywords: Measurement uncertainty, uncertainty propa-
gation, statistical moments, linear discriminant analysis,
machine learning.

Zusammenfassung: Messdaten können nur dann als voll-
ständig angesehen werden, wenn sie mit einer Messun-
sicherheit versehen sind, die das Wissen über die Streu-
ung der Werte ausdrückt, die der Messgröße zugeordnet
werden kann. Die Messunsicherheit ermöglicht zudem die
Beurteilung der Vergleichbarkeit und Zuverlässigkeit von
Messergebnissen sowie die Bewertung von Entscheidun-
gen auf der Grundlage von Messergebnissen. Methoden
der künstlichen Intelligenz (KI) und insbesondere des ma-
schinellen Lernens (ML) basieren häufig auf Messungen,
aber bisherwurdedieUnsicherheit in diesemBereichweit-
gehend vernachlässigt. Wir schlagen daher in diesem Bei-
trag vor, die Unsicherheitsfortpflanzung beim ML anzu-
wenden, um die Unsicherheit von ML-Ergebnissen abzu-
schätzen und darüber hinaus eine Optimierung von ML-
Methoden zur Minimierung dieser Unsicherheit zu ermög-
lichen. Dazu stellen wir eine Erweiterung einer bereits
veröffentlichten automatisierten ML-Toolbox (AMLT) vor,
die Merkmalsextraktion, Merkmalsselektion und Klassi-
fikation automatisiert und ohne Expertenwissen durch-
führt. Die im „Guide to the Expression of Uncertainty in
Measurement“ (GUM) und seinen Supplementen beschrie-
benen Prinzipien werden angewandt, um eine Unsicher-
heitsfortpflanzung für jeden Schritt in der AMLT durch-
zuführen. In früheren Veröffentlichungen haben wir be-
reits die Unsicherheitsfortpflanzung für einige der Merk-
malsextraktionsmethoden in der AMLT vorgestellt. In die-
sem Beitrag fügen wir nun diesem Konzept einige weite-
re Elemente hinzu, indem wir auch statistische Momente
als Merkmalsextraktionsmethode einbeziehen, die Unsi-
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cherheitsfortpflanzung zu den Merkmalselektionsmetho-
den hinzufügen und sie auch auf die Klassifikationsme-
thode, die lineare Diskriminanzanalyse in Kombination
mit der Mahalanobis-Distanz, ausweiten. Für diese Me-
thoden werden analytische Ansätze für die Unsicherheits-
fortpflanzung im Detail abgeleitet, und die Unsicherheits-
fortpflanzungen für die anderen Merkmalsextraktions-
und -selektionsmethoden werden kurz aufgegriffen. Ab-
schließend wird die Anwendung der zuvor vorgestell-
ten Version der AMLT, welche Unsicherheiten berück-
sichtig, für einen Datensatz, welcher aus unkorrelierten
Messdaten und dazugehörigen Unsicherheiten besteht,
demonstriert.

Schlagwörter: Messunsicherheit, Unsicherheitsfortpflan-
zung, statistischeMomente, lineare Diskriminanzanalyse,
maschinelles Lernen.

1 Introduction
Whenever decisions are based on machine learning (ML)
inference, it is important to have an assessment of the
reliability of the ML results. This reliability is very much
affected by the quality of the input data, e. g., the mea-
surements. Measurement uncertainties, calibration, and
traceability of measurements to the International System
of Units (SI) belong to the most important basic metrolog-
ical principles.

In [1] and [2], an automated software toolbox for sta-
tistical ML was presented. It is suited for multi-class clas-
sification problems using cyclic sensor data which means
that every cycle must have the same length or continuous
data must be split into cycles of same length. Cycles are
classified to exactly one class. In this contribution, this
automated ML toolbox (AMLT) is extended by consider-
ation of measurement uncertainty. The mathematical fo-
cus is especially on two different methods and their cor-
responding uncertainty propagation: Statistical moments
as feature extraction and Linear Discriminant Analysis
(LDA) as dimensionality reduction method. To complete
the uncertainty-aware AMLT, the uncertainty propagation
for the other feature extraction and selection methods are
briefly revisited.

With the help of statistical moments, characteristics
of the statistical distribution of measurement values can
be described and used as features. In pattern recognition,
LDA is used as a linear dimensionality reduction tech-
nique to achieve a more manageable number of features
before the actual classification and to reduce the compu-
tational cost. Existing classical statistical methods for di-

mensionality reduction have been developed in a time pe-
riod, when data collection and storage was not as readily
available as it is today, and the size of the data sets was
much smaller. In 1936, Fisher introducedLDAon the exam-
ple of thewell-knownmultivariate Fisher’s Iris data set [3].
LDA is a method for finding linear combinations of vari-
ables that separate observations into two or more classes
by minimizing the ratio of intra-class to inter-class vari-
ance. Nowadays, in the era of big data,massive amounts of
data are generated in various application domains world-
wide, leading (in particular) to an increase in dimension-
ality and data size [4]. Computations in high dimensional
spaces can lead to overfitting [5] or the curse of dimension-
ality [6, 7] as high dimensional spaces have counterintu-
itive geometrical properties.

To be capable of evaluating the data quality and there-
fore the quality of the machine learning results within the
framework of a measurement uncertainty analysis, using
data and its associated measurement uncertainty is nec-
essary. The easiest way to determine measurement uncer-
tainty is to use calibration information, e. g., from a cal-
ibration certificate, but a calibration is costly and there-
fore often not performed. In the case of existing assembly
lines and test beds, it could also be difficult or impossible
to dismount process-critical sensors and subsequently re-
calibrate them. In case no calibration information is avail-
able, uncertainty information provided by the manufac-
turers of the sensors in data sheets can be used to obtain
an indication of the data quality in the form of a measure-
mentuncertainty [8, 9]. In both cases, anuncertainty value
can be provided for everymeasured sensor value. This ful-
fills the requirements for the use of the uncertainty-aware
AMLT presented in this contribution.

2 Automated ML toolbox
To use the AMLT without any expert knowledge in a fully
automated way, a data matrix D ∈ ℝm×n for each sensor
must be given. For cyclic sensor data, this means that
the matrix consists of m cycles where each cycle has the
same length of n data points. For non-cyclic sensor data,
windowing approaches must be performed before getting
the data in the format of the data matrix D. The AMLT
is divided into three main parts (cf. Fig. 1): feature ex-
traction (FE), feature selection (FS) and classification. In
the end, to verify the trained model, a validation is per-
formed.
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Figure 1: Scheme of the automated ML toolbox (AMLT) with feature extraction (red), feature selection (green) and classification (blue)
(adapted from [2]).

2.1 Feature extraction

The objective of the unsupervised FE is to concentrate as
much information in as few features as possible. In this
step of the AMLT, features are extracted from cyclic raw
data D in different domains by five complementary algo-
rithms:
– Adaptive Linear Approximation (ALA):

Cycles are split into approximately linear segments.
Mean value and slope of every linear segment are ex-
tracted as features from time domain [10].

– Best Daubechies Wavelet (BDW):
A Daubechies D4 (four wavelet and scaling function
coefficients) wavelet transform is performed [11]. 10%
of theWavelet coefficientswith thehighest average ab-
solute value over all cycles are extracted as features
from time-frequency domain.

– Best Fourier Coefficients (BFC):
10% of amplitudes with the highest average absolute
value over all cycles and their corresponding phases
are extracted as features from frequency domain [12].

– Principal Component Analysis (PCA):
PCA reduces the number of variables of a data set,
while preserving as much information as possible [13,
14, 15, 16]. The projections on the first principal com-
ponents are used as features from time domain.

– Statistical Moments:
The statistical distribution of themeasurement values
also includes information. The cycles are divided into
s = 10 nearly equally sized segments and the four mo-
ments mean, standard deviation (as the root of the
variance), skewness, and kurtosis are extracted for
each segment as features from time domain, resulting
in 4s features per cycle [17].

Using these algorithms leads to five feature sets with a
large number of features included in each one. For each of
the five complementary algorithms, FE can be defined as a
mappingD Ü→ FE, whereFE ∈ ℝm×k, k < n, denotes thema-
trix containing extracted features. As the data reduction is
insufficient for Big Data applications in this step, the num-
ber of features is further reduced in the FS step.

2.2 Feature selection

In the supervised FS step, features with low information
content and redundant features are removed from each
feature set FE and the most relevant features with respect
to the given classification task are selected. Supervised
means that the target value, i. e., the associated class, is
known. In the AMLT, three complementary algorithms are
used for FS.
– Pearson Correlation:

Due to low computational cost, this algorithm is used
for FS itself and for the first preselection step in FS, if
the feature number ismore than 500per feature setFE.
Features are arranged in a descending order accord-
ing to their absolute correlation coefficient. In general,
the coefficient in [−1, 1] indicates the strength and di-
rection (in case it is not the absolute value) of the lin-
ear relationship between a feature and a target value.
A correlation close to 0 indicates no linear relation-
ship.

– Recursive Feature Elimination Support Vector Ma-
chine (RFESVM):
With a linear SVM, an optimal hyperplanewith amax-
imum margin (distance between the hyperplane and
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the support vectors) is calculated by solving the opti-
mization problem

min
w,b

1
2
‖w‖2

subject to yi(w
⊤xi + b) ≥ 1, i = 1, . . . , l. (1)

In this equation,w is a weight vector and b is a scalar,
called bias. xi are the support vectors and yi the labels
which are ±1 for binary classification problems. The
lowest SVM weights w are used to recursively remove
the featureswith lowest contribution to the group sep-
aration from the feature set FE [18, 19]. For multi-class
classification, One-vs-One is used that splits themulti-
class into binary classification problems, i. e., one for
every possible pair of classes, and the results are aver-
aged.

– ReliefF:
In case of an impossible linear group separation, Reli-
efF is used which denotes the sixth algorithm version
(naming from A to F) of Relief [20, 21]. ReliefF deals
withmulti-class problems. It finds the nearest hits and
nearestmisses for eachpoint byusingk-nearest neigh-
bors with the Manhattan metric (induced by 1-norm)
as distance measure [22, 23, 24]. For one point, this
means that this algorithm identifies several nearest
neighbors, one belonging to the same class (nearest
hit) and the others each belonging to different classes
(nearest misses).

After ranking the features according to the FS algorithms,
the following optimization problem is solved. For every
number of features, a 10-fold cross-validation (explained
in Section 2.4) is carried out and the minimum number l
of features with the lowest cross-validation error is deter-
mined. Thus, FS can be defined as a mapping FE Ü→ FS,
where FS ∈ ℝm×l, l < k, denotes thematrix containing only
the optimum number of the most relevant features.

2.3 Classification

The classification step is divided into twoparts. First, there
is a further dimensionality reduction performed by LDA
and then, the classification itself byusing theMahalanobis
distance. In general, the dimensionality reduction does
not only reduce computational costs for a given classifi-
cation task, but it can also avoid overfitting. For g groups,
LDA performs a linear projection of the feature space into
a smaller g̃ = g − 1 dimensional subspace by maximiz-
ing the inter-class variance andminimizing the intra-class
variance [25]. This results in a projection matrix P ∈ ℝl×g̃ ,

where l denotes the optimal number of features and g̃ the
number of separable groups reduced by one.

The actual classification task is carried out by using
the Mahalanobis distance which measures distances rela-
tive to central point of each group [26, 27, 28]. Let x be the
vector with the features of the test data,m the component-
wise arithmetic mean of the features of the training data
and S the covariance matrix of the features of the train-
ing data all appertaining to the class Ci. Then, the Maha-
lanobis distance is defined as

dMahal(x,Ci) = √(x −mi)⊤S−1i (x −mi). (2)

The class that results of the lowest Mahalanobis distance
is assigned to x.

2.4 Validation

To validate the results, a k-fold stratified cross-validation
[29] with k = 10 is automatically performed by the AMLT.
This method equally partitioned the data set into ten sub-
sets where each of the subsets has nearly the same class
distribution as the complete data set. Themodel is trained
with only 90%of the data set (i. e., the training data), then
the trained model is applied to the remaining 10% of the
data set (i. e. the test data) and the cross-validation (CV)
error, i. e., the percentage of misclassified cycles, is calcu-
lated. After performing training, testing and calculation of
the CV error for every fold, the calculated CV error values
are averaged over all folds and the algorithm combination
with lowest averaged CV error is chosen as the best for the
actual classification task.

3 Extension of the automated ML
toolbox

The extension of the AMLT by consideration of measure-
ment uncertainty is based on the Guide to the Expression
of Uncertainty in Measurement (GUM) [30] and its supple-
ments Supplement 1 [31] and Supplement 2 [32]. The three
documents establish general rules for evaluating and ex-
pressing measurement uncertainty. In the GUM, the cal-
culation of the measurement uncertainty consists of four
main steps:
1. Specification of a measurand.
2. Identification and characterization of the quantities

which influence the measurement and evaluation of
the uncertainty for each of these influencing quanti-
ties.
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3. Provision of a mathematical model for the calculation
of the measurand, which relates the values of the in-
fluencing quantities to the value of the measurand.

4. Calculation of the combined standard measurement
uncertainty which is assigned to the measurement re-
sult (more precisely the estimated value of themeasur-
and).

In the GUM, a linearization of the model equation y =
f (x1, x2, . . . , xN ) is used to combine the individual standard
uncertainties according to the Gaussian error propagation
(GEP) law

u2c(y) =
N
∑
i=1
(
àf
àxi
)
2
u2(xi) + 2

N−1
∑
i=1

N
∑
j=i+1

àf
àxi
àf
àxj

u(xi, xj)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0, if uncorrelated input quantities

(3)

which the GUM refers to as “Law of Propagation of Uncer-
tainty” (LPU). Equation (3) is based on a first order Taylor
series approximation and the partial derivatives are called
sensitivity coefficients. In Supplement 1 of the GUM, this
approach of propagation of uncertainties is replaced by a
propagation of probability distributions based on a Monte
Carlo method, which does not require linearization of the
model. Supplement 2 of the GUM defines the linearization
method and the Monte Carlo method for multivariate and
complex-valued quantities.

3.1 Uncertainty-aware feature extraction

Let the mapping D Ü→ FE with D ∈ ℝm×n and FE ∈ ℝm×k,
k ≤ n, be given as described above. Knowledge about the
uncertainty matrix U ∈ ℝm×n, which assigns an uncer-
tainty value uij to a measurement value dij ∀i, j, assumed
to be available which means that correlation between dif-
ferent time instants is neglected. Then, the sensitivity co-
efficients of the mapping D Ü→ FE can be calculated ac-
cording to the rules established in the GUMand its supple-
ments. This means, that for every feature in FE, an associ-
ated uncertainty value can be derived according to Eq. (3)
or a Monte Carlo method which leads to the feature un-
certainty matrix UFE . In this contribution, all covariances
between feature uncertainties are disregarded.

For PCA, an efficient implementation of a Monte Carlo
method for uncertainty evaluation is used [33] as an ana-
lytical approach according to Eq. (3) causes numerical is-
sues for Big Data. However, these analytical approaches
are applied for all other FEmethods included in the AMLT.
For ALA, the derivatives of mean and slope for every lin-
ear segment are calculated and used as sensitivity coeffi-
cients [34, 35]. The derivatives of the real and imaginary

part of the discrete Fourier transform are used to calcu-
late the sensitivity coefficients for the amplitude/phase
representation in the BFC algorithm [36]. An uncertainty-
aware BDW was proposed in [37, 38, 39] and adapted to
Daubechies D4 wavelet in [40].

As the uncertainty propagation for statistical mo-
ments in linewith the GUMhas not been published before,
the formulas for applying GUM to this algorithm of the FE
step are given in brief in this contribution. Using statisti-
cal moments as FE algorithm, the cycles are divided into s
segments. The start index ap and the end index ep of the
p-th segment is given by

ap = (p − 1) ⋅ ⌈
n
s
⌉ + 1 and (4)

ep = min(n, p ⋅ ⌈n
s
⌉), (5)

such that every segment consists of Np = ep − ap + 1 mea-
surement values. For the p-th segment of one cycle (con-
sisting of dj ∈ {dap , . . . , dep }), the four statistical moments
and their associated sensitivity coefficients are derived as
follows, whereas detailed calculations of the formulas can
be found in Appendices A.1 to A.3.
– The mean value is calculated by

μp = dp =
1
Np

ep
∑
j=ap

dj. (6)

As it can be easily seen, the sensitivity coefficients are
given by

αp,j =
àμp
àdj
=

1
Np
. (7)

– The standard deviation can be written as

σp = √
1

Np − 1

ep
∑
j=ap

(dj − dp)2. (8)

The sensitivity coefficients are calculated with

βp,j =
àσp
àdj
=

dj − dp
(Np − 1) ⋅ σp

. (9)

– The formula of the skewness is given by

vp =
1
Np
∑
ep
j=ap
(dj − dp)3

( 1Np
∑
ep
j=ap
(dj − dp)2)

3
2
:=

vdenomp

vnomp
. (10)

To get the sensitivity coefficients, a calculation for the
derivatives of the denominator and the nominator of
vp is performed separately. Then, it holds
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àvdenomp

àdj
=

3
Np
⋅ ((dj − dp)

2 −
1
Np

ep
∑
j=ap

(dj − dp)
2) (11)

and

àvnomp

àdj
=

3
Np
⋅ (

1
Np

ep
∑
j=ap

(dj − dp)
2)

1
2

⋅ (dj − dp). (12)

Both, Eq. (11) and Eq. (12), together with the quotient
rule lead to the sensitivity coefficients γp,j.

– Finally, for the kurtosis

wp =

1
Np
∑
ep
j=ap
(dj − dp)4

( 1Np
∑
ep
j=ap
(dj − dp)2)2

:=
wdenom
p

wnom
p
, (13)

the derivatives of the denominator and nominator of
wp are given by

àwdenom
p

àdj
=

4
Np
⋅ ((dj − dp)

3 −
1
Np

ep
∑
j=ap

(dj − dp)
3) (14)

and

àwnom
p

àdj
=

4
N2
p
⋅ (

ep
∑
j=ap

(dj − dp)
2) ⋅ (dj − dp). (15)

Inserting Eq. (14) and Eq. (15) in the quotient rule re-
sults in the sensitivity coefficients δp,j.

The sensitivity matrix for every q-th cycle is thus given as
a block matrix

Jqα,β,γ,δ =(

A
B
Γ
Δ

) ∈ ℝ4s×n (16)

with the submatrices A ∈ ℝs×n, B ∈ ℝs×n, Γ ∈ ℝs×n and
Δ ∈ ℝs×n. The matrix Jqα,β,γ,δ contains an enormous amount
of zeros, e. g., αp,j = 0 if j ̸∈ {ap, . . . , ep}.

Assume that the covariance matrix Uc ∈ ℝ
n×n for ev-

ery cycle is given. It has the diagonal elements uc(dj, dj)
being the squared standard uncertainties u2c(dj) for j =
1, . . . , n and the off-diagonal elements being the covari-
ances uc(di, dj) = uc(di)uc(dj)r(di, dj) for i, j = 1, . . . , n and
i ̸= j, where r(di, dj) denotes the correlation coefficient. It
holds r(di, dj) = r(dj, di) and r(di, dj) ∈ [−1, 1]. The covari-
ance matrix is symmetric, which means Uc = Uc

⊤. This
leads to a symmetric covariance matrix U ∈ ℝ4s×4s with

Uq = Jqα,β,γ,δ ⋅ Uc ⋅ (J
q
α,β,γ,δ)

⊤

=(

AUcA⊤ AUcB⊤ AUcΓ⊤ AUcΔ⊤

(AUcB⊤)⊤ BUcB⊤ BUcΓ⊤ BUcΔ⊤

(AUcΓ⊤)⊤ (BUcΓ⊤)⊤ ΓUcΓ⊤ ΓUcΔ⊤

(AUcΔ⊤)⊤ (BUcΔ⊤)⊤ (ΓUcΔ⊤)⊤ ΔUcΔ⊤
) .

(17)

As thematrixUq is symmetric, it is only necessary to calcu-
late the upper triangle matrix to save computational cost.
Detailed information for the matrix multiplication above
can be found inAppendixA.4.We assumeonlywhite noise
in this contribution. The roots of the diagonal entries rep-
resent the uncertainty values associated to the features for
the q-th cycle and are stored in the q-th row ofUFE and the
covariances are disregarded. All analytical approaches of
uncertainty propagation for the statistical moments were
verified by a Monte Carlo simulation. Using the suggested
analytical formulas, computational costs can be saved in
comparison to the Monte Carlo simulations.

3.2 Uncertainty-aware feature selection

After FE, a feature matrix FE ∈ ℝm×k and the correspond-
ing uncertainty matrix UFE of the same size are avail-
able. As FS is a supervised step, the target values y ∈ ℝm

are known. The uncertainty is further propagated through
the different analysis steps including FS. To get the
AMLT uncertainty-aware in the FS step, filter methods as
weighted rank algorithms are implemented. For weighted
Pearson correlation [41], a feature with lower rPearson,j but
small uncertainty is preferred over a feature with higher
rPearson,j but high uncertainty. The weighted Pearson cor-
relation coefficient for feature j with target y is given by

rPearson,j =
∑mi=1(wij(xij − xj)(yi − yj))

[∑mi=1(wij(xij − xj)2)∑
m
i=1(wij(yi − yj)2)]1/2

, (18)

where wij denotes a weight for which here the squared re-
ciprocal of the corresponding uncertainty value in UFE is
used, xj and y are the weighted mean of the j-th column of
FE and the vector y, respectively, and n is the number of
cycles. The Pearson correlation used in the AMLT (cf. Sec-
tion 2.2) is achieved by assigningwi the identical weight in
Eq. (18). In addition, a weighted Spearman correlation is
added to the uncertainty-aware AMLT for use if an at least
ordinal scale of the target is used. To get this correlation,
all calculations for the values in Eq. (18) are performed
for tied ranks [42, 43]. In general, Spearman correlation is
used to measure the strength of a monotonic relationship
between two variables.

As the filter method ReliefF is based on theManhattan
distance, this distance measure is used in a weighted ver-
sion in the uncertainty-aware AMLT. Thereby, the distance
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along every dimension isweightedwith the corresponding
uncertainty value.

The wrapper method RFESVM uses a standard binary
SVM model with a linear kernel in the AMLT. A total sup-
port vector classification (TSVC) is implemented to extend
the standard SVM [44]. This support vector classification
for uncertain input data is based on a total least squares
regression [45]. The noise is given by Δxi = xi − x�i in this
algorithm, where xi denotes a vector with noise and x�i one
without noise, respectively. A bounded uncertainty noise
model ‖Δxi‖ ≤ δi with uniform prior is assumed. This leads
to the following optimization problem [44]:

min
w,b,Δxi

1
2
‖w‖2

subject to yi(w
⊤(xi + Δxi) + b) ≥ 1, (19)

‖Δxi‖ ≤ δi, i = 1, . . . , l.

After performing a TSVC, features with the lowest contri-
bution (weight) to the class separation are then recursively
eliminated.

Performing the uncertainty-aware FS yields a feature
matrix FS ∈ ℝm×l and the associated uncertainty matrix
UFS of the same size.

3.3 Uncertainty-aware classification

Let a projection matrix P ∈ ℝl×g̃ be given, where l denotes
the optimum number of features and g̃ is the number
of separable groups reduced by one. P is calculated dur-
ingmodel trainingwithout any uncertainty consideration.
The matrix of the selected features is given by FS ∈ ℝm×l,
wherem denotes the number of cycles.

3.3.1 Uncertainty-aware LDA

For the LDA transform, it holds

L = FS ⋅ P with L ∈ ℝm×g̃ . (20)

The calculation of the uncertainty values for L is based on
the formulas given in section 6.2 (“Propagation of uncer-
tainty for explicit multivariate measurement models”) of
Supplement 2 of the GUM [32]. First, Eq. (20)must be trans-
posed, which leads to

L⊤ = P⊤ ⋅ FS
⊤ (21)

and FS and Pmust be transformed in amatrix-vector nota-
tion. For the columns of FS⊤, it holds

FS
⊤ = (f⊤1 |f

⊤
2 | . . . |f

⊤
m ), (22)

where f⊤j ∈ ℝ
l×1, ∀j = 1, . . . ,m denotes the features for the

j-th cycle. Thus, the matrix-vector representation is given
by

F̃S
⊤ =(

f⊤1
f⊤2
...
f⊤m

) ∈ ℝ(m⋅l)×1 (23)

and

P̃⊤ =((

(

P⊤ 0 0 . . . 0
0 P⊤ 0 . . . 0
0 0 P⊤ . . . 0
...

...
...

. . .
0 . . . P⊤

))

)

∈ ℝ(m⋅g̃)×(m⋅l),

(24)

so that the LDA transform can be expressed by

L̃⊤ = P̃⊤ ⋅ F̃S
⊤, L̃⊤ ∈ ℝ(m⋅g̃)×1. (25)

Further, let an uncertainty matrix UFS of the selected fea-
tures be given by

UFS =(

u11 u12 . . . u1l
u21 u22 . . . u2l
...

...
...

...
um1 um2 . . . uml

) ∈ ℝm×l, (26)

where every feature in FS the corresponding uncertainty
value of UFS is associated. The transpose matrix UFS

⊤ is
transferred to the diagonal matrix

ŨFS
⊤ =((

(

u11 0 0 . . . 0
0 u12 0 . . . 0
0 0 u13 . . . 0
...

...
...

. . .
0 . . . uml

))

)

∈ ℝ(m⋅l)×(m⋅l).

(27)

Using section 6.2.1.3 of [32] leads to the following expres-
sion for the covariance matrix Ũ of L

Ũ = P̃⊤ ⋅ (ŨFS
⊤)

2
⋅ (P̃⊤)⊤ (28)

= P̃⊤ ⋅ (ŨFS
⊤)

2
⋅ P̃ (29)

with Ũ ∈ ℝ(m⋅g̃)×(m⋅g̃). As there is only an interest for the
diagonal elements of Ũ, the formula for calculating the
uncertainty values can be simplified and retransformed
to
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ULDA
⊤ = (P⊤ ∘ P⊤) ⋅ (UFS

⊤ ∘ UFS
⊤) (30)

⇔ ULDA = (UFS ∘ UFS ) ⋅ (P ∘ P) (31)

= UFS
∘2 ⋅ P∘2, (32)

where ∘ denotes the Hadamard (element-wise) product
[46]. The uncertainty values associated with L can be cal-
culated by

UL = (
!!!!UFS
∘2 ⋅ P∘2!!!!)

∘1/2
∈ ℝm×g̃ , (33)

where |.| denotes the element-wise absolute value and
(.)∘1/2 the Hadamard (element-wise) square root [47].

3.3.2 Uncertainty-aware Mahalanobis distance
classification

Let the matrix of the projected points L ∈ ℝm×g̃ and the as-
sociated uncertainty matrix UL of the same size be given.
One projected point is expressed by one row in L and
the associated uncertainty is available in the correspond-
ing row in UL. For a worst case classification, only points
that have themaximumpossible distance from a projected
point under consideration of the uncertainty values are
relevant. In other words, the edges of a hyperrectangle (in
total 2g̃) are the relevant points which can be calculated by
an addition/subtraction of an uncertainty value to the cor-
responding entry of L. For example, let g̃ = 3 be given, so
the three-dimensional space is considered. The resulting
23 points are the vertices of a cuboid. To perform a classifi-
cation, Eq. (2) is applied. It calculates thedistancebetween
the center of every group and all possible point combina-
tions in the g̃-dimensional space. For every point, themin-
imumMahalanobis distance and the corresponding group
is determined. In case the uncertainty has no influence
on the classification, all points were assigned to the same
group. If there is an influence and one or several points
are assigned to other groups, this information is available
in the prediction graph of the AMLT.

3.4 Application of the uncertainty-aware
automated ML toolbox

For the application of the uncertainty-aware AMLT in this
contribution, an hydraulic data set is used [48]. In an hy-
draulic system, different fault conditions of cooler, valve,
pump, and accumulator are simulated and data fromm =
1449 working cycles is recorded using 17 different sensors
[49, 50]. The fourdifferent fault conditions at various levels
of severity are systematically combined, so that the data

Figure 2: Uncertainty-aware LDA plot for training and test data. Un-
certainty is presented as error bar only for every 5th test data point
for better visibility.

set contains cycles with each combination of fault condi-
tions. For the exemplary application of the uncertainty-
aware AMLT in this contribution, only data of the pres-
sure sensor PS1 and the cooler condition as target is cho-
sen. The hydraulic system operates during the working
cycles with cooler conditions of 3% (close to total fail-
ure), 20% (reduced efficiency), and 100% (full efficiency).
Thus, g = 3 separate classes are included in the data set.
The sampling rate of PS1 is 100Hz leading to n = 6000 for
themachine’s 60 sworking cycle. As uncertainty contribu-
tion for themeasured signal,white noisewith standardde-
viation σ = 1 bar (= 1 kPa) is considered. To use the AMLT
for training and application, the data set is divided into
training data (90% corresponding to 1305 cycles) and test
data (10% corresponding to 144 cycles). With statistical
moments as FE and the weighted Pearson correlation as
FS, the optimumnumber of features is determinedas l = 27
by cross-validation on the training data. After the training
of the model, the trained model is applied to the test data.

Figure 2 shows a two-dimensional LDA plot. For better
visibility, only every fifth test data point is depicted with
error bars in two directions which indicate the uncertainty
of this point.

A prediction plot (cf. Fig. 3) shows the test cycles
against the test target and the prediction target with and
without uncertainty consideration. To summarize the per-
formance of the used classification algorithm, a confusion
matrix (cf. Fig. 4) is used. The classification error without
considering uncertainty values is 0% whereas the con-
sideration of uncertainty leads to the conclusion that for
4.86% (resp. 7 cycles) the prediction is correct, however
very susceptible to random noise. This leads to the con-
clusion, that in a real-world example the 0% test error is
unrealistic and an error rate up to 4.86% can be expected
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Figure 3: Prediction plot for test data with (red) and without (blue)
consideration of uncertainty in contrast to the test target (green
dashed).

Figure 4: Confusion matrix for the cooler condition classification
problem.

due to the shown susceptibility to noise. This also shows
the benefits of uncertainty analysis in machine learning,
as it provides amore realistic estimate of the expected per-
formance in the field andat the same timehighlightsweak-
nesses like noise susceptibility that could be used as lever-
age points for further model improvement.

4 Conclusion and future work
In this work, the AMLT presented in [1] and [2] was ex-
tended inspired by some principles outlined in the GUM.
Analytical approaches are presented for four of the five
feature extraction methods either by literature references
or in detail as for the statistical moments method. As
the analytical approach leads to computational problems
for the PCA, an efficient Monte Carlo implementation is
used for the uncertainty calculation. In the feature se-

lection step, filter methods expanded by weights are in-
troduced and an extension of a standard SVM is used as
wrapper method. For the classification step, the uncer-
tainty propagation, especially for the LDA, is mathemat-
ically explained in detail. The code for this uncertainty-
aware AMLT can be found on GitHub (https://github.com/
ZeMA-gGmbH/LMT-UA-ML-Toolbox). Thereby, the deter-
mination of measurement uncertainty does not have to be
regarded as an additional burden, but as a worthwhile ad-
dition with added value. For instance, with the extended
AMLT, it was shown by taking measurement uncertainty
for the sensor data into account, that there is an influ-
ence of measurement uncertainty on the model-based re-
sults. This influence will be investigated further in future
work.
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financed by the Participating States and from the Euro-
pean Union’s Horizon 2020 research and innovation pro-
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project funded by the German Federal Ministry of Educa-
tion and Research in the call “Sensor-based electronic sys-
tems for applications for Industry 4.0 – SElekt I 4.0”, fund-
ing code 16ES0419K, within the framework of the German
Hightech Strategy.

Appendix A. Derivations of the
sensitivity coefficients and the
covariance matrix for statistical
moments
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(di − dp)

2 ⋅ (−
1
Np
))

=
3
Np
⋅ ((dj − dp)

2 −
1
Np

ep
∑
i=ap

(di − dp)
2)

àvnomp

àdj
=
3
2
⋅ (

1
Np

ep
∑
i=ap

(di − dp)
2)

1
2

⋅
2
Np
⋅
ep
∑
i=ap

((di − dp)
1 ⋅
à
àdj
(di − dp))

=
3
2
⋅ (

1
Np

ep
∑
i=ap

(di − dp)
2)

1
2

⋅
2
Np
⋅ ((dj − dp) ⋅ (1 −

1
Np
)

+
ep
∑

i=ap ,i ̸=j
(di − dp) ⋅ (−

1
Np
))

=
3
2
⋅ (

1
Np

ep
∑
i=ap

(di − dp)
2)

1
2

⋅
2
Np
⋅ ((dj − dp) −

1
Np

ep
∑
i=ap

(di − dp))

=
3
2
⋅ (

1
Np

ep
∑
i=ap

(di − dp)
2)

1
2

⋅
2
Np
⋅ (dj − dp −

1
Np

ep
∑
i=ap

di +
Np

Np
⋅ dp)

=
3
Np
⋅ (

1
Np

ep
∑
i=ap

(di − dp)
2)

1
2

⋅ (dj − dp)

A.3 Kurtosis

àwdenom
p

àdj
=

4
Np
⋅
ep
∑
i=ap

((di − dp)
3 ⋅
à
àdj
(di − dp))

=
4
Np
⋅ ((dj − dp)

3 ⋅ (1 − 1
Np
)

+
ep
∑

i=ap ,i ̸=j
(di − dp)

3 ⋅ (−
1
Np
))

=
4
Np
⋅ ((dj − dp)

3 −
1
Np

ep
∑
i=ap

(di − dp)
3)

àwnom
p

àdj
= 2 ⋅ ( 1

Np

ep
∑
i=ap

(di − dp)
2)

1

⋅
2
Np
⋅
ep
∑
i=ap

((di − dp)
1 ⋅
à
àdj
(di − dp))

= 2 ⋅ ( 1
Np

ep
∑
i=ap

(di − dp)
2) ⋅

2
Np

⋅ ((dj − dp) ⋅ (1 −
1
Np
)

+
ep
∑

i=ap ,i≠j
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A.4 Covariance matrix
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Influence of measurement uncertainty on PLSR

3.6 Paper 4 – Influence of measurement uncertainty on
machine learning results demonstrated for a smart
gas sensor

Indoor air quality (IAQ) monitoring and thus detecting hazardous gases is critical to
ensure human health and safety. IAQ, i.e., the concentrations of indoor air pollutants,
can be predicted using a data-driven ML model. As gas concentrations are continuous
quantities, they require regression which can be performed using the AMLT for regression
problems (cf. Figure 2.5b). In ML, measurement uncertainty is usually not directly
addressed for each prediction, but the average performance of the ML model is only
estimated using CV [26, 27]. To obtain reliable and traceable results, measurement
uncertainty has to be taken into account. For IAQ monitoring, it is essential that
the threshold limit value (TLV) for the gas of interest is not reached even when
measurement uncertainty is considered. Otherwise, the used sensor system is not useful
for predicting the gas concentration of interest. Paper 4 [58] introduces the UA-AMLT for
regression problems with which the influence of measurement uncertainty on ML results
is investigated and demonstrated for the gas sensor data set presented in Section 2.3.3.

First, the AMLT for regression problems (cf. Figure 2.5b) has to be made uncertainty-
aware to address measurement uncertainty directly. The AMLT for regression problems
consists of five FE and one FS, as well as Partial Least Squares Regression (PLSR) for
regression. As the five FE algorithms are the same as in the AMLT for classification
problems, their uncertainty awareness is reached using the uncertainty propagation as
explained in Paper 3 for each of the five algorithms. For FS, only Pearson correlation is
included in the AMLT for regression problems, as described in Section 2.2. In the UA-
AMLT for regression problems, weighted Pearson correlation is used as the uncertainty-
aware FS algorithm. This algorithm ranks features according to their weighted Pearson
correlation, in which the reciprocals of the squared associated uncertainty values of the
features serve as weights. The FS step only rearranges features and their associated
uncertainty and removes the not selected features and their associated uncertainty. Thus,
only the uncertainty propagation for the PLSR algorithm needs to be developed to
obtain the UA-AMLT for regression problems. An analytical approach to the uncertainty
propagation for PLSR in line with GUM and its supplements is shown in detail in the
presented paper. A benefit of this developed UA-AMLT is that the model must only
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be trained once, and the associated uncertainty values can be propagated through the
three toolbox steps in the model application case.

For the investigation of measurement uncertainty influence on ML results, which is
carried out in Paper 4, the recorded initial calibration measurements performed with a
metal oxide semiconductor (MOS) gas sensor SGP30 are used. These measurements are
included in the gas sensor data set described in Section 2.3.3. Several RMSE values for
assessment of an ML model and the influence of measurement uncertainty are introduced:

• test RMSE (T − RMSE) results from applying the trained model to the test data,

• uncertainty RMSE (U − RMSE), as the calculated difference of T − RMSE and
U − RMSE, denotes the RMSE resulting from propagating measurement uncer-
tainty through the toolbox, and

• test plus uncertainty RMSE (T + U − RMSE) is a measure of the quality of a
model under the consideration of measurement uncertainty.

As target considered in Paper 4, formaldehyde, one of the most relevant carcinogenic
gases indoors [172–174], is chosen on the one hand. On the other hand, the sum of the
four volatile organic compounds (VOCs) as the indicator for IAQ, denoted as VOCsum,
is chosen. As the results obtained for VOCsum as target show the same trends and thus
lead to the same conclusions as using formaldehyde as target, all further discussions are
only based on the formaldehyde target.

As the AMLT for regression problems includes five FE algorithms, the FE algorithm,
which leads together with FS and PLSR to the minimum CV error, i.e., the best FE
for the given task, is determined. The used data set consists of 2,485 temperature
cycles (TCs) during 497 unique gas mixtures (UGMs), as described in Section 2.3.3.
To prevent the ML model from overfitting (cf. Section 2.2.4), the data set is split into
training (70 %), validation (10 %), and test (20 %) data. Two different validation
scenarios are considered: omitting complete UGMs (group-based CV) and randomly
omitting individual TCs (random CV). Omitting complete UGMs implies that each
of the UGMs is only present in one of the three data set splits at a time. In contrast
to omitting complete UGMs, the automatically performed 10-fold stratified CV in the
AMLT randomly omits individual TCs. In Paper 4, it is shown that there is a significant
difference in the resulting CV error when using the two different validation scenarios.
The random CV error is smaller when using PCA instead of ALA as the FE algorithm,
whereas it is vise-versa for group-based CV error. Choosing the algorithm that leads
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to the best group-based CV error is recommended, as the 10-fold stratified CV can
not efficiently avoid overfitting in this application. For example, using formaldehyde as
target, ALA is chosen as the best FE algorithm leading to a T − RMSE of 15.33 ppb for
20 PLSR components. This number of PLSR components is a good trade-off between
model accuracy and computational cost, as shown in Paper 4. A slightly better result,
i.e., a T − RMSE of 13.53 ppb, can be obtained using 100 PLSR components, but this
needs more computational cost than using fewer PLSR components. Table 3.1 lists the
different gases and the corresponding FE methods, which lead to the lowest group-based
CV error resulting from a Monte Carlo simulation with 100 trials.

Table 3.1: Group-based CV error resulting from the best FE method for the different
gases in ppb.

Substance FE method Group-based CV error [ppb]

Hydrogen ALA 44.17 ± 6.11
Carbon monoxide SM 91.36 ± 12.82
Acetone ALA 16.55 ± 1.67
Ethanol SM 35.81 ± 4.87
Formaldehyde ALA 16.48 ± 2.21
Toluene BDW 32.25 ± 4.05
VOCsum ALA 44.34 ± 6.86

Artificially generated additive noise is used to simulate measurement uncertainty at
different signal-to-noise ratio (SNR) levels, as noise is one potential cause of measurement
uncertainty (cf. Figure 2.1). Additive noise implies that the noise values are added to
the measurement values. Two different noise models are considered in Paper 4: white
Gaussian noise and white uniform noise. White noise means the values are statistically
independent and uncorrelated, having zero mean and finite variance [228, 229]. The
covariance matrix for white noise is given by σ2I, where σ2 denotes the variance and
I the identity matrix. For Gaussian noise, the amplitudes are modeled with a normal
distribution [230], whereas for uniform noise, the uniform distribution [231] is used for
modeling the amplitudes. The maximum theoretical SNR in decibel (dB) is determined
according to [232], leading to 98 dB for the 16-bit analog-to-digital converter (ADC)
of the SGP30 sensor. Therefore, SNRs between 0 dB and 98 dB with 5 dB increments
are considered leading to a total of 21 SNR levels. As the results obtained for additive
white uniform noise lead to the same conclusions as using additive white Gaussian noise,
all further discussions are only based on the latter.
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Two approaches are considered to investigate the influence of measurement uncertainty
on ML results: model training with raw and noisy data, respectively. For the prediction
of gas concentrations, the trained models are applied to noisy test data of varying SNR
levels.

The first use case, i.e., model training with raw data, occurs when the precision of
the sensor degrades over time, and no periodic recalibration is carried out. The model
training with the raw data is carried out only once using the UA-AMLT for regression
problems. For the application of noisy data, the associated uncertainty is propagated
through the UA-AMLT for regression problems. No model retraining is necessary in
case the uncertainty values change so that computational cost can be saved.

In Paper 4, it is shown that the model using the FE algorithm with the lowest
group-based CV error, i.e., ALA, does not always perform best when applying test data
of varying SNR levels. For SNR levels smaller than 50 dB, PCA performs best, meaning
that this algorithm is able to compensate for noise in this decibel range. As demonstrated
in Paper 4, noise as a source of measurement uncertainty directly influences the model
performance, and thus, the FE method should be chosen with regard to the present
SNR level. To make the best possible FE algorithm choice, training of five models for
the five possible paths in the UA-AMLT as well as application of these trained models
to noisy data of different SNR levels must be carried out, and depending on the lowest
T + U − RMSE, the best FE algorithm for the present SNR level is chosen.

For the 21 SNR levels studied for the first use case, it is also shown that while the
influence of the RMSE resulting from the model (T − RMSE) is constant on the overall
RMSE (T + U − RMSE), as the training is carried out with the raw data, the influence
of the measurement uncertainty (U − RMSE) decreases steadily with increasing SNR
value. The constancy of the T − RMSE across all SNR levels can be explained simply by
the fact that the model was trained only once, and the uncertainty values are propagated
through the toolbox.

Training a model with noisy data and applying this trained model to noisy data is
the second use case. This use case can occur when using low-performance sensors or
sensor systems that provide significant noisy data or where the ADCs add significant
noise. The model is again trained using the UA-AMLT with ALA as the FE algorithm,
but in this use case, the training is carried out with noisy data. Compared to the results
of the first use case, it is shown that the T + U − RMSE is significantly smaller for the
second use case, i.e., the training with noisy data. This leads to the assumption that
the model is able to suppress noise if the training data already contains noise. Thus, it
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is recommended to add generated noise of an SNR level higher than the noise of the
raw data to the training data to achieve a more noise-resistant model.

Comparing both use cases, it is shown that the overall RMSE is significantly higher
for the model trained with raw data than for the model trained with noisy data. This
leads to the assumption that the ML model suppresses noise if the noise is already
contained in the training data. Therefore, it is suggested to add artificially generated
noise of smaller SNR levels than the noise of the raw data to the training data as the ML
model gets more noise-resistant. For the 21 studied SNR levels, it can be seen that the
T − RMSE resulting from the model test is always larger than the U − RMSE resulting
from the noise within the data.

For both use cases, the analyses carried out in Paper 4 show two distinct possibilities
where the overall measurement system can be improved to achieve better ML results
with the UA-AMLT. On the one hand, the trained model and, on the other hand, the
used sensor can be improved. In case of a high U − RMSE, optimizing the used sensor
and the data acquisition electronics is recommended in Paper 4. In contrast, if the
U − RMSE, i.e., the RMSE value resulting from propagating measurement uncertainty
through the toolbox, tends towards zero, an improvement of the ML model should be
considered as an improvement of the sensor system has no significant influence on the
T + U − RMSE. Model improvement, i.e., a reduction of T − RMSE, can be achieved
using more PLSR components, as already shown, or by using deep learning based on

Figure 3.5: Comparison of the RMSE values obtained with deep learning [233] and
the AMLT.
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artificial neural networks (ANNs). Figure 3.5 compares the results achieved using the
UA-AMLT to those obtained by using a 10-layer deep convolutional neural network
(TCOCNN), as developed in [233]. Although DL leads to better prediction results for
all gases, ML has the benefit of tracing a prediction made by an ML back, i.e., the
interpretation of a model, is easier than for a DL model [25].
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Abstract. Humans spend most of their lives indoors, so indoor air quality (IAQ) plays a key role in human
health. Thus, human health is seriously threatened by indoor air pollution, which leads to 3.8 × 106 deaths an-
nually, according to the World Health Organization (WHO). With the ongoing improvement in life quality, IAQ
monitoring has become an important concern for researchers. However, in machine learning (ML), measurement
uncertainty, which is critical in hazardous gas detection, is usually only estimated using cross-validation and is
not directly addressed, and this will be the main focus of this paper. Gas concentration can be determined by
using gas sensors in temperature-cycled operation (TCO) and ML on the measured logarithmic resistance of
the sensor. This contribution focuses on formaldehyde as one of the most relevant carcinogenic gases indoors
and on the sum of volatile organic compounds (VOCs), i.e., acetone, ethanol, formaldehyde, and toluene, mea-
sured in the data set as an indicator for IAQ. As gas concentrations are continuous quantities, regression must be
used. Thus, a previously published uncertainty-aware automated ML toolbox (UA-AMLT) for classification is
extended for regression by introducing an uncertainty-aware partial least squares regression (PLSR) algorithm.
The uncertainty propagation of the UA-AMLT is based on the principles described in the Guide to the Expres-
sion of Uncertainty in Measurement (GUM) and its supplements. Two different use cases are considered for
investigating the influence on ML results in this contribution, namely model training with raw data and with data
that are manipulated by adding artificially generated white Gaussian or uniform noise to simulate increased data
uncertainty, respectively. One of the benefits of this approach is to obtain a better understanding of where the
overall system should be improved. This can be achieved by either improving the trained ML model or using a
sensor with higher precision. Finally, an increase in robustness against random noise by training a model with
noisy data is demonstrated.

1 Introduction

1.1 Indoor air quality and VOCs

As humans spend most of their lives indoors, the most sig-
nificant environment for them is the indoor environment
(Brasche and Bischof, 2005). For this reason, indoor air qual-
ity (IAQ) is of special importance as it plays a leading role
with regard to the performance, well-being, and health of
humans (Sundell, 2004; Asikainen et al., 2016). Volatile or-
ganic compounds (VOCs) are one of the main contributors
to poor air quality, especially in indoor air, and can lead

to serious health problems, e.g., leukemia, cancers, or tu-
mors (Jones, 1999; Tsai, 2019). Nowadays, IAQ monitoring
is mostly based on measurements of carbon dioxide (CO2)
emitted by humans as the primary indicator for poor in-
door air, as CO2 concentration is directly related to VOCs
caused by human presence (Von Pettenkofer, 1858). How-
ever, this neglects the fact that not only humans emit VOCs
but also their activities such as household cleaning, cooking,
and smoking, as well as, for example, furniture, carpets, and
even the building itself due to the building materials used
(Spaul, 1994). To measure almost all types of VOCs in in-
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door air, metal oxide semiconductor (MOS) gas sensors are
widely used as they are low-cost, robust, and highly sensitive.
To improve the limited selectivity of these sensors and en-
able the discrimination of specific pollutants, MOS gas sen-
sors can be operated in dynamic modes, especially by us-
ing a temperature-cycled operation (TCO; Eicker, 1977; Lee
and Reedy, 1999; Baur et al., 2015; Schütze and Sauerwald,
2020a; Baur et al., 2021). A TCO, especially in combination
with modern microstructured gas sensors, yields extensive
and rich response patterns that need to be interpreted using
machine learning (ML) to extract the relevant information
(Schütze and Sauerwald, 2020a).

For the data set used in this contribution, sensor responses
of an SPG30 sensor (Sensirion AG, Stäfa, Switzerland) with
four gas-sensitive layers in TCO were recorded (Rüffer et al.,
2018). This contribution focuses on formaldehyde as an ex-
ample of a highly relevant toxic gas and on the sum concen-
tration of all VOCs (VOCsum) in parts per billion (ppb) in the
used data set, i.e., the sum of the concentrations of acetone,
ethanol, formaldehyde, and toluene. VOCsum should not be
confused with the widely used total VOC (TVOC) value, as
this is based on analytical measurements and takes into ac-
count only VOCs with medium volatility (Schütze and Sauer-
wald, 2020b). Formaldehyde (CH2O) is one of the most toxic
and carcinogenic gases in indoor air (Hauptmann et al., 2004;
Zhang, 2018; NTP, 2021) and is released from a variety of
sources. The most significant ones are pressed wood prod-
ucts, e.g., particle board and plywood paneling. The World
Health Organization (WHO) set the guideline threshold for
a 30 min average concentration to 0.1 mg m−3, which corre-
sponds to approximately 80.1 ppb for 760 mmHg and 20 ◦C
(World Health Organization, 2010).

1.2 Automated ML toolbox

In recent years, an automated machine learning toolbox
(AMLT) was developed and applied to different classifica-
tion tasks (Schneider et al., 2017, 2018; Dorst et al., 2021).
Its extension to an uncertainty-aware AMLT (UA-AMLT) for
classification was presented in Dorst et al. (2022). As gas
concentrations are continuous quantities, regression must be
used, which is a supervised ML technique. In this contribu-
tion, the AMLT is therefore extended to be applicable for
regression tasks and, furthermore, the corresponding uncer-
tainty for the ML result is considered. The uncertainty propa-
gation is based on the Guide to the Expression of Uncertainty
in Measurement (GUM; BIPM et al., 2008a) and its Supple-
ment 1 (BIPM et al., 2008b) and Supplement 2 (BIPM et
al., 2011). These three documents establish general rules for
evaluating and expressing measurement uncertainty. These
rules and principles are applied in this contribution for esti-
mating the uncertainty of an ML model prediction, thus ex-
tending the GUM approach to smart sensors.

To investigate the influence of measurement uncertainty
on machine learning (ML) results, sensor raw data are ma-

Figure 1. Gas composition for calibration consisting of random
mixtures of VOCs (blue) and background gases (red; adapted from
Baur et al., 2021).

nipulated by simulated additive white Gaussian noise. With
these manipulated data sets, different ML models are deter-
mined based on feature extraction, feature selection followed
by regression, and the influence of the Gaussian noise, which
simulates increased sensor uncertainty in the ML results, is
investigated. Gaussian (normally distributed) noise is a very
good assumption for any process for which the central limit
theorem holds. In addition, the influence of additive white
uniform noise as a further noise model is investigated.

2 Materials and methods

2.1 Data set

A data set published in Baur et al. (2021) is used to investi-
gate the influence of measurement uncertainty on ML results.
It consists of different calibration and field test measurements
of gas mixtures with the MOS gas sensor SGP30 (Sensirion
AG, 2020). The gas mixtures are composed of random mix-
tures of seven different gases that are relevant for indoor air
quality. Various VOCs, i.e., acetone, ethanol, formaldehyde,
and toluene, are used together with water vapor and inor-
ganic background gases, i.e., hydrogen and carbon monox-
ide, as shown in Fig. 1. The gas concentrations are mixed
using Latin hypercube sampling (LHS; McKay et al., 1979)
to obtain unique gas mixtures (UGMs). In this contribution,
only data from the initial calibration are used. The concen-
tration ranges for all gases during the initial calibration are
shown in Table 1.

The SGP30 sensor, with its four different gas-sensitive lay-
ers, is used in TCO to improve its selectivity, sensitivity, and
stability (Schultealbert et al., 2018). As shown in Fig. 2, the
temperature cycle consists of 10 steps at 400 ◦C, with a dura-
tion of 5 s each, followed by different low-temperature steps,
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Table 1. Concentration ranges for all gases during the initial cali-
bration phase (Amann et al., 2021b).

Substance Minimum Maximum

Humidity 25 % RH 70 % RH
Hydrogen 400 ppb 2000 ppb
Carbon monoxide 150 ppb 2000 ppb
Acetone 14 ppb 300 ppb
Ethanol 4 ppb 300 ppb
Formaldehyde 1 ppb 400 ppb
Toluene 4 ppb 300 ppb
VOCsum 300 ppb 1200 ppb

RH is the relative humidity.

Figure 2. Logarithmic conductance of one sensor element (blue)
and the temperature-cycled operation of the SGP30 (red).

with a duration of 7 s each. One single temperature cycle thus
lasts 120 s and, due to the sampling rate of 20 Hz, consists of
2.400 measurement values for each gas-sensitive layer. The
sensor output represents the logarithmic resistance shown for
one cycle and one gas-sensitive layer in Fig. 2.

During the initial calibration phase, the SGP30 sensor is
exposed to 500 UGMs for 10 temperature cycles (TCs) each.
Due to the limited time response of the gas mixing apparatus
(GMA) and synchronization problems between sensor and
GMA, four TCs at the beginning and the last TC for each
UGM are omitted so that only five TCs per UGM are evalu-
ated. Furthermore, the first three UGMs are also not consid-
ered due to run-in effects. Thus, the data set comprises 2485
relevant cycles of 497 UGMs with stable gas concentrations
from the initial calibration.

2.2 Uncertainty-aware automated machine learning
toolbox

In general, regression is used for predicting a continuous
quantity, whereas classification is used for predicting a dis-
crete class label. As a basis for this publication, the AMLT

Figure 3. Feature extraction (red), feature selection (green), and
regression (blue) algorithms of the uncertainty-aware AMLT for re-
gression tasks.

for classification tasks (Schneider et al., 2017, 2018; Dorst et
al., 2021) and its extended uncertainty-aware version (Dorst
et al., 2022) are modified to also solve regression tasks.
With the AMLT, feature extraction (FE) and feature selec-
tion (FS), as well as classification/regression and evalua-
tion, are performed without expert knowledge and without
a detailed physical model of the process to minimize model
generation costs. Model training, in addition to application,
can be carried out with the (uncertainty-aware) AMLT. Par-
tial least squares regression (PLSR) as the de facto standard
for quantification in the field of gas sensors (Wold et al.,
2001; Gutierrez-Osuna, 2002) is used for regression tasks
in the AMLT. Another well-known regression algorithm is
principal component regression (PCR), which first performs
the principal component analysis (PCA) as an unsupervised
technique to obtain the principal components (PCs) and then
uses these PCs to build the regression model. As a two-step
model-building algorithm, the PCR makes interpreting the
ML results harder in contrast to PLSR, which only has one
step (Ergon, 2014). Using PCA leads to a relevant drawback
of the PCR algorithm, as performing an unsupervised tech-
nique does not guarantee that the selected principal compo-
nents for the regression model building are associated with
the target. An advantage of PLSR is that it often has fewer
components than PCR to achieve the same prediction level
(De Jong, 1993a).

As shown in Fig. 3, five complementary FE algorithms are
used within the AMLT, together with Pearson correlation for
FS and PLSR, as the regression algorithm.

Adaptive linear approximation splits cycles into approx-
imately linear segments, and for each segment, the mean
value and slope are extracted as features from the time
domain (Olszewski et al., 2001). The best Daubechies
wavelets algorithm performs a wavelet transform using a
Daubechies D4 wavelet (Daubechies, 1992) to extract 10 %
of the wavelet coefficients with the highest average abso-
lute value over all cycles as features from the time fre-
quency domain. The best Fourier coefficients algorithm per-
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forms a Fourier transform, and 10 % of the amplitudes with
the highest average absolute value over all cycles and their
corresponding phases are extracted from frequency domain
(Mörchen, 2003). Using principal component analysis, pro-
jections on the principal components are determined (Pear-
son, 1901; Jackson, 1991) and used as features from the time
domain. Moreover, the statistical distribution of the measure-
ment values also includes information in the time domain
(Martin and Honarvar, 1995). Thus, the cycles are split into
10 approximately equally sized segments, and the four sta-
tistical moments (mean, standard deviation, skewness, and
kurtosis) are extracted for each segment as features. These
five FE algorithms and the Pearson correlation as FS lead to
five different algorithm combinations, each benchmarked to
choose the best one for the respective application. The best
combination is determined by the smallest cross-validated
root mean square error (RMSE), which is a measure for the
differences between the predicted ypred ∈ Rm and the ob-
served target values y of the same dimension, i.e.,

RMSE(ypred ,y)=

√√√√ 1
m

m∑
i=1

(ypredi − yi)
2 . (1)

The cross-validation (CV) scenario used is explained in
Sect. 2.2. In general, different metrics can be used to describe
the performance of a regression model; however, RMSE is
one of the best interpretable error measures as it has the same
unit as the prediction of the model and is also comparable to
the (standard) measurement uncertainty used in describing
data quality in measurement.

To use the UA-AMLT, a data matrix D ∈ Rm×n for each
sensor (or sensor layer) must be given, where m denotes the
number of cycles of length n. In case of non-cyclic sensor
data, data must be windowed to obtain the correct m×n for-
mat. Furthermore, there must be knowledge about the uncer-
tainty matrix U ∈ Rm×n, which assigns an uncertainty value
uij to a measurement value dij ∀ i,j . This means that corre-
lation of errors at different time instants is neglected.

Uncertainty-aware feature extraction and selection

To perform FE, which mathematically describes the map-
ping D 7−→ FE, five complementary methods are used. In
this step, one feature matrix FE ∈ Rm×k , k ≤ n is calculated
for each of the FE methods. The uncertainty calculation is
performed according to Dorst et al. (2022), so that, for ev-
ery feature matrix FE, an uncertainty matrix UFE of the same
dimension is calculated.

In the uncertainty-aware FS step, features are ranked ac-
cording to their weighted Pearson correlation to the target
value, i.e., in this contribution to the gas concentration. In
weighted Pearson correlation, the reciprocals of the squared
uncertainty values of the features are used as weights (Dorst
et al., 2022). After ranking the features, a 10-fold stratified
CV (Kohavi, 1995) is carried out for every possible number

of features, and the minimum CV error is determined based
on the optimal number of features l ∈ N found. From a math-
ematical point of view, FS is a mapping FE 7−→ FS, with
FS ∈ Rm×l , l < k containing only the optimal number of the
most relevant features according to weighted Pearson corre-
lation. The corresponding uncertainty matrix is UFS ∈ Rm×l .

2.3 Partial least squares regression

Let a predictor matrix X ∈ Rm×l and a responses matrix
Y ∈ Rm×s be given. The basic algorithm for computing a
PLSR of Y on X using ncomp PLSR components is devel-
oped in Wold et al. (1984). Performing PLSR means iter-
atively solving the following decompositions, such that the
covariance between X and Y is maximized as follows:

X= XS ·XL
>
+Xres (2)

Y= YS ·YL
>
+Yres, (3)

where XL ∈ Rl×ncomp and YL ∈ Rs×ncomp denote the orthogo-
nal loading matrices. XS ∈ Rm×ncomp and YS ∈ Rm×ncomp are
the predictor and response scores, respectively. The matri-
ces Xres and Yres are the residual terms for predictor and
response, respectively, and are used as a start for the next
iteration step.

In MATLAB®, the partial least squares regression (PLSR)
is calculated using the SIMPLS (statistically inspired mod-
ification of the partial least squares) algorithm (De Jong,
1993b). The advantage of SIMPLS is that the regression co-
efficients are determined directly without inverse matrices or
singular value decomposition. Assume that X̂ ∈ Rm×(l+1) de-
notes a matrix in which a vector of ones is prepended to
X to compute coefficient estimates for a model with con-
stant terms. With 1 ∈ Rm denoting a vector containing only
ones, it holds for the augmented matrix that X̂= (1 |X) ∈
Rm×(l+1). The SIMPLS algorithm involves the calculation of
a weighted matrix W ∈ R(l+1)×ncomp . For the SIMPLS algo-
rithm, the following holds:

XS = X̂ ·W and (4)

Y= XS ·YL
> . (5)

Combining Eqs. (4) and (5) leads to the following:

Y= X̂ ·W ·YL
> (6)

= X̂ ·B , (7)

where B ∈ R(l+1)×s denotes the matrix containing intercept
terms in the first row and PLSR coefficient estimates in the
others (De Jong, 1993b).

Uncertainty-aware partial least squares regression

In this contribution, the target values y ∈ Rm are only rep-
resented by one vector, which leads to the matrix B (see
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Sect. 2.3) being also only a vector β ∈ Rl+1. The matrix
of selected features is given by FS ∈ Rm×l . F̂S = (1 |FS) ∈
Rm×(l+1) denotes the matrix where one column of ones at the
beginning of FS was added. For PLSR, the following holds:

ypred = F̂S ·β, (8)

with ypred ∈ Rm representing the predicted target values. The
basis of the uncertainty values calculation for the prediction
ypred are formulas given in Sect. 6.2 (“Propagation of uncer-
tainty for explicit multivariate measurement models”) found
in Supplement 2 of GUM (GUMS2; BIPM et al., 2011).
This section of GUMS2 shows the covariance matrix cal-
culation associated with an estimate of a multidimensional
output quantity with the help of a sensitivity matrix using
matrix–vector notation. This approach can be transferred to
the propagation of uncertainty for PLSR. The first step is the
transposing of Eq. (8), which leads to the following:

y>pred = β
>
· F̂>S . (9)

To use Sect. 6.2 of GUMS2, F̂S and β must be transformed
into vector and matrix, respectively. For the columns of F̂>S ,
the following holds:

F̂>S =
(

1 . . . 1
f>S1

f>S2
. . . f>Sm

)
, (10)

where f>Si ∈ R
l , ∀i = 1, . . .,m denotes the selected features

for the ith cycle. Thus, the matrix–vector representation is
given by the following:

F̃>S =



1
f>S1

1
f>S2
...

1
f>Sl


∈ R(m·(l+1))×1, (11)

and β̃> ∈ Rm×(m·(l+1)), with

β̃> =


β> 0. . .0 0. . .0 . . . 0. . .0

0. . .0 β> 0. . .0 . . . 0. . .0
0. . .0 0. . .0 β> . . . 0. . .0
...

...
...

. . .
...

0. . .0 0. . .0 0. . .0 . . . β>

 , (12)

which leads to

y>pred = β̃
>
· F̃>S . (13)

To propagate the uncertainty in the PLSR, the uncertainty
matrix of the selected features UFS ∈ Rm×l must be ex-
tended with a column associated with the first column of F̂S.

Thus, it holds that ÛFS =
(
|UFS

)
∈ Rm×(l+1). The trans-

pose matrix Û>FS
is transferred to the diagonal matrix Ũ>FS

∈

R(m·(l+1))×(m·(l+1)), where the rows of ÛFS are in the diag-
onal. Using Sect. 6.2.1.3 of BIPM et al. (2011) leads to the
following:

Ũ= β̃> ·
(

Ũ>FS

)2
·

(
β̃>
)>

(14)

= β̃> ·
(

Ũ>FS

)2
· β̃, (15)

with Ũ ∈ Rm×m. To obtain the diagonal elements of Ũ,
Eq. (15) can be simplified and retransformed to the follow-
ing:

U>PLSR =
(
β> ◦β>

)
·

(
Û>FS
◦ Û>FS

)
(16)

⇔ UPLSR =
(

ÛFS ◦ ÛFS

)
· (β ◦β) (17)

= Û◦ 2
FS
·β◦ 2, (18)

where ◦ denotes the Hadamard (element-wise) product
(Horn, 1990). The uncertainty values associated with ypred
can be calculated by the following:

Uypred =

(∣∣∣Û◦ 2
FS
·β◦2

∣∣∣)◦1/2 ∈ Rm×1, (19)

where |.| denotes the element-wise absolute value and (.)◦ 1/2

the Hadamard (element-wise) square root (Reams, 1999).

3 Investigation of the influence of measurement
uncertainty on ML results

To evaluate the influence of measurement uncertainty on ML
results, the logarithmic resistance raw data of each sensor
layer are modified by artificially generated additive white
Gaussian noise of different signal-to-noise ratios (SNRs).
This means that the logarithmic amplifier of the sensor is
responsible for the noise. In general, the SNR is defined
as the ratio of signal power to background noise power.
SNR> 0 dB indicates that there is more signal than back-
ground noise. The maximum theoretical SNR in decibel (dB)
for an analog-to-digital converter (ADC) can be determined,
according to Bennett (1948), with the following:

SNR(N )= 20 · log10

(
2N ·

√
3
2

)
[dB] (20)

≈ 6.02 ·N + 1.76 [dB] , (21)

where N is the resolution of an ADC in bits. Thus, the maxi-
mum theoretical SNR for the 16 bit ADC of the SGP30 is ap-
prox. 98 dB. For this reason, only SNRs from 0 to 98 dB are
considered in this publication. Figure 4 shows an example of
raw and modified sensor data with different SNR values. The
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Figure 4. Raw (violet) and modified sensor signals with additive
white Gaussian noise of different SNR values.

relation between the SNR and squared standard uncertainty
σ 2 is given by the following:

σ 2
= 10

SP−SNR
10 , (22)

where the signal power (SP) is calculated by

SP= 10 · log10

(
‖A‖22
m · n

)
. (23)

Here, A ∈ Rm×n denotes the data for one sensor. Thus, for
example, 75 dB corresponds to σ 2

= 91.71, 80 dB to σ 2
=

29.00, and 98 dB to σ 2
= 0.46 for the first gas-sensitive layer

of the SGP30. In practical applications, 98 dB is typically not
reached because the measurement range of the ADC is larger
than the range of actual measured values within the data set.

3.1 Application of AMLT

To investigate the influence of measurement uncertainty on
machine learning results, the best FE algorithm must first be
determined. To train, validate, and test a model, the data set is
randomly split into 70 % training, 10 % validation, and 20 %
test data by omitting complete UGMs in the training, vali-
dation, or test data set, respectively. This means that each of
the 497 UGMs exists in either the training, validation, or test
data but not in more than one at a time (see Fig. 5). Training
the model is carried out by using the AMLT together with
the training data and formaldehyde or VOCsum, respectively,
as the target. The results obtained for VOCsum as the target
show the same trends and lead to the same conclusions as the
results with formaldehyde as target and are therefore only
shown in Sect. A2.

A 10-fold stratified CV is automatically performed in
the AMLT to determine the best FE algorithm out of five

Figure 5. Randomized split of the UGMs into training, validation,
and test data used in this contribution.

complementary FE methods. In contrast to the data split,
which is carried out by omitting complete UGMs and used
for performing group-based CV with validation data, the
10-fold stratified CV randomly omits individual TCs. The
RMSE value resulting from the 10-fold CV is called the ran-
dom CV error. To obtain quality information on the trained
model, the differences between the predicted and the ob-
served target values are measured using RMSE. The test
RMSE (T−RMSE) results from applying the trained model
to the test data. There can be a significant difference be-
tween a group-based CV error and T−RMSE, as the omitted
UGMs are selected randomly. For each of the five algorithm
combinations (see Fig. 3), a Monte Carlo different train, val-
idation, and test data sets, is performed. The mean value and
standard deviation are calculated for the three different errors
resulting from using training, validation, and test data, with
ncomp = 20 in the PLSR algorithm. The reason for choosing
ncomp = 20 is given below. The results are shown in Fig. 6.
Although principal component analysis (PCA) achieves the
lowest random CV error mean value (14.7 ppb), with neg-
ligible variations for different splits and therefore seems to
be the best FE algorithm, applying 10 % validation data will
lead to a group-based CV error mean value of 24.7 ppb. This
means that 10-fold stratified CV does not efficiently detect
overfitting for this application as it does not omit complete
UGMs and, thus, does not need to interpolate to different gas
concentrations. A new, unpublished version of the AMLT
already allows the user to define validation scenarios (ran-
dom or group based). Here, adaptive linear approximation
(ALA) as the second-best method with a random CV error
mean value of 15.3 ppb is chosen for further investigations
as there is no significant difference in the error mean values
between omitting single TCOs (15.3 ppb; random validation)
and complete UGMs (16.5 and 16.6 ppb; group-based vali-
dation). Thus, it is sufficient to evaluate the random CV er-
ror with 80 % training (including 10 % validation data) and
20 % test data split by omitting complete UGMs in the train-
ing or test data, respectively. Applying this trained model
(ncomp = 20; 80 % data used for model training) to the 20 %
test data (see Fig. 5) leads to a shown in Fig. 7.

For VOCsum as the target, the results are similar, and again,
ALA is chosen as the best FE algorithm (random CV error
mean value of 40.9 ppb) due to the overfitting of the trained
model when using PCA (random CV error mean value of
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Figure 6. Random CV, group-based CV, and test RMSE of the five
FE algorithms using Pearson as FS and PLSR with ncomp = 20 for
100 trials with different randomized UGM splits and the formalde-
hyde concentration as target. ALA is the adaptive linear approxima-
tion, BDW is the best Daubechies wavelets, BFC is the best Fourier
coefficients, PCA is the principal component analysis, and SM is
the statistical moments.

Figure 7. PLSR model for the quantification of formaldehyde for
testing with test data from the data split shown in Fig. 5. Dashed
lines indicate the RMSE of the test data (T−RMSE).

31.9 ppb; group-based CV error mean value of 61.3 ppb). Ap-
plying the model trained with the data split in Fig. 5 to the
20 % test data results in a T−RMSE of 46.1 ppb. The corre-
sponding results are shown in Figs. A3 and A4.

To determine the optimal number of PLSR components,
a Monte Carlo simulation (10 trials with different train and
test data) was carried out, and the T−RMSE mean values
of 10 trials, in addition to the corresponding standard devia-
tions, were calculated. In Fig. 8, the T−RMSE value is plot-
ted over the number of PLSR components for ALA as FE,
Pearson as FS, and PLSR. For a small number of PLSR com-

Figure 8. Elbow method applied to the T−RMSE curve for 10
trials. The optimal number of PLSR components is 20.

ponents, T−RMSE mean values have large standard devi-
ations, for example, the standard deviation for ncomp = 1 is
σ = 5.5 ppb. If the number of PLSR components is greater
than 10, then the standard deviations are in the range from
1.15 to 1.22 ppb; thus, the obtained models are highly repro-
ducible. The lowest T−RMSE mean value is achieved for a
high number of PLSR components (here 13.5 ppb is achieved
with ncomp = 100), but it is preferable to find a good trade-
off between the accuracy and computational cost, as a lower
number of PLSR components reduces the computational ef-
fort. Therefore, the optimal number of PLSR components is
determined using the elbow method (Thorndike, 1953) to en-
sure a stable model, with a T−RMSE of 15.3 ppb. The el-
bow point, i.e., the point after which no further significant
change occurs, is determined by using the ALA algorithm.
ALA automatically determines four segments as being the
best segmentation of the T−RMSE curve (see Fig. 8). Thus,
the optimal number of PLSR components is ncomp = 20,
as more components have no considerable influence on the
T−RMSE, leading to higher computational cost and also in-
creasing the risk of overfitting.

3.2 Influence of measurement uncertainty on ML results

In this contribution, two approaches for investigating the in-
fluence of the measurement uncertainty on machine learn-
ing results are considered, namely training a model with raw
(see Sect. 3.2.1) and noisy (see Sect. 3.2.2) data, respectively.
The trained models are used to predict data with varying
noise levels between 0 and 98 dB in both use cases. Train-
ing a model with raw data means that the uncertainty as-
sociated with the raw data is propagated through the UA-
AMLT, which saves on computational cost, as no retraining
is necessary if the uncertainty changes. To validate the UA-
AMLT, training with the noisy data of different SNRs is car-
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ried out and compared to the results of the uncertainty propa-
gation approach. The number of PLSR components (ncomp =

20) determined with the elbow method is considered for
formaldehyde and VOCsum as the target. For formaldehyde,
the number of PLSR components leading to the minimum
T−RMSE value, i.e., ncomp = 100, is also considered and
compared to the results for

3.2.1 Model trained with raw data

The motivation for using raw data for training and noisy data
for model application is the typical degradation of sensors
over time (Jiang et al., 2006). To avoid a loss in sensor perfor-
mance, periodical recalibration is typically required, which
is often expensive and difficult or impossible to perform, as
collecting sensors and sending them to the lab leads to the
downtime of the IAQ monitoring system.

The test plus uncertainty RMSE (T+U−RMSE) is in-
troduced as measure for the quality of the model consid-
ering the uncertainty values. This T+U−RMSE value is
the sum of the two RMSE values obtained by the test of the
model (T−RMSE) and by propagating the measurement un-
certainty through the toolbox (U−RMSE), respectively. It is
calculated according to the following:

du = ypred+Uypred (24)

d l = ypred−Uypred (25)

RMSET+U =

{
RMSE(du,y) ypred ≥ y

RMSE(d l,y) otherwise
, (26)

where y ∈ Rm and ypred ∈ Rm denote the actual and the pre-
dicted target, respectively. Uypred contains the uncertainty
values associated with the predicted target. Furthermore,
noisy data RMSE (ND-RMSE) is used, which indicates the
quality of the model when applying it to another simulated
data set (2000 cycles) with the added white Gaussian noise
(noisy data) of different SNRs.

First, it is of interest if the selected FE algorithm still per-
forms well when applying the model trained with raw data
on noisy test data. ALA was chosen as the best FE algorithm
when applying a model trained with raw data on raw test
data, as shown in Sect. 3.1. Applying the model on noisy test
data leads to the T+U−RMSE curves, as shown in Fig. 9.
For SNR values greater than 65 dB, ALA achieves the small-
est T+U−RMSE. In this range, the statistical moments
(SM) also perform well, with the best Daubechies wavelets
(BDW) achieving similar results for very high SNR≤ 85 dB.
The T+U−RMSE difference between ALA (best algo-
rithm) and SM is only 1.9 ppb for 98 dB. Between 50 and
65 dB, the smallest T+U−RMSE is achieved using statisti-
cal moments. If SNR≤ 50 dB, then PCA achieves the small-
est T+U−RMSE. This means that PCA can compensate
for noise in this range, but overfitting leads to higher error,
as shown above for the raw data. This figure shows that the

Figure 9. Test plus uncertainty RMSE (T+U−RMSE) curve for
the five complementary FE algorithms, each in combination with
the Pearson correlation for FS and PLSR.

measurement uncertainty has a direct influence on the perfor-
mance of the ML algorithm, and thus, different FE methods
should be chosen for different SNR values.

Figure 10a shows T−RMSE, T+U−RMSE, and ND-
RMSE values for a model trained on raw data for SNR≥
40 dB (approx. maximum theoretical SNR for a 6 bit ADC,
according to Eq. 21), using the data split shown in Fig. 5 with
ALA as FE, the Pearson correlation for FS, and PLSR. The
T−RMSE values in Fig. 10 are constant because the model
was trained with one specific raw data split (see Fig. 5). For
large SNR values, it can be assumed that the added white
Gaussian noise is smaller than the SNR of the raw data and,
therefore, has no significant influence, as is indeed observed.
The T+U and ND errors show a similar increase with re-
duced SNR for both models with 20 and 100 PLSR compo-
nents, with the ND error being slightly lower than the T+U
error. This indicates that the model uncertainty estimated by
propagating the error through the toolbox, i.e., the T+U er-
ror, overestimates the true model uncertainty slightly but still
provides valuable insight into the sensitivity of the ML model
to noisy data. To obtain an accurate model for predicting
formaldehyde concentrations with ncomp = 20, the SNR of
the data set should not fall below 70 dB, as, for this SNR, the
T+U−RMSE is approx. 19.2 ppb, which is an acceptable
uncertainty for determining the formaldehyde concentration
with a threshold limit value (TLV) of 81 ppb. An SNR of
45 dB for ncomp = 20 and of 50 dB for ncomp = 100 results
in T+U−RMSE and ND-RMSE values of approx. 80 ppb,
i.e., similar to the TLV, which means that the sensor sys-
tem would no longer be useful for estimating the formalde-
hyde concentration. For SNR< 80 dB, the model based on
20 PLSR components is more robust against noise than a
model with 100 PLSR components, yielding lower RMSE
values. In contrast, for SNR≥ 80 dB, a higher number of
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Figure 10. RMSE for testing a model trained with 80 % raw data for formaldehyde prediction on (a) 20 % test data without (red) and with
associated uncertainty values (green), in addition to the application of the model on a noisy data set (blue) and (b) 20 % raw test data (red),
and the calculated uncertainty RMSE (light blue) resulting from the difference in T+U−RMSE and T−RMSE for a different number of
PLSR components.

PLSR components performs slightly better, i.e., an improve-
ment in the RMSE values can be achieved with more PLSR
components if the noise level in the data is very low. In the
case of an SNR value of 98 dB, the T−RMSE value is 15.33
and 13.34 ppb for ncomp = 20 and ncomp = 100, respectively.

Figure 10b shows the T−RMSE and the U−RMSE.
U−RMSE is calculated as the difference between
T+U−RMSE and T−RMSE (see Fig. 10a). This
figure shows that the influence of the trained model (ex-
pressed by T−RMSE) on T+U−RMSE is constant, while
the influence of the measurement uncertainty (expressed
by U−RMSE) decreases steadily with increasing SNR.
For ncomp = 20 (ncomp = 100), U−RMSE is smaller than
T−RMSE when SNR is greater than 60 dB (65 dB).

The results for the additive white uniform noise and
formaldehyde as target are nearly the same as for the addi-
tive white Gaussian noise (see Fig. A8a). Similar results for
VOCsum as the target are shown in Fig. A5a.

To demonstrate the effect of the noise on test data, PLSR
models trained with raw data (ncomp = 20) for the quantifi-
cation of formaldehyde and VOCsum are shown in Figs. A1
and A6 for the two different SNR values, respectively.

3.2.2 Model training with noisy data

The second use case occurs when using low-performance
sensors or sensor systems that provide significant noisy data
or where the electronics/ADCs add significant noise. For the
investigation of the influence of measurement uncertainty on
regression results, ALA as FE and Pearson correlation as FS
are used together with PLSR. Formaldehyde as the target is
discussed here, as VOCsum leads to similar results, which

are shown in Appendix A2. Only results for white Gaussian
noise are shown here, as the results for white uniform noise
are similar (see Appendix A3).

Figure 11a shows T−RMSE, T+U−RMSE, and ND-
RMSE values for a model trained on noisy data for SNR≥
40 dB, using the data split shown in Fig. 5. Compared to
Fig. 10a, the T+U−RMSE is significantly smaller for the
model trained with noisy data, i.e., the ML model can sup-
press noise if it is contained in the training data. For ex-
ample, for SNR= 50 dB and 20 PLSR components, the
T+U−RMSE is 60.22 ppb when training with raw data,
while it is only 34.3 ppb when training with noisy data. In
general, a model can be made more noise resistant by adding
additive white Gaussian noise to the training data. Compar-
ing Figs. 10a and 11a, note that the regression results are sim-
ilar for noisy and raw data for SNR≥ 80 dB, thus indicating
again that the noise level of the raw data is approx. 80 dB.
The same holds for T+U−RMSE when SNR≥ 80 dB. Of
course, there is no need to train the model with noisy data
with an added noise level lower than the noise of the origi-
nal data. As already observed for the model trained with raw
data, the RMSE values can be reduced by using more compo-
nents, but here, this observation holds for all SNR levels, as
the noise is contained in the training data, so there is no over-
fitting. This means that training a model with raw data once is
sufficient, and no new model must be trained with noisy data.
The associated measurement uncertainty values must only be
used in the application of the model, which saves much com-
putational cost. Figure 11b shows that, for T+U−RMSE
values, the contribution resulting from the measurement un-
certainty is always lower than the contribution from the test
of the model. This means that the noise is already trained in
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Figure 11. RMSE for testing a model trained with 80 % noisy data for formaldehyde prediction on (a) 20 % test data without (red) and with
associated uncertainty values (green) and (b) 20 % raw test data (red) and the calculated uncertainty RMSE (light blue) resulting from the
difference in T+U−RMSE and T−RMSE for a different number of PLSR components. Note the magnification compared to Fig. 10.

the model, and improving the used sensor would significantly
improve the ML results.

For white uniform noise, similar results are shown in
Fig. A8b.

In case of VOCsum as the target, the results are similar,
despite the fact that the RMSE values are higher than for
formaldehyde, as shown in Fig. A5b. No significant differ-
ence between the RMSE values when training with raw and
noisy data, respectively, is observed for SNR values higher
than 70 dB.

To demonstrate the effect of noise on test data, PLSR mod-
els trained with noisy data (ncomp = 20) for the quantification
of formaldehyde and VOCsum are shown in Figs. A2 and A7,
for two different SNR values, respectively.

4 Conclusion and outlook

In this contribution, the uncertainty-aware AMLT for clas-
sification tasks presented in Dorst et al. (2022) was first
extended for solving regression problems. In accordance
with the GUM, an analytical method for uncertainty prop-
agation of PLSR was implemented. The code for this
UA-AMLT for classification and regression tasks was
published on GitHub (https://github.com/ZeMA-gGmbH/
LMT-UA-ML-Toolbox, last access: 18 January 2023). For
different SNR levels, the UA-AMLT automatically selects
the best ML algorithm based on the overall test plus the un-
certainty RMSE.

The influence of measurement uncertainty on machine
learning results is investigated in depth with two use cases,
namely model training with raw and noisy data generated by
adding white Gaussian noise. For both use cases, the analy-
sis shows where the measurement system must be improved

to achieve better ML results. In general, there are two dis-
tinct possibilities, i.e., improving either the ML model or the
used sensor. In case of an RMSE resulting from measure-
ment uncertainty tending towards zero, an improvement of
the ML model is suggested. In the range where U−RMSE is
already very small (see Fig. 10b), a better ML model should
be obtained as optimizing the sensor, including the data ac-
quisition electronics, will only lead to even lower U−RMSE
values close to zero, which does not significantly impact the
overall T+U−RMSE. In contrast to that, in ranges where
U−RMSE is higher, minimizing this RMSE by optimizing
the physical sensor system should be the objective. To reduce
the T−RMSE resulting from the ML model, using a better
model would be necessary, as this can significantly influence
the ML results. A better model can be achieved, for example,
by using a higher number of PLSR components, as shown in
this contribution, or by using deep learning, which can also
improve the T−RMSE (Robin et al., 2021).

Finally, it is shown that increased robustness of the ma-
chine learning model can be achieved by adding white Gaus-
sian noise to the raw training data.

In future work, the influence of different types of colored
noise on ML results can be investigated, as this contribu-
tion has addressed only different additive white noise mod-
els. Therefore, the correlation must be considered within the
uncertainty propagation, and this is only possible for the fea-
ture extractors. Furthermore, the difference between noise
produced by the data acquisition electronics, especially the
logarithmic amplifier as simulated in this contribution, and
noise produced by the sensor could be investigated. To sim-
ulate sensor noise or electronic noise before the logarithmic
amplifier noise, the noise must already be added to the in-
verse logarithmic of the logarithmic resistance raw data.
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Appendix A: Additional figures

A1 Formaldehyde as target

Figure A1. PLSR model (trained with raw data; ncomp = 20) applied to test data (see Fig. 5) for the quantification of formaldehyde and
the propagated uncertainty. (a) SNR= 55 dB. (b) SNR= 40 dB. Dashed red and green lines indicate the test RMSE (T−RMSE) and the
test plus uncertainty RMSE (T+U−RMSE) based on test data, respectively. For better visibility, error bars are only shown for every 10th
prediction.

Figure A2. PLSR model (trained with noisy data; ncomp = 20) applied to noisy test data (see Fig. 5) for the quantification of formalde-
hyde using their associated standard uncertainty. (a) SNR= 55 dB. (b) SNR= 40 dB. Dashed red and green lines indicate the test RMSE
(T−RMSE) and the test plus uncertainty RMSE (T+U−RMSE) based on test data, respectively. For better visibility, error bars are only
shown for every 10th prediction.
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A2 VOCsum as target

Figure A3. Random CV, group-based CV, and test RMSE of the five FE algorithms, using Pearson as FS and PLSR with ncomp = 20 for
100 trials with different data splits and the VOCsum concentration as target. ALA is the adaptive linear approximation, BDW is the best
Daubechies wavelets, BFC is the best Fourier coefficients, PCA is the principal component analysis, and SM is the statistical moments.

Figure A4. PLSR model for the quantification of VOCsum for testing with test data from the data split shown in Fig. 5. Dashed lines indicate
the RMSE of test data (T−RMSE).
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Figure A5. RMSE for testing a model trained with 80 % (a) raw data and (b) noisy data for VOCsum prediction on 20 % test data without
(red) and with associated uncertainty values (green), in addition to the calculated uncertainty RMSE (blue) resulting from the difference in
T+U−RMSE and T−RMSE.

Figure A6. PLSR model (trained with raw data; ncomp = 20) applied to test data (see Fig. 5) for the quantification of VOCsum and propagated
uncertainty. (a) SNR= 55 dB. (b) SNR= 40 dB. Dashed red and green lines indicate the test RMSE (T−RMSE) and the test plus uncertainty
RMSE (T+U−RMSE) based on test data, respectively. For better visibility, error bars are only shown for every 10th prediction.
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Figure A7. PLSR model (trained with noisy data; ncomp = 20) applied to noisy test data (see Fig. 5) for the quantification of VOCsum using
their associated standard uncertainty. (a) SNR= 55 dB. (b) SNR= 40 dB. Dashed red and green lines indicate the test RMSE (T−RMSE)
and the test plus uncertainty RMSE (T+U−RMSE) based on test data, respectively. For better visibility, error bars are only shown for every
10th prediction.

A3 Additive white uniform noise and formaldehyde as
target

Figure A8. RMSE for testing of a model trained with 80 % (a) raw data and (b) noisy data (added white uniform noise to raw data) for
a formaldehyde prediction on 20 % test data without (red) and with associated uncertainty values (green), in addition to the calculated
uncertainty RMSE (blue) resulting from the difference in T+U−RMSE and T−RMSE.

Code and data availability. The paper uses data obtained from
different calibration and field test measurements of gas mixtures
with a MOS gas sensor. The data set is available on Zenodo
https://doi.org/10.5281/zenodo.4593853 (Amann et al., 2021a).

The uncertainty-aware AMLT (Dorst et al., 2022;
https://doi.org/10.1515/teme-2022-0042) includes all the code for
data analysis associated with the current submission and is available
at https://github.com/ZeMA-gGmbH/LMT-UA-ML-Toolbox (last
access: 15 April 2022).
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4 Conclusion and Outlook

With the growing digitalization in recent years and the rise of Industry 4.0 (I4.0) as the
fourth industrial revolution with digitalized factories, so-called Factories of the Future
(FoFs), using the concept of Industrial Internet of Things (IIoT), the total amount of
data increased rapidly. This large amount of data requires a high level of automation,
from calibration and data collection through to data-driven analysis based on machine
learning (ML). In the industrial context, the reliability of the ML results is essential,
as they are used for critical processes such as fault detection, condition monitoring,
and predictive maintenance. When predictions and decisions are based on data-driven
ML models, confidence in the used algorithm and reliable data is required. Therefore,
assessing data quality is essential in all steps of processes in FoF, beginning with the
individual sensors through to the data analysis, and is one of the most important
industrial needs [30]. This can be achieved by establishing a metrological framework for
the entire lifecycle of measured data from traceable calibration of sensors, metrology
in sensor networks, and data preprocessing through to propagation and quantification
of the uncertainty in ML [31]. Combining both research fields, metrology on the one
hand and ML on the other, leads to uncertainty-aware ML. As the average performance
of an ML model is often only assessed by cross-validation (CV) [26, 27], the benefit of
uncertainty-aware ML is that it can assess each individual prediction of an ML model.

Before performing ML, data collection and data preprocessing have to be carried
out. Combining various interconnected sensors measuring the same physical quantity or
different physical quantities in a distributed sensor network is the key concept in IIoT.
Thus, sensor data fusion is one typical challenge in distributed sensor networks in an
FoF. Therefore, a data pipeline for time series data has been introduced to align data
of several sensors of two different data acquisition units (DAQs), one low-cost and one
high-cost system, whose only connection is a trigger signal. As a measurement result is
only complete when it contains a measured value and the accompanied measurement
uncertainty, the raw data’s measurement uncertainty has been calculated using dynamic
calibration information. As cost awareness is an important topic in industry and economy,
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it is shown that using only the low-cost DAQ data for ML leads to a good trade-off
between cost and accuracy. In the context of the presented sensor data fusion process, a
new data set has been published, which fulfills most of the requirements of the FAIR
data principles. Evaluating the data set according to the FAIR data maturity model
results in good agreement with the FAIR data principles.

When predictions and decisions are based on data, confidence in the used algorithm
and reliable data is required. A further topic of this dissertation is research on the effects
of data quality on ML performance. Measurement uncertainty, as an indicator for data
quality, occurs in time and value and allows to evaluate decisions made by ML models.
By introducing generated artificial time shifts on a raw data set, time synchronization
errors between individual sensors’ cycles have been studied. Already time shifts of 0.1 ms
in the data lead to poor performance of the ML model. Thus, further investigations
have been carried out concerning enhancing the ML model performance in the presence
of time synchronization problems. Omitting phases out of the feature set has been
proven to increase ML model performance. However, the best results have been achieved
by adding data with artificial time shifts of different values in the training data. This
technique is already well known as data augmentation in deep learning (DL) to increase
the amount of data used to train neural networks and avoid overfitting [234, 235].

As the evaluation of measurement uncertainty for each specific prediction is often
neglected in ML, this dissertation addresses this topic. The basis for investigating the
influence of measurement uncertainty in the value on ML results is an already existing
and published automated machine learning toolbox (AMLT) for classification problems.
This AMLT has been extended to an uncertainty-aware version named uncertainty-
aware automated machine learning toolbox (UA-AMLT) by developing uncertainty
propagation for the feature extraction (FE) algorithms as well as for the classification
carried out using Linear Discriminant Analysis (LDA). For the uncertainty propagation
through these algorithms, analytical approaches have been presented in line with the
Guide to the Expression of Uncertainty in Measurement (GUM) and its supplements,
Supplement 1 (GUM-S1) and Supplement 2 (GUM-S2). As feature selection (FS) only
selects features, the selection process is made uncertainty-aware by introducing modified
versions of each FS algorithm, i.e., weighted FS algorithm, that uses the uncertainty
values as weights. Moreover, this toolbox was made applicable for quantification by
introducing an uncertainty-aware Partial Least Squares Regression (PLSR) algorithm
based on uncertainty propagation in line with GUM-S2.

128



Conclusion and Outlook

The investigation of the influence of measurement uncertainty on ML performance
has been demonstrated for a data set consisting of raw sensor data of a smart gas sensor.
To simulate measurement uncertainty in the data, noise as one source of measurement
uncertainty is added to the raw sensor data. In this dissertation, artificially generated
white Gaussian noise (a special kind of noise with zero mean and finite variance)
of different signal-to-noise ratio (SNR) levels is used. Investigating the influence of
measurement uncertainty on ML results consists of two approaches: model training
with raw data and model training with noisy data. Using the suggested approaches,
statements about where the overall system needs to be enhanced are possible. This can
be either the used sensor and measuring electronic or the trained ML model. Using a
sensor with higher precision and optimizing the data acquisition electronics is necessary
in case the root-mean-square error (RMSE) contribution of the uncertainty values is
high. In contrast, improving the trained model by, e.g., tuning hyperparameters of
an ML model, must be carried out when the RMSE contribution of the uncertainty
values already tends towards zero, and only the RMSE contribution of the model can
significantly influence the overall RMSE. It has also been shown that training with
noisy data increases the robustness of the ML model against random noise. As energy
efficiency and energy saving are currently important topics in industry, computational
cost can be reduced using the UA-AMLT because a model must only be trained once
with raw data and the measurement uncertainty, even if changing significantly during
the process, can be propagated through the model.

The topics presented in this dissertation have great potential to improve the con-
fidence of ML decisions, which makes them worth further investigation. First, the
UA-AMLT for regression problems can be improved by implementing additional FS
algorithms so that not only weighted Pearson correlation must be used. For example,
Regressional ReliefF (RReliefF) [92, 236], an algorithm similar to ReliefF but suitable
for quantification problems, is proposed for the toolbox for regression problems. Instead
of Recursive Feature Elimination Support Vector Machine (RFESVM), which is only
suitable for classification problems, other recursive feature elimination algorithms such
as Recursive Feature Elimination Support Vector Regression (RFESVR) and Recursive
Feature Elimination Least Squares Regression (RFELSR) [237] can be implemented.
All these suggested algorithms need to be made uncertainty-aware to add them to the
UA-AMLT.

Moreover, further analysis can be carried out with the UA-AMLT. The influence of
different types of colored noise on ML performance is of interest here. To use colored
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noise in the UA-AMLT, algorithms that can also deal with correlated input quantities are
required. This is yet only implemented for the FE algorithms. Thus, the FS algorithms,
as well as LDA for classification and PLSR for quantification, must be adapted for
correlated input quantities.

This dissertation only addresses supervised ML techniques in the UA-AMLT. Thus,
investigating the influence of measurement uncertainty on novelty detection as a semi-
supervised ML technique or clustering methods as unsupervised ML algorithms are
suggested.

For future work, it is interesting to transfer the results achieved by investigating the
influence of measurement uncertainty on ML performance using data of a smart gas
sensor to applications in industry, e.g., remaining useful lifetime (RUL) estimations.
The knowledge of where the measurement system, including the ML process, must be
improved (either the sensor/electronics or the ML model) to obtain better ML results
can thus be transferred to industrial applications leading to more reliable ML predictions.
As ML results can be improved using DL instead, analysis of measurement uncertainty
influence on results based on DL models is also worth investigating in future work.
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ich mich für ausgezeichnete Betreuung und die Unterstützung bei der Durchführung der
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der Zeit meiner Promotion immer wieder gute Diskussionen per Videokonferenz geführt
habe. Auch danke ich meinen Kollegen der DESS-Gruppe – Christian, Christopher,
Eric, Payman, Sebastian, Steffen, Tizian, Yannick – für die erfolgreiche Zusammenarbeit
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