Disequations

W. Buntine & H.-J. Biirckert
SEKI Report SR-89-03

e
=
<
v
=

L=
et
<
=
=2

83
o))

=

s
o

2
£

O

Aueuwuan) ‘M ‘| ulsine|siasiey 0S/9-a saloleI0qe]
670€ YOBHSOd aouabi|eiu|
UIdINe|SIasIRY 1BISISAIUN eIl Iy &
¥BWIOU| Yolaiaqyoe4 S

On Solving Equations and Disequations

WRAY L. BUNTINE

Kez Centre for Computing Sciences, University of Technology, Sydney,P.O. Box 123, Broadway, 2007
Australia

HANS-JORGEN BURCKERT

FB Informatik, Universitdt Kaiserslautern, Postfach 3049, D-6750 Kaiserslautern, FR Germany

Abstract: We are interested in the problem of solving a system (s; = ;-1 <i<n,p;#¢;: 1 <j<m)of
equations and disequations, also known as disunification. Selutions to disunification problems are
substitutions for the variables of the problem that make the two terms of each equation equal, but leave
those of the disequations different. We investigate this in both algebraic and logical contexts where
equality is defined by an equational theory and more generally by a definite clause equality theory E. We
show how E-disunification can be reduced to E-unification, that is solving equations only, and give a
disunification algorithm for theories given a unification algorithm. In fact this result shows that for
theorics where the solutions of all unification problems can be represented by finitely many
substitutions, the solutions of all disunification problems can also be represented finitely. We apply
disunilication to handle negation in logic programming with cquality in a similar style 1o Colmeraucr's
logic programming, with rational trees, and to represent many solutions to AC-unification problems by a
few solutions 1o AC I-disunification problems.

Kcywords: Equational theory, definite clause, logic programming, E-unification, E-disunification, solving
equations and disequations, inequations.

1. Introduction

The problem of solving equations in a given equational theory, also known as E-
unification (Plotkin 1972, Siekmann 1978, 1989, Huet & Oppen 1980, Fages & Huet
1983, 1986, Biirckert et al. 1989) has many applications in artificial intelligence and
computer science (see Siekmann 1989 for an overview). Closely related is the problem of
solving disequations (negated equations), that is, finding solutions for problems of the
form (p # ¢), or more generally solving a combination of equations and disequations
(Si = t".' 1 SlSn,pj ;éqj 1 SJSM)

Solutions to these problems are substitutions of the variables in the terms s, 7;, pj 4,
such that the instantiated terms of the equations become equal, while the instantiated terms
of the disequations remain different — both with respect to a given equational theory. In

the special case of the empty (equational) theory equality and difference are defined purely
syntactically (Robinson 1969, Colmerauer 1984).

Originally A. Colmerauer (1984) discussed the problem of solving equations and
disequations in the framework of logic programming, and gave an algorithm to solve
these disunification problems. H. Comon (1986) investigated the problem for certain
applications in algebraic specification. In fact he proposed it as a tool for proving

W. Buntine, H.-J. Biirckert On Solving Equations and Disequations. 2

sufficient completeness of an algebraic specification defined by a set of rewrite rules. C.
Kirchner & P. Lescanne (1987) and J.-L. Lassez, M.J. Maher and K. Marriot (1987)
again took up the problem in a more general framework of a family of alternative systems
of equations and disequations, where certain variables play the role of parameters, that is,
solutions must satisfy at least one of the alternative systems for all instantiations of the
parameter variables. All these papers, however, deal with uninterpreted signatures, that
is, they investigate solving equations and disequations with respect to syntactical equality
of terms,

We want to generalize disunification for arbitrary equational theories, and more
generally for definite clause equality theories. This is necessary to represent awfully
many possible solutions to a general unification problem by a far smaller number of
solutions to a suitable corresponding disunification problem. Two examples will
demonstrate how this may work.

Our first example is in the theory of logic programming. Here under current
investigation is the augmentation of standard logic programming languages with equality,
and with negation. This can be done by replacing standard unification with E-unification
(Goguen & Meseguer 1984, Biirckert 1986, Gallier & Raatz 1986, Jaffar & Stuckey
1986), and by the concept of completed logic programs allowing a restricted form of
negation, negation as failure (Clark 1978). For a combination of both augmentations the
equality theory has to be completed as well. This is based on the concept of equality
completion or unification complete equality theories (Jaffar et al. 1984), Further
extensions, however, are required to the theory of equality, unification and the like to
advance this treatment further. For instance, solutions to negative questions may really
require negated equations in their expression: A full solution to the question “which x are
not member of the list (1, 2)?” is the negative answer “x # I A x #2”, instead of the
common approach of generating all infinitely many possible positive answers — with
respect to some fixed domain of discourse (here for example the infinitely many positive
integers “x = 3 orx = 4 or ...”, when the membership relation is defined for lists of
positive integers only). Thus we can represent awfully many answer substitutions by a
few, however, more general solutions — in our approach substitutions together with
simplified disequations (negated substitutions) as constraints (cf. A. Colmerauer's
“simplified systems”).

The second example concerns part of unification theory itself, the task of designing
efficient unification algorithms. There are many implementations of unification
algorithms for a theory of associative and commutative function symbols
(AC-unification), the very recent are highly efficient. But already small AC-unification
problems may have thousands of AC-unifiers. For instance, the AC-unification problem

(xyz = vvvy Yo

has 32 000 most general AC-unifiers (”-” is a binary, associative, and commutative
function symbol written infix, parentheses are dropped), and a similar one

(xyzv = www Y ¢

has more than a million most general solutions (Biirckert et al. 19892). The generation of
all these AC-unifiers can be avoided by representing them as solutions to certain
ACl1-disunification problems (associative, commutative functions with a unit). For
example, the AC1-disunification problem

W. Buntine, H.-J. Birckert On Solving Equations and Disequations. 3

(xyz=vvvy , xzl,yzl, z#1,v#1)4,

has exactly the same substitutions as solutions as the first of the above AC-unification
problems; for example, the substitution

(xew,yew ze vy

is such a common solution, since it solves the equation with respect to both theories AC
and ACI and it substitutes none of the variables by the unit . This correspondence
occurs because the AC-solutions of an equation are exactly those instances of the AC1-
solutions of the same equation that do not instantiate any of the unknowns by the unit
(Livesey & Siekmann 1975). However, the equation in our example problems have only
one most general ACl-unifier (notice, that this is the case for all problems containing only
variables). The idea is again to represent the many solutions of these AC-unification
problems or the equivalent ACl-disunification problems by the few (possibly one)
AC1-unifiers, adding the disequations as constraints to them (section 5.3).

Recently some further results dealing with solving disequations over equational
theories came up (Comon & Lescanne 1987, Comon 1988). They investigate
parameterized unification problems consisting of disjunctions of systems of equations and
disequations, where some of the variables are not treated as unknowns but as parameters.
H. Comon and P. Lescanne give a set of rules defining a disunification algorithm for the
above kind of problems in the case of the syntactical theory and the theory AC of
associativity and commutativity. H. Comon has a complete disunification procedure for
any theory with an existing unification algorithm, and a disunification algorithm for
certain special theories he calls “quasi-free”. He also has a disunification algorithm for
parameterless problems in theories that are finitary with respect to unification. In both
papers solved forms are used that differ from ours depending on different applications.

In the following sections we give a formal framework for solving equation and
disequations in an arbitrary equational or definite clause equality theory E. We introduce
the necessary algebraic and model theoretic notations (section 2.1) in order to define
E-disunification problems and their solutions, and we recapitulate the notations of
unification theory in equational theories (section 2.2). We consider solving equations and
disequations from an algebraic viewpoint, i.e., solving them in a special fixed algebra
(section 3.1), generalize unification theory to more general equality theories (section 3.2),
and then discuss disunification with respect to a more general closed world assumption,
the equality completion approach (section 3.3). Since there is some trouble with the
notion of solutions defined by substitutions in the case of disequations, we generalize the
notion of solutions to solved forms (section 4.1), that are pairs of a substitution together
with a family of exceptions or constraints for this substitution. These exceptions and
constraints are also defined in terms of (“negated’) substitutions, and can be interpreted as
simplified forms of disequations, similar to the interpretation of substitutions as simplified
forms of equations. We consider the problems of inconsistent generalized “solutions”,
translation between the two forms of solutions, redundancy, and complete representation
of generalized solutions. In section 4.2 we give a representation theorem that shows that
we can get the solutions of a disunification problem as the instances of a set of
substitutions with exceptions, the exceptions are built up as the solutions of related
unification problems (and accordingly for constrained substitutions). In particular, we
show that when the solutions of all E-unification problems can be represented by finite
sets of substitutions we also have a finite representation for the solutions of all

W. Buntine, H.-J. Bilrckert On Solving Equations and Disequations. 4

E-disunification problems by our more general solved forms. This leads to an algorithm
for solving E-disunification problems by computing the solutions for corresponding E-
unification problems provided there is a terminating E-unification algorithm. We discuss
propagation and merging of our generalized solved forms (section 4.3) and the non-trivial
problem of restricting generalized solutions to subsets of the variables (section 4.4).
Finally in section 5 we sketch several applications for disunification.

2. Preliminaries

We assume the reader to be familiar with the notions of first order logic, equational logic,
and universal algebra as needed for unification theory and logic programming; we are
consistent with the notations of the common literature (Shoenfield 1967, Burris &
Sankappanavar 1979, Gritzer 1979, Taylor 1979, Huet & Oppen 1980, Goguen &
Meseguer 1984, Lloyd 1984, Fages & Huet 1986, Gallier 1986, Kirchner 1989,
Siekmann 1989). We just recall the most important notations.

2.1 Algebras, Structures, Theories

A signature X'is the (disjoint) union of a set F of function symbols and a set P of
predicate symbols, where a nonnegative integer (the arity) is assigned to each symbol in
Z. Function symbols with arity 0 are also called constants. We require the signatures to
contain at least one constant and a distinguished binary predicate symbol = written infix,
the equality symbol.

A Z-algebra A consists of a carrier A together with operations fA: A* — A for
every n-ary function symbol f € X~ the constants just correspond to distinguished
elements in A. A 2-homomorphism is a mapping ¢ from a Z-algebra A4 to a Z-algebra
B, such that ¢f¥a,,....a,) = fB(pay,....pa,). A Z-congruence is an equivalence relation
~ on the carrier A of a Z-algebra 4, such that f4(a,,...,a,) =fA(b,,....b,), whenever
a;=b; (1 <i<n). The quotient A/, of a Z-algebra A by such a Z-congruence = is the
Z-algebra, whose carrier is the set of all congruence classes a/ - of elements a € A, and
whose operations are defined by f4~(a;/ ~,....a,/ =) := (FXay,...a,))| ~

A Z-structure (with equality) is a Z-algebra, where in addition a relation pA C A" is
assigned to every n-ary predicate symbol p € X (=7 is the equality relation in A4, i.e., the
set {(a, a): a € A}); we write p#(a,,...,a,), when (a,,...,a,) € pA Notice, that an
algebra can also be viewed as a structure over the signature containing only the function
symbols and the binary equality symbol, where the last one is assigned with the equality
relation on the carrier.

Given a possibly infinite set V of variable symbols the X-terms, Z-atoms,
Z-formulae over V are defined as usual (we use the connectors A, Vv, =, = (or <), &,
and the quantifiers V,5J). We assume the free variables of an open formula as universally
quantified, if necessary we close an open formula F by the universal or existential
quantifier: V.For 3.F. We also use the notations Vy F and V_y F, where X is a set of
variables, in order to universally quantify all free variables of F that are in X and that are
not in X, respectively; and analogously for the existential quantifier. Sets of formulae are -
considered as conjunctions of their elements. A definite clause is a formula of the form

W. Buntine, H.-J. Biirckert On Solving Equations and Disequations. 5

H & B A...A B, where H and the B; are atoms. In this paper a definite clause theory,
also called logic program, is a set of definite clauses. In a definite clause equality theory,
the only predicate symbol occurring is the equality symbol “=",

The X-term algebra over Vis denoted Ix(?) or for short 7, when Vis countably
infinite and fixed. Its carrier is the set of Z-terms, and its operations f 7 map terms
t],.. ., to the term f(1;,...,1,). If Vis the empty set, Tg(@) is called the ground X-term
algebra, abbreviated by 7). The set of Z-endomorphisms on the term algebra Zy(1) that
move at most a finite set of variables is denoted by SUBy; its elements are called
X-substitutions; € is the identity on ‘T or empty substitution. We call a Z-atom s =t a
X-equation and its negation s #t a X-disequation.

For any syntactical object O like atoms, terms, substitutions, etc. we write Var(0O)
for the set of variables occurring in this object. For any substitution o the finite set of
variables DOMo := {x € V: ox # x} is called the domain, the finite set of terms
CODo := {ox: x € DOMGg} is the codomain, and VCOD o := Var(COD o) is the set of
variables introduced by 6. We represent a substitution o by the finite set of its
substitution components {x « ox: x € DOMoj}. Given two subsets V, W of 1V we
denote the set of substitutions with domain V and introduced variables in W by
SUB(V,W); they are homomorphisms from (V) to I(W). If W is empty, we call the
elements of SUBV, @) ground substitutions. A renaming of a set of variables V to a set
of variables W is a substitution p € SUB(V, W) that is an injective homomorphism of
T(V) into I(W); hence it satisfies DOMp =V, CODp < W, and px = py iff x = y for all
variables x,y € DOMp; its converse is the renaming pc € SUB(CODp, V). The
restriction oy of a substitution o to a set of variables V is defined by ofyx = ox for all
x € V and o/yx = x, otherwise.

For every substitution o there is a corresponding open formula [o] denoting the
conjunction A,cp,meX = OX; we also extend this to sets © of substitutions, such that [©)]
denotes the disjunction Vg [6]. Note, that by our convention on open formulae, the
above formulae are universally quantified. For an idempotent substitution 6—i.e. 0 =00
or equivalently DOMo N VCODo =@ - the formulae Jy [0] and Ty [Olpopqx] as well
as V.oF and V.[¢]=F are logically equivalent.

An equational theory is defined by a set E of equations. It induces a congruence on
the term algebra, the least congruence = on 7 that contains the term pairs (0s, o) for all
s=te Fandall 0 e STIB. An equational theory E together with the standard equality
axioms - reflexivity, symmetry, transitivity, function and predicate replaceability for the
symbols in X - is a definite clause theory, abbreviated by E+. A definitc clause equality
theory E also induces a least congruence =g on 7 corresponding to a model of the theory
and the standard equality axioms (Jaffar et al. Maher 1984). We say that two terms s and
t are E-equal, iff s =g t. We extend E-equality to substitutions by & =g 7, iff ox =g x for
all variables x& V. We call two substitutions ¢ and 7 E-equal on a set of variables V<,
denoted o =g 7[V], when their restrictions to V are E-equal, i.e., when ov =g 1v for all
ve V. Notice, that an equational theory more exactly depends on two parameters, the
signature X and the set of equations E, and that 2 must contain at least the function
symbols occurring in E. Those function symbols of X that do not occur in E, are called
free or uninterpreted. When E = (), we have the theory of syntactic equality (or empty
theory). Notice, that different sets of equations may induce the same congruence relation
on terms.

W. Buntine, H.-I. Biirckert On Solving Equations and Disequations. 6

2.2 Unification

Given an equational or definite clause equality theory E and a system of equations I the
solutions of the E-unification problem (I)z, also called the E-unifiers of I, are all
substitutions o with DOMo = Var(T), such that os =g ot for all s = t € I'. The set of all
E-unifiers of I' is denoted by Ug(I'). For unification problems one is usually only
interested in a subset of the set of all solutions that represents all E-unifiers.
Representation is defined in terms of instantiation of substitutions on some set of
variables W:

&is an E-instance on W of 6 (6 25 o [W]) iff there is a A with & =g Aox forallx € W.

If two substitutions are E-instances of each other on the same set of variables W, they are
called E-equivalent on W.

The solution sets of unification problems are closed under E-instantiation on Var(I')
or any superset V of Var(T'): Every E-instance of an E-unifier is again an E-unifier.
Hence we can define representative sets of E-unifiers or complete sets of E-unifiers
cUg(T') by the property that the union of all E-instances of the elements of cUg(I') is
exactly the set of all solutions Ug(I'): (let V o Var(I'))

(i) every 6 € cUgT) is an E-unifier (correctness)
(i) forall 8 € Ug(T) exists o € cUg(I) such that § 2; 6 [V] (completeness)

If they exist, we are interested in minimal representative sets of E-unifiers (also called sets
of most general E-unifiers), that are complete sets uUg(I') with the additional property:

(i) forall o,7€ pUKT): 02 7[W]implieso=1 (minimality)

Notice that for equality theories, minimal sets of E-unifiers are unique up to E-equivalence
on V (Fages & Huet 1986).

In order to keep proofs more readable we always require the following technical
(separation) properties for complete sets of unifiers, whenever we deal with such
complete solution sets. Every substitution o of a complete set of unifiers has variable
disjoint domain and codomain, i.e., DOMc N VCODo = @. Every two elements 0,70of a
complete solution set have variable disjoint codomains (VCOD &6 N VCOD 1 = @), and
even more, when dealing with more than one complete set, we also require the elements
of different complete sets to have pairwise variable disjoint codomains. These separation
properties can always be obtained by renaming the codomains with fresh variables,
respectively; each of these renamed substitutions is E-equivalent to the original
substitution on V, and hence the sets of renamed substitutions are also complete sets of
E-unifiers of the given problem (Biirckert et al. 1989).

Let us call a theory E finitary, if every E-unification problem has a finite, complete
set of E-unifiers; we call it unitary, if for every E-unification problem there is a single
E-unifier representing all solutions. Well known examples are the empty theory, which is
unitary (Robinson 1967), and the theory of an associative and commutative function,
which is finitary (Stickel 1975). Notice, that there also exist theories, where some
systems of equations have only infinite complete sets of unifiers (e.g., the theory of an
associative function, see Sickmann 1978) or even worse, for some systems no minimal
sets of unifiers exist (e.g., a somewhat artificial theory in Fages & Huet 1986, or the
theory of an associative and idempotent function, see Baader 1986 and Schmidt-SchauBl

W. Buntine, H.-]. Biirckert On Solving Equations and Disequations. 7

1986).

If we consider the definite clause theory E+ corresponding to an equational theory
E, an E-unification problem is just a query to this logic program. The E-unifiers are the
correct answer substitutions to this query (cf. Lloyd 1984). From the logical or model
theoretical point of view a unification problem as well as a query to logic programs is
corresponding to a formula, where all the variables are existentially quantified. The task
to solve this problem is to prove this formula constructively that means to generate (all)
witnesses for these existential variables that make the formula true (with respect to the
theory).

3. Model Theory

In the following we use the common definitions of a structure or an algebra being a model
for a formula or set of equations, respectively (cf. for example Shoenfield 1967 or
Gritzer 1979). Notice, that an algebra is a model of a set of equations E iff the
corresponding structure with equality is a model of the definite clause theory E+. Models
whose domains are the set of ground terms, are also called Herbrand models (cf. for
example Lloyd 1984 or Gallier 1986). We abbreviate as usual the fact that a structure 4
is a model of a formula F by A = F, and the fact that all models of a formula F are also
models of another formula G by F =G —read G is a consequence of F or F logically
implies G. Notice that a (first order, definite clause, equational) theory is usually defined
as a set of formulae (clauses, equations) that are closed with respect to this consequence
relation rather than as we did by a (not unique) set of axioms. However, the (unique) set
of all consequences of these axioms is a theory in the common notion. For example the
above E-equality congruence on the term algebra is the set of all consequences of the
inducing set E of equations (this is essentially the completeness theorem for equational
logic of Birkhoff 1935).

3.1 Solutions in a (Free) Algebra

In contrast to the logical task of solving equations and disequations with respect to ali
models of the given theory mentioned above, in mathematics a system of equations s; = ¢;
and disequations p; # g;has to be solved in a single given algebra 4 (for instance,
Diophantine equations have to be solved in the algebra of natural numbers or in the
algebra of integers). We are searching for assignments of the variables X in the system
with elements of A - or equivalently, for homomorphisms from the term algebra ‘I{X) to
the algebra A —, such that s; and ¢; are mapped to the same element, while p; and q; are
mapped to different elements in A. Model theoretically this is finding assignments of
these variables that satisfy the corresponding existentially closed formula in the fixed
model A. Notice, that we can also replace 7(X) by the term algebra Tover infinitely
many variables containing X.

Our definitions in section 2.2 correspond to this view, when we solve equations in
the quotient 7/= of the term algebra modulo a given equational theory. This algebra is
(modulo isomorphism) the E-free algebra Fg, that is the free algebra of the class of all
models (the variety) of E (cf. Taylor 1979). It is well known that g is generic for E:

W. Buntine, H.-J. Blirckert On Solving Equations and Disequations. 8

EeVs=t iff FgeVs=t (Tarski 1946).
For definite clause equality theories genericity of ¥ is a consequence of the fact that least
Herbrand models are generic for definite clause theories (Lloyd 1984, Gallier 1986). For
notational convenience, we shall represent these corresponding models identically. The
distinctions between models and algebras are not significant in our treatment.

It might be convenient — although not really necessary — to clearly distinguish
between the variables X occurring in the unification problem and the variables Vused in
the construction of the E-free algebra. This corresponds directly to our requirements for
E-unifiers: For every assignment o I(X) — g solving a system of equations I" with
variables X = Var(I') we can find a substitution o with DOMo = X, VCODo < 7V, that is
an E-unifier of the system, and corresponds to the assignment via ox = kg0ox = (Ox)/=p.
Conversely, every E-unifier o of the system corresponds an assignment @ = k0. Here
K, is the canonical homomorphism of T onto F.

3.1 Lemma: a) A substitution o solves an equation system I"
iff FegeV.ol
iff FekVYx(3xlo]l =1T).
b) A set cUKT) is a complete set of E-unifiers for a system I
iff FgeVy (I 3 x[cULT)])

Proof: a) Let os =g ot for all equations s = rin I'. Now let a: T{W)— Fg be an
assignment of W = VCODo = Var(ol'). By the correspondence between such
assignments and substitutions we have some 6 with xzdx = ax for all x € VCODo.
Now 8os =g o for all s = tin T, and by the universal mapping property xgdr = or for
all r € I{W), and hence aos = oot for all s = zin I. The converse and the second
equivalence are obvious.

b) "=>" Because of part a) it is enough to prove that Fg = Vy (I’ = J_x [cUg(I)]). Let
o LX) — g be any assignment with as = o for each s = t € I'in the E-free algebra.
Then there is a substitution 4 with o = xgA and As =gAt for each s =t € I. By the
completeness requirement there is some ¢ € cUg(I') with A =g yo [X] for some suitable
substitution y. Hence o = kg0 and we have constructed an assignment for —X namely
KzY. This proves our claim.

"«=" We show that cUg(I') is complete. Let A be any E-unifier of I. Then xzA is an
assignment satisfying xgAs = xpAt for all s = ¢ € I' in the E-free algebra. Hence by
assumption there is an assignment 8 of -X and some o € cUg(I') with kzA = Bo and as
again B = k', we have 1 =g B’c [X]. This proves completeness. n

Notice, that by the genericity of the free algebra, we can replace ¥ by E in part a)
of the lemma. However, this is wrong for part b) as the following counterexample
shows. Consider the unification problem (f{x) = f{a))5 in the empty theory over the
signature {f, a, b} with a unary function symbol and two constants. Then obviously the
substitution {x « g} is the only most general unifier. Now, take any algebra 4, where
the two constants are interpreted different, a? = b4, but mapped to the same element by
the operation f% f4(a?) = f4(b4). This is obviously a model of the empty theory, but the
equation has a solution x = 57 in this algebra that is not an “instance” of our unifier. This
means that the completeness property is not “generic” for an equational theory, i.e., does
not hold for all models of the theory.

W. Buntine, H.-J. Biirckert On Solving Equations and Disequations. 9

In this paper we also solve disequations or systems of equations and disequations
with respect to the E-free algebra. By the definition of the quotient this is equivalent to
finding substitutions o, such that the O5; and o; are in the same equivalence class (i.e.
os; =g or), while the op; and og; are in different equivalence classes (i.e. op; #¢ 0q;).
When solving equations every instance A0 of a solution o is also a solution; in contrast
this need not be the case for disequations. For instance, the substitution {x « f{v)} isa
solution of the disequation f{x) = f(f{a)) under the empty theory since the terms f(f(v))
and f{f{a)) are syntactically different, its instance {x ¢« f{a)}, however, is of course not a
solution. An immediate consequence is again in contrast to disequations: when an
equation is solvable in Fp, it is also solvable in every other model of E.

There are also applications (cf. Comon 1986, 1988, Lassez et al. 1987), where it is
necessary to solve disequations with respect to a subalgebra of the E-free algebra, namely
the initial algebra Jg for E, that is (modulo isomorphism) the E-quotient of the ground
term algebra 7 (Goguen & Meseguer 1984). For equations this can equivalently be done
by solving them over the E-free algebra (the solutions in the initial algebra are exactly the
ground instances of the solutions in the E-free algebra), while for disequations this is
again no longer the case. The following theorem shows that it is an equivalent task to
solve an equation system with respect to all models of E or with respect to certain special
models, the initial or the free algebra for E:

3.2 Theorem: Let E be an equational or definite clause equality theory, and let I be
a system of equations. Then the following are equivalent
(i) E&3TC
(i) Jg 3T
(iii) Fg 3T

Proof: Since Jg is a model of E, we have that (i) implies (ii), and since Jg is a subalgebra
(modulo isomorphism) of ¥, we also have that (ii) implies (iii). By Lemma 3.1 we have
that 7 = V.oI. Since for every assignment « satisfying V.ol the composition o is an
assignment satisfying 3.T;, the cycle is closed and all equivalences hold. [

3.3 Corollary: a) E & 3.Tiff there exist some 0 € SUBX, V) with E £ V.oI"
b) Fr =3.Tiff there is a 0 € SUBX, V) with Fr V.ol
iff there is a® c SUBX, ’w with TE’: Vx (3_x [B] < T)
¢) Jg =3.T iff there exist some 6 € SUBX, @) with Jg = ol
iff there exist some © ¢ SUBX, @) with Jp=[O] & T

Proof: a) + b) Follow immediately from Theorem 3.2 with Lemma 3.1.

¢) LetJr #3.I'. Hence there is a ground substitution o with Jg & oI Hence with © being
the set of all ground solutions we have J; & [©] < I'. The other direction is trivial. [|

Remarks: 1. A counterexample for disequations is the following: let E := {f(x) = ¢} with
the signature X := {c, f}, then Fg =3.x # c, but not J; = 3.x # cand there is no
substitution o (over X'!) with ¥z = V.ox # oc.

Notice, that in this example ¥ consists of the equivalence classes of the variables (they
are singletons containing only the variable), and the equivalence class of the constant ¢
containing all other terms, and hence Jg consists only of the equivalence class of c.

W. Buntine, H.-J. Birckert On Solving Equations and Disequations. 10

2. Theorem 3.2 says that for existentially closed equations both the initial and the free
algebra are “generic”, in contrast to universally closed equations, where only the free
algebra is generic in general, but not the initial algebra. The theory of Remark 1 serves as
a counterexample:

JeEVx=cbutnot FpEVx=c.

Thus for equations there is no difference between solving them in the special model
Fr, the E-free algebra, or solving them with respect to all models of E. For disequations,
however, this is no longer the case. A reason for this is that an equational theory can only
attempt to prove if two terms are equal. It has nothing to say about their inequality.

From the logical point of view equation solving is the task to prove constructively
by giving witnesses for the variables that a system of equations I'is a consequence of a
certain equational theory E, more exactly the definite clause theory E+. To introduce
inequality, we can restrict ourselves to fixed domains as above, or a weaker closed world
assumption can be used, i.e., terms are not equal iff they cannot be proven equal in the
theory. Below in section 3.3 we formalise this under the guise of the equality completion
of a theory. This is an alternative — and as we will see later in some sense equivalent —
approach to give semantics to the problem of solving disequations as the algebraic view
pointed out above. Before, however, we must discuss, how the notion of solutions can
be extended to more general theories.

3.2 Solutions in a (First Order) Theory

Let E be some set of formulae containing the standard equality axioms, that is, a first
order theory with equality. Generalizing the view of the remark after Lemma 3.1, we can
call a substitution o an E-unifier of a system I of equations (an E-unification problem) iff
E = V.ol'. Notice, that for general theories such a solution need not exist. For example,
let E be the theory {f(a) = ¢ vf(b) = ¢} and let I" ;= {f{x) = ¢}. Then there is no single
substitution for the variable x that solves this equation in that theory: Eitherx =aorx = b
solves the equation, but we don't know, which one.
It can be seen directly that o'is an E-unifier of I iff

EeV([c}=T)
or equivalently

EE VVar(I') (3-Var(l') [o] =T).
In the view of this we can reformulate instantiation by
dis an E-instance of 6on Wit E & Yy (3w [6] = Ty [0]),

and hence the definition of complete or minimal sets of E-unifiers in this more general
framework is straight forward.

For equational or definite clause equality theories the two definitions of instantiation
and hence of completeness or minimality are equivalent.

W. Buntine, H.-J. Birckert On Solving Equations and Disequations. 11

3.4 Lemma: Given an equational or definite clause equality theory E and set of
substitutions ©, then
6 25 0 for some 6 © [W]

iff FeFVw(Iwld]l =3I wlO])
iff ErVy(Iwld] =3I wl(0O]).

Proof: Consider only the case for an equational theory, the proof is analogous with a
definite clause equality theory. Consider, also, only the equivalence between the first and
third condition, the equivalence of the second condition will fall out as a result. For some
o€ O and suitable A we have

ax =g Aox (for all x € W)
is equivalent to (note that & =g Ax for all variables x e W-DOMa)
Je £ VoeoV-IycopswNxew 0t = S0x
1s equivalent to
E V.3 ycopswVoee NAxew &% = 60x.

(This last equivalence follows in the forward direction by genericity of the free algebra.
The backwards direction follows via F¢ & I ycopsw Ve (Arew 08X = 0:dox), where
o is the assignment kg{x;e-v;: x;€Var(6W,W), v; new distinct variables}.)

This is equivalent to
EEV.Vsee(NArewX = & = Iy cwX = OX),
in turn equivalent to
EEVy(Iwld] =3 wl0O)]),
we have finished the proof. [

Surely the reader already recognized that there is no severe reason for restricting
ourselves to queries of equations and to answers that are substitutions or equivalently the
corresponding equations. We may allow more general formulae as queries and as
answers. The first case happens, when we want to consider systems of equations and
disequations, and we will see in the next sections that we also should loosen then our
notion of answers, respectively.

3.3 Solutions under Equality Completion

As mentioned above we need a closed world assumption in order to handle negated
equations, more exactly, the closed world assumption with respect to the equality
predicate. A more general way than the algebraic view or “fixed algebra” semantics of
section 3.1 is completion of the equality predicate (cf. Genesereth & Nilsson 1987). A
succinct discussion for the motivation and theory behind this technique of equality
completion — or unification complete theories — appears in (Jaffar & Lassez 1986).

Given a (first order) theory E, an equality completion of E over Z, denoted EC, is
the universally quantified conjunction of the infinite set of axioms:
EC := E+ U{V(I'= Iy, [Or): T'is an equation system over X}

where ©@ris a complete set of E-unifiers of I'. In the case where ©ris empty, the
completion axiom V.(I' = Iy, [©r]) corresponds to V.—I. When Orcontains the

W. Buntine, H.-J. Biirckert On Solving Equations and Disequations. 12

empty substitution £ the axiom can be ignored. Notice, that it is enough to range only
over all “systems” I consisting of a single equation only. We sometimes may not
explicitly mention the alphabet over which the completion is made. This must be done
with care as the use of a different alphabet leads to a different theory. Both the E-free
algebra Fr and the initial algebra Jg for E are models of the equality completion of an
equational theory E (Theorem 3.2 and corollaries).

In the terminology of Jaffar et al. (1984) an equality completion of a definite clause
pure equality theory E corresponds to the minimum set of axioms necessary for a theory
to be a unification complete extension to the theory E. It can be seen that Clark's axioms
(1978) for a unification complete counterpart of the syntactic equality theory are logically
equivalent to the equality completion of this theory. His axioms are contained in the
equality completion and they imply the equality completion (Jaffar & Stuckey 1986).
Further examples of unification complete equality theories that correspond to equality
completion with redundancy removed appear also in (Jaffar & Stuckey 1986).

A further advantage of this construction may lie in the following: when o is an
E-unifier of a system of equations, every “instance” of o in a model 4 of E, i.e. the
homomorhisms a0, where o is an assignment of the variables introduced by o, is a
solution of the system in this algebra 4. However, in general, not every solution in A4
can be factored by some E-unifier, for example there may be solutions in A4, but no
E-unifiers (take A4 to be the trivial algebra containing only one element; see also the
example after Lemma 3.1). For the models of an equality completion E€, however, this
always holds by definition.

3.5 Lemma: Let AkEC, andlet I be a set of equations. Then an assignment &
of the variables of I" with elements of A solves the equations iff there is an
E-unifier 6 of I' and an assignment B of the variables introduced by o, such that
o = o on the variables of I".

Proof: One direction is obvious. For the other direction by the definition of E€ there is an
E-unifier in ©rand an assignment f such that al” = ox; = Box; A ... A ax,, = Box, is
true in A4, where x,,..., x,, are the variables of I'. Since «a solves I"in A4, this completes
the proof. [|

As the definition of an equality completion depends on the chosen complete sets of
E-unifiers, we need to prove that different equality completions are logically equivalent.

3.6 Theorem: For an equational or definite clause theory E, any equality
completion of E over some signature is satisfiable and unique (in the sense that it
is logically equivalent to every other completion over the same signature).

Proof: 1. Let M be a Herbrand model of E. We must prove that M = V.’ = [O}].
Since M is a Herbrand model, it is enough to show that, for every ground substitution y
of the variables in I, if yI is true in M, then also ¥/ @] is true in M. But this is
obviously the case, since, when yis an E-unifier of I, it must be an E-instance of some
6 € @r.

2. We show that any equality completion of E has the formula Vi, (3 [Of = 3y ['F])
with V = Var(I') as logical consequence, if ©-is the complete set of E-unifiers for I'
chosen in the given equality completion and ¥'is any complete set of E-unifiers for I. As

W. Buntine, H.-J. Biirckert On Solving Equations and Disequations. 13

¥ is complete, there exists a y € ¥for each 8 € Orwith E £ Vi, (3, 0 = 3y y) and
hence also EC = V, (3_y 8 = 3.y y). Thus we have EC = Vy, (3 [Of] = Ty ['¥]),
and by the definition of the equality completion EC £ Vy, (I'= 3_,['¥]). Therefore any
two equality completions must be equivalent.]

Together with Lemma 3.1 and Lemma 3.4 we have as an immediate corollary that
for an equational or definite clause equality theory E the E-free algebra and the equality
completion approach are equivalent in the following sense:

3.7 Corollary: A set cU(T) is a complete set of E-unifiers of I'

iff Fgr= VAT & Iyaqn [CULT)])
l_'/f ECE V(F@E_Var(nICUL‘(r)])

As we will see in the next section both solving disequations in E-free algebras or solving
under equality completion are also equivalent with respect to complete sets of solutions in
this sense, provided we generalize our notions of solutions. While the E-free algebra
approach fits into the mathematical view of solving equations or disequations in a certain
algebra, the equality completion approach shows the logical aspect of this task by a more
general closed world assumption, moreover it supports generalization to arbitrary first
order theories.

4. Disunification Problems

Let us denote the problem to resolve a system I" U A of equations and disequations over
g as an E-disunification problem, written

(LA)p:=(s;=t:1<i<n,pj#q;:1<j<m)g.
An E-solution of (T, A)g is any substitution 6 € SUB(V, V), such that os; = ot for
1 <i<nand op; # 0q; for I <j<m, where V = Var(I',A). The set of all these
solutions is denoted Sg(I, A).

As already discussed, the solutions to such problems unfortunately cannot be
represented by the same instantiation method used for pure unification problems. The
reason is that solution sets are no longer closed under instantiation. For example, the
disunification problem (x =y, x #a)p under the syntactic theory has a solution {x « v,
y « v}, but the instance {x ¢ a, y « a} is not a solution.

4.1 Generalized Solutions

A way out of this trouble is to define more general notions of solutions (cf. Comon 1986,
Lassez et al. 1987, Lescanne & Kirchner 1987, Smolka et al. 1987). As we have seen, a
substitution represents the set of all its instances, hence in order to describe all instances
except certain ones we propose differences of substitutions mirroring the difference of the
corresponding instance sets. For example all solutions of the disunification problem
(f(x, g(w) = f(y, y), x # g(a))y for the variables in V = {x,y,u} can be represented by
the difference of the substitutions {x ¢« g(u), y ¢ g(u)} and {x « g(a)}. Thus we
define a substitution with exceptions on a domain V as a pair o~ of a substitution
ce SUB(V, V) and a family of substitutions ¥ = {y,e SUB(V, V): 1€ I}, the

-W. Buntine, H.-J. Burckert On Solving Equations and Disequations. 14

exceptions. Another way to represent the set of all instances of a substitution ¢ except
certain ones is to classify the exceptions by constraints on the allowed instantiations of the
free variables present after the substitution has been applied (that is, those in Var(oV)). A
solution to the above roblem then is {x « g(u), y ¢« g(u)} except when {u ¢ aj}. That
is we consider a constrained substitution on a domain V as a pair ¢j/® of a substitution
oe SUB(V, V) and a family of substitutions © ={0,e SUB(Var(oV), V): 1€ I}, the
constraints. In the following we only will consider substitutions with exceptions
(constrained substitutions) on V where the codomains of all of the occurring substitutions
are pairwise variable disjoint except for variables in V (Var(cV)).

Whereas we can treat a substitution o as a conjunction of equations, [0/, we can
treat a substitution with exceptions 6—¥ on V (or a constrained substitution of®) as a
conjunction whose parts are equations that correspond to o and disjunctions of
disequations that each correspond to one of the negated substitution from ¥ (or &), more
exactly we have the corresponding formula [0] A =T_y[¥] ([6] A =T_yay vl). Care
must be taken with the variable quantification because the codomain variables of the
exceptions and the constraints are universally quantified. We cover this in more detail in
section 4.2.

Unfortunately, not every solution of a disunification problem will have finitely
many exceptions. Let (x =y, ax #x.a)4 be a disunification problem with respect to an
associative function “.”. Solutions to this problem are all substitutions of x and y with the
same arbitrary string except the infinitely many strings aa...a of length n (for short a®),
for all n > 1. They can be represented by the following substitution with exceptions or
constrained substitution:

xe—vye—vl—{{xea}y:n21] or{xev,yev}J{{vear):n2l).

It is useful to consider both ways of representing instances. While the first form is more
suitable for testing whether or not a given substitution is an instance, the second form
better supports generation of instances (of course provided there are only finitely many
exceptions or constraints, cf, definition below). Beyond these two forms, a mixture of
them or even a weaker concept of representation may be useful. One could just solve the
equations and keep the disequations themselves as constraints without solving:

A pair(c, 64) “solves” (I', A)g, when &is an E-unifier of I'.

In order to extend the notions of instances of substitutions to our more general solved
forms, we have in mind a picture of a substitutions as a representative set of all its
instances. A substitution with exceptions then represents the instances of its substitution
part minus those of its exceptions (and similarily for constrained substitutions):

Instances(o—'F) = Instances(o) \ U,,,E.ylnstances(V).

4.1 Definition: Let W be any set of variables, and let us say a substitution A is an
E-instance on W of a set of substitutions ¥ (abbreviated A 2 ¥ [W]) iff any instance of
A is an instance of some ¥ € ¥, Then:

1. A substitution A is an E-instance on W of a substitution with exceptions o—¥
(abbreviated by A > 6—¥ [W]), iff A is an E-instance on W of g, but not of ¥.

2. A substitution A is an E-instance on W of a constrained substitution of® (abbreviated
by A 2z o]@ [W]), iff there is some ¥ with A =g yo [W], which is not an E-instance on
Var(oW) of ©.

W. Buntine, H.-J. Biirckert On Solving Equations and Disequations. 15

We call a substitution with exceptions or a constrained substitution E-consistent on W, iff
it has at least one E-instance on W, otherwise we call it E-inconsistent on W.]

Obviously the two instance notions are consistent with the common one for
substitutions as defined above, that is, A > ¢ [W] iff A is an instance of ¢, where o is
considered as a substitution with (empty) exceptions or constraints or as a singleton set of
substitutions.

Notice that we could have just as well defined 4 2 ¥ [W] by “A is an instance of
some substitution y € ¥’. This definition, however, causes problems if we wish to
work in other algebras or models. For example, in the initial algebra semantics where the
signature contains only the constant a and the unary function symbol f, the set of
solutions for x represented by the substitution {x¢f{y)} is exactly identical to the set of
solutions represented by the set {{x<f(a)}, {x<f(f(y))}}, but the former substitution is
not an instance of any substitution in the latter set.

These instance notions can of course be interpreted logically in terms of the free
algebra. We outline these simple results because they form the basis of much of our
subsequent development. Notice that instantiation and solutions relative to a particular
model or algebra could have been defined in these terms.

4.2 Lemma: Let A be a substitution.

a) Ais an E-instance on W of a set of substitutions ¥
iff xgAsatisfies 3 y[¥]in Fg.

b) Ais an E-instance on W of a substitution with exceptions o—¥
iff xgA satisfies 3_y[o] A -3 y[V] in Fg.

¢) Ais an E-instance on W of constrained substitution ojj®
lﬁc KEA. satisﬁes 3_‘/([0'] A _'E—Var(o‘V)[@]) in TE

d) A solves a disunification problem (I', A)
iff xgA satisfiesI’'AAin Fg.

Proof: a) This follows similarly to Lemma 3.4.
b—d) These follow directly from the definition and part a). [|

Inconsistency

While a substitution always has instances, this may no longer be the case for substitutions
with exceptions and constrained substitutions: {x & f(v)}~{{x & f(w)}} or
equivalently {x ¢« f(v}} [[{{v « w}} have no instances because in the first form the
substitution can be an instance of one of its exceptions and in the second form the
constraints span the whole set of substitutions. The lemma below shows how to detect
inconsistency, and notice that it applies in any model/algebra of EC when using
instantiation within the model/algebra.

4.3 Inconsistency Lemma: Let W a set of variables.
1. A substitution with exceptions 0—‘¥ has no E-instances on W
iff ois an E-instance on W of V.
2. A constrained substitution off® has no E-instances on W
iff € (the identity) is an E-instance on Var(oW) of ©.

W. Buntine, H.-J. Birckert On Solving Equations and Disequations. 16

Proof: 1. If ois an instance of ¥ then all instances of ¢ are instances of ¥. Hence there
is no instance of c—'¥. Conversely, assume A is an instance of 0—% and ¢ is an instance
of Wthen A is an instance of W, a contradiction.

2. If gis an instance of @ then all substitutions are instances of ®. Hence 4 =g yo [W],
where 7is not an instance of © is impossible, that is, there exists no instance of /.
Conversely, assume there is an instance A =5 Yo [W] of ¢f/@ and € is an instance of ©
then 7is also an instance of ©), again a contradiction. |

4.4 Corollary: A substitution with exceptions or constrained substitution has no
E-instances on W in any modellalgebra of E€ if it has no instances in the E-free
algebra.

Proof: This follows directly from Lemma 3.4. n

From the computational point of view, our solved forms will only make sense if we
can decide whether or not they are consistent. In the free algebra, sufficient conditions
are that there are at most finitely many exceptions or constraints and that we can decide the
problem of whether a substitution o'is an E-instance on W of another substitution ¢. The
latter decision can be done by solving the E-unification problem (ox = @x: x e W),
where the variables of ¢x are treated as constants, provided we have a suitable
E-unification algorithm. Unification problems, where one side is (considered) ground,
are known as E-matching problems (cf. Biirckert 1989 for a discussion of the
relationships between E-matching and E-unification). In this situation we also can decide
redundancy of exceptions or constraints.

If we want to deal with the initial algebra semantics, we have to test whether or not
a substitution with exceptions or a constrained substitution has ground instances (“ground
consistency”). Hence by the Inconsistency Lemma, we need a decision procedure for
testing if all ground instances of a substitution are E-instances of a (finite) set of
substitutions. An example will demonstrate what may happen: The two substitutions
{v ¢« a} and {v « f{w)} span all ground substitutions (with respect to the variable set
{v}), if we suppose that there are only the constant a and the unary function symbol fin
the signature That is, the constrained substitution{x « v} [[{{v & a}, {v « f(w)}}
has no ground instances because (using the Inconsistency Lemma) € is an instance of
{{v &« a}, {v « fiw)}} in the initial algebra — in contrast with the free algebra.

Translating between Representations

How do the two representations, exceptions or constraints, compare? One way of
answering this question is to show how translations can be made between them. The
notions of instantiation allow such translations. Notice that while the lemma below could
have been developed in terms of the free algebra ¥, we have instead worked in the
logical context via Lemma 4.2. A corresponding Translation Lemma, then, applies in any
model or algebra of EC. For example, the lemma holds for E-instances in the initial
algebra as well.

W. Buntine, H.-J. Burckert On Solving Equations and Disequations. 17

4.5 Translation Lemma: The substitution E-instances on W of the substitution

with exceptions - are equivalent to those of the constrained substitution
oIy pcUg(ow = yw: weW).
2. Let (Oc)|y represent Uy ol (60)/w}. If E is an equational or definite clause
equality theory such that for any term t and substitution t, cUg(t = ©t) = {1},
then the substitution E-instances on W of the constrained substitution ojj© are
equivalent to those of the substitution with exceptions 6—©0)/y.

Proof: Notice that I_y[0] A =I_w[¥] & I y([0] A =T_yaiow) Ve ¥ \wew OW=YW),
since W 2 Var(a)nVar(¥). And VyecpA,ew ow=yw < [UyepcUg(ow=yw:
weW)], since we are in a model of EC¢. In the free algebra, the result follows from
Lemma 4.2. n

Let us call a theory E Q-free (cf. Szabo 1982, Biirckert et al. 1989), if for all
function symbols f of the signature

f(s1,....80) =g f(21,...,ty) implies s; =g t; (1 i <n).
Then the following corollary to the Translation Theorem holds.

4.6 Corollary: Let (O0)/y represent Uy, of (60)/yw}. If E is an S2-free equational
or definite clause equality theory, then the substitution E-instances on W of the
constrained substitution ojj@ are equivalent to those of the substitution with
exceptions 0— ©0)/y.

Proof: From the Translation Theorem we get that the substitution E-instances of
0—©0)/y are equivalent to those of o)y gcUp(ow=00w: we W). It remains to be
shown that for every €€ @, 6 is a most general unifier for (ow=0ow: we W)g.
Obviously 8 is an E-unifier (idempotency of 6). By the Q-freeness property we have that
every solution of the problem is an instance of 8: Aow =g A8ow for allwe W) implies
Ax =g A6x for all x € Var(oW) , and the idempotency of @ implies Ax =g A6x for all
variables x € Var(6oW). Hence A is an E-instance of 6.]

Consider the equational theory E given by {f(a, x) = f(a, y)} over the signature
containing only the constant symbol a and the binary function symbol f. First, if we
ignore the warning concerning equality theories given in part 2 of the Translation Lemma,
we would translate the constrained substitution {x ¢« f(a, u)} /| {u ¢ a} into the
substitution with exceptions {x ¢ f(a, u)}—{x & f(a, a)} which due to E is
inconsistent. But notice the constrained substitution also simplifies to {x ¢« fla, u)} (4
can take on any value), so the lemma is clearly not applicable for this equality theory.

Redundancy

The form of substitutions with exceptions or constrained substitutions given can
sometimes be further simplified. There may be redundant exceptions or constraints, that
is, if we remove them, we will have exactly the same instances as before. For example,
in the context of the empty equational theory, consider the following substitution with
exceptions on {x, y}:

{(x & flu,v), y < a} - {{x & f(g(z), b)}, {x « fg(c), b)}, {x & fiw, b), y « d}}.
This can be simplified to

W. Buntine, H.-J. Bitrckert On Solving Equations and Disequations. 18

{x & flu, v), y «a} - {{x « f(g(z), b)}}.

Even worse, consider the following two substitution with exceptions on {x}:

{x « flu)} - {{x « fif(v))}} and {x « f(f(v))}.

In this case the effect of the exception is negated by the second substitution, and together
they simplify to

{x « f(u)}.

In our experience with an experimental interpreter for logic programs using syntactic
equality and constrained substitutions, these forms of redundancy and others besides
were common. The identification of redundant constraints, exceptions or substitutions is
a key problem as it can significantly simplify a solution's representation, as well as
subsequent computation making use of the solution.

The following six cases of redundant exceptions may arise:

Case I: An exception Y is an instance of the other exceptions, that is, yis an “E-merge”
of a subset of ¥\ {y,} (E-merges can be computed by E-unification: an E-merge of a set
of substitutions is any E-unifier of the conjunction of the equational representations of
those substitutions, cf. Herold 1987 for more details and some results on E-merging).
This is the case for the second exception in the first example above.

Case II: An exception Y, and the substitution ¢ have no common E-instances, that is,
they have no E-merge. This is the case for the third exception in the first above.

Case III: As a combination of the above two cases, some instances of Y, are instances of
Y\ {y,} and the others are not instances of .

Case IV: Another substitution with exceptions in the set covers those instances that would
be excluded by an exception y This is the case in the second example above.

In addition, the following two cases of redundant substitutions with exceptions may arise:
Case V: A substitution with exceptions is a special case of one another in the set.
Case VI: A substitution with exceptions is a special case of several others in the set.

To make these forms more explicit we need to define, first, what it means for
substitutions with exceptions and constrained substitutions to be free of redundancy, and
second, how relative instantiation of them can be compared. Instantiation is used as a tool
to detect redundancy. The notion of “redundancy-free” is captured by the definition of
reduced below; this is analogous to the definition for reduced definite clauses used in
Generalised Subsumption (Buntine 1988).

4.7 Definition: A set of substitutions with exceptions {0,—'¥,: i€ [fon V is reduced
(or minimal) if, for any {o,~¥",: 1€ K} produced by removing at least some exceptions
or at least some substitutions with exceptions from {o,—¥,: te I} and 2K, there exists a
substitution A and an 1] such that A 2; 6,—¥, [V] but no xe€ K such that A > 0,V
[v]. ‘ ‘ n

We call the process of removing an exception or a substitution with exceptions from
a set of substitutions with exceptions reduction just when the substitution E-instances of
the set remain unchanged by the removal. So if we cannot reduce a set of substitutions
with exceptions any further, they must be reduced.

The definition of reduced for constrained substitutions is equivalent. Notice that a

W. Buntine, H.-J. Buirckert On Solving Equations and Disequations. 19

single substitution with exceptions is reduced if and only if no exception can be removed
from it. The following definitions of instantiation are a natural extension of the previous.

4.8 Definition: Let W be any set of variables. We call a substitution with exceptions
0—A an E-instance on W of a substitution with exceptions o—Y iff A 2z —A [W] implies
A 2; 0—¥ [W]. We abbreviate this by 6—A > 0¥ [W].

We call a substitution with exceptions 6—A an E-instance on W of a set of substitutions
with exceptions {0,—¥,: 1 € I} iff A 2 6—A [W] implies A 25 6,—'F, [W] for some index
1. We abbreviate this by 8—-A 2 {0,-¥,: 1€ I} [W].]

Again, the definitions of instantiation for constrained substitutions are equivalent.
So a substitution with exceptions can be reduced from a set of substitutions with
exceptions if it is an E-instance of the remaining substitutions with exceptions in the set.
This notion of instantiation has a slightly different flavour to that found for common
substitutions. For example, we showed above that {x ¢ f{u)} is an E-instance on {x} of

{x « flu)} — {{x « fifv))}} and {x « f(f(v))},

but notice that it is not an E-instance of either of these substitutions taken individually.

The following lemma shows how such E-instances can be detected recursively.
This allows redundancy cases V and VI to be detected.

4.9 Instantiation Lemma: [. An E-consistent (on W) substitution with
exceptions 8—A is an E-instance on W of a set of substitutions with exceptions
{o—~Y,: 1el] (where 1€ I) iff

62 01 [W] or 6—(AUfoy) 2g{ 0 ~¥, 1el-{1} } [W],
and for some we ¥, and each pe cUg(dw=yw: weW)
pé2p A[W] or pé-A 2p{ o~V 1el-{1} } [W].
2. Let E satisfy the conditions in part 2 of the Translation Lemma. An
E-consistent (on W) constrained substitution & [|A is an E-instance on W of a set
of constrained substitutions {0, [|©,: 1 € I} (where le 1) iff
02 oy [W]or §[|(AcUg(w=0cw: weW)) 2 {0, /1O,: 1el-{1}} [W],

and for some B€ @ and every pe cUg(dw=00w: weW)

P8 2 Ab [W] or pS A, pcUr(pdw=Adw: weW) 2p (G /O,: 1€ [-{1}}[W].

Proof: 1. The left-hand side by definition is equivalent to: A 2 8 /W] and not A 2 A [W]
implies there exists 1e I such that A 2 6, [W] and not A 25 ¥, [W] iff A 28 [W] and
not A 2p A [W] and not A 2 6,/W] or A 2 8 [W] and not A 2p A [W] and A 2 ¥ ,[W]
implies there exists an te I-{ 1} such that A 2 ¢, [W] and not A 2 ¥, [W]. Note that as
in the proof of the Translation Lemma part 1, 4 2¢ 6 [W] and A > V(W] iff A 2> pé (W]
for some pecUg(dw=yw: we W) for some ye ¥, and the result follows again by
definition and the Inconsistency Lemma.

2. This follows from part 1 and the Translation Lemma. n

The Instantiation Lemma does have some simpler special cases. When comparing a
single substitution against another, we get:

W. Buntine, H.-J, Biirckert On Solving Equations and Disequations. 20

4.10 Corollary: 1. A substitution with exceptions 6—A is an E-instance on W of a
substitution with exceptions o—Wiff 6 2g 6 [W] and there is some ye ¥, such
that for every p € cU(dw=yw: weW), pd2p A [W].
2. Let E satisfy the conditions of part 2 of the Translation Lemma. A constrained
substitution 8 A is an E-instance on W of a constrained substitution o© iff
& 2 0 [W] and there is a € O, such that for each p € cUg(dw=00w: weW),
pd 2p A [W].

The Instantiation Lemma also yields results for detecting redundant exceptions or
constraints, and so allows redundancy cases I-IV to be detected.

4.11 Corollary: 1. The exception yye ¥ can be reduced from ¥, in the set of
substitutions with exceptions {o,—%¥,: 1€} on W (where 1€l) iff for each
pecUg(ow=yw: weW)

po 2\ {vyel [W]

po-¥i\{yg 2p{ o-¥ nel-{1}] [W].
2. Let E satisfy the conditions in part 2 of the Translation Lemma. The constraint
6,€ O can be reduced from®) in the set of constrained substitutions {6 J|©,: 1€ I}
on W (where 1€l) iff

or

0901 2 €101\ (6p0)} [W]
or
0001l e o\j00) CUE(OpOw=00w: weW) 2 (0B, 1€ I+{1}} [W].

As an example of Corollary 4.11 Part 2, let x,u,ve Vand let E be given by the
equation {f{x, a)=f(y, a)}, and consider the single constrained substitution ¢j/® on
W={x} given by {xef(uv)} ||{ {ue-b,vea}, {ue—c,ve—a} }. Suppose we wish to
apply the corollary with 6, given by {u¢b,v¢—aj. The lemma says to reduce 6,iff 6,0
2 @0\ {0p0} [W]. Clearly this holds true. Notice that if we apply the Translation
Lemma it can be readily seen that 8, should reduce. Notice also, that a candidate
simplification of Corollary 4.11, reduce 6,iff 6, 2> ©\ {0y} [Var(cW)] does not
correctly predict the reduction.

Complete Representations

As with substitutions we are interested in representative sets of substitutions with
exceptions or constrained substitutions. Therefore we define a set of substitutions with
exceptions S to be a complete representation for the solutions of a disunification problem
(I, A)g, iff the instances of the elements of S are exactly the solutions of the
disunification problem (again, where V=Var(I,A)):

@ A2 o-¥[V]forsome o—¥ € Simplies Asolves (I, A)r (correctness)

(i) Asolves (I, A)pimplies A 2 o~ [V] for some o—%¥ € S (completeness)
Usually such a representative set should not contain inconsistent elements, we require:

(iii)) o-¥is E-consistenton Vforall o-¥ € S (consistency)
A final property, possibly pertaining to a representative set is minimality or reduction; this

was described for substitutions with exceptions in the previous section. Representative
sets of constrained substitutions are defined analogously. Obviously these definitions are

W. Buntine, H.-J. Btirckert On Solving Equations and Disequations. 21

again consistent with the corresponding definitions for common substitutions;
correctness, completeness and minimality for a set of substitutions are equivalent to
correctness, completeness and minimality for the set of substitutions considered as set of
substitutions with (empty) exceptions or constraints.

Again we call a theory finitary (w.r.t disunification), if every disunification problem
has a finite complete set of substitutions with exceptions or constrained substitutions
representing all its solutions; and we call it unitary (w.r.t. disunification), if the solutions
of every disunification problem can be represented by a single substitution with
exceptions or constrained substitution.

The logical interpretation of correctness and completeness is as follows.

4.12 Corollary to Lemma 4.2: Let (I, A); be a disunification problem,
VcVar(T,4).
1. a) A substitution with exceptions 6—=%¥ on V solves the disunification
problem or is E-inconsistent on V iff
TE’: V(o] A —13_‘/['{/] =TI'AAd)
b) A set of consistent substitutions with exceptions { o,~¥,:1€ } onVisa
complete representation of the disunification problem iff
FeeVW(TAA & Vgl (3 ylo] A-Ty[¥]))
2. Corresponding results hold for constrained substitutions, with
I vlo] A= yl'V] replaced by 3 ([O] A "'ivar(oV)[&]), etc.

4.2 Representation of Solutions

The following Representation Theorem shows that the solutions of a disunification
problem can be obtained as instances of certain sets of substitutions with exceptions or
constrained substitutions that are generated by solving unification problems only. It
depends on some easy transformations of the solution sets (cf. Lassez et al. 1987):

Se(l) = UgD)-U, g eaUrlp = @) = U=, g caU(T,p = q).
Part 1 of the theorem corresponds to the first transformation, part 2 and 3 to the second
one. It essentially says that in this transformation the sets of solutions can be replaced by
complete solution sets. Notice that when they exist, we can also use minimal unifier sets
instead of arbitrary complete ones.

4.13 Representation Theorem: Let (I', A)p be a disunification problem, let
V 2 Var(T, A), and let cU(A) denote a complete solution set on Var(A) for the
unification problem (A)g.

I.Let ¥:= U, cacU(p = q), then
{o-¥: o e cU(T) but not o 2g'¥[V] }
is a complete set of substitutions with exceptions for (T, A)g.
2. Let @y := UpyepcU(ap = 0q), then
{0, : o € cU(T) but not € 2O, [Var(oV)] }
is a complete set of constrained substitutions for (T, A)g.
3. Let O5:= Uy cycU(ov=yv:veV) forall o€ cU), then
{018, : 6 € cU(T) but not € 2O, [Var(oV)] }
is a complete set of constrained substitutions for (T, A).

W. Buntine, H.-1. Biirckert On Solving Equations and Disequations. 22

Proof: 1. Asolves (I, A)g then As =g At for all s =t € I"and Ap #¢ Aq for all
disequations p #q € A. Hence there is a 6 € cU(I') with A 2 o[V]. Assume A 25 ¥
[V], then there is some p #q € Aand some y € cU(p = q) with A 2g y/V]. Hence
Ap = Aq, a contradiction.

Conversely let A 2g ofV] for some ¢ € cU(T), but not A 2 W [V]. Then obviously As
=g At foralls =tre I Assume Ap =g Ag for some p #q € A, then A is an instance of
some y € cU(p = q). Thatis A 2z ¥ [V], a contradiction.

2. Asolves (I, A)p thenAs =g At foralls =t e I'and Ap #; Ag forall p #q € A.
Hence there is some 0 € cU(I') and some ywith A =5 yo[V]. Assume y2p D,
[Var(oV)], then there is some p #g € A and some ¢ € cU(0p = 0q) with Y2z ¢
[Var(aoV)]. Hence yop = y0q, and therefore Ap =f Ag, a contradiction.

Conversely let A =g Yo [V] for some o € cU(I') and some %, such that Yis not an instance
of @, Then obviously As =g At foralls =t e I. Assume Ap =g Aq for somep #q in
A, that is Yop =g y0q. Hence there is some ¢ € cU(op = og), with ¥ 2¢ ¢ [Var(cV)].
Therefore Y=g @4 [Var(oV)], again a contradiction.

3. Asolves (I, A)p then As =g At foralls=re I"and Ap #z Ag forall p #q € A
Hence there is some o € cU(I') and some ywith A =g yo[V]. Assume ¥y 26
[Var(oV)], then there is some p #q € A, some 7€ cU(p = q), and some 6 € cU(oV =
tV) with y2¢ 6 [Var(oV)]. Hence we have 8ox = Ozx for all variables x € V and there
is some B with yy = 86y for all y e Var(oV). Then the following equality chain holds:
Ax = yox =g B6ox =5 fOtx forallx € V. Thisis A 2 v [V], and hence Ap =g Aq, a
contradiction.

Conversely let A =g yo [V] for some ¢ € cU(I') and some ¥, such that yis not an instance
of &, Then obviously As =g As foralls =t e I. Assume Ap =g Ag for some p #¢ in
A, then A is an instance of some 7 € cU(p = q), hence A =g Bt [V] for some . By the
separation assumptions DOM& = DOM7 = V and VCODo N VCOD7T =, hence fand ¥
can be chosen, such that DOMB N DOMy = @ and DOMy =Var(coV). Hence the
substitution 6 with @x ;= fix for x € DOMB and 6x := 1 for x € DOMYis well-defined
and A =g 60 =g 07 [V], i.e. 8 € cU(cV = 1V). By definition yx= 6x for all variables
x € Var(oV), hence y =g O, [Var(cV)], again a contradiction. [|

Obviously the theorem also holds if we restrict ourselves to ground solutions. The
above substitutions with exceptions and constrained substitutions also represent all
ground solutions of the given disunification problem; but remember the note after the
Inconsistency Lemma.

As an easy corollary of the Representation Theorem we have that the type unitary or
finitary for a given theory is the same with respect to both unification and disunification,
and the solutions can be represented by substitutions with finitely many exceptions or
constraints.

W. Buntine, H.-J. Blirckert On Solving Equations and Disequations. 23

4.14 Corollary: a) E is unitary with respect to unification iff E is unitary with

respect to disunification. In this case the solutions of disunification problems
can be represented by one substitution with finitely many exceptions or
constraints.
b) E is finitary with respect to unification iff E is finitary with respect to
disunification. In this case the solutions of disunification problems can be
represented by a finite set of substitution with finitely many exceptions or
constraints.

The above results show that, provided we have a unification algorithm
E-UNIFY(T) for a theory E, that always computes a finite, complete set of E-unifiers for
a system of equations I"and an algorithmus E-CONSISTENT (0—'¥) for E-consistency
tests of substitutions with exceptions or constrained substitutions, we also get a
disunification algorithm E-DISUNIFY(T,A) for E, that computes a finite and complete set
of substitutions with (finitely many) exceptions or constraints solving the disunification
problem (I, A)p . The consistency test can be done by E-unification. We only give the
algorithm for substitutions with exceptions corresponding to part 1 of the Representation
Theorem; it can easily be extended for the constrained substitutions of part 2 or 3 of the
theorem.

4.15 Algorithm E-DISUNIFY(I',p; #qy, ..., Py #q,)
Input: A system of equations I" and disequations p; #¢q,, ..., P, #4,

1. cU := E-UNIFY(I),
cU, := E-UNIFY(p, = q)),..., ¢U, := E-UNIFY(p, = q,)

2. ¥:=cUu...ucl,
3. S:= {0-¥: 6€ cU and E-CONSISTENT(o-F)}

Output: A finite, complete set S of substitutions with (finitely many) exceptions
solving the input system or the empty set, if the input system has no
solutions.

Notice that the system is not solvable iff the equation part is unsolvable or none of
the computed substitutions with exceptions has an instance. If some of the unification
problems corresponding to the disequations have no solution, then these disequations are
redundant, i.e., the disunification problem has the same solutions, if we drop these
disequations. More generally, we have the following result, that follows immediately
with the Representation Theorem.

4.16 Redundancy Lemma: Let (I, A, p) # qy)g be a disunification problem.
Equivalent are:
(i) Do #qy is redundant
(i) Ugl,pg=q0) €Y, qeaUe(T P = q)
(iii) T 2, g eacUg(I, p = q) for each © € cUK(T, py= q,)
(cUg(A) denote complete subsets of the sets Ug(A))

We cannot get the stronger result of Proposition 21 of Lassez et al. (1987); this
holds only for theories E that are unitary with respect to unification:

Do #qo is redundant, iff U(T', po= qp) S UE(I, p = q) for some p #q € A.

W. Buntine, H.-J. Biirckert On Solving Equations and Disequations. 24

Here we still have more, since now the solutions of every unification problem can be
represented by a single most general unifier, say o,for Ug(I, pg = qp) and o; for
Ug(T, pi = qi) for each p; #q; € A:

Do #qp is redundant, iff 09 2g O; for some i.

4.3 Propagation and Merging of Solutions

In order to solve systems of equations one usually solves them sequentially that is solving
the equations step by step setting in the solutions of former equations into the later ones
(propagation), or one solves all equations quasi-parallel unifying the solutions (merging).
It is well-known that these approaches lead to complete sets of solutions for a system,
provided the intermediate steps produce complete solution sets (the proofs are very similar
to those of the Representation Theorem and can be found for example in Biirckert 1989;
see also Ohlbach 1986, Herold 1987). We generalize these results for substitutions with
exceptions and constrained substitutions.

4.17 Propagation Lemma: Lert (Iy, A;)gand (I, A,)p be two
E-disunification problems, V 2 Var(I'y, A;, I, A;), and cU(A) denote a
complete solution set on Var(A) for the unification problem (A)g. Let
Vo=, cqearuacUlp = q) then

{(to)ly,~Y¥: oecU(TI}), tecU(oT3) but not to 25¥ [V]}
is a complete solution set for (I, I, 4, 4;).

Proof: 1t is well-known that {(70)/y: cecU(I}), tecU(ol}) } is a complete solution set
for(I';, I;). Hence the theorem follows with the Representation Theorem. |

4.18 Merging Lemma: Ler (Iy, A;)g and (I, A;)p be two E-disunification
problems, let V 2 Var(I'y, Ay, I,, 4;), and let cU(A) always denote a complete
solution set on Var(A) for the unification problem (A). Let
Oy :=U{cU(ov = ywv, wv = v: veV): wecU(p = q)forp #q € A; U 4;).
Then:

{(80)/\l® g 0€ cU(T)),7e cU(T;),6€ cU(av=1v:ve V),but not 25Oy, [Var(doV)]}
is a complete solution set for (I';, I, A;, Ay)g (notice, that 8o =g 6t [V]).

Proof: Again the proof follows with the Representation Theorem and the fact that
{(60)]y: o cU(I), tecU (I,), e cU(ov = 7v: ve V)} is a complete solution set for
(FI’ FZ)E |

Notice, that by the symmetry of the Merging Theorem we have also shown the
solutions are independent of the ordering of equations and disequations in the system.

We can also formulate a propagation theorem for the second form of substitutions
with exceptions and a merging theorem for the first form. Notice, that the first and
second part of the Representation Theorem are special cases of propagation and merging,
where A; and I, are empty. Additionally we can have some versions of merging or
propagation analoguously to part 3 of the Representation Theorem. However, these cases
are similar to the above two versions, but still more technical.

4.4 Restricting Variables

W. Buntine, H.-J. Btirckert On Solving Equations and Disequations. 25

For a given disunification problem(I', A)z, one may not always be concerned about
solution values for all the variables in Var(I', A). Some variables may be auxiliary
variables, which only play an existential role. A value for them must exist, but the actual
value is of no consequence. For example, all solutions for the problem

(f(x; g(u)) = f{y, y), x #g(a))ﬁ

for the variables in V = {x,y,u} can be represented by

{x ¢ g(u),y « g(u)} ~{x « g(a)}.
Suppose, however, that, only solutions for variables in V = {y} are required, so the
variables x and u play an existential role. In this case, solutions can be represented by

{y « g(u)} ~{y « g(a)}.
The exception needed to be restructured in this case to account for the fact that x no longer
existed in the substitution. Denote this process of removing existential parameters as
finding the restriction of a substitution with exceptions. The treatment below introduces
the general problem of existential parameters and then shows how to resolve the problem
using restrictions (cf. Nutt et al. 1989, for the case of solving equations only).

Let us denote the problem to resolve a system I" U A of equations and disequations
over J for just the variables in V as an E-disunification problem on V, written (I', A)g
on V. Variables in Var(I',A) -V are the existential parameters for the problem.

An E-solution of (I, A)z on V is every substitution ¢ € SUB(V, V), such that
there exists a substitution T € SUB Var(lA) -V, V) with o1s = gpou foreachs=te I’
and o1p #; 07q for each p = g € A. Whether a set of substitutions with exceptions or
constrained substitutions is a correct and complete representation of a disunification
problem on V is defined as before.

In accord with Lemma 4.2, the logical interpretation of a solutionto (I, A)on V
is an assignment to variables in V such that 3y, (I" A 4) is true in Fg.

4.19 Corollary to Lemma 4.2: [a). A substitution with exceptions o-¥ on'V
solves the disunification problem (I', A)z on V or is E-inconsistent on V
iff FerV([o]A=Ty[¥P] =Ty ([T rA))
1b) and 2. Corresponding results hold for completeness and for constrained
substitutions.

To find a solution for a disunification problem (I', A) on V, it is clearly sufficient
to find a solution to the disunification problem (I', A)z (on Var(I', A)) and then remove
the existential parameters, that is, the variables in Var(I, A)-V.

4.20 Definition: The E-restriction of a substitution with exceptions 6—¥ on U to a set
of variables VU is a substitution with exceptions § —A on V such that A 2 o-¥ [U]
implies A/y 2 6—A [V], and A 2 6 —A [V] implies there exists a substitution 7 such that
At 2 0—¥ [U]. This E-restriction is denoted 6—%¥ /y, where E and U are to be taken
from context. [

A corresponding definition naturally holds for the E-restriction of a constrained
substitution, and for restrictions in algebras other than the free algebra. The definition is
also consistent with the common one for substitutions. An algorithm for constructing an
E-restriction is not nearly as simple as it is for substitutions, however. An algorithm

W. Buntine, H.-J. Biirckert On Solving Equations and Disequations. 26

makes use of the following other algorithms. The algorithm E-TRANSLATE(o-Y¥, U)
computes a constrained substitution equivalent to the substitution with exceptions o—¥
on U, The Translation Lemma part 1 specifies such an algorithm for finitary equality
theories. The algorithm E-TRANSLATE-(6/®, V) computes the corresponding inverse
translation, for example, via Translation Lemma part 2. Finally, the algorithm E-UNIV-
QUANT(©,U, V) computes a finite set of substitutions €2 such that

?-E E Vv(5_V[Q] {—4 VU\VE—U[@]))
Some UNIV-QUANT algorithms are given below.
4.21 Algorithm E-RESTRICT(o-Y¥, U,V)

Input: A substitution with exceptions 0—%¥ on U and a set VeU
(It is assumed all existing substitutions are restricted to U and contain no
variables in common other than those in U.)

1. 0/© := E-TRANSLATE(o-'¥, U)
2. ©° := E-UNIV-QUANI(® ,Var(8U), Var(6V))
3. 6-A := E-TRANSLATE-!(0/y|©", V)

Output: A substitution with exceptions 6—A on V that is the E-restriction of o—¥ on U
toV.

4.22 Restriction Lemma: The E-restriction algorithm E-RESTRICT is correct.

Proof: The algorithm corresponds to the following transformations:

Ay(Iylo] =T yl¥])

Ay I y([60] A =T yaneul©]) (by step 1)

Fy Iy ([8/vI A = Pyaneu)\Varev)I-vare)l ©1)

Ay Iy (18/vi AT yayewl©1) (by step 2)

v [8] A=3_y[A] (by step 3)]

Notice that to construct the E-restriction of a constrained substitution, only step 2 in
the algorithm is required. The relationship between E-restriction and translating
constrained substitutions to substitutions with exceptions is a strong one. We also have:

E-TRANSLATE-1(0)©, V) = E-RESTRICT(6-8,V U Var(6), V).
Finally, the definitions for restriction and the above results easily transfer to algebra or

model families other than the free algebra. For the free algebra of syntactic equality, a
UNIV-QUANT algorithm is particularly simple.

g 888

4.22 Lemma: For the free algebra of syntactic equality, ¥,
@-UNIV-QUANT(®, U, V) := {8 © : (U\ V) N Var(6) = }.

Proof: For any assignment to the variables in V, there always exist distinct constants that
can be assigned to the variables in U\ V forcing every /6] such that (U\ V) nVar(0) # @
to be false. The remaining substitutions are not effected by the quantification. n

Clearly, an identical result follows for A. Colmerauer’s domain of infinite trees
(1984) when an infinite supply of function symbols exists, and for theories such as AC.

W. Buntine, H.-J. Biirckert On Solving Equations and Disequations. 27

5. Applications

There are several applications for E-disunification. In recent papers logic programming
(Goguen & Meseguer 1986, Jaffar et al. 1986, Gallier & Raatz 1986, Biirckert 1986) as
well as term rewriting (Lankford & Ballantyne 1977, Peterson & Stickel 1981, Stickel
1984, Jouannaud & Kirchner 1984) have been extended for unification or matching with
respect to equational theories. The approach of A. Colmerauer - disunification as a
constraint solving process for logic programming - is generalized in a naturally way to the
above extension (section S.1). Also H. Comon's application for disunification to show
sufficient completeness for algebraic specifications given by term rewriting systems might
be extended in such a way (equational theories may be used to specify non-free
datatypes), cf. (Comon & Lescanne 1988). The huge number of solutions for
AC-unification problems (Biirckert et al. 19892), where AC is the theory of associative
and commutative functions, can be reduced by representing these solutions with
substitutions with exceptions that solve suitable AC1-disunification problems (section
5.2). Finally we consider certain applications in resolution based theorem proving, where
disunification might be used to avoid certain redundancies in the search space (section
5.3).

5.1 Logic Programming and Disunification

Negation has been a continuing problem in logic programming since its inception. A
limited approach is negation as failure (Clark 1978, Lloyd 1984). But as illustrated in the
introduction, this approach will always remain limited because some queries do not have
solutions that can be expressed as substitutions. We outline a more general approach
here.

We shall take an abstract view of logic programming. A logic programming system
transforms a query Q represented as a logical formula into an intermediate solution form §
and then simplifies that intermediate form into an equivalent solution form A. The
transformation process makes use of the logic program available to the system and is such
that § implies Q in some special model or structure consistent with the logic program.
The simplification process preserves equivalence in the model or structure.

A simple example demonstrates this position well. Pure Prolog is the use of
definite clause logic programs on the empty equality theory evaluated, for instance, using
breadth-first linear resolution.

logic program: definite clauses

transformation process: the application of modus ponens

intermediate solution forms: existentially quantified conjunctions of equations
simplification process: the unification algorithm

solution forms: substitutions

model space: Herbrand models

The various froms of linear resolution efficiently splice the transformation and
simplification processes.

In this subsection we present an abstract system for logic programming that uses the
full power of disequation processing developed in Section 4.

W. Buntine, H.-J. Birckert On Solving Equations and Disequations. 28

First some definitions. An equational formula is a formula of first order logic such
that the only predicate symbol contained is the equality symbol. These formulae will be
our intermediate solution form. The logic programs we will consider are completed
general logic programs (Lloyd 1984). These can be generated, for instance, from
extended programs constructed from arbitrary first order formulae (I.loyd and Topor,
1984). They are defined as follows. A general program clause is of the form A &< W
where W is a conjunction of literals (atoms or negated atoms). A general program is a set
of such clauses. A completed definition for an n-ary predicate p from a general program
P is a formula of the form

V(b(xq,...%,) S E;v..VE,)

where each E; is of the form 3 y(x;= t;; A... AX,= 1,; AW;), given that there are exactly
m general program clauses in the general program P of the form p(t;;,.. .t,;) <= W, and
X={x;,....x,} are distinct new variables. A completed general program is the set of
distinct completed definitions from a general program.

One form of computation for completed general programs is SLDNF-refutation
(Lloyd 1984, see also Clark 1978). We will not elaborate here on the details of this
refutation strategy, suffice it say the strategy has a severe restriction in that negative
literals can only be evaluated if they are ground. The restriction is necessary to ensure the
soundness of the strategy, and can be seen to be a direct consequence of the fact that the
only intermediate solution forms allowed in such strategies are substitutions. Non-
ground negative literals may well require disequations to express their full range of
solutions.

In Section 4 we put all the necessary machinery in place so that any equational
formula can be simplified to one of éur solution forms, a set of substitutions with
exceptions. We formalise this in Lemma 5.1 for the particular context of a free algebra,
although the approach generalises to other algebras, for instance the initial algebra, if the
necessary basic algorithms exist. Lemma 5.1 means that a whole new class of
computation strategies are possible, for instance, not suffering the restrictions of SLDNF-
refutation.

5.1 Lemma:Given an equational or definite clause equality theory E that is finitary,
and algorithms E-UNIFY, E-CONSISTENT, E-TRANSLATE-! and E-UNIV-
QUANT as specified in Sections 4.3 and 4.4, and an equational formula F with
free variables V. A finite reduced set of substitutions with exceptions {0,~'¥,:
tel} on 'V can be constructed that is equivalent to F in the free algebra Fg. That
is

FeEVW(F & Vier(3dylod a=3Iy[V])).

Proof: Clearly, the space of finite sets of substitutions with exceptions is closed under the
operations of negation and disjunction. The logical form of a set of substitutions with
exceptions demonstrates this well., Due to the Restriction Lemma, we also have in the
situation we are considering that a set of substitutions with exceptions can be existentially
quantified. Finally, unquantified conjunctions of equations and disequations can be
transformed into a set of substitutions with exceptions by the Representation Theorem. It
follows by induction on the structure of F that from F we can construct an equivalent set
of substitutions with exceptions {6,—'¥,: 1t € I} on V. The Instantiation Lemma and its

W. Buntine, H.-J. Biirckert On Solving Equations and Disequations. 29

various corollaries show that this can be subsequently reduced if we have an instantiation
test available. Notice that in the free algebra, whether a substitution is an instance of a set
of substitutions (in the sense of the definition in Section 4.1) can be tested by a unification
algorithm. This follows from Lemma 3.4. In general, however, the E-CONSISTENT
algorithm could perform such a test, by the Inconsistency Lemma. [

Consider the following non-deterministic, possibly non-terminating transformation
process.
Input: A query Q that is a literal, and a completed general logic program P.
1. LetF = Q.
2. Repeatedly perform one of the following:

2a. Ifan atom A = p(sy,...,s,) occurs inside an even number of
negations in F,
replace A in F by J_ypa) (5/= t1i A ... ASy= 1, ; A W) for some i,
where the predicate p is as given in the definition of a completed
definition.

2b. IfanatomA = p(s,...,s,) occurs inside an odd number of
negations in F,
replace A in F by 3 y sy (S/= Xp A AS= X, A(Epv .. VE,,)),
where the predicate p is as given in the definition of a completed
definition.

2c. If an atom occurs inside an odd number of negations in F,
replace the atom in F by rrue.

Until F is an equational formula.
Ouput: An equational formula F such that P £ V(Q « F).

As an example, the predicate member(x,y) corresponds to xey, and the predicate set-
difference(x,y,z) corresponds to z = x \ y. These predicates can be defined logically as
follows. (The "." notation for lists is used, for instance, [7,2,3] corresponds to
1.2.3.[].)

member(x,y) <> 3, (y=xu)v3I,,(y=uvAmember(xy))
set-difference(x,y,z) <> V, (member(u,z) <> member(ux) A —member(u,y))

Using Lloyd and Topor’s method for transforming first order formulae to general
programs (1984), these give the following general program, to be evaluated on syntactic
equality.

member(x,x.u).

member(x,u.v) & member(x,v).

set-difference(x,y,z) &< —sdl(x,y,z).

sdl(x,y,z) & member(ux) A —member(u,y) A —member(u,z).
sdl(x,y,z) < —member(u,x) A member(u,z).

sdl(x,y,z) & member(u,y) n member(u,z).

Suppose we wish to answer the query set-difference([1,2,X], [1,3],Y)? The
transformation process first yields (some forms have been simplified to ease presentation)

W. Buntine, H.-J. Birckert On Solving Equations and Disequations. 30

=3, (member(u, [1,2,X]) A —member(u, [1,3]) A —member(u,Y))
A =3, (—member(u, [1,2,X]) A member(u,Y))
A =3, (member(u, [1,3]) A member(u,Y)),
then applying the process to transform member yields, for one set of choices,
—3,((u=Ivu=2 vu=X)A-u=lar—-3Y¥=uv)
A= =u=2 A (3, Y=uvvi,, Y=vuwvi,, Y=vrw))
A=y ((u=lvu=3)A(3,Y=uvv3,,Y=vuwvd,,, Y=vrw)).
Simplifying each line separately in the free algebra for syntactic equality yields
IY=2v A (X=1v 3,Y=Xv)
A(=T,,Y=uvv 3 Y=2Vv)A =3,,,Y=vrw
A-TY=1vA -3, Y=3v A =3, Y=vrw.
This then simplifies to two solutions
[Ye2v, Xel1)-{Yevrw]} ,
{Ye2v, X&2)-{Yevrw]}.

The remaining solutions can be found by making other choices when transforming
member .

Our abstract system then is as follows:

logic program: a completed general program

transformation process: as given above

intermediate solution forms: equational formula

simplification process: disunification, restriction, reduction as inSection 4
solution forms: sets of substitutions with exceptions

model space: the free algebra for some equality theory

To make this abstract system practical, the following problem remains: How can the
simplification and transformation processes be spliced to yield an efficient algorithm, as
linear resolution does for the case of pure Prolog. Perhaps a generalisation of negation as
failure is possible that incorporates disequations as well.

5.2 AC-Unification is ACI1-Disunification

As mentioned in the introduction disunification can be used to prevent extensive splitting
of solutions. Instead of solving equations in the theory AC of an associative and
commutative function, we can solve them in the theory AC/, that is AC with some unit /,
but with the constraints that the variables must not become equal to /, that is, we solve
them together with the disequations x # / for all the variables. When we avoid evaluation
of the constraints x # I in these AC1-disunification problems as long as possible, we can
avoid an exponential grow up of the number of solutions. The idea is to propagate these
constraints for example in theorem proving applications of E-unification (Plotkin 1972)
into resolvents that are created with the substitutions solving the equation part only, but
only when these substitutions are not instances of the collected exceptions (i.e. the
substitution with collected(!) exceptions are still AC1-consistent). A further advantage of
this method is that we generate in some sense multi-resolvents, since the substitutions
with exception may represent more than one most general AC-unifier.

W. Buntine, H.-J. Blirckert On Solving Equations and Disequations. 31

Let AC be an equational theory over a signature 2 consisting of free constants, free
function symbols, and a binary infix function *. ” being associative and commutative, that
is we have the axiomatization

AC:={(x.(y.z))=((x.y).2),x.y=Yy.x}.
Moreover let X; be X extended with a constant I being a unit with respect to the
AC-function. Hence we have the further equational theory AC! of free Abelian monoids
with free functions with the axiomatization
ACI ={(x.(y.2))=((x.y).2),x.y=y.x, 1 .x=x}.

We use a normalized representation of AC-terms and AC1-terms by ordered strings with
exponentiation (dropping all occurrences of the unit):

Both the AC-term ((a.x).{(fla.x,a.(b.a)).(c.x)))
and the ACl-term (1.((a.x).(fl(a.x),({a.(b.a)).1)).(c.x))))
are represented by acf(ax, a?b)x2.

Now, we are interested in solving equations under both the theory ACI and the theory
AC. Both kinds of unification problems can be solved by computing the minimal non-
negative integer solutions of suitable corresponding linear Diophantine equations (Livesey
& Siekmann 1976, Stickel 1976, 1987, Hullot 1980, Fages 1985, Fortenbacher 1985,
Kirchner 1985, Biittner 1986, Herold & Siekmann 1986, Herold 1986). In the case of
ACl-unification there is a one-to-one correspondence between the Diophantine solutions
and the most general ACl-unifiers, while in the case of AC-unification we must in
addition instantiate all subsets of the variables of these most general AC1-solutions with
the unit I to obtain the most general AC-unifiers. By this post-process in general the
number of AC-solutions is growing exponentially in the number of variables introduced
by the ACl-solutions:

The problem (xyz = v¥)4¢; has one most general solution introducing 15 new
variables, while the corresponding AC-problem (xyz = v#),. has about 215 (j.e.
more than 32 000) most general AC-unifiers (Biirckert et al. 19892).
Hence it is convenient to avoid an explicit generation of all these most general AC-unifiers
by representing them by AC1-unifiers. How this representation works is stated by the

following theorem on the relationship between AC- and ACl-unification (Livesey &
Siekmann 1976, Herold & Siekmann 1986, Herold 1987).

5.2 Theorem: I. Face3I.Tiff Faci=3.T' A Awith A= {x#1:x € Var(I)}.
2. A substitution o solves the AC-unification problem (I)¢ iff o solves the
AC1-problem (I)4c; and ox #4¢; 1 for all x € Var(T).
3. Let pUyc; be a minimal solution set for (I")4c;.Then the set
/JUAC = {(VO')/V JVE NO" o€ #UACP vox#=l Vx e Var(D}
is a minimal solution set for (I)4c (with Ng:={{we=1: weW}: WSVCODa}).

Hence by the Representation Theorem the AC-unification problem (I"), can
equivalently be considered as an AC1-disunification problem
(Lx#l:xe V),
with V =Var(I'). For substitutions o in normalized representation holds:
bsolves (I)4c iff 6 24¢; - [V] for some 6-F € Uyc(Lx#1:x € V).

W. Buntine, H.-J. Btrckert On Solving Equations and Discquations. 32

(Notice, that every solution of (I, x #1: x € V)4, has a normalized representation
without any occurrence of the unit.)

5.3 Disunification for Resolution Based Theorem Provers

There are also some applications for resolution based theorem proving (Chang & Lee
1973, Wos et al. 1984). Here disunification can be used to avoid certain redundancies in
proof searching. Consider for example a clause {P(x), —P(y), Q(x,y)}. Then any
resolution step with the third literal Q(x,y) of this clause that identifies the arguments of O
will lead to a resolvent that is a tautology, and hence this is an unnecessary step. It is
enough to look for resolution candidates that do not identify these arguments or in other
words unification of Q(x,y) with some literal —Q(s,z) of another clause can be done under
the constraint x # y, that is, we have the disunification problems (x = s,y =t, x #y).
For theorem proving systems with built-in E-unification procedures this will result in
E-disunification problems. Obviously one is not interested in substitutions as solutions
for these problems, but in substitutions with exceptions or constrained substitutions for
easy generation of instances of the substitutions that fulfill the constraints. Similar
constraints can be formulated for other redundancy tests in theorem proving procedures,
as for example the subsumption or the purity tests.

A rather similar (but only theoretical) application can be found in unification theory
itself, namely for certain combination procedures for unification under a combination of
equational theories. Some of them use the constant abstraction method for subterms that
have syntactically another theory than the top theory of the unification problem (Herold
1987, Schmidt-Schaufl 1989). These alien subterms are replaced by new free constants,
then the unification algorithm for pure terms of the top theory can be applied, and the
abstraction constants have again to be replaced by the corresponding subterms, whereby
some post-unification has to be done, since the subterms also might contain variables that
are already used in the pure unification step. But since in further steps certain
identifications of these abstracted subterms are necessary to retain completeness, one can
do these post-unification steps under the constraints that the subterms need not to be
identified; we again have E-disunification problems.

6. Conclusion

Since the number of exceptions may be infinite and hence in general it cannot be tested
whether such a substitution with exceptions is consistent, the question will arise, whether
E-disunification can become undecidable, although E-unification is decidable. The
following reduction, due to M. Schmidt-SchauB}, shows that this may happen. Let

DA = { fix, f(y, 2)) = fifix, y), 2),
flg(x, y), 2) = g(fix, z), f(y, 2)),
fix, g(y, 2)) = g(fix, y), fix, z))}

be the theory of distributivity and associativity of two binary functions f, g and some free
constants, where unification is known to be undecidable (Szabo 1982, Siekmann &
Szabo 1986). If we add a constant 0 with the axioms

W. Buntine, H.-J. Biirckert On Solving Equations and Disequations. 33

ftx, 0) = (0, x) = 0,

8(x,0) = g(0,x) = 0,
then unification in the resulting theory DAQ is trivially decidable (two terms become equal
by substituting each variable with 0). However, disunification is undecidable, since the
DAO-disunification problems (I', x #0: x € Var(I'))pap, where no term of I" contains
the constant 0, are equivalent to the DA-unification problems (I")p4.

Some more results on decidability of unification and disunification can be found in
(Biirckert & Schmidt-Schaufl 1989).

Here are some open problems to be considered in the future:

Can the substitutions with exceptions be resolved to substitutions, if we are interested in
ground solutions only, that is, are there complete sets of substitutions representing all
ground solutions of a given E-disunification problem?

This problem is only solved for the empty theory.

Are there for given theories decision procedures for testing “ground consistency” of a
substitution with exception, i.e., whether it has still some ground instances?

These questions are useful only in the case of finite complete representation sets, for
example to prove sufficient completeness of algebraic specifications with non-free
datatypes specified by E.

Can the extended completion procedures for term rewriting systems modulo equational
theories be adapted to use disunification to avoid explosion of candidates for critical pairs?

This should especially be investigated for the case of term rewriting systems
modulo AC.

How can computation strategies such as negation as failure be generalized to incorporate
disequations, to complete the abstract approach outlined in section 5.1?

It is interesting that our generalized notion of solutions is still not expressive enough
to represent a solution to the simple junior high school mathematics question “what is the
square root of the square of x?” (this is of course “x, if x 20”). A possible extension of
expressiveness in this direction is of course the use of still more general formulae as
answers, but how far can/need we go?

Acknowledgements. We would like to gratefully acknowledge a lot of very useful
discussions with W. Nutt, M. Schmidt-SchauB}, and G. Smolka on the topics of this
paper, especially in the model theoretic foundations of solving equations and
disequations. These and also some discussions with H. Comon helped in correcting
some mistakes in a former version of this paper. N. Eisinger and J. Siekmann carefully
read some former drafts of the paper. Any remaining flaws are, of course, the authors’
responsibility.

We also want to emphasize once more the contribution of M. Schmidt-Schaull with the
above idea of the reduction of undecidability of disunification.

H.-J. Biirckert’s research was partially supported by the German Bundesministerium fiir
Forschung und Technologie and the Nixdorf Computer AG under contract of the Joint
Research Project ITR8501A. W.L. Buntine’s research was supported by an Australian
Commonwealth Postgraduate Research Award.

W. Buntine, H.-J. Btirckert On Solving Equations and Disequations. 34

References

Baader, F.: The Theory of Idempotent Semigroups is of Unification Type Zero. J. of Autom. Reasoning
2, 1986, p. 283-286.

Birkhoff, G.: On the Structure of Abstract Algebra. Proc. Cambridge Phil Soc. 31, 1935, p. 433-454.

Buntine, W.: Generalized Subsumption and its Applications to Induction and Redundancy. Artificial
Intelligence 36, 1988, to appear.

Buntine, W.: A Theory of Equations, Inequations, and Solutions for Logic Programming. Unpublished
manuscript, New South Wales Institute of Technology, 1986.

Biirckert, H.-J.: Lazy Theory Unification in PROLOG: An Extension of the Warren Abstract Machine.
Proc. of 10th German Workshop on Art. Intelligence, Springer, 1986, p. 277-288.

Biirckert, H.-J.: Matching - A Special Case of Unification? To appear in J. of Symb. Comp., Special
Issue on Unification (ed. C. Kirchner), 1989.

Biirckert, H.-J., Herold, A. & Schmidt-SchauBl, M.: On Equational Theories, Unification, and
Decidability. Proc. of 2nd Conf. on Rewriting Techniques and Applications, Springer, LNCS
256, 1987, p. 204-215; to appear in J. of Symb. Comp., Special Issue on Unification (ed. C.
Kirchner), 1989.

Birckert, H.-J., Herold, A., Kapur, D., Sickmann, J.H., Stickel, M.E., Tepp, M., Zhang, H.: Opening
the AC-Unification Race. To appear in J. of Autom. Reasoning, 1989,

Birckert, H.-J. & Schmidt-Schau8, M.: Some Solvability Results for Equational Problems. In
preparation, 1989.

Burris, S. & Sankappanavar, H.P.: A Course in Universal Algebra. Springer, 1979.

Biittner, W.: Unification in the Datastructure Multisets. J. of Automated Reasoning, Vol. 2, No. 1, 1986,
p. 75-88.

Chang, C.-L. & Lee, R.C.-T.: Symbolic Logic and Theorem Proving. Academic Press, 1973.

Clark, K.L.: Negation as Failure. In: Logic and Databases (eds. H. Gallaire & J. Minker), Plenum Press,
1978, p. 293-322.

Colmerauer, A.: Equations and Inequations on Finite and Infinite Trees. Proc. of Intern. Conf. on Fifth
Generation Computer Systems, ICOT, 1984, p. 85-99.

Comon, H.: Sufficient Completeness, Term Rewriting Systems, and Anti-unification. Proc. of Intern.
Conf. on Automated Deduction, Springer LNCS 230, 1986, p. 128-140.

Comon, H.: Private Communications. 1987.

Comon, H.: Unification et Disunification. Théorie et Applications. Thesis (in French), Université de
Grenoble, 1988.

Comon, H. & Lescanne, P.. Equational Problems and Disunification. Draft, Université de Grenoble, and
Centre de Recherche en Informatique de Nancy CNRS-INRIA, 1987.

Fages, F.: Formes Canoniques dans les Algébres Booléennes, et Application a la Démonstration
Automatique en Logique de Premier Ordre. These de 3éme Cycle (in French), Université Paris VI,
1983.

Fages, F.: Associative-Commutative Unification. Proc. of 7th Conf. on Automated Deduction, Springer,
LNCS 170, 1984, p. 194-208; see also: Technical Report, INRIA, 1985.

Fages, F. & Huet, G.: Complete Sets of Unifiers and Matchers in Equational Theories. Proc. of
CAAP'83, Springer, LNCS 159, 1983, p. 205-220; see also J. of Theoret. Comp. Sci. 43, 1986,
p. 189-200.
Fortenbacher, A.: Algebraische Unifikation. Diplomarbeit (in German), Universitit Karlsruhe, 1983.
Fortenbacher, A.: An Algebraic Approach to Unification under Associativity and Commutativity. Proc. of
Conf. on Rewriting Techniques and Applications, Springer, LNCS 202, 1985, p. 381-397.
Gallier, J.H.: Logic for Computer Science: Foundations of Automated Theorem Proving. Harper and
Row, 1986.

Galiier, J.H. & Raatz, S.: SLD-Resolution Methods for Horn Clauses with Equality Based on E-
Unification. Proc. of Int. Symp. on Logic Programming, 1986

Goguen, J.A. & Meseguer, J.: Equality, Types, Modules, and Generics for Logic Programming. Proc. of
2nd Intern Logic Programming Conf., Uppsala, 1984, p. 115-125.

Goguen, J.A. & Meseguer, J.: EQLOG - Equality, Types, and Generic Modules for Logic Programming.
In: Logic Programming: Functions, Relations, and Equations. Prentice Hall, 1986, p. 295-363.

Gritzer, G.: Universal Algebra. Springer, 1979.

Herold, A.: Combination of Unification Algorithms. Proc. of 8th Conf. on Automated Deduction,
Springer, LNCS 230, 1986, p. 450-469. Also appeared as MEMO-SEKI, Universitiit
Kaiserslautern, 1985.

W. Buntine, H.-J. Birckert On Solving Equations and Disequations. 35

Herold, A.: Combination of Unification Algorithms in Equational Theories. Dissertation, Universitit
Kaiserslautcrn, 1987.

Herold, A. & Sickmann, J.H.: Unification in Abelian Semigroups. MEMO-SEKI, Universitit
Kaiserslautern, 1986

Huet, G.: An Algorithm to Generate the Basis of Solutions to Homogeneous Linear Diophantine
Equations. Information Processing Letters, Vol. 7, No. 3, 1978, p. 144-147.

Huet, G. & Oppen, D.C.: Equations and Rewrite Rules: A Survey. In: Formal Languages: Perspectives
and Open Problems.(ed. R. Book), Academic Press, 1980.

Hullot, J.M.: Compilation des Formes Canoniques dans des Théories Equationelles. These du 32me Cycle
(in French), Université de Paris-Sud, 1980.

Jaffar, J., Lassez, J.-L. & Maher, M.: A Theory of Complete Logic programming with Equality. Proc. of
Conf. on Fifth Generation Computing Systems, ICOT, 1984, p. 175-184.

Jaffar, J., Lassez, J.-L.. & Maher, M.: Logic Programming Language Scheme. In: Logic Programming:
Functions, Relations, Equations. (eds. D. DeGroot & G. Lindstrom), Prentice Hall, 1986.

Jaffar, J. & Stuckey, P.J.: Logic Programming Semantics for Programming with Equations. Proc. of 3rd
Intern. Logic Programming Conf., Springer LNCS 225, 1986, p. 313-326.

Jouannaud, J.P. & Kirchner, H.: Completion of a Set of Rules Modulo a Set of Equations. Proc. of 11th
ACM Conl. on Principlcs of Programming Languages, 1984,

Kapur, D. & Narendran, P.: An Equational Approach to Theorem Proving in First-Order Predicate
Calculus. Research Report, General Electric, 1985.

Kirchner, C.: Methodes et Outils de Conception Systematique d’Algorithmes d'Unification dans les
Théories Equationelles. These de Doctorat d'Etat (in French), Université de Nancy, 1985.

Kirchner, C.: Special Issue on Unification. J of Symb. Comp., 1989, to appear.

Kirchner, C. & Kirchner, H.: Implementation of a General Completion Procedure Parametrized by Built-in
Theories and Strategies. Proc. of the EUROCAL Conference, 1985.

Lankford, D. & Ballantyne, R.M.: Decision Procedures for Simple Equational Theories with
Commutative-Associative Axioms: Complete Sets of Commutative-Associative Reductions.
Internal Report, University of Texas, Austin, 1977.

Lassez, J.-L., Maher, M.J. & Marriot, K.: Unification Revisited. In Minker, J. (ed.): Foundations of
Deductive Databases nand Logic Programming. Morgan-Kaufmann, 1987.

Livesey, M. & Sickmann, J.H.: Unification of AC-Terms (Bags) and ACI-Terms (Sets). Internal Report,
University of Essex, 1975, and Universitit Karlsruhe, 1976.

Lloyd, J.W.: Foundations of Logic Programming. Springer, 1984.

Lloyd, J.W. & Topor, R.: Making Prolog more Expressive. Technical Report 84-8, University of
Melbourne, 1984.

Nutt, W., Rety, P. & Smolka, G.: Basic Narrowing Revisited. To appear in J. of Symb. Comp., Special
Issue on Unification (ed. C. Kirchner), 1989.

Ohlbach, H.J.: Link Inheritance in Abstract Clause Graphs. J. of Automated Reasoning, Vol 3, No 1,
1987, p. 1-34.

Peterson, G.E. & Stickel, M.E.: Complete Sets of Reductions for Equational Theories with Complete
Unification Algorithms. JACM, Vol 28, No 2, 1981, p. 322-364.

Plotkin, G.: Building in Equational Theories. Machine Intelligence 7, 1972, p. 73-90.J.A. Robinson: A
Machine Oriented Logic Based on the Resolution Principle. JACM, Vol 12, No 1, 1965, p. 2341.

Schmidt-Schau, M.: Unification under Associativity and Idempotence is of Type Nullary. J. of Autom.
Reasoning 2, 1986, p. 277-282.

Schmidt-Schaufl, M.: Combination of Arbitrary Equational Theories With Simple Equational Theories.
SEKI-Report, Universitiit Kaiserslautern, 1987.

Schmidt-Schau, M.: Combination of Unification Algorithms in Arbitrary Disjoint Equational Theories.
SEKI-Report (submitted to 9th Conf. on Automated Deduction), Universitiit Kaiscrslautern, 1987.
To appear in J. of Symb. Comp., Special Issue on Unification (ed. C. Kirchner), 1989.

Shoenfield, J.R.: Mathematical Logic. Addison-Wesley, 1967.

Siekmann, J.H.: Unification and Matching Problems. Ph.D. Thesis, University of Essex, 1978.

Siekmann, J.H.: Unification Theory. A Survey. To appear in J. of Symb. Comp., Special Issue on
Unification (ed. C. Kirchner), 1989.

Siekmann, J.H. & Szabo, P.: The Undecidability of the DA-unification Problem. SEKI-Report SR-86-19,
Universitit Kaiserslautern, 1986.

Smolka, G., Nutt, W, Goguen, J.A. & Meseguer, J.: Order-Sorted Equational Computation. SEKI-
Report SR-87-14, Universitidt Kaiserslautern, 1987.

Stickel, M.E.: A Complete Unification Algorithm for Associative-Commutative Functions. Proc. of 4th
Int. Joint Conf. on Art. Intelligence, Tblisi, 1975, p. 71-82.

Stickel, M.E.: Unification Algorithms for Artificial Intelligence. Ph. D. Thesis, Carncgie-Mellon

W. Buntine, H.-J. Burckert On Solving Equations and Disequations. 36

University, 1976.

Stickel, M.E.: A Unification Algorithm for Associative-Commutative Functions. JACM, Vol 28, No 3,
1981, p. 423-434.

Stickel, MLE.: A Case Study of Theorem Proving by the Knuth-Bendix Method Discovering that x3=x
implies Ring Commutativity. Proc. of 7th Conf. on Automated Deduction, Springer, LNCS 170,
1984, p. 248-258.

Stickel, M.E.: Automated Deduction by Theory Resolution. I. of Automated Reasoning, Voll, No 4,
1985, p. 333-357.

Stickel, M.E.: A Comparison of the Variable-Abstraction and Constant-Abstraction Methods for
Associative- Commutative Unification. J. of Automated Reasoning, Vol 3, No 3, 1987, p. 285-
289.

Szabo, P.: Unifikationstheorie erster Ordnung. (In German), Dissertation, Universitit Karlsruhe, 1982.

Tarski, A.: A Remark on Functionally Free Algebras. Ann. Math. (2), 47, 1946, p 163-165.

Taylor, W.: Equational Logic. Houston Journal of Mathematics 5, 1979.

Tiden, E.: Unification in Combinations of Equational Theories. Ph. D. Thesis, Stockholm, 1986.

Tiden, E.: Unification in Combinations of Collapse-Free Theories with Disjoint Sets of Function
Symbols. Proc. of 8th Conf. on Automated Deduction, Springer, LNCS 230, 1986, p.431-450.

Wos, L., Overbeek, R., Lusk, E. & Boyle, J.: Automated Reasoning - Introduction and Applications.
Prentice Hall, 1984,

Yellick, K.: Combining Unification Algorithms for Confined Regular Equational Theories. Proc. of
Conf. on Rewriting Techniques and Applications, Springer, LNCS 202, 1985, p. 365-380. See
also: Technical Report, MIT, 198S.

