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Abstract Context Logic (CL) is a logic in the original sense, but more than that, it is a methodology for
designing a certain class of logics in such a way that automatically a first-order many-sorted resolution and
paramodulation calculus is obtained. This calculus can be executed on a clause based predicate logic theorem
prover. The class of logics which can be handled with the CL-methodology is mainly characterized by the
existence of “hidden parameters”, parameters like worlds in modal logics defining the context in which the terms
and formulae are to be interpreted. The hidden parameters are usually determined implicitly by additional logical
operators like for example O (necessarily) and 0 (possibly) in modal logic. These operators refer to an underlying
semantical structure - Kripke s possible worlds structure in the case of modal logic, time points and time intervals
in the case of temporal logic are examples. CL provides a means for axiomatizing these structures and for
expressing the semantics of the desired operators in a formal language. This information about the desired logic is
sufficient to translate formulae written in the operator syntax automatically into predicate logic syntax where the
operators are replaced by quantifiers and the hidden parameters are made an explicit part of the formula. After the
translation, information about a whole bunch of nested operators is shifted into one “context term” that can be
handled by an appropriate unification algorithm. Hence, a resolution step may exploit information about many
nested operators at once and is therefore much more goal directed than a corresponding step in a tableaux system
for example.

The main limits of CL are:

- Since predicate logic is the “target logic” into which the designed logic is mapped, in order to obtain a complete
calculus, its semantical structure must be first-order axiomatizable. This excludes certain properties like
discreteness and finiteness. .

- Due to the current limits of predicate logic resolution (no partial functions allowed for example) two further
assumptions are still necessary. For Kripke structures these are the constant-domain assumption and the
seriality assumption. For other structures the assumptions are analogous. )

In order to demonstrate the method, a quite complex first-order many-sorted multi modal logic with operators
indexed with arbitrary (possibly non-ground) terms is constructed using the CL tools. The logic is actually an
extension of Clarke and Emerson’s CTL temporal logic. Therefore, as a side effect, we get:a proof theory for
CTL.

Keywords: Automated Theorem Proving by Translation and Refutation, Resolution, Nonclassical Logics,
Modal Logic, Temporal Logic, Process Logic, Epistemic Logic, Action Logic, CTL.
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Chapter One

Introduction

1.1 Logics with “Context Semantics”

A large class of nonclassical logics like modal, temporal, epistemic, action logics etc. have one important feature
in common. This is the existence of “hidden parameters™ which refer to an underlying semantical structure. The
hidden parameters define the context in which terms and formulae are to be interpreted. They are implicitly
determined by additional logical operators like for example O (necessarily) and ¢ (possibly) in modal logic. A
typical example for an underlying semantical structure is Kripke s possible worlds structure as a semantical basis
for modal logics. A formula OP for example is interpreted: P holds in all worlds #4 which are accessible from the
current world #/,. OP is interpreted: From the current world ) there exists an accessible world 7 and P holds
in #). That means the interpretation of the predicate symbol P depends on the actual world. P may be true in a
world W, and false in a world 7. In other words P behaves like a one place predicate P(...) that depehds ona
“world parameter”. Another example for a logic with hidden parameters and an underlying semantical structure is
temporal logic with time points and time intervals. An expression “Tom is running” or more formally
running(Tom) implicitly depends on the points in time. It may be true now and false in 5 minutes. “Tom runs
100m” or running-a-distance(Tom, 100m) respectively, however does not depend on a time point, but on a time
interval. The statement “During Tom s 100m runs he is always running” (which may be false when he occasion-
ally stops for a while) may be encoded as “running-a-distance(Tom,100m) = during running(Tom)”. The
formula shows that it may make sense to have simultaneously two types of contexts, namely time points and time
intervals which are correlated by an operator during that quantifies over all time points in the current time interval.

Having the underlying semantical structure in mind, it is usually not hard to define syntax and a model theoretic
semantics of a corresponding logic. To define an appropriate deduction calculus, however, is a much harder task.
The problem is that the properties of the semantical structure, although it may be a simple thing like a lincarly
ordered set together with all its intervals, have to be characterized in a very indirect way by using axiom schemes
in a syntax that does not talk at all about the semantical structure directly but uses some obscure opérators. Who
would for example guess that the transitivity of the accessibility relation in a Kripke structure has to be encoded
into the modal logic axiom scheme D¥ = 0O ¥?

When this is so complicated, why strive so hard with these operators? Why don’t we just use predicate logic,
axiomatize the underlying semantical structure directly, add the corresponding parameters explicitly to the |
predicate and function symbols and replace the operators by corresponding quantifiers? There are four main
reasons against this solution:
» Historical Reasons
Modal logics for example have been developed on the basis of Hilbert calculi decades before Kripke
discovered a model theoretic semantics.
» Pragmatic Reasons
The operator syntax is usually much more intuitive and easier to use than the predicate logic syntax.
» Efficiency Reasons
The operator syntax is usually less expressive than the corresponding predicate logic syntax. Therefore a
calculus working on the operator syntax may be more efficient than a corresponding predicate logic version.
» Theoretical Reasons
There are semantical structures which cannot be axiomatized in first-order logic. Discrete and finite Xripke
structures are of this kind.
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The method we are going to present in this work is aimed to overcome the pragmatic and efficiency arguments. It
uses theorem proving by translation and refutation which allows to keep the operator syntax as a user friendly
surface language, but internally it translates the formulae into predicate logic in such a way that a more efficient
resolution [Robinson 65] and paramodulation [Robinson & Wos 69] calculus is applicable.

1.2 Theorem Proving by Translation and Refutation -
An Analogy to Compilation of Programs.

Already in the early days of computer science it has tumed out that much efficiency can be gained in the execution
of programs written in highlevel programming languages by translating the programs into a lowlevel language
where a more efficient interpreter (processor) is available. Originally programs were translated directly into the
operation code of a processor. Nowadays programs are usually not translated directly into an operation code, but
first into an intermediate language such as C and then with a standard compiler into the operation code. One of the
reasons is that the development of compilers with less lowlevel languages as target language is in general easier
and less susceptible to errors. .

The analogy to a programming language - syntax and denotational semantics - is a logic -~ syntax and model
theoretic semantics - and the analogy to an interpreter for a programming language is a deduction calculus for a
logic. The idea which suggests itself is to look also for an analogy to a compiler. A compiler from a “source logic”
SL into a “target logic” TL should translate an SL-formula ¥ into a TL-formula ¥~ such that #has an SL-model if
and only if 7 has a TL-model. If this condition holds, a refutation theorem prover for SL can be obtained simply
by using an appropriate theorem prover for TL to refute the translated SL-formulae. One advantage is that a
TL-theorem prover can be used for several source logics. Whereas highlevel programming languages as well as a
highlevel logics are designed for the human user, a compiler is free to rearrange chunks of information to serve the
underlying machinery, and not the human reader, in the optimal way. The efficiency gained through compilation
of programs proves that operating on the original syntax is not always optimal, and this holds for logics as well. If
therefore in addition the TL-calculus tumns out to be even more efficient than an SL-calculus we have not only
saved the effort to develop a specific SL-theorem prover, in fact our laziness is rewarded with a more efficient
theorem prover.

Several “translation calculi” have been developed so far, mainly for classical modal logics as source logics and
predicate logic as target logic with the aim to use predicate logic resolution theorem provers [Ohlbach 88],
[Farifias&Herzig 88], [Enjalbert&Auffray 88], [Moore 80] etc. In these systems a one-step translation from the
source logic to the target logic has been developed, similar to the one-step translation from highlevel programming
languages to the operation code. With this approach the translation algorithm and in particular the soundness and
completeness proof has to be developed new for every new logic. A closer look at the different translation
systems, however, has shown that a certain part of the translation is common to all source logics. Therefore it is
advantageous (o split the translation into two steps, the first one depending on the particular source logic and the
second one common to all source logics. For this purpose an intermediate logic is necessary. This logic, Context
Logic, will be presented in this paper. Here again we have the analogy to the compilation of programs. CL
corresponds to the intermediate language, as for example C, which is used in two-step translations. We can
summarize the analogies as follows:



Earlier approach:
Compilation of programming languages: Translation of logics:
PL,... PL, inefficient SL; ... SL. inefficient
i /
compilation Inierpreter uaﬁlat‘ion calculus
operation code  Efficient 1L efficient
interpeter calculus

A more economic approach, proposed in this paper:

Compilation of programming languages: Transiation of logics:
PL,... PL, S{Jl §Lm
\ SL-depending translation
C CL
‘ standard|translation
operation code predicate logic

As compilation from C into different operation codes is possible, translation from CL into different logics is also
possible. So far, however, only a translation into a particular order-sorted predicate logic as target logic has been
developed.

1.3 One-Step Translations

In order to get an idea how translations for logics work, let us first have a look at algorithms for translating modal
logic in one step into predicate logic with resolution as a basic calculus. There are different possibilities yielding
translated formulae of different structure and search spaces of different size.

1.3.1 Relational Translation
There is a very easy way to translate modal logic formulae into predicate logic [Moore 80}: A special binary
predicate symbol R is introduced which represents the accessibility relation. A formula O is then translated into
Vw R(a,w) => F[w] where ‘a’ denotes the current world and #[w] means adding *w’ as an additional argument to
the terms and literals. Analogously ¢ ¥ is translated into 3w R(a,w) A F[w]. The properties of the accessibility
relation can be expressed by simply adding the corresponding axioms for R to the formulae.
For example the formula 00Vx(0Px A OQx) is translated into the predicate logic formula

da ®(0,a) A 3b R(a,b) A Vx (Fc R(b,c) A P(c.x) A Vw R, W) = Q(W.X))
The problem with this “relational” method is that the actual world in which a term or literal is to be interpreted is
not only determined by the term in the “world argument” of the predicates, for example the ‘c’ in P(c,x) above,
but by the whole path of “world terms” leading to that particular term. This information, however, is spread over a
whole bunch of R-literals. One significant deduction step with a user defined predicate has therefore in general to
be accompanied by several deduction steps which reason about worlds alone. The usual control strategies for -
resolution can not recognize these correspondences and may therefore easily get lost in irrelevant branches of the
search space.



1.3.2 Functional Translation

In order to overcome this weakness, at least for some modal logics, a different translation technique has been
developed where the relevant information about the actual world is concentrated in one single term [Ohlbach 88]
[Farifias&Herzig 88], [Enjalbert&Auffray 88]. In my system for example the above formula would be translated
into Ja,b Vx (¢ P([abcl,x) A Vu Q([abu],x))

yielding Vx,u P([abc(x)],x) A Q([abu],x)) after Skolemization,

where the “context access terms” [abc(x)] and [abu] describe the complete path through the Kripke structure from
the initial world to the actual world.

One of the main problems in the development of a semantics for these special terms was to handle the fact that the
modal operators are some kind of dynamic operators. The set of objects over which they quantify depends on the
current position in the Kripke structure. For example 0¥ quantifies over all worlds accessible from the current
world, and this world is determined by the embracing modal operators and quantifiers. The key idea for getting rid
of this dynamic aspect was to translate modal operators into quantifiers over functions mapping worlds to
accessible worlds. The set of such “world access functions”, or more general “context access functions”, is
constant in each interpretation whereas the set of worlds they access from a given world may change from world
to world. This allows to keep the operator’s modal logic spirit, but to treat them technically as ordinary predicate
logic quantifiers, quantifying over a fixed set of entities.

To realize this idea a two-sorted predicate logic with the two sorts D for domain elements and “W—W’ for context
access functions is necessary. In the formula

Vx,u P([abc(x)],x) A Q([abu],x))
for example a,b are now constant symbols of sort “‘W-—->W~’,

¢ is afunction symbol of sort D — “W—HoW’,

X is a variable symbol of sort D and

u isa variable symbol of sort ‘W—oW’,
Strings of ‘W—W’-terms are now interpreted as composition of context access functions. If for example a, b and
u are interpreted as the context access functions 7,, ¥, and ¥, then [abu] denotes the function Y, ¥, o Y, Which
maps the initial world in three steps to the actual world.

Correlations between the Accessibility Relation and the Context Access Functions
Since different modal logics are usually distinguished by the properties of the accessibility relation, and since we
want to represent the accessibility relation R by a set CF of context access functions, the proper correlations
between R and CF have to be established. The basic idea is to represent a binary relation R as the argument-value
relation of a set C¥ of one-place functions, i.e.

VW, Wy R(W), W) iff Iye CF W) =y(W))

Example: relational representation:  functional representation:
)/"ﬁ R(W,, W,) v,7,)
" %% R(W,. W) Yy WO W, Y W W,
. o R(Wp.W,) Wy— W, Wy— W
\f’-A R(W,, W) Wy— W, Wy— W
%\Yl\‘ R(W,, W)
Yy w

Given a relation R, a corresponding set C¥ of one place functions - which is not necessarily unique - can be
constructed such that the argument-value relation is just &, and, the other way round, given a set CF of one place
functions on the set of worlds, their argument-value relation constitutes an accessibility relation. Since X and CF
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are correlated, there must also be correlations between their properties. One correlation is obvious: If C¥ contains
only total functions then X is a serial relation where each world has an accessible world. On the other hand, if R
is serial then there is always a set of total context access functions. In the sequel we shall always assume that serial
relations are represented with total context access functions. Another obvious correlation is: If R is tree like then
C¥ consists of injective functions only. (The other direction does not hold.) Further correlations are:

- reflexivity of ® ¢ there is always a set CF containing the identity function.

- transitivity of ® & there is always a set CF which is closed under composition.

- symmetry of R > there is always a set CF containing for each function its inverse.

To get a complete resolution calculus for translated modal formulae, these properties have to be exploited. A first
possibility to do this is to axiomatize the sort “W—W’ explicitly. For example the reflexivity requires the axiom
Fid:'W-W Vx:*WoW idox =xoid = x.

(We us an explicit composition function symbol o instead of the syntax with brackets.)

The transitivity of R is expressed by the associativity of o and the sort declaration o W—W’ X ‘W—>W’ —

‘W—W’ expressing that CFis closed under functional composition, or, with other words, that each world which
is accessible in n steps is also accessible in one step. (In the nontransitive case this declaration has to be o W—W’
X ‘W—W’ — L where L. denotes some error sort. This declaration prevents “W-—W’-variables to be instantiated
with terms s o t which denote functions accessing worlds in two or more steps.) The symmetry of R is

axiomatized by introducing an inverse function 1:W—W’ — ‘W—W’ with the corresponding axiom,

The disadvantage of the explicit axiomatization is that equations occur and equations are difficult to handle in a
normal resolution theorem prover. Fortunately for the above cases the equations can be completely replaced by
corresponding theory unification algorithms such that equality handling is no longer necessary. Algorithms are for
example given in [Ohlbach 88].

The theory unification algorithms can handle the context access terms efficiently because the relevant part of the
Kripke structure is at their disposal. One resolution step in the resolution calculus may invoke information about
several nested modal operators and quantifiers in the original formula at once and therefore correspond to a
number of deduction steps in a tableaux or sequent calculus. This allows for much bigger steps in the proof
search, thus reducing the search space considerably. Moreover, since worlds are represented as terms and
unification is applied to these terms, instead of generating worlds explicitly one by one, as in some classical
calculi, we stay always on the “most general world”, which further shrinks the search space.

1.4 Two-Step Translations

The translation of modal formulae into predicate logic consists of several steps. First of all the operators have to be
replaced by quantifications over context access functions. For example

ovx:D 0P(x,a) yields Vu:*W—W’ Vx:D Ivi*'W—-W’ P(x, a)
Second, the sequences of nested quantifications over context access variables have to be collected into context
terms and attached as additional arguments to the terms and literals:

Yu:‘W—W’ Vx:D Av:‘W—-W’ P(x, a) yields

Yu:*'WoW’ Vx:D Iv:'W—->W’ P([u v], x, a([u v])).
Finally existentially quantified variables have to be Skolemized. Hence, an optimized Skolemization is possible
which allows to make the Skolem functions for the context access variables independent of the the universally
quantified context access variables. Thus, instead of

Yu:'W—oW’ Vx:D P([u f (u, x)], X, a([u £ {(u, x)])) we obtain

Vu:“W—-W’ vx:D P({u £,(0)1, x, a(fu £,)1)).
The last two steps do not depend on the particular kind of modal logic. They formalize the concept of “contexts™
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and *“context access functions”. Therefore it is a good idea to separate these three steps into the first step which
depends on the particular source logic, and the last two steps which are independent of the source logic. For this
purpose an intermediate logic, Context Logic, is necessary where formulae like Vu:*W—W’ Vx:D Iv:‘W—-W’
P(x, a) make sense although the context access variables need not yet occur in the literals. Thus, CL is essentially
a logic with predicate logic syntax but modal logic semantics. The translation from the source logic to CL consists
mainly of expressing the semantics of the operators with CL-quantifications. The translation from CL into
predicate logic, on the other hand, moves information from the quantifier level to the term level. The
corresponding soundness and completeness proofs and the justification for the optimized Skolemization are
therefore technically quite complex. They, however, can be settled once and forever.

1.5 Indexed Operators

Context Logic supports indexed operators as they are used in epistemic and action logics. The indices may be
arbitrary - possibly non-ground - terms. Interpreting these operators as “belief operators” for example, it is then
casy to formalize a statement like “everybody believes that his mother believes that her child is the best of the
world” by

Vx:human g, O
The translation of this formula into CL yields

Vx:human Vi(u:‘D,W—-W’, x) VI(v:‘D,W—-W’, mother(x)) best-of-the-world(x)
and the final translation into predicate logic yields
"Vx:human Vu,v:‘D,W—W’ besi-of-the-world({(u, x) o (v, mother(x)), x).

u and v denote functions that map words to worlds, however depending on domain elements. | is the application
function symbol. Its type is 1:‘D,W—oW’ x D = ‘W—W’, A term l(u, s) is therefore interpreted as a usual
context access function which, however, describes transitions parametrized with the interpretation of s, a domain
element.

) best-of-the-world(x).

mother(x

1.6 Order-Sorted Logic as Target Logic

The translation calculi for classical modal logics in fact do not need a sorted logic as target logic. The two sorts D
and ‘W—W’ mentioned above restrict the instantiation of variables. Once these constraints for the variable
instantiation are built into the unification algorithms, the sorts can be ignored completely. For more complex
source logics, however, the sort mechanism of the target logic becomes essential. To illustrate this, let us try to
define a translation calculus for a multi modal logic, let us call it MML, with a pair 02, 02 of operators referring to
a basic accessibility relation R?, a pair o7, 07 of operators referring to the reflexive closure R* of R?, furthermore
operators O%, 07, 05, 05, of, 0%, o5, 0T5, o™, OTt, pst, 05, o™t and ™! referring to the symmeiric (s), transitive (1),
reflexive-transitive (rt) etc. closures of R?, With a temporal interpretation of the accessibility relation we can for
example formalize a statement “Either I have the idea immediately or I'll never get it.” in MML with ("have(idea, I)
v O™—have(idea, I) where 07 is interpreted as “possibly now or in the immediate future” and o™ is interpreted as
“henceforth”. The translated version is:

Ix:*W—TW* have(x, idea, I) v Vy:“W—T"W’ —have(y, idea, I).
(*idea” and “I” are rigid symbols. They do not depend on the worlds.)

In the functional translation for MML., a single set of context access functions is no longer sufficient. We need
‘W —?W’-functions mapping worlds to R?-accessible worlds, ‘W—™W’-functions mapping worlds to
RT-accessible worlds etc. Furthermore we have to express that each ‘W—#W’-function is also a
‘W—TW’-function, a ‘W—SW’-function, a ‘“W—'W’-function etc. These sets of functions can very easily be
axiomatized in an order-sorted logic. The sort symbols ‘W—2W’, ‘W—oTW’, ‘W—SW’, ‘W—'W’, ‘WoTW’,
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“WoTW’ and “WoS'W’, “WoTBW’ | are introduced and the sort hierarchy, a Boolean algebra with 8 elements
expresses the subset relationships:

W W
—

W W’ ‘w—|>“W’ W W
‘W W ‘WmSW’
— /
‘W—L W’

The type declarations for the composition function symbol o can be used to encode more information about the
accessibility relation. For example the declaration o:'W—2W’ X ‘W—?W’ — ‘W—'W’ expresses the fact that two
single steps correspond to one step in the transitive closure. o:‘W—2W’ x “W—SW’ — ‘“W—™W" expresses that
one step followed by either one step forward or one step backward results in one step in the reflexive transitive
closure. With declarations of this kind we can ensure that for example a variable of type ‘“W—?W’ can never be
instantiated with a term o(s, t) which is at least of type ‘W—'"W’. Thus, order-sorted predicate logic with this kind
of sorts gives us the possibility to handle for example modal logics where different modal operators corresponding
to different closures of the accessibility relation are used simultaneously.

1.7 Axiomatization of Context Access Functions

The hierarchy of context access function sorts and the type declarations for the composition function are not yet
sufficient to describe the context structure completely. Explicit axioms stating more than subset relationships are in
general necessary. For example in order to express that the “W—™W’-functions really describe a reflexive relation
we have to add an identity element which maps a world to itself. Thus, we need an axiom:
Jid: W—"™W’ Vx: 'WoTW’ idox =xoid=x.

Furthermore we want R’ to be exactly the reflexive closure of R? and not more. Therefore an R -transition is
either a RP-transition or an identity transition. The “functional” axiom that expresses exactly this correlation is:

Vi W—TW’ Ay W—W’ Vw.W x(w) = y(W) vx(W) = w
{The sort W denotes the set of worlds.)
More axioms of this are needed for describing the other functional sorts in MML above.

Hence, a complete functional description of the source logic’s semantical structure consists of
- ahierarchy of sorts describing the context access functions,
- the type declarations for certain symbols like o and
- an axiomatization of the context access functions.

Let us now summarize the basic ideas behind Context Logic. CL is a means for designing new logics, let us call
them SL, as extensions of first-order many-sorted predicate logic (with built-in equality reasoning) where the
interpretation of terms and literals depends on some context. The context is an element or a tuple out of one ore
more algebraic structures, the “context structures”. Starting from an initial context, operators in the syntax of SL
are used to jump from context to context until the “actual context” that is to be used for the interpretation of a
subformula inside a nested formula is reached. For the calculus, the operator syntax, however, is only used as a
user friendly surface syntax, Formulae in that syntax are translated in two steps into a pure predicate logic syntax,
such that for example existing resolution and paramodulation calculi can be used. The first translation step, which
actually translates into Context Logic, replaces operators by quantifiers over “context access™ functions. The
replacement rules for this step are defined just by writing down the semantics of the operator in the syntax of
Context Logic. As an example, the replacement rules for the modal operators are:
Y@oyp = VX'WoW' ¥(5H and Y05 = Jy:'WoW’ ¥(9H
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These rules have to be given by the designer of the logic. In the second translation step, which is done
automatically by the Context Logic mechanism, the so quantified variables are collected to build “context terms”
which are attached as additional “context parameters” at the terms and literals in order to get pure predicate logic
formulae. The context structures themselves, i.e. the model theoretic semantics of SL, are to be axiomatized in
Context Logic. This also has to be done once by the designer of the logic.

Context Logic has two main advantages:

» Using Context Logic, the design of a first-order logic including proof theory and all soundness and
completeness proofs is not more work than the axiomatization of, say, boolean algebras in predicate logic.

> The Context Logic methodology fits into the paradigm of the predicate logic resolution and paramodulation
principles. Therefore it is no longer necessary to write specialized theorem provers for the kind of nonclassical
logics that can be handled by CL. That means most of the sophisticated representation and search control
techniques - and even existing implementations - that have been developed for predicate logic theorem proving,
and even logic programming, can immediately be applied. This is an indirect advantage which, however,
should not be underestimated because developing a calculus is usually a matter of man weeks or at most man
months, developing a powerful theorem prover for quantified logics, however, is a matter of man decades.
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A Short Summary of the Subsequent Chapters

Chapter 2:  Logic Morphisms

The main idea of Context Logic is to translate the theorems to be proved into a logic with a more efficient calculus.
To provide adequate notions and notation for the translation operations we formally specify logics and mappings -
morphisms - between logics. We establish a notion of theorem proving by translation and refutation.

Chapter 3:  Order-Sorted Predicate Logic

Order-sorted predicate logic is the “target logic™ into which the theorems to be proved are translated. Furthermore
it provides the syntax for axiomatizing the context structures. We introduce the basic notions of order-sorted
predicate logic as far as they are necessary for the CL formalism.

Chapter 4. Context Logic

Context Logic is an intermediate logic lying between the “source logic™” and the “target logic”, order sorted
predicate logic. The translation from the “source logic™ into Context Logic is the part which is specific for each
source logic and has to be done by the designer of the source logic. The translation from Context Logic into
predicate logic is the part which is common for all source logics and is described in this chapter. The role of
Context Logic can be compared to the role, for example assembler languages or language like C play for the
compilation of highlevel programming languages.

Chapter 5:  Multi Modal Logic

To illustrate the Context Logic methodology and to demonstrate its usefulness, we design a specific “source logic”
using the CL tools. It is an extension of the first-order modal logics D, T, D4 and S4, allowing simultaneous use
of accessibility relations with different properties, indexed modal operators, a true ‘eventually’ operator and some
‘until’ operators. We give interpretations of muliti modal logic as a temporal logic, a process logic, an action logic
and an epistemic logic.

Chapter 6:  Summary .
The final conclusion of this work is that a large class of nonclassical logics can be handled efficiently with
classical methods. We summarize the limits of the CL method and discuss further extensions.

Although most of the logical notions are formally defined within this work, we assume some familiarity with the
standard predicate and modal logic as well as some knowledge about universal algebra and automated theorem
proving. Some knowledge about the basic ideas of epistemic logics would also be helpful. Standard references are
[Chang&lee 73], [Fitting 83}, [Gréatzer 79], [Loveland 78], [Hintikka 62)], [Hughes&Cresswell 68], [Smullyan
68).
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Chapter Two

Logic Morphisms

The main idea of the Context Logic methodology is to realize a theorem prover for a given logic by translating the
formula to be proved into a logic with an efficient calculus. This is essentially the same idea as the compilation
idea frequently used in the design of programming languages. Highlevel programming languages are usually not
interpreted directly, but compiled into an efficiently executable operation code of a processor. Unlike compiler
building, the construction of translators for logics has not yet been systematized and supported by standard
notions and methods. In this chapter we therefore try to systematize some of the well known notions about logics
with respect to the description of translators for logics. The schemes we are going to develop should cover all
kinds of two-valued logics with model theoretic semantics.

The kind of logics we are considering can be described by giving the syntax and its model theoretic semantics.
The syntax is specified by describing the signature, i.e. the basic alphabet of nonlogical symbols, and by giving
formation rules for terms and formulae. The description of the signature may already contain logical statements as
for example the subsort declaration ‘integer’ £ ‘real’ in a sorted logic. The formation ruies for terms and formulae
are in general also not so straightforward as in pure predicate logic. In some of the order-sorted logics very
complex mechahisms have to ensure that the terms and formulae are well-sorted. The model theoretic semantics is
usually defined in three steps. The first step is to define the signature interpretation, i.e. the interpretation of the
nonlogical symbols. The signature interpretation itself is very often separated into the interpretation of the
nonvariable symbols, which is the basic information necessary to interpret closed formulae, some context
information as for example the initial world in modal logics, and into variable assignments which change
dynamically when a quantified formula is interpreted. The second step is to turn the signature interpretation into an
interpreter for terms by following the formation rules for terms. The last step is to define the satisfiability relation.
The satisfiability relation actually fixes the meaning of the logical symbols and allows to evaluate formulae to
‘true’ or ‘false’.

Definition 2.1 Logics
A (two-valued) logic (with model theoretic semantics) is a tuple (syntax, semantics) where syntax is a triple
(Z, 9, ¢) consisting of
> aset T of signatures,
> afunction 6 that maps a signature X to a set of Z-terms (or terms for short) and
> afunction ¢ that maps a signature X to a set of X-formulae (or formulae for short)
and semantics is a triple (7, ©, &) consisting of
> afunction I that maps a signature Z to the set of signature interpretations over £
(or Z-interpretations for short) - each signature interpretation consists of a frame ¥, a context Cand a
variable assignment ¥ -,
> afunction © that turns a signature interpretation into an interpreter for terms and
> asatisfiability relation = e signature interpretations X formulae. u
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Example: With the above notions, pure predicate logic would be described as follows:
» A signature is a set of variable, function and predicate symbols.
They are separated according to their arity. X is the set of all these signatures.
» The function 0 is essentially the inductive definition of terms.
» The function ¢ is essentially the inductive definition of formulae.
» The function I assigns to each signature Z the set of Z-structures
(which are essentially Z-algebras) and variable assignments.
Contexts are irrelevant for predicate logic.
» The function © turns a signature interpretation into an intepreter for terms by lifting variable assignments to the
induced homomorphisms from the term algebra into the X-structure.
> is the usual satisfiability relation. u

A specification (Z, ) in a logic L is a signature X together with a set of Z-formulae 7.

Definition 2.2 Satisfiability

» Given alogic L and an L-signature %, a £-formula 7 is called L-satisfiable (or simply satisfiable)

iff 3 = ¥ for some signature interpretation S (S satisfies 7).

A X-interpretation satisfies a specification $= (X, %) iff it satisfies all formulae in £

A signature interpretation satisfying a formula or specification Sis called a model for .

S is unsatisfiable iff it is not satisfiable.

A Z-formula ¥is a theorem (pr tautology) iff S = ¥ for all Z-interpretations 3. n

Y YVvVYy

Usually there is a notion of closed formulae in a logic. In a closed formula all variables are bound by
quantifiers. Models for closed formulae are independent of variable assignments. That means whenever a closed
formula ¥ is satisfied by an interpretation 3 = (F, ¢, %) then (F, C, %) satisfies F for all variable assignments /.
This is in general not the case for contexts. In modal logic, for example, satisfiability of closed formulae is usually
defined relative to an initial context, i.e. an initial world. Therefore contexts are in general an essential part of
models for formulae and specifications. Variable assignments are used in the satisfiability relation for recording
(semantical) bindings to variables during a recursive descent into formulae.

We are now going to define logic morphisms as satisfiabili[); preserving mappings between logics. They consist
of a syntactial component, a mapping of signatures and formulae, and a semantical component, a mapping of
interpretations. The syntactical component is essentially the “compiler” that translates specifications from one logic
into another. The existence of the semantical component ensures that the syntactical translations map satisfiable
specifications to satisfiable specifications (soundness) and unsatisfiable specifications to unsatisfiable
specifications (completeness). With predicate logic as a target logic, a logic morphism allows theorem proving
by translation (into predicate logic) and refutation (for example with predicate logic resolution and
paramodulation).
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Definition 2.3 Logic Morphisms
A logic morphism is a mapping ¥ between two logics L; = (&;, 6;, ¢;), (4,0;,5)),i=1,2.
It consists of the two components (¥ o Yq) where
> ¥is a specification morphism mapping L,-specifications to L,-specifications.
Y s may contain the two components,
> Wy, a signature morphism mapping L,-signatures to [,-signatures, and
» ¥4 aformula morphism mapping L,-formulae to L,-formula such that
Z,-formulae are mapped to ¥5(X;)-formulae, ie. VZe £, : Fe ¢,Z) = ‘I’f(’f) € P,(¥x(D)
(In general, ¥ not only translates formulae, but adds new symbols and formulae.)
> ¥ is a bidirectional interpretation morphism, a mapping between L,-interpretations and L,-interpretations
ensuring satisfiability preservation, i.e.
> if an Ly-specification Sis satisfied by 3, then ¥ {9) is satisfied by Wq (3,) (soundness) and
> if W () is satisfied by 3, then Sis satisfied by ‘}’3'1(82) (completeness) |

Examples: Transformation into negation normal form and Skolemization is a logic morphism from predicate
logic into the fragment of predicate logic without existential quantifier. Notice that only the preservation of
satisfiability is required. Skolemization is the typical example that transforms tautologies not necessarily into
tautologies. For example the tautology 3xPx v Vx—Px is transformed into Pa v ¥x—Px which is satisfiable, but
not a tautology. Transformations of skolemized formulae into clauses is an example for a logic morphism which
preserves tautologies. n

Propesition 2.4 The composition of two logic morphisms is again a logic morphism.
The proof is straightforward. u

This property allows to link translation steps together or, the other way round, to break complicated translations
down into a sequence of simpler ones. We shall exploit this to decompose the translation from multi modal logic
(MM-Logic) to order-sorted predicate logic (OSPL) into a first translation ¥ from MM-Logic to context logic (CL)
and further translation IT from context logic to predicate logic.

MM

other logics

mainly semantics mainly syntax

I1 deals with the purely syniactical stuff of moving context information from the quantifier level or operator level
respectively to the term level, whereas ¥’s work mainly consists of axiomatizing the context structure and is
therefore closely oriented on the semantics of the source logic.
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Chapter Three
Order-Sorted Predicate Logic

A number of many-sorted predicate logics have been developed so far. The different versions can be distinguished
by the structure of the sort information they can represent, whether it is just a flat list of sorts, a semilattice or
lattice, a feature sort structure etc., and by the kind of sort information for function and predicate symbols they can
handle. The minimal requisites we need to make context logic running are: A hierarchical sort structure, i.e. a
partial order, and overloaded (polymorphic) function sort declarations. As we have seen in the introduction,
overloaded function sort declarations like o:*W—2W’ X W—fW’ > W—'W’, o: W2 W’ X W—SW’* 3 W—"'W*
etc. are necessary for the composition function o. The currently most advanced many-sorted predicate logic with a
full developed resolution and paramodulation calculus is that of Manfred Schmidt-Schauss [Schmidt-Schauss 88],
an extension of Walther’s many-sorted predicate logic [Walther 87]. Schmidt-Schauss” logic fulfills the
requirements for Context Logic and even a bit more. In addition to overloaded function sort declarations of the
above kind it allows so called “term declarations” where it is possible to declare for example that the sort of terms
x:real*y:real are usually of sort ‘real’, but the special terms x*x1 and x"1*x are of sort ‘integer’. This special
feature is not necessary for the CL. mechanisms themselves, but it makes the logics which are built with CL more
powerful.

Since Schmidt-Schauss” logic is new and quite complex, we briefly introduce its main notions. We follow in
principle the usual Tarski scheme for defining syntax and semantics of predicate logic, but we have to include
extra devices for handling the sort information.

In the sequel 2(f) denotes the the domain of the function f.

3.1 Syntax

The syntax of the order-sorted predicate logic (OSPL) consists of the basic signature ¢lements as there are
variable, function, predicate and sort symbols, furthermore there are declarations about the sort structure,
formation rules for general terms and formulae as well as formation rules for the special class of well sorted terms
and formulae.

An unsorted signature I consists of the three pairwise disjoint sets of symbols.
> Fy the set of function symbols.
> Vg the set of variable symbols.
> Py the set of predicate symbols.

A term declaration is a pair (t,S) usually written as t:S, where t is a nonvariable term and S is a sort symbol. If
t is of the form f(xy,...,x,), where the x; are different variables, then we say t:S is a sort declaration for f,
otherwise it is a proper term declaration. We sometimes abbreviate sort declarations f(x;,...,x,):S as
£:5,x...x§_ —$, where §,; is the sort of the variable x;.

A subsort declaration has the form RES, where R and S are sorts. A predicate declaration is of the form
P:S;X...xS,, where the S; are sorts.
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Definition 3.1.1 Sorted Signatures
A (sorted) signature X consists of
» anunsorted signature X,
> aset Sy of sorts
> afunction S: V5 — S such that for every sort S € Sy, there exist countably infinitely many variables
x € Vg with S(x) = S,
> aset of subsort declarations, term declarations and predicate declarations.

We assume that the equality predicate =y is in Py, and that for all sorts R,S the predicate declaration =5:RxS is also
in X. n

For a signature X let £y be the quasi-ordering on Sy, defined by the reflexive and transitive closure of the subsort
declarations.

Definition 3.1.2 Well Sorted Terms, Atoms and Formulae
The set of well sorted terms Tz,s of sort S in the signature X is (recursively) constructed by the following
three rules:

> xe Tgg ifS(x)ex S

> te Tyg iftRe ZandR &5 §

> t[x/r]le T}:,S ifte T}:,s’ re TE,R and x € Vy such that R &5 S(x).

(t[x/r] means substituting r for x in t.)

The set Ty, of all Z-terms (well sorted terms) is defined as the union U{Ty 5| S € Sy}
The sort S(t) of a term t is the sort S of the greatest (with respect to set inclusion) T):,s containing t.
We sometimes use t:S to denote that S = S(t) is the sort of t. )
An atom P(t,,...,t,) is well sorted if Le T):,Si fori=1,...,n and P:§;x...x8 is a predicate declaration in X.

A well formed formula (well sorted) is a formula built with well sorted atoms and the logical connectives and
quantifiers —, A, v, =, &, V, 3 in the usual way. We write Vx:S Fand 3x:S ¥ to indicate that the sort of the
variable is S. A formula is called closed when all variables x occur in the scope of a quantifier Vx...or 3x.... ®

For any object o, Vars(o) denotes the set of variables occurring in o.
We use a predicate € where s € t holds if s occurs as subterm in t.

Assumption
In the sequel we assume OSPL-specifications to contain the reflexive axiom for the equality symbol. This is
necessary for the completeness of the paramodulation calculus in OSPL.

3.2 Algebras and Homomorphisms

Algebras and homomorphisms are the basic building blocks for the definition of the semantics of well sorted terms
and well formed formulae. A Z-algebra A for a signature T consists of a carrier set and a set of functions which
correspond to X in the right way. The carrier set is divided into subsets according to s sort structure and the
domain-range relations of the functions in 2 match the corresponding term declarations. A special Z-algebra is the
algebra of free terms where the carrier set consists of the well sorted terms themselves and the functions are
constructor functions for terms, i.e. they take n terms t,...,t, and create a new term f(ty,....t). This fact can be
exploited to define the semantics of terms just by an homomorphism from the free term algebra into a
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corresponding Z-algebra. Such an homomorphism is actually an interpreter which evaluates terms in a given
algebra.

As an auxiliary definition we first introduce X-quasi-algebras as algebras which need not respect the subsort and
term declarations in X.

Definition 3.2.1 Z-Quasi-Algebras

A Z-quasi-algebra 4 for a signature X consists of a carrier set A, a partial function f ﬂ:Aaﬁ‘Y(ﬂ——)A (with domain
2(f 5 )) for every function symbol f in X, a nonempty set S ; < A for every sort S, such that A is the union of the
denotations for the sort symbols in Z,ie. A=U {S;1S € Sg). |

Definition 3.2.2 Z-Assignments
Let Abe a Z-quasi-algebra. We say a partial mapping ¢:Vy — A is a partial Z-assignment, iff ¢(x) € S(x),
for every variable x € D(@). If @ is a total function, we call it a Z-assignment. The homomorphic extension
¢y, of a (partial) Z-assignment ¢:Vy — A on Ty is defined as a (partial) function ¢,: Ty — A as follows:
> Qp(x) = ¢(x) for all Z-variables x € D(¢) and
> for every f(sy,....5,) € Tyt
ifs; € D(Qy) fori=1,....n and (Q;8;..., OS,) € D)
then f(sq,....8,) € (@) and @, (f(sy,....8,)) = 5(PyS1se.0, PpSy)- ]

A Z-assignment assigns values to variable symbols and therefore completes the interpretation of terms in a given
algebra. Thus, the corresponding homomorphic extension allows interpretation of arbitrary non-ground terms in
that algebra. Now we can give the final definition for X-algebras.

Definition 3.2.2 Z-Algebras
A X-algebra Zfor a signature Z is defined as a X-quasi-algebra 4 that satisfies the following additional
conditions: i

> IfReSisinZthenR, S,

> For all term declarations t:S e X and for every partial Z-assignment ¢:Vy — A with

Vars(t) € D(¢): te D(@y) and @) € S, [

The next lemma is actually the many-sorted equivalent of the well known fact that first-order terms constitute the
domain (Herbrand universe) of the Herbrand interpretations.

Lemma 3.2.3 Term Algebras are Z-Algebras
The term algebra of well-sorted terms is a Z-algebra with carrier set Ty if we define:
Sty =Ty g for every sort S € Sy.
> DAfrg) = ((51,ees8y) H(575e0.8,) € Tx).
frs(SqseeesSy) = £(81,...,8p). ]
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Definition 3.2.4 2-Homomorphisms

Let X be a signature. A Z-homomorphism is a mapping ¢:4— 3 from a Z-algebra 4 to a Z-algebra B such that:
> S, cSyforallS e Sy.
> () c Afp forall f e Fy.
> If(ay,....a) € Df,) then Q(f ,(ay,...,a,)) = f5(Qay,....0a,). »

In particular the homomorphic extensions of variable assignments Vy — A are X-homomorphisms from the term
algebra into the algebra 4. They will be used for the interpretation of formulae.

3.3 Semantics

A Z—algébra does not contain objects that correspond to predicate symbols. These will be added in the definition of
Z-structures before we can go on and define the semantics for OSPL-formulae.

Definition 3.3.1 Z-Structures
A Z-structure A is a Z-algebra which has additional denotations P , for every predicate symbol P € Py, such that
i) P,isarelation with P, c #1ty®)
i) =g4is the identity on 4.
A Z-homomorphism of Z-structures ¢: 24— B is a Z-homomorphism of the underlying Z-algebras satisfying in
addition (ay,...,a;) € Py = (@ay,...,0a,) € Py u

Now we can finally define the semantics of well formed formulae consisting of a Z-interpretation for terms and
atoms and a satisfiability relation for formulae.

Definition 3.3.2 Z-Interpretations

Let $= (Z, ¥) be a Z-specification. A Z-interpretation 3 = (M, ) for Fis Z-structure M together with a
Z-assignment ¥ Vy— M.

Since Ty is a free X-structure, ¥induces a Z-homomorphism %} :Ty— M. Therefore we need not distinguish
between (M, 9) and (M, 9}). We use 3(t) as an abbreviation for }(1). |

Notational Conventions

In the sequel we try to observe the convention to write syntactical objects with normal letters and semantical
objects with italics.

3[x/x] denotes the interpretation 3 * that is like 3, but maps x to x, ]

Definition 3.3.3 The Satisfiability Relation
The satisfiability relation = between Z-interpretations and formulae is defined as follows:
Let S = (4, 9) be a Z-interpretation
S EP(ty,....t) iff (3(ty),....3(t,) € Py
SeEVS ¥ iff forall xe S,z S[x/dF F
SIS TF iff there is an x € S, such that S[x/x k= F
The remaining logical connectives are interpreted as usual. u
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Summarizing we comprise the above definitions into the following definition of order-sorted predicate logic
(OSPL).

Definition 3.3.4 OSPL
Following the definition scheme of def. 2.1 for logics, we define OSPL as the tuple (syntax, semantics) where
syntax consists of
» the set of all sorted signatures (def. 3.1.1),
» the formation rules for well sorted terms (def. 3.1.2), i.e. the function Z — Ty.
> the formation rules for well sorted formulae (def. 3.1.2)
and semantics consists of
» the function that maps a signature X to all Z-interpretations (def. 3.3.2)
» the function that takes a Z-interpretation (94 9} with a Z-assignment %and maps it tothe E-interpretation
(M, %,) where 9 is the induced Z-homomorphism 9:Ty—M.
> the satisfiability relation & of def. 3.3.3. N

3.4 Quantification over Functions

In sorted predicate logics it is no problem to allow quantification over domain elements as well as over functions at
the same time. If for example there is a (domain) sort D, you can introduce a sort “D—D’ and axiomatize this sort
such that it describes really functions over D. The second-order syntax with variables in functional positions can
be avoided by introducing an explicit ‘apply’- function. Instead of Vf:‘D—D’ P(f(a)) for example one writes
Vi:‘D—D’ P(apply(f, a)) which is first-order. With this trick you can’t really encode second-order logic in
first-order logic. What you loose is that a second-order quantification V{:D—D... quantifies over all functions
over D whereas a sorted first-order quantification Vf:'D—D’... quantifies only over the functions which are in the
interpretation of the sort ‘D—D’. With first-order axioms it is in general not possible to enforce that these are
always all functions over D.

In Context Logic we need the “functional sorts” to quantify over context access functions, for example functions
‘W—W’ which map worlds to accessible worlds in Kripke structures. In this application it is not only not
necessary to quantify over all functions W — W, it would even be wrong. A second-order qﬁantiﬁcation
Yu:W—-W ... as a replacement for the O-operator would denote not only the accessible worlds, but all worlds.
Therefore with our usage of functional sorts in CL we are on the safe first-order side.

Introducing first-order functional sorts means axiomatizing the ‘apply’-function and the functional composition
appropriately. This can be done in the following way:

Definition 3.4.1 (Functional OSPL-Specifications)

A functional specification in OSPL is a specification (Z, %) consisting of a functional signature and the
axiomatization for the two distinguished symbols | (application) and o (composition). We assume the functional
sorts Sg to be a subset of the sort symbols in Z where £y is a semilattice, i.e. for each pair S;,S; € Sy the
greatest lower bound GLB(S;, S,) is unique if it exists. The functions we are going to define operate on the
denotations of the sorts in Sg. The functional part of X is as follows:

1. The functional sorts may be °S,,...,S,—9S’, S; and S € Sg.
Different symbols 9 may be used to distinguish different sets of functions S;X,...,xS —S.
(For example in subsequent chapters we shall use “W—?W’ to denote functions mapping worlds to accessible
worlds in the basic accessibility relation and “W—™W" to denote functions corresponding to its reflexive
closure.)
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2. Whenever a declaration ‘S1he3,85° E ‘Dy,....D,—™D’ € Zthen D;E; S; fori=1,...nand S =y D and
‘S9s040:8,95’ € ‘D,,...,D,—D’ € I (see comment below).

3. The function declarations for | are: I: ‘S,,...,S, =98’ x $; — °S,,...,5, =95’ for every sort ‘S;,...,5,—95’,
and °S,,...,S,—9S’ exists as a sort symbol.
(For our purposes we need only application to one argument at a time, i.e. we use function currying when
necessary.)

4. The sort declarations for o have the following structure:
0:'D1,...,Dp,81 18y X “Ey,... B S,—3183” = ‘Gy,...,G,,S1 XS’ where G; := GLB(D,E;) fori=1,....n,
and the set of all these declarations is associative, i.e. whenever o:F; X Fy — Fy,, 0:F 19 X F3 = Fyg3,
o:Fy XF3 — Fyg, 0:Fy X Fy3-> F’y,5 are defined for functional sorts Fy, F, and F; then Fq55 = F'y 53, 0r
simply (F; X F,) x F3 = F; x (F, X F3). Furthermore the declarations are maximal. All combinations which
are posssible according to these rules have to be allowed for o.
(For the composition of m-ary functions the forst m-1 arguments are treated as parameters and only functions
with the same parameters are composed, ¢.f. comment below.)

5. Fcontains all axioms of the following kind:
a) Vfg:S,,....5,—9 VxS UEx) =g, x)=>f=g.
(Functions operating in the same way are identical.)
b) VES;1S,’ Vgi'S,—iSy” VxiS; U(fe g),x) = U(g, Uf, X))  (definition of composition.)
¢) Whenever o:‘Dy,...,D,,8;—3!S," X ‘Ey,....E,,S,IS; is defined and n > 0 then
Vf:‘Dl,...,Dk,Sl—>iSZ’ Vg:‘El,...,Ek,SZ—>jS3’ Vx:GLB(D{.E)), ..., Vx:GLB(D, .E,)
(o 8)y XpsennnXy) = UL, Xq,ee Xy ) 0 U8, Xg5en00Xy) =

Condition 2 which reverses the sort hierarchy of functional sorts compared to the sort hierarchy of its component
sorts on the domain side seems to be counterintuitive. A simple example, however, convices that this is okay.
Suppose we have a sort A, the two sorts ‘integer’ £ ‘real’ and the two functional sorts ‘integer— A’ and
‘real—> A’. Now, every ‘real— A’-function is certainly applicable to integers and is therefore also an
‘integer—A’-function, but not vice versa. Thus, the subsort relationship must be ‘real >A’ £ ‘integer—A’.

The composition of functions with more than one argument is asymmetrical in the arguments. The first n-1
arguments are treated different to the last argument. For example the composition of the two arithmetic functions +
and * yields a function (+ o *) with (+ o *)(3,4) = 3 * (3 + 4) = 21. Actually to describe functions like + and * is

not the intention here. The kind of n-place functions we need are essentially parametrized one-place functions, i.e.
f(xqs.. %) =1y xn1(Xy), and we compose only one-place functions with the same parameter vector. The
one-place functions will be used to describe general context transitions and the parameters will be used in logics
with parametrized operators to enforce context switches only along labeled transitions in the context structure
where the labels serve as parameters in the transition functions. The semantics of a parametrized modal operator
like O, for example is “0,P is true in a world W iff P is true in all worlds which are accessible via a-labeled

transitions”. O,P can therefore be translated into Vx:‘D,W—W’ P(l(x,a)). The ‘D,W— W’-functions are
axiomatized such that a function xe ‘D,W—W’ , applied to a . yields a function W — W which moves only along
a-labeled transitions. The composition of two such functions with the same parameters therefore corresponds to
moves in the context structure along transitions with the same label.

In the sequel we shall use sort symbols “‘S—S’” as well as expressions “S — $” with the usual meaning.
“*S—8’” in quotation marks is a syntax element and “S — S” is a semantic expression. Don’t mix them up.
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Example: The main part of the functional OSPL-specification of MM-Logic (chapter 5) is:
1. Functional Sorts:

WoPW?, “WoIW’ | SWIW? | “WoTW’ ‘D, W—2W’, ‘D,W—'W’, ‘D,W—W’°, ‘DWW’
2. Subsort Declarations:

WsTW? ‘D,W—"W’
W "W’ W "W’ ‘D,W_s "W’ }W—’ W
W _;“W’/ ‘D, W5 2wW’

3. Sort Declarations for {:
l: ‘D,W—=PW’ x D — ‘W2W’
‘DWW’ xD - “WoTW’
DWW xD — ‘Wolw’
‘DWW’ x D — “WoTtw?
4. Sort Declarations for o:
or  ‘WoPW’ X ‘WoIW’ — "WsW’
‘D,WoPW’ X ‘D,W—IW’ — ‘DWW’
where s is derived from p and q with the following matrix:

Mrsértrt

t t t t

r t iyt rt

t t t t t

It t it t It

5. Axiomatization of { and o:
a) VEg'W-oI'w  VxWIlE x)=lE x)=>f=g.
VEg ‘DWW’ Vx: DU, x) = (g, x)) = f=¢g
b) VE ‘W—TW’ Vg 'W—=IW’ Vx:W U({(f 0 g), x) = I(g, I, x)) .
¢) VDWW Vg ‘D,W-IW’ Vx: D W((fo g), x) = Uf, x) o L(g, X) n

Lemma 3.4.2 o is associative in functional OSPL-specifications.

Proof: Let f:F;, g:F, and hiFy where Fgi= ‘Dgy,...,.Dg, 81 -1S,", Fyi= ‘D, ,Dy,8,385", Fy o=
‘Dpyqse---DppsS3—%Sy . and (Fy X F,) X F; = F; X (F, X F3) in the sense of 3.4.1,4 holds.

We show the associativity of o for the two cases:

Case: n=0.

Letx:S;  U(fog)oh),x) (f o g): “S; 1Sy’
= L(h, (o g), x)) (def. 3.4.1,5b)
= L(h, (g, I, x)) UE, x):S, (def. 3.4.1,5b)
= (g o h), (£, X)) (g o h):*S,—ikS;* (def. 3.4.1,5b)
= L((fo (goh), %)

= (fog)oh)=(fo(goh)) (def. 3.4.1,5a)

Case: n>0

Letx;Dg  ((fog) oh), xq,..0%)
= L(f o g), Xy5eennxy) o Wb, Xqp00X)) (def. 3.4.1,5¢)
= (UE, Xg500%p) 0 U(8, Xq,...%p)) o dCh, Xq,000,x) (def. 3.4.1,5¢)
= U, XpaeeXy) 0 (UG, XpaeniXp)) 0 L, Xq,e000Xy ) UE, Xqse X1 S —>1S,” (first case)
= dfo(goh), xq,...x ) (def. 3.4.1,5¢)

= (fogoh)=(fo(goh) (def. 3.4.1,5a) »



22

The next theorem confirms that a functional specification really axiomatizes functions.

Theorem 3.4.3 Every model 4for a functional specification S = (Z, #) is isomorphic to a model C where the

terms of type ‘Sy....,S,,—9S’ are interpreted as total functions $; X...xS_ .— S,

Proof: Let 4 be a model for 5.

We construct Cand the isomorphism Z between 2 and Cas follows:

a) For the nonfunctional sorts S, identify S .with S .

This guarantees that the subset relationships in A4 are properly transferred to C.

b) Toevery fge °Sy,...,5,—95" ; we assign the function E(fy) = f.: S; X...XS .— S which satisfies the
following condition: VxeSy4f () = E( 44 %)) ({4 is the interpretationof L in 2, S; 5= S, )
Using the axioms 3.4.1,5a it can be shown with induction on n that f c s unique.

Let *Sy.....8,298" - i= (E(f ) 1 f4€ ‘Sy.....5,—98" 4}
This guarantees again that the subset relationships in 4 are properly transferred to C. However, we have to
show that the definition is consistent with the subsort relationships of the functional sorts, i.e. whenever
f4€°S1,....5;298" 4 € *Dy.....D, D’ 4 then E(f ) is a total function on Dy X...xD, .— D~
Therefore letf4 € ‘Sy,....5, =98’ ‘Dy,....D,—'D’ ; and foi= E(f ).
We perform induction on n.
Base Case: n=1,ie. fge ‘5,598,
Let x€ D, ..=Dy 4 According to def. 3.4.1,2, D; Ey S{,SEy Dand wehave Dy 5 < S; 5
Thus, x€ S 4= S, and therefore f () = E(L 5(f4, 0) € S; =S,.c D, Hence,f € D, .- D
Induction Step: n > 1. The induction hypothesis is
Vgﬂe ‘Sz,...,Sn—>qS’ﬂ: E(gﬂ) is a total function on chx...x Dnc—) DC
Let again x€ Dy ..C Sy, f 0 =E( ({4 0) € *S,,....5, 9’
Since { o(f4, 0) € *S,,...,S,—9S8’ 5 according to the induction hypothesis
fA0 =EW 4tz 0) : DyX...x Dy .-~ D ~and therefore f .€ D; XD, X... XD, .—>D
From a,b) we obtain that E is a bijection between the sets S 5 and S - which are associated with the soris S.
©) E(lg = !, where | .is the application function, i.e.
{ Afo a0 =1f{a holds for all f .and corresponding arguments 4.~
It is easy to verify that this definition matches the sort declarations for | (def. 3.4.1,3).
d) E(og) =0 there ° Cis the composition function on the interpretations of the functional sorts.
It is defined as follows:
Vi € ‘Dy,....0,,8, 998y’ - g€ ‘Eq,... B Sp—8y7 o
froc80€ GypX...x Gy -X 8) S5 -where G; .= D; .N E; - fori = 1,...,n such that
Ecor8e) s sy 0 = 8 (Xpse e sBpf (Ko 1)
Using the correspondences between f.and {5, and the fact that GLB(D;, E;).< D; M E; ~we can prove by
induction onn: f .o, € ‘Gy.....Gp.81 585"
It is easy to verify that these definitions satisfy the axioms 3.4.1,5 and the homomorphism conditions (in both
directions): E(Af ) = D) and if ae D(f ) then E(f (a)) =  (E(a))

e) Since E is a bijection between the sets S zand S ¢ Which are associated with the sorts S we can now assign to
each other function symbol g and its corresponding function g4 a unique function g . = E(g 5) such that the
homomorphism conditions hold in both directions.

f) Similarly we assign to each predicate symbol P and its corresponding relation P, a relation P - = E(P ) such
that (ay,...,4)) € P,if and only if (Z(4),...,E(a,)) € P.

Hence, we have constructed the desired “functional” Z-structure for the context specification which is isomorphic
to A The isomorphism ensures that the functional Z-structure is also a model for the specification. |

In the sequel we shall use only the functional interpretation of functional specifications. We can exploit this
interpretation also to simplify the syntax of terms, writing x(y) instead of {(x, y).
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Chapter Four

Context Logic

Context Logic (CL) consists of two parts. The first part, the “context part”, is just OSPL, and this part is used to
axiomatize context structures. The second part, the “domain part” with separate syntax and semantic definition is
used as an intermediate language for translating specifications from the source logic into OSPL. The domain part
syntax is very close to the operator syntax. For example instead of OP in modal logic one would write
Vx:“W—W’ P in the domain syntax of CL. Translation from the operator syntax into CL is therefore almost a one
to one translation where the model theoretic semantics of the operators is expressed directly with CL quantifiers.
The soundness and completeness proofs for this part of the translation are therefore straightforward. The final
translation from CL into OSPL is a purely syntactic transformation where the quantifications over the functional
context variables are collected to build “context terms™ which are attached as additional arguments to the terms and
atoms. Since this is a shift of information from distributed areas of the formula tree to the term level, the
soundness and completeness proofs are much more complex, but they can be done once and forall. This was
actually the reason for introducing CL as an intermediate stage between logics with operator syntax and OSPL.

4.1 Syntax

A specification in CL contains both the axiomatization of the context structure, written in OSPL, and the translated
formulae from some source logic. The latter ones formulate the facts about the user’s domain and use context
elements only occasionally as replacements for the operators. Therefore we separate the signature of CL into the
context part, containing sorts and symbols concerning for example worlds and transitions between worlds, and
the domain part concerning the user’s sorts and symbols. The signature elements allowed in the source logic, and
translated into the domain part of CL, are the usual OSPL ones, i.e. sorts, sort hierarchies, sort declarations,
predicate logic quantifiers etc. For the context part, besides the OSPL elements, we need a coupie of additional
signature elements. To motivate the additional elements, let us consider the representation of an ‘until’ operator for
branching time temporal logic. Its semantics is:

FUNTIL Gholds in a world W iff on each path 2 in the possible worlds structure starting with
W, G holds eventually in a world %, on Pand ¥ holds in all worlds on Pbetween Wand .
Graphically:

FUNTILG . e

First of all we notice that, besides the concept of worlds, we need the concept of paths through the possible
worlds structure; and we need transitions from worlds to paths and back to worlds. Transitions from worlds to
paths can be described with context access functions mapping worlds to paths, and transitions from paths to
worlds can be described with functions mapping paths to worlds. A slightly more complex example would show
that we need also transitions from a world on a path to another world on the same path. Functions representing
these transitions need both, a world and a path as input. The real context information that is necessary to handle
modal operators together with an “until’ operator are therefore tuples <world,path>. Since, however, terms and
atoms are interpreted only in worlds and the path component becomes irrelevant, we finally must project the world
component out of the tuples. Thus, the additional components we need in the context part of the CL signature are:
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- a separation of the context sorts (W, WP in the example) into
- the basic context sorts (the sort WP describing tuples <world,path>) and
- the interpretation context sorts (the sort W), the sorts which are relevant for the

interpretation of terms and atoms.

- asymbol variation function that assigns to each function, predicate and domain variable symbol the
projector functions mapping the actual context (WP) to the interpretation context (W). We need this
information for domain variable symbols too because variables of existential force are Skolemized, i.e. turned
into function symbols.

Of course we don't restrict the context information to one single context, but arbitrary many contexts, like for
example time and belief, are allowed to operate independently from each other. (Worlds and paths in the above
example are not independent from each other.)

Definition 4.1.1 CL-Signatures
CL-signatures are essentially functional OSPL-signatures (c.f. def. 3.4.1) with a few more concepts:
1. We separate the symbols into two partially overlapping parts, the context signature which
contains the functional part we are interested in and the domain signature according to the
following criteria:
i) The sort symbols consist of three nonempty and disjoint parts:
a) the domain sorts which belong to the domain signature;
b) the context sorts which belong to the context signature; -
a subset of the context sorts is selected as basic context sorts,
(in the sequel we assume a fixed ordering of the basic context sorts) and
¢) the functional context sorts which also belong to the context signature.
The functional context sorts are of type ‘C—!C’ or ‘D,C~IC’ where C is a basic context sort and D
is a domain sort.
d)  The domain sorts occurring in the functional context sorts belong to both parts of the signature.
i) Context symbols, i.e. variable, function and predicate symbols with context sorts in their sort
declarations belong to the context signature, the domain symbols, i.e. the symbols with only domain
sorts in their sort declarations belong to the domain signature.
The equality symbol belongs to both parts of the signature.
A variable of sort ‘C—IC’ or ‘D,C—IC’ is called a functional context variable.

2. The sort declaration are such that
i) In the subset ‘C—9C’ of functional context sorts (with different 9) there is always a unique topsort.
ii) Except for the equality symbol there are no context predicates with functional context sorts in their sort
declaration.
3. A CL-signature contains two more objects:
i) The interpretation context sorts is a fixed tuple I4,...,I, of context sorts.
i) A symbol variation function 59mapping each domain symbol to a tuple (p,,...,p;) of one-place
function symbols p;:C; — I, with basic context sorts as domainsort and interpretation context sort as
rangesort, [, being the i-th element in the interpretation context sorts. [ |

Definition 4.1.2 CL-Terms

The set of CL-terms over a CL-signature X is simply the set Ty of OSPL-terms (def. 3.1.2).

Domain terms are terms built from domain symbols only, all other terms are context terms.

Terms of sort ‘C—9C’ or ‘D,C—9C’ are called context access terms. |
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The syntax rules for CL-terms need not be separated into rules for domain terms and context terms, OSPL-syntax
is good for both. For the formula syntax, however, we need special formation rules for domain formulae. First of
all we may have quantifications like Vx:"W—>W’ P, where the quantified variable does not occur in the body of
the quantification. This, of course, is also possible in predicate logic syntax, but there it makes not much sense,
You can drop the quantifier without any logical consequences. In Context Logic, these quantifiers are the main
constituents because nested quantifications of this type accumulate the context information for the interpretation of
the terms and atoms. Dropping them changes the logical status of a formula considerably.

For special purposes, variations of the quantifications over context access functions are needed. Sometimes it is
necessary to unwind the context information to the state of an embracing quantifier. This occurs for example in the
translation of an ‘until’ operator (def. 5.2.2):
Y(FUNTIL G) = Vp:“W—P’ 3x: Po>W’ (F(6) A Vy: PoW’-x poy < pox = ¥(F)
which is a straightforward encoding of the semantics of ‘until’ as given above. It should be read: From the initial
world, say 7, obtain a path P = p(W}y), starting with %}, by applying a “world-to- path-function” p to W}, W), is
still the actual world context. Then move from W, 10 W; = (W,,, ) on the path Pby applying the a
“path-to-world-function” x that exists according to the 3x: ‘P—>W’-quantification. Evaluate ‘¥(g) in the world #,
which is now the actual world context. Now reckon a world W, = (%), 2) on P by applying “path-to-world-
function” y, not to the actual world context W, as the nesting of the quantifiers normally suggests, but, because
of the “-x” appendix in the Vy:‘P—>W’-x quantification, to the world %), which is the state of the world-context
before the dx:‘P—W’ quantification. Evaluate “<(poy, pex) = ¥(¥)” in the world W,. Hence, in the
quantification Vy:‘P—->W’-x, the “-x” appendix enforces the context of y to be unwound to the state before the
quantification of x, thus making x invisible for y and therefore the worlds denoted by x and y independent from
each other, Pictorially, the difference between the formula with and without the “-x” appendix is:
Vp:*W—P’ 3x:'PH>W’ Vy: ' P->W’-x Vp:*W—oP Ix:'PHW’ Vy: PSW’
X T

/\‘”ﬁ /—_\("i P
A N—-—
actual world actual

y Y world

Consequently, the first modification on CL-quantifiers is to allow a “-v” appendix where v is a context variable in
the scope of a more outside quantification.

The second modification is aimed to provide a representation for indexed operators. Indexed operators like for
example O  (we write it [s]]) have been used in epistemic and action logics where the index refers to an agent or
an action respectively. For example in an “belief interpretation” the formula [ Tom ] loves(John, Mary) means
“Tom believes that John loves Mary” or technically “in all worlds which are compatible with Tom"s current
knowledge, John loves Mary™”. The semantics of the indexed operators can be given either by associating with
each index a separate accessibility relation or, and that is only another way to say it, by labeling the transitions in
the accessibility relation with the indices themselves or interpretations of the indices. 0P is now interpreted: P
holds in all worlds accessible via s-labeled transitions. The representation of indexed operators in CL requires
context access functions which are parametrized with the labels. When we choose the indices to be arbitrary terms
and the labels to be the interpretation of the index terms, we can represent the parametrized context access
functions as ‘D,W—W’-functions where D is the domain sort used for the index terms. A quantification “for all
s-indexed transitions” could now be represented as V1(x:‘D,W—W’, s) expressing that the quantification ranges
over all ‘D,W—W’ functions, but the actual world is to be obtained by applying the interpretation of x, the
parametrized world access function, to the interpretation of s, the label.

A technical difficulty arises with the interpretation of the parameter “s”. Although usually a quantified context
variable in CL occurs only once, in the corresponding quantification, there are operators like the parametrized
eventually operator (def. 5.2.2) whose translation has more occurrences of parametrized context variables. The
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paraméter, i.e. the “s” in “VI(x, s)” is uniquely bound to the variable x itself and therefore x should only occur in
the term “l(x, s)”. “s” has to be interpreted in the context of the quantifier where it occurs. A second occurrence,
however, might be in the scope of another operator and the term “s” would then be interpreted differently to its
first occurrence. To avoid this, we write instead of “VI(x, s)” “VI(x, z=s)” where z is a variable of the same sort
of s. And instead of “l(x, s)” in other parts of the formula we write “.(x, z)”. Since we assume constant-domain
interpretations, its interpretation’is in all worlds the same and the definition of the satisfiability relation below
ensures that the interpretation of z equals the interpretation of s.

A quantification over a context access variable shifts as a side effect the actual context to the context obtained after
application of the context access function associated with the variable to the actual context. Sometimes it is
necessary to have only this side effect, generated by a term t instead of a variable. Therefore we introduce a new
operator g which is applied to a context access term and a formula. g t Fmeans that 7 is to be interpreted in the
context obtained after application of the t’s interpretation, which is a context access function, to the actual context.
Thus g denotes a simple context shift, nothing else. If for example t is “tomorrow” and Fis “bad-weather” then
“tomorrow”” can be interpreted as a constant temporal context shift and “ @ tomorrow bad-weather” means simply
that there will be bad weather tomorrow.

There is yet another special feature of the domain formulae in CL that should be mentioned. As can be seen in the
translation rule of the ‘until’ operator above, special predicates like the <-predicate operating on contexts only may
be necessary to formulate the translation rules. These predicates cannot be used in the source logic. Although after
the final translation into OSPL, the predicates really operate on contexts (worlds), in the CL stage of the
translation theirhrgumenm must be context access terms because the actual context is not yet known. That’s the
reason for the somewhat peculiar sort declaration for these predicates. They are defined with context sorts, but
used with context access terms.

Definition 4.1.3 CL-Formulae

We distinguish two types of formulae, the domain formulae and the context formulae. The context formulae
over a signature Z are simply the set of well formed OSPL-formulae (def. 3.1.2) over the context part of the
signature. The domain formulae are built from domain atoms and domain literals as follows:

Domain atoms are the least set such that:

(i) Every well formed OSPL atom built with a domain predicate, except the equality symbol, is a domain
atom. Atoms built with the equality symbol and domain terms are also domain atoms.

(ii) Atoms built with a context predicate P are also domain atoms if they are built according to the usual rules,
however after having replaced context sorts C with ‘C—C’ in the sort declaration for P, ‘C—C’ being the
topsort in the sublattice of all ‘C—9C’ sorts.That means instead of terms of sort C we require terms of sort
‘C—C” as arguments of P.

Domain literals are domain atoms or negated domain atoms.

In the sequel L. denotes either a positive literal, i.e. L itself, or a negative literal, i.e. —L.
The set of variables occurring as subterms in an atom are its free variables.

The set of domain formulae over the given signature is defined as the least set such that

(iii) domain atoms and domain literals are domain formulae.

(iv) If ¥is a domain formula, x:‘D,C—9C’ is a context access variable, z:D is a domain variable and s is a
domain term of sort D and x and z occur only as subterms of L(x, z) in Fthen G= V1(x, z=s)¥ and
G=3l(x, z=s) ¥ are domain formulae.

If V is the set of free variables of Fthen V\{x,z} w Vars(s) is the set of free variables of G.

(v) If Fand G are domain formulae, x is a domain variable or a context variable of sort ‘C—9C’ then
—F, FA G, Fv G, Vx Fand 3x Fare domain formulae.

If V is the set of free variables of Fthen V\{x] is the set of free variables of Vx Fand 3x 7.
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(vi) If Vt For 3t Fis a domain formula where t = x:“C—49C” or t = I(x:*°D,C—9C’ z=s) and y is a context
variable of sort ‘D,C—IC’ or ‘C—4C’ then G= Vt-y Fand G = 3t-y Fare domain formulae. The free
variables for G are those of Vt ¥ plus the variable y.
‘ (vii) If #is a domain formula and t is a context access term of sort ‘C—C’ for some C then @ t Fis a domain
formula.

As usual we assume that formulae are standardized apart, i.e. formulae like Vx3x... do not occur. ]

In the sequel we assume that CL-specifications are always functional specifications according to def. 3.4.1 and
def. 4.1.1 where the functional part consists of the context part of the signature, and the axioms are formulated
with context formulae. The remaining part of the axioms is formulated with domain formulae, We call the context
part of a CL-specification the context specification.

Examples for domain formulae:
Vx:*W—-W’ P
HE ‘DWW, z=2a)P
Vx:'W-oW o BFt) o +1) Q
VP WoIW? 3x:W—o2W’* (P A Vy: “W—2W’-x (<(poy, pox) = Q)).

4.2 Semantics

The semantics of CL is essentially a Kripke style possible worlds semantics [Kripke 59,63], its technical
formulation, however, is adapted to the necessities of CL. The worlds are determined by the interpretation of the
interpretation context sorts. If Cl,...,Cn, for example, are the interpretation context sorts, then tuples (¢15---25,) Of
interpretations of C,,...,C,, denote the worlds. (In modal logics these tuples are always singletons). We assign a
Z-structure, i.e. a predicate logic interpretation to each of these tuples. The accessibility relation is determined by
the interpretation of the ‘C—C’-sorts. Since they are interpreted as functions one can think of function
applications as transitions from world to world and of the argument-value relation as the accessibility relation. The

application of a ‘D,C—C’-sort to a domain element yields a normal ‘C— C’-function, therefore
‘D,C—C’-functions are used to represent labeled transitions. )

Definition 4.2.1 (Frames)
A frame for a CL-signature consisting of the context signature X and the domain signature X, and interpretation
context sorts (Iy,...,1,) is a tuple (G, §%) where

C is afunctional Z-structure (this is actually the possible worlds structure).

S is a function that assigns to each wuple (i1 ....,1, ) € I; X...XI, ~of contexts aZp-structure 4,

where the domains are identical in all these Zpy-structures (denoted as D gq/for a sort D) and D =D - for
each domain sort D belonging to Z and Xp,.
(Each world is viewed as an interpretation in the predicate logic sense. The constant domain assumption is

built in.) u

Notice that we use the notion frame somewhat different to [Fitting 83]. A frame in the definition above includes

already the interpretation of the nonlogical symbols. The functional Z-structure Ccorresponds to Fittings frame.




28

Definition 4.2.2 (Signature Interpretations)
A signature interpretation for a signature X with basic context sorts (Cy,...,C.) is a tuple (F, %, C, P where
F=: (C, 89 is a frame,
¥ 1isa Z-assignment, the actual assignment and
€ isatuple (g,....6,) € CyX...XCp, ~of actual contexts and
P is a T-assignment, the context assignment. u

The %~component is the usual assignment of values to variables, domain elements to domain variables and context
access functions to context access variables. ¥is irrelevant for the interpretation of closed formulae. It is used by
the satisfiability relation (see below) in the usual way for recording variable bindings during the recursive descent
into a formula. The C-component contains the actual context (actual world) in which the formula or term has to be
interpreted. For a closed formula it gives the initial context (initial world) for its interpretation, and during the
recursive descent into the formula the satisfiability relation uses it to record in a stack-like manner the actual
context. The actual context changes each time a new quantifier over a functional context variable is encountered.
The ¥’ and ¢-components are standard for modal logics. The ®-component, however, is specific for CL. It
records for each functional context variable the context of its quantification, i.e. its first occurrence. This
information is necessary for unwinding the ¢-context when a quantifier with “-y” appendix is encountered and for
the proper interpretation of the special context predicates (like the <-predicate above).

The actual Z-structure (world) to be used for the interpretation of terms and atoms is obtained form the actual
context, i.e. the \C-component of the interpretation by applying the topsymbol s projector functions to the actual
context. For example in the multi modal logic we describe in chapter 5, the actual context consists of tuples
<world, path>, but the actual Z-structure for the interpretation of a term is independent of the path component.
Therefore the project-world function has to be applied to the actual context in order to get the interpretation
context, i.e. the actual X-structure.

Definition 4.2.3 (The Actual Z-Structure)

Given a signature interpretation ((C, S¥), ¥, C, P) for a signature X with basic context sorts Cy,...,C,,,
interpretation context sorts I;,...,I; and symbol variation function $%, we define the actual Z-structure for a
function or predicate symbol f as S o+ Where the 4. as elements of the Z-Structure C are determined
from SUf) = (py...., p) and Cas follows:

If p; is a function p;:C,—; then 4 ¢ =Py AC) where Cc is the element in Cbelonging to the context sort C. |

Definition 4.2.4 (Interpretation of Terms)
Given a signature interpretation S = ((C, $%), ¥, €, P) for a signatureX, context terms are interpreted by the
corresponding induced homomorphism %} from the algebra of context terms into C. (That is the same as in
OSPL.) For interpreting domain terms we turn S into an homomorphism 3, from the algebra of domain terms
into the actual Z-structure of the term s topsymbol.

Sp(x) = UX) where x is a variable symbol,

Spf(tyent)) =4S,y 34(t,)) where Ais the actual Z-structure of f (def. 4.2.3).
In the sequel we do not distinguish between 3, 3, and 9}, ]
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Notational Conventions:

Let S =({(C $Y). ¥, C, P be a signature interpretation.

Cc denotes the element of € that corresponds to the sort C.

In general it should be clear which ¢, i.e. which 3 is meant.

3[x/x ydenotes the interpretation S where ¥{x/x] maps x to x and which is otherwise like 3.

3[x/c)pdenotes the interpretation S * where #[x/c] maps x to cand which is otherwise like 3.

S[C/c) odenotes the interpretation 3 where in Cthe element belonging to the sort C is replaced by ¢,

and which is otherwise like 3.

We use combinations of these notations with the corresponding meaning. ]

Definition 4.2.5 (The Satisfiability Relations)
Let 3 =((C $Y), ¥, C, P be a signature interpretation for a signature X,
The satisfiability relation for context formulae is just the OSPL satisfiability relation where all but Cand ¥is
ignored in 3. .
The satisfiability relation for domain formulae is defined as follows:

S I P(ty.....tp) iff S8(ty),....3(t,)) € P, where 4is the actual Z-structure of P

and P is a domain predicate (def. 4.2.3)
S - P(ty,....t) iff (t15---sty) € P, .
where P is a context predicate and the ¢ are determined as follows:

If t; is a context variable x or a term l(x,z) then ¢ = S(L(Ax))
Ift, = s o tand s is a context variable x or a term {(x,z) then ¢ := S()(S(s)(Ax)))
otherwise g :=3()

S - —F iff not 3 - F

SIHFFAG iff S i-FandS I+ &

SIHFvG iff S-ForS - g

8 I+ Vx Gwhere x is a domain variable of sort D
iff forevery x€ Dgy: S[x/dy- G
3 i+ Vx Gwhere x is a context variable of sort ‘C—4C”
iff forevery xe ‘C—IC : S[x/dy [C/HC X/ CClp- G
3 I+ Vx-y G where x is a context variable of sort ‘C—9C” and y is a variable of sort ‘C—PC’ or ‘D,C—PC’
iff forevery xe ‘C9C < S[x/dy [C/ARYN] X/ EY)]p G
3 I+ V(x,z=t) G where x is a context variable of sort ‘D,C—9C’
iff forevery xe ‘D,C—IC’ : Sx/x 2/I (V)] [C/AS ), C X/CClp- G
S - Vi(x,z=t)-y G where x is a context variable of sort ‘D,C—9C’
iff  forevery x€ ‘D,CHIC" s S(x/x /3 V)] [C/ASO), Ky [X/EY)ph G
S i+ Ix G where x is a domain variable of sort D
iff thereis an xe Dgywith S[x/xly - G
S I+ 3x gwhere x is a context variable of sort ‘C—9C’
iff thereisan xe ‘C—9C’ .with 5[x/7(]fV[C/7<(CC)]c[X/CC]Q"‘ G
S I+ 3x-y gwhere x is a context variable of sort ‘C—9C’ and y is a variable of sort ‘C—PC’ or ‘D,C—PC’
iff thereisan xe ‘C—)‘lC’Cwith S[x/x],V[C/a(f(y))]c X/ENe - G
S i (x,z=t) G where x is a context variable of sort ‘D,C—4C’
iff thereisan g€ ‘D,CIC - with 3[x/x z/3 O]y [C/AS®), X/l - G
S I 3U(x,z=t)-y G where x is a coniext variable of sort ‘D,C—9C’
iff thereisan xe ‘D,CIC < S[x/x IOy [C/AS(D), Hy)][X/EW]p- G
3 I+ g t g where t is a term of sort ‘C—4C’
iff  S[CBI- G =
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Notice that in quantifications Vl(x,z=t)-y Gand 3!(x,z=t)-y Gthe term ‘t’ is interpreted in the actual context, i.e.
the “-y” suffix has no effect on ‘t’.

Lemma 4.2.6 (Negation Normal Form)
The following transformation rules for domain formulae can now be proved being equivalence preserving: -
(FAH) > ~Fv=G —(FvH - = FA-G

-Vx G — dx -G —3x G - Vx—@g

—-Vx-y G - Ix-y -G —dx-y ¢ - Vx-y-g

-Vix,z=t) ¢ — IFlxz=1) ¢ —dxIx,z=t) ¢ — VI(xz=t) =G
—Vixz=t)-y 6 &> I Ix,z=t)-y -G —dx Ixz=t)-y 6 > VIExz=t)-y -G
~PtG - P tG

These rules allow to move negations in front of the atoms, i.e. to produce a negation normal form. [ ]

To illustrate the last rule, assume t means again “tomorrow”, i.e. a fixed temporal context shift and G means
“bad-weather”. Then — g tomorrow bad-weather - & tomorrow —bad-weather means that ‘not tomorrow is
bad weather’ is equivalent with ‘tomorrow is not bad weather’. Sounds reasonable, doesn t it.

Assumption: In the sequel we always assume that domain formulae are in negation normal form.

4.3 A Logic Morphism from Context Logic to Order-Sorted Predicate Logic.

We define a logic morphism I1 = (TL,, Tlg) (def. 2.3) from CL to OSPL that allows to translate CL-specifications
into OSPL-specifications, thus enabling proofs by translation and refutation. For the specification morphism I
we define a signature morphism Ily and a formula morphism I, as components first.

The main task for the signature morphism is to provide additional “context arguments” for the domain function
and predicate symbols. The sort declarations must be extended for this purpose.

Definition 4.3.1 The Signature Morphism ITs
A CL-signature Z with symbol variation function $¥is mapped to an OSPL-signature as follows:
1. The sorts, the sort hierarchy and the context symbols, including the equality symbol, remain
unchanged.
2. For each basic context sort C a distinguished constant symbol 0:C is introduced.
3. Each n-place domain function or predicate symbol f is mapped to an k+n-place function or
predicate symbol where k is the number of interpretation context symbols.
(The k additional arguments take the context terms for the functional context sorts.)
4. In the term declarations t:S the term t is modified by the following recursive function 7y
T5(X)=x where x is a variable.
Ty ({(ty,- 1)) = s (DG, Y0 Tty Ts(ty) (%)
where the y; are new variables of sort I such that (I;,...,I,) is just the tuple of
rangesorts of the functions in SUf) (which equals the interpretation context sorts).
If f is a context symbol then k = 0.
5. The predicate declarations are modified according to the rule ().
6. A sufficiently large set of function symbols is added to serve as Skolem functions. L
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The formula morphism translates domain formulae into OSPL-formulae by collecting the quantifications over
context access functions and inserting corresponding context terms as additional arguments into the terms and

atoms.

Definition 4.3.2 The Formula Morphism I1,

Since context formulae are already OSPL-formulae, IT # needs only translate the domain formulae into
OSPL-formula. 11, requires an auxiliary function 7t that makes the recursive descent into the formulae and terms to
be translated. « has two additional arguments ¢ and p. ¢ accumulates for each basic context sort C the sequence of
nested quantifiers over context functions, i.e. when (C,,...,C_) is the tuple of basic context sorts, ¢ is a tuple
(t1---.t,) of terms where the t; correspond to the sorts C;. t;is a ‘C;—9C;’-term of the structure t;yo...ot;,. The t;;

are either variables or terms {(x, t). p records for each context variable of sort ‘C;—9C;’ or ‘D,C;—1C;’ the

C-context of the corresponding quantification, i.e. the value, ¢~ had when the quantification that introduced x was
translated.

To simplify notation we assume that the initial value of ¢ is a tuple of identity functions and in p the assignment
for each variable is the also the identity-function (which of course should be eliminated in a real implementation).
For example when the formula Vx:*C—C’ Vy:'C—C’ P is translated, at the time when &t arrives at P, ¢ = (xoy),
p(x) = identity-function and p(y) = x. (Since p records terms, a Lisp hacker may think of p as an association list
for variable symbols.)

Notational Conventions:
¢ denotes the element of ¢ that corresponds to the sort C.
c[C/c] is like ¢ except that the element belonging to the sort C is replaced by c.
pix/c] is like p except that x is mapped to c.
T(G...)[x«t] means “wranslate G and afterwards replace all occurrences of x by t”,

(¥, ¢, p) is defined inductively over the structure of 7
A) w(x, ¢, p) =X where x is any variable symbol
B) n(f(tl,...,tn), ¢, p) = g(B)(s150 58y ®(tqs € P, T(Ly, €, P)) Where f is a function ‘symbol.
The s; are determined as follows:
If f is a context function then k = 0.
Otherwise s; := p;(W(c¢y, Oc;)) where p;:C;—]; is the i-th projector function in SU).

O) n(@P(ty,....tp) 6. p) = HIg(P)(Sqs....8. Ry, € P)..... 7Ly, €, p)) where P is a domain predicate.
The s; are determined as in the previous case. (“+” means negated or unnegated.)

D) wm(ZP(t;,....t,), ¢, p) = 1P(8q,..-,8,) where P is a context predicate.
The s; are determined as follows: ‘
If :*C—-9C” is either a context variable x or a term (x,z) then s; := L(p(x)ot;, O¢).
Ift;=s o tands is a context variable x:*C—9C’ or a term U(x,z) then s, := L(p(x)oson(t, ¢, p), 0c),
otherwise s; =, ¢, p).

E) n(Vx G, ¢,p) = VX (G, ¢, p) where x is a domain variable.

F) ®(Vx G, ¢c,p) = Vx (G, ¢[C/ecox], plx/cc])  where x:*C—9C” is a context variable.

G) n(V¥x-y G,¢,p) = Vx (G, c[Crp(y)ex], plx/p(y)]) where x:*C—IC’ is a context variable.

H) n(Vi(x,z=t) G, ¢, p) = Vx (G, ¢[Clecol(x, ®(t, ¢, P, plx/cczen(t, ¢, p)]

where x:‘D,C—-9C’ is a context variable,

D m(Vix,z=t)-y G, ¢c,p) = Vx1(G,c[C/p(y)el(x, T(t, ¢, p))], PP zen(t, €, P)]
where x:°D,C—9C’ is a context variable.
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The variables yy,....y,, in the rules for the existential quantifier below are the free domain variables in G.
) =(3x G,¢,p) =76, ¢, P)[x<g(Sq5..-8s Yis+++5¥ )] Where x is a domain variable of sort D,
s; == p;({(ec; Ocy)) where p;:C;—; is the i-th element in SU{x) and
g is a new function symbol of sort I;x...xI;xS8(y;)X...xS(y,) = D.
K) n(@x G,¢,p)  :=7(G, c[Clecox], pIx/CDxeh(sy, . .8 1:8j1 10+ :Sg:Y 10+ 2Ym)]
L) %@xy 6, p) := TG, cC/p(y)ox], PIX/POIDIXAN(S e rs8i 1S4 10w sSoY 150+ Vo))
where x:‘C—9C’ is a context variable,
8; := P;({(€c;,0¢y)) where p;:C; -, is the i-th element in ${x), Cj= Cand
h:le...ij_lij 1% XEXS(y X, . X8(y ) = ‘C—>9C’ is a new function symbol.
M) =Gl(x,z=t) G, c,p) where x:‘D,C—9C’ is a context variable,
= (G, c[Clecol(x, T(t, €, P, PIX/CDIxeK(S .81 1,84 10 SY 1+-5Y m)> 2L, €, P)]
N) n(3i(x,z=t)-y G,c,p) where x:‘D,C—-9C’ is a context variable,
= (G, c[C/p(y)od(x, T(t, ¢, P, PIX/PYIDIXK(S 1,0 0184 138415+ 1SV 12+ ) Z (L, €, P)]
s; == p{(H(cc;.0¢y)) where p;:C;—]; is the i-th element in ${x), Cj= Cand
k:le...ij_lij +1% - XEXS(y)X. .. X8(y ) = ‘D,C—9C’ is a new function symbol.
0) (ptge,p) =mn(G c[Clecon(t, ¢, p)l, p) where tis a term of sort ‘C—IC’.
P) m(G; A Gy €, p) =Gy, €, P) A UGy, €, P)-
Q ®(G; Vv G2, ¢, P) =Gy, p) v TGy, € P)- n

Notice that the translation rules contain a very strong Skolemization rule for functional context variables. The
Skolem functions for a context C do not depend on the universally quantified context variables of the context C
itself. In particular when there is only one context, this means they depend only on the domain variables, not on
the other context variables. This works because a Skolem function, say g, for a functional context variable whose
quantification occurred in the scope of a universal quantifier over another functional context variable, say x,
becomes part of a term xog that depends on x. If we write this term in second order syntax we see that g(x) really
depends on x. The soundness of this strong Skolemization actually depends on a certain condition on the
interpretation of the functional context sorts (see. def. 4.3.6 below). The introduction of the stronger
Skolemization rule is the reason for including Skolemization into the translation from CL to OSPL.

Proposition 4.3.3  Il;maps well formed CL-formulae to well formed OSPL-formulae.
Proof: A simple check of the translation rules in 4.3.2 and application of def. 3.4.1,4 confirms that the new
context terms in the ¢- and p-argument of 7t are well sorted. We show the main statement with induction on the
size of domain formulae. In most cases it is sufficient to show that terms do not change their sort.
Base Case: This is the variable case which is trivial because variables are not changed.
Induction Step: The induction hypothesis states that translated terms of smaller size have not changed their sorts
and translated terms and formulae of smaller size are well formed OSPL-formulae. We perform a case analysis
according to the structure of the domain formulae. The interesting cases where the translation rules in 4.3.2
produce new terms are:
Case f(t;,...,t,)) and f is a function symbol.
The translation rule is
B) “n(f(t;.....ty), ¢, p) := IIs(H)(sq,....5¢, Tty €, P)s..., Tty, €, P)) where f is a function symbol.
The s; are determined as follows:
If f is a context function then k = 0.
Otherwise 5; := p;({(ccy» Ocy)) where p;:C;—]; is the i-th element in SUE).”
According to the induction hypothesis, the sorts of the t; do not change.
The sort of s; is the rangesort of the p; or smaller. Therefore the translated term matches the
declaration for ITs(f) in def. 4.3.1 4, thus keeping its sort.
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Case +P(t;,...,t,) and P is a domain predicate.
The translation rule is
O) “m(ZP(ty,....t,), €, P) := LI P)(sy,....8, MLy, €. Psees n(t,, ¢, p))
The s; are determined as in the previous case.”
The arguments are also the same as in the previous case.
Case £P(ty,....t,) and P is a context predicate.
The translation rule is
D) “ m(£P(ty,...,t;), €, P) := 2P(sq,....8,)
The s; are determined as follows:
If t;:‘C—9C” is either a context variable x or a term I(x,z) then s; := I((p(x)ot;)), Oc)
Ift,=sotand s is a variable x:‘C—9C’ or a term 1(x,z) then s;:= W((p(x)osont(t, ¢, p)), Oc)
otherwise s; =7, ¢, p)”
The sort of s; is C or smaller in all three cases.Since P(ty,...,t,) is a well formed domain atom, the sort of the
t;-position must be C or larger (def. 4.1.3,ii). Thus, the translated atom is a well sorted OSPL-atom.
Case Vi(x,z=t) G where x:‘D,C-9C” is a context variable.
The translation rule is
H) “n(Vi(x,z=t) G, ¢, p) := VX (G, clec/ecod(x, n(t, ¢, p))], plx/ccDzen(t, ¢, p)I”
By definition, z and t have the same sorts (def.4.1.3,iv). Exploiting the induction hypothesis for n{t, ¢, p) we
can safely replace z by the translated term without changing the sorts of terms.
The same holds for the case Vi(x,z=t)-y G.
Case Jx G where x is a domain variable of sort D.
The translation rule is
D “n(3x G, ¢, p) = (G, ¢, PIXE(Sse 18 YieeesY)]
8; .= p;({(Cy» Ocy)) where p;:C;—]; is the i-th projector function in SUx),
and g is a new function symbol of sort I;x... X[ xS(y)X...x8(y ) — D.”
Z(S15. 4 s8gs Y1o-+2¥py) 1S @ well sorted term and its sort is D, Therefore x of sort D is replaced by a term of sort
D which does not change the sorts and this holds for the remaining rules with existential quantifier as well. m

Examples for the Translation of Domain Formulae
We assume C is the only basic context sort and therefore it is also the interpretation sort.
Let the symbol variation function map all symbols to the identity function. We shall omit it.
TL,(P)
= P’(l(identity, 0c)) (= P(0c))
[T(Vx:*C—C’ P)
= Vxi'C->C P'(I(x, 0c)
II j[(Vx: ‘CoC’a=b) (We do not distinguish between the object and meta equality symbol)
= Vx:"CoC a(l(x, 0p)) = b({(x, 0c))
[T (Vx:D Vi(y:'D,C—-C’, z=f(x)) Q(x))
= Vx:D Vy:*'D,C—C’ Q" ({(I(y, f(x)) , 0¢), %)
TIVx:A Vy:*C—C’ 32D R(x, z, a))
= VXA Vy:'C—C’ Ry, 0c), X, g,(4(y, Oc), x), a({(y, 0c)))
VXA Vy:*CHC F2:°C-C Q(x))
= VxA Vy.'C=C Q' (I(yoh,(x), 0c) x)
h needs not depend explicitly on y because the whole term yoh(x) depends on y.
et S be a context predicate of sort CxCxD
AVx:D Jy:*'CoC Vz'C-C Jur ' C-C Fw:*C—oC’-u S(zou, zow, a) v Vp:'CoC’ Qx))
= VxDVz:'CoCVv:'C>C S(L(hy(x)ozohu(x), 0c)s l(hy(x)oZohw(x), 0 a(i(hy(x)oZohw(x), 0 v
Vp:CoC’ Q(hy()ozoh,, (X)op, 0))s X)
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M Vx:'CHC p f(x) P) = Vx:"CHC P (U(xof(x), Oc), X)
where f:*C—-C’ - ‘C—-C’ is a context function.

Assume B and C are the basic context sorts and $%/maps 1o the identity function.
[TAVx:'B—B Vy:‘'C-CP)
= Vx:‘B—B Vy:*C—C P"(L(x, 0p), Ly, 00))

M AVx:'B—B Vy:‘C>C Ju:'B—B 3v:‘C->CP)
= Vx:‘B-B Vy:*CoHC P"(I(xof ,(1(y, 0¢)), 0p), Uy of ,(I(x, 0g)), 0¢))
where f:C — ‘B—B’ and f,:B — ‘C—C’ are Skolem functions.

For the next example, assume we have two basic context sorts, W, and WP and the single interpretation context
sort is W. The symbol variation function maps all symbols to a function PW:WP—W.
IT4(P)

=  P'(PW(l(identity, Oywp))) (=P ®PW(Oywp)) — P (Oy) if PW is the projector function)
I'[,(Vx:WP—)WP Q@)

= VXIWP-WP Q (PW((x, Owp)), aPW(L(x, Owp)) [ ]

The specification morphism I1;needs only apply the signature morphism to the signature and the formula
morphism to the formulae. Apart from the special constants O and the Skolem functions, no additional symbols
and axioms are generated.

The next thing to do is to define the interpretation morphism Ig together with its inverse 1'13‘1. The proof that the
interpretation morphism is well defined, i.e. the proof that it really maps CL-models for CL-specifications to
OSPL-models for the translated specifications and vice versa is at the same time the soundness and completeness
proof for the translation itself.

15 maps all the different Z-structures (worlds) of the CL-interpretation into one big Z-structure where the former
contexts (worlds) become part of the domain and the additional arguments of the translated function and predicate
symbols are used to represent the dependence of the function values from the contexts. The information about the
possible worlds structure, i.e. the accessibility relation is still there in form of the functional interpretation of the
functional context sorts. The inverse of Tl decomposes this big Z-structure into its constituents.

Definition 4.3.4 The Interpretation Morphism Ilg
The interpretation morphism Ilg has to translate CL-interpretations into OSPL-interpretations.
Given a CL-interpretation S = ((C, $%, ¥, €, Y over a CL-signature X consisting of the domain part X, and the
context part - and with basic context sorts C;,....Cp, and interpretation context sorts (Iy,....I,), we construct a
functional ITy(Z)-structure M as follows:
1. The domain of 2f
For the basic context sorts C: Cy:=C -
For the domain sorts D: Dyri=Dgy
The interpretation of the functional sorts in #fis as in theorem 3.4.3.
2. The functions in £
For the context functions:  f,:=f.
Let f be an n-place domain function symbol in Z.
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We define f,, as an k+n-place function such that the following axioms hold:
Vie Ilo..., Q€ Ikc s Bty
Iff mﬂ,...,k)(“l’"-’%) is defined (depending on the sorts of f)
then f4,(i;,...,i,815....8) = fsﬂﬂ,___,k)(al,...,an).
For the special constant symbols O we set Oc,,:= C Where (¢ is the element in Cthat corresponds to the
sort C. The interpretation of the additional Skolem function symbols of I[1y(X) in M depends on the actual
specification to be translated and is therefore left open for the moment.
3. The relations in £
The equation symbol is again interpreted as the identity.
For the context predicates: P, =P,
Let P be an n-place domain predicate symbol in Z.
We define P, as an k+n-place relation such that the following axiom holds:
Vile Ilo'"’ iK€ Ik(: s Bpseenslly
If Psfp(ﬂ,...,k)(“l""’“n) is defined then PM(il,...,ik,al,...,an) iff P.S‘V(il,...,ﬂ()(al""’an)‘

It is now easy to verify that I[1g(3) := (2, 9) is really a Ily(X)-interpretation.

4. The inverse Hs'l of the interpretation morphism is defined as follows:
Let M be a functional Iy (Z)-structure. First of all we construct a CL-frame (G, S = I'IP'I(M):
a) Cis the substructure of Mrelated to the context sorts and context symbols.
b) s¥assigns to each uple (ijp....%J € Iy X...XIy - the following Zp-structure A= A, 4
»  The domain of & For every domain sort D: D, := D,,.
>»  The functions in &
Let f be an k+n-place domain function symbol in I'5(%).
We define f , as an n-place function such that the following axioms hold:
Vi€ Lineees 4€ Ly 01ennny
If £ fiyseeslys By5e..0ay) is defined then €,(ay,....a ) = £,,(i;,. .0, 67...08).
»  The relations in &
Let P be an k+n-place domain predicate symbol in ITy(Z).
We define P , as an n-place relation such that the following axiom holds:
Vi 110“" i€ Lo, a0
IfPy(a,...,a,) is defined then Py(ay,....a ) iff Pyiy,....5.0,....8,)
For an OSPL-interpretation $ = (M, 9) we define Ig-1(3) := ([Ig-1(M), ¥, Ocyap---> Ocmad- @) (the context
assignment Pis left open.) n
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Soundness of the Translation

In this section we show that the logic morphism IT translates a CL-specification that is satisfied by a
CL-interpretation 3 into an OSPL-specification that is satisfied by the OSPL-interpretation g (3). Since the
context part of the specification is already an OSPL-specification we need to consider only the domain part.

‘We have used a very strong Skolemization of the existentially quantified context access variables. Their Skolem
functions do not depend on their “own context”. The soundness of this strong Skolemization depends on the fact
that the set of context access functions assigned to a functional context sort ‘C—C’ is sufficiently rich. To
illustrate what this means, suppose we have a CL-formula Vx:‘C—C’ Jy:*C—C’ P which is translated into
Vx:‘C—C’ Pl(xoy, 0c) where y is no longer a variable, but the Skolem constant for the original y. The usual
Skolemization rule would generate the formula Vx:‘C—C’ Pl(xoy(x), 0c) where y depends on x. The
interpretation of the term {(x0y(x), 0¢) for the various x, € ‘C—C’ cis:
4 %

Occ—) g =g

&% %K,
()-—)c:k—-)z:k

Cc

and all these y are in ‘C—C’ . According to the semantics of the existential quantifier we can w.l.o.g assume that
if ,00cp = xj(oc o for some x and % then %(x(0c) = yj(xi(OC o)- If we can also assume that ‘C—C’.is
sufficiently rich to contain an additional ysuch that 4(g) = (g) for all these 4 and g, we can use this y instead of
all the », and we have made the Skolem function y independent of x. However, we need not require for all sets
{( %(g) 1 g € Cry € C—>C’ J of such tuples the existence of an appropriate 3 but only for the sets of tuples

which really occur during the interpretation of a formula. The restrictions are: The ¢ are obtained by the
application of some x; € C—-C’ c 10 Oc-and the y are functions which are considered as interpretations of the
J-quantified variables. In chapter 5 we shall see an example where the 3-quantification is restricted to require for
two different x which are in a certain sense correlated the existence of a unique y. This restriction can be exploited
to require the existence of yonly for certain cases, i.e. to impose conditions on the interpretations of the functional
context sorts.

To ensure that the context access functions are rich enough to allow the strong Skolemization we require for every
interpretation of a context specification that the following “3-quantifier independency lemma” holds:

Definition 4.3.5 The 3-Quantifier Independency Lemma
Let 3 = ((¢, $9), ¥, C. P) be a CL-interpretation over a CL-signature X, where ‘C —4C’ and ‘D,C —9C’ are
functional context sorts.
> Let Fbe a domain formula over I, ¥ containing an existential quantifier over a context access variable x. The
set of all ‘C —9C’ cor ‘D,C —>9C’ -functions respectively which are used as interpretations of this particular
occurrence of x is called an J-quantified set of context access functions (for #). (This set is determined
essentially by the embracing universally quantified variables. In certain cases there are additional restrictions.)
» The J-quantifier independency lemma requires the following two statements to hold:
a) For all ce C.and for all 3-quantified sets 7’C ‘C —9C’ -there exists an ye 9such that
Vx € ‘CoC Ly e % Yo =ylx(9) where ‘C—C’ is the top sort in the ‘C —9C’-sorts.
b)Forall ce C c fe D Cand for all 3-quantified sets 9'c ‘D,C =9C’ Cthere exists an ye 9'such that
Vxe ‘CoChye 9 L x(9) = (L x(c)) where ‘C—C’ is again the top sort in the ‘C —9C’-sorts.W
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This lemma has to be proved for every source logic that is translated via CL into OSPL. When there are no
restrictions on the interpretations of the functional context sorts, this is usually no problem. In case the context
access functions are restricted by axioms in the context specification, there must be a correspending restriction on
the interpretation of the existentially quantified variables.

In the sequel we always assume the 3-Quantifier Independency Lemma to hold.

The satisfiability relation for OSPL (def. 3.3.3) is defined inductively over the structure of OSPL-formulae.
Satisfiability has therefore to be proved by structural induction on OSPL-formulae. The only thing we know,
however, is that 3 is a model for the original CL-formula ¥, and this is a property that holds for ¥ itself. It is
therefore not an adequate basis for an essentially “bottom up” structural induction. The proof idea is therefore to
follow the “top down” recursion of % and to decompose 3 into the interpretations for the subformulae Gin 7.
When we have reached the atomic level we can translate the CL-interpretations for the CL-atoms into
OSPL-interpretations for the translated atoms and from these build up the OSPL-model for the translated formula.
To this end we augment the formula morphism Il 5(def. 4.3.2) with an additional argument that takes a CL-model
for the CL-formula to be translated.

Definition 4.3.6 The Augmented Formula Morphism 11,

The augmented formula morphism Hftakes a CL-formula ¥ (we consider only context formulae) and a CL-model
for 7. The CL-model is decomposed into the CL-models for the corresponding subformulae of 7. As a side effect
we fix the yet undefined semantics of the generated Skolem functions. The augmented auxiliary function T takes
as an additional argument the list § of CL-interpretations for the currently being translated subformula of ¥,

The toplevel call for 7t is:
II(F, 8) = n(¥F, g, Py {3}) where ¢, and pj are the defauit values of def. 4.3.2.

Notational Conventions:
We abbreviate Ig(3) with Sp; .
In order to distinguish between the satisfiability relation for domain formulae (def. 4.2.5) and the OSPL-
satisfiability relation (def. 3.3.3) we write the former as ¢ and the latter as p.

(Notice in the sequel the similarities between the ¢ and p parameters of 1t on the syntactical side and the [...] cand
[...Jpcomponents of 3 on the semantical side. This is no coincidence.)

(¥, ¢, p, 8) is again defined inductively over the structure of F

A) n(x,c,p, ) =X

B) ®(f(t),....t5), €, B, ) =[x (D)(sy,....8, Tlty, €, P, B)...., ®(t . €, p, $))

C) m(EP(ty,....t0), ¢, P, 8) = HIg(P)(sq,....8, Ty, €, P, S, (L. €, P, 3))

D) m(EP(ty,....tp), €, P, S) = 2P(sy,....8,) where P is a context predicate.
The s; are determined as follows:
If ;:°C—9C’ is a context variable x or a term J(x,z) then s; := L((P(x)ot;)), O¢).
Ift;=sotand s is a variable x:‘C—9C’ or a term l(x,z) then s; := L((p(x)oson(t, ¢, p, 8)), 0c),
otherwise s;i=n(, e, p, §)

BE) 7(Vx G,c,p,8):=Vxn(G,¢c,p,8") where x:D is a domain variable,
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F) ®(Vx G, ¢c,p, 8):=Vxx(G, c[C/cCoi], plx/ccl, 87) where x:‘C—9C’ is a context variable.
37 = {SI/AYIC/HC) X/ p! S € S, x€ ‘CIC’ )
G) ®(Vx-y G,¢,p, ) = Vx (G, c[Cp(y)ex], plx/p(y)], 87) where x:°C—9C’ is a context variable.
8= {SI/AYCIBYN] o [X/B(Y)]p! S € S, xe ‘CIC
H) m(Vi(x,z=t) G, ¢, p, Q) := Vx (G, c[Clecod(x, n(t, ¢, p, S)), plx/ccl, S)[zen(t, ¢, p, S)]
where x:‘D,C—9C’ is a context variable.
7= {Sx/x Z/3W]HIC/AS W), X/l S € S, 1€ ‘C-4C
D wm(Vi(xz=t)-y G,c,p, 3) := Vx (G, c[C/p(y)od(x, R(t, ¢, p, SN], plx/p(¥)], S)ze-T(t, ¢, p, )]
where x:‘D,C—9C"’ is a context variable.
"= (Six/x 2SO YIC/LS W), ZYN [WEY)]p! S € S, ke ‘CIC
) ®(3x G,c,p,8) =G, ¢, P, S)[xg(Sq,..+58s ¥qs---o¥p] Where x:D is a domain variable.
Among the possible interpretations for g we select one satisfying the following condition:
For every S € §: Among the x e D gyywith Sx/dyEc G
there is an x” with Spp (8(S1,..+,Ss Y1sees¥Yp)) = &
7= (3=S[x/1y!S € S,xe Dgpp 3" G)
K) n(3x G, ¢, p, 3) := n(G, c[Clecox], plx/ecl, SRS 500185 1385415+ S oY 1002V )]
where x:‘C—9C”’ is a context variable.
Among the possible interpretations for h we select one satisfying the following condition:
For every S € §: Among the x& ‘C—9C ¢ with Sx/x[Cl{ )] cXCRlpkc G
there is an 1’ with Jpy ((S1,....81.1:8j4 15 SY 1Y) = &
8" = (S =S X/ ylC/MC) [x/Cclp! S € S, xe ‘CoIC° 5 3 k¢ G)
L) =(@3@x-y G, c,p, 8):=n(G, c[C/p(y)ox], plx/p()], S MxE(S 8,184 150 Sk Y 152V )]
where x:*C—4C’ is a context variable.
Among the possible interpretations for h we select one satisfying the following condition:
For every S € 8: Among the xe ‘C—9C’ cwith S [x/d o [C/H{AY))] cXEYDlpEc 6
there is an 1" with Jpy (h(sy,....8;.1:8), 10 SiY 10 ¥ ) = &
$7:= (S =S[x/AY[C/EYN] o [x/K¥)]p! S € S, xe ‘CIC 3"k G)
M) n(3(x,z=t) G,¢,p,8)  where x:*D,C—9C’ is a context variable.
=G, c[Clegod(x,n(t, ¢, p, SN], plx/ccl, S MXEK(S 50 0181.1 5854100+ SpoY 10043 Y m)» 2L ©, s 19}
Among the possible interpretations for k we select one satisfying the following condition:
For every 3 € S: Among the xe ‘C—9C’ -with S{x/x, 2/S(O)] [x/4S 1), C1 X/ CclpFc 6
there is an 1’ with SPL(k(sl,...,sj_l,sj+1,...,sk,y1,...,ym)) =«
8= {87= Sx/x Z/SO1YIC/IAS®), ¥/ Cclp! S € S, xe ‘D,CHIC, S B¢ G}
N) =@i(x,z=t)-y G, ¢, p,S) where x:‘D,C—4C’ is a context variable.
= (G.e[C/p(y)od (x,7(t, c, p, IN], pIx/p(], S MEEK(S 500841841000 oSoY 1oV ) zen(t,e,p.3)]
Among the possible interpretations for k we select one satisfying the following condition:
For every 3 € S: Among the xe ‘C—9C’ . with 3[x/x, 2/3 (O] [X/AS ), Y] X/ B Nprc G
there is a x” with Spp (K(S1,..-.8{. 118410+ sSY oY) = &
8= (3= Sx/% /SO H[C/AS W), BYN [X/BE]p! S € S, xe ‘D,CHIC°, B k¢ G}
0) m(ptgec,p ) =n(gG c[Clecont, c,p,S)], p. S where t:“C—9C’ is a context access term.
87 = {SIC/3MW(C)] IS € S)
P) n(Gl A 625 C; P, 3) = n(@l’ C P 3) A R(GZ’ ¢ P, s)
Q GV Gy 6P, ) =Gy, 6P, 3y v TGy 6P, Sy)
8;={3e8I8kcg}i=12 L]

Before we can use this definition we must prove that it is well defined, i.e. that the CL-interpretations which are
decomposed from a CL-model really satisfy the corresponding subformulae and that the Skolem functions are
interpreted as total functions.
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Lemma 4.3.7 The Augmented Formula Morphism is Well Defined.

a) If 3 is a CL-model for a CL-specification S then for each recursive call =(g, ¢, p, S) during the translation of
the formulae in S, the following invariant holds as long as G is a formula: For every S € S: S ¢ 6.

b) The Skolem functions are interpreted as total functions.

Proof of a (b is shown inside this proof): By induction on the recursion depth.

Base Case: Recursion depth = 0: This is just the precondition saying that 3, satisfies .

Induction Step: Let the recursion depth be greater than Q.

Let (¥, ¢, b, S) be the actual call to 7. The induction hypothesis states: For every S € 3: S k¢ 7.

In order to show that the statement also holds for the next recursion step we must perform a case analysis

according to the structure of Fand analyze the corresponding translation rule.

Case F= Vx Gand x:D is a domain variable.

The translation rule is
E) n(Vx G,¢,p,8) := Vxn(G, ¢, p. ") 8 = (S[x/dylS €, xe Dy)
The induction hypothesis immediately implies S € S S ¢ G. (def. 4.2.5)

The same holds for the remaining three cases with universal quantifiers.
Case ¥=3x Gand x:D is a domain variable.
The translation rule is
J) m@3x G, c,p, ) :=7(G. ¢, P. S)XE(Sqsee Sk Y1ooe oY )]
Among the possible interpretations for g we select one satisfying the following condition:
Forevery S € S: Among the x€ D gpywith S{x/xyec G
there is an 1 with Spp (8(S1s+++s8> Y1seees¥) = X
87 := {3=3[x/xlyl S € S, x€ Dy 3 ¢ G)-
With “3” e G” the condition a) is explicitly enforced.
Since S ¢ 3x G, there is at least one x€ Dq with S[x/xap=c G
Therefore the semantics of the Skolem function g is well defined (statement b),
Case F=3x Gand x:“C—9C’ is a context variable.
The translation rule is:
K) ®(3x G, ¢, p, 3) := n(G, c[Clecox], plx/ccl, S PIESs I CORITCHO RIS FRIH % ) N
Among the possible interpretations for h we select one satisfying the following condition:
For every S € 8: Among the xe ‘C—IC’ rwith S[x/x o [C/MCI] - [X/CClpFc G
there is a 1" with Spp ((S,..+.8;.18j415-+SY 1oe Y m)) = & \
8= (S =8/ YICICI o [X/C1p! S € S, xe ‘CHIC 5 3 k¢ G}
Again with “3” & G~ the condition a) is explicitly enforced.
The Skolem function h does not depend on the free context variables for the context C. Therefore a function in
‘C-aC’ ¢ must be available that can serve as interpretation of h(s,,..., i-10 i 410 +5SpoY 15+++>Y ) under the
different assignments of values to these variables. Since we assume the 3-quantifier independency lemma (def.
4.3.5) to hold, C—9C” . is sufficiently rich to contain this function. Therefore the semantics of h is well
defined.
The same holds for the remaining cases with existential quantifiers.
Case F= @ t Gand £:°C—9C’ is a context access term.
The translation rule is :
0) n(gp t G, ¢, p,3) :=nG, c[Clegon(t,c,p, 3], p,3) I = {SIC/3)(C), ! S € S).
Since, according to the induction hypothesis, S - (o t G, we can apply the semantics definition of o
(def. 4.2.5) and obtain immediately STC/3()(Co) F¢ G
The cases with A and v are trivial. )
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The next lemma ensures that the OSPL-interpretation of translated terms is identical with the CL-interpretation of
the original terms (lemma 4.3.8). The main reason for that is that the ¢- and p-argument of x, which record the
syntactical context, in some sense run in parallel with their semantic counterparts, the ¢- and £-components of the
interpretations in the §-argument. The correlations between ¢ and C as well as between p and Pare shown in
lemma 4.3.9. Lemma 4.3.8 has to be shown first because the interpretation of the translated term t in the
Vi(x.z=t)... and 3I(x,z=t)... cases are needed in the proof of lemma 4.3.9. Its quite complex precondition is
shown as a general invariant of 7t in lemma 4.3.9. In the soundness lemma, 4.3.8 is therefore always applicable.

Lemma 4.3.8 The Interpretation of Terms is Invariant.
Let t be a domain term over a signature Z and let 3, = (F, ¥}, G, B) be a CL-interpretation for Z.
Let we(t, ¢, p) be a call to the translation function.
Furthermore let 3 = (F, %, C, P be a CL-interpretation for X such that for every basic context sort C:
SpLec)(Go) = & (F)
then S(t) = Spy (n(t, ¢, p)) where Spy :=g(3) =: (M, V)
Proof: By induction on the size of t.
Base Case: t is a variable.
The statement is true because the translation neither changes variables nor their interpretation.
Induction Step: t=f(t;,....t,)
SpL(x(t, ¢, P)) = Sp. (M5 ()(55--+:8 Tty €, Pseos TLy, €, P)))
s; := p{(U ey, O¢y)) where p;:C, =], is the i-th element in SUf). (def. 4.3.2,B)
= £, Spr.(51)s-- - Spr(8)s SprL((ty, €, P))s..., Spp(R(ty. €, P))))

= L0 SpL(51)s- -+ SpL(8)s S(ty)seonr S (induction hypothesis)
= £ SpLP (G- - SpL P Cr)s Sy)s- .. S (condition *)
= f5(8(ty),.... 3(t)) A= SUSpLP1(Cp)s- - SprL PRI Ck) (def 4.3.4,2)
Ais the actual Z-structure for f (def. 4.2.3)
=3(1) (def. 4.2.4) ]
Lemma 4.3.9 The Correlation Between ¢ and ¢, and p and 2.

If Sy =(F, ¥ &, By is a CL-interpretation satisfying a CL-specification $ then for each recursive call
(G, ¢, p, 3) during the translation of the formulae in S, the following invariants hold:
Forevery3=F, % C, P e S:
a)  for every basic context sort C: Sp; (€c)(Gyc) = L and
b)  for every free context variable x in G: Sp (PX)NGyo) = HX).
Proof: By induction on the recursion depth.
Base Case: Recursion depth = 0:
a) is trivial, since § = 3. (def. 4.3.6)
b) is trivial since there are no free variables in 7.
Induction Step: Let the recursion depth be greater than 0.
Let (7, ¢, p, 8) be the actual call 1o 7t and let C be a basic context sort.
The induction hypothesis states: ~ Forevery S € S:  a) Sp;(cc)(Gye) = (¢ and
b) Sp PN Goo) = HX)
In order to show that the statement also holds for the next recursion step we must perform a case analysis
according to the structure of #Fand analyze the corresponding translation rule.
The nontrivial cases for b) are the quantifications over context variables. The induction hypothesis is immediately
applicable to the free context variables in G. Therefore the remaining variable to be checked is the newly quantified
variable. The proofs for the existentially quantified variables are the same as for the universally quantified
variables.
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The induction hypothesis is immediately applicable to the term and atomic cases.
Case F= Vx Gand x:D is a domain variable.
The translation rule is
E) n(Vx G, ¢, p, 3) =Vxw(G,c,p, S") 8 := {S[x/xy! S € S,xe Dgy).
a) Since formulae are standardized apart, x does not occur in ¢ and therefore the induction hypothesis can
immediately be applied.
Case F= Vx Gand x:*C—9C’ is a context variable.
The translation rule is
F) n(¥x G.¢,p, 8) = Vx n(G, c[Clecox], plx/ecl, 87
8" = (S YIC/AC]  (XICclg! S € S, xe “C~9C" ).
Let3 =(F,¥,.C,.P)e §".
a) 3 pLlccox) Goo) = S prL NS prlecHGe))

= 3 LX) SpLlec)HGe)) (x¢ cc)
= 3 p. N (induction hypothesis a)
) Eu®=7
=Ce
b) S pLEENGc/= 3 prlecH )

= Cc (induction hypothesis a)
= Ax)

Case F= Vx-y Gand x:‘C—9C’ is a context variable.

The translation rule is
G) m(Vx-y G, ¢,p, 3) = Vx (G, c[C/p(y)ox], PIx/p(y)], ")
8= {Sx/Ady[C/(BYN o [X/EY)p! S € S, xe ‘CIC° }
Let3 ' =(F, vV, C,P)e 8.
a) S'pL@(¥)ex)(cp) = 3 prLXN(S pr NG

= S pL XS pLPMNCo)) (x ¢ p(y))
= S pLONHAY)) (induction hypothesis b)
= A(Hy)) S px)=2
=Cc
b) S LN G/ =S L@ Coe/

= SpLPMN o/ x ¢ p(y))
= Hy) (induction hypothesis b)
= AXx)

Case F=Vi(x,z=t) Gand x:'D,C—4C’ is a context variable.

The tranglation rule is
H) n(Vi(x,z=t) G, ¢, p,3) := Vx (G, c[Clecoldx, =, ¢, p, SN, plx/ecl, S ) zen(t, ¢, p, 3)]
87 = {Sx/x 23y [C/AS W), €N [X/C)p! S € S, xe ‘D,C9C’ )
Let 3" =F, V. C,.P)e §".
a) S'ppLlecol( %, (1, ¢, p, INHGoe) =S P, Tt €, p. SIS prlec)Ge))
= 3 pL(x, w(t, ¢, P, SN Sprlec)(Ge)) x¢ co)

= 3 pr.(Ux, =(t, ¢, p, I)) () (induction hypothesis a)

= (S pL(x(t, €, p, )) () S px)=2

= (SO (&) (lemma 4.3.8 and ind. hyp.)
= AS®, &)

=Ce

b) For the 3“ € 3~ the proof is the same as in the previous case.
For the n(t, ¢, p, §)-calls the induction hypothesis is immediately applicable.
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Case F=Vl(x,z=t)-y Gand x:*D,C—4C’ is a context variable.
The translation rule is
D w(Vixz=t-y G, ¢, p,3) = VX r(G, c[C/p(y)od(x, n(t, ¢, p, SNI, PLx/p(¥)], S zem(t, ¢, p. )]

8 := (Six/x 23V [C/ASO), BN VEY)]p! S € 8, xe ‘D.LC-IC’ .

Let 3 =(F,¥,C.P)e §".
a) SpLEMV( X, w(t, €, P, SM(Coe) = S pLH(X, (L, €, P, NS pLEIING))

=3 IpL(i(Xa n(t, ¢, p, 3)))(SPL(P(Y))(COC)) (x ¢ p(y)

=3 pL((x, T(t, ¢, p, S)) (AY)) (induction hypothesis b)
= A3 pL(n(t, ¢, p, 3))) (AY)) S =2
= 43(D) (AY)) (lemma 4.3.8 and ind. hyp.)
= S, Ky))
=Ce.
b) 3 pLPEINGc)= 3 pLEY(Coc/
= 3pL YNNG/ (x ¢ p(y)
= Ay) (induction hypothesis b)
= #x).

Case #=3x Gand x:D is a domain variable.
The translation rule is
J) ®(3x G, c,p, 8) :=1(G, ¢, p. SHxL(S1,-...8s Y1oeeer¥ )]

8§ = (3=3x/dy! S € 3, xe Dgpp 3"~ G}

Since x does not occur in ¢, the induction hypothesis can immediately be applied.

Case F=3x G and x:‘C—9C’ is a context variable.
The translation rule is
K) n(3x G, ¢, p, ) := 7(G, ¢[Clecox], plx/ec), S MxeN(S e85 15854100+ Sg0 Yoo+ oY )]

S = (S =8 [X/dY[C/MC c[*/CClp! S € S, xe ‘CoIC°, 37 k¢ G}

Let3 =(F, ¥,C,P)e §".

a)

3Pl G0 =3 LG Pl GE)

=3 pLX)SpLlecH o) (x¢ co)

= 3P0 (induction hypothesis a)
= ) SpL =2

= C’C‘

Case F=3x-y Gand x:‘C—9C” is a context variable.
The translation rule is

L) n(3x-y G, ¢, p, 3):=n(G, c[C/p(y)ox], pIx/p()], SIxeh(sy,. .85 1:8)4 15 SV 1205V )]

37 = (=S [X/dy[C/BYN X/ EY)]p! S € 3, x€ ‘CIC, k¢ 6)

Let3 =(F.¥,C.P)e §".

a)

S LX) (Coe) =S LS LN G )

= 3 pL()SpLEYN G (x ¢ p(y))
= 3 p. XNHAY)) (induction hypothesis b)
= 1 Ky)) S0 =2

= C’C’

Case F= 3l(x,2=t) Gand x:‘D,C—9C’ is a context variable.
The translation rule is

M) m(3(x,z=t) G, ¢, p, )

= 1(G, c[Clegol(x, m(t, ¢, P, SN, pIx/ec], 37 [XeK(Syee 1811585415 SkY 10+ 5Ym)> ZETH(L €. P, 53)
8= (3= S[x/x ZSOIYIC/AIW, €)X/ Cclp! S € S, x€ ‘D,CHIC, I ¢ G)
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Let3 =F,v,C,P)e §".
a) SpLlccol(x, m(t, ¢, p, SNG) = S pL &, m(t, €, p, INNS prlccHCoc))
= 3 pL(UX, x(t, €, p, SNSpLlecH G0 (x ¢ ¢cc)

= 3 pL(Mx, w(t, ¢, p, SN) (&) (induction hypothesis a)
= 23 pLr( €, P, IN) (&) S P =2
=13 (&) (lemma 4.3.8 and ind. hyp.)
= 3, &)
=Cc
Case = I (x,z=t)-y Gand x:‘D,C—9C’ is a context variable.
The translation rule is
N) n@lx,z=t)-y G, ¢,p,3)
= 1(G, c[C/p(x)od(x, R(t,e.p.3N), PIXPX)], SIXEK(S 500811185415 120sY m)» Z6T(LC,P.S)]

S = (3= S[/x /S W] [C/S®), Hx)][X/FEX)]p! S € S, xe ‘DLW Tk G}
Let3'=(F,¥,C,P)e §".
a) 3prlccol(x, T, ¢, P, SN Goo) = S pLU X, (e, ¢, p, INNS p @I Cye))
=8 p (U, 7t ¢, P, SMSpL N (Cpe)) K¢ e

= 3 p(x, n(t, ¢, p, 3))) (Ax)) (induction hypothesis b)
= (S pp(n(t, ¢, p, 3))) (#x)) BpLx) =2
= (S ®1) (&x)) (lemma 4.3.8 and ind. hyp.)
= 30, Kx))
=Ce
Case F= g t ¢ and t:*“C—9C’ is a context access term.

The translation rule is

0) ®(p t G, ¢, p, 3) =7(G, c[Cleco (t, €, p. )], p, 3) 8 := {SIC/WC))I S € 3)
Let3 e 8.

a) S prLlccot)Coo) = S pL(R(t, €, P, SN(SpLlec) o))

= 3 pr(n(t, ¢, p, B)) (C) (induction hypothesis a)

=3() (&) (lemma 4.3.8 and ind. hyp.)

= c
Cases = G; A G and ¥ = G, v G,. These cases are straightforward. n
Lemma 4.3.10 The Soundness Lemma

If 3o = (F, %, Gy By) is a CL-interpretation satisfying a CL-specification S then for each recursive call n(¥, c,
P> 8) during the translation of the formulae in S, the following invariant holds as long as ¥ is a formula:
Forevery S = (F, ¥, €, P € S: Sp kpn(F. ¢, p, S) where Spp = I14(3)
Proof: By induction on the structure of G.
First Base Case:
F =3P(ty,....t,) where P is a domain predicate.

The translation rule is

C) m(EP(ty,....t0), & P, 3) = HIg(P)(sq,-...8 (ty, €, Py S)...., T(ty, €, p, §))

s; = py(d(ecp Ocy)) where p;:C,—1, is the i-th projector function in SF).
We consider the positive case, i.e. F =P(t;,...,t,) first.
Let S € S and Spy =: (M, ¥)
SpL Fp T(P(ty,....10). €, p, S)

iff SPL(SI""’Sk’ E(tl, c, P, 3),. “es n([n, c, P, 3)) € PM (def. 4.2.5)
iff (SPL(SI)"" ,SPL(Sk), SPL(n(tl, ¢, P, 3)), .s SPL(ﬂ(tn’ c.ps S))) € PM
E (Spp (S Spp 610 S(E)reer S(L)) € Py (lemma 4.3.8, 4.3.9)

iff (SPL(pl)(CCI)" ..,SPL(pk)(Cck), S(tl)" .oy S(tn)) € PM (lemma 43.9)
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iff (S(tl)”"’ 3(tn))) € Pﬂ A= S(V(SPL(pl)(CCl)""’8PL(pk)(CCk)) (def. 4.3.4,3)

A is the actual Z-structure for P (def. 4.2.3)
iffSkc F (def. 4.2.5)
iff true (lemma 4.3.7)

The negative case is analogous.
Second Base Case:
F=3P(t,,....t,) where P is a context predicate.
The translation rule is
D) ®(FP(ty,....t,), €, P, 3) = AP(sy,...,8,)
The s; are determined as follows:
If t;:*C—9C’ is a context variable x or a term {(x,z) then s; = L((P(x)ety)), Oc).
If t; = s o tand s is a variable x:‘C—9C’ or a term {(x,z) then s; := L((p(x)eson(t, ¢, P)). 0¢),
otherwise §; 1= T(t;, C, P).
Again we consider the positive case first.
LetS e Sand Sy =2 (M, D)
Spr Ep T(P(ty,....t0), ¢, p, S)
iff Spy(S15---8) € Py (def. 4.2.5)
iff (Spr(sp)se--Spr(5p)) € Py
We consider the above cases for t; separately.
Case 1: ;:‘C—9C’ is either a context variable x or a term {(x,z) and s; = L((p(x)ot,)), O¢)

Spsp = SpL®SpLEX) SpLO)

= SpL S pLPX))) (Cye) (def. 4.3.4,2)
= SpLL(PX)) (lemma 4.3.9.,b)
= S(t,) (FX)) (lemma 4.3.8, 4.3.9)

Case 2: t; = s o t and s is a variable x:*C—9C” or a term {(x,z) and s; := L((P(x)oson(t, ¢, p, 3)), 0¢)
Spr(sp  =SpLt, €, p, I)N(SpL(8) SprL.@MX))) SprL00)))

= Sp(r(t, €, p, SN(SpL(S) SpL X)) (Goo) (def. 4.3.4,2)
= Spp (1, €, p, $)(SpL () (AX))) (lemma 4.3.9,b)
= SpL(R(t, ¢, P, INS(s) (Ax))) (lemma 4.3.8, 4.3.9)
= 3(0) (S(s) (Ax)) (lemma 4.3.8, 4.3.9)
Case 3: s; :=n(t, ¢, p, S).
Sprs) =3 (lemma 4.3.8, 4.3.9)
Since S ¢ F (lemma 4.3.7)

and since the above three cases confirmed the three conditions in def, 4.2.5, we conclude
SpL(s)s--BpLsy) € P,
and since according to def.4.1.1,2ii, the 3 (s;) are not functional, we can apply def. 4.3.4,1and get the
desired relation (Spy (51)s...,3pp.(Sp)) € Pyg thus, Spp Fp TP (E4,e.008,), € 5, S)
Induction Step: Let ¥ be a formula, but no literal and let Fp := n(¥, ¢, p, 3) be the translated formula.
With lemma 4.3.7 weknow V 3 € $: S ¢ 7.
The induction hypothesis states for all recursive calls (¥, ¢”, p", §°) inside
V3e€S8 3 pLrpmF.c,p’3)
In order to show V 3 € S: Spp Ep Fp we perform a case analysis according to the structure of #.

Case F= Vx G where x:D is a domain variable.
The translation rule is
E) n(Vx G,¢,p,8) =Vxn(G. ¢, p. ") 3 := (S[x/dylS € S, xe Dyl
V 3 € 8: Spp =p Fp follows immediately from the induction hypothesis and def. 3.3.3.
Cases F= Vx Gand Vx-y Gwhere x:‘C—9C’ is a context variable.
The argument is the same as in the previous case (The Cand ®components play no role).
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Case F= Vi(x,z=t) ¢ where x:°'D,C—9C’ is a context variable.
The translation rule is
H) m(Vi(x.z=t) G, ¢, P, ) = Vx (G, c[Clecol(x, ®(t, ¢, p, SN, plx/ccl, ) zen(t, ¢, p, S)]
8= {Sx/x% Z/SW]y[C/AS®), ] X/ Cclp! S € S, xe *D,CIC° }
Let 3 € S. From the induction hypothesis and def. 3.3.3 we conclude
Spr Ep VX (G, c[Clecod(x, n(t, ¢, p, I, plx/ccl, 8).
From lemma 4.3.8 we know 3(t) = Sp; (ni(t, ¢, p. S)). Since 3°(z) = I() for every 3” € § we can replace z
by w(t, ¢, p, §) without changing the interpretation of any term. Therefore we finally get Spy Fp Fp.
Case F= Vi(x,z=t)-y G where x:‘D,C—9C’ is a context variable.
The argument is the same as in the previous case.
Case F= Jx gand x:D is a domain variable.
The translation rule is
) ®m@3x G, ¢, p. ) = (G, €, Ps S)XE(S 1000055k Y1seesYD]
Among the possible interpretations for g we select one satisfying the following condition:
For every S € S: Among the x€ D gy with S[x/xdykc 6
there is an x” with Spy ((S1s+++58gs YyoeersYm)) = &
8:={3=8[x/dyl3 € 8, xe Doy S k¢ 6}
Let3 e Q.
From the induction hypothesis we know Sp [x/x"] =p 7(G, ¢, p, S ) for the object 1~ mentioned in the
semantic definition for g. Therefore x” and the interpretation of g(s;.....S, ¥1.----¥ ) are identical and we can
replace x by g(51,....,Sgs ¥1+---»¥yy,) Without changing the interpretation of any term. Thus, Sp; [x/x] =p
(G, C, P» S YX-8(Cqsee > Y1o--+Ym)] and since x no longer occurs in the translated formula, Sp; Fp Fp.
Cases F=3x Gand = 3Ix-y Gand x:*C—9C’ is a context variable.
These cases are simplified versions of the next one.
Case F=3(x,z=t) gand x:'D,C—IC’ is a context variable.
The translation rule is
M) n(3ix,z=t) G, ¢, p, )
1= (G, e[Clegod(x, R(t, ¢, p, SN, plx/ecl, ) [XEK(S 10000 84058410+ 18k Y1oeee Y m)s ZT0(6C,.S)]
Among the possible interpretations for k we select one satisfying the following condition:
For every S € §: Among the x€ ‘C—9C’ . with S[x/x Z/3(D)] o [x/«(3 (), &)1 C[xlcclq,hc G
there is a & With Spy (K(S1s.++8)_1:Sj4 130+ SsY 120 5¥ ) = &
S7 = {37=3x/% 2/3(O1H[C/ASW), ) plx Clp! S € S, 1€ ‘D,CIC" , 3 k¢ 6.
Let S € S. From the induction hypothesis we know Spp [X/x] Ep (G, €%, €7, §°) for the element «~
mentioned in the semantic definition for k. Therefore x” and the interpretation of k(sl,...,sj_,,sj $17 05k
Y1»---»¥p) are identical. From lemma 4.3.8 we know that 3(t) = Sp (n(t, ¢, p, 3)). Since, according to the
definition of domain formula, def. 4.1.3,iv x occurs only in the term l(x,z) we can simultaneously replace x
bY K(S150+-18). 18}y 15+ S¥ 13-+ Y ) @0 2 by (, ¢, p, 3) without changing the interpretation of any term.
Thus, Sp; [x/x7] Fp Fp and since x no longer occurs in the translated formula, Sp; =p Fp.
Case = 3(x,2=t) Gand x:*'D,C—IC’ is a context variable. The argument is the same as in the previous case.
Case 7= o t G and t:"C—C" is a context access term.

The translation rule is
0) (g t G, c,p,3) =m(G,ciCleco m(t, €, p. ), P, 8) 3= {SIC/BW(C IS € )
Let 3 e 8. Since S k¢ o t 6,37 := S[C/I(NC)] ¢ Gand S € S~ (def. 4.2.5)
= S'pEp TG, c[Cleco n(t, €, p, )], p. ) (induction hypothesis)
Since 3 py, = Sp., we conclude Spy =p Fp.
The remaining cases with A and v are straightforward. ]

Applied to the toplevel call of &, this lemma confirms that satisfiable CL-formulae are translated into satisfiable

OSPL-formulae.



46

Completeness of the Translation

In the last section of chapter 4 we show that OSPL-satisfiability of a translated specification implies
CL-satisfiability of the original CL-specification. We use Hs'l to generate from the OSPL-model the
corresponding CL-model. The completeness proof uses the same technique as the soundness proof, but just in the
opposite direction. That means this time we follow the “top down™ recursion of 7t to decompose the OSPL-model
S into the interpretations for the transiated subformulae Gp in . When we have reached the atomic level we can
translate the OSPL-interpre- tations for the OSPL-atoms into CL-interpretations for the original atoms and from
these build up the CL-model for the original formula. To this end we redefine the augmented formula morphism
I1,(def. 4.3.6) such that the additional argument takes an OSPL-model for the translated formula.

Notice that in the rest of the chapter 3 always denotes an OSPL-interpretation whereas Sy denotes a
CL-interpretation.

Definition 4.3.11 (The Redefined Augmented Formula Morphism)
We define the augmented formula morphism in a similar way as in definition 4.3.6, but reinterpret the §-argument
in 7. Each element in § is now an OSPL-interpretation.

The toplevel call for 1t is again:
I(%, S) = 7(7, g, Pp» {3 1)) where ¢ and py are the default values of def. 4.3.2.

The translation rules A, B, C, D, E and P are the same as in def. 4.3.6. The modified translation rules are:
F) 7(Vx G,¢,p,8) := Vx (G, c[Clcpox], plx/ecl,87)  where x:*C—9C” is a context variable.
8= {Sx/xdyl S e 3, xe ‘CHIC",J.
G) m(Vx-y G, ¢, p, ) := Vx (G, c[C/p(y)ex], plx/p(y)], S°) where x:‘C—9C’ is a context variable.
“i= Syl S € 3, xe ‘CIC, .
H) n(Vi(x,z2=t) G, ¢,p, ) = Vx 1(G, c[Clegol(x, x(t, ¢, p, )], plx/ecl, S [zew(t, ¢, p, S)]
where x:‘D,C—9C’ is a context variable.
= {Sx/x 2/3(n(t, ¢, p, IN]H! S € S, xe ‘D,CHIC, 3
D n(Vix.z=t)-y G, ¢, p,S) = Vx (G, c[C/p(y)ed(x, n(t, ¢, p, S)N], plx/p(y)], ) [zer(t, c, p, S)]
where x:‘D,C—9C’ is a context variable.
87 = (Sx/x 2/3(x(t, c, p, SNI4I S € 8, xe ‘D,C-IC .4}
) ®@x G, c,p, ) :=7(G, ¢, P, SIXE(S1reeusSp» Y1oeesY )] where x:D is a domain variable.
= [SIX/3((S1seeosSps Y1oee YDl S € S}
K) n(3x g, ¢, p, S) := 7(G, c[C/cox], p{x/ccl, 3')[x<—h(sl,...,sj_l,sj+1,...,sk,y1,...,ym)]
where x:*C—9C’ is a context variable.
87 = (S =S X/BM(S e o8j.1 854 10+ SipY 1Y)l S € 3]
L) m(3x-y G ¢, p, 3):=m(G, c[C/p(y)ex], PIX/p(y)], 3 )[xeh(sl, 284184100 oY 1+ Y )]
where x:‘C—4C’ is a context variable.
= (3 =S[x/3(h(s1,...,sj_1, S-Sk Yoo YmMgl S € S}
M) nd ¢(x,z==t) G ¢cp.3) where x:‘D,C—9C’ is a context variable.
= (G, e[Clegol(x, n(t, ¢, p, S))), plx/ccl, S MxEK(S 581158541008 oY 10++- YD 2L, €, P, 9]
‘= {S’=S[x/3(k(s1,...,sj_l,sj+],...,sk,yl,...,ym)), z/3(r(t, ¢, p, 3))]41 S € S}
N) =(Ql(x,z=t)-y G.¢,p, J) where x:‘D,C—4C’ is a context variable.
= 71(G, ¢[C/p(y)od(x, T(te.p.IN], PIX/P(N], SIXK(S 1505811581415V 1+++3Y m)> zen(t,e,p.S)]
= (S =3 [X/S(K(S s+ 151114 1r+++sSpoY 1o+ oY) (AL, €, P, S)]g/| S € S}
0) n(g@ t G c,p, ) =G, c[Cleco w(t, ¢, p, )], p, 3)
Q m(G1VG 6P 3) =166 P 3D VG ¢p, Sy S:=(3e SIS pn(g,c,p.Pli=12 m
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Again we have to verify that the decomposition of the OSPL-model is correct, i.e. that the generated
interpretations in the §-argument of T really satisfy the corresponding translated subformula.

Lemma 4.3.12 The Redefined Augmented Formula Morphism is Well Defined.

If 3, is a OSPL-interpretation satisfying a translated CL-specification $ then for each recursive call ®(g, ¢, p, §)
during the translation of the formulae in S, the following invariant holds as long as G is a formula:

For every S € 3: S &p Gp :=1(G,¢,p. 3) .

Proof: By induction on the recursion depth.

Base Case: Recursion depth = 0: This is just the initial condition that S, satisfies the translated S.

Induction Step: Let the recursion depth be greater than 0.

Let n(7, ¢, p, ) be the actual call to 7t and let 7, and Gp be the translated formulae.

The induction hypothesis states: For every S € S: S &=p %p.

In order to show that the statement also holds for the next recursion step we must perform a case analysis
according to the structure of Fand analyze the corresponding translation rule.

Case F= Vx G and x:D is a domain variable.

The translation rule is
E) (Vx G.¢c,p,8) :=Vxn(G,c,p, 3" 87:= {S[¥/dy! 3 € 3, x€ Dyy)
The induction hypothesis immediately implies S € S S&p Gp. (def. 3.3.3)

The same holds for the remaining cases with universal quantifiers.
Case F=3x g and x:D is a domain variable.
The translation rule is
N =3x 6,¢,p,8) =G, ¢, P, SVxg(S10e0 8 Y1oeee¥ )]
8= {3 =3[x/3(g(51, .5k Y1ooo o YD1 S € S}
Let 37 = S[X/3(g(S1se-+s8)s Y1oe oY) o€ 3.
Since S kp Fp (induction hypothesis) and x is not in #p,3” =p Fp.
Furthermore since 3 (x) = 3(g(Sy,--Sys Y1»----¥)» the interpretation of the terms in % remains the
same when we replace g(sy,...,8, ¥q,.--¥m) by X. Hence, 3 =p (G, ¢, p, S). N
The same holds for the remaining cases with existential quantifiers.
The proofs for the 2, A and v cases are straightforward. |

The definition of the inverse signature morphisin (def. 4.3.4) tells us how models for ranslated CL-formulae are
translated into CL-interpretation for the original CL-formula. This definition must be refined in order to get the
right actual context ¢ and context assignments # for the CL-interpretations which are obtained from the
decomposed OSPL-interpretations in the redefined augmented formula morphism. The information from which
these additional components can be generated is contained in the ¢- and p-arguments of ®: Since the special
constant symbol O denotes the initial C-context, applying the interpretation of ¢ - a context access function - to
this initial C-context yields the component (. Application of the interpretation of p(x) - again a context access
function - to the initial C-context on the other hand yields #(x).

Definition 4.3.13  The Associated CL-Interpretations

Let (7, ¢, p, 3) be a call to the redefined angmented formula morphism and let Cy....,C,, be the basic context
sorts. To each 3 = (M, ¥) € S we associate a CL-interpretation Sy = (HS'I(M), Y, C, P) where

€ = (S(ec1)Ocya0»---3(€c1)(Oc1 a0) and for the free context variables x of sort ‘C—9C’ or ‘D,C-9C’ in £

Ax) = 3@EE)) Ocqa0- |
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Lemma 4.3.14 The Interpretation of Terms is Invariant
Let t be a domain term over a signature Z, let tp = (t, ¢, p, S) and for every S = (M, V) € S let S :=
(T15"}(M), ¥, ¢, P) according to def. 4.3.13.
Then for every S € S: S (t) = S(tp).
Proof: By induction on the structure of t.
Base Case: t is a variable. The statement is true because the translation neither changes variables nor their
interpretation.
Induction Step: t=f(t;,....t,).
3(n(t, ¢, p, 3)) = STz (O)(sy,....8, Tlty, € P, S),..., WLy, €. P S))
8; = P;({(Ccy» Ocy) where p;:C,—L is the i-th element in SUL) (def. 4.3.2,B)
= £,(S(59)s...,3(sy), S(I(ty. ¢, P, 8) )oeoor S(ALy, €, P, S))))

= fad8(51)5-- 3 (8, S (ty)se-o» St (induction hypothesis)
= £ (SP(C)s - SPI(C1) ScLty)s -+ ScLt)) (def. 4.3.13)
= faScL(ty)sor Scrt)) A= SUSPCey)»e--- S @(CCy)) (def. 4.3.4,2)
Ais the actual Z-structure for f. (def. 4.2.3)
=34 (def. 4.2.4) n
Lemma 4.3.15 The Completeness Lemma

If 3, is an OSPL-interpretation satisfying a translated specification I($) then for each recursive call (¥, ¢, p, S)
during the translation of the formulae in 5, the following invariant holds as long as Fis a formula:
ForeveryS € S: Sy k¢ 7.
Proof: By induction on the structure of 7.
First Base Case:
F =+P(t;,....t,) where P is a domain predicate.

The translation rule is

O m(EP(ty,eensty), € P, S) 1= HI5(P)(Sy5ee-s8gs T(ty, € Pr S, Tty €, P, 3))

8; = p;(ec; Ocy)) where p;:C;—1, is the i-th projector function in SUf).
We consider the positive case, i.e. F =P(iy,....t,) first.
LetSe Sand Sy =: (C.SWV. Y. C. P

true iff (lemma 4.3.12)
3 p T(P(Ly,....t,). €, P, S)
iff 3(cq,....Cp T(ty, €, P, S)yevns Wty €, P, 8)) € Py (def. 4.2.5)
iff (3(s))s...,3(sp), S(nlty, €, P, B))s..., Sy, €, P, ) € Py,
E (S(57)se 38 SeLtp)oeo Ser(ty) € Py (lemma 4.3.14)
i (3G -SONC) Sl Scrlty) € Py (def. 4.3.13)

iff Scpts.or Sert)) € Py A= SU3@)(Cophs----S0(Cy)) (def 4.3.4.3)
Ais the actual Z-structure for P. (def. 4.2.3)
S Fc F (def. 4.2.5)
The negative case is analogous.
Second Base Case:
F=tP(ty,....t,) where P is a context predicate.
The translation rule is
D) m(EP(t;,....t), ¢, p, ) = P(sq,....8,)
The s, are determined as follows:
If t;:°C—9C’ is a context variable x or a term I(x, z) then s; := L((P(x)oty)), O¢)
Ift;=s o tand x is a variable x:C—9C or a term 1(x, z) then s; := L((p(x)oson(t, ¢, P, 3. 0c)
otherwise =, c p. S).
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Again we consider the positive case first.
Let S € Sand 3o = (G SP). ¥, C. D).
Since according to lemma 4.3.12 3 &p T(P(ty,.. .ty), €, P, ) we know (S(s7),....3(s)) € Py,
Since according to def.4.1.1,2ii the 3(s;) are not functional, we can apply def. 4.3.4,4a
and get the relation (3(s;),....3(s)) € P
We consider the above cases for t; separately.
Case 1: t;:‘C—9C’ is a context variable x or a term U(x, z) and s; := {((P(x)et;)), O¢)

S(sp = 3()ESEX)) (SO
=SS Ex)) (&) (def. 4.3.4,2)
= S(t)(Ax)) (def. 4.3.13)
=3 (t) (AX)) (lemma 4.3.14)

Case 2: t; = s o t and X is a variable x:C—9C or a term 1(x, z) and s; := {(PX)oson(t, ¢, p, S)), O¢)

S(sy) = 3(n(t, <, p. NS (6) (S p(x))) (SO
= 3(r(t, ¢, p, SINS(s) BEE))) (&) (def. 4.3.4,2)
= 3(xr(t, ¢, p, SHS(S) (Ax))) (def. 4.3.13)
= 3(x(t, ¢, P, SIS (8) (Kx))) (lemma 4.3.14)
=S () (S (s) (Bx))) (lemma 4.3.14)
Case 3: s; :=n(t, ¢, p, ).
3(sy) =Scn) (lemma 4.3.14)

Since the above three cases confirmed the three conditions in def. 4.2.5, we conclude
ScLps--ScLlsy) € Ppie. 3o Fe
Induction Step:
Let #be a formula, but no literal and let Fp := (¥, ¢, p, ) be the translated formula.
With lemma 4.3.12 we know V 3 € S: S =p Fp.
The induction hypothesis states for all recursive calls (¥, ¢",p", $) inside m: V3’ e S S L k¢ F
In order to show V S € S: Sy = F we perform a case analysis according to the structure of 7.
Case F= Vx G where x:D is a domain variable.
The translation rule is
E) m(Vx G,¢,p,S8) =Vxn(G,¢c,p,S) $ = {S[WdylS € 3, xe Dg)
V 3 € 8: 3¢ k¢ Ffollows immediately form the induction hypothesis and def. 4.2.5.
The remaining cases with universal quantifiers are proved in the same way as the previous one.
Case F=1x Gand x:D is a domain variable.
The translation rule is
D ®m3x G, c,p, ) =1(G, ¢, P, SHxg(S1,. 0085 Y1reensY)]
87 = {S[x/3(g(515e- Sk Y1o--- Y]l S € S}
Choosing a= 3(g(s¢,.--,S» ¥1»----¥))» the statement follows again immediately from the induction
hypothesis and def. 4.2.5.
The remaining cases with existential quantifiers are proved in the same way as the previous one.
The remaining cases with £, A and v are straightforward.

From the soundness and completeness lemmas we obtain now the final result of this chapter:
Theorem 4.3.16 Soundness and Completeness of the Translation

A Cl-specification .S is Cl-satisfiable if and only if the translated OSPL-specification IT(S) is OSPL-satisfiable.
This is an immediate consequence of the soundness and completeness lemmas 4.3.10 and 4.3.15.
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Chapter Five
Multi Modal Logic

The Context Logic methodology is designed for handling complex logics. In order to demonstrate what all the
details are good for and how the various mechanisms cooperate we therefore need a nontrivial example. Therefore
I have chosen a kind of multi modal logic (MM-Logic), an extension of first-order modal logic as an example
logic. This extension is quite expressive and can serve as temporal, process, action and epistemic logic in various
applications. The basis consists of the classical modal logics D, T, D4 and S$4 with possible worlds semantics and
it includes Clarke and Emerson’s CTL temporal logic [Clarke&Emerson 83] as a fragment. The accessibility
relation has to be serial, i.e. from each world there must be an accessible world. This is one basic assumption of
CL. The other assumption is that the domains are identical in each world (constant-domain interpretations).
However, we allow modal operators corresponding to accessibility relations with different properties to occur
simultaneously. In particular we have a basic discrete accessibility relation, its reflexive, transitive and
reflexive-transitive closure. The transitive closure is not completely axiomatizable in first-order logic, but we
approximate it as far as possible.

The accessibility relations themselves can be labeled with arbitrary domain elements and we provide indexed
operators which can refer to these labels, Furthermore we include an ‘eventually’ operator b with the meaning ¥
is true in a world Wif on every path 2 through the possible worlds structure starting with Wthere exists a world
W, such that ¥ is true in %/. Finally we include ‘until’ opera- tors for accessing limited areas in the possible
worlds structure, Hence, MM-Logic has two kinds of multiplicities, several accessibility relations simultaneously,
and indexed operators. Function and predicate symbols are flexible, i.e. their interpretation may change from
world to world. Extending this logic to deal with flexible and rigid designators simultaneously is a trivial exercise.
In the sequel let Re {@,r, t, rt,} where ‘@’ refers to the basic accessibility relation, ‘r’ refers to its reflexive, ‘t’ to
its transitive and rt to its reflexive-transitive closure. We do not consider symmetric accessibility relations becanse
the interaction of the symmetric O5-operator with the other modal operators is utterly complicated.

The full set of logical connectives, quantifiers and operators we are going to use is

N (and) A4 (for all)

v (or) 3 (there exists)

- (not) ok (necessarily)

= (implies) OR. (possibly)

o (is equivalent) > (eventually)

[..IX (indexed necessarily) - (possibly henceforth)
<..>X (indexed possibly) YU, VU* (always until)

1...) (indexed eventually) 3y, 3ur (possibly until)

The pairs (@%, 05, 0, =), ([...]1% <...>®) of operators are dual to each other. Duality means that moving a
negation sign over one operator in that pair switches it to the other operator. For example —0 % <> 0—%. This
property can be used to create a negation normal form for formulae by moving all negation signs in front of the
atoms. Since, however, dual operators for I...) and the “until’ operators are not included, we can generate a
negation normal form only for the translated Context Logic formulae.

Some of the operators are definable from others:
DF & true VU F & true VU' Fand
0"F & true3dU F ¢« true JU' 7.
Nevertheless we treat them separately because the translation into OSPL can then be optimized.




Before defining syntax and semantics formally, let us first try to get some intuition about the meaning of the
operators. As already said we assume a possible worlds structure with a basic accessibility relation together with
some of their closures. The transitions from world to world may be labeled with a (possibly empty) set of domain
elements. As a concrete interpretation of such a possible worlds structure, think of the worlds representing the
current state of some interacting processes (software, hardware or whatsoever) and a transition indicating a single
atomic action of a single process. The transition s label is an identifier for the process that performed that action.
We shall give other interpretations at the end of this chapter.

The figures below illustrate the effects of the operators. For an operator O and a formula ¥ the marked worlds are
those which have to verify ¥ in order to verify OF in the actual world (which is labeled with =), I.e. the marked
worlds are those which are in some sense accessed by the operator. The operator in the left figure is usually of
universal force, whereas the operator in the right figure is the dual one, i.e. it is of existential force.

The operators O% (access to all directly accessible worlds) and
O @ (access to some directly accessible worlds):

of

= Q

In the presence of a O'-operator, O may be interpreted as ‘all next’ and ¢® may be interpreted as ‘sometimes
next’.

The operators OF (access to all directly accessible worlds including the actual world) and
O T (access to some directly accessible worlds including the actual world):

The operators 0* (access to all directly and indirectly accessible worlds) and
0 * (access to some directly and indirectly accessible worlds):

The sets of worlds that are accessed by 0 is the union of the corresponding sets for the basic operators.
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The indexed operators [a]l? (access to all worlds which are directly accessed by a transition that is labeled with the
value of ‘a’) and <a>? (access to some worlds which are directly accessed by a transition that is labeled with the
value of ‘a’):

interpretation(a) =1\’ Q
In a process interpretation of the possible worlds structure (see above) a formula [a]?# may be interpreted: ¥
holds next after process ‘a” has performed an action.

The indexed operators [a]l' (access to all worlds after an a-labeled transition where a is the interpretation of a.
Only the last labels matter) and <a>? (access to some world after an a-labeled transition):

[a]’

<a>t

interpretation(a) =1\2> Q

In a process interpretation of the possible worlds structure a formula [a]l* may be interpreted: Fholds always
after process ‘a’ has performed an action.

The remaining indexed operators [a]]X and <a>% work analogously but include the actual world.

The ‘eventually’ operator P (access to a world on each path starting from the actual world) and the possibly
henceforth operator => (access to a world on a particular path starting from the actual world):

In the process interpretation the B-operator allows to express liveness properties like termination, deadlock
freeness etc. D says that regardless which path in the nondeterministic computation tree is followed, F will
eventually hold.

The indexed ‘eventually’ operator la) (access to the first world after a transition labeled with the value of ‘a’ on
each path starting from the actual world):
la) 1

mterpretétion(a) =1
In the process interpretation a formula la) ¥ expresses: regardless how the nondeterminism in the computation tree
is solved, process ‘a’ will eventually perform an action (fairness) and after that action, ¥ will hold.
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The ‘until’ operators YU and VU™
FvUGholds in the actual world if G holds eventually (#G) and ¥ holds in all worlds before.
FVUTG holds in the actual world if Fand G hold eventually (B(FAG)) and # holds in all worlds before.

FYUG FYU'g

w O
F

The ‘until’ operators allow to refer to limited areas in the possible worlds structure. In the process interpretation,
‘until’ operators are useful for expressing invariants which hold until a certain exception condition comes true.

The ‘until’ operators U and JU™:
FAUGholds in the actual world if gholds possibly (0"g) and #holds in all worlds before.
FAUTGholds in the actual world if Fand & hold possibly (0 FAg)) and Fholds in all worlds before.

F3Ug . F3U'G ___—»o

We shall see that Context Logic allows to map all these complicated operators to a few basic concepts.

5.1 Syntax and Semantics -

We define the syntax of our multi modal logic as an extension of the order-sorted predicate logic syntax, that
means terms and atoms look like OSPL-terms and atoms, but formulae are composed using in addition the above
set of operators.

Definition 5.1.1 (The Signature of Multi Modal Logic)

The signature definition for multi modal logic is exactly like the signature definition for OSPL. We assume that in
the sort hierarchy there is a unique top sort D (for Domain). In the sequel ‘D’ always means this sort. [
Definition 5.1.2 (Terms, Atoms, Literals and Formulae)

Terms, atoms, literals and formulae (“MM-formulae”) are built like OSPL-formulae.
The additional rules involving the modal operators are:
For Re {@,r1,t,1t}: Whenever tis a term and ¥ and Gare MM-formulae, so are
[t1F, <>, 07, = 7, 1)F, FYUGand FVU'G, F3UG and F3U"G. -

We define the semantics of multi modal logic following the scheme of def. 2.1, i.e. we first define a “frame” as
the kernel of the signature interpretation. Frames for MM-Logic are actually the usual possible worlds structures,
however with labeled transitions and with Z-structures as “worlds”.
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Definition 5.1.3 (M-Frames and M-Interpretations)
By an M-frame ¥\ for the signature T we understand any tuple (%, R) where
1. 9/is a nonempty enumerable set of X-structures or “worlds™.
The domains are identical in all these Z-structures (constant-domain assumption) and not empty.
2. R = (R2,RRER™ is a set of serial binary relations over WX (seriality assumption).
a) R? is the basic discrete accessibility relation.
b) RTis the reflexive closure of RP.
¢) Rtis the transitive closure of R®.
d) R"is the reflexive closure of R, i.e. it is the reflexive transitive closure of R?.
For a given world We wWlet B W) denote the set of all paths starting with 7.
Each path Pe ¥(M) is a maximal set of worlds
i) where R™is a total ordering on P (a <-ordering)
ii) with Was smallest element.
In the sequel a label [is just a domain element.
e) From each world Wthere are for each label fR%-transitions associated with {
(seriality of labeled transitions).
For transitive transitions which can be decomposed into an R™-transition followed by an R? transition
only the label of the last R? transition matters, i.e. the R'-transition is Flabeled iff this last R?-transition is
flabeled.The same holds for an R*-transition which is not the identity.
RK) denotes the subrelation of the £labeled R¥-transitions.
f) The reflexive transitions are labeled with all possible labels.
g) For each world W, for each path e #() and for each label (there is somewhere on Pan Flabeled
R?-transition (fairness assumption).

By a signature interpretation 3 for the signature  understand any triple (Fy;, ¥, %) where
» Fy = (W, R) is an M-frame.
» %is a variable assignment, a X-assignment.
> Wis an element of ‘W (the actual world). n

Remark: W.l.o.g we can assume that the R?-relation is tree like. If it is not, the possible worlds structure can
always be unfolded as in the examples below to make it a tree.

original possible worlds structure unfolded tree structure
Q
o e—>o—"

T
/ \c <Q Q/' _cés‘ Le]
\Q/' [+ \Q ;/"@

e

In case R? is already reflexive in a world, an infinite sequence of copies is generated:

{)

o O—>O—PO—>O—> -

Definition 5.1.4 (Interpretation of Terms)
Let 3 = (Fy;, ¥, M) be a signature interpretation for the signature X.
S can be turned into an homomorphism that evaluates terms in the actual world 9#/by defining:
Sx) = Ux) if x is a variable symbol
S({(tyse.oty) = £[S(y),....3(t,))  otherwise. n
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Some Notational Conventions:
» 3[x/x] denotes the interpretation which is like 3 except that the variable assignment maps x to x
(i.e. it is like S3[x/x]4/in chapter 4).
» S[M) denotes the interpretation which is like 3 except that the actual world is 7
(ie. it is like S[W/%] ;in chapter 4 where W denotes the context sort “worlds”). u

Definition 5.1.5 (The Satisfiability Relation)
The satisfiability relation -y between signature interpretations S = (Fy, ¥, W) = (W, R), ¥, W) and
MM-formulae is defined as follows:

The predicate logic connectives A, v, —, = and < are interpreted in the usual way.
Let Re {g, 1, t,1t}
S iy P(ty,...t,)  where P is a predicate symbol and the t; are terms
iff  (S(ty),....3(ty)) € Py
Sy Vx:D F iff forevery xe Dy S[x/ddiqy T

Siky3Ix F iff for some x€ D,y with S[x/a] i, 7.

Sy oky iff forevery W, e Wwith RX(W, W)): S[W,]y £

iy ORF iff thereisa W, € Wwith RX(W, W) and S[W,] Iy F.

Sy [eIRF iff for every W) € Wwith (W, W)) € RXS®): S[W,11y F

Sy <> F iff thereisa W, € Wwith (W, W,) € RYS() and S[W;] 1y F.

Sy dF iff onevery path Pe€ ®(W) there isa W) € P with S[W)] Iy 7.

Shy—F iff there is a path ? € ®W) and for every W, € . S[W)]iy F.

Sy IDF iff onevery path ® € HW), S[W,] I Fholds in the first world W,e P
that is accessed via an 3(t)-labeled RP-transition.

Sy FVUG iff on every path Pe (W) there isa W, € Pwith S[M)] 1y G

and for every world W, € Pwith R (W), Wh): S[W)] - 7.
Sy FVU G iff on every path ?e (W) thereisa Wy e PwithS[My] 1y, G

and for every world W, € P with R™(W,, m5): S[W]] Iy 7.
Sy FIUG iff there is a path P € ®(W) and there is a W5 € P with S[HS] -, G

and for every world W, € Pwith RY(W}, Wy): (W11 F.
Sy FIUT G iff there is a path # € #(W) and there is a W} € P with S[H)] 1y, G

and for every world W, € P with R™(%;, ny): S[W)] Iy F

S satisfies F iff S 1y F (Fy satisfies F in the world W)
Fy satisfies F iff it satisfies #in every world ]

It is now easy to verify that the dual operators are really dual.

Remark The semantics of the ‘eventually’ and ‘until’ operators contains an ambiguity of the following kind: A
quantification “on every path there is a world...” may denote different worlds on paths with common parts:

&t

M

common part

&
2

Since in this case 74 is also an element of ), ) may serve as the world “that exists on 2,” as well. Therefore in
the sequel we always assume that the world closest to the beginning of the path, i.e. 7 in the example, is meant.
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Definition 5.1.6 MM-Logic
Following the definition scheme of def. 2.1 for logics we define the multi modal logic MM as the tuple (syntax,
semantics) where syntax consists of
> the set of all OSPL-signatures with unique top sorts (def. 5.1.1)
» the formation rules for OSPL-terms (def. 3.1.2)
» the formation rules for MM-formulae (def. 5.1.2)
and semantics consists of
> the function that maps a signature X to the M-interpretations over X (def. 5.1.3).
> the function that turns an M-interpretation into a homomorphism for terms (def. 5.1.4).
» the satisfiability relation = (def. 5.1.5). »

Lemma 5.1.7 Correspondences Between Paths and Natural Numbers.
a) Each path P € ®(‘W) in an M-frame (W, R) is isomorphic to the set of natural numbers.
b) Let A2 := {1}, A" := {0,1}, A*:= {(n1n >0} and A% := {n1n >0}.
For each R¥X-transition (9,7 there is an ne A& such that %" is reached with n R®-transitions.
Proof: a) Since R is the reflexive transitive closure of R? and since paths are ordered by R™, for each
W+ W’'e Pthere is a number n such that W, = W and RY(W, W) & RE(WW)) A ... A RE(W,_1,W).
Since Pis a maximal set, all these 74/ are in Pand the ordering is W< W, <
b) For each R¥-transition (7,%”) there is a path P crossing Wand %". Using that paths are isomorphic to natural
numbers, we obtain b) by a simple case analysis. L

In the definition of M-frames, def, 5.1.3, R* is defined as the transitive closure of R?, and this is the reason why
paths are isomorphic to natural numbers. Being the transitive closure is a property that cannot be expressed in
first-order logic. Therefore we can expect difficulties with this strong condition on R*. And in fact, the following
example shows that in this case the compactness theorem does not hold for MM-Logic. Consider the following
infinitely many formulae: o? P

n?of P

0t—p
Each finite subset of this infinite set of formulae is satisfiable because the world denoted by the ¢'-operator can be
chosen far enough from the initial world. The whole set, however, is unsatisfiable since the sequence 0,
o%a®,... of possibility operators exhausts all worlds which are accessible from the initial world. There is no
world left for the 0*-operator.

That means the compactness theorem does not hold. There are theorems whose proof requires infinitely many
steps and therefore we cannot expect a complete calculus for the version of MM-Logic with the transitive closure
interpretation of R*. If we enforce the compactness property, we have to allow for nonstandard models where R*
contains more than the transitive closure of R?. Similar to nonstandard models in first-order arithmetic, in
nonstandard MM-models there may be R!-transitions into side chains which cannot be accessed by a sequence of
Re-transitions:

@ 2 2 ]
0T 0T o FpoHy .

T NI Ay s s

S\po—
/@ \ /_70——>
S{\‘Q? ¢\5 _ﬁ_»
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In order to show that the translation into CL. we are going to define does not make things worse than they are
already, we show a “weak completeness”, i.e. each model of the translated MM-specifi- cation corresponds to a
nonstandard model of the original MM-specification.

Since we cannot expect a complete proof theory for MM-Logic, the only thing we can do is to approximate the
transitive closure of Rt as far as possible and show that a complete calculus for the approximation is obtained. As
in first-order arithmetic where standard natural numbers are approximated by a first-order induction scheme P(0) A
(Vn P(n) = P(n+1)) = Vn P(n), we should incorporate a mechanism for proving induction axioms of the
following kind:
If #holds in the initial world and for all worlds #* Fholds in Wimplies #holds in an R?-successor world,
then there is a path from the initial world where #holds everywhere.
or more formally: FAO™(F= 02%) = =7
If the calculus can prove all formulae of this and similar kind we are yet not complete, but we can handle the
theorems which are relevant for practical applications of MM-Logic, for example loop invariants in the process
interpretation. Unfortunately, as we shall see in section 5.4, the problem of incorporating induction theorem
proving in a calculus for MM-Logic is as complex as general induction theorem proving in predicate logic
[Boyer&Moore 79]. Therefore this report does not consider induction theorem proving in more detail.

5.2 A Logic Morphism from Multi Modal Logic to Context Logic

We define a logic morphism ¥ (def. 2.3) from MM to CL. Its composition with the logic morphism IT from CL to
OSPL enables proofs by translation into OSPL and refutation (prop. 2.4) with resolution and paramodulation.

Before we actually start defining the logic morphism we should introduce more or less informally the basic
concepts of the CL-axiomatization of MM-Logic possible worlds structures. The main requirement for the
CL-axiomatization is to replace the relational description of MM-Logic frames by a functional description where
the argument-value relation of context access functions models the accessibility relations. Therefore we have to
introduce functions mapping worlds to accessible worlds. But things are not so straightforward. In the semantics
definition of the ‘eventually’ and ‘until’ operators there are transitions to worlds on the current path. Functions
simulating these transitions need a world and a path as input. Therefore, besides the sort symbol W for world, we
introduce a sort symbol WP as basic context sort denoting tuples <world, path> where the first component, the
world-component is an element of the path-component. All context access functions now operate on these
“WP-tuples”.

In the sequel Xy denotes projection of the tuple X to its world component and Xjp denotes projection to the path
component.

Before going into details of the context access functions, we should say a few words about the notion of paths in
the CL-axiomatization of MM-Logic. (The actual axiomatization will be given a few pages below.) In MM-Logic
we have defined #(‘W) as the set of all paths starting with the world W, i.e. a path starts with the actual world.
This was necessary because the quantification *“for all worlds on the actual path” in the semantics definition of
some of the operators should only range over accessible worlds and not over worlds lying backwards to the actual
world. In the CL-axiomatization we simplify the notion of a path a bit and define a path to start always at the initial
world.
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CL path

actual world s,
world = o Fe)

We don’t get into trouble with this definition because a quantification over all worlds on a path is replaced by a
quantification over all context access functions that map the actual world to a world on the path, and these
functions never move backwards in the possible worlds structure.

The unparametrized context access functions:

Each function x mapping a WP-tuple to another WP-tuple can be split into a composition of two primitive
functions, MP(x) and MW(x), the first one changing only the path component and the second one moving the
actual world along the changed path. (The other way round is not possible because you can’t move off the path.
The analogy to linear algebra is therefore not very good.) As basic building blocks for the context access functions
we introduce “W—P’-functions and ‘P—XW’-functions. The ‘W—P’-functions change only paths, and leave
worlds untouched whereas the ‘P—RW’-functions move along the current path to R%-accessible worlds. We have
to impose one restriction on the ‘P—RW’-functions which resolves the ambiguity mentioned in the remark after
the semantics definition for the MM-Logic operators, def. 5.1.7. We do not allow a ‘P—>&W’-function to access
on two different paths with a common part two different worlds %, and %, when one of them lies on the
common part, i.¢. a situation like

P_W.-function ¢ q
. |
)

%

X

1

not allowed

&
2
never occurs. Therefore we get as a basic axiom that restricts the ‘P—>RW’-functions;
Vx,y,2: P=AW’ Vp: WP’ Vw:WP (MP(x 0 Z 0 p) 0 Y)Wy = X(W)jy < X(W) = y(W)
which expresses that only the part of the path up to x(w) is relevant for x.

From the ‘W—P’-functions and ‘P— XW’-functions “W—®W’-functions are obtained as a composi- tion of a
‘W—P’-function and a ‘P->XW’-function. The axiomatization of these functions requires the introduction of the
corresponding sort symbols together with the sort hierarchy and the specification of the sort declarations for the
composition function o. To determine the sort hierarchy, we exploit that each R%?-transition is both a R™-transition
and a R':-transition, and R'-transitions as well as R'-transitions are both R™-transitions. This is reflected in the
following sort hierarchy:

Po"W’ WoTW’
‘PoW’ P 'w W W’ W 'W’
P—->2wW’ W W

Furthermore, since each ‘P—XW’-function is only a special version of “W—RW’-functions, we must add the
relations ‘P—RW’ € ‘W—-RW’, A ‘W—P’-function is a special ‘W—™W’-function, therefore we add ‘P-»>W’ &
‘W—TW’. Both “‘W—P’-functions and ‘P—XW’-functions contain the identity function. Therefore we finally add
a sort ‘ID’ denoting the identity function only and obtain the complete sort hierarchy:
W oTW?
‘W 'W* ‘P="W’ ‘W——)ItW’

WHP PoTW W5PW P 'wW?

‘D’ ‘P W’
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The sort declarations for the composition function o can be deduced straightforwardly from the intended meaning
of the ‘W—XW’-functions:

ol ‘W—oPW’ X ‘W—9W’ —» ‘W—SW’  and ol ' WoRW’ x ‘WP’ — ‘WoRw’

PoPW’ X PoIW — ‘PSW’ “WoP’ X ‘WoRW - ‘WoRw
‘WP’ X ‘WP — ‘WP’
where s is derived from p and g with the following (symmetric and associative) matrix:

p\gJ g | r |t |t
@ t

t t t

r t |t iy

t t t t t

It t r t n

Since “W—T'W’ is the top sort in the sort hierarchy, in the sequel we usually write axioms with quantifications
only over “W—T"W’-functions. Together with overloaded sort declarations for the functionals to be introduced
below, we automatically get the right instances of the axioms for all other context access functions.

Each ‘W—RW’-function can be decomposed into a composition of a ‘W—P’-function and a ‘P—®W’-function,
To do the composition syntactically we introduce the already mentioned function symbols MP (“move path™) and

MW (“move world”).

The axiomatization of MP and MW is:

MP: “WoRW’ = ‘WP’ and MW: ‘W—RW’ — ‘PRW’

Vx: P—-"W’ MW(x) = x Vx:‘P-"W MP(x)=ID (= identity)

Vx:*W—oP' MW(x)=1ID Vx:*W—oP’ MP(x) =x

Vx:*W—TW’ x = MP(x) o MW (x) Vx,y: W—TW’ MW (x0y) = MW(X)eMW(y).
or graphically: .

7
Iy

MWA%)
A<WP>) = <W,,P,> ME(O)(<WP>) = <WP> MWLOWE>) = <W,, P>

The parametrized context access functions:
Since for a label £ we do not have from each world on each path an Flabeled transition, but only on some paths
Flabeled transitions, we can’t decompose the parametrized context access functions into ones which change only
the path and others which move along a path, i.e. we can’t have ‘D,P— XW’-functions but only
‘D,W—%W’-functions. Applied to a label /they, however, produce a normal ‘W—%W’-function. Consequently,
the ‘D,W—RW" part of the sort hierarchy looks exactly like the ‘W—RW" part:

‘DW-"w’

‘DWW’ ‘D,Wos'w

\/

‘DWW’
and the corresponding sort declaration for the composition function
0:'D,W—-PW’ X ‘D,WoIW’ — ‘DWW’
is analogue to the sort declarations for the “W—PW” sorts.
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Since only the last label in a sequence of transitions matters a labeled transitive transition can be obtained by the
composition of an arbitrary transition and a labeled transition. Therefore we introduce a special functional LT
(labeled transtion) that composes a two such transitions to a labeld transition, i.e.

VX W—"W’, y:D,W—-TW’ VLD (x o y(1)) = LT(x, y){I)

The set of “W—P’-functions is intended to describe transitions between all paths crossing a given world. That
means in particular that for a given WP-tuple = all other WP-tuples w, with the same world can be mapped 10
wy, i.e. Vw:WP 3p: WP’ Vwy WP Wy = Waw = P(W,) = W,

The Skolem function for p is a function PA: WP — ‘W—P’ that returns for a given WP-tuple a “W—P’-function
which maps all paths crossing wyy to ;.

u PA ()
= 5
“ PA. (a)

So far we have introduced context access functions to model R%-transitions and we have motivated the functionals
MP, MW and PA. But we have not introduced any means to represent the correlations between the different types
of accessibility relations.

Basic transitions:

A transition in the basic accessibility relation R? on a particular path is just one step forward. Therefore we
introduce a function symbol +1:‘P—?W’ as the unique ‘P—?W’-function. Composed with ‘W—P’-functions we
obtain all context access functions related to a branching R?-relation. ‘+1’ corresponds to the successor function
in the Péano axiomatization of natural numbers.

Reflexive versus nonreflexive transitions:
The correlation between the nonreflexive and the reflexive accessibility relations in terms of context access
functions is that the reflexive functions operate on a world either as the identity or as a corresponding nonreflexive
function. To express this syntactically we introduce a functional -R that “removes” the reflexive part from a
context access function. The type declarations for -R are:

R: ‘WoTTW’ — “WotW? -R: P™"W’ — ‘PoW’

R ‘WoW’ — ‘WoW’ -R: ‘P>W' — ‘Po'W’
and the axiom describing -Ris:  Vx:*W—oTW’ Vw:WP x(w)=w v x(w) = -R(x)(W).

Transitive versus nontransitive transitions:
Since the transitive accessibility relation is simply the transitive closure of the basic one, the correlations between
the basic and the transitive accessibility relation is that each transitive transition is either already a basic transition
or it is decomposable into another transitive transition followed by a basic transition, i.e.

VX:'P->W’ Vw.WP x(w) = +1(w) v x(W) = (FS(X) o +1)(w).
where FS: ‘P—'W’ — ‘Po'W’ (FS means ‘first steps’) and FS(x) makes one step shorter than x itself.
The interpretation of FS in a structure C is graphically:

X

)

one R?-transition

FS(%) +149)

Actually this axiom corresponds to one of the Péano axioms for natural numbers.
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For reflexive-transitive transitions we can optimize the above correlations a bit: A reflexive-transitive transition
either remains where it is or it can be decomposed into another reflexive-transitive transition followed by a basic
transition. To express this we extend the meaning of FS, i.e, we introduce another sort declaration FS: ‘P—"W*
— ‘PoTW’and add the axiom: Vx:*P—TW’ Vw:WP x(w)=w v x(w) = FS(x) o +1) (w).

Paths:
The remaining thing to be done is to axiomatize paths. There are two main conditions describing paths: A path is a
totally ordered set, and the ordering is determined by R"-accessibility.
To axiomatize these conditions we introduce a relation symbol <: WPXWP and axiomatize it as a total ordering on
path. The totality axiom is VX,y:‘PTW’ Vw:WP  x{(w) < y(w) v y(w) < x(w)
i.e. only worlds on the same path are compared. The second condition actually consists of two parts. One part,
R™.accessible worlds on a path are in the <-relation, is simply expressed by

Vx,y: Po"W’ Vw Wi WP wy = x(W1) = w; S w,

The axiomatization of the second part, two worlds on a path being in the <-relation are R™-accessible, needs a
new functional >: ‘Po"W’X ‘PoIW’ — ‘PTIW’,
- denotes in a certain sense the difference between two worlds

Y
P
W "C(K ’ y)
and is axiomatized with Vx,y: ‘P=TW’ Vw: WP x(w) < y(w) = (X o> (X, Y))(W) = y(W).

As an auxiliary predicate, a <-predicate with the usual meaning will also be introduced.

To express the semantics of the indexed ‘eventually’ operator l...), accessing on each path for a Iabel [the world
after the first ~labeled transition, we introduce a function BF(1) which takes a label I and returns-a function that
maps the current world to the world before the first 1-labeled R®-transition on the current path. The remaining
flabeled R?-transition is described by a function +1L(1):

G O
BFA) +1L(0)

BF is described with the following axiom which expresses both, that the transition following BF(1)(w) is flabeled
and that this transition is the first one of this kind on the path.
Vx:P-HT™W’ Vy:‘D,W—*W’ VI:D VW:WP (x o y(1))(W) = (x o +1)(w) = BF(I)(W) < x(W).

We are now going to turn the informal description of the CL-axiomatization of MM-Logic possible worlds
structures into a formal definition for the logic morphism P.

Definition 5.2.1 The Signature Morphism ¥y.
A MM-signature X is mapped to a CL-signature as follows:
1. The MM-signature becomes the domain part of the CL-signature.
2. The context part of the CL-signature is created from scratch:
a) Itis a functional signature (def. 3.4.1) over the basic context sort WP (for tuples <world,path>) and with
interpretation context sort W (for worlds).



b) The sort lattice for the functional sorts is
‘w %rtw,

W TW’ P W ‘W—)ltW’

— 1= )
WP Po'W W™W P "W

‘ID’ ‘PW?

¢) The sort declarations for the composition function o are:
and o: ‘W—RW’ x ‘W—P’ — ‘WoAW’

0! “W=PW’ X “W=IW’ — ‘“WSW’
PoPW’ X ‘P3AW’ — ‘PoSW’

‘D,W—-PW’ X ‘D,W—IW’ — ‘D,W-W’
where s is derived from p and q with the following matrix:
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cD,W__)rtw9
‘DWW’ ‘D,W_s 'w?

‘D,W—)¢W’

WP’ x “WoRW — ‘WoRw’
‘WP’ X ‘WP — ‘WP’

p g | t |t
@ t )yt ]t ]t
r t |t It
t t t t t
rt t ¢4 t It

The sort declarations for the application function ! are:

b XoRY' X WP > WP
‘DWW’ x D - ‘WoRW’

for XY € {W, P}
for the top domain sort D.

d) The following additional constant, function and predicate symbols are added:

Constant symbols:
ID: ‘D’
IDL ‘DWW’
+1: ‘P*W’
+1L: ‘D,W—-2W’
Function symbols:

PW: WP ->W

PA: WP = “W—P’

BF: D — ‘P->"W’

MP: WoTW? — ‘WP’
MW:  ‘Wolkw - PR’

(Two identity functions)

PTW - ‘PW’
‘PoW’  — P-PW’

LT: ‘WoW’ x ‘D,WoIW’ — ‘DWW,
s is derived from p and q according to the above matrix.
-R: ‘WoIW? - “WtW?
WoTW - “WoPW?
FS: P-W - PHW’
PoTW — PoHW’
> ‘PoTW’ x ‘PoIW’ - ‘PoIW’
Predicate symbols:
< WPXxWP
< WPXWP (<and #)

f) The symbol variation function $%maps all domain function symbols to PW,
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Definition 5.2.2 The Formula Morphism ¥ ;.
¥ yleaves MM-terms unchanged and maps MM-formulae to domain formulae in CL.
Corresponding to the inductive definition of MM-formulae, the translation rules are:
Formulae with the predicate logic junctors and quantifiers as top operators are translated by leaving their structure
unchanged and just translating their subformulae.
The translation rules for the modal operators are:
‘P,(EIK:})= Vx: ‘' W—Rw’ ¥ (F) (& Vp: WP’ Vx: ‘PoEW’ ¥ AP)
‘I’,(OK ) = Ix:'W-Rw’ ¥ (P (< Ip:*W—P’ Ix:'P-RW’ ¥ {()
‘I’J(IIt]]gt 7 = VUx*D,WoRW’, z:8(t)=t) W% (S(t) denotes the sort of t)
‘P7(<t>R7) = 3Ux: ‘DWW, z:§(D=t) ¥ (P

‘I’f('f) = Vp:*W—oP’ Ix:‘P="W’ ‘I’y(f})
¥ 4 (=) = Ip:*WoP’ V:P"W’ ¥ (P
¥(1)9) = Vp:*W—sP* @ (BE(D) o +1) ¥ (9

YAFVU G = Vp:WoP’ Ix: ‘PoTW’ ¥ HE) A Vy: P—"W’-x (<(poy, pox) = ¥ L P)).

YHFVU G) = VpW—P’ Ix:PHW (P (G) A Vy: PoTW’-x (S(pey, pox) =F (F))-

YA(FIU g =3Ip'W=P Ix: ‘P-W’ ¥ i) A Vy:*P—1W’-x (<(poy, pox) = ¥ ().

¥YHFIUTG) = Fp'WoP Ix:P-"W’ (¥ HG) A Vy: P—"W’-x (£(poy, pox) =¥ A F)).

Of course the introduced variables have to be completely new ones. |

Definition 5.2.3 The Specification Morphism ¥ ¢

The specification morphism ‘¥ ¢ uses 'y, for translating MM-signatures into CL-signatures and ‘¥ ffor translating
MM-formulae into CL-formulae. Furthermore, it adds the necessary axioms for the application function | and the
composition function o (def. 3.4.1,5) to make the context part of the CL-specification a functional specification.
And finally it adds the axioms which characterize possible worlds structures in terms of accessibility functions.
(We use a second order syntax to make the axioms more readable. The first-order version of terms like x(y) is
x, y)).

Characterization of o and {:
Al VX y:*WoTW’ Vw:WP Ix, w)=l(y,w) =>x=y
A2 Vx,y:'D,WTW’ VID Vw:WP L%, 1), w) = L((y,),w) =>x=y
A3 Vx,y:W—TW’ Vw:WP l(x oy, w) = I(y, {(x, W))
Ad Vx,y: DWW VID Uxoy, 1) = Ux, ) o Uy, 1)

Identity functions.
B1 Vw:WP (D, w)=w
B2 Vw:WP VLD J((IDL,]),w)=w (The reflexive transitions are labeled with all labels.)

Characterization of the “W—P’-functions
Cl1 Vp:'W—P’ MP(p)=p
C2 Vp:'W—oP’ MW(p)=ID
C3 Vwy,wyyWP  PW(w,) = PW(w,) = w, = PA(W,)(w,)

Characterization of the ‘P—>%W’-functions.
Dl Vx:‘P-TW’  MW(HX)=x
D2 Vx:P-"™W’  MP(x)=ID
D3 Vx,y,z:‘P-"W’ Vp: ‘WP’ Vw: WP x(W) = y(w) = PW(MP(X o Z o P) o y)}(W)) = PW(x(w))
D4 Vx,y,z:‘'Po""W’ Vp:*WoP’ Vw:WP  x(w) = y(w) & PW(MP(x o Z o p) o y)(w)) = PW(x(W))
DS Vw,,wp:WP  +1(w,) = +1(w,) = w; = w, (injectivity)



Characterization of the “W—RW’-functions.
El Vxy:'W-"w’ x = MP(x) o MW(x)
E2 Vx,y:'WoT™W’ Vw.WP x(w) = y(w) = MP(x)}(w) = MP(y)(w)
E3 Vxy:*WoTW’' Vw:WP x(w) = y(w) = MW(x)(w) = MW(y)(w)
E4 Vx,y Wotw’ MW(x o y) = MW(x) o MW(y)

Relations between the different transitions:
Fl1 Vx:‘P-%W’ x=+1 (basic transitions)
F2 VxiW-I'W’ Vw x(w) = w v x(w) = -R(x)(w) (reflexive transitions)
F3 VXiW'W Yw:WP  x(W)zw
F4 Vx:‘P—=>'W’ Vw:WP x(w) = +1(w) v x(w) = (FS(x) o +1)}(w) (transitive transitions)
F5 Vx:'Po"™W’ Vw:WP  x(W)=w v x(w) = (FS(x) o +1)(w).  (reflexive transitive transitions)

< is a total ordering on paths.

Gl Vw.:WP wEw (reflexivity)

G2 Vwq,w,,wy WP WISWy AW, S Wy D W SWy (transitivity)

G3 Vw,,wy:WP WS Wy AWy SW| = Wy =Wy (antisymmetry)
G4 Vx,y:'P"W’ VW.WP  x(w) < y(W) v y(W) < x(w). (totality on paths)

Definition of <.
H1 VW ,wo:WP w; <wy = wy Sw,
H2 Vw,wy:WP w)<wy = Wy # Wy
H3 Vw{,wi:WP w,; < Wy & W S Wy AWy # W,

Characterization of paths
Il Vx:'P-TW’ Vw,,wy WP w, = x(w;) = wyS w,
2 Vxy:Po"™W Vw:WP  x(W) £ y(w) = (Xo>(X, Y))(W) = y(W).

Labeled transitions on paths
J1 Vx:'P-""W’ Vy:*D,W—2W’ VLD Vw:WP (x o y())(W) = (x o +1)(w) = BF()(w) < x(W).
J2 VLD BF(l) o +1L(l) = BF(I) o +1
J3 Vx:'P-TW’ Vy:‘D,W—?W’ VI:D x o y(I) = LT(x,y)(1) ]

In the subsequent sections of this chapter the soundness and completeness of the specification morphism will be
investigated.

Lemma 5.2.4 Well Formedness of ‘¥ ()
If $=(Z, #) is a correct MM-specification then ¥ () is a syntactically correct CL-specification.
Proof: We have to check

a) whether ¥ () is a functional OSPL-specification according to def. 3.4.1 and 4.1.1,

b) whether the translated MM-formulae are well formed CL domain ¥y(Z)-formulae and

¢) whether the axioms generated by ¥ () are well formed CL context ¥'5(Z)-formulae.

a) 1. The functional sorts are ‘WP—IWP’ and ‘D,WP—IWP’. We use ‘W—P’ ¢tc. only as abbreviations.
Therefore they meet the conditions in 3.4.1,1 and 4.1.1,c.
2. Since there is only one variant of ‘D,WP—WP’ sorts where D is the unique top domain sort, the
_subsort declarations meet the condition 3.4.1,2.
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3. The sort declarations for 4 have the structure:
l: “WP—IWP’ x WP —» WP
‘D,WP-HRWP’ x D - “WP—-Xwp’
and for each ‘D,W—RW’ sort the corresponding ‘W—RW" sort exists.
Therefore they meet the condition 3.4.1,3.

4, The sort declarations for the composition function are;

o: “WoPW’ X “WoIW’ — ‘WoSW’  and o: “WoRW’ x ‘WP’ — ‘WoRW’
‘PoPW’ X ‘PIW’  — PSW’ ‘WP’ X ‘WoRkW — ‘WoRw?
‘D,W—PW’ X ‘DWoIW’ 5 ‘DWW ‘WP’ X ‘WP — ‘WP’
where s is derived from p and q with the following matrix:

p [} r t 1t

] t t t t

T t it I

t t t t t

it t 1t t r

We have to check a) whether all possible combinations are covered and
b) whether the sort declarations are associative.
a) Since there are the three different types ‘W—P’, ‘P—9W’ and “W—PW”, there should be
33 combinations. :
The ‘W-PW’ X “‘W-oIW’ — “W—SW’ declaration stands for
WoPW’ X “WoIW’ — “W—SW’,
PoPW’ X “WoIW’ — “W—HSW’ and
‘WoPW’ X ‘PoIW’ - “WoSW’,
The ‘W—=RW’ x ‘W—P’ — ‘W—RW’ declaration stands for
WoRW’ x ‘WP’ = “W—-RW’ and
PRW’ x WP — “WoRW,
The ‘WP’ X “W—IW’ — “W—9W’ declaration stands for
‘WP’ X W—RW’ — ‘WKW’ and
‘WP’ x ‘P-RW’ — ‘WoRw’
Together with the remaining two declarations there are in fact nine declarations.
There is only one basic type of ‘D,W—PW’-sorts. Therefore the single declaration scheme
for these symbols is sufficient.

b) For showing the associativity we first show that the matrix is associative, i.e.
Vp,gse {11t} (poq)os=po(gos)
where o denotes the mapping represented by the matrix.
The triples p,q,s containing at least one ‘t’ or one ‘g’ are all mapped to ‘t’
and the triples containing only ‘r’ or ‘rt” are all mapped to ‘rt’.
Hence, the matrix is assoc;iative. (#)

Now we can show
V81,852,853 € {‘WRW’, ‘PoRW?, ‘WP’ } (S; X S5) X S3=8; X (S5 X S3)
All triples S,,S,,S5 containing no “W—P’ and at least one ‘W—PW’ are mapped to
W PoDosy? = “WPo(@os)w’ (see #)
(‘PoPW’ X ‘PoIW’) X ‘PoSW’ = ‘PoOPW’ X (‘PIW’ X ‘P>SW’)  (see #)
All triples §;,S,,S; containing at most two “W—P’ are mapped to “‘W—EW* or ‘W—RP’ respectively.
Triples $4.S,.S; consisting of three “W—P’ are mapped to “W—P’.
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5. Since ‘W—™W’ and ‘D,W—"W’ are the top sorts in the corresponding parts of the sort lattice, the axioms
A1-A4 characterizing o and | are sufficient to cover all instances of the axiom schemes required in
def.3.4.1,5.

6. Condition 4.1.1,2i) is fulfilled because ‘W—™W’ and ‘D,W—"W" are the unique top sorts in the corres-
ponding parts of the sort lattice.

7. The interpretation context sorts and the symbol variation function are defined (condition 4.1.1,3).

b) The translated MM-formulae are well formed CL domain ¥y(Z)-formulae.

<)

This is proved by induction on the size of MM-formulae. Let G be an MM-formula.
Base Case: G is an atom. Since MM-atoms and CL-atoms are OSPL-atoms and since the translation does not
change anything ‘¥ #G) is a well formed CL domain atom (def. 4.1.3,i).
Induction step: Let G be a non atomic MM-formula.
The induction hypothesis states that all formulae of smaller size than & are translated into well formed CL
domain formulae. We perform a case analysis according to the structure of G.
If G’s top operator is a classical logical connective or quantifier then the induction hypothesis is immediately
applicable. The interesting cases are the modal operators.
Cases G=n0%Fand G=0RF
The translation rules are ¥ (6) = VE)x:‘WRW" W (.
‘Py( %) is well formed according to-the induction hypothesis and since “W—%W"” is a context sort in ¥s(2),
YHg) is well formed (def. 4.1.3,v).
Cases G=[t]XFand g= >R F
The translation rules are ¥ (6) = V(3) L(x:'D,W—-%W", z:S(1)=t) ¥ (D).
¥ () is well formed according to the induction hypothesis. Since ‘D,W—RW" is a context sort and since
x and z are new variables not occurring in Y, ¥ () is well formed (def. 4.1.3,iv).
Cases G=DFand G=—>F
The translation rules are ¥ (G) = V(@) p:*W—P’ (V) x:'P-"W’ ¥ (9.
¥ (%) is well formed according to the induction hypothesis.“W—P’ as well as ‘P—-™W’ are both context
sorts. According to def. 4.1.3,v, ¥ (G) is well formed.
Case g= (¥
The translation rule is YH0F) = Vp:W-oP @(BF(®)o+1) ¥ AF).
¥ () is well formed according to the induction hypothesis.
Since t is a domain term and the sort of BF is D — ‘P—™W?, the sort of BF(t) is ‘P—""W’, The sort of +1
is ‘P—?W’. Thus, the sort of (BF(t) o +1) is ‘P—™W" which is a functional context sort. According to
def. 4.1.3,vii, @ (BF(t) o +1) ‘1’7(_‘}‘) is a well formed CL context formula and according to def. 4.1.3,v,
¥ 4(g) is well formed.
Cases G=FVU G, G=FVU' G, g=F3AU G and g= FIAU' g
The translation rules are
¥ §(G) = V() p:'W—P’ Ix:'P>"W’ ¥ x5 A Vy: PoTW’-x (<(L)(poy, pox) = ¥ ().
Y/G)and ¥ A P are well formed according to the induction hypothesis. < and < are context predicates of
sort WPXWP, poy and pox are both terms of sort ‘W—"W’ therefore, according to the replacement rule in
def. 4.1.3,ii, <(poy, pox) and <(poy, pox) are well formed CL domain atoms. According to def. 4.1.3,vi,
Vy: Po1W’-x (<()(poy, pox) = ¥ () is a well formed domain formula. And finally, since “W—P’
and ‘P-™W’ are functional context sorts ¥ «(g) is well formed according to def. 4.1.3,v.

The axioms generated by ¥ () are well formed CL context Wy (E)-formulae.This is a straightforward check.
(A syntax error in the translation rules may lead to an erraneous implementation of the translation algorithm.
Here we have to be careful. A syntax error in the axioms is usually detected by a properly implemented
formula parser. Therefore we can afford to be lax about this.) u
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Derived Formulae

The specification morphism generates a number of CL formulae to axiomatize labeled possible worlds structures.
To confirm that the axioms really describe our intuition about the possible worlds structures and to provide a better
basis for an implementation we derive some useful lemmas.

A5 VxyzW-oTW’ (xey)oz=Xo(yo2) (associativity of o)
A6 Vxy.z'DWoTW’ (xoy)oz=Xo(yo2)

Proof: Lemma 3.4.2

B3 Vx:*W—TW’ x o ID =x

Proof: {(x o ID, w) = (D, l(x, w)) (A3)
= l(x, w) (B1)
= xoID=x (A1)

B4 VX WoTW IDox=x

Proof: 4(ID o x, W) = y(x, (ID, w)) (A3)
= U, w) - (B1)
= xoID=x (AD

B5S Vx‘Wo™W’ VED  xol(DL,I)=x

Proof: l(x o L(IDL, 1), w) = l({ (DL, 1), I(x, w)) (A3)
= L(x, W) (B2)
= xol(IDL,)=x (A1)

B6  Vx*W—TW’ VLD JIDL,1) o x = x

Proof: J(L(IDL, 1) o x, W) = {(x, J(L(IDL, 1), w)) (A3)
=1(x, W) (B2)
= JIDL,Dox=x (AD

C4 Vp:*'W—P’ w:WP w = (p o PA(W))}(W))

Proof: Vp:"W—P’ w.WP PW(w) = PW(p(w)) = w =PAW)(p(W)) (C3)
= Vp:*W-oP’ w:WP PW(w) = PW(w) = w =PAW)(p(W)) (K1 below)
= Vp:*W=P w:WP w =PAW)(p(w)) (reflexivity of =)
= Vp:'WoP’ w:WP w = (p o PA(W))(W)) (A3)

D6  Vx:'P->"W’ Vp:*W—P’ Yw:WP PW(MP(x o Z o p) o x)(W)) = PW(x(W))
Proof: x(w) = x(w) = PW(MP(X o Z o p) o X}(W)) = PW(x(w)) D3)
= PW(MP(x o z o p) o x)(w)) = PW(x(w)) (Reflexivity of =)

D7 VX,y: PT'W Vw:WP PW(x(W)) = PW(y(w)) = x(w) = y(w)
Proof: PW(MP(x o ID o ID) o y)}(w)) = PW(x(W)) = x(W) = y(w) D3)
= PW(y(w)) = PW(x(w)) = x{(w) = y(w) (B3, B4, D2)

D8  Vxy:‘Po"W’ Vp.'W—oP’ Vw:WP
x(w) = y(w) = PW(MP(x o z o p) o x)(W)) = PW(MP(x 0 z o p) o y)}(W))
Proof: Suppose x(w) = y(w)
= PW(MP(x o 2o p) o y)(W)) = PW(x(W)) (D4
= PW(MP(x oz o p) o x)}(W)) = PW(MP(X 0 Z o p) o y)}(W)) D6)
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D9 Vx,y,2:'P-TW’ Vp:*WoP’ Vw: WP
x(w) < y(w) = MP(X 0 Z o p) o X)(W) <{MP(X o Z o p) o y}(W)

Proof: Let x(w) < y(w) (k)
Assume (MP(x 0 Z o p) o y)(W) £ (MP(X 0 Z o p) o X)(W)
= y(MP(x o z o p)(W) < x(MP(x o Z o p)}(W) (A3)
= (¥ o> (y, x))(MP(x 0 z o p}(W) = x(MP(x 0 z o p}(W) a2
= MP(xozop)oyo>(y, x))(w)=(MP(X 0z op)oXx}w) (A3)
=  PW(MP(X 0 z0p)oyo=>(y, X))(W) = PW(x(W)) DS)
= (yo>(y, x))(W) = x(W) D4)
= y(w) <x(w) {1
=  —x(w) <y(w) (H5)
=  contradiction (k)
= (MP(xozop)ox)(w)<(MP(xozop)oy)w) (HS)
D10 VX,y,z:*P—-""W’ Vp:W—P’ Vw:WP

(MP(x 0 z 0 ) o X)(W) < (MP(x 0 Z 0 ) 0 ¥)(W) = X(W) < y(W)
Proof: Let (MP(x 0z o p) o x)(W) < (MP(X 0 Z o P) o Y)(W)
Assume y(w) < x(w)

= (y o >(y, x))(W) = x(W) I12)
= PWMP(xozop)oyo>(y,x))(W))=PW(MPxozop)ox)(w)) (D7)
=  MP(x 0z o) o y)(W) < (MP(x 02 0 D) 0 X)(W) an
= —MP(Xozop)ox)}(w)<(MP(Xxozop)oy)w) (H5)
= contradiction

=  —y(w)<x(w)

= x(w) <yw) (H1)

D11  Vxy,z:‘'P-"W’ Vp:‘W—P’ Vw:WP
(MP(x 0 Z o p) o ¥)(W) < (MP(X 0 Z 0 p) o X)(W) = y(W) < x(W)
Proof: Suppose (MP(x o Z o p) o y)(W) < (MP(X 0 Z o p) o X)}(W)

= y(MP(x 0 2 o p)(W) < X(MP(x o 2 o PY(W) A3)

= (Yo -RC(y, x)))(MP(x o z o p)(w) = x(MP(X 0 z o p}(W) (13 below)
=  MP(Xozop)oyo ROy, W)= (MP(x o2 o p) o X)(W) (A3)

=  PW(MP(xozop) oy o -RO-(y, M)W)) = PW(x(w)) ©6)

= (Yo -RC(y, x)N(W) = x(w) (D4)

= y(Ww) <x(w) (I4)

D12 Vxy,z:‘Po"W’ Vp:W—P’ Vw:WP x(W) = y(w) = (MP(X 0 Z o p) o x)}(W) = (MP(X 0 Z 0 p) o y)(W)
Proof: Let x(w) = y(w) )

Assume (MP(x o 2 o p) o X)(W) # (MP(x 0 Z 0 ) o y)(W)

= (MP(x 0 Z o p) o X)(W) < (MP(X 0 ZoPp)oy)(W)V

(MP(x 0z o p) 0 y)(W) < (MP(x 0 2 0 p) o X)(W) (H6)
Suppose (MP(X o Z o p) o X)}(W) < (MP(x 0 Z 0 p) 0 Y} W)
= x(w) <y(w) (D10)
=  contradiction (H2, *)
= (MP(xozop)oy)w)<(MP(xozoD)ox)(W)
= y(w) <x(w) (D11)
=  contradiction (H2, *x)
= (MP(xozop)ox)(w)=(MP(Xozop)oy)w)
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D13 Vxy,z:P-"W’ Vp:*WoP’ Vw: WP x(w) < y(W) = (MP(X 0 Z o p) 0 X)(W) < (MP(X 0 Z 0 P) o Y)}(W)
Proof: Let x(w) < y(w)
Assume (MP(X o Z o p) o y)(W) < (MP(X ¢ Z o p) 0 X)(W)

= y(w)<x(w) D11)
= —x(w)<y(w) (H5)
=  contradiction

= —(MP(Xozop)oy)w)<(MP(Xozop)ox)(W)

= (MP(x0zop)ox)(w)<(MP(xozop)oy)w) (H1)

F6  VX:'P-"W Vw.WP x(W)=w v x(w)=+1(w)
Proof: x(w)=w v x(w) = -R(x}(wW) F2)
=x(wW)=w v x(w) = +1(w) (F1, R:'P-"W’ — ‘P—2W?)

G5  Vx:P-"W Vw:WP w < x(w)
Proof: wy = x(w) = W< wy 1)
= wx(w) (reflexivity of =)

H4 Vw,,wy: WP Wi < Wy =Wy <W;
Proof: Let wy <w,

= W #EW, (H2)
and w;<w, -+ (H1)
Assume w, < wy

= WySw; (H1)

= wy=Wwy (H3, +)
=  contradiction

= Wy <wW;

HS VW],WZ:WP Wl < W2 = = W2 < Wl
Proof: Let wy <w,

= W EW, (H2)
and w;<w, ) (H1)
Assume w, < Wy

= W =W (H3, +)

=  contradiction
= Wy < Wy

H6  Vx,y:'Po"™W’ VwWP x(w) # y(W) = x(W) < y(W) Vv y(W) < x(w)
Proof: Suppose x(w) # y(w) (*¥)

= —x(W) S y(w) v x(W) < y(w) (H3)
= y(Ww) S x(w) v x(w) <y(w) (G4)
= y(w) <x(w) v y(w) = x(w) v x(W) < y(W) (H3)
= x(w) <y(w) v y(w) <x(w) )
I3 Vxy:'P-"W’ Vw:WP <(x(w), y(W)) = X o -R(>(, y)))(w) = y(w).
Proof: Suppose <(x(w), y(w))
= x(w) #y(w) (+) (H2)
and <(x(w), y(w)) (H1)
= Xo>X, y)W)=y(w) (%) I2)
= & y)EW)=yw) (¥ (A3)
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= >, Y)EW)) = x(w) v >(x, )W) = -RC-(x, y))x(W))) ®2)
= yWw) =x(W) v >(x, )W) = -R(>(x, y))x(W))) (k)
= >, Y)(W)) = -R((x, y))(x(W))) (+)
= (Xo>(x, )W) = (x o -R(>(x, y)))(W)) (A3)
= (X o -R((x, y)))w) = y(w) (%)

14 VX, y:‘PoTW’ Vw:WP Vz:'P—'W’ w:WP (x o z)(W) = y(W) = x(W) < y(W)
Proof: Suppose (x o z)(W) = y(w)

= x(w)<y(w) (%) I

and z(x(w)) # x(w) (F3)
and  z(x(w)) # y(w) (A3)

= x(w) #y(w)

= x(w)<y(w) (H3, *)

K1  Vp:W—oP’ Vw:WP PW(p(w)) = PW(w)

Proof: ID(w) < ID(w) = PW(MP(ID o p) o ID)(w)) = PW(ID(W)) (D4, x =y =1ID)
= PW(MP(D o p) o ID)(w)) = PW(ID(w)) (G1)
= PW(MP(p)(w)) = PW(w) (B4, B3, B1)
= PW(pWw)) = PW(w) (C1)

The interpretation morphism ‘Ps, whose existence confirms soundness and completeness of the translation, has to
translate the relational description of the accessibility relation into a functional description where the
argument-value relation of the context access functions represents the transitions in the possible worlds structure.

Definition 5.2.4 The Interpretation Morphism ¥q
Given an MM-interpretation S = ((W, R), ¥, )y over the MM-signature X, the interpretation morphism ¥'g
generates the following CL-interpretation Sy = (G, $9), ¥, (< Wy, Bp>), D) (def. 4.2.2) over Wy(Z) where
1. Cisafunctional ¥y (Z)c-structure where the context symbols are interpreted as follows:
Interpretation of the non functional sort symbols:
D, :=Dgy, forall domain sorts D. (the domains are equal in all worlds)
W, =%
WP := {<W, 2> We W, Pe H(Wp) and We P}
‘ID’ .:= {identity function on WP —WP .}

In the sequel we write the composition function in Calso as o.

For the definition of the context access functions we need some auxiliary functions “+»” which move on each
path exactly n steps forward:
Forn20let +n: WPC—)WPC with +m(<W, P>) = <W, . P>,
W,, and W, . being the mth and m+n’th worlds in ¥ (see lemma 5.1.7).
Let (+n o +m)(w) = +(n+m)(w). Since R? is serial, all these +n functions are total.

As a notational convention we write projection of WP-tuples w to the world component with wy and
projection to the path component with zjp.
Furthermore we use w_p := {#'|y | #/jp = wp} to denote the set of worlds on a path.
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Interpretation of the functional sort symbols:
‘WP = (WP WPl p(<W, P>)y = W, pis total}
‘PoRW . = (xWP WP, Vwe WP, 3ne AR a(w) = +n(w)
and Vw’with @'y = wpy and fw))y € @' p: dw) = +n(w)}
(AR is defined in lemma 5.1.7.,b. In particular ‘P—*W’ . = {+1})
‘W—)R\V’C = {x:WP —>WP.I| Jpe ‘WP Iy € ‘P—)RW’C X= ap o 1y}
DW—RW’ = (x:D XWP WP, IV[eD () € W—ERW’ .and Vwe WP . (w1 D))y € RX(D)

Interpretation of the constant symbols:

ID,. is the identity function on WP WP .

IDL . is the identity function on D XWP —WP .

+1, =+1 is the single element of ‘P—?W’ .

+1L .= +1L€ ‘DWW’ .with

Vie D, +14(h(w)= +1(z) in case w= BF (§(wy) for some wy e WP .
+10(w) = {(w) otherwise, where xis some element of ‘D,W—W’ ¢ (uninteresting

case)

Interpretation of the function symbols:
V<W,2>€ WP,
PW (<WP>) = W,ie. PW .= y.
Vie D,
BF (/) = x where x€ ‘P-"W’ . and Vwe WP, (mhyw: (xo +1)(w))w) € R()
and x(=)yy is the first world among the y(w)y With (=), (5o +D(2))w) € RYD.
Ywe WP
PA (w)=pwhere pe ‘W—P’ . and Vo' e WP if o'\ = my then p(o’) = w else p(w)=w’
Vze ‘W-IW’ .
MP (0 € ‘W—P’ . with MP {Q(<W,P>) = <W, {<W,P>)p>.
Vxye ‘WHT™W’ c
MW (9 € ‘PRW’ ¢
with MWC(;\')(<W (x0 y)(<‘I'V,ﬂ’>)|P>) = <M< W,P>) 90 (X0 YW, B>)p>).
otherwise MW ((<WP>) = <x(<W, B>y, P>)
Vye “WoIW’ c Vye ‘DWW’ c
LT{xy € ‘D,W—-)nW’C such that V(e Dz xo () =LT (. »)()
Vxe X-YW . where X € {W,P}andYe {1
R0 =y where ye ‘XYW’ . and Vwe WP such that
if () # wthen (=) = (w) else Jw) = +1(w).
Vxe ‘P—>‘W’C Vwe WP,
if f(w) = +(n+1)(=) for some n>0 then FS ()(w) = +n(w)
else FSC(:()(w) =+1(w) (irrelevant case)
Vxe ‘P-"W’ .\ P>W’ Vwe WP,
if x(w) = +(n+1)(w) for some n20 then FS (x}(w) = +n(w)
else FS ((w) = w (irrelevant case)
Vaye ‘P—-—)“VV’CVWE WP,
if {w) = +n(w) for some n and
Kw) = +m(w) for some m 2 n then > (x, Y} (w) = +(m-n)(w)
else > {(x y) (=) = w (irrelevant case)
Interpretation of the predicate symbols
<¢ = ((wy, wy) V wy, wy € WP - and wy = +n(w,) for some n 2 0)
<= {(wy, wy) lwy, wy € WP and w, = +n(w,) for some n > 0}
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2. S¥Ymaps the tuple <W, P> to its element Wwhich is a [Ty (Z)y-structure.
3. The path %, in the initial context of Sy as well as the P-component are irrelevant for the interpretation of
closed formulae and may be chosen at random.

The inverse interpretation morphism ‘I‘S‘l generates from the CL-interpretation
ScL = (G 89, ¥, (wp), P) the MM-interpretation S = (W, R), ¥, PW () where
a) RE:= ((PW Lw), PW ((w))) | x & ‘P>RW’ . we WP}
For we WP, let Aw) := {PWC(a(w)) | xe ‘P->W’ c }. Aw) is the path described by .
b) BW) = (Hw) |PW (w) = W)
¢) A transition SRR(‘WI, W,) is labeled with a label [
iff 3 x€ ‘DWW’ . Jwe WP with W, = PW (=) and %} = PW (x(L, %)) n

The next lemmas confirm that the interpretations of the functional context sorts are rich enough to reach all
accessible worlds and paths. '

Lemma 5.2.5 The ‘W—P’-Functions Reach all Path Crossing a World.

Given an MM-interpretation 3 = (W, R), ¥, W)y) and the translated interpretation Sy,

Ve w, Py € AWy with We ;. Pe H(W) & dpe ‘W—)P’C H<WBp>) = <W,P>.

Proof: “=”

The function p with p(<W,2>) = <WP> and p(w) = wfor all w# <WBy> is total and therefore in “W—P’ .
<" Sincep e WP .— WP, We 2 and therefore Pe H(W). [

Lemma 5.2.6 The ‘P—XW’-Functions Reach all :R%-Accessible Worlds on a Path.

Given an MM-interpretation 3 = (W, R), ¥, W),) and the translated interpretation Sy,

VWe W, Pe BW): (W, € Pand W) ¢ Pand RX(W), Wy) & T xe WP . <W)2>) = <), P>.
Proof: “=” EK"(‘WI, ) implies there is ann € A& such that W, is reached from %/ inn R2-transitions on P
(lemma 5.1.7,b). We simply select x:= +ne ‘W%’

“=" f<W|,P>) = +n(<W,,P>) for some n € AR.

Hence, W, € Pand W, € Pand RX(w,, W}) (lemma 5.1.7,b). n

Lemma 5.2.7 The ‘W—XW’.Functions Reach all R Accessible Worlds.

Given an MM-interpretation S = (%), R), %, W) and the translated interpretation Sy,

VW, whe W RE W), wy) o 3 xe WRW' L VPwith Wie B (<W B>y = W

Proof: “=” SKX(WI, W,) implies there is a path %" containing 7} and %} and there isann € AR such that
is reached from 7/; in n R?-transitions on 2 ° (lemma 5.1.7,b). According to lemma 5.2.5, for a given 2
containing W there is a pe ‘W—P’ . with p(<Wy,P>) = <W,,2">. Now we select x:= po +n and get
A<M B)\w = W

“=" <W,B>) = (ap o xy) (W), P>) for some xp € WP’ - and 1y € ‘P>RW .

With the two previous lemmas we get XX, W)). =



73

Lemma 5.2.8 The ‘D,W—XW’.Functions Cover all Labeled RX-Transitions.

Given an MM-interpretation 3 = (W), R), ¥, W) and the translated interpretation Sy,

V W, Wye W [e L, (W), W) e R < I xe ‘D,W—)*W’C VePwith Wie 2 {H(<W.P>)yw = Wh.
Proof: (W, W) € RRK() implies there is a path 2 containing W), and W, and thereisann € AX such that W,
is reached from % in n RP-transitions on 2 (lemma 5.1.7,b) and at least the last one is labeled with £ As in
lemma 5.2.7 we select 2(f) 1= po +ne ‘W—EXW’ . and get {)(<W,,P>)|yy = W,. Since there is no further
restriction on ‘D,W—%W" , xe ‘D,W—>RW’ .

“e” Since xe ‘DW—RW" , (wyy, (D (whw) € RA(D per definition. "

We are now going to prove the 3-Quantifier Independency Lemma (def. 4.3.5) which ensures that the
Skolemization in the translation from CL to OSPL is sound. Without this lemma, the translation from MM-Logic
to CL would be useless.

Lemma 5.2.9 The 3-Quantifier Independency Lemma
Given an MM-interpretation S = (%, R), ¥, M)y and the translated interpretation Sy,
a) For all we WP .and for all 3-quantified sets Yc 9" of WP .— WP . context access functions:
dye :Vye ‘W——)“W’o %€ Y fx(w) = y(x(w)).
b) For all we WP, (e D .and for all 3-quantified sets 9'C ‘D,W—"W" <
Jye ‘D,W—)nW’C: Vx € ‘W—)nW’o 4% € 7 (N x(w) = 4(H(x(w)).
Proof: a) Case "= WP’ ¢
Select ye ‘WP’ .with (x(w)) = 4 (x(w)). Since there is no restriction on “W—P’ o such a selection is always
possible. (Notice that we exploit that two different 1 do not map the same x(w) to different worlds.)

Case 9" = ‘P-RW" <

The functions z€ ‘P—RW’ . are restricted in such a way that whenever zZ(<W,P,>) = <W),,®;>, for all paths 2,

having at least the part until 7/, in common, Z<W,?,>) = <W,,P,>. Therefore the existence of y ‘P—-Rw’ cis
not obvious. Fortunately the 3-quantified sets in ‘P—RW’ care restricted in a similar way to match the restriction
on the functions themselves. According to the semantics of the MM-Logic operators (see the remark after def.
5.1.5), existence of a world on a path always means that the following situation never occurs: l

=t
!

common part

&

2
i.e., whenever on a path 2, the existence of a world % with a certain property is postulated then for all other
paths containing 74}, this world %) is chosen as well. Therefore ¥is restricted to not containing functions y and
y, mapping W to W, and W, in the above way. Thus, we can again choose y€ ‘P— Rw’ ¢ With

Yx(w)) = y(x(=)).

Case 9" = “W—%W’ .

Since for all y € “W—RW’ . 4 = yp o gy Where yp € ‘WP’ and gy € ‘P>RW’ .we have

y(x(w)) = (yp o Hw)(x(#)) = yw(yp(x(=)). Exploiting the results of the two previous cases, we find a yp €
‘WP’ . anda yy € ‘PoRW’ ¢ Such that gw(yp(x(2)) = (yp o 1yw)(x(w)). Hence we choose y:= yp o yy €
W-RW

b) The arguments are the same as in the last two cases of a). n
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Lemma 5.2.10 ¥4(3) is well defined.
For an MM-interpretation S = (W, R), ¥, Wp), ScL = ¥5(3) =: (G S, Y, (<Wp, Bp>). D) is a signature
interpretation over Wy(Z).

Proof: To show this we must check

a) whether the interpretations of the sort symbols are nonempty sets,
and especially whether the interpretations of the functional sorts are sets of total functions.

b) whether all subsort relations are realized by corresponding set inclusions,

c) whether the sort declarations for the composition function symbol (def. 5.2.1,c) are realized by the
composition function in C,

d) whether the sort declarations for the application function (def. 5.2.1,c) are realized by the application
function in ¢, and

e) whether the interpretations of the generated constant, function and predicate symbols meet their sort
declarations.

a) The interpretations of the sort symbols are nonempty sets:

D, =Dy, where D is a domain sort: D g, # @. (def. 5.1.3,1)

We=W. Wye W

WP,.= {<W, 2> | We W, Pe KW and We F}
Since W .# ¢, there is at least one tuple <%, { #Wj...}>€ WP,

‘WP . = {pWP WP .| p(<W, P>)yy = Wand pis total}
At least the identity function is in ‘W—P’ .

PRV’ = (xWP WPl Vwe WP, 3ne A& x(w) = +n(w)

and Vo’ with 'y = ww and @)y € w'p: (w) = +n(w)}

The +1-function is in all ‘P—AW’ ¢ -sets. Therefore they are not empty.
The functions are total because the +n-functions are total.

‘W——>*W’C= {xWP WP, |Jxpe ‘WP Jay € ‘P—-)RW’C X= %p ° Ay}
Since ‘W—P’ c*@and PRW’ ¢ # 9. the composition of a least one “W--P’-function and one
‘P—RW’-function is in “W—>RW’ .
Since the components are total functions, the ‘W—%W’-functions are total as well.

‘D,W—)RW’C= {xLXWP —~WP,IVie L. f)e ‘W—)RW’Cand Vwe WP, (wy, ) (@) € REH}
“‘WoRw’ c* 9 and the seriality of labeled transitions (def. 5.1.3,2¢) implies ‘DWW’ ¢ # ¢ and the
functions are total.

b) All subsort relations are realized by corresponding set inclusions,

The subsort relationships are:
‘w Hrtw’

T 1t trgrs ‘DWW’
‘W— W ‘P>"W ‘Wo W

\
| ><_ | “D,W—s TW’ ‘D,W=s tw?

WP P "W W_SPW P 'W’

‘DWW’
GID’ ‘P__)¢W’
‘ID'Cg ‘W——)P’C:
Since ‘ID’C = {IDC} and IDC(<‘W,:Z>)W = ‘W,IDCe ‘W—)P’C, ie. ‘ID’Cg ‘W—aP’C
‘ID,C; tP__>rWVC:

ID.=+0e P>TW ..
‘W—)P’C c ‘W—>rW’C:
Let xe “W—P’ .. Since x = x0 ID andID € PoW -, x€ ‘W—'W’ .and therefore
‘WoP' . WW ..
‘P——)KW’C < WoRW' ., Re {g,r.t,11):
Let xe ‘P-RW .. Since x =ID oz andID e ‘W—P’, x€ “W—RW’ .and therefore
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PoRW L WRW L
‘PHPW’ .  ‘P—IW’ . according to the above sort lattice.
The subset relationships follow trivially from the definition of the ‘P—RW’-functions and the
corresponding subset relationships of AR (lemma 5.1.7,b).
‘WoPW’ . ¢ “W—IW’ , p and q according to the sort lattice.
Letxe ‘WoPW’ ,ie. Jap e ‘WP’ Jayy € PPW’ - 1= 2p 0 ayy-
Since ‘P—PW’ . C ‘P—IW’ . (see the above cases), xyy € PIW’ -
Hence, x€ ‘“W—9W’ . and consequently “W—PW’ . € ‘W—IW’
‘DW-PW’ . € ‘DWW’ , p and q according to the sort lattice.
Let xe ‘D,W—PW’ ie. Vie D, ) € “W—HPW’ ..
Since ‘W—oPW’ . ¢ “W—IW’ . (see the above cases),Vie D, ) € “W—-IW’ .
Hence, xe ‘D,W—IW’ , and consequently ‘D,W—PW’,. c ‘D,W—IW’

¢) The sort declarations for the composition function symbol are realized by the composition function in
The sort declarations are (def. 5.2.1,2¢):
o ‘WoPW’ X ‘WoIW’ — “WoSW’  and o “W—PW’ X ‘WP’ — ‘WPW’
‘P—oPW’ X ‘P-IW’ - ‘PSW’ ‘WP’ X ‘WoIW’ — “W—IW’
‘D,W-oPW’ X ‘DW—-IW’ — ‘DWW’ ‘WoP’' X ‘“WHP' — ‘WP’
where s is derived from p and q with the following matrix:

p o] r t It
@ t t t t

r t |t 114

t t t t t

It t it t It

We begin with ‘P—PW’ X ‘P—IW’ — ‘P-H>SW’:
Let xe ‘P—)PW’C, ye ‘P—)qW’C and we WPC .
(xo Y(w) = (+no +m)(w) = +(n+m)(w) for some n € AP and m e A4.
The different cases for p,q and s are now trivially to be verified.

‘WoP X ‘WP’ - ‘WP’

Letpe ‘WP, g€ ‘WP’ . and <W2>e WP
(o ) KWP) = g(<W2>)
= <W,Py>.
Thus, po g€ ‘WP’ ..
P-RW’ X ‘WP’ — ‘W-oRW*:
Let xe€ ‘P—-)PW’O PE ‘W-—)P’C, w = <W,,P>€ WP

(xo PU<W,,P>) = p(SWy 1o P>) for some m = 0
= <Wpim® > for some path 7
= W,e P’

Therefore we can define g(<W,2>) = <W,p((<W,2>))p>, g€ ‘PPW’ .
We have (<MW, P>)) = d<W,pl({(<W,P>));p>)
= A p(<W(<W,P>) p>)) (p doesn’t change worlds)
= A p(<W,P>)) (x does not change paths)
= xop=4gox
= xope ‘WoRW’
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“WoRW’ X ‘WP’ — “W—RW":
Let x€ ‘W—PW’ .and pe ‘WP’

Xop =xpoxyop wa‘P—)RVV’
=%po g0 Ky (above case)
=po W (p’E ‘W—P?)

= xop€ “WoRwe,
‘WoPW’ X ‘WIW’ — ‘WSW*:
Let xe “‘W—PW’ .and ye “W—IW’ .
XoOY = XpoXwoYp© Yw (def. of ‘W—)pW’o Xw € ‘P—)PW’C, PpE ‘W—)P’C)
=xpopoxyoyy (above case, pe ‘W—-P’)
=zpo zy (for some z€ “W—W’ , see above case for zyy € PoW )
=z€ ‘WoW’,
‘WP’ X ‘WoRW — “WRW’:
Letpe ‘W—P . and ye “W—RW’ . and <> € WP,
pox=po (1p o xw)
= (poap)oxy. poxpe WP,
= poxe€ ‘W—)RW’C.
‘D,W—-PW’ X ‘D,W—IW’ — ‘D,W->W’
Let xe ‘D,W—-PW’ , ye ‘DW—IW’ . and <WP>e WP,
ie.Vie D, () € "‘W—PW’ . and () € “"W—-IW’ .
= V(e D ADoyfh=@onp(he ‘W—>5W’C (see above and def. 3.4.1,5).
ie. xoye ‘D,W—-)SW’C !

The sort declarations for the application function are realized by the application function in C.
The sort declarations for the application function | are:
i X&Y' xWP > WP forX,Y € (W, P}
‘DW-RW’ x L — ‘W—Rw’
In both cases the statement follows immediately from the semantic definition of the context sorts.

The interpretations of the generated constant, function and predicate symbols meet their sort declarations.
Constant symbols:
D: ‘ID’
ID . is the identity function on WP —WP , ie. ID € ‘ID’ .
IDL:'D,W—>'W’
IDL .is the identity function on D WP WP
Since the reflexive transitions in RT are labeled with all labels (def. 5.1.3,2f),
IDL . € ‘DWW’ .
+1: ‘P-*W’
+l.=+1€ ‘P=W’ .
+1L: ‘D,W—-°W’
+1L . = +1Le ‘D,W—>*W’ . per definition.

Function symbols: In particular we have to show that the function symbols are interpreted as total functions.
PW: WP > W
“V<W,P>e WP, PW (<WP>) = W’. Obviously PW (<WP>) € W,
PA: WP — ‘WP’
“Vwe WP, PA {w)=pwhere pe ‘W—P’ . and Vo' e WP,
if w'yw = mw then p(w’) = w else plw)=w""
Obviously PA (w) € “W—P’ . Since there are no restrictions on ‘W—P’ ., PA (=) always exists.
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BF:D — ‘P>"™W’
“V(e D, BF(f) = x where x& ‘PoTW’ ¢ and Vwe WP (fw)y, (xo +D(w))y) € R2(H
and x{w)yy is the first world among the y(w)y With ((w)y,(yo +D(w)y) € Re(H.”
Because of the fairness condition on paths (def. 5.1.3,2g), there exists for each label {on each path an
Flabeled transition. Therefore the function x& ‘P—TW’ o jumping to the world before that transition,
exists, i.e. V/e D, BF{() e ‘P"W’ .
MP: “W-TW’ — ‘WP’
MW: ‘W-RW’ — ‘P>RwW’
Since each ‘W—XW’-function xis a composition of a “W—P’-function MP(x) and a
‘P->XW’-function MW(%), the proof is trivial.
LT: ‘WoPW’ X ‘D,WoIW’ — ‘DWW’
Since LT ~works similar to the composition function, the proof for o carries over to LT.
R: ‘WoIW’ — “WW'  ‘PoTW’ — ‘P'W?
WoOIW’ = ‘WoPW ‘PoTW’ = ‘PoPW’
e ‘XYW’ . where X e {W,P}andYe {1}
RAx) =y where ye XYW’ . and Vwe WP, f(w) # w= w) = y(w)”
Since R (%) is allowed to map those = where xoperates as the identity to some appropriate
w’, R (x) always exists and is of the right type.
FS: PoW'— ‘PoW’
PoIW - ‘PoIW’
“Vxe P-'W’. Vwe WP,
if i{w) = +(n+1)(w) for some n>0 then FS ((w) = +n(w) else FS (x(w) = +1(w)
Vxe ‘P-"W’  \ P>'W’ Vwe WP,
if (@) = +(n+1)(w) for some n=0 then FS A0(w) = +n(w) else FS (0(w) = o
Obviously FS («) exists and has the right type.
>: ‘PoIW’ X PTW’ — ‘PHTW’
“Vaye P->"W’ Vwe WP,
if x{w) = +n(w) for some n and
K w) = +nm(w) for some m 2 n then > {(x, Y} (w) = +(m-n)(w) else > (x, P(w) = w”
Obviously > (x ) € ‘P—"W’ . always exists.

Predicate symbols
<. WPxXWP
“Sc = {(wy, wy) | wy, wy € WP~ and w, = +n(w) for some n 2 0}”
<: WPXWP
“<c = {(wy, wy) | wy, wy € WP - and wy = +n(wy) for some n > 0}”
Its obvious that the sort declarations meet the corresponding semantic definition. x
Lemma 5.2.11 The Axiomatization of the Possible Worlds Structure is Satisfied

For every MM-interpretation 3, the axioms generated by the specification morphism ¥ ¢ (def. 5.2.3,A1-J3) are
satisfied by the translated MM-interpretation V().
Proof: We check the axioms one by one.
Characterization of o and !:
Al VX,y:W—TW’ Vw:WP l(x,w) =l(y, W) =>x=y
A2 Vxy: ‘DWW’ VED Vw:WP L, 1), w) ={{(y,]),w) =>x =y
A3 Vxy:WolW’ VYw:WP L(x o y, W) = (¥, (x, W)
A4 Vxy:D,W-T"W’ VED l(x oy, ) = L(x, 1) o I(y, 1)
These axioms are satisfied because Sy is a functional interpretation (theorem 3.4.3). The axiom A4 holds
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because, since only the last 1abel matters in a sequence of transitions, the composition of two Flabeled
transitions is again Flabeled.

Identity functions.
Bl Vw:WP l(ID,w)=w  Trivial
B2 Vw:WP VI:D [({(IDL.D),w)=w
B2 is satisfied because the reflexive transitions are labeled with all labels.

Characterization of the “W—P’-functions
Cl Vp:'W-oP’ MP(p) =p
C2 Vp:*W—P’ MW(p) =ID
C3 Vwy,wy:WP  PW(w,) = PW(w,) = w, = PA(W,)(W;)
Satisfiability is checked straightforwardly from the semantics of MP, MW and PA.

Characterization of the ‘P—XW’-functions.
Dl Vx:‘P->""W* MW(x)=x
D2 Vx:P-""W’'  MP(x)=ID
Obvious.
D3 Vx,y: P—"W’ Vp:*W—P’ Vw:WP x(w) = y(w) = PW(MP(x o z o p) o y)(W)) = PW(x(w))
Let xye Po"W’ ,pe WP, w= <WP> € WP with q(w) = f(w) = +n(w) =: <W,P>.
Let w’ :f MP (x.° zo p)(w) = MP {10 z o pIU<W.P>).
= <W, (x0 2o p)(<KWP>)p> (def. of MP 5.2.4)
= <W, (20 p) (KW, 2>)1p> = <W, p(KW, mP>)p> fOr some m
= <W, <W, P >1p> for some 7.

v

=  dwhw =Ly =W,€ v p
= Aw) = fw) = +n(w) (def. of ‘P>RW’ ., 5.2.4)
= (MPJLxo zop)o )whw = Mw)|w-

D4 Vx,y,z:'P-"W’ Vp:*W—P’ Vw:WP x(Ww) = y(W) <& PW(MP(X o z o p) o y)(W)) = PW(x(w))
Let xy€ ‘P-""W’ , pe ‘WP, w= <WP>e WP,
with (MPC(KO zop)o PW)w = AWy = +r{w)y = W,
= MP{xo z0op) o P)(whyyw =W, € wp
= fw) = +n(w) = dw).
D5 The injectivity of +1 holds because of the isomorphism of paths to natural numbers.

Characterization of the “W—®W’-functions.
El Vx:*WoTW’ x = MP(x) ¢ MW(x)
Let xe “Wo'W’ , w=<WP>€ WP,
MP () o MW ()(<W,2>)
= MW (Q(<W, {<WP>)p>)
= <<W,P>) |y, A<W.P>)p>
= x(<W,P>).
E2 Vxy:*WoTW’ Vw:WP x(w) = y(w) = MP(x)(w) = MP(y}(w)
Letx,ye ‘Wo"W’ , w=<WP> e WP, and x(w) = y(w)
MP (1)(w) = <W, fw)p> = <W, Kw)p> = MP {3)(w).
E3 Vxy:*WoIW’ Yw:WP x(w) = y(w) = MW()}(w) = MW(y)(w)
Let x,ye “WoTW’ , w=<WP>e WP, and fw) = y(=)
Case w= <W, (xo 2)(w)p> for some z€ “W"W’ .
= MW (0() = <dw)y, (xo 2)(w)p> = <@y (o 20(w)p> = MP (y)(w).
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Case w# <W, (xo 2))(w)p>
= MW ((%) =<whw B> = <@y, B> = MP (5)()
E4 Vxy:'WoTW’ MW (x o y) = MW(x) o MW(y)

Let x,y€ ‘W—="W’ . and w=<W,P>€ WP,
Case w= <W, (xoy o 2{(w)p> for some z& “W—"W’ .
= MW (xo y)(w) = <(xo Y) @), (o yo 2)(w)p> = MW (< w)w (xo yo 2)(w)p>)
= (MW () o MW ()H<W, (1o y o 2((w)p>)
= (MW () o MW ())(=)
Case w# <W, (xo ¥ o 2} (w)p>
= MW {xo y)(#) = <(xo Y whw,P> = MW (0(< )y 2>)
= (MW {0 o MW ())(<W,2>)
=MW (0 e MW ())(w).

The satisfiability proofs for the remaining axioms are straightforward. [ ]

Lemma 5.2.12 Soundness Lemma for the Translation into CL
If sis an MM-specification satisfied by 3 = ((#, R), ¥, ) then the formulae in the translated specification are
satisfied by the translated model ¥g(3) = S, =: (G S, ¥, (< W, P>), P) where P may be any path and Pis
arbitrary.
Proof: We show this by induction on the structure of MM-formulae:
Base Case: The atomic level is the base case.
The translated atoms equal the original ones. The actual structure in which an atom A is interpreted is
PW (<%, 2>) = W. Therefore 3¢y satisfies A as well.
Induction Step: Let G be a non atomic formula.
The precondition is always S = (W, R), ¥, Wy G. .
The induction hypothesis is: For every subformula ¥ of G: If 37k, ¥ then 3¢y k¢ ¥ () for every path 7",
Let w:= <W, 2>. For convenience PW (X) is again abbreviated as Xjy.
In the sequel we frequently apply the results of the lemmas 5.2.5 to 5.2.9 about the correspondences between
the context access functions and the accessibility relations,
We perform a case analysis according to the structure of #. The interesting cases are the modal operators:
Case G=okgF
The translation rule is ¥ (0% %) = Vx:'W—RW* ¥ ()
Let xe ‘WoRW,
Since S[{w)w] Epg F (def. 5.1.5) we can apply the induction hypothesis and obtain
ScLIWP/dw)] ok ¥ (%) and since x¢¥ ((F), S oy [/2 A WP/ w)] o [x/w] gl ¥ { F)-
Def. 4.2.5 finally gives us Sy, ko ¥ HG).
Case g =[t]X ¥
The translation rule is 'P,([[t]]dy) Vi(x:'D,W—RW’, :§(D=1) ¥ ().
Let xe ‘D,W—aRW . Since S[x(3(t),w)w] Epp F we can apply the induction hypothesis and obtain
ScLWP/AS1),w)] ¢ ¥ H(F) and since x ¢ ¥ (P and z ¢ ¥ (),
S X/ JWP/HS(0),2)] p[x/wl g ¥ ((F). Def. 4.2.5 finally gives us Sy ¢ ¥ H(G)-
Case G=D¥F
The translation rule is ‘¥ ,(0F) = Vp:'W—P’ Ix: Po"W” ¥ ().
Let pe “W—P’ .. Thereisa xe ‘P—"W’ with S[(Kw))w] Fy F- (def. 5.1.5)
We apply the induction hypothesis obtaining 3 [WP/dp(w))] » ¢ ‘¥ () and since p ¢ ¥ (7) and
2¢ ¥ (P, Sy [p/p, X/ o [WP/p(w)] ¢ [D/wix/ ()] g ¥ £ ).
Thus, S [p/p] oy [WP/Kw)] - /2l pFc 3Ix:‘P->"W’ YU (def. 4.2.5)
and finally S =c Y HG). (def. 4.2.5)
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Case G=It)F
The translation rule is ¥ (107 = Vp:*W—P’ ©(BF(t) o +1) ¥ «(%).
Let pe ‘WP’ ., S = SLIp/pl oy [WP/p(w)] o [p/w] pand Kw) =: <W,P">
Since 3k G, S[W4] =y F where W) is the first world on 2" after an 3(t)-labeled transition. According
to the semantic definition of BF and +1, (def. 5.2.4), for w := Sy "(BF(t) o +1)(@), exactly wy |y = ).
Therefore, applying the induction hypothesis, we find S TWP/wy] k¢ ¥ A -
Thus, S "Fe £ (BE() o +1) ¥ (#) and finally Sop & ¥ HG)- (def. 4.2.5)
Case 6= G,VUG,
The translation rule is
¥ (G,YUG,) =Vp:*W—P’ Ix: PTW’ (‘I‘f(gz)AVy:‘P——)“W’-x (<(oy.pex) = ¥ (G)))-
Let pe “W—P’ c-There is an x€ PoTW’ ¢ Wwith Sldp(w)\w] Ep G (%) and for every ye ‘PoIW’ c
with < {(poxm).(pox(®))): SIAA=Nwle Fu G CF)-
Applying the induction hypothesis to (%) and exploiting p ¢ ¥ (G and x ¢ ¥ (G,), we get
ScL” = ScLo/p %/ JWP/K(p(w))] ¢ [P/, XIKw)] pic P {Go)- (ke k)
Applying the induction hypothesis to (*) and exploiting p ¢ ¥ AGpandy ¢ ¥ (G, we get for every
y€ ‘PTW . with < ((poy)(w), (po)(w)), S [0/p: Y/l A WP/ w))] - [/, YK w)l o e ¥ (G1)s
ie. for every ye ‘P>"W’.
ScLlp/p. x/% Y/ y[WPY ((w))] o [D/w, X/p(w), Y/ w)l g <oy, pox) = ¥ (Gy)-
Thus, Sy * = Sy [p/pX/ Ay WP/ ()] o [D/wx/p(w)]p ¢ Vy: PoTW’-x (<(poy, pox) = ¥ (G1)).
and with (k%): Sy "k (P (G) A Vy: P—"W’-x (<(poy, pox) = Y A6
and fron} this
ScLIP/pl fWP/Kw)] o [p/wlp ¢ Ix: P"W? (PG A Vy: PTW’-x (<(poy, pox) = ¥ (G1))
and finally 3¢y k¢ ¥ (G).
The case with the VU” operator is analogous to the previous one.
The cases with the dual modal operators are proved “dually” to the above cases.
The cases with the predicate logic connectives and quantifiers are trivial. u

Theorem 5.2.13 Soundness of the Translation into OSPL

Every satisfiable MM-specification is translated into a satisfiable OSPL-specification.

Proof: The lemmas 5.2.10, 5.2.11 and 5.2.12 confirm that the translation from MM-Logic into CL is sound. The
soundness or the translation from CL into OSPL is confirmed by the soundness lemma 4.3.10 for CL and the
J-quantifier independency lemma 5.2.8 which guarantees the soundness of the strong Skolemization. |

As mentioned earlier, we cannot achieve a complete calculus for full MM-Logic where R is the transitive closure
of R? because this is no first-order property. However, we can prove a weaker completeness result. It shows that
the translation into CL is complete, i.e. the calculus with translation and refutation is complete, for all theorems
which hold in nonstandard MM-Logic models where Rt is more than the transitive closure of R?. This means in
particular that the calculus is complete as long as operators related to the R and R on one side and R* and R™ on
the other side do not occur simultaneously.
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Theorem 5.2.14 Weak Completeness

Whenever a translated MM-specification ¥ () is satisfied by a CL-interpretation ScL = (G D), ¥, (<WP>),
@) then the original specification Sis satisfied by the nonstandard MM-interpretation S := ‘PS'I(S cL) =
((W > R), ¥, W) where the transitive accessibility relation at least contains the transitive closure of the basic one.
Proof: We have to show:

1) 8 is really an MM-interpretation, i.e. ‘Ps‘l is well defined and

2) The MM-formulae in § are satisfied by 3.

1) Wg!is well defined

The definition of Wg! (def. 5.2.4) is
“The inverse interpretation morphism ‘I’g'l generates from the CL-interpretation
S = (G W), ¥, (wp), P the MM-interpretation S = (W, R), ¥, PW (wy)) where

a)  RR:= (PW L), PW () | x€ ‘P>TW' . we WP
For we WP, let Rw) := {PW {(x(w)) | x& ‘P—"W’.}. H(w) is the path described by =.
b) KW = {Hw) | PW(2) =W}
¢) A transition RX(%}, M) is labeled with a label £
iff 3 xe ‘D,W-RW’ . Iwe WP, with W) = PW («) and W, = PW («(f, w))”

We have to check whether the axioms in def. 5.2.3 and the sort declarations in def. 5.2.1 are strong enough such
that all conditions for M-frames (def. 5.1.3) are fulfilled (we can also use the derived formulae after lemma

5.2.4).

a)

b)

)

R? is discrete:
D5, F1, F3, and F4 are essentially the Péano axioms for natural numbers. Therefore paths are isomorphic
to nonstandard models of natural numbers, i.¢. in particular R? is discrete.
R is the reflexive closure of R2,
R is reflexive because ‘ID’ £ ‘P—*W” implies that the identity function is in ‘P—2W’ ..
The derived clause F6 guarantees that RT contains nothing more than the reflexive closure.
Rt is a transitive accessibility relation that includes the transitive closure of R?.
To prove the transitivity, assume R(W,, ;) and RY(#}, B3).
=  There are wy, uy € WP, xye ‘PoW’ .with wy\w = Wy, w)iw = Bh,

wolw = Whand fun)y = Wi,

= wy=(xo PA (ap))(wy) €3)
Let w”:= MP {x.0 PA (u))(w))
N ——, K1)
and (MP (o PA () o Dw)yy = W) D6)
wh =MP (x.0 PA {w)) o MW {x.0 PA(w)) (w;) ED
= MW (o PA () () (A3)
= MW () o MW (PA(wy)) () ED)
= fw) (D1, D2, B4)

Thus, we have w'|y = W), {w )y = whiw = B, and y(wy)w = K{=)w = W4 and because of the
sort declaration o: ‘P—'W’X ‘P—'W’ — ‘P—'W’, xo ye ‘Po'W’ ¢»and we can conclude RY(W,, n3).

To show that the transitive closure of R? is contained in R,

let RA(W,, Wy), RY(Wy, Wh),..., RY(W,_;, W,) be a sequence of RP-transitions.

If n = 2 we exploit ‘P—?W’ £ ‘P—'W’ and obtain immediately R/, }). If n > 2 we use the same
arguments as above and exploit o: ‘P—?W’x ‘P—*W’ — ‘P>'W’, finding R'(%/, #4). Induction on n
and exploitation of o: ‘P—'W’x ‘P—*W’ — ‘P—W’ yields RY(w,, 7).

Axiom F5 ensures that each transitive transition is either a R?-transition or it consists of
another transitive transition followed by a R®-transition.
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d) Rmis the reflexive closure of R

This is guaranteed because the identity is in ‘P—""W’ -and because of axiom F2.
Since the ‘P—RW’-functions are total, the R¥-relations are serial.

Now we show that paths are correctly axiomatized.
Let Pe B(W) be apath,ie. P= Hw):= (PW ()| xe ‘P"W’ .} for some we WP..
‘We have to show:
i) R™is a total ordering on 2.
Let Wy, % € B ic. PW (x;(w)) = W, and PW {x(w)) = W, for some xp,%p € ‘P—"W’ .

= x(w) < %(w) or x(w) <c x(w) (axiom G4)
= (%7 o > {13, XN W) = 13(w) or (g o > {3, 1)) (w) = x3(w) (axiom I2)
= > {13, ) (w)) = (@) or > (x5, 1))(2p(w)) = 3(w) (axiom A2)

= R™Y(W,, Bh) or Ry, W)
Suppose R™(W,, W)
@ > {7, 1) (% (@) = 2(w)
© 1(w) < 0(@) (axiom I1)
Using the axioms G1 - G4 for < we can conclude that R™ is actually a total ordering on 2.
ii) Wis the smallest element.
We P because W=PW (ID (w)) and ID € ‘P—"W’
Wis the smallest element because R™(W, PW ((»))) for all xe P->IW’
iii) #is maximal, i.c. there are no gaps in .
Let W, € 2 i.e. PW (=) for some x& P"W’ .
Since xo +1€ ‘P-"W’ , PW ((xo +1)(w)) € P as well.
Therefore each world in 2 has exactly one R?-successor world in 2.

€) The seriality of labeled transitions is guaranteed by the totality of the ‘D, W—>RW’-functions.
Axiom J3 states that only the last label matters for labeled transitive transitions.

f) Because of axiom B2, the reflexive transition is labeled with all labels.

g) The fairness of labeled transitions on paths is ensured by the totality of the BF . function which produces
for each label [a ‘P—"W’-function that jumps to a world on the current path where +1£ induces an
Flabeled transition that remains on the path. {axiom J2)

This finishes the necessary checks to confirm that 3 is really an MM-interpretation.

2) The second part is to prove that the MM-formulae in S are satisfied by S = ¥5™1(S¢p) = (W, R), ¥, #p)
where Sy = (G 5V, ¥, (wy), B), Wy = PW {wp) =: wy|w-
Therefore assume S Ec ¥ (G). We prove S k1 G by induction on the structure of G.
Base Case: g is an atom.
Since atoms are not modified by ¥ yand since %y is the actual Z-structure for g, SEm G
Induction Step: Gis a non atomic formula.
The induction hypothesis is: For all subformulae ¥in ‘¥ 4(), if a CL-interpretation 3¢y satisfies ¥ then the
corresponding back translated MM-interpretation 3 satisfies 7.
We must perform a case analysis according to the top operator of G.
Case G =Dk ¥
The translation rule is ‘I’y(ux_‘}) = Vx:*WRw’ ¥ AP
Let R}, W), wie W,
= dye ‘P—)QQW’C, we WP with PW (a)y = W, and PW (((w))yy = W;. (def. of RB
=  w=PA (w)(wyp). (axiom C3)
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Let x:= (PAC(‘W) oy € ‘W—-)R‘N’C
= dupw = PA (@) o YYwp)w = L) w = M

and Sy [*/xd oy [WP/Kwp)] o [X/wplprFc ¥ {F) (def.4.2.5, Scp VX W—RW” ¥ ()
= 3[M] = F (induction hypothesis)
= SEy6G (def. 5.1.5)

Case 6= [t]X¥F
The translation rule is W HLt1XH) = Vi(x:'D,W-EW’, z.8(t)=t) ¥ ().
Since terms are not modified by ‘I‘fand since M} is the actual Z-structure for t, 3(t) = S (D).
Let (%), W) € RES(), Wje W,
= Thereisan xe ‘D,W—RW" .with SO} (mp)w = W

= ScL[X/AplWP/HS 1), wp)] o [*/wplpFc ¥ (P (def.4.2.5)
= S[M] = F (induction hypothesis)
= Sy G (def. 5.1.5)

Case G=DF

The translation rule is ‘I‘f(l?) = Vp:*W—P’ Ix:‘P>T'W* ‘Py(?)
Let Pe W) be a path.

= There is a we WP, with »jy, = Wy and P= {{w)y | x€ P-"W’ .}
= w=PA(w)(wy) ' (axiom C3)
= ScpD/PA L)1 fWP/al o[plupl pic 3x: P—RW* ¥ () (def.4.2.5)
= SCL[p/PAC(w),x/x] AWP/w)]) o [plwg X/l e P ) for some xe ‘Po"W’ . (def4.2.5)
= J[dw)wl By F and {w)w € P (induction hypothesis)
= Sey§ (def. 5.1.5)
Case G=It)F

The translation rule is ¥ 4(ID# = Vp:'W—P* @(BF() o +1) ¥ (5

Let Pe #(W)) be a path.

= Thereis a we WP, with wyy = My and P= {{w)y | x€ P-"W’ .}

= w=PA (w)np) (axiom C3)
= 3L = 3cL/PA ()] WP/ o [p/wgl e 0 BEF() 0 +1) ¥ (P (def.4.2.5)
Let wy := 3" BF(t) o +1))(w)

= ScL[P/PA ()] of[WP/w] o [p/wglpc ¥ {(F) (def.4.2.5)
= Slwyw] By F (induction hypothesis)
and wyy, is the first world on @ after a transition labeled with 3y (1) = 3(1) (axiom J1)
= SkEy6 (def. 5.1.5)

Case g=F, VU %,
The translation rule is

FAFH VU T = Vp:WoP I Po"W’ (P F) A Vy: PoIW’-x (<(poy, pox) = W A(F).
Let Pe (W) be a path.
= Thereisa we WP with a}y = Wy and P= {u)y | x€ P>"W' -}

= w=PA C(w)(wo) (axiom C3)
= 3'cr = ScLPPA ()] [WP/w] o [plwglp

ke Ix:PoTW’ (¥ 5(G) A Vy: PoTW’-x (<(poy, pox) = ¥ 1)) (def.4.2.5)
= 3"cp = ScLD/PA (). X/ [WP/3(m)] o [D/wx/w) p (def.4.2.5)

Fo (¥ H{F) A Vy:"P="W’-x (<(poy, pox) = ‘¥ ((#})) for some xe ‘P—"W’ .
S"cL Fe ¥ {(F) and 8¢y, Fe Vy: PTW’-x (<(poy, pox) = W 5(F,)) (+) (def.4.2.5)
Swwl Fm 52 and W, .= fw)yw € P (k) (induction hypothesis)

il
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= 3w, € WP with w)y = W, and 2{w) = () for some ze ‘P-"W’ . (def. of RY

and w; = y(w) for some ye ‘P—"W’ . (wy € P
= AYw)) = dw)
= Yw) S (w) (axiom I1)
= Yw) < x(w) () (M, = )y # w)w = W, and axiom H3)
S"cr = 8" cL[y/5l [WP/L Bx))] - [y/BX)] p e <(DoY, Pox) = P 5(F7) (* and def.4.2.5)
= ScLIP/PA ()x/% Y/§l o [WPIYw)] o [P/wo.x/wy/wl g E <(Poy, pox)=>F A F;) (def. of 3™)
8" 1 Fe <Py, pox) (% and def. 4.2.5)

= 3Lk YD)
= Sldwiwl =S Fy %>
= S kG (* and def. 5.1.5)
The proofs for the other cases are similar. n

This completeness result together with the completeness of the translation from Context Logic into OSPL (lemma
4.3.15) means that theorem proving in MM-L6gic by translation via CL into OSPL is (weakly) complete.
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5.3 Examples

The following examples for theorem proving with translation via CL into OSPL and refutation with resolution and
paramodulation in OSPL are chosen to illustrate typical applications of clauses axiomatizing the possible worlds
structure of MM-Logic (def. 5.2.3). We use first-order syntax now, but except in example 5.3.5, we drop the PW
function which, according to the formula morphism I, embraces all the WP-terms in the translated domain terms
and atoms. Keeping this function does not change the deductions in our examples. Furthermore we assume the
associativity of o and the axiom A3: (xoy)(w) = y(x(w)) to be built into the unification algorithm.

Notice that the variables in different clauses are always different, although we usually choose common names.

Example 5.3.1
The first example proves that in the modal system D (no special properties of the accessibility relation except
seriality) Lob’s Axioms 0(O0G¢ = §) = 0§ imply the formula DQ = 0OQ that characterizes transitive
accessibility relations. Actually this holds also in K (nonserial accessibility relation) and there L6b’s Axioms
axiomatize the modal system G that has a transitive and non-serial accessibility relation R with no infinite
R-chains. Let G := Q A 0Q. The theorem to be proved is
F:=(O%(%Q A 0%Q) = (Q A 0%Q)) = 0?(Q A 09Q)) = (@?Q = 0*0?Q)

( O? is the MM-Logic operator that corresponds to the system D modal logic operator 00)
Translation of the negated formula into CL (def. 5.2.2) yields

—(Vu(Va (Q A Vv Q)= (Q A VbQ)) = Vw(Q A VxQ)) = (VyQ =Vc,dQ)
All variables are of type “W—2W’,
The negation normal form is

(Vu (3a (Q A Vv Q) A (—Q v Ib—-Q)) v VW(Q A VxQ)) A (VYQ A 3¢, d—Q)
Translation into OSPL (def. 4.3.2) yields

((Vu (Qfau] A VvQ[auv]) A (=Q[a] v—Q[ab])) v VW(Q[w] A Vx Q[wx])) A (Vy Qly] A—Q[cd])
To make it more readable we abbreviate PW({(x; o ... o x,), 0) with [x;...x,]. -

The clauses are:
R1: Qfau], P[w] R2: Q[au], Q[wx] R3: Q[auv], Q[w]
R4: Qfauv], P[wx} RS5: —Q[a], —Qlab], Q[w] R6: —Q[a], —Q[ab], Q[wx]
R7: Qly] R8: —Qfcd].

a,b,c,d are constants of type ‘W—?W’, x,y,z,u,v,w are variables of type ‘W—?W’,

Resolution: R6,1 & R7, o= {yw~ a}
— R9: —Q[ab], Q[wx]
Resolution: R9,2 & RS, o={wpc,xm d}
— R10: —Q[ab]
Resolution: R10 & R2,1, 6= {uw~ b}
— R11: Q[wx].
Resolution: R11 & RS, c={wpc,xr d}
— R12: empty clause. [ |

None of the axioms for the possible worlds structure were necessary. This is always the case when O and ¢ are
the only modal operators occurring in the formulae. In case O and ¢* are the only operators occurting (modal logic
T or M), ID o x = x and X o ID = x are the only axioms needed. In case ' and 0" are the only operators occurring
{modal logic D4), the associativity of o is needed and finally in case O™ and 0™ are the only operators occurring,

ID o x = x and x o ID = x together with the associativity of o are needed.
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Example 5.3.2 Axiom F2
We want to prove Q AD%Q = Dp™Q.
Translation of the negated formula into CL (def. 5.2.2) yields
—(Q A (VX:*W=W’ Q) = Vy: 'W-TW’ Q)
The negation normal form is:
Q A (Vx:*W—=2W’ Q) A Jy: ' W'W’ —Q
Translation into OSPL (def. 4.3.2) yiclds
Q(0) A (Vx:'W—2W’ Ql(x, 0) A —Ql(a, 0) a‘WoIW’
(We simplified PW{(ID, 0)) to 0)

The clauses are:
F2 VXWS"W’ Vw:WP Ux, w)=wVv X, w) = {(-R(x), w).

R1 QO R2 Vx:'W-2W’ Ql(x, 0) R3 —Ql(a, 0)

Resolution between R2 and R3 is not possible because the sort of x is weaker than the sort of a.
Paramodulation: F2,1r & R1, ¢ ={we 0}

- R4 VXW-HTW’ Ql(x,0) v I(x, 0) = L(-R(x), 0).
Resolution: . R3 & R4,1, o= {xm a}

— RS 1@, 0) = I(-R(@), 0).

Paramodulation: RS & R3, o=g
—R6:  —QL(-R(), 0)
Resolution: R6 & R2, ¢ = {x - a}, The sort of *-R(a)’ is ‘W—?W’

— R7: empty clause.
In the same way we can prove P A 0P = o™P. =

The example has shown that the axiom F2 is necessary when statements correlate G-operators with and without
reflexivity.

Example 5.3.3 Axiom A4
We want to prove vx:D [x]Q = [xI*[xT]Q (transitivity axiom in logic D4)
Translation of the negated formula into CL (def. 5.2.2) yields

—(Vx:D (V(y:'D,W—'W’,u;=x) Q) = V(a:'D,W—'W’,u,=x) V(b:'D,W—-W",u3=x) Q)
The negation normal form is:

Vx:D (V(y:'D,W—W’ u;=x) Q) v 3(a:'D,W—'W’ up=x) 3(b:'D,W—-'W",u3=x) -Q
Translation into OSPL (def. 4.3.2) yields

Vx:D Vy:*D,W—W’ Ql(I(y, x), 0) A —=Ql(l(a, x) o L(b, x)), D)

a:*D,W—'W’ and b:‘D,W—o'W’

The clauses are:
A4 VX y: DWW VD Uxoey, D=4, 0y,

R1 Vx:D Vy:‘DW—W’ Ql(l(y, x), 0) R2 Vx:D —Ql((, x) o L(b, X)), 0)
Paramodulation Ad,r & R2 O={xp4 3,y b, 1 xpy}

— R3: Vx:D-Ql({@aob,x),0)
The sort of a o b is ‘D,W—'W’. Therefore R3 and R1 unify and we get the empty clause. n
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The next examples illustrate some correlations between the usual modal operators and those involving paths
through possible worlds structures.

Example 5.3.4 Axioms G4, 12, E1
We want to prove 00™Q A R) = =(Q v 0'R)

The interesting part of the possible worlds structure:
‘a’ corresponds to the ¢-operator and
MP(a) corresponds to the =»-operator

The path crossing ‘a’
satisfies O'R (before a) or Q (after a)

Translation of the negated formula into CL (def. 5.2.2) yields

—~(Ga:* WoW’ (Vx:*WoTW’ Q) A R)) = Jp: ‘WP’ Vb:'P-T™W’ (Q v Jy:*W—W’ R)
The negation normal form is:

Ga:'W-W’ (Vx:*W-TW’ Q) AR A Vp:*W—P’ Jb: PHT™W’ (—Q A Vy:‘W—-IW’ —R)
Translation into OSPL (def. 4.3.2) yields

VX W—TW” Ql(aox, 0) A RI(a, 0) A Vp:“W—P’—Ql(pob, 0)

A Vy:‘W—-)tVV’ﬂR»L(poboy, 0)
a:*WoW’, b ‘P->TW’

The clauses are:
G4 Vx,y:'PI"W’ VW:WP  U(x, w) < U@y, w) v Uy, w) < U(x, w).
12 Vx,y:'P-""W’ VwWP - L(x, w) £ Uy, W) v I(x o>=(X, ¥)), W) = I(y, W)
El Vxi*WoT™W’ x=MP(x) o MW(x)

Rl Vx:*W-TW’ Ql(acx, 0) R2 Rl(a,0)
R3 Vp:*W—-P’ —Ql(peb, 0) R4 Vp:*WoP’ Vy:*W—'W’ —Rl(poboy, 0)

Paramodulation 12,2r & R3, o={y~b we lp,0)
—RS:  Vp:W-oP’ Vx:‘P-"™W’— (pox, 0) £ L(peb, 0) v —Ql(poxo>(x, b), 0)
Paramodulation E1.1 & R1, o = (xg;+ a}
- R6:  VxiW-oI'W’ QL(MP(a)oMW(a)ox, 0)
Resolution R5,2 & R6, o = {p+~ MP(a), xg5 - MW(a), xg¢ - > (MW(a), b)}
- R7: = I(MP(a)eMW(a), 0) < L(MP(a)ob, 0)

‘We have derived that b precedes a.
The next step will be to derive
the opposite.

b corresponds to the negated
~»-operator in the theorem

Paramodulation E1,l & R2, 6= {x~a}
—R8: RIMP(@)eMW(a), 0)
Paramodulation I2,2r & RS, o= {y~» MW(), wr l(p, 0)}
—R9:  Vx:*PoIW’— {(MP(a)ox, 0) < L(MP(a)oMW(a), 0) v RU(MP(a)oxo>(x, MW(a)), 0)
Resolution R4 & R9,2, ¢ ={p~ MP(a), x> b,y >(b, MW(a))}
- R10: = WMP(a)ob, 0) < J(MP(a)oMW(a), 0)
Two further resolutions with G4, R7 and R10 yield the empty clause. [
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Example 5.3.5 Axioms B3, C2, D2, D13, El1, E4, G4, 12, K1
We want to prove =>Q = =IQ

The negation of this formula in MM-syntax is p=>Q A P—>-Q.

Although the formula looks simple, the situation it describes in terms of the possible worlds structure is quite
complex and therefore the arguments for the refutation are also are quite complex. As an orientation for following
the refutation the interesting part of the possible worlds structure is drawn in the figure below.

a) corresponds to the first b
a, corresponds to the secondp
p; corresponds to the first —»

The contradiction, i.e. Q and —Q
in the part where a; is before a;
occurs at the ramification of

q, and g,

Translation of the negated formula into CL (def. 5.2.2) yields
—((Vp:*W—P’ Ja;: P-"W’ 3q:*W-P’ Yy i P-TW’ Q)
=> 3p,: ‘WP’ Va,:'P"W’ Vq,: “W—P’ Jy,: P-"W’ Q
The negation normal form is:
(Vp:*W—P’ 3a;: P-"W’ 3q,: WP’ Vy: P-H"W’ Q)
A VD WP’ Jay: ‘P—"W’ g, WP’ Vy,: ‘P-"W’ —Q
This time we need the correct translation with the PW function.
Translation into OSPL (def. 4.3.2) yields
Vp;: ' WP Yy PTW’ QPW(L(p;02;0q,0¥1, 0)))
A VPy WP Vyp: PoTW* —QPW(L(D,08,04,0Y,, 0))
a;:'Po"W’, 2,0 PSTW?, q 1 WP, g1 WP’

The clauses are:
B3 Vx:‘W-Iw’ xoID=x
C2 Vp:*W—P’ MW(p) = ID
D2 Vx:‘P—-"W MW(x) =x

D13Vx,y,z: Po"W’ Vp:*W—P’ Vw:WP — L(x, W) < U(y, W) vV L(MP(x0zop)ox),w) < L(MP(xozop)oy),w)
El Vx:‘W-"w’ x = MP(x) oMP(x)

E4 Vxy: Wotw’ MW (xoy) = MW(x) sMW(y)

G4 Vx,y:'Po"™W’ Yw:WP  I(x, w) < Uy, w) v {(y, w) I, w).

2 Vxy: P>T™W’ Vw:WP  — L(x, W) < Uy, W) v I(x o(x, y)), W) = Uy, W)

K1 Vx:'W—-P’ Vw:WP PW({l(x, w)) = PW(w)

R1 Vp:*W—P’ Yy, ‘P—TW’ QPW(I(p;oa;0q;0y;, 0)))
R2 Vp,: ‘WP’ Yy, P—TW’ —QPW((pyoay0q,0Y,. 0))

Paramodulation E1,1 & R1, o= (x> aj0q}

— R3: Vp WP’ Yy 'P-"W’ QPW({(p;oMP(a;0q;)eMW(a;0q;)ey;, 0)))
Paramodulation E4,] & R3, o={xma;,y~q)

— R4 Vp:*W—P’ Vy;Po"W’ QPW(L(p;oMP(a;0q;)eMW(a;)eMW(q,)oy, 0)))
Paramodulation C2,1 & R4, o= {p~ q;}

— R4: Vplt‘w——)P’ Vny—-)nW’ Q(PW(Jr(ploMP(aloql)oMW(al)oIDoyl, (O))]
Paramodulation D2,1 & R4, 6= {xwa;} -

— RS5: Vp;:*W—P’ Vy; ‘P—-"W’ QPW(L(p;oMP(a;0q)oa;oIDoy,, 0)))
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Paramodulation B3,1 & RS, o={xray}

— R6: Vp;:“W—P’ Vy; P"W’ QPW((p,°MP(a,0q;)oay0y;, 0)))
Paramodulation 12,21 & R6, o = (x a;, we L(p1oMP(a;0qy), 0), y; = >(a;, )}

— R7: Vpy‘W—oP VyPo"w’

= J'(P1°1VH:'(31°<11)°a1, 0) < ~1'(P1°MP(31°‘11)°Y’ 0) v Q(Pw(i'(P1°1\'fP(31°ql)°y, 0)))

Paramodulation B3, & R2, 0 = {x+ qy, yo - ID}

— R8: Vpy:*W—P’ ~QPW((pyeasoqy, 0)))
Paramodulation K1 & RS, 0 = (x> gy, W L(pyoay, 0)}

- R9: Vpy:*W—-P’ —QPW((pyea,), 0)))
Resolution R7,2 & R9, & = {p,+ p;oMP(a;oq;), y+ a5}

— R10: Vp;:*W—P’— {(p1oMP(a;0q;)eay, 0) < I(p;oMP(a;0q,)oa,, 0)
A similar sequence where R1 and R2 exchange their role yields

R11: Vpy:“W—P’ — U(pyoMP(ayoqy)ea,, 0) < (pyoMP(aeqy)eay, 0)

2 Paramodulations B3,1 & D12,2, 6 = {xg3 = Xp5, 2+ ID}

— R12: Vx,y:'Po"W’ Vp:*WoP’ Vw:WP — l(x, w) < I(y, w) v {(MP(xop)ox),w) < L(MP(xep)oy),w)

Resolution R10 & R12,2, o= {xrap,pr qp, Y a5 we U(pg, 0)}
— RI13: Vpy;:*W—P’ — L(poay, 0) < L(pyeay, 0)
Resolution G4,1 & R13, o= (xma,yr a5, we I(pg, 0)}

= Rl14: Vp;:“W—oP’ l(poay, 0) < (pyeay, 0)
Resolution R14 & R11, ¢ = {p; = p;oMP(azoq,)}
— R15: empty clause. [ ]

Although this proof looks awfully complicated, most of the steps are simple term rewriting steps which can be
handled very well by a demodulation mechanism.

Example 5.3.6 Axiom G1
We want to prove QU'R=(YQAR)
Translation of the negated formula into CL (def. 5.2.2) yields

—(Vp: WP’ (Ja:'Po>"W’ (R A Jy:‘PH"W’-a S(poy, pea) = Q)) = Ix:*W—-"W(Q A R))
The negation normal form is:

(Vp:“W—P’ 3a: P-"W’ (R A Vy:‘PoT"W’-a poy < poa = Q)) A Vx:*W—T"W(-Q v —R))
Translation into OSPL (def. 4.3.2) yields: a'P-"W’

Vp: WP’ R({(pea, 0)) A Vy:‘PoTW’ L(poy, 0) < I(poa, 0) = Ql(poy, 0)

A VXEWTTW(-QU(x, 0) v —R U(x, 0))

The clauses are:
Gl Vw:WPw<w
R1 Vp:*W—P’ Ri(poa, 0)

R2 Vp:*W—P’ Vy:‘Po"W’ L(poy, 0) < l(poa, 0) v Ql(poy, 0)
R3 Vx:  W—TW —Ql(x, 0) v —RI(x, 0)

Resolution R1 & R3.2, o= {x+ poa} (The sort of poa is “‘W—TW’)
—R4:  —Ql(poa, 0)
Resolution R2,2 & R4, 6 =({ywm a}
- RS: = l(pea, 0) < l(peoa, 0)
Resolution G1 & RS, o = {w - {(poa, 0)}
—R7: empty clause. n
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Example 5.3.7 Axiom J2
We want to prove VzD o[ zFQ = Va:D la)Q
Translation of the negated formula into CL yields

—((Vz:D Vx:WoTW’ Vi(y:'D,W—'W’,z,=z) Q) = Va:D Vq:"W—P* @ (BF(a)o+1) Q
The negation normal form is:

(Vz:D Vx:“WoTW’ Vi(y:‘D,W—'W’,z,=2) Q) A Ja:D Iq:*W—P’ g (BF(a)o+1) —Q
Translation into OSPL yields: a:D, q:'W—-P’

Vz:D Vx:*W—"W’ Vy: ‘DWW’ Ql(xol(y,z), 0) A =Ql(qoBF(a)o+1), 0)

The clauses are:
J2 VI:D BF(l) o J(+1L, I) = BE(l) o +1

Rl Vz:D Vx:'W-TW’ Vy: ‘DWW’ Ql(x0d(y.z), 0)
R2 —Ql(qoBF(a)o+1), 0)

Paramodulation J2,r & R2, 6= {l~a}
- R3: —Qi(qeBF(a)ol(+1L, a)), 0)
Resolution R3 & R1, 6 = {x qoBF(a), y- +1L, 2z a}

— R4: empty clause

Example 5.3:8 Axiom J2
We want to prove 1a)Q = P<a>?Q aD
Translation of the negated formula into CL yields
—~(Vp:*W—P’ @(BF(a)e+1) Q = Vq:'W—P’ Ix:'P-"W’ i(y:‘D,W—?W’, z=a) Q)
The negation normal form is:
Vp:*W—P’ @ (BF(a)o+1) Q A 3q:*W—oP’ Vx:‘P-""W’ Vi(y:"D,W—?W’, z=a) —Q
Translation into OSPL yields:
Vp: WP’ Ql(peBF(a)o+1),0) A VX:‘P"W’ Vy:‘D,W—W’ —Q.(qoxol(y,a), 0)
a:D, :'W—P’

The clauses are:
J2 VI:D BF(1) o L(+1L, 1) = BF(l) o +1.

R1 Vp:*W—P’ Ql(peBF(a)o+1), 0)
R2 Vx:‘P-"W’ Vy:*D,W—*W’ —Ql(goxol(y,a), 0)

Paramodulation J2,r & R2, o={l~a}
— R3:  Vp:*WoP’ QL(poBF(a)ol(+1L,a) ), 0)
Resolution  R3 & R2, o= {p~ q,x~ BF(a), yr +1L}

— R4: empty clause
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Example 5.3.8 Axiom J3
We want (o prove Oca>?Q = <a>'Q aD
Translation of the negated formula into CL yields

—~(c:*WoW? 3(d:'D,W—W’, z=a) Q = FL(x:'D,W—-W’, z=a) Q
The negation normal form is:

e W—W’ 3L(d:‘D,W—oW’, z=a) Q A VI(x:'D,W—W’, z=a) —Q
Translation into OSPL yields:

Ql(c o 1(d,2)).0) A VI(x:*D,W—W’, z=a) -Ql(x,a),0)

Cc*W—oIW?, d:'D,W—2*W’

The clauses are:
I3 Vx:*WoT'W’ Vy:'D,W-""W’ VLD x 0 I(y, ) = ULT(x, y), 1)

R1 Ql(c o 4(d,a)),0) R2 Vi(x:‘D,W—?W’, z=a) -Ql(x,3),0)
Paramodulation J3,l & R1, o={xpc,yrd 1 a}

- R3: QI(LT(c, d), a),0)
Resolution R2 & R3, o= {x~ LT(c, d)}

— R4: empty clause.

One further example with an interesting epistemic semantics will be given at the end of section 5.5.

5.4 Induction

In the standard interpretation of MM-Logic with R® being the transitive closure of R?, paths are isomorphic to
natural numbers. Since we have only monadic functions operating on paths, functions like addition or
multiplication for example cannot be defined with our restricted syntax. Therefore things might not be as
complicated as in number theory. Nevertheless, a first-order axiomatization is not sufficient to obtain a complete
calculus. Formulae like
PADP=0%)=0"P or PADYP = (P)=>TP

although theorems in MM-Logic are not provable. They are inductive theorems with the usual structure of
inductive statements, P is the induction base and o™(P = 0%) or O™(P => 0?P) respectively is the induction step.
In order to make a theorem prover prove them, an induction mechanism is needed. Unfortunately it tamed out that
the same problems as they are known from predicate logic inductive theorem proving show up here as well:

» The selection problem:
During the search for the proof it has to be decided which formula should be proved by induction. In practical
applications such as program verification, the formulae to be proved by induction are usually loop invariants
and the like. Thus, selecting the right formula means figuring out the loop invariant, which is usually not a
single atom, but a complex formula. Without guidance by the user or some domain specific heuristics this is in
general impossible.

» Strongly connected with the selection problem is a phenomenon known as the generalization problem. It
happens quite frequently that a particular formula ¥is not provable by induction, but a proper generalization of
¥ is. Suppose we have

Vx Qx
and o™ (Vx Qx = 0?VxQx)
From this 0™VxQx follows. If, however, we try to prove O™'Qa, the induction base can be shown very easily
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but we fail to prove the induction step because the induction hypothesis, “Qa holds in a world %’ is too weak.
On the other hand, if we generalize 0™Qa and try to prove D™VxQx there will be no difficulties.

As the following example shows, the generalization phenomenon already occurs in the propositional case.
Suppose we have
=1g0)
and ot(o?Q = 0% 0%Q)
From this 0"0?Q follows. But if we try to prove 0™?Q, the induction step fails again because the induction

hypothesis “0?Q holds in a world %’ is too weak. The more general formula 0™'0?Q, however, is easy to
prove.

» Proofs of existentially quantified theorems in predicate logic usually require to synthesize their Skolem
functions. In the arithmetic example

if Q)
and Vn Q(n) = Q(n + f(n))
then Vn Ik Q(n +k) (Skolemized: Vn Q(n + k(n))

you define an auxiliry recursive function h(0) = 0, h(n) := h(n-1) + f(h(n-1)), prove by induction VnQ(h(n))
and then define the Skolem function k(n) := h(n) - n.

Exactly the same procedure is necessary to prove the MM-Logic theorem

if Q
and a™Q = bQ)
then o™'Q

which, translated into OSPL, is of the same structure as the arithmetic example:
if Q)
and Vx:“WoIW’ (Q(x(0)) = Vp:‘ WP’ Q((xopof)(0)
then Vx:*WoTW’ Q(x0k)(0)

These examples show that induction theorem proving in MM-Logic faces the same problems as induction theorem
proving in predicate logic. Although it may turn out that the restriction to monadic context access functions
simplifies the technical details, we cannot expect a quick solution to the whole problem. The greate similarities

-may however allow to apply the methods developed for predicate logic also to MM-Logic. This should be subject
to further investigation,
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5.5 Interpretations of Multi Modal Logic

Modal Logic formalizes the notion of states and state transitions. What these states describe and what causes the
transitions is a matter of interpretation, not of the logic itself. Therefore a few but quite famous interpretations
shall briefly be sketched with special emphasis on the interpretation of the operators I chose for MM-logic.

The Temporal Interpretation

The temporal interpretation in general uses only new words for the operators. The states are still abstract “states of
the world”, whatever the “world” is, only the accessibility relation is interpreted as temporal development of the
“world”. That means, the structure of the accessibility relation is used to model time. A linear structure models a
straight flow of time, a branching structure models alternative futures. The structure may be discrete, modeling
distinguished time ticks as for example the internal clock in computers, or it may be dense as in the real world
(neglecting possible quantum effects). The modal operators can relate the current world, i.e. “now”, with worlds
in the future or in the past.

In MM-Logic we have branching accessibility relations based on the discrete relation R?, i.e. we model alternative
futures with discrete time steps, however with an incomplete calculus with respect to the particular aspect of
discreteness. Time structures which are not discrete can easily be modeled by considering only the operators
related to the transitive accessibility relation and discarding the corresponding discreteness axioms. Dense
structures can be obtained with the additional axiom
Vx:PoW’ Jy: PW’ Vw: WP y(w) < x(w).
The seriality assumption means that there is always a future and the constant-domain assumption means that the
world itself is static, no objects appear or disappear.

The temporal interpretation of our operators is:

02 always in the next future 0% sometime in the next future

O° now and always in the next future 0' now or sometime in the next future
ot always in the future 0! sometime in the future

o™ now and always in the next future 0™ now or sometime in the future

D cventally =>» possibly henceforth

VU, VUT always until (we have no past operators)

AU, UT possibly until

The indexed operators can’t be interpreted properly on this general level. Since they are related to the labels of the
transitions we have to interpret the labels first.

The Process Interpretation

In a special temporal interpretation, the worlds are related to the internal states of processes, software, hardware or
whatsoever, which may be in distinguished states and may perform certain atomic actions causing transitions into
successor states. The process variables can be represented by flexible constant symbols. Functions and predicates
which may change their definition (as for example in Lisp) can be represented by flexible function and predicate
symbols. ’

Since we consider branching time, the processes” actions may be nondeterministic. If the processes are software
modules, a possible worlds structure therefore describes their complete computation tree, and an actual
computation is represented as a path through the possible worlds structure.
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Now we can give a concrete interpretation to the labels of the transitions. If we have n processes running in
parallel, we choose as label the index of the process that causes that particular transition. The seriality of labeled
RP-transitions however means that at each state (world) each process performs an action, and this is unrealistic.
Therefore only the operators corresponding to the transitive relation which require the existence of some labeled
RP-transitions in the future make sense in a process interpretation, The interpretation of these operators are:

[n]t always after the n-th process’ action.

<n>' sometimes (in the branching computation tree) after the n-th process” action.

[n]"® now and always after the n-th process” action.

<n>™ now or sometimes (in the branching computation tree) after the n-th process” action.

Im)  immediately after the n-th process” next action.

The incompleteness of the axiomatization of the R'-relation, however, means that we can not yet prove inductive
properties like loop invariants,

The seriality assumption means that there are no deadlocks. All processes will eventually perform a transition. The
constant-domain assumption means that we cannot model dynamic creation and deletion of processes in a natural
way, without special tricks.

The Interpretation as Action Logic

This interpretation is slightly different to the previous one. The difference is that this time we do not label the
transitions with i)rocesses that cause actions, but with actions themselves. We can for example write Vx:Colour
[ paint(wall, x) ]* color(wall, x) with the intended meaning: whenever the wall is painted, it will have that colour.
(‘Colour’ is a sort symbol and ‘color’ is a predicate.) The interpretation in terms of possible worlds is: in each
state of the world that is created by a ‘paint(wall, x)’-action (transition), color(wall, x) will hold. This statement is
an example for the use of the wransitive [ ... ]*-operator to express invariants. The statement [ lose(Tom,1000$) ]2
bankrupt(Tom), saying that when Tom gambles away another 1000$ he will be bankrupt, however, is no
invariant. It may be true now and false tomorrow (when his rich uncle has died). Therefore the [ ... ]?-operator is
appropriate (but without the assumption about seriality of labeled transitions because Tom needs not gamble at
all).

The Epistemic Interpretation
Hintikka originally had the idea of formalizing the propositional attitude of belief with possible worlds [Hintikka
62]. The basic concept is that the propositions of an actor’s (say A) belief are represented as a set of worlds,
compatible with A’s beliefs. Any member of this set is, according to the way A thinks, a candidate for the real
world, that is

A beliefs Fif and only if for all W e possible-worlds(A), Fis true in W.
Levesque, Halpern and Moses, Konolige and others have developed this idea to a formal logic with a tableau
based deduction calculus [Levesque 84], [Konolige 86], [Halpern&Moses 85].

In epistemic logics the indexed modal operators [ ... ] are used to express belief. For example [Al¥ is
interpreted: A believes, Fis true, whereas <A>F means: A thinks, F might be possible. The operators related to
the different accessibiltiy relations are interpreted as follows:

[ADPF A beliefs 7, it might however be false in the “real” world.

[AI'F A beliefs Fand Fit is actually true in the real world (A is an expert for %)

[AI'F  Abeliefs Fand he beliefs that he beliefs it etc. (introspection)

[ATF A beliefs Fand he beliefs that he beliefs it etc. and Fis actually true.
(In order to enforce that not only the last R®-transition in a labeled R'-transition matters for the interpretation of
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the transitive operators, but the lables of all transitions in the sequence have to be the same, simply discard axiom
J3 in def. 5.2.3. This is more appropriate for the epistemic interpretation of these operators.)
MM-Logic has some features which may make it quite useful as an epistemic logic:
» Itallows the simultaneous use of the different belief operators.
» It allows arbitrary non-ground terms as representation for actors.
For example the, “common knowledge” operator is simply Vx:Actor [x]?....

» With a slight extension it is even possible to have a very selective “implicit knowledge” operator.
All you have to do is to incorporate a special unification algorithm for a particular kind of sets which
“unifies” two sets by simply uniting them.

Then we can deduce from [ATJP and
[BIP=Q

[AUBIQ
i.e. when A and B join their knowlege, they can deduce Q form A’s knowledege of P and B’s knowldege
of P=Q. This unification rule realizes the axiom scheme [ X]1F= [XUY] ¥ saying when X joins
his knowledge with Y then both together know at least what X knows.

‘What MM-Logic cannot model is:

» Inconsistent knowledge.
Due to the seriality assumption, from every world there is for every actor a consistent world, i.e. his
knowledge is always consistent.

> Restrictions for the tautology “[ XJltrue” which is the unrealistic assumption that everybody knows all
logical truth (the famous omniscience problem).With the current version of OSPL as target logic, there is
no way to switch for example to weaker non normal S2 based systems where “[ X Jltrue” holds only for
predicate logic truth.

> In the epistemic interpretation of MM-Logic, every actor knows all consequences of his knowledge
(deductive closure property). No restrictions to the deductive closure are possible so far.

There is a famous example from McCarthy, the wise man puzzle, that has been used to test the representation
ability of formalisms for knowledge and belief. As a final example we give an axiomatization of the wise man
puzzle and a proof in MM-Logic. Its traditional form is:

A certain King wishes to determine which of his three wise men is the wisest. He arranges them in a circle so that they
can see and hear each other and tells them that he will put a white or black spot on each of their foreheads but at least
one spot will be white. In fact all three spots are white. He then offers his favor to the one who first tells him the color of
his spot. After a while, the wisest announces that his spot is white. How does he know?

(Actually the information that all three spots are white is not necessary to solve the puzzle.)
The solution involves the wisest man reasoning about what his colleagues know and don’t know from
observations and the king’s announcement.
To axiomatize this puzzle in epistemic logic, assume the three wise man are A, B and C and C is the wisest.
First of all we need the three formulae;
Cl: A+#B
C2:A%C
C3:B=C
and assume the symmetry of the #-predicate.
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At least one of them has a white spot and everybody knows that everybody else knows that his colleagues know
this.
C4:vS,8,8" [STIS 10S"]1W(A) vWEB) v W(QC)
(W(S) means S has a white spot. The [ ... ]l-operator is actually the [ ...]?-operator.)
The three men can see each other and they know this. Therefore whenever one of them has a white or black spot,
he knows that his colleagues know this and he knows also that his colleagues know this from each other.
C5:VS,8t S5 = [S] (=W(S) = [S'T-W(S)
C6:VS,S'S"S#SAS#S"AS =S =[S T[S (W) = [S"1-W(S))
C7:VSS'S"S#SAS#S"AS =S = [STI[S] W)= [S"]-W(SH)
(We give only the minimum number of axioms which are necessary for the proof.)

They can hear each other and they know this. B did not say anything, therefore C knows that B does not know the
colour of his own spot.

C8 [CI-[BIW(®B) (e [C] <B>-W(B))
C knows that B knows that A does not know the colour of his spot.
C9: [CIIBI-[AIW(A) (o [C1IBI<A>-W(A)).

We translate the formulae into OSPL syntax:
The sort of the variables in lowercase symbols is “W—W’.
To make the formula more readable we use second order syntax and drop the o and -function and the 0 sign
writing terms 1(Xo...0z, 0) in simple brackets [x...z].
Cl:A#B ° C2. AzC C3: B2C
C4: VS,u,S"u',S",u": W([u(S)u'(S8) u"(S"], A) v W([u(S) u'(S") u"(S")1, B) v W({u(S) u'(SH u"(8")], C)
C5:¥VS,u, Su: S=S"v W([u(S)], S) v =W([u(S) u'(SH1. S)
C6:VS,u, S'u', $"um S=SvS=8"vS8=5"vW([us u(s S) v -W(u(S) u'(S) u"(S"}, )
C7:VSu, S, S"u": S=SvS=8"vS=8"v W(uS) u(S)], S) v =W(u(S) u'(S") u"(s"], $Y)
C8: Vu -W([u(C) g(B)1, B)
C9: Vu,v —=W([u(C) v(B) h(A)], A)

A deduction of the fact that C knows the colour of his own spot, i.e. [CIW(C) is now a trivial exercise for any
resolution theorem prover. The following UR-proof was found by our system [Eisinger&Ohlbach 86]:

C1,C2,C3,C7,C8 - RI: Vuu" —W(u(C) gB)u"(A)]l,B) (< [CI<B>[A]-W(B))

C9, R1,C4 — R2: Vu W([u(C) g(B) h(A)], C) (= [C] <B> <A>W(C))
C1,C2,C3.R2,C6 — R3: Vu W([u(C) g(B)], C) (e [C1<B> W(C))
C3,R3,C5 — R4: Yu W([u(©)], C) (= [CIWO) n

Actually this example is so simple that none of the axioms for the accessibility relation (def. 5.2.3) are necessary.
A standard unsorted resolution calculus with Robinson unification is sufficient.
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Chapter Six

Summary

A method for translating formulae of a large class of first-order logics with possible worlds semantics into
predicate logic has been developed. The method allows for theorem proving by translation - into predicate logic -
and refutation - with predicate logic resolution and paramodu- lation. The basic idea of the translation is to
transform the information contained in a sequence of nested nonclassical operators into one term representing
explicitly the whole path through the possible worlds structure from the initial world to the actual world that is
used to interpret terms and atoms. These “context terms” are attached as additional arguments to the terms and
atoms. Since they are ordinary terms, predicate logic unification can treat them in the usual way. That means, one
resolution or paramodulation step has, via unification, the whole relevant part of the possible worlds structure to
its disposal and therefore needs not jump shortsightedly from one world to another, as this is for example the
case in some tableaux or sequent calculi [Fitting 72,83]. Furthermore, since the operators are represented as
terms containing variables, their unification can be seen as the computation of the “most general world”, again an
advantage over calculi which can handle only explicitly generated worlds one by one. Since the “target logic” for
the translation is order-sorted predicate logic (OSPL) with a fully developed resolution and paramodulation
calculus, the “source logics” may also be first-order, order-sorted with built-in equality.

Context Logic (CL) has been developed as an intermediate logic between the source logics and predicate logic
because there are a number of translation operations common to all source logics which can be handled by this
method, and these operations can be comprised in the translation from CL to OSPL. The translation from the
source logic into CL-is almost a one to one translation of the model theoretic semantics of its operators, whereas
the translation from CL to OSPL contains the shift of information from the operator level to the term level.

In order to demonstrate that using Context Logic simplifies the task of designing a proof theory for a logic
considerably, we have applied the method to a quite complex first-order order-sorted multi modal logic with
built-in equality. It is based on the modal logics D, T, D4 and $4 and includes CTL. It contains several kinds of
multiplicities. We allow modal operators corresponding to a basic accessibility relation to occur sirhultaneously
with operators corresponding to its reflexive, transitive and reflexive transitive closure. Furthermore we have
indexed operators which refer to labeled transitions in the possible worlds structure. The indices can be arbitrary
- possibly nonground - terms. Finally we have an ‘eventually’ operator (on each path there is a world such that
...), an indexed eventually operator and some “until’ operators. The logic is quite expressive and can serve in
various applications as temporal logic, process logic, action logic or epistemic logic.

The limits of the translation method based on Context Logic are:
- the semantical structure behind the source logic must be first-order axiomatizable,
otherwise the resulting calculus is not complete.
- We consider only constant-domain interpretations.
- From each context (world) there must be an accessible world (seriality).
The last two points are due to the fact that OSPL as target logic cannot handle partial functions. Once it has been
extended to handle partial functions whose domain have to be deduced during the proof, CL can be extended too
and we can allow nonserial varying-domain logics as source logics.

The whole translation idea for logics and CL in particular is a natural extension of basic work done for classical
modal logics. It began with calculi using labeled formulae where the labels are either integers [Chan 87] or terms
denoting worlds [Wallen 87]. The labels were not made part of the syntax, but used to guide the proof system.
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After that, different groups came up with the idea to make the terms part of the syntax, thus translating modal
logic syntax into predicate logic syntax [Enjalbert&Auffray 89], [Farifias & Herzig 88}, [Ohlbach 88]. Context
Logic now systematizes these efforts and supports the designer of a logic in developing a proof theory by
translation and refutation.

Future Work

To improve Context Logic itself, first of all OSPL should be extended to handle partial functions whose domain
is unknown at the beginning. This is necessary to deal with nonserial accessibility relations whose context access
functions are partial and to allow varying-domain interpretations where terms may be undefined in some worlds.
For modal logics with nonserial accessibility relations I have developed in [Ohlbach 88] a resolution calculus
where this problem is solved using theory resolution rules [Stickel 85] which take care of partially defined
functions. This could be a guideline to do it for OSPL in general.

How to extend CL for dealing with semantical structures which are not first-order axiomatizable is not so
obvious. As the modal logic G shows, there are Kripke structures which are not first-order axiomatizable, but
which nevertheless admit a complete logic. The axiomatization of its Kripke structure must lie in an “inoffensive”
second-order fragment. Identifying such fragments and realizing them as special theory resolution rules is surely
a challenging task.

Of course I am anxious to see the Context Logic translation method applied to other logics. Temporal logics
based on intervals should be a promising candidate.

The calculus for MM-Logic as it is can run on a predicate logic theorem prover with built-in equality handling
and overloaded sort declarations. To make it really efficient, however, the clauses axiomatizing the possible
worlds structure (def. 5.3.1) should be turned into unification algorithms. Since the sort structure separates them
form user defined equations, it is possible to consider them separately without the danger of interferences with
user defined axioms.

In many applications not all of the MM-Logic operators will be necessary. In this case some of the clauses in def.
5.3.1 become superfluous and the corresponding unification algorithms should become simpler and more
efficient. Furthermore, as it turned out to happen for modal logics [Ohlbach 88], it may be possible to identify
syntactic invariants which hold initially for the translated formulae and which are preserved during the deduction.
Exploiting these invariants may improve the unification algorithms considerably. This kind of improvements
depend on the particular application and should be investigated separately.

A much more expensive enterprise is the incorporation of induction mechanisms into MM-Logic theorem
proving. As we have seen in section 5.4, induction theorem proving is neccessary to approximate the transitive
closure of the basic accessibility relation. This is of particular importance for the application of MM-Logic as
process logic. It seems that the translation into OSPL at least provides the syntactic basis for transferring the
methods developed for predicate logic induction theorem proving to MM-Logic.
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