
Fa
ch

be
re

ich

In
fo

rm
at

ik
Un

ive
rs

itä
t

Ka
ise

rs
la

ut
er

n
S

E
K

I
'-

R
E

P
.R

T

Po
st

fa
ch

 3
04

9
D-

b7
50

Ka

ise
rs

la
ut

er
n

3180'}1x91u03

on rn {N H 7:
1

C
D

*0 o :3
,

ca 2° 00 xp 0 00

1103q 11981111"St

Context Logic

Hans Jilrgen Ohlbach

Fachbereich Informatik, Universitiit Kaiserslautern

Postfach 3049, D-6750 Kaiserslautern, W.-Germany

This research was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D2)

Context Logic

Hans Jürgen Ohlbach
Fachbereich Informatik, Universität Kaiserslautern

Postfach 3049, D-6 750 Kaiserslautern, W.-Gemzany

This research was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D2)

1

Context Logic

Hans Jiirgen Ohlbach

FB Informatik, University of Kaiserslautern

uucp: ... seismo!unido!uk1irb!ohlbach

Abstract Context Logic (CL) is a logic in the original sense, but more than that, it is a methodology for

designing a certain class of logics in such a way that automatically a first-order many-sorted resolution and

paramodulation calculus is obtained. This calculus can be executed on a clause based predicate logic theorem

prover. The class of logics which can be handled with the CL-methodology is mainly characterized by the

existence of "hidden parameters", parameters like worlds in modal logics defining the context in which the terms

and formulae are to be interpreted. The hidden parameters are usually determined implicitly by additional logical

operators like for example 0 (necessarily) and 0 (possibly) in modal logic. These operators refer to an underlying

semantical structure - Kripke's possible worlds structure in the case of modal logic, time points and time intervals

in the case of temporal logic are examples. CL provides a means for axiomatizing these structures and for

expressing the semantics of the desired operators in a formal language. This information about the desired logic is

sufficient to translate formulae written in the operator syntax automatically into predicate logic syntax where the

operators are replaced by quantifiers and the hidden parameters are made an explicit part of the formula. After the

translation, information about a whole bunch of nested operators is shifted into one "context term" that can be

handled by an appropriate unification algorithm. Hence, a resolution step may exploit information about many

nested operators at once and is therefore much more goal directed than a corresponding step in a tableaux system

for example.

The main limits ofCL are:
- Since predicate logic is the "target logic" into which the designed logic is mapped, in order to obtain a complete

calculus, its semantical structure must be first-order axiomatizable. This excludes certain properties like

discreteness and finiteness.

- Due to the current limits of predicate logic resolution (no partial functions allowed for example) two further

assumptions are still necessary. For Kripke structures these are the constant-domain assumption and the

seriality assumption. For other structures the assumptions are analogous.

In order to demonstrate the method, a quite complex first-order many-sorted multi modal logic with operators

indexed with arbitrary (possibly non-ground) terms is constructed using the CL tools. The logic is actually an

extension of Clarke and Emerson's CTL temporal logic. Therefore, as a side effect, we get a proof theory for

CTL.

Keywords: Automated Theorem Proving by Translation and Refutation, Resolution, Nonclassical Logics,

Modal Logic, Temporal Logic, Process Logic, Epistemic Logic, Action Logic, CTL.

This work was supported by the Sonderforschungsbereich 314 of the German Science Foundation (DFG) and the

ESPRIT Project 1033, FORMAST, of the European Community. The paper was written during a research stay at

the Automated Reasoning Project of the Australian National University, Canberra.

Context Logic

Hans Jürgen Ohlbach
FB Informatik, University of Kaiserslautem

uucp: . . .seismolunidoluklirblohlbach

Abstract Context Logic (CL) is a logic in the original sense, but more than that, i t is a methodology for

designing a certain class of logics in such a way that automatically a first-order many-sorted resolution and
paramodulation calculus is obtained. This calculus can be executed on a clause based predicate logic theorem
prover. The class of logics which can be handled with the CL—methodology is mainly characterized by the

existence of “hidden parameters”, parameters like worlds in modal logics defining the context in which the terms

and formulae are to be interpreted. The hidden parameters are usually determined implicitly by additional logical
operators like for exarnple El (necessarily) and O (possibly) in modal logic. These operators refer to an underlying
semantical structure — Kripke’s possible worlds structure in the case of modal logic, time points and time intervals

in the case of temporal logic are examples. CL provides a means for axiomatizing these structures and for

expressing the semantics of the desired operators in a formal language. This information about the desired logic is
sufficient to translate formulae written in the operator syntax automatically into predicate logic syntax where the
operators are replaced by quantifiers and the hidden parameters are made an explicit part of the formula. After the
translation, information about a whole bunch of nested Operators is shifted into one “context term” that can be

handled by an appropriate unification algorithm. Hence, a resolution step may exploit information about many
nested operators at once and is therefore much more goal directed than a corresponding step in a tableaux system
for example.
The main limits of CL are:

- Since predicate logic is the “target logic” into which the designed logic is mapped, in order to obtain a complete
calculus, its semantical structure must be first-order axiomatizable. This excludes certain properties like
discreteness and finiteness. _

- Due to the current limits of predicate logic resolution (no partial functions allowed for example) two further
assumptions are still necessary. For Kripke structures these are the constant-domain assumption and the
seriality assumption. For other structures the assumptions are analogous. ‘

In order to demonstrate the method, a quite complex first-order many—sorted multi modal logic with operators
indexed with arbitrary (possibly non-ground) terms is constructed using the CL tools. The logic is actually an
extension of Clarke and Emerson’s CTL temporal logic. Therefore, as a side effect, we getéa proof theory for
CTL.

Keywords: Automated Theorem Proving by Translation and Refutation, Resolution, Nonclassical Logics,
Modal Logic, Temporal Logic, Process Logic, Epistemic Logic, Action Logic, CTL.

This work was supported by the Sonderforschungsbereich 314 of the German Science Foundation (DFG) and the
ESPRIT Ptoject 1033, FORMAST, of the European Community. The paper was written during a research stay at
the Automated Reasoning Project of the Auslralian National University, Canberra.

2

Table of Contents

1. Introduction . 3

1.1	 Logics with "Context Semantics" . 3

1.2	 Theorem proving by Translation and Refutation ­

An Analogy to Compilation of Programs 4

1.3	 One-Step Translations 5

1.4	 Two-Step Translations 7

1.5	 Indexed Operators 7

1.6	 Order-Sorted Logic as Target Logic 8

1.7	 Axiomatization of Context Access Functions 9

2. Logic Morphisms	 12

3. Order-Sorted Predicate Logic	 15

3.1 Syntax	 ' 15

3.2 Algebras and Homomorphisms	 16

3.3 Semantics	 18

3.4 Quantification over Functions . 19

4. Context Logic	 23

4.1 Syntax	 23

4.2 Semantics	 27

4.3 A Logic Morphism from Context Logic to Order-Sorted Predicate Logic .. 30

5. Multi Modal Logic	 50

5.1 Syntax and Semantics	 53

5.2 A Logic Morphism from Multi Modal Logic to Context Logic 57

5.3 Examples	 85

5.4 Induction	 91

5.5 Interpretations of Multi Modal Logic	 93

6. Summary	 97

Table of Contents

. Introduction . 3
1.1 Logics with “Context Semantics” . 3

1 .2 Theorem proving by Translation and Refutation -
An Analogy to Compilation of Programs . 4

1.3 One-Step Translations . 5
1 .4 Two-Step Translations . 7

1.5 Indexed Operators . 7
1.6 Order-Sorted Logic as Target Logic . 8
1.7 Axiomatization of Context Access Functions . 9

. Logic Morphisms . 12

. Order-Sorted Predicate Logic . 15

3 . 1 Syntax . - 15

3 .2 Algebras and Homomorphisms . 16

3.3 Semantics . 18
3 .4 Quantification over Functions . 19

. Context Logic . 23

4.1 Syntax . 23
4 .2 Semantics . 27

4.3 A Logic Morphism from Context Logic to Order-Sorted Predicate Logic . . 30

. Multi Modal Logic . 50
5 .1 Syntax and Semantics . 53

5 .2 A Logic Morphism from Multi Modal Logic to Context Logic 57

5.3 Examples . 85
5.4 Induction . 91
5 .5 Interpretations of Multi Modal Logic . 93

. Summary . 97

3

Chapter One

Introduction

1. 1 Logics with "Context Semantics"

A large class of nonclassicallogics like modal, temporal, epistemic, action logics etc. have one important feature

in common. This is the existence of "hidden parameters" which refer to an underlying semantical structure. The

hidden parameters define the context in which terms and formulae are to be interpreted. They are implicitly

determined by additional logical operators like for example e (necessarily) and 0 (possibly) in modal logic. A

typical example for an underlying semantical structure is Kripke's possible worlds structure as a semantical basis

for modal logics. A formula eP for example is interpreted: P holds in all worlds 'W2 which are accessible from the

current world 'W1. OP is interpreted: From the current world 'W1 there exists an accessible world 'W2 and P holds

in 'W2• That means the interpretation of the predicate symbol P depends on the actual world. P may be true in a

world 'W1 and false in a world 'W2• In other words P behaves like a one place predicate P(...) that depends on a

"world parameter". Another example for a logic with hidden parameters and an underlying semantical structure is

temporal logic with time points and time intervals. An expression "Tom is running" or more formally

running(Tom) implicitly depends on the points in time. It may be true now and false in 5 minutes. "Tom runs

lOOm" or running-a-distance(Tom, lOOm) respectively, however does not depend on a time point, but on a time

interval. The statement "During Tom's lOOm runs he is always running" (which may be false when he occasion­

ally stops for a while) may be encoded as "running-a-distance(Tom,IOOm) => during running(Tom)". The

formula shows that it may make sense to have simultaneously two types of contexts, namely time points and time

intervals which are correlated by an operator during that quantifies over all time points in the current time interval.

Having the underlying semantical structure in mind, it is usually not hard to define syntax and a model theoretic

semantics of a corresponding logic. To define an appropriate deduction calculus, however, is a m~ch harder task.

The problem is that the properties of the semantical structure, although it may be a simple thing like a linearly

ordered set together with all its intervals, have to be characterized in a very indirect way by using axiom schemes

in a syntax that does not talk at all about the semantical structure directly but uses some obscure operators. Who

would for example guess that the transitivity of the accessibility relation in a Kripke structure has to be encoded

into the modal logic axiom scheme e '.f=> cc '.f?

When this is so complicated, why strive so hard with these operators? Why don't we just use predicate logic,

axiomatize the underlying semantical structure directly, add the corresponding parameters explicitly to the

predicate and function symbols and replace the operators by corresponding quantifiers? There are four main

reasons against this solution:

~ Historical Reasons

Modal logics for example have been developed on the basis of Hilbert calculi decades before Kripke

discovered a model theoretic semantics.

~ Pragmatic Reasons

The operator syntax is usually much more intuitive and easier to use than the predicate logic syntax.

~ Efficiency Reasons

The operator syntax is usually less expressive than the corresponding predicate logic syntax. Therefore a

calculus working on the operator syntax may be more efficient than a corresponding predicate logic version.

~ Theoretical Reasons

There are semantical structures which cannot be axiomatized in first-order logic. Discrete and fmite Kripke

structures are of this kind.

3

Chapter One

Introduction

1 .1 Logics with “Context Semantics”

Ä large class of nonclassical logics like modal, temporal, epistemic, action logics etc. have one important feature
in common. This is the existence of “hidden parameters” which refer to an underlying semantical structure. The

hidden parameters define the context in which terms and formulae are to be interpreted. They are implicitly

determined by additional logical operators like for example I: (necessarily) and 0 (possibly) in modal logic. A

typical example for an underlying semantical structure is Kripke’s possible worlds structure as a semantical basis

for modal logics. A formula UP for example is interpreted: P holds in all worlds ‘Wz which are accessible from the

current world ‘WI. OP is interpreted: From the current world W1 there exists an accessible world W2 and P holds
in ‘Wz. That means the interpretation of the predicate symbol P depends on the actual world. P may be true in a
world W1 and false in a world WZ. In other words P behaves like a one place predicate P(. . .) that depends on a

“world parameter”. Another examme for a logic with hidden parameters and an underlying semantical structure is
temporal logic with time points and time intervals. An expression “Tom is running” or more formally
running(Tom) implicitly depends on the points in time. It may be true now and false in 5 minutes. “Tom runs
100m” or running-a-distanceflom, 100m) respectively, however does not depend on a time point, but on a time

interval. The statement “During Tom’s 100m runs he is always running” (which may be false when he occasion-

ally stops for a while) may be encoded as “running-a—distance(Tom,100m) => during runningCl‘om)”. The
formula shows that it may make sense to have simultaneously two types of contexts, namely time points and time
intervals which are correlated by an operator during that quantifies over all time points in the current time interval.

Having the underlying semantical structure in mind, it is usually not hard to define syntax and a model theoretic

semantics of a corresponding logic. To define an appropriate deduction calculus, however, is a much harder task.
The problem is that the properties of the semantical structure, although it may be a simple thing like a linearly
ordered set together with all its intervals, have to be characterized in a very indirect way by using axiom schemes
in a syntax that does not talk at all about the semantical structure directly but uses some obscure operators. Who
would for example guess that the transitivity of the accessibility relation in a Kripke structure has to be encoded
into the modal logic axiom scheme El 9' => auf ?

When this i s so complicated, why strive so hard with these operators? Why don’t we just use predicate logic,
axiomatize the underlying semantical structure directly, add the corresponding parameters explicitly to the ,
predicate and function symbols and replace the operators by corresponding quantifiers? There are four main
reasons against this solution:

> Historical Reasons

Modal logics for example have been developed on the basis of Hilbert calculi decades before Kripke
discovered a model theoretic semantics.

> Pragmatic Reasons
The operator syntax is usually much more intuitive and easier to use than the predicate logic syntax.

> Efficiency Reasons
The operator syntax is usually less expressive than the corresponding predicate logic syntax. Therefore a
calculus working on the operator syntax may be more efficient than a corresponding predicate logic version.

> Theoretical Reasons

There are semantical structures which cannot be axiomatized in first-order logic. Discrete and finite Kripke
structures are of this kind.

4

The method we are going to present in this work is aimed to overcome the pragmatic and efficiency arguments. It

uses theorem proving by translation and refutation which allows to keep the operator syntax as a user friendly

surface language, but internally it translates the formulae into predicate logic in such a way that a more efficient

resolution [Robinson 65] and paramodulation [Robinson & Wos 69] calculus is applicable.

1.2	 Theorem Proving by Translation and Refutation •
An Analogy to Compilation of Programs.

Already in the early days of computer science it has turned out that much efficiency can be gained in the execution

of programs written in highlevel programming languages by translating the programs into a lowlevel language

where a more efficient interpreter (processor) is available. Originally programs were translated directly into the

operation code of a processor. Nowadays programs are usually not translated directly into an operation code, but

first into an intermediate language such as C and then with a standard compiler into the operation code. One of the

reasons is that the development of compilers with less lowlevel languages as target language is in general easier

and less susceptible to errors.

The analogy to a programming language - syntax and denotational semantics - is a logic - syntax and model

theoretic semantics - and the analogy to an interpreter for a programming language is a deduction calculus for a

logic. The idea which suggests itself is to look also for an analogy to a compiler. A compiler from a "source logic"

SL into a "target logic" TL should translate an SL-formula 1"into a TL-formula 1"' such that .1'has an SL-model if

and only if .1" has a TL-mode1. If this condition holds, a refutation theorem prover for SL can be obtained simply

by using an appropriate theorem prover for TL to refute the translated SL-formulae. One advantage is that a

TL-theorem prover can be used for several source logics. Whereas highlevel programming languages as well as a

highlevellogics are designed for the human user, a compiler is free to rearrange chunks of information to serve the

underlying machinery, and not the human reader, in the optimal way. The efficiency gained through compilation

of programs proves that operating on the original syntax is not always optimal, and this holds for logics as well. If

therefore in addition the TL-calculus turns out to be even more efficient than an SL-calculus we have not only

saved the effort to develop a specific SL-theorem prover, in fact our laziness is rewarded with a more efficient

theorem prover.

Several "translation calculi" have been developed so far, mainly for classical modal logics as source logics and

predicate logic as target logic with the aim to use predicate logic resolution theorem provers [Ohlbach 88],

[Farifias&Herzig 88], [Enjalbert&Auffray 88], [Moore 80] etc. In these systems a one-step translation from the

source logic to the target logic has been developed, similar to the one-step translation from highlevel programming

languages to the operation code. With this approach the translation algorithm and in particular the soundness and

completeness proof has to be developed new for every new logic. A closer look at the different translation

systems, however, has shown that a certain part of the translation is common to all source logics. Therefore it is

advantageous to split the translation into two steps, the first one depending on the particular source logic and the

second one common to all source logics. For this purpose an intermediate logic is necessary. This logic, Context

Logic, will be presented in this paper. Here again we have the analogy to the compilation of programs. CL

corresponds to the intermediate language, as for example C, which is used in two-step translations. We can

summarize the analogies as follows:

4

The method we are going to present in this work is aimed to overcome the pragmatic and efficiency arguments. It

uses theorem proving by translation and refutation which allows to keep the operator syntax as a user friendly
surface language, but internally it translates the formulae into predicate logic in such a way that a more efficient
resolution [Robinson 65] and paramodulation [Robinson & Wos 69] calculus is applicable.

1 .2 Theorem Proving by Translation and Refutation -
An Analogy to Compilation of Programs.

Already in the early days of computer science it has turned out that much efficiency can be gained in the execution

of programs written in highlevel programming languages by translating the programs into a lowlevel language

where a more efficient interpreter (processor) is available. Originally programs were translated directly into the
operation code of a processor. Nowadays programs are usually not translated directly into an operation code, but
first into an intermediate language such as C and then with a standard compiler into the operation code. One of the

reasons is that the development of compilers with less lowlevel languages as target language i s in general easier

and less susceptible to errors. .

The analogy to a programming language - syntax and denotational semantics - is a logic - syntax and model
theoretic semantics - and the analogy to an interpreter for a programming language is a deduction calculus for a
logic. The idea which suggests itself is to look also for an analogy to a compiler. A compiler from a “source logic ”
SL into a “target logic” TL should translate an SL—formula :7 into a TL-fonnula 17’ such that {Fhas an SL-model if
and only if Thais a TL-model. If this condition holds, a refutation theorem prover for SL can be obtained simply

by using an appropriate theorem prover for TL to refute the translated SL-formulae. One advantage is that a
TL-theorem prover can be used for several source logics. Whereas highlevel programming languages as well as a

highlevel logics are designed for the human user, a compiler is free to rearrange chunks of information to serve the

underlying machinery, and not the human reader, in the optimal way. The efficiency gained through compilation

of programs proves that operating on the original syntax is not always optimal, and this holds for logics as well. If
therefore in addition the TL—calculus turns out to be even more efficient than an SL-calculus we have not only

saved the effort to develop a specific SL-theorem prover, in fact our laziness is rewarded with a more efficient
theorem prover.

Several “translation calculi” have been developed so far, mainly for classical modal logics as source logics and

predicate logic as target logic with the aim to use predicate logic resolution theorem provers [Ohlbach 88],
[Farifias&Herzig 88], [Enjalbert&Auffray 88], [Moore 80] etc. In these systems a one-step translation from the
source logic to the target logic has been developed, similar to the one-step translation from highlevel programming

languages to the Operation code. With this approach the translation algorithm and in particular the soundness and
completeness proof has to be developed new for every new logic. A closer look at the different translation
systems, however, has shown that a certain part of the translation is common to all source logics. Therefore it is
advantageous to split the translation into two steps, the first one depending on the particular source logic and the
second one common to all source logics. For this purpose an intermediate logic is necessary. This logic, Context

Logic, will be presented in this paper. Here again we have the analogy to the compilation of programs. CL

corresponds to the intermediate language, as for example C, which is used in two-step translations. We can
summarize the analogies as follows:

5

Earlier approach:
Compilation of programming languages: Translation of logics:

PL1 ... PLn inefficient	 SL1 ... SL inefficientm
\ I interpreter ;anslatiOI{ calculuscompilation

~ 1	 \,
operation code	 efficient 1L efficient

interpeter calculus

A more economic approach, proposed in this paper:
Compilation of programming languages: Translation of logics:

PL1 ... PLn	 SL1 ... SLm\ /
SL-depending translation

.	 \1
\ I
C a
~ standardfanSlation

operation code predicate logic

As compilation from C into different operation codes is possible, translation from CL into different logics is also

possible. So far, however, only a translation into a particular order-sorted predicate logic as target logic has been

developed.

1.3 One-Step Translations

In order to get an idea how translations for logics work, let us first have a look at algorithms for translating modal

logic in one step into predicate logic with resolution as a basic calculus. There are different possibilities yielding

translated formulae of different stnlcture and search spaces of different size.

1.3.1 Relational Translation
There is a very easy way to translate modal logic formulae into predicate logic [Moore 80]: A special binary

predicate symbol1(.is introduced which represents the accessibility relation. A formula [J!Fis then translated into

\:Iw 1«a,w) ~ .1fw] where 'a' denotes the current world and .1fw] means adding 'w' as an additional argument to

the terms and literals. Analogously O.'Fis translated into 3w 1«a,w) /\ .'11w]. The properties of the accessibility

relation can be expressed by simply adding the corresponding axioms for 1tto the formulae.

For example the formula OO\:lx(OPx /\ [JQx) is translated into the predicate logic formula

3a 1«O,a) /\ 3b 1«a,b) /\ \:Ix (3c 1((b,c) /\ P(c,x) /\ \:Iw 1((b,w) ~ Q(w,x»

The problem with this "relational" method is that the actual world in which a term or literal is to be interpreted is

not only determined by the term in the "world argument" of the predicates, for example the 'c' in P(c,x) above,

but by the whole path of "world terms" leading to that particular term. This information, however, is spread over a

whole bunch of ~literals. One significant deduction step with a user defined predicate has therefore in general to

be accompanied by several deduction steps which reason about worlds alone. The usual control strategies for

resolution can not recognize these correspondences and may therefore easily get lost in irrelevant branches of the

search space.

Earlier approach:
Compilation of programming languages: Translation of logics:

PL1 . . . PL11 inefficient SLI _ _ _ SLm inefficient
' I

compilation Interpreter “film/ion calculus

Operation code efficient TL efficient
inteIPetef calculus

A more economic approach, pr0posed in this paper:
Compilation of programming languages: Translation of logics:

PL1 PLn 8&1 §Lm

\ SL—depending translation

C CL
L standard translation

operation code predicate logic

As compilation from C into different operation codes is possible, translation from CL into different logics is also
possible. So far, however, only a translation into a particular order- sorted predicate logic as target logic has been

developed.

1 .3 One-Step Translations

In order to get an idea how translations for logics work, let us first have a look at algorithms for translating modal

logic in one step into predicate logic with resolution as a basic calculus. There are different possibilities yielding
translated formulae of different structure and search spaces of different size.

1 . 3 . 1 Relational Translation

There is a very easy way to translate modal logic formulae into predicate logic [Moore 80]: A special binary
predicate symbol Kis introduced which represents the accessibility relation. A formula El ? is then translated into
Vw 9((a,w) => flw] where ‘a’ denotes the current world and flw] means adding ‘w’ as an additional argument to

the terms and literals. Analogously Off is translated into Bw Mam) A flw]. The properties of the accessibility
relation can be expressed by simply adding the corresponding axioms for am the formulae.
For example the formula OOVx(OPx A a) is translated into the predicate logic formula

Ela fR(0,a) A Elb flab) A Vx (Elc f((bp) A P(c,x) A VW Raw) ==> Q(w,x))

The problem with this “relational” method is that the actual world in which a term or literal is to be interpreted is
not only determined by the term in the “world argument” of the predicates, for example the ‘c’ in P(c,x) above,
but by the whole path of “world terms” leading to that particular term. This information, however, is spread over a
whole bunch of filiterals. One significant deduction step with a user defined predicate has therefore in general to
be accompanied by several deduction steps which reason about worlds alone. The usual control strategies for '
resolution can not recognize these correspondences and may therefore easily get lost in irrelevant branches of the
search space.

6

1.3.2 Functional Translation

In order to overcome this weakness, at least for some modal logics, a different translation technique has been

developed where the relevant information about the actual world is concentrated in one single term [Ohlbach 88]

[Farifias&Herzig 88], [Enjalbert&Auffray 88]. In my system for example the above formula would be translated

into 3a,b Vx (3c P([abc],x) /\ Vu Q([abuJ,x»

yielding VX,u P([abc(x)],x) /\ Q([abu] ,x» after Skolemization,

where the "context access terms" (abc(x)] and [abu] describe the complete path through the Kripke structure from

the initial world to the actual world.

One of the main problems in the development of a semantics for these special terms was to handle the fact that the

modal operators are some kind of dynamic operators. The set of objects over which they quantify depends on the

current position in the Kripke structure. For example 0.1' quantifies over all worlds accessible from the current

world, and this world is determined by the embracing modal operators and quantifiers. The key idea for getting rid

of this dynamic aspect was to translate modal operators into quantifiers over functions mapping worlds to

accessible worlds. The set of such "world access functions", or more general "context access functions", is

constant in each interpretation whereas the set of worlds they access from a given world may change from world

to world. This allows to keep the operator's modal logic spirit, but to treat them technically as ordinary predicate

logic quantifiers, quantifying over a fixed set of entities.

To realize this idea a two-sorted predicate logic with the two sorts D for domain elements and 'W-7W' for context

access functions is necessary. In the formula

Vx,u P([abc(x»),x) /\ Q([abuJ,x»

for example a, b are now constant symbols of sort 'W-7W',

c is a function symbol of sort D -7 'W-7W',

x is a variable symbol of sort D and

u is a variable symbol of sort 'W-7W' .

Strings of 'W-7W' -terms are now interpreted as composition of context access functions. If for example a, b and

u are interpreted as the context access functions Ya' Yh and Y then [abu] denotes the function Yao Yh °Y whichu u

maps the initial world in three steps to the actual world.

Correlations between the Accessibility Relation and the Context Access Functions
Since different modal logics are usually distinguished by the properties of the accessibility relation, and since we

want to represent the accessibility relation 9\ by a set C.1' of context access functions, the proper correlations

between 9\ and c.rhave to be established. The basic idea is to represent a binary relation 9\ as the argument-value

relation of a set c.rof one-place functions, i.e.

VW1,Wz9\(W1,WZ) iff3YE c.r Wz=y(W1)

Example: relational representation: functional representation:

9\ (Wl'W 2) {Yl'Y2}

~ 9\(W ,W) Y}: W}-7 W 2 Y2: W}-7 W 3

~11i~"l
1 3

W 2-7 W 49\ (W2 , W4) W 2-7 W 5

9\ (W ,W) W 3-7 W 6 W 3-7 W 6~ 2 S

113~ 9\ (W
3
,W

6
)

Yz %1
6

Given a relation 9\, a corresponding set C.1' of one place functions - which is not necessarily unique - can be

constructed such that the argument-value relation is just 9\, and, the other way round, given a set C.1'of one place

functions on the set of worlds, their argument-value relation constitutes an accessibility relation. Since 9\ and C1

1 . 3 . 2 Functional Translation
In order to overcome this weakness, at least for some modal logics, a different translation technique has been
developed where the relevant information about the actual world is concentrated in one single term [Ohlbach 88]
[Fariiias&Herzig 88], [Enjalbert&Auffray 88]. In my system for example the above formula would be translated
into Eia,b Vx (Elc P([abc],x) A Vu Q([abu]‚x))
yielding Vx,u P([abc(x)],x) A Q([abu],x)) after Skolernization,
where the “context access terms” [abc(x)] and [abu] describe the complete path through the Kripke structure from
the initial world to the actual world.

One of the main problems in the development of a semantics for these special terms was to handle the fact that the
modal operators are some kind of dynamic operators. The set of objects over which they quantify depends on the
current position in the Kripke structure. For example n T quantifies over all worlds accessible from the current
world, and this world is determined by the embracing modal Operators and quantifiers. The key idea for getting rid
of this dynamic aspect was to translate modal operators into quantifiers over functions mapping worlds to
accessible worlds. The set of such “world access functions”, or more general “context access functions”, is
constant in each interpretation whereas the set of worlds they access from a given world may change from world
to world. This allows to keep the operator’s modal logic spirit, but to treat them technically as ordinary predicate
logic quantifiers, quantifying over a fixed set of entities.

To realize this idea a two-sorted predicate logic with the two sorts D for domain elements and ‘W—aW’ for context
access functions is necessary. In the formula

Vx,u P([abc(x)],x) A Q([abu],x))
for example a, b are now constant symbols of sort ‘W—>W’,

c is a fimction symbol of sort D _) ‘W—eW’,
x is a variable symbol of sort D and
u is a variable symbol of sort ‘W—>W’.

Strings of ‘W—>W’-terms are now interpreted as composition of context access functions. If for example a, b and
u are interpreted as the context access functions 73, “vb and Yu then [abu] denotes the function yao 7b 0 Yu which

maps the initial world in three steps to the actual world.

Correlations between the Accessibility Relation and the Context Access Functions
Since different modal logics are usually distinguished by the properties of the accessibility relation, and since we
want to represent the accessibility relation SR by a set C9" of context access functions, the proper correlations

between SR and of have to be established. The basic idea is to represent a binary relation ER as the argument-value
relation of a set C? of one-place functions, i.e.

VW1,W2 9i('W],W2) iff Ely 6 Cf W2 = WW1)

Example: relational representation: functional representation:

M gtCT/pz) {71 :72}

71 („& 'Y2 9i('Wl,W3) 'l 1411—) ‘w2 72: full—) W3

/ \rng 9%(W2,W4) w2—> rw4 W2—-> ws
“Y\2‘L mwrrws) «wa—> W W,» ‘wö

‘”57\1_ mm./3,9116)
Y2 ‚%

Given a relation SR, a corresponding set CF of one place functions - which is not necessarily unique - can be

constructed such that the argument-value relation is just ER, and, the other way round, given a set Cf of one place

functions on the set of worlds, their argument-value relation constitutes an accessibility relation. Since SR and C?

7

are correlated, there must also be correlations between their properties. One correlation is obvious: If C~ contains

only total functions then 9t is a serial relation where each world has an accessible world. On the other hand, if 9t

is serial then there is always a set of total context access functions. In the sequel we shall always assume that serial

relations are represented with total context access functions. Another obvious correlation is: If 9\ is tree like then

Cfconsists of injective functions only. (The other direction does not hold.) Further correlations are:

reflexivity of 9i ~ there is always a set C'.fcontaining the identity function.

transitivity of9t ~ there is always a set Cfwhich is closed under composition.

symmetry of 9t ~ there is always a set C'.fcontaining for each function its inverse.

To get a complete resolution calculus for translated modal formulae, these properties have to be exploited. A flrst

possibility to do this is to axiomatize the sort 'W~W' explicitly. For example the reflexivity requires the axiom

3id:'W~W' Vx:'W~W~ id 0 x =x 0 id = x.

\We us an explicit composition function symbol 0 instead of the syntax with brackets.)

The transitivity of 9i is expressed by the associativity of 0 and the sort declaration o:'W~W' x 'W~W' ~

'W~W' expressing that C'Tis closed under functional composition, or, with other words, that each world which

is accessible in n steps is also accessible in one step. (In the nontransitive case this declaration has to be o:'W~W'

x 'W~W' ~.L where.L denotes some error sort. This declaration prevents 'W~W'-variables to be instantiated

with terms Sot which denote functions accessing worlds in two or more steps.) The symmetry of 9t is

axiomatized by introducing an inverse function -l:W~W' ~ 'W~W' with the corresponding axiom.

The disadvantage of the explicit axiomatization is that equations occur and equations are difficult to handle in a

normal resolution theorem prover. Fortunately for the above cases the equations can be completely replaced by

corresponding theory unification algorithms such that equality handling is no longer necessary. Algorithms are for

example given in [Ohlbach 88].

The theory unifJcation algorithms can handle the context access terms efficiently because the relevant part of the

Kripke structure is at their disposal. One resolution step in the resolution calculus may invoke information about

several nested modal operators and quantifiers in the original formula at once and therefore correspond to a

number of deduction steps in a tableaux or sequent calculus. This allows for much bigger steps in the proof

search, thus reducing the search space considerably. Moreover, since worlds are represented as terms and

unification is applied to these terms, instead of generating worlds explicitly one by one, as in some classical

calculi, we stay always on the "most geneml world", which further shrinks the search space.

1.4 Two-Step Translations

The translation of modal formulae into predicate logic consists of several steps. First of all the operators have to be

replaced by quantifJcations over context access functions. For example

cVx:D 0 P(x, a) yields Vu:'W~W' Vx:D 3v:'W~W' P(x, a)

Second, the sequences of nested quantifications over context access variables have to be collected into context

terms and attached as additional arguments to the terms and literals:

Vu:'W~W' Vx:D 3v:'W~W' P(x, a) yields

Vu:'W~W' Vx:D 3v:'W~W' peru v], x, a([u v))).

Finally existentially quantified variables have to be Skolemized. Hence, an optimized Skolemization is possible

which allows to make the Skolem functions for the context access variables independent of the the universally

quantified context access variables. Thus, instead of

Vu:'W~W' Vx:D peru fy(u, x)], x, a([u fy(u, x»))) we obtain

Vu:'W~W' Vx:D peru fix)], x, a([u fy(x)))).

The last two steps do not depend on the particular kind of modal logic. They formalize the concept of "contexts"

7

are correlated, there must also be correlations between their properties. One correlation is obvious: If Cflf contains

only total functions then 9% is a serial relation where each world has an accessible world. On the other hand, if ER

is serial then there is always a set of total context access functions. In the sequel we shall always assume that serial

relations are represented with total context access functions. Another obvious correlation is: If SR is u-ee like then
CT consists of injective functions only. (The other direction does not hold.) Further correlations are:

- reflexivity of 9i <—-> there is always a set C? containing the identity function.
- transitivity of ‘R H there is always a set 6:7which is closed under composition.
- symmetry of SR <—> there is always a set Cf containing for each function its inverse.

To get a complete resolution calculus for translated modal formulae, these properties have to be exploited. A first
possibility to do this is to axiomatize the sort ‘W—aW’ explicitly. For example the reflexivity requires the axiom
3id:‘W——>W’ Vx:‘W—>W” id o x = x 0 id = x.
(We as an explicit composition function symbol o instead of the syntax with brackets.)
The transitivity of SR is expressed by the associativity of 0 and the sort declaration o:‘W—->W’ x ‘W——>W’ —a

‘W—->W’ expressing that CT is closed under functional composition, or, with other words, that each world which
is accessible in 11 steps is also accessible in one step. (In the nontransitive case this declaration has to be o:‘W—>W’
x ‘W——>W’ -—> .L where J. denotes some error sort. This declaration prevents ‘W-—>W’-variables to be instantiated

with terms s o t which denote functions accessing worlds in two or more steps.) The symmetry of ER i s

axiomatized by introducing an inverse function '1:W——>W’ —> ‘W—aW’ with the corresponding axiom.

The disadvantage of the explicit axiomatization is that equations occur and equations are difficult to handle in a
normal resolution theorem prover. Fortunately for the above cases the equations can be completely replaced by

corresponding theory unification algorithms such that equality handling is no longer necessary. Algorithms are for

example given in [Ohlbach 88].

The theory unification algorithms can handle the context access terms efficiently because the relevant part of the
Kripke structure is at their disposal. One resolution step in the resolution calculus may invoke information about
several nested modal operators and quantifiers in the original formula at once and therefore correspond to a
number of deduction steps in a tableaux or sequent calculus. This allows for much bigger steps in the proof
search, thus reducing the search space considerably. Moreover, since worlds are represented as terms and
unification is applied to these terms, instead of generating worlds explicitly one by one, as in some classical
calculi, we stay always on the “most general world”, which further shrinks the search space.

1.4 Two—Step Translations

The translation of modal formulae into predicate logic consists of several steps. First of all the operators have to be
replaced by quantifications over context access functions. For example

azD () P(x, a) yields Vu:‘W——>W’ sD Elvz‘W-AW’ P(x, a)
Second, the sequences of nested quantifications over context access variables have to be collected into context
terms and attached as additional arguments to the terms and literals:

Vu:‘W—>W’ sD Elvz‘W——>W’ P(x, a) yields
Vu:‘W—-)W’ Vx:D 3v:‘W——>W’ P([u v], x, a([u v])).

Finally existentially quantified variables have to be Skolemized. Hence, an optimized Skolemization is possible
which allows to make the Skolem functions for the context access variables independent of the the universally
quantified context access variables. Thus, instead of

Vu:‘W-—>W’ sD P([u fv(u, x)], x, a([u fv(u, x)])) we obtain
Vu:‘W—9W’ Vx:D P([u fv(x)], x, a([u fv(x)])).

The last two steps do not depend on the particular kind of modal logic. They formalize the concept of “contexts”

8

and "context access functions". Therefore it is a good idea to separate these three steps into the first step which

depends on the particular source logic, and the last two steps which are independent of the source logic. For this

purpose an intennediate logic, Context Logic, is necessary where fonnulae like Vu:'W~W' Vx:D 3v:'W~W'

P(x, a) make sense although the context access variables need not yet occur in the literals. Thus, CL is essentially

a logic with predicate logic syntax but modal logic semantics. The translation from the source logic to CL consists

mainly of expressing the semantics of the operators with CL-quantifications. The translation from CL into

predicate logic, on the other hand, moves infonnation from the quantifier level to the term level. The

corresponding soundness and completeness proofs and the justification for the optimized Skolemization are

therefore technically quite complex. They, however, can be settled once and forever.

1.5 Indexed Operators

Context Logic supports indexed operators as they are used in epistemic and action logics. The indices may be

arbitrary - possibly non-ground - tenns. Interpreting these operators as "belief operators" for example, it is then

easy to fonnalize a statement like "everybody believes that his mother believes that her child is the best of the

world" by

Vx:human Ox 0mother(x) best-of-the-world(x).

The translation of this fonnula into CL yields

Vx:human V,J,(u:'D,W~W', x) V,J,(v:'D,W~W', mother(x» best-of-the-world(x)

and the fmal translation into predicate logic yields

'Vx:human Vu,v:'D,W~W' best-of-the-world(,J,(u, x) 0 ,J,(v, mother(x», x).

u and v denote functions that map words to worlds, however depending on domain elements. ,J, is the application

function symbol. Its type is ,J,:'D,W~W' x D ~ 'W~W'. A tenn ,J,(u, s) is therefore interpreted as a usual

context access function which, however, describes transitions parametrized with the interpretation of s, a domain

element.

1.6 Order-Sorted Logic as Target Logic

The translation calculi for classical modal logics in fact do not need a sorted logic as target logic. The two sorts D

and ·W~W' mentioned above restrict the instantiation of variables. Once these constraints for the variable

instantiation are built into the unification algorithms, the sorts can be ignored completely. For more complex

source logics, however, the sort mechanism of the target logic becomes essential. To illustrate this, let us try to

defme a translation calculus for a multi modal logic, let us call it MML, with a pair 0 91, 091 of operators referring to

a basic accessibility relation 9\91, a pair or, or of operators referring to the reflexive closure 9\r of 9\91, furthennore

operators or, or, os, Os, ot, 01, ors, ors, ort, on, ost, ost, oTSt and orst referring to the symmetric (s), transitive (t),

reflexive-transitive (rt) etc. closures of 9\91. With a temporal interpretation of the accessibility relation we can for

example fonnalize a statement "Either I have the idea immediately or 111 never get it." in MML with orhave(idea, I)

v ort-,have(idea, I) where or is interpreted as "possibly now or in the immediate future" and ort is interpreted as

"henceforth". The translated version is:

3x:'W~rw' have(x, idea, I) v Vy:'W~rtw' -,have(y, idea, I).

("idea" and "I" are rigid symbols. They do not depend on the worlds.)

In the functional translation for MML, a single set of context access functions is no longer sufficient. We need

'W~S'lW'-functions mapping worlds to 9\S'l-accessible worlds, 'W~rw'-functions mapping worlds to

9\T-accessible worlds etc. Furthennore we have to express that each ·W~ S'lW' -function is also a

'W~rw'-function, a 'W~sW'-function, a 'W~tW'-function etc. These sets of functions can very easily be

axiomatized in an order-sorted logic. The sort symbols 'W~S'lW', 'w~rw', 'W~sW', 'W~tw', 'W~rsw',

8

and “context access functions”. Therefore it is a good idea to separate these three steps into the first step which
depends on the particular source logic, and the last two steps which are independent of the source logic. For this
purpose an intermediate logic, Context Logic, is necessary where formulae like Vu:‘W—>W’ sD EIv:‘W—>W’

P(x, a) make sense although the context access variables need not yet occur in the literals. Thus, CL is essentially

a logic with predicate logic syntax but modal logic semantics. The translation from the source logic to CL consists
mainly of expressing the semantics of the operators with CL-quantifications. The translation from CL into
predicate logic, on the other hand, moves information from the quantifier level to the term level. The

corresponding soundness and completeness proofs and the justification for the optimized Skolemization are
therefore technically quite complex. They, however, can be settled once and forever.

1 . 5 Indexed Operators

Context Logic supports indexed Operators as they are used in epistemic and action logics. The indices may be

arbitrary - possibly non-ground - terms. Interpreting these operators as “belief operators” for example, it is then
easy to formalize a statement like “everybody believes that his mother believes that her child is the best of the
world” by

shuman I:Ix :|
The translation of this formula into CL yields

shuman V¢(u:‘D,W—>W’, x) Vi(v:‘D,W—>W’, mother(x)) best—of-the-world(x)
and the final translation into predicate logic yields

‘shuman Vu,v:‘D,W—>W’ best-of-the-world(i(u, x) o J.(v, mother(x)), x).
u and v denote functions that map words to worlds, however depending on domain elements. .L is the application
function symbol. Its type is i:‘D,W—>W’ x D _) ‘W——>W’. A term Mu, s) is therefore interpreted as a usual
context access function which, however, describes transitions parametrized with the interpretation of s, a domain

element.

) best-of-the-world(x).mother(x

1 .6 Order-Sorted Logic as Target Logic

The translation calculi for classical modal logics in fact do not need a sorted logic as target logic. The two sorts D
and ‘W—>W’ mentioned above restrict the instantiation of variables. Once these constraints for the variable
instantiation are built into the unification algorithms, the sorts can be ignored completely. For more complex

source logics, however, the sort mechanism of the target logic becomes essential. To illustrate this, let us try to

define a translation calculus for a multi modal logic, let us call it MML, with a pair 139,0” of operators referring to
a basic accessibility relation SR“, a pair E1201 of operators referring to the reflexive closure 93’ of ER”, furthermore
operators Elr, Of, us, 05, D‘, Ot, El“, <>“, r3“, 0“, 1:1“, 05‘, am and Of“ referring to the symmetric (s), transitive (t),
reflexive-transitive (rt) etc. closures of SR”. With a temporal interpretation of the accessibility relation we can for
example formalize a statement “Either I have the idea immediately or I’ll never get it.” in MML with Olhavefidea, I)

v u“-—.have(idea, I) where Of is interpreted as “possibly now or in the immediate future” and u“ is interpreted as
“henceforth”. The translated version is:

Exz‘W—flVV’ have(x, idea, I) v Vy:‘W——9“W’ —.have(y, idea, I).
(“idea” and “I” are rigid symbols. They do not depend on the worlds.)

In the functional translation for MML, a single set of context access functions is no longer sufficient. We need

‘W—>¢W’-functions mapping worlds to gig-accessible worlds, ‘W—ärW’-functions mapping worlds to

fiir-accessible worlds etc. Furthermore we have to express that each ‘W—> °W’-function is also a

‘W—>’W’-function, a ‘W—>SW’-function, a ‘W—>‘W’-function etc. These sets of functions can very easily be

axiomatized in an order-sorted logic. The sort symbols ‘W—>¢W’, ‘W—>TW’, ‘W—>SW’, ‘W—e‘W’, ‘W—>’5W’,

9

'W~rtw' and 'w~stw', 'W~fStw', are introduced and the sort hierarchy, a Boolean algebra with 8 elements

expresses the subset relationships:

The type declarations for the composition function symbol 0 can be used to encode more information about the

accessibility relation. For example the declaration o:'W~I/JW' X 'W~f'JW' ~ 'w~tw' expresses the fact that two

single steps correspond to one step in the transitive closure. o:'W~I/JW' X 'W~sW' ~ 'W~rtw' expresses that

one step followed by either one step forward or one step backward results in one step in the reflexive transitive

closure. With declarations of this kind we can ensure that for example a variable of type 'W~"'W' can never be

instantiated with a term o(s, t) which is at least of type 'w~tw'. Thus, order-sorted predicate logic with this kind

of sorts gives us the possibility to handle for example modal logics where different modal operators corresponding

to different closures of the accessibility relation are used simultaneously.

1.7 Axiomatization of Context Access Functions

The hierarchy of context access function sorts and the type declarations fOf the composition function are not yet

sufficient to describe the context structure completely. Explicit axioms stating more than subset relationships are in

general necessary. For example in order to express that the 'w~rw'-functions really describe a reflexive relation

we have to add an identity element which maps a world to itself. Thus, we need an axiom:

3id:'W~rw' Vx:'w~rw' id 0 x =x 0 id =x.

Furthermore we want 9\f to be exactly the reflexive closure of 9i1/J and not more. Therefore an 9\f-transition is

either a 9\1/J-transition or an identity transition. The "functional" axiom that expresses exactly this correlation is:

Vx:'w~rw' 3y:'W~I/JW' Vw:W x(w) =yew) v x(w) =w

(The sort W denotes the set of worlds.)

More axioms of this are needed for describing the other functional sorts in MML above.

Hence, a complete functional description of the source logic's semantical structure consists of

a hierarchy of sorts describing the context access functions,

the type declarations for certain symbols like 0 and

an axiomatization of the context access functions.

Let us now summarize the basic ideas behind Context Logic. CL is a means for designing new logics, let us call

them SL, as extensions of first-order many-sorted predicate logic (with built-in equality reasoning) where the

interpretation of terms and literals depends on some context. The context is an element or a tuple out of one ore

more algebraic structures, the "context structures". Starting from an initial context, operators in the syntax of SL

are used to jump from context to context until the "actual context" that is to be used for the interpretation of a

subformula inside a nested formula is reached. For the calculus, the operator syntax, however, is only used as a

user friendly surface syntax. Formulae in that syntax are translated in two steps into a pure predicate logic syntax,

such that for example existing resolution and paramodulation calculi can be used. The first translation step, which

actually translates into Context Logic, replaces operators by quantifiers over "context access" functions. The

replacement rules for this step are defined just by writing down the semantics of the operator in the syntax of

Context Logic. As an example, the replacement rules for the modal operators are:

1fI(o.?) = Vx:'W~W' 'P(.?) and 1fI(O.?) = 3y:'W~W' 1fI(.'l)

9

‘W—>“W’ and ‘W—fi‘W’ , ‘W—>f5tW’, are introduced and the sort hierarchy, a Boolean algebra with 8 elements

expresses the subset relationships:

‘W—emW’
/‚-

‘W-J‘W’ ‘w—Ia'SW’ ‘W—I>“W’
‘W-fW’ ‘wfisw\ /

‘w—L W’
The type declarations for the composition function symbol o can be used to encode more information about the
accessibility relation. For example the declaration o:‘W—>¢W’ x ‘W—>°W’ —> ‘W—zt’ expresses the fact that two
single steps correspond to one step in the transitive closure. oz‘W—>¢W’ x ‘W—>5W’ —> ‘W—>“W’ expresses that

one step followed by either one step forward or one step backward results in one step in the reflexive transitive

closure. With declarations of this kind we can ensure that for example a variable of type ‘W—>¢W’ can never be
instantiated with a term o(s, t) which is at least of type ‘W——>‘W’. Thus, order-sorted predicate logic with this kind
of sorts gives us the possibility to handle for example modal logics where different modal operators corresponding

to different closures of the accessibility relation are used simultaneously.

1 .7 Axiomatization o f Context Access Functions

The hierarchy of context access function sorts and the type declarations for the composition function are not yet
sufficient to describe the context structure completely. Explicit axioms stating more than subset relationships are in
general necessary. For example in order to express that the ‘W—>rW’-functions really describe a reflexive relation
we have to add an identity element which maps a world to itself. Thus, we need an axiom:

Eidz‘W—al’W’ Vx:‘W-—>TW’ id o x = x 0 id = x.
Furthermore we want 9? to be exactly the reflexive closure of SR“ and not more. Therefore an Sir-transition is
either a Sig-transition or an identity transition. The “functional” axiom that expresses exactly this correlation is:

s‘W—aTW’ Ely:‘W—>¢W’ Vw:W x(w) = y(w) v x(w) = w
(The sort W denotes the set of worlds.)

More axioms of this are needed for describing the other functional sorts in MML. above.

Hence, a complete functional description of the source logic ’s semantical structure consists of

- a hierarchy of sorts describing the context access functions,
- the type declarations for certain symbols like 0 and
— an axiomatization of the context access functions.

Let us now summarize the basic ideas behind Context Logic. CL is a means for designing new logics, let us call
them SL, as extensions of first-order many-sorted predicate logic (with built-in equality reasoning) where the
interpretation of terms and literals depends on some context. The context is an element or a tuple out of one ore
more algebraic structures, the “context structures”. Starting from an initial context, operators in the syntax of SL
are used to jump from context to context until the “actual context” that is to be used for the interpretation of a
subforrnula inside a nested formula is reached. For the calculus, the operator syntax, however, is only used as a
user friendly surface syntax. Formulae in that syntax are translated in two steps into a pure predicate logic syntax,
such that for example existing resolution and pararnodulation calculi can be used. The first translation step, which
actually translates into Context Logic, replaces operators by quantifiers over “context access” functions. The
replacement rules for this step are defined just by writing down the semantics of the operator in the syntax of
Context Logic. As an example, the replacement rules for the modal operators are:

‘P(t:l 9) == Vx: ‘W—>W’ ?(9) and ‘P(Of}) = Ely:‘W——>W’ TU)

10

These rules have to be given by the designer of the logic. In the second translation step, which is done

automatically by the Context Logic mechanism, the so quantified variables are collected to build "context terms"

which are attached as additional "context parameters" at the terms and literals in order to get pure predicate logic

formulae. The context structures themselves, i.e. the model theoretic semantics of SL, are to be axiomatized in

Context Logic. This also has to be done once by the designer of the logic.

Context Logic has two main advantages:

~ Using Context Logic, the design of a first-order logic including proof theory and all soundness and

completeness proofs is not more work than the axiomatization of, say, boolean algebras in predicate logic.

~	 The Context Logic methodology fits into the paradigm of the predicate logic resolution and paramodulation

principles. Therefore it is no longer necessary to write specialized theorem provers for the kind of nonclassical

logics that can be handled by CL. That means most of the sophisticated representation and search control

techniques - and even existing implementations - that have been developed for predicate logic theorem proving,

and even logic programming, can immediately be applied. This is an indirect advantage which, however,

should not be underestimated because developing a calculus is usually a matter of man weeks or at most man

months, developing a powerful theorem prover for quantified logics, however, is a matter of man decades.

10

These rules have to be given by the designer of the logic. In the second translation step, which is done
automatically by the Context Logic mechanism, the so quantified variables are collected to build “context terms”
which are attached as additional “context parameters” at the terms and literals in order to get pure predicate logic
formulae. The context structures themselves, i.e. the model theoretic semantics of SL, are to be axiomatized in
Context Logic. This also has to be done once by the designer of the logic.

Context Logic has two main advantages:
> Using Context Logic, the design of a first-order logic including proof theory and all soundness and

completeness proofs is not more work than the axiomatization of, say, boolean algebras in predicate logic.
> The Context Logic methodology fits into the paradigm of the predicate logic resolution and pararnodulation

principles. Therefore it is no longer necessary to write specialized theorem provers for the kind of nonclassical
logics that can be handled by CL. That means most of the sophisticated representation and search control
techniques - and even existing implementations - that have been developed for predicate logic theorem proving,
and even logic programming, can immediately be applied. This is an indirect advantage which, however,

should not be underestimated because developing a calculus is usually a matter of man weeks or at most man
months, deve10ping a powerful theorem prover for quantified logics, however, is a matter of man decades.

11

A Short Summary of the Subsequent Chapters

Chapter 2: Logic Morphisms

The main idea of Context Logic is to translate the theorems to be proved into a logic with a more efficient calculus.

To provide adequate notions and notation for the translation operations we formally specify logics and mappings ­

morphisms - between logics. We establish a notion of theorem proving by translation and refutation.

Chapter 3: Order-Sorted Predicate Logic

Order-sorted predicate logic is the "target logic" into which the theorems to be proved are translated. Furthermore

it provides the syntax for axiomatizing the context structures. We introduce the basic notions of order-sorted

predicate logic as far as they are necessary for the CL formalism.

Chapter 4: Context Logic

Context Logic is an intermediate logic lying between the "source logic" and the "target logic", order sorted

predicate logic. The translation from the "source logic" into Context Logic is the part which is specific for each

source logic and has to be done by the designer of the source logic. The translation from Context Logic into

predicate logic is the part which is common for all source logics and is described in this chapter. The role of

Context Logic can be compared to the role, for example assembler languages or language like C play for the

compilation of highlevel programming languages.

Chapter 5: Multi Modal Logic

To illustrate the Context Logic methodology and to demonstrate its usefulness, we design a specific "source logic"

using the CL tools. It is an extension of the first-order modal logics D, T, D4 and S4, allowing simultaneous use

of accessibility relations with different }?roperties, indexed modal operators, a true 'eventually' operator and some

'until' operators. We give interpretations of multi modal logic as a temporal logic, a process logic, an action logic

and an epistemic logic.

Chapter 6: Summary

The fmal conclusion of this work is that a large class of nonclassicallogics can be handled efficiently with

classical methods. We summarize the limits of the CL method and discuss further extensions.

Although most of the logical notions are formally defined within this work, we assume some familiarity with the

standard predicate and modal logic as well as some knowledge about universal algebra and automated theorem

proving. Some knowledge about the basic ideas of epistemic logics would also be helpful. Standard references are

[Chang&Lee 73], [Fitting 83], [Gratzer 79], [Loveland 78], [Hintikka 62], [Hughes&Cresswell 68], [Smullyan

68].

11

A Short Summary of the Subsequent Chapters

Chapter 2: Logic Morphisms
The main idea of Context Logic is to translate the theorems to be proved into a logic with a more efficient calculus.

To provide adequate notions and notation for the translation operations we formally specify logics and mappings -

morphisms - between logics. We establish a notion of theorem proving by translation and refirtation.

Chapter 3: Order—Sorted Predicate Logic
Order-sorted predicate logic is the “target logic” into which the theorems to be proved are translated. Furthermore

it provides the syntax for axiomatizing the context structures. We introduce the basic notions of order-sorted

predicate logic as far as they are necessary for the CL formalism.

Chapter 4: Context Logic

Context Logic is an intermediate logic lying between the “source logic” and the “target logic”, order sorted
predicate logic. The translation from the “source logic” into Context Logic is the part which i s specific for each

source logic and has to be done by the designer of the source logic. The translation from Context Logic into
predicate logic is the part which is common for all source logics and is described in this chapter. The role of
Context Logic can be compared to the role, for example assembler languages or language like C play for the
compilation of highlevel programming languages.

Chapter 5 : Multi Moda] Logic
To illustrate the Context Logic methodology and to demonstrate its usefulness, we design a specific “source logic”

using the CL tools. It is an extension of the first-order modal logics D, T, D4 and S4, allowing simultaneous use
of accessibility relations with different properties, indexed modal operators, 3 true ‘eventually’ operator and some
‘until’ operators. We give interpretations of multi modal logic as a temporal logic, a process logic, an action logic
and an epistemic logic.

Chapter 6: Summary .
The final conclusion of this work is that a large class of nonclassical logics can be handled efficiently with
classical methods. We summarize the limits of the CL method and discuss further extensions.

Although most of the logical notions are formally defined within this work, we assume some familiarity with the
standard predicate and modal logic as well as some knowledge about universal algebra and automated theorem
proving. Some knowledge about the basic ideas of epistemic logics would also be helpful. Standard references are
[Chang&Lee 73], [Fitting 83], [Grätzer 79], [Loveland 78], [Hintikka 62], [Hughes&Cresswell 68], [Smullyan
68].

12

Chapter Two

Logic Morphisms

The main idea of the Context Logic methodology is to realize a theorem prover for a given logic by translating the

formula to be proved into a logic with an efficient calculus. This is essentially the same idea as the compilation

idea frequently used in the design of programming languages. Highlevel programming languages are usually not

interpreted directly, but compiled into an efficiently executable operation code of a processor. Unlike compiler

building, the construction of translators for logics has not yet been systematized and supported by standard

notions and methods. In this chapter we therefore try to systematize some of the well known notions about logics

with respect to the description of translators for logics. The schemes we are going to develop should cover all

kinds of two-valued logics with model theoretic semantics.

The kind of logics we are considering can be described by giving the syntax and its model theoretic semantics.

The syntax is specified by describing the signature, i.e. the basic alphabet of nonlogical symbols, and by giving

formation rules for terms and formulae. The description of the signature may already contain logical statements as

for example the subsort declaration 'integer' !: 'real' in a sorted logic. The fonnation rules for tenns and formulae

are in general also not so straightforward as in pure predicate logic. In some of the order-sorted logics very

complex mecharusms have to ensure that the terms and formulae are well-sorted. The model theoretic semantics is

usually dermed in three steps. The first step is to define the signature interpretation, i.e. the interpretation of the

nonlogical symbols. The signature interpretation itself is very often separated into the interpretation of the

nonvariable symbols, which is the basic information necessary to interpret closed formulae, some context

information as for example the initial world in modal logics, and into variable assignments which change

dynamically when a quantified formula is interpreted. The second step is to turn the signature interpretation into an

interpreter for terms by following the formation rules for terms. The last step is to define the satisfiability relation.

The satisfiability relation actually fixes the meaning of the logical symbols and allows to evaluate formulae to

'true' or 'false'.

Definition 2.1 Logics

A (two-valued) logic (with model theoretic semantics) is a tuple (syntax, semantics) where syntax is a triple

(1:, e, cp) consisting of

~ a set I: of signatures,

~ a function e that maps a signature L to a set of L-terms (or terms for short) and

~ a function cp that maps a signature L to a set of L-formulae (or formulae for short)

and semantics is a triple (T, e, 1=) consisting of

~ a function I that maps a signature L to the set of signature interpretations over L

(or L-interpretations for short) - each signature interpretation consists of a frame f, a context cand a

variable assignment 'JI-,

~ a function e that turns a signature interpretation into an interpreter for terms and

~ a satisfiability relation 1= E signature interpretations x formulae. ­

12

Chapter Two

Logic Morphisms

The main idea of the Context Logic methodology is to realize a theorem prover for a given logic by translating the
formula to be proved into a logic with an efficient calculus. This is essentially the same idea as the compilation
idea frequently used in the design of programming languages. Highlevel programming languages are usually not
interpreted directly, but compiled into an efficiently executable operation code of a processor. Unlike compiler

building, the construction of translators for logics has not yet been systematized and supported by standard
notions and methods. In this chapter we therefore try to systematize some of the well known notions about logics
with respect to the description of translators for logics. The schemes we are going to develop should cover all
kinds of two-valued logics with model theoretic semantics.

The kind of logics we are considering can be described by giving the syntax and its model theoretic semantics.

The syntax is specified by describing the signature, i.e. the basic alphabet of nonlogical symbols, and by giving
formation rules for terms and formulae. The description of the signature may already contain logical statements as _
for example the subsort declaration ‘integer’ E ‘real’ in a sorted logic. The formation rules for terms and formulae
are in general also not so straightforward as in pure predicate logic. In some of the order-sorted logics very

complex mechairisms have to ensure that the terms and formulae are well-sorted. The model theoretic semantics is

usually defined in three steps. The first step is to define the signature interpretation, i.e. the interpretation of the
nonlogical symbols. The signature interpretation itself is very often separated into the interpretation of the
nonvariable symbols, which is the basic information necessary to interpret closed formulae, some context
information as for example the initial world in modal logics, and into variable assignments which change

dynamically when a quantified formula is interpreted. The second step is to turn the signature interpretation into an

interpreter for terms by following the formation rules for terms. The last step is to define the satisfiability relation.
The satisfiability relation actually fixes the meaning of the logical symbols and allows to evaluate formulae to
‘true’ or ‘false’.

Definition 2 .1 Log ics
A (two-valued) logic (with model theoretic semantics) is a tuple (syntax, semantics) where syntax is a triple

(Z, 6 , (p) consisting of
> a set Z of signatures,
> a function 6 that maps a signature 2 to a set of E-terms (or terms for short) and
> a function (p that maps a signature Z to a set of Z-formulae (or formulae for short)

and semantics is a triple (I, ® , t=) consisting of
> a function I that maps a signature 2 to the set of signature interpretations over 2

(or Z-interpretations for short) - each signature interpretation consists of a frame 1", a context Cand a

variable assignment ‘V -,
> a function @ that turns a signature interpretation into an interpreter for terms and
> a satisfiability relation t: e signature interpretations x formulae. I

13

Example: With the above notions, pure predicate logic would be described as follows:

~ A signature is a set of variable, function and predicate symbols.

They are separated according to their arity. E is the set of all these signatures.

~ The function eis essentially the inductive defmition of tenns.

~ The function <p is essentially the inductive defmition of fonnulae.

~ The function I assigns to each signature ~ the set of ~-structures

(which are essentially ~-algebras) and variable assignments.

Contexts are irrelevant for predicate logic.

~ The function E> turns a signature interpretation into an intepreter for terms by lifting variable assignments to the

induced homomorphisms from the term algebra into the ~structure.

~ 1= is the usual satisfiability relation. •

A specification (E, 1) in a logic L is a signature :E together with a set of L-formulae !f.

Definition 2.2 Satisfiability

~ Given a logic L and an L-signature L, a E-fonnula :ris called L-satisfiable (or simply satisfiable)

iff S 1= :rfor some signature interpretation S (S satisfies '1).

~ A ~interpretation satisfies a specification s= (L, 1) iff it satisfies all formulae in :F.

~ A signature interpretation satisfying a formula or specification S is called a model for S.

~ S is unsatistiable iff it is not satisfiable.

~ A L-formula :ris a theorem (or tautology) iff SF :rfor all ~interpretationsS. •

Usually there is a notion of closed formulae in a logic. In a closed formula all variables are bound by

quantifiers. Models for closed formulae are independent of variable assignments. That means whenever a closed

formula :ris satisfied by an interpretation S = (1', C, 'J1 then (1', C, OJ1) satisfies rfor all variable assignments 11.
This is in general not the case for contexts. In modal logic, for example, satisfiability of closed formulae is usually

defined relative to an initial context, i.e. an initial world. Therefore contexts are in general an essential part of

models for formulae and specifications. Variable assignments are used in the satisfiability relation for recording

(semantical) bindings to variables during a recursive descent into formulae.

We are now going to define logic morphisms as satisfiability preserving mappings between logics. They consist

of a syntactial component, a mapping of signatures and fonnulae, and a semantical component, a mapping of

interpretations. The syntactical component is essentially the "compiler" that translates specifications from one logic

into another. The existence of the semantical component ensures that the syntactical translations map satisfiable

specifications to satisfiable specifications (soundness) and unsatisfiable specifications to unsatisfiable

specifications (completeness). With predicate logic as a target logic, a logic morphism allows theorem proving

by translation (into predicate logic) and refutation (for example with predicate logic resolution and

paramodulation).

13

Example: With the above notions, pure predicate logic would be described as follows:

> A signature is a set of variable, function and predicate symbols.
They are separated according to their arity. 2; is the set of all these signatures.

> The function 9 is essentially the inductive definition of terms.

> The function (p is essentially the inductive definition of formulae.

> The function I assigns to each signature 2: the set of ill-structures
(which are essentially E—algebras) and variable assignments.
Contexts are irrelevant for predicate logic.

> The ftmction ® turns a signature interpretation into an intepreter for terms by lifting variable assignments to the

induced homomorphisms from the term algebra into the E—structure.
> I= is the usual satisfiability relation. .

A specification ()3, ff) in a logic L is a signature E together with a set of E-formulae f.

Definition 2.2 Satisfiability
> Given a logic L and an L-signature 2, a E-formula ? is called L-satisfiable (or simply satisfiable)

iff 8 I: af for some signature interpretation 8 (8 satisfies :7).
A 2-interpretation satisfies a specification 5 : (Z, :7) iff it satisfies all formulae in :F.

A signature interpretation satisfying a formula or specification .Sis called a model for 5.
.5 is unsatisfiable iff it is not satisfiable.
A 2-formu1a T is a theorem (pr tautology) iff S I= SF for all Z—iriterpretations S . IY

Y
V

V

Usually there is a notion of closed formulae in a logic. In a closed formula all variables are bound by
quantifiers. Models for closed formulae are independent of variable assignments. That means whenever a closed
formula 9" is satisfied by an interpretation 8 = (f, c, % then (F., C. Vi) satisfies 9' for all variable assignments 1/3.
This is in general not the case for contexts. In modal logic, for example, satisfiability of closed formulae is usually
defined relative to an initial context, i.e. an initial world. Therefore contexts are in general an essential part of
models for formulae and specifications. Variable assignments are used in the satisfiability relation for recording
(semantical) bindings to variables during a recursive descent into formulae.

We are now going to define logic morphisms as satisfiability preserving mappings between logics. They consist
of a syntactial component, a mapping of signatures and formulae, and a semantical component, a mapping of
interpretations. The syntactical component is essentially the “compiler” that translates specifications from one logic
into another. The existence of the semantical component ensures that the syntactical translations map satisfiable
specifications to satisfiable specifications (soundness) and unsatisfiable specifications to unsatisfiable
specifications (completeness). With predicate logic as a target logic, a logic morphism allows theorem proving
by translation (into predicate logic) and refutation (for example with predicate logic resolution and
paramodulation).

14

Definition 2.3 Log~c Morphisms

A logic morphism is a mapping 'I' between two logics Li =«1:i' Si' q>i), (Ii,Si,l=i))' i =1,2.

It consists of the two components ('¥S' 'I'z) where

~ 'I'5 is a specification morphism mapping Lt-specifications to Lz-specifications.

'1'5 may contain the two components,

~	 '1'1> a signature morphism mapping Lt-signatures to Lz-signatures, and

~	 '1'1' a formula morphism mapping Lrformulae to Lz-formula such that

1:r formulae are mapped to '¥;E(1:t)-formulae, Le. \1'1: E :Et : ~E q>t(1:) => '1'1-1'> E q>2('¥;E(1:))

(In general, '1'5 not only translates formulae, but adds new symbols and formulae.)

~	 'I'Z is a bidirectional interpretation morphism, a mapping between Lt-interpretations and Lz-interpretations

ensuring satisfiability preservation, i.e.

~ if an Lt-specification Sis satisfied by 3 t then 'I'1S) is satisfied by '¥Z(3 t) (soundness) and

~ if '¥1S) is satisfied by ~2 then Sis satisfied by 'I'Z-t(32) (completeness) -

Examples: Transformation into negation normal form and Skolemization is a logic morphism from predicate

logic into the fragment of predicate logic without existential quantifier. Notice that only the preservation of

satisfiability is required. Skolemization is the typical example that transforms tautologies not necessarily into

tautologies. For example the tautology 3xPx v \1'x-.Px is transformed into Pa v \1'x-.Px which is satisfiable, but

not a tautology. Transformations of skolemized formulae into clauses is an example for a logic morphism which

preserves tautologies. _

Proposition 2.4 The composition of two logic morphisms is again a logic morphism.

The proof is straightforward. -
This property allows to link translation steps together or, the other way round, to break complicated translations

down into a sequence of simpler ones. We shall exploit this to decompose the translation from multi modal logic

(MM-Logic) to order-sorted predicate logic (OSPL) into a fIrst translation 'I' from MM-Logic to context logic (CL)

and further translation I1 from context logic to predicate logic.

MM

y~ I1.Q • CL --=-=----4.~ OSPL

~~
mainly semantics mainly syntax

I1 deals with the purely syntactical stuff of moving context information from the quantifier level or operator level

respectively to the term level, whereas '¥'s work mainly consists ofaxiomatizing the context structure and is

therefore closely oriented on the semantics of the source logic.

14

Definition 2.3 Logic Morphisms
A logic morphism is a mapping ‘P between two logics Li = ((Zi, ei, (pi) , (13,91, l=i)), i = 1,2.
It consists of the two components (‘Py WS) where
> ‘PS is a specification morphism mapping Ll-specifications to Lispecifications.

‘PS may contain the two components,
> ‘Pz, a signature morphism mapping Ll-signatures to LZ-signatures, and
> ‘PT, a formula morphism mapping LI-formulae to IQ-formula such that

21-formulae are mapped to ‘I’flZQ-formulae, i.e. VE e 21 : ‚Te (131(2) => ‘PTUO e (p2(‘PZ(Z))

(In general, T5 not only translates formulae, but adds new symbols and formulae.)
> ‘I’S is a bidirectional interpretation morphism, a mapping between Ll-interpretations and [Tinterpretations

ensuring satisfiability preservation, i.e.
> if an Ll-specification 5 is satisfied by 81 then T50) is satisfied by T3651) (soundness) and
> if ‘l’5(5) is satisfied by $2 then 5 is satisfied by ‘i’3'1(82) (completeness) I

Examples: Transformation into negation normal form and Skolemization is a logic morphism from predicate
logic into the fragment of predicate logic without existential quantifier. Notice that only the preservation of

satisfiability is required. Skolemization is the typical example that transforms tautologies not necessarily into
tautologies. For example the tautology Elx v Vx—Px is transformed into Pa v Vx—iPx which is satisfiable, but
not a tautology. Transformations of skolemized formulae into clauses is an example for a logic morphism which
preserves tautologies. I

Proposition 2.4 The composition of two logic morphisms is again a logic morphism.
The proof is straightforward. '

This property allows to link translation steps together or, the other way round, to break complicated translations

down into a sequence of simpler ones. We shall exploit this to decompose the translation from multi modal logic
(MM-Logic) to order-sorted predicate logic (OSPL) into a first translation ‘P from MM-Logic to context logic (CL)

and further translation H from context logic to predicate logic.

E

——> CL ’ OSPL

ot
he

r
lo

gi
cs

mainly semantics mainly syntax

H deals with the purely syntactical stuff of moving context information from the quantifier level or operator level
reSpectively to the term level, whereas T’s work mainly consists of axiomatizing the context structure and is
therefore closely oriented on the semantics of the source logic.

15

Chapter Three

Order-Sorted Predicate Logic

A number of many-sorted predicate logics have been developed so far. The different versions can be distinguished

by the structure of the sort information they can represent, whether it is just a flat list of sorts, a semilattice or

lattice, a feature sort structure etc., and by the kind of sort information for function and predicate symbols they can

handle. The minimal requisites we need to make context logic running are: A hierarchical sort structure, i.e. a

partial order, and overloaded (polymorphic) function sort declarations. As we have seen in the introduction,

overloaded function sort declarations like o:'W~'i'W'x'w~'I1W'~'W~t:w', o:'W~'i'W'x'W~sW'~'W~rtw'

etc. are necessary for the composition function o. The currently most advanced many-sorted predicate logic with a

full developed resolution and paramodulation calculus is that of Manfred Schmidt-Schauss [Schmidt-Schauss 88],

an extension of Walther's many-sorted predicate logic [Walther 87]. Schmidt-Schauss' logic fulfills the

requirements for Context Logic and even a bit more. In addition to overloaded function sort declarations of the

above kind it allows so called "term declarations" where it is possible to declare for example that the sort of terms

x:real*y:real are usually of sort 'real', but the special terms x*x-1 and x-t*x are of sort 'integer'. This special

feature is not necessary for the CL mechanisms themselves, but it makes the logics which are built with CL more

powerful.

Since Schmidt-Schauss' logic is new and quite complex, we briefly introduce its main notions. We follow in

principle the usual Tarski scheme for defining syntax and semantics of predicate logic, but we have to include

extra devices for handling the sort information.

In the sequel 'D(f) denotes the the domain of the function f.

3.1 Syntax

The syntax of the order-sorted predicate logic (OSPL) consists of the basic signature elements as there are

variable, function, predicate and sort symbols, furthermore there are declarations about the sort structure,

formation rules for general terms and formulae as well as formation rules for the special class of well sorted terms

and formulae.

An unsorted signature f consists of the three pairwise disjoint sets of symbols.

~ F~ the set of function symbols.

~ V~ the set of variable symbols.

~ p~ the set of predicate symbols.

A term declaration is a pair (t,S) usually written as t:S, where t is a nonvariable term and S is a sort symbol. If

t is of the form f(xt, ... ,xn), where the Xi are different variables, then we say t:S is a sort declaration for f,

otherwise it is a proper term declaration. We sometimes abbreviate sort declarations f(xl""'xn):S as

f:Slx ...xSn~S, where Si is the sort of the variable~.

A subsort declaration has the form RsS, where R and S are sorts. A predicate declaration is of the form

P:S1x ...xSn, where the Si are sorts.

15

Chapter Three

Order-Sorted Predicate Logic

A number of many-sorted predicate logics have been developed so far. The different versions can be distinguished

by the structure of the sort information they can represent, whether it is just a flat list of sorts, a semilattice or

lattice, a feature sort structure etc., and by the kind of sort information for function and predicate symbols they can

handle. The minimal requisites we need to make context logic running are: A hierarchical sort structure, i.e. a

partial order, and overloaded (polymorphic) function sort declarations. As we have seen in the introduction,

overloaded function sort declarations like oz‘W——)¢W’x‘W—->¢W’-—>‘W—-)‘W’, o:‘W—->¢W’X‘W—-)SW’-—>‘W->nW’
etc. are necessary for the composition function 0. The currently most advanced many-sorted predicate logic with a

full developed resolution and paramodulation calculus is that of Manfred Schmidt-Schauss [Schmidt-Schauss 88],

an extension of Walther’s many-sorted predicate logic [Walther 87]. Schmidt-Schauss' logic fulfills the

requirements for Context Logic and even a bit more. In addition to overloaded function sort declarations of the
above kind it allows so called “term declarations” where it is possible to declare for example that the sort of terms

x:real*y:real are usually of sort ‘real’, but the special terms x"‘x‘1 and x'1*x are of sort ‘integer’. This special
feature is not necessary for the CL mechanisms themselves, but it makes the logics which are built with CL more
powerful.

Since Schmidt-Schauss’ logic is new and quite complex, we briefly introduce its main notions. We follow in
principle the usual Tarski scheme for defining syntax and semantics of predicate logic, but we have to include
extra devices for handling the sort information.

In the sequel fit) denotes the the domain of the function f.

3.1 Syntax

The syntax of the order-sorted predicate logic (OSPL) consists of the basic signature elements as there are
variable, function, predicate and sort symbols, furthermore there are declarations about the sort structure,
formation rules for general terms and formulae as well as formation rules for the special class of well sorted terms
and formulae.

An unsorted signature 2‘: consists of the three pairwise disjoint sets of symbols.
> F2: the set of function symbols.
> VE the set of variable symbols.
> P): the set of predicate symbols.

A term declaration is a pair (t,S) usually written as t:S, where t is a nonvariable term and S is a sort symbol. If
t is of the form f(x1,...,xn), where the xi are different variables, then we say t:S is a sort declaration for f,
otherwise it is a proper term declaration. We sometimes abbreviate sort declarations f(x1,. . . ,xn):S as
f:Slx...><Sn——>S, where Si is the sort of the variable xi.
A subsort declaration has the form RES, where R and S are sorts. A predicate declaration is of the form
Plx. . .xSn, where the Si are sorts.

16

Definition 3.1.1 Sorted Signatures

A (sorted) signature ~ consists of

~ an unsorted signature f,
~ a set S~ of sorts

~ a function S: V~ ~ S such that for every sort S E SI:' there exist countably infinitely many variables

x E VI: with S(x) = S,

~ a set of subsort declarations, term declarations and predicate declarations.

We assume that the equality predicate =I: is in PI: and that for all sorts R,S the predicate declaration =~:RxS is also

inL •

For a signature ~ let E~ be the quasi-ordering on SI: defined by the reflexive and transitive closure of the subsort

declarations.

Definition 3.1.2 Well Sorted Terms, Atoms and Formulae

The set of well sorted terms TI:,S of sort S in the signature ~ is (recursively) constructed by the following

threemles:

~ x E TI:,S if S(x) EI: S

~ tE T~,s if tR E ~ and R EI: S

~ t[x/r] E TI:,S if t E T~,S, r E TI:,R and x E VI: such that R E~ S(x).

(t[x/r] means substituting r for x in 1.)

The set TI: of all ~-terms (well sorted terms) is defined as the union U {TI:,S I S E S~}.

The sort S(t) of a term t is the sort S of the greatest (with respect to set inclusion) TI: ,Scontaining 1.

We sometimes use t:S to denote that S = S(t) is the sort of t.

An atom P(t}, ... ,In) is well sorted if ~ E TI:,Si for i =1, ... ,0 and P:S}x... xS is a predicate declaration in~.
n

A well formed formula (well sorted) is a formula built with well sorted atoms and the logical connectives and

quantifiers ..." A, V, ~, <=>, \I, 3 in the usual way. We write \lx:S 1'and 3x:S 1'to indicate that the sort of the

variable is S. A formula is called closed when all variables x occur in the scope of a quantifier \Ix... or 3x....•

For any object 0, Vars(o) denotes the set of variables occurring in o.

We use a predicate E where sEt holds if s occurs as subterm in t.

Assumption

In the sequel we assume OSPL-specifications to contain the reflexive axiom for the equality symbol. This is

necessary for the completeness of the paramodulation calculus in OSPL.

3.2 Algebras and Homomorphisms

Algebras and homomorphisms are the basic building blocks for the defmition of the semantics of well sorted terms

and well formed formulae. A ~-algebra J'l for a signature ~ consists of a carrier set and a set of functions which

correspond to ~ in the right way. The carrier set is divided into subsets according to ~'s sort structure and the

domain-range relations of the functions in J'lmateh the corresponding term declarations. A special ~-algebra is the

algebra of free terms where the carrier set consists of the well sorted terms themselves and the functions are

constructor functions for terms, i.e. they take n terms t}, ... ,1n and create a new term f(tI, ... ,In). This fact can be

exploited to define the semantics of terms just by an homomorphism from the free term algebra into a

16

Definition 3.1.1 Sorted Signatures
A (sorted) signature 2 consists of

> an unsorted signature i,
> a set S: of sorts
> a fimction S: V): ——> S such that for every sort S e 52:: there exist countably infinitely many variables

x e V}: With S(x) = S,
> a set of subsort declarations, term declarations and predicate declarations.

We assume that the equality predicate =}: is in PE and that for all sorts R,S the predicate declaration =EsS is also
in Z. I

For a signature 2 let 5: be the quasi-ordering on S): defined by the reflexive and transitive closure of the subsort
declarations.

Definition 3 .1 .2 Well Sorted Terms, Atoms and Formulae
The set of well sorted terms T2,s of sort S in the signature 2 is (recursively) constructed by the following
three rules:

> x e TE,S if S(x) 52 S
> t e T,;S i f tReZandR SES
> t[x/r] e Tz,s if t e TLS’ r & T&R and x e VE such that R E); S(x).

(t[x/r] means substituting r for x in t.)
The set Tr. of all Z—terms (well sorted terms) is defined as the union Unis I S e SE}.
The sort S(t) of a term t is the sort S of the greatest (with respect to set inclusion) T23 containing t.
We sometimes use t:S to denote that S = S(t) is the sort of t. '
An atom P(t1,...,tn) is well sorted if ti 6 TE,Si for i =1,...‚n and s lx . . .xSn is a predicate declaration in 2.

A well formed formula (well sorted) is a formula built with well sorted atoms and the logical connectives and
quantifiers ——„ A, V, :>, <=>, V, El in the usual way. We write Vx:S :7 and 3x:S f to indicate that the sort of the

variable is S. A formula is called closed when all variables it occur in the scope of a quantifier Vx. . . or Elx. . .. I

For any object o, Vars(o) denotes the set of variables occurring in c.
We use a predicate e where s e tholds if 5 occurs as subterm in t.

Assumption

In the sequel we assume OSPL-specifications to contain the reflexive axiom for the equality symbol. This is

necessary for the completeness of the paramodulation calculus in OSPL.

3.2 Algebras and Homomorphisms

Algebras and homomorphisms are the basic building blocks for the definition of the semantics of well sorted terms

and well formed formulae. A E-algebra It for a signature 2 consists of a carrier set and a set of functions which
correspond to E in the right way. The carrier set is divided into subsets according to 2’s sort structure and the

domain-range relations of the ftmctions in flimatch the corresponding term declarations. A special Z-algebra is the

algebra of free terms where the carrier set consists of the well sorted terms themselves and the functions are

constructor functions for terms, i.e. they take 11 terms t1,...,tr1 and create a new term f(t1,. . .,tn). This fact can be

exploited to define the semantics of terms just by an homomorphism from the free term algebra into a

17

corresponding ~:-algebra. Such an homomorphism is actually an interpreter which evaluates terms in a given

algebra.

As an auxiliary defInition we fIrst introduce ~-quasi-algebras as algebras which need not respect the subsort and

term declarations in ~.

Definition 3.2.1 ~-Quasi-AIgebras

A ~-quasi.algebra 5t for a signature ~ consists of a carrier set A, a partial function f;t:Aarity(fL.~A (with domain

'1J(h» for every function symbol f in ~, a nonempty set S;t l;; A for every sort S, such that A is the union of the

denotations for the sort symbols in ~, Le. A = U {S~ I S E S1:}' •

Definition 3.2.2 ~.Assignments

Let 5tbe a ~·quasi-algebra. We say a partial mapping cp:V1: ~ A is a partial ~-assignment,iff cp(x) E S(x)~

for every variable x E 2>(cp). If cP is a total function, we call it a ~-assignment. The homomorphic extension

CPh of a (partial) ~-assignment cp:V1: ~ A on T1: is defmed as a (partial) function CJ>h:T1: ~ A as follows:

~ CJ>h(x):= cp(x) for all ~variables x E l:(cp) and

~ for every f(sl, ... ,sn) E T1::

ifsiE V(cph)fori= 1,... ,nand(CPhsl,· .. ,CPhsn)E 2>(f;tJ

then f(sl, ... ,sn) E V(CPh) and CPh(f(sl"",sn» := f;t(CPhsl'"'' CPhsn)' •

A ~-assignment assigns values to variable symbols and therefore completes the interpretation of terms in a given

algebra. Thus, the corresponding homomorphic extension allows interpretation of arbitrary non-ground terms in

that algebra. Now we can give the fmal defmition for ~-algebras.

Definition 3.2.2 ~-AIgebras

A ~-algebra 5t for a signature ~ is defined as a ~-quasi-algebra 5t that satisfies the following additional

conditions:

~ IfRs Sisin~thenR;t ~S;t

~ For all term declarations tS E ~ and for every partial ~-assignment cp:V1: ~ A with

Vars(t) ~ V(cP): t E V(q>h) and CJ>h(t) E S~. •

The next lemma is actually the many-sorted equivalent of the well known fact that fIrst-order terms constitute the

domain (Herbrand universe) of the Herbrand interpretations.

Lemma 3.2.3 Term AIgebras are ~-AIgebras

The term algebra of well-sorted terms is a ~-algebra with carrier set T1: if we defme:

~ Sn:= T1:,5 for every sort S E S1:'

~ V(fTi>:= ((sl, ... ,sn) I f(sl, ... ,sn) E T1:}'

~ fn(sl,· .. ,sn):= f(sl,· .. ,sn)· •

17

corresponding Z-algebra. Such an homomorphism is actually an interpreter which evaluates terms in a given

algebra.
As an auxiliary definition we first introduce Z-quasi-algebras as algebras which need not respect the subsort and

term declarations in 2.

Definition 3.2.1 Z-Quasi-Algebras
A Z-quasi—algebra 2 for a signature 2 consists of a carrier set A, a partial function f fl:A““’i‘3'(f)-—J>A (with domain

®(fA)) for every function symbol f in E, a nonempty set Sa ; A for every sort S , such that A is the union of the

denotations for the sort symbols in Z, i.e. A = U [Sal S e Sz} - I

Definition 3.2 .2 E-Ass ignments

Let flbe a E-quasi-algebra. We say a partial mapping (pzvz —> A is a partial Z-assignment, iff (p_(x) e S(x)fi
for every variable x e @(cp). If (p is a total function, we call it a Z-assignment. The homomorphic extension
(ph of a (partial) E-assignment ‘9s -—-> A on T): is defined as a (partial) function tph:Tz —> A as follows:

* (ph(x) := tp(x) for all Z-variables x e map) and
’ for every f(sl,...,sn) e TE:

if si e 0((ph) for i = l , . . . , n and (cphsl‚..., (phsn) e Mfg}

then f(sl,...,sn) e ®(cph) and (ph(f(s1,...,sn)) := f„(<phs1,..., (phsn). I

A E—assignment assigns values to variable symbols and therefore completes the interpretation of terms in a given
algebra. Thus, the corresponding homomorphic extension allows interpretation of arbitrary non- ground terms in
that algebra. Now we can give the final definition for E-algebras.

Definition 3.2.2 E-Algebras
A Z-algebra filfor a signature 2 is defined as a E-quasi-algebra it that satisfies the following additional
conditions: ‘

> I fRE S i s inE thenR/q QSa

” For all term declarations t:S e 2 and for every partial Iii-assignment <p:VE —-> A with
Vars(t) c; map): t e 50((ph) and (ph(t) e S„. .

The next lemma is actually the many-sorted equivalent of the well known fact that first-order terms constitute the
domain (Herbrand universe) of the Herbrand interpretations.

Lemma 3.2 .3 Term Algebras are E-Algebras
The term algebra of well-sorted terms is a Z-algebra with carrier set T2 if we define:

ST): := T2,s for every sort S e SE.
” af“) := {(s1, . . . , s„) I f(s1‚...‚sn) 6 TE}.

fT2(sl,...,sn) := f(s1,...,sn). I

18

Definition 3.2.4 ~-Homomorphisms

Let ~ be a signature. A ~-homomorphism is a mapping q>:J'l~1i from a ~-algebra J'l to a ~-algebra 1i such that:

~ q>(S~ !::: Sqj for all S e S~.

~ CP(1J(f~) !::: 1J(f~ for all f e F~.

~ If (al""'~) e 1J(f~ then q>(fJot(al, ... ,an»=f~q>al, ... ,q>an)' ­

In particular the homomorphic extensions of variable assignments V~ ~ A are ~homomorphisms from the term

algebra into the algebra 51. They will be used for the interpretation of formulae.

3.3 Semantics

A ~algebra does not contain objects that correspond to predicate symbols. These will be added in the definition of

~·structures before we can go on and define the semantics for OSPL-formulae.

Definition 3.3.1 ~-Structures

A ~·structure J'l is a ~-algebra which has additional denotations PJot for every predicate symbol P Eo P~, such that

i) PJot is a relation with PJot !::: JtlIity(P)

ii) =Jot is the identity on J'l.

A ~-homomorphism of ~-structures q>:J'l~1i is a ~-homomorphism of the underlying ~-algebras satisfying in

addition (al, ... ,an) e PJot=>(q>al, ... ,q>an)e Pqj -

Now we can finally defme the semantics of well formed formulae consisting of a ~-interpretation for terms and

atoms and a satisfiability relation for formulae.

Definition 3.3.2 ~-Interpretations

Let s= 0:, 1) be a ~-specification. A ~-interpretation 5 =(!M, ~ for .'Fis ~-structure M together with a

~-assignment ~ V~~ M.

Since T~ is a free ~-structure, 'JIinduces a ~-homomorphism 'Jlh:T~~M. Therefore we need not distinguish

between (!M, 'J1 and (!M, 'JIh). We use 5(t) as an abbreviation for 'JIh(t). -

Notational Conventions

In the sequel we try to observe the convention to write syntactical objects with normal letters and semantical

objects with italics.

5[x/~ denotes the interpretation 5' that is like 5, but maps x to -t. ­

Definition 3.3.3 The Satisfiability Relation

The satisfiability relation F between ~-interpretations and formulae is defined as follows:

Let 5 =(M, 'J1 be a ~-interpretation

5 F P(tl""'~) iff (5(tl), ... ,5(~» e PM

5 F Vx:S .'F iff for all ~e S9ti- 5[x/~ F .'F

5 F 3x:S .'F iff there is an ~e SM such that 5[x/~ F .'F

The remaining logical connectives are interpreted as usual. -

18

Definition 3 .2 .4 E-Homomorphisms
Let E be a signature. A 2-homomorphism is a mapping (pm—>23 from a Z-algebra 2 to a E—algebra @ such that:

)» @(Sfl)gS$forallS e S}:-

> (p(1)(ffl)) «; 06.3) for all f 6 FE.
)» If (a1....,an) e Mfg) then (p(f J71(a1....,.an)) = fß((pa1‚.„,(pan). I

In particular the homomorphic extensions of variable assignments V): —-> A are Z-homomorphisms from the term
algebra into the algebra fl. They will be used for the interpretation of formulae.

3 . 3 Semantics

A Z—algebra does not contain objects that correspond to predicate symbols. These will be added in the definition of
E—structures before we can go on and define the semantics for OSPL-formulae.

Definition 3.3.1 2-Structures
A Z-structure fit is a E—algebra which has additional denotations P„ for every predicate symbol P é PE, such that

i) Pa is a relation with P„ c_: flafitya")
ii) =.91 is the identity on 54.

A E—homomorphism of E—structures (pm—>93 is a E-homomorphism of the underlying Z—algebras satisfying in
addition (a1....,an) e Pa : ((pa1,...,(pan) e P.B I

Now we can finally define the semantics of well formed formulae consisting of a 2-interpretation for terms and
atoms and a satisfiability relation for formulae.

Definition 3.3.2 Z-Interpretations
Let 5 == (2, 9) be a Z—specification. A E-interpretation 3 = (M, W) for ? is Z-structure EM together with a
E-assignment ‘Vi VE—mf.
Since TE is a free Z-structure, ‘Vinduces a E-homomorphism 'tTz—MM. Therefore we need not distinguish
between (SM, % and (M, 'Vh). We use S(t) as an abbreviation for ‘Vh(t). I

Notational Conventions
In the sequel we try to observe the convention to write syntactical objects with normal letters and semantical
objects with italics.

8[X/x] denotes the interpretation SS ’ that is like 3 , but maps x to :(, I

Definition 3.3.3 The Satisfiability Relation
The satisfiability relation t= between E-interpretations and formulae is defined as follows:
Let 5 = (M, ‘M be a 2-interpretation

8 I: P(t1,...,tn) iff (3(t1),...,3(tn)) 6 PM
8 t= s s ff iff for all age SM: SDK/x] |= T
3 != 3x:S :7 iff there is an {& SM such that8[x/2c] != 17

The remaining logical connectives are interpreted as usual. '

19

Summarizing we comprise the above definitions into the following definition of order-sorted predicate logic

(OSPL):

Definition 3.3.4 OSPL

Following the defInition scheme of def. 2.1 for logics, we define OSPL as the tuple (syntax, semantics) where

syntax consists of

~ the set of all sorted signatures (def. 3.1.1),

~ the formation rules for well sorted terms (def. 3.1.2), Le. the function I. ~ TE.

~ the formation rules for well sorted fonnulae (def. 3.1.2)

and semantics consists of

~ the function that maps a signature I. to all L-interpretations (def. 3.3.2)

~ the function that takes a L-interpretation (9)l; 'J1 with a I.-assignment 'J'and maps it tothe I.-interpretation

(!M, 'J'h) where 'J'h is the induced L-homomorphism 'J'h:TE~!M.

~ the satisfiability relation 1= of def. 3.3.3.	 •

3.4 Quantification over Functions

In sorted predicate logics it is no problem to allow quantification over domain elements as well as over functions at

the same time. If for example there is a (domain) sort D, you can introduce a sort 'D~D' and axiomatize this sort

such that it describes really functions over D. The second-order syntax with variables in functional positions can

be avoided by introducing an explicit 'apply'- function. Instead of Vf:'D~D' P(f(a» for example one writes

Vf:'D~D' P(apply(f, a» which is first-order. With this trick you can't really encode second-order logic in

first-order logic. What you loose is that a second-order quantification Vf:D-)D... quantifies over all functions

over D whereas a sorted frrst-order quantification Vf:'D~D' ... quantifies only over the functions which are in the

interpretation of the sort 'D-)D'. With first-order axioms it is in general not possible to enforce that these are

always all functions over D.

In Context Logic we need the "functional sorts" to quantify over context access functions, for example functions

'W~W' which map worlds to accessible worlds in Kripke structures. In this application it is not only not

necessary to quantify over all functions W -) W, it would even be wrong. A second-order quantifIcation

Vu:W~W ... as a replacement for the cooperator would denote not only the accessible worlds, but all worlds.

Therefore with our usage of functional sorts in CL we are on the safe first-order side.

Introducing first-order functional sorts means axiomatizing the 'apply'-function and the functional composition

appropriately. This can be done in the following way:

Definition 3.4.1 (Functional OSPL-Specifications)

A functional specification in OSPL is a specification (I., !f) consisting of a functional signature and the

axiomatization for the two distinguished symbols J, (application) and 0 (composition). We assume the functional

sorts SF to be a subset of the sort symbols in L where ~E is a semilattice, Le. for each pair Si,Sk E SF the

greatest lower bound GLB(Si' Sk) is unique if it exists. The functions we are going to define operate on the

denotations of the sorts in SF' The functional part of I. is as follows:

1.	 The functional sorts may be 'Sl, ... ,Sn~qs', Si and SE SF'

Different symbols q may be used to distinguish different sets of functions SIx, .. "xS ~S.n

(For example in subsequent chapters we shall use 'W~r{JW' to denote functions mapping worlds to accessible

worlds in the basic accessibility relation and 'W~rw' to denote functions corresponding to its reflexive

closure.)

19

Summarizing we comprise the above definitions into the following definition of order-sorted predicate logic
(OSPL):

Definition 3.3.4 OSPL
Following the definition scheme of def. 2.1 for logics, we define OSPL as the tuple (syntax, semantics) where
syntax consists of

> the set of all sorted signatures (def. 3.1.1),
> the formation rules for well sorted terms (def. 3.1.2), i.e. the function E ——-> T}:-

> the formation rules for well sorted formulae (def. 3.1.2)

and semantics consists of
> the function that maps a signature Z to all E—interpretations (def. 3.3.2)

> the function that takes a E-interpretation (M; M with a Z—assignment 'Vand maps it tothe E-interpretation
(M, ‘l/h) where ’Vh is the induced Z-homomorphism ‘tTE—aM.

> the satisfiability relation != of def. 3.3.3. I

3 .4 Quantification over Functions

In sorted predicate logics it is no problem to allow quantification over domain elements as well as over functions at
the same time. If for example there is a (domain) sort D , you can introduce a sort ‘D-—>D’ and axiomatize this sort

such that it describes really functions over D. The second-order syntax with variables in functional positions can
be avoided by introducing an explicit ‘apply’- function. Instead of Vf:‘D——>D’ P(f(a)) for example one writes
Vf:‘D—>D’ P(apply(f, a)) which is first-order. With this trick you can’t really encode second-order logic in

first-order logic. What you loose is that a second-order quantification Vf:D—~>D. . . quantifies over all functions

over D whereas a sorted first-order quantification Vf:‘D-—>D’ quantifies only over the functions which are in the
interpretation of the sort ‘D—)D’. With first-order axioms it is in general not possible to enforce that these are
always all fimctions over D.

In Context Logic we need the “functional sorts” to quantify over context access functions, for example functions
‘W-—>W’ which map worlds to accessible worlds in Kripke structures. In this application it is not only not
necessary to quantify over all functions W —> W, it would even be wrong. A second-order quantification
Vu:W—>W as a replacement for the n-operator would denote not only the accessible worlds, but all worlds.
Therefore with our usage of functional sorts in CL we are on the safe first-order side.

Introducing first-order functional sorts means axiomatizing the ‘apply’-function and the functional composition
appropriately. This can be done in the following way:

Definit ion 3 .4 .1 (Functional OSPL-Specifications)
A functional specification in OSPL is a specification (2, 3;) consisting of a functional signature and the
axiomatization for the two distinguished symbols l (application) and o (composition). We assume the functional
sorts SF to be a subset of the sort symbols in Z‘. where EZ is a semilattice, i.e. for each pair Si‚Sk 6 SF the
greatest lower bound GLB(Si, Sk) is unique if it exists. The functions we are going to define operate on the
denotations of the sorts in SF. The functional part of 2“. is as follows:

1 . The functional sorts may be ‘81,...,Sn——>‘IS’, Si and S 6 SF-

Different symbols ‘1 may be used to distinguish different sets of functions Slx,. . ..><Sn——->S.
(For example in subsequent chapters we shall use ‘W—af’W' to denote functions mapping worlds to accessible
worlds in the basic accessibility relation and ‘W——>‘W’ to denote functions corresponding to its reflexive
closure.)

20

2.	 Whenever a declaration 'SI,... ,sn-?qs' 5 'D1, ... ,Dn-?IJ)' E ~ then Di 5 E Si for i = 1,... ,0 and S 5E D and

'S2"",Sn-?~' 5 'D2,... ,Dn-?IJ)' E ~ (see comment below).

3.	 The function declarations for .1. are: .1.: 'SI"",Sn-?qs' X SI -? 'S2"",Sn-?~'for every sort 'SI"",Sn-?Qs',

and 'S2,... ,Sn-?Qs' exists as a sort symbol.

(For our purposes we need only application to one argument at a time, Le. we use function currying when

necessary.)

4.	 The sort declarations for 0 have the following structure:

o:'D1, ... ,Dn,SI-?iS2' x 'El, ... ,En,S2~S3' -? 'G1, ... ,Gn,sl-?kS3' where Gi := GLB(Di,Ei) for i = l, ... ,n,

and the set of all these declarations is associative, i.e. whenever o:F1 x F2 -? F 12, o:F12 x F3 -? F 123 ,

o:F2x F3 -? F23 , o:F1 x F23-? F'123 are defined for functional sorts F1, F2 and F3 then F123 =F'123' or

simply (Fl x F2) x F3 =F1 X (F2 x F3). Furthermore the declarations are maximal. All combinations which

are posssible according to these rules have to be allowed for o.

(For the composition of m-ary functions the forst m-I arguments are treated as parameters and only functions

with the same parameters are composed, c.f. comment below.)

5.	 !Fcontains all axioms of the following kind:

a) 'ii'f,g:'Sl"",Sn-?qs' ('ii'x:Sl .1.(f, x) = .1.(g, x» ~ f = g.

(Functions operating in the same way are identical.)

b) 'ii'f:'Sl-?iS2' 'ii'g:'S2-?jS3' 'ii'x:Sl .1.«f 0 g), x) =.1.(g, .1.(f, x» (defrnition of composition.)

c) Whenever o:'D1,... ,Dn,Sl-?iS2' x 'E1,... ,En,S2-?js3' is defmed and n > 0 then

'itf:'D1,···,Dk,Sl-?iS2' 'ii'g:'E1,· .. ,Ek,s2-?jS3' 'ii'xl:GLB(D1,E1), ... , 'ii'xk:GLB(Dk,Ek)

.1.«f 0 g), xl'''''xk) =.1.(f, xl, ... ,xk) 0 .1.(g, xl,,,,,xk) •

Condition 2 which reverses the sort hierarchy of functional sorts compared to the sort hierarchy of its component

sorts on the domain side seems to be counterintuitive. A simple example, however, convices that this is okay.

Suppose we have a sort A, the two sorts 'integer' 5 'real' and the two functional sorts 'integer-?A' and

'real-?A'. Now, every 'real-?A'-function is certainly applicable to integers and is therefore also an

'integer-?A'-function, but not vice versa. Thus, the subsort relationship must be 'real-?A' 5 'integer-?A'.

The composition of functions with more than one argument is asymmetrical in the arguments. The first n-l

arguments are treated different to the last argument. For example the composition of the two arithmetic functions +

and * yields a function (+ 0 *) with (+ 0 *)(3,4) = 3 * (3 + 4) = 21. Actually to describe functions like + and * is

not the intention here. The kind of n-place functions we need are essentially parametrized one-place functions, i.e.

f(xl""'xn) =fx1, ... ,xn_l(x), and we compose only one-place functions with the same parameter vector. The n

one-place functions will be used to describe general context transitions and the parameters will be used in logics

with parametrized operators to enforce context switches only along labeled transitions in the context structure

where the labels serve as parameters in the transition functions. The semantics of a parametrized modal operator

like 0a for example is "0aP is true in a world 'W iff P is true in all worlds which are accessible via a-Iabeled

transitions". ClaP can therefore be translated into "iIx:'D,W-?W' P(.1.(x,a». The 'D,W-?W'-functions are

axiomatized such that a function ~E 'D,W-?W'C' applied to ac yields a function W -? W which moves only along

aClabeled transitions. The composition of two such functions with the same parameters therefore corresponds to

moves in the context structure along transitions with the same label.

In the sequel we shall use sort sym~ols '"S-?S'" as well as expressions "s -? S" with the usual meaning.

"'S-?S'" in quotation marks is a syntax element and "S -? S" is a semantic expression. Don't mix !hem up.

20

2 . Whenever a declaration ‘51,...,Sn-—->‘lS’ E ‘D1,...,Dn——>’D’ e 2 then Di 5}: S i for i = 1,. . . ,n and S E}: D and
‘52,...,Sn—->qS’ E ‘D2,. ..,Dn—>‘D’ e 2 (see comment below).

3 . The function declarations for J. are: l : ‘81,...,Sn—>qS’ x 31 —> ‘Sz,...,Sn—->qS’ for every sort ‘Sl,...,Sn——>qS’,

and ‘Sz,...,Sn—>‘IS’ exists as a sort symbol.
(For our purposes we need only application to one argument at a time, i.e. we use function currying when
necessary.)

4 . The sort declarations for 0 have the following structure:
oz‘D1,...,Dn,Sl—>i82’ x ‘E1,...,En,Sz—>5$3’ —> ‘G1,...,Gn,Sl——>kS3’ where Gi := GLB(Di,Ei) for i = 1,...,n‚
and the set of all these declarations is associative, i.e. whenever ozFl x F2 —-> F12= o:F12 x F3 ——> F123,
<>z x F3 —> F23, oiFl x F23-——> F’123 are defined for functional sorts F1, F2 and F3 then F123 = F’123, or
sirnply (F1 x F2) x F3 = F1 x (F2 x F3). Furthermore the declarations are maximal. All combinations which

are posssible according to these rules have to be allowed for o.

(For the composition of m—ary functions the forst m-l arguments are treated as parameters and only functions
with the same parameters are composed, c.f. comment below.)

5 . .?”contains all axioms of the following kind:
a) Vf,g:‘Sl,...,Sn—>qS’ (Vx:Sl ~L(f, x) = i(g, x)) => f = g.

(Functions operating in the same way are identical.)
b) Vf:‘Sl-—>i82’ n‘sz—fls; s s1 tar o g), x) = t(g, ta, x)) (definition of composition.)
0) Whenever oz‘D1,...,Dn,Sl—>iSZ’ x ‘E1,...,En,SZ—>jS3’ is defined and n > 0 then

Vf:‘D1,...,Dk,Sl—>i82’ n‘E1,...,Ek,Sz—>jS3’ VxlzGLB(D1,E1), kzGLB(Dk,Ek)
~L((fo g), x1,...,xk) = $(f, x1,...‚xk) o ¢(g, x1,...,xk) I

Condition 2 which reverses the sort hierarchy of functional sorts compared to the sort hierarchy of its component
sorts on the domain side seems to be counterintuitive. A simple example, however, convices that this is okay.
Suppose we have a sort A, the two sorts ‘integer’ E ‘real’ and the two functional sorts ‘integer—>A’ and
‘real—> A’ . Now, every ‘real—9 A’-function i s certainly applicable to integers and i s therefore also an

‘integer—aAfifunction, but not vice versa. Thus, the subsort relationship must be ‘real—iA’ E ‘integer—aA’.

The composition of functions with more than one argument i s asymmetrical in the arguments. The first n- l
arguments are treated different to the last argument. For example the composition of the two arithmetic ftmctions +

and * yields a function (+ o *) with (+ o *)(3, 4) = 3 * (3 + 4) = 21. Actually to describe functions like + and * is
not the intention here. The kind of n-place functions we need are essentially parametrized one-place functions, is.
f(x1,...,xn) = fx1 , . . . , xn -1 (xn)=~ and we compose only one-place functions with the same parameter vector. The
one-place functions will be used to describe general context transitions and the parameters will be used in logics
with parametrized operators to enforce context switches only along labeled transitions in the context structure

where the labels serve as parameters in the transition functions. The semantics of a parametrized modal operator
like Eta for example is “El aP is true in a world 'Wiff P is true in all worlds which are accessible via a-labeled
transitions”. DaP can therefore be translated into Vx:‘D,W—>W’ P(i(x,a)). The ‘D,W—>W’-functions are

axiomatized such that a ftmction ;ce ‘D,W—->W’c‚ applied to ac yields a function W —> W which moves only along

a Clabeled transitions. The composition of two such functions with the same parameters therefore corresponds to

moves in the context structure along transitions with the same label.

In the sequel we shall use sort symbols “‘S—->S’ ” as well as expressions “S —> S” with the usual meaning.

“ ‘S——>S’ ” in quotation marks is a syntax element and “S ——> S” is a semantic expression. Don’t mix them up.

21

Example: The main part of the functional OSPL-specification of MM-Logic (chapter 5) is:

1. Functional Sorts:

'W~f!JW', 'W~rw', 'W~tw', 'W~nw', 'D,W~f!JW', 'D,W~rw', 'D,W~tw', 'D,W~nw',

2.	 Subsort Declarations:

3.	 Sort Declarations for J.:

J.:	 'D,W~f!JW' x D ~ 'W~f!JW'

'D,W~rw' x D ~ 'w~rw'

'D,W~tw' xD~ 'w~tw'

'D,W~rtW' x D ~ 'w~rtw'

4.	 Sort Declarations for 0:
0:	 'W~PW' x 'W~qw' ~ 'W~SW'

'D,W~PW' x 'D,W~qW' ~ 'D,W~sW'

where s is derived from p and q with the following matrix:

~ 0 r t rt

0 t t t t

r t rt t rt

t t t t t

rt t rt t rt

5.	 Axiomatization of .L and 0:
a) \If,g:'w~nw' Vx:W .L(f, x) =.L(g, x)) =::) f =g.

\If,g:'D,W~rtW' Vx:D J.(f, x) = .L(g, x)) =::) f = g

b) \If: 'w~nw' Vg:'w~qw' Vx:W .L«f 0 g), x) =.L(g, .I.(f, x))

c) \If:'D,W~nw' Vg:'D,W~qW' Vx: D .L«f 0 g), x) =.L(f, x) 0 .L(g, x)
 -
Lemma 3.4.2 is associative in functional OSPL-specifications. 0

Proof: Let f:Fr, g:Fg and h:Fh where F f := 'Df1, ... ,Drn,St~iS2" Fg := 'Dgt, ... ,Dgn,S2~jS3" Fh :=

·Dht, ... ,Dhn,S3~kS4" and (Ft x F2) x F3=Ft x (F2 x F3) in the sense of 3.4.1,4 holds.

We show the associativity of 0 for the two cases:

Case: n =O.

Let x:St .I.«f 0 g) 0 h), x) (f 0 g): 'Sl~ijS3'

= .L(h, .I.«f 0 g), x)) (def. 3.4.1,5b)

= .L(h, J.(g, .L(f, x)) J.(f, x):S2 (def. 3.4.1,5b)

= .L«g 0 h), .L(f, x)) (g 0 h):'S2~jkS3' (def. 3.4.1,5b)

= J.«f 0 (g 0 h)), x)

=::) (f 0 g) 0 h) = (r 0 (g 0 h)) (def. 3.4.1,5a)

Case: n>O

Let Xj:Dfi .L«f 0 g) 0 h), Xt, ,xn)

= .I.«f 0 g), Xt, ,xn) 0 .\.(h, Xt, ... ,xn) (def. 3.4.1,5c)

= (.\.(f, Xt, ,xn) 0 .\.(g, x1' ,xn)) 0 .L(h, xt, ,xn) (def. 3.4.1,5c)

= .\.(f, Xt, ,xn) 0 (.L(g, Xt, ,xn)) 0 .L(h, Xt, ,xn)) .L(f, xl, ... ,xn):·Sl~iS2' (first case)

= J.(f 0 (g 0 h), Xt, ... ,xn) (def.3.4.1,5c)

=::) (f 0 g) 0 h) = (f 0 (g 0 h))	 (def. 3.4.1,5a) _

21

Example: The main part of the functional OSPL-specification of MM-Logic (chapter 5) is:
1 . Functional Sorts:

‘W—99W’, ‘W—a‘W’, ‘W——>‘W’, ‘W——>“W', ‘D,W—9¢W’, ‘D,W-—9’W’, ‘D,W-—9‘W’, ‘D,W—>"W’‚
2 . Subsort Declarations:

‘w—J‘W’ ‘D‚W—+“W’
‘W—fw' ‘W—> tW’ ‘D‚W—> ’W’ >“? tW’

‘W _>‘°W’/ ‘D‚W-+°W°
3 . Sort Declarations for J,:

J,: ‘D,W——9¢W’ x D —> ‘W—>°W’
‘D,W——>TW’ x D —> ‘W—fW’

‘D‚W——>‘W’ x D —> ‘W—>‘W’
‘D,W——>"W’ x D _) ‘W—+“W’

4 . Sort Declarations for o:
o: ‘W——>PW’ x ‘W—a‘lW’ ——> ‘W—>SW’

‘D,W—>PW’ x ‘D,W—9‘1W’ ——> ‘D,W—95W’

where s is derived from p and q with the following matn'x:

o r [rt

¢ |“. l'. t t

5 . Axiomatization of J, and o:
a) Vf,g:‘W——9rtW’ Vx:W Mf, x) = Mg, x)) :> f = g.

Vf,g:‘D‚W——>“W’ sD Mf, x) = Mg, x)) => 1’ = g
b) Vf: ‘W—)"W’ Vg:‘W-—>qW’ sw M(f o g), x) = Mg, Mf, x)) ‚_
c) Vf:‘D,W-—>“W’ Vg:‘D,W—>‘1W’ Vx: D M(f o g), x) = Mf, x) o Mg, x) I

Lemma 3.4.2 o is associative in functional OSPL—specifications.
Proof: Let sf, ng and th where Ff := ‘Df1,...,Dfn,Sl—>i82’, F8 := ‘Dg1,...,Dgn,Sz—->jS3’, Fh :=
‘Dh1,...‚Dhn‚S3—>kS4’‚ and (F] x F2) x F3 = F1 x (FZ x F3) in the sense of 3.4.1,4 holds.
We show the associativity of o for the two cases:
Case: n = 0 .
Let xzs1 M(f o g) o h), x) (f o g): ‘sl—eijs;

= Mh, M(fo g), x)) (def. 3.4.1,5b)
= Mh, Mg, Mf, x)) Mf, x):Sz (def. 3.4.1,5b)
= M(g o h), ta, x)) (g o h):‘sz—->J'ks3° (def. 3.4.1,5b)
= «(f o (g o h)), x)

=> (fo g) o h) = (fo (g o h)) (def. 3.4.1,5a)
Case: n>0
Let xizDfi M(fo g) o h), x1,...,xn)

= M(f o g), x1,...,xn) o Mh, x1,...,xn) (def. 3.4.1,50)
= (Mf, x1,...,xn) 0 Mg, x1,...,xn)) o Mh, xl , . . . ,xn) (def. 3.4.1,5c)
= Mf, x1,...,xn) o (Mg, x1,...,xn)) o Mh, x1,...,xn)) Mf, x1,...,xn):‘Sl—->i82’ (first case)
= Mf o (g o h), x1,...,xn) (def. 3.4.1,50)

=> (fo g) o h) = (f o (g o h)) (def. 3.4.1,5a) I

22

The next theorem confmns that a functional specification really axiomatizes functions.

Theorem 3.4.3 Every model .!'l for a functional specification S = (1:, !f> is isomorphic to a model Cwhere the

terms of type 'SI"",Sn-7<!S' are interpreted as total functions SIC",xSnc-7 Sc

Proof: Let .!'l be a model for S.

We construct Cand the isomorphism 3 between .!'land Cas follows:

a) For the nonfunctional sorts S, identify Sewith SA'

This guarantees that the subset relationships in .!'l are properly transferred to C.

b) To every fA E 'SI"",Sn-7qS'~ we assign the function B(f~ = fe : SIC",xSnc-7 Scwhich satisfies the

following condition: V1(E SIA fJ~ =3(.J,A(fA, ~) (.J,A is the interpretation of .J, in.9l, Su=Sld

Using the axioms 3.4.1,5a it can be shown with induction on n that fc is unique.

Let 'SI"",Sn-7qS' C := (B(f~) I f~E 'SI,,,,,Sn-7qs'~).

This guarantees again that the subset relationships in .!'l are properly transferred to C. However, we have to

show that the definition is consistent with the subsort relationships of the functional sorts, i.e. whenever

fAE 'SI"",Sn-7QS'A ~ 'DI,... ,Dn-7I])'~then B(f~ is a total function on D1C.. ·xDne -7 DC

Therefore let fA E 'SI"",Sn-7QS'A ~ 'D1,... ,Dn-7I])'A and f := B(f~.e
We perform induction on n.

Base Case: n =1, i.e. f~E 'SI-7QS'~.

Let 1(E DIe =DUll' According to def. 3.4.1,2, DI !:~ SI' S!:~ D and we have D1A ~ Sl~'

ThUS,1(E SIA= SIc and therefore fJ~ =B(.J,~(f~,~) E S~ = Sc~ Dc Hence, fCE D1C-7 Dc

Induction Step: n > 1. The induction hypothesis is

Vg~ E 'S2,,,,,Sn-7Qs'~: B(g~ is a totalfunction on D2Cx ...x DnC-7 Dc

Let again 1(E DIC-~ SIC fJ~ =B(.J,~(f~, ~) E 'S2"",Sn-7<!S'C

Since .J,~(fA'~) E 'S2"",Sn-7QS'C' according to the induction hypothesis

fJ~ = B(.J,~(fJil'~): D2Cx ...x Dnc-7 DC and therefore fCE D1CX D2Cx ...x Dnc-7 Dc

From a,b) we obtain that B is a bijection between the sets SA and Sc which are associated with the sorts S.

c) B(.J,~ := .J,Cwhere .J,Cis the application function, i.e.

.J,Jfc ac) = fJaJ holds for all fcand corresponding arguments ac
It is easy to verify that this definition matches the sort declarations for.J, (def. 3.4.1,3).

d) B(°~ := °c where 0 c is the composition function on the interpretations of the functional sorts.

It is defmed as follows:

VfCE 'D1,. .. ,Dn,SI-7iS2'C gcE 'E1,.. ·,En,S2-+iS3'c:

fcoCgCE G1CX'''X GncX SIC-7S3Cwhere GiC =DiC " ~c for i = l, ... ,n such that

(fc oc gc)(1(I""'ilU, ~ =gc(1(I""'ilU,fcC1CI'''''ilU'~)
Using the correspondences between fcand fAI and the fact that GLB(Di, Ei)C~ DiC " EiCwe can prove by

induction on n: fcocg E 'G1,. .. ,Gn,SI-7kS3'C­c
It is easy to verify that these definitions satisfy the axioms 3.4.1,5 and the homomorphism conditions (in both

directions): B(2Xf~) = 2Xfc» and if a E '1J(f~ then B(fJa» =fJB(a»

e) Since B is a bijection between the sets S~and Scwhich are associated with the sorts S we can now assign to

each other function symbol g and its corresponding function g~ a unique function gc =B(gJil) such that the

homomorphism conditions hold in both directions.

t) Similarly we assign to each predicate symbol P and its corresponding relation PJil a relation Pc =B(p~) such

that (al, ... ,an) E PAif and only if (B(al), ... ,B(~» E Pc'

Hence, we have constructed the desired "functional" 1:-structure for the context specification which is isomorphic

to J'l. The isomorphism ensures that the functional1:-structure is also a model for the specification. ­

In the sequel we shall use only the functional interpretation of functional specifications. We can exploit this

interpretation also to simplify the syntax of terms, writing x(y) instead of .J,(x, y).

22

The next theorem confirms that a functional specification really axiomatizes functions.

Theorem 3.4.3 Every model % for a functional specification 5 = (2, IF) is isomorphic to a model tere the

terms of type ‘81,...,Sn——>‘lS’ are interpreted as total functions 81 cX...><SnC——> S c
Proof: Let ‚fi be a model for 5.
We construct Cand the isomorphism E. between 51 and Cas follows:
a) For the nonfunctional sorts S, identify S Cwith Sn-

This guarantees that the subset relationships in :4 are properly transferred to C.

b) To every ffle ‘S1,...,Sn—>qS’fl we assign the function E(ffl) = fc: Slcx...xSnC—> Scwhich satisfies the
following condition: Vace Sm fC(x) = E(„Lfi(f„, x)) (‘Lfil is the interpretation of l in ft, S ln = 51c)

Using the axioms 3.4.1.5a it can be shown with induction on n that is unique.
Let ‘Sl,...,Sn—>qS’C := (Edy!) ! ffle ‘Sl,...,Sn——>qS’/q}.
This guarantees again that the subset relationships in 51 are properly transferred to C. However, we have to
show that the definition is consistent with the subsort relationships of the functional sorts, i.e. whenever

ffle ‘Sl,...,Sn—>‘lS’Ä ; ‘D1‚—«-‚Dn—>rD'‚q then „"-:(ffl) is a total fimction on cx. . .aC—e Dc

Therefore let fa e ‘81,...,Sn->‘IS’ n g ‘D1,...,Dn-—>’D’,,l and fC := 3(ffl).
We perform induction on 11.
Base Case: n = 1, i.e. ffie ‘81—)‘18’2.
Let nae D10 = DM. According to def. 3.4.1.2, D1 52 SI, S 52 D and we have Dmg 51n-

Thus, {6
Sm: 51c and therefore f6“) = E(¢fl(ffi, K)) e SZ = SC; DC Hence, fCe DM.—> DC

Induction Step: It > 1. The induction hypothesis is
vgfie ‘SZ,...,Sn—>qS’Äz 3(g2) is a total function on DZCX...X Due—> DC

Let again ace DM.; SIC fc(;() = EG,/‚463, x)) e ‘82,...,Sn—->qS’C
Since 1,262, x)) e ‘52,...,Sn—>qS’c, according to the induction hypothesis
fc(:f) = al./‚163, :0) : cx . . . x Dnc") Dcand therefore f ee DICX cx" .x DnC—> DC

From a,b) we obtain that E is a bijection between the sets S‚4 and S tich are associated with the sorts S.
c) „EG/q) := ‘Lc where ‘Lc is the application function, i.e.

‘Lc(fc' ac) = fC(a C) holds for all fC and corresponding arguments “C
It is easy to verify that this definition matches the sort declarations for J, (def. 3.4.1,3).

d) aaa) := ohere o Cis the composition function on the interpretations of the functional sorts.

It is defined as follows:
Vfce ‘D1,...,Dn,Sl—>i82’ C gce ‘E1,...,En,SZ-—>jS3’C:

fc°c gce Glcx. . .x Gncx Slc—>S3tere Gicz Dich Eic for i = 1,...,n such that
(fc °C gCX’Cla - ”an, if) : gCÜCp- “”(n'fc (PCI,-„Km K))

Using the correspondences between f(: and f„, and the fact that GLB(Di, Ei)C_c; Dian Eicwe can prove by
induction on n: fco C g C e ‘61,...,Gn,Sl—>k83’c.
It is easy to verify that these definitions satisfy the axioms 3.4.1.5 and the homomorphism conditions (in both
directions): E(’D(ffl)) = aft.» and if a e Qs) then E(ffl(a)) = fC(E(a))

e) Since E is a bijection between the sets Sn and S tich are associated with the sorts S we can now assign to
each other function symbol g and its corresponding function gn a unique function gc = ag?!) such that the

homomorphism conditions hold in both directions.
f) Similarly we assign to each predicate symbol P and its corresponding relation PX a relation P C = EXP/q) such

that (a1....,an) e Pfi i f and only if (5(a1),...,E(an)) 6 PC.

Hence, we have constructed the desired “functional” Z-structure for the context specification which is isomorphic

to fl. The isomorphism ensures that the functional E—structure is also a model for the specification. I

In the sequel we shall use only the functional interpretation of functional specifications. We can exploit this

interpretation also to simplify the syntax of terms, writing x(y) instead of .L(x, y).

23

Chapter Four

Context Logic

Context Logic (CL) consists of two parts. The ftrst part, the "context part", is just OSPL, and this part is used to

axiomatize context structures. The second part, the "domain part" with separate syntax and semantic defmition is

used as an intermediate language for translating specifications from the source logic into OSPL. The domain part

syntax is very close to the operator syntax. For example instead of [] P in modal logic one would write

\Ix: 'W~W' P in the domain syntax of CL. Translation from the operator syntax into CL is therefore almost a one

to one translation where the model theoretic semantics of the operators is expressed directly with CL quantifters.

The soundness and completeness proofs for this part of the translation are therefore straightforward. The final

translation from CL into OSPL is a purely syntactic transformation where the quantiftcations over the functional

context variables are collected to build "context terms" which are attached as additional arguments to the terms and

atoms. Since this is a shift of information from distributed areas of the formula tree to the term level, the

soundness and completeness proofs are much more complex, but they can be done once and forall. This was

actually the reason for introducing CL as an intermediate stage between logics with operator syntax and OSPL.

4.1 Syntax

A specification in CL contains both the axiomatization of the context structure, written in OSPL, and the translated

formulae from some source logic. The latter ones formulate the facts about the user's domain and use context

elements only occasionally as replacements for the operators. Therefore we separate the signature of CL into the

context part, containing sorts and symbols concerning for example worlds and transitions between worlds, and

the domain part concerning the user's sorts and symbols. The signature elements allowed in the source logic, and

translated into the domain part of CL, are the usual OSPL ones, Le. sorts, sort hierarchies, sort declarations,

predicate logic quantifters etc. For the context part, besides the OSPL elements, we need a couple of additional

signature elements. To motivate the additional elements, let us consider the representation of an 'until' operator for

branching time temporal logic. Its semantics is:

.1'UNTIL q holds in a world 'W iff on each path P in the possible worlds structure starting with

'11l, q holds eventually in a world 'Wt on P and .1'holds in all worlds on Pbetween 'Wand 'Wt.

Graphically:

.1'UNTILq

First of all we notice that, besides the concept of worlds, we need the concept of paths through the possible

worlds structure; and we need transitions from worlds to paths and back to worlds. Transitions from worlds to

paths can be described with context access functions mapping worlds to paths, and transitions from paths to

worlds can be described with functions mapping paths to worlds. A slightly more complex example would show

that we need also transitions from a world on a path to another world on the same path. Functions representing

these transitions need both, a world and a path as input. The real context information that is necessary to handle

modal operators together with an 'until' operator are therefore tuples <world,path>. Since, however, terms and

atoms are interpreted only in worlds and the path component becomes irrelevant, we ftnally must project the world

component out of the tuples. Thus, the additional components we need in the context part of the CL signature are:

23

Chapter Four

Context Logic

Context Logic (CL) consists of two parts. The first part, the “context part”, is just OSPL, and this part is used to

axiomatize context structures. The second part, the “domain part” with separate syntax and semantic definition is

used as an intermediate language for translating specifications from the source logic into OSPL. The domain part
syntax is very close to the Operator syntax. For example instead of n P in modal logic one would write
Vx:‘W—->W’ P in the domain syntax of CL. Translation from the operator syntax into CL is therefore almost a one

to one translation where the model theoretic semantics of the Operators is expressed directly with CL quantifiers.
The soundness and completeness proofs for this part of the translation are therefore straightforward. The final
translation from CL into OSPL is a purely syntactic transformation where the quantifications over the functional

context variables are collected to build “context terms” which are attached as additional arguments to the terms and

atoms. Since this is a shift of information from distributed areas of the formula tree to the term level, the
soundness and completeness proofs are much more complex, but they can be done once and forall. This was

actually the reason for introducing CL as an intermediate stage between logics with operator syntax and OSPL.

4 .1 Syntax

A specification in CL contains both the axiomatization of the context structure, written in OSPL, and the translated
formulae from some source logic. The latter ones formulate the facts about the user’s domain and use context
elements only occasionally as replacements for the operators. Therefore we separate the signature of CL into the
context part, containing sorts and symbols concerning for example worlds and transitions between worlds, and
the domain part concerning the user’s sorts and symbols. The signature elements allowed in the source logic, and
translated into the domain part of CL, are the usual OSPL ones, i.e. sorts, sort hierarchies, sort declarations,
predicate logic quantifiers etc. For the context part, besides the OSPL elements, we need a couple of additional
signature elements. To motivate the additional elements, let us consider the representation of an ‘until’ operator for
branching time temporal logic. Its semantics is:

{FUNTIL. (3 holds in a world rWiff on each path ? in the possible worlds structure starting with
‘W, g holds eventually in a world W1 on zPand ‚‘Tholds in all worlds on LPbetween Wand ‘Wl.
Graphically:

TUNTIL G 0

First of all we notice that, besides the concept of worlds, we need the concept of paths through the possible
worlds structure; and we need transitions from worlds to paths and back to worlds. Transitions from worlds to
paths can be described with context access functions mapping worlds to paths, and transitions from paths to
worlds can be described with functions mapping paths to worlds. A slightly more complex example would show
that we need also transitions from a world on a path to another world on the same path. Functions representing
these transitions need both, a world and a path as input. The real context information that is necessary to handle
modal operators together with an ‘until’ operator are therefore tuples <world,path>. Since, however, terms and
atoms are interpreted only in worlds and the path component becomes irrelevant, we finally must project the world

component out of the tuples. Thus, the additional components we need in the context part of the CL signature are:

24

- a separation of the context sorts (W, WP in the example) into

the basic context sorts (the sort WP describing tuples <world,path» and

the interpretation context sorts (the sort W), the sorts which are relevant for the

interpretation of terms and atoms.

- a symbol variation function that assigns to each function, predicate and domain variable symbol the

projector functions mapping the actual context (WP) to the interpretation context (W). We need this

information for domain variable symbols too because variables of existential force are Skolemized, Le. turned

into function symbols.

Of course we don't restrict the context information to one single context~ but arbitrary many contexts, like for

example time and belief, are allowed to operate independently from each other. (Worlds and paths in the above

example are not independent from each other.)

Definition 4.1.1 CL-Signatures

CL-signatures are essentially functional OSPL-signatures (c.£. de£. 3.4.1) with a few more concepts:

1. We separate the symbols into two partially overlapping parts, the context signature which

contains the functional part we are interested in and the domain signature according to the

following criteria:

i) The sort symbols consist of three nonempty and disjoint parts:

a)	 the domain sorts which belong to the domain signature;

b)	 the context sorts which belong to the context signature;"

a subset of the context sorts is selected as basic context sorts,

(in the sequel we assume a fIxed ordering of the basic context sorts) and

c)	 the functional context sorts which also belong to the context signature.

The functional context sorts are of type 'C~iC' or 'D,C~iC' where C is a basic context sort and D

is a domain sort.

d)	 The domain sorts occurring in the functional context sorts belong to both parts of the signature.

ii)	 Context symbols. i.e. variable. function and predicate symbols with context sorts in their sort

declarations belong to the context signature. the domain symbols. Le. the symbols with only domain

sorts in their sort declarations belong to the domain signature.

The equality symbol belongs to both parts of the signature.

A variable of sort 'C~iC' or 'D,C~iC' is called a functional context variable.

2. The sort declaration are such that

i) In the subset 'c~qC' of functional context sorts (with different q) there is always a unique topsort.

ii) Except for the equality symbol there are no context predicates with functional context sorts in their sort

declaration.

3. A CL-signature contains two more objects:

i) The interpretation context sorts isa fixed tuple I1, ... ,Ik of context sorts.

ii) A symbol variation function So/mapping each domain symbol to a tuple (PlPk) of one-place

function symbols Pi:Ci ~ ~ with basic context sorts as domainsort and interpretation context sort as

rangesort. Ii being the i-th element in the interpretation context sorts. •

Definition 4.1.2 CL-Terms

The set of CL-terms over a CL-signature ~ is simply the set TI: of OSPL-terms (de£. 3.1.2).

Domain terms are terms built from domain symbols only. all other terms are context terms.

Terms of sort 'c~qC' or 'D.C~qC' are called context access terms. •

24

- a separation of the context sorts (W, WP in the example) into
- the basic context sorts (the sort WP describing tuples <world,path>) and
- the interpretation context sorts (the sort W), the sorts which are relevant for the

interpretation of terms and atoms.
- a symbol variation function that assigns to each function, predicate and domain variable symbol the

projector functions mapping the actual context (WP) to the interpretation context (W). We need this
information for domain variable symbols too because variables of existential force are Skolemized, i.e. turned
into function symbols.

Of course we don’t restrict the context information to one single context, but arbitrary many contexts, like for
example time and belief, are allowed to operate independently from each other. (Worlds and paths in the above
example are not independent from each other.)

Definition 4.1.1 CL-Signatures
CL-signatures are essentially functional OSPL-signatures (c.f. def. 3.4.1) with a few more concepts:
l . We separate the symbols into two partially overlapping parts, the context signature which

contains the functional part we are interested in and the domain signature according to the
following criteria:
i) The sort symbols consist of three nonempty and disjoint parts:

a) the domain sorts which belong to the domain signature;
b) the‘ context sorts which belong to the context signature; "

a subset of the context sorts is selected as basic context sorts,
(in the sequel we assume a fixed ordering of the basic context sorts) and

c) the functional context sorts which also belong to the context signature.
The functional context sorts are of type ‘C->iC’ or ‘D,C—-9iC’ where C is a basic context sort and D
is a domain sort.

(1) The domain sorts occurring in the functional context sorts belong to bath parts of the signature.
ii) Context symbols, i.e. variable, function and predicate symbols with context sorts in their sort

declarations belong to the context signature, the domain symbols, i.e. the symbols with only domain
sorts in their sort declarations belong to the domain signature.
The equality symbol belongs to both parts of the signature.
A variable of sort ‘C——>iC ’ or ‘D,C—>iC’ is called a functional context variable.

2. The sort declaration are such that
i) In the Subset ‘C—->‘1C’ of functional context sorts (with different ‘1) there is always a unique topsort.
ii) Except for the equality symbol there are no context predicates with functional context sorts in their sort

declaration.
3. A CL—signature contains two more objects:

i) The interpretation context sorts is a fixed tuple I1,...,Ik of context sorts.
ii) A symbol variation function 51/” mapping each domain symbol to a tuple (p1,...,pk) of one-place

function symbols pic, ——) It with basic context sorts as domainsort and interpretation context sort as
rangesort, Ii being the i-th element in the interpretation context sorts. I

Definition 4.1.2 CL-Terms
The set of CL-terms over a CL-signature 2 is simply the set TZ of OSPL-tenns (def. 3.1.2).
Domain terms are terms built from domain symbols only, all other terms are context terms.
Terms of sort ‘C—>‘1C’ or ‘D,C—>‘iC’ are called context access terms. I

25

The syntax rules for CL-terms need not be separated into rules for domain terms and context terms, OSPL-syntax

is good for both. For the formula syntax, however, we need special formation rules for domain formulae. First of

all we may have quantifications like Vx:'W-"IW' P, where the quantified variable does not occur in the body of

the quantification. This, of course, is also possible in predicate logic syntax, but there it makes not much sense.

You can drop the quantifier without any logical consequences. In Context Logic, these quantifiers are the main

constituents because nested quantifications of this type accumulate the context information for the interpretation of

the terms and atoms. Dropping them changes the logical status of a formula considerably.

For special purposes, variations of the quantifications over context access functions are needed. Sometimes it is

necessary to unwind the context information to the state of an embracing quantifier. This occurs for example in the

translation of an 'until' operator (def. 5.2.2):

'P(.'TUNTIL (j) =Vp: 'W-7P' 3x: 'P-"IW' ('P((j) " Vy: 'P-"IW'-x poy < pox => 'P(1)

which is a straightforward encoding of the semantics of 'until' as given above. It should be read: From the initial

world, say 'Wo, obtain a path p = p('WcV' starting with 'Wo by applying a "world-to- path-function" p to 'Wo. 'Wo is

still the actual world context. Then move from 'Wo to 'W} =u'Wo' P) on the path Pby applying the a

"path-to-world-function" ~that exists according to the 3x:'P-"IW'-quantification. Evaluate 'P({j) in the world 'W},

which is now the actual world context. Now reckon a world 'W2 = .tJ{'WO' 1!) on Pby applying "path-to-world­

function" y, not to the actual world context 'W}, as the nesting of the quantifiers normally suggests, but, because

of the "-x" appendix in the VY:'P-"IW'-x quantification, to the world 'Wo which is the state of the world-context

before the 3x: 'P-"I W' quantification. Evaluate "«poy, pox) => '1'(.1)" in the world 'W2 , Hence, in the

quantification Vy: 'P-"IW'-x, the "-x" appendix enforces the context of y to be unwound to the state before the

quantification of x, thus making x invisible for y and therefore the worlds denoted by x and y independent from

each other. Pictorially, the difference between the formula with and without the "-x" appendix is:

Vp:'W-"IP' 3x:'P-"IW' Vy:'P......)W'-x Vp:'W-"IP' 3x:'P-"IW' VY:'P-"IW'

~6 ------..~""'=:...mwodd P

y

Consequently, the first modification on CL-quantifiers is to allow a "-v" appendix where v is a context variable in

the scope of a more outside quantification.

The second modification is aimed to provide a representation for indexed operators. Indexed operators like for

example []s (we write it [s]) have been used in epistemic and action logics where the index refers to an agent or

an action respectively. For example in an "belief interpretation" the formula [Tom] 10ves(John, Mary) means

"Tom believes that John loves Mary" or technically "in all worlds which are compatible with Tom's current

knowledge, John loves Mary". The semantics of the indexed operators can be given either by associating with

each index a separate accessibility relation or, and that is only another way to say it, by labeling the transitions in

the accessibility relation with the indices themselves or interpretations of the indices. []sp is now interpreted: P

holds in all worlds accessible via s-labeled transitions. The representation of indexed operators in CL requires

context access functions which are parametrized with the labels. When we choose the indices to be arbitrary terms

and the labels to be the interpretation of the index terms, we can represent the parametrized context access

functions as 'D,W......)W'-functions where D is the domain sort used for the index terms. A quantification "for all

s-indexed transitions" could now be represented as VJ,(x:'D,W-"IW', s) expressing that the quantification ranges

over all 'D,W......)W' functions, but the actual world is to be obtained by applying the interpretation of x, the

parametrized world access function, to the interpretation of s, the label.

A technical difficulty arises with the interpretation of the parameter "s". Although usually a quantified context

variable in CL occurs only once, in the corresponding quantification, there are operators like the parametrized

eventually operator (def. 5.2.2) whose translation has more occurrences of parametrized context variables. The

25

The syntax rules for CL-terms need not be separated into rules for domain terms and context terms, OSPL-syntax
is good for both. For the formula syntax, however, we need special formation rules for domain formulae. First of
all we may have quantifications like Vx:‘W—>W’ P, where the quantified variable does not occur in the body of
the quantification. This, of course, is also possible in predicate logic syntax, but there it makes not much sense.
You can drop the quantifier without any logical consequences. In Context Logic, these quantifiers are the main
constituents because nested quantifications of this type accumulate the context information for the interpretation of
the terms and atoms. Dropping them changes the logical status of a formula considerably.

For special purposes, variations of the quantifications over context access functions are needed. Sometimes it is
necessary to unwind the context information to the state of an embracing quantifier. This occurs for example in the
translation of an ‘until’ operator (def. 5.2.2):

‘PUFUNTIL g) = Vp:‘W—)P’ 3x:‘P—>W’ (‘P(g) A Vy:‘P—>W’-x poy < pox => TUB)
which is a straightforward encoding of the semantics of ‘until’ as given above. It should be read: From the initial
world, say WO, obtain a path :P = pCWo), starting with Wo by applying a “world-to- path-function” p to ‘Wo. ‘WO is

still the actual world context. Then move from ‘WO to WI = {($/V0, 5?) on the path fi’by applying the a

“path-to—world-function” {that exists according to the 3x:‘P——>W’-quantification. Evaluate ‘I’(g) in the world ‘W1,
which is now the actual world context. Now reckon a world ‘w2 = 3,01%, :P) on May applying “path-to-world-
function” y, not to the actual world context W1, as the nesting of the quantifiers normally suggests, but, because

of the “-x” appendix in the Vy:‘P——>W’-x quantification, to the world Wo which is the state of the world-context
before the 3x : ‘P-—>W’ quantification. Evaluate “<(poy, pox) => Tm)” in the world W2. Hence, in the

quantification Vy:‘P—>W’—x, the “-x” appendix enforces the context of y to be unwound to the state before the
quantification of x , thus making x invisible for y and therefore the worlds denoted by x and y independent from

each other. Pictorially, the difference between the formula with and without the “-x” appendix is:
Vp:‘W—->P’ 3x:‘P——>W’ Vy:‘P——>W’-x Vp:‘W—>P’ 3x:‘P——)W’ Vyz‘P—3W’

ac 7C.
. w mw] {P

‘W em ? W U?!
actual world 3011131

9 3; world

Consequently, the first modification on CL-quantifiers is to allow a “-v" appendix where v is a context variable in
the scope of a more outside quantification.

The second modification is aimed to provide a representation for indexed operators. Indexed operators like for
example us (we write it [S]!) have been used in epistemic and action logics where the index refers to an agent or
an action respectively. For example in an “belief interpretation” the formula [[Tom]] loves(John, Mary) means
“Tom believes that John loves Mary” or technically “in all worlds which are compatible with Tom’s current
knowledge, John loves Mary”. The semantics of the indexed operators can be given either by associating with
each index a separate accessibility relation or, and that is only another way to say it, by labeling the transitions in
the accessibility relation with the indices themselves or interpretations of the indices. USP is now interpreted: P
holds in all worlds accessible via s-labeled transitions. The representation of indexed operators in CL requires
context access ftmctions which are parametrized with the labels. When we choose the indices to be arbitrary terms
and the labels to be the interpretation of the index terms, we can represent the parametrized context access
functions as ‘D,W——>W’-functions where D is the domain sort used for the index terms. A quantification “for all
s-indexed transitions” could now be represented as Vl(x:‘D,W——>W’, s) expressing that the quantification ranges
over all ‘D,W-—>W’ functions, but the actual world is to be obtained by applying the interpretation of x , the
parametrized world access function, to the interpretation of s, the label.

A technical difficulty arises with the interpretation of the parameter “”.s Although usually a quantified context
variable in CL occurs only once, in the corresponding quantification, there are operators like the parametrized
eventually operator (def. 5.2.2) whose translation has more occurrences of parametrized context variables. The

26

parameter, Le. the "s" in "\lJ,(x, s)" is uniquely bound to the variable x itself and therefore x should only occur in

the tenn "J,(x, s)". "s" has to be interpreted in the context of the quantifier where it occurs. A second occurrence,

however, might be in the scope of another operator and the tenn "s" would then be interpreted differently to its

fIrst occurrence. To avoid this, we write instead of "\IJ,(x, s)" "\IJ,(x, z=s)" where z is a variable of the same sort

of s. And instead of "J,(x, s)" in other parts of the fonnula we write "J,(x, z)". Since we assume constant-domain

interpretations, its interpretation is in all worlds the same and the definition of the satisfIability relation below

ensures that the interpretation of z equals the interpretation of s.

A quantification over a context access variable shifts as a side effect the actual context to the context obtained after

application of the context access function associated with the variable to the actual context. Sometimes it is

necessary to have only this side effect, generated by a tenn t instead of a variable. Therefore we introduce a new

operator KO which is applied to a context access tenn and a fonnula. KO t .rmeans that .ris to be interpreted in the

context obtained after application of the t's interpretation, which is a context access function, to the actual context.

Thus KO denotes a simple context shift, nothing else. If for example t is "tomorrow" and 1is "bad-weather" then

"tomorrow" can be interpreted as a constant temporal context shift and" KO tomorrow bad-weather" means simply

that there will be bad weather tomorrow.

There is yet another special feature of the domain fonnulae in CL that should be mentioned. As can be seen in the

translation rule of the 'until' operator above, special predicates like the <-predicate operating on contexts only may

be necessary to fonnulate the translation rules. These predicates cannot be used in the source logic. Although after

the final translation into OSPL, the predicates really operate on contexts (worlds), in the CL stage of the

translation theirarguments must be context access tenns because the actual context is not yet known. That's the

reason for the somewhat peculiar sort declaration for these predicates. They are defined with context sorts, but

used with context access tenns.

Definition 4.1.3 CL-Formulae

We distinguish two types of fonnulae, the domain formulae and the context formulae. The context fonnulae

over a signature L are simply the set of well fonned OSPL-fonnulae (def. 3.1.2) over the context part of the

signature. The domain fonnulae are built from domain atoms and domain literals as follows:

Domain atoms are the least set such that

(i)	 Every well formed OSPL atom built with a domain predicate, except the equality symbol, is a domain

atom. Atoms built with the equality symbol and domain terms are also domain atoms.

(ii)	 Atoms built with a context predicate P are also domain atoms if they are built according to the usual rules,

however after having replaced context sorts C with 'C~C' in the sort declaration for P, 'C~C' being the

topsort in the sublattice of all 'C~llC' sorts.That means instead of terms of sort C we require tenns of sort

'C~C' as arguments ofP.

Domain literals are domain atoms or negated domain atoms.

In the sequel ±L denotes either a positive literal, Le. L itself, or a negative literal, i.e. --,1..

The set of variables occurring as subtenns in an atom are its free variables.

The set of domain fonnulae over the given signature is defined as the least set such that

(ill) domain atoms and domain literals are domain fonnulae.

(iv) If .ris a domain fonnula, x:'D,C~qC' is a context access variable, z:D is a domain variable and s is a

domain tenn of sort D and x and z occur only as subtenns of J,(x, z) in .rthen g= \lJ,(x, z=s).rand

g= 3J,(x, z=s) .r are domain fonnulae.

If V is the set offree variables of .rthen V\{x,z} u Vars(s) is the set of free variables of g.
(v)	 If .rand gare domain fonnulae, x is a domain variable or a context variable of sort 'c~qC' then

...r. .r/\ g, .rv 9, \Ix .rand 3x .rare domain fonnulae.

If V is the set of free variables of .rthen V\{ x} is the set of free variables of \Ix .rand 3x .r.

26

parameter, i.e. the “3” in “Vi(x, 5)” is uniquely bound to the variable x itself and therefore x should only occur in
the term %(x, s)”. “3” has to be interpreted in the context of the quantifier where it occurs. A second occurrence,
however, might be in the scope of another operator and the term “s” would then be interpreted differently to its
first occurrence. To avoid this, we write instead of “VJ,(x, s)” “Vi(x, z=s)” where z is a variable of the same sort
of s . And instead of “¢(x, s)” in other parts of the formula we write “MX, z)”. Since we assume constant-domain
interpretations, its interpretation’ is in all worlds the same and the definition of the satisfiability relation below
ensures that the interpretation of z equals the interpretation of s.

A quantification over a context access variable shifts as a side effect the actual context to the context obtained after
application of the context access function associated with the variable to the actual context. Sometimes it is
necessary to have only this side effect, generated by a term t instead of a variable. Therefore we introduce a new
operator 50 which is applied to a context access term and a formula. g0 t ? means that 9’ is to be interpreted in the
context obtained after application of the t’s interpretation, which is a context access function, to the actual context.
Thus 50 denotes a simple context shift, nothing else. If for example t is “tomorrow” and fis “bad-weather” then
“tomorrow” can be interpreted as a constant temporal context shift and “ so tomorrow bad-weather” means sirnply
that there will be bad weather tomorrow.

There is yet another special feature of the domain formulae in CL that should be mentioned. As can be seen in the
translation rule of the ‘until’ operator above, special predicates like the <-predicate Operating on contexts only may
be necessary to formulate the translation rules. These predicates cannot be used in the source logic. Although after
the final translation into OSPL, the predicates really operate on contexts (worlds), in the CL stage of the
translation their arguments must be context access terms because the actual context is not yet known. That’s the
reason for the somewhat peculiar sort declaration for these predicates. They are defined with context sorts, but
used with context access terms.

Definition 4.1.3 CL-Formulae
We distinguish two types of formulae, the domain formulae and the context formulae. The context formulae
over a signature 2 are simply the set of well formed OSPL-formulae (def. 3.1.2) over the context part of the

signature. The domain formulae are built from domain atoms and domain literals as follows:
Domain atoms are the least set such that:

(i) Every well formed OSPL atom built with a domain predicate, except the equality symbol, is a domain

atom. Atoms built with the equality symbol and domain terms are also domain atoms.
(ii) Atoms built with a context predicate P are also domain atoms if they are built according to the usual rules,

however after having replaced context sorts C with ‘C-—>C’ in the sort declaration for P, ‘C-—)C’ being the
topsort in the sublattice of all ‘C—>qC’ sorts.That means instead of terms of sort C we require terms of sort
‘C—>C’ as arguments of P.

Domain literals are domain atoms or negated domain atoms.
In the sequel iL denotes either a positive literal, i.e. L itself, or a negative literal, i.e. —L.
The set of variables occurring as subterms in an atom are its free variables.
The set of domain formulae over the given signature is defined as the least set such that

(iii) domain atoms and domain literals are domain formulae.
(iv) If :7 is a domain formula, x:‘D,C—>‘1C’ is a context access variable, z:D is a domain variable and s is a

domain term of sort D and x and 2 occur only as subterms of J,(x, z) in ? then g: VJ,(x, z=s)}r and

@: aux, z=s) T are domain formulae.
If V is the set of free variables of ? then V\{x,z} U Vars(s) i s the set of free variables of g.

(v) If 9’ and @ are domain formulae, x is a domain variable or a context variable of sort ‘C—>qC’ then

-—J‚ 9‘ A g, 17v g, Vx ‚T and Elx ? are domain formulae.

If V is the set of free variables of T then V\{x] is the set of free variables of Vx af and Elx 9‘.

27

(vi) If '<It 'for::lt 'fis a domain formula where t = x:'C~<IC' or t = J,(x:'D,C~<IC' ,z=s) and y is a context

variable of sort 'D,C~qC' or 'c~qC' then Cj= '<It-y 'fand Cj= 3t-y 'fare domain formulae. The free

variables for (j are those of 'v't .rplus the variable y.

(vii) If 'fis a domain formula and t is a context access term of sort 'C~C' for some C then fp t .ris a domain

formula.

As usual we assume that formulae are standardized apart, Le. formulae like Vx3x... do not occur. •

In the sequel we assume that CL-specifications are always functional specifications according to def. 3.4.1 and

def. 4.1.1 where the functional part consists of the context part of the signature, and the axioms are formulated

with context formulae. The remaining part of the axioms is formulated with domain formulae. We call the context

part of a CL-specification the context specification.

Examples for domain formulae:

'v'x:'W~W'P

3J,(x:'D,W~W', z = a) P

Vx:'W~W fp(BF(t) 0 +1) Q
'v'p:'W~lW' 3x:'W~2W' (P A Vy:'W~2W'-X «(poy, pox) ~ Q)). •

4.2 Semantics

The semantics of CL is essentially a Kripke style possible worlds semantics [Krlpke 59,63], its technical

formulation, however, is adapted to the necessities of CL. The worlds are determined by the interpretation of the

interpretation context sorts. IfCl'''' ,Cn' for example, are the interpretation context sorts, then tuples (Cl'''' ,'n) of

interpretations of C1,,,,,Cn denote the worlds. (In modal logics these tuples are always singletons). We assign a

L-structure, Le. a predicate logic interpretation to each of these tuples. The accessibility relation is determined by

the interpretation of the 'C~C'-sorts. Since they are interpreted as functions one can thipk of function

applications as transitions from world to world and of the argument-value relation as the accessibility relation. The

application of a 'D,C~ C'-sort to a domain element yields a normal 'C~ C' -function, therefore

'D,C~'-functions are used to represent labeled transitions.

Definition 4.2.1 (Frames)

Aframe for a CL-signature consisting of the context signature Le and the domain signature Ln and interpretation

context sorts (11'''' ,In) is a tuple (C,.5'0 where

C is a functional ~-structure (this is actually the possible worlds structure).

s'V is a function that assigns to each tuple (ilO ... ,inC) E IUx...xIncof contexts aLn-structure ~i1. .. in

where the domains are identical in all these Ln-structures (denoted as DS'J'for a sort D) and DS'J'= Dc for

each domain sort D belonging to Le and :Eo.
(Each world is viewed as an interpretation in the predicate logic sense. The constant domain assumption is

built in.) •

Notice that we use the notion frame somewhat different to [Fitting 83]. A frame in the definition above includes

already the interpretation of the nonlogical symbols. The functional Le-structure Ccorresponds to Fittings frame.

27

(vi) If Vt T or fit f is a domain formula where t = x:‘C—->‘1C’ or t = .L(x:‘D,C—->qC’,z=s) and y is a context
variable of sort ‘D,C—>‘1C’ or ‘C——>‘1C’ then g = Vt-y f and g : Elt-y af are domain formulae. The free
variables for g are those of Vt 9“ plus the variable y.

(vii) If 17 is a domain formula and t is a context access term of sort ‘C—9C’ for some C then 50 t 9“ is a domain
formula.

As usual we assume that formulae are standardized apart, i.e. formulae like VxElx... do not occur. I

In the sequel we assume that CL-specifications are always fimctional specifications according to def. 3.4.1 and
def. 4.1.1 where the functional part consists of the context part of the signature, and the axioms are formulated
with context formulae. The remaining part of the axioms is formulated with domain formulae. We call the context
part of a CL-specification the context Specification.

Examples for domain formulae:
Vx: ‘W—9W’ P

3$(x:‘D‚W—>W’‚ z = a) P
s‘W—eW go(BF(t) 0 +1) Q
s‘W—é 1\N’ s‘W—FW’ (P A Vy:‘W—>2W’—x (<(poy, pox) =» Q)). I

4 .2 Semantics

The semantics of CL i s essentially a Kripke style possible worlds semantics [Kripke 59,63], its technical
formulation, however, is adapted to the necessities of CL. The worlds are determined by the interpretation of the
interpretation context sorts. If C1,. . „Cu, for example, are the interpretation context sorts, then tuples (q , . . .,cn) of
interpretations of C1... .,Cn denote the worlds. (In modal lo gics these tuples are always singletons). We assign a
Z-structure, i.e. a predicate logic interpretation to each of these tuples. The accessibility relation is determined by
the interpretation of the ‘C—->C’-sorts. Since they are interpreted as functions one can think of function
applications as transitions from world to world and of the argument-value relation as the accessibility relation. The
application of a ‘D,C—> C’-.sort to a domain element yields a normal ‘C——> C’-function, therefore
‘D,C—>C’-functions are used to represent labeled transitions. '

Definit ion 4 .2 .1 (Frames)
A frame for a CL-signature consisting of the context signature EC and the domain signature ZD and interpretation
context sorts (11,...Jn) is a tuple (C, SM where

C is a functional EEC-structure (this is actually the possible worlds structure).
5V is a function that assigns to each tuple (£10. ..,inc) & I l CX...xInC of contexts aED-sn'ucmre fl i t . . . r ' n

where the domains are identical in all these SID-structures (denoted as D ”for a sort D) and DW: D C for
each domain sort D belonging to EC and ED.
(Each world is viewed as an interpretation in the predicate logic sense. The constant domain assumption is
built in.) I

Notice that we use the notion frame somewhat different to [Fitting 83]. A frame in the definition above includes
already the interpretation of the nonlogical symbols. The functional EEC-structure Ccorresponds to Fittings frame.

28

Definition 4.2.2 (Signature Interpretations)

A signature interpretation for a signature :E with basic context sorts (Cl'" .,Cm) is a tuple (1', ~ c,!m where

l' =: (c, S~ is a frame,

11 is a :E-assigmnent, the actual assignment and

C is a tuple (cI""''m) E Cux...xCmcof actual contexts and
!P is a :E-assignment, the context assignment. _

The 'J'-component is the usual assignment of values to variables, domain elements to domain variables and context

access functions to context access variables. 'JIis irrelevant for the interpretation of closed fonnulae. It is used by

the satisfiability relation (see below) in the usual way for recording variable bindings during the recursive descent

into a fonnula. The C-component contains the actual context (actual world) in which the fonnula or tenn has to be

interpreted. For a closed fonnula it gives the initial context (initial world) for its interpretation, and during the

recursive descent into the fonnula the satisfiability relation uses it to record in a stack-like manner the actual

context. The actual context changes each time a new quantifier over a functional context variable is encountered.

The 'JI and C-components are standard for modal logics. The !P-component, however, is specific for CL. It

records for each functional context variable the context of its quantification, i.e. its first occurrence. This

infonnation is necessary for unwinding the C-context when a quantifier with "-y" appendix is encountered and for

the proper interpretation of the special context predicates (like the <-predicate above).

The actual :E-structure (world) to be used for the interpretation of terms and atoms is obtained form the actual

context, i.e. the c-component of the interpretation by applying the topsymbol's projector functions to the actual

context. For example in the multi modal logic we describe in chapter 5, the actual context consists of tuples

<world, path>, but the actual ~:-structure for the interpretation of a tenn is independent of the path component.

Therefore the project-world function has to be applied to the actual context in order to get the interpretation

context, i.e. the actual };.structure.

Definition 4.2.3 (The Actual :E-Structure)

Given a signature interpretation «c, S~, 11, c, P) for a signature :E with basic context sorts Cl"'" Cm'

interpretation context sorts II, ... ,Ik and symbol variation function s'V, we defme the actual :E-structure for a

function or predicate symbol f as S'J-{iU"""\c) where the ~c as elements of the L-Structure C are determined

from S'l{f) =(PI":" Pk) and Cas follows:

If Pi is a function Pi:Ci-7Ii then k:= PiJlC) where CC is the element in Cbelonging to the context sort C. ­

Definition 4.2.4 (Interpretation of Terms)

Given a signature interpretation S =«c, S'P), tV, c,!P) for a signatureL, context terms are interpreted by the

corresponding induced homomorphism Vh from the algebra of context terms into C. (That is the same as in

OSPL.) For interpreting domain tenns we turn S into an homomorphism Sh from the algebra of domain terms

into the actual :E-structure of the tenn's topsymbol.

Sh(x) := 'J{x) where x is a variable symbol,

Sh(f(tl""'~» := f?t(Sh(tl)"",Sh(~» where)'lis the actual L-structure off (def. 4.2.3).

In the sequel we do not distinguish between S, Sh and 'JIh. ­

28

Definition 4.2.2 (Signature Interpretations)
A signature interpretation for a signature E with basic context sorts (C1... .,Cm) is a tuple (T, W.;. C, ?) where

T =: (C. 51/) is a frame,
‘V is a Z-assignment, the actual assignment and
C is a tuple (c1....,cm) e C1 ex . . .mCof actual contexts and
9 is a E—assignment, the context assignment. I

The ‘V-component is the usual assignment of values to variables, domain elements to domain variables and context
access functions to context access variables. ‘Vis irrelevant for the interpretation of closed formulae. It is used by
the satisfiability relation (see below) in the usual way for recording variable bindings during the recursive descent
into a formula. The (‚'-component contains the actual context (actual world) in which the formula or term has to be
interpreted. For a closed formula it gives the initial context (initial world) for its interpretation, and during the
recursive descent into the formula the satisfiability relation uses it to record in a stack-like manner the actual
context. The actual context changes each time a new quantifier over a functional context variable is encountered.
The ‘Vand (‚‘—components are standard for modal logics. The f-component, however, is specific for CL. It
records for each functional context variable the context of its quantification, i.e. its first occurrence. This
information is necessary for unwinding the C-context when a quantifier with “-y” appendix is encountered and for
the proper interpretation of the special context predicates (like the <-predicate above).

The actual E-structure (world) to be used for the interpretation of terms and atoms is obtained form the actual
context, i.e. the ‘C-component of the interpretation by applying the topsymbol’s projector functions to the actual
context. For example in the multi modal logic we describe in chapter 5 , the actual context consists of tuples
<wor1d, path>, but the actual E-structure for the interpretation of a term is independent of the path component.

Therefore the project—world function has to be applied to the actual context in order to get the interpretation
context, i.e. the actual 2-structure.

Definition 4.2.3 (The Actual E-Structure)
Given a signature interpretation ((6.511), ‘V. CAP) for a signature 2 with basic context sorts C1,...,Cm,
interpretation context sorts 11,...,Ik and symbol variation function 51/, we det'me the actual 2-structure for a
function or predicate symbol f as .S‘t/(il 0 . . . , z 'kc) where the "ic as elements of the 2-Structure C are determined
from S‘I/(D = (p1,...‚ pk) and Cas follows:
If pi is a function pi:C]-l——>Ii then "ic := piC(CC) where CC is the element in Cbelonging to the context sort C. I

Definition 4 .2 .4 (Interpretation of Terms)
Given a signature interpretation 3 = ((C, S'V), ‘V, c, :P) for a signature Z, context terms are interpreted by the
correSponding induced homomorphism 'Vh from the algebra of context terms into C. (That is the same as in
OSPL.) For interpreting domain terms we turn 8 into an homomorphism Sh from the algebra of domain terms
into the actual E-structure of the term 's topsymbol.

Sh(x) := MX) where x is a variable symbol,
3h(f(t1,. ..,tn)) := £(Sh(t1) , . ..,Sh(tn)) where filis the actual E-structure of f (def. 4.2.3).

In the sequel we do not distinguish between SS, 8,. and ‘Vh. l

29

Notational Conventions:

Let S = «c. S~, ~ C, 1') be a signature interpretation.

Cc denotes the element of Cthat corresponds to the sort C.

In general it should be clear which C. Le. which S is meant.

S[x/iU'J/denotes the interpretation S' where 1{x/iU maps x to ~and which is otherwise like S.

S[x!c)pdenotes the interpretation S' where P[x/c) maps x to cand which is otherwise like S.

S[C/c)cdenotes the interpretation S' where in Cthe element belonging to the sort C is replaced by c,

and which is otherwise like S.

We use combinations of these notations with the corresponding meaning. •

Definition 4.2.5 (The Satisfiability Relations)
Let S = «c. S~, ~ C, 1') be a signature interpretation for a signature ~.

The satisfiability relation for context formulae is just the OSPL satisfiability relation where all but Cand l'is

ignored in S.

The satisfiability relation for domain formulae is defmed as follows:

S 11­ P(t1""'~) iff (S(t1)""'S(~» E P j(where ;;lis the actual ~-structure ofP

and P is a domain predicate (def. 4.2.3)

S 11- P(t} ,... ,~) iff (t1'" .,~) E Pc .

where P is a context predicate and the 'l. are determined as follows:

If Ij is a context variable x or a term J,(x,z) then 'l. := S(Ij)(p(x»

If Ij =Sot and s is a context variable x or a term J,(x,z) then It := S(t)(S(s)(p(x»)

otherwise 'l.:= S(1j)
S 11- -,'.f iff not S 11- '.f

S 11- '.fAg iff S 11- '.fand S 11­ g

S 11- '.fv g iff S 11- '.for S 11­ g

S 11- \Ix gwhere x is a domain variable of sort D

iff for every ~E DS'J': S[X/iU'J/ll- g
S 11- \Ix gwhere x is a context variable of sort 'C~<!C'

iff for every ~E 'C-.7qC'CS[x/~'J/[C/;U:Cc»)c [X/Cc)l'll- g
S 11- \lx-y g where x is a context variable of sort 'C-.7<!C' and y is a variable of sort 'C-.7PC' or 'D,C~PC'

iff for every ~E 'C~<!C'c S[x/iU'J/[C/;U:P(y»)c[x/p(y))pll- g
S 11- \lJ,(x,z=t) gwhere x is a context variable of sort 'D,C-.7QC'

iff for every ~E 'D,C-.7QC'CS[x/~ z/S(t»)'J/[C/;U:S(t), Cc»)c[X/Cc)pll- g
S 11- \IJ,(x,z=t)-y gwhere x is a context variable of sort 'D,C-.7QC'

iff for every ~E 'D,C~<!C'CS[xh z!S(t»)'J/[CMS(t), P(y»)c[x/p(y»)l'll- g
S 11- 3x gwhere x is a domain variable of sort D

iff there is an ~E DS'J'with S[x/iUo/ 11- g
S 11- 3x gwhere x is a context variable of sort 'C~<!C'

iff there is an ~E 'C-.7<!C' c with S[x/iU'J/[CMCc»)c [X/Cc)l'll- g
S 11- 3x-y gwhere x is a context variable of sort 'C-.7<!C' and y is a variable of sort 'C-.7PC' or 'D,C~PC'

iff thereisan~E 'C-.7Qc'cwithS[x/iU'J/[CMP(y»)c[x/p(y)]p 11- g
S 11- 3J,(x,z=t) <j where x is a context variable of sort 'D,C~qC'

iff there is an ~E 'D,C~<!C'c with S[x/~ z/S(t»)o/[CMS(t), Cc»)c [x/Cc)p 11- g
S 11- 3J,(x,z=t)-y <j where x is a context variable of sort 'D,C-.7<!C'

iff there is an ~E 'D,C-.7QC'CS[x/~ zlS(t»)'J/[C/;U:S(t), P(y»)c[x/p(y»)l'll- g
S 11- go t g where t is a term of sort 'C-.7qC'

iff S[C/S(t)(Cc)]c 11- g •

29

Notational Conventions:
Let E! = ((€, 5M, ‘V; c, :P) be a signature interpretation.
Cc denotes the element of Cthat corresponds to the sort C.

In general it should be clear which C, Le. which 8 is meant.
8 [x/flvdenotes the interpretation 8 ’ where 'l/[x/ad maps x to (and which is otherwise like ES.
3 [x/c] 9 denotes the interpretation 3 ’ where flx/c] maps x to c and which is otherwise like 8 .

EHC/c] cdenotes the interpretation 8 ’ where in Cthe element belonging to the sort C is replaced by c,
and which is otherwise like S .
We use combinations of these notations with the corresponding meaning. .

Definition 4 .2 .5 (The Satisfiability Relations)
Let 8 = ((C, 5%, ‘V, C, 9) be a signature interpretation for a signature 2.
The satisfiability relation for context formulae is just the OSPL satisfiability relation where all but Cand ‘Vis
ignored in S . .
The satisfiability relation for domain formulae is defined as follows:

3 It— P(t1,. ..,tn) iff (8(t1),...,3(tn)) e Pa where fl i s the actual 2-structure of P

and P is a domain predicate (def. 4.2.3)
8 ll— P(t1,...,tn) iff (t1,...,tn) 6 PC _

where P is a context predicate and the ti are determined as follows:
If ti is a context variable x or a term J,(x,z) then 13- := 8(ti)(2P(x))
If ti = s o t and 3 is a context variable x or a term J,(x,z) then r,- := 3(t)(8(s)(2z'(x)))
otherwise ti := 8(ti)

S II— —-J iff not 3 u— f
S n— : rAg iff 8 n— fandSS u— g
S l l—fvg iff Sll—TorSSll— (}
3 n— Vx g where x is a domain variable of sort D

iff for every {6 D „,: SDC/{LV n— g

S u— Vx Q where x is a context variable of sort ‘C—eqC’
iff for every ‚ce ‘c——>qc'c- 5[x/;c]‚V[C/;((CC)]C [x/CC]‚_„ll—- (}

3 ”— Vx-y g where x is a context variable of sort ‘C—)‘1C’ and y is a variable of sort ‘C—>PC’ or ‘D‚C-—>PC’
iff for every ;(‚e ‘C—>qC’C' 5[x/:d‚y[C/xffly))]c[x/£J(y)]g‚ll— (;

3 ||— V¢(x,z=t) gwhere x is a context variable of sort ‘D,C——>‘1C’
iff for every {6 ‘D,C—-—>‘1C’C: SDK/;(, Z/3(t)].y[C/7((8(t), CC)]c[x/CC]9"‘ g

S n— V~L(x,z=t)-y (} where x is a context variable of sort ‘D,C——9‘1C’
iff for every {6 ‘D,C—->qC’C° 8[x/2c, z/3(t)].y[C/2r(3(t), f(y))]c[x/.‘P(y)]a‚l+- ;;

S u— Elx (; where x is a domain variable of sort D
iff there is an ‚Ce with S[x/x].y ||— @

S ||— 3x g where x is a context variable of sort ‘C—>‘1C’
iff there is an ace ‘C—)‘1C’Cwith 3[X/7(]qz[C/7((CCHC[X/Cc]g”— g

S |}— Elx-y gwhere x is a context variable of sort ‘C—a’ and y is a variable of sort ‘C-—>PC’ or ‘D,C—-—>PC’
iff there is an ace ‘C—>‘1C’Cwith SDC/XL,; [C/fifly))]c [x/flyfla, II— g

S H— 3¢(x,z=t) @ where x is a context variable of sort ‘D,C-—)qC’
iff there is an {e ‘D,C—>qC’Cwith SDK/Pc, assuage/743a), Cc)1c[x/Cc]a Il— g

3 It— 3¢(x,z=t)-y @ where x is a context variable of sort ‘D,C——>‘1C’
iff there is an ace ‘D,C—>‘1C’C‘ Shi/x, 2/5(t)].„[C/a(5(t), fly))]c[x/:P(y)],_,u— g

3 II— {a t g where t is a term of sort ‘C——>‘1C’
iff S[C/3(t)(CC)]c “- G '

30

Notice that in quantifications VJ.(x,z=t)-y (j and 3J.(x,z=t)-y (j the tenn 't' is interpreted in the actual context, i.e.

the "-y" suffix has no effect on 't'.

Lemma 4.2.6 (Negation Normal Form)

The following transfonnation rules for domain fonnulae can now be proved being equivalence preserving: -,

(7' 1\ J-f) ~ -, 7'v -, (j -, (7' v J-f) ~ -, 7'1\ -,(j

-,Vx (j ~ 3x -,(j --,3x (j ~ Vx -,(j

-,Vx-y (j ~ 3x-y -,(j -,3x-y (j ~ Vx-y -,(j

-,VJ.(x,z=t) (j ~ 3 J.(x,z=t) -,(j --,3x J.(x,z=t) (j ~ VJ.(x,z=t) -,(j

-,VJ.(x,z=t)-y (j ~ 3 J.(x,z=t)-y -,(j --,3x J.(x,z=t)-y (j ~ VJ.(x,z=t)-y -,(j

-, f.J t (j ~ f.J t -,(j

These rules allow to move negations in front of the atoms, i.e. to produce a negation nonnal fonn. •

To illustrate the last rule, assume t means again "tomorrow", i.e. a fixed temporal context shift and (j means

"bad-weather". Then -, f.J tomorrow bad-weather ~ f.J tomorrow -,bad-weather means that 'not tomorrow is

bad weather' is equivalent with 'tomorrow is not bad weather'. Sounds reasonable, doesn't it.

Assumption: In the sequel we always assume that domain fonnulae are in negation nonnal fonn.

4.3 A	 Logic Morphism from Context Logic to Order-Sorted Predicate Logic.

We define a logic morphism II = (llS' llZ) (def. 2.3) from CL to OSPL that allows to translate CL-specifications

into OSPL-specifications, thus enabling proofs by translation and refutation. For the specification morphism IIs

we defme a signature morphism llI; and a fonnula morphism llr as components first.

The main task for the signature morphism is to provide additional "context arguments" for the domain function

and predicate symbols. The sort declarations must be extended for this purpose.

Definition 4.3.1 The Signature Morphism llI;

A CL-signature ~ with symbol variation function So/is mapped to an OSPL-signature as follows:

I.	 The sorts, the sort hierarchy and the context symbols, including the equality symbol, remain

unchanged.

2.	 For each basic context sort C a distinguished constant symbol 0c:C is introduced.

3.	 Each n-place domain function or predicate symbol f is mapped to an k+n-place function or

predicate symbol where k is the number of interpretation context symbols.

(The k additional arguments take the context tenns for the functional context sorts.)

4.	 In the tenn declarations cS the tenn t is modified by the following recursive function 1tI;:

1tI;(x) = x where x is a variable.

1tI;(f(tl·····~» =llI;(t)(Yl'·"'Yk' 1tI;(tl),···,1tI;(tl» (.:.)
where the Yi are new variables of sort ~ such that (11,... ,Ik) is just the tuple of

rangesorts of the functions in s'I{t) (which equals the interpretation context sorts).

If f is a context symbol then k = O.
5.	 The predicate declarations are modified according to the rule (.:.).

6. A sufficiently large set of function symbols is added to serve as Skolem functions.	 •

30

Notice that in quantifications VJ,(x,z=t)—y (j and Eli(x,z==t)-y g the term ‘t’ is interpreted in the actual context, i.e.
the “-y” suffix has no effect on ‘t’.

Lemma 4.2.6 (Negation Normal Form)
The following transformation rules for domain formulae can now be proved being equivalence preserving: —1
(‚T/\?!) —> _19 'V 'flg —1(:Tv.‘H) _) —-1_'FA——ug

—.Vx (} —> Elx -—.g —Elx g —> Vx ——.Cj
——.Vx-y g —) Elx-y —.g —Elx-y g _) Vx-y "WG
-1V.L(x,z=t) g ——> 3 l(x,z=t) —.g —E|x i(x,z=t) g -—> V~L(X.Z=t) “TG
-—:V~L(x,z=t)-y g —> 3 ¢(x,z=t)-y —.g ax J.(x,z=t)-y g _) VJ‚(x,z=t)—y “?
-1 go t g —9 £) t fig

These rules allow to move negations in front of the atoms, i.e. to produce a negation normal form. I

To illustrate the last rule, assume t means again “tomorrow”, i.e. a fixed temporal context shift and (} means
“bad-weather”. Then -—. go tomorrow bad-weather —> go tomorrow abad-weather means that ‘not tomorrow is
bad weather” is equivalent with ‘tomorrow is not bad weather’. Sounds reasonable, doesn’t it.

Assumption: In the sequel we always assume that domain formulae are in negation normal form.

4.3 A Logic Morphism from Context Logic to Order-Sorted Predicate Logic.

We define a logic morphism II = (115, 1'13) (def. 2.3) from CL to OSPL that allows to translate CL-specifications

into OSPL-specifications, thus enabling proofs by translation and refutation. For the specification morphism H5
we define a signature morphism Hz and a formula morphism Hy as components first.

The main task for the signature morphism is to provide additional “context arguments” for the domain ftmction

and predicate symbols. The sort declarations must be extended for this purpose.

Definition 4.3.1 The Signature Morphism Hz

A CL-signature 2‘. with symbol variation function .S'Vis mapped to an OSPL-signature as follows:

1. The sorts, the sort hierarchy and the context symbols, including the equality symbol, remain
unchanged.

2 . For each basic context sort C a distinguished constant symbol 0C:C is introduced.
3 . Each n-place domain function or predicate symbol f is mapped to an k+n-place function or

predicate symbol where k is the number of interpretation context symbols.
(The k additional arguments take the context terms for the functional context sorts.)

4 . In the term declarations t:S the term t is modified by the following recursive function RE:
1:2(x) = x where x is a variable.
1132(f(t1,...,tn)) = Hz(f)(y1,. . . ,yk, 1:201)” . . ,1t2(t1)) (€*)

where the yi are new variables of sort Ii such that (11,. . . ,Ik) is just the tuple of
rangesorts of the functions in St“) (which equals the interpretation context sorts).
If f is a context symbol then It = 0.

5 . The predicate declarations are modified according to the rule (03°).
6 . A sufficiently large set of function symbols is added to serve as Skolem functions. I

31

The fonnula morphism translates domain fonnulae into OSPL-formulae by collecting the quantifications over

context access functions and inserting corresponding context terms as additional arguments into the terms and

atoms.

Definition 4.3.2 The Formula Morphism I1.r
Since context formulae are already OSPL-formulae, IT 'f needs only translate the domain formulae into

OSPL-formula. Il'frequires an auxiliary function 1t that makes the recursive descent into the formulae and terms to

be translated. 1t has two additional arguments c and JP. c accumulates for each basic context sort C the sequence of

nested quantifiers over context functions, i.e. when (C1' ... ,Cn) is the tuple of basic context sorts, e is a tuple

(tl""'~) of terms where the Ii correspond to the sorts Ci.1i is a 'CC~<JCi'-term of the structure ~lo ...o~m' The ~j

are either variables or terms ,J,(x, t). p records for each context variable of sort 'CC~qCi' or 'D,Cc~qCi' the

C-context of the corresponding q~antification, i.e. the value, Cc had when the quantification that introduced x was

translated.

To simplify notation we assume that the initial value of c is a tuple of identity functions and in p the assignment

for each variable is the also the identity-function (which of course should be eliminated in a real implementation).

For example when the formula Vx:'C~C' Vy:'C~C' P is translated, at the time when 1t arrives at P, c = (xoy),

JP(x) = identity-function and p(y} = x. (Since p records terms, a Lisp hacker may think of JP as an association list

for variable symbols.)

Notational Conventions:

Cc denotes the element of c that corresponds to the sort C.

e[C/c] is like e except that the element belonging to the sort C is replaced by c.

p[x/c] is like p except that x is mapped to c.

1t(g...)[x(-t] means "translate g and afterwards replace all occurrences of x by t".

1t(:J. e, p) is defmed inductively over the structure of 1'.
A) 1t(x, e, p) := x where x is any variable symbol

B) 1t(f(tl , ... ,tn), c, p) := Il:t(t)(sl, ... ,sk' 1t(tl , c,]pi),... , 1t(~, c,]pi» where f is a function ·symbol.

The Si are determined as follows: ,

If f is a context function then k = O.

Otherwise ~:= Pi(.J{cCi' Od) where Pi:Ci~~ is the i-th projector function in S'l{t).

C) 1t(±P(tl , .. ·,t), C,]pi) := ±Il:t(P)(sl, ... ,sk' 1t(tl , e, p), ... , 1t(~, c,]pi» where P is a domain predicate. n

The Si are determined as in the previous case. ("±" means negated or unnegated.)

D) 1t(±P(t1,... ,t),c,p) :=±P(sl,... ,sn) wherePisacontextpredicate.
n
The Si are determined as follows:

If ~:'c~qC' is either a context variable x or a term J.(x,z) then Si := !(JP(x)oli, 0c).

If li = sot and s is a context variable x:'C"-7<JC' or a term ,J,(x,z) then Si := ,J,(P(x)oSo1t(t, c,]pi), Qc),

otherwise Si := 1t(Ii, c,]pi).

E) 1t(Vx g, C, p) := 'Ix 1t(g, c,]pi) where x is a domain variable.

F) 1t(Vx g, C, JP) := 'Ix 1t(g, c[C/ccox],]pi[x/ccD where x:'C~<JC' is a context variable.

G) 1t(Vx-y g, C,]pi} := 'Ix 1t(g, c[C/JPi(y)ox], p[x/]P(y)]) where x:'C----7QC' is a context variable.

H) 1t(V,J,(x,z=t) g, c, JP) := 'Ix 1t(g, c[C/cc0,J,(x, 1t(t, c, JP))], JP[x/cc])[z(-1t(t, e, JP)]

where x:'D,C----7qC' is a context variable.

I) 1t(V,J,(x,z=t)-y g, c, p) := Vx 1t(g, c[C/]!l{y)o.l-(x, 1t(t, c, p»], JP[x/]P(y)])[z(-1t(t, c, p)]

where x: 'D,C"-7qC' is a context variable.

31

The formula morphism translates domain formulae into OSPL-formulae by collecting the quantifications over
context access functions and inserting corresponding context terms as additional arguments into the terms and

atoms.

Definition 4.3.2 The Formula Morphism IIgr
Since context formulae are already OSPL-formulae, I'I f needs only translate the domain formulae into
OSPL-fonnula. 1'19r requires an auxiliary function it that makes the recursive descent into the formulae and terms to

be translated. 1: has two additional arguments c and p. c accumulates for each basic context sort C the sequence of
nested quantifiers over context functions, i.e. when (C1,...,Cn) is the tuple of basic context sorts, c is a tuple
(t1....,tn) of terms where the ti correspond to the sorts Ci. ti is a ‘Ci—a‘lCifiterm of the structure ttl°m°tlm- The tij

are either variables or terms ¢(x, t). p records for each context variable of sort ‘Ci—ei’ or ‘D,Ci—->‘1Ci’ the
C-context of the corresponding quantification, i.e. the value, cc had when the quantification that introduced x was
translated.

To simplify notation we assume that the initial value of c is a tuple of identity functions and in p the assignment
for each variable is the also the identity-function (which of course should be eliminated in a real implementation).
For example when the formula Vx:‘C—>C’ Vyz‘C—9C’ P is translated, at the time when it arrives at P, c = (xoy),
p(x) = identity-fimction and 1p(y) = x. (Since p records terms, a Lisp hacker may think of p as an association list
for variable symbols.)

Notational Conventions:
cc denotes the element of c that corresponds to the sort C.
c[C/c] is like c except that the element belonging to the sort C is replaced by c.
p[x/c] is like p except that x is mapped to c.
Mg. . .)[xe—t] means “translate (j and afterwards replace all occurrences of x by t".

IKT, c, 19) is defined inductively over the structure of f:
A) n:(x, c , p) := x where x is any variable symbol
B) 1t(f(t1,...,tn), c , p) := H£(f)(s1,...,sk, nal , c, p) , . . . , 1t(tn. c, p)) where f is a function symbol.

The si are determined as follows: „
If f is a context function then k = 0.
Otherwise Si := pi(J.(cCi, OCi)) where pizci—ali is the i-th projector function in „SG/(f).

C) 1t(fl(t1,...,tn), c, p) := iHE(P)(sl,. ...sk, nal, c, p),. 1t(tn, 0 . P)) where P is a domain predicate.
The si are determined as in the previous case. (“i” means negated or unnegated.)

D) 1c(iP(t1....,tn), c , p) := fl (s1 , . . . , sn) where P is a context predicate.
The si are determined as follows: '
If tiz‘C—flC’ is either a context variable x or a term l(x,z) then si := .L(p(x)oti, OC).
If ti = s o t and 3 is a context variable x:‘C—>‘1C’ or a term i(x,z) then si := l(p(x)os°1t(t, c, p), OC),
otherwise si := 1t(ti, c , p).

E) 1t(Vx g, c , p) := Vx 1t(g, c , p) where x i s a domain variable.
F) 1t(Vx g, c , p) := Vx 1t(g, c[C/ccox], p[x/cc]) where x:‘C—>‘1C’ is a context variable.
G) 1t(Vx-y (j, c , p) := Vx 1c(g, c[C/p(y)ox], p[x/p(y)]) where x:‘C——>‘1C’ i s a context variable.
H) 1t(Vl(x,z=t) g, c, p) := Vx «(g, c[C/ccol(x, na, c , pn], p[x/cC])[z<—-rc(t, c , p)]

where x: ‘D,C->‘1C’ is a context variable.
I) n(V$(x‚z-—-t)-y 916,19) := Vx 1E(g,c[C/p(y)°¢(x , “(L c‚1p))] ‚ plx/Jp(y)])[Z<—1c(t, c.p‘)l

where x: ‘D,C-—>qC’ is a context variable.

32

The variables ylym in the rules for the existential quantifier below are the free domain variables in g.
J) 1t(3x g. c. p) := 1t(fj. c. p)[x~g(sl•... ,sk' yl •... 'ym)] where x is a domain variable of sort D,

Sj := Pj(J.(cCj' 0Cj)) where Pj:Cr-~~ is the i-th element in S1{x) and

g is a new function symbol of sort I1x ...xIkxS(Yl)x...xS(Ym) -7 D.

K) 1t(3x g, e, p) := 1t(g, c[C/ccox], p[x/cc])[x~h(sl•.. .,Sj_l,Sj+l •...•sk,yl""'Ym)]

L) 1t(3x-y g. e. p) := 1t(g. e[C/p(y)ox]. p[x/JPI(y)])[x~h(sl•...•sj-1.Sj+l•...•sk'Yl •... ,ym)]

where x:'C-7l}C' is a context variable,

~ := pll.(cCj.Od) where pj:Cj-7Ij is the i-th element in S1{x). Cj= C and

h:Ilx...xIj_lXIj+lx...xIkXS(Yl)x...xS(Ym) -7 'C-7qC' is a new function symbol.

M) 1t(3.J,(x.z=t) g. c. p) where x:'D.C-7qC' is a context variable.

:= 1t(g. c[C/cc0.J,(x.1t(t. c. p))]. p[x/cc])[x~k(sl•...•Sj_l.Sj+l •...•sk,yl •... ,ym)' zHt(t. c. p)]

N) 1t(3.J,(x.z=t)-y g. c. p) where x:'D.C-7QC' is a context variable.

:= 1t(g. c[C/p(y)o.J,(x, 1t(t. e. p»]. p[x/p(y)])[x~k(sl,...•Sj_l.Sj+l •...•sk,yl""'Ym)' Z~1t(t, c. p)]

~ := Pj(.J,(cCi.OCj» where pj:Cj-7Ij is the i-th element in S1{x). Cj= C and

k:Ilx... xIj_IXIj+lx...xIkxS(Yl)x...xS(Ym) -7 'D.C-7QC' is a new function symbol.

0) 1t(.fO t g. c. p) := 1t(g. c[C/cCo1t(t. c. p)]. p) where t is a term of sort 'C-7l}C·.

P) 1t(91/\ 92' C. p) := 1t(91' c. p) /\ 1t(92' c. p).

Q) 1t(91 v 92' C. p) := 1t(91' c. p) v 1t(92' c. p). •

Notice that the translation rules contain a very strong Skolemization rule for functional context variables. The

Skolem functiOIls for a context C do not depend on the universally quantified context variables of the context C

itself. In particular when there is only one context. this means they depend only on the domain variables. not on

the other context variables. This works because a Skolem function. say g. for a functional context variable whose

quantification occurred in the scope of a universal quantifier over another functional context variable, say x,

becomes part of a term xog that depends on x. If we write this term in second order syntax we see that g(x) really

depends on x. The soundness of this strong Skolemization actually depends on a certain condition on the

interpretation of the functional context sorts (see. def. 4.3.6 below). The introduction of the stronger

Skolemization rule is the reason for including Skolemization into the translation from CL to OSPL.

Proposition 4.3.3 TI1"maps well formed CL-formulae to well formed OSPL-formulae.

Proof: A simple check of the translation rules in 4.3.2 and application of def. 3.4.1,4 confirms that the new

context terms in the c- and p-argument of 1t are well sorted. We show the main statement with induction on the

size of domain formulae. In most cases it is sufficient to show that terms do not change their sort.

Base Case: This is the variable case which is trivial because variables are not changed.

Induction Step: The induction hypothesis states that translated terms of smaller size have not changed their sorts

and translated terms and formulae of smaller size are well formed OSPL-formulae. We perform a case analysis

according to the structure of the domain formulae. The interesting cases where the translation rules in 4.3.2

produce new terms are:

Case f(tl'~) and f is a function symbol.

The translation rule is

B) "1t(f(t1,....t), C. p) := TIl;(f)(sl'" "sk' 1t(t1• c. p)•...• 1t(~. c, p» where f is a function symbol.
 o

The Si are determined as follows:

If f is a context function then k = 0.

Otherwise ~ := pl1(cCj' 0Ci» where Pi:Cj-7~ is the i-th element in S1{f)."

According to the induction hypothesis. the sorts of the ~ do not change.

The sort of s· is the rangesort of the p. or smaller. Therefore the translated term matches the

1 1 "

declaration for TIl;(f) in def. 4.3.1.4, thus keeping its sort.

32

The variables y1,. . .,ym in the rules for the existential quantifier below are the free domain variables in Q.
J) 1t(3x g, c , p) := Mg, c , p)[x<—g(s1,.„,sk, y1,... ,ym)] where x is a domain variable of sort D ,

si := pi($(CCi, OCi)) where pi:C]-L—>Ii is the i-th element in .S’t/(x) and
g is a new function symbol of sort l . . .kxS(y1)x. . .><S(ym) ——> D .

K) Max 9, c , p) := Mg, c[C/ccox], p[x/cc])[xe—h(s1,...,sj_1,sj+1 , . . . , sk ,y1 , . . . , ym)]

L) “(Ex-y g, c , p) := Mg, c[C/p(y)ox], p[x/p(y)])[xe—h(sl,...,sj_1,sj+1,...,sk,y1,...,ym)]
where x:‘C-—>‘1C’ is a context variable,
si := pi(J‚(cCi,0Ci)) where pi:Ci—>Ii is the i-th element in 5'1/(x), C]: C and
t lx . . . i_1 i+1x. . .kxS(y1)x . . .><S(ym) —> ‘C—>‘1C’ is a new function symbol.

M) 1t(ELL(x,z=t) g, c ,]p) where x:‘D,C—9‘1C’ is a context variable,
:= Mg, c[C/ccoi(x, rt(t, c, p))], p[x/cc])[x<—-k(sl,...,sj_1,sj+1,...,sk,y1,...,ym), ze-rt(t, c, p)]

N) rt(3l(x,z=t)-y g, c, p) where x: ‘D,C——>qC’ is a context variable,
:= tt(g, c[C/p(y)ol(x, 1t(t, c , p))], p[x/p(y)])[x<—k(s1,...,sj_1,sj+1,...,sk,y1,...,ym), z<—7t(t, c , p)]

si := pi(i(cCi,OCi)) where pizci—fli is the i-th element in ‚fü/(x), C]: C and
kzllx...i_1i+1x...kxS(y1)><...xS(ym) —) ‘D,C—>‘1C’ is a new function symbol.

O) Mp t g, c, p) := Mg, c[C/cco1c(t, c, p)], p) where t is a term of sort ‘C—>‘1C’.
P) rt((j1 A g2, c, p) := Mg] , c, p) A 111(62, c, p).
Q) M61 v 62, c, p) := M61, 6,1?) v M62, 0.1:»). I

Notice that the translation rules contain a very strong Skolemization rule for functional context variables. The
Skolem functions for a context C do not depend on the universally quantified context variables of the context C
itself. In particular when there is only one context, this means they depend only on the domain variables, not on
the other context variables. This works because a Skolem function, say g, for a functional context variable whose
quantification occurred in the scope of a universal quantifier over another functional context variable, say x,
becomes part of a term Xog that depends on x. If we write this term in second order syntax we see that g(x) really
depends on x . The soundness of this strong Skolemization actually depends on a certain condition on the
interpretation of the functional context sorts (see. def. 4 .3 .6 below). The introduction o f the stronger
Skolemization rule is the reason for including Skolemization into the translation from CL to OSPL.

Proposition 4.3.3 Hymaps well formed CL~formulae to well formed OSPL-formulae.
Proof: A simple check of the translation, rules in 4.3.2 and application of def. 3.4.1,4 confirms that the new
context terms in the c- and Irv-argument of It are well sorted. We show the main statement with induction on the
size of domain formulae. In most cases it is sufficient to show that terms do not change their sort.

Base Case: This is the variable case which is uivial because variables are not changed.
Induction Step: The induction hypothesis states that translated terms of smaller size have not changed their sorts
and translated terms and formulae of smaller size are well formed OSPL-formulae. We perform a case analysis
according to the structure of the domain formulae. The interesting cases where the translation rules in 4.3.2
produce new terms are:
Case f(t1,. . .,tn) and f is a function symbol.

The translation rule is
B) “rt(f(t1....,tn), c, p) := IIZ(f)(sl,...,sk, 1t(t1, c, p),..., nan, c, P)) where f is a function symbol.

The si are determined as follows:
If f is a context function then k = 0.
Otherwise si := pi(J‚(cCi, OCi» where pi:C1-—>Ii is the i-th element in SMD.”

According to the induction hypothesis, the sorts of the ti do not change.
The sort of si is the rangesort of the Pi or smaller. Therefore the translated term matches the
declaration for 112(0 in def. 4.3.1,4, thus keeping its sort.

33

Case ±P(tt, ... ,ln) and P is a domain predicate.

The translation rule is

C) "7t(±P(tt, .. ·,tn), c,]pi) := ±ITI;(P)(St,... ,sk' 7t(tt' c,]pi,... , 1t(tn, c,]pi»

The ~ are determined as in the previous case."

The arguments are also the same as in the previous case.

Case ±P(tl ,...,In) and P is a context predicate.

The translation rule is

D) "7t(±P(tt, ... ,ln), C,]pi) := ±P(sl"",sn)

The si are determined as follows:

Ift(C-7qC' is either a context variable x or a term ,J,(x,z) then si := ,J,({JPi(x)o~», Dc)

If ~ = Sot and s is a variable x:'C-7~' or a term ,J,(x,z) then si:= ,J,({JPi(x)oso1t(t, c,]pi», Dc)

otherwise si := 1t(~, c,]pi)"

The sort of si is C or smaller in all three cases.Since P(tt, ... ,ln) is a well formed domain atom, the sort of the

4-position must be C or larger (def. 4.1.3,ii). Thus, the translated atom is a well sorted OSPL-atom.

Case V,J,(x,z=t) 9 where x: 'D,C-7~' is a context variable.

The translation rule is

H) "1t(V,J,(x,z=t) g, c, JP) := Vx 1t(g, c[cclcc0,J,(x, 1t(t, c,]pi»],]pi[x/cc])[z<-1t(t, C,]pi)]"

By defInition, z and t have the same sorts (defA.1.3,iv). Exploiting the induction hypothesis for 1t(t, C,]pi) we

can safely replace z by the translated term without changing the sorts of terms.

The same holds for the case V,J,(x,z=t)-y g.
Case 3x 9 where x is a domain variable of sort D.

The translation rule is

1) "1t(3x g, C,]pi) := 1t(q, c,]pi)[x<-g(St,.. ·,sk' Yt,."'Ym)]

~ := Pi(,J,(cCi' 0Ci» where Pi:Ci-7~ is the i-th projector function in S'/{x),

and g is a new function symbol of sort Ilx...xI0S(Yl)x...xS(Ym) -7 D."

g(sl, ... ,sk' Yl, ... ,ym> is a well sorted term and its sort is D. Therefore x of sort D is replaced by a term of sort

D which does not change the sorts and this holds for the remaining rules with existential quantifIer as well. •

Examples for the Translation of Domain Formulae

We assume C is the only basic context sort and therefore it is also the interpretation sort.

Let the symbol variation function map all symbols to the identity function. We shall omit it.

TIP)
= P'(,J,(identity,Oc» (-7 P'(Dc»

TIfVx:'C-7C' P)

= Vx:'C-7C' P'(,J,(x, 0c»

TIfVx: 'C-7C' a = b) (We do not distinguish between the object and meta equality symbol)

= Vx:'C-7C' a(,J,(x, Dc» = b(,J,(x, Dc»

TIfVx:D V,J,(y:'D,C-7C', z=f(x» Q(x»

= Vx:D Vy:'D,C-7C' Q'(,J,(,J,(y, f(x» , 0c), x)

IIIfVx:A Vy:'C-7C' 3z:D R(x, z, a»

I = Vx:A Vy:'C-7C' R'(,J,(y, Dc), x, gi,J,(y, Dc), x), a(,J,(y, Dc)))

ITIfVx:A Vy:'C-7C' 3z:'C-7C' Q(x»

= Vx:A Vy:'C-7C' Q'(,J,(yohix), Dc) x)

h needs not depend explicitly on y because the whole term yoh(x) depends on y.

et S be a context predicate of sort CxCxD

fVx:D 3y:'C-7C' Vz:'C-7C' 3u:'C-7C' 3w:'C-7C'-u S(zou, zow, a) v Vp:'C-7C' Q(x»

= Vx:D Vz:'C-7C'Vv:'C-7C' S(,J,(hyCx)ozohu(x), Dc), ,J,(hyCx)ozohw(x), Dc), a(.J.,(hyCx)ozohw(x), Dc))) v

Vp:'C-7C' Q'«(.J,(hyCx)ozohw(x)op, Dc))), x)

l

33

Case iP(t1,...,t„) and P is a domain predicate.
The translation rule i s

C) “1t(J_rP(t1,...,tn), c , p) := :TIZ(P)(sl , . . . ,sk, 1t(t1, c , p , . . . , nun, c , p))

The si are determined as in the previous case.”
The arguments are also the same as in the previous case.

Case flu] , . . „in) and P is a context predicate.

The translation rule is

D) “ rt(iP(t1,...,tn), c, p) := _P(s1,...,sn)
The Si are determined as follows:
If ti: ‘C—>‘1C’ is either a context variable x or a term J.(x,z) then si := ¢((p(x)oti)), OC)
If ti = s o t and s i s a variable xz‘C—eqC’ or a term .L(x,z) then siz= $((p(x)oSo1l:(t, c, p)), OC)

otherwise si := fc(ti, c , p)”
The sort of si is C or smaller in all three cases.Since P(t1,. . . ,tn) is a well formed domain atom, the sort of the
ti—position must be C or larger (def. 4.1.3 ,ii). Thus, the translated atom is a well sorted OSPL-atom.

Case VJ.(x,z=t) (} where x:‘D,C——>‘1C’ is a context variable.
The translation rule is

H) “1t(VJ.(x,z=t) g, c , p) := Vx Mg, c[cC/cCoJ.(x, rt(t, c , p))], p[x/cc])[ze—rt(t, c , p)]”

By definition, z and thave the same sorts (def.4.1.3,iv). Exploiting the induction hypothesis for rt(t, c, p) we
can safely replace z by the translated term without changing the sorts of terms.

The same holds for the case V¢(x,z=t)-y 9.
Case Elx g where x is a domain variable of sort D.

The translation rule is

D ‘“m @, c. p) := «(G, c ‚p) [x+g(s l„„ ‚ sk ‚ y1‚...‚ym)]
si := pi(.L(cCi, OCi)) where pirci—fli is the i-th projector function in „SG/(x),
and g is a new function symbol of sort 11x. ..><Ik(y1)x.. .xS(ym) ——> D.”

g(sl,. ..,sk, y1,. . . ,ym) is a well sorted term and its sort is D. Therefore x of sort D is replaced by a term of sort
D which does not change the sorts and this holds for the remaining rules with existential quantifier as well. I

\ ,

Examples for the Translation of Domain Formulae
We assume C is the only basic context sort and therefore it is also the interpretation sort.
Let the symbol variation function map all symbols to the identity function. We shall omit it.
Harp)

= P’(l(identity, OC» (—> P’(0C))
Hfis‘C-eC’ P)

= s‘C—äC’ P'(i(x‚ OC))
115(s ‘C—>C’ a = b) (We do not distinguish between the object and meta equality symbol)

= Vx:‘C—9C’ a(.l.(x, 0(3)) = b(.L(x, 0C))
Hf(Vx:D Vi(y:‘D,C-—)C’, z=f(x)) Q(x))

= sD Vy:‘D,C—>C’ Q’(.L(J,(y, f(x)) , OC), x)
Il'l5(Vx:A Vy:‘C—>C’ EizzD R(x, z, a))

= sA Vyz‘C—acr Rucy, DC)... at glow. OC), x), am» 0C)»

IH9(VX:A Vyz‘C—aC’ s‘C—eC’ Q(x))
= sA Vy:‘C—>C’ Q’($(yohz(x), OC) x)

h needs not depend explicitly on y because the whole term yoh(x) depends on y.

et S be a context predicate of sort CxCxD

‚(sD Ely:‘C-—>C’ Vz:‘C—>C’ Elu:‘C-—>C’ 3w:‘C-—>C’-u S(zon, zow, a) v Vp:‘C—>C’ Q(x))
= Vx:D s‘C—>C’Vv:‘C—>C’ S(~L(hy(x)oZohu(x), OC), l01y(x)oZohw(x), 0C), a(i(hy(x)oz<>hw(x), 0C») v

Vp=‘C~+C’ Q’((¢(hy(X)°zohw(X)op, OC)», x)

34

IT/'v'x:'C~C' f!J f(x) P) ='v'x:'C~C' P'(i(xof(x), Qc), x)

where f:'C~C' ~ ·C~C' is a context function.

Assume B and C are the basic context sorts and So/maps to the identity function.

IT~'v'x:'B~B 'v'y:'C~C P)

= Vx:'B~B Vy:'C~C P"(i(x, OB)' i(y, Dc))

IT/'v'x:'B~B 'v'y:'C~C ::Ju:'B~B 3v:'C~C P)

= 'v'x:'B~B 'v'y:'C~C P"(i(xofu<i(y, 0c», OB)' i(y of/i(x, OB»' 0c»

where fu:C ~ 'B~B' and fv:B ~ ·C~C' are Skolem functions.

For the next example, assume we have two basic context sorts. W, and WP and the single interpretation context

sort is W. The symbol variation function maps all symbols to a function PW:WP~W.

ITP)
= p'(PW(J.(identity, Owp») (~P'(PW(Owp» ~ P'(Ow) ifPW is the projector function)

IT/'v'x:WP~WP Q(a»

= 'v'x:WP~WP Q'(PW(i(x, Owp», a(pW(J.(x, Owp»)))	 •

The specification morphism ITs needs only apply the signature morphism to the signature and the formula

morphism to the formulae. Apart from the special constants 0c and the Skolem functions, no additional symbols

and axioms are generated.

The next thing to do is to define the interpretation morphism ITg together with its inverse ITg-1. The proof that the

interpretation morphism is well defined, i.e. the proof that it really maps CL-models for CL-specifications to

OSPL-models for the translated specifications and vice versa is at the same time the soundness and completeness

proof for the translation itself.

ITg maps all the different ~-structures (worlds) of the CL-interpretation into one big ~-structure where the former

contexts (worlds) become part of the domain and the additional arguments of the translated function and predicate

symbols are used to represent the dependence of the function values from the contexts. The information about the

possible worlds structure. Le. the accessibility relation is still there in form of the functional interpretation of the

functional context sorts. The inverse of ITg decomposes this big ~-structure into its constituents.

Definition 4.3.4 The Interpretation Morphism ITg

The interpretation morphism ITg has to translate CL-interpretations into OSPL-interpretations.

Given a CL-interpretation:3 =«C, S'J1, ~ C 1') over a CL-signature ~ consisting of the domain part ~D and the

context part ~c and with basic context sorts C1•... ,C and interpretation context sorts (I1' ... ,!k)' we construct a m

functional IT~:<~)-structure '.M as follows:

1. The domain of ~

For the basic context sorts C: CM.;= Cc.

For the domain sorts D: D'Jt(:= D.s¥.

The interpretation of the functional sorts in '.Mis as in theorem 3.4.3.

2.	 The functions in 'M'.

For the context functions: f'Jt(:= fe

Let f be an n-place domain function symbol in ~.

34

HfiVxfiC—eC’ go f(x) P) = Vx:‘C—>C’ P’(l(Xof(x), OC), x)

where f:‘C—->C’ —> ‘C—eC’ is a context function.

Assume B and C are the basic context sorts and 5'Vmaps to the identity function.
H,(Vx:‘B—>B Vy:‘C-—9C P)

= Vx:‘B—>B Vyz‘C—aC P"(¢(x, OB), ~L(y, OC»

H}(Vx:‘B—)B Vy:‘C—>C Eiu:‘B—>B 3v:‘C—>C P)
= Vx:‘B-—>B Vy:‘C——>C P"(t(xotu(t(y, 0a)), OB). My of,(¢(x, GB)), °C))
where fu:C —> ‘B—aB’ and fs -—> ‘C——>C’ are Skolem functions.

For the next example, assume we have two basic context sorts, W, and WP and the single interpretation context
sort is W. The symbol variation function maps all symbols to a function PW:WP——+W.
117(P)

= P’(PW(~L(identity, p))) (—> P'(PW(OWP)) _) P'(0w) if PW is the projector function)
HAVX:WP—>WP Q(a))

= Vx:WP—>WP Q’(PW(.L(x, OWP)), a(PW(¢(x, p)))) I

The specification morphism H 5 needs only apply the signature morphism to the signature and the formula
morphism to the formulae. Apart from the special constants OC and the Skolem functions, no additional symbols
and axioms are generated.

The next thing to do is to define the interpretation morphism H3 together with its inverse 1'13“]. The proof that the
interpretation morphism is well defined, i.e. the proof that it really maps CL—models for CL-specifications to
OSPL-models for the translated specifications and vice versa is at the same time the soundness and completeness
proof for the translation itself.

Hs maps all the different E-structures (worlds) of the CL-interpretation into one big E-structure where the former
contexts (worlds) become part of the domain and the additional arguments of the translated function and predicate
symbols are used to represent the dependence of the function values from the contexts. The information about the
possible worlds structure, i.e. the accessibility relation is still there in form of the functional interpretation of the
functional context sorts. The inverse of Us decomposes this big E—structure into its constituents.

Definition 4.3.4 The Interpretation Morphism H3
The interpretation morphism 113 has to translate CL-interpretations into OSPL-interpretations.

Given a CL-interpretation 8 = ((C, 5M, ‘V; C, 3P) over a CL-signature Z consisting of the domain part ED and the
context part EC and with basic context sorts C1,...,C1m and interpretation context sorts (11,...,Ik), we construct a
functional REID-structure M as follows:
1. The domain of M

For the basic context sorts C: C M:: C c.
For the domain sorts D: DM:= D5.1,.

The interpretation of the ftmctional sorts in {Mis as in theorem 3.4.3.
2. The functions in M

For the context functions: fM:= fc
Let f be an n-place domain function symbol in E.

35

We derme fMas an k+n-place function such that the following axioms hold:

VilE IW "" \E IkC ' al, ... ,an

If f~il,...•l1cl~, ... ,On) is defined (depending on the sorts of f)

then f~il'''' ,\,al'" .,an) = fS'J{il lk)(al' .. · ,an)'

For the special constant symbols 0c we set 0CM:= Cc where Cc is the element in Cthat corresponds to the

sort C. The interpretation of the additional Skolem function symbols of IlI;(:E) in 'Mdepends on the actual

specification to be translated and is therefore left open for the moment.

3.	 The relations in 90t

The equation symbol is again interpreted as the identity.

For the context predicates: P M:= Pc

Let P be an n-place domain predicate symbol in :E.

We defme PMas an k+n-place relation such that the following axiom holds:

VilE IIC"'"	 \E IkC' at,· .. ,an
If P~n,lk)(at'''''Iln) is dermed then P~il, ... ,\,al""'On) iff PS'J{il•...• tk)(al'an).

It is now easy to verify that IlZ(3) := (!U, 11 is really a IlI;(:E)-interpretation.

4.	 The inverse H;J-t of the interpretation morphism is dermed as follows:

Let Mbe a functional IlI;(:E)-structure. First of all we construct a CL-frame (c s11 = IIp-t(~:

a) Cis the substructure of 'Mrelated to the context sorts and context symbols.

b) Srassigns to each tuple (ilD""\C> E lux...XlkC the following :ED-structure j[= j[il..... lk:

»	 The domain of.PI: For every domain sort D: DJI. := 'D'J,{'

»	 The functions in .PI:

Let fbe an k+n-place domain function symbol in I1I;(:E).

We derme fJI. as an n-place function such that the following axioms hold:

VilE IlC"'" \E IkC ' at, ... ,On

lff~it,· .. ,ix, al'· ...On) is defined then fJl.(at,· .. ,an) = f~il""'ix, at, ...,~J

»	 The relations in .PI:

Let P be an k+n-place domain predicate symbol in IlI;(:E).

We derme P~ as an n-place relation such that the following axiom holds:

VilE IlC' ...• \E IkC' al'· ...1ln
If P~(~, ... ,Iln) is dermed then P~(at "",Iln) iff P~il , ... ,\,al'" .,an).

For an OSPL-interpretation 3 = (!M; ~ we define IliJ -l(3):= (Ilz-l(M), ~ (OClM'"'' 0Cm~' (6) (the context

assignment pis left open.) •

35

We define fMas an k+n—place function such that the following axioms hold:
Vile 110..., its Ikc , a1,...,an

If fM£1,...,tc)(“1°"'~“n) i s defined (depending on the sorts of t)

then fMi1,„. , ik,a1,.„,an) = f sfl i 1 , „ . , a c) (“ l ° ° " ’ “n) '

For the special constant symbols OC we set OCM:= CC where CC is the element in Cthat corresponds to the

sort C. The interpretation of the additional Skolem function symbols of H202) in {M depends on the actual
specification to be translated and is therefore left open for the moment.

3 . The relations in M
The equation symbol is again interpreted as the identity.
For the context predicates: P „:= P c
Let P be an n-place domain predicate symbol in)2.
We define PMas an k+n-place relation such that the following axiom holds:

Vi le 110. . . , ike Ikc , a1,...,an

If PMfl , . . . , k) (“ l""°%) is defined then PMi1,...,ik‚a1,„.,an) iff Pmi1,__“flc)(al,.„,an).

It is now easy to verify that 113(3) := (M, M is really a Hz(2)-i11terpretation.

4 . The inverse H34 of the interpretation morphism is defined as follows:
Let M be a functional HZ(E)-structure. First of all we construct a CL-frame (C, 5‘3!) = Hp'1(M):
a) Cis the substructure of M related to the context sorts and context symbols.
b) .S’Vassigns to each tuple (il 0° . mike) e Il cx°°°XIkc the following ED-structure fit: 3a , . . . , aé

> The domain of fit: For every domain sort D: D a := “BM.
> The functions in fl:

Let f be an k+n-place domain function symbol in 112(2).
We define f„ as an n-place function such that the following axioms hold:

Vile Im..., ike Ikc , a1‚...‚an
If fM(il,...‚£k‚ a1,...,an) is defined then f„(a1,.„,an) = fM(i1,.„,ik, a1,...‚an).

> The relations in :4:
Let P be an k+n-place domain predicate symbol in 1—1201).
We define Pa as an n-place relation such that the following axiom holds:

Vile 110 . . . , ike Ikc , a1,...,an
If Pfl(a1,...,an) is defined then Pfl(al,...‚an) iff PMi1,...,ik,a1,„.,an).

For an OSPL-interpretation S = (M, ‘l we define ITS-1(8) := (Hs—HM), ‘V; (Ocmrvw OCmM), o) (the context
assignment .‘Pis left Open.) I

36

Soundness of the Translation

In this section we show that the logic morphism II translates a CL-specification that is satisfied by a

CL-interpretation S into an OSPL-specification that is satisfied by the OSPL-interpretation IIS(S). Since the

context part of the specification is already an OSPL-specification we need to consider only the domain part.

We have used a very strong Skolemization of the existentially quantified context access variables. Their Skolem

functions do not depend on their "own context". The soundness of this strong Skolemization depends on the fact

that the set of context access functions assigned to a functional context sort 'C~C' is sufficiently rich. To

illustrate what this means, suppose we have a CL-formula Vx:'C~C' 3y:'C~C' P which is translated into

Vx:'C~C' P.l-(xoy, Dc) where y is no longer a variable, but the Skolem constant for the original y. The usual

Skolemization rule would generate the formula Vx:'C~C' P.l-(xoy(x), Dc) where y depends on x. The

interpretation of the term .l-(xoy(x), Dc) for the various ~ E 'C~C' c is:

~ Y1
Dcc~ Cl ~ c~

and all these ~~ in 'C~C'C According to the semantics of the existential quantifier we can w.I.o.g assume that

if ~(Occ) = ~(Occ) for some ~ and ~ then ~(~(Dcc» = ~(~(Occ»' If we can also assume that 'C~C' C is

sufficiently rich to contain an additional ysuch that ~(q) =!l..q) for all these ~ and If, we can use this y instead of

all the ~, and we have made the Skolem function y independent of x. However, we need not require for all sets

{('1' ~('1) I 'i E CC ~ E C~C' cl of such tuples the existence of an appropriate y, but only for the sets of tuples

which really occur during the interpretation of a formula. The restrictions are: The ci are obtained by the

application of some ~ E C~C' c to Dccand the ~ are functions which are considered as interpretations of the

3-quantified variables. In chapter 5 we shall see an example where the 3-quantification is restricted to require for

two different ~ which are in a certain sense correlated the existence of a unique y. This restriction can be exploited

to require the existence of yonly for certain cases, i.e. to impose conditions on the interpretations of the functional

context sorts.

To ensure that the context access functions are rich enough to allow the strong Skolemization we require for every

interpretation of a context specification that the following "3-quantifier independency lemma" holds:

Definition 4.3.5 The 3-Quantifier Independency Lemma

Let S =«C, $11, ~ c,!If) be a CL-interpretation over a CL-signature :E, where 'C ~qC' and 'D,C ~qC' are

functional context sorts.

~ Let 1'be a domain formula over:E, l'containing an existential quantifier over a context access variable x. The

set of all 'C ~qC'cor 'D,C ~qC'c functions respectively which are used as interpretations of this particular

occurrence of x is called an 3-quantified set of context access functions (for J). (This set is determined

essentially by the embracing universally quantified variables. In certain cases there are additional restrictions.)

~ The 3-quantifier independency lemma requires the following two statements to hold:

a) For all cE Ccand for all3-quantified sets y~ 'c ~qC' cthere exists an yE ysuch that

V~ E 'C~C' C ~ E Y. !I..~(c» =~(~(c» where 'C~C· is the top sort in the 'C ~qC'-sorts.

b) For all cE CC {E Dcand for all 3-quantified sets y~ 'D,C ~qc' c there exists an yE Ysuch that

V~ E 'C~C' C ~ E Y. !I..~ ~(c» =Yi(' ~(c» where 'C~C' is again the top sort in the 'c ~qC'-sorts.•

36

Soundness of the Translation

In this section we show that the logic morphism IT translates a CL-specification that is satisfied by a
CL-interpretation S into an OSPL-specification that is satisfied by the OSPL-interpretation 113(3). Since the
context part of the specification is already an OSPL—specification we need to consider only the domain part.

We have used a very strong Skolemization of the existentially quantified context access variables. Their Skolem
functions do not depend on their “own context”. The soundness of this strong Skolemization depends on the fact
that the set of context access functions assigned to a functional context sort ‘C—)C’ i s sufficiently rich. To
illustrate what this means, suppose we have a CL-formula Vx:‘C—>C’ Ely:‘C——>C’ P which is translated into
Vx:‘C——>C’ P¢(xoy, OC) where y is no longer a variable, but the Skolem constant for the original y . The usual
Skolemization rule would generate the formula Vx:‘C—>C’ Pl(Xoy(x), OC) where y depends on x . The
interpretation of the term ¢(xoy(x), OC) for the various ”Ci 6 ‘C—>C’ Cis :

7C1 91

GCC—> c1 —-> ”1

*1: yr .
Ü—>ck—-)c :kCC

and all these Hi are in ‘C-—>C’ C According to the semantics of the existential quantifier we can w.l.o. g assume that
if ’Ci(0Cc) = "5(0Cc) for some Xi and 19 then yi(xi(0CC)) : yj(’fj(occ»- If we can also assume that ‘C—>C’ 6 is
sufficiently rich to contain an additional ysuch that 30.3) = ;(q) for all these 3,5 and q, we can use this y instead of
all the yi, and we have made the Skolem function y independent of x. However, we need not require for all sets
{(ri, yi(ci) I 01 e C C, yi e C—->C’ 6] of such tuples the existence of an appropriate y, but only for the sets of tuples
which really occur during the interpretation of a formula. The restrictions are: The ci are obtained by the
application of some ’6 e C—>C’ 0 to 0C C and the gi are functions which are considered as interpretations of the
El-quantified variables. In chapter 5 we shall see an example where the EI-quantification is restricted to require for
two different xwhich are in a certain sense correlated the existence of a unique 3;. This restriction can be exploited
to require the existence of yonly for certain cases, i.e. to impose conditions on the interpretations of the functional
context sorts.

To ensure that the context access functions are rich enough to allow the strong Skolemization we require for every
interpretation of a context specification that the following “El—quantifier independency lermna” holds:

Definition 4.3.5 The El-Quantifier Independency Lemma
Let 8 = ((C, SM, ‘VL C, 1’) be a CL-interpretation over a CL-signature 2, where ‘C —>‘1C‘ and ‘D,C —->qC’ are
functional context sorts.
> Let 9? be a domain formula over E, 9' containing an existential quantifier over a context access variable x. The

set of all ‘C —>‘1C’Cor ‘D,C —>‘1C’C functions respectively which are used as interpretations of this particular
occurrence of x is called an 3-quantified set of context access functions (for If). (This set is determined

essentially by the embracing universally quantified variables. In certain cases there are additional restrictions.)

> The 3-quantifier independency lemma requires the following two statements to hold:
a) For all c e C Cand for all El-quantified sets 9’; ‘C —>‘1C’Cthere exists an ye 9’ such that

i e ‘C——>C’C‚ yi e of y(7(i(c)) = yi(2ci(c)) where ‘C——>C’ is the top sort in the ‘C —)qC’—sorts.

b) For all c e C C’ [e D Cand for all 3-quantified sets of; ‘D,C —>qC’ Cthere exists an ye o’such that
i (; ‘C—>C’C‚ yi e DE y(l; xi(c)) = yi([‚ ’fi(°)) where ‘C—->C’ is again the top sort in the ‘C ——>qC’-sorts.l

37

This lemma has to be proved for every source logic that is translated via CL into OSPL. When there are no

restrictions on the interpretations of the functional context sorts, this is usually no problem. In case the context

access functions are restricted by axioms in the context specification, there must be a corresponding restriction on

the interpretation of the existentially quantified variables.

In the sequel we always assume the 3-Quantifier Independency Lemma to hold.

The satisfiability relation for OSPL (def. 3.3.3) is defined inductively over the structure of OSPL-formulae.

Satisfiability has therefore to be proved by structural induction on OSPL-formulae. The only thing we know,

however, is that S is a model for the original CL-formula 1', and this is a property that holds for 1'itself. It is

therefore not an adequate basis for an essentially "bottom up" structural induction. The proof idea is therefore to

follow the "top down" recursion of 1t and to decompose S into the interpretations for the subformulae c; in '.J.
When we have reached the atomic level we can translate the CL-interpretations for the CL-atoms into

OSPL-interpretations for the translated atoms and from these build up the OSPL-model for the translated formula.

To this end we augment the formula morphism TIr(def. 4.3.2) with an additional argument that takes a CL-model

for the CL-formula to be translated.

Definition 4.3.6 The Augmented Formula Morphism IT r
The augmented formula morphism TIrtakes a CL-formula 'F(we consider only context formulae) and a CL-model

for :r. The CL-model is decomposed into the CL-models for the corresponding subformulae of :r. As a side effect

we fix the yet undefmed semantics of the generated Skolem functions. The augmented auxiliary function n takes

as an additional argument the list Z of CL-interpretations for the currently being translated subformula of :r.

The toplevel call for 1t is:

TIer, S) = n(:F, co' Po' (S}) where Co and Po are the default values of def. 4.3.2.

Notational Conventions:

We abbreviate ITs(S) with SPL'

In order to distinguish between the satisfiability relation for domain formulae (def. 4.2.5) and the OSPL­

satisfiability relation (def. 3.3.3) we write the former as I=e and the latter as!=p.

(Notice in the sequel the similarities between the c and p parameters ofn on the syntactical side and the ["']cand

[...]pcomponents of S on the semantical side. This is no coincidence.)

n(:F, c. p, ~) is again defined inductively over the structure of ~

A) n(x, c, p, Z) := x

B) tt(f(11 ,tn), c, p, Z) := ITL (f)(s1, ,sk' n(t1• c.p. $), 1t(tn, c, p, $))

C) tt(±P(t1 · .tn), e, p, $) := ±TIL(P)(s1 , ,sk' n(t1, c, p, 5) , tt(~. e.p. 5»
D) 1t(±P(tl'''''~)' c, p, $) := ±P(sl,... ,sn) where P is a context predicate.

The Si are determined as follows:

If t(C-7ClC' is a context variable x or a term -l-(x.z) then Si := -l-({JPi(x)o~». OC>.

Ift;. =Sot and s is a variable x:'C-7qC' or a term -l-(x,z) then Si := -l-({J!ll(x)oson(t, c. p, ~». 0e).

otherwise Si := tt(t;., c, p,~)

E) n(V'x g, c. p, 5):= V'x 1t(c;. e. p. ~ ') where x:D is a domain variable.

$':- {S[x/~o/I SE Z, ~E D.w}

37

This lemma has to be proved for every source logic that is translated via CL into OSPL. When there are no
restrictions on the interpretations of the functional context sorts, this is usually no problem. In case the context

access functions are restricted by axioms in the context specification, there must be a corresponding restriction on
the interpretation of the existentially quantified variables.

In the sequel we always assume the 3-Quantifier Independency Lemma to hold.

The satisfiability relation for OSPL (def. 3.3.3) is defined inductively over the structure of OSPL-formulae.

Satisfiability has therefore to be proved by structural induction on OSPL-fonnulae. The only thing we know,
however, is that S is a model for the original CL—formula 9‘, and this is a property that holds for ? itself. It is
therefore not an adequate basis for an essentially “bottom up” structural induction. The proof idea is therefore to
follow the “top down” recursion of n: and to decompose 5 into the interpretations for the subformulae g in 9F.
When we have reached the atomic level we can translate the CL-interpretations for the CL-atoms into
OSPL-interpretations for the translated atoms and from these build up the OSPL-model for the translated formula.
To this end we augment the formula morphism Hy(def. 4.3.2) with an additional argument that takes a CL-model
for the CL-formula to be translated.

Definition 4.3.6 The Augmented Formula Morphism l'I f
The augmented formula morphism Hartakes a CL-formula :7(we consider only context formulae) and a CL—model
for f. The CL—model is decomposed into the CL-models for the corresponding subformulae of f. As a side effect
we fix the yet undefined semantics of the generated Skolem functions. The augmented auxiliary ftmction it takes
as an additional argument the list 3 of CL-interpretations for the currently being translated subformula of 9'.

The toplevel call for fl: is:
HOT, 3) = Mar, c0, po, {3 }) where co and Po are the default values of def. 4.3.2.

Notational Conventions:
We abbreviate 113(3) with SPL.
In order to distinguish between the satisfiability relation for domain formulae (def. 4.2.5) and the OSPL-
satisfiability relation (def. 3.3.3) we write the former as t=c and the latter as l=P.

(Notice in the sequel the similarities between the c and p parameters of Tl: on the syntactical side and the [.. .]Cand
[. . .],_„components of S on the semantical side. This is no coincidence.)

7:0; c, p, 3) is again defined inductively over the structure of 9':
A) 1c(x, c , p , 3) := x
B) rt(f(t1,...,tn), c , p , 3) := Hz(t)(s1,...,sk, nal , c, p , 3) , . . . , 1c(tn, mp , 3))
C) 1r(iP(t1,...,tn), c, p, 3) := _l'IE(P)(sl,„.,sk, 1t:(t1, c, p, 3),..., rc(tn, c, p, 3))
D) tr(-J:P(t1,...,tn), c , p , 3) := -_tP(s1,...,sn) where P is a context predicate.

The si are determined as follows:
If tiz‘C—flC’ is a context variable x or a term ¢(x,z) then Si := $((p(x)ot_i)), OC).
If ti = s o t and s i s a variable x:‘C—>‘1C’ or a term i(x,z) then Si := $((p(x)os<>1t(t, c , p, 3)) , OC),
otherwise si := 1c(ti‚ c, p, 3)

E) MV}; (3, c, p, 3):: Vx rt(g, c, p, 3 ’) where x:D is a domain variable.
3" := {Sh/261A 8 e 3, me

DW}

38

F) 1t(Vx (j, C, 11', $):= 'Ix 1t{(j, c[C/cCo~]. p[x/ccl, $ ') where x:'C-)qC' is a context variable.

$':= (5[x/~'V'[C/~Cc)]c[x/Cc]!1'1SE $, 'tE 'c-)qC'cl

G) 1t(Vx-y (j, c, 11', $) := 'Ix 1t«(j, c[c/]P(y)ox], p[x/jp(y)], $ ') where x:'C-)qC' is a context variable.

$':= {S[x/~'V'[C/~P(Y))]c[x/P(Y)]!1'1SE $, 'tE 'C-)qc' c}

H) 1t(V-!'(x,z=t) (j, c, 11', $) := 'Ix 1t{(j, c[C/cc0-!,(x, 1t(t, c, 11', $))], p[x/ccl, $ ')[z+-1t(t. c, 11', S)]

where x:'D,C-)qC' is a context variable.

$':= (S[x/~ z/S(t)]'V'[C/~S(t),Cc)]c[x/Cc]!1'1 SE $, 'tE 'c-)qc'cl

I) 1t(V-!'(x,z=t)-y (j, c, 11', $) := 'Ix 1t«(j, c[C/p(y)o-!,(x, 1t(t, c. 11', $))], jfll[x/p(y)], S ')[z+-1t(t, C, 11', S)]

where x:'D,C-)qC' is a context variable.

$':= (S[x/~ zlS(t)]'V'[C/~S(t),P(Y))]c[x/P(y)]!1" SE $, 'tE 'c-)qC'cl

J) 1t(3x (j, c, 11', $) := 1t«(j, c, 11', $')[x+-g(sl, ... ,sk' YI""'YI)] where x:D is a domain variable.

Among the possible interpretations for g we select one satisfying the following condition:

For every S E $: Among the 'tE D$JIwith S[x/~'V'l=c (j

there is an ;(with Spdg(sI,···,sk' Y.1 •... ,ym)) =;(

$':= {S'=S[x/~'V'IS E $,'tE Ds¥S'l=c q}

K) 1t(3x (j, c, 11', $) := 1t(q, c[C/ccox], p[x/ccl, $ ')[x+-h(sI , ... ,Sj_l,Sj+I'·· .,sk,yl ,... ,ym)]

where x:'C-)~' is a context variable.

Among the possible interpretations for h we select one satisfying the following condition:

For every SE $: Among the 'tE 'C-)qc'cwith S[x/~'V'[C/~Cc)]c[x/Cc]!1'l=cq
there is an;(with SPL(h(sl"",Sj-l,Sj+l,,,,,Sk,yl""'Ym)) = ;(

$':= (S'=S[x/~'V'[C/~Cc)]c[x/Cc]!1'1SE $, 'tE 'C-)qc'C' S'I=C (j)

L) 1t(3x-y ij, c, 11', $):=1t«(j, c[C/p(y)ox], p[x/p(y)], $ ')[x+-h(sl, ... ,Sj_I,Sj+l, ... ,Sk'YI, ... ,ym)]

where x:'C-)~' is a context variable.

Among the possible interpretations for h we select one satisfying the following condition:

For every S E $: Among the 'tE 'C-)qc'c with S[x/~'V'[CMP(y))]c [x/P(Y)]pl=c q

there is an;(with SPL(h(sl"",sj-l,Sj+I"",sk'YI""'Ym)) = ;(

$':= (S'=S[x/~'V'[C/~P(Y))]c[x/P(Y)]!1'1SE $, 'tE 'C-)qC' C' S'l=c (j}

M) 1t(3-!'(x,z=t) (j, c, 11', $) where x:'D,C-)~' is a context variable.

:= 1t((j, c[C/cc0-!,(x,1t(t, c, 11', $))], p[x/ccl, $ ')[x+-k(sI ,.. "Sj_I ,Sj+l '''''Sk,yl'''' 'Ym)' z+-1t(t, c, p, $)]

Among the possible interpretations for k we select one satisfying the following condition:

For every S E $: Among the 'tE 'C-)qC'c with S [xh z/S(t)]'V'[x/~S(t),Cc)]c[x/Cc]!1'l=c (j

there is an ;(with 5 PL(k(sl"",sj-l,Sj+l"",sk'Yl, ... ,ym)) = ;(
$':= (S'= S[xh z/g(t)]'V'[C/~S(t),Cc)]c[x/Cc]!1' ISE $, 'tE 'D,c-)qC'C' S'l=e (j}

N) 1t(3-!'(x,z=t)-y q, c, 11', $) where x:'D,C-)qC' is a context variable.

:= 1t«(j,c[C/p(y)o-!,(x,1t(t. C, 11', $))], p[x/p(y)], $ ')[x+-k(sl'-" ,Sj_l.Sj+1"" ,sk,y l'···.ym)' z+-1t(t,c,p.$)]

Among the possible interpretations for k we select one satisfying the following condition:

For every g E $: Among the 't E 'C-)qC'c with g[x/~ z/g(t)]'V'[x/~S(t), P(y))]c [x/P(y)]p I=c (j

there is a;(with SPL(k(SI, ... ,Sj_l,Sj+l"",sk'Yl, ... ,ym)) = ;(

S' := {S'= S [x/~ z/g(t)]'II[C/~S(t), P(Y))]c[x/p(y)]!1' IS E $, 'tE 'D,C-)qC' C' S' I=e q}

0) 1t(ftJ t q, c, 11', $) := 1t(q, c[C/ceo1t(t, c, 11', $)], 11', $') where t:'C-)qC' is a context access term.

$':= {S[C/S(t)(Cc)]cl SE $}

P) 1t«(jl 1\ (jz, c, 11', $) := 1t«(jI' c.p, S) 1\ 1t«(jz, c, 11', S)

Q) 1t«(jl v (jz. c, p, S) := 1t«(jl' c, p. SI) v 1t«(jz, c, p, Sz)

$i:= {S E $ IS I=e qi} i = 1,2 •

Before we can use this definition we must prove that it is well defined, i.e. that the CL-interpretations which are

decomposed from a CL-model really satisfy the corresponding subformulae and that the Skolem functions are

interpreted as total functions.

38

F) 1c(Vx g, c , p, 3) := Vx 1r(g, c[C/ccox], phi/cc], 3 ’) where xz‘C—flC’ is a context variable.
3’ := {3[XI=r].y[C/K(Cc)]c[X/£b]gl 5 € 3: x6 ‘C—eqC’C}

G) 1c(Vx-y €}, O. P. 3) == VX “(Gs °[C/P(Y)°XL P[X/IPCY)]‚ 3 ’) where xz‘C—flC’ is a context variable.
3’ := {Slat/r].y[C/d$(y))lc[x/1’(y)lgI8 e 3 . {6 ‘C—>‘1C’C}

H) 1t(VJ‚(x,z=t) (j, c , p, 3) :=: Vx Mg, c[C/cco~l,(x, 1c(t, c , p, 3))], p[x/cc], 3’)[z<—~7C(t, c, p, 3)]
where x:‘D,C-)‘1C’ is a context variable.
3’ == {SDC/76 z/S(t)].y[C/x(3(t), CC)]c[x/CC]Q| 3 E 3 , x6 ‘C—a‘lC’c}

1) n(Vi(x‚z=t)-y 6. mp. 3) := Vx “(6.C[C/p(y)o¢(x.1c(t,c.p,3))l,tplx/p(y)l.3’)[ze-1t(t.c.n.3)]
where x: ‘D,C—->‘lC’ is a context variable.
3 ' == {SDK/x, z/8(t)]‚y[C/x(3(t), flY))]c[X/1’(Y)]Ql 3 e 3, Ice ‘C—a‘lC’c}

J) 15(3): g, c, p, 3) := Mg, c, p, 3 ’)[x<——g(s1,...,sk, y1,...,y1)] where x:D is a domain variable.
Among the possible interpretations for g we select one satisfying the following condition:

For every 3 e 3: Among the ace D„with 3[x/x] „hc (}
there is an ;(with 3pL(g(sl,...,sk, y‘1,...,ym)) = ?c'

3’ := {3’=3[x/x].vl3 e 3 , && DWS'FC g}
K) nGx g, c, p, 3) := Mg, c[C/ccox], p[x/cc], 3’)[xe—h(s1,...,sj_1,sj+1,...,sk,y1,...,ym)]

where x:‘C——>qC’ is a context variable.
Among the possible interpretations for h we select one satisfying the following condition:

For every 3 e 3 : Among the ace ‘C—>‘1C’Cwith 3[x/x],V[C/2((CC)] c[x/CC]_,PI=C @

there is an ;(with 3PL(h(s1,..., j_1 , s j+1 , . . . , sk ,y1 , . . . , ym)) = ;(
3 ' := {3’=3[X/K]y[C/dCC)]C[X/Q]yl S e 3 , ;(‚e ‘C—éqC’o 3’I=C g}

L) “;(Elx-y Ga c , Ps 3)2=TC(G‚ C[C/P(Y)°X]s FIX/190)]. $ ’) [x (_h(s la - - - e s j - l o s j+ l s -Haskryv '"9ym)]

where xz‘C—äqC’ is a context variable.
Among the possible interpretations for h we select one satisfying the following condition:

For every 3 e 3 : Among the {e ‘C—>‘1C’Cwith 3[x/2c].y[C/:df(y))]c[x/flyflghc (}
there is an ;(with 3PL(h(sl,...,sj_1,sj+1,...,sk,y1,...,ym)) = ;(

3 ' == {5'=3[X/?dv[C/?c(Q(Y))]c[X/flY)]‚_pl 3 e 3 , mE ‘C-a’C, 5 '*=c G}
M) 1c(El¢(x,z=t) g, c, p, 3) where x: ‘D‚C-—>‘1C’ is a context variable.

:= Mg, c[C/cCo¢(x,1t(t, c , p, 3D] , Mac/cc], 3 ’)[xe—k(s1,...,sj_1,sj+1,...,sk,y1,...,ym), z<—rt(t, c, p, 3)]
Among the possible interpretations for k we select one satisfying the following condition:
For every 3 e 3 : Among the && ‘C—>‘1C’Cwith 3[x/2(, z/3(t)].V[x/2((3(t), cc)] C[x/Cc]g‚i=c @

there is an ;(with 3PL(k(s1,...,sj~1,sj+1,...,sk,y1,...,ym)) = ;(
3’ := {3 ’= 3[x/2c, z/3(t)].V[C/x(3(t), CC)]c[x/CC]9' 3 e 3 , {e ‘D‚C——>‘1C’C‚ 3’ l=C g}

N) 1c(3i(x,z=t)-y (j, c, p, 3) where x:‘D,C-—>qC’ is a context variable.
:= rc(g,c[C/p(y)ol(x,1r(t, c,p ,3))] , p[x/p(y)]‚ 3 ’)[x<—k(s1,...,sj_1,sj+1,...‚sk,y1,„.,ym), z<-7t(t,c,]p,3)]

Among the possible interpretations for k we select one satisfying the following condition:
For every 3 e 3: Among the x6 ‘C—>‘1C’Cwith Shi/x, z/3(t)].V[x/x(3(t), fly))]C[X/f(y)]gl=c 9

there is a ;(with 3PL(k(sl,...,sj_1,sj+1,...,sk,y1,...,ym)) = 25
3’ == {3 '= Shi/ic, z/3(t)]q;[C/Pd$(t)‚ ny))1ctxmy)1._,ns e 3, ice ‘D,C—a‘1C’0 3’ l=c G}

0) Mgr) t g, c , p, 3) := Mg, c[C/cCorc(t, c, p, S)], P, 3’) where t:‘C—>qC’ is a context access term.
3’ := [3[C/3(t)(CC)]C| 3 e 3}

P) Mg] A g2, c, p, 3) := 1t(g1, c, p, 3) A 1t(g2, c, p, 3)
Q) Tc(91V GZ, 0 , IP, 3) := “ (61 , C: P, 31) V “(92: e , Pa 32)

Siz={5E3l5t=Cgi]i=l,2 I

Before we can use this definition we must prove that it is well defined, i.e. that the CL-interpretations which are

decomposed from a CL-model really satisfy the corresponding subfonnulae and that the Skolem functions are

interpreted as total functions.

39

Lemma 4.3.7 The Augmented Formula Morphism is Well Defined.

a) IfSo is a CL-model for a CL-specification Sthen for each recursive callrt(g, c, jp, $) during the translation of

the fonnulae in S, the following invariant holds as long as g is a formula: For every ~ e S: ~ I=e g.

b) The Skolem functions are interpreted as total functions.

Proof of a Cb is shown inside this proof): By induction on the recursion depth.

Base Case: Recursion depth = 0: This is just the precondition saying that ~o satisfies S.

Induction Step: Let the recursion depth be greater than O.

Let re('F, c, jpl, $) be the actual call to re. The induction hypothesis states: For every ~ e 3: ~ Fe 'f.

In order to show that the statement also holds for the next recursion step we must perform a case analysis

according to the structure of .rand analyze the corresponding translation rule.

Case 'f= Vx gand x:D is a domain variable.

The translation rule is

E) re(Vxg,c,jpl,E):=Vxre(g,c,p;$') $':={Z[x/;u'VI~e E,~e DS'JI}

The induction hypothesis immediately implies Z e E': S I=e g. (def. 4.2.5)

The same holds for the remaining three cases with universal quantifiers.

Case 'F= 3x g and x:D is a domain variable.

The translation rule is

J) re(3x g, c, p, E) := re(g, c, jp, E ')[x~g(sl'''' ,Sl.' Yl ,... ,ym)]

Among the possible interpretations for g we select one satisfying the following condition:

For every S e Z: Among the ~E DS'JIwith S[xI~o/l=e g
there is an;(with ZpL(g(sl, .. ·,sk' Yl'''''Yrn»=;{

$':= {S'=Z[x/~'JI' ~ e $, ~E D~ S'l=e g}.

With "S' I=e Cl' the condition a) is explicitly enforced.

Since S I=e 3x g, there is at least one ~ e D50/with S [xI;u ~e g.

Therefore the semantics of the Skolem function g is well defined (statement b).

Case 'F= 3x gand x:'c~qC' is a context variable.

The translation rule is:

K) 1t(3x g, c, p, $) := re(g, c[C/ceox], p[x/ce], $ ')[x~h(sl ,... ,Sj_l ,Sj+l" .. ,sk'Yl ,... ,yrn)] .

Among the possible interpretations for h we select one satisfying the following condition:

For every ~ e $: Among the ~e 'c~qC' Cwith ~[x/;uo/[C/i\lCc)]C [x/CcJpFe g

there is a;(with SPL(h(Sl, ... ,Sj_l,Sj+l,... ,sk,yl'''''Yrn»=;{

$':= {~'=S[x/~o/[C/~Cc)]c[x/Cc]plSE $, ~E 'c~qc,C' Z'l=e g}.
Again with "~' I=e c]' the condition a) is explicitly enforced.

The Skolem function h does not depend on the free context variables for the context C. Therefore a function in

'c~qC' c must be available that can serve as interpretation of h(sl, ... ,Sj_l' Sj+l ,... ,sk'Yl""'Yrn) under the

different assignments of values to these variables. Since we assume the 3-quantifier independency lemma (def.

4.3.5) to hold, c~qc' c is sufficiently rich to contain this function. Therefore the semantics of h is well

defined.

The same holds for the remaining cases with existential quantifiers.

Case.r= f.J t gand t:'C~~' is a context access term.

The translation rule is

0) re(p t g, c, p, $) := 1t(g, c[C/ceore(t, C, p, $)], p, $ ') $':= {Z [C/S(t)(Cc)]c' ~ e $}.

Since, according to the induction hypothesis, S I=e f,O t g, we can apply the semantics definition of f,O

(def. 4.2.5) and obtain immediately Z1C/S(t)(Cc) Fe g.

The cases with /\ and v are trivial. •

39

Lemma 4.3.7 The Augmented Formula Morphism is Well Defined.
a) If 550 is a CL—model for a CL—specification 5 then for each recursive call Mg, c . p, 3) during the translation of

the formulae in 5, the following invariant holds as long as g is a formula: For every S e S: S I=C g.

b) The Skolem functions are interpreted as total functions.
Proof of a (b is shown inside this proof): By induction on the recursion depth.
Base Case: Recursion depth = 0: This is just the precondition saying that 80 satisfies ‚S.

Induction Step: Let the recursion depth be greater than 0 .

Let 1:0”, c , p , 3) be the actual call to vr. The induction hypothesis states: For every 8 e S : 8 t=C 9‘.

In order to show that the statement also holds for the next recursion step we must perform a case analysis

according to the structure of 9“ and analyze the corresponding translation rule.
Case 7 = Vx (} and x:D is a domain variable.

The translation rule is
E) 71:(Vx @, c, p, 3) := VX1t(g, c, p .3 ’) 3 ' := {S[x/7d,yl 3 e 3 , ice DW}
The induction hypothesis immediately irnplies S e 3 ’: 8 hc g. (def. 4.2.5)

The same holds for the remaining three cases with universal quantifiers.
Case 9': Ex (3 and x:D is a domain variable.

The translation rule is
J) tt(3x g, c, p, 8) := 1t(g, c , p, 5 ’)[x<—-g(s1,...,sk, y1,...,ym)]

Among the possible interpretations for g we select one satisfying the following condition:
For every S e 3 : Among the are D”with $$$/:(].t (}

there is an x,’ with 8PL(g(sl,...,sk, y1,...,ym)) = ;(
3’ := [8'=3[x/x]„‚l S e 3, me DW S’|=C 9}.

With “S ’ t=C g” the condition a) is explicitly enforced.
Since 55 t=C Elx @, there is at least one me D _Wwith S[x/x].yt=c g.
Therefore the semantics of the Skolem function g is well defined (statement b).

Case {T = 3x 9 and x:‘C—>‘1C’ is a context variable.
The translation rule is:
K) rcGlx g, c, p, 3) :=: Mg, c[C/cCox], pix/cc], @ ')[xe—h(s1‚...,sj_1,sj+l,...,sk,y1,...,ym)] _

Among the possible interpretations for h we select one satisfying the following condition:
For every SS e 3 : Among the xe ‘C—ä‘lC’ Cwith

8[x/7(]1V[C/K(CC)]C [)(/Q:]t @
there is a :(with SPL(h(sl,...‚sj_1,sj+1‚...‚sk,y1,...,ym)) = ;(\

3’ := [S’=SS[x/adqflC/idccfldx/Cchl S e $, ace ‘C—a’o S’I=C g}.
Again with “S ’ t=C g" the condition a) is explicitly enforced.
The Skolem function h does not depend on the free context variables for the context C. Therefore a function in
‘C-a’Cmust be available that can serve as interpretation of h(sl,...,sj_1, sj+1,...,sk,y1,...,ym) under the
different assigmnents of values to these variables. Since we assume the EI-quantifier independency lemma (def.
4.3.5) to hold, C——>‘1C’ 6 is sufficiently rich to contain this function. Therefore the semantics of h is well
defined.

The same holds for the remaining cases with existential quantifiers.
Case 37= 50 t Gand t:‘C——>‘1C’ is a context access term.

The translation rule is '
O) “(50 t (j, c. p, 5) := Mg, c[C/cco1c(t, 0.1;», 53)], p, 3 ') S ’ := {8[C/3(t)(cc)]cl S e 3] .
Since, according to the induction hypothesis. 3 I=C p t g, we can apply the semantics definition of go
(def. 4.2.5) and obtain immediately EHC/8 (t)(CC) |=C g.

The cases with A and v are trivial. I

40

The next lemma ensures that the OSPL-interpretation of translated tenns is identical with the CL-interpretation of

the original tenns (lemma 4.3.8). The main reason for that is that the c- and JP-argument of 1t, which record the

syntactical context, in some sense run in parallel with their semantic counterparts, the c- and P-components of the

interpretations in the Z-argument. The correlations between c and C as well as between JP and P are shown in

lemma 4.3.9. Lemma 4.3.8 has to be shown first because the interpretation of the translated tenn t in the

\fJ.(x,z=t) ... and 3J.(x,z=t) ... cases are needed in the proof oflemma 4.3.9. Its quite complex precondition is

shown as a general invariant of 1t in lemma 4.3.9. In the soundness lemma, 4.3.8 is therefore always applicable.

Lemma 4.3.8 The Interpretation of Terms is Invariant.

Let t be a domain term over a signature L and let So = (1', ~o, ({j, Po) be a CL-interpretation for L.

Let 1t(t, c, JP) be a call to the translation function.

Furthennore let S = (1', ~ C. !P) be a CL-interpretation for 1: such that for every basic context sort C:

SPL(cC)(Coc) = Cc (*)

then Set) = SpL(1t(t, C, JP» where SpL := rIS(S) =: (!M, ~

Proof: By induction on the size of t.

Base Case: t is a variable.

The statement is true because the translation neither changes variables nor their interpretation.

Induction Step: t = f (t1,... ,t)n

SPL(1t(t, c, JP» = SPL(I1L(f)(sl,···,sk' 1t(t1, c, JP), ... , 1t(tn, C, JP»)

Si := PieJ.(CCj, 0C) where Pi:Cr~Ii is the i-th element in S'f{f). (def. 4.3.2,B)

= f?iS pL(sl)"",SpL(sk)' SPL(1t(t1, C, JP», ... , SPL(1t(~, c, p))))

= f?iSpL(sl)"",SPL(sk)' S(t1), ... , S(~))) (induction hypothesis)

= f~SpLCP1)(Cc1)"",SpL(Pk)(Cck)' S(t1),···, S(tn))) (condition *)

= f.ll(S(t1),... , S(~))) 51:= S'J{SpLCP1)(Cc1)"",SpLCPk)(Cck» (def 4.3.4,2)

51 is the actual1:-structure for f (def. 4.2.3)

= Set) (def. 4.2.4) •

Lemma 4.3.9 The Correlation Between (t and C, and p and P.

If So = (1', ~o, ({j, PO> is a CL-interpretation satisfying a CL-specification S then for each recursive call

1t((j, c, JP, Z) during the translation of the fonnulae in S, the following invariants hold:

For every S = (1', ~ C, P) E Z:

a) for every basic context sort C: SpL(cc)(Cod = Cc and

b) for every free context variable x in (j: SPL(P(x»(CoC) = p(x).

Proof: By induction on the recursion depth.

Base Case: Recursion depth = 0:

a) is trivial, since S = So' (def. 4.3.6)

b) is trivial since there are no free variables in !J.

Induction Step: Let the recursion depth be greater than O.

Let 1t(J: c, JP, 3) be the actual call to 1t and let C be a basic context sort.

The induction hypothesis states: For every S E 3: a) SPL(cC)(Coc) = Cc and

b) SpLW(x»(Coc) = p(x)

In order to show that the statement also holds for the next recursion step we must perform a case analysis

according to the structure of 'fand analyze the corresponding translation rule.

The nontrivial cases for b) are the quantifications over context variables: The induction hypothesis is immediately

applicable to the free context variables in (j. Therefore the remaining variable to be checked is the newly quantified

variable. The proofs for the existentially quantified variables are the same as for the universally quantified

variables.

40

The next lemma ensures that the OSPL-interpretation of translated terms is identical with the CL-interpretation of
the original terms (lemma 4.3.8). The main reason for that is that the c- and p—argument of n, which record the
syntactical context, in some sense run in parallel with their semantic counterparts. the C— and fllcomponents of the
interpretations in the S-argument. The correlations between c and (C as well as between p and fare shown in
lemma 4.3.9. Lemma 4.3.8 has to be shown first because the interpretation of the translated term t in the
Vl(x,z=t)... and 3J‚(x‚z=t)„. cases are needed in the proof of lemma 4.3.9. Its quite complex precondition is
shown as a general invariant of 1c in lemma 4.3.9. In the soundness lemma, 4.3.8 is therefore always applicable.

Lemma 4.3.8 The Interpretation of Terms is Invariant.
Let t be a domain term over a signature 2 and let 80 = (T, %, q), 90) be a CL-interpretation for Z.
Let 1c(t, c , p) be a call to the translation function.
Furthermore let 5 = CF, “V. C. ‘2) be a CL-interpretation for E such that for every basic context sort C:

SSPLWCXCOC) = Cc (*)
then 8(t) == 3PL(1t(t. c. p)) where SPL := IISCS) =: (M, W)
Proof: By induction on the size of t.
Base Case: t is a variable.
The statement is true because the translation neither changes variables nor their interpretation.
Induction Step: t = f (t1....,tn)

SPL(1c(t, c, p)) = 3PL(HZ(f)(sl,...,sk, rc(t1, c . p),..., man, c, p)))
si := pi(i(cCi, OCi)) where pizci—fli is the i-th element in 51/(f). (def. 4.3.2.,B)

= fwK3PL(31)a - - - :3PL(Sk)s SPL(1c(t1, c, p)),..., SPL(rc(tn, c , p))»
= fMSPL(sl),....8pL(sk). $(t1),..., 8(tn))) (induction hypothesis)
= favÄSPLCPIXCCÜv°u5PL(Pk)(CCk)° 8(t1),. . ., 3(tn))) (condition *)
= Ä(8(t1) , . . . , 8(tn))) fl3:5“3PL(P1) (CC1)2 - - -a3PL(Pk) (CCk)) (def 4.3.4,2)

fl i s the actual E—structure for f (def. 4.2.3)

= 3(t) (def. 4.2.4) I

Lemma 4.3.9 The Correlation Between c and 5, and p and 9.
If 80 = (f, %, Co, EPO) is a CL-interpretation satisfying a CL-specification 5 then for each recursive call
rc(g, c, p, 5) during the translation of the formulae in 5, the following invariants hold:

For every £3 = (F, ‘V. C, 1’) e 3 :
a) for every basic context sort C: SPL(cC)(COC) = CC and
b) for every free context variable x in g: SPLQp(x))(q)C) = f(x).

Proof: By induction on the recursion depth.
Base Case: Recursion depth = 0:

a) i s trivial, since 8 = 30. (def. 4.3.6)
b) is trivial since there are no free variables in 9‘.

Induction Step: Let the recursion depth be greater than 0.
Let 1:0; c, p, S) be the actual call to 1: and let C be a basic context sort.
The induction hypothesis states: For every 3 e 3: a) SPL(cC)(CoC) = CC and

b) scpcxWoc) = ax)
In order to show that the statement also holds for the next recursion step we must perform a case analysis
according to the structure of f and analyze the corresponding translation rule.
The nontrivial cases for b) are the quantifications over context variables; The induction hypothesis is immediately

applicable to the free context variables in g. Therefore the remaining variable to be checked is the newly quantified

variable. The proofs for the existentially quantified variables are the same as for the universally quantified

variables.

41

The induction hypothesis is immediately applicable to the term and atomic cases.

Case 'J= V'x qand x:D is a domain variable.

The translation rule is

E) 1t(V'x q, c,p, Z) := V'x 1t(q, c,p, Z') Z':= {5[x/~'JI1 SE Z,:tE Ds'JI}.

a) Since fonnulae are standardized apart, x does not occur in c and therefore the induction hypothesis can

immediately be applied.

Case 'J= V'x qand x:'C-7qC' is a context variable.

The translation rule is

F) 1t(V'x q, c,p, Z) := V'x 1t(q, c[C/ccox),p[x/ccJ, S')

Z':= {S[x/~'JI[C/~Cc)]c[x/Cc]l'lS E S, ~E 'C-7QC'c}.

LetS' = (f, 0/', c', p) E Z'.

a) S 'PL(cCox) l1x;) = S 'PL(x)(S 'PL(cc)(l1x;»

= s'PL(x)(5pL(cc)(G>c»)	 (x 4 cc)

= s'PL(x)(Cc)) (induction hypothesis a)

= ~Cc) (S'PL(x) = ~

= C'c·

b) S'PL(JPl(x))(G>cJ= S'PL(cC)(G>c)

= Cc (induction hypothesis a)

= .p(x)

Case 'J= V'x-y qand x:'C-7~' is a context variable.

The translation rule is

G) 1t(V'x-y q, C, p, Z) := V'x 1t(q, c[C/p(y)ox), p[xlp(y)], Z')

Z':= {5[x/~'JI[CMP(y))]c[x/P(Y))1'1SE Z, ~E 'C-7QC' cl

Let 5' = (f, 0/', C, P) E Z'.

a) 5'PL(JP(y)ox)(CO) = S 'PL(x)(S'PL(JPl(Y»)(l1x;))

= S'PL(x)(SpL(JPl(Y))(G>c)) (x El: p(y»)

= S 'PL(x)('p(y») (induction hypothesis b)

= ~P(y)) (S'PL(x) =~

= C'c'

b) 5'PL(JP(x))(G>cJ= S'PL(JPl(y)(Coc)

= SPLW(y))(G>c) (x El: p(y»)

= .p(y) (induction hypothesis b)

= .p(x)

Case 'J=\t,J,(x,z=t) qand x:'D,C-7QC' is a context variable.

The translation rule is

H) 1t(V',J,(x,z=t) q, c, p, Z) := V'x 1t(Q, c[C/cc0-!.(x, 1t(t, c, p, Z)], p[x/ccJ, Z')[z(-1t(t, C, p, Z)]

Z':= {S[x!-t. z/5(t))'JI[CMS(t), Cc)]c[x/Cc]l'l 5 E 3,:tE 'D,C-7QC'c}

Let S' =(f,~, C, P1 E Z'.

a) S 'PL(cC0J,(x, 1t(t, c, p, Z)))(CQc) = S 'PL(,J,(x, 1t(t, c, p, 3»)(5 'PL(cC)(CQc»

=5 'PL(J,(x, 1t(t, c, JP, Z)))(5pL(cc)(CQc)) (x El: cc)

= 5'PL(J,(x, 1t(t, c, JP, Z») (Cc) (induction hypothesis a)

=~S'PL(1t(t, c, p, 3)) (Cc) (5 'PL(x) = ~

= ~S(t» (Cc) (lemma 4.3.8 and ind. hyp.)

= ~5(t), Cc)

= C'c·

b)	 For the S' E S' the proof is the same as in the previous case.

For the 1t(t, C, p, S)-calls the induction hypothesis is immediately applicable.

41

The induction hypothesis is immediately applicable to the term and atomic cases.
Case fir= Vx (j and xzD is a domain variable.

The translation rule is

E) 1t(Vx g, 0.1;», 3) := Vx Mg, 6, p, 3 ’) 3 ' := {MX/dd S e 3 , {& DS”).

a) Since fonnulae are standardized apart, x does not occur in c and therefore the induction hypothesis can
immediately be applied.

Case at: Vx (_; and x:‘C——>‘1C’ is a context variable.
The translation rule is
F) 1t(Vx g, c, p, 3) := Vx 1t(9, c[C/ccox], plx/cc], $ ')

3 ’ := {8[x/x]‚y[C/x(cc)]c[x/CCL_„I 3 e 53, ace ‘C—eqC’C].
Le t3 ’= CF, 1)", C’, 1”) e 3’.

a) s 'ccCox) coc) = s 'Ptxs 'pL(cc>(coc))
= 3 ’pL(x)(3pL(Cc)(Cbc)) (X € °C)
= 5 ’pL(x)(CC)) (induction hypothesis a)

= «(6(3) (55 ’pL(X) = x)
:: C’C'

b) 5 'pL(lP(X))(Coc} = 3 'pL(cc)(Coc)

: cc (induction hypothesis a)
= f(X)

Case :?"= Vx—y Gand x:‘C-—>‘1C’ is a context variable.
The translation rule is
G) MVx-y g. c, p. 3) == Vx M6. C[C/1P(Y)°XL Mir/non. 3’)

3’ := {3[llq/[C/idfl-‘(YDICBIQUHQI ES e 3, ‚UE ‘C—>‘1C’c}
LetSS'=(fF, ‘V, (.1106 3’.
a) 3 'pL(p(Y)°X)(co) = 3 'pL(X)(3 ’pL(IP(y))(Cbc))

= 5 'pL(X)(3pL(P(Y))(Coc)) (X € PGO)
= S ’PL(x)(f(y)) (induction hypothesis b)
= «(3K)!» (3 'pL(X) = x)
= cc.

b) 3 ’pL(lP(X))(Coc)= S 'pL(IP(Y))(Coc}

= SPL(P(Y)XCOCJ (x € PGO)
= fly) (induction hypothesis b)

= f(X)

Case 9"=V¢(x,z=t) g and x:‘D,C—>‘1C’ is a context variable.
The translation rule is

H) 1t(V~L(x,z=t) g, c , p , 3) := Vx Mg, c[C/cco¢(x, 1t(t, c , 11), 3D], phi/cc], 3 ’)[z<—1c(t, c , p , 3)]
3’ := {SDC/x, z/5(t)].V[C/a(3(t), cc)]c[x/cc]1‚ls e $, ‚te ‘D,C—>‘1C’C]

LetS’z - (F , ‘V, C’, We S ’ .

a) s'pL(Cc°i(X: 1t(t‚ c, P: 3))XCOC) = 3 ’pLCHX, “(L C: IP“, S))XS 'pL(Cc)(C0c))
= 3 'pLÜÜia n:(t, c , P: s)))(511.1‚(9c)(tffoc)) (X € CC)

= S ’pL(¢(x, n:(t, c , p, 3») (CC) (induction hypothesis a)
= (($ 'pLÜtG, c, P, 3D) (Cc) (5 'pL(X) = K)
= «zu» (Cc) (lemma 4.3.8 and ind. hyp.)
= x130), Cc)

= c’C.
b) For the S ’ e S ’ the proof is the same as in the previous case.

For the 1t(t, c, p, 3)-calls the induction hypothesis is immediately applicable.

42

Case .1'=V'J.(x,z=t)-y 9 and x:'D,C~qC' is a context variable.

The translation rule is

I) 1t(V'J.(x,z=t)-y g, c, p, 3) := V'x 1t(g, c[C/p(y)oJ.(x, 1t(t, c, p, 3))], p[x/p(y)], 3 ')[zr 1t(t, C, p, E)]

3' := {S[x1~ z/S(t)]'JI(CMS(t), P(Y))]c[x/P(Y)]pl S E 3, ~E 'D,C~qC'c}'

Let S' = (1', 'JI', C, P) E 3'.

a) S'pdp(y)oJ,(x, net, c, p, 3)))(coe) = s'PLCJ,(x, net, c, p, 3)))(S'PLW(Y))(COc))

= S 'PL(J.(x, 1t(t, c, p, 3)))(Spdp(y))(Coc)) (x <t p(y))

= S'PL(J.(x, 1t(t, c, p, 3))) (P(y)) (induction hypothesis b)

= ~S 'PL(1t(t, c, p, 3))) (P(y)) (S 'PL(x) = ~

= ~S(t)) (P(y)) (lemma 4.3.8 and ind. hyp.)

= ~S(t), P(y))

=C'e·

b) S 'PL(JP>(X))(COe)= S 'PL(JP>(y))(Coe)

= SpL(JP>(Y))(CQe) (x <t p(y))

= P(y) (induction hypothesis b)

= p(x).

Case .1'= 3x 9 and x:D is a domain variable.

The translation rule is

J) 1t(3x g, c, p, E) := 1t(g, c, p, 3 ')[xrg(sl,···,sk' Yl""'Ym)]

3':= {S'=S[x/~'JI1SE 3, ~E Ds¥ S' I=e g}.

Since x does not occur in c, the induction hypothesis can immediately be applied.

Case .1'= 3x 9 and x: 'c~qC' is a context variable.

The translation rule is

K) 1t(3x g, c, p, 3):= 1t(g, c[C/ccox], p[x/ccJ, 3 ')[xrh(sl,· .. ,sj-l,Sj+l,···sk' Yl, ... ,ym)]

g':= {S'=S[x/~'JI[C/~Cd]c[x/({:]plSE 3, ~E 'c~qc'C' S'l=e g}

Let S' = (1', 'JI', C, P) E 3'.

a) S'PL(ceox)(G>e)	 = S'PL(x)(S'PL(ce)(G>e))

= S'PL(x)(SpL(ce)(CQe)) (x <t cc)

= S 'PL(x)«({:) (induction hypothesis a)

= ~((:) (S'PL(x) = ~

=C'e·

Case .1'= 3x-y 9 and x:'c~qc' is a context variable.

The translation rule is

L) 1t(3x-y g, c, p, 3):=1t(g, c[C/p(y)ox], p[x/jp>(Y)], 3 ')[xrh(sl,,,,,Sj_l,Sj+l, ... Sk'Yl, ... ,ym)]

3' := {S '=S[x/'tJ'JI[C/~P(Y))]c[x/P(Y)]plS E 3, ~E 'c~qc'C' S' I=e g)

Let S' = (1', 'JI', C, PJ E g'.

a) 5 'PL(JP>(y)ox)(G>e) = 5 'PL(x)(S 'pdp(Y))(G>c))

= 5 'PL(x)(SpL(JP>(Y))(G>e)) (x <t p(Y))

= S'PL(x)(P(y)) (induction hypothesis b)

=~P(y)) (S'PL(x) = ~

=C'e·
Case ~= 3J,(x,z=t) 9 and x:'D,C~qC' is a context variable.

The translation rule is

:M) 1t(3J.(x,z=t) g, c, p, 3)
:= 1t(q, c[C/ce0J,(x, 1t(t, c, p, 3))], p[x/cc], 3 J [xrk(Sl, ... ,sj-l,Sj+l, ... Sk'Yl'''·'Ym)' zHt(t, c, p, S)J

3' := (5'= S[x1~ z/5(t)J'JI[C/~S(t),({:)Jc[x/({:Jpl 5 E g, ~E 'D,C~qC'C' S' I=e g}

42

Case fF=Vl(x,z=t)—y 9 and x:‘D,C—~>‘1C’ is a context variable.
The translation rule is
1) rc(V¢(x.z=t)-y 6, c, p. 5) := Vx «(G, c[C/p(y)oi(x‚ «(t, cap , 3))1 . mai/w)], 3’)[z<—1c(t‚ c, p .91

3’ := {SB/x, z/S(t)].V[C/x(8(t), {Kym c[x/f(y)]1,| 8 e 3 , me ‘D,C-—>‘1C’C}.
LetS’=(f , ‘V ,C’ ,P ’) e 3 ’ .
a) 5 'pL(P(Y)°$(X. “(ts c, P: 3)))(Coc) = 3 'pL(Jr(x‚ 150, C . Pa 3))) (3 'pL(IP(Y))(Coc))

= 3 'pL(i(X‚ “(t, C. IP, 3)))(3pL(IP(Y))(Coc)) (X € PGO)
= 3 ’PL(~L(x, na, c, p, 3») (fly)) (induction hypothesis b)

= «(5 'pLÜtG, 0, IP, 3D) (90)) (3 'pL(X) = x)
= «(SÜD (f(y» (lemma 4.3.8 and ind. hyp.)

= «(SG), EU))

: C’C.

b) 5 ‚PL(]P(X))(Coc} = S ’pL(P(Y))(Coc)

= 3pL(1P(Y))(Coc) (X € PGO)
= fly) (induction hypothesis b)
= f(x).

Case SF = 3x @ and xzD is a domain variable.
The translation rule is
J) Max 6, 0 ,1133) == Ic(€, c .p .§ ’) [X<-g (s1 sk . y1‚...‚ym)]

3 ’ := {5'=8[x/;d„‚| 5 e 3 , ace DW 8'|=C g}.
Since x does not occur in c, the induction hypothesis can immediately be applied.

Case 9r= 3x g and x: ‘C—->‘1C’ is a context variable.
The translation rule is
K) “(3x g, c, p, 3) := 1t(g, c[C/ccox], p[x/cc], $ ’)[x<—h(sl,...,sj_1,sj+1,...sk, y1,...,ym)]

3 ’ := {S’=8[x/x]v[C/2((CC)]C[x/CC]QI 8 e 3 , me ‘C—a’o 8’ |=C g]
LetS’=(1-'‚‘V‚C‚£")e 3 ’ .
a) s 'tccoxxcoc) = s 'txxs 'tcc)(q,c))

= 5 'pL(X)(3pL(Cc)(Coc)) (X 4 cc)

= S ’PL(x)(CC) (induction hypothesis a)

= {(CC) (53 'pLÜ‘) = ?C)

= c'c.
Case ? = Ex-y (j and xz‘C—a’ is a context variable.

The translation rule is
L) flex-y Q. G, P, 3):=n(g‚ C[C/p(y)°x]. phi/My”. $ ’)[xe—h(sl.....sj_1.sj+1,---sk.y1.--..ym)]

3’ == {5'=3[XIflMC/aiflycB/flyflyl S e 3 , x6 ‘C—>qC’0 5’ t=c G}
Le t8 '= (T, ‘V, C, EP') e 3 ’ .
a) 3 'pLÜP(Y)°X)(Coc) = S’pL(X)(3 'pL(IP(Y))(C0c))

= 3 ’pL(x)(SPL(P(Y))(Coc)) (X @ PÖ’D
= S ’pL(x)(fly)) (induction hypothesis b)

= «(f(Y» (3 ’pL(X) = K)
= C’C’

Case :7: Ell.(x,z=t) g and x: ‘D,C——>‘1C’ is a context variable.
The translation rule is

M) 7t(3l(x,z=t) g, c, p, 3)
:= Mg, c[C/ccol(x, Mt, c , p, 3D], phi/cc], $ ') [xe—k(sl,...,sj_1,sj+1,„.sk,y1,...,ym), ze—1t(t, c, p, S)]

3 ' == [3 ' : SDC/x, Z/3(t)]y[C/Jd3(t)a cc)]c[X/Cc]g>| 3 € 3 . 9C6 ‘D‚C—>‘1C’c, 5"FC 9}

43

Let ~ , =(f, 'V, C, P) E 5'.

a) ~ 'PL(cC0J..(x, 1t(t, c, p, $»)(!1>c) = 5 'PL(,l.(x, 1t(t, c, p, S»)(5 'PL(cd(Coc»

=~ 'PL(J,(x, 1t(t, c, jp, $»)(~PL(cC)(!1>c» (x 4 cc)

= S 'PL(,l.(x, 1t(t, c, p, $))) (Cc) (induction hypothesis a)

=~S 'PL(n(t, c, p, $))) (Cc) (~'PL(x) =~

= ~S(t» (l:(;) (lemma 4.3.8 and ind. hyp.)

= ~5(t), Cc)
=Cc'

Case'.!= 3,l.(x,z=t)-y g and x: 'D,C-7QC' is a context variable.

The translation rule is

N) 1t(3,l.(x,z=t)-y g, c, p, $)

:= 1t(g, c[C/p(x)o,l.(x, n(t,c,p,S»], p[x/]P>(x)], S ')[x~k(st,· .. ,sj-l ,Sj+t,·· ,sk'Yt,···,ym)' Z~1t(t,c,p,E)]

E' := (S '= 5[x/~ z/S(t)]'lI[C/~S(t),.p(x»]C [x/.p(x)]l" S E $, ~E 'D,C-7qc' C' 5' Fc g}

Let ~' = (f, 'V, C, !El E $ '.

a) 5 'PL(cC0J,(x, 1t(t, c, p, S)))(Coc) = 5 'PL(J,(x, 1t(t, c, p, Zm(S 'PLW(x»(Coc»

= ~'PL(J,(x, 1t(t, c, p, $»)(~PL(P(x»(Coc» (x et cc)

= 5'PLC,l.(x, 1t(t, c, p, E») (.p(x» (induction hypothesis b)

= ~~ 'PL(1t(t, c, p, $») (p(x» (~'PL(x) = ~

= ~5(t» (.p(x» (lemma 4.3.8 and ind. hyp.)

= ~S(t), .p(x»

= Cc'
Case 7= f.J t g and t'C-7qc' is a context access tenn.

The translation rule is

0) 1t(f.J t g, c, p, S) := n(g, c[C/cCo1t(t, c, p, $)], p, Z1 $':= {~[C/~(t)(Cc)]cl5 E S}

Let5' E E'.

a) S 'PL(cc0t)(Coc) = 5 'PL(1t(t, c, p, S»(~PL(cC)(Coc»

= 5 'PL(n(t, c, p, En (Cc) (induction hypothesis a)

=5(t) (l:(;) (lemma 4.3.8 and ind. hyp.)

= Cc'
Cases'.!=gt /\ g2 and'.! = Yt v g2' These cases are straightforward. •

Lemma 4.3.10 The Soundness Lemma

If So = (f, 'JIo, Co, Po) is a CL-interpretation satisfying a CL-specification Sthen for each recursive calln('.!, c,

p, S) during the translation of the fonnulae in S, the following invariant holds as long as .'Fis a fonnula:

For every 5 = (f, ~ C, fP) E $: SPL Fp n('.!, c, jp, $) where SPL := flS(5)

Proof: By induction on the structure of g.

First Base Case:

'.! = ±P(tt,... ,~) where P is a domain predicate.

The translation rule is

C) 1t(±P(tt,· .. ,tn), c, p, 3) := m:t(p)(St, ... ,sk' 1t(tt, c, jp, E), ... , 1t(~, c, p, $»

Sj = Pi(,l.(cCi' 0Ci» where Pi:Ci-7~ is the i-th projector function in S'J{t).

We consider the positive case, i.e. '.! = P(tt ,...,~) first.

Let ~ E Z and ~PL =: (M, 11

5 PL Fp n(P(tt, ... ,t), c, jp, Z)
n

iff 5 pL(st,,,,,sk' 1t(tt, c, jp, Z), ... , 1t(tn , c, jp, Z» E PM (def.4.2.5)

iff (5 pL(st),,,,,SpL(sk)' SPL(1t(tt, c, p, Z», ... , SPL(1t(tn, c,p, $») E PM

iff (SpL(St),,,,,SPL(sk)' S(tt),... , S(~» E PM (lemma 4.3.8, 4.3.9)

iff (5pL(pt)(Cct),,,,,SpL(pk)(Cck)' S(t1), ... , S(~» E PM (lemma 4.3.9)

43

Let8’=(1", 'V',C’,§P')E 3’ .
a) 8 'PL(°C°‘L(X' “(ta c9 P! S)))(Q)C) = s ‚PLG'O‘! “(ts C, P, $») (s ‚PL(CC)(COC))

= 3 'pLÜÜh Mt, c, Ps 3)))(3pL(cc)(Coc)) (X € CC)

= S ’PL(¢(x, 1t(t, c, p, 3D) (CC) (induction hypothesis 3)
= ‚(15 ’pL(1c(t. c , P: 3») (Cc) (8 'pLÜ‘) = K)
= 48(0) (CC) (lemma 4.3.8 and ind. hyp.)

= 430). Cc)
= cc,

Case 7: Eli(x,z=t)-y (; and x: ‘D,C-—>‘1C’ is a context variable.
The translation rule is
N) 1r(3¢(X.z=t)-y €}, 0.19. 3)

:= Mg, c[C/p(x)ol‚(x, rc(t,c,]p,§))], p[x/]p(x)], 8’)[x<—k(sl,...,sj_1,sj+1,...sk,y1,...,ym), z<—1c(t,c,p,3)]
s ' := (3': sm „same/«sm, ax)nctx/2rx)1,l s e 3. re ‘D,C—>qC’o 8’ I=c 9'1

Let8’== (T, ‘V, (7 ,93€ 3’.
a) 8 'cccoux, «ca, c... p, emcee) = s 'cux. na, c, p. $>))<8'p1„(p(x))<coc))

= 3 ’mfiux, nu, c . p, m))(stmxnwocn (x ¢ cc)
= 8 ’PL(.L(x, 1r(t, c, p, SD) (f(x)) (induction hypothesis b)

= «(5 'pL(1€(t‚ c, Pa 3») (HKD (S’pLOi) = x)
= ((SG)) (f(x)) (lemma 4.3.8 and ind. hyp.)

= dim). SKK»

= cc.
Case 9‘= 50 t (j and t:‘C—9qC’ is a context access term.

The translation rule is
0) «(50 t g, c, p, 3) := Mg, c[C/cco 1r(t, c,]p, 3)], IP, 3 ') 3 ’ := {8[C/8(t)(cc)]cl 8 e 3 }
Let 3 ’ e 3’.
a) 5 ’pL(Cc°t)(Coc) = 3 'pLÜCÜ, C: P: 3))(SPL(CC)(COC))

= 3 ’PL(rc(t, c, p, 3)) (CC) (induction hypothesis a)
= 50) (CC) (lemma 4.3.8 and ind. hyp.)
= C’c-

Cases ? = g, A g2 and T = gl v 62. These cases are straightforward. l

Lemma 4.3.10 The Soundness Lemma
If 30 = (1’, ‘Vo, CO, 90) is a CL-interpretation satisfying a CL-specification 5 then for each recursive call 1r(9F, c,
p, 3) during the translation of the formulae in 5, the following invariant holds as long as 9"is a formula:
For every 8 = (F, ‘V, C, P) e @: SPL ':P 1c(_‘}’, c , p, 3) where SPL := 113(8)
Proof: By induction on the structure of 9.
First Base Case:
_‘f = i'P(t1,. . .,tn) where P is a domain predicate.

The translation rule is
C) 1t(:tP(t1,...,tn), c, p , 3) := _1'IE(P)(sl,...,sk, nal , c, p, 3) , . . . , man, c, p, 3))

Si = pi(J‚(cCi‚ OCi)) where pig—+1, is the i-th projector function in S’Ki).
We consider the positive case, i.e. ‚T =P(t1‚.„,tn) first.

Let s e $ and SPL: (M, %
SPL !=? 1t(P(t1,...‚tn), c, p, 3)

iff SPL(sl,...,sk, nal, c, Ip, 3),..., man, c, p, S)) 6 PM (def. 4.2.5)
iff (SPL(SI)""’SPL(SK)’ 8131105031, G, P, S)) , . . . , 81311750.“, C, p, 8))) € PM

iff (SPL(51),„.,SPL(sk), 5(t1),„., san» 6 PM (lemma 4.3.8, 4.3.9)
iff (SPL(p1) (CC1)"" ’8PL(pk) (CCk)’ 3(t1) , . . . , 8011)) 6 PM (lemma 4.3 .9)

44

iff ($(t1),... , $(tn))) E P.l'l J'l:= S~$PL(P1)(Ccl)" .. ,$PL(Pk)(Cck» (def. 4.3.4,3)

J'l is the actual ~-structure for P (def. 4.2.3)

iff $ l=e .'F (def. 4.2.5)

ifftrue (lemma 4.3.7)

The negative case is analogous.

Second Base Case:

.'F= ±P(t1""'~) where Pis a context predicate.

The translation rule is

D) 1t(±P(t1, ... ,tn), c, JP,~) := ±P(sl, ... ,sn)

The ~ are detennined as follows:

If~: 'C---+llC' is a context variable x or a tenn ,J..(x,z) then Si := ,J..({JPl(x)oli», De)'

If li =Sot and s is a variable x:'C---+qC' or a tenn ,J..(x,z) then Si := ,J..({JPl(x)oso1t(t, c, JP», De)'

otherwise Si := 1t(ti, c, JP).

Again we consider the positive case first

Let S E $ and SpL =: (!M, ~

SpL Fp 1t(P(t1,···,tn), C, JP, $)

iff SpL(sl, ... ,sn) E PM (def. 4.2.5)

iff (SpL(sl)"",SPL(sn» E PM

We consider the above cases for ~ separately.

Case 1: ~:'C---+llC' is either a context variable x or a tenn ,J..(x,z) and Si = ,J..({JPl(x)oli», 0e)

SpL(si) = SpL(li)(SpL{JPl(x») (SpL(Oe»

.	 = Spdli)(SpL{JPl(x») (Coc) (def. 4.3.4,2)

= SpL(~)(p(x» (lemma 4.3.9,b)

= S(~) (p(x» (lemma 4.3.8,4.3.9)

Case 2: ~ = Sot and s is a variable x:'C---+qC' or a tenn ,J..(x,z) and Si := ,J..({JPl(x)oso1t(t, c, JP, $», 0e)

SpL(si)	 =SpL(1t(t, c, JP, $»(SPL(s) (SpL{JPl(x») (SpL(Oe)))

= SPL(1t(t, C, JP, $»(SpL(s) (SpL{JPl(x») (Coe) (def. 4.3.4,2)

= SpL(1t(t, c, JP, $»(SPL(s) (p(x») (lemma 4.3.9,b)

= SPL(1t(t, c, JP, $»(S(s) (.p(x») (lemma 4.3.8, 4.3.9)

=S(t) (S(s) (p(x» (lemma 4.3.8, 4.3.9)

Case 3:	 si:= 1t(li, c, JP, $).

SPL(Sj) = S(~) (lemma 4.3.8, 4.3.9)

Since S l=e .'F (lemma 4.3.7)

and since the above three cases connnned the three conditions in def. 4.2.5, we conclude

(SPL(sl)"",SPL(sn» E Pc

and since according to def.4.1.l,2ii, the SpL(si) are not functional, we can apply def. 4.3.4,land get the

desired relation (SPL(sl)"",SPL(sn» E PM' thus, SpL Fp 1t(P(t1""'~)' c, JP, $)

Induction Step: Let .'Fbe a fonnula, but no literal and let .'Fp := rc(.'F, c, JP, $) be the translated fonnula.

With lemma 4.3.7 we know VS E $: S l=e 'f.

The induction hypothesis states for all recursive calls 1t(.'F', c', JP', Z') inside 1t:

V S'E $': S'PL Fp 1t(.'F', c',JP', S')

In order to show VS E $: SPL Fp .'Fp we perfonn a case analysis according to the structure of 'f.

Case.'F= Vx gwhere x:D is a domain variable.

The translation rule is

E) 1t(Vx g,c,JP,S) :=VX1t(y,c,JP,Z') S':= {S[x/~'IIISE $,;(E Dw}'
VS E S: SPL Fp .rp follows immediately from the induction hypothesis and def. 3.3.3.

Cases .'F= Vx gand Vx-y gwhere x:'C---+qC' is a context variable.

The argument is the same as in the previous case (The Cand P-components play no role).

44

lff (S (t1) , . . . , 3(tn))) € Pfll ‚Q:-"- SMSPLQIXCCIL. . . ,SPLÜJkXCCk» (def. 4.3.433)

2 is the actual E—structure for P (def. 4.2.3)
i f f s l=C f (def. 4 .2 .5)

iff true (lemma 4.3.7)
The negative case i s analogous.

Second Base Case:
IF = fl(t1,...,tn) where R is a context predicate.

The translation rule is
D) 1t(iP(t1,...,tn), c , p , 3) := _P(sl,...,sn)

The si are determined as follows:
If ti:‘C->‘1C’ is a context variable x or a term J.(x,z) then si := i((1p(x)oti)), OC).
If ti = s o tand s i s a variable x:‘C—>9C’ or a term $(x,z) then si := $((p(x)oso1t(t‚ 6 , P)), 0C),
otherwise si := tt(ti, c, p).

Again we consider the positive case first.
LetS e $ andSPL=:(£M, %

SPL t=P Tt(P(t1,...,tn), c, p. $)
iff SPL(s1‚...,sn) 6 PM (def. 4.2.5)
iff (SPL(s1),...,SPL(sn)) 6 PM

We consider the above cases for ti separately.
Case 1: tiz‘C—flC’ is either a context variable x or a term ~L(x,z) and si : ¢((p(x)oti)), OC)

spjfisi) = SpL(ti)(8 pL(P(x))) (3PL(0C))

= 3PL(li)(3PL(p(X))) (Coc) (def. 4.3.4.2)
= spLaixflx» (lemma 4.3.9.13)
= 3a,) (rm) (lemma 4.3.8, 4.3.9)

Case 2: ti = s o t and s is a variable x:‘C-—->‘1C’ or a term i(x,z) and si := i((]p(x)oSotc(t, c, p, S)), OC)
3P1‚(Si) = 3pL(1t(t. 0 : P, g))(SPIfiS) (3pL(IP(X))) (3pL(0c)))

= SPLÜCÜ, c, P. 3)) (3pL(S) (3pL(lP(X))) (Coc) (def. 43-42)

= 8pL(1c(t, c, p, 3))(SPL(S) (5100)) (lemma 4.3.9,b)
= SPL(tt(t, c , p, 3))(S(s) (flxD) (lemma 4.3.8, 4.3.9)
= SSG) (8(3) (mo) (lemma 4.3.8, 4.3.9)

Case 3: si := tt(ti, c, p , 3) .
SPL(si) = 3(ti) (lemma 4.3.8, 4.3.9)

Since S3 I=C ‚7 (lemma 4.3 .7)
and since the above three cases confirmed the three conditions in def. 4.2.5, we conclude
(3PL(s1),...,8PL(sn)) 6 PC
and since according to def.4. 1.1,2ii, the SPL(si) are not functional, we can apply def. 4.3.4,land get the
desired relation (8 pL(s l) , . . . , 3PL(sn)) 6 PM, thus, SPL |==P 1t(P(t],...,tn), c, p, 3)

Induction Step: Let af be a formula, but no literal and let TP := 1c(7, c , p, S) be the translated formula.
With lemma 4.3.7 we know V 8 e 3: S t=C f.
The induction hypothesis states for all recursive calls 15(9‘, c’, p’, $ ') inside 1c:

v 8 's 3’: S’pLFPTCCT. 02p? 3 ’)

In order to show V S e $: SPL l=p fp we perform a case analysis according to the structure of 9‘.

Case f: Vx g where xzD is a domain variable.
The translation rule is
E) tt(Vx g, c , p , 3) := Vx Mg, c , p, 3 ’) 3 ’ := {$[x/x],V| 5 e $, ace DW}.
V 8 e 3: SPL |=P fp follows immediately from the induction hypothesis and def. 3.3.3.

Cases 7 = Vx gand Vx-y gwhere x:‘C-—>qC’ is a context variable.
The argument is the same as in the previous case (The Cand alcomponents play no role).

45

Case 'f= V',l.(x,z=t) 9 where x:'D,C-7llC' is a context variable.

The translation rule is

H) rc(V' ,l.(x,z=t) g, c, p, $) := V'x X«(j, c[C/cc0,l.(x, rc(t, c, p, g»], p[x/ccl, $ ')[z~rc(t, c, p, g)]

g':= {5[xI~ z/5(t)]-v[C/~5(t),£<:;)]c[x/£<:;]!p15 E g, 'toE 'D,C-7QC'c}

Let 5 E Z. From the induction hypothesis and def. 3.3.3 we conclude

5 pL Fp V'x rc(g, c[C/cc0,l.(x, rc(t, c, p, g»], p[x/ccl, 9 ').
From lemma 4.3.8 we know 5(t) = 5 PL(rc(t. c, p, g». Since 5 '(z) = 5(t) for every 5' E 9 we can replace z

by rc(t, c, p, $) without changing the interpretation of any term. Therefore we fmally get 5 PL Fp 'fp.

Case 'f= V'J,(x,z=t)-y 9 where x:'D,C-7qC' is a context variable.

The argument is the same as in the previous case.

Case 'f= 3x (jand x:D is a domain variable.

The translation rule is

J) rc(3x g, c, p, g) := rc«(j, c, p, 9 ')[x~g(sl,· .. ,sk' Yl'''''YI)]

Among the possible interpretations for g we select one satisfying the following condition:

For every 5 E g: Among the 'toE Ds-vwith 5 [xh]-vFe (j

there is an {with 5 pL(g(sl, .. ·,sk' Yl,."'Ym» = {

$':= {5'=5[xhJ-v15 E g, ~E DS"JA 5'Fe g}.
Let 5 E g.
From the induction hypothesis we know 5pdx/'t'] I=p rc((j, C, p, Z ') for the object { mentioned in the

semantic defmition for g. Therefore {and the interpretation of g(sl,o .. ,sk' Yl'o .. ,Ym) are identical and we can

replace x by g(sl,,,,,sk' Yl""'Ym) without changing the interpretation of any term. Thus, 5pdx/{] Fp

X«(j, C,p, Z ')[x~g(cl'" .,ck' Yl" .. ,yrn)] and since x no longer occurs in the translated formula, 5 pL Fp 'fp.

Cases 'f= 3x gand 'f= 3x-y (jand x:'C-7QC' is a context variable.

These cases are simplified versions of the next one.

Case 'f= 3,l.(x,z=t) gand x:'D,C-7QC' is a context variable.

The translation rule is

M) rc(3,l.(x,z=t) (j, c, p, g)

:= x(g, c[C/cC0j,(x, 1t(t, c, p, g»], p[x/cc]' g') [x~k(sl, ... ,Sj_l ,Sj+l , ... ,sk' Yl '00' ,ym), .z~rc(t,c,P,g)]

Among the possible interpretations for k we select one satisfying the following condition:

For every 5 E g: Among the 'toE 'C-7QC'Cwith 5[x/~ zl5(t)]-v[x/~5(t), £<:;)]C[xlCc~!pFC (j

there is a {with 5 PL(k(sl, ... ,Sj_l,Sj+l, ... ,sk'Yl, ... ,ym» = {

Z' := {5 '=~)[x/~ z/5(t)]'JI'[C/~5(t),lC)]c[x !{::]!p15 E $, ~E 'D,C-7QC'C' 5' Fe g}.
Let 5 E Z. From the induction hypothesis we know 5pdx/~lFp rc(g, c', /;', $') for the element {

mentioned in the semantic definition for k. Therefore ;(and the interpretation of k(sl, ... ,Sj-l,Sj+l,... ,Sk'

Yl'''''Ym) are identical. From lemma 4.3.8 we know that 5(t) = 5 pL(rc(t, c, p, ~:m. Since, according to the

definition of domain formula, def. 4.1.3,iv x occurs only in the term J,(x,z) we can simultaneously replace x

by k(Sl, ... ,Sj_l,Sj+l,... ,sk,yl, ... ,ym) and z by x(t, C, p, $) without changing the interpretation of any term.

Thus, 5pdx/'toll=p 'fp and since x no longer occurs in the translated formula, 5 PL Fp 'fp.

Case 'f= 3,l.(x,z=t) gand x:'D,C-7QC' is a context variable. The argument is the same as in the previous case.

Case 'f= go t 9 and t'C-7~' is a context access term.

The translation rule is

0) rc(go t (j, c, p, $) := x((j, c[C/ceo rc(t, c, p, g)], p, Z') $' := {5[C/5(t)(lC)]cI5 E $}

Let 5 E Z. Since 5 I=e go t (j, 5' := 5 [C/5(t)(Cc)]cFe (j and 5' E g' (def. 4.2.5)

=> 5'PL Fp rc(g, c[C/ceo x(t, c, p, $)], p, $') (induction hypothesis)

Since 5'PL = 5 pL, we conclude 5 pL Fp 'fp.

The remaining cases with /\ and v are straightforward. _

Applied to the toplevel call of x, this lemma confirms that satisfiable CL-formulae are translated into satisfiable

OSPL-formulae.

45

Case T: Vi(x,z=t) g where x:‘D,C——>‘1C’ is a context variable.
The translation rule is
H) 1c(V ¢(x,z=t) g, c, p, 3) := Vx n:(g, c[C/ccoi(x, 1c(t, c, p, 3))], pix/cc], 3 ’)[z<—n'(t, c, p, 3)]

3’ := {SIX/x, z/S(t)]V[C/7C(S(t)a Cb)]c[X/Cc],| 3 e 3 . ate ‘D,C-——>‘1C’C}
Let 3 e 3 . From the induction hypothesis and def. 3.3.3 we conclude

SPL I=P Vx 7t(g, c[C/cco.l‚(x‚ 1t(t, c, p, 3))], p[x/cc], 3 ’).
From lemma 4.3.8 we know 3(t) = 3PL(1t(t, c , p, 3)) . Since 3 ’(z) = 3(t) for every 3 ’ e 3 we can replace 2

by rt(t, c, p, 3) without changing the interpretation of any term. Therefore we finally get SPL I=P TP.
Case 9" = VJ‚(x,z=t)-y (} where x:‘D,C—->‘1C’ is a context variable.

The argument is the same as in the previous case.

Case }}”: Elx gand x:D is a domain variable.
The translation rule is
J) «(3x g, c , p, 3) := Mg, c, p, 3 ’)[x<—g(sl,...,sk, y1,...,y1)]

Among the possible interpretations for g we select one satisfying the following condition:

For every 3 e 3: Among the me D_;‚Vwith 3[x/x].yt=c g
there is an x,’ with 3PL(g.(sl,...,sk, y1,...,ym)) = 7C

3’ := {3’=3[x/x],yl3 e 3 , me DWS'FC g} .
Let3 e 3 .
From the induction hypothesis we know 3PL[x/7c'] I==P 1r(g, c , p , 3 ’) for the object ;(mentioned in the

semantic definition for g. Therefore ;(and the interpretation of g(sl,. . .,sk, y1,. . . ,ym) are identical and we can
replace it by g(sl,...,sk, y]....,ym) without changing the interpretation of any term. Thus, SPLDt/x’] l=P
1t(@, c,]p, 3 ')[xe—g(cl,. . .,ck, y1,. ..,ym)] and since x no longer occurs in the translated formula, SPL !=? TP.

Cases 9": 3x (} and f = Ex-y gand x:‘C—>‘1C’ is a context variable.
These cases are simplified versions of the next one.

Case 9‘: 3~L(x,z=t) 9 and x:‘D,C——>‘1C’ is a context variable.
The translation rule is

M) 1c(3¢(x,z=t) G, c , p, 3)
:= 1t(g, c[C/ccol(x, Mt, c , p , 3))] , Mai/cc], 3 ’) [x<—k(sl,...,sj_1,sj+1,...,sk, y1,...,ym),ze—1t(t,c,p,3)]

Among the possible interpretations for k we select one satisfying the following condition:
For every 3 e 3: Among the ‚ce ‘C——>‘1C’ cwith 3[x/7c, z/3(t)],V[x/x(3(t), cc)]c[x/CCJ1,I=C (;

there is a ;(with SPL(k(sl,...,sj_1,sJ-+1,...,sk,y1,...,ym)) = :(
3’ := {3’=3[x/x, z/3(t)].V[C/:dS(t), cc)]c[x @1913 e 3. zce ‘D‚C—>qC’o 3 ’ I=C 9}.

Let 8 e 3 . From the induction hypothesis we know 3pL[x/2c’] I=p n:(g, 0’, €’, 3’) for the element :(
mentioned in the semantic definition for k. Therefore ;(and the interpretation of k(s1,...,sj_1,sj+1,.„sk,
y1,...,ym) are identical. From lemma 4.3.8 we know that SG) = SPL(1t(t, c, p, 3)). Since, according to the
definition of domain formula, def. 4.1.3,.iv x occurs only in the term J.(x,z) we can simultaneously replace x
by k(sl,...,sj_1,sj+1,...,sk,y1,...,ym) and z by 1c(t, c, p, 3) without changing the interpretation of any term.
Thus, Süß/;(] |=P 9F}, and since x no longer occurs in the translated formula, SPL '=P TP.

Case :7 = 3¢(x,z=t) gand x:‘D,C—->qC’ is a context variable. The argument is the same as in the previous case.
Case f = 50 t 5 and t: ,‘C—>‘1C’ is a context access tenn.

The translation rule is
0) me t g, c.1p, 3) := 1t(g‚c[C/cco m, c, p, S)], p. $ ") 3 ’ := {3[C/3(t)(cc)]cl 8 e 8]
Let 3 e 3 . Since 3 I==C {0 t 6 ,8 ' := S[C/S(t)((c)]ci=c grand 3 ’ e 3 ' (def. 4.2.5)

=> 3 ’FL I=P Mg, c[C/cco «(t, c , p , 3)] , p, 3 ") (induction hypothesis)
Since SS ’pL == SSPL, we conclude SPL I=P 7?-

The remaining cases with A and v are straightforward. I

Applied to the toplevel call of n, this lemma confirms that satisfiable CL-formulae are translated into satisfiable
OSPL—formulae.

46

Completeness of the Translation

In the last section of chapter 4 we show that OSPL-satisfiability of a translated specification implies

CL-satisfiability of the original CL-specification. We use Ilg -1 to generate from the OSPL-model the

corresponding CL-model. The completeness proof uses the same technique as the soundness proof. but just in the

opposite direction. That means this time we follow the "top down" recursion of 1t to decompose the OSPL-model

5 into the interpretations for the translated subformulae qp in .rp• When we have reached the atomic level we can

translate the OSPL-interpre- tations for the OSPL-atoms into CL-interpretations for the original atoms and from

these build up the CL-model for the original formula. To this end we redefine the augmented formula morphism

II.r(def. 4.3.6) such that the additional argument takes an OSPL-model for the translated formula.

Notice that in the rest of the chapter 5 always denotes an OSPL-interpretation whereas 5 CL denotes a

CL-interpretation.

Definition 4.3.11 (The Redefined Augmented Formula Morphism)

We defme the augmented formula morphism in a similar way as in defmition 4.3.6. but reinterpret the S-argument

in 1t. Each element in 5 is now an OSPL-interpretation.

The toplevel call for 1t is again:

II(J', 5) = 1t~J', Co. Po' {5}) where Co and Po are the default values of def. 4.3.2.

The translation rules A, B, C, D. E and P are the same as in def. 4.3.6. The modified translation rules are:

F) 1t(\fx g, c, p, 5) := \fx 1t(g. c[C/ccox], p[x/ccl, 5') where x:'C~llC' is a context variable.

5':= {5[x/~0/15 E 5,~E 'c~qC'M}'

G) 1t(\fx-y g, c, p, 5) := \fx 1t(g. c[C/]P>(y)ox], p[x/]P>(y)], 5') where x:'c~qC' is a context variable.

5':= {5[x/~0/15 E 5,~E 'C~qC'M}'

H) 1t(\fJ.(x,z=t) g, c, p, 5) := \fx 1t(g, c[C/cc0J.(x, 1t(t, c, p, 5»], p[x/ccl, 5') [ZE-1t(t. C, p, 5)]

where x:'D.C~qC· is a context variable.

5' := {5[x/~ z/5(1t(t, c, P. 5»]0/15 E 5, ~E 'D.C~qC'M}

I) 1t(\fJ.(x,z=t)-y g, c. p, 5) := \fx 1t(g, c[C/]P>(y)oJ.(x.1t(t. c. p. 5»]. p[x/p(y)], 5') [ZE-1t(t. c,p. 5)]

where x:'D.C~qC' is a context variable.

5':= {5[x/~ z/5(1t(t. c, p, 5»]0/15 E 5, ~E 'D.C~qC'M}

J) 1t(3x	 g, c, p. 5) := 1t(g, c, p, 5 ')[XE-g(sl, ... ,sk' Y1""'Ym)] where x:D is a domain variable.

5':= {5[x/5(g(sl"",sk' Y1, ... ,ym))]0/15 E 5}

K) 1t(3x	 g, c, p, 5) := 1t(g, c[C/ccox], p[x/cc], 5 ')[xE-h(sl' ...•Sj_1'Sj+1' ... ,sk,y1' ... 'Ym)]

where x:'C~qc' is a context variable.

5' := {5 '=5 [x/5(h(sl"",sj-l,Sj+1, ... ,sk'Y1, ... ,ym))]0/15 E 5}

L) 1t(3x-y g, c, p, 5):=1t(g, c[C/p(y)ox], p[x/p(y)], 5 ')[xE-h(sl, ... ,Sj_1,Sj+1, ... ,Sk,y1, ... ,ym)]

where x:'C~llC' is a context variable.

5':= {5'=5[x/5(h(Sl'sj-l'Sj+1' ... ,sk' Y1, ... ,ym))]0/15 E S}

M) 1t(3J.(x,z=t) g, c, p, 5) where x:'D,C~llC' is a context variable.

:= 1t(g, c[C/cc0J.(x, 1t(t, c, p, 5»], p[x/cc], 5 ')[XE-k(sl'''' ,Sj_1 ,Sj+1"" 'Sm'Y1,... 'Yl)' ZE-1t(t. c, p, 5)]

5' := (5 '=5 [x/5(k(sl"",sj-l,Sj+l,,,,,sk,y1'''''Ym»' z/5(1t(t, c, p, 5»]0/15 E S}
N) 1t(3J.(x.z=t)-y g. c, p, 5), where x:'D,C~qC' is a context variable.

:= 1t(g, c[C/p(y)oJ.(x.1t(t,c.p,5»], p[x/p(y)], 5 ')[XE-k(sl,,,,,Sj_1,Sj+1,,,,,sk'Y1""'Ym)' ZE-1t(t,c.p.Z)]

5' := {5 '=5 [x/5(k(sl"",sl_1,sl+1"" ,sk'Yl'''' 'Yl»' z/5(1t(t, c, JP, 5»]0/15 E S}

0) 1t(P t g, c, p, 5) := 1t(g, c[C/cc o 1t(t. c, JP,S)], JP, 5)

Q) 1t«(jlV g2' c, p, 5) := 1t((jl' c, JP, 51) v 1t«(j2' c, JP, 52) 5 i := (5 E 515 I=p 1t(gi' c, p, Si)} i = 1,2 •

46
Completeness of the Translation

In the last section of chapter 4 we show that OSPL-satisfiability of a translated specification implies
CL-satisfiability of the original CL—specification. We use ITS “1 to generate from the OSPL-model the
corresponding CL-model. The completeness proof uses the same technique as the soundness proof, but just in the
Opposite direction. That means this time we follow the “top down” recursion of it to decompose the OSPL-model

S into the interpretations for the translated subfonnulae GP in 71,. When we have reached the atomic level we can
translate the OSPL-interpre- tations for the OSPL-atoms into CL-interpretations for the original atoms and from
these build up the CL-model for the original formula. To this end we redefine the augmented formula morphism
IIgr (def. 4.3.6) such that the additional argument takes an OSPL-model for the translated formula.

Notice that in the rest of the chapter 3 always denotes an OSPL-interpretation whereas SGL denotes a
CL—interpretation.

Definition 4.3.11 (The Redefined Augmented Formula Morphism)
We define the augmented formula morphism in a similar way as in definition 4.3.6, but reinterpret the 3-argument
in m Each element in 3 is now an OSPL-interpretation.

The toplevel call for 1c is again:
HU; 3) = 1:07”, co, po, {8D where c0 and po are the default values of def. 4.3.2.

The translation rules A, B , C , D, E and P are the same as in def. 4.3.6. The modified translation rules are:
F) 1t(Vx g, c. p, 3) := Vx 1c(g, c[C/ccox], phi/cc], 3 ’) where x:‘C—>qC’ is a context variable.

3’:= {3[x/x].y| S e 3 , {@ ‘C—>‘1C’M}.
G) 1c(Vx-y g, c, p, 3) := Vx n:(g, c[C/]p(y)ox], p[x/IP(Y)]‚ 3 ’) where xz‘C—a’ is a context variable.

’ = {MX/‚(MISS e 3 , :ce ‘C—eqC’M}.
H) 1t(Vl(x,z=t) g, c , p . 3) := Vx nu}. c[C/cCoJ,(x, 1t(t, c . p. 3))] . phi/cc], 3 ’) [ze—na, c , 1p. 3)]

where x: ‘D,C—->‘1C’ is a context variable.

= {3[x/x, z/3(1t(t, c ,p , S))Lyl 3 e 3. age ‘D,C——>‘1C’M}
1) 1t(W(x‚z=t)-y G, 0 ,193) := Vx n(G‚c[C/p(y)oi(x‚ na. 0,11». 3))].p[x/p(y)l. 3’) [z<—1c(t‚ cap. S)]

where x:‘D,C—9qC’ is a context variable.
= [Sh/x, z/3(1t(t, c, p, 3))]„‚I 3 e 3 , age ‘D,C—~>‘1C’M}

J) 1c(3x g, c, p, 3) := Mg, c, p, 3 ’)[xe—g(sl,...,sk, y1,...,ym)] where xzD is a domain variable.
== {5[x/8(g(s1,.„,sk, y1,...,ym))]„‚l 8 e 3}

K) 1t(3x g, c, p, 3) := Mg, c[C/ccox], phi/cc], 3’)[xe—h(sl,...,sj_1,sj+1,...,sk,y1,...,ym)]
where x:‘C—)‘1C’ is a context variable.
3 ' = {3 ""3 [Ii/30161. q-1,SJ-+1w -SkoY1‚- . ‚ ym))] .y | 3 E 3}

L) “GX"'Y G c, P: 5) ”!(? C[C/IP(Y)°X] INK/P00] 3 „?“—MSP" .sj_1‚sj+1‚---‚sk‚y1‚-„‚ym)]
where x: ‘C—éqC’ IS a context variable.

={S’=3[x/3(11(s1,...,sj_1,sj+1,...,sk, y1,....ym))].,,l3 e 3}
M) 1t(EN,(x,z=t) (j, c , p, 3) where x:‘D,C——>‘1C’ is a context variable.

:= Mg, c[C/ccoi(x, 1r(t, c , p , 3))]‚ Mac/cc], 3 ')[xe—k(sl,...‚sj_1,sj+1,„.,sm,y1,...,yl), z<—1c(t, c, p. 3)]
= {8'=8[x/8(k(sl,...,sj_1,sj„,...,sk‚y1,„.,ym))‚ z/3(1t(t, c, p, 3))].V| 8 e 3}

N) 1c(E| ~L(x,z=t)-y (j, c , p, 3) where x:‘D,C—>‘lC’ is a context variable.
:= Mg, c[C/p(y)o.L(x, 1t(t,c,p,3))],]p[x/p(y)], 3 ’)[xe—k(sl,...,sj_1,sj+1,...,sk,y1,...,ym), ze-it(t,c,p,3)]

3’ := {8’=3[x/8(k(sl,...,sl_1,sl+1,...,sk,y1,...,yl)), 2/3050, 0,19, 3))].Vl 8 e 3}
O) 1c(go t g, c, p, 3) := Mg, c[C/cCo 1t(t, c, p, 3)], p, 3)
Q) rc(g1vg2, c, p, 3) := Mg] , c, p, 31) v n(g2, c, p, 32) 3i := {8 6 3 | 3 |=p “(99 c, p, SQ} i = 1,2 I

47

Again we have to verify that the decomposition of the OSPL-model is correct, i.e. that the generated

interpretations in the S-argum~nt of1t really satisfy the corresponding translated subformula.

Lemma 4.3.12 The Redefined Augmented Formula Morphism is WeJI Defined.

If $0 is a OSPL-interpretation satisfying a translated CL-specification Sthen for each recursive call1t(r:;, c, Tfli, $)

during the translation of the formulae in S, the following invariant holds as long as r:; is a formula:

For every $ E $: $ ';> (jp := 1t(r:;, c, p, $) .

Proof: By induction on the recursion depth.

Base Case: Recursion depth = 0: This is just the initial condition that $0 satisfies the translated S.

Induction Step: Let the recursion depth be greater than 0.

Let 1t(:F, c, p, S) be the actual call to 1t and let.rp and 9p be the translated formulae.

The induction hypothesis states: For every S E $: S ';> .rp.

In order to show that the statement also holds for the next recursion step we must perform a case analysis

according to the structure of .rand analyze the corresponding translation rule.

Case .r= Vx (j and x:O is a domain variable.

The translation rule is

E) 1t(Vx (j, C, jp, $) := Vx 1t«(j, C, jp, $') S':::;; {5[x/~'l115 E $, ~E D.w}

The induction hypothesis immediately implies 5 E $': 5,;> Yp. (def. 3.3.3)

The same holds for the remaining cases with universal quantifiers.

Case .r= 3x r:; and x:D is a domain variable.

The translation rule is

1) 1t(3x (j, c, p, $):= 1t«(j, c, p, g ')[x~g(St, .. ·,sk' Yt,.··,y)]m

$' := {S '=S[x/S(g(St, ... ,sk' Yt,. .. ,ym))]'l1' $ E $}

Let 5' =5 [x/5(g(St, ... ,sk' Yt""'Ym))]'jIE $'.

Since 5 ,;>.rp (induction hypothesis) and x is not in .rp, $' ';> .rp.

Furthermore since 5 '(x) = S(g(St,... ,sk' Yt,... ,ym)), the interpretation of the terms in .rp remains the

same when we replace g(St, ... ,sk' Yt, ... ,ym) by x. Hence,S' ';> 1t«(j, c, p, $).
The same holds for the remaining cases with existential quantifiers.

The proofs for the go, /\ and v cases are straightforward. •

The definition of the inverse signature morphism (def. 4.3.4) tells us how models for translated CL-formulae are

translated into CL-interpretation for the original CL-formula. This definition must be refmed in order to get the

right actual context C and context assignments P for the CL-interpretations which are obtained from the

decomposed OSPL-interpretations in the redefined augmented formula morphism. The information from which

these additional components can be generated is contained in the c- and Tfli-arguments of 1t: Since the special

constant symbol 0c denotes the initial C-context, applying the interpretation of Cc - a context access function - to

this initial C-context yields the component Cc. Application of the interpretation of p(x) - again a context access

function - to the initial C-context on the other hand yields ~x).

Definition 4.3.13 The Associated CL-Interpretations

Let 1t(1", c, p, $) be a call to the redefined augmented formula morphism and let C t ,... ,Cn be the basic context

sorts. To each 5 = (5W; 'J1 E S we associate a CL-interpretation SCL := (llg-t(M), ~ C, P) where

C = (S(cCt)(OCtM)'" "S(cCt)(OCIM)) and for the free context variables x of sort 'c~qc' or 'o,c~qC' in .r:
p(x) := S(]P(x) (OCtM)' •

47

Again we have to verify that the decomposition of the OSPL-model is correct, i.e. that the generated
interpretations in the S-argument of 1: really satisfy the corresponding translated subformula.

Lemma 4.3.12 The Redefined Augmented Formula Morphism is Well Defined.
If 80 is a OSPL-interpretation satisfying a translated CL—specification 5 then for each recursive call rc(g, c, p, $)
during the translation of the formulae in 5, the following invariant holds as long as 9 is a formula:
For every 8 e $: 8 !=? GP := Mg, c, p, $) .
Proof: By induction on the recursion depth.
Base Case: Recursion depth = 0: This is just the initial condition that 30 satisfies the translated ‚S.
Induction Step: Let the recursion depth be greater than 0 .
Let «(f, c , p , 3) be the actual call to 1: and let ‚TP and gl, be the translated formulae.

The induction hypothesis states: For every 5 e $: S "P 91,.
In order to show that the statement also holds for the next recursion step we must perform a case analysis

according to the structure of ‚‘F and analyze the corresponding translation rule.

Case 9”= Vx 9 and x:D is a domain variable.
The translation rule is
E) “(VX G. c , }P , 3) != VX “(G, 0 ,19 , 3’) 3 ’ := {SDI/adv! 3 e 3 , me DW}
The induction hypothesis uninediately implies 8 e 3’: 8 !=? %. (def. 3.3.3)

The same holds for the remaining cases with universal quantifiers.
Case af= Elx g and x:D is a domain variable.

The translation rule is
I) «(3x G, mp. 3) := t agge r . 3’)[x<—g(s1.....sk. y1‚...‚ym)]

g’ := {S’=5[x/3(g(sl,...,sk, y1‚...,ym))]„‚l S e 3}
Let 8 ’ = 3[x/8(g(sl,...,sk, y1,...,ym))].ye 3’.
Since 8 |=P .'Tp (induction hypothesis) and x is not in 17p, 8 ’ |=p fp.
Furthermore since S '(x) = 8(g(s1,. . „sk, y1,. . .,ym)), the interpretation of the terms in 9'}, remains the
same when we replace g(s1,...,sk, y1,...,ym) by x. Hence, S 'bp Mg, c, p, S ’). „

The same holds for the remaining cases with existential quantifiers.
The proofs for the go, A and v cases are straightforward. I

The definition of the inverse signature morphism (def. 4.3.4) tells us how models for translated CL-formulae are
translated into CL-interpretation for the original CL-formula. This definition must be refined in order to get the
right actual context C and context assignments 5? for the CL-interpretations which are obtained from the
decomposed OSPL-interpretations in the redefined augmented formula morphism. The information from which
these additional components can be generated is contained in the c- and p-arguments of n: Since the special
constant symbol OC denotes the initial C-context, applying the interpretation of cc - a context access function - to
this initial C-context yields the component CC. Application of the interpretation of p(x) - again a context .access
function - to the initial C-context on the other hand yields fix).

Definition 4.3.13 The Associated CL-Interpretations
Let 1K9”, c , p, 3) be a call to the redefined augmented formula morphism and let C1 . ,Cn be the basic context
sorts. To each 3 = (M, M e $ we associate a CL-interpretation 30L := (H3'1(M). 'V. C. ?) where

C = (3(ccl)(0C1M),...,S(cc1)(0C1M)) and for the free context variables x of sort ‘C——>‘1C’ or ‘D,C—9‘1C' in f:
f(x) := SQPÜÜ) (OCIM)° '

48

Lemma 4.3.14 The Interpretation of Terms is Invariant

Let t be a domain tenn over a signature ~, let tp := 1t(t, c, p, 3) and for every ~ = (M, 'Vl E 3 let ~CL . ­

(TIS-1(M), ~ Co P) according to def. 4.3.13.

Then for every ~ E 3: ~CL(t) = ~(tp).

Proof: By induction on the structure of t.

Base Case: t is a variable. The statement is true because the translation neither changes variables nor their

interpretation.

Induction Step: t =f (t1, ... ,tn).

~(1t(t, c, p, S» =~(TIE(f)(sl, ... ,sk' 1t(t1, c, p, S), ... , 1t(tn, c, jp, S)))

Si := Pi(,J..(cCi' Od) where Pi:Cj-7Ii is the i-th element in S'V(f) (def. 4.3.2,B)

=f~~(sl), ... ,5(sk)' 5(1t(t1• C, p, 3))•... , ~(1t(tn' C. p, 3»)))

=f~~(sl)'" .•5(sk)' 5 CL(t1)'···. ~CL(tn))) (induction hypothesis)

=f~~(Pl)(Ccl)"",~(Pk)(Ccl)' ~CL(tl)"'" ~CL(tn))) (def. 4.3.13)

=f;r(~cL(tl)"'" ~CL(~») J't:= S1{~(PI)(Ccl)"",~(Pk)(Ccl» (def. 4.3.4.2)

}l is the actual ~-structure for f.	 (def. 4.2.3)

(def. 4.2.4) •

Lemma 4.3.15 The Completeness Lemma

If 50 is an OSPL-interpretation satisfying a translated specification TI(S) then for each recursive call1t(1", C, p. Z)

during the translation of the fonnulae in S. the following invariant holds as long as .'Jis a fonnula:

For every S E 3: ~CL I=c .'J.

Proof: By induction on the structure of .'J.

First Base Case:

.'J =±P(t1,...•tu) where P is a domain predicate.

The translation rule is

C) 1t(±P(tl ,.. ·,tn), c, p, 3) := ±fIE(P)(sl' ...•sk' 1t(t1, c, p, 3), ... , 1t(~, C, jp. 3»

Si = Pi(,J..(cCj, Od) where Pi:Ci-7~ is the i-th projector function in S'V(f).

We consider the positive case, i.e. .'J =P(t1, ... ,tu) fIrst.

Let ~ E Sand SCL =: «C, s'Vl. tV, c, P)

true iff	 (lemma 4.3.12)

~ I=p 1t(p(t1, •.. ,tn), c, jp, S)

iff ~(cl, ,ck,1t(tl,c,jp,S), ... ,1t(tn,c,jp,3»E PM (def. 4.2.5)

iff (~(sl), ,S(sk)' ~(1t(tl' c, p, 3»,... , ~(1t(tn' c, jp. S») E PM

iff (S(sl), ,~(sk)' ~Cdtl)"'" ~cdtu» E PM (lemma 4.3.14)

iff (~(PI)(Ccl),...•5(Pk)(Cck)' ~CL(tl)"'" ~CL(1u» E PM (def. 4.3.13)

iff (~CL(tl)'"'' ~CL(~») E P;r J't:= S1{~(Pl)(Ccl), ... ,~(Pk)(CcI» (def 4.3.4,3)

}l is the actual ~-structure for P.	 (def. 4.2.3)

(def. 4.2.5) iff ~ CL I=C .'J
The negative case is analogous.

Second Base Case:

.'J= ±P(tl ,... ,1u) where P is a context predicate.

The translation rule is

D) 1t(±P(t1, ... ,tn). c, jp, S) := ±P(sl, ... ,sn)

The Si are determined as follows:

If~: 'C-7'lC' is a context variable x or a tenn ,J..(x, z) then si:= J,«P(x)ot). Dc)

If ~ = Sot and x is a variable x:C-7QC or a tenn ,J..(x. z) then Si := ,J..«P(x)OSo1t(t, c, p, Z», Dc)

otherwise Si := 1t(~, c, p, Z).

48

Lemma 4 .3 .14 The Interpretation of Terms is Invariant

Let t be a domain term over a signature 2, let tP := 1r.(t, c, p, S) and for every 3 = (M, % e 3 let SCL :=
(HS"IÜVO, ‘V. c, 1») according to def. 4.3.13.
Then for every 8 e 3 : SSCLO) = 3(tp).
Proof: By induction on the structure of t.
Base Case: t is a variable. The statement is true because the translation neither changes variables nor their
interpretation.
Induction Step: t= f (t1,...,tn).

3(1t(t, c , p, S)) = 8(Ilz(f)(sl,...,sk, "(tv c, p, S), . . . , 15(tn, c, p, SD)
si := pi(J‚(cCi, OCi)) where pJ-l:Ci-—9Ii is the i-th element in SMD (def. 4.3.2,B)

= fM(3(s1),...,S(sk),8(1c(t1, c, p, 3)),..., 30:0“, c, p, S)»)
= fM(5 (sl),...,8(sk)‚ SCL(t1),..., SCL(tn))) (induction hypothesis)
= fM($(pl)(cC1)‚...,8(pk)(cC1), SCL(t1),..., 8CL(tn))) (def. 4.3.13)
= £(SCL(t1) , SCL(tn))) 121::5M8@1)(CC1),...,S(pk)(CCI)) (def. 4.3.42)

2 is the actual 2-st1ucture for f. (def. 4.2.3)
= SCLG) (def. 4.2.4) I

Lemma 4 .3 .15 The Completeness Lemma
If 30 is an OSPL-interpretation satisfying a translated specification 11(5) then for each recursive call 1:0; 0, p, 3)

during the translation of the formulae in S, the following invariant holds as long as 9‘ is a formula:

For every SS e $: SCL I==C :7.
Proof: By induction on the structure of 9'.
First Base Case:
T = iP(t1,. . .,tn) where P is a domain predicate.

The translation rule is
C) 1c(iP(t1,...,tn), c, p, 3) := _H2(P)(sl,...,sk, 1!:(t1, c, p, 3) , . . . , nan, c, p, 3))

si = pi(J‚(cCi, OCi)) where pizCi—eli is the i-th projector function in .S’l/(f).
We consider the positive case, i.e. 9‘ = P(t1,. . .,tn) first.
Let S e 3 and SSCL =: ((C, 51V), ‘V. C, 2?)

true iff (lemma 4.3.12)

8 hp 1r(P(t1,...,tn), c, p, 3)
iff 3(cl,... ,ck, 1c(t1, c, p, $) , . . . , “(tm c, p, S)) 6 PM (def. 4.2.5)
iff (8(s1),...,3(sk), S(1c(t1, c.1p, s)),..., Saran, 6 . p, 3») 6 PM

iff (8(s1),....8(sk), SCL(t1),..., 3(1a e PM (lemma 4.3.14)
iff (3(p1)(CC1),...,S(pk)(CCk),SCL(t1),..., sum) 6 PM (def. 4.3.13)
iff (8CL(t1),..., SCL(tn))) e P;21 fit := .S‘V(S(p1)(CC1),...,8(pk)(cc1)) (def 4.3.45)

2 is the actual E-structure for P. (def. 4.2.3)
iff SCL |=C :7 (def. 4.2.5)

The negative case is analogous.
Second Base Case:
‘T = 'l-P(t1,. . .,tn) where P is a context predicate.

The translation rule is
D) 1t(iP(t1,...,tn), c, p , 3) := iP(s1.---.Sn)

The si are determined as follows:

If tiz‘C—a’ is a context variable x or a term J,(x, 2) then Si := .L((p(x)oti)), 0C)

If ti = s o t and x is a variable x:C——)‘1C or a term J,(x, z) then si := J,((]p(x)os<>1€(t‚ G, P, S)), 0c)

otherwise i == “(t-i, @, JP, 3) -

49

Again we consider the positive case first.

Let 5 E $ and 5 CL =: «C, S'J'), -v. c, P).

Since according to lemma 4.3.12 5 Fp 1t(P(tt,... ,~), c, p, 3) we know (5(st),···,5(sn)) E PM'

Since according to def.4.1.1,2ii the 5(~) are not functional, we can apply def. 4.3.4,4a

and get the relation (5(st), ... ,5(sn)) E Pc

We consider the above cases for ~ separately.

Case 1: ~:'c~qC' is a context variable x or a tenn -L(x, z) and si := -L«]p{x)oti)), Qc)

5(s)	 = 5(~)(5(JPl(x))) (5(Oc))

= 5(~)(5(JPl(x))) (4)) (def. 4.3.4,2)

=5(~)(!l'(x)) (def. 4.3.13)

= 5CL(~) (p(x))	 (lemma 4.3.14)

Case 2: ~ = Sot and x is a variable x:C~qc or a tenn -L(x, z) and si := -L«(JPl(x)oso1t(t, c, p, $)), QC)

5 (si)	 = 5(1t(t, c, p, 3))(5(s) (5 p(x))) (5(Oc)))

= 5(1t(t, C, p, $))(5(s) (5(JPl(x))) (4)) (def. 4.3.4,2)

= 5(1t(t, c, p, $))(5(s) (p(x))) (def. 4.3.13)

= 5 (1t(t, c, p, $))(5CL(s) (p(x))) (lemma 4.3.14)

=5 CL(t) (5CL(s) (p(x))) (lemma 4.3.14)

Case 3: ~:= 1t(~, c, p, $).

5 (si) = 5CL(~) (lemma 4.3.14)

Since the above three cases confinned the three conditions in def. 4.2.5, we conclude

(ScL(St), .. ·,5CL(sn)) E PC' Le. SCL Fc 7"-

Induction Step:

Let .'Fbe a fonnu1a, but no literal and let .'Fp := 1t(.'F, c, p, $) be the translated fonnula.

With lemma 4.3.12 we know V 5 E $: S Fp .'Fp.

The induction hypothesis states for all recursive calls 1t(';:', c', p', $ ') inside 1t: VS' E 3': 5'CL Fc ';:'

In order to show V 5 E 3: 5 CL Fc .'Fwe perfonn a case analysis according to the structure of.'F.

Case .'F=Vx Ij where x:D is a domain variable.

The translation rule is

E) 1t(Vx Ij, c, p, 5) := Vx 1t(Ij, C, p, 3') $':= {5[x/~o/l 5 E 5, ~E DS'JI'}

V 5 E $: 5 CL Fc .'Ffollows immediately fonn the induction hypothesis and def. 4.2.5.

The remaining cases with universal quantifiers are proved in the same way as the previous one.

Case .'F= ::Ix Ij and x:D is a domain variable.

The translation rule is

J) 1t(::Ix Ij, c, p, $):= 1t(Ij, c, p, 3 ')[x~g(St,· .. ,sk' Yt""'Ym)]

$':= {S[x/5(g(St,···,sk' Yt""'Ym))]o/l 5 E $}.

Choosing a= 5(g(St,... ,sk' Yt' ...,y~), the statement follows again immediately from the induction

hypothesis and def. 4.2.5.

The remaining cases with existential quantifiers are proved in the same way as the previous one.

The remaining cases with go, /\ and v are straightforward. _

From the soundness and completeness lemmas we obtain now the final result of this chapter:

Theorem 4.3.16 Soundness and Completeness of the Translation

A Cl-specification S is Cl-satisfiable if and only if the translated OSPL-specification TI(S) is OSPL-satisfiable.

This is an immediate consequence of the soundness and completeness lemmas 4.3.10 and 4.3.15. •

49

Again we consider the positive case first.
Let 8 e 3 and SCL =: ((C, 5%, ‘Vl 6, :P).
Since according to lemma 4.3.12 3 !=], 1t(P(t1,...,tn), c, p, 3) we know (S(sl),...‚5(sn)) 6 PM.

Since according to def.4.l.1,2ii the 8(si) are not functional, we can apply def. 4.3.4,4a
and get the relation (8 (31),. . .,8 (511)) 6 PC

We consider the above cases for ti separately.
Case 1: ti:‘C—>‘1C’ is a context variable x or a term $(x, z) and si := i((p(x)oti)), 0C)

3(81) = 3(ti)(3 (IP(X))) (5(0c))
= 8(ti)(5(p(x))) (co) (def. 4.3.4,2)
= 8(ti)(f(x)) (def. 4.3.13)
= SCLGi) (f(x)) (lemma 4.3.14)

Case 2: ti = s o t and x is a variable x:C—9‘1C or a term ~L(x, z) and si := J,((p(x)oSon(t, c , p, S)) , OC)
3(si) = 80m, 6, p. 3))(3 (S) (8 mx») (3(0c)))

= sow, c, 1p, 3))(S(s) (Es (p(x))) (Co) (def. 4.3.4,2)
= 8060, c , p, 3))(3(s) (900)) (def. 4.3.13)
= 8(1t(t, c, p, 3))(3 CL(s) (311(x») (lemma 4.3.14)
= SCLG) (8 (1(8) (1100)) (lemma 4.3.14)

Case 3: Si := 15(ti, c , p , $) .
S(si) = SCLÜi) (lemma 4.3.14)

Since the above three cases confirmed the three conditions in def. 4.2.5, we conclude
(8CL(s1),...,SCL(sn)) e Po i.e. SCL I=c 17.

Induction Step:
Let 9' be a formula, but no literal and let ‚TP := auf, c, p, 8) be the translated formula.
With lemma 4.3.12 we know V 3 e 3: S '=P TP.
The induction hypothesis states for all recursive calls MT, 0', p’, 3 ’) inside n: V 3 ’ e 3’: 8 'CL t=c T
In order to show V 8 e $: SCL FC }" we perform a case analysis according to the structure of ?.
Case ‚7= Vx (jwhere x:D is a domain variable.

The translation rule is

E) 1t(Vx g, c , p , 3) := Vx Mg, c , p, 3’) 3 ’ := {SS[x/;c]„‚l 8 e S , me DW}

V 8 e 3: SCL t=C :? follows immediately form the induction hypothesis and def. 4.2.5.
The remaining cases with universal quantifiers are proved in the same way as the previous one.

Case :7: 3x gend x:D is a domain variable.
The translation rule is
J) 1t(3x g, c , p, 3) := Mg, c, p, S ’)[x<—g(s1,...,sk, y1,...,ym)]

3 ' := {8[x/8(g(sl,„.,sk, y1,...,ym))],V| 3 e 3} .
Choosing a= 8(g(sl,. ..,sk, y1,. . .,ym))‚ the statement follows again immediately from the induction
hypothesis and def. 4.2.5.

The remaining cases with existential quantifiers are proved in the same way as the previous one.
The remaining cases with go, A and v are straightforward.

From the soundness and completeness lemmas we obtain now the final result of this chapter:

Theorem 4.3.16 Soundness and Completeness of the Translation
A Cl-specification .5 is Cl-satisfiable if and only if the translated OSPL-specification 11(5) is OSPL—satisfiable.
This is an immediate consequence of the soundness and completeness lemmas 4.3.10 and 4.3.15.

50

Chapter Five

Multi Modal Logic

The Context Logic methodology is designed for handling complex logics. In order to demonstrate what all the

details are good for and how the various mechanisms cooperate we therefore need a nontrivial example. Therefore

I have chosen a kind of multi modal logic (MM-Logic), an extension of first-order modal logic as an example

logic. This extension is quite expressive and can serve as temporal, process, action and epistemic logic in various

applications. The basis consists of the classical modal logics D, T, D4 and 54 with possible worlds semantics and

it includes Clarke and Emerson's CTL temporal logic [Clarke&Emerson 83] as a fragment. The accessibility

relation has to be serial, Le. from each world there must be an accessible world. This is one basic assumption of

CL. The other assumption is that the domains are identical in each world (constant-domain interpretations).

However, we allow modal operators corresponding to accessibility relations with different properties to occur

simultaneously. In particular we have a basic discrete accessibility relation, its reflexive, transitive and

reflexive-transitive closure. The transitive closure is not completely axiomatizable in first-order logic, but we

approximate it as far as possible.

The accessibility relations themselves can be labeled with arbitrary domain elements and we provide indexed

operators which can refer to these labels. Furthermore we include an 'eventually' operator t with the meaning t.r
is true in a world 'Wif on every path Pthrough the possible worlds structure starting with 'Wthere exists a world

'W1 such that :ris true in 'W1. Finally we include 'until' opera- tors for accessing limited areas in the possible

worlds structure... Hence, MM-Logic has two kinds of multiplicities, several accessibility relations simultaneously,

and indexed operators. Function and predicate symbols are flexible, i.e. their interpretation may change from

world to world. Extending this logic to deal with flexible and rigid designators simultaneously is a trivial exercise.

In the sequel let 5{E {11l, r, t, rt,} where '11l' refers to the basic accessibility relation, 'r' refers to its reflexive, 't' to

its transitive and rt to its reflexive-transitive closure. We do not consider symmetric accessibility relations because

the interaction of the symmetric cS-operator with the other modal operators is utterly complicated.

The full set of logical connectives, quantifiers and operators we are going to use is

1\ (and) V (for all)

v (or) 3 (there exists)

-, (not) c~ (necessarily)

=> (implies) O~ (possibly)

(:::) (is equivalent) t (eventually)

[]~ (indexed necessarily) - (possibly henceforth)

< >~ (indexed possibly) \iU, \iur (always until)

I. ..) (indexed eventually) 3U, ::3Ur (possibly until)

The pairs (c~. O~, (t, -), ([... Jl~ <...>29 of operators are dual to each other. Duality means that moving a

negation sign over one operator in that pair switches it to the other operator. For example -,c:r(:::) O-,:f. This

property can be used to create a negation normal form for formulae by moving all negation signs in front of the

atoms. Since, however, dual operators for I. ..) and the 'until' operators are not included, we can generate a

negation normal form only for the translated Context Logic formulae.

Some of the operators are defInable from others:

•:r (:::) true VU :r (:::) true VUr :rand

ort:r (:::) true 3U:r (:::) true 3UC :r.
Nevertheless we treat them separa~ly because the translation into OSPL can then be optimized.

50

Chapter Five

Multi Modal Logic

The Context Logic methodology is designed for handling complex logics. In order to demonstrate what all the

details are good for and how the various mechanisms cooperate we therefore need a nontrivial example. Therefore
I have chosen a kind of multi modal logic (MM—Logic), an extension of first-order modal logic as an example
logic. This extension is quite expressive and can serve as temporal, process, action and epistemic logic in various
applications. The basis consists of the classical modal logics D, T, D4 and S4 with possible worlds semantics and
it includes Clarke and Emerson’s CTL temporal logic [Clarke&Emerson 83] as a fragment. The accessibility
relation has to be serial, i.e. from each world there must be an accessible world. This is one basic assumption of

CL. The other assumption is that the domains are identical in each world (constant—domain interpretations).
However, we allow modal operators corresponding to accessibility relations with different properties to occur
simultaneously. In particular we have a basic discrete accessibility relation, its reflexive, transitive and
reflexive-transitive closure. The transitive closure is not completely axiomatizable in first-order logic, but we
approximate it as far as possible.

The accessibility relations themselves can be labeled with arbitrary domain elements and we provide indexed
operators which can refer to these labels. Furthermore we include an ‘eventually’ Operator I with the meaning i f
is true in a world ‘Wif on every path ‘P through the possible worlds structure starting with ‘w there exists a world
WI such that 9' is true in W1. Finally we include ‘until’ opera— tors for accessing limited areas in the possible
worlds structure,Hence, MM-Logic has two kinds of multiplicities, several accessibility relations simultaneously,

and indexed operators. Function and predicate symbols are flexible, i.e. their interpretation may change from
world to world. Extending this logic to deal with flexible and rigid designators simultaneously is a trivial exercise.

In the sequel let Re {g, r, t, rt,] where ‘6’ refers to the basic accessibility relation, ‘r’ refers to its reflexive, ‘t’ to

its transitive and rt to its reflexive-transitive closure. We do not consider symmetric accessibility relations because
the interaction of the symmetric Ins-Operator with the other modal operators is utterly complicated.

The full set of logical connectives, quantifiers and operators we are going to use is
A (and) V (for all)
v (or) 3 (there exists)
-—. (not) DR (necessarily)
=> (implies) OK (possibly)
(I) (is equivalent) D (eventually)
[. . . BK (indexed necessarily) ”+ (possibly henceforth)
<. . >91 (indexed possibly) VU, VUr (always until)
I . . .) (indexed eventually) BU, BUT (possibly until)

The pairs (DR, (>“), (D, "*). (ii... HR, <...>’i) of operators are dual to each other. Duality means that moving a
negation sign over one operator in that pair switches it to the other operator. For example -.u fc» O—J. This
property can be used to create a negation normal form for formulae by moving all negation signs in front of the
atoms. Since, however, dual operators for l . . .) and the ‘until’ operators are not included, we can generate a

negation normal form only for the translated Context Logic formulae.

Some of the operators are definable from others:
I f <=> true ‘V’Ujr ¢=>trueVUr9Fand
(>“? <=> truea can-ueEIU'f.

Nevertheless we treat them separately because the translation into OSPL can then be optimized.

Before defining syntax and semantics formally, let us first try to get some intuition about the meaning of the

operators. As already said we assume a possible worlds structure with a basic accessibility relation together with

some of their closures. The transitions from world to world may be labeled with a (possibly empty) set of domain

elements. As a concrete interpretation of such a possible worlds structure, think of the worlds representing the

current state of some interacting processes (software, hardware or whatsoever) and a transition indicating a single

atomic action of a single process. The transition's label is an identifier for the process that performed that action.

We shall give other interpretations at the end of this chapter.

The figures below illustrate the effects of the operators. For an operator 0 and a formula l'the marked worlds are

those which have to verify l'in order to verify 01'in the actual world (which is labeled with s-). I.e. the marked

worlds are those which are in some sense accessed by the operator. The operator in the left figure is usually of

universal force, whereas the operator in the right figure is the dual one, i.e. it is of existential force.

The operators [Jl/I (access to all directly accessible worlds) and

ol/I (access to some directly accessible worlds):

___....... 0

o

, __--...0

o

[Jl/I

In the presence of a [Jt-operator, [Jl/I may be interpreted as 'all next' and Ol/l may be interpreted as 'sometimes

next'.

The operators [Jf (access to all directly accessible worlds including the actual world) and

Of (access to some directly accessible worlds including the actual world):

o
:l­__~O

o

The operators [Jt (access to all directly and indirectly accessible worlds) and

ot (access to some directly and indirectly accessible worlds):

The sets of worlds that are accessed by [Jrt is the union of the corresponding sets for the basic operators.

Before defining syntax and semantics formally, let us first try to get some intuition about the meaning of the
operators. As already said we assume a possible worlds structure with a basic accessibility relation together with

some of their closures. The transitions from world to world may be labeled with a (possibly empty) set of domain

elements. As a concrete interpretation of such a possible worlds structure, think Of the worlds representing the
current state of some interacting processes (software, hardware or whatsoever) and a transition indicating a single

atomic action of a single process. The transition’s label is an identifier for the process that performed that action.

We shall give other interpretations at the end of this chapter.

The figures below illustrate the effects of the operators. For an Operator 0 and a formula 9' the marked worlds are
those which have to verify 9' in order to verify 0:7 in the actual world (which is labeled with W). Le. the marked
worlds are those which are in some sense accessed by the Operator. The Operator in the left figure is usually of

universal force, whereas the Operator in the right figure is the dual one, i.e. it is of existential force.

The operators :|“ (access to all directly accessible worlds) and
0 ‘” (access to some directly accessible worlds):

In the presence Of a Int-Operator, a“ may be interpreted as ‘all next’ and 0° may be interpreted as ‘sometimes
next’.

The operators |:l'r (access to all directly accessible worlds including the actual world) and
0 ‘ (access to some directly accessible worlds including the actual world):

‚ fa -VÖ

Ö/‚G
\ ‚ a

The operators D‘ (access to all directly and indirectly accessible worlds) and
0 ‘ (access to some directly and indirectly accessible worlds):

The sets of worlds that are accessed by I:Irt is the union of the corresponding sets for the basic operators.

52

The indexed operators [a]~ (access to all worlds which are directly accessed by a transition that is labeled with the

value of 'a') and <a>~ (access to some worlds which are directly accessed by a transition that is labeled with the

value of 'a'):

In a process interpretation of the possible worlds structure (see above) a formula [a]~!Tmay be interpreted: g:

holds next after process 'a' has performed an action.

The indexed operators [a]]t (access to all worlds after an a-Iabeled transition where a is the interpretation of a.

Only the last labels matter) and <a>~ (access to some world after an a-Iabeled transition):

[at 0 ~ <a:>1 ~O
~. - 2 • 0 ~O - 2 .0

wo~4V WO~:~0.(j

~terpretation(a)=~ 2 • 0 2 • 0

In a process interpretation of the possible worlds structure a formula [a]]t!Tmay be interpreted: !Tholds always

after process 'a' has performed an action.

The remaining indexed operators [a]~ and <a>~ work analogously but include the actual world.

The 'eventually' operator t (access to a world on each path starting from the actual world) and the possibly

henceforth operator - (access to a world on a particular path starting from the actual world):

o
o

~o .••• ~ ••••..

~o·······_---
-

interpretation(a) =1

In the process interpretation the t-operator allows to express liveness properties like termination, deadlock

freeness etc. t!T says that regardless which path in the nondeterministic computation tree is followed, g: will

eventually hold.

The indexed 'eventually' operator la) (access to thefirst world after a transition labeled with the value of 'a' on

each path starting from the actual world):

la)

~o~o

~o-...;.-~~
interpretation(a) =1

In the process interpretation a formula la)!Texpresses: regardless how the nondeterminism in the computation tree

is solved, process 'a' will eventually perform an action (fairness) and after that action, !Twill hold.

52

The indexed operators [[all‘” (access to all worlds which are directly accessed by a transition that is labeled with the
value of ‘a’) and <a>¢ (access to some worlds which are directly accessed by a transition that is labeled with the
value of ‘a’):

ll all“

interpretation(a) =_1\‘> @

In a process interpretation of the possible worlds structure (see above) a formula [allg’f may be interpreted: ?
holds next after process ‘a’ has performed an action.

The indexed operators [[allt (access to all worlds after an a—labeled transition where a is the interpretation of a.
Only the last labels matter) and <a>¢ (access to some world after an a-labeled transition):

[allt <a>t

2

w o w o —‘> a —> a

mterpretation(a) = 1 2 G
In a process interpretation of the possible worlds structure a formula [alltf may be interpreted: :Tholds always
after process ‘a’ has performed an action.

The remaining indexed operators IIaIIK and <a>9t work analogously but include the actual world.

The ‘eventually’ operator ! (access to a world on each path starting from the actual world) and the possibly
henceforth Operator -> (access to a world on a particular path starting from the actual world):

In the process interpretation the D-operator allows to express liveness properties like termination, deadlock
freeness etc. I:?" says that regardless which path in the nondeterministic computation tree is followed, 1T will

eventually hold.

The indexed ‘eventually’ operator Ia) (access to the first world after a transition labeled with the value of ‘a’ on

each path starting from the actual world):

In the process interpretation a formula 1a)9r expresses: regardless how the nondeterminism in the computation tree

is solved, process ‘a’ will eventually perform an action (fairness) and after that action, If will hold.

53

The 'until' operators \fU and \fur:

.1VUqholds in the actual world if q holds eventually (tq) and .rholds in all worlds before.

.1VlYqholds in the actual world if .rand q hold eventually (t(.rAq» and .rholds in all worlds before.

.1Vuq .1VUrq 0

The 'until' operators allow to refer to limited areas in the possible worlds structure. In the process interpretation,

'until' operators are useful for expressing invariants which hold until a certain exception condition comes true.

The 'until' operators 3U and 3ur:

.'F:lUqholds in the actual world if qholds possibly (ortq) and .rholds in all worlds before.

.'F:lurqholds in the actual world if .rand qhold possibly (ort(.rAq» and .rholds in all worlds before.

r

13Uq ~O .r3U q ~O

~!;.~~ ",f;:!!;iSii~i
~ ~~

We shall see that Context Logic allows to map all these complicated operators to a few basic concepts.

5.1 Syntax and Semantics

We defme the syntax of our multi modal logic as an extension of the order-sorted predicate logic,syntax, that

means terms and atoms look like OSPL-terms and atoms, but formulae are composed using in addition the above

set of operators.

Definition 5.1.1 (The Signature of Multi Modal Logic)

The signature defmition for multi modal logic is exactly like the signature defmition for OSPL. We assume that in

the sort hierarchy there is a unique top sort D (for Domain). In the sequel 'D' always means this sort. •

Definition 5.1.2 (Terms, Atoms, Literals and Formulae)

Terms, atoms, literals and formulae ("MM-formulae'') are built like OSPL-formulae.

The additional rules involving the modal operators are:

For 'JtE {~, r, t, rt}: Whenever t is a term and .rand qare MM-formulae, so are

[t]~ <t>~ t.r, -.r, It).r, 7VU(j and 7Vur (j, j3U(j and j3Ur (j. •

We defme the semantics of multi modal logic following the scheme of def. 2.1, i.e. we fIrst defme a "frame" as

the kernel of the signature interpretation. Frames for MM-Logic are actually the usual possible worlds structures,

however with labeled transitions and with ~-structures as "worlds".

S3

The ‘until’ operators VU and VUT:
WUgholds in the actual world if g holds eventually (DG) and :7 holds in all worlds before.
WU‘gholds in the actual world if If and (} hold eventually ()(fFA g)) and 9? holds in all worlds before.

WUG

The ‘until’ operators allow to refer to limited areas in the possible worlds structure. In the process interpretation,
‘until’ operators are useful for expressing invariants which hold until a certain exception condition comes true.

The ‘until’ operators HU and EIUT:
{BUG holds in the actual world if g holds possibly (0119) and 9F holds in all worlds before.
9ElU’g holds in the actual world if :7 and g hold possibly (WU/x g)) and 9' holds in all worlds before.

:EIUG />a HUI? „...-‚7°

We shall see that Context Logic allows to map all these complicated Operators to a few basic concepts.

5.1 Syntax and Semantics

We define the syntax of our multi modal logic as an extension of the order-sorted predicate logic‘syntax, that
means terms and atoms look like OSPL-terms and atoms. but formulae are composed using in addition the above
set of operators.

Defini t ion 5 . 1.1 (The Signature of Multi Modal Logic)
The signature definition for multi modal logic is exactly like the signature definition for OSPL. We assume that in
the sort hierarchy there is a unique top sort D (for Domain). In the sequel ‘D’ always means this sort. I

Defini t ion 5.1.2 (Terms, Atoms, Literals and Formulae)
Terms, atoms, literals and formulae (“MM-fonnulae”) are built like OSPL-formulae.
The additional rules involving the modal Operators are:

For Re {a}, r, t, rt}: Whenever t is a term and ? and gare MM-formulae, so are
[[tllflfr, <t>xffi bar, #95 MT, WW} and WUrg, yEIUg and :EIU’g. I

We define the semantics of multi modal logic following the scheme of def. 2.1, i.e. we first define a “frame” as
the kernel of the signature interpretation. Frames for MM-Logic are actually the usual possible worlds structures,
however with labeled transitions and with E—structures as “worlds”.

54

Definition 5.1.3 (M-Frames and M-Interpretations)

By an M-frame f M for the signature ~ we understand any tuple ('W, 9\) where

1.	 'Wis a nonempty enumerable set of ~-structuresor "worlds".

The domains are identical in all these I:-structures (constant-domain assumption) and not empty.

2.	 9\:= {9\l'S,9\f,9\t,9\rt} is a set of serial binary relations over ~'W(seriality assumption).

a) 9\l'S is the basic discrete accessibility relation.

b) 9\f is the reflexive closure of 9\l'S.

c) 9\t is the transitive closure of 9\l'S.

d) 9\rt is the reflexive closure of 9\t, Le. it is the reflexive transitive closure of 9\l'S.

For a given world 'We 'H'let.f(1'0 denote the set of all paths starting with 'Jv.

Each path Pe .f(1'0 is a maximal set of worlds

i)	 where 9\rt is a total ordering on P (a ~-ordering)

ii) with 'Was smallest element.

In the sequel a label [is just a domain element.

e) From each world 'Wthere are for each label {9\'R..transitions associated with {

(seriality of labeled transitions).

For transitive transitions which can be decomposed into an 9\rt-transition followed by an 9\l/l-transition

only the label of the last 9\l/l-transition matters, Le. the 9\t-transition is C-labeled iff this last 9\l'S-transition is

C-labeled.The same holds for an 9\rt-transition which is not the identity.

9\~t) denotes the subrelation of the C-labeled 9\'R..transitions.

t) The reflexive transitions are labeled with all possible labels.

g) For each world 'J1J, for each path Pe .f(1'0 and for each label {there is somewhere on Pan C-Iabeled

9\l'S-transition (fairness assumption).

By a signature interpretation S for the signature ~ understand any triple (fM' ~ 1'0 where

~ f M = ('W, 9\) is an M-frame.

~ 'Vis a variable assignment, a ~-assignment.

~ 'Wis an element of 'W(the actual world). •

Remark: W.l.o.g we can assume that the 9\l'S-relation is tree like. If it is not, the possible worlds structure can

always be unfolded as in the examples below to make it a tree.

original possible worlds structure unfolded tree structure

0'--" ~O
~ 0--.

./ n 0
o	 ~.

~o-----.~~o
--'0

In case 9\l'S is already reflexive in a world, an infinite sequence of copies is generated:

f)
o	 0 ----.0 ----'0----'0----'

•
Definition 5.1.4 (Interpretation of Terms)

Let g = (fM' 'Il, 1'0 be a signature interpretation for the signature ~.

S can be turned into an homomorphism that evaluates tenus in the actual world 'Wby derming:

S(x) := ~x) if x is a variable symbol

S(f(tl""'~) := f~g(tl),...,g(~)) otherwise. •

54

Definition 5.1.3 (M—Frames and M-Interpretations)
By an M—frame FM for the signature E we understand any tuple (W, 9?) where
1 . ‘W is a nonempty enumerable set of 2-structures or “worlds”.

The domains are identical in all these 2-structures (constant-domain assumption) and not empty.

2 . ER := {Sigflrflitfiir‘} is a set of serial binary relations over WW (seriality assumption).
a) Si” is the basic discrete accessibility relation.
b) Sir is the reflexive closure of SR“.

c) SR‘ is the transitive closure of Si”.
d) SR“ is the reflexive closure of SR‘, i.e. it is the reflexive transitive closure of SR".
For a given world We Wlet Km denote the set of all paths starting with 'W.
Each path Te 1'04») is a maximal set of worlds

i) where ER“ is a total ordering on !P(a S-ordering)
ii) with ‘Was smallest element.

In the sequel a label [is just a domain element.
e) From each world Wthere are for each label [SRKtransitions associated with [

(seriality of labeled transitions).
For transitive transitions which can be decomposed into an Sin-transition followed by an Sig'transition
only the label of the last Sig'transilion matters, i.e. the Slit-transition is [-labeled iff this last $$$-transition is

[-labeled.The same holds for an (fin-transition which is not the identity.
ERR“) denotes the subrelation of the [-labeled ERR-transitions.
f) The reflexive transitions are labeled with all possible labels.
g) For each world W., for each path :Pe !(‘M and for each label [there is somewhere on (fan [-labeled

‚??-transition (fairness assumption).

By a signature interpretation 8 for the signature 2 understand any triple (FM, ‘V. '14)) where
> FM = (W, 9%) is an M-frame.
> ‘Vis a variable assignment, a E-assignment.
> ‘Wis an element of 'W(the actual world). I

Remark: W.l.o.g we can assume that the 9i¢-relation is tree like. If it is not, the possible worlds structure can
always be unfolded as in the examples below to make it a tree.

original possible worlds structure unfolded tree structure
Go o _» o ""\i—

/' \ a <a a/" ä o
\ g / 0 \Q—D; ”©

0

In case ER” is already reflexive in a world, an infinite sequence of copies is generated:

0
@ Q—bü—Pü—PQ—b

Def in i t ion 5 . 1 .4 (Interpretation of Terms)
Let 8 = (l-‘M, ‘V; ‘M be a signature interpretation for the signature 2.
S can be turned into an homomorphism that evaluates terms in the actual world Why defining:

8(x) := fix) if x is a variable symbol

3(f(t1,...,tn) := fw(8(t1),. . .,S(tn)) otherwise. I

55

Some Notational Conventions:

~ $ [xl~ denotes the interpretation which is like $ except that the variable assignment maps x to ~

(Le. it is like $ [xI~in chapter 4).

~ $['U1 denotes the interpretation which is like $ except that the actual world is 'W

(i.e. it is like $ [W/'U1 cin chapter 4 where W denotes the context sort "worlds''). •

Definition 5.1.5 (The Satisfiability Relation)

The satisfiability relation If-M between signature interpretations $ =(fMo ~ 'U') =«'W, 9\), 1', 'U') and

MM-formulae is defmed as follows:

The predicate logic connectives A, V, -', => and <=) are interpreted in the usual way.

Let 1{E (~, r, t, rt}

$ If-M P(tt,···,tu) where P is a predicate symbol and the li are terms

iff ($(tt),··· ,$(tu» E P 'W

$I~ V'x:D1' iff for every ~E D.w $[xM I~ !T­

S If-M 3x1' iff for some ~ E D 'W with $ [xl~ If-M!T­

S If-M [J 1L1' iff for every 'Wt E 'H'with 9\~'W, 'Wt): $ ['Wt] If-M !T­

$ If-M 01L1' iff there is a 'Wt E 'Wwith 9\~'f1l, 'Wt) and $['Wt] If-M !T­

S If-M [t]1L1' iff for every 'Wt E %'with ('f1l, 'Wt) E 9\~$(t»: $ ['Wt] If-M .'F.
S 1~<t>1L1' iff there is a 'Wt E 'H'with ('f1l, 'Wt) E 9\~$(t» and $ ['Wt] I~!T­

$ If-M t.r iff on every path P E !('J0 there is a 'Wt E P with $ ['Wt] I~ !T­

S If-M-+1' iff there is a path P E !('J0 and for every 'Wt E P. S['Wt] If-M!T­

S If-M 1t)1' iff on every path PE !('J0, $ ['Wt] I~ 1'holds in the fIrst world 'WtE P

that is accessed via an $(t)-labeled 9\11l-transition.

iff on every path PE !('J0 there is a 'Wz E P with $ ['Wz]I~ q
and for every world 'Wt E Pwith 9\t('Wt , 'Wz): S['Wt] If-M !T­

iff on every path PE !('J11 there is a 'Wz E P with $ ['WzJ I~ (j

and for every world 'Wt E P with 9\rt('Wt , 'Wz): $['Wt] I~ !T­

iff there is a path P E !('J11 and there is a 'Wz E P with $ ['Wz]II-M q
and for every world 'Wt E P with 9\t('Wt ' 'Wz): $ ['Wt] If-M !T­

iff there is a path P E !('J11 and there is a 'Wz E P with $ ['Wz]II-M q
and for every world 'Wt E P with 9\rt('Wt , 'Wz): $ ['Wt] I~ !T­

S satisfies l' iff $ II-M l' (fMsatisfies !Tin the world 'J11
f M satisfies l' iff it satisfies !Tin every world •

It is now easy to verify that the dual operators are really dual.

Remark The semantics of the 'eventually' and 'until' operators contains an ambiguity of the following kind: A

quantification "on every path there is a world..." may denote different worlds on paths with common parts:

~;tt::::===:::::X(~ ~

commonpart ~

12
Since in this case 'Wt is also an element of Pz' 'W} may serve as the world "that exists on Pz" as well. Therefore in

the sequel we always assume that the world closest to the beginning of the path, i.e. 'W} in the example, is meant.

55

Some Notational Conventions:
> 3[x/x] denotes the interpretation which is like 3 except that the variable assigmnent maps x to x

(i.e. it is like SS [x/flvin Chapter 4).
> 8[‘W] denotes the interpretation which is like 3 except that the actual world is W

(i.e. it is like 3 [WIN cin chapter 4 where W denotes the context sort “worlds”). I

Definition 5 .1 .5 (The Satisfiability Relation)
The satisfiability relation ll—M between signature interpretations 3 = (FM, ‘V. ’M = ((‘W, 9i), ‘V. W) and
MM-formulae is defined as follows:

The predicate logic connectives A, v , fi, => and @ are interpreted in the usual way.

Let ate {a , r, t, rt}

3 II—M P(t1,. . . ,tn) where P is a predicate symbol and the Li are terms
iff (3(t1),. ..,8(tn)) e PW

5 ll—M sD 9? iff for every me D,“; 8[x/x] "'M 9'.
8 II—M 3x 9' iff for some {e with Shi/x] ll—M {F.

8 ll—M UK?" iff for every W1 6 ‘Wwith SRRCW, WI): SPI/V1] II—M f.
8 ll—M OK? iff there is a W1 6 Wwith SRRCW, W1) and SSW/1] II—M 9'.
s n—M “1l iff for every WI 6 Wwith (w, W1)E Maia»: 3[w1] n—M gr.
S II—M «>117 iff there is a ‘Wl e 'Wwith (W, M) e 5Rfl(3(t)) and SPI/V1] ll—M [F.
S II—M W iff on every path EP e 1014/) there is a W1 6 ‘.Pwith SSW/1] "'M IF.
8 II—M ** [F iff there is a path LP 6 !(W) and for every W1 6 :P: SDI/V1] Il—M 9'.
3 II—M |t):lr iff on every path .‘P e 1W0, SPI/V1] Il—M 3Fholds in the first world 'Wle 9?

that is accessed via an 8(t)-labeled 9i¢-transition.
3 "'M fVU g iff on every path 1’ e f(‘M there is a W2 6 EP with SPI/V2] ”'M 9

and for every world W1 6 fl’with SR‘CWI, WZ): 8[‘Wl] II—M 9“.
S3 II—M :7VU" 9 iff on every path 1’ & ECM there is a W2 6 SP with SDI/I22) ll—M g

and for every world WI e 1’ with SRHCWI, W2): S[‘Wl] II—M _‘T.
3 "‘M ,‘TEIU (} iff there is a path :P e !(m and there is 3 W2 6 2’ with SSW/2] Il—M g

and for every world ‘Wl e LPwith “RW/V1, W2): SSW/1] II—M 9".
S II—M :JL‘EIUI g iff there is a path LP e f(fnö and there is a WZ e :P with SSW/2] II—M (j

and for every world W1 6 :P with SWOT/V], W2): SFr/V1] ”'M 9".

3 satisfies 9' iff S ll—M _‘7’ (TM satisfies f in the world ‘M
TM satisfies ?" iff it satisfies f in every world .

It is now easy to verify that the dual operators are really dual.

Remark The semantics of the ‘eventually’ and ‘until’ operators contains an ambiguity of the following kind: A
quantification “on every path there is a world...” may denote different worlds on paths with common parts:

1’1

_g /
_ n

common part
““5
%

Since in this case WI is also an element of 1’2. W1 may serve as the world “that exists on 1’2” as well. Therefore in
the sequel we always assume that the world closest to the beginning of the path, i.e. ‘W1 in the example, is meant.

56

Definition 5.1.6 MM.Logic

Following the defInition scheme of def. 2.1 for logics we defme the multi modal logic MM as the tuple (syntax,

semantics) where syntax consists of

~ the set of all OSPL-signatures with unique top sorts (def. 5.1.1)

~ the formation rules for OSPL-terms (def. 3.1.2)

~ the formation rules for MM-formulae (def. 5.1.2)

and semantics consists of

~ the function that maps a signature ~ to the M-interpretations over ~ (def. 5.1.3).

~ the function that turns an M-interpretation into a homomorphism for terms (def. 5.1.4).

~ the satisfiability relation FM (def. 5.1.5). -

Lemma 5.1.7 Correspondences Between Paths and Natural Numbers.

a) Each path P E ~'f0 in an M-frame (~ 9t) is isomorphic to the set of natural numbers.

b) Let9t:= {1},9(:= (O,I},~:= {nln>O} and9(l:= {nln~O}.

For each 9t~transition ('11l,'W) there is an nE9'/!- such that 'W'is reached with n 9t~-transitions.

Proof: a) Since 9trt is the reflexive transitive closure of 9t~ and since paths are ordered by 9trt, for each

'Wi: 'W' E Pthere is a number n such that 'Wn = 'W' and 9trt('11l,'Wj <=> 9t~('UI,'Wl) 1\ ... 1\ 9t~('Wn_l''Wn)'

Since Pis a m,aximal set, all these 'J11 are in Pand the ordering is 'W< 'W1 <

b) For each 9t~transition ('11l,'W) there is a path Pcrossing 'Wand 'W'. Using that paths are isomorphic to natural

numbers, we obtain b) by a simple case analysis. _

In the defInition of M-frames, def. 5.1.3, 9tt is defmed as the transitive closure of 9t~, and this is the reason why

paths are isomorphic to natural numbers. Being the transitive closure is a property that cannot be expressed in

frrst-order logic. Therefore we can expect difficulties with this strong condition on 9tt. And in fact, the following

example shows that in this case the compactness theorem does not hold for MM-Logic. Consider the following

infinitely many formulae: [J~ P
[J~[J~P

ot-,p

Each fmite subset of this infmite set of formulae is satisfiable because the world denoted by the ot-operator can be

chosen far enough from the initial world. The whole set, however, is unsatisfiable since the sequence [J~,

[J~[J~, ... of possibility operators exhausts all worlds which are accessible from the initial world. There is no

world left for the ot-operator.

That means the compactness theorem does not hold. There are theorems whose proof requires infinitely many

steps and therefore we cannot expect a complete calculus for the version of MM-Logic with the transitive closure

interpretation of 9tt. If we enforce the compactness property, we have to allow for nonstandard models where 9tt

contains more than the transitive closure of 9t~. Similar to nonstandard models in first-order arithmetic, in

nonstandard MM-models there may be 9tt-transitions into side chains which cannot be accessed by a sequence of

9t~-transitions:

56

Definition 5.1.6 MM-Logic
Following the definition scheme of def. 2 .1 for logics we define the multi modal logic MM as the tuple (syntax,

semantics) where syntax consists of
> the set of all OSPL-signatures with unique t0p sorts (def. 5.1.1)
> the formation rules for OSPL-terms (def. 3.1.2)
> the formation rules for MM-formulae (def. 5.1.2)

and semantics consists of
> the function that maps a signature 2 to the M-interpretations over Z (def. 5.1.3).
> the function that turns an M-interpretation into a homomorphism for terms (def. 5.1.4).
> the satisfiability relation |=M (def. 5.1.5). I

Lemma 5.1 .7 Correspondences Between Paths and Natural Numbers.
a) Each path 1’ e Imp) in an M-frame (W, SR) is isomorphic to the set of natural numbers.
b) Let= {l},9\f := {0,1},wf:= {n |n>0] an tz= {11a0] .

For each SRKIransition (WW) there is an n e Mi such that ‘W’ is reached with n 9i¢-transitions.
Proof: a) Since Si“ is the reflexive transitive closure of ER” and since paths are ordered by 93“, for each
“Pl/$ ‘W’e {Pthere is a number n such that ‘W“ = W and SR“('W.‘W’) @ %”(W‘Wl) A A 939014} _1.‘Wn).
Since fPis a maximal set, all these W. are in {Fand the ordering is 'W< W1 <
b) For each Eligitransition (WW) there is a path LPcrossing ‘Wand ‘W’. Using that paths are isomorphic to natural
numbers, we obtain b) by a simple case analysis. I

In the definition of M-frames, def. 5.1.3, SR‘ is defined as the transitive closure of ER”, and this is the reason why

paths are isomorphic to natural numbers. Being the transitive closure is a property that cannot be expressed in
first-order logic. Therefore we can expect difficulties with this strong condition on SR‘. And in fact, the following
example shows that in this case the compactness theorem does not hold for MM-Logic. Consider the following
infinitely many formulae: El“ P

u¢n¢P

(>t —1P
Each finite subset of this infinite set of formulae“IS satisfiable because the world denoted by the O--operator can be
chosen far enough from the initial world. The whole set, however, is unsatisfiable since the sequence CI",

Dan “’,... of possibility operators exhausts all worlds which are accessible from the initial world. There is no
world left for the Ot-operator.

That means the compactness theorem does not hold. There are theorems whose proof requires infinitely many

steps and therefore we cannot expect a complete calculus for the version of MM-Logic with the transitive closure
interpretation of Sir. If we enforce the compactness property, we have to allow for nonstandard models where SR‘

contains more than the transitive closure of SR". Similar to nonstandard models in first-order arithmetic, in

nonstandard MM-models there may be Slit-transitions into side chains which cannot be accessed by a sequence of

9i°-transitions:
e ß ¢ 6 ¢LQMMMEL.. .

&“? / M only transitive transitions

¢\ /¢

GM \‘fi. /va—>
?.Q-gi—‘Fa \ 3L

57

In order to show that the translation into CL we are going to defme does not make things worse than they are

already, we show a "weak completeness", Le. each model of the translated MM-specifi- cation corresponds to a

nonstandard model of the original MM-specification.

Since we cannot expect a complete proof theory for MM-Logic, the only thing we can do is to approximate the

transitive closure of 9tt as far as possible and show that a complete calculus for the approximation is obtained. As

in frrst-order arithmetic where standard natural numbers are approximated by a frrst-order induction scheme P(O) /\

(Vn P(n) => P(n+ 1)) => Vn P(n), we should incorporate a mechanism for proving induction axioms of the

following kind:

If .1"holds in the initial world and for all worlds 'UJ. .1"holds in 'Wimplies .1"holds in an 9t~-successorworld,

then there is a path from the initial world where .1"holds everywhere.

or more formally: .1"/\ [Jrt(.1"=> O~1) => -!T-

If the calculus can prove all formulae of this and similar kind we are yet not complete, but we can handle the

theorems which are relevant for practical applications of MM-Logic, for example loop invariants in the process

interpretation. Unfortunately, as we shall see in section 5.4, the problem of incorporating induction theorem

proving in a calculus for MM-Logic is as complex as general induction theorem proving in predicate logic

[Boyer&Moore 79]. Therefore this report does not consider induction theorem proving in more detail.

5 . 2 A Logic Morphism from Multi Modal Logic to Context Logic

We defme a logic morphism '¥ (def. 2.3) from MM to CL. Its composition with the logic morphism IT from CL to

OSPL enables proofs by translation into OSPL and refutation (prop. 2.4) with resolution and paramodulation.

Before we actually start defining the logic morphism we should introduce more or less informally the basic

concepts of the CL-axiomatization of MM-Logic possible worlds structures. The main requ!t"ement for the

CL-axiomatization is to replace the relational description of MM-Logic frames by a functional description where

the argument-value relation of context access functions models the accessibility relations. Therefore we have to

introduce functions mapping worlds to accessible worlds. But things are not so straightforward. In the semantics

definition of the 'eventually' and 'until' operators there are transitions to worlds on the current path. Functions

simulating these transitions need a world and a path as input. Therefore, besides the sort symbol W for world, we

introduce a sort symbol WP as basic context sort denoting tuples <world, path> where the first component, the

world-component is an element of the path-component. All context access functions now operate on these

"WP-tuples".

In the sequel XIW denotes projection of the tuple X to its world component and Xlp denotes projection to the path

component.

Before going into details of the context access functions, we should say a few words about the notion of paths in

the CL-axiomatization of MM-Logic. (The actual axiomatization will be given a few pages below.) In MM-Logic

we have defined -'(10 as the set of all paths starting with the world 11l, i.e. a path starts with the actual world.

This was necessary because the quantification "for all worlds on the actual path" in the semantics definition of

some of the operators should only range over accessible worlds and not over worlds lying backwards to the actual

world. In the CL-axiomatization we simplify the notion of a path a bit and define a path to start always at the initial

world.

57

In order to show that the translation into CL we are going to define does not make things worse than they are
already, we show a “weak completeness”, i.e. each model of the translated MM—specifi- cation corresponds to a

nonstandard model of the original MM—specification.

Since we carmot expect a complete proof theory for MM-Logic, the only thing we can do is to approximate the

transitive closure of SR‘ as far as possible and show that a complete calculus for the approximation is obtained. As

in first-order arithmetic where standard natural numbers are approximated by a first—order induction scheme P(O) A
(Vn P(n) => P(n+1)) => Vn P(n), we should incorporate a mechanism for proving induction axioms of the
following kind:

If :7 holds in the initial world and for all worlds ‘w. fholds in ‘Wimplies 9? holds in an Sig-successor world,
then there is a path from the initial world where _‘Fholds everywhere.

or more formally: _‘T A utter => 0995) => am

If the calculus can prove all formulae of this and similar kind we are yet not complete, but we can handle the
theorems which are relevant for practical applications of MM-Logic, for example loop invariants in the process

interpretation. Unfortunately, as we shall see in section 5.4, the problem of incorporating induction theorem

proving in a calculus for MM-Logic is as complex as general induction theorem proving in predicate logic
[Boyer&Moore 79]. Therefore this report does not consider induction theorem proving in more detail.

5 .2 A Logic Morphism from Multi Modal Logic to Context Logic

We define a logic morphism ‘I’ (def. 2.3) from MM to CL. Its composition with the logic morphism H from CL to
OSPL enables proofs by translation into OSPL and refutation (prop. 2.4) with resolution and paramodulation.

Before we actually start defining the logic morphism we should introduce more or less informally the basic
concepts of the CL—axiomatization of MM-Logic possible worlds structures. The main requirement for the
CL—axiomatization is to replace the relational description of MM—Logic frames by a functional description where
the argument-value relation of context access functions models the accessibility relations. Therefore we have to
introduce functions mapping worlds to accessible worlds. But things are not so straightforward. In the semantics
definition of the ‘eventually’ and ‘until’ operators there are transitions to worlds on the current path. Functions
simulating these transitions need a world and a path as input. Therefore, besides the sort symbol W for world, we
introduce a sort symbol WP as basic context sort denoting tuples <world, path> where the first component, the
world-component is an element of the path-component. All context access functions now operate on these
“WP-tuples”.

In the sequel XIW denotes projection of the tuple X to its world component and XIP denotes projection to the path
component.

Before going into details of the context access functions, we should say a few words about the notion of paths in
the CL-axiomatization of MM-Logic. (The actual axiomatization will be given a few pages below.) In MM-Logic
we have defined !(W) as the set of all paths starting with the world ‘W, i.e. a path starts with the actual world.
This was necessary because the quantification “for all worlds on the actual path” in the semantics definition of
some of the operators should only range over accessible worlds and not over worlds lying backwards to the actual
world. In the CL-axiomatization we simplify the notion of a path a bit and define a path to start always at the initial
world.

58

MM-Logic path CL path

~wWWOOd~~L ~WWWOOd~i
initial o~~ initial ~~ world ~O .. 0 world 0 0

We don't get into trouble with this definition because a quantification over all worlds on a path is replaced by a

quantification over all context access functions that map the actual world to a world on the path, and these

functions never move backwards in the possible worlds strucwre.

The unparametrized context ~cess functions:

Each function x mapping a WP-wple to another WP-tuple can be split into a composition of two primitive

functions, MP(x) and MW(x), the first one changing only the path component and the second one moving the

acwal world along the changed path. (The other way round is not possible because you can't move off the path.

The anwogy to linear wgebra is therefore not very good.) As basic building blocks for the context access functions

we introduce 'W~P'-functions and 'P~~'-functions. The 'W~P'-functions change only paths, and leave

worlds untouched whereas the 'P~~' -functions move along the current path to 9\~accessible worlds. We have

to impose one restriction on the 'P~~' -functions which resolves the ambiguity mentioned in the remark after

the semantics definition for the MM-Logic operators, def. 5.1.7. We do not allow a 'P~~' -function to access

on two different paths with a common part two different worlds 'Wt and 'Wz when one of them lies on the

common part. i.e. a siwation like

P~~-function '\.~
ut 'J1}
w. not allowed
Z~Part

---::----.....~
'\. 12

never occurs. Therefore we get as a basic axiom that restricts the 'P~~' -functions:

Vx,y,z:'P~~' Vp:'W~P' Vw:WP (MP(x 0 Z 0 p) 0 y)(w)lw =x(w)IW <=> x(w) =y(w)

which expresses that only the part of the path up to x(w) is relevant for x.

From the 'W~P' -functions and 'P~~' -functions 'W~~'-functions are obtained as a composi- tion of a

'w~P'-function and a 'P~~' -function. The axiomatization of these functions requires the introduction of the

corresponding sort symbols together with the sort hierarchy and the specification of the sort declarations for the

composition function o. To determine the sort hierarchy, we exploit that each 9\~-transition is both a 9\T-transition

and a 9\t-transition, and 9\T-transitions as well as 9\t-transitions are both 9\rt-transitions. This is reflected in the

following sort hierarchy:

Furthermore, since each 'P~~' -function is only a special version of 'w~'Rw'-functions, we must add the

relations 'P~~' 5: 'W~~'. A 'W~P'-function is a special 'W~rw'-function, therefore we add 'P~W' 5:

'w~rw'. Both 'W~P'-functions and 'P~~'-functions contain the identity function. Therefore we finwly add

a sort 'ID' denoting the identity function only and obtain the complete sort hierarchy:

'w~rtw'

~I:---"""
'W~ TW' 'P~rtw' 'W~ tw '

,w~~~ltw'
'/----I~'ID' 'P~~'

58

MM—Logic path 0 CL path

actual world ner - _ actual world uni
initial @ "**-::“:31Z_:‘_;;.;;;;5:;5--r=-' initial ‚ap-55395" „ .
world w ‘6 G world @ ' © O

@ @

We don’t get into trouble with this definition because a quantification over all worlds on a path is replaced by a

quantification over all context access functions that map the actual world to a world on the path, and these
functions never move backwards in the possible worlds structure.

The unparametrized context access functions:
Each function x mapping a WP-tuple to another WP-tuple can be split into a composition of two primitive
functions, MP(x) and MW(x), the first one changing only the path component and the second one moving the
actual world along the changed path. (The other way round is not possible because you can’t move off the path.
The analogy to linear algebra is therefore not very good.) As basic building blocks for the context access functions
we introduce ‘W—aPtfunctions and ‘P—>9iW’-functions. The ‘W——>P’-functions change only paths, and leave
worlds untouched whereas the ‘P—eKWfifimctions move along the current path to cKai-accessible worlds. We have
to impose one restriction on the ‘P—eRW’-functions which resolves the ambiguity mentioned in the remark after
the semantics definition for the MM-Logic operators, def. 5.1.7. We do not allow a ‘P—éflwfifunction to access
on two different paths with a common part two different worlds W1 and W2 when one of them lies on the
common part, i.e. a situation like

P—aRW-function 9t h ‘Pl

"”2' not allowed
common part\ \ »Wz

%
7E.

never occurs. Therefore we get as a basic axiom that restricts the ‘P—flWfifunctions:
Vx,y,z:‘P—>RW’ Vp:‘W—>P’ Vw:WP (MP(x o z o p) o y)(w)lw = x(w)”, @ x(w) = y(w)

which expresses that only the part of the path up to x(w) is relevant for x .

From the ‘W—>P’-functions and ‘P—-> “(’N’-functions ‘W—afiwüfunctions are obtained as a composi- tion of a
‘W—aP’-function and a ‘P—>RW’-function. The axiomatization of these functions requires the introduction of the
corresponding sort symbols together with the sort hierarchy and the specification of the sort declarations for the
composition function 0. To determine the sort hierarchy, we exploit that each Sig-transition is both a Sir-transition
and a Slit-transition, and Sir-transitions as well as Sit-transitions are both Sin-transitions. This is reflected in the
following sort hierarchy:

‘P—9nW’ ‘w —>“W°

‘P—fw' ‘P—a ‘W’ ‘w-—>"W’ ‘w—> ‘W’

‘P——>°W’ ‘W——>°W’
Furthermore, since each ‘P—fliwfifunction is only a special version of ‘W—>‘KW’-functions, we must add the
relations ‘P—ßW’ E ‘W—fl‘W’. A ‘W—>P’-function is a special ‘W—>rW’-function, therefore we add ‘P——>W’ E
‘W—>fW’. Both ‘W—>P’-ftmctions and ‘P—>RW’-functions contain the identity function. Therefore we finally add
a sort ‘ID’ denoting the identity function only and obtain the complete sort hierarchy:

‘w—f‘w'
‘W—> rW’ ‘P—>“W’ ‘W-altW’

‘W——>P’ ‘P-—)rW’ “w., “P—>‘W°
im , ¢P_>¢w9

59

The sort declarations for the composition function 0 can be deduced straightforwardly from the intended meaning

of the 'w~'1?W'-functions:

0: 'W~PW' x 'w~qw' ~ 'W~sW' and	 0: 'w~'1?W' x 'W~P' ~ 'w~'1?W'

'P~PW'	 x 'P~qw' ~ 'P~sW' 'W~P' x 'w~'Rw' ~ 'w~'1?W'

'W~P' x 'W~P' ~ 'W~P'

where s is derived from p and q with the following (symmetric and associative) matrix:

~ 0 r t rt

0 t t t t

r t rt t rt

t t t t t

rt t rt t rt

Since 'W~rtw' is the top sort in the sort hierarchy, in the sequel we usually write axioms with quantifications

only over 'W~rtw'-functions. Together with overloaded sort declarations for the functionals to be introduced

below, we automatically get the right instances of the axioms for all other context access functions.

Each 'w~'1?W' -function can be decomposed into a composition of a 'W~P' -function and a 'P~'1?W' -function.

To do the composition syntactically we introduce the already mentioned function symbols MP ("move path'') and

MW ("move world").

The axiomatization of MP and MW is:

MP: 'w~'Rw' ~ 'W~P' and MW: 'w~'Rw' ~ 'P~'1?W'

\;fx:'P~rtw' MW(x) =x	 \;fx:'P~rtw' MP(x) = ID (= identity)

\;fx:'W~P' MW(x) =ID	 \;fx:'W~P' MP(x) = x

\;fx:'W~rtw' x =MP(x) 0 MW(x) \;fx,y:'W~rtw' MW(xoy) =MW(x)oMW(y).

or graphically:

The pararnetrized context access functions:

Since for a label ~ we do not have from each world on each path an f,.labeled transition, but only on some paths

f,.labeled transitions, we can't decompose the parametrized context access functions into ones which change only

the path and others which move along a path, Le. we can't have 'D,P~ '1{W'-functions but only

'D,W~'1?W'-functions. Applied to a label (they, however, produce a normal 'w~'Rw'-function. Consequently,

the 'D,W~'1?W' part of the sort hierarchy looks exactly like the 'w~'Rw' part:

'D,W~rtW'

....---~
'D,W~ rW' 'D,W~ t w '

----~
 'D,W~~'

and the corresponding sort declaration for the composition function

o:'D,W~PW' x 'D,W~qW' ~ 'D,W~sW'

is analogue to the sort declarations for the 'w~PW' sorts.

59

The sort declarations for the composition function o can be deduced straightforwardly from the intended meaning

of the ‘W—exwfifunctions:
o: ‘W—ePW’ x ‘W—flW’ -—> ‘W—>SW’ and 0: ‘W—fiW’ x ‘W—aP’ ——> ‘W—fiW’

‘P—aPW’ x ‘P—q’ -> ‘P—>SW° ‘W—->P’ x ‘W—ßW’ _) ‘W—flW’
‘W—aP’ x ‘W—>P’ -—> ‘W—>P’

where s is derived from p and q with the following (symmetric and associative) matrix:

pEI 9 r t rt

¢ t

Since ‘W—>"W’ is the top sort in the sort hierarchy, in the sequel we usually write axioms with quantifications
only over ‘W->“W’-functions. Together with overloaded sort declarations for the functionals to be introduced
below, we automatically get the right instances of the axioms for all other context access functions.

Each ‘W—exwfiftmction can be decomposed into a composition of a ‘W—->P’-function and a ‘P—äfiwüfunction.
To do the composition syntactically we introduce the already mentioned function symbols MP (“move path”) and
MW (“move world”).

The axiomatization of MP and MW is:

MP: ‘W—fiW’ —> ‘W—aP’ and MW: ‘W—fl‘W’ -—> ‘P—fiW’
Vx:‘P—>“W’ MW(x) = x Vx:‘P—>“W’ MP(x) = ID (= identity)
Vx:‘W—)P’ MW(x) = ID Vx:‘W—>P’ MP(x) = x
s‘W—WVV’ x = MP(x) o MW(x) Vx,y:‘W—>"W’ MW(Xoy) = MW(x)oMW(y).

or graphically:

(CPI/’15): <‘W1,5P1>

The parametrized context access functions:

Since for a label L we do not have from each world on each path an {-labeled transition, but only on some paths
[-labeled transitions, we can ’t decompose the parametrized context access functions into ones which change only
the path and others which move along a path, i .e. we can’t have ‘D,P-—> g{Wüfunctions but only
‘D,W-—9£W’-functions. Applied to a label [they, however, produce a normal ‘W-eflwhfunction. Consequently,
the ‘D,W—>9€W’ part of the sort hierarchy looks exactly like the ‘W—fifw ’ part:

‘D,w_>rtwe

‘D‚W—> rW’ ‘D‚W—> tW’

\ /

‘D,W—9 "W’

and the corresponding sort declaration for the composition function
oz‘D,W—>PW’ >< ‘D,W—>‘1W’ _) ‘D‚W—->SW’

is analogue to the sort declarations for the ‘W—aPW’ sorts.

60

Since only the last label in a sequence of transitions matters a labeled transitive transition can be obtained by the

composition of an arbitrary transition and a labeled transition. Therefore we introduce a special functional LT

(labeled transtion) that composes a two such transitions to a labeld transition, i.e.

\/x:'w~rtw', y:'D,W~rtW' \/1:D (x 0 y(l» = LT(x, y)(l)

The set of 'W~P'-functions is intended to describe transitions between all paths crossing a given world. That

means in particular that for a given WP-tuple wl all other WP-tuples Wz with the same world can be mapped to

wl' i.e. \/wl:WP 3p:'W~P' \/wz:WP Wtlw =wZlw => p(wz} =wl
The Skolem function forp is a function PA: WP ~ 'W~P' that returns for a given WP-tuple a 'W~P'-function

which maps all paths crossing wllw to wl'

So far we hav~ introduced context access functions to model 9\!.t.transitions and we have motivated the functionals

MP, MW and PA. But we have not introduced any means to represent the correlations between the different types

of accessibility relations.

Basic transitions:

A transition in the basic accessibility relation 9\~ on a particular path is just one step forward. Therefore we

introduce a function symbol +l:'P~~W' as the unique 'P~~W'-function. Composed with 'W~P'-functions we

obtain all context access functions related to a branching 9\~-relation. '+ l' corresponds to the successor function

in the Peano axiomatization of natural numbers.

Reflexive versus nonreflexive transitions:

The correlation between the nonreflexive and the reflexive accessibility relations in terms of context access

functions is that the reflexive functions operate on a world either as the identity or as a corresponding nonreflexive

function. To express this syntactically we introduce a functional -R that "removes" the reflexive part from a

context access function. The type declarations for -R are:

-R: 'W~rtw' ~ 'w~tw' -R: 'P~rtw' ~ 'P~tw'

-R: 'w~rw' ~ 'W~~' -R: 'P~rw' ~ 'P~~W'

and the axiom describing -R is: \/x:'w~rtw' \/w:WP x(w) =w v x(w) =-R(x)(w).

Transitive versus nontransitive transitions:

Since the transitive accessibility relation is simply the transitive closure of the basic one, the correlations between

the basic and the transitive accessibility relation is that each transitive transition is either already a basic transition

or it is decomposable into another transitive transition followed by a basic transition, i.e.

\/x:'P~tw' \/w:WP x(w) =+l(w) v x(w) =(FS(x) 0 +l)(w).

where FS: 'P~tw' ~ 'P~tw' (FS means 'first steps') and FS(x) makes one step shorter than x itself.

The interpretation ofFS in a structure Cis graphically:

'(~r0

W E ~ on:9\fI}-transition
FSJ~ +16~

Actually this axiom corresponds to one of the Peano axioms for natural numbers.

60

Since only the last label in a sequence of transitions matters a labeled transitive transition can be obtained by the
composition of an arbitrary transition and a labeled transition. Therefore we introduce a special functional LT
(labeled transtion) that composes a two such transitions to a labeld transition, i.e.

vx:‘w—>“w', y:‘D,W——>“W’ vun (x o y(l)) = LT(x, y)(l)

The set of ‘W—->P’-functions is intended to describe transitions between all paths crossing a given world. That
means in particular that for a given WP-tuple “’1 all other WP-tuples "”2 with the same world can be mapped to
wl, i.e. Vw1:WP Elpz‘W—eP’ Vw2:WP tw = W2|w => p(w2) = “’1
The Skolem function for p is a function PA: WP ——> ‘W—>P’ that returns for a given WP-tuple a ‘W—)P’—function
which maps all paths crossing 7”t to w].

% PA cf”?
& a

”’3 PA ((1021)

So far we have introduced context access functions to model Six-transitions and we have motivated the functionals
MP, MW and PA. But we have not introduced any means to represent the correlations between the different types
of accessibility relations.

Basic transitions:
A transition in the basic accessibility relation ER" on a particular path is just one step forward. Therefore we
introduce a function symbol +1:‘P—>¢W’ as the unique ‘P——>¢W’-ftmction. Composed with ‘W-—>P’-functions we
obtain all context access functions related to a branching Sig—relation. ‘+1’ corresponds to the successor function
in the Peano axiomatization of natural numbers.

Reflexive versus nonreflexive transitions:
The correlation between the nonreflexive and the reflexive accessibility relations in terms of context access
functions is that the reflexive functions operate on a world either as the identity or as a corresponding nonreflexive
function. To express this syntactically we introduce a functional -R that “removes” the reflexive part from a
context access function. The type declarations for -R are:

-R: ‘W——>“W’ ——> ‘W—a‘W’ -R: ‘P—->"W’ ——> ‘P——>°W’
-R: ‘W—fW’ -—> ‘W—>¢W’ -R: ‘P—e‘W’ _) ‘P——>°W’

and the axiom describing —R is: Vx:‘W-—>"W’ Vw:WP x(w) = w v x(w) = -R(x)(w).

Transitive versus nontransitive transitions:
Since the transitive accessibility relation is simply the transitive closure of the basic one, the correlations between

the basic and the transitive accessibility relation is that each transitive transition is either already a basic transition
or it is decomposable into another transitive transition followed by a basic transition, i.e.

Vx:‘P—)‘VV’ Vw:WP x(w) = +1(w) v x(w) = (FS(x) o +l)(w).
where FS: ‘P—->‘W’ —> ‘P—>‘W’ (FS means ‘first steps’) and FS (x) makes one step shorter than x itself.
The interpretation of FS in a structure Cis graphically:

&

one Elia-transition
FSC(:() +1 6 :0

Actually this axiom corresponds to one of the Péano axioms for natural numbers.

61

For reflexive-transitive transitions we can optimize the above correlations a bit: A reflexive-transitive transition

either remains where it is or it can be decomposed into another reflexive-transitive transition followed by a basic

transition. To express this we extend the meaning of FS, i.e. we introduce another sort declaration FS: 'P~rtw'

~ 'p~rtW'and add the axiom: Vx:'p~rtw' Vw:WP x(w) = w v x(w) = (FS(x) 0 +1) (w).

Paths:

The remaining thing to be done is to axiomatize paths. There are two main conditions describing paths: A path is a

totally ordered set, and the ordering is determined by 9\rt-accessibility.

To axiomatize these conditions we introduce a relation symbol ~: WPxWP and axiomatize it as a total ordering on

path. The totality axiom is Vx,y:'p~rtw' Vw:WP x(w) ~ y(w) v y(w) ~ x(w)

i.e. only worlds on the same path are compared. The second condition actually consists of two parts. One part,

9\rt-accessible worlds on a path are in the ~-relation, is simply expressed by

Vx,y:'p~rtw' VWt,w2:WP w2 =x(Wt) ~ Wt ~ w2

The axiomatization of the second part, two worlds on a path being in the ~-relation are 9\rt-accessible, needs a

new functional: 'p~rtw'x 'p~rtw' ~ 'p~rtw' .

..... denotes in a certain sense the difference between two worlds

y

_.--p

and is axiomatized with Vx,y:'P~rtw' Vw:WP x(w) ~ y(w) ~ (x o.....(x, y»(w) =y(w).

As an auxiliary predicate, a <-predicate with the usual meaning will also be introduced.

To express the semantics of the indexed 'eventually' operator 1...), accessing on each path for a label (the world

after the first f.labeled transition, we introduce a function BF(I) which takes a label I and returns-a function that

maps the current world to the world before the fIrst l-labeled 9\~-transition on the current path. The remaining

("labeled 9\~-transition is described by a function + lL(l):

o	 • .0 (. Ell p

~U
BF6{) +ILc({)

BF is described with the following axiom which expresses both, that the transition following BF(l)(w) is f.labeled

and that this transition is the fIrst one of this kind on the path.

Vx:'p~rtw' Vy:'D,W~~W' VI:D Vw:WP (x 0 y(l»(w) = (x 0 +1)(w) ~ BF(I)(w) ~ x(w).

We are now going to turn the informal description of the CL-axiomatization of MM-Logic possible worlds

structures into a formal defInition for the logic morphism '¥.

Definition 5.2.1 The Signature Morphism '¥~.

A MM-signature r. is mapped to a CL-signature as follows:

1. The MM-signature becomes the domain part of the CL-signature.

2. The context part of the CL-signature is created from scratch:

a)	 It is a functional signature (def. 3.4.1) over the basic context sort WP (for tuples <world,path» and with

interpretation context sort W (for worlds).

61

For reflexive-transitive transitions we can optimize the above correlations a bit: A reflexive-transitive transition

either remains where it is or it can be decomposed into another reflexive-transitive transition followed by a basic

transition. To express this we extend the meaning of FS, i.e. we introduce another sort declaration FS: ‘P—a“W’

-—> ‘P—>“W’and add the axiom: Vx:‘P——)“W’ Vw:WP x(w) = w v x(w) : (FS(x) 0 +1) (w).

Paths:
The remaining thing to be done is to axiomatize paths. There are two main conditions describing paths: A path is a

totally ordered set, and the ordering is determined by flirt-accessibility.
To axiomatize these conditions we introduce a relation symbol 5: WPXWP and axiomatize it as a total ordering on
path. The totality axiom is Vx,y:‘P—>“W’ Vw:WP x(w) S y(w) v y(w) S x(w)
i.e. only worlds on the same path are compared. The second condition actually consists of two parts. One part,

SIN-accessible worlds on a path are in the S-relation, is simply expressed by

Vx,y:‘P—)“W’ Vw1,w2:WP WZ : x(w1)=> W1 S w2

The axiomatization of the second part, two worlds on a path being in the S-relation are EXIT-accessible, needs a
new ftmctional +: ‘P-—>“W’x ‘P—>“W’ —-> ‘P—>"W’.
+ denotes in a certain sense the difference between two worlds

y

pn ?
W +cfir. , 9}

and is axiomatized with Vx,y:‘P—9"W’ Vw:WP x(w) S y(w) => (x o+(x, y))(w) = y(w).

As an auxiliary predicate, a <-predicate with the usual meaning will also be introduced.

To express the semantics of the indexed ‘eventually’ operator I...), accessing on each path for a label [the world
after the first [-labeled transition, we introduce a function BF(I) which takes a label land retumsa function that
maps the current world to the world before the first l-labeled 9i9-transition on the current path. The remaining
(-labeled 9i”-transition is described by a function +1L(l):

wg}

BFC([) +1LC(D
BF is described with the following axiom which expresses both, that the transition following BF(l)(w) is [-labeled
and that this transition is the first one of this kind on the path.

Vx:‘P——>“W’ Vy:‘D,W—>¢W’ VlzD Vw:WP (x o y(l))(w) : (x o +1)(w) => BF(l)(w) _<_ x(w).

LP

We are now going to turn the informal description of the CL-axiomatization of MM—Logic possible worlds
structures into a formal definition for the logic morphism ‘1’.

Definition 5.2.1 The Signature Morphism ‘I’E.
A MM-signature E is mapped to a CL-signature as follows:
1 . The MM-signature becomes the domain part of the CL-signature.
2 . The context part of the CL-signature is created from scratch:

a) It is a functional signature (def. 3.4.1) over the basic context sort WP (for tuples <World‚path>) and with
interpretation context sort W (for worlds).

62

b) The sort lattice for the functional sorts is

'w~rtw'

----I~
'w~ rW' 'p~rtw' 'W~ tw '

'W~~~ltw'
"'./--------I~
'ID' ,p~~,

c) The sort declarations for the composition function 0 are:

0:	 'W~PW' x 'w~qw' ~ 'W~sW' and 0: ·W~'R.w' x 'W~P' ~ 'w~'R.w'

'P~PW' x 'P~qw' ~ 'P~SW' 'W~P' x 'w~'R.w' ~ 'w~'R.w'

'D,W~PW' x 'D,W~qW' ~ 'D,W~sW' 'W~P' x 'W~P' ~ 'W~P'

where s is derived from p and q with the following matrix:

~ 0 r t rt

0 t t t t

r t rt t rt

t t t t t

rt t It' t rt

The sort declarations for the application function ,J. are:

J.: 'X"""7~' x WP ~ WP for X,Y E lW, P}

'D,W~'R.w' x D ~ 'w~'R.w' for the top domain sort D.

d) The following additional constant, function and predicate symbols are added:

Constant symbols:

ID: 'ID' (Two identity functions)

IDL 'D,W~rw'

+1: 'P~~'

+IL: 'D,W~"'W'

Function symbols:

PW: WP~W

PA: WP ~ 'W~P'

BF: D ~ 'P~rtw'

MP: 'W~rtw' ~ 'W~P'

MW: 'w~'Rw' ~ 'P~'Rw'

LT: 'W~sW' x 'D,W~qW' ~ 'D,W~sW',

s is derived from p and q according to the above matrix.

-R: 'W~rtw' ~ 'w~tw' 'P~rtw' ~ 'p~tw'

'w~rw' ~ 'W~"'W' 'p~rw' ~ 'P~"'W'

FS: 'p~tw' ~ 'P~tw'

'P~rtw' ~ 'p~rtw'

-+-: 'p~rtw' x 'p~rtw' ~ 'p~rtw'

Predicate symbols:

~: WPxWP

<: WPxWP (~and;t)

f) The symbol variation function so/maps all domain function symbols to PW.	 •

62

b) The sort lattice for the functional sorts is
‘wqflw,

r rt t ‘D,W—-)“W’

}Vl'ävä’ WNW—1W,‘D,W {W, ‘D,W—-) tW’

‘W—)P’ ‘P——>’W’ ‘wmtw -—>\ /
\ / \ I / ‘D,W—)¢W,

‘ID’ ‘P—) ”W’

c) The sort declarations for the composition function 0 are:
c: ‘W—aPW’)(‘W—q’ -—> ‘W—95W’ and o: ‘W—aRW’ x ‘W——>P’ —> ‘W—fiW ’

‘P-—>PW’ x ‘P——>‘1W’ —> ‘P——>SW’ ‘W-—>P’ x ‘W—fiW’ ——> ‘W—fiW’
‘D,W——>PW’ x ‘D,W-—>‘lW’ ——) ‘D,W—->SW’ ‘W—->P’ x ‘W—->P’ _) ‘W—->P’

where s is derived from p and q with the following matrix:
p (b r t rt

@ t t t t

r t rt t rt

t t t t t

rt t If t rt

The sort declarations for the application function i are:
„L: ‘X—afiY ’ x WP —-> WP for X,Y e {W, P}

‘D‚W—>fiW’ x D —> ‘w-afivV’ for the top domain sort D.

d) The following additional constant, function and predicate symbols are added:
Constant symbols:

ID: ‘ID’ (Two identity functions)

lDL ‘D,W—->‘W’ '
+1: ‘P—ag’W’
+lL: ‘D,W—->°W’

Function symbols:
PW: WP —> W
PA: WP -—> ‘W—->P’
BF: D ——> ‘P—F‘W’
MP: ‘W—9"W’ -—> ‘W—>P’
MW: ‘W—äfiW’ _) ‘P—afiW’
LT: ‘W-—>SW’ x ‘D,W—>‘1W’ —-> ‘D,W—>SW’,

s is derived from p and q according to the above matrix.
-R: ‘W—WW’ —-a> ‘W—a‘W’ ‘P—9“W’ _) ‘P——>‘W’

‘W——>‘W’ ——> ‘W-—>°W’ ‘P—a‘W’ —-> ‘P—>“’W’
FS: ‘P-—>‘W’ -—> ‘P—>‘W’

‘P—->“W’ —-> ‘P—>“W’
+: ‘P——>"W’ x ‘P—>“W’ _) ‘P—>“W’

Predicate symbols:
5: WPXWP

<: WPXW'P (S and at)

f) The symbol variation function S‘Vmaps all domain function symbols to PW.

63

Definition 5.2.2 The Formula Morphism 'P tp

'P1"leaves MM-terms unchanged and maps MM-formulae to domain formulae in CL.

Corresponding to the inductive defInition of MM-formulae, the translation rules are:

Formulae with the predicate logic junctors and quantifiers as top operators are translated by leaving their structure

unchanged and just translating their subformulae.

The translation rules for the modal operators are:

'P!D~.1)= 'Vx:'W-7'1W' 'P!'}) (<=:> 'Vp:'W-7P' 'Vx:'P-7'1W' 'P!.1)

'P!O~.1) = 3x:'W-7'1W' 'P!'}) (<=:> 3p:'W-7P' 3x:'P-7'1W' 'P!.1)

'P![t]~.1) = 'V.j,(x:'D,W-7'1W', z:S(t)=t) 'P!.1) (S(t) denotes the sort of t)

'P!<t>~.1) = 3J..(x:'D,W-7'1W', z:S(t)=t) 'P!.1)

'P!t'}) = 'Vp:'W-7P' 3x:'P-7rtw' 'P!'})

'P!-.1) = 3p:'W-7P' 'Vx:'P-7rtW' 'P!'})

'P!1t).1) = 'Vp:'W-7P' p(BF(t) 0 +1) 'P!.1)

'P!7''VU (j) = 'Vp:'W-7P' 3x:'P-7rtw' ('P!(j) /\ 'Vy:'P-7rtw'-x «(poy, pox) => 'P!.1)).

'P!7''VUC (j) = 'Vp:'W-7P' 3x:'P-7rtw' ('P!(j) /\ 'Vy:'P-7rtw'-x (~(poy, pox) =>'P!.1)).

'P!7'3U (j) = 3p:'W-7P' 3x:'P-7rtW' ('P!(j) /\ 'Vy:'P-7rtw' -x «(poy, pox) => 'P!.1)).

'P!7'3UC (j) = 3p:'W-7P' 3x:'P-7rtw' ('P!(j) /\ 'VY:'P-7rtw'-x (~(poy, pox) =>'P!'})).

Of course the introduced variables have to be completely new ones. _

Definition 5.2.3 The Specification Morphism 'PS

The specification morphism 'PS uses 'PI: for translating MM-signatures into CL-signatures and 'P7'for translating

MM-formulae into CL-formulae. Furthermore, it adds the necessary axioms for the application function .j, and the

composition function 0 (def. 3.4.1,5) to make the context part of the CL-specification a functional specification.

And finally it adds the axioms which characterize possible worlds structures in terms of accessibility functions.

(We use a second order syntax to make the axioms more readable. The first-order version of terms like x(y) is

!(x, y».

Characterization of 0 and J..:

Al 'Vx,y:'W-7rtw' 'Vw:WP .j,(x, w) = .j,(y, w) => x = Y

A2 'Vx,y:'D,W-7rtw' 'VI:D 'Vw:wp !(.j,(x,l), w) = .j,(.j,(y, I), w) => x = Y

A3 'Vx,y:'W-7rtW' 'Vw:wp .j,(x 0 y, w) = .j,(y, J..(x, w»

A4 'Vx,y:'O,W-7rtw' 'Vl:O !(x 0 y,l) = .j,(x, 1) 0 .j,(y, 1)

Identity functions.

Bl 'Vw:wp .j,(ID, w) = w

B2 'Vw:WP'Vl:O !(J,(IDL, I), w) = w (The reflexive transitions are labeled with all labels.)

Characterization of the 'W-7P'-functions

Cl 'Vp:'W-7P' MP(p) =p

C2 'Vp:'W-7P' MW(p)=ID

C3 'V wl,w2:WP PW(wl) = PW(w2) => w2 = PA(w2)(wl)

Characterization of the 'P-7'1W' -functions.

D1 'Vx:'P-7rtw' MW(x) = x

D2 'Vx:'P-7rtw' MP(x) = ID

03 'Vx,y,z:'P-7rtw' 'Vp:'W-7P' 'Vw:WP x(w) = y(w) => PW(MP(x 0 z 0 p) 0 y)(w» = PW(x(w»

D4 'Vx,y,z:'P-7rtw' 'Vp:'W-7P' 'Vw:WP x(w) = y(w) ~ PW(MP(x 0 z 0 p) 0 y)(w» = PW(x(w»

05 'Vwl,w2:WP +l(wl) = +I(w2) => wl = w2 (injectivity)

63

Definition 5.2.2 The Formula Morphism ‘1’7.
\Pgrleaves MM-tenns unchanged and maps MM-fonnulae to domain formulae in CL.
Corresponding to the inductive definition of MM—formulae, the translation rules are:

Formulae with the predicate logic junctors and quantifiers as top operators are translated by leaving their structure

unchanged and just translating their subformulae.

The translation rules for the modal operators are:
$170219) = VXz‘w—eRW’ Tam (© Vp:‘W—)P’ vx:‘P—>KW’ wm)
Twig) = 3x:‘w-+RW° ?,(9) (<: apz‘W—ap’ axz‘P—ßW’ \}!‚(m

?,(IIÜIRII) = V$(x:‘D,W——>RW’, z:S(t)=t) ‘cn (S(t) denotes the sort of t)
‘P9(<t>R-f}) = 3$(x:‘D,W—>£W’, z:S(t)=t) T90)
r909) = Vp:‘W-—)P’ 3x:‘P—->“W’ egg)
‘I’,(-> 1}) = EIp:‘W—>P’ Vx:‘P—>“W’ W70)
W900?) -.-. Vp:‘W—->P’ go(BF(t)o+1)‘P,(9r)
‘P,([FVU g) = Vp:‘W—>P’ 3x:‘P—>“W’ (‘1’,(g) A Vy:‘P—>“W’-x (<(poy, pox) => T70»).
?‚(fVUf g) = vpz‘W—ep’ 3x:‘P——>"W’ 0119(9)». vyz‘P—f‘t (S(poy,pox)=>‘1’9(9))).
‘I’ycfElU g) = Elp:‘W——>P’ 3x:‘P—->“W’ (?‚(Q A Vy:‘P—>“W’-x (<(poy, pox) ==> ‘I’9(}))).
‘1’90'311' g) = 3p:‘W—>P’ 3x:‘P—)“W’ (‘P9(g) A Vy:‘P—>“W’-x (S(poy‚ pox) =e‘l’,(f}))).
Of course the introduced variables have to be completely new ones. I

Definition 5 .2 .3 The Specification Morphism ‘P5

The specification morphism T5 uses ‘I’z for translating MM-signatures into CL-signatures and ‘I’yfor translating
MM—fonnulae into CL-formulae. Furthermore, it adds the necessary axioms for the application function „L and the

composition function 0 (def. 3.4.15) to make the context part of the CL-specification a functional specification.
And finally it adds the axioms which characterize possible worlds structures in terms of accessibility functions.
(We use a second order syntax to make the axioms more readable. The first-order version of terms like x(y) is

MK. y))-

Characterization of o and i:
Al Vx,y:‘W—>nW’ Vw:WP ~L(x, w) = My, w) => x = y
A2 Vx,y:‘D,W—>"W’ VlzD sVVP i(i(x, l), w) = “My, 1), w) => x = y
A3 Vx,y:‘W—>"W’ Vw:WP ~L(x o y, w) = $(y, i(x, w))
A4 Vx,y:‘D,W—>“W’ VlzD to o y, 1) = $(x, 1) o My, 1)

Identity functions.
Bl Vw:WP MID, w) = w
B2 Vw:WP VlzD J,(J‚([DL, l), w) = W (The reflexive transitions are labeled with all labels.)

Characterization of the ‘W—aP’-functions
C1 s‘W—aP’ MP(p) = p
C2 Vp: ‘W——>P’ MW(p) = ID
C3 V w1,w2:WP PW(w1) = PW(w2) => w2 = PA(w2)(w1)

Characterization of the ‘P—fiW’ -functions.
D1 Vx:‘P—)“VV’ MW(x) = x
m Vx:‘P—$"W’ MP(x) = ID
D3 Vx,y,z:‘P—>“W’ Vp:‘W-—>P' Vw2WP x(w) = y(w) => PW(MP(x o z o p) o y)(w)) = PW(x(w))
D4 Vx,y,z:‘P—>”W’ Vp:‘W—>P’ Vw:WP x(w) = y(w) <= PW(MP(x o z o p) o y)(w)) :: PW(x(w))
D5 Vw1,w2:WP +1(w1) = +1(w2) => W1 = W2 (injectivity)

64

Characterization of the 'W~'l?:w'-functions.

El 'Vx,y:'W~rtw' x =MP(x) 0 MW(x)

E2 'Vx,y:'W~rtw' 'Vw:WP x(w) =yew) => MP(x)(w) =MP(y)(w)

E3 'Vx,y:'w~rtw' 'Vw:WP x(w) =yew) => MW(x)(w) =MW(y)(w)

E4 'Vx,y:'W~rtw' MW(x 0 y) =MW(x) 0 MW(y)

Relations between the different transitions:

F1 'Vx:'P~~' x =+1 (basic transitions)

F2 'Vx:'W~rtw' 'Vw x(w) =w v x(w) =-R(x)(w) (reflexive transitions)

F3 'Vx:'w~tw' 'Vw:WP x(w) ::F- w

F4 'Vx:'P~tw' 'Vw:WP x(w) =+l(w) v x(w) =(FS(x) 0 +l)(w) (transitive transitions)

F5 'Vx:'p~rtw' Vw:WP x(w) =w v x(w) =(FS(x) 0 +l)(w). (reflexive transitive transitions)

::;; is a total ordering on paths.

G1 'Vw:WP w::;;w (reflexivity)

G2 'Vwl,w2,w3:WP wl ::;; w2 /\ w2::;; w3 => wl ::;; w3 (transitivity)

G3 'Vwl,w2:WP wl::;; w2/\ w2 ::;; wl => wl =w2 (antisymmetry)

G4 'Vx,y:'P~rtw' 'Vw:WP x(w) ::;; yew) v yew) ::;; x(w). (totality on paths)

DefInition of <.

HI 'Vwl'w2:WP wl < w2 => wl ::;; w2

H2 'Vwl,w2:WP wl < w2 => wl ::F- w2

H3 'Vwl,w2:WP wl < w2 <= wl ~ w2/\ wl ::F- w2'

Characterization of paths

I1 'Vx:'p~rtw' 'Vwl,w2:WP w2 =x(wl) => wl ::;; w2

12 'Vx,y:'P~rtw' 'Vw:WP x(w) ::;; yew) => (x0""(x, y»(w) =yew).

Labeled transitions on paths

11 'Vx:'P~rtw' 'Vy:'D,W~I/JW' 'VI:D 'Vw:WP (x 0 y(l»(w) =(x 0 +l)(w) => BF(l)(w)::;; x(w).

J2 'VI:D BF(l) 0 +1L(I) =BF(l) 0 +1

13 'Vx:'p~rtw' 'Vy:'D,W~I/JW' 'VI:D x 0 y(l) =LT(x,y)(l) •

In the subsequent sections of this chapter the soundness and completeness of the specification morphism will be

investigated.

Lemma 5.2.4 Well Formedness of 'Ps(5)

If5 =(L, !f) is a correct MM-specification then 'P15) is a syntactically correct CL-specification.

Proof: We have to check

a) whether 'P15) is a functional OSPL-specification according to def. 3.4.1 and 4.1.1,

b) whether the translated MM-formulae are well formed CL domain 'P~(L)-formulae and

c) whether the axioms generated by 'P15) are well formed CL context 'P~(L)-formulae.

a) 1. The functional sorts are 'WP~qWP' and 'D,WP~qWP'.We use 'W~P' etc. only as abbreviations.

Therefore they meet the conditions in 3.4.1,1 and 4.1.1,c.

2. Since there is only one variant of 'D,WP~WP' sorts where D is the unique top domain sort, the

subsort declarations meet the condition 3.4.1,2.

Characterization of the ‘W—>W’-functions.
El Vx‚y:‘W—+“W’ x = MP(x) o MW(x)
E2 Vx,y:‘W—>"W’ Vw:WP x(w) = y(w) => MP(x)(w) = MP(y)(w)
E3 Vx,y:‘W—>“W’ Vw:WP x(w) = y(w) => MW(x)(w) = MW(y)(w)
E4 Vx,y:‘W——>“W’ MW(x o y) = MW(x) 0 Wm

Relations between the different transitions:
F1 Vx:‘P—>°W’ x = +1 (basic transitions)
F2 s‘W—anW’ Vw x(w) = w v x(w) = -R(x)(w) (reflexive transitions)
F3 Vx:‘W——>‘W’ Vw:WP x(w) $ w
F4 s‘P—etW’ Vw:WP x(w) = +1(w) v x(w) : (FS(x) o +l)(w) (transitive transitions)
F5 Vx:‘P—)“W’ Vw:WP x(w) = w v x(w) = (FS(x) o +1)(w). (reflexive transitive transitions)

5 is a total ordering on paths.
G l Vw:WP w $ w (reflexivity)

G2 Vw1,w2,w3:WP W1 $ w2 A w2 5 W3 => W1 5 W3 (transitivity)
G3 Vw1,w2:WP W1 5 w2 A w2 s W1 => W1 = WZ (antisymmetry)
G4 Vx,y:‘P-—)“W’ Vw:WP x(w) S y(w) v y(w) $ x(w). (totality on paths)

Definition of <.
H1 Vw1,w2:WP w1< w2 => W1 S wz

Characterization of paths
I]. s‘P—anW’ VW1,W2:WP W2 = X(W1) => W1 S W2

12 Vx,y:‘P—>“\V’ Vw:WP x(w) S y(w) => (xo+(x, y))(w) = y(w).

Labeled transitions on paths
J 1 Vx:‘P—->“W’ Vy:‘D,W—>¢W’ VlzD Vw:WP (x o y(l))(w) = (x o +1)(w) => BF(1)(w) s x(w).
12 VlzD BF(1) o +1L(l) = BF(1) 0 +1
J3 Vx:‘P—->“W’ Vy:‘D‚W—->°W‘ VlzD x o y(l) m LT(x,y)(l) I

In the subsequent sections of this chapter the soundness and completeness of the specification morphism will be

investigated.

Lemma 5.2 .4 Well Formedness of ‘P5(5)

If 5 == (2, 3}) is a correct DAM-specification then ‘I’5(5) is a syntactically correct CL-specification.
Proof: We have to check

a) whether T50) is a functional OSPL—specification according to def. 3.4.1 and 4.1.1,

b) whether the translated MM—formulae are well formed CL domain lI‘£()Z‘.)-formulae and

c) whether the axioms generated by 936) are well formed CL context ‘PE(E)-formulae.

a) l . The functional sorts are ‘WP—flWP’ and ‘D,WP——>‘1WP’. We use ‘W—>P’ etc. only as abbreviations.

Therefore they meet the conditions in 3.4.1.1 and 4.1.1,c.
2. Since there is only one variant of ‘D,WP—>WP’ sorts where D is the unique top domain sort, the

_ subsort declarations meet the condition 3.4.1.2.

65

3. The sort declarations for J. have the structure:

J.: 'WP-7qwp' x WP -7 WP

'D,WP-7~'X D -7 'WP-7~'

and for each 'D,W-7'Rw' sort the corresponding 'W-7'Rw' sort exists.

Therefore they meet the condition 3.4.1,3.

4. The sort declarations for the composition function are:

0: 'W-7PW' x 'W-7QW' -7 'W-7sW' and 0: 'W-7'Rw' x 'W-7P' -7 'W-7'Rw'

'P-7PW' x 'P-7QW' -7 'P-7sW' 'W-7P' x 'W-7'Rw' -7 'W-7'Rw'

'D,W-7PW' x 'D,W-7QW' -7 'D,W-7sW' 'W-7P' X 'W-7P' -7 'W-7P'

where s is derived from p and q with the following matrix:

~ 111 r t rt

111 t t t t

r t rt t rt

t t t t t

rt t rt t rt

We have to check a) whether all possible combinations are covered and

b) whether the sort declarations are associative.

a) Since there are the three different types 'W-7P', 'P-7qW' and 'W-7PW', there should be

33 combinations.

The 'W-7PW' x 'W-7qW' -7 'W-7SW' declaration stands for

'W-7PW' x 'W-7QW' -7 'W-7SW' ,

'P-7PW' X 'W-7QW' -7 'W-7SW' and

'W-7PW' x 'P-7QW' -7 'W-7sW'.

The 'W-7'Rw' x 'W-7P' -7 'W-7'Rw' declaration stands for

'W-7'Rw' x 'W-7P' -7 'W-7'Rw' and

'P-7'Rw' x 'W-7P' -7 'W-7'Rw'.

The 'W-7P' x 'W-7QW' -7 'W-7QW' declaration stands for

'W-7P' x 'W-7'Rw' -7 'W-7'Rw' and

'W-7P' x 'P-7'Rw' -7 'W-7'Rw'

Together with the remaining two declarations there are in fact nine declarations.

There is only one basic type of 'D,W-7PW'-sorts. Therefore the single declaration scheme

for these symbols is sufficient.

b) For showing the associativity we first show that the matrix is associative, i.e.

'lp, q,s E {111, r, t, rt} (p 0 q) 0 s =p 0 (q 0 s)

where ° denotes the mapping represented by the matrix.

The triples p,q,s containing at least one '1' or one '111' are all mapped to 't'

and the triples containing only 'r' or 'rt' are all mapped to 'rt'.

Hence, the matrix is asso~iative. (*)

Now we can show

VS 1,s2,S3 E {'W-7'Rw', 'P-7'Rw', 'W-7P' } (SI x S2) X S3 = SI X (S2 x S3)

All triples SI,s2,s3 containing no 'W-7P' and at least one 'W-7PW' are mapped to

'W-7(poq)°SW' = 'W-7po(Qos)W' (see *)

('P-7PW' x 'P-7QW') X 'P-7sW' = 'P-7PW' X ('P-7QW' x 'P-7sW') (see *)

All triples SI,S2,S3 containing at most two 'W-7P' are mapped to 'W-7'Rw' or 'W-7~' respectively.

Triples SI,s2,S3 consisting of three 'W-7P' are mapped to 'W-7P'.

65

3. The sort declarations for „L have the structure:
l: ‘WP—flWP’ x WP —> WP

‘D,WP—>RWP’ x D —> ‘WP—flWVP’
and for each ‘D,W—>’°W’ sort the corresponding ‘w—fiw ’ sort exists.
Therefore they meet the condition 3.4.13.

4. The sort declarations for the composition function are:
0: ‘W——>PW’ x ‘W—>‘1W’ _) ‘W—>SW’ and o: ‘W—fiW’ x ‘W—>P’ -—> ‘W—fiW’

‘P—>PW’ x ‘P—flW’ —> ‘P——>SW’ ‘W——>P’ x ‘W—ßW’ _) ‘W—aRW’
‘D,W-—>PW’ x ‘D,W——>‘lW’ _) ‘D‚W—->SW’ ‘W—>P’ x ‘W—->P’ —-> ‘W-—>P’

where 8 is derived from p and q with the following matrix:
P fi r t It

9 t t t t

l' t rt t It

t t t t t

11 t rt t 11

We have to check a) whether all possible combinations are covered and

b) whether the sort declarations are associative.

a) Since there are the three different types ‘W—>P’, ‘P—>‘1W’ and ‘W—9PW’, there should be

33 combinations. ‘
The ‘W—>PW’ x ‘W—>‘1W’ —> ‘W——>SW’ declaration stands for

‘W——>PW’ x ‘W—>‘1W’ ——> ‘W—esW’,
‘P—>PW’ x ‘W—a’ ——> ‘W—>SW’ and

‘W—>PW’ x ‘P—>‘1W’ —> ‘W—>SW’.
The ‘W—fiW’ x ‘W——>P’ _) ‘W—fiW’ declaration stands for

‘W—fliW’ x ‘W—>P’ —> ‘W—efiW’ and
‘P—fiW’ x ‘W—>P’ —-> ‘w—flfw ’.

The ‘W——)P’ x ‘W—e‘lW’ —> ‘W—>qW’ declaration stands for
‘W—)P’ x ‘W—flW’ ——) ‘W—eflW’ and
‘W——>P’ x ‘P—fiW’ —> ‘W—flW’

Together with the remaining two declarations there are in fact nine declarations.
There is only one basic type of ‘D,W—>PW’-sorts. Therefore the single declaration scheme
for these symbols is sufficient.

b) For showing the associativity we first show that the matrix is associative, i.e.
Vp‚q‚ se {@‚nnrt l (poq)°s=p°(qoS)

where 0 denotes the mapping represented by the matrix.
The triples p,q,s containing at least one ‘t’ or one ‘¢’ are all mapped to ‘t’
and the triples containing only ‘r’ or ‘rt’ are all mapped to ‘rt’.
Hence, the matrix is associative. (a)

Now we can show
VSl,Sz,S3 e [‘W—fiW’, ‘P—ßW’, ‘W—->P’ } (SI x 32) x S3 = SI x (S2 x S3)

All triples 81.32.83 containing no ‘W—->P’ and at least one ‘W—>PW’ are mapped to
‘W-—>(P°‘1)°5W’ = ‘W—>P°(q°S)W’ (see *)

(‘P—>PW’ x ‘P—>‘1W’) x ‘P—>SW’ = ‘P—>PW’ x (‘P—>‘1W’ x ‘P—asW’) (see a)
All triples $152.53 containing at most two ‘W—>P’ are mapped to ‘W—a’i-W’ or ‘W—fiP’ respectively.
Triples 81.82.83 consisting of three ‘W—aP’ are mapped to ‘W—>P’.

66

5.	 Since 'W--7rtw' and 'D,W--7rtw' are the top sorts in the corresponding parts of the sort lattice, the axioms

AI-A4 characterizing 0 and J. are sufficient to cover all instances of the axiom schemes required in

def. 3.4.1,5.

6.	 Condition 4.1.1,2i) is fulfilled because 'W--7rtW' and 'D,W--7rtW' are the unique top sorts in the corres­

ponding parts of the sort lattice.

7.	 The interpretation context sorts and the symbol variation function are defmed (condition 4.1.1,3).

b) The translated MM-formulae are well formed CL domain '¥r,(1:)-formulae.

This is proved by induction on the size of MM-formulae. Let qbe an MM-formula.

Base Case: q is an atom. Since MM-atoms and CL-atoms are OSPL-atoms and since the translation does not

change anything '¥Iq) is a well formed CL domain atom (def. 4.1.3,i).

Induction step: Let q be a non atomic MM-formula.

The induction hypothesis states that all formulae of smaller size than q are translated into well formed CL

domain formulae. We perform a case analysis according to the structure of q.
If q's top operator is a classical logical connective or quantifier then the induction hypothesis is immediately

applicable. The interesting cases are the modal operators.

Cases q= [J~.'Fand q= O~.'F

The translation rules are '¥Iq) = 'i(3)x:'W--7~' 'PI'J).

'P.f.'J) is well formed according to-the induction hypothesis and since 'W--7~' is a context sort in '¥r,(1:),

'P.f.q) i~ well formed (def. 4.1.3,v).

Cases q= [t]~.'Fand q= <t>~!F

The translation rules are '¥.f.q) = 'i(3) J.(x:'D,W--7~',z:S(t)=t) 'P.f.'J).
'PI'J) is well formed according to the induction hypothesis. Since 'D,W--7~' is a context sort and since

x and z are new variables not occurring in '¥.f.'J), 'P.f.q) is well formed (def. 4.1.3,iv).

Cases q= .!Fand q=-.'F
The translation rules are 'PIq) = 'i(3) p:'W--7P' 3(\1) x:'P--7rtw' 'P.f.'J).
'PI'J) is well formed according to the induction hypothesis.'W--7P' as well as 'P--7rtW' are both context

sorts. According to def. 4.1.3,v, 'P.f.q) is well formed.

Case q= (1t)!F

The translation rule is 'P11t)'J) = 'ip:'W--7P' .(O(BF(t) 0 +1) 'P.f.'J).
'P1.10 is well formed according to the induction hypothesis.

Since t is a domain term and the sort of BF is D --7 'P--7rtw', the sort of BF(t) is 'P--7rtw'. The sort of +1

is 'P--7S'JW'. Thus, the sort of (BF(t) 0 +1) is 'P--7r tw' which is a functional context sort. According to

def. 4.1.3,vii, .(O(BF(t) 0 +1) 'P.f.10 is a well formed CL context formula and according to def. 4.1.3,v,

'PI.q) is well formed.

Cases q= .'F'iU q, q = .'F'iUr q, q = .'F3U q and q = .'F3ur q
The translation rules are

'P.f.q) ='i(3) p:'W--7P' 3x:'P--7rtw' ('¥Iq) 1\ 'iy:'P--7rtw'-x «(~(poy,pox) ~ '¥1.10).
'¥I.q) and 'P110 are well formed according to the induction hypothesis. < and ~ are context predicates oJ

sort WPxWP. poy and pox are both terms of sort 'W--7rtw' therefore, according to the replacement rule in

def. 4.1.3,ii, <(poy, pox) and ~(poy, pox) are well formed CL domain atoms. According to def. 4.1.3,vi,

'iy:'P--7rtw'-x «(~)(poy, pox) ~ 'P1.10) is a well formed domain formula. And finally, since 'W--7P'

and 'P--7rtW' are functional context sorts 'P.f.(j) is well formed according to def. 4.1.3,v.

c)	 The axioms generated by '¥is> are well formed CL context \l'r,(1:)-formulae.This is a straightforward check.

(A syntax error in the translation rules may lead to an erraneous implementation of the translation algorithm.

Here we have to be careful. A syntax error in the axioms is usually detected by a properly implemented

formula parser. Therefore we can afford to be lax about this.) •

66

5 . Since ‘W—>“W’ and ‘D‚W—->“W’ are the top sorts in the corresponding parts of the sort lattice, the axioms
Al-A4 characterizing o and J, are sufficient to cover all instances of the axiom schemes required in

def. 3.4.1.5.
6 . Condition 4.1.1,2i) is fulfilled because ‘W—>“W’ and ‘D‚W—>"W’ are the unique top sorts in the corres-

ponding parts of the sort lattice.
7 . The interpretation context sorts and the symbol variation function are defined (condition 4.1.1.3).

b) The translated MM—formulae are well formed CL domain ‘I’Z(2)-formulae.

<>)

This is proved by induction on the size of MM-formulae. Let gbe an MM-formula.
Base Case: 9 is an atom. Since MM-atoms and CL-atoms are OSPL-atoms and since the translation does not
change anything ‘P,(g) is a well formed CL domain atom (def. 4.1.3 ,i).
Induction step: Let g be a non atomic MM—formula.
The induction hypothesis states that all formulae of smaller size than 9 are translated into well formed CL
domain formulae. We perform a case analysis according to the structure of 9.
If g’s top operator is a classical logical connective or quantifier then the induction hypothesis i s immediately
applicable. The interesting cases are the modal operators.
Cases g : law—fand g : 01:7

The translation rules are ‘P9(5) = V(3)x:‘W—>RW’ ?,(7).
‘1'5(9) is well formed according tothe induction hypothesis and since ‘W—eRW’ is a context sort in T203),
Tfig) is well formed (def. 4.1.3,v).

Cases 9 : [[t]]K:Fand g : <t>9‘19r
The translation rules are ‘P,(g) = VG!) i(x:‘D,W—>£W’, z:S(t)=t) T90).
$30?) is well formed according to the induction hypothesis. Since ‘D,W—>RW’ is a context sort and since
it and z are new variables not occurring in 9’70), ‘I’9(g) is well formed (def. 4.1.3,iv).

Cases g : Wand g : ”If
The translation rules are ‘P,(g) = VG!) p:‘W—->P’ 3(V) x:‘P—)“W’ T700.
T90) is well formed according to the induction hypothesis.‘W-—>P’ as well as ‘P——>“W’ are both context
sorts. According to def. 4.1.3,v, ‘P9(g) is well formed.

Case g: (It)?
The translation rule i s W700?) = Vp:‘W——>P’ go(BF(t) 0 +1) €30).
T70) is well formed according to the induction hypothesis.
Since t is a domain term and the sort of BF is D _) ‘P—af‘W’, the sort of BF(t) is ‘P—>"‘W’. The sort of +1
is ‘P——>°W’. Thus, the sort of (BF(t) 0 +1) is ‘P——>"W’ which is a functional context sort. According to
def. 4.1.3,vii, ga(BF(t) 0 +1) T90) is a well formed CL context formula and according to def. 4.1.3,v,
‘P‚(@) is well formed.

Cases g: {TVU g, g : :JF‘tJ’Ur g, g : TEIU (j and g : fEIUTg
The translation rules are
‘P,(g) = VE!) p:‘W——>P’ 3x:‘P-—>“W’ (?,(g) A Vy:‘P—>“W’-x (<(S)(poy, pox) => 13(9)).
‘P9(g) and ‘I’9(9) are well formed according to the induction hypothesis. < and _<_ are context predicates 01
sort WPxWP. poy and pox are both terms of sort ‘W—9“W’ therefore, according to the replacement rule in
def. 4.1 .3,ii, <(poy, pox) and 5(poy, pox) are well formed CL domain atoms. According to def. 4.1.3,vi,
Vyz‘P—)"W’-x (<(S)(poy, pox) => ‘I’y(9)) is a well formed domain formula. And finally, since ‘W—>P’
and ‘P—>"W’ are functional context sorts ‘l’,(g) is well formed according to def. 4.1.3‚v.

The axioms generated by W56) are well formed CL context ‘I’E(E)-formulae.This is a straightforward check.
(A syntax error in the translation rules may lead to an erraneous implementation of the translation algorithm.
Here we have to be careful. A syntax error in the axioms is usually detected by a properly implemented
formula parser. Therefore we can afford to be lax about this.) I

67

Derived Formulae

The specification morphism generates a number of CL formulae to axiomatize labeled possible worlds structures.

To confirm that the axioms really describe our intuition about the possible worlds structures and to provide a better

basis for an implementation we derive some useful lemmas.

AS Vx,y,z:'W~rtw' (x 0 y) 0 z = x 0 (y 0 z) (associativity of 0)

A6 Vx,y,z:'D,W~rtw' (x 0 y) 0 Z =x 0 (y 0 z)

Proof: Lemma 3.4.2

B3	 Vx:'W~rtw' x 0 ID = x

Proof: -L(x 0 ID, w) = J(ID, J(x, w» (A3)

=J(x, w) (BI)

=::) xoID=x (AI)

B4	 Vx:'W~rtw' ID 0 x = x

Proof: -L(ID 0 x, w) =J(x, J(ID, w» (A3)

= J(x, w) (BI)

=::) xoID=x (AI)

B5	 Vx: 'w~rtw' VI:D x 0 J(IDL, I) = x

Proof: J,(x 0 J(IDL, I), w) =-L(J(IDL, 1), J(x, w» (A3)

= J(x, w) (B2)

=::) x 0 J(IDL, 1) = x (AI)

B6	 Vx:'W~rtw' VI:D J(IDL, I) 0 x = x

Proof: J(J(IDL, I) 0 x, w) =J(x, J(J(IDL, I), w» (A3)

= J(x, w) (B2)

=::) J(IDL, I) 0 x = x (AI)

C4	 Vp:'W~P' w:WP w = (p 0 PA(w»(w»

Proof:	 Vp:'W~P' w:WP PW(w) = PW(P(w» =::) w = PA(w)(P(w» (C3)

=::) Vp:'W~P' w:WP PW(w) =PW(w) =::) w =PA(w)(p(w» (KI below)

=::) Vp:'W~P' w:WP w = PA(w)(P(w» (reflexivity of =)

=::) Vp:'W~P' w:WP w = (P 0 PA(w»(w» (A3)

D6 Vx:'P~rtw' Vp:'W~P' Vw:WP PW(MP(x 0 z 0 p) 0 x)(w» = PW(x(w»

Proof: x(w) = x(w) =::) PW(MP(x 0 z 0 p) 0 x)(w» =PW(x(w» (03)

=::) PW(MP(x 0 z 0 p) 0 x)(w» = PW(x(w» (Reflexivity of =)

D7 Vx,y:'p~rtw' Vw:WP PW(x(w» = PW(y(w» =::) x(w) = yew)

Proof: PW(MP(x 0 ID 0 ID) 0 y)(w» = PW(x(w» =::) x(w) = yew) (03)

=::) PW(y(w» = PW(x(w» ~ x(w) = yew) (B3, B4, D2)

D8 Vx,y:'P~rtw' Vp:'W~P' Vw:WP

x(w) = yew) =::) PW(MP(x 0 z 0 p) 0 x)(w» = PW(MP(x 0 z 0 p) 0 y)(w»

Proof:	 Suppose x(w) = yew)

=::) PW(MP(x 0 z 0 p) 0 y)(w» =PW(x(w» (04)

=::) PW(MP(x 0 Z 0 p) 0 x)(w» = PW(MP(x 0 Z 0 p) 0 y)(w» (06)

67

Derived Formulae
The specification morphism generates a number of CL formulae to axiomatize labeled possible worlds structures.

To confirm that the axioms really describe our intuition about the possible worlds structures and to provide a better
basis for an implementation we derive some useful lemmas.

A5 Vx,y,z:‘W——)"W’ (x 0 y) 0 z = x o (y o z) (associativity of o)

A6 Vx,y,z:‘D,W—>“VV’ (x o y) o z = x o (y o 2)
Proof: Lemma 3.4.2

B3 VX:‘W——>“W’ x 0 ID = x

Proof: i(x 0 ID, w) = .],(ID, i(x‚ w)) (A3)
= i(x, w) (B l)

=> x 0 ID = x (A1)

B4 Vx:‘W——>"W’ ID o x = x
Proof: MID o x, w) = $(x, MID, W)) (A3)

: ‘L(xa W) ' (B1)

=> x 0 ID = x (Al)

B5 Vx:‘W—>"W’ VlzD x o ~L(IDL,1)= x
Proof: $(x o laDL, l), W) = l(~L(IDL, l), i(x, w)) (A3)

= $(x, w) (132)
=> x o i(IDL, l) = x (A1)

B6 s‘W—J‘W’ V1:D t(IDL,1)ox=x
Proof: man, 1) o x, w) = ¢(x, ~L(.L(IDL, 1), w)) (A3)

== $(x, w) (B2)
=> i(IDL, 1) o x = x (A1)

C4 Vp:‘W—-—)P’ w:WP w = (p o PA(w))(W))
Proof: s‘W—eP’ w:WP PW(w) = PW(p(w)) => w = PA(w)(p(w)) (C3)

==> s‘W—aP’ w:WP PW(w) = PW(W) => w = PA(w)(p(w)) (KI below)
=> Vp:‘W—>P’ w:WP w = PA(w)(p(w)) (reflexivity of =)
=> Vp:‘W—>P’ w:WP w = (p o PA(w))(w)) (A3)

D6 Vx:‘P-—>"W’ Vp:‘W—>P’ Vw:WP PW(MP(x o z o p) o x)(w)) = PW(X(W))
Proof: x(w) = x(w) => PW(MP(x o z o p) o x)(w)) = PW(x(w)) (D3)

=> PW(MP(x o z o p) o x)(w)) = PW(x(w)) (Reflexivity of =)

D? Vx,y:‘P->“W’ Vw:WP PW(x(w)) = PW(y(w)) => x(w) = y(w)
Proof: PW(MP(x o ID 0 ID) o y)(w)) = PW(x(w)) ==> x(w) = y(w) (D3)

=> PW(y(w)) = PW(x(w)) ==> x(w) = y(w) (B3, B4, D2)

D8 Vx,y:‘P—>“W’ Vp:‘W—>P’ Vw:WP
x(w) = y(w) ==> PW(MP(x o z o p) o x)(w)) = PW(MP(x o z o p) o y)(w))

Proof: Suppose x(w) = y(w)

=> PW(MP(x o z o p) o y)(w)) = PW(x(w)) (D4)
:) PW(MP(x o z o p) o x)(w)) : PW(MP(x o z o p) o y)(w)) (D6)

68

D9 'Vx,y,z:'P-7rtw' 'Vp:'W-7P' 'Vw:WP

x(w) < yew) => (MP(x 0 Z 0 p) 0 x)(w) < (MP(x 0 Z 0 p) 0 y)(w)

Proof:	 Let x(w) < yew) (*)

Assume (MP(x 0 Z 0 p) 0 y)(w) ~ (MP(x 0 Z 0 p) 0 x)(w)

=> y(MP(x 0 Z 0 p)(w) ~ x(MP(x 0 Z 0 p)(w) (A3)

=> (y 0 -"(y, x»(MP(x 0 Z 0 p)(w) =x(MP(x 0 Z 0 p)(w) (12)

=> MP(x 0 Z 0 p) 0 y 0 -"(y, x»(w) = (MP(x 0 Z 0 p) 0 x)(w) (A3)

=> PW(MP(x 0 Z 0 p) 0 y 0 -"(y, x»(w» =PW(x(w» (D6)

=> (y 0 -"(y, x»(w) =x(w) (04)

=> yew) ~ x(w) (11)

=>, x(w) < yew) (H5)

=> contradiction (*)

=> (MP(x 0 Z 0 p) 0 x)(w) < (MP(x 0 Z 0 p) 0 y)(w) (ill)

DlO	 'Vx,y,z:'P-7rtw' 'Vp:'W-7P' 'Vw:WP

(MP(x 0 Z 0 p) 0 x)(w) < (MP(x 0 Z 0 p) 0 y)(w) => x(w) < yew)

Proof:	 Let (MP(x 0 Z 0 p) 0 x)(w) < (MP(x 0 Z 0 p) 0 y)(w)

Assume yew) ~ x(w)

=> (y 0 -"(y, x»(w) = x(w) (12)

=> PW(MP(x 0 Z 0 p) 0 y 0 -"(y, x»(w» = PW«MP(x 0 Z 0 p) 0 x)(w» (D7)

=> MP(x 0 Z 0 p) 0 y)(w) ~ (MP(x 0 Z 0 p) 0 x)(w) (11)

=>, MP(x 0 Z 0 p) 0 x)(w) < (MP(x 0 Z 0 p) 0 y)(w) (H5)

=> contradiction

=>, yew) ~ x(w)

=> x(w) < yew) (HI)

D11 'Vx,y,z:'P-7rtw' 'Vp:'W-7P' 'Vw:WP

(MP(x 0 Z 0 p) 0 y)(w) < (MP(x 0 Z 0 p) 0 x)(w) => yew) < x(w)

Proof:	 Suppose (MP(x 0 Z 0 p) 0 y)(w) < (MP(x 0 Z 0 p) 0 x)(w)

=> y(MP(x 0 Z 0 p)(w) < x(MP(x 0 Z 0 p)(w) (A3)

=> (y 0 -R(-"(y, x»)(MP(x 0 Z 0 p)(w) = x(MP(x 0 Z 0 p)(w) (13 below)

=> MP(x 0 Z 0 p) 0 y 0 -R(-"(y, x»)(w) =(MP(x 0 Z 0 p) 0 x)(w) (A3)

=> PW(MP(x 0 Z 0 p) 0 y 0 -R(-"(y, x»)(w» =PW(x(w» (D6)

=> (y 0 -R(-"(y, x»)(w) = x(w) (04)

=> yew) < x(w) (14)

D12	 'Vx,y,z:'P-7rtw' 'Vp:'W-7P' 'Vw:WP x(w) = yew) => (MP(x 0 Z 0 p) 0 x)(w) = (MP(x 0 Z 0 p) 0 y)(w)

Proof:	 Let x(w) = yew) (*)

Assume (MP(x 0 Z 0 p) 0 x)(w) ::f. (MP(x 0 Z 0 p) 0 y)(w)

=> (MP(x 0 Z 0 p) 0 x)(w) < (MP(x 0 Z 0 p) 0 y)(w) v

(MP(x 0 Z 0 p) 0 y)(w) < (MP(x 0 Z 0 p) 0 x)(w) (H6)

Suppose (MP(x 0 Z 0 p) 0 x)(w) < (MP(x 0 Z 0 p) 0 y)(w)

=> x(w) < yew) (D1O)

=> contradiction (H2, *)

=> (MP(x 0 Z 0 p) 0 y)(w) < (MP(x 0 Z 0 p) 0 x)(w)

=> yew) < x(w) (D11)

=> contradiction (H2, *)

=> (MP(x 0 Z 0 p) 0 x)(w) = (MP(x 0 Z 0 p) 0 y)(w)

68

D9 Vx,y,z:‘P—>“\V’ Vp:‘W—>P’ Vw:WP
x(w) < y(w) => (MP(x o z o p) o x)(w) < (MP(x o z o p) o y)(w)

Proof: Let x(w) < y(w) (*)

Assume (MP(x o Z 0 p) o y)(W) S (NIPÜC 0 Z 0 p) o x)(w)

=> y(MP(x o z o p)(w) S x(MP(x o z o p)(w) (A3)

=> (y ° +(y‚ X))(MP(X o z o p)(W) = X(MP(x o z o p)(W) (12)
=> NIP(X o z o p) 0 y o +(y, x))(w) = (TV]?(X o Z o p) o x)(w) (A3)

==> PW(MP(X ° 2 ° p) <> y ° ***-(y, X))(W)) = PW(X(W)) (D6)
=> (y ° +(y‚ X))(W) = X(W) (D4)
=> Y(W) S X(W) (11)
=> _! X(W) < y(W) (H5)
= contradiction (*)

=> (MP(x o z o p) o x)(w) < (NIPOK o Z 0 p) o y)(w) (H5)

D10 Vx,y,z:‘P—>“W’ Vp:‘W—)P’ Vw:WP
(MP(x ° Z ° P) ° X)(W) < (MP(x ° Z ° P) ° YXW) => x(w) < Y(W)

Proof: Let (1V[P(x o z o p) o x)(w) < (MP(x o z o p) o y)(w)
Assume y(w) S x(w)

=> (y o +(y. mm = x(w) (12)
=> PW<MP<x o z o p) o y o +<y, x))(w)) = PW((MP(x o z o p) o x)(w)) (D?)
==> MPO: o z o p) o y)(w) s (MP(x o z o p) o x)(w) (II)

=> fi MP(x o z o p) o x)(w) < (MP(x o z o p) o y)(w) (H5)

=> contradiction

=> fi y(W) S x(W)

=> X(W) < y(W) (H1)

D11 Vx,y,z:‘P—>"W’ Vp:‘W—>P’ Vw:WP
(MP(x o z o p) o y)(w) < (MP(x o z o p) o x)(w) => y(w) < x(w)

Proof: Suppose (MP(x o z o p) o y)(w) < (MP(x o z o p) o x)(w)

=> Y(MP(X ° 2 ° P)(W) < X(MP(X ° 2 ° P)(W) (A3)
==> (! ° -R("'(y‚ X)))(MP(X ° z ° p)(W) = X(MP(X ° z ° PXW) (13 belOW)
=> MP(X ° Z ° D) ° y ° -R'(*(y‚ X)))(W) = (MP(x ° Z ° P) ° X)(W) (A3)
=> PW'(MP(x ° 2 ° P) ° 3! ° -R(*(y‚ ")))(W)) = PW(X(W)) (D6)
=> (y ° -R(+(Y‚ X)))(W) = X(W) (D4)
=> y(w) < x(w) (I4)

DIZ Vx,y,z:‘P——>“W’ VpI‘W—AP’ VWiWP x(w) = y(w) => (MP(X o z o p) o x)(w) = (MP(x o z o p) o y)(w)

Proof: Let x(w) : y(w) (*)
Assume (MP(X o z o p) o x)(w) #" (NIPC’C 0 Z 0 p) o y)(W)

@ (MP(x o Z o p) o x)(w) < (MP(x 0 Z o p) o y)(W) V

(MP(x ° Z ° P) ° YXW) < (MP(x ° z ° P) ° XXW) (H6)
Slippose (MP(x o 2 ° 13) o XXW) < (MP(x ° 2 ° p) ° y)(W)
=> x(w) < y(w) (D10)

=> contradiction (H2, *)

=> (MP(x ° 2 ° p) ° y)(W) < (MWx ° z ° P) ° XXW)

=> y(w) < x(w) (D11)

=> contradiction (H2, *)
=> (MP(x o z o p) o x)(w) = (MP(x o z o p) o y)(w)

69

Dl3	 Vx,y,z:'P~rtw' Vp:'W~P' Vw:WP x(w) ~ y(w) => (MP(x 0 Z 0 p) 0 x)(w) ~ (MP(x 0 Z 0 p) 0 y)(w)

Proof:	 Let x(w) ~ y(w)

Assume (MP(x 0 Z 0 p) 0 y)(w) < (MP(x 0 Z 0 p) 0 x)(w)

=> y(w) < x(w) (D11)

=>, x(w) ~ y(w) (H5)

=> contradiction

=>, (MP(x 0 Z 0 p) 0 y)(w) < (MP(x 0 Z 0 p) 0 x)(w)

=> (MP(x 0 Z 0 p) 0 x)(w) ~ (MP(x 0 Z 0 p) 0 y)(w) (HI)

F6 Vx:'P~rtw' Vw:WP x(w) = w v x(w) = +I(w)

Proof: x(w) = w v x(w) = -R(x)(w) (F2)

=> x(w) = W v x(w) = +I(w) (FI, -R:'P~rtW' ~ 'P~~')

G5 Vx:'P~rtw' Vw:WP w ~ x(w)

Proof: w2 = x(w) => w ~ w2 (11)

=> w ~ x(w) (reflexivity of =)

H4	 VWl'wZ:WP wl < w2 =>...., w2 < wl

Proof:	 Let wl < w2

=> wl '#w2 (H2)

and wl ~ w2 (+) (HI)

Assume w2 < wl

=> w2~wl (HI)

=> wl =w2 (H3, +)

=> contradiction

H5	 VWl,w2:WP wl < w2 =>...., Wz ~ wl

Proof:	 Let wl < w2

=> wl '#w2 (H2)

and wl ~ w2 (+) (HI)

Assume w2 ~ wl

=> wl =w2 (H3, +)

=> contradiction

=>, w2~ wl

H6	 Vx,y:'P~rtw' Vw:WP x(w) '# y(w) => x(w) < y(w) v y(w) < x(w)

Proof: Suppose x(w) '# y(w) (+)

=>,x(w) ~ y(w) v x(w) < y(w) (H3)

=> y(w) ~ x(w) v x(w) < y(w) (G4)

=> ~<~v~=~v~<~ ~)

=> x(w) < y(w) v y(w) < x(w) (+)

13 Vx,y:'P~rtw' Vw:WP «x(w), y(w» => (x 0 -R(+-(x, y»)(w) = y(w).

Proof: Suppose «x(w), y(w»

=> x(w) '# y(w) (+) (H2)

and ~(x(w), y(w» (HI)

=> (x 0 +-(x, y»(w) = y(w) (.) (12)

=> +-(x, y)(x(w» = y(w) (*) (A3)

69

D13 Vx,y,z:‘P—>"W’ Vp:‘W—)P’ sWP x(w) S y(w) => (MP(x o z o p) o x)(w) $ (MP(x o z o p) o y)(w)

Proof: Let x(w) s y(w)

Assume (MP(x ° z ° 13) ° y)(W) < (MP(x o z ° p) o x)(W)
=> y(w) < x(w) (D11)

=> —-1 X(W) S y(W) (H5)
==> contradiction
=> —. (MP(x ° Z ° P) ° Y)(W) < (MP(x ° Z ° P) ° XXW)

=> (MP(x 0 Z 0 p) o x)(w) S (MP(x 0 Z 0 p) o y)(w) (H1)

F6 s‘P—anW’ Vw:WP x(w) = W v x(w) : +l(w)
Proof: x(w) = w v x(w) = -R(x)(w) (F2)

=> x(w) = w v x(w) = +1(w) (Fl, -R:‘P——>fiW’ —> ‘P—9¢W’)

G5 Vx:‘P——)“W’ Vw:WP W S x(w)
Proof: w2 = x(w) :> W S wz (Il)

=> w $ x(w) (reflexivity of ==)

H4 Vw1,w2:WP w] < wz => —-: W2 < WI

Proof: Let “’1 < WZ
=> w] # wz (H2)
and w] S WZ (+) (H1)

Assume w2 < W1
=> WZ S WI (Hl)
=> WI = wz (H3. +)
= contradiction

= '1 WZ < W1

H5 Vw1,w2:WP W1< wz => ——. wz s WI

Proof: Let w] < wz
=> W1 # WZ (H2)
and WI 5 WZ (+) (H1)
Assume w2 S w1
=> W1 = wz (H3, +)
=> contradiction

=> -1 W2 5 WI

H6 Vx,y:‘P—)“W’ Vw:WP x(w) # y(w) => x(w) < y(w) v y(w) < x(w)
Proof: Suppose x(w) at y(w) (+)

:=, ——.x(w) S y(w) v x(w) < y(w) (H3)
=> y(w) S x(w) v x(w) < y(w) (G4)

==» y(w) < x(w) v y(w) -- x(w) v x(w) < y(w) (H3)
==> X(W) < y(W) v y(W) < X(W) (+)

I3 Vx,y:‘P—>"W’ Vw:WP <(x(w), y(w)) => (x o —R(->-(x, y)))(w) = y(w).
Proof: Suppose <(x(w), y(w))

=> x(W) # Y(W) ('i‘) (H2)
and $(X(W)‚ y(W)) (H1)
=> (X ° **(X, Y))(W) = Y(W) (*) (12)
= ***-(X, Y)(X(W)) = y(W) (*) (A3)

70

=> --(x, y)(x(w» = x(w) v --(x, y)(x(w» = -R(--(x, y»(x(w») (F2)

=> yew) = x(w) v --(x, y)(x(w» =-R(--(x, y»(x(w») (*)

=>(x, y)(x(w» =-R(--(x, y»(x(w») (+)

=> (x 0 --(x, y»(w) = (x 0 -R(--(x, y»)(w» (A3)

=> (x 0 -R(--(x, y»)(w) =yew) (*)

14 \fx,y:'P-7rtw" \fw:WP \fz:'P-7tw' w:WP (x 0 z)(w) =yew) => x(w) < yew)

Proof: Suppose (x 0 z)(w) = yew)

=> x(w) $; yew) (*) (11)

and z(x(w»"# x(w) (F3)

and z(x(w»"# yew) (A3)

=> x(w) "# yew)

=> x(w) < yew) (H3, *)

K1 \fp:'W-7P' \fw:WP PW(P(w») = PW(w)

Proof: ID(w) $; ID(w) => PW(MP(ID 0 p) 0 ID)(w» = PW(ID(w» (D4, x =Y=ID)

=> PW(MP(ID 0 p) 0 ID)(w» = PW(ID(w» (G1)

=> PW(MP(p)(w» = PW(w) (B4, B3, B1)

=> PW(P(w» = PW(w) (Cl)

,

The interpretation morphism 'PS' whose existence confirms soundness and completeness of the translation, has to

translate the relational description of the accessibility relation into a functional description where the

argument-value relation of the context access functions represents the transitions in the possible worlds structure.

Definition 5.2.4 The Interpretation Morphism 'PS

Given an MM-interpretation S =«~ 9t), ~ 'Wo) over the MM-signature~, the interpretation morphism 'PS

generates the following CL-interpretation SCL = «c, S~, ov, « 'WOJ Po»,!l!) (def. 4.2.2) over 'P:E(~) where

1. Cis a functional 'P:E(~)cstructure where the context symbols are interpreted as follows:

Interpretation of the non functional sort symbols:

Dc := Dm for all domain sorts D. (the domains are equal in all worlds)

Wc := 'W

WPc:= {<'J1J, P.> I 'We WC' Pe .f('Wo) and 'We p}

'ID'c:= {identity function on WPc-7WPC }

In the sequel we write the composition function in Calso as o.

For the definition of the context access functions we need some auxiliary functions "+n" which move on each

path exactly n steps forward:

For n ~ 0 let +n: WPc-7WPc with +n«'Wm,P.» = <'Wm+n,P.>,

'Wm and 'Wm+n being the m'th and m+n'th worlds in p(see lemma 5.1.7).

Let (+n 0 +m)(w) := +(n+m)(w). Since 9t1il is serial, all these +n functions are total.

As a notational convention we write projection of WP-tuples w to the world component with wlW and

projection to the path component with U1p.

Furthermore we use w",p := {w'IW I w'IP =U1p} to denote the set of worlds on a path.

70

“"-(x, y)(X(W)) = X(W) v +(x . y)(X(W)) = -R(+(x. y))(X(W)))
y(W) = X(W) v +(X. y)(X(W)) = -R(+(x. y))(X(W)))
*(x. y)(X(W)) = —R(+(x‚ y))(X(W)))
(x ° +(x. y))(W) = (x ° -R(+(x. y)))(W))
(x ° -R(+(x‚ y)))(W) = y(W)

U
U

U
U

U

I4 Vx,y:‘P—)“W’ Vw:WP Vz:‘P—->‘VV’ w:WP (x o z)(w) = y(w) => x(w) < y(w)
Proof: Suppose (x o z)(w) = y(w)

= X(W) S Y(W) (*)
2(X(W)) # XCW)

Z(X(W)) # Y(W)
X(W) # Y(W)
X(W) < y(W)

and
and
=>

=>

K1 Vp:‘W->P’ Vw:WP PW(p(w)) = PW(W)
Proof: ID(w) s ID(w) => PW(MP(ID o p) o ID)(W)) :: PW(ID(W))

=> PW(MP(ID o p) o ID)(w)) = PW(ID(w))
=> PW(MP(p)(W)) = PW(W)

=> PW(p(W)) = PW(w)

(F2)
(*)
(+)
(A3)
(*)

(Il)
(F3)
(A3)

(H3. *)

(D4, x = y = ID)
(GI)
(B4, B3, B1)
(C1)

The interpretation morphism "Ps, whose existence confirms soundness and completeness of the translation, has to

translate the relational description of the accessibility relation into a functional description where the

argument-value relation of the context access functions represents the transitions in the possible worlds structure.

Definition 5.2.4 The Interpretation Morphism ‘I’s
Given an MM-interpretation 8 = ((‘W. 5R). 'V; W0) over the MM-signature E, the interpretation morphism ‘PS
generates the following CL-interpretation SCL = ((C, 51/), ‘V, (< W0, :PO>), ?) (def. 4.2.2) over T201) where
1 . Cis a functional ‘Pz(2)C-structure where the context symbols are interpreted as follows:

Interpretation of the non ftmctional sort symbols:
DC := DW) for all domain sorts D. (the domains are equal in all worlds)
WC := 'W
WPC := {<«w, b l We Wo 1’6 firm/0) and ‘We 1’}

‘ID’ C: {identity function on WPC—>WPC }

In the sequel we write the composition function in Calso as o.

For the definition of the context access functions we need some auxiliary functions “+n” which move on each

path exactly 11 steps forward:
For n 2 0 let +n: WPC—>WPC with +n(<Wm,?>) = <Wm+n,1’>,

‘Wm and Wmm being the m’th and m+n’th worlds in :P(see lemma 5.1.7).
Let (+11 0 +m)(w) := +(n+m)(w). Since SR9 is serial, all these +n functions are total.

As a notational convention we write projection of WP-tuples w to the world component with l and

projection to the path component with ”4P-
Furthermore we use zu= := {w’lw I w’lp = w|p} to denote the set of worlds on a path.

71

Interpretation of the functional sort symbols:

'W~P' C := (p:WPc~WPcl p«'J1l, P.»,w = 'J1l, p is total)

'P~1tW' c := (~:WPC~WPcl VWE WPc 3n E 'J/!<. ~w) = +n(w)

and Vw'with w'IW = Ulw and ~w)IW E w'",p: ~wl = +n(w)}

(N!- is defmed in lemma 5.1.7,b. In particular 'P~!6W' c = (+1})

'w~1tW' c := {~:WPc~WPc 13~ E 'W~P' c 3~ E 'P~1tW' c ~= ~ 0 ~}

'D,W~1tW'c:= (~:Dc<WPc~WPCIVCEDc ~t) E 'W~1tW'cand VWEWPc (Ulw,~t)(w)IW) E9t~t)}

Interpretation of the constant symbols:

IDC is the identity function on WPc~WPc
IDLe is the identity function on Dc<WPc~WPc
+1c = +1 is the single element of 'P~"'W'c
+lLC:= +l£E 'D,W~!6W'cwith

VCE Dc +l£(t)(w) = +l(w) in case w= BF6t)(~ for some Wo E WPc

+lL1J)(w) = ~l)(w) otherwise, where ~is some element of 'D,W~!6W'C (uninteresting

case)

Interpretation of the function symbols:

V< 'J1J,P.> E WPC

PW6<'J1J,P.» = 'J1l, i.e. PWc= IW'

VCE Dc

BF6t) = ~ where ~E 'P~rtw' C and VWE WPC (~w)IW' (~o +l)(w»IW) E 9t!6(t)

and ~w)IW is the first world among the !t.w)w with (!t.w),w, (yo +l)(w»IW) E 9t!6(t).

VWE WPc
PA6w) =pwhere pE 'W~P'C and Vw' E WPcif w'IW = Ulw then]i.,w') = w else p(wl = w'

V~E 'W~rtw'c

MP67() E 'W~P' c with MP67()«'J1J,P.» = <'J1J, ~<'J1J,P.»IP>'

Vl(;yE 'w~rtw' C

MW67() E 'P~1tW' c

with MW67()«'J1J, (~o y)«'J1J,P.»IP» = <~<'J1J,P.»IWJ (~o y)«'J1J,P.»,p».

otherwise MW67()«'J1l,P.» = <~<'J1J,~>IWJ P.»

V~E 'w~rtw' C VyE 'D,W~rtW'C

LT61(; y) E 'D,W~rtw' c such that VCE Dc ~o !t.t) = LT61(; y)(t)

V~E 'X~TYW' c where X E lW, P} and YE (00. t}

.R67()=y where yE 'X~YW'c andVwE WPcsuchthat

if ~w) i:- wthen ~w) = !t.w) else ~w) = +l(w).

V~E 'P~tw'c VWE WPc
if ~w) = +(n+l)(w) for some o>D then FS67()(w) = +n(w)

else FS67()(w)=+1(w) (irrelev8ntcase)

V~E 'p~rtw' C \ 'p~tw' CVWE WPc

if ~w) = +(n+l)(w) for some n2:D then FS67()(w) = +n(w)

else FS67()(w) = w (irrelevant case)

Vl(;yE 'P~rtw'CVWE WPc
if ~w) = +n(w) for some n and

!t.w) = +m(w) for some m ~ n then +-67(, y)(w) = +(m-n)(w)

else +-67(, y)(w) = w (irrelevant case)

Interpretation of the predicate symbols

$;c := {(wI JU2) I wI JU2 E WPc and U2 = +n(wl) for some n ~ D}

<c := {(wIJ U2) I wIJU2 E WPc and U2 = +n(wl) for some n > D}

71

Interpretation of the functional sort symbols:

‘W—->P’C := {p:WPC—+WPCI p(<W.. ?>)lw = 'WaPiS total}
‘P—eRW’C := {m:WPC—WVPCI Vwe WPC an 6 Mi ‚((w) =+„(w)

and Vw’with 10"“, = MW and «WNW e w'gp: ((a/') = +n(w)}
(M is defined in lemma 5.1.7,b. In particular ‘P—->°W’C = {+1})

‘W—fiW’C := {a:WPC—WVPCI 3l e ‘W—>P’ C we ‘P—fiW’C x: ;[Po KW}

‘D‚W——>RW ’ c := {23D CxWPCaWPCI‘c/t e D c aft) e ‘W—aRXV’Cand Vwe WPC (144w,:((t)(w)lw)e $30)}

Interpretation of the constant symbols:
IDC is the identity function on WP C-—>WP c
IDLC is the identity function on D LxWPC—WVPC

+1 (: = +1 is the single element of ‘P—>“”W’C
+1LC := +1L e ‘D,W—>¢W’Cwith

e D C +1£(t)(w) = +1(w) in case w : BFC(£)(w0) for some wo e WPC
+1L(£)(w) : ;(i) otherwise, where xis some element of ‘D,W—>¢W’ c (uninteresting

case)

Interpretation of the fimction symbols:
VCM/‚?> e WPC

PWC(<‘W‚1>>) = W, Le. PWC= ‚W.
VIE D C

BFC“) : it. where ace ‘P—>“W’ C and Vwe WPC (@@‚w, (;(o +1)(w))|w) & 539(1)
and {w)‚w is the first world among the y(w)w with (5(a))lw, (y o +1)(w))|w) € 9390).

Vwe WPC
PAC(w) = pwhere pe ‘W——>P’ C and Vw' & WPC if WIIW = w|w then p') = w else p(w') = w’

Vxe ‘W—W‘V’ C

MPC“) e ‘W——>P’ c with MPC(;()(<’WAP>) = <‘W, ad<‘W,fP>)|P>.
me ‘W—>“W° C

MW(fix) e ‘P—>‘RW’C
with nak'm (im y)<<m>).p>) = <a£<W1P>)|w:(?c° y)(<m>).p>).
otherwise MWC(x)(<‘W‚:Zb) = <fi<w®>‚w‚ %)

Vxe ‘W—WW’ C Vye ‘D,W—>“W’C
LTC(;(‚ y) e ‘D,W—->“W’C such that Vie Dd {0 y“) : LTC(:c‚ y)(£)

Vzce ‘X—WW’C where X e {W, P} and Y e {"" t }

-RC(2() = y where ye ‘X—9YW’C and Vwe WPC such that
if 4w) # w then (w) = y(w) else ‚((w) = +1(w).

Vice ‘P—>1W’C Vwe WPC
if 74w) = +(n+1)(w) for some n>0 then FS c(;()(w) = +n(w)

else FS £(ar)(w) = +1(w) (irrelevant case)
Vzce ‘P—ertW’C \‘PatW’CVwe WPC

if xiv) = +(n+1)(w) for some n20 then FS c(’Ö("”) = +n(w)
else FS C(:()(zu) = zu (irrelevant case)

m6 ‘PAW’CVWE WPC
if pdw) : +n(w) for some n and

y(w) : +m(w) for some m 2 n then +C(7c, y)(w) : +(m-n)(w)

else +605 y)(w) = w (irrelevant case)
Interpretation of the predicate symbols

SC := ((2:21, w2)lw1, “’2 e WPC and w; = +n(w1) for some n 2 0]
<a := {(2121, 102) l "’1' wz e WPC and "’2 = +n(w1) for some n > 0}

72

2.	 S'J'maps the tuple <'W, P> to its element 'Wwhich is a rr:E~)D-structure.

3.	 The path Po in the initial context of SCL as well as the !P-component are irrelevant for the interpretation of

closed formulae and may be chosen at random.

The inverse interpretation morphism 'P.5-1 generates from the CL-interpretation

SCL = «C, s11, 'V, (w~, fP) the MM-interpretation S = «(WCO 9t), 'V, PWJwo)) where

a) 9t~:= (PWJw), PWJ~w))) I ~E 'P-7~' C wE WPcl
For WE WPc let ~w):= (PWJ~w)) I~E 'p--7I1W' c l. ~w) is the path described by w.

b) ~~:= (~w) IPWJw) = 'J11
c) A transition 9t~'W1' 'Wz) is labeled with a label (

iff 3 ~E 'D,W-7~' C 3WE WPc with 'W1 = PWJw) and 'Wz = PWJ~~ w)) •

The next lemmas confirm that the interpretations of the functional context sorts are rich enough to reach all

accessible worlds and paths.

Lemma 5.2,.5 The 'W-7P'·Functions Reach all Path Crossing a World.

Given an MM-interpretation S = «~ 9t), ~ 'W~ and the translated interpretation SCL'

'v''WE 'W, Po E ~'W~ with 'WE PO: PE ~'M ~ 3 pE 'W-7P' c p«'J1l,Po» = <'J1l,P>.

Proof: "=>" ,

The function pwith p«'J1l,Po» = <'J1l,P> and p(w) = wfor all w::f:. <'J1l,Po> is total and therefore in 'W--7P'c

N{:::" Since p E WPc--7 WPC' 'WE P and therefore PE ~'M. •

Lemma 5.2.6 The 'P-7~W'·Functions Reach all 9t~Accessible Worlds on a Path.

Given an MM-interpretation S = «~ 9t), ~ 'W~ and the translated interpretation SCL'

'v''WE 'Jtl, PE ~'M: ('W1 E Pand 'Wz E Pand 9t~'W1' 'Wz)) ~ 3 ~E 'W--7qq>'C ~<'W1'P» = <'Wz,P>·

Proof: "=>" 9t~'W1' 'Wz} implies there is an n E ~ such that 'Wz is reached from 'W1 in n 9t~-transitions on P

(lemma 5.1.7,b). We simply select ~:= +nE 'W--7qq>'C

"{:::" ~<'W1'P» = +n«'W1,P» for some n E ~.

Hence, 'W1 E Pand 'W2 E Pand 9t~'W1' 'Wz) (lemma 5.1.7,b). •

Lemma 5.2.7 The 'W--7~W'·Functions Reach all 9t~Accessible Worlds.

Given an MM-interpretation S = «~ 9t), ~ 'W~ and the translated interpretation SCL'

'rj 'W1, 'Wz E 'JY. 9t~'W1' 'W2) ~ '3 ~E 'W-7~' c 'rjPwith 'W1E P: ~<'Wl,P»IW ='Wz·

Proof: "=>" 9t~'Wl' 'Wz) implies there is a path P' containing 'W1 and 'W2 and there is an n E ~ such that 'Wz

is reached from 'W1 in n 9t~-transitions on P' (lemma 5.1.7,b). According to lemma 5.2.5, for a given P

containing 'W1 there is a pE 'W-7P' c with p«'W1,P» = <'W1,P'>. Now we select ~:= po +n and get

~<'W1,P.»IW ='Wz·

"{:::" ~<'W1'P» = (~o ~ «'W1,P» for some ~ E 'W-7P' c and 7(w E 'P-7~' C

With the two previous lemmas we get 9t~'W1' 'Wz). •

72

2 . S'Vmaps the tuple <'W, {Eb to its element 'tich is a 1'12(Z)D-structure.

3 . The path 1}) in the initial context of SOL as well as the {!”-component are irrelevant for the interpretation of
closed formulae and may be chosen at random.

The inverse interpretation morphism ‘I’S'l generates from the CL-interpretation

SOL = ((C, 5%, ‘V; (wo), :P) the MM-interpretation 5 = ((Wo 9i), ‘V; PWC(w0)) where

a) SKK: {(PWCOw), PWc(a(w))) l ‚Ce‘P—aRW’C we WPC}
For we WPC let 'I-(w) := {PWC(;((w)) l {E ‘P——>"W’ C] . f(w) is the path described by w.
b) 51%) == {@(w) IPWCW) = 'M
c) A transition 950%, W?) is labeled with a label [

iffEl ‚ce ‘D,W—>RW°C Ewe WPC with W1: PWAw) and wz = PWCbcfl w)) I

The next lemmas confirm that the interpretations of the functional context sorts are rich enough to reach all
accessible worlds and paths.

Lemma 5.2.5 The ‘W—>P’-Functions Reach all Path Crossing a World.

Given an MM-interpretation S = ((‘W; SR), ‘V. Wo) and the translated interpretation SGL,
V‘We ‘W, EPO e f(WO) with We To: 526 90W) (=> El p e ‘W—>P’C p(<«w‚5’0>) = <‘W‚1’>.
Proof: “=>”
The function p with p(<‘W‚£PO>) : <‘W‚'_P> and p(w) : wfor all wait <‘W‚£PO> is total and therefore in ‘W—>P’C
”<=” Since p e “IPC—> WPc, We a and therefore 1’e my). I

Lemma 5.2.6 The ‘P—> ”(Wk-Functions Reach all ER R-Accessible Worlds on a Path.
Given an LAM-interpretation S = ((W, ER), ‘V. WO) and the translated interpretation SOL,
VWe w, EPe mu): (W1 6 .‘Pand WZ e :Pand Staci/VI, WZ» => 3 ice ‘W—aflp'c «Wye-b) = <‘W2‚T>.
Proof: “=>” ERROR/l, W?) implies there is an n e M such that W2 is reached from ‘Wl in n 9i¢-transitions on 1’

(lemma 5.1.7,b). We simply select xi= +n e ‘W—fliP’c
“<=” {(CH/1,55) : +n(<‘W1‚?>) for some n e MK
Hence, W1 e fand W2 e {Fand 9%“?(‘14/1, W2) (lemma 5.1.7,b). I

Lemma 5.2.7 The ‘W—aRWüFunctions Reach all ERR-Accessible Worlds.
Given an MM—interpretation S = ((W, 9i), ‘V; 'Wo) and the translated interpretation SGL,
v W1, W26 w WWW], wz) e. 3 me ‘W-eRW’C Vei-th ‘Wle r. «WI/1.15”“, = ‘WZ.
Proof: “=>” SRXCWI, W2) implies there is a path .‘P’ containing ‘wl and W2 and there is an n e N?- such that W2
is reached from ')?!)1 in n Ema-transitions on LP ’ (lemma 5.1.7.13). According to lemma 5.2.5, for a given ?
containing ‘Wl there is a pe ‘W——>P’C with p(<wl,r>) = <'W1,:P’>. Now we select { :2 po +7: and get
xi<W1‚1’>)|W = W2.
“<=” 7((<‘W1,£P>) = (Xp o 70") (<q/VI,?» for some 7(1) e ‘W—aP’C and ’fw e ‘P-aRXV’ C.

With the two previous lemmas we get SRW‘WI, W2). l

73

Lemma 5.2.8 The 'D,W~!.tW'-FunctionsCover all Labeled 9\~Transitions.

Given an MM-interpretation S = «'J1I, 9\), ~ 'Wo> and the translated interpretation SCL'

V 'Wl , 'W2 E ~ [E Le ('Wl , 'W2) E 9\~t) (:::> 3 ~E 'D,W~1?w' c VPwith 'WlE P. ~t)«'Wl/P.»IW = 'W2•

Proof: ('Wl , 'W2) E 9\~t) implies there is a path p' containing 'Wl and 'W2 and there is an n E 91/!- such that 'W2

is reached from 'Wl in n 9\l/l-transitions on P' (lemma 5.1.7,b) and at least the last one is labeled with f. As in

lemma 5.2.7 we select ~t):= po +nE 'W~!.tW'C and get ~t)«'Wl/P.»IW = 'W2• Since there is no further

restriction on 'D,W~1?w'C' ~E 'D,W~1?w' C

"<=:" Since ~E 'D,W~1?w' C (W1w, ~t)(w)IW) E 9\~t) per defmition. -

We are now going to prove the 3-Quantifier Independency Lemma (def. 4.3.5) which ensures that the

Skolemization in the translation from CL to OSPL is sound. Without this lemma, the translation from MM-Logic

to CL would be useless.

Lemma 5.2.9 The 3-Quantifier Independency Lemma

Given an MM-interpretation S = «~ 9\), ~ 'Wo> and the translated interpretation SCL'

a) For all WE WPcand for all3-quantified sets YI:; 9'" ofWPc~ WPC context access functions:

3 yE 9"': V ~ E 'W~rtw' C' ~ E Y !A~(w» = Yi(~(w».

b) For all WE WPC [E Dcand for all3-quantified sets YI:; 'D,W~rtw' C
3 yE 'D,W~rtw'CV~ E 'W~rtw' C' ~ E Y !At)(~(w» = ~(t)(~(w».

Proof: a) Case 9'" == 'W~P' C
Select yE 'W~P'c with !A~(w» = ~(~(w». Since there is no restriction on 'W~P'C' such a selection is always

possible. (Notice that we exploit that two different ~ do not map the same ~(w) to different worlds.)

Case 9'" = 'P~1?w' C
The functions zE 'P~1?w'care restricted in such a way that whenever z«'Ul,Pl» = <'Wn,Pt>, for all paths P2
having at least the part until 'Wn in common, z«'Ul,P2» = <'W ,P2>. Therefore the existence of yf; 'P~1?w' c isn
not obvious. Fortunately the 3-quantified sets in 'P~1?w'care restricted in a similar way to match the restriction

on the functions themselves. According to the semantics of the MM-Logic operators (see the remark after def.

5.1.5), existence of a world on a path always means that the following situation never occurs:

common part

11

i.e., whenever on a path Pt the existence of a world 'Wt with a certain property is postulated then for all other

paths containing 'Wt , this world 'Wt is chosen as well. Therefore yis restricted to not containing functions ~ and

Yk mapping 'W to 'W1 and 'W2 in the above way. Thus, we can again choose y E 'P~ !.tW· c with

y(~(w»== ~(~(w».

Case 9'" = 'w~1?w'c

Since for all"* E 'w~1?w' c "* = -*p o"*w where -*p E 'W~P' c and"*w E 'P~!Rw' ewe have

Yi(~(w» = (YiP 0 Yiw)(~(w» =~W(-*p(~(w». Exploiting the results of the two previous cases, we find a Yp E

'W~P' c and a Yw E 'P~1?w' c such that Yiw("*p(~(w» =(Yp 0 Yw)(~(w». Hence we choose y:= Yp 0 Yw E

'w~'1W' c

b) The arguments are the same as in the last two cases of a). -

73

Lemma 5.2.8 The ‘D,W—-> KW’-tctions Cover all Labeled ERR-Transitions.
Given an Lad-interpretation S = ((W, SR), ‘V, W0) and the translated interpretation SGL,
v ‘Wl, % e w. [6 LC (W1,W2)e amt) @ 3 {e ‘D,W—>’<w'c Vfl’with W16 :p. man/1.9),“, = ‘wz.
Proof: (W1, W2) 6 SR3“) implies there is a path :P' containing ‘Wl and W2 and there is an n @ MK such that W2
is reached from wt in n 9i¢-transitions on ‘.P ' (lemma 5.1.7,b) and at least the last one is labeled with £ As in

lemma 5.2.7 we select do := p o +n & ‘W—fllW’ C and get dl)(<W1‚:P>)|w = W2. Since there is no further
restriction on ‘D,W——>RW’0 ;(e ‘D‚W—>RW’ c .
“<=" Since me ‘D,w—>f<W'C‚ (MW, @(w)‚w) e 91%) per definition. I

We are now going to prove the EI-Quantifier Independency Lemma (def. 4.3.5) which ensures that the

Skolemization in the translation from CL to OSPL is sound. Without this lemma, the translation from MM—Logic
to CL would be useless.

Lemma 5.2.9 The EI-Quantifier Independency Lemma
Given an MM-interpretation 3 = ((W, 9i), ‘V, Wo) and the translated interpretation SCL’

a) For all we WP Cand for all El-quantified sets of; 9" of WPC—> WP c context access functions:
3 ye £)”: V ’fi e ‘W——>“W”c, 3i 6 9’ y(7ci(w)) = yi(7ci(w)).

b) For all we WPC, [e Dcand for all El—quantified sets of; ‘D,W—>“W’C°

3 ye ‘DaW—inw’d Wi € ‘W—WW’C» 91 € 9’ 9(0(ri(w» = yi(l)(xi(w))-
Proof: a) Case 9" = ‘W—>P’C:

Select ye ‘W—>P’ c with y(xi(w)) = gum). Since there is no restriction on ‘W—>P’ 0 such a selection is always

possible. (Notice that we exploit that two different Iii do not map the same ;q(w) to different worlds.)

Case 9” = ‘P—aRW’C;
The functions z e ‘P—flfW’ C are restricted in such a way that whenever z(<w,'£1>) = <Wn,1’1>, for all paths 5P2
having at least the part until ‘w“ in common, a(<'W,:P2>) = <fw„,r_:>2>. Therefore the existence of ye ‘P—fiW’ (: is
not obvious. Fortunately the E-quantified sets in ‘P—äfiw ’ C are restricted in a similar way to match the restriction
on the functions themselves. According to the semantics of the MM-Logic operators (see the remark after def.
5.1.5), existence of a world on a path always means that the following situation never occurs: ‘

5%

jg— /n

common part
‘“é

%
i.e., whenever on a path 1’1 the existence of a world W1 with a certain property is postulated then for all other
paths containing WI, this world W1 is chosen as well. Therefore 9’ is restricted to not containing fimctions y; and
yk mapping ‘W to ‘Wl and W2 in the above way. Thus, we can again choose y e ‘P—> KW’ c with
y(xi(w)) = yi(?q('w'))-

Case 9’ = ‘W—aKW’C
Since for all ä e ‘W—fiW’C yi = yip o yiw where MP 6 ‘W—)P’ C and MW & ‘P—fiW ’ Cwe have
yi(xi(w)) = (yiP o .'fiw)(’fi("”)) = .‘iiW(9iP(’fi(w))- Exploiting the results of the two previous cases, we find a 3P e
‘W—aP’ C and a W e ‘P—fiW’C such that yiw(yip(xi(w)) == (yP o yw)(’Ci(’w))- Hence we choose y := yP o 9W e
‘W—eflW’c

b) The arguments are the same as in the last two cases of a). I

74

Lemma 5.2.10 'PS(g) is well defined.

For an MM-interpretation g = «ow. 9t), 'v. 'Wo)' geL:= 'P~(g) =: «c, s11, ~ «'Wo' Po», !P) is a signature

interpretation over 'Pl:O:).

Proof: To show this we must check

a)	 whether the interpretations of the sort symbols are nonempty sets,

and especially whether the interpretations of the functional sorts are sets of total functions.

b) whether all subsort relations are realized by corresponding set inclusions,

c) whether the sort declarations for the composition function symbol (def. 5.2. I ,c) are realized by the

composition function in C,

d) whether the sort declarations for the application function (def. 5.2.I,c) are realized by the application

function in C, and

e) whether the interpretations of the generated constant, function and predicate symbols meet their sort

declarations.

a)	 The interpretations of the sort symbols are nonempty sets:

Dc =D'nOwhereDisadomainsort:D'nO#~' (def.5.1.3,1)

WC = 'W. 'Wo E 'W

WPc= {<11/, P> I 'WE W() PE f('Wo) and 'WE P}

Since Wc # 0, there is at least one tuple <'Wo' {'Wo'''} > E WPC

'W~P' c'= {p:WPc~WPcl p«1I/, P»IW = 'Wand pis total}

At least the identity function is in 'W~P'c

'P~~'c:= {~WPc~WPcl '<:IwE WP 3nE 'JI!-- ~w)=+n(w)
c

. and '<:Iw'with w'IW = Wiw and ~w)IW E w'",p: ~W) = +n(w)}

The +l-function is in all 'P~~' c-sets. Therefore they are not empty.

The functions are total because the +n-functions are total.

'W~~'c= {~WPc~WPcI3~E 'W~P'c 3~E 'P~~'c ~="P0~}

Since 'W~P' c# ~ and 'P~~'c #~, the composition of a least one 'W~P'-function and one

'P~~'-function is in 'W~~' c
Since the components are total functions, the 'W~~'-functions are total as well.

'D,W~~' c= {~LcWPc~WPcl '<:ICE Lc ~C) E 'W~~' cand '<:IWE WPc (Wiw, ~C)(w)IW) E 9t~0}

'W~~'c# ~ and the seriality oflabeled transitions (def. 5.1.3,2e) implies 'D,W~~'c # ~ and the

functions are total.

b) All subsort relations are realized by corresponding set inclusions.

The subsort relationships are:

'w~rtw'

"'---1:---­
'W~rW' 'p~rtw' 'w~tw'

,w~~~ltw'

"/~I~

'ID' 'p~~'

'ID'c~ 'W~p'c:

Since 'ID'c = {ID } and ID «11l,P»w= 'W,IDcE 'W~P'c' Le. 'ID'c~ 'W~p'c
c c

'ID' c 'p~rw' .
c- c-

IDc = +0 E 'p~rw' c'

'W~p' C 'W---->.TUT' •C - -n c'

Let ~E 'W~P' c-.Since ~ =~o IDc and IDeE 'p~rw'c' ~E 'W~rw'candtherefore

'W~P'c ~'w~rw'c-

'P~~'c ~ 'W~~'c' '.N..E {0,r, t,rt}:

Let ~E 'p~~'c' Since ~ = IDc 0~ and IDcE 'W~p'C' ~E 'W~~'cand therefore

74

Lemma 5.2.10 ‘Ps(8) is well defined.
For an MM-interpretation 8 = ((W, ER), ‘V; W0), SGL := ‘I’s(8) =: ((C, S’V), ‘V, (<‘Wo; :Po>)‚ 9) is a signature
interpretation over T201).
Proof: To show this we must check

a) whether the interpretations of the sort symbols are nonempty sets,

and especially whether the interpretations of the functional sorts are sets of total functions.

b) whether all subsort relations are realized by corresponding set inclusions,
c) whether the sort declarations for the composition function symbol (def. 5.2.1 ,c) are realized by the

composition function in c,
d) whether the sort declarations for the application function (def. 5.2.1,c) are realized by the application

ftmction in c; and

e) whether the interpretations of the generated constant, function and predicate symbols meet their sort
declarations.

a) The interpretations of the sort symbols are nonempty sets:
DC = DW) where D is a domain sort: DW) # es. (def. 5.1.3,1)
WC = 'W. W0 6 “W
WPC= {<«w, 13> I We Wo fl’e !(Wo) and We ?}

Since Wczt a, there is at least one tuple <‘W0, {W0...]> e WP ()
‘W—äP’C ‚= {p1WPC—>WPCI p(<‘W, 11>)IW = ‘Wand p i s total}

At least the identity function is in ‘W-—>P’ C.

‘P—fiW’Ö: {zaWPcaWPCI Vwe WPC Eln 6 Mi (w) = +n(w)
and Vw’with w’lw = “‘IW and aim)”, € w’zpz :dw') = +n(w')}

The +1-function is in all ‘P—fiW’ C—sets. Therefore they are not empty.
The functions are total because the +n—functions are total.

‘W-—>RW’C= {nPC—WVPCI Exp 6 ‘W—>P’C Exw e ‘P—e’WV’C x= "P o W}
Since ‘W—aP’ C# a and ‘P—fiW ’ C at a, the composition of a least one ‘W—aP’-function and one
‘P——>£W’-function is in ‘W-—->RW’C
Since the components are total functions, the ‘W—a'xwäfunctions are total as well.

‘D,W—>RW’C= {acxWPC—aWPCI We LC ‚((o e ‘W—ßW’Cand Vwe WPC („W,
‚((ocwnw) e 91%}

‘W—flW’Ci a and the seriality of labeled transitions (def. 5.1.3 ,2e) implies ‘D,W-—>RW’C $ e and the
functions are total.

b) All subsort relations are realized by corresponding set inclusions.
The subsort relationships are: '

‘W—)"W’
‘w TW, :P “w, sw'_) tW’ ‘/D,W_)fl{

——> —->
/ I K % It ‘D,W—) rw, ‘D,W-—> tw,

‘W_>P’ ‘P—-> W’ ‘W _) ’ ‘P—> W’ \ /
\ / \IQ’W/ ‘l)"w__> 9W:

CID! £P__) l

‘ID’ C; ‘W——>P’ C:
Since ‘ID’C = {IDC} and IDC(<‘I/V‚£P>)w = w,.mCe ‘W—>P’C‚ i.e. ‘ID’ cc; ‘w-—>P° C

‘ID’Cg ‘P—>TW’C:
IDC : +05 ‘P—fW’C.

‘W—>P’C g ‘W—fW’C:
Let me ‘W——)P’ C ., Since :(, = ace ID C and ID Ce ‘P—erW’ C , ;ce ‘W—>‘W’Cand therefore

‘W—>P’C ; ‘w—>rW’C.
‘P—ARW’C g; ‘W—fiW’C, Re {¢,r, t, rt]:

Let ‚te ‘P—aflW’c. Since x = IDC o it and IDCe ‘W—aP’C, ice ‘W—aW’Cand therefore

75

'P-7~' c-C 'W-7~' C
'P~PW' c ~ 'P-7qW' C according to the above sort lattice.

The subset relationships follow trivially from the definition of the 'P~~' -functions and the

corresponding subset relationships of 'Jo/!- (lemma 5.1.7,b).

'W-7PW'c ~ 'W~qw'C' p and q according to the sort lattice.

Let ~E 'W-7PW' C' i.e. 3~ E 'W~P' 3~ E 'P~PW' c ~= ~ 0 ~.

Since 'P~PW' c ~ 'P~qw' c (see the above cases), ICw E 'P~qw' c

Hence, ~E 'w~qw'c and consequently 'W-7PW'c ~'w~qw'c

'D,W-7PW'c ~ 'D,W~qW' C' P and q according to the sort lattice.

Let ~E 'D,W~PW'C' i.,e. \;feE Dc ~l) E 'W-7PW'c.

Since 'W~PW' c ~ 'w~qw' c (see the above cases),\;f{E Dc~t) E 'W~qw'c

Hence, ~E 'D,W-7qW' C' and consequently 'D,W-7PW'c ~ 'D,W-7qW'c

c)	 The sort declarations for the composition function symbol are realized by the composition function in C

The sort declarations are (def. 5.2.1,2c):

0:	 'W~PW'x'w~qw' ~'W~sW' and 0: 'W~PW' x 'W~P' -7 'W~PW'

'P-7PW' x 'P-7qW' ~ 'P~sW' 'W-7P' x 'W-7qW' ~ 'w~qw'

'D,W~PW' x 'D,W~qW' ~ 'D,W-7sW' 'W-7P' X 'W-7P' ~ 'W-7P'

where s is derived from p and q with the following matrix:

~ ~ r t rt

~ t t t t

r t rt t rt

t t t t t

rt t rt t rt

We begin with 'P-7PW' x 'P-7qW' -7 'p~sW':

Let ~E 'P~PW' C' yE 'P-7QW' C and WE WPc
ko y)(w) =(+n o +m)(w) =+(n+m)(w) for some n E ~ and mE 'lIf}.

The different cases for p,q and s are now trivially to be verified.

'W~P' x 'W-7P' ~ 'W-7P':

LetpE 'W~P'C' qE 'W~P' C and <'W,P.> E WPC

(p 0 q) «'f1/,P.» = q«'f1/,P1»

= <'f1/,P2>·

Thus, po qE 'w-7P'c.

'P~~' X 'W-7P' ~ 'W~~':

Let ~E 'P~PW'C' pE 'W~P'C' w =<'Wn,P.> E WPC

(~o p)«'Wn,P.» =P«'Wn+m,P.» for some m ~ 0

=<'Wn+m,p'> for some path p'

~ 'W E P'
n
Therefore we can define q«11l,P.»:= <11l,p(~<11l,P.»)IP>, qE 'P~PW' C

We have ~q«11l,P.») =~<11l,p(~<11l,P.»)IP»

=~p«11l,~<11l,P.»IP») (p doesn't change worlds)

= ~p«11l,P.») (~does not change paths)

~~op=qo~

~ ~o P E 'W-7~'

75

‘P—fiW’ C ; ‘W—flW’c
‘P;>PW’ C _C_ ‘P—>qW’ C according to the above sort lattice.

The subset relationships follow trivially from the definition of the ‘P—afiwhfunctions and the
corresponding subset relationships of nö (lemma 5 . 1.7 ,b).

‘W—ePW’ c ; ‘W—ä‘lW’O p and q according to the sort lattice.

Let ;(e ‘W—äPW’o i.e. Exp 6 ‘W—aP’ 3x“; 6 ‘P—äPW’C 7c: KP o ’(W‘

Since ‘P—->PW’ c ; ‘P-—>‘1W’C (see the above cases), ’Cw e ‘P-—>‘1W’ c
Hence, xe ‘W—)‘1W’C and consequently ‘W—aPW’C ; ‘W—flW’C

‘D,W—>PW’ C _c_ ‘D‚W—>‘1W’ 0 p and q according to the sort lattice.
Let :ce ‘D,W—>PW’0 i.'e. VIE DC xfl) e ‘W—WW’C.

Since ‘W—>PW’ (: g ‘W—a‘lW’ C (see the above cases),V[e D c ad!) & ‘W—HW’C

Hence, {6 ‘D,W——>‘1W’ 0 and consequently ‘D,W—->PW"C ; ‘D,W—>qW’c

c) The sort declarations for the composition function symbol are realized by the composition function in 0
The sort declarations are (def. 5 .2.1,2c):

o: ‘W—aPW’ x ‘W—>‘1W’ _) ‘W—>SW’ and o: ‘W—APW’ x ‘W——>P’ _) ‘W——>PW’
‘P——>PW’ x ‘P—>‘1W’ ——> ‘P—>SW’ ‘W—>P’ x ‘W—>‘1W’ ——-> ‘W—>‘1W’
‘D,W—>PW’ x ‘D,W—->‘1W’ —> ‘D,W—>SW’ ‘W—>P’ x ‘W——>P’ —> ‘W——>P’

where 3 is derived from p and q with the following matrix:

p @ r t rt

95 t t t t

l' [It t 11

t t t t t

rt t 112 t 11,

We begin with ‘P—arPW’ x ‘P—>‘1W’ —+ ‘P—aSW’:
Let && ‘P—WW’C, ye ‘P—>qW’C and we WPC
(to y)(w) = (+no +m)(w) = +(n+m)(w) for some n e N? and m e Wfl.
The different cases for p,q and s are now trivially to be verified.

‘W—>P’ x ‘W—>P’ _) ‘W—>P’:
Let pe ‘W—>P’c, qe ‘W——>P’ C and <‘W‚:P> & WPC

(p o q) «w» = 4 em?)
= <'W,1’2>.

Thus, p o g € ‘W—J'P’C.

‘P—fiW’ x ‘W—>P’ _) ‘W—fiW’:
Let ace ‘P—>PW’0 pe ‘W—->P’c„w = <‘Wn,:P> e WPC.
(;Co p)(<Wn‚‘P>) : p(<wn+m,£'>) for some m 2 0

= <Wn+m,1>’> for some path EP’
=> ‘Wn e 1”

Therefore we can define q(<‘W,‘_P>) := <‘Pl/,p(;((<fw‚1’>))fp>, qe ‘P—>PW’ 6
We have «(<a-41,9»): «Madmen?»

= dp(<’W.x(<‘W.?>) |P>)) (p doesn’t change worlds)
= dp(< W..1P>)) (radoes not change paths)

=> ?C° P = q ° &
=> 7('.° p € ‘W—flÜÄP

76

'W---:;'Xw' x 'W---:;P' ---:; 'W---:;'Xw':

Let ~E 'W---:;PW'cand pE 'W---:;P'c'

~o p = ~ 0 "w 0 p "w E 'P---:;'Xw'

=~oqo~w (above case)

= p'o ~w (p'E 'W---:;P')

=> ~ 0 pE 'w---:;'Xw' .

'W---:;PW' X 'W---:;qw' ---:; 'W---:;SW':

Let ~E 'W---:;PW'cand yE 'W---:;qw'c

~o y = ~ 0 ~w 0 Yp 0 Yw (def. of 'W---:;PW'C' "w E 'p---:;PW' C' Yp E 'W---:;P'd

= ~ 0 p 0 "w 0 Yw (above case, pE 'W---:;P')

= zp 0 .zw (for some Z E 'W---:;sW' C' see above case for ZW E 'P---:;sW'e)

=ZE ,w---:;sW'c

'W---:;P' x 'w---:;'Xw' ---:; 'W---:;'Xw':

Let p E 'w---:;P' c and yE 'w---:;'Xw'c and <'Ml,P.> E WPc
po~=po(~0"6N)

= (po~) 0 "w, po ~ E 'W---:;P'c

=> po ~E 'W---:;'Xw'c'

'D,W---:;PW' x 'D,W---:;qW' ---:; 'D,W---:;sW'

Let~E 'D,W---:;PW'oyE 'D,W---:;qW'c and<'Ml,P.>E WPc
Le. VCE Dc ~t) E 'W---:;PW'e and.it) E 'W---:;qw'C

=> VCE P ~t) o.it) = (~o y)(t) E 'W---:;SW' C (see above and def. 3.4.1,5).

. 'DW sW'l.e. ~o yE , ---:; c

d) The sort declarations for the application function are realized by the application function in C.

The sort declarations for the application function .1 are:

.1: 'X---:;~' x WP ---:; WP for X,Y E {W, P}

'D,W---:;'Xw' xL ---:; 'W---:;'Xw'

In both cases the statement follows immediately from the semantic definition of the context sorts.

e) The interpretations of the generated constant, function and predicate symbols meet their sort declarations.

Constant symbols:

ID: 'ID'

IDc is the identity function on WPc---:;WPC' i.e. IDc E 'ID'c

IDL:'D,W---:;IW'

IDLcis the identity function on Dc<WPc---:;WPCO

Since the reflexive transitions in 9\r are labeled with all labels (def. 5.1.3,2t),

IDLe E 'D,W---:;IW' c

+ 1: 'p---:;lilW'

+1c = +1 E 'p---:;lilW' c

+IL: 'D,W---:;lilW'

+ILc = +lLE 'D,W---:;lilW'cper definition.

Function symbols: In particular we have to show that the function symbols are interpreted as total functions.

PW: WP ---:; W

"V'<'Ml,P.> E WPc PWC«'Ml,P.» = 'W'. Obviously PWc«'W,P.» E Wc

PA: WP ---:; 'W---:;p'

"VWE WPcPAC<w)=pwherepE 'W---:;P'c andV'w'EWPc
if w'IW = Wiw then p(w') = w else p(w') = w",

Obviously PAc<w) E 'W---:;P' c Since there are no restrictions on 'W---:;P'c' PAc<w) always exists.

d)

e)

76

‘W—aflw x ‘W—aP’ —-> ‘W-eRW':
Let xe ‘W—>PW’Cand pe ‘W——>P’C.
K°P=7CP°KW°P KWE‘P-ém’

= ’(P o q o ?Cw (above case)
= PIO

äw (p'E ‘W——>P’)
=> ;co pe ‘W—äW’.

‘W—>PW’ x ‘W——>‘1W’ ——> ‘W—>SW’:
Let && ‘W—épW’Cand ye ‘W—)qW'C
x0 y = ?Cp o {w o ypo yw (def. Of ‘W—äPW’C, W E ‘P—>PW’C‚ yp € ‘W—9P’c)

= ?Cp o p 0 W o 3W (above case, pe ‘W——)P’)
= ap o 5W (for some z E ‘W—fiW’ o see above case for ”W e ‘P—>SW’C)
= z e ‘W—>5W’c

‘W—>P’ x ‘W—aKW’ ——> ‘W—fliW’:
Letpe ‘W—>P’C and ye ‘W—flQV’C and <‘W‚.'P> e WPC
? ° at = p ° (xp ° w)

= (po @)o ‚(W, po ;(P E ‘W—)P’C
=> po ace ‘W—äfiW’C.

‘D,W—>PW’ x ‘D,W——>‘1W’ ——> ‘D,W——95W’
Let me ‘D,W—>PW’0 ye ‘D,W—>‘1W’C and «Pl/‚?> e WPC
i.e. Vte D c ;(t) e ‘W—ePW’C and ya) e ‘W—e‘lW’C
=> VIE D ‚((t) 0 ya) = (‚Co y)(l) e ‘W—z'sW’C (see above and def. 3.4.15).
i.e. x0 y6 ‘D,W—-)SW’C .'

The sort declarations for the application function are realized by the application function in C.
The sort declarations for the application function J, are:
$: ‘X—aRY’ x WP ——> WP for X,Y e {W, P}

‘D,W—9'RW’ x L ——> ‘W—aKW’
In both cases the statement follows immediately from the semantic definition of the context sorts.

The interpretations of the generated constant, function and predicate symbols meet their sort declarations.

Constant symbols:
ID: ‘ID’

ID(: is the identity function on WPC—9WPC, i.e. ID Ce ‘ID’ (:
IDL:‘D,W—>‘W’

IDL(: is the identity function on D CxWP C——>WPC.

Since the reflexive transitions in 53’ are labeled with all labels (def. 5.1.3.21),
IDLC e ‘D,W—>‘W’ (:

+1: ‘P——)¢W’
+16 = +1 e ‘P—>°W’C

+l ‘D,W—>°W’
+1L C : +1Le ‘D,W——>°W’ Cper definition.

Function symbols: In particular we have to show that the function symbols are interpreted as total functions.
PW: WP —> W

“V<‘W‚£P> e WP C PWC(<‘W.1’>) = ‘W’. Obviously PWC(<‘W/_P>) e We
PA: WP —> ‘W-—>P’

“Vwe WPC PACQw) : pwhere p e ‘W—>P’ C and Vw' e "WPC

if WWW = ”4W then p(w’) = 20 else p(w') = w’”

Obviously PA C(w) e ‘W——>P’ c Since there are no restrictions on ‘W—>P’ (: , PA C(w) always exists.

77

BF: D ~ 'p~rtw'

"V{e DC BF(L) = ~ where ~e 'P~rtw'c and Vwe WPC (~w)w, (~o +l)(W»W) E 9\~(L)

and ~w)w is the ftrst world among the }/..w)w with (}/..w)w,(yo +l)(w»w) E 9\~(O."

Because of the fairness condition on paths (def. 5.1.3,2g), there exists for each label {on each path an

('labeled transition. Therefore the function ~E 'P~rtw' C' jumping to the world before that transition,

exists, i.e. V{E Dc BFC<O E 'P~rtw' c
MP: 'W~rtw' ~ 'W~P'

MW: 'w~'Rw' ~ 'P~'Rw'

Since each 'w~'Rw'-function ~is a composition of a 'W~P' -function MP(~ and a

'P~'Rw' -function MW(~, the proof is trivial.

LT: 'W~PW' x 'D,W~qW' ~ 'D,W~sW'

Since LTc works similar to the composition function, the proof for 0 carries over to LT.

-R: 'W~rtw' ~ 'w~tw' 'P~rtw' ~ 'P~tw'

'w~rw' ~ 'W~~W' 'P~rw' ~ 'P~~'

"r;/~E 'x~ryw' c where X E (W, P) and Ye (", t)

.RC<~ =y where yE 'X~YW'C and Vwe WPC ~w) i:- w~ ~w) =}/..w)"

Since .RC<~ is allowed to map those 141 where ~operates as the identity to some appropriate

141', .RC<~ always exists and is of the right type.

FS: 'P~tw' ~ 'P~tw'

'p~rtw' ~ 'p~rtw'

"V~E 'p~tw'c VWE WPc

if ~w) =+(n+1)(w) for some n>O then FSC<~(w) =+n(w) else FSC<~(w) =+1(141)

V~E 'P~rtw' c \ 'P~tw' CVWE WPc

if ~w) =+(n+1)(w) for some fu':O then FSC<~(w) =+n(w) else FSC<~(w) ='Uf'

Obviously FSc<~ exists and has the right type.

..: 'P~rtw' x 'P~rtw' ~ 'P~rtw'

"V'Vy e 'P~rtw' C'V141 e WPC

if ~w) = +n(w) for some n and

}/..w) =+m(w) for some m ~ n then"C<;r, y)(w) =+(m·n)(w) else ..C<;r, y)(w) =141"

Obviously"C<;r, y) E 'P~rtw' C always exists.

Predicate symbols

~: WPxWP

"::;;c := (w1'~) I 1411' ~ E WPc and ~ =+n(w1) for some n ~ O}"

<: WPxWP

"<c := (w1'~) I 1411' ~ e WPC and ~ = +n(w1) for some n > O}"

Its obvious that the sort declarations meet the corresponding semantic defmition.
 •

Lemma 5.2.11 The Axiomatization of the Possible Worlds Structure is Satisfied

For every MM-interpretation S, the axioms generated by the speciftcation morphism '¥s (def. 5.2.3,AI-B) are

satisfied by the translated MM-interpretation 'PS(S).

Proof: We check the axioms one by one.

Characterization of 0 and J,:

Al Vx,y:'W~rtw' Vw:WP J,(x, w) = J.(y, w) ~ x = Y

A2 Vx,y:'D,W~rtw' VI:D Vw:WP ,J,(,J,(x, 1), w) =,J,(,J,(y, 1), w) ~ x =Y

A3 'Vx,y:'W~rtw' Vw:WP J,(x 0 y, w) =J,(y, J,(x, w»

A4 Vx,y:'D,W~rtW' VI:D J,(x 0 y, I) =J,(x, 1) 0 J,(y, 1)

These axioms are satisfied because SCL is a functional interpretation (theorem 3.4.3). The axiom A4 holds

77

BF: D --> ‘P—>“W’
“VIE DC BFG) = &: where zu:—. ‘P—)“W’C and Vwe WPC (1(a))w, (ago +1)(w))w) e SWO)

and 24w)“, is the first world among the _1,(w)w with (_1‚(w)w,(yo +1)(w))w) 6 919%.”

Because of the fairness condition on paths (def. 5.1.3.2g), there exists for each label [on each path an

Llabeled transition. Therefore the function {e ‘P—J‘W’ 0 jumping to the world before that transition,
exists, i.e. e DC BFCU) e ‘P—>“W’c

MP: ‘W—>“W’ —> ‘W—->P’
_MW: ‘W—fiW’ —-> ‘P—fl‘W’

Since each ‘W—äfiwfifimction mis a composition of a ‘W——)P’-function MP(x) and a

‘P—aRW’-ftmction MWGC), the proof is trivial.
LT: ‘W—aPW’ x ‘D‚W—>qW’ ——> ‘D,W—>SW’

Since LTc works similar to the composition function, the proof for o carries over to LT.
-R: ‘W—>“W’ —-—> ‘W—a‘W’ ‘P—>“W’ —-> ‘P—->‘W’

‘W—fW’ —> ‘W—>°W’ ‘P—>fW’ —> ‘P—>"W’
Vacs ‘X—WW’C where X e {W, P] and Y e {W, t }

-RC(2() = y where ye ‘X—äyW’c and Vwe WPC 7(a)) # w=> 2(a)) = y(w)”

Since -Rc(x) is allowed to map those w where {operates as the identity to some appropriate

20’, -Rc(x) always exists and is of the right type.
FS: ‘P—->‘W’—9 ‘P—9‘W’

‘P—a“W’——> ‘P—>“W’
“Vzce ‘P—>‘W’C Vwe WPC

if 24w) = +(n+1)(w) for some n>0 then FS C(x)(w) = +n(w) else FS C(x)(w) : +1(w)

Vane ‘P—->“W’C \ ‘P—atW’CVwe WPC
if day) = +(n+1)(w) for some neo then FS C(x)(w) = +n(w) else FSC(2c)(w) = w?’

Obviously FS C(x) exists and has the right type.

+: ‘P—>“W’ x ‘P——>“W’ ——> ‘P—>"W’
“me ‘P—>"\V’ CVwe WP C
if 74w) = +n(w) for some n and

y(w) = +n(zu) for some 111 2 n then +605 y)(w) = +(m-n)(w) else +609 y)(w) = w ”
Obviously +C(x, y) e ‘P—->“W’c always exists.

Predicate symbols
5: WPXWP

“SC := [(zu], 102) | “’1' ml & WPC and 102 = +n(w1) for some n Z 0}”
<: WPXWP

“<C := [(zu], w2)|w1‚ 102 e WPC and wg : +n(w1) for some n > 0}”
Its obvious that the sort declarations meet the corresponding semantic definition. I

Lemma 5.2.11 The Axiomatization of the Possible Worlds Structure is Satisfied
For every Mil-interpretation 8 , the axioms generated by the specification morphism ‘I’s (def. 5.2.3 ‚Al—13) are
satisfied by the translated MM—interpretation ‘I’s (SS).
Proof: We check the axioms one by one.
Characterization of 0 and i:

A1 Vx‚y:‘W—->rtW’ Vw:WP ¢(x, w) = My, w) => x = y
A2 Vx,y:‘D,W—>“\N’ VlzD Vw:WP i(~L(x, l), w) : $(i(y, l), w) =) x = y
A3 Vx,y:‘W—>”W’ Vw:WP L(x o y, W) : i(y, ~L(x, w))
A4 Vx‚y:‘D,W—-—>“W’ VlzD ~L(x 0 y, l) = ~L(x, l) o My, 1)
These axioms are satisfied because SSCL is a functional interpretation (theorem 3.4.3). The axiom A4 holds

78

because, since only the last label matters in a sequence of transitions, the composition of two t:labeled

transitions is again t:labeled.

Identity functions.

BI Yw:WP J,(ID, w) = w Trivial

B2 Yw:WP YI:D J,(J,(IDL, 1), w) =w

B2 is satisfied because the reflexive transitions are labeled with all labels.

Characterization of the 'W~P'-functions

Cl Yp:'W~P' MP(p) =P

C2 Yp:'W~P' MW(P) =ID

C3 Y wl,w2:WP PW(wl) = PW(w2) => w2 = PA(w2)(wl)

Satisfiability is checked straightforwardly from the semantics of MP, MW and PA.

Characterization of the 'P~~'-functions.

D1 Yx:'p~rtw' MW(x) =x

D2 Yx:'P~rtw' MP(x) =ID
-

Obvious.

D3	 Yx,y::p~rtw' Yp:'W~P' Yw:WP x(w) =yew) => PW(MP(x 0 Z 0 p) 0 y)(w» =PW(x(w»

Let iVyE 'p~rtw' C P E 'W~P' c w= <'J1J,P.> E WPc with ~w) = if-w) = +n(w) =: <'WnJP.>·

Let w':= MP67(0 ZO p»(w) =MP67(0 ZO p»«'J1J,P.».

=<'J1J, (7(0 Z 0 p)«'J1J,P.»IP> (def. of MPc 5.2.4)

= <'J1J, (z 0 p)(<'WnJP.>)IP> = <'J1J, p(<'Wn+ffiJP.>)IP> for some m

=<'J1J, <'Wn+ffiJP'>IP> for some P',

=> ~w)IW =if-w)IW ='Wn E w'",p

=> ~Wl = if...wl =+n(w) (def. of 'P~~'c' 5.2.4)

=> (MP67(0 ZO p) 0 y»(W)IW =~W)IW'

D4	 Yx,y,z:'P~rtw' Yp:'W~P' Yw:WP x(w) =yew) <= PW(MP(x 0 Z 0 p) 0 y)(w» = PW(x(w»

Let iVy E 'P~rtw' c p E 'w~P'c w =<'J1J,P.> E WPc

with (MP67(0 Z 0 p) 0 y»(W)IW =~W)IW =+n(W)IW =: 'Wn

=> MPJiCozop)OY»(W)IW='WnE W",p

=> if-w) =+n(w) =~w).

D5	 The injectivity of +1 holds because of the isomorphism of paths to natural numbers.

Characterization of the 'W~'Rw'-functions.

El Yx:'W~rtw' x =MP(x) 0 MW(x)

Let 7(E 'w~rtw'c. W =<'J1J,P.> E WPc

MPJ~ 0 MW6~«'J1J,P.»

=MWJ~«'WJ ~<'J1J,P.»IP»

=<~<'J1J,P.»IWJ ~<'J1J,P.»IP>

= ~<'WJP.»'

E2	 Yx,y:'W~rtw' Yw:WP x(w) =yew) => MP(x)(w) =MP(y)(w)

Let 7(,yE 'w~rtw' C' w= <'J1J,P.> E WPc and ~w) =if-w)

MPJ~(w) =<'J1J, ~w)lP> =<'J1J, if-w)lP> =MPJY)(w).

E3	 Yx,y:'W~rtw' Yw:WP x(w) = yew) => MW(x)(w) = MW(y)(w)

Let 7(,yE 'W~rtw' C w= <'W,P.> E WPC and ~w) =if...w)

Case w= <'J1J, (7(0 z)(w)lP> for some ZE 'w~rtw' C

=> MWJ~(w) =<~w)IWJ (7(0 z)(w)lP> =<if-w)IWI (yo z)(w)IP> =MPJY)(w).

78

because, since only the last label matters in a sequence of transitions, the composition of two [-labeled
transitions is again Elabeled.

Identity functions.
B1 Vw2WP J.(ID, w) = w Trivial
B2 Vw:WP VlzD .L(¢(IDL, 1), w) = w
B2 is satisfied because the reflexive transitions are labeled with all labels.

Characterization of the ‘W——>P’-functions
C1 s‘W—aP’ MP(p) = p
C2 Vp:‘W-—>P’ MW(p) = ID
C3 V w1,w2:WP PW(w1) = PW(w2) ==> w2 = PA(W2)(W1)
Satisfiability is checked straightforwardly from the semantics of MP, MW and PA.

Characterization of the ‘P—aKWfifunctions.
D1 s‘P—enW’ MW(x) = x
D2 s‘P—WVV’ MP(x) = ID
Obvious.

D3 Vx‚y:fP—->"W’ Vp:‘W—>P’ Vw1WP x(w) = y(w) => PW(MP(x o z o p) o y)(w)) = PW(x(w))
Let aye ‘P-—)“W’ 0 p e ‘W—>P’0 w: <'W,:P> e WPC with :dw) = y(w) = +n(w) =: <Wn‚£’>.
Let w’ := MP Coco z o p))(w) = MPCQCo z o p))(<‘T/V‚EP>).

: 2%: (7C. z o p)(<w1>>)„‚> (def. of MP0 5.2.4)
:: <‘W, (z o p)(<Wn‚fP>)|P> : «w, p(<Wn+m‚1’>)|P> for some m
: <'w‚ <Wn+m‚£">lp> for some 1” .

=> “w)lw = KWNW = ‘Wn € ”LP
=.» «(an = y(w') = +,.(w) (def. of ‘P—fiW' C, 5.2.4)
=> (MPCOco z ° p) ° y))(w)|w = «(a/Mw-

D4 Vx,y,z:‘P—>"W’ s‘W—aP’ Vw:WP x(w) = y(w) <= PW(MP(X o z o p) o y)(w)) : PW(x(w))
Let Joye ‘P—arW’c, p & ‘W—>P’0 w: <‘W,G’> & WPC

With (N]PCÜCO z o p) o y))(w)|w = idw)”,- = +n(w)|w =! Wu

=> MPCOto 5 ° p) ° y))(WMW = ‘Wn € "Ja-P
=> 9(a)) = +n(w) = idw).

D5 The injectivity of +1 holds because of the isomorphism of paths to natural numbers.

Characterization of the ‘WaWtfunctions.
El s‘W—WW’ x = MP(x) o MW(x)

Let && ‘W—>"W’o‚ w: «('n/‚?> e WPC
MPCÜÖ o MWC(@(<'W,:1>)

= MWAKX<WI J((<‘I’Vf-FÖ)|1>>)

: <;((<‘W‚‘_P>)|W‚ «man?

= «kw/.15).
E2 Vx,y:‘W—>“W’ Vw:WP x(w) = y(w) =9 MP(x)(w) = MP(y)(w)

Let me ‘W—f‘W’C, w: <rw‚sp> e WPC and ‚((w) = y(w)
MPC(x)(w) = cw. 2mm:- = cw, mum? = MPAw).

E3 Vx,y:‘W—)“W’ Vw:WP x(w) = y(w) => MW(x)(w) = MW(y)(w)
Let ;(,ye ‘W——>“W’0 w: «du/‚?> e WPC and «(ru) = y(w)
Case w: <‘W, (‚Co z)(w)|P> for some z e ‘W—>“W’C
=> MWC(?()(W) = “(fl/MW: (@ Z)(w)|p> = <b(w)|wr (9° Z)(w)|p> = MPC(y)(w).

79

Case w# <'f1/, ko z))(w),p>

~ MWJi()(w) = <~w)IW' P> = <!l..w),w' P> = MPJy)(w)

EA	 Vx,y:'W~rtw' MW(x 0 y) = MW(x) 0 MW(y)

Let ;c,yE 'w~rtw' C and w= <'f1/,P> E WPC

Case w = <'f1/, (;c0 y 0 z)(w)lP> for some Z E ·W-"trtw'c

~ MWJ;co y)(w) = «;Co y)(w)IW' k o yo z)(w)lP> = MWJi()«!l..w),w, (;Co yo z)(w),p»

= (MWJi() 0 MWJy))«'f1/, (;Co yo z)(w)IP»

=(MWJi() 0 MWJy))(w)

Case w# <'f1/, (;Co y 0 z)(w),p>

~ MWJ;co y)(w) = «;Co y)(w)IW'P> = MWJi()«!l..w)IW'P»

=(MWJi() 0 MWJy))«'f1/,P»

=(MWJi() 0 MWJY))(w).

The satisfiability proofs for the remaining axioms are straightforward. •

Lemma 5.2.12 Soundness Lemma for the Translation into CL

If Sis an MM-specification satisfied by 5 = «~ 9\), ~ 'f0 then the formulae in the translated specification are

satisfied by the translated model '1'3(5) = 5 CL =: «C, S~, ~ « 'f1/, P», !p) where Pmay be any path and Pis

arbitrary.

Proof: We show this by induction on the structure of MM-formulae:

Base Case: The atomic level is the base case.

The translated atoms equal the original ones. The actual structure in which an atom A is interpreted is

PWJ<~ P» = 'f1J. Therefore 5 CL satisfies A as well.

Induction Step: Let (j be a non atomic formula.

The precondition is always 5 = «'Jil, 9\), ~ 'f0 ~ (j. ,

The induction hypothesis is: For every subformula :Tof (j: If 5'~ :Tthen 5 'CL I=c '1'1.1) for every path p'.

Let w:= <'f1/, P>. For convenience PWJX) is again abbreviated as XIW'

In the sequel we frequently apply the results of the lemmas 5.2.5 to 5.2.9 about the correspondences between

the context access functions and the accessibility relations.

We perform a case analysis according to the structure of :r. The interesting cases are the modal operators:

Case (j = r::J'l<..:T

The translation rule is 'Pf.r::J'l<..1) = Vx:'W~'Rw' '1'1.1)

Let ;cE ·W~'Rw'c'

Since $[~w)IW] ~ :T(def. 5.1.5) we can apply the induction hypothesis and obtain

$CL[WP/~w)]cl=c'1'1.1) and since xEt'P1.1), $cdx/~.JWP/~w)]c[x/w]!pl=c '1'1.1).

Def. 4.2.5 finally gives us $CL I=c 'Pf.(j).

Case (j = [t]'l<..:T

The translation rule is 'Pf.[t]4l1) = VJ.(x:'D,W-"t'Rw', z:S(t)=t) '1'1.1).

Let;cE 'D,W~'Rw'c' Since 5[~5(t),w)IW] I=M :Twe can apply the induction hypothesis and obtain

$CL[WP/~5(t),w)]cl=c'1'1.1) and since x Et '1'1.1) and z Et '1'1.1),

$cdx/~JWP/~$(t),w)]c[x/w]!pl=c'1'1.1). Def. 4.2.5 finally gives us $CL I=c 'Pf.(j).

Case (j =~:T

The translation rule is 'I'f.~1) = Vp:'W~P' 3x: 'p~rtw' '1'1.1).

Let pE 'W-"tP' C" There is a;CE 'P-"trtw' with S[~p(w))IW] I=M:T. (def. 5.1.5)

We apply the induction hypothesis obtaining 5CL[WP/~w))]c I=c '1'1.1) and since p Et '1'1.1) and

z Et '1'1.1), $cdp/p, x/~o/[WP/~p(w))]c[p/w,x/p(w)]!pl=c '1'1.1).

Thus, 5CL [p/p]o/[WP/p(w)]c [p/w]!pl=c 3x:'P~rtw' '1'1.1). (def. 4.2.5)

and fmally 5 CL I=c 'PI.(j). (def. 4.2.5)

79

Case wat <W‚ (96° Z))(w)|p>

= MWc(x)(w) = <?(iw)|w: 99> = <y(w)|w» ?> = MPCQIXW)

E4 Vx,y:‘W——>nW’ MW(X 0 Y) = MWÜC) ° MWÜ’)

Let x„ye ‘W——)“W’C and w: <‘W‚1’> e WPC
Case w: <‘W‚ (‚Co y o z)(w)|p> for some z e ‘W—>“W’ C
=> MWcOco VX!!!) = <(?c° Y)(W)|w: (to 11° Z)(W)|p> = MWC(K)(<B(W)|W: (to y° Z)(W)|p>)

= (MWAX) ° MWék‘W, (to 31° Z)(w)|p>)

= (MWC(x) ° MWésOXW)

Case wat <w, (;Co y o z)(w)|P>

=> MWCÜP YXW) = <(7C° Y)(’ll")|w2Eb = Mwéfißiwhwiß’)

: (MWCor) o MWC(y))(<’W.’P>)

= (MWC(x) ° MWéßXfl/l

The satisfiability proofs for the remaining axioms are straightforward. I

Lemma 5.2.12 Soundness Lemma for the Translation into CL
If 5 i s an MM-specification satisfied by S = ((W 9i), “V. “M then the formulae in the translated specification are
satisfied by the translated model ‘Ps (3) = SCL =: ((C, 51V), ‘V; (< W. ?>), :P) where :Pmay be any path and Pis
arbitrary.
Proof: We show this by induction on the structure of MM—formulae:

Base Case: The atomic level is the base case.
The translated atoms equal the original ones. The actual structure in which an atom A is interpreted is
PW C(<‘w_.‚ ?>) = ‘W. Therefore SGL satisfies A as well.

Induction Step: Let g be a non atomic formula.
The precondition is always S = ((W; EB), 'V; W) I=M g. ,

The induction hypothesis is: For every subformula _‘7 of g: If 3 ’ |=M 9‘ then 8 ‚CL '=C ?,(9‘) for every path 1”.
Let zu:: <‘w‚ ?>. For convenience PWCOQ 18 again abbreviated as xlw.
In the sequel we frequently apply the results of the lemmas 5.2.5 to 5.2.9 about the correspondences between
the context access functions and the accessibility relations.
We perform a case analysis according to the structure of f. The interesting cases are the modal operators:
Case g = DK}?

The translation rule is T9033?) = s‘W—xvfiW’ Tye?)
Let ace ‘W—fiw ’ c
Since 8[;((w)|w] |=M 9' (def. 5.1.5) we can apply the induction hypothesis and obtain
SCLWP/dwflchc €190) and since x¢‘Py(9), Supt/x] dWP/adw)]c[x/w]‚_,l=c ‘11909.
Def. 4.2.5 finally gives us 3C1. I=C ‘P,(g).

Case g= “111137
The translation rule IS ?‚(Etfl iß— won ‘D,w—eflw, z. S(t)=t) trim)

Let me ‘D ‚"CW—afiw .Since 8 [45 (t), w)|W] I=M 9" we can apply the induction hypothesis and obtain
SCLWP/fiS(t),w)]:l=C ?,(9) and since x et 9’9“) and z € ‘P7(9)‚
SCLDt/x] JWP/d3(t),w)]c[x/w]ft=c ‘I’9(:}).Def. 4.2.5 finally gives us SCL t=C ‘P,(g).

Case g = i f
The translation rule is $30?) = Vp:‘W——>P’ Elxz‘P—a’WV’ T90).
Let p e ‘W-—>P’C. There is a :(e ‘P—-—>“W’ with $[;((p(w))|w] I=M {F. (def. 5.1.5)
We apply the induction hypothesis obtaining SCLWP/Mw))] c |=C T90) and since p e: T90”) and

z er war), SCLtp/p, llq;[WP/x(p(w»]c [p/w,x/p(w)]gl=c war).
Thus, SCL[p/p]„‚[WP/p(w)]c [p/w]g‚r=c Elx:‘P—->"W’ 9190). (def. 4.2.5)
and finally SCL t=c Tam). (def. 4.2.5)

80

Case q = It)1"

The translation rule is 'P11t).1) = Vp:'W~P' go(BF(t) 0 +1) 'P1.1).
Let p e 'W~P' c' SCL':= SClJp/P] [WP/P(W)] C[p/w]l' and]i..w) =: <'f1),P">

Since S FM q, S['W1] I=M 1"where 'W1 is the fIrst world on p' after an S(t)-labeled transition. According

to the semantic defInition of BF and +1, (def. 5.2.4), for w1 := SCL'(BF(t) 0 + l)(w), exactly w11w = 'W1.

Therefore, applying the induction hypothesis, we fmd SCL'[WP/wl]CFe 'P1.1).
ThuS,SCL'FC go (BF(t) 0+1) 'P/.1) andfmally SCL F c 'P/9)' (def.4.2.5)

Case 9 =91VUq2

The translation rule is

'P191VU(2) = Vp:'W~P' 3x:'P~rtw' ('P1(2)I\Vy:'P~rtw'-x«(poy,pox) => 'P1(1)))'

Let pe 'W~P'c-There is an ~e 'P~rtw'cwith S[~w))IW] I=M 92 (*) and for every ye 'P~rtw'c

with <J(poJAw)),(P07({w))): S[JA]i..w))IW]c FM 91 (*).

Applying the induction hypothesis to (*) and exploiting p ~ 'P19~ and x 4 'P1(2)' we get

SCL':= SCL[P/P, x/~,JWP/~w))]c [p/w, x!]i..w)]l' FC 'P1(2)' (**)

Applying the induction hypothesis to (*) and exploiting p 4 'PIql) and y 4 'P1(1) , we get for every

ye 'p~rtw'c with <J(poy)(w), (po~(w)), Scdp/p, y!y],JWP!JA]i..w))]c[p!w, y/p(w)]p FC 'P1(1)'

Le. for every y e 'P~rtw' c

Scdp!p, x/;u y!y] [WPy'(]i..w))]c[P!w, x/p(w), y/]i..w)]l'FC <(poy, pox) => 'P1(1)'

Thus"SCL' = SCL[P!P,x/~ [WP!~w))]c[p!w,x/p(w)]l' FC Vy:'P~rtw'-x «(poy, pox) => If1(1))'

and with (**): SCL'FC ('P1(2) 1\ Vy:'p~rtw'-x«(poy, pox) => 'P1(1)))

and from this

SCL[P!P]~WP!p(w)]c[p!w]l' FC 3x:'P~rtw' ('P1(2) 1\ Vy:'p~rtw'-x «(poy, pox) => 'P1(1)))

and finally SCL FC 'PIq)·
The case with the vur operator is analogous to the previous one.

The cases with the dual modal operators are proved "dually" to the above cases.

The cases with the predicate logic connectives and quantifiers are trivial. _

Theorem 5.2.13 Soundness of the Translation into OSPL

Every satisfIable MM-specifIcation is translated into a satisfIable OSPL-speciflcation.

Proof: The lemmas 5.2.10, 5.2.11 and 5.2.12 confIrm that the translation from MM-Logic into CL is sound. The

soundness or the translation from CL into OSPL is confirmed by the soundness lemma 4.3.10 for CL and the

3-quantifIer independency lemma 5.2.8 which guarantees the soundness of the strong Skolemization. ­

As mentioned earlier, we cannot achieve a complete calculus for full MM-Logic where 9\t is the transitive closure

of 9\~ because this is no frrst-order property. However, we can prove a weaker completeness result. It shows that

the translation into CL is complete, Le. the calculus with translation and refutation is complete, for all theorems

which hold in nonstandard MM-Logic models where 9\t is more than the transitive closure of 9\~. This means in

particular that the calculus is complete as long as operators related to the 9\~ and 9\f on one side and 9\t and 9\rt on

the other side do not occur simultaneously.

80

Case 9 = It)?
The translation rule is T900 ,7) = Vp: ‘W—)P’ go(BF(t) 0 +1) T50).
Let p e ‘W—aP’ C, SCL’ := SCL[p/p].V[WP/p(w)] c[p/w],and p(w) =: <‘W‚‘_P'>
Since 8 != M G, SSW/VI] I=M _‘F where W1 is the first world on :P” after an Elm-labeled transition. According
to the semantic definition of BF and +1, (def. 5.2.4), for w] := SCL’(BF(t) o +1)(w), exactly wl lw = W].
Therefore, applying the induction hypothesis, we find SCL’[WP/w1]cl=c ?,(9).
Thus, SCL’ |=C go(BF(t) 0 +1) T70) and finally SGL '=c ‘P,(g). (def. 4.2.5)

Case g = QIVUGZ
The translation rule is
?,(QIVUQZ) = Vp:‘W——>P’ s‘P—ar‘W’ (‘I’figQAVyz‘P—enwfix (<(poy‚pox) => ‘I’7(g1))).
Let p e ‘W—aP’ C.There is an :ce ‘P—->“W’Cwith 3[?t(p(w))|w] t=M 9‘2 (*) and for every ye ‘PartW’ C

with <c((poy(w»,(poaw)»z smmwn um 91 (*).
Applying the induction hypothesis to (*) and exploiting p & ‘I’7(_G-2) and x ¢ ‘P9(g2), we get

SCL’ := SCL[p/p, x/zddWP/Mwfi] c [p/w, x/p(w)]1‚l=c ‘P9(c_;2). (* *)
Applying the induction hypothesis to (*) and exploiting p € 939(9‘1) and y et ‘I’ ‚(g1) , we get for every

ye ‘P—>“W’c with <C((p°y)(w)‚ (p°x)(w))‚ gulp/p, y/qIWP/nfllcm/w, ylp(W)lg I=c ?;(9‘1):

i.e. for every y e ‘P—>“W’ c
sam/p, xho y/y]q[WPy'(p(W))]c[p/w‚ x/p(w)‚ y/p(w)1‚_„»=c <(poy. pox) => raga.

Thus,.SCL’ = SCL[P/P‚X/fly[WP/Jt(p(w))]cfP/mX/Äwflgp +=c Vyz‘P—>“W’-x (<(poy. 9030 => ?;(61)).

and with (* *): SCL’ I=C (‘P7(g2) A Vy:‘P—>"W’-x (<(poy, pox) => ‘I’9(g1»)
and from this
3CL[p/p]¢y[WP/p(w)]c[P/w]9 I=C 3x:‘P—>“VV’ (‘P9((_;2) A Vy:‘P—>“W’-x (<(poy, pox) => Egg)»
and finally SGL l=c ‘I-‘7(g).

The case with the ‘v’Ur Operator is analogous to the previous one.
The cases with the dual modal Operators are proved “dually” to the above cases.
The cases with the predicate logic connectives and quantifiers are trivial. I

Theorem 5.2.13 Soundness of the Translation into OSPL
Every satisfiable MM-specification is translated into a satisfiable OSPL-specification.
Proof: The lemmas 5.2.10, 5.2.11 and 5.2.12 confirm that the translation from MM-Logic into CL is sound. The
soundness or the translation from CL into OSPL is confirmed by the soundness lemma 4.3.10 for CL and the
3—quantifier independency lemma 5.2.8 which guarantees the soundness of the strong Skolemization. I

As mentioned earlier, we cannot achieve a complete calculus for full MM-Logic where SR‘ is the transitive closure

of SR” because this is no first-order property. However, we can prove a weaker completeness result. It shows that

the translation into CL is complete, i.e. the calculus with translation and refutation is complete, for all theorems

which hold in nonstandard MM-Logic models where 53‘ is more than the transitive closure of ER”. This means in
particular that the calculus is complete as long as operators related to the Si” and Sir on one side and 91‘ and ER“ on
the other side do not occur simultaneously.

81

Theorem 5.2.14 Weak Completeness

Whenever a translated MM-specification 'Pj..S) is satisfied by a CL-interpretation ~CL = «C, s11, -v, «'11/,P»,

P) then the original specification S is satisfied by the nonstandard MM-interpretation S := 'PZ-t(~CL) =

(rwC' 9t), ~ 'J0 where the transitive accessibility relation at least contains the transitive closure of the basic one.

Proof: We have to show:

1) S is really an MM-interpretation, i.e. 'PZ-t is well defmed and

2) The MM-formulae in Sare satisfied by S.

1) 'Pz-t is well defmed

The defmition of 'PZ-t (def. 5.2.4) is

"The inverse interpretation morphism 'Pz-t generates from the CL-interpretation

SCL = «C, S'J1, ~ (wo), ~ the MM-interpretation S = (rwC' 9t), ~ PWc<wo» where

a) 9t~:= (PWC<w), PWc<~w))) I :(E 'P~~' C WE WPcl

For WE WPc let ~w):= (PWc<~w» I:(E 'P~rtw' c l. ~w) is the path described by w.

b) ~'J0 := (~w) IPWC<w) = 'l11

c) A transition 9t2?(wt , Wz) is labeled with a label {

iff::l :(E 'D,W--';~' c ::IwE WPc with Wt = PWC<w) and Wz = PWc<~~ w»"
We have to check whether the axioms in def. 5.2.3 and the sort declarations in def. 5.2.1 are strong enough such

that all conditions for M-frames (def. 5.1.3) are fulfilled (we can also use the derived formulae after lemma

5.2.4).

a)	 9t0 is discrete:

D5, FI, F3, and F4 are essentially the Peano axioms for natural numbers. Therefore paths are isomorphic

to nonstandard models of natural numbers, i.e. in particular 9t0 is discrete.

b)	 9tr is the reflexive closure of 9t0.

9tr is reflexive because 'ID' El 'P~rw' implies that the identity function is in 'P~0W' c'

The derived clause F6 guarantees that 9tr contains nothing more than the reflexive closure.

c)	 9tt is a transitive accessibility relation that includes the transitive closure of9t0.

To prove the transitivity, assume 9tt(wt, Wz)and 9tt(Wz, W3).

=> There are Wt, Wz E WPC lVyE 'P~tw' cwith Wtlw = Wt , ~Wt)IW = WZ,

Wzlw = Wz and JAWz)IW = W3'

=> Wz = (:(0 PAC<Wz»(Wt) (C3)

Let w':= MPc!,xo PAC<Wz»(Wt)

=> w'IW = Wt (KI)

and (MPC<:(o PAc<Wz» 0 ~(Wt)IW = Wz (06)

Wz =MPC<:(o PAc<Wz» 0 MWC<:(o PA(Wz» (Wt) (El)

= MWC<:(o PAc<Wz» (W) (A3)

= MWc<~ 0 MWJPA(Wz» (W) (El)

=~W) (01, D2, B4)

Thus, we have w'IW = Wt , ~W)IW = Wzlw = Wzand JAWz)IW= JA~W)IW= W3 and because of the

sort declaration 0: 'p~tw'x 'p--,;tw' --'; 'P--,;tw', :(0 yE 'p~tw' C' and we can conclude 9tt(wt, W).

To show that the transitive closure of9t0 is contained in 9tt,

let 9t0(Wt, Wz), 9t0(WZ' W3), ... , 9t0(W _t , W) be a sequence of 9t0-transitions.
n n

Ifn = 2 we exploit 'P~0W' El 'p~tw' and obtain immediately 9tt(wt , Wz). Ifn > 2 we use the same

arguments as above and exploit 0: 'p~0W'x 'p~0W' ~ 'P~tw', finding 9tt(wt , W3). Induction on n

and exploitation of 0: 'P~tw'x 'P~0W' ~ 'P~tw' yields 9tt(wt, W).n

Axiom F5 ensures that each transitive transition is either a 9t0-transition or it consists of

another transitive transition followed by a 9t0-transition.

3

81

Theorem 5.2.14 Weak Completeness
Whenever a translated MM-specification ‘I’5(.$) is satisfied by a CL-interpretation 3CL = ((C, 5%, ‘V; (<'W,£P>),

9) then the original specification 5 is satisfied by the nonstandard MM-interpretation 8 := ‘P3'1(£S CL) =
((W0 9i), ‘V; W) where the transitive accessibility relation at least contains the transitive closure of the basic one.
Proof: We have to show:
1) 3 is really an MM-interpretation, i.e. ‘I’S'l is well defined and
2) The MM-formulae in 5 are satisfied by S .

1) ‘Ps'l is well defined
The definition of sis-1 (def. 5.2.4) is

“The inverse interpretation morphism ‘Ps'l generates from the CL-interpretation
SQL = ((C, 5%, ‘V, (wo), 9) the MM-interpretation 8 = ((WC, 9i), ‘V; PWC(wO)) where

a) 9%: [(cow), cmw)» I ‚ce ‘P-flW’C we WPC}
For we WP 6 let rKw) :: {PWC(J'[(W)) I ‚ce ‘P—>“W’C }. 1(a)) is the path described by w.
13) 9U” != {f(w) IPWA‘W) = W}

c) A transition WWW], WZ) is labeled with a label [
iff a ;(e ‘D,w—+flw'c awe WPC with wl = cow) and W2 = coa; w))”

We have to check whether the axioms in def. 5.2.3 and the sort declarations in def. 5.2.1 are strong enough such
that all conditions for M-frames (def. 5.1.3) are fulfilled (we can also use the derived formulae after lemma

5.2.4).
a)

b)

e)

SR“ is discrete:
D5 , F1, F3, and F4 are essentially the Péano axioms for natural numbers. Therefore paths are isomorphic
to nonstandard models of natural numbers, i.e. in particular Si” i s discrete.

SR’ is the reflexive closure of ER”.
SR" is reflexive because ‘ID’ E ‘P—)‘W’ implies that the identity function is in ‘P—>°W’ c-
The derived clause F6 guarantees that Sir contains nothing more than the reflexive closure.
91‘ is a transitive accessibility relation that includes the transitive closure of SR”.
To prove the Iransitivity, assume ER‘CWI, W2) and WWI/2, W3).
= There are w], wz e WPC, aye ‘P—>tW’Cwith wllw = ‘Wl, «(wow = W2,

w2lw = ‘Wz and !(wzhw = 's
=> “2 = (mo PAC(w?))(‘w1) (C3)
Let an: MPCUco PAC(w2))(w1)

=> w’lw = WI (K1)
and (Wake many) o x)(w1)|w = rw2 (D6)
„:wgäopAéwg) o nxoPA(wz))(w1) 031)

= MWCoco PAAug) (w’) (A3)
= MW6’0 o MWC(PA(w2)) (w') (El)
: aw? (D1, D2, B4)

Thus, we have W'IW = ‘Wl, dwjlw = wzlw = W2 and gab)”; = 994m = W3 and because of the
sort declaration o: ‘P—etW’x ‘P—>‘W’ ——> ‘P——>‘W’, x0 ye ‘P—)‘W’ C.and we can conclude SR‘CWI, W3).

To show that the transitive closure of SR" is contained in ‘3‘,
let 91901411, W2), SRWWZ, W3),..., %“(m Wu) be a sequence of 9i¢-transitions.
If n = 2 we exploit ‘P——>¢W’ E ‘P——)‘W’ and obtain immediately SR‘CWI, WZ). If n > 2 we use the same
arguments as above and exploit o: ‘P—>°W’x ‘P—>°W’ —> ‘P—>‘W’, finding WCM/1, W3). Induction on n
and exploitation of o: ‘P—)‘W’x ‘P—>°W’ —9 ‘P——>lW’ yields WOW], Wu).

Axiom F5 ensures that each transitive transition is either a SR9’-transition or it consists of
another transitive transition followed by a 9i¢-transition.

82

d)	 9\rt is the reflexive closure of 9\t.

This is guaranteed because the identity is in 'P~rtw'e and because of axiom F2.

Since the 'P~~' -functions are total, the 9\1trelations are serial.

Now we show that paths are correctly axiomatized.

Let PE .f('J'0beapath,i.e.P= ~w):= {PWJ~W))I~E 'P~rtw'e} for some WE WPc

We have to show:

i) 9\rt is a total ordering on P.

Let 'Wt,'Wz E P, i.e. PWJ~t(w)) = 'Wt and PWJ~(w)) = 'Wz for some ~t,~ E 'P~rtw' e

~ ;q(w) ::;e~(w) or ~(w) ::;e;q(w) (axiom G4)

~ (;q 0 +-J;q, "2))(w) ="2(w) or ("2 0 +-J"2, ;q))(w) =;q (w) (axiom 12)

~ +-J;q, "2)(;q(w)) ="2(w) or +-J"2, ~)("2(w)) =~(w) (axiom A2)
~ 9\rt('Wt , 'Wz)or 9\rt('Wz, 'Wt)

Suppose 9\rt('Wt , 'Wz)
~ +-J;q, ~)(;q(w)) = ~(w)

<=> ;q(w) ::;e~(w) (axiom 11)

Using the axioms Gl - G4 for::; we can conclude that 9\rt is actually a total ordering on P.

ii) 'W~s the smallest element.

'WE P because 'W= PWJIDJw)) and IDeE 'P~rtw'c

'Wis the smallest element because 9\rt('J1l, PWJ~w))) for all ~E 'P~rtw' C

iii) pis maximal, Le. there are no gaps in P.

Let 'Wt E P, Le. PWJ~w)) for some ~E 'P~rtw'C

Since ~o +1 E 'p~rtw' C' PWJ(~o +l)(w)) E P as well.

Therefore each world in Phas exactly one 9\~-successor world in P.

e)	 The seriality oflabeled transitions is guaranteed by the totality of the 'D,W~~'-functions.

Axiom 13 states that only the last label matters for labeled transitive transitions.

t) Because of axiom B2, the reflexive transition is labeled with all labels.

g) The fairness of labeled transitions on paths is ensured by the totality of the BFe function which produces

for each label {a 'P~rtw'-function that jumps to a world on the current path where +1£ induces an

f,.labeled transition that remains on the path. (axiom J2)

This finishes the necessary checks to conftrm that 5 is really an MM-interpretation.

2) The second part is to prove that the MM-formulae in S are satisfied by 5 ='Pg-t(5CL) =«WC' 9\), ~ 'Wo)

where 5 CL =«C, si1, ~ (wo), P), 'Wo = PWJwo) =: wolw'

Therefore assume 5 CL Fc 'PI- (j). We prove 5 FM (j by induction on the structure of (j.

Base Case: (j is an atom.

Since atoms are not modifted by 'PJ"and since 'Wo is the actual k-structure for (j, 5 FM (j.

Induction Step: (j is a non atomic formula.

The induction hypothesis is: For all subformulae .rin 'PI- (j), if a CL-interpretation 5 'CL satisftes .r then the

corresponding back translated MM-interpretation 5' satisftes .r.

We must perform a case analysis according to the top operator of (j.

Case (j =D~.r

The translation rule is 'Plo~!f) = Vx:'W~~' 'PI-!f)

Let 9\~'Wo, 'Wt), 'WtE Wc

~ 3y E 'P~~' e' wE WPe with PWJW)IW ='Wo and PWJif..w))IW ='Wt· (def. of9\~

~ w= PAJw)(wcV' (axiom C3)

82

d) ER“ is the reflexive closure of Sit.
This is guaranteed because the identity is in ‘P—>“W’ 5 and because of axiom F2.

Since the ‘P——>RW’-functions are total, the age—relations are serial.

Now we show that paths are correctly axiomatized.
Let {Pe KW) be a path, i.e. £P== flw) := {PWCwn l :ce ‘P—>“W’c] for some we WPC.
We have to show:

i) ER“ is a total ordering on ?.
Let ‘WPWZ 6 LP, i.e. PWC(:c1(w)) = ‘W1 and PW (_(x2(w)) : W2 for some ”CM; e ‘P-—>"W’C
==> ‚(;(w) SC 2900) or 7(2(w) SC x_1(w) (axiom G4)

=> (’Cl ° "*cÜCl, QM”) = @(w)
01‘ (it; ° +50% 2(1))(w) = aqua) (axiom 12)

=> "yak-1’ 7C2)(’C1(W)) = 790”) OT “"Cüg, X4)(?(2(w)) = zq('w) (axiom A2)
=> SRÜCWI, W2) or Straw/2, WI)

Suppose 9%"(14/1, WZ)

<= *Cücp xl)(x;(w)) = adv)

=> ;q(w) SC @(w) (axiom I l)
Using the axioms GI - G4 for S we can conclude that SR“ is actually a total ordering on EP.

ii) Wis the smallest element.

We 9? because W: PWCOD C(w)) and ID Ce ‘P—>“W’c
W is the smallest element because 9i“('w, PWC(:t(w))) for all age ‘P—ertW’ c

iii) :Pis maximal, i.e. there are no gaps in 1’.
Let ‘Wl e 11’, i.e. PWCOdw» for some ace ‘P—>“W’c
Since (0 +1 6 ‘P—>“W’C, PWC((7co +1)(w)) e :P as well.
Therefore each world in {Phas exactly one 9i¢-successor world in 1’.

e) The seriality of labeled transitions is guaranteed by the totality of the ‘D,W—>RW’—functions.
Axiom 13 states that only the last label matters for labeled transitive transitions.

f) Because of axiom B2, the reflexive transition is labeled with all labels.
g) The fairness of labeled transitions on paths is ensured by the totality of the BFC function which produces

for each label [a ‘P—>"W’-function that jumps to a world on the current path where +1L induces an
[-labeled transition that remains on the path. (axiom J2)

This finishes the necessary checks to confirm that 8 is really an MMI—interpretation.

2) The second part is to prove that the MM-formulae in 5 are satisfied by 8 = ‘1’3'1(3CL) = ((W 0 SR), ‘Vl Wo)
Where 8CL = ((C, 5%, ‘V; (wo), 5”), W0 = PWC(w0) =: wolw.
Therefore assume SCL t=C ‘1’}(g). We prove S I=M g by induction on the structure of 6.
Base Case: 9 is an atom.
Since atoms are not modified by ‘1’? and since ‘Wo is the actual Z—structure for g, 8 |=M g.
Induction Step: g i s a non atomic formula.
The induction hypothesis is: For all subformulae [F in ‘P,(g), if a CL-interpretation 8 ’CL satisfies {F then the
corresponding back translated MBA-interpretation S ’ satisfies ?.
We must perform a case analysis according to the top operator of (3.

Case g = DR- 9?
The translation rule is ‘1’7039190 = s‘W—flW’ T70)
Let am‘wo, W1), ‘Wle WC
=> 3y 6 ‘P—WW’C, we WP Cwith PWCMIW = wo and c(5(w))‚w = ‘Wl. (def. of at?!)
=> w = PA C(w)(w0). (axiom C3)

83

Let ~:= (pAJw) 0 y) E 'w~'Rw' c

=> ~wO>IW = (PAd-w) 0 y)(ut»IW = !1<w)lw = 'Wl
and SCL[x/~'J/[WP/~wo)]c [x/wo]l'l=c 'P11) (defA.2.5, SCL I=c Vx:'w~'Rw' 'P11»
=> S['Wl] I=M:J (induction hypothesis)

=> SI=M9 (def. 5.1.5)

Case 9= [t]I~:J

The translation rule is 'Pl[t]~.'7) = VJ.(x:'D,W-7'Rw', z:S(t)=t) 'P11).
Since tenns are not modified by 'P.rand since 'Wo is the actual L-structure for t, Set) = SCL(t).

Let ('Wo, 'Wl) E 9\~S(t», 'WlE Wc

=> There is an ~E 'D,W~'Rw'c with ~S(t»(ut»IW = 'U'J.
=> Scdx/~'J/[WP/~S(t), wo>J c [x/woll'l=c 'P11) (defA.2.5)

=> S['Wl] I=M:J (induction hypothesis)

=> SI=M9 (def. 5.1.5)

Case 9= t:J
The translation rule is 'PIt.'7) = Vp:'W~P' 3x:'P-7rtw' 'P11)
Let PE §('Wo)be a path.

=> There is a wE WPC with u\w = 'Wo and P= {~w)IW I ~E 'P-7rtw'c}

=> W =PAJw)(wo> (axiom C3)

=> SCL[P/PAJw)],JWP/w]c[p/wo]l'l=c 3x:'P-7rtw' 'P1.'7) (defA.2.5)

=> Scdp/PAJw),x/~JWP/~w)]c[p/wo,x/w]l'l=c 'P1.'7) for some ~E 'P-7rtW' c (defA.2.5)

=> S[~w)IW] I=M:J and ~w)IW E P (induction hypothesis)

=> S I=M 9 (def. 5.1.5)

Case 9 = It):J

The translation rule is 'PIlt).'7) = Vp:'W-7P' .IO(BF(t) 0 +1) 'P1.'7)
Let PE §('Wo)be a path.

=> There is a wE WPc with Ulw = 'Wo and P= {~w)IW I ~E 'P~rtw' c}

=> w=PAJw)(wO> (axiomC3)

=> S'CL:= Scdp/PAJw)]JWP/w]c[p/woll'l=c .IO(BF(t) 0 +1) 'P11) (defA.2.5)

Let wl := $'CL(BF(t) 0 +l»(w)

=> SCL[P/PAJw)]JWP/wdc [p/ut>]l'l=c 'P1.'7) (defA.2.5)

=> S[wlIW] FM:J (induction hypothesis)

and wllW is the fIrst world on Pafter a transition labeled with S'CL(t) = Set) (axiom JI)

=>SFM9 (def. 5.1.5)

Case 9 = :Jl vu :Jz
The translation rule is

'Pl:Jl VU :Jz) = Vp:'W~P' 3x:'P-4rtW' ('Pl:Jz) /\ Vy:'P-7rtW'-x «(poy, pox) => 'Pl:Jl ».
Let PE §('Wo)be a path.

=> There is a WE WPcwith U\w= 'Wo and P= {~w)IW I~E 'P~rtw'c}

=> w =PAJw)(wo> (axiom C3)

=> S'CL:= SCL[p/PAJw)]JWP/w]c[P/woll'
I=c 3x:'P~rtw' ('P19) /\ Vy:'P~rtw'-x «(poy, pox) => 'P1.'7). (defA.2.5)

=> S"CL:= Scdp/PAJw),x/~'J/[WP/~w)]c[p/wo,x/w]l' (defA.2.5)

I=c ('Pl:Jz) /\ Vy:'P-7rtw'-x «(poy, pox) => 'Pl:Jl »for some ~E 'P-7rtw' c

=> S"CL I=c 'P f:Jz) and S"CL I=c Vy:'P-7rtW'-x «(poy, pox) => 'P f:J1»(+) (defA.2.5)

=> S[~w)IW] I=M:JZ and 'Wz := ~w)IW E P (*) (induction hypothesis)

83

Let ac: (PAC(W) ° y) € ‘W-99‘W’c
=> «(10o = (PAC(w) ° y)(wo)|w = Kit/MW = W1

and SCL[x/fl gym/«Wenc- [x/w0]9l=c \Pflfl (dei—4.2.5, sCL |=C VX: ‘W—>RW=— ‘I’7(,‘7))

=> 3 [W1] t=M [T (induction hypothesis)
=> 8 |=M g (def. 5.1.5)

Case (3: [&]l
The translation rule is ‘Pfifltflxfl = VJ‚(x:‘D,W—>RW’‚ z:S(t)=t) 9’90).
Since terms are not modified by ‘1’d since Wo is the actual E-structure for t, SG) = SCLG).
Let (wo, W1) e Mam), 'Wle WC
==> There is an xe ‘D,W——>RW’Cwith 48(t))(wo)|w = ‘Wl
=> SCL[x/x].y[WP/a1($(t), w0)] C[x/w0]a‚r=c

9'70) (def.4.2.5)
___; 3 [W1] '=M gr (induction hypothesis)
=> 8 FM 9 (def. 5.1.5)

Case (j = nr
The translation rule is T509) = Vp:‘W——>P’ 3x:‘P—>“W’ T70!)
Let i’e !(WO) be a path.
=> There is a we WPcwith mw = 'Wo and :P: “(w)”, I ace ‘P——>“W’C}
=> w = PA C(w)(w0) ' (axiom C3)
=> $CL[p/PAC(w)]qIWP/w]c[P/wo]gl=c EIx:‘P—->“W’ tram) (def.4.2.5)
=> SCL[b/PAC(w),x/x] l,[WP/xfwflc[p/'.wo,x/w]1,I=C ?,(gr) for some ‚ce ‘P—>“W’ C (def.4.2.5)
=> 3[J((W)|w] t=M :f and 4w)”, e :P (induction hypothesis)
=> 5 t=M @ (def. 5.1.5)

Case g = It) f
The translation rule is ‘P7(It)9) = s‘W—aP’ go(BF(t) 0 +1) T90?)
Let :‘Pe ECWO) be a path.
==> There is a we WPcwith ”W = W0 and EP: {:(whw I ;ce ‘P—WW’C]
=> w = PA C(w)(w0) (axiom C3)
=> S’CL := SCL[P/PAC(w)]‚y[WP/w]c[p/wo]fl‚l=c g0(BF(t) 0 +1) 93(7) (def.4.2.5)
Let wl := 8 'CL(BF(t) o +1))(w)
:; SCL[p/PAC(w)]„‚[WP/w1]c[p/w0]‚_‚l=c ‘I’9(9) (def.4.2.5)
=> 8 [wllw] W 37 (induction hypothesis)
and wuw is the first world on rPafter a transition labeled with 8 ’CL(1) = 3(t) (axiom II)
:> 3 I=M g (def. 5.1.5)

Case g : 9'1 VU 9’2
The translation rule is
?‚(yl VU 95) = Vp:‘W—>P’ 3x:‘P—>“W’ (43%) A Vy:‘P—9“W’-x (<(poy, pox) => 91705)).
Let {PG fl‘wo) be a path.
=> There is a we WPCwith w|w = ‘WO and 17: {7410t me ‘P—>“W’C}
==> w = PA C(w)(w0) (axiom C3)

=> 31:1. == SCL[p/PAC(w)]„1WP/w]c [:>/wo]?
I=C Elx:‘P—>“W’ (‘P7(g) A Vy:‘P—>“W’-x (<(poy, pox) ==> ??(ß). (def.4.2.5)

=> 3"c1. == s‘crlP/PACW)‚x/ad„AWP/aim]c[:>/wc.‚x/w]‚_‚. (def.4.2.5)
I=C (T7072) A Vy:‘P—>“W’-x (<(poy, pox) => T7071» for some ace ‘P—f‘W’ C
3"c1. I=C mag) and sh I=C Vy:‘P——>"W’-x (<(poy, pox) :> .11499)

(+) (def.4.2.5)
5[?<(W)|w] |=M f2 and W2 := 7((w)|w e ? (*) (induction hypothesis)

U
U

84

Let 'W1 E P, 'W1 :t; 'W2 and 9\t('W1,'W2)

~ 3w1 E WPe with wlIW = 'W1 and z(w1) = ~w) for some z E 'P~rtw' e (def. of 9\~

and w1 = ;(w) for some yE 'P~rtw'e (W1 E ~

~ z(;(w» = ~w)

~ ;(w) Se ~w) (axiom 11)

~ if..w) <c ~w) (*) ('W2 = ~w)lw:t; ;(w)IW = 'W2 and axiom H3)

3'''CL:= 3"cdY/Y]'J![WP/if..p(x»]c[y/P(X)]!pFC <(poy, pox) ~ '¥17i) (+ and defA.2.5)

~ 3CL[P/PAC<w),x/~ Y/Y]'J![WP/;(w)]c[P/Wo,x/wJY/w]!p FC «poy, pox)~'¥1'F1) (def. of 3")

3"'CL FC «poy, pox) (* and def. 4.2.5)

~ 3"'cL Fc'¥I'F1)

~ 3[~w)IW] = 3 ['W2] FM 'F2

~ 3 FM g (* and def. 5.1.5)

The proofs for the other cases are similar. _

This completeness result together with the completeness of the translation from Context Logic into OSPL (lemma

4.3.15) means that theorem proving in MM-Logic by translation via CL into OSPL is (weakly) complete.

84

=> Elm] e WPCwith wllW = W] and z(w1) = :(w) for some ze ‘P—WW’ C (def. of 93‘)
and "”1 = y(zu) for some ye ‘P—>“W’C (wl e 1’)

=> 4.410)) = rim)
=> 9(a)) SC an!) (axiom I l)
=> _y(w) (C adv) (*) (‘W2 = aria/MW # y(w)|w = W2 and axiom H3)
3" ‚CL := 3"CL[y/y]y[WP/3KEP(X))] C [y/flx)]9t=c ((poy, pox) => glg-(fl) (+ and def.4.2.5)

=> 3CL[p/PAc(w),x/?(, y/y]y[WP/y(w)]c[p/w0,x/w,y/w]a, t=c <(poy, pox)=>‘P ‚(9'1) (def. of 3")
3" ‚CL |=C <(poy, pox) (* and def. 4.2.5)
=> SWCL t=C T909
=> Shin/MW] = SPF/V2] |=M 95
=> S t=M g (* and def. 5.1.5)

The proofs for the other cases are similar. I

This completeness result together with the completeness of the translation from Context Logic into OSPL (lemma
4.3.15) means that theorem proving in LAM-Logic by translation via CL into OSPL is (weakly) complete.

85

5.3 Examples

The following examples for theorem proving with translation via CL into OSPL and refutation with resolution and

paramodulation in OSPL are chosen to illustrate typical applications of clauses axiomatizing the possible worlds

structure of MM-Logic (def. 5.2.3). We use first-order syntax now, but except in example 5.3.5, we drop the PW

function which, according to the formula morphism IT}' embraces all the WP-terms in the translated domain terms

and atoms. Keeping this function does not change the deductions in our examples. Furthermore we assume the

associativity of 0 and the axiom A3: (xoy)(w) = y(x(w» to be built into the unification algorithm.

Notice that the variables in different clauses are always different, although we usually choose common names.

Example 5.3.1

The first example proves that in the modal system D (no special properties of the accessibility relation except

seriality) LOb's Axioms e(eq=> q) => eqirnply the formula eQ => eeQ that characterizes transitive

accessibility relations. Actually this holds also in K (nonserial accessibility relation) and there Lob's Axioms

axiomatize the modal system G that has a transitive and non-serial accessibility relation 9\ with no infinite

9\-chains. Let q:= Q 1\ eQ. The theorem to be proved is

~:= (e~(e~(Q 1\ e~Q) => (Q 1\ e~» => e~(Q 1\ e~Q» => (e~Q => e~e~Q)

(e~ is the MM-Logic operator that corresponds to the system D modal logic operator e)

Translation of the negated formula into CL (def. 5.2.2) yields

....{vu (Va (Q 1\ VV Q) => (Q 1\ VbQ» => Vw(Q 1\ VxQ» => (VyQ =>Vc,dQ)

All variables are of type 'W-7~W'.

The negation normal form is

(Vu (3a (Q 1\ VV Q) 1\ (-,Q v 3b-,Q» v Vw(Q 1\ VxQ» 1\ (VyQ 1\ 3c,d-,Q)

Translation into OSPL (def. 4.3.2) yields

«Vu (Q[au] 1\ VvQ[auv]) 1\ (-'Q[a] v-,Q[ab])) v Vw(Q[w] 1\ Vx Q[wx])) 1\ (Vy Q[y] I\-,Q[cd])

To make it more readable we abbreviate PW(J..(xl 0 ••• 0 x), 0) with [xl"'x].n n

The clauses are:

RI: Q[au], pew] R2: Q[au], Q[wx] R3: Q[auv], Q[w]

R4: Q[auv], P[wx] R5: -,Q[a], -,Q[ab], Q[w] R6: -,Q[a], -,Q[ab], Q[wx]

R7: Q[y] R8: -,Q[cd].

a,b,c,d are constants of type 'W-7~W', x,y,z,u,v,w are variables of type 'W-7~W'.

Resolution: R6,I & R7, cr = (y ~ a}

-7 R9: -,Q[ab], Q[wx]

Resolution: R9,2 & R8, cr = (w ~ c, x ~ d}

-7 RIO: -,Q[ab]

Resolution: RIO & R2,I, cr =(u ~ b}

-7 RH: Q[wx].

Resolution: RH & R8, cr =(w ~ c, x ~ d}

-7 R12: empty clause. _

None of the axioms for the possible worlds structure were necessary. This is always the case when e~ and O~ are

the only modal operators occurring in the formulae. In case er and or are the only operators occurring (modal logic

Tor M), ID 0 x =x and x 0 ID =x are the only axioms needed. In case et and ot are the only operators occurring

(modal logic D4), the associativity of 0 is needed and finally in case eft and Oft are the only operators occurring,

ID 0 x =x and x 0 ID =x together with the associativity of 0 are needed.

85

5 . 3 Examples

The following examples for theorem proving with translation via CL into OSPL and refutation with resolution and

paramodulation in OSPL are chosen to illustrate typical applications of clauses axiomatizing the possible worlds

structure of MM-Logic (def. 5.2.3). We use first-order syntax now, but except in example 5.3 .5 , we drop the PW

function which, according to the formula morphism l'I9p embraces all the WP-terms in the translated domain terms

and atoms. Keeping this function does not change the deductions in our examples. Furthermore we assume the

associativity of o and the axiom A3: (xoy)(w) = y(x(w)) to be built into the unification algorithm.

Notice that the variables in different clauses are always different, although we usually choose common names.

Example 5.3.1
The first example proves that in the modal system D (no special properties of the accessibility relation except

seriality) Löb’s Axioms I:I(I:I g :> g) => ng imply the formula EIQ => EIEIQ that characterizes transitive

accessibility relations. Actually this holds also in K (nonserial accessibility relation) and there Löb’s Axioms
axiomatize the modal system G that has a transitive and non-serial accessibility relation ER with no infinite
iii-chains. Let g := Q A EIQ. The theorem to be proved is

‘f := (o¢(n¢(Q A U90) => (Q A D°Q)) => EI°(Q A D¢Q)) => (E!°Q => U°D°Q)

(El” is the MM-Logic operator that corresponds to the system D modal logic operator :1)
Translation of the negated formula into CL (def. 5.2.2) yields

-.(Vu (Va (Q A VV Q) => (Q A VbQ)) => VW(Q A VxQ)) => (VyQ =>Vc,dQ)
All variables are of type ‘W——>°W’.
The negation normal form is

(Vu (3a (Q A Vv Q) A (—Q v 3b—.Q)) v Vw(Q A VxQ)) A (VyQ A Bad—Q)
Translation into OSPL (def. 4.3.2) yields

((Vu (Q[au] A VVQlauv}) A (-:Q[a] vfiQ[ab])) v VW(Q[W] A VX Q[WXD) A (W Q[y] AfitdD

To make it more readable we abbreviate PW(¢(x1 o . . . o xn), 0) with [xl . . .xn].
The clauses are:

R1: Q[au],P[w] R2: Q[au],Q[wx] R3: Q[auv],Q[w]
R4: Q[auV]. P[WX] R5i-1Qla]mQ[ab] ,Q[W] R6: —1Q[a]. —:Q[ab], Q[WX]
R7: Q[y] R8: —.Q[cd].

a‚b,c,d are constants of type ‘W—af’W’, x,y,z,u,v,w are variables of type ‘W——>"’W’.

Resolution: R6,l & R7, 0' = {y H a}
—9 R9: —.Q[ab], Q[wx]

Resolution: R9,2 & R8, 0' = {w v—> c , x H d}
———> R10: —«Q[ab]

Resolution: R10 & R2,1, 0' = {u -—> b }
—> R11: Q[wx].

Resolution: R11 & R8, 0' = {Wi-> c , x I—> d }
—> R12: empty clause. I

None of the axioms for the possible worlds structure were necessary. This is always the case when El“ and 0” are
the only modal operators occuning in the formulae. In case D‘ and 0’ are the only operators occurring (modal logic
T or M), ID o x = x and x 0 ID = x are the only axioms needed. In case I:!t and Ot are the only operators occurring
(modal logic D4), the associativity of 0 is needed and finally in case I:!“ and 0“ are the only operators occurring,
ID 0 x = x and x 0 ID = x together with the associativity of 0 are needed.

86

Example 5.3.2 Axiom F2

We want to prove Q 1\ [J~Q => [JfQ.

Translation of the negated fonnula into CL (def. 5.2.2) yields

-,(Q 1\ (Vx:'W~~' Q) => Vy:'w~rw' Q)

The negation nonnal fonn is:

Q 1\ (Vx:'W~~' Q) 1\ 3y:'W~rw' ---,Q

Translation into OSPL (def. 4.3.2) yields

Q(O) 1\ (Vx:'W~~W'Q.J,(x, 0) 1\ -,Q.J,(a, 0) a:'W~rw'

(We simplified PW(.J,(ID, 0» to 0)

The clauses are:

F2 Vx:'w~rtw' Vw:WP .J,(x, w) = w v .J,(x, w) = .J,(-R(x), w).

RI Q(O) R2 Vx:'W~~W' Q.J,(x, 0) R3 -,Q.J,(a, 0)

Resolution between R2 and R3 is not possible because the sort of x is weaker than the sort of a.

Paramodulation: F2,I,r & RI, er = {w H OJ

~ R4: Vx:'W~rtw' Q.J,(x, 0) v .J,(x,O) = .J,(-R(x), 0).

Resolution:, R3 & R4,1, er = {x Ha}

~ R5: .J,(a, 0) = .J,(-R(a), 0).

Paramodulation: R5 & R3, er = ~

~ R6: -,Q.J,(-R(a),O)

Resolution: R6 & R2, er = {x H a}, The sort of '-R(a)' is 'W~~W'

~ R7: empty clause.

In the same way we can prove P 1\ clp => crtp. •
The example has shown that the axiom F2 is necessary when statements correlate cooperators with and without

reflexivity.

Example 5.3.3 Axiom A4

We wantto prove Vx:D [x]1Q => [x]]t [x]]1Q (transitivity axiom in logic D4)

Translation of the negated fonnula into CL (def. 5.2.2) yields

-,(Vx:D (V(y:'D,W~tw',ul=x)Q) => V(a:'D,W~tw',u2=x) V(b:'D,W~tw',u3=x) Q)

The negation nonnal fonn is:

Vx:D (V(y:'D,W~tw' ,ul=x) Q) v 3(a:'D,W~tw' ,u2=x) 3(b:'D,W~tw' ,u3=x) -,Q

Translation into OSPL (def. 4.3.2) yields

Vx:D Vy:'D,W~tw' Q.J,(.!-{y, x), 0) 1\ -,QJ{.J,(a, x) 0 .L(b, x», 0)

a:'D,W~tW' and b:'D,W~tW'

The clauses are:

A4 Vx,y:'D,W~tw' VI:D .J,(x 0 y, 1) = .J,(x, 1) 0 .J,(y, 1)

RI Vx:D Vy:'D,W~tw' Q.L(.L(y, x), 0) R2 Vx:D -,Q.J,(.J,(a, x) 0 .J,(b, x», 0)

Paramodulation A4,r & R2 er = {xA4 H a, y H b, I H xR2}

~ R3: Vx:D -,Q.J,(.J,(a 0 b, x), 0)

The sort of a 0 b is 'D,W~tw'. Therefore R3 and RI unify and we get the empty clause. •

86

Example 5.3.2 Axiom F2
We want to prove Q A nl’Q => D‘Q.
Translation of the negated formula into CL (def. 5.2.2) yields

fi(Q A (Vx:‘W—>°W’ Q) :> Vyz‘W—9‘W’ Q)
The negation normal form is:

Q A (Vx:‘W—)¢W’ Q) A Ely:‘W—-)’VV’ —Q
Translation into OSPL (def. 4.3.2) yields

Q(O) A (Vx:‘W——>¢W’ Qi(x, 0) A fiQMa, 0) a: ‘W—fW’
(We simplified PW(J.(ID, 0)) to 0)

The clauses are:
F2 Vx:‘W—>“W’ Vw:WP J.(x, w) = w v .L(x‚ w) = $(-R(x), w).

R1 Q(0) R2 s‘W-—>¢W’ Qi(x, 0) R3 ——:Q~L(a, 0)

Resolution between R2 and R3 is not possible because the sort of x is weaker than the sort of a.
Paramodulation: F2,1,r & R1, o = {w I—> 0 }

-> R4: Vx:‘W—>“W’ Q&(x, 0) v 1.0:, 0) = J,(-R(x)‚ 0).
Resolution: ‘ R3 & R4,1, 0' = {x I—> a}

—a R5: Ma, 0) = ¢(-R(a), 0).
Paramodulation: R5 & R3, 0' = ¢

—> R6: —-.Q.L(—R(a), 0)
Resolution: R6 & R2, 6 = [x H a], The sort of ‘-R(a)’ is ‘W—>¢W’

—-> R7: empty clause.

In the same way we can prove P A D‘P => nflP. I

The example has shown that the axiom F2 is necessary when statements correlate u—operators with and without

reflexivity.

Example 5.3.3 Axiom A4
We want to prove sD [[x]]‘Q => [[2:41]]t [[x]t (transitivity axiom in logic D4)
Translation of the negated formula into CL (def. 5.2.2) yields

-.(Vx:D (V(y:‘D,W—>‘VV’,u1=x) Q) => V(a:‘D,W—>‘W’,u2=x) V(b:‘D,W——)W',u3=x) Q)
The negation normal form is:

sD (V(y:‘D,W——)’W’,u1=x) Q) v 3(a:‘D,W——>‘W’‚u2=x) El(b:‘D,W——)tW’,u3=x) -1Q
Translation into OSPL (def. 4.3.2) yields

sD Vy:‘D,W—>‘W’ Ql(l(y, x), 0) A -—.Q.L(J.(a, x) o l , x)), 0)
a: ‘D,W——>‘W’ and b: ‘D,W—>‘W’

The clauses are:

A4 Vx,y:‘D,W—->‘VV’ VlzD to; o y, 1) = ¢(x, l) o My... 1)

R1 vx:D Vy:‘D,W-—>‘W’ Q¢(l(y, x), 0) R2 sn —.QJ,(J,(a, x) 0 La), x)), 0)

Paramodulation A4; & R2 o = {xA4 H a, y H 1:), 1H s}
—-> R3: Vx:D —.QJ.(l(a o b, x), 0)
The sort of a o b is ‘D,W-—>‘W’. Therefore R3 and R1 unify and we get the empty clause. I

87

The next examples illustrate some correlations between the usual modal operators and those involving paths

through possible worlds structures.

Example 5.3.4 Axioms G4, 12, El

We want to prove Ol(cItQ 1\ R) => -(Q v OlR.)

The interesting part of the possible worlds structure:

'a' corresponds to the O-operator and

MP(a) corresponds to the --operator (a)

The path crossing 'a'

satisfies OlR. (before a) or Q (after a)

Translation of the negated formula into CL (def. 5.2.2) yields

-,«(:la:'W~tw' (Vx:'W~rtw' Q) 1\ R» => 3p:'W~P' Vb:'P~rtw' (Q v 3y:'W~tw' R)

The negation normal form is:

(3a:'W~tw' (Vx:'W~rtw' Q» 1\ R 1\ Vp:'W~P' 3b:'P~rtw' (-,Q 1\ Vy:'w~tw'-,R)

Translation into OSPL (def. 4.3.2) yields

Vx:'W~rtw' QJ,(aox,O) 1\ RJ,(a, 0) 1\ Vp:'W~P'-,QJ,(pob,0)

1\ Vy:'W~tw'-,RJ.(poboy,0)

a:'W~tw', b:'P~rtw'

The clauses are:

G4 Vx,y:'P~rtw' Vw:WP J,(x, w) ~ J,(y, w) v J,(y, w) ~ J,(x, w).

12 Vx,y:'P~rtw' Vw:WP -, J.(x, w) ~ J.(y, w) v J,(x o+-(x, y», w) =J.(y, w)

El Vx:'W~rtw' x = MP(x) 0 MW(x)

RI Vx:'W~rtw' QJ,(aox, 0) R2 RJ.(a,O)

R3 Vp:'W~P' -,QJ,(pob, 0) R4 Vp:'W~P' Vy:'w~tw' -,RJ.(pob?y, 0)

Paramodulation 12,2r & R3, 0' = (y 1-7 b. w 1-7 J.(p, 0»

~ RS: Vp:'W~P' Vx:'P~rtw'-, J.(pox, 0) ~ J,(pob, 0) v -,QJ.(poxo+-(x, b), 0)

Paramodulation EI,1 & RI, 0' =(xEl l-7 a}

~ R6: Vx:'W~rtw' QJ,(MP(a)oMW(a)ox, 0)

Resolution RS,2 & R6, 0' = (p 1-7 MP(a), xR51-7 MW(a), xR61-7 +-(MW(a), b)}

~ R7: -, J.(MP(a)oMW(a), 0) ~ J,(MP(a)ob, 0)

We have derived that b precedes a.

The next step will be to derive

the opposite.

b corresponds to the negated

--operator in the theorem

Paramodulation EI,1 & R2, 0' = {x 1-7 a}

~ R8: RJ.(MP(a)oMW(a), 0)

Paramodulation 12,2r & R8, 0' = (y 1-7 MW(a), w 1-7 J.(p. O)}

~ R9: Vx:'P~rtw'-, J.(MP(a)ox, 0) ~ J.(MP(a)oMW(a), 0) v RJ,(MP(a)oxo+-(x, MW(a», 0)

Resolution R4 & R9,2, 0' =(p 1-7 MP(a), x 1-7 b. y 1-7 +-(b, MW(a»}

~ RIO: -, J.(MP(a)ob, 0) ~ J,(MP(a)oMW(a), 0)

Two further resolutions with G4, R7 and RIO yield the empty clause. _

87

The next examples illustrate some correlations between the usual modal operators and those involving paths
through possible worlds structures.

Example 5.3 .4 Axioms G4, 12, E l

We want to prove O‘(I:I"Q A R) => ->(Q v O‘R)

The interesting part of the possible worlds structure:

‘a’ corresponds to the O-operator and
MP(a) corresponds to the H-operator

The path crossing ‘a’
satisfies 01R (before a) or Q (after a)

Translation of the negated formula into CL (def. 5.2.2) yields
H((E|a:‘W—>‘W’ (Vx:‘W—>“W’ Q) A R)) =» Elp:‘W—>P’ Vb:‘P——>“W’ (Q v 3y:‘W—>‘\V’ R)

The negation normal form is:
(Elaz‘W—fiW’ (Vx:‘W—-—>“W’ Q)) A R A Vp:‘W——>P’ 3b:‘P——>"W’ (—.Q A Vy:‘W—>‘W’ —.R)

Translation into OSPL (def. 4.3.2) yields

Vx:‘W—>“W’ Qi(aox, 0) A R.L(a, 0) A Vp:‘W—->P’—:Q.L(pob, 0)
A Vyz‘W—9‘W’HRKpoboy, 0)

a:‘W—>‘W’, b: ‘P——>“W’

The clauses are:

G4 Vx,y:‘P—)”W’ Vw:WP J.(x, w) 5 My, w) v .L(y, w) S i(x, w).
12 Vx,y:‘P—>“W’ Vw:WP —-1 J.(x, w) S .L(y, w) v .L(x o+(x, y)), w) = ~L(y, w)
El Vx:‘W—>“VV’ x = MP(x) o MW(x)

R1 s‘W—WW’ Qi(aox, 0) R2 R¢(a, 0)
R3 s‘WHP’ —1QJ‚(pob, 0) R4 s‘W-äP’ Vy:‘W—9‘W’ —-.R~L(pob9y, 0)

Paramodulafion12,2r & R3, 0‘ = {y H b, w H Mp, 0))
—> R5: Vp:‘W—>P’ Vx:‘P——>"W’—. .L(pox, 0) s .L(pob, 0) v —.QJ‚(poXo+(x, b), 0)

Paramodulation E1,l & R1, 0' = [xEl H a}
--) R6: Vx: ‘W—>"W’ QJ.(MP(a)oMW(a)ox, 0)

Resolution R5,2 & R6, o = {p H MP(a), XRS H MW(a), x116 H +(MW(a), b)}
--) R7: _! $(MP(a)oMW(a), 0) S $(MP(a)ob, 0)

We have derived that b precedes a.
The next step will be to derive

the opposite.

b corresponds to the negated
H-operator in the theorem

Paramodulation E1,l & R2, 0' = {x H a}
—> R8: RJ,(MP(a)oMW(a), 0)

Paramodulation 12,2r & R8, o = {y H MW(a), w H Mp, 0)]
—> R9: Vx:‘P—>"W’-—: ~L(I\/[P(a)ox, 0) S J,(MP(a)oMW(a), O) v Ri(MP(a)oXo->—(x‚ MW(a)), 0)

Resolution R4 & R9,2, 0' = {p H MP(a), x H b, y H +(b, MW(a))}
—> R10: H i(MP(a)ob, 0) S i(h/IP(a)oMW(a), 0)

Two further resolutions with G4, R7 and R10 yield the empty clause. I

88

Example 5.3.5 Axioms B3, C2, D2, D13, El, E4, G4, 12, Kl

We want to prove .-Q =>-.Q

The negation of this fonnula in MM-syntax. is .-Q /\ .--,Q.

Although the fonnula looks simple, the situation it describes in tenns of the possible worlds structure is quite

complex and therefore the arguments for the refutation are also are quite complex. As an orientation for following

the refutation the interesting part of the possible worlds structure is drawn in the figure below.

a

al corresponds to the first.

az corresponds to the second.

PI corresponds to the frrst -

The contradiction, Le. Q and -,Q

in the part where al is before aZ

occurs at the ramification of

ql and qz.

Translation of the negated fonnula into CL (def. 5.2.2) yields

-,«VPI:'W~P' 3al:'p~rtw' 3ql:'W~P' VYI:'P~rtW' Q)

=> 3Pz:'W~P' Vaz:'P~rtw' Vqz:'W~P' 3yz:'P~rtw' Q

The negation nonna! fonn is:

(VPI:'W~P' 3at:'P~rtw' 3ql:'W~P' VYt:'P~rtw' Q)

/\ VPz:'W~P' 3az:'P~rtw' 3qz:'W~P' VYz:'p~rtw' -,Q

This time we need the correct translation with the PW function.

Translation into OSPL (def. 4.3.2) yields

VPt:'W~P' VYI:'P~rtw' Q(PW(J.(PtoatoqtoYI' 0)))

/\ VPz:'W~P' VYz:'p~rtw' -,Q(PW(J,(PZoa2oqzoyz,0)))

at:'P~rtw', az:'P~rtw', qt:'W~P', qz:'W~P'

The clauses are:

B3 Vx:'w~rtw' x ° ID =x

C2 Vp:'W~P' MW(P) =ID

D2 Vx:'P~rtw MW(x) =x

D13Vx,y,z:'P~rtw' Vp:'W~P' Vw:WP -, J.(x, w) ~ J.(y, w) v J.(MP(xozop)ox),w) ~ J.(MP(xozop)oy),w)

El Vx:'w~rtw' x =MP(x) oMP(x)

E4 Vx,y:'W~rtw' MW(xoy) =MW(x) oMW(y)

G4 Vx,y:'P~rtw' Vw:WP J.(x, w) ~ J.(y, w) v J.(y, w) ~ J.(x, w).

12 Vx,y:'P~rtw' Vw:WP -, J.(x, w) ~ J.(y, w) v J.(x o+-(x, y)), w) =J.(y, w)

KI Vx:'W~P' Vw:WP PW(J.(x, w)) =PW(w)

RI VPt:'W~P' VYt'P~rtw' Q(PW(J.(PtoaloqtoYt' 0)))

R2 VP2:'W~P' VYz'p~rtw' -,Q(PW(J.(P2oazoq20Y2' 0)))

Paramodulation EI,1 & RI, 0' =(x 1-7 atoql}

~ R3: VPt:'W~P' VYI'P~rtw' Q(PW(J.(ptoMP(atoqt)oMW(atoqt)oYI'O)))

Paramodulation E4,1 & R3, 0' ={x 1-7 at, Y1-7 qt}

~ R4: VPI:'W~P' VYt 'p~rtw' Q(PW(J.(PloMP(atoqt)oMW(at)oMW(qt)oYt, 0)))

Paramodulation C2,1 & R4, 0' ={p 1-7 qt}

~ R4: VPt:'W~P' VYt 'P~rtw' Q(PW(J.(ptoMP(atoqt)oMW(at)oIDoYt, 0)))

Paramodulation 02,1 & R4, 0' ={x 1-7 at}

~ R5: VPt: 'w~P' Vy t 'p~rtw' Q(PW(J.(Pt oMP(atoql)oatoIDoy t' 0)))

88

Example 5 .3 .5 Axioms B3, C2, DZ, D13, El , E4, G4, 12, K1

We want to prove D->Q => *DQ

The negation of this formula in MM-syntax is D->Q A D—>——1Q.
Although the formula looks simple, the situation it describes in terms of the possible worlds structure is quite
complex and therefore the arguments for the refutation are also are quite complex. As an orientation for following

the refutation the interesting part of the possible worlds structure is drawn in the figure below.

al corresponds to the first |
a2 corresponds'to the second!
p l corresponds to the first »

The contradiction, i.e. Q and —.Q

in the part where al is before a2
occurs at the ramification of

q1 and %-

Translation of the negated formula into CL (def. 5.2.2) yields
—-.((Vp1:‘W—>P’ Elal:‘P—>"W’ Elqlz‘W—eP’ Vyl:‘P——)“W’ Q)

=> 3p2:‘W—>P’ Vazz‘P—V‘W’ qz‘W—>P’ Elyzz‘P—9“W’ Q
The negation normal form is:

(Vplz‘W-AP’ Halz‘P—>"VV’ Elqli‘W—aP’ Vylz‘P—>“W’ Q)
A sz‘W—>P’ Elaez‘P—WW’ qz‘W—aP’ Vyzz‘P—f‘W’ —-1Q

This time we need the correct translation with the PW function.
Translation into OSPL (def. 4.3.2) yields

Vplz‘W—eP’ Vylz‘P—WW’ Q(PW(i(ploaloqloy1, 0)))
A Vp2:‘W-—>P’ vy2:‘P—>rtw* —1Q(PW(¢(p2oazoqzoy2, 0)))

a1:‘P-—>“W’, azz‘P—f‘W’, qlz‘W-—>P’, qzz‘W—>P’

The clauses are:
B3 Vx:‘W-—>"W’ x 0 ID = x
C2 Vp:‘W-—)P’ MW(p) = ID
D2 Vx:‘P—-)“VV MW(x) = x
D13Vx,y,z:‘P-—)“W’ s‘W—aP’ Vw2WP -—. .L(x, w) S My, w) v \L(MP(XoZop)ox),w) $ $(MP(XoZop)oy),w)
El Vx:‘W——>“W’ x = MP(x) oMP(x)
E4 Vx,y:‘W—>“W’ MW(Xoy) = MW(x) oMW(y)

' G4 Vx‚y:‘P—>“W’ Vw:WP ~L(x, w) £ My, w) v J‚(y, W) S i(x, w).
12 Vx,y:‘P—->“W’ Vw:WP --. J‚(x, w) 5. My, w) v i(x o+(x, y)), w) = My, w)
KI Vx:‘W—>P’ Vw2WP PW(i(x, w)) = PW(w)

R1 Vp1:‘W—>P’Vy1‘P——>“W’ Q(PW(t(p1oa1oq1oy1.
0)))

R2 sz‘W—éP’ Vyz‘P—WW’ —.Q(PW(~L(p2032°C12°Y2. 0)))

Paramodulation E1,1& R1 , 0' = {x H a loql}

—> R3: Vplz‘W—>P’ Vn—f‘W’ Q(PW(i(ploMP(aloq1)oMW(a1oq1)oy1, 0)))
Paramodulation 134,1 & R3, 0' = {x I—> a l , y H ‘11}

—> R4: Vp1:‘W—>P’ Vyl‘P—>“W’ Q(PW(.L(p1oMP(aloq1)oMW(al)oMW(q1)oy1, 0)))

Paramodulation C2,l & R4, 0' = {p H ql}
-—> R4: Vp1:‘W——9P’ VyI‘P—->“W’ QCPWGKploMP(aloq1)oMW(al)oIDoy1, 0)))

Paramodulation D2‚l & R4, o = {x H a1 } “

—> R5: Vplz‘W—aP’ Vn—WW’ Q(PW(i(p10W(aloql)oaloIDoy1,0)))

89

Paramodulation B3,l & R5, 0' ={x f-7 al}

~ R6: VPI:'W~P' VYl'P~rtw' Q(PW(,j..(PloMP(aloql)oaloYl' 0)))

Paramodulation 12,21 & R6, 0' = (x f-7 aI' w f-7 ,j..(PloMP(aloql)' 0), Yl f-7 -(aI' y)}

~ R7: VPl:'W~P' Vy'p~rtw'

-, ,j..(PloMP(aloql)oal' 0) $; ,j..(PloMP(aloql)oy, 0) v Q(PW(J..(PloMP(aloql)oy, 0)))

Paramodulation B3,1 & R2, 0' = {x f-7 qz, yz f-7 ID}

~ R8: VPz:'W~P' -,Q(PW(,j..(pzoazoqz, 0)))

Paramodulation Kl & R8, 0' = (x f-7 qz, Wf-7 ,j..(pzoaz, O)}

~ R9: VPz:'W~P' -,Q(pW(,j..(pzoaz), 0»)

Resolution R7,2 & R9, 0' = (Pz f-7 PloMP(aloql)' yf-7 az}

~ RIO: Vp(W~P'-, ,j..(PloMP(aloql)oal' 0) $; ,j..(PloMP(aloql)oaZ' 0)

A similar sequence where RI and R2 exchange their role yields

Rl1: VPz:'W~P' -, ,j..(pzoMP(azoqz)oaz, 0) $; ,j..(pzoMP(azoqZ)oal' 0)

2 Paramodulations B3,I & D12,2, 0' = {xB3 f-7 xD1Z' z f-7 ID}

~ R12: Vx,y:'P~rtw' Vp:'W~P' Vw:WP -, ,j..(x, w) $; ,j..(y, w) v ,j..(MP(xop)ox),w) $; ,j..(MP(xop)oy),w)

Resolution RIO & RI2,2, 0' = (x f-7 aI' p f-7 ql' Yf-7 a2' w f-7 ,j..(Pl' O)}

~ R13: VPl:'W~P' -, ,j..(Ploal' 0) $; ,j..(Ploa2' 0)

ResolutionG4,1 &RI3, 0'= (Xf-7 aI' yf-7 a2' Wf-7 ,j..(Pl' O)}

~ R14: VPl:'W~P' ,j..(Ploa2' 0) $; ,j..(Ploal' 0)

Resolution R14 & Rll, 0' = (PI f-7 P2oMP(a2oq2)}

~ R15: empty clause. •

Although this proof looks awfully complicated, most of the steps are simple term rewriting steps which can be

handled very well by a demodulation mechanism.

Example 5.3.6 Axiom G1

We want to prove Q lJT R ~ Oft(Q 1\ R)

Translation of the negated formula into CL (def. 5.2.2) yields

-,(Vp:'W~P' (3a:'P~rtw' (R 1\ 3y:'P~rtw'-a$;(poy, poa) ~ Q» ~ 3x:'W~rtw(Q 1\ R»

The negation normal form is:

(Vp:'W~P' 3a:'p~rtW' (R 1\ Vy:'p~rtW'-apoy $; poa ~ Q» 1\ Vx:'w~rtW(-'Qv -,R»

Translation into OSPL (def. 4.3.2) yields: a:'P~rtw'

Vp:'W~P' R(,j..(poa, 0» 1\ Vy:'p~rtw' ,j..(poy, 0) $; ,j..(poa, 0) ~ Q,j..(poy, 0)

1\ Vx:'W~rtw(-,Q,j..(x,0) v -,R,j..(x, 0»

The clauses are:

Gl Vw:WP w $; w

RI Vp:'W~P' R,j..(poa, 0)

R2 Vp:'W~P' Vy:'P~rtw' ,j..(poy, 0) $; ,j..(poa, 0) v Q,j..(poy, 0)

R3 Vx:'W~rtw-,Q,j..(x, 0) v -,R,j..(x, 0)

Resolution RI & R3,2, 0' ={x f-7 poa} (The sort of poa is 'w~rtw')

~R4: -,Q,j..(poa, 0)

Resolution R2,2 & R4, 0' = {y f-7 a}

~R5: -, ,j..(poa, 0) $; ,j..(poa, 0)

Resolution G 1 & R5, 0' = (w f-7 ,j..(poa, O)}

~ R7: empty clause. •

89

Paramodulation B3,] & R5, O' = {x H a l}
_) R6: Vplz‘WHP’ Vyl‘P—>“W’ Q(PW(J,(ploMP(aloq1)oa1oy1, 0)))

Paramodulation 12,21 & R6, 0' = [x H a l , w H i(ploMP(aloq1), 0), Y1 H +(a1, y)}
—> R7: Vp1:‘W—)P’ Vy‘P—9“W’

“" Jf(P1°1V[P(a1<>‘11)°al, 0) 5 ~L(P1°W(31°CI1)°Y, 0) V Q(PW(*L(P1°N[P(31°C11)°% 0)))

Paramodulation B3,l & R2, 0' = [x H qz, yz H ID]

—> R82 si‘W—äp’ —-1Q(PW(‘L(pzoazoq2, 0)))
Paramodulation K1 & R8, 6 = {x H q2, w H i(pzoa2, 0)}

—-) R9: Vp2:‘W-—>P’ —.Q(PW(~L(pzoaz), 0)))
Resolution R7,2 & R9, c = {p2 H ploMP(a1oql), y H az}

—> R10: Vp1:‘W—>P’——u $(ploMP(a1oq1)oa1, 0) $ J,(p1oMP(aloq1)oa2, 0)

A similar sequence where R1 and R2 exchange their role yields
R11: sz‘W-HP’ H .L(p2<>1VIP(azoq2)oa2, O) S $(p2oMP(azoq2)oa1, 0)

2 Paramodulations B3,] & D12,2, 0' = {x33 H x1312, z H ID}
—-> R12: Vx,y:‘P——)"\V’ Vp:‘W—)P’ Vw:WP —-. ~L(x, w) S My, w) v ~L(NIP(Xop)ox),W) S J,(MP(Xop)oy),w)

Resolution R10 & R12,2, O' = {x H a l , pH (11, yH az, WH .L(p1, 0)}
——> R13: Vplz‘W—äP’ -—. .L(ploa1, 0) S $(ploa2, 0)

Resolution G4,] & R13, 0' = {x H al, yH az, WH “pl , 0)}
“"") R14: Vplz‘W—äP’ $(ploa2, 0) $ i (p loa1 ‚ 0)

Resolution R14 & R11, 0' = {pl H pzoMP(azoq2)}
—> R15: empty clause. I

Although this proof looks awfully complicated, most of the steps are simple term rewriting steps which can be
handled very well by a demodulation mechanism.

Example 5.3.6 Axiom G1
We want to prove Q UT R => (>"(Q A R)
Translation of the negated formula into CL (def. 5.2.2) yields

-—-.(Vp:‘W—->P’ (Elaz‘P—>“W’ (R A Ely:‘P—>“W’-a $(poy, poa) => Q)) => 3x:‘W—>“W(Q A R))
The negation normal form is:

(s‘W—eP’ 3a:‘P—>“W’ (R A Vy:‘P—>“W’—a poy S poa => Q)) A Vx:‘W—->“W(—-.Q v —R))
Translation into OSPL (def. 4.3.2) yields: a:‘P—>“W’

Vp:‘W—>P’ R(.L(poa, 0)) A Vy:‘P—>“W’ 1(poy, 0) s $(poa, 0) => Qt(poy, 0)
A Vx:‘W—>“W(—1Q~L(x, 0) v —\R.L(x‚ 0))

The clauses are:

Gl Vw2WP w S w

R1 Vp:‘W—>P’ Ri(poa, 0)
R2 s‘W—aP’ Vy:‘P—>“W’ $(poy, 0) S $(poa, 0) v Q.L(poy, 0)
R3 Vx:‘W—>"W —.Q.L(x, 0) v —1RJ‚(x, 0)

Resolution R1 & R3 ‚2, a = {x H poa} (The sort of poa is ‘W—>"W’)
_) R4: -1QJ‚(poa, 0)

Resolution R2,2 & R4, 0' = {y H a}
—) R5: -—| iQ'Joa, 0) S i(poa, 0)

Resolution G l & R5, 0' = {w H “poa, 0)}
-—> R7: empty clause. I

90

Example 5.3.7 Axiom J2
We want to prove Vz:D crt[z]rQ => Va:D la) Q

Translation of the negated fonnula into CL yields

-,«Vz:D Vx:'W-?rtW' VJ-(y:'D,W-?rw',zl=z) Q) => Va:D Vq:'W-?P' go (BF(a)o+I) Q

The negation normal fonn is:

(Vz:D Vx:'W-?rtw' VJ.(y:'D,W-7rw',zl=z) Q) /\ 3a:D 3q:'W-7P' ,j'O(BF(a)o+l)-,Q

Translation into OSPL yields: a:D, q:'W-?P'

Vz:D Vx:'W-?rtw' Vy:'D,W-?rw' QJ-(xoJ-(y,z), 0) /\ -,QJ-(qoBF(a)o+1),0)

The clauses are:

12 VI:D BF(1) 0 J-(+IL, 1) = BF(l) 0 +1

RI Vz:D Vx:'W-?rtw' Vy:'D,W-?rw' QJ-(xo'/'(y,z), 0)

R2 -,QJ-(qoBF(a)o+1),0)

Paramodulation J2,r & R2, a = {l H a}

-? R3: -,QJ-(qoBF(a)oJ-(+lL, a», 0)

Resolution R3 & RI, a = {x H qoBF(a), y H +IL, z H a}

-? R4: empty clause

Example 5.3.8 Axiom J2

We want to prove la)Q => t<a>f6Q a:D

Translation of the negated fonnula into CL yields

-,(Vp:'W-?P' go(BF(a)o+l) Q => Vq:'W-?P' 3x:'P-?rtw' 3J-(y:'D,W-7f6W', z=a) Q)

The negation nonnal fonn is:

Vp:'W-?P' go (BF(a)o+1) Q /\ 3q:'W-?P' Vx:'p-?rtw' VJ-(y:'D,W-?f6W', z=a)-,Q

Translation into OSPL yields:

Vp:'W-?P' QJ-(poBF(a)o+I), 0) /\ Vx:'p-?rtw' Vy:'D,W-?!6W' -,QJ-(qoxoJ-(y,a), 0)

a:D, q:'W-?P'

The clauses are:

12 Vl:D BF(l) 0 J-(+ IL, 1) = BF(I) 0 +I.

RI Vp:'W-?P' QJ-(poBF(a)o+I), 0)

R2 Vx:'p-?rtW' Vy:'D,W-?!6W' -,Q,J,(qoxo,J,(y,a), 0)

Paramodulation J2,r & R2, a = {I Ha}

-? R3: Vp:'W-?P' Q,J,(poBF(a)o,J,(+IL,a», 0)

Resolution R3 & R2, a = (p H q, X H BF(a), y H + IL}

-? R4: empty clause

•

•

90

Example 5.3.7 Axiom J2
We want to prove Vz:D n“[[z]]rQ =» VazD Ia) Q
Translation of the negated formula into CL yields

-—.((Vz:D Vx:‘W—)“W’ V¢(y:‘D,W—9’W’,zl=z) Q) => VazD q‘W—aP’ go(BF(a)o+1) Q
The negation normal form is:

(sD Vx:‘W—>“W’ V¢(y:‘D,W——>’W’,z1=z) Q) A ElazD q‘W—aP’ go(BF(a)o+ 1) —.Q

Translation into OSPL yields: azD, q:‘W—)P’

sD Vx:‘W—>"W’ Vy:‘D,W——>’W’ Q¢(Xo¢(y,z), O) A —:Qi(qoBF(a)o+1), 0)

The clauses are:
J2 VlzD BF(1) o .L(+1L, l) = BF(1) 0 +1

R1 sD Vx:‘W——->"W’ Vy:‘D,W—>rW’ Q¢(Xol(y,z), 0)
R2 —QJ‚(qoBF(a)o+1), 0)

Paramodulation J2‚r & R2, c = {1H a}
—) R3: -1QJ‚(qoBF(a)o.L(+1L, a)), 0)

Resolution R3 &: R1, 0' = {x H qoBF(a)‚ y H +1L, 2 H a}

—> R4: empty clause

Example 5.3:8 Axiom J2

We want to prove |a)Q = D<a>¢Q a:D
Translation of the negated formula into CL yields

—1(Vp:‘W—>P’ go(BF(a)o+1)Q => Vq:‘W-—>P’ 3x:‘P—>“W° 3¢(y:‘D,W—)¢W’, z=a) Q)
The negation normal form is:

Vp:‘W——>P’ go(BF(a)o+1) Q [\ q‘W—aP’ Vx:‘P——>“W’ VJ‚(y:‘D‚W——>°W’, z=a) —-.Q
Translation into OSPL yields:

Vp:‘W—>P’ Q¢(poBF(a)o+1), 0) A Vx:‘P—>"W’ Vyz‘D,W——>°W’ fiQJ‚(qoo‚(y,a), 0)
azD, q:‘W—->P’

The clauses are:

12 VlzD BFG) o .L(+1L,]) = BF(1) 0 +1 .

R1 s‘W—äP’ Q~L(poBF(a)o+l), 0)

R2 s‘P—f‘W’ Vy:‘D,W—>¢W’ —1Q~L(qo~L(y,a), 0)

Paramodulation 12; & R2, 0' = {1 H a}

—> R3: s‘W—aP’ Q.L(poBF(a)oJ‚(+1L‚a)), 0)
Resolution R3 & R2, o = {p |—> q, x +—> BF(a), y |—> +1L}

_) R4: empty clause

91

Example 5.3.8 Axiom J3
We want to prove ot<a>~ => <a>~ a:D

Translation of the negated fonnula into CL yields

--{3c:'W~tw' 3J,(d:'D,W~~', z=a) Q => 3J,(x:'D,W~~', z=a) Q

The negation nonnal fonn is:

3c:'W~tw' 3J,(d:'D.W~S'lW', z=a) Q /\ 'v'J,(x:'D,W~S'lW',z=a)...,Q

Translation into OSPL yields:

QJ,(c 0 J,(d,a)),O) /\ 'v'J,(x:'D,W~~',z=a) ...,QJ,(x,a),O)

c:'w~tw', d:'D,W~S'lW'

The clauses are:

13 'v'x:'w~rtw' 'v'y:'D,W~rtW','v'l:D x 0 J,(y, I) = J,(LT(x, y), I)

RI	 QJ,(c 0 J,(d,a)),O) R2 'v'J,(x:'D,W~S'lW', z=a) ...,QJ,(x,a),O)

Paramodulation 13,1 & RI, cr = {x H C, YH d, I Ha}

~ R3: QJ,(J,(LT(c. d), a),O)

ResolutionR2 & R3, cr = (x H LT(c, d)}

~ R4: empty clause.

One further example with an interesting epistemic semantics will be given at the end of section 5.5.

5.4 Induction

In the standard interpretation of MM-Logic with 9\t being the transitive closure of 9\S'l, paths are isomorphic to

natural numbers. Since we have only monadic functions operating on paths, functions like addition or

multiplication for example cannot be defined with our restricted syntax. Therefore things might not be as

complicated as in number theory. Nevertheless, a first-order axiomatization is not sufficient to obtain a complete

calculus. Fonnulae like

P /\ ort(p => ol1lp) => ortp or P /\ orl(P => Ol1lP) => ~rtp

although theorems in MM-Logic are not provable. They are inductive theorems with the usual structure of

inductive statements, P is the induction base and ort(p => ol1l) or ort(p => Ol1lP) respectively is the induction step.

In order to make a theorem prover prove them, an induction mechanism is needed. Unfortunately it turned out that

the same problems as they are known from predicate logic inductive theorem proving show up here as well:

~	 The selection problem:

During the search for the proof it has to be decided which fonnula should be proved by induction. In practical

applications such as program verification, the fonnulae to be proved by induction are usually loop invariants

and the like. Thus, selecting the right fonnula means figuring out the loop invariant, which is usually not a

single atom, but a complex fonnula. Without guidance by the user or some domain specific heuristics this is in

general impossible.

~	 Strongly connected with the selection problem is a phenomenon known as the generalization problem. It

happens quite frequently that a particular fonnula ris not provable by induction, but a proper generalization of

ris. Suppose we have

'v'x Qx

and ort('v'x Qx => oS'l'v'xQx)

From this ort'v'xQx follows. If, however, we try to prove or!Qa, the induction base can be shown very easily

91

Example 5 .3 .8 Axiom J3

We want to prove 0t<a>¢Q => <a>tQ a:D
Translation of the negated formula into CL yields

—-1(Elc:‘W-—>‘W’ Eli(d:‘D,W——>¢W’, z=a) Q => 3i(x:‘D,W-—>"W’, z=a) Q
The negation normal form is:

3c:‘W—->‘VV’ Eli(d:‘D,W—>¢W’, z=a) Q A Vi(x:‘D,W——>°W’, z=a) —.Q
Translation into OSPL yields:

QJ,(c o i(d,a)),0) A Vi(x:‘D,W——>°W’, z=a) fiQJ.(x,a),0)
c:‘W—>‘W’, d:‘D,W—>¢W’

The clauses are:

13 Vx:‘W——>“W’ Vy:‘D,W—)“W’,V1:D x o J,(y, 1) = lt‘LT(x, y), 1)

R1 Q~L(c o J.(d,a)),0) R2 VJ,(x:‘D,W——>¢W’, z=a) -1Qi(x,a),0)

Paramodulation 13,1 & R1, 0 = {x :—> c , y u—> d , l I—> a }

—-> R3: Q~L(J,(LT(c, (1), 20,0)
Resolution R2 & R3, 0“ = {x H LT(c, d)}

—> R4: empty clause.

One further example with an interesting epistemic semantics will be given at the end of sec lion 5.5.

5 . 4 Induction

In the standard interpretation of MM-Logic with Si‘ being the transitive closure of ER”, paths are isomorphic to
natural numbers. Since we have only monadic functions operating on paths, functions like addition or

multiplication for example cannot be defined with our restricted syntax. Therefore things might not be as
complicated as in number theory. Nevertheless, a first-order axiomatization is not sufficient to obtain a complete
calculus. Formulae like

PAD“(P=>EI¢P)=>I:I"P or PAD“(P=>0¢P)=>->"P
although theorems in MM—Logic are not provable. They are inductive theorems with the usual structure of
inductive statements, P is the induction base and urtCP => n”) or Dr‘CP => 0¢P) respectively is the induction step.
In order to make a theorem prover prove them, an induction mechanism is needed. Unfortunately it turned out that
the same problems as they are known from predicate logic inductive theorem proving show up here as well:

> The selection problem:
During the search for the proof it has to be decided which formula should be proved by induction. In practical
applications such as program verification, the formulae to be proved by induction are usually loop invariants
and the like. Thus, selecting the right formula means figuring out the loop invariant, which is usually not a
single atom, but a complex formula. Without guidance by the user or some domain specific heuristics this is in
general impossible.

> Strongly connected with the selection problem is a phenomenon known as the generalization problem. It
happens quite frequently that a particular formula {Fis not provable by induction, but a proper generalization of
ff is. Suppose we have

Vx Qx

and D“(Vx Qx => U°VxQx)
From this I:!“VxQx follows. If, however, we try to prove unQa, the induction base can be shown very easily

92

but we fail to prove the induction step because the induction hypothesis, "Qa holds in a world 'W' is too weak.

On the other hand, if we generalize cl'tQa and try to prove crtVxQx there will be no difficulties.

As the following example shows, the generalization phenomenon already occurs in the propositional case.

Suppose we have

c0Q
and crt(cliSQ ~ []liS []0Q)

From this crtcliSQ follows. But if we try to prove crtoliSQ, the induction step fails again because the induction

hypothesis "OliSQ holds in a world 'W' is too weak. The more general formula crtcliSQ, however, is easy to

prove.

~ Proofs of existentially quantified theorems in predicate logic usually require to synthesize their Skolem

functions. In the arithmetic example

if Q(O)

and 'In Q(n) ~ Q(n + fen»~

then 'In 3k Q(n + k) (Skolemized: 'In Q(n + ken)~

you defme an auxiliry recursive function h(O) = 0, hen) := hen-I) + f(h(n-I», prove by induction 'v'nQ(h(n)

and then defme the Skolem function ken) := hen) - n.

Exactly the same procedure is necessary to prove the MM-Logic theorem

if Q

and crt(Q ~ _Q)

then crto1Q

which, translated into OSPL, is of the same structure as the arithmetic example:

if Q(O)

and Vx:'W--.:;rtw' (Q(x(O» ~ Vp:'W--':;P' Q«xopot)(O)

then 'Ix: 'w--.:;rtw' Q(xok)(O)

These examples show that induction theorem proving in MM-Logic faces the same problems as induction theorem

proving in predicate logic. Although it may turn out that the restriction to monadic context access functions

simplifies the technical details, we cannot expect a quick solution to the whole problem. The greate similarities

however allow to apply the methods developed for predicate logic also to MM-Logic. This should be subject

to further investigation.

92

but we fail to prove the induction step because the induction hypothesis, “Qa holds in a world ‘W ’ is too weak.
On the other hand, if we generalize D“Qa and try to prove DHVxQx there will be no difficulties.

As the following example shows, the generalization phenomenon already occurs in the propositional case.
Suppose we have

n°Q
and n“(t:t¢Q ==> n” a°Q)

From this 1:1“q follows. But if we try to prove n’W’Q, the induction step fails again because the induction
hypothesis “09’Q holds in a world W’ is too weak. The more general formula nflnf’Q, however, is easy to
prove.

> Proofs of existentially quantified theorems in predicate logic usually require to synthesize their Skolem
functions. In the arithmetic example

if Q(O)
and Vn Q(n) ==> Q(n + f(n))
then Vn Elk Q(n + k) (Skolemized: Vn Q(n + k(n))

you define an auxiliry recursive function h(O) = 0 , h(n) := h(n-l) + f(h(n—1)), prove by induction VnQ(h(n))

and then define the Skolem function k(n) := h(n) - n.

Exactly the same procedure is necessary to prove the MM-Logic theorem
if Q
anä a“(Q => IQ)
then UT‘O‘Q

which, translated into OSPL, is of the same structure as the arithmetic example:

if Q(O)
and Vx:‘W—)“W’ (Q(x(0)) => Vp:‘W-—>P’ Q((xopof)(0)
then Vx:‘W—)“W’ Q(Xok)(0)

These examples show that induction theorem proving in MM-Logic faces the same problems as induction theorem
proving in predicate logic. Although it may turn out that the restriction to monadic context access functions

simplifies the technical details, we cannot expect a quick solution to the whole problem. The greate similarities
may however allow to apply the'rnethods developed for predicate logic also to MM—Logic. This should be subject
to further investigation.

93

5.5 Interpretations of Multi Modal Logic

Modal Logic fonnalizes the notion of states and state transitions. What these states describe and what causes the

transitions is a matter of interpretation, not of the logic itself. Therefore a few but quite famous interpretations

shall briefly be sketched with special emphasis on the interpretation of the operators I chose for MM-logic.

The Temporal Interpretation

The temporal interpretation in general uses only new words for the operators. The states are still abstract "states of

the world", whatever the "world" is, only the accessibility relation is interpreted as temporal development of the

"world". That means, the structure of the accessibility relation is used to model time. A linear structure models a

straight flow of time, a branching structure models alternative futures. The structure may be discrete, modeling

distinguished time ticks as for example the internal clock in computers, or it may be dense as in the real world

(neglecting possible quantum effects). The modal operators can relate the current world, i.e. "now", with worlds

in the future or in the past

In MM-Logic we have branching accessibility relations based on the discrete relation 9\~, Le. we model alternative

futures with discrete time steps, however with an incomplete calculus with respect to the particular aspect of

discreteness. Time structures which are not discrete can easily be modeled by considering only the operators

related to the transitive accessibility relation and discarding the corresponding discreteness axioms. Dense

structures can be obtained with the additional axiom

Vx:'P~tw' 3y:'P~tw' Vw:WP y(w) < x(w).

The seriality assumption means that there is always a future and the constant-domain assumption means that the

world itself is static, no objects appear or disappear.

The temporal interpretation of our operators is:

D~ always in the next future o~ sometime in the next future

or now and always in the next future or now or sometime in the next future

ot always in the future ot sometime in the future

ort now and always in the next future on now or sometime in the future

• eventually - possibly henceforth

VU, vur always until (we have no past operators)

3U, 3ur possibly until

The indexed operators can't be interpreted properly on this general level. Since they are related to the labels of the

transitions we have to interpret the labels fIrst.

The Process Interpretation

In a special temporal interpretation, the worlds are related to the internal states of processes, software, hardware or

whatsoever, which may be in distinguished states and may perfonn certain atomic actions causing transitions into

successor states. The process variables can be represented by flexible constant symbols. Functions and predicates

which may change their definition (as for example in Lisp) can be represented by flexible function and predicate

symbols.

Since we consider branching time, the processes' actions may be nondetenninistic. If the processes are software

modules, a possible worlds structure therefore describes their complete computation tree, and an actual

computation is represented as a path through the possible worlds structure.

93

5 .5 Interpretations of Multi Modal Logic

Modal Logic formalizes the notion of states and state transitions. What these states describe and what causes the
transitions is a matter of interpretation, not of the logic itself. Therefore a few but quite famous interpretations
shall briefly be sketched with special emphasis on the interpretation of the operators I chose for MM-logic.

The Temporal Interpretation

The temporal interpretation in general uses only new words for the Operators. The states are still abstract “states of
the world”, whatever the “world” is, only the accessibility relation is interpreted as temporal development of the
“world”. That means, the structure Of the accessibility relation is used to model time. A linear structure models a
straight flow of time, a branching structure models alternative futures. The structure may be discrete, modeling

distinguished time ticks as for example the internal clock in computers, or it may be dense as in the real world
(neglecting possible quantum effects). The modal Operators can relate the current world, i.e. “now”, with worlds
in the future or in the past.

In MM-Logic we have branching accessibility relations based on the discrete relation SR“, i.e. we model alternative
futures with discrete time steps, however with an incomplete calculus with respect to the particular aspect of

discreteness. Time structures which are not discrete can easily be modeled by considering only the operators
related to the transitive accessibility relation and discarding the corresponding discreteness axioms. Dense
structures can be obtained with the additional axiom

Vx:‘P—>tW’ EIy:‘P—)tW’ sVVP y(w) < x(w).
The seriality assumption means that there is always a future and the constant-domain assumption means that the
world itself is static, no objects appear or disappear.

The temporal interpretation of our Operators is:
D“ always in the next future 0° sometime in the next future
Elr now and always in the next future Or now or sometime in the next future
nt always in the future 0* sometime in the future
u“ now and always in the next future <>“ now or sometime in the future
I eventually -+ possibly henceforth
VU, ‘vI always until (we have no past operators)
3U, 3U possibly until

The indexed operators can’t be interpreted properly on this general level. Since they are related to the labels of the
transitions we have to interpret the labels first.

The Process Interpretation

In a special temporal interpretation, the worlds are related to the intemal states of processes, software, hardware or
whatsoever, which may be in distinguished states and may perform certain atomic actions causing transitions into
successor states. The process variables can be represented by flexible constant symbols. Functions and predicates
which may change their definition (as for example in Lisp) can be represented by flexible function and predicate
symbols. '

Since we consider branching time, the processes’ actions may be nondetenninistic. If the processes are software
modules, a possible worlds structure therefore describes their complete computation tree, and an actual
computation is represented as a path through the possible worlds structure.

94

Now we can give a concrete interpretation to the labels of the transitions. If we have n processes running in

parallel, we choose as label the index of the process that causes that particular transition. The seriality of labeled

9\1'l-transitions however means that at each state (world) each process performs an action, and this is unrealistic.

Therefore only the operators corresponding to the transitive relation which require the existence of some labeled

9\1'l-transitions in the future make sense in a process interpretation. The interpretation of these operators are:

[n]t always after the n-th process' action.

<n>t sometimes (in the branching computation tree) after the n-th process' action.

[n]rt now and always after the n-th process' action.

<n>rt now or sometimes (in the branching computation tree) after the n-th process' action.

In) immediately after the n-th process' next action.

The incompleteness of the axiomatization of the 9\t-relation, however, means that we can not yet prove inductive

properties like loop invariants.

The seriality assumption means that there are no deadlocks. All processes will eventually perform a transition. The

constant-domain assumption means that we cannot model dynamic creation and deletion of processes in a natural

way, without special tricks.

The Interpretation as Action Logic

This interpretati~n is slightly different to the previous one. The difference is that this time we do not label the

transitions with processes that cause actions, but with actions themselves. We can for example write \ix:Colour

[paint(wall, x)]t color(wall, x) with the intended meaning: whenever the wall is painted, it will have that colour.

('Colour' is a sort symbol and 'color' is a predicate.) The interpretation in terms of possible worlds is: in each

state of the world that is created by a 'paint(wall, x)'-action (transition), color(wall, x) will hold. This statement is

an example for the use of the transitive [...]t-operator to express invariants. The statement [lose(Tom,lOOO$)]1'l

bankrupt(Tom), saying that when Tom gambles away another 1000$ he will be bankrupt, however, is no

invariant. It may be true now and false tomorrow (when his rich uncle has died). Therefore the [...]I'l-operator is

appropriate (but without the assumption about seriality of labeled transitions because Tom needs not gamble at

all).

The Epistemic Interpretation
Hintikka originally had the idea of formalizing the propositional attitude of belief with possible worlds [Hintikka

62]. The basic concept is that the propositions of an actor's (say A) belief are represented as a set of worlds,

compatible with A's beliefs. Any member of this set is, according to the way A thinks, a candidate for the real

world, that is

A beliefs ,'Fif and only if for all 'WE possible-worlds(A), ,'Fis true in 'Yl!.

Levesque, Halpem and Moses, Konolige and others have developed this idea to a formal logic with a tableau

based deduction calculus [Levesque 84], [Konolige 86], [Halpem&Moses 85].

In epistemic logics the indexed modal operators [...] are used to express belief. For example [A],'F is

interpreted: A believes, .ris true, whereas <A>,'Fmeans: A thinks, .rmight be possible. The operators related to

the different accessibiltiy relations are interpreted as follows:

[A]I'l,'F A beliefs 'f, it might however be false in the "real" world.

[A]T,'F A beliefs ,'Fand .rit is actually true in the real world (A is an expert for 1)

[A]t.r A beliefs ,'Fand he beliefs that he beliefs it etc. (introspection)

[A]rt.r A beliefs .rand he beliefs that he beliefs it etc. and .ris actually true.

(In order to enforce that not only the last 9\1'l-transition in a labeled 9\t-transition matters for the interpretation of

94

Now we can give a concrete interpretation to the labels of the transitions. If we have n processes running in
parallel, we choose as label the index of the process that causes that particular transition. The seriality of labeled
9i¢-tr'ansitions however means that at each state (world) each process performs an action, and this is unrealistic.
Therefore only the operators corresponding to the transitive relation which require the existence of some labeled
9i9-transitions in the future make sense in a process interpretation. The interpretation of these operators are:

IInllt always after the n-th process’ action.
<n>t sometimes (in the branching computation tree) after the n—th process’ action.
[[n]lrt now and always after the n-th process’ action.
<n>rt now or sometimes (in the branching computation tree) after the n-th process’ action.
In) immediately after the n—th process’ next action.

The incompleteness of the axiomatization of the Slit-relation, however, means that we can not yet prove inductive
properties like loop invariants.
The seriality assumption means that there are no deadlocks. All processes will eventually perform a transition. The
constant-domain assumption means that we cannot model dynamic creation and deletion of processes in a natural
way, without special tricks.

The Interpretation as Action Logic

This interpretation is slightly different to the previous one. The difference is that this time we do not label the
transitions with processes that cause actions, but with actions themselves. We can for example write ‘v’x:Colour
[[paint(wall, x)1|t color(wall, x) with the intended meaning: whenever the wall is painted, it will have that colour.
(‘Colour’ is a sort symbol and ‘color’ is a predicate.) The interpretation in terms of possible worlds is: in each
state of the world that is created by a ‘paint(wall, x)’-action (transition), color(wall, x) will hold. This statement is
an example for the use of the transitive [[. . .]]‘-operator to express invariants. The statement [[lose(Tom,1000$)]]”
bankruptCTom), saying that when Torn gambles away another 1000$ he will be bankrupt, however, is no
invariant. It may be true now and false tomorrow (when his rich uncle has died). Therefore the [HP-operator is
appropriate (but without the assumption about seriality of labeled transitions because Tom needs not gamble at
all).

The Epistemic Interpretation
Hintikka originally had the idea of formalizing the propositional attitude of belief with possible worlds [Hintikka
62]. The basic concept is that the propositions of an actor’s (say A) belief are represented as a set of worlds,
compatible with A’s beliefs. Any member of this set is, according to the way A thinks, a candidate for the real
world, that is

A beliefs 9“ if and only if for all We possible-worlds(A), ? is true in ‘W.
Levesque, Halpern and Moses, Konolige and others have developed this idea to a formal logic with a tableau

based deduction calculus [Levesque 84], [Konolige 86], [Halpem&Moses 85].

In epistemic logics the indexed modal operators [[]] are used to express belief. For example [[A]] ‚T is
interpreted: A believes, 9" is true, whereas <A> ? means: A thinks, 9" might be possible. The operators related to
the different accessibiltiy relations are interpreted as follows:

UHF”?~ A beliefs SF, it might however be false in the “real” world.
[[A]]rß' A beliefs 9'and T it is actually true in the real world (A is an expert for 9)

IIAJMr A beliefs rand he beliefs that he beliefs it etc. (introspection)

lAlflr A beliefs rand he beliefs that he beliefs it etc. and :Tis actually true.
(In order to enforce that not only the last 9i¢—transition in a labeled Slit-transition matters for the interpretation of

95

the transitive operators, but the lables of all transitions in the sequence have to be the same, simply discard axiom

13 in def. 5.2.3. This is more appropriate for the epistemic interpretation of these operators.)

MM-Logic has some features which may make it quite useful as an epistemic logic:

~ It allows the simultaneous use of the different belief operators.

~ It allows arbitrary non-ground terms as representation for actors.

For example the, "common knowledge" operator is simply 'v'x:Actor [xJI~

~ With a slight extension it is even possible to have a very selective "implicit knowledge" operator.

All you have to do is to incorporate a special unification algorithm for a particular kind of sets which

''unifies'' two sets by simply uniting them.

Then we can deduce from [A]P and

[B](P~Q)

[AuB]Q

i.e. when A and B join their knowlege, they can deduce Q form A's knowledege of P and B 's knowldege

ofP~Q. This unification rule realizes the axiom scheme [xlr~ [Xuylrsaying when X joins

his knowledge with Y then both together know at least what X knows.

What MM-Logic cannot model is:

~	 Inconsistent knowledge.

Due to the seriality assumption, from every world there is for every actor a consistent world. i.e. his

knowledge is always consistent.

~	 Restrictions for the tautology "[X]true" which is the unrealistic assumption that everybody knows all

logical truth (the famous omniscience problem).With the current version of OSPL as target logic, there is

no way to switch for example to weaker non normal S2 based systems where "[XJ]true" holds only for

predicate logic truth.

~	 In the epistemic interpretation of MM-Logic. every actor knows all consequences of his knowledge

(deductive closure property). No restrictions to the deductive closure are possible so far.

There is a famous example from McCarthy, the wise man puzzle, that has been used to test the representation

ability of formalisms for knowledge and belief. As a fmal example we give an axiomatization of the wise man

puzzle and a proof in MM-Logic. Its traditional form is:

Jil certain King wislUs to a.e termine wfiidi of fiis tliree wise men is tfi.e wisest. !He arranges tliem in a circCe so tliat tfi.ey

can see anti fi.ear eacfi otfi.er ana tefls tfi.em tliat fie wiU put a wfiite or 6factspot on eacli. of tfi.eir forefi.eais 6ut at {east

one spot wj[{ 6e White. In fact a£{ three spots are White. !He tfi.en offers his favor to tfi.e one wlio first tefls him tfi.e coCor of

his spot. Ylfter a while, tfi.e wisest announces tliat his spot is white. !How aoes fi.e tnow?

(Actually the information that all three spots are white is not necessary to solve the puzzle.)

The solution involves the wisest man reasoning about what his colleagues know and don't know from

observations and the king's announcement.

To axiomatize this puzzle in epistemic logic, assume the three wise man are A, B and C and C is the wisest.

First of all we need the three formulae:

Cl: A~B

C2: A~C

C3: B ~C

and assume the symmetry of the ~-predicate.

95

the transitive operators, but the lables of all transitions in the sequence have to be the same, simply discard axiom
J3 in def. 5.2.3. This is more appropriate for the epistemic interpretation of these operators.)

MLM-Logic has some features which may make it quite useful as an epistemic logic:
)— It allows the simultaneous use of the different belief operators.
> It allows arbitrary non-ground terms as representation for actors.

For example the, “common knowledge” Operator is simply sActor |[x]]¢. . ..
> With a slight extension it is even possible to have a very selective “implicit knowledge” operator.

All you have to do is to incorporate a special unification algorithm for a particular kind of sets which
“unifies” two sets by simply uniting them.
Then we can deduce from [A]]P and

i n]](P => Q)

[[AUB]lQ
i.e. when A and B join their knowlege, they can deduce Q form A’s knowledege of P and B 's knowldege

of P=>Q. This unification rule realizes the axiom scheme [[X]]?r => IIXUY]]‚'Fsaying when X joins
his knowledge with Y then both together know at least what X knows.

What MM-Logic cannot model is:

> Inconsistent knowledge.
Due to the seriality assumption, from every world there is for every actor a consistent world, i.e. his
knowledge is always consistent.

> Restrictions for the tautology “[[X]]true” which is the unrealistic assumption that everybody knows all
logical truth (the famous onmiscience problem).With the current version of OSPL as target logic, there is
no way to switch for example to weaker non normal 82 based systems where “l[X]] true” holds only for
predicate logic truth.

> In the epistemic interpretation of MM-Logic, every actor knows all consequences of his knowledge
(deductive closure property). No restrictions to the deductive closure are possible so far.

There is a famous example from McCarthy, the wise man puzzle, that has been used to test the representation
ability of formalisms for knowledge and belief. As a final example we give an axiomatization of the wise man
puzzle and a proof in MM-Logic. Its traditional form is:

fi certain king wish: to Jeannine wfiicfi. g‘ fu‘s tfirec wise men is the wisest. He arranges them in (; circfz so tfiat tfiey
can see am! liter eacfi otficr and tzfß diem tliat its wiffput a wflite or öfacßspot an tacit of t/ieirforefietuis out at [east
one spot will fie white. Infect aß tfirca spots are wliite. Ihre than qfi'ers Iii: favor to tfic one wfio first tell; fiim tlie color of
Eis spot. fifter :: wfir’fe, tät wisest announces tfiat fits spot is wfiite. How does & know?

(Actually the information that all three spots are white is not necessary to solve the puzzle.)
The solution involves the wisest man reasoning about what his colleagues know and don’t know from
observations and the king’s announcement.
To axiomatize this puzzle in epistemic logic, assume the three wise man are A, B and C and C is the wisest.
First of all we need the three formulae:

CkAxB
C2: A at C
C3: B at C

and assume the symmetry of the art—predicate.

96

At least one of them has a white spot and everybody knows that everybody else knows that his colleagues know

this.

C4: VS, S', S": [S] [S'] [S,,] W(A) v W(B) v W(C)

(W(S) means S has a white spot The [... J]-operator is actually the [...]~-operator.)

The three men can see each other and they know this. Therefore whenever one of them has a white or black spot,

he knows that his colleagues know this and he knows also that his colleagues know this from each other.

C5: VS,s': S '# S' => [S] (-,W(S) => [S']-,W(S»

C6: VS,S',S" S '# S'A S '# S" 1\ S' '# S": => [S] [S,] (-,W(S) => [S"]-,W(S»

C7: VS,s',S" S '# S'A S '# S" 1\ S'"# S": => [S] [S,] (-,W(S') => [S"]-,W(S'»

(We give only the minimum number of axioms which are necessary for the proof.)

They can hear each other and they know this. B did not say anything, therefore C knows that B does not know the

colour of his own spot.

C8: [C]-, [B] W(B) (~[C] -,W(B»

C knows that B knows that A does not know the colour of his spot.

C9: [C] [BJ]-, [AJ] W(A) (~[C] [B] <A> -,W(A».

We translate the formulae into OSPL syntax:

The sort of th~ variables in lowercase symbols is 'W~~'.

To make the formula more readable we use second order syntax and drop the 0 and .l.-function and the 0 sign

writing terms .l.(xo... oZ, 0) in simple brackets [x ...z].

Cl: A'#B . C2: A'#C C3: B '#C

C4: VS,u,S',u"S",u": W([u(S)u'(S') u"(S")], A) v W([u(S) u'(S') u"(S")], B) v W([u(S) u'(S') u"(S")], C)

C5: VS,U, S',u': S = S' v W([u(S)], S) v -.W([u(S) u'(S')], S)

C6: VS,U, S',u', S",u": S =S'v S =S" vS' =S" v W([u(S) u'(S')], S) v -.W([u(S) u'(S') u"(S")], S»

C7: VS,U, S',u', S",u": S = S'v S = S" V S' =S" v W([u(S) u'(S')], S') v -.W([u(S) u'(S') u"(S")], S'»

C8: Vu -,W([u(C) g(B)], B)

C9: Vu,v -.W([u(C) v(B) h(A)], A)

A deduction of the fact that C knows the colour of his own spot, Le. [C]W(C) is now a trivial exercise for any

resolution theorem prover. The following UR-proofwas found by our system [Eisinger&Ohlbach 86J:

CI,C2,C3,C7,C8 ~ RI: Vu,u" -,W([u(C) g(B) u"(A)], B) (~ [C] [A] -.W(B»

C9, RI,C4 ~ R2: Vu W([u(C) g(B) h(A)], C) (~[C] <A>W(C»

Cl,C2,C3,R2,C6 ~ R3: Vu W([u(C) g(B)], C) (~[C] W(C»

C3,R3,C5 ~ R4: Vu W([u(C)], C) (~[C] W(C»
 •
Actually this example is so simple that none of the axioms for the accessibility relation (def. 5.2.3) are necessary.

A standard unsorted resolution calculus with Robinson unification is sufficient.

96

At least one of them has a white spot and everybody knows that everybody else knows that his colleagues know
this.

C4: vs, S', S": [[5]] [[s]I [[s"]] W(A) v W(B) v W(C)
(W(S) means S has a white spot. The II...]]—operator is actually the IL. ‚B”-Operator.)
The three men can see each other and they know this. Therefore whenever one of them has a white or black spot,

he knows that his colleagues know this and he knows also that his colleagues know this from each other.

cs: VS,S': s # S' = [[S]] HWS) => [[S']l—1W(S))
C6: vs,s*,s" s #: S'A s at s" A S' ;: 3": => [[s]] [[s*]] (—-:W(S) => [[S"]]—-1W(S))
C7: vs,s',s" s # s'A s at s" A s' :e s": => [[s l] [[9]] (—.W(s') => [[s"]lfiW(S'))

(We give only the minimum number of axioms which are necessary for the proof.)

They can hear each other and they know this. B did not say anything, therefore C knows that B does not know the
colour of his own spot.

cs: [[c][—. [[13]] W(B) (<: [[c]] -1W(B))
C knows that B knows that A does not know the colour of his spot.

C9: [[c]] [[B]]—1[[A11W(A) (© [[c]] [[B] <A> fiW(A)).

We translate the formulae into OSPL syntax:
The sort of the variables in lowercase symbols is ‘W—>°W’.
To make the formula more readable we use second order syntax and dr0p the o and „l,-function and the 0 sign
writing terms ¢(xo...oz, 0) in simple brackets [x. . .z].

Cla tB ‘ C2: A¢C C3: B¢C
C4: VS,u,S',u',S",u": W([u(S) u'(S') u"(S")], A) v W([u(S) u'(S') u"(S")], B) v W([u(S) u'(S') u"(S")], C)
C5: VS,u, S',u': S = S‘ v W([u(S)], S) v —.W([u(S) u'(S')], S)
C6: VS,u. S',u', S",u“: S = S'v S = S" v S' = S" v W([u(S) u'(S')], S) v —.W([u(S) u'(S') u"(S")]‚ S))
C7: VS,u, S',u', S",u": S = S'v S = S" v S' = S" v W([u(S) u'(S‘)], S‘) v -—.W([u(S) u'(S') u"(S")], S'))
C8: Vu —-:W([u(C) g(B)], B)

C9: Vu,v fiW([u(C) v(B) h(A)], A)

A deduction of the fact that C knows the colour of his own spot, i.e. [[C]]W(C) is now a trivial exercise for any

resolution theorem prover. The following UR-proof was found by our system [Eisinger&0hlbach 86]:

C1,C2,C3,C7,C8 _» R1: Vu,u" -—1W([u(C) g(B) u"(A)], B) (=> I[C]] [[A]] —.W(B))
C9, R1,C4 _> R2: vu W([u(C) g(B)h(A)].C) (© [[c1] <A>W(C))
C1,C2,C3,R2,C6 —> R3: Vu W([u(C) g(B)], C) (=>IIC11 W(C))
C3,R3,C5 _» R4: Vu W([u(C)],C) (<=> [[C]] W(C)) I

Actually this example is so simple that none of the axioms for the accessibility relation (def. 5.2.3) are necessary.
A standard unsorted resolution calculus with Robinson unification is sufficient.

97

Chapter Six

Summary

A method for translating formulae of a large class of first-order logics with possible worlds semantics into

predicate logic has been developed. The method allows for theorem proving by translation - into predicate logic ­

and refutation - with predicate logic resolution and paramodu- lation. The basic idea of the translation is to

transform the information contained in a sequence of nested nonclassical operators into one term representing

explicitly the whole path through the possible worlds structure from the initial world to the actual world that is

used to interpret terms and atoms. These "context terms" are attached as additional arguments to the terms and

atoms. Since they are ordinary terms, predicate logic unification can treat them in the usual way. That means, one

resolution or paramodulation step has, via unification, the whole relevant part of the possible worlds structure to

its disposal and therefore needs not jump shortsightedly from one world to another, as this is for example the

case in some tableaux or sequent calculi [Fitting 72,83]. Furthermore, since the operators are represented as

terms containing variables, their unification can be seen as the computation of the "most general world", again an

advantage over calculi which can handle only explicitly generated worlds one by one. Since the "target logic" for

the translation is order-sorted predicate logic (OSPL) with a fully developed resolution and paramodulation

calculus, the "source logics" may also be first-order, order-sorted with built-in equality.

Context Logic (CL) has been developed as an intermediate logic between the source logics and predicate logic

because there are a number of translation operations common to all source logics which can be handled by this

method, and these operations can be comprised in the translation from CL to OSPL. The translation from the

source logic into CL-is almost a one to one translation of the model theoretic semantics of its operators, whereas

the translation from CL to OSPL contains the shift of information from the operator level to the term level.

In order to demonstrate that using Context Logic simplifies the task of designing a proof th~ory for a logic

considerably, we have applied the method to a quite complex first-order order-sorted multi modal logic with

built-in equality. It is based on the modal logics D, T, D4 and S4 and includes CTL. It contains several kinds of

multiplicities. We allow modal operators corresponding to a basic accessibility relation to occur smlUltaneously

with operators corresponding to its reflexive, transitive and reflexive transitive closure. Furthermore we have

indexed operators which refer to labeled transitions in the possible worlds structure. The indices can be arbitrary

- possibly nonground - terms. Finally we have an 'eventually' operator (on each path there is a world such that

...), an indexed eventually operator and some 'until' operators. The logic is quite expressive and can serve in

various applications as temporal logic, process logic, action logic or epistemic logic.

The limits of the translation method based on Context Logic are:

- the semantical structure behind the source logic must be first-order axiomatizable,

otherwise the resulting calculus is not complete.

- We consider only constant-domain interpretations.

- From each context (world) there must be an accessible world (seriality).

The last two points are due to the fact that OSPL as target logic cannot handle partial functions. Once it has been

extended to handle partial functions whose domain have to be deduced during the proof, CL can be extended too

and we can allow nonserial varying-domain logics as source logics.

The whole translation idea for logics and CL in particular is a natural extension of basic work done for classical

modal logics. It began with calculi using labeled formulae where the labels are either integers [Chan 87] or terms

denoting worlds [Wallen 87]. The labels were not made part of the syntax, but used to guide the proof system.

97

Chapter Six

Summary

A method for translating formulae of a large class of first-order logics with possible worlds semantics into

predicate logic has been developed. The method allows for theorem proving by translation - into predicate logic -
and refutation - with predicate logic resolution and paramodu- lation. The basic idea of the translation is to
transform the information contained in a sequence of nested nonclassical operators into one term representing

explicitly the whole path through the possible worlds structure from the initial world to the actual world that is

used to interpret terms and atoms. These “context terms” are attached as additional arguments to the terms and
atoms. Since they are ordinary terms, predicate logic unification can treat them in the usual way. That means, one

resolution or paramodulation step has, via unification, the whole relevant part of the possible worlds structure to
its disposal and therefore needs not jump shortsightedly from one world to another, as this is for example the
case in some tableaux or sequent calculi [Fitting 72,83]. Furthermore, since the operators are represented as
terms containing variables, their unification can be seen as the computation of the “most general world”, again an
advantage over calculi which can handle only explicitly generated worlds one by one. Since the “target logic” for
the translation is order-sorted predicate logic (OSPL) with a fully developed resolution and paramodulation
calculus, the “source logics” may also be first—order, order-sorted with built-in equality.

Context Logic (CL) has been developed as an intermediate logic between the source logics and predicate logic
because there are a number of translation operations common to all source logics which can be handled by this
method, and these operations can be comprised in the translation from CL to OSPL. The translation from the
source logic into CL-is almost a one to one translation of the model theoretic semantics of its operators, whereas
the translation from CL to OSPL contains the shift of information from the operator level to the term level.

In order to demonstrate that using Context Logic simplifies the task of designing a proof theory for a logic
considerably, we have applied the method to a quite complex first—order order-sorted multi modal logic with
built-in equality. It is based on the modal logics D , T, D4 and S4 and includes CTL. It contains several kinds of
multiplicities. We allow modal operators corresponding to a basic accessibility relation to occur sir‘nultaneously
with operators corresponding to its reflexive, transitive and reflexive transitive closure. Furthermore we have
indexed operators which refer to labeled transitions in the possible worlds structure. The indices can be arbitrary
- possibly nonground - terms. Finally we have an ‘eventually’ operator (on each path there is a world such that
...), an indexed eventually operator and some ‘until’ operators. The logic is quite expressive and can serve in
various applications as temporal logic, process logic, action logic or epistemic logic.

The limits of the translation method based on Context Logic are:
- the semantical structure behind the source logic must be first-order axiomatizable,

otherwise the resulting calculus is not complete.
- We consider only constant-domain interpretations.
- From each context (world) there must be an accessible world (seriality).
The last two points are due to the fact that OSPL as target logic cannot handle partial functions. Once it has been
extended to handle partial functions whose domain have to be deduced during the proof, CL can be extended too
and we can allow nonserial varying-domain logics as source logics.

The whole translation idea for logics and CL in particular is a natural extension of basic work done for classical
modal logics. It began with calculi using labeled formulae where the labels are either integers [Chan 87] or terms
denoting worlds [Wallen 87]. The labels were not made part of the syntax, but used to guide the proof system.

98

After that, different groups came up with the idea to make the terms part of the syntax, thus translating modal

logic syntax into predicate logic syntax [Enjalbert&Auffray 89], [Fariiias & Herzig 88], [Ohlbach 88]. Context

Logic now systematizes these efforts and supports the designer of a logic in developing a proof theory by

translation and refutation.

Future Work
To improve Context Logic itself, first of all OSPL should be extended to handle partial functions whose domain

is unknown at the beginning. This is necessary to deal with nonserial accessibility relations whose context access

functions are partial and to allow varying-domain interpretations where terms may be undefined in some worlds.

For modal logics with nonserial accessibility relations I have developed in [Ohlbach 88] a resolution calculus

where this problem is solved using theory resolution rules [Stickel 85] which take care of partially defined

functions. This could be a guideline to do it for OSPL in general.

How to extend CL for dealing with semantical structures which are not first-order axiomatizable is not so

obvious. As the modal logic G shows, there are Kripke structures which are not fIrst-order axiomatizable, but

which nevertheless admit a complete logic. The axiomatization of its Kripke structure must lie in an "inoffensive"

second-order fragment. Identifying such fragments and realizing them as special theory resolution rules is surely

a challenging task.

Of course I am anxious to see the Context Logic translation method applied to other logics. Temporal logics

based on interVals should be a promising candidate.

The calculus for MM-Logic as it is can run on a predicate logic theorem prover with built-in equality handling

and overloaded sort declarations. To make it really efficient, however, the clauses axiomatizing the possible

worlds structure (def. 5.3.1) should be turned into unifIcation algorithms. Since the sort structure separates them

form user defmed equations, it is possible to consider them separately without the danger of interferences with

user defmed axioms.

In many applications not all of the MM-Logic operators will be necessary. In this case some of the clauses in def.

5.3.1 become superfluous and the corresponding unification algorithms should become simpler and more

effIcient. Furthermore, as it turned out to happen for modal logics [Ohlbach 88], it may be possible to identify

syntactic invariants which hold initially for the translated formulae and which are preserved during the deduction.

Exploiting these invariants may improve the unifIcation algorithms considerably. This kind of improvements

depend on the particular application and should be investigated separately.

A much more expensive enterprise is the incorporation of induction mechanisms into MM-Logic theorem

proving. As we have seen in section 5.4, induction theorem proving is neccessary to approximate the transitive

closure of the basic accessibility relation. This is of particular importance for the application of MM-Logic as

process logic. It seems that the translation into OSPL at least provides the syntactic basis for transferring the

methods developed for predicate logic induction theorem proving to MM-Logic.

Acknowledgements

I wish to thank Andreas Nonnengart who contributed to the development of MM-Logic. He found all

counterexamples to its earlier incomplete versions. I hope he won't fmd any more. I am also grateful to Michael

McRobbie who invited me for a visit to the Automated Reasoning Project at the Australian National University.

Freed from the daily duties at home and not bound to new ones I was able to develop the formalism and to write

this report during my stay. I doubt that at home I could havefound the time and concentration to finish it at all.

98

After that, different groups came up with the idea to make the terms part of the syntax, thus translating modal
logic syntax into predicate logic syntax [Enjalbert&Auffray 89], [Farir'ias & Herzig 88], [Ohlbach 88]. Context
Logic now systematizes these efforts and supports the designer of a logic in developing a proof theory by
translation and refutation.

Future Work
To improve Context Logic itself, first of all OSPL should be extended to handle partial functions whose domain
is unknown at the beginning. This is necessary to deal with nonserial accessibility relations whose context access
functions are partial and to allow varying-domain interpretations where terms may be undefined in some worlds.
For modal logics with nonserial accessibility relations I have developed in [Ohlbach 88] a resolution calculus
where this problem is solved using theory resolution rules [Stickel 85] which take care of partially defined
functions. This could be a guideline to do it for OSPL in general.

How to extend CL for dealing with semantical structures which are not first-order axiomatizable is not so
obvious. As the modal logic G shows, there are Kripke structures which are not first-order axiomatizable, but
which nevertheless admit a complete logic. The axiomatization of its Kripke structure must lie in an “inoffensive”
second-order fragment. Identifying such fragments and realizing them as Special theory resolution rules is surely
a challenging task.

Of course I am anxious to see the Context Logic translation method applied to other logics. Temporal logics

based on intervals should be a promising candidate.

The calculus for MM-Logic as it is can run on a predicate logic theorem prover with built-in equality handling
and overloaded sort declarations. To make i t really efficient, however, the clauses axiomatizing the possible
worlds structure (def. 5.3.1) should be turned into unification algorithms. Since the sort structure separates them
form user defined equations, it is possible to consider them separately without the danger of interferences with
user defined axioms.

In many applications not all of the MM-Logic operators will be necessary. In this case some of the clauses in def.

5.3.1 become superfluous and the corresponding unification algorithms should become simpler and more
efficient. Furthermore, as it turned out to happen for modal lo gics [Ohlbach 88], it may be possible to identify
syntactic invariants which hold initially for the translated formulae and which are preserved during the deduction.
Exploiting these invariants may improve the unification algorithms considerably. This kind of improvements

depend on the particular application and should be investigated separately.
A much more expensive enterprise i s the incorporation of induction mechanisms into MM-Logic theorem

proving. As we have seen in section 5.4, induction theorem proving is neccessary to approximate the transitive
closure of the basic accessibility relation. This is of particular importance for the application of MM-Logic as
process logic. It seems that the translation into OSPL at least provides the syntactic basis for transferring the
methods developed for predicate logic induction theorem proving to MM-Logic.

Acknowledgements

I wish to thank Andreas Nonnengart who contributed to the development of MM-Logic. He found all
counterexamples to its earlier incomplete versions. I hope he won ’t find any more. I am also grateful to Michael

McRobbie who invited me for a visit to the Automated Reasoning Project at the Australian National University.
Freed from the daily duties at home and not bound to new ones I was able to deve10p the formalism and to write
this report during my stay. I doubt that at home I could havefound the time and concentration to finish it at all.

99

References
Boyer&Moore 79

Chan 87

Chang&Lee 73

Clarke&Emerson 81

Eisinger&Ohlbach 86

Enjalbert&Auffray 89

Fariiias&Herzig 88

Fitting 72

Fitting 83

Grlitzer79

Halpem&Moses 85

Hughes&Cresswell68

Hintikka 62

Konolige 86

Kripke59

Kripke 63

Levesque84

Loveland 78

Moore80

Ohlbach 88

Robinson 65

Robinson & Wos 69

Schmidt-SchauB 85

Schmidt-SchauB 88

Smullyan 68

Sticke185

Wallen 87

Walther87

R.S. Boyer, J.S. Moore: A CompuJational Logic. Academic Press 1979.

M. Chan. The Recursive ResoluJion Method. New Generation Computing, 5 pp. 155-183,1987.

C.-L.Chang, R.C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving.

Science and Applied Mathematics Series (ed. W. Rheinboldt), Academic Press, New York, 1973.

M.e. Clarke, E.A. Emerson. Design and Synthesis ofSynchronization Skeletons using Branching Time

Temporal Logic. Lecture Notes in Computer Science 131, Springer Verlag, New York, 1981, pp. 52-71.

N. Eisinger, HJ.Ohlbach. The MarkgrafKarl RefuJation Procedure.

Proc. of 8th Conference on Automated Deduction, pp. 682-683, 1986.

P. Enjalbert, Y. Auffray. Modal Theorem Proving: An Equational Viewpoint Submitted to HCAl 89.

L. Fariilas del Cerro, A. Herzig Quantified Modal Logic and Unification Theory

Langages et Systemes Informatique, Universiti Paul Sabatier, Toulouse. Rapport LSI n° 293, jan. 1988.

See also L. Fariilas del Cerro, A. Herzig Linear Modal Deductions.

Proc. of9th Conference on Automated Deduction, pp. 487-499,1988.

M.C. Fitting. Tableau methods ofprooffor modal logics.

Notre Dame Journal ofForrnal Logic, XIII:237-247,1972.

M.C. Fitting. Proof methods for modal and intuitionistic logics.

Vol. 169 of Synthese Library, D. Reidel Publishing Company, 1983.

G. Grlitzer. Universal Algebra. Springer Verlag (1979).

J.Y. Halpem and Y. Moses. A guide to modal logics ofknowledge and belief:

preliminary draft. In Proc. of 9th HCAI, pp 479-490,1985.

G.E.Hughes, M.J.Cresswell. An Introduction to Modal Logics. Methuen &Co., London, 1986.

J. Hintikka. Knowledge and Belief Comell University Press, Ithaca, New York, 1962.

K.Konolige. A Deduction Model ofBelief and its Logics.

Research Notes in Artificial Intelligence, Pitman, London, 1986.

S. Kripke. A Completeness Theorem in Modal Logic. J. of Symbolic Logic, Vol24, 1959, pp 1-14.

S. Kripke. Semantical analysis ofmodal logic I, normal propositional calculi.

Zeitschrift fllr mathematische Logik und Grundlagen der Mathematik, Vo!. 9, 1963, pp.67-96.

HJ. Levesque. A logic ofknowledge and active belief

Proc. of American Association of Artificial Intelligence, University of Texas, Austin 1984.

D. Loveland: AuJomated Theorem Proving: A Logical Basis.

Fundamental Studies in Computer Science, Vol. 6, North-Holland, New York 1978.

R.e. Moore. Reasoning abouJ Knowledge and Action. PhD Thesis, MIT, Cambridge 1980.

H.J. Ohlbach. A ResoluJion Calculus for Modal Logics

Thesis, FB. Informatik, University of Kaiserslautem, 1988.

J.A. Robinson. A Machine Oriented Logic Based on the ResoluJion Principle

J.ACM, Vo!. 12, No I, 1965,23-41.

Robinson, G., Wos, L. Paramodulation and theorem provcing in first order theories with equality.

Machine Intelligence 4, American Elsevier, New York, pp. 135-150, 1969.

Schmidt-SchauB, M. A Many-Sorted Calculus with Polymorphic Functions

Based on ResoluJion andParamodulation. Proc. of 9th HCAI, Los Angeles, 1985, 1162-1168.

Schmidt-SchauB, M. CompuJational aspects ofan order-sorted logic with term declarations.

Thesis, FB. Informatik, University of Kaiserslautem, 1988.

R.M. Smullyan. First Order Logic, Springer Verlag, Berlin 1968.

M. Sticke!. AuJomated Deduction by Theory Resolution.

Journal of Automated Reasoning Vo!. 1, No. 4, 1985, pp 333-356.

L.A.Wallen. Matrixproofmethodsfor modal logics. In Proc. of 10th HCAI, 1987.

C. Walther: A Many-sorted Calculus Based on Resolution and Paramodulation.

Research Notes in Artifical Intelligence, Pitman Ltd., London, M. Kaufmann Inc., Los Altos, 1987.

R eferen ces
Boyer&Moore 79

Chan 87

Chang&Lee 73

C1arke&Emerson 81

Eisinger&0hlbach 86

EnjalbertScAuffi'ay 89

Farifias&Herzig 88

Fitting 72

Fitting 33

Grälzer 79

Halpem&Moscs 85

Hughes&Cresswell 68

Hintikka 62

Konolige 86

Kripke 59

Kripke 63

Levesque 84

Loveland 78

Moore 80

Öhlbach 88

Robinson 65

Robinson & Wos 69

Schmidt-Schauß 85

Schmidt-Schauß 88

Smullyan 68

Stickel 85

Wallen 87

Walther 87

99

R.S. Boyer, J.S. Moore: A Computational Logic. Academic Press 1979.

M. Chan. The Recursive Resolution Method. New Generation Computing, 5 pp. 155—183, 1987.

C.-L.Chang, R.C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving.
Science and Applied Mathematics Series (ed. W. Rheinboldt), Academic Press, New York, 1973.

M.C. Clarke, EA. Emerson. Design and Synthesis of Synchronization Skeletons using Branching Time

Temporal Logic. Lecture Notes in Computer Science 131, Springer Verlag, New York, 1981, pp. 52-71.

N. Eisinger, H.J.Ohlbach. The Markgraf Karl Refutation Procedure.

Proc. of 8th Conference on Automated Deduction, pp. 682-683, 1986.
P. Enjalbert, Y. Auffi'ay. Modal Theorem Proving: An Equational Viewpoint Submitted to IJCAI 89.

L. Farifias del Cen'o, A. Herzig Quantified Modal Logic and Unification Theory

Langages et Systemes Informatique, Université Paul Sabatier, Toulouse. Rapport LSI n° 293, jan. 1988.

See also L. Farifias del Cerro, A. Herzig Linear Modal Deductions.

Proc. of 9"h Conference on Automated Deduction, pp. 487-499, 1988.

M.C. Fitting. Tableau methods of proof for modal logics.

Notre Dame Journal of Formal Logic, XIII:237—247,1972.

M.C. Fitting. Proof methods for modal and intuitionistic logics.

Vol. 169 of Synthese Library, D. Reidel Publishing Company, 1983.

G. Grittzer. Universal Algebra. Springer Verlag (1979).

IX. Halpern and Y. Moses. A guide to modal logics of knowledge and belief:

preliminary draft. In Proc. of 9th IJCAI, pp 479—490, 1985.
G.E.Hughes, M.J.Cresswel1. An Introduction to Modal Logics. Methuen &Co., London, 1986.

J. Hintikka. Knowledge and Belief. Cornell University Press, Ithaca, New York, 1962.

K.Konolige. A Deduction Model of Belief and its Logics.

Research Notes in Artificial Intelligence, Pitman, London, 1986.

S. Kripke. A Completeness Theorem in Modal Logic. I . of Symbolic Logic, Vol 24, 1959, pp 1-14.

8. Kripke. Semantical analysis of modal logic I, normal propositional calculi.

Zeitschrift fiir mathematische Logik und Grundlagen der Mathematik, Vol. 9 , 1963, pp,67-96.

HJ . Levesque. A logic of knowledge and active belief.

Proc. of American Association of Artificial Intelligence, University of Texas, Austin 1984.

D. Loveland: Automated Theorem Proving: A Logical Basis. \

Fundamental Studies in Computer Science, Vol. 6, North-Holland, New York 1978.

R.C. Moore. Reasoning about Knowledge and Action. PhD Thesis, MIT, Cambridge 1980.

HJ . Ohlbach. A Resolution Calculus for Modal Logics

Thesis, FB. Informatik, University of Kaiserslautern, 1988.

J.A. Robinson. A Machine Oriented Logic Based on the Resolution Principle

LACM, Vol. 12, No 1, 1965, 23-41.

Robinson, G. , Wos, L. Paramodulation and theorem provcing in first order theories with equality.

Machine Intelligence 4 , American Elsevier, New York, pp. 135-150, 1969.

Schmidt—Schauß, M. A Many-Sorted Calculus with Polymorphic Functions

Based on Resolution and Paramodulation. Proc. of 9th HCAI, Los Angeles, 1985, 1162-1168.

Schmidt-SchauB, M. Computational aspects of an order-sorted logic with term declarations.

Thesis, FB. Informatik, University of Kaiserslautern, 1988.

R.M. Smullyan. First Order Logic, Springer Verlag, Berlin 1968.

M. Stickel. Automated Deduction by Theory Resolution.

Journal of Automated Reasoning Vol. 1, No. 4, 1985, pp 333-356.

L.A.Wallen. Matrix proof methods for modal logics. In Proc. of 10th IJCAI, 1987.

C. Walther: A Many-sorted Calculus Based on Resolution and Paramodulation.

Research Notes in Artifical Intelligence, Pitrnan Ltd., London, M. Kaufmann Inc., Los Altos, 1987.

	neu.pdf
	neu-1

